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Dedicated to 

Professor Oscar Zariski 

Without his blessings who can resolve the singularities? 



Preface to the Second Edition 

The common solutions of a finite number of polynomial equations in 
a finite number of variables constitute an algebraic variety. The degrees 
of freedom of a moving point on the variety is the dimension of the 
variety. A one-dimensional variety is a curve and a two-dimensional 
variety is a surface. A three-dimensional variety may be called asolid. 
Most points of a variety are simple points. Singularities are special 
points, or points of multiplicity greater than one. Points of multiplicity 
two are double points, points of multiplicity three are tripie points, 
and so on. A nodal point of a curve is a double point where the curve 
crosses itself, such as the alpha curve. A cusp is a double point where 
the curve has a beak. The vertex of a cone provides an example of a 
surface singularity. A reversible change of variables gives abirational 
transformation of a variety. Singularities of a variety may be resolved 
by birational transformations. 

In the last century, resolution of singularities of curves was achieved 
by Riemann, Noether and Dedekind by analytic, geometrie and alge­
braic methods, respectively; for a historical overview of the resolution 
problem see my expository article [AB]; here items [Al] to [A17] re­
fer to the Additional Bibliography and items [1] to [26] refer to the 
original Bibliography. Then, in case of characteristic zero, after sev­
eral attempts by the Italian geometers such as Albanese [11] and Levi 
[16] at the turn of the century, surface desingularization was achieved 
by Zariski [A17] , who soon followed it up by solid desingularization 
[25], which was brilliantly generalized by Hironaka [15] for higher­
dimensional varieties. In my Ph.D. thesis [2], I gave a proof of surface 
desingularization in case of characteristic p, which later on I extended 
first to arithmetical surfaces [A2] and then to two-dimensional excellent 
schemes [A3]. Briefly, when the coefficients of the defining equations 
of an algebraic curve are integers, by reducing them modulo various 
prime numbers we get a family of algebraic curves over fields of dif­
ferent characteristics, and the resulting total object is called an arith-
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viü PREFACE TO THE SECOND EDITION 

metieal surface. A two-dimensional scheme is a further generalization 
of this concept. 

The present book contains the geometrie part of the proof of solid 
desingularization in characteristie p 1= 2,3,5 whieh I obtained in 1965; 
the algorithmie part is contained in my four previous artieies [5] to [9]; 
the book does contain an alternative simple version of the algorithm for 
characteristie zero; half of the book can also be used as an introduction 
to birational algebraie geometry. I am thankful to Springer-Verlag for 
reprinting this book which was first published in 1966 by Academie 
Press. It may be hoped that this would stimulate other investigators 
to settle the general desingularization problem for higher-dimensional 
algebraic as weH as arithmetieal varieties. A discussion of this topie 
addressed to scientists and engineers may be found in my 1990 book 
[A7] whieh, according to the recent article [All] by Hauser, "provides 
a description of the state of the art in resolution of singularities and 
related problems." 

There is also the quest ion of canonieal processes of desingulariza­
tion. Such a process for algebraic as weH as arithmetieal curves is 
described in my 1983 article [A4] and revisited in my 1997 article 
[A9]. Moreover, a discussion of such processes for higher-dimensional 
varieties in characteristic zero can be found in my monographs [A5] 
and [A6] of 1983 and 1988, respectively. These discussions together 
with various incarnations of the trick employed in item (10.24) of the 
present book have recently led me to discover a short proof of analytie 
desingularization in characteristie zero for any dimension on which I 
gave a lecture in various places in 1996-97. The text ofthat lecture is 
inserted as an Appendix to the present new edition of the book. 

Shreeram S. Abhyankar 
West Lafayette 
16 July 1997 



Preface to the First Edition 

Some twenty years ago there appeared, in the Annals 0/ Mathe­
matics, the marvelous memoir of Zariski entitled: Reduetion of 
singularities of algebraie three-dimensional varieties. Not only was 
a daring and ingenious solution of a diffieult problem given in it, 
but so mueh of the teehnique invented for the solution has proved 
to be of such signifieanee for algebraie geometry in general! 

Hironaka's brilliantly energetie reeent solution of the general 
resolution problem for zero eharaeteristie eonstitutes, indeed, a 
high tribute to Zariski's memoir. 

At present I am able to pay only a modest tribute to Zariski's 
memoir by giving a self-eontained exposition of it. This then is 
the primary aim of the monograph. 

A seeondary aim is to partially extend some of the results to 
nonzero eharaeteristie. The algorithm needed for such an extension 
has already been published in four papers, and it will not be 
repeated here. This monograph eontains the geometrie part of 
the argument. However, we do include an alternative simple 
version of the algorithm for zero eharaeteristie thereby making 
the monograph self-eontained for that ease. 

Finally, the matter is so arranged that ab out half of the monograph 
ean be used as an introduction to certain foundational aspects of 
algebraie geometry. 

My thanks are due to Annette Wortman for an exeellent job of 
typing the manuseript. The work on this monograph was partially 
supported by the National Seienee Foundation under NSF-GP-
4248-50-395 at Purdue University; I am grateful for this support. 

September, 1966 
Purdue University 
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§o. Introduction 

Let k be a perfect ground field of characteristic p, and let X be 
a nonsingular irreducible three-dimensional projective algebraic 
variety over k. Then the principal results proved in this monograph 
are: 

Global resolution. Given any algebraic surface Y over k embed­
ded in X, there exists a sequence X -- Xl -- X z -- ... -- X rn -- X' 
of monoidal transformations with nonsingular irreducible centers 
such that the total transform of Y in X' has only normal crossings 
and the proper transform of Y in X' is nonsingular. 

Global principalization. Given any ideal I on X, there exists 
a sequence X -- Xl -- Xz -- ... -- X m -- X' of monoidal trans­
formations with nonsingular irreducible centers such that the 
inverse image of I on X' is locally principal. 

Dominance. Given any irreducible projective algebraic variety 
X* over k such that X* is birationally equivalent to X, there exists 
a sequence X -- Xl -- Xz -- ... -- X m -- X' of monoidal trans­
formations with nonsingular irreducible centers such that X' 
dominates X*. 

Birational invariance. If k is algebraically closed and X* is any 
nonsingular irreducible projectivealgebraic variety over k such 
that X* is birationally equivalent to X, then hi(X) = hi(X*) for 
all i ;:?: 0, where hi(X) denotes the vector space dimension over k 
of the ith cohomology group of X with coefficients in the structure 
sheaf, and hence, in particular, the arithmetic genus of X = the 
arithmetic genus of X*. 

UniJormization. Assume that either p = 0, or k is algebraically 
closed and p =F- 2, 3, 5. Let K be any three-dimensional algebraic 
function field over k and let W be any valuation ring of K con­
taining k. Then there exists a projective model of Kjk on which 
the center of W is at a simple point. 

Birational resolution. Assume that either p = 0, or k is alge­
braically closed and p =F- 2,3,5. Let K be any three-dimensional 

S. S. Abhyankar, Resolution of Singularities of Embedded Algebraic Surfaces
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2 §O. INTRODUCTION 

algebraic function field over k. Then there exists a nonsingular 
projective model of K/k. 

History. The following version of global resolution was 
proposed by Levi [16] and proved by Zariski [25]: if p = 0 and Y 
is any irreducible algebraic surface over k embedded in X, then 
there exists a sequence X - Xl - X 2 - ••• - X m - X' of 
monoidal transformations with nonsingular irreducible centers 
such that the proper transform of Y in X' is nonsingular. For 
.p = 0, Zariski [25] proved dominance. For p = 0, Zariski [23] 
proved uniformization for function fields of any dimension. For 
p = 0, Zariski [25] deduced birational resolution from uniformiza­
tion and global resolution (in the form just mentioned). For 
p = 0, Hironaka [15] generalized all the above six results to varie­
ties of any dimension. What we have called global principalization 
corresponds to what Hironaka [15] has called trivialization of a 
coherent sheaf of ideals. 

We now describe the contents of the various chapters. 

Chapter One. In this chapter we prove a certain local version 
of global resolution which may be called resolution, and from it we 
deduce a certain local version of global principalization which may 
be called principalization; it may be noted that for this deduction 
it is necessary to have resolution without assuming Y to be 
irreducible. In §l and §2, we establish the terminology and make 
some general observations concerning the basic concepts. In §3 
we prove a theorem (see (3.21» which corresponds to what 
Zariski [25] has called the dominant character of anormal sequence, 
and which says that if the multiplicity of a given point of the 
embedded surface Y can be decreased by monoidal transformations 
of a certain type then it can also be decreased by monoidal trans­
formation of a more restricted type; this has the effect of reducing 
the proof of resolution to an apparently weaker assertion. In §4 the 
proof of this weaker assertion is further reduced (see (4.22» to a 
certain statement ( *) concerning monic polynomials in an 
indeterminate with coefficients in a two-dimensional regular 10-
cal domain. The proof of resolution depends on the algo­
rithm developed in the papers [5], [7], [8], and [9]; however, 
the matter is so arranged that this dependence is reduced to a 
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single point; namely, apart of [9: Theorem 1.1] is restated as (5.1) 
which is nothing but the said statement (*). In §5, the main re­
sults of the chapter are deduced as direct consequences of (5.1), 
(4.22), (3.21), and the preliminary considerations made in §1 and 
§2. For the purpose of comparison, in §5 we give an alternative 
simple proof of (5.1) for p = 0 which does not in any way depend 
on the papers [5], [7], [8], and [9]; instead it uses the trick of 
killing the coefficient of Ze-l in a polynomial of degree e in an 
indeterminate Z; this trick was effectively used by Hironaka 
in [15], and it was also used by Abhyankar and Zariski in [10]. As 
far as the case of p = 0 is concerned, the said alternative proof of 
(5.1) has the effect of making the entire monograph independent 
of the papers [5], [7], [8], and [9]. 

Chapter Two. §6 contains so me generalities on the language of 
models. In §7 we show that resolution implies global resolution. 
In §8 we show that principalization implies global principalization, 
and that global principalization implies dominance. In deducing 
birational resolution from uniformization and global resolution, 
Zariski [25] made use of the theorem of Bertini on the variable 
singularities of a linear system; in doing so he had to apply global 
resolution to a generic member of a linear system and hence to a 
surface not defined over k but defined over a pure transcendental 
extension k* of k. Now for p =F 0 this approach causes two 
difficulties; namely, in the first place the said theorem of Bertini 
is then not valid and in the second place k* will not be perfect. 
However, in §8 we show that retaining apart of Zariski's argument 
but replacing the use of Bertini's theorem by the use of global 
principalization (as suggested by Hironaka) and without ex­
tending the ground field k, it is possible ~o deduce birational 
resolution from uniformization for any p. We refer to Serre [22] for 
the definition of the cohomology groups and for the result that 
the hi are finite and their alternating sum equals the arithmetic 
genus as classically defined in terms of the Hilbert polynomial; and 
we refer to Matsumura [17] for the result that: if k is algebraically 
closed and X and X* are any irreducible nonsingular projective 
algebraic varieties over k such that X and X* are birationally 
equivalent and X* dominates X, then hi(X) ~ hi(X*) for all 
i ~ 0, and if moreover X* is a monoidal transform of X with a 
nonsingular irreducible center then hi(X) = hi(X*) for all i ~ 0; 
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in view of these two references, birational invariance follows from 
dominance. In §9 we collect together the main results of this 
chapter, i.e., global resolution, global principalization, dominance, 
birational invariance, and the implication: uniformization ~ bira­
tional resolution. 

Chapter Three. As said above, for p = 0, Zariski [25] deduced 
birational resolution from uniformization and global resolution. In 
§1O we show that, for p = 0, uniformization can also be deduced 
from resolution; it may be noted that for this deduction it is 
necessary to have resolution for the total transform and without 
assuming Y to be irreducible. In §11 we state the resulting 
theorem: birational resolution for p = 0; thus, in view of the 
above-mentioned alternative proof of (5.1) for p = 0, we shall have 
completely reproved this theorem without using any results from 
the papers [5], [7], [8], and [9], and without appealing to Zariski's 
paper [23] on uniformization. Actually what we show in §1O is 
somewhat stronger; namely, assuming resolution, we prove 
uniformization under the hypothesis that: the residue field of the 
given valuation ring W is algebraic over k and there exists a 
projective model of Kjk on which the center of W is at a point of 
multiplicity e such that e! ~ 0 mod p. Consequently we would 
have birational resolution also for p -=F 0 if we could find a projec­
tive model of Kjk such that every algebraic point of it has multi­
plicity <po In §12 we show that it is possible to find such a model 
provided k is algebraically closed and p -:/= 2, 3, 5. In §13 we state 
the resulting theorem: birational resolution when k is algebraically 
closed and p -:/= 2,3,5. What we actually prove in §12 is this: 
assume that k is algebraically closed and let L be an algebraic 
function field over k of any dimension n; then there exists a 
projective model of Ljk such that every rational point of it has 
multiplicity ~n!. For n = 2 this theorem is due to Albanese [11] 
and Artin [12]. Our proof for any n is a straightforward generaliza­
tion of Artin's proof; however, we do not fall back on any general 
intersection theory or exact sequences, but give a self-contained 
proof using only a few leisurely readable pages of Zariski-Samuel 
[28]. 

In (1.2) of §1 we collect together a few definitions and pertinent 
facts from Grothendieck's theory of excellent rings [14]. The use 
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of these enables us to prove so me of the results in a some what 
stronger form than described above; in particular also for algebroid 
varieties. 

With an eye on arithmetical geometry, in most of this mono graph, 
except in some crucial steps, the characteristic of a local domain 
is permitted to be different from the characteristic of its residue 
field. 

We shall have occasion to use the following four known results: 
(0.1) and (0.2) are elementary facts about two-dimensional regular 
local domains and they are proved in [3: Lemma 12] and [6: 
Theorem 2] respectively; (0.3) is a generalization of Zariski's fac­
torization theorem and is proved in [3: Theorem 3]; (0.4) is due to 
Hironaka and is proved in [15: Theorem 2 on page 220]; for 
terminology see §1. 

(0.1). Let (Ri)o';;;i<oo be an infinite sequence of two-dimensional 
regular local domains such that Ri is a quadratic trans form of Ri - 1 

'" for 0 < i < 00, and let V = U Ri . Then V is a valuation ring of 
i~O 

the quotient field of Ro and V dominates Ri and V is residually 
algebraic over Ri for 0 ~ i < 00. Moreover, if V' is any valuation 
ring of the quotient field of Ro such that V' dominates R i for 
o ~ i < 00 then V' = V. 

(0.2). Let Ro be a pseudogeometric two-dimensional regular local 
domain, let V be a valuation ring of the quotient field of Ro such 
that V dominates Ro and V is residually algebraic over Ro , let 
(Ri)o<i<oo be the unique infinite sequence such that Ri is the quadratic 
trans form of Ri- 1 along V for 0 < i < 00, and let fl , ... , fq be any 
finite number of nonzero elements in V. Then there exists a non­
negative integer m and a basis (x, y) of the maximal ideal in Rm 

such that fj = gjXa(j)yb(j) where gj is a unit in Rm and a(j) and b(j) 
are nonnegative integers for 1 ~ j ~ q. 

(0.3). Let Rand R* be two-dimensional regular local domains 
such that Rand R* have the same quotient field and R* dominates R. 
Then there exists a unique finite sequence Ro , R1 , ••• , Rm , (m ~ 0), 
of two-dimensional regular local domains such that Ro = R, Rm = R*, 
and Ri is a quadratic trans form of Ri - 1 for 0 < i ~ m. 
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(0.4). Let Abe a noetherian domain such that A p is regular Jor 
every prime ideal P in A. Let Q be a prime ideal in A such that 
(A/Q)p' is regular Jor every prime ideal pi in A/Q. Let J be an ideal 
in A. Then there exists an ideal H in A with H<t Q such that 
ordA.pJ = ordA.aJ Jor every prime ideal P in A Jor which H<t P 
andQCP. 

We have tried to make the monograph fairly self-contained. 
Namely, with a few exceptions, we only use some well-known 
results from commutative algebra to be found in the books [4], 
[18], [27], and [28]; the only exceptions are: the above four 
results (0.1) to (0.4); the above-cited specific references to 
Grothendieck [14], Matsumura [17], and Serre [22]; and the said 
restatement (5.1) of [9: Theorem 1.1]. §1, §6, §1O, and §12 could 
be used as a possible introduction to certain foundational aspects 
of algebraic geometry. 

Most of the considerations of §1 may be used tacitly in the rest 
of the monograph. The logical interdependence of the remaining 
sections is thus: 

§2 

~ 
§3 -+ §4 -+ §5 

§6 .; §7 1 
">l ">l 

§8 --+ §9 

~ 
§10 --+ §11 

~ 
§12 --+ §13 



CHAPTER I 

Local Theory 

§l. Terminology and preliminaries 

(1.1). By a ring we mean a commutative ring with identity. 
A ring is said to be normal if it is integrally c10sed in its total 
quotient ring. By a domain we mean an integral domain. By a prime 
ideal (resp: a maximal ideal) in a ring A we mean an ideal P in A 
such that AlP is a domain (resp: a field); note that then P =F A. 
For any ideal P in a ring A, by radAP or rad P we denote the 
radical of P in A. Let A be a ring and let P be an A-module; for 
any subset Q of P, by QA we denote the A-submodule of P 
generated by Q; for any elements Xl' ... , Xn in P, by (Xl' ••• , xn)A 
we denote the A-submodule of P generated by Xl' ••• , X n ; elements 
Xl' .•• , X n in P are said to form an A-basis (or simply, a basis) of 
P if P = (Xl' ••• , xn)A; Pis said to be afinite A-module if P has 
a finite A-basis.'. For any subset P of a ring Band any element X 

in B, by xP or Px we denote the subset {xy: Y E P} of B; note that 
if P is an A-submodule of B for a subring A of B then xP is an 
A-submodule of B, and if moreover (Xl' ... , X n ) is an A-basis of P 
then (XXI' ••• , XXn ) is an A-basis of xP. Given a ring A, let N be 
the set of all nonnegative integers n such that there exists a chain 
of distinct prime ideals Po C PI C ... C Pn in A; we define: 
dirn A = - 00 if N = 0, dirn A = the greatest integer in N if N 
is a nonempty finite set, and dirn A = 00 if N is an infinite set. 

By a quasilocal ring we mean a ring having exactly one maximal 
ideal. The maximal ideal in a quasilocal ring R is denoted by M(R). 
A subset f of a quasilocal ring R is said to be a coefficient set for R 
if f contains 0 and land for every XE R there exists a unique 
x' E f such that X - x' E M(R). Given quasilocal rings R and S, 
we say that S dominates R if R is a sub ring of Sand M(R) C M(S); 
note that then M(R) = Rn M(S). Given a quasilocal ring Sand 
set E of quasilocal rings, we say that S dominates E if S dominates 

7 
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8 1. LocAL THEORY 

some element in E. Given sets E and E' of quasilocal rings, we say 
that E' dominates E if every element in E' dominates E, and we 
say that E' properly dominates E if E' dominates E and for every 
R E E there exists S E E' such that S dominates R. A set of 
quasilocal rings is said to be normal if every element in it is normal. 
The quotient ring of a ring A with respect to a prime ideal P in A 
is denoted by A p • As a rule we consider only quotient rings of a 
domain A with respect to prime ideals in A, and we regard such 
quotient rings to be sub rings of a fixed quotient field of A. The 
set of a11 quotient rings of a domain A with respect to the various 
prime ideals in A is denoted by !D(A); note that R -+ A n M(R) 
is a one-to-one inclusion-reversing map of !D(A) onto the set of a11 
prime ideals in A and the inverse map is given by P -+ A p ; a 
sub set E of !D(A) is said to be closed in !D(A) if there exists an 
ideal Q in A such that E = {R E !D(A): QR =1= R}. Note that if A 
is a subring of a domain Band S is any element in !D(B) then S 
dominates exactly one element R in !D(A); namely, R = AAnM(S)' 

Given a domain Band a subring A of B, by trdegAB we denote 
the transcendence degree of the quotient field of B over the 
quotient field of A. Given a quasilocal ring Rand a subring A 
of R, let h: R -+ R/M(R) be the canonical epimorphism and let k 
be the quotient field of h(A) in heR); trdegkh(R) is ca11ed the 
residual transcendence degree of R over A and it is denoted by 
restrdegAR; R is said to be residually algebraic (resp: residually 
finite algebraic, residually separable algebraic, residually finite 
separable algebraic, residually purely inseparable, residually finite 
purely inseparable) over A if heR) is an algebraic (resp: finite 
algebraic, separable algebraic, finite separable algebraic, purely 
inseparable, finite purely inseparable) extension of k (note that for 
a field K of characteristic zero, K is the only overfield of K which 
is regarded to be a purely inseparable extension of K); R is said 
to be residually rational over A if heR) = k. 

By a local ring we mean a noetherian quasilocal ring. Let R be 
a local ring; for any x E R we define: ordRx = max e such that 
XE M(RY; note that then: ordRx = 00 <=> x = 0; for any 
o =1= Je R we define: ordRJ = max e such that Je M(RY; 
note that ordRJR = ordRJ = min ordRx; also note that: ordRJ = 

XE} 

00 <=> J = {O}; for any nonzero polynomial f(Z) = L fiZi 
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in an indeterminate Z with coefficients fi in R we define: 
ordRf(Z) = min(i + ordRfi) where the minimum is taken over 
all i for which fi i= O. The embedding dimension of a local ring R 
is denoted by emdim R, i.e., emdim R is the vector space dimension 
of M(R)/M(R)2 as a vector space over R/M(R); note that if H is 
any basis of M(R) and emdim R = n then n is the smallest 
nonnegative integer such that there exist n elements in H which 
form a basis of M(R); note that by [28: Theorem 20 on page 288] 
we know that dirn R = the smallest nonnegative integer d such 
that there exist d elements in R which generate an ideal which 
is primary for M(R); hence in particular emdim R ;;?: dirn R. 
A local ring R is said to be regular if emdim R = dirn R. We may 
tacitly use the fact that every regular local ring is a unique fac­
torization domain (see [28: Appendix 7]), and hence in particular 
it is normal. For any ideal I in a noetherian domain A, theset 
of all RE m(A) such that IR i= Rand R/(JR) is not regular is 
called the singular locus of (A, I) and is denoted by 6(A, I). 

A local ring is said to be analytically irreducible if its completion 
is a domain. The completion R* of a local ring R is regarded to 
be an overring of R; moreover, if R is analytically irreducible 
then the quotient field of R* is regarded to be an overfield of the 
quotient field of R. 

Note that given any local rings Rand Sand any homomorphism 
f: R -- S such that f(M(R» C M(S), there exists a unique homo­
morphismf*: R* -- S*, where R* and S* are the completions of R 
and S respectively, such thatf*(M(R*» C M(S*) andf*(x) = fex) 
for all x E R. The existence of f* can be seen thus. Given y E R* 
take a sequence (Yn) in R such that Yn -- y. Then (Yn) is a Cauchy 
sequence in R, and hence (j(Yn» is a Cauchy sequence in S because 
f(M(R» C M(S). Therefore there exists Z E S* such thatf(yn) -- Z.­

Clearly Z depends only on y and not on the sequence (yn)' Define 
f*(y) to be z. It is easily checked that f*: R* -- S* is then a 
homomorphism such that f*(M(R*» C M(S*) and f*(x) = fex) 
for all XE R. To prove the uniqueness let g: R* -- S* be any 
homomorphism such that g(M(R*» C M(S*) and g(x) = fex) for 
all XE R. Since y - Yn -- 0 and g(M(R*» C M(S*), we get that 
g(y - Yn) -- O. Now g(y - Yn) = g(y) - f(yn) and hence 
f(yn) -- g(y). However, f(yn) -- f*(y) and hence g(y) = f*(y). 

Given local rings Rand S such that R is a subring of S, we say 
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that R is a subspace of S if R with its Krull topology is a subspace 
of S with its Krull topology; note that this is so if and only if S 
dominates Rand there exists a sequence of nonnegative 
integers a( n) such that a( n) tends to infinity with n and 
Rn M(s)n C M(R)a<n) for all n ~ O. !ly a theorem of Chevalley 
[28: Theorem 13 on page 270] it follows that if R is a complete 
local ring and S is a local ring dominating R then R is a subspace 
of S. Given local rings Rand S such that S dominates R, let R* 
and S* be the completions of Rand S respectively, and let 
f*: R* ---+ S* be the unique homomorphism such that 
f*(M(R*)) C M(S*) and f*(x) = x for all XE R; note that then 
R is a subspace of S if and only if f* is a monomorphism; namely, 
it is clear that if R is a subspace of S thenf* is a monomorphism; 
also Rand S are always subspaces of R* and S* respectively, anri 
hence the converse follows from the above-cited theorem of 
Chevalley. 

Given a valuation v of a field K, by Rv we denote the valuation 
ring of v, i.e., Rv = {x E K: v(x) ~ O}. By a valuation ring of a field 
K we mean a subring V of K such that K is the quotient field 
of V and for every 0 =1= XE K we have that either x E V or I/x E V; 
note that a ring V is a valuation ring of a field K if and only if 
V is the valuation ring of so me valuation of K. A valuation v of a 
field K is said to be discrete if the value group of v is an infinite 
cyclic group. Note that for any domain R we have that: R is the 
valuation ring of a discrete valuation of the quotient field of 
R <=> R is a one-dimensional regular local domain <=> R is a one­
dimensional normallocal domain (see [27: §6 and §7 of Chapter V]); 
also note that if R is any one-dimensional regular local domain 
with quotient field K and S is any subring of K contining R then 
either S = K or S = R. Let R be a regular local domain with 
quotient field K; for any nonzero elements x and y in R we define: 
ordix/y) = (ordRx) - (ordRy) (note that since R is regular, 
ordix/y) is uniquely determined by Rand x/y); note that if 
dirn R =1= 0 then ordR is a discrete valuation of K and upon letting 
V be the valuation ring of ordR we have that M(R)ev = M(VY 
and M(R)e = Rn M(VY for every nonnegative integer e, and for 
any x E R we have that x V = M( V) if and only if ordRx = 1, 
i.e., if and only if XE M(R) and x rt M(R)2 (see [28: Theorem 25 
on page 301]). 
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By a saturated ehain of prime ideals in a ring A we mean a 
chain of distinct prime ideals Po C PI C ... C Pn in A such that 
there does not exist any prime ideal P in A such that Pi C P C Pi+1 

and Pi =I- P =I- PHI for some i. A ring A is· said to be eatenarian 
if for every two prime ideals Q C P in A the following condition 
is satisfied: let N be the set of all nonnegative integers n such 
that there exists a saturated chain of prime ideals Po C PI C ... C Pn 

in A with Po = Q and P n = Q; then N contains exactly one element. 
By a finitely genera ted ring extension of a ring A we mean an 

overring B of A such that B = A[xi , •.• , xn ] for so me finite 
number of elements Xl' ... , Xn in B. By an affine ring over a ring 
A we mean a domain which is a finitely generated ring extension 
of A. By a spot over a ring A we mean a quasilocal ring R such 
RE ID(B) for so me affine ring B over A; note that if R is a spot 
over a ring A and S is a spot over R then S is a spot over A. By a 
funetion field over a ring A we mean a field which is the quotient 
field of some affine ring over A, i.e., a field which is a spot over A. 

A ring A is said to be pseudogeometric if for every prime ideal 
P in A and every finite algebraic extension K of the quotient field 
of AlP we have that the integral closure of AlP in K is a finite 
(AIP)-module. Note that every field is pseudogeometric, and 
every homomorphic image of a pseudogeometric ring is pseudo­
geometrie. The following two results of Nagata [18: (17.9), (32.1), 
(36.5)] may be used tacitly. 

(1.1.1). Every complete local ring is pseudogeometrie. 

(1.1.2). For every pseudogeometrie ring A we have that every 
finitely generated ring extension of A is pseudogeometrie, and the 
quotient ring of A with respect to any multiplicative set in A is 
pseudogeometrie; whenee in partieular, every spot over A is pseudo­
geometrie. 

(1.2). We shall now recall so me aspects of Grothendieck's 
theory of excellent rings [14: 5.6 and 7.8]. For the purpose of this 
monograph it will be enough to keep (1.2.6) in mind. 

(1.2.1). For a noetherian ring A the following three conditions 
are equivalent. 
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(1) If Xl' ... , X n are any finite number of indeterminates then 
A[XI , ... , X n ] is eatenarian (note that A[XI , ... , X n ] = A if 
n = 0). 

(2) If Q is any ideal in A, B' is any finitely generated ring 
extension of AIQ, S is any multiplieative set in B', and B is the 
quotient ring of B' with respeet to S, then B is eatenarian. 

(3) Ais eatenarian, and for every prime ideal P in A and every 
spot R over B = AlP we have that dirn BBnM(R) + trdegBR = 
dirn R + restrdegBR. 

A ring A is said to be universally catenarian if A is noetherian 
and the above three eonditions are satisfied. 

(1.2.2). Given a loeal ring R, we say that the formal fibers of 
Rare geometrically regular if for every prime ideal P in Rand 
every finite algebraie extension K of the quotient field of T = RIP, 
upon letting T* be the eompletion of T, we have that (T* ®T K)Q 
is a regular loeal ring for every prime ideal Q in T* ®T K. 

(1.2.3). A ring A is said to be excellent if A is noetherian and 
the following three eonditions are satisfied. 

(1) A is universally eatenarian. 

(2) For every prime ideal P in A the formal fibers of A p are 
geometrieally regular. 

(3) Given any prime ideal P in A and any finite purely in­
separable extension K of the quotient field of AlP, there exists a 
subring B of K and a subset E of m(B) sueh that AlP C B, B is a 
finite (AIP)-module, K is the quotient field of B, 6(B, {O}) CE, 
E is closed in m(B), and E =1= m(B). 

(1.2.4). A local ring R is excellent if and only if R is universally 
catenarian and for every prime ideal P in R the formal fibers of R p 

are geometrically regular. 

(1.2.5). Let R be an excellent ring. Then there exists an ideal Q 
in R such that for any prime ideal P in R we have that Rp is regular 
if and only if Q cf. P. 1f R is local, then for any prime ideal p* in 
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the completion R* 0/ R we have that Rt. is regular i/ and only if 
RRr'lP' is regular. 

(1.2.6). 

(1) Every complete local ring is excellent; whence in particular, 
every field is excellent. Every Dedekind domain 0/ characteristic zero 
is excellent. 

(2) For every excellent ring A we have that every homomorphic 
image 0/ A is excellent, every finitely genera ted ring extension 0/ A is 
excellent, and the quotient ring 0/ A with respect to any multiplicative 
set in A is excellent; whence in particular, every spot over A is 
excellent. 

(3) Every excellent ring is pseudogeometric. 

In view of [18: (17.9)], by (1.2.5) and (2) we get the following. 

(4) Let R be an excellent domain. 1/ T is any affine ring over 
Rand Q is any ideal in T then 6(T, Q) is closed in m(T). 1/ T is 
any regular spot over Rand Q is any ideal in T then 6(T, Q) is 
closed in m( T) and, upon letting T* be the completion 0/ T, we have 
that 6(T*, QT*) = {S E m(T*): TTr'lM(Sl E 6(T, Q)}. 

(1.3). We may tacitly use the following result of Nagata and 
Zariski (see [18: (38.3)] or [15: Theorem 1 on page 218]). 

(1.3.1). For any nonempty subset J 0/ a regular local domain R 
and any SE m(R) we have that ordRJ ~ ordsJ. 

We shall now give two proofs of the following elementary fact, 
one using (1.3.1) and the other without using (1.3.1). 

(1.3.2). Let /(XI , ... , X n ) be a nonzero polynomial 0/ degree 
~d in indeterminates Xl , ... , X n with coefficients in a field k, let 
Q be a prime ideal in A = k[ Xl , ... , X n ], let R = A Q , and let 
e = ordR[(XI , ••. , X n ). Then e ~ d. 

PROOF. First suppose that Q is a maximal ideal in A. Then 
M(RY (") A = Qe and hence f(X I , ... , X n) E Qe. Let k* be an 
algebraic closure of k and let A* = k*[Xl , •••• X .. J Then A* is 
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integral over A and hence there exists a maximal ideal Q* in A* 
such thatQ* ('\ A = Q (for instance see [4: Lemmas 1.19 and 1.20]). 
Now Qe C Q*e and hence f(X I , ••. , X n) E Q*e. By the Hilbert 
Nullstellensatz [28: Lemma on page 165], 

Q* = (Xl - rl , ... , X n - rn)A* 

with r l , ... , rn in k*. Therefore 

f(X1 , ••• , X n) = L k ... i,,(X1 , ••• , Xn)(XI - r1);1 ••• (Xn - rn)i" 
ij+ ... +i .. =. 

where fi1 ... ö,.(XI , ... , X n) are polynomials in Xl' ... , X n with 
coefficients in k*. Let g(XI , ••. , X n) and gij ... i,,(XI , ... , Xn) be the 
polynomials in Xl' ... , X n with coefficients in k* obtained by 
substituting Xl + rl , ... , Xn + rn for Xl , ... , X n inf(XI , ... , X n) 
and k ... i,,(XI , ... , X n) respectively. Theng(XI , ... , X n ) is a nonzero 
polynomial of degree ~d in Xl' ... , X n with coefficients in k*. 
Upon substituting Xl + r l •... , X n + rn for Xl' ...• X n in the 
above displayed formula we get that 

g(XI ' ••. , X n) = L gij ... i,,(X1 , ... , Xn)X~j ... X!" 
i 1+· .. +in=e 

and hence g(XI , ••• , X n ) is either zero or is a polynomial of degree 
~ e in Xl' ... , X n with coefficients in k*. Therefore e ~ d. 

We shall deduce the general case from the special case proved 
above in two ways. Take a maximal ideal Q' in A containing Q 
and let R' = A Q , • Then R' is regular (see [28: Remark on page 310]) 
and R = R~R' . Therefore ordRf(XI • ...• X n ) ~ e by (1.3.1) and 
hence e ~ d by the special case proved above. Alternatively, 
without using (1.3.1) we can argue thus. Let h: A -- AjQ be the 
canonical epimorphism. Upon suitably relabeling Xl' ... , X n we 
may assume that (h(Xm+1)' ... , h(Xn» is a transcendence basis of 
h(A) over h(k). Let A" = k(Xm+1 •. ~ .• Xn)[XI , ... , X m] and 
Q" = QA". Then Q" is a maximal ideal in A", R = A~., and 
f(XI , ...• X n) is a nonzero polynomial of degree ~d in Xl' ... , Xm 
with coefficients in k(Xm+1' ... , X n). Therefore e ~ d by the 
special case proved above. 

The following generalization of [10: Lemma 3] is due to, Sato 
[21: Lemma 1]. 
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(1.3.3). Let R be an n-dimensional local domain with n > 1. 
Let Xl' ••• , Xn be elements in R sufh that Q is primary for M(R) 
where Q = (Xl' ••• , xn)R. Let A = R[X2/XI , ... , Xn/XI]' and let h: 
A __ A/(M(R)A) be the canonical epimorphism. Then M(R)A 
is a prime ideal in A, dirn AM(RIA = 1, M(R)A = rad(QA), 
R ('\ (M(R)A) = M(R), and the elements h(X2/XI), ... , h(xn/xl) are 
algebraically independent over heR). 

PROOF. Clearly QA = xlA. Since Q is primary for M(R), 
there exists a positive integer e such that M(R)e C Q, and then 
(M(R)AY C xiA. Let Xl' ... , Xn be indeterminates. Suppose if 
possible that R ('\ (M(R)A) =1= M(R); then we must have 
M(R)A = A and hence xlA = A; consequently XIY = 1 for some 
o =1= y E A; 'since 0 =1= y E A, there exists a nonzero polynomial 
f(X2 , ••• , X n) of some degree d in X 2 , ••• , X n with coefficients in R 
such thaty = f(x2/xl , ... , xn/xI ); now x~ = xt+ly = xIi' (Xl , ••• , Xn) 
where f'(XI , ••• , X n) is a nonzero homogeneous polynomial of 
degree d in Xl' ... , Xn with coefficients in R; in particular 
xt E M(R)Qd which is a contradiction by [28: Theorem 21 on 
page 292]. Therefore R ('\ (M(R)A) = M(R), and hence heR) is 
isomorphie to the field R/M(R). Suppose if possible that 
h(X2/XI ), ••• , h(xn/xl) are algebraically dependent over heR); then 
there exists a nonzero polynomial F(X2 , ••• , X n) of some degree u 
in X 2 , ••• , X n with coefficients in R at least one of which 
is not in M(R) such that F(xZ/xl , ... , xn/xI ) E M(R)A; since 
F(xZ/x1 , ••• , xn/x1) E M(R)A, there exists a polynomial G(X2 , ••• , X n) 
in X 2 , ••• , X n with coefficients in M(R) such thatF(xz/xl , ... , xn/xI ) 

= G(X2/XI , ••• , xn/xI ); upon multiplying both sides of this equation 
by x~ for a suitable integer v ~ u we get that F'(xI , ... , xn) = 
G'(xl , .•• , xn) where F'(XI , .•• , X n) is a nonzero homogeneous 
polynomial of degree v in Xl' ... , X n with coefficients in R at 
least one of which is not in M(R) , and G'(XI , ••. , X n) is either 
the zero polynomial or a nonzero homogeneous polynomial of 
degree v in Xl' ... , X n with coefficients in M(R); in particular then 
F'(xi •.•• , xn) E M(R)Q" which is a contradiction by [28: Theorem 21 
on page 292]. Therefore h(xZ/xl ), ••. , h(xn/x1) are algebraically 
independent over heR). Since h(A) = h(R)[h(X2/X1), ••• , h(xn/x1)], 

we get that h(A) is a domain and hence M(R)A is a prime ideal 
in A. Since (M(R)AY C x1A = QA, by Krull's principal ideal 
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theorem [27: Theorem 29 on page 238] we conclude that 
M(R)A = rad(QA) and dim AM(R)A = 1. 

(1.4). Let R be an n-dimensional regular local domain. Recall 
that for any nonunit ideal P in R we have that R/P is regular if 
and only if there exists a basis (Xl' ... , Xn ) of M(R) such that 
(Xl' ... , xm)R = P for some m (see [28: Theorem 26 on page 303]). 
Now let (Xl' ... , Xn ) be a basis of M(R). Then 

is a chain of distinct prime ideals in R. Therefore for any m with 
o < m ~ n upon letting P = (Xl' ... , xm)R and S = R p we get 
that dim R/P = n - m, dim S = m, and S is regular. Given any 
nonzero element w in Riet d be the greatest integer such that 
w E pd; then w = f(x i , .•• , xm ) where f(X l , .•. , X m) is a nonzero 
homogeneous polynomial of degree d in indeterminates Xl' ... , X m 

with coefficients in S at least one of which is not in M(S); since 
dim S = m and M(S) = (Xl' ... , Xm)S, it follows that w E M(S)d 
and w 1: M(S)d+1 (see [28: Theorem 21 on page 292]), i.e., 
ordsw = d. Consequently, for every positive integer e we have 
that M( sy n R = pe and hence pe is primary for P. Let S' 
be the valuation ring of ords . Then M(S')e = x~S' and 
M(S')e n R = (M(S')e n S) n R = M(s)e n R = pe for every 
nonnegative integer e. Let h: R -+ k and h': R -+ T be (ring) 
epimorphisms such that Ker h = M(R) and Ker h' = P. Then 
clearly there exists a unique epimorphism h": T -+ k such that 
heu) = h"(h'(u» for all u E R. Now assume that m > 1. Let 
A = R[X2/X1 , ••• , xmjxl ]. Let B = T[X2 , .•• , X m] and A* = 

k[X2 , ••• , X m] where X 2 , ••• , X", are indeterminates. Then we 
have the following. 

(1.4.1). peA = x~A, peS' = X~S' = M(S'Y, (peA) n R = 
pe, and M(S'Y nA = peAfor every nonnegative integer e. PA is a 
prime ideal in A and S' = A pA . For any 0 :::/= w E A upon letting 
d = ordsw we have that d is the greatest integer such that w E pd A, 
i.e., w/xt E A and W/X~+l 1: A. M(R)A = (Xl' Xm+l , ... , xn)A, 
M(R)A is a prime ideal in A, and (M(R)A) n R = M(R). There 
exists a unique epimorphism H: A -+ A* such that H(xilx1} = Xi 
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for 2 ~ i ~ m and H(u) = h(u) for all u E R; there exists a unique 
epimorphism H': A ---+ B such that H'(Xi/XI) = Xi for 2 ~ i ~ m 
and H'(u) = h'(u)for all u E R; and there exists a unique epimorphism 
H": B ---+ A* such that H"(Xi) = Xifor 2 ~ i ~ m and H"(u) = 
h"(u) for all u E T. Moreover, Ker H = M(R)A, Ker H' = PA, 
and H(u) = H"(H'(u)) for all u E A. 

(1.4.2). Let H be as in (1.4.1). Let R' E 5!l(A) such that R' 
dominates R. Let n' = dirn R', t = restrdegRR', Q = An M(R'), 
Q* = H(Q), and R* = A(j*. Then we have the following. 

(1) ptR' = x1R', (peR') n A = peA, and M(S')e n R' = peR' 
for every nonnegative integer e. PR' is a prime ideal in R' and 
S' = R~R' . For any 0 cF wER' upon letting d = ordsw we have 
that d is the greatest integer such that w E PdR', i.e., w/xf E R' and 
w/x1+l <t R'. M(R)R' = (Xl' X"'+l , ... , xn)R' and M(R)R' is a 
prime ideal in R'. 

(2) For any 0 cF WER such that ordsw = ordRw, upon letting 
d = ordRw we have that ordR,(w/x1) ~ d. 

(3) R' and R* are regular, restrdegkR* = t, dirn R* = 
m - 1 - t, and n ~ n' = n - t ~ n - m + 1. 1f Dis any subset 
of A such that H(D)R* = M(R*) then DR' + (Xl' X"'+l , ... , xn)R' = 
M(R'). 1f m' is an integer with 1 ~ m' ~ m such that Xi/Xl E M(R') 
for 2 ~ i ~ m' then there exist elements YJ , ... , yq in A, where 
q = n' - n + m - m', such that 

(4) The following six conditions are equivalent: (I') R' is 
residually algebraic over R; (2') n' = n; (3') Q is a maximal ideal 
in A; (4') Q* is a maximal ideal in A*; (5') dirn R* = m - 1; 
(6') R* is residually algebraic over k. 

(5) R' is residually separable algebraic over R iJ and only iJ R* 
is residually separable algebraic over k. 

(6) R' is residually rational over R iJ and only iJ R* is residually 
rational over k. 1f there exists ri ERsuch that (Xi/Xl) - ri E M(R') 
for 2 ~ i ~ m then 

Q = (Xl' (X2/XI ) - r2 , ... , (Xm/XI ) - rm , X m +1, ... , xn)A, 

M(R') = (Xl' (X2/XI ) - r2 , .•. , (X",/XJ) - rm , X m +J , ••• , xn)R', 
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and R' is residually rational over R. IJ R' is residually rational over 
R then there exists ri ERsuch that (Xi/Xl) - ri E M(R') Jor 
2 ~ i ~ m. IJ R' is residually rationalover Rand f is a coefficient 
set JOT R then there exists a unique ri E f such that (xi/Xl) - ri E M(R') 
Jor2 ~ i ~ m. 

(7) There exists a unique epimorphism H*: R' -+ R* such that 
H*(u) = H(u) Jor all u E A. Moreover, Ker H* = (Ker H)R' = 
M(R)R' = (Xl' Xtn+1 , ••• , X-n)R'. 

PROOF OF (1.4.1). Clearly pe A = ~A and peS' = ~ S' = 
M(S'Y' for every nonnegative integer e. Now ordSxi = 1 for 
I ~ i ~ m and hence AC S'. For any 0 =1= W E A let d = ordsw, 
i.e., d = ords'w; since AC S' we must have w/xt+1 t A; since 
w E A there exists a nonnegative integer c such that wx~ E R; then 
ordswx~ = d + c and hence wx~ E pd+C; consequently wx~ E ~+cA 
and hence w/x1 E A; thus d is the greatest integer such that 
w E PdA. For every nonnegative integer e we therefore get that 
M(S')e () A = peA and hence (peA) () R = M(S'Y () R = pe. 
Since PA = M(S') () A we get that PA is a prime ideal in A 
and hence A pA is a one-dimensional regular local domain; clearly 
A pA C S' and A pA and S' have the same quotient field; therefore 
S' = A pA • Let Al = S[X2/XI , ... , xm/xI]. Then AC Al C S' and 
upon replacing (R, P) by (S, M(S» in the above argument we get 
that M(S') () Al = M(S)A I and hence (M(S)A I ) () A = PA. 
Let hl: Al -+ AI/M(S)AI and hz: A -+ A/PA be the canonical 
epimorphisms; then by (1.3.3) we know that hl(xZ/XI ), ... , hl(xn.!XI ) 

are algebraically independent over hl(S), and hence a Jortiori 
hZ(xZ/xI ), •.. , hz(xm/xI) are algebraically independent over hz(R). 
Therefore there exists a unique epimorphism H': A -+ B such 
that H'(Xi/XI) = Xi for 2 ~ i ~ m and H'(u) = h'(u) for all 
u E R; moreover, Ker H' = Ker hz = PA = xiA. Since X z , ... , X m 

are indeterminates, there exists a unique epimorphism H": B -+ A * 
such that H"(Xi ) = Xi for 2 ~ i ~ m and H"(u) = h"(u) for all 
u E T; clearly 

Ker H N = (Ker h")B = (h'(xl ), ••• , h'(xn»B 

= (h'(x1), h'(xm+1)' ... , h'(xn»B 

and hence H'-I(Ker R") = (Xl' X m+1' ••• , xn)A. Let H(u) = 
H"(H'(u» for all u E A. Then H: A -+ A* is an epimorphism 
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such that H(xi/XI) = Xi for 2 ~ i ~ m and H(u) = heu) for all 
u E R; clearly H is the only such epimorphism and Ker H = 

H'-I(Ker H") = (Xl' Xm+l , ... , xn)A = M(R)A, and hence in par­
ticular M(R)A is a prime ideal in A. Since Ker H = M(R)A, 
Ker h = M(R), and H(u) = heu) for all u E R, it follows that 
(M(R)A) (\ R = M(R). 

PROOF OF (1.4.2). Now R' = A Q and PA C M(R)A CQ and 
hence (1) follows from (1.4.1). By (1.4.1) we know that Ker H = 

M(R)A = (Xl' Xm+l' ... , xn)A; since also M(R)A C Q, we get (7). 
Let h*: R* -+ R*/M(R*) be the canonical epimorphism and let 
h**(u) = h*(H*(u» for all u ER'. Then h**: R' -+ R*/M(R*) 
is an epimorphism, Ker h** = M(R'), and h**(R) = h*(k). 
Therefore it follows that restrdegkR* = t, and: R' is residually 
algebraic (resp: residually separable algebraic, residually rational) 
over R if and only if R* is residually algebraic (resp: residually 
separable algebraic, residually rational) over k. Clearly Q is a 
maximal ideal in A if and only if Q* is a maximal ideal in A*; 
by the Hilbert Nullstellensatz [28: Lemma on page 165], we also 
get that Q* is a maximal ideal in A * if and only if R* is residually 
algebraic over k. If there exists Ti ERsuch that (Xi/Xl) - Ti E M(R') 
for 2 ~ i ~ m then Q* contains the maximal ideal (X2 - h(T2), ... , 

X m - h(Tm»A* in A* and hence Q* = (X2 - h(T2), ... , 

X,,, - h(Tm»A* and R* is residually rational over k; since 
Q = H-l(Q*) and Ker H = (Xl' Xrn+ l , ... , xn)A, we deduce that 
if there exists Ti ERsuch that (x,/xJ) - Ti E M(R') for 2 ~ i ~ m 
then 

Q = (Xl' (X2/XI ) - '2' ... , (xrt./xI ) - 'm, Xm+I' ... , x,,)A, 

M(R') = (Xl' (X2/XI ) - '2' ... , (Xm/XI ) -'m, Xm+I' .", .-'C,,)R', 

and R' is residually rational over R. The last two statements in (6) 
are obvious. This completes the proof of (1), (5), (6), and (7); also 
in view of what we have shown so far, (4) would follow from (3). 
Given 0 =1= WER such that ordsw = ordRw let d = ordRw; then 
ordsw = d and hence w = j( Xl' ... , Xm) where j( Xl> ... , X",) is a nonzero 
homogeneous polynomial of degree d in indeterminates Xl , ... , X m 

with coefficients in R at least one of which is not in P; since 
ordRw = d, we get that at least one of the coefficients of 
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J(XI , ... , Xm) is not in M(R); let F(X2 , ••• , Xm) be the polynomial 
in X 2 , ••• , X 1II with coefficients in k obtained by applying h 
to the coefficients of J(I, X 2 , ••• , Xm); then w/xt E A, H(w/xt) = 
F(X2 , ••• , Xm), and F(X2 , ••• , Xm) is a nonzero polynomial of 
degree ~d in X 2 , ••• , X m with coefficients in k; therefore by (1.3.2) 
we get that ordR.H(w/xt) ~ d, i.e., ordR.H*(w/xf} ~ d; clearly 
ordR,(w/xt) ~ ordR.H*(w/xn and hence ordR,(w/xt) ~ d. This 
proves (2). It now only remains to prove (3). Now R* is regular 
and dirn R* = m - 1 - restrdegkR* (see [28: Theorem 20 on 
page 193 and Remark on page 310]); since restrdegkR* = t, we 
get that dirn R* = m - 1 - t. Let D be any subset of A such 
that H(D)R* = M(R*); then H(D)A* = Q* (i NI (i •.• (i Nil 
where N j is a primary ideal in A * with N j cf- Q* for 1 ~ j ~ s; 
since Ker H = (Xl' Xm+1' ••• , xlI)A, we get that 

now H-I(Nj ) is a primary ideal in A and H-I(Nj ) cf- Q for 
1 ~ j ~ s; therefore DR' + (Xl' Xm+1 , ••• , xn)R' = M(R'). Let 
m' be any integer with 1 ~ m' ~ m such that Xi/Xl E M(R') for 
2 ~ i ~ m' (for instance m' = 1). Let A' = k[Xm'+1 , ••• , X m]. 
Since X 2 , ••• , X m are indeterminates, there exists aunique epi­
morphism Ho: A* -- A' such that HO(Xi ) = 0 for 2 ~ i 
~ m' and Ho(u) = u for all u E A'; note that then Ker Ho = 
(X2 , ••• , Xm,)A* CQ*. Let Q' = Ho(Q*). Then Q' is a prime 
ideal in A' and there exists a unique epimorphism HI : R* -- A~, 
such that H1(u) = Ho(u) for all u E A*; note that then Ker H1 = 
(X2 , ••• , Xm,)R*. Let Hz: A~, -- A~.fM(A~,) be the canonical 
epimorphism and let Ha(u) = H2(HI(u» for all u E R*. Then 
Ha: R* -- A~,/M(A~,) is an epirnorphism, Ker Ha = M(R*), and 
Ha(k) = H2(k). Consequently restrdegkA~, = restrdegkR* and 
hence restrdegkA~, = t. Therefore upon letting q = m - m' - t 
we get that A~, is regular and dirn A~, = q (see [28: Theorem 20 
on page 193 and Remark on page 310]). Consequently there exist 
elements Y1 , ... , Yq in A such that (Ho(H(yI»' ... , Ho(H(yq)))A~, = 
M(A~,). Upon taking D = {X2/XI , ••. , xm,/x1 , Y1' ... ,Yq} we get that 
H(D)R* = M(R*) and hence (Xl' X 2/X1 ' ••• , Xm,/x1 , Xm+1' ••• , Xn , 
Y1 , ... , yq)R' = M(R'). Therefore if we show that dirn R' ~ n - t 
then it will follow that dirn R' = n - t, R' is regular, and 
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q = n' - n + m - m', and this will complete the proof. 
Since dirn R* = m - t - 1, there exist distinct prime ideals 
Ql CQ2 C ... CQm_1 in A* such that Ql = {O} and Qm-I = Q*. 
Now H-l(Ql) C H-l(Q2) C ... C H-l(Qm_l) are distinct prime ideals 
in A, H-l(Ql) = Ker H, and H-l(Qm_t) = Q. We sha11 find 
distinct nonzero prime ideals P':n C Pr:+l C ... C P~ in A with 
P= = Ker Hand this will prove that dirn R' ~ n - t. Let H' and 
H" be as in (1.4.1). By (1.4. t) we know that H'-l(Ker H") = Ker H 
and Ker H' i= {O}. Consequently it suffices to find distinct prime 
ideals Pm C P mH C ... C P n in B with P n = Ker H" because then 
we can take Pi = H'-l(Pj) for m ~ j ~ n. Let Pj = (h'(xmH), ... , 
h'(xj)T for m < j ~ n, and p;", = {O}. Then p:n C P:nH C ... C P~ 
are distinct prime ideals in T and P~ = M(T). Let h'j: T -- TjPi 
be the canonical epimorphism and let Pj = PjB. Since X 2 , ••• , X n 

are indeterminates, there exists a unique epimorphism H;: 
B -- h;(T)[X2 , ... , X m] such that H'j(Xi) = Xi for 2 ~ i ~ m 
and Hi(u) = hj(u) for a11 u E T; clearly Ker Hj = Pj and hence 
Pi is a prime ideal in Band Pi f"'I T = Pj. Therefore 
Pm C P mH C ... C P n are distinct prime ideals in B. Also 
Pn = M(T)B = Ker H". 

(1.5). Given a local domain Rand SE !D(R), we say that S 
has a 'simple point at R if Rj(R f"'I M(S» is regular. 

Let R be an n-dimensional regular local domain. GivenE C !D(R), 
we say that E has anormal crossing at R if there exists a basis 
(Xl' ... , Xn ) of M(R) such that for each SEE there exists a subset 
Ys of {Xl' ... , xn } such that ysR = R f"'I M(S). Given E C !D(R), we 
say that E has a strict normal crossing at R if E has anormal crossing 
at Rand E contains at most two elements. Given a nonzero 
principal ideal I in R, we say that I has anormal crossing at R if 
{S' E ID(R): dirn S' = land 1S' i= S'} has anormal crossing at R; 
note that this is equivalent to saying that there exists a basis 
(Xl' ... , Xn) of M(R) and nonnegative integers al , ••• , an such that 
1= Xfl ... x!nR. Given E C !D(R) and a nonzerö principal ideal I 
in R, we say that (E, I) has anormal crossing at R if Eu {S' E !D(R): 
dirn S' = land 1S' i= S'} has anormal crossing at R; note that 
this is equivalent to saying that there exists a basis (Xl' ... , Xn ) of 
M(R), nonnegative integers al , ... , an' and a subsetys of {Xl' ... , Xn} 
for each SEE, such that I = X~l ... x~nR and R f"'I M(S) = y'r;R for 
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each 8 E E. Given E C m(R) and a nonzero principal ideal I in R, 
we say that (E, I) has a strict normal crossing at R if (E, I) has a 
normal crossing at Rand E contains at most two elements. Given 
8 E m(R) and a nonzero principal ideal I in R, we say that (8, I) 
has anormal crossing at R if({8}, I) has anormal crossing at R. 
Given nonzero principal ideals J and I in R, we say that (j, I) has 
a quasinormal crossing at R if I has anormal crossing at Rand for 
every nonzero principal prime ideal P in R with Je P we have 
that PI has anormal crossing at R. Given a nonzero principal 
ideal I in R, we say that I has a quasinormal crossing at R if (I, R) 
has a quasinormal crossing at R. Note that for any nonzero pIincipal 
ideal I in R the following four conditions are equivalent: (1) (1,1') 
has a quasi normal crossing at R for some nonzero principal ideal 
l' in Rj (2) I has aquasinormal crossing at Rj (3) for every 
nonzero principal prime ideal P in R with I C P we have that Rp 

has a simple point at Rj (4) 1= Zl ••• ZdR where Zl' ... , Zd are 
elements in R with ordRzi = 1 for 1 ~ i ~ d (we take Zl .•. ZdR = R 
in case d = 0). Given 8 E m(R) and a nonzero principal ideal I in 
R, we say that (8, I) has a pseudonormal crossing at R if 8 has a 
simple point at Rand for every nonzero principal prime ideal P in 
R with I C P we have that {8, Rp } has anormal crossing at R. 
Note that for any nonzero principal ideal I in R the following 
three conditions are equiva1ent: (1 *) (S, I) has a pseudonorrnal 
crossing at R for some 8 E m(R)j (2*) (R, I) has a pseudonormal 
crossing at Rj (3*) I has a quasinormal crossing at R. Given 
E C m(R) and a nonzero principal ideal I in R, we say that (E, I) 
has a pseudonormal crossing at R if I has a quasinormal crossing at 
Rand for every 8 E E we have that (8, I) has a pseudonormal 
crossing at R. 

For any ideal J in a regular local domain R, the set of all 
8 E m(R) such that ordsJ = ordRJ is called the equimultiple loeus 
of (R, J) and is denoted by lf(R, J)j for any non negative integer i, 
the set of all i-dimensional elements in lf(R, J) is denoted by 
lfi(R, J). 

Let J be a nonzero principal ideal in a regular local domain R. 
We say that (R, ]) is resolved if there exists a nonnegative integer 
d and a nonzero principal ideal ]' in R with ordR], ~ 1 such that 
J = ]'d. We say that (R, J) is unresolved if (R, J) is not resolved. 
Note that if either dirn R ~ I or ordR.T ~ 1 then (R, .J) is reso1ved. 
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Also note that if ordRJ 0:/= 0 (i.e., if J 0:/= R) then the following 
six conditions are equivalent: (I') (R,]) is resolved; (2') 
ordiradRJ) = 1; (3') R/(radRJ) is regular; (4') J = (radRJ)d 
where d = ordRJ; (5') (f1(R,]) 0:/= 0; (6') radRJ is a prime 
ideal in Rand upon letting S' be the quotient ring of R with 
respect to radRJ we have that 

(f(R,]) = {S E ID(R): SeS'} = {S E ID(R): JS -# S}. 

Note that if (R, ]) is resolved and I is a nonzero principal ideal in 
R such that I has a quasinormal crossing at R then ]I has a 
quasi normal crossing at R. Finally note that if (R, ]) is resolved 
and I is a nonzero principal ideal in R such that (J, I) has a 
quasinormal crossing at R then ]I has anormal crossing at R. 

Weshall now prove so me elementary results concerning the 
above concepts; these results will not be used tacitly. 

(1.5.1). Let R be an n-dimensional regular local domain with 
n > 0, let (Xl' ... , Xn) be a basis of M(R), let I = X~l ... x~ftR where 
a l , ... , an are nonnegative integers, let m be an integer with I ~ m ~ n, 
and let z E (Xl' ... , xm)R with ordRz = I such that (zR, I) has a 
quasinormal crossing at R. Then there exists an integer j with 
1 ~ j ~ m such that upon letting Yj = z and Yi = Xi for alt i 0:/= j 
with 1 ~ i ~ n we have that M(R) = (Yl , ... , Yn.)R, (Xl' ... , xm)R = 
(Yl , ... , YIII)R, and I = Y~l ... y~nR. 

PROOF. Let A be the set of all integers i with I ~ i ~ m such 
that ai 0:/= 0, and let B be the set of all integers i with m < i ~ n 
such that ai 0:/= O. Now z E (Xl' ... , xm)R and clearly Xi rt (Xl' ... , xm)R 
whenever m < i ~ n; consequently, if zR = xqR for some 
q E A u B then we must have q E A and hence it suffices to take 
j = q. So now assurne that zR 0:/= XiR whenever i E Au B. Since 
ordRz = I and (zR, I) has a quasi normal crossing at R, there exists 
a basis (Zl' ... , zn) of M(R) such that ZiR = XiR whenever 
i E A u B, and zeR = zR for so me e rt A u B with 1 ~ e ~ n. 
Let P be the ideal in R generated by the set of all Xi with i E A, 
and let Q = (Zl, ... , Ze-l , ZeH' ... , zn)R. NowQ 0:/= M(R) and 
hence M(R) ctQ + M(R)2; consequently Z rtQ + M(R)2; since 
pe Q. we get that Z rt P + M(R)2. Since Z E (Xl' ... , x.",)R, 
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we get that z = rlxl + ... + rmXm with r l , ... , r m in R; smce 
z ~ P + M(R)2, we get that rp ~ M(R) for some p ~ A with 
1 ~ P ~ m. It suffices to take j = p. 

(1.5.2). Let R be a regular local domain. Let I be a nonzero 
principal ideal in R, and let SE m(R) such that (S, I) has anormal 
crossing at R. Let zER n M( S) such that ordRz = 1 and (zR, I) has 
a quasinormal crossing at R. Then (S, zI) has anormal crossing at R. 

PROOF. Follows from (1.5.1). 

(1.5.3). Let J be a nonzero principal ideal in a regular local 
domain R. Assume that (S, J S) is resolved for some S E <f( R, J) (note 
that by [18: (28.3)] we know that S is regular). Then (R, J) is 
resolved. 

PROOF. If J = R then we have nothing to show. So assurne 
that J * R. Then J = Pt, ... p~n where PI' ... , P n (n > 0) are 
distinct nonzero principal prime ideals in Rand ul , ... , Un are 
positive integers. Now JS = (P1S)1t1 ... (P"S)Un • Since SE <f(R, J), 
we getthat 

n n 

L ui ordSPiS = ordsJS = ordRJ = L ui ordRPi , 
i~l i~l 

and by (1.3.1) we know that ordSPiS ~ ordRPi for 1 ~ i ~ n. 
Therefore we must have ordSPiS = ordRPi > 0 for 1 ~ i ~ n, 
and hence PIS, ... , PnS are distinct nonzero principal prime ideals 
in S. Since (S, JS) is resolved, we conclude that n = 1 and 
ordSPlS = 1. Therefore ordRPl = I, and hence (R, J) is resolved. 

(1.5.4). Let R be a pseudogeometric regular local domain such 
that dirn R ~ 3, and 6(R, P) is closed in m(R) for every nonzero 
principal prime ideal P in -R; (see (1.2.6». Let J be a nonzero 
principal ideal in R such that (R, J) is unresolved. Then <f2(R, J) 
is a finite set. 

PROOF. The assertion is obvious if dirn R * 3. So assurne that 
dirn R = 3. Since (R, ]) is unresolved, we have that J = Pi' ... p~n 
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where n, UI , •.• , Un are positive integers, and PI , ... , Pr< are distinct 
nonzero principal prime ideals in R. If n > 1 then {S E ~(R): 

dirn S = 2 and PI + P2 eRn M(S)} is a finite set and it con­
tains (f2(R, ]), and hence (f2(R, ]) is a finite set. So also assurne 
that n = I, and let P = PI. Then (f2(R,]) = (f2(R, P). Since 
(R, ]) is unresolved, we must have ordRP > 1. By [18: (28.3)] we 
know that every element in ~(R) is regular; consequently 
(f2( R, P) C 6( R, P) and hence (f2( R, ]) C 6( R, P). Clearly 
dirn S' ~ 2 for all S' E 6(R, P), and by assumption 6(R, P) is 
closed in ~(R). Therefore {S' E 6(R, P): dirn S' = 2} is a finite 
set, and hence (f2(R, ]) is a finite set. 

(1.6). Let A be a subring of a field K. By apremodel of K we 
mean a nonempty set of quasilocal domains with quotient field K. 
By an irredundant premodel of K we mean apremodel E of K such 
that no two distinct elements in E are dominated by the same 
valuation ring of K. Note that if Rand R' are two elements in an 
irredundant premodel E of K and S is a quasilocal domain dominat­
ing R andR' then R' = R (namely, upon identifying K with a subfield 
of the quotient field L of Sand taking a valuation ring V of L 
dominating S we get that V n K is a valuation ring of K dominating 
Rand R'; hence R = R'); in this case we say that R is the 
center of S on E. By a semimodel (resp: model) of KjA (i.e., of K 
over A) we me an an irredundant premodel E of K such that there 
exists a family (resp: finite family) (Bi)iEI of subrings Bi of K 
where each Bi is an overring of A (resp: affine ring over A) such 
that E = U I1.l(Bi ). Note that if B is any subring of K such that 

iEI 
K is the quotient field of Band B is an overring of A (resp: affine 
ring over A) then I1.l(B) is a semimodel (resp: model) of KjA. 
Also note that for an irredundant premodel E of K we have that 
E is a semimodel of Kj A if and only if for every R E E we have 
that AC R and ~(R) = {R' E E: Re R'}. Also note that every 
model of KjA is a semimodel of KjA, and if A is noetherian then 
every element in E is a local ring. By a complete semimodel (resp: 
complete model) of KjA we me an a semimodel (resp: model) E of 
KjA such that every valuation ring of K containing A dominates E. 
Note that if K is the quotient field of A then ~(A) is a complete 
model of KjA. Also note that if E is a semimodel (resp: complete 
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semimodel) of K/A then E dominates (resp: properly dominates) 
!D(A). 

(1.7). Let A be a subring of a field K and let (XJiel be a 
family of elements in K such that Xi' =1= 0 for some i' E 1. We define 

m(A; (Xi)ie/) = U !D(A[(Xi/X;)iE/]) 
je/.:IlJ'>"O 

where A[(Xi/xi)ie/] denotes the smallest subring of K which 
contains A and which contains Xi/xi for all i E I (in case I is a 
finite set, say I = {I, 2, ... , n}, we may write m(A; Xl , ... , XfI) 
instead of m(A; (Xi)ie/»' 

(1.7.1). Note that J01 any 0 =1= XE K we have that 
W(A; (Xi)ie/) = W(A; Xi/X)ie/)' Taking any i' EI with Xi' =1= 0 and 
letting K' be the quotient field oJ A[(x.dxdie/l we see that K' is the 
quotient field oJ A[(xi/xi)ie/l JOT each jE I with xi =1= 0; whence in 
particular, W(A; (xi)ie/) is a premodel oJ K', (xi/xdiel is a Jamily 
oJ elements in K ' , and m(A; (Xi)ie/) = m(A; (xi/xdie/)' 

We shall now prove the following. 

(1.7.2). Let RE W(A; (Xi)ie/) and let S be a quasilocal ring 
such that S is a subring oJ K and S dominates R. Then there exists 
j E I such that Xi =1= 0 and Xi/xi E S Jor all i EI; moreover, Jor 
any such jE I we have that R = Bo where B = A[(xi/xi)ie/l and 
Q = B () M(S). 

PROOF. Since RE W(A; (Xi)ie/), there exists j' EI with xi' =1= 0 
such that RE lll(B') where B' = A[(xi/x;')ie/l, and then we have 
that Xi/X;, E R for all i EI and R = B~, where Q' = B' () M(R). 
Since S dominates R, we get that XiI X;, E S for all i E land 
Q' = B' () M( S). Therefore the first assertion follows by taking 
j = j'. To prove the second assertion, given any jE I such that 
Xi =1= 0 and Xi/Xi E S for all i E I, let B = A[(x,/xi)ie/l and 
Q = B () M(S). Then Xi/Xi' and xi'lxi are both in Sand hence 
they are units in S. Since Xi/X;' ER, S dominates R, and Xi/Xi' is 
a unit in S, we get that Xi/Xi' is a unit in Rand hence xi'lxj E R; 
consequently x.dx; = (xi/Xt)(xi'/Xj) E R for alt i E land hence 
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Be R; since S dominates Rand Q = B (\ M(S), we get that 
Q = B (\ M(R) and hence BQ C R. Again since xr/Xj E BQ, S 
dominates BQ, and xi'/Xj is a unit in S, we get that xi'/Xj is 
a unit in BQ and hence Xj/Xi' E BQ; consequently xi/xi' = 
(Xi/Xj)(Xjjxi') E BQ for a11 i E 1 and hence B' C BQ; since S dominates 
BQ and Q' = B' (\ M(S), we get that Q' = B' (\ M(BQ) and hence 
B~, C BQ . Since R = B~, , we conclude that R = BQ . 

(1.7.3). Let K' be as in (1.7.!). Then W(A; (Xi)iEl) is a semimodel 
of K'jA. 1f 1 is afinite set then W(A; (Xi)iEl) is a complete modelof 
K'jA. 

PROOF. The first assertion fo11ows from (1.7.1) and (1.7.2). 
To prove the second assertion assurne that 1 is a finite set. In 
view of the first assertion it suffices to show that if V is any valuation 
ring of K' containing Athen V dominates w(A; (xi)iEl). Since 1 is 
a finite set, there exists jE 1 with Xj =F 0 such that Xi/xi E V for a11 
i E 1. Let B = A [( xii Xj)iEl] and Q = B n M( V). Then V domi­
nates BQ and BQ E W(A; (xi)iE'). 

(1.8). Let A be a subring of a field K. By aprojective model 
of K/A we mean apremodel E of KjA such that there exists a 
finite number of elements Xl , ••. , X n in an overfield of K such that 
Xi =F 0 for some i and E = W(A; Xl , ••• , xn ). By (1.7) it fo11ows 
that if E is a projective model of K/A then Eis a complete model 
of KjA and there exists a finite number of elements Xl' ... , X n in 
K such that Xi =F 0 for some i and E = W(A; Xl' .•• , X n ). 

(1.9). Let A be a subring of a field K and let P be a nonzero 
A-submodule of K. We define 

~li(A, P) = U m(A[Px-1]) 

° ",,"'EP 

where A[Px-l ] denotes the smallest subring of K which contains 
A and which contains y I X for a11 y E P. 

(1.9.1). Note that for any 0 =F XE P we have that P(A[Px-1]) = 
x(A[Px-1]) and hence PR = xR for all RE m(A[Px-1]); whence in 
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particular, iJ P is an ideal in A then PR is a nonzero principal ideal 
in Rfor all R E W(A, P). 

(1.9.2). Given any A-basis (Xi)iel of P we clearly have that 
A[Px-1] = A[(xilx)iel] for all 0 =1= XE K; whence in particular, 
W(A; (Xi)iel) C W(A, P). 

We shall now prove the following. 

(1.9.3). For any A-basis (Xi)iel of P we have that W(A; (Xi)iel) = 
W(A, P). 

PROOF. In view of (1.9.2) it suffices to show that 
W(A, P) C W(A; (xi)iel)' So let any RE W(A, P) be given. Then 
there exists 0 =1= XE P such that R = BQ where B = A[Px-1] = 
A[(X.t!X)iel] eR and Q = B ("'I M(R). Since 0 =1= XE P, there exists 
a nonempty finite subset l' of I such that x = L rixi with ri E A. 

iel' 
Then I = L ri(xi/x) and ri E Rand (Xi/X) ER for all i E 1', and 

iel' 

hence there exists jE I' such that xjlx rt M(~). Consequently 
Xj =1= 0, and xjlx and xlxj are units in R. In particular 
x.t!Xj = (xilx)(xfxj) E R for all i EI and hence B' eR where 
B' = A[(x.dxj)ieI]' Upon letting Q' = B' ("'I M(R) we get that 
B~, E W(A; (X,;)iEI) and R dominates B~,. Since x/xi E B~" R 
dominates B~, , and X/Xj is a unit in R, we get that x/xi is a unit 
in B~, and hence Xj/x E B~, . Consequently Xi/X = (xilxj)(xj/x) E B~, 
for all i EI and hence B C B~,; since R dominates B~, and 
Q = B ("'I M(R), we get that Q = B ("'I M(B~,) and hence 
BQ C B~" i.e., R C B~,. Therefore R = B~" and hence 
RE W(A; (Xi).iel)' Thus W(A, P) C W(A; (Xi)iel)' 

(1.9.4). W(A, P) is a semimodel of a field over A, and iJ Pis 
a finitely genera ted A-module then W(A, P) is a projective modelof 
a field over A; in partieular, iJ P is a finitely generated ideal in A 
then W(A, P) is a projective model of the quotient field 0/ A over A. 
If P = xA for some 0 =1= XE K then W(A, P} = W(A; x) = m(A). 

PROOF. Follows from (1.9.3) and {1.7}. 

(1.9.5). If P is an ideal in Athen {R E m(A): PR = R} = 
{R E W(A, P): PR = R}. 
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PROOF. First let RE m(A) such that PR = R; then P rt M(R) 
and hence there exists 0 =1= XE P such that x 1 M(R); now 
A[Px-1] eR and hence, upon letting Q = A[Px-1] ('\ M(R), we 
get that R = (A[Px-1])Q E w(A, P). Conversely let RE w(A, P) 
such that PR = R; now w(A, P) dominates m(A) and hence there 
exists R' E m(A) such that R dominates R'; since R dominates 
R'and PR = R, it follows that PR' = R'; therefore R' E w(A, P) 
by what we have already proved; since R dominates R as weIl as 
R', and, by (1.9.4), w(A, P) is an irredundant premodel of the 
quotient field of A, we must have R = R'; consequently RE m(A). 

(1.9.6). 1f A is quasilocal and P is an ideal in Athen the 
following three conditions are equivalent: (1) P is a principal 
ideal in A; (2) w(A, P) = m(A); (3) A E w(A, P). 

PROOF. If P is a principal ideal in Athen P = xA for some 
o =1= XE A and then W(A, P) = W(A; x) = m(A); thus (1) implies 
(2). Clearly (2) implies (3). To show that (3) implies (1), assurne that 
A E w(A, P); then there existsO =1= XE Psuch that A E m(A[Px-1]); 

in particular A[Px-1] CA and hence A[Px-1] = A; consequently 
PA = P(A[Px-1]) = x(A[Px-1]) = xA and hence Pis a principal 
ideal in A. 

(1.9.7). Assume that A is a regular local domain, and Pisa 
prime ideal in A such that AlP is regular and dirn S. > 1 where 
S = A p • Let S' be the valuation ring %rds , and let R' E W(A, P) 
such that R' dominates A. Then (1) S' E m(R') and S 1 m(R'). 
Moreover, (2) if PI is a nonzero prime ideal in A such that AlPt 
is regular and R' E W(A, PI) then PI = P. 

PROOF. By (1.4) we know that S' E m(R'). Since dirn S> 1 = 
dirn S', we get that S =I: S'. Since S' E m(R') C w(A, P), w(A, P) 
is an irredundant premodel of the quotient field of A, and S' 
dominates S, we get that S 1 w(A, P). This proves (1). To prove (2) 
let PI be a non~ero prime ideal in A such that AIP1 is regular 
and R' E W(A, PI)' Let SI = A p1 • Since dirn S > 1, we get that 
Pis not a principal ideal in A and hence R' =I: A by (1.9.6) because 
R' E w(A, P); since R' =I: A and R' E W(A, PI)' again by (1.9.6) 
we get that PI is not a principal ideal in A and hence dirn SI > 1. 
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Now S' E !ß(R') C 9B(A, Pt), 9B(A, Pt) is an irredundant premodel 
of the quotient field of A, S' =1= S, and S' dominates S; hence 
S ~ m(A, Pt). Since S ~ m(A, Pt) and SE !ß(A), by (1.9.5) we get 
that PtS =1= Sand hence SC St; by symmetry we get that SI C S. 
Therefore SI = Sand hence Pt = P. 

(1.10). Let R be a local domain, let SE !ß(R) with dirn S > 0, 
let] be an ideal in R, and let V be a valuation ring of the quotient 
field of R dominating R. By a monoidal transform of (R, S) we 
mean an element in m(R, R f"'I M(S» dominating R. Since 
9B(R, R f"\ M(S» is a projective model of the quotient field of R 
over R, there exists a unique element R* in m(R, R f"'I M(S» 
such that V dominates R*; clearly R* dominates Rand hence 
R* is a monoidal transform of (R, S); R* is called the monoidal 
transform of (R, S) along V. Given· a monoidal transform R' of 
(R, S), we define the (R, S, R')-transform of ] to be the ideal in 
R' generated by the set of an elements r in R' such that rxtl E ] 
for some nonnegative integer d and some element x in R' for 
which xR' = (R f"'I M(S»R'. Bya monoidal transfarm of (R, ], S) 
we mean a pair (R', ]') where R' is a monoidal transform of (R, S) 
and ]' is the (R, S, R')-transform of ]. By the monoidal transform 
of (R,], S) along V we mean the pair (R*, ]*) where R* is the 
monoidal transform of (R, S) along Vand ]* is the (R, S, R*)­
transform of ]. By a quadratic transfarm of R we mean a monoidal 
transform of (R, R). By the quadratic transform of R along V we 
mean the monoidal transform of (R, R) along V. In this chapter 
we shall use monoidal transforms (wh ich are not quadratic trans­
forms) only when R is regular, S has a simple point at R, and ] 
is a nonzero principal ideal in R; note that in this case the considera­
tions of (1.4) apply. 

Given a regular local domain R, by an iterated monoidal transfarm 
of R we mean a local domain R* such that there exist finite 
sequences (Ri)o,;;;i«;m and (Si)o,;;;i<m such that: m is a nonnegative 
integer; R.t is a local domain for 0 ~ i ~ m; Si is a positive­
dimensional element in !ß(Ri ) having a simple point at R, for 
o ~ i < m; Ri is a monoidal transform of (Ri - t , Si-I) for 
o < i ~ m; Ro = R; and Rm = R*. Note that for any iterated 
monoidal tran~form R* of a regular local domain R we have that: 
R* is regular, R* and R have the same quotient field, R* is a 
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spot over R, R* dominates R, dirn R* + restrdegRR* = dirn R 
and h(R*) is a funetion field over heR) where h: R* -+ R*/M(R*) 
is the eanonieal epimorphism; whenee in partieular the following 
three eonditions are equivalent: (1) dirn R* = dirn R; (2) R* is 
residually algebraie over R; (3) R* is residually finite algebraie 
over R. Also note that if R* is an iterated monoidal trans­
form of a regular loeal domain R sueh that R* 0:/= R then 
o < dirn R* ~ dirn R. Given a regular loeal domain Rand a 
valuation ring V of the quotient field of R dominating R, by an 
iterated monoidal trans/orm 0/ R along V we mean an iterated 
monoidal transform R* of R sueh that V dominates R*. 

(1.10.1). Let R be a regular loeal domain and let 8 be a 
positive-dimensional element in m(R) having a simple point at R. 
Then R n M( 8) is a prineipal ideal in R if and only if dirn 8 = 1, 
and henee by (1.9.6) we get that the following three eonditions are 
equivalent: (1) dirn 8 = 1; (2) R is a monoidal transform of 
(R, 8); (3) R is the only monoidal transform of (R, 8). Although 
we shall not make any use of it, we note the following eonsequenee 
of (1.9.7): If R' is any monoidal transform of (R, 8) sueh that 
R' 0:/= R then 8 is uniquely determined by the pair (R, R'), i.e., 
if 8 1 is any positive-dimensional element in m(R) having a simple 
point at R sueh that R' is a monoidal transform of (R, 8 1) then 
8 1 = 8. 

(1.10.2). Let R be a regular loeal domain, let S be a positive­
dimensional element in m(R) having a simple point at R, let J be 
a nonzero prineipal ideal in R, and let (R',]') be a monoidal 
transform of (R, J, 8). We ean then take WER with wR = J and 
xE R' with xR' = (R n M(8»R', and then upon letting d = ordsJ 
we clearly have that w/xd E R' and (w/xd)R' = ]'. Therefore by 
(1.4) we get that: if 8 E <f(R,]) and di~ 8 > 1 then ordR-l' ~ ordRJ. 
Also note that: if 8 E <f(R, ]) and dirn 8 = I then R' = Rand 
hence]' = R', i.e., ordR}' = O. 

(1.10.3). Let R be a regular loeal domain, let 8 be a positive­
dimensional element in m(R) having a simple point at R, and let 
J and I be nonzero prineipal ideals in R. Given a monoidal 
transform R' of (R, 8), we define the (R, 8, R')-trans/orm of (j, I) 
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to be the pair (j',1') where j' is the (R, S, R')-transform of ] 
and l' = (IR')«R () M(S»R')d where d = ords]; note that then 
l' is the unique principal ideal in R' such that j' l' = (jI)R'. By 
a monoidal trans form of (R, ], I, S) we mean a tripie (R', j',1') 
where R' is a monoidal transform of (R, S) and (j',1') is the 
(R, S, R')-transform of (j, I). Given a valuation ring V of the 
quotient field of R dominating R, by the monoidal trans form of 
(R, ], I, S) along V we me an the tri pie (R*, j*,I*) where R* is 
the monoidal transform of (R, S) along V and (j*,I*) is the 
(R, S, R*)-transform of (j, I). 

To avoid repetition we shall now prove some more results of an 
elementary nature concerning monoidal transforms; these results 
will not be used tacitly. 

(1.10.4). Let R be a regular local domain, let ] be a nonzero 
principal ideal in R such that (R, ]) is resolved, let S be a positive­
dimensional element in ct(R, ]) having a simple point at R, and let 
(R', j') be a monoidal transform of(R, ], S). Then (R', j') isresolved. 

PROOF. If] = R then j' = R' and we have nothing to show. 
So assurne that] =j::. R. Then] = ydR where d = ordR ] and y E R 
with ordRy = 1. Let n = dirn Rand m = dirn S. If m = 1 then]' = R' 
by(1.1O.2) and we have nothingto show. So also assurne thatm > 1. 
Since S has a simple point at R, there exists a basis (Yl , ... , Yn) 
of M(R) such that R () M(S) = (Yl' ... , Ym)R. Since SE G:(R, ]), 
we get that Y E (Yl , ... , Ym) and hence there exists an integer j' with 
I ~ j' ~ m such that upon letting (Xl' ... , Xn ) = (Yl , ... , Yi' -1 ,y, 
Yi'+1' ···,Yn) we have that M(R) = (Xl' ... , xn)R and R () M(S) = 
(Xl' ... , xm)R. Upon relabeling (Xl' ... , Xm) we may assurne that 
Xi/Xl E R' for 2 ~ i ~ m and] = x1R for somej with 1 ~ j ~ m. 
Now j' = (Xj/X1)dR'. If Xj/Xi i M(R') then j' = R' and we have 
nothing to show. So now assurne that Xj/Xl E M(R'). Then we 
must have 2 ~ j ~ m. Let n' = dirn R'. Then n' ;:? 2 and there 
exists a basis (Zl' ... , zn') of M(R') such that Zl = Xl and 
Za = Xj/xl . In particular ordR,(xj/Xt ) = t and hence (R', j') is 
resolved. 

(1.10.5). Let R be a regular local domain, let] be a nonzero 
principal ideal in R such that (R, ]) is unresolved, let S be a positive-
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dimensional element in CX(R,]) having a simple point at R, and let 
(R', j') be a monoidal trans form of (R, ], S) such that ordR-J' = 

ordRJ. Then dim S > 1 and (R', j') is unresolved. 

PROOF. Let d = ordRJ. Then d > 0 and hence by (1.10.2) we 
get that dim S > 1. We can take wER and x E R' such that 
wR = ] and xR' = (R fl M(S))R'. Then w/xd ER', (w/xd)R' = 
j', w/xd ~ xR', and ordR,x = 1. Suppose if possible that (R', j') 
is resolved. Then (w/xd)R' = ydR' withy E R' such that ordR,y = 1. 
Let R* = R~R'. Then R* is a one-dimensional regular local 
domain and ord R*( w / xd ) = d. Also x ~ y R' and hence ord R*W = d 
and (R fl M(S))R* = R*. Now R* E !B(R') C IID(R, R fl M(S)) 
and (R fl M(S))R* = R*, and hence by (1.9.5) we get that 
R* E !B(R). Thus R* is a one-dimensional regular local domain, 
R* E !B(R), and ordR*] = d = ordR]; consequently R fl M(R*) 
is a principal ideal in R with ordR(R fl M(R*)) = 1 and 
] = (R fl M(R*))d. This contradicts the assumption that (R, ]) is 
unresolved. 

(1.10.6). Let R be a regular local domain, let] and I be nonzero 
principal ideals in R, let S be a positive-dimensional element in 
!B(R) such that (S, I) has anormal crossing at R, and let (R', j', 1') 
be a monoidal transform of (R, ], I, S). Then l' has anormal crossing 
atR'. 

PROOF. Let d = ords], n = dim R, m = dim S, and 
n' = dirn R'. Since (S, I) has anormal crossing at R, there exists 
a basis (Xl' ... , X n ) of M(R) and nonnegative integers a(l), ... , a(n) 
such that I = X~(l) ... x~(n)R and R fl M(S) = (Xl' ... , xm)R. 
Upon relabeling Xl' ... , Xm we may assume that Xi/Xl E M(R') for 
2 ~ i ~ P and Xi/Xl E R' - M(R') for p < i ~ m, where p is an 
integer with 1 ~ P ~ m. Let q = n' - n + m - p. Then q ~ 0 
and there exist elements YI, ... , Yq in R' such that M(R') = 
(Xl' X2/XI , ... , Xp/XI , Xm+l , ••• , Xn ,YI , ... , yq)R'. Now 

and hence l' has anormal crossing at R'. 

(1.10.7). Let R be a regular local domain, let] and I be nonzero 
principal ideals in R such that (j, I) has a quasinormal crossing 
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at R, let S be a positive-dimensional element in If(R, J) such that 
(S, I) has anormal crossing at R, and let (R', j',I') be a monoidal 
trans/orm 0/ (R, J, I, S). Then (J', 1') has a quasinormal crossing 
atR'. 

PROOF. We can take xE R such that ordRx = 1 = ordsx and 
(R fI M(S»R' = xR'. Let d = ordRJ. By (1.10.6) we know that 
l' has anormal crossing at R'. If d = 0 then j' = R' and we have 
nothing more to show. So assume that d ::j= O. Now J = ZI ... zdR 
with Zi E R fI M( S) such that ordRzi = 1 = ordSzi and zJ has a 
normal crossing at R for 1 ~ i ~ d. By (1.5.2) it follows that 
(S, zl) has anormal crossing at R, and hence, upon letting 
U;, I~) be the (R, S, R')-transform of (Xll-IR, zJ), by (1.10.6) we 
get that I~ has anormal crossing at R' for 1 ~ i ~ d. Now 
]' = (Zl/X) '" (zd/x)R', and for 1 ~ i ~ d we have that ZijX E R' 
and (zilx)1' = I;. Therefore U',I') has a quasinormal crossing 
atR'. 

(1.10.8). Let R be a regular local domain, let] and I be nonzero 
principal ideals in R, let S be a positive-dimensional element in 
m(R) such that (S, I) has a pseudonormal crossing at R, and let 
(R', j',1') be a monoidal trans/orm of (R, J, I, S). Then l' has a 
quasi normal crossing at R'. 

PROOF. We can take XE R such that ordRx = 1 = ordsx and 
(R fI M(S»R' = xR'. Let d = ordsJ and e = ordRI. Then 
l' = xd(1R'), and 1= ZI .. , ZeR where Zl' ... , ze are elements in R 
such that ordRzi = land (S, ZiR) has anormal crossing at R for 
1 ~ i ~ e (we take Zl '" ZeR = R in case e = 0). Upon taking 
(xdR, R) for (J, I) in (1.10.6) we get that xdR' has anormal 
crossing at R'. For 1 ~ i ~ e, upon taking (R, ZiR) for (J. I) in 
(1.10.6) we get that ZiR' has anormal crossing at R'. Since 
l' = Zl ••• zexIl R', it follows that l' has a quasinormal crossing at R'. 

(1.10.9). Let R be an n-dimensional regular IDeal domain, let 
(Xl' ... , xn ) be a basis of M(R), let S be the quotient ring of R with 
respect to (Xl' ... , xm)R for some m with 1 ~ m ~ n, let R' be 
a monoidal transform 0/ (R, S) such that Xi/Xl E R' fOT 1 ~ i ~ m, 
let S' E m(R) fI m(R') such that ses' and S::j= S', and let 
ZE R n M(S'). Then z/x1 E' R' n M(S'). 
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PROOF, Now ZER f1 M(S') eR f1 M(S), R f1 M(S) cf. M(S'), 
R' C S', and (R f1 M(S»R' = xlR', Therefore Z/XI E R' and 
Xl ~ R' f1 M(S'), Since R' f1 M(S') is a prime ideal in R' and 
Z = (Z/XI)XI E R' f1 M(S'), we must have z/xi E R' f1 M(S'), 

(1.10.10). Let R be an n-dimensional regular loeal domain, let 
(Xl' .. " Xn) be a basis of M(R), let Sand S' be the quotient rings of 
R with respeet to (Xl' .. " xm)R and (X2 , .. " xq)R respectively where 
1 ~ m ~ q ~ n, and let R' be a monoidal trans form of (R, S), 
Then we have the following: (1) S' E ~(R') iJ and only iJ 
Xi/Xl E M(R') for 2 ~ i ~ m, (2) If S' E ~(R') then dirn R' = n, 
M(R') = (Xl' X2/XI ' .. " Xm/XI , Xm+l, .. " xn)R', and R' f1 M(S') = 
(X2/XI , .. " Xm/XI , Xm+l , .. " xq)R', 

PROOF, Clearly Xl/Xi ~ S' for 2 ~ i ~ m; consequently, if 
S' E ~(R') then Xl/Xi ~ R' for 2 ~ i ~ m; hence, if S' E ~(R') then 
Xi/Xl E M(R') for 2 ~ i ~ m, Now assurne that Xi/Xl E M(R') for 
2 ~ i ~ m, Then dirn R' = n, M(R') = (~l' X2/XI ' .. " X'mIXI' 
xm+l' .. " xn)R', and upon letting A = R[X2/XI , .. " xm/xI] and 
Q = A f1 M(R') we get that AC R', Q is a prime ideal in A, 
R' = A Q , and Q = (Xl , X2/~1 , .. " xm/xi , Xm+l , .. " xn)A, Clearly 
A C S' and hence upon letting P = A f1 M(S') and P' = 
(X2/XI , .. " xm/xi , xm+l , .. " xq)A we get that P' C P, P is a prime 
ideal in A, and S' = A p , Clearly P' C Q, Hence if we show 
that P = P' then it will follow that S' E ~(R') and R' f1 M(S') = 
(X2/XI , , •• , x".!xI , Xm+l , ... , xq)R'. To show that P = P' let any 
o =1= Z E P be given; since 0 =1= Z E A, there exists a nonzero 
homogeneous polynomial f(X I , .. " X m ) of some degree e in 
indeterminates Xl' ... , X m with coefficients in R such that 
zx~ = f(x l , ••• , xm); now zx~ E P f1 R = M(S') f1 R = (x2 , .. " xq)R 
and hence/{xl , .. " xm ) E \X2 , ... , xq)R; c1early f(xl , .. " x11I) --- xU(I, 
0, .. ,,0) E (x2 , .. " xu,)R C (x2 , ... , xq)R and hence xU(I, 0, .. ,,0) E 

(x2 , .. " xq)R; also x~ ~ (x2 , ... , xq)R and hence f(1, 0, .. ,,0) E 

(x2 , ... , xq)R C P'; c1early Z = f(I, X2/XI , .. " xm!xl ) and f(I, X2/XI' 
... , xm/xl ) - f(I, 0, .. ,,0) E (X2/XI , .. " xmlxt)A C P'; therefore Z E P', 
Thus PCP' and hence P = P', 

(1.10.11). Let R be an n-dimensional regular loeal domain, 
let R' be a quadratie transform 0/ R, and let E be a set of (n - 1)-
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dimensional elements in m(R) such that every subset 0/ E having at 
most two elements has anormal crossing at R. Then E f1 m(R') 
contains at most one element and E f1 m(R') has anormal crossing 
atR'. 

PROOF. If E f1 m(R') = 0 then we have nothing to show. So 
assurne that E f1 m(R') *" 0 and take S' E E f1 m(R'). Byassump­
tion S' has a simple point at Rand hence there exists a basis 
(Xl' ... , Xn) of M(R) such that R f1 M(S') = (x2, ... , xn)R. Since 
S' E m(R'), by (1.10.9) we get that dirn R' = n, M(R') = (Xl' 
X21X1' ... , xnlx1)R', and R' f1 M(S') = (X2Ix1, ... , xnlx1)R'. There­
fore S' has a simple point at R'. It now suffices to show that 
E f1 m(R') = {S'}. Suppose if possible that E f1 m(R') *" {S'} and 
take S* E E f1 m(R') such that S* *" S'. By assumption {S', S*} 
has anormal crossing at Rand hence there exists a basis (Y1 , ... , Yn) 
of M(R) such that R f1 M(S') = (Y2' ... , Yn)R and R f1 M(S*) = 
(Y1 , ... , Yn-1)R. Since S' E m(R') and S* E m(R'), by (1.10.9) we 
get that YnlY1 E M(R') and Y1/Yn E M(R') which is a contradiction. 

(1.10.12). Let R be an n-dimensional regular loeal domain, let] 
and I be nonzero principal ideals in R, let S be a positive-dimensional 
element in m(R) such that (S, I) has a pseudonormal crossing at R, 
let (R', j', I') be a monoidal trans/orm 0/ (R,], I, S), and let 
SI E m(R) f1 m(R') such that dirn S' ~ n - 1, {S, S'} has anormal 
crossing at R, and (S', I) has a pseudonormal crossing at R. Then 
(S', I') has a pseudonormal crossing at R'. 

PROOF. Let d = ords], e = ord~, and m = dirn S. For a 
moment suppose that m = 1; then R' = R; we can take XE R 
such that R f1 M(S) = xR; then ordRx = 1 and I' = xdI; since 
{S, S'} has anormal crossing at R, we get that (S', xdR') has a 
normal crossing at R'; sinceI' = xdI and (S', I) has a pseudonormal 
crossing at R, we conclude that (S', I') has a pseudonormal 
crossing at R'. Henceforth assurne that m > 1. Then by (1.9.7) we 
get that S f# m(R'); since S'E m(R'), we get that S f# m(S') and 
hence R f1 M(S) cf. R f1 M(S'). Therefore dirn S' = n - 1, and, 
since {S, S'} has anormal crossing at R, there exists a basis 
(Xl' ... , Xn) of M(R) such that R f1 M(S) = (Xl' ... ; xm)R and 
Rn M(S') = (x2 , ••• , x7I.)R. Since S' E !ll(R'), by (1.10.10) we get 
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that dirn R' = n, M(R') = (Xl' XZ/XI , ... , Xm/XI , Xm+l' ... , xn)R', 
and R' n M(S') = (XZ/XI' ... , Xm/XI , Xm+1' ••• , xn)R'. Since (S, I) 
has a pseudonormal crossing at Rand (S', I) has a pseudonormal 
crossing at R, we get that 1= Zl ••• zeR where Zl , ••• , ze are elements 
in R such that for 1 ~ i ~ e we have that ordRzi = 1, (S, ziR) has a 
normal crossing at R, and (S', ZiR) has anormal crossing at R (we 
take Zl •.• z~ = R in case e = 0). Now l' = Zl .•. zex1R' and c1early 
(S', x1R') has anormal crossing at R'. Therefore it suffices to show 
that (S', ZiR') has anormal crossing at R' for 1 ~ i ~ e. So let 
any i with 1 ~ i ~ e be given. 

First suppose that Zi 1= Rn M(S'). Since zi E M(R), we can 
write Zi = TIXI + ... + TnXn with Tl' •.. , Tn in R. Since 
Zi 1= Rn M(S'), ordRzi = 1, and (S', ZiR) has anormal crossing at 
R, there exists a basis (x~, ... , x~) of M(R) such that R n M(S') = 
(x;, ... , x~)R and ZiR = x~R; it follows that Zi 1= (R n M(S'» + 
M(R)Z; since R n M(S') = (X2' ... , xn)R, we must have Tl 1= M(R) 
and hence Tl 1= M(R'). Consequently M(R') = (Zi' X2/XI ' ••• , 

xm/xi , Xm+l , ... , xn)R'. Therefore (S', ZiR') has anormal crossing 
atR'. 

Next suppose that Zi ERn M(S') and Zi 1= Rn M(S). Since 
zi ERn M(S'), we can write zi = S2X2 + ... + snxn with S2 , ••• , Sn 

in R. Since Zi 1= Rn M(S), ordRzi = 1, and (S, ziR) has anormal 
crossing at R, there exists a basis (xt, ... , x~) of M(R) such that 
Rn M(S) = (xt, ... , x~)R and ziR = x:R for some q with 
m < q ~ n; it follows that Zi 1= (R n M(S» + M(R)2; since 
Rn M(S) = (Xl' ... , xm)R, we roust have Sp 1= M(R) for some p 
with m < p ~ n, and then Sp 1= M(R'). Consequently 
M(R') = (Xl' X2/XI , ••• , Xm/XI , Xm+l , .•• , Xp - l , Zi, Xp +l , ••• , xn)R 
and R' n M(S') = (X2/X I , ••• , Xm/XI , Xm+l , ••• , Xp - l , Zi, XP+I , ••• , 

xn)R'. Therefore (S', ZiR') has anormal crossing at R'. 
Finally suppose that Zi ERn M(S') and Zi ERn M(S). Then 

we can write zi = tixi + ... + tmxm and Zi = t;x2 + ... + t~xn 
with t l , ... , tm , t~ , ... , t~ in R. From these two equations for Zi 
we get that tixi E (x2 , ••• , xn)R; now Xl 1= (x2 , ••• , x1t)R and hence 
we must have t l E M(R); since ordRzi = 1, from the first equation 
for Zi we now get that ta 1= M(R) for so me a with 2 ~ a ~ m. 
From the above two equations for Zi we get that (tn - t~)xa E (Xl' 

... , Xa- l , Xa+l , ... , xn)R; now Xa ~ (Xl' ... , Xa- l , Xa+l , ... , xn)R and 
hence we must have t" - t:, E M(R); therefore t:. 1= M(R). Let 
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Ya = Zi, and letYj = Xj for allj #- a with 1 ~j ~ n. Then from 
the above two equations for Zi we deduce that M(R) = (Yl' ... ,Yn)R, 
R 11 M(S) = (Yl' ... , Ym)R, and R 11 M(S') = (yz, ... , Yn)R. Since 
S' F m(R'), by (1.10.10) we get that M(R') = (Yl , Y2!Yl , ... , Ym!Yl , 
Ym!Yl , Ym+1 , ... , Yn)R' and R' 11 M(S') = (Y2!Yl' ... , Ym!Yl , Ym+1 , 
... , Yn)R'. Now ZiR' = Yl(Ya!Yl)R' and hence (S', ZiR') has a 
normal crossing at R'. 

(1.11). For any nonzero ideal I in a domain A, by I-I we 
denote the set of all elements x in the quotient field K of A such 
that xy E A for an Y EI; note that then I-I is an A-submodule of 
K; by II-l we denote the set of all elements in K which can be 
expressed as a finite sum XIYl + ... + XnYn with Xi EI and Yi E I-I 
for I ~ i ~ n; note that then II-l is an ideal in A and I C II-l. 

Let I be a nonzero ideal in a unique factorization domain A 
and let W be the set of all nonzero principal ideals in A containing 
1. Then W is a nonempty finite set and there exists a unique 
PE W such that pe Q for all Q E W; namely: take any 0 #- JE I; 
then JA = P~l .. , p~n where PI' ... , Pn are distinct nonzero 
principal prime ideals in A and a l , ... , an are positive integers 
(as usual we take P~l ... p~n = A in case n = 0); clearly 
A EWe {P~l .. , p!n: 0 ~ bi ~ ai for 1 ~ i ~ n} and hence W is 
a nonempty finite set; for 1 ~ i ~ n let Ci be the smallest non­
negative integer such that I C p~/, and let P = P~l ... p~n; then 
PE Wand pe Q for all Q E W; also clearly P is the only such 
element in W. P is called the principal part of I in A and is denoted 
by prinA1. Note that if A is noetherian then prinA1 can also be 
defined thus: let 1= Ql 11 ... 11 Qm be an irredundant primary 
decomposition of I in A where Qi is primary for Pi; label Ql , ... , Qm 
so that dirn A p ; = 1 for 1 ~ i ~ m' and dirn A p; #- 1 for 
m' < i ~ m; then prinA1 = Ql 11 ... 11 Q"" (we take Ql 11 ... 11 QI1/' = 
A in case m' = 0). 

We shall now prove some elementary results concerning the 
above two concepts; these results will not be used tacitly. 

(1.11.1). For any nonzero element x in a domain A we have 
that (XA)-l = x-lA and (xA)(xA)-1 = A. 

PROOF. Obvious. 
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(1.11.2). Let I be a nonzero ideal in a noetherian domain A 
and let B be the quotient ring of A with respect to a multiplicative 
set N in A (0 f/ N). Then I-lB = (IB)-l and (II-l)B = (IB)(IB)-l. 

PROOF. For any x EI-l we have that Ix C A and hence 
(IB)x C B; consequently 1-1 C (IB)-1 and hence I-IB C (IB)-I. 
Conversely let XE (IB)-I; since A is noetherian, there exists a 
finite basis (Yl' ... , Yn) of I; now XYi E B for 1 ::::;; i ::::;; n and hence 
there exist elements z, ZI , ... , Zn in A with zEN such that 
XYi = Zi/z for 1 ::::;; i ::::;; n; then (xz)Yi = Zi for 1 ::::;; i ::::;; n and 
hence Ixz C A; consequently xz E 1-1 and hence XE I-IB. Thus 
I-IB = (IB)-1 and hence (II-l)B = (IB)(IB)-l. 

(1.11.3). Let I be a nonzero ideal in anormal noetherian domain 
A. Then (II-l)R = R for every one-dimensional element R in m(A). 

PROOF. Now R is a principal ideal domain (see [27: §3, §6, and 
§7 of Chapter V]), and hence by (1.11.1) we get that (IR)(IR)-1 = R. 
By (1.11.2) we know that (II-l)R = (IR)(IR)-l, and hence 
(II-l)R = R. 

(1.11.4). Let I be a nonzero ideal in a quasilocal domain R. 
Then: I is a principal ideal in R <=> II-l = R. 

PROOF. By (1.11.1) we know that if I is a principal ideal in 
R then II-I = R. Conversely suppose that II-I = R. Then 
1 = XtYl + ... + XnYn with Xi EI and Yi EI-l for 1 ::::;; i ::::;; n. 
Now XiYi E R for all i, and hence XjYj is a unit in R for some j. 
In particular then Yj -=1= 0 -=1= (XjYj) and yjl = Xj(XjYj)-1 E 1. For 
every Z EI we have that zYj E Rand Z = yjl(ZYj)' Therefore 
1 = yjlR. 

(1.11.5). Let A be any domain. Then for any ideal P in A we 
have that· P = n PR. (Upon taking P = A we get that 
A = n R). Re!!J(A) 

RE!!)(A) 

PROOF. Clearly pe n PR. Conversely, glven any 
Re!!)(A) 
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XE n PR, let Q = {y E A: xy E P}j then Q is an ideal in A and 
RE~l(A) 

Q rt A (\ M(R) for all R E m(A)j therefore Q = A and hence XE P. 

(1.11.6). Let I be a nonzero ideal in a noetherian domain A. 
Then: IR is a principal ideal in R Jor all R E m(A) <=> lI-I = A. 

PROOF. By (1.11.2) we know that (lI-I)R = (IR)(IR)-I for all 
RE m(A), and hence by (1.11.4) we get that: IR is a principal ideal 
in R for all RE m(A) <=> (lI-I)R = R for all RE m(A). By (1.11.5) 
we get that: (II-I)R = R for all RE m(A) <=> lI-I = A. 

(1.11.7). Let I be a nonzero ideal in a unique Jactorization 
domain A, and let x E A such that xA = prinAI. Then I-I = x-lA, 
lI-I = lX-I, and (II-I)x = I. 

PROOF. Now lX-I C A and hence x-lA CI-I. Conversely, let 
y be any nonzero element in J-I. We can write x = rx~t ... x!" 
and y = SX~l ... x~" where: rand s are units in Aj XI' ... , Xn are 
nonzero elements in R such that xlA, ... , xnA are distinct prime 
ideals in Aj al , ... , an are nonnegative integersj and bl , ... , bn 
are integers. Since xA = prinAI, there exists zi E I such that 
Z./X~i " x.A; since y EI-I and zi EI, we get that yz. E A and hence 
a. + b. ~ O. This being so for 1 ::::;; i ::::;; n, we get that y EX-lA. 
Thus I-I = x-lA, and hence lI-I = Ix-I and (lI-I)x = I. 

(1.11.8). Let I be a nonzero ideal in a unique Jactorization 
domain A. Then: I is a principal ideal in A <=> lI-I = A. 

PROOF. F ollows from (1.11.1) and (1.11.7). 

(1.11.9). Let I be a nonzero ideal in a unique Jactorization 
domain A. Then prinilI-l) = A. 

PROOF. We can take XE A such that xA = prinAI. Then by 
(1.11.7) we have that lI-I = lX-I. Let z be any nonzero element 
in A such that lI-I C zAj then lX-I C zA and hence I C xzAj 
consequently xA = prinAI C xzA and hence zA = A. Thus A 
is the only nonzero principal ideal in A containing lI-I, and 
hence prinAlI-l) = A. 
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(1.11.10). Let 1 be a nonzero ideal in a unique jactorization 
domain A, and let 0 =I=- y E A. Then: 1y-l C II-l <=> 1 C yA <=> prinA1 
C yA. Also: 1y-l C II-l ~ (1y-l)(1y-l)-1 = II-l. 

PROOF. Now: 1y-l C II-l ~ 1y-l C A ~ 1 C yA ~ prinA1 C yA 
~ 1CyA~ y-l E 1-1 ~ 1y-lC11-1. Assuming that prinA1CyA, 
we shall show that (1y-l)(1y-l)-1 = II-l and this will complete the 
proof. We can take XE A such that xA = prinAI. Then xA C yA 
and hence xJy E Aj since 1 C xA, we get that 1y-l C (xJy)A. For 
any nonzero element z in A we have that: 1y-l C zA ~ 1 C zyA ~ 
prinA1C zyA ~ xA C zyA ~ (xJy)A C zA. Therefore prini1y-l) = 

(xJy)A, and hence by (1.11.7) we get that (1y-l)(1y-l)-1 = 
(1y-l)(XJy)-1 = 1x-1 = II-l. 

(1.12). By asemiresolver we mean a sequence (Ri , Ii' Si)O~,km 
where: either m is a positive integer or m = ooj Ri is a regular 
local domain, Ii is a nonzero principal ideal in Ri , and Si is a 
positive-dimensional element in (f(Ri , Ii) having a simple point at 
Ri for 0 ~ i < mj (Ri , Ii) is a monoidal transform of (Ri- 1 , Ii-I , 
Si-I) for 0 < i < mj and for 0 ~ i < m we have that: dirn Si = 
2 <=> (f2( Ri ,Ii) has a strict normal ctossing at R i and 
(f2( R i , Ii) =I=- 0. 

By an infinite semiresolver we mean a semiresolver (R., Ii' 
Si)o,;;;i<m where m = 00 and (Ri , Ii) is unresolved for 0 ~ i < 00. 

By an finite semiresolver we mean a system [(Ri , Ii , Si)o~i<m , 
(Rm , Im)] where: m is a positive integer; (Ri , Ii , Si)o~i<m is a 
s:miresolver such that (Ri , Ii) is unresolved for 0 ~ i < mj Rm is 
a regular local domain and 1m is a nonzero principal ideal in Rm 
such that (Rm ,1m) is resolvedj and (Rm , Im) is a monoidal trans­
form of (Rm- 1 , 1m-I' Sm-I)' 

By a finite weak semiresolver we mean a system [(Ri , Ii' 
Si)o~i<m , (Rm ,1m)] where: m is a positive integerj Ri is a regular 
local domain and Ii is a nonzero principal ideal in R i for 0 ~ i ~ mj 
Si is a positive-dimensional element in (f(Ri , Ii) having a simple 
point at Ri fOI 0 ~ i < mj (Ri , Ii) is a monoidal transform of 
(Ri- 1 , Ii-l , Si-I) for 0 < i ~ mj and for 0 ~ i < m we have 
that: dirn Si = 2 ~ (f2(Ri , Ii) has a strict normal crossing at Ri . 

By aresolver we mean a sequence (Ri , Ii , 1i , Si)o~i<m where: 
either m is a positive integer or m = 00; Ri is a regular local 
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domain, Ii and I" are nonzero principal ideals in Ri such that 1., has 
aquasinormal crossing at Ri , and Si is a positive-dimensional 
element in (f(Rt , Ii) such that (Si' Ii ) has a pseudonormal crossing 
at R i for 0 ~ i < m; (R" Ii' I,) is a monoidal transform of 
(Ri- 1 , Ii-l ,1'_1 ,Si-I) for 0 < i < m; and for 0 ~ i < m we 
have that: dirn Si = 2 <=> (f2(Ri , I,) has a strict normal crossing 
at Ri and (S', I i ) has a pseudonormal crossing at Ri for some 
S' E (f2(R" , I,,). 

By an infinite resolver we mean aresolver (R" I" , I" , S,,}o~i<m 
where m = 00 and (Ri , I,,) is unresolved for 0 ~ i < 00. 

By a finite resolver we mean a system [(Ri , Ii' Ii , Si}o~'km, 
(Rm , Im , Im)] where: m is a positive integer; (Ri , I, ,li' S,,)o:;;;i<m 
is aresolver such that (Ri , Ii) is unresolved for 0 ~ i < m; 
Rm is a regular local domain and Im and Im are nonzero principal 
ideals in Rm such that (Rm, Im) is resolved andIm has a quasinormal 
crossing at Rm; and (Rm, Im, Im) is a monoidal transform of 
(Rm- 1 , Im-I' Im-I' Sm-I) (note that then UoIo)Rm = ImIm and 
hence UoIo)Rm has a quasinormal crossing at Rm). 

By a finite weak resolver we mean a system [(R" I, , I i , Si)o~i<m , 
(Rm , Im ,Im)] where: m is a positive integer; Ri is a regular local 
domain and Ii and I" are nonzero principal ideals in Ri such that 
I i has a quasinormal crossing at R i for 0 ~ i ~ m; S" is a positive­
dimensional element in (f(Ri , Ii) such that (Si' li) has a pseudo­
normal crossing at Ri for 0 ~ i < m; (Ri , I", I,,) is a monoidal 
transform of (Ri-1, 1,-1, 1.t- 1, Si-I) for 0 < i ~ m; and for 
o ~ i < m we have that: dirn Si = 2 => (f2(Ri , Ii) has a strict 
normal crossing at Ri • 

By an infinite subresolver we mean an infinite sequence 
(Ri , Ii ,li' Li , Si)O~i<oo where: Ri is a regular Iocal domain, Ii 
and I. are nonzero principal ideals in Ri such that (Ri , Ii) is 
unresolved and (f2(Ri ! Ii) is a finite set, 0 =F Li C (f2(R, , Ii)' 
and Si is a positive-dimensional element in (f(Ri , Ii) such that 
(Si ,li} has a pseudonormal crossing at Ri for 0 ~ i < 00; 

(Ri , Ii ,li) is a monoidal transform of (R.t- 1 , Ii-l ,1.'-1' Si-I), 
Li = {S E (f2(Ri , Ii): S dominatesLi _1}, and ordRJi = ordR/_)'_1 
for 0 < i < 00; and for 0 ~ i < 00 we have that: dirn Si = 
2 <=> Si E Li <=> (f1(R. , Ii) has a strict normal crossing at R i and 
(L, ,Ij) has a pseudonormal crossing at Ri • 

By a detacher we mean a sequence (R i , 11. , li , Si}n<km. where: 
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either m is a positive integer or m = 00; R.;. is a regular local 
domain, I.;. and I.;. are nonzero principal ideals in R.;. such that 
Ui ,I.,J has a quasinormal crossing at Ri , and S.;. is a positive­
dimensional element in (f(Ri , 1i) such that (Si' I.;.) has anormal 
crossing at R.;. for 0 ~ i < m; (Ri , 1i ,li) is a monoidal transform 
of (Ri- 1 , 1i-l ,li-I' S';'_I) for 0 < i < m; and for 0 ~ i < m 
we have that: dirn Si = 2 -e:> (f2(Ri , 1.;.), Ii) has a strict normal 
crossing at R.;. and (f2(R.;. , 1i) =1= 0. 

By an infinite detacher we mean a detacher (R.;. , I.;. ,li , S.;.)o~'<m 
where m = 00 and (Ri , I.;.) is unresolved for 0 ~ i < 00. 

By a finite detacher we mean a system [(R" , 1i ,li , S.;.)o~';'<m, 
(Rm , 1m , Im)] where: m is a positive integer; (Ri , 1i ,li , Si)o~i<nl 
is a detacher such that (R" 1i) is unresolved for 0 ~ i < m; 
Rm is a regular local domain and 1m and Im are nonzero principal 
ideals in Rm such that (Rm, 1m) is resolved and Um, Im) has a 
quasinormal crossing at Rm; and (Rm, 1m, Im) is a monoidal 
transform of (Rm- 1 , 1m-I' Im-I' Sm-I) (note that then UoIo)Rm = 
1mlm and hence UoIo)Rm has anormal crossing at Rm). 

By a principalizer we mean a sequence (Ri , I.;. , S,;,)o~i<m where: 
either m is a positive integer or m = 00; Ri is a regular local 
domain, I.;. is a nonzero ideal in Ri , and Si is a positive-dimensional 
element in (f(R.;. ,Ili1) having a simple point at R" for 0 ~ i < m; 
R;, is a monoidal transform of (R';'_1 ,S';'_I) and I.;. = I i - 1Ri for 
o < i < m; and for 0 ~ i < m we have that: dirn Si = 
2 -e:> (f2(R.;. ,Ili1) has a strict normal crossing at R.;. and 
(f2( Ri , liLi1) =1= 0. 

By an infinite principalizer we mean a principalizer 
(R.;. ,I.;. ,S,;,)o~i<m where m = 00 and li is a nonprincipal ideal 
in Ri for 0 ~ i < 00. 

By a finite principalizer we mean a system [(Ri , I.;. , Si)o,;;,.;.<m, 
(Rm ,Im)] where: m is a positive integer; (Ri , I i , S.;.)o~';'<m is a 
principalizer such that I.;. is a nonprincipal ideal in R.;. for 0 ~ i < m; 
Rm is a regular local domain and Im is a nonzero principal ideal 
in Rm; and Rn, is a monoidal transform of (Rm- 1 , Sm-I) and 
Im = Im- 1Rm· 

Let R be a regular local domain. We say that R is strongly 
semiresolvable if: there does not exist any infinite semiresolver 
(Ri , 1i' Si)O,;;i<OO such that Ro is an iterated monoidal transform 
of R. We say that R is semiresolvable if: given any iterated monoidal 
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transform R' of R, any nonzero principal ideal ]' in R' such that 
(R', ]') is unresolved, and any valuation ring V of the quotient 
field of R such that V dominates R', there exists a finite semiresolver 
[(Ri , Ii' Si)oS;;i<m , (Rm , Im)] such that (Ro , 10) = (R',]') and 
V dominates Rm • We say that R is weakly semiresolvable if: given 
any iterated monoidal R' of R, any nonzero principal ideal]' in R' 
such that (R',]') is unresolved, and any valuation ring V of 
the quotient field of R such that V dominates R', there exists 
a finite weak semiresolver [(Ri , Ii' Si)o,;;,i<m, (Rm, Im)] 
such that (Ro , 10) = (R', ]'), ordR-J' = ordRJi > ordR Im for 
o <; i < m, and V dominates R m • We say that R is "'strongly 
resolvable if: there does not exist any infinite resolver 
(Ri , Ii ,Ii , Si)O,;;,i<OO such that Ro is an iterated monoidal trans­
form of R. We say that R is resolvable if: given any iterated 
monoidal transform R' of R, any nonzero principal ideals ]' and 
l' in R' such that (R', ]') is unresolved and l' has a quasinormal 
crossing at R', and any valuation ring V of the quotient field 
of R such that V dominates R', there exists a finite resolver 
[(Ri , Ii ,Ii , Si)o,;;,i<m , (Rm , Im , Im)] such that (Ro , 10 ,10) = 
(R', ]',1') and V dominates Rm • We say that R is weakly resolvable 
if: given any iterated monoidal transform R' of R, any nonzero 
principal ideals]' and l' in R' such that (R',]') is unresolved 
and l' has a quasinormal crossing at R', and any valuation ring V 
of the quotient field of R such that V dominates R', there exists a 
finite weak resolver [(Ri , Ii ,Ii , Si)o';;'i<m , (Rm , Im , Im)] such 
that (Ro , 10 ,10) = (R', ]',1'), ordR,], = ordRJ; > ordR,Jm for 
o <; i < m, and V dominates R m • We say that R is strongly 
subresolvable if: there does not exist any infinite subresolver 
(Ri , Ii ,Ii , Li , Si)O';;'i<oo such that Ro is an iterated monoidal 
transform of R o . We say that R is strongly detachable if: there does 
not exist any infinite detacher (Ri , Ii ,Ii , Si)O,;;,i<oo such that Ro 
is an iterated monoidal transform of R. We say that R is detachable 
if: given any iterated monoidal transform R' of R, any nonzero 
principal ideals]' and l' in R' such that (R',]') is unresolved 
and (J',1') has a quasinormal crossing at R', and any valuation 
ring V of the quotient field of R such that V dominates R', there 
exists a finite detacher [(Ri , Ii ,Ii , Si)o,;;,i<m , (Rm , Im' Im)] such 
that (Ro , 10 ,10) = (R', ],,1') and V dominates R m . We say that 
R is strongly principalizable jf: there does not exist any infinite 
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principalizer (Ri ,li , Si)O,;;i<oo such that Ro is an iterated monoidal 
transform of R. We say that R is principalizable if: given any 
iterated monoidal transform R' of R, any nonzero nonprincipal 
ideal l' in R', and any valuation ring V of the quotient field of R 
such that V dominates R', there exists a finite principalizer 
[(Ri ,li , Si)o,;;i<m , (Rm , Im)] such that (Ro ,10) = (R',1') and V 
dominates Rm . 

§2. Resolvers and principalizers 

(2.1). Let R be a regular local domain, let I be a nonzero 
principal ideal in R such that (R, J) is unresolved, and let V be a 
valuation ring of the quotient field of R such that V dominates R. 
Assume that there does not exist any infinite semiresolver 
(Ri , Ii , Si)O,;;i<oo such that (Ro , 10) = (R, J) and V dominates 
R i for 0 ~ i < 00. Then there exists a finite semiresolver 
[(Ri , Ii , Si)o';;i<m , (Rm , Im)] such that (Ro , 10) = (R, J) and V 
dominates Rm • 

PROOF. Let W be the set of a11 semiresolvers (Ri , Ii' Si)o,;;i<m 
such that (Ro , 10) = (R, J), and (Ri , Ii) is unresolved and V 
dominates R i for 0 ~ i< m. For each pair of elements 
w = (Ri , Ii , Si)o';;i<m and w' = (R~ , I; , S;)o';;i<m' in W define: 
w ~ w' <0:> m ~ m' and(Ri , Ii' Si) = (R', I;, S;)forO ~ i < m. 
Then W becomes a partia11y ordered set having the Zorn property 
(i.e., given any nonempty ordered subset W' of W, there exists 
w' E W such that w ~ w' fot a11 w E W'). Also we get an element 
(Ri , Ii , Si)O~i<1 in Wby taking (Ro, 10) = (R, J) and: So = so me 
element in (f2(R, I) if (f2(R, I) has astriet normal crossing at R 
and (f2(R, I) = 0; and So = R otherwise. Therefore W * 0; 
and hence by Zorn's lemma W contains a maximal element 
w = (Ri , Ii , Si)O';;ion' By assumption we must have m * 00. 

Let (Rm, I",) be the monoidal transform of (Rm- I , Sm-I' Im-I) 
along V. Since w is a maximal element of W, we must have that 
(Rm, Im) is resolved, because otherwise we would get an element 
w' = (Ri , Ii , Si)o';;i<m+1 in W with w ~ w' and w * w' by 
taking: Sm = some element in (f2(Rm , Im) if (f2(Rm , Im) has a 
strict normal crossing at Rm and (f2(Rm • Im) * 0; and Sm = Rm 
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otherwise. Therefore [(R" , I" , S')O';;i<m , (Rm , In,)] IS a finite 
semiresolver having the required properties. 

(2.2). If R is a regular local domain such that R is strongly 
semiresolvable, tben Rissemiresolvable. 

PROOF. Follows from (2.1). 

(2.3). Let R be a regular local domain, let I and I be nonzero 
principal ideals in R such that (R, I) is unresolved and I has a 
quasinormal CTossing at R, and let V be a valuation ring of the 
quotient field of R such that V dominates R. Assume that there does 
not exist any infinite resolver (Ri , Ii ,li' Si)O';;i<oo such that 
(Ro , 10 ,10) = (R, I, I) and V dominates R" for 0 ~ i < 00. Tben 
there exists a finite resolver [(Ri , Ii ,li' S")O';;i<m , (Rm , 1m , Im)] 
such that (Ro , 10 ,10) = (R, I, I) and V dominates Rm . 

PROOF. Let W be the set of all resolvers (R", I" , I" , Si)o.;;i<m 
such that (Ro , 10,10) = (R, 1,1), and (Ri , I,,) unresolved and 
V dominates Ri for 0 ~ i < m. For each pair of elements 
fD = (Ri , Ii , I" ,S,,)o';;i<m and fli' = (R~ , Ii , Ii , SaO.;;i<m' in W 
define: fD ~ fD' <::> m ~ m' and (R" , Ii ,li' Si) = (R~ , I; , I; , S;) 
for 0 ~ i < m. Then W becomes a partially ordered set having the 
Zorn property. Also we get an element (Ri , I" ,li' Si)O"'i<l in W 
by taking (Ro , 10,10) = (R, I, I) and: So = some element in 
(f2(R, J) such that (So, I) has a pseudonormal crossing at R if 
(f2(R, J) has a strict normal crossing at R aJid (S', I) has a pseudo­
normal crossing at R for some S' E (f2(R, J); and So = R otherwise. 
Therefore W =F 0 and hence by Zorn's lemma W contains a 
maximal element fD = (Ri , Ii , 11. , Si)o.;;i<m. By assumption we 
must have m =F 00. Let (Rm , 1m' Im) be the monoidal transform 
of (Rm- 1 ,Im-I' 1m-I' Sm-I) along V. By (1.10.8) we know that 
Im has a quasinormal crossing at Rm • Since w is a maximal element 
of W, we must have that (Rm , 1m) is unresolved, hecause otherwise 
we would get an element w' = (Ri , Ii ,li' S,,)o';;i<m+1 in W with 
fD ~ fD' and w =F fD' by taking: S1/& = some element in (f2(Rm ,1m) 
such that (Sm, Im) has a pseudonormal crossing at Rm if (f2(Rm ,1m) 
has a strict normal crossing at Rm and (S', Im) has a pseudonormal 
crossing at R1/, for some S' E (f2(R,,,, 1m); and Sm = Rm otherwise. 



§2. RESOLVERS AND PRINCIPALIZERS 47 

Therefore [(Ri , Ii ,Ii , Si)0,;,i<1II , (R1II , Im' Im)] is a finite resolver 
having the required properties. 

(2.4). If R is a regular local domain such that R is strongly 
resolvable, then R is resolvable. 

PROOF. Follows from (2.3). 

(2.5). Let R be a regular local domain, let I and I be nonzero 
principal ideals in R such that (R, ]) is unresolved and (J, I) has 
a quasinormal crossing at R, and let V be a valuation ring of the 
quotient field of R such that V dominates R. Assume that there does 
not exist any infinite detacher (Ri , Ii ,Ii , Si)O""i<oo such that 
(Ro , 10,10) = (R, I, I) and V dominates R i for 0 ~ i < 00. Then 
there exists a finite detacher [(Ri , Ii ,Ii , Si)0""i<1II , (Xm , Im, Im)] 
such that (Ro , 10 ,10) = (R, I, I) and V dominates Rm . 

PROOF. Let W be the set of all detachers (R i , Ii ,Ii , Si)0,;,i<1II 

such that (Ro , 10,10) = (R, I, I), and (R i , Ii) is unresolved and 
V dominates Ri for 0 ~ i < m. For each pair of elements 
w = (Ri , Ii ,Ii , Si)o';'i<m and w' = (R~ , I; , I~ , S~)o';'i<m' in W 
define: w ~ w' <c:> m ~ m' and (Ri , Ii ,Ii , Si) = (R~ , I; , I; , S~) 
for 0 ~ i < m. Then W becomes a partially ordered set having 
the Zorn property. Also we get an element (Ri , Ii ,Ii , Si)O,;,i<1 

in W by taking (Ro , 10,10) = (R, I, I) and: So = some element 
in (f2(R, I) if «f2(R, I), I) has a strict normal crossing at Rand 
(f2(R, ]) "* 0; and So = R otherwise. Therefore W"* 0, and 
hence by Zorn's lemma W contains a maximal element 
w = (Ri , Ii ,Ii , Si)0';'i<1II' By assumption we must have m "* 00. 

Let (Rm , Im, Im) be the monoidal transform of (Rm- 1 , 1111-1 , 

Im-I' Sm-I) along V. By (1.10.7) we know that (Jm, Im) has a 
quasinormal crossing at Rm . Since w is a maximal element of W, 
we must have that (R"" 1111) is resolved, because otherwise we 
would get an element w' = (R i , Ii ,Ii , Si)O,;,i<m+1 in W with 
w ~ w' and w "* w' by taking: Sm = some element in (f2(Rm, IrrJ 
if «(f2(Rm , Im)' Im) has astriet normal crossing at Rm and 
(f2(Rm , Im) "* 0; and S1II = Rm otherwise. Therefore [(Ri , Ii' 
I i , Si)o,:;i<m , (Rm , 1111 , Im)] is a finite detacher having the 
required properties. 
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(2.6). If R is a regular local domain such that R is strongly 
detachable, then R is detachable. 

PROOF. Follows from (2.5). 

(2.7). Let R be a regular local domain, let I be a nonzero 
nonprincipal ideal in R, and let V be a valuation ring of the quotient 
field of R such that V dominates R. Assume that there does not exist 
any infinite principalizer (Ri ,Ii , 8i)0';;i<00 such that (Ro ,10) = (R, I) 
and V dominates Ri for 0 ~ i < 00. Then there exists a finite 
principalizer [(Ri , I i , 8i)0.;;i<m , (Xm ,Im)] such that (Ro , 10) = 
(R, I) and V dominates Rm • 

PROOF. Let W be the set of all principalizers (Ri , Ii , 8i)0.;;i<m 
such that (Ro , 10) = (R, I), and I i is a nonprineipal ideal in R i 

and V dominates Ri for 0 ~ i < m. For eaeh pair of elements 
w = (Ri ,Ii ,8i)0';;i<m and w' = (R~ , I~ ,8Do.;;i<m' in W define: 
w ~ w' <0> m ~ m' and (Ri ,Ii , 81,) = (R~ ,I~ , 8~) for 0 ~ i < m. 
Then W beeomes a partially ordered set having the Zorn property. 
Also we get an element (R1, ,11, , 8 i )0';;i<1 in W by taking (Ro ,10) = 

(R,l) and: 8 0 = some element in (f2(R,II-1) if (f2(R,II-1) has a 
striet normal erossing at Rand (f2(R, II-1) #- 0; and 8 0 = R 
otherwise. Therefore W #- 0, and henee by Zorn's lemma W 
eontains a maximal element w = (Ri ,11, , 8i)0';;i<m. By assump­
tion we must have m #- 00. Let Rm be the monoidal transform 
of (Rm- 1 , 8 m- 1) along V and let Im = Im- 1Rm . Sinee w is a 
maximal element of W, we must have that Im is a nonprineipal 
ideal in Rm , beeause otherwise we would get an element w' = 
(Ri ,11, ,81,)0.;;i<m+1 in W with w ~ w' and w #- w' by taking: 
8m = some element in (f2(Rm, Irrl;;?) if (f2(Rm, ImI;;,,1) has astriet 
normal erossing at Rm and (f2(Rm , ImI;;,,1) i= 0; and 8 m = Rm 
otherwise. Therefore [(Ri , I i , 8i)0.;;i<m , (Rm , Im)] is a finite 
prineipalizer having the required properties. 

(2.8). If R is a regular local domain such that R is strongly 
principalizable, then R is principalizable. 

PROOF. Follows from (2.7). 
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(2.9). Let R be a regular local domain such that R is resolvable 
and detachable. Let R' be an iterated monoidal transform of R, let 
j' be a nonzero principal ideal in R', and let V be a valuation ring 
of the quotient field of R such that V dominates R'. Then there 
exists an iterated monoidal transform R* of R' along V such that 
j'R* has anormal crossing at R*. 

PROOF. If (R', j') is resolved then it suffices to take R* = R'. 
So now assurne that (R', j') is unresolved. Since R is resolvable, 
there exists a finite resolver [(Ri , li ,Ii , Si)O';;;i<m , (Rm , 1m, Im)] 
such that (Ro , 10,10) = (R', j', R') and V dominates Rm . Now 
j'Rm = ImIm and hence (f'Rm, Rm) has a quasinormal crossing 
at Rm. If (Rm, j'Rm) is resolved then j'Rm has anormal crossing 
at R m and it suffices tQ take R* = Rm • So now assurne that 
(Rm , j' Rm) is unresolved. Since R is detachable, there exists a 
finite detacher [(R~, 1~ , I~ , S;)o.;;;i<n , (R*, ]*,1*)] such that 
(R~, 1~, I~) = (Rm , j'Rm , Rm) and V dominates R*. Now 
j'R* = ]*1* and hence j'R* has anormal crossing at R*. 

(2.10). Let R be a regular local domain such that R is prin­
cipalizable. Let R' be an iterated monoidal transform of R, let V be 
a valuation ring of the quotient field of R such that V dominates R', 
and let fl' ... , fq (q > 0) be a finite number of nonzero elements 
in V. Then there exists an iterated monoidal trans form R* of R' along 
V such that fi E R* for 1 ~ i ~ q. 

PROOF. We can take nonzero elementsFo ,F1 , ••• ,Fq in R' such 
that fi = FiJFo for 1 ~ i ~ q. If (Fo , ... , Fq)R' is a principal ideal 
in R' then take R* = R'; if (Fo , ... , Fq)R' is a nonprincipal ideal 
in R' then, since R' is principalizable, there exists a finite prin­
cipalizer [(Ri , I i , Si)O';;;i<m , (R*, 1*)] such that (Ro , 10) = (R', 
(Fo, ... , Fq)R') and V dominates R*. In both the cases R* is an 
iterated monoidal transform of R' along V and (Fo, ... , Fq)R* is 
a nonzero principal ideal in R*. Now (Fo , ... , Fq)R* = FR* with 
o =1= FE R*. In particular Fi = riF for 0 ~ i ~ q and F = 

soFo + ... + sqFq with ro ' ... , rq , so, ... , Sq in R*. Now 1 = 
soro + ... + rqSq and hence rj is a unit in R* for so me j with 
o ~ j ~ q. In particular then (Fo, ... , Fq)R* = FjR*. Now 
Fo/Fj E R* C V, F;JFo E V, and V dominates R*; consequently Fo/Fj 
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is a umt in R* and hence (Fo • •..• Fq)R* = FoR*. Therefore 
f" = F"fFo ER* for 1 :::;;; i:::;;; q. 

(2.11). Let R be a regular local domain such that R is resolvable. 
detachable. and principalizable. Let R' be an iterated monoidal 
transform of Rand let V be a valuation ring of the quotient field 
of R such that V dominates R'. Then (1) given any nonzero ideal 
I' in R' .there exists an iterated monoidal trans form R* of R' along 
V such that l' R * is a nonzero principal ideal in R * having anormal 
crossing at R*; and (2) given any finite number of nonzero elements 
f1 •...• fq (q > 0) in V there exists an iterated monoidal transform 
R* of R' along V and a basis (Xl' ...• Xn) of M(R*). where 
n = dirn R*.such that fi = giX~(i.t) .. , x:(i.n) where gi is a unit in 
R* and a(i.j) is a nonnegative integer for I :::;;; i :::;;; q and I :::;;; j :::;;; n. 

PROOF. To prove (1) let any nonzero ideal l' in R' be given. 
If l' is a principal ideal in R' then let R" = R'; if l' is a non­
principal ideal in R' then. since R is principalizable. there exists 
a finite principalizer [(Ri • Ii • Si)o';;;i<m. (R". 1")] such that 
(Ro • 10) = (R', I') and V dominates R". In both the cases R" is 
an iterated monoidal transform of R', I'R" is a nonzero principal 
ideal in R", and V dominates R". Since R is resolvable and detach­
able, by (2.9) there exists an iterated monoidal transform R* of R" 
along V such that (1' R")R* has anormal crossing at R*. It follows 
that R* is an ituated monoidal transform of R' along V and I' R* is 
a nonzero principal ideal in R* having anormal crossing at R*. 

To prove (2) let any finite number of nonzero elementsf1, ... ,fa 
(q > 0) in V be given. Since R is principalizable, by (2.10) there 
exists an iterated monoidal transform R** of R' along V such that 
fi E R** for I :::;;; i :::;;; q. Since R is resolvable and detachable, by 
(2.9) there exists an iterated monoidal transform R* of R** along 
V such that «ft ... fq)R**)R* has anormal crossing at R*. It 
follows that R* is an iterated monoidal transform of R' along V 
and there exists a basis (Xl' ... , Xn) of M(R*), where n = dirn R*, 
such thatfi =giX~(i.1) ... x~(i.n) where gi is a unit in R* and a(i,j) 
is a nonnegative integer for I :::;;; i :::;;; q and 1 :::;;; j :::;;; n. 

(2.12). For any nonzero ideal I in any regular local domain R 
we have the following. 
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(2.12.1). There exists a finite number of nonzero principal ideals 
11' ... , In (n > 0) in R such that II-l = 11 + ... + In and 
ordRl q = ordiII-l) for 1 ~ q ~ n. 

(2.12.2). For any 11' ... , In as in (2.12.1) let 1= 11'" In. 
Then: I is a principal ideal in R ~ (R, I) is resolved. 

(2.12.3). For any 11' ... , In as in (2.12.1) let 1= 11 ... In .. 
n 

Then <f(R, II-l) = n <f(R, l q) = <f(R, I). 
q=1 

(2.12.4). Let S be a positive-dimensional element in <f(R, II-I) 
having a simple point at R, let R' be a monoidal trans form of (R, S) 
such that ordR,(I'I'-I) = ordR(II-I) where l' = IR', and for any 
11, ... , In as in (2.12.1) let 1~ be the (R, S, R')-transform of l q for 
1 ~ q ~ n. Thenl'l'-1 = 1~ + ... + 1~ and ordR-J~ = ordR,(I'I'-I) 
for 1 ~ q ~ n. 

(2.12.5). Let S be a positive-dimensional element in <f(R, II-I) 
having a simple point at R, let R' be a monoidal trans form of (R, S), 
and let l' = IR'. Then ordR,(I'I'-I) ~ ordiII-I). 

PROOF OF (2.12.1). Take any finite basis (fl, ... ,fn) (n > 0) of 
II-I. Upon relabeling fl, ... ,fn we may assurne that ordRfl = 

ordiII-I). Let gl = fl' For 2 ~ q ~ niet: gq = fq if ordJq = 
ordR(II-I), and gq = fl + /q if ordJq =F ordiII-I). Let l q = gqR 
for 1 ~ q ~ n. Then 11' ... , In have the required properties. 

PROOF OF (2.12.2). First suppose that I is a principal ideal in R; 
then by (1.11.1) we have that II-l = Rand hence l q = R for 
1 ~ q ~ n; consequently 1= Rand hence (R, I) is resolved. 
Conversely suppose that (R,]) is resolved; let d = ordR(II-I); 
then ordRl = nd and hence I = xndR where XE R with ordRx = 1; 
consequently l q = xdR for 1 ~ q ~ n, and hence II-l = xdR; 
therefore by (1.11.9) we get that d = 0, and hence II-l = R; now 
by (1.11.8) we get that I is a principal ideal in R. 

PROOF OF (2.12.3). This is obvious in view of (1.3.1). 
Concerning the second equality note that actually for any nonzero 
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m 
principal ideals Ji, ... , J:n in R we have that () <f(R, J~) = 
<f(R, Ji ... J:n). 

q=1 

PROOF OF (2.12.4). Let 1* = (11-1)R'. Then 1* = 
JIR' + ... + J,.R'. We can take y ERsuch that yR = prinR1; 
then by (1.11.7) we have that 11-1 = 1y-l and hence 1* = l'y-l; 
now 1CyR and hence l' CyR'; consequently by (1.11.10) we get 
that 1'1'-1 = (l'y-l)(l'y-l)-1 and hence 1'1'-1 = 1*1*-1. Let 
d = ordR(11-1). Then ordR,(l*l*-I) = ordR,(1'l'-I) = d = oIdRJq 
for 1 ~ q ~ n. Now (R n M(8»R' = xR' where XE R' with 
ordR,x = 1. By (2.12.3) we know that 8 E <f(R, Jq) and hence 
1,/1' C xdR', J~ = {}qR')x-d, and ordR}~ ~ d for 1 ~ q ~ n. 
Since 1* = JIR' + ... + I",R' and ],ß' C xil R' for 1 ~ q ~ n, 
we must have 1* C xilR' and hence prinR,l* = zxilR' with 
o =1= ZER'. By (1.11.7) we now get that 1*1*-1 = l*Z-lx-d; 
consequently J~Z-1 C R' for 1 ~ q'~ n, and 1*1*-1 = 
J~Z-1 + ... + J~Z-I. Since ordR,(l*l*-I) = d ~ ordR}~ for 
1 ~ q ~ n, we conclude that z is a unit in R', oldR'J~ = d = 
ordR,(1'l'-l) for 1 ~ q ~ n, and J~ + ... + J~ = 1*1*-1 = 1'1'-1. 

PROOF OF (2.12.5). Take Jl' ... , J,. as in (2.12.1), and let 
1* = (II-l)R'. Then 1* = 11R' + ... + InR'. We can take y E R 
such thatyR = prin~; then by (1.11.7) we have that II-I = Iy-l, 
and hence 1* = 1'y-l; now I C yR and hence l' C yR'; con­
sequently by (1.11.10) we get that 1'1'-1 = (1'y-l)(l'y-l)-I, and 
hence 1'1'-1 = 1*1*-1. Let d = ordR(II-I). Then ordRJq = d for 
1 ~ q ~ n. Now (R n M(8»R' = xR' where XE R' with 
ordRx = 1. By (2.12.3) we know that 8 E <f(R, Jq), and hence 
upon letting J~ be the (R, 8, R')-transform of Jq we get that 
J,/1' C xilR', J~ = {}qR')x-d, and ordR'J~ ~ d for 1 ~ q ~ n. 
Since 1* = JIR' + ... + J,.R' and JqR' C xilR' for 1 ~ q ~n, 
we must have 1* C xilR' and hence by (1.11.10) we get that 
l~x-d C 1*1*-1; now J~ = (}IR')x-d C l*x-d C 1*1*-1 and 
ordR'1~ ~ d = ordR(11-1); therefore ordR,(I'I'-I) = ordR,(I*I*-I) 
~ ordill-1). 

(2.13). Let R be a regular local domain such that R is strongly 
semiresolvable. Then R is strongly principalizable. 
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PROOF. Given any principalizer (Ri , li ,Si)O<;.kOO such that 
Ro is an iterated monoidal transform of R, we want to show that 
I j is a principal ideal in R j for some nonnegative integer j. By 
(2.12.5) we know that ordRp.,li1) ~ ordRa(lal;;,I) whenever i ~ a. 
Therefore there exist nonnegative integers band d such that 
ordRpJi1) = d whenever i ~ b. By (2.12.1) there exist nonzero 
principal ideals Jb,1' ... , Jb,n (n > 0) in Rb such that l~b1 = 

Jb,1 + ... + Jb,nandordRJb,q = d for 1 ~ q ~ n. For 1 ~ q ~ n 
let (Ji q)bd<oo be the unique sequence such that Ji,q is the 
(Ri- 1 , Si-1 ,Ri)-transform of Ji-1,q for b < i < 00. In view of 
(2.12.4), by induction on i we see that I.li1 = Ji,1 + ... + Ji,n 
and ordR)i,q = d for b ~ i < 00 and 1 ~ q ~ n. Let Ji = 
Ji,1 ... Ji,n for b ~ i < 00. Then Ji is a nonzero principal ideal 
in Ri for b ~ i < 00, and Ji is the (Ri - 1 , SH , Ri)-transform of 
Ji-1 for b < i < 00. By (2.12.3) we have that (f(Ri , Ji) = 
(f(Ri , IJi1) for b ~ i < 00. It follows that (Rb+i , Jb+i , Sb+i)O<;.kex> 
is a semiresolver. Since Rb is an iterated monoidal transform of Rand 
R is strongly semiresolvable, we conclude that (Rj , Jj) is resolved for 
somej ~ b. By (2.12.2) we now get thatIj is a principal ideal in Rj • 

(2.14). Let R be a three-dimensional regular local domain, let 
(x, y, z) be a basis 0/ M(R), let J be a nonzero principal ideal in R 
such that Je zR, let 1 = XaybzC R where a, b, c are nonnegative 
integers, let (R', ],,1') be a monoidal trans/orm 0/ (R, J, I, R) such 
that ordR-J' = ordRJ, and let E* = (f2(R', ]') - (f2(R, J). Then 
(E*, 1') has anormal crossing at R', E* contains at most one element, 
and/or every SE E* we have that: either y/x E R' and R' '"" M(S) = 

(x, z/x)R', or x/y E R' and R' '"" M(S) = (y, z/y)R'. 

PROOF. Now J = zwR with 0 =F wER. Let e = ordRw. Then 
ordRJ = e + 1, and hence by assumption ordR, J' = e + 1. If 
x/z E R' and y/z E R' then we would get that J' = (w/zC)R' and 
ordR,(w/zC) ~ e which would be a contradiction. Therefore we 
must have either y/x E R' and zjx E M(R'), or xjy E R' and 
zjy E M(R'). Consequently there exists a permutation (x', y') of 
(x, y) such that y' jx' E R' and zjx' E M(R'). Let (a', b') be the 
corresponding permutation of (a, b). Then 1 = x'a'y'b'zCR and 
hence: 

(1) I' = x'B+1+a'+b'+c(y'/X')b'(Z/x'Y'R'. 
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Also (2): if dirn R' =I- 3 then dirn R' = 2, y'jx'!fo M(R'), and 
M(R') = (x', zjx')R'; and if dirn R' = 3 then M(R') = (x', y*, 
zjx')R' where y* = y' jx' in case y' jx' E M(R'), and y* = so me 
element in R' in case y' jx' !fo M(R'). By (1.9.5) we get that 
M(R)R' eR' ("\ M(8) for all 8 E m(R') - m(R); consequently 
x' ER' ("\ M(8) for all 8 E m(R') - m(R); since ordRI = ordR], 
we get that (f2(R', ]') ("\ m(R) C (f2(R, ]), and hence 
E* C m(R') - IB(R); therefore: 

(3) x' E R' ('t M(S) for all SE E*. 

Now ]' = (zjx')(wjx'e)R', ordR}' = e + 1, ordR,(zjx') = 1, 
wjx'e ER', and ordR,(wjx'e) ~ e; consequently ordR'(wjx'e) = e; it 
follows that zjx' ER' ("\ M(8) for all 8 E (f2(R',],); therefore by (3) 
we get that (x', zjx')R' C R' ("\ M(8) for all 8 E E*, and hence 
by (2) we get that: 

(4) (x', zjx')R' = R' ('t M(S) for all SE E*. 

By (1), (2), and (4) it follows that (E*,1') has anormal crossing 
at R', and E* contains at most the one element. Since (x', y') is a 
permutation of (x, y), by (4) we get that for every 8 E E* we have 
that: either yjx E R' and R' ("\ M(8) = (x, zjx)R', or xjy E R' 
and R' ("\ M(8) = (y, zjy)R'. 

(2.15). Let R be a regular local domain with dirn R ~ 3. Let] 
and I be nonzero principal ideals in R such that ] =1= R, and (j, I) 
has a quasinormal crossing at R. Let (R',]" I') be a monoidal 
trans form of (R,], I, R) such that ordR,], = ordR], and let 
E* = (f2(R', ]') - (f2(R, I). Then we have the following. 

(2.15.1). (E*, 1') has anormal crossing at R', and E* contains 
at most one element. 

(2.15.2). Let E C (f2(R, ]) such that every subset of E containing at 
most two elements has anormal crossing at R, and (8, I) has anormal 
crossing at R for all 8 E E. Let E' = (f2(R', ]') - «f2(R, ]) - E). 
Then (E', 1') has astrist normal crossing at R'. 

(2.15.3). 1f every subset of (f2(R,]) containing at most two 
elements has anormal crossing at R', and (8, I) has anormal crossing 
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at R for all SE (f2(R, j), then «f2(R', ],),1') has a strict normal 
crossing at R'. 

(2.15.4). 1f «f2(R, ]), I) has anormal crossing at R, then 
«f2(R', ],),1') has astriet normal crossing at R'. 

(2.15.5). 1f (f2(R, j) has anormal erossing at R, then (f2(R', ]') 
has a strict normal erossing at R'. 

PROOF OF (2.15.1). Since (j, I) has a quasinormal crossing at R 
and] 0:/= R, there exists a basis (x, y, z) of M(R) such that ] C zR 
and I = XaybzC R where a, b, e are nonnegative integers. Therefore 
our assertion follows from (2.14). 

PROOF OF (2.15.2). By (1.10.6) we know that l' has anormal 
crossing at R'; also, if dirn R' 0:/= 3 then dirn R' ::::;; 2; therefore, if 
dirn R' 0:/= 3 then (E',1') has a strict normal crossing at R'. So 
assurne that dirn R' = 3. Then dirn R = 3. Clearly E* CE'. If 
E* = Ethen our assertion follows from (2.15.1). So also assurne 
that E* 0:/= E' and take S' E E' - E*. Now E' - E* = 
E () (f2( R', ]') C E () m( R'), and hence by (1.10.11) we get that 
E' - E* = {S'}, i.e., E' = {S'} u E*. By assumption (S', I) has 
anormal crossing at Rand hence there exists a basis (x, y', z') of 
M(R) such that R () M(S') = (y', z')R and 1= xay'b'z'C'R where 
a, b', c' are nonnegative integers. Now (j, I) has a quasinormal 
crossing at R,] 0:/= R, and S' E (f2(R, j); therefore there exists 
z E (y', z')R with ordRz = 1 such that ] C zR and (zR, I) has a 
quasinormal crossing at R; consequently by (1.5.1) there exists 
y ERsuch that M(R) = (x, y, z)R, R () M(S') = (y, z)R, and 
I = XaybzC R where band e are nonnegative integers. Since 
S' E m(R) () m(R'), by (1.10.10) we get that M(R') = (x, yJx, zJx)R' 
and R' () M(S') = (yJx, zJx)R'; clearly xJy i R' and hence 
by (2.14) we get that E* contains at most one element, 
and R' () M(S) = (x, zJx)R' for every SE E*; now l' = 
xd+a+b+c(yJX)b(ZJx)CR' where d = ordR ], and hence it follows that 
(E',1') has a strict normal crossing at R'. 

PROOF OF (2.15.3). Take E = (f2(R, j) in (2.15.2). 

PROOF OF (2.15.4). Follows from (2.15.3). 
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PROOF OF (2.15.5). Now (J, R) has aquasinormal crossing at R, 
and «f2(R, j), R) has anormal crossing at R. Therefore our 
assertion follows by taking 1= R in (2.15.4). 

(2.16). Let Ro be a regular loeal domain with dirn Ro ~ 3. Let 
10 and 10 be nonzero principal ideals in Ro such that 10 =1= Ro , 
(f2(RO ) 10) has a normalcrossing at Ro , and (Jo, 10) has a quasinormal 
crossing at Ro • Let (Ri , I, ,Ii)o<i<aJ be an infinite sequenee such 
that for 0 < i < 00: R i is a regular loeal domain, Ii and I i are 
nonzero principal ideals in R i , (Ri , Ii ,Ii ) is a monoidal transform 
of (Ri - 1 , li-I' I i - 1 , R i - 1), and ordR}i = ordRJo. Then there 
exists a nonnegative integer j such that «f2(Ri , Ii),Ii) has astriet 
normal crossing at R i for all i ~ j. 

PROOF. By (1.10.7) we get that (Ji' I i ) has a quasinormal 
crossing at Ri forO ~ i < 00, and by (2.15.5) we getthat (f2(Ri , I,) 
has a strict normal crossing at Ri for 0 < i < 00. If dirn Rj =1= 3 
for some nonnegative integer j, then for all i ~ j we have that 
dirn Ri ~ 2 and hence «f2(Ri , Ii),Ii) has a strict normal crossing 
at Ri for all i ~ j. So now assurne that dirn R i = 3 for 0 ~ i < 00. 

ao 

Let E = n (f2(Rp , I p ). Then there exists a positive integer q 
p=O 

such that E = (f2(Ro , 10) n (f2(Ri ,li) for all i ;?; q. By induction 
on i we shall show that «(f2(Ri , Ii) - (f2(Ro , 10»' I i ) has anormal 
crossing at R, for 0 ~ i < 00; this is obvious for i = 0; so now 
let i > 0 and assurne that (E*, li-I) ~as anormal crossing at R.,,-1 

where E* = (f2(Ri _1 , li-I) - (f2(Ro , 10); upon taking (Ri- 1 , Ii-l , 
/._1 , E*) for (R, I, I, E) in (2.15.2) we get that (E', L,) has 
anormal crossing at Ri where E' = (f2(Ri , I,) - «f2(Rt_1 , 

li-I) - E*); c1early (f2(Ri , I,) - (f2(Ro , 10) C E' and hence 
«(f2(Ri , Ii) - (f2(Ro , 10»' I,) has anormal crossing at Ri • This 
completes the induction on i. Hence in particular we get that 
«(f2(Ri , Ii) - E),Ii) has anormal crossing at Ri for all i ~ q. 
Therefore if E = 0 then it suffices to take j = q. So now assurne 
that E =1= 0 and take SEE. Note that then SE m(Ri ) for 
o ~ i < 00. Since E C m(Ro) n m(RI ), by (1.10.11) we get that 
E = {S}. Since S has a simple point at Ro , there exists a basis 
(x,y', z') of M(Ro) such that Ro n M(S) = (y', z')Ro. Since 10 

has anormal crossing at Ro , there exists a basis (Xl' X 2 ,Xa) of 
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M(Ro) such that 10 = X~lx~2xg3Ro where al , a2 , a3 are nonnegative 
integers. Upon relabeling Xl' X2 , X3 we may assurne that there 
exists an integer u with 0 ~ u ~ 3 such that xii 1: Ro (J M(S) for 
o ~ i ~ u, and xii E Ro (J M(S) for u < i ~ 3. Note that then 
ai > 0 for u < i ~ 3, and hence Xi E Ro (J M(S) for u < i ~ 3. 
Since dirn S = 2, we get that u;? 1, and if u = 1 then 
Ro (J M(S) = (x2 , x3)Ro . Also, if u = 2 then Ro (J M(S) = 
(y*, xa)Ro for some y* E Ro (namely, since ordRox3 = 1 and 
X3 E Ro (J M(S) = (y', x')Ro , we get that X3 = rü" + r2z' where 
r l and r2 are elements in Ro at least one of which is not in M(Ro); 
take y* = z' in case r l ~ M(Ro), and y* = y' in case r l E M(Ro)}. 
Let w = X~l ... x~u. Then w E Ro and w ~ Ro (J M(S). Let 

I (x2 , X a , a2 , aa) if u =; 1 
(y, z, b, e) = (y*, Xa , 0, aa) if u = 2 

(y', z', 0, 0) if u =, 3 

Then M(Ro) = (x, y, z)Ro , Ro (J M(S) = (y, z)Ro ' band e are 
nonnegative integers, and 10 = wybzCRo . Since SE m(Ri ) for 
o ~ i < 00, by (1.10.10) we get that M(Ri ) = (x, y/xi, z/xi)Ri 

and Ri (J M(S) = (y/xi , z/xi ) for 0 ~ i < 00. Let h: 
Ro ---+ Ro/(Ro (J M(S» be the canonical epimorphism, and let 
v = ordhCRo)h(w). Since w ~ Ro (J M(S), we get that v is a non­
negative integer and h(w) = h(r)h(x)V where r is a unit in Ro . 
Consequently w = rxV + sy + tz with sand t in Ro . Let 
r' = r + s(y/XV) + t(z/XV). Then w = r'xv , and r' is a unit in Ri 

for all i ;? v. Let d = ordRJo . Then ordR}i = d for 0 ~ i < 00, 

and hence 

for all i;;:: v. 

It follows that (E,li ) has anormal crossing at Ri for all i ;? v. 
Let j = 1 + max(v, q). Then (E, li_I) has anormal crossing at 
Ri - l , and (((f2(Rj _ 1 , Jj -l) - E),lj _ 1) has anormal crossing at 
R j _ l ; consequently (S',lj _ 1) has anormal crossing at R j _ l for all 
S' E (f2(Rj _ l , Ji -l); also (f2(Rj _ l , Jj-l) has anormal crossing at 
Ri- 1 ; therefore by (2.15.3) we get that (f2(R i , Ji)' l i) has a strict 
normal crossing at R i for all i ;? j. 

(2.17). Let R be a regular loeal domain with dirn R ~ 3. Let J 
and 1 be nonzero principal ideals in R such that J i= R, (f2(R, J), 1) 
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has a strict normal CTossing at R, and (J, l) has a quasinormal 
CTossing at R. Let SE (f2(R, J) and let (R',]', 1') be a monoidal 
trans/orm 0/ (R, j, I, S) such that ordR,], = ordRj. Then 
«(f2(R', ]'), I') has a strict normal CTossing at R'. 

PROOF. By (1.10.6) we know that l' has anormal crossing at 
R'; hence if dim R' =t= 3 then «(f2(R', ]'), 1') has a strict normal 
crossing at R'. So assume that dim R' = 3. Then dim R = 3. Let 

E* = {S* E (f2(R', ]'): R n M(S) C R' n M(S*)} 

and 
E' = «(f2(R, J) - {S}) n (f2(R', ]'). 

Since ordR-J' = ordRj, we get that ID(R) ('\ (f2(R', ]') C (f2(R, J); 
by (1.9.7) we know that S ~ ID(R'); hence in view of (1.9.5)we get 
that (f2(R',]') = E* u E'. Let d = ordRJ. Then ordR'j' = d. We 
shall now divide the argument into two cases according as E' = 0 

or E' =t= 0. 

Case when E' = 0. Now (f2(R', ]') = E*. Since (S, l) has a 
normal crossing at R, there exists a basis (x', y', z) of M(R) such 
that R ('\ M(S) = (x',y')R and I = x'a'y'b'zCR where a', b', c are 
nonnegative integers. Now (J, I) has a quasinormal crossing at R, 
] =t= R, and SE (f2(R, J); consequently there exists y E (x', y')R 
with ordRy = 1 such that je yR and (yR, l) has a quasinormal 
crossing at R; hence by (1.5.1) there exists x ERsuch that M(R) = 
(x, y, z)R, R ('\ M(S) = (x, y)R, and I = xaybzCR where a and b 
are nonnegative integers. Now j = yy*R where y* ER with 
ordRY* = d - 1 = ordsY*. If xJy E R' then we would get that 
]' = (y*/yd-l)R' and ordR'(y*/yd-l) ~ d - 1 which would be a 
contradiction. Consequently x/y ~ R'. Therefore M(R') = 
(x, y/x, z)R', l' = xd+a-tö(Y/X)bzCR', and XE R' ('\ M(S*) for all 
S* E (f2(R', ]'). Also ]' = (y/x)(Y*/Xd-1)R', ordR,(y/x) = 1, 
y*JXd-1 ER', ordR,(y*/xd-1) ~ d - 1, and ordR-J' = d; therefore 
ordR'(y*/xd-1) = d - 1; it follows that y/x E R' ('\ M(S*) for all 
S* E (f2(R', j'), and hence (x,y/x)R' = R' ('\ M(S*) for all 
S* E (f2(R', ]'). Therefore «(f2(R', ]'), I') has a strict normal 
crossing at R'. 

Case when E' =t= 0. Take S' E E'. Then (f2(R, J) = {S, S'}, 
S' =t= S, and (f2(R',]') = E* u {S'}. Since «(f2(R, J), I) has a 
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normal crossing at R, there exists a basis (x', y', z) of M(R) such 
that R fl M(S) = (x', y')R, R fl M(S') = (y', z)R, and I = 
x'a'y'b'zCR where a', b', c are nonnegative integers. Now (], I) has a 
quasi normal crossing at R, ] *- R, and SE (f2(R, ]); consequently 
there exists y E (x', y')R with ordRy = 1 such that ] C yR and 
(yR, I) has a quasinormal crossing at R; hence by (1.5.1) there 
exists XE R such that M(R) = (x, y, z)R, R fl M(S) = (x, y)R, 
and 1= xaybzCR where band c are nonnegative integers. Since 
S' E (f2(R,]) and ] C yR, we get that y E R fl M(S'). Thus 
(y, z)R C R fl M(S') and hence R fl M(S') = (y, z)R. Since 
S' E m(R'), by (1.10.10) we get that M(R') = (x, y/x, z)R' 
and R' fl M(S') = (y/x, z)R'. Now I' = xd+a-tb(y/x)bzCR', and 
XE R' fl M(S*) for all S* E E*. Also] = yy*R where y* E R 
with ordRy* = d - 1 = ordsY* and hence ]' = (y/x)(Y*/Xd-1)R'; 
now ordR,(y/x) = 1, Y*/Xd- 1 ER', ordR'(y*/xd- 1) ~ d - 1, and 
ordR,], = d; it follows that y/x E R' fl M(S*) for all S* E (f2(R', ]'). 
Therefore (x, y/x)R' = R' fl M(S*) for all S* E E*. It follows 
that «f2(R', ]'), I') has a strict normal crossing at R'. 

(2.18). Let R be a regular local domain with dirn R ~ 3. Let 
] and I be nonzero principal ideals in R such that (R, ]) is unresolved 
and (j, I) has a quasinormal crossing at R. Let S be a positive­
dimensional element in (f(R, ]) such that (S,1) has anormal CTossing 
at R, and let (R', ]" I') be a monoidal transform of (R, ], I, S) such 
that ordR1 = ordR]. Assume that iJ dirn S = 2 then «f2(R, ]), I) 
has a strict normal CTossing at R. Then we have the following. ' 

(2.18.1). If (f2(R, J) has anormal crossing at R, then (f2(R', ]') 
has a strict normal CTossing at R'. 

(2.18.2). If «f2(R, ]), I) has anormal CTossing at R, then 
«f2(R', ]'), I') has a strict normal crossing at R'. 

PROOF. Since (R, J) is unresolved, we get that 2 ~ dirn S ~ 3, 
and] *- R. If S = R then our assertions follow from (2.15.5) and 
(2.15.4) respectively. So now assurne that S *- R. Then we must 
have SE (f2(R, J) and dirn R = 3. Now by assumption «f2(R, J),1) 
has a strict normal crossing at R, and hence by (2.17) we get that 
«f2(R', ]'), I') has a strict normal crossing at R'. 
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(2.19). Let R be a regular local domain with dirn R ~ 3 such 
that R is strongly semiresolvable. Then R is strongly detachable. 

PROOF. Suppose if possible that R is not strongly detachable. 
Then there exists an infinite detacher (Ri , J1. ,li , Si)O~i<oo such 
that Ro is an iterated monoidal transform of R. Note that now R, 
is an iterated monoidal transform of Rand (Ri , Ji) is unresolved 
for 0 ~ i < 00. Also ordRJi ~ ordR Ja whenever i ~ a, and 
hence there exist nonnegative'integers b ~nd d such that ordR)i = d 
whenever i ~ b. If (1f2(Rq , Jq),lq) has anormal crossing at Rq for 
some q ~ b then by (2.18.2) we would get that (1f2(Ri , Ji)' 1i) has 
anormal crossing at Ri for all i ~ q and from this it would follow 
that (Rq+i' Jq+i , Sq+i)O~i<oo is an infinite semiresolver, which 
would contradict the assumption that R is strongly semiresolvable. 
Therefore for each i ~ b we must have that (1f2(Ri , Ji)' 1i ) does 
not have anormal crossing at Ri and hence dirn Si =1= 2; con­
sequently Si = Ri and dirn Ri = 3 for all i ~ b; hence in view 
of (2.16), for each i ~ b we musthave that 1f2(Ri , J,) does not have 
anormal crossing at Ri . Consequently (Rb+i' Jb+i , Rb+i)O~i<oo is 
an infinite semiresolver, which contradicts the assumption that R 
is strongly semiresolvable. Therefore R is strongly detachable. 

(2.20). Let R be a regular local domain, let J be a nonzero 
principal prime ideal in R, let S be a positive-dimensional element 
in m( R) such that S has a simple point at Rand S =1= R J, and let 
(R', ]') be a monoidal trans/orm 0/ (R, J, S). Then ]' =1= R' iJ and 
only iJ R' C RJ • Moreover, iJ ]' =1= R' then ]' is a prime ideal in 
R' andR~, = RJ • 

PROOF. Let d = ordsJ and Q = (R ~ M(S»R'. Then Q is a 
nonzero principal prime ideal in R', JR' = Qd]', and ]' cf. Q. Since 
S =1= RJ , we also have that (R ~ M(S»RJ = RJ • 

First suppose that R' C RJ • Since (R ~ M(S»RJ = RJ , we get 
that QRJ = RJ • Since JR' = Qd]', we now get that JRJ = ]'RJ • 

Clearly JRJ =1= RJ , and hence ]' RJ =1= RJ • Therefore ]' =1= R'. 
Converse1y suppose that ]' =1= R'. Then J' = Ql ... Qn where 

Ql, ... , Qn (n > 0) are nonzero principal prime ideals in R'. Let 
Ri = R~,. Since ]' cf. Q, we get that Q cf. Qi and hence 
(R ~ M(S» cf. Qi; consequently (R ~ M(S»Ri = R i and hence by 
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(1.9.5) we have that Ri E m(R); now I C Qi' and hence R i C RJ; 
since dirn Ri = 1 = dirn RJ , we must have Ri = RJ and hence 
QiRJ = M(RJ). This being so for 1 :::::;; i :::::;; n, we get that M(RJ) = 
lRJ = (Qagl ... Qn)RJ C M(RJ)n and hence n = 1. 

(2.21). Let R be a regular local domain such that R is semi­
resolvable. Let R' be an iterated monoidal trans form of R, let. j' be 
a nonzero principal prime ideal in R', and let V be a valuation ring 
of the quotient field of R' / j' such that V dominates R' / j'. Then there 
exists a regular spot R* over R'/j' such that V dominates R*. 

PROOF. Let h: R' ---+ R'/j' be the canonical epimorphism. Now 
R;, is a valuation ring of the quotient field L of Rand there exists 
a unique epimorphism g of R;, onto the quotient field K of R' / j' 
such that g-l(O) = M(R;,) and g(u) = h(u) for an u ER'. Let 
W = g-l(V). Then Wis a valuation ring ofL,g-l(M(V» = M(W), 
and W dominates R'. If (R', j') is resolved then R' / j' is regular 
and it suffices to take R* = R'IJ'. SO assurne that (R', j') is 
unresolved. Since R' is semiresolvable, there exists a finite 
semiresolver [(Ri , li , Si)o.;;i<m , (Rm ,1m)] such that (Ro , 10) = 
(R', j') and W dominates Rm . Now Rm ewe R;" and hence by 
(2.20) we get that 1m is a prime ideal in Rm and Rm n M(R;,) = 1m. 
Let R* = g(Rm). Now (Rm , 1m) is resolved, and hence R* is 
regular. Since Rtf/, is a spot over R', we get that R* is a spot over 
R' / j'. Since W dominates R lII , we also get that V dominates R *. 

§3. Dominant character of anormal sequence 

(3.1). Let Ro be a pseudogeometric one-dimensionallocal domain 
and let (Ri)o<i<CXl be an infinite sequence of local domains such that 
Ri is a quadratic transform of Ri- l for 0 < i < 00. Then there 
exists a nonnegative integer j such that R j is a one-dimensional 
regular local domain and R i = R j for all i ~ j. 

PROOF. We can take a valuation ring V of the quotient field 
K of Ro such that V dominates R i for 0 :::::;; i < 00. Let T be the 
integral closure of Ro in K. Then TC V. Let P = T n M(V). 
Since Ro is pseudogeometric, we have that T is a finite Ro-module 
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and hence T is noetherian. Therefore by [27: §2, §3, §6, and §7 of 
Chapter V] we get that T p is a one-dimensional regular 10cal 
domain. Since V dominates T p, we must have V = T p. Given 
any Z E V, for each i ~ 0 let u(,) be the smallest nonnegative 
integer such that yz E R" for some 0 =1= y E Ri with ordvy = u(t); 
note that then Z E Ri if and only if u(t) = 0; also note that 
u(t) ~ u(i + 1) for all i ~ O. Given i ~ 0 take 0 =1= y E Ri such 
that yz E Ri and ordvy = u(t); we claim that u(i + 1) ::::;; max(O, 
u(t) - l);thisisobviouswhenu(t) = Obecausethenu(i + 1) = 0; 
so assurne that u(t) =1= 0; then y E M(Ri ) and hence yz E M(Ri ); 

now M(Ri)RHl = XRHl for some 0 =1= XE M(Ri ); let y' = yjx; 
then 0 =1= y' E RHl ,y' Z = (yz)jx E Ri+1' and ordvY' ::::;; u(t) - 1; 
hence u(i + 1) ::::;; u(t) - 1. Thus u(i + 1) ::::;; max(O, u(t) - 1) for 
a11 i ~ O. Therefore u(u(O» = 0 and hence Z E Ru(u(o». Thus 

00 00 

U Ri = V. In particular T C U Ri . Since T is a finite Ro-module, 
i=O i=O 

there exists a nonnegative integer j such that TC R i for a11 i ~ j. 
For each i ~ j we then have that TC R i C V and T f"'I M(Ri ) = 
T f"'I M(V) = P; consequently T p C Ri C V = T p and hence 
R i = Tp • 

(3.2). Let Ro be a pseudogeometric local domain, let (Ri)o<i<aJ 
be an infinite sequence of local domains such that R i is a quadratic 

00 

transform of Ri- l for 0 < i < 00, and let SEn 5B(Ri ) such that 
i=O 

dirn S = (dirn Ro) - 1. Then there exists a nonnegative integer j 
such that S has a simple point at Ri JOT all i ~ j. 

PROOF. If Rj = RHl for some j ~ 0 then by (1.9.6) we get 
that M(R j ) is a principal ideal in R j and hence for each i ~ j we 
have that R i is a one-dimensional regular local domain and hence 
S has a simple point at R.,. So now assurne that Ri =1= RHl for 

00 

a11 i ~ O. Let R = U Ri . Then R is a quasilocal domain, 
00 i=O 

M(R) = U M(R i ), ReS, and R f"'I M(S) is a prime ideal in R. 
i=O 

Let h: R ---+ Rj(R f"'I M(S» be the canonical epimorphism. Then 
h(R) is a domain and for each i ~ 0 we have that h(Ri ) is a 
subring of h(R) and h(Ri ) is isomorphie to R.j(Ri f"'I M(S»; also 
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dirn h(Ro) = 1 and h(Ro) is pseudogeometric. Let any i ;;::;: 0 be 
given; since R i +1 is a quadratic transform of R i , there exists 
o i= XE M(Ri) such that Ri[M(Ri)x-l ] C R i+1 and R i+1 = A o 
where A = Ri[M(Ri)x-l ] and Q = A n M(Ri+I); since Ri i= 
RHI and S E ~(Ri) n ~(Ri+1)' we get that M(Ri) cf. M(S); 
since M(Ri)Ri+1 = XRHI and RHI C S, we must have x f/: M(S); 
therefore 0 i= h(x) E M(h(Ri)), h(A) = h(Ri)[M(h(Ri))h(x)-I], h(Q) 
is a prime ideal in h(A), M(h(Ri)) C h(Q), and h(Ri+1) = h(A)h(Q); 
consequently h(Ri+1) is a quadratic transform of h(Ri). Thus 
h(RHI) is a quadratic transform of h(Ri ) for an i ;;::;: 0 and hence by 
(3.1) there exists a nonnegative integer j such that for each i ;;::;: j we 
have that h(Ri) is regular and hence S has a simple point at Ri . 

(3.3). Let Ro be an n-dimensional regular local domain and let 
(Ri)o<i<oo be an infinite sequence of regular local domains such that 
Ri is a quadratic trans form of Ri- l for 0 < i < 00. Let E be a 
finite set of (n - 1 )-dimensional elements in ~(Ro) and let 

00 

E' = E n ( () ~(Ri)). Then we have the following. 
i~O 

(3.3.1). Assume that every element in E has a simple point at Ro . 
Then E' contains at most one element and there exists a nonnegative 
integer j such that for all i ;;::;: j we have that E' = E n ~(Ri) and 
E' has anormal crossing at R i . 

(3.3.2). Assume that R o is pseudogeometric. Then E' contains 
at most one element and there exists a nonnegative integer j such that 
for all i ;;::;: j we have that E' = E n ~(Ri) and E' has anormal 
crossing at Ri . 

PROOF OF (3.3.1). Clearly E n ~(Rb) C E n ~(Ra) whenever 
b ;;::;: a, and hence there exists a nonnegative integer c such that 
E' = E n ~(Ri) for an i ;;::;: c. Consequently if E' = 0 then we 
have nothing to show. So now assurne that E' i= 0 and take 
SE E'. Then there exists a basis (Xl' ... , xn ) of M(Ro) such that 
Ro n M(S) = (x2 , ... , xn)Ro . Repeatedly applying (1.10.10) we 
get that for an i;;::;: 0 we have that dirn Ri = n, M(Ri) = 
(Xl , X2/X~ , ... , xn/xDRi , and R i n M(S) = (x2/xl, ... , xn/xi}Ri . In 
particular S has a simple point at Ri for an i ;;::;: O. It now suffices 
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to show that E' = {S}. Suppose if possible that E' =1= {S} and take 
S' E E' with S' =1= S. For any i > 0 and any Z E R i - l f"'I M(S'), 
by (1.10.9) we have that z/xl E R i f"'I M(S'). Therefore for any 
zERo f"'I M(S') we get that z/x{ E Ri f"'I M(S') for all i ~ 0 and 
hence z/x1 E M(Ri ) for a11 i ~ O. Since S' =1= S, there exists 
zERo f"'I M(S') such that Z i (x2 , ••• , xn)Ro . Let h: Ro ---+ RO/(x2 , 

... , xn}Ro be the canonical epimorphism and let i = ord1tIRo )h(z). 
Then i is a nonnegative integer and Z = rlxi + r2x2 + ... + rnXn 
where r l , •.. , rn are elements in Ro such that r l i M(Ro}. Now 
z/xl = r l + r2(x2/x1) + ... + rn(xn/xD, rq E R.;, for I ~ q ~ n, 
xq/xl E M(R i ) for 2 ~ q ~ n, and r l i M(R i }. Therefore 
z/xl i M(Ri } which is a contradiction. 

PROOF OF (3.3.2). Clearly E f"'I ~(Rb) C E f"'I ~(Ra) whenever 
b ~ a, and hence there exists a nonnegative integer c such that 
E' = E f"'I ~(Ri) for a11 i ~ c. Consequently if E' = 0 then we 
have nothing to show. So now assurne that E' =1= 0 and take 
SEE'. If dirn Ra =1= n for some d then Ri is an (n - I }-dimensional 
regular local domain for a11 i ~ d, and hence E' = {S} and E' 
has anormal crossing at Ri for a11 i ~ d. So also assurne that 
dirn Ri = n for a11 i ~ O. By (3.2) there exists e ~ c such that 
every element in E' has a simple point at Re. Now by (3.3.1) 
we get that E' contains at most one element and there exists j ~ e 
such that E' has anormal crossing at R i for a11 i ~ j. 

(3.4). Let Ro be an n-dimensional regular local domain and let Jo 
and 10 be nonzero principal ideals in Ro such that 10 has a quasinormal 
crossing at Ro • Let (Ri , Ji , l i }o<i<C1J be an infinite sequence such that 
for 0 < i < 00: R i is a regular local domain, Ji and l i are nonzero 
principal ideals in R i , and (Ri , Ji ,li) is a monoidal transfarm of 
(R i - l , Ji-l , li-I' R i - l )· Let E be a finite set of (n - I )-dimensional 

co 

elements in ~(Ro), and let E' = E f"'I ( n ~(Ri». Then we have the 

following. 
i=O 

(3.4.1). Assume that every element in E has a simple point at Ro . 
Then E' contains at most one element and there exists a nonnegative 
integer j such that for all i ~ j we have that E' = E f"'I ~(R.t) and 
(E', I i ) has a pseudonormal crossing at R i • 
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(3.4.2). Assume that Ro is pseitdogeometric. Then E' contains at 
most one element and there exists a nonnegative integer j such that 
for all i ;? j we have that E' = E n m(Ri) and (E',1i) has a 
pseudonormal crossing at R i . 

PROOF OF (3.4.1). By (1.10.8) we know that 1i has a quasi normal 
crossing at Ri for a11 i ;? O. By (3.3.1) we know that E' contains at 
most one element and there exists a nonnegative integer j' such 
that E' = E n m(Ri ) for a11 i ;? j'. If E' = 0 then it suffices to 
take j = j'. So now assume that E' =1= 0 and take S E E'. Then 
E' = {S} and there exists a basis (Xl' ... , Xn) of M(Ro) such that 
Ro n M(S) = (x2 , ... , xn)Ro . Repeatedly applying (1.10.10) we 
get that for a11 i;? 0 we have that dim Ri = n, M(Ri) = 
(Xl' x2/xi , ... , xn/xi)Ri , and Ri n M(S) = (X2/X~ , ... , xn/xi)Ri . 
Now 10 = Zl ... ZaRo where Zl' ... , Za are elements in Ro with 
ordRozq = 1 for 1 ~ q ~ a (we take Zl'" zaRo = Ro in case 
a = 0). Upon relabeling Zl' ... , Za we may assume that 
Zq E (x2 , ... , xn)Ro for 1 ~ q ~ b, and Zq rj; (x2 , ... , xn)Ro for 
b < q ~ a where b is an integer with 0 ~ b ~ a. Let 1~ = 
Zl ... ZbRO and Z = Zb+1 ... Za (we take Zl'" ZbRO = Ro in case 
b = 0, and Zb+1 ... Za = 1 in case b = a). Then Z rj; (x2 , ... , xn)Ro . 
Let h: Ro -+ RO/(x2 , ... , xn)Ro be the canonical epimorphism and 
let e = ordh(Ro)h(z). Then e is a nonnegative integer and 
Z = rlx~ + r2x2 + .. , + rnXn where r l , ... , rn are elements in Ro 
with r l rj; M(Ro). It fo11ows that z/xl is a unit in Ri for a11 i ;? e. 
Let (I;)O<i<oo be the unique infinite sequence such that (Ri , Ji , 1~) 
is a monoidal transform of (Ri- l , Ji-l , 1~_1 , Ri- l) for 0 < i < 00. 

Let q be any integer with 1 ~ q ~ b; since Zq E (x2 , ... , xn)Ro and 
ordRozq = 1, we get that Zq = S2X2 + '" + SnXn where S2' ... , Sn 
are elements in Ro such that sp rj; M(Ro) for some p; now M(Ro} = 

(Xl' X2 , ... , Xp- l , Zq , Xp+I , ... , xn)Ro and Ro n M(S) = (x2 , ... , 
Xp- l , Zq' Xp+1 , ... , xn)Ro; consequently (S, zqRo) has a pseudo­
normal crossing at Ro . This being so for 1 ~ q ~ b, it fo11ows 
that (S, 1~) has a pseudonormal crossing at Ro . Therefore, upon 
applying (1.10.12) repeatedly, we get that (S,1D has a pseudo­
normal crossing at R i for a11 i ;? O. Clearly 1i = z1~ for a11 i ;? 0, 
and hence (S,1i ) has a pseudonormal crossing at R i for a11 i ;? e. 
It now suffices to take j = max(j', e). 
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PROOF OF (3.4.2). By (1.10.8) we know that l i has a quasinormal 
crossing at Ri for an i;?: O. Clearly E fl ID(Rb) C E fl ID(Ra) 

whenever b ;?: a, and hence there exists a nonnegative integer c 
such that E' = E fl ID(Ri) for an i ;?: c. Consequently if E' = 0 
then we have nothing to show. So now assurne that E' =1= 0 and 
take SEE'. If dirn Ra =1= n for some d then R i is an (n - 1)­
dimensional regular local domain for an i ;?: d, and hence E' = {S} 
and (E',li ) has a pseudonormal crossing at R i for all i ;?: d. So 
also assurne that dirn Ri = n for an i ;?: O. By (3.2) there exists 
e ;?: c such that every element in E' has a simple point at Re. 
Now by (3.4.1) we get that E' contains at most one element and 
there exists j ;?: e such that (E',li ) has a pseudonormal crossing 
at R i for all i ;?: j. 

(3.5). Let Ro be a pseudogeometric two-dimensional regular 
local domain and let 10 be a nonzero principal ideal in Ro • Let 
(Ri , 1i)0<i<a> be an infinite sequence such that for 0 < i < 00: 

Ri is a regular local domain, 1i is a nonzero principal ideal in Ri , 
and(Ri , 1i)isa monoidaltransform of(Ri- 1 , IH' Ri- 1). Then there 
exists a nonnegative integer j such that (Ri ,li) is resolved for all i ;?: j. 

PROOF. Take w E Ro such that 10 = wRo • Then for each 
i ;?: 0 there exist elements Wi and Zi in Ri such that w = WiZi 
and 1i = WiRi. If (Rj , 1j) is resolved for so me j then by (1.10.4) 
we have that (Ri ,li) is resolved for an i ;?: j. Hence it suffices to 
show that (Ri ,li) is resolved for some i ;?: O. Suppose if possible 
that (Ri , 1i) is unresolved for all i ;?: O. Then dirn Ri = 2 and 
ordR,Ji ;?: 2 for an i;?: O. Now ordRHJi+l ~ ordR,Ji for all 
i ;?: 0, and hence there exists a nonnegative integer j such that 
ordRJi = ordRJi for an i ;?: j. By (0.1) and (0.2) (alternatively . , 
see [8: Lemmas 3.7 and 3.14(4)]) there exists i ;?: j and a basis 
(x, y) of M(Ri) such that W = rxU'yt( where r is a unit in Ri and 
u' and v' are nonnegative integers. Since W = wizi and 1i = wiRi , 
it fonows that 1i = xUyV Ri where u and v are nonnegative integers. 
Upon relabeling x and y we may assurne that yJx E RH1 . Then 
1Hl = (yJx)VRi+l· Since (RH1 , 1i+l) is unresolved, we must have 
yJx E M(RH1) and hence M(Ri+l) = (x, yJX)RHl • Since (Ri ,li) is 
unresolved, we must have u > 0 and v > O. Now ordRi+Ji+l = 
v < u + v = ordR,Ji which is a contradiction. 
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(3.6). Let Ro be a pseudogeometric regular local domain, let 
Jo be a nonzero principal ideal in Ro , let To be an element in 
<f2(Ro , Jo) having a simple point at Ro , and let So be a positive­
dimensional element in <f(Ro , Jo) having a simple point at Ro such 
that So C To . Let (Ri , J", Ti' Si)O<i<C1J be an infinite sequence 
such that for 0 < i < 00: Ri is a regular local domain, Ii is a 
nonzero principal ideal in Ri , Ti is an element in <f(Ri , J,,) having a 
simple point at R" , Si is a positive-dimensional element in (f(Ri , J,,) 
having a simple point at Ri , Si C Ti' (Ri , Ji) is a monoidal trans­
form of (Ri- 1 , Ji-l , Si-I)' and Ti dominates Ti-I. Assume that 
Si = Ti for infinitely many distinct values of i. Then there exists a 
nonnegative integer j such that (Ri , Ji) is resolved for all i ;;::: j. 

PROOF. Let N be the set of all nonnegative integers i such 
that Si = Ti. By assumption N is an infinite set. We can 
arrange an the integers in N in the form of an infinite sequence 
a(O) < a(l) < a(2) < .... 

Let i be any given non negative integer. Let d = ordR)i, 
P = R i () M(Si)' and Q = PT" . Take w E Ri such that Ji = wRi . 
Then there exists 0 *" XE P such that Ri+1 E !B(Ri [PX-1]), 

PRi+1 = xRi+1' and Ji+1 = (wjxd)Ri+1. Now clearly JiT" = wT", 
o *" X EQ, Ti+1 E !B(Ti[Qx-1]), QTi+1 = xT"+1' and Ji+1Ti+l = 
(wjxd )Ti+l. First suppose that i 1: N; then Q = Ti and hence 
Ti+l = xTi+1; since Ti+1 dominates Ti' we get that x is a unit 
in Ti and hence Ti[Qx-1] = Ti; since Ti+l E !B(Ti[Qx-1]) and 
Ji+lTi+l = (wjxd)Ti+l' we conclude that (Ti +1' Ji+lTi+l) = 
(Ti' JiTi). Next suppose that i E N; then Q = M(Ti } and hence 
(Ti+1' Ji+lTi+l) is a monoidal transform of (Ti' JiT" Ti). 

It follows that (Ta(ih Ja(d Ta(d)o~i<C1J is an infinite sequence 
such that for 0 ~ i < 00: Ta<il is a regularlocal domain, Ja(d Ta(i) is 
a nonzero principal ideal in Ta(il, and (Ta(i+lh Ja(i+ll Ta(i+l» is 
a monoidal transform of (Ta(i), Ja(dTa(il, Ta(i». Also Ta(o) = To , 
and hence Ta<o> is pseudogeometric and dirn Ta(o) = 2. Therefore 
by (3.5) there exists a nonnegative integer j' such that (Ta(d, 
Ja(i)Ta(i» is resolved for an i ;;::: j'. Letj = a(j'). Then by (1.5.3) 
we get that (Ri , Ji) is resolved for an i ;;::: j. 

(3.7). Let R be a regular domain with dirn R ~ 3, let J be a 
nonzero nonunit principal ideal in R, let d = ordRJ, let (R', J') 
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be a monoidal transform of (R, ], R) such that ordR,], = d, and let 
E' = {S' E (f2(R', ]'): M(R) C M(S')}. Then we have the following. 

(3.7.1). Assume that dirn R = dirn R' = 3 and E' =1= 0. Let 
S' E E', let f be a coefficient set for R, and let (Xl' X2 , Xa) be a basis 
of M(R) such that X2/Xl E R' and Xa/Xl ER'. Then there exist elements 
rl , r2 , ra in f such that R' n M(S') = (Xl' rl + r2(x2/xl ) + 
ra(xa/xl»R' and M(R') = (Xl' rl + r2(x2/xl ) + ra(xa/xl), t)R' for 
some t e R' (whence in particular S' has a simple point at R'). 
Moreover, if S" is any two-dimensional element in m(R') such that 
M(R) C M(S") and]' C M(S") then S" = S' (whence in particular 
E' = {S'}). 

(3.7.2). Let E be a set of two-dimensional elements in m(R) 
such that every subset of E containing at most two elements has a 
normal crossing at R. Then (E n m(R'» u E' has astriet normal 
crossing at R', and E n m(R') contains at most one element. 

(3.7.3). 1f (f2(R, J) has astriet normal crossing at R then 
(f2( R', ]') has astriet normal crossing at R', and at most one element 
in (f2(R', ]') dominates (f2(R, J). 

(3.7.4). Let I be a nonzero principal ideal in R such that I has 
a quasinormal crossing at R, and let l' be the unique nonzero principal 
ideal in R' such that (R', ],,1') is a monoidal transform of (R, ], I, R). 
Then (E', 1') has a pseudonormal crossing at R'. Moreover, if(f2(R, J) 
has astriet normal crossing at Rand «f2(R, ]),1) has a pseudonormal 
crossing at R, then (f2(R', ]') has astriet normal crossing at R' and 
«f2(R', ],),1') has a pseudonormal crossing at R'. 

PROOF OF (3.7.1). Let h: R - R/M(R) be the canonical epimor­
phism, let A = R[X2/Xl , Xa/Xl]' let X 2 , Xa be indeterminates, let 
A* = h(R)[X2 , Xa], and let H: A - A* be the unique epimor­
phism such that H(X2/Xl ) = X 2 , H(xa/xl) = X a , and H(u) = h(u) 
for all u E R. Now Ker H = xlA, xlA C (A n M(S'» C (A n M(R'» 
are distinct prime ideals in A, and S' is the quotient ring of A 
with respect to (A n M(S'». Therefore H(A n M(S'» is a nonzero 
principal prime ideal in A * and, upon letting S* be the quotient 
ring of A* with respect to H(A n M(S'», there exists a unique 
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epimorphism H*: S' -- S* such that H*(u) = H(u) for all u E A. 
Take WER such that wR = J. Then 

w = L T abc~X:x: 
a+b+c=tJ 

where T Me are elements in R at least one of which is not in M(R). 
Let w' = w/x~. Then w' E A and 

H(w') = L h(Tabc)X:X~ E A*. 
a+b+c=tJ 

Therefore H(w') is a nonzero polynomial of degree ~d in X 2 , X a 
with coefficients in heR). Let d* = ords*H(w'). Since H(A f"I M(S'» 
is a nonzero principal prime ideal in A *, we get that 
H(w') E H(A f"I M(S'»d*. Now ]' = w' R' and hence ords'w' = d; 
also ords.H( w') = ords.H*( w') ~ ords'w' and hence d* ~ d. 
Thus H(A f"I M(S'» is a nonzero principal prime ideal in A*, 
H( w') is a nonzero polynomial of degree ~d in X 2 , X a with 
coefficients in heR), H(w') E H(A f"I M(S'»d', and d* ~ d; con­
sequently we must have: d* = d, H(w')A* = H(A f"I M(S'»d, 
H(A f"I M(S'» is the only principal prime ideal in A* which 
contains H(w'), and there exist elements Tl' T2 , rs in f such 
that H(A f"I M(S'» = (h(rl) + h(r2)X2 + h(ra)Xa)A*, and 
hence R' f"I M(S') = (Xl' r l + r2(x2/xl) + r3(Xs/xl »R'. Now 
H(A f"I M(R'» is a maximal ideal in A*, h(rl ) + h(r2)X2 + 
h(rs)Xs E H(A f"I M(R'», and at least one of the two elements 
h(r2} and h(rs) is not zero; consequently H(A f"I M(R'» = 
(h(rl ) + h(r2)X2 + h(Ts)Xs , H(t»A* for some tE Aj now 
M(R') = (Xl' r l + r2(x2/xl ) + rS(xS/xl), t)R' and hence S' has 
a simple point at R'. Given any two-dimensional element 
S" in 5B(R') such that M(R) C M(S") and ]' C M(S") we 
have that w' E (A f"I M(S"» and hence H(w') E H(A f"I M(S"»; 
also xlA C (A f"I M(S"» C (A f"I M(R'» are distinct prime ideals 
in A and hence H(A f"I M(S")} is a nonzero principal ideal in A*; 
consequently H(A f"I M(S"» = H(A f"I M(S'» and hence 
(A f"I M(S"}) = (A f"I M(S'»; therefore S" = 8'. 

PROOF OF (3.7.2). If dim R' -=1= 3 .. llen our assertion is trivial. 
So now assume that dirn R' = 3. Then dirn R = 3. If E' = 0 

then our assertion follows from (1.10.11); and if E f"I 5B(R') = 0 
then our assertion follows from (3.7.1). So now assume that 
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E' =1= 0 =1= E ('\ m(R') and take S' E E' and SEE ('\ m(R'). Then 
E' = {S'} by (3.7.1) and E ('\ m(R') = {S} by (1.10.11), and hence 
it suffices to show that {S, S'} has anormal crossing at R'. Now 
S has a simple point at Rand hence there exists a basis (Xl' X 2 , X 3) 

of M(R) such that R ('\ M(S) = (x2 ,x3)R. Since SE m(R'), by 
(1.10.10) we get that M(R') = (Xl' X2/XI , X3/x l )R' and 
R' ('\ M(S) = (X2/XI , X3/x l )R'. By (3.7.1) there exist elements rand 
s in Rat least one of which is not in M(R) such that R' ('\ M(S') = 

(Xl' r(x2/xl ) + S(X3/xl ))R'. LetYI = Xl andY2 = r(x2/xl ) + S(X3/XI )· 
Let Y3 = X3/XI if r rt M(R), and Y3 = X2/XI if rE M(R). Then 
M(R') = (YI' Y2 ,Y3)R', R' ('\ M(S) = (Y2' Ya), and R' ('\ M(S') = 
(YI , Y2)R'. Therefore {S, S'} has anormal crossing at R'. 

PROOF OF (3.7.3). By (1.9.5) we know that if S' is any element 
in m(R') such that S' rt m(R) then M(R) C M(S'); since ordR'], = 
ordRJ, we also get that (f2(R', ]') ('\ m(R) C (f2(R, j); consequently 
(f2(R', ]') C «f2(R, J) ('\ m(R')) u E'. Therefore upon taking 
E = (f2(R, j) our assertion follows from (3.7.2). 

PROOF OF (3.7.4). By (1.9.5) we know that if S' is any element 
in m(R') such that S' rt m(R) then M(R) C M(S'); since ordR1 = 

ordRJ, we also get that (f2(R', ]') ('\ m(R) C (f2(R, J); consequently 
(f2(R', ]') C «f2(R, J) ('\ !D(R'» u E'. By (3.7.3) we know that if 
(f2(R, J) has a strict normal crossing at R then (f2(R',]') has a 
strict normal crossing at R'. By (1.10.8) we know that l' has a 
quasi normal crossing at R'. Finally by (1.10.12) we get that if S' 
is any element in (f2(R, j) ('\ m(R') such that (S', I) has a pseudo­
normal crossing at R then (S', 1') has a pseudonormal crossing 
at R'. Therefore our assertions would follow by showing that if 
dirn R' = 3 and E' =1= 0 then (E', 1') has a pseudonormal crossing 
at R'. So assurne that dirn R' = 3 and E' =1= 0. Then dirn R = 3. 
Take SEE'. Then by (3.7.1) we get that E' = {S} and S has a 
simple point at R'. Now 1= Zl ... zeR where Zl , ... , ze are elements 
in R with ordRzi = 1 for 1 ~ i ~ e (we take Zl •.• zeR = R in 
case e = 1). Let P = M(R)R'. Then P is a nonzero principal 
ideal in R' and l' = (zIR') ... (zeR')Pd. We can take a basis 
(Xl' X2, X3) of M(R) such that X2/XI E R' and X3/XI ER'. Then 
P = xIR', and by (3.7.1) there exist elements s' and t' in R' 
such that M(R') = (Xl' s', t')R' and R' ('\ M(S) = (xl' s')R'. 
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Therefore (S, P) has a pseudonormal crossing at R'. Hence 
it suffices to show that (S, ZiR') has a pseudonormal crossing 
at R' for I ,,:;; i ,,:;; e. So let any i with I ,,:;; i ,,:;; e be given. 
Since ordRzi = 1, there exist elements W1 and w2 in R such 
that M(R) = (Zi , W1 ,w2)R. If W1!Zi E R' and W2!Zi ER' then 
ZiR' = P and we have nothing more to show. So assume 
that either wI ! Zi f/= R' or w2! Zi f/= R'. Let (YI' Ya) = (wl , w2) 
in case W2!WI ER', and (YI' Ya) = (w2 , wI ) in case W2!WI f/= R'. 
Then M(R) = (YI' Zi' Ys)R, Zi!YI E M(R'),. and YS!YI ER'. Let 
f be a coefficient set for R. Then by (3.7.1) there exist elements 
r l , r2 , ra in f such that R' n M(S) = (YI , r l + r2(zi!YI) + 
r3(Ya!YI))R' and M(R') = (YI' r l + r2(zi!YI) + r3(Y3!YI)' t)R' for 
so me tE R'. First suppose that r3 = 0; then r l = 0 *- r2 , and 
hence R' n M(S) = (YI ,Zi!Yl)R' and M(R') = (YI , zi!YI , t)R'; 
since ZiR' = (yIR')«Zi!YI)R'), we see that (S, ZiR') has a pseu­
donormal crossing at R'. Next suppose that r a *- 0; then we 
have that M(R') = (YI , r l + r2(zi!YI) + ra(Ya!YI), Zi!YI)R'; since 
ZiR' = (yIR')«zi!YI)R'), we see that (S, zß') has a pseudonormal 
crossing at R'. 

(3.8). Let Ro be a regular local domain with dirn Ro ,,:;; 3, and 
let Jo be a nonzero nonunit principal ideal in Ro · Let (Ri , Ji)O<i<CXJ 
be an infinite sequence such that for 0 < i < 00: Ri is a regular 
local domain, Ji is a nonzero principal ideal in Ri , (Ri , Ji) is a 
monoidal trans form of (Ri- l , Ji-l , Ri- l ), and ordR,ll = ordRJo. 
Then we have the jollowing. 

(3.8.1). Let E be any set of two-dimensional elements in 
m(Ro) such that E has astriet normal crossing at Ro . Then 
(f2(Ri , Ji) - (m(Ro) - E) has a strict normal crossing at Ri for 
all i ? O. 

(3.8.2). Assume that (f2(Ro , Jo) is a finite set and every element 
in (f2(Ro , Jo) has a simple point at Ro . Then there exists a nonnegative 
integer j such that (f2(Ri , Ji) has astriet normal crossing at Ri for 
all i ? j. 

(3.8.3). Assume that Ro is pseudogeometric and (f2(Ro , Jo) ts 
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a finite set. Then there exists a nonnegative integer j sueh that 
(f2(Ri , Ji) has astriet normal crossing at Ri for alt i ~ o. 

(3.8.4). Assume that (Ro , Jo) is unresolved, Ro is pseudogeometric, 
and es( Ro , P) is closed in 5D( Ro) for every nonzero prineipal prime 
ideal P in Ro (see (1.2.6». Then there exists a nonnegative integer j 
such that (f2(Ri , Ji) has astriet normal erossing at Ri for alt i ~ j. 

PROOF OF (3.8.1). We shall make induetion on i. The assertion 
is trivial for i = O. So let i > 0 and assurne that E* has astriet 
normal erossing at Ri - l where E* = (f2(Ri _ 1 , Ji-l) - (5D(Ro) - E). 
Let E' = {S' E (f2(R., , Ji): M(Ri_l ) C M(S')}. Upon taking (Ri - l , 
J'H' E*) for (R, J, E) in (3.7.2) we get that (E* f"'I 5D(Ri» u E' 
has astriet normal erossing at R i . By (1.9.5) we know that if S' is 
any element in 5D(Ri ) such that S' rt 5D(Ri _ 1) then M(Ri _ 1) C M(S'); 
sinee ordR Ji = ordR Ji-l' we also get that (f2(Ri , 

t i-I 

Ji) f"'I 5D(Ri_ 1) C (f2(R.g_I , Ji-l); eonsequently (f2(Ri , ].iJ C (f2(Ri _ 1 , 

Ji-l) u E'. Therefore (f2(Ri , Ji) - (5D(Ro) - E) C (E* f"'I 5D(Ri» u E', 
and henee (f2(Ri , Ji) - (5D(Ro) - E) has a strict normal erossing 
atRi • 

PROOF OF (3.8.2). Sinee ordR)i = ordRJo, we get that 
(f2(Ri , Ji) f"'I 5D(Ro) C (f2(Ro , Jo) f"'I 5D(Ri ) for all i ~ O. Let E = 

co 

(f2(Ro , Jo) f"'I ( n 5D(Ri». If dirn Ro = 3 then by (3.3.1) and if 
i=O 

dirn Ro =1= 3 then obviously E eontains at most one element 
and there exists a nonnegative integer j such that for eaeh i ~ j we 
have that E = (f2(Ro, Jo) f"'I 5D(R.g). Sinee (f2(Ri ,Ji) f"'I 5D(Ro) C (f2(Ro , 
Jo) f"'I 5D(R.g) for all i ~ 0, and E = (f2(Ro , Jo) n 5D(Ri ) for all i ~ j, 
we get that (f2(Ri , Ji) C (f2(Ri , Ji) - (5D(Ro) - E) for all i ~ j. 
Now E has astriet normal erossing at Ro , and henee by (3.8.1) 
we get that (f2(Ri , Ji) - (5D(Ro) - E) has astriet normal erossing 
at Ri for all i ~ O. Therefore (f2(Ri , Ji) has astriet normal erossing 
at Ri for all i ~ j. 

PROOF OF (3.8.3). Sinee ordR)i = ordRJo, we get that 
(f2(Ri , Ji) f"'I 5D(Ro) C (f2(Ro, Jo) f"'I 5D(Ri ) for all i ~ O. Upon taking 
E = 0, by (3.8.1) we get that (f2(Ri , Ji) - 5D(Ro) has astriet 
normal erossing at R., for all i ~ o. If dirn Ro = 3 then by (3.3.2) 
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and if dirn Ro cF 3 then obviously there exists a nonnegative integer 
b such that every element in (f2(Ro , Jo) n m(Rb) has a simple 
point at Rb' It follows that (f2(Rb , Jb) is a finite set and every 
element in (f2(Rb , Jb) has a simple point at Rb' Therefore by 
(3.8.2) there exists an integer j ? b such that (f2(Ri , Ji) has a 
strict normal crossing at R i for all i ? j. 

PROOF OF (3.8.4). Follows from (1.5.4) and (3.8.3). 

(3.9). Let Ro be a regular local domain with dirn Ro ~ 3, let 
Jo be a nonzero nonunit principal ideal in Ro , and let 10 be a nonzero 
principal ideal in R o such that 10 has a quasinormal crossing at Ro • 
Let (Ri , Ji , li)o<i< OC! be an infinite sequence such that for 0 < i < 00: 

Ri is a regular local doma~n, Ji and li are nonzero principal ideals in 
Ri , (Ri , Ji ,li) is a monoidal transform of (Ri- 1 , Ji-l , li-I' Ri- 1), 

and ordR}i = ordRJo. Then we have the following. 

(3.9.1). Let E be any set of two-dimensional elements in m(Ro) 
such that (E,lo) has a pseudonormal crossing at Ro . Then 
«f2(Ri , Ji) - (m(Ro) - E),li) has a pseudonormal crossing at Rdor 
all i ? O. 

(3.9.2). Assume that (f2(Ro , Jo) is a finite set and every element 
in (f2(Ro , Jo) has a simple point at Ro . Then there exists a nonnegative 
integer j such that (f2(Ri , Ji) has a strict normal crossing at Ri and 
«f2(Ri , Ji),li) has a pseudonormal crossing at Ri for all i ? j. 

(3.9.3). Assume that Ro is pseudogeometric and (f2(Ro , Jo) is 
a finite set. Then there exists a nonnegative integer j such that 
(f2(Ri , Ji) has astriet normal crossing at Ri and «f2(Ri , Ji)' li) 
has a pseudonormal crossing at Ri for all i ? j. 

(3.9.4). Assume that (Ro , Jo) is unresolved, Ro is pseudo­
geometrie, and 6(Ro , P) is closed in m(Ro) for every nonzero principal 
prime ideal P in Ro (see (1.2.6». Then there exists a nonnegative 
integer j such that (f2(Ri , Ji) has astriet normal crossing at Ri and 
«f2(Ri , Ji)' li) has a pseudonormal crossing at R i for all i ? j. 

PROOF OF (3.9.1). We shall make induction on i. The asser­
tion is trivial for i = O. So let i > 0 and assurne that (E*, li-I) 
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has a pseudonormal crossing at R i - 1 where E* = (f2(Ri _ 1 , 

IH) - (ID(Ro) - E}. By (1.1O.8) and (1.1O.12) we get that 
(E* n ID(Ri), Ii } has a pseudonorinal crossing at Ri . Let E' = 
{S' E (f2(Ri ,Ji): M(Ri- 1) C M(S/)}.Then by (3.7.4) we get that 
(E',Ii ) has a pseudonormal crossing at Ri . By (1.9.5) we know 
that if S' is any element in ID(Ri } such that S' rt ID(Ri_1) then 
M(Ri _ 1} C M(S/}; sinc~ ordRJi = ordR._)i_l, 'we also get 
that (f2(R i , Ji) n ID(Ri- 1} C (f2(Ri_1 ,Ji-l); consequently (f2(Ri , 
Ji) C (f2(Ri_1 , Ji-l) u E'. Therefore (f2(Ri , Ji) - (ID(Ro) - E) C 
(E* n ID(Ri» u E', and hence «f2(Ri ·, Ji) - (ID(Ro) - E),Ii) has 
a pseudonormal crossing at R i . 

PROOF OF (3.9.2). In view of (3.8.2) it suffices to show that 
there exists a nonnegative integer j such that «f2(Ri , Ji),Ii) has a 
pseudonormal crossing at Ri for an i ~ j. Since ordRJi = ordRJo, 
we get that (f2(Ri , Ji) n ID(Ro} C (f2(Ro , Jo) n ID(Ri} for an i ~ O. 
Upon taking E = 0, by (3.9.1) we get that «f2(Ri , Ji) - ID(Ro},Ii ) 

has a pseudonormal crossing at Ri for an i ~ O. If dirn Ro = 3 
then by (3.4.1) and if dirn R i= 3 then obviously there exists a 
nonnegative integer j such that «f2(Ro , Jo) n ID(Ri},Ii} has a 
pseudonormal crossing at Ri for an i ~ j. It follows that 
«f2(Ri , Ji),Ii) has a pseudonormal crossing at R i for an i ~ j. 

PROOF OF (3.9.3). In view of (3.8.3) it suffices to show that 
there exists a nonnegative integer j such that «f2(Ri , Ji)' I i } has a 
pseudonormaI crossing at Ri for an i ~ j. Since ordRJi = ordRJo, 
we get that (f2(R.t , Ji) n ID(Ro} C (f2(Ro , Jo) n ID(Ri } for all i ~ O. 
Upon taking E = 0, by (3.9.1) we get that «f2(Ri , Ji) - ID(Ro},Ii) 
has a pseudonormaI crossing at R i for aII i ~ O. If dirn Ro = 3 
then by (3.4.2) and if dirn Ro i= 3 then obviously there exists a 
nonnegative integer j sucl~ that «f2(Ro, Jo) n ID(Ri), Ii) has a 
pseudonormal crossing at Ri for an i ~ j. It fonows that 
«f2(Ri , Ji)' Ii) has a pseudonormal crossing at Ri for an i ~ j. 

PROOF OF (3.9.4). Fonows from (1.5.4) and (3.9.3). 

(3.10). Let R be a three-dimensional regular loeal domain, 
let J be -a nonzero nonunit principal ideal in R, let d = ordRJ, 
let S be an element in (f2(R,]) having a simple point at R, let 
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(R',],) be a monoidal transform of (R,], S), and let E' = 
{S' E (t2(R', ]'): Rn M(S) C M(S')}. Then we have the following. 

(3.10.1). Let (XI' x2 ,xa) be a basis of M(R) such that 
Rn M(S) = (XI' x2)R and X2/XI ER', let h: R -- R/M(R) be the 
canonical epimorphism, let f be a coefficient set for R, let XI , X 2 , X a 
be indeterminates, let wER such that wR = ], and let r f1hr. be the 
unique elements in f such that 

Assume that ordR']' = d. Then there exist unique elements rand s 
in f with s =1= 0 such that 

L h(rabc)X~X:X: = h(s)(X2 + h(r)X1)d. 
a+b+c=d 

Moreover, r is the unique element in f such that (X2/XI) + rE M(R/). 
Also M(R') = (XI' (X2/XI) + r, xa)R', dirn R' = 3, and R' is 
residually rationalover R. 

(3.10.2). If]' C M(R') then dirn R' = 3. If ordR,]' = d then 
R' is residually rational over R. If ordR,]' = d and (R*, ]*) is any 
monoidal transform of(R, ], S) such that J* C M(R*) then R* = R'. 

(3.10.3). Assume that ordR,]' = d and E' =1= 0, and take 
S' E E'. Then S' dominates S, and S' has a simple point at R'. 
Moreover, if(xl , X 2 , xa) is any basis of M(R) such that Rn M(S) = 
(XI' x2)R and X 2/XI E M(R') then R' n M(S') = (XI' (X2/XI ) + r)R' 
for some rExaR'. Finally, if S" is any two-dimensional element in 
~(R') such that Rn M(S) C M(S") and ]' C M(S") then S" = S' 
(whence in particular E' = {S'}). 

(3.10.4). Assume that ]' C M(R') and there exists SI E (t2(R, ]) 
with SI =1= S such that {S, SI} has anormal crossing at R. Then 
dirn R' = 3, ordRI = d, SI E (t(R' , ]'), and E' U {SI} has a strict 
normal crossing at R'. Let (R", ]") be a monoidal transform of (R', ]" SI) 
such that ]" C M(R"), let V be a valuation ring of the quotient field 
of R such that V dominates R", and let (R *, ]*) be the monoidal 
transform of (R,], SI) along V. Then dirn R" = 3 = dirn R*, 
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ordR.]* = d, SE (f(R*, ]*), S has a simple point at R*, and 
(R", ]") is the monoidal transform of (R*, ]*, S) along v. 

(3.10.5). Assume that (f2(R, ]) has a strict normal crossing at R 
and ordR-J' = d. Then (f2(R', j') has a strict normal crossing at R', 
(f2(R', j') = «f2(R, ]) u E') - {S}, S f/: m(R'), E' contains at most 
one element, every element in E' dominates S, and every element in 
(f2(R', j') dominates exactly one element in (f2(R, ]). 

(3.10.6). Assume that ordR, j' = d, let (R", ]") be a monoidal 
trans form of (R', j', R') such that ]" C M(R"), let V be a valuation 
ring of the quotient field of R such that V dominates R", and let 
(R*,]*) be the monoidal trans form of (R, ], R) along v. Then 
ordR.]* = d, and m(R*) contains exactly one two-dimensional 
element S* such that M(R) C M(S*) and ]* C M(S*). Moreover, 
S* has a simple point at R*, S* E (f(R*, ]*), and upon letting 
(R**, ]**) be the monoidal trans form of (R*, ]*, S*) along V 
we have that: (1) iJ S f/: m(R*) then 2 :::;; dim R* = dim R** :::;; 3 
and (R", ]") = (R**, ]**); and (2) iJ SE m(R*) then dim R* = 
dim R** = dim R" = 3, SE (f(R*, ]*), S has a simple point at R*, 
ordR •• ]** = d, SE (f(R**, ]**), S has a simple point at R**, and 
(R", ]") is the monoidal transform of (R**, ]**, S) along v. 

PROOF OF (3.10.1) AND (3.10.2). Since S has a simple point at R, 
there exists a basis (Xl' X 2 , Xa) of M(R) such that R (l M(S) = 
(Xl' x 2)R and X2/XI ER'. Now let (Xl' X2 , Xa) be any such basis of 
M(R). Let h, f, Xl , X 2 , Xa , w, and rabe be as in the statement of 
(3.10.1). 

Since S E (f( R, ]), there exist elements r~b in R such that 

(1 ) 

Let r~b be the unique element in f such that 

(2) 

Then 
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and hence for all nonnegative integer a, b, c with a + b + c = d 
we have that 

(3) if c = 0, and if c =1= o. 

Since ordRw = d, we also get that 

(4) h(r~) =1= 0 for sorne nonnegative integers a, b with a + b = d. 

Let A = R[x2/xJ, let H: A -- h(R)[X21 be the unique epimor­
phism such that H(X2/Xl) = X 2 and H(u) = heu) for all u E R. Let 
w' = w/x~ . Then w' E A and w'R' = ]'. By (1) and (2) we get that 

(5) H(w') = L h(r:b)X:· 
a+b=d 

By (4) and (5) we get that H(w') =1= 0; now H(A 11 M(R'» is a 
prime ideal in h(R)[X21; if ]' C M(R') then w' E All M(R') and 
hence H(w') E H(A 11 M(R'». Therefore if ]' C M(R') then 
H(A 11 M(R') is a maximal ideal in h(R)[XJ and hence dirn R' = 3 
and A 11 M(R') is a maximal ideal in A. 

Henceforth assurne that ordR,]' = d. Then in particular 
J' C M(R') and hence dirn R' = 3, H(A 11 M(R'» is a maximal 
ideal in h(R)[X21, and A 11 M(R') is a maximal ideal in A. Since 
ordR,w' = ordR,]' = d and A 11 M(R') is a maximal ideal in A, we 
get that w' E (A 11 M(R'»d and hence H(w') E (H(A 11 M(R')))tl. 
By (4) and (5) we know that H(w') is a nonzero polynomial of degree 
~d in X 2 with coefficients in heR); since H(w') E (H(A 11 M(R'»)tl 
and H(A 11 M(R'» is a maximal ideal in h(R)[X21, we deduce that 
there exist elements T and s in f with s =1= 0 such that 

(6) H(A () M(R'» = (X2 + h(r»h(R)[X21 

and 

(7) H(w') = h(s)(X2 + h(r»d. 
By (3), (5), and (7) we get that T and s are the unique elements 
in f with s =1= 0 such that 

L h(rabc)XfX:X~ = h(s)(X2 + h(r)X)d. 
a+b+c=d 
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Now Ker H = (Xl' xa)A and hence by (6) we get that 

(8) 

and hence M(R') = (Xl' (X2/XI) + r, xa)R'. In particular 
(X2/XI) + rE M(R') and hence r is the only such element in f. 
By (6) we also get that the quotient ring of h(R)[XJ with respect 
to H(A () M(R'» is residually rational over h(R),and hence R' is 
residually rational over R. 

By (6) and (7) we get that H(A () M(R'» is the only prime ideal 
in h(R)[XJ which contains H(w'). Now Ker H = M(R)A, and 
hence we get that A () M(R') is the only prime ideal in A which 
contains M(R) and w'. It follows that: if (R*, ]*) is any monoidal 
transform of (R, ], S) such that ]* C M(R*) and X2/XI E R* then 
R* = R' (note that the only assumptions used in proving this are 
that (R',],) is a monoidal transform of (R,], S) such that 
ordR']' = d, and (Xl' X2 , Xa) is a basis of M(R) such that 
R () M(S) = (Xl' x2)R and X2/XI ER'). 

Finally let (R*, ]*) be any monoidal transform of (R, ], S) such 
that ]* C M(R*). We shall show that then R* = R' and this will 
complete the proof. In view of what we have said in the above 
paragraph, it suffices to show that X2/XI E R*. Suppose if possible 
that X2/XI i R*. Then XI/X2 E M(R*). Let YI = X2 + rXI + Xl and 
Y2 = X2 + rXI· Then M(R) = (YI 'Y2 ,xa)R, R () M(S) = (YI' 
Y2)R, Y2/YI E R', and Y2/YI E R*. Therefore by what we have said in 
the above paragraph we get that R* = R', and hence X2/XI i R' 
which is a contradiction. 

PROOF OF (3.10.3). Since S has a simple point at R, there exists a 
basis (Xl' X~ ,Xa) of M(R) such that R () M(S) = (Xl , x~)R 
and X~/XI ER'; by (3.10.1) there exists r' ERsuch that 
(X~/XI) + r' E M(R') and then upon letting x2 = x~ + r'xI we 
have that M(R) = (Xl' X2 ,xa)R, R () M(S) = (Xl' x2)R, and 
Xa/XI E M(R'). Now let (Xl' X2 ,Xa) be any basis of M(R) such 
that R () M(S) = (Xl' xa)R and X2/XI E M(R'). Then by (3.10.1) 
we know that dim R' = 3 and M(R') = (Xl' X2/XI , xa)R'. Let f be 
a coefficient set for Rand tet h: R -+ R/M(R) be the canonical 
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epimorphism. Take w* ERsuch that w*R = j. Since SE Cf(R, J), 
there exist elements T:, ... , Td in R such that 

d 

w* = " r*xaxd- a 
L..a12 • 
a~O 

Let Tt* be the unique element in f such that Tt - Tt* E M(R). 
Then 

d 

w* - " r**xaxd- a E M(R)d+l L..a 12 . 
a~O 

Since X 2/XI E M(R'), by (3.10.1) we therefore get that 

d 

L h(r:*)X~xg-a = h(s)X: with 0"# SE f 
a~O 

where Xl' X 2 are indeterminates. Upon letting Ta = Tt/S and 
w = w*/s we then get that WER, wR = J, Ta E M(R) for 
1 ~ a ~ d, and 

d 

W = xd + " r XaXd- a 
2 L..a12· 

a~l 

Since Ta E M(R), we get that 

with Sa , s~ , s~ in R. Hence upon letting w' = w/x~ we get that 
w' ER', w'R' = j', and w' - (X2/X I )d E (Xl' xa)R'. Since S' E Cf(R', 
j'), we get that ords'w' = d. Let h': R' ----+ R'/xlR' be the canonical 
epimorphism. Then h'(R') IS a two-dimensional regular 
local domain and M(h'(R'» = (h'(X2/X I ), h'(xa»h'(R'). Now 
R n M(S) C M(S') and (R n M(S»R' = xlR', and hence 
xlR' eR' n M(S'); since dirn S' = 2, we get that h'(R' n M(S'» 
is a nonzero nonmaximal ideal in h'(R'); therefore h'(R' n M(S'» 
is a nonzero principal prime ideal in h'(R') and hence there exists 
tE R' n M(S') such that h'(R' n M(S'» = h'(t)h'(R'); it follows 
that R' n M(S') = (Xl' t)R'. Let S* be the quotient ring of h'(R') 
with respect h'(R' n M(S'». Then there exists a unique epimor-
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phism h*: S' -- S* such that h*(u) = h'(u) for all u ER'. Now 
ords.h'(w') = ords.h*(w') ~ ords'w' = d; since h'(R' () M(S'» is 
the nonzero principal prime ideal h'(t)h'(R') in h'(R'), we get that 
h'(w') E (h'(t)h'(R'»d; consequently there exists t* E R' such that 
h'(w') = h'(t*)h'(t)d, i.e., w' - t*td E xlR'. Let h": R' -- R'/(xi , 

xa)R' be the canonical epimorphism. Then h"(R') is a one­
dimensional regular local domain and M(h"(R'» = h"(X2/xl )h"(R'); 
since w' - t*td E xlR' and w' - (X2/XI)d E (Xl' xa)R', we get that 
h"(t*)h"(t)d = h"(X2/XI)d; since tE R' () M(S'), we get that 
h"(t) E M(h"(R'»; therefore h"(t*) f/:. M(h"(R'» and there exists 
t' ER' such that h"(t') f/:. M(h"(R'» and h"(t)/h"(t') = h"(X2/XI); 
it follows that t' f/:. M(R') and upon letting s' = t/t' we get that 
s' ER', R' () M(S') = (Xl' s')R', and s' - (X2/XI) E (Xl' xa)R'; 
consequently there exists TEXaR' such that upon letting 
s = (X2/XI) + T we have that R' () M(S') = (Xl' s)R' and 
s - s' E xlR'; finally, upon letting s* = t*t'd we get that s* ER', 
s* f/:. M(R'), and w' - s*sd E xlR'. Thus we have found s* E R' 
with s* f/:. M(R') and TEXaR' such that upon letting s = (X2/XI) + T 
we have that R' () M(S') = (Xl' s)R' and w' - s*sd E xlR'; in 
particular, h'(R' () M(S'» is a nonzero principal prime ideal in 
h'(R') and h'(w')h'(R') = (h'(R' () M(S'»Jd. Now (Xl' s, xa)R' = 
M(R') and hence S' has a simple point at R'; since S' =1= R', we 
also get that xa f/:. M(S') and hence M(R) cf. R () M(S'); since 
R () M(S) eR () M(S'), dirn S = 2, and R () M(S') is a prime 
ideal in R, we conclude that R () M(S) = R () M(S') and hence 
S' dominates S. Finally, let S" be any two-dimensional element 
in m(R') such that R () M(S) C M(S") and ]' C M(S"); since 
]' C M(S'), we get that w' ER' () M(S") and hence 
h'(w') E h'(R' () M(S"»; since dirn S" = 2, R () M(S) C M(S"), 
and (R () M(S»R' = xlR', we get that h'(R' () M(S"» is a 
nonzero principal prime ideal in h'(R'); since h'(w')h'(R') = 
(h'(R' () M(S')))d, h'(w') E h'(R' () M(S"», and h'(R' () M(S'» 
and h'(R' () M(S"» are nonzero principal prime ideals in h'(R'), 
we conclude that h'(R' () M(S"» = h'(R' () M(S'»; therefore 
R' () M(S") = R' () M(S') and hence sn = S'. 

PROOF OF (3.10.4). Since {S, SI} has anormal crossing at R, 
there exists a basis (Xl' X2 , Xa) of M(R) such that R () M(S) = 
(Xl' x2)R and R () M(SI) = (X2 , xa)R. Take WER such that 
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wR = J. By induction on q (0 ~ q ~ d) we shall show that there 
exist elements r(q, a) in R for 0 ~ a < q such that W - wq E ~R 
where 

q-l 

wq = L r(g, a)x~(xlx3)d-a. 
a~O 

For q = 0 the sum is considered to be equal to zero and hence our 
assertion is trivial for q = O. Now let q > 0 and suppose we have 
found r(q - 1, a) for 0 ~ a < q - 1. Let h*: R -- Rjx2R be the 
canonical epimorphism. Then h*(R) is a two-dimensional regular 
local domain and M(h*(R)) = (h*(x1), h*(xa))h*(R). Now 
W - wq_1 E x~-lR and ordsw = d = ords,w; also clearly 
ordSwq_ 1 ~ d ~ ordSlw~_l . Therefore 

and hence 

(w - W )/xq- 1 E ((x X )R)d-Hl (\ ((x X )R)d-q+l 
q-l 2 l' 2 2' 3 . 

Consequently 

Now 

and hence there exists r(q, q - 1) ERsuch that 

i.e., 

Upon letting r(q, a) = r(q - 1, a) for 0 ~ a < q - 1, we get that 
W - wq E x~R. This completes the induction on q. Let ra = r(d, a) 
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for 0 ~ a < d and let Td = (w - Wd)/X~. Then Ta E R for 
o ~ a ~ d, and 

d 

(I) W = L raX;(xtxa)d-lJ. 
a-O 

Since ordRw = d, we get that 

(2) r d ~ M(R). 

Now Xa E M(R'). If Xl/X2 E R' then (wj~)R' = ]' and by (1) and 
(2) we would get that wj~ ~ M(R') which would contradict the 
assumption that J' C M(R'). Therefore X2jX1 E M(R') and hence 
by (1.10.10) we get that dirn R' = 3, M(R') = (Xl' XJX1 , xa)R', 
SI E ~(R'), and R' () M(SI) = (X2jX1 , xa)R'; in particular SI has a 
simple point at R'. Also w/xt E R' and (wjxnR' = ]'. By (1) we 
get that 

d 

(3) w/x:. = L Ta(x2/x1)aX:-a E «X2/X1 ' Xa)R')d 
a-o 

and hence ordR-J' = d and SI E <f(R', ]'). In virtue of (3.10.3) we 
also get that E' u {SI} has astriet normal erossing at R'. If 
xa/(X2/X1) E M(R") then «wjxt)j(X2jx1)d)R" = ]" and by (2) and (3) 
we would get that (w/x'f)/(X2/x1)d i M(R") which would contradict 
the assumption that ]" C M(R"). Therefore (X2jXI )/Xa E R" and 
henee R" = B~, where B' = R'[(X2/X1)/XS] and Q' = B' () M(V); 
also (wjxt)/x~ E R" and «w/xt)/~)R" = ]", i.e., (w/(xlxa)d)R" = ]". 
Since ]" C M(R"), by (3.10.2) we get that dirn R" = 3. Now 
R' = BQ whereB = R[x2jxl] andQ = B () M(V); since R" = B~" 
we get that R" = B~. where B" = R[x2/(X1XS)] and Q" = 
B" () M(V). Sinee (X2/X1)/Xa E R" C V we get that x2/XS E M(V) and 
(x2/Xa)/Xl E V. Sinee x2/xa E M(V), we get that x2/XS E M(R*) 
and R* = Ap where A = R[x2/xSJ and P = A () M(V). Sinee 
x2/xa E M(R*), by (1.10.10) we get that dirn R* = 3, M(R*) = 
(Xl' X2/Xa , xs)R*, S E ~(R*), and R* () M(S) = (XI' x2/xs)R*; in 
particular S has a simple point at R*. Also wjx~ E R* and 
(w/xg)R* = J*. By (1) we get that 

d 

w/x: = L Ta(X2/XS)ax:-a E «Xl' x2/xs)R*)d 
a=O 
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and hence ordR .]* = d and SE('f(R*,]*). Let(R**,]**) be the 
monoidal transform of (R*, ]*, S) along V. Since (X2/X3 )/XI E V, 
we get that W/(XIX3)d = (w/x~)/x~ E R**, ]** = «w/x~)/x~)R** = 
(W/(XIX3)d)R**, and R** = At. where A* = R*[(x2/x3)/xl l and 
p* = A* n M(V). Since R* = A p and R** = At., it follows 
that R** = B~ • . Therefore (R**, ]**) = (R", ]"). 

PROOF OF (3.10.5). By (1.9.5) we know that if S' is any element 
in I!3(R') such that S' tf I!3(R) then Rn M(S) C M(S'); since 
ordR , j' = ordR ], we also get that ('f2(R', j') n I!3(R) C ('f2(R, J); 
consequently ('f2(R', j') C ('f2(R, ]) u E'. By (1.9.7) we know that 
S tf I!3(R'). Therefore our assertion follows from (3.lO.3) and (3.lO.4). 

PROOF OF (3.lO.6). Since S has a simple point at R, there 
exists a basis (Xl' X; , Xa) of M(R) such that Rn M(S) = (Xl , x~)R 
and x;/xi ER'. By (3.lO.1) there exists rE R such that 
(X~/XI) + rE M(R'). Let X2 = x~ + rxl • Then (Xl' X2 ,X3) 1S a 
basis of M(R), Rn M(S) = (Xl' x2)R, and X2/XI E M(R'). Again 
by (3.lO.1) we get that dirn R' = 3 and M(R') = (Xl' X2/XI , x3)R'. 
Take WER such that wR = ]. Let w' = w/xf. Then w' ER' and 
w' R' = j', and hence w' E M(R')d. Let f be a coefficient set for R, 
let h: R -- R/M(R) be the canonical epimorphism, and let 
Xl , X 2 ,X3 be indeterminates. Since SE ('f(R, ]), there exist 
elements r ab in R such that 

(3) Z = L rabx;xg. 
a+b~d 

Let r~b be the unique element in f such that rab - r~b E M(R). Then 

w - " r' XaXb E M(R)d+1 
'-' ab12 

a+b~d 

and hence by (3.10.1) we get that 

L h(r~b)XfX~ = h(s)X: 
a+b~d 

with 0 -::/= sE f. 

Therefore rOd tt M(R) and rnb E M(R) whenever a =1= O. Con­
sequently 
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with Ta , T~ , T; in R, and hence 

(4) 

Since w' E M(R')d, there exist elements T abc in R' such that 

(5) w' = L Tabc~(xz/xl)')x~, 
a+b+c=tl 

By (4) and (5) we get that (TOd - TOdO)(XZ/X1)d E (Xl' xa)R'; now 
TOd ~ M(R'), dirn R' = 3, and M(R') = (Xl' X2/XI' xa)R', and 
hence we must have 

(6) TOIlO ~ M(R'). 

Suppose if possible that xl /(Xz/X1) E M(V) and xa/(xz/xI) E M(V); 
then xl/(XZ/XI) E M(R") and xs/(XZ/xI) E M(R"); consequently 
w'/(XZ/Xl)d E R" and (w'/(XZ/XI)d)R" = ]", and hence w'/(XZ/X1)d E 

M(R"); however, in. view of (5) and (6) we get that 
w' /(XZ/Xl)d ~ M(R") which is a contradiction. Therefore 

(7) either (xZ/X1)/Xl E V or (XZ/x1)/xa E V. 

We shall now divide the argument into two cases according as 
XS/x1 E Vor XS/x1 rf= V. 

Case when XS/xi E V. By (7) we get that (XZ/XI)/XI E V. 
Consequently R" = B~, where B' = R'[(xZ/XI)/XI , xa/xl l and 
Q' = B' n M(V); also w'/xt E R" and (w';x'f)R" =]". Now 
R' = BQ where B = R[xz/xll and Q = B n M(V). Therefore 
R" = B~. where B" = R[xz/x~ ,xs/xl l and Q" = B" n M(V). 
Now X2/XI E M(V) and Xa/XI E V; consequently R* = A p where 
A = R[xZ/xl , xs/xl l and P = A n M(V) = A n M(R*); also 
w'R* = J*. Since Xa/XI E R*, it follows that S ~ ID(R*). Let H: 
A -- h(R)[Xz , Xsl be the unique epimorphism such that 
H(xZ/xl) = X z , H(xa/xl) = Xs , and H(u) = heu) for all u E R. 
Then Xz E H(A n M(R*» and hence it follows that: 
2 ~ dirn R* ~ 3; if dirn R* = 2 then M(R*) = (Xl' xz/xl)R*; 
and if dirn R* = 3 then there exists a unique monic polynomial 
J(Xa) of positive degree in Xa with coefficients in f such that 
M(R*) = (Xl' XZ/X1 ,J(xs/xl»R*. Now (Xl' xz/xl)R* is a prime 
ideal in R* and upon letting S* be the quotient ring of R* with 
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respect to (Xl' xz/xl)R* we have that S* is a two-dimensional 
element in !8(R*), S* has a simple point at R*, and 
M(R) C M(S*). Now R' C R*, w' E M(R')d, and M(R')R* = 
(Xl' X2/XI , xs)R* = (Xl' X2/xl)R*; since w'R* = J*, we conclude 
that ords.J* ~ d; therefore ords.J* = d = ordR.J* and 
S* E <f(R*, J*). By (3.7.1) it follows that S* is the only two­
dimensional element in !8(R*) whose maximal ideal contains 
M(R) and J*. Since (X2/XI)/XI E V, we get that R** = At. where 
A* = R*[(x2/xl)/xll and p* = A* (') M(V); also w'/x~ E R** and 
(w'/x~)R** = J**. Since R* = A p and R** = At., it follows 
that R** = B~.. Therefore (R**, J**) = (R", ]"). Finally by 
(3.10.2) we get that dirn R** = dirn R*. 

Case when XS/xi fj: V. Now xI/Xs E M(V) and hence xz/xs E M(V). 
Therefore dirn R* = 3, M(R*) = (xI/Xs , x2/Xs , xs)R*, and R* = 
A p where A = R[XI/XS' x2/xsl and P = A (') M(V); also w/~ E R* 
and (w/x;)R* =]*. By (1.10.10) we get that SE !8(R*) and 
R (') M(S) = (XI/XS , x2/xs)R*, and hence S has a simple point at 
R*; also ordsJ* = ords(z/x~) = ordsz = d, and hence ordR.]* = d 
and SE <f(R*, J*). In a moment we shall show that 

(8) 

First, assuming (8) we shall complete the proof. Let S* be the 
quotient ring of R* with respect to (xz/xs , xs)R*. Then S* is a 
two-dimensional element in !8(R*), S* has a simple point at R*, 
M(R) C M(S*), and by (8) we get that S* E <f(R*, ]*). By (3.7.1) 
it follows that S* is the only two-dimensional element in !8(R*) 
whose maximal ideal contains M(R) and J*. By (7) we get 
(X2/XS)/Xs E M(V); therefore dirn R** = 3, M(R**) = (xi/XS ' 

x2/x:, xs)R**, and R** = At. where A* = R*[xz/x:l and 
p* = A* (') M(V); also W/X~d = (w/x~)/x; E R* and (w/x~d)R** = 
J**. By (1.10.10) we get that SE !8(R**) and R** (') M(S) = 
(XI/XS' x2/x~)R**, and hence S has a simple point at R**; also 
ordsJ** = ords(w/x:d ) = ordsw = d and hence ordR •• ]** = d 
and SE <f(R**, ]**). Let (R'*, ]'*) be the monoidal transform of 
(R**, J**, S) along V. Now (x2/xi)/(xl/xS) = X2/(XIXS) and hence 
by (7) we get that (x2/X:)/(xl/xS) E V. Therefore R'* = At.t 
where A** = R**[xZ/(xlxS)] and p** = A** (') M(V); also 
wj(Xlxs)d = (wj(x:d»j(X1/xs)d E R'* and (w/(X1xs)d)R'* = ]'*. Since 
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R* = Ap , R** = At., and R'* = At.*;, we get that R'* = A;. 
where A" = R[xl!xa , X2!(XIXa)] and P" = A" fl M(V). Now 
M(R') = (Xl' X2!X1 ,xa)R' and xI!xa E V, and hence by (7) we 
get that (X2!XI)!Xa E V; therefore R" = B~, where B' = R'[(xI!xa , 
x2!(xlxa)1 and Q' = B' fl M(V); also w!(XIXa)d = (w!xt)!x~ = 
w' !x~ E R" and (w!(xlxa)d)R" = ]". Also R' = BQ where B = 

R[x2/xll and Q = B fl M(V). Since R' = BQ and R" = B~" it 
follows that R" = A;.. Therefore (R'*, ]'*) = (R", J"), i.e., 
(R",]") is the monoidal transform of (R**, j**, S) along V; 
since ]" C M(R"), by (3.10.2) we get that dirn R" = 3. 

We shall now prove (8). There exist unique elements Sl11Jc in f 
such that in the completion Ro of R we have 

where the sum is over all nonnegative integers a, b, c. We shall show 
that 

(9) whenever a + b < d. 

Suppose if possible that (9) is not true and let e be the smallest 
integer such that Sabc i= 0 for so me (a, b, c) with a + b = e. Take 
(a', b') such that a' + b' = e and sa'b'c -=1= 0 for some c. Let c' be 
the smallest integer such that Sa:b',,' -=1= O. For all nonnegative 
integers a and biet 

00 

sab = L sabcx~ E Ro . 
c~o 

Then Sa'b,/xg' is a unit in Ro , and 

where the sum is over all nonnegative integers a, b with a + b ~ e. 
Let 

Y = L sabxfx~. 
a+b~t 

Then W - Y E «Xl' x2)RoY+1. Let So be the quotient ring of Ro 
with respect to (Xl' x2)Ro . Then So is a two-dimensional regular 
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local domain and M(80) = (Xl' xz)80 . Since Sa'b,Jxf is a unit in 
Ro, we get that sa'b' is a unit in 80 and hence y rf= M(80)e+l. 
Therefore y rf= «Xl' XZ)RO)e+1 and hence w rf= «Xl' Xz)Ro)e+I. Since 
e < d, we get that w rf= «Xl' xz)R)d. This is a contradiction because 
8 E <f(R, J). 

Thus (9) is proved. Let 

(10) WI = L s abcx~~x~ and 
a+b+c<2d 

Then Wz ER () M(Ro)2d = M(R)Zd. Since 8 E <f(R, j), we have 
that W E «Xl' Xz)R)d; by (9) we also have that WI E «Xl' Xz)R)d; 
therefore w2 E «Xl' Xz)R)t'. 

For any integers m ~ n ~ 0 we claim that D:nn = Dmn where 
D:nn = M(R)m () «Xl' xz)R)n and Dmn is the ideal in R generated 
by all monomials x1~x~ for which a + b ~ n and a + b + c = m. 
Clearly Dmn C D;"n' So let tE D:nn be given. We want to show 
that t E Dmn . By induction on q we shall show that for any 
nonnegative integer q there exists t~ E Dmn and tq ERsuch that 
t = t~ + tqXi. For q = 0 it suffices to take t~ = 0 and tq = t. 
Now let q > 0 and suppose we have found t~_l and tq_l . Then 

tq_IX~-1 E D'",.n = M(R)m ("\ «Xl' xz)R)n 

and hence 

tq_1 E M(R)q' where q' = max(n, m - q + 1). 

Let h': R - RJxaR be the canonical epimorphism. Then h'(R) 
is a two-dimensional regular local domain, h'(M(R» = (h'(xl ), 
h'(xz»h'(R') = M(h'(R'», and h'(tq_1} E (h'(M(R}))fl'. Therefore 
tq_1 = t~ + tqXa where t; E «Xl' xz}R)q' and tq E R. It follows that 
t;xg-l E Dmn and hence upon letting t~ = t~_l + t;xg-l we get that 
t = t~ + tA with t~ E Dmn and tq E R. This completes the induc­
tion on q. Therefore 

00 00 

t E n (Dmn + x;R) c n (Dmn + M(R)q) = Dmn . 
q=O q=O 

Thus the claim is proved. Therefore upon taking m = 2d and 
n = d we can find elements tabe in R such that 

(11) Wz = L tabcxfx:x; • 
a+b+c-2d.a+b ~d 
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Let W be the set of all tripies (a, b, c) of nonnegative integers 
a, b, c such that a + b + c < 2d, a + b ~ d, a + 2b + c < 2d, 
and Sabe =;6:. O. Let W' be the set of all tripies (a, b, c) of nonnegative 
integers a, b, c such that a + b + c ~ 2d, a + b ~ d, and 
a + 2b + c ~ 2d; for any (a, b, c) in W' let s~ = Sabe if 
a + b + c < 2d and S~be = tabe if a + b + c = 2d. Then Wand 
W' are finite sets and by (9), (10), and (11) we get that 

w = L sabcx~x~x~ + L s:Wcx~~x~. 
(a,b,cleW (a,b,cleW' 

Now w/x1 = w' E M(R')d and M(R') = (Xl' XZ/XI , xs)R'. Clearly 

xid L s:Wcx~~x~ = L x~+b-d(x2IxI)bx~ E M(R')d 
(a,h,cleW' (a,b,cleW' 

because (a + b - d) + b + c ~ d for all (a, b, c) E W'. Therefore 

xid L sabc~X:;x~ E M(R')d, 
(a,b,cleW 

1.e., 

(12) ~ S ~+b-d(X Ix )bX• E M(R')d L.. abc 1 2 I S • 
(a,h,.'eW 

For all (a, b, c) E W we have that (a + b - d) + b + c < d and 
o =;6:. Sabe E f, and for all (a, b, c) =;6:. (a', b', c') in W we have that 
(a + b - d, b, c) =;6:. (a' + b' - d, b', c'); also, by (3.10.2), f is a 
coefficient set for R'; consequently by (12) we get W = 0. 

Therefore 

W = L s~bCX~~X~ 
(a,b,.leW' 

and hence 

(13) w/X: = L s~bC(Xl/X3)a(X2/X3)bx:+b+C-d. 
(a,b,cleW' 

Now b + (a + b + c - d) ~ d for all (a, b, c) E W', and hence 
(8) follows from (13). 

(3.11). Let R be a regular local domain with dirn R ~ 3, let] 
be a nonzero principal ideal in R such that (f2(R, ]) has a strict 
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normal crossing at R, let S be a positive-dimensional element in 
(f(R, ]) having a simple point at R, and let (R', j') be a monoidal 
transform of (R, J, S) such that ordR-J' = ordRJ. Then (f2(R', ]') 
has astriet normal crossing at R'. 

PROOF. If either dirn R =f 3, or dirn S = 1, or J = R, then 
the assertion is trivial. If dirn R = 3, dirn S > 1, and J =f R, then 
the assertion follows from (3.7.3) and (3.10.5). 

(3.12). Let (Ri , Ji ,li' Li ,Si)O~i<OO be an infinite subresolver 
such that dirn Ro ~ 3 and Ro is pseudogeometric. Then dirn R." = 3 
for 0 ~ i < 00, and there exists a nonnegative integer j such that 
for all i ):: j we have that (f2(Ri , Ji) has a strict normal crossing at 
Ri and Si E (f2(Ri , Ji)' 

PROOF. Since dirn Ro ~ 3 and (Ri , Ji) is unresolved for 
o ~ i < 00, we get that 2 ~ dirn Si ~ dirn Ri ~ 3 for 0 ~ i < 00. 

Since Ro is pseudogeometric and (R;" Ji) is unresolved for 
o ~ i < 00, by (3.5) we get that dirn Ri = 3 for 0 ~ i < 00. 

Since Li =f 0, we can fix Ti E Li for 0 ~ i < 00. In view of 
(3.9.3) we get that Si ELi for infinitely many distinct values of i. 
In particular, there exists a non negative integer j such that Si E Li . 
Now (f2(Ri ,li) has astriet normal crossing at Ri , and hence by 
(3.11) we get that (f2(Ri , Ji) has astriet normal crossing at Ri for 
all i ):: j. Suppose if possible that Sq_l rf: (f2(Rq_1 , Jq-l) for some 
q > j. Then Sq-l = Rq_1 and hence by (3.7.3) we get that 
Lq = {Tq}. In view of (3.7.3) and (3.1O.5), by induction on i we 
now see that Lq+i = {Tq+i} for 0 ~ i < 00. Thus Rq is a pseudo­
geometrie regular local domain, Jq is a nonzero principal ideal in 
Rq , Tq is an element in (f2(Rq , Jq) having a simple point at Rq , 
Sq is a positive-dimensional element in (f(Rq , Jq) having a simple 
point at Rq , Sq C Tq , and (Rq+i' Jq+i , Tq+i ,Sq+i)O<i<oo is an 
infinite sequence such that for 0 < i < 00: Rq+i is a regular local 
domain, Jq+i is a nonzero principal ideal in Rq+i' Tq+i is an 
element in (f(Rq+i' Jq+i) having a simple point at Rq+i' Sq+i is 
a positive-dimensional element in (f(Rq+i' Jq+i) having a simple 
point at Rq+i , Sq+i C Tq+i' (Rq+i , Jq+i) is a monoidal transform of 
(Rq+i-l , Jq+i-l , Sq+i-l)' and Tq+i dominates Tq+i-l . Also Sq+i = 
Tq+i for infinitively many distinct values of i, and hence by (3.6) 
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we get that (Rp , I p ) is resolved for so rne p ~ q. This is a contra dic­
tion. Therefore Si E (f2(Ri ,li) for aIl i ~ j. 

(3.13). Let d and n be positive integers, andlet [(Ri , Ii , Si}o~i<n , 
(Rn' In)] be a system such that: Ri is a regular local domain and 
Ii is a nonzero pn'ncipal ideal in R i Jor 0 ::::;; i ::::;; n; ordR.]i = d 
Jor 0 ::::;; i < n; Si E (f2(Ri ,li) and Si has a simple point at Ri Jor 
o ::::;; i < n; (Ri , Ii) is a monoidal transJorm of (Ri- 1 , li-I' Si-I) 
Jor 0 < i ::::;; n; and dirn Ro = 3. Then we have the following. 

(3.13.1). dirn Ri = 3 Jor 0 < i < n. 1J In C M(Rn} then 
dirn Rn = 3. 

(3.13.2). 1J (f2(Ro , 10) = {So} then (f2(Ri , Ii) = {Si} and Si 
dominates Si-l Jor 0 < i < n. 

PROOF. By induction on i, the assertions follow frorn (3.10.2) 
and (3.10.5). 

(3.14). Let d and n be positive integers, and let [(Ri , Ii , Si)o~i<n' 
(Rn' In)] be a system such that: Ri is a regular local domain and 
Ii is a nonzero principal ideal in Ri fOT 0 ~ i ~ n; ordRJi = d 
for 0 ::::;; i < n; In C M(Rn); Si E (f2(Ri ,Ii) and Si has ~ simple 
point at Ri for 0 ~ i < n; (Ri , Ii) is a monoidal transform of 
(Ri- 1 , Ii-1 , Si-I) for 0 < i ::::;; n; dirn Ro = 3; (f2(Ro , 10) has a 
normal crossing at Ro; and (f2(Ro , 10) contains exactly two distinct 
elements Sand S*. Let W be the set of all integers i with 0 ~ i < n 
such that Si dominates S, and let m be the number of elements in W. 
Let W* be the set of all integers i with 0 ::::;; i < n such that Si. 
dominates S*, and let m* be the number oJ elements in W*. Then we 
have the following. 

(1) For 0 < i < n we have that dirn R t = 3, (f2(Ri ,li) has a 
striet normal crossing at R i , and each element in (f2(Ri ,li) dominates 
exaetly one element in (f2(Ri_1 , li-I)' (2) For 0 ::::;; j ::::;; i < n we 
have that each element in (f2(Ri , Ji) dominates exactly one element 
in (f2(Rj , I j ), and Si dominates exaetly one element in (f2(Rj , I;) 
(whence in particular m + m* = n). (3) 11 b is any integer with 
o ~ b ::::;; n such that j f. W whenever 0 ~ j < b, then S E (f2(R i , 11.) 
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whenever 0 ~ i ~ b. (3 *) If b is any integer with 0 ~ b ~ n 
such that j i W* whenever 0 ~ j < b, then S* E ft2(R i , Ii) whenever 
o ~ i ~ b. (4) If m = 0 then dirn Rn = 3, ordR In = d, 
SE ft2(Rn , In)' and ft2(Rn , In) has a strict normal crossing at Rn . 
(4*) If m* = 0 then dirn Rn = 3, ordR In = d, S* E ft2(Rn , In), 
and ft2(Rn , In) has a strict normal n crossing at Rn. (5) If 
ft2(Rn , In) = 0 then m -=1= 0 -=1= m*. 

Now assume that m -=1= 0 and let a(O), a(I), ... , a(n - 1) be the 
unique permutation of 0, 1, ... , n - 1 such that: a(i) E W if and 
only ifO ~ i < m; a(j) < a(t) whenever 0 ~ j < i < m; a(i) E W* 
if and only if m ~ i < n; and a(j) < a(i) whenever m ~ j < i < n. 
Then we have the following. 

(6) Sa<il dominates Sa(i-ll whenever either 0 < i < m or 
m < i < n. (7) Sa(o) = S. (8) If m* -=1= 0 then Sa<m) = S*. 
(9) There exists a sequence (R~ , IDo';;;i<n such that: R~ is a three­
dimensional regular local domain and I~ is a nonzero principal 
ideal in R; with ordRJ; = d for 0 ~ i < n; Sa(i) E ft2(R; , ID and 
ft2( R~ , J;) has a st~ict normal crossing at R~ for 0 ~ i < n; 
(R~ , I~) = (Ro , 10); (R~, ID is a monoidal trans form of (R~_I' 
];-1' Sa(i-l» for 0 < i < n; and (Rn, In) is a monoidal transform 
of(R~_I' I~-1 , Sa<n-l»· 

PROOF. In view of (3.10.2) and (3.10.5), (1) follows by induction 
on i. (2) follows from (1). In view of (1) and (3.10.4), (3) and (3*) 
follow by induction on i. (4) and (4*) follow from (1), (3), (3*), 
(3.10.4), and (3.10.5). (5) follows from (4) and (4*). Now assurne 
that m -=1= 0 and let a(O), a(I), ... , a(n - 1) be the said permutation 
ofO, 1, ... , n - 1. (6), (7), and (8) follow from (1), (2), (3), and (3*). 
In proving (9) we shall tacitly use (1) and (2). We shall now prove 
(9) by induction on n. In case of n = 1 we must have Sa(o) = So 
and it suffices to take (R~, I~) = (Ro , 10). Now let n > 1 and 
assurne that the assertion is true for all values of n smaller than 
the given one. If m* = 0 then a(t) = i for 0 ~ i < n, and it 
suffices to take (R~ , ID = (Ri , Ii) for 0 ~ i < n. So now assurne 
that m* -=1= O. Let c(O), c(I), ... , c(n - 2) be the permutation of 
0, 1, ... , n - 2 defined thus: if n - 1 i W then c(i) = a(t) for 
o ~ i ~ n - 2; and if n - 1 E W then c(t) = a(i) for 
o ~ i ~ m - 2, and c(i) = a(i + 1) for m - 1 ~ i ~ n - 2. 
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Upon applying the induction hypothesis to the system 
[(Ri , Ii' Si)o";;i<n-l' (Rn-I' ln-I)] we find a sequence 
(Rt, Jl)o";;'l.<n-l such that: Rt is a three-dimensional regular 
local domain and It is a nonzero principal ideal in Rt with 
ordR~I* = dfor 0 :::;; i < n - 1; SC(i) E (f2(Rt, Jl) and (f?'(Rf, It) 
has a strict normal crossing at Rf for 0 :::;; i < n - 1; (Rl, It) = 
(Ro, 10); (Rt,It) is a monoidal transform of (Rt-l' Jl-l, SC<i-I» 
for 0 < i < n - 1; and (Rn-I' ln-I) is a monoidal transform of 
(R:_2, I~-2 , SC<n-2» (note that if i E W* for 0 :::;; i < n - 1 then, 
without using the induction hypothesis, we are simply taking 
(Rt,It) = (Ri , ].t) for 0 :::;; i < n - 1). If n - 11= W then it 
suffices to take (R~, Ia = (Rf, Jl) for 0:::;; i < n - 1, and 
(R~-l , I~-l) = (Rn-I' ln-I)' So now assume that n - 1 E W. 
Let q(t) = c(t) for 0 :::;; i < n - 2, and q(n - 2) = n - 1. Now 
(Rn-I' ln-I) is a monoidal transform of (R!_2' I~-2' Sa(n-l»' 
Sq(n-2) E (f2(Rn_1 , ln-I)' and Sq(n-2) does not dominate Sa(n-l)' 
Consequently Sa(n-l) *' Sq(n-2), and by (3.10.5) we deduce that 
(f2(R!_2' I!-2) = {Sa(n-l), Sq(n-2l}' Let V be a valuation ring of 
the quotient field of Rn such that V dominates Rn, and let 
(R~_l' I~-l) be the monoidal transform of (R!_2' 1:-2' Sq(n-2l) 
along V. Then by (3.10.4) and (3.10.5) we get that R~_l is a 
three-dimensional regular local domain, I~-l is a nonzero principal 
ideal, in R~_l with ordR~_J~-l = d, Sa(n-I> E (f2(R~_1 , I~-l)' 
(f2(R~_1' ILl) has a strict normal crossing at R~-l' and (Rn' In) 
is a monoidal transform of (R~_l • I~-l , Sa(n-l»' Upon appIying 
the induction hypothesis to the system [(Rt, Jl, Sq(il)o<:;i<n-l' 
(R~_l' I~-l)] we find a sequence (Ri , I:>os;;i<n-l such that: ~ is 
a three-dimensional regular Iocal domain and Ii is a nonzero 
principal ideal in R~ with ordR;J~ = d for 0:::;; i < n - 1; 
Sa(i! E (f2(Ri, J;) and (f2(~, ID has a strict normal crossing at ~ 
for O:::;;i<n-l; (R~,I~)=(Rt,Il); and (~,Ii) is a 
monoidal transform of (Ri-l' 1;-1 , Sa(i-l» for 0 < i :::;; n - 1. 
It follows that the sequence (Ri , I;)o";;i<# has the required proper­
ties. This completes the induction. 

(3.1S). Let (Ri , Ii , Si)O";;i<<<> be an infinite sequence such that: 
~ is a regular local domain and I, is a nonzero principal ideal 
in R, Jar 0 :::;; i < 00; Si E (f2(Ri , 11.) and Si has a simple point 
at ~ Jar 0 :::;; i < 00; and (Ri , Ii) is a monoidal trans/arm 0/ 
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(R i - I , Ji-I , Si-I) for 0 < i < 00. Assume that R o is pseudo­
geometrie, dirn R o = 3, (Ro , Jo) is unresolved, and (f2(Ro , Jo) has a 
striet normal erossing at Ro . Let d = ordRJo. Then ordRJi # d 
for some nonnegative integer i. 

PROOF. Since (Ro , Jo) is unresolved, we have that d > 1. 
Suppose if possible that ordRJi = d for 0 ::::;; i < 00. Then by 
(1.10.5) we have that (Ri , Ji) is unresolved for 0 ::::;; i < 00. If 
(f2(Ro , Jo) = {So} then by (3.13.2) we would get that Si dominates 
Si-I for 0 < i < 00, and this would contradict (3.6). Therefore 
(f2(Ro , Jo) # {So} and hence (f2(Ro , Jo) contains exactly two 
distinct elements. By (3.14) there exists SE (f2(Ro , Jo) such that 
the set W of all nonnegative integers i for which Si dominates S 
is an infinite set. Let a be the unique order-preserving one-to-one 
map of the set of all nonnegative integers onto W. Then by (3.14) 
we have that Sa(i) dominates Sa(j) whenever 0 ::::;; j ::::;; i. Given any 
nonnegative integer q, upon taking n = a(q) + 1, by (3.14) we find 
a sequence (Rq,i' Jq,i)O';;'i,;;,q such that: Rq,i is a regular local 
domain and Jq,i is a nonzero principal ideal in Rq,i with 
ordR.,Jq,i = d for 0 ::::;; i ::::;; q; Sa(il E (f2(Rq,i , Jq,i) and Sa(i) has a 
simple point at Rq,i for 0::::;; i ::::;; q; (Rq,o, Jq,o) = (Ro , Jo); 
(Rq,i , Jq,i) is a monoidal transform of (Rq,i-I , Jq,i-I , Sa(i-Il) for 
o < i ::::;; q; and Ra(q)+l dominates Rq,q' We can take a valuation 
ring V of the quotient field of Ro such that V dominates R i for 
o ::::;; i < 00. Then for each q ;? 0 we have that V dominates Rq,q 
and hence (Rq,i' Jq,i) is the monoidal transform of (Rq,i-l' 
]q,i-I' Sa(i-I») along V for 0 < i ~ q. Therefore we must have 
(Rq,i , Jq,i) = (Rp,i , Jp,i) whenever 0 ::::;; i ::::;; q ::::;; p. Consequently, 
upon letting (R~, J~) = (Ri.i , Ji.i) for 0 ::::;; i < 00, we get an 
infinite sequence (R~, JDO,;;,i<oo such that: R~ is a regular local 
domain and J~ is a nonzero principal ideal in R~ with ordRJ~ = d 
for 0 ::::;; i < 00; Sa<i) E (f2(R~ , JD and Sa(i) has a simple point at 
R~ for 0 ::::;; i < 00; (R~ , J~) = (Ro , Jo); and (R~ , JD is a monoidal 
transform of (R~_I , J~-I' Sa(i-l») for 0 < i < 00. By (1.10.5) we 
get that (R~ , JD is unresolved for 0 ::::;; i < 00. Now Sa(i) dominates 
Sa(i-Il for 0 < i < 00, and hence, in view of (3.6), we are led 
to a contradiction. 

(3.16). Let d and n be positive integers, and let [(Ri , Ji , Si)o';;'i<n , 
(Rn' Jn)] be a system sueh that: R i is a regular loeal domain and Ji 
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is a nonzero principal ideal in R t for 0 ~ i ~ n; ordRJi = d far 
o ~ i < n; Si E (f2(Rt ,I,) and Si has a simple point at Ri for 
o ~ i < n; (Rt , Ii) is a monoidal transfarm of (Ri - 1 , Ii-l, 
Si-I) for 0 < i ~ n; and dirn Ro = 3. Then we have the 
following. 

(3.16.1). Assume that (f2(Ro , 10) has astriet normal crossing 
at Ro , In C M(Rn), and (f2(Rn , In) = 0. Let S be any element in 
(f2(Ro ,10)' Then there exists a sequence (R~, I~ ,S~)o"i<n such 
that: R~ is a three-dimensional regular local domain and I; is a 
nonzero principal ideal in R~ with ordR;l; = d for 0 ~ i < n; 
(f2(R~ ,Ia has a strict normal crossing at R~ for 0 ~ i < n; 
S; E (f2(R~, IaforO ~ i < n; (R~, I~, S~) = (Ro , 10' S); (R~ , Ia 
is a monoidal transform of (~-1 , K-l , S;_I) for 0 < i < n; and 
(Rn' In) is a monoidal transfarm of (R~_1 , I~-1 , S~_I)' 

(3.16.2). Assume that ordR In = d. Let (Rn+1' In+1) be a 
monoidal transform of (Rn' In' Rn) such that In+1 C M(Rn+1)' let 
V be a valuation ring of the quotient field of Ro such that V dominates 
Rn+1' and let (R~ , I~) be the monoidal transfarm of (Ro ,10' Ro) 
along V. Then 2 ~ dirn R~ = dirn Rn+1 ~ 3, ordR~I~ = d, and 
there exists exactly one two-dimensional element S~ in ID(R~) such that 
M(Ro} C M(S~} and J~ C M(S~}. Moreover, S~ E (f2(R~ , J~), S~ has 
a simple point at R~, and there exists a positive integer m and a 
sequence (R~ , J~ , SaO<i<m such that: R~ is a regular local domain 
with dirn R~ = dirn R~ and I; is a nonzero principal ideal in R~ 
with ordR;l; = d for 0 < i < m; S; E (f2(R~, Ja and s; has a 
simple point at R~ for 0 < i < m; (R~, Ja is a monoidal transfarm 
of(R~-I' 1;-1, S;_I)for 0 < i < m; and (Rn+1' In+1) is a monoidal 
transform of (R:n-l , 1:"-1 , S:n-l)' 

(3.16.3). Assume that (f2(Ro , 10) has astriet normal crossing 
at Ro , ordR In = d, and (f2(Rn , In) = 0. Let (Rn+1' In+1) be a 
monoidal tra"nsform of (Rn' In, Rn) such that In+1 C M(Rn+1)' Let 
S be an element in (f(Ro , 10) with dirn S ~ 2. Let (R' ,],) be a 
monoidal transform of (Ro , 10' S). Assume that there exists a 
valuation ring V of the quotient field of Ro such that V dominates R ' 
and V dominates Rn+1 . Then ordR,]' = d, and there exists a positive 
integer e and a semiresolver (R~ , J; , SaO,;i<p such that ordR;l; = d 
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/ar 0 ~ i < e, (R~ , I~) = (R', ]'), and (Rn+l , In+l) is a monoidal 
trans/arm 0/ (R;_1 , 1;-1 , S;_l)' 

PROOF OF (3.16.1). We shall make induction on n. First consider 
the case of n = 1 j if S "# So then by (3.10.4) we would get that 
SE (f2(Rn , In) which would be a contradiction; therefore S = So 
and hence it suffices to take (R~, I~, S~) = (Ro , 10' So). Now let 
n > 1 and assume that the assertion is true for all values of n 
smaller than the given one. By (3.10.2) and (3.10.5) we get that 
dim R" = 3 and (f2(R" , 1,) has a strict normal crossing at Ri for 
o ~ i < n. Hence if S = So then it suffices to take (R; , I~ , S~) = 
(R." I" Si) for 0 ~ i < n. So now assume that S "# So. Then by 
(3.10.4) 'we get that SE (f2(R1 , 11)' Therefore upon applying the 
induction hypothesis to the system [(R" , Ii , Sih';;i<n , (Rn' In)] 
we can find a sequence (Rl, Jl, Slh';;i<n such that: Rl is a 
three-dimensional regular local domain and Jl is a nonzero 
principal ideal in ~* with ordR7Jl = d for 1 ~ i < n; (f2(~*, It) 
has a strict normal crossing at Rl for 1 ~ i < n; SI E (f2(RI, Jl) 
for 1 ~ i < nj (Rl, Jl, Sl) = (R1 , 11' S)j (R!, Jl) is a monoidal 
transform of (R1-1 , 11-1, S1-1) for 1 < i < nj and (Rn' In) is a 
monoidal transform of (R~_1' I~-1 ,S~_l)' Let (R~, I!) = 
(Rn, In)' Let (R~, I~, S~) = (Ro ', 10 , S). Take a valuation ring V 
of the quotient field of Ro such that V dominates R:. Let (R~ , I~) 
be the monoidal transform of (R~, I~, S~) along V, and let 
S~ = So. Then by (3.10.4) and (3.10.5) we get that dim R~ = 3, 
ordRJ~ = d, (f2(R~, I~) has a strict normal crossing at R~, 
S~ E (f2(R~ ,I~), and (R:, It) is a monoidal transform of 
(R~ , I; ,S~). It suffices to take (Ri, Ii , Si) = (R!, I!, sl) for 
2 ~ i < n. 

PROOF OF (3.16.2). We shall make induction on n. 
First consider the case of n = 1. By (3.10.6) we get that 

2 ~ dim R~ = dim R2 ~ 3, ordRJ~ = d, and there exists exactly 
one two-dimensional element S~ in m(R~) such that M(Ro) C M(S~) 
and I~ C M(S~). Moreover, by (3.10.6) we get that S~ E (f2(R~, I~), 
S~ has a simple point at R~, and upon letting (R',]') be the 
monoidal transform of (R~, I~ , S~) along V we have that: (I) if 
So f# m(R~) then (R',]') = (R2, 12); and (2) if So E m(R~) then 
dim R' = dim R~, ordR,], = d, So E (f1(R', ]'), So has 'asimple 
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point at R', and (R2 , 12) is the monoidal transform of (R', j', So) 
along V. In case (1) it suffices to take m = 1. In case (2) it suffices 
to take m = 2 and (R~ , I~ , S~) = (R', j', So). 

N ow let n > 1 and assurne that the assertion is true for all 
values of n smaller than the given one. By (3.10.2) we have that 
dirn R l = 3, and hence upon applying the induction hypothesis to 
the system [(Ri , Ii , Sih';;i<n , (Rn, In)] we can find a positive 
integer q and a sequence (Rt, It, St)O,;;i<q such that: Rt is a 
regular local domain with dirn Rt = dirn R n+1 and 1* is a nonzero 
principal ideal in Rt with ordR~lt = d for 0 ~ i < q; 
St E (X2(Rt, It) and st has a simple point at Rt for 0 ~ i < q; 
(R:, lt) is a monoidal transform of (R l , 11 ,Rl ); (Rt, In is a 
monoidal transform of (R!-I' lt-l ,S!-I) for 0 < i < q; and 
(Rn+1 , In+1) is a monoidal transform of (R:-1 , 1:-1 , S:_I). Now 
(R:, I:) is a monoidal transform of (R1 , 11 , R1), and ordR~lt = d; 
hence in particular lt C M(R:); therefore by (3.10.6) we get that 
2 ~ dirn R~ = dirn Rt ~ 3, ordR ' I~ = d, and there exists exactly 
one element S~ in m(R~) such that M(Ro) C M(S~) and I~ C M(S~). 
Moreover, by (3.10.6) we get that S~ E (X2(R~ , I~), S~ has a simple 
point at R~ , and upon letting (R', j') be the monoidal transform 
of (R~, I~ ,S~) along V we have that: (1 *) if So i m(R~) then 
(R', j') = (R:, I:); and (2*) if So E m(R~) then dirn R' = dirn R~, 
ordR, j' = d, So E (X2(R', j'), So has a simple point at R', and 
(R:, lt) is the monoidal transform of (R', j', So) along V. In ca se 
(1 *) it suffices to take m = q + 1 and (R;, I; , S;) = (Rt-l , 
Il-l' Si~l) for 1 ~ i < m. In case (2*) it suffices to take m = q + 2, 
(R~ , I~ , S~) = (R', j', So), and (R; , I; , S;) = (Ri~2 , I/-2 , S/-2) 
for2 ~ i < m. 

PROOF OF (3.16.3). First suppose that S 1= Ro . Then 
SE(X2(Ro,Io) and hence by (3.16.1) there exists a sequence 
(Rt, lt, St)o,,;,t,,;,n such that: Rt is a regular local domain and 
lt is a nonzero principal ideal in R* with ordR~lt = d for 
o ~ i ~ n; (X2(Rt, In has a strict normal crossing at Rt for 
o ~ i < n; st E (X2(Rt, In for 0 ~ i < n; (R:, lt, I:) = (Ro , 
10' S); (Rt, In is a monoidal transform of (Rt-l' N'!-l' Si*:.-l) for 
o < i ~ n; and (R~ , I! , S!) = (Rn' In, Rn). Clearly (R', j') = 
(Rt, In, and hence ordR1 = d. It suffices to take e = n and 
(R~ , I; , S;) = (R"tt , llt1 , Si~t) for 0 ~ i < e. 
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Next suppose that S = Ro . Then by (3.16.2) we get that 
ordR,], = d and there exists a positive integer m and a sequence 
(Rt, Jt, St)o~i<m such that: Rt is a regular local domain and 
Jt is a nonzero principal ideal in Rt with ordR*It = d for 
o ::::;: i < m; SI E (f2(Rt, It) and SI has a simple point at RI for 
o ::::;: i < m; (R~, H) = (R' , ]'); (RI, It) is a monoidal transform 
of (R/~_l' N:-l , Sl-l) for 0 < i < m; and (Rn+!, .Tn+!) is a 
monoidal transform of (R;;;'_l , 1;;;'-1' S;;;'_l)' By (3.11) we get that 
(f2( Rt, In has a strict normal crossing at RI for 0 ::::;: i < m. It 
suffices to take e = m and (R~, I~, S~) = (Rt, It, St) for 
0::::;: i < e. 

(3.17). Let (Ri , Ii , Si)O~i<oo be an infinite semiresolver such 
that ordR)i = ordRJo for 0 ::::;: i < 00, Ro is pseudogeometric, and 
dirn Ro ::::;: 3. Let d = ordRJo. Then we have the following. 

(3.17.1). There exists a unique nonnegative integer n such that 
Si i= Ri for 0 ::::;: i < n and Sn = Rn . 

(3.17.2). Let n be as in (3.17.1). Let S be a positive-dimensional 
element in (f(Ro , 10) such that S has a simple point at Ro , and if 
dirn S = 2 then (f2( Ro , 10) has a strict normal crossing at Ro . Let 
(R', ]') be a monoidal trans form of (Ro ,10' S). Assume that there 
exists a valuation ring V of the quotient field of Ro such that V 
dominates R' and V dominates Rn+!. Then ordR,], = d, and there 
exists a positive integer q and a semiresolver (R~ , I~ , S~)O';;i<q such 
that ordRJ; = d for 0 ::::;: i < q, (R~, I~) = (R', ]'), and (R~_l , 
I~-l , S~_~) = (Rn+! , In+! , Sn+!)' 

(3.17.3). Let [(RI, 11, St)o~i<m' (R;;;', I;;;')] be a finite weak 
semiresolver such that (Rt, It) = (Ro , 10)' Assume that there exists 
a valuation ring V of the quotient field of Ro such that V dominates 
R;;;' and V dominates Ri for 0 ::::;: i < 00. Then ordR~Jt = d for 
o ::::;: i ::::;: m, and there exist positive integers q and e and d semiresolver 
(R~ , I~ , S~)O~i<q such that ordRJ~ = d for 0 ::::;: i < q, (R~ , I~) = 

(R;); , I;);), and (R~_l , 1;-1 , S~_l) = (Re, Ie, Se)' 

PROOF OF (3.17.1). The uniqueness is obvious. Since (Ri , Ii) is 
unresolved for 0 ::::;: i < 00, we get that 2 ::::;: dirn Si ::::;: 3 for 
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o ~ i < 00; in view of (3.5) we also get that dirn Ri = 3 for 
o ~ i < 00. Therefore the existence fo11ows from (3.15). 

PROOF OF (3.17.2). Since (Ri , li) is unresolved for 0 ~ i < 00, 

we get that d> 1, 2 ~ dirn S ~ 3, and 2 ~ dirn Si ~ 3 for 
o ~ i < 00; in view of (3.5) we also get that dirn Ri = 3 for 
o ~ i < 00. Therefore Si E (f2(Ri , li) for 0 ~ i < n. If S = So 
then (R', ]') = (R1 , 11)' and hence ordR-l' = d and it suffices to 
take q = n + 1 and (R; , I; , S;) = (RH1 , IHI , SH1) for 
o ~ i < q. So now assurne that S =1= So. Then we must have 
n > 0, So E (f2(Ro , 10)' and (f2(Ro , 10) h,as a strict normal crossing 
at Ro • By (3.11) we now get that (f2(Rn , In) has a strict normal 
crossing at Rn; since dirn Sn =1= 2, we conclude that 
(f2(Rn , In) = 0. Therefore by (3.16.3) we get that ordR-l' = d, 
and there exists a positive integer e and a semiresolver 
(R~ , I; , S;)o~i<e such that ordRJ; = d for 0 ~ i < e, (R~, lri) = 
(R', ]'), and (Rn+1' 111.+1) is a monoidal transform of (R;_1 , 1;-1 , 
8;_1). It now suffices to take q = e + 1 and (R;_I' 1;-1 , S;_I) = 

(Rn+1 , 111.+1' SM1)· 

PROOF OF (3.17.3). We sha11 make induction on m. 
First consider the case of m = 1. By (3.17.1) there exists a 

unique nonnegative integer n such that Si =1= R i for 0 ;::;;;; i < n and 
Sn = Rn . Let S = S:. Then S is a positive-dimensional element 
in (f(Ro, 10) such that S has a simple point at Ro , and if dirn S = 2 
then (f2(Ro, 10) has a strict normal crossing at Ro . Also (R~, 1~) 
is a monoidal transform of (Ro , 10' S), V dominates R~, and V 
dominates R n+1. Therefore by (3.17.2) we get that ordR~lt = d 
for 0 ~ i ~ m, and there exists a positive integer q and' a semi­
resolver (R~ , I; ,S;)O~i<q such that ordR' I; = d for 0 ~ i < q, 
(R~ , 1~) = (R~ , 1~), and (R;_1 , 1;-1' S;_:) = (Rn+1 , 111.+1 , SM1). 
It suffices to take e = n + 1. 

Now let m > 1 and assurne that the assertion is true for a11 
values of m sma11er than the given one. Upon applying the induction 
hypothesis to the finite weak semiresolver [(Rt,]t, St)o~i<m-l , 
(R~_I' 1~-1)] we get that ordR*lt = d for 0 ~ i ~ m - 1, and 
there exist positive integers i a and band a semiresolver 
(R; , K ,S;)o~i<a such that ordR*]" = d for 0 ~ i < a, 
(R~ , I;) = (R!-1 ,1:-1)' and (R;_l , .1;-1 , S;_l) = (R", 1", S,,). 
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Now R~ is pseudogeometric and dirn R~ ~ 3. By (1.10.5) we also 
get that (R; , ];) is unresolved for 0 ~ i < a. Let (R; , Ii , Si) = 
(Rb-a+1+i , Ib-a+1+i ,Sb-a+1+i) for a ~ i < 00. Then (R;,];, 
S;)o~i<<XJ is an infinite semiresolver. Therefore by (3.17.1) there 
exists a unique nonnegative integer n such that S; =1= R~ for 
o ~ i < n and S; = R; . Let S = S:;_1. Then S is a positive­
dimensional element in (f(R~ , I;) such that S has a simple point 
at R~, and if dirn S = 2 then (f2(R:, I;) has a strict normal 
crossing at R~. Also (R:;, I:;) is a monoidal transform of 
(R~ , I; , S), V dominates R~, and V dominates R;+1. Therefore 
by (3.17.2) we get that ordR*I:; = d, and there exists a positive 
integer c and a semiresolver CR~ , I; , S~)O;';i<C such that ordR'l; = d 
for 0 ~ i < c, (R~, I~) = (R~, I~), and (~-1' 1;-1,8;-1) = 
(R;+1 , 1;+1 , S;+1). If n + 1 ~ a - 1 then it suffices to take 
q = c and e = b - a + n + 2. If n + 1 < a - 1 then it suffices 
to take e = b, q = c + a - n - 2, and (R~ , I~ , S~) = (R;+2-c+i , 
I;+2-C+i , S;+2-C+i) for c ~ i < q. 

(3.18). Let d and n be positive integers and let [(~, I" , 
Ii , Si)o~i<n , (Rn' In' In)] be a system such that: Ri is a regular 
local domain and Ii and I i are nonzero principal ideals in ~ Jor 
o ~ i ~ n; ordRJi = d Jor 0 ~ i < n; Si E (f2(Ri , I.,.> and 
(Si' I.,.> has a pseudonormal crossing at ~Jor 0 ~ i < n; (R i , Ii' I,) 
is a monoidal transJorm oJ (R.t- 1 , 1'-1 , 1'-1 , Si-1) Jor 0 < i ~ n; 
and dirn Ro = 3. Then we have the Jollowing. 

(3.18.1). Assume that (f2(Ro, 10) has astriet normal crossing at 
Ro , In C M(Rn), and there does not exist any element S' in 
(f2(Rn , In) such that (S', In) has a pseudonormal crossing at Rn. Let 
S be any element in (t2(Ro , 10) such that (S,Io) has a pseudonormal 
crossing at Ro . Then there exists a sequence (R~, I; , I; , S;)o~i<n 
such that: R~ is a three-dimensional regular local domain and I; and I; 
are nonzero principal ideals in R; with ordR); = d Jor 0 ~ i < n; 
(f2(R~, I;) has astriet normal crossing ~t R; Jor 0 ~ i < n; 
S; E (f2(R; , I;) and (S; ,I;) has a pseudonormal crossing at R~ Jor 
o ~ i < n; (R~, I~ ,I~ , S~) = (Ro , 10 '/0 , S); (R~, I; , I;) is a 
monoidal transJorm oJ (R~_1' 1;-1' 1;_1' S;-1) Jor 0 < i < n; 
and (Rn' In , In) is a monoidal transJorm oJ (R~_1' I~-1' I~_1 , 
S~_l)· 
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(3.18.2). Assume that ordR In = d. Let (Rn+! , In+! , In+!} be a 
monoidal transform of (Rn, In: In' Rn) such that In+! C M(Rn+!), 
let V be a valuation ring of the quotient field of Ro such that V 
dominates Rn+! , and let (R~ , I~ ,I~) be the monoidal trans form of 
(Ro , 10 ,10 ,Ro) along V. Then 2:S; dirn R~ = dirn Rn+! ~ 3, 
ordR' I~ = d, and there exists exactly one two-dimensional element S~ 
in i(R~) such that M(Ro} C M(S~} and I~ C M(S~). Moreover, 
S~ E (f2(R~ ,I~), (S~, I~) has a pseudonormal crossing at R~, and 
there exists a positive integer m and a sequence (R~ , I; ,I; , S;)o';;i<m 
such that: R~ is a regular local domain with dirn R~ = dirn R~ and 
X and I; are nonzero principal ideals in R; with ordRJ; = d for 
o < i < m; S; E (f2(R; ,1;) and (S;, I;) has a p;eudonormal 
crossing at R~ for 0 < i < m; (R; , I; ,I;) is a monoidal trans form 
of (R;_1 , 1;-1,1;-1, S;-I) for 0 < i < m; and (Rn+! , In+! ,In+!) 
is a monoidal transform of (R;"_I' I:n-l ,I:n-l , S:n-l)' 

(3.18.3). Assume that (f2(Ro , 10) has a strict normal crossing at 
Ro , ordR In = d, and there does not exist any element S' in 
(f2(Rn , In) such that (S', In) has a pseudonormal crossing at Rn. 
Let (Rn+! , In+! ,In+!) be a monoidal trans form of (Rn, In ,In' Rn) 
such that In+! C M(Rn+!). Let S be an element in (f(Ro , 10) with 
dirn S ~ 2 such that (S, 10) has a pseudonormal crossing at Ro . Let 
(R', 1',1') be a monoidal transform of (Ro , Jo ,10 , S). Assume that 
there exists a valuation ring V of the quotient field of Ro such that V 
dominates R' and V dominates Rn+!. Then ordR, j' = d, and there 
exists a positive integer e and aresolver (R; , I; ,I; , S;)o,;;i<e such 
that ordR;J; = d for 0 ~ i < e, (R~, I~ ,I~) = (R', j',I'), and 
(Rn+! , In+! , In+l) is a monoidal transform of (R;-1 , I~-1 ,1;-1' S;_I)' 

PROOF OF (3.18.1). We shall rnake induction on n. First consider 
the case of n = 1; if S =I=- So then by (3.10.4) and (1.1O.12) we 
would get that SE (f2(Rn ,In) and (S, In) has a pseudonorrnal 
crossing at Rn, which would contradict our assurnption; there­
fore S = So and hence it suffices to take (R~, I~ ,I~ , S~) = 

(Ro , 10,10 , So)· Now let n > 1 and assurne that the assertion is 
true for all values of n smaller than the given one. By (3.10.2) and 
(3.1O.5) we get that dirn Ri = 3 and (f2(R i , Ii) has astriet normal 
erossing at Ri for 0 ~ i < n. Henee if S = So then it suffiees to 
take (R;, J; , I; , S;) = (R. , J. ,li, Si) for 0 ::s:: i < n. So now 
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assurne that S i= So. Then by (3.10.4) and (LIO.12) we get that 
SE (t2(R1 , 11) and (S,I1) has a pseudonormal crossing at R1 . 
Therefore upon applying the induction hypothesis to the system 
[(Ri , Ii ,li' Sih"":f.<n , (Rn, In , In)] we can find a sequence 
(Rt, Jt, It, Snl"'i<n such that: Rt is a three-dimensional regular 
local domain and Jt and It are nonzero principal ideals in Rt 
with ordR:Jt = d for 1 ~ i < n; (f2(Rt, In has astriet normal 
crossing at Rt for 1 ~ i < n; st E (f2(Rt, In and (st, In has a 
pseudonormal crossing at Rt for I ~ i < n; (Rt, If, g, sn = 
(R1 , 11,11 , S); (R1, Jt, It) is a monoidal transform of (R1-1 , 
11-1 ,11-1 , S1-1) for 1 < i < n; and (Rn' In , In) is a monoidal 
transform of (R!-I' 1;-1 ,1;_1' S;_I)' Let (R; , I; , I;) = (Rn' 
In , In)' Let (R~ , I~ , I~ , S~) = (Ro , 10 ,10 , S). Take a valuation 
ring V of the quotient field of Ro such that V dominates Rt. 
Let (R~, I~ , I~) be the monoidal transform of (R~, I~, I~, S~) 
along V, and let S~ = So. Then by (3.10.4), (3.10.5), and (LIO.l2) 
we get that dirn R~ = 3, ordRJ~ = d, (t2(R~, I~) has astriet 
normal crossing at R~ , S~ E (f2(R~, I~), (S~ , I~) has a pseudonormal 
crossing at R~, and (R:, It, It) is a monoidal transform of 
(R~ , I~, I~ , S~). It now suffices to take (R~, I; , I; , S;) = 
(R1, 11, It, sn for 2 ~ i < n. 

PROOF OF (3.18.2). We shall make induction on n. 
First consider the case of n = L By (3.10.6) we get that 

2 ~ dirn R~ = dirn R2 ~ 3, ordRJ~ = d, and there exists exactly 
one two-dimensional element S~ in m(R~) such that M(Ro) C M(S~) 
and I~ C M(S~). Moreover, by (LIO.12), (3.7.2), (3.7.4), and 
(3.10.6) we get that S~ E (t2(R~ , I~), (S~, I~) has a pseudonormal 
crossing at R~, and upon letting (R', j',I') be the monoidal 
transform of (R~, I~, I~, S~) along V we have that: (1) if 
So f/: ID(R~) then (R', j',I') = (R2 , 12,12); and (2) if So E ID(Ro) 
then dirn R' = dirn R~ , ordR, j' = d, {So , S~} has anormal crossing 
at R~ , (So, I~) has a pseudonormal crossing at R~, So E (f2(R', j'), 
(So, 1') has a pseudonormal crossing at R', and (R2 , 12 ,12) is the 
monoidal transform of (R', j',I', So) along V. In case (1) it 
suffices to take m = 1. In case (2) it suffices to take m = 2 and 
(R~ , I~ , I~ , S~) = (R', j', 1', So). 

Now let n > 1 and assurne that the assertion is true for all 
values of n smaller than the given one. By (3.10.2) we have that 
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dirn R1 = 3, and hence upon applying the induetion hypothesis to 
the system [(R"" I", , I", , S.~)l<>i<n , (Rn, In , In)] we can find a 
positive integer q and a sequence (Rt, It, It, Sno<>"'<q sueh that: 
Rt is a regular loeal domain with dirn Rt = dirn Rn+1 and It and 
It are nonzero principal ideals in Rt with ordR~It = d for 
o ~ i < q; st E (f2(Rt, In and (st, In has a pseudonormal 
erossing at ~* for 0 ~ i < q; (R:, I:, In is a mönoidal transform 
of (R1 , 11,11 , R1); (Rt, It, In is a monoidal transform of 
(Rt1 , It1 ,It1 , S:'-l) for 0 < i < q; and (Rn+1 , In+1 , In+1) is a 
monoidal transform of (R:_1 , 1:-1,1:-1 , S:_l). Now (Rt, I:, I:) 
is a monoidal transform of (R1 , 11,11 , R1) and ordR;I: = d; 
henee in particular It C M(Rt); therefore by (3.10.6) we get that 
2 ~ dirn R~ = dirn R: ~ 3, ordRJ~ = d, and there exists exactly 
one two-dimensional element S~ in m(R~) sueh that M(Ro) C M(S~) 
and I~ C M(S~). Moreover, by (1.10.12), (3.7.2), (3.7.4), and 
(3.10.6) we get that S~ E (fS(R~, I~), (S~, I~) has a pseudonormal 
crossing at R~, and upon letting (R', j', I') be the monoidal 
transform of (R~, I~, I~ , S~) along V we have that: (I *) if 
So E m(R~) then (R', j', I') = (R:,I:,1:); and (2*) if So rt m(R~) 
then dirn R' = dirn R~, ordR-I' = d, {So, S~} has anormal 
erossing at R~, (So, I~) has a pseudonormal crossing at R~, 
So E (f2(R', j'), (So, I') has a pseudonormal erossing at R', and 
(R:, I:, I:) is the monoidal transform of (R', j', I', So) along V. 
In ease (I *) it suffices to take m = q + land (R; , I; , I; , Sa = 

(Rt-1, It1 ,It1 , St1) for I ~ i < m. In case (2*) it suffices to 
take m = q + 2, (R~, I; , I~ , S~) = (R', j', I', So), and (R;, I; , 
I; , S;) = (Rt2' Jt2 ,Its, S1-2) for 2 ~ i < m. 

PROOF OF (3.18.3). First suppose that S =1= Ra. Then 
SE (f2(Ro , 10) and henee by (3.18.1) there exists a sequence 
(Rt, It, It, Sno"-i<>n such that: Rt is a regular loeal domain and 
It and It are nonzero principal ideals in Rt with ordR~It = d 
for O~ i ~ n; (fS(Rt, In has astriet normal erossing at Rt for 
o ~ i < n; st E (f2(Rt, In and (st, In has a pseudonormal 
crossing at Rt for 0 ~ i < n; (R:, I:, n, S:) = (Ra, 10 ,10 , S); 
(Rt, It,It) is a monoidal transform of (R1-1' 11-1 , It1' S1-1) 
for 0 < i ~ n; and (R: , I; , I; , S~) = (Rn, In , In , Rn). Clear­
Iy (R', j', I') = (Rt, It,1t), and henee ordR-I' = d. By (1.10.8) 
we get that 1ft. has a quasi normal erossing at R .. , and hence 
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(Rn' In) has a pseudonormal crossing at Rn. It suffices to take 
e = n and (R~ , I; , I; , S~) = (R41 , 141,141' S41) for 0 ::::; i < e. 

Next suppose that S = Ro • Then by (3.18.2) we get that 
ordR, j' = d and there exists a positive integer m and a sequence 
(R1', 11', n, SnO~i<m such that: R1' is a regular local domain and 
11' and n are nonzero principal ideals in R1' with ordR~It = d 
for 0 ::::; i < m; Si* E (f2(R1', In and (st, In has a pseud~normal 
crossing at Rt for 0 ::::; i < m; (R;, I;, In = (R', j',I'); (Rt, 
It, In is a monoidal transform of (Rtl' Itl' Itl' Stl) for 
o < i < m; and (Rn+1' 111,+1 ,111,+1) is a monoidal transform of 
(R;;;_I' 1;;;-1 ,1;;;_1' S;;;_I). By (3.11) we get that (f2(Rt, In has a 
strict normal crossing at Rt for 0 ::::; i < m. It suffices to take 
e = m and (R~, I; ,I~, S~) = (R1', It,n, sn for 0::::; i < e. 

(3.19). Let (Ri , Ii ,li' Si)O';;i<OO be an infinite resolver such 
that ordRJi = ordRJo for 0 ::::; i < 00, Ro is pseudogeometric, and 
dirn Ro ::::; 3. Let d = ordRJo. Then we have the following. 

(3.19.1). There exists a unique nonnegative integer n such that 
Si *" Ri for 0 ::::; i < n and Sn = Rn . 

(3.19.2). Let n be as in (3.19.1). Let S be a positive-dimensional 
element in (f(Ro , 10) such that (S, 10) has a pseudonormal CTossing at 
R o , and if dirn S = 2 then (f2(Ro , 10) has a strict normal crossing 
at Ro . Let (R', j',I') be a monoidal transform of (Ro , 10,10 , S). 
Assume that there exists a valuation ring V of the quotient field of Ro 
such that V dominates R' and V dominates Rn+1 . Then ordR, j' = d, 
and there exists a positive integer q and a resolver (R~ , I; , I; , S~)o~i<q 
such that ordR'.]; = d for 0 ::::; i < q, (R~, I~ , I~) = (R', j', 1'), 
and (R~_1 , I~-; , I~_1 , S~_I) = (Rn+1 , 111,+1 ,111,+1 , SM1)· 

(3.19.3). Let [(R1', It, n, SnO"i<m , (R;;; , I;;; , I;;;)] be a finite 
weak resolver such that (R;, I;,It) = (Ro , 10,10). Assume that 
there exists a valuation ring V of the quotient field of R o such that V 
dominates R;;; and V dominates Rdor 0 ::::; i < 00. Then ordR~I1' = d 
for 0 ::::; i ::::; m, and there exist positive integers q and e and aresolver 
(R~ , I~ , I; , S;)o';;i<q such that ordR ' I~ = d for 0 ::::; i < q, (R~, 
I~ , I~) = (R;;; , I;;; , I;;;), and (R;-I: 1;-1 ,1;-1 , S;-I) = (Re' Ie , 
I" Sp,). 
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PROOF OF (3.19.1). The uniqueness is obvious. Since (Ri , Ii) is 
unresolved for 0 ~ i < 00, we get that 2 ~ dirn Si ~ 3 for 
o ~ i < 00; in view of (3.5) we also get that dirn R i = 3 for 
o ~ i < 00. Therefore the existence follows from (3.15). 

PROOF OF (3.19.2). Since (Ri , Ii) is unresolved for 0 ~ i < 00, 

we get that d > 1, 2 ~ dirn S ~ 3, and 2 ~ dirn Si ~ 3 for 
o ~ i < 00; in view of (3.5) we also get that dirn R i = 3 for 
o ~ i < 00. Therefore Si E (f2(Ri , Ii) for 0 ~ i < n. If S = So 
then (R', j', I') = (R1 , 11 ,11)' and hence ordR-f' = d and it 
suffices to take q = n + 1 and (R;, I; , I; , S;) = (RH1 , IHI , 
Ii+! , Si+!) for 0 ~ i < q. So now assurne that S =1= So. Then we 
must have n > 0, So E (f2(Ro , 10)' and (f2(Ro , 10) has astriet 
normal crossing at Ro . By (3.11) we now get that (f2(Rn , In) has 
a strict normal erossing at Rn; since dirn Sn =1= 2, we eonclude that 
there does not exist any element S' in (f2(Rn , In) such that (S', In) 
has a pseudonormal crossing at Rn. Therefore by (3.18.3) we get 
that ordR, j' = d, and there exists a positive integer e and a 
resolver (R; , I; , I; , S;)o~i<e such that ordR,): = d for 0 ~ i < e, 
(R~ , I~ , I~) = (R', j', I'), and (Rn+!, In+! , In+!) is a monoidal 
transform of (R;_I' 1;-1 ,1;_1 , S;_I). It now suffices to take 
q = e + 1 and (R~_1 , I~-1 , I~_1 , S~_I) = (Rn+! , In+! , In+! , Sn+!)· 

PROOF OF (3.19.3). We shall make induction on m. 
First consider the case of m = 1. By (3.19.1) there exists a 

unique non negative n such that Si =1= R i for 0 ~ i < n and 
Sn = Rn . Let S = St'. Then S is a positive-dimensional element 
in (f(Ro , 10) such that (S,Io) has a pseudonormal crossing at Ro , 
and if dirn S = 2 then (f2(Ro , 10) has a strict normal crossing at Ro . 
Also (R:t;, I:t; ,I:t;) is a monoidal transform of (Ro , 10 ,10 , S), 
V dominates R:t; , and V dominates Rn+!. Therefore by (3.19.2) 
we get that ordR*It = d for 0 ~ i ~ m, and there exists a positive 
integer q and a r~solver (R; , I; , I; , S;)o~i<q such that ordRJ; = d 
for 0 ~ i < q, (R~·, I~ , I~) = (R:t; , I:t; ,I:t;), and (R~_I' I~-1 , 
I~_1 , S~_I) = (Rn+! , In+! , In+! , Sn+!). It suffiees to take e = n + 1. 

N ow let m > 1 and ass urne that the assertion is true for all 
values of m smaller than the given one. Upon applying the induction 
hypothesis to the finite weak resolver [(Rt, It, It, SnO~i<m-l , 
(R;;;--'1 , 1;;;-1 ,1;;;_1)] we get that ordR*Jt = d for 0 :s;: i :s;: m - 1, 
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and there exist positive integers a and band a resolver (R'~, J; , 
I; , S;)o~i<a such that ordR;l; = d for 0 ~ i < a, (R~ , J~ ,I~) = 
(R~_1 , J~-1 ,I~_I)' and (R~-1 , J~-1 ,I~-1 , S~_I) = (Rb' Jb ,Ib , Sb)· 
Now R~ is pseudogeometric and dirn R~ ~ 3. By (1.10.5) we also 
get that (R~, J;) is unresolved for 0 ~ i < a. Let (R;, J~ , 
I; , S;) = (Rb- a+1H' Jb-a+1H ,Ib- a+1H , Sb-a+1H) for a ~ i < 00. 

Then (R; , J; ,I; , S;)O~i<OC> is an infinite resolver. Therefore by 
(3.19.1) there exists a unique nonnegative integer n such that 
S; =1= R; for 0 ~ i < n and S;. = R;' . Let S = S~-1 . Then S is 
a positive-dimensional element in (f(R~ , J~) such that (S, I~) has a 
pseudonormal crossing at R~ , and if dirn S = 2 then (f2(R~ , J~) 
has a strict normal crossing at R~ . Also (R~ , J~ ,I~) is a monoidal 
transform of (R~ , J~ ,I~ ,S), V dominates R;); , and V dominates 
R~+1 . Therefore by (3.19.2) we get that ordR* J;); = d, and there 
exists a positive integer c and a resolver (R~, j; , I; , S;)O~i<C such 
that ordRJ; = d for 0 ~ i < c, (R~, J~, I~) = (R;); , J~ ,I;);), and 
(R;_I' J;~1 ,1;_1' S;_I) = (R;'+1 , J;'+1 ,1;'+1 , S;'+1). If n + 1 ;;:: a-l 
then it suffices to take q = c and e = b - a + n + 2. If 
n + 1 < a - 1 then it suffices to take e = b, q = c + a - n - 2, 
and (R~ , J; , I; , S;) = (R;'+2-cH' J;'+2-CH ,I;'+2-rH , S;'+2-Ni) for 
c ~ i < q. 

(3.20). Let R be a regular local domain such that R is weakly 
resolvable. Then R is weakly semiresolvable. 

PROOF. Let R' be any iterated monoidal transform of R, let j' 
be any nonzero principal ideal in R' such that (R', j') is unresolved, 
and let V be any valuation ring of the quotient field of R such that 
V dominates R'. Now R' is a nonzero principal ideal in R', and R' 
has a quasi normal crossing at R'. Since R is weakly resolvable, 
there exists a finite weak resolver [(Ri , Ji ,li , Si)O~i<m , 
(Rm , Jm, Im)] such that (Ro , Jo '/0) = (R', j', R'), ordRI = 
ordRJi > ordR Jm for 0 ~ i < m, and V dominates Rm . Clearly 
[(Ri : Ji , Si)o~;<m , (Rm , Jm)] is a finite weak semiresolver. It 
follows that R is weakly semiresolvable. 

(3.21). Let R be a pseudogeometric regular local domain. Then 
we have the following. 
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(3.21.1). Assume that dirn R ~ 2. Then R is strongly semi­
resolvable, semiresolvable, weakly semiresolvable, strongly resolvable, 
resolvable, and weakly resolvable. 

(3.21.2). Assume that dirn R ~ 3. Then R tS strongly sub­
resolvable. 

(3.21.3). Assume that dirn R ~ 3 and R is weakly semiresolvable. 
Then R is strongly semiresolvable. 

(3.21.4). Assume that dirn R ~ 3 and R is weakly resolvable. 
Then R is strongly resolvable, weakly semiresolvable, and strongly 
semiresolvable. 

PROOF OF (3.21.1). By (3.5) it follows that R is strongly serni­
resolvable and strongly resolvable. 

To prove that R is serniresolvable and weakly serniresolvable, 
let R' be any iterated rnonoidal transforrn of R, let ]' be any 
nonzero principal ideal in R' such that (R', ]') is unresolved, and 
let V be any valuation ring of the quotient field of R such that 
V dorninates R'. Then R' is pseudogeornetric and dirn R' = 2. 
Let (Ri , Ii)o«i<oo be the unique infinite sequence such that 
(Ro,Io) = (R', ]'), and (Ri , Ii) is the rnonoidal transforrn of 
(Ri - 1 , Ii-l , Ri - 1) along V for 0 < i <:::: 00. By (3.5) there exists 
a positive integer m such that (Ri , Ii) is unresolved for 0 ~ i < m, 
and (~, Im) is resolved. Clearly [(Ri , Ii , Ri)o«i<m , (Rm , Im)] 
is a finite serniresolver. Now ordRJi ~ ordRJi whenever 
o ~ j ~ i < 00. Therefore in view oE' (1.10.5) there exists an 
integer n with 0 < n ~ m such that ordR,], = ordRJi > ordR In 
for 0 ~ i < n. Clearly [(Ri , Ii , Ri)o«i<n , (Rn , I~)] is a fi~ite 
weak serniresolver. It follows that R is a serniresolvable and weakly 
serniresolvable. 

To prove that R is resolvable and weakly re solvable, let R' be 
any iterated rnonoidal transforrn of R, let ]' and l' be any nonzero 
principal ideals in R' such that (R', ]') is unresolved and l' has 
a quasinorrnal crossing at R', and let V be any valuation ring of 
the quotient field of R such that V dorninates R'. Then R' is 
pseudogeornetric and dirn R' = 2. Let (Ri , Ii ,Ii)o«i<oo be the 
unique infinite sequence such that (Rn, In, In) = (R', .1',1'), and 
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(Ri , Ii ,li) is the monoidal transform of (Ri- 1 , Ii-l , li-I' Ri- 1) 

along VforO < i < 00. By(1.1O.8)wegetthatIi hasaquasinormal 
crossing at Ri for 0 ~ i < 00. By (3.5) there exists a positive 
integer m such that (Ri ,Ii) is unresolved for 0 ~ i < m, and 
(Rm , 1m) is resolved. Clearly [(Ri , Ii ,li' Ri)o<i<m , (Rm , 1m , Im)] 
is a finite resolver. Now ordRJi ~ ordRJi whenever 
o ~ j ~ i < 00. Therefore in view oE' (1.10.5) there exists an 
integer n with 0 < n ~ m such that ordRI = ordRJi > ordR In 
for 0 ~ i < n. Clearly [(Ri , Ii ,li' Ri)o<i<n , (Rn,' In ,In)] i; a 
finite weak resolver. It follows that R is resolvable and weakly 
resolvable. 

PROOF OF (3.21.2). Follows from (3.12) and (3.15). 

PROOF OF (3.21.3). Suppose if possible that R IS not strongly 
semiresolvable. Then there exists an infinite semiresolver 
(Ri , Ii , Si)O<i<oo such that Ro is an iterated monoidal transform 
of R. Now ordRJi ~ ordR}i whenever 0 ~ j ~ i < 00, and hence 
there exists a nonnegative integer n such that ordRJi = ordR In 
whenever n ~ i < 00. We can take a valuation ring V of the 
quotient field of Ro such that V dominates Ri for 0 ~ i < 00. 

Now Rn is an iterated monoidal transform of R, Rn is pseudo­
geometrie, dirn Rn ~ 3, and (RnH , In+i , SnH)o<i<oo is an infinite 
semiresolver. Since R is weakly semiresolvable, there exists a finite 
weak semiresolver [(R1', 11', Sl)o<i<m , (R;t; ,I;t;)] such that (Rt, 
Iit) = (Rn, In)' ordR In > ordR* I;t;, and V dominates R;t;. 
By (3.17.3) we get that ~rdR* Ir! = ~rdR In . This is a contradiction. 

m n 

PROOF OF (3.21.4). By (3.20) and (3.21.3) it follows that R is 
weakly semiresolvable and strongly semiresolvable. 

Suppose if possible that R is not strongly resolvable. Then there 
exists an infinite resolver (Ri , Ii ,li' Si)O<i<oo such that Ro is an 
iterated monoidal transform of R. Now ordRJi ~ ordRJi whenever 
o ~ j ~ i < 00, and hence there exists a' nonnegati~e integer n 
such that ordRJi = ordR In whenever n ~ i < 00. We can take a 
valuation ring 'V of the q~otient field of Ro such that V dominates 
Ri for 0 ~ i < 00. Now Rn is an iterated monoidal transform of R, 
Rn is a pseudogeometric, dirn Rn ~ 3, and (RnH , InH ,InH , 
Sn+i)o<i< 00 is an infinite resolver. Since R is weakly resolvable, 
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there exists a finite weak resolver [(Rf. If. Jt. St)o<;,i<m • (~ • I~ • 
I~)] such that (Ro*. 1:. I:) = (Rn. In • In). ordR,.Jn > ordR:..l~ • 
and V dorninates ~. By (3.19.3) we get that ordR:.I~ = ordR..ln • 

This is a contradiction. 

§4. Unramified local extensions 

(4.1). Let Rand R' be local rings such that R' dominates R, 
and M(R)R' is primary for M(R'). Then for any nonunit ideal Q' 
in R' we have that dirn(R'/Q') ::::;; dirn(Rj(R () Q'». 

PROOF. Let h: R' -- R'/Q' be the canonical epirnorphisrn and 
let n = dirn(R/(R () Q'». Now h(R) is isomorphie to R/(R () Q'), 
and hence there exist elements Xl' ... , Xn in M(h(R» such that 
(Xl' ... , xn)h(R) is prirnary for M(h(R». Since M(R)R' is prirnary 
for M(R'), we get that M(h(R»(R'/Q') is prirnary for M(R'/Q') 
and hence (Xl' ... , xn)(R'/Q') is prirnary for M(R'/Q'). Therefore 
dirn( R' /Q') ::::;; n. 

(4.2). Let Rand R' be regular local domains such that dirn R' = 

dirn R, R' dominates R, and M(R)R' is primary for M(R'). Let 
S' E ~(R'). Then we have the following. 

(4.2.1). dirn S' ~ dirn RRnMCS')' 

(4.2.2). Assume that dirn S' = dirn RRnMCs'), Then 
(R () M(S'»S' is primary for M(S'). 

(4.2.3). Assume that dirn S' = dirn RRnMCs'), Then: 
(R () M(S'»S' = M(S') ~ s' rt 6(R', (R () M(S'»R'). 

PROOF. (4.2.1) follows frorn (4.1) in view of the fact that for 
any regular local dornain Rand any SE ID(R) we have that 
dirn S + dirn(R/(R () M(S))) = dirn R (see [18: (34.5)]). Now 
assurne that dirn S' = dirn RRnM(s')' Suppose if possible that there 
exists a prime ideal Q' in R' such that (R () M(S'»R' C Q' C 
R' () M(S') and Q' =1= R' () M(S'); now R ()Q' = R () M(S') and 
hence by (4.2.1) we get that dirn R~, ? dirn RR('\MCS'); consequently 
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dirn R~, ~ dirn S'; since Q' eR' n M(S'), we must have Q' = 
R' n M(S'); this is contradiction. Therefore R' n M(S') is a 
minimal prime ideal of (R n M(S')R' in R', and hence 
(R n M(S'))S' is primary for M(S'). This proves (4.2.2). (4.2.3) 
follows from (4.2.2). 

(4.3). REMARK. In (4.3) we shall make so me observations 
which will be used tacitly in the rest of §4. Let Rand R' be regular 
local domains such that dirn R' = dirn R, R' dominates R, and 
M(R)R' = M(R'). Then for any nonempty sub set Q of R we 
clearly have that ordR'Q = ordRQ. Let S be any element in lB(R) 
having a simple point at R. Then clearly (R n M(S))R' is a prime 
ideal in R' and upon letting S' be the quotient ring of R' with 
respect to (R n M(S»R' we get that S' has a simple point at R' 
and dirn S' = dirn S. By (4.2.1) it follows that S' dominates S, 
and S' is the only element in lB(R') such that: dirn S' = dirn S 
and S' dominates S. Since M(S)S' = M(S'), for any nonzero 
principal ideal I in R we have that: SE (f(R, J) ~ S' E (f(R', IR'). 
Finally note that if SI , ... , Sn are any distinct elements in lB(R) 
such that {SI' ... , Sn} has anormal crossing at R then, upon letting 
S~ be the unique element in lB(R') such that dirn S~ = dirn Si and 
s; dominates Si , we get that S{ , ... , S~ are distinct elements in 
lB(R') and {S~ , ... , S~} has anormal crossing at R'. 

(4.4). Let Rand R' be regular local domains such that dirn R' = 
dirn R, R' dominates R, and M(R)R' = M(R'). Assume that (1) for 
every S' E lB(R') we have that S' 1'- 6(R', (R n M(S'»R'). Then for 
every nonzero principal ideal I in R we have the following. 

(4.4.1). Assume that (R', IR') is resolved. Then (R, I) tS 

resolved. 

(4.4.2). Assume that (R, I) is unresolved and let S' be any 
element in (f2(R', IR'). Then RRr'\M(s') E (f2(R, J). 

(4.4.3). Assume that (f2(R, J) has astriet normal crossing at R, 
let SI , ... , Sn (0 ~ n ~ 2) be the distinct elements in (f2(R, I), and 
let S; be the unique element in lB(R') such that dirn S~ = 2 and 
S~ dominates Si' Then S~, ... , S~ are distinct, (f2(R', IR') = 
{S; , ... , S~}, and (f2(R', IR') has astriet normal crossing at R'. 
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PROOF OF (4.4.1). We have nothing to show if I = R. So 
assume that I =F R. Let d = ordRI. Then IR' = xd R' where 
o =F XE R' such that ordR,x = I.Now I = prl ••• p~" where 
n, UI , ••• , Un are positive integers and PI' ... , P"" are distinct 
nonzero principal prime ideals in R. Let et = ordRPt . Then 
PtR' = ;xeiR' and in particular Pi eRn xR' for I ~ i ~ n. Now 
R n xR' is a prime ideal in Rand by (4.2.1) we know that 
dim RRf'lXR' ~ 1; since Pi eRn xR' for 1 ~ i ~ n, we get that 
n = 1 and PI = Rn xR'. By (I) we get that R~R' f# 6(R', PtR') 
and hence et = 1. Therefore (R, J) is resolved. 

PROOF OF (4.4.2). Note that S' and RMM(S') are regular by 
[18: (28.3)], and clearly S' dominates RRf'lM(S'). Since (R, J) is 
unresolved, we have that I =F Rand hence I = pr l ••• p':''' where 
n, uI , ••• , u"" are positive integers and PI' ... , P"" are distinct 
nonzero principal prime ideals in R. Clearly S' E <f(R', PiR') for 
1 ~ i ~ n; consequently PiR' C M(S') and hence Pi eRn M(S') 
for 1 ~ i ~ n. Suppose if possible that Pt = Rn M(S'); then we 
must have n = 1; since (R, I) is unresolved, we get that ordRPt > 1 
and hence ordR,PtR' > 1; since S' E <f(R', PtR'), we deduce that 
S' E 6(R', PIR'); this contradicts (1). Therefore Pt =F Rn M(S'); 
since Pt eRn M(S'), we get that dim RRf'lM(S') ~ 2 and hence by 
(4.2.1) we get that dim RMM(S') = 2. Therefore in view of (1), 
by (4.2.3) we get that (R n M(S'»S' = M(S') and hence 
M(RRf'lM(S'»S' = M(S'). Consequently RMM(S') E <f2(R, J). 

PROOF OF (4.4.3). If dim R < 3 then our assertion is trivial. 
If dim R ~ 3 then (R, J) is unresolved and hence our assertion 
follows from (4.4.2). 

(4.5). Let A be the formal power series ring k[[XI , ••• , X",,]] 
in indeterminates XI' ... , x,,,, over a field k. Upon letting 

for every 

f = 't"'j, X'l ... X' .. E A 
L.. 'I ••• '.. 1 .. (AI ... i .. E k), 
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we get a derivation D}*' of A; let !l* denote the set of these n 
derivations D{, ... , D; of A; for any derivation D of k we get a 
derivation D** of A by taking 

D**f = "(DI. . )Xi, ... Xifl . 
L... :l t •··· ... n 1 n ' 

let !l** denote the set of all these derivations D** of A as D varies 
over the set of all derivations of k; let !l = !l* if k is of zero 
characteristic, and !l = !l * U !l * * if k is of nonzero characteristic. 
Let k' be a separable algebraic extension of k, and let A' = 

k'[[Xl , ... , X n ]] which is regarded as an overring of A. Let !l' be 
the set of derivations of A' obtained by replacing k by k' in the 
above definition of !l. Then given any D E !l there exists a unique 
D' E!l' such that D'f = DI for all 1 E A; let H: !l --+!l' be the 
map defined by taking H(D) = D' for all D E!l. The following is 
contained in Nagata's Jacobian Criterion [18: (46.3)]. 

(4.5.1). Let Q be an ideal in A, let p* C P be prime ideals in 
A such that A p fj; 6(A, Q) and p* is a minimal prime ideal 01 Q 
in A, and let e = dirn R p*. Then there exist elements Wl , .•• , We in 
Q and elements Dl , ... , De in !l such that det(Diwj)i,j=1. .... e fj; P 
(for e = 0 we take the value of the determinant to be one). 

The following is also implicitly contained in the proof of 
[18: (46.3)]; for the sake of completeness we shall prove it here. 

(4.5.2). Let P be a prime ideal in A, let Wl , ... , We be elements in P, 
and let D l , ... , De be elements in 1) such that det(Di wj )i.j=1. .... e i P. 
Then Apj(wl , ... , we)A p is regular. Moreover, if p* is a prime ideal 
in A such that (wl , ... , we)A C p* C P and dirn A p* = ethen 
(wl , ... , we)A p = p* A p • 

PROOF. Now A p is regular by [18: (28.3)] and hence it suffices 
to show that if r l , ... , re are any elements in A p such that 
rlwl + .. , + reWe E M(A p )2 then rj E M(A p) for all j. So let 
r l , ... , re be any elements inAp such that rlwl + ... + reWe E M(A p)2. 
Then there exist elements VI , ... , Vb in P, elements upq in A, and 
an element t in A with t fj; P, such that upon letting Sj = rjt we 
have that Sj E A for all j and SlWl + '" + SeWe = V where 

v = L UpqVpVq • 

Jl.q=1. ...• b 
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Now Di(SlWl + ... + sewe) = sl(Diw1) + ... + se(Diwe) + (Dh)W1 
+ ... + (Dise)we , (Dis1)W1 + ... + (Dise)we E P, and Div E P. 
Therefore sl(Diw1) + ... + se(Diwe) E P for 1 ~ i ~ e; since 
det(DiWj)i,j=1. .... e i P, it follows that Sj E P for all j, and hence 
rj E M(A p ) for all j. 

From (4.5.1) and (4.5.2) we shall now deduce (4.5.3). 

(4.5.3). Let Q be any ideal in A. Then 6(A', QA') C {S' E m(A'): 
AAf"IM(S') E 6(A, Q)}. 

PROOF. Let S' be any element in m(A') such that upon letting 
P = An M(S') we have that A p i 6(A, Q). We want to show that 
then S' i 6(A', QA'). This is obvious if Q cf: P. So assurne that 
Q C P. Since A p i 6(A, Q), we get that QA p is a prime ideal in 
A p and hence Q = p* n Ql n ... n Qm where p* is a minimal 
prime ideal of Q in A, p* C P, and Ql , ... , Qm are primary ideals 
in A such that Qb cf: P for 1 ~ b ~ m. Let e = dirn Apo. Since 
A p i 6(A, Q), by (4.5.1) there exist elements W1 , ... , We in Q and 
elements D1 , ... , De in !l such that det(Diwj)i.j=1. .... e i P. By 
(4.5.2) we now get that (w1 , ... , we)A p = p* A p ; consequently 
(w1 , ... , we)A p = QA p and hence (w1 , ... , welS' = QS'. 
Let D~ = H(Di ). Then D~, ... , D; are elements in !)' and 
det(D~wj)i.j=1. .... e i A' n M(S'); consequently by (4.5.2) we get 
that S'j(Wl' ... , we)S' is regular, and hence S' i 6(A', QA'). 

(4.6). Let Rand R' be regular local domains such that dirn R' = 
dirn R, R' dominates R, R' is residually separable algebraic over R, 
M(R)R' = M(R'), and the characteristic of RjM(R) is the same as 
the characteristic of R. Let R* and R'* be the completions of Rand 
R' respectively. Assume that: (1) for every ideal Q in R we have that 
6(R*, QR*) = {S E m(R*): RRf"IM(S) E 6(R, Q)}; and (1') for every 
ideal Q' in R' we have that 6( R' *, Q' R' *) = {S' E m( R' *): 
R~'f"IM(S') E 6(R', Q')} (see (1.2.6». Then we have the following. 

(4.6.1). If Q is any ideal in R then 6(R', QR') C {S' E m(R'): 
RRf"IM(S') E 6(R, Q)}. 

(4.6.2). If ] is (.my nonzero principal ideal in R such that (R, ]) 
is unresolved then (R', JR') is unresolved. 
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(4.6.3). 11 I is any nonzero principal ideal in R such that (R, I) is 
unresolved and S' is any element in (f2(R', IR') thenRRnMIS') E (f2(R, J): 

(4.6.4). 11 I is any nonzero principal ideal in R such that 
(f2(R, I) has a strict normal crossing at R then (f2(R', IR') has a 
strict normal crossing at R' and, upon letting SI' ... , Sn (0 ~ n ~ 2) 
be the distinct elements in (f2(R, I) and S~ the unique element in 
l!l(R') such that dirn S~ = 2 and S; dominates Si' we have that 
S~ , ... , S~ are distinct and (f2(R', IR') = {S~ , ... , S~}. 

PROOF. For any S' E l!l(R') we clearly have that RRnMIS') f/= 
6(R, R n M(S'», and hence (4.6.2), (4.6.3), and (4.6.4) would 
follow from (4.4) and (4.6.1). Therefore it suffices to prove (4.6.1). 
Let h: R* ~ R'* be the unique homomorphism such 
that h(M(R*» C M(R'*) and h(u) = u for all u E R. Now 
dirn h(R*) ~ dirn R* = dirn R'* and M(h(R*»R'* = M(R'*). 
Therefore we must have dirn h(R*) = dirn R* and hence h is a 
monomorphism. Consequently we may identify R* with a sub ring 
of R'*. Let n = dirn Rand let (Xl' ... , X n) be a basis of M(R). 
By Cohen's structure theorem [28: Theorem 27 on page 304] there 
exists a subfield k of R* such that k is a coefficient set for R*. 
By Zorn's lemma there exists a subfield k' of R'* such that k C k' 
and k' is not contained in any subfield of R'* other than k'. Now 
R'* is residually separable algebraic over R* and hence k' is 
separable algebraic over k and by Hensel's lemma [28: Theorem 17 
on page 279] it follows that k' is a coefficient set for R' *. Therefore 
there exists a unique k'-isomorphism h': R'* ~ k'[[Xl , ... , X n]] 

such that h'(Xi) = Xi for 1 ~ i ~ n, where k'[[Xl , ... , X n ]] is the 
formal power series ring in indeterminates Xl' ... , X n with 
coefficients in k'. Via h' let us identify R'* with k'[[Xl , ... , X n]]. 

Note that then R* gets identified with k[[Xl , ••. , X n ]]. To prove 
(4.6.1) let Q be any ideal in Rand let S' be any element in 
6(R', QR'); since R'* is the completion of R', we can find 
S'* E l!l(R'*) such that R' n M(8'*) = R' n M(8') (see [28: 
Corollary 1 on page 269]); then by (I') we get that 
8'* E 6(R'*, QR'*); let 8* and 8 be the quotient rings of R* 
and R with respect to R* n M(8'*) and R n M(8'*) respectively; 
then by (4.5.3) we get that 8* E 6(R*, QR*), and hence by (1) 
we get that SE 6(R, Q), i.e., RRnMIS') E 6(R, Q). 
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(4.7). Let k be a field, let k' be a separable algebraic extension of k, 
let B = k[X} , ... , X n ] and B' = k'[X} , ... , X n ] where X} , ... , X n 

are indeterminates, and let Q be a prime ideal in B. Then there exists 
a prime ideal Q' in B' such that Q' (') B = Q, and for any such Q' 
we have that B~, dominates BQ , B~, is residually separable algebraic 
over BQ, and M(BQ)B~. = M(B~.). 

PROOF. Now B' is integral over Band hence there exists a prime 
ideal Q' in B' such that Q' (') B = Q (for instance see [4: Lemma 
1.20]). Now let Q' be any such. Then B~. clearly dominates BQ' 
Let h: B~, ---+- B~./M(B~,) be the canonical epimorphism. To prove 
that B~. is residually separable algebraic over BQ and M(BQ)B~. = 
M(B~.) it suffices to show that for any x E B~. and y E M(B~,) we 
have that h(x) is separable algebraic over h(BQ) and y E M(BQ)B~ .. 
So let any x E B~. and y E M(B~.) be given. Then there exists a 
finite separable algebraic extension k* of k contained in k' such 
that x E B~. and y E M(B~.) where B* = k*[X} , ... , X n ] and 
Q* = Q' (') B*. We can take a primitive element Z of k* over k 
and then upon letting f(Z) be the minimal monic polynomial of Z 

over k, where Z is an indeterminate, and upon letting d be the 
Z-discriminant of f(Z) we have that 0 =1= d E k and hence d fI Q. 
Now B is integrally closed in its quotient field k(X} , ... , X n ), B* is 
the integral closure of Bin k*(X} , ... , X n ), z is a primitive element 
of k*(X} , ... , X n ) over k(X} , ... , X n ), andf(Z) is the minimal monic 
polynomial of Z over k(X}, ... , X n ). Therefore by Krull's 
Diskriminantsatz (see [4: Lemma 1.17, Lemma 1.28, and Theorem 
1.44]) we get that B~. is residually separable algebraic over BQ and 
M(BQ)B~. = M(B~.). It follows that h(x) is separable algebraic 
over h(BQ) and y E M(BQ)B~ .. 

(4.8). Let Rand R' be regular local domains such that dirn R' = 
dirn R, R' dominates R, R' is residually separable algebraic over R, 
and M(R)R' = M(R'). Let S be a positive-dimensional element in 
~(R) having a simple point at R, let R} be a monoidal transform of 
(R, S), and let S' be the unique element in ~(R') such that dirn S' = 
dirn Sand S' dominates S. Then there exists a monoidal transform 
R; of(R', S') such that R~ dominates R}. Moreover,for any such R~ 
we have the following: (1) dirn R~ = R} , R; is residually separable 
algebraic over R1 • M(R1)R; = M(R;); (2) ~f ] is any nonzero 
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principal ideal in Rand Jl is the (R, S, Rl)-trans/orm 0/ J, then 
JlR~ is the (R', S', R~)-trans/orm 0/ JR'; and (3) if J and 1 are 
any nonzero principal ideals in Rand (Jl ,11) is the (R, S, Rl)­
trans/orm 0/ (J,1), then (JIR~, IlR~) is the (R', S', R;)-trans/orm 
0/ (JR', IR'). 

PROOF. Let n = dirn Rand m = dirn S. Then there exists a 
basis (Xl' ... , Xn ) of M(R) such that Rn M(S) = (Xl' ... , xm)R and 
Xi/Xl E R I for 2 ~ i ~ m. Now (Xl' ... , Xn ) is a basis of M(R') and 
R' n M(S') = (Xl' ... , xrrJR'. If m = 1 then we have nothing to 
show. So henceforth assurne that m > 1. Let A = R[X2/XI , ... , 
xm/xl] and A' = R'[X2/XI , ... , xm/xl]. Let h': R' -+ k' be an 
epimorphism such that Ker h' = M(R'), and let k = h'(R). Then 
k is a subfield of k', k' is separable algebraic over k, and upon 
letting h(u) = h'(u) for an u E R we get an epimorphism h: R -+ k 
such that Ker h = M(R). Let B = k[X2 , ••• , X m] and B' = 
k'[X2 , ••• , X m] where X 2 , ••• , X m are indeterminates. Let H': 
A' -+ B' be the unique epimorphism such that H'(Xi/x l ) = Xi 
for 2 ~ i ~ m and H'(u) = h'(u) for an u ER'. Upon letting 
H(u) = H'(u) for an u E A we get an epimorphism H: A -+ B such 
that H(x2/Xi ) = Xi for 2 ~ i ~ m and H(u) = h(u) for all 
u E R. Now Ker H = M(R)A and Ker H' = M(R')A'. Let 
P = An M(Rl). Then Pis a prime ideal in A; Ker He P, and 
RI = A p • Let Q = H(P). Then Q is a prime ideal in B. 

By (4.7) there exists a prime ideal Q' in B' such that B n Q' = Q 
and then upon letting P' = H'--l(Q') and R~ = A~, we get that 
R~ is a monoidal transform of (R', S') and R~ dominates Rl . 

Cönversely let R; be any monoidal transform of (R', S') such 
that R; dominates Rl . Then Xi/Xl E R~ for 2 ~ i ~ m and hence 
upon letting P' = A' n M(R~) we get that P' is a prime ideal in A', 
Ker H' C P', R~ = A~" and An P' = P. LetQ' = H'(P'). Then 
Q' is a prime ideal in B' such that B n Q' = Q. Let H'*: R; -+ B~, 
be the unique epimorphism such that H'*(u) = H'(u) for an 
u E A'. Then upon letting H*(u) = H'*(u) for an u E R l we get 
that H*: R l -+ BQ is an epimorphism and H*(u) = H(u) for all 
u E A. Let h*: B o -+ Bo/M(BQ) and h'*: B~, -+ B~-1M(B~,) be the 
canonical epimorphisms, and let t be the transcendence degree of 
h*(Bo) over h*(k). Then dirn R l = n - t. By (4.7), B~, is residuany 
algebraic over Bo and hence t is the transcendence degree of 
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h'*(B~,) over h'*(k'); consequently dirn R~ = n - t and hence 
dirn R~ = dirn R1 . Let h~(u) = h'*(H'*(u» for all u E R~. Then 
h~: R~ -- B~,/M(B~,) is an epirnorphisrn, Ker h~ = M(R~), and 
h~(R1) = h'*(BQ); since, by (4.7), B~,/M(B~,) is a separable 
algebraic extension of h'*(BQ), we get that R~ is residually separable 
algebraic over R1 . Now H'(P)B~, = QB~, = M(BQ)B~, and by 
(4.7) we get that M(BQ)B~, = M(B~,); consequently H'(P)B~, = 

M(B~,) and hence PR~ + (Xl' Xm+1 , ••• , xn)R~ = M(R~); also 
H(P)BQ = M(BQ) and hence PR1 + (Xl' Xm+1 , ••• , xn)R1 = M(R1); 
therefore M(R1)R~ = M(R~). Now let I be any given nonzero 
principal ideal in R, let 11 be the (R, S, R1)-transforrn of I and 
let I~ be the (R', S', R~)-transforrn of IR'; let d = ordsI; then 
d = ords' IR' and hence upon taking WER with wR = I we get 
that 11 = (W/~)R1 and I~ = (w/x~)R;; therefore I~ = I1R~ . 
Finally, let I be any given nonzero principal ideal in R, let 11 be 
the nonzero principal ideal in R' such that (iI ,11) is the (R, S, R1)­
transform of (J, I), and let I~ be the nonzero principal ideal in R~ 
such that (J~ , I~) is the (R', S', R;)-transforrn of (JR', IR'); then 
11 = x~(IR1) and I~ = x1«IR')R~),~ and hence I~ = I1R; . 

(4.9). Let Rand R' be regular local domains such that dirn R' = 
dirn R, R' dominates R, R' is residually separable algebraic over R, 
and M(R)R' = M(R'). Let S be a positive-dimensional element in 
jß(R) having a simple point at R. Let S' be the unique element in 
jß(R') such that dirn S' = dirn Sand S' dominates S (note that then 
S' has a simple point at R'). Let (Ri , Si)o';;i<n be an infinite sequence 
such that either n is a positive integer or n = 00, (Ro , So) = (R, S), 
and for 0 < i < n: Ri is a regular local domain; Si is a positive­
dimensional element in jß(Ri) having a simple point at R i ; and Ri is a 
monoidal transform of (Ri- 1 , Si-I)' Then we have the following. 

(4.9.1). There exists a sequence (R~, S~)o';;i<n such that 
(R~, S~) = (R', S') andfor 0 < i < n: R~ is a regular local domain; 
dirn R~ = dirn Ri ; R~ dominates Ri ; R; is residually separable 
algebraic over Ri ; M(Ri)R~ = M(R;); S; is the unique element in 
jß(R~) such that dirn S; = dirn Si and s; dominates Si (note that 
then S; has a simple point at Ra; and R~ is a monoidal trans form 
of (R;_l , S;_l)' 
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(4.9.2). If (R;, S;)o';;i<n is any sequence as in (4.9.1), and J", is 
any ndnzero principal ideal in Ri for 0 :::;; i < n such that (R;, , J.) 
is a monoidal transform of (Ri- 1 , J"'-1 , Si-I) for 0 < i < n, then 
(R;, JiR~) is a monoidal transform of (R~_1 , Ji-lR~-1 , S;_I) for 
0< i < n. 

(4.9.3). If (R~, S~)o';;i<n is any sequence as in (4.9.1), and 1& 
and I", are any nonzero principal ideals in Ri for 0 :::;; i < n such that 
(Ri , Ji ,li) is a monoidal transform of (Ri - 1 , J"'-1 , li-I, Si-I) 
for 0 < i < n, then (R~, JiR~, liR~) is a monoidal transform of 
(R~-I' Ji-lR~-I' li-lR~-I' S~_l)for 0 < i < n. 

PROOF. (4.9.2) and (4.9.3) follow from (4.8). To prove (4.9.1) 
let W be the set of aII sequences (R; , S;)o';;i<m such that either m 
is a positive integer or m = 00, m :::;; n, (R~, S~) = (R', S'), and 
for 0 < i < m: R~ is a regular local domain; dirn R~ = dirn R",; 
R; dominates Ri; R; is residually separable algebraic over Ri; 
M(Ri)R~ = M(Ra; S; is the unique element in m(R~) such that 
dirn S; = Si and S; dominates Si; and R~ is a monoidal transform 
of (R;_l' S;-I)' For each pair of elements w = (R~, S;)o';;i<m 
and w* = (R!, St)o,;;i<m* in W define: w :::;; w* -<=> m :::;; m* and 
(R~, S;) = (R!, S1) for 0 :::;; i < m. Then W becomes a partially 
ordered set having the Zorn property. Also we get an element 
(R~ ,S;)O';;i<l in W by taking (R~, S~) = (R', S'). Therefore 
W =F 0, and hence by Zorn's lemma W contains a maximal 
element (R~, S;)o';;i<m; in view of (4.8) we must have m = n. 

(4.10). Let S be an n-dimensional regular local domain, let 
(Xl' ... , Xn) be a basis of M(S), and let f(Z) be a monic polynomial 
of degree e > 1 in an indeterminate Z with coefficients in S. Let rES 
and let s = tX~l ... x!" where t is a unit in Sand a1 , ... , an are 
nonnegative integers. Let g(Z) = s-1(sZ + r). Assume that g(Z) E S[ZJ 
and 0 < ordsg(Z) < e. Then we have the following. 

(4.10.1). Let r' ES and let s' = t'x~ where 0 =F t' E Sand b 
is a nonnegative integer. Assume that s'-1(s' Z + r') E S[ZJ. Then 
b :::;; a1 and (r' - r)/x~ E S. 

(4.10.2). Let r' E Sand let s' = t'x~l ... x!" where t' is a unit in S 
and b1 , ... , b., are nonnegative integers. Let g'(Z) = s'-1(s' Z + r'), 
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r* = (r' - r)/s', Ci = ai - bi , t* = t/t', and s* = t*X~' ... x~n. 
Note that then Cl' .•. , Cn are integers, t* is a unit in S, and g(Z) = 
s*-eg'(s*Z - r*). Assume that g'(Z) E S[Z]. Then r* E Sand 
Ci ~ 0 Jor 1 ::::;; i ::::;; n. 

PROOF. (4.10.2) follows from (4.10.1). We shall now prove 
(4.10.1). Let G(Z) = ~g(t-lZ). Then 

(1) G(Z) = Ze + Glze-l + ... + G, with G; E S. 

Also ordsG(Z) = ordsg(Z) and hence 

(2) Ge E M(S) 

and there exists an integer d with 1 ::::;; d ::::;; e such that 

(3) ordSGd < d and whenever 1::::;; i < d. 

Let a = a l . Let u = x~· ... x~n if n > 1, and u = 1 if n = 1. Let 
j'(Z) = s'-1(s'Z + r') andf*(Z) = t'1'(t'-lZ). ThenJ*(Z) E S[Z] 
and 

(4) j*(Z) = (ux~-b)'G(u-lx~-az + (r' - r)u-1x1a). 

Let R = Sx,s. By (1) and (4) we get that f*(O)x1b = G* where 

• 
G* = (r' - r)" + L Giuix~a(r' - r)"-i; 

;=1 

since J*(Z) E S[Z], we get that ordRf*(O)xlb ~ eb; also, if 
ordir' - r) < athen clearly ordR(r' - r)" = ordRG*; therefore 
we get that 

(5) if ordR(r' - r) < athen ordR(r' - r) ~ b. 

By (5) we get that if b ::::;; athen ordR(r' - r) ~ b, i.e., (r' - r)/x~ E S. 
Hence it suffices to show that b ::::;; a. Suppose if possible that 
b > a. Then by (5) we get that ordR(r' - r) ~ a, i.e., (r' - r)/x~ E S. 
Let h: S -- S/xlS be the canonical epimorphism. Then there exist 
elements r* and r" in S such that (r' - r)/x~ = r* + r"xl and 
ordsr* = ordh(s)h((r' - r)/xn; note that then ordsr* = ordh(s)h(r*). 
Let 

and 



§4. UNRAMIFIED LOCAL EXTENSIONS 119 

Since j*(Z) E S[Z] and b > a. we get that F'(Z) E S[Z] and hence 
F(Z) E S[Z]. Therefore 

(6) F(Z) = Z· + F1ze-l + ... + F. with Fi E S. 

By (4) and the definition of F'(Z) and F(Z) we get that 

(7) 

By (1). (6). and (7) we get that 

• 
G.u· = G(O)u· = x;F( -r*x11) = (-1 )er*e + L ( _l)e-iFixlr*e-i 

i=l 

and hence ordh(s)h(r*e) = ordh(s)h(Geue); consequently in view of 
(2) we get that ordh(s)h(r*) > ordh(s)h(u); now ordh(s)h(r*) = 
ordsr* and ordh(s)h(u) ~ ordsu; therefore 

(8) ordsr* > ordsu. 

For 0 ~ i < j ~ e let Wij be the elements in S such that 

• 
(Z + ])e-t = Z·-i + L wiize-i. 

i-i+l 

Then by (I). (6), and (7) we get that 

d-I 

(9) F"xf = G"u" + WO/Ir*" + L WidGiuir*tt-i. 
i-I 

Let p = ordsFd and q = ordsG,z. Then by (3), (8). and (9) we 
get (10) and (11): 

(10) 

(11) 

q<d and p + d = ordsFdx~ = ordSGdud ; 

FdX~ - Gdutt E M(S)P+d+l. 

By (10) it follows that n > 1; now ordsu = a2 + ... + an and 
hence by (10) we get that p + d = q + d(a2 + ... + an)' Since 
ordsFd = P. there exists a nonzero homogeneous polynomial 
P(XI , •..• X n) of degree p in indeterminates Xl • ... , X n with 
coefficients in S at least one of which is not in M(S) such that 
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Fd = P(XI' ... , xn ). Since ordSGd = q, there exists a nonzero 
homogeneous polynomial Q(XI , ... , X n ) of degree q in Xl , ... , X n 

with coefficients in S at least one of which is not in M(S) such 
that Gd = Q(xi , ... , xn ). Let 

A(XI , •.•• X n ) = xtp(X1 • ... , X n ) 

and 

Then A(XI , ... , X n ) and B(XI , ... , X n ) are nonzero homogeneous 
polynomials of degree p + d in Xl' ... , X n with coefficients in S, 
and Fdx~ = A(xl , ... , xn ) and GdUd = B(xl , ... , xn ). Therefore by 
(11) we get that 

(12) A(x1 , ••• , xn ) - B(x1 •••• , xn ) E M(S)p+d+1. 

Let h': S --+ SJM(S) be the canonical epimorphism. Let 
P'(XI , ... , X n ), Q'(XI , ... , X n ), A'(XI , •.. , X n ), B'(XI , ... , X n ) be 
the homogeneous polynomials in Xl' ... , X n with coefficients in 
h'(S) obtained by applying h' to the coefficients of P(XI , ... , X n ), 

Q(XI , ... , X n ), A(XI , ... , X n ), B(X1 , ... , X n ) respectively. Then 
by (12) we get that 

A'(X1 • ••.• X n ) = B'(X1 , •.. , X n ) 

and hence 

This is a contradiction because q < d and Q'(XI , ... , X n ) is a 
nonzero homogeneous polynomial of degree q in Xl' ... , X n with 
coefficients in h'(S). 

(4.11). Let S be an n-dimensional regular local domain and let R 
be an (n + 1 )-dimensional regular local domain such that R dominates 
S, R is residually rational over S, and M(R) = zR + M(S)R with 
zER. Then we have the Jollowing. 

(4.11.1). (zR + M(R)b) ('\ S = M(S)b Jor every nonnegative 
integer b. 
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(4.11.2). 1/ s is any element in 8 then ordss = ordRs = ord/t{R}h(s) 
where h: R -- R/zR is the canonical epimorphism. 

(4.11.3). 1/ /(Z) is any polynomial in an indeterminate Z with 
coefficients in the quotientfield 0/ 8 such that/(z) ER, then/(Z) E 8[Z]. 

PROOF. Let R* and 8* be the completion of Rand 8 respec­
tively. Then there exists a unique homomorphism h': 8* -- R* 
such that h'(M(8*)) C M(R*) and h'(u) = u for all u E 8. 
Now dirn h'(8*) ~ n, dirn R* = n + 1, and M(R*) = 
zR* + M(h'(8*))R*. Therefore dirn h'(8*) = n and hence h' is a 
monomorphism. Consequently we may identify 8* with a subring 
of R*. Note that then 8* is a subspace of R*. We shall first show 
that: (1) given any rE R* there exists a unique sequence 0/ elements 
ro , r l , rz , ... in 8* such that r = ro + r1z + rzzz + .... Let f be a 
coefficient set for 8* and let (Xl' ... , X n ) be a basis of M(8*). Then 
f is a coefficient set for R* and (z, Xl , ... , xn ) is a basis of M(R*). 
Consequently, given any rE R* there exist elements in rji, ... i" in f 

such that 

where the sum is over all nonnegative integers j, i l , ... , in. Upon 
letting 

where the sum is over all non negative integers i l , ... , in we get 
that r j E 8* for j = 0, 1,2, ... , and r = ro + rlz + rzzz + .... To 
prove the uniqueness let r~ , r~ , r~ , ... be any elements in S* such 
that r = r~ + r~z + r~zz + .... Since rj E 8*, there exist elements 
rji, .. . i n in f such that 

where the sum 1S over all non negative integers i l , ... , in. Then 

where the sums are over all nonnegative integers j, i l , ... , in; since 
all the elements rji, ... i. and r;i, ... i. are in f we get that rji, ... i" = 
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rji1 ... in for allj, i l , ••. , in , and hence rj = rj for allj. This completes 
to proof of (1). 

To prove (4.11.1) let b be any nonnegative integer; clearly 
M(8)b C (zR + M(R)b) n 8 and hence it suffices to show that 
(zR + M(R)b) n 8 C M(8)b; so let any SE (zR + M(R)b) n 8 be 
given; now zR + M(R)b C zR* + «Xl' ... , xn)R*)b and hence 

s = s'z + 

where s' and S~l".in are elements in R*; by (1) 

00 

s' = L S;zH and 
;=1 

with S; E 8* and sji)."in E 8*; upon letting 

and 
for j > 0 

we get that Sj E 8* for all j ~ 0 and S = So + SlZ + S2Z2 + ... ; 
since SE 8 C 8*, by the uniqueness part of (1) we get that S = So; 

clearly So E M(8*)b and hence SE 8 n M(8*)b = M(8)b; thus 
(zR + M(R)b) n 8 C M(8)b. This completes the proof of (4.11.1). 
(4.11.2) follows from (4.11.1). 

To prove (4.11.3) letf(Z) be any polynomial in an indeterminate 
Z with coefficients in the quotient field of 8 such that f(z) E R; 
then f(Z) = (jolt) + (jllt)Z + ... + (jelt)ze where e is a non­
negative integer, t is a nonzero element in 8, and fo , ... ,Ie are 
elements in 8; since f(z) E R, by (1) there exist elements 
go , gl , g2 , ... in 8* such that f(z) = go + glz + g2z2 + ... ; now 
10 + flZ + ... + feze = tl(z) = (tgo) + (tgl)z + (tg2)Z2 + ... and 
hence by the uniqueness part of (1) we get that fj = tgj for 
o ~ j ~ e; thus Ij E (t8*) n 8 = t8 for 0 ~ j ~ e and hence 
lilt E 8 for 0 ~ j ~ e, i.e., f(Z) E 8[Z]. 

(4.12). Let n be an integer with n ~ 2. Let Rand R' be 
n-dimensional regular loeal domains sueh that R' dominates Rand 
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M(R)R' = M(R'). Let S be an (n - l)-dimensional element in m(R) 
having a simple point at R. Let S' be the unique (n - l)-dimensional 
element in m(R') such that S' dominates S. Let I be a nonzero 
principal ideal in R such that I has a quasinormal crossing at R. 
Let l' = IR'. Then we have the following. 

(4.12.1). Assume that (S', 1') has a pseudonormal crossing at R'. 
Then (S, I) has a pseudonormal crossing at R. 

(4.12.2). Assume that there exists a basis (Xl' ... , Xn) of M(R'), 
a nonzero principal ideal L' in R', and nonnegative integers ql , ... , qn 
such that: R' n M(S') = (Xl' ... , xn-l)R', l' = X~l ... x~nL', and 
ords-L' = ordR,L'. Then (S, I) has a pseudonormal crossing at R. 

PROOF OF (4.12.1). Now there exists a basis (Yl' ... ,Yn) of 
M(R) such that R n M(S) = (Yl , ... , Yn-l)R. Note that then 
(Yl' ... , Yn) is a basis of M(R') and R' n M(S') = (Yl' ... , Yn-l)R'. 
Since I has a quasinormal crossing at R, it suffices to show that if 
w is any element in R such that ordRw = 1 and I C wR then 
(S, wR) has a pseudonormal crossing at R. First suppose that 
wER n M(S); then w = rlYl + ... + rn-lYn-l where rl , ... , rn- l 
are elements in R such that Yj 1. M(R) for some j; now M(R) = 

(Yl' ... , Yj-l , W, Yj+1 , ... , Yn)R and R n M(S) = (Yl' ... , Yj-l , W, 

Yj+1 , ... , Yn-l)R, and hence (S, wR) has a pseudonormal crossing 
at R. Next suppose that w 1. R n M(S); now ordR,w = 1 and 
l' C wR'; since (S', 1') has a pseudonormal crossing at R', there 
exists a basis of (Zl' ... , zn) of M(R') such that R' n M(S') = 
(Zl' ... , zn_l)R' and wR' = ZiR' for some i with 1 ~ i ~ n; since 
S' dominates Sand w 1. Rn M(S), we must have i = n; therefore 
w 1. (Zl' ... , zn_l)R' + M(R')2, and hence w 1. (R n M(S)) + M(R)2; 
since w E M(R), we have that w = StYl + ... + SnYn with SI' ... , Sn 
in R; since w 1. (R n M(S)) + M(R)2, we must have Sn 1. M(R); 
consequently M(R) = (Yl , ... , Yn-l , w)R and hence (S, wR) has a 
pseudonormal crossing at R. 

PROOF OF (4.12.2). Since I has a quasi normal crossing at R, we 
have that l' has a quasinormal crossing at R'. In view of (4.12.1) 
it suffices to show that (S', 1') has a pseudonorma1 crossing at R'. 
Clearly (S', xiR') has a pseudonorma1 crossing at R' for 1 ~ i ~ n, 
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and hence it suffices to show that if w is any element in R' such 
that ordR,w = 1 and L' C wR' then (S', wR') has a pseudonormal 
crossing at R'. Since ordR,L' = ordsL', we must have ords'w = 
ordR,w = 1. Therefore w = rlxl + ... + rn-lXn- l where rl , ... , rn- l 
are elements in R' such that rj 1= M(R') for some j. Now 

M(R') = (Xl' ... , Xi-I' W, XHI , ... , xn)R' 

and 

R' n M(S') = (Xl' ... , Xi-I' W, Xi+1 , ... , xn_I)R', 

and hence (S', wR') has a pseudonormal crossing at R'. 

(4.13). Let R be an n-dimensional regular local domain with 
n > 0 such that RjM(R) is infinite, let P be a nonzero principal ideal 
in R, and let e = ordRP. Then there exists a basis (Xl' ... , X .. .) oj 
M(R) such that P cf. (Xl' ... , Xn- l , x~+1)R. 

PROOF. Let (Yl' ... , Yn-l ,xn) be any basis of M(R), let 
Zl' ... , Zn be indeterminates, and let h: R -+ RjM(R) be the 
canonical epimorphism. Then there exist nonzero homogeneous 
polynomialsj(Zl' ... , Zn) andj'(Zl , ... , Zn) of degree ein Zl , ... , Zn 
with coefficients in Rand RjM(R) respectively such that P = 
!(Yl' ... , Yn-l ,xn)R and upon applying h to the coefficients of 
j(Zl' ... , Zn) we get j'(Zl , ... , Zn)' Now j'(Zl ; ... , Zn-I' 1) is a 
nonzero polynomial in Zl , ... , Zn-l with coefficients in the infinite 
field Rj M (R), and hence there exist elements r 1 , ... , r n-l in R 
such that j'(h(rl ), ... , h(rn_l ), 1) i= O. Let Xi = Yi - rix" for 
1 < i < n. Then Yi = xi + rixn for 1 < i < n, and hence 
(Xl' ... , Xn ) is a basis of M(R). Let 

and 

Then g(Zl , ... , Zn) and g'(Zl' ... , Zn) are nonzero homogeneous 
polynomials of degree e in Zl , ... , Zn with coefficients in Rand 
RjM(R) respectively, and upon applying h to the coefficients of 
g(Zl , "" Zn) we get g'(ZI , .. " Zn)' Now g(XI , .. " Xn ) = !(Yl , , .. , 
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Yn-l, Xn) and hence P = g(XI , ... , xn)R. Also g'(O, ... ,0, 1) = 
f'(h(rl ), ... , h(rn_l ), 1) and hence g'(O, ... ,0, 1) =1= O. Let h': 
R -- R/(xl , ... , xn-I)R be the canonical epimorphism. Then h'(R) 
is a one-dimensional regular local domain, M(h'(R» = h'(xnR), 
and h'(~R) cf. h'(~+1R) = h'«xl , ... , Xn- l , ~+1)R). Now h'(P) = 
h'(g(xl , ... , xn)R) = h'(~R), and hence P cf. (Xl' ... ' xn- l , ~+1)R. 

(4.14). Let R be a three-dimensional regular local domain such 
that R/ M(R) is algebraically closed, let 1 be a coefficient set for R, 
let P be a nonzero nonunit principal ideal in R, let e = ordRP, 
let (x, y, z) be a basis of M(R) such that P cf. (x, y, zeH)R, and let 
(R', P') be a monoidal trans form of (R, P, R) such that dirn R' = 3 
and ordR,P' = e. Then there exists a unique basis (x', y', z') of 
M(R') such that: if y/x E R' then x = x', (y/x') - y' EI, and 
(z/x') - z' EI; and if y/x i R' then x = y'x', y = y', and 
(z/y') - z' EI. Moreover, for any such basis (x', y', z') of M(R') we 
have that P' cf. (x', y', z'eH)R'. 

PROOF. Take WER such that wR = P. Since ordRP = e, there 
exist elements tabe in R such that 

w= ~ t x"ybzc L, abc . 
a+b+c=8 

Let h: R -- R/(x, y)R be the canonical epimorphism. Now wR = 

P cf. (x, y, zeH)R = h-I(M(h(R»HI) and hence h(w) i M(h(R»HI; 
if tooe E M(R) then we would get that h(w) E M(h(R)Y+1; therefore 
toae i M(R) and hence tooe i M(R'). Suppose if possible that 
x/z E M(R') and y/z E M(R'); then M(R') = (x/z, y/z, z)R' and 
P' = (w/ze)R'; since ordR,P' = e > 0, we get that wJze E M(R'); 
however, 

wJz· = L tabc(xJz)a(yJz)b 
a+b+C=8 

and hence w/ze i M(R') because toae i M(R'); this is a contradiction. 
Therefore either x/z i M(R') or y/z i M(R'). It follows that: if 
y/x E R' then z/x E R' and there exists a unique basis (x', y', z') 
of M(R') such that x = x', (y/x') - y' E f, and (z/x') - z' E f; and if 
y/x i R' then x/y E M(R') and z/y ER' and there exists a unique basis 
(x', y', z') of M(R') such that x = y'x', y = y', and (z/y') - z' E I. 
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If y/x E R' then let (x*, y*, z*) = (x, xy', xz'), and if y/x fI R' 
then let (x*,y*, z*) = (y, x,yz'). Then (x*,y*, z*)R = M(R), 
(x*,y*)R = (x,y)R, (x*,y*/x*, z*/x*)R' = M(R'), z*/x* = z', 
(x*,y*/x*)R' = (x',y')R', and M(R)R' = x*R'; also (w/x*e)R' = 
P' and hence w/x*e E M(R'Y. Since w E M(RY, there exist elements t:bC in R such that 

W = L t:".x*ay*bz *" . 
a+b+C=6 

Now wR = P 1- (x, y, ze+1)R = h-1(M(h(R»e+l) and hence 
h(w) fI M(h(R»e+1; since (x*, y*)R = (x, y)R, we get that if 
t~ G M(R) then h(w) E M(h(R»e+1; therefore tJoe fI M(R) and 
hence ttOe fI M(R'). Now 

W/X*6 = L t:bC(y*/X*)b(Z*/X*)". 
a+b+c=. 

Since w/x*e E M(R')e, we must have t:bC E M(R') whenever a =1= 0, 
and hence t:bc E M(R) whenever a =1= 0; also M(R)R' = x*R' and 
hence t:bc E x* R' whenever a =1= O. Let h': R' ---+- R' j(x*, y* /x*)R' 
be the canonical epimorphism. Now h'(R') is a one­
dimensional regular local domain, M(h'(R'» = h'«z*/x*)R'), and 
h'«z*/x*YR') cf. h'«z*/x*)"+1R') = h'«x*, y*/x*, (z*/x*)e+1)R'); 
also h'(t~) is a unit in h'(R') and hence h'«w/x*e)R') = 
h'«z*/x*)eR'); since P' = (w/x*e)R', we conclude that P' 1- (x*, 
y*/x*, (z*/x*)e+l)R'; since (x*, y*/x*)R' = (x', y')R' and z*/x* = 
z', we thus get that P' 1- (x', y', z'e+1)R'. 

(4.15). Let Ro be a three-dimensional regular local domain such 
that Ro/M(Ro) is algebraically closed, let f be a coefficient set for Ro , 
let Po be a nonzero nonunit principal ideal in Ro , let e = ordRoPO ' 

and let (x, y, z) be a basis of M(Ro) such that Po 1- (x, y, ze+1)Ro . 
Let (Ri , Pi)o<i<n be a sequence such that: either n is a positive 
integer or n = 00; Ri is a three-dimensional regular local domain and 
Pi is a nonzero principal ideal in Ri with ordR,Pi = e for 0 < i < n; 
and (Ri , Pi.) is a monoidal transform of (Ri- 1 , Pi-I' Ri- 1) for 
o < i < n. Then there exists a unique sequence (Xi' Yi' Zi)o.;;i<n 
such that (xo, Yo , zo) = (x, y, z) and for 0 < i < n: (Xi' Yi , Zi) 
is a basis 0/ M(R.); Pi cf. (Xi' Yi • ~+1)Ri; if Yi-l/Xi-l E Ri then 
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Xi-l = Xi' (Yi-l/Xi) - Yi E f, and (Zi-l/Xi) - Zi E f; and iJ 
Yi-l/Xi-l ffo Ri then Xi - 1 = Yixi , Yi-l = Yi, and (zi-l/Yi) - Zi E f. 

PROOF. Note that Ri/M(Ri) is algebraically closed and f is a 
coefficient set for Ri for 0 ::::;; i < n. In view of (4.14), the unique­
ness follows by an obvious induction. To prove the existence let W 
be the set of all sequences (Xi' Yi , zi)o~i<m such that either m is a 
positive integer or m = 00, m ::::;; n, (xo , Yo , zo) = (x, Y, z), and for 
o < i < m: (Xi' Yi , Zi) is a basis of M(Ri); Pi cf. (Xi' Yi , ~+1)Ri; 
if Yi-l/Xi-l E Ri then Xi-l = Xi' (Yi-l/Xi) - Yi E f, and 
(Zi-l/Xi) - Zi E f; and if Yi-l/Xi-l ffo Ri then Xi-l = YiXi , Yi-l = Yi , 
and (Zi-l/Yi) - Zt E f. For each pair of elements w = 

(Xi' Yi , Zi)o~i<m and w' = (X; , Y; , Z;)o~i<m' in W define: 
w ::::;; w' <=> m .:::;;; m' and (Xi' Yi , Zi) = (X; , Y; , Z;) for 0 ::::;; i < m. 
Then W becomes a partially ordered set having the Zorn property. 
Also we get an element (Xi' Yi , Zi)O~i<l in W by taking 
(xo , Yo, zo) = (x, Y, z). Therefore W =1= 0, and hence by Zorn's 
lemma W contains a maximal element (Xi' Yi' zi)o~i<m; in view 
of (4.14) we must have m = n. 

(4.16). Let (R, J, 1, L, P, x, Y, z, p, q, c, d, e) be a system such 
that: R is a three-dimensional regular local domain; R/M(R) is 
algebraically closed; J, 1, L, and P are nonzero principal ideals in R; 
(x, y, z) is a basis of M(R); p, q,and c are nonnegative integers; dis a 
positive inteaer· e = c + d· ord J = d· ord L = c· 1 = xPyllL· bJ , R , R, , 

P = JL; and P cf. (x, y, z"+1)R. Let m be a nonnegative integer. Let 
(Rt, Jt, Jt, Pt)m~i<<r) be an infinite sequence such that (RJ; , JJ; , 
1,!, pJ;) = (R, J,1, P) and for m < i < 00: Rt is a three­
dimensional regular local domain; Jt, 1t, and Pt are nonzero 
principal ideals in Rt; ordR*Ji* = d; (Rt, Jt, Jt) is a monoidal 
transform of (R!-l , J!-l , Jt-~ ,R!-l); and (Rt, Pt) is a monoidal 
transform of (Rt-l , P!-l ,Rt-l). Then we have the following. 

(4.16.1). Assume that ordR;Pl =1= e fOT some j with m < j < 00. 

Also assume that 1 has a quasinOTmai CTossing at R. Then there exists 
an integer n > m, a nonzero principal ideal L! in R:, a basis 
(x*, y*, z*) of M(R!), and nonnegative integers p*, q*, and c* such 
that· 1* = x*p*y*q*L* ord *L* = c* < c and J*L* cf. (x* Y* • 11. 11. , Rn 11. , 11. 11. " 

z*d+"*+l)R! . 
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(4.16.2). Assume that ordR~Pt = e for m < i < 00, R is 
eomplete, and R/M(R) has the sdme eharaeteristie as R. Then there 
exists an integer m' ~ m, a field f, and an infinite sequenee 
(Ri , Ji ,li ,Li' Si' fi(Z)' Xi ,Yi, Zi, ri , Si' ti ,Pi' qi, ai, bi)rn'~i<OO 
having the following deseription. For m' ~ i < 00: Ri is a three­
dimensional r.egular loeal domain; Ri/ M (Ri) is algebraieally closed; 
Ri dominates Rt; Ri is residually rational over Rt; M(Ri) = 

M(Rt)Ri ; Ji = J{Ri ; li = ItRi ; Li is a nonzero principal ideal 
in R i; ordRLi = e; (Xi' Yi , Zi) is a basis of M(Ri); Pi and qi are 
nonnegative'integers; and li = XfiY~iLi' For m' ~ i < 00: Si is a 
two-dimensional regular loeal domain; Si/M(Si) is algebraieally closed; 
f is a subfield of Si; f is a eoeffieient set for Si; Ri dominates Si; 
Ri is residually rational over Si; (xi' Yi) is a basis of M(Si); ri E Si; 
ti is a unit in Si; ai and bi are nonnegative integers; Si = tixfiy~i; 
fi(Z) is a monie polynomial of degree e in an indeterminate Z with 
eoeffieients in Si; JiLi = fi(Zi)Ri ; zrn' = sizi + ri; and fi(Z) = 

s-;efm'(SiZ + ri)' Sm' is isomorphie to the ring of formal power series 
in two indeterminates with eoefficients in R/M(R). For m' < i < 00: 

Si is a quadratie trans form of Si-I; if Yi-I!Xi- 1 E Si then Xi-l = Xi 
and (Yi-l/Xi) - Yi E f; and if Yi-l/Xi-l f/= Si then Xi-l = YiXi and 
Yi-l = Yi . Finally, Xi+l * Xi for infinitely many distinct values of i 
with m' ~ i < 00. 

PROOF OF (4.16.1). Note that Rt/M(Rt) is algebraically closed 
for m ~ i < 00. Take any coefficient set f for R. Then f is a 
coefficient set for Rt for m ~ i < 00. Now ordR~Pt ~ ordR*P! 
whenever m ~ a ~ i < 00. Therefore there exists an int;ger 
n > m such that ordR~Pt = e > ordR*P;t' for m ~ i < n. By 
(4.15) there exists a' sequence (Xi ,Yi, zi)m~i<n such that 
(xo , Yo , zo) = (x, Y, z) and for m < i < n: (Xi' Yi , Zi) is a basis 
of M(Rt); Pt cf- (Xi' Yi , z~+l)Rt; if Yi-l/Xi-l E R{ then Xi-l = Xi' 
(Yi-l/Xi) - Yi E f, and (Zi-l/Xi) - Zi E f; and if Yi-l/Xi-l f/= Rt then 
Xi- l = YiXi , Yi-l = Yi' and (Zi-l/Yi) - Zi E f. Let (Lt)m~i<oo be 
the unique sequence such that: Lt is a nonzero principal ideal in 
Rt for m ~ i < 00; L:, = L; and (Rt, Lt) is a monoidal transform 
of (Rt_l , L!-l , R!-l) for m < i < 00. By induction on i we see 
that Pt = J!Lt for m ~ i < 00, and hence upon letting e* = 
ordR*L! we get that ordR~Lt = e > e* for m ~ i < n. Let 
Dm n 1, and for m < i < ~ let: D i = Xi if Yi-I!X i - 1 E Rl, and 
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Di = Yi if Yi-l/Xi-l fj: Rt. Then M(Rtl)R[ = DiRt for m < i < n, 
and hence by induction on i we get that It = xPy QD':r,D':n+1 ... D~Lt 
for m ~ i < n. By induction on 1 we also get that 
xPyqYm D':r,+1 ... ~Rt = x'iiy'J,;R[ for m ~ i < n where Ui and Vi 
are nonnegative integers. In particular, upon letting U = Un - 1 , 

V = Vn- 1 , and R* = R'II~_l' we get that TLI = X~ __ lY~_lL.:t_lR*. 
It follows that r;: = X~_lY~_l(M(R*)R;)eL~. By (1.10.8) we get 
thatli* has a quasinormal crossing at R[ for m ~ i < 00, and hence 
Lt has a quasinormal crossing at R i* for m ~ i < 00. In particular 
L;_l = Ql ... Qc where Ql , ... , Qc are nonzero principal ideals in R* 
with ordR*Qb = 1 for 1 ~ b ~ c. Let Qt, ... , Q: be the nonzero 
principal ideals in R; such that (R~ , Q:) is a monoidal transform 
of (R*, Qb , R*) for 1 ~ b ~ c. Then ordR*Q: ~ ordR*Qb for 
1 ~ b ~ c. Now L! = Qt ... Qt*, and henc~ upon relabeling 
Ql' ... , Qc we may assume that ordR*Q: = 1 for 1 ~ b ~ c*, 
and Q: = R:: for c* < b ~ c. Let A = QC*+1 ... Qc and B = 
Ql ... Qc*J:t-l' Then A and Bare nonzero principal ideals in R*, 
ordR*A = c - c*, ordR*B = d + c*, and AB = P;-l; let h: 
R* -+ R*/(Xn-l , Yn-l)R* be the canonical epimorphism; then 
h(R*) is a one-dimensional regular local domain and h«xn- 1 , Yn-l , 
z~_l)R*) = M(h(R*))a for every nonnegative integer a; since 
P;-l cf- (Xn-l , Yn-l , z~+.\)R*, we conclude that A cf- (xn- 1 , Yn-l , 
z~~;+1)R* and B cf- (xn- 1 , Yn-l , z~:!:r+1)R*. Now ordR*B = 

d + c* = ordR:J!L~ and (R~ , J;L~) is a monoidal transform of 
(R*, B, R*); since B cf- (xn- 1 ,Yn-l , z~:!:r+1)R*, by (4.14) there 
exists a basis (x*, y*, z*) of M(R~) such that: J;L~ rt (x*, y*, 
z*d+c*+l)R;; if Yn-l/Xn-l E R:, then xn- 1 = x*, (yn-l/X*) - Y* E f, 

and (Zn-l/X*) - z* E f; and if Yn-l/Xn-l fj: R~ then xn- 1 = y*x*, 
Yn-l = y*, and (zn-lIY*) - z* E f. Now M(R*)R! = x*R! if 
Yn-l/Xn-l E'R;, and M(R*)R; = y*R! if Yn-l/Xn-l fj: R;. It 
follows that x~_tY~_l(M(R*)R:)e = x*p*y*q*R! where p* and q* 
are nonnegative integers. Since I! = x~_tY~_l(M(R*)R:,)eL; , we 
eonclude that n = x*p*y*q*L! . 

PROOF OF (4.16.2). By Cohen's structure theorem [28: Theorem 
27 on page 304] there exists a subfield f of R such that f is a 
eoefficient set for R. Note that then f is isomorphie to RjM(R), 
and for m < i < 00 we have that RtJM(Rt) is algebraically closed 
and f is a coefficient set for Rt. By (4.15) there exists a sequenee 
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(X~ , y~ , zi)m.;;i<oo such that (x~, y~ , zo) = (x, Y, z) and for 
. .(")' b' fM(R*)'P* tf(' , ...e+l)R*· m < , < 00. Xi' Yi , Zi IS a aSlS 0 i , i 'I- Xi' Yi , Ni i , 

'f '/' R* h ' '( , / ')' d 1 Yi-l Xi-l E i t en Xi-l = Xi , Yi-l Xi - Yi E f, an 
( / ') . d'f ' /' d: R* h' '" , Zi-l Xi - Zi E f; an 1 Yi-l Xi-l 'F i t en Xi-l = YiXi , Yi-l = Yi , 
and (Zi-l/Y~) - Zi E 1. Let (Lt)m<';i<oo be the unique sequence such 
that: Lt is a nonzero principal ideal in Rt for m ~ i < 00; 

L~ = L; and (Rt, Lt) is a monoidal transform of (Rl-1 , Ll-1 , Rt_l) 
for m < i < 00. By induction on i we see that Pt = ftLt for 
m ~ i < 00, and hence ordR:Lt = c for m ~ i < 00. Let 
Dm = 1, and for m < i < 00 let: Di = x~ if Y~-l/X~-l E Rt, and 
Di = y~ if Y;-l/X;-l rt Rt· Then M(Rl-1)Rt = DiRt for m < i < 00, 

and hence by induction on i we get that It = xPyq~~+1 ... DfLt 
for m ~ i < 00. By induction on i we also get that 
xPyq~D:n+1 ... ~Rt = XiiY~iRt for m ~ i < 00 where Ui and v. 
are nonnegative integers. We shall now prove the following: 

(1) There exists an integer m' ~ m and a sequence (Ri , Ji ,li' 
Li , Pi , Xi , Yi , Pi , qi)m' .;;i<oo having the following description. For 
m' ~ i < 00: R i is a three-dimensional regular local domain; 
Ri/ M(Ri) is algebraically closed; Ri dominates Rt; Ri is residually 
rational over Rt; M(R i ) = M(Rt)Ri; Ji = ftRt; I i = ItRi; 
Li = LtRi ; Pi = PtRi ; Li is a nonzero principal ideal in Ri ; 

ordR;Li = c; (Xi' Yi , Zi) is a basis of M(Ri); (Xi' Yi)Ri = (X; , y;)Ri; 
Pi and qi are nonnegative integers; and I i = XfiYf;L i . Rm , is 
the completion of R~,. For m' < i < 00: (Ri , Pi) is a monoidal 
transform of (Ri- 1, Pi-I' Ri- 1); if Yi-l/Xi-l E Ri then X'_l = Xi' 
(Yi-l/Xi) - Yi E f, and (Zi-l/Xi) - Zi E f; and if Yi-l/Xi-l rt Ri then 
Xi-l = YiXi , Yi-l = Yi , and (Zi-l/Yi) - Zi E f. Finally, Xi+l =1= Xi 
for infinitely many distinct values of i with m' ~ i < 00. 

First suppose that x~+1 =1= x; for infinitely many distinct values 
of i with m ~ i < 00. Let m' = m, let Rm, be the completion of 
R~" and let Pm' = P~,Rm" By (4.9) there exists a sequence 
(Ri , Pi)m' <i<oo such that for m' < i < 00: Ri is a three-dimensional 
regular local domain; Ri dominates Rt; Ri is residually rational 
over Rt; M(Ri) = M(Rt)Ri; Pi = Pt Ri; and (Ri , Pi) is a 
monoidal transform of (Ri - 1 , Pi-I, Ri - 1). It suffices to take 
Ui , I i , Li , xi , Yi , Pi , qi) = Ut Ri , It Ri , Lt Ri , x~ , y~ , Ui, Vi) 
form' ~ i < 00. 

Next suppose that there exists an integer n ~ m such that 
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Y;-l = X;-lY; whenever n < i < 00. Let m' = n, let Rm, be the 
completion of R:;', , and let Pm' = P:;',Rm, . By (4.9) there exists a 
sequence (R i , Pi)m' <i<oo such that for m' < i < 00: Ri is a 
three-dimensional regular local domain; Ri dominates Rt; Ri is 
residually rational over Rt; M(Ri) = M(Rt)Ri; Pi = P!Ri; and 
(Ri , Pi) is a monoidal transform of (Ri- 1 , Pi-I, Ri--1). It suffices to 
take Ui ,li' Li , Xl , Yi , Pi' qi) = Ut Ri , It Ri , Lt Ri , y~ , X; , Vi , Ui) 
for m' ~ i < 00. Note that now actually Xi+l i= Xi whenever 
m' ~ i < 00. 

Finally suppose that X~+l i= X~ for only finitely many distinct 
values of i with m ~ i < 00, and there does not exist any integer 
n ? m such that Y;-l = X~-lY~ whenever n < i < 00. Then there 
exists an integer m' > m such that y:n'_lR:;', = x:n'_lR:;'" and 
Y~-l!X;-l E Rt whenever m' ~ i < 00. It follows that Vi = 0 for 
m' ~ i < 00. Let Rm, be the completion of R:;', , and let Pm' = 

P:;',Rm, . By (4.9) there exists a sequence (Ri , Pi)m' <i<oo such that 
for m' < i < 00: R i is a three-dimensional regular local domain; 
Ri dominates Rt; Ri is residually rational over Rt; M(Ri) = 

M(Rt)Ri; Pi = Pt Ri ; and (Ri , Pi) is a monoidal transform of 
(Ri- 1 , Pi-I, Ri- 1)· Let X = x:n, . Then x~ = X for m' ~ i < 00, 

and upon letting rt = y~x-l - Y;+l we get that rt E f for 
m' ~ i < 00. Now Rm, being complete, for m' ~ i < 00 we get 
an element r~ in Rm , by setting: r~ = rt + rt+lx + rt+2x2 + .... 
Let Y = y:n, - xr:n, . By induction on i we see that y~ - xr~ = yxm'-i 
for m' ~ i < 00. Let Xi = yxm'-i and Yi = X for m' ~ i < 00. 

Then (Xi' Yi)Ri = (X; , y;)Ri for m' ~ i < 00, and hence (Xi' Yi , Zi) 
is a basis of M(Ri) for m' ~ i < 00. Also clearly Yi-l!Xi- 1 1= Ri , 
Xi - 1 = YiXi , and (Zi-l!Yi) - Zi E f for m' < i < 00. In particular, 
xi+l :cF Xi whenever m' ~ i < 00. It suffices to take Ui ,li' Li, 
Pi , qi) = Ut Ri , It Ri , Lt Ri , 0, ui) for m' ~ i < 00. 

This completes the proof of (1). Note that Pi = JiLi and 
ordRPi = e for m' ~ i < 00. Let T be the ring of formal power 
serie~ in indeterminates X, Y, Z with coefficients in f, and let S 
be the ring of formal power se ries in X, Y with coefficients in f 
where we regard S to be a subring of f. Then there exists a unique 
f-isomorphism hof T onto Rm, such that h(X) = Xm', h(Y) = Ym', and 
h(Z) = zm'. Let Sm' = h(S). Then Sm' is a two-dimensional regular 
local domain, Sm-lM(Sm') is algebraically closed, f is a subfield of 
Sm' , fis a coefficient set for Sm' , Rm, dominates Sm" Rm, is resid-
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ually rational over Sm" (Xm' , Ym') is a basis of M(Sm'), and Sm' is 
isomorphie to the ring of formal power series in two indeterminates 
with eoeffieients in RjM(R). For m' < i < 00 let Si be the quotient 
ring of Sm'[xi , Yi] with respeet to (Sm,[xi' Yi]) (") M(Ri). By 
induction on i we see that for m' < i < 00: Si is a two-dimensional 
regular local domain; Si/M(Si) is algebraically closed; fis a subfield 
of Si; fis a coefficient set for Si; Ri dominates Si; Ri is residually 
rational over Si; (xi' Yi) is a basis of M(Si); Si is a quadratie 
transform of Si-I; if Yi-l/Xi-l E Si then Xi-l = Xi and 
(Yi-l/Xi) - Yi E f; and if Yi-l/Xi-l i Si then Xi- 1 = YiXi and 
Yi-l = Yi . Sinee Rrr• is the completion of R~" (Xm' , Ym,)Rm, = 
(x:r" ,y:r")Rm,, and Pm' = P;',Rm" we get that «Xm" Ym' , 
z.:+l)R ,) (") R*, = (X', y', z.:+1)R*, and P, (") R*, = p*, . m' m m m , m, 'm' m m m m , 

since p~, 1- (x:n, ,y:n, , ~:-l)R;:;: , we c'onclude that Pm' 1- (Xm' , Ym' , 
~:-l)Rm' . Therefore upon letting P' = h-1(P m') we get that P' is a 
nonzero principal ideal in Twith ordrP' = e and P' 1- (X, Y, ze+1)T; 
consequently by the Weierstrass Preparation Theorem [28: 
Corollary 1 on page 145] there exists a monie polynomial f(Z) 
of degree e in Z with coefficients in S such that P' = f(Z)T. 
Let frA Z) be the monie polynomial of degree e in Z with eoeffieients 
in Sm' obtained by applying h to the coefficients of f(Z). Then 
Pn, = fm,(zm,)Rm, and henee Im,Lm, = fm,(zm,)Rm,. Let rm, = 
0= "am' = bm, and Sm' = 1 = tm'; then Zm' = Sm'Zm' + rm' and 
fm'(Z) = s;;Hm,(sm'Z + rm,). For m' < i < 00 we have that: if 
Yi-l/Xi-l E Ri then M(Ri_1)Ri = XiRi' and if Yi-l/xi-l i Ri then 
M(Ri_1)Ri = YiRi' Therefore by induetion on i we get that for 
m' < i < 00: there exists an element ri in Si' a unit ti in Si' 
and nonnegative integers ai and bi , sueh that upon letting 
Si = tiX~iY~i we have that Zm' = SiZi + ri and Pi = Si1m'(Zm,)Ri . 
Letfi(Z) = Si1m,(siZ + ri) for m' < i < 00. Then for m' < i < 00 

we have that: fi(Z) is a monie polynomial of degree e in Z with 
eoeffieients in the quotient field of Si' and Pi = fi(zi)Ri; in 
particular fi(Zi) E Ri and hence by (4.11.3) we get thatfi(Z) E Si[Z]; 
since jiLi = Pi , we also get that jiLi = fi(Zi)Ri . 

(4.17). Let R be a three-dimensional regular local domain, let 
(x, y, z) be a basis of M(R), let R' be a monoidal transform of 
(R, R(X,Z)R) such that z/x E M(R'), let h: R -+ R/zR and h': 
R' -+ R' /(z(x)R' be the canonical epimorphisms, and let r be an 
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element in R such that ordRr = ordh<R)h(r). Then ordRr = ordR,r = 

ordh'<R,)h'(r). 

PROOF. Now R' is a three-dimensional regular local domain 
dominating R, (x, y, z/x)R' = M(R'), h(R) and h'(R') are two­
dimensional regular local domains, and (h(x), h(y))h(R) = M(h(R)) 
and (h'(x), h'(y))h'(R') = M(h'(R')). If r = 0 then we have nothing 
to show. So assurne that r ::j=. O. Let e = ordRr. Since R' dominates 
R, we get that ordR,r ;? e, and c1early ordh'<R,}h'(r) ;? ordR,r. 
By assumption ordh<R)h(r) = ordRr, and hence 

her) = L h(rii)h(x)ih(y)i 
i+i~e 

where ri} are elements in R at least one of which is not in M(R). Now 

and hence 

r = sz + L r;;xiyi 
i+j~p 

with SE R, 

h'(r) = L h'(rij)h'(x)ih'(y)i. 
i+i~e 

Also h'(rij ) E h'(R') for all (i,j), and h'(rij ) i M(h'(R')) for some 
(i,j). Therefore ordh'<R,}h'(r) = e. It follows that ordRr = ordR,r = 
ordh'<R,)h'(r). 

(4.18). Let R be a three-dimensional regular local domain, let 
(x, y, z) be a basis of M(R), let h: R -+ R/zR be the canonical 
epimorphism, and let w = goze + glze-l + ... + ge where e is a 
positive integer and go , ... , ge are elements in R such that ordRgj = 

ord"<R}h(gj) for 0 ~ j ~ e, and ordRgr < j' for some j' with 
o ~ j' ~ e. Then ordRw < e. 

PROOF. Let d be the greatest integer with 0 ~ d ~ e such 
that ordRgd < d. Let w' = gozd + glzd-l + ... + gd' Then 
ordR(w - w'ze-d) ;? e. Also ordRw' ~ ord"<R}h(w') = ord"<R)h(gd) < 
d, and hence ordRw' ze-d < e. Therefl):c ordRw < e. 

(4.19). Let R be a three-dimensional regular local domain, let J 
be a nonzero nonunt"t principal ideal in R, let d = ordRJ, let c be a 
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nonnegative integer, let e = d + c, and let I be a nonzero principal 
ideal in R such that I has a quasinormal crossing at R. Assume that 
there exists a basis (x, y, z) of M(R), a nonzero principal ideal L 
in R, elements w, gl , ... , ge in R, and nonnegative integers p and q 
such that: ordRL = c; I = xPyqL; JL = wR; ordRgj = ordh(R)h(gj) 
for 1 ~ j ~ e where h: R ~ R/M(R) is the canonical epimorphism; 
ge E M(R); ordRgj' < j' for some j' with 1 ~ j' ~ e; and 

• 
w = z' + L gjXiZe-; . 

;=1 

Let S = R(X,Z)R , let (R', j', 1') be a monoidal trans form of (R, J, I, S) 
such that ordR, j' = d, let L' be the (R, S, R')-transform of L, and 
let c* = ordR,L'. Then dirn R' = 3, R' is residually rational over 
R, l' = xP+eyqL', c* < c, and there exists z* ER' such that 
M(R') = (x, y, z*)R' and j'L' cf- (x, y, z*d+c*+I)R'. 

PROOF. Now ordRJ = d, ordRL = c, e = d + c, and clearly 
ordsJL = ordsw ~ e; therefore ordsJ = d, ordsL = c, and 
ordsJL = e. Also clearly j'L' is the (R, S, R')-transform of JL. 
Suppose if possible that zjx i R'; then x/z E M(R'), ]'L' = (w/ze)R', 
and w/ze = 1 + gl(X/Z) + ... + gix/z); consequently ]'L' = R' 
and hence ]' = R'; this is a contradiction because ordR,], = d > O. 
Therefore z/x ER'. Consequently ]'L' = (w/xe)R' and l' = 
xP+eyqL'. Let f be a coefficient set for R. Suppose if possible that 
c* = c; then ordR, ]'L' = e = ordRJL; for 1 ~ j ~ e let r j be the 
unique element in f such that gj - r j E M(R); since ge E M(R), we 
get that re = 0 and hence 

e-l 
W - (ze + L r;xize-i) E M(R)e+l ; 

1=1 

consequently by (3.10.1) we get that dirn R' = 3 and M(R') = 
(x, y, z/x)R'; let h': R' ~ R'j(z/x)R' be the canonical epimorphism; 
then by (4.17) we get that ordRgj = ordR'gj = ordh'(R,)h'(gj) for 
1 ~ j ~ e; it follows that ge E M(R') and ordR'gj' < j'; now 

e 

wjxe = (zjx)e + L gj(zjx)e-i 
;=1 
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and hence by (4.18) we get that ordR,(w/xt') < ej consequently 
ordR-f'L' < e which is a contradiction. Therefore c* < c. Since 
ordR-f' = ordR] > 0, by (3.10.2) we get that dirn R' = 3 and R' is 
residually rational over Rj since z/x ER', there exists tE R such 
that (z/x) - tE M(R'). Let z' = z - tx and z* = z'/x. Then 
M(R) = (x, y, z')R, R () M(S) = (x, z')R, and M(R') = 
(x, y, z*)R'. Since I has a quasinormal crossing at R, we have 
that L = LI'" Lc where LI , ... , Lc are nonzero principal ideals in 
R with ordRLj = 1 for 1 ~ j ~ c. Let Li be the (R, S, R')­
transform of Lj for 1 ~ j ~ c. Since ordRL = ordsL, we get that 
ordsLi = ordRLj for 1 ~ j ~ c. Therefore ordR,Li ~ ordRLj for 
1 ~ j ~ c. Now L' = L~ ... L; and ordR-L' = c*. Therefore upon 
relabelingL1 , ..• ,Lc we may assurne that ordR,Li = 1 for 1 ~j ~ c*, 
and L; = R' for c* <j ~ c. Let Q = LI ... Lc*]' and take w' ER 
such that w'R = Q. Then ordRQ = d + c* = ordsQ = ordR-f'L', 
]'L' is the (R, S, R')-transform of Q, and ]'L' = (w'/xtl+c*)R'. 
Since ordsQ = d + c*, we have that 

d+C* 
W' = L g;x;Z'd+c*-; 

;=0 
with g; ER. 

For 0 ~ j ~ d + c* let ri be the unique element in f such that 
gi - ri E M(R). Then 

(
d+C* ) 

w' - L r;x;z'd+c*-; E M(R)d+c*+1 • 
;=0 

Since z'/x E M(R'), by (3.10.1) we now deduce that r~ =1= 0, and 
ri = 0 for 1 ~ j ~ d + c*. Therefore g~ is a unit in R', and for 
1 ~j ~ d + c* we have that gi = SjX + s;y + siz' with Si' si, 
s; in R. Therefore 

with wt ER' and w2 ER'. 

Let h*: R' --+- R' /(x, y)R' be the canonical epimorphism. Then 
h*(R') is a one-dimensional regular local domain, M(h*(R'» = 
h*(z*R'), h*(Z*'HC*R') q:. h*(z*tl+c*+1R') = h*«x, y, z*tl+c*+I)R'), 
h*(g~) rt M(h*(R'», and h*(w'/xtl+c*) = h*(g~)h*(z*d+C*)j since 
]'L' = (w'/xtl+c*)R', we conc1ude that ]'L' q:. (x,y, z*tl+c*+1)R'. 
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(4.20). Let R** and R be three-dimensional regular local domains 
such that: R dominates R**; R is residually separable algebraic over 
R**; M(R**)R = M(R); R**/M(R**) has the same characteristic 
as R**; for every iterated monoidal trans form T of R** and every 
ideal Q in T we have that 6(T*, QT*) = {S E ~(T*): 
TTnM(S) E 6(T, Q)} where T* is the completion of T; and for every 
iterated monoidal trans form T of Rand every ideal Q in T we have 
that 6(T*, QT*) = {S E ~(T*): TTnM(S) E 6(T, Q)} where T* is 
the completion of T (note that by (1.2.6) we know that if R is 
cornplete then the last condition is autornatically satisfied). Let V 
be a valuation ring of the quotient field of R** such that V dominates 
R**. Let I** be a nonzero nonunit principal ideal in R** such that 
(f2(R**, I**) has a strict normal crossing at R**. Let 1** be a 
nonzero principal in R** such that 1** has a quasinormal crossing 
at R**. Let d = ordR**I**, let c be a nonnegative integer, and let 
e = d + c. Let I = j**R and 1= I**R. Assume that there 
exists a basis (x, y, z) of M(R), a nonzero principal ideal L in R, 
elements w, gl , ... , ge in R, and nonnegative integers p, q, a, b such 
that: ordRL = c; I = xPyqL; IL = wR; ordRgj = ordh(R)h(gj) for 
1 ~ j ~ e where h: R -+ R/zR is the canonical epimorphism; 
ge E M(R); ordRgj' < j' for some j' with 1 ~ j' ~ e; and 

e 

W = ze + L gixaiybize-i . 
i~l 

Then one of the following two conditions is satisfied. 

(1) There exists a finite weak resolver [(Rt, It, Jt, St)O~i<U' 
(R.f, I.f, I;)] such that: (Rt, It,It) = (R**, j**, 1**); dirn st = 2 
for 0 ~ i < u; dim Rt = 3 and OJ:dR~It = d > ordR*I; for 
o ~ i < u; and V dominates R!.· U 

(2) There exists a finite weak resolver [(Rt, H, Jt, St)O<,i<U, 
(R;, I:, I;)] and a system (R*, j*, 1*, L*, x*, y*, z*, p*, q*, c*) 
such that: (Rt, It, It) = (R**, j**, 1**); dirn Si = 2 for 
o ~ i < u; dirn Ri = 3 and ordR:Ii = dfor 0 ~ i ~ u; (f2(R;, I:) 
has a strict normal crossing at R;; V dominates R::; R* is a three­
dimensional complete regular local domain; R*/M(R*) is isomorphic 
to R/M(R); R* dominates R::; R* is residually separable algebraic 
over R,~; M(R*) = M(R,nR*; j* = J.tR*; 1* = I,tR*; L* is a 
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nonzero principal ideal in R*; ordR*L* = c* < c; (x*,y*, z*) is a 
basis 0/ M(R*); p* and q* are nonnegative integers; 1* = x*P*y*q*L *; 
and ]*L* cf. (x*, y*, z*d+c*+1)R*. 

PROOF. In view of (4.18) we have that a + b ~ 1. We shall 
make induction on a + b. 

First consider the case when a + b = 1. Upon relabeling x 
and y we may assume that a = 1 and b = O. Let (Rt, Jt,It) = 
(R**, ]**,1**). Let 8 = R(X,Z)R' Then ordsw ~ e = ordRJL = 
ordRw, and hence ordsw = e and 8 E (f2(R, JL); consequently 
8 E (f2(R, L) and 8 E (f2(R, J). Since 8 E (f2(R, J), by (4.6.4) there 
exists 8: E (f2(Rt, J:) such that 8 is the unique two-dimensional 
element in m(R) dominating 8r Let (Rt, Jt,It) be the monoidal 
transform of (Rt, N,It, 8n along V. By (4.12.2) we get that 
(8t,1t) has a pseudonormal crossing at Rt, and hence by (1.10.8) 
we get thatJt has a quasinormal crossing at Rt. Now ordR~Jt ~ d. 
Hence if ordR~Jt =1= d then upon taking u = 1 we have that 
condition (1) is satisfied. So now assume that ordR~Jt = d. Then 
by (3.11) we get that (f2(Rt, Jt) has astriet normal crossing at Rt. 
By (4.8) there exists a regular local domain R' and nonzero 
principal ideals J' and I' in R' such that: dim R' = dim Rt; R' 
dominates Rl; R' is residually separable algebraic over Ri; 
M(R') = M(Rt)R'; J' = HR'; I' = I1*R'; and (R', J', 1') is a 
monoidal transform of (R, J, 1,8). Now ordRJ = ordR~J: = d = 
ordRrJt = ordR-J'. Since I: has a quasinormal crossing at Rt, we 
also have that I has a quasinormal crossing at R. Therefore by 
(4.19) there exists a basis (x*,y*, z*) of M(R'), a nonzero principal 
ideal L' in R', and nonnegative integers p*, q*, c* such that: 
]' = x*P*y*q*L'; ordR,L' = c* < c; and J'L' cf. (x*,y*, z*d+c*+1)R'. 
By (4.19) we also know that dim R' = 3 and R' is residually 
rational over R. Let R* be the completion of R' .Let J* = J' R*, 
1* = I'R*, andL* = L'R*. ThenI* = x*P*y*q*L*, ordR*L* = c*, 
and J*L* cf. (x*, y*, z*d+c*+1)R*. Upon taking u = 1 we thus have 
that condition (2) is satisfied. 

Now let a + b > 1 and assume that the assertion is true for all 
values of a + b smaller than the given one. Upon relabeling x andy 
we may assume that a > O. Let (Rt, Jt,It) = (R**, ]**,1**). 
Let 8 = R(X,Z)R . Then ordRw ~ e = ordRJL = ordsw, and hence 
ordsw = e and 8 E (f2(R, JL); consequently 8 E(f2(R,L) and 
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SE (f2(R, I). Since SE (f2(R, I), by (4.6.4) there exists 
S't E (f2(R't, I't) such that S is the unique two-dimensional element 
in lD(R) dominating S:. Let (Rt, It,!t) be the monoidal transform 
of (R't, I't, I't, S't) along V. By (4.12.2) we get that (S~, I't) 4as a 
pseudonormal crossing at R't, and henceby (1.10.8) we get that 
I't has a quasinormal crossing at Rt. Now ordR~It* ::::;; d. Hence if 
ordR* It =1= d then upon letting u = 1 we have that condition (1) 

1 . 

is satisfied. So now assurne that ordR~It = d. Then by (3.11) we 
get that (f2(Rt, In has astriet normal crossing at Rt. By (4.8) 
there exists a regular local domain R' and nonzero principal ideals 
j' and l' in R' such that: dirn R' = dirn Rt; R' dominates Rt; 
R' is residually separable algebraic over R"t; M(R') = M(RnR'; 
j' = ItR'; l' = /tR'; and (R', j', 1') is 'a monoidal transform of 
(R, I, I, S). Now ordR-J' = ordR~It = d > 0 and hence in 
particular j' =1= R'. Let L' be the (R, S, R')-transform of L. Then 
j'L' is the (R, S, R')-transform of IL. Suppose if possib1e that 
x/z ER'; then j'L' = (w/ze)R'; now 

e 

w/z' = 1 + L gixa;-iybi(x/z); 
;=1 

and hence W/ze i M(R') because a + b > 1; consequently j'L' = R' 
and hence ]' = R'; this is a contradiction. Therefore z/x E M(R'). 
Consequently dirn R' = 3, R' is residually rational over R, 
M(R') = (x, y, z/x)R', j'L' = (w/x")R', and l' = xP+eyqL'. Now 

e 

w/x" = (z/x)" + L giX(a-1liyb;(z/x)e-i . 
;=1 

Let h': R' ---+ R'/(z/x)R'. Then by (4.17) we get that ordR'gj = 
ordh'IR'lh'(gj) for 1 <j ::::;; e, and ordR'gj' = ordRgj' < j'. Also 
ge E M(R'). Since (a - 1) + b < a + b, by the induction hypothe­
sis we conclude that one of the following two conditions is satisfied . 

. (1') There exists a finite weak resolver [(Ri , Ii ,li' Si)O';;i<1) , 

(R1) , 11) ,11)] such that: (Ro , 10 ,10) = (Rt, It, In; dirn Si= 2 
for 0::::;; i < v; dirn Ri = 3 and ordRJi = d > ordR I" for 
o ::::;; i < v; and V dominates R1)" v 

(2') There exists a finite weak resolver [(Ri , Ii ,li' Si)O';;i<" , 

(R", I" ,I,,)] and a system (R*, 1*,1*. L*. x*, y*, z*, p*, q*, c*) 
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such that: (Ro , Jo ,10) = (Rt, Jt, In; dirn Si = 2 for 0 :::;;; i < v; 
dirn Ri and ordRJi = d for 0 :::;;; i :::;;;v; (f2(Rv, JII) has astriet 

. normal erossing at R II ; V dominates R II ; R* is a three-dimensional 
eomplete regular loea1 domain; R*/M(R*) is isomorphie to 
RljM(R'); R* dominates R II ; R* is residually separable algebraic 
over R . M(R*) - M(R )R*· J* - T R*· 1* - 1 R*· L* is a v' - v , - Jv , - 'V , 

nonzero prineipal ideal in R*; ordR*L* = c* < c; (x*,y*, z*) is a 
basis of M(R*); p* and q* are nonnegative integers; 1* = 
x*P*y*q*L*; and J*L* cf:. (x*, y*, Z*d+C*+I)R*. 

If eondition (1') is satisfied then upon taking u = v + 1, 
SI = Si-I for 1 :::;;; i < u, and (Rl, JI,Il) = (Ri- I , Ji-I , li-I) 
for 2 :::;;; i :::;;; u, we get that eondition (1) is satisfied. If eondition 
(2 /) is satisfied then upon taking u = v + 1, SI = S"_1 for 
1 :::;;; i < u, and (Rl, JI,Il) = (Ri- I , Ji-I' li-I) for 2 :::;;; i :::;;; u, 
we get that eondition (2) is satisfied. 

(4.21). Let R" be a three-dimensional regular local domain such 
that R" jM(R") is a perJect field having the same characteristic as 
R". Let R ' be an iterated monoidal transJorm oJ R", let j' be a 
nonzero principal ideal in R ' such that (R' ,]') is unresolved, let 
d = ordR1, let l' be a nonzero principal ideal in R' such that l' 
has a quasinormal crossing at R' , and let V be a valuation ring oJ the 
quotient field oJ R" such that V dominates R ' . Consider the Jollowing 
Jour conditions where in the second condition c is an integer, and in 
the third and the fourth conditions eisa nonnegative integer. 

(1) There exists a finite weak resolver [(R~, J~ , I~ , SaO';;i<m , 
(R:n, J:n ,I:n)l such that: (R~, J~ , I~) = (R' , j', 1'); ordR;J~ = 
d > ordR' J:n Jor 0 ~ i < m; and V dominates R:n . 

m 

(2c) There exists a finite weak resolver [(R~, J~ , I~ , S;)o';;i<m , 
(R:n , J:n , I~,)] and a system (R, J, I, L, x, y, z, p, q, c') such that: 
(R~, J~, I~) = (R' , j',1'); dirn R~ = 3 and ordR;J~ = d Jor 
o :::;;; i :::;;; m; (f2( R:n , J:n) has a strict normal crossing at R:n; R is a 
three-dimensional complete regular local domain; RjM(R) is algebra­
ically closed; R dominates R:n; R is residually separable algebraic 
over R:n; M(R) = M(R:n)R; J = J:nR; I = I:nR; L is a nonzero 
principal ideal in R; ordRL = c' :::;;; c; (x, y, z) is a basis oJ M(R); 
p and q are nonnegative integers; I = xPyqL; and JL cf:. (x, y, zd+c' +l)R. 
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(3c) There exists a finite weak resolver [(R~, J; ,1; , S;)o~i<m , 
(R~ , J:n ,l:n)], an integer m' ~ m, a field f, and infinite sequenees 
(R~, J; ,1;}m~i<1Xl and (R" Ji ,li ,Li' Si ,fi(Z), Xi 'Yi' Zi' ri' Si' 
ti ,Pi' qi , ai , bi}m' ~i<1Xl having the following description. (R~, 
J~, l~) = (R', j', 1'); dirn R~ = 3 and ordR;J; = dfOT 0 ~ i ~ m; 
R~ is a three-dimensional regular loeal domain and J; and 1; are 
nonzero principal ideals in R; for m < i < 00; ordR;J; = d and 1; 
has a quasinormal crossing at R~ for m < i < 00; (R; , J; ,l;) is a 
monoidal transfOTm of (R~_1' J;-1 ,1;_1 ,R~_1) for m < i < 00; 
(f2( R~ , Ja has astriet normal crossing at R~ for m ~ i < 00; and 
V dominates R; fOT 0 ~ i < 00. For m' ~ i < 00: Ri is a three­
dimensional regular loeal domain; RijM(Ri) is algebraieally closed; 
Ri dominates R;; Ri is residually separable algebraie OVeT R~; 
M(Ri} = M(R~}Ri; Ji = J;Ri ; li = l;Ri ; Li is a nonzero principal 
ideal in Ri ; ordRjLi = e; (Xi' Yi , Zi) is a basis of M(Ri }; Pi and q, 
are nonnegative integers; and li = XrjY~jLi. For m' ~ i < 00: 
Si is a two-dimensional regular loeal domain; SijM(Si} is algebraieally 
closed; f is a subfield olSi; fis a eoefficient set for Si; Ri dominates S,; 
Ri is residually rational over Si; (Xi' Yi) is a basis of M(Si}; ri E Si; 
ti is a unit in Si; ai and bi are nonnegative integers; Si = tiX~jY~j; 
fi( Z} is a monie polynomial of degree e in an indeterminate Z with 
eoefficients in Si where e = d + e; JiLi = fi(Zi}Ri ; Zm' = SiZi + ri; 
and !i(Z) = si1m'(SiZ + ri}. Sm' is isomorphie to the ring of formal 
power series in two indeterminates with eoefficients in an algebraie 
closure of R"jM(R"). FOT m' < i < 00: Si is a quadratie transform 
of Si-1; if Yi-1/ Xi-1 E Si then Xi- 1 = Xi and (Yi-1/Xi) - Yi E f; and 
if Yi-1jXi-1 rt Si then Xi-1 = YiXi and Yi-1 = Yi . Finally, Xi+1 =1= Xi 
for infinitely many distinct values of i with m' ~ i < 00. 

(4c) There exists a finite weak resolver [(R~, J; ,1; , S;}o~i<m , 
(R:n, J:n ,l:n)], an integer n ~ m, a sequenee (R; , J; ,l;}m<i~n , and 
a system (R, J, 1, L, X, y, Z, w, p, q, a, b, e, g1 , ... , gel sueh that: 
(R~, J~, l~) = (R', j', 1'); dirn R; = 3 and ordR;J; = d for 
o ~ i ~ m; R~ is a three-dimensional regular loeal domain and J; 
and 1; are nonzero principal ideals in Rdor m < i ~ n; ordRJ; = d 
and 1; has a quasinormal crossing at R; for m < i ~ n; (R; : J; ,l;) 
is a monoidal transform of (R;_1 , J;-1 ,1;_1, R;_1) for m < i ~ n; 
(f2(R~ , J~) has astriet normal crossing at R~; V dominates R~; 
R is a three-dimensional eomplete regular loeal domain; R/M(R) is 
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algebraically closed; R dominat~s R~; R is residually separable 
algebraic over R~; M(R) = M(.R~)R; ] = J~R; I = I~R; L is a 
nonzero principal ideal in R; ordRL = c; e = d + c; (x, y, z) is a 
basis of M(R); W, gl' ... , ge are elements in R; p, q, a, bare non­
negative in te gers; 1= xPyqL; JL = wR; ordRgj = ordh(R)h(gj) for 
1 ~ j ~ e where h: R __ R/zR is the canonical epimorphism; 
ge E M(R); ordRgj' < j' for some j' with 1 ~ j' ~ e; and 

• 
w = z· + L g;xa;yb;ze-; . 

;~l 

Also consider the following condition concerning Rn / M(Rn). 
( *) Let So be the ring of formal power series in two indeterminates 

with coefficients in an algebraic closure of Rn /M(Rn). Let (xo ,Yo) be 
any basis of M(So), let f be any coefficient set for So, let e be any 
positive integer, and let feZ) be any monic polynomial of degree e in an 
indeterminate Z with coefficients in So. Let (Si' Xi 'Yi)O<i<oo be any 
infinite sequence such that for 0 < i < 00: Si is a two-dimensional 
regular local domain; Si is a quadratic transform of Si-I; (Xi' Yi) 
is a basis of M(Si); if Yi-l/Xi-l E Si then Xi-l = Xi and 
(Yi-l/Xi) - Yi E f; and if Yi-l/Xi-l i Si then Xi-l = YiXi and 
Yi-l = Yi . Assume that Xi+1 =f- Xi for infinitely many distinct va lues 
of i. Then there exists a nonnegative integer n and an element r in 
the completion S* of Sn such that either: feZ + r) 1= Ze, or: there 
exist nonnegative integers u and v such that upon letting 
g(Z) = (x~y!)-"1(x~y:Z + r) 'we have that g(~ E S*[Z] and 
o < ords·g(Z) < e. 

Then we have the following. 

(4.21.1). Assume that Rn is pseudogeometrZbtand for every 
iterated monoidal trans form T of Rn and every nonzero principal 
prime ideal P in Twe have that 6(T, P) is closed in meT) (see (1,2.6». 
Then either condition (1) is satisfied, or condition (2c) is satisfied for 
some nonnegative integer c. 

(4.21.2). Assume that Rn is pseudogeometric, and let c be a 
nonnegative integer such that condition (2c) is satisfied. Then either 
condition (1) is satisfied, or condition (2c- l ) is satisfied, or condition 
(3e) is satisfied. 
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(4.21.3). Assume that condition (*) is satisfied, and for every 
iterated monoidal transform T of R" and every ideal Q in T we have 
that 6(T*, QT*) = {S E ~(T*): TTflM(S) E 6(T, Q)} where T* is 
the completion of T (see (1.2.6». Let c be a nonnegative integer such 
that condition (3c) is satisfied. Then condition (4c) is satisfied. 

(4.21.4). Assume that for every iterated monoidal transform T of 
R" and every ideal Q in T we have that 6(T*, QT*) = {S E ~(T*): 
TTflM(S) E 6(T, Q)} where T* is the completion of T (see 
(1.2.6». Let c be a nonnegative integer such that condition (4c) is 
satisfied. Then either condition (1) is satisfied, or condition (2~-1) is 
satisfied. 

(4.21.5). Assume that: R" is pseudogeometric; for every iterated 
monoidal trans form T of R" and every nonzero principal prime ideal 
P in T we have that 6( T, P) is closed in ~(T); and for every iterated 
monoidal transform T of R" and every ideal Q in T we have that 
6(T*, QT*) = {S E ~(T*):" TTflM(S) E 6(T, Q)} where T* is the 
completion of T (see (1.2.6». Also assume that condition (*) is 
satisfied. Then condition (I) is satisfied. 

PROOF OF (4.21.1). Let (R~, J~ ,I~)o';;i<CXl be the infinite sequence 
such that (R~, J~ ,/~) = (R', j', 1'), and (R;, J; , I;) is the 
monoidal transform of (R~_I' J;-1 ,1;_1 , R;_I) along V for 
o < i < 00. Note that then ordRJ; ~ ordRJ; whenever . " o ~ j ~ i < 00, and by (1.10.8) we also have that li has a 
quasinormal crossing at Ri for 0 ~ i < 00. 

First suppose that ordR;J; =F d for so me j with 0 ~ j < 00. 

Then there exists a unique positive integer m such that ordRJ; = 

d> ordR' J:n for 0 ~ i < m. Upon taking S; = R~ for 0 ~ l< m 
we get th;t condition (I) is satisfied. 

So now assurne that ordRJ; = d for 0 ~ i < 00. Then by 
(1.10.5) we know that (R; , J;) is unresolved for 0 ~ i < 00, and 
hence by (3.21.1) we get that dirn R; = 3 for 0 ~ i < 00. Now 
R; is residually algebraic over R;_1 for 0 < i < 00, and hence 
R;/M(R;) is perfect for 0 ~ i < 00. By (3.8.4) there exists a 
positive integer m such that (f2(R:n , J:n) has a strict normal crossing 
at R;" . Let S; = R; for 0 :s;; i < m. Then [(R; , J; , I; , S;)o<i<m , 
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(R:n, J;" , I;")] is a finite weak resolver. Let T be the completion 
of R:n. In view of Cohen's structure theorem [28: Theorem 27 
on page 304] we may identify T with \the ring of formal power 
series in indeterminates X, Y, Z with coefficients in a field k which 
is isomorphie to R:nIM(R;"). Let R be the ring of formal power 
series in X, Y, Z with coefficients in an algebraic closure of k, 
where we regard R to be an overring of T. Let J = J;"R, I = I;"R, 
L = I, c' = c = ordRI, and e = d + c. Now ordRJ = ordR' J;" 
and hence ordRJL = e. By (4.13) there exists a basis (x, y, zr of 
M(R) such that JL cf. (x, y, zd+C'+1)R. Upon taking p = 0 = q 
we also have that I = xPyqL. Therefore condition (2c) is 
satisfied. 

PROOF OF (4.21.2). If c' < c then condition (2C- 1) is satisfied 
and we have nothing more to show. So assurne that c' = c. Let 
(R~ , J~ , I;)m<i<oo be the infinite sequence such that (R~ , J~ , I~) is 
the monoidal transform of (R~_1' J~-1 , I~_l , R~_1) along V for 
m < i < 00. Note that then ordR'l~ ~ ordR'li whenever 

j i I 

m ~ j ~ i < 00, and by (1.10.8) we also have that I i has a 
quasinormal crossing at R~ for m ~ i < 00. For a moment suppose 
that ordRJi =I- d for some j with m < j < 00; then there exists 
a unique' integer n > m such that ordRJ; = d > ordR' J~ for 
o ~ i < n; upon letting s~ = R~ for m ~'i < n we now get that 
[(R~ , J~ , I~ , SaO,;;i<n , (R~ , J~ , I~)] is a finite weak resolver, 
and hence condition (l) is satisfied. So henceforth assurne that 
ordR;J~ = d for m < i < 00. Then by (1.10.5) we know that 
(R; , T) is unresolved for m ~ i < 00, and hence by (3.21.1) we 
get dirn R; = 3 for m ~ i < 00. By (3.11) we also get that 
(f2(R~ , J;) has astriet normal crossing at R~ for m ~ i < 00. Since 
I;" has a quasinormal crossing at R:n , we get that I has a quasinormal 
crossing at R. Let P = JL and e = d + c. Note that then 
ordRJ = d, ordRP = e, and P cf. (x, y, zil+1)R. By (4.9) there exists 
an infinite sequence (Rt, Jt, It)m';;i<oo such that (~ , J:; , I:,,) = 
(R, J,1) and for m < i < 00: Rt is a three-dimensional regular 
local domain; Rt dominates R;; Rt is residually separable algebraic 
over R~; M(Rt) = M(R~)Rt; Jt = J~Rt; It = I~Rt; and 
(Rt, Jt, It) is a monoidal transform of (Rtl' Jt1' It1' Rt1)' 
Note that now ordR;Jt = d and RtJM(Rt) is algebraically closed 
for m ~ i < 00. Let (Pt)m,;;i<oo be the unique infinite sequence 
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such that: Pt is a nonzero principal ideal in Rt for m ~ i < 00; 

P:' = P; and (Rt, Pt> is a monoidal transform of (Rtl , Ptl , Rtl) 
for m < i < 00. 

First suppose that ordR;Pl =/:= e for some j with m < j < 00. 

Then by (4.16.1) there exists an integer n > m, a nonzero principal 
ideal L; in R;, a basis (x*, y*, z*) of M(R;), and nonnegative 
integers p*, q*, and c* such that: I; = x*P'y*q*L;, ordR*L; = 
c* < c, and J;L; cf. (x*, y*, Z*d+C*+l)R; . Let R* be the completion 
of R;. Then R* is a three-dimensional complete regular local 
domain, R*/M(R*) is algebraically closed, (x*,y*,z*) is a basis 
of M(R*), R* dominates R~ , R* is residually separable algebraic 
over R~, and M(R*) = M(R~)R*. Let j* = J~R*, 1* = J~R*, 
and L* = L;R*. Then L* is a nonzero principal ideal in R*, 

* * .:I * ordR.L* = c*, 1* = x*p y*q L*, and J*L* cf. (x*, y*, z*"+C +J)R*. 
Let S; = R~ fot m ~ i < n. Then [(R~, J; , 1~ , S;)o<;;i<n , 
(R~, J~ ,1~)] is a finite weak resolver. Since c* < c, we conclude 
that condition (2C-l) is satisfied. 

Next suppose that ordR;Pt = e for m < i < 00. Then by 
(4.16.2) there exists an integer m' ~ m, a field f, and an infinite 
sequence (Ri , Ji , 1i , Li , Si ,fi(Z), Xi , Yi , Zi , ri , Si , ti , Pi , qi , 
ai , bi)m'<;;i<oo having the description given in (4.16.2). It follows 
that condition (3c) is satisfied. 

PROOF OF (4.21.3). By (*) there exists an integer n ~ m' 
and an element r in the completlOn S* of Sn such that either: 
fm'(Z + r) = ze, or: there exist nonnegative integers u and V 

such that upon letting g(Z) = (x;:y~):tm'(x;:Y~Z + r) we have that 
g(Z) E S*[Z] and 0 < ords·g(Z) < e. Let R* be the completion 
of Rn. Then there exists a unique homomorphism h/: S* -- R* 
such that h'(M(S*» C M(R*) and h'(s) = s for all SE Sn; now 
dirn h'(S*) ~ 2, dirn R* = 3, and M(R*) = M(h'(S*»R* + znR*; 
consequently dim h'(S*) = 2 and hence h' is a monomorphism; 
therefore we may identify S* with a subring of R*. Let j* = InR*, 
1* = 1nR*, L* = LnR*, (x*,y*, Zl) = (xn ,Yn' zn)' (p*, q*) = 
(Pn' qn)' feZ) = fm'(Z)' g'(Z) = fn(Z), and (r', s', t' , a' , b/) = 
(rn, Sn , tn , an , bn)· 

Note that then: R* is a three-dimensional complete regular local 
domain; R*/M(R*) is algebraically closed; (x*, y*, Z/) is a basis 
of M(R*); J*, 1*, and L* are nonzero principal ideals in R*; 
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ordR*J* = d; ordR*L* = c; e = d + c; p*, q*, a', and b' are 
nonnegative integers; 1* = x*P*y*q*L*; R* dominates R~; R* is 
residually separable algebraic over ~; M(R*) = M(R~)R*; 
]* = J~R*; 1* = I~R*; S* is a two-dimensional complete regular 
local domain; R* dominates S*; R* is residually rational over S*; 
(x*, y*) is a basis of M(S*); j(Z) and g'(Z) are monic polynomials 
of degree e in an indeterminate Z with coefficients in S*; r' E S*; 
t' is a unit in S*; s' = t'x*a'y*b'; g'(Z) = s'-1(s'Z + r'); ]*L* = 
g'(z')R*; and rE S*. Also, either: (') j(Z + r) = ze, or: (") there 
exist nonnegative integers u and v such that upon letting g(Z) = 
(X*lly*11)-Ilj(X*Uy*11Z + r) we have that g(Z) E S*[Z] and 
o < ords*g(Z) < e. Let r* = (r' - r)js'. Then r* is in the 
quotient field of S*. 

By (1.10.5) we have that (R~, J~) is unresolved; consequently by 
(4.6.2) we get that (R*, ]*) is unresolved, and from this it follows 
that (R*, ]*L*) is unresolved. Suppose if possible that we have ('); 
then (z' + r*Y = g'(z') E R* and hence by (4.11.3) we get that 
r*e E S*; since S* is normal, we deduce that r* E S*; since z' and 
g'(z') are in M(R*), we must have r* E M(R*) and hence 
r* E M(S*); consequently M(R*) = (x*,y*, z' + r*)R*; since 
]*L* = g'(z')R*, we get that (R*, ]*L*) is resolved; this is a 
contradiction. Therefore we must have ("). 

Let a = u - a', b = v - b', and s* = t'-lx*ay*b. Then by 
(4.10.2) we get that r* E S*, a and bare nonnegative integers, and 
g(Z) = s*-eg'(s*Z - r*). Since ordR*J*L* = e and ]*L* = 
g'(z')R*, we get that g'(z') E M(R*Y; consequently we must have 
g'(Z) - Ze E M(S*)[Z], and hence g'(s*z' - r*) - (s*z' - r*Y E 
M(R*); also g'(s*z' - r*) = s*eg(z') E M(R*), and hence we get 
that r* E M(R*). Therefore r* E M(S*), and hence upon letting 
z* = z' + r* we get that M(R*) = (x*,y*, z*)R*. Let g*(Z) = 
t'-eg(t'Z). Then g*(Z) E S*[Z] and ords*g*(Z) = ords*g(Z). Con­
sequently 

g*(Z) = ze + glze-l + ... + g. 

where gl' ... , ge are elements in S* such that ge E M(S*), and 
gj' ff M(S*)i' for some j' with 1 ~ j' ~ e. In particular then 
gl , ... , ge are elements in R* with ge E M(R*), and in view of 
(4.11.2) we get that ordR*gj = ordh(R*,gj for 1 ~ j ~ e where h: 
R* __ R*jz*R* is the canonical epimorphism, and ordR*gj' <j'. 
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Let w = g'(z'). Then J*L* = wR*. 
x*aey*beg*(x*-ay*-bz *), and hence 

e 

W = z*e + L gjx*ajy*biz*e-j . 
j=l 

It follows that condition (4c) is satisfied. 

Also g'(z') 

PROOF OF (4.21.4). By (4.20) we get that one of the following 
two conditions is satisfied. 

(1') There exists a finite weak resolver [(Rt, Jt, It, St)O~i<U' 
(R;1', J,t,I;1')] such that: (Rt, 1:, It) = (R~, J~, I~); ordR~Jt = 
d > ordR*J;1' for 0 ~ i < u; and V dominates R;1'. • 

u 

(2') There exists a finite weak resolver [(Rt, Jt, It, St)o~i<U , 
(R;1', J,t, 1;1')] and a system (R*, J*, 1*, L*, x*, y*, z*, p*, q*, c*) 
such that: (Rt, Jt, It) = (R~, J~, I~); dirn Rt = 3 and 
ordRdt = d for 0 ~ i ~ u; (f2(R;1', J~) has astriet normal crossing 
at R;1'; V dominates R;1'; R* is a three-dimensional complete 
regular local domain; R*jM(R*) is isomorphie to RjM(R); R* 
dominates R,t; R* is residually separable algebraic over R;1'; 
M(R*) = M(R;1')R*; J* = J;1'R*; 1* = I,fR*; L* is a nonzero 
principal ideal in R*; ordR.L* = c* < c; (x*, y*, z*) is a basis of 
M(R*); p* and q* are nonnegative integers; 1* = x*P'y*q'L*; 
and J*L* rt (x*, y*, Z*d+C*+l)R*. 

First suppose that condition (I') is satisfied. Let v' = n + u, 
S~ = R~ for m ~ i < n, S~ = st-n for n ~ i < v, and (R~ , J~ , I~) = 

(Rt-n, Itn ,Itn) for n < i ~ v. Then [(R~, J~ , I~ , S~)O~i<V , 
(R~ , J; , I;)] is a finite weak resolver. It follows that condition (1) 
is satisfied. 

Next suppose that condition (2') is satisfied. Let v = n + u, 
S~ = R~ for m ~ i < n, S~ = stn for n ~ i < v, and (R~ , J~ , I~) = 
(Rtn' Jtn ,Itn) for n < i ~ v. Then [(R~, J~ , I~ , S~)O~i<v , 
(R; , J; , I;)] is a finite weak resolver. Since c* < c, it follows that 
condition (2C- 1) is satisfied. 

PROOF OF (4.21.5). By (4.21.1) there exists a nonnegative integer 
c* such that either condition (I) is satisfied or condition (2c*) is 
satisfied. By (4.21.2), (4.21.3), and (4.21.4) we get that if c is a 
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nonnegative integer such that condition (2c) is satisfied then either 
condition (1) is satisfied or condition (2C- 1) is satisfied. Therefore 
by induction on j we get that for 0 ~ j ~ e* + I we have that 
either condition (I) is satisfied or condition (2c*_j) is satisfied. In 
particular, upon takingj = e* + I, we get that either condition (I) 
is satisfied or condition (2_1) is satisfied. However, clearly condition 
(2_1) can never be satisfied. Therefore condition (I) is satisfied. 

(4.22). Let R be a three-dimensional pseudogeometric regular 
loeal domain such that: RJM(R) is aperfeet field having the same 
eharaeteristie as R; for every iterated monoidal trans form T of R 
and every nonzero principal prime ideal P in T we have that 6( T, P) 
is closed in ~(T); and for every iterated monoidal trans form T of R 
and every ideal Q in T we have that 6(T*, QR*) = {S E ~(T*): 
TTnM(S) E 6(T, Q)} where T* is the eompletion of T (see (1.2.6)). 
Assume that the following eondition is satisfied. 

( *) Let So be the ring of formal power series in two indeterminates 
with eoefficients in an algebraie closure of RJM(R). Let (xo , Yo) be 
any basis of M(So), let f be any eoeffieient set for So, let e be any 
positive integer, and let f(Z) be any monie polynomial of degree e in an 
indeterminate Z with eoefficients in So. Let (Si' Xi , Yi)O<i<oo be any 
infinite sequenee such that for 0 < i < 00: Si is a two-dimensional 
regular loeal domain; Si is a quadratie trans form of Si-I; (Xi' Yi) is 
a basis of M(Si); if Yi-lJXi-l E Si then Xi- 1 = Xi and (Yi-lJXi) - Yi E f; 
and if Yi-lJXi-l f/:. Si then Xi- 1 = YiXi and Yi-l = Yi . Assume that 
xHI -=F- Xi for infinitely many distinet values of i. Then there exists a 
nonnegative integer n and an element r in the eompletion S* of Sn 
such that either: f(Z + r) = ze, or: there exist nonnegative integers 
u and v such that upon letting g(Z) = (x:y~)-1(x;:Y~Z + r) we have 
that g(Z) E S*[Z] and 0 < ords*g(Z) < e. 

Then R is weakly resolvable. 

PROOF. Let R' be any iterated monoidal transform of R, let ]' 
and l' be any nonzero principal ideals in R' such thai (R', ]') is 
unresolved and1' has a quasinormal crossing at R', and let Vbe any 
valuation ring of the quotient field of R such that V dominates R'. 
We want to show that then there exists a finite weak resolver 
[(Ri , li ,li' Si)O,;;i<m, (Rm, 1m , Im)] such that (Ro , 10,10) = 
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(R' , j',1'), ordRJi = ordR1 > ordR Im for 0 ~ i < m, and V 
dominates Rm • This however followsmfrom (4.21.5). 

(4.23). REMARK. If in (4.22) we only wanted to prove the 
weaker assertion that R is weakly semiresolvable then, upon 
disregarding several considerations of this section and simplifying 
some of the remaining considerations, we can make a simpler proof. 
The reader may find it instructive to extract such a simpler proof 
of the said weaker assertion. 

§5. Main results 

In [9: Theorem LI] we proved the following. 

(5.1). Let So be a two-dimensional regular loeal domain sueh that 
Sol M( So) is an algebraieally closed field having the same eharaeteristie 
as So' Let (xo , Yo) be a basis of M(So), let f be a eoeffieient set 
for So, and let f(Z) be a monie polynomial of degree e > 0 in an 
indeterminate Z with eoefficients in So . Let (Si' Xi , Yi)O<i<co be an 
infinite sequence sueh that for 0 < i < 00: Si is a two-dimensional 
regular loeal domain; Si is a quadratie transform of Si-I; (Xi' Yi) is a 
basiS of M(Si); if Yi-l/xi-l E Si then Xi-l = Xi and (Yi-l/xi) - Yi E f; 
and if Yi-l/xi-I r/= Si then X i - 1 = YiXi and Yi-l = Yi . Assume that 
Xi+l o:j::. Xi for infinitely many distinct values of i. Then there exists 
a nonnegative integer n and an element r in the eompletion S* of Sn 
sueh that either: f(Z + r) . Ze, or: there exist nonnegative integers 
u and V sueh that upon letting g(Z) = (x;:Y~)-1(x;:Y~Z + r) we have 
that g(Z) E S*[Z] and 0 < ords·g(Z) < e. 

In (5.2), (5.3), and (5.4) we shall state and prove the mam 
results of this chapter. 

(5.2). Let R be a pseudogeometrie regular loeal domain with 
dim R ~ 3. Assume that if dim R = 3 then the following three 
conditions are satisfied: (1) RIM(R) is a perfect jield having the 
same characteristic as R; (2) for every iterated monoidal trans form 
T of Rand every nonzero principal prime ideal P in T we have 
that G(T, P) is closed in m(T); and (3) for every iterated monoidal 
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transform T of Rand every ideal Q in T we have that 6( T*, Q T*) = 
{S E ln(T*): TTf'M(S) E 6(T, Q)} where T* is the completion of T 
(see (1.2.6». 

Then we have the following. 

(5.2.1). R is weakly semiresolvable, semiresolvable, strongly 
semiresolvable, weakly resolvable, resolvable, strongly resolvable, 
detachable, strongly detachable, principalizable, and strongly princi­
palizable. 

(5.2.2). Let R' be any iterated monoidal transform of R, let I' 
be any nonzero ideal in R', and let V be any valuation ring of the 
quotient field of R such that V dominates R'. Then there exists an 
iterated monoidal transform R* of R along V such that I' R* is a 
nonzero principal ideal in R* having anormal crossing at R*. 

(5.2.3). Let R' be any iterated monoidal transform of R, let V 
be any valuation ring of the quotient field of R such that V dominates 
R', and let fl , ... , fq (q > 0) be any finite number of nonzero elements 
in V. Then there exists an iterated monoidal transjorm R* of R' 
along V and a basis (Xl' ... , Xn) of M(R*), where n = dirn R*; such 
that fi = giX~(i.l) ... x!(i.n) where gi is a unit in R* and a(i,j) is a 
nonnegative integer for 1 :::;;; i :::;;; q and 1 :::;;; j :::;;; n. 

(5.2.4). Let R' be any iterated monoidal transform of R, let ]' 
be any nonzero principal prime ideal in R', and let V be any valuation 
ring of the quotient field of R' j]' such that V dominates R' j ]'. Then 
there exists a regular spot R * over R' j]' such that V dominates R *. 

PROOF. In view of (5.1) this follows frorn (2.2), (2.4), (2.6), 
(2.8), (2.11), (2.13), (2.19), (2.21), (3.21), and (4.22). 

(5.3). Let R be a pseudogeometric regular local domain such that: 
RjM(R) is aperfect field having the same characteristic as R; for 
efJery regular spot over T over R with dirn T :::;;; 3 and every nonzero 
principal prime ideal P in T we have that 6(T, P) is closed in ln(T); 
and for every regular spot T over R with dirn T :::;;; 3 and efJery ideal Q 
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in T we have that 6(T*, QT*) = {S E m(T*): TTnM(S) E 6(T, Q)} 
where T* is the completion. oJ T (see (1.2.6». Let K be a Junction 
field over R such that dirn R + trdegRK ~ 2. Let V be a valuation 
ring oJ K such that V dominates R. Then there exists a regular spot 
R* over R with quotient field K such that V dominates R*. 

PROOF. There exists a finite number of elements Xl' ... , Xn in K 
such that K is the quotient field of R[xl , ... , xnl We shall prove 
our assertion by induction on n. If n = 0 then it suffices to take 
R* = R. Now let n > 0 and assurne that the assertion is true for 
all values of n sm aller than the given one. Let L be the quotient 
field of R[xl , ... , xn- l]. Then dirn R + trdegRL ~ 2, and hence by 
the induction hypothesis there exists a regular spot A over R with 
quotient field L such that V dominates R. For a moment suppose 
that Xn is transcendental over L; let X = Xn if Xn E V, and x = Ijxn 
if Xn ~ V; let R* be the quotient ring of A[x] with respect to 
M(V) () A[x]; then R* is a spot over R with quotient field K and 
V dominates R*; since x is transcendental over L, by [18: (14.8) 
and (28.3)] we have that R* is regular. So now assurne that Xn is 
algebraic over L. Then there exists 0 =1= rE A such that upon letting 
y = rXn we have thaty is integral over A. Note that now K = L(y) 
and A[y] C V. Clearly A dominates R, and hence by [28: Proposi­
tion 2 on page 326] we get that dirn A ~ 2, and either dirn A ~ 1 
or A is residually algebraic over R. Let Z be an indeterminate and 
let h: A[Z] -- A[y] be the unique epimorphism such that h(Z) = Y 
and h(u) = u for all u E A. Let J(Z) be the minimal monic 
polynomial of y over L. Since A is normal, we get thatJ(Z) E A[Z] 
and h-l(O) = J(Z)A[Z]. Let B be the quotient ring of A[y] with 
respect to M(V) () A[y], let R' be the quotient ring of A[Z] with 
respect to h-l(M(V) () A[y]), and let]' = J(Z)R'. Then B is a spot 
over A with quotient field K, V dominates B, R' is a spot over A, 
R' dominates A, ]' is a nonzero principal prime ideal in R', and 
R' j]' is isomorphie to B. By [28: Proposition 2 on page 326] we 
get that dirn R' ~ 3, and either dirn R' ~ 2 or R' is residually 
algebraic over R. It follows that if dirn R' = 3 then R'jM(R') is a 
perfeet field having the same characteristic as R'. By [18: (14.8) 
and (28.3)] we have that R' is regular. Therefore by (5.2.4) there 
exists a regular spot R* over B with quotient field K such that 
V dominates R*. Clearly R* is a spot over R. 
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(5.4). Let R be a complete local domain such that R/M(R) is a 
perfect field having the same characteristic as R, let K be a functz"on 
field over R such that dirn R + trdegRK :::;;; 2, and let V be a 
valuation ring of K such that V dominates R. Then there exists a 
regular spot R* over R with quotient field K such that V dominates R*. 

PROOF. By Cohen's structure theorem [18: (31.6)] there exists 
a complete regular local domain R' such that dirn R' = dirn R, 
R dominates R', R is residually rational over R', and R is a finite 
R' -module. In view of (1.2.6), by (5.3) there exists a regular spot 
R* over R' with quotient field K such that V dominates R'. 
Since R* is normal, we get that R* is a spot over R. 

We shall now give an alternative simple proof of (5.1) for the 
case when So is of zero characteristic. In this proof we shall only 
use (0.1) and the trick of killing the coefficient of ze-I in f(Z); 
in particular, we shall not use any results from the papers [5], [7], 
[8], and [9]. Thus for the case when R is of zero characteristic 
we shall have given a simpler proof of (5.2), (5.3), and (5.4) which 
is independent of the papers [5], [7], [8], and [9]. What we shall 
prove is actually slightly stronger than the case of (5.1) when So 
is of zero characteristic and is as follows: 

(5.5). Let So be a two-dimensional regular local domain such that 
So/M(So) is algebraically closed. Let (xo ,Yo) be a basis of M(Ro)' 
let f be a coefficient set for So, let e be a positive integer which is 
not divisible by the eharaeteristie of So/M(So), and let f(Z) be a 
monie polynomial of degree e in an indeterminate Z with coefficients 
in So' Let (Si' Xi 'Yi)O<i<a> be an infinite sequence such that for 
o < i < 00: Si is a two-dimensional regular local domain; Si 

is a quadratie transform of Si-I; (Xi' Yi) is a basis of M(Si); if 
Yi-I/Xi-I E Si then Xi - I = Xi and (Yi-I/Xi) - Yi E f; and if Yi-I/Xi-I rt Si 

then Xi-I = YiXi and Yi-I = Yi • Assume that Xi+1 =1= x.dor infinitely 
many distinct values of i. Then there exists a positive integer n and 
an element r in Sn such that either: f(Z + r) = ze, or: there 
exist nonnegative integers u and v such that upon letting 
g(Z) = (x;:y~)-tf(x~y!Z + r) we have that g(Z) E Sn[Z] and 
o < ords g(Z) < e. 

n 

First we shall prove the following. 
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(5.6). Let (S, S', x,y,y', G, a) be a system sueh that: Sand S' 
aTe two-dimensional TegulaT loeal domains; S' is a quadTatie tTans/oTm 
0/ S; M(S) = (x, y)S; M(S') = (x, y')S'; (y/x) - y' ES; 0 =1= GE S; 
and a = ordsG. Then G = xa(tx + t'y'b) where tE S', t' is a unit 
in S', and b is an integer with 0 ~ b ~ a. 

PROOF. Clearly M(S) = (x, xy')S and hence G = Toxa + 
TIXa-I(XY') + ... + Ta(xy')a where To , Tl , ••• , Ta are elements in S at 
least one of which is not in M(S). Let b be the smallest integer 
with 0 ~ b ~ a such that Tb f# M(S). Now M(S)S' = xS' and 
hence upon letting t = (To/X) + (TI/X)Y' + ... + (Tb_l/X)y'b-l we 
get that tE S' (we take t = 0 in case b = 0). Let t' = Tb + 
Tb+tY' + .~ + TaY'a-b. Then t' is a unitin S', and G=xa(tx + t'y'b). 

Although the following assertion follows from [8: Lemmas 3.7 
and 3.14.(3)] and [9: Lemma 1.2], we shall deduce it directly 
from (5.6). 

(5.7). Let (Si' Xi , Yi)O~i<oo and f be as in (5.5), let m be a 
nonnegative integer, and let 0 =1= F E Sm . Then theTe exists an integer 
c ~ m such that F = sx~y~ where s is a unit in Sc and p and q aTe 
nonnegative integers. 

PROOF. Let W be the set of all integers i ~ m such that 
Yi/Xi E SHI and YHl/xHI f# SH2 . 

First suppose that W is a finite set. Since by assumption 
Xi+1 =1= Xi for infinitely many distinct values of i, it follows that then 
there exists an integer j ~ m such that Yi = Yi and Xi = xiy;-i for 
j ~ i < 00. Let p be the greatest nonnegative integer such that 
FE xf Si ' and let d = ordhls)h(FxjP) where h: Si -- Si/xiSi is the 
canonical epimorphism. Then d is a nonnegative integer and 
F = xf(s*xi + s'y1) where s* E Si' and s' is a unit in Si. Let 
c =j + d, q = pd + d, and s = s*xiyjd + s'. Then s is a unit 
in Sc andF = sx~~. 

Next suppose that W is an infinite set. Let Fm = Fand define 
F'+1 E Si+1 for m ~ i < 00 by the following recurrence relation: 
Fi = zdFi +1 where d = ordsli , and z = Xi+1 in case Yi/xi E SHI, 

and z = YHl in case Yi/xi f# SHI. Then F = sixriY~iFi for 
m ~ i < 00 where Si is a unit in Si and Pi and qi are nonnegative 
integers. Therefore it suffices to show that ordsl" = 0 for some 
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integer c ~ m. Let ai = ordsli for m ~ i < 00. Then by (5.6) 
(or alternatively by (1.10.2» we get that ai +1 ~ ai for m ~ i < 00. 

We shall show that if i is any integer in W such that ai 0:/= 0 then 
ai+2 < ai ; since W is an infinite set, this will imply that ac = 0 
for some integer c ~ m. So let any integer i in W be given such 
that ai 0:/= O. Then by (5.6) we get that FH1 = tXi+1 + t'Y~+1 
where t E Si+1' t' is a unit in Si+1' and b is an integer with 
o ~ b ~ ai . If ai+l 0:/= ai then ai+2 ~ ai+1 < ai . So now assurne 
that ai+l = ai · Then we must have b = ai and tE M(Si+1)b-l. 

NowFi+2 = Yi!2Fi+1 = ty}+gXi+2 + t', ty}+~ E Si+2' Xi+2 E M(Si+2)' 
and t' is a unit in Si+2 . Therefore ai+2 = 0 and hence ai+2 < ai . 

From (5.7) we shall now deduce the following. 

(5.8). Let (Si' Xi 'Yi)O';;i<ro and f be as in (5.5), let m be a 
nonnegative integer, let 0 0:/= FE Sm , and let d be a positive integer. 
Then there exists an integer n ~ m and nonnegative integers u and v 
such that (x~~)-dF E Sn and ordsn«x:y~)-dF) < d. 

PROOF. By (5.7) there exists an integer c ~ m such that 
F = sx~y~ where s is a unit in Sc and P and q are nonnegative 
integers. If Yn-l!xn- l E Sn and Yn-I!Xn- 1 0:/= Yn for some integer 
n > c then clearly F = s' x~ where s' is a unit in Sn and w is a 
nonnegative integer, and hence it suffices to take v = 0 and 
u = the greatest nonnegative integer such that ud ~ w. So now 
assurne that for c < i < 00 we have that: if Yi-l/Xi-l E Si then 
Yi-l/Xi-l = Yi' Let (Pc, qc) = (p, q) and define a pair of non­
negative integers (Pi' qi) for c < i < 00 by the following recurrence 
relation: (Pi' qi) = (Pi-l + qi-l , qi-l) if Yi-l/Xi-l E Si and (Pi' qi) = 

(Pi-I, Pi-l + qi-l)' Then F = SxfiY~i for c ~ i < 00. For 
c ~ i < 00 let Ui , Vi , ai , bi be the unique nonnegative integers 
such that Pi = dUi + ai , ai < d, qi = dVi + bi , and bi < d. 
Then it is clear that if i is any integer with i > c such that 
ai- l + bi- l ~ d then ai + bi < ai- l + bi-I' From this it folIo ws 
that there exists an integer n with c ~ n < c + d such that 
an + bn < d. It now suffices to take U = Un and v = Vn . 

FinalIy, from (0.1) and (5.8) we shall now deduce (5.5). 

PROOF OF (5.5). Let t be the coefficient of Ze-l in j(Z). Since e 
is not divisible by the characteristic of So!M(So), we get that 
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tle E So and j(Z - (tJe» = Ze + F2ze-2 + Fsze-s + ... + Fe with 
F2 ,Fs , ... ,Fe in So' If F j = 0 for 2 ~j ~ ethen it suffices"to 
take n = 0 and r = -(tle). So now assurne that Fi =1= 0 for some j 

co 

with 2 ~j ~ e. Then e ~ 2. Let V = U Si' By (0.1) we know 
i=O 

that V is a valuation ring of the quotient field of So, and V 
dominates Si for 0 ~ i < 00. Let a = e!. Since V is a valuation 
ring of the quotient field of So, there exists an integer d with 
2 ~ d ~ e such that upon letting F = Fd we have that F =1= 0 

co 

and Fj/ifFa/d E V for 2 ~ j ~ e. Since V = .u Si' there exists 
~=O 

a nonnegative integer m such that Fi/iIFa/d E Sm for 2 ~ j ~ e. 
By (5.8) there exists an integer n ~ m and nonnegative integers 
u and v such that (x;:Y~)-dF E Sn and ords,,«x;:Y~)-dF) < d. Let 
g'(Z) = (x;:Y~)-1(x:S~Z - (tle». Since Sn is normal, we get that 
g'(Z) = Ze + G~ze-2 + G~ze-s + ... + G; with G~, G~, ... , G; 
in Sn , and 0 ~ ords g'(Z) < e. If 0 < ords g'(Z) then it suffices 
to take r = -(tle). So now assurne that 0" = ords"g'(Z). Then 
G; i M(Sn). Now SnIM(Sn) is algebraically closed and hence there 
exists a unit s in Sn such that g'(s) E M(Sn). Let r = sx~y~ - (tle). 
Then r E Sn. Let g(Z) = (x~y~)-1(x;:Y~Z + r). Then g(Z) = 
g'(Z + s) and hence g(Z) = Ze + GIze-I + G2Ze-2 + ... + Ge 
with GI' Gz , '""' Ge in Sn" Since g(Z) = g'(Z + s), we also get 
that Ge = g'(s) E M(Sn)' and GI = es. Again since eisnot divisible 
by the characteristic oj So/M(So), we conclude that es i M(Sn)' 
Therefore 0 < ords g(Z) < e. 

" 



CHAPTER 2 

Global Theory 

In this chapter k will be a noetherian domain and K will be a 
function field over k. We define: dimkK = dim k + trdegkK (if 
dim k = 00 then we take dimkK = 00). Most of the considerations 
of §6 may be used tacitly in the rest of this chapter. 

§6. Terminology and preliminaries 

(6.1). Let X be a topological space and let Y C X. 
X is said to be irreducible if X =1= 0 and X cannot be expressed 

as the union of two closed subsets of X different from X. Y is 
said to be irreducible if Y is irreducible in the induced topology. 
By an irreducible component of Y we mean an irreducible subset 
Z of Y such that Z is not contained in any irreducible sub set of Y 
other than Z. It is easily seen that if Z is any irreducible subset of 
Y then the closure of Z in Y is irreducible; consequently every 
irreducible component of Y is closed in Y. By Zorn's lemma it 
follows that if Z is any irreducible subset of Y then Z is contained 
in some irreducible component of Y; since {y} is irreducible for 
a11 y E Y, it fo11ows that Y is the union of its irreducible compo­
nents. The fo11owing is easily proved. 

(6.1.1). Assume that X is the union of a finite family (Xi)iel 
of closed subsets Xi of X such that each Xi has only finitely many 
irreducible components. Then we have that: if X' is any irreducible 
component of X then X' is an irreducible component of Xi for some 
i E 1. In particular X has only finitely many irreducible components. 

X is said to be quasicompact if every open covering of X contains 
a finite subcovering. Again, Y is said to be quasicompact if Y is 
quasicompact in the induced topology. 
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The fo11owing four conditions are easily seen to be equivalent: 
(1) every nonempty family of open sub sets of X contains a maximal 
element; (2) there does not exist any infinite sequence Xl C X 2 C ... 
of distinct open subsets of X; (3) every nonempty family of closed 
subsets of X contains a minimal element; (4) there does not exist 
any infinite sequence Xl ~ X 2 ~ ••• of distinct closed subsets of X. 
X is said to be noetherian if these conditions are satisfied. Again, 
Y is said to be noetherian if Y is noetherian in the induced topology. 
We note the fo11owing. 

(6.1.2). If X is noetherian then every subset of X is noetherian. 
If X is the union of a finite family of noetherian subsets then X is 
noetherian. X is noetherian if and only if every open subset of X 
is quasicompact. If X is noetherian then X has only finitely many 
irreducible components. 

Everything, except possibly the last statement, is obvious. 
Suppose if possible that X is noetherian and has infinitely many 
irreducible components. Let F be the set of a11 closed subsets of 
X having infinitely many components. Then F * 0 and hence F 
contains a minimal element Z. Now Z * 0 and Z is not irreduc­
ible, and hence Z = Zl U Z2 where Zl and Z2 are closed subsets 
of X different from Z. Since Z is a minimal element of F we get 
that Zi rf: Fand hence Zi has only finitely many irreducible com­
ponents for i = 1,2. Consequently by (6.1.1) we get that Z has 
only finitely many irreducible components which is a contradiction. 

(6.2). In (6.2) (and only in (6.2» we relax the assumptions on 
Kjk; namely, we only assurne that K is a field and k is a subring 
of K. 

By m(Kjk) we denote the Riemann-Zariski space of Kjk, i.e., 
m(Kjk) is the set of a1l valuation rings of K which contain k. By 
m'(Kjk) we denote the set of a1l quasilocal rings with quotient 
field K which contain k. We topologize m'(Kjk) by designating 
that a subset Y of m'(Kjk) is open if and only if there exists a 
family (Bi)iEI of finite subsets Bi of K such that Y = {R E m'(Kjk): 
Bi C R for some i EI}. Every subset of m'(Kjk) is to be regarded 
as a topological space with the topology induced by this topology 
of m'(Kjk); in particular this is so for m(Kjk) and for every model 
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of Kjk. For geometrie visualization, elements in any subset X of 
1Jt'(K/k) may be called points of X; thus: by a closed point of X we 
mean an element R in X such that {R} is a closed subset of X; bya 
normal point of X we mean an element R in X such that R is a 
normal domain; and by a regular point of X we mean an element 
R in X such that R is a regular local domain. Also, given any 
XC 1Jt'(Kjk) and RE 1Jt'(Kjk) we may say that X passes through 
R to mean that REX. The following two results are proved' in 
[28: Lines 1 and 2 on page 116] and [28: Theorem 40 on page 113] 
respectively. 

(6.2.1). For any REX C 1Jt'(Kjk) we have that {R' E X: 
R' C R} = closure 0/ R in X. 

(6.2.2). IJt(Kjk) is quasicompact. 

For any XC 1Jt'(Kjk), by (6.2.1) we get that there exists at most 
one point R of X such that X is the closure of {R} in X; when R 
exists it is called the generic point of X; note that if R exists and Y 
is any nonempty open subset of X then R is the generic point of 
Y and Y is irreducible. In view of (6.2.1) we also get the 
following. 

(6.2.3). For any semimodel X 0/ K/k we have the /ollowing: 
(1) X is irreducible and K is the generic point 0/ X. (2) For any 
V E IJt(Kjk) we have that: V dominates X <=> R C V /OT some REX. 
(3) For any REX we have that: {R' EX: RE m(R')} = {R' EX: 
R' eR} = closure 0/ {R} in X; and m(R) = intersection 0/ all open 
subsets 0/ X containing R. 

For any XC 1Jt'(K/k) we define: IJt(X) = {V E IJt(K/k): V 
dominates X}. Note that if X is a semimodel of Kjk then, as noted 
above, IJt(X) = {V E IJt(K/k): Re V for some REX}; moreover, 
X is complete <=> IJt(X) = IJt(Kjk). If A is any affine ring over k 
with quotient field K then clearly IJt(KjA) = lJt(m(A» and the 
topology of IJt(KjA) induced by the topology of IJt(Kjk) coincides 
with the topology of IJt(KjA) as the Riemann-Zariski space of 
KjA. Therefore by (6.2.2) we get the following. 

(6.2.4). 1/ X is any model 0/ K/k then 1Jt(X) is quasicompact. 



158 2. GLOBAL THEORY 

For any two subsets X and X' of 9t'(K/k) such that X is an 
irredundant premodel of K and X' dominates X, and any R' E X' 
we define: [X', X](R') = center of R' on X; the resulting map 
[X', X]: X' -- Xis called the domination map of X' into X. Note 
that if X is any model of K/k and X' is any complete model of 
Kjk dominating X then [X', X](X') = X. For any two subsets 
X and X' of 9t'(K/k) we define: t;:(X', X) = (fundamental locus 
on X for the pair (X', X» = {R E X: R does not dominate X'}; 
note that if X' is a model of K/k then t;:(X', X) = {R E X: R' cf R 
for all R' E X'}; also note that if X and X' are models of K/k and 
X' dominates X then t;:(X', X) = X - X'. The following three 
results are proved in Lemmas 3, 7, and 6 of [28: §17 of Chapter 
VI] respectively. 

(6.2.5). 1f Xis any model of K/k and X' is any subset of 9t'(K/k) 
dominating X then [X', X] is a continuous map of X' into X. 

(6.2.6). 1f X is any complete· model of K/k then there exists a 
projective model X' of K/k such that X' dominates X. 

(6.2.7). Let X and X' be any two models of K/k. Then there 
exists a unique model X* of Kjk such that: X* dominates X and X', 
and if Y is any suhset of 'R'(K/k) dominating X and X' thm Y domin­
ates X*. (X* is called the join of X and X' and is denoted by 
X + X'.) 1f X = U m(Ai ) and X' = U m(B;) where (Ai).,er and 

ieI ;eJ 
(B;);eJ are finite families of affine rings over k then X* = U m(Aij) 

ieI,;eJ 
where Ai; is the smallest suhring of K containing Ai and Bi' 1f X 
and X' are complete (resp: projective) models of K/k then X* is a 
complete (resp: projective) model of K/k. 

From the first characterization of the join we get the following. 

(6.2.8). Let X and X' be any two models of K/k. Then 
t;:(X', X) = t;:(X + X', X). 1f REX, R' EX', R* EX + X', and 
V E 9t(K/k) such that V dominates R, R', and R* then the following 
four conditions are equivalent: (1) R* = R; (2) R f# t;:(X', X); 
(3) R dominates R'; (4) R' eR. 

The following two results are proved in Lemmas 1 and 2 of 
[28: §17 of Chapter VI] respectively. 
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(6.2.9). Let A be any subring of K with quotient field K such 
that k C A, and let Y C m(A). Then: Y is closed in m(A) <0> there 
exists an ideal H in A such that Y = {R E m(A): HR #- R}. (Thus 
we see that the definition of a closed subset of m(A) given here 
ägrees with the definition given in (1.1).) 

(6.2.10). Let X be any model of KJk. 1f A is any affine ring 
over k such that m(A) C X then m(A) = {R E X: AC R} and m(A) 
is open in X. 1f Y CX = U m(Ai) where (Ai)iEI is a finite family of 

iEI 
affine rings over k then: Y is open (resp: closed) in X <0> Y () m(Ai) 
is open (resp: closed) in m(Ai) for all i E 1. 

For any element x in any domain A we clearly have that if 
x#-O then {R E m(A): xR = R} = m(A[x-1]), and if x = 0 then 
{R E m(A): xR = R} = 0; also for any basis H I of any ideal H 
in A we have that m(A) - {R E m(A): HR #- R} = U {R E m(R): 

XEH' 

xR = R}. Therefore by (6.2.9) we get the following. 

(6.2.11). Let A be any subring of K with quotient field K such 
that k C A, and let Y be any subset of m(A). Then: Y is open in 
m( A) <0> there exists a family (Xi)iEI of nonzero elements in A such that 
Y = U m(A[x;-l]). 1f A is noetherian then: Y is open in m(A) <0> 

iEI 
there exists a finite family (Xi)iEI of nonzero elements in A such that 
Y = U m(A[xi1]). 

iEI 

By (6.2.10) and (6.2.11) we get the following. 

(6.2.12). Let Y be any subset of any model X of KJk. Then: 
Y is open in X <0> there exists a family (A.i)iEI of affine rings Ai over 
k such that Y = U m(Ai). 1f k is noetherian and Y #- 0 then: Y is 

iEI 
open in X <0> Y is a model 0/ KJk. 

By (6.2.4), (6.2.5), and (6.2.12) we get the following. 

(6.2.13). Let Y C 'Jt/(KJk). 1f Y is a closed subset of some 
model of KJk then 'Jt(Y) is quasicompact. 1f k is noetherian and Y 
is a closed subset of some open subset of some model of KJk then 'Jt(Y) 
is quasicompact. 
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Let A be any subring of K with quotient field K such that k C A. 
Given any closed subset Y of m(A) let P = {x E A: xR -:j= R for 
all RE Y}; then clearly P is an ideal A and Y C {R E m(A): 
PR -:j= R}; by (6.2.9) there exists an ideal Hin A such that Y = 
{R E m(A): HR -:j= R}; clearly He P (actually it can be shown 
that P = rad H; however we shall not use this fact) and hence 
{R E m(A): PR -:j= R} C {R E m(A) : HR -:j= R}; consequently: (1) 
Y = {R E m(A): PR -:j= R}. Clearly if Y -:j= 0 then P -:j= A. If 
P -:j= A and P is not a prime ideal in Athen there exist elements 
Xl and x~ in A such that Xl rt P, Xz rt P, XI X2 E P, and then upon 
letting Yi = {R E m(A): (P + XiA)R -:j= R} by (1) and (6.2.9) 
we get that Yl and Yz are closed subsets of m(A) such that Y = 
Yl U Yz and clearly Yl -:j= Y -:j= Yz . Thus: (2) if Y is irreducible 
then Pis a prime ideal in A. By (6.2.1) we get that: (3) if Q is any 
prime ideal in Athen {R E m(A): QR -:j= R} is an irreducible 
closed sub set of m(A) and A Q is its generic point. By (1), (2), and 
(3) we get that: (4) for any Z C m(A) we have that Z is an irreducible 
closed subset of m(A) <:> Z is the closure of {R} in m(A) for some 
RE m(A) (and then R is the generic point of Z). By (1) we also 
get that: (5) if A is noetherian then m(A) is noetherian. In view 
of (4) and (5), by (6.1.1), (6.1.2), (6.2.1), and (6.2.10) we get 
(6.2.14)and (6.2.15). 

(6.2.14). Let Z CIJt'(K/k). Assume that Z is a closed subset of 
some model of KJk (note that if k is noetherian then, in view of 
(6.2.12), this is equivalent to assuming that Z is a closed subset of 
some open subset of some model of K/k). Then: R -+ closure of {R} 
in Z is a one-to-one map of Z onto the set of all irreducible closed 
subsets of Z; every irreducible closed subset of Z, and hence in particular 
every irreducible component of Z, has a generic point; and {R E Z: 
R is the generic point of some irreducible component of Z} = {R E Z: 
R cf. R' for every R' E Z with R' -:j= R}. 

(6.2.15). If k is noetherian and Z is any subset of 1Jt'(K/k) such 
that Z is contained in some model of K/k then Z is noetherian and 
quasicompact and has only finitely many irreducible components. 

In view of (6.2.1), (6.2.14), and (6.2.15) we get the following. 
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(6.2.16). Assume that k is noetherian. Let Z be any subset of 
1Jt'(Klk) such that Z is a closed subset of some open subset of some 
model of Klk. Let Z' be any open subset of Z, and let Zl' ... , Zn 
be the irreducible components of Z labeled so that Z' n Zi -=1= 0 

for 1 ~ i ~ m and Z' n Zi = 0 for m < i ~ n. Then Z' n Zl , ... , 
Z' n Zm are exactly all the distinct irreducible components of Z', 
and the generic point of Zi is the generic point of Z' n Zi for 1 ~ i ~ 
m. 

For any models X and X' of Klk such that X' dominates X and 
for any closed subset Z of X we define: [X', X]-transform of Z = 
closure of Zn X' in X'; note that Zn X' = Z - ty(X', X). In 
view of (6.2.1), (6.2.14), and (6.2.15) we get the following. 

(6.2.17). Assume that k is noetherian. Let X and X' be any 
models of Klk such that X' dominates X and let Z be any closed 
subset of X such that upon letting (Si)iel be the generic points of the 
irreducible components of Z we have that Sr, E X' (i.e., Si rt ty(X', X» 
for all i E l. Then (Si)iEI are the generic points of the irreducible 
components of the [X', X]-transform Z' of Z (i.e., Z' = U closure of 

iel 
{Si} in X'), and [X', X](Z') C Z. (lf X and X' are complete models 
of Klk then [X', X] is a closed map by [28: Lemma 5 of §17 of 
Chapter VI] and hence [X', X](Z') = Z; we shall not use this 
remark in this monograph. ) 

By (6.2.17) we get the following. 

(6.2.18). Assume that k is noetherian. Let (Xi' Zi)O';;i.;;m be a 
sequence where m is a nonnegative integer, Xi is a model of Klk, 
and Zi is a closed subset of Xi for 0 ~ i ~ m, and for 0 < i ~ m 
we have that Xi dominates Xi-I, ty(Xi , Xi-I) does not pass through 
the generic point of any irreducible component of Zi-l , and Zi is the 
[Xi' Xi_l]-transform of Zi-l' Then ty(Xm , X o) does not pass 
through the generic point of any irreducible component of Zo, and 
Zm is the [Xm , Xo]-transform of Zo . 

The following observation will not be used in this monograph. 

(6.2.19). Let Z be an irreducible closed subset of a model X of 
Klk, let S be the generic point of Z, let h be the canonical epimorphism 
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of S onto S/M(S), let Z' = {h(R): RE Z}, and let f be the map 
of Z onto Z' given by taking f(R) = h(R) fOT all RE Z. Then Z' is 
a model ofh(S)/h(k) andfis ahomeomoTphism of Z onto Z'. MOTeover, 
if Xis a complete (Tesp: pTojective) model of K/k then Z' is a complete 
(Tesp: pTojective) model of h(S)/h(k). 

PROOF. Clearly Z' C ~'(h(S)/h(k». Fix any valuation ring V 
of K dominating S. Then there exists an epimorphism g of V onto 
an overfieldL of h(S) such thatg(x) = h(x) for all XE S andg-l(O)= 
M(V). 

Let any W E ~(h(S)/h(k» be given. Then there exists a valuation 
ring W' of L such that W' dominates W. Now g-1(W') E ~(K/k) 
and M(g-I(W'» = g-I(M(W'». If R is any point of X such that 
g-I(W') dominates R then clearly RE Z and W dominates h(R). 
Also, if R is any point of Z such that W dominates h(R) then 
clearly g-l( W') dominates R. It follows that f is a one-to-one map 
of Z onto Z', Z' is an irredundant premodel of h(S), and if X is a 
complete model of K/k then ~(h(S)/h(k» dominates Z'. 

Now X = !D(Al) U ... U !D(An) where Al' ... , An are affine 
rings over k. Upon relabeling Al' ... , An we may assume that 
!D(Ai) () Z =F 0 for 1 ~ i ~ m and !D(Ai) () Z = 0 for m < i ~ 
n. Then h(Al), ... , h(Am ) are affine rings over h(k) and Z' = 
!D(h(Al» U ... U !D(h(Am». Therefore Z' is a model of h(S)/h(k), 
and if X is a complete model of K/k then Z' is a complete model 
of h(S)/h(k). Let fi(R) = f(R) for all RE !D(Ai) () Z. Then by 
(6.2.9) we get that fi is a homeomorphism of !D(Ai) () Z onto 
!D(h(Ai» for 1 ~ i ~ m. Therefore by (6.2.10) we get that fis a 
homeomorphism of Z onto Z'. 

Finally assume that Xis a projective model of K/k. Then there 
exist nonzero elements Xl , ... , X, in K such that X = !D(Bl) U ..• U 

!D(B,) where Bi = k[xl/xi' ... , x,/xi].Upon relabeling Xl' ... , X, 
we may assume that Xi/Xl is a unit in V for 1 ~ i ~ sand xi/Xl E 
M(V) for s < i ~ T. Let Yi = Xi/Xl' Then Yi is a unit in V for 
1 ~ i ~ s, y, E M(V) for s < i ~ T, and Bi = k[Yl/Yi' ... , y,/y,] 
for 1 ~ i ~ T. Now SE !D(Bi ) for 1 ~ i ~ sand !D(Bi) () Z = 0 

for s < i ~ T, and hence Yi E S for 1 ~ i ~ T, Yi 1= M(S) for 
1 ~ i ~ S, Yi E M(S) for s < i ~ T, and Z' = !D(h(Bl» U ... U 

!D(h(B8». Upon ietting %i = h(Yi) we get that %1' ••• , %, elements 
in h(S), %i =F 0 for 1 ~ i ~ S, %i = 0 for s < i :::::;; T, and h{B,) = 
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h(k)[ZI/Zi ' ... , Zr/Zi] for 1 ~ i ~ s. Therefore Z' is a projective 
model of h(S)/h(k). 

(6.3). Recall that henceforth k is a noetherian domain and K 
is a function field over k. 

Let Z C m.'(K/k). Assurne that Z is a c10sed sub set of some open 
subset of some model of K/k (note that by (6.2.12) this is equivalent 
to assuming that Z is a c10sed subset of some model of K/k). For 
any RE Z we define: 

ß(R, Z) = (local ring 0/ R on Z) = R/( n (R () M(S») ; 
Selll(R)nz 

note that upon letting SI' ... , Sm be the generic points of the 
irreducible components of Z passing through R we have that 

m 

(1') n (R () M(S» = n (R () M(S,;» 
Selll(R)nz i=l 

and hence 

(2') dim ß(R, Z) = ~ax dim(R/(R () M(Si))) ; 
l~l~m 

consequently: (3') ß(R, Z) is a field <:? dirn ß(R, Z) = 0 <:? R is 
the generic point of so me irreducible component of Z. We define: 
6(Z) = (singular locus 0/ Z) = {R E Z: ß(R, Z) is not regular}; 
note that then: 

Z - 6(Z) = {R E Z: only one irreducible component Z' 
of Z passes through Rand R/(R () M(S'» is 
regular where S' is the generic point of Z'}; 

in particular 6(Z) does not pass through the generic point of any 
irreducible component of Z, and hence if Z =1= 0 then 6(Z) =1= Z. 
Z is said to be nonsingular if 6(Z) = 0. Given any regular point R 
of Z, we say that Z has anormal crossing at R if, upon letting 
SI' ... , Sm be the generic points of the irreducible components 
of Z passing through R, we have that {R () M(SI)' ... , R () M(Sm}} 
has anormal crossing at R. Note that for any regular point R of Z 
we have that: R ~ 6(Z) <:? Z has anormal crossing at Rand only 
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one irreducible component of Z passes through R. Given any 
regular point R of Z, we say that Z has a strict normal crossing 
at R if Z has anormal crossing at Rand at most two irreducible 
components of Z pass through R. In case every point of Z is 
regular, we say that Z has only normal crossings (resp: only strict 
normal crossings) if Z has anormal crossing (resp: strict normal 
crossing) at each of its points. In case every point of Z is regular, 
we say that Z is unlooped if Z has only strict normal trossings 
and there does not exist any infinite sequeI?-ce (Zi' Ri)o<{,i<oo such 
that for 0 ~ i < 00: Zi is an irreducible component of Z, Zi =1= 

Zi+l , Ri E Zi n Zi+l' arid Ri =1= R.+1' We define: 

and 

jmin dimR 
codimZ = Re:; 

if Z i=- 0 

if Z = 0 

~ max dirn S!.(R, Z) 
dimZ = ReZ 

- 00 

if Z =f. 0 

if Z = 0. 

Given a nonnegative integer d we say that Z is pure d-dimensional 
(resp: pure d-codimensional) if Z =1= 0 and dirn Z' = d (resp: 
co dirn Z' = d) for every irreducible component Z' of Z. By a 
surface (resp: curve) in Z we mean a pure 2-dimensional (resp: 
pure I-dimensional) closed sub set of Z. 

(6.3.1). Let Z C m,'(K/k). Assume that Z is a closed subset of 
some open subset of some model of K/k (note that by (6.2.12) this is 
equivalent to assuming that Z is a closed subset of some model 
of K/k). Then we have the following: (irIf Z is irreducible and S 
is the generic point of Z then codim Z = dirn S < dirn R for every 
R E Z with R =1= S. (2) If Z =1= 0 and Zl , ... , Zn are the irreducible 
components of Z then codim Z = rnin codirn Zi' (3) If Z is the 

1 <{'i <{,n 
union of a nonempty family (Zi)ie1 of closed subsets Zi of Z then 
codim Z = rnin codirn Zi . (4) If Z =1= 0 and Z' is a closed subset 

Jei 

of Z such that Z' does not contain any irreducible component of Z 
then codim Z' > codim Z. (5) If Z is irreducible and S is the 
generic point of Z then dirn Z = IJlY dim(R/(R n M(S))). (6) /f 
Z =f. 0 and Zl' ... , Zn are the irreducible components of Z then 
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dirn Z = rnax dirn Zi. (7) 1/ Z is the union 0/ a nonempty finite 
l';;;i';;;n 

/amily (Zi)iEI 0/ closed subsets Zi 0/ Z then dirn Z = lIlax dirn Zi . 
tEl 

(8) 1/ Z =I=- 0, dirn Z < 00, and Z' is a closed subset 0/ Z such 
that Z' does not contain any irreducible component 0/ Z then 
dirn Z' < dirn Z. (9) 1/ Z is irreducible then: dirn Z = 0 <=> Z 
contains only one point <=> every point 0/ Z is a closed point 0/ Z. 
(10) dirn Z ~ 0 <=> every irreducible component 0/ Z contains only 
one point<=> every point. 0/ Z is a closed point 0/ Z. (11) 1/ dirn Z ~ 0 
then Z is a finite set and every point 0/ Z is a closed point 0/ Z. 

PROOF. (1), (2), (3), and (4) are obvious. (5) and (6) follow 
frorn (2'). (7) follows frorn (6) and (6.1.1). For the special case 
when Z is irreducible, (8) follows frorn (5) and (6); in the general 
case, upon letting Zl' ... , Zn be the irreducible cornponents of Z, 
by (7) and the special case we get that dirn Z = .rnax dirn Zi , 

1.~l~n 

dirn Z' = .rnax dirn(Zi n Z'), and dirn(Zi n Z') < dirn Zi for 
l,~l~n 

for 1 ~ i ~ n. (9) follows frorn (5). (10) follows frorn (9) by 
noting that if Z =I=- 0 and Zl , ... , Zn are the irreducible cornponents 
of Z then by (7) we get that: dirn Z = 0 <=> dirn Zi = 0 for 
1 ~ i ~ n. (11) follows frorn (10). 

(6.3.2). For any spot R over any loeal domain S such that R 
dominates S we have that dirn R + restrdegsR ~ dirn S + trdegsR. 

This is proved in [28: Proposition 2 of Appendix 1]. 

(6.3.3). FOT any model X 0/ Kjk we have the /ollowing: 
(1) 1/ Z is any closed subset 0/ X then: co dirn Z = 0 <=> Z = X. 
(2) dirn X = rnax dirn R ~ dirnkK. (3) 6(X) = {R E X: R is 

REX 

not regular}. (4) 1/ dirn X < 00 and Z is any nonempty closed 
subset 0/ X then dirn Z + co dirn Z ~ dirn X. 

PROOF. (1) and (3) are obvious. (2) follows frorn (6.3.2). To 
prove (4) we can take RE Z such that dirn i!(R, Z) = dirn Z 
and then by (2') we get that dirn i!(R, Z) = dirn Rj(R n M(S» 
for the generic point S of sorne irreducible cornponent of Z pass­
ing through R; clearly codirn Z ~ dirn Sand dirn S + 
dirn Rj(R n M(S» ~ dirn R ~ dirn X. 
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(6.3.4). Let L be any field and let L' be any pure transcendental 
extension 0/ L (not necessarily 0/ finite transcendence degree). Then 
there exists a valuation ring V 0/ L' such that L C Vand V is residually 
rational over L. 

PROOF. We can take an ordered set land a one-to-one map x 
of I into L' such that (X(i»iEI is a transcendence basis of L' over L, 
and L' = L«x(i))iEI). Let] be the set of all maps n of I into the 
set of all nonnegative integers such that n(i) =F- 0 for only finitely 
many values of i. Given any two distinct elements n and n' in ], 
there exists a unique element q in I such that n(q) =F- n'(q), and 
n(i) = n'(i) for all i EI with i > q; we define: n > n' or n' > n 
according as n(q) > n'(q) or n'(q) > n(q). This makes ] into an 
ordered set. Let R be the set of elements inL' which can be expressed 
in the form 

where ]' and ]* are nonempty finite subsets of ], a'(n) and a*(n) 
are nonzero elements in L, and, upon letting n' and n* be the 
smallest elements in ]' and ]* respectively, we have that n' ~ n* 
(note that the product nx(i)n<il is taken to be 1 in case n(i) = 0 
for all i E I, and otherwise it is taken over all i EI with n(i) =F- 0). 
Let V = R u {O}. It can easily be seen that then V is a valuation 
ring of L', L C V, and V is residually rational over L. 

(6.3.5). Let L be any field and let L' be any overfield 0/ L. Then 
there exz·sts a valuation ring V 0/ L' such that L C Vand V is residually 
algebraic over L. 

PROOF. Follows from (6.3.4). 

(6.3.6). Let A be any domain, let L be any overfield 0/ A, and 
let W be any valuation ring 0/ L with A C W. Then given any prime 
ideal P in A with A n M(W) C P (note that we can always find 
a maximal ideal P in A with A n M( W) C P), there exists a valuation 
ring V 0/ L such that AC VC W, An M(V) = P, and V is re­
sidually algebraic over A. 
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PROOF. Let h: W ---+ WjM(W) be the canonical epirnorphisrn. 
Then h(A) is a subring of the fie1d h(W), and h(P) is a prime ideal 
in h(A). Consequently there exists a valuation ring V' of h(W) such 
that h(A) C V' and h(A) (\ M(V') = h(P). Let h': V' ---+ V'jM(V') 
be the canonical epirnorphisrn, and let L * be the quotient fie1d of 
h'(h(A)) in h'(V'). Then by (6.3.5) there exists a valuation ring 
V* of h( V') such that L * C V* and V* is residually algebraic 
over L*. It suffices to take V = h-I(h'-I(V*». 

The following observation will not be used in this monograph. 

(6.3.7). If k is universally catenarian and dirn k < 00 then 
for every complete model X of Kjk we have that dirn X = dirnkK. 

PROOF. Take SE ID(k) such that dirn S = dirn k. By (6.3.6) 
there exists a valuation ring V of K such that V dorninates Sand 
V is residually algebraic over S. Let R be the center of Von X. 
Then R dorninates Sand R is residually algebraic over S. Since 
k is universally catenarian we get that dirn R = dirn S + trdegsR. 
Therefore by part (2) of (6.3.3) we get that dirn X = dirnkK. 

(6.4). Let X C 1Jt'(Kjk). By a preideal on X we rnean a function 
I which associates to each REX an ideal in R which we denote by 
IR. For any preideal I on X we define the preideal rad I on X by the 
forrnula: (rad I)R = rad(IR) for all REX. For any preideals 
I and I' on X we define: I CI'<=> IR CI' R for all REX. For 
any preideals 11 , ••• , In on X we define the preideals 11 ••• In ,11 + 
... + I and I (\ ... (\ I on X by the forrnulas· (I ... I )R = n' In· I n 
(I1R) ... (InR), (li + ... + In)R = (IIR ) + ... + (InR), and (li (\ 
... (\ In)R = (IIR) (\ ... (\ (InR) for all REX. Apreideal I on X 
is said to be principal if IR is a principal ideal in R for all REX. 
By Ix we denote the preideal on X given by the forrnula: IxR = R 
for all REX. By Ox we denote the preideal on X given by the 
forrnula: OxR = {O} for all REX. Apreideal I on X is said to be 
zero if I = 0 x . Apreideal I on X is said to be nonzero if I =1= 0 x . 
For any preideal I on X such that IR =1= {O} for all REX we 
define the preideal II-I on X by the forrnula: (II-I)R = (IR)(IR)-l 
for all REX; note that then I C II-I, and (II-I)R =1= {O} for all 
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RE. X. For any Z C X we define the preideal ~(Z. X) on X by the 
formula: 

~(Z. X)R = n (R ("'\ M(S» for all REX; 
Se!!)(R)()Z 

note that by convention the intersection of the empty family of 
ideals in any ring is the unit ideal and hence: ~(Z. X)R = R <=> 
m(R) n Z = 0. For any preideal I on X we define: 3(1) = (zero­
set oJ 1) = {R E X: IR =1= R} . 

. (6.4.1). For any XC 1R'(K{k) we ha'lle the Jollowing: (1) IJ Z 
is any subset oJ X then rad ~(Z. X) = ~(Z. X). (2) IJ I is any 
preidealon X then 3(1) = 3(rad I). (3) IJ Z and Z' are any subsets 
oJ X with Z C Z' then ~(Z'. X) C ~(Z. X). (4) IJ land l' are any 
preideals on X with I C l' then 3(1') C 3(1). (5) IJ ZI' .... Zn are 
anysubsetsoJ Xthen~(ZI U"· U Zn. X)=~(Zl> X) n .. · nI(Zn. X). 
(6) IJ 11 , .... In are any preideals on X then 3(11 + ... + In) = 
3(11) n ... n 3(In) and 3(/1", In) = 3(11 n ... n In) = 3(11) U 

'" U 3(In ). 

The proof is obvious. 

For any subsets X and X' of 1R'(K{k) such that X is an irre­
dundant premodel of K and X' dominates X. and any preideal 
I on X we define the preideal IX' on X' by the formula: (IX')R' = 
(IR)R' for all R' E X' where R is center of R' on X. 

(6.4.2). Let X and X' be any subsets oJ 9i'(K{k) such that X is 
an irredundant premodel oJ K and X' dominates X. let I be any 
preideal on X. and let l' = IX'. Then 3(1') = [X'. X]-1(3(I». 
IJ moreo'ller IR =1= {O} Jor all REX. then 1'R' =1= {O} Jor all R' EX'. 
(II-l)X' C 1'1'-1. and 3(1'1'-1) C 3«II-l)X') = [X'. X]-1(3(II-l». 

The proof is again obvious. 

Given any XC 9i'(Kfk). any subring A of K with m(A) C X, 
and any preideall on X we define: An 1= () IR; by (1.11.5) 

Re!!)(A) 

we get that: A n I is an ideal in A; if P is any ideal in A such that 
PR = IR for all RE m(A). then P = An I; in particular there 
exists at most one ideal P in A such that PR = IR for all R E ~(A). 
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(6.4.3). For any preideal Ion any model X of KJk the following 
two conditions are equivalent: (1) If A is any affine ring over k 
such that m(A) CX then (A '"'1)R = IR for all RE m(A). (2) For 
each R' EX there exists an affine ring B(R') over k such that 
m(B(R'» C X and (B(R') ,",I)R = IR for all RE m(B(R'». 

PROOF. Obvious1y (1) imp1ies (2). Now assume (2) and let A 
be any affine ring over k such that m(A) Cx. By (6.2.10), (6.2.11), 
and (6.2.15) we can find a finite number of nonzero elements 
Xl , ... , Xn in A and elements R l , ... , Rn in m(A) such that 

n 
m(A) = U m(A[x;l]) and m(A[x;l]) C m(B(Ri» for 1 ~ i ~ n. 

t=l 
Since m(A[x;l]) C m(B(Ri)), by (1.11.5) we getthatB(Ri ) C A[X;I]; 
since (B(Ri) ,",I)R = IR for a11 R E m(B(R~)), we get that 
«B(Ri) '"' I)A[Xil])8 = 18 for a11 8 E m(A[x;l]); consequently 
by (1.11.5) we get that (A[Xil] '"' 1)8 = 18 for a11 8 E m(A[xil]). 
Clearly (A '"' 1)R C IR for a11 RE m(A). Now let any RE m(A) 
and any Z E IR be given. We sha11 show that then Z E (A ,",I)R, 
and this will comp1ete the proof. Upon relabeling Xl' ... , Xn we 
may assume that RE A[xl l]. Now (A[xl l] ,",I)R = IR and hence 
there exists y E A[xI1] with Y i M(R) such that zy E A[xIl] '"' 1. 
Let Ai = A[Xi\ xII]. Then m(Ai) = m(A[Xil]) '"' m(A[x1l]). Since 
m(A i ) C m(A[xl l]), we get that zy E Ai '"' 1. Since m(Ai) C 
m(A[xil]) and (A[xil] '"' 1)8 = 18 for a11 8 E m(A[xil]), we get that 
(A[xil] '"' 1)Ai is an ideal in Ai and «A[Xil] ,",1)Ai )8 = 18 for a11 
S E m(Ai ). Therefore by (1.11.5) we get (A[Xil] ,",I)Ai = Ai'"' I 
and hence zy E (A[xi l ] ,",1)Ai ; since Ai = (A[xil])[XI I], there 

exists a positive integer mi such that zyx~i E A[X;l] ,",1. Let 
m = max(ml , ... , mn). Then zyxrE A[X;I] '"' I for 1 ~ i ~ n. 

n 
Since m(A) = U m(A[.x;l]), we get that zyxrl E A '"' I. Now 

i=l 

Y E R, Y i M(R), Xl E R, and Xl i M(R). Therefore z E (A ,",I)R. 

By an ideal on a model X of KJk we mean apreideal I on X 
satisfying the conditions of (6.4.3); note that clearly Ix and Ox 
are ideals on X. 

(6.4.4). Let I, 11 , ••• , In be any ideals on any model X of KJk 
and let A be any affine ring over k such that m(A) C X. Then rad I, 
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11 ... In ,11 + ... + In ,and 11 f"I ••• f"I In are ideals on X, and 
rad(A f"I I) = A f"I (rad 1), (A f"I 11) ... (A f"I In) = A f"I (11 ... In)' 
(A f"II1) + ... + (A f"I In) = A f"I (11 + ... + In), and (A f"I 11) f"I 
••• f"I (A f"I In) = A f"I (11 f"I ••• f"I In). 

In view of (1.11.5), this follows from the fact that if P, PI' ... , 
Pn are any ideals in any domain A and R is any element in m(A) 
then (rad P)R = rad(PR), (PI··· Pn)R = (PIR) ... (PnR), (PI + 
... + Pn)R = (PIR) + ... + (PnR), and (p] f"I ••• f"I Pn)R = 
(P1R) f"I ••• f"I (PnR). 

(6.4.5). Let I be any ideal on any model X of K/k. Then for 
all REX and 8 E m(R) we have that 18 = (IR)8. 

The proof is obvious. 

(6.4.6). For any model X of K/kwehavethefollowing: (I)IfZ is 
any closed subset of X then .J(Z, X) is an ideal on X and 3(.J(Z, X» 
= Z. (2) If I is any ideal on X then 3(1) is a closed subset of X 
and .J(3(I), X) = rad 1. (3) Z -- .J(Z, X) is a one-to-one inclusion­
reversing map of the set of all closed subsets Z of X onto the set of all 
ideals I on X such that rad I = I, and the inverse map is given by 
1--3(1). 

PROOF OF (1). It suffices to show that if Z is any closed subset 
of X and A is any affine ring over k such that m(A) C X then 
(A f"I .J(Z, X»R = .J(Z, X)R for all R E m(A) and m(A) f"I 3(.J(Z, 
X» = m(A) f"I Z. Now m(A) f"I Z is closed in m(A) and hence by 
(6.2.9) there exists an ideal H in A such that m(A) f"I Z = {R E 

m(A): HR i= R}. Let P = rad H. Then m(A) f"I Z = {R E m(A): 
PR i= R}. First suppose that P = A; then m(A) f"I Z = 0 and 
hence .J(Z, X)R = R = AR for all R E m(A); therefore by (1.11.5) 
we get that A = A f"I .J(Z, X), and clearly m(A) f"I 3(.J(Z, X» = 
0. Next suppose that P i= A; then P = PI f"I ••• f"I Pn where 
PI' ... , Pn are prime ideals in A, and for all RE m(A) we clearly 
have that .J(Z, X)R = (PIR) f"I ••• f"I (PnR) = PR; therefore by 
(1.11.5) we get that P = A f"I .J(Z, X), and (A f"I .J(Z, X»R = 
.J(Z, X)R for all RE m(A); now m(A) f"I Z = {R E m(A): PR i= 
R} = {R E \D(A): .J(Z, X)R =1= R} = m(A) () 3(~(Z, X». 
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PROOF OF (2). In view of (6.2.10), it suffices to show that if 
I is any ideal on X and A is any affine ring over k such that m(A) CX 
then m(A) n 3(1) is closed in m(A) and 3(3(1), X)R = rad(IR) for 
all RE m(A). Now An I is an ideal in A and (A n I)R = IR 
for all R E m(A). Therefore m(A) n 3(1) = {R E m(A): (A nl)R =1= 
R} and hence by (6.2.9) we get that m(A) n 3(1) is closed in m(A). 
Let P = rad(A n I). Then m(A) n 3(1) = {R E m(A): PR =1= R}. 
If P = Athen for all R E m(A) we clearly have that 3(3(1), X)R = 
R = rad(IR). If P =1= Athen P = PI n ... n Pn where PI' ... , 
P n are prime ideals in A, and for all RE m(A) we clearly have that 
3(3(1), X»R = (PIR) n ... n (PnR) = PR = rad(IR). 

PROOF OF (3). Follows from (1), (2), and (6.4.1). 

(6.4.7). Let I be any ideal on any model X of K/k. Then the 
following jive conditions are equivalent: (1) I =1= Ox; (2) IR =1= {O} 
for all REX; (3) K ~ 3(1); (4) 3(1) =1= X; (5) codim 3(1) > 0 
(note that by (6.4.6) we know that 3(1) is a closed subset of X). 
Moreover, t] I =1= Ox then II-I is a nonzero ideal on X and 
for every affine ring A over k with m(A) CX we have that 
(A n I) (A n I)-I = A n (II-I). 

PROOF. The first assertion follows by noting that given any 
REX there exists an affine ring A over k with RE m(A) CX and 
then (A nl)R = IR, K E m(A), and (A n I)K = IK, and hence: 
IR = {O} <:> A nI = {O} <:> IK = {O}. The second assertion 
follows from (1.11.5) and (1.11.2). 

(6.4.8). Let I be any preideal on any subset X of I){'(K/k) such 
that IR =1= {O} for all REX. Then 3(II-l) = {R E X: IR is not 
principaf}. In particular, 3(II-l) = 0 <:> I is principal. 

This follows from (1.11.4). 

(6.4.9). Let I be any nonzero ideal on any model X of K/k. 
Then dirn R ;? 2 for every normal point R of 3(II-I) (note that 
every point of 3(II-I) - 6(X) is normal). In particular, if X is 
normal then codim 3(II-I) ;? 2 (note that by (6.4.6) and (6.4.7) 
we know that 3(II-l) is a closed subset of X; also note that if X is 
nonsingular then X is normal). 



172 2. GLOBAL THEORY 

This fo11ows from (6.4.8) by noting that every one-dimensional 
normal local domain is a principal ideal domain (see [27: §6 and 
§7 of Chapter V]). 

(6.4.10). Let I be any nonzero principal ideal on any model X 
0/ K/k. Then 3(1) is either empty or pure l-codimensional (note 
that by (6.4.6) we know that 3(1) is a closed sub set of X). 

This fo11ows from Krull's principal ideal theorem [27: Theorem 
29 on page 238]. 

(6.4.11). Let X and X' be any models o/K/k such that X' 
dominates X, and let I be any ideal on X. Then IX' is an ideal on 
X'. Moreover, 1= Ox -<>IX' = 0X'. 

PROOF. Given any R' E X' let R = [X', X](R'). We can take 
an affine ring A over k such that RE m(A) C X. By (6.2.5) 
and (6.2.12) there exists an affine ring A' over k such that R' E 

m(A') C [X', X]-l(m(A». Now AC [X', X](S) C S for a11 SE 
[X', X]-l (m(A», and hence in particular AC S for all SE m(A'). 
Therefore by (1.11.5) we get AC A'. Consequently (A nI)A' is 
an ideal in A', and clearly «A n I)A')S = I' S for a11 SE m(A'). 
Therefore by (1.11.5) we get that (A n l)A' = A' n 1', and 
(A' n I')S = l' S for a11 SE m(A'). This shows that IX' is an 
ideal on X'. By (6.4.7) we get that I = Ox -<>IX' = Ox" 

(6.4.12). Let X and X' be any models 0/ K/k such that X' dom­
inates X, and let I be any nonzero ideal on X such that IX' is prin­
cipal. Then [X', X]-1(3(I» isa closedsubseto/ X', and[X',X]-l (3(/» 
is either empty or pure l-codimensional. 

This follows from (6.4.2), (6.4.10), and (6.4.11). 

(6.4.13). Let X and X' be any models 0/ K/k such that 
X' dominates X, and let Z be any closed subset 0/ X. Then 
~([X', X]-l(Z), X') = rad(~(Z, X)X'). 

PROOF. By (6.4.6) we get that ~(Z, X) is an ideal on X, and 
3(~(Z, X» = Z. Hence by (6.4.2) we get that [X', X]-l(Z) = 
3(~(Z, X)X'), and by (6.4.11) we get that ~(Z, X)X' is an ideal 
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on X'. Therefore by (6.4.6) we get that ~([X', X]-I(Z), X') = 
rad(~(Z, X)X'). 

(6.4.14). Let X and X' be any models 0/ K/k such that X' 
dominates X, let Y be any subset 0/ X, let Z be any closed subset 0/ X, 
let I be any nonzero ideal on X, let Y' = [X', X]-I(Y), let Z' = 
[X', X]-I(Z), and let l' = IX'. Assume that every irreducible 
eomponent 0/ 3(II-l) having a nonempty interseetion with Zn Y 
is eontained in Z. Then every irreducible eomponent 0/ 3(/'1'-1) 
having a nonempty intersection with Z' n Y' is eontained in Z'. 
(Note that by (6.4.6), (6.4.7), and (6.4.11) we know that 3(II-l) 
is a closed sub set of X, and 3(/'1'-1) is a closed sub set of X'.) 

PROOF. Let Z* be any irreducible component of 3(/'1'-1) 
having a nonempty intersection with Z' n Y'. Take R' E Z* n 
Z' n Y' and let R = [X', X](R'). Since R' E 3(I'Il-l), by (6.4.2) 
we get that RE 3(II-l). Since R' E Z' n Y', we also get that 
RE Z n Y. Let S* be the generic point of Z*. Now S* E m(R'), 
and R' dominates R; therefore upon letting S = RRnM(s*) we 
get that SE m(R) C X, and S* dominates S; consequently 
[X', X](S*) = S; since S* E 3(1'1'-1), by (6.4.2) we get that 
SE 3(II-l). Let ZI be an irreducible component of 3(II-l) passing 
through S. Now ZI is a closed subset of X, and hence RE ZI ; 
therefore ZI n Z n Y = 0, and hence by assumption we get 
that ZI C Z; consequently SE Z, and hence S* E Z'. By (6.2.5) 
we know that Z' is a closed sub set of X', and hence Z* C Z'. 

(6.5). For any ideal I on any model X of K/k we define: 
6(]) = (singular loeus 0/ J) = {R E 3(]): R/(]R) is not regular}. 
In view of (6.4.4) and (6.4.6) we get the following. 

(6.5.1). For any model X 0/ K/k we have the /ollowing: (1) 
I/ Z is any closed subset 0/ X then 6(Z) = 6(~(Z, X». (2) I/ I is 
any ideal on X then 6(]) = 6(rad J) U {R EX: IR =f. rad(]R)}. 
(3) I/ I is any ideal on X and A is any affine ring over k with m(A) C 
X then 6(J) n m(A) = 6(A, A n J). 

Let I and I be any nonzero principal ideals on any nonsingular 
model X of K/k. Given any REX and E C m(R), we say that (E, I) 
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has anormal crossing at R if (E, IR) has anormal crossing at R. 
Given any REX and E C ~(R), we say that (E, I) has a strict 
normal crossing at R if (E, IR) has astriet normal erossing at R. 
We say that I has-only normal crossings if for eaeh REX we have 
that IR has anormal erossing at R. We say that (j,1) has only 
quasinormal crossings if for eaeh REX we have that (jR, IR) 
has a quasinormal erossing at R. We say that I has only quasinormal 
crossings if for eaeh REX we have that IR has a quasinormal 
erossing at R; note that this is equivalent to saying that (I, Ix) 
has only quasinormal erossings. Given REX and 8 E ~(R), we 
say that (8, I) has a pseudonormal crossing at R if (8, IR) has a 
pseudonormal erossing at R. Given REX and E C ~(R), we say 
that (E,1) has a pseudonormal crossing at R if (E, IR) has a pseudo­
normal erossing at R. We define: 6*(j) = {R E X: (R, JR) is 
unresolved}. J is said to be resolved if 6*(j) = 0. In view of 
(6.4.4) and (6.4.6) we get the following. 

(6.5.2). For any nonzero principal ideals J and I on any non­
singular model X of K/k we have the following: (1) 6*(j) = 
6*(rad j) = 6(rad j) = 6(3(j). (2) I has only normal crossings <=> 
rad I has only normal crossings <=> 3(1) has only normal crossings. 
(3) I has only quasinormal crossings <=> rad I has only quasinormal 
crossings <=> each irreducible component of 3(1) is nonsingular. (4) If 
I has only normal crossings then I has only quasinormal crossings. 
(5) If (j, I) has only quasinormal crossings and 6*{j) = 0 then 
JI has only normal crossings. (6) If I has only quasiritJrmal crossings 
and 6*(j) = 0 then ]I has only quasinormal crossings. 

In view of (6.2.10), (6.4.6), (6.5.1), and part (1) of (6.5.2) we 
get the following. " 

(6.5.3). Assume that for every affine ring A over k with quotient 
field K and every ideal Q in A we have that 6(A, Q) is closed in ~(A) 
(see (1.2.6». Let X be any model of K/k. Then we have the following: 
(1) If Z is an')! closed suhset X then 6(Z) is closed in X. (2) If J is 
any ideal on X then 6(j) is closed in X. (3) If Xis nonsingular and 
J is any nonzero principal ideal on X then 6*(j) is closed in X and 
eodim 6 *(j) ~ 2. 
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For any ideal Ion any model X of K/k and any ZC X we 
define: 

lmaxordR}R 
ordz} = ReZ 

-00 

if Z =F 0 

if Z = 0 

and: <t*(Z, J) = {R E Z: ordRIR = ordz]}; note that: (1) if 
Z =1= 0 then ordzI is either a nonnegative integer or 00; (2) 
if Z =1= 0 and I = Ox then ordzI = 00 and <t*(Z, J) = Z; 
(3) if Z =1= 0 and I =1= Ox then: <t*(Z, J) =1= 0 <=> ordzI is a 
nonnegative integer. For any regular point R of any model X of 
K/k and any ideal I on X we define: <t(R, J) = <t(R, IR) and 
<tieR, J) = <tieR, IR) for every nonnegative integer i; note that 
by (1.3.1) we then have that <t(R, J) = <t*(513(R), J). From (0.4) 
we now deduce the following. 

(6.5.4). Assume that for every affine ring A over k with quotient 
field K and every ideal Q in A we have that S(A, Q) is closed in 
513(A) (see (1.2.6». Let I be any ideal on any model X of Klk, let 
Y be any open subset of X with S(X) (") Y = 0, and Let Z be any 
nonempty closed subset of Y. Then <t*(Z, J) is a nonempty closed 
subset of Z. 

PROOF. Let W be the set of all nonempty closed subsets Z* 
of Z such that <t*(Z*, J) = <t*(Z, J). Then W =1= 0 and hence 
by (6.2.15), W contains a minimal element Z'. Let Zl' ... , Zn 
be the irreducible components of Z', and let Si be the generic point 
of Zi. In view of (6.2.12) and (6.5.3)we can find an affine ring Ai over 
k such that Si E 513(Ai ) C Y and 513(Ai ) (") S(Zi) = 0. Upon taking 
(Ai' Ai (") I, Ai (") M(Si» for (A, I, Q) in (0.4), we can find an 
ideal N" in Ai with HiS" = Si such that ordRIR = ordS}Si for 
all RE 513(Ai ) for which Re Si and HiR = R; upon letting Z; = 
{R E 513(Ai): Re Si and HiR =1= R} u (Zi - 513(A i », in view of 
(6.2.9) and (6.2.12) we get that Z; is a closed subset of .Zi with 
Si f# Z;, and clearly ordRIR = ordS.]Si for all RE Zi - Z; . 
Upon relabeling Zl' ... , Zn we may a;sume that ordz} = ... = 
ordz I > ordz I for m < i ~ n; clearly Zl U ••. U Zm is a 

m j 

nonempty closed subset of Z' and <t*(Zl U ... U Zm, J) = 
<t*(Z', J); since Z' is a minimal element of W, we must have 
Zt U ... U Zm = Z' and hence m = n. Thus ordz} = ordz.J for 
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1 ~ i~ n. If ords jSi < ordz,j for some i then, upon letting 
i , 

Z" = Zl U ... U Zi-l U Zi U Zi+1 U .. , U Zn , we would get that 
Z" is a nonempty closed subset of Z', Z" =f. Z', and <t*(Z", j) = 
<t*(Z', j), and this would contradict the assumption that Z' is a 
minimal element of W. Therefore ordSJSi = ordz.J for 1 ~ i ~ 
n. Consequently by (1.3.1) we get that ordRjR = ordz,j for all 
RE Z', and hence Z' = <t*(Z', j) = <t*(Z, j). 

(6.5.5). Assume that for every affine ring A over k with quotient 
field K and every ideal Q in A we have that 6(A, Q) is closed in 
ID(A) (see (1.2.6». Let X be any model of K/k, let Y be any open 
subset of X such that 6(X) n Y = 0, let Z be any closed subset 
of Y, let j be any ideal on X, and let Z* = 6(Z) U {R E Z - 6(Z): 
S f/: <t(R, j) where S is the generic point of the irreducible component 
of Z passing through R}. Then Z* is a closed subset of Z. Moreover, 
if dimkK ~ 3 and codim Z ~ 2 then Z* consists of a finite number 
of closed points of X. 

PROOF. Let Zl' ... , Zn be the irreducible components of Z, 
let Si be the generic point of Zi , and let zt = 6(Zi) U {R E Zi -
6(Zi): Si f/: <t(R, j)}. Clearly Zi cf. Z* for 1 ~ i ~ n, and hence, 
in view of (6.3.1) and (6.3.3), the second assertion follows from the 
first assertion. Also Z* = Z* U ... U z;t, and hence in proving 
the first assertion, without loss of generality, we may assurne that 
Z is irreducible. Let S be the generic point of Z, and let Z' = 
{R E Z: ordRjR > ordsjS}. Then by (1.3.1) we get that Z* = 
6(Z) U Z', and by (6.5.3) we know that 6(Z) is a closed sub set of 
Z. Therefore it suffices to show that Z' is a closed subset of Z. 
If j is zero then Z' = 0. So now also ass urne that j is nonzero. 
Let d = ordzJ. Then by (6.5.4) we get that d is a nonnegative 
integer. Let Z~ = {R E Z: ordRjR > d - t}. By induction we 
shall show that Z~ is a closed sub set of Z for 0 ~ i ~ d. Clearly 
Z~ = 0. So let 0 < i ~ d and assurne that Z~_l is a closed subset 
of Z. If Z~ = Z~_l then we have nothing to show. So now suppose 
that Z~ =f. Z~_l' Then Y - Z;_l is an open sub set of X with 
(Y - Z;_l) n 6(X) = 0, Z - Z;_l is a nonempty closed subset 
of Y - Z;_l, and <t*(Z - Z~-l' j) = Z~ - Z;_l' Therefore by 
(6.5.4) we get that Z~ - Z~_l is a closed subset of Z - Z;_l . It 
follows that Z; is a closed subset of Z. This completes the induction. 
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Now Z' = Z; where e = d - ordsJS, and hence Z' is a closed 
subset of Z. 

(6.5.6). Let J be any nonzero principal ideal on any nonsingular 
model X of K/k. Then for any REX we have the following: (1) 
If RE 6*(]) then <f(R, j) C 6*(j). (2) If RE <f*(6*(]), j) then 
<f(R, J) = ID(R) f"'I <f*(6*(j), j). 

PROOF. (1) follows from (1.5.3). (2) follows from (1). 

(6.5.7). Assume that dimkK ~ 3. Let X be any nonsingular 
model of K/k, let Z be any closed subset of X with codim Z ;::: 2, 
let I be any nonzero principal ideal on X such that I has only quasi­
normal crossings, and let Z' = {R E Z - 6(Z): (S, I) does not have 
a pseudonormal crossing at R where S is the generic point of the 
irreducible component of Z passing through R}. Then Z' consists 
of a finite number of closed points of X. 

PROOF. Let Zl , ... , Zn be the irreducible components of Z, 
let Si be the generic point of Zi' and let Z~ = {R E Zi - 6(Zi): 
(Si' I) does not have a pseudonormal crossing at R}. Then clearly 
Z' C Z~ u ... U Z~ and codim Zi ;::: 2 for 1 ~ i ~ n, and hence, 
without loss of generality, we may assurne that Z is irreducible. 
Let S be the generic point of Z. By (6.4.6) we know that 3(1) is a 
closed sub set of X. Let YI , ••• , Y, be the irreducible components 
of 3(1) passing through S, and let Y be the union of the remaining 
irreducible components of 3(1). In view of (6.3.1) and (6.3.3) 
we get that Z f"'I Y consists of a finite number of closed points of 
X. Therefore it suffices to show that Z' C Z f"'I Y, i.e., (S, I) has 
a pseudonormal crossing at R for all R E Z - 6(Z) - Y. So let 
any R E Z - 6(Z) - Ybe given. Clearly (S, I) has a pseudonormal 
crossing at S. So now assurne that R 0::/= S. Then in view of (6.3.3) 
we get that dirn S = 2 and dirn R = 3. Since IR has a quasinormal 
crossing at R, we get that IR = X~l ... x~tR where al , ... , a, are 
positive integers and Xl' ... , X, are elements in R such that ordRxi = 
1 and xiR = ~(Yi' X)R for 1 ~ i ~ t (we take X~l ... x~tR = R 
in case t = 0). Also there exists a basis (x, y, z) of M(R) such that 
R f"'I M(S) = (x, y)R. Since SE Y i , we get that Xi E (x, y)R, i.e., 
Xi = UiX + viY with Ui E Rand Vi E R. Since ordRxi = 1, we 
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must have either Ui 1: M(R) or Vi 1: M(R). Let Yi = Y in case 
Ui 1: M(R), and Yi = x in case Ui E M(R). Then (Xi' Yi' z) is a 
basis of M(R) and Rn M(S) = (Xi' Yi)R. This being so for 
1 ~ i ~ t, we conclude that (S, I) has a pseudonormal crossing 
at R. 

(6.5.8). Assume that dimkK ~ 3. Let X be any nonsingular 
model 0/ KJk, let Z be any closed subset 0/ X with codim Z ~ 2, 
let I be any nonzero principal ideal on X such that I has only normal 
crossings, and let Z' = {R E Z - 6(Z): (S, I) does not have a 
normal crossing at R where S is the generic point 0/ the irreducible 
component 0/ Z passing through R}. Then Z' consists 0/ a finite 
number 0/ closed points 0/ X. 

PROOF. Let Zl' ... , Zn be the irreducible components of Z, 
let Si be the generic point of Zi , and let Z~ = {R E Zi - 6(Zi): 
(Si' I) does not have anormal crossing at R}. Then clearly 
Z' C Z~ u ... U Z~ and codim Zi ~ 2 for 1 ~ i ~ n, and hence, 
without loss of generality, we may assurne that Z is irreducible. 
Let S be the generic point of Z. By (6.4.6) we know that 3(1) is a 
closed subset of X. Let Y1 , ... , Y/ be the irreducible components 
of 3(1) passing through S, and let Y be the union of the remaining 
irreducible components of 3(1). In view of (6.3.1) and (6.3.3) we 
get that Zn Y consists of a finite number of closed points of X. 
Therefore it suffices to show that Z' C Z n Y, i.e., (S, I) has a 
normal crossing at R for all RE Z - 6(Z) - Y. So let any 
RE Z - 6(Z) - Y be given. Clearly (S, I) has anormal crossing 
at S. So now assurne that R =F S. Then in view of (6.3.3) we get 
that dirn S = 2 and dirn R = 3. First suppose that t = 0; then 
IR = Rand hence (S, I) has anormal crossing at R. Next suppose 
that t = 1; then IR = xaR where a is positive integer and X is an 
element in R such that ordRx = 1 and xR = 3(Y1 , X)R; also 
there exists a basis (x', y', z') of M(R) such that Rn M(S) = 

(x', y')R; since SE Y1 we get that x E (x', y')R, i.e., x = ux' + vy' 
with u E Rand vER; since ordRx = 1 we must have either 
u 1: M(R) or v 1: M(R); upon relabeling x' and y' we may assurne 
that u 1: M(R); then (x, y', z') is a basis of M(R) and R n M(S) = 
(x, y')R; therefore (S, I) has anormal crossing at R. Finally suppose 
that t ~ 2; then there exists a basis (x, y, z) of M(R) such that 
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xR = ~(YI , X)R, yR = ~(Y2 ,X)R, and IR = xaybzCR where 
a and b are positive integers and c is a nonnegative integer; since 
8 E Y1 ("\ Y2, we get that (x, y)R C R ("\ M(8); since dirn 8 = 2, 
we must have R ("\ M(8) = (x, y)R; therefore (8, I) has anormal 
crossing at R. 

(6.6). Let X be any model of Klk and let I be any nonzero 
ideal on X. 

We define: 

lID(X, I) = U {R' ElID(R, IR): R' dominates R}. 
ReX 

(6.6.1). lID(X, I) is an irredundant premodel of K, lID(X, 1) prop­
erly dominates X, and for all REX we have [lID(X, I), X]-l(R) 
= {R' E lID(R, IR): R' dominates R}. If m(Klk) dominates X then 
m(Klk) dominates lID(X, I). 

This follows by noting that if P is any nonzero ideal in any 
noetherian domain A with quotient field L then lID(A, P) is a 
projective model of LIA and hence lID(A, P) is a complete model 
of LIA. 

(6.6.2). Let A be any noetherian subring of K such that lB(A) C X 
and let P be any nonzero ideal in A such that PR = IR for alt 
RE lB(A). Then [lID(X, I), X]-I(lB(A» = lID(A, P) = U lID(R, IR). 

Re~(A) 

PROOF. We can take nonzero elements Xl' ••. , X., in A such 
that (Xl' •.. , x.,)A = P. Then 

.. 
lID(A, P) = U lB(A[XI/Xi , ... , X .. /Xi]) 

i=I 

and 

.. 
lID(R, IR) = U lB(R[ Xl/Xi' ... , X .. /Xi]) for all R E lB(A). 

i-I 
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Hence our assertion follows by noting that for 1 ~ i ~ n we 
clearly have that 

U {R' E ID(R[X1/Xi , ... , X .. /Xi]): R' dominates R} 
Re!ll(AJ 

= ID(A[X1/Xi, ... , X .. /Xi]) 

= U ID(R[X1/Xi, ... , X .. /Xi])' 
Rdl(AJ 

By (6.6.2) we get (6.6.3) and (6.6.4). 

(6.6.3). [W(X, I), X]-l(ID(R» = W(R, IR) for all REX, and 
hence W(X, I) = U W(R, IR). 

ReX 

(6.6.4). If A is any affine ring over k such that ID(A) C X then 
[W(X, I), X]-l(ID(A» = W(A, A () I) = U W(R, IR). 

Re!ll(A) 

By (6.6.1) and (6.6.4) we get the following. 

n 
(6.6.5). W(X, I) is a model of K/k. If X = U ID(A i ) where 

• n i=l 
Al' "" A,. are affine rtngs over k then W(X, I) = U ID.l(Ai , Ai () I). 

i=l 
I/ Xis a complete model of K/k then W(X, I) is a compleie model 
of K/k. 

Next we prove the following. 

(6.6.6). Let ] be any nonzero ideal on X. Then W(X,1) + 
W(X, J) = W(X,IJ) = W(W(X,1), ]W(X, 1) (note that by (6.4.4), 
(6.4.11), and (6.6.5) we know that: I] is a nonzero ideal on X; 
W(X, I), W(X, J), andW(X, IJ) are models of K/k; and ]W(X, 1) 
is a nonzero ideal on W(X, 1). 

/I 

PROOF. Now X = U ID(Aa) where Al , ... , A e are affine rings 
a=l 

over k. We can take nonzero elements (xaih"'i,;;;m(a) in Aa which 
form a basis of Aa () I, and nonzero elements (Yaj)l';;;j,;;;n(d) in A a 

which form a basis of A d ()]. Then (XdiYdj)l';;;i,;;;m(d).l~i';;;n(d) are 
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nonzero elements in Aa , and by (6.4.4) we know that they form a 
basis of A a n (I]). Let 

Edi = Ad[(Xda/Xdi)l.;;;a.;;;mldl] , 

Fdl = Ad[(Ydb/Ytl:ih<;;b<;;"ltll] , 

Gtlii = Atl[«XtlaYllb)/(XtliYtl:i»I<;;a<;;mltll.l<;;b<;;"ltll]· 

Then by (6.6.5) we get that: 

• mIdI 

W(X, I) = U W(Atl , Atl 11 I), W(Atl , Atl 11 I) = U ID(Etli); 
tl=1 i=1 

• ,,(tl) 
W(X, J) = U W(Atl , Atl 11 J), W(AII , Atl 11 ]) = U ID(F tl:i); 

tl=1 i-I 

• mltl) ,,(li) 

W(X,I]) = U U U m(Gtlii)· 
tl=1 i=1 i=1 

Clearly G dii is the smallest subring of K which contains Edi and 
Fdj . Therefore by (6.2.7) and (6.2.12) we get that W(Ad , Aa n 1) 
and W(Ad , Ad n ]) are models of K/k for 1 ~ d ~ e, and 

e 
W(X, I]) = U (W(Atl , Atlll I) + W(Atl , Atl 11 ]» 

tl=1 

CW(X, I) + W(X, I). 

In particular, W(X, I]) dominates W(X, I) and W(X,]). Let any 
RE 9t'(K/k) be given such that R dominates W(X, 1) and W(X, ]); 
then R dominates X; let R* be the center of R on X; then R* E 

ID(Ad) for some d; by (6.6.2) it follows that R dominates W(Ad , 
Ad n I) and W(Ad , Ad n]); consequently R dominates W(Ad , 
Ad n 1) + W(Ad , Ad n]), and hence R dominates W(X, I]). 
Therefore W(X, I]) = W(X, I) + W(X,]). Now (Ad n ])Edi is 
an ideal in E,u, and «Ad n ])Edi)8 = (JW(X,1)8 for all 
8 E ID(Edi); consequently by (1.11.5) we get that Edi n (JW(X,I»= 
(Ad n ])Edi , and hence the elements (Ydih';;;j<;;n(d) form a basis 
of Edi n (JW(X,1); clearly 
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and hence by (6.6.5) we get that 

• m(d) n(d) 

W(W(X, I), ]W(X, I» = U U U lB(GdU)' 
11=1 i=l ;=1 

Therefore W(X, Ij) = W(W(X, 1), ]W(X, 1)). 

(6.6.7). Let X' be any model 0/ KJk dominating X. Then 
W(X', IX') = W(X,1) + X' (note that by (6.4.11) and (6.6.5) we 
know thatIX' is a nonzero ideal on X', and W(X, I) and W(X', IX') 
are models of KJk). 

e 
PROOF. Now X = U lB(Ad ) where Al' ... , A e are affine rings 

d=l 

over k. Note that K is a point of every model of Kjk, and K is not 
dominated by any point of 'Jl'(Kjk) other than K. Therefore, upon 

letting X~ = [X', X]-l(lB(A d)), by (6.2.5) and (6.2.12) we get that 
q(d) 

X d is a model of Kjk and X d = U lB(BdP ) where B dp is an affine 
p=l 

ring over k for 1 ~ P ~ q( d). By (1.11.5) it follows that A d C Bdp , 

and hence (A d n I)Bdp = B dp n (IX'). We can take nonzero 
elements (Xdih~i~m(d) in Ad which form a basis of Ad n 1. Let 

A lli = Ad[(xlla/xdi)l"a"m(d)]' 

Bd1Ji = Bd1>[(Xda/Xdi)l"a"m(d)]' 

Then by (6.6.5) we get that: 

• m(d) 

W(X, I) = U W(A II , A d n I), W(A d , All n I) = U lB(Alli); 

• q(lI) m(lI) 

W(X', IX') = U U U lB(BII1>i)' 
11=1 1>=1 ;=1 

Clearly Bdpi is the smallest subring of K which contains Adi and 
Bdp • Therefore by (6.2.7) and (6.2.12) we get that W(Ad , Ad n 1) is 
a model of KJk for 1 ~ d ~ e, and 

• 
W(X', IX') = U (W(Ad , At! nI) + X~) CW(X,I) + X'. 

d=l 
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In particular, IID(X', IX') dominates IID(X, I) and X'. Let any 
RE m'(KJk) be given such that R dominates IID(X, I) and X'j 
then R dominates Xj let R* be the center of R on Xj then R* E 

m(Ad) for so me d; by (6.6.2) it folIo ws that R dominates IID(A d , 

A d (J I), and dearly R dominates X~ ; consequently R dominates 
IID(A d , A d (J I) + X~, and hence R dominates IID(X', IX'). 
Therefore IID(X', IX') = IID(X, I) + X'. 

(6.6.8). For any subset X' of m'(KJk) dominating X, upon 
letting l' = IX', we have that 11(IID(X, I), X') = 3(1'1'-1) = 
{R' EX': 1'R' is not principal}, and: X' dominates IID(X, I) ~1' is 
principal. (Note that then in particular IIID(X, I) is principal, and 
IID(X, I) can be characterized as the unique model X* of KJk 
having the following two properties: (I) IX* is principal; and 
(2) if X' is any model of KJk such that X' dominates X and IX' 
is principal, then X' dominates X*; this characterization of 
IID(X, I) is due to Hironaka.) 

PROOF. Clearly, X' dominates IID(X, I) ~ 11(IID(X, I), X') = 0. 
Therefore, in view of (6.4.8), it suffices to show that for any 
R' EX', upon letting R = [X', X](R'), we have that: R' dominates 
IID(X, I) ~ (IR)R' is principal. Clearly IIID(X, I) is principal, 
and hence we get that if R' dominates IID(X, I) then (IR)R' is 
principal. Conversely, suppose that (IR)R' is principal. Let 
(Xl' ... , Xn) be any basis of IR. Then (Xl' ... , xn)R' is a nonzero 
principal ideal in R', and hence there exists i such that Xi cF 0 
and XjJXi E R' for I ~j ~ n. Let A = R[XlJXi , ... , xnJxi ]. Then 
AC R', R' dominates AAnM(R') ' and AAnM(R') E IID(R, IR). By 
(6.6.2) we know that IID(R, IR) C IID(X, I), and hence R' dominates 
IID(X, I). 

(6.6.9). Let X* = IID(X, I). Then we have the following: (1) 
[X*, X]-1(3(I» is a closed subset of X*, and [X*, X]-1(3(I» is 
either empty or pure l-codimensional (note that by (6.6.1) and 
(6.6.5) we know that X* is a model of KJk dominating X). (2) 
I1(X*, X) = 3(II-l) = {R E X: IR is not principal). (3) I1(X*, X) 
is a closed subset of X. (4) [X*, X]-l(I1(X*, X» is a closed subset 
of X*. (5) If X is normal then codim I1(X*, X) > 1 (note that if X 
is nonsingular then X is normal). (6) If every point of X is 
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a unique Jactorization domain X then * = m(x, II-l) , and 
[X*, X-l](~(X*, X» is either empty or pure l-codimensional (note 
that by (6.4.7) we know that 11-1 is a nonzero ideal on X; also note 
that if X is nonsingular then every point of X is a unique factori­
zation domain). 

PROOF. (I) follows from (6.4.12) and (6.6.ß). (2) follows from 
(6.6.8), or alternatively, also from (1.9.6) and (6.4.8). (3) follows 
from (2), (6.4.6), and (6.4.7). (4) follows from (3) and (6.2.5). 
(5) follows from (2) and (6.4.9). In view of (I) and (2), to prove 
(6) it suffices to show that if every point of Xis a unique factoriza­
tion domain then X* = m(X, II-l). In turn, to show this it is 
enough to prove that if R is any point of X such that R is a unique 
factorization domain, then m(R, P) = m(R, PP-I) where P = IR. 
Since R is a unique factorization domain, there exists 0 =F x E R 
such that xR = prinRP. By (l.I 1. 7) we get that (Pp-l)X = P. 
Let (Yl' ... , Yn) be any basis of PP-I. Then (YlX, ... , YnX) is a 
basis of P. Now m(R, P) = m(R; YlX , ... , Ynx) and m(R, PP-I) = 

m(R; Yl , ... , Yn)' Clearly m(R; YlX, ... , Ynx) = m(R; Y1 , ... , YlI)' and 
hence m(R, P) = m(R, PP-l). 

(6.7). We now study the operation m for projective models. 

(6.7.1). Let X be any projective model oJ K/k, and let I be 
any nonzero ideal on X. Then m(X, I) is a projective model oJ K/k. 

PROOF. Now there exist nonzero elements Xl , ••• , Xn in K such 
that X = m(Al) U ... u m(An) where Ai = k[Xl/Xi' ... , xn/Xi]' 
Let Bi be the set of all nonzero homogeneous polynomials J( Wl , ... , 

Wn) in indeterminates Wl , ... , Wn with coefficients in k such that 
J(XI/Xi' ... , Xn/Xi) E Ai fl /. Let B = BI fl ... fl B n . 

Let i be any integer with 1 ~ i ~ n and let f*(Wl , ... , Wn) be 
any element in Bi' We claim that then Wif*(Wl , ... , Wn) E B 
for some nonnegative integer e. It suffices to show that given any 
integer j with 1 ~ j ~ n there exists a nonnegative integer e(j) 
such that Wf(j)J*(Wl , ... , Wn ) E B j , because then it would be 
enough to take e = max(e(l), ... , e(n». Since 0 =F Xj/Xi E Ai' 
we get that m(B) C m(A i ) where B = Ai[(xj/Xi)-l], and hence 
f*(xl/Xi , ... , xlI.!xi )R E IR for all R E ~(B). Also 0 =1= Xi/xi E A j 
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and clearly B = Aj[(XiIXj)-I]; therefore m(B) C m(Aj) and 
(A j n I)B is an ideal in B such that «Aj n I)B)R = IR for all 
RE m(B), and hence by (1.11.5) we get that j*(xl/xi , ... , XnlXi) E 

(A j n I)B; since B = A j[(xilxj)-l], there exists a non negative 
integer e(j) such that (xilxjy(j'f*(x1/xi' ... , XnlXi) E Aj n I. Let 
e' be the degree of f*( W1 , ..• , Wn) in W1 , ... , Wn , and let f( W1 , 

... , Wn) = WiUlf*(W1 , ... , Wn)· Then f(xI/x j , ... , xn/xj) = 
(xi/Xjt+e(j)j*(XI/Xi , ... , Xn/Xi) E AjnI and hence f(W1, ... , Wn) E Hj . 

Now Al nI "* {O} and hence by what we have proved in the 
above paragraph there exists h(W1 , ••• , Wn ) EH such that 
h(xl , ... , xn) "* O. Since k[WI , ... , Wn] is noetherian, there exists 
a finite number of elements fl(W1 , ... , Wn), · .. ,ft(W1 , ... , Wn) 
(t > 0) in H which form a basis of the ideal in k[W1 , .•. , Wn ] 

generated by H. Upon relabeling fl , ... ,ft we may assume that 
fixl' ... , xn)"* Ofor I ~ q ~ sandfixI' ... , xn) = Ofors < q ~t 
where s is an integer with 1 ~ s ~ t. Let d(q) be the degree of 
fq( Wl , ... , Wn ) in W1 , ... , Wn . Take a nonnegative integer d such 
that d ~ d(q) for 1 ~ q ~ s. Let m = ns. Let gp+nq-n(W1 , ... , 
Wn) = Wl~-d(q)fq(Wl' ... , Wn) for 1 ~ P ~ n and 1 ~ q ~ s. 
Then for 1 ~ j ~ m we have that gj( W1 , ..• , Wn ) is a nonzero 
homogeneous polynomial of degree d in W1 , ••• , Wn with coeffi­
cients in k, gj(W1, ... , Wn) E H, and gj(x1, ... , xn) "* O. Let Yj = 
gj(x1 , "') xn) and Yij = gj(X1/Xi , ... , xn/xi). Then 0"* Yj E K, 
o "* Yj/xf = Yij E Ai' and Yib/Yij = (xtYib)/(x7Yij) = Yb/Yj for 
1 ~ i ~ n, 1 ~ b ~ m) and 1 ~ j ~ m. Let i be any integer with 
1 ~ i ~ n. We claim that then (Yil' "') Yim)Ai = Ai n I. Since 
gj(W1 ) "') Wn) E Hand Yij = gj(X1/Xi , ... , Xn/Xi)' we get that 
Yij E Ai n I for 1 ~ j ~ m. Conversely, let Y be any nonzero 
element in Ai n I. Since 0"* Y E Ai' there exists a nonzero 
homogeneous polynomial j*(W1 ) ... , Wn) of some degree e' in 
W1 ) "') Wn with coefficients in k such thatf*(x1/xi ) ... , Xn/Xi) = y. 
Now j*(Wl ) ... , Wn ) E Hi and hence by wh at we have proved 
in the above paragraph there exists a nonnegative integer e such 
that upon letting f(W1 , ••• , Wn) = Wif*(W1 , ... , Wn) we have 
that f(W1, ... , Wn) E H. Since f(W1 , ••• , Wn) E H, there exist 
elements FiWI , ... , Wn ) in k[WI ) ... , Wn] such that 

t 

f(Wt ' ... , Wn) = L F,lWt , .. , Wn)ÜWt ' ... , W,,). 
(,=1 
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Upon multiplying hoth sides hy wt we get that 

where 

and 

Now 

m 

g(Wt , ... , W,,) = L Gj(W1 , ... , W .. )gAW1 , ... , W,,) 
j=! 

t 

+ L F~(Wl' ... , Wn).4(~ , ... , W,,) 
q=Btl . 

for s < q ~ t, 

for J ~ q ~ s, 

for J ~ q ~ sand 1 ~ P ~ n 

with p =1= i. 

fq(Xl /Xi ' ... , xn/xi ) = x;rJ1q'fq(x! ' ... , xn ) = 0 for s < q ~ t, 

gj(Xt/x; ..... xn/x.) = Ya; for J ~ j ~ m, 

and 

Therefore upon suhstituting (xI!Xi' ... , Xn!Xi) for (W1 , ... , Wn) 
we get that 

m 

Y = L Gj(XI/Xi' ... , x,,/Xi)YIi 
j=I 

and hence Y E (Y·tl , ... , Yim)Ai . 
Thus we have found nonzero elements Yi and Yii in K for 

I ~ i ~ n and 1 ~j ~ m such that (Yil, ""Yim)A i = Ai nI 
and Yib!Yii = Yb!Yi for 1 ~ i ~ n, 1 ~ b ~ m, and 1 ~j ~ m. 
By (6.6.5) we know that W(X,1) = W(A1 , Al n 1) u ... U 

nl(An , An n I) and c1early nl(Ai , Ai n I) = ~(Ail) U ... U 
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m(Aim) where Aii = Ai[Yil/Yii ' ... , Yim!Yii] for 1 ~ i ~ n and 
I ~ j ~ m. Therefore 

11. 1ft 

~B(X, I) = U U ~(A;;). 
i=1 j=1 

Since Yib/Yii = Yb/Yi for 1 ~ i ~ n, I ~ b ~ m, and 1 ~j ~ m, 
we get that 

for 1 ~ i ~ n and I ~j ~ m. Therefore 

n '" 
U U ~(Aij) = ~l\(k; (X"yb)"=I.···.n;b=I.···.") 
i=1 j=1 

and hence W(X, I) is a projective model of K/k. 

We now prove the following converse of (6.7.1). 

(6.7.2). Let X and X* be any projective models of K/k. Then 
there exists a nonzero ideal I on X such that W(X, I) = X + X* 
(note that X + X* = X* <=> X* dominates X). Moreover, for 
any such land any model X' of K/k dominating X, upon letting 
I' = IX', we have the following: (1) I' is a nonzero ideal on X', 
and W(X', 1') = X' + X*; (2) !l(X*, X') = 3(1'1'-1) = {R' EX': 
l' R' is not principal}; (3) X' dominates X* <=> l' is principal. 

PROOF. Now there exist nonzero elements Xl' ... , Xn , Zl , ••. , Zm 
in K such that X = m(Al) U ... u m(An) and X* = m(B1) U .. , U 
~(Bm) where Ai = k[X1/Xi' ... , Xn/Xi] and Bi = k[Zl/Zj, ... , zl1.!zi]. 
Since K is the quotient field of Al' there exists a nonnegative 
integer d and nonzero homogeneous polynomials fl(W1 , ... , Wn), 
... ,fm(Wl , ... , Wn) of degree d in indeterminates Wl , ... , Wn 
with coefficients in k such that Zj = fi(x1 , ••• , xn)/xf for 1 ~ j ~ m. 
LetYi = fi(x1 , ... , xn) for 1 ~j ~ m. ThenYl' ... ,Ym are nonzero 
elements in K and Bi = k[Yl/Yi' ... , Ym/Yi] for 1 ~j ~ m. Now 
o #: Yi/xt = fi(Xl/Xi' ... , xn/xi ) E Ai for 1 ~ i ~ n and 1 ~j ~ m. 
Let Pi = (Yl/Xt , ... , Ym/Xt)Ai , and let Aii be the smallest subring 
of K containing Ai and B j . Then Aii = A i [(Yl/x1)/(Yi/4), ... , 
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(Ymlxt)j(Yilxt)] for 1 ~ i ~ n and 1 ~j ~ m. Therefore by (6.2.7) 
we get that 

Tl m n 

X + X* = U U m(Aij ) = U W(A i , Pi)· 
i~l j=l i=I 

If u and V are any integers with 1 ~ u ~ n and 1 ~ v ~ n and 
R is any point in m(Au ) n m(A,,) then xulx" is a unit in Rand hence 
PuR = PvR. Therefore we get a nonzero preideal I on X by taking 
IR = PiR for I ~ i ~ n and all RE m(A i ). By (1.11.5) we get 
that I is an ideal on X and Ai n I = Pi for 1 ~ i ~ n. Therefore 
by (6.6.5) we get that W(X, I) = W(A1 , PI) U ... U W(An , Pn ), 

and hence W(X, I) = X + X*. The rest now follows from (6.2.8), 
(6.4.11), (6.6.7), and (6.6.8). 

In view of (6.2.8) and (6.6.9), by (6.7.2) we get the following 
result due to Zariski [24]. 

(6.7.3). For any projective models X and X* 0/ Klk we have the 
/ollowing: (1) tr(X*, X) is a closed subset 0/ X. (2) I/ X is normal 
then codim tr( X*, X) > I (note that if X is nonsingular then X is 
normal). (3) I/ X* dominates X then [X*, X]-l(tr(X*, X» is a 
closed subset 0/ X*. (4) I/ X* dominates X and every point 0/ Xis 
a unique /actorization domain then [X*, X]-l(tr(X*, X» is either 
empty or pure l-codimensional (note that if X is nonsingular then 
every point of X is a unique factorization domain). 

(6.8). For any closed subset T of any model X of Klk with 
T =1= X, by the monoidal trans/orm 0/ X with center T we mean 
W(X, :J(T, X»; note that then upon letting X' = W(X, :J(T, X», 
in view of (1.4), (6.2.5), (6.4.6), (6.6.1), (6.6.5), (6.6.8), and Krull's 
principal ideal theorem [27: Theorem 29, page 238], we get: (1) X' 
is a model of Klk; (2) X' properly dominates X; (3) [X', X] is a 
continuous map of X' onto Xj (4) [X', X]-l(X - 6(X) - 6(T» 
C X' - 6(X/); (5) tr(X', X) C T; and (6) if Z is any closed 
subset of any open subset Y of X such that T n Y C Z and 
codim Z ;?: 2 then tr(X', X) n Y = T n Y. 

Given any non singular model X of Klk and any model X* of 
Klk, we say that X* is an iterated monoidal trans/orm 0/ X with 
nonsingular irreducihle centers if exists a nonnegative integer m, 
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a model Xi of Klk for 0 ~ i ~ m, and a nonsingular irreducible 
closed subset Ti of Xi with Ti =1= Xi for 0 ~ i < m, such that: 
X o = X, X m = X*, and Xi+l is the monoidal transform of Xi 
with center Ti for 0 ~ i < m; note that then X* is nonsingular 
and X* properly dominates X. 

(6.9). Let X be any nonsingular model of Klk, let T be any 
nonsingular closed subset of X with T =1= X, let X' be the monoidal 
transform of X with center T, and let ] and I be any nonzero 
principal ideals on X (note that by (6.8) we know that then X' is a 
nonsingular model of Klk, and X' properly dominates X). Let 
j' be the principal preideal on X' defined thus: if R' E X' -
[X', X]-I(T) then let j'R' = ]R where R = [X', X](R'); and if 
R' E [X', X]-I(T) then let j'R' = (R, S, R')-transform of ]R 
where R = [X', X](R') and S is the generic point of the irreducible 
component of T passing through R. We say that (X', j') is the 
monoidal transform of (X, ]) with center T. Let I' be the unique 
principal preideal on X' such that (JI)X' = ]'I'. We say that 
(X', j', I') is the monoidal transform of (X, ], I) with center T. 
Note that for any R' EX' upon letting R = [X', X](R) we have 
that: if R f/= T then R' = Rand (J'R', I'R') = (JR, IR); and if 
RE T then (J'R', I'R') is the (R, S, R')-transform of (J, I) where 
S is the generic point of the irreducible component of T passing 
through R. Let ]* be the unique principal preideal on X' such 
that IX' = j']*, i.e., such that (X', j',]*) is the monoidal 
transform of (X, ], Ix) with center T; note that then I' = (IX')]*. 

(6.9.1). Let Tl' ... , T,,, be the irreducible components of T 
labeled so that codim Ti > 1 for 1 ~ i ~ m and codim Ti = 1 for 
m < i ~ n. Let Si be the generic point of Ti' let di = ordsJSi , 
let S~ be the valuation ring of ords., let T~ = [X', X]-I(Ti ): and 
let T' = [X', X]-I(T). Then we have the following: (1) T' is a 
nonsingular closed subset of X'; T~, ... , T~ are the irreducible 
components 0/ T'; Si is the generic point of Ti for I ~ i ~ n; and 

n 
iJ(X', X) = Tl U ... U Tm. (2) J* = TI 3(Ti ,X')d; where we 

i=l n 
take 3(T;, X')d i = Ix, in case di = 0, and TI 3(Ti, X')d; = Ix, 

't=l 
in case n = o. (3) ]*, j', and I' are nonzero principal ideals on X'. 
(4) 3(J') - T' = 3(1) - T, and 3(J') = closure of 3(J') - T' in 
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X'. (5)' 1/ codirn T> 1 then 3(X', X) = T, 3(X', X) does not 
pass through the generic point 0/ any irreducible component 0/ 3(J), 
and 3(]') is the [X', Xl-trans/arm 0/ 3(J) (note that by (6.4.6) 
we know that 3(]) is a closed subset of X). 

PROOF. By (6.2.5) we get that T', Tl' ... , Tn are closed subsets 
of X'. Let any i with 1 ~ i ~ n be given; now ~(T, X)R = 
R (\ M(Si) for all RE Ti' and hence TI = U Y(R) where 

ReT/ 

Y(R) = {R' E W(R, R (\ M(Si»: R' dorninates R}; for every 
RE Ti' by (1.4) we get that S; E Y(R), and S; E 5B(R') and 
R'/(R' (\ M(Sm is regular for all R' E Y(R); it follows that T; 
is the closure of S; in X', T; is irreducible, S; is the generic point 
of T;, T; is nonsingular, and ~(T;, X')R' = R' (\ M(S;) and 
]*R' = (~(T;, X')di)R' for all R' E T;. Now X' #- T' = T~ u ... 
u T~, dirn S; = 1 for all i, and T; (\ Tj = 0 whenever i#- j. 
It follows that T;, ... , T~, are the irreducible cornponents of 

n 
T', T' is nonsingular, and J* = n ~(Ti ,X,)d/. Clearly 

i=l 

Tl U .•. U Tm = {R E X: ~(T, X)R is not principal}, and hence 
by (6.6.9) we also get that 3(X', X) = Tl U ... U Tm. This 
cornpletes the proof of (1) and (2). In view of (1) and (2), by 
(6.4.4) and (6.4.6) we get that ]* is a nonzero principal ideal on 
X'; since l' = (1X')]*, in view of (6.4.4) and (6.4.11) we also 
get that l' is a nonzero principal ideal on X'. Let A be any affine 
ring over k with 5B(A) C X'; by (6.4.11) we know that ]X' is an 
ideal on X' and hence, upon letting P = A fl (]X'), we get that 
P is an ideal in A and PR' = (]X')R' for all R' E 5B(A); since 
]* is an ideal on X', upon letting p* = A fl ]* we get that p* 
is an ideal in A and P*R' = ]*R' for all R' E 5B(A); let P' = 

(P: P*); then P' is an ideal in A; since the operation (:) cornrnutes 
with the operation of forrning a quotient ring, we get that 
(P : P*)R' = «PR') : (P*R'» for all R' E 5B(A); clearly, 
«(] X')R' : (]* R'» = j' R' for all R' E X', and hence P' R' = j' R' 
for all R' E 5B(A). Thus j' is a nonzero principal ideal on X'. This 
cornpletes the proof of (3). Clearly 3(]) - T = 3(]') - T'. By 
(3) and (6.4.6) we know that 3(]') is closed in X', and hence 
3(]') contains the closure of 3(]) - T in X'. Conversely, given 
any R' E 3(]') fl T', let R = [X', X](R'); then RE T, and hence 
RE Ti for a unique value of i; now (]R)R' = (]* R')(]' R'), 



§6. TERMINOLOGY AND PRELIMINARIES 191 

J*R' = (R' f"'I M(S~»di, (R f"'I M(Si»R' = R' f"'I M(Sa, R' f"'I M(Sa 
is a nonzero pripcipal prime ideal in R', ]'R' cf. R' f"'I M(S~), 
and]'R' is a nonzero nonunit principal ideal in R'; consequently 
there exists S' E ID(R') such that (J'R')S' =f= S' and R' f"'I M(S~) cf. 
R' f"'I M(S'); since (J'R')S' = ]'S', we get that S' E 3(J'); since 
S; is the generic point of T~, and T; is the only irreducible com­
ponent of T' passing through R', we get that S' ~ T'; thus S' E ID( R') 
and S' E 3(J') - T', and hence R' E closure of 3(J') - T' in X'. 
This proves (4). By (6.4.10) we know that 3(J) is either empty or 
pure l-codimensional, and hence (5) follows from (1) and (4). 

(6.9.2). Assume that (J, I) has only quasinormal crossings and 
for every R E T, upon letting S be the generie point of the irreducible 
eomponent of T passing through R, we have that SE <f(R, ]) and 
(S, I) has anormal crossing at R. Then (J', 1') has only quasinormal 
crOSStngs. 

PROOF. Follows from (1.10.7). 

(6.9.3). Assume that I has only quasinormal crossings and for 
every R E T, upon letting S be the generie point of the irredueible 
eomponent of T passing through R, we have that (S, I) has a pseudo­
normal crossing at R. Then l' has only quasinormal erossings. 

PROOF. Follows from (1.10.8). 

(6.9.4). If TC 6*(J) then 6*(J') C [X', X]-1(6*(J». If 
TC <f*(6*(J), J) then ords*(J')]' ~ ords*(JJ. If TC <f*(6*(J), J) 
and ords*(J')]' = ords*(JJ then 

<f*(6*(]'), ]') C [X' , X]-1(<f*(6*(]), J)). 

PROOF. The first assertion is obvious. The second and the third 
assertions follow from (1.10.2). 

(6.10). KJk is said to be unijormizable if: given any V E 9l(KJk) 
such that V is residually algebraic over k and k f"'I M(V) is a 
maximal ideal in k, there exists a regular spot R over k with quotient 
field K such that V dominates R. 
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(6.10.1). Klk is uniJormizable iJ and only iJ: given any 
V E IJt(Klk) there exists a regular spot R over k with quotient field 
K such that V dominates R. 

By [18: (28.3)] we know that if R is any regular loeal domain 
then every element in m(R) is regular. Therefore our assertion 
follows from (6.3.6). 

(6.10.2). 1J there exists a finite number oJ models Xl' ... , X n OJ 
n 

Kjk such that IJt(Klk) = U [1Jt(Kjk), Xi]-l(Xi - 6(Xi », then Klk 
i=l 

is uniJ07mizable. Conversely, iJ K/k is uniJormizable and J07 every 
affine ring A over k with quotient field K and every ideal Q in A 
we have that 6(A, Q) is closed in m(A) (see J .2.6», then there exists 
a finite number oJ projective models Xl' ... , X n oJ K/k such that 

n 
IJt(K/k) = U [1Jt(K/k), Xi]-I(Xi - 6(Xi». 

i=1 

This follows from (6.2.2), (6.2.5), (6.5.3), and (6.10.1). 

§7. Global resolvers 

Assume that dimkK ~ 3; note that then for any model X of 
KJk, by (6.3.3) we have that dirn X = max dirn R ~ 3. Also 

ReX 

assurne that for every affine ring A over k with quotient field K 
and every ideal Q in A we have that 6(A, Q) is closed in 5ll(A) 
(see (1.2.6». 

(7.1). DEFINITION. By aglobai semiresolver of Klk we mean 
a sequenee (Xi' Ji' Ti)o,,;km where: (1) either m is a positive 
integer or m = 00; (2) for 0 ~ i < m: Xi is a nonsingular model 
of Klk, Ji is a nonzero prineipal ideal on Xi , and Ti is a nonsingular 
closed subset of Xi with Ti C 6 *Ui) such that for every R E Ti , 
upon letting S be the generie point of the irredueible eomponent 
of Ti passing through R, we have that SE (f(R, Ji) and: dirn S = 
2 <=> (f2(R, Ji) has astriet normal erossing at Rand (f2(R, Ji) =1= 0; 
and (3) for 0 < i < m: (Xi' Ji) is the monoidal transform of 
(Xi_I' 1i-l) with center Ti' 

By an infinite global semiresolver of Klk we mean agIobai semi-
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resolver (Xi' Ji' Ti)O~i<m of Klk where m = 00 and Ti :::P 0 
for infinitely many distinct values of i. 

By a finite global semiresolver of Klk we me an a system [(Xi' Ji' 
Ti)O~i~m' (X', ]')] where: m is a positive integer; (Xi' Ji' 
Ti)O~i<m is aglobai semiresolver of Klk such that for 0 ~ i < m 
we have that Ti C f.f*(6*(]i)' Ji) and either Ti = 0 or Ti is 
irreducible; X' is a nonsingular model of Klk and ]' is a nonzero 
principal ideal on X' such that 6*(]') = 0; and (X', ]') is the 
monoidal transform of (Xm- 1 , Jm-l) with center T m-l . 

Klk is said to be globally semiresolvable if: given any nonsingular 
model X of Kjk and any nonzero principal ideal J on X, there 
exists a finite global resolver [(Xi' Ji' Ti)O~i<m' (X', ]')] of Klk 
such that (Xo , Jo) = (X, J). Kjk is said to be globally strongly 
semiresolvable if there does not exist any infinite global semi­
resolver of Klk. Klk is said to be locally strongly semiresolvable 
if every regular spot over k with quotient field K is strongly 
semiresolvable. 

(7.2). Let X be any nonsingular model of KI k and let J be any 
nonzero principal ideal on X. Then we have the following. 

(7.2.1). Assume that 6*(]) :::I- 0. Then there exists a non­
singular irreducible closed subset T of X such that T C 6 *(]), 
TC f.f*(6*(]), j), and, upon letting 8 be the generic point of T, for 
every RE T we have that 8 E f.f(R, j) and: dirn 8 = 2 -<=> f.f2(R, J) 
has a strict normal crossing at Rand (f2(R, ]) =1= 0. 

(7.2.2). Assume that there does not exist any infinite global 
semiresolver (Xi' Ji , Ti)O~i<OO of Klk such that (Xo , Jo) = (X, J). 
Then there exists a finite global semiresolver [(Xi' Ji' Ti)o<i<m, 
(X', ]')] of Klk such that (Xo , Jo) = (X, J). 

PROOF OF (7.2.1). By (6.5.3) we know that 6*(]) is a closed 
subset of X and codim 6*(]) ~ 2. Therefore by (6.5.4) we get 
that f.f*(6*(]), J) is a nonempty closed subset of 6*(]) and 
codim f.f *(6 *(]), J) ~ 2. Let 8 1 , ... , 8n (n > 0) be the generic 
points of the irreducible components of f.f*(6*(]), j). Then 
2 ~ dirn 8 i ~ 3 for I ~ i ~ n. If dirn 8 i = 3 for some i, then 
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{Si} is a nonsingular irreducible closed subset of X and by (6.5.6) 
we get that <r2( Si , j) = 0, and hence it suffices to take T = {SJ 
Now assurne that dirn Si = 2 for 1 ~ i ~ n. Then by (6.5.6) we 
get that <r2(R, J) = l!l(R) n {SI' ... , Sn} for an RE <r*(S*(]), J). 
If there exists RE <r*(S*(]), J) such that l!l(R) n {SI' ... , Sn} 
does not have a strict normal crossing at R then dirn R = 3 and 
{R} is a nonsingular irreducible closed sub set of X, and hence 
it suffices to take T = {R}. If l!l(R) n {SI' ... , Sn} has a strict 
normal crossing at R for an RE <r*(6*(]), j), then it suffices to 
take T = closure of {Si} in X for some i. 

PROOF OF (7.2.2). Let W be the set of an global semiresolvers 
(Xi' Ji' Ti)o~i<m of Kjk such that (Xo , Jo) = (X, ]) and Ti C 
<r*(6*(]i)' Ji) and Ti is irreducible for 0 ~ i < m. If 6*(]) = 0 

then we get a finite global semiresolver [(Xi' Ji' Ti)O~i<I' 
(X', ]')] of Kjk of the required type by taking (Xo , Jo) = (X, J) = 
(X',],) and To = 0. So now assurne that 6*(]) =I=- 0. Then 
there exists T as in (7.2.1) and we get an element (Xi' Ji , Ti)O~i<I 
in W by taking (Xo , Jo, To) = (X, J, T). Therefore W is non­
empty. For each pair of elements w = (Xi' Ji' Ti)o~i<m and 
w' = (X;, J:, T;)o~i<m' in W define: w ~ W ' <0> m ~ m' and 
(Xi' Ji' Ti) = (X;, J;, T;) for 0 ~ i < m. Then W becomes 
a partially ordered set having the Zorn property and hence by 
Zorn's lemma W contains a maximal element w = (Xi' Ji , 
Ti)o~i<m. By assumption we must have m =I=- 00. Let (X', ]') be 
the monoidal transform of (Xm- I , Jm-I) with center T m-I . Then 
by (6.8) and (6.9.1) we have that X' is a nonsingular model of 
Kjk and ]' is a nonzero principal ideal on X'. Suppose if possible 
that 6 *(]/) =I=- 0; then by (7.2.1) there exists a nonsingular 
irreducible closed sub set T' of X' such that T' C 6*(]/), T' C 
<r*(6*(]/), ]'), and, upon letting S be the generic point of T', 
for every RE T' we have that SE <r(R,]') and: dirn S = 2 <0> 

<r2(R, ]') has a strict normal crossing at Rand <r2(R,]') =I=- 0; 
we now get an element w' = (X;, J;, T;)o~i<m+l in W with 
w ~ w' and w =I=- w ' by taking (X;, J;, T;) = (Xi' Ji' Ti) for 
o ~ i < m and (X:n, J:n, T:n) = (X', ]" T'); this is a contra­
diction because w is a maximal element of W. Therefore 6 *(]/) = 
o and hence [(Xi' Ji' Ti)o~i<m' (X', ]')] is a finite global semi­
resolver of KJk with (Xo , Jo) = (X, j). 
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(7.3). 1f Klk is globally strongly semiresolvable then Klk is 
globally semiresolvable. 

PROOF. Follows from (7.2.2). 

(7.4). For any global semiresolver (Xi' Ji' Ti)Od<OO of Klk 
we have the following. 

00 

(7.4.1). Given any nonnegative integer n and any REn Xi' 
i=n 

there exists an open subset D of X n with RED such that D C Xi and 
D (\ Ti = 0 for all i ~ n. 

(7.4.2). Assume that there does not exist any infinite semi­
resolver (Rj , P j , Sj)o~j<ro with Ro 6 6*Uo). Then there exists a 
nonnegative integer m such that Ti = 0 for all i ~ m. 

PROOF OF (7.4.1). In view of (6.5.3) and (6.8) we have that 
6*Ui} is a closed subset of Xi with codim 6*Ui} ~ 2 and ß(Xi+1 , 

00 

Xi) = Ti C 6*Ui) for 0 ~ i < 00. Since REn Xi' we get that 
i=n 

R rt Ti for all i ~ n. For each i ~ n let Gi be the union of the 
irreducible components of 6*Ui} passing through R, let H i be the 
union of the remaining irreducible components of 6*Ui}' let 

Gi = 6(G;) u {R' E Gi - 6(G;): S rt <f(R', ];) where S is the 

generic point of the irreducihle componcnt of 

Gi passing through R'}, 

and let D i = Xi - «Gi - {R}) u H i ). Then RE Di , and in 
view of (6.5.5) we get that Di is an open sub set of Xi. For any 
open sub set E of Xi with R E E, in view of (6.2.16) we get that: 

(6*(]i) (\ E (\ Di ) - {R} 

= {R' E (6*(]i) (\ E) - (6(6*(]i) (\ E) u {R}): upon letting F 

be the irreducible component of 6*(];) (\ E passing through R', 

and S be thc generic point of F, we have that R E F, and 

SE <f(R', .Ti)}; 
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let us refer to this observation as [i, E]. Since R rt Ti' by (6.5.6) 
and [i, Xi] we see that Di ('I Ti = 0; consequently Di C Xi+l 
and: 

(li) and 

In view of (6.2.5) we have that Di is an open subset of Xi+l , and 
hence by (li)' [i, Di], and [i + 1, Di ] we get that: 

Since Ti C 6*(]i)' we get that Xi - 6*(]i) C X i+1 - 6*(]i+l}; 
also Xi+l - 6*(]i+1} C Di+l' and hence Xi - 6*(]i} C Di+l ; 
therefore by (2i ) we get that Di C Di+l . Thus Di is an open subset 
of Xi with R E Di and Di ('I Ti = 0 for an i ~ n, and also 
Di C Di+l for an i ~ n. It suffices to take D = D"" . 

PROOF OF (7.4.2). In view of (6.5.3) and (6.8) we have that 
\l(Xi+1 , Xi) = Ti C 6*(]i) for 0 ~ i < 00, and hence \l(Xi , 

X o} C 6*(]0} for 0 ~ i < 00. Given any V E m(Xo)' let R~ be the 
center of Von Xi for 0 ~ i < 00, and let (a(j)}o,;,;j<e;;"" be the unique 
sequence such that: either n is a nonnegative integer or n = 00; 
a(j) is a nonnegative integer for 0 ~j < n; a(O} = 0; a(j - 1) < 
a(j) and R~{j_l) = R; =1= R~{j) whenever 0 < j < n and a(j - 1) ~ 
i < a(j); if n =1= 00 then a(n) is a nonnegative integer and R~(",,) = 

R; whenever a(n) ~ i < 00; and if n = 00 then a(n) = 00. For 
o ~j < n, upon letting Rj = R~{j) , we get that Rj E Ta(j+1)-l ; 
let 8 j be the generic point of the irreducible component of Ta{j+1)-l 
passing through Rj , and let Pj = Ja(j+1)-lRj . Suppose if possible 
that n = 00; then (Rj , Pj , 8 j )0';';j<00 is an infinite semiresolver; 
since \l(Xi , X o) C 6*(]0} for 0 ~ i < 00 , we get that Ro E 6*(]0}; 
this contradicts our assumption. Therefore n =1= 00. Let n( V) = n. 
Thus for each V E m(Xo} we have found a nonnegative integer 
n(V) such that upon letting R(V) be the center of V on Xn(lI), 

co 

we have that R( V) E n Xi' By (7.4.1) there exists an open 
i=",,(II) 

subset D(V) of X",,(V) with R(V} E D(V} such that D(V} C Xi and 
D(V) ('I Ti = 0 for an i ~ n(V). For each V E m(xo} we clearly 
have that V E [m(xo), X",,(y)]-l(D(V», and by (6.2.5) we get that 
[m(xo), X,.(y)]-l(D(V» is an open subset of m(Xo); now 9l(Xo) is 
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quasicompact by (6.2.13), and hence there exists a finite number 
of elements VI' ... , Vq in 9t(Xo) such that 

q 

9t(Xo) = U [9t(Xo), Xn(V;)]-l(D(Vj ». 
j~l 

Let m be any nonnegative integer such that m ~ n(Vi ) for I ~j ~ 
q. Then clearly Ti = 0 for all i ~ m. 

(7.5). I/ Kjk is locally strongly semiresolvable then Kjk JS 

globally semiresolvable and globally strongly semiresolvable. 

PROOF. Follows from (7.3) and (7.4.2). 

(7.6). Let [(Xi' Ji' Ti)o'-;:;'i<m, (X', ]')] be any finite global 
semiresolver 0/ Kjk. Then 5(X', X o) and 3(Jo) are closed subsets 0/ X o, 
5(X', X o) = 6*(Jo) = 6(3(Jo» c 3(Jo), 5(X', X o) does not pass 
through the generic point 0/ any irreducible component 0/ 3(Jo), 
3(J') is the [X', Xo]-trans/orm 0/ 3(Jo), and 3(J') is nonsingular. 

PROOF. Follows from (6.2.18), (6.4.6), (6.5.2), (6.5.3), (6.9.1), 
and (6.9.4). 

(7.7). Assume that Kjk is globally semiresolvable. Let X be 
any nonsingular model 0/ Kjk and let Z be any closed subset 0/ X 
such that either Z = X or Z is pure l-codimensional (note that the 
assumptions about Z are satisfied if Z is a surface in X, and they 
are also satisfied if dimkK ~ 2 and Z is a curve in X). Then there 
exists a nonsingular model X' 0/ Kjk such that: X' is an iterated 
monoidal trans/orm 0/ X with nonsingular irreducible centers, 
5(X', X) = 6(Z), and the [X', X]-trans/orm 0/ Z is nonsingular 
(note that by (6.5.3) we know that 6(Z) is a closed sub set of Z, 
and clearly 6(Z) does not pass through the generic point of any 
irreducible component of Z). 

PROOF. If Z = X then it suffic~.:; to take X' = X. So now 
assume that Z i= X and let J = 3(Z, X). By (6.4.6) we have that 
J is a nonzero ideal on X and Z = 3(J). Clearly J is principal. Since 
Kjk is globally semiresolvahle, there exists a finite global semi-



198 2. GLOBAL THEORY 

resolver [(Xi' Ji' Ti)o~i<m' (X', ]')] of K/k with (XO' JO) = 
(X, J). Now X' is an iterated monoidal transform of X with non­
singular irreducible centers, and by (7.6) we get that iJ( X', X) = 
6(Z), and the [X', X]-transform of Z is nonsingular. 

(7.8). DEFINITION. By aglobai detacher of K/k we mean a 
sequence (Xi' Ji' Ii , Ti)o~i<m where: (I) either m is a positive 
integer or m = 00; (2) for 0 ~ i < m: Xi is a nonsingular model of 
K/k, Ji and Ii are nonzero principal ideals on Xi such that (Ji ,Ii ) 

has only quasinormal crossings, and Ti is a nonsingular closed 
subset of Xi with Ti C 6 *(Ji) such that for every R E Ti' upon 
letting 8 be the generic point of the irreducible component of 
Ti passing through R, we have that 8 E <f(R, Ji), (8,11,) has a 
normal crossing at R, and: dirn 8 = 2 <=> (<f2(R, Ji),Ii ) has a 
strict normal crossing at Rand <f2(R, Ji) =1= 0; and (3) for 0 < i < 
m: (Xi' Ji ,Ii) is the monoidal transform of (Xi- 1 • IH' Ii.,-1) 

with center Ti. 
By an infinite global detacher of K/k we mean agiobai detacher 

(Xi' J., I i , T.)o~i<m of K/k where m = 00 and Ti =1= 0 for 
infinitely many distinct values of i. 

By a finite global detacher of K/k we mean a system [(Xi' J1. , 
Ii , Ti)o~i<m' (X', ]', I')] where : m is a positive integer; (Xi' Ji' 
I i , Ti)o~i<m is aglobai detacher of KJk such that for 0 ~ i< m 
we have that Ti C <f*(6*(Ji)' Ji) and either Ti = 0 or Ti is 
irreducible; X' is a nonsingular model of K/k and ]' and l' are 
nonzero principal ideals on X' such that 6*(J') = 0 and (J',1') 
has only quasinormal crossings; and (X',]', 1') is the monoidal 
transform of (Xm - 1 , Jm-1' I m- 1) with center T m-1 (note that by 
(6.4.4) we have that ]'1' is a nonzero principal ideal on X', and 
clearly J'l' has only normal crossings; also note that (JoIo)X' = 
]'1'). 

K/k is said to be globally detachable if: given any nonsingular 
model X of K/k and any nonzero principal ideals J and I on X such 
that (J, I) has only quasinormal crossings, there exists a finite 
global detacher [(Xi' Ji' Ii , T.)o~i<m' (X', ],,1')] of K/k such 
that (Xo , Jo. 10) = (X, J, I). K/k is said to be globally strongly 
detachable if there does not exist any infinite global detacher of 
KJk. KJk is said to be locally strongly detachable if every regular 
spot over k with quotient field K is strongly detachable. 
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(7.9). Let X be any nonsingular model oJ KJk and let J and 1 
be any nonzero principal ideals on X such that (J, I) has only quasi­
normal crossings. Then we have the Jollowing. 

(7.9.1). Assume that 6*(j) =1= 0. Then there exists a non­
singular irreducible closed subset T oJ X such that TC 6*(j), 
TC Cf*(6*(J), J), and, upon letting S be the generic point oJ T, 
Jor every R E Twe have that SE Cf(R, J), (S, I) has anormal crossing 
at R, and: dirn S = 2 <=> (Cf2(R, j), I) has astriet normal crossing 
at Rand Cf2(R, J) =1= 0. 

(7.9.2). Assume that there does not exist any infinite global 
detacher (Xi' Ji' li' Ti)O~i<OO oJ KJk such that (Xo , Jo, 10) = 
(X, J, I). Then there exists a finite global detacher [(Xi' Ji, I", 
Ti)o(i<m, (X', j', 1')] OJ KJk such that (Xo , Jo, 10) = (X, J, I). 

PROOF OF (7.9.1). By (6.5.3) we know that 6*(j) is a closed 
sub set of X and codim 6*(J) ~ 2. Therefore by (6.5.4) we get 
that Cf*(6*(j), j) is a nonempty closed subset of 6*(J) and 
codim Cf*(6*(J), J) ~ 2. Let SI' ... , Sn (n > 0) be the generic 
points of the irreducible components of Cf*(6*(J), j). Then 2 ~ 
dirn Si ~ 3 for 1 ~ i ~ n. Since (J, I) has only quasinormal 
crossings, we get that (R, I) has anormal crossing at R for all 
REX. If dirn Si = 3 for some i, then {Si} is a nonsingular 
irreducible closed subset of X and by (6.5.6) we get that Cf2(S" , j) = 
0, and hence it suffices to T = {Si}. So now assurne that dirn S, = 

2 for I ~ i ~ n. Then by (6.5.6) we get that Cf2(R, J) = l8(R) n 
{SI' ... , Sn} for all RE Cf*(6*(J), J). Ifthere exists R E Cf*(6*(j), j) 
such that (l8(R) n {SI' ... , Sn}, I) does not have a strict normal 
crossing at R then dirn R = 3 and {R} is a nonsingular irreducible 
closed subset of X, and hence it suffices to take T = {R}. If 
(l8(R) n {SI' ... , Sn}, I) has a strict normal crossing at R for all 
RE Cf*(6*(j), J), then it suffices to take T = closure of {Si} in 
X for some i. 

PROOF OF (7.9.2). Let W be the set of all global detachers 
(Xi' Ji' li' Ti)o~i<m of KJk such that (Xo , Jo ,/0) = (X, J, I) 
and Ti C Cf*(6*(Ji)' Ji) and Ti is irreducible for 0 ~ i < m. If 
6*(J) = 0 then we get a finite global detacher [(Xi' Ji' li' 
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Ti)O~i<t' (X',]" 1')] of Kjk of the required type by taking 
(Xo , Jo, 10) = (X, J, I) = (X', ],,1') and To = 0. So now 
assurne that 6*(J) =f= 0. Then there exists T as in (7.9.1) and we 
get an element (Xi' Ji , Ii , Ti)O~i<t in W by taking (Xo , Jo , 10 , 

To) = (X, J, I, T). Therefore W is nonempty. For each pair of 
elements w = (Xi' Ji' Ii , Ti) and w' = (X~ , J~ , I~, T;)o~i<m' 
in W define: w::S;; w' <=> m ::s;; m' and (Xi' Ji' Ii , Ti) = (X~ , 
J~ , I;, T~) for 0 ::s;; i < m. Then W becomes a partially ordered 
set having the Zorn property and hence by Zorn's lemma W 
contains a maximal element w = (Xi' Ji' I i , Ti)O~i<m' By 
assumption we must have m =f= 00. Let (X', ],,1') be the monoidal 
transform of (Xm - t , Jm-t, Im - t ) with center T m-t. Then by 
(6.8), (6.9.1), and (6.9.2), we have that X' is a nonsingular model 
of Kjk and ]' and l' are nonzero principal ideals on X' such that 
(J',1') has only quasinormal crossings. Suppose if possible that 
6*(J') =f= 0; then by (7.9.1) there exists a nonsingular irreducible 
closed subset T' of X' such that T' C 6*(J'), T' C <f*(6*(J'), ]'), 
and, upon letting 8 be the generic point of T', for every RE T' 
we have that 8 E <f(R, ]'), (8,1') has anormal crossing at R, and: 
dirn 8 = 2 <=> (<f2(R, ],),1') has a strict normal crossing at Rand 
<f2(R, ]') =f= 0; we now get an element w' = (X~, J~, I~ , 
T;)o~i<m+1 in W with w ::s;; w' and w =f= w' by taking (X;, J;, 
I~, T~) = (Xi' Ji' li' Ti) for 0 ::s;; i < m and (X;", J;" ,I;" , 
T;") = (X', ],,1', T'). This is a contradiction because w is a 
maximal element of W. Therefore 6 *(J') = 0 and hence 
[(Xi' Ji ,Ii , Ti)O~i<m' (X', ],,1')] is a finite global detacher of 
Kjk with (Xo , Jo ,/0) = (X, J, I). 

(7.10). If K/k is globally strongly detachable then Kjk is globally 
detachable. 

PROOF. Follows from (7.9.2). 

(7.11). For any global detacher (Xi' Ji' I i , Ti)O~i<OO of Kjk we 
have the following. 

00 

(7 .11.1). Given any nonnegative integer n and any REn Xi' 
i=n 

there exists an open subset D of X" with RED such that D C Xi and 
D n Ti = 0 for all i ::;:: n. 
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(7.11.2). Assume that there does not exist any infinite detacher 
(Rj 'Pj , Qj' Sj}O';;i<oo with Ro E 6*(]o). Then there exists a non­
negative integer m such that Ti = 0 for all i ~ m. 

PROOF OF (7.11.1). In view of (6.5.3) and (6.8) we have that 
6*(]i} is a closed subset of Xi with codim 6*(]i} ~ 2 and 

00 

!j(Xi+l' Xi} = Ti C 6*(]i} for 0 ::( i < 00. Since REn Xi' we get 
i=n 

that R t/= Ti for all i ~ n. F or each i ~ n let Gi be the union of the 
irreducible components of 6*(]i) passing through R, let H i be the 
union of the remaining irreducible components of 6*(]i}' let 

Gi = 6(Gi) u {R' E Gi - 6(Gi): 8 E (f(R', ]i) where 8 is the 

generic point of the irreducible component of Gi 

passing through R'}, 

let 

Gi = {R' E Gi - 6(Gi): (8, I i) does not have anormal crossing 

at R' where 8 is the generic point of the irreducible com­

ponent of Gi passing through R'}, 

and let Di = Xi - «(Gf u G~) - {R}} U Hi}. Then RE Di , 
and in view of (6.5.5) and (6.5.8) we get that Di is an open subset 
of Xi' For any open subset E of Xi with RE E, in view of (6.2.16) 
we get that: 

(6*Ui) nE n Di) - {R} 

= {R' E (6*Ui) n E) - (6(6*Ui) n E) u {R}): upon letting F 

be the irreducible component of 6*Ui) n E passing through 

R', and 8 be the generic point of F, we have that R E F, 

8 E (f(R', ]i), and (8, I i ) has anormal crossing at R'}; 

let us refer to this observation as [i, E]. Since R ~ Ti' by (6.5.6) 
and [i, Xi] we see that Di n Ti = 0; consequently Di CXi+l 
and: 

and 
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In view of (6.2.5) we have that Di is an open subset of X i+1 , and 
hence by (li)' [i, Di ], and [i + 1, Di ] we get that: 

Since Ti C 6*(ji}' we get that Xi - 6*(ji) C Xi+l - 6*(ji+l); 
also Xi+l - 6*(ji+l) C Di+l, and hence Xi - 6*(ji) C Di+1 ; 

therefore by (2i ) we get that Di C Di +1 • Thus Di is an open subset 
of Xi with R E Di and Di n Ti = 0 for all i ~ n, and also 
Di C Di+l for all i ~ n. It suffices to take D = Dn • 

PROOF OF (7.11.2). In view of (6.5.3) and (6.8) we have that 
3(Xi+l' Xi) = Ti C 6*(ji) for 0 ~ i < 00, and hence 3(Xi , X o) C 
6*(jo) for 0 ~ i < 00. Given any V E 9t(Xo), let R~ be the center 
of V on Xi for 0 ~ i < 00, and let (a(j»o<;;j<;;n be the unique 
sequence such that: either n is a nonnegative integer or n = 00; 

a(j) is a nonnegative integer for 0 ~j < n; a(O) = 0; a(j - 1) < 
a(j) and R~(j_ll = R~ #- R~(j) whenever 0 <j < n anda(j - 1) ~ 
i < a(j); if n #- 00 then a(n) is a non negative integer and R~(n) = 
R~ whenever a(n) ~ i < 00; and if n = 00 then a(n) = 00. 

For 0 ~ j < n, upon letting R j = R~(j) , we get that R j E Ta(j+Ü-l ; 

let Sj be the generic point of the irreducible component of Ta(j+1)-l 

passing through R j , let P j = Ja(j+1)-lRj , and let Qj = Ia<i+ll-lRj • 

Suppose if possible that n = 00; then (Rj , P j , Qj, Sj)o<;;j<oo is an 
infinite detacher; since 3(Xi , X o) C 6*(jo) for 0 ~ i < 00, we 
get that Ro E 6*(jo); this contradicts our assumption. Therefore 
n #- 00. Let n(V) = n. Thus for each V E 9t(Xo) we have found 
a nonnegative integer n( V) such that, upon letting R( V) be the 

00 

center of Von Xn(v), we have that R(V) E n Xi' By (7.11.1) 
i=n(V) 

there exists an open subset D(V) of Xn(V) with R(V) E D(V) such 
that D(V) C Xi and D(V) n Ti = 0 for all i ~ n(V). For each 
V E 9t(Xo) we clearly have that V E [9t(Xo), Xn(v)]-l(D(V», and 
by (6.2.5) we get that [9t(Xo), Xn(v)]-l(D(V» is an open subset of 
9t(Xo); now 9t(Xo) is quasicompact by (6.2.13), and hence there 
exists a finite number of elements VI' ... , Vq in 9t(Xo} such that 

q 

9t(Xo) = U [9t(Xo), X"(V;)]-l(D(V;)). 
i-I 
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Let m be any nonnegative integer such that m ~ n(Vj ) for 1 ~j ~ 
q. Then clearly Ti = 0 for all i ~ m. 

(7.12). I/ K/k is locally strongly detachable thm K/k is globally 
detachable and globally strongly detachable. 

PROOF. Follows from (7.10) and (7.11.2). 

(7.13). DEFINITION. By aglobai subresolver of K/k we mean a se­
quence(Xi , Ji' Li" Zi' Ti)o~i<m where: (1) either m is a positive inte­
ger or m = 00; (2) for 0 ~ i < m: Xi is a nonsingular model of K/k, Ji 
and Li, are nonzero principal ideals on Xi such that Ii has only quasi­
normal crossings, Zi is a pure 2-codimensional closed subset of Xi 
with Zi C (f *(6 *(Ji)' Ji)' and Ti is a nonsingular closed subset of Zi 
such that for every R E Ti' upon letting 8 be the generic point 
of the irreducible component of Ti passing through R, we have 
that (8,Ii ) has a pseudonormal crossing at Rand: dirn 8 = 
2 <=> (f2(R, Ji) has a strict normal crossing at Rand (Zi (') (f2(R, Ji)' 
I i ) has a pseudonormal crossing at R; and (3) for 0 < i < m: 

(Xi' Ji ,li) is the monoidal transform of (Xi-I' Ji-l' li-I) with 
center Ti' orde*(J.>Ji = orde*(J. >1i-l, and Zi is the closure in 
Xi of {8 E (f*(6*(ri)' Ji): 8 do;Uinates a two-dimensional point 
of Zi-l}' 

By an infinite global subresolver 0/ K/k we mean aglobai sub-
resolver (Xi' Ji' Ii , Zi' Ti)o~i<m of K/k where m = 00 and 
Ti #- 0 for infinitely many distinct values of i. 

By a finite global subresolver of K/k we mean a system [(Xi' 
Ji , I i , Zi, Ti)o~i<m, (X', ]',1')] where: m is a positive integer; 
(Xi' Ji ,li' Zi' Ti)o~i<m is aglobai subresolver of K/k such that 
Ti is irreducible for 0 ~ i < m; X' is a nonsingular model of 
K/k and ]' and l' are nonzero principal ideals on X' such that l' 
has only quasi normal crossings; (X', ]',1') is the monoidal trans­
form of (Xm- 1 , Jm-l, Im-I) with center T m-l; and for every 
8 E 6*(J/) such that 8 dominates a two-dimensional point of Zm-l 
we have that ords]' 8 < orde*(J >Jm-l' 

... -1 

K/k is said to be globally subresolvable if: given any nonsingular 
model X of K/k, any nonzero principal ideals J and I on X such 
that I has only quasinormal crossings, and any pure 2-codimensional 
closed subset Z of X with Z C (f*(6*(J), f), there exists a finite 
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global subresolver [(Xi' Ji' li' Zi' Ti)O~i<m' (X', j',I')] of 
Kjk such that (Xo , Jo ,/0 , Zo) = (X, I, J, Z). Kjk is said to be 
globally strongly subresolvable if there does not exist any infinite 
global subresolver of Kjk. Kjk is said to be locally strongly sub­
resolvable if every regular spot over k with quotient field K is 
strongly subresolvable. 

(7.14). Let X be any nonsingular model of Kjk, let J and 1 be 
any nonzero principal ideals on X such that 1 has only quasinormal 
crossings, and let Z be any pure 2-codimensional closed subset of X 
with Z C (f*(6*(]), J). Then we have the following. 

(7.14.1). There exists a nonsingular irreducible closed subset 
T of Z such that, upon letting 8 be the generic point of T, for every 
RE T we have that (8, I) has a pseudonormal crossing at Rand: 
dirn 8 = 2<0> (f2(R, J) has a strict normal crossing at Rand 
(Z n (f2(R, J), I) has a pseudonormal crossing at R. 

(7.14.2). Assume that there does not exist any infinite global 
subresolver (Xi' Ji' li' Zi' Ti)O!(i<OO of Kjk such that (Xo , Jo , 
10 , Zo) = (X, I, J, Z). Then there exists a finite global subresolver 
[(Xi' Ji' li' Zi' Ti)o,;;i<m, (X', j', 1')] of Kjk such that (Xo , 
Jo , 10 , Zo) = (X, j, I, Z). 

PROOF OF (7.14.1). If there exists RE Z such that either 
(f2(R, J) does not have a strict normal crossing at R or (Z n (f2(R, J), 
I) does not have a pseudonormal crossing at R then dirn R = 3, 
{R} is a nonsingular irreducible closed sub set of Z, and (R, I) 
has a pseudonormal crossing at R, and hence it suffices to take 
T = {R}. If for every RE Z we have that (f2(R, J) has a strict 
normal crossing at Rand (Z n (f2(R, J), I) has a pseudonormal 
crossing at R, then it suffices to take T = any irreducible com­
ponent of Z. 

PROOF OF (7.14.2). Let W be the set of all global subresolvers 
(Xi' Ji' li' Zi' Ti)o,;;i<m of Kjk such that (Xo , Jo ,/0 , ZO) = 

(X, J, I, Z) and Ti is irreducible forO ~ i < m. We get an element 
(Xi' Ji' li' Zi' Ti)o!(i<l in W by taking (Xo, Jo, 10 , Zo, To) = 
(X,j,I.Z. T)where T is as in (7.14.1). Thus Wis nonempty. For 
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each pair of elements w = (Xi' Ji, I i , Zi' Ti)o';;i<m and w' = 
(X~, J~, I; , Z;, T;)o.;;i<m' in W define: w ::::;; w' <::> m ::::;; m' and (Xi' 
Ji' Ii , Zi' Ti) = (X;, J;, I~ , Z~, T;) for 0 ::::;; i < m. Then W 
becomes a partially ordered set having the Zorn property and 
hence by Zorn's lemma W contains a maximal element w = (Xi' 
Ji' I i , Zi' Ti)o';;i<m' By assumption we must have m =1= 00. Let 
(X', ]', I') be the monoidal transform of (Xm- l , Jm-l, Im-I) with 
center Tm-I' Then by (6.8), (6.9.1), (6.9.3), and (6.9.4), we have 
that X' is a nonsingular model of Klk and ]' and I' are nonzero 
principal ideals on X' such that I' has only quasinormal crossings 
and, upon letting d = orde.CJ > Jm-l and e = orde'(J'>l', we 

",-1 

have that e ::::;; d. If e < d then [(Xi' Ji' I i , Zi' Ti)o';;i<m, (X', 
]', I')] is a finite global subresolver of Klk with (Xo , Jo ,10 , Zo) = 
(X, J, I, Z). So now assurne that e = d. Let Z' be the c10sure in 
X' of {S E (f*(6*(]'), ]'): such that S dominates a two-dimensional 
point of Zm-l}' By (6.5.3) and (6.5.4) we get that (f*(6*(]'), ]') 
is a c10sed sub set of X' with codim (f*(6*(]'), ]') ~ 2. Therefore 
Z' C (f*(6*(]'), ]'), and either Z' = 0 or Z' is pure 2-codi­
mensional. Suppose if possible that Z' =1= 0; then by (7.14.1) 
there exists a nonsingular irreducible c10sed subset T' of Z' such 
that, upon letting S' be the generic point of T', for every R' E T' 
we have that (S', I') has a pseudonormal crossing at R' and: 
dirn S' = 2 <::> (f2(R',]') has a strict normal crossing at R' and 
(Z' () (f2(R', ]'), I') has a pseudonormal crossing at R'; we now 
get an element w' = (X; , J~ , I; , Z~ , T;)o.;;i<m+1 in W with w ::::;; w' 
and w =1= w' by taking (X~ , J; ,I; , Z; , T;) = (Xi' Ji ,li, Zi' Ti) 
for 0::::;; i < m and (X;", J;", I;", z;,., T;") = (X', ]', I', Z', T'). 
This is a contradiction because w· is a maximal element of W'. 
Therefore Z' = 0 and hence [(Xi' Ji' Ii , Zi' T.)o.;;i<m, 
(X', ]', I')] is a finite global subresolver of Klk with (Xo , Jo, 
10 , Zo) = (X, J, I, Z). 

(7.15). If Klk is globally strongly subresolvable then Klk ts 

globally subresolvable. 

PROOF. Follows from (7.14.2). 

(7.16). For any global subresolver (Xi' J., I., Zi' Ti)o.;;i<ex> 
of Klk we have the following. 
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00 

(7.16.1). Given any nonnegative integer n and any REn Xi' 
i=1I 

there exists an open sflbset D of X 1I with RED such that D C Xi and 
D f"'l Ti = 0 for all i ~ n. 

(7.16.2). Assume that there does not exist any infinite sub­
resolver (Rj , Pi' Qi , L j , 8 i )0,;;.j<00 with Ro E Zo. Then there exists 
a nonnegative integer m such that Ti = 0 for all i ~ m. 

PROOF OF (7.18.1). In view of (6.5.3) and (6.8) we have that 
6*(]i) is a closed subset of Xi with codim 6*(]i) ~ 2 and 

00 

iJ(Xi+1' Xi) = Ti C 6*(]i) for 0 ~ i < 00. Since REn Xi' we 
i=1I 

get that R i Ti for all i ~ n. For each i ~ n let Gi be the union 
of the irreducible components of 6*(]i) passing through R, let Bi 
be the union of the remaining irreducible components of 6*(]i)' let 

Gt = 6(Gj) u {R' E Gi - 6(Gi): 8 i (f(R', ft) where 8 is the 

generic point of the irreducible component of Gi 

passing through R'}, 

let 

G; = {R' E Gj - 6(Gj): (8);> I j ) does not have a pseudonormal 

crossing at R' where 8 is the generic point of the irreducible 

component of Gi passing through R'}, 

and let Di = Xi - «(Gt u G~) - {R}) u Bi)' Then RE Di , 

and in view of (6.5.5) and (6.5.7) we get that Di is an open subset 
of Xi' For any open subset E of Xi with R E E, in view of (6.2.16) 
we get that: 

(6*Ui) n E n Dj ) - {R} 

= {R' E (6*(ft) n E) - (6(6*Uj) n E) u {R}): upon letting F 

be the irreducible component of 6*Uj) n E passing through 

R', and S be the generic point of F, we have that R E F, S E 

(f(R', If)' and (8, I j ) has a pseudonormal crossing at R'}; 



§7. GLOBAL RESOLVERS 207 

let us refer to this observation as [i, E]. Since R rF Ti' by (6.5.6) 
and [i, Xi] we see that Di f1 Ti = 0; consequently Di C Xi+l 
and: 

Ii+lDi = IiDi , Ji+1Di = JiDi , and 

6*(]i+l) n D i = 6*(]i) n Di . 

In view of (6.2.5) we have that Di is an open subset of Xi+l , and 
hence by (li)' [i, Di ], and [i + I, Di ] we get that: 

(2i) (6*(]i) n Di) - {R} = (6*(]i+l) n Di n Di+1) - {R}. 

Since Ti C 6*Ui)' we get that Xi - 6*Ui) C Xi+l - 6*Ui+l); 
also Xi+l - 6*Ui+l) C Di+l' and hence Xi - 6*Ui) C Di+l ; 
therefore by (2i ) we get that Di C Di+l . Thus Di is an open sub set 
of Xi with R E Di and Di f1 Ti = 0 for an i ~ n, and also 
Di C Di+l for an i ~ n. It suffices to take D = Dn . 

PROOF OF (7.16.2). In view of (6.8) we have that 5(Xi+l , Xi) = 

Ti and Zi+l C [Xi+l , Xi]-l(Zi) for 0 ~ i < 00, and hence 5(Xi , 

X o) C Zo for 0 ~ i < 00. Given any V E 9l(Xo), let R~ be the center 
of V on Xi for 0 ~ i < 00, and let (a(j»o';;j<n be the unique 
sequence such that: either n is a nonnegative integer or n = 00; 

a(j) is a nonnegative integer for 0 ~j < n; a(O) = 0; a(j - 1) < 
a(j) and R~(j_l' = R~ * R~{j) whenever 0 <j < n and a(j - 1) ~ 
i < a(j); if n * 00 then a(n) is a nonnegative integer and R~(n) = 
R; whenever a(n) ~ i < 00; and if n = 00 then a(n) = 00. 

For 0 ~ j < n, upon letting Rj = R~(j) , we get that Rj E Ta(j+})-l ; 
let Sj be the generic point of the irreducible component of Ta(j+})-l 
passing through Rj , let Pj = Ja(j+l)-lRj , let Qj = Ia(j+l)-lRj , 
and let L j be the set of an two-dimensional points of m(Rj ) f1 

Za(j+l)-l. Suppose if possible that n = 00; then in view of (6.5.3) 
and (6.5.6) we see that (Rj , Pj , Qj, L j , Sj)o';;j<OO is an infinite 
subresolver; since 5(Xi , X o) C Zo for 0 ~ i < 00, we get that 
Ro E Zo; this contradicts our assumption. Therefore n * 00. 

Let n(V) = n. Thus for each V E 9l(Xo) we have found a nonnega­
tive integer n( V) such that, upon letting R( V) be the center of V 

00 

on Xn(v), we have that R(V) E n Xi. By (7.16.1) there exists 
i=n 

an open subset D(V) of X.,(V) with R(V) E D(V) such that 
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D(V) C Xi and D(V) n Ti = 0 for all i ~ n(V). For each 
V E9i(Xo) we clearly have that V E [9i(Xo), Xn(JI)]-I(D(V», and by 
(6.2.5) we get that [9i(Xo), Xn(JI)]-I(D(V) is an open sub set of 
9i(Xo); now 9i(Xo) is quasicompact by (6.2.13), and hence there 
exists a finite number of elements VI' ... , Vq in 9i(Xo) such that 

Q 

9i(Xo) = U [9i(Xo), X n(JI;)]-1(D(V;». 
;=1 

Let m be any nonnegative integer such that m ~ n(Vj ) for 1 ~j ~ 
q. Then clearly Ti = 0 for all i ~ m. 

(7.17). If KJk is locally strongly subresolvable then KJk ts 

globally subresolvable and globally strongly subresolvable. 

PROOF. Follows from (7.15) and (7.16.2). 

(7.18). If k is pseudogeometric then KJk is locally strongly sub­
resolvable, globally subresolvable, and globally strongly subresolvable. 

PROOF. Follows from (3.21.2) and (7.17). 

(7.19). Let] be a nonzero principal ideal on a nonsingular 
model X of KJk, and let]' be a nonzero principal ideal on a non­
singular model X' 0/ KJk (note that by (6.5.3) and (6.5.4) we know 
that then (f*(6*(]), J) is a closed sub set of X with codim (f*(6*(J), 
J) ~ 2, and (f*(6*(]'), ]') is a closed sub set of X' with codim 
(f*(6*(]'), ]') ~ 2). Let Z be the union of a certain number of 
2-codimensional irreducible components 0/ (f*(6*(]), J), and let 
Y be the union of the remaining irreducible components of (f *( 6 *(]), J). 
Let Z' be the union of a certain number of 2-codimensional irreducible 
components of (f*(6*(]'), ]'), and let Y' be the union of the remaining 
irreducible components of (f*(6*(]'), ]'). Let T be a nonsingular 
closed subset of (f*(6*(J), J) such that for every 2-codimensional 
irreducible component T* of T and every R E T* we have that 
(f2(R, J) has a strict normal crossing at R. Assume that (X', ]') is 
the monoidal transform of (X, J) with center T, ords*(J'J' = 
ords*(J)J, and Z' is the closure in X' of {S' E (f*(6*(]'), ]'): S' 
dominates a two-dimensional point 01 Z}. Then we have the /ollowing. 
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(7.19.1). For any R' EX' and S' E m(R'), upon letting R = 
[X', X](R') and S = [X', X](S'), we have that SE m(R). 

(7.19.2). Assume that Y has only strict normal crossings, and 
let R' be any point 01 Y'. Then Y' has a strict normal crossing at R'. 
Moreover, if S~ and S~ are any points 01 Y' n m(R') such that 
S~ # S~ and S~ # R' # S~ , then [X', X](S~) # [X', X](S~) and 
either dirn S~ = 2 or dirn S~ = 2. 

(7.19.3). 11 Y has only strict normal crossings then Y' has only 
strict normal crossings. 

(7.19.4). Let R; and R~ be any points 01 rr-*( 6 *(]'), ]') such that 
dirn R~ = 3 = dirn R~, R~ # R~, and [X', X](R~) = [X', X](R~). 
Then upon letting R = [X', X](R~) we have that dirn R = 3, and 
{R} is an irreducible component 0/ T. 

(7.19.5). Assume that Y has only strict normal crossings, and 
let R~ , R~ , S' be any points 0/ Y' such that R; # R~ , S' E m(R;) n 
m(R~), and [X', X](R;) = [X', X](R~). Then [X', X](S') = 
[X', X](R;). 

(7.19.6). Assume that Y' has only strict normal crossings, and 
let R;, R~, S;, S~, S~ be any points 0/ Y' such that R; # R~ , 
S; # S~ # S~, dirn S~ = dirn S~ = dirn S~ = 2, S; E m(R~), 
S~ E m(R;) n m(R~), S~ E m(R~), and [X', X](R~) = [X', X](R~). 
Then [X', X](S;) # [X', X](S~). 

(7.19.7). 11 Y is unlooped then Y' is unlooped. 

PROOF OF (7.19.1). Now RRnM(S') E m(R) C X, and S' dorninates 
RRnM(S') . Therefore S = RRnM(S') and hence SE m(R). 

PROOF OF (7.19.2). Let S~, ... , S~ (n > 0) be the generic 
points of the irreducible cornponents of Y' passing through R'. 
If R' = S; then Y' n m(R') = {R'} and our assertion is obvious. 
So now assurne that R' # S;. Then dirn R' = 3, dirn S~ = 2 
for 1 ~ i ~ n, and Y' n m(R') = {R', S~ , ... , S~}. Let R = 
[X', X](R'), and Si = [X', X](S;) for 1 ~ i ~ n. Then dirn R = 3, 
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and in view of (6.9.4) and (7.19.1) we get that RE (f*(6*(J), J), 
and Si E 5D(R) (\ (f*(6*(J), I) and 2 ~ dirn Si ~ 3 for 1 ~ i ~ n. 
Upon relabeling S~, ... , S~ we may assurne that dirn Si = 2 
(i.e., Si * R) for 1 ~ i ~ m, and dirn Si = 3 (i.e., Si = R) 
for m < i ~ n, where m is an integer with 0 ~ m ~ n. Then for 
1 ~ i ~ m we have that Si is the generie point of an irredueible 
eomponent of Y passing through R, and henee {SI' ... , Sm} 
has astriet normal erossing at R. We shall show that SI' ... , Sm 
are all distinet, n - m ~ 1, and {S~ , ... , S~} has astriet normal 
erossing at R'; this will eomplete the proof. This is obvious in 
ease R f# T beeause then R' = R and S~ = Si for 1 ~ i ~ n. 
So now ass urne that R E T, and let S be the generie point of the 
irredueible eomponent of T passing through R. Note that then: 
2 ~ dirn S ~ 3; S has a simple point at R; IR is a nonzero nonunit 
principal ideal in R; (R', IR') is a monoidal transform of (R, IR,S); 
ordR'IR' = ordRIR; {SI' ... , Sm} C (f2(R, IR); {SI' ... , Sn} C 
(f2(R', IR'); for 1 ~ i ~ m we have that S~ dominates Si; and 
for m < i ~ n we have that S; dominates R. 

First suppose that dirn S * 2. Then S = R; eonsequently for 
1 ~ i ~ m we have that S, f# T and henee S~ = Si. ; in partieular, 
SI' ... , Sm are all distinet and {SI' ... , Sm} = {S~ , ... , S:n} C 
5D(R) (\ 5D(R'). Therefore by (3.7.1) and (3.7.2) we get that n - m ~ 
1 and {S{ , ... , S~} has astriet normal erossing at R'. 

Next suppose that dirn S = 2. For m < i ~ n we have that 
(S~ , ]' S;) is a monoidal transform of (R, IR, S) and ]' S~ * S~ , 
and henee by (3.10.2) we get that dirn S~ = 3. Consequently we 
must have m = n. By assumption we know that (f2(R, IR) has a 
striet normal erossing at R; therefore by (3.10.5) we eonclude that 
SI' ... , Sm are all distinet and {S~, ... , S~} has a strict normal 
erossing at R'. 

PROOF OF (7.19.3). This follows from (7.19.2). 

PROOF OF (7.19.4). Sinee [X', X](Ra = R = [X', X](R~) and 
R~ * R~, we must have R E T. Also clearly dirn R = 3. Let S 
be the generie point of the irredueible eomponent of T passing 
through R. Then 2 ~ dirn S ~ 3. Suppose if possible that S t= R. 
Then dirn S = 2. Now S has a simple point at R, IR is a nO!lzero 
nonunit prineipal ideal in R, and for i = 1, 2 we have that (R~ , 
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]' R~) is a monoidal transform of (R, JR, 8) such that ordRJ;R~ = 
ordRJR. Since R~ =1= R~, this contradicts (3.10.2). Therefore 
8 = Rand hence {R} is an irreducible component of T. 

PROOF OF (7.19.5). Let R = [X', X](R~) and 8 = [X', X)(S'). 
Suppose if possible that 8 =1= R. Then R~ =1= 8 ' =1= R~ and hence 
dirn R~ = 3 = dirn R~ and dirn 8 ' = 2. By (7.19.4) we now get 
that dirn R = 3 and {R} is an irreducible component of T. There­
fore R~ and R~ are quadratic transforms of R. By (6.9.4) and (7.19.1) 
we have that 8 E lB(R) tl <f*(6*(]), J). Since 8 =1= R, we get that 
dirn 8 = 2. Since 8 ' E Y' and dirn 8 ' = 2, we must have 8 ' 1= Z'. 
Therefore 8 1= Z and hence 8 E Y. Consequently 8 must be the 
generic point of an irreducible component of Y passing through R, 
and hence by assumption 8 has a simple point at R. Therefore 
there exists a basis (x, y, z) of M(R) such that R tl M(8) = 
(y, z)R. Since {R} is an irreducible component of T, we also get 
that 81= T and hence 8 ' = 8. Let A = R[yJx, zJx] and let 
p = (x, yJx, zJx)A. Then P is a maximal ideal in A (for instance 
see (1.3.3». Now for i = 1, 2, we have that 8 E lB(R~) and hence 
by (1.10.10) we get that M(R~) = (x, yJx, zJx)R~; therefore in 
view of (1.7.2) we get that R~ E lB(A); clearly pe A tl M(R~); 
since Pis a maximal ideal in A, we must have R~ = A p • Thus 
R~ = R~ which is a contradiction. 

PROOF OF (7.19.6). Let R = [X', X](R~), and 8 i = [X', X](8;) 
for i = 1,2,3. Clearly dirn R~ = 3 = dirn R~, and hence by 
(7.19.4) we get that dirn R = 3 and {R} is an irreducible co m­
ponent of T. By (7.19.2) we get that 8 1 =1= 8 2 , and by (7.19.5) 
we get that 8 2 = R. Therefore 8 1 =1= R. By (7.19.1) we have that 
8 1 E lB(R); since {R} is an irreducible component of T, we conclude 
that 8 1 1= T, and hence 8~ = 8 1 • Suppose if possible that 8 1 = 8 3 . 

Since 8~ = 8 1 , we must then have 8~ = 8~ . In particular then 
8~ E lB(R;) tl lB(R~), and hence by (7.19.5) we get that [X', X](8~) 
= [X', X](R~), i.e., 8 1 = R. This is a contradiction. 

PROOF OF (7.19.7). Assurne that Y has only strict normal 
crossings and there exists an infinite sequence (Y; , Rao"-;i<oo such 
that for 0 ~ i < 00: Y; is an irreducible component of Y' , 
Y~ =1= Y;+1' R; E Y~ tl Y;+l' and R; =1= R;+1. We shall show 
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that then there exists an infinite sequence (Yt, Rno~j<oo such 
that for 0 ~j < 00: Yl is an irreducible cornponent of Y, 

Yl =F Y]!:t-1 , R* E Y,* () Yl~-l , and Rl =F Rl+1 . In view of (7.19.3) 
this will cornplete the proof. For 1 ~ i < 00 let S; be the generic 
point of Y;, let Si = [X', X](S;), let Y i be the closure of {Si} 
in X, and let R i = [X', X](R~). For 1 ~ i < 00 we clearly have 
that dirn R; = 3 and dirn S; = 2, and hence dirn Ri = 3 and 
2 ~ dirn Si ~ 3. In view of (6.9.4) we get that Y i C <t*(6*(]), J) 
for 1 ~ i < 00, and in view of (7.19.1) we get that Si E IJJ(Ri ) for 
1 ~ i < 00, i.e., R i E Y i for 1 ~ i < 00. Let N be the set of all 
integers i with 1 ~ i < 00 such that dirn Si = 2. By (7.19.2) 
we get that N is an infinite set. Arrange all the integers in N in 
the form of a sequence a(O) < a(l) < a(2) < .... For each i E N 
we have that Yi is an irreducible cornponent of <t*(6*(]), J); 
since dirn S;· = 2 and S; E Y ' , we also get that S; ~ Z' and hence 
Si ~ Z; consequently Y i rnust be an irreducible cornponent of Y. 

It now suffices to show that Sa(j+1) E IJJ(Ra(j», Sa(j) =F Sa(j+1) , 
and Ra(j) =F R a(i+1l for 0 ~ j < 00, because then we would get 
an infinite sequence (Yl, RnO~i<oo having the desired properties 
by taking (Yl, Rn = (Ya(j) ' Ra(j» for 0 ~j < 00. So let any 
integer j with 0 ~ j < 00 be given. 

First .suppose that a(j + 1) = a(j) + 1. Then by (7.19.1) we 
get that Sa(i+}) E 5U(Ra(j», and by (7.19.2) we get that Sa(j) =1= Sa(j+1)' 
Since dirn Sa(j+1) = 2 and dirn Ra(j) = 3, we get that Sa(j+1) =F 
Ra(j) ; hence by (7.19.5) we rnust have Ra(j) =F R a(j+1) . 

Next suppose that a(j + 1) =F a(j) + 1. Then dirn Sa(j)+1 = 3 
and hence by (7.19.2) we get that a(j + 1) = a(j) + 2. By (7.19.1) 
we have that Sa(j)+1 E IJJ(Ra(j» () IJJ(Ra(j)+1); since dirn Sa(j)+1 = 3, 
we deduce that Ra(j) = R a(j)+1' Again by (7.19.1) we have that 
Sa(j+1) E IJJ(Ra(j)+1); since Ra(j) = Ra(j) +1 , we conclude that 
Sa(j+1) E IJJ(Ra(j»' By (7.19.6) we get that Sa(j) =F Sa(j+1) . Since 
dirn Sa(j+1) = 2 and dirn R a{j)+1 = 3, we get that Sa(j+1) =F 
R a(j)+1 ; hence by (7.19.5) we rnust have Ra(j)+1 =F R a(j+1) ; since 
Ra(j) = R a(j)+1 , we conclude that R a(;) =F R a(j+1) . 

(7.20). Assume that Kjk is globally subresolvable. Let X be 
any nonsingular model of Kjk and let] and I be any nonzero principal 
ideals on X such that 6*(]) =F 0 and I has only quasinormal 
CTossings. Then there exists a nonsingular model X' 01 Klk and 
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nonzero principal ideals]' and l' on X' such that: l' has only quasi­
normal crossings, X' is an iterated monoidal transform of X with 
nonsingular irreducible centers, (j(X', X) C <f*(6*(J), I), (JI)X' = 

]'1', I(X (") X') = ]'(X (") X'), 3(J') is the [X', X]-transform of 
3(J), ordrs*(J')]' ~ ordrs*CJ)I, and either ordrs*ü')]' < ordrs*CJ)I or 
<f*(6*(J'),]') is a nonempty unlooped closed subset of x' (note 
that by (6.4.6) we know that 3(J) is a closed sub set of X). 

PROOF. By (6.5.3) and (6.5.4) we know that Cf*(6*(J), J) is a 
nonempty closed subset of X with codim Cf*(J), J) ~ 2. Let Z 
be the union of all the 2-codimensional irreducible components 
of Cf*(6*(J), J), and let Y be the union of the remaining irreducible 
components of <f*(6*(J), J). Then clearly Yis unlooped. Therefore 
if Z = 0 then it suffices to take (X', ]',1') = (X, I, I). So now 
assume that Z i= 0. Since K/k is globally sublesolvable, there 
exists a finite global subresolver [(Xi' Ii' Ii , Zi' Ti)o';;'i<m, 
(X', ]',1')] of K/k with (Xo, 10 ,10 , Zo) = (X, I, I, Z). In view 
of (6.2.18), (6.9.1), and (6.9.4) we get that (j(X', X) C Cf*(6*(J), I), 
I(X (") X') = ]'(X (") X'), and 3(J') is the [X', X]-transform of 
3(J). By (6.9.4) we have that ordrs*(J')]' ~ ordrs*(J)I. If ordrs*ü')]' < 
ordrs*CJ)I then we have nothing more to show. So assume that 
ordrs*(J')]' = ordrs*(J>J. Let X m = X' and 1m = ]'. In view of 
(6.5.3) and (6.5.4) we then have that Cf*(6*(Ji)' Ii) is a nonempty 
closed subset of Xi with codim Cf*(6*(Ji)' Ii) ~ 2 for 0 ~ i ~ m. 
Let Zm be the closure in X m of {S' E Cf*(6*(Jm)' 1m): s' dominates 
a two-dimensional point of Zm-l}. Since [(Xi' Ji ,li' Zi , Ti)o';;'i<m , 
(X', ]',1')] is a finite global subresolver of K/k, we must then 
have Zm = 0. For 0 ~ i ~ m we clearly have that Zi is the union 
of a certain number of 2-codimensional irreducible components 
of Cf*(6*(Ji)' Ii); let Y i be the union of the remaining irreducible 
components of <f*(6*(Ji)' Ii). Then Y m = Cf*(6*(Jm)' Im) and 
Yo = Y. In particular Yo is unlooped and hence, in view of (7.19.7), 
by induction on i we see that Yi is unlooped for 0 ~ i ~ m. U pon 
taking i = m we conclude that <f*(6*(J'), ]') is unlooped. 

(7.21). DEFINITION. By aglobai resolver of K/k we mean a 
sequence (Xi' Ii' Ii , Ti)o';;'i<m where: (1) either m is a positive 
integer or m = 00; (2) for 0 ~ i < m: Xi is a nonsingular model of 
K/k, Ii and I, are nonzero principal ideals on Xi such that I i has 
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only quasinormal crossings, and Ti is a nonsingular closed subset 
of Xi with Ti C 6*(]i) such that for every RE Ti' upon letting 
S be the generic point of the irreducible component of Ti passing 
through R, we have that SE (f(R, 1i)' (S, l i ) has a pseudonormal 
crossing at R, and: dirn S = 2 ~ (f2(R, 1i) has a strict normal 
crossing at Rand (S', l i ) has a pseudonormal crossing at R for 
some S' E (f2(R, 1i); and (3) for 0 < i < m: (Xi' 1i' l i ) 

is the monoidal transform of (Xi-I' 1i-l, li-I) with center 
Ti - 1 • 

By an infinite global resolver of K/k we mean aglobai resolver 
(Xi' 1i , l i , Ti)o';;'i<m of K/k where m = 00 and Ti =I 0 for 
infinitely many distinct values of i. 

By a finite global resolver of K/k we mean a system [(Xi' 1i' 
Li, , Ti)o';;'i<m, (Xm, 1m, Im)] where: (1') m is a positive integer; 
(2') for 0 ~ i ~ m: Xi is a nonsingular model of K/k, and 1i and 
l i are nonzero principal ideals on Xi such that l i has only quasi­
normal crossings; (3') for 0 ~ i < m: (f*(6*(]i)' 1i) is a nonempty 
unlooped closed subset of Xi , and Ti is a nonsingular irreducible 
closed subset of (f*(6*(]i)' 1i) such that, upon letting S be the 
generic point of Ti' for every RE Ti we have that (S,li ) has a 
pseudonormal crossing at Rand: dirn S = 2 ~ (S', l i ) has a 
pseudonormal crossing at R for so me S' E (f2(R, 1i); (4') for 
o < i ~ m: (Xi' 1i' [i) is the monoidal transform of (Xi-I' 
]H , li-I) with center Ti-I; and (5') for 0 ~ i < m: ord6*(Jo)lo = 

ord6 *(J)li > ord6 *(J )lm . 
Kjk 'is said to bem globally resolvable if: given any nonsingular 

model X and K/k and any nonzero principal ideals I and I on X 
such that (f*(6*(]), I) is a nonempty unlooped closed sub set of 
X and I has only quasi normal crossings, there exists a finite global 
resolver [(Xi' 1i ,li' Ti)o';;'i<m, (Xm, 1m, Im)] of K/k such that 
(Xo , 10 ,10) = (X, I, I). K/k is said to be globally strongly re­
solvable if there does not exist any infinite global resolver of K/k. 
K/k is said to be locally strongly resolvable if every regular spot 
over k with quotient field K is strongly resolvable. 

(7.22). Let X be any nonsingular model of K/k and let I and I 
be any nonzero principal ideals on X such that 1f*(6*(J), I) is a 
nonempty unlooped closed subset of X and I has only quasinormal 
crossings. Then we have the following. 
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(7.22.1). There exists a nonsingular irreducible closed subset 
T oJ !f*(6*(J), J) such that, upon letting S be the generic point oJ T, 
Jor every R E T we have that (S, I) has a pseudonormal crossing 
at Rand: dirn S = 2 <=> (S', I) has a pseudonormal crossing at R 
Jor some S' E !f2(R, J). 

(7.22.2). Assume that there does not exist any infinite global 
resolver (Xi' Ii' 1i , Ti)O~i<C1J oJ K/k such that (Xo , 10 ,10) = 
(X, I, I). Then there exists a finite global resolver [(X" Ii ,li' 
Ti)o~i<m, (Xm , Im , Im)] oJ K/k'such that (Xo , 10 ,10) = (X, 1,1)· 

PROOF OF (7.22.1). By (6.5.3) we have that codim !f*(6*(J), J) 
~ 2. For each irreducible component Z of !f*(6*(J), J) let H(Z) 
be the set of all points R of Z such that (S, I) has a pseudonormal 
crossing at R where S is the generic point of Z. For a moment 
suppose that there exists an irreducible component Z of !f *(6 *(J),J) 
such that H(Z) = Z; since !f*(6*(J), J) is unlooped, we have 
that Z is nonsingular; let S be the generic point of Z; if dirn S i= 3 
then dirn S = 2 and SE !f2(R, I) for all RE Z, and hence it 
suffices to take T = Z; if dirn S = 3 then Z = {S} and by (6.5.6) 
we have that !f2(S, I) = 0, and hence again it suffices to take 
T = Z. So henceforth assurne that for every irreducible com­
ponent Z of !f*(6*(J), I) we have that H(Z) i= Z. Note that then 
!f*(6*(]), I) is pure 2-codimensional. Let W be the set of all 
sequences (Zi' Ri)O~i<m such that: either m is a positive integer 
or m = 00; Zi is an irreducible component of !f*(6*(]),]) and 
Ri E Zi - H(Zi) for 0 ~ i < m; and Ri - 1 E H(Zi) for 0 < i < m 
(note that then Zi-l i= Zi and R i - 1 i= Ri for 0 < i < m). For 
each pair of elements w = (Zi , Ri)o~i<m and w' = (Z; , R~)o~i<m' 
in W define: w ~ w' <=> m ~ m' and (Z" Ri ) = (Z; , R~) for 
o ~ i < m. Then W be comes a partially ordered set having the 
Zorn property. Upon taking Zo to be any irreducible component 
of !f*(6*(]), I) and Ro to be any point of Zo - H(Zo) we get an 
element (Zi' Ri)O~i<1 in W. Therefore W i= 0, and hence by 
Zorn's lemma W contains a maximal element w = (Zi' Ri)o~i<m' 
Since !f*(6*(J), J) is unlooped, we must have m i= 00. Now 
dirn Rm- 1 = 3, {Rm- 1} is a nonsingular irreducible closed subset 
of !f*(6*(]), J), and (Rm- 1 , I) has a pseudonormal crossing at 
Rm- 1 • Suppose if possible that there exists S' E !f2(Rm_1 , ]) 



216 2. GLOBAL THEORY 

such that (8', I) has a pseudonormal crossing at Rm- l ; let Z' be 
the c10sure of 8' in X; then by (6.5.6) we get that Z' is an irreducible 
component of <f*(6*(j), j); in particular H(Z') =F Z' and hence 
we can take R' E Z' - H(Z'); now we get an element w' = 
(Z~ , R;)o';;;i<m+l in W with w:::;;; w' and w =F w' by taking 
(Z~ , R;) = (Zi' Ri) for 0:::;;; i < m and (Z:n, R:n) = (Z', R'); 
this is a contradiction because w is a maximal element of W. 
Therefore it suffices to take T = {Rm- l }. 

PROOF OF (7.22.2). Let W be the set of all sequences (Xi' Ji' 
Ii , Ti)o.;;;i<m where: (1) either m is a positive integer or m = 00; 

(2) for 0 :::;;; i < m: Xi is a nonsingular model of K/k, Ji and I i 

are nonzero principal ideals on Xi such that <f*(6*(]i)' Ji) is 
a nonempty unlooped c10sed sub set of Xi and Ii has only quasi­
normal crossings, ords*(J.)Ji = ords*(J)J, and Ti is a nonsingular 
irreducible c10sed subset 'of <f*(6*(]i)' Ji) such that, upon letting 
8 be the generic point of Ti' for every R E Ti we have that (8, Li,) 
has a pseudonormal crossing at Rand: dim 8 = 2<:;> (8', I i ) has 
a pseudonormal crossing at R for some 8' E <f2(R, Ji); (3) for 
o < i < m: (Xi' Ji ,li) is a monoidal transform of (Xi-I' Ji-l' 
li-I) with center Ti-I; and (4) (Xo , Jo ,10) = (X, J, I). Upon 
taking (Xo , Jo ,10 , To) = (X, J, I, T) where T is as in (7.22.1) 
we get an element (Xi' Ii ,li' Ti)o';;;i<l in W, and hence W =1= 0. 

For each pair of elements w = (Xi' Ji ,li' Ti) and w' = (X~ , J~ , 
I~ , T;)o';;;i<m' in W define: ,w :::;;; w' <:;> m :::;;; m' and (Xi' Ji ,li' 
Ti) = (X~, J; ,I~, Ta for 0:::;;; i < m. Then W becomes a 
partially ordered set having the Zorn property and hence by Zorn's 
lemma W contains a maximal element w = (Xi' Ji ,li' Ti)o.;;;i<m' 
In view of (6.5.6) we see that every element in W is aglobai resolver 
of K/k. Therefore by assumption we must have m =F 00. Let 
(Xm , Jm ,Im) be the monoidal transform of (Xm- l , Jm-l , Im-I) 
with center T m-l' Then by (6.8), (6.9.1), (6.9.3), and (6.9.4) 
we have that X m is a nonsingular model of K/k, Jm and Im are 
nonzero principal ideals on X m , Im has only quasinormal crossings, 
and ords*(J) :::;;; ords*(J>J. Suppose if possible that ords*(J) = 
ords*(J)J; tl~en by (6.5.3), (6.5.4), (6.5.6), and (7.19.7) we getmthat 
<f*(6*(]m), Jm) is a nonempty unlooped c10sed subset of X m ; 
hence by (7.22.1) there exists a nonsingular irreducible c10sed 
subset Tm of <f *(6 * (]m)' Im} such that, upon letting 8 be the generic 
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point of Tm' for every RE Tm we have that (8, Im) has a pseudo­
normal crossing at Rand: dirn 8 = 2<::> (8', Im) has a pseudo­
normal crossing at R for some 8' E (f2(R, 1m); we now get an 
element w' = (Xi' Ii ,Ii , Ti)o";i<m+1 in W with w ~ w' and 
w =F w'; this is a contradiction because w is a maximal element 
of W. Therefore ord6 *um)Im < ord6 *uJ, and hence [(Xi' Ii , 
I i , Ti)o";i<m , (Xm , 1m ,Im)] is a finite global resolver of Kjk with 
(Xo , 10 ,10) = (X, I, I). 

(7.23). If K(k is globally strongly resolvable then Kjk is globally 
resolvable. 

PROOF. Follows from (7.22.2). 

(7.24). For any global resolver (Xi' Ii ,Ii , Ti)O";i<co of Kjk 
we have the following. 

00 

(7.24.1). Given any nonnegative integer n and any REn Xi' 
i=n 

there exists an open subset D of X", with RED such that D C Xi and 
D n T; = 0 for all i ;;;: n. 

(7.24.2). Assume that there does not exist any infinite resolver 
(Rj , Pj ,Qj' 8 j )0';:'j<00 with R o E 6*Uo)' Then there exists a 
nonnegative integer m such that Ti = 0 for all i ;;:::: m. 

PROOF OF (7.24.1). In view of (6.5.3) and (6.8) we have that 
6*Ui) is a c10sed subset of Xi with codim 6*Ui) ~ 2 and 

00 

~(Xi+1 , Xi) = Ti C 6*Ui) for 0 ~ i < 00. Since REn Xi' we 
i=n 

get that RE 1i for all i ;;:::: n. For each i ~ nIet G'i be the union 
of the irreducible components of 6*Ui) passing through R, let Hi 
be the union of the remaining irreducible components of 6*Ui)' let 

G; = 6(G;) u {R' E Gi - 6(Gi): S 1'- I.f(R', ]i) where S is the 

generic point of the irreducible component of Gi 

passing through R'}, 



218 2. GLOBAL THEORY 

let 

G; = {R' E Gi - 6(Gi): (8, li) does not have a pseudonormal 

crossing at R' where 8 is the generic point of the irreducible 

component of Gi passing through R'}, 

and let Di, = Xi - «(Gt u G~) - {R}) u H1,). Then RE Di , 
and in view of (6.5.5) and (6.5.7) we get that Di is an open suhset 
of Xi. For any open suhset E of Xi with RE E, in view of (6.2.16) 
we get that: 

(6*Ui) 11 E 11 Di) - {R} 

= {R' E (6*Ui) 11 E) - (6(6*Ui) 11 E) u {R}): upon letting F 

be the irreducible component of 6*Ui) 11 E passing through 

R', and 8 be the generic point of F, we have that R E F, 8 E 

(f(R', li)' and (8,/i ) has a pseudonormal crossing at R'}; 

let us refer to this ohservation as Ci, E]. Since R rt Ti' hy (6.5.6) 
and Ci, Xi] we see that Di n Ti = 0; consequently Di C XH1 
and: 

li+lDi = liDi , li+lDi = liDi , 

6*Ui+l) 11 Di = 6*U,) 11 Di . 

and 

In view of (6.2.5) we have that Di is an open suhset of X i +1 , and 
hence by (11,), Ci, Di ], and [i + 1, D.d we get that: 

(2i ) (6*Ui) 11 Di) - {R} = (6*Ui+1) 11 Di 11 Di +1) - {R}. 

Since Ti C 6*Ui)' we get that Xi - 6*Ut) C XH1 - 6*UHl); 

also XH1 - 6*Ui+1) C DH1 , and hence Xi - 6*Ui) C Di+1 ; 
therefore hy (2i ) we get that Di C DH1 . Thus Di, is an open suhset 
of Xi with R E Di, and Di, n Ti, = 0 for a11 i ~ n, and also 
Di C DH1 for a11 i ~ n. It suffices to take D = Dn . 

PROOF OF (7.24.2). In view of (6.5.3) and (6.8) we have that 
\j(XH1 , Xi) = Ti, C 6*Ui,) for 0 ~ i < 00, and hence \j(Xi , Xo)C 
6*Uo) for 0 ~ i < 00. Given any V E 9i(Xo), let R~ he the center 
of V on Xi for 0 ~ i < 00, and let (aU»O';;i<n he the unique 
sequence such that: either n is a nonnegative integer or n = 00; 
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a(j) is a nonnegative integer for 0 ~j < n; a(O) = 0; a(j - 1) < 
a(j) and R~(i-l) = R~ i= R~(i) whenever 0 <j < n and a(j-I) ~ 
i < a(j); if n i= 00 then a(n) is a nonnegative integer and R~(n) = 

R~ whenever a(n) ~ i < 00; and if n = 00 then a(n) = 00. 

For 0 ~j < n, upon letting R i = R~(i) , we get that R j E Ta(J+1)-l ; 

let 8i be the generic point of the irreducible component of Ta(J+1)-l 

passing through R j , let Pi = Ja(i+1)-lRj , and let Qj = I a(j+1)-lRj • 

Suppose if possible that n = 00; then (Rj , Pi ' Qi , 8 j )0';;'i<00 is 
an infinite resolver; since !1(X., Xo) C 6*(]0) for 0 ~ i < 00, 

we get that Ro E 6*(]0); this contradicts our assumption. Therefore 
n i= 00. Let n(V) = n. Thus for each V E m(Xo) we have found 
a nonnegative integer n(V) such that, upon I~tting R(V) be the 

center of V on Xn(y), we have that R(V) E n Xi' By (7.24.1) 
i=n(V) 

there exists an open subset D( V) of Xn(V) with R( V) E D( V) such 
that D( V) C Xi and D( V) n Ti = 0 for all i ~ n( V). For each 
V E m(Xo) we clearly have that V E [m(Xo), Xn(y)]-l(D(V)), and 
by (6.2.5) we get that [m(Xo), Xn(y)]-l(D(V)) is an open sub set 
of m(Xo); now m(Xo) is quasicompact by (6.2.13), and hence 
there exists a finite number of elements VI' ... , Vq in m(Xo) such 
that 

q 

m(Xo) = U [m(Xo), X n<Vj,]-l(D(V;)). 
;=1 

Let m be any nonnegative integer such that m ~ n( Vi) for 1 ~ j ~ 
q. Then clearly Ti = 0 for all i > m. 

(7.25). I/ K/k is locally strongly resolvable then K/k is globally 
resolvable and globally strongly resolvable. 

PROOF. Follows from (7.23) and (7.24.2). 

(7.26). Assume that K/ k is globally subresolvable and globally 
resolvable. Let X be any nonsingular model 0/ K/k and let J and I 
be any nonzero principal ideals on X such that I has only quasinormal 
crossings. Then there exists a nonsingular model X* 0/ K/k and 
nonzero principal ideals ]* and 1* on X* such that: 6*(]*) = 0, 

1* has only quasinormal crossings, X* is an iterated monoidal trans/orm 
0/ X with nonsingular irreducible centers, iV(X*, X) = 6*(J), 
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(J1)X* = ]*1*, J(X r. X*) = ]*(X r. X*), and 3(J*) is the 
[X*, XJ-trans/orm 0/ 3(]) (note that by (6.4.6) we know that 
3(]) is a closed subset of X). 

PROOF. If 6*(J) = 0 then it suffices to take (X*, J*,I*) = 
(X, J,1). SO assume that 6*(J*) =1= 0, and let d = orde,*(J>J. 
Then by (6.5.3) and (6.5.4) we get that d is a positive integer. By 
induction on j we sha11 first show that if j is any integer with 
o ~j ~ d then there exists a nonsingular model X* of K/k and 
nonzero principal ideals J* and 1* onX* such that: orde,*(J*) ~ 
d - j, 1* has only quasinormal crossings, X* is iterated monoidal 
transform of X with nonsingular irreducible centers, ~(X*, X) C 
6*(]), (J1)X* = ]*1*, ](X r. X*) = J*(X r. X*), and 3(J*) 
is the [X*, XJ-transform of 3(]). 

For j = 0 it suffices to take (X*, J*, 1*) = (X, J, I). Now let 
o < j ~ d and assume that the above assertion is true for a11 
values of j sma11er than the given one. Then by the induction 
hypothesis there exists a nonsingular model X" of K/k and nonzero 
principal ideals]" and I" on X" such that: ords*(r) ~ d - j + 1, 
I" has only quasinormal crossings, X" is an iterated monoidal 
transform of X with nonsingular irreducible centers, ~(X", X) C 
6*(]), (J1)X" = J"I", J(X r. X") = ]"(X r. X"), and 3(J") is 
the [X", X]-transform of 3(]). If 6*(J") = 0 then ords*(r>J" = 
- 00 and hence it suffices to take (X*,]*, 1*) = (X", ]", I"). 
So now assume that 6*(J") =1= 0. Since K/k is globally subre­
solvable, by (7.20) there exists a nonsingular model X' of K/k 
and nonzero principal ideals]' and l' on X' such that: l' has only 
quasinormal crossings, X' is an iterated monoidal transform 
of X" with nonsingular irreducible centers, ~(X', X") C 6*(J"), 
(J"I")X' = ]'1',]"(X" r. X') = ]'(X" r. X'), 3(J')isthe[X', X"]­
transform of 3(]"), ords*(J') ~ d - j + 1, and either ords*(J')]' ~ 
d - j or Cf*(6*(J'),]') is a nonempty unlooped closed subset 
of X'. Now X' is an iterated monoidal transform of X with non­
singular irreducible centers, ~(X', X) C 6*(]), and ](X r. X') = 
]'(X r. X'). By (6.5.2) we know that 6*(]) = 6(3(J» and 
6*(]") = 6*(3(J"»; consequently ~(X", X) does not pass through 
the generic point of any irreducible component of 3(]), and 
~(X', X") does not pass through the generic point of any irreducible 
component 3(J"); therefore by (6.2.18) we get that 3(]') is the 
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[X', X]-transform of 3(]). Hence if orde *(I')j'::::;; d - j then it 
suffices to take (X*, J*,I*) = (X', j',1'). So now assume that 
orde;*(J') j' = d - j + 1. Then <f*(6*(j'), j') is a nonempty 
unlooped closed sub set of X'. Since KJk is globally resolvable, 
there exists a finite global resolver [(Xi' Ji ,li' Ti)o';;'km , 
(X*, ]*,1*)] of KJk with (Xo , Jo, 10) = (X', j', 1'). Now 
orde;*(J*)J* ::::;; d - j, X* is an iterated monoidal transform of X 
with nonsingular irreducible centers, and (j1)X* = ]*1*. In 
view of (6.2.18), (6.9.1), and (6.9.4) we also get that !j(X*, X) C 
6*(j), J(X n X*) = ]*(X n X*), and 3(j*) is the [X*, X]­
transform of 3(j). 

This completes the induction on j. Upon taking j = d we find 
a nonsingular model X* of KJk and nonzero principal ideals ]* 
and 1* on X* such that: orde;*(J*) ::::;; 0, 1* has only quasinormal 
crossings, X* is an iterated monoidal transform of X with non­
singular irreducible centers, !j(X*, X) C 6*(]), (j1)X* = ]*1*, 
J(X n X*) = ]*(X n X*), and 3(j*) is the [X*, X]-transform 
of 3(j). Since orde;*(J*) ::::;; 0, we must have 6*(j*) = 0 and hence 
!j(X*, X) = 6*(]). 

(7.27). Assume that KJk is globally subresolvable, globally 
resolvable, and globally detachable. Let X be any nonsingular model 
of KJk and let J be any nonzero principal ideal on X. Then there 
exists a nonsingular model X' on KJk and nonzero principal ideals 
j' and l' on X' such that: X' is an iterated monoidal transform of X 
with nonsingular irreducible centers, !j(X', X) = 6*(J), JX' = 

J'I', J(X n X') = j'(X n X'), JX' is a nonzero principal ideal 
on X', JX' has only normal crossings, 3(jX') = [X', X]-1(3(]), 
3(jX') is a closed subset of X', 3(jX') has only normal crossings, 
6 *(j') = 0, 3(j') is the [X', X]-transform of 3(]), and 3(j') is 
nonsingular (note that by (6.4.6), (6.5.2), and (6.5.3) we know that 
3(j) is a closed sub set of X, 6*(]) = 6(3(j», 6*(j) is a closed 
subset of 3(]), and 6*(]) does not pass through the generic point 
of any irreducible component of 3(j». 

PROOF. Upon taking 1 = Ix in (7.26) we find a nonsingular 
model X* of KJk and nonzero principal ideals ]* and 1* on X* 
such that: 6*(j*) = 0, 1* has only quasi normal crossings, X* 
is an iterated monoidal transform of X with nonsingular irreducible 
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centers, ß=(X*, X) = 6*(]), IX* = 1*1*, I(X f"'I X*) = 
]*(X f"'I X*), and 3(J*) is the [X*, X]-transform of 3(]). By 
(6.4.4) we get that ]*1* is a nonzero principal ideal on X*, and 
clearly (J*1*, Ix.) has only quasinormal crossings. Since Klk 
is globally detachable, there exists a finite global detacher [(X" , I" , 
I", Ti)o.;;km, (X', ]",1")] of Klk with (Xo , 10,10) = (X*, 1*1*, 
Ix.). Now X* is an iterated monoidal transform of X with non­
singular irreducible centers, 6*(J") = 0, and IX' = ]"1" . 
In view of (6.2.5), (6.4.2), (6.4.4), and (6.5.2) we now get that IX' 
is a nonzero principal ideal on X', IX' has only normal crossings, 
3(JX') = [X', X]-1(3(]), 3(JX') is a closed subset of X', 
and 3(JX') has only normal crossings. Clearly 6*(J*1*) C 
[X*, X]-I (6*(]); so in view of (6.8) and (6.9.4) we get ß=(X', X) 
= 6*(]). Let [(J; , LDo';;km , (J', L')] be the unique system such 
that: I; and L~ are nonzero principal ideals on Xi for 0 ~ i < m, 
and]' andL' are nonzero principal ideals on X'; I~ = 1*; (Xi , I~) 
is the monoidaI' transform of (Xi-I, I~-I) with center T1.-I for 
o < i < m; (X',],) is the monoidal transform of (Xm- I , I:n-l) 
with center T m-l ; L~ = 1*; (Xi' LD is the monoidal transform 
of (Xi - I ,L~_'I) with center T i - I for 0 < i < m; and (X', L') is 
the monoidal transform of (Xm- I ,L:n-I) with center T m-I . Then 
clearly I" = I;L~ for 0 ~ i < m, and ]" = ]'L'. Since 6*(J*1*) C 
[X*, X]-1(6*(]), in view of (6.2.18), (6.9.1), and (6.9.4) we get 
that I(X f"'I X') = ]'(X f"'I X'), and 3(J') is the [X', X]-transform 
of 3(]). Since]" = j'L' and 6*(J") = 0, we get that 6*(J') = 0 
and hence by (6.5.2) we get that 3(J') is nonsingular. Let l' = 
L'I". Then by (6.4.4) we have that l' is a nonzero principal ideal 
on X', and clearly IX' = ]'1'. 

(7.28). Assume that Klk is globally subresolvable, globally 
resolvable, and globally detachable. Let X be any nonsingular model 
0/ Klk and let Z be any closed subset 0/ X such that either Z = X 
or Z is pure I-codimensional (note that the assumptions ab out Z are 
satisfied if Z is a surface in X, and they are also satisfied if dimkK ~ 
2 and Z is a curve in X). Then there exists a nonsingular model 
X' 0/ Klk such that: X' is an iterated monoidal trans/orm 0/ X with 
nonsingular i"educible centers, ß=(X', X) = 6(Z), [X', X]-I(Z) is 
a closed subset 0/ X', [X', X]-I(Z) has only normal crossings, and 
the [X', X]-trans/orm 0/ 3(J) is nonsingular (note that by (6.5.3) 
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we know that 6(Z) is a closed subset of Z, and clearly 6(Z) does 
not pass through the generic point of any irreducible component 
of Z). 

PROOF. If Z = X then it suffices to take X' = X. So now 
assurne that Z =1= X and let] = ~(Z, X). By (6.4.6) we have that 
] is a nonzero ideal on X and Z = 3(]). Clearly ] is principal, 
and hence our assertion follows from (7.27). 

§S. Global principalizers 

Assurne that dimkK ~ 3; note that then for any model X of Kjk, 
by (6.3.3) we have that dirn X = max dirn R ~ 3. Also assurne 

ReX 
that for every affine ring A over k with quotient field K and every 
ideal Q in A we have that 6(A, Q) is closed in m(A) (see (1.2.6». 
Note that for any nonzero ideal I on any model X of Kjk, by (6.4.6) 
and (6.4.7) we have that lI-I is a nonzero ideal on X and 3(1I-1) 

is a closed subset of X. 

(8.1). DEFINITION. By aglobai principalizer of Kjk we mean 
a sequence (Xi' I i , Yi , Zi' Ti)O~i<m where: (1) either m is a 
positive integer or m = 00; (2) for 0 ~ i < m: Xi is a model of Kjk, 
I" is a nonzero ideal on Xi' Yi is an open subset of Xi , and Zi 
and Ti are closed subsets of Xi, such that 6(Xi ) () Yi = (0 = 

6(Ti ) ('\ Yi , Ti C 3(Ili1) ('\ Zi' every irreducible component 
of 3(Ili1) having a nonempty intersection with Zi ('\ Yi is contain­
ed in Zi , and for every R E Ti () Yi , upon letting S be the generic 
point of the irreducible component of Ti passing through R, we 
have that SE (f(R, Il1:1) and: dirn S = 2<:> (f1(R, 1,;.11:1) has a 
strict normal crossing at Rand 'f1(R, Ilil ) =1= (0; and (3) for 
o < i < m: Xi is the monoidal transform of X i - l with center 
Ti-I' I i = li-lXi' Yi = [Xi' X i_1]-I(Yi_I), and Zi = 
[Xi' Xi_I]-I(Zi_I)' 

By an infinite global principalizer of Kjk we mean aglobai 
principalizer (Xi' Ii , Yi , Zi' T.';)O~'km of Kjk where m = 00 
and Ti ('\ Y t =1= (0 for infinitely many distinct values of i. 

By afinite global principalizer of Kjk we mean a system [(Xi' I" 
Yi , Zi' Ti)o':;i<m, (X', /', Y', Z')] where: m is a positive integer; 
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(Xi' Ii , Y i , Zi' Ti)O~i<m is aglobai principalizer of Kjk such 
that for 0 ::::;: i < m we have that Ti n Yi C <f*(Zi n Yi , IJ;l) 
and either Ti = 0 or Ti is irreducible and Ti n Y i =F 0; X' 
is a model of Kjk, l' is a nonzero ideal on X', Y' is an open subset 
of X', and Z' is a closed subset of X' such that 6(X') n Y' = 
o = 3(1'1'-1) n Z' n Y'; and X' is the monoidal transform of 
X m- l with center Tm-I, l' = Im_IX', Y' = [X', Xm_l]-I(Ym_I), 
and Z' = [X', Xm_I]-I(Zm_I)' 

Kjk is said to be globally principalizable if: given any model X 
of Kjk, any nonzero ideal I on X, any open subset Y of X with 
6(X) n Y = 0, and any closed sub set Z of X such that every 
irreducible component of 3(II-I) having a nonempty intersection 
with Zn Y is contained in Z, there exists a finite global principal­
izer [(Xi' I i , Yi , Zi , Ti)o';;i<m , (X', 1', Y', Z')] of Kjk such that 
(Xo ,10 , Yo , Zo) = (X, I, Y, Z). Kjk is said to be globally strongly 
principalizable if there does not exist any infinite global principalizer 
of Kjk. Kjk is said to be locally strongly principalizable if every 
regular spot over k with quotient field K is strongly principalizable. 

(8.2). Let X be a model 0/ Kjk, I a nonzero ideal on X, Y an 
open subset 0/ X with 6(X) n Y = 0, and Z a closed subset 0/ X 
such that every irreducible component 0/ 3(II-l) having a nonempty 
intersection with Z n Y is contained in Z. Then we have the /ollowing. 

(8.2.1). Assume that 3(II-l) n Zn Y =F 0. Then there exists 
an irreducible closed subset T 0/ X such that 6( T) n Y = 0, 
TC 3(II-I) n Z, ,0 =F T n Y C <f*(Z n Y, II-l), and, upon 
letting S be the generic point 0/ T, /or every R E T n Y we have 
that SE <f(R, II-l) and: dim S = 2 <0> <f2(R, II-I) has a strict 
normal crossing at Rand <f2(R, II-I) =F 0. 

(8.2.2). Assume that there does not exist any infinite global 
principalizer (Xi' I i , Y i , Zi' Ti)O~i<OCi 0/ Kjk such that (Xo , 10 , 

Yo , Zo) = (X, I, Y, Z). Then there exists a finite global principalizer 
[(Xi' Ii , Y i , Zi' Ti)O~i<m, (X', 1', Y', Z')] 0/ Kjk such that 
(Xo ,10 , Y o , Zo) = (X, I, Y, Z). 

PROOF OF (8.2.1). Now Zn Y is a nonempty closed subset 
of Y and hence by (6.5.4) we get that <f*(Z n Y, II-I) is a nonempty 
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closed subset of Z () Y; since -3(II-I) () Z () Y =1= 0, upon letting 
d = ordznyII-I we get that 0 < d < 00 and 1f*(Z () Y, II-I) C 
3(II-I), and hence by (6.4.9) we get that dirn R ~ 2 for an RE 
1f*(Z () Y, II-I). For any RE 1f*(Z () Y, II-I) and SE If(R, II-I) 
we have that SE 3(II-I) () Y; consequently there exists an irre­
ducible component Z' of 3(II-I) with SE Z'; now RE Z' () Z () Y 
and hence by assumption Z' C Z; therefore SE Z () Y and 
hence SE 1f*(Z () Y,II-I). Thus for every RE 1f*(Z () Y, II-I) we 
have If(R, II-I) = Iß(R) () 1f*(Z () Y, II-I). Let SI , ... , Sn (n > 0) 
be the generic points of the irreducible components of 1f*(Z () 
Y, II-I). If dirn Si =1= 2 for some i then dirn Si = 3, {Si} is a non­
singular irreducible closed subset of X, and If(Si' II-I) = {Si}' 
and hence it suffices to take T = {Si}' So now assurne that dirn 
Si = 2 for 1 ::::;; i ::::;; n. Then for each RE 1f*(Z () Y, 11-1) we 
have that 1f2(R, II-I) = Iß(R) () {SI' ... , Sn}. If there exists 
RE 1f*(Z () Y, II-I) such that Iß(R) () {SI' ... , Sn} does not have 
a strict normal crossing at R then dirn R = 3 and {R} is a non­
singular irreducible closed subset of X, and hence it suffices to 
take T = {R}. If Iß(R) () {SI' ... , Sn} has a strict normal crossing 
at R for an R E 1f*(Z () Y, II-I), then it suffices to take T = closure 
of {Si} in X for so me i. 

PROOF OF (8.2.2). Let W be the set of an global principalizers 
(Xi' I i , Y i , Zi' Ti)O~i<m of Klk such that (Xo , 10 , Yo , Zo) = 
(X, I, Y, Z) and 0 =1= Ti () Yi C 1f*(Zi () Yi , IJiI) and Ti is 
irreducible for 0 ~ i < m. If 3(II-I) () Zn Y = 0 then we 
get a finite global principalizer [(Xi' Ii , Yi , Zi' Ti)O~i<I' 
(X',1', Y', Z')] 0/ Klk of the required type by taking (Xo , 10 , 

Yo , Zo) = (X, I, Y, Z) = (X', 1', Y', Z') and To = 0. So now 
assurne that 3(II-I) n Z () Y =1= 0. Then there exists T as in 
(8.2.1) and we get an element (Xi' Ii , Y i , Zi' Ti)O~i<I in W by 
taking (Xo , 10 , Yo , Zo, To) = (X, I, Y, Z, T). Therefore W is 
nonempty. For each pair of elements w = (Xi' Ii , Yi , Zi' 
Ti)o~i<m and w' = (X; ,I; , Y; , Z~ ,T;)o~i<m, in W define: 
w ::::;; w' ~ m ::::;; m' and (Xi' I i , Y i , Zi' Ti) = (X; , I~, Y;, Z;, 
T;) for 0 ::::;; i < m. Then W becomes a partially ordered set having 
the Zorn property and hence by Zorn's lemma W contains a maximal 
element w = (Xi' I i , Y i , Zi' Ti)o~i<m' By assumption we 
must have m =1= 00. Let X' be the monoidal transform of X with 
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center Tm-I' let l' = Im_IX', let Y' = [X', X m_1]-I(Ym_1), and 
let Z' = [X', X m_1]-I(Zm_l)' Then by (6.4.11), (6.4.14), and (6.8), 
we have that X' is a model of K/k, l' is a nonzero ideal on X', Y' 
is an open subset of X' with 6(X') n Y' = 0, and Z' is a closed 
subset of X' such that every irreducible component of 3(/,/,-1) 
having a nonempty intersection with Z' n Y' is contained in Z'. 
Suppose if possible that 3(/,/,-1) n Z' n Y' =1= 0; then by (8.2.1) 
there exists an irreducible closed sub set T' of X' such that 6(T') n 
Y' = 0, T' C 3(/,/,-1) n Z', 0 =1= T' n Y' C (f*(Z' n Y',1'1'-I), 
and, upon letting 8 be the generic point of T', for every RE T' n Y' 
we have that 8 E (f(R, 1'1'-1) and: dirn 8 = 2 <=> (f2(R, 1'1'-1) 
has a strict normal crossing at Rand (f2(R, 1,/,-1) =1= 0; we now 
getanelementw' = (X; ,I~, Y; ,Z;, T;)o";i<m+1in Wwithw ~ w' 
and w =1= w' by taking (X;, I; , Y; , Z; , T;) = (Xi' I i , Y i , Zi , 
Ti) for 0 ~ i < m and (X;", I;", y;,., Z;,., T;") = (X',1', Y', 
Z', T'); this is a contradiction because w is a maximal element of 
W. Therefore 3(1'1'-1) n Z' n Y' = 0 and hence [(Xi' li' Y i , 
Zi' Ti)o<:'i<m, (X',1', Y', Z')] is a finite global principalizer of 
KJk with (Xo , 10 , Yo , Zo) = (X, I, Y, Z). 

(8.3). If K/k is globally strongly principalizable then K/k ts 
globally principalizable. 

PROOF. Follows from (8.2.2). 

(8.4). For any global principalizer (Xi' I i , Y i , Zi' Ti)O<:'i<<<> of 
KJk we have the following. 

a) 

(8.4.1). Given any nonnegative integer n and any REn Y i , 
i=n 

there exists an open subset D of Y n with RED such that D C Y i and 
D n Ti = 0 for all i ~ n. 

(8.4.2). Assume that there does not exist any infinite principalizer 
(Ri , Qi' 8i )0<:'i<<<> with Ro E 3(/0101) n Zo n Y o ' Then there 
exists a nonnegative integer m such that Ti n Y i = 0 for all i ~ m. 

PROOF OF (8.4.1). In view of (6.4.9) and (6.8) we 
have that 3{/li1) n Zi n Y" is a closed subset of Y i with 
codim 3(lJi1) n Z; n Y. ~ 2 and iY(Xi +1 , Xi) n Y. = Ti n Y i C 
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co 

Z(IJ;l) n Zi n Yi for 0 ::::;; i < 00. Since REn Yi , we get that 
i=n 

R 1= Ti for all i ~ n. For each i ~ n let Ci be the union of the 

irreducible components of 3(IJ;1) n Zi n Yi passing through R, 
let H i be the union of the remaining irreducible components of 
3(IJ;1) n Zi n Y i , let 

G,* = 6(G;) u {R' E Gi - 6(G;): S 1= <f(R', I/i l ) where S is the 

generic point of the irreducible component of 

3(I/i1) r-. Z; r-. Y i passing through R'}, 

and let Di = Y i - «C.,,* - {R}) u Hi ). Then RE Di , and in 
view of (6.5.5) we get that D i is an open sub set of Yi . For any 
open subset E of Yi with RE E, in view of (6.2.16) we get that: 

(3(/;1";1) r-. Zi r-. E r-. Di ) - {R} 

= {R' E (3(1;1";1) r-. Zi r-. E) - (6(3(IJ;1) r-. Zir-.E)u {R}): upon 

letting F be the irreducible component of 3(IJ;1) r-. Zi r-. E 

passing through R', and S be the generic point of F, we have 

that R EF, and SE <f(R', I/;l)}; 

let us refer to this observation as [i, E]. Since R 1= Ti' by [i, Yi ] 

we see that Di n Ti = 0, and hence IY(Xi+1' Xi) n Di = 0. 

Consequently Di C Yi+1 , Ii+lDi = IiDi , and Zi+1 n Di = Zi n 
Di • Therefore: 

(Ii+1T;11)Di = (I;F;l) Di and 

In view of (6.2.5) we have that Di is an open sub set of Yi+l , and 
hence by (li)' [i, Di ], and [i + 1, Di ] we get that: 

(3(IJ;1) r-. Zi n Di) - {R} 

= (3(/i+1Iil1) r-. Zi+l r-. Di r-. Di+l) - {R}. 
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also 

Dö C Yi and 

therefore 

By (2i ) and (3i) we get that Di C DH1 • Thus D, is an open subset 
of Y, with RED, and D" f"'I Ti = f2J for all i ~ n, and also Di C 
DH1 for all i ~ n. It suffices to take D = Dn . 

PROOF OF (8.4.2). In view of (6.4.2), (6.4.9), and (6.8), we 
have that (j(XH1 , Xi) f"'I Yi = Ti f"'I Yi and (j(X, , Xo) C 3(10101) f"'I 

Zo f"'I Yo for 0 ~ i < 00. Given any V E !Jt(Yo), let R~ be the center 
of V on Yi for 0 ~ i < 00, and let (a(j»o';;;j..;n be the unique 
sequence such that: either n is a nonnegative integer or n = 00; 

a(j) is a nonnegative integer for 0 ~ j < n; a(O) = 0; a(j - 1) < 
a(j) and R~{J-l> = R~ * R~{J) whenever 0 < j < n and a(j - 1) ~ 
i < a(j); if n * 00 then a(n) is a nonnegative integer and R~Cn) = ~ 
whenever a(n) ~ i < 00; and if n = 00 then a(n) = 00. For 
o ~ j < n, upon letting Rj = R~Cj) , we get that Rj E T a{J+1)-l ; 
let Sj be the generic point of the irreducible component of Ta{J+1)-l 
passing through Rj , and let Qj = l a(J+1)-lRj • Suppose if possible 
th~t n = 00; then (Rj , Qj ,Sj)o';;;j<a:J is an infinite principalizer; 
since (j(X" , Xo) C 3(10101) f"'I Zo f"'I Yo for 0 ~ i < 00, we get that 
Ro E 3(10101) f"'I Zo f"'I Yo; this contradicts our assumption. There­
fore n * 00. Let n(V) = n. Thus for each V E !Jt(Yo) we have 
found a nonnegative integer n( V) such that, upon letting R( V) 

<Xl 

be the center of V on Yncvj, we have that R(V) E () Y,. By 
i=n(V) 

(8.4.1) there exists an open sub set D(V) of YnCV) with R(V) E D(V) 
such that D(V) C Y, and D(V) f"'I Ti = f2J for all i ~ n(V). For 
each V E !Jt(Yo) we clearly have that V E [!Jt(Yo)' YnCv)]-l (D(V», 
and by (6.2.5) we get that [!Jt(Yo), YnCv)]-l(D(V» is an 
open subset of !Jt(Yo); now !Jt(Yo) is quasicompact by (6.2.13), 
and hence there exists a finite number of elements VI' ... , Vq in 
!Jt( Yo) such that 

Q 

!Jt(Yo) = U [!Jt(Yo), Y"(Vt,]-l(D(V/». 
i-I 
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Let m be any nonnegative integer such that m ~ n( Vi) for 1 ~ j ~ 
q. Then clearly Ti (l Yi = 0 for all i ~ m. 

(8.5). If Kjk is locally strongly principalizable then Kjk tS 

globally principalizable and globally strongly principalizable. 

PROOF. Follows from (8.3) and (8.4.2). 

(8.6). Assume that Kjk is globally principalizable. Let X be 
any nonsingular model of Kjk and let I be any nonzero ideal on X. 
Then there exists a nonsingular model X' of Kjk such that: X' is an 
iterated monoidal trans form of X with nonsingular irreducible centers, 
\y(X', X) = 3(II-l), and lX' is a nonzero principal ideal on X. 

PROOF. Since Kjk is globally principalizable, there exists a 
finite global principalizer [(Xi' I i , Yi , Zi , Ti)o";'i<m, (X', 1', 
V', Z')] of Kjk with (Xo , 10 , Yo , Zo) = (X, I, X, X). Now X' 
is a nonsingular model of Kjk, X' is an iterated monoidal transform 
of X with nonsingular irreducible centers, IX = 1', l' is a nonzero 
ideal on X', and 3(1,/,-1) = 0; therefore in view of (6.4.8) we 
get that lX' is a nonzero principal ideal on X'. By (6.4.2) we also 
get that \Y(X' , X) = 3(II-1). 

(8.7). Assume that Kjk is globally principalizable. Let X be 
any nonsingular projective model of Kjk and let X* be any projective 
model of Kjk. Then there exists a nonsingular projective model X' of 
K/k such that: X' is an iterated monoidal trans/orm 0/ X with non­
singular irreducible centers, \y(X', X) = \Y(X*, X), and X' dominates 
X*. 

PROOF. By (6.7.2) there exists a nonzero'ideal I on X such that 
W(X, I) = X + X*. By (8.6) there exists a nonsingular model 
X' of Kjk such that X' is an iterated monoidal transform of X with 
nonsingular irreducible centers, \y(X' , X) = 3(II-1), and lX' is a 
nonzero principal ideal on X'. By (6.7.1) and (6.7.2) it follows 
that X' is a projective model of Kjk, \y(X', X) = \Y(X*, X), and 
X' dominates X*. 

(8.8). Assume that Kjk is globally principalizable. Let X be 
any nonsingular projective model 0/ Kjk, and let Xl , ... , X lI be any 
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finite number 0/ complete models 0/ K/k. Then there exists a non­
singular projective model X' 0/ K/k such that: X' is an iterated 
monoidal trans/orm 0/ X with nonsingular irreducible centers, and X' 
dominates Xi /or 1 ~ i ~ n. 

PROOF. By (6.2.6) and (6.2.7) there exists a projective model 
X* of K/k such that X* dominates Xi for 1 ~ i ~ n. The assertion 
now follows from (8.7). 

(8.9). Assume that K/k is globally principalizable, and let X and 
X* be any projective models 0/ K/k such that X* dominates X. Then 
there exists a projective model X' 0/ K/k such that X' dominates X*, 
[X', X]-I(X ~ 6(X» C X' - 6(X'), and upon letting 

Z* = (1(X', X*) 11 ([X*, X]-1(6(X) 11 (1(X*, X») 

we have that Z* is a closed subset 0/ X* and Z* contains every 
irreducible component 0/ (1(X', X*) having a nonempty intersection 
with Z* - 6(X*) (note that by (6.7.3) we know that (1(X', X*) 
is a closed sub set of X*). 

PROOF. By (6.7.2) there exists a nonzero ideal I on X such that 
IDJ(X, I) = X*. Let Y = X - 6(X) and Z = X. By (6.5.3) we 
know that Y is an open sub set of X. Since K/ k is globally principaliz­
able, there exists a finite global principalizer [(Xi' 1i , Y i , Zi, 
Ti)o";;;i<m, (Xm , Im, Ym , Zm)] of K/k with (Xo , 10 , Yo , Zo) = 
(X, I, Y, Z). Let X' = X m + X*. Then by (6.2.7) and (6.7.1) 
we know that X m and X' are projective models of K/k. By (6.8) 
we also have that [Xm , X]-I(X - 6(X» C X m - 6(Xm). Now 
Zm = X m , Y m = [Xm , X]-I(X - 6(X», and 3(1m1;;;1) n Zm n 
Y m = 0; thereforeby(6.6.8)wegetthat ([Xm,X]-l(X - 6(X»)n 
(1(X*, X m) = 0; consequently [Xm , X]-I(X - 6(X» C X', and 
hence [Xm , X]-l(X - 6(X» C X' - 6(X'). By (6.5.3) and (6.7.3) 
we know that 6(X) and (1(X*, X) are closed subsets of X, and 
hence by (6.2.5) we get that Z* is a closed sub set of X*. Let G be 
any irreducible component of (1(X', X*) having a nonempty 
intersection with Z* - 6(X*), take R* E G n (Z* - 6(X*», 
and let S* be the generic point of G. We shall show that S* E Z* 
and this will complete the proof. By (6.5.3) we know that X* -
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6(X*) is an open subset of X*, and therefore S* E X* -
6(X*); since S* E !j(X', X*), we get that dirn S* ~ 2. If 
S* = R* then we have nothing to show. So assurne that S* =F R*. 
Then we rnust have dirn S* = 2 and dirn R* = 3. Let R = 
[X*, X](R*) and S = RRIlM(S*). Then SE !ll(R) C X and S* 
dorninates S. Therefore S = [X*, X](S*). Since S* E X* -
6(X*), we get that if SE 6(X) then SE !j(X*, X) and hence 
S* E Z*. So also assurne that SEX - 6(X); we shall show that 
this leads to a contradiction and that will cornplete the proof. 
Since R* E Z*, we get that RE 6(X); consequently S =F R, and 
hence dirn S ~ 2. Take any V E [9l(Kjk), X*]-I(S*), and let Si 
be the center of V on Xi for 0 ~ i ~ m. Then So = S E Y, and 
hence for 0 < i ~ m we have that Si is a regular local dornain, 
Si E Yi , Si dorninates Si-I, and dirn Si ~ dirnSi_l. Since dirn 
S ~ 2, we get that dirn Si ~ 2 for 0 ~ i ~ m. Now S* E 
!j(X', X*), and hence by (6.2.8) we get that S* E !j(Xm , X*); 
consequently S* does not dorninates Sm. Since S* dorninates 
So, there exists an integer n with 0 ~ n < m such that S* dornin­
ates Sn, and S* does not dorninate Sn+l. Then in particular 
Sn+l =F Sn and hence Sn E !j(Xn+l ,Xn). In view of (6.4.9), 
(6.6.8), and (6.8), we have that 3(InI;;I) n Yn is a closed subset 
of Y n with codirn 3(InI;;I) n Y n ~ 2, !j(Xn+l' X n) n Y n = 

Tn n Y n , and !j(X*, X n) = 3(InI;;I); consequently we get that 
Sn E Tn n Y n , codirn Tn n Y n ~ 2, Sn E !j(X*, X n), and 
S* =F Sn. Now Sn is a regular local dornain, dirn Sn ~ 2, S* 
dominates Sn, s* and Sn have the same quotient field, and 
dirn S* = 2; therefore we rnust have dirn Sn = 2. Consequently 
Sn is the generic point of the irreducible cornponent of T n passing 
through Sn, and hence Sn+l is the quadratic transform of Sn 
along V. Therefore by (0.3) we get that S* dorninates Sn+l. 
This is a contradiction. 

(8.10). Assume that Kjk is globally principalizable, and let 
Xl , ... , X n be any finite number oJ projective models oJ Kjk. Then there 
exists a projective model X' oJ Kjk such that Jor I ~ i ~ n we have 
that X' dominates Xi and [X', Xi]-I(Xi - 6(Xi» C X' - 6(X'). 

PROOF. The general case follows frorn the case of n = 2 by a 
straightforward induction. So assurne that n = 2. Let X = Xl + 
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X z • By (6.2.7) we know that Xis a projective model of KJk. Since 
X dominates Xl' by (8.9) there exists a projective model X* of 
KJ k such that X* dominates X, and 

(1) 

Now X* dominates X 2 , and hence again by (8.9) there exists a 
projective model X" of KJk such that X" dominates X*, 

(2) 

and upon letting 

we have that Z* is a closed sub set of X*, and Z* contains every 
irreducible component of ~(X", X*) having a nonempty inter­
section with Z* - 6(X*). Let y* = X* - 6(X*). By (6.5.3) 
we know that y* is an open sub set of X*. By (6.7.2) there exists 
a nonzero ideall* on X* such that W(X*,I*) = X", and then by 
(6.6.8) we have that lY(X", X*) = 3(1*1*-1). Since KJk is globally 
principalizable, there exists a finite global principalizer [(xt, Jt, 
Yt, zt, Tl)o""i<m, (X*',I*', Y*', Z*')] of KJk with (X;, I;, Y;, 
Z*) = (x* 1* Y* Z*) Clearly o ",. 

(4) lY(X*', X*) c Z*, 

and by (6.8) we have that 

(5) [X*', X*]-l(X* - 6(X*» C x*' - 6(X*'). 

Now 3(1*'1*'-1) n Z*' n y*' = 0, z*' = [X*', X*]-l(Z*), 
y*' = [X*', X*]-l(X* - 6(X*», and by (6.6.8) we have that 
lY(X", X*') = 3(1*'1*'-1); consequently 

(6) lY(X", X*') (") ([X*', X*]-l(Z* - 6(X*))) = 0. 

Let X' = X*' + X". Then by (6.2.7) and (6.7.1) we get that X' 
is a projective model of KJk. Given any R' E X' let R1 , R2 , R*, 
R", and R*' be the centers of R' on Xl' X 2 , X*, X", and x*' 
respectively. We shall show that if either R1 ~ 6(X1) or R2 ~ 6(X2) 

then R' ~ 6(X'), and this Wtl1 complete the proof. First suppose 
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that R 2 i 6(X2); then R* i Z* by (3), and hence R*' = R* by 
(4); also R" i 6(X") by (2); since X" dominates X*, we get that 
R" dominates R*, and hence R" dominates R*'; consequently 
R' = R" and R' i 6(X'). Next suppose that R 1 i 6(X1) and 
R* i !j(X", X*); then R* i 6(X*) by (1); since X" dominates 
X*, we get that R" = R*; also R* i Z* by (3), and hence R*' = 

R* by (4); thus R" = R*' = R* i 6(X*), and hence R' = R* 
and R' i 6(X'). Finally suppose that R 1 i 6(X1), R 2 E 6(X2), and 
R* E !j(X", X*); then R* i 6(X*) by (1), and hence in particular 
R* =I=- R 2 ; since X* dominates X 2 , we must have R 2 E !j(X*, X 2), 

and hence R* E Z* by (3); consequently R*' i 6(X*') by (5), 
and R*' dominates R" by (6); therefore R' = R*' and R' i 6(X'). 

(8.11). IJ Kjk is globally principalizable and unijormizable 
then there exists a nonsingular projective model oJ Kjk. 

PROOF. Follows from (6.10.2) and (8.10). 

§9. Main results 

In view of (5.2.1), by (6.3.2), (7.5), (7.12), (7.18), (7.25), (7.27), 
(7.28), (8.5), (8.6), (8.7), (8.8), and (8.11) we get the following. 

(9.1). Assume that k is pseudogeometric, dimkK ~ 3, and JOT 
every affine ring A over k with quotient field K and every ideal Q 
in A we have that 6(A, Q) is closed in ~(A) (see (1.2.6». Also assume 
that ij dimkK = 3 then the Jollowing three conditions are satisfied: 
(1) Jor every maximal ideal N in k we have that kjN is a perJect 
field having the same characteristic as k; (2) Jor every regular spot 
R over k with quotient field K and every nonzero principal prime 
ideal P in R we have that 6(R, P) is closed in ~(R); and (3) JOT 
every regular spot R over k with quotient field K and every ideal 
Q in R we have that 6(R*, QR*) = {S E ~(R*): RRnM(S) E 6(R, Q)} 
where R* is the completion oJ R (see (1.2.6». 

Then we have the Jollowing. 

(9.1.1). Kjk is locally strongly semiresolvable, globally semi­
resolvable, globally strongly semiresolvable, locally strongly detachable, 
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globally detachable, globally strongly detachable, locally strongly 
resolvable, globally resolvable, globally strongly resolvable, locally 
strongly principalizable, globally principalizable, and globally strongly 
principalizable. 

(9.1.2). Let X be any nonsingular model 0/ KJk and let] be any 
nonzero principal ideal on X. Then there exists a nonsingular model 
X' 0/ KJk and nonzero principal ideals]' and l' on X' such that: 
X' is an iterated monoidal trans/orm 0/ X with nonsingular z'rreducible 
centers, lY(X', X) = 6*(j), IX' = ]'I', ](X () X') = ]'(X () X'), 
]X' is a nonzero principal ideal on X', ]X' has only normal crossings, 
3(]X') = [X', X]-1(3(]», 3(]X') zs a closed subset 0/ X', 3(]X') 
has only normal crossings, 6*(]') = 0, 3(]') is the [X', X]­
trans/orm 0/ 3(]), and 3(]') is nonsingular (note that 3(j) is a 
closed subset of X, 6*(]) = 6(3(j), 6*(]) is a closed subset of 
3(j), and 6 *(]) does not pass through the generic point of any 
irreducible component of 3(j). 

(9.1.3). Let X be any nonsingular model 0/ KJk and let Z be 
any closed subset 0/ X such that either Z = X or Z is pure l-codi­
mensional (note that the assumptions ab out Z are satisfied if Z is a 
surface in X, and they are also satisfied if dimkK ~ 2 and Z is a 
curve in X). Then there exists a nonsingular model X' 0/ KJk such 
that: X' is an iterated monoidal trans/orm 0/ X with nonsingular 
irreducible centers, lY(X', X) = 6(Z), [X', X]-l(Z) is a closed 
subset 0/ X', [X', X]-1(Z) has only normal crossings, and the [X', X]­
trans/orm 0/ Z is nonsingular (note that 6(Z) is a closed subset of 
Z, and 6(Z) does not pass through the generic point of any irre­
ducible component of Z). 

(9.1.4). I/ X is any nonsingular model 0/ KJk and I is any 
nonzero ideal on X then there exists a nonsingular model X' 0/ KJk 
such that: X' is an iterated monoidal trans/orm 0/ X with nonsingular 
irreducible centers, lY(X', X) = 3(II-l), and IX' zs a nonzero 
principal ideal on X'. 

(9.1.5). I/ Xis any nonsingular projective model 0/ KJk and X* 
is any projective model 0/ KJk then there exists a nonsingular projective 
model X' of Kjk such that: X' is an iterated monoidal transform 0/ 
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X with nonsingular irreducible centers, 3(X', X) = 3(X*, X), and 
X' dominates X*. 

(9.1.6). If X is any nonsingular projective model of K/k and 
Xl' ... , X n are any finite number of complete models of K/k then 
there exists a nonsingular projective model X' of K/k such that: X' 
is an iterated monoidal trans form of X with nonsingular irreducible 
centers, and X' dominates Xi for 1 :::;; i :::;; n. 

(9.1.7). If K/k is uniJormizable then there exists a nonsingular 
projective model of K/k. 

In view of (5.3), by (9.1) we get the following. 

(9.2). Assume that: k is pseudogeometric; dimkK:::;; 2; for 
every maximal ideal N in k we have that kN is regular and kiN is a 
perfect field having the same characteristic as k; for every affine 
ring A over k with quotient field K and every ideal Q in A we have 
that 6(A, Q) is closed in !D(A); for every regular spot R over k with 
dirn R :::;; 3 and every nonzero principal prime ideal P in R we have 
that 6(R, P) is closed in !D(R); and for every regular spot R over k 
with dirn R :::;; 3 and every ideal Q in R we have that 6(R*, QR*) = 
{S E !D(R*): RRrlM(S) E 6(R, Q)} where R* is the completion of R 
(see (1.2.6». Then there exists a nonsingular projective model of 
K/k. Moreover, (9.1.1) to (9.1.6) hold for K/k. 

In view of (1.2.6) and (5.4), by (9.1) we get the following. 

(9.3). Assume that k is a complete local domain, dimkK:::;; 2, 
and k/M(k) is a perfect field having the same characteristic as k. 
Then there exists a nonsingular projective model of K/k. Moreover, 
(9.1.1) to (9.1.6) hold for K/k. 

Note that, in view of the alternative proof of (5.1) for the case 
when So is of zero characteristic given in §5, the proof of the above 
three results «9.1), (9.2), and (9.3» for the case when k is of zero 
characteristic has been made independent of the papers [5], [7], 
[8], and [9]. 

For the sake of completeness, in connection with (9.2) and (9.3) 
we note the following classical result. 
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(9.4). Assume that k is pseudogeometric and dimkK ~ 1. Then 
there exists a nonsingular projective model o! K/k. 

PROOF. We can take a finite number of nonzero elements 
Xl , .•• , Xn in K with Xl = 1 such that K is the quotient field of 
k[xl , .•. , Xn]. Let Ai = k[XI/Xi' ... , xn/xi] and let Bi be the integral 
closure of Ai in K. Then Bi is a finite Armodule for 1 ~ i ~ n, 
and hence upon letting X* = 5B(BI ) U ... U 5B(Bn ) we get that 
X* is anormal complete model of K/k (for instance see [4: Lemmas 
1.17 and 1.28]). By (6.3.2) we know that dirn X* ~ 1, and hence 
it follows that X* is nonsingular and X* = IR(K/k) (for instance 
see [27: §6 and §7 of Chapter V]). By (6.2.6) there exists a projective 
model X of K/k such that X dominates X*; since X* = IR(K/k), 
we must have X = X* (alternatively, we can use (9.1.7». 

(9.5). Arithmetic genus. Assurne that k is an algebraically 
closed field, and let n = dimkK. Given any projective model X 
of K/k, let hi(X) denote the vector space dimension over k of the 
ith cohomology group of X with coefficients in the structure 
sheaf. These groups have been defined by Serre in [22] where it 
is also shown that hi(X) is finite for all i. We define: 

p,,(X) = the arithmetic genus of X 

= hn(X) - hn-I(X) + ... + ( _l)n-W(X). 

Since Xis a projective model of K/k, there exists a finite number of 
elements Xl' ••• , X m in K with Xl 0:/= 0 such that X = W(k; Xl , ••• , 

Xm ). The classical definition of the arithmetic genus is relative to 
such a representation of X and is thus. Let Y, YI , ... , Y m be 
indeterminates, and let Yj = (Xj/xI)Y for 1 ~j ~ m; for each 
nonnegative integer q let A q = {O} U {u E k[YI , ... , Ym]: u = 

!(YI, ... , Ym) for some nonzero homogeneous polynomial !(YI , ... , 
Y m) of degree q in YI , ... , Y m with coefficients in k}, and let H(q) 
be the vector space dimension of Aq over k. Then by a theorem 
of Hilbert [28: §12 of Chapter VII] there exist unique integers 
Co , ••• , Cn such that 

H(q) = cn(~) + Cn-I(~-l) + ... + cIm + Co 

for all sufficiently large q. Classically the arithmetic genus of X, 
relative to the representation (or "embedding") X = W(k; Yt , ... , 
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Yn)' was defined to be (_l)n(co - 1). Serre [22] has shown this 
to be independent of the said representation by proving that 
actually (-I)n(co - 1) = Pa(X) (by the very definition, Pa(X) 
is independent of any such representation). 

Matsumura [17] has proved the following. 

(9.6). Assume that k is an algebraically closed field, and let 
X and X* be any nonsingular projective models oJ Kjk such that X* 
dominates X. Then hi(X) ~ hi(X*) Jor all i. IJ, moreover, there 
exists a nonsingular irreducible closed subset T oJ X with T 0:/= X 
such that X* is the monoidal transJorm oJ X with center T then 
hi( X) = hi( X*) Jor all i. 

In view of (9.1.5), by (9.6) we get the following. 

(9.7). Assume that k is an algebraically closed field and dimkK ~ 
3. Then Jor any two nonsingular projective models X and X* oJ 
Kjk we have that hi(X) = hi(X*) Jor all i, and hence in particular 
Pa(X) = Pa(X*). 

Once again note that in view of the alternative proof of (5.1) 
for the case when So is of zero characteristic given in §5, the proof 
of (9.7) for the case when k is of zero characteristic has been made 
independent of the papers [5], [7], [8], and [9]. 



CHAPTER 3 

Some Cases of Three-Dimensional Birational Resolution 

For any ideal Q in any loeal ring R sueh that Q is primary for 
M(R), by e(Q) we denote the multiplicity of Q; also by e(R) we 
denote the multiplicity of R, i.e., e(R) = e(M(R»; for definition 
see [28: page 294]; from the definition it follows that e(QR*) = 

e(Q) ~ e(R) = e(R*) where R* is the eompletion of R; note that 
by [28: Theorem 23 on page 296] we know that if R is regular 
then e(R) = ). 

§10. Uniformi~ation of points of small multiplicity 

The following result is due to Cohen [13: Theorem 8]; a proof 
is also given in [18: (30.6)]. 

(10.1). For any complete local rings Rand S such that S dominates 
R we have the following: If S is residually finite algebraic over R 
and M(R)S is primary for M(S) then S is a finite R-module. If S is 
residually rationalover Rand M(R)S = M(S) then R = S. 

(10.2). Let Rand S be analytically irreducible local domains 
such that S dominates R. Assume that there exists a subring T of S 
with R C T such that T is a finite R-module and S = T T,..,M(S) • 

Also assume that R is a subspace of S. Let R* and S* be the completion 
of Rand S respectively. Let K, L, K*, and L * be the quotient fields 
of R, S, R*, and S* respectively, where K* is identified with a 
subfield of L*. Then S* = R*[T], S* is a finite R*-module, and 
L* = K*(L). 

PROOF. Clearly R*[T] is a finite R*-module and henee by 
[28: Theorem ) 5 on page 276 and Corollary 2 on page 283] we get 
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that R*[T] is a complete local domain such that R*[T] dominates 
R* and M(R*[T]) = rad(M(R*)R*[T]). It follows that S* 
dominates R*[T]. In particular T (') M(R*[T]) = T (') M(S*) = 
T (') M(S) and hence R*[T] dominates S. Consequently S* is 
residually rational over R*[T] and M(R*[T])S* = M(S*). By 
(10.1) we now get that S* = R*[T]. Therefore S* is a finite 
R*-module and L* = K*(L). 

The following result is proved in [28: §7 of Chapter VII]. 

(10.3). 11 R is any spot over a field and S is any spot over R 
such that S dominates R then dirn R + trdegRS = dirn S + 
restrdegRS. 

The following result is due to Zariski and Nagata; a proof is 
given in [18: (37.5)]. 

(10.4). The completion 01 any normal spot over a field is a 
normal domain. 

The following result is a slight reformulation of [2: Lemma 13]. 

(l0.5). Let R be an analytically irreducible local domain, let 
R* be the completion 01 R, let K and K* be the quotient fields 01 R 
and R * respectively, let V be a quasilocal domain with quotient field 
K such that V dominates R, and let H be the smallest subring 01 K* 
such that H contains V and R*. Then M(V)H =F Hand there 
exists a valuation ring V* 01 K* such that V* dominates V and R*. 

PROOF. Suppose if possible that M(V)H = H. Then 1 = 
X:tYI + ... + XnYn where Xl' ••. , Xn are elements in M(V) and 
YI' ... , Yn are elements in R*. Since Rand V have the same quotient 
field, we can write Xi = Zi/Z where z, Zl' •.• , Zn are elements in 
R with Z =F O. Then Z = Z:tYI + ... + znYn E R (') (Zl , ••• , zn)R* 
= (Zl' ... , zn)R, and hence Z = zlrl + ... + Znrn with rl , ... , rn 
in R. Consequently 1 = xlrl + ... + xnrn E M(V) which is a 
contradiction. Therefore M(V)H =F Hand hence by the existence 
theorem of valuations there exists a valuation ring V* of K* 
such that H C V* and M(V)H C M(V*). Clearly then V* dominates 
Vand R*. 
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(10.6). (A form of ZST (= Zariski's Subspace Theorem». 
Let Rand S be local domains such that R is analytically irreducible, 
S is a spot over R, S dominates R, and the quotient fields of Rand S 
coincide. Then R is a subspace of S. 

PROOF. Let R* be the completion of R, and let K and K* be the 
quotient fields of Rand R* respectively. Then SC K C K*. By 
assumption there exists an affine ring A over R such that 
A is a sub ring of Sand S = AAf"'IM(S). Let B = R*[A]. 
Then B is an affine ring over R* and hence B is noetherian. Let 
H be the smallest subring of K* such that H contains Sand R*. 
By (10.5) we know that M(S)H =f= Hand hence there exists a 
prime ideal Q in H such that M(S)HCQ. Now B C Hand hence 
B (") Q is a prime ideal in B. Let T = BBf"'lQ. Then T is a 
local domain which dominates Sand R*. In particular 
a) 

n (R* (") M(T)i) = {O} and hence by ChevalIey's theorem 
\=0 
[28: Theorem 13 on page 270] there exists a sequence of non-
negative integers a(i) which tends to infinity with i such that 
R* (") M(T)i C M(R*)a(il for all i ~ O. Now for all i ~ 0 we have 
that R (") M(S)i C R (") M(T)i C R (") (R* (") M(TY) C R (") 
M(R*)a(il = M(R)a(i) , and hence R is a subspace of S. 

(10.7). (A form of ZMT (= Zariski's Main Theorem». 
Let Rand S be local domains such that R is analytically irreducible, 
S dominates R, dirn R = dirn S, S is residually finite alge.braic 
over R, and M(R)S is primary for M(S). Let R* and S* be the 
completions of Rand S respectively, and let f: R* -+ S* be the 
unique homomorphism such that f(M(R*» C M(S*) and f(x) = x 
for all x E R. Then f is a monomorphism (and hence R is a subspace 
of S by Chevalley's theorem [28: Theorem 13 on page 270]). If 
moreover R is normal and the quotient fields of Rand S coincide 
then R = S. 

PROOF. Now f(R*) is a complete local ring (see [18: (17.9)]), 
S* dominates f(R*), S* is residually finite algebraic over f(R*), 
and M(f(R*»S* is primary for M(S*). Therefore by (10.1) we get 
that S* is integral over f(R*) and hence dirn S* = dimf(R*) 
(see [4: Lemmas 1.20, 1.22, and 1.24]). Consequently dirn R* = 
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dimf(R*). Since R* is a domain, f must be a monomorphism. 
Now assurne that R is normal and the quotient fields of Rand 8 
coincide. Let K and K* be the quotient fields of Rand R* respectiv­
ely. Since R is normal, by [28: Theorem 8 on page 17] we get 
that R is the intersection of all valuations rings of K dominating R. 
Therefore it suffices to show that if V is any valuation ring of K 
dominating Rand z is any element in 8 then Z E V. Since K is the 
quotient field of R, we can write Z = xjy with x E Rand 0 -.:j::. y E R. 
Since Z E 8 C 8* and 8* is integral overf(R*), there exist elements 
Zl , ... , zn in R* such that zn + f(Zl)Zn-l + ... + f(zn) = O. 
Now f(xn + ZlYXn- 1 + ... + znyn) = yn(zn + f(Zl)Zn-l + ... + 
f(zn» = o. Since fis a monomorphism, we get that xn + ZtYxn-1 + 
... + ZnYn = 0, and hence zn + zlzn-l + ... + Zn = o. Therefore 
Z is integral over R*. By (10.5) there exists a valuation ring V* of 
K* such that V* dominates V and R*. Since V* is normal, R* C 
V*, and Z is integral over R*, we get that Z E V*. Now V = V* () 
K and hence Z E V. 

(10.8). (A form of ZMT). Let R be a normal spot over a 
field, let 8 be a loeal domain such that 8 dominates R, dirn R = 
dim 8, 8 is residually finite algebraie over R, M(R)8 is primary 
for R, and the quotient fields of Rand 8 eoincide. Then R = 8. 

PROOF. Follows from (10.4) and (10.7). 

(10.9). (A form of ZMT). Let Rand 8 be normal spots over a 
jield k such that 8 dominates R, trdegR8 = 0 = restrdegR8, and 
M(R)8 is primary for M(8). Then 8 = TT"M(S) where T is the 
integral closure of R in the quotient jield of 8. 

PROOF. Let 8' = TT"M(S). By (1.1.2) we know that T is a 
finite R-module, and hence in view of [4: Lemma 1.17] we get that 
8' is a normal spot over k. Also 8 dominates 8', 8 is residually 
finite algebraic over 8', M(8')8 is primary for M(8), the quotient 
fields of 8' and 8 coincide, and by (10.3) we get that dirn 8' = 
dirn 8. Therefore 8' = 8 by (10.8). 

(10.10). (A form of ZST). Let R be a normal spot over a field 
k, let T be the integral closure of R in a finite algebraie extension L 
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of the quotient field K of R, let P be a prime ideal in T with R ('\ P 
= M(R), and let S = Tp • Then; S is a normal spot over k, S domin­
ates R, dim R = dim S, S is residually finite algebraic over R, 
M(R)S is primary for M(S), the completion R* of R is anormal 
domain, the completion S* of S is anormal domain, R is a subspace 
of S, and upon identifying the quotient field K* of R* with a subfield 
of the quotient field L * of S* we have that S* = R*[T], S* is a 
finite R*-module, and L* = K*(L). 

PROOF. By (1.1.2) we know that T is a finite R-module, and 
hence in view of [4: Lemma 1.17] we get that S is a normal spot 
over k. Also S dominates R, and S is residually finite algebraic 
over R. By (10.3) we get that dirn R = dirn S . . In view of [4: 
Lemma 1.19] we also have that M(R)S is primary for M(S). 
By (10.4) we get that R* and S* are normal domains. Since R* 
is a domain, by (10.7) we get that R is a subspace of S. By (10.2) 
it now follows that s* = R*[T], s* is a finite R*-module, and 
L* = K*(L). 

The following result was proved in [3: Theorem 1]; a proof is 
also given in [28: Appendix 2]. 

(10.11). Let R be a local domain with quotient field K and let 
V be a valuation ring of K such that V:f=. K, V dominates R, and 
restrdegR V ~ (dirn R) - 1. Then restrdegR V = (dirn R) - 1, and 
Visa one-dimensional regular local domain. 

The following result is due to Zariski [24: Theorem 4] for the 
case of spots over a field, and the general case is due to Sakuma 
[20: Proposition 1]. 

(10.12). Let R be an n-dimensional local domaitl with n > 0, 
and let K be the quotient field of R. Then there exists a one-dimen­
sional regular local domain V with quotient field K such that V domi­
nates Rand restrdegR V = n - 1. 

PROOF. Now there exist elements Xl' ... , Xn in R such that 
(Xl' ... , xn)R is primary for M(R). Let A = R[Xl/xl , ... , xnlxl]. 
Then by (1.3.3) we get that M(R)A is a prime ideal in A and upon 
letting S = AMI RH we have that S is a one-dimensional local 
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domain, S dominates R, and restrdegRS = n - 1. Let T be the 
integral closure of S in K, and let V = T p for some maximal 
ideal P in T. By a theorem of Krull [18: (33.2)], V is a one-dimen­
sional regular local domain with quotient field K. Clearly V 
dominates Sand restrdegs V = O. Therefore V dominates Rand 
restrdegR V = n - 1. 

(10.13). (A form of ZST). Let Rand S be local domains such 
that R is analyticaUy irreducible, S dominates R, trdegRS < 00, 

and dirn R + trdegRS = dirn S + restrdegRS. Then R is a 
subspace 0/ S. 

PROOF. Let R* be the completion of R. Let K, K*, and L be 
the quotient fields of R, R*, and S respectively. If dirn R = 0 
then our assertion is trivial. So now assurne that dirn R > O. Then 
dirn S > 0 and hence by (10.12) there exists a one-dimensional 
regular local domain W with quotient field L such that W dominates 
Sand restrdegsW = (dirn S) - 1. Let V = K n W. Now W 
is the valuation ring of a valuation of L; consequently V is the 
valuation ring of a valuation of K, W dominates V, and V dominates 
R. In particular R n M(V) = M(R) =I=- {O} and hence M(V) =I=­

{O}; since W is the valuation ring of a discrete valuation of L, we 
get that V is the valuation ring of a discrete valuation of K and 
M(V)W = M(W)u where u is a positive integer, and then K n 
M(W)Ui = M(V)i for every non negative integer i. Since V is 
the valuation ring of a valuation of K, it follows that restrdegvW ~ 
trdegvW; now trdegvW = trdegRS, restrdegsW = (dirn S) - 1, 
restrdeg v W + restrdegR V = restrdegs W + restrdegRS, and by 
assumption dirn R + trdegRS = dirn S + restrdegRS; con­
sequently we get that restrdegR V ~ (dirn R) - 1. By (10.5) 
there exists a valuation ring V* of K* such that V* dominates 
V and R*. Since dirn R* = dirn Rand R* is residually rational 
over R, we get restrdegR* V* ~ (dirn R*) - 1. Therefore by 
(10.11) we get that V* is a one-dimensional regular local domain. In 

00 00 

particular n M(V*)i = {O} and hence n (R* n M(V*)i) = {O}. 
i=o i=O 

Consequently by Chevalley's theorem [28: Theorem 13 on page 
270] there exists a sequence of non negative integers a(i) which 
tends to infinity with i such that R* n M(V*)i C M(R*)a(i) for 
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every non negative integer i. For every nonnegative integer i 
we now have: R ("\ M(S)Ui C R ("\ M(W)Ui = R ("\ M(V)i eR ("\ 
M(V*)i eR ("\ (R* ("\ M(V*)i) C R ("\ M(R*)a(i) = M(R)a(i). Con­
sequently there exists a sequence of nonnegative integers b(t) 
which tends to infinity with i such that R ("\ M(S)i C M(R)b(i) 
for every nonnegative integer i. Therefore R is a subspace of S. 

(10.14). (A form of ZST). Let Rand S be spots over a field 
k such that R is analytically irreducible and S dominates R. Then 
R is a subspace 0/ S. 

PROOF. Follows from (10.3) and (10.13). 

(10.15). REMARK. (10.6) to (10.10), (10.13), and (10.14) are 
variations of [6: Propositions 14 to 17] which in turn were variations 
of the results given by Zariski in [26]. (10.11) to (10.14) will not 
be used in this monograph. It may be noted that by arecent 
result of Ratliff [19: Corollary 2.9], if S is a spot over an analytically 
irreducible local domain R then dirn R + trdegRS = dirn S + 
restrdegRS; by using this result, (10.6) becomes a corollary of 
(10.13); this observation will not be used in this monograph. 

(10.16). DEFINITION. Let R be anormal quasilocal domain 
with quotient field K, let T be the integral closure of R in a finite 
algebraic extension L of K, let PI' ... , Pm be the maximal ideals 
in T, and let Si be the quotient ring of T with respect to Pi ; 
then SI' ... , Sm are said to be the extensions of R toL. The following 
observation which follows from [4: §3] will be used tacitly in the 
rest of this section: (1) There exists at least one and at most 
finitely many maximal ideals in T, and for any prime ideal P in T 
we have that R ("\ P = M(R) if and only if P is a maximal ideal 
in T. (2) SI , ... , Sm are normal quasilocal domains with quotient 
field Land for 1.~ i ~ m we have that S" dominates Rand 
K ("\ S" = R. (3) If L' is any finite algebraic extension of Land 
Si ,I , ... , S",u(./,) are the extensions of Si to L' then the u(l) + ... + 
u(m) quasilocal domains S",; are all distinct and they are exactly 
all the extensions of R to L'. (4) If L is purely inseparable over K 
then m = 1 and SI is residually purely inseparable over R. 

Let R be anormal quasilocal domain with quotient field K and 
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let L be a finite algebraic extension of K. R is said to be unramified 
in L if for every extension S of R to L we have that S is residually 
separable algebraic over Rand M(R)S = M(S). By the inertial 
field of R in L we mean the compositum in K of all the subfields 
L1 of L with K C L1 such that R is unramified in L1 . 

Let R be a one-dimensional regular local domain with quotient 
field K, let L be a finite algebraic extension of K, and let S1 , ... , Sm 
be the extensions of R to L. The following result which follows 
from [27: §6, §7, and §8 of Chapter V] will be used tacitly in the 
rest of this section: (5) S1, ... , Sm are one-dimensional regular 
local domains and, upon letting W i be the unique positive integer 
such that M(R)Si = M(Si)W; and qi = [hi(Si) : hi(R)] where 
hi : Si -- SiJM(Si) is the canonical epimorphism, we have that 
q1W1 + ... + qmwm ~ [L : K]; moreover, if the integral closure 
of R in L is a finite R-module then q1w1 + ... + qmwm = [L : K] 
(note that if L is separable over K then the integral closure of R 
in L is a finite R-module). The positive integer wi is called the 
reduced ramification index of Si over R. R is said to be tamely 
ramified in L if for 1 ~ i ~ m we have that Si is residually separable 
algebraic over Rand Wi is not divisible by the characteristic of 
RJM(R). 

The following observation, which follows from (1.1.1), [27: 
Theorem 15 on page 276 and Corollary 2 on page 283], and 
[4: Lemmas 1.20, 1.22, and 1.24], will be used tacitly in the rest 
of this section: (6) If R is any complete local domain and S is the 
integral closure of R in a finite algebraic extension of the quotient 
field of R, then S is a finite R-module, S is a complete local domain, 
S dominates R, dirn R = dirn S, and M(R)S is primary for M(S). 

Letf(Z) be a nonconstant monic polynomial in an indeterminate 
Z with coefficients in a field K. Take elements Z1' ... , Zd in an 
overfield of K such that f(Z) = (Z - Z1) ... (Z - Zd). Let L = 
K(Z1' ... , Zd). Let Y1, ... , Ye be the distinct elements among the 
elements Z1 , ... , Zd . We define: 

b;(f(Z» = the norm of n (Yi - Yi) relative to the field 

extension L of K, 

where the product is over e(e - 1) term (note that by convention 
the product over an empty family is 1). 
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Note that then 

o =F b;(f(Z» = n (Yi - y;)[L:K] E K, 
i*; 

and bl(f(Z» depends only onf(Z) and K, and not on the elements 
YI , ... , Ye' The usual discriminant of feZ) is denoted by b(f(Z», 
i.e., 

b(f(Z» = n (Zi - z;) 
i*i 

where the product is over d(d - 1) terms. Note that then b(f(Z) E K 
and b(f(Z» depends only on feZ), and not on K or the elements 
ZI , ••• , Zd' Also note that for any normal quasilocal domain R' 
with quotient field K' such that K' is an overfield of K and feZ) E 

R'[ZJ, we have the following: (7) bl(f(Z» E R' and b({(Z» ER'; 
(8) if j'(Z) is any nonconstant monic polynomial in Z with coeffi­
cients in K' such thatj'(Z) dividesf(Z) in K'[ZJthenj'(Z)ER'[ZJ, 
j'(Z) divides feZ) in R'[ZJ, and b(f'(Z» divides b(f(Z» in R'; 
and (9) if Z is any element in an overfield of K' such that fez) = 0 
and Z is separable over K' then upon letting g(Z) be the minimal 
monic polynomial of Z over K' we have that g(Z) E R'[ZJ and 
b(g(Z» divides bl(f(Z» in R'. 

(10.17). Let R be anormal quasilocal domain with quotient 
jield K. Let fl(Z)' ... ,f.",(Z) be a finite number of nonconstant monie 
polynomials in an indeterminate Z with coefficients in R such that 
b(f,,(Z» ~ M(R) for 1 ~ i ~ n. Let r l , ••• , r.", be elements in an 
o'lJerjield 0/ K such that f,,(r1,) = 0 for 1 ~ i ~ n. Then R is un­
ramified in K(rl , ... , r.",). 

PROOF. We shall make induction on n. The assertion is trivial 
for n = 0 because then K(zl' ... , z.",) = K. So now let n > 0 and 
assume that the assertion is true for all values of n smaller than 
the given one. Let S be any extension of R to K(zi , ... , z.",) and 
let R' = Sn K(zl' ... , Z.",_I)' Then R' is an extension of R to 
K(zi , ... , Z.",_I), and S is an extension of R' to K(zi , ... , z.",). By 
the induction hypothesis, R is unramified in K(zi , ... , Z.",_I) and 
hence R' is residually separable algebraic over Rand M(R)R' = 
M(R'). Let g(Z) be the minimal monic polynomial of Zf/. over 
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K(zi , ... , Zn-I). Then b(g(Z» divides b (/n(Z»in R' and hence 
b(g(Z» rI M(R'); consequently by [4: Theorem 1.44] we get that S 
is residually separable algebraic over R' and M(R')S = M(S). 
Therefore S is residually separable algebraic over Rand M(R)S = 

M(8). Since 8 was an arbitrary extension of R to K(zl' ... , zn)' 
we conclude that R is unramified in K(zi , ... , zn). 

(10.18). Let R be anormal eomplete loeal domain with quotient 
field K, let 8 be the integral closure 0/ R in a finite algebraie extension 
L 0/ K, let h: S -- 8JM(S) be the eanonieal epimorphism, and let 
K' be theinertialfield 0/ RinL. ThenR is unramifiedinK', h(K' n S) 
is the maximal separable algebraie extension 0/ h( R) in h( 8), [K' : K] = 
[h(K' n S) : heR)], and there exists a primitive element s 0/ K' over 
K such that K' n 8 = R[s] and, upon letting g(Z) be the minimal 
monie polynomial 0/ s over K where Z is an indeterminate, we have 
that g(Z) E R[Z] and b(g(Z» rI M(R). 

PROOF. We can take s* E h(8) such that h(R)(s*) is the maximal 
separable algebraic extension of heR) in h(8), and then we can 
take a monic polynomial g(Z) in Z with coefficients in R such that 
upon applying h to the coefficients of g(Z} we get the minimal 
monic polynomial of s* over heR). By Hensel's lemma [28: Theorem 
17 on page 279] there exists SES such thatg(s) = 0 and h(s) = s*. 
Then [K(s) : K] = [h(R)(s*) : heR)], h(R[s]) = h(R)(s*), g(Z) is 
the minimal monic polynomial of s over K, and b(g(Z» rI M(R). 
Since b(g(Z» rI M(R), by [4: Proposition 1.43 and Theorem 1.44] 
we get that R is unramified in K(s), and R[s] is the integral closure 
of R in K(s). Let LI be any subfield of L with K C LI such that R is 
unramified in LI. We shall show that then LI C K(s) and this will 
complete the proof. Let SI be the integral closure of R in LI . 
Upon replacing 8 by SI in the above argument we find SI E SI 

such that R[sl] is the integral closure of R in K(sl), h(R[sID is the 
maximal separable algebraic extension of heR) in h(81), and 
b(gl(Z» rI M(R) where gl(Z) is the minimal monic polynomial 
of SI over K. Since R is unramified in LI , we get that 8 1 is residually 
rational over R[sl] and M(R[slJ)81 = M(SI). Consequently by 
(10.1) we get that R[sl] = 8 1 and hence LI = K(sl). Let S* be 
the integral closure of R[s] in K(s, SI). Now b(gl(Z» rI M(R[sJ) 
and hence by (10.17) we get that 8* is residually separable algebraic 
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over R[s] and M(R[s])S* = M(S*). Since h(R[s]) is the maximal 
separable algebraic extension of h(R) in h(S), we get that S* is 
residually rational over R[s]. Consequently by (10.1) we must 
have R[s] = S* and hence LI C K(s). 

(10.19). Let R be a complete local domain with quotient field 
K and let L be a finite algebraic extension of K. Assume that there 
exists a one-dimensional regular local domain H in m( R) such that H 
is tamely ramified in L. Then L is separable over K. 

PROOF. Let K' be the maximal separable algebraic extension 
of K in Land let H' be an extension of H to K'. Then H' is tamely 
ramified in L. Let H* be the integral closure of H' in L. Since L 
is purely inseparable over K', we get that H* is a one-dimensional 
regular local domain and H* is residually purely inseparable 
over H'. Since H' is tamely ramified in L, we conclude that H* 
is residually rational over H' and the reduced ramification index 
w of H* over H' is not divisible by the characteristic of K'. By 
(1.1.1) and (1.1.2) we know that H* is a finite H'-module, and 
hence [L: K'] = w. Therefore L = K'. 

The following two results «10.20) and (10.21» are slight varia­
tions of some results given in [I: §2]. 

(10.20). Let R be a d-dimensional regular local domain with 
d > 0, let K be the quotient field of R, let (YI' ... , Yd) be a basis 
of M(R), let ZI , ... , Zd be elements in an overfield of K such that 
Zi(i) = Yi for I :::::;; i :::::;; d where n(z) is a positive integer, let L = 
K(ZI , ... , Zd)' and let S be the integral closure of R in L. Then we 
have the following. 

(10.20.1). S is a finite R-module, S is a d-dimensional regular 
local domain, S = R[Zl' ... , Zd], M(S) = (Zl, ... , zd)S, S ,s re­
sidually rational over R, and [L : K] = n(l) ... n(d). 

(10.20.2). Let n be the least common multiple of n(I), ... , n(d). 
Assume that n is not divisible by the characteristic of K, and K 
contaz·ns a primitive nth root.. Z of n. Let L' be any subfield of L with 
K CL'. Then there exists a finite number of elements r I , ... , r m. 
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in L' such that L' = K(r1 , ... , r",) and rj = y~(l.il ... Yd(d.n for 
I :;(j :;( m where a(l,j), ... , a(d,j) are nonnegative integers. 

PROOF OF (10.20.1). By induction, the general case follows 
from the case when n(2) = ... = n(d) = 1. So assurne that 
n(2) = ... = n(d) = 1. Let R' = R[Zl]. Then R' is noetherian, 
R' is a finite R-module, and R' is integral over R. Since R' is 
integral over R, by [4: Lemmas 1.19 and 1.20] we get that there 
exists a maximal ideal in R' and if P is any maximal ideal in R' 
then P (\ R = M(R); now Zl E rad(M(R)R') C P and hence 
P = (M(R) U {zl})R' = (Zl 'Y2 , ... , Yd)R'. It follows that R' 
is a local domain, M(R') = (Zl 'Y2 , ... , Yd)R', and R' is residually 
rational over R. Since R' is integral over R, by [4: Lemmas 1.20, 
1.22, and 1.24] we get that dirn R' = dirn R = d and hence R' 
is regular. Consequently R' is normal and hence R' = S. Let H 
be the quotient ring of R with respect to y1R, let H* be an extension 
of H to L, and let w be the reduced ramification index of H* 
over H. Since L = K(Zl) and Z~(ll = Yl' we get that [L : K] :;( 
n(1) :;( wand hence [L : K] = n(1). 

PROOF OF (10.20.2). For I :;( i :;( d, by (10.20.1) we have that 
[K(Zi) : K] = n(i) and hence we get that: K(Zi) is a Galois exten­
sion of K, the Galois group Gi of K(zi) over K is a cyclic group 
of order n(i), and Gi has a generator g~ such that g~(Zi) = znjn(il Zi . 
Now L is the compositum of K(Zl), ... , K(Zd) in L, and by (10.20.1) 
we have that [L : KJ = n(1) ... n(d); consequently L is a Galois 
extension of K, the Galois group G of Lover K is abelian, and 
there exist elements gl' ... , gd in G such that: gi(Zi) = znjn(ilzi 
and gi(Zj) = Zj whenever I :;( i :;( d, I :;( j :;( d, and i =j=. j; and 
every element in G can be uniquely expressed as g~(1) ... g~(dl 
with 1:;( b(1) :;( n(1), ... , 1 :;( b(d) :;( n(d). Since G is abelian, 
it follows L' is the compositum in L of a finite number of Galois 
extensions of K with cyclic Galois groups. Consequently, without 
loss of generality, we may assurne that L' is a Galois extension of 
K and the Galois group G' of L' over K is cyclic. Since G' is 
isomorphie to a factor group of G, it follows that the order of G' 
divides n. Consequently there exists a nonzero primitive element 
x of L' over K such that xn E K, and then g(x)(x E K for all g E G. 
Since [L: K] = n(1) ... n(d), upon letting Q 0== {z~(1) ... Z~(dl: 



250 3. THREE-DIMENSIONAL BI RATIONAL RESOLUTION 

o ~ v(l) < n(I), ... , 0 ~ v(d) < n(d)}, we get that Q is a free 
K-basis of L. In particular 

x = L x(v(!), ... , v(d»zf(1) ... z:(/I) 

with x(v(I), ... , v(d» E K, where the sum is over 0 ~ v(l) < n(I), 
... , 0 ~ v(d) < n(d). Suppose if possible that there exist two 
d-tuples (u(I), ... , u(d» and (v(I), ... , v(d» such that u(j) =1= v(j) 
for some j and x(u(I), ... , u(d» =1= 0 =1= x(v(I), ... , v(d»; since Q 
is a free K-basis of L, we get that gj(x)/x rF K which is a contra­
diction. Therefore x = x' ~(l) ••• ~(d) where 0 =1= x' E K and 
a(l), ... , a(d) are integers with 0 ~ a(l) < n(l), ... , 0 ~ a(d) < 
n(d)' Let r = x/x'. Then L' = K(r) and r'" =)1(1) .. , y~(d). 

(10.21). Let R be a d-dimensional complete regular local domain 
with d > 0, let p be the characteristic oJ R/M(R), let (Yl' ... , Yd) 
be a basis oJ M(R), let H. be the quotient ring oJ R with respect to 
y,R, let K be the quotient field oJ R, let L be a finite algebraic exten­
sion oJ K, let Hu ' ... , H.,u(i) be the extensions oJ H" to L, and let 
w(i,j) be the reduced ramijication index oJ Hi.i over H,. Assume 
that every one-dimensional element in lß(R) - {H1 , ••• , Hd} is 
unramified in L, and Jor 1 ~ i ~ d and .. ~ j ~ U(I) we have that 
Hi.i is residually separable algebraic over H i and w(i,j) =t= 0 modp. 
Then we have the Jollowing. 

(10.21.1). There exilts a finite number oJ elements so, ... , Sm 
in an algebraic extension oJ L, a positive integer n with n :ji!l: 0 mod p, 
and nonnegative integers a(l,j), ... , a(d,j) Jor I ~j ~ m, such 
that: K(so, ... , sm) = L(so), si = y~(l.j) ... y~(d.j) Jor I ~j ~ m, 
K(so) contains a primitive nth root oJ 1, K(so) is the inertial field 
oJ R in L(so), and, upon letting g(Z) be the minimal monic polynomial 
oJ So over K where Z is an indeterminate, we have that g(Z) E R[Z] 
and b(g(Z» rF M(R). 

(10.21.2). Let K' be the inertial field oJ R in Land assume 
that L =1= K'. Then there exist elements So and s in an algebraic 
extension oJ L, a prime number q with q :ji!l: 0 mod p, and nonnegative 
integer a(1), ... , a(d), such that: s EL(so), [K(so, s) : K(so)] = q, 
[L: K'] = q[L(so> : K(so, s)], s'l = y~(1) ... ~(d). K(so) contains a 
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primitive qth root 011, K(so) is the inertial field 01 R in L(so), and, 
upon letting g( Z) be the minimal monie polynomial 01 So over K where 
Z is an indeterminate, we have that g(Z) E R[Z] and b(g(Z» if= M(R). 

PROOF OF (10.21.1). We can take a positive integer n such that 
n "$. 0 modp and n = 0 mod w(i,j) for I ~ i ~ d and I ~j ~ 
u(t). Then we can take elements Zo , ... , Ztt in an overfield of L such 
that Zo is a primitive nth root of I, and z~ = Yi for I ~ i ~ d. 
Let Z be an indeterminate and let 10(Z) = Zn - land li(Z) = 
Zn - Yi for 1 ~ i ~ d. Then li(Z) E R[Z] and li(zi) = 0 for 
o ~ i ~ d. Let L* = L(zo, ... , Ztt). By (10.18) there exists So EL* 
such that upon letting K' = K(so)' R' = R[so], and g(Z) = the 
minimal monic polynomial of So over K, we have that K' is the inertial 
field of R in L*, R' is the integral closure of R in K', g(Z) E R[Z], 
and b(g(Z» if= M(R). Now b(fo(Z» if= M(R) and hence by (10.17) 
we get that R is unramified in K(zo); consequently Zo E K' and 
hence upon letting K* = K'(Z1, ... , Ztt) we have that L* = 
L(so, Z1 , ... , Ztt) = K*(L). Now H1 is tamely ramified in Land 
hence by (10.19) we get that L is separable over K; therefore 
L* is separable over K*. Let R* and S* be the integral closures of 
R in K* and L * respectively. Then R* and S* are complete local 
domains and S* dominates R*; by (10.18) we know that S* is 
residually purely inseparable over R', and hence S* is residually 
purely inseparable over R*. By (10.18) we know that R is un­
ramified in K', and hence R' is a d-dimensional regular local 
domain and M(R') = (Y1' ... , Ytt)R'. Now by (10.20.1) we get 
that R* is a d-dimensional regular local domain and M(R*) = 

(Z1' ... , ztt)R*. Let Hf be the quotient ring of R* with respect 
to ZiR*. 

Let V* be any one-dimensional element in m(R*) and let W* be 
any extension of V* toL*. We claim thatthen: (I) W* is residually 
separable algebraic over V* and M(V*) W* = M(W*). To 
prove this let V = K n V* and W = L n W*; note that then 
V*, W*, V, Ware one-dimensional regular local domains with 
quotient fields K*, L*, K, L respectively, V* is an extension of 
V to K*, W* is an extension of W to L *, and W is an extension 
of V to L; in view of [4: Proposition 1.24B] we also have that 
V E m(R). First suppose that V* i= Hf for I ~ i ~ d; then 
V i= Hi for 1 ~ i ~ d and hence by assumption V is unramified 
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in L; consequently W is residually separable algebraic over V and 
M(V)W = M(W); also b(fdZ» f/= M(W) for 0 ~ i' ~ d and hence 
by (10.17) we get that W* is residually separable algebraic over 
Wand M(W)W* = M(W*); therefore W* is residually separable 
algebraic 'over V* and M(V*)W* = M(W*). Next suppose that 
V* = Hf for so me i with I ~ i ~ d; then V = Hi and hence 
W = Hi,j for some j with I ~j ~ u(t); we can take XE W such 
that xW = M(W), and then Yi = X'xw(i,j) where x' is a unit in 
W; let z = Z~/W(i·j)X-l and j(Z) = ZW(i.j) - x'; then Z EL*, 
f(Z) = 0, and b(f(Z» f/= M(W); also b(fi'(Z» f/= M(W) whenever 
o ~ i' ~ d and i' * i; consequently, upon letting L' = L(zo , ... , 
Z";-I' Z, Zi+l' ... , Zd), by (10.17) we get that W is unramified in 
L'; therefore, upon letting W' = L' n W* we get that W' is an 
extension of W to L', W' is residually separable algebraic over 
W,M(W') = xW', and W* is an extension of W' to L*; now 
L* = L'(Zi)' Zf/W(i.j) = ZX, and M(W') = (zx)W'; consequently 
by (10.20.1) we get that W* is residually rational over W' and 
M(W*) = ziW*; it follows that W* is residually separable algebraic 
over V* and M(V*)W* = M(W*). 

This completes the proof of (I). Thus we have shown that 
every one-dimensional element in ID(R*) is unramified in L*. 
Therefore by the Zariski-Nagata Purity Theorem [18: (41.1)], 
R* is unramified in L*. Since S* is residually purely inseparable 
over R*, it follows that S* is residually rational over R* and 
M(R*)S* = M(S*). Consequently by (10.1) we get that R* = S* 
and hence K* = L*. Thus, K' C L(so) C L* =- K'(ZI, ... , zri),' 
and hence by (10.20.2) there exist elements SI' ... , Sm in L(so) 
such that L(so) = K(so, ... , sm) and sj = y~(1,j) ... y~(d.j) for 
I ~j ~ m where a(l,j), ... , a(d,j) are nonnegative integers. 
Since K(so) is the inertial field of R in L*, it follows that K(so) 
is the inertial field of R in L(so). 

PROOF OF (10.21.2). Let so, ... , Sm, n, a(l, j), ... , a(d, j), and 
g(Z) be as in (10.21.1). By (10.18) we know that R is unramified 
in K' and hence K' C K(so)' Let R', S, R*, and S* be the integral 
c10sures of R in K', L, K(so), and L(so) respectively. Let h: S*­
S*/M(S*) be the canonical epimorphism. By (10.17) we have 
that R' and S are unramified in K(so) and L(so) respectively, and 
hence h(R*) and h(S*) are finite separable algebraic extensions of 
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heR') and h(S) respectively; by (10.18) we also have that h(S) and 
h(S*) are finite purely inseparable extensions of heR') and h(R*) 
respectively; therefore by [27: Corollary 2 on page 79] we get that 
[h(R*) : heR')] = [h(S*) : h(S)]. Since R' and S are unramified 
in K(so) andL(so) respectively, by (10.18) we get that [K(so) : K'] = 

[h(R*) : heR')] and [L(so) : L] = [h(S*) : h(S)]. Therefore [K(so) : 
K'] = [L(so) : L], and hence [L(so) : K(so)] = [L : K']. Byassump­
tion L i= K' and hence L(so) i= K(so). Consequently Sj 1= K(so) 
for some j with 1 ~ j ~ m. Let n' be the smallest positive integer 
such that sr!' E K(so) and n 0 mod n'. Then n' > 1 and hence 
there exists a prime number q such that n' -- 0 mod q. Note that 
then q =1= 0 mod p. Since K(so) contains a primitive nth root 
Zo of 1, it follows that K(so) contains a primitive qth root of 1. 
Let s' = sr!'lq, u = njn', and z = z~'. Then u $: 0 modp, z is a 
primitive uth root of 1 in K(so), s' EL(so), [K(so, s') : K(so)] = 
q, s'q E K(so), and (s,q)U = y~(1,j) ... ya(d,il. By (10.17) we know 
that R is unramified in K(so), and hence R* is a d-dimensional 
regular local domain with quotient field K(so) and M(R*) = 
(Yl' ... , Yd)R*. It follows that a(i,j) -- 0 mod u for 1 ~ i ~ d. 
Let Y = y~(1) ... y~(d) where a(i) = a(i,j)ju for 1 ~ i ~ d. Then 
(s,qy-1)U = 1 and hence s'qy-1 = ZV for so me integer v. Let 
s = s'(z~' jq)-v. Then s EL(so), sq = Y, [K(so, s): K(so)] = q, and 
[L : K'] = q[L(so) : K(so , s)]. 

(10.22). Let R be a d-dimensional regular local domain with 
d ~ 2. Let (Yl , ... , Yd) be a basis of M(R). Let V be a valuation ring 
of the quotient field K of R such that V dominates Rand there do 
not exist any positive integers n and n' such that y~jy~' is a unit in V. 
Let q be a positive integer. Then we have the following. 

(10.22.1). Assume that Y2jYl E V. Then there exists a sequence 
of d-dimensional regular local domains R o , ... , Rq with quotient 
field K, elements Y{ and Y: in Rq , and a two-dimensional element 
Si in m(Ri) having a simple point at R i for 0 ~ i < q, such that: 
Ro = R; R i +1 is a monoidal transform of (Ri , Si) for 0 ~ i < q; 
V dominates R,q ; JI;1(Rq) = (Y{, Yt, Y3 , ... , Yd)Rq ; and Yl = y{Uy:V 
and Y2 = Yt yf where u, v, u', v' are nonnegative integers such 
that u' :;?: q. 
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(10.22.2). Let a and b be nonnegative integers. Then there 
exists asequence 0/ d-dimensional regular local domains Ro , ... , Re 
with quotient field K, elements Y~ and Y~ in Re' and a two-dimen­
sional element Si in m(Ri) having a simple point at Ri /or 0 ~ i < e, 
such that: 0 ~ e < q; Ro = R; R;.+1 is a monoidal trans/orm 0/ 
(R, , Si) /or 0 ~ i < e; V dominates Re; M(Re) = (Y~ , Y~ , Y3 , ... , 
YIl)Re; and y~~ = (y~a*Yt)q(y;a'y~b') where a*, b*, a', b' are 
nonnegative integers such that a' + b' < q. 

PROOF. Clearly there exists a unique infinite sequence of pairs 
of nonzero elements (Xi' %1.)O ... i<oo in M(V) with (xo , %0) = 
(Yl, Y2) such that for 0 < i < 00 we have that: if %i-l!Xi-l E V then 
Xi - 1 = Xi and %1.-1 = Xi%i; and if %i-l!Xi-l1= V then Xi-l = Xi%' 
and %1.-1 = Xi . Let Ri be the quotient ring R[Xi , %.a with respect 
to M(V) () R[xi' %i]. Then Ro = R, and for 0 ~ i < 00 we have 
that: R;. is a d-dimensional regular local domain with quotient 
field K; V dominates R,; M(R;.) = (Xi' %i, Y3' ... , YIl)R,; and 
R;.+1 is a monoidal transform of (R, , Si) where Si is the quotient 
ring of Ri with respect to (Xi' %i)Ri . 

To prove (10.22.1) assume that Y2!Yl E V. Then Yl = X~UI%~(l) 
and Y2 = xr(1)%r U1 where u(l) = 1, v(l) = 0, u'(I) = 1, v'(I) = 
1. By induction on i we see that for 0 < i < 00: Yl = x~(i)%~(i) 
and Y2 = x1'(iI%r<il where u(,), v(i), u'(,), v'(,) are nonnegative 
integers such that u'(t) ~ i and v'(,) ~ 1. It now suffices to take 
Yt = xq , Y: = %q, ~i~ u(q), v = v(q), u' = u'(q), v' = v'(q). 

To prove (10.22,2) let nonnegative integers a and b be given. 
Let a(O) = a and b(O;) = b. Define integers a(,) and b(,) for 0 < i < 
00 by the following recurrence relations for 0 < i < 00: a(,) = 
a(i -1) + bei - 1); if %i-l!Xi-l E V then b(,) = bei - 1); and 
if %i-l!Xi-l f/ V then b(,) = a(i - 1). Let a*(,), b*(,), a'(,), b'(,) be 
the integers such that a(,) = a*(')q + a'(,), b(,) = b*(')q + b'(,), 
Q,~ a'(,) < q, 0 ~ b'(,) < q. By induction on i we see that for 
o ~ i < 00: y~y~ = (xf<il.ai*(iI)Q(x1'<il.ai'<il), and if a'(,) + b'(,) ~ q 
then a'(i + 1) + b'(i + 1) < a'(,) + b'(,). Since a'(O) + b'(O) ~ 
2q - 2, there exists an integer e with 0 ~ e < q such that a' (e) + 
b'(e) < q. It now suffices to take y~ = Xe ,y~ = %e' a* = a*(e), 
b* = b(e), a' = a'(e), b' = b'(e). 

(10.23). Let R be a d-dimensional regular local domain with 
d ~ 2. Let (Y1 , .•• , Yd) be a basis 0/ M(R). Let V be a valuation ring 
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of the quotient field K of R such that V dominates Rand there exist 
positive integers n and n' such that y~/y~' is a unit in V. Then there 
exists asequence of regular local domains Ro , ... , Re with quotient 
field K, an element y~ in Re, and a two-dimensional element Si in 
m(Ri) having a simple point at R;, for 0 ::s;; i < e, such that: eisa 
positive integer; Ro = R; d - 1 ::s;; dirn Re ::s;; d = dim Ri for 0 ::s;; 
i < e; RH1 is a monoidal transform of (Ri , Si) for 0 ::s;; i < e; V 
..1. R *'u d *,,, h d uommates e; Yl = YIY2 an Y2 = Y2Y2 w ere u an v are 
nonnegative integers and Yt and Yt are units in Re; if dirn Re = 

d - 1 then M(Re) = (y~ 'Y3' ... ,Ya,)Re ; and if dirn Re = d then 
M(Re) = (y~ ,y~ 'Y3 , ... , ya,)Re for some y~ E Re . 

PROOF. Now there exists a unique finite sequenee of pairs of 
nonzero elements (Xi' zi)o.-;;i<e in M(V) sueh that (xo , zo) = 

(Yl 'Y2)' e is a positive integer, xe- 1/Ye-l is a unit in V, and for 
o < i < e we have that: if Zi-l/Xi-l E V then Xi-l = Xi and Zi-l = 

XiZi; and if Zi-l/Xi-l f/= V then Xi-l = XiZi and Zi-l = Xi. For 
o ::s;; i < e let Ri be the quotient ring of R[Xi' zi] with respeet 
to M(V) (") R[Xi' Yi]. Then Ro = Rand for 0 < i < e we have 
that: Ri is a d-dimensional regular loeal domain with quotient 
field K; V dominates R i ; M(Ri) = (Xi' Zi 'Y3 , ... , ya,)Ri ; Ri is a 
monoidal transform of (Ri- 1, Si-I) where S';'-1 is the quotient ring 
of R t- 1 with respeet to (Xi-I' Zi-l)Ri - 1 ; and Yl = xf(iJ~(i) and 
Y2 = xr(i)~'(i) where a(t), b(t), a'(t), b'(t) are nonnegative integers. 
Let y~ = Xe-I' U = a(e - 1) + b(e - 1), v = a'(e - 1) + 
b'(e - 1), Yt = (Ze_l/Xe_l)b(e-ll, and Yt = (Ze_l/XtH)b'(e-l). Let 
Se-l be the quotient ring of Re- 1 with respeet to (Xe-I' ze-l)Re- 1 , 
and let Re be the quotient ring of Re-1[ze-l/Xe-l] with respeet to 
M(V) (") Re-1[ze-l/Xe-J. Then: Re is a regular loeal domain with 
quotient field K; d - 1 ::s;; dirn Re ::s;; d; V dominates Re; Re is a 
monoidal transform of (Re-I' Se-I); Yl = Yty~U, Y2 = Yty~", u 
and v are nonnegative integers, Yt and Yt are units in Re; if 
dirn Re = d - 1 then M(Re) = (y~ 'Y3 , ... , Ya,)Re ; and if dirn 
Re = d then M(Re) = (y~ ,y~ 'Y3' ... , Ya,)Re for some y~ E Re. 

(10.24). Let R be a d-dimensional regular local domain with 
d > O. Let (Yl , ... , Ya,) be a basis of M(R), let V be a valuation ring 
of the quotient field K of R such that V dominates R, let q be a prime 
number, let d' be an integer with 0 < d' ::s;; d, and let a(l), ... , a(d') 
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be nonnegative integers. Then there exists a sequence Ro ' ... , Re 
of regular local domains with quotient field K, an integer d* with 
o < d* ~ d', elements ZI' ... , Za* in Re' and a two-dimensional 
element Si in 5D(Ri) having a simple point at Rdor 0 ~ i < e, such 
that: eis a nonnegative integer; Ro = R; R H1 is a monoidal trans form 
of (Ri , Si)for 0 ~ i < e; V dominates Re ; dirn Re = d - d' + d*; 
M(Re) = (ZI' ... , Za* ,Ya'+! , ... , Ya)Re ; and 

Ya(1) ... ya(<!" = y*(zm(l) ... zmhi*')Q(za'(1' ... za'(d*') 
1 <!' 1 d* 1 d* 

where Y* is a unit in Re and m(1), ... , m(d*), a'(I), ... , a'(d*) are 
nonnegative integers such that a'(I) + ... + a'(d*) < q (note that 
if V is residually algebraic over R then dim Re = d, i.e., d* = d'). 

PROOF. Let w be the number of distinct integers i with 0 < i ~ 
d' such that a(t) ~ 0 mod q. We shall make induction on w. For 
w ~ I our assertion is trivial, and for w = 2 it follows from 
(10.22.2) and (10.23). So now let w > 2 and assurne that the 
assertion is true for all values of w smaller than the given one. 
Upon relabeling Yl' ... , Ya' we may assurne that a(t) =jE 0 mod q 
for i = I, 2, 3, and Ya/Y2 E V and Y2/Yl E V. If there exist positive 
integers n and n' such that y~/y~' is a unit in V then by (10.23) 
we get a reduction in w. So now suppose that there do not exist 
any positive integers n and n' such that y~/y~' is a unit in V. 
Then by (10.22.1) there exists a sequence of d-dimensional regular 
local domains Ro , ... , Rq with quotient field K, elements Yt and 
Y: in R q , and a two-dimensional element Si in 5D(Rt ) having a 
simple point at Ri for 0 ~ i < q, such that: Ro = R; RH] is a 
monoidal transform of Ri for 0 ~ i < q; V dominates Rq ; M(Rq) = 

u' v' 
(Yt ,y: ,Ya , ... , Ya)Rq ; and Yl = YtuYtv and Y2 = Yt Y: where 
u, v, u', v' are nonnegative integers such that u' ~ q. It follows 
that then Ya/Ytq E V and 

where a = a(l)u + a(2)u' and b = a(l)v + a(2)v'. Since q is a 
prime number, there exists an integer e' with q ~ e' < 2q s~ch 
that a + (e' - q)a(3) = 0 mod q. For q ~ i ~ e' let Xi = Ya/Yt-q. 
Then for q < i ~ e', upon letting Ri be the quotient ring of 
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Rq[xi] with respect to M(V) n Rq[xi], we get that: Ri is a d­
dimensional regular local domain with quotient field K; V dominates 
Ri ; M(Ri) = (y{, y;, Xi' Y4 , ... , Ya)Ri ; and Ri is a monoidal 
transform of (Ri- 1 , Si-I) where Si-1 is the quotient ring of Ri- 1 
with respect to (y{, Xi-1)Ri- 1 . Let a' = a + (e' - q)a(3) and 
Yt = Xe'· Then M(Re,) = (y{, y;, Yt, Y4, ... , Ya)R,,' , a'ls a 
non negative integer with a' 0 mod q, and 

Thus we have again obtained a reduction in w. 

(10+25)+ Let L be a function field over an infinite perfect field 
k of characteristic p, let d = trdegkL, and let V be a valuation ring 
of L with k C V such that V is residually algebraic over k. Assume 
that d > 0, and the following two conditions are satisfied. 

(*) If Xl' ... , Xa are any elements in M(V) which constitute a 
transcendence basis of Lover k, and t is any nonzero element in R 
where R is the quotient ring of k[x1 , ... , xa] with respect to M(V) n 
k[x1 , ... , xa], then there exists a regular spot R o over Rand a basis 
(Y1, ... , Ya) of M(Ro) such that: V dominates R o , the quotient 
field of R o is k(x1 , ... , xa), and t = t'y~(l) ... y~(a) where t' is a 
unit Ro and b(I), ... , b(d) are nonnegative in te gers (note that by 
(10.3) we have that dirn R = d = dirn Ro ; also M(R) = (Xl' ... , 
xa)R and hence R is regular). 

( * *) There exists a spot S over k with quotient field L such that 
V dominates Sand e(S)! =1= 0 modp. 

Then there exists a regular spot SI over S such that V dominates SI . 

PROOF. By [18: (25.9), (25.10), (25.12), (34.9), (40.6)] we have 
that if S is any spot over a field such that e( S) = 1 then S is 
regular. Therefore, assuming that condition (*) is satisfied, it 
suffices to show that if S is any spot over k with quotient field L 
such that V dominates S, e( S) > I, and e( S)! =1= 0 mod p, then 
there exists a spot SI over S such that V dominates SI and e( SI) < 
e(S). Let A be the integral closure of S inL, and let B = AAnM(V)' 

By (1.1.2) we know that A is a finite S-module, and hence B is a 
spot over S such that V dominates B. In view of (10.3), by [28: 
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Corollary 1 on page 299] we get that e(B) ~ e(S). Therefore. 
without loss of generality we may assurne that S is normal. Note 
that by (10.3) we have that dirn S = d. By [28: Theorem 22 on 
page 294] there exist elements Xl' •..• Xd in S such that (Xl' •..• XdJS 
is primary for M(S) and e«xi ••..• Xd)S) = e(S); by [28: Corollary 
I on page 293] we know that then (Xl' ...• Xd) is a transcendence 
basis of Lover k. Let R be the quotient ring of k[ Xl ••..• Xd] with 
respect to M(V) ('\ k[xl • ...• Xd]. and let K = k(xl • .•.• Xd). Then 
R is a regular local domain with quotient field K. dirn R = d. 
M(R) = (Xl' •••• Xd)R. S dominates R. S is residually finite 
algebraic over R. M(R)S is primary for S. and e(M(R)S) = e(S). 
By (10.9) we get that S = T TnM(S) where T is the integral closure 
of R in L. We can take elements r I •...• rn in T such that L = 
K(rl • •••• rn ). and then we can take nonconstant monic polynomials 
fl(Z)' ···,fn(Z) in an indeterminate Z with coefficients in R such 
that fi(ri) = 0 for 1 ~j ~ n. Let t = b1(!t(Z» ... b:Un(Z». 
Then 0 =1= t E Rand hence by assumption there exists a d-dimen­
sional regular local domain Ro with quotient field K and a basis 
(YI •...• Yd) of M(Ro) such that Ro is a spot over R. V dominates 
Ro • and t = t'y~(l) ... y~(d) where t' is a unit in Ro and b(I) • ...• 
b(d) are nonnegative integers. Let To be the integral closure of 
Ro in Land let So be the quotient ring of To with respect to 
To ('\ M(V). By (1.1.2) we know that To is a finite Ro-module. 
and hence So is a spot over Ro . It follows that So is a normal spot 
over k. So is a spot over S. and So dominates S. Let R*. Rt". S*. 
and St" be the completions of R. Ro • S. and So respectively. Then 
R* and R: are normal domains. and by (10.4) so are S* and St". 
Let K*. K:. L*. and Lt" be the quotient fields of R*. R:. S*. and 
S: respectively. By (10.6) and (10.10) we know that R. Ro • 
and S are subspaces of S*. and hence we may identify K*. Kt". 
and L * with subfields of Lt". Then in view of (10.10) we get that 
L* = K*(L).Lt" = K:(L). and S* and St" are theintegralclosures 
of R* and Rt" in L* and Lt" respectively. Also note that Rt" and 
S: dominate R* and S* respectively. 

Let K' and K~ be the inertial fields of R * and Rt" in L * and Lt" 
respectively. By (10.18) there exist primitive elements s' and s~ 
of K' and K~ over K* and Kt" respectively. such that. upon letting 
g'(Z) and g~(Z) be the minimal monic polynomials of s' and s~ 
over K* and K: respectively. we have g'(Z) E R*[Z]. b(g'(Z» fI 
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M(R*), g~(Z) E Rt[Z] , and b(g~(Z» '# M(Rt). Since b(g'(Z» '# 
M(R*), we have b(g'(Z» '# M(Rt) and so by (10.17) we get that 
Rt is unramified in Kt( s'); conseq uently Kt( s') C K~ and hence 
K' C K~; since Lt = Kt(L), Kt C K~ C Lt, and L C L* C Lt, 
we get that Lt = K~(L*); therefore [Lt: K~] :::;; [L* : K']. Let 
h: S* -- S*/M(S*) be the canonical epimorphism. By (10.18) 
we know that h( S* () K') is the maximal separable algebraic 
extension of h(R*) in h(S*) and [K' : K*] = [h(S* () K') : h(R*)]; 
since by assumption k is perfect, we conclude that [K' : K*] = 
[h(S*) : h(R*)]; by [28: Corollary 1 on page 299] we know that 
e(M(R*))[L* : K*] = e(M(R*)S*)[h(S*) : h(R*)]; since e(M(R*» 
= 1 and e(M(R*)S*) = e(M(R)S) = e(S), we get that e(S) = 
[L* : K']. Therefore [Lt: K~] :::;; e(S), and hence [Lt: K~]! ~ 
o mod p. Let H i be the quotient ring of R: with respect to YtRt for 
1 :::;; i :::;; d. Since b(g~(Z») '# M(Rt), we get that b(g~(Z» "# 0 and 
hence by (10.17) we get that K~ is separable over Kt; since 
[L: : K~]! ~ 0 mod p, we conclude that Lt is separable over Kt; 
consequently, upon letting f;(Z) be the minimal monic polynomial 
of 'i over Kt, we get that b(f;(Z» E Rt and b(f;(Z» divides 
b-:(!J(Z» in Rt for I:::;; j :::;; n; since b-:(fl(Z»'" b-:(fn(Z» = 
t'~(1) ... y~(d), we conclude that b(f;(Z» = ti~(1·j) ... y~(d.i) for 
I :::;;j :::;; n where ti is a unit in Rt and b(l,j), ... , b(d,j) are non­
negative integers; since Lt = Kt(L) and L = K('l' ... , 'n), we 
get that Lt = Kt('l' ... , Tn ) and hence by (10.17) it follows that 
every one-dimensional element in m(Rt) - {H1 , ... , Hd} is un­
ramified in Lt. Let H •. i , ... , H.,u(i) be the extensions of H, to 
Lt, and let w(i,j) be the reduced ramification index of Hi •i over 
Hi • Now b(g~(Z» '# M(Hi ) and hence by (10.17) we get that Hi 
is unramified in K~ for 1 :::;; i :::;; d; since [Lt : K~]! ~ 0 modp, 
we conclude that Hi,i is residually separable algebraic over Hi 

and w(i,j) ~ 0 modp for 1 :::;; i :::;; d and I :::;;j :::;; u(t). Let R~ 
be the integral closure of Rt in K~; by (10.18) we know that 
Rt is unramified in K~ ; consequently R~ is regular and hence 
e(M(R~» = 1; by [28: Corollary 1 on page 299] we know that 
e(M(R~)S:) :::;; e(M(R~))[L: : K~]; now e(So) = e(St) :::;; e(M(R~)St) 
and hence e(So) :::;; [L: : K~]. Therefore if L: = K~ then it suffices 
to take SI = So . So assume that L: "# K~ . 

Now by (10.21.2) there exist elements $0 and $ in an algebraic 
closure L:* of Lt, a prime number q with q ~ 0 modp, and 
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nonnegative integers a(l), ... , a(d), such that: I ELt(lo), [Lt : K~] 
= q[Lt(lo) : Kt(lo' I)], s'l = y~(1) ... ydldl, and upon lettingg(Z) 
be the minimal monic polynomial of ' 0 over Kt we have that 
g(Z) E Rt[Z] and b(g(Z) ~ M(Rt). Since [Lt: K~] ~ e(S), we 
get that [Lt(lo): Kt(lo , I)] ~ e(S)jq. By (10.24) there exists a 
d-dimensional regular spot RIover Ro and a basis (Zl, ... , Zd) 
of M(R1) such that V dominates R1 and 

where y* is a unit in R1 , and m(l), ... , m(d), a'(I), ... , a'(d) are 
nonnegative integers such that a'(I) + ... + a'(d) < q. Let Tl 
be the integral closure of R1 in Land let SI be the quotient ring of 
Tl with respect to Tl n M(V). By (1.1.2) we know that Tl is a 
finite R1-module, and hence SI is a spot over R1 • It follows that 
SI is a normal spot over k, SI is a spot over So , and SI dominate 
So . Let Rr and Sr be the completions of R1 and SI respectively. 
Then Rr is anormal domain, and by (10.4) so is Sr. Let Kr and 
Lr be the quotient fields of Rr and Sr respectively. By (10.6) and 
(10.10) we know that Ro , R1 , and So are subspaces of SI , and hence 
we may identify Kt andLt with subfie1ds ofLt. Then Rt dominates 
Rt, and in view of (10.10) we get thatLt = Kt(Lt) and st is the 
integral closure of Rt in Lr. Let Lt* be an algebraic closure of 
Lt. We can then identify Lt* with a subfie1d of Lt*. Now [Lt(so) : 
Kt(so , I)] ~ [Lt(IO) : Kt(IO , s)] and hence [Lr(so): Kt(IO , I)] ~ 
e(S)/q. Let E, P, and G be the integral closures of Rt in Kl(lo), 
Kt(IO ' I), and Lr(lo) respectively. Since b(g(Z) ~ M(Rt) and Rt 
dominates Rt, we get that b(g(Z) ~ M(Rt); consequently by 
(10.17) we have that Rt is unramified in Kt(IO); therefore Eis a 
d-dimensional regular 10cal domain and M(E) = (Zl, ... , zd)E. 
Let x = I(Zr'(1) ... z:fldl)-l. Then x'l E E and ord~ < q. Also 
Kt(x) = Kt(l) and hence [Lt(lo) : Kt(lo, x)] ~ e(S)jq. Since 
b(g(Z) ~ M(Rt), we get that b(g(Z) ~ M(St); consequently by 
(10.17) we know that Sr is unramified in Lt(IO); hence M(St)G = 
M(G) and in view of (10.18) we get that [Lr(lo) : Ln = [h*(G) : 
h*(St)] where h* : G -+- GjM(G) is the canonical epimorphism; 
by [28: Corollary 1 on page 299] we know that e(M(Sr))[Lt(lo) : 
Ln = e(M(St)G)[h*(G) : h*(St)]; therefore e(St) = e(G) and 
hence e( SI) = e( G). By [28: Corollary 1 on page 299] we also 
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have that e(G) ~ e(F)[Lt(so) : Kt(so ,X)]; sinee [Lt(sO) Kt(sO' 
x)] ~ e(S)/q, we get that e(G) ~ (e(F)/q)e(S). Thus e(Sl) ~ 
(e(F)/q)e(S); we shall show that e(F) < q and this will eomplete 
the proof. 

For a moment suppose that xq is a unit in E; then b(Zq - ~) rj: 
M(E) and henee by (10.17) we get that Eis unramified in Kt(so, x); 
eonsequently F is regular and henee e(F) = 1; sinee q is a prime 
number, we thus get that e(F) < q. So now assurne that xq is a 
nonunit in E. Then 0 < ordE~ < q. Sinee e(M(E» = I, by 
[28: Corollary I on page 299] we get that e(F) ~ [Kt(so' x) : 
Kt(so)]. Henee if [Kt(so , x) : Kt(so)] < q then we have nothing 
more to show. So also assurne that [Kt(so , x) : Kt(so)] ~ q. Then 
Zq - ~ is the minimal monie polynomial of x over Kt(so). Let 
F' = E[x]. ThenF' is a loeal domain with quotient field Kt(so, x), 
and Fis a finite F'-module; henee onee again by [28: Corollary I 
on page 299] we get that e(F) ~ e(F'). Therefore it suffiees to 
show that e(F') < q. In view of Cohen's strueture theorem [28: 
Corollary on page 307] we may identify E with the formal power 
series ring k'[[Zl, ... , Zd]] in indeterminates Zl' ... , Zd over a 
field k'. Let E' = k'[[Zl' ... , Zd' Z]] and E* = k'[[Zl , ... , ZdJ][z]. 
Sinee Zq - ~ is the minimal mo nie polynomial of x over K 1*(so), 
we get that F' is isomorphie to E*/(Zq - xq)E*; by Weirstrass 
Preparation Theorem [28: Theorem 5 on page 139] we also know 
that E*/(Zq - ~)E* is isomorphie to E'/(Zq - ~)E'; now E' 
is a regular loeal domain and henee by [18: (40.2)] we get that 
e(E'/(Zq - ~)E') = ordE,(Zq - xq); sinee ordE~ < q, we also 
get that orddZq - ~) = ordExq < q. Therefore e(F') < q. 

§11. Three-dimensional birational resolution 
over a ground field of characteristic zero 

By (5.2.3), (9.1.7), and (10.25) we get the following. 

(11.1). Let k be an infinite per/eet field 0/ characteristie p and 
let K be a /unetion field over k with trdegkK ~ 3. Assume that 
given any valuation ring V 0/ K with k C V such that V is residually 
algebraie over k, there exists a spot S over k with quotient field K 
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such that V dominates Sand e(S)! =I=- 0 modp. Then there exists 
a nonsingular projective model 0/ K/k. 

By (11.1) we get the following. 

(11.2). Let k be a field 0/ characteristic zero and let K he a 
function field over kwith trdegkK ~ 3. Then there exists a non­
singular projective model 0/ K/k. 

Note that, in view of the alternative proof of (5.1) for the case 
when So is of zero characteristic given in §5, the proof of (11.2) 
has been made independent of the papers [5], [7], [8], and [9]. 

§12. Existence of projective models having only 
points of small multiplicity 

In accordance with the usual notation for field extensions, the 
dimension of a vector space Lover a field K is denoted by [L : K]. 

(12.1). Homogeneous domains. By a homogeneous domain A 
we mean a domain A together with a family (An)o,,;;;n<<o of additive 
subgroups of A such that: the underlying additive group of Ais the 
direct sum of the family (An)o,,;;;n<co ; {xy: x E Am, Y E A .. } e Am+ .. 
for all m and n; Ao is a fieldj A = Ao[AI]j and 0 < [Al: Ao] < 00. 

Note that then A is noetherian and 0 < [An: Ao] < 00 for all n. 
We define: r(A) = [Al: A o]. 

An ideal Q in A is said to be homogeneous if the following two 
equivalent conditions are satisfied: (I) L r n E {l with 

O~f1,<c() 

r .. E A .. for all n (where rn = 0 for all sufficiently large n) => 

rn EQ for all nj (2) Q = JA for some Je U An. Note that 
O,,;;;n<ao 

A1A is the only homogeneous maximal ideal in A and it cöntains 
eve~ nonunit hömogeneous ideal in A. Also note that for any 
homogeneous ideal Q in A with Q i= A we have that: rad Q = 
A1A <=> An e Q for some n > O<=> An e Q for all sufficiently 
large n. Recall that by a minimal prime ideal of any ideal Q in any 
ring E we mean a prime ideal P in E with Q e P such that there 
does not exist any prime ideal P' in E for which Q e P' e P and 
P' *- P. Note that by [28: Corollary on page 154] we know that 
if Q is any homogeneous ideal in Athen all the associated prime 
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ideals of Q in Aare homogeneous; in particular, all the minimal 
prime ideals of Q in Aare homogeneous and hence rad Q is 
homogeneous. For any homogeneous ideals land Q in A we 
define: u(I, Q) = the number of minimal prime ideals P of Q in A 
such that P =1= AIA and I cf- P; note that then u(A, Q) = 0 <=> 
radQ = A or AIA. 

For any nonmaximal homogeneous prime ideal P in A we set: 
(AIP)n = f(An) for all n where f: A ~ AlP is the canonical epi­
morphism; note that then AlP becomes a homogeneous domain. 
By a homogeneous subdomain of A we mean a homogeneous domain 
B such that B is a subring of A, Bo = Ao, and Bn = B ("\ An 
for all n > O. For any subring B of A of the form B = Ao[LJ for 
some nonzero Ao-subspace L of Al we set: Bn = B ("\ An for an 
n; note that then B becomes a homogeneous subdomain of A, 
and this gives a one-to-one correspondence between homogeneous 
subdomains of A and nonzero Ao-subspaces of Al' For any positive 
integer d we define: A~d) = Adn for an n, and A(tl) = the direct 
sum of (A~tl)o,;;;n<oo ; note that then A(tl) is a homogeneous domain 
and it is a subring of A (but not a homogeneous subdomain of A 
unless d = I, and then A(l) = A). 

We define: st(A) = U {xly: x E An, 0 =1= y E An}. Note 
O~n<aJ 

that then: st(A) is a subfield of the quotient field of A; st(A) = 
Ao({xlY: x E An}) for all n > 0 and 0 =1= Y E An; st(A) is a function 
field over Ao ; and st(A) = st(A(tl) for an d > O. We define: 
t(A) = the transcendence degree of st(A) over Ao . Note that then 
t(A) + 1 = the transcendence degree of the quotient field of A 
over Ao • Also note that for any homogeneous subdomain B of A 
we have that st(A) is a function field over st(B) and 0 ::::;; t(A) -
t(B) ::::;; t(A) - t(B). We define: W(A) = W(Ao, Al)' Note that 
then W(A) is a projective model of st(A)/Ao , and W(A) = W(Ao, 
An) = W(A(tl) for an n > 0 and d > O. For any nonmaximal 
homogeneous prime ideal P in A we define: 9l(A, P) = U {xjy: 

O~n<CX) 

x E An, y E An - P}. Note that then 9l(A, {O}) = st(A). 
Concerning these notions we have the following. 

(12.1.1). Let P be any nonmaximal homogeneous prime ideal 
in A. Then st(A, P) is a quasiloeal domain with quotient field S\(A), 
and M(9l(A, P» = U {xjy: x E An ("\ P, y E An - P}. 

O<n<<<> 
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(12.1.2). Given any nonmaximal homogeneous prime ideal P in A 
and z E Al - P, let P' = U {x/zn: X E An n P}. Then P' is a 

O~n<oo 

prime ideal in Ao[Alz-l], \R(A, P) = (Ao[Alz-l])p' , and An n P = 
{x E An: x/zn E M(\R(A, P))} for all n. If 1 is any subset of U An 

O!(n<co 

such that P = IA then U {x/zn: X E An n I} is a basis of P'. 
O.:(n<oo 

(12.1.3). Given any 0 i= z E Al and RE m(Ao[Alz-l]), let 
P = { L rn: rn E An and rn/ zn E M( R) for all n, and rn = 0 for 

O~n<co 

all sufficiently large n}. Then Pis a nonmaximal homogeneous prime 
ideal in A, z i P, and \R(A, P) = R. 

(12.1.4). P -- \R(A, P) is a one-to-one inclusion-reversing map 
of the set of all nonmaximal homogeneous prime ideals in A onto 
W(A). 

The proofs of (12.1.1), (12.1.2), and (12.1.3) are straightforward. 
(12.1.4) follows frorn (12.1.2) and (12.1.3). 

(12.1.5). For any Ao-subspace L of Al with [L : A ol = t(A) - 1 
and any 0 i= z E Al - L, the following three conditions are equival­
ent: (1) rad(LA) = AIA; (2) there exists a positive integer q and 
rn E An n (Ao[L]) for 1 ~ n ~ q such that zq + rlzq- l + ... + 
rq = 0; (3) there exz'sts a positive integer q and Sn E AofoT 1 ~ n ~ q 
such that ~ + Sl~-l + ... + ~ E LA. 

PROOF. First suppose that (1) holds; then there exists a positive 
integer q such that zq E LA; since zq E LA, we can write 

with t i E Land Yu E A; , 

whete d and e are integers with d ~ 1 and e ~ q - 1; since 
~ E A q and A is the direct surn of (An)o,,;;n<co , we get that 

d 

zq = L t;y; 
i~l 

where Yi = Yi.q-l E Aq_ 1 ; 
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sinee [L : Ao] = r(A) - 1, we get that 

q 

Y · = "x. zq-n 
1 l.J t.n 

n=1 

d 

Tn = - L tiXi,n E An 1"'1 (Ao[LD 
i=1 

for 1 ~ n ~ q; 

thus (1) implies (2). Next suppose that (2) holds; sinee rn E Ao[L], 
there exists Sn E A o sueh that rn - Sn E LA for 1 ~ n ~ q, and then 
z'l + slz'l-l + ... + Sq E LA; thus (2) implies (3). Finally suppose 
that (3) holds; now z'l E A q and snz'l-n E A q_n for 1 ~ n ~ q; 
sinee LA is a homogeneous ideal in A, we must have zq ELA; 
sinee [L: A o] = r(A) - 1, we eonclude that rad(LA) = AIA; 
thus (3) implies (1). 

(12.1.6). Let WI be the set 0/ all Ao-subspaces L 0/ Al such 
that [L : A o] = r(A) - 1. Let W be the set 0/ all L E WI such that 
LA is a nonmaximal homogeneous prime ideal in A. Let W' be the 
set 0/ all LEW such that LA is not contained in any homogeneous 
prime ideal in A other than LA and AIA. Let W" be the set 0/ all 
L E WI such that rad(LA) -=1= AIA. Let W* be the set 0/ all RE W(A) 
such that R is residually rationalover A o . Then W' = W = W", 
and L -- \R(A, LA) is a one-to-one map 0/ W onto W*. 

PROOF. Clearly W' ewe W". Conversely let any LEW" be 
given; sinee L -=1= Al' we ean take 0 -=1= z E Al - L; let h: A-­
AJ(LA) be the eanonieal epimorphism; sinee [L : Ao] = r(A) - 1, 
we get that h(A) = h(Ao)[h(z)]; also Ao () (LA) = {O} and henee 
h(Ao) is isomorphie to the field Ao; by (12.1.5) we know that if 
soZq + SIz'l-1 + ... + Sq E LA for so me positive integer q and so me 
elements so' ... , Sq in Ao then neeessarily So = 0; eonsequently 
h(A) is isomorphie to the ring of polynomials in one indeterminate 
with eoeffieients in the field h(Ao); it follows that LEW'. Thus 
W' = W = W". By (12.1.2) we get that \R(A, LA) E W* for all 
L E W.HLI andL2 are any two elements in W sueh that \R(A, LIA) = 
\R(A, L 2A) then by (12.1.4) we would get thatLIA = L 2A and henee 
LI = L 2 • Finally, let any RE W* be given; we ean then take a 
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free Ao-basis (Xl' ... , Xv ,z) of Al' where v = r(A) - 1, such 
that R E m(Ao[Alz-I]); clearly Ao[Alz-l] = AO[xl/z, ... , xv/z]; since 
R is residually rational over Ao , there exists ti E Ao sua,h that 
(xJz) - ti E M(R) for 1 ~ i ~ v; let Yi = Xi - zti and let L be 
the Ao-subspace of Al generated by YI' ... , Yv; then [L : A o] = 

r(A) - 1, Ao[Alz-l] = AO[YI/Z, ... , Yv/z], and Yi/Z E M(R) for 
1 ~ i ~ v; let P = { L rn: rnEAn and rn/zn E M(R) for all 

O~n<oo 

n, and rn = 0 for all sufficiently large n}; then by (12.1.3) we know 
that P is a nonmaximal homogeneous prime ideal in A and 
9{(A, P) = P; clearly LA C P and henceL E W"; since W' = W = 

W", we conclude that LA = P and LEW. 

(12.1.7). Given any positive integer d and any homogeneous 
ideal Q in A(d), let W' = {R E W(A(dl): R = 9{(A(d), P') for some 
nonmaximal homogeneous prime ideal P' in A(dl with Q C P'}, and 
let W* = {R E W(A): R = 9{(A, P*) for some non maximal homo ge­
neous prime ideal p* in A with QA C P*}. Then W' = W*, and 
U(A(d), Q) = u(A, QA). 

PROOF. Given any R E W(A(d) = W(A), let P' and p* be the 
unique (see (12.1.4» non maximal homogeneous prime ideals in 
A(dl and A respectively such that 9{(Ald), P') = R = 9t(A, P*); 
we can take 0 =F z E Al such that RE m(Ao[Alz-I]); then 0 =F 
Zd E A~dl and Ao[Alz-l] = A~d)[Aid)(Zd>-I]; consequently by 
(12.1.3) we get that P' n A~d) = {rn E A~): rn/zdn E M(R)} and 
p* n An = {Sn E An: Sn/zn E M(R)} for all n; it follows that 
Q C P' <0> QA C P*. This shows that W' = W*. Let W~ = 

{R E W': R rf. S for all SE W' with S =F R} and wt = {R E W*: 
R rf. S for all SE W* with S =F R}. By (12.1.4) we get that u(A(dl, 
Q) = the number of elements in W~ ,and u(A, QA) = the number 
of elements in Wt. Since W' = W*, we get that W~ = wt and 
hence U(A(d), Q) = u(A, QA). 

(12.1.8). Let E be any noetherian domain, let D be any affine 
ring over R, and let I be any nonzero ideal in D. Then there exists 
a nonzero ideal ] in E such that for every ideal Q in E, upon letting 
v be the number of minimal prime ideals P of Q in E with ] rf. P and 
u be the number of minimal prime ideals P' of Q D in D with I rf. P', 
we have that u ? v. 
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PROOF. By a straightforward induction, the general case follows 
from the case when D = E[x] for some XE D. So assume that 
D = E[x] for some XE D. 

First suppose that x is transcendental over the quotient field 
of D. Since I is nonzero, there exists a nonnegative integer a and 
elements TO ' ••• , Ta in E with Ta -::/= 0 such that TO + T1X + ... + 
TaXa E I. Take ] = T aE. Given any ideal Q in E, let PI' ... , Pv 
(v ~ 0) be those minimal prime ideals of Q in E which do not 
contain J. Let P~ = PiD for 1 ~ i ~ v. Let hi: E --+ E/Pi be the 
canonical epimorphism; since x is transcendental over the quotient 
field of E, there exists a unique epimorphism h; : D --+ (E/Pi)[Z], 
where Z is an indeterminate, such that h~(y) = hi(y) for all y E E 
and hXx) = Z; now (E/Pi)[Z] is a domain and clearly h;-I(O) = 
P~ ; therefore P~ is a prime ideal in D and E n P~ = Pi ; now 
h;(TO + T1X + ... + TaXa) = hi(To) + hkl)Z + ... + hi(Ta)za, 
and, since T aE = ] cf- Pi' we get that hi(T a) -::/= 0; consequently 
h;(To + T1X + ... + TaXa) -::/= 0 and hence TO + T1X + ... + TaXa rf= 

P~ ; therefore I cf- P~ . If p* is any prime ideal in D with QD C 
p* C P~ then E n p* is a prime ideal in E and Q C (E n (QD)) C 
(E n P*) C (E n PD = Pi' and hence E n p* = Pi; conse­
quently P; C p* and hence p* = P~ . Thus P~ , ... , P; are minimal 
prime ideals of QD in D, and I cf- P; for 1 ~ i ~ v; since E n P; = 
Pi' we also get that P~ , ... , P; are distinct. 

Next suppose that x is algebraic over the quotient field of E. 
Then there exists a positive integer q and elements z, Zl' ... , Zq 

in E with Z =F 0 such that zxq + ZIXq- 1 + ... + Zq = O. Let 
S = E[l/z] and R = D[l/z]. Then R is integral over Sand IR 
is a nonzero ideal in R; consequently Sn (IR) -::/= 0 (see [4: 
Lemma 1.23]) and hence there exists 0 -::/= SES n (IR); we can 
take a nonnegative integer b such that upon letting t = ZbS we 
have that 0 -::/= tEE n I (alternatively, take 0 -::/= y EI; since x is 
algebraic over the quotient field L of E, we have that y is algebraic 
over L; let toZe + tlZe- 1 + ... + te be the minimal monic poly­
nomial of y over L where Z is an indeterminate and to = l; since 
y -::/= 0, we must have te -::/= 0; since L is the quotient field of E, 
there exists 0 -::/= t' E E such that t'tj E E for 0 ~j ~ e; upon 
letting t = t'te we now get that 0 -::/= t = -(t'toye-l + ... + t'te_l)y 
E E n I). Take] = (zt)E. Given any ideal Q in E, let PI , ... , Pv 
(v ~ 0) be those minimal prime ideals of Q in E which do not 
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contain J. Note that then t f/: Pi and z f/: Pi for 1 ~ i ~ v. Let 
H = {zi: 0 ~j < oo}. Then S is the quotient ring of E with 
respect to H, and H () Pi = 0 for 1 ~ i ~ v; consequently 
PIS, ... , PvS are distinct minimal prime ideals of QS in S; also 
E () (PiS) = Pi , tEE, t f/: Pi' and tEE () I C S () (IR); con­
sequently S () (IR) rf. PiS for I ~ i ~ v. Since R is integral over 
S, by [4: Lemma 1.20] there exist prime ideals P~, ... , P; in R such 
that S () P; = PiS for I ~ i ~ v. Since PIS, ... , PvS are distinct 
and S () (IR) rf. PiS for I ~ i ~ v, we get that P~, ... , P; are 
distinct and I rf. P; for I ~ i ~ v. If p* is any prime Beal in R 
with QR C p* C P;, then S () p* is a prime ideal in Sand QS C 
(S () (QR» C (S () P*) C (S () P;) = PiS, and hence S () p* = 
S () P;; since R is integral over S, by [4: Lemma 1.24] we then 
get that p* = P;. Thus P~, ... , P; are distinct minimal prime 
ideals of QR in Rand I rf. P; for 1 ~ i ~ v; let P~ = D () P; 
for 1 ~ i ~ v; now R is the quotient ring of D with respect to H, 
and hence we conclude that P~ , ... , P~ are distinct minimal prime 
ideals of QD in D, and I rf. P~ for 1 ~ i ~ v. 

(12.1.9). Let I be any nonzero homogeneous ideal in A and let 
B be any homogeneous subdomain of A. Then there exists a nonzero 
homogeneous ideal ] in B such that for eVerY homogeneous ideal Q in 
B we have that u(I, QA) ~ u(], Q). 

PROOF. Take 0 =1= x E BI. Let D = Ao[A1z-l] and E = 
Bo[B1z-l]. For every homogeneous ideal Q in A let f(Q) = 

U {x/zn: X E An () Q}; then f(Q) is an ideal in D. For every 
O~n<1X) 

ideal Q' in D let 1'(Q') = { L r n: rn E An and rn/zn E Q' for all 
O';;n<co 

n, and rn = 0 for all sufficiently large n}; then 1'(Q') is a 
homogeneous ideal in A. Concerning the maps fand l' we note the 
following: if Q is any homogeneous ideal in Athen: Q = {O} <:> 

f(Q) = {O}; if Q* C Q are any homogeneous ideals in Athen 
/(Q*) Cf(Q); if Q is any homogeneous ideal in Athen Q C1'(f(Q»; 
if Q is any homogeneous prime ideal in A with z f/: Q then /(Q) 
is a prime ideal in D and Q = 1'(f(Q»; if Q' is any ideal in D then 
Q' = f(f'(Q'»; if Q'* C Q' are any ideals in D then1'(Q'*) C1'(Q'); 
if Q' is any prime ideal in D then 1'(Q') is a prim~ ideal in A and 
z f/=1'(Q'). Let g and g' be the maps which correspond to fand l' 
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when in the above definitions we replace A and D by Band E 
respectively; then g and g' enjoy the corresponding properties; 
also note that for every homogeneous ideal Q in B we have that 
g(Q)D = /(QA). 

Now /(1) is a nonzero ideal in D, and hence by (12.1.8) there 
exists a nonzero ideal ]' in E such that for every ideal Q' in E, 
upon letting v be the number of minimal prime ideals of Q' in 
E which do not contain ]' and u be the nu mb er of minimal 
prime ideals of Q' D in D which do not contain /(1), we have that 
u ~ v. Let J* = g'(]'). Then J* is a nonzero homogeneous ideal 
in B. Take] = zJ*. Then ] is a nonzero homogeneous ideal 
in B. Given any homogeneous ideal Q in B, let v = u(], Q) and 
let QI , ... , Qv be the minimal prime ideals of Q in B such that 
Qi =F BIB and ] ct Qi for 1 ~ i ~ v. Since ] ct Qi we get that 
z f/: Qi for 1 ~ i ~ v. It follows that g(QI), ... , g(Qv) are distinct 
minimal prime ideals of g(Q) in E, and ]' ct g(Qi) for I ~ i ~ v. 
Therefore there exist distinct minimal prime ideals P~, ... , P~ 
of g(Q)D in D such that /(1) ct P~ for 1 ~ i ~ v. Let Pi = f'(P~) 
for 1 ~ i ~ v. Then PI' ... , Pv are distinctminimal prime ideals 
of QA in A, and z f/: Pi and 1 ct Pi for I ~ i ~ v. Since z f/: Pi, 
we get that Pi =F AIA for 1 ~ i ~ v. It follows that u(1, QA) ~ v, 
i.e., u(1, QA) ~ u(], Q). 

Finally we note the following. 

(12.1.10). 1/ r(A) = 1 then t(A) = O. Conversely, if t(A) = 0 
and A o is algebraieally closed then r(A) = 1. 

PROOF. Obviously, if r(A) = 1 then t(A) = O. Now assume 
that t(A) = 0 and A o is algebraically c1osed. Take 0 =F y E Al . 
Then A o = .R(A) = Ao({xjy: x E Al}) and hence xjy E A o for 
all XE A o . Therefore [Al: Aol = 1, i.e., r(A) = 1. 

(12.2). Hilbert polynomial 0/ a loeal ring. By [28: §8, §9, 
and §1O of Chapter VIII] we know that: given any local ring R, 
there exists a unique polynomial, to be denoted by Sj(R, Z), in an 
indeterminate Z with rational coefficients such that 

n-l 

Sj(R, n) = L [M(R);jM(R)i+1 : R/M(R)] 
;=0 
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for all sufficiently large n; moreover, upon letting t = dirn R, 
we have that t = degree of $5(R, Z) in Z, and e(R)J(t!) = coefficient 
of zt in $5(R, Z); note that if R contains a subfield k such that R 
is residually rational over k then clearly 

"-1 n-1 

L [M(R)iIM(R)H1 : RIM(R)] = L [M(R)iIM(R)i+1 : k] 
j=O ;=0 

= [RIM(R)": k] 

for all n, and hence $5(R, n) = [RjM(R)n : k] for all sufficiently 
large n. 

(12.2.1). Let A be a homogeneous domain, and let B be a homo ge­
neous subdomain oJ A such that t(B) = t(A) - land rad(B1A) =I=­

A1A. Let 0 =I=- z E Al - B1, and JOT each nonnegative integer j let 
Bi = {x E Bj: there exists a nonnegative integer wand xj+1. E Bj+i 
Jor I ~ i ~ w such that XZW + Xj+1ZW-1 + ... + xj+w = O}. Let 
R = 9t(A, B1A) (note that by (12.1.6) we know that B1A is a 
nonmaximal homogeneous prime ideal in A). Then R is a local 
domain, dirn R = t(A), R is residually rational over Ao , and 
[BjIB; : Aol = [M(R)ijM(R)H1 : Aol for all j. 

PROOF. By (12.1.4) and (12.1.6) we know that R is a local 
domain with quotient field 5t(A), R is a spot over A o , and R is 
residually rational over Ao ; in view of [28: §7 of Chapter VII] we 
also get that dirn R = t(A). Let D = Ao[B1z-1] and P = 
({xjz: XE B1})D. By (12.1.2) we get that P is a prime ideal in D 
and R = Dp • It follows that M(R)i = ({xjzi: XE Bj})R for all j. 
Given any nonnegative integer j, we get an Ao-homomorphism 
J: Bi -- M(R)i by taking J(x) = xjzi for all x E Bi' Given any 
y E M(R)i we can write y = rd(Y1) + ... + rqJ(Yq) with r1, ... , rq 
in Rand Y1' ... , Yq in Bi; since R is residually rational over Ao , 
there exists r~ E Ao such that ri - r~ E M(R) for I ~ i ~ q, and 
then r;;'l + ... + r~Yq E Bi and Y - J(r;;'l + ... + r~Yq) E M(R)i+1. 
Thus, upon letting h: M(R)i __ M(R)ijM(R)i+1 be the canonical 
epimorphism, we get that h(M(R)j) = h(J(Bj». Let any x E Bi 
be given; then there exists a nonnegative integer wand Xi+i E Bj+i 
for 1 ::::;;; i ::::;;; w such XZW + Xj+1ZW-1 + ... + xj+1n = 0; now fex) = 
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x/zi = -«Xi+1/Zi+1) + ... + (Xj+w/Zi+W» E M(R)i+1. Conversely, 
let any x E Bi be given such that f(x) E M(R)i+1; then x/zi = 

(Slt1 + ... + Sth)/Zi+1 with SI , ... , Sd in Rand t1 , ... , td in Bi+1 ; 
since R = D p , we can write Sa = s;Js~ for 1 ~ a ~ d where 
s~, ... , s~ are elements in D and s~ f# P; since D = Ao[B1z-1], we 
can write 

w-l 

s' = ~ s' Jzu a L.J a.u for 0 ~ a ~ d, with s~.u E Bu , 
u=O 

where w is a positive integer; since s~ f# P, we must have s~.o * 0; 
now 

d 

xzs~ = L s~ta 
a=l 

and hence, upon letting s~.w = 0, we get that 

where 

w 
xzW + L X;+izw-i = 0 

i=l 

d 

X;+i = X(S~.iJS~.O) - L (s~.i-lJs~.o)ta E BH; 
a=l 

for 1 ~ i ~ w; consequently x E Bi. Thus f-1(M(R)i+l) = Bj, 
and hence [Bi/B; : Ao] = [M(R)ijM(R)i+1 : Ao]. 

(12.3). Hilbert polynomial of a homogeneous domain. Let A be 
a homogeneous domain. By [28: §12, Chapter VII] we know that: 
given any homogeneous ideal Q in A, there exists a unique poly­
nomial, to be denoted byl)(A,Q, Z), in an indeterminate Zwithratio­
nal coefficients such that l)(A, Q, n) = [An/(An n Q) : Ao] for an 
sufficiently large n; we define: t(A, Q) = degree of l)(A, Q, Z) in Z 
in case l)(A, Q, Z) is a nonzero polynomial, and t(A, Q) = -1 in 
case l)(A, Q, Z) is the zero polynomial; upon letting t = t(A, Q) 
we define: g(A, Q) = t! times the coefficient of Zt in l)(A, Q, Z) in 
case t ~ 0, and g(A, Q) = 0 in case t = -1. For any homogeneous 
ideal Q in A, by [28: §12 of Chapter VII] we have that: t(A, Q) = 
-1 <:> rad Q = A or A 1A; and if t(A, Q) * -1 then t(A, Q) = 



272 3. THREE-DIMENSIONAL BIRATIONAL RESOLUTION 

max{t(A/P): PE (the set of all minimal prime ideals of Q in A 
other than A 1A)}, and g(A, Q) is a positive integer. Note that in 
particular t(A, {Oll = t(A), and t(A, Q) < t(A) for every nonzero 
homogeneous ideal Q in A. We define: g(A) = g(A, {Oll. 

(12.3.1). (A weak form of Bezout's theorem). Let m be a 
nonnegative integer, and for 1 ~ i ~ miet fi E A nW where n(t) is a 
positive integer. Let PI' ... , Pu (u ~ 0) be the minimal prime ideals 
of (/1 , .. ·,Jm)A in A different from A 1A. Then g(A, PI) + ... + 
g(A, Pu) ~ g(A)n(l) ... n(m) (and hence in particular u(A, Q) ~ 
g(A)n(l) ... n(m». 

PROOF. First suppose that m = 0; then (/1' ... ,fm)A = {O}, 
u = 1, and PI = {O}; hence g(A, PI) + '" + g(A, Pu) = g(A) = 
g(A)n(l) ... n(m). 

Next suppose that m = 1. If u = 0 then g(A, PI) + '" + 
g(A, Pu) = 0 ~ g(A)n(I); if f1 = 0 then u = 1 and g(A, PI) + 
'" + g(A, Pu) = g(A) ~ g(A)n(1). So assume that u ~ 1 and 
f1 =1= O. Let P~ , ... , p; (v ~ 0) be the associated prime ideals of 
f1A in A different from PI , ... , Pu, Let t = t(A). Then in view 
of Krull's principal ideal theorem [27: Theorem 29 on page 238], 
by [28: §7 of Chapter VII] we get that t > 0, t(A, Pi) = t - 1 
for 1 ~ i ~ u, and t(A, Pj) < t - I for 1 ~j ~ v. By [28: 
Theorem 9 on page 153] there exist homogeneous primary ideals 
Q1 , ... , Qu , Q~ , ... , Q; in A such that f1A = Q1 f"'I '" f"'I Qu f"'I 

Q~ f"'I ••• f"'I Q~, rad Qi = Pi for ·1 ~ i ~ u, and rad Q; = Pj for 
1 ~ j ~ v. For 1 ~ i < u let Ql = Qi+1 f"'I ... f"'I Qu f"'I Q; f"'I ... f"'I 

Q~ ; let Q: = Q~ f"'I ••• f"'I Q;' in case v =1= 0, and Q: = A in case 
v = O. For 1 ~ i ~ u, by the standard formula for finite-dimen­
sional vector spaces, we have that [An/(An f"'I Qi f"'I Qt) : Ao] = 
[An/(An f"'I Qi) : Ao] + [An/(An f"'I Qt) : Aol - [An/(An f"'I (Qi+ 
Qt» : Aol for all n, and hence l)(A, Qi f"'I Ql, Z) = l)(A, Qi , Z) + 
l)(A, Ql, Z) - l)(A, Qi + Ql, Z); now t(A, Qi + Qt) < t - 1 = 
t(A, Qi) = t(A, Qi f"'I Qt); also t(A, Qt) = t - 1 in case i < u, 
and t(A, Qt) < t - 1 in case i = u; therefore we get that: 
g(A, Qi f"'I Qt) = g(A, Qi) + g(A, Qt) in case i < u, and g(A, 
Qi f"'I Qt) = g(A, Qi) in case i = u. It follows that t(A, f1A) = 
t - 1 and g(A,f1A) = g(A, Q1) + ... + g(A, Q,,). For 1 ~ i ~ u, 
since Qi C Pi' we get that [An/(An f"'I Pi) : Ao] ~ [A lIj(An f"'I Qi) : 
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Ao] for all n; since t(A, Pi) = t - I = t(A, Qi)' we deduce that 
g(A, Pi) ~ g(A, Qi). Therefore g(A, PI) + ... + g(A, PU) ~ 
g(A,fIA ). Clearly [An (') (AA) : A o] = [An- nh) : Ao] for all n ~ 
n(l), and hence [Anl(An (') UIA» : Ao] = [An: A o] - [An-n(l) : 
A o] for all n ~ n(l); consequently g(A,jIA, Z) = g(A, {O}, Z) -
g(A, {O}, Z - n(l», and hence g(A,fIA) = g(A)n(I). Therefore 
g(A, PI) + ... + g(A, PU) ~ g(A)n(I). 

N ow we shall prove the general case by induction on m. So let 
m > land ass urne that the assertion is true for all values of m 
smaller than the given one. If u = 0 then we have nothing to 
show. So also assurne that u -=1= O. Then radUI' ... ,fm)A = PI (') 
... (') Pu , and, upon letting Pl, ... , P~ be the minimal prime ideals 
of U2 , ... ,fm)A in A different from AIA, we getthat w -=1= 0 and 
radU2' ···,jm)A = Pt (') ... (') p-;:,. Let Pt] , ... , Pl-,,(i) (v(t) ~ 0) 
be the minimal prime ideals of Pt + UIA) in A. Then by the 
induction hypothesis we get that g(A, Pt) + ... + g(A, P-;:') ~ 
g(A)n(2) ... n(m), and by applying the case of m = I proved above 
to AlPt we get that g(A, Ptl) + ... + g(A, P7:v(i» ~ g(A, Pl)n(l) 
for I ~ i ~ w. Therefore 

Now 

and 

w v(i) 

L L g(A, Pi. i ) ~ g(A)n(l) ... n(m). 
i~l i~l 

IV v(i) w n n P1.i = n rad (Pi + (flA» 
i~1 i~l i~l 

w 

= rad n (Pi + (flA» 
i~l 

w 

= rad n (Pi + (flA», 
i~l 

w n (Pi + (flA» c (Pi n ... n P!) + (!tA) 
i~l 

c (Pi n ... n P!) + (rad(flA» 

= (rad(f2' .··,fm)A) + (rad(flA» 

C rad(!t, ... ,fm)A 
= P1 n ... n P,,; 
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consequently 

w vIi) n n pt; C PI n ... n Pu . 
i~l ;~l 

Also 
w 

(fl , .. ·./m)A C n (Pt + (fIA» 
i~l 

and hence 

PI n ... n Pu = rad(fl' ... ./m)A 

w 

C rad n (Pt + (fIA)) 
i~l 

w vIi) 

= n n Pt;· 
i~l ;~l 

Thus 
w vIi) 

PIl···IlP =nnp~· I u J.' 
i~l ;~l 

and hence for each q with 1 ~ q ~ u we have that Pq = Pti for 
some (i,j). Therefore 

w vIi) 

g(A, PI) + ... + g(A, Pu) ~ L L g(A, Pt;) 
i~l ;~l 

and hence g(A, PI) + ... + g(A, Pu) ~ g(A)n(l) ... n(m). 

(12.3.2). Let d be any positive integer and let L be any 
Ao-subspace 0/ Aidl . Then u(A(dl, LA(dl) ~ g(A)dq where q = 
[L : Ao]. 

PROOF. By (12.3.1) we get that u(A, LA) ~ g(A)tf'1, and by 
(12.1.7) we get that u(A(dl, LA(dl) = u(A, LA). 

(12.3.3). Let t = t(A) and let d be any positive integer. Then 
g(A(dl) = g(A)d'. 
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PROOF. Now [A~d): A~)] = [Adn : A O] for all n, and hence 
~(A(dl, {O}, Z) = I)(A, {O}, dZ). Therefore g(A(dl) = g(A)d'. 

(12.3.4). FOT any homogeneous subdomain B 01 A with r(B) = 
reAl - 1, we have the lollowing: (1) if rad(B1A) = AIA then 
t(B) = t(A) and g(A) = g(B)[.R(A) : .R(B)]; (2) if rad(BIA) =1= 
AIA and t(B) = t(A) then g(A) = g(B)[.R(A) : .R(B)] + e(!R(A, 
BIA»; and (3) if rad(BIA) =1= AIA and t(B) =1= t(A) then g(A) = 
g(B) = e(!R(A, BIA» (note that by (12.1.6) we know that if 
rad(BIA) =1= AIA then !R(A, BIA) is a loeal domain). 

PROOF. Take Z E Al - BI' Let DJw] = {x E B j : there exists 
xj+i E Bj+i for 1 ~ i ~ w sueh that XZW + Xj+1ZW-I + ... + xj+w = O}, 
Bj = U DJw], D[w] = { L Tj: Tj E DJw] for allj, andTj = 0 

O';;W<oo O.;;i<oo 

for all suffieiently large j}, and B' = U D[U']. Then B' and 
O~w<oo 

D[O] C D[l] C D[2] C ... are homogeneous ideals in B, D[O] = {O}, 

and Bi ('\ B' = Bj and Bi ('\ n[w] = DJw] for allj and w. Sinee B is 
noetherian, there exists a unique nonnegative integer u sueh that 
D[w] = B' for all w ~ u. Let E~w] = {Yn + Yn-lz + ... + Yn_wZw: 
Yi E Bi for n - w ~ i ~ n}, and let E~-l] = {O}. Then 
E~-l] C E~o] C E~l] C ... C E~n] = An are Ao-subspaees of An, and 
henee 

n 

[An: Aol = L [E~wl/E~w-l1 : AJ. 
w=O 

Given any integers wand n with 0 ~ w ~ n, upon letting T = 

{yn + Yn-l + ... + Yn-w : Yi E Bi for n - w ~ i ~ n}, we get 
Ao-epimorphisms I: T ~ E~W] and g: T ~ Bn- w by taking 
/(Yn + Yn-l + ... + Yn-w) = Yn + Yn-lz + ... + Yn-tDZw and 
g(Yn + Yn-l + .. , + Yn-w) = Yn-tD; clearly 1-1(Eln-w]) = 
g-l(D[W] ) and henee E[W]/E[lO-l] and B /D[W] are A -isomorphie n-w n n n-w n-tD 0 • 

Therefore 

n 

[An: Aol = L [Bn-w/n~~w : Bol for all n. 
,,,=0 
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If D[w] =1= {O} for some w then let q be the smallest integer such 
that D[Il] #- {O}, and if D[w] = {O} for all w then let q = 00. Then 
q is either a positive integer, or q = 00. Clearly t(B) =1= t(A) <0> q = 
00; and if t(B) = t(A) then [51(A) : 5l(B)] = q. First suppose that 
rad(BlA) = AlA; then by (12.1.5) we get that B' = B; conse­
quently q =1= 00, t(B) = t(A), and 1 ~ q ~ u; by (*) we now get 
that 

q-l n 

[An: Aol = L [Bn- w : Bol + L [Bn_wID~~w : Bol 
w=q 

for all n ~ u; consequently 

q-l u-l 

l)(A, {O}, Z) = L l)(B, {O}, Z - w) + L l)(B, Dlw1, Z - w); 

now t(A, {O}) = t(B, {O}) > t(B, D[W]) for q ~ w ~ u - 1, and 
hence g(A) = g(B)q = g(B)[51(A) : 5l(B)]. Next suppose that 
rad(BlA) =1= AlA and t(B) = t(A); then q =1= 00 and 1 ~ q ~ u; 
by (*) we now get that 

~ u~ n 

[An: Aol = L [Bn- w : Bol + L [Bn_wID~~~ : Bol + L [Bn-wIB~-w : Bol 
w=o w=q w=u 

for all n ~ u; in view of (12.2.1) we get that 

n \ n-u 

L [Bn-wIB~-w : Bol = L [BjIB; : Aol 
1.o=U j=o 

for all n ~ u, and hence 

q-l u-l 

l)(A, {O}, Z) = L l)(B, {O}, Z - w) + L l)(B, Dlwl, Z - w) 
w=q 

+ ~(9{(A, BlA), Z - u + 1); 

now t(A, {O}) = t(B, {O}) > t(B, D[W]) for q ~ w ~ u - 1, and by 
(12.2) we have that ~(9{(A, BlA), Z) is a po1ynomial of degree t in 
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Z, where t = t(A, {O}), and the coefficient of Zt in f)(9l(A, BIA), Z) 
is e(9l(A, BIA))/(t!); therefore g(A) = g(B)q + e(9l(A, BIA)) = 

g(B)[~(A) : ~(B)] + e(9l(A, BIA)). Finally suppose that rad(BIA) 
i= AIA and t(A) i= t(B); then q = 00, and hence u = 0 and 
D~wl = B; = {O} for all j and w; since D~wl = {O} for all j and 
w, by (*) we get that 

n 

[An: Ao] = L [Bi: Bo] 

for all n; now t(B, {O}) = t(A, {O}) - 1 and hence g(A) = g(B); 
since D~wl = B; for all j and w, by (*) we get that 

n 

[An: Ao] = L [BiIB; : Bo] 
i~O 

for all n, and hence by (12.2.1) we get that l)(A, {O}, Z) = 

f)(9l(A, BIA), Z + 1); therefore g(A) = e(9l(A, BIA)). 

(12.3.5). Assume that Ao is algebraically closed. Then g(A) + 
t(A) ~ r(A). 

PROOF. We shall make induction on r(A). If r(A) = 1 then 
clearly g(A) = 1 and t(A) = O. So now let r(A) > 1 and assume 
that the assertion is true for all values of r(A) smaller than the 
given one. Since A o is algebraically closed, by the Hilbert Null­
stellensatz [28: Lemma on page 165] there exists RE IID(A) such 
that R is residually rational over A o • Now by (12~1.6) there exists 
a homogeneous subdomain B of A such that r(B) = r(A) - 1, 
BIA is a nonmaximal homogeneous prime ideal in A, and 9l(A, 
BIA) = R. Since rad(BIA) i= AIA, by (12.3.4) we get that 
g(A) + t(A) ~ g(B) + t(B) + 1. By the induction hypothesis 
we have that g(B) + t(B) ~ r(B). It follows that g(A) + t(A) ~ 
t(A). 

(12.3.6). Let t = t(A) and g = g(A). Assume that Ao is al­
gebraically closed, and let I be any nanzero homogeneous ideal in A. 
Then there exist Ao-subspaces L, LI' ... , Lg of Al such that: L C LI n 
... n Lg ; [L: Ao] = t; {LIA, ... , LgA} is the set of all minimal 
prime ideals of LA in A; L1A, ... , LgA are distinct; LA = (L]A) n 
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... () (LilA) () T where dther T = A or T is a homogeneous ideal 
in A whieh is primary JOT AlA; and JOT 1 ~ i ~ g we have that 
[Li: Ao] = t(A) - 1, btLiA -=F AlA, LiA is not eontained in 
any homogeneous prime ideal in A OtheT thanLiA and AlA, m(A, LiA) 
is at-dimensional regular loeal domain whieh is residually rational 
over Ao , and if (SI' ... , s,) is any Ao-basis oJ L and s~ is any element 
in Al - Li then (Sl/S~, ... , st!s~)m(A, LiA) = M(m(A, LiA». 

PROOF. By [27: Theorem 31 on page 105 and Theorem 8 on 
page 266] we ean find a free Ao-basis (x, Yl' ... , y" Zl' ... , Zq) 
of Al such that (x, Yl , ... , y,) is a separating transeendenee basis of 
the quotient field of A over Ao, and Ais integral over Ao[x, Yl , ... , 
y,]. Let B = Ao[x, Yl , ... , y,]. Then B is a homogeneous subdomain 
of A, and clearly t(B) = t and g(B) = 1. Let E = Bo[Blx-l] and 
D = Ao[Alx-l]. Then E = AO[Yl/X, ... , yt!x], D = E[Zl/X, ... , 
Zq/x] , and ~(B) and ~(A) are the quotient fields of E and D 
respeetively. 

Given any integer u with 1 ~ u ~ q, let F(Z) = Zd + FlZd-l + 
... + Fd be the minimal monie polynomial of Zu over the quotient 
field of B, where Z is a indeterminate; sinee B is normal, we get 
that Fv E B for 1 ~ v ~ d, and then, sinee A is a homogeneous 
domain, we get that Fv E Bv for 1 ~ v ~ d; it follows that Zu E 
rad(BlB[zu]); let G(Z) = Zd + (F1/x)Zd-l + ... + (Fd/Xd); then 
G(zu/x) = 0 and F,,/xv E E for 1 ~ v ~ d, and henee zu/x is 
integral over E; let F'(Z) and G'(Z) be the Z-derivatives of F(Z) 
and G(Z) respeetively; sinee Zu is separable over the quotient 
field of B, we must have F'(zu) -=F 0; now G'(zu/x) = F'(zu)/Xd- l 
and henee G'(zu/x) -=F 0; therefore zu/x is separable over ~(B). 
This being so for I ~ u ~ q, we get that D is integral over E, and 
~(A) is separable over ~(B); also we have shown that Zu E 
rad(BlB[zu]} for 1 ~ u ~ q. Let B[u] = B[Zl' ... , zu] for 0 ~ u ~ 
q; then B[U] is a homogeneous subdomain of A and t(B[U]) = t 
for 0 ~ u ~ q; also B[O] = Band B[q] = A. For any integer u 
with I ~ u ~ q, we now have that B[u-l] is a homogeneous sub­
domainofB[U]andt(B[U-l]) = t(B[U]) -l;sineezu Erad(BlB[zu]}, 
we also have that rad(B!U-l]B[U]) = B!U]B[U]; eonsequently by 
(12.3.4) we get that g(B[U]) = g(B[U-l])[~(B[u]) : ~(B[U-l])]. This 
being so for I ~ u ~ q, we eonclude that g(A) = g(B)[~(A) : 
~(B)], and henee [~(A) : ~(B)] = g. 
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Thus we have shown that .R(A) is separable over .R(B) , D is 
integral over E, and [.R(A) : .R(B)] = g. We can now take Z E D 
such that .R(A) = .R(B)(z). Let H(Z) = zg + HIZg-I + .. , + Hg 
be the minimal monic polynomial of z over .R(B), where Z is an 
indeterminate. Since E is normal, we must have Hv E E for 1 ~ 
v ~ g. Let] be the Z-discriminant of H(Z). Then ] E E; since 
.R(A) is separable over .R(B) , we must have ] #- O. Now I f"'I B is 
a homogeneous ideal in B; since I =1= {O} and Ais integral over B, 
by [4: Lemma 1.23] we have that I f"'I B #- {O}; consequently we 
can take 0 #- ]' EI f"'I Bw for so me nonnegative integer w. Let 
J* = J(]' /XW ). Then 0 #- J* E E. Since Ao is infinite, there exist 
elements al , ... , at in Ao such that J* f/: «YI/X) - al , ... , (Yt/x) -
at)E. Let Xv = Yv - avx for I ~ v ~ t. Let L be the Ao-subspace 
of BI generated by (Xl' ... , Xt). Then [L : Ao] = t, B = Ao[X, Xl , 
... , xtJ, and E = AO[xl/x, ... , Xt/x]. Let P = (Xl/X, ... , xt/x)E. Then 
Pis a maximal ideal in E, E/P is algebraically closed, ],/xw f/: P, 
and ] f/: P; now by [4: Lemma 1.19, Theorem 1.42, and Theorem 
1.44] we get that PD = PI f"'I ... f"'I Pg where PI' ... , Pg are 
distinct maximal ideals in D, and, upon letting Ri be the quotient 
ring of D with respect to Pi , we have that Ri is residually rational 
over Ao and (Xl/X, ... , xt/x)Ri = M(R.,,) for 1 ~ i ~ g. Now 
Pi f"'I E = P and hence ],/xw f/: Pi for I ~ i ~ g. Since Ri is 
residually rational over A o , by [28: §7 of Chapter VII] we get that 
dirn Ri = t and hence Ri is regular for I ~ i ~ g. Since Ri is 
residually rational over Ao, there exist elements ail' ... , aiq 
in Ao such that Pi = (Xl/X, ... , xt/x, (Zl/X) - ail , ... , (Zq/x) -
aiq)D. Let Li be the Ao-subspace of Al generated by (Xl' ... , XI' 
Zl - ai1x, ... , Zq - aiqX). Then [Li: Ao] = r(A) - 1. 

For every homogeneous ideal Q in A let f(Q) = U {r/xn : 
O~n<oo 

rE Q f"'I An}; then I(Q) is an ideal in D. It is easily seen that for 
any homogeneous ideals Q and Q' in A we have the following: 
(I) jf Q' C Q then I(Q') C I( Q) ; (2) if Q is prime, Q' is primary 
for Q, and X f/: Q, then I(Q) is prime,/(Q') is primary for I(Q), 
and: Q' = Q ~ I(Q') = I(Q); (3) if Q and Q' are prime, X f/: Q, 
and X rf: Q', then: Q' = Q ~ I(Q') = I( Q). Clearly I(LA) = PD; 
also LA C LiA and I(LiA) = Pi for I ~ i ~ g. Since f(LiA) = 
Pi for I ~ i ~ g, we get that LIA, ... , LgA are distinct. Since 
]' /Xw rf: Pi = f(LiA), we get that ]' rf: LiA and hence I cf. L"A. Since 
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D =1= Pi = f(LtA), we get that xn 1= LiA for all n > 0, and hence 
rad(LiA) =1= AlA. By (12.1.6) we now get thatLiA is a nonmaximal 
homogeneous prime ideal in A, and LiA is not contained in any 
homogeneous prime ideal in A other than LiA and AlA. Since 
Zu E rad(BlB[zu]) for 1 ~ u ~ q, we get that AlA is the on1y 
homogeneous prime ideal in A which contains x and LA. In view 
of [28: Theorem 9 on page 153 and Corollary on page 154] we now 
conc1ude that {LlA, ... , LgA} is the set of all minimal prime ideals 
of LA in A, and LA = LlA fl ... fl LgA fl T where either T = A 
or T is a homogeneous ideal in A which is primary for AlA. 

Since x f{:LiA andf(LiA) = Pi' by (12.1.2) we get that 9l(A, LiA) 
= Ri and hence M(9l(A, LiA» = (Xl/X, ... , x,fx)9l(A, LiA). If s; 
is any element in Al - LiA then by (12.1.2) we get that s;/x is a 
unit in 9l(A, LiA); it follows that if (SI' ... , SI) is any Ao-basis of L 
then (Sl/S~, ... , s,fs~)9l(A, LiA) = M(9l(A, LiA». 

(12.3.7). Assume that A o is algebraically closed. Then given 
any nonzero homogeneous ideal I in A and any positive real number 
m, we have that either: there exists a homogeneous subdomain A' of A 
such that t(A' ) = t(A) and e(R')[.R(A): .R(A' )] < m for every 
element R ' in W(A') which is residually rational over A o ; or: there 
exists an Ao-subspace L of Al such that [L : A o] = max(O, t(A) - 1) 
and u(I, LA) ~ r(A) - t(A) - (g(A)/m). 

PROOF. We shall make induction on r(A). If t(A) = 1 then 
t(A) = 0 and g(A) = 1, and upon taking L = {O} we get that 
[L : Au] = 0 = max(O, t(A) - 1) and u(I, LA) = 1 ~ t(A) -
t(A) - (g(A)/m). So now let t(A) > 1 and assume that the assertion 
is true for all values of t(A) smaller than the given one. If e(R) < m 
for every element R in W(A) which is residually rational over A o 
then it suffices to take A' = A. So now assume that there exists 
an element R in W(A) such that R is residually rational over A o 
and e(R) ~ m. By (12.1.6) there exists a homogeneous subdomain 
B of A such that t(B) = t(A) - 1, rad(BlA) =1= AlA, BlA is a 
nonmaximal homogeneous prime ideal in A, and 9l(A, BlA) = R. 
By (12.1.9) there exists a nonzero homogeneous ideal] in B such 
that (1): for every homogeneous ideal Q in B we have that u(I, 
QA) ~ u(], Q). For a moment suppose that t(B) =1= t(A); then 
t(B) = t(A) - 1; by (12.3.6) there exists an Ao-subspace L of BI 
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such that [L : Ao] = t(B) and u(], LB) = g(B); by (12.3.5) we also 
have that g(B) ~ r(B) - t(B); thus [L: Au] = t(A) - 1 = 

max(O, t(A) - 1), and u(I, LA) ~ u(], LB) = g(B) ~ r(B) -
t(B) = r(A) - t(A) ~ r(A) - t(A) - (g(A)/m). So now assume 
that t(B) = t(A). Let q = [5\(A) : 5\(B)]. Then by (12.3.4) we 
get that g(B) = (g(A) - e(R»/q; since e(R) ~ m, we get that 
g(B) ~ (g(A) - m)/q, and hence (2): g(B)/(m/q) ~ (g(A)/m) - 1. 
Upon applying the induction hypothesis to (B, ], m/q) we get that 
either (3): there exists a homogeneous subdomain A' of B such that 
t(A') = t(B) and e(R')[5\(B) : 5\(A')] < m/q for every element R' 
in W(A') which is residually rational over Au, or (4) : there exists 
an Au-subspace L of BI such that [L : Au] = max(O, t(B) - 1) and 
u(], LB) ~ r(B) - t(B) - (g(B)/(m/q». If condition (3) prevails 
then t(A') = t(A) and e(R')[5\(A) : 5\(A')] < m for every element 
R' in W(A') which is residually rational over Au . If condition (4) 
prevails then [L: Au] = max(O, t(A) - 1), and by (1) and (2) 
we get that u(I, LA) ~ u(], LB) ~ r(A) -t(A) - (g(A)/m). 

(12.3.8). Assume that Au is algebraically closed. Then there 
exists a positive integer d and a homogeneous subdomain A' of A(dl 
such that t(A') = t(A) and e(R')[5\(A) : 5\(A')] ~ t(A)! for every 
element R' in W(A') which is residually rational over Au. 

PROOF. If t(A) = 0 then t(A)! = 1, W(A) = {Au}, and e(Ao) = 
1, and hence it suffices to take d = 1 and A' = A. So now assume 
that t(A) > O. Let t = t(A). Now r(A(nl) = [An: Au] for all 
n > 0, [An: Au] = l)(A, {O}, n) for all sufficiently large n, l)(A, {O}, 
Z) is a polynomial of degree t in an indeterminate Z with rational 
coefficients, the coefficient of zt in l)(A, {O}, Z) is g(A)/(t!), and 
g(A) is a positive integer. Therefore there exists a positive integer 
d' such that (1): for every integer d with d ~ d' we have that 
g(A)dt- 1 < r(A(dl) - t - «g(A)dt)/(t! + 1». Let d be any integer 
with d ~ d'. Then, in view (1), by (12.3.2) and (12.3.3) we get that 
(2): if L is any Au-subspace of Aidl with [L : Au] = t - 1 then 
U(A(dl, LA(dl) < r(A(dl) - t - (g(A(dl)/(t! + 1». In view of (2), 
upon taking (A(dl, A(dl, t! + 1) for (A, I, m) in (12.3.7) we get 
that: there exists a homogeneous subdomain A' of A(dl such that 
t(A') = t and e(R')[5\(A): 5\(A')] < (t! + 1) for every element 
R' in W(A') which is residually rational over Aß; now e(R')[5\(A): 
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.R(A')] is an integer and hence we must have e(R')[.R(A): 

.R(A')] ~ t!. 

(12.4). Projective models. 

(12.4.1). Let k be any field, let K be any function field over k, 
and let X be any projective model of K/k. Then there exists a homogene­
ous domain A such that A o = k, .R(A) = K, and IID(A) = X. 

PROOF. By definition there exist elements YI , ... , Yq in K such 
that YI -# 0 and X = lID(k; YI , ... , Yq). Take an element Z in an 
overfield of K such that Z is transcendental over K. Let Zi = 
(YiZ)/YI for 1 ~ i ~ q. Then X = lID(k; Zl , ... , Zq). Let A = 
k[ZI' ... , Zq], and for each nonnegative integer n let An = {O} u 
{u E A: u = f(ZI , ... , Zq) for so me nonzero homogeneous poly­
no mi al f(ZI , ... , Zq) of degree n in indeterminates Zl, ... , Zq with 
coefficients in k}. It is easily seen that then A is a homogeneous 
domain, A o = k, .R(A) = K, and IID(A) = X. 

(12.4.2). Let k be any algebraically closed field and let K be 
any function field over k. Then there exists a function field K' over 
k and a projective model X' 0/ K' /k such that K' is a subfield of K, 
[K: K'] < 00, and upon letting X = U X(R'), where X(R') 

R'EX' 

is the set of all quotient rings of the integral closure T of R' in K 
with respect to the various maximal ideals in T, we have that X is 
anormal complete model of K/k and e(R) ~ (trdegkK)! for every 
element R in X which is residually algebraic over k. 

PROOF. By (12.3.8) and (12.4.1) there exists a function field 
K' over k and a projective model X' of K'/k such that K' is a 
subfield of K, [K: K'] < 00, and e(R')[K: K'] ~ (trdegkK)! for 
every element R' in X' which is residually algebraic over k. Let 
X(R') and X be as defined above. Now X' = 5B(E1) U ... U 5B(Eq) 

where EI' ... , Eq are affine rings over k. Let Di be the integral 
closure of Ei in K. Then by (1.1.2) we know that Di is a finite 
Ermodule for 1 ~ i ~ q, and by [4: Lemmas 1.17, 1.19, and 1.28] 
we see that every element in 5B(D1) U ... U 5B(Dq) is normal and 
X = jß(D1) U ... U jß(Dq ); it follows that Xis anormal complete 
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model of Kjk, and clearly X dominates X'. Given any element R 
in X such that R is residually algebraic over k, let R' be the center 
of R on X'; then clearly RE X(R') and R' is residually algebraic 
over k; by (1.1.2) we know that the integral closure of R' in K is a 
finite R' -module, and by [28: §7 of Chapter VII] we know that 
dirn R* = dirn R' for all R* E X(R'); consequently by [28: 
Corollary 1 on page 299] we get that e(R) < e(R')[K : K'], and 
hence e(R) < (trdegkK)!. 

(12.4.3). Let k be any algebraically closed field, let K be any 
function field over k, and let V be any valuation ring of K such that 
k C V and V is residually algebraic over k. Then there exists anormal 
spot R over k with quotient field K such that V dominates Rand 
e( R) < (trdegkK)!. 

PROOF. Follows from (12.4.2). 

The following consequence of (12.4.2) will not be used in this 
monograph. 

(12.4.4). Let k be any algebraically closed field and let K be any 
function field over k. Then there exists anormal projective model X 
of Kjk such thatfor every element R in X which is residually algebraic 
over k we have that e( R) < (trdegkK)!. 

PROOF. Let X be as in (12.4.2). By [28: §18 of Chapter VI] 
we get that Xis a projective model of Kjk. 

§13. Three-dimensional bi rational resolution over an 
algebraically c10sed ground field of characteristic #- 2, 3, 5 

Let K be a function field over a field k, let p be the characteristic 
of k, and let n = trdegkK. 

By (11.1) and (12.4.3) we get the following. 

(13.1). Assume that k is algebraically closed, and either: n < 1; 
or: n = 2 and p #- 2; or: n = 3 and p #- 2, 3, 5. Then there exists 
a nonsingular projective model of Kjk. 
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Note that we have proved the existence of a nonsingular projective 
model of K/k: in (9.4) when n ~ I; in (9.3) when n ~ 2 and k is 
perfeet; and in (11.2) when n ~ 3 and p = O. Finally note that, 
as remarked in the Introduction, Hironaka [15] has proved the 
existence of a nonsingular projective model of K/k when p = 0 
(any n). 



Appendix on Analytic Desingularization 
in Characteristic Zero 

Text of a talk given by Shreeram S. Abhyankar 
at various plaees in 1996-97 

ABSTRACT. As witnessed by the famous works of Zariski and Hiron­
aka, desingularization proofs tend to be very long and difficult. Here 
I shall present a very short and simple proof of analytic desingular­
ization in characteristic zero for any dimension which I have recently 
found. It is hoped that this will remove the fear of desingularization 
from young minds and embolden them to study it further. The said 
proof is extracted from my previous work on good points. It was in­
spired by discussions with the Control Theorist Hector Sussmann, the 
Subanalytic Geometer Adam ParusiIiski, and the Aigebraic Geometer 
Wolfgang Seiler. Once again this illustrates the fundamental unity of 
all Mathematics from Control Theory to Complex Analysis to Algebra 
and Aigebraic Geometry. 

Section 1. Introduction 

In this talk I shall give a very short and simple proof of the Analytic 
Desingularization Theorem for a hypersurfaee f in the neighborhood 
of a point P in the loeal spaee V of any dimension n.1 This eould serve 

1 In effect this proof is a slight variation of the good point proof for surfaces 
which I gave in the Purdue Seminar of 1966 as reported by Lipman in the 1973 
Arcata Conference; see page 218 of his paper [A12) in the Proceedings of that 
Conference; for an exhaustive general theory of good points of hypersurfaces see 
my 1988 paper [A6) in Advances in Mathematics. The trick which converts the 
good point surface proof to the present proof for any dimension can be found in 
(10.24) on pages 255-257 of my 1966 Resolution Book which is being reprinted 
here. The Reduction Lemma and the Principalization Lemma of Section 3 are 
explicit avatars of this trick. As a telegraphie preview of the present proof: By an 
inductive procedure incorporating the Principalization Lemma, the hypersurface f 
is approximated by a binomial hypersurface, Le., a hypersurface of the form Xi + 
x~e2 ... x~en = 0 where e is a positive integer and be2, . .. , ben are nonnegative 
integers. The Reduction Lemma enables us to further arrange matters so that 

285 
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as an introduction to the great works of Zariski [23, 25] and Hironaka 
[15]. The precise statement of the theorem will be given in the next 
section. Here in the introduction let us give a quick geometrie overview 
of the theorem and its proof. 

In brief, inductively, the singularity of the hypersurface J is con­
verted into a "good point" whieh is then dealt with by an easy and 
explicit algorithm. In effect J has a "good point" at P means that 
the equimultiplicity locus2 of J at P is a pure (n - 2)-dimensional 
subvariety having anormal crossing3 at P and by iteratively blowing 
up its components the multiplicity gets reduced.4 Equationally speak­
ing, we can choose coordinates Xl, ... , Xn at P such that the line 
X2 = ... = X n = 0 is not tangent to J, and then by the Weierstrass5 

Preparation Theorem we can write J = hog where ho is a unit in the 
power series ring R in the variables Xl, ... ,Xn and 

9 = Xi + L GjXr;-j with Gj E M(R*)j for 1 ::; j ::; m 
l$j$m 

where m is the multiplicity of J at P and M(R*) is the maximal 
ideal in the power series ring R* in the variables X2, ... , Xn. Next we 

be2 + ... + ben< e where be2, . .. , ben are the residues of be2, ... , ben modulo e. 
This then is a prototype of a good point of a hypersurface. The Good Point Lemma 
of Section 3 shows how to reduce the multiplicity of a good point. 

2The equimultiplicity locus of f at P consists of those points near P where f 
has the same multiplicity as it has at P. 

3 A variety has anormal crossing at P means, with respect to some analytic 
co ordinate system, all its components are linear subspaces through P. For example 
a variety consisting of some coordinate axes and some coordinate hyperplanes has 
anormal crossing at the origin. 

4These blow ups are called monoidal transformations. The elementary monoidal 
transformation of the (Xl, ... ,Xn)-space with center Xl = ... = X t = 0 (to 
be blown up) amounts to making a substitution of the form Xl = X~, Xi = 
X{(Xj + Ai) with a constant Ai for 2 :5 j $ t, and Xk = X k for t < k :5 n. 
If t = n then we call it a quadratic transformation. It was Max Noether [AI3] 
who first proved that the singularities of aplane curve can be resolved by a finite 
sequence of quadratic transformations of the plane. Monoidal transformations were 
introduced by Zariski [24]. 

5See Weierstrass [AI6]. Ta quote from the Preface of my book [Al]: Impressed 
by the power of the Preparation Theorem - indeed it prepares us so weIl! - I 
considered "Weierstrass Preparation Theorem and its immediate consequences" as 
a possible title for the entire book. 
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make the Shreedharacharya6 Transformation7 Xl ~ Xl + (Gt/m), 
i.e., by "completing the m-th power" we arrange matters so that 
G l = O. If G j = 0 for all j then we have nothing to show. So 
assume that G j i- 0 for some j, and let G be the product of all 
nonzero Gj . Now inductively transforming the local (X2 , ... , X n )­

space V* by an iterated elementary monoidal transformation we ar­
range matters so that, at the origin P* of V*, the hypersurface G 
has anormal crossing and the ideal (G~'/2, ... , G:'lm) is principal. 
Then for some integer e with 2 ::; e ::; m we have Gei- 0 and 

'I' 'I G1;- J /G";" e E R* for 2 ::; j ::; m, and for some nonnegative in-

tegers bj2 , ... , bjn we have G j /(X;j2 ... X~jn) E R* \ M(R*) for all 
nonzero Gj . In the Reduction Lemma we shall show that after furt her 
transforming V* by an iterated elementary monoidal transformation it 
can be arranged that be2 + ... + ben < e where, for every nonnegative 
integer b, we are letting b denote the residue of b modulo e. In the 
Good Point Lemma we shall show that J now has a "good point" at 
P; indeed, upon letting q2, ... ,qn to be the nonnegative integers with 
be2 = eq2 + be2 , ... , ben = eqn + ben, we shall see that the multiplic­
ity is reduced when, for 2 ::; i ::; n, we make qi elementary monoidal 
transformations with center Xl = Xi = 0, i.e., after making a total 
of q2 + ... + qn elementary monoidal transformations with (n - 2)­
dimensional centers. The said reduction of multiplicity refers to the 
"proper transform" of J, i.e., to J /(X':;:Q2 ... X;;-qn). The "total trans­
form" of J, i.e., J itself, has the "exceptional divisor" X;-q2 ... X;;-qn 
as a factor. For keeping arecord of the exceptional divisor, it is best 
to relax the assumption of ho being a unit in R by only assuming that 
to start with hO/(X~2 ... X~n) E R \ M(R) for some nonnegative in­
tegers S2, ... ,Sn' But now after a reduction of the multiplicity of the 
proper transform we may need to change the direction of projection. 
This may have the effect that the exceptional divisor may cease to 
have normal crossings, but every component of it will continue to be 

6To quote from the Preface of my book [A5]: Our method (of desingulariza­
tion) may be termed the method of Shreedharacharya, the fifth century Indian 
mathematician, to whom Bhaskaracharya ascribes the device of solving quadratic 
equations by completing the square. The said device is given in verse number 116 
of Bhaskaracharya's Beejaganit [AID] of 1150 A.D. 

7For a previous use of a Shreedharacharya Transformation see my 1955 joint 
paper with Zariski [10]. 
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nonsingular. Thus in the end, when the proper transform of / has 
only simple points, all ~he components of the total transform of / will 
be nonsingular but they may meet each other tangentially. One more 
application of the Good Point Lemma will finally make the total trans­
form of / have only normal crossings. Formally this will be achieved 
by introducing the biorder of / as a lexicographically ordered pair 
of nonnegative integersj the first entry being the multiplicity of the 
proper transform while the second entry will keep track of the number 
of "historically older" com ponents of the exceptional divisor. By using 
this biorder, formally we have to invoke the Good Point Lemma only 
once rather than twice. Finally, the inductive passage from the total 
transform having only normal crossings to the ideal becoming princi­
pal is taken care of by the Principalization Lemma.8 Collectively, the 
Reduction Lemma, the Principalization Lemma, and the Good Point 
Lemma comprise the auxiliary lemmas. 

Section 2. Statement of the Theorem 

Let / = /0 ... /1 be the product of a finite number of nonzero ele­
ments /0, ... '/1 in the power series ring R = K[{Xl, ... , Xn}] where 
l ~ 0 and n ~ 1 are integers, and K is an algebraically closed field of 
eharacteristie zero. Here K[{Xl, ... , X n }] either stands for the formal 
power series ring K[[Xl, ... , Xnll or the convergent power series ring 
K[(Xl, ... ,Xn)]j in the latter ease K is assumed to be equipped with 
an absolute value, such as the field of eomplex numbers. Let V be the 
"loeal spaee" Kn near the origin P = (0, ... ,0). In this paper we shall 
present a simple proof of the following version of the 

Analytic Desingularization Theorem. We can construct an IA MT 
(= Iterated Analytic Monoidal Trans/orm) Wo/V such that, at every 
point Q 0/ W, the hypersur/ace / has an NC (= Normal Crossing), 

BIn the language of models this Lemma corresponds to "domination" (see the 
main part of the present book), whereas in the language of schemes it corresponds 
to "trivialization of a coherent sheaf of ideals" (see [15]). It also corresponds to 
"removal of points of indeterminacy of a birational correspondence" (again see [15]). 
It may be noted that "Proper Resolution for dimension n => Total Resolution (= 
Monomialization) for dimension n => Principalization for dimension n => Proper 
Resolution for dimension n + I" is a common feature of many resolution proofsj 
for example see [15) and the main part of the present book. 
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and, for every subsequence 0 ~ u(O) < ... < u(v) < l, the ideal 
(fu(O) , ... , fu(v»), is principal. 

Our monoidal transformations are always assumed to have nonsin­
gular centers. In brief, to apply an analytie monoidal transforma­
tion to V means to take an analytie coordinate system Xl, ... ,Xn 

on V at P, Le., to take Xl,"" Xn in the maximal ideal M(R) of 
R such that R = K[{X l , ... ,Xn}], and then take an integer t with 
1 ~ t ~ n, and finally, for 1 ~ i ~ t, to make the substitutions: 
Xi = Yii,Xj = Yii(Yij + Aij) where Aij E K for 1 ~ j ~ t with 
j =I- i, and Xk = Yik for t < k ~ n. Now the AMT (=Analytie 
Monoidal Transform) VI of V with center Xl = ... = Xt = 0 is 
covered by the t charts (Ai1,"" Ait) E K t - l with Aii = 0 and local 
coordinates (Yil. ... , Yin) for i = 1, ... , t. We may now apply an ana­
lytie monoidal transformation to VI to get V2 • Then we may apply an 
analytie monoidal transformation to V2 to get V3 . And so on. Thus 
we get a finite sequence of analytie spaces V = Vo, Vb V2 , ..• , V-r. An 
IAMT of V is an analytie space W = V-r obtained in this manner for 
some integer T ~ O. 

At any rate, if S is the local ring of a point Q of an IAMT W 
of V, then S dominates R, Le., R is a subring of Sand M(R) = 
Rn M(S). Moreover, for any basis Y = (Yl , ... , Yn ) of M(S) we have 
S = K[{Y}] whieh makes S abstractly isomorphie to R = K[{X}] with 
X = (Xl. ... , X n ). The hypersurface f has an NC at Q means that for 
some basis Y of M(S) we have I = 8(y)y1bl ... y~n where bl!"" bn 

are nonnegative integers, and 8(Y) is a unit in S, Le., 8(Y) E K[{Y}] 
with 8(0) =I- 0; if Y is such a basis of M(S) then we may say that I 
has an NC at Q relative to Y. It follows that then for 0 ~ w ~ l 
we have Iw = 8w(y)ylbwl ... y~wn where bwl. ... , bwn are nonnegative 
integers, and 8w (Y) is a unit in S. Note that now, for a subsequence 
o ~ u(O) < ... < u(v) ~ l with v ~ 1, the ideal (fu(O) , ... , lu(v») is 
principal at Q means that for some i with 0 ~ i ~ v (where i depends 
on Q) we have bu(i)l ~ bu(j)l"'" bu(i)n ~ bu(j)n for 0 ~ j ~ v. 

In the above description of AMT, if X = X where X = (Xl,"" X n), 
then we may call VI an EMT (=Elementary Monoidal Transform) 
of V relative to X, and we may say that the basis (Yil,"" Yin) of 
the maximal ideal of the local ring of the relevant point of Vi is ele­
mentarily related to X. By constructing V2 in terms of such a basis 
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(YiI, ... , Yin) and SO on, we get the idea of an IEMT (= Iterated EIe­
mentary Monoidal Transform) W = Vr of V relative to X, and we get 
the idea of a basis of the maximal ideal M (S) of the local ring S of a 
point Q of W to be elementarily related to X. It is clear that if f has 
an NC at P relative to X, and if Y is a basis of M(S) elementarily 
related to X then f has an NC at Q relative to Yj let us call this the 
invariance of NC under IEMT. 

The construction of the IAMT to be described in this paper was 
cuHed from my old desingularization papers [A4,A6]j for background 
material see the main part of the present book as weH as my book 
[A7]. This culling was inspired by the stimulating conversations which 
I had with Parusinski [A14], Seiler and Sussmann [A15], while we 
were attending the conferences at Krak6w and Warsaw in September­
October 1996 to celebrate the 70th birthday of Lojasiewicz. 

In the next section we shall prove some auxiliary lemmas, and then 
in the last section we shall construct the IAMT asserted in the above 
theorem by induction on n. The construction of the IAMT can be 
carried out, and hence the theorem can be proved, without assuming 
K to be algebraically closed. But for simplicity of exposition we shall 
continue to assurne K to be algebraically closed. 

Section 3. Auxiliary Lemmas 

In this section we shall prove the three auxiliary lemmas. 

Reduction Lemma. Assume that f has an NC at P relative to X = 
(XI, ... , X n), i.e., for 0 ~ w ~ 1 we have fw = fw(X)Xfw1 ... X~wn 
where f w is a unit in R = K[{X}], and awI, ... , awn are nonnegative 
integers. Let e be a positive integer. For every nonnegative integer b, 
let b be the residue of b modulo e, i.e., let b be the unique integer with 
o ~ b < e such that b-b is divisible bye. Then there exists an IEMT W 
of V relative to X such that, for a basis Y = (Y1, •.• , Yn) of the maxi­
mal ideal M (S) of the local ring S of any point Q of W which is elemen­
tarily related to X, for 0 ~ w ~ 1 we have fw = c5w(Y)Ytw1 ... Y:wn 
where c5w(Y) is a unit in S = K[{Y}], and bWl! ... ' bwn are nonnega-
tive integers such that for w = 0 we have bOi + ... + bon< e. 

We shall prove this by induction on aOi +- . +aQn. IfaOl + .. ·+aon < 
ethen we have nothing to show. So let aOi + ... + aOn ~ e and assurne 
for all values of aOi + ... + aOn smaller than the given value. Now there 
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is a unique integer t with 2 ::; t ::; n such that for every subsequence 
1 ::; u(l) < ... < u(t - 1) ::; n we have aOu (l) + ... + aOu(t-1) < 
e, but for some subsequence 1 ::; u(l) < ... < u(t) ::; n we have 
aOu (l) + ... + aOu(t) ~ e. Upon relabelling Xl, ... ,Xn we can arrange 
matters so that aOl + ... + aOt ~ e Let R' be the local ring of any 
point P' of the AMT V' of V with center Xl = '" = Xt = O. We 
can take i with 1 ::; i ::; t such that X j / Xi E S for 1 ::; j ::; t. Let 
X' = (X{, . .. ,X~) where XI = Xi, Xj = (Xj / Xi) - Aj with Aj E K 
for 1 ::; j ::; t with j f i, and Xk = Xk for t < k ::; n. Then 
X' is a basis of M(R') which is elementarily related to X, and for 
o ::; w ::; I we have fw = f~(x,)x{a:"l ... X~ a:"n where f~(X') is a 
unit in R' = K[{X'}], a~i = aw1 + ... + awt, a~j = awj for 1 ::; j ::; t 
with j f i and Aj = O,a~j = 0 for 1 ::; j ::; t with j f i and Aj f 0, 
and a~k = awk for t < k ::; n. Since a01 + ... + aOt - aOi < e and aOi < e 
and aOl + ... + aOt ~ e, we see that a~i = aOl + ... + aOt - e < aOi 
and hence a~l + ... + a~n < aOl + ... + aon. Therefore we are done by 
induction. 

Principalization Lemma. Assume that f has an NC at P relative 
to X = (Xl, ... ,Xn ). Then there exists an IEMT W of V relative to 
X such that, at every point Q of W, the hypersurface f has an NC 
relative to a basis Y = (Yl, ... , Yn ) of the maximal ideal M(S) of the 
local ring S of Q which is elementarily related to X, and, for every 
subsequence 0 ::; u(O) < ... < u(v) ::; 1, the ideal (lu(O) , ... , fu(v)) is 
principal. 

To prove this, in view of the invariance of NC under IEMT, it suffices 
to show that, assuming 1 = 1 there exists an IEMT of W of V relative 
to X such that, at every point Q of W, the ideal (10, ft) is principal. 
Since f has an NC at P relative to X, for 0 ::; w ::; 1 we can write 
fw = fw(X)XfUll ... X~Uln where fw is a unit in R = K[{X}], and 
aw1, ... ,awn are nonnegative integers. Let us make induction on n. If 
n = 1 then every ideal in R is principal and hence we have nothing 
to show. So let n > 1 and assume for n - 1. Let us make a second 
induction on a nonnegative integer N such that laoi - alil ::; N for 
some i with 1 ::; i ::; n. If N is zero then we are done by the n - 1 
case. So let laoi - a1il = N > 0 for some i with 1 ::; i ::; n, and 
assume for all values of N smaller than the given value. Relabelling 
Xl, ... ,Xn and relabelling fo, ft we may assume that a01 - an = N. 
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By the n - 1 case we mayassurne that either a02 ::; a12, ... ,aOn ::; aln 
or a02 2: a12, ... ,aOn 2: aln' In the latter case 101ftE Rand hence we 
have not hing more to show. So assurne that a02 ::; a12, ... ,aOn ::; aln. 
Under the assumption that aOl - an = N and a02 ::; a12," . ,aOn ::; 
aln, we shall make a third induction on the sum la12 - a021 + ... + 
laln - aonl· If this sum is zero then 101ftE Rand hence we have 
nothing to show. So let the sum be positive and assurne true for all 
values of the sum smaller than the given value. If la12 - a021 < N 
then we are done by the second induction hypothesis. So assurne that 
la12 - a021 2: N. Let R' be the local ring of any point P' of the 
AMT V' of V with center Xl = X2 = O. If X 2/Xl ER', then 
ftllo E R' and hence we have nothing more to do. If X21 Xl tt R', 
then X' = (XL ... , Xn) = (Xt/ X 2, X 2, ... ,Xn) is a basis of M(R') 
which is elementarily related to X, and for 0 ::; w ::; 1 upon letting 
a:Vl = awl, a:V2 = awl + aw2, a:V3 = aw3,"" a:Vn = awn we have 
Iw = t:,(x,)x~a:Vl ... X~ a:"n where t:'(X') = t:(X) = a unit in R', and 
clearly aOl - a~l = N and a02 ::; ab, ... ,aon ::; a~n and la~2 - a021 + 
... + la~n - aonl = la12 - a021 + ... + laln - aonl- N, and hence we 
are done by the third induction hypothesis. 

Good Point Lemma. Let R* = K[{X2, ... , Xn}] and assume that 
there exist nonnegative integers d, D, S2, ... ,Sn, together with nonzero 
elements ho, ... , hD+1 in R, such that 

1= ho··· hD+l with ho/(X~2 ... X~n) E R \ M(R) 

and 

and 

hD+l = Xf + L LjXt-j with Lj E R* lor 1 ::; j ::; d. 
l~j~d 

Let 
g=hl ... hD+1 and m=D+d 

and assume that m 2: 2 and 

g = Xi + L GjXr;-j with Gj E M(R*)j lor 2 ::; j ::; m. 
2~j~m 
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Also assume that for some e with 2 ::; e ::; m we have 

and Gn:"!/jjGm!/e E R* fior 2< J' < m. 
J e - -

Finally assume that there are nonnegative integers bj2 , . .. ,bjn such 
that 

Gj j(X;i2 ... X~in) E R*\M(R*) for all j with 2::; j::; m and G j =I 0 

and 
be2 + ... + ben < e 

where, for every nonnegative integer b, we are letting b denote the 
residue of b modulo e. Then there exists an IEMT W of V relative 
to (Xl."" X n) such that the maximal ideal M(S) of the loeal ring 
S of any point Q of W has a basis (Y1, ... ,Yn) which is elementarily 
related to (Xl, ... , X n) and for which, either f has an Ne at Q relative 
to (Y1, ... , Yn), or we have 

where t2, ... ,tn are nonnegative integers, and 

and 

h~ = hi/(Yi2 ••• y~n) = YI + Hf with Hf E R* for 1 ::; i ::; D 

and 

with 

and 

hu h j(y;dt2 y:dtn ) _ vd + '" LUvd-j 
D+l = D+l 2 ... n - LI ~ jLl 

l~j~d 

L~ E R* for 1 ::; j ::; d 

{ 
either D ~ 1 and Hf rt M ~ R*) for some i with 1 ::; i ::; D 

or d ~ 1 and L~ rt M(R*)3 for some j with 1 ::; j ::; d. 
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We shall prove this by induction on q2 + ... + qn where q2,·· ., qn 
are the nonnegative integers with be2 = eq2 + be2 , . .. , ben = eqn + ben. 
Clearly q2 + ... + qn ~ 1. We shall simultaneously treat the initial case 
of q2 + ... + qn = 1 and the inductive step which says that the general 
case follows from the case of smaller values of q2 + ... + qn. By suitably 
relabelling X2, ... , X n we may assume that q2 ~ 1. Let R' be the local 
ring of any point P' of the AMT V' of V with center Xl = X2 = o. If 
Xt/X2 f/. R' then (Xl,· .. ,X~) = (XI,X2/XI,X3, ... ,Xn) is a basis 
of M(R') which is elementarily related to (Xl. ... , X n ) and we have 

f = hog 

with 

and 
g/x~m = 1 + L (Gj/x4)X~j 

2~j~m 

with 
Gj /x4 E R* eR' for 2 ~ j ~ m 

and hence gjX1Tn E R' \ M(R'), and therefore f has an NC at P' 
relative to (Xl' ... ' X~). 

So henceforth assume that Xt/X2 ER'. Then (XL ... ,X~) = 
«Xt/ X 2) - >., X2,· .. , X n ), with a unique >. E K, is a basis of M(R') 
which is elementarily related to (Xl. ... , X n ) and upon letting 

and 

we see that 

and 
g' = (X~ + >.)m + L (Gj/x4)(X~ + >.)m-j 

2~j~m 
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with 

where we note that 

R* = K[{X2 , .•. ,Xn }] = K[{X~, ... ,X~}] c K[{X~, ... ,X~}] = R'. 

Since g = h1 ... hD+l and q2 2: 1, it follows that 

, h' h' g = 1'" D+1 

where 

and 

with 

h~+l = hD+1/X~d = (X~ + A)d + L (Lj/x4)(X~ + A)d-j 

1':;j':;d 

Note that now 
g' = x~m + L Gjx~m-j 

1':;j':;m 

where 
Gj E R* for 1 ~ j ~ m with G~ = mA 

and 
h~ = X~ + H{ with H{ E R* for 1 ~ i ~ D 

and 

h' - X'd + " L'X,d-j D+1 - 1 L.- j 1 with Lj E R* for 1 ~ j ~ d. 
l':;j':;d 

Since g' = h1 ... h~+ l' by the above three displayed equations we get 
the implication saying that: 

Gj ~ M(R*)j for some j with 1 ~ j ~ m 

{ 
either D 2: 1 and Hi rf. M(R*) for some i with 1 ~ i ~ D 

{::} . 
or d 2: 1 and Lj ~ M(R*)J for some j with 1 ~ j ~ d. 
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If A =I 0 then Gi = mA f/. M (R*) and hence we are done by the 
above impIication. If A = 0 then Gi = 0 and Gj = Gj /x4 for 2 ~ 
j ~ m. Therefore if A = 0 and q2 + ... + qn = 1 then, because of the 
inequaIity be2 + ... + ben < e, we see that G~ f/. M(R*)e and hence 
again we are done by the above impIication. Finally, if A = 0 and 
q2 + ... + qn > 1 then 

G~ = 0 and Gj E M (R*)j for 2 ~ j ~ m 

and 
'I· 'I G~ =I 0 and Gj m. J / G~ m. e E R* for 2 ~ j ~ m 

and upon letting bj2 = bj2 - j, bj3 = bj3 , ... , bjn = bjn we see that 
bj2' ... ,bjn are nonnegative integers such that 

Gj/(X~bj2 ... X~bjn) E R*\M(R*) for all j with 2 ~ j ~ m and Gj =I 0 

and 
-I -I 
be2 + ... + ben< e 

and upon letting q~ = q2 -1, q~ = q3, ... , q~ = qn we see that q~, . .. ,q~ 
.. 'th b' I -b' b' I -b' d are nonnegatlve mtegers Wl e2 = eq2 + e2"'" en = eqn + en an 

q2 + ... + q~ < q2 + ... + qn and hence we are done by induction. 

Section 4. Proof of the Theorem 

We shall now prove the Analytic Desingularization Theorem by in­
duction on n. For n = 1 we have nothing to show; just take W = V. 
So let n > 1 and assume the Theorem to be true for n - 1. In view 
of the PrincipaIization Lemma, it suflices to show that (*) there exists 
an IAMT W of V such that f has an Ne at every point Q of W. 
Recall that the R-order of f is defined by putting ordRf = c where 
cis the unique nonnegative integer such that f E M(RY \ M(R)c+l. 
Also recall that for any I c M(R), the (R/I)-order of fis defined by 
putting ordRI I f = C' where c' is the unique nonnegative integer such 

that fE (IR+M(Ry')\(IR+M(R)C'+l) if f f/. IR, and ordR1d = 00 

if fE IR. Let us consider pairs (d, D) of nonnegative integers and or­
der them lexicographically, i.e., (d,D) < (d',D' ) {:} either d = d' and 
D < D' or d < d'. 
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Since K is infinite, we can find a basis (Xi, ... ,X~) of M(R) such 
that upon letting 1* = (Xi, ... ,X~) we have ordRf = ordR/1.f. 
Therefore it makes sense to define the R-biorder of f to be the small­
est pair (d, D) for which there is a basis (XI, ... ,Xn ) of M(R) together 
with nonnegative integers r2,"" r n and nonzero elements ho,···, hD+1 
in R such that 

f = ho ··· hD+1 with hO/(X;2 " . X~n) ER \ M(R) 

and upon letting f = (X2 , ... , Xn) we have 

and 
OrdRhD+1 = ordR/fhD+1 = d. 

We shall prove (*) by induction on (d, D). If (d, D) = 0 then there 
is nothing to show; just take W = V. So let (d, D) > (0,0) and 
assurne true or all values of (d, D) smaller than the given value. Upon 
letting R = K[{X2 , ... , Xn}] and absorbing suitable unit factors of 
hl , ... , hD+1 into ho, by WPT (= Weierstrass Preparation Theorem) 
we mayassume that 

and 

hD+I = Xf + L Ljxf-j with L j E M(R)j for 1 S; j S; d. 
l~j~d 

Let 
g=hl ... hD+1 and m=D+d. 

Then m 2:: 1 and 

9 = Xl + L GjXr;-j with Gj E M(R)j for 1 S; j S; m. 
l~j~m 

After making an SDT (= Shreedharacharya Transformation), Le., writ­
ing Xl for Xl + (Gl/m), we mayassume that GI = O. If Gj = 0 for 
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2::; j ::; m then f has an Ne at P relative to (Xl,"" Xn) and henee 
we have nothing more to show. So also assurne that m ~ 2 and G j =I 0 
for some j with 2 ::; j ::; m. 

Let V be the loeal spaee Kn-l near the origin P : X2 = ... = 
Xn = O. By the basic induetion hypothesis, Le., by the n - 1 ease of 
the theorem, we ean find an IAMT W of V such that, at every point 
Q of W, the hypersurfaee 

j(r2 Xr" ( rr G ) 
2 •.• n 2~j~m with GdO j 

has an Ne and the ideal 

(Gm!/2 Gm!/m) 2 , .•. , m 

is principal. It follows that for some e with 2 ::; e ::; m we have 

Ge =I 0 and Gr:'!/j/Gm!/e E S for 2 < J' < m 
J e - -

where S is the loeal ring of Q. In view of the Reduetion Lemma we may 
assurne that the maximal ideal M(S) of S has a basis CYz, ... , Yn ) for 
which there are nonnegative integers S2,' .. ,sn and bj2 , ... , bjn such 
that 

and 

and 
be2 + ... + ben < e 

where, for every nonnegative integer b, we letting b denote the residue 
of b modulo e. Let W be the eorresponding IAMT of V, let Q be the 
eorresponding point of W, and let "Vi = Xl. Then ("Vb"" "Vn ) is a 
basis of the maximal ideal M (8) of the loeal ring S of Q on W, and 
we have 

f = ho ... hD+1 with hO/(Y;2 ... y;n) E S \ M(S) 
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and 

and 

hD+1 = Yl + L Ljy1d-j with Lj E M(S)j for 1 ~ j ~ d 
l~j~d 

and 

and 

2~j~m 

G·j(m- j 
3 1 with Gj E M(S)j for 2 ~ j ~ m. 

Now by the Good Point Lemma we can achieve a reduction in (d, D). 
This completes all the inductions, and hence proves the theorem. 
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