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Preface to the Second Edition

The common solutions of a finite number of polynomial equations in
a finite number of variables constitute an algebraic variety. The degrees
of freedom of a moving point on the variety is the dimension of the
variety. A one-dimensional variety is a curve and a two-dimensional
variety is a surface. A three-dimensional variety may be called a solid.
Most points of a variety are simple points. Singularities are special
points, or points of multiplicity greater than one. Points of multiplicity
two are double points, points of multiplicity three are triple points,
and so on. A nodal point of a curve is a double point where the curve
crosses itself, such as the alpha curve. A cusp is a double point where
the curve has a beak. The vertex of a cone provides an example of a
surface singularity. A reversible change of variables gives a birational
transformation of a variety. Singularities of a variety may be resolved
by birational transformations.

In the last century, resolution of singularities of curves was achieved
by Riemann, Noether and Dedekind by analytic, geometric and alge-
braic methods, respectively; for a historical overview of the resolution
problem see my expository article [A8]; here items [Al] to [A17] re-
fer to the Additional Bibliography and items [1] to [26] refer to the
original Bibliography. Then, in case of characteristic zero, after sev-
eral attempts by the Italian geometers such as Albanese [11] and Levi
[16] at the turn of the century, surface desingularization was achieved
by Zariski [A17], who soon followed it up by solid desingularization
[25], which was brilliantly generalized by Hironaka [15] for higher-
dimensional varieties. In my Ph.D. thesis [2], I gave a proof of surface
desingularization in case of characteristic p, which later on I extended
first to arithmetical surfaces [A2] and then to two-dimensional excellent
schemes [A3]. Briefly, when the coefficients of the defining equations
of an algebraic curve are integers, by reducing them modulo various
prime numbers we get a family of algebraic curves over fields of dif-
ferent characteristics, and the resulting total object is called an arith-
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viii PREFACE TO THE SECOND EDITION

metical surface. A two-dimensional scheme is a further generalization
of this concept.

The present book contains the geometric part of the proof of solid
desingularization in characteristic p # 2,3, 5 which I obtained in 1965;
the algorithmic part is contained in my four previous articles [5] to [9);
the book does contain an alternative simple version of the algorithm for
characteristic zero; half of the book can also be used as an introduction
to birational algebraic geometry. I am thankful to Springer-Verlag for
reprinting this book which was first published in 1966 by Academic
Press. It may be hoped that this would stimulate other investigators
to settle the general desingularization problem for higher-dimensional
algebraic as well as arithmetical varieties. A discussion of this topic
addressed to scientists and engineers may be found in my 1990 book
[A7] which, according to the recent article [A11] by Hauser, “provides
a description of the state of the art in resolution of singularities and
related problems.”

There is also the question of canonical processes of desingulariza-
tion. Such a process for algebraic as well as arithmetical curves is
described in my 1983 article [A4] and revisited in my 1997 article
[A9]. Moreover, a discussion of such processes for higher-dimensional
varieties in characteristic zero can be found in my monographs [A5]
and [A6] of 1983 and 1988, respectively. These discussions together
with various incarnations of the trick employed in item (10.24) of the
present book have recently led me to discover a short proof of analytic
desingularization in characteristic zero for any dimension on which I
gave a lecture in various places in 1996-97. The text of that lecture is
inserted as an Appendix to the present new edition of the book.

Shreeram S. Abhyankar
West Lafayette
16 July 1997



Preface to the First Edition

Some twenty years ago there appeared, in the Annals of Mathe-
matics, the marvelous memoir of Zariski entitled: Reduction of
singularities of algebraic three-dimensional varieties. Not only was
a daring and ingenious solution of a difficult problem given in it,
but so much of the technique invented for the solution has proved
to be of such significance for algebraic geometry in general!

Hironaka’s brilliantly energetic recent solution of the general
resolution problem for zero characteristic constitutes, indeed, a
high tribute to Zariski’s memoir.

At present I am able to pay only a modest tribute to Zariski’s
memoir by giving a self-contained exposition of it. This then is
the primary aim of the monograph.

A secondary aim is to partially extend some of the results to
nonzero characteristic. The algorithm needed for such an extension
has already been published in four papers, and it will not be
repeated here. This monograph contains the geometric part of
the argument. However, we do include an alternative simple
version of the algorithm for zero characteristic thereby making
the monograph self-contained for that case.

Finally, the matter is so arranged that about half of the monograph
can be used as an introduction to certain foundational aspects of
algebraic geometry.

My thanks are due to Annette Wortman for an excellent job of
typing the manuscript. The work on this monograph was partially
supported by the National Science Foundation under NSF-GP-
4248-50-395 at Purdue University; I am grateful for this support.

September, 1966 S.S. A.
Purdue University
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§0. Introduction

Let & be a perfect ground field of characteristic p, and let X be
a nonsingular irreducible three-dimensional projective algebraic
variety over k. Then the principal results proved in this monograph
are:

Global resolution. Given any algebraic surface Y over k embed-
ded in X, there exists a sequence X - X; > X, > ... > X,, > X’
of monoidal transformations with nonsingular irreducible centers
such that the total transform of Y in X’ has only normal crossings
and the proper transform of Y in X’ is nonsingular.

Global principalization. Given any ideal I on X, there exists
a sequence X — X; - X, — ... > X,, > X’ of monoidal trans-
formations with nonsingular irreducible centers such that the
inverse image of I on X' is locally principal.

Dominance. Given any irreducible projective algebraic variety
X* over k such that X* is birationally equivalent to X, there exists
a sequence X — X; —> X, > ... > X,, > X’ of monoidal trans-
formations with nonsingular irreducible centers such that X’
dominates X*.

Birational invariance. If k is algebraically closed and X* is any
nonsingular irreducible projective algebraic variety over k such
that X* is birationally equivalent to X, then A{(X) = A% X*) for
all 7 > 0, where #*(X) denotes the vector space dimension over &
of the 7th cohomology group of X with coefficients in the structure
sheaf, and hence, in particular, the arithmetic genus of X = the
arithmetic genus of X*.

Uniformization. Assume that either p = 0, or k is algebraically
closed and p # 2, 3, 5. Let K be any three-dimensional algebraic
function field over & and let W be any valuation ring of K con-
taining k. Then there exists a projective model of K/k on which
the center of W is at a simple point.

Birational resolution. Assume that either p = 0, or k is alge-
braically closed and p # 2, 3, 5. Let K be any three-dimensional
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2 §0. INTRODUCTION

algebraic function field over k. Then there exists a nonsingular
projective model of K/k.

History. The following version of global resolution was
proposed by Levi [16] and proved by Zariski [25]: if p = 0 and ¥V
is any irreducible algebraic surface over k embedded in X, then
there exists a sequence X — X; > X, — ... —> X,, > X' of
monoidal transformations with nonsingular irreducible centers
such that the proper transform of Y in X’ is nonsingular. For
p = 0, Zariski [25] proved dominance. For p = 0, Zariski [23]
proved uniformization for function fields of any dimension. For
p = 0, Zariski [25] deduced birational resolution from uniformiza-
tion and global resolution (in the form just mentioned). For
p = 0, Hironaka [15] generalized all the above six results to varie-
ties of any dimension. What we have called global principalization
corresponds to what Hironaka [15] has called trivialization of a
coherent sheaf of ideals.

We now describe the contents of the various chapters.

Chapter One. In this chapter we prove a certain local version
of global resolution which may be called resolution, and from it we
deduce a certain local version of global principalization which may
be called principalization; it may be noted that for this deduction
it is necessary to have resolution without assuming Y to be
irreducible. In §1 and §2, we establish the terminology and make
some general observations concerning the basic concepts. In §3
we prove a theorem (see (3.21)) which corresponds to what
Zariski [25] has called the dominant character of a normal sequence,
and which says that if the multiplicity of a given point of the
embedded surface Y can be decreased by monoidal transformations
of a certain type then it can also be decreased by monoidal trans-
formation of a more restricted type; this has the effect of reducing
the proof of resolution to an apparently weaker assertion. In §4 the
proof of this weaker assertion is further reduced (see (4.22)) to a
certain statement (x) concerning monic polynomials in an
indeterminate with coefficients in a two-dimensional regular lo-
cal domain. The proof of resolution depends on the algo-
rithm developed in the papers [5], [7], [8], and [9]; however,
the matter is so arranged that this dependence is reduced to a
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single point; namely, a part of [9: Theorem 1.1] is restated as (5.1)
which is nothing but the said statement (). In §5, the main re-
sults of the chapter are deduced as direct consequences of (5.1),
(4.22), (3.21), and the preliminary considerations made in §1 and
§2. For the purpose of comparison, in §5 we give an alternative
simple proof of (5.1) for p = 0 which does not in any way depend
on the papers [5], [7], [8], and [9]; instead it uses the trick of
killing the coefficient of Z*~! in a polynomial of degree e in an
indeterminate Z; this trick was effectively used by Hironaka
in [15], and it was also used by Abhyankar and Zariski in [10]. As
far as the case of p = 0 is concerned, the said alternative proof of
(5.1) has the effect of making the entire monograph independent
of the papers [5], [7], [8], and [9].

Chapter Two. §6 contains some generalities on the language of
models. In §7 we show that resolution implies global resolution.
In §8 we show that principalization implies global principalization,
and that global principalization implies dominance. In deducing
birational resolution from uniformization and global resolution,
Zariski [25] made use of the theorem of Bertini on the variable
singularities of a linear system; in doing so he had to apply global
resolution to a generic member of a linear system and hence to a
surface not defined over k but defined over a pure transcendental
extension k* of k. Now for p # 0 this approach causes two
difficulties; namely, in the first place the said theorem of Bertini
is then not valid and in the second place &£* will not be perfect.
However, in §8 we show that retaining a part of Zariski’s argument
but replacing the use of Bertini’s theorem by the use of global
principalization (as suggested by Hironaka) and without ex-
tending the ground field k&, it is possible to deduce birational
resolution from uniformization for any p. We refer to Serre [22] for
the definition of the cohomology groups and for the result that
the A’ are finite and their alternating sum equals the arithmetic
genus as classically defined in terms of the Hilbert polynomial; and
we refer to Matsumura [17] for the result that: if & is algebraically
closed and X and X* are any irreducible nonsingular projective
algebraic varieties over k such that X and X* are birationally
equivalent and X* dominates X, then AX) < A¥(X*) for all
1 > 0, and if moreover X* is a monoidal transform of X with a
nonsingular irreducible center then A%(X) = h¥X*) for all ¢ > 0;
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in view of these two references, birational invariance follows from
dominance. In §9 we collect together the main results of this
chapter, i.e., global resolution, global principalization, dominance,
birational invariance, and the implication: uniformization = bira-
tional resolution.

Chapter Three. As said above, for p = 0, Zariski [25] deduced
birational resolution from uniformization and global resolution. In
§10 we show that, for p = 0, uniformization can also be deduced
from resolution; it may be noted that for this deduction it is
necessary to have resolution for the total transform and without
assuming Y to be irreducible. In §l11 we state the resulting
theorem: birational resolution for p = 0; thus, in view of the
above-mentioned alternative proof of (5.1) for p = 0, we shall have
completely reproved this theorem without using any results from
the papers [5], [7], [8], and [9], and without appealing to Zariski’s
paper [23] on uniformization. Actually what we show in §10 is
somewhat stronger; namely, assuming resolution, we prove
uniformization under the hypothesis that: the residue field of the
given valuation ring W is algebraic over k and there exists a
projective model of K/k on which the center of W is at a point of
multiplicity e such that e! 3¢ 0 mod p. Consequently we would
have birational resolution also for p # 0 if we could find a projec-
tive model of K/k such that every algebraic point of it has multi-
plicity < p. In §12 we show that it is possible to find such a model
provided k is algebraically closed and p # 2, 3, 5. In §13 we state
the resulting theorem: birational resolution when £ is algebraically
closed and p # 2,3, 5. What we actually prove in §12 is this:
assume that k is algebraically closed and let L be an algebraic
function field over k of any dimension #; then there exists a
projective model of L/k such that every rational point of it has
multiplicity <n!. For n = 2 this theorem is due to Albanese [11]
and Artin [12]. Our proof for any 7 is a straightforward generaliza-
tion of Artin’s proof; however, we do not fall back on any general
intersection theory or exact sequences, but give a self-contained
proof using only a few leisurely readable pages of Zariski-Samuel
[28].

In (1.2) of §1 we collect together a few definitions and pertinent
facts from Grothendieck’s theory of excellent rings [14]. The use
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of these enables us to prove some of the results in a some what
stronger form than described above; in particular also for algebroid
varieties.

With an eye on arithmetical geometry, in most of this monograph,
except in some crucial steps, the characteristic of a local domain
is permitted to be different from the characteristic of its residue
field.

We shall have occasion to use the following four known results:
(0.1) and (0.2) are elementary facts about two-dimensional regular
local domains and they are proved in [3: Lemma 12] and [6:
Theorem 2] respectively; (0.3) is a generalization of Zariski’s fac-
torization theorem and is proved in [3: Theorem 3]; (0.4) is due to
Hironaka and is proved in [15: Theorem 2 on page 220]; for
terminology see §1.

(0.1). Let (R,)o<icw be an infinite sequence of two-dimensional
regular local domains such that R is a quadratic transform of R;_,

for 0 < i << o0, and let V = U R, . Then V is a valuation ring of

the quotient field of R, and V dominates R; and V is residually
algebraic over R, for 0 < ¢ < 0. Moreover, zf V' is any valuation
ring of the quotient ﬁeld of R, such that V' dominates R; for
0<i<othenV' = V.

(0.2). Let R, be a pseudogeometric two-dimensional regular local
domain, let V be a valuation ring of the quotient field of R, such
that V dominates Ry, and V is residually algebraic over R, let
(R)o<i<w be the unique infinite sequence such that R, is the quadratic
transform of R,_; along V for 0 < i< co, and let f, , ..., f, be any
finite number of nonzero elements in V. Then there exists a non-
negative integer m and a basis (x,y) of the maximal ideal in R,
such that f; = g;x®9y* where g; is a unit in R,, and a(j) and b(j)
are nonnegative integers for 1 <j < ¢

(0.3). Let R and R* be two-dimensional regular local domains
such that R and R* have the same quotient field and R* dominates R.
Then there exists a unique finite sequence Ry, R, , ..., R, , (m > 0),
of two-dimensional regular local domains such that R, = R, R,, = R*,
and R, is a quadratic transform of R;_, for 0 < i < m.
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(0.4). Let A be a noetherian domain such that A, is regular for
every prime ideal P in A. Let Q be a prime ideal in A such that
(A4/Q)p is regular for every prime ideal P' in A/Q. Let ] be an ideal
in A. Then there exists an ideal H in A with H¢Q such that
ord,, ] = ord, ] for every prime ideal P in A for which H¢ P
and(Q C P.

We have tried to make the monograph fairly self-contained.
Namely, with a few exceptions, we only use some well-known
results from commutative algebra to be found in the books [4],
[18], [27], and [28]; the only exceptions are: the above four
results (0.1) to (0.4); the above-cited specific references to
Grothendieck [14], Matsumura [17], and Serre [22]; and the said
restatement (5.1) of [9: Theorem 1.1]. §1, §6, §10, and §12 could
be used as a possible introduction to certain foundational aspects
of algebraic geometry.

Most of the considerations of §1 may be used tacitly in the rest
of the monograph. The logical interdependence of the remaining
sections is thus:

§2
'
§$3—~ 84 —~8§5
N
§6 — §7
NN
§8 — §9
!
§10 — §11
i

§12 — §13



CHAPTER 1

Local Theory

§1. Terminology and preliminaries

(1.1). By a ring we mean a commutative ring with identity.
A ring is said to be normal if it is integrally closed in its total
quotient ring. By a domain we mean an integral domain. By a prime
ideal (resp: a maximal ideal) in a ring A we mean an ideal P in 4
such that 4/P is a domain (resp: a field); note that then P 7 4.
For any ideal P in a ring A4, by rad,P or rad P we denote the
radical of P in 4. Let A4 be a ring and let P be an A-module; for
any subset Q of P, by QA we denote the A-submodule of P
generated by Q; for any elements x, , ..., x, in P, by (x,, ..., x,)4
we denote the A-submodule of P generated by «x, , ..., x,,; elements
%y, .oy X, In P are said to form an A-basis (or simply, a basis) of
Pif P = (x,, ..., x,)A; P is said to be a finite A-module if P has
a finite A-basis. For any subset P of a ring B and any element x
in B, by xP or Px we denote the subset {xy: y € P} of B; note that
if P is an A-submodule of B for a subring 4 of B then xP is an
A-submodule of B, and if moreover (x,, ..., x,) is an A-basis of P
then (xx, , ..., xx,) is an A-basis of xP. Given a ring 4, let N be
the set of all nonnegative integers z such that there exists a chain
of distinct prime ideals P,CP,C---CP, in A; we define:
dim4 = —w if N = g, dim 4 = the greatest integer in N if N
is a nonempty finite set, and dim 4 = oo if N is an infinite set.

By a quasilocal ring we mean a ring having exactly one maximal
ideal. The maximal ideal in a quasilocal ring R is denoted by M(R).
A subset f of a quasilocal ring R is said to be a coefficient set for R
if ¥ contains 0 and 1 and for every x € R there exists a unique
x’ €t such that x — x’ € M(R). Given quasilocal rings R and S,
we say that S dominates R if R is a subring of S and M(R) C M(S);
note that then M(R) = R N M(S). Given a quasilocal ring S and
set E of quasilocal rings, we say that S dominates E if S dominates
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8 1. LocaL THEORY

some element in E. Given sets E and E’ of quasilocal rings, we say
that E’ dominates E if every element in E' dominates E, and we
say that E’ properly dominates E if E' dominates E and for every
R e E there exists Se€ E’ such that S dominates R. A set of
quasilocal rings is said to be normal if every element in it is normal.
The quotient ring of a ring 4 with respect to a prime ideal P in 4
is denoted by A, . As a rule we consider only quotient rings of a
domain A with respect to prime ideals in 4, and we regard such
quotient rings to be subrings of a fixed quotient field of A. The
set of all quotient rings of a domain A4 with respect to the various
prime ideals in 4 is denoted by B(4); note that R — 4 N M(R)
is a one-to-one inclusion-reversing map of B(4) onto the set of all
prime ideals in 4 and the inverse map is given by P — A;; a
subset E of B(A4) is said to be closed in B(A) if there exists an
ideal Q in A such that E = {R e B(4): OR # R}. Note that if 4
is a subring of a domain B and S is any element in B(B) then S
dominates exactly one element R in B(A4); namely, R = 4 ) -

Given a domain B and a subring 4 of B, by trdeg,B we denote
the transcendence degree of the quotient field of B over the
quotient field of 4. Given a quasilocal ring R and a subring 4
of R, let h: R — R/M(R) be the canonical epimorphism and let &
be the quotient field of A(A4) in A(R); trdeg,h(R) is called the
residual transcendence degree of R over A and it is denoted by
restrdeg R; R is said to be residually algebraic (resp: residually
finite algebraic, residually separable algebraic, residually finite
separable algebraic, residually purely inseparable, residually finite
purely inseparable) over A if h(R) is an algebraic (resp: finite
algebraic, separable algebraic, finite separable algebraic, purely
inseparable, finite purely inseparable) extension of & (note that for
a field K of characteristic zero, K is the only overfield of K which
is regarded to be a purely inseparable extension of K); R is said
to be residually rational over A if h(R) = k.

By a local ring we mean a noetherian quasilocal ring. Let R be
a local ring; for any x € R we define: ordgx = max e such that
x € M(R)’; note that then: ordgx = 0 <> x =0; for any
@ # JCR we define: ordg] = maxe such that JC M(R);

note that ordg JR = ordg ] = min ordgx; also note that: ordg] =
xel

© < J = {0}; for any nonzero polynomial f(Z) =3 f,Z
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in an indeterminate Z with coefficients f; in R we define:
ordzf(Z) = min(Z + ordgf;) where the minimum is taken over
all 7 for which f; 5 0. The embedding dimension of a local ring R
is denoted by emdim R, i.e., emdim R is the vector space dimension
of M(R)/M(R)? as a vector space over R/M(R); note that if H is
any basis of M(R) and emdim R = n then n is the smallest
nonnegative integer such that there exist # elements in H which
form a basis of M(R); note that by [28: Theorem 20 on page 288§]
we know that dim R = the smallest nonnegative integer d such
that there exist d elements in R which generate an ideal which
is primary for M(R); hence in particular emdim R > dim R.
A local ring R is said to be regular if emdim R = dim R. We may
tacitly use the fact that every regular local ring is a unique fac-
torization domain (see [28: Appendix 7]), and hence in particular
it is normal. For any ideal | in a noetherian domain A4, the set
of all R e B(A4) such that JR # R and R/(JR) is not regular is
called the singular locus of (4, J) and is denoted by &(4, J).

A local ring is said to be analytically irreducible if its completion
is a domain. The completion R* of a local ring R is regarded to
be an overring of R; moreover, if R is analytically irreducible
then the quotient field of R* is regarded to be an overfield of the
quotient field of R.

Note that given any local rings R and .S and any homomorphism
f: R — S such that f{M(R)) C M(S), there exists a unique homo-
morphism f*: R* — S*, where R* and S* are the completions of R
and S respectively, such that f¥(M(R*)) C M(S*) and f*(x) = f(x)
for all x € R. The existence of f* can be seen thus. Given y € R*
take a sequence (y,) in R such that y, — y. Then (y,) is a Cauchy
sequence in R, and hence (f(y,)) is a Cauchy sequence in S because
f(M(R)) C M(S). Therefore there exists 2 € S* such that f(y,) — =2.-
Clearly 2 depends only on y and not on the sequence (y,). Define
f*(y) to be z. It is easily checked that f*: R* — S* is then a
homomorphism such that f*(M(R*)) C M(S*) and f*(x) = f(x)
for all x€ R. To prove the uniqueness let g: R* — S* be any
homomorphism such that g(M(R*)) C M(S*) and g(x) = f(x) for
all xe R. Since y — y, — 0 and g(M(R*)) C M(S*), we get that
&y —yn) > 0. Now g(y —y,) =g(») — f(v.) and hence
f(v,) — £(9). However, f(y,) — f*(y) and hence g(s) — f*(y).

Given local rings R and S such that R is a subring of S, we say
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that R is a subspace of S if R with its Krull topology is a subspace
of S with its Krull topology; note that this is so if and only if S
dominates R and there exists a sequence of nonnegative
integers a(n) such that a(n) tends to infinity with # and
R n M(S)y» C M(R)*™ for all n > 0. By a theorem of Chevalley
[28: Theorem 13 on page 270] it follows that if R is a complete
local ring and S is a local ring dominating R then R is a subspace
of S. Given local rings R and S such that S dominates R, let R*
and S* be the completions of R and S respectively, and let
f** R*— S* be the unique homomorphism such that
fX(M(R*)) C M(S*) and f*(x) = x for all x € R; note that then
R is a subspace of S if and only if f* is a monomorphism; namely,
it is clear that if R is a subspace of S then f* is a monomorphism;
also R and S are always subspaces of R* and S* respectively, and
hence the converse follows from the above-cited theorem of
Chevalley.

Given a valuation v of a field K, by R, we denote the valuation
ring of v, i.e., R, = {x € K: v(x) > 0}. By a valuation ring of a field
K we mean a subring ¥ of K such that K is the quotient field
of V and for every 0 # x € K we have that eitherx € Vor 1/x e V;
note that a ring V is a valuation ring of a field K if and only if
V is the valuation ring of some valuation of K. A valuation v of a
field K is said to be discrete if the value group of v is an infinite
cyclic group. Note that for any domain R we have that: R is the
valuation ring of a discrete valuation of the quotient field of
R < R is a one-dimensional regular local domain <> R is a one-
dimensional normal local domain (see [27: §6 and §7 of Chapter V]);
also note that if R is any one-dimensional regular local domain
with quotient field K and S is any subring of K contining R then
either S = K or S = R. Let R be a regular local domain with
quotient field K; for any nonzero elements x and y in R we define:
ordg(»/y) = (ordgx) — (ordgy) (note that since R is regular,
ordg(x/y) is uniquely determined by R and x/y); note that if
dim R 7 0 then ord, is a discrete valuation of K and upon letting
V' be the valuation ring of ord; we have that M(R)V = M(V)
and M(R)® = R N M(V)* for every nonnegative integer e, and for
any x € R we have that xV = M(V) if and only if ordgx = 1,
i.e., if and only if x € M(R) and x ¢ M(R)? (see [28: Theorem 25
on page 301]).
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By a saturated chain of prime ideals in a ring A we mean a
chain of distinct prime ideals PyC P, C ... C P, in A such that
there does not exist any prime ideal P in 4 such that P, CPC P, ,
and P, # P # P, for some i. A ring 4 is said to be catenarian
if for every two prime ideals Q C P in A4 the following condition
is satisfied: let N be the set of all nonnegative integers n such
that there exists a saturated chain of prime ideals P,C P, C... C P,
in 4 with Py = Q and P, = Q; then N contains exactly one element.

By a fimitely generated ring extension of a ring A we mean an
overring B of A such that B = A4[x,, ..., x,] for some finite
number of elements «, , ..., x, in B. By an affine ring over a ring
A we mean a domain which is a finitely generated ring. extension
of A. By a spot over a ring A we mean a quasilocal ring R such
R € B(B) for some affine ring B over A; note that if R is a spot
over a ring 4 and S is a spot over R then S is a spot over 4. By a
function field over a ring A we mean a field which is the quotient
field of some affine ring over 4, i.e., a field which is a spot over 4.

A ring A4 is said to be pseudogeometric if for every prime ideal
P in A and every finite algebraic extension K of the quotient field
of A/P we have that the integral closure of A/P in K is a finite
(A/P)-module. Note that every field is pseudogeometric, and
every homomorphic image of a pseudogeometric ring is pseudo-
geometric. The following two results of Nagata [18: (17.9), (32.1),
(36.5)] may be used tacitly.

(1.1.1). Every complete local ring is pseudogeometric.

(1.1.2). For every pseudogeometric ring A we have that every
finitely generated ring extension of A is pseudogeometric, and the
quotient ring of A with respect to any multiplicative set in A is
pseudogeometric; whence in particular, every spot over A is pseudo-
geometric.

(1.2). We shall now recall some aspects of Grothendieck’s
theory of excellent rings [14: 5.6 and 7.8]. For the purpose of this
monograph it will be enough to keep (1.2.6) in mind.

(1.2.1). For a noetherian ring 4 the following three conditions
are equivalent.
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(1) If X,,.., X, are any finite number of indeterminates then
A[X;, .., X,] is catenarian (note that A[X,,.. X,] =4 if
n = 0).

(2) If Q is any ideal in A4, B’ is any finitely generated ring
extension of A/Q, S is any multiplicative set in B’, and B is the
quotient ring of B’ with respect to S, then B is catenarian.

(3) A4 is catenarian, and for every prime ideal P in 4 and every
spot R over B = A/P we have that dim Bj. ) + trdegzR =
dim R 4 restrdegzR.

A ring A is said to be universally catenarian if A is noetherian
and the above three conditions are satisfied.

(1.2.2). Given a local ring R, we say that the formal fibers of
R are geometrically regular if for every prime ideal P in R and
every finite algebraic extension K of the quotient field of T = R/P,
upon letting T* be the completion of T, we have that (T* ®; K),
is a regular local ring for every prime ideal Q in T* ®; K.

(1.2.3). A ring 4 is said to be excellent if A is noetherian and
the following three conditions are satisfied.

(1) A is universally catenarian.

(2) For every prime ideal P in A the formal fibers of A, are
geometrically regular.

(3) Given any prime ideal P in 4 and any finite purely in-
separable extension K of the quotient field of A/P, there exists a
subring B of K and a subset E of B(B) such that A/PCB, Bis a
finite (4/P)-module, K is the quotient field of B, &(B, {0}) C E,
E is closed in B(B), and E #* B(B).

(1.2.4). A local ring R is excellent if and only if R is universally
catenarian and for every prime ideal P in R the formal fibers of R,
are geometrically regular.

(1.2.5). Let R be an excellent ring. Then there exists an ideal Q
in R such that for any prime ideal P in R we have that R, is regular
if and only if Q ¢ P. If R is local, then for any prime ideal P* in
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the completion R* of R we have that R}« is regular if and only if
Ry p ts regular.

(1.2.6).

(1) Every complete local ring is excellent; whence in particular,
every field is excellent. Every Dedekind domain of characteristic zero
is excellent.

(2) For every excellent ring A we have that every homomorphic
image of A is excellent, every finitely generated ring extension of A is
excellent, and the quotient ring of A with respect to any multiplicative
set in A is excellent; whence in particular, every spot over A is
excellent.

(3) Ewvery excellent ring is pseudogeometric.

In view of [18: (17.9)], by (1.2.5) and (2) we get the following.

(4) Let R be an excellent domain. If T is any affine ring over
R and Q is any ideal in T then &(T, Q) is closed in B(T). If T is
any regular spot over R and Q is any ideal in T then S(T, Q) is
closed in B(T) and, upon letting T* be the completion of T, we have
that &(T*, QT*) = {S € B(T*): Trrmcs) € (T, Q)}-

(1.3). We may tacitly use the following result of Nagata and
Zariski (see [18: (38.3)] or [15: Theorem 1 on page 218]).

(1.3.1). For any nonempty subset | of a regular local domain R
and any S € B(R) we have that ordg] > ord].

We shall now give two proofs of the following elementary fact,
one using (1.3.1) and the other without using (1.3.1).

(1.3.2). Let f(X,, ..., X,) be a nonzero polynomial of degree
<d in indeterminates X, , ..., X, with coefficients in a field k, let
Q be a prime ideal in A = K[X,, .., X,], let R= A,, and let
e = ordgf(X,, ..., X,). Then e < d.

Proor. First suppose that O is a maximal ideal in 4. Then
M(R)Y N A = Q¢ and hence f(X,, ..., X,)eQ° Let k* be an
algebraic closure of k and let A* = k*[X,, ..., X,]. Then A* is



14 1. LocAaL THEORY

integral over 4 and hence there exists a maximal ideal Q* in 4*
such thatQ* N 4 = Q (for instance see [4: Lemmas 1.19 and 1.20]).
Now Q¢CQ*¢ and hence f(X,, ..., X,)eQ*. By the Hilbert
Nullstellensatz [28: Lemma on page 165],

O* =(X; — 1y, oy Xy, — 1, )A*

with r, , ..., 7, in k*. Therefore

fXnX) = T i i oo X)Xy — 1) (X — 1Y
21+...+1"=8

where f; ;(X;,.., X,) are polynomials in X,.., X, with
coefficients in k*. Let g(X,, ..., X,,) and g; __; (X;, ..., X,,) be the
polynomials in X, ..., X, with coefficients in k* obtained by
substituting X, + 7y, ..., X, + 7, for X, , ..., X, in f(X;, ..., X},)
and f; ;(Xy, ..., X,) respectively. Theng(X,, ..., X,) isanonzero
polynomial of degree <d in X, ..., X, with coefficients in k*.
Upon substituting X; + 7, ..., X,, +r, for X;, .., X, in the
above displayed formula we get that

g(X1 >y Xn) = X Z gil-'-iﬂ(Xl; R Xn)Xfl X:;n
2t...tHi=e
and hence g(X, , ..., X,,) is either zero or is a polynomial of degree
> ein X;, ..., X, with coefficients in k*. Therefore e < d.

We shall deduce the general case from the special case proved
above in two ways. Take a maximal ideal Q' in 4 containing Q
and let R" = A4, . Then R’ is regular (see [28: Remark on page 310])
and R = Rpg . Therefore ordg f(X,, ..., X,) = e by (1.3.1) and
hence e << d by the special case proved above. Alternatively,
without using (1.3.1) we can argue thus. Let h: 4 — A/Q be the
canonical epimorphism. Upon suitably relabeling X, , ..., X, we
may assume that (A(X,,.,), ..., #(X,)) is a transcendence basis of
h(4) over h(k). Let A" = k(Xpiy, - X)Xy, .y X] and
Q" = QA". Then Q" is a maximal ideal in 4", R = Aj-, and
f(Xy, ..., X,) is a nonzero polynomial of degree <din X, ..., X,
with coefficients in k(X,,,;, ..., X;,). Therefore e < d by the
special case proved above.

The following generalization of [10: Lemma 3] is due to Sato
[21: Lemma 1].
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(1.3.3). Let R be an n- dzmenszonal local domain with n > 1.
Let x,, ..., x,, be elements in R suth that Q is primary for M(R)
where Q = (%, ..., x,)R. Let A = R[xy[x;, ..., x,/x,], and let h:
A — A[(M(R)A) be the canonical epimorphism. Then M(R)A
is a prime ideal in A, dim Ay, =1, M(R)A = rad(QA4),
RN (M(R)A) = M(R), and the elements h(xy/x,), ..., h(x,/x,) are
algebraically independent over h(R).

Proor. Clearly QA = x;4. Since Q is primary for M(R),
there exists a positive integer e such that M(R)* CQ, and then
(M(R)A)$ Cx,A. Let X, ..., X,, be indeterminates. Suppose if
possible that R N (M(R)A) # M(R); then we must have
M(R)A = A and hence x;4 = A; consequently x;y = 1 for some
0 # ye 4; since 0 #~ y € A, there exists a nonzero polynomial
f(X,, ..., X,) of some degree d in X, ..., X,, with coefficients in R
such thaty = f(x,/x, , ..., x,/%;); now x§ = x‘f“y =%, f(%y, -oey %)
where f'(X;, .., X,) i1s a nonzero homogeneous polynomial of
degree d in X, .., X, with coefficients in R; in particular
xf € M(R)Q? which is a contradiction by [28: Theorem 21 on
page 292]. Therefore R N (M(R)A) = M(R), and hence A(R) is
isomorphic to the field R/M(R). Suppose if possible that
h(xy/%,), ..., h(x,/x,) are algebraically dependent over A(R); then
there exists a nonzero polynomial F(X,, ..., X,) of some degree u
in X,, ..., X, with coefficients in R at least one of which
is not in M(R) such that F(x,/x,, ..., x,/x;) € M(R)A; since
F(xy/2, , ..., x,/%,) € M(R)A, there exists a polynomial G(X,, ..., X,)
in X, , ..., X,, with coefficients in M(R) such that F(x,/x, , ..., x,/x,)
= G(xy/%, , ..., %,/%;); upon multiplying both sides of this equation
by x7 for a suitable integer v > u we get that F'(x;, ..., x,) =
G'(xy, ..., x,) where F'(X,, .., X,) is a nonzero homogeneous
polynomial of degree v in X, ..., X, with coefficients in R at
least one of which is not in M(R), and G'(X,, ..., X,,) is either
the zero polynomial or a nonzero homogeneous polynomial of
degree v in X, ..., X,, with coefficients in M(R); in particular then
F'(xy, ..., x,) € M(R)Q® which is a contradiction by [28: Theorem 21
on page 292]. Therefore h(xy/x,), ..., h(x,/x,) are algebraically
independent over A(R). Since h(A) = h(R)[h(xy/x,), ..., h(x,/%)],
we get that A(A4) is a domain and hence M(R)A4 is a prime ideal
in A. Since (M(R)A)C x,4 = QA, by Krull’s principal ideal
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theorem [27: Theorem 29 on page 238] we conclude that
M(R)A = rad(Q4) and dim A4,z = 1.

(1.4). Let R be an n-dimensional regular local domain. Recall
that for any nonunit ideal P in R we have that R/P is regular if
and only if there exists a basis (x,, ..., x,) of M(R) such that
(%1, ..., %,,)R = P for some m (see [28: Theorem 26 on page 303)).
Now let (x,, ..., x,) be a basis of M(R). Then

(O)R C (x)R C (%, , %)R C ... C (x;, ..., x,)R

is a chain of distinct prime ideals in R. Therefore for any m with
0 < m < n upon letting P = (x,, ..., x,,)R and S = R, we get
that dim R/P = n — m, dim S = m, and S is regular. Given any
nonzero element w in R let d be the greatest integer such that
w e P4 then w = f(x,, ..., x,,) where f(X,, ..., X,,) is a nonzero
homogeneous polynomial of degree d in indeterminates X, ..., X,
with coefficients in S at least one of which is not in M(S); since
dim § = m and M(S) = (%, ..., x,)S, it follows that w e M(S)?
and w ¢ M(S)3*! (see [28: Theorem 21 on page 292]), i.e.,
ordgw = d. Consequently, for every positive integer e we have
that M(S)* " R = P¢ and hence P¢ is primary for P. Let S’
be the valuation ring of ordg. Then M(S') = x{S’ and
M(SyYNR = (M(S)yYNS)yNnR = M(Sy)NnR= P for every
nonnegative integer e. Let A: R — k and A': R— T be (ring)
epimorphisms such that Ker 2 = M(R) and Ker 2’ = P. Then
clearly there exists a unique epimorphism A”: T — k such that
h(u) = h"(h'(u)) for all ue R. Now assume that m > 1. Let
A = R[xy[/xy, ..., %,[%;]. Let B = T[X,, .., X,] and A* =
k[X,, ..., X,] where X,, ..., X, are indeterminates. Then we
have the following.

(1.4.1). PeAd = x34, PeS' = x{S" = M(S"), (PPA)NR =
Pe, and M(S') N A = PeA for every nonnegative integer e. PA is a
prime ideal in A and S" = A, . For any 0 = we A upon letting
d = ordgw we have that d is the greatest integer such that w € P24,
ie, wixicA and wix}¢ A MR)A = (2,, %pi1y - X)4,
M(R)A is a prime ideal in A, and (M(R)A) N R = M(R). There
exists a unique epimorphism H: A — A* such that H(x;/x)) = X,
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for 2 < i < m and H(u) = h(u) for all u € R; there exists a umque
epzmorphlsm H': A — B such that H'(x;/x,) = X, for 2 <i < m
and H'(u) = h'(u) for all u € R; and there exists a unique epimorphism
H": B — A* such that H'(X;) = X, for 2 < i < m and H"(u) =
h"(u) for all ue T. Moreover, Ker H = M(R)A, Ker H' = PA,
and H(u) = H"(H'(u)) for all ue A.

(1.4.2). Let H be as in (1.4.1). Let R’ € B(A) such that R’
dominates R. Let n' = dim R’, t = restrdegzR’, O = A N M(R’),
O* = H(Q), and R* = A}.. Then we have the following.

(1) PR =x{R’, (P'RYN A= P°A,and M(S')*N R" = PR’
for every nonnegative integer e. PR’ is a prime ideal in R' and
S’ = Ry . For any 0 = we R’ upon letting d = ordsw we have
that d is the greatest integer such that w € PR’ i.e., w/x} € R’ and
w/xiP ¢ R'. M(R)R' = (1, Xpi1 s - ¥,)R' and M(R)R' is a
prime ideal in R’.

(2) For any 0 # w € R such that ordsw = ord,w, upon letting
d = ordzw we have that ordg(w/x}) < d.

(3) R and R* are regular, restrdeg,R* = t, dim R* =
m—1—tandn > n-—n—t>n—m—]—lIszsanysubset
of A such that H(D)R* = M(R*) then DR' + (%1, %15 oy X)R' =
M(R"). If m’ is an integer with 1 < m’ < m such that x;/x, € M(R’)
for 2 < i < m' then there exist elements y,,...,y, in A, where
q=n —n+ m— m', such that

M(R') = (21, %27 5 ooy X [X1 3 Xpy1 s ooer Xy Y15 o0s YR

(4) The following six conditions are equivalent: (1) R’ is
residually algebraic over R; (2') n’ = n; (3') Q is a maximal ideal
in A; (4') O* is a maximal ideal in A*; (5') dim R* = m — 1;
(6') R* is residually algebraic over k.

(5) R’ is residually separable algebraic over R if and only if R*
is residually separable algebraic over k.

(6) R’ isresidually rational over R if and only if R* is residually
rational over k. If there exists r; € R such that (x;/x,) — r, € M(R’)
for 2 < i < m then

O = (1, (%/21) — 7oy ooy (BmfX)) — T, Xy 5 -ony %) 4,
M(R') = (%1, (%2/%1) — T s oo (Xna/%1) — T s Xmia s o x,)R’,
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and R’ is residually rational over R. If R’ is residually rational over
R then there exists r;€ R such that (x;x,) —r;e M(R') for
2 < i< m If R is residually rational over R and % is a coefficient
set for R then there exists a unique r; € ¥ such that (x;/x,) — r; € M(R’)
Jor2 <1< m.

(7) There exists a unique epimorphism H*: R' — R* such that
H*(u) = H(u) for all ue A. Moreover, Ker H* = (Ker H)R' =
M(R)R, = (%15 Xpg1 5 oo xn)R,'

Proor oF (1.4.1). Clearly P¢4A = x§{A and PeS' = x{S' =
M(S’) for every nonnegative integer e. Now ordsx, = 1 for
I <7 <<mand hence AC S’ For any 0 == w e 4 let d = ordw,
i.e., d = ordgw; since AC S’ we must have w/x¥t! ¢ 4; since
w € A there exists a nonnegative integer ¢ such that wx{ € R; then
ordswx{ = d + ¢ and hence wx$ € P?+; consequently wx{ € x§+‘4
and hence w/x]e A; thus d is the greatest integer such that
w e P?A. For every nonnegative integer e we therefore get that
M(S'¥N A= P4 and hence (PeA)N R = M(S'¥N R = P
Since PA = M(S')n A we get that PA is a prime ideal in 4
and hence A4,, is a one-dimensional regular local domain; clearly
Ap,CS and A,, and S’ have the same quotient field; therefore
S = A4,,. Let 4, = S[xy/x,, ..., x,,/%;]. Then AC 4, C S’ and
upon replacing (R, P) by (S, M(S)) in the above argument we get
that M(S')n 4, = M(S)A, and hence (M(S)4,) N A = PA.
Let A A, — A,/M(S)A, and hy: A — A/PA be the canonical
epimorphisms; then by (1.3.3) we know that h(x,/x,), ..., hby(x,,/x,)
are algebraically independent over h,(S), and hence a fortiori
ho(%y/21), ..., hy(x,,/%,) are algebraically independent over Ay(R).
Therefore there exists a unique epimorphism H': 4 — B such
that H'(x;/x,) = X; for 2 <i<m and H'(u) = h'(u) for all
u € R; moreover, Ker H' = Ker h, = PA = x,4.Since X, , ..., X,,
are indeterminates, there exists a unique epimorphism H": B — 4*
such that H"(X,) = X, for 2 <7 < m and H"(u) = h"(u) for all
ue T; clearly

Ker H” = (Ker h")B = (K'(xy), ..., h'(x,))B
= (H(), K (5mia)s s B (5,)B

and hence H' Y Ker H") = (x;, X,,11,..» 2,)4. Let H{u) =
H"(H'(u)) for all ue A. Then H: A — A* is an epimorphism
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such that H(x;/x,) = X; for 2 < ¢ < m and H(u) = h(u) for all
ueR; clearly H is the only such epimorphism and Ker H =
HYKer H") = (%, Xpy1 5 .oy )4 = M(R)A, and hence in par-
ticular M(R)A is a prime ideal in 4. Since Ker H = M(R)4,
Ker h = M(R), and H(u) = h(u) for all ue R, it follows that
(M(R)A) " R = M(R).

Proor oF (1.4.2). Now R' = A, and PAC M(R)ACQ and
hence (1) follows from (1.4.1). By (1.4.1) we know that Ker H =
M(R)A = (%, Xp1q s -, X,)A; since also M(R)A CQ, we get (7).
Let h*: R* — R*/M(R*) be the canonical epimorphism and let
h**(u) = h*(H*(u)) for all ue R’. Then h**: R’ — R*/M(R*)
is an epimorphism, Ker 2** = M(R’), and h**(R) = h*(k).
Therefore it follows that restrdeg,R* = ¢, and: R’ is residually
algebraic (resp: residually separable algebraic, residually rational)
over R if and only if R* is residually algebraic (resp: residually
separable algebraic, residually rational) over k. Clearly Q is a
maximal ideal in A4 if and only if Q* is a maximal ideal in A4%;
by the Hilbert Nullstellensatz [28: Lemma on page 165], we also
get that O* is a maximal ideal in A* if and only if R* is residually
algebraic over k. If there exists 7; € R such that (x;/x,) — r; € M(R’)
for 2 < 7 << m then Q* contains the maximal ideal (X, — A(7,), ...,
X, — h(r,))A* in A* and hence OQO* = (X, — A(ry), ...,
X,, — h(r,))A* and R* is residually rational over k; since
QO = HY(Q*) and Ker H = (x;, %41 -, X,)4, we deduce that
if there exists 7, € R such that (x,/x,) — r, € M(R') for 2 <1 < m
then

Q = (%, (%a/%1) ~ To\or, (Xpe/X0) = Ton s Xy s s X0)A4,

M(RI) - (xl ’ (xZ/xl) - 72 y ey (xm/xl) —Twm xm+1 [REEEE} x")R’,

and R’ is residually rational over R. The last two statements in (6)
are obvious. This completes the proof of (1), (5), (6), and (7); also
in view of what we have shown so far, (4) would follow from (3).
Given 0 #we R such that ordgw = ordzw let d = ordzw; then
ordgw=dand hence w = f(x,, ...,x,) where f(X, ..., X,,)is anonzero
homogeneous polynomial of degree d in indeterminates X, , ..., X,,
with coefficients in R at least one of which is not in P; since
ordyw = d, we get that at least one of the coefficients of
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f(Xy, .., X,) is not in M(R); let F(X, , ..., X,,) be the polynomial
in X,, ..., X, with coefficients in %k obtained by applying %
to the coefficients of f(1, X, , ..., X,,); then w/af € 4, H(w/x}) =
F(X,, .., X,), and F(X,, ..., X,) is a nonzero polynomial of
degree <din X,, ..., X,, with coefficients in k; therefore by (1.3.2)
we get that ordg.H(w/x}) < d, i.e., ordg.H*(w/x]) < d; clearly
ordg(w/x?) < ordg.H*(w/x}) and hence ordg(w/x}) < d. This
proves (2). It now only remains to prove (3). Now R* is regular
and dim R* = m — 1 — restrdeg, R* (see [28: Theorem 20 on
page 193 and Remark on page 310]); since restrdeg,R* = t, we
get that dim R* = m — 1 — t. Let D be any subset of 4 such
that H(D)R* = M(R*); then H(D)A* =Q*N N, N ..N N,
where N; is a primary ideal in A* with N;¢Q* for 1 <j < 53
since Ker H = (%, %, , --., X,)4, we get that

DA + (%1, %myr s ooy #)A = O A HANY O oo 0 HYN);

now H-YN,) is a primary ideal in A4 and HYN;)¢Q for
1 <j <s; therefore DR’ + (x;, %415 -0, X, )R° = M(R’). Let
m’ be any integer with 1 << m' < m such that x;/x, e M(R’) for
2 <i < m (for instance m' = 1). Let A" = k[X,-,,, ..., X,,].
Since X,, ..., X,, are indeterminates, there exists a unique epi-
morphism Hy: A* — A’ such that HyX;) = 0 for 2 < ¢
< m' and Hy(u) = u for all ue 4A’; note that then Ker H, =
(Xy, ooy X )A* CO*. Let Q' = Hy(Q*). Then Q' is a prime
ideal in A’ and there exists a unique epimorphism H,: R* — 4.
such that H,(u) = H,y(u) for all u € A*; note that then Ker H, =
(Xg, .oy X, )R*. Let Hy: Ay — Ay /M(Aj,) be the canonical
epimorphism and let Hy(u) = Hy(H,(u)) for all ue R*. Then
Hy: R* — A, /M(Ay) is an epimorphism, Ker H; = M(R*), and
Hy(k) = Hy(k). Consequently restrdeg, A, = restrdeg,R* and
hence restrdeg, A, = t. Therefore upon letting ¢ =m —m' — t
we get that A, is regular and dim 4, = ¢ (see [28: Theorem 20
on page 193 and Remark on page 310]). Consequently there exist
elements y, , ..., ¥, in 4 such that (Hy(H(yy)), ..., H(H(y,)))4o =
M(Ay ). Upon taking D = {x,/x; , ..., %,,//%; , Y1, ..., ¥} We get that
H(D)R* = M(R*) and hence (x;, X5/®; , ...y Xp'[®y s Xpppy s ooy Xy s
Y1 e YR = M(R'). Therefore if we show that dim R > n — ¢
then it will follow that dim R’ = n — ¢, R’ is regular, and
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g=n —mn-+m—m', and this will complete - the proof.
Since dim R* = m — t — 1, there exist distinct prime ideals
0,C0O,C...CQ,,_, in A* such that O, = {0} and Q,,_, = O*.
Now HYQ,) C HY(Q,) C ... C HY(Q,,_,) are distinct prime ideals
in 4, HYQ,) = Ker H, and HYQ,_,) = Q. We shall find
distinct nonzero prime ideals P, CP, ,C..CP, in A with
P, = Ker H and this will prove that dim R" > n — ¢. Let H' and
H’" beasin (1.4.1). By (1.4.1) we know that H'-(Ker H") = Ker H
and Ker H' # {0}. Consequently it suffices to find distinct prime
ideals P, C P, ., C...C P, in B with P, = Ker H" because then
we can take P = H'-YP,) for m < j < n. Let P; = (F'(xp41), -y
h'(x,))T form <j < m,and P,, = {0}. Then P,,CP,,,C..CP,
are distinct prime ideals in T and P, = M(T). Let kj: T — T/P;
be the canonical epimorphism and let P; = P;B. Since X, , ..., X,
are indeterminates, there exists a unique epimorphism H),:
B — h)(T)[X,, ..., X,,] such that H}(X;) = X, for 2 <i<m
and H;(u) = hj(u) for all ue T; clearly Ker H; = P; and hence

J

P; is a prime ideal in B and P;N T = P;. Therefore

P, CP,,,C..CP, are distinct prime ideals in B. Also
P, = M(T)B = Ker H".

(1.5). Given a local domain R and S € B(R), we say that S
has a simple point at R if R/(R N M(S)) is regular.

Let R be an n-dimensional regular local domain. Given E C B(R),
we say that E has a normal crossing at R if there exists a basis
(%1 5 .-y %,) of M(R) such that for each S € E there exists a subset
ys of {x;, ..., x,} such that yoR = R N M(S). Given E C B(R), we
say that E has a strict normal crossing at R if E has a normal crossing
at R and E contains at most two elements. Given a nonzero
principal ideal I in R, we say that I has a normal crossing at R if
{S’ € B(R): dim S’ = 1 and IS’ # S’} has a normal crossing at R;
note that this is equivalent to saying that there exists a basis
(xy, ..., x,) of M(R) and nonnegative integers 4, , ..., 4, such that
I = x$...x5»R. Given E C B(R) and a nonzero principal ideal /
in R, we say that (E, I) has a normal crossing at R if E U {S’ € B(R):
dim 8’ = 1 and IS’ # S’} has a normal crossing at R; note that
this is equivalent to saying that there exists a basis (x,, ..., x,) of
M(R), nonnegative integers a, , ..., 4, , and a subset yof {x,, ..., x,.}
for each S € E, such that I = x{' ... xy»R and R N M(S) = ysR for
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each S € E. Given E C B(R) and a nonzero principal ideal [ in R,
we say that (E, I) has a strict normal crossing at R if (E,I) has a
normal crossing at R and E contains at most two elements. Given
S € B(R) and a nonzero principal ideal I in R, we say that (S, I)
has a normal crossing at R if ({S}, I) has a normal crossing at R.
Given nonzero principal ideals [ and I in R, we say that (J, I) has
a quasinormal crossing at R if I has a normal crossing at R and for
every nonzero principal prime ideal P in R with JC P we have
that PI has a normal crossing at R. Given a nonzero principal
ideal I in R, we say that I has a quasinormal crossing at R if (I, R)
has a quasinormal crossing at R. Note that for any nonzero principal
ideal I in R the following four conditions are equivalent: (1) (1, I)
has a quasinormal crossing at R for some nonzero principal ideal
I' in R; (2) I has a quasinormal crossing at R; (3) for every
nonzero principal prime ideal P in R with I C P we have that R,
has a simple point at R; (4) I = 2, ... 2;R where 2, ..., 2; are
elements in R with ordgz; = 1 for 1 i < d(we takez,...3;R=R
in case d = 0). Given S € B(R) and a nonzero principal ideal I in
R, we say that (S, I) has a pseudonormal crossing at R if S has a
simple point at R and for every nonzero principal prime ideal P in
R with IC P we have that {S, R,} has a normal crossing at R.
Note that for any nonzero principal ideal I in R the following
three conditions are equivalent: (1*) (S, I) has a pseudonormal
crossing at R for some S € B(R); (2*) (R, I) has a pseudonormal
crossing at R; (3*) I has a quasinormal crossing at R. Given
E C B(R) and a nonzero principal ideal I in R, we say that (E, I)
has a pseudonormal crossing at R if I has a quasinormal crossing at
R and for every S € E we have that (S, ) has a pseudonormal
crossing at R.

For any ideal ] in a regular local domain R, the set of all
S € B(R) such that ordg] = ord,] is called the equimultiple locus
of (R, ]) and is denoted by €(R, ]); for any nonnegative integer ¢,
the set of all i-dimensional elements in G(R, J) is denoted by
€(R, J]).

Let | be a nonzero principal ideal in a regular local domain R.
We say that (R, ]) is resolved if there exists a nonnegative integer
d and a nonzero principal ideal J' in R with ordgJ' < 1 such that
J = J'® We say that (R, ]) is unresolved if (R, ]) is not resolved.
Note that if either dim R << 1 or ordz ] < 1 then (R, [)is resolved.
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Also note that if ordgJ # 0 (i.e., if J # R) then the following
six conditions are equivalent: (1') (R, J) is resolved; (2')
ordg(radgJ) = 1; (3") R/(radg]) is regular; (4') J = (radgJj)?
where d = ordzJ; (5') GYR, J) # o; (6') radg/ is a prime
ideal in R and upon letting S’ be the quotient ring of R with
respect to rad, /] we have that

€(R, J) = {Se B(R): SCS'} = {Se B(R): JS + S}.

Note that if (R, ]) is resolved and I is a nonzero principal ideal in
R such that I has a quasinormal crossing at R then JI has a
quasinormal crossing at R. Finally note that if (R, J) is resolved
and I is a nonzero principal ideal in R such that (], I) has a
quasinormal crossing at R then JI has a normal crossing at R.

We shall now prove some elementary results concerning the
above concepts; these results will not be used tacitly.

(1.5.1). Let R be an n-dimensional regular local domain with
n >0, let (x,, ..., x,) be a basis of M(R), let I = x}r... xi»R where
a,, ..., a, are nonnegative integers, let m be an integer with 1 < m < n,
and let z€(xy, ..., x,)R with ordgz = | such that (2R, I) has a
quasinormal crossing at R. Then there exists an integer j with
| <j < m such that upon letting y; = z and y, = x, for all i +# j
with | <1 < nwehavethat M(R) = (y,, ..., Yo)R, (%1, ..., x,,)R =
1y o Y)R, and I = yir ... yi»R.

Proor. Let A be the set of all integers 7 with 1 <{ 7 < m such
that a; = 0, and let B be the set of all integers ¢ with m <7 < n
such that a; # 0. Now z € (x,, ..., x,,)R and clearly x; ¢ (x, , ..., x,,)R
whenever m < i < n; consequently, if zR = x,R for some
g€ A U B then we must have ¢ € 4 and hence it suffices to take
j = ¢. So now assume that 2R # x,R whenever i€ A U B. Since
ordgz = | and (2R, I) has a quasinormal crossing at R, there exists
a basis (2, ..., %2, of M(R) such that z;R = x;R whenever
ie AU B, and 2,R = 2R for some e¢ AU B with 1 < e < n.
Let P be the ideal in R generated by the set of all x; with i e 4,
and let Q = (21, ..y 15 Res1 s -+ Zp)R. Now O # M(R) and
hence M(R)¢Q + M(R)? consequently z¢Q -+ M(R)? since
PCQ, we get that z¢ P 4 M(R)%. Since ze€(x, ..., %,)R,
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we get that 2 = rx, + - 4 r,x,, with r,, ..., 7, in R; since
2 ¢ P+ M(R)?, we get that r,¢ M(R) for some p¢ A with
I < p << m. It suffices to take j = p.

(1.5.2). Let R be a regular local domain. Let I be a nonzero
principal ideal in R, and let S € B(R) such that (S, I) has a normal
crossing at R. Let z € R N M(S) such that ordgz = 1 and (2R, I) has
a quasinormal crossing at R. Then (S, zI) has a normal crossing at R.

Proor. Follows from (1.5.1).

(1.5.3). Let | be a nonzero principal ideal in a regular local
domain R. Assume that (S, |S) is resolved for some S € €(R, ]) (note
that by [18: (28.3)] we know that S is regular). Then (R, ]) is

resolved.

Proor. If J = R then we have nothing to show. So assume
that J # R. Then | = P} ... Pj» where Py, ..., P, (n > 0) are
distinct nonzero principal prime ideals in R and u,, ..., u, are
positive integers. Now S = (P,S)“ ... (P,S)*. Since S € (R, J),
we get that

u; ordgP;S = ordg]S = ordg] = ) u; ordgP;,

1 i=1

R

T

and by (1.3.1) we know that ordgP,S < ordgP; for 1 <7 < n.
Therefore we must have ordgP;S = ordzP; > 0 for 1 <17 < n,
and hence P,S, ..., P,S are distinct nonzero principal prime ideals
in S. Since (S, JS) is resolved, we conclude that » = 1 and
ordgP,S = . Therefore ord;P; = 1, and hence (R, J) is resolved.

(1.5.4). Let R be a pseudogeometric regular local domain such
that dim R < 3, and &(R, P) is closed in B(R) for every nonzero
principal prime ideal P in "R; (see (1.2.6)). Let ] be a nonzero
principal ideal in R such that (R, J) is unresolved. Then G*R, ])
is a finite set.

Proor. The assertion is obvious if dim R # 3. So assume that
dim R = 3. Since (R, ])is unresolved, we have that | = Pj: ... Pi»
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where n, u, , ..., u, are positive integers, and P, , ..., P, are distinct
nonzero principal prime ideals in R. If n > 1 then {S € B(R):
dim S = 2 and P, + P, C R N M(S)} is a finite set and it con-
tains €% R, J), and hence %R, J) is a finite set. So also assume
that » = 1, and let P = P,. Then €¥R, J) = €¥R, P). Since
(R, J) is unresolved, we must have ordP > 1. By [18: (28.3)] we
know that every element in ®B(R) is regular; consequently
G%R,P)CS(R,P) and hence G%R, J)CS(R,P). Clearly
dim S’ > 2 for all §" e §(R, P), and by assumption &(R, P) is
closed in B(R). Therefore {S’ € S(R, P): dim S’ = 2} is a finite
set, and hence €%(R, J) is a finite set.

(1.6). Let A be a subring of a field K. By a premodel of K we
mean a nonempty set of quasilocal domains with quotient field K.
By an irredundant premodel of K we mean a premodel E of K such
that no two distinct elements in E are dominated by the same
valuation ring of K. Note that if R and R’ are two elements in an
irredundant premodel E of K and S is a quasilocal domain dominat-
ing R and R’ then R’ = R (namely, upon identifying K with a subfield
of the quotient field L of S and taking a valuation ring V of L
dominating S we get that V' N K is a valuation ring of K dominating
R and R’; hence R = R’); in this case we say that R is the
center of S on E. By a semimodel (resp: model) of K/A (i.e., of K
over A) we mean an irredundant premodel E of K such that there
exists a family (resp: finite family) (B,),, of subrings B, of K
where each B, is an overring of A (resp: affine ring over A) such
that £ = |J B(B;). Note that if B is any subring of K such that

zel
K is the quotient field of B and B is an overring of A (resp: affine
ring over A) then B(B) is a semimodel (resp: model) of K/A.
Also note that for an irredundant premodel F of K we have that
E is a semimodel of K/A if and only if for every R € E we have
that A CR and B(R) = {R'e E: RCR’}. Also note that every
model of K/4 is a semimodel of K/A4, and if 4 is noetherian then
every element in E is a local ring. By a complete semimodel (resp:
complete model) of K/A we mean a semimodel (resp: model) E of
K /A such that every valuation ring of K containing 4 dominates E.
Note that if K is the quotient field of 4 then B(4) is a complete
model of K/A. Also note that if E is a semimodel (resp: complete
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semimodel) of K/A4 then E dominates (resp: properly dominates)
B(A4).

(1.7). Let A be a subring of a field K and let (x;);, be a
family of elements in K such that x;; 5 O for some i’ € I. We define

WA; (xdie) = U B(A[(x/%)ie])

jelz;#0

where A[(x;/x;);;] denotes the smallest subring of K which
contains A and which contains x;/x; for all i€ (in case I is a
finite set, say I = {l,2,...,n}, we may write W(4;x,, ..., x,)
instead of W(A4; (x,).er))-

(1.7.1). Note that for any 0 #xe€K we have that
B(A; (%)ier) = BW(A; x;/%);e;). Taking any ¢' €I with x; # 0 and
letting K’ be the quotient field of A[(x;/x;);.] we see that K’ is the
quotient field of A[(x,/x;);c/] for each jel with x; # 0; whence in
particular, W(A; (x;);;) ts a premodel of K', (x;/%;);e; s a family
of elements in K', and W(A; (x,);c1) = W(A; (%;/%;)ie1)-

We shall now prove the following.

(1.7.2). Let ReW(A; (%)) and let S be a quasilocal ring
such that S is a subring of K and S dominates R. Then there exists
j€1 such that x; # 0 and x;/x;€ S for all iel; moreover, for
any such j€l we have that R = B, where B = A[(x;/x;);,] and
O = B n M(S).

Proor. Since R € W(4; (x;);.), there exists ;' € I with x;» # 0
such that R € 8(B’') where B’ = A[(x;/x;);,], and then we have
that x,/x; € R for all i€ I and R = Bj,» where Q' = B’ \ M(R).
Since S dominates R, we get that x,/x; €S for all iel and
Q' = B’ 0 M(S). Therefore the first assertion follows by taking
j =j'. To prove the second assertion, given any j €I such that
x; #0 and x;/x;€ S for all iel, let B = A[(x;/x;);]] and
O = BN M(S). Then x/x;; and x;/x; are both in S and hence
they are units in S. Since x;/x; € R, S dominates R, and x;/x; is
a unit in S, we get that x;/x; is a unit in R and hence x;/x; € R;
consequently x,/x; = (x;/x;:)(x;-/x;) € R for all iel and hence
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B C R; since S dominates R and Q = B N M(S), we get that
QO = BN M(R) and hence B, CR. Again since x;/x;€B,, S
dominates B, , and x;/x; is a unit in S, we get that x;/x; is
a unit in B, and hence x;/x; € B,; consequently x;/x; =
(%;/%;)(x;/x;7) € B, for alli € I and hence B’ C B; since S dominates
B,and Q' = B’ N M(S), we get that Q' = B’ N M(B,,) and hence
B, CB, . Since R = B, , we conclude that R = B,,.

(1.7.3). Let K’ be as in (1.7.1). Then BW(A; (x;);.;) is a semimodel
of K'|A. If I is a finite set then W(A; (x;);;) 15 a complete model of
K'|A.

Proor. The first assertion follows from (1.7.1) and (1.7.2).
To prove the second assertion assume that I is a finite set. In
view of the first assertion it suffices to show that if I/ is any valuation
ring of K’ containing 4 then ¥V dominates B(4; (x,),,). Since I is
a finite set, there exists j € I with x; 3 0 such that x,/x; € V for all
iel. Let B = A[(x;/%;);]] and Q = B M(V). Then V domi-
nates B, and B, € W(A; (%;)ser)-

(1.8). Let A be a subring of a field K. By a projective model
of K/A we mean a premodel E of K/A such that there exists a
finite number of elements x, , ..., x, in an overfield of K such that
x; # 0 for some i and E = W(4; x,, ..., x,). By (1.7) it follows
that if E is a projective model of K/A4 then E is a complete model
of K/A and there exists a finite number of elements «, , ..., ¥, in
K such that x; 7 0 for some 7 and E = ®(4; x,, ..., ¥,).

(1.9). Let A be a subring of a field K and let P be a nonzero
A-submodule of K. We define

W4, P) = 0¢U ., B(A[Px])

where A[Px~1] denotes the smallest subring of K which contains
A and which contains y/x for all y € P.

(1.9.1). Note that for any 0 # x € P we have that P(A[Px7]) =
x(A[Px~']) and hence PR = xR for all R € B(A[Px~']); whence in
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particular, if P is an ideal in A then PR is a nonzero principal ideal
in R for all R € W(A4, P).

(1.9.2). Given any A-basis (x;);c; of P we clearly have that
A[Px] = A[(x;/x);;] for all 0 = x € K; whence in particular,
W(4; (%)ier) C B(4, P).

We shall now prove the following.

(1.9.3). For any A-basis (x;);.; of P we have that W(A; (x;);;) =
w(4, P).

Proor. In view of (1.9.2) it suffices to show that
W(A, P) CW(A; (x;);er)- So let any R e W(A, P) be given. Then
there exists 0 # x € P such that R = B, where B = A[Px1] =
Al(%;/x);e;] C R and Q = B N M(R). Since 0 # x € P, there exists
a nonempty finite subset I’ of I such that x = Y’ r.x, with r,; € 4.

iel’
Then 1 = ¥ r,(x;/x) and r; € R and (x;/x) € R for all i€ l’, and
tel’

hence there exists jel' such that x;/x ¢ M(R). Consequently
% #0, and x;/x and x/x; are units in R. In particular
x;/x; = (x;/x)(x/x;) € R for all i€l and hence B’C R where
B’ = A[(x,/%;);e]. Upon letting Q' = B’ N M(R) we get that
By € W(A; (%;);s) and R dominates By . Since x/x;€ By, R
dominates By, and x/x; is a unit in R, we get that x/x; is a unit
in By and hence x;/x € By)- . Consequently x;/x = (x;/x;)(x;/x) € By
for all el and hence BC By; since R dominates Bj and
QO = BN M(R), we get that QO = BN M(B,) and hence
B,CBy, ie, RCBy, . Therefore R = B, , and hence
Re W(4; (3. Thus WA, P) C B(4; (xia).

(1.9.4). W(A, P) is a semimodel of a field over A, and if P is
a finitely generated A-module then W(A, P) is a projective model of
a field over A; in particular, if P is a finitely generated ideal in A
then W(A, P) is a projective model of the quotient field of A over A.
If P = xA for some 0 # x € K then W(A, P) = W(4; x) = B(A4).

Proor. Follows from (1.9.3) and (1.7).

(1.9.5). If P is an ideal in A then {R e B(A): PR = R} =
{ReW(A4, P): PR = R}.
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Proor. First let R € B(4) such that PR = R; then P ¢ M(R)
and hence there exists 0 = x€ P such that x¢ M(R); now
A[Px~'] C R and hence, upon letting Q = A[Px~'] N M(R), we
get that R = (A[Px1]), € W(A4, P). Conversely let Re (A4, P)
such that PR = R; now (4, P) dominates B(A4) and hence there
exists R’ € B(4) such that R dominates R’; since R dominates
R’ and PR = R, it follows that PR’ = R’; therefore R’ € W(A4, P)
by what we have already proved; since R dominates R as well as
R, and, by (1.9.4), ®W(4, P) is an irredundant premodel of the
quotient field of A, we must have R = R’; consequently R e 8(4).

(1.9.6). If A is quasilocal and P is an ideal in A then the
following three conditions are equivalent: (1) P is a principal
ideal in A; (2) W(A4, P) = B(A); (3) 4 e W(4, P).

Proor. If P is a principal ideal in 4 then P = x4 for some
0 # x € A and then W(4, P) = W(4; x) = B(A); thus (1) implies
(2). Clearly (2) implies (3). To show that (3) implies (1), assume that
A € W(A, P); then there exists 0 = x € Psuch that 4 € B(A[Px1]);
in particular A[Px~1] C 4 and hence A[Px~'] = A; consequently
PA = P(A[Px7']) = x(A[Px7']) = xA and hence P is a principal
ideal in 4.

(1.9.7). Assume that A is a regular local domain, and P is a
prime ideal in A such that A|P is regular and dim S > 1 where
S = A, .Let S’ be the valuation ring of ordg, and let R' € W(A, P)
such that R' dominates A. Then (1) S’ € B(R') and S ¢ B(R').
Moreover, (2) if P, is a nonzero prime ideal in A such that A|P,
is regular and R' € W(A4, P,) then P, = P.

Proor. By (1.4) we know that S’ € B(R’). Since dim S > 1 =
dim §’, we get that S % S’. Since S’ € B(R') C W(4, P), W(A4, P)
is an irredundant premodel of the quotient field of 4, and S’
dominates S, we get that S ¢ (A4, P). This proves (1). To prove (2)
let P, be a nonzero prime ideal in A such that 4/P, is regular
and R € W(A4, P,). Let S; = A, . Since dim S > 1, we get that
Pisnota pr1nc1pal ideal in 4 and hence R # Aby (1 9.6) because
R e W(A4, P); since R" # A and R’ € (4, P,), again by (1.9.6)
we get that P, is not a principal ideal in 4 and hence dim S; > 1.
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Now S’ e 8(R') C ®(4, P,), (A, P,) is an irredundant premodel
of the quotient field of 4, S’ # S, and S’ dominates S; hence
S ¢ (4, P,). Since S ¢ W(A, P,) and S € B(4), by (1.9.5) we get
that P,S # S and hence S C S,; by symmetry we get that S; C S.
Therefore S; = S and hence P, = P.

(1.10). Let R be a local domain, let S € B(R) with dim S > 0,
let ] be an ideal in R, and let V' be a valuation ring of the quotient
field of R dominating R. By a monoidal transform of (R, S) we
mean an element in W(R, RN M(S)) dominating R. Since
W(R, R N M(S)) is a projective model of the quotient field of R
over R, there exists a unique element R* in W(R, R N M(S))
such that V' dominates R*; clearly R* dominates R and hence
R* is a monoidal transform of (R, S); R* is called the monoidal
transform of (R, S) along V. Given a monoidal transform R’ of
(R, S), we define the (R, S, R')-transform of | to be the ideal in
R’ generated by the set of all elements 7 in R’ such that rx¢e |
for some nonnegative integer d and some element x in R’ for
which xR" = (R N M(S))R’. By a monoidal transform of (R, ], S)
we mean a pair (R’, J') where R’ is a monoidal transform of (R, S)
and ]’ is the (R, S, R')-transform of J. By the monoidal transform
of (R, ], S) along V we mean the pair (R*, J*) where R* is the
monoidal transform of (R, S) along V and J* is the (R, S, R*)-
transform of J. By a quadratic transform of R we mean a monoidal
transform of (R, R). By the quadratic transform of R along V we
mean the monoidal transform of (R, R) along V. In this chapter
we shall use monoidal transforms (which are not quadratic trans-
forms) only when R is regular, S has a simple point at R, and |
is a nonzero principal ideal in R; note that in this case the considera-
tions of (1.4) apply.

Given a regular local domain R, by an iterated monoidal transform
of R we mean a local domain R* such that there exist finite
sequences (R))o<;<m and (S;)o<i.m such that: m is a nonnegative
integer; R; is a local domain for 0 <7 << m; S; is a positive-
dimensional element in B(R,) having a simple point at R, for
0<i<m R;is a monoidal transform of (R, ,S;,) for
0 <i<m Ry, = R; and R, = R*. Note that for any iterated
monoidal transform R* of a regular local domain R we have that:
R* 1s regular R* and R have the same quotient field, R* is a
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spot over R, R* dominates R, dim R* 4 restrdegzR* = dim R
and h(R*) is a function field over h(R) where h: R* — R*/M(R*)
is the canonical epimorphism; whence in particular the following
three conditions are equivalent: (1) dim R* = dim R; (2) R* is
residually algebraic over R; (3) R* is residually finite algebraic
over R. Also note that if R* is an iterated monoidal trans-
form of a regular local domain R such that R* = R then
0 < dim R* < dim R. Given a regular local domain R and a
valuation ring V of the quotient field of R dominating R, by an
iterated monoidal transform of R along V we mean an iterated
monoidal transform R* of R such that V' dominates R*.

(1.10.1). Let R be a regular local domain and let S be a
positive-dimensional element in B(R) having a simple point at R.
Then R N M(S) is a principal ideal in R if and only if dim S = 1,
and hence by (1.9.6) we get that the following three conditions are
equivalent: (1) dim S = 1; (2) R is a monoidal transform of
(R, S); (3) R is the only monoidal transform of (R, S). Although
we shall not make any use of it, we note the following consequence
of (1.9.7): If R’ is any monoidal transform of (R, S) such that
R’ # R then S is uniquely determined by the pair (R, R'), i.e,,
if S| is any positive-dimensional element in B(R) having a simple
point at R such that R’ is a monoidal transform of (R, S;) then
S =S

(1.10.2). Let R be a regular local domain, let S be a positive-
dimensional element in B(R) having a simple point at R, let ] be
a nonzero principal ideal in R, and let (R’, J') be a monoidal
transform of (R, J, S). We can then take w € R with wR = [ and
x € R’ with xR’ = (R N M(S))R’, and then upon letting d = ordg]
we clearly have that w/x?e€ R’ and (w/x%)R’ = J'. Therefore by
(1.4) we get that: if Se€ §(R, J) and dim S > | thenordy J' < ord,].
Also note that: if Se€(R, J) and dim S = | then R = R and
hence |' = R, i.e., ordg ]’ = 0.

(1.10.3). Let R be a regular local domain, let S be a positive-
dimensional element in B(R) having a simple point at R, and let
J and I be nonzero principal ideals in R. Given a monoidal
transform R’ of (R, S), we define the (R, S, R')-transform of (], I)
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to be the pair (J',I') where |’ is the (R, S, R')-transform of |
and I’ = (IR")}((R N M(S))R’)® where d = ordg]; note that then
I' is the unique principal ideal in R’ such that J'I'’ = (JI)R'. By
a monoidal transform of (R, J, I, S) we mean a triple (R’, J', I')
where R’ is a monoidal transform of (R, S) and (J',I) is the
(R, S, R')-transform of (J,I). Given a valuation ring V of the
quotient field of R dominating R, by the monoidal transform of
(R, ], 1, S) along V we mean the triple (R*, J*, I*) where R* is
the monoidal transform of (R, S) along V and (J*,I*) is the
(R, S, R*)-transform of (], I).

To avoid repetition we shall now prove some more results of an
elementary nature concerning monoidal transforms; these results
will not be used tacitly.

(1.10.4). Let R be a regular local domain, let | be a nonzero
principal ideal in R such that (R, ]) is resolved, let S be a positive-
dimensional element in G&(R, |) having a simple point at R, and let
(R, J') be a monoidal transform of (R, ], S). Then(R', J')is resolved.

Proor. If J = R then J' = R’ and we have nothing to show.
So assume that | # R. Then | = y?R where d = ord;J and ye R
withordgy=1.Letn=dim Rand m=dim S.Ifm = 1 then J' = R’
by (1.10.2) and we have nothing to show. So also assume thatm > 1.
Since S has a simple point at R, there exists a basis (y;, ..., ¥,)
of M(R) such that R N\ M(S) = (y;, ..., ym)R. Since S € §(R, J),
we get that y € (y,, ..., ¥,,) and hence there exists an integer ;' with
1 <j' < m such that upon letting (x;, ..., #,) = (1, «0s Vi_1, Vs
Yi'41» - Yn) We have that M(R) = (x,, ..., ¥,)Rand R " M(S) =
(%1, ..., x,)R. Upon relabeling (x,, ..., x,) we may assume that
x;/x,€ R for2 <i<<mand | = x;?Rforsomejwithl <7< m
Now J' = (x;/x,)?R’. If x;/x; ¢ M(R’) then J' = R’ and we have
nothing to show. So now assume that x;/x; € M(R'). Then we
must have 2 <j << m. Let n’ = dim R’. Then n’ > 2 and there
exists a basis (2, .., 2,) of M(R') such that z; = x, and
2y, = x;/x, . In particular ordg(x;/x,) = 1 and hence (R, J') is
resolved.

(1.10.5). Let R be a regular local domain, let | be a nonzero
principal ideal in R such that (R, ]) is unresolved, let S be a positive-
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dimensional element in G(R, ]) having a simple point at R, and let
(R, J') be a monoidal transform of (R, ], S) such that ordg J' =
ordgJ. Then dim S > 1 and (R’, J') is unresolved.

Proor. Let d = ordgJ. Then d > 0 and hence by (1.10.2) we
get that dim S > 1. We can take w e R and x € R’ such that
wR = J and xR’ = (RN M(S))R'. Then w/x?e R, (w/x*)R =
J, w/x®¢ xR’, and ordgx = 1. Suppose if possible that (R’, J')
is resolved. Then (w/x?)R’ = y?R’ with y € R’ such that ordzy = 1.
Let R* = R, . Then R* is a one-dimensional regular local
domain and ordz.(w/x?%) = d. Also x ¢ yR' and hence ordg.w = d
and (R N M(S))R* = R*. Now R*e B(R') CB(R, R N M(S))
and (RN M(S))R* = R*, and hence by (1.9.5) we get that
R* e B(R). Thus R* is a one-dimensional regular local domain,
R* € B(R), and ordg.] = d = ord,J; consequently R N M(R*)
is a principal ideal in R with ordg(R N M(R*)) =1 and
J = (R0 M(R*))2. This contradicts the assumption that (R, [) is
unresolved.

(1.10.6). Let R be a regular local domain, let | and I be nonzero
principal ideals in R, let S be a positive-dimensional element in
B(R) such that (S, I) has a normal crossing at R, and let (R', J', I')
be a monoidal transform of (R, ], I, S). Then I' has a normal crossing
atR'.

Proor. Let d=ordgJ, n=dimR, m=dimsS, and
n’ = dim R’. Since (S, I) has a normal crossing at R, there exists
a basis (x;, ..., x,) of M(R) and nonnegative integers a(l), ..., a(n)
such that I = x%V ... x2™R and RN M(S) = (x,, ..., x,)R.
Upon relabeling x, , ..., x,, we may assume that x;/x; € M(R') for
2 <i<pand x;/x; € R" — M(R') for p < i < m, where p is an
integer with 1 <p <m. Letq=n"—n-+m —p. Theng >0
and there exist elements y,, ..., y, in R’ such that M(R') =
(301 5 X215 couy Xp[2y y Xy i1 s ooy Xy V15 -os Yg)R'. Now

! — ydtad)+...+alm) a(2) a(p) pa(m+1) al{n) R’
I = xfte KRICAE ) L N € E ) L AR )
and hence I’ has a normal crossing at R’.

(1.10.7). Let R be a regular local domain, let | and I be nonzero
principal ideals in R such that (J,I) has a quasinormal crossing
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at R, let S be a positive-dimensional element in C(R, ]) such that
(S, I) has a normal crossing at R, and let (R', J',I') be a monoidal
transform of (R, J,1,S). Then (J',I') has a quasinormal crossing
atR'.

Proor. We can take x € R such that ordgx = | = ordgx and
(RN M(S)R' = xR'. Let d = ordg]. By (1.10.6) we know that
I’ has a normal crossing at R’. If 4 = 0 then J' = R’ and we have
nothing more to show. So assume that d # 0. Now | = 2; ... 2;R
with 2; € R N M(S) such that ordzz; = 1 = ords2; and 2/ has a
normal crossing at R for 1 <7 << d. By (1.5.2) it follows that
(S, zI) has a normal crossing at R, and hence, upon letting
(Ji , I}) be the (R, S, R')-transform of (x41R, z,I), by (1.10.6) we
get that I; has a normal crossing at R’ for 1 <i < d. Now
J = (21/%) ... (24/%)R’, and for 1 < ¢ < d we have that z;/x e R’
and (2;/x)[' = I; . Therefore (J',I') has a quasinormal crossing
at R’

(1.10.8). Let R be a regular local domain, let | and I be nonzero
principal ideals in R, let S be a positive-dimensional element in
B(R) such that (S,I) has a pseudonormal crossing at R, and let
(R, J', I') be a monoidal transform of (R, ], I, S). Then I' has a

quasinormal crossing at R’.

Proor. We can take x € R such that ordyx = 1 = ordgx and
(RN M(S))R" = xR'. Let d = ordg] and e = ordgl. Then
I' = x%(IR’), and I = z, ... 3R where z,, ..., 2, are elements in R
such that ordgz; = 1 and (S, 2;R) has a normal crossing at R for
1 <7< e (we take 2, ... 3,R = R in case ¢ = (). Upon taking
(%2R, R) for (J,I) in (1.10.6) we get that xR’ has a normal
crossing at R". For 1 < i < ¢, upon taking (R, 2R) for (J,I) in
(1.10.6) we get that z;R’ has a normal crossing at R’. Since
I' = 2z, ... 2,x°R’, it follows that I’ has a quasinormal crossing at R'.

(1.10.9). Let R be an n-dimensional regular local domain, let
(%y s .oy %,) be a basis of M(R), let S be the quotient ring of R with
respect to (%, ..., X,)R for some m with 1 <m < n, let R' be
a monoidal transform of (R, S) such that x;/x; € R’ for | <1 < m,
let S"eB(R)NB(R') such that SCS' and S # S', and let
z€ RN M(S'). Then z/x,€ R' N M(S').
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Proor. Now ze RN M(S’) CR N M(S), Rn M(S) ¢ M(S"),
R’ CS’, and (RN M(S))R' = x,R’. Therefore z/x,€ R’ and
2, ¢ R" N M(S’). Since R" N\ M(S’) is a prime ideal in R’ and
2 = (/%)% € R N M(S’), we must have z/x, € R" N M(S’).

(1.10.10). Let R be an n-dimensional regular local domain, let
(%15 ..., %) be a basis of M(R), let S and S’ be the quotient rings of
R with respect to (x, , ..., X,,)R and (x,, ..., x,)R respectively where
1 <m < qg<n and let R" be a monoidal transform of (R, S).
Then we have the following: (1) S'e B(R') if and only if
x;/x, € M(R') for 2 < i < m. (2) If S'e B(R’) then dim R’ = n,
M(R') = (%1, X/ 5 <oy XXy, Xy 5 -oos ¥ )R’y and " 0 M(S") =

(%2/%1 5 vvey X2y 5 Xy 5 oy %)R.

Proor. Clearly x,/x,¢ S’ for 2 < i < m; consequently, if
S’ € B(R') then x,/x; ¢ R’ for 2 < ¢ < m; hence, if S" € B(R’) then
x;/x, € M(R') for 2 < 7 < m. Now assume that x,/x, € M(R') for
2<i<m Then dimR =mn, M(R') = (%, X3/%;, ..., X, /%7,
Xppi1s - X,)R, and upon letting 4 = R[xy/x,, ..., x,/x,] and
O =A4AnNn M(R') we get that ACR’, Q is a prime ideal in A,
R = A4,, and Q = (x;, /%1, oy XXy Xppyq s ooy %) A, Clearly
ACS’ and hence upon letting P= AN M(S’) and P’ =
(%[ 5 <oy X%y, Xpiq 5 --ey X,)A We get that P"C P, P is a prime
ideal in 4, and S’ = A4,. Clearly P'C(Q. Hence if we show
that P = P’ then it will follow that S" € B(R’) and R’ N M(S’) =
(%221 5 <oy X /2y, Xppyy s ooy X)R'. To show that P = P’ let any
0 « z€ P be given; since 0 7 z € A4, there exists a nonzero
homogeneous polynomial f(X,, ..., X,) of some degree e in
indeterminates X, ..., X,, with coefficients in R such that
2§ = f(xy, ooy %);nOW 2 €PN R = M(S')N R = (x,, ..., )R
and hence f(x, , ..., x,) € %, , ..., %,)R; clearly f(x, , ..., x,,) — 2 fl,
0,..,0)e(xy, ..., x,) RC(x,, ..., x, )R and hence x5£(1,0, ...,0) €
(%9, ..., %)R; also xf¢(x,,..,x)R and hence f(1,0,..0)e
(%55 .oy % )R C P; clearly 2 = f(1, x5/, , ..., x,,/%;) and f(1, x5/,
coey X 23) — f(1, 0, ..., 0) € (x5/%y , ..., %,,/%)A C P’; therefore z € P".
Thus P C P’ and hence P = P'.

(1.10.11). Let R be an n-dimensional regular local domain,
let R’ be a quadratic transform of R, and let E be a set of (n — 1)-
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dimensional elements in B(R) such that every subset of E having at
most two elements has a normal crossing at R. Then E N B(R')
contains at most one element and E N B(R') has a normal crossing
atR'.

Proor. If EN B(R) = o then we have nothing to show. So
assume that E N B(R') # o and take S’ € E N B(R'). By assump-
tion S’ has a simple point at R and hence there exists a basis
(%15 ..., ) of M(R) such that R N M(S’) = (x5, ..., x,)R. Since
S’ e B(R'), by (1.10.9) we get that dim R' = n, M(R') = (%,
Xo[%y , «vy Xp[2)R’, and R' N M(S’) = (xy/%,, ..., ,/%;)R’. There-
fore S’ has a simple point at R’. It now suffices to show that
E N B(R') = {S'}. Suppose if possible that E N B(R') 7~ {S'} and
take S* € E N B(R') such that S* = S’. By assumption {S’, $*}
has a normal crossing at R and hence there exists a basis (y; , ..., ¥,)
of M(R) such that R N M(S') = (¥s, .., ¥x)R and R N M(S*) =
(¥15 -+»Yn_1)R. Since S’ € B(R') and S* € B(R'), by (1.10.9) we
get that y, [y, € M(R’) and y,/y, € M(R’) which is a contradiction.

(1.10.12). Let R be an n-dimensional regular local domain, let |
and I be nonzero principal ideals in R, let S be a positive-dimensional
element in B(R) such that (S, I) has a pseudonormal crossing at R,
let (R, ]',I') be a monoidal transform of (R, J,I,S), and let
S’ € B(R) N B(R’) such that dim S" > n — 1, {S, S’} has a normal
crossing at R, and (S',I) has a pseudonormal crossing at R. Then
(S’, I') has a pseudonormal crossing at R'.

Proor. Let d = ord;], e = ordgl, and m = dim S. For a
moment suppose that m = 1; then R’ = R; we can take x € R
such that R N M(S) = xR; then ordzx = 1 and I' = x?I; since
{S, S’} has a normal crossing at R, we get that (S’, x¢R’) has a
normal crossing at R’; since I’ = x?] and (.5, I) has a pseudonormal
crossing at R, we conclude that (S’,I') has a pseudonormal
crossing at R’. Henceforth assume that m > 1. Then by (1.9.7) we
get that S ¢ B(R'); since S’ € B(R'), we get that S ¢ B(S') and
hence RN M(S)¢ RN M(S’). Therefore dim S’ = n — 1, and,
since {S, S’} has a normal crossing at R, there exists a basis
(%1, ..., x,) of M(R) such that RN M(S) = (x,, ..., x,,)R and
RN M(S’) = (x;, ..., x,)R. Since S’ € B(R’), by (1.10.10) we get
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that dim R" = n, M(R') = (%1, X5/%1 5 ooy Xp[%X1 5 Xppyy 5 ey %) R,
and R’ N M(S') = (%a/%1 ooy /%1 Xppi1 5 -0 X,)R’. Since (S, 1)
has a pseudonormal crossing at R and (S’, I) has a pseudonormal
crossing at R, we get that I = 2, ... 2,R where 2, ..., 2, are elements
in R such that for 1 <7 <{e we have that ordz2; =1, (S, 2,R) has a
normal crossing at R, and (S, 2;R) has a normal crossing at R (we
take 2, ... 3,R = R in case e = 0). Now I’ = 2, ... 2 xIR’ and clearly
(S’, 3R’) has a normal crossing at R’. Therefore it suffices to show
that (S’, 2;R’) has a normal crossing at R’ for 1 <7 < e. So let
any 7 with 1 < 7 < e be given.

First suppose that z;¢ RN M(S’). Since z; € M(R), we can
write 2; = %, + - +rx, with r,..,7, in R. Since
2; ¢ R N M(S"), ordgz; = 1, and (S, 2;R) has a normal crossing at
R, there exists a basis (xy , ..., x,) of M(R) such that R N M(S') =
(%5 5 .., xp)R and 2;R = x1R; it follows that z; ¢ (R N M(S")) +
M(R)?; since RN M(S') = (x5, ..., x,)R, we must have r, ¢ M(R)
and hence r,¢ M(R’). Consequently M(R') = (2;, %[y, ..,
X%y s Xy 5 -os %) R’ Therefore (S, 2,R’) has a normal crossing
at R’

Next suppose that z,€ RN M(S’) and 2, ¢ RN M(S). Since
z; € R N M(S’), we can write z; = Syx, + *** + s,x, with s, , ..., 5,
in R. Since 2; ¢ R N M(S), ordgz; = 1, and (S, 2;R) has a normal
crossing at R, there exists a basis (xf, ..., x}) of M(R) such that
RN M(S) = (xf, .., x§)R and z,R = x}R for some g with
m < q < n; it follows that z;¢ (RN M(S)) + M(R)% since
RN M(S) = (%, ..., x,)R, we must have s, ¢ M(R) for some p
with m <p <n, and then s,¢ M(R'). Consequently
M(R') = (%y, %5/%1 5 wooy X/ X1y Xpyy1 s ooos Xp1 5 Fgs Xpi1 s -oer Xp)R
and R’ N M(S") = (%a/%1 5 ooy XpnX1 5 X1 5 oo X1 5 Fg s X1 > oo
x,)R’. Therefore (S’, 2;R’) has a normal crossing at R’.

Finally suppose that z;€ R N M(S’) and z; € R N M(S). Then
we can write 2; = tx; + o0 + %, and 2; = tyx, + 0 A+ £,
with ¢,,...,¢,,t, .., t, in R. From these two equations for z;
we get that t,x, € (x,, ..., x,)R; now x, ¢ (x,, ..., ¥,)R and hence
we must have ¢, € M(R); since ordgz; = 1, from the first equation
for z; we now get that ¢, ¢ M(R) for some a with 2 < a < m.
From the above two equations for z; we get that (¢, — t,)x, € (%, ,
vey Xg gy Xgyq s oy Xp)R; NOW %, € (%1, 0oy Xy, Xgyp 5 ooy X,)R and
hence we must have t, — t, € M(R); therefore t, ¢ M(R). Let
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Y. = %;,and lety; = x; for allj # a with 1 <j < n. Then from
the above two equations for z; we deduce that M(R) = (¥,, ..., ¥,)R,
RN M(S) = (91, -» Ym)R, and RN M(S") = (y;, ..., y»)R. Since
S’ € B(R'), by (1.10.10) we get that M(R') = (¥1, Ya/¥1» -+ Ym/Y1 >
YilV1 > Imr s s Yn)R and R' 0 M(S') = (3a/y1 5 -0» YmlY1 > Y1 »
o Yo)R'. Now 2R = y,(y,/y;)R" and hence (S', %;R’) has a
normal crossing at R’.

(1.11). For any nonzero ideal I in a domain 4, by I7! we
denote the set of all elements x in the quotient field K of A4 such
that xy € 4 for all y €I; note that then I-! is an A-submodule of
K; by II'! we denote the set of all elements in K which can be
expressed as a finite sum x,y, + --- + x,, with x; € I and y; e I
for 1 < i < n; note that then IT-! is an ideal in 4 and I CII1,

Let I be a nonzero ideal in a unique factorization domain A
and let W be the set of all nonzero principal ideals in 4 containing
I. Then W is a nonempty finite set and there exists a unique
P e W such that P CQ for all Q € W; namely: take any 0 # fel;
then fA = P{ ... P3» where P,,..,P, are distinct nonzero
principal prime ideals in 4 and g4, ..., a, are positive integers
(as usual we take P§i.. Pi»= A in case n=0); clearly
AeWC{Ph.. P:0 <b; <a;for 1l <i< n}andhence Wis
a nonempty finite set; for 1 <7 < n let ¢; be the smallest non-
negative integer such that I C P§;, and let P = P{1... Py then
PeW and PCQ for all Q € W; also clearly P is the only such
element in W. P is called the principal part of I in A and is denoted
by prin,J. Note that if 4 is noetherian then prin,/ can also be
defined thus: let 7 =0, N ...NQ, be an irredundant primary
decomposition of I in 4 where Q, is primary for P;; label O, , ..., Q,,
so that dim A4, =1 for 1 <i<m and dimd4, #1 for
m <i<m thenprmAI O,N...NQ, (wetakeQ; N ...NQ, =
A in case m' = 0).

We shall now prove some elementary results concerning the
above two concepts; these results will not be used tacitly.

(1.11.1). For any nonzero element x in a domain A we have
that (xA)™! = x4 and (xA)(xA) = A.

Proor. Obvious.
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(1.11.2). Let I be a nonzero ideal in a noetherian domain A
and let B be the quotient ring of A with respect to a multiplicative
set Nin A (0 ¢ N). Then I"'B = (IB)™! and (II"')B = (IB)(IB)™.

Proor. For any xel' we have that IxC A and hence
(IB)x C B; consequently 171 C (IB)™! and hence I7'BC (IB)™.
Conversely let x € (IB)™!; since 4 is noetherian, there exists a
finite basis (y, , ..., ) of I, now xy, € B for 1 <7 < n and hence
there exist elements 2,2;,..,2, in A with 2 N such that
xy; = 2z for 1 <7 < n; then (x2)y; = 2; for 1 <7 < n and
hence Ixz C A; consequently xze-! and hence x € I-1B. Thus
I71B = (IB)™! and hence (II"1)B = (IB)(IB)™.

(1.11.3). Let I be a nonzero ideal in a normal noetherian domain
A. Then (II'Y)R = R for every one-dimensional element R in B(A).

ProorF. Now R is a principal ideal domain (see [27: §3, §6, and
§7 of Chapter V]), and hence by (1.11.1) we get that (/R)(IR)* = R.
By (1.11.2) we know that (II7')R = (IR)(IR)™%, and hence
(II')R = R.

(1.11.4). Let I be a nonzero ideal in a quasilocal domain R.
Then: I is a principal ideal in R < 1171 = R.

Proor. By (l.11.1) we know that if I is a principal ideal in
R then II7* = R. Conversely suppose that II7! = R. Then
1 =x9, + -+ x,y, with x;el and y,el™? for 1 <i < n
Now x;y; € R for all 7, and hence x;y; is a unit in R for some j.
In particular then y; # 0 # (x;y;) and y;! = x(x;y;)"* €. For
every 3 €l we have that zy;€ R and z = y;!(zy,). Therefore
I = y;1R.

(1.11.5). Let A be any domain. Then for any ideal P in A we
have that P= () PR. (Upon taking P = A we get that
ReB(A)
A= () R).

ReB(4)

Proor. Clearly PC () PR. Conversely, given any

ReB(A)
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xe () PR, letQ = {ye A: xy € P}; then Q is an ideal in 4 and
ReB(A4)

0 ¢ AN M(R) for all R € B(A); therefore Q = A and hence x € P.

(1.11.6). Let I be a nonzero ideal in a noetherian domain A.
Then: IR is a principal ideal in R for all Re B(A) < II7* = A.

Proor. By (1.11.2) we know that (II71)R = (IR)(IR)™! for all
R € B(A), and hence by (1.11.4) we get that: IR is a principal ideal
in R for all R e B(4) < (II7Y)R = R for all R € B(4). By (1.11.5)
we get that: (II"')R = R for all Re B(4) < It = A.

(1.11.7). Let I be a nonzero ideal in a unique factorization
domain A, and let x € A such that xA = prin,l. Then It = x714,
II7! = Ix™Y, and (II7)x = L.

Proor. Now Ix1C A and hence x4 C I"1. Conversely, let
y be any nonzero element in I7!. We can write x = rx{t ... xo»
and y = sx5t ... x2» where: r and s are units in 4; x,, ..., x,, are
nonzero elements in R such that x,4, ..., x,4 are distinct prime
ideals in 4; a,, ..., a, are nonnegative integers; and b,, ..., b,
are integers. Since x4 = prin,J, there exists 2;€I such that
z;/x3i ¢ x,A4; since y € I7! and z; € I, we get that yz, € A and hence
a; + b, > 0. This being so for 1 << i << n, we get that y € x14.
Thus I7! = x714, and hence II! = Ix~! and (I ')x = L

(1.11.8). Let I be a nonzero ideal in a unique factorization
domain A. Then: I is a principal ideal in A < II7* = A.

Proor. Follows from (1.11.1) and (1.11.7).

(1.11.9). Let I be a nonzero ideal in a unique factorization
domain A. Then prin (II71) = A.

Proor. We can take x € 4 such that x4 = prin,J. Then by
(1.11.7) we have that II-? = [x~1. Let = be any nonzero element
in A such that II'1 C 34; then Ix1C 24 and hence I C x34;
consequently x4 = prin,J C x24 and hence 24 = A. Thus 4
is the only nonzero principal ideal in A containing II-}, and
hence prin,(II7') = 4.
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(1.11.10). Let I be a nonzero ideal in a unique factorization
domain A, and letQ # y e A. Then: Iyt CII71 <> I CyA < prin,J
Cyd. Also: Iy CII™t = (Iy-Y)(Iy~Y)' = II.

Proor. Now:Iy1CII"1= Iy 1CA=1CyA = prind CyA4
> ICyA = ytel?l = Iyt CII7. Assuming that prin,J C yA4,
we shall show that (Iy=')(Iy—)~! = II! and this will complete the
proof. We can take x € 4 such that x4 = prin,J. Then x4 C y4
and hence x/y € 4; since I C xA4, we get that Iy~ C (x/y)A4. For
any nonzero element zin A we have that: [y 1 C 24 = I CzyA >
prin, J C 2yA = xA C zyA = (x/y)A C 2A. Therefore prin(Iy~1) =
(/y)4, and hence by (1.11.7) we get that (Iy 1) Iy )=
(D))t = It = I,

(1.12). By a semiresolver we mean a sequence (R;, J;, Si)ocicm
where: either m is a positive integer or m = 00; R; is a regular
local domain, J; is a nonzero principal ideal in R;, and S; is a
positive-dimensional element in (R, , J;) having a simple point at
R; for 0 < ¢ < m; (R;, J,) is a monoidal transform of (R;_,, J; 4,
S;_1) for 0 <7 < m; and for 0 < ¢ < m we have that: dim §; =
2 < G*R;, J;) has a strict normal crossing at R; and
€(R;, J;) # 2.

By an infinite semiresolver we mean a semiresolver (R;, J;,
Si)o<icm Wherem = oo and (R;, J,)is unresolved for0 <7 < co.

By an finite semiresolver we mean a system [(R;, J;, Si)ocicm
(R, , J,)] where: m is a positive integer; (R;, J;, Si)o<icm 15 2
s:miresolver such that (R;, J;) is unresolved for 0 < ¢ < m; R, is
a regular local domain and ], is a nonzero principal ideal in R,,
such that (R, , J,.) is resolved; and (R,,, J,,) is a monoidal trans-
form of (Rm—l ’ ]m—l ’ Sm-l)'

By a finite weak semiresolver we mean a system [(R;, J;,
Sido<icm » (R » Jm)] where: m is a positive integer; R, is a regular
local domain and J; is a nonzero principal ideal in R; for 0 <7 < m;
S; is a positive-dimensional element in (R, , J;) having a simple
point at R, for 0 < i < m; (R;, J;) is a monoidal transform of
(Ri—ys Ji1»S;y) for 0 <7 < m; and for 0 <7 < m we have
that: dim S; = 2 = €¥R;, J;) has a strict normal crossing at R; .

By a resolver we mean a sequence (R;, J;,I;, S;)o<i<m Where:
either m is a positive integer or m = o0; R; is a regular local
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domain, J; and I, are nonzero principal ideals in R; such that I, has
a quasinormal crossing at R;, and S; is a positive-dimensional
element in €(R, , J,) such that (S, , I;) has a pseudonormal crossing
at R; for 0 <7 <m; (R;, J;,I;) is a monoidal transform of
(Ri_ys JizaoIi—y, Si_y) for 0 <i <m; and for 0 <7 <m we
have that: dim S; = 2 < €%R;, J;) has a strict normal crossing
at R; and (S’,I;) has a pseudonormal crossing at R; for some
S e &R, Jy)-

By an infinite resolver we mean a resolver (R;, J;,I;, S;)ocicm
where m = oo and (R;, J;) is unresolved for 0 <7 < oo.

By a finite resolver we mean a system [(R;, J;,I;, S)ocicm»
(R s Jm » 1,,)] where: m is a positive integer; (R;, J;,I;, S)ocicm
is a resolver such that (R;, J;) is unresolved for 0 <7 < m;
R,, is a regular local domain and ], and I,, are nonzero principal
ideals in R,, such that (R,, , J,,) is resolved and J,, has a quasinormal
crossing at R,; and (R,,, J,.,I,) is a monoidal transform of
('Rn -1 ]m-l 4 Im-l ’ Sm——l) (nOte that then (]OIO)Rm = ]mIm and
hence (Jolo)R,, has a quasinormal crossing at R,)).

By a finite weak resolver we mean a system [(R;, J;,I;, Si)ocicm >
(Ry s Jm > I1,,)] where: m is a positive integer; R; is a regular local
domain and J; and I; are nonzero principal ideals in R; such that
I, has a quasinormal crossing at R; for 0 <7 < m; S; 1s a positive-
dimensional element in €(R;, J;) such that (S;, I;) has a pseudo-
normal crossing at R; for 0 < ¢ < m; (R;, J;,1;) is a monoidal
transform of (R,,, J;_;,I;,,S;;) for 0 <i < m; and for
0 <i < m we have that: dim S; = 2 = €*R;, J;) has a strict
normal crossing at R; .

By an infinite subresolver we mean an infinite sequence
(R;, J;» I; ,L; , Si)o<icw Where: R; is a regular local domain, J;
and I; are nonzero principal ideals in R; such that (R;, J;) is
unresolved and G%(R,, J;) is a finite set, o #* L; CE€XR;, J)),
and S; is a positive-dimensional element in €(R;, J;) such that
(S;,I;) has a pseudonormal crossing at R; for 0 <7 < oo;
(R;, J;»I;) is a monoidal transform of (R;_;, Ji_y, L1, Si1),
L; = {SeC¥R;, J;): S dominates L, ,}, and ordg J; = ordg _ J;,
for 0 <17 < o0; and for 0 <7 < o0 we have that: dim S; =
2 < S;eL; < €¥R;, J;) has a strict normal crossing at R; and
(L;, I;) has a pseudonormal crossing at R;.

By a detacher we mean a sequence (R;, J;,I;, S;)o~i—m Where:
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either m is a positive integer or m = c0; R, is a regular local
domain, J; and I; are nonzero principal ideals in R; such that
(J; »I;) has a quasinormal crossing at R;, and S, is a positive-
dimensional element in €(R;, J;) such that (S;, I,) has a normal
crossing at R; for 0 <<¢ < m; (R;, J;, I;) is a monoidal transform
of (Ri_y, Jia,1;—1,8;,) for 0 <i<m; and for 0 <i < m
we have that: dim S; = 2 < (€%(R;, J,), I;) has a strict normal
crossing at R; and €*R;, J;) # @.

By an infinite detacher we mean a detacher (R;, J;, I;, Sy)ocicm
where m = oo and (R;, J;) is unresolved for 0 < i < co.

By a finite detacher we mean a system [(R;, J; ,Ii » Sdo<icm
(Rm s Jm s I,n)] where: mis a positive integer; (R;, J;,1 S;)o<z -m
is a detacher such that (R;, J;) is unresolved for 0 < m;
R,, is a regular local domain and J,, and I,, are nonzero pr1nc1pal
ideals in R,, such that (R, , J,) is resolved and (J,, ,I,) has a
quasinormal crossing at R,; and (R,, J,.,[I,) is a monoidal
transform of (R, , Jn—1 s Im_1» Sm_1) (note that then (J )R, =
Judm and hence ( J,[y)R,, has a normal crossing at R,).

Bya prznczpalzzer we mean a sequence (R;, I, S;)o<;.m Where:
either m is a positive integer or m = oo0; R; is a regular local
domain, I; is a nonzero ideal in R; , and S; is a positive-dimensional
element in €(R; , I,I;) having a simple point at R; for 0 < 7 << m;
R; is a monoidal transform of (R,_,,S;,;) and I, = I, R, for
0<i<m and for 0 <7 <m we have that: dim S; =
2 <= (Ez(Rl ,I,I;1) has a strict normal crossing at R; and
€ (Rz’ % ]) 7 .

By an infinite principalizer we mean a principalizer
(Rl y Iy S)o<s<m where m = oo and I; is a nonprincipal ideal
in R; for 0 <7 < 0.

By a finite pnnczpalzzer we mean a system [(R,, i Siocicm >
(R, , I,,)] where: m is a positive integer; (R;,I;, S;)ocicm 1S a
principalizer such that I; is a nonprincipal ideal in R;for0 <7 <m;
R,, is a regular local domain and I,, is a nonzero principal ideal
in R,; and R, is a monoidal transform of (R,_,, S,,_;) and
I,.=1,.R,

Let R be a regular local domain. We say that R is strongly
semiresolvable if: there does not exist any infinite semiresolver
(R;, Ji» Si)o<i<w such that R, is an iterated monoidal transform
of R. We say that R is semiresolvable if: given any iterated monoidal
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transform R’ of R, any nonzero principal ideal J' in R’ such that
(R, J') is unresolved, and any valuation ring V of the quotient
field of R such that V" dominates R’, there exists a finite semiresolver
[(Ris Jo» Sdociem s (Ru» Ju)] such that (R, Jo) = (R, J') and
V dominates R,, . We say that R is weakly semiresolvable if: given
any iterated monoidal R’ of R, any nonzero principal ideal J' in R’
such that (R’, J') is unresolved, and any valuation ring V' of
the quotient field of R such that V' dominates R’, there exists
a finite weak semiresolver [(R;, J;, Si)ocicm> (Rms Jn)l
such that (R,, J,) = (R, J'), ordg’J' = ordg J; > ordg J,, for
0 <i<m, and V dominates R, . We say that R is strongly
resolvable if: there does not exist any infinite resolver
(R;, Jiv I;, Si)oci<w such that R, is an iterated monoidal trans-
form of R. We say that R is resolvable if: given any iterated
monoidal transform R’ of R, any nonzero principal ideals J' and
I' in R’ such that (R', J') is unresolved and I’ has a quasinormal
crossing at R’, and any valuation ring V of the quotient field
of R such that 7 dominates R’, there exists a finite resolver
[(Ri ’ ]i ’ Ii ’ Si)0<i<m ’ (R-m ’ ]m ’ Im)] such that (RO ’ ]0 ’ IO) =
(R, J',I') and V dominates R,, . We say that R is weakly resolvable
if: given any iterated monoidal transform R’ of R, any nonzero
principal ideals J' and I’ in R’ such that (R’, J') is unresolved
and I’ has a quasinormal crossing at R’, and any valuation ring V'
of the quotient field of R such that V' dominates R’, there exists a
finite weak resolver [(R;, Ji»I;, Sdocicm s (Rm s Jm > Im)] such
that (R, J,,1y) = (R, J',I'), ordg’J' = ordg J: > ordg [, for
0 <i<m, and V dominates R, . We say that R is strongly
subresolvable if: there does not exist any infinite subresolver
(R;» Ji» I ,L;, S))o<cicoo such that R, is an iterated monoidal
transform of R, . We say that R is strongly detachable if: there does
not exist any infinite detacher (R;, J;,I;, S;)o<;<» such that R,
is an iterated monoidal transform of R. We say that R is detachable
if: given any iterated monoidal transform R’ of R, any nonzero
principal ideals [’ and I’ in R’ such that (R’, J') is unresolved
and (J',I') has a quasinormal crossing at R’, and any valuation
ring V of the quotient field of R such that V' dominates R’, there
exists a finite detacher [(R;, J;,I;, Siocicm s (Rm > Jm » In)] such
that (R, , J,,1,) = (R’, J', I') and V dominates R,, . We say that
R is strongly principalizable if: there does not exist any infinite
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principalizer (R;, I;, S;)y<;<» such that R, is an iterated monoidal
transform of R. We say that R is principalizable if: given any
iterated monoidal transform R’ of R, any nonzero nonprincipal
ideal I' in R’, and any valuation ring V of the quotient field of R
such that V' dominates R’, there exists a finite principalizer
[(Ri 1 Si)0<i<m ’ (Rm ’ Im)] such that (RO yIo) = (RI’ II) and V
dominates R,, .

§2. Resolvers and principalizers

(2.1). Let R be a regular local domain, let | be a nonzero
principal ideal in R such that (R, ]) is unresolved, and let V be a
valuation ring of the quotient field of R such that V dominates R.
Assume that there does mnot exist any infinite semiresolver
(R;, Ji» Sidocicwo Such that (Ry, J)) = (R, ]) and V dominates
R; for 0 <i < . Then there exists a finite semiresolver
[(Ri ) ]1‘ ’ Si)0<i<m ’ (Rm ’ ]m)] such that (RO ’ ]0) = (R’ ]) and V

dominates R,, .

Proor. Let W be the set of all semiresolvers (R, , J;, S;)ocicm
such that (R,, J,) = (R, ]J), and (R;, J;) is unresolved and V
dominates R; for 0 <<i<<m. For each pair of elements
w = (Rz ’ ]7: ’ Si)0<i<m and w' = (R;. ’ ]; ’ S;)0<i<m' in W define:
w<w >m<mand(R;, J;,S,) = (R, Ji, S})for0 < i < m.
Then W becomes a partially ordered set having the Zorn property
(i.e., given any nonempty ordered subset W’ of W, there exists
w’ € W such that w << @’ for all w € W’). Also we get an element
(R;, Ji» Sido<i<a in Wby taking (Ry, Jo) = (R, J)and: S, = some
element in G*(R, J) if €*(R, J) has a strict normal crossing at R
and €%R, /) = @; and S, = R otherwise. Therefore W # o;
and hence by Zorn’s lemma W contains a maximal element
w=(R;, J;» S)o<cicm - By assumption we must have m # co.
Let (R,,, J,) be the monoidal transform of (R,,_,, S,_1, Jm_1)
along V. Since w is a maximal element of W, we must have that
(R, , ) is resolved, because otherwise we would get an element
w = (R, Ji, Sidocicmsr in W with w < @' and w # w’ by
taking: S, = some element in €XR,, J,) if (R, , J,) has a
strict normal crossing at R,, and ¥R, , J,) # @; and S,, = R

m m.
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otherwise. Therefore [(R;, J;, Si)o<icm» (Rm, Ju)] is a finite
semiresolver having the required properties.

(2.2). If R is a regular local domain such that R is strongly
semiresolvable, then R is semiresolvable.

Proor. Follows from (2.1).

(2.3). Let R be a regular local domain, let | and I be nonzero
principal ideals in R such that (R, ]) is unresolved and I has a
quasinormal crossing at R, and let V be a valuation ring of the
quotient field of R such that V dominates R. Assume that there does
not exist anmy infinite resolver (R;, J;,I;, S;)ocicw Such that
(Ry, Jo,1y) = (R, J,I) and V dominates R; for 0 < i << co. Then
there exists a finite resolver [(R;, J;,I;, Socicm» Ru s Jm s Inn)]
such that (R,, J,,1,) = (R, J,I) and V dominates R,, .

Proor. Let W be the set of all resolvers (R;, J;,I;, S)ocicm
such that (R, Jy,1,) = (R, J,I), and (R;, J,) unresolved and
V dominates R; for 0 < i < m. For each pa1r of elements
w = ('R’t ’ ]1. »Ii ’ 1)0<z<m and w' = (Rz ’ ]i ’ Si)0<z<m in W
define: w < w' <m < m' and(Ri,]“I“S) =(R;, Ji, I{, S))
for 0 << ¢ << m. Then W becomes a partially ordered set havmg the
Zorn property. Also we get an element (R;, J;,I;, S;)gcici in W
by taking (R,, Jo, 1) = (R, J,I) and: Sy = some element in
€%R, ]) such that (S,,I) has a pseudonormal crossing at R if
€%(R, J]) has a strict normal crossing at R and (S’, I) has a pseudo-
normal crossing at R for some S’ € €%(R, J); and Sy = R otherwise.
Therefore W # @ and hence by Zorn’s lemma W contains a
maximal element w = (R;, J;,I;, S;)o<cicm - By assumption we
must have m #* oo. Let (R, , /., 1,) be the monoidal transform
of (Ry—1,10 15 Jm-1s Sm-1) along V. By (1.10.8) we know that
I,, has a quasinormal crossing at R,, . Since w is a maximal element
of W, we must have that (R, , [,,) is unresolved, because otherwise
we would get an element w’ = (R;, J;,I;, Si)ocicmsy 1n W with
w < w’ and w # w' by taking: S,, = some element in €¥R,,, J,)
such that (S,, , I,,,) has a pseudonormal crossing at R,, if €¥R,, , J,.)
has a strict normal crossing at R,, and (5, I,,) has a pseudonormal
crossing at R, for some S’ € €¥R,,, ],); and S,, = R, otherwise.
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Therefore [(R;, J;, I;, SiYo<icm > (R s Jm » I,,)] is a finite resolver
having the required properties.

(2.9). If R is a regular local domain such that R is strongly
resolvable, then R is resolvable.

Proor. Follows from (2.3).

(2.5). Let R be a regular local domain, let | and I be nonzero
principal ideals in R such that (R, ]) is unresolved and (], I) has
a quasinormal crossing at R, and let V be a valuation ring of the
quotient field of R such that V dominates R. Assume that there does
not exist amy infinite detacher (R;, J;,I;, S))o<ic0o such that
(Ro» Jor1p) = (R, ], I) and V dominates R, for 0 < i < 0. Then
there exists a finite detacher [(R;, J;, I, S)o<icm s (Xn s Jou» Ln)l
such that (R, , J,,1) = (R, J,I) and V dominates R,, .

Proor. Let W be the set of all detachers (R;, J;, I;, S)ocicm
such that (R,, J,, 1) = (R, J,I), and (R;, J;) is unresolved and
V' dominates R; for 0 <7 < m. For each pair of elements
w = (R1 ’ ]i ’ Ii ’ Si)0<i<m and o' = (R; ’ ]; ’ Iz’ ’ S£)0<i<m' in W
define: w < o' <= m <m'and (R, J;,I;, S,) = (R;, J;i, I}, S}
for 0 < i < m. Then W becomes a partially ordered set having
the Zorn property. Also we get an element (R;, J;, I, S;)ocic
in W by taking (R,, J,,I,) = (R, J,I) and: S, = some element
in €X(R, ]) if (€X(R, J),I) has a strict normal crossing at R and
€%R, ]) # @; and S; = R otherwise. Therefore W # &, and
hence by Zorn’s lemma W contains a maximal element
w= (R;, J;,I;, S)o<i<m - By assumption we must have m # co.
Let (R,,, Ju,1,) be the monoidal transform of (R,_;, [, 1,
Iy 15 Suy) along V. By (1.10.7) we know that (], ,1,) has a
quasinormal crossing at R,, . Since w is a maximal element of W,
we must have that (R, , J,) is resolved, because otherwise we
would get an element w’ = (R;, J;,I;, S))gcicmi1 in W with
w < w' and w # w’ by taking: S,, = some element in 6(R,, , J,)
if (€R,,, Ju),I,) has a strict normal crossing at R, and
€*R,,, Ju) # @; and S, = R,, otherwise. Therefore [(R;, J;,
I, S)ocicm» Ry s ] I,)] is a finite detacher having the
required properties.
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(2.6). If R is a regular local domain such that R is strongly
detachable, then R is detachable.

Proor. Follows from (2.5).

(2.7). Let R be a regular local domain, let I be a nonzero
nonprincipal ideal in R, and let V be a valuation ring of the quotient
field of R such that V dominates R. Assume that there does not exist
any infinite principalizer (R;, I, S;)o<i <o Suchthat (Ry,I,) = (R, )
and V dominates R; for 0 < i < co. Then there exists a finite
principalizer [(R;,I;, S)ocicm > (X > In)] such that (R,,1,) =
(R,I) and V dominates R,, .

Proor. Let W be the set of all principalizers (R;,I;, S;)oci<m
such that (R, I)) = (R,I), and I; is a nonprincipal ideal in R;
and V dominates R; for 0 <7 < m. For each pair of elements
w = (R‘L ’ Ii ’ Si)0<i<m and w’ = (R;, ’I1I, ’ Sé)0<i<m' in W define:
w<w <-m<mand(R;, I;,S) = (R, I, S;)for0 < i < m.
Then W becomes a partially ordered set having the Zorn property.
Also we get an element (R; , I, , S;)o<;<; In Wby taking (R, , I)) =
(R, I) and: S, = some element in €%(R, II71) if €%(R, II-) has a
strict normal crossing at R and G%R,II"!) £ @; and S; = R
otherwise. Therefore W # @, and hence by Zorn’s lemma W
contains a maximal element w = (R;, I;, S;)o<icm - By assump-
tion we must have m # o0. Let R,, be the monoidal transform
of (R,_1,Sn_y) along V and let I,, =1, R, . Since w is a
maximal element of W, we must have that I, is a nonprincipal
ideal in R, , because otherwise we would get an element %' =
(R;» I; , S))ociemsy In W with w < w" and w # w’ by taking:
S,, = some element in €(R,,, I I}) if €(R,, I, I') has a strict
normal crossing at R, and €%R,,I,I,') # @; and S,, = R,
otherwise. Therefore [(R;,I;, S))ocicm» (Ry,I,)] 1s a finite
principalizer having the required properties.

(2.8). If R is a regular local domain such that R is strongly
principalizable, then R is principalizable.

Proor. Follows from (2.7).
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(2.9). Let R be a regular local domain such that R is resolvable
and detachable. Let R’ be an iterated monoidal transform of R, let
J' be a nonzero principal ideal in R’, and let V be a valuation ring
of the quotient field of R such that V dominates R'. Then there
exists an iterated monoidal transform R* of R’ along V such that
J'R* has a normal crossing at R*.

Proor. If (R', J') is resolved then it suffices to take R* = R'.
So now assume that (R’, J') is unresolved. Since R is resolvable,
there exists a finite resolver [(R;, J;, L;, S)ocicm» (Rm s Jm > Im)]
such that (R,, J,,1,) = (R, J', R’) and V dominates R,,. Now
JR,, = ]I, and hence (J'R,, , R,) has a quasinormal crossing
at R, . If (R,,, J'R,,) is resolved then J'R,, has a normal crossing
at R, and it suffices to take R* = R, . So now assume that
(R,., J'R,,) is unresolved. Since R is detachable, there exists a
finite detacher [(R;, Ji, I, Si)ocicn » (R*, J*, I*)] such that
(Ro, Jo,Iy) = (R, ,JR,,R,) and V dominates R*. Now
J'R* = J*I* and hence J'R* has a normal crossing at R*.

(2.10). Let R be a regular local domain such that R is prin-
cipalizable. Let R’ be an iterated monoidal transform of R, let V be
a valuation ring of the quotient field of R such that V dominates R’,
and let f,, ..., f, (g > 0) be a finite number of nonzero elements
in V. Then there exists an iterated monoidal transform R* of R’ along
V such that f;e R* for 1| <1i < gq.

Proor. We can take nonzero elements Fy , F , ..., F, in R’ such
that f; = Fy/F, for 1 <1 < q. If (Fy, ..., F,)R’ is a principal ideal
in R’ then take R* = R’; if (F,, ..., F,))R’ is a nonprincipal ideal
in R’ then, since R’ is principalizable, there exists a finite prin-
cipalizer [(R;,I;, S;)o<icm > (R* I*)] such that (R, I)) = (R,
(Fy, .., F)R') and V dominates R*. In both the cases R* is an
iterated monoidal transform of R’ along V and (F, ..., F))R* is
a nonzero principal ideal in R*. Now (F,, ..., F))R* = FR* with
0 # Fe R*. In particular F; =r,F for 0 <i<q and F =
soFo + - + s, F, with 7o, ..,7,,5,..,5 in R* Now I =
Sofo + - + 7,5, and hence 7; is a unit in R* for some j with
0 <j<gq In particular then (F,, .., F)R* = F;R*. Now
Fy/F;e R*C V,F;/F,e V,and V dominates R*; consequently Fy/F;
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is a unit in R* and hence (F,, ..., F,)R* = F,R*. Therefore
fi=F/F,eR* for 1 <i<gq.

(2.11). Let R be a regular local domain such that R is resolvable,
detachable, and principalizable. Let R’ be an iterated monoidal
transform of R and let V be a valuation ring of the quotient field
of R such that V dominates R'. Then (1) given any nonzero ideal
I' in R, there exists an iterated monoidal transform R* of R’ along
V such that I' R* is a nonzero principal ideal in R* having a normal
crossing at R*; and (2) given any finite number of nonzero elements
fis o fy(g > 0)in V there exists an iterated monoidal transform
R* of R along V and a basis (x,, .., x,) of M(R*), where
n = dim R*, such that f; = g3V ... x2"™ where g, is a unit in
R* and a(i, j) is a nonnegative integer for | < i < qandl <j < n.

Proor. To prove (1) let any nonzero ideal I' in R’ be given.
If I' is a principal ideal in R’ then let R” = R’; if I’ is a non-
principal ideal in R’ then, since R is principalizable, there exists
a finite principalizer [(R;,I;, S))o<cicm» (R",I")] such that
(Ry,1y) = (R, I') and V dominates R". In both the cases R" is
an iterated monoidal transform of R’, I'R” is a nonzero principal
idealin R”, and ¥V dominates R". Since R is resolvable and detach-
able, by (2.9) there exists an iterated monoidal transform R* of R”
along V such that (I'R")R* has a normal crossing at R*. It follows
that R* is an iterated monoidal transform of R’ along ¥V and I'R* is
a nonzero principal ideal in R* having a normal crossing at R*.

To prove (2) let any finite number of nonzero elements f, , ..., f,
(g > 0) in V be given. Since R is principalizable, by (2.10) there
exists an iterated monoidal transform R** of R’ along V such that
fie R** for 1 < i < ¢q. Since R is resolvable and detachable, by
(2.9) there exists an iterated monoidal transform R* of R** along
V such that ((f; ... f)R**)R* has a normal crossing at R*. It
follows that R* is an iterated monoidal transform of R’ along V
and there exists a basis (x, , ..., x,) of M(R*), where n = dim R*,
such that f; = g3 .. x2%™ where g, is a unit in R* and a(, §)
is a nonnegative integer for 1 <7 <{gand1 <j < n.

(2.12). For any nonzero ideal I in any regular local domain R
we have the following.
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(2.12.1). There exists a finite number of nonzero principal ideals
JiseoJn (m>0) in R such that II'* = |, + - + ], and
ordg J, = ord(II7) for 1 < g < n.

(2.12.2). For any |\, ..., J, as in 2.12.1) let J = ],... ], .
Then: I is a principal ideal in R <> (R, ]) is resolved.

(2.12.3). For any J,, ..., J, as in (2.12.1) let J = ], ... ], .
Then &R, II"Y) = () &(R, J,) = &R, J).

(2.12.4). Let S be a positive-dimensional element in G(R, II')
having a simple point at R, let R’ be a monoidal transform of (R, S)
such that ordg(I'I'™Y) = ordz(II!) where I' = IR’', and for any
Jis o Jnoas in (2.12.1) let ], be the (R, S, R')-transform of ], for
1 <g<nThemI'I'*= J{ + - + J, and ordg J; = ordg(I''?)
forl < q < mn

(2.12.5). Let S be a positive-dimensional element in E(R, II71)
having a simple point at R, let R’ be a monoidal transform of (R, S),
and let I' = IR’'. Then ordy(I'I't) < ordg(1I1).

Proor oF (2.12.1). Take any finite basis (f;, ..., f,) (n > 0) of
II7'. Upon relabeling f,, ..., f, we may assume that ordgf, =
ordg(II™). Let gy = f,. For 2 < g < n let: g, = f, if ordgf, =
ord,(II71), and g, = f; + f, if ordyf, # ordg(II"?). Let J, = g,R
for 1 << ¢ < n Then J,, ..., J, have the required properties.

Proor oF (2.12.2). First suppose that I is a principal ideal in R;
then by (1.11.1) we have that II-! = R and hence |, = R for
1 < ¢ < n; consequently | = R and hence (R, J) is resolved.
Conversely suppose that (R, ]) is resolved; let d = ordg(II);
then ordg /] = nd and hence | = x™¥R where x € R with ordgx = 1;
consequently [, = x?R for 1 < ¢ < n, and hence II-! = x?R;
therefore by (1.11.9) we get that d = 0, and hence II"! = R; now
by (1.11.8) we get that I is a principal ideal in R.

Proor oF (2.12.3). This is obvious in view of (1.3.1).
Concerning the second equality note that actually for any nonzero
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principal ideals Ji,.., J, in R we have that () &R, J;) =
’ ’ =1
G(R’ ]1 ]m)' !

Proor or (2.12.4). Let I* = (II"Y)R'. Then I* =
iR+ -+ J,R'. We can take y € R such that yR = pringl;
then by (1.11.7) we have that II-* = Iy~! and hence I* = I'y71;
now I C yR and hence I’ C yR’; consequently by (1.11.10) we get
that I'I'' = (I'y)(I'y*)! and hence I'I'™! = I*I*-1. Let
d = ordy(II'). Then ordp(I*I*7) = ordx(I'I'') = d = o1d,],
for 1 < ¢ <n Now (RN M(S)R' = xR’ where xe R’ with
ordgx = 1. By (2.12.3) we know that Se (R, J,) and hence
J R CxeR, Jo = (J,R)x % and ordgJ, < d for 1 < g < n
Since I* = ;R + -+ J,R' and J R Cx’R’ for 1 < ¢ <,
we must have I[*Cx%R’ and hence pringl* = 2zx?R’ with
0 # zeR'. By (1.11.7) we now get that I*I*-1 = [*z-1x~d;
consequently Jix'!CR  for 1<¢g<n and I**1=
Jizt+ -+ ozt Since ordg(I*I*') = d > ordg J;, for
1 < ¢ < n, we conclude that z is a unit in R', oidg J; = d =
ordg(I'T'Y) for1 < g <myand J{ + =+ + [, = I*[*1 =TT

Proor oF (2.12.5). Take J,,.., J, as in (2.12.1), and let
I* = (II'YR’. Then I* = J;R’ + -+ J,R'. We can take y € R
such that yR = pringl; then by (1.11.7) we have that II-1 = Iy,
and hence I* = I'y~1; now ICyR and hence I' C yR’; con-
sequently by (1.11.10) we get that I'I'"! = (I'y~1)(I'y~1)1, and
hence I'I'"! = I*I*-1. Let d = ordg(I[™"). Then ord, ], = d for
1<g<<n Now (RN M(S)R = xR' where xeR with
ordgx = 1. By (2.12.3) we know that Se€€(R, J,), and hence
upon letting J, be the (R, S, R')-transform of ], we get that
J R CxR', Jo = (J,R)x% and ordgJ; < d for 1 <g<n
Since I* = J\R' 4 -+ + J,R" and JR'Cx?R’ for 1 < ¢q <'n,
we must have I* C x2R’ and hence by (1.11.10) we get that
Px 2 CI¥*1;  pow  J; = (;R)x e CI*x¢CI*[*! and
ordg J1 < d = ordiz(II"); therefore ordg(I'I'~Y) = ordg (I*I*-1)
< ordg(II77).

(2.13). Let R be a regular local domain such that R is strongly
semiresolvable. Then R is strongly principalizable.
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Proor. Given any principalizer (R;,I;, S;)o<;cw such that
R, is an iterated monoidal transform of R, we want to show that
I; is a principal ideal in R; for some nonnegative integer j. By
(2.12.5) we know that ordg (I;[;") < ordg(I,I,) whenever i > a.
Therefore there exist nonnegative integers b and d such that
ordg (I,I;') = d whenever ¢ > b. By (2.12.1) there exist nonzero
principal ideals [, ,,..., J, (# > 0) in R, such that L[l =
Joi+ o+ Jynandordg Jy , = dforl <g<nForl <qg<n
let (J; Jp<icw be the unique sequence such that J;  is the
(Ri—1» Si—y, Ry)-transform of J,_,, for b < i < oo. In view of
(2.12.4), by induction on i we see that ILI;7* = [, + -+ J;
and ordg J;, =d for b <i< oo and 1 <g<n Let J;=
Jip o Jin for b <i < oo. Then J; is a nonzero principal ideal
in R; for b <i < o0, and J; is the (R;_;, S;_;, R;)-transform of
Jioy for b <i < 0. By (2.12.3) we have that GR;, J;) =
(R, , LI;Y) for b < i < oo.Itfollows that (Ry,;, Joiis Spicdocicn
is a semiresolver. Since R, is an iterated monoidal transform of R and
R is strongly semiresolvable, we conclude that (R;, J;)is resolved for
somej > b. By (2.12.2) we now get that [; is a principal ideal in R;.

(2.14). Let R be a three-dimensional regular local domain, let
(%, ¥, 2) be a basis of M(R), let | be a nonzero principal ideal in R
such that JC 2R, let I = x*yP2°R where a, b, ¢ are nonnegative
integers, let (R, J',I') be a monoidal transform of (R, J, I, R) such
that ordg ' = ordg ], and let E* = G¥R', J') — C¥R, J). Then
(E*, I') has a normal crossing at R', E* contains at most one element,
and for every S € E* we have that: either y/x € R’ and R’ "\ M(S) =
(x, 2/x)R’, or x[y € R" and R' " M(S) = (¥, 2/y)R’".

Proor. Now J = zwR with 0 = w e R. Let e = ordzw. Then
ordg] = e + 1, and hence by assumption ordg J = e+ 1. If
x/z€ R’ and y/z € R’ then we would get that J' = (w/2°)R’ and
ordy(w/2¢) < e which would be a contradiction. Therefore we
must have either y/xe R’ and z/xe M(R'), or x/ye R’ and
z/y € M(R'). Consequently there exists a permutation (x', y’) of
(%, y) such that y'/x" € R’ and z/x" € M(R'). Let (a’,b’) be the
corresponding permutation of (a,b). Then I = x'%y’¥2°R and
hence:

(]) I = x’e+1+a’+b'+8(y'/x’)b’(z/x’)c'R'.
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Also (2): if dim R’ # 3 then dim R’ =2, y'/x’ ¢ M(R’), and
M(R’) = («, 2/«')R’; and if dim R’ = 3 then M(R') = («', y%,
z/x")R' where y* = y'[x" in case y'/x’ € M(R’), and y* = some
element in R in case y'/x" ¢ M(R'). By (1.9.5) we get that
M(R)R' C R’ n M(S) for all Se®B(R)— B(R); consequently
x' € R" n M(S) for all SeB(R') — B(R); since ordy J' = ordy],
we get that G¥R, J') N B(R) CE*R, ]), and hence
E* C B(R') — B(R); therefore:

3) ¥eR NM(S) forall SeE*

Now [ = (2/x')w/x'®)R’, ordg] = e+ 1, ordg(z/x’) =1,
w/x'¢ € R’, and ordg(w/x'®) <e; consequently ordg(w/x'®) = e; it
follows that z/x" € R" N M(S) for all S € €%(R’,]’); therefore by (3)
we get that (¥, 2/x')R" C R’ N M(S) for all SeE*, and hence
by (2) we get that:

4 (#',2/)R =R nM(S) foral SekE*

By (1), (2), and (4) it follows that (E*, I’) has a normal crossing
at R’, and E* contains at most the one element. Since (x', y’) is a
permutation of (, y), by (4) we get that for every S € E* we have
that: either y/xe R’ and R’ N M(S) = (x, 2/x)R’, or x/ye R’
and R’ n M(S) = (y, 2/y)R".

(2.15). Let R be a regular local domain with dim R < 3. Let |
and I be nonzero principal ideals in R such that | # R, and (], 1)
has a quasinormal crossing at R. Let (R, J',1') be a monoidal
transform of (R, J,I, R) such that ordp ] = ordg], and let
E* = G¥R', J') — GR, ]). Then we have the following.

(2.15.1). (E*, I') has a normal crossing at R', and E* contains
at most one element.

(2.15.2). Let E C €*(R, ])such that every subset of E containing at
most two elements has a normal crossing at R, and (S, I) has a normal
crossing at R for all Se E. Let E' = G¥R', ') — (€¥(R, J) — E).
Then (E',I') has a strist normal crossing at R’.

(2.15.3). If every subset of G*R, ]) containing at most two
elements has a normal crossing at R’, and (S, I) has a normal crossing
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at R for all SeG¥R, ]), then (€XR', J'),I') has a strict normal
crossing at R'.

(2.15.4). If (€%R, J),I) has a mormal crossing at R, then
(€% (R, J'), I') has a strict normal crossing at R’.

(2.15.5). If ¥R, ]) has a normal crossing at R, then G¥R’, J')
has a strict normal crossing at R'.

Proor oF (2.15.1). Since (J, I) has a quasinormal crossing at R
and | # R, there exists a basis (x, ¥, &) of M(R) such that | C 2R
and I = x%"2°R where a, b, ¢ are nonnegative integers. Therefore
our assertion follows from (2.14).

Proor oF (2.15.2). By (1.10.6) we know that I’ has a normal
crossing at R’; also, if dim R’ # 3 then dim R’ < 2; therefore, if
dim R’ # 3 then (E’,I') has a strict normal crossing at R’. So
assume that dim R’ = 3. Then dim R = 3. Clearly EXC E'. If
E* = E then our assertion follows from (2.15.1). So also assume
that E* 4 E’ and take S'e€eE’ — E*. Now E — E* —
En@E(R, ]')CEN B(R’), and hence by (1.10.11) we get that
E' — E* = {§'}, i.e,, E' = {S§'} U E*. By assumption (S, ) has
a normal crossing at R and hence there exists a basis (x, y’, ) of
M(R) such that RN M(S’) = (¥, 2')R and I = x%)'0'2’“ R where
a,b’, ¢’ are nonnegative integers. Now (J,I) has a quasinormal
crossing at R, | # R, and S’ € ¥R, ]); therefore there exists
ze(y’, 2')R with ordgz = 1 such that JC 2R and (2R, ) has a
quasinormal crossing at R; consequently by (1.5.1) there exists
y€R such that M(R) = (x,y, 2)R, RN M(S’) = (y, 2)R, and
I = xR where b and ¢ are nonnegative integers. Since
S’ € B(R) N B(R’), by (1.10.10) we get that M(R’) = (x, y/x, z/x)R’
and R’ N M(S’) = (y/x, 2/x)R’; clearly x/y¢ R’ and hence
by (2.14) we get that E* contains at most one element,
and R’ N M(S) = (»,2/x)R" for every SeE*; now I =
x4Hatd+(y/x)P(2/x)°R’ where d = ordg ], and hence it follows that
(E', I') has a strict normal crossing at R'.

Proor oF (2.15.3). Take E = €¥(R, ]) in (2.15.2).
Proor oF (2.15.4). Follows from (2.15.3).
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Proor oF (2.15.5). Now (J, R) has a quasinormal crossing at R,
and (%R, ]J), R) has a normal crossing at R. Therefore our
assertion follows by taking I = R in (2.15.4).

(2.16). Let R, be a regular local domain with dim R, < 3. Let
Jo and I, be nonzero principal ideals in R, such that J, # R,,
€%(Ry , J,) has a normal crossing at R, , and (], , I,) has a quasinormal
crossing at Ry . Let (R;, J; ,1)ocico be an infinite sequence such
that for 0 <i < oo: R; is a regular local domain, J; and I; are
nonzero principal ideals in R, , (R;, J;, I,) is a monoidal transform
of (Ri1s JicasIias Ry y), and ordg J; = ordg J,. Then there
exists a nonnegative integer j such that (€¥(R;, J;),I,) has a strict
normal crossing at R, for all i > j.

Proor. By (1.10.7) we get that (J;,I;) has a quasinormal
crossing at R; for 0 << 7 < o, and by (2.15.5) we get that €%(R;, [,)
has a strict normal crossing at R; for 0 <7 < co. If dim R; # 3
for some nonnegative integer j, then for all 7 >>j we have that
dim R; < 2 and hence (€%(R;, J;), I,) has a strict normal crossing
at R; for all ¢ > j. So now assume that dim R; = 3for 0 <7 < o0.

Let E = () €(R,, J,). Then there exists a positive integer ¢
p=0
such that E = €¥(R,, J,) N €R;, J,) for all ¢ = ¢. By induction
on ¢ we shall show that ((€X(R;, J,) — €% (R,, J,)), ;) has a normal
crossing at R; for 0 <C ¢ <C co; this is obvious for 7 = 0; so now
let ¢ > 0 and assume that (E*, I,_;) has a normal crossing at R;_,
where E* = @R, ,, J; 1) — €(R,, Jo); upon taking (R; ;, J; 1,
I,_,,E*) for (R, ]J,I,E) in (2.15.2) we get that (E’,I;) has
a normal crossing at R; where E’ = G¥R;, J) — (€¥R,_,,
Jic1) — E*); clearly €¥R,, J,) — €(R,, J))CE’ and hence
((€¥(R;, J;) — €(R,, Jo)), I;) has a normal crossing at R, . This
completes the induction on 7. Hence in particular we get that
((€¥(R;, J;) — E), I,) has a normal crossing at R, for all 7 > q.
Therefore if E = @ then it suffices to take j = ¢. So now assume
that £ # o and take SeE. Note that then Se B(R;) for
0 < i < oo. Since EC B(Ry) N B(R,), by (1.10.11) we get that
E = {S}. Since S has a simple point at R,, there exists a basis
(%,5', 2") of M(R,) such that R, M(S) = (¥, 2)R,. Since I,
has a normal crossing at R,, there exists a basis (x,, %, , ¥3) of
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M(R,) such that I, = x{x5:x5:R, where a, , a, , a; are nonnegative
integers. Upon relabeling x,, x,, x; we may assume that there
exists an integer # with 0 < u <C 3 such that x§: ¢ R, N M(S) for
0 <i<u and x} e Ry M(S) for u < i < 3. Note that then
a; > 0 for u < 7 < 3, and hence x; € Ry N M(S) for u < i < 3.
Since dim S =2, we get that #« > 1, and if u =1 then
Ry N M(S) = (%y, %3)R,. Also, if u=2 then Ryn M(S) =
(»*, %5)R, for some y* e R, (namely, since ordgx; = 1 and
xg€ Ry N M(S) = (v, )R, , we get that x; = r,y" + 7,2’ where
r, and 7, are elements in R, at least one of which is not in M(R,);
take y* = 2’ in case r; ¢ M(R,), and y* = y’ in case r, € M(R,)).
Let w = xf1 ... x5». Then w e R, and w ¢ Ry N M(S). Let

(xg, %3, ay , a3) if u=1
(y,2,b,¢) = {(y* %3, 0, a3) if uw=2
(', ¢,0,0) if u=23

Then M(R,) = (x, 5, 2)Ry, Ry N M(S) = (v, 2)R,, b and ¢ are
nonnegative integers, and I, = wy®2°R,. Since S e B(R,) for
0 <7 < oo, by (1.10.10) we get that M(R,) = (x, y/«%, 2/x")R,;
and R, N M(S) = (y/«%, z/x*) for O <i<oo. Let h:
Ry — Ry/(Ry N M(S)) be the canonical epimorphism, and let
v = ordyz,)h(w). Since w¢ Ry N M(S), we get that v is a non-
negative integer and A(w) = A(r)h(x)* where 7 is a unit in R,.
Consequently @ = rx* + sy + tz with s and ¢ in R,. Let
r" = r 4 s(y/x") + t(z/x°). Then w = r'x® and 7’ is a unit in R;
forall7 > v. Letd = ordg J,. Thenordg J; = dfor0 < i < oo,
and hence

I, = xv+i@+v+0)(y/xi)o(z/xi)°R,; for all 7> w.

It follows that (E, I,) has a normal crossing at R, for all i > v.
Let j = 1 4 max(v, g). Then (E, I, ;) has a normal crossing at
R, ;, and ((€*(R;_;, J;-1) — E), I, ;) has a normal crossing at
R;_,; consequently (S’, I;_;) has a normal crossing at R;_, for all
S" e €¥R;_,, J;_1); also €(R;_,, J; ;) has a normal crossing at
R;_,; therefore by (2.15.3) we get that (€XR;, J,), I,) has a strict
normal crossing at R; for all 7 > j.

(2.17). Let R be a regular local domain with dim R < 3. Let |
and I be nonzero principal ideals in R such that | # R, (¥R, ]),I)
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has a strict normal crossing at R, and (J,I) has a quasinormal
crossing at R. Let Se€GXR, ]) and let (R, J',I') be a monoidal
transform of (R, J,1I,S) such that ordg ] = ordg]. Then
(€%(R', J'), I') has a strict normal crossing at R’.

Proor. By (1.10.6) we know that I’ has a normal crossing at
R’; hence if dim R’ # 3 then (€%R’, J'),I’) has a strict normal
crossing at R’. So assume that dim R’ = 3. Then dim R = 3. Let

E* = {S*e @R, J'): R 0 M(S)C R’ A M(S*)}

and
E' = (&R, ]) —{S}hn &R, J).

Since ordg J' = ordyJ, we get that B(R) N €(R', J') CE¥R, J);
by (1.9.7) we know that S ¢ B(R’); hence in view of (1.9.5) we get
that €((R’, J') = E* U E'. Let d = ordgJ. Then ordp J' = d. We
shall now divide the argument into two cases according as £’ = ¢
or E' £ .

Case when E' = g. Now G¥R’, J') = E*. Since (S, I) has a
normal crossing at R, there exists a basis (¥, y’, 3) of M(R) such
that R N M(S) = (x’, ')R and I = x'¢y'®'2°R where a’, b’, ¢ are
nonnegative integers. Now (/, I) has a quasinormal crossing at R,
J # R, and S e E¥R, ]); consequently there exists y € (x', ¥')R
with ordgy = 1 such that JCyR and (yR,I) has a quasinormal
crossing at R; hence by (1.5.1) there exists x € R such that M(R) =
(%, 5, )R, R M(S) = (x, y)R, and I = x%*2°R where a and b
are nonnegative integers. Now J = yy*R where y* e R with
ordpy* = d — 1 = ordgy*. If x/y € R’ then we would get that
J = (y*/y* )R’ and ordg(y*/y® ') < d — 1 which would be a
contradiction. Consequently x/y ¢ R". Therefore M(R') =
(%, y/x, )R, I = x3++¥(y[x)°2¢R’, and xe€ R’ N M(S*) for all
S*c(R, J). Ao J = (yx)y*s IR, ordg(yl®) = I,
y*/x41e R, ordg(y*/x% 1) < d — 1, and ordg J' = d; therefore
ordg(y*/x?1) = d — 1; it follows that y/x € R' N M(S*) for all
S*e€¥(R’, J'), and hence (x,y/x)R" = R' N M(S*) for all
S*e €¥R', J'). Therefore (€¥R’, J'),I') has a strict normal
crossing at R'.

Case when E' #+ @. Take S’€ E’. Then €¥R, J) = {S, S},
S’ # S, and €XR', J') = E* U {S'}. Since (€XR, J),I) has a
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normal crossing at R, there exists a basis (¥, y', 2) of M(R) such
that RN M(S) = (¥',»)R, RN M(S) = (y,2)R, and I =
x'%y'0"2°R where a’, b’, ¢ are nonnegative integers. Now (J, I) has a
quasinormal crossing at R, | # R, and S € G%(R, ]); consequently
there exists y € (x, )R with ordgy = 1 such that JCyR and
(¥R, I) has a quasinormal crossing at R; hence by (1.5.1) there
exists x € R such that M(R) = (x,y, 2)R, RN M(S) = (x, y)R,
and I = x%%z°R where b and ¢ are nonnegative integers. Since
S’e€¥R, J) and JCyR, we get that ye RN M(S’). Thus
(y» 2) RCRN M(S) and hence R N M(S’) = (y, 2)R. Since
S’ e B(R’), by (1.10.10) we get that M(R') = (x, y/x, 2)R’
and R N M(S’) = (y/x, 2)R". Now I' = x%+2+(y/x)Pz°R’, and
xe R N M(S*) for all S*e E*. Also J = yy*R where y*€ R
with ordgy* = d — 1 = ordgy* and hence J' = (y/x)(y*/x?1)R’;
now ordg(y/x) = 1, y*/x?1e R, ordg(y*/x¢ 1) <d— 1, and
ordg J' = d; it follows that y/x € R" N M(S*) for all S* € €¥(R’, J').
Therefore (x, y/x)R" = R’ N M(S*) for all S* e E*. It follows
that (€%(R’, J'), I') has a strict normal crossing at R'.

(2.18). Let R be a regular local domain with dim R < 3. Let
J and I be nonzero principal ideals in R such that (R, ]) is unresolved
and (J,I) has a quasinormal crossing at R. Let S be a positive-
dimensional element in €(R, ]) such that (S, I) has a normal crossing
at R, and let (R, J', I') be a monoidal transform of (R, ], I, S) such
that ordg J' = ordgJ. Assume that if dim S = 2 then (€*(R, ]),I)

has a strict normal crossing at R. Then we have the following. .

(2.18.1). If G¥(R, ]) has a normal crossing at R, then €(R’, J')
has a strict normal crossing at R'.

(2.18.2). If (€R, J),I) has a normal crossing at R, then
(€X(R’, J), I') has a strict normal crossing at R'.

Proor. Since (R, J]) is unresolved, we get that 2 < dim S < 3,
and | # R.If S = R then our assertions follow from (2.15.5) and
(2.15.4) respectively. So now assume that S # R. Then we must
have S € €¥(R, J) and dim R = 3. Now by assumption (€*(R, J), I)
has a strict normal crossing at R, and hence by (2.17) we get that
(%R, J'), I') has a strict normal crossing at R'.
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(2.19). Let R be a regular local domain with dim R < 3 such
that R is strongly semiresolvable. Then R is strongly detachable.

Proor. Suppose if possible that R is not strongly detachable.
Then there exists an infinite detacher (R;, J;, I;, S;)p<i<o such
that R, is an iterated monoidal transform of R. Note that now R,
is an iterated monoidal transform of R and (R;, J;) is unresolved
for 0 <7 < 00. Also ordg J; < ordg J, whenever i > a, and
hence there exist nonnegative integers b and d such that ord J; = d
whenever ¢ > b. If (€(R,, ],), I,) has a normal crossing at R, for
some g > b then by (2.18.2) we would get that (€¥(R;, J;), I;) has
a normal crossing at R; for all 7 >> ¢ and from this it would follow
that (R,;, Jo1i» Sgiido<i<w i an infinite semiresolver, which
would contradict the assumption that R is strongly semiresolvable.
Therefore for each ¢ > b we must have that (€%(R;, J,), I;) does
not have a normal crossing at R, and hence dim S; # 2; con-
sequently S; = R; and dim R; = 3 for all £ > b; hence in view
of (2.16), for each ¢ > b we must have that €*(R;, J;) does not have
a normal crossing at R; . Consequently (Ry.;, Jyiis Ryii)ocicw 18
an infinite semiresolver, which contradicts the assumption that R
is strongly semiresolvable. Therefore R is strongly detachable.

(2.20). Let R be a regular local domain, let | be a nonzero
principal prime ideal in R, let S be a positive-dimensional element
in B(R) such that S has a simple point at R and S # R;, and let
(R, J') be a monoidal transform of (R, ], S). Then |’ # R’ if and
only if R’ C R, . Moreover, if J' # R’ then ]’ is a prime ideal in
R and R, = R,.

Proor. Let d = ordg] and Q = (RN M(S))R’. Then Q is a
nonzero principal prime ideal in R’, JR' =Q¢J',and J' ¢ Q. Since
S # R;, we also have that (R N M(S))R, = R, .

First suppose that R" C R, . Since (R N M(S))R, = R,, we get
that OR, = R, . Since JR' = Q%]', we now get that JR, = J'R,.
Clearly JR, # R,, and hence J'R; # R, . Therefore J' = R'.

Conversely suppose that J' % R’. Then J' = Q, ...Q, where
Q1 y w0y On (m > 0) are nonzero principal prime ideals in R'. Let

= R' Since J'¢Q, we get that O¢(Q, and hence
(R N M(S)) ¢ Q;; consequently (R N M(S))R; = R; and hence by
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(1.9.5) we have that R; € 8(R); now JCQ;, and hence R; C Rj;
since dim R; = 1 = dim R,, we must have R; = R; and hence
O,R, = M(R;). This being so for 1 < i < n, we get that M(R)) =
JR;, = (Q%, ... 0, )R, C M(R,)" and hence n = 1.

(2.21). Let R be a regular local domain such that R is semi-
resolvable. Let R’ be an iterated monoidal transform of R, let |’ be
a nongzero principal prime ideal in R', and let V be a valuation ring
of the quotient field of R'|]' such that V dominates R'|]'. Then there
exists a regular spot R* over R'| ]’ such that V dominates R*.

Proor. Let h: R' — R’/]’ be the canonical epimorphism. Now
R). is a valuation ring of the quotient field L of R and there exists
a unique epimorphism g of R}. onto the quotient field K of R'/]’
such that g=%(0) = M(R})) and g(u) = h(u) for all ue R'. Let
W = g=(V). Then W is a valuation ring of L, g=Y(M(V)) = M(W),
and W dominates R'. If (R, J') is resolved then R’/]’ is regular
and it suffices to take R* = R’/J'. So assume that (R’, J') is
unresolved. Since R’ is semiresolvable, there exists a finite
semiresolver [(R;, J;, Si)ocicm » (Rm» Jm)] such that (R,, J,) =
(R, J') and W dominates R,, . Now R,, C W C R}., and hence by
(2.20) we get that J,, is a prime idealin R, and R,, " M(R})) = ],..
Let R* = g(R,). Now (R,,, J,) is resolved, and hence R* is
regular. Since R,, is a spot over R’, we get that R* is a spot over
R'/]'. Since W dominates R,, , we also get that I/ dominates R*.

§3. Dominant character of a normal sequence

(3.1). Let Ry be a pseudogeometric one-dimensional local domain
and let (R,)o. ;. be an infinite sequence of local domains such that
R, is a quadratic transform of R,_; for 0 << i < co. Then there
exists a nonnegative integer j such that R; is a one-dimensional
regular local domain and R, = R; for all 1 > j.

Proor. We can take a valuation ring V of the quotient field
K of R, such that V' dominates R; for 0 < ¢ << co. Let T be the
integral closure of R, in K. Then TC V. Let P = T n M(V).
Since R, is pseudogeometric, we have that T is a finite R,-module



62 1. LocaL THEORY

and hence T is noetherian. Therefore by [27: §2, §3, §6, and §7 of
Chapter V] we get that T, is a one-dimensional regular local
domain. Since V' dominates T, , we must have V' = T,. Given
any 2€ V, for each ¢ > 0 let u(¢) be the smallest nonnegative
integer such that yz € R; for some 0 # y € R; with ord,y = u(s);
note that then ze R, if and only if #(?) = 0; also note that
u(@) = u(i 4+ 1) for all £ > 0. Given £ > 0 take 0 # y € R, such
that yz € R; and ord,y = u(z); we claim that #(z + 1) < max(0,
u(z) — 1); thls is obvious when u(7) = 0 because thenu(z + 1) = 0;
so assume that u(?) = 0; then y € M(R;) and hence yz € M(R));
now M(R;)R;,; = xR;,, for some 0 # xe M(R)); let y' = y/x;
then 0 # y e R;,,,y'2 = (y3)/x € Ry, and ord,y’” < u(@) — 1;
hence u(i 4+ 1) << u(¢) — 1. Thus u(Z + 1) < max(0, u(?) — 1) for
all t > 0. Therefore u(u(0)) =0 and hence ze€ R, (). Thus

U R, = V.1In particular T C U R, . Since T is a finite Ry;-module,
=0 =0
there exists a nonnegative integer j such that T C R; for all 7 > j.

For each i > j we then have that TCR;C V and TN M(R;) =
TN M(V)= P; consequently T,CR,CV = T, and hence
R, =T,.

(3.2). Let R, be a pseudogeometric local domain, let (R} ;<o
be an infinite sequence of local domains such that R, is a quadratic

transform of R, ; for 0 <i < oo, and let S e ﬁ B(R;) such that
=0

dim S = (dim R,) — 1. Then there exists a nomnegative integer j
such that S has a simple point at R; for all 1 > j.

Proor. If R; = R;,, for some j > O then by (1.9.6) we get
that M(R;) is a principal ideal in R; and hence for each ¢ > j we
have that R, is a one-dimensional regular local domain and hence
S has a simple point at R;. So now assume that R; # R;,, for

all £ >0. Let R = U R;. Then R is a quasilocal domain,
M(R) = U M(R)), RC S, and R N M(S) is a prime ideal in R.

Let &: R — R/(R N M(S)) be the canonical epimorphism. Then
h(R) is a domain and for each 7 >> 0 we have that A(R)) is a
subring of A(R) and A(R,) is isomorphic to R;/(R; N M(S)); also
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dim A(R,) = 1 and Ah(R,) is pseudogeometric. Let any ¢ > 0 be
given; since R;,; is a quadratic transform of R;, there exists
0 # xe M(R;) such that R[M(R)x'JCR;,;, and R, , = 4,
where 4 = R,[M(R;)x '] and Q = A N M(R,,,); since R, #
R;,; and S e B(R;) N B(R,,;), we get that M(R,) ¢ M(S);
since M(R;)R;,; = xR;,; and R,,; C S, we must have x ¢ M(S);
therefore 0 # h(x) € M(h(R,)), h(4) = h(R,)[M(h(R;))h(x)], h(Q)
is a prime ideal in A(4), M(h(R,)) C K(Q), and A(R; ;) = K(A)nioy;
consequently A(R;,;) is a quadratic transform of A(R;). Thus
h(R;.;) is a quadratic transform of A(R;) for all £ >> 0 and hence by
(3.1) there exists a nonnegative integer j such that for each 7 > j we
have that h(R;) is regular and hence S has a simple point at R; .

(3.3). Let Ry be an n-dimensional regular local domain and let
(R))o<i<o be an infinite sequence of regular local domains such that
R; is a quadratic transform of R,_; for 0 <i < oo0. Let E be a
finite set of (n — l)-dimensional elements in B(R,) and let

E' = ENn () B(R,)). Then we have the following.
i=0

(3.3.1). Assume that every element in E has a simple point at R, .
Then E’ contains at most one element and there exists a nonnegative
integer j such that for all i > j we have that E' = E N B(R,) and
E’ has a normal crossing at R; .

(3.3.2). Assume that R, is pseudogeometric. Then E' contains
at most one element and there exists a nonnegative integer § such that
for all ¢ > j we have that E' = E N B(R,;) and E’ has a normal
crossing at R; .

Proor oF (3.3.1). Clearly E N B(R,) C E N B(R,) whenever
b > a, and hence there exists a nonnegative integer ¢ such that
E' = E N B(R)) for all £ > ¢. Consequently if E' = @ then we
have nothing to show. So now assume that E' # @ and take
S e E’. Then there exists a basis (x,, ..., x,) of M(R,) such that
Ry M(S) = (x4, ..., x,)R, . Repeatedly applying (1.10.10) we
get that for all 7 >0 we have that dim R, = n, M(R)) =
(%1 5 29/x% , ooy 2u/xD)R; , and R, N M(S) = (xy/x% , ..., x,/xD)R; . In
particular S has a simple point at R; for all £ > 0. It now suffices
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to show that E’ = {S}. Suppose if possible that E’ 3 {S} and take
S’ e E' with 8" # S. For any 7 > 0 and any ze R, ; N M(S’),
by (1.10.9) we have that z/x, € R; N M(S’). Therefore for any
z € Ry N M(S’) we get that z/xi e R; N M(S’) for all i > 0 and
hence z/xie M(R,) for all i > 0. Since S’ # S, there exists
2€ Ry M(S') such that z ¢ (x,, ..., x,)Ry . Let it Ry — Ry/(x,,
..., )Ry be the canonical epimorphism and let ¢ = ord,, g, k().
Then 7 is a nonnegative integer and 2 = rya% + 7,2, + -+ + 7,%,
where r,, ..., 7, are elements in R, such that r, ¢ M(R,). Now
2[w] = 1y + ry(xy/ad) + o+ r(x,/ab), r,eR; for 1 < g <n
x,/x; € M(R;) for 2 <qg<n and r ¢ M(R). Therefore
z/xt ¢ M(R,) which is a contradiction.

Proor oF (3.3.2). Clearly EnN B(R,) C EN B(R,) whenever
b > a, and hence there exists a nonnegative integer ¢ such that
E' = EnN B(R,) for all i > c¢. Consequently if E' = @ then we
have nothing to show. So now assume that £’ # @ and take
S € E'. If dim R; # nfor some d then R;is an (n — 1)-dimensional
regular local domain for all ¢ > d, and hence E' = {S} and E’
has a normal crossing at R; for all ¢ > d. So also assume that
dim R; = = for all 7 > 0. By (3.2) there exists ¢ >> ¢ such that
every element in E’ has a simple point at R,. Now by (3.3.1)
we get that E’ contains at most one element and there exists j > e
such that E’ has a normal crossing at R; for all > ;.

(3.4). Let R, be an n-dimensional regular local domain and let ],
and I, be nonzero principal ideals in R such that 1, has a quasinormal
crossing at Ry . Let (R, , J; , I,)o<i< be an infinite sequence such that
for 0 < i < oo: R, is a regular local domain, |, and I, are nonzero
principal ideals in R;, and (R;, ];,1,) is a monoidal transform of
(Ri—1» Jic1s1L;1 s R;_y). Let E be a finite set of (n — 1)-dimensional

elements in B(R,), and let E' = E N ( () B(R;)). Then we have the
Jfollowing. =

(3.4.1). Assume that every element in E has a simple point at R, .
Then E’ contains at most one element and there exists a nonnegative

tnteger j such that for all i > j we have that E' = E N B(R;) and
(E', I,) has a pseudonormal crossing at R; .
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(3.4.2). Assume that R is pseudogeometric. Then E' contains at
most one element and there exists a nonnegative integer j such that
for all i >j we have that E' = EN B(R,;) and (E’,I;) has a

pseudonormal crossing at R; .

Proor oF (3.4.1). By (1.10.8) we know that I, has a quasinormal
crossing at R; for all £ > 0. By (3.3.1) we know that E’ contains at
most one element and there exists a nonnegative integer j' such
that E' = ENB(R,) for all £ > j'. If E' = & then it suffices to
take j = j'. So now assume that E’ # @ and take S e E’. Then
E’ = {S} and there exists a basis (x,, ..., x,) of M(R,) such that
Ry N M(S) = (x,, ..., x,)Ry . Repeatedly applying (1.10.10) we
get that for all £ >0 we have that dim R, = n, M(R)) =
(%1, %9/5% , ooy 2, /x)R;, and Ry, N M(S) = (xy/x%, ..., x,/x")R; .
Now I, = 2, ... 2,R, where z,, .., %, are elements in R, with
ordgz, = 1 for 1 < g <a (we take 2z, ..2,Ry = R, in case
a = 0). Upon relabeling =z,,..,2, we may assume that
2, € (%, o, %Ry for 1 < g <b, and 2, ¢ (x,, ..., x,)R, for
b < q < a where b is an integer with 0 < b < a. Let I =
2 ... 5,Ry and 2 = 2, ... 2, (we take 2, ... 2R, = R, in case
b=0,and 2,,, ... 8, = lincase b = a). Then 2 ¢ (x,, ..., x,)Ry .
Let &: R, — R,/(x,, ..., x,)R, be the canonical epimorphism and
let e = ord,g,yh(z). Then e is a nonnegative integer and
3 = rx$ + 7%, + -+ + r,x, where ry, ..., 7, are elements in R,
with r; ¢ M(R,). It follows that 2/x] is a unit in R; for all £ > e.
Let (I})- ;- be the unique infinite sequence such that (R;, J;, I})
is a monoidal transform of (R, , J;_y, iy, R;;)for0 < i < c0.
Let ¢ be any integer with 1 < ¢ < b; since 2, € (%, , ..., x,)R, and
ordg z, = 1, we get that 2, = syx, + *** + s,%, where 5., ..., 5,
are elements in R, such that s, ¢ M(R,) for some p; now M(R,) =
(301 5 Xg s voey Xp 15 Zg» Xpy1s s Xp)Rg and Ry N M(S) = (xy, ...,
Xp 15 Zg» Xpi1s s X,)Re; consequently (S, 2,R;) has a pseudo-
normal crossing at R,. This being so for 1 << ¢ < b, it follows
that (S, I;) has a pseudonormal crossing at R, . Therefore, upon
applying (1.10.12) repeatedly, we get that (S, I;) has a pseudo-
normal crossing at R, for all 7 > 0. Clearly I, = zI; for all { > 0,
and hence (S, I;) has a pseudonormal crossing at R, for all ¢ > e.
It now suffices to take j = max(j’, e).
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Proor oF (3.4.2). By (1.10.8) we know that I; has a quasinormal
crossing at R; for all ¢ > 0. Clearly En B(R,) C EN B(R,)
whenever b > a4, and hence there exists a nonnegative integer ¢
such that E' = E N B(R,) for all # > ¢. Consequently if E' =
then we have nothing to show. So now assume that E’ % g and
take SeE'. If dim R; 5= n for some d then R; is an (n — 1)-
dimensional regular local domain for all# > d, and hence E' = {S}
and (E’, I;) has a pseudonormal crossing at R; for all i > d. So
also assume that dim R; = # for all £ > 0. By (3.2) there exists
e > ¢ such that every element in E’ has a simple point at R, .
Now by (3.4.1) we get that E’ contains at most one element and
there exists j > e such that (E’, I,) has a pseudonormal crossing
at R, for all i >j.

(3.5). Let R, be a pseudogeometric two-dimensional regular
local domain and let |, be a nonzero principal ideal in R, . Let
(R; s J)o<i<o be an infinite sequence such that for 0 < i < co:
R, is a regular local domain, J; is a nonzero principal ideal in R,
and (R; , J;)is amonoidal transform of (R;_, , J;_, , R;_;). Then there
exists a nonnegative integer j suchthat (R;, J,)isresolved for alli > j.

Proor. Take we R, such that J, = wR,. Then for each
i > 0 there exist elements w; and z; in R; such that w = w2,
and J; = w;R; . If (R;, J;) is resolved for some j then by (1.10.4)
we have that (R, , J;) is resolved for all £ > j. Hence it suffices to
show that (R;, J;) is resolved for some ¢ > 0. Suppose if possible
that (R;, J;) is unresolved for all ¢ > 0. Then dim R; = 2 and
ordg J; > 2 for all i > 0. Now ordg,  Jiy; < ordg/; for all
i >0, and hence there exists a nonnegative integer j such that
ordg J; = ordg J; for all ¢ > ;. By (0.1) and (0 2) (alternatively
see [8 Lemmas 3.7 and 3. 14(4)]) there exists £ 2> j and a basis
(x ) of M(R,) such that w = rx*'y*" where r is a unit in R; and
u’ and v’ are nonnegative integers. Since w = w;2; and J; = w,R,;,
it follows that J; = x%y*R; where u and v are nonnegative integers.
Upon relabeling x and y we may assume that y/x € R;,; . Then
Jis1 = (/x)°R,,, . Since (R;,,, J;,1) is unresolved, we must have
y/% € M(R;,;) and hence M(Ry,1) = (x, y/#)Ry,, . Since (R; , J;)is
unresolved, we must have ¥ > 0 and v > 0. Now ordg [\, =
v < u + v = ordg J; which is a contradiction.



§3. DOMINANT CHARACTER OF A NORMAL SEQUENCE 67

(3.6). Let R, be a pseudogeometric regular local domain, let
Jo be a nonzero principal ideal in R, let T, be an element in
C%R,, J,) having a simple point at R, , and let S, be a positive-
dimensional element in (R, , J,) having a simple point at R, such
that SyC Ty. Let (R;, J;, T;, S;)ocico be an infinite sequence
such that for 0 < i < c: R; is a regular local domain, |, is a
nonzero principal ideal in R, , T is an element in €(R; , J,) having a
simple point at R; , S; is a positive-dimensional element in G(R;, J;)
having a simple point at R;, S; C T,,(R;, J;) is a monoidal trans-
form of (R,_y, Ji—1, Si;_1), and T; dominates T, ,. Assume that
S; = T, for infinitely many distinct values of i. Then there exists a
nonnegative integer j such that (R;, J;) is resolved for all i > j.

Proor. Let N be the set of all nonnegative integers ¢ such
that S; = T,. By assumption NN is an infinite set. We can
arrange all the integers in N in the form of an infinite sequence
a(0) < a(l) < a2) < ...

Let i be any given nonnegative integer. Let d = ordg J;,
P = R, M(S;),andQ = PT,.Take w € R;such that J; = wR, .
Then there exists 0 = x€ P such that R;, ;e B(R,[Px71]),
PR;,, = xR, ,and J;,; = (w/x*)R;,, . Now clearly J,T; = wT;,
0#x€Q, Ty eB(T[0x7]), QT = 2Ty, and [Ty =
(w/x?)T,,, . First suppose that :¢ N; then Q = T, and hence
T;.1 = xT;,4; since T;,, dominates T,;, we get that x is a unit

in T; and hence T;[Qx7'] = T;; since T; ., € B(T;[Ox7]) and
JinTin = (w/x3)T;,,, we conclude that (Ty, JinTin) =
(T;, J;T,). Next suppose that i € N; then Q = M(T,) and hence
(Ti41 5 Ji41Ts41) 1s 2 monoidal transform of (T, J;T;, T;).

It follows that (T,), Jaw Taw)o<icw 1s an infinite sequence
such that for 0 < ¢ << co: T, is a regular local domain, [ ;) T, is
a nonzero principal ideal in T,), and (T 411> Jatin Tatien) 18
a monoidal transform of (75, Jo) Tate)s Taw)- Also Ty = Ty,
and hence T, is pseudogeometric and dim T, = 2. Therefore
by (3.5) there exists a nonnegative integer j' such that (7,
Jow T o) 1s resolved for all ¢ > j'. Let j = a(j’). Then by (1.5.3)
we get that (R;, ;) is resolved for all 7 > j.

(3.7). Let R be a regular domain with dim R < 3, let | be a
nonzero nonunit principal ideal in R, let d = ord,], let (R', ]')
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be a monoidal transform of (R, ], R) such that ordg ]’ = d, and let
E' = {S'"e @R, J'): M(R) C M(S')}. Then we have the following.

(3.7.1). Assume that dim R = dim R’ = 3 and E' # @. Let
S’ € E', let t be a coefficient set for R, and let (x, , x, , x5) be a basis
of M(R) such that x,/x, € R' and x3/x, € R'. Then there exist elements
ry, Ty, r3 in t such that R' N M(S’) = (%, r, + ry(xs/x;) +
7o(%3/%,))R’ and M(R') = (%, 1y + 73(xa/%1) + 75(%5/x1), )R’ for
some te R (whence in particular S’ has a simple point at R').
Moreover, if S” is any two-dimensional element in B(R') such that
M(R)C M(S") and J' C M(S") then S" = S’ (whence in particular
E' = {8}

(3.1.2). Let E be a set of two-dimensional elements in B(R)
such that every subset of E containing at most two elements has a
normal crossing at R. Then (E N B(R')) U E’ has a strict normal
crossing at R', and E N B(R') contains at most one element.

(3.1.3). If €¥R, ]) has a strict normal crossing at R then
@%(R', J') has a strict normal crossing at R’, and at most one element
in €(R’, ') dominates G¥R, ]).

(3.7.4). Let I be a nonzero principal ideal in R such that I has
a quasinormal crossing at R, and let I' be the unique nonzero principal
tdeal in R’ such that (R’, J', I') is a monoidal transform of (R, ], I, R).
Then (E', I') has a pseudonormal crossing at R'. Moreover, if G¥(R, ])
has a strict normal crossing at R and (€%R, ]), I) has a pseudonormal
crossing at R, then G¥R’', J') has a strict normal crossing at R’ and
(€%(R', J'), I') has a pseudonormal crossing at R’.

Proor oF (3.7.1). Let h: R — R/M(R) be the canonical epimor-
phism, let 4 = R[x,/x, , x3/x,], let X, , X; be indeterminates, let
A* = h(R)[X,, X;), and let H: A — A* be the unique epimor-
phism such that H(x,/x,) = X, , H(xs/%,) = X3, and H(u) = h(u)
forallue R. Now Ker H = x,4, x,A C (4 n M(S"))C(4 N M(R")
are distinct prime ideals in 4, and S’ is the quotient ring of A4
with respect to (4 N M(S’)). Therefore H(A N M(S’)) is a nonzero
principal prime ideal in 4* and, upon letting S* be the quotient
ring of A* with respect to H(A N M(S’)), there exists a unique
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epimorphism H*: S’ — S* such that H*(u) = H(u) for all u € A4.
Take w € R such that wR = J. Then
W= Z rabcxtlzxgxg
a+b+c=d
where 7, are elements in R at least one of which is not in M(R).
Let w' = w/x%. Then w' € A and

H@)= Y hir, )X2X: € A*,
atb+c=d

Therefore H(w') is a nonzero polynomial of degree <d i X,, X;
with coefficients in A(R). Let d* = ordz.H(w'). Since H(A N M(S"))
is a nonzero principal prime ideal in A4*, we get that
H(w') e H(A N M(S"))*". Now ' = w'R’ and hence ordgw’ = d;
also ordgH(w') = ordg.H*(w') > ordgw’ and hence d* > d.
Thus H(A N M(S’)) is a nonzero principal prime ideal in 4%,
H(w') is a nonzero polynomial of degree <d in X,,X; with
coefficients in A(R), H(w') € H(A N M(S’))*", and d* > d; con-
sequently we must have: d* = d, H(w')4A* = H(A N M(S"))?,
H(A n M(S") is the only principal prime ideal in A* which
contains H(w’), and there exist elements 7r,, 7,, 73 in T such
that H(A N M(S") = (h(ry) + h(ry)X, + h(r3)X;)A*, and
hence R' N M(S') = (%1, 7, + 75(x/x,) + 73(x3/%;))R’. Now
H(A N M(R)) is a maximal ideal in A%, A&(r,) + h(ry)X, +
h(r;)X; € HA N M(R')), and at least one of the two elements
h(r;) and h(ry) is not zero; consequently H(A N M(R')) =
(h(ry) + h(r) X, + h(r3) Xy, H(t))4d* for some te A; now
M(R') = (%, 1y + 7o(xa/%,) + 75(%3/2,), )R’ and hence S’ has
a simple point at R’. Given any two-dimensional element
S” in B(R’) such that M(R)C M(S") and J'C M(S") we
have that @’ e (4 N M(S")) and hence H(w')e H(A N M(S"));
also x,4 C(4 N M(S")) C (4 N M(R')) are distinct prime ideals
in A and hence H(4 N M(S")) is a nonzero principal ideal in 4*;
consequently H(A N M(S")) = H(A N M(S")) and hence
(A N M(S")) = (A N M(S")); therefore S” = S".

Proor orF (3.7.2). If dim R’ 5 2 ihen our assertion is trivial.
So now assume that dim R" = 3. Then dmR =3. If E' = &
then our assertion follows from (1.10.11); and if EN B(R') = @
then our assertion follows from (3.7.1). So now assume that
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E' # @ # EN B(R') and take S’ € E’ and S € E N B(R’). Then
E' = {S'} by (3.7.1) and E N B(R') = {S} by (1.10.11), and hence
it suffices to show that {S, S’} has a normal crossing at R’. Now
S has a simple point at R and hence there exists a basis (x, , %, , %3)
of M(R) such that R N M(S) = (x,, x3)R. Since S € B(R’), by
(1.10.10) we get that M(R') = (x,, x,/x; , X3/%,)R’ and
R’ N M(S) = (xy/%, , x3/%;)R’. By (3.7.1) there exist elements 7 and
s in R at least one of which is not in M(R) such that R N M(S’) =
(21, 7(xa/%1) + s(x5/21))R’. Let y; = x; and y, = 7(x/%,) + $(x/%,).
Let y, = x,/x; if r¢ M(R), and y; = x,/x, if r € M(R). Then
M(B) = (3, ¥, 3R, R O M(S) = (3, ,35), and R’ 0 M(S") =
(71, y2)R'. Therefore {S, S’} has a normal crossing at R’'.

Proor oF (3.7.3). By (1.9.5) we know that if S’ is any element
in B(R’) such that S’ ¢ B(R) then M(R) C M(S’); since ordg' ] =
ord, J, we also get that €%(R’, J') N B(R) C €%(R, J]); consequently
CAR, J')C (¥R, J)N B(R')) U E'. Therefore upon taking
E = €*R, ]) our assertion follows from (3.7.2).

Proor oF (3.7.4). By (1.9.5) we know that if S” is any element
in B(R’) such that S’ ¢ B(R) then M(R) C M(S"); since ordg' J' =
ordg ], we also get that €% R’, J') N B(R) C €*(R, J); consequently
€%(R’, J') C (€¥(R, J) N B(R')) U E'. By (3.7.3) we know that if
€%R, J) has a strict normal crossing at R then G%R’, J') has a
strict normal crossing at R’. By (1.10.8) we know that I’ has a
quasinormal crossing at R’. Finally by (1.10.12) we get that if S’
is any element in G%(R, J) N B(R') such that (S’, I) has a pseudo-
normal crossing at R then (S’,I') has a pseudonormal crossing
at R’. Therefore our assertions would follow by showing that if
dim R’ = 3and E’' # @ then (E’, I') has a pseudonormal crossing
at R’. So assume that dim R’ = 3 and E’ # . Then dim R = 3.
Take S € E’. Then by (3.7.1) we get that E' = {S} and S has a
simple point at R'. Now I = 2, ... 2,R where 2, , ..., 2, are elements
in R with ordgz; = 1 for 1 <i < e (we take 2;... 2,R =R in
case e = 1). Let P = M(R)R'. Then P is a nonzero principal
ideal in R’ and I' = (,R') ... (,R)P?. We can take a basis
(%, , x5, x3) of M(R) such that x,/x, € R" and x3/x; € R’. Then
P = x,R’, and by (3.7.1) there exist elements s’ and ¢’ in R’
such that M(R') = (x,,s, )R’ and R N M(S) = (x,,s)R’".
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Therefore (S, P) has a pseudonormal crossing at R’. Hence
it suffices to show that (S, z;R’) has a pseudonormal crossing
at R" for 1 <<i<Ce So let any 7 with 1 <7 < e be given.
Since ordgz; = 1, there exist elements w, and w, in R such
that M(R) = (2;, w,, w,)R. If w,/z;e R" and w,/2;€ R’ then
z;R" = P and we have nothing more to show. So assume
that either w,/2;¢ R' or w,/z;¢ R'. Let (y,,y3) = (w;, w,)
in case w,/w, € R', and (y,,y;) = (wy, ;) in case w,/w, ¢ R’
Then M(R) = (3, %, )R, 3y, € M(R), and yy/y, € R'. Let
t be a coefficient set for R. Then by (3.7.1) there exist elements
71, Ty, r3 in £ such that R' N M(S) = (y,,r + 7r(2;/yy) +
r3(ys/y1))R' and M(R') = (y1, 1y + ry(2:/y1) + ra(¥s/y1), )R’ for
some t € R’. First suppose that r, = 0; then r, = 0 # r,, and
hence R' N M(S) = (y1, 2:/y)R" and M(R') = (y1, 2i/y1, )R’;
since 2,R" = (y,R')((2;/y1)R’), we see that (S, z;R’) has a pseu-
donormal crossing at R’. Next suppose that r; % 0; then we
have that M(R') = (31,7, + ra(z:/3) + 75(¥s/y2) 2»)R'; since
2R = (y,R)((2;/y1)R’), we see that (S, z;R’) has a pseudonormal
crossing at R'.

(3.8). Let R, be a regular local domain with dim R, < 3, and
let ], be a nonzero nonunit principal ideal in R, . Let (R;, J)o<ic
be an infinite sequence such that for 0 <i < co: R; is a regular
local domain, |, is a nonzero principal ideal in R;,(R;, J;) is a
monoidal transform of (R,_;, J;_1, R;_4), and ordg |, = ordg J, .
Then we have the following.

(3.8.1). Let E be any set of two-dimensional elements in
B(R,) such that E has a strict normal crossing at R,. Then
CAR;, J;) — (B(R,) — E) has a strict normal crossing at R; for
all i > 0.

(3.8.2). Assume that G R, , ],) is a finite set and every element
in €%(R, , J,) has a simple point at R, . Then there exists a nonnegative
integer j such that €R,, ],) has a strict normal crossing at R; for
alli >j.

(3.8.3). Assume that R, is pseudogeometric and CXR,, J,) is
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a finite set. Then there exists a nonnegative integer j such that
CXR;, J;) has a strict normal crossing at R, for all i > 0.

(3.8.4). Assumethat (R, J,)is unresolved, R, is pseudogeometric,
and (R, , P) is closed in B(R,) for every nonzero principal prime
ideal P in R, (see (1.2.6)). Then there exists a nonnegative integer j
such that €(R;, |,) has a strict normal crossing at R; for all i > j.

Proor oF (3.8.1). We shall make induction on z. The assertion
is trivial for £ = 0. So let 7 > 0 and assume that E* has a strict
normal crossing at R;_, where E* = G¥R,_,, J,_1) — (B(R,) — E).
Let E' = {S' e €¥(R;, J;): M(R;_,) C M(S")}. Upon taking (R;_,,
Jic1, E*) for (R, ], E) in (3.7.2) we get that (E* N B(R,;)) U E’
has a strict normal crossing at R; . By (1.9.5) we know that if S’ is
any element in B(R;) such that S’ ¢ B(R,_,) then M(R,_,) C M(S");
since ordg J; = ordg,_ J;;, we also get that GXR,,
Ji) O B(R,,) C @Ry, . Joa); consequently G(R, , J;) C €(R,_, ,
Ji—1) Y E'. Therefore €¥(R;, J;) — (B(R,) - E) C (E* N B(R;)) U E',
and hence €X(R;, J;) — (B(R,) — E) has a strict normal crossing
atR; .

Proor oF (3.8.2). Since ordg J; = ordg J,, we get that
&Ry, i) 0 B(Ry) C &Ry, Jo) 0 B(R,) for all i > 0. Let E =

(R, , J) O ( () B(Ry). If dim R, — 3 then by (3.3.1) and if
i=0

dim R, # 3 then obviously E contains at most one element
and there exists a nonnegative integer j such that for each 7 > j we
have that £ = (£2(R0 , ]0) N B(R,). Since €X(R;, J;) N B(R,) C (#32(R0 ,
Jo) N B(R) foralli > 0,and E = G(R,, J,) N B(R,) forallz > ],
we get that GXR;, ],)C GAR;, J;) — (B(Ry) — E) for all i >j.
Now E has a strict normal crossing at R,, and hence by (3.8.1)
we get that €(R;, J;) — (B(R,) — E) has a strict normal crossing
at R; for all £ > 0. Therefore €%(R;, J;) has a strict normal crossing
at R; for all 7 > j.

Proor oF (3.8.3). Since ordgJ; = ordg J,, we get that
C%R;, J;) N B(Ry) CER,, J,) N %(Rl) forall7 > 0. Upon taking
E = @, by (3.8.1) we get that C¥R,, J,) — B(R,) has a strict
normal crossing at R; for all £ > 0. If dim R, = 3 then by (3.3.2)
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and if dim R, # 3 then obviously there exists a nonnegative integer
b such that every element in €*(R,, J,) N B(R,) has a simple
peint at R, . It follows that €% R,, J,) is a finite set and every
element in G%R,, J;) has a simple point at R,. Therefore by
(3.8.2) there exists an integer j = b such that €¥R;, J;) has a
strict normal crossing at R; for all ¢ > j.

Proor oF (3.8.4). Follows from (1.5.4) and (3.8.3).

(3.9). Let R, be a regular local domain with dim Ry, < 3, let
Jo be a nonzero nonunit principal ideal in R, , and let I, be a nonzero
principal ideal in R, such that I, has a quasinormal crossing at R, .
Let (R, J; , 1))y ;i< be an infinite sequence such that for 0 < i < c0:
R; is a regular local domain, ]; and I, are nonzero principal ideals in
R,,(R;, J;, I,) is a monoidal transform of (R,_y, J;1,1; 1, Riy),
and ordg J; = ordg J,. Then we have the following.

(3.9.1). Let E be any set of two-dimensional elements in B(R,)
such that (E,1,) has a pseudonormal crossing at R,. Then
(§(R;, J,) — (B(R,) — E), I) has a pseudonormal crossing at R; for
all i > 0.

(3.9.2). Assume that ¥R, , ],) is a finite set and every element
in G (R, , J,) has a simple point at R, . Then there exists a nonnegative
integer | such that G¥(R;, ],) has a strict normal crossing at R; and
(S¥(R; , J;), I,) has a pseudonormal crossing at R; for all i > j.

(3.9.3). Assume that R, is pseudogeometric and G*R,, J,) s
a finite set. Then there exists a nonmegative integer j such that
CX(R;, J,) has a strict normal crossing at R; and (€¥(R;, ];), I;)
has a pseudonormal crossing at R; for all i > j.

(3.9.4). Assume that (R,, J,) is unresolved, R, is pseudo-
geometric, and S(R, , P) is closed in B(R,) for every nonzero principal
prime ideal P in R, (see (1.2.6)). Then there exists a nonnegative
integer j such that €¥(R;, J,) has a strict normal crossing at R; and
(S%(R;, ],), I,) has a pseudonormal crossing at R; for all i > j.

Proor oF (3.9.1). We shall make induction on i. The asser-
tion is trivial for £ = 0. So let ¢ > 0 and assume that (E*, I, ;)
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has a pseudonormal crossing at R; ; where E* = G¥R,_,,
Jic) — (B(R,) — E). By (1.10.8) and (1.10.12) we get that
(E* N B(R;), I,) has a pseudonormal crossing at R;. Let E' =
{S" e ®¥(R,;, J,): M(R,_,) C M(S")}. Then by (3.7.4) we get that
(E’, I;) has a pseudonormal crossing at R;. By (1.9.5) we know
that if S’ is any element in B(R;) such that S’ ¢ B(R,_;) then
M(R,_,) C M(S’); since ordgJ; = ordy [, ;, Wwe also get
that G¥R;, J;) N B(R;_;) CE€¥(R,_,, J;.;); consequently G*R;,
J:) C€(R;_,, J;-y) U E'. Therefore €(R;, J;) — (B(R,) — E)C
(E* N B(R,)) U E', and hence (¥R, J,) — (B(R,) — E), I,) has
a pseudonormal crossing at R; .

Proor oF (3.9.2). In view of (3.8.2) it suffices to show that
there exists a nonnegative integer j such that (G%(R;, J;), I;) has a
pseudonormal crossing at R; for all i > j. Since ordg J; = ordg J,,
we get that (R, , J;) N B(R,) C €¥(R,, J,) N B(R;) for all ¢ > 0.
Upon taking E = &, by (3.9.1) we get that (¥R, , J;) — B(R,), I,)
has a pseudonormal crossing at R, for all ¢ > 0. If dim R, = 3
then by (3.4.1) and if dim R 5 3 then obviously there exists a
nonnegative integer j such that (€% R,, J,) N B(R,),I;) has a
pseudonormal crossing at R; for all ¢ >j. It follows that
(€%(R;, J.), I;) has a pseudonormal crossing at R; for all 7 > j.

Proor oF (3.9.3). In view of (3.8.3) it suffices to show that
there exists a nonnegative integer j such that (€X(R;, J,), I;) has a
pseudonormal crossing at R; for all 7 > j. Since ordg J; = ordg Jy,
we get that %R, , J;) N B(R,) C €¥(R,, J,) N B(R,) for all 7 > 0.
Upon taking E = @, by (3.9.1) we get that (€X(R;, J,) — B(R,), L)
has a pseudonormal crossing at R; for all £ > 0. If dim Ry, = 3
then by (3.4.2) and if dim R, # 3 then obviously there exists a
nonnegative integer j such that (€XR,, J,) N B(R,),I;) has a
pseudonormal crossing at R; for all 7 >j. It follows that
(€%(R;, J;), I;) has a pseudonormal crossing at R; for all 7 > j.

Proor oF (3.9.4). Follows from (1.5.4) and (3.9.3).
(3.10). Let R be a three-dimensional regular local domain,

let | be a nonzero monunit principal ideal in R, let d = ordg],
let S be an element in G¥R, ]|) having a simple point at R, let
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(R, J') be a monoidal transform of (R, ], S), and let E =
{S" e ¥R, J'): RN M(S)C M(S')}. Then we have the following.

(3.10.1). Let (x,,x,,x3) be a basis of M(R) such that
RN M(S) = (x;, x3)R and x,/x, € R’, let h: R — R/M(R) be the
canonical epimorphism, let T be a coefficient set for R, let X, , X, , X,
be indeterminates, let w € R such that wR = |, and let r,, be the
unique elements in t such that

w— Y 1, A%Ext € M(R)*.
a+b+c=d
Assume that ordg J' = d. Then there exist unique elements r and s
in t with s # 0 such that

Y h(rabc)X‘I‘Xng = h(s)(X, + A(r)X,)".
a+b+c=d
Moreover, r is the unique element in t such that (x,/x,) + r € M(R’).
Also M(R') = (xy, (%3/%,) + 7, %5)R’, dim R =3, and R’ is
residually rational over R.

(3.10.2). If J'C M(R') then dim R' = 3. If ordg J' = d then
R’ is residually rational over R. If ordg |' = d and (R*, J*)is any
monoidal transform of (R, ], S) such that J* C M(R*) then R* = R'.

(3.10.3). Assume that ordy]' = d and E' +# @, and take
S’ € E'. Then S’ dominates S, and S’ has a simple point at R'.
Moreover, if (x; , x5 , x3) is any basis of M(R) such that R N\ M(S) =
(%1, %,)R and x,/x, € M(R’) then R N\ M(S") = (%;, (%2/%;) + r)R’
for some r € x,R'. Finally, if S" is any two-dimensional element in
B(R') such that R N\ M(S) C M(S") and J' C M(S") then S" = S’
(whence in particular E' = {S'}).

(3.10.4). Assume that ' C M(R') and there exists S; € ¥R, ])
with S, # S such that {S, S;} has a normal crossing at R. Then
dim R' = 3, ordg J' = d, S; € &R/, J'), and E' U {S;} has a strict
normal crossing at R'. Let (R”, ]") be a monoidal transform of (R, J',.S;)
such that |" C M(R"), let V be a valuation ring of the quotient field
of R such that V dominates R’, and let (R*, [*) be the monoidal
transform of (R, ], S;) along V. Then dim R” = 3 = dim R¥*,
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ordg.J* = d, Se€&R*, J*), S has a simple point at R*, and
(R", ") is the monoidal transform of (R*, J*, S) along V.

(3.10.5). Assume that G*(R, ]) has a strict normal crossing at R
and ordy J' = d. Then GXR', ') has a strict normal crossing at R’,
G(R', J') = (€¥R, J)V E') — {S}, S¢B(R'), E’ contains at most
one element, every element in E' dominates S, and every element in
G%(R', J') dominates exactly one element in G¥(R, J).

(3.10.6). Assume that ordg J' = d, let (R, J") be a monoidal
transform of (R', J', R') such that J" C M(R"), let V be a valuation
ring of the quotient field of R such that V dominates R’, and let
(R*, J*) be the monoidal transform of (R, ], R) along V. Then
ordg.J* = d, and B(R*) contains exactly ome two-dimensional
element S* such that M(R) C M(S*) and J* C M(S*). Moreover,
S* has a simple point at R*, S* e G(R*, J*), and upon letting
(R**, J**) be the monoidal transform of (R*, J*, S*) along V
we have that: (1) if S ¢ B(R*) then 2 < dim R* = dim R** < 3
and (R", J") = (R**, J**); and (2) if S € B(R*) then dim R* =
dim R** = dim R" = 3, S € §R*, J*), S has a simple point at R*,
ordg..J** = d, S € §(R**, J**), S has a simple point at R**, and
(R", J") is the monoidal transform of (R**, J**, S) along V.

Proor oF (3.10.1) anD (3.10.2). Since S has a simple point at R,
there exists a basis (x,, x,, x3) of M(R) such that R N M(S) =
(%1 , %,)R and x,/x, € R'. Now let (x, , x,, x;) be any such basis of
M(R). Let h,t, X;, X,, X;, w, and r,, be as in the statement of
(3.10.1).

Since S € §(R, J), there exist elements 7, in R such that

1) w= Y 7r,x%.
a+b=d

Let 7, be the unique element in f such that
@) y, — 1" € M(R).
Then

w— Y rx%0e M(R)*!

ab”" 12
a+b=d
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and hence for all nonnegative integer a, b, ¢ with a + b + ¢ = d
we have that

3 r, =1 if ¢=0, and r. =0 if ¢#0.

abc ab abe

Since ord w = d, we also get that
(4)  A(r),) # O for some nonnegative integers @, b with a + b = d.

Let 4 = R[x,/x,], let H: A — h(R)[X,] be the unique epimor-
phism such that H(x,/x,) = X, and H(u) = h(u) for all u € R. Let
w = w/x}. Thenw’ € 4Aand w'R’ = J'. By (1) and (2) we get that

(5) H@)= Y h)X?.

a+b=d
By (4) and (5) we get that H(w') # 0; now H(A N M(R')) is a
prime ideal in A(R)[X,]; if J'C M(R’) then w' € A N M(R') and
hence H(w')e H(A N M(R')). Therefore if J'C M(R') then
H(A N M(R’)is a maximal ideal in A(R)[X,] and hence dim R’ = 3
and 4 N M(R’) is a maximal ideal in 4.

Henceforth assume that ordg /' =d. Then in particular
J ' CM(R’) and hence dim R' = 3, H(A N M(R’)) is a maximal
ideal in A(R)[X,], and 4 N M(R’) is a maximal ideal in 4. Since
ordgw’ = ordg J' = d and 4 N M(R’) is a maximal ideal in 4, we
get that @' € (4 N M(R’))* and hence H(w') € (H(A N M(R')))%.
By (4) and (5) we know that H(w') is a nonzero polynomial of degree
<d in X, with coefficients in A(R); since H(w') € (H(4 N M(R')))?
and H(A N M(R’)) is a maximal ideal in A(R)[X,], we deduce that

there exist elements r and s in ¥ with s %= O such that

(6) H(4 n M(R)) = (X, + h(r))h(R)[X,]
and
(N H(w'") = h(s)(X, + h(r))"

By (3), (5), and (7) we get that r and s are the unique elements
in T with s # 0 such that

Z h(rabc)X?XgX; = h(s)(X2 + h(T)X])d.

atb+e=d
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Now Ker H = (x,, x3)4 and hence by (6) we get that
®) AN MR) = (%, (%/%,) + 7, %5)4

and hence M(R’) = (x,, (xy/x;) + 7,x3)R’. In particular
(%y/%,) + r € M(R’) and hence 7 is the only such element in f.
By (6) we also get that the quotient ring of A(R)[X,] with respect
to H(A N M(R')) is residually rational over A(R), and hence R’ is
residually rational over R.

By (6) and (7) we get that H(A N M(R’)) is the only prime ideal
in A(R)[X,] which contains H(w’). Now Ker H = M(R)A, and
hence we get that 4 N M(R’) is the only prime ideal in 4 which
contains M(R) and w’. It follows that: if (R*, J*) is any monoidal
transform of (R, J, S) such that J* C M(R*) and x,/x, € R* then
R* = R’ (note that the only assumptions used in proving this are
that (R’, J') is a monoidal transform of (R, J, S) such that
ordg /' = d, and (»,,x,,x;) is a basis of M(R) such that
R N M(S) = (»,, x3)R and x,/x, € R’).

Finally let (R*, J*) be any monoidal transform of (R, J, S) such
that J* C M(R*). We shall show that then R* = R’ and this will
complete the proof. In view of what we have said in the above
paragraph, it suffices to show that x,/x, € R*. Suppose if possible
that x,/x, ¢ R*. Then x,/x, € M(R*). Let y, = x, 4+ rx; 4+ x, and
Yy, = %y + rx; . Then M(R) = (y,, 5., %3)R, RN M(S) = (y,,
¥2)R, ¥o/y1 € R', and y,/y, € R*. Therefore by what we have said in
the above paragraph we get that R* = R’, and hence x,/x, ¢ R’
which is a contradiction.

Proor oF (3.10.3). Since S has a simple point at R, there exists a
basis (x,, %3, %;) of M(R) such that RN M(S) = (x,, x3)R
and «xy/x, € R’; by (3.10.1) there exists r’€ R such that
(x3/%,) + 7" € M(R') and then upon letting x, = x, + r'x; we
have that M(R) = (x,, x,, x3)R, RN M(S) = (x,, x,)R, and
xy/%, € M(R'). Now let (x,, x,,x;) be any basis of M(R) such
that R N M(S) = (x,, %,)R and x,/x, € M(R’). Then by (3.10.1)
we know that dim R’ = 3 and M(R’) = (,, /%, , x3)R’. Let  be
a coefficient set for R and let &~ R — R/M(R) be the canonical
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epimorphism. Take w* € R such that w*R = ]. Since S € (R, J),
there exist elements 7, ..., 75 in R such that

d
* ¥ 4G and—a
w* = Zraxlx2 .
—0

Let 7f* be the unique element in f such that 7} — r}* € M(R).
Then
d
w* — ) r¥xoxd-a c M(R)*,

a=0

Since x,/x; € M(R’), by (3.10.1) we therefore get that

d
Y, h(r¥*)XaXd-e — h(s)X?  with 0 #set

a=0

where X;, X, are indeterminates. Upon letting r, = r}/s and
w = w*/s we then get that we R, wR = ], r,e M(R) for
1 <a<dand

a
w = x4 ) rxixi-e
a=1
Since 7, € M(R), we get that

d
— ad 4 ” Q@ rd—a
w = xf + 21 (5%, + %, + Shx,)atxd
=

”

with s, , 55, S, in R. Hence upon letting @’ = w/x? we get that
w eR, w'R = J',and w' — (x,/x;)? € (%, , x3)R’. Since S’ € (R,
J’), we get that ordgw’ = d. Let A': R” — R’/x,R’ be the canonical
epimorphism. Then A'(R’) is a two-dimensional regular
local domain and M(A'(R)) = (A (xy/x,), k' (%5))k'(R’). Now
RN M(S)CM(S) and (RN M(S))R' = xR, and hence
x,R"C R' N M(S’); since dim S = 2, we get that A'(R" N M(S"))
is a nonzero nonmaximal ideal in 4'(R’); therefore A'(R’ N M(S’))
is a nonzero principal prime ideal in 4’(R’) and hence there exists
te RN M(S’) such that A'(R' N M(S")) = K'(t)h'(R’); it follows
that R" N M(S") = (»,, t)R’. Let S* be the quotient ring of A'(R’)
with respect A'(R" N M(S’)). Then there exists a unique epimor-
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phism A*: §" — S* such that A*(x) = h'(u) for all ue R'. Now
ordo.h'(w') = ordgh*(w') = ordgw’ = d; since A'(R' N M(S")) is
the nonzero principal prime ideal A'(2)A'(R’) in A'(R’), we get that
k'(w') € (K (t)h'(R'))%; consequently there exists t* € R’ such that
K (w') = KR (2)%, ie, w' — t*t?exR'. Let A": R" — R'/(x,,
x3)R’ be the canonical epimorphism. Then A"(R’) is a one-
dimensional regular local domain and M(h"(R')) = h"(x,/x,)h"(R');
since w' — t*t¢ e xR’ and w' — (wy/x,)% € (%, , ¥3)R’, we get that
R'(t*)h"(t)* = h"(xy/x,)% since te R N M(S’), we get that
h'(t) e M(h"(R')); therefore A"(t*)¢ M(h"(R’)) and there exists
t'€ R" such that A"(t')¢ M(R"(R’)) and A"(2)/h"(t") = A"(xy/x,);
it follows that ¢’ ¢ M(R’) and upon letting s’ = t/t' we get that
s’eR', RN M(S')= (x,s)R, and s — (xy/x;) € (%;, x5)R’;
consequently there exists 7 e xR’ such that upon letting
s = (xy/x,) +7r we have that R N M(S’) = (x,,s)R" and
s — §' € x,R’; finally, upon letting s* = ¢*¢'? we get that s* e R/,
s*¢ M(R'), and @’ — s*s?e€ x,R’. Thus we have found s*e R’
with s* ¢ M(R’) and r € k3R’ such that upon letting s = (x,/x,) + 7
we have that R' N M(S’) = (x,, s)R’ and @’ — s*s¢e x,R’; in
particular, 2'(R’ N M(S’)) i1s a nonzero principal prime ideal in
K(R’) and k(@)K (R') = (h'(R' N M(S’)))% Now (x,,s, x3)R =
M(R’) and hence S’ has a simple point at R’; since S’ % R’, we
also get that x3;¢ M(S’) and hence M(R)¢ RN M(S’); since
RN M(S)CRN M(S'), dim S = 2, and RN M(S’) is a prime
ideal in R, we conclude that R N M(S) = R N M(S’) and hence
S’ dominates S. Finally, let S” be any two-dimensional element
in B(R’) such that RN M(S)C M(S") and J' C M(S"); since
J CM(S), we get that w'eR N M(S") and hence
R (w') e k'(R' N M(S")); since dim S” = 2, Rn M(S)C M(S"),
and (RN M(S))R' = x,R', we get that A'(R'N M(S")) is a
nonzero principal prime ideal in A'(R’); since A'(w')h'(R’) =
(K(R" N M(S))e, Hk(w')eh' (R NnM(S"), and k(R N M(S"))
and A'(R’ N M(S")) are nonzero principal prime ideals in A'(R’),
we conclude that A'(R' N M(S")) = k' (R' N M(S’)); therefore
R N M(S") = R'n M(S’) and hence §" = §".

Proor oF (3.10.4). Since {S, S;} has a normal crossing at R,
there exists a basis (x;, %, , ¥5) of M(R) such that R N M(S) =
(%, )R and R N M(S;) = (x5, x3)R. Take we R such that
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wR = J. By induction on ¢ (0 < ¢ < d) we shall show that there
exist elements 7(g, @) in R for 0 << @ < ¢ such that w — w, € xR

where
q—1

w, = Y (g, a)xd(xx,)e.
a=0

For ¢ = 0 the sum is considered to be equal to zero and hence our
assertion is trivial for ¢ = 0. Now let ¢ > 0 and suppose we have
found r(g — 1, @) for 0 < a < ¢ — 1. Let A*: R — R/x,R be the
canonical epimorphism. Then A*(R) is a two-dimensional regular
local domain and M(h*(R)) = (h*(x,), A*(x5))h*(R). Now
w—w, €x§'R and ordgw = d = ordsw; also clearly
ordsw, ; > d < ordsw,_, . Therefore
Ords((w - wqﬂ1)/x‘21_1) =>d— q+ 1< Ordsl((w - wqﬁl)/xgtl)

and hence

(w —w,_)/xi™ € ((xy, x,)R)>4 N (3, , %) R)*-TH,
Consequently
PX((x — w _)/x37Y) € h¥(x, )0 h*(R) N h*(x,)3-A¥(R).
Now
B (R) O B (eg) 0 HH(R) = B () hH(R)
and hence there exists 7(g, ¢ — 1) € R such that
R¥((w — w,_)x3Y) = h*(r(g, ¢ — 1)(x,%,)3-9%0),
ie.,
((w — w,_))/*5™) — (r(g, ¢ — 1)(x,x,)* %) € x,R.

Upon letting (g, @) = (¢ — 1, a) for 0 << a < ¢ — 1, we get that
w — w, € ¥§R. This completes the induction on ¢. Let r, = 7(d, a)
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for 0 <a<d and let 7, = (w — wy)/x3. Then r,e R for
0 <a<dand

d
4)) w= Y rx3xx)""
a=0

Since ordzw = d, we get that
@ 1, ¢ M(R).

Now x, € M(R'). If x,/x, € R’ then (w/x3)R’ = ]’ and by (1) and
(2) we would get that w/x% ¢ M(R’) which would contradict the
assumption that J' C M(R’). Therefore x,/x, € M(R’) and hence
by (1.10.10) we get that dim R' = 3, M(R') = (%, %y/%, , x5)R’,
S, € B(R'), and R N M(S;) = (x,/%; , #3)R’; in particular S, has a
simple point at R’. Also w/x% € R’ and (w/x))R’ = J'. By (1) we
get that

3) wixd = Z;) 7, (%,/%,)%x370 € (2, , x,)R')?

and hence ordg' ]’ = d and S, € §(R’, J'). In virtue of (3.10.3) we
also get that E' U {S,} has a strict normal crossing at R’. If
3/(5of,) € M(R’) then ((w/af)/(x,/))R’ = J” and by (2) and (3)
we would get that (w/x)/(xy/x,)? ¢ M(R") which would contradict
the assumption that J” C M(R"). Therefore (x,/x,)/x3€ R" and
hence R" = By where B’ = R'[(xy/x,)/x5] and Q' = B’ n M(V);
also (w/x?)/x% € R” and ((w/x3)/x)R" = ]”, i.e., (w/(xx5)")R" = J".
Since J" C M(R"), by (3.10.2) we get that dim R” = 3. Now
R’ = B, where B = R[x,/x,]and Q = B N M(V); since R" = By,
we get that R” = Bj,. where B" = R[x,/(xx;)] and Q" =
B” n M(V). Since (x,/x,)/x5 € R” C V we get that x,/x; € M(V) and
(%y/x3)/x, € V. Since xy/x3€ M(V), we get that x,/x; € M(R*)
and R* = A, where 4 = R[x,/x;] and P = A n M(V). Since
xy/%3 € M(R*), by (1.10.10) we get that dim R* = 3, M(R*) =
(%1, x5/%5 , x5)R¥*, S € B(R*), and R* N M(S) = (x, , x,/x3)R*; in
particular S has a simple point at R*. Also w/x}e R* and
(w/x3)R* = J*. By (1) we get that

wlsd = 3 7. () € (3, , /) RS

a=0
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and hence ordg./* = d and SeG(R*, J*). Let (R**, J**) be the
monoidal transform of (R*, J*, S) along V. Since (x,/x3)/x, €V,
we get that w/(xy5,)! — (w/a)/x? € R¥%, J** — ((w/af)/sD)R** —
(w/(xy23)Y)R**, and R** = A}. where A* = R*[(x,/x;)/x,] and
P* = A* N M(V). Since R* = A, and R** = A}, it follows
that R** = B(,. . Therefore (R**, J**) = (R", J").

Proor oF (3.10.5). By (1.9.5) we know that if S” is any element
in B(R') such that S’ ¢ B(R) then RN M(S)C M(S’); since
ordg J' = ordgJ, we also get that GXR’, J') N B(R) C EXR, J);
consequently €%R’, J') CE¥R, J) U E’. By (1.9.7) we know that
S ¢ B(R'). Therefore our assertion follows from (3.10.3) and (3.10.4).

Proor ofF (3.10.6). Since S has a simple point at R, there
exists a basis (x, , ¥ , ;) of M(R) such that R N M(S) = (x, , x5)R
and xy/x; € R’. By (3.10.1) there exists re€R such that
(%3/2,) + 7€ M(R’). Let x, = x5 + rx;. Then (x;,%,, %) is a
basis of M(R), R N M(S) = (%, %3)R, and x,/x, € M(R’). Again
by (3.10.1) we get that dim R’ = 3 and M(R') = (x;, %5/x, , x3)R’.
Take w € R such that wR = J. Let w’ = w/x?. Then »’ € R’ and
w'R’ = J', and hence w’ € M(R')%. Let f be a coefficient set for R,
let A R— R/M(R) be the canonical epimorphism, and let
X,,X,, X, be indeterminates. Since S e E(R, J), there exist
elements 7, in R such that

® f= T e

a+b=d

Let 7,, be the unique element in ¥ such that r,, — 7, € M(R). Then
w— Y 7 x%be M(Ry+

ab”172
a+b=d

and hence by (3.10.1) we get that

Y h(r,)XeX? = h(s)X¢  with 0#setk.

a+b=d
Therefore 7y, ¢ M(R) and 7, € M(R) whenever a # 0. Con-
sequently

d
— d 4 ” a4 d—a
w = roxg + Y, (r% + 1%, + 1ixg)agx;
a=1
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with 7, , 7, , 7, in R, and hence
“) W' — Toa(%/%1)* € (%1, %g)R'.
Since w’ € M(R')?, there exist elements 7., in R’ such that

() W= Y g n/n)
a+b+c=d

By (4) and (5) we get that (rog — 7oa0)(%X2/%1)% € (5 , x5)R’; now
roa ¢ M(R'), dim R =3, and M(R’) = (%;, /%, , x3)R’, and
hence we must have

(6) roa0 § M(R').

Suppose if possible that x,/(x,/x,) € M(V) and x3/(x,/%,) € M(V);
then x,/(xy/x,) € M(R") and x3/(xy/x,) € M(R"); consequently
w'[(xg/x,)2 € R" and (w'/(xy/x,)?)R" = ]J”, and hence w’/(x,/x,)%€
M(R"); however, in. view of (5) and (6) we get that
w'[(xy/x,)% ¢ M(R") which is a contradiction. Therefore

) either  (xp/x))/x, €V or  (wy/x))/x3€ V.

We shall now divide the argument into two cases according as
xg/x, €V or xg/x, ¢ V.

Case when x3/x,€ V. By (7) we get that (x,/x,)/x,€ V.
Consequently R” = By where B’ = R'[(x,/x,)/x,, x3/x,] and
Q"= B NnMWV); also w'/x$eR” and (w'[x})R" = ]J'. Now
R’ = B, where B = R[x,/x,] and Q = BN M(V). Therefore
R" = Bj. where B" = R[x,/x%, x3/x,] and Q" = B" n M(V).
Now x,/x, € M(V) and x4/x, € V; consequently R* = A4, where
A = R[xy/x,, x3/x,] and P = AN M(V)= AN M(R¥*); also
@' R* = J*. Since x4/x, € R*, it follows that S ¢ B(R*). Let H:
A — h(R)[X,, X;] be the unique epimorphism such that
H(xy/x,) = X,, H(xs/x;) = X3, and H(u) = h(u) for all ueR.
Then X,eH(AN M(R*)) and hence it follows that:
2 < dim R* < 3; if dim R* = 2 then M(R¥*) = (%, x,/%;)R*;
and if dim R* = 3 then there exists a unique monic polynomial
f(X;) of positive degree in X; with coefficients in f such that
M(R*) = (xy, xy/%y , f(x3/2,))R*. Now (xy, x,/x;)R* is a prime
ideal in R* and upon letting S* be the quotient ring of R* with



§3. DOMINANT CHARACTER OF A NORMAL SEQUENCE 85

respect to (xy, Xy/x;)R* we have that S* is a two-dimensional
element in B(R*), S* has a simple point at R* and
M(R)C M(S*). Now R'CR* w'eM(R'), and M(R)R* =
(%1 5 x9/%y , %5)R* = (2, X5/%,)R*; since w’'R* = J* we conclude
that ordg.J* > d; therefore ordgJ* = d = ordg.J* and
S* e §(R*, J*). By (3.7.1) it follows that S* is the only two-
dimensional element in B(R*) whose maximal ideal contains
M(R) and J*. Since (x,/x,)/x, € V, we get that R** = A}, where
A* = R¥[(xy/x,)/%,] and P* = A* N M(V); also w'/x% € R** and
(' [x})R** = J**. Since R* = A, and R** = A}k, it follows
that R** = B(,.. Therefore (R**, J**) = (R", J"). Finally by
(3.10.2) we get that dim R** = dim R*.

Case when x3/x, ¢ V. Now x,/x3€ M(V)and hence x,/x3 € M(V).
Therefore dim R* = 3, M(R*) = (x,/%3 , %/x5 , %3)R*, and R* =
Apwhere A = R[x,/x;, xy/%;] and P = A N M(V); also w/x% € R*
and (w/x})R* = J*. By (1.10.10) we get that Se B(R*) and
R N M(S) = (x,/x3 , x5/x3)R*, and hence S has a simple point at
R*; also ordg J* = ordg(z/x%) = ordsz = d, and hence ordg. J* = d
and S € §(R*, J*). In a moment we shall show that

8) w/xd € ((x,/%, , 25)R)°.

First, assuming (8) we shall complete the proof. Let S* be the
quotient ring of R* with respect to (x,/x;, x3)R*. Then S* is a
two-dimensional element in B(R*), S$* has a simple point at R*,
M(R) C M(S*), and by (8) we get that S* € §(R*, J*). By (3.7.1)
it follows that S* is the only two-dimensional element in B(R*)
whose maximal ideal contains M(R) and J*. By (7) we get
(xa/x5)/%3 € M(V); therefore dim R** = 3, M(R**) = (x,/x,,
x,/x3 , x)R**, and R** = A} where A* = R*[x,/x}] and
P* = A* N M(V); also w/x3% = (w/x%)/x3 € R* and (w/x2?)R** =
J**. By (1.10.10) we get that S e B(R**) and R** N M(S) =

(/x5 , x5/x3)R**, and hence S has a simple point at R**; also
ordg J** = ordg(w/x3?) = ordsw = d and hence ordg.J** = d
and S € §(R**, J**). Let (R'*, J'*) be the monoidal transform of
(R**, J**, S) along V. Now (x,/x3)/(1/%3) = x,/(x,%5) and hence
by (7) we get that (x,/x3)/(x;/x;) € V. Therefore R'* = A}X
where A** = R**[x,/(xyx5)] and P** = A**n M(V); also
) xy05) = (/(43%)/(xy/%5)? € R'* and (w/(x,2,) R = J'*. Since
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R* = A,, R** = A}.,and R'* = A}X, we get that R'* = A},
where A" = R[x,/x5, x,/(%,x3)] and P" = A" N M(V). Now
M(R') = (%, %5/%, , x3)R" and x;/x;€ V, and hence by (7) we
get that (x,/x,)/x; € V; therefore R” = B, where B’ = R'[(x,/x;,
%/(xx)] and Q' = B 0 M(V); also w/(wyw)? — (wjaf)faf —
w'[x3 € R" and (w/(xx))R" = J”. Also R’ = B, where B =
R[xy/x;] and Q = BN M(V). Since R' = B, and R" = By, it
follows that R” = A%.. Therefore (R'*, J'*) = (R", J"), i.e.,
(R", J") is the monoidal transform of (R**, J** §) along V;
since J* C M(R"), by (3.10.2) we get that dim R" = 3.

We shall now prove (8). There exist unique elements s, in f
such that in the completion R, of R we have

w= Z sabcxgxgxg

where the sum is over all nonnegative integers 4, b, c. We shall show
that

9 S;e =0 whenever a + b <d.

Suppose if possible that (9) is not true and let e be the smallest
integer such that s, 7 0 for some (q, b, ¢) with a + b = e. Take
(a’, b') such that @’ + b’ = e and s,,, 7% O for some ¢. Let ¢’ be
the smallest integer such that s,,. # 0. For all nonnegative
integers a and b let

J— C
Sap = Z Sapc¥g E Ry

=0
Then s,/x§ is a unit in R, , and
_ a
w =} 8,455
where the sum is over all nonnegative integers a, b witha + b > e.

Let

—_ G 4ob
y= Y syl
atb=e

Then w — y € ((x; , x,)R,)*t!. Let S, be the quotient ring of R,
with respect to (x, , )R, . Then S, is a two-dimensional regular
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local domain and M(S,) = (%, , x,)S, . Since s,7/x5 is a unit in
R,, we get that s,  is a unit in S, and hence y ¢ M(S,)*.
Therefore y ¢ ((x, , x,)R,)**! and hence w ¢ ((x, , x,)R,)**'. Since
e < d, we get that w ¢ ((x, , x,)R)%. This is a contradiction because
S e R, J]).

Thus (9) is proved. Let
(10) wo= Y s, x%x¢ and  w,=w—w, .

1 abe”1"2 2
a+b+c<2d

Then w, e RN M(R,)* = M(R)*. Since S e E(R, J), we have
that w e ((x, , x,)R)%; by (9) we also have that w, € ((x,, x;)R);
therefore w, € ((x, , ;) R)%.

For any integers m > n > 0 we claim that D,,, = D,,, where
D,,, = M(R™ N ((x1 , xz)R) and D,,, is the ideal in R generated
by all monomials x§x3x§ for whicha + b >nanda + b + ¢ = m.
Clearly D,,, C D,,.. So let te D,,, be given. We want to show
that te D,, . By induction on ¢ we shall show that for any
nonnegative integer ¢ there exists ¢, € D,,, and £, € R such that
t =1, + tx§. For ¢ = 0 it suffices to take £, = 0 and #, = ¢.
Now let ¢ > 0 and suppose we have found #, ; and ¢, ;. Then

1, te D!, = MRy A ((x, , )R)"
and hence
t,, € M(R)Y where ¢’ = max(n,m — q + 1).

Let #: R — R/x,R be the canonical epimorphism. Then A'(R)
is a two-dimensional regular local domain, A'(M(R)) = (k'(x,),
k' (x,))h'(R') = M(K'(R')), and K'(t,_,) € (K'(M(R)))?. Therefore
fy = = t, + t,x; where t; € (%, , xz)R)"' and ¢, € R. It follows that
tx§le D,,m and hence upon letting 7, = ¢,_; —I— t,x3~1 we get that
t = t, + t,x§ with ¢, € D, and ¢, € R This completes the induc-
tion on q. Therefore

t€ () (Dmn + %3R) C ﬂ (Dmn + M(R)") = Dy -
=0 q=0
Thus the claim is proved. Therefore upon taking m = 24 and

n = d we can find elements ¢, in R such that
(1) w, = y . xOx0xC .

2 abc™172"'8 *
a+b+e=2d,a+b>d
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Let W be the set of all triples (a, b, ¢) of nonnegative integers
a,bcsuchthat a+b+c<2d,a+b>d, a+2b4 ¢ <2,
and sp,, 7# 0. Let W' be the set of all triples (a, b, ¢) of nonnegative
integers a, b,c such that a4 b+ ¢ < 24, a—l—b >d, and
a+2b+c>2d; for any (a,b,¢c) in W' let sy, = S if
a+b-+c<2dand sy, = ty,if a+ b+ c= 2d. Then W and
W’ are finite sets and by (9), (10), and (11) we get that

— @ 4D 4rC @ 42b 40 C
w = Z Sape¥1%a%3 + Z SupcXiXR%g -
(a,b,c)eW {a,b,c)eW’

Now w/x? = w’' € M(R')® and M(R') = (%, , 23/%; , x3)R’. Clearly
Y x2x0xS Y xd(x [x )oxt € M(R')?

1 abc 1
(a,b,c)eW’ (a,b,c)eW’

because (@ + b — d) 4+ b + ¢ > d for all (a, b, c) € W'. Therefore

xl_d Z abcxgxgxg € M(R’)d ’

(a,b,c)eW
1.e.,
(12) T Xty 2, )oxs € M(R').

(a,b,cleWw
For all (a,b,¢c) e W we have that (¢ + b —d) + b+ ¢ < d and
0 # supc €, and for all (a, b, ¢) # (a', b, c’) in W we have that
(@a+b—dbc)# (@ +b —db, c); also, by (3.10.2), t is a
coefficient set for R’; consequently by (12) we get W = g.
Therefore

—_ @ 41D 4n C
w= 3 Sape X T%5%4
(a,b,c)eW’

and hence

@) AN CENLCTAT S

(a,b,c)eW’

Now b+ (a+ b+ c—d) >d for all (a,b,c)e W', and hence
(8) follows from (13).

(3.11). Let R be a regular local domain with dim R < 3, let |
be a monzero principal ideal in R such that C*R, ]) has a strict
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normal crossing at R, let S be a positive-dimensional element in
G(R, J) having a simple point at R, and let (R’', ]J') be a monoidal
transform of (R, J, S) such that ordg ]’ = ordg]. Then GXR’, J')
has a strict normal crossing at R’'.

Proor. If either dim R # 3, or dim S = 1, or | = R, then
the assertion is trivial. If dim R = 3, dim S > 1, and | # R, then
the assertion follows from (3.7.3) and (3.10.5).

(3.12). Let (R;, J;»I;,L;, S;)o<ci<w be an infinite subresolver
such that dim Ry < 3 and R, is pseudogeometric. Then dim R, = 3
for 0 <1 << oo, and there exists a nonnegative integer j such that
for all © > j we have that €(R;, |;) has a strict normal crossing at
R;and S; € €¥(R;, ];).

Proor. Since dimR; <3 and (R;, J;) is unresolved for
0 <i< oo, wegetthat2 < dim S; <dim R; < 3for 0 <7 < 0.
Since R, is pseudogeometric and (R;, J;) is unresolved for
0 <7< oo, by (3.5) we get that dim R; = 3 for 0 <7 < o0.
Since L; # @, we can fix T;eL; for 0 <<i < co. In view of
(3.9.3) we get that S; € L; for infinitely many distinct values of 7.
In particular, there exists a nonnegative integer j such that S; € L; .
Now G%(R;, I;) has a strict normal crossing at R;, and hence by
(3.11) we get that €%(R;, J;) has a strict normal crossing at R; for
all 7 > j. Suppose if possible that S,_; ¢ €(R,_,, J,_;) for some
g >j. Then S, ; = R, ; and hence by (3.7.3) we get that
L, = {T,}. In view of (3.7.3) and (3.10.5), by induction on 7 we
now see that L, = {T,,,} for 0 <7 < co. Thus R, is a pseudo-
geometric regular local domain, J, is a nonzero principal ideal in
R,, T, is an element in €%R,, J,) having a simple point at R,
S, is a positive-dimensional element in &R, , J,) having a simple
point at R,, S, CT,, and (R,.;, Jy1i»> Tgiis Sgii)ocico 1S an
infinite sequence such that for 0 <7 < c0: R,,; is a regular local
domain, J,.; is a nonzero principal ideal in R, ;, T, is an
element in €R,,;, J,,;) having a simple point at R, ;, S, ; is
a positive-dimensional element in €R,,;, J,,;) having a simple
pointat R, ;, S,,; CT,.;, (R, J;s) is a monoidal transform of
(Rysi-1» Jgri-1s Sgii-1), and T, ; dominates T, , ;. Also S,,,

q
T,,; for infinitively many distinct values of 7, and hence by (3.6)
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we get that (R, , ]} is resolved for some p > ¢. This is a contradic-
tion. Therefore S; € €X(R;, J,) for all i > j.

(3.13). Let d and n be positive integers, and let [(R;, J;, S;)o<icn >
(R, , J.)] be a system such that: R; is a regular local domain and
Ji s a nonzero principal ideal in R; for 0 <i < m; ordg J; = d
Jor 0 <i <m; S;eC¥R;, J;) and S; has a simple point at R, for
0 <i<n (R, J;) is a monoidal transform of (R,_,, J;_1, S;_1)
for 0 < i < m; and dim Ry, = 3. Then we have the following.

G.a3.1). dimR, =3 for 0<i<n If J,CM(R,) then
dim R, = 3.

(3.13.2). If €%R,, Jo) = {So} then € (R;, J;) = {S;} and S,
dominates S;_; for 0 <i < mn.

Proor. By induction on i, the assertions follow from (3.10.2)
and (3.10.5).

(3.14). Let d and n be positive integers, and let [(R;, J;, Si)oci<n»
(R,., J,)] be a system such that: R; is a regular local domain and
Ji is a nonzero principal ideal in R; for 0 <i < n; ordg J; = d
for 0 <i<nm J,CM(R,); S;€CXR;, J,) and S; has a simple
point at R; for 0 <i < mn; (R;, J;) is a monoidal transform of
Ri—ys Jizay Siy) for 0 < i < m; dim Ry = 3; G%(R,, Jy) has a
normal crossing at R,; and C*R,, J,) contains exactly two distinct
elements S and S*. Let W be the set of all integers i with0 <i <n
such that S; dominates S, and let m be the number of elements in W.
Let W* be the set of all integers © with 0 < i < n such that S;
dominates S*, and let m* be the number of elements in W*. Then we
have the following.

(1) For 0 < i < n we have that dim R, = 3, €XR;, J;) has a
strict normal crossing at R; , and each element in C¥(R, , ],) dominates
exactly one element in €¥(R;_,, J,,). (2) For 0 <j <i<n we
have that each element in G*(R;, J,) dominates exactly one element
in €R;, J;), and S; dominates exactly one element in €XR;, J;)
(whence in particular m + m* = n). (3) If b is any integer with
0 < b < nsuchthatj ¢ W whenever 0 < j < b, then S € €(R;, J,)



§3. DOMINANT CHARACTER OF A NORMAL SEQUENCE 91

whenever 0 <7 <<b. (3%) If b is any integer with 0 < b < n
such that j ¢ W* whenever 0 < j << b, then S* € €¥R;, |,) whenever
0<i<b 4) If m=0 then dimR, =3, ordg J, = d,
Se€¥R,, J,), and € R, , ],) has a strict normal crossing at R, .
(4*) If m* = 0 then dim R, = 3, ordg J, = d, S* € €(R,, ],),
and G¥R,, J,) has a strict normal crossing at R,. (5) If
CXR,, J.) = o thenm # 0 # m*.

Now assume that m # 0 and let a(0), a(1), ..., a(n — 1) be the
unique permutation of 0,1, ....,m — 1 such that: a(i)e W if and
only if 0 < i < m;a(j) < a(z) whenever 0 < j <i < m;a(i)e W*
if and only if m < i < m; and a(j) < a(i) whenever m < j <i <nm.
Then we have the following.

(6) S, dominates S,;_ ) whenever either 0 <i <m or
m<i<mn (7) Sy =S (8) If m*£0 then S, = S*
(9) There exists a sequence (R;, J{)o<i<n Such that: R; is a three-
dimensional regular local domain and J; is a nonzero principal
ideal in R; with ordy J; = d for 0 < i < n; S, € €(R;, Ji) and
CX(R;, Ji) has a strict normal crossing at R; for 0 <i <m;
(Ros Jo) = (Ry» Jo); (R:, Ji) is a monoidal transform of (R;_,,
Jicis Sa-n) for 0 < i < n; and (R, , J,) is a monoidal transform
of (Rn—1 5 Ju-1> Satw-)-

Proor. In view of (3.10.2) and (3.10.5), (1) follows by induction
on i. (2) follows from (1). In view of (1) and (3.10.4), (3) and (3%)
follow by induction on 7. (4) and (4*) follow from (1), (3), (3%),
(3.10.4), and (3.10.5). (5) follows from (4) and (4*). Now assume
that m = 0 and let a(0), a(1), ..., a(r — 1) be the said permutation
of 0, 1, ..., n — 1. (6), (7), and (8) follow from (1), (2), (3), and (3%*).
In proving (9) we shall tacitly use (1) and (2). We shall now prove
(9) by induction on z. In case of # = 1 we must have S, = S,
and it suffices to take (R, Jo) = (Ry, Jo). Now let » > 1 and
assume that the assertion is true for all values of # smaller than
the given one. If m* = 0 then a(s) =i for 0 <¢ <m, and it
suffices to take (R;, J;) = (R;, J;) for 0 < i < n. So now assume
that m* 3£ 0. Let ¢(0), ¢(1), ..., c(n — 2) be the permutation of
0,1,..,n— 2 defined thus: if n — 1¢ W then ¢({) = a(s) for
0<i<n—2; and if n—1eW then ¢(i) = a(i) for
0<i<m—2, and ¢(f) =a(f+ 1) for m —1 < < n—2
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Upon applying the induction hypothesis to the system
[(Ri’ ji’ Si)0<i<n—17 (R'n-l’ ]n—l)] we find a sequence
(R, J¥)o<i<n-1 such that: R} is a three-dimensional regular
local domain and Jf is a nonzero principal ideal in R} with
ordg: J* = dfor 0 <i <n—1; Sy € €(RY, JF) and €X(Rf, JF)
has a strict normal crossing at Rf for 0 <¢ <z — 1; (R}, J§) =
(Ro, Jo); (Rf, J¥) is a monoidal transform of (R}, , J¥;, S.;-p)
for 0 <i<n—1;and (R,,, J,_,) is a monoidal transform of
(R JE o, Sen-) (note thatif e W* for 0 <7 < n — 1 then,
without using the induction hypothesis, we are simply taking
RETJTH =R, J) for 0 <i<n—1). If n—1¢W then it
suffices to take (R;, J;) = (R}, Jf) for 0 <i<n—1, and
(Ru—ys Juy) = (Ru_ys Ju—y)- So now assume that n — 1e W.
Let ¢(f) = c(@) for 0 <i<n—2,and g(n — 2) =n — 1. Now
(Ru—1s Ja—1) i1s a monoidal transform of (R} _,, J& 5, Satu_p)s
Sgtn-2 € (R, 1, Ju—y), and S, does not dominate S, y).
Consequently S,(,—1) # Syn—-2), and by (3.10.5) we deduce that
(R} 5, Ji-2) = {Satn-1» Sgtn-2}- Let V be a valuation ring of
the quotient field of R, such that V' dominates R,, and let
(Ru—1 > Jn—1) be the monoidal transform of (R}_,, J% 5, Syn-9)
along V. Then by (3.10.4) and (3.10.5) we get that R, _; is a
three-dimensional regular local domain, J,_, is a nonzero principal
ideal in R;_, with ordy Jo i =d, Sy(-» € Ry, Jna)
€%(R,_;, J.-1) has a strict normal crossing at R;_, , and (R, , J,)
is a monoidal transform of (R;,_;, Jo_1, Sata—n)- Upon applying
the induction hypothesis to the system [(R¥, J¥, S;u)o<icn-1»
(Ru_1s Ju_1)] we find a sequence (R}, Ji)o<i<n—y such that: R; is
a three-dimensional regular local domain and J; is a nonzero
principal ideal in R; with ordgJ; =d for 0 <i<n-—1;
Sa) € €4(R;, J;) and €*(R;, J;) has a strict normal crossing at R;
for 0<i<n—1; (Ry, Jo) = (R JE); and (R;, J)) is a
monoidal transform of (R;_;, Ji_;, Sau-p) for 0 <i<<m— 1.
It follows that the sequence (R;, Ji)o<;<, has the required proper-
ties. This completes the induction.

(3.15). Let (R;, J;, Si)oci<w be an infinite sequence such that:
R; is a regular local domain and J; is a nonzero principal ideal
in R; for 0 <i < 0; S;€C¥R;, J,) and S; has a simple point
at R; for 0 <i < oo0; and (R;, J,) is a monoidal transform of
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(Ri—ys Jio1»Si1) for 0 <1 < oo. Assume that R, is pseudo-
geometric, dim Ry = 3, (R,, J,) is unresolved, and €*(R, , J,) has a
strict normal crossing at Ry. Let d = ordg J,. Then ordg J; # d
for some nonnegative integer 1.

Proor. Since (R,, J,) is unresolved, we have that d > 1.
Suppose if possible that ordg J; = d for 0 < i < 0. Then by
(1.10.5) we have that (R;, J;) is unresolved for 0 <7 < co. If
€X(R,, J;) = {S,} then by (3.13.2) we would get that S; dominates
S; 1 for 0 <7 < 00, and this would contradict (3.6). Therefore
€XR,, Jo) # {S,} and hence G*R,, J,) contains exactly two
distinct elements. By (3.14) there exists S € G¥R,, J,) such that
the set W of all nonnegative integers 7 for which S; dominates S
is an infinite set. Let a be the unique order-preserving one-to-one
map of the set of all nonnegative integers onto . Then by (3.14)
we have that S,() dominates S,(;) whenever 0 <{j < 7. Given any
nonnegative integer ¢, upon taking n = a(q) + 1, by (3.14) we find
a sequence (qu,]q Jo<i<q Such that: R, is a regular local
domain and J,; is a nonzero principal ideal in R, ; with
ordg J,.; = dfor 0 <7< ¢; Sy €C(R,;, J,.0) and Sa(l) has a
simple point at Rq,i for 0 <i<q; (Rpos Joo) = (R, Jo)s
(Rq.i» Jq.2) is a monoidal transform of (R, ; ;, J,.; 1, Sa_p) for
0 <1 < ¢; and Ry();; dominates R, ,. We can take a valuation
ring V of the quoiient field of R, such that V' dominates R; for
0 <7 < . Then for each ¢ > 0 we have that I/ dominates R, ,
and hence (R,;, J,;) is the monoidal transform of (R,;,,
Jai-1> Sa—p) along V for 0 <7 < gq. Therefore we must have
(Ryi» Jp.i) = (Rys5 Jp.s) whenever 0 < 7 < ¢ < p. Consequently,
upon letting (R;, Ji) = (R;;, J;;) for 0 <i < o, we get an
infinite sequence (Ri, Ji)o<icw such that: R; is a regular local
domain and J; is a nonzero principal ideal in R} with ordg Ji=4d
for 0 <7 < ; S, € €%(R;, J;) and S, has a simple pomt at
Rifor0 < i < oo; (Ry, Jo) = (Ry, Jo); and (R}, J;) is a monoidal
transform of (R;_1 y Jic1s Sat—p) for 0 < i < co. By (1.10.5) we
get that (R}, J;)is unresolved for 0 < 7 < 00. Now S,(;) dominates
Sy for 0 < i < o, and hence, in view of (3.6), we are led
to a contradiction.

(3.16). Let d and n be positive integers, and let [(R;, J;, Si)o<i<n >
(R, , J,)] be a system such that: R, is a regular local domain and J,
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is a nonzero principal ideal in R; for 0 < i < n; ordg J; = d for
0<i<mn S;eC¥R;, ;) and S; has a simple point at R; for
0<i<mn (R, J) i a monoidal transform of (R;_,, J;,,
S;_1) for 0 <i<n and dim Ry = 3. Then we have the
following.

(3.16.1). Assume that C¥R,, J,) has a strict normal crossing
at Ry, J, CM(R,), and €¥R,,, J,) = @. Let S be any element in
€%(Ry, J,)- Then there exists a sequence (R;, Ji, Si)o<i<n Such
that: R; is a three-dimensional regular local domain and J; is a
nonzero principal ideal in R; with ordg Ji = d for 0 <i <m;
CX(R;, J;) has a strict normal crossing at R; for 0 <i < n;
Sie &R, , J)for0 <i <n;(Ry, Jo, So) = (Ros o )i (Ri J9)
is a monoidal transform of (Ri_y, Ji1, Siy) for 0 <i <mn; and
(Ry 5 Ja) s a monoidal transform of (R,,_;, Jn_y, Sn_y)-

(3.16.2). Assume that ordg J, = d. Let (R, Ju,1) be a
monoidal transform of (R, , J., R,) such that ], , C M(R,.,), let
V be a valuation ring of the quotient field of R, such that V dominates
R,.., and let (Ry, J;) be the monoidal tramform of (Ry, Jo,Ry)
along V. Then 2 < dim Ry = dim R,,; < 3, ordg;Jo = d, and
there exists exactly one two-dimensional element S in %(Ro) such that
M(R,) C M(S}) and Ji,C M(S;). Moreover, Sy € @R}, J.), Sq has
a simple point at Ry, and there exists a positive integer m and a
sequence (R; , Ji, Si)oci<m Such that: R; is a regular local domain
with dim R; = dim Ry and ], is a nonzero principal ideal in R;
with ordg J; = d for 0 <i < m; S'e(\52(R1 , J;) and S; has a
simple point at R; for 0 < i < m; (R;, J;) is a monoidal transform
of (Ri_ys Jica» Sicy) for 0 <i < m; and (R,,,, J,.1) is a monoidal
transform of (Ry,_y , oy s Sm-1)-

(3.16.3). Assume that C*R,, J,) has a strict normal crossing
at Ry, ordg J, = d, and €R, , ],) = &. Let (R,11, Jns1) be a
monoidal transform of (R, , ], , R,) such that ], ., C M(R,,,). Let
S be an element in €(R,, J,) with dim S > 2. Let (R', J') be a
monoidal transform of (R, J,,S). Assume that there exists a
valuation ring V of the quotient field of R, such that V dominates R’
and V dominates R, , . Then ordg ]’ = d, and there exists a positive
integer e and a semiresolver (R}, J; , S{)o<i<e Such that ordy J; = d



§3. DOMINANT CHARACTER OF A NORMAL SEQUENCE 95

for 0 <i<e (Ry, Jo) = (R, ]), and (R,,1, Jas1) is a monoidal
tr ansform of (Re—1» Je-1 Se-1)-

Proor oF (3.16.1). We shall make induction on #. First consider
the case of » = 1; if S # S, then by (3.10.4) we would get that
S e€*R,, J,) which would be a contradiction; therefore S = S,
and hence it suffices to take (Ry, Jo, So) = (Ry, Jo » So)- Now let
n > 1 and assume that the assertion is true for all values of =
smaller than the given one. By (3.10.2) and (3.10.5) we get that
dim R; = 3 and G*R;, J;) has a strict normal crossing at R; for
0 <i < n. Hence if S = S, then it suffices to take (R; , J; , S;) =
(R;, J;»S;) for 0 < 7 < n. So now assume that S % S, . Then by
(3.10.4) ‘we get that S e €¥(R,, J;). Therefore upon applying the
induction hypothesis to the system [(R;, J;, Siicicn s (Rn» Ju)l
we can find a sequence (Rf, JF, Sf),ci., such that: R¥ is a
three-dimensional regular local domain and ]* is a nonzero
principal ideal in R} with ordg: Jf = d for 1 <i < n; €(RF, J¥)
has a strict normal crossing at R} for 1 <i < n; Sf € GRS, T
forl <i <m(Rf J SF) =Ry, J1,S); (R, ]*) is amonmdal
transform of (Rf,, J¥.,S%,) for 1 <i <m;and (R,, J,)is a
monoidal transform of (R%_,, J¥_,,S}_,). Let (R}, J;) =
(R, , J.)- Let(Rg, Jo, Se) = (Ry3 Jo,S). Take a valuation ring V
of the quotient field of R, such that ¥ dominates R¥. Let (R;, J;)
be the monoidal transform of (Ry, Jo,Sg) along V, and let
S; = Sy . Then by (3.10.4) and (3.10.5) we get that dim Ry = 3,
ordg: J; = d, €(R;, J;) has a strict normal crossing at R;,
S;€€(R;y, J;), and (R}, J¥) is a monoidal transform of
(Ry, Ji,S1). It suffices to take (R;, Ji, S;) = (Rf, J¥, S¥) for
2<<i<nm

Proor oF (3.16.2). We shall make induction on 7.

First consider the case of n = 1. By (3.10.6) we get that
2 < dim Ry = dim R, < 3, ordg; J; = d, and there exists exactly
one two-dimensional element S; in B(R,) such that M(R,) C M(Sg)
and Jo C M(S,;). Moreover, by (3.10.6) we get that Sy € €(R;, Jy),
So has a simple point at R;, and upon letting (R’, J') be the
monoidal transform of (Ry, J;, S;) along ¥V we have that: (1) if
Sy ¢ B(R;) then (R, J') = (R,, J,); and (2) if S,€ B(R,) then
dim R' = dim R, ordg'J' = d, S,e G¥R’, J'), S, has a simple
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point at R', and (R, , J,) is the monoidal transform of (R’, J', S,)
along V. In case (1) it suffices to take m = 1. In case (2) it suffices
to take m = 2 and (Ry, J1, S1) = (R, J', Sy)-

Now let » > 1 and assume that the assertion is true for all
values of 7 smaller than the given one. By (3.10.2) we have that
dim R, = 3, and hence upon applying the induction hypothesis to
the system [(R;, J;, Sicicn»(Rn, Jou)] we can find a positive
integer ¢ and a sequence (R}, [¥, S¥)y<;., such that: R¥ is a
regular local domain with dim Rf = dim R, and J* is a nonzero
principal ideal in RY with ordeJf =d for 0 <i <g;
SF e €X(Rf, J¥) and SF¥ has a simple point at Rf for 0 <7 < ¢;
(RE, J&) is a monoidal transform of (R, J;, R,); (R}, JF) is a
monoidal transform of (Rf,, J¥,,S¥,;) for 0 <i <g¢; and
(Rp41s Jusa) 18 a monoidal transform of (R, J¥,, S¥ ;). Now
(R, J5) is a monoidal transform of (Ry, J; , Ry), and ord J§ = d;
hence in particular J§f C M(R§); therefore by (3.10.6) we get that
2 < dim Ry = dim Rf < 3, ordg; Jy = d, and there exists exactly
one element Sy in B(R,) such that M(R,) C M(S;) and J; C M(S).
Moreover, by (3.10.6) we get that Sy € (R, , J;), S, has a simple
point at Ry, and upon letting (R’, J') be the monoidal transform
of (Ry, Jg,Sy) along V we have that: (1*) if S,¢ B(R;) then
(R, J') = (R, J§); and (2*)if S, € B(R,) then dim R’ = dim Ry,
ordg ]’ = d, S, €€ R, J'), S, has a simple point at R’, and
(Rg, J&) is the monoidal transform of (R’, J’, S,) along V. In case
(1*) it suffices to take m = ¢+ 1 and (R;, J;, Si) = (Rf,,
Ji, S¥y) for 1 < i << m.Incase (2*)itsuffices to take m = ¢ + 2,
(Ri ’ ]{ ’ S]’) = (er ],) So)’ and (qu, ’ ]11 » S';) = (Ritz ’ ]itz ’ SiiZ)
for2 <1 < m.

Proor oF (3.16.3). First suppose that S # R,. Then
Se€¥R,, J,) and hence by (3.16.1) there exists a sequence
(Rf, J¥, S¥)o<i<n such that: R is a regular local domain and
J¥ is a nonzero principal ideal in R* with ordgJ¥ = d for
0 <i<n; R, J¥) has a strict normal crossing at R} for
0<i<m SFeC(R}, JF) for 0 <i < n; (R, J§, IF)= (R,
Jo» S); (R¥, J¥) is a monoidal transform of (R}, , J*,, S&,) for
0 <i<<mand(R}, J¥,S¥) = (R,, J.,R,). Clearly (R, J') =
(R¥, J{), and hence ordg J' = d. It suffices to take e = n and
Ry, Ji» Si) = (RYa, Jha, Sk for 0 <i <e
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Next suppose that S = R,. Then by (3.16.2) we get that
ordg'J' = d and there exists a positive integer m and a sequence
(RF, J¥, S§)o<i<m such that: R¥ is a regular local domain and
J# is a nonzero principal ideal in Rf with ordgJ¥ = d for
0 <i < m; SfeC(R}, J¥) and Sf has a simple pomt at R¥ for
0t <m (R(’,k, J¥) = (R, J'); (Rf, J) is a monoidal transform
of (Ritl ’ ]itl ’ Sitl) for 0 <z < m, and (Rn+1! .]n+1) is a
monoidal transform of (R}%_,, JX_;, Sk ;). By (3.11) we get that
G2(R¥, J¥) has a strict normal crossing at R¥ for 0 <7 < m. It
suﬂices to take e=m and (R, Ji,S;) = (RY, J¥, S¥) for
0<i<e

(3.17). Let (R;, J;, 1)0<1<m be an inﬁnite semiresolver such
that ordg J; = ordg Jo for 0 <i < o0, Ry s pseudogeometric, and
dim R, < 3. Let d — ordy Jo - Then we have the following.

(3.17.1). There exists a unique nonnegative integer n such that
S; #R, for 0 <i<mand S, = R,.

(3.17.2). Let n be as in (3.17.1). Let S be a positive-dimensional
element in €(R,, J,) such that S has a simple point at R,, and if
dim S = 2 then €%(R,, J,) has a strict normal crossing at R, . Let
(R, J') be a monoidal transform of (R, J,, S). Assume that there
exists a valuation ring V of the quotient field of R, such that V
dominates R’ and V dominates R, . Then ordg' ]’ = d, and there
exists a positive integer q and a semiresolver (R;, Ji, Si)o<icq Such
that ordy J; = d for 0 <i <g¢, (Ry, Jo) = (R, ]'), and (Ry_1>
]q 1> q—l) - (Rn+1 ’ ]n+1! n+1)

(3.17.3). Let [(RY, J¥, SHo<icm» (RE , )] be a finite weak
semiresolver such that (R J¥) = (Ry, Jo)- Assume that there exists
a valuation ring V of the quotient field of R, such that V dominates
R} and V dominates R; for 0 < i < co. Then ordgJ¥ = d for
0 < i < m, and there exist positive integers q and e and a semiresolver
(R:, Ji» Si)ocieq Such that ordg ]l =dfor0 <i<gq, (Ry, Jo) =

(R%, )and(Rq 1!]q 1) r1-1)_(Re)]c! S,)-

PrOOF OF (3.17.1). 'The uniqueness is obvious. Since (R;, J;) is
unresolved for 0 <i < o0, we get that 2 < dimS; <3 for
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0 <i < oo; in view of (3.5) we also get that dim R; = 3 for
0 < i < oo. Therefore the existence follows from (3.15).

Proor oF (3.17.2). Since (R;, J;)is unresolved for 0 <7 < oo,
we get that d > 1, 2 < dim S <3, and 2 < dim §; < 3 for
0 <7 < oo; in view of (3.5) we also get that dim R; = 3 for
0 <i < o0. Therefore S;€C¥R;, J) for 0 <i <n If S=S§,
then (R’, J') = (R, , J1), and hence ordg’ J' = d and it suffices to
take g—n+1 and (Ri,Ji,S) = (Rixs Jorns Se) for
0 <7 < ¢. So now assume that S # S,. Then we must have
n>0,S,€CR,, J,), and €¥(R,, J,) has a strict normal crossing
at R,. By (3.11) we now get that €*R,, J,) has a strict normal
crossing at R,; since dimS, # 2, we conclude that
€%R, , J,) = 2. Therefore by (3.16.3) we get that ordg /' = d,
and there exists a positive integer ¢ and a semiresolver
(Ri s Ji» Sidoci<e such that ordg ]t =dfor0 <i<e (R, ]o) =
(R’ J),and (R,yy, Joy) 18 a monoidal transform of (R, ) Joz1s
S,_1). It now suffices to take ¢ = e + 1 and (Rycas Joca s Sqo1) =

(Rn+1 ’ ]n+1 ’ n+1)

Proor orF (3.17.3). We shall make induction on m.

First consider the case of m = 1. By (3.17.1) there exists a
unique nonnegative integer z such that S; # R, for 0 <7 < n and
S, = R, . Let S = S§. Then S is a positive-dimensional element
in €(R,, J,) such that S has a simple point at R, , and if dim S = 2
then €%(R,, J,) has a strict normal crossing at R, . Also (R}, J¥)
is a monoidal transform of (R, J,, S), V dominates R, and V
dominates R, ., . Therefore by (3.17.2) we get that ordg J¥ = d
for 0 < i < m, and there exists a positive integer ¢ and a semi-
resolver (R;, Ji, Si)o<i<q such that ord, ]1 =d for 0 <17 <gq,
(Ro, Jo) = (RY, J3), and (R, Jg1 q—1) = (Rps1, ]n+1 » Spia)-
It suffices to take e = n 4 1.

Now let m > 1 and assume that the assertion is true for all
values of m smaller than the given one. Upon applying the induction
hypothesis to the finite weak semiresolver [(RF, J¥, S¥)o<icm—1 >
(Ry_1 5 Jm-1)] we get that ordg:Jf = d for 0 <i¢ < m — 1, and
there exist positive integers a and b and a semlresolver
(Ry, Ji » Si)ocica such that ordg.J” =d for 0<i<ag,
‘R:; ’ ]0) - (Rm 10 ]m l)r and (Ra—l ’ Ia~1 ’ S”—l) - (Rh ’ ’h ’ Sh)
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Now Ry is pseudogeometric and dim Ry < 3. By (1.10.5) we also
get that (R} , J;) is unresolved for 0 << i << a. Let (R}, Ji, S{) =
(Rb—~a+1+1, ’ ]b—a+1+1. ’ Sb——a+1+z) for a < i < . Then (R;II ’ ]t” ’
S{)o<i<w is an infinite semiresolver. Therefore by (3.17.1) there
exists a unique nonnegative integer n such that S; # R; for
0<i<nand S, =R, .Let S=S}_,. Then S is a positive-
dimensional element in €(Rg, Jg) such that S has a simple point
at Ry, and if dim S = 2 then G*R;, J;) has a strict normal
crossing at Ry. Also (RY, J*) is a monoidal transform of
(Rg, Jo » S), V dominates R}, and V dominates R}, . Therefore
by (3.17.2) we get that ordg« Ji = d, and there exists a positive
integer ¢ and a semiresolver (R, » Ji» Sidociccsuch that ordg J; = d
for 0 <i<e¢, (Ry, Jo) = (R, J¥), and (R,_;, Jos, C_1) =
(Rus1s> Jns1> Sns1)- If m+1>a—1 then it suffices to take
g=cande=b—a+n+2.If n+1 << a— 1 then it suffices
totakee = b, g =c+a—n—2,and (R, J;, Si) = (Rpi2-csi s
Jntz—cri» Snia—ers) fore <i < g.

(3.18). Let d and n be positive integers and let [(R;, J;,
I, S)ocicn s (R Jur 1)) be a system such that: R, is a regular
local domain and |, and I, are nonzero principal ideals in R; for
0<i<n ordgJ;=d for 0<i<n S,eCR;, J,) and
(S;, ;) hasa pseudonormal crossing at R, for 0 < 1 <nm(R;, ]i 1)
s a monozdal transform of (R;_y, Ji—1,1;—1, Si—1) for 0 <i < m;
and dim R, = 3. Then we have the following.

(3.18.1). Assume that €XR,, ],) has a strict normal crossing at
R,, J,CM(R,), and there does not exist any element S’ in
€%R,, , J,) such that (S’, 1,) has a pseudonormal crossing at R,, . Let
S be any element in €XR, , J,) such that (S, 1,) has a pseudonormal
crossing at R, . Then there exists a sequence (R;, J;,I;, S;:)ogkn
such that: R; is a three-dimensional regular local domain and J; and I;
are nonzero prmczpal ideals in R; with ordR Ji=d for 0 <i<m
(22(Rl , Ji) has a strict normal crossing at R; for 0 <1 <m;
S; e €(R;, J;) and (S;,I;) has a pseudonormal crossing at R; for
0 <1 <n (RO’]()’I()’SO) - (RO’]()’IO)S) (R“],,I) s a
monoidal transform of (Riy, Jica, Lisq, Sicy) for 0 <i <m;
and (R, , ], ,1,) is a monoidal transform of (R,_y, Jo_y, In1,

Sp-1)-
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(3.18.2). Assume that ordg J, = d. Let (R, Jni1sInia) be a
monoidal transform of (R, , J,, L, , R,) such that J, , C M(R,,),
let V be a valuation ring of the quotient field of R, such that V
dominates R, , and let (Ry, Jo ,1;) be the monoidal transform of
Ry, Jo, Iy, Ry) along V. Then 2 < dim Ry = dimR,,; <3,
ordR Jo = d, and there exists exactly one two-dimensional element S,
n %(RO) such that M(R,) C M(S;) and ], C M(S ). Moreover,
So € €X(Ry, Jo), (Sy, L) has a pseudonormal crossing at Ry, and
there exists a positive integer m and a sequence (R, Ji, I, S,'-)og m
such that: R; is a regular local domain with dim R; = dim R, and
Ji and I are nonzero principal ideals in R; with ord Ji = d for
0<i<m S; 6(52(Rl , Ji) and (S; ,I) has a pseudonormal
crossing at R; for 0 <i<m (R, ]z , I}) is a monoidal transform

Of (R1 1> ]1—1 yFi-1> 1—1) for 0 < t < m; and (Rn+1 ’ ]n+] ’ n+l)
is a monoidal transform of (Ry_y, Jm—y > Iz Sm-1)-

(3.18.3). Assume that €%(R,, J,) has a strict normal crossing at
Ry, ordg J, = d, and there does not exist any element S’
(R, , ]n) such that (S',1,) has a pseudonormal crossing at R
Let (R, .1, Jus1 s Lns1) be a monoidal transform of (R, , [, , 1, n)
such that [, , C M(R,,,). Let S be an element in G(R,, ]0) with
dim S > 2 such that (S, 1,) has a pseudonormal crossing at R, . Let
(R, J', I') be a monoidal transform of (Ry, Jo, 1y, S). Assume that
there exists a valuation ring V of the quotient field of R, such that V
dominates R’ and V dominates R, ., . Then ordy ]' = d, and there
exists a positive integer e and a resolver (R, Ji,I; , S{)oc;ico Such
that ordg J; = d for 0<<i<e (Ro,]O,IO) = (R' J,I), and

(Rps1» ]n+1 s Iy +1) is @a monoidal transform Of(Re—-l ’ ]c 1 leas e—l)

Proor oF (3.18.1). We shall make induction on . First consider
the case of » = 1; if S # §, then by (3.10.4) and (1.10.12) we
would get that Se€¥R,, J,) and (S, ,) has a pseudonormal
crossing at R, , which would contradict our assumption; there-
fore S =S, and hence it suffices to take (R, Jo, Iy, Sy) =
(Ro» Jos 1y, Sy).- Now let » > 1 and assume that the assertion is
true for all values of # smaller than the given one. By (3.10.2) and
(3.10.5) we get that dim R; = 3 and G*(R;, J;) has a strict normal
crossing at R; for 0 <7 < n. Hence if S = §; then it suffices to
take (R;, Ji,I;,S) = (R;, J;, I;,S;) for 0 <i < n. So now
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assume that S # S;. Then by (3.10.4) and (1.10.12) we get that
SeE¥R,, J,) and (S, ;) has a pseudonormal crossing at R, .
Therefore upon applying the induction hypothesis to the system
[(Ri ’ ]i ’ Ii ’ Si)1<i<n ’ (Rn ’ ]n ’ In)] we can find a sequence
(R, J¥, I, S¥)1<i<n such that: R} is a three-dimensional regular
local domain and Jf and I} are nonzero principal ideals in R}
with ordg: J¥ = d for 1 <7 < n; GX(RF, J¥) has a strict normal
crossing at R for 1 < < n; SF € €¥(R¥, J¥) and (S}, I}) has a
pseudonormal crossing at R} for 1 < i <u; (Rf, J§, If, SF) =
Ry, J1, I, 8); (RY, J§, IF) is a monoidal transform of (Rf,,
JE L, IE,, SEy) for 1 <i < mj; and (R,, J,,1,) is a monoidal
transform of (R} ,, J¥ ., X ,, Sk ). Let (R}, J¥,I}) = (R,,
Jus ). Let (R, Jo, Iy, So) = (Ry, Jo, 1y, S). Take a valuation
ring V of the quotient field of R, such that V' dominates Rj.
Let (Ry, J1,1I;) be the monoidal transform of (Ry, Jo, Iy, So)
along V, and let S; = S, . Then by (3.10.4), (3.10.5), and (1.10.12)
we get that dim R, = 3, ordg J; = d, €XR;, J;) has a strict
normal crossing at Ry , S; € €(R;, 1), (S, I;) has a pseudonormal
crossing at R;, and (RS, J¥, I¥) is a monoidal transform of
(Ry, J1,1I1,S1). It now suffices to take (R;, J;,I;,S;) =
(RE, J5 If, SH)for2 < i < m.

Proor oF (3.18.2). We shall make induction on 7.

First consider the case of n = 1. By (3.10.6) we get that
2 < dim Ry = dim R, < 3, ordg; J, = d, and there exists exactly
one two-dimensional element Sy in B(R,) such that M(R,) C M(S,)
and J, C M(S;). Moreover, by (1.10.12), (3.7.2), (3.7.4), and
(3.10.6) we get that Sy e €X(R,, J,), (S, ;) has a pseudonormal
crossing at Ry, and upon letting (R’, J',I') be the monoidal
transform of (Ry, Jo, Iy, Se) along V we have that: (1) if
Sp ¢ B(Ry) then (R, J',I') = (Ry, J5,1,); and (2) if S, € B(R,)
then dim R’ = dim Ry, ordg'J' = d, {S, , S;} has a normal crossing
at Ry, (S, , Iy) has a pseudonormal crossing at Ry, S, € €¥(R’, J'),
(Sy , I') has a pseudonormal crossing at R’, and (R,, J,, I,) is the
monoidal transform of (R, J',I', S;) along V. In case (1) it
suffices to take m = 1. In case (2) it suffices to take m = 2 and
Ry, Ji I, S) = (R, T T, Sy).

Now let # > 1 and assume that the assertion is true for all
values of # smaller than the given one. By (3.10.2) we have that
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dim R, = 3, and hence upon applying the induction hypothesis to
the system [(R;, J;,I;, Sh<icns (Rns Ju,1;)] we can find a
positive integer ¢ and a sequence (R, J¥, I¥, S¥)o<;., such that:
R¥ is a regular local domain with dim R} = dim R, , and J¥ and
If are nonzero principal ideals in R with ordg ¥ = d for
0<i<gq; SFfeGR}, J¥) and (S¥ I}) has a pseudonormal
crossing at R} for 0 <7 < ¢; (R, J§, If) is a monoidal transform
of (R, J1,1,,R); (Rf, J5 IF) is a monoidal transform of
(Rt*—l ’ ];k—l ’ I'L*—l ’ Sz*—l) for 0 <i< % and (Rn+1 ’ ]n+1 ’ In+1) isa
monoidal transform of (R}, Ji¥,,Ix,, Sk¥,). Now (R§, J& If)
is a monoidal transform of (R,, J;,1;, Ry) and ordg J& = d;
hence in particular J§f C M(Ry); therefore by (3.10.6) we get that
2 < dim R, = dim R¥ < 3, ordg, Jo = d, and there exists exactly
one two-dimensional element Sg in B(R,) such that M(R,) C M(S,)
and J, C M(S;). Moreover, by (1.10.12), (3.7.2), (3.7.4), and
(3.10.6) we get that Sge (R, Jg), (Sg,I;) has a pseudonormal
crossing at R,, and upon letting (R’, J',I') be the monoidal
transform of (Rg, Jo,lo, Sg) along V we have that: (1*) if
S, € B(R;) then (R, J', I') = (R¥, J&, I¥); and (2%) if S, ¢ B(R})
then dim R’ = dim Ry, ordgJ' = d, {S,, Sy} has a normal
crossing at Ry, (S,,I;) has a pseudonormal crossing at Ry,
S, e G(R’, J), (Sy,1') has a pseudonormal crossing at R’, and
(RE, J§, IT) is the monoidal transform of (R', J', I', S,) along V.
In case (1*) it suffices to take m = ¢ + 1 and (R}, J;,I;, S;) =
(R, JE., I, SE,) for 1 < i < m. In case (2%) it suffices to
take m =g+ 2, (R, Jy,I1,8) = (R, J,I', Sp), and (R;, Ji,
I, 8i) = (REs, JEs, IF,, Sfs) for 2 < i <m.

Proor or (3.18.3). First suppose that S # R,. Then
SeCR,y, J,) and hence by (3.18.1) there exists a sequence
(RY, J¥, I¥, S)o<icn such that: RF is a regular local domain and
J¥ and IF¥ are nonzero principal ideals in R} with ordgs J¥ =
for 0 <7 < m; G¥(R}, J}) has a strict normal crossing at R} for
0 <i<mn; SFeG¥R¥ JF) and (S}, I}) has a pseudonormal
crossing at R for 0 < i < n; (R, J&, I, S§) = (Ry, Jo, 1, S);
(R¥, J¥, IF) is a monoidal transform of (RY,, J*,,I*,, Sk,
for0 <i < mand (R}, J¥, I}, S = (R,, ., L., R,) Clear-
ly (R, J', I') = (R}, J, I), and hence ordg J' = d. By (1.10.8)
we get that I, has a quasinormal crossing at R, , and hence
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(R, ,1I,) has a pseudonormal crossing at R, . It suffices to take
e=mnand (R;, J;,I;,S;) = (REy, J51, 11, Sty) for0 <i <e.
Next suppose that S = R,. Then by (3.18.2) we get that
ordg J' = d and there exists a positive integer m and a sequence
(R¥, JF, IF, Sf)o<i<m such that: R¥ is a regular local domain and
J* and I* are nonzero principal ideals in R with ordg J¥ = d
for 0 <1 <m; Sfe (Ez(R* ¥) and (S¥, I¥) has a pseudonormal
crossing at R} for 0<i<m (RS J& IF) = (R, J, I'); (RY,
X I¥) is a monoidal transform of (R}, J¥,,If,, Sk, for
0 <i<m; and (R,,;, Jus1,1ns1) is 2 monoidal transform of
(R, Tk 4, I 1, S_y)- By (3.11) we get that G(R¥, J*) has a
strict normal crossing at R} for 0 <i < m. It suffices to take
e=mand (R, J;,I;,S;) = (Rf, J5,IF, S}) for 0 <i <e.

(3.19). Let (R;, J;,1;, S;)ocicwo be an infinite resolver such
that ordg J; = ordg Jo for 0 < i < o, R, is pseudogeometric, and
dim Ry, < 3. Let d = ordg J, . Then we have the following.

(3.19.1). There exists a unique nomnegative integer n such that
S; #R; for 0 <i<mnand S, =R, .

(3.19.2). Let n be as in (3.19.1). Let S be a positive-dimensional
element in (R, , J,) such that (S, I,) has a pseudonormal crossing at
R,, and if dim S = 2 then €*R,, J,) has a strict normal crossing
at R,. Let (R, J',I') be a monoidal transform of (R,, J,,1,, S).
Assume that there exists a valuation ring V of the quotient field of R,
such that V dominates R’ and V dominates R, ., . Then ordy |’ = d,
and there exists a positive integer g and a resolver (R, J; , I; , Si)oci<q
such that ordy ]t =d for 0<i<yg (Ry, ]0 1) =R, J, I,

and (Rq 1> ]q 1 q—l ’ q 1) - (Rn+1 H Jn+1 y fn+l) n+1)

(3‘19°3)‘ Let [(R:k’ ]z*a Iz*’ S;k)0<i<m ’ (R;:(L ’ ];:n( vI;nk)] be a ﬁnite
weak resolver such that (Rf, J§, IF) = (Ry, Jo,1y). Assume that
there exists a valuation ring V of the quotient field of R, such that V
dominates R, and V dominates R; for 0 < i < 0. Thenordg: J¥ =d
Jor 0 < i < m, and there exist positive integers q and e and a resolver
(R, JirI;, Sidocicq Such that ordy J; = d for 0 <i < g, (R,
I](; 1§6; = (R;:: ’ ];nk ’ I;:l()’ and (Rc;—l ’ ]t;—-l ’It;——l ’ St;—l) = (Re ’ ]e ’
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Proor oF (3.19.1). The uniqueness is obvious. Since (R, J;) is
unresolved for 0 <7 < o0, we get that 2 << dim S; < 3 for
0 <7 < oo; in view of (3. 5) we also get that dlmR = 3 for
0 <7 < oo. Therefore the existence follows from (3.15).

Proor oF (3.19.2). Since (R;, J;) is unresolved for 0 < 7 < o,
we get that d > 1, 2 <dimS <3, and 2 < dim §; <3 for
0 <7 < oo; in view of (3.5) we also get that dim R; = 3 for
0 <7 < oo. Therefore S; e €¥R;, J;) for 0 <i<n If §= S5,
then (R, J',I') = (Ry, J;,1,), and hence ordg'J' = d and it
suffices to take ¢ = n+ 1 and (R}, Ji,I;, S;)) = (Riy1s Jis1»
L., S;.) for 0 <7 < ¢ So now assume that S # S, . Then we
must have n > 0, S,€€¥R,, J,), and G%R,, J,) has a strict
normal crossing at R,. By (3.11) we now get that (R, , J,) has
a strict normal crossing at R,; since dim S,, s 2, we conclude that
there does not exist any element S’ in €¥R,, , J,) such that (S, I,,)
has a pseudonormal crossing at R, . Therefore by (3.18.3) we get
that ordg /' = d, and there exists a positive integer e and a
resolver (R;, J;,I;, S{)o<i<. such that ordy Ji = dfor 0 <7 <e,
Ro, Jo,1o) = (R, ], I'), and (Rn+1 ) ]n+1’ I,,,) is a monoidal

transform of (R,_,, Jo_1, e _1>S0_1)- It now suffices to take
g=e+ land (Ryy, Jou1,1gm1, Sgm1) = (Ruias Jusar s Inia s Suia)-

Proor oF (3.19.3). We shall make induction on .

First consider the case of m = 1. By (3.19.1) there exists a
unique nonnegative z such that S; # R; for 0 < <z and
S, = R, . Let S = S§. Then S is a positive-dimensional element
in (R, , J,) such that (S, I;) has a pseudonormal crossing at R, ,
and if dim S = 2 then G%(R, , J,) has a strict normal crossing at R, .
Also (R}, Jx,I}%) is a monoidal transform of (R,, J,,1,, S),
V dominates R;, and V dominates R, . Therefore by (3.19.2)
we get that ordg: J¥ = d for 0 <7 < m, and there exists a positive
integer ¢ and a resolver (Ri, Ji»Ii, Si)ocicqsuch thatordy J; = d
for 0.<i<gq (RE,Jood0) = (RE, Ji, 1), and (R, i,
I 1, S;0) = Rusas T Insas Sn+1)' It suffices to take e = n + 1.

Now let m > 1 and assume that the assertion is true for all
values of 7 smaller than the given one. Upon applying the induction
hypothesis to the finite weak resolver [(RY, J, IF, SF)ocicm—1>
(Ri=y s Jha Iy _y)] we get that ordpe J¥ = d for 0 <i<m — 1,
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and there exist positive integers a and b and a resolver (R, J;,
I, S{)ocica such that ordg. J{ = dfor0 <i < a, (R, Jo,1p) =
(Rm 1’]m 1> m 1) and(er; 1:]:1’ 1> clz/ 1> Z—l)" (Rb’]b!lbySb)'
Now Ry is pseudogeometric and dim Ry < 3. By (1.10.5) we also
get that (R;, J;) is unresolved for 0 <7 < a. Let (R}, J;,
I3, 87) = (R, a+1+t » Joasivi> Dy—avvi > Sp-airys) fora <i < oo.
Then (RY, J{ ,I{ , S{)o<s < is an infinite resolver. Therefore by
(3.19.1) there exists a unique nonnegative integer n such that
S; #Rifor0 <i<mand S, = R, .Let S = S*_,. Then Sis
a positive-dimensional element in €(Rj, ;) such that (S, Iy) has a
pseudonormal crossing at Ry, and if dim S = 2 then (R, J;)
has a strict normal crossing at Ry . Also (RY, Jk, If) is a monoidal
transform of (Ry, Jo,1Iy,S), V dominates R,’,'; , and V' dominates

R, ., . Therefore by (3.19.2) we get that ordg= ]* = d, and there
exists a positive integer ¢ and a resolver (R;, ]1 I, S )0gz <¢ Such
that ord, ]1—dfor0 <z<c(R0,]0,Io)_( *, I¥), and
(R.- l!jc 15 1e1,8e1) = Rusrs Jovrs Insa s Sni)- If”+ 1>a-1
then it suffices to take ¢=¢ and e=b—a+n-+2 1If
n+ 1 < a— 1thenitsufficestotakee =b,g=c+a—n— 2,
and (R, Ji,1i, Si) = (Rusacri» Jnszciir Inva—eri » Sniz—ers) fOr
c<i<gq.

(3.20). Let R be a regular local domain such that R is weakly
resolvable. Then R is weakly semiresolvable.

Proor. Let R’ be any iterated monoidal transform of R, let J'
be any nonzero principal ideal in R’ such that (R’, J') is unresolved,
and let I be any valuation ring of the quotient field of R such that
V dominates R’. Now R’ is a nonzero principal ideal in R’, and R’
has a quasinormal crossing at R’. Since R is weakly resolvable,
there exists a finite weak resolver [(R;, J;,1;, Si)ocicm >
Ry Jn» In)] such that (Ry, Jo, 1) = (R, ', R), ordg ] —
ordg J; > ordg [, for 0 <i < m, and V dominates R,, . Clearly
[(R;s Ji» Sidocicm» (R ]m)] is a finite weak semiresolver. It
follows that R is weakly semiresolvable.

(3.21). Let R be a pseudogeometric regular local domain. Then
we have the following.
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(3.21.1). Assume that dim R << 2. Then R is strongly semi-
resolvable, semiresolvable, weakly semiresolvable, strongly resolvable,
resolvable, and weakly resolvable.

(3.21.2). Assume that dim R < 3. Then R is strongly sub-

resolvable.

(3.21.3). Assume that dim R < 3 and R is weakly semiresolvable.
Then R is strongly semiresolvable.

(3.21.4). Assume that dim R < 3 and R is weakly resolvable.
Then R is strongly resolvable, weakly semiresolvable, and strongly
semiresolvable.

Proor oF (3.21.1). By (3.5) it follows that R is strongly semi-
resolvable and strongly resolvable.

To prove that R is semiresolvable and weakly semiresolvable,
let R’ be any iterated monoidal transform of R, let /' be any
nonzero principal ideal in R’ such that (R’, J’) is unresolved, and
let ¥ be any valuation ring of the quotient field of R such that
V dominates R’. Then R’ is pseudogeometric and dim R’ = 2.
Let (R;, J.)o<i<w be the unique infinite sequence such that
Ry, Jo) = (R, '), and (R;, J;) is the monoidal transform of
(Ri_y» Ji—1, R;y) along V for 0 < i < co. By (3.5) there exists
a positive integer m such that (R;, J,) is unresolved for 0 << ¢ < m,
and (R,, , J,) is resolved. Clearly [(R;, Ji» Rdoi<m» Rn» Ju)]
is a finite semiresolver. Now ordg J; > ordg J; whenever
0 <j < i < oo. Therefore in view of (1.10.5) there exists an
integer n with 0 < < m such that ordy J' = ordg J; > ordg J,
for 0 <7 <m. Clearly [(R;, Jis Ri)ocicas (R, Ju)] is a finite
weak semiresolver. It follows that R is a semiresolvable and weakly
semiresolvable.

To prove that R is resolvable and weakly resolvable, let R’ be
any iterated monoidal transform of R, let J' and I’ be any nonzero
principal ideals in R’ such that (R’, J') is unresolved and I’ has
a quasinormal crossing at R’, and let V' be any valuation ring of
the quotient field of R such that V' dominates R’. Then R’ is
pseudogeometric and dim R" = 2. Let (R;, J;,I;)o<i<» be the
unique infinite sequence such that (R,, J,,1,) = (R’, J', I'), and



§3. DOMINANT CHARACTER OF A NORMAL SEQUENCE 107

(R;, J;, I,) is the monoidal transform of (R,_;, J;,1;;, R;;)
along V for0 < ¢ < co. By (1.10.8) we get that I; has a quasinormal
crossing at R; for 0 <7 < co. By (3.5) there exists a positive
integer m such that (R;, J;) is unresolved for 0 <7 < m, and
(Rm ’ ]m) is resolved. Clearly [(Ri ’ ]i ’ Ii ’ Ri)0<i<m ’ (Rm ’ ]m ’ Im)]
is a finite resolver. Now ordg J; > ordg J; whenever
0 <j <7 < . Therefore in view of (1.10.5) there exists an
integer n with 0 <z < m such that ordg J' = ordg J; > ordg J,
for 0 <7 < n. Clearly [(R;, J;» i, R)ocicn > (Rn, Ju 1p)] is a
finite weak resolver. It follows that R is resolvable and weakly
resolvable.

Proor orF (3.21.2). Follows from (3.12) and (3.15).

Proor oF (3.21.3). Suppose if possible that R 1s not strongly
semiresolvable. Then there exists an infinite semiresolver
(R, Ji» Si)oci<w such that R, is an iterated monoidal transform
of R. Now ordg J; > ordg J; wheneverO <j < < o, and hence
there exists a nonnegatlve integer n such that ordg ]1 = ordg J,
whenever n <{ i < 0. We can take a valuation ring V of the
quotient field of R, such that V' dominates R; for 0 < < o0.
Now R, is an iterated monoidal transform of R, R, is pseudo-
geometric, dim R, < 3, and (R, ;, Jo1s» Snsido<i<w i an infinite
semiresolver. Since R is weakly semiresolvable, there exists a finite
weak semiresolver [(R}, J¥, S¥)o<icm » (RE, Ji)] such that (Rf,
JH = (R, , J.), ordg ]n > ordg: J, and V dominates Rf.
By (3.17.3) we get that ord, . = ordy _Jn - This is a contradiction.

Proor oF (3.21.4). By (3.20) and (3.21.3) it follows that R is
weakly semiresolvable and strongly semiresolvable.

Suppose if possible that R is not strongly resolvable. Then there
exists an infinite resolver (R;, J;, I;, S;)o<i<~ such that R, is an
iterated monoidal transform of R. Now ordg J; > ordg J; whenever
0 <j < i < o0, and hence there exists a nonnegatlve integer »
such that ordy_ ]z = ordg ], whenever n <7 < c0. We can take a
valuation rmg V of the quotlent field of R, such that V' dominates
R, for 0 < i < . Now R, is an iterated mon01da1 transform of R,
R, is a pseudogeometric, dim R, <3, and (R,is, JurisInsis

wiidocicw 18 an infinite resolver. Since R is weakly resolvable,

n
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there exists a finite weak resolver [(R¥, JF, I, S¥)o<icm » (R, Tk,
I;rz)] such that (R(;k) ](;k’ I(;k) = (Rn ’ ]n ’ In)’ OrdR,,]n > OrdR,’,’,];ft ’
and V' dominates R} . By (3.19.3) we get that ordx [ = ordg [, .
This is a contradiction.

4. Unramified local extensions

(4.1). Let R and R’ be local rings such that R’ dominates R,
and M(R)R' is primary for M(R'). Then for any nonunit ideal Q'
in R' we have that dim(R'/Q") < dim(R/(R N Q")).

Proor. Let h: R — R’/Q’ be the canonical epimorphism and
let n = dim(R/(R N Q’)). Now A(R) is isomorphic to R/(R N Q’),
and hence there exist elements x,, ..., x, in M(h(R)) such that
(%15 .y 2,)R(R) is primary for M(k(R)). Since M(R)R’ is primary
for M(R’), we get that M(h(R))(R'/Q’) is primary for M(R'/Q")
and hence (xy, ..., x,)(R'/Q’) is primary for M(R’/Q’). Therefore
dim(R'/Q) < n.

(4.2). Let R and R’ be regular local domains such that dim R’ =
dim R, R’ dominates R, and M(R)R' is primary for M(R'). Let
S’ € B(R'). Then we have the following.

(4.2.1). dim S’ > dim Rpnsys)-

4.2.2), Assume that dim S’ = dim Rg (5. Then
(R N M(S"))S’ is primary for M(S").

(4.2.3). Assume  that dim S’ = dim Rgqp(s9)- Then:
(RN M(S)S" = M(S") < 8" ¢ &(R', (RN M(S'))R)).

Proor. (4.2.1) follows from (4.1) in view of the fact that for
any regular local domain R and any Se®8(R) we have that
dim S 4 dim(R/(R N M(S))) = dim R (see [18: (34.5)]). Now
assume that dim S” = dim Rg. (5. Suppose if possible that there
exists a prime ideal Q' in R’ such that (RN M(S")R'CQ'C
R N M(S’) and Q' = R'n M(S’); now RNQ'= RN M(S’) and
hence by (4.2.1) we get that dim Ry > dim Ry, ,,(s); consequently
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dim Ry > dim §’; since Q' C R’ N M(S’), we must have Q' =
R' N M(S’); this is contradiction. Therefore R’ N M(S’) is a
minimal prime ideal of (RN M(S)R’ in R’, and hence
(RN M(S")S’ is primary for M(S’). This proves (4.2.2). (4.2.3)
follows from (4.2.2).

(4.3). Remarx. In (4.3) we shall make some observations
which will be used tacitly in the rest of §4. Let R and R’ be regular
local domains such that dim R’ = dim R, R’ dominates R, and
M(R)R" = M(R’). Then for any nonempty subset QO of R we
clearly have that ordgQ = ord;Q. Let S be any element in B(R)
having a simple point at R. Then clearly (R N M(S))R’ is a prime
ideal in R’ and upon letting S” be the quotient ring of R’ with
respect to (R N M(S))R’ we get that S’ has a simple point at R’
and dim §" = dim S. By (4.2.1) it follows that S’ dominates S,
and §’ is the only element in B(R’) such that: dim S’ = dim S
and S’ dominates S. Since M(S)S" = M(S’), for any nonzero
principal ideal Jin R we have that: S e (R, ]) < S’ € R/, JR').
Finally note that if S, , ..., S, are any distinct elements in B(R)
such that {S,, ..., S,} has a normal crossing at R then, upon letting
S; be the unique element in B(R’) such that dim S; = dim S; and
S; dominates S;, we get that S], ..., S, are distinct elements in
B(R’) and {Sy, ..., S,} has a normal crossing at R’.

(4.4). Let R and R’ be regular local domains such that dim R’ =
dim R, R’ dominates R, and M(R)R' = M(R’). Assume that (1) for
every S’ € B(R’) we have that S" ¢ S(R', (R N M(S"))R’). Then for
every nonzero principal ideal | in R we have the following.

(4.4.1). Assume that (R', JR') is resolved. Then (R, ]) is
resolved.

(4.4.2). Assume that (R, ]) is unresolved and let S’ be any
element in €XR’, JR'). Then Rg s € €¥(R, ]).

(4.4.3). Assume that C¥R, ]) has a strict normal crossing at R,
let Sy, ..., S, (0 < n < 2)be the distinct elements in ¥R, ]), and
let S; be the unique element in B(R') such that dim S; = 2 and
S; dominates S;. Then Sy, .., S, are distinct, G¥R', JR") =
{S1, ..., S}, and €(R’, JR’) has a strict normal crossing at R'.
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ProoF oF (4.4.1). We have nothing to show if J = R. So
assume that | # R. Let d = ordgJ. Then JR' = x’R’ where
0 #£ x€ R such that ordgx = 1. Now J = Pjr.. P» where
n, 4, .., U, are positive integers and P,,.., P, are distinct
nonzero principal prime ideals in R. Let e; = ordyP;. Then
P,R’" = x%R’ and in particular P, C RN xR’ for 1 <7 < n. Now
RN xR is a prime ideal in R and by (4.2.1) we know that
dim R p < 1; since P,C RN xR’ for 1 <i < n, we get that
n=1and P, = RN xR’. By (1) we get that R,z ¢ S(R', P,R')
and hence e, = 1. Therefore (R, ]) is resolved.

Proor oF (4.4.2). Note that S’ and Ry, s are regular by
[18: (28.3)], and clearly S’ dominates Rg.p sy Since (R, J) is
unresolved, we have that | % R and hence | = Pj1 ... Pi» where
n, u,,..,u, are positive integers and P,, .., P, are distinct
nonzero principal prime ideals in R. Clearly S’ € §(R’, P,R’) for
1 <7 < n; consequently P,R’ C M(S’) and hence P; C R " M(S")
for 1 <7 < n. Suppose if possible that P, = R N M(S’); then we
must have n = 1; since (R, J)is unresolved, we get that ordgP; > 1
and hence ordg P,R’ > 1; since S’ € §(R’, P,R’), we deduce that
S’ € §(R', P,R’); this contradicts (1). Therefore P, = R N M(S’);
since P; C R N M(S’), we get that dim Rg s, = 2 and hence by
(4.2.1) we get that dim Ry, s sy = 2. Therefore in view of (1),
by (4.2.3) we get that (RN M(S")S’ = M(S’) and hence
M(Rrmsh)S' = M(S’). Consequently Rgqp s € (R, ).

Proor oF (4.4.3). If dim R < 3 then our assertion is trivial.

If dim R > 3 then (R, J) is unresolved and hence our assertion
follows from (4.4.2).

(4.5). Let A be the formal power series ring k[[X,, ..., X,]]
in indeterminates X, , ..., X, over a field k. Upon letting

kg ; o XU X5 Yha oo Yin
D:'f_Z’jfi‘---i,.Xl XRX7T X5 X,

for every

f=Yf X Xined (£ ., €h),
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we get a derivation D} of A; let D* denote the set of these n
derivations Df, ..., D} of A; for any derivation D of k we get a
derivation D** of A by taking

D = 3 (Df, . )X - Xin

let D** denote the set of all these derivations D** of A as D varies
over the set of all derivations of k; let ® = D* if k is of zero
characteristic, and ® = D* U D** if k is of nonzero characteristic.
Let k' be a separable algebraic extension of k, and let 4" =
E'[[X,, ..., X,]] which is regarded as an overring of 4. Let D" be
the set of derivations of A’ obtained by replacing & by &’ in the
above definition of . Then given any D € D there exists a unique
D’ € ®' such that D'f = Df for all fe 4; let H: D — D' be the
map defined by taking H(D) = D’ for all D € D. The following is
contained in Nagata’s Jacobian Criterion [18: (46.3)].

(4.5.1). Let Q be an ideal in A, let P* C P be prime ideals in
A such that Ap¢ S(A4,Q) and P* is a minimal prime ideal of Q
in A, and let e = dim Rp. . Then there exist elements w, , ..., w, tn
Q and elements D, ..., D, in D such that det(Dw;); ;.  .¢P
(for e = 0 we take the value of the determinant to be one).

The following is also implicitly contained in the proof of
[18: (46.3)]; for the sake of completeness we shall prove it here.

(4.5.2). Let Pbeaprimeidealin A, let w, , ..., w, be elements in P,
and let Dy, ..., D, be elements in ® such that det(Dw;); ;_;. ... ¢ P-
Then Ap/(wy, ..., w,)Ap is regular. Moreover, if P* is a prime ideal
in A such that (wy, .., w,)ACP*CP and dim Ap. = e then
(wyy -y w,)Ap = P*4,.

Proor. Now A is regular by [18: (28.3)] and hence it suffices
to show that if r,,...,7, are any elements in A, such that
rw, + -+ rw, e M(Ap)? then r;€ M(Ap) for all j. So let
71, ..., 7, be any elements in 4p such that r,w, + - + r,w,€ M(A4p)%.
Then there exist elements v, , ..., 9, in P, elements u,, in 4, and
an element ¢ in 4 with ¢ ¢ P, such that upon letting 5s; = r;t we
have that s; € 4 for all j and s;w;, + -+ + s,w, = v where

v= Y %09

rapq”
pa=t,...,b
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Now Dy(syw; + =+ 4 s;w,) = sy(Dywy) + -+ + s(Dyw,) + (Dys1)w,
+ -+ (Dyse)w,, (Dysy)wy + -+ + (Dys)w, € P, and DweP.
Therefore s,(D;wy) + -- + s(D;w,) e P for 1 i <{e; since
det(D,w;); j-1...... ¢ P, it follows that s; € P for all j, and hence
r;e M(A4,) for all j.

From (4.5.1) and (4.5.2) we shall now deduce (4.5.3).

(4.5.3). LetQ be any ideal in A. Then S(A',QA') C{S’ € B(A'):
Asnmisy € 8(4, Q)}-

Proor. Let S’ be any element in 8(4’) such that upon letting
P = 4 N M(S’) we have that 4, ¢ (4, Q). We want to show that
then S’ ¢ &(A4',0A4’). This is obvious if Q ¢ P. So assume that
Q CP. Since Ay ¢ S(4,0Q), we get that QA is a prime ideal in
Ap and hence Q = P*NQ, N ..NQ, where P* is a minimal
prime ideal of Q in 4, P*CP, and Q,, ..., 0,, are primary ideals
in A4 such that Q, ¢ P for 1 << b < m. Let e = dim A,.. Since
Ap ¢ (4, 0Q), by (4.5.1) there exist elements w, , ..., w, in Q and
elements D,, .., D, in D such that det(Dw;); ;. ..¢P. By
(4.5.2) we now get that (w,, .., w,)A, = P*4,; consequently
(wy, .y w)Ap =QA, and  hence (w,, .., w,)S = QS
Let D; = H(D,). Then Dy, ..., D, are elements in D' and
det(Djw;); j—q..... ¢ A’ N M(S’); consequently by (4.5.2) we get
that S'/(w,, ..., w,)S’ is regular, and hence S’ ¢ §(4’, 0A4").

(4.6). Let R and R’ be regular local domains such that dim R’ =
dim R, R’ dominates R, R’ is residually separable algebraic over R,
M(R)R' = M(R'), and the characteristic of R/M(R) is the same as
the characteristic of R. Let R* and R'* be the completions of R and
R’ respectively. Assume that: (1) for every ideal Q in R we have that
S(R*, OR*) = {S € B(R*): Rram(s) € S(R, Q)}; and (1) for every
ideal Q' in R we have that S(R'*,Q'R'*) = {S" € B(R'*):
Riamish € S(R', Q") (see (1.2.6)). Then we have the following.

(4.6.1). If O is any ideal in R then S(R',QR’) C{S’ € B(R'):
Rrams € (R, Q)}.

(4.6.2). If ] is any nonzero principal ideal in R such that (R, ])
is unresolved then (R’, JR') is unresolved.
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(4.6.3). If Jis any nonzero principal ideal in R such that (R, J)is
unresolved and S’ is any element in G*(R’, JR') then Ry pr (s € €¥(R, J])-

(4.6.4). If ] is any nonzero principal ideal in R such that
C%(R, [) has a strict normal crossing at R then G¥R', JR') has a
strict normal crossing at R' and, upon letting S, , ..., S, (0 <n <2)
be the distinct elements in G¥R, ]) and S; the unique element in
B(R') such that dim S; = 2 and S; dominates S;, we have that
S, ..., Sy are distinct and €R’, JR') = {S;, ..., S;,}-

Proor. For any S'e®B(R') we clearly have that R, s ¢
&(R, RN M(S’)), and hence (4.6.2), (4.6.3), and (4.6.4) would
follow from (4.4) and (4.6.1). Therefore it suffices to prove (4.6.1).
Let h: R* —> R'* be the unique homomorphism such
that A(M(R*))C M(R'*) and h(u) = u for all ueR. Now
dim A(R*) < dim R* = dim R'* and M(h(R*))R'* = M(R'*).
Therefore we must have dim A(R*) = dim R* and hence 4 is a
monomorphism. Consequently we may identify R* with a subring
of R"*. Let n = dim R and let (x,, ..., x,) be a basis of M(R).
By Cohen’s structure theorem [28: Theorem 27 on page 304] there
exists a subfield & of R* such that k is a coefficient set for R*.
By Zorn’s lemma there exists a subfield & of R'* such that k C &’
and &’ is not contained in any subfield of R'* other than k. Now
R'* is residually separable algebraic over R* and hence k' is
separable algebraic over k and by Hensel’s lemma [28: Theorem 17
on page 279] it follows that &’ is a coefficient set for R'*. Therefore
there exists a unique k’-isomorphism A': R'* — E'[[ X, ..., X,]]
such that A'(x;) = X, for 1 < ¢ < n, where R'[[X,, ..., X,]] is the
formal power series ring in indeterminates X, ..., X, with
coefficients in k. Via A’ let us identify R'* with R'[[X;, ..., X,]].
Note that then R* gets identified with k[[X], ..., X,]]. To prove
(4.6.1) let QO be any ideal in R and let S’ be any element in
S(R',QR’); since R'* is the completion of R’, we can find
S'* e B(R'*) such that RN M(S'*) = R' N M(S’) (see [28:
Corollary 1 on page 269]); then by (1') we get that
S'*e g(R'*,OR'*); let S* and S be the quotient rings of R*
and R with respect to R* N M(S’*) and R N M(S'*) respectively;
then by (4.5.3) we get that S* € S(R*, QR*), and hence by (1)
we get that S e &(R, Q), i.e., Rgas) € S(R, O).
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(4.7). Let k be a field, let k' be a separable algebraic extension of k,
let B = k[X,, .., X,] and B' = k'[X,, ..., X,] where X,, ..., X,
are indeterminates, and let Q be a prime ideal in B. Then there exists
a prime ideal Q' in B’ such that Q' N B = Q, and for any such Q'
we have that B, dominates B, , By is residually separable algebraic
over B, , and M(By)By = M(By).

Proor. Now B’ is integral over B and hence there exists a prime
ideal Q' in B’ such that Q' N B = Q (for instance see [4: Lemma
1.20]). Now let Q' be any such. Then B, clearly dominates B, .
Let h: B,» — By/M(By) be the canonical epimorphism. To prove
that B, is residually separable algebraic over B, and M(B,)B, =
M(By) it suffices to show that for any x € B, and y € M(By') we
have that A(x) is separable algebraic over h(B,) and y € M(B,)B, .
So let any x € By and y € M(By) be given. Then there exists a
finite separable algebraic extension k* of k contained in %’ such
that x € B}. and ye M(B}.) where B* = k*[X,, ..., X,] and
O* = Q' N B*. We can take a primitive element z of k* over &
and then upon letting f(Z) be the minimal monic polynomial of 2z
over k, where Z is an indeterminate, and upon letting d be the
Z-discriminant of f(Z) we have that 0 7 d € k and hence d ¢ Q.
Now B is integrally closed in its quotient field k(X , ..., X,)), B* is
the integral closure of B in k*(X, , ..., X)), 2 is a primitive element
of k¥(X,, ..., X,) over k(X , ..., X,,), and f(Z) is the minimal monic
polynomial of 2z over k(X,,.., X,). Therefore by Krull’s
Diskriminantsatz (see [4: Lemma 1.17, Lemma 1.28, and Theorem
1.44]) we get that Bj. is residually separable algebraic over B, and
M(B,)B}. = M(B}.). It follows that h(x) is separable algebraic
over h(B,) and y € M(B,)By: -

(4.8). Let R and R’ be regular local domains such that dim R' =
dim R, R’ dominates R, R’ is residually separable algebraic over R,
and M(R)R' = M(R'). Let S be a positive-dimensional element in
B(R) having a simple point at R, let R, be a monoidal transform of
(R, S), and let S’ be the unique element in B(R') such that dim S’ =
dim S and S’ dominates S. Then there exists a monoidal transform
R; of (R', S’) such that R, dominates R, . Moreover, for any such R,
we have the following: (1) dim R; = R, , Ry is residually separable
algebraic over R,, M(R))R; = M(R;); (2) if ] is any nonzero
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principal ideal in R and [, is the (R, S, R,)-transform of ], then
JiR; is the (R', S', Ry)-transform of JR'; and (3) if J and I are
any nonzero principal ideals in R and (], ,I,) is the (R, S, R))-
transform of (], I), then (J\R,, LR} is the (R', S’, Ry)-transform
of (JR, IR).

Proor. Let n = dim R and m = dim S. Then there exists a
basis (x, , ..., x,) of M(R) such that R N M(S) = (%,, ..., x,,)R and
x;/x, € R, for 2 < i < m. Now (%, , ..., x,,) is a basis of M(R’) and
R n M(S') = (%, -y %,)R’. If m = 1 then we have nothing to
show. So henceforth assume that m > 1. Let 4 = R[x,/x,, ...,
x,/%] and A = R'[xy/x,, ..., x,/%,]. Let h’: R'"—Ek be an
epimorphism such that Ker A = M(R’), and let £ = A’(R). Then
k is a subfield of k', k' is separable algebraic over &, and upon
letting A(u) = A'(u) for all u € R we get an epimorphism k: R — k
such that Kerkh = M(R). Let B = k[X,, .., X,] and B’ =
k'[X,, ..., X,] where X,, .., X, are indeterminates. Let H’:
A’ — B’ be the unique epimorphism such that H'(x;/x;) = X,
for 2 <i<<m and H'(u) = h'(u) for all ue R’. Upon letting
H(u) = H'(u) for all u € A we get an epimorphism H: A — B such
that H(x,/x;) = X; for 2 <i<m and H(u) = h(u) for all
ueR. Now KerH = M(R)A and Ker H = M(R)A’. Let
P = AN M(R,). Then P is a prime ideal in 4, Ker HC P, and
R, = A, . Let Q = H(P). Then Q is a prime ideal in B.

By (4.7) there exists a prime ideal Q" in B’ such that BN Q' = Q
and then upon letting P’ = H'-Y{(Q’) and R; = A, we get that
R; is a monoidal transform of (R’, S’) and R; dominates R, .

Conversely let R; be any monoidal transform of (R’, S") such
that R; dominates R, . Then x;/x; € R; for 2 < i << m and hence
upon letting P’ = A’ N M(R;) we get that P’ is a prime ideal in 4,
Ker HCP,R, = Ay ,and AN P’ = P.LetQ’ = H'(P’). Then
Q' is a prime ideal in B’ such that BN Q' = Q. Let H'*: R; — By
be the unique epimorphism such that H'*(u) = H'(u) for all
ue A’. Then upon letting H*(u) = H'*(u) for all u€ R, we get
that H*: R, — B, is an epimorphism and H*(x) = H(u) for all
ue A. Let h*: B, — By/M(B,) and k'*: By» — B,/ [M(Bj,) be the
canonical epimorphisms, and let ¢ be the transcendence degree of
h*(B,) over h*(k). Then dim R, = n — t. By (4.7), By is residually

algebraic over B, and hence ¢ is the transcendence degree of
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h'*(By) over h'*(k’); consequently dim R; = n — ¢t and hence
dim R; = dim R, . Let hy(u) = h'*(H'*(u)) for all u€ R, . Then
hi: R; — By /M(By) is an epimorphism, Ker hy = M(R)), and
hi(R,) = K'*(By); since, by (4.7), By/M(B,’) is a separable
algebraic extension of 4’ *(B,), we get that R; is residually separable
algebraic over R,. Now H'(P)B, = OB, = M(B,)B,  and by
(4.7) we get that M(B,)B, = M(By); consequently H'(P)B, =
M(By) and hence PR;+ (xy, %1, ..., X,)R; = M(R;); also
H(P)B, = M(B,) and hence PR, 4 (x;, %,,,1 , -.., ¥,)R, = M(R,);
therefore M(R,)R; = M(R;). Now let ] be any given nonzero
principal ideal in R, let J; be the (R, S, R,)-transform of ] and
let J; be the (R', S, R))-transform of JR’; let d = ordgJ; then
d = ordy JR' and hence upon taking w € R with wR = | we get
that J, = (w/x})R, and J| = (w/x})R;; therefore J; = J,R;.
Finally, let I be any given nonzero principal ideal in R, let I, be
the nonzero principal ideal in R’ such that (J; , ;) is the (R, S, R,)-
transform of (J, I), and let I; be the nonzero principal ideal in R,
such that (J;, I;) is the (R, S’, R;)-transform of (JR’, IR’); then
I, = x%(IR,) and I; = x%((IR)R,), and hence I; = LR, .

(4.9). Let R and R’ be regular local domains such that dim R’ =
dim R, R’ dominates R, R’ is residually separable algebraic over R,
and M(R)R' = M(R'). Let S be a positive-dimensional element in
B(R) having a simple point at R. Let S’ be the unique element in
B(R') such that dim S’ = dim S and S’ dominates S (note that then
S’ has a simple point at R"). Let (R; , S;)o<;.n be an infinite sequence
such that either n is a positive integer or n = o, (R, , S,) = (R, S),
and for 0 < i < n: R; is a regular local domain; S; is a positive-
dimensional element in B(R;) having a simple point at R;; and R, is a
monoidal transform of (R;_, , S;_,). Then we have the following.

(4.9.1). There exists a sequence (R;, S;)oci<n Such that
(Ry, Sg) = (R, S") and for 0 < i < n: R is a regular local domain;
dim R; = dim R;; R; dominates R;; R; is residually separable
algebraic over R;; M(R,)R; = M(R;); S; is the unique element in
B(R;) such that dim S; = dim S; and S; dominates S; (note that
then S; has a simple point at R;); and R; is a monoidal transform

Of (R;T—l ’ Sa’—l)
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(4.9.2). If (R;, S{)o<icn is any sequence as in (4.9.1), and J, is
any nonzero principal ideal in R; for 0 < i < n such that (R;, J,)
is a monoidal transform of (R,_y, J;_1,S;_y) for 0 <i < m, then
(R:, J:R;) is a monoidal transform of (R;_y, J,_1Ri_1, Si_,) for
0<i<n

(4.9.3). If (R;, S))o<icn is any sequence as in (4.9.1), and ],
and I, are any nonzero principal ideals in R; for 0 < i < n such that
(R;, J;, 1) is a monoidal transform of (R,_y, J; 1,1y, S;4)
for 0 <i <m, then (R;, J;R;, LR)) is a monoidal transform of
(Riz1s JiaRia, Ly Riy, Siy) for 0 <i <.

Proor. (4.9.2) and (4.9.3) follow from (4.8). To prove (4.9.1)
let W be the set of all sequences (R}, S;)y<;<m such that either m
is a positive integer or m = oo, m < n, (R, Sy) = (R, S'), and
for 0 <i < m: R; is a regular local domain; dim R; = dim R;;
R; dominates R;; R; is residually separable algebraic over R;;
M(R)R; = M(R;); S; is the unique element in B(R;) such that
dim S; = S, and S; dominates .S;; and R; is a monoidal transform
of (R;_;,S;,). For each pair of elements w = (R}, S{)ycicm
and w* = (RF, S¥)o<sem+ iIn W define: w < w* < m < m* and
(R:, Si) = (R}, SF) for 0 < i < m. Then W becomes a partially
ordered set having the Zorn property. Also we get an element
(R;, S{)o<s<1 In W by taking (Ry, S;) = (R, S’). Therefore
W # @, and hence by Zorn’s lemma W contains a maximal
element (R;, S;)g<;m; in view of (4.8) we must have m = n.

(4.10). Let S be an n-dimensional regular local domain, let
(%15 ...y x,) be a basis of M(S), and let f(Z) be a monic polynomial
of degree e > 1 in an indeterminate Z with coefficients in S. Let r € S
and let s = tx{r ... x3» where t is a unit in S and a,, ..., a, are
nonnegative integers. Let g(Z) = s~°f(sZ + r). Assume that g(Z) € S[Z]
and 0 < ordgg(Z) < e. Then we have the following.

(4.10.1). Let r'€S and let s = t'x} where 0 #t' €S and b
is a nonnegative integer. Assume that s'~f(s'Z + r') € S[Z]. Then
b<aand(r—r)sieS.

(4.10.2). Letr' e Sandlets’ = t'x8 ... x» where t' is a unit in S
and b, , ..., b, are nonnegative integers. Let g'(Z) = s'~°f(s'Z + r'),
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r* = (" —r)s, ¢g=a;—b;, t* =1t|t', and s* = t*xp ... x;n.
Note that then c, , ..., ¢, are integers, t* is a unit in S, and g(Z) =
s*¥~eg'(s*Z — r*). Assume that g'(Z)e S[Z]. Then r*e€ S and
¢ =20forl <i<n

Proor. (4.10.2) follows from (4.10.1). We shall now prove
(4.10.1). Let G(Z) = teg(t™2Z). Then

(1) G(Z)=272¢+ G Z* 1+ - + G, with G;eS.

Also ordG(Z) = ordsg(Z) and hence

(2) G, e M(S)

and there exists an integer d with 1 << d < e such that

(3) ordsG,; < d and ordsG; > 1 whenever 1 <1 <d.

Leta=a,.Letu =3 ...x0»ifn > 1,andu = 1 if n = 1. Let
f(Z2) = sf(sZ + ') and fX(Z) = t'¢f'(t'-1Z). Then f*(Z) e S[Z]
and

4) fHZ) = (w2 Gu'xb=°Z + (r' — r)ulxy®).

Let R = S, 5. By (1) and (4) we get that f*(0)ay” = G* where

G* = (r - 1)+ ) Guixior' - )
t=1
since f*(Z)e S[Z], we get that ordgf*(0)x? > eb; also, if
ordg(r' — r) < a then clearly ordg(r' — r)¢ = ord,G*; therefore
we get that

5) if ordp(r' —7r) <a  then  ordg(r' —r) >=b.

By (5) we get that if b < athen ordg(r' — 7) > b, i.e., (r' —r)/x} € S.
Hence it suffices to show that b < a. Suppose if possible that
b > a. Then by (5) we get that ordg(r' — r) > a,i.e., (r' — 7)/x7 € S.
Let h: S — S/x,S be the canonical epimorphism. Then there exist
elements 7* and 7" in S such that (r' — r)/x} = r* 4 r"x; and
ordgr* = ordy 5)h((r' — r)/x%); note that then ordgr* = ord, )h(r*).
Let
F(Z) = x0-0-Vefx(xlta=b7)  and  F(Z) = F(Z 1").
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Since f*(Z) € S[Z] and b > a, we get that F'(Z) € S[Z] and hence
F(Z) e S[Z]. Therefore

(6) F(Z)=Z¢ + FZe* 4 - +F, with F,eS.
By (4) and the definition of F'(Z) and F(Z) we get that
) F(Z) = wx*G(ux,Z + r*u-),

By (1), (6), and (7) we get that

Gut = G0t = x3F(—r*xt) = (—1)or*e +2 (1)~ F xir*e—t

i=1

and hence ord,(5h(r*¢) = ord, k(G u); consequently in view of
(2) we get that ord,(gh(r*) > ord,(sh(u); now ord,sh(r*) =
ordgr* and ordy(gh(u) = ordgu; therefore

®) ordgr* > ordgu.

For 0 <17 <j < elet W;; be the elements in S such that

Z+ 1y =2+ Y Wyze .

j=i+1
Then by (1), (6), and (7) we get that
a—1
©) Fal = Gut + Wor*d + Y W, ,Guirkis,
i=1
Let p = ordsF; and ¢ = ordgG, . Then by (3), (8), and (9) we
get (10) and (11):

(10) g<d and p +d = ordgFx% = ordsGau® ;
(11) Fxf — Gau* e M(S)yr+ett,

By (10) it follows that » > 1; now ordsu = a, + *-- + a, and
hence by (10) we get that p 4+ d = ¢ + d(a, + *-* + a,). Since
ordgF; = p, there exists a nonzero homogeneous polynomial
P(X,,..,X,) of degree p in indeterminates X,, ..., X, with
coefficients in S at least one of which is not in M(S) such that
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F; = P(xy, ..., x,). Since ordsG; = ¢, there exists a nonzero
homogeneous polynomial Q(Xy, ..., X,,) of degree ¢ in X, ..., X,
with coefficients in S at least one of which is not in M(S) such
that G; = Q(x,, ..., x,,). Let

AXy, o X)) = XOP(X,, ..., X,)
and
B(X,, .., X,) = Xt - X9 Q(X, , ..., X,,).

Then A(X,, ..., X,) and B(X,, ..., X,) are nonzero homogeneous
polynomials of degree p + d in X, ..., X,, with coefficients in S,
and Fx¢ = A(x,, ..., x,) and Gu? = B(x,, ..., x,). Therefore by
(11) we get that

(12) Axy ..oy ,) — B2y, ..., %) € M(S)PHEHL,

Let A: S— S/M(S) be the canonical epimorphism. Let
P(Xy, ... X,), O'(Xy, ... Xp), 4'(Xy, ..., X,), B'(X,, ..., X,,) be
the homogeneous polynomials in X, ..., X, with coefficients in
k'(S) obtained by applying A’ to the coefficients of P(X,, ..., X,),
O(Xy, ..., X,), A(Xy, .., X,), B(Xy, ..., X,) respectively. Then
by (12) we get that

A(X,, oy Xo) = B(Xy, ..., Xn)
and hence

XaP/(X,, .y X,) = X% -+ XbanQ'(X, , ..., X,,).

This is a contradiction because ¢ < d and Q'(X,, ..., X,) is a

nonzero homogeneous polynomial of degree ¢ in X, ..., X, with
coefficients in A’(S).

(4.11). Let S be an n-dimensional regular local domain and let R
be an (n + 1)-dimensional regular local domain such that R dominates
S, R is residually rational over S, and M(R) = zR + M(S)R with
2 € R. Then we have the following.

(4.11.1). (2R 4+ M(RY®) N S = M(S)® for every nonnegative
integer b.
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(4.11.2). Ifsis any element in S then ordgs = ordgs = ord,,(5)h(s)
where h: R — R/zR is the canonical epimorphism.

(4.11.3). If f(Z) is any polynomial in an indeterminate Z with
coefficients in the quotient field of S such that f(2) € R, thenf(Z) € S[Z].

Proor. Let R* and S* be the completion of R and § respec-
tively. Then there exists a unique homomorphism 4': $* — R*
such that A'(M(S*))C M(R*) and A'(u) =u for all uelS.
Now dimA'(S*)<n dimR*=mn+1, and M(R*)=
gR* + M(h'(S*))R*. Therefore dim A'(S*) = n and hence /" is a
monomorphism. Consequently we may identify S* with a subring
of R*. Note that then S* is a subspace of R*. We shall first show
that: (1) given any r € R* there exists a unique sequence of elements
TosT1sTay - i S* such thatr = ry + ri2 + r2® + <. Lettbe a
coefficient set for S* and let (x, , ..., x,,) be a basis of M(S*). Then
t is a coeflicient set for R* and (2, x,, ..., x,,) is a basis of M(R*).
Consequently, given any r € R* there exist elements in7;; ; in ¥
such that

_ daiy ee i
r=% TR

where the sum is over all nonnegative integers j, ¢;, ..., z, . Upon
letting

— T
r=X Tt X1t 77 Xy

where the sum is over all nonnegative integers i, , ..., 7, we get
that ;€ S* forj = 0,1, 2, ..., and 7 = 7y + 7,3 + 1,2% + . To
prove the uniqueness let 7, 7, , 73, ... be any elements in S* such
that r = 7, + 71z + r;,2% + ---. Since r; € S*, there exist elements

7js,...s, in  such that

- ’ T
r,= Zrﬁl...iﬂxll Xy
where the sum is over all nonnegative integers ¢, , ..., ¢, . Then
Taly +or arlpy — — 4 Taly eev x?,
Z rjil...i”z xll xn’l =r= r % xll x’n"

Jigeeiiy

where the sums are over all nonnegative integers j, , , ..., #,,; since
7 .
all the elements r;; , and 7j; ; are in t we get that r;; ; =
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7ji...i, forallj, 4, , ..., i, ,and hencer; = r; for all j. This completes
to proof of (1).

To prove (4.11.1) let b be any nonnegative integer; clearly
M(S)* C (2R + M(R)®) N S and hence it suffices to show that
(zR + M(R)®) N S C M(S)’ so let any s € (2R + M(R)) N S be
given; now zR + M(R)’ C zR* + ((x,, ..., X,)R*)? and hence

— ¢ ! )
s=sz+ ) Sip.a, X0 T X"
it +i,=b
where s’ and s; ; are elements in R*; by (1)
@ -]
' /i1 ’ _ ’ i
=) sz and s Z i iy

iy
=1 " =0

and
= ' iy oee gd ;
=5+ ) Sy ¥ %y for j>0
it tiy=b

we get that 5;€ S* for all j > 0 and s = s, + 8,2 + 82* + -5
since s € S C S*, by the uniqueness part of (1) we get that s = s,;
clearly s, € M(S*)® and hence se SN M(S*) = M(S)’; thus
(2R + M(R)) N S C M(S)°. This completes the proof of (4.11.1).
(4.11.2) follows from (4.11.1).

To prove (4.11.3) let f(Z) be any polynomial in an indeterminate
Z with coefficients in the quotient field of S such that f(z) € R;
then f(Z) = (fo/t) + (fi/)Z + -+ + (fo/t)Z¢ where e is a non-
negative integer, ¢ is a nonzero element in S, and f,, ..., f, are
elements in S; since f(z)€R, by (1) there exist elements
80,8158 > - in S* such that f(z) = gy + £1% + £:2° + ~*; now
fot+ iz + -+ f50 = tf(2) = (tg0) + (81)2 + (8g)5> + -+ and
hence by the uniqueness part of (1) we get that f; = tg; for
0 <j<e thus f;e(#S*)N S =1S for 0 <j < e and hence
filte S for 0 <j <, ie, f(Z) € S[Z].

(4.12). Let n be an integer with n > 2. Let R and R’ be
n-dimensional regular local domains such that R’ dominates R and
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M(R)R' = M(R'). Let S be an (n — 1)-dimensional element in B(R)
having a simple point at R. Let S’ be the unique (n — 1)-dimensional
element in B(R') such that S’ dominates S. Let I be a nonzero
principal ideal in R such that I has a quasinormal crossing at R.
Let I' = IR'. Then we have the following.

(4.12.1). Assume that (S’, I') has a pseudonormal crossing at R’.
Then (S, I) has a pseudonormal crossing at R.

(4.12.2). Assume that there exists a basis (x, , ..., x,) of M(R'),
a nonzero principal ideal L' in R’', and nonnegative integers q, , ..., q,
such that: R' N M(S') = (%1, ..., %, )R, I'=x1 ... xL', and
ordg'L’ = ordgL’. Then (S,I) has a pseudonormal crossing at R.

Proor oF (4.12.1). Now there exists a basis (y,,...,y,) of
M(R) such that RN M(S) = (¥1, s Yu_1)R. Note that then
(¥15 --» ¥,) 1s a basis of M(R') and R' N M(S") = (¥1, --» Ya_1)R'.
Since I has a quasinormal crossing at R, it suffices to show that if
w is any element in R such that ordzw = 1 and I C wR then
(S, wR) has a pseudonormal crossing at R. First suppose that
we RN M(S); then w = ryy, + - + 7, 1y, where r, ..., 7,
are elements in R such that y; ¢ M(R) for some j; now M(R) =
(V15 s Vi1 Wy Yig1s -0 Ya)R and RN M(S) = (y;, -0, Yjor, W,
Yjr1» - Yn1)R, and hence (S, wR) has a pseudonormal crossing
at R. Next suppose that w¢ R N M(S); now ordgw = 1 and
I' CwR’'; since (S’,I') has a pseudonormal crossing at R’, there
exists a basis of (2, ..., 2,) of M(R’) such that R" N M(S’) =
(215 -e» 2p—1)R" and wR’ = 2R’ for some ¢ with 1 << 7 < n; since
S’ dominates .S and w ¢ R N M(S), we must have ¢ = n; therefore
wé¢ (21, Z)R + M(R')? and hence w ¢ (R N M(S)) + M(R)?;
since w € M(R), we have that w = 5,5, + -+ + 5,5, with s, ..., 5,
in R; since w ¢ (R N M(S)) + M(R)?, we must have s, ¢ M(R);
consequently M(R) = (¥y, ---, Yn-1» @)R and hence (S, wR) has a
pseudonormal crossing at R.

Proor oF (4.12.2). Since I has a quasinormal crossing at R, we
have that I' has a quasinormal crossing at R’. In view of (4.12.1)
it suffices to show that (S’, I') has a pseudonormal crossing at R'.
Clearly (S’, x,R’) has a pseudonormal crossing at R" for 1 <7 < n,
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and hence it suffices to show that if w is any element in R’ such
that ordgw = 1 and L’ CwR’ then (S’, wR’) has a pseudonormal
crossing at R'. Since ordy L’ = ordgL’, we must have ordgw =
ordg:w = 1. Therefore w = ryx; + - + r,_1x,_, wherer,, ..., 7
are elements in R’ such that »; ¢ M(R’) for some j. Now

n—1

M(R,) = (x] y ey X1y Wy Xjig sy eeny xn)Rl
and
R'n M(S’) = (xl y ey Xj3 y Wy Xjig g eeny xn—-l)R,)

and hence (S’, wR’) has a pseudonormal crossing at R'.

(4.13). Let R be an n-dimensional regular local domain with
n > 0 such that R/M(R) is infinite, let P be a nonzero principal ideal
in R, and let e = ordyP. Then there exists a basis (x,, ..., x,) of
M(R) such that P ¢ (x,, ..., x,_; , x5")R.

Proor. Let (y;,..,¥n_1,%,) be any basis of M(R), let
Zy, .., Z, be indeterminates, and let A: R — R/M(R) be the
canonical epimorphism. Then there exist nonzero homogeneous
polynomials f(Z, , ..., Z,)and f'(Z, , ..., Z,) of degreeein Z, , ..., Z,,
with coefficients in R and R/M(R) respectively such that P =
f(1s s Yno1, %¥,)R and upon applying % to the coefficients of
fZ,, ... Z,)) we get f(Z,, ..., Z,). Now f(Zy, ... Zp1,1) is a
nonzero polynomial in Z, , ..., Z,_; with coeficients in the infinite
field R/M(R), and hence there exist elements r,,...,7,_, in R
such that f'(k(ry), ..., A(r,_4), 1) # 0. Let x, =y, — rx, for
1 <i<n Then y,=x, +rx, for 1 <i<mn and hence
(%1, ..., %) is a basis of M(R). Let

g(Zl ey Zn) =f(Z] + rIZn Yty Zn—] + rn—IZn ) Zn)y
and
82y, Zy) =f 2y + M)y, ... Zyy + B(rnr)Zn , Zy).

Then g(Z,, ..., Z,) and g'(Z,, ..., Z,) are nonzero homogeneous
polynomials of degree e in Z,, ..., Z, with coefficients in R and
R/M(R) respectively, and upon applying % to the coefficients of
8Z,, ..., Z,) we get g(Z,, ..., Z,). Now g(x,, ..., %,) = f(¥1 ) 0y
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Yn—1>%,) and hence P = g(x,, ..., x,)R. Also g'(0,...,0,1) =
f'(h(ry), ..., B(rn_1), 1) and hence g'(0,..,0,1) 0. Let A"
R — R/(x,, ..., ,_1)R be the canonical epimorphism. Then A'(R)
is a one-dimensional regular local domain, M(#'(R)) = h'(x,R),
and K'(25R) ¢ b'(«51R) = h'((%y, -y Xpq » ¥511)R). Now A'(P) =
h(g(xy, ..., x,)R) = K'(«5R), and hence P ¢ (x;,.., %1, 25)R.

(4.14). Let R be a three-dimensional regular local domain such
that RIM(R) 1s algebraically closed, let T be a coefficient set for R,
let P be a nonzero monunit principal ideal in R, let e = ord,P,
let (x,y, 2) be a basis of M(R) such that P ¢ (x,y, 2*')R, and let
(R', P’) be a monoidal transform of (R, P, R) such that dim R’ = 3
and ordgP' = e. Then there exists a unique basis (x',y’,2’) of
M(R') such that: if y/lxe R then x = x', (y/x') —y €1, and
(2/x) — 2’ €t; and if y/x¢ R then x=7y'x', y=1y', and
(=/y") — 2’ €t. Moreover, for any such basis (x',y’, 2’) of M(R’) we
have that P' ¢ (x', y’, 2*1)R’.

Proor. Take w € R such that wR = P. Since ord P = ¢, there
exist elements £, in R such that

w= ) t,x%"
atbte=e

Let A: R — R/(x, y)R be the canonical epimorphism. Now wR =
P ¢ (x,y, 2 )R = b7} (M(h(R))***) and hence A(w) ¢ M(h(R))*+1;
if 2o, € M(R) then we would get that A(w) € M(h(R))*+!; therefore
tooe ¢ M(R) and hence ty, ¢ M(R’). Suppose if possible that
x/ze M(R') and y/ze M(R’); then M(R') = (x/2, y/2, 2)R’ and
P’ = (w/2*)R’; since ordg P’ = e > 0, we get that w/z* e M(R');
however,

wizt = ), t,(x/2)(y/z)

a+b+c=e
and hence w/z* ¢ M(R’) because ¢y, ¢ M(R'); this is a contradiction.
Therefore either x/z¢ M(R') or y/z¢ M(R’). It follows that: if
y/x € R’ then z/x € R’ and there exists a unique basis (x',y’, ')
of M(R') such that x = &', (y/x") — y'€f,and (2/x') — 2’ €¥; and if
y/x ¢ R then x/y € M(R') and z/y € R’ and there exists a unique basis
(«',y', 2") of M(R’) such that x = y'x’, y = y’, and (2/y’) — 2’ €t
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If y/xe R then let (x*, y* 2¥) = (x, xy’, x2'), and if y/x¢ R’
then let (x*, y*, 2*) = (¥, x, y2’). Then (x*, y*, 2¥)R = M(R),
(x*, y*)R = (x, )R, (x*, y*[x*, 2¥/x*)R' = M(R'), z¥/x* = 2/,
(x*, y*/x*)R" = (x', y')R’, and M(R)R' = x*R’; also (w/x*¢)R’ =
P’ and hence w/x*¢ € M(R’)¢. Since w € M(R)¢, there exist elements
t%. in R such that

_ % 4kaq kb o Ke
w= ) tk xray¥ogre,
a+b+c=e

Now wR = P¢(x,y, 2" )R = h-"Y(M(h(R))**') and hence
h(w) ¢ M(h(R))**!; since (x*, y*)R = (», y)R, we get that if
tf. c M(R) then h(w)e M(h(R))+'; therefore tg, ¢ M(R) and
hence £, ¢ M(R'). Now

w/x*” — Z abc(y*/x*)b(z*/x*)c

a+b+c=e

Since w/x*¢ € M(R')?, we must have ;. € M(R') whenever a = 0,
and hence ;. € M(R) whenever a # 0; also M(R)R' = x*R' and
hence t},, € x*R’ whenever a 7 0. Let A': R — R’/(x*, y*/x*)R’
be the canonical epimorphism. Now A'(R’) is a one-
dimensional regular local domain, M(h'(R")) = k'((2*/x*)R’), and
B ((z*[x*)R") ¢ B((3*[x¥)HR) = K((x*, y*[x*, (2*[x*))R);
also A'(tf,) is a unit in A'(R’) and hence A'((w/x*)R') =
K ((2*/x*)°R’); since P’ = (w/x*¢)R’, we conclude that P’ ¢ (x*,
y*[x*, (2*/x*)¢+*1)R’; since (x*, y*/x*)R' = (x', )R’ and 2*/x* =
2’, we thus get that P’ ¢ (x', ', 2’¢*1)R’.

(4.15). Let R, be a three-dimensional regular local domain such
that Ry/M(R,) is algebraically closed, let t be a coefficient set for R, ,
let P, be a nonzero nonunit principal ideal in R, , let e = ordg Py,
and let (%, ¥, 2) be a basis of M(R,) such that P, ¢ (x A z““)R
Let (R;, P;))y<icn be a sequence such that: either n is a positive
integer or n = o0; R; is a three-dimensional regular local domain and
P, is a nonzero principal ideal in R; with ordy P; = e for 0 < 1< m
and (R;, P,) is a monoidal transform of (R,_,, P, ,,R;_,) for
0 < i < n. Then there exists a unique sequence (%;,Y¥;, 2i)o<i<n
such that (xy, 90, %) = (%, ¥, 2) and for 0 < i < n: (%;,¥;,2;)
is a basis of M(R;); P;¢ (%;,5:, 37)Rs5 if y54/%;_1 € R; then
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Xq =%y, (Via/%) —y;€%, and (3;4/x)— %, €%, and if
Yio1/%i1 ¢ R; then x,_, = yx;, v, 1 = y;, and (2;_4/y;) — %, €L

Proor. Note that R;/M(R,) is algebraically closed and t is a
coefficient set for R; for 0 <7 < . In view of (4.14), the unique-
ness follows by an obvious induction. To prove the existence let W
be the set of all sequences (x;, ¥; , %;)o<i<m Such that either m is a
positive integer or m = oo, m < n, (%, ¥y , %) = (%, ¥, 2), and for
0 <i<m:(x,Y;,%2)1s a basis of M(R)); P; ¢ (x;,y;, 2i")R;;
if y;y%,€R; then x,, =1, (¥_yx)—y;€f and
(2ia/%;) — z;€fandif y, 4/w; ) € Rythenw; ;) = yx;, ¥:0 = ¥s»
and (2;_,/y;) —2,€f For each pair of elements w =
(%35 Y45 zi)0<i<m and w' = (x; )y; ’ z;)0<i<m' in W define:
w<w -m<mand (x;,5;,2) = (%, :,2) for 0 <7 < m.
Then W becomes a partially ordered set having the Zorn property.
Also we get an element (x;,y;,2)<;<1 in W by taking
(%0 » Yo » %) = (%, ¥, 2). Therefore W # @, and hence by Zorn’s
lemma W contains a maximal element (x;, y;, Z)o<icm; 1N View
of (4.14) we must have m = n.

(4.16). Let (R, J,I,L, P, x,9,z,p,4q,c,d,e) be a system such
that: R is a three-dimensional regular local domain; R|/M(R) is
algebraically closed; |, I,L, and P are nonzero principal ideals in R;
(%, v, 2) is a basis of M(R); p, q, and c are nonnegative integers; d is a
positive integer; e = ¢ + d; ordg] = d; ordgL = ¢; I = xPyL;
P = JL; and P ¢ (x,y, 2*™")R. Let m be a nonnegative integer. Let
(RF, JX, I, P¥)pcicw be an infinite sequence such that (RY, I,
I¥ ,P¥) = (R, J,I,P) and for m <i << ow: R} is a three-
dimensional regular local domain; J¥,If, and P} are nonzero
principal ideals in RY; ordg Ji = d; (RY, Ji 1) is a monoidal
transform of (RY,, J¥.,I} ., R¥,); and (R}, P¥) is a monoidal
transform of (RY ., P¥,, RY,). Then we have the following.

(4.16.1).  Assume that ordg:Pj* # e for some j withm < j < .
Also assume that I has a quasinormal crossing at R. Then there exists
an integer n > m, a nonzero principal ideal L} in R}, a basis
(x*, ¥*, 2*) of M(R}), and nonnegative integers p*, ¢*, and c* such
that: I} = x*P"y*CL¥ | ordpL} = c* <, and JELY ¢ (x*, y*,
z*d+n*+1)R;§ .
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(4.16.2). Assume that ordpPf =e for m <i < oo, R is
complete, and R/M(R) has the same characteristic as R. Then there
exists an mteger m >m, a field t, and an infinite sequence
Ry Jio Ly Ly s Sy fl2), %, 955 2055 Siv by Dis 65 @i, D <ico
having the following description. For m’ < i < co: R; is a three-
dimensional regular local domain; R;,/M(R,) is algebraically closed;
R, dominates R}; R, is residually rational over Rf; M(R;) =
M(R}R;; J; = J¥R; I, = IfR;; L; is a nonzero principal ideal
in R;; ordg L; = ¢; (x;,¥;, %) is a basis of M(R;); p; and q; are
nonnegative integers; and I, = xJ«y%iL, . For m" <i < oo: S;is a
two-dimensional regular local domain; S;/M(S,) is algebraically closed;
t is a subfield of S;; T is a coefficient set for S;; R; dominates S;
R, is residually rational over S;; (x;, ;) is a basis of M(S,); r; € S;;
t; is a unit in S;; a; and b; are nonnegative integers; s; = t;x%yl;
fi(Z) is a monic polynomial of degree e in an indeterminate Z with
coefficients in S;; J.L; = fl(2;)R;; 2, = ;2; + 155 and f(Z) =
ST (s;Z + 1,). Sy is isomorphic to the ring of formal power series
in two indeterminates with coefficients in R/M(R). For m" < i < 00:
S, is a quadratic transform of S;_; if y,_1/%;_1 € S; then x;_; = x;
and (yz—l/xz) Yi €x; and lf y’l,—l/x?,—l ¢ S then Xi1 = V% and
Vi1 = ¥; - Finally, x; ., # x; for infinitely many distinct values of 1
withm' < i < oo.

ProoF oF (4.16.1). Note that R}/M(R) is algebraically closed
for m <{ i << 0. Take any coefficient set t for R. Then T is a
coefficient set for R¥ for m <i < 0. Now ordg:P¥ < ordgP§
whenever m < a < i < oo. Therefore there exists an 1nteger
n > m such that ordgPf = e > ordg:Py for m <i <mn By
(4.15) there exists a sequence (%;,V¥;, 2)m<icn Such that
(%0, Yo » %) = (*,, 2) and for m <i < m: (%;,y;,2;) is a basis
of M(R¥); Pf ¢ (x;, y:, 3f™MRF; if y;4/x; 1 € RY then x; y = x;,
(Via/%;) — ;€ and (2;4/x;) — ;€% and if y;_,/x; ¢ R then
Xy = Y%, Yioy = Yi» and (2;/y;) — 2, €8 Let (Lf)ncicw be
the unique sequence such that: L¥ is a nonzero principal ideal in
R form < i < oo;L} = L;and (R}, L¥) is a monoidal transform
of (Rf,,Lf,, Rf,) for m <i < co. By induction on i we see
that P} = JXL¥ for m < i < oo, and hence upon letting c* =
ord, *L* we get that ordglf = ¢ > c¢* for m <i <n. Let
Dm—l and for m <i < n let: D, = x; if y,_{/%,_ € R}, and
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D, =y,ify, 1/x;_ ¢ R}. ThenM(R * )R = D,Rf form <i <mn,
and hence by induction on 7 we get that [} = xPy?D;, Dy, ., ... DL
for m <i<mn By induction on i we also get that
xPy1DE DE, ., ... DR} = x}iy}iR¥ for m < i < n where u; and v,
are nonnegatlve integers. In particular, upon letting 4 = u,_,,
v =9, ,,and R* = RX  we get that I} | = xj ,yn_,L* R*.
It follows that I = x%_,y% (M(R*)R})L} . By (1.10.8) we get
that I ¥ has a quasinormal crossing at R} for m < i < o0, and hence
L} has a quasinormal crossing at R} for m <{ ¢ < co. In particular
Lf,=0,..0,whereQ,, ..., Q. are nonzero principal ideals in R*
with ordz.Q, = 1 for 1 < b < ¢. Let Of, ..., OF be the nonzero
principal ideals in R} such that (R} , OF) is a monoidal transform
of (R*,Q,,R*) for 1 <b <c. Then ordg=0;f < ordg-Q, for
1 <b<ec Now Lf=0QF..0F and hence upon relabeling
Q1 Q. we may assume that ordg-0;f =1 for 1 <b < ¥
and Qf = R} for ¢* <b<c Let A=0Qy;..0, and B =
Oy...0,+Jk . Then A and B are nonzero principal ideals in R*,
ordg=A = ¢ — ¢*, ordg«B =d+ ¢*, and AB = P} ,; let h:
R* — R*/(x,_y, ¥o—1)R* be the canonical epimorphism; then
h(R*) is a one-dimensional regular local domain and A((x,_; , ¥n-1 >
22_)R*) = M(h(R*))* for every nonnegative integer a; since
Pr ¢ (205 Yn,255)R*, we conclude that A¢ (xp1,¥n 1,
25 MR* and B¢ (g, Yno1s 35 )R*. Now  ordg.B =
d + c* = ordg JAL% and (R}, JXL}) is a monoidal transform of
(R*, B, R*); since B¢ (%,_;,¥n 1, 2et{t)R*, by (4.14) there
exists a basis (x*, y*, 2*) of M(R}) such that: JXL% ¢ (x*, y*,
A RE if 3, . € RE then %,y — &%, (Yo 1/x%) — y* e,
and (2,_,/x*) — 2*€¥; and if y,_;/x, ; ¢ R} then x, ; = y*x*,
Vo1 = ¥¥, and (2,_4/y*) — 2* €. Now M(R*)R} = x*R} if
Voaltn s €RE, and M(RMRE — y*RE if 3, fu, ¢ RE. It
follows that x¥_,y>_(M(R*)R})t = x*P'y*¢'R} where p* and ¢*

are nonnegative integers. Since I = &% _,yn_(M(R*)R¥) LY , we
conclude that I} = x*P y*CL¥ .

Proor oF (4.16.2). By Cohen’s structure theorem [28: Theorem
27 on page 304] there exists a subfield ¥ of R such that f is a
coefficient set for R. Note that then f is isomorphic to R/M(R),
and for m < i < o0 we have that R}/ M(R}) is algebraically closed
and f is a coefficient set for R¥. By (4.15) there exists a sequence
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(x; ’ y; ’ zi)mgi«ﬂ such that (x(') ’ y(’) ’ zo) = (x! i g z) and for
m < i < oo:(x;,y;, 2)is abasis of M(R¥); Pf ¢ (»;, y; , 25" R¥;
if yia/xi,€Rf then x;,=ux;, (yi4/*;)—yi€l, and
(%ia/%) — z;€ G andif y; /x;_, ¢ RY thenx, = yixi, yi, = v;,
and (2;_,/y;) — 2; €. Let (L¥),,<;<» be the unique sequence such
that: L¥ is a nonzero principal ideal in R} for m < i < oo;
Ly = L;and (R}, L¥) is a monoidal transform of (R}, ,L¥,, R} )
for m < i < 0. By induction on 7 we see that Pf = J¥L¥ for
m < i< oo, and hence ordplf =c¢ for m <i < oo. Let
D, =1, and for m < i < o let: D, = «; if y; ,/x;_; € R¥, and
D; =y;ify;_,/x;_, ¢ Rf. Then M(R} )R} = DR} form < i < 0,
and hence by induction on ¢ we get that I} = xPy?D% D5, ., ... DL}
for m <i < oo. By induction on ¢ we also get that
xPyDE DG, ... DIRYF = x%yliR} for m < i < oo where u; and v,
are nonnegative integers. We shall now prove the following:

(1) There exists an integer m’ > m and a sequence (R;, J;, I;,
L, Py, x;,¥:,Pi» 95)m’<i< having the following description. For
m < i< o: R; is a three-dimensional regular local domain;
R;/M(R,) is algebraically closed; R; dominates R}; R; is residually
rational over Rf; M(R,) = M(R¥)R;; ], = J¥R¥; I, = I}R;;
L,=LfR,; P,= P}R;; L, is a nonzero principal ideal in R;;
ordg L; = ¢; (%, ¥; , %) is a basis of M(R,); (x;, y)R; = (%7, yi)R;3
p; and ¢; are nonnegative integers; and I, = xP¢y¥3L,. R, is
the completion of R}, . Form' <i < oo: (R;, P,) is a monoidal
transform of (R,_,, P;,, R, ;); if y;_4/%;_, € R;then x,_, = x,,
(¥i-a/%) —y; €%, and (2,4/%;) - 2; €%, and if y,,/x, ;¢ R; then
X1 = Y%, Yia = Yi» and (2;.4/y;) — 2z, €t Finally, 2, # x;
for infinitely many distinct values of ¢ with m' <7 < oo.

First suppose that x;,;, 7 x; for infinitely many distinct values
of i with m < ¢ < co. Let m" = m, let R, be the completion of
R}, and let P, = P} R, . By (4.9) there exists a sequence
(R; » Py’ <i <o Such that for m’ < ¢ < 00: R; is a three-dimensional
regular local domain; R; dominates R}; R, is residually rational
over Rf; M(R,) = M(R})R;; P, = PfR;; and (R,,P,) is a
monoidal transform of (R;,, P;,_,, R, ;). It suffices to take
(]i’Ii’Li’xi’yi!Pi’qi) = (]’EkRi’I;ZkRi’L;'kRi)x;)y;’ui’ vi)
form' <1 < o0.

Next suppose that there exists an integer # > m such that
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Yi1 = X%;_1Y; whenever n <<i < co. Let m’ = n, let R, be the
completion of R}, and let P,,, = P} R, . By (4.9) there exists a
sequence (R;, P)), ;. such that for m" <7 < oo: R; is a
three-dimensional regular local domain; R; dominates R¥; R; is
residually rational over R}; M(R,) = M(R})R;; P; = P{R;; and
(R;, P;) is a monoidal transform of (R;_; , P;_; , R;_;). It suffices to
take (]i’Ii ’Li > %55 YisPis qi) = (]?Ri ’I;kRi ’L;'kRi ’y; ’ x; » Ui ui)
for m" <i < oo. Note that now actually x; , # x; whenever
m <1< oo.

Finally suppose that x;,, # x; for only finitely many distinct
values of 7 with m <{ 7 < o0, and there does not exist any integer
n > m such that y; ; = x; ;y; whenever n < i < c0. Then there
exists an integer m’ > m such that y,. RY = x,._,R*., and
Yi_1/%;1 € R¥ whenever m' < 7 < oo. It follows that v; = 0 for
m < i< o. Let R, be the completion of RY-, and let P, =
P} R, . By (4.9) there exists a sequence (R;, P;),,’ .; . such that
for m' << i < o0: R; is a three-dimensional regular local domain;
R, dominates R}; R, is residually rational over R}; M(R,) =
M(R¥)R;; P; = P}¥R;; and (R;, P;) is a monoidal transform of
(Ri_1s Pi1, R;y). Let x = x,,-. Then x; = x for m’ < i < o,
and upon letting 7} = yx! —y;,, we get that r¥et for
m < i < . Now R, being complete, for m’ < i << o0 we get
an element 7; in R, by setting: r; = r} + r¥,x + rfx* + .
Lety = y,, — ar,, . By induction on i we see that y; — xr; = yx™
for m’ <i < oo. Let x;, = yx™ % and y, = x for m’ <7 < oo.
Then (x; , ¥, )R; = (x;, y))R; for m’ < i < 00, and hence (x;, y; , 2;)
is a basis of M(R,) for m" < i < oo. Also clearly y, ,/x; ; ¢ R;,
%, = y%; , and (2;_4/y;) — 2; €t for m’ < i < co. In particular,
%, 7 x; whenever m’ <7 < oo. It suffices to take (J;,I;,L;,
P> 9:) = (JER , ¥Ry, L¥R; , 0, u) for m' < 1 < 0.

This completes the proof of (1). Note that P, = J.L; and
ordg P; = e for m" < i < 0. Let T be the ring of formal power
series in indeterminates X, Y, Z with coefficients in ¥, and let S
be the ring of formal power series in X, Y with coefficients in f
where we regard S to be a subring of f. Then there exists a unique
f-isomorphism % of T onto R, such that A(X)=x,,, H(Y)=y,,, and
WZ) = z,, . Let S,,- = h(S). Then S, is a two-dimensional regular
local domain, S,,//M(S,,) is algebraically closed, t is a subfield of
S, , tis a coefficient set for S, , R, dominates S,,/, R, is resid-
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ually rational over S, , (x,’, ¥,.’) is a basis of M(S,,), and S, is
isomorphic to the ring of formal power series in two indeterminates
with coefficients in R/M(R). Form’ < ¢ < oo let S; be the quotient
ring of S,[x;,y;] with respect to (S,-[x;,y:]) " M(R;). By
induction on 7 we see that for m" < i < co0: S; is a two-dimensional
regular local domain; S;/M(S,) is algebraically closed; f is a subfield
of S;; tis a coefficient set for S;; R, dominates S;; R; is residually
rational over S;; (x;,y;) is a basis of M(S;); S; is a quadratic
transform of S, ;; if y,4/%,_,€S; then «x,_,=x and
(Yia/%) —y; €Y and if y, [, ;¢ S; then x,, =yx; and
Vi1 = Yi- Since R, is the completion of R, (x, , Y )Ry =
(%' s Ym )Ry, and P, = PXR, , we get that ((%,, V',
z"“)R VYO RE = (%, Y » B )RYE and P, N RE = P
since P ¢ (x5 , Yiw' » Z5F1)RE , we conclude that P, ¢ (%, V' >
2R, . Therefore upon letting P’ = k1P, ) we get that P’ is a
nonzero principal ideal in T with ord;P’' = eand P' ¢ (X, Y, Z¢)T;
consequently by the Weierstrass Preparation Theorem [28:
Corollary 1 on page 145] there exists a monic polynomial f(Z)
of degree e in Z with coeflicients in S such that P’ = f(Z)T.
Let f,,(Z) be the monic polynomial of degree e in Z with coefficients
in §,,- obtained by applying % to the coefficients of f(Z). Then
P, = fu(2n )Ry and hence J, L, = f. (2, )R, . Let 1, =
0=a, =b, and s,y = 1 = t,; then 2, = 5,72, + 7, and
fu(Z) = $3fu(SmZ + 1p7). For m’ <i < 0 we have that: if
Yi1/*;1 € Ry then M(R, ;)R; = x;R;, and if y; 4/x; ; ¢ R; then
M(R,_)R; = y;R;. Therefore by induction on i we get that for
m’' < i < oo: there exists an element 7; in S;, a unit ¢; in S;,
and nonnegative integers a; and b;, such that upon letting
s; = tx%y% we have that z,- = s;2;, + 7, and P; = s7%,(2,,")R; .
Letfl(Z) = 7 (8,2 + r;) form’ <i < oo. Thenform’ <i <
we have that: f,(Z) is a monic polynomial of degree e in Z with
coefficients in the quotient field of S;, and P; = f(2)R,; in
particular f;(2;) € R; and hence by (4.11.3) we get that f(Z) € S,[Z];
since J,L, = P;, we also get that L, = f(2,)R; .

(4.17). Let R be a three-dimensional regular local domain, let
(x, y, 2) be a basis of M(R), let R' be a monoidal transform of
(R, Rz )g) such that z/xe M(R’), let h: R— R/zR and k'
R’ — R'|(z/x)R’ be the canonical epimorphisms, and let r be an
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element in R such that ordzr = ord,g)h(r). Then ordgr = ordgr =
ordy o (7).

Proor. Now R’ is a three-dimensional regular local domain
dominating R, (x, y, 2/x)R' = M(R’), W(R) and h'(R’) are two-
dimensional regular local domains, and (k(x), A(y))R(R) = M(h(R))
and (A'(x), #'(y))k'(R’) = M(K'(R’)). If r = 0 then we have nothing
to show. So assume that r 3= (. Let e = ord,r. Since R’ dominates
R, we get that ordyr > e, and clearly ord, z)h'(r) = ordgr.
By assumption ord,z)h(r) = ordgr, and hence

h(r) = Y, h(rih(xyh(yy

it+i=e
where 7;; are elements in R at least one of which is not in M(R). Now

r=sz+ 3 r@xly’  with seR,

itj=e
and hence

K(r)= Y Kk @)k ().
itj=e
Also k'(ry;) € K'(R') for all (3,7), and h'(r;;) ¢ M(R'(R’)) for some
(7, 7). Therefore ord,(zyh'(r) = e. It follows that ordzr = ordpr =
ord (k' (7).

(4.18). Let R be a three-dimensional regular local domain, let
(x,y, 2) be a basis of M(R), let h: R— R/zR be the canonical
epimorphism, and let w = gyz* + g,2** + - 4 g, where e is a
positive integer and g, , ..., g, are elements in R such that ordgg; =
ord,mh(g;) for 0 <j <e, and ordgg; <j' for some j' with
0 <j' < e Then ordzw < e.

Proor. Let d be the greatest integer with 0 << d < e such
that ordgg; <d. Let w = gz?+ g2 1+ - 4 g4. Then
ordx(w — w'z*?%) > e. Also ordw’ < ordygyh(w’) = ord,mh(g;) <
d, and hence ordgw'2*~? < e. Thereforc ordgw < e.

(4.19). Let R be a three-dimensional regular local domain, let |
be a nonzero nonunit principal ideal in R, let d = ord,], let ¢ be a
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nonnegative integer, let e = d + ¢, and let I be a nonzero principal
tdeal in R such that I has a quasinormal crossing at R. Assume that
there exists a basis (x,y, 2) of M(R), a nonzero principal ideal L
in R, elements w, g, , ..., g, tn R, and nonnegative integers p and q
such that: ordgL = ¢; I = x*y'L; JL = wR; ordgg; = ord,»h(g;)
for 1 <j < e where h: R — R/M(R) is the canonical epimorphism;
g. € M(R); ordgg;: <j' for some j" with 1 <j < e; and

e
w=2+ ) gixizti.

i-1

Let S = R, g, let (R, J', I') be a monoidal transform of (R, ], I, S)
such that ordg J' = d, let L' be the (R, S, R')-transform of L, and
let ¢* = ordg’L’. Then dim R' = 3, R’ is residually rational over
R, I' = xpteyd’| ¢* < ¢, and there exists z*c R’ such that
M(R') = (x,5, 2¥)R" and J'L’ ¢ (x, y, 2*¢+<"+))R'.

Proor. Now ordg] = d, ordgL = ¢, e = d + ¢, and clearly
ordgJL = ordgw > e; therefore ordg] = d, ordsL = ¢, and
ordgJL = e. Also clearly J'L’ is the (R, S, R’)-transform of JL.
Suppose if possible that z/x ¢ R’; then x/z € M(R’), 'L’ = (w/z°)R’,
and w/z® = 1 + gy(x/2) + - + g,(x/2); consequently J'L' = R’
and hence J' = R’; this is a contradiction because ordg  J' = d > 0.
Therefore z/xe R’. Consequently J'L' = (w/x*)R’ and I' =
xP+eyll’. Let T be a coefficient set for R. Suppose if possible that
c* = c; then ordy' 'L’ = e = ordg JL; for 1 < j < e let 7; be the
unique element in f such that g; — r; € M(R); since g, € M(R), we
get that , = 0 and hence

e—1
w— (z" + 3y r,-x"z“—") € M(R)+ ;
j=1
consequently by (3.10.1) we get that dim R' = 3 and M(R’) =
(%, y, 3/x)R';let h': R” — R'[(2/x)R’ be the canonical epimorphism;
then by (4.17) we get that ordgg; = ordgg; = ordy (x)h'(g;) for
1 <j < ¢; it follows that g, € M(R’) and ordgg; < j'; now

wofxt = (x/x) + 2 £i(xx)e
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and hence by (4.18) we get that ordg(w/x°) < e; consequently
ordg- 'L’ < e which is a contradiction. Therefore c¢* < ¢. Since
ordg - J' = ordgJ > 0, by (3.10.2) we get that dim R’ = 3 and R’ is
residually rational over R; since z/x € R’, there exists t € R such
that (2/x) —te M(R’). Let 2’ = 2 — tx and 2* = 2’/x. Then
MR) = (x,y,2)R, RN M(S)= (x,2)R, and M(R)=
(x,y, 2¥)R’. Since I has a quasinormal crossing at R, we have
that L =L, ...L, where L,, ..., L, are nonzero principal ideals in
R with ordgL; =1 for 1 <j <c¢. Let L; be the (R, S, R')-
transform of L; for 1 <j < ¢. Since ordgL = ordsL, we get that
ordgL; = ordiL; for 1 <j < c. Therefore ordg-L; < ordgL; for
1 <j<c. NowL' =L;..L; and ordgL’ = c*. Therefore upon
relabeling L, , ..., L, we may assume that ordg-L; = 1 for 1 <j < c¥,
and L, = R for ¢* <j <c LetQ =L,..L:], and take @’ € R
such that w'R = Q. Then ord;Q = d + ¢* = ordQ = ordy J'L',
JL' is the (R, S, R)-transform of Q, and J'L' = (w'/x%+")R’.
Since ord¢Q = d + c¢*, we have that

d+c*
o ! G o de*—F . ’
w Z;) gz with gl eR.
i

For 0 <j << d+ c* let r]'- be the unique element in f such that
g; — r; € M(R). Then

d+c*
w — ( y r'.xfz'd+c*—f) € M(R)#e+1 .
§

=0

Since 2’/x € M(R’), by (3.10.1) we now deduce that r, # 0, and
r; = 0 for 1 <j < d+ c*. Therefore gg is a unit in R’, and for
1 <j < d+ c* we have that g; = s;x + sfy + sj2’ with s, sf,
s; in R. Therefore

W [xtte = g Ly +wy  with w eR and w,eR.

Let h*: R' — R'[(x, y)R' be the canonical epimorphism. Then
h*(R') is a one-dimensional regular local domain, M(h*(R’)) =
BHER), KA (ER) ¢ R IR) = B (@, 3, 2 R),
h*(go) ¢ M(R*(R)), and h*(w'[x%<") = h*(go)h*(2*%°"); since
JL' = (w'/x¢+<")R’, we conclude that J'L’ ¢ (x, y, 2***"*)R'.
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(4.20). Let R** and R be three-dimensional regular local domains
such that: R dominates R**; R is residually separable algebraic over
R**; M(R**)R = M(R); R**/M(R**) has the same characteristic
as R**; for every iterated monoidal transform T of R** and every
ideal Q in T we have that S(T* QT*) = {SeB(T*):
Trams) € S(T, Q) where T* is the completion of T; and for every
iterated monoidal transform T of R and every ideal Q in T we have
that S(T*,QT*) = {Se€ B(T*): Traps € S(T, Q)} where T* is
the completion of T (note that by (1.2.6) we know that if R is
complete then the last condition is automatically satisfied). Let V'
be a valuation ring of the quotient field of R** such that V dominates
R**_ Let J** be a nonzero nonunit principal ideal in R** such that
G2(R**, J**) has a strict normal crossing at R**. Let I** be a
nonzero principal in R** such that I** has a quasinormal crossing
at R**, Let d = ordg..J**, let ¢ be a nonnegative integer, and let
e=d-+c Let J= J**R and I = I**R. Assume that there
exists a basis (x,y, 2) of M(R), a nonzero principal ideal L in R,
elements w, g, , ..., g, in R, and nonnegative integers p, q, a, b such
that: ordzL = c; I = xPy?L; JL = wR; ordgg; = ordy g)h(g;) for
1 <j < e where h: R— R/zR is the canonical epimorphism;
g0 € M(R); ordggys < j' for somej with 1 <j' < e; and

e
w = 2° + 2 g]_xajybize—j .

i=1
Then one of the following two conditions is satisfied.

(1) There exists a finite weak resolver [(RF, J*, I, SF)ocicu s
(R¥, J*, [¥)] such that: (R¥, J&, I¥) = (R**, J**, T**); dim S} = 2
for 0<i<wu; dimR¥=23 and ordg Jf = d > ordg: Ji for
0 < i < u; and V dominates R}}.

(2) There exists a finite weak resolver [(RY, Ji, I, SF)o<i<u s
(RY, JK IY)] and a system (R*, J*,I*,L*, x*, y*, 3%, p*, ¢*, c¥*)
such that: (RE, J&, If) = (R**, J**, I**); dim Sf =2 for
0 <i<wu;dim Rf = 3 and ordg: J¥ = dfor 0 <i < u; (RS, J)
has a strict normal crossing at R}; V dominates R}; R* is a three-
dimensional complete regular local domain; R*|M(R*) is isomorphic
to RIM(R); R* dominates R}; R* is residually separable algebraic
over R}; M(R*) = M(RF)R*; J* = JFR*; I* = IfR*; L* is a
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nonzero principal ideal in R*; ordp+L* = c* < ¢; (x¥, y*, 2X)isa
basis of M(R*), p* and q* are nonnegative integers; I * = x*” PR AR
and JXL* ¢ (x*, y*, T H)R*,

Proor. In view of (4.18) we have that a + b > 1. We shall
make induction on a + b.

First consider the case when a 4+ & = 1. Upon relabeling x
and y we may assume that ¢ = 1 and & = 0. Let (Rf, J&, If) =
(R**, J**, I**). Let S = R, ,z - Then ordsw > e = ordg JL =
ordgw, and hence ordsw = e and S eG¥R, JL); consequently
Se®(R,L) and S e ¥R, ]). Since S € (R, ]), by (4.6.4) there
exists S¢ € €(R{, J) such that S is the unique two-dimensional
element in B(R) dominating Sg. Let (R, Jf, If) be the monoidal
transform of (R, J&, If, S§) along V. By (4.12.2) we get that
(S§, I5) has a pseudonormal crossing at R, and hence by (1.10.8)
we get that I}* has a quasinormal crossing at Ry". Now ordg: [ < d.
Hence if ordg:Ji # d then upon taking u = 1 we have that
condition (1) is satisfied. So now assume that ordg: /¥ = d. Then
by (3.11) we get that €2(R{, Ji) has a strict normal crossing at Rf.
By (4.8) there exists a regular local domain R’ and nonzero
principal ideals ' and I’ in R’ such that: dim R’ = dim Rf; R’
dominates R¥; R’ is residually separable algebraic over Rf;
M(R) = M(RHR'; J' = JfR; I' = I*R’; and (R, J',I') is a
monoidal transform of (R, J, I, S). Now ordg] = ordg: J = d =
ordg: J¥ = ordg J'. Since I has a quasmormal crossing at Ry, we
also have that I has a quasmormal crossing at R. Therefore by
(4.19) there exists a basis (x*, y*, 2*) of M(R’), a nonzero principal
ideal L’ in R’, and nonnegative integers p*, ¢*, ¢* such that:
I' = x*? y*qL' ordgl’ = ¢* < ¢; and J'L' ¢ (x*, y*, z¥d+’ *HR'.
By (4.19) we also know that dim R’ = 3 and R’ is residually
rational over R. Let R* be the completion of R’ .Let J* = J'R*,
I* = I'R*, and L* = L'R*. Then I'* = x*? y*T'L*, ordgL* = c*,
and JXL* ¢ (x*, y*, 2¥**t)R* Upon taking u = 1 we thus have
that condition (2) is satisfied.

Now let a + b > 1 and assume that the assertion is true for all
values of @ + b smaller than the given one. Upon relabeling x and y
we may assume that @ > 0. Let (R, J&, I§) = (R**, J**, I**).
Let S = R, . - Then ord,w > e = ordz JL = ordsw, and hence
ordgw = ¢ and SeG¥R, JL); consequently Se€*R,L) and
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SeC¥R, J). Since SeC¥R,]), by (4.6.4) there exists
S¥ e ®(R{, J) such that S is the unique two-dimensional element
in B(R) dominating S§. Let (R, /5, I) be the monoidal transform
of (R, J&, I, S&) along V. By (4.12.2) we get that (S, If) has a
pseudonormal crossing at RO, and hence by (1.10.8) we get that
I§ has a quasinormal crossing at Rf. Now ordg: ¥ < d. Hence if
ordg Jf # d then upon letting u = 1 we have ‘that condition (1)
is satisfied. So now assume that ordg: J¥ = d. Then by (3.11) we
get that G3(Rf, J¥) has a strict normal crossing at RY. By (4.8)
there exists a regular local domain R’ and nonzero principal ideals
J' and I’ in R’ such that: dim R’ = dim Rf; R’ dominates Rf;
R’ is residually separable algebraic over Rf; M(R') = M(R{)R’;
J' = J¥R; I' = I}R’; and (R', J', I) is a monoidal transform of
(R, J,1,S). Now ordg ]’ = ordg:J{ =d >0 and hence in
particular J' # R'. Let L’ be the (R, S, R’)-transform of L. Then
JL' is the (R, S, R')-transform of JL. Suppose if possible that
x/z € R'; then J'L' = (w/2¢)R’; now

wiat =1+ 3 gaei-ipi(say

=1

4

and hence w/z* ¢ M(R’) because a + b > 1; consequently /'L’ = R
and hence J' = R’; this is a contradiction. Therefore 2/x € M(R').
Consequently dim R’ = 3, R’ is residually rational over R,
M(R') = (x,y, 2/x)R', JL' = (w/x*)R’, and I' = xP+¢y?L’. Now

wfst = (sfa)t + 3, gaa P (afa)e
=1

Let A': R" — R'[(2/x)R’. Then by (4.17) we get that ordgg; =
ord, gyh'(g;) for 1 <j <e, and ordgg; = ordggy <j'. Also
g.€ M(R'). Since (a — 1) + b < a + b, by the induction hypothe-
sis we conclude that one of the following two conditions is satisfied.

(1') There exists a finite weak resolver [(R;, J;,I;, S;)ocico
(Ry» Jo» 1,)] such that: (Ry, Jo,1Lo) = (R¥, Ji I); dlmS =2
for 0 <7i<w9; dimR;, =3 and ordg J; = d > ordy .,]v for
0<i<v,and V dominates R,.

(2') There exists a finite weak resolver [(R;, J;,1;, Si)o<icv s
(R,, J.,I,)] and a system (R*, J*, I* L* x* y*, z*, p*, g%, c*)
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such that: (R, , J,, 0)—(R1,]1all*) dim S; = 2for0 < i < v;
dim R; and ordg J; = d for 0 <i < v; (Ez(R,, s Jo) has a strict
.normal crossing at R,; V dominates R,; R* is a three-dimensional
complete regular local domain; R*/M(R*) is isomorphic to
R'/M(R'); R* dominates R,; R* is residually separable algebraic
over R,; M(R*) = M(R,)R*; J* = J,R*; I* =I,R*; L* is a
nonzero principal ideal in R*; ordpsL* = ¢* < ¢; (x* y*, z¥)isa
basis of M(R*); p* and q* are nonnegative integers; I* =
x*” *"'L* and ]*L*¢(x* y*, kd+c” +1)R*

If condition (1’) is satisfied then upon taking u = v + 1,
S*"“ 11for1<i<u, and(R ]er*) (R‘Ll’]‘t—l”tl)
for 2 < i < u, we get that condltlon (1) 1s satisfied. If condition
(2) is satlsﬁed then upon taking u =ov+ 1, Sf = §;, for
1 <i<wu, and (RY, J5IF) = (Riy s Jia, 1) for 2 <i<<u
we get that condition (2) is satisfied.

(4.21). Let R" be a three-dimensional regular local domain such
that R"/M(R") is a perfect field having the same characteristic as
R’. Let R’ be an iterated monoidal transform of R", let |' be a
nonzero principal ideal in R’ such that (R’', |') is unresolved, let
d = ordg J', let I' be a nonzero principal ideal in R’ such that I'
has a quasinormal crossing at R’, and let V be a valuation ring of the
quotient field of R” such that V dominates R'. Consider the following
four conditions where in the second condition c is an integer, and in
the third and the fourth conditions c is a nonnegative integer.

(1) There exists a finite weak resolver [(R;, Ji,Ii, S)o<i<m »

Ry s Jm s In)] such that: (Rqy, Jo,I3) = (R, J, ') ordg J; =
d > ordy J,, for 0 < i < m; and V dominates R,

(2) There exists a finite weak resolver [(R;, J; , i, Si)oci<m >
Ry s Jom » I,,)] and a system (R, J,I,L,x,y, 2, p, q, c’) such that:
(Ry, ]0 ) = (R, J,I'); dimR; =3 and ordgJ;=4d for
0 <i<<m GR,,, ],) has a strict normal crossing at Rm, Ris a
three-dzmenszonal complete regular local domain; R/M(R) is algebra-
ically closed; R dominates R,,; R is residually separable algebraic
over R,; M(R) = M(R,)R; | = J.R; I = I,R; L is a nonzero
principal ideal in R; ordiL = ¢’ < ¢; (x,y, 2) is a basis of M(R);
p and q are nonnegative integers; I = xPyiL; and JL ¢ (x, y, 23+ )R,
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(3.) There exists a finite weak resolver [(R;, J;, I;, Si)o<i<m >
(R s Jou s I,)], an integer m’ > m, a field ¥, and infinite sequences
(R; ’ ]z’ ’ Ié)m<i<°0 and (Ri ’ ]i ’Ii )Li ’ Si ’fi(Z)’ Xirs Vs Ry Ty S
Ly Dis Qi iy b)micicon having the following description. (Rq,
JorLo) = (R, J,I'); dim R; = 3 and ordy J; = dfor 0 <i < m;
R; is a three-dimensional regular local domain and Ji and I are
nonzero principal ideals in R; for m <i < oo; ordg J; = d and I
has a quasinormal crossing at R; for m < i < o0; (Rl s Ji 1) is a
monoidal transform of (R;_;, ]1_1, i1, Riy) for m <i < o0;
CX(R;, J;) has a strict normal crossing at R; for m < i < oo; and
V dominates R; for 0 <<i < 00. For m' < i < c0: R, is a three-
dimensional regular local domain; R;/M(R,) is algebraically closed;
R, dominates R}; R, is residually separable algebraic over R
M(R,) = M(R)R;; J; = JiR; I, = ILR;; L, is a nonzero principal
ideal in R;; ordg L; = c; (x;,9;, %;) s a basis of M(R,); p; and ¢;
are nonnegative integers; and I, = x7iyliL,. For m' <1 < oo:
S; is a two-dimensional regular local domain; S;/M(S,) is algebraically
closed; t is a subfield of S;;  is a coefficient set for S;; R; dominates S;;
R; is residually rational over S;; (x;, y;) is a basis of M(S)); r; € S
t, is a unit in S;; a; and b, are nonnegative integers; s; = tx7y%;
fi(Z) is a monic polynomial of degree e in an indetermmate Z with
coefficients in S; where e = d + ¢; J.L, = f(2)Ry; 2 = $:2; + 135
and f(Z) = s, (s;Z + 1,). S, is isomorphic to the ring of formal
power series in two indeterminates with coefficients in an algebraic
closure of R"/M(R"). For m’ < i < co: S; is a quadratic transform
of Si 15 if yiyx 1 €S, then x;_y = x; and (y;_y/x;) — y; €Y, and
U Yia[%1 ¢ S; then x,_y = yx; and y, y = y; . Finally, x;, # x;
for infinitely many distinct values of ¢ with m’ < i < 0.

(4,) There exists a ﬁmte weak resolver [(R;, Ji, I}, Silocicm »
(R s Jm » In,)), an integer n > m, a sequence (R}, Ji ,I))micn , and
a syStem (R’ ]’ I’ L’ x’ _y’ z’ w’ P’ q’ a’ b e gl ) . !ge) suCh that
(R(',,](',, (',)_(R’ J,I); dmR; =3 and ordgJi=d for
0 < i < m; R; is a three-dimensional regular local domain and Ji
and I; are nonzero principal ideals in R; form < i < njordg J; = d
and I has a quasinormal crossing at R; for m <i<n;(R;, ]z , I7)
is a monoidal transform of (R;_y, Ji_y,Ii_1, Ri_;) for m <i < m;
C%(R,, , J,) has a strict normal crossing at R,; V dominates R,;
R is a three-dimensional complete regular local domain; R/M(R) s
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algebraically closed; R dominates R,; R is residually separable
algebraic over Ry; M(R) = M(R)R; | = J,R; I =L,R; L is a
nonzero principal ideal in R; ordgL = c¢; e =d +¢; (x,y,2) is a
basis of M(R); w, g1, ..., 8, are elements in R; p, q,a,b are non-
negative integers; I = x?yIL; JL = wR; ordgg; = ordygh(g;) for
1 <j<e where h: R— R/zR 1is the canonical epimorphism;
8. € M(R); ordpg;s <j' for some j' with 1 <j' < e; and

w=2 + Y gaiiybizei,
j=1

Also consider the following condition concerning R"|M(R").

(x) Let S, be the ring of formal power series in two indeterminates
with coefficients in an algebraic closure of R"|M(R"). Let (x,, y,) be
any basis of M(S,), let t be any coefficient set for S, , let e be any
positive integer, and let f(Z) be any monic polynomial of degree e in an
indeterminate Z with coefficients in Sy . Let (S;, x; , ¥:)o<i<o be any
infinite sequence such that for 0 < i < 00: S; is a two-dimensional
regular local domain; S; is a quadratic transform of S;_;; (x;,y;)
is a basis of M(S)); if y; /%, 1€S; them x,_, = x, and
(Yial%) —y: €Y and of y, /%, 1 ¢S; then x,_, = yx; and
Vi1 = ¥qi . Assume that x;,, # x; for infinitely many distinct values
of i. Then there exists a nonnegative integer n and an element r in
the completion S* of S, such that either: f(Z + r) = Z¢, or: there
exist nonnegative integers u and v such that wupon letting
2(2) = (w92)f(2y5Z + 1) we have that g(Z)eS*(Z] and
0 < ordgg(2) <e.

Then we have the following.

(4.21.1). Assume that R" is pseudogeometric, and for every
iterated monoidal transform T of R" and every monzero principal
prime ideal P in T we have that S(T, P) is closed in B(T) (see(1.2.6)).
Then either condition (1) is satisfied, or condition (2,) is satisfied for
some nonnegative integer c.

(4.21.2). Assume that R" is pseudogeometric, and let ¢ be a
nonnegative integer such that condition (2,) is satisfied. Then either
condition (1) is satisfied, or condition (2,_,) is satisfied, or condition
(3,) is satisfied.



142 1. LocaL THEORY

(4.21.3). Assume that condition (x) is satisfied, and for every
iterated monoidal transform T of R" and every ideal Q in T we have
that S(T*,QT*) = {S e B(T*): Trams € S(T, Q)} where T* is
the completion of T (see (1.2.6)). Let ¢ be a nonnegative integer such
that condition (3,) is satisfied. Then condition (4,) is satisfied.

(4.21.4). Assume that for every iterated monoidal transform T of
R" and every ideal Q in T we have that &(T*, QT*) = {S € B(T*):
Trames) € S(T, Q) where T* is the completion of T (see
(1.2.6)). Let ¢ be a nonnegative integer such that condition (4,) is
satisfied. Then either condition (1) is satisfied, or condition (2,_,) is
satisfied.

(4.21.5). Assume that: R’ is pseudogeometric; for every iterated
monoidal transform T of R” and every nonzero principal prime ideal
P in T we have that (T, P) is closed in B(T); and for every iterated
monoidal transform T of R" and every ideal Q in T we have that
&(T*,0T*) = {S € B(T*): Trnps) € S(T,Q)} where T* is the
completion of T (see (1.2.6)). Also assume that condition (x) is
satisfied. Then condition (1) is satisfied.

Proor oF (4.21.1). Let(R;, J;, I})o<; . be the infinite sequence
such that (Ry, J;,I) = (R, J, I'), and (R;, Ji, I}) is the
monoidal transform of (R;_,, J;_,,I;_;,R;,) along V for
0 <#<oco. Note that then ordg]J; < ordyJ; whenever
0<j<i< o, and by (1.10.8) we also have that I has a
quasinormal crossing at R; for 0 <{i < oo.

First suppose that ordy J; # d for some j with 0 <j < co.
Then there exists a unlque positive integer m such that ordg J; =
d > ordg ], for0 < i < m. Upon taking S; = R;for0 <i < m
we get that condition (1) is satisfied.

So now assume that ord, ]l =d for 0 <i < 0. Then by
(1.10.5) we know that (R;, J; ) is unresolved for 0 <i< o, and
hence by (3.21.1) we get that dim R; = 3 for 0 < ¢ < 0. Now
R; is residually algebraic over R;_, for 0 <7 < o0, and hence
R;/M(R;) is perfect for 0 <i < oo. By (3.8.4) there exists a
positive integer m such that €%(R,, , J,) has a strict normal crossing
at R,, . Let S; = R;for 0 <i < m. Then [(R;, Ji, I}, SDocicm »
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(Rp s Jo s I,)] is a finite weak resolver. Let T be the completion
of R,, . In view of Cohen’s structure theorem [28: Theorem 27
on page 304] we may identify T withghe ring of formal power
series in indeterminates X, Y, Z with coeficients in a field & which
is isomorphic to R, /M(R,). Let R be the ring of formal power
series in X, Y, Z with coefficients in an algebraic closure of k,
where we regard R to be an overring of T. Let | = |, R, I = I,,R,
L =1 ¢ =c=ordgl, and e = d + ¢. Now ordg] = ordg’ |
and hence ordg JL = e. By (4.13) there exists a basis (x, y, 2) of
M(R) such that JL ¢ (x, y, 2% +1)R. Upon taking p = 0 = ¢
we also have that I = xPy2L. 'Therefore condition (2;) is
satisfied.

Proor oF (4.21.2). If ¢’ < ¢ then condition (2,_,) is satisfied
and we have nothing more to show. So assume that ¢’ = ¢. Let
(R;, Ji» I)mi<w be the infinite sequence such that (R;, J;, I;) is
the monoidal transform of (R;_,, J;,,I; ;,R;,) along V for
m <i < co. Note that then ordyJ; < ordg ]J whenever
m<j<t< oo, and by (1.10.8) we also have that I has a
quasinormal crossing at R; for m < i < co. For a moment suppose
that ord, ]7 # d for some j with m <<j < co; then there exists
a umque integer n > m such that ord, ], = d > ordg ], for
0 < i < n; upon letting S; = R; for m < i < n we now get that
(R:, Jis Iy So<icn s (Rn s JnsI)] is a finite weak resolver,
and hence condition (1) is satisfied. So henceforth assume that
ordy J; = d for m <i < . Then by (1.10.5) we know that
(R;, J') is unresolved for m < i < oo, and hence by (3.21.1) we
get dimR; = 3 for m <i < c0. By (3.11) we also get that
€X(R;, J;) has a strict normal crossing at R; for m < i < 0. Since
I, has a quasinormal crossing at R,, , we get that / has a quasinormal
crossing at R. Let P= JL and e = d + ¢. Note that then
ordg ] = d, ordgP = e, and P ¢ (x, y, 2*t1)R. By (4.9) there exists
an infinite sequence (R, J¥, I¥),<;. such that (R%, J* I}) =
(R, J,I) and for m < i < co: Rf is a three-dimensional regular
local domain; R} dominates R;; R* is re51dually separable algebraic
over Rj; M(R*) M(Rl)R J¥ = JiR}¥; If =IR}; and
(R¥, J¥, I¥) is a monoidal transform of (R,E“_1 , ]{“_1 ,I{‘il , R¥ ).
Note that now ordgr /& = d and RF/M(R}) is algebraically closed
for m < i < . Let (Pf),,<;<» be the unique infinite sequence
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such that: P¥ is a nonzero principal ideal in R} for m < i < oo;
P} = P;and (R¥, P¥)is a monoidal transform of (R}, , P, , R}))
form <i < oo.

First suppose that ordg:P* # e for some j with m <j < co.
Then by (4 16.1) there exists an integer n > m, a nonzero principal
ideal L} in R}, a basis (x*, y*, 2¥) of M(R}), and nonnegatlve
integers p*, ¢*, and c* such that I¥ = x¥P"y*CLX | ordy +L¥
c* <c,and JXLY ¢ (x% y%, z*‘”c*“)R* Let R* be the completlon
of R¥. Then R* is a three dimensional complete regular local
domain, R*/M(R¥*) is algebraically closed, (x*, y*, 2*) is a basis
of M(R*), R* dominates R, , R* is residually separable algebraic
over R, , and M(R*) = M(R,'L)R* Let J* = J,R* I* = ], R*,
and L* = L¥R*. Then L* is a nonzero prmc1pal ideal in R*,
ordgL* = c*, I* = x*”y*qL* and JXL* ¢ (x*, y*, 2*HH)R*,
Let S;=R; for m <i<n Then [(R,,]“Iz,S,)kKn,
(R, , ],’, , )] is a finite weak resolver. Since c* < ¢, we conclude
that condition (2,_,) is satisfied.

Next suppose that ordg:Pf = e for m <i < 0. Then by
(4.16.2) there exists an integer m’ > m, a field f, and an infinite
sequence (R;, Ji, I;, Ly, i, filZ), %, yis 20, iy S0 by Pis €
a;, b))’ <i<o having the description given in (4.16.2). It follows
that condition (3,) is satisfied.

Proor or (4.21.3). By (%) there exists an integer n > m’
and an element r in the completion S* of S, such that either:
fu(Z + 7) = Z¢, or: there exist nonnegative integers u and v
such that upon letting g(Z) = (xpyn) S (xnynZ + r) we have that
g(Z)e S*[Z] and 0 < ordgg(Z) < e. Let R* be the completion
of R, . Then there exists a unique homomorphism A’: $* — R*
such that A'(M(S*)) C M(R*) and k'(s) = s for all s€.S,; now
dim A'(S*) < 2, dim R* = 3,and M(R*) = M(h (S*)R* + z,R*;
consequently dim A'(S*) = 2 and hence %’ is a monomorphlsm
therefore we may identify S* with a subring of R*. Let J* = [ R*,
I* = I,R*, L* = L,R*, (x*!y*’z’) = (xn )yn!zn)’ (P*) q*) =
(Bus 00y F2) = f(2), £(2) = fu(2), and (r)5' 1,0, b) =
(rn »Snrlny Gy, bn)‘

Note that then: R* is a three-dimensional complete regular local
domain; R*/M(R*) is algebraically closed; (x*, y*, 2') is a basis
of M(R*); J*, I*, and L* are nonzero principal ideals in R*;
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orde«J* = d; ordpsL* = ¢; e =d + ¢; p*, ¢* a’, and b’ are
nonnegative integers; I* = x*Py*¥CL*;. R* dominates R,; R* is
residually separable algebraic over R,; M(R*) = M(R,)R*;
J* = J.R*; I* = I,R*; S* is a two-dimensional complete regular
local domain; R* dominates S*; R* is residually rational over S*;
(x*, y*) is a basis of M(S*); f(Z) and g'(Z) are monic polynomials
of degree e in an indeterminate Z with coeflicients in S*; 7' € S*;
t'is a unit in S*; s" = t'a*Y*; ¢(2) = sf(Z + r'); J*XL* =
£2'()R*; and r € S*. Also, either: (') f(Z 4+ r) = Z¢, or: (") there
exist nonnegative integers # and v such that upon letting g(2) =
(w*uy*o)—ef(x*uy**Z 4 r) we have that g(Z)e S*[Z] and
0 < ordg=g(Z) <e. Let r* = (r' —r)/s’. Then r* is in the
quotient field of S*.

By (1.10.5) we have that (R, , ],) is unresolved; consequently by
(4.6.2) we get that (R*, J*) is unresolved, and from this it follows
that (R*, J*L*) is unresolved. Suppose if possible that we have (');
then (2’ + r*)* = g'(2’) € R* and hence by (4.11.3) we get that
r*e e S*; since S* is normal, we deduce that 7* € S*; since 2’ and
g'(z') are in M(R*), we must have r*e M(R*) and hence
r* e M(S*); consequently M(R*) = (x*, y*, 2’ + r*)R*; since
J*L* = g'(z')R*, we get that (R*, J*L*) is resolved; this is a
contradiction. Therefore we must have (”).

Let a=u—a', b=v— b, and s* = t'"a*%9*® Then by
(4.10.2) we get that r* € S*, a and b are nonnegative integers, and
g(Z) = s*—¢g'(s*Z — r*). Since ordgJ*L* =e and J*L* =
g'(')R*, we get that g'(2’) € M(R*)¢; consequently we must have
g'(Z) — Z°e e M(S*)[Z], and hence g'(s*z" — r*) — (s*3’ —r*)e
M(R¥*); also g'(s*2" — r*) = s*¢g(2') € M(R*), and hence we get
that 7* € M(R*). Therefore r* € M(S*), and hence upon letting
¥ = 2’ 4 r* we get that M(R*) = (x*, y*, 2*)R*. Let g*(Z) =
t'—eg(t'Z). Then g*(Z) e S*[Z] and ordsg*(Z) = ordgg(Z). Con-
sequently

g 2) =2+ g2+t g

where g, ..., g, are elements in S* such that g, e M(S*), and
g ¢ M(S*Y' for some j° with 1 <j' < e In particular then
g1» - & are elements in R* with g,€ M(R*), and in view of
(4.11.2) we get that ordg«g; = ordys+g; for 1 <j < e where h:
R* — R*|z*R* is the canonical epimorphism, and ordgpg; <j'.
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Let w=g'(¢). Then J*L* =wR* Also g'(z) =
x*aey*beg*(x*—ay*—bz*)’ and hence
w = z¥e 4 Z gjx*ajy*biz*e—j i
=1

It follows that condition (4,) is satisfied.

Proor oF (4.21.4). By (4.20) we get that one of the following

two conditions is satisfied.

(1) 'There exists a finite weak resolver [(R¥, J*, I, S¥)o<icu »
(RE, T, I¥)] such that: (RF, J& I§) = (Ry, Jo, In); orde: JF =
d > ordg: J¥ for 0 <7 < u; and V dominates R;f.

(2)) 'There exists a finite weak resolver [(R¥, JF I, S¥o<icu »
(R¥, J¥, IF)] and a system (R*, J*, I'*,L*, x*, y*, 3%, p*, g%, c*)
such that: (R, ]0 JIH = (R, , Jn,1); dim R¥ =3 and
ordg: J¥ = dfor0 <i < u; (62(R ¥) has a strict normal crossing
at R;“, V dominates R}; R* is a three-dimensional complete
regular local domain; R*/M(R*) is isomorphic to R/M(R); R*
dominates R}; R* is residually separable algebraic over R}
M(R*) = M(R*)R* J* = J¥R*; I* = [)R*; L* is a nonzero
principal ideal in R*; ordg-L* = c* < ¢ (%%, y*, 2%) is a basis of
M(R*); p* and q* are nonnegative integers; I*—* X}V YT K
and J*L* ¢ (x* y*, kd+c” +1)R*

First suppose that condition (1") is satisfied. Let v'= n 4 u,
S; = R;form <i<mn,S; =Sk, forn <i<wv,and(R;, J;,I}) =
(Rz —n ) ]:k—n ) Iz*—n) for n < i < v. Then [(R: ’ ]; ’ I; ’ S;)O<i<v ’
(R, ], I)] is a finite weak resolver. It follows that condition (1)
is satisfied.

Next suppose that condition (2') is satisfied. Let v = n 4 u,
S;=Riform <i<mn,S;= S}, forn<i<v,and(R;, J;, ;) =
(Rz —n ]1*—n ’Iz*—n) for n < : < v. Then [(R; ’ ]t, ’I; ’ S:’)O<i<v ’
(R, , Jo, I,)] 1s a finite weak resolver. Since ¢* < ¢, it follows that
condition (2,_,) is satisfied.

Proor oF (4.21.5). By (4.21.1) there exists a nonnegative integer

c* such that either condition (1) is satisfied or condition (2;) is
satisfied. By (4.21.2), (4.21.3), and (4.21.4) we get that if ¢ is a
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nonnegative integer such that condition (2,) is satisfied then either
condition (1) is satisfied or condition (2,_,) is satisfied. Therefore
by induction on j we get that for 0 <<j << ¢* 4+ 1 we have that
either condition (1) is satisfied or condition (2,_;) is satisfied. In
particular, upon taking j = ¢* + 1, we get that either condition (1)
is satisfied or condition (2_,) is satisfied. However, clearly condition
(2_;) can never be satisfied. Therefore condition (1) is satisfied.

(4.22). Let R be a three-dimensional pseudogeometric regular
local domain such that: RIM(R) is a perfect field having the same
characteristic as R; for every iterated monoidal transform T of R
and every nonzero principal prime ideal P in T we have that S(T, P)
is closed in B(T); and for every iterated monoidal transform T of R
and every ideal Q in T we have that S(T*, QR*) = {S € B(T*):
Tramsy € S(T, Q)} where T* is the completion of T (see (1.2.6)).
Assume that the following condition is satisfied.

(%) Let S, be the ring of formal power series in two indeterminates
with coefficients in an algebraic closure of R/M(R). Let (x,,y,) be
any basis of M(S,), let t be any coefficient set for S, , let e be any
positive integer, and let f(Z) be any monic polynomial of degree e in an
indeterminate Z with coefficients in Sy . Let (S;, %; , ¥;)o<i <= be any
infinite sequence such that for 0 < i < co0: S; is a two-dimensional
regular local domain; S; is a quadratic transform of S;_y; (x;,y;) is
a basis of M(S,); tf y;_1/%;_1€ S;thenx; = x; and (y,_,/x;) — y; €%,
and if y,_y/x, 1 &S, then x,_y = yx;, and y,_, = vy, . Assume that
X;.1 #£ x; for infinitely many distinct values of i. Then there exists a
nonnegative integer n and an element r in the completion S* of S,
such that either: f(Z + r) = Z¢, or: there exist nonnegative integers
u and v such that upon letting g(Z) = (x5yn)"*f (xynZ + ) we have
that g(Z2) € S*[Z] and 0 < ordg+g(Z) < e.

Then R is weakly resolvable.

Proor. Let R’ be any iterated monoidal transform of R, let J’
and I’ be any nonzero principal ideals in R’ such that (R', J') is
unresolved and I" has a quasinormal crossing at R’, and let V be any
valuation ring of the quotient field of R such that V' dominates R’.
We want to show that then there exists a finite weak resolver

[(Ri ’ ]i ’Ii ’ Si)osi<m ’ (Rm ’ ]m ’ Im)] SUCh that (Ro ’ ]0 ’ Io) =
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(R, ]’,I’), ordg J; = ordg:J' > ordg [, for 0 <i <m, and V
dominates R,, . This however follows from (4.21.5).

(4.23). Remark. If in (4.22) we only wanted to prove the
weaker assertion that R is weakly semiresolvable then, upon
disregarding several considerations of this section and simplifying
some of the remaining considerations, we can make a simpler proof.
The reader may find it instructive to extract such a simpler proof
of the said weaker assertion.

§5. Main results
In [9: Theorem 1.1] we proved the following.

(5.1). Let S, be a two-dimensional regular local domain such that
So/M(S,) is an algebraically closed field having the same characteristic
as Sy. Let (xy,y,) be a basis of M(S,), let t be a coefficient set
for Sy, and let f(Z) be a monic polynomial of degree e > 0 in an
indeterminate Z with coefficients in S, . Let (S;, x;, ¥;)o<i<~ be an
infinite sequence such that for 0 < i < co: S; is a two-dimensional
regular local domain; S, is a quadratic transform of S;_y; (x;,y;)is a
basis of M(S;); if y;_1/%;—1 € S; then x;,_y = x; and (y;_y/x;) — y; € %,
and if y; |x; 3 & S; then x;_y = yx; and y,_, = y,. Assume that
X1 7 %; for infinitely many distinct values of i. Then there exists
a nonnegative integer n and an element r in the completion S* of S,
such that either: f(Z + r) = Z, or: there exist nonnegative integers
u and v such that upon letting g(Z) = (xuyy)~f(xtyLZ + r) we have
that g(Z) € S*[Z] and 0 < ordg+g(Z) < e.

In (5.2), (5.3), and (5.4) we shall state and prove the main
results of this chapter.

(5.2). Let R be a pseudogeometric regular local domain with
dim R < 3. Assume that if dim R = 3 then the following three
conditions are satisfied: (1) R/M(R) is a perfect field having the
same characteristic as R; (2) for every iterated monoidal transform
T of R and every monzero principal prime ideal P in T we have
that &(T, P) is closed in B(T); and (3) for every iterated monoidal
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transform T of R and every ideal Q in T we have that S(T*,QT*) =
{SeB(T*): Trrms) € S(T, Q) where T* is the completion of T
(see (1.2.6)).

Then we have the following.

(5.2.1). R 1is weakly semiresolvable, semiresolvable, strongly
semiresolvable, weakly resolvable, resolvable, strongly resolvable,
detachable, strongly detachable, principalizable, and strongly princi-
palizable.

(5.2.2). Let R be any iterated monoidal transform of R, let I'
be any nonzero ideal in R’, and let V be any valuation ring of the
quotient field of R such that V dominates R'. Then there exists an
tterated monoidal transform R* of R along V such that I'R* is a
nonzero principal ideal in R* having a normal crossing at R*.

(5.2.3). Let R’ be any iterated monoidal transform of R, let V
be any valuation ring of the quotient field of R such that V dominates
R',andletf,, ..., f, (¢ > 0) be any finite number of nonzero elements
in V. Then there exists an iterated monoidal transform R* of R’
along V and a basis (x, , ..., x,) of M(R*), where n = dim R*, such
that f; = g2V .. x2™ where g, is a unit in R* and a(i,]) is a
nonnegative mteger forl <i<<qandl <j < n

(5.2.4). Let R’ be any iterated monoidal transform of R, let |
be any nonzero principal prime ideal in R’, and let V be any valuation
ring of the quotient field of R'|]' such that V dominates R'|]'. Then
there exists a regular spot R* over R'|]' such that V dominates R*.

Proor. In view of (5.1) this follows from (2.2), (2.4), (2 6),
(2.8), (2-11), (2.13), (2.19), (2.21), (3.21), and (4.22).

(5.3). Let R be a pseudogeometric regular local domain such that:
R/M(R) is a perfect field having the same characteristic as R; for
every regular spot over T over R with dim T < 3 and every nonzero
principal prime ideal P in T we have that S(T, P) is closed in B(T);
and for every regular spot T over R with dim T < 3 and every ideal Q
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in T we have that S(T*,QT*) = {S € B(T*): Trapms € S(T, O)}
where T* is the completion of T (see (1.2.6)). Let K be a function
field over R such that dim R + trdeg,K < 2. Let V be a valuation
ring of K such that V dominates R. Then there exists a regular spot
R* over R with quotient field K such that V dominates R*.

Proor. There exists a finite number of elements x , ..., x, in K
such that K is the quotient field of R[x,, ..., x,]. We shall prove
our assertion by induction on n. If # = 0 then it suffices to take
R* = R. Now let n > 0 and assume that the assertion is true for
all values of # smaller than the given one. Let L be the quotient
field of R[x,, ..., ¥,_;]. Then dim R 4 trdegzL < 2, and hence by
the induction hypothesis there exists a regular spot 4 over R with
quotient field L such that ¥V dominates R. For a moment suppose
that x,, is transcendental over L; let x = x,if x, € V,and x = 1/x,,
if x,¢ V; let R* be the quotient ring of A[x] with respect to
M(V) N A[x]; then R* is a spot over R with quotient field K and
V dominates R*; since x is transcendental over L, by [18: (14.8)
and (28.3)] we have that R* is regular. So now assume that x, is
algebraic over L. Then there exists 0 7 r € 4 such that upon letting
y = rx, we have that y is integral over A. Note that now K = L(y)
and A[y] C V. Clearly A dominates R, and hence by [28: Proposi-
tion 2 on page 326] we get that dim 4 < 2, and either dim 4 < 1
or A is residually algebraic over R. Let Z be an indeterminate and
let h: A[Z] — A[y] be the unique epimorphism such that A(Z) = y
and A(u) = u for all ue A. Let f(Z) be the minimal monic
polynomial of y over L. Since 4 is normal, we get that f(Z) € A[Z]
and A1(0) = f(Z)A[Z]. Let B be the quotient ring of A[y] with
respect to M(V) N A[y], let R’ be the quotient ring of A[Z] with
respect to -} (M(V) N A[y]), and let J' = f(Z)R’'. Then B is a spot
over A with quotient field K, V dominates B, R’ is a spot over 4,
R’ dominates 4, |’ is a nonzero principal prime ideal in R’, and
R'/]J’ is isomorphic to B. By [28: Proposition 2 on page 326] we
get that dim R’ < 3, and either dim R’ < 2 or R’ is residually
algebraic over R. It follows that if dim R’ = 3 then R'/M(R') is a
perfect field having the same characteristic as R’. By [18: (14.8)
and (28.3)] we have that R’ is regular. Therefore by (5.2.4) there
exists a regular spot R* over B with quotient field K such that
V dominates R*. Clearly R* is a spot over R.
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(5.4). Let R be a complete local domain such that R/M(R) is a
perfect field having the same characteristic as R, let K be a function
field over R such that dim R + trdeg,K < 2, and let V be a
valuation ring of K such that V dominates R. Then there exists a
regular spot R* over R with quotient field K such that V dominates R*.

Proor. By Cohen’s structure theorem [18: (31.6)] there exists
a complete regular local domain R’ such that dim R’ = dim R,
R dominates R’, R is residually rational over R’, and R is a finite
R’-module. In view of (1.2.6), by (5.3) there exists a regular spot
R* over R’ with quotient field K such that V' dominates R'.
Since R* is normal, we get that R* is a spot over R.

We shall now give an alternative simple proof of (5.1) for the
case when S, is of zero characteristic. In this proof we shall only
use (0.1) and the trick of killing the coefficient of Z*~! in f(Z);
in particular, we shall not use any results from the papers [5], [7],
[8], and [9]. Thus for the case when R is of zero characteristic
we shall have given a simpler proof of (5.2), (5.3), and (5.4) which
is independent of the papers [5], [7], [8], and [9]. What we shall
prove is actually slightly stronger than the case of (5.1) when S,
is of zero characteristic and is as follows:

(5.5). Let S, be a two-dimensional regular local domain such that
So/M(S,) s algebrazcally closed. Let (x,,7,) be a basis of M(Ro)
let T be a coefficient set for S, , let e be a positive integer which is
not divisible by the characteristic of Sy/M(S,), and let f(Z) be a
monic polynomial of degree e in an indeterminate Z with coefficients
in Sy. Let (S;,%;,V.)oci<w be an infinite sequence such that for
0 <i<oo: S; is a two-dimensional regular local domain; S;
is a quadratic transform of S;_,; (%;,v,) s a basis of M(S,); if
Yial% 1€ S;thenx;_y = x;and (y,4/x;) -y, €%, and if y; ,[x;, 1 ¢ S;
then x;_, = y;x; and y,_, = vy; . Assume that x; ., # x; for infinitely
many distinct values of 1. Then there exists a positive integer n and
an element r in S, such that either: f(Z + r) = Z¢, or: there
exist nonnegative integers u and v such that wupon letting
8(Z) = (xpyy)f(xnyiZ + r) we have that g(Z)e S,[Z] and

0 < ords g(Z) <e.

First we shall prove the following.
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(5.6). Let (S, S, x,9,9, G, a) be a system such that: S and S’
are two-dimensional regular local domains; S’ is a quadratic transform
of S; M(S) = (x,)S; M(S") = (%, y)S"; (y/x) —y'€S;0 = Ge S;
and a = ordgG. Then G = x%tx + t'y’®) where t € S', t' is a unit
in S', and b is an integer with 0 < b < a.

Proor. Clearly M(S) = (x, xy’)S and hence G = rpx* +
72 Yxy') + - 4 r,(xy)* wherer,, 1y, ..., 7, are elements in S at
least one of which is not in M(S). Let b be the smallest integer
with 0 << b < a such that r, ¢ M(S). Now M(S)S" = xS’ and
hence upon letting t = (ry/x) + (ry/x)y’ + - + (rp_1/x)y">1 we
get that te S’ (we take t = 0 in case b = 0). Let t' =r, +
ry1y + %+ r,y'* % Thent isaunitin S’, and G=x%(tx + t'y"?).

Although the following assertion follows from [8: Lemmas 3.7
and 3.14.(3)] and [9: Lemma 1.2], we shall deduce it directly
from (5.6).

(5.7). Let (S;,%;,¥:)o<ci<wo and t be as in (5.5), let m be a
nonnegative integer, and let 0 # F € S,, . Then there exists an integer
¢ = m such that F = sx?y% where s is a unit in S, and p and q are
nonnegative integers.

Proor. Let W be the set of all integers 7 > m such that
Yil%; € Siya and Yy pa/%ipn € Sips -

First suppose that W is a finite set. Since by assumption
x;.4 # x; for infinitely many distinct values of 7, it follows that then
there exists an integer j > m such that y; = y; and x; = x,;y}~ for
j <1 < oo. Let p be the greatest nonnegative integer such that
Fexl'S;, and let d = ord,5h(Fx;?) where h: S; — S;/x;S; is the
canonical epimorphism. Then d is a nonnegative integer and
F = xP(s*x; + s'y¥) where s*€S;, and ' is a unit in S;. Let
c=j+d qg=pd+d, and s = s*x;y;7¢ + 5. Then s is a unit
in S, and F = sxly?.

Next suppose that W is an infinite set. Let F,, = F and define
F, ., €84, for m <i < oo by the following recurrence relation:
F; = z°F,;,, where d = ordgF,, and 2 = x,,, in case y,/x; € S;,, ,
and z =y;,, in case y;/x;¢S,,,. Then F = sx?»%F, for
m < i << oo where s; is a unit in S; and p; and ¢, are nonnegative
integers. Therefore it suffices to show that ord F, = 0 for some
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integer ¢ > m. Let a; = ordg F; for m <7 < oo. Then by (5.6)
(or alternatively by (1. 10 2)) we get that a; , << g, form < i < co.
We shall show that if 7 is any integer in W such that a; = 0 then
a;,, < a; since W is an infinite set, this will imply that a, =0
for some integer ¢ > m. So let any integer 7 in W be given such
that @, # 0. Then by (5.6) we get that F, , = tx,,, + t'y%,,
where t€S;,;, ' is a unit in S;,;, and b is an integer with
0<b<a;.Ifa,, # a;thena,, < a;,; < a;.So now assume
that a;,; = a;,. Then we must have b = a4, and t e M(S,,)* L
NowF;,, = yz+2F1+l 1yl + 1, 1155 € 'S, i+2 3 X420 € M(Swz)
and ¢’ is a unit in S;,, . Therefore 4, , = 0 and hence a;,, < g,

From (5.7) we shall now deduce the following.

(5.8). Let (S;,%;,¥)ocicwo and t be as in (5.5), let m be a
nonnegative integer, let 0 = F € S,,, and let d be a positive integer.
Then there exists an integer n > m and nonnegative integers u and v

such that (xpy;)*F € S, and ord ((xny,)*F) < d.

Proor. By (5.7) there exists an integer ¢ > m such that
F = sxPy? where s is a unit in S, and p and ¢ are nonnegative
integers. If y, ;/x, , €S, and y,_,/x, , # y, for some integer
n > ¢ then clearly F = s'x)) where s’ is a unit in S, and w is a
nonnegative integer, and hence it suffices to take v = 0 and
u = the greatest nonnegative integer such that ud <{ w. So now
assume that for ¢ <7 < oo we have that: if y, /x; ; € S; then
Yia/%_1 = ;. Let (p., q.) = (p, q) and define a pair of non-
negative integers (p; , ¢;) for ¢ < i < oo by the following recurrence
relation: (p; , ¢;) = (Pi—1 + 9s-1 Q1) i Y5 _a/x;_1 € S;and (p;, ¢;) =
(Pi-1s Pic1 + gi—1)- Then F = sxPiy% for ¢ <i < . For
c <1< o letu, v;, a;, b; be the unique nonnegative integers
such that p, = du; + a,, a;, <d, ¢; = dv, + b;, and b, < d.
Then it is clear that if ¢ is any integer with i > ¢ such that
a;_y+ b;_; > dthen a; + b, < a,_; + b;_; . From this it follows
that there exists an integer n with ¢ << n << ¢+ d such that
a, + b, < d. It now suffices to take ¥ = u, and v = o, .

Finally, from (0.1) and (5.8) we shall now deduce (5.5).

Proor oF (5.5). Let ¢ be the coefficient of Z¢~! in f(Z). Since e
s not divisible by the characteristic of Sy/M(S,), we get that
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tlee S, and f(Z — (t)e)) = Z¢ + F,Ze% + FyZ°~2 + -+ 4+ F, with
FZ,F3,.. F,inS,. If F;=0 for 2 <j<ethenit sufﬁces to

taken = 0 and r = —(t/e). So now assume that F; # O for some j
with 2 <j < e Thene > 2 Let ¥V = () S;. By (0.1) we know
=0

that ¥ is a valuation ring of the quotient field of S,, and V
dominates S; for 0 < 7 < co. Let @ = el. Since V is a valuation
ring of the quotient field of S,, there exists an integer d with
2 < d < e such that upon letting F = F, weoohave that F # 0

and F“/’/F“/de V for 2 <j<e Since V = U S;, there exists

=)
a nonnegative integer m such that F“/’/I'“/" € S for 2 <5 <

By (5.8) there exists an integer # > m and nonnegative 1ntegers
u and o such that (x%y5)9F € S, and ords ((xnyn)?F) < d. Let
2'(Z) = (x¥y5)*f(xiy2Z — (t/e)). Since S, is normal, we get that
g (Z) = Z¢ + GyZ¢% + GyZe® + - + G, with Gy, Gy, ..., G,
in S, , and 0 < ord; g'(Z) < e. If 0 < ordg g'(Z) then it sufﬁces
to take r = —(t/e). 8o now assume that 0 = ordg . £'(Z). Then
G, ¢ M(S,). Now S,/M(S,) is algebraically closed and hence there
exists a unit s in S,, such that g'(s) € M(S,). Let r = sxpyp — (t/e).
Then re S,. Let g(Z) = (xhyn) S (xnynZ + r). Then g(Z) =
g(Z 4+ s5) and hence g(Z) = Z¢ + G, 27 + G2 2 + - + G,
with G,, G,, ..., G, in S,, . Since g(Z) =g (Z + 5), we also get
that G, = ¢ (s) e M(Sn), and G, = es. Again since e is not divisible
by the characteristic of So/M(S,), we conclude that es ¢ M(S,).
Therefore 0 < ords g(Z) < e.



CHAPTER 2

Global Theory

In this chapter k will be a noetherian domain and K will be a
function field over k. We define: dim; K = dim k + trdeg, K (if
dim £ = oo then we take dim; K = c0). Most of the considerations
of §6 may be used tacitly in the rest of this chapter.

§6. Terminology and preliminaries

(6.1). Let X be a topological space and let ¥ C X.

X is said to be irreducible if X # & and X cannot be expressed
as the union of two closed subsets of X different from X. Y is
said to be #rreducible if Y is irreducible in the induced topology.
By an irreducible component of Y we mean an irreducible subset
Z of Y such that Z is not contained in any irreducible subset of Y
other than Z. It is easily seen that if Z is any irreducible subset of
Y then the closure of Z in Y is irreducible; consequently every
irreducible component of Y is closed in Y. By Zorn’s lemma it
follows that if Z is any irreducible subset of Y then Z is contained
in some irreducible component of Y; since {y} is irreducible for
all y €Y, it follows that Y is the union of its irreducible compo-
nents. The following is easily proved.

(6.1.1). Assume that X is the union of a finite family (X;),
of closed subsets X; of X such that each X; has only finitely many
trreducible components. Then we have that: if X' is any irreducible
component of X then X' is an irreducible component of X; for some
i€l. In particular X has only finitely many irreducible components.

X is said to be quasicompact if every open covering of X contains
a finite subcovering. Again, Y is said to be quasicompact if Y is
quastcompact in the induced topology.
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The following four conditions are easily seen to be equivalent:
(1) every nonempty family of open subsets of X contains a maximal
element; (2) there does not exist any infinite sequence X, C X, C ...
of distinct open subsets of X; (3) every nonempty family of closed
subsets of X contains a minimal element; (4) there does not exist
any infinite sequence X; D X, D ... of distinct closed subsets of X.
X is said to be noetherian if these conditions are satisfied. Again,
Y is said to be noetherian if Y is noetherian in the induced topology.
We note the following.

(6.1.2). If X is noetherian then every subset of X is noetherian.
If X is the union of a finite family of noetherian subsets then X is
noetherian. X 1s noetherian if and only if every open subset of X
is quasicompact. If X is noetherian then X has only finitely many
irreducible components.

Everything, except possibly the last statement, is obvious.
Suppose if possible that X is noetherian and has infinitely many
irreducible components. Let F be the set of all closed subsets of
X having infinitely many components. Then F # & and hence F
contains a minimal element Z. Now Z # @ and Z is not irreduc-
ible, and hence Z = Z; U Z, where Z, and Z, are closed subsets
of X different from Z. Since Z is a minimal element of F we get
that Z; ¢ F and hence Z; has only finitely many irreducible com-
ponents for i = 1, 2. Consequently by (6.1.1) we get that Z has
only finitely many irreducible components which is a contradiction.

(6.2). In (6.2) (and only in (6.2)) we relax the assumptions on
K|k; namely, we only assume that K is a field and %k is a subring
of K.

By ®(K/k) we denote the Riemann-Zariski space of K|k, i.e.,
R(K/R) is the set of all valuation rings of K which contain k. By
R'(K/k) we denote the set of all quasilocal rings with quotient
field K which contain k. We topologize ®'(K/k) by designating
that a subset Y of ®R'(K/k) is open if and only if there exists a
family (B;),, of finite subsets B; of K such that ¥ = {R € ®'(K/k):
B; C R for some i € I}. Every subset of ®'(K/k) is to be regarded
as a topological space with the topology induced by this topology
of ®R'(K/k); in particular this is so for R(K/k) and for every model
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of K/k. For geometric visualization, elements in any subset X of
R'(K/k) may be called points of X; thus: by a closed point of X we
mean an element R in X such that {R} is a closed subset of X; by a
normal point of X we mean an element R in X such that R is a
normal domain; and by a regular point of X we mean an element
R in X such that R is a regular local domain. Also, given any
X CR(K/k) and Re R'(K/k) we may say that X passes through
R to mean that R e X. The following two results are proved-in
[28: Lines 1 and 2 on page 116] and [28: Theorem 40 on page 113]
respectively.

(6.2.1). For any Re X CR'(K|k) we have that {R € X:
R’ C R} = closure of R in X.

(6.2.2). R(K|k) is quasicompact.

For any X C ®'(K|k), by (6.2.1) we get that there exists at most
one point R of X such that X is the closure of {R} in X; when R
exists it is called the generic point of X; note that if R exists and ¥
is any nonempty open subset of X then R is the generic point of
Y and Y is irreducible. In view of (6.2.1) we also get the
following.

(6.2.3). For any semimodel X of K|k we have the following:
(1) X s irreducible and K is the generic point of X. (2) For any
V € R(K[k) we have that: V dominates X <> R C V for some R € X.
(3) For any Re X we have that: {R'€ X: Re B(R')} = {R' € X:
R’ C R} = closure of {R} in X; and B(R) = intersection of all open
subsets of X containing R.

For any X C®'(K[/k) we define: R(X) = {VeRK[k): V
dominates X}. Note that if X is a semimodel of K/k then, as noted
above, R(X) = {V e R(K[k): RCV for some R e X}; moreover,
X is complete <> R(X) = R(K/K). If A is any affine ring over k&
with quotient field K then clearly R(K/4) = R(B(A4)) and the
topology of ®(K/A4) induced by the topology of R(K/k) coincides
with the topology of R(K/A) as the Riemann-Zariski space of
K/A. Therefore by (6.2.2) we get the following.

(6.2.4). If X is any model of K|k then R(X) is quasicompact.
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For any two subsets X and X’ of ®'(K/k) such that X is an
irredundant premodel of K and X’ dominates X, and any R’ € X’
we define: [X', X](R') = center of R’ on X; the resulting map
[X', X]: X" — X is called the domination map of X’ into X. Note
that if X is any model of K/k and X’ is any complete model of
K/k dominating X then [X’, X](X') = X. For any two subsets
X and X' of ®'(K/k) we define: F( X', X) = (fundamental locus
on X for the pair (X', X)) = {Re X: R does not dominate X'};
note that if X’ is a model of K/k then (X', X) = {Re X: R'¢ R
for all R" € X'}; also note that if X and X' are models of K/k and
X' dominates X then (X', X) = X — X'. The following three
results are proved in Lemmas 3, 7, and 6 of [28: §17 of Chapter
VI] respectively.

(6.2.5). If X is any model of K|k and X' is any subset of R'(K/k)
dominating X then [X', X] is a continuous map of X' into X.

(6.2.6). If X is any complete model of K|k then there exists a
projective model X' of K|k such that X' dominates X.

(6.2.7). Let X and X' be any two models of K|k. Then there
exists a unique model X* of K|k such that: X* dominates X and X',
and if Y is any subset of R'(K/k) dominating X and X' then Y domin-
ates X*. (X* is called the join of X and X’ and is denoted by
X+X)If X= U B(4;) and X' = U B(B;) where (A;);r and
(Bj)jes are finite famzlzes of affine rings over k then X* = ) B(4y)

tel,]'e]

where A;; is the smallest subring of K containing A; and B; . If X
and X' are complete (resp: projective) models of K|k then X* is a
complete (resp: projective) model of K|k.

From the first characterization of the join we get the following.

(6.2.8). Let X and X' be any two models of K|k. Then
FX, X)=§X+X,X).IfReX, ReX,R*e X + X', and
V € R(K|[k) such that V dominates R, R’, and R* then the following
four conditions are equivalent: (1) R* = R; (2) R¢ &X', X);
(3) R dominates R’; (4) R' CR.

The following two results are proved in Lemmas 1 and 2 of
[28: §17 of Chapter VI] respectively.
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(6.2.9). Let A be any subring of K with quotient field K such
that kC A, and let Y C B(A). Then: Y is closed in B(A) <> there
exists an ideal H in A such that Y = {R € B(4): HR # R}. (Thus
we see that the definition of a closed subset of B(A) given here
agrees with the definition given in (1.1).)

(6.2.10). Let X be any model of K|k. If A is any affine ring
over k such that B(A) C X then B(A) = {Re X: A C R} and B(A)
isopenin X. If YCX = U B(A,;) where (A;);cr is a finite family of

aﬂine rings over k then: Y is open (resp closed) in X < Y N B(4,)
is open (resp: closed) in B(A,) for all il

For any element x in any domain 4 we clearly have that if
x # 0 then {R € B(4): xR = R} = B(A4[x]), and if x = O then
{R € B(4): xR = R} = @; also for any basis H' of any ideal H
in A we have that 8(4) — {Re 8(4): HR # R} = |) {Re B(R):

xeH’

xR = R}. Therefore by (6.2.9) we get the following.

(6.2.11). Let A be any subring of K with quotient field K such
that kC A, and let Y be any subset of B(A). Then: Y is open in
B(A) < there exists a family (x;);c; of nonzero elements in A such that
Y = U 8(A[x;1). If A is noetherian then: Y is open in B(A) <

tel

there exists a finite family (x,);. of nonzero elements in A such that
Y = U 94l

By (6.2.10) and (6.2.11) we get the following.

(6.2.12). Let Y be any subset of any model X of K/k. Then:
Y is open in X <> there exists a family (A,);1 of affine rings A; over
k such that Y = \) B(4,). If k is noetherian and Y # @ then: Y is

iel

open in X < Y is a model of K/k.
By (6.2.4), (6.2.5), and (6.2.12) we get the following.

(6.2.13). Let YCR'(K/R). If Y is a closed subset of some
model of K|k then R(Y) is quasicompact. If k is noetherian and Y
is a closed subset of some open subset of some model of K|k then R(Y)
s quasicompact.
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Let A be any subring of K with quotient field K such that & C A4.
Given any closed subset Y of 8(4) let P = {x € 4: xR # R for
all ReY}; then clearly P is an ideal 4 and Y C{R e B(4):
PR # R}; by (6.2.9) there exists an ideal H in A such that ¥ =
{R e B(A): HR # R}; clearly HCP (actually it can be shown
that P = rad H; however we shall not use this fact) and hence
{ReB(4): PR # R} C{ReB(A4): HR # R}; consequently: (1)
Y ={ReB(4): PR#*R}. Clearly if Y # & then P# 4. If
P 3 A and P is not a prime ideal in 4 then there exist elements
%, and x, in A4 such that x, ¢ P, x, ¢ P, x,x, € P, and then upon
letting Y, = {Re 8(4): (P + x;A)R # R} by (1) and (6.2.9)
we get that Y, and Y, are closed subsets of 8(A) such that ¥ =
YUY, and clearly Y; # Y # Y, . Thus: (2) if Y is irreducible
then P is a prime ideal in 4. By (6.2.1) we get that: (3) if Q is any
prime ideal in 4 then {Re B(4): OR # R} is an irreducible
closed subset of B(A) and 4, is its generic point. By (1), (2), and
(3) we get that: (4) for any Z C B(A) we have that Z is an irreducible
closed subset of B(A4) <> Z is the closure of {R} in B(A4) for some
R € 8(A) (and then R is the generic point of Z). By (1) we also
get that: (5) if 4 is noetherian then B(4) is noetherian. In view
of (4) and (5), by (6.1.1), (6.1.2), (6.2.1), and (6.2.10) we get
(6.2.14) and (6.2.15).

(6.2.14). Let Z C R'(K/R). Assume that Z is a closed subset of
some model of K|k (note that if k is noetherian then, in view of
(6.2.12), this is equivalent to assuming that Z is a closed subset of
some open subset of some model of K|k). Then: R — closure of {R}
in Z is a one-to-one map of Z onto the set of all irreducible closed
subsets of Z; every irreducible closed subset of Z, and hence in particular
every trreducible component of Z, has a generic point; and {Re€ Z:
R is the generic point of some irreducible component of Z} = {Re Z:
R¢ R’ for every R' € Z with R’ + R}.

(6.2.15). If k is noetherian and Z is any subset of R'(K/k) such
that Z is contained in some model of K|k then Z is noetherian and
quasicompact and has only finitely many irreducible components.

In view of (6.2.1), (6.2.14), and (6.2.15) we get the following.
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(6.2.16). Assume that k is noetherian. Let Z be any subset of
R'(K/k) such that Z is a closed subset of some open subset of some
model of K|k. Let Z' be any open subset of Z, and let Z,, ..., Z,
be the irreducible components of Z labeled so that Z' N\ Z; #+ o
forl <i<mandZ'NZ, =@ form <i<nThemZ' N Z,, ..,
Z'NZ, are exactly all the distinct irreducible components of Z',
and the generic point of Z is the generic point of Z' N\ Z, for 1 <i <<
m.

For any models X and X’ of K/k such that X’ dominates X and
for any closed subset Z of X we define: [X', X]-transform of Z =
closure of ZN X' in X’; note that ZN X' = Z — (X', X). In
view of (6.2.1), (6.2.14), and (6.2.15) we get the following.

(6.2.17). Assume that k is noetherian. Let X and X' be any
models of K|k such that X' dominates X and let Z be any closed
subset of X such that upon letting (S;);.; be the generic points of the
trreducible components of Z we have that S; € X' (i.e., S; ¢ F X', X))
for all iel. Then (S,);r are the generic points of the irreducible
components of the [ X', X)-transform Z' of Z (i.e., Z' = \) closure of

tel
{S;}in X'), and [ X', X)(Z")C Z. (If X and X' are complete models
of K|k then [X', X] is a closed map by [28: Lemma 5 of §17 of
Chapter VI| and hence [X', X]J(Z') = Z; we shall not use this

remark in this monograph.)

By (6.2.17) we get the following.

(6.2.18). Assume that k is noetherian. Let (X;, Z;)o<;<m be a
sequence where m is a nonnegative integer, X, is a model of K|k,
and Z, is a closed subset of X, for 0 <i < m, and for 0 <i<m
we have that X; dominates X,_, , §(X,; , X;_,) does not pass through
the generic point of any irreducible component of Z;_, , and Z; is the
[X;, X;_1)-transform of Z, ,. Then FH X, ,X,) does not pass
through the generic point of anmy irreducible component of Z,, and
Z,, is the [X,, , X ]-transform of Z, .

The following observation will not be used in this monograph.

(6.2.19). Let Z be an irreducible closed subset of a model X of
K|k, let S be the generic point of Z, let h be the canonical epimorphism



162 2. GLoBAL THEORY

of S onto S/M(S), let Z' = {h(R): Re Z}, and let f be the map
of Z onto Z' given by taking f(R) = h(R) for all Re Z. Then Z' is
a model of h(S)/h(k) and f is a homeomorphism of Z onto Z'. Moreover,
if X is a complete (resp: projective) model of K[k then Z' is a complete
(resp: projective) model of h(S)/h(k).

Proor. Clearly Z’ C R'(h(S)/h(k)). Fix any valuation ring V
of K dominating S. Then there exists an epimorphism g of ¥ onto
an overfield L of A(S) such that g(x) = h(x) for all x € S and g~1(0)=

Let any W € R(h(S)/h(k)) be given. Then there exists a valuation
ring W’ of L such that W’ dominates W. Now g=Y(W’) € R(K|/k)
and M(g7(W")) = g Y (M(W")). If R is any point of X such that
g Y(W’) dominates R then clearly R e Z and W dominates A(R).
Also, if R is any point of Z such that W dominates A(R) then
clearly g~Y(W’) dominates R. It follows that f is a one-to-one map
of Z onto Z’, Z’ is an irredundant premodel of A(S), and if X is a
complete model of K/k then R(A(S)/h(k)) dominates Z°.

Now X = 3(4,)V --- U B(4,) where 4,, ..., A, are affine
rings over k. Upon relabeling 4,, ..., 4, we may assume that
BA)NZ # gforl <i<mand B(4;))NZ = @ form <i <
n. Then h(4,), ..., h(4,,) are affine rings over h(k) and Z' =
B(h(A,)) U - U B(h(A4,)). Therefore Z’ is a model of k(S)/h(k),
and if X is a complete model of K/k then Z’ is a complete model
of h(S)/h(k). Let f(R) = f(R) for all Re B(4,) N Z. Then by
(6.2.9) we get that f; is a homeomorphism of B(4;) N Z onto
B(h(A4;)) for 1 < i < m. Therefore by (6.2.10) we get that f is a
homeomorphism of Z onto Z'.

Finally assume that X is a projective model of K/k. Then there
exist nonzero elements ¥, , ..., x, in K such that X = 8(B,) U -+ U
B(B,) where B; = k[x/x,;, ..., x,/x;]. Upon relabeling x,, ..., x,
we may assume that x;/x, is a unit in V for 1 <7 < s and x;/x, €
M(V) for s <i < r. Lety, = x;/x,. Then y; is a unit in V for
1 <i<s, y;e M(V) for s <i <7, and By = E[3y/9; » s 3,{9]
for 1 <i<<r. Now SeB(B)forl <i<sand BB)NZ = @
for s <i<7, and hence y; €8 for 1 <i<r, y,¢ M(S) for
1 <5, ;€ M(S) for s <i<r, and Z' = B(h(By)) Y -+ U
B(h(B,)). Upon letting z; = h(y,) we get that z,, ..., 2, elements
in B(S), 2, #0for 1 <i<s, 2 =0fors <i<r and h(B,) =
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h(R)[21/2; , ..., 2./%;] for 1 <i <s. Therefore Z' is a projective
model of A(S)/h(k).

(6.3). Recall that henceforth % is a noetherian domain and K
is a function field over k.

Let Z C ®'(K/k). Assume that Z is a closed subset of some open
subset of some model of K/k (note that by (6.2.12) this is equivalent
to assuming that Z is a closed subset of some model of K/k). For
any Re Z we define:

YR, Z) = (local ring of R on Z) = R/( N Rn M(S))) ;

SeB(RINZ

note that upon letting S;, ..., S, be the generic points of the
irreducible components of Z passing through R we have that

m

(1) N RNMS)) =) (RnMS)))
SeB(R)NZ =1

and hence

) dim &(R, Z) = max dim(R/(R 0 M(S)));

consequently: (3") &(R, Z) is a field < dim &R, Z) =0<«R is
the generic point of some irreducible component of Z. We define:
&(Z) = (singular locus of Z) = {Re Z: (R, Z) is not regular};
note that then:

Z — 3(Z) ={R e Z: only one irreducible component Z’
of Z passes through R and R/(R n M(S’)) is
regular where S’ is the generic point of Z'};

in particular &(Z) does not pass through the generic point of any
irreducible component of Z, and hence if Z # g then &(Z) # Z.
Z is said to be nonsingular if 3(Z) = o. Given any regular point R
of Z, we say that Z has a normal crossing at R if, upon letting
S;, ..., S, be the generic points of the irreducible components
of Z passing through R, we have that {R N M(S,), ..., R N M(S,)}
has a normal crossing at R. Note that for any regular point R of Z
we have that: R ¢ &(Z) <> Z has a normal crossing at R and only
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one irreducible component of Z passes through R. Given any
regular point R of Z, we say that Z has a strict normal crossing
at R if Z has a normal crossing at R and at most two irreducible
components of Z pass through R. In case every point of Z is
regular, we say that Z has only normal crossings (resp: only strict
normal crossings) if Z has a normal crossing (resp: strict normal
crossing) at each of its points. In case every point of Z is regular,
we say that Z is unlooped if Z has only strict normal crossings
and there does not exist any infinite sequence (Z;, R;)o<; .« such
that for 0 <7 << 00: Z; is an irreducible component of Z, Z, #
Zin,RieZ;NnZ,,,, and R; # R;,,. We define:

2

min dim R if Z+# @
codim Z = {ReZ
0 if Z=g
and
max dim 8(R, Z if Z# g
dim Z = | R¢Z ( )
— o if Z=g.

Given a nonnegative integer d we say that Z is pure d-dimensional
(resp: pure d-codimensional) if Z # @ and dim Z' = d (resp:
codim Z’ = d) for every irreducible component Z’' of Z. By a
surface (resp: curve) in Z we mean a pure 2-dimensional (resp:
pure 1-dimensional) closed subset of Z.

(6.3.1). Let ZC R'(K/k). Assume that Z is a closed subset of
some open subset of some model of K|k (note that by (6.2.12) this is
equivalent to assuming that Z is a closed subset of some model
of K/k). Then we have the following: (1) If Z is irreducible and S
is the generic point of Z then codim Z = dim S < dim R for every
ReZwithR+S 2 IfZ # @ and Z,, ..., Z, are the irreducible
components of Z then codim Z = ]rgiign codim Z; . (3) If Z is the
union of a nonempty family (Z,;);c; of closed subsets Z; of Z then
codim Z = min codim Z; . (4) If Z # @ and Z' is a closed subset

of Z such that Z' does not contain any irreducible component of Z
then codim Z’' > codim Z. (5) If Z is irreducible and S is the
generic point of Z then dim Z = max dim(R/(R N M(S))). (6) If
Z # @ and Z,, ..., Z, are the irreducible components of Z then
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dim Z = ,max dim Z; . (7) If Z is the union of a nonempty finite
family (Z));; of closed subsets Z; of Z then dim Z = max dim Z; .

8)If Z # o, dimZ < oo, and Z’' is a closed subset of Z such
that Z' does not contain any irreducible component of Z then
dim 2’ < dim Z. (9) If Z is irreducible then: dimZ = 0 < Z
contains only one point <> every point of Z is a closed point of Z.
(10) dim Z < 0 <> every irreducible component of Z contains only
one point <> every point of Z is a closed point of Z. (11) If dim Z < 0
then Z is a finite set and every point of Z is a closed point of Z.

Proor. (1), (2), (3), and (4) are obvious. (5) and (6) follow
from (2'). (7) follows from (6) and (6.1.1). For the special case
when Z is irreducible, (8) follows from (5) and (6); in the general
case, upon letting Z, , ..., Z, be the irreducible components of Z,
by (7) and the special case we get that dim Z = ‘max dim Z;,

i<lgn

dim Z’ = max dim(Z; N Z’), and dim(Z; N Z’) < dim Z; for
for 1 <1 < n (9) follows from (5). (10) follows from (9) by
noting thatif Z #+ @ and Z,, ..., Z, are the irreducible components
of Z then by (7) we get that: dim Z = 0 < dim Z; = 0 for
1 <1< n (11) follows from (10).

(6.3.2). For any spot R over any local domain S such that R
dominates S we have that dim R + restrdeggR < dim S + trdeggR.

This is proved in [28: Proposition 2 of Appendix 1].

(6.3.3). For any model X of K/k we have the following:
(1) If Z is any closed subset of X then: codimZ = 0 < Z = X.
(2) dim X = max dim R < dim K. (3) §(X) = {ReX: R is
not regular}. (4) If dim X < oo and Z is any nonempty closed
subset of X then dim Z + codim Z < dim X.

Proor, (1) and (3) are obvious. (2) follows from (6.3.2). To
prove (4) we can take Re Z such that dim &R, Z) = dim Z
and then by (2') we get that dim &(R, Z) = dim R/(R N M(S))
for the generic point S of some irreducible component of Z pass-
ing through R; clearly codim Z < dim § and dim S +
dim R/(R N M(S)) < dim R < dim X.
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(6.3.4). Let L be any field and let L' be any pure transcendental
extension of L (not necessarily of finite transcendence degree). Then
there exists a valuation ring V of L' such that L C V and V is residually
rational over L.

Proor. We can take an ordered set I and a one-to-one map x
of I into L’ such that (x(2));; is a transcendence basis of L’ over L,
and L’ = L((x(2));e;)- Let J be the set of all maps n of I into the
set of all nonnegative integers such that n(z) # 0 for only finitely
many values of i. Given any two distinct elements # and #»" in J,
there exists a unique element ¢ in I such that n(q) # n'(¢), and
n(i) = n'(¢) for all fel with i > ¢; we define: n >n" or n' >n
according as n(q) > n'(q) or n'(q) > n(¢g). This makes J into an
ordered set. Let R be the set of elements in L’ which can be expressed
in the form

(Z dm)] x(i)n(i))/( Y a*m)[] x(i)n(i))

neJ’ neJJ*

where |’ and J* are nonempty finite subsets of ], a’(n) and a*(n)
are nonzero elements in L, and, upon letting »’ and #* be the
smallest elements in J' and J* respectively, we have that n’ > n*
(note that the product []x(z)™? is taken to be 1 in case 7n(z) = 0
for all 7 € I, and otherwise it is taken over all i € I with n(z) +~ 0).
Let V = R U {0}. It can easily be seen that then V is a valuation
ring of L', L C V, and V is residually rational over L.

(6.3.5). Let L be any field and let L' be any overfield of L. Then
there exists a valuation ring V of L' such thatL C V and V is residually
algebraic over L.

Proor. Follows from (6.3.4).

(6.3.6). Let A be any domain, let L be any overfield of A, and
let W be any valuation ring of L with A C W. Then given any prime
tdeal P in A with A N M(W)C P (note that we can always find
a maximal ideal Pin 4 with A N M(W) C P), there exists a valuation
ring V of L such that ACVC W, AN M(V)= P, and V is re-
sidually algebraic over A.
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Proor. Let h: W — W/M(W) be the canonical epimorphism.
Then h(A) is a subring of the field (W), and A(P) is a prime ideal
in h(A4). Consequently there exists a valuation ring V"’ of A(W) such
that A(A) C V' and h(A) " M(V') = h(P). Let ': V' — V'|M(V")
be the canonical epimorphism, and let L* be the quotient field of
h'(h(A)) in A'(V’). Then by (6.3.5) there exists a valuation ring
V* of h(V’) such that L* C V* and V* is residually algebraic
over L*. It suffices to take V = hY(h'-Y(V'*)).

The following observation will not be used in this monograph.

(6.3.7). If k is universally catenarian and dim k << oo then
for every complete model X of K|k we have that dim X = dim, K.

Proor. Take S e ®B(k) such that dim S = dim k. By (6.3.6)
there exists a valuation ring V of K such that /' dominates .S and
V is residually algebraic over S. Let R be the center of V on X.
Then R dominates S and R is residually algebraic over S. Since
k is universally catenarian we get that dim R = dim S 4 trdegsR.
Therefore by part (2) of (6.3.3) we get that dim X = dim K.

(6.4). Let X C R'(K/k). By a preideal on X we mean a function

I which associates to each R € X an ideal in R which we denote by
IR. For any preideal I on X we define the preideal rad I on X by the
formula: (rad I)R = rad(IR) for all Re X. For any preideals
Iand I' on X we define: ICI' <~IRCI'R for all Re X. For
any preideals I, , ..., I, on X we define the preideals I, --- I, , I, +
-+ +1I,,andI; " --- NI, on X by the formulas: (I, -- I,)R =
(ILR) -~ (LR), (I, + * + L)R = (LR) + - + (LK), and (I,
“NIL)R=(I;R)N -~ N (I,R) for all Re X. A preideal I on X
is said to be principal if IR is a principal ideal in R for all Re X.
By 1, we denote the preideal on X given by the formula: 1R = R
for all Re X. By 0y we denote the preideal on X given by the
formula: 0,R = {0} for all R € X. A preideal ] on X is said to be
zero if I = 04 . A preideal I on X is said to be nonzero if I # 0y .
For any preideal I on X such that IR 3 {0} for all Re X we
define the preideal II-! on X by the formula: (II"')R = (IR)(IR)!
for all Re X; note that then I CII%, and (II"Y)R # {0} for all
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Re X. For any Z C X we define the preideal 3(Z, X) on X by the

formula:

IZ,X)R= () (RNM(S) forall ReX;
SeBRINZ

note that by convention the intersection of the empty family of
ideals in any ring is the unit ideal and hence: J(Z, X)R = R <
B(R) N Z = . For any preideal I on X we define: 3(I) = (zero-
set of I) = {Re X: IR # R}.

(6.4.1). For any X C R'(K/k) we have the following: (1) If Z
is any subset of X then rad I(Z, X) = 3(Z, X). (2) If I is any
preideal on X then 3(I) = 3(rad I). 3) If Z and Z' are any subsets
of X with ZCZ' then 3(Z', X)C3(Z, X). (4) If I and I are any
preideals on X with I CI' then 3(I')C 3(I). (5) If Z,, ..., Z, are
any subsets of X then3J(Z, VU --- U Z,, X)=3(Z;, X)n---NnI(Z,, X).
6) If I, ..., I, are any preideals on X then 3(I; + -+ I,) =
3IL) N0 3(1,) and 3L+ 1) = 30 N ) = 3(I) Y
U 3(I).

The proof is obvious.

For any subsets X and X’ of ®R'(K/k) such that X is an irre-
dundant premodel of K and X’ dominates X, and any preideal
I on X we define the preideal IX’' on X’ by the formula: (IX')R' =
(IR)R’ for all R’ € X’ where R is center of R’ on X.

(6.4.2). Let X and X' be any subsets of R'(K|k) such that X is
an irredundant premodel of K and X' dominates X, let I be any
preideal on X, and let I' = IX'. Then 3(I') = [X', X]"Y(3(])).
If moreover IR # {0} for all R € X, then I'R’ +# {0} for all R' € X',
([IMX' CI'T, and 3(I'TY) C 3(IIMNY)X") = [X', X]7Y(3(T)).

The proof is again obvious.

Given any X C®'(K/k), any subring 4 of K with 8(4) C X,

and any preideal I on X we define: ANI = () IR; by (1.11.5)
ReB(4)

we get that: 4 N [ is an ideal in A4; if P is any ideal in 4 such that

PR = IR for all Re B(A4), then P = A N I; in particular there

exists at most one ideal P in 4 such that PR = IR for all R € 8(A4).
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(6.4.3). For any preideal I on any model X of K|k the following
two conditions are equivalent: (1) If A is any affine ring over k
such that B(A) C X then (A NI)R = IR for all R € B(A). (2) For
each R’ € X there exists an affine ring B(R') over k such that
B(B(R)) C X and (B(R') N I)R = IR for all R e B(B(R")).

Proor. Obviously (1) implies (2). Now assume (2) and let 4
be any affine ring over & such that 8(4) C X. By (6.2.10), (6.2.11),
and (6.2.15) we can find a finite number of nonzero elements
Xy oo xnnin A and elements R,,..,R, in B(A4) such that
B(A4) = iUI B(A[x;1]) and B(A[x;']) CB(B(R,)) for 1 <i < n.
Since B(A4[x;']) C B(B(R;)), by (1.11.5) we get that B(R;) C A[x;'];
since (B(R)NI)R = IR for all Re®B(B(R;)), we get that
(B(Ry) n DA[x;1])S = IS for all SeB(A[x;']); consequently
by (1.11.5) we get that (A[x;1] N 1I)S = IS for all S e B(4[x;1]).
Clearly (A NI)RCIR for all Re B(A). Now let any R e B(4)
and any z € IR be given. We shall show that then 2 € (4 NI)R,
and this will complete the proof. Upon relabeling x, , ..., x, we
may assume that R € A[x7']. Now (A[x;1] N I)R = IR and hence
there exists y € A[xy] with y ¢ M(R) such that zy e A[x;*]N 1.
Let A, = A[x;, x7Y]. Then 8(4;) = B(A[x;*]) N B(A[x;]). Since
B(4,) C B(A[x7']), we get that zy € A4; N I. Since B(4,) C
B(A[x;1]) and (4[x;1] N I)S = ISfor all S € B(A[x;1]), we get that
(A[x;Y] N I1)A; is an ideal in 4; and ((A[x;*] N 1)A4;)S = IS for all
S € 8(4,). Therefore by (1.11.5) we get (A[x; ] NNA, = A,Nn1
and hence 2y e (4[x;] NI)A;; since 4; = (A[x;'])[x;'], there
exists a positive integer m; such that zyx}“ e A[x;] N 1. Let
m = max(m, , ..., m;). Then zyx"e A[x;| NI for 1 <i < n
Since B(4) = 6 B(A[x;1]), we get that zyx{*e A N 1. Now

i=1

yeR, y¢ M(R), x, € R, and x; ¢ M(R). Therefore ze (4 NI)R.
By an ideal on a model X of K/k we mean a preideal ] on X

satisfying the conditions of (6.4.3); note that clearly 1y and 0y
are ideals on X.

6.44). Let I, 1,,..,1, be any ideals on any model X of K|k
and let A be any affine ring over k such that B(A) C X. Then rad I,



170 2. GLOBAL THEORY

L0, ++1,,and I, n--N1I, are ideals on X, and
radlANI)=An(radl),(ANnL) - (Anl)= AN, -1,),
Anl)+ +AnL)y=AnU;+ -+ 1,),and (AN 1) N
nNAnl)=An{I,n--NI).

In view of (1.11.5), this follows from the fact that if P, P, , ...,
P, are any ideals in any domain 4 and R is any element in B(4)
then (rad P)R = rad(PR), (P, --- P,)R = (P,R) - (P,R), (P, +
4+ P)R = (P\R) + - + (P,R), and (P, n--N P,)R =
(Py,R) N - N (P,R).

(6.4.5). Let I be any ideal on any model X of K/k. Then for
all Re X and S € B(R) we have that IS = (IR)S.

The proof is obvious.

(6.4.6). For any model X of K|k we have the following: (1)If Z is
any closed subset of X then J(Z, X) is an ideal on X and 3(3(Z, X))
= Z. (2) If Iis any ideal on X then 3(I) is a closed subset of X
and J(3(I), X) = rad 1. (3) Z — I(Z, X) is a one-to-one inclusion-
reversing map of the set of all closed subsets Z of X onto the set of all
tdeals I on X such that rad I = I, and the inverse map is given by
I— 3(D).

Proor oF (1). It suffices to show that if Z is any closed subset
of X and A is any affine ring over k such that 8(4) C X then
(4N 3(Z, X))R = 3(Z, X)R for all Re B(A) and B(4) N 3(3(Z,
X)) = 8(4) " Z. Now B(A) N Z is closed in B(A4) and hence by
(6.2.9) there exists an ideal H in A such that 8(4)NZ = {Re
B(A4): HR # R}. Let P = rad H. Then B8(4) N Z = {R € B(A):
PR +# R}. First suppose that P = 4; then 8(A)NZ = @ and
hence 3(Z, X)R = R = AR for all R € B(A); therefore by (1.11.5)
we get that 4 = 4 N J(Z, X), and clearly 8(4) N 3(3(Z, X)) =
@. Next suppose that P # A; then P = P, N +-- N P, where
P,, ..., P, are prime idcals in A4, and for all R € B(A) we clearly
have that J(Z, X)R = (P,R) N --- N (P,R) = PR; therefore by
(1.11.5) we get that P = AN 3(Z, X), and (4 N 3J(Z, X))R =
I(Z, X)R for all Re B(4); now B(A)N Z = {ReB(A): PR #
R} = {Re B(A4): 3(Z, X)R # R} = 3(4) N 3(3(Z, X)).
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Proor oF (2). In view of (6.2.10), it suffices to show that if
Iis any ideal on X and 4 is any affine ring over k such that 8(4) C X
then B(4) N 3(I) is closed in B(4) and I(3(I), X)R = rad(IR) for
all Re B(4). Now AN is an ideal in 4 and (A NI)R = IR
for all R € B(A). Therefore B(4) N 3(I) = {Re B(A): (AN IR #*
R} and hence by (6.2.9) we get that 8(4) N 3(I) is closed in B(A).
Let P = rad(4 N1I). Then 8(4) N 3(I) = {R e B(A): PR # R}.
If P = A then for all R € B(A4) we clearly have that 3(3(I), X)R =
R = rad(IR). If P+ A then P = P, N --- N P, where Py, ...,
P, are prime ideals in 4, and for all R € B(4) we clearly have that
3(3(I), X))R = (P,R) N - N (P,R) = PR = rad(IR).

Proor ofF (3). Follows from (1), (2), and (6.4.1).

(6.4.7). Let I be any ideal on any model X of K|k. Then the
following five conditions are equivalent: (1) I 5= Oy (2) IR # {0}
for all ReX;(3) K¢ 3(I); (4) 3(I) # X; (5) codim 3(I) >0
(note that by (6.4.6) we know that 3(J) is a closed subset of X).
Moreover, if I # 0y then II7' is a nonzero ideal on X and
for every affine ring A over k with B(A)C X we have that
AnDh(AnD?r=AnIIH).

Proor. The first assertion follows by noting that given any
R € X there exists an affine ring 4 over k with Re 8(4) C X and
then (4 NI)R = IR, K € B(4), and (4 N I)K = IK, and hence:
IR ={0}<ANI={0}<IK=1{0}. The second assertion
follows from (1.11.5) and (1.11.2).

(6.4.8). Let I be any preideal on any subset X of R'(K|k) such
that IR # {0} for all Re X. Then 3(II"') = {Re X:IR is not
principal}. In particular, 3(II7*) = @ < I is principal.

This follows from (1.11.4).

(6.4.9). Let I be any nonzero ideal on any model X of K|k.
Then dim R > 2 for every mormal point R of 3(II"') (note that
every point of 3(II-') — &(X) is normal). In particular, if X 1is
normal then codim 3(II-') > 2 (note that by (6.4.6) and (6.4.7)
we know that 3(II1) is a closed subset of X; also note that if X is
nonsingular then X is normal).
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This follows from (6.4.8) by noting that every one-dimensional
normal local domain is a principal ideal domain (see [27: §6 and

§7 of Chapter V]).

(6.4.10). Let I be any nonzero principal ideal on any model X
of K|k. Then 3(I) is either empty or pure 1-codimensional (note
that by (6.4.6) we know that 3(I) is a closed subset of X).

This follows from Krull’s principal ideal theorem [27: Theorem
29 on page 238].

(6.4.11). Let X and X' be any models of K|k such that X'
dominates X, and let I be any ideal on X. Then IX' is an ideal on
X'. Moreover, I = Oy < 1X" = Q..

Proor. Given any R’ € X' let R = [X', X](R'). We can take
an affine ring 4 over k such that Re 3(4)C X. By (6.2.5)
and (6.2.12) there exists an affine ring A’ over k such that R’ e
B(A") C [X', X](B(4)). Now AC[X', X](S)C S for all Se
[X’, X]7* (B(A4)), and hence in particular 4 C S for all S e B(4’).
Therefore by (1.11.5) we get 4 C A’. Consequently (4 N1)A’ is
an ideal in A’, and clearly (4 N1)4’)S = I'S for all Se B(4').
Therefore by (1.11.5) we get that (ANDNA’ = A’ NIy and
(A'NnIYNS =1I'S for all SeB(A’). This shows that X' is an
ideal on X'. By (6.4.7) we get that I = 0y < IX' = 04..

(6.4.12). Let X and X' be any models of K|k such that X' dom-
inates X, and let I be any nonzero ideal on X such that I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>