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Preface

As technology advances, so does our need to understand and characterize it. This
is one of the traditional roles of mathematics, and now that we are more than a
decade into the 21st century, no area of mathematics has beenmore versatile suc-
cessful in this endeavor than that of linear algebra. The elements of linear algebra
are the essential underpinnings of a wide range of modern applications, from
mathematical modeling in economics to optimization procedures in airline
scheduling and inventory control. Linear algebra furnishes today’s analysts in
business, engineering, and the social sciences with the tools they need to describe
and define the theories that drive their disciplines. It also provides mathemati-
cians with compact constructs for presenting central ideas in probability, differ-
ential equations, and operations research.

The third edition of this book presents the fundamental structures of linear
algebra and develops the foundation for using those structures. Many of the con-
cepts in linear algebra are abstract; indeed, linear algebra introduces students to
formal deductive analysis. Formulating proofs and logical reasoning are skills
that require nurturing, and it has been our aim to provide this.

We have streamlined our approach, in this third edition, while striving to have
the material presented in a more logical and orderly manner. Regarding math-
ematical rigor, in the early sections, the proofs are relatively simple, not more
than a few lines in length, and deal with concrete structures, such as matrices.
Complexity builds as the book progresses.

We have also introduced some graph theoretical concepts in this edition of Linear
Algebra. Matrices associated with graphs have been studied extensively, and we
attempt to introduce the reader to some of these matrices and their applications.

A number of learning aids are included to assist readers. New concepts are care-
fully introduced and tied to the reader’s experience. In the beginning, the basic
concepts of matrix algebra are made concrete by relating them to a store’s inven-
tory. Linear transformations are tied to more familiar functions, and vector
spaces are introduced in the context of column matrices. Illustrations give geo-
metrical insight on the number of solutions to simultaneous linear equations,
vector arithmetic, determinants, and projections to list just a few.

As in the previous edition, we have highlighted material to emphasize important
ideas throughout the text. Computational methods—for calculating the inverse
of a matrix, performing a Gram-Schmidt orthonormalization process, or the
like—are presented as a sequence of operational steps. Theorems are clearly
marked, and there is a summary of important terms and concepts at the end

ix



of each chapter. Each section ends with numerous exercises of progressive diffi-
culty, allowing readers to gain proficiency in the techniques presented and
expand their understanding of the underlying theory.

For about two-thirds of the text, the only prerequisite for understanding this
material is a facility with high-school algebra. These topics can be covered in
any course of 10 weeks or more in duration. Depending on the background
of the readers, selected applications and numerical methods may also be consid-
ered in a quarter system.

We would like to thank the many people who helped shape the focus and con-
tent of this book; in particular, the administrative and educational leaders at
Fairleigh Dickinson University, Seton Hall University and West Point.

I, Gabriel Costa, would particularly like to thank my Archbishop, the Most Rev-
erend John J. Myers, J.C.D., D.D., for his continued support and blessing
throughout the years. I would also like to acknowledge Dr. Bethany Kubik for
her professional assistance. I, John T. Saccoman, would like to acknowledge
the influence of the late Professor Frank Boesch of Stevens Institute of Technol-
ogy, and the assistance of Dr. Sarah Bleiler and Dr. John J. Saccoman.

Lastly, our heartfelt gratitude is given to the bevy of professionals at Elsevier,
whom we have been privileged to work. They have provided us with valuable
suggestions and technical expertise throughout this endeavor.
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1.1 BASIC CONCEPTS
We live in a complex world of finite resources, competing demands, and infor-
mation streams that must be analyzed before resources can be allocated fairly to
the demands for those resources. Any mechanism that makes the processing of
information more manageable is a mechanism to be valued.

Consider an inventory of T-shirts for one department of a large store. The T-shirt
comes in three different sizes and five colors, and each evening, the department’s
supervisor prepares an inventory report for management. A paragraph from such
a report dealing with the T-shirts is reproduced in Figure 1.1.

This report is not easy to analyze. In particular, one must read the entire para-
graph to determine the number of sand-colored, small T-shirts in current stock.
In contrast, the rectangular array of data presented in Figure 1.2 summarizes the
same information better. Using Figure 1.2, we see at a glance that no small, sand-
colored T-shirts are in stock.

A matrix is a rectangular array of elements arranged in horizontal rows and ver-
tical columns. The array in Figure 1.1 is a matrix, as are

A matrix is a rectangular
array of elements
arranged in horizontal
rows and vertical
columns.

1
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L ¼
1 3
5 2
0 �1

2
4

3
5, ð1:1Þ

M ¼
4 1 1
3 2 1
0 4 2

2
4

3
5, ð1:2Þ

and

N ¼
19:5
�pffiffiffi
2

p

2
4

3
5: ð1:3Þ

The rows and columns of amatrixmay be labeled, as in Figure 1.1, or not labeled,
as in matrices (1.1) through (1.3).

The matrix in Equation (1.1) has three rows and two columns; it is said to have
order (or size) 3�2 (read three by two). By convention, the row index is always
given before the column index. The matrix in Equation (1.2) has order 3�3,
whereas that in Equation (1.3) has order 3�1. The order of the stock matrix
in Figure 1.2 is 3�5.

The entries of a matrix are called elements. We use uppercase boldface letters to
denotematrices and lowercase letters for elements. The letter identifier for an ele-
ment is generally the same letter as its host matrix. Two subscripts are attached to
element labels to identify their location in a matrix; the first subscript specifies
the row position and the second subscript the column position. Thus, l12 denotes
the element in the first row and second column of a matrix L; for the matrix L in

T-shirts

Nine teal small and five teal medium; eight
plum small and six plum medium; large sizes
are nearly depleted with only three sand, one
rose, and two peach still available; we also
have three medium rose, five medium sand,
one peach medium, and seven peach small.

FIGURE 1.1

s =

Rose
0

0 0

9 8 0 7
65 53

31
1
2

Teal Plum Sand Peach

small
medium
large

FIGURE 1.2
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Equation (1.2), l12¼3. Similarly, m32 denotes the element in the third row and
second column of a matrix M; for the matrix M in Equation (1.3), m32¼4.
In general, a matrix A of order p�n has the form

A ¼

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
..
. ..

. ..
. . .

. ..
.

ap1 ap2 ap3 . . . apn

2
666664

3
777775 ð1:4Þ

which is often abbreviated to [aij]p�n or just [aij], where aij denotes an element in
the ith row and jth column.

Any element having its row index equal to its column index is a diagonal element.
Diagonal elements of a matrix are the elements in the 1-1 position, 2-2 position,
3-3 position, and so on, for as many elements of this type that exist in a particular
matrix.Matrix (1.1)has1and2as itsdiagonal elements,whereasmatrix (1.2)has4,
2, and 2 as its diagonal elements. Matrix (1.3) has only 19.5 as a diagonal element.

A matrix is square if it has the same number of rows as columns. In general,
a square matrix has the form

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
..
. ..

. ..
. . .

. ..
.

an1 an2 an3 . . . ann

2
666664

3
777775

with the elements a11, a22, a33, . . . , ann forming the main (or principal) diagonal.

The elements of a matrix need not be numbers; they can be functions or, as we
shall see later, matrices themselves. Hence

ð1
0

t2 þ 1
� �

dt t3
ffiffiffiffiffi
3t

p
2

2
4

3
5,

sin y cos y
�cos y sin y

� �
,

and

x2 x
ex d

dx ln x

5 xþ 2

2
4

3
5

are all good examples of matrices.

A row matrix is a matrix having a single row; a column matrix is a matrix having
a single column. The elements of such a matrix are commonly called its

Matrices CHAPTER 1 3



components, and the number of components its dimension. We use lowercase
boldface letters to distinguish rowmatrices and columnmatrices frommore gen-
eral matrices. Thus,

x ¼
1
2
3

2
4

3
5

is a 3-dimensional column vector, whereas

u ¼ t 2t �t 0½ �
is a 4-dimensional row vector. The term n-tuple refers to either a row matrix or a
column matrix having dimension n. In particular, x is a 3-tuple because it has
three components while u is a 4-tuple because it has four components.

Two matrices A¼ [aij] and B¼ [bij] are equal if they have the same order and if
their corresponding elements are equal; that is, both A and B have order p�n
and aij¼bij (i¼1, 2, 3, . . . , p; j¼1, 2, . . . , n). Thus, the equality

5xþ 2y
x� y

� �
¼ 7

1

� �
implies that 5xþ2y¼7 and x�3y¼1.

Figure 1.2 lists a stock matrix for T-shirts as

S ¼
Rose Teal Plum Sand Peach
0 9 8 0 7
3 5 6 5 1
1 0 0 3 2

2
664

3
775 small
medium
large

If the overnight arrival of new T-shirts is given by the delivery matrix

D ¼
Rose Teal Plum Sand Peach
9 0 0 9 0
3 3 3 3 3
6 8 8 6 6

2
664

3
775 small
medium
large

then the new inventory matrix is

SþD ¼
Rose Teal Plum Sand Peach
9 9 8 9 7
6 8 9 8 4
7 8 8 9 8

2
664

3
775 small
medium
large

The sum of two matrices of the same order is a matrix obtained by adding together
corresponding elements of the original two matrices; that is, if both A¼ [aij] and
B¼ [bij] have order p�n, then AþB¼ [aijþbij](i¼1,2,3, . . . ,p; j¼1,2, . . . ,n).
Addition is not defined for matrices of different orders.

An n-tuple is a row matrix
or a column matrix
having n-components.

Two matrices are equal
if they have the same
order and if their
corresponding elements
are equal.

The sum of two matrices
of the same order is
the matrix obtained
by adding together
corresponding elements
of the original two
matrices.

Linear Algebra4



Example 1

5 1
7 3

�2 �1

2
4

3
5þ

�6 3
2 �1
4 1

2
4

3
5 ¼

5þ �6ð Þ 1þ 3
7þ 2 3þ �1ð Þ
�2þ 4 �1þ 1

2
4

3
5 ¼

�1 4
9 2
2 0

2
4

3
5,

and

t2 5
3t 0

� �
þ 1 �6

t �t

� �
¼ t2 þ 1 �1

4t �t

� �
:

The matrices

5 0
�1 2
2 1

2
4

3
5 and

�6 2
1 1

� �

cannot be added because they are not of the same order.

▶THEOREM 1
If matrices A, B, and C all have the same order, then

(a) the commutative law of addition holds; that is,

Aþ B ¼ Bþ A,

(b) the associative law of addition holds; that is,

Aþ Bþ Cð Þ ¼ Aþ Bð Þ þ C:◀

Proof: We leave the proof of part (a) as an exercise (see Problem 38). To prove
part (b), we set A¼ [aij], B¼ [bij], and C¼ [cij]. Then

A þ Bþ Cð Þ ¼ aij
� �þ bij

� �þ ½cij�
� �

¼ aij
� �þ bij þ cij

� �
definitionof matrix addition

¼ aij þ bij þ cij
� �� �

definitionof matrix addition

¼ aij þ bij
� �þ cij
� �

associativeproperty of regular addition

¼ aij þ bij
� �� �þ cij

� �
definitionof matrix addition

¼ aij
� �þ bij

� �� �þ cij
� �

definitionof matrix addition

¼ A þ Bð Þ þ C

We define the zero matrix 0 to be a matrix consisting of only zero elements.
When a zero matrix has the same order as another matrix A, we have the addi-
tional property

A þ 0 ¼ A ð1:5Þ

The difference A�B of
two matrices of the same
order is the matrix
obtained by subtracting
from the elements of A
the corresponding
elements of B.

Matrices CHAPTER 1 5



Subtraction of matrices is defined analogously to addition; the orders of the
matrices must be identical and the operation is performed elementwise on all
entries in corresponding locations.

Example 2

5 1
7 3

�2 �1

2
4

3
5�

�6 3
2 �1
4 1

2
4

3
5 ¼

5� �6ð Þ 1� 3
7� 2 3� �1ð Þ
�2� 4 �1� 1

2
4

3
5 ¼

11 �2
5 4

�6 �2

2
4

3
5

Example 3 The inventory of T-shirts at the beginning of a business day is given by
the stock matrix

S ¼
Rose Teal Plum Sand Peach

9 9 8 9 7

6 8 9 8 4

7 8 8 9 8

2
6664

3
7775 small
medium
large

What will the stock matrix be at the end of the day if sales for the day are five
small rose, three medium rose, two large rose, five large teal, five large plum, four
medium plum, and one each of large sand and large peach?

Solution: Purchases for the day can be tabulated as

P ¼

Rose Teal Plum Sand Peach

5 0 0 0 0

3 0 4 0 0

2 5 5 1 1

2
6664

3
7775 small
medium
large

The stock matrix at the end of the day is

S� P ¼
Rose Teal Plum Sand Peach

4 9 8 9 7

3 8 5 8 4

5 3 3 8 7

2
6664

3
7775 small
medium
large

AmatrixA canalwaysbeadded to itself, forming the sumAþA. IfA tabulates inven-
tory, AþA represents a doubling of that inventory, and we would like to write

A þ A ¼ 2A ð1:6Þ
The right side of Equation (1.6) is a number times a matrix, a product known as
scalar multiplication. If the equality in Equation (1.6) is to be true, we must define
2A as the matrix having each of its elements equal to twice the corresponding
elements in A. This leads naturally to the following definition: If A¼ [aij] is a
p�n matrix, and if l is a real number, then

lA ¼ laij
� �

i ¼ 1, 2, . . . , p; j ¼ 1, 2, . . . , nð Þ ð1:7Þ

The product of a scalar l
by a matrix A is the
matrix obtained by
multiplying every
element of A by l.

Linear Algebra6



Equation (1.7) can also be extended to complex numbers l, so we use the
term scalar to stand for an arbitrary real number or an arbitrary complex
number when we need to work in the complex plane. Because Equation (1.7)
is true for all real numbers, it is also true when l denotes a real-valued
function.

Example 4

7

5 1

7 3

�2 �1

2
4

3
5 ¼

35 7

49 21

�14 �7

2
4

3
5 and t

1 0

3 2

� �
¼ t 0

3t 2t

� �

Example 5 Find 5A � 1

2
B if

A ¼ 4 1
0 3

� �
and B ¼ 6 �20

18 8

� �

Solution:

5A � 1

2
B ¼ 5

4 1

0 3

� �
� 1

2

6 �20

18 8

� �

¼ 20 5

0 15

� �
� 3 �10

9 4

� �
¼ 17 15

�9 11

� �

▶THEOREM 2
IfA andB arematrices of the same order and if l1 and l2 denote scalars, then the following
distributive laws hold:

(a) l1(AþB)¼l1Aþl2B
(b) (l1þl2)A¼l1Aþl2A
(c) (l1l2)A¼l1(l2A)◀

Proof: We leave the proofs of (b) and (c) as exercises (see Problems 40 and 41).
To prove (a), we set A¼ [aij] and B¼ [bij]. Then

l1 A þ Bð Þ ¼ l1 aij
� �þ bij

� �� �
¼ l1 aij þ bij

� �� �
definitionof matrix addition

¼ l1 aij þ bij
� �� �

definitionof scalarmultiplication

¼ l1aij þ l1bij
� �� �

distributiveproperty of scalars

¼ l1aij
� �þ l1bij

� �
definitionof matrix addition

¼ l1 aij
� �þ l1 bij

� �
definitionof scalarmultiplication

¼ l1 Aþl1B

Matrices CHAPTER 1 7



Problems 1.1
(1) Determine the orders of the following matrices:

A ¼ 1 2
3 4

� �
, B ¼ 5 6

7 8

� �
, C ¼ �1 0

3 �3

� �
,

D ¼
3 1

�1 2
3 �2
2 6

2
664

3
775, E ¼

�2 2
0 �2
5 �3
5 1

2
664

3
775, F ¼

0 1
�1 0
0 0
2 2

2
664

3
775,

G ¼ 1=2 1=3 1=4
2=3 3=5 �5=6

� �
, H ¼

ffiffiffi
2

p ffiffiffi
3

p ffiffiffi
5

pffiffiffi
2

p ffiffiffi
5

p ffiffiffi
2

pffiffiffi
5

p ffiffiffi
2

p ffiffiffi
3

p

2
4

3
5,

J ¼ 0 0 0 0 0½ �:
(2) Find, if they exist, the elements in the 1-2 and 3-1 positions for each of the

matrices defined in Problem 1.

(3) Find, if they exist, a11, a21, b32, d32, d23, e22, g23, h33, and j21 for the matrices
defined in Problem 1.

(4) Determine which, if any, of the matrices defined in Problem 1 are square.

(5) Determine which, if any, of the matrices defined in Problem 1 are row
matrices and which are column matrices.

(6) Construct a 4-dimensional column matrix having the value j as its jth
component.

(7) Construct a 5-dimensional row matrix having the value i2 as its ith
component.

(8) Construct the 2�2 matrix A having aij¼ (�1)iþj.

(9) Construct the 3�3 matrix A having aij¼ i/j.

(10) Construct the n�n matrix B having bij¼n� i� j. What will this matrix be
when specialized to the 3�3 case?

(11) Construct the 2�4 matrix C having

cij ¼ i when i ¼ 1
j when i ¼ 2

	
(12) Construct the 3�4 matrix D having

dij ¼
iþ j when i > j
0 when i ¼ j

i� j when i < j

8<
:

9=
;

Linear Algebra8



In Problems 13 through 30, perform the indicated operations on the matrices
defined in Problem 1.

(13) 2A. (14) �5A. (15) 3D. (16) 10E.

(17) �F. (18) AþB. (19) CþA. (20) DþE.

(21) DþF. (22) AþD. (23) A�B. (24) C�A.

(25) D�E. (26) D�F. (27) 2Aþ3B. (28) 3A�2C.

(29) 0.1Aþ0.2C. (30) �2EþF.

The matrices A through F in Problems 31 through 36 are defined in Problem 1.

(31) Find X if AþX¼B.

(32) Find Y if 2BþY¼C.

(33) Find X if 3D�X¼E.

(34) Find Y if E�2Y¼F.

(35) Find R if 4Aþ5R¼10C.

(36) Find S if 3 F�2S¼D.

(37) Find 6A�yB if

A ¼ y2 2y� 1

4 1=y

� �
and B ¼ y2 � 1 6

3=y y2 þ 2yþ 1

� �
:

(38) Prove part (a) of Theorem 1.

(39) Prove that if 0 is a zero matrix having the same order as A, then Aþ0¼A.

(40) Prove part (b) of Theorem 2.

(41) Prove part (c) of Theorem 2.

(42) Store 1 of a three-store chain has 3 refrigerators, 5 stoves, 3 washing
machines, and 4 dryers in stock. Store 2 has in stock no refrigerators, 2
stoves, 9 washing machines, and 5 dryers; while store 3 has in stock 4 refrig-
erators, 2 stoves, and no washing machines or dryers. Present the inventory
of the entire chain as a matrix.

(43) The number of damaged items delivered by the SleepTight Mattress
Company from its various plants during the past year is given by the damage
matrix

80 12 16

50 40 16

90 10 50

2
64

3
75

Matrices CHAPTER 1 9



The rows pertain to its three plants in Michigan, Texas, and Utah; the col-
umns pertain to its regular model, its firm model, and its extra-firmmodel,
respectively. The company’s goal for next year is to reduce by 10% the num-
ber of damaged regular mattresses shipped by each plant, to reduce by 20%
the number of damaged firm mattresses shipped by its Texas plant, to
reduce by 30% the number of damaged extra-firm mattresses shipped by
its Utah plant, and to keep all other entries the same as last year. What will
next year’s damage matrix be if all goals are realized?

(44) On January 1, Ms. Smith buys three certificates of deposit from different
institutions, all maturing in one year. The first is for $1000 at 7%, the sec-
ond is for $2000 at 7.5%, and the third is for $3000 at 7.25%. All interest
rates are effective on an annual basis. Represent in a matrix all the relevant
information regarding Ms. Smith’s investments.

(45) (a) Mr. Jones owns 200 shares of IBM and 150 shares of AT&T. Construct a
1�2 portfolio matrix that reflects Mr. Jones’ holdings.

(b) Over the next year, Mr. Jones triples his holdings in each company.
What is his new portfolio matrix?

(c) The following year, Mr. Jones sells shares of each company in his port-
folio. The number of shares sold is given by the matrix [50100], where
the first component refers to shares of IBM stock. What is his new port-
folio matrix?

(46) The inventory of an appliance store can be given by a 1�4 matrix in which
the first entry represents the number of television sets, the second entry the
number of air conditioners, the third entry the number of refrigerators, and
the fourth entry the number of dishwashers.
(a) Determine the inventory given on January 1 by [152 86].
(b) January sales are given by [40 23]. What is the inventory matrix on

February 1?
(c) February sales are given by [50 33], and new stock added in February is

given by [32 78]. What is the inventory matrix on March 1?

(47) The daily gasoline supply of a local service station is given by a 1�3 matrix
in which the first entry represents gallons of regular, the second entry gal-
lons of premium, and the third entry gallons of super.
(a) Determine the supply of gasoline at the close of business on Monday

given by [14,000 8000 6000].
(b) Tuesday’s sales are given by [350020001500]. What is the inventory

matrix at day’s end?
(c) Wednesday’s sales are given by [500015001200]. In addition, the

station received a delivery of 30,000 gallons of regular, 10,000 gallons
of premium, but no super. What is the inventory at day’s end?

1.2 MATRIX MULTIPLICATION
Matrix multiplication is the first operation where our intuition fails. First, two
matrices are not multiplied together elementwise. Second, it is not always
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possible to multiply matrices of the same order while often it is possible to mul-
tiply matrices of different orders. Our purpose in introducing a new construct,
such as the matrix, is to use it to enhance our understanding of real-world phe-
nomena and to solve problems that were previously difficult to solve. A matrix is
just a table of values, and not really new. Operations on tables, such as matrix
addition, are new, but all operations considered in Section 1.1 are natural exten-
sions of the analogous operations on real numbers. If we expect to use matrices
to analyze problems differently, we must change something, and that something
is the way we multiply matrices.

The motivation for matrix multiplication comes from the desire to solve systems
of linear equations with the same ease and in the same way as one linear equa-
tion in one variable. A linear equation in one variable has the general form

constant½ �� variable½ � ¼ constant

We solve for the variable by dividing the entire equation by the multiplicative
constant on the left. We want to mimic this process for many equations in many
variables. Ideally, we want a single master equation of the form

package

of

constants

2
4

3
5: package

of

variables

2
4

3
5 ¼

package

of

constants

2
4

3
5

which we can divide by the package of constants on the left to solve for all the
variables at one time. To do this, we need an arithmetic of “packages,” first to
define the multiplication of such “packages” and then to divide “packages” to
solve for the unknowns. The “packages” are, of course, matrices.

A simple system of two linear equations in two unknowns is

2xþ 3y ¼ 10

4xþ 5y ¼ 20
ð1:8Þ

Combining all the coefficients of the variables on the left of each equation into a
coefficient matrix, all the variables into column matrix of variables, and the con-
stants on the right of each equation into another columnmatrix, we generate the
matrix system

2 3

4 5

� �
� x

y

� �
¼ 10

20

� �
ð1:9Þ

We want to define matrix multiplication so that system (1.9) is equivalent to
system (1.8); that is, we want multiplication defined so that

2 3

4 5

� �
� x

y

� �
¼ 2xþ 3yð Þ

4xþ 5yð Þ
� �

ð1:10Þ
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Then system (1.9) becomes

2xþ 3yð Þ
4xþ 5yð Þ

� �
¼ 10

20

� �

which, from our definition of matrix equality, is equivalent to system (1.8).

We shall define the product AB of two matrices A and B when the number of col-
umns of A is equal to the number of rows of B, and the result will be a matrix
having the same number of rows as A and the same number of columns as B.
Thus, if A and B are

A ¼ 6 1 0

�1 2 1

� �
and B ¼

�1 0 1 0

3 2 �2 1

4 1 1 0

2
64

3
75

then the product AB is defined, because A has three columns and B has three
rows. Furthermore, the product AB will be 2�4 matrix, because A has two rows
and B has four columns. In contrast, the product BA is not defined, because the
number of columns in B is a different number from the number of rows in A.

A simple schematic for matrix multiplication is to write the orders of thematrices
to be multiplied next to each other in the sequence the multiplication is to be
done and then check whether the abutting numbers match. If the numbers
match, then the multiplication is defined and the order of the product matrix
is found by deleting the matching numbers and collapsing the two “�” symbols
into one. If the abutting numbers do not match, then the product is not defined.

In particular, if AB is to be found for A having order 2�3 and B having order
3�4, we write

where the abutting numbers are distinguished by the curved arrow. These abut-
ting numbers are equal, both are 3, hence the multiplication is defined. Further-
more, by deleting the abutting threes in Equation (1.11), we are left with 2�2,
which is the order of the product AB. In contrast, the product BA yields the
schematic

where we write the order of B before the order of A because that is the order of the
proposed multiplication. The abutting numbers are again distinguished by the
curved arrow, but here the abutting numbers are not equal, one is 4 and the other
is 2, so the product BA is not defined. In general, if A is an n� rmatrix and B is an
r�p matrix, then the product AB is defined as an n�p matrix. The schematic is

The product of two
matrices AB is defined
if the number of
columns of A equals the
number of rows of B.
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When the product AB is considered, A is said to premultiply B while B is said to
postmultiply A.

Knowing the order of a product is helpful in calculating the product. If A and B
have the orders indicated in Equation (1.12), so that the multiplication is
defined, we take as our motivation the multiplication in Equation (1.10) and
calculate the i-j element (i¼1,2, . . . , n; j¼1,2, . . . , p) of the product AB¼C¼ [cij]
by multiplying the elements in the ith row of A by the corresponding elements
in the jth row column of B and summing the results. That is,

a11 a12 . . . a1r

a21 a22 . . . a2r

..

. ..
. ..

. ..
.

an1 an2 . . . anr

2
666664

3
777775

b11 b12 . . . b1p

b21 b22 . . . b2p

..

. ..
. ..

. ..
.

br1 br2 . . . brp

2
666664

3
777775 ¼

c11 c12 . . . a1p

c21 c22 . . . c2p

..

. ..
. ..

. ..
.

cn1 cn2 . . . cnp

2
666664

3
777775

where

cij ¼ ai1b1j þ ai2b2j þ ai3b3j þ � � � þ airbrj ¼
Xr

k¼1

aikbkj

In particular, c11 is obtained by multiplying the elements in the first row of A by
the corresponding elements in the first column of B and adding; hence

c11 ¼ a11b11 þ a12b21 þ a13b31 þ � � � þ a1rbr1

The element c12 is obtained by multiplying the elements in the first row of A by
the corresponding elements in the second column of B and adding; hence

c12 ¼ a11b12 þ a12b22 þ a13 b32 þ � � � þ a1rbr2

The element c35, if it exists, is obtained by multiplying the elements in the third
row of A by the corresponding elements in the fifth column of B and adding;
hence

c35 ¼ a31b15 þ a32b25 þ a33b35 þ � � � þ a3rbr5

Example 1 Find AB and BA for

A ¼ 1 2 3

4 5 6

� �
and B ¼

�7 �8

9 10

0 �11

2
64

3
75

Solution:A has order 2�3 andB has order 3�2, so our schematic for the product
AB is

The abutting numbers are both 3; hence the product AB is defined. Deleting both
abutting numbers, we have 2�2 as the order of the product.

To calculate the i-j
element of AB, when the
multiplication is defined,
multiply the elements in
the ith row of A by the
corresponding elements
in the jth column of B and
sum the results.
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AB ¼ 1 2 3

4 5 6

� � �7 �8

9 10

0 �11

2
64

3
75

¼ 1 �7ð Þ þ 2 9ð Þ þ 3 0ð Þ 1 �8ð Þ þ 2 10ð Þ þ 3 �11ð Þ
4 �7ð Þ þ 5 9ð Þ þ 6 0ð Þ 4 �8ð Þ þ 5 10ð Þ þ 6 �11ð Þ

� �

¼ 11 �21

17 �48

� �

Our schematic for the product BA is

The abutting numbers are now both 2; hence the product BA is defined.
Deleting both abutting numbers, we have 3�3 as the order of the
product BA.

BA ¼
�7 �8

9 10

0 �11

2
64

3
75 1 2 3

4 5 6

� �

¼
�7ð Þ1þ �8ð Þ4 �7ð Þ2þ �8ð Þ5 �7ð Þ3þ �8ð Þ6
9 1ð Þ þ 10 4ð Þ 9 2ð Þ þ 10 5ð Þ 9 3ð Þ þ 10 6ð Þ
0 1ð Þ þ �11ð Þ4 0 2ð Þ þ �11ð Þ5 0 3ð Þ þ �11ð Þ6

2
64

3
75

¼
�39 �54 �69

48 68 87

�44 �55 �66

2
64

3
75

Example 2 Find AB and BA for

A ¼
2 1

�1 0
3 1

2
4

3
5 and B ¼ 3 1 5 �1

4 �2 1 0

� �

Solution: A has two columns and B has two rows, so the product AB is defined.

AB ¼
2 1

�1 0

3 1

2
64

3
75 3 1 5 �1

4 �2 1 0

� �

¼
2 3ð Þ þ 1 4ð Þ 2 1ð Þ þ 1 �2ð Þ 2 5ð Þ þ 1 1ð Þ 2 �1ð Þ þ 1 0ð Þ

�1 3ð Þ þ 0 4ð Þ �1 1ð Þ þ 0 �2ð Þ �1 5ð Þ þ 0 1ð Þ �1 �1ð Þ þ 0 0ð Þ
3 3ð Þ þ 1 4ð Þ 3 1ð Þ þ 1 �2ð Þ 3 5ð Þ þ 1 1ð Þ 3 �1ð Þ þ 1 0ð Þ

2
64

3
75

¼
10 0 11 �2

�3 �1 �5 1

13 1 16 �3

2
64

3
75
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In contrast, B has four columns and A has three rows, so the product BA is not
defined.

Observe from Examples 1 and 2 that AB 6¼BA! In Example 1, AB is a 2�2
matrix, whereas BA is a 3�3 matrix. In Example 2, AB is a 3�4 matrix,
whereas BA is not defined. In general, the product of two matrices is not
commutative.

Example 3 Find AB and BA for

A ¼ 3 1
0 4

� �
and B ¼ 1 1

0 2

� �

Solution:

AB ¼ 3 1

0 4

� �
1 1

0 2

� �

¼ 3 1ð Þ þ 1 0ð Þ 3 1ð Þ þ 1 2ð Þ
0 1ð Þ þ 4 0ð Þ 0 1ð Þ þ 4 2ð Þ

� �

¼ 3 5

0 8

� �

BA ¼ 1 1

0 2

� �
3 1

0 4

� �

¼ 1 3ð Þ þ 1 0ð Þ 1 1ð Þ þ 1 4ð Þ
0 3ð Þ þ 2 0ð Þ 0 1ð Þ þ 2 4ð Þ

� �

¼ 3 5

0 8

� �

In Example 3, the products AB and BA are defined and equal. Although matrix
multiplication is not commutative, as a general rule, some matrix products are
commutative. Matrix multiplication also lacks other familiar properties besides
commutativity. We know from our experiences with real numbers that if the
product ab¼0, then either a¼0 or b¼0 or both are zero. This is not true, in gen-
eral, for matrices. Matrices exist for which AB¼0 without either A or B being zero
(see Problems 20 and 21). The cancellation law also does not hold for matrix
multiplication. In general, the equation AB¼AC does not imply that B¼C
(see Problems 22 and 23). Matrix multiplication, however, does retain some
important properties.

▶THEOREM 1
If A, B, and C have appropriate orders so that the following additions and multiplications

are defined, then

(a) A(BC)¼ (AB)C (associate lawofmultiplication)

(b) A(BþC)¼ABþAC (leftdistributive law)

(c) (BþC)A¼BAþCA (rightdistributive law)◀

In general, AB 6¼BA.
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Proof: We leave the proofs of parts (a) and (c) as exercises (see Problems 37
and 38). To prove part (b), we assume that A¼ [aij] is an m�n matrix and both
B¼ [bij] and C¼ [cij] are n�p matrices. Then

A Bþ Cð Þ ¼ aij
� �

bij
� �þ cij

� �� �
¼ aij

� �
bij þ cij
� �� �

definitionof matrix addition

¼
Xn
k¼1

aik bkj þ ckj
� �" #

definitionof matrixmultiplication

¼
Xn
k¼1

aikbkj þ aikckj

" #

¼
Xn
k¼1

aikbkj þ
Xn
k¼1

aikckj

" #

¼
Xn
k¼1

aikbkj

" #
þ

Xn
k¼1

aikbkj

" #
definitionof matrix addition

¼ aij
� �

bij
� �þ aij

� �
cij
� �

definitionof matrixmulitiplication

Withmultiplication defined as it is, we can decouple a system of linear equations
so that all of the variables in the system are packaged together. In particular, the
set of simultaneous linear equations

5x� 3y þ 2z ¼ 14

xþ y � 4z ¼ �7

7x� 3z ¼ 1

ð1:13Þ

can be written as the matrix equation Ax¼b where

A ¼
5 �3 2
1 1 �4
7 0 �3

2
4

3
5, x ¼

x
y
z

2
4

3
5, and b ¼

14
�7
1

2
4

3
5:

The columnmatrix x lists all the variables in Equation (1.13), the columnmatrix
b enumerates the constants on the right sides of the equations in Equation (1.13),
and the matrix A holds the coefficients of the variables. A is known as a coefficient
matrix and care must taken in constructing A to place all the x coefficients in the
first column, all the y coefficients in the second column, and all the z coefficients
in the third column. The zero in 3-2 location in A appears because the coefficient
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of y in the third equation of Equation (1.13) is zero. By redefining thematrices A,
x, and b appropriately, we can represent any system of simultaneous linear equa-
tions by the matrix equation

Ax ¼ b ð1:14Þ

Example 4 The system of linear equations

2xþ y � z ¼ 4

3xþ 2y þ 2w ¼ 0

x� 2y þ 3zþ 4w ¼ �1

has the matrix form Ax¼b with

A ¼
2 1 �1 0
3 2 0 2
1 �2 3 4

2
4

3
5, x ¼

x
y
z
w

2
664

3
775, and b ¼

4
0

�1

2
4

3
5:

We have accomplished part of the goal we set in the beginning of this section: to
write a system of simultaneous linear equations in the matrix form Ax¼b, where
all the variables are segregated into the column matrix x. All that remains is to
develop a matrix operation to solve the matrix equation Ax¼b for x. To do
so, at least for a large class of square coefficient matrices, we first introduce some
additional matrix notation and review the traditional techniques for solving sys-
tems of equations, because those techniques form the basis for the missing
matrix operation.

Problems 1.2
(1) Determine the orders of the following products if the order of A is 2�4, the

order of B is 4�2, the order of C is 4�1, the order of D is 1�2, and the
order of E is 4�4.

(a) AB, (b) BA, (c) AC, (d) CA, (e) CD, (f) AE,

(g) EB, (h) EA, (i) ABC, (j) DAE, (k) EBA, (l) EECD.

In Problems 2 through 19, find the indicated products for

A ¼ 1 2
3 4

� �
, B ¼ 5 6

7 8

� �
, C ¼ �1 0 1

3 �2 1

� �
, D ¼

1 1

�1 3

2 �2

2
4

3
5,

E ¼
�2 2 1

0 �2 �1

1 0 1

2
4

3
5, F ¼

0 1 2

�1 �1 0

1 2 3

2
4

3
5,

x ¼ 1 �2½ �, y ¼ 1 2 1½ �:

Any system of simulta-
neous linear equations
can be written as the
matrix equation Ax¼b.
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(2) AB. (3) BA. (4) AC. (5) BC. (6) CB. (7) xA.

(8) xB. (9) xC. (10) Ax. (11) CD. (12) DC. (13) yD.

(14) yC. (15) Dx. (16) xD. (17) EF. (18) FE. (19) yF.

(20) Find AB for A ¼ 2 6
3 9

� �
and B ¼ 3 �6

�1 2

� �
. Note that AB¼0 but neither

A nor B equals the zero matrix.

(21) Find AB for A ¼ 4 2

2 1

� �
and B ¼ 3 �4

�6 8

� �
.

(22) Find AB and AC for A ¼ 4 2
2 1

� �
, B ¼ 1 1

2 1

� �
, and C ¼ 2 2

0 �1

� �
:

What does this result imply about the cancellation law for matrices?

(23) Find AB and CB for A ¼ 3 2
1 0

� �
, B ¼ 2 4

1 2

� �
, and C ¼ 1 6

3 �4

� �
:

Show that AB¼CB but A 6¼C.

(24) Calculate the product
1 2
3 4

� �
x
y

� �
:

(25) Calculate the product

1 0 �1

3 1 1

1 3 0

2
4

3
5 x

y

z

2
4

3
5:

(26) Calculate the product
a11 a12
a21 a22

� �
x
y

� �
:

(27) Calculate the product
b11 b12 b13
b21 b22 b23

� � x

y

z

2
4

3
5:

(28) Evaluate the expression A2�4A�5I for the matrix A ¼ 1 2

4 3

� �
:

(29) Evaluate the expression (A� I)(Aþ2I) for the matrix A ¼ 3 5

�2 4

� �
:

(30) Evaluate the expression (I�A)(A2� I) for the matrix A ¼
2 �1 1

3 �2 1

0 0 1

2
4

3
5:

(31) Use the definition of matrix multiplication to show that

jthcolumnof ABð Þ ¼ A � jthcolumnof Bð Þ:
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(32) Use the definition of matrix multiplication to show that

ith rowof ABð Þ ¼ ith rowof Að Þ � B:

(33) Prove that if A has a row of zeros and B is any matrix for which the product
AB is defined, then AB also has a row of zeros.

(34) Show by example that if B has a row of zeros and A is any matrix for which
the product AB is defined, then AB need not have a row of zeros.

(35) Prove that if B has a column of zeros and A is anymatrix for which the prod-
uct AB is defined, then AB also has a column of zeros.

(36) Show by example that if A has a column of zeros and B is any matrix for
which the product AB is defined, then AB need not have a column of zeros.

(37) Prove part (a) of Theorem 1.

(38) Prove part (c) of Theorem 1.

In Problems 39 through 50, write each system in matrix form Ax¼b.

(39) 2xþ 3y ¼ 10
4x� 5y ¼ 11

(40) 5xþ 20y ¼ 80
�xþ 4y ¼ �64

(41) 3xþ 3y ¼ 100
3x� 8y ¼ 300
�xþ 2y ¼ 500

(42) xþ 3y ¼ 4
2x� y ¼ 1
�2x� 6y ¼ �8
4x� 9y ¼ �5
�6xþ 3y ¼ �3

(43) xþ y � z ¼ 0
3xþ 2y þ 4z ¼ 0

(44) 2x� y ¼ 12
�4x� z ¼ 15

(45) xþ 2y � 2z ¼ �1
2xþ y þ z ¼ 5
�xþ y � z ¼ �2

(46) 2xþ y � z ¼ 0
xþ 2y þ z ¼ 0
3x� y þ 2z ¼ 0

(47) xþ zþ y ¼ 2
3zþ 2xþ y ¼ 5
3y þ x ¼ 1

(48) xþ 2y � z ¼ 5
2x� y þ 2z ¼ 1
2xþ 2y � z ¼ 7
xþ 2y þ z ¼ 3

(49) 5xþ 3y þ 2zþ 4w ¼ 5
xþ y þ w ¼ 0
3xþ 2y þ 2z ¼ �3
xþ y þ 2zþ 3w ¼ 4

(50) 2x� y þ z� w ¼ 1
xþ 2y � zþ 2w ¼ �1
x� 3y þ 2z� 3w ¼ 2

(51) The price schedule for a Chicago to Los Angeles flight is given by

p ¼ 200 350 500½ �
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where row matrix elements pertain, respectively, to coach ticket prices,
business-class ticket prices and first-class ticket prices. The number of tickets
purchased in each class for a particular flight is given by the column matrix

n ¼
130
20
10

2
4

3
5

Calculate the products (a) pn and (b) np, and determine the significance
of each.

(52) The closing prices of a person’s portfolio during the pastweek are tabulated as

P ¼

40 40
1

2
40

7

8
41 41

3
1

4
3
5

8
3
1

2
4 3

7

8

10 9
3

4
10

1

8
10 9

5

8

2
666664

3
777775

where thecolumnspertain to thedaysof theweek,Monday throughFriday,and
the rows pertain to the prices of Orchard Fruits, Lion Airways, and Arrow Oil.
The person’s holdings in each of these companies are given by the rowmatrix

h ¼ 100 500 400½ �
Calculatetheproducts(a)hPand(b)Ph,anddeterminethesignificanceofeach.

(53) The time requirements for a company to produce three products is tabu-
lated in

T ¼
0:2 0:5 0:4
1:2 2:3 1:7
0:8 3:1 1:2

2
4

3
5

where the rows pertain to lamp bases, cabinets, and tables, respectively. The
columns pertain to the hours of labor required for cutting the wood, assem-
bling, and painting, respectively. The hourly wages of a carpenter to cut
wood, of a craftsperson to assemble a product, and of a decorator to paint
are given, respectively, by the columns of the matrix

w ¼
10:50
14:00
12:25

2
4

3
5

Calculate the product Tw and determine its significance.

(54) Continuing with the information provided in the previous problem,
assume further that the number of items on order for lamp bases, cabinets,
and tables, respectively, are given in the rows of

q ¼ 1000 100 200½ �
Calculate the product qTw and determine its significance.
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(55) The results of a flue epidemic at a college campus are collected in the matrix

F ¼
0:20 0:20 0:15 0:15

0:10 0:30 0:30 0:40

0:70 0:50 0:55 0:45

2
64

3
75

where each element is a percent converted to a decimal. The columns per-
tain to freshmen, sophomores, juniors, and seniors, respectively; whereas
the rows represent bedridden students, students who are infected but
ambulatory, and well students, respectively. The male-female composition
of each class is given by the matrix

C ¼

1050 950

1100 1050

360 500

860 1000

2
66664

3
77775:

Calculate the product FC and determine its significance.

1.3 SPECIAL MATRICES
Certain types of matrices appear so frequently that it is advisable to discuss them
separately. The transpose of a matrix A, denoted by AT, is obtained by converting
all the rows of A into the columns of AT while preserving the ordering of the
rows/columns. The first row of A becomes the first column of AT, the second
row of A becomes the second column of AT, and the last row of A becomes
the last column of AT. More formally, if A¼ [aij] is an n�pmatrix, then the trans-
pose of A, denoted by AT¼bbij

Tc, is a p�n matrix where aij
T¼aji.

Example 1 If A ¼
1 2 3

4 5 6

7 8 9

2
64

3
75, then AT ¼

1 4 7

2 5 8

3 6 9

2
64

3
75, while the transpose of

B ¼ 1 2 3 4
5 6 7 8

� �
isBT ¼

1 5
2 6
3 7
4 8

2
664

3
775:

▶THEOREM 1
The following properties are true for any scalar l and any matrices for which the indicated

additions and multiplications are defined:

(a) (AT)T¼A

(b) (lA)T¼lAT

(c) (AþB)T¼ATþBT

(d) (AB)T¼BTAT◀

The transpose A is
obtained by converting
all the rows of A into
columns while preserving
the ordering of the
rows/columns.
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Proof: We prove part (d) and leave the others as exercises (see Problems 21
through 23). Let A¼ [aij] and B¼ [bij] have orders n�m and m�p, so that the
product AB is defined. Then

ABð ÞT ¼ aij
� �

bij
� �� �T

¼
Xm
k¼1

aikbkj

" #T

definitionof matrixmultiplication

¼
Xm
k¼1

ajkbki

" #
definitionof the transpose

¼
Xm
k¼1

aTkjb
T
ik

" #
definitionof the transpose

¼
Xm
k¼1

bTika
T
kj

" #

¼ bTij

h i
aTij

h i
definitionof matrixmultiplication

¼ BTAT

Observation: The transpose of a product of matrices is not the product of the
transposes but rather the commuted product of the transposes.

AmatrixA is symmetric if it equals its own transpose; that is, if A¼AT. Amatrix A is
skew-symmetric if it equals the negative of its transpose; that is, if A¼�AT.

Example 2 A ¼
1 2 3
2 4 5
3 5 6

2
4

3
5 is symmetric while B ¼

0 2 �3
�2 0 1
3 �1 0

2
4

3
5 is

skew-symmetric.

A submatrix of a matrix A is a matrix obtained from A by removing any number of
rows or columns from A. In particular, if

A ¼
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

2
664

3
775 ð1:16Þ

then both B ¼ 10 12
14 16

� �
and C¼ [2 3 4] are submatrices of A. Here B is

obtained by removing the first and second rows together with the first and third
columns from A, while C is obtained by removing from A the second, third, and
fourth rows together with the first column. By removing no rows and no col-
umns from A, it follows that A is a submatrix of itself.

A submatrix of a
matrix A is a matrix
obtained from A by
removing any number of
rows or columns from A.
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A matrix is partitioned if it is divided into submatrices by horizontal and
vertical lines between rows and columns. By varying the choices of where
to place the horizontal and vertical lines, one can partition a matrix in differ-
ent ways. Thus,

AB ¼ CGþDJ


CHþDK

EGþ FJ


EHþ FK

" #

provided the partitioning was such that the indicated multiplications are
defined.

Example 3 Find AB if

Solution: From the indicated partitions, we find that

Note that we partitioned to make maximum use of the zero submatrices of both
A and B.

A zero row in a matrix is a row containing only zero elements, whereas a nonzero
row is a row that contains at least one nonzero element.

A matrix is partitioned if it
is divided into subma-
trices by horizontal and
vertical lines between
rows and columns.
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▶DEFINITION 1
A matrix is in row-reduced form if it satisfies the following four conditions:

(i) All zero rows appear below nonzero rows when both types are present in the matrix.

(ii) The first nonzero element in any nonzero row is 1.

(iii) All elements directly below (that is, in the same column but in succeeding rows from)

the first nonzero element of a nonzero row are zero.

(iv) The first nonzero element of any nonzero row appears in a later column (further to the

right) than the first nonzero element in any preceding row.◀

Row-reduced matrices are invaluable for solving sets of simultaneous linear
equations. We shall use these matrices extensively in succeeding sections, but
at present we are interested only in determining whether a given matrix is or
is not in row-reduced form.

Example 4

A ¼
1 1 �2 4 7

0 0 �6 5 7

0 0 0 0 0

0 0 0 0 0

2
6664

3
7775

is not in row-reduced form because the first nonzero element in the second row is
not 1. If a23 was 1 instead of�6, then the matrix would be in row-reduced form.

B ¼
1 2 3

0 0 0

0 0 1

2
4

3
5

is not in row-reduced form because the second row is a zero row and it appears
before the third row, which is a nonzero row. If the second and third rows had
been interchanged, then the matrix would be in row-reduced form.

C ¼
1 2 3 4

0 0 1 2

0 1 0 5

2
4

3
5

is not in row-reduced form because the first nonzero element in row two appears
in a later column, column 3, than the first nonzero element in row three. If the
second and third rows had been interchanged, then the matrix would be in row-
reduced form.

D ¼
1 �2 3 3

0 0 1 �3

0 0 1 0

2
4

3
5
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is not in row-reduced form because the first nonzero element in row two appears
in the third column and everything below this element is not zero. Had d33 been
zero instead of 1, then the matrix would be in row-reduced form.

For the remainder of this section, we restrict ourselves to square matrices, matri-
ces having the same number of rows as columns. Recall that themain diagonal of
an n�n matrix A¼ [aij] consists of all the diagonal elements a11, a22, . . . , ann.
A diagonal matrix is a square matrix having only zeros as non-diagonal elements.
Thus,

5 0

0 �1

" #
and

3 0 0

0 3 0

0 0 3

2
64

3
75

are both diagonal matrices or orders 2�2 and 3�3, respectively. A square zero
matrix is a special diagonal matrix having all its elements equal to zero.

An identity matrix, denoted as I, is a diagonal matrix having all its diagonal ele-
ments equal to 1. The 2�2 and 4�4 identity matrices are, respectively,

1 0

0 �1

� �
and

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

If A and I are square matrices of the same order, then

AI ¼ IA ¼ A: ð1:17Þ
A block diagonal matrix A is one that can be partitioned into the form

A ¼

A1 0
A2

A3

. .
.

0 Ak

2
666664

3
777775

where A1, A2, . . . , Ak are square submatrices. Block diagonal matrices are partic-
ularly easy to multiply because in partitioned form they act as diagonal matrices.

A matrix A¼ [aij] is upper triangular if aij¼0 for i> j; that is, if all elements below
themain diagonal are zero. If aij¼0 for i< j, that is, if all elements above themain
diagonal are zero, then A is lower triangular. Examples of upper and lower trian-
gular matrices are, respectively,

�1 2 4 1
0 1 3 �1
0 0 2 5
0 0 0 5

2
664

3
775 and

5 0 0 0
�1 2 0 0
0 1 3 0
2 1 4 1

2
664

3
775

An identity matrix I is a
diagonal matrix having all
its diagonal elements
equal to 1.
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▶THEOREM 2
The product of two lower (upper) triangular matrices of the same order is also lower (upper)

triangular.◀

Proof: Weprove this proposition for lower triangularmatrices and leave the upper
triangular case as an exercise (see Problem 35). Let A¼ [aij] and B¼ [bij] both be
n�n lower triangular matrices, and set AB¼C¼ [cij]. We need to show that C is
lower triangular, or equivalently, that cij¼0 when i< j. Now

cij ¼
Xn
k¼1

aikbkj ¼
Xj�1

k¼1

aikbkj þ
Xn
k¼1

aikbkj

We are given that both A and B are lower triangular, hence aik¼0 when i<k and
bkj¼0 when k< j. Thus,

Xj�1

k¼1

aikbkj ¼
Xj�1

k¼1

aik 0ð Þ ¼ 0

because in this summation k is always less than j. Furthermore, if we restrict i< j,
then Xn

k¼1

aikbkj ¼
Xn
k¼1

0ð Þbkj ¼ 0

because i< j�k. Thus, cij¼0 when i< j.

Finally, we define positive integral powers of matrix in the obvious manner:
A2¼AA, A3¼AAA¼AA2 and, in general, for any positive integer n

An ¼ AA . . .A|{z}
n�times

ð1:18Þ

For n¼0, we define A0¼ I.

Example 5 If A ¼ 1 �2
1 3

� �
, then A2 ¼ 1 �2

1 3

� �
1 �2
1 3

� �
¼ �1 �8

4 7

� �
It follows directly from part (d) of Theorem 1 that

A2
� �T ¼ AAð ÞT ¼ ATAT ¼ AT

� �2
,

which may be generalized to

Anð ÞT ¼ AT
� �n ð1:19Þ

for any positive integer n.
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Problems 1.3
(1) For each of the following pairs of matrices A and B, find the products (AB)T,

ATBT, and BTAT and verify that (AB)T¼BTAT.

(a) A ¼ 3 0
4 1

� �
, B ¼ �1 2 1

3 �1 0

� �
:

(b) A ¼ 2 2 2
3 4 5

� �
, B ¼

1
3
5

2
4
6

2
4

3
5:

(c) A ¼
1 5 �1
2 1 3
0 7 �8

2
4

3
5, B ¼

6 1 3
2 0 �1

�1 �7 2

2
4

3
5:

(2) Verify that (AþB)T¼ATþBT for the matrices given in part (c) of Problem 1.

(3) Find xTx and xxT for x ¼
2
3
4

2
4

3
5:

(4) Simplify the following expressions:

(a) (ABT)T

(b) (AþBT)TþAT

(c) [AT(BþCT)]T

(d) [(AB)TþC]T

(e) [(AþAT) (A�AT)]T.

(5) Which of the following matrices are submatrices of A ¼
1 2 3
4 5 6
7 8 9

2
4

3
5?

(a)
1 3
7 9

� �
, (b) [1], (c)

1 2
8 9

� �
, (d)

4 6
7 9

� �
:

(6) Identify all of the nonempty submatrices of A ¼ a b
c d

� �
:

(7) Partition A ¼
4 1 0 0
2 2 0 0
0 0 1 0
0 0 1 2

2
664

3
775 intoblockdiagonal formand thencalculateA2.

(8) Partition B ¼
3 2 0 0

�1 1 0 0
0 0 2 1
0 0 1 �1

2
664

3
775 into block diagonal form and then

calculate B2.
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(9) Use the matrices defined in Problems (7) and (8), partitioned into block
diagonal form, to calculate AB.

(10) Use partitioning to calculate A2 and A3 for

A ¼

1 0 0 0 0 0
0 2 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

2
6666664

3
7777775:

What is An for any positive integer n>3?

(11) Determinewhich, if any, of the followingmatrices are in row-reduced form:

A ¼
0 1 0 4 �7
0 0 0 1 2
0 0 0 0 1
0 0 0 0 0

2
664

3
775, B ¼

1 1 0 4 �7
0 1 0 1 2
0 0 1 0 1
0 0 0 1 5

2
664

3
775,

C ¼
1 1 0 4 �7
0 1 0 1 2
0 0 0 0 1
0 0 0 1 5

2
664

3
775, D ¼

0 1 0 4 �7
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0

2
664

3
775,

E ¼
2 2 2
0 2 2
0 0 2

2
4

3
5, F ¼

0 0 0
0 0 0
0 0 0

2
4

3
5,

G ¼
1 2 3
0 0 1
1 0 0

2
4

3
5, H ¼

0 0 0
0 1 0
0 0 0

2
4

3
5,

J ¼
0 1 1
1 0 2
0 0 0

2
4

3
5, K ¼

1 0 2
0 �1 1
0 0 0

2
4

3
5,

L ¼
2 0 0
0 2 0
0 0 0

2
4

3
5, M ¼

1 1=2 1=3
0 1 1=4
0 0 1

2
4

3
5,

N ¼
1 0 0
0 0 1
0 0 0

2
4

3
5, Q ¼ 0 1

1 0

� �
,
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R ¼ 1 1
0 0

� �
, S ¼ 1 0

1 0

� �
,

T ¼ 1 12
0 1

� �
:

(12) Determine which, if any, of the matrices in Problem 11 are upper
triangular.

(13) Must a square matrix in row-reduced form necessarily be upper triangular?

(14) Must an upper triangular matrix be in row-reduced form?

(15) Can amatrix be both upper triangular and lower triangular simultaneously?

(16) Show that AB¼BA for

A ¼
�1 0 0
0 3 0
0 0 1

2
4

3
5, and B ¼

5 0 0
0 3 0
0 0 2

2
4

3
5:

(17) Prove that if A and B are diagonal matrices of the same order, then AB¼BA.

(18) Does a 2�2 diagonal matrix commute with every other 2�2 matrix?

(19) Calculate the products AD and BD for

A ¼
1 1 1
1 1 1
1 1 1

2
4

3
5, B ¼

0 1 2
3 4 5
6 7 8

2
4

3
5, and D ¼

2 0 0
0 3 0
0 0 �5

2
4

3
5:

What conclusions can you make about postmultiplying a square matrix by
a diagonal matrix?

(20) Calculate the productsDA and DB for the matrices defined in Problem 19.
What conclusions can you make about premultiplying a square matrix by a
diagonal matrix?

(21) Prove that (AT)T¼A for any matrix A.

(22) Prove that (lA)T¼lAT for any matrix A and any scalar l.

(23) Prove that if A and B are matrices of the same order then (AþB)T¼ATþBT.

(24) Let A, B, and C be matrices of orders m�p, p� r, and r� s, respectively.
Prove that (ABC)T¼CTBTAT.

(25) Prove that if A is a square matrix, then B¼ (AþAT)/2 is a symmetric matrix.

(26) Prove that if A is a square matrix, then C¼ (A�AT)/2 is a skew-symmetric
matrix.
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(27) Use the results of the last two problems to prove that any square matrix
can be written as the sum of a symmetric matrix and a skew-symmetric
matrix.

(28) Write thematrix A in part (c) of Problem 1 as the sum of a symmetric matrix
and a skew-symmetric matrix.

(29) Write thematrix B in part (c) of Problem 1 as the sum of a symmetric matrix
and a skew-symmetric matrix.

(30) Prove that AAT is symmetric for any matrix A.

(31) Prove that the diagonal elements of a skew-symmetric matrix must
be zero.

(32) Prove that if a 2�2 matrix A commutes with every 2�2 diagonal matrix,
then A must be diagonal. Hint: Consider, in particular, the diagonal

matrix D ¼ 1 0
0 0

� �
:

(33) Prove that if a n�n matrix A commutes with every n�n diagonal matrix,
the A must be diagonal.

(34) Prove that if D¼ [dij] is a diagonal matrix, then D2¼ [dij
2].

(35) Prove that the product of two upper triangular matrices is upper
triangular.

1.4 LINEAR SYSTEMS OF EQUATIONS
Systems of simultaneous linear equations appear frequently in engineering
and scientific problems. The need for efficient methods that solve such
systems was one of the historical forces behind the introduction of matrices,
and that need continues today, especially for solution techniques that are appli-
cable to large systems containing hundreds of equations and hundreds of
variables.

A system of m-linear equations in n-variables x1, x2, . . . , xn has the general form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

ð1:20Þ

where the coefficients aij (i¼1, 2, . . . , m; j¼1, 2, . . . , n) and the quantities bi are
all known scalars. The variables in a linear equation appear only to the first
power and are multiplied only by known scalars. Linear equations do not involve
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products of variables, variables raised to powers other than one, or variables
appearing as arguments of transcendental functions.

For systems containing a few variables, it is common to denote the variables by
distinct letters such as x, y, and z. Such labeling is impractical for systems involv-
ing hundreds of variables; instead a single letter identifies all variables with dif-
ferent numerical subscripts used to distinguished different variables, such as x1,
x2, . . . , xn.

Example 1 The system

2xþ 3y � z ¼ 12, 000

4x� 5y þ 6z ¼ 35, 600

of two equations in the variables x, y, and z is linear, as is the system

20x1 þ 80x2 þ 35x3 þ 40x4 þ 55x5 ¼ �0:005

90x1 � 15x2 � 70x3 þ 25x4 þ 55x5 ¼ 0:015

30x1 þ 35x2 � 35x3 þ 10x4 þ 65x5 ¼ �0:015

of three equations with five variables x1, x2, . . . , x5. In contrast, the system

2xþ 3xy ¼ 25

4
ffiffiffi
x

p þ sin y ¼ 50

is not linear formany reasons: it contains a product xy of variables; it contains the
variable x raised to the one-half power; and it contains the variable y as the argu-
ment of the transcendental sine function.

As shown in Section 1.2, any linear system of form (1.20) can be rewritten in the
matrix form

Ax ¼ b ð1:14 repeatedÞ
with

A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

am1 am2 � � � amn

2
66664

3
77775, x ¼

x1

x2

..

.

xn

2
66664

3
77775, and b ¼

b1

b2

..

.

bm

2
66664

3
77775:

If m 6¼n, then A is not square and the dimensions of x and b will be different.

A solution to linear system (1.20) is a set of scalar values for the variables x1,
x2, . . . , xn that when substituted into each equation of the system makes each
equation true.

A solution to linear
system of equations is
a set of scalar values for
the variables that when
substituted into each
equation of the system
makes each
equation true.
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Example 2 The scalar values x¼2 and y¼3 are a solution to the system

3xþ 2y ¼ 12

6xþ 4y ¼ 24

A second solution is x¼�4 and y¼12. In contrast, the scalar values x¼1, y¼2,
and z¼3 are not a solution to the system

2xþ 3y þ 4z ¼ 20

4xþ 5y þ 6z ¼ 32

7xþ 8y þ 9z ¼ 40

because these values do not make the third equation true, even though they do
satisfy the first two equations of the system.

▶THEOREM 1
If x1 and x2 are two different solutions ofAx¼b, then z¼ax1þbx2 is also a solution for any
real numbers a and b with aþb¼1.◀

Proof: x1 and x2 are given as solutions of Ax¼b, hence Ax1¼b, and Ax2¼b. Then

Az ¼ A ax1 þ bx2ð Þ ¼ a Ax1ð Þ þ b Ax2ð Þ ¼ abþ bb ¼ aþ bð Þb ¼ b:

so z is also a solution.

Because there are infinitelymany ways to form aþb¼1 (let a be any real number
and set b¼1�a), it follows from Theorem 1 that once we identify two solutions
we can combine them into infinitely many other solutions. Consequently, the
number of possible solutions to a system of linear equations is either none,
one, or infinitely many.

The graph of a linear equation in two variables is a line in the plane; hence a sys-
tem of linear equations in two variables is depicted graphically by a set of lines.
A solution to such a system is a set of coordinates for a point in the plane that lies
on all the lines defined by the equations. In particular, the graphs of the equa-
tions in the system

xþ y ¼ 1

x� y ¼ 0
ð1:21Þ

are shown in Figure 1.3. There is only one point of intersection, and the coordi-
nates of this point x¼y¼1/2 is the unique solution to system (1.21). In contrast,
the graphs of the equations in the system

xþ y ¼ 1

xþ y ¼ 2
ð1:22Þ
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are shown in Figure 1.4. The lines are parallel and have no points of intersection,
so system (1.22) has no solution. Finally, the graphs of the equations in the
system

xþ y ¼ 0

2xþ 2y ¼ 0
ð1:23Þ

are shown in Figure 1.5. The lines overlap, hence every point on either line is a
point of intersection and system (1.23) has infinitely many solutions.

A system of simultaneous linear equations is consistent if it possesses at least one
solution. If no solution exists, the system is inconsistent. Systems (1.21) and
(1.23) are consistent; system (1.22) in inconsistent.

The graph of a linear equation in three variables is a plane in space; hence a sys-
tem of linear equations in three variables is depicted graphically by a set of
planes. A solution to such a system is the set of coordinates for a point in space
that lies on all the planes defined by the equations. Such a system can have no
solutions, one solution, or infinitely many solutions.

Figure 1.6 shows three planes that intersect at a single point, and it represents a
system of three linear equations in three variables with a unique solution.

4

3

3

x + y = 1

x - y = 0

2

2

1

1
x

y

(1/2, 1/2)

-3 -2

-2

-1
-1

FIGURE 1.3

4

3

3

x + y = 1

x + y = 2

2

2

1

1
x

y

−3 −2

−2

−1
−1

FIGURE 1.4
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Figures 1.7 and 1.8 show systems of planes that have no points that lie on all
three planes; each figure depicts a different system of three linear equations in
three unknowns with no solutions. Figure 1.9 shows three planes intersecting
at a line, and it represents a system of three equations in three variables with infi-
nitely many solutions, one solution corresponding to each point on the line.
A different example of infinitely many solutions is obtained by collapsing the

4

3

3

x + y = 0

2x + 2y = 0

2

2

1

1
x

y

−3 −2

−2

−1
−1

FIGURE 1.5

FIGURE 1.6

FIGURE 1.7
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three planes in Figure 1.7 onto each other so that each plane is an exact copy of
the others. Then every point on one plane is also on the other two.

System (1.20) is homogeneous if the right side of each equation is 0; that is, if
b1¼b2¼ . . .¼bm¼0. In matrix form, we say that the system Ax¼b is homoge-
neous if b¼0, a zero column matrix. If b 6¼0, which implies that at least one
component of b differs from 0, then the system of equations is nonhomogeneous.
System (1.23) is homogeneous; systems (1.21) and (1.22) are nonhomoge-
neous. One solution to a homogeneous system of equations is obtained by set-
ting all variables equal to 0. This solution is called the trivial solution. Thus, we
have the following theorem.

▶THEOREM 2
A homogeneous system of linear equations is consistent.◀

FIGURE 1.8

FIGURE 1.9

A homogeneous system
of linear equations has
the matrix form Ax¼0;
one solution is the trivial
solution x¼0.
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All the scalars contained in the system of equations Ax¼b appear in the coeffi-
cient matrix A and the column matrix b. These scalars can be combined into the
single partitioned matrix [A|b], known as the augmented matrix for the system of
equations.

Example 3 The system
x1 þ x2 � 2x3 ¼ �3

2x1 þ 5x2 þ 3x3 ¼ 11

�x1 þ 3x2 þ x3 ¼ 5

can be written as the matrix equation

1 1 �2
2 5 3

�1 3 1

2
4

3
5 x1

x2
x3

2
4

3
5 ¼

�3
11
5

2
4

3
5

which has as its augmented matrix

Ajb½ � ¼
1 1 �2
2 5 3

�1 3 1

�3
11
5








3
5:

2
4

Example 4Write the set of equation in x, y, and z associated with the augmented
matrix

Ajb½ � ¼ �2
0

1
4

3
5

� 



 8
�3

�

Solution: �2xþ y þ 3z ¼ 8

4y þ 5z ¼ �3

The traditional approach to solving a system of linear equations is to manipulate
the equations so that the resulting equations are easy to solve and have the same
solutions as the original equations. Three operations that alter equations but do
not change their solutions are:

(i) Interchange the positions of any two equations.

(ii) Multiply an equation by a nonzero scalar.

(iii) Add to one equation a scalar times another equation.

If we restate these operations in words appropriate to an augmented matrix, we
obtain the three elementary row operations:

(R1) Interchange any two rows in a matrix.

(R2) Multiply any row of a matrix by a nonzero scalar.

(R3) Add to one row of a matrix a scalar times another row of that same
matrix.

The augmented matrix
for Ax¼b is the
partitioned matrix [A|b].
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Gaussian elimination is a four-step matrix method, centered on the three elemen-
tary row operations, for solving simultaneous linear equations.

The new set of equations resulting from Step 3 is called the derived set, and it is
solved easily by back-substitution. Each equation in the derived set is solved for
the first unknown that appears in that equation with a nonzero coefficient,
beginning with the last equation and sequentially moving through the system
until we reach the first equation. By limiting Gaussian elimination to elementary
row operations, we are assured that the derived set of equations has the same
solutions as the original set.

Most of the work in Gaussian elimination occurs in the second step: the trans-
formation of an augmented matrix to row-reduced form. In transforming a
matrix to row-reduced form, it is advisable to adhere to three basic principles:

(i) Completely transform one column to the required form before consider-
ing another column.

(ii) Work on columns in order, from left to right.
(iii) Never use an operation that changes a zero in a previously transformed

column.

Example 5 Use Gaussian elimination to solve the system

xþ 3y ¼ 4,

2x� y ¼ 1,

3xþ 2y ¼ 5,

5xþ 15y ¼ 20:

Solution: The augmented matrix for this system is

1

2

3

5

3

�1

2

15
j 4

1

5

20

2
6664

3
7775

We transform this augmentedmatrix into row-reduced form using only the three
elementary row operations. The first nonzero element in the first row appears in
the 1-1 position, so use elementary row operation R3 to transform all other
elements in the first column to zero.

GAUSSIAN ELIMINATION
Step 1. Construct an augmented matrix for the given system of equations.

Step 2. Use elementary row operations to transform the augmented matrix into an

augmented matrix in row-reduced form.

Step 3. Write the equations associated with the resulting augmented matrix.

Step 4. Solve the new set of equations by back substitution.
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1 3
2 �1
3 2
5 15

j 4
1
5

20

2
664

3
775 !

1 3
0 �7
3 2
5 15

j 4
�7
5

20

2
664

3
775

by adding to the
second row �2
times the first row

!
1 3
0 �7
0 �7
5 15

j 4
�7
�7
20

2
664

3
775

by adding to the
third row �3
times the first row

!
1 3
0 �7
0 �7
0 0

j 4
�7
�7
0

2
664

3
775

by adding to the
fourth row �5
times the first row

The first row and the first column are correctly formatted, so we turn our atten-
tion to the second row and second column. We use elementary row operations
on the current augmented matrix to transform the first nonzero element in the
second row to one and then all elements under it, in the second column, to
zero. Thus,

!
1 3
0 �1
0 �7
0 0

j 4
�1
�7
0

2
664

3
775

by multiplying the
second row by �1/7

!
1 3
0 1
0 0
0 0

j 410
0

2
664

3
775

by adding to the
third row 7 times
the second row

This augmentedmatrix is in row-reduced form, and the system of equations asso-
ciated with it is the derived set

xþ 3y ¼ 4

y ¼ 1

0 ¼ 0

0 ¼ 0:

Solving the second equation for y and then the first equation for x, we obtain
x¼1 and y¼1 as the solution to both this last set of equations and also the orig-
inal set of equations.

When one element in a matrix is used to convert another element to zero by ele-
mentary row operation R3, the first element is called a, pivot. In Example 5, we

A pivot is transformed to
unity prior to using it to
cancel other elements
to zero.
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used the element in the 1-1 position first to cancel the element in the 2-1 position
and then to cancel the elements in the 3-1 and 4-1 positions. In each case, the
unity element in the 1-1 position was the pivot. Later, we used the unity element
in the 2-2 position to cancel the element �7 in the 3-2 position; here, the 2-2
element served as the pivot. We shall always use elementary row operation R2

to transform a pivot to unity before using the pivot to transform other elements
to zero.

Example 6 Use Gaussian elimination to solve the system

xþ 2y þ z ¼ 3,

2xþ 3y � z ¼ �6,

3x� 2y � 4z ¼ �2:

Solution: Transforming the augmented matrix for this system into row-reduced
form using only elementary row operations, we obtain

1 2 1
2 3 �1
3 �2 �4 j 3

�6
�2

2
64

3
75 !

1 2 1
0 �1 �3
3 �2 �4 j 3

�12
�2

2
64

3
75 by adding to

the second row �2
times the first row

!
1 2 1
0 �1 �3
0 �8 �7 j 3

�12
�11

2
64

3
75 by adding to

the third row �3
times the first row

!
1 2 1
0 1 3
0 �8 �7 j 3

�12
�11

2
64

3
75 by multiplying the

second row by �1

!
1 2 1
0 1 3
0 0 17 j 3

12
85

2
64

3
75 by adding to the

third row 8 times
the second row

!
1 2 1
0 1 3
0 0 1 j 3

12
5

2
64

3
75 by multiplying the

third row by 1/17

This augmented matrix is in row-reduced form; the derived set is

xþ 2y þ z ¼ 3

y þ 3z ¼ 12

z ¼ 5
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Solving the third equation for z, then the second equation for y, and lastly, the
first equation for x, we obtain x¼4, y¼�3, and z¼5 as the solution to both this
last system and the original system of equations.

Elementary row operation R1 is used to move potential pivots into more useful
locations by rearranging the positions of rows.

Example 7 Use Gaussian elimination to solve the system

2x3 þ 3x4 ¼ 0

x1 þ 3x3 þ x4 ¼ 0

x1 þ x2 þ 2x3 ¼ 0

Solution: The augmented matrix for this system is

0 0 2 3

1 0 3 1

1 1 2 0
j 00
0

2
64

3
75

Normally, we would use the element in the 1-1 position to transform to zero the
two elements directly below it, but we cannot because the 1-1 element is itself
zero. To move a nonzero element into the ideal pivot position, we interchange
the first row with either of the other two rows. The choice is arbitrary.

0 0 2 3
1 0 3 1
1 1 2 0 j 000

2
64

3
75 !

1 0 3 1
0 0 2 3
1 1 2 0 j 000

2
64

3
75 by interchanging the

first and second rows

!
1
0
0

0
0
1

3
2

�1

1
3

�1 j 000
2
64

3
75 by adding to the

third row �1 times
the first row

!
1 0 3 1
0 1 �1 �1
0 0 2 3 j 000

2
64

3
75 by interchanging the

second and third rows

!
1
0
0

0
1
0

3
�1
1

1
�1
3=2 j 000

2
64

3
75 by multiplying the

third row by 1/2

This augmented matrix is in row-reduced form; the derived set is

x1 þ 3x3 þ x4 ¼ 0

x2 � x3 � x4 ¼ 0

x3 þ 3

2
x4 ¼ 0
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We use the third equation to solve for x3, then the second equation to solve
for x2, and lastly, the first equation to solve for x1, because in each case
those are the variables that appear first in the respective equations. There is
no defining equation for x4, so this variable remains arbitrary, and we solve
for the other variables in terms of it. The solution to both this last set of equa-
tions and the original set of equations is x1¼ (7/2)x4, x2¼ (�1/2)x4 and
x3¼ (�3/2)x4 with x4 arbitrary. The solution can be written as the column
matrix

x ¼

x1

x2

x3

x4

2
66664

3
77775 ¼

7=2ð Þx4
�1=2ð Þx4
�3=2ð Þx4

x4

2
666664

3
777775 ¼ x4

2

7

�1

�3

2

2
666664

3
777775

Example 7 is a system of equations with infinitely many solutions, one for each
real number assigned to the arbitrary variable x4. Infinitely many solutions occur
when the derived set of equations is consistent and has more unknowns than
equations. If a derived set contains n variables and r equations, n> r, then each
equation in the derived set is solved for the first variable in that equation with a
nonzero coefficient; this defines r variables and leaves the remaining n� r vari-
ables as arbitrary. These arbitrary variables may be chosen in infinitely many
ways to produce solutions.

A homogeneous set of linear equations is always consistent. If such a system has
more variables than equations, then its derived set will also have more variables
than equations, resulting in infinitely many solutions. Thus, we have the follow-
ing important result:

▶THEOREM 3
A homogeneous system of linear equations containing more variables than equations has

infinitely many solutions.◀

In contrast to homogeneous systems, a nonhomogeneous system may
have no solutions. If a derived set of equations contains a false equation,
such as 0¼1, that set is inconsistent because no values for the variables
can make the false equation true. Because the derived set has the same
solutions as the original set, it follows that the original set is also
inconsistent.

Example 8 Use Gaussian elimination to solve the system

xþ 2y ¼ 2;

3xþ 6y ¼ 7:

If the solution to a derived
set involves at least one
arbitrary unknown, then
the original system has
infinitely many solutions.

If a derived set contains a
false equation, then the
original set of equations
has no solution.
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Solution: Transforming the augmented matrix for this system into row-reduced
form, we obtain

1 2
3 6

� 



 27
�
! 1 2

0 0

� 



 21
�

by adding the second row
�3 times the first row

This augmented matrix is in row-reduced form; the derived set is

xþ 2y ¼ 2

0 ¼ 1

No values of x and y canmake this last equation true, so the derived set, as well as
the original set of equations, has no solution.

Finally, we note that most augmented matrices can be transformed into a variety
of row-reduced forms. If a row-reduced augmented matrix has two nonzero
rows, then a different row-reduced augmented matrix is easily constructed by
adding to the first row any nonzero constant times the second row. The equa-
tions associated with both augmented matrices, different as they may be, will
have identical solutions.

Problems 1.4
(1) Determine whether the proposed values of x, y, and z are solutions to:

xþ y þ 2z ¼ 2,

x� y � 2z ¼ 0,

xþ 2y þ 2z ¼ 1:

(a) x¼1, y¼�3, z¼2. (b) x¼1, y¼�1, z¼1.

(2) Determinewhether the proposed values of x1, x2, and x3 are solutions to:

x1 þ 2x2 þ 3x3 ¼ 6,

x1 � 3x2 þ 2x3 ¼ 0,

3x1 � 4x2 þ 7x3 ¼ 6:

(a) x1¼1, x2¼1, x3¼1.
(b) x1¼2, x2¼2, x3¼0.
(c) x1¼14, x2¼2, x3¼�4.

(3) Find a value for k such that x¼2 and y¼k is a solution of the system

3xþ 5y ¼ 11;

2x� 7y ¼ �3:
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(4) Find a value for k such that x¼2k, y¼�k, and z¼0 is a solution of the
system

xþ 2y þ z ¼ 0,

�2x� 4y þ 2z ¼ 0,

3x� 6y � 4z ¼ 1:

(5) Find a value for k such that x¼2k, y¼�k, and z¼0 is a solution of the
system

xþ 2y þ 2z ¼ 0,

2xþ 4y þ 2z ¼ 0,

�3x� 6y � 4z ¼ 0:

In Problems 6 through 11, write the set of equations associated with the
given augmented matrix and the specified variables and then solve.

(6)
1
0

2
1

� 



 58
�

for x and y:

(7)
1 �2 3
0 1 �5
0 0 1 j 10

�3
4

2
64

3
75 for x, y, and z:

(8)
1
0
0

�3
1
0

12
�6
1 j 40

�200
25

2
64

3
75 for x1, x2, and x3:

(9)
1
0
0

3
1
0

0
4
0 j �8

2
0

2
64

3
75 for x, y, and z:

(10)
1
0
0

�7
1
0

2
�1
0 j 000

2
64

3
75 for x1, x2, and x3:

(11)

1
0
0
0

�1
1
0
0

0
�2
1
0
j 1

2
�3
1

2
664

3
775 for x1, x2, and x3:

In Problems 12 through 29, use Gaussian elimination to solve the given sys-
tem of equations.

(12) x� 2y ¼ 5,

�3xþ 7y ¼ 8:

(13) 4xþ 24y ¼ 20,

2xþ 11y ¼ �8:
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(14) �y ¼ 6,

2xþ 7y ¼ �5:
(15) �xþ 3y ¼ 0,

3xþ 5y ¼ 0:

(16) �xþ 3y ¼ 0,

3x� 9y ¼ 0:
(17) xþ 2y þ 3z ¼ 4,

�x� 7þ 2z ¼ 3,

�2xþ 3y ¼ 0:

(18) y � 2z ¼ 4,

xþ 3y þ 2z ¼ 1,

�2xþ 3y þ z ¼ 2:

(19) xþ 3y þ 2z ¼ 0,

�x� 4y þ 3z ¼ �1,

2x� z ¼ 3,

2x� y þ 4z ¼ 2:

(20) 2xþ 4y � z ¼ 0,

�4x� 8y þ 2z ¼ 0,

�2x� 4y þ z ¼ �1:

(21) �3xþ 6y � 3z ¼ 0,

x� 2y þ z ¼ 0,

x� 2y þ z ¼ 0:

(22) �3xþ 3y � 3z ¼ 0,

x� y þ 2z ¼ 0,

2x� 2y þ z ¼ 0,

xþ y þ z ¼ 0:

(23) �3x1 þ 6x2 � 3x3 ¼ 0,

x1 � x2 þ x3 ¼ 0:

(24) x1 � x2 þ 2x3 ¼ 0,

2x1 � 2x2 þ 4x3 ¼ 0:

(25) x1 þ 2x2 ¼ �3,

3x1 þ x2 ¼ 1:

(26) x1 þ 2x2 þ x3 ¼ �1,

2x1 � 3x2 þ 2x3 ¼ 4:

(27) x1 þ 2x2 ¼ 5,

�3x1 þ x2 ¼ 13,

4x1 þ 3x2 ¼ 0:

(28) 2x1 þ 4x2 ¼ 2,

3x1 þ 2x2 þ x3 ¼ 8,

5x1 � 3x2 þ 7x3 ¼ 15:

(29) 2x1 þ 3x2 � 4x3 ¼ 2,

3x1 � 2x2 ¼ �1,

8x1 � x2 � 4x3 ¼ 10:

(30) Show graphically that the number of solutions to a linear system of two
equations in three variables is either none or infinitely many.

(31) Let y be a solution to Ax¼b and let z be a solution to the associated
homogeneous system Ax¼0. Prove that u¼yþz is also a solution to
Ax¼b.

(32) Let y and z be as defined in Problem 31.
(a) For what scalars a is u¼yþaz also a solution to Ax¼b?
(b) For what scalars a is u¼ayþz also a solution to Ax¼b?

In Problems 33 through 40, establish a set of equations thatmodels each
process and then solve.
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(33) A manufacturer receives daily shipments of 70,000 springs and 45,000
pounds of stuffing for producing regular and support mattresses. Regu-
lar mattresses r require 50 springs and 30 pounds of stuffing; support
mattresses s require 60 springs and 40 pounds of stuffing. How many
mattresses of each type should be produced daily to utilize all available
inventory?

(34) A manufacturer produces desks and bookcases. Desks d require 5 hours
of cutting time and 10 hours of assembling time. Bookcases b require
15 minutes of cutting time and 1 hour of assembling time. Each day
the manufacturer has available 200 hours for cutting and 500 hours
for assembling. How many desks and bookcases should be scheduled
for completion each day to utilize all available workpower?

(35) Amining company has a contract to supply 70,000 tons of low-grade ore,
181,000 tons of medium-grade ore, and 41,000 tons of high-grade ore to
a supplier. The company has three mines that it can work. Mine A pro-
duces 8000 tons of low-grade ore, 5000 tons of medium-grade ore, and
1000 tons of high-grade ore during each day of operation. Mine B pro-
duces 3000 tons of low-grade ore, 12,000 tons of medium-grade ore,
and 3000 tons of high-grade ore for each day it is in operation. The figures
for mine C are 1000, 10,000, and 2000, respectively. How many days
must eachmine operate tomeet contractual demands without producing
a surplus?

(36) A small company computes its end-of-the- year bonus b as 5% of the net
profit after city and state taxes have been paid. The city tax c is 2% of
taxable income, while the state tax s is 3% of taxable income with credit
allowed for the city tax as a pretax deduction. This year, taxable income
was $400,000. What is the bonus?

(37) A gasoline producer has $800,000 in fixed annual costs and incurs an
additional variable cost of $30 per barrel B of gasoline. The total cost
C is the sum of the fixed and variable costs. The net sales S is computed
on a wholesale price of $40 per barrel.
(a) Show that C, B, and S are related by two simultaneous equations.
(b) How many barrels must be produced to break even, that is, for net

sales to equal cost?

(38) (Leontief ClosedModels) A closed economicmodel involves a society
in which all the goods and services produced by members of the soci-
ety are consumed by those members. No goods and services are
imported from without and none are exported. Such a system involves
Nmembers, each of whom produces goods or services and charges for
their use. The problem is to determine the prices each member should
charge for his or her labor so that everyone breaks even after one year.
For simplicity, it is assumed that each member produces one unit
per year.
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Consider a simple closed system limited to a farmer, a carpenter, and a
weaver. The farmer produces one unit of food each year, the carpenter
produces one unit of finished wood products each year, and the weaver
produces one unit of clothing each year. Let p1 denote the farmer’s
annual income (that is, the price she charges for her unit of food),
let p2 denote the carpenter’s annual income (that is, the price he
charges for his unit of finished wood products), and let p3 denote
the weaver’s annual income. Assume on an annual basis that the
farmer and the carpenter consume 40% each of the available food,
while the weaver eats the remaining 20%. Assume that the carpenter
uses 25% of the wood products he makes, while the farmer uses
30% and the weaver uses 45%. Assume further that the farmer uses
50% of the weaver’s clothing while the carpenter uses 35% and the
weaver consumes the remaining 15%. Show that a break-even equa-
tion for the farmer is

0:40p1 þ 0:30p2 þ 0:50p3 ¼ p1

while the break-even equation for the carpenter is

0:40p1 þ 0:25p2 þ 035p3 ¼ p2

What is the break-even equation for the weaver? Rewrite all three equa-
tions as a homogeneous system and then find the annual incomes of
each sector.

(39) Paul, Jim, and Mary decide to help each other build houses. Paul will
spend half his time on his own house and a quarter of his time on each
of the houses of Jim and Mary. Jim will spend one third of his time on
each of the three houses under construction. Mary will spend one sixth
of her time on Paul’s house, one third on Jim’s house, and one half of
her time on her own house. For tax purposes, each must place a price on
his or her labor, but they want to do so in a way that each will break-
even. Show that the process of determining break-even wages is a Leon-
tief closed model containing three homogeneous equations and then
find the wages of each person.

(40) Four third-world countries each grow a different fruit for export and
each uses the income from that fruit to pay for imports of the fruits from
the other countries. Country A exports 20% of its fruit to country B, 30%
to country C, 35% to country D, and uses the rest of its fruit for internal
consumption. Country B exports 10% of its fruit to country A, 15% to
country C, 35% to country D, and retains the rest for its own citizens.
Country C does not export to country A; it divides its crop equally
between countries B andD and its own people. CountryD does not con-
sume its own fruit; all is for export with 15% going to country A, 40% to
country B, and 45% to countryC. Show that the problem of determining
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prices on the annual harvests of fruit so that each country breaks even is
equivalent to solving four homogeneous equations in four unknowns
and then find the prices.

Gaussian elimination is often programmed for computer implementa-
tion, but because all computers store numbers as a finite string of
digits, round-off error can be significant. A popular strategy for mini-
mizing round-off errors is partial pivoting, which requires that a pivot
always be larger than or equal in absolute value than any element
below the pivot in the same column. This is accomplished by using ele-
mentary row operation R1 to interchange rows whenever necessary. In
Problems 41 through 46, determine the first pivot under a partial
pivoting strategy for the given augmented matrix.

(41)
1
4

3
8

� 



 3515
�

(42)
1 �2
5 3

� 



 �5
85

�

(43)
�2
4

�3

8
5

�1

�3
4
2







100
75
250

2
4

3
5

(44)
1 2 3
5 6 7
9 10 11 j 4

8
12

2
64

3
75

(45)
1
0
0

8
1
3

8
7
9 j 400800

600

2
64

3
75 (46)

0
1
4

2
0:4
10

3 4
0:8 0:1
1 8 j 0

90
40

2
64

3
75

1.5 DETERMINANTS
Every linear transformation from one finite-dimensional vector space 
back to itself can be represented by a square matrix. Each matrix represen-
tation is basis dependent, and, in general, a linear transformation will have
a different matrix representation for each basis in . Some of these matrix
representations may be simpler than others. In this chapter, we begin the
process of identifying bases that generate simple matrix representations
for linear transformations. This search will focus on a special class of vectors
known as eigenvectors and will use some of the basic properties of
determinants.

Every square matrix has associated with it a scalar called its determinant. Until
very recently, determinants were central to the study of linear algebra, the hub
around which much of the theory revolved. Determinants were used for calcu-
lating inverses, solving systems of simultaneous equations, and a host of other
applications. No more. In their place are other techniques, often based on ele-
mentary row operations, which are more efficient and better adapted to com-
puters. The applications of determinants have been reduced to less than a
handful.
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Determinants are defined in terms of permutations on positive integers. The the-
ory is arduous and, once completed, gives way to simplermethods for calculating
determinants. Because we make such limited use of determinants, we will not
develop its theory here, restricting ourselves instead to the standard computa-
tional techniques.

Determinants are defined only for square matrices. Given a square matrix A, we
use det(A) or |A| to designate the determinant of A. If a matrix can be exhibited,
we designate its determinant by replacing the brackets with vertical straight lines.
For example, if

A ¼
1 2 3
4 5 6
7 8 9

2
4

3
5 ð1:24Þ

then

det Að Þ ¼
1 2 3
4 5 6
7 8 9

2
4

3
5 ð1:25Þ

We cannot overemphasize the fact that Equations (1.24) and (1.25) represent
entirely different structures. Equation (1.24) is a matrix, a rectangular array of
elements, whereas Equation (1.24) represents a scalar, a number associated with
the matrix in Equation (1.25).

The determinant of a 1�1 matrix [a] is defined as the scalar a. Thus, the
determinant of the matrix [5] is 5 and the determinant of the matrix [�3]

is �3. The determinant of a 2�2 matrix
a b
c d

� �
is defined as the scalar ad�bc.

Example 1 det
1 2
3 4

� �
¼ 1 2

4 3

� �
¼ 1 3ð Þ � 2 4ð Þ ¼ 3� 8 ¼ �5, while

det
2 �1
4 3

� �
¼ 2 �1

4 3

� �
¼ 2 3ð Þ � �1ð Þ 4ð Þ ¼ 6þ 4 ¼ 10:

We could list separate rules for calculating determinants of 3�3, 4�4, and
higher order matrices, but this is unnecessary. Instead we develop a method
based on minors and cofactors that lets us reduce determinants of order n>2
(if A has order n�n, then det(A) is said to have order n) to a sum of determinants
of order 2.

Aminor of a matrix A is the determinant of any square submatrix of A. A minor is
formed from a square matrix A by removing an equal number of rows and col-
umns from A and then taking the determinant of the resulting submatrix. In par-
ticular, if

A ¼
1 2 3
4 5 6
7 8 9

2
4

3
5

The determinant of a
1�1 matrix [a] is the
scalar a; the determinant
of a 2�2 matrix is the
product of its diagonal
terms less the product of
its off-diagonal terms.

A minor of a matrix A is
the determinant of any
square submatrix of A.
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then
1 2
7 8

� �
and

5 6
8 9

� �
are both minors because the matrices

1 2
7 8

� �
and

5 6
8 9

� �
are both submatrices of A. In contrast,

1 2
8 9

� �
and |1 2| are not

minors because
1 2
8 9

� �
is not a submatrix ofA and [1 2], although a submatrix

of A, is not square.

IfA¼ [aij] is a squarematrix, then the cofactor of the element aij is the scalar obtained
by multiplying (�1)iþj with the minor obtained from A by removing the jth row
and jth column. In other words, to compute the cofactor of an element aij in a
matrix A, first form a submatrix of A by deleting from A both the row and column
inwhich the element aij appears, then calculate thedeterminantof that submatrix,
and finally multiply the determinant by the number (�1)iþj.

Example 2 To find the cofactor of the element 4 in the matrix

A ¼
1 2 3
4 5 6
7 8 9

2
4

3
5

we note that 4 appears in the second row and first column, hence i¼2, j¼1, and
(�1)iþj¼ (�1)2þ1¼(�1)3¼�1. The submatrix of A obtained by deleting the
second row and first column is

2 3
8 9

� �

which has a determinant equal to 2(9)�3(8)¼�6. The cofactor of 4 is (�1)
(�6)¼6.

The element 9 appears in the third row and third column of A, hence i¼3, j¼3,
and (�1)iþj¼ (�1)3þ3¼ (�1)6¼1. The submatrix of A obtained by deleting the

third row and third column is
1 2
4 5

� �
, which has a determinant equal to

1(5)�2(4)¼�3. The cofactor of 9 is (1)(�3)¼�3.

Acofactor is theproductofaminorwiththenumber(�1)iþj. Thisnumber(�1)iþj is
eitherþ1or�1,dependingonthevaluesof iand j, and itseffect is to impartaplusor
minus sign in front of theminor of interest. A useful schematic for quickly evaluat-
ing (�1)iþj is to use the sign in the i-jth position of the patterned matrix:

þ � þ � þ
� þ � þ �
þ � þ � þ
� þ � þ �
þ � þ � þ

2
6666664

3
7777775

The cofactor of the
element aij in a square
matrix A is the product of
(�1)iþj with the minor
obtained from A by
deleting its ith row and jth
column.
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We now can find the determinant of any square matrix.

Example 3 Find det(A) for A ¼
3 5 0

�1 2 1

3 �6 4

2
4

3
5.

Solution: We arbitrarily expand by the second column. Thus,

Aj j ¼ 5 cofactorof 5ð Þ þ 2 cofactorof 2ð Þ þ �6ð Þ cofactorof � 6ð Þ

¼ 5 �1ð Þ1þ2
�1 1

3 4












þ 2 �1ð Þ2þ2

3 0

3 4












þ �6ð Þ �1ð Þ3þ2

3 0

�1 1














¼ 5 �1ð Þ �4� 3ð Þ þ 2 1ð Þ 12� 0ð Þ þ �6ð Þ �1ð Þ 3� 0ð Þ
¼ �5ð Þ �7ð Þ þ 2 12ð Þ þ 6 3ð Þ ¼ 77

Example 4 Redo Example 3 expanding by the first row.

Solution:

Aj j ¼ 3 cofactorof 3ð Þ þ 5 cofactorof2ð Þ þ 0 cofactorof 0ð Þ

¼ 3 �1ð Þ1þ1
2 1

�6 4












þ 5 �1ð Þ1þ2

�1 1

3 4












þ 0

¼ 3 1ð Þ 8þ 6ð Þ þ 5 �1ð Þ �4� 3ð Þ þ 0

¼ 3 14ð Þ þ �5ð Þ �7ð Þ ¼ 77

Examples 3 and 4 illustrate two important properties of expansion by cofactors.
First, the value of a determinant is the same regardless of which row or column
selected and second, expanding by a row or column containing zeros signifi-
cantly reduces the number of computations.

Example 5 Find det(A) for A ¼

1 0 5 2

�1 4 1 0

3 0 4 1

�2 1 1 3

2
6664

3
7775.

Expanding by a row or
column containing the
most zeros minimizes the
number of computations
needed to evaluate a
determinant.

EXPANSION BY COFACTORS (TO CALCULATE THE
DETERMINANT OF A SQUARE MATRIX):
Step 1. Pick any one row or any one column of the matrix (dealer’s choice).

Step 2. Calculate the cofactor of each element in the row or column selected.

Step 3. Multiply each element in the selected row or column by its cofactor and sum the

results.
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Solution: The row or column containing the most zeros is, for this matrix, the
second column, so we expand by it.

Aj j ¼ 0 cofactorof 0ð Þ þ 4 cofactorof 4ð Þ þ 0 cofactorof zeroð Þ þ 1 cofactorof 1ð Þ

¼ 0þ 4 �1ð Þ2þ2

1 5 2

3 4 1

�2 1 3



















þ 0þ 1 �1ð Þ4þ2

1 5 2

�1 1 0

3 4 1




















¼ 4

1 5 2

3 4 1

�2 1 3



















þ
1 5 2

�1 1 0

3 4 1




















Using expansion of cofactors on each of these two determinants of order 3, we
calculate

1 5 2

3 4 1

�2 1 3
















 ¼ 1 �1ð Þ1þ1 4 1

1 3










þ 5 �1ð Þ1þ2 3 1

�2 3










þ 2 �1ð Þ1þ3 3 4

�2 1












¼ 11� 55þ 22 ¼ �22 expanding by the first rowð Þ

and

1 5 2

�1 1 0

3 4 1



















 ¼ 2 �1ð Þ1þ3
�1 1

3 4












þ 0þ 1 �1ð Þ3þ3

1 5

�1 1














¼ �14þ 6 ¼ �8 expanding by the third columnð Þ

Consequently, |A|¼4(�22)þ1(�8)¼�96.

With no zero entries, the determinant of a 3�3 matrix requires 3 �2¼3! multi-
plications, a 4�4 matrix requires 4 �3 �2¼4! multiplications, and an n�n
matrix requires n! multiplications. Note that 10!¼3,628,000 and 13! is over
1 billion, so the number of multiplications needed to evaluate a determinant
becomes prohibitive as the order of a matrix increases. Clearly, calculating a
determinant is a complicated and time-consuming process, one that is avoided
whenever possible.

Another complicated operation is matrix multiplication, which is why the fol-
lowing result is so surprising. Its proof, however, is beyond the scope of this
book.

Matrices CHAPTER 1 51



▶THEOREM 1
If A and B are of the same order, then det(AB)¼det(A)det(B).◀

Example 6 Verify Theorem 1 for A ¼ 2 3
1 4

� �
and B ¼ 6 �1

7 4

� �
.

Solution: |A|¼5 and |B|¼31. Also AB ¼ 33 10
34 15

� �
, hence |AB|¼155¼ |A||B|.

Any two columnmatrices in R2 that do not lie on the same straight line form the
sides of a parallelogram, as illustrated in Figure 1.10. Here the column matrices

u ¼ a1
a2

� �
and v ¼ b1

b2

� �
ð1:26Þ

appear graphically as directed line segments with the tip of u falling on the point
A¼ (a1, a2) in the x-y plane and the tip of v falling on the point B¼ (b1, b

2). The
parallelogram generated by these two vectors is OACB, where O denotes the ori-
gin and C¼(a1þb1, a2þb2). To calculate the area of this parallelogram, we
note that

Area of parallelogram OACB

¼ area of triangle OPBþ area of trapezoid PRCB � area of triangle OQA

� areaof trapezoidQRCA

¼ 1

2
b1b2 þ 1

2
a1 b2 þ a2 þ b2ð Þ � 1

2
a1a2 þ 1

2
b1 a2 þ a2 þ b2ð Þ

¼ a1b2 � a2b1 ¼ a1 b1

a2 b2














y

x
O QP

(b1, 0) (a1, 0)

A = (a1, a2)

B = (b1, b2)

(a1 + b1,0)

C = (a1 + b1, a2 + b2)

R

FIGURE 1.10
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If we interchange the positions of the two columns in this last determinant,
a quick computation shows that the resulting determinant is the
negative of the area of the parallelogram. Because the area of the paral-
lelogram is the same regardless which vector in Equation (A.3) is
listed first and which second, we avoid any concern about ordering by
simply placing absolute values around the determinant. Thus, we have
proven:

▶THEOREM 2
If u¼ [a1 a2]

T and v¼ [b1 b2] are two column matrices in R2, then the area of the

parallelogram generated by u and v is |det[u v]|.◀

Example 7 The area of the parallelogram defined by the column matrices

u ¼ 6
2

� �
and v ¼ 6

2

� �
is det

�4 6
4 2

� �








 ¼ �32j j ¼ 32 square units. These col-

umn matrices and the parallelogram they generate are illustrated in Figure 1.11.

Example 8 The area of the parallelogram defined by the column matrices

u ¼ �3
�1

� �
and v¼v ¼ 6

2

� �
is det

�3 6
�1 2

� �








 ¼ 0j j ¼ 0 square units.

These vectors are illustrated in Figure 1.12. Because both vectors lie on
the same straight line, the parallelogram generated by these vectors
collapses into the line segment joining (�3, �1) and (6, 2), which has
zero area.

Expansion by cofactors is often a tedious procedure for calculating determi-
nants, especially for matrices of large order. Triangular matrices, however,
contain many zeros and have determinants that are particularly easy to
evaluate.

−2

−4

−6 −4 −2

(−4, 4)

(6, 2)

2

2

4

u
v

x

y

6

8

4 6 8 10

FIGURE 1.11
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▶THEOREM 3
The determinant of an upper or lower triangular matrix is the product of the elements on the

main diagonal.◀

Proof: We shall prove the proposition for upper triangular matrices by math-
ematical induction on the order of the determinant. (For an explanation of
this proof technique, please refer to Appendix E.) The proof for lower triangu-
lar matrices is nearly identical and is left as an exercise for the reader. We first
show that the proposition is true for all 1�1 upper triangular matrices and
then we show that if the proposition is true for all (k�1)� (k�1) upper tri-
angular matrices, then it must also be true for all k�k upper triangular
matrices.

A 1�1 upper triangularmatrix has the general form A¼ [a11], containing a single
diagonal element. Its determinant is a11, which is the product of all diagonal
elements in A, thus the proposition is true for n¼1.

We now assume that the proposition is true for all (k�1)� (k�1) upper
triangular matrices, and we use this assumption to prove the proposi-
tion for all k�k upper triangular matrices A. Such a matrix has the
general form

A ¼

a11 a12 a13 � � � a1, k�1 a1k
0 a22 a23 � � � a2, k�1 a2k
0 0 a33 � � � a3, k�1 a3k

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 0 akk

2
6666664

3
7777775

y

x

(−3, −1)

(6, 2)

6

4

2

−2

−4

−4 −2

2 4 6 8

FIGURE 1.12
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Evaluating det(A) by expansion by cofactors using the cofactors of the elements
in the first column, the column containing the most zeros, we obtain

det Að Þ ¼ a11 � det Bð Þ ð1:27Þ
where

B ¼
a22 a23 � � � a2, k�1 a2k
0 a33 � � � a3, k�1 a3k

..

. ..
. ..

. ..
.

0 0 � � � 0 akk

2
6664

3
7775

Matrix B is an upper triangular matrix of order (k�1)� (k�1) so by
the induction hypothesis its determinant is the product of its diagonal elements.
Consequently, det(B)¼a22a33 � � �akk, and Equation (1.27) becomes det(A)¼
a11a22a33 � � �akk, which is the product of the diagonal elements of A. Thus, The-
orem 1 is proved by mathematical induction.

Example 10

det

2 6 �4 1
0 5 7 �4
0 0 �5 8
0 0 0 3

2
664

3
775 ¼ 2 5ð Þ �5ð Þ 3ð Þ ¼ �150

Because diagonal matrices are both upper and lower triangular, the following
corollary is immediate.

▶COROLLARY 1
The determinant of a diagonal matrix is the product of the elements on its main diagonal.◀

Expansion by a row or column having many zeros simplifies the calculation of a
determinant; expansion by a zero row or zero column, when it exists, makes the
process trivial. Multiplying each zero element by its cofactor yields zero products
that when summed are still 0. We have, therefore, Theorem 2.

▶THEOREM 4
If a square matrix has a zero row or a zero column, then its determinant is 0.◀

A useful property of determinants involves a square matrix and its transpose.
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▶THEOREM 5
For any square matrix A, det(A)¼det(AT).◀

Proof: (by mathematical induction on the order of the determinant): A 1�1
matrix has the general form A¼ [a11]. Here A¼AT, hence |A|¼a11¼ |AT|, and
the proposition is true for n¼1.

We now assume that the proposition is true for all (k�1)�(k�1) matrices, and
we use this assumption to prove the proposition for all k�k matrices A. Such a
matrix has the general form

A ¼

a11 a12 a13 � � � a1k

a21 a22 a23 � � � a2k

a31 a32 a33 � � � a3k

..

. ..
. ..

. . .
. ..

.

ak1 ak2 ak3 � � � akk

2
6666664

3
7777775

Evaluating det(A) by expansion by cofactors using the first column, we
obtain

det Að Þ ¼ a11 �1ð Þ1þ1det

a22 a23 � � � a2k

a32 a33 � � � a3k

..

. ..
. . .

. ..
.

ak2 ak3 � � � akk

2
666664

3
777775

þa21 �1ð Þ2þ1det

a12 a13 � � � a1k
a32 a33 � � � a3k

..

. ..
. . .

. ..
.

ak2 ak3 � � � akk

2
66664

3
77775

þ� � � þ ak1 �1ð Þkþ1det

a12 a13 � � � a1k
a22 a23 � � � a2k

..

. ..
. . .

. ..
.

ak�1, 2 ak�1, 3 � � � ak�1, k

2
66664

3
77775

Each of the matrices on the right side of this last equality has order
(k�1)� (k�1) so by the induction hypothesis each of their determinants
equals, respectively, the determinants of their transposes. Consequently,
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det Að Þ ¼ a11 �1ð Þ1þ1det

a22 a23 � � � ak2
a23 a33 � � � ak3

..

. ..
. . .

. ..
.

a2k a3k � � � akk

2
66664

3
77775

þa21 �1ð Þ1þ2det

a12 a32 � � � ak2
a13 a33 � � � ak3

..

. ..
. . .

. ..
.

a1k a3k � � � akk

2
6664

3
7775

þ� � � þ ak1 �1ð Þ1þkdet

a12 a22 � � � ak�1, 2
a13 a23 � � � ak�1, 3

..

. ..
. . .

. ..
.

a1k a2k � � � ak�1, k

2
66664

3
77775

¼ det

a11 a21 a31 � � � ak1
a12 a22 a32 � � � ak2
a13 a23 a33 � � � ak3

..

. ..
. ..

. . .
. ..

.

a1k a2k a3k � � � akk

2
666664

3
777775

where this last determinant is evaluated by expansion by cofactors using its first
row. Since this last matrix is AT, we have det(A)¼det(AT), and Theorem 5 is
proven by mathematical induction.

Anelegantmethod for substantially reducing thenumberof arithmeticoperations
needed to evaluate determinants of matrices whose elements are all constants is
based on elementary row operations. For the sake of expediency, we state the rel-
evant properties and then demonstrate their validity for 3�3 matrices.

▶THEOREM 6
If matrix B is obtained from a square matrix A by interchanging the position of two rows in A

(the first elementary row operation), then |B|¼�|A|.◀

Demonstration of Validity: Consider

A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ð1:28Þ
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Expanding |A| by cofactors using its third row, we obtain

Aj j ¼ a31 a12a23 � a13a22ð Þ � a32 a11a23 � a13a21ð Þ þ a33 a11a22 � a12a21ð Þ

Now consider thematrix B obtained fromA by interchanging the positions of the
second and third rows of A:

B ¼
a11 a12 a13
a31 a32 a33

a21 a22 a23

2
4

3
5

Expanding |B| by cofactors using its second row, we obtain

Bj ¼ �a31 a12a23 � a13a22ð Þ � a32 a11a23 � a13a21ð Þ � a33 a11a22 � a12a21ð Þj

Thus, |B|¼�|A|. Through similar reasoning, we can show that the result is valid
regardless of which two rows of A are interchanged.

As an immediate consequence of Theorem 6, we have the following corollary:

▶COROLLARY 2
If two rows of a square matrix are identical, then its determinant is 0.◀

Proof: The matrix remains unaltered if the two identical rows are interchanged,
hence its determinant must remain constant. It follows from Theorem 6, how-
ever, that interchanging two rows of a matrix changes the sign of its determinant.
Thus, the determinantmust, on the one hand, remain the same and, on the other
hand, change sign. The only way both conditions are met simultaneously is for
the determinant to be 0.

▶THEOREM 7
If matrix B is obtained from a square matrix A by multiplying every element in one row of A

by the scalar l (the second elementary row operation), then |B|¼l|A|.◀

Demonstration of Validity: Consider the matrix A given in Equation (1.28) and
construct B from A by multiplying the first row of A by l. Then expanding |B| by
cofactors using its first row, we obtain

Bj j ¼
la11 la12 la13
a21 a22 a23
a31 a32 a33














 ¼ la11

a22 a23
a32 a33










� la12

a21 a23
a31 a33










þ la13

a21 a23
a31 a32
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¼ l a11
a22 a23
a32 a33










� a12

a21 a23
a31 a33










þ a13

a21 a22
a31 a32












� �

¼ l

a11 a12 a13

a21 a22 a23

a31 a32 a33














 ¼ ljAj

Through similar reasoning, we can show that the result is valid regardless of
which row of A is multiplied by l.

Multiplying a scalar times a matrix multiplies every element of the matrix by that
scalar. In contrast, it follows from Theorem 7 that a scalar times a determinant is
equivalent to multiplying one row of the associated matrix by the scalar and then
evaluating the determinant of the resulting matrix. Thus,

det
8 16
3 4

� �
¼ 8det

1 2
3 4

� �
¼ det

1 2
24 32

� �

while

det 8
1 2
3 4

� �	 

¼ det

8 16
24 32

� �
¼ 8det

1 2
24 32

� �
¼ 8 8ð Þdet 1 2

3 4

� �

Therefore, as an immediate extension of Theorem 7, we have the next
corollary.

▶COROLLARY 3
If A is an n�n matrix and l a scalar, then det(lA)¼ln det(A).◀

Applying the first two elementary row operations to a matrix changes the deter-
minant of the matrix. Surprisingly, the third elementary row operation has no
effect on the determinant of a matrix.

▶THEOREM 8
If matrix B is obtained from a square matrix A by adding to one row of A a scalar times

another row of A (the third elementary row operation), then |B|¼ |A|.◀

Demonstration of Validity: Consider the matrix A given in Equation (1.28) and
construct B from A by adding to the third row of A the scalar l times the first row
of A. Thus,
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B ¼
a11 a12 a13

a21 a22 a23

a31 þ la11 a32 þ la12 a33 þ la13

2
664

3
775

Expanding |B| by cofactors using its third row, we obtain

jBj ¼ a31 þ la11ð Þ
a12 a13

a22 a23














� a32 þ la12ð Þ

a11 a13

a21 a23
















¼ a31

a12 a13

a22 a23














� a32

a11 a13

a21 a23














� a33

a11 a13

a21 a22
















þ l a11

a12 a13

a22 a23














� a12

a11 a13

a21 a23














þ a13

a11 a13

a21 a22
















8<
:

9=
;

The first three terms of this sum are exactly |A| (expand det(A) by its third row)
while the last three terms of the sum are

l

a11 a12 a13

a21 a22 a23

a11 a12 a13


















(expand this determinant by its third row). Thus,

jBj ¼ jAj þ l

a11 a12 a13

a21 a22 a23

a11 a12 a13


















It follows from Corollary 2 that this last determinant is 0 because its first and
third rows are identical, hence |B|¼ |A|.

Example 11 Without expanding, use the properties of determinants to show
that

a b c

r s t

x y z
















 ¼

a� r b� s c� t

r þ 2x sþ 2y t þ 2z

x y z
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Solution:

a b c

r s t

x y z
















 ¼

a� r b� s c� t

r s t

x y z


















Theorem8 : adding

to the first row� 1

times thesecondrow

¼
a� r b� s c� t

r þ 2x sþ 2y t þ 2z

x y z


















Theorem8 : adding

to thesecondrow2

times the third row

Pivotal condensation is an efficient algorithm for calculating the determinant of a
matrix whose elements are all constants. Elementary row operations are used to
transform a matrix to row-reduced form, because such a matrix is upper triangu-
lar and its determinant is easy to evaluate using Theorem 3. A record is kept of all
the changes made to the determinant of a matrix while reducing the matrix to
row-reduced form. The product of these changes with the determinant of the
row-reduced matrix is the determinant of the original matrix.

Example 12 Use pivotal condensation to evaluate det
1 2 3

�2 3 2
3 �1 1

2
4

3
5.

Solution:
1 2 3

�2 3 2

3 �1 1
















 ¼

1 2 3

0 7 8

3 �1 1


















Theorem8 : adding

to thesecondrow2

times the first row

¼
1 2 3

0 7 8

3 �7 �8


















Theorem8 : adding

to the third row� 3

times the first row

¼ 7

1 2 3

0 1 8=7

3 �7 �8
















 Theorem8 : applied

to thesecondrow

¼ 7

1 2 3

0 1 8=7

0 0 0


















Theorem8 : adding

to the third row7

times thesecondrow

¼ 7 0ð Þ ¼ 0 Theorem3

Example 13 Use pivotal condensation to evaluate det
0 �1 4
1 �5 1

�6 2 �3

2
4

3
5.

Pivotal Condensation
Transform a matrix into
row-reduced form using
elementary row opera-
tions, keeping a record of
the changes made. Eval-
uate the determinant by
using Theorems 3, 6, 7,
and 8.
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Solution:

0 �1 4

1 �5 1

�6 2 �3






















¼ �1ð Þ

0 �5 1

0 �1 4

�6 2 �3
















 Theorem6 : interchanging

the first andsecondrows

¼ �1ð Þ
1 �5 1

0 �1 4

0 �28 3




















Theorem8 : adding

to the third row6

times the first row

¼ �1ð Þ �1ð Þ
1 5 1

0 1 �4

0 �28 3




















Theorem7 : applied

to thesecondrow

¼
1 �5 1

0 1 �4

0 0 �109




















Theorem8 : adding

to the thirdrow28

times thesecondrow

¼ � 109ð Þ
1 �5 1

0 1 �4

0 0 1




















Theorem7 : applied

to the third row

¼ �109ð Þ 1ð Þ ¼ �109 Theorem3

It follows from Theorem 6 that any property about determinants dealing with
row operations is equally true for the analogous operations on columns, because
a row operation on the transpose of a matrix is the same as a column operation
on the matrix itself. Therefore, if two columns of a matrix are interchanged, its
determinant changes sign; if two columns of a matrix are identical, its determi-
nant is 0; multiplying a determinant by a scalar is equivalent to multiplying one
column of the matrix by that scalar and then evaluating the new determinant;
and the third elementary column operation when applied to a matrix does
not change the determinant of the matrix.

We have from Theorem 6 of Section 2.7 that a square matrix has an inverse if and
only if the matrix can be transformed by elementary row operations to row-
reduced form with all ones on its main diagonal. Using pivotal condensation,
we also have that a matrix can be transformed by elementary row operations
to row-reduced form with all ones on its main diagonal if and only if its deter-
minant is nonzero. Thus, we have Theorem 9.

Any property about
determinants dealing
with row operations is
equally true for the
analogous operations on
columns.

Linear Algebra62



▶THEOREM 9
A square matrix has an inverse if and only if its determinant is nonzero.◀

Thematrix given in Example 12 does not have an inverse because its determinant
is 0, while the matrix given in Example 4 is invertible because its determinant is
nonzero. Inverses, when they exist, are obtained by the method developed in
Section 2.4. Techniques also exist for finding inverses using determinants, but
they are far less efficient and rarely used in practice.

If a determinant of a matrix is nonzero, then its determinant and that of its
inverse are related.

▶THEOREM 10
If a matrix A is invertible, then det(A�1)¼1/det(A).◀

Proof: If A is invertible, then det(A) 6¼0 and AA�1¼ I. Therefore,

det AA�1
� � ¼ det Ið Þ

det AA�1
� � ¼ 1

det Að Þ�det A�1
� � ¼ 1

det A�1
� � ¼ 1=det Að Þ

▶THEOREM 11
Similar matrices have the same determinant.◀

Proof: If A and B are similar matrices, then there exists an invertible matrix P such
that A¼P�1 BP. It follows from Theorem 1 and Theorem 10 that

det Að Þ ¼ det P�1BP
� � ¼ det P�1

� �
det Bð Þdet Pð Þ

¼ 1=det Pð Þ½ �det Bð Þdet Pð Þ ¼ det Bð Þ

Problems 1.5
In Problems 1 through 31, find the determinants of the given matrices.

(1)
3 4
5 6

� �
. (2)

3 �4
5 6

� �
. (3)

3 4
�5 6

� �
.

(4)
5 6
7 8

� �
. (5)

5 6
�7 8

� �
. (6)

5 6
7 �8

� �
.
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(7)
1 �1
2 7

� �
. (8)

�2 �3
�4 4

� �
. (9)

3 �1
�3 8

� �
.

(10)
1 2 �2
0 2 3
0 0 �3

2
4

3
5. (11)

3 2 �2
1 0 4
2 0 �3

2
4

3
5. (12)

1 �2 �2
7 3 �3
0 0 �3

2
4

3
5.

(13)
2 0 �1
1 1 1
3 2 �3

2
4

3
5. (14)

3 5 2
�1 0 4
�2 2 7

2
4

3
5. (15)

1 �3 �3
2 8 3
4 5 0

2
4

3
5.

(16)
2 1 �9
3 �1 1
3 �1 2

2
4

3
5. (17)

�1 3 3
1 1 4

�1 1 2

2
4

3
5. (18)

1 �3 �3
2 8 3
3 5 1

2
4

3
5.

(19)
2 1 3
3 �1 2
2 3 5

2
4

3
5. (20)

�1 3 3
4 5 6

�1 3 3

2
4

3
5. (21)

1 2 �3
5 5 1
2 �5 �1

2
4

3
5.

(22)
�4 0 0
2 �1 0
3 1 �2

2
4

3
5. (23)

1 3 2
�1 4 1
5 3 8

2
4

3
5. (24)

3 �2 0
1 1 2

�3 4 1

2
4

3
5.

(25)

�4 0 0 0
1 �5 0 0
2 1 �2 0
3 1 �2 1

2
664

3
775. (26)

�1 2 1 2
1 0 3 �1
2 2 �1 1
2 0 �3 2

2
664

3
775.

(27)

1 1 2 �2
1 5 2 �1

�2 �2 1 3
�3 4 �1 8

2
664

3
775. (28)

�1 3 2 �2
1 �5 �4 6
3 �6 1 1
3 �4 3 �3

2
664

3
775.

(29)

1 1 0 �2
1 5 0 �1

�2 �2 0 3
�3 4 0 8

2
664

3
775. (30)

1 2 1 �1
4 0 3 0
1 1 0 5
2 �2 1 1

2
664

3
775.

(31)

11 1 0 9 0
2 1 1 0 0
4 �1 1 0 0
3 2 2 1 0
0 0 1 2 0

2
66664

3
77775.

(32) Find t so that
t 2t
1 t










 ¼ 0

(33) Find t so that
t � 2 t
3 t þ 2










 ¼ 0.
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(34) Find l so that
4� l 2
�1 1� l










 ¼ 0.

(35) Find l so that
1� l 5
1 �1� l










 ¼ 0.

In Problems 36 through 43, find det(A�lI) when A is:

(36) The matrix defined in Problem 1.

(37) The matrix defined in Problem 2.

(38) The matrix defined in Problem 4.

(39) The matrix defined in Problem 7.

(40) The matrix defined in Problem 11.

(41) The matrix defined in Problem 12.

(42) The matrix defined in Problem 13.

(43) The matrix defined in Problem 14.

(44) Verify Theorem 1 for A ¼ 6 1
1 2

� �
and B ¼ 3 �1

2 1

� �
.

(45) Find the area of the parallelogram generated by the vectors [�1 3]T

and [2 �3]T.

(46) Find the area of the parallelogram generated by the vectors [1 �5]T

and [�4 �4]T.

(47) Find the area of the parallelogram generated by the vectors [2 4]T and
[3 �8]T.

In Problems 48 through 65, find the determinants of the givenmatrices using
pivotal condensation.

(48)
1 2 �2
1 3 3
2 5 0

2
4

3
5. (49)

1 2 3
4 5 6
7 8 9

2
4

3
5. (50)

3 �4 2
�1 5 7
1 9 �6

2
4

3
5.

(51)
�1 3 3
1 1 4

�1 1 2

2
4

3
5. (52)

1 �3 �3
2 8 4
3 5 1

2
4

3
5. (53)

2 1 �9
3 �1 1
3 �1 2

2
4

3
5.

(54)
2 1 3
3 �1 2
2 3 5

2
4

3
5. (55)

�1 3 3
4 5 6

�1 3 3

2
4

3
5. (56)

1 2 �3
5 5 1
2 �5 �1

2
4

3
5.

(57)
2 0 �1
1 1 1
3 2 �3

2
4

3
5. (58)

3 5 2
�1 0 4
�2 2 7

2
4

3
5. (59)

1 �3 �3
2 8 3
4 5 0

2
4

3
5.
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(60)

3 5 4 6
�2 1 0 7
�5 4 7 2
8 �3 1 1

2
664

3
775. (61)

�1 2 1 2
1 0 3 �1
2 2 �1 1
2 0 �3 2

2
664

3
775.

(62)

1 1 2 �2
1 5 2 �1

�2 �2 1 3
�3 4 �1 8

2
664

3
775. (63)

�1 3 2 �2
1 �5 �4 6
3 �6 1 1
3 �4 3 �3

2
664

3
775.

(64)

1 1 0 �2
1 5 0 �1

�2 �2 0 3
�3 4 0 8

2
664

3
775. (65)

�2 0 1 3
4 0 2 �2

�3 1 0 1
5 4 1 7

2
664

3
775.

In Problems 66 through 72, use the properties of determinants to prove the
stated identities.

(66)
a b c
r s t
x y z














 ¼ �1

4

2a 4b 2c
�r �2s �t
x 2y z














.

(67)
a� 3x b� 3y c� 3z
aþ 5x bþ 5y cþ 5z

x y z














 ¼ 0:

(68)
2a 3a c
2r 3t t
2x 3x z














 ¼ 0:

(69)
a b c
r s t
x y z














 ¼

a x r
b y s
c z t














:

(70)
a r x
b s y
c t z














 ¼

aþ x r � x x
bþ y s� y y
cþ z t � z z














:

(71) �12
a r x
b s y
c t z














 ¼

2a 3r x
4b 6s 2y
�2c �3t �z














:

(72) 5
a r x
b s y
c t z














 ¼

a� 3b r � 3s x� 3y
b� 2c s� 2t y � 2z
5c 5t 5z














:

(73) Verify Theorem 5 directly for the matrices in Problems 48 through 51.

(74) Verify Corollary 3 directly for l¼3 and A ¼ 1 3
�3 4

� �
.
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(75) Verify Corollary 3 directly for l¼�2 and A ¼ 2 3
�3 �2

� �
.

(76) Verify Corollary 3 directly for l¼�1 and A given by the matrix in
Problem 1.

1.6 THE INVERSE
In Section 1.2, we defined matrix multiplication so that any system of linear
equations can be written in the matrix form

Ax ¼ b ð1:14 repeatedÞ
with the intent of solving this equation for x and obtaining all the variables in the
original system at the same time.Unfortunately, we cannot divide (Equation 1.14)
by the coefficient matrix A becausematrix division is an undefined operation. An
equally good operation is, however, available to us.

Division of real numbers is equivalent to multiplication by reciprocals. We can
solve the linear equation 5x¼20 for the variable x either by dividing the equation
by 5 or by multiplying the equation by 0.2, the reciprocal of 5. A real number b is
the reciprocal of a if and only if ab¼1, in which case we write b¼a�1. The con-
cept of reciprocals can be extended to matrices. The matrix counterpart of the
number 1 is an identity matrix I, and the word inverse is used for a matrix A
instead of reciprocal even though the notation A�1 is retained. Thus, a matrix
B is an inverse of a matrix A if

AB ¼ BA ¼ I ð1:29Þ
in which case we write B¼A�1.

The requirement that a matrix commute with its inverse implies that both
matrices are square and of the same order. Thus, inverses are only defined
for square matrices. If a square matrix A has an inverse, then A is said to be
invertible or nonsingular; if A does not have an inverse, then A is said to be
singular.

Example 1 The matrix B ¼ �2 1
1:5 �0:5

� �
is an inverse of A ¼ 1 2

3 4

� �
because

AB ¼ 1 2
3 4

� � �2 1
1:5 �0:5

� �
¼ 1 0

0 1

� �
¼ �2 1

1:5 �0:5

� �
1 2
3 4

� �
¼ BA

and we write

A�1 ¼ 1 2
3 4

� ��1

¼ �2 1
1:5 �0:5

� �

In contrast, C ¼ 1 1=2
1=3 1=4

� �
is not an inverse of A because

An n�n matrix A�1 is
the inverse of an n�n
matrix A if AA�1¼A�1

A¼ I.
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AC ¼ 1 2
3 4

� �
1 1=2

1=3 1=4

� �
¼ 5=3 1

13=3 5=2

� �
6¼ I

Equation (1.24) is a test for checking whether one matrix is an inverse of another
matrix. In Section 2.6, we prove that if AB¼ I for two square matrices of the same
order, then A and B commute under multiplication and BA¼ I. If we borrow this
result, we reduce the checking procedure by half. A square matrix B is an inverse
of a square matrix A if either AB¼ I or BA¼ I; each equality guarantees the other.
We also show later in this section that an inverse is unique; that is, if a square
matrix has an inverse, it has only one.

We can write the inverses of some simple matrices by inspections. The inverse of
a diagonal matrix D having all nonzero elements on its main diagonal is a diag-
onal matrix whose diagonal elements are the reciprocals of the corresponding
diagonal elements of D. The inverse of

D ¼

l1 0 0 � � � 0
0 l2 0 � � � 0
0 0 l3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � lk

2
666664

3
777775 isD�1 ¼

1=l1 0 0 � � � 0
0 1=l2 0 � � � 0
0 0 1=l3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1=lk

2
666664

3
777775

if none of the diagonal elements is zero. It is easy to show that if any diagonal
element in a diagonal matrix is zero, then that matrix is singular (see
Problem 56).

An elementary matrix E is a square matrix that generates an elementary row oper-
ation on a matrix A (which need not be square) under the multiplication EA.
Elementary matrices are constructed by applying the desired elementary row
operation to an identitymatrix of appropriate order. That order is a squarematrix
having as many columns as there are rows in A so that the multiplication EA is
defined. Identity matrices contain many zeros, and because nothing is accom-
plished by interchanging the positions of zeros, or multiplying zeros by con-
stants, or adding zeros together, the construction of an elementary matrix can
be simplified.

CREATING ELEMENTARY MATRICES:
(i) To construct an elementary matrix that interchanges the ith row with the jth row, begin

with an identity matrix I. First interchange the 1 in the i-i position with the 0 in the j-i

position and then interchange the 1 in the j-j position with the 0 in the i-j position.

(ii) To construct an elementary matrix that multiplies the ith row of a matrix by the nonzero

scalar k, begin with an identity matrix I and replace the 1 in the i-i position with k.

(iii)To construct an elementary matrix that adds to the jth row of amatrix the scalar k times

the ith row of that matrix, begin with an identity matrix and replace the 0 in the j-i

position with k.

An elementary matrix E is
a square matrix that
generates an elementary
row operation on a matrix
A under the multiplication
EA.
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Example 2 Find elementary matrices that when multiplied on the right by any
3�5 matrix A will (a) interchange the first and second rows of A, (b) multiply
the third rowofA by�0.5, and (c) add to the third rowofA 4 times its second row.

Solution:

að Þ
0 1 0

1 0 0

0 0 1

2
64

3
75, bð Þ

1 0 0

0 1 0

0 0 �0:5

2
64

3
75, cð Þ

1 0 0

0 1 0

0 4 1

2
64

3
75:

Example 3 Find elementary matrices that when multiplied on the right by any
4�3 matrix Awill (a) interchange the second and fourth rows of A, (b) multiply
the third row of A by 3, and (c) add to the fourth row of A �5 times its
second row.

Solution:

að Þ
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
664

3
775, bð Þ

1 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1

2
664

3
775, cð Þ

1 0 0 0

0 0 0 0

0 0 1 0

0 �5 0 1

2
664

3
775:

▶THEOREM 1

(a) The inverse of an elementary matrix that interchanges two rows is the elementary

matrix itself.

(b) The inverse of an elementary matrix that multiplies one row by a nonzero scalar k is a

matrix obtained by replacing the scalar k in the elementary matrix by 1/k.

(c) The inverse of an elementary matrix that adds to one row a constant k times another

row is a matrix obtained by replacing the scalar k in the elementary matrix by �k.◀

Proof:

(a) Let E be an elementary matrix that has the effect interchanging the ith and ith
rows of amatrix. E comes from interchanging the ith and jth rows of the iden-
tity matrix having the same order as E. Then EE¼ I, because interchanging the
positions of the ith row of an identity matrix with jth row twice in succession
does not alter the original matrix. With EE¼ I, it follows that E�1¼E.

(b) Let E be an elementarymatrix that has the effect ofmultiplying the ith rowof a
matrix by a nonzero scalar k, and let F be an elementary matrix that has the
effect of multiplying the ith row of a matrix by a nonzero scalar 1/k. E comes
frommultiplying the ith of the identitymatrix having the sameorder as E by k.
Then FE¼ I, because multiplying the ith row of an identity matrix first by k
and then by 1/k does not alter the original matrix. With FE¼ I, it follows that
F¼E�1.

(c) The proof is similar to the part (b) and is left as an exercise for the reader (see
Problem 63).
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Example 4 The inverses of the elementary matrices found in Example 2 are,
respectively,

að Þ
0 1 0
1 0 0
0 0 1

2
4

3
5, bð Þ

1 0 0
0 1 0
0 0 �2

2
4

3
5, cð Þ

1 0 0
0 1 0
0 �4 1

2
4

3
5:

The inverses of the elementary matrices found in Example 3 are, respectively,

að Þ
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

2
664

3
775, bð Þ

1 0 0 0
0 1 0 0
0 0 1=3 0
0 0 0 1

2
664

3
775, cð Þ

1 0 0 0
0 0 0 0
0 0 1 0
0 5 0 1

2
664

3
775:

Elementary row operations are the backbone of a popularmethod for calculating
inverses. We shall show in Section 2.6 that a square matrix is invertible if and
only if it can be transformed into a row-reduced matrix having all ones on the
main diagonal. If such a transformation is possible, then the original matrix
can be reduced still further, all the way to an identity matrix. This is done by
applying elementary row operation R3—adding to one row of a matrix a scalar
times another row of the same matrix—to each column, beginning with the last
column and moving sequentially towards the first column, placing zeros in all posi-
tions above the diagonal elements.

Example 5 Use elementary row operations to transform the row-reduced matrix

A ¼
1 2 1
0 1 3
0 0 1

2
4

3
5

to the identity matrix.

Solution:

1 2 1
0 1 3
0 0 1

2
4

3
5 !

1 2 1
0 1 0
0 0 1

2
4

3
5 by adding to the second row �3 times the

third row

!
1 2 0
0 1 0
0 0 1

2
4

3
5 by adding to the first row �1 times the third

row

!
1 0 1
0 1 0
0 0 1

2
4

3
5 by adding to the first row �2 times the

second row

Thus, a square A has an inverse if and only if A can be transformed into an iden-
tity matrix with elementary row operations. Because each elementary row
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operation can be represented by an elementary matrix, we conclude that amatrix
A has an inverse if and only if there exists a sequence of elementary matrices
E1, E2, . . . , Ek such that

Ek,Ek�1 . . .E2E1A ¼ I

Denoting the product of these elementary matrices by B, we have BA¼ I, which
implies that B¼A�1. To calculate the inverse of a matrix A, we need only record
the product of the elementary row operations used to transform A to I. This
is accomplished by applying the same elementary row operations to both A
and I simultaneously.

Example 6 Find the inverse of A ¼ 1 2
3 4

� �
.

Solution:

1
3

2
4

� 



 1
0

0
1

�
! 1

0
2

�2

� 



 1
�3

0
1

�
by adding to the second row
�3 times the first row

! 0
0

0
1

� 



 �2
3=2

0
�1=2

�
by multiplying the second row
by �1/2

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

! 0
0

0
1

� 



 �2 0
3=2 �1=2

�
by adding to the first row –2
times the second row

Thus,

A�1 ¼ �2 1
3=2 �1=2

� �

CALCULATING INVERSES
Step 1. Create an augmented matrix [A | I], where A is the n�nmatrix to be inverted and I

is the n�n identity matrix.

Step 2. Use elementary row operations on [A | I] to transform the left partition A to row-

reduced form, applying each operation to the full augmented matrix.

Step 3. If the left partition of the row-reduced matrix has zero elements on its

main diagonal, stop: A does not have inverse. Otherwise, continue.

Step 4.Use elementary row operations on the row-reduced augmentedmatrix to transform

the left partition to the n�n identity matrix, applying each operation to the full

augmented matrix.

Step 5. The right partition of the final augmented matrix is the inverse of A.
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Example 7 Find the inverse of A ¼
5 8 1

0 2 1

4 3 �1

2
64

3
75

Solution:

5

0

4

8

2

3

1

1

�1
j 1

0

0

0

1

0

0

0

1

2
64

3
75

!
1

0

4

1:6

2

3

0:2

1

�1
j 0:2

0

0

0

1

0

0

0

1

2
64

3
75 by multiplying the first row

by 0.2

!
1

0

0

1:6

2

�3:4

0:2

1

�1:8
j 0:2

0

�0:8

0

1

0

0

0

1

2
64

3
75 by adding to the third row

–4 times the first row

!
1

0

0

1:6

1

�3:4

0:2

0:5

�1:8
j 0:2

0

�0:8

0

0:5

0

0

0

1

2
64

3
75 by multiplying the second

row by 1/2

!
1

0

0

1:6

1

0

0:2

0:5

�0:1
j 0:2

0

�0:8

0

0:5

1:7

0

0

1

2
64

3
75 by adding to the third row

3.4 times the second row

!
1

0

0

1:6

1

0

0:2

0:5

1
j 0:2

0

8

0

0:5

�17

0

0

�10

2
64

3
75 by multiplying the third row

by –10

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

!
1
0
0

1:6
1
0

0:2
0
1 j 0:2

�4
8

0
9

�17

0
5

�10

2
64

3
75 by adding to the second row

–0.5 times the third row

!
1
0
0

1:6
1
0

0
0
1 j �1:4

�4
8

3:4
9

�17

2
5

�10

2
64

3
75 by adding to the first row

–0.2 times the third row
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!
1
0
0

0
1
0

0
0
1 j 5

�4
8

�11
9

�17

6
5

�10

2
64

3
75 by adding to the first row –1.6

times the second row

Thus,

A�1 ¼
5 �11 �6

�4 9 5
8 �17 �10

2
4

3
5

Example 8 Find the inverse of A ¼
0 1 1
1 1 1
1 1 3

2
4

3
5.

Solution:
0
1
1

1
1
1

1
1
3 j 1 0 0

0 1 0
0 0 1

2
64

3
75

!
1
0
1

1
1
1

1
1
3 j 0 1 0

1 0 0
0 0 1

2
64

3
75 by interchanging the first and

second rows

!
1
0
0

1
1
0

1
1
2 j 0 1 0

1 0 0
0 �1 1

2
64

3
75 by adding to the third row –1 times

the first row

!
1
0
0

1
1
0

1
1
1 j 0 1 0

1 0 0
0 �1=2 1=2

2
64

3
75 by multiplying the third row by 1/2

!
1
0
0

1
1
0

1
0
1 j 0 1 0

1 1=2 �1=2
0 �1=2 1=2

2
64

3
75 by adding to the second row –1

times the third row

!
1
0
0

1
1
0

0
0
1 j 0 3=2 �1=2

1 1=2 �1=2
0 �1=2 1=2

2
64

3
75 by adding to the first row –1 times

the third row

!
1
0
0

0
1
0

0
0
1 j �1 1 0

1 1=2 �1=2
0 �1=2 1=2

2
64

3
75 by adding to the first row –1 times

the second row
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Thus,

A�1 ¼
�1 1 0
1 1=2 �1=2
0 �1=2 1=2

2
4

3
5

Example 9 Find the inverse of A ¼ 1 2
2 4

� �
.

Solution:

1
2

2
4

� 



 1
0

0
0

�
! 1

0
2
0

� 



 1
�2

0
1

�
by adding to the second row
–2 times the first row

A has been transformed into row-reduced form. Because the main diagonal con-
tains a zero entry, A does not have an inverse; A is singular.

▶THEOREM 2
The inverse of a matrix is unique.◀

Proof: If B and C are both inverses of the matrix A, then

AB ¼ I, BA ¼ I, AC ¼ I, and CA ¼ I:

It now follows that

C ¼ CI ¼ C ABð Þ ¼ CAð ÞB ¼ IB ¼ B:

Thus, if B and C are both inverses of A, they must be equal; hence, the inverse is
unique.

Using Theorem 2, we can prove some useful properties of inverses.

▶THEOREM 3
If A and B are n�n nonsingular matrices, then

(a) ðA�1Þ�1 ¼ A,

(b) (AB)–1¼B–1A–1,

(c) ðATÞ�1 ¼ ðA�1ÞT,
(d) (lA)–1¼ (1/l)A–1, if l is a nonzero scalar.◀

Proof: We prove parts (b) and (c) and leave parts (a) and (d) as exercises (see
Problems 59 and 60). To prove (b), we note that
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B�1A�1
� �

ABð Þ ¼ B�1 A�1A
� �

B ¼ B�1IB ¼ B�1B ¼ I:

Thus, B�1 A�1 is an inverse of AB. Because the inverse is unique, it follows that
(AB)�1¼B�1A�1.

To prove (c), we note that

ðATÞ ðA�1ÞT ¼ ðA�1AÞT ¼ IT ¼ I:

Thus, (A�1)T is an inverse of AT. Because the inverse is unique, it follows that
(AT)�1¼ (A�1)T.

The process of finding an inverse is known as inversion, and, interestingly, some
matrix forms are preserved under this process.

▶THEOREM 4

(a) The inverse of a nonsingular symmetric matrix is symmetric.

(b) The inverse of a nonsingular upper or lower triangular matrix is again an upper or lower

triangular matrix, respectively.◀

Proof: If A is symmetric, then AT¼A. Combining this observation with part (c) of
Theorem 2, we find that

ðA�1ÞT ¼ ðATÞ�1 ¼ Að Þ�1

so A�1 also equals its transpose and is symmetric. This proves part (a). Part (b) is
immediate from Theorem 2 and the constructive procedure used for calculating
inverses. The details are left as an exercise (see Problem 62).

A system of simultaneously linear equations has the matrix form

Ax ¼ b ð1:14 repeatedÞ
If the coefficient matrix A is invertible, we can premultiply both sides of
Equation (1.14) by A�1 to obtain

A�1 Axð Þ ¼ A�1b

A�1A
� �

x ¼ A�1b

Ix ¼ A�1b

or

x ¼ A�1b ð1:30Þ

This is precisely the form we sought in Section 1.2. With this formula, we can
solve for all the variables in a system of linear equations at the same time.

The matrix equation
Ax¼b has x¼A�1b as
its solution if the coeffi-
cient matrix A is
invertible.
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Example 10 The system of equations

xþ 2y ¼ 150

3xþ 4y ¼ 250

can be written as Ax¼b with

A ¼ 1 2
3 4

� �
, x ¼ x

y

� �
, and b ¼ 150

250

� �

Using the results of Example 6, we have that the coefficient matrix A is invertible
and

x
y

� �
¼ x ¼ A�1b ¼ �2 1

3=2 �1=2

� �
150
250

� �
¼ �50

100

� �
:

Hence, x¼�50 and y¼100.

Example 11 The system of equations

5xþ 8y þ z ¼ 2

2y þ z ¼ �1

4xþ 3y � z ¼ 3

can be written as Ax¼b with

A ¼
5 8 1
0 2 1
4 3 �1

2
4

3
5, x ¼

x
y
z

2
4

3
5, and b ¼

2
�1
3

2
4

3
5:

Using the results of Example 7, we have that the coefficient matrix A is
invertible and

x
y

� �
¼ x ¼ A�1b ¼

5 �11 �6
�4 9 5
8 �17 �10

2
4

3
5, ¼ 2

�1
3

2
4

3
5 3

�2
3

2
4

3
5

Hence, x¼3, y¼�2, and z¼3.

Not only does the invertibility of the coefficient matrix A provide us with a solu-
tion to the system Ax¼b, it also provides us with a means to show that this solu-
tion is the only solution to the system.

▶THEOREM 5
If A is invertible, then the system of simultaneous linear equations defined by Ax¼b has a

unique (one and only one) solution.◀

Linear Algebra76



Proof: Define w¼A�1 b. Then

Aw ¼ AA�1b ¼ Ib ¼ b ð1:31Þ
and w is one solution to the system Ax¼b. Let y be another solution to this
system. Then necessarily

Ay ¼ b ð1:32Þ
Equations (1.26) and (1.27) imply that

Aw ¼ Ay

Premultiplying both sides of this last equation by A�1, we find

A�1 Awð Þ ¼ A�1 Ayð Þ
A�1A
� �

w ¼ A�1A
� �

y

Iw ¼ Iy

or
w ¼ y

Thus, if y is a solution of Ax¼b, then it must equal w. Therefore, w¼A�1 b is
the only solution to this system.

If A is singular, so that A�1 does not exist, then Equation (1.25) is not valid and
other methods, such as Gaussian elimination, must be used to solve the given
system of simultaneous equations.

Problems 1.6

(1) Determine if any of the following matrices are inverses for A ¼ 1 3
2 9

� �
:

(a)
1 1=3

1=2 1=9

� �
, (b)

�1 �3
�2 �9

� �
,

(c)
3 �1

�2=3 1=3

� �
, (d)

9 �3
�2 1

� �
:

(2) Determine if any of the following matrices are inverses for A ¼ 1 1
1 1

� �
:

(a)
1 1
1 1

� �
, (b)

�1 1
1 �1

� �
,

(c)
1 1

�1 �1

� �
, (d)

2 �1
�1 2

� �
:

In Problems 3 through 12, find elementary matrices that when multiplied on
the right by the given matrix A will generate the specified result.
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(3) Interchange the order of the first and second rows of a 2�2 matrix A.

(4) Multiply the first row of a 2�2 matrix A by 3.

(5) Multiply the second row of a 2�2 matrix A by �5.

(6) Multiply the second row of a 3�3 matrix A by �5.

(7) Add to the second row of a 2�2 matrix A three times its first row.

(8) Add to the first row of a 2�2 matrix A three times its second row.

(9) Add to the second row of a 3�3 matrix A three times its third row.

(10) Add to the third row of a 3�4 matrix A five times its first row.

(11) Interchange the order of the second and fourth rows of a 6�6 matrix A.

(12) Multiply the second row of a 2�5 matrix A by 7.

In Problems 13 through 22, find the inverses of the given elementary matrices.

(13)
2 0
0 1

� �
(14)

1 2
0 1

� �
(15)

1 0
�3 1

� �

(16)
1 0
1 1

� �
(17)

1 0 0
0 2 0
0 0 1

2
4

3
5 (18)

0 1 0
1 0 0
0 0 1

2
4

3
5

(19)
1 0 3
0 1 0
0 0 1

2
4

3
5 (20)

1 0 0
0 1 �2
0 0 1

2
4

3
5

(21)

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775

(22)

1 0 0 0

0 1 0 0

�3 0 1 0

0 0 0 1

2
6664

3
7775

In Problems 23 through 39, find the inverses of the given matrices, if they exist.

(23)
1 1

3 4

� �
(24)

2 1

1 2

� �
(25)

4 4

4 4

� �

(26)

1 1 0

1 0 1

0 1 1

2
4

3
5 (27)

0 0 1

1 0 0

0 1 0

2
4

3
5 (28)

2 0 �1

0 1 2

3 1 1

2
4

3
5

(29)

1 2 3

4 5 6

7 8 9

2
4

3
5 (30)

2 0 0

5 1 0

4 1 1

2
4

3
5 (31)

2 1 5

0 3 �1

0 0 2

2
4

3
5
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(32)
3 2 1
4 0 1
3 9 2

2
4

3
5 (33)

1 2 �1
2 0 1

�1 1 3

2
4

3
5

(34)
1 2 1
3 �2 �4
2 3 �1

2
4

3
5 (35)

2 4 1
3 �4 �4
5 0 �1

2
4

3
5

(36)
5 0 �1
2 �1 2
2 3 �1

2
4

3
5 (37)

3 1 1
1 3 �1
2 3 �1

2
4

3
5

(38)

1 1 1 2
0 1 �1 1
0 0 2 3
0 0 0 �2

2
664

3
775 (39)

1 0 0 0
2 �1 0 0
4 6 2 0
3 2 4 �1

2
664

3
775

(40) Show directly that the inverse of A ¼ a b
c d

� �
, when ad�bc 6¼0 is

A�1 ¼ 1

ad� bc

d �b
�c a

� �
,

(41) Use the result of Problem (40) to calculate the inverses of

(a)
1 1
3 4

� �
and (b)

1 1=2
1=2 1=3

� �
In Problems 42 through 51, use matrix inversion, if possible, to solve the
given systems of equations:

(42) xþ 2y ¼ �3
3xþ y ¼ 1

(43) aþ 2b ¼ 5
�3aþ b ¼ 13

(44) 4xþ 2y ¼ 6
2x� 3y ¼ 1

(45) 4l� p ¼ 1
5l� 2p ¼ �1

(46) 2xþ 3y ¼ 8
6xþ 9y ¼ 24

(47) xþ 2y � z ¼ �1
2xþ 3y þ 2z ¼ 5
y � z ¼ 2

(48) 2xþ 3y � z ¼ 4

�x� 2y þ z ¼ �2

3x� y ¼ 2

(49) 60lþ 30mþ 20n ¼ 0

30lþ 20mþ 15n ¼ �10

20lþ 15mþ 12n ¼ �10

(50) 2r þ 3s� 4t ¼ 12
3r � 2s ¼ �1
8r � s� 4t ¼ 10

(51) xþ 2y � 2z ¼ �1
2xþ y þ z ¼ 5
�xþ y � z ¼ �2
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(52) Solve each of the following systems using the same inverse:

(a) 3xþ 5y ¼ 10

2xþ 3y ¼ 20
(b) 3xþ 5y ¼ �8

2xþ 3y ¼ 22

(c) 3xþ 5y ¼ 0:2

2xþ 3y ¼ 0:5

(d) 3xþ 5y ¼ 0

2xþ 3y ¼ 5

(53) Solve each of the following systems using the same inverse:

(a) 2xþ 4y ¼ 2

3xþ 2y þ z ¼ 8

5x� 3y þ 7z ¼ 15

(b) 2xþ 4y ¼ 3

3xþ 2y þ z ¼ 8

5x� 3y þ 7z ¼ 15

(c) 2xþ 4y ¼ 2

3xþ 2y þ z ¼ 9

5x� 3y þ 7z ¼ 15

(d) 2xþ 4y ¼ 1

3xþ 2y þ z ¼ 7

5x� 3y þ 7z ¼ 14

(54) If A is nonsingular matrix, we may define A�n¼ (A�1)n, for any positive
integer n. Use this definition to find A�2 and A�3 for the following
matrices:

(a)
1 1

2 3

� �
, (b)

2 5

1 2

� �
, (c)

1 1

3 4

� �
,

(d)

1 1 1

0 1 1

0 0 1

2
4

3
5, (e)

1 2 �1

0 1 �1

0 0 1

2
4

3
5:

(55) Prove that a square zero matrix does not have an inverse.

(56) Prove that if a diagonal matrix has at least one zero on its main diagonal,
then that matrix does not have an inverse.

(57) Prove that if A2¼ I, then A�1¼A.

(58) If A is symmetric, prove the identity ðBA�1ÞTðA�1BTÞ�1 ¼ I:

(59) Prove that if A is invertible, then ðA�1Þ�1 ¼ A.

(60) Prove that if A is invertible and if l is a nonzero scalar, then
(lA)–1¼ (1/l)A–1.

(61) Prove that if A, B, and C are n�n nonsingular matrices, then
(ABC)–1¼C–1B–1A–1.

(62) Prove that the inverse of a nonsingular upper (lower) triangular matrix is
itself upper (lower) triangular.

(63) Prove part (c) of Theorem 1.
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(64) Show that if A can be partitioned into the block diagonal form

A ¼

A1 0

A2

A3

. .
.

0 Ak

2
6666664

3
7777775

with A1, A2,. . . , An all invertible, then

A�1 ¼

A�1
1 0

A�1
2

A�1
3

. .
.

0 A�1
k

2
6666664

3
7777775

1.7 LU DECOMPOSITION
Matrix inversion of elementary matrices is at the core of still another popular
method, known as LU decomposition, for solving simultaneous equations in
the matrix form Ax¼b. The method rests on factoring a nonsingular coefficient
matrix A into the product of a lower triangular matrix L with an upper triangular
matrix U. Generally, there are many such factorizations. If L is required to have
all diagonal elements equal to 1, then the decomposition, when it exists, is
unique and we may write

A ¼ LU ð1:33Þ
with

L ¼

1 0 0 � � � 0

l21 1 0 � � � 0

l31 l32 1 � � � 0

..

. ..
. ..

. . .
. ..

.

ln1 ln2 ln3 � � � 1

2
666666664

3
777777775

U ¼

u11 u12 u13 � � � u1n

0 u22 u23 � � � u2n

0 0 u23 � � � u3n

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � unn

2
666666664

3
777777775
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To decompose A into form (1.33), we first transform A to upper triangular form
using just the third elementary row operation R3. This is similar to transforming a
matrix to row-reduced form, except we no longer use the first two elementary row
operations. We do not interchange rows, and we do not multiply rows by non-
zero constants. Consequently, we no longer require that the first nonzero ele-
ment of each nonzero row be 1, and if any of the pivots are 0—which would
indicate a row interchange in the transformation to row-reduced form—then
the decomposition scheme we seek cannot be done.

Example 1 Use the third elementary row operation to transform the matrix

A ¼
2 �1 3
4 2 1

�6 �1 2

2
4

3
5

into upper triangular form.

Solution:

A ¼
2 �1 3

4 2 1

�6 �1 2

2
4

3
5 !

2 �1 3

0 4 �5

�6 �1 2

2
4

3
5 by adding to the second row

� 2 times the first row

!
2 �1 3

0 4 �5

0 �4 11

2
4

3
5 by adding to the third row 3 times

the first row

!
2 �1 3

0 4 �5

0 0 6

2
4

3
5 by adding to the third row 1 times

the second row

If a square matrix A can be reduced to upper triangular form U by a sequence of
elementary row operations of the third type, then there exists a sequence of ele-
mentary matrices E21, E31, E41, . . . , En,n�1 such that

En, n�1 . . .E41E31E21ð ÞA ¼ U ð1:34Þ
where E21 denotes the elementary matrix that places a 0 in the 2-1 position, E31
denotes the elementary matrix that places a 0 in the 3-1 position, E41 denotes the
elementarymatrix that places a 0 in the 4-1 position, and so on. Since elementary
matrices have inverses, we can write Equation (1.29) as

A ¼ E�1
21 E

�1
31 E

�1
41 . . .E�1

n, n�1

� �
U ð1:35Þ

Each elementary matrix in Equation (1.34) is lower triangular. It follows from
Theorem 4 of Section 1.5 that each of the inverses in Equation (1.35) are lower
triangular and then from Theorem 2 of Section 1.3 that the product of these
lower triangular inverses is itself lower triangular. If we set
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L ¼ E�1
21 E

�1
31 E

�1
41 . . .E�1

n, n�1

� �
then L is lower triangular and Equation (1.35) may be rewritten as A¼LU, which
is the decomposition we seek.

Example 2 Construct an LU decomposition for the matrix given in Example 1.

Solution: The elementarymatrices associated with the elementary row operations
described in Example 1 are

E21 ¼
1 0 0

�2 1 0
0 0 1

2
4

3
5, E31 ¼

1 0 0
0 1 0

�3 0 1

2
4

3
5, and E32 ¼

1 0 0
0 1 0
0 �1 1

2
4

3
5

with inverses given respectively by

E�1
21 ¼

1 0 0
2 1 0
0 0 1

2
4

3
5, E�1

31 ¼
1 0 0
0 1 0

�3 0 1

2
4

3
5, and E�1

32 ¼
1 0 0
0 1 0
0 �1 1

2
4

3
5:

Then,

2 �1 3
4 2 1

�6 �1 2

2
4

3
5 ¼

1 0 0
2 1 0
0 0 1

2
4

3
5 1 0 0

0 1 0
�3 0 1

2
4

3
5 1 0 0

0 1 0
0 �1 1

2
4

3
5 2 �1 3

0 4 �5
0 0 6

2
4

3
5

or, upon multiplying together the inverses of the elementary matrices,

2 �1 3
4 2 1

�6 �1 2

2
4

3
5 ¼

1 0 0
2 1 0

�3 �1 1

2
4

3
5 2 �1 3

0 4 �5
0 0 6

2
4

3
5:

Example 2 suggests an important simplification of the decomposition process.
Note that the elements in L located below the main diagonal are the negatives
of the scalars used in the elementary row operations in Example 1 to reduce A
to upper triangular form! This is no coincidence.

▶OBSERVATION 1
If, in transforming a square matrix A to upper triangular form, a zero is placed in the i-j

position by adding to row i a scalar k times row j, then the i-j element of L in the LU decom-

position of A is �k.◀

We summarize the decomposition process as follows: Use only the third elemen-
tary row operation to transform a squarematrix A to upper triangular form. If this
is not possible, because of a zero pivot, then stop. Otherwise, the LU decompo-
sition is found by defining the resulting upper triangular matrix as U and con-
structing the lower triangular matrix L according to Observation 1.

A square matrix A has an
LU decomposition if A
can be transformed to
upper triangular form
using only the third ele-
mentary row operation.
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Example 3 Construct an LU decomposition for the matrix

A ¼
2 1 2 3
6 2 4 8
1 �1 0 4
0 1 �3 �4

2
664

3
775

Solution: Transforming A to upper triangular form, we get

2 1 2 3

6 2 4 8

1 �1 0 4

0 1 �3 �4

2
6664

3
7775 !

2 1 2 3

0 �1 �2 �1

1 �1 0 4

0 1 �3 �4

2
6664

3
7775

by adding to the second row
�3 times the first row

!

2 1 2 3

0 �1 �2 �1

0 � 3
2 �1 5

2

0 1 �3 �4

2
66664

3
77775

by adding to the third row
�1/2 times the first row

!
2 1 2 3

0 �1 �2 �1

0 0 2 4

0 1 �3 �4

2
6664

3
7775

by adding to the third row
�3/2 times the second row

!
2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 �5 �5

2
6664

3
7775

by adding to the fourth row 1
times the second row

!
2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 0 5

2
6664

3
7775

by adding to the fourth row
5/2 times the third row

We now have an upper triangular matrix U. To get the lower triangular matrix L
in the decomposition, we note that we used the scalar �3 to place a 0 in the 2-1
position, so its negative �(�3)¼3 goes into the 2-1 position of L. We used the
scalar �1/2 to place a 0 in the 3-1 position in the second step of the preceding
triangularization process, so its negative, 1/2, becomes the 3-1 element in L; we
used the scalar 5/2 to place a 0 in the 4-3 position during the last step of the tri-
angularization process, so its negative,�5/2, becomes the 4-3 element in L. Con-
tinuing in this manner, we generate the decomposition
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2 1 2 3

6 2 4 8

1 �1 0 4

0 1 �3 �4

2
664

3
775 ¼

1 0 0 0

3 1 0 0
1
2

3
2 1 0

0 �1 � 5
2 1

2
666664

3
777775

2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 0 5

2
664

3
775

LU decompositions, when they exist, are used to solve systems of simultaneous
linear equations. If a squarematrix A can be factored into A¼LU, then the system
of equations Ax¼b can be written as L(Ux)¼b. To find x, we first solve the
system

Ly ¼ b ð1:36Þ
for y, and then once y is determined, we solve the system

Ux ¼ y ð1:37Þ
for x. Both systems (1.36) and (1.37) are easy to solve, the first by forward sub-
stitution and the second by backward substitution.

Example 4 Solve the system of equations:

2x� y þ 3z ¼ 9
4xþ 2y þ z ¼ 9

�6x� y þ 2z ¼ 12

Solution: This system has the matrix form

2 �1 3

4 2 1

�6 �1 2

2
4

3
5 x

y

z

2
4

3
5 ¼

9

9

12

2
4

3
5

The LU decomposition for the coefficient matrix A is given in Example 2. If
we define the components of y by a, b, and g, respectively, the matrix system
Ly¼b is

1 0 0

2 1 0

�3 �1 1

2
4

3
5 a

b
g

2
4

3
5 ¼

9

9

12

2
4

3
5

which is equivalent to the system of equations

a ¼ 9

2aþ b ¼ 9

�3a� bþ g ¼ 12

Solving this system from top to bottom, we get a¼9, b¼�9, and g¼30. Con-
sequently, the matrix system Ux¼y is

If A¼LU for a square
matrix A, then the equa-
tion Ax¼b is solved by
first solving the equation
Ly¼b for y and then
solving the equation
Ux¼y for x.
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2 �1 3

0 4 �5

0 0 6

2
4

3
5 x

y

z

2
4

3
5 ¼

9

�9

30

2
4

3
5

which is equivalent to the system of equations

2x� y þ 3z ¼ 9

4y � 5z ¼ �9

6z ¼ 30

Solving this system from bottom to top, we obtain the final solution x¼�1,
y¼4, and z¼5.

Example 5 Solve the system

2aþ bþ 2cþ 3d ¼ 5

6aþ 2bþ 4cþ 8d ¼ 8

a� bþ 4d ¼ �4

b� 3c� 4d ¼ �3

Solution: The matrix representation for this system has as its coefficient matrix
the matrix A of Example 3. Define

y ¼ a; b; g; d½ �T

Then, using the decomposition determined in Example 3, we can write the
matrix system Ly¼b as the system of equations

a ¼ 5

3aþ b ¼ 8

1

2
aþ 3

2
bþ g ¼ �4

�b� 5

2
gþ d ¼ �3

which has as its solution a¼5, b¼�7, g¼4, and d¼0. Thus, the matrix system
Ux¼y is equivalent to the system of equations

2aþ bþ 2cþ 3d ¼ 5

�b� 2c� d ¼ �7

2cþ 4d ¼ 4

5d ¼ 0

Solving this set from bottom to top, we calculate the final solution as a¼�1,
b¼3, c¼2, and d¼0.
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Problems 1.7
In Problems 1 through 14, A and b are given. Construct an LU decomposition for
the matrix A and then use it to solve the system Ax¼b for x.

(1) A ¼ 1 1
3 4

� �
, b ¼ 1

�6

� �
: (2) A ¼ 2 1

1 2

� �
, b ¼ 11

�2

� �
:

(3) A ¼ 8 3
5 2

� �
, b ¼ 625

550

� �
: (4) A ¼

1 1 0
1 0 1
0 1 1

2
4

3
5, b ¼

4
1

�1

2
4

3
5:

(5) A ¼
�1 2 0
1 �3 1
2 �2 3

2
4

3
5, b ¼

�1
�2
3

2
4

3
5:

(6) A ¼
2 1 3
4 1 0

�2 �1 �2

2
4

3
5, b ¼

10
�40

0

2
4

3
5:

(7) A ¼
3 2 1
4 0 1
3 9 2

2
4

3
5, b ¼

50
80
20

2
4

3
5:

(8) A ¼
1 2 �1
2 0 1

�1 1 3

2
4

3
5, b ¼

80
159
�75

2
4

3
5:

(9) A ¼
1 2 �1
0 2 1
0 0 1

2
4

3
5, b ¼

8
�1
5

2
4

3
5:

(10) A ¼
1 0 0
3 2 0
1 1 2

2
4

3
5, b ¼

2
4
2

2
4

3
5:

(11) A ¼
1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

2
664

3
775, b ¼

4
�3
�2
�2

2
664

3
775:

(12) A ¼
2 1 �1 3
1 4 2 1
0 0 �1 1
0 1 1 1

2
664

3
775, b ¼

1000
200
100
100

2
664

3
775:
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(13) A ¼
1 2 1 1
1 1 2 1
1 1 1 2
0 1 1 1

2
664

3
775, b ¼

30
30
10
10

2
664

3
775:

(14) A ¼
2 0 2 0

2 2 0 6

�4 3 1 1

1 0 3 1

2
6664

3
7775, b ¼

�2

4

9

4

2
6664

3
7775:

(15) (a) Use LU decomposition to solve the system

�xþ 2y ¼ �9

2xþ 3y ¼ 4

(b) Use the decomposition to solve the preceding system when the right
sides of the equations are replaced by 1 and �1, respectively.

(16) (a) Use LU decomposition to solve the system

xþ 3y � z ¼ �1

2xþ 5y þ z ¼ 4

2xþ 7y � 4z ¼ �6

(b) Use the decomposition to solve the preceding system when the right
side of each equation is replaced by 10, 10, and 10, respectively.

(17) Solve the system Ax¼b for the following vectors b when A is given as in
Problem 4:

(a)
5
7

�4

2
4

3
5, (b)

2
2
0

2
4

3
5, (c)

40
50
20

2
4

3
5, (d)

1
1
3

2
4

3
5:

(18) Solve the system Ax¼b for the following vectors b when A is given as in
Problem 13:

(a)

�1
1
1
1

2
664

3
775, (b)

0
0
0
0

2
664

3
775, (c)

190
130
160
60

2
664

3
775, (d)

1
1
1
1

2
664

3
775:

(19) Show that LU decomposition cannot be used to solve the system

2y þ z ¼ �1

xþ y þ 3z ¼ 8

2x� y � z ¼ 1

but that the decomposition can be used if the first two equations are
interchanged.
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(20) Show that LU decomposition cannot be used to solve the system

xþ 2y þ z ¼ 2

2xþ 4y � z ¼ 7

xþ y þ 2z ¼ 2

but that the decomposition can be used if the first and third equations are
interchanged.

(21) (a) Show that the LU decomposition procedure given in this section
cannot be applied to

A ¼ 0 2
0 9

� �
(b) Verify that A¼LU, when

L ¼ 1 0
1 1

� �
and U ¼ 0 2

0 7

� �
(c) Verify that A¼LU, when

L ¼ 1 0
3 1

� �
and U ¼ 0 2

0 3

� �
(d) Why do you think the LU decomposition procedure fails for this A?

What might explain the fact that A has more than one LU
decomposition?

CHAPTER 1 REVIEW
Important Terms

augmented matrix
block diagonal matrix
coefficient matrix
cofactor
column matrix
component
consistent equations
derived set
determinant
diagonal element
diagonal matrix
dimension
directed line segment
element
elementary matrix

elementary row operations
equivalent directed line segments
expansion by cofactor
Gaussian elimination
homogeneous equations
identity matrix
inconsistent equations
inverse
invertible matrix
linear equation
lower triangular matrix
LU decomposition
main diagonal
mathematical induction
matrix
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nonhomogeneous equations
nonsingular matrix
n-tuple
order
partitioned matrix
pivot
pivotal condersation
power of a matrix
row matrix
row-reduced form

scalar
singular matrix
skew-symmetric matrix
square
submatrix
symmetric matrix
transpose
trivial solution
upper triangular matrix
zero matrix

Important Concepts
Section 1.1

▪ Twomatrices are equal if they have the same order and if their corresponding
elements are equal.

▪ The sum of two matrices of the same order is a matrix obtained by adding
together corresponding elements of the original two matrices. Matrix addi-
tion is commutative and associative.

▪ The difference of two matrices of the same order is a matrix obtained by sub-
tracting corresponding elements of the original two matrices.

▪ The product of a scalar by amatrix is thematrix obtained bymultiplying every
element of the matrix by the scalar.

Section 1.2

▪ The product AB of twomatrices is defined only if the number of columns of A
equals the number of rows of B. Then the i-j element of the product is
obtained by multiplying the elements in the ith row of A by the correspond-
ing elements in they jth column of B and summing the results.

▪ Matrix multiplication is not commutative. The associative law of multiplica-
tion as well as the left and right distributive laws for multiplication are valid.

▪ A system of linear equations may be written as the single matrix equation
Ax¼b.

Section 1.3

▪ The transpose of a matrix A is obtained by converting all the rows of A into
columns while preserving the ordering of the rows/columns.

▪ The product of two lower (upper) triangularmatrices of the same order is also
a lower (upper) triangular matrix.

Section 1.4

▪ A system of simultaneous linear equations has either no solutions, one solu-
tion, or infinitely many solutions.

▪ A homogeneous system of linear equations is always consistent and admits
the trivial solution as one solution.
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▪ A linear equation in two variables graphs as a straight line. The coordinates of
a point in the plane is a solution to a system of equations in two variables if
and only if the point lies simultaneously on the straight line graph of every
equation in the system.

▪ A linear equation in three variables graphs as a plane. The coordinates of a
point in space is a solution to a system of equations in three variables if
and only if the point lies simultaneously on the planes that represent every
equation in the system.

▪ The heart of Gaussian elimination is the transformation of an augmented
matrix to row-reduced form using only elementary row operations.

▪ If the solution to a derived set involves at least one arbitrary unknown, then
the original set of equations has infinitely many solutions.

▪ A homogeneous system of linear equations having more variables than equa-
tions has infinitely many solutions.

▪ If a derived set contains a false equation, then the original set of equations has
no solution.

Section 1.5

▪ Every square matrix has a number associated with it.
▪ Minors and cofactors are used to evaluate determinants.

▪ The determinant of the product of square matrices of the same size is the
product of the determinants of the matrices.

Section 1.6

▪ An inverse, if it exists, is unique.

▪ The inverse of a diagonal matrix D with no zero elements on its main diag-
onal is another diagonal matrix having diagonal elements that are the recip-
rocals of the diagonal elements of D.

▪ The inverse of an elementary matrix is again an elementary matrix.

▪ The inverse of a nonsingular upper (lower) triangular matrix is again an
upper (lower) triangular matrix.

▪ A square matrix has an inverse if it can be transformed by elementary row
operations to an upper triangular matrix with no zero elements on the main
diagonal.

▪ The matrix equation Ax¼b has as its solution x¼A�1 b if the A is invertible.

Section 1.7

▪ A square matrix A has an LU decomposition if A can be transformed to upper
triangular form using only the third elementary row operation.

▪ If A¼LU for a squarematrix A, then the equationAx¼b is solved by first solv-
ing the equation Ly¼b for y and then solving the equation Ux¼y for x.
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2.1 PROPERTIES OF n

At the core of mathematical analysis is the process of identifying fundamental
structures that appear with some regularity in different situations, developing
them in the abstract, and then applying the resulting knowledge base back to
the individual situations. In this way, one can understand simultaneously many
different situations by investigating the properties that govern all of them. Matri-
ces would seem to have little in commonwith polynomials, which in turn appear
to have little in commonwith directed line segments, yet they share fundamental
characteristics that, when fully developed, provide a richer understanding of
them all.

In order to motivate the ensuing discussion of these fundamental characteristics,
we first present some of the properties of a commonmathematical structure that
should be familiar to readers of this text—the real number system. Points on the
plane in an x-y coordinate system are identified by an ordered pair of real num-
bers; points in space are located by an ordered triplet of real numbers. These are
just two examples of the more general concept of an ordered array of n-real num-
bers known as an n-tuple.Wewrite an n-tuple as a 1�n rowmatrix. The elements
in the row matrix are real numbers and the number of elements (columns) n is
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the dimension of the row matrix. The set of all n-tuples is often referred to as
n-space and denoted by n. In particular, the ordered pair [12] is a member of

2; it is a 2-tuple of dimension two. The ordered triplet [102030] is a member

of 3; it is a 3-tuple of dimension three. The p-tuple a¼ [a1 a2 a3 . . .ap], where aj
(j¼1, 2, . . . , p) is a real number, is a member of p, and has dimension p.

An ordered array of real numbers also can be written as a column matrix,
and often is. Here we work exclusively with row matrix representations, but
only as a matter of convenience. We could work equally well with column
matrices.

Row matrices are special types of matrices, those matrices having only one row,
so the basic matrix operations defined in Section 1.1 remain valid for n-tuples
represented as row matrices. This means we know how to add and subtract
n-tuples of the same dimension and how to multiple a real number times an

n-tuple (scalar multiplication). If we restrict ourselves to 2 and 3, we can
describe these operations geometrically.

A two-dimensional row matrix v¼ [ab] is identified with the point (a, b) on x-y
plane, measured a units along the horizontal x-axis from the origin and then b
units parallel to the vertical y-axis. If we draw a directed line segment, or arrow,
beginning at the origin and ending at the point (a, b), then this arrow, as shown
in Figure 2.1, is a geometrical representation of the row matrix [ab]. It follows
immediately from Pythagoras’s theorem that the length or magnitude of v,
denoted by kvk, is

kvk ¼ k a b½ �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and from elementary trigonometry that the angle y satisfies the equation

tan y ¼ b

a

(a, b)

a

b

y

Vector v

xq

FIGURE 2.1

n is the set of ordered
arrays of n real numbers.
This set is represented
either by the set of all
n-dimensional row
matrices or by the set
of all n-dimensional
column matrices.
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Example 1 Represent the row matrices v¼ [24] and u¼ [�11] geometrically
and then determine the magnitude of each and the angle each makes with the
horizontal x-axis.

Solution: The row matrices are graphed in Figure 2.2. For v, we have

vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð Þ2 þ 4ð Þ2

q
� 4:47, tan y ¼ 4

2
¼ 2, andy � 63:4�

For u, similar computations yield

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð Þ2 þ 1ð Þ2

q
� 1:14, tan y ¼ 1

�1
¼ �1, andy � 135�

To geometrically construct the sum of two row matrices u and v in 2, graph
u and v on the same coordinate system, translate v so its initial point coincides
with the terminal point of u, being careful to preserve both the magnitude
and direction of v, and then draw an arrow from the origin to the terminal
point of v after translation. This arrow geometrically represents the sum
uþv. The process is illustrated in Figure 2.3 for the row matrices u¼[�11]
and v¼ [24].

To construct the difference of two rowmatrices u�v geometrically, graph both u
and v normally and construct an arrow from the terminal point of v to the ter-
minal point of u. This arrow geometrically represents the difference u�v. The
process is depicted in Figure 2.4 for u¼ [�11] and v¼ [24].

Translating an arrow (directed line segment) that represents a two-dimensional
row matrix from one location in the plane to another does not affect the repre-
sentation, providing both the magnitude and direction as defined by the angle
the arrow makes with the positive x-axis are preserved. Many physical phenom-
ena such as velocity and force are completely described by their magnitudes and
directions. A wind velocity of 60 miles per hour in the northwest direction is a
complete description of that velocity, and it is independent of where that wind

1

−1

−1−2 2 31

2

3

4

(−1, 1)

(2, 4)

Ve
ct

or
 v

Vector u

y

x

FIGURE 2.2

To graph uþv in 2,
graph u and v on the
same coordinate system,
translate v so its initial
point coincides with the
terminal point of u, and
then draw an arrow from
the origin to the terminal
point of v after transla-
tion.To graph u�v in2,
graph u and v on the
same coordinate system
and then draw an arrow
from the terminal point of
v to the terminal point
of u.
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occurs, be it Lawrence, Kansas, or Portland, Oregon. This independence is the
rationale behind translating row matrices geometrically. Geometrically, two-
dimensional row matrices having the same magnitude and direction are call
equivalent, and they are regarded as being equal even though they may be located
at different positions in the plane. The four arrows drawn in Figure 2.5 are all
geometrical representations of the same row matrix [1�3].

To recapture a row matrix from the directed line segment that represents it, we
translate the directed line segment so that its tail lies on the origin and then read
the coordinates of its tip. Alternatively, we note that if a directed line segment
w does not originate at the origin, then it can be expressed as the difference
between a directed line segment u that begins at the origin and ends at the

5
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tip of w and a directed line segment v that originates at the origin and ends at
the tail of w as shown in Figure 2.6. Therefore, if the tip of w is at the point
(x2, y2) and the tail at the point (x1, y1), then u represents the row matrix
[x2 y2], v represents the row matrix [x1 y1], and w is the difference w¼u�v¼
[x2�x1 y2� y1].

Example 2 Determine the two-dimensional row matrix associated with the
directed line segments w and z shown in Figure 2.7.

Solution: The tip of the directed line segment w is at the point (40, 30) while its
tail lies on the point (10, �20), so

w ¼ 40� 10 30� �20ð Þ½ � ¼ 30 50½ �
The tip of the directed line segment z is at the point (�10, 30) while its tail lies on
the point (�50, 50), so

z ¼ �10� �50ð Þ 30� 50½ � ¼ 40 �20½ �

y

x

FIGURE 2.5

y

x

w

v

u

FIGURE 2.6
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A scalar multiplication ku is defined geometrically in 2 to be a directed line seg-
ment having length |k| times the length of u, in the same direction as uwhen k is
positive and in the opposite direction to uwhen k is negative. Effectively, ku is an
elongation of the directed line segment representing uwhen |k| is greater than 1,
or a contraction of u by a factor of |k| when |k| is less than 1, followed by no
rotation when k is positive or a rotation of 180� when k is negative.

Example 3 Find�2u and 1/2 v geometrically for the rowmatrices u¼ [�11] and
v¼ [24].

Solution: To construct�2u, we double the length of u and then rotate the result-
ing arrow by 180�. To construct 1/2 v, we halve the length of v and effect no rota-
tion. These constructions are illustrated in Figure 2.8.

10 4030 5020−10−40 −30−50 −20

50

40

30

20

10

−10

−20

−30

−40

−50

y

x

z

w

FIGURE 2.7

The graph of ku in2 is a
directed line segment
having length |k| times
the length of u with the
same direction as uwhen
the scalar k is positive
and the opposite direc-
tion to u when k is
negative.
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FIGURE 2.8
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To graphically depict a three-dimensional rowmatrix, we first construct a rectan-
gular coordinate system defined by three mutually perpendicular lines, repre-
senting the axes, that intersect at their respective origins. For convenience, we
denote these axes as the x-axis, the y-axis, and the z-axis, and their point of inter-
section as the origin.

Rectangular coordinate systems are of two types: right-handed systems and left-
handed systems. An xyz system is right-handed if the thumb of the right hand
points in the direction of the positive z-axis when the fingers of the right hand
are curled naturally—in a way that does not break the finger bones—from the
positive x-axis towards the positive y-axis. In a left-handed system, the thumb
of the left hand points in the positive z-axis when the fingers of the left hand
are curled naturally from the positive x-axis towards the positive y-axis. Both
types of systems are illustrated in Figure 2.9. In this book, we shall only use
right-handed coordinate systems when graphing in space.

A three-dimensional row matrix v¼ [abc] is identified with the point (a, b, c)
in an xyz-coordinate system, measured a units along the x-axis from the origin,
then b units parallel to the y-axis, and then finally c units parallel to the z-axis.
An arrow or directed line segment having its tail at the origin and its tip at the
point (a, b, c) represents the row matrix v geometrically. The geometrical repre-
sentations of the row matrices u¼ [246] and v¼ [52�3] are illustrated in
Figures 2.10 and 2.11, respectively.

All of the geometrical processes developed for the addition, subtraction, and sca-
lar multiplication of 2-tuples extend directly to 3-tuples. In particular, to graph
u�v, first graph both directed line segments normally and then construct an
arrow from the tip of v to the tip of u. Multiplication of a directed line segment
u by the scalar k is again an elongation of u by |k| when |k| is greater than unity
and a contraction of u by |k| when |k| is less than unity, followed by no rotation
when k is positive or a rotation of 180� when k is negative. If a directed line seg-
ment has its tip at the point (x2, y2, z2) and its tail at the point (x1, y1, z1), then the
row matrix associated with it is [(x2�x1) (y2�y1)(z2� z1)].

Right-handed system Left-handed system

xx

yy

zz

FIGURE 2.9
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Although geometrical representations for n are limited to n�3, the concept of
magnitude can be extended to all n-tuples. We define the magnitude of the
n-dimensional row matrix a¼ [a1 a2 a3 . . .an] as

kak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23 þ � � � þ a2n

q
(2.1)

41
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4
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2

3
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2
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3 5 6
y
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u

x

FIGURE 2.10
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FIGURE 2.11
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Example 4 The magnitude of the 4-tuple a¼ [1234] is

kak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð Þ2 þ 2ð Þ2 þ 3ð Þ2 þ 4ð Þ2

q
¼

ffiffiffiffiffiffi
30

p

while the magnitude of the 5-tuple u¼ [�4�5054] is

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ð Þ2 þ �5ð Þ2 þ 0ð Þ2 þ 5ð Þ2 þ 4ð Þ2

q
¼

ffiffiffiffiffiffi
82

p

An n-tuple is normalized if it has a magnitude equal to one. Any n-tuple (row
matrix) is normalized bymultiplying the n-tuple by the reciprocal of itsmagnitude.

Example 5 As shown in Example 4, a¼ [1234] has magnitude kak ¼ ffiffiffiffiffiffi
30

p
, so

1ffiffiffiffiffiffi
30

p 1 2 3 4½ � ¼
1ffiffiffiffiffiffi
30

p 2ffiffiffiffiffiffi
30

p 3ffiffiffiffiffiffi
30

p 4ffiffiffiffiffiffi
30

p
" #

is normalized. Similarly, u¼ [�4�50 54] has magnitude kuk ¼ ffiffiffiffiffiffi
82

p
, so

1ffiffiffiffiffiffi
82

p �4 �5 0 5 4½ � ¼
�4ffiffiffiffiffiffi
82

p �5ffiffiffiffiffiffi
82

p 0
5ffiffiffiffiffiffi
82

p 4ffiffiffiffiffiffi
82

p
" #

is normalized.

Two row matrices of the same dimension can be added and subtracted but they
cannot be multiplied. Multiplication of a 1�nmatrix by another 1�nmatrix is
undefined. Scalar multiplication of row matrices is defined but inversion is not
defined for rowmatrices of dimension greater than 1, because such rowmatrices
are not square. Thus, row matrices, and therefore n-tuples, do not possess all the
properties of real numbers. Listing the properties that n-tuples do share with real
numbers and then developing an algebra around those properties is the focus of
the next chapter.

In preparation for our work in vectors and vector spaces later in this chapter, we
list some of the important properties shared by all n-tuples. If a, b, and c denote
row matrices of the same dimension n, then it follows from Theorem 1 of Sec-
tion 1.1 that

aþ b ¼ bþ c (2.2)

and

aþ bþ cð Þ ¼ aþ bð Þ þ c (2.3)

If we define the zero rowmatrix of dimension n as 0¼ [000 . . .0], the rowmatrix
having entries of zero in each of its n-columns, then it follows from
Equation (1.5) that

aþ 0 ¼ a (2.4)

An n-tuple is normalized
if it has a magnitude
equal to one.
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Setting a¼ [a1a2a3 . . .an] and�a¼ (�1)a¼ [�a1�a2�a3 . . .�an], we also have

aþ �að Þ ¼ 0 (2.5)

It follows from Theorem 2 of Section 1.1 that if l1 and l2 denote arbitrary real
numbers, then

l1 aþ bð Þ ¼ l1aþ l1b (2.6)

l1 þ l2ð Þa ¼ l1aþ l1a (2.7)

and

l1l2ð Þa ¼ l1 l2að Þ (2.8)

In addition,

1 að Þ ¼ a (2.9)

Problems 2.1
In Problems 1 through 16, geometrically construct the indicated 2-tuple
operations for

u¼ [3�1], v¼ [�25], w¼ [�4�4], x¼ [35], and y¼ [0�2].

(1) uþv. (2) uþw. (3) vþw. (4) xþy.

(5) x�y. (6) y�x. (7) u�v. (8) w�u.

(9) u�w. (10) 2x. (11) 3x. (12) �2x.

(13) 1
2u: (14) �1

2u: (15) 1
3v: (16) �1

4w:

(17) Determine the angle that each directed line segment representation for the
following row matrices makes with the positive horizontal x-axis:

(a) u¼ [3�1],

(b) v¼ [�25],

(c) w¼ [�4�4],

(d) x¼ [35],

(e) y¼ [0�2].

(18) For arbitrary two-dimensional row matrices u and v, construct on the same
graph the sums uþv and vþu. Show that uþv¼vþu, and show for each
that the sum is the diagonal of a parallelogram having as two of its sides the
directed line segments that represent u and v.

In Problems 19 through 29, determine the magnitudes of the given n-tuples.

(19) [1�1]. (20) [34]. (21) [12].

(22) [�1�11]. (23) [1/21/21/2]. (24) [11 1].

(25) [21�13]. (26) [1�11�1]. (27) [10 10].

(28) [0�15 32]. (29) [11 11 1].
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In Problems 30 through 39, graph the indicated n-tuples.

(30) [31 2]. (31) [12 3]. (32) [�12 3].

(33) [�12�3]. (34) [20�5010]. (35) [1000 100].

(36) [22 2]. (37) [�2�12]. (38) [1000�500200].

(39) [�400�50�300].

In Problems 40 through 48, determine which, if any, of the given row matrices
are normalized.

(40) [11]. (41) [1/21/2]. (42)
1ffiffiffi
2

p �1ffiffiffi
2

p
" #

(43) [01 0]. (44) [1/21/31/6].

(45)
1ffiffiffi
3

p 1ffiffiffi
3

p 1ffiffiffi
3

p
" #

:
(46) [1/21/21/21/2].

(47) [1/65/63/61/6]. (48)
�1ffiffiffi
3

p 0
1ffiffiffi
3

p �1ffiffiffi
3

p
" #

:

2.2 VECTORS
As stated earlier, matrices, polynomials and directed line segments would seem, on
the surface, to have little in common. However, they share fundamental character-
istics that provide a richer understanding of themall.What are some of these funda-
mental properties? First, they can be added. Amatrix can be added to amatrix of the
same order and the result is anothermatrix of that order. A directed line segment in
theplane canbeadded toanotherdirected line segment in theplane and the result is
again a directed line segment of the same type. Thus, we have the concept of closure
under addition: objects in a particular set are defined and an operation of addition is
established on those objects so that the operation is doable and the result is again
anotherobject in thesameset.Second,wealsohave theconceptof closureunder scalar
multiplication.Weknowhowtomultiplyamatrixoradirected line segmentorapoly-
nomial by a scalar, and the result is always another object of the same type. Also, we
know that the commutative and associate laws hold for addition (see, for example,
Theorem1 inSection1.1).Otherproperties are soobviouswe take themforgranted.
If we multiply a matrix, directed line segment, or polynomial by the number 1 we
always get back the original object. If we add to anymatrix, polynomial, or directed
line segment, respectively, thezeromatrixofappropriateorder, thezeropolynomial,
or the zero directed line segment, we always get back the original object.

Thus, we have very quickly identified a series of common characteristics. Are there
others?More interesting,what is the smallestnumberof characteristics thatweneed
to identify so that all the other characteristics immediately follow? To begin, we
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create a new label to apply to any set of objects that have these characteristics, vector
space, and we refer to the objects in this set as vectors.We then show that matrices,
directed line segments, n-tuples, polynomials, and even continuous functions are
just individual examples of vector spaces. Just as cake, ice cream, pie, and JELL-O
are all examples of themore general term dessert, so too will matrices, directed line
segments, and polynomials be examples of the more general term vectors.

▶DEFINITION 1
A set of objects ¼{u, v, w, . . .} and scalars {a, b, g, . . .} along with a binary operation of

vector addition 	 on the objects and a scalar multiplication 
 is a vector space if it

possesses the following 10 properties:

Addition

(A1) Closure under addition: If u and v belong to , then so too does u	v.

(A2) Commutative law for addition: If u and v belong to , then u	v¼v	u.

(A3) Associative law for addition: If u, v, andw belong to, then u	 (v	w)¼ (u	v)	w.

(A4) There exists a zero vector in  denoted by 0 such that for every vector u in ,
u	0¼u.

(A5) For every vector u in  there exists a vector �u, called the additive inverse of u,

such that u	�u¼0.

Scalar Multiplication

(S1) Closure under scalar multiplication: If u belongs to, then so too does a
u for any

scalar a.
(S2) For any two scalars a and b and any vector u in , a
 (b
u)¼ (ab)
u.

(S3) For any vector u in , 1 � u¼u.

(S4) For any two scalars a and b and any vector u in , (aþb)
u¼a
u	b
u.

(S5) For any scalar a and any two vectors u and v in , a
 (u	v)¼a
u	a
u.◀

If the scalars are restricted to be real numbers, then is called a real vector space; if
the scalars are allowed to be complex numbers, then  is called a complex vector
space. Throughout this book we shall assume that all scalars are real and that we
are dealing with real vector spaces, unless an exception is noted. When we need
to deal with complex scalars, we shall say so explicitly.

Since vector spaces are sets, it is convenient to use set notation. We denote sets by
upper case letters in an outline font, such as and. The format for a subset  of
a set is  ¼ w 2 f j property Ag. The2 is read “belongs to” or “is amember of”
and the vertical line segment | is read “such that.” An elementw belongs to  only
if w is a member of  and if w satisfies property A. In particular, the set

 ¼ x y z½ � 2 3
��y ¼ 0

� �
is the set of all real 3-tuples, represented as row matrices, with a second compo-
nent of zero.

Example 1 Determine whether  ¼ x y z½ � 2 3
� ��y ¼ 0g is a vector space under

regular addition and scalar multiplication.

In set notation, 2 is read
“belongs to” and the
vertical line segment | is
read “such that.”
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Solution: Following our convention, it is assumed that the scalars are real. Arbi-
trary vectors u and v in  have the form u¼ [a 0 b] and v¼ [c 0 d] with a, b, c, and d
all real. Now,

u	 v ¼ a 0 b½ � þ c 0 d½ � ¼ aþ c 0 bþ d½ �
and, for any real scalar a,

a
 u ¼ a a 0 b½ � ¼ aa 0 ab½ �
which are again three-dimensional row matrices having real components, of
which the second one is 0. Thus,  is closed under vector addition and scalarmul-
tiplication and both properties A1 and S1 are satisfied.

To prove property A2, we observe that

u	 v ¼ a 0 b½ � þ c 0 d½ � ¼ aþ c 0 bþ d½ �
¼ cþ a 0 dþ b½ � ¼ c 0 d½ � þ a 0 b½ �
¼ v 	 u

To prove property A3, we set w¼ [e 0 f], with e and f representing real numbers,
and note that

u	 vð Þ 	 w ¼ a 0 b½ � þ c 0 d½ � þ e 0 f½ �ð Þ
¼ aþ c 0 bþ d½ � þ e 0 f½ �
¼ aþ cð Þ þ e 0 bþ dð Þ þ f½ �
¼ aþ cþ eð Þ 0 bþ dþ fð Þ½ �
¼ a 0 b½ � þ cþ d 0 dþ f½ �
¼ a 0 b½ � þ c 0 d½ � þ e 0 f½ �ð Þ
¼ u	 v 	 wð Þ

The rowmatrix [00 0] is an element of . If we denote it as the zero vector 0, then

u	 0 ¼ a 0 b½ � þ 0 0 0½ � ¼ aþ 0 0þ 0 bþ 0½ �
¼ a 0 b½ � ¼ u

so property A4 is satisfied. Furthermore, if we define, �u¼ [�a 0�b], then

u	�u ¼ a 0 b½ � þ �a 0 �b½ � ¼ aþ�a 0þ 0 bþ�b½ �
¼ 0 0 0½ � ¼ 0

and property A5 is valid.

For any two real numbers a and b, we have that

a
 b
 uð Þ ¼ a
 b a 0 b½ �ð Þ ¼ a
 ba 0 bb½ � ¼ a ba 0 bb½ � Þ
¼ abð Þ a 0 b½ � ¼ abð Þ 
 u
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so property S2 holds. In addition,

1
 u ¼ 1 a 0 b½ � ¼ 1a 0 1b½ � ¼ a 0 b½ � ¼ u

so property S3 is valid. To verify properties S4 and S5, we note that

aþ bð Þ 
 u ¼ aþ bð Þ a 0 b½ �
¼ aþ bð Þa aþ bð Þ0 aþ bð Þb½ �
¼ aaþ ba 0 abþ bb½ �
¼ aa 0 ab½ � þ ba 0 bb½ �
¼ a a 0 b½ � þ b a 0 b½ �
¼ a
 a 0 b½ � þ b
 a 0 b½ �
¼ a
 u	 bu

and

a
 u	 vð Þ ¼ a
 a 0 b½ � þ c 0 d½ �ð Þ
¼ a
 aþ c 0 bþ d½ �
¼ a aþ cð Þ a 0ð Þ a bþ dð Þ½ �
¼ aaþ ac 0 ab þ ad½ �
¼ aa 0 ab½ � þ ac 0 ad½ �
¼ a a 0 b½ � þ a c 0 d½ �
¼ a
 u	 a
 v

Therefore, all 10 properties are valid, and  is a vector space.

Example 2Determinewhether the setp�n of all p�n realmatrices undermatrix

addition and scalar multiplication is a vector space.

Solution: This is a vector space for any fixed values of p and n because all 10 prop-
erties follow immediately from our work in Chapter 1. The sum of two real p�n
matrices is again a matrix of the same order, as is the product of a real number
with a real matrix of this order. Thus, properties A1 and S1 are satisfied. Proper-
ties A2 through A4 are precisely Theorem 1 in Section 1.1 and Equation (1.5).
If A¼ [aij], then �A¼ [�aij] is another element in the set and

A 	�A ¼ aij
� �þ �aij

� � ¼ aij þ�aij
� 	� � ¼ 0

which verifies property A5. Properties S2, S4, and S5 are Theorem 2 in
Section 1.1. Property S3 is immediate from the definition of scalar
multiplication.

It follows from Example 2 that the set of all real 3�3 matrices (p¼n¼3) is a
vector space, as is 2�6 the set of all real 2�6 matrices (p¼2 and n¼6). Also,
n is a vector space, for any positive integer n, because n is 1�n when we take

The setp�n of all p�n
real matrices under
matrix addition and
scalar multiplication is
a vector space.

The set n of n-tuples
under standard addition
and scalar multiplication
for n-tuples is a
vector space.
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n to be the set of all n-dimensional real row matrices, and n isn�1 when we
take n to be the set of all n-dimensional real column matrices.

Example 3 Determine whether the set of all 2�2 real matrices is a vector space
under regular scalar multiplication but with vector addition defined to be matrix
multiplication. That is,

u	 v ¼ uv

Solution: This is not a vector space because it does not satisfy property A2. In
particular,

1 2

3 4

" #
	 5 6

7 8

" #
¼ 1 2

3 4

" #
5 6

7 8

" #
¼ 19 22

43 50

" #

6¼ 23 34

31 46

" #
¼ 5 6

7 8

" #
1 2

3 4

" #
¼ 5 6

7 8

" #
	 1 2

3 4

" #

We use the 	 symbol to emphasize that vector addition may be nonstandard, as
it is in Example 3. The notation denotes a well-defined process for combining
two vectors together, regardless of how unconventional that process may be.
Generally, vector addition is standard, and many writers discard the 	 notation
in favor of the more conventionalþ symbol whenever a standard addition is in
effect. We shall, too, in later sections. For now, however, we want to stress that a
vector space does not require a standard vector addition, only a well-defined
operation for combining two vectors that satisfies the properties listed in Defi-
nition 1, so we shall retain the 	 notation a while longer.

Example 4 Redo Example 3 with the matrices restricted to being diagonal.

Solution: Diagonal matrices do commute under matrix multiplication, hence
property A2 is now satisfied. The set is closed under vector addition, because
the product of 2�2 diagonal matrices is again a diagonal matrix. Property A3
also holds, because matrix multiplication is associative. With vector addition
defined to be matrix multiplication, the zero vector becomes the 2�2 identity
matrix; for any matrix A in the set, A	0¼AI¼A. To verify property A5, we must
show that every real diagonal matrix A has an additive inverse�Awith the prop-
erty A	�A¼0. Given that we have just identified the zero vector to be the iden-
tity matrix and vector addition to be matrix multiplication, the statement
A	�A¼0 is equivalent to the statement A(�A)¼ I. Property A5 is valid if
and only if every matrix in the set has an inverse, in which case we take�A¼A�1.
But, a diagonal matrix with at least one 0 on its main diagonal does not have an
inverse. In particular the matrix,

A ¼ 1 0
0 0


 �
has no inverse. Thus, property A5 does not hold in general, and the given set is
not a vector space.

The symbol	
emphasizes that vector
addition may be
nonstandard.
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Example 5 Redo Example 3 with the matrices restricted to being diagonal and all
elements on the main diagonal restricted to being nonzero.

Solution: Repeating the reasoning used in Example 4, we find that properties
A1-A5 are satisfied for this set. This set, however, is not closed under scalar mul-
tiplication. Whenever we multiply a matrix in the set by the zero scalar, we get

0
 A ¼ 0A ¼ 0 0
0 0


 �
which is no longer a diagonal matrix with nonzero elements on the main diag-
onal and, therefore, not an element of the original set. Thus, the given set is not a
vector space.

Example 6Determine whether the set of nth degree polynomials in the variable t
with real coefficients is a vector space under standard addition and scalar mul-
tiplication for polynomials if the scalars are restricted also to being real.

Solution: Arbitrary vectors u and v in this set are polynomials of the form

u ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0

v ¼ bnt
n þ bn�1t

n�1 þ � � � þ b1t þ b0

with aj and bj ( j¼0, 1, . . . , n) all real, and both an and bn nonzero. Here,

u	 v ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0
� 	
þ bnt

n þ bn�1t
n�1 þ � � � þ b1t þ b0

� 	
¼ an þ bnð Þtn þ an�1 þ bn�1ð Þtn�1 þ � � � þ a1 þ b1ð Þt þ a0 þ b0ð Þ

Note that when an¼�bn, u	v is no longer an nth degree polynomial, but rather
a polynomial of degree less than n, which is not an element of the given set. Thus,
the set is not closed under vector addition and is not a vector space.

Example 7Determine whether the set n containing the identically zero polyno-
mial and all polynomials of degree n or less in the variable t with real coefficients
is a vector space under standard addition and scalar multiplication for polyno-
mials, if the scalars also are restricted to being real.

Solution: If u 2 n and v 2 n, then u and v have the form

u ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0

v ¼ bnt
n þ bn�1t

n�1 þ � � � þ b1t þ b0

with aj and bj (j¼0, 1, . . . , n) real and possibly 0. Using the results of Example 6,
we see that the sum of two polynomials of degree n or less is either another
polynomial of the same type or the zero polynomial when u and v have
their corresponding coefficients equal in absolute value but opposite in sign.
Thus, property A1 is satisfied. If we define the zero vector to be the zero poly-
nomial, then
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u	 0 ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0
� 	
þ 0tn þ 0tn�1 þ � � � þ 0t þ 0
� 	

¼ an þ 0ð Þtn þ an�1 þ 0ð Þtn�1 þ � � � þ a1 þ 0ð Þt þ a0 þ 0ð Þ
¼ u

Thus, property A4 is satisfied. Setting

u ¼ �ant
n � an�1t

n�1 � � � � � a1t � a0

we note that property A5 is also satisfied. Now,

u	 v ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0
� 	
þ bnt

n þ bn�1t
n�1 þ � � � þ b1t þ b0

� 	
¼ an þ bnð Þtn þ an�1 þ bn�1ð Þtn�1 þ � � � þ a1 þ b1ð Þt þ a0 þ b0ð Þ
¼ bn þ anð Þtn þ bn�1 þ an�1ð Þtn�1 þ � � � þ b1 þ a1ð Þt þ b0 þ a0ð Þ
¼ bnt

n þ bn�1t
n�1 þ � � � þ b1t þ b0

� 	
þ ant

n þ an�1t
n�1 þ � � � þ a1t þ a0

� 	
¼ v 	 u

so property A2 is satisfied. Property A3 is verified in a similar manner. For any
real number a, we have

a
 u ¼ a ant þ an�1t
n�1 þ � � � þ a1t þ a0

� 	
¼ aanð Þt þ aan�1ð Þtn�1 þ aa1ð Þt þ aa0ð Þ

which is again an element in the original set, so the set is closed under scalar
multiplication. Setting a¼1 in the preceding equation also verifies property
S3. The remaining three properties follow in a straightforward manner, so n

is a vector space.

Example 8Determine whether the set of two-dimensional columnmatrices with
all real components is a vector space under regular addition but with scalar mul-
tiplication defined as

a
 a
b


 �
¼ �aa

�ab


 �

Solution: Following convention, the scalars are assumed to be real numbers.
Since column matrices are matrices, it follows from our work in Chapter 1 that
properties A1 through A5 hold. It is clear from the definition of scalar multi-
plication that the set is closed under this operation; the result of multiplying
a real two-dimensional column matrix by a real number is again a real two-
dimensional column matrix. To check property S2, we note that for any two real
numbers a and b and for any vector

The set n of all polyno-
mials of degree less than
or equal to n, including
the identically zero poly-
nomial, under normal
addition and scalar mul-
tiplication for polynomials
is a vector space.
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u ¼ a
b


 �
we have

abð Þ 
 u ¼ abð Þ 
 a
b


 �
¼ � abð Þa

� abð Þb

 �

¼ �aba
�abb


 �
while

a
 b
 uð Þ ¼ a
 b
 a
b


 �� 

¼ a
 �ba

�bb


 �
¼ �að Þ �bað Þ

�að Þ �bbð Þ

 �

¼ aba
abb


 �

These two expressions are not equal whenever a and b are nonzero, so property
S2 does not hold and the given set is not a vector space.

Property S3 is also violated with this scalar multiplication. For any vector

u ¼ a
b


 �
we have

1
 u ¼ 1
 a
b


 �
¼ �a

�b


 �
6¼ u

Thus, we conclude again that the given set is not a vector space.

We use the 
 symbol to emphasize that scalar multiplication may be nonstan-
dard, as it was in Example 8. The 
 symbol denotes a well-defined process for
combining a scalar with a vector, regardless of how unconventional the process
may be. In truth, scalar multiplication is generally quite standard, and many
writers discard the 
 notation whenever it is in effect. We shall, too, in later sec-
tions. For now, however, we want to retain this notation to stress that a vector
space does not require a standard scalar multiplication, only a well-defined pro-
cess for combining scalars and vectors that satisfies properties S1 through S5.

Example 9Determine whether the set of three-dimensional rowmatrices with all
components real and equal is a vector space under regular addition and scalar
multiplication if the scalars are complex numbers.

Solution: An arbitrary vector in this set has the form u¼ [a a a], where a is real.
This is not a vector space, because the set violates property S1. In particular, if a is
any complex number with a nonzero imaginary part, then a
u does not have
real components. For instance, with a¼3i and u¼ [11 1], we have

a
 u ¼ 3ið Þ 1 1 1½ � ¼ 3i 3i 3i½ �
which is not a real-valued vector; the components of the rowmatrix are complex,
not real. Thus, the original set is not closed under scalar multiplication. The
reader can verify that all the other properties given in Definition 1 are applicable.
However, as soon as we find one property that is not satisfied, we can immedi-
ately conclude the given set is not a vector space.

The symbol 

emphasizes that
scalar multiplication
maybe nonstandard.
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The purpose of defining a vector space in the abstract is to create a single math-
ematical structure that embodies the characteristics of many different well-
known sets, and then to develop facts about each of those sets simultaneously
by studying the abstract structure. If a fact is true for vector spaces in general, then
that fact is true for p�n, the set of all p�n real matrices under regular matrix

addition and scalar multiplication, as well as n and n, the set of all polyno-
mials of degree less than or equal to n including the zero polynomial, and
any other set we may subsequently show is a vector set.

We first inquire about the zero vector. Does it have properties normally associ-
ated with the word zero? If we multiply the zero vector by a nonzero scalar, must
the result be the zero vector again? If we multiply any vector by the number 0, is
the result the zero vector? The answer in both cases is affirmative, but both results
must be proven. We cannot just take them for granted! The zero vector is not the
number 0, and there is no reason to expect (although one might hope) that facts
about the number 0 are transferable to other structures that just happen to have
the word zero as part of their name.

▶THEOREM 1
For any vector u in a vector space , 0
u¼0.◀

Proof: Because a vector space is closed under scalar multiplication, we know that
0
u is a vector in  (whether it is the zero vector is still to be determined). As a
consequence of property A5, 0
u must possess an additive inverse, denoted
by �0
u, such that

0
 uð Þ 	 �0
 uð Þ ¼ 0 (2.10)

Furthermore,

0
 u ¼ 0þ 0ð Þ 
 u A property of the number 0

¼ 0
 u	 0
 u Property S4 of vector spaces

If we add the vector �0
u to each side of this last equation, we get

0
 u	�0
 u ¼ 0
 u	 0
 uð Þ 	 �0
 u

0 ¼ 0
 u	 0
 uð Þ 	 �0
 u From Eq: 2:10ð Þ
0 ¼ 0
 u	 0
 u	�0
 uð Þ Property A3

0 ¼ 0
 uð Þ 	 0 From Eq: 2:10ð Þ
0 ¼ 0
 u Property A4

which proves Theorem 1 using just the properties of a vector space.

▶THEOREM 2
In any vector space , a
0¼0, for every scalar a.◀
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Proof: 0 2 , hence a
 0 2 , because a vector space is closed under scalar mul-
tiplication. It follows from property A5 that a
0 has an additive inverse,
denoted by �a
0, such that

a
 0ð Þ 	 �a
 0ð Þ ¼ 0 (2.11)

Furthermore,

a
 0 ¼ a
 0	 0ð Þ PropertyA4

¼ a
 0	 a
 0 Property S5

Adding �a
0 to both sides of this last equation, we get

a
 0	�a
 0 ¼ a
 0	 a
 0ð Þ 	 �a
 0

0 ¼ a
 0	 a
 0ð Þ 	 �a
 0 From Eq: 2:11ð Þ
0 ¼ a
 0	 a
 0	�a
 0ð Þ Property A3

0 ¼ a
 0ð Þ 	 0 From Eq: 2:11ð Þ
0 ¼ a
 0 Property A4

Thus, Theorem 2 follows directly from the properties of a vector space.

Property A4 asserts that every vector space has a zero vector, and property A5
assures us that every vector in a vector space  has an additive inverse. Neither
property indicates whether there is only one zero element or many or whether a
vector can have more than one additive inverse. The next two theorems do.

▶THEOREM 3
The additive inverse of any vector v in a vector space  is unique.◀

Proof: Let v1 and v2 denote additive inverses of the same vector v. Then,

v 	 v1 ¼ 0 (2.12)

v 	 v2 ¼ 0 (2.13)

It now follows that

v1 ¼ v1 	 0 Property A4

¼ v1 	 v 	 v2ð Þ From Eq: 2:13ð Þ
¼ v1 	 vð Þ 	 v2 Property A3

¼ v 	 v1ð Þ 	 v2 Property A2

¼ 0	 v2 From Eq: 2:12ð Þ
¼ v2 	 0 Property A2

¼ v2 Property A4
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▶THEOREM 4
The zero vector in a vector space  is unique.◀

Proof: This proof is similar to the previous one and is left as an exercise for the
reader. (See Problem 34.)

▶THEOREM 5
For any vector w in a vector space , �1
w¼�w.◀

Proof: We need to show that �1
w is the additive inverse of w. First,

�1
 wð Þ 	w ¼ �1
 wð Þ 	 1
 wð Þ Property S3

¼ �1þ 1ð Þ 
 w Property S5

¼ 0
w Property of real numbers

¼ 0 Theorem 1

Therefore, �1
w is an additive inverse of w. By definition, �w is an additive
inverse of w, and because additive inverses are unique (Theorem 3), it follows
that �1
w¼�w.

▶THEOREM 6
For any vector w in a vector space , �(�w)¼w.◀

Proof: By definition, �w is the additive inverse of w. It then follows that w is the
additive inverse of �w (see Problem 33). Furthermore,

�w 	� �wð Þ ¼ �1
 w 	� �wð Þ Theorem 5

¼ �1
 w 	�1
 �wð Þ Theorem 5

¼ �1
 w 	�wð Þ Property S5

¼ �1
 0 Property A5

¼ 0 Theorem 2

Therefore,�(�w) is an additive inverse of�w. Sincew is also an additive inverse
of �w, it follows from Theorem 3 that the two are equal.

▶THEOREM 7
Let a be a scalar and u a vector in a vector space. If a
u¼0, then either a¼0 or u¼0.◀
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Proof: We are given

a
 u ¼ 0 (2.14)

Now either a is 0 or it is not. If a is 0, the theorem is proven. If a is not 0, we form
the scalar 1/a and then multiply Equation (2.14) by 1/a, obtaining

1=að Þ 
 a
 uð Þ ¼ 1=að Þ 
 0

1=að Þ 
 a
 uð Þ ¼ 0 Theorem 2

1

a
a

0
@

1
A
 u ¼ 0 Property S2

1
 u ¼ 0 Property of numbers

u ¼ 0 Property S3

Problems 2.2
In Problems 1 through 32 a set of objects is given together with a definition for
vector addition and scalar multiplication. Determine which are vector spaces,
and for those that are not, identify at least one property that fails to hold.

(1)
a b
c d


 �� �
2 2�2

��b ¼ 0 under standard matrix addition and scalar

multiplication.

(2)
a b
c d


 �� �
2 2�2

��c ¼ 1 under standard matrix addition and scalar

multiplication.

(3) The set of all 2�2 real matrices A¼ [aij] with a11¼�a22 under standard
matrix addition and scalar multiplication.

(4) The set of all 3�3 real upper triangular matrices under standard matrix
addition and scalar multiplication.

(5) The set of all 3�3 real lower triangular matrices of the form

1 0 0
a 1 0
b c 1

2
4

3
5

under standard matrix addition and scalar multiplication.

(6) a b½ � 2 2
��aþ b ¼ 2

� �
under standard matrix addition and scalar

multiplication.

(7) a b½ � 2 2
��a ¼ b

� �
under standard matrix addition and scalar

multiplication.
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(8) The set consisting of the single element 0 with vector addition and scalar
multiplication defined as 0	0¼0 and a
0¼0 for any real number a.

(9) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as a
 [a b]¼ [00].

(10) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as a
 [a b]¼ [0 ab].

(11) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as a
 [a b]� [2aa 2ab].

(12) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as a
 [a b]¼ [5a 5b].

(13) The set of all real three-dimensional row matrices {[a b c]} with standard
scalar multiplication but vector addition defined as

a b c½ � 	 x y z½ � ¼ aþ x bþ y þ 1 cþ z½ �

(14) The set of all real three-dimensional row matrices {[a b c]} with standard
scalar multiplication but vector addition defined as

a b c½ � 	 x y z½ � ¼ a bþ y c½ �

(15) The set of all real three-dimensional row matrices {[a b c]} with standard
matrix addition but scalar multiplication defined as a
 [a b c]� [aa ab 1].

(16) The set of all real three-dimensional row matrices {[a b c]} with positive
components under standard matrix addition but scalar multiplication
defined as

a
 a b c½ � ¼ aa ba ca½ �

(17) The set of all real numbers (by convention, the scalars are also real num-
bers) with a	b¼a
b¼ab, the standard multiplication of numbers.

(18) The set of all positive real numbers with a	b¼ab, the standard multiplica-
tion of numbers, and a
b¼ab.

(19) The set of all solutions of the homogeneous set of linear equations Ax¼0,
under standard matrix addition and scalar multiplication.

(20) The set of all solutions of the set of linear equations Ax¼b, b 6¼0, under
standard matrix addition and scalar multiplication.

(21) p tð Þ 2 3
��p 0ð Þ ¼ 0

� �
under standard addition and scalar multiplication of

polynomials.

(22) The set of all ordered pairs of real numbers such that (a, b)	 (c, d)¼
(aþ cþ1, bþdþ1) and k
 (a, b)¼ (ka, kb).
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(23) The set of all ordered pairs of real numbers such that (a, b, c)	 (d, e, f)¼
(aþd, bþ e, cþ f) and k
 (a, b, c)¼ (0, 0, 0).

(24) The set of all ordered triples of real numbers of the form (1, a, b) such that
(1, a, b)	 (1, c, d)¼ (1, aþb, cþd) and k
 (1, a, b)¼(1, ka, kb).

(25) Letw be a vector in a vector space . Prove that if�w is the additive inverse
of w then the reverse is also true: w is the additive inverse of �w.

(26) Prove Theorem 4.

(27) Prove that v	(u�v)�u if u�v is shorthand for u	�v.

(28) Prove that if u	v¼u	w, then v�w.

(29) Prove that u	u�2u if 2u is shorthand for 2
u.

(30) Prove that the only solution to the equation u	u�2v is u¼v.

(31) Prove that if u 6¼0 and a
u¼b	u, then a¼b.

(32) Prove that the additive inverse of the zero vector is the zero vector.

2.3 SUBSPACES
To show that a set of objects  is a vector space, we must verify that all 10 prop-
erties of a vector space are satisfied, the 5 properties involving vector addition
and the 5 properties involving scalar multiplication. This process, however,
can be shortened considerably if the set of objects is a subset of a known vector
space . Then, instead of 10 properties, we need only verify the 2 closure prop-
erties, because the other 8 properties follow immediately from these 2 and the
fact that  is a subset of a known vector space.

We define a nonempty subset  of a vector space as a subspace of if  is itself a
vector space under the same operations of vector addition and scalar multiplica-
tion defined on .

▶THEOREM 1
Let  be a nonempty subset of a vector spacewith operations	and
.  is a subspace of
 if and only if the following two closure conditions hold:

(i) Closure under addition: If u 2  and v 2 , then u	 v 2 .
(ii) Closure under scalar multiplication: If u 2  and a is any scalar, then a
 u 2 .◀

Proof: If  is a vector space, then it must satisfy all 10 properties of a vector space,
in particular the closure properties defined by conditions (i) and (ii). Thus, if  is
a vector space, then (i) and (ii) are satisfied.

We now show the converse: If conditions (i) and (ii) are satisfied, then  is a
vector space; that is, all 10 properties of a vector space specified in Definition 1

A subspace of a vector
space  is a subset of 
that is a vector space in
its own right.
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of Section 2.2 follow from the closure properties and the fact that  is a subset
of a known vector space . Conditions (i) and (ii) are precisely Properties A1
and S1. Properties A2, A3, and S2 through S5 follow for elements in  because
these elements are also in  and  is known to be a vector space whose ele-
ments satisfy all the properties of a vector space. In particular, to verify Property
A2, we let u and v denote arbitrary elements in . Because  is a subset of , it
follows that u and v are in . Because  is a vector space, we have u	v¼v	u.
To verify S3, we let u again denote an arbitrary element in . Because  is a sub-
set of , it follows that u is an element of . Because  is a vector space, we have
1
u¼u.

All that remains is to verify that the zero vector and additive inverses of elements
in  are themselves members of . Because  is nonempty, it must contain at least
one element, which we denote as u. Then, for the zero scalar, 0, we know that
0
u is in , as a result of condition (ii), and this vector is the zero vector as a
result of Theorem 1 of the previous section. Thus, Property A4 is satisfied. If u
is an element of , then the product �1
u is also an element of , as a result
of condition (ii); it follows from Theorem 5 of the previous section that
�1
u is the additive inverse of u, so Property A5 is also satisfied.

▶CONVENTION
For the remainder of this book, we drop the 	 and 
 symbols in favor of the traditional

sum symbol (þ) and scalar multiplication denoted by juxtaposition. All vector spaces will

involve standard vector addition and scalar multiplication, unless noted otherwise.◀

We use Theorem 1 to significantly shorten the work required to show that some
sets are vector spaces!

Example 1 Determine whether
a b
c d


 �
2 2�2

��b ¼ c ¼ 0

� �
is a vector space

under standard matrix addition and scalar multiplication.

Solution: The set  of 2�2 real matrices with zeros in the 1-2 and 2-1 positions is
a subset of 2�2, and 2�2 is a vector space (see Example 4 in Section 2.2 with
p¼n¼2). Thus, Theorem 1 is applicable, and instead of verifying all 10 proper-
ties of a vector space, we need only verify closure in  under matrix addition and
scalar multiplication.

Arbitrary elements u and v in  have the form

u ¼ a 0
0 b


 �
and v ¼ c 0

0 d


 �
for any real numbers a, b, c, and d. Here

uþ v ¼ aþ c 0
0 bþ d


 �
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and for any real scalar a,

au ¼ aa 0
0 ab


 �

Because these matrices are again elements in , each having zeros in their 1-2 and
2-1 positions, it follows from Theorem 1 that  is a subspace of2�2. The set  is
therefore a vector space.

Example 2 Determine whether the set  ¼ x y z½ � 2 3
� ��y ¼ 0g is a vector space

under standard matrix addition and scalar multiplication.

Solution: We first observe that  is a subset of 3, considered as row matrices,
which we know is a vector space from our work in Section 2.2. Thus, Theorem 1
is applicable. Arbitrary elements u and v in  have the form

u ¼ a 0 b½ � and v ¼ c 0 d½ �

It follows that

uþ v ¼ aþ c 0 bþ d½ � 2 

and for any real scalar a,

au ¼ aa 0 aB½ � 2 

Thus,  is closed under addition and scalar multiplication, and it follows from

Theorem 1 that  is a subspace of 3. The set  is therefore a vector space.

Compare Example 2 to Example 1 of Section 2.2. In both, we were asked to prove
that the same set is a vector space. In Section 2.2, we did this by verifying all 10
properties of a vector space; in Example 2, we verified the 2 properties of a sub-
space. Clearly it is simpler to verify 2 properties than 10; thus, it is simpler to
show that a set is vector space by showing it is a subspace rather than demonstrat-
ing directly that the set is a vector space. To do so, however, wemust recognize that

the given set is a subset of known vector space, in this case 3.

The subspace in Example 2 has an interesting graphical representation. 3, the
set of all 3-tuples, is represented geometrically by all points in three-space. The

set  in Example 2 is the set of all points in 3 having a second component of 0.

In an x, y, z coordinate system, these points fill the entire x-z plane, which is illus-
trated graphically by the shaded plane in Figure 2.12.

Example 3 Determine whether the set , illustrated graphically by the shaded

plane in Figure 2.13, is a subspace of 3.

Solution: The shaded plane is parallel to the y-z plane, intersecting the x-axis at
x¼3. The x-coordinate of any point on this plane is fixed at x¼3, and the plane is
defined as

If a set is a subset of a
known vector space, then
the simplest way to show
the set is a vector space
is to show the set is a
subspace.
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 ¼ x y z½ � 2 3
��x ¼ 3

� �
Elements u and v in  have the form

u ¼ 3 a b½ � and v ¼ 3 c d½ �
for some choice of the scalars a, b, c, and d. Here

uþ v ¼ 6 aþ c bþ d½ �
which is not an element of  because its first component is not 3. Condition (i) of
Theorem 1 is violated. The set  is not closed under addition and, therefore, is not
a subspace.

As an alternative solution to Example 3, we note that the set  does not contain

the zero vector, and therefore cannot be a vector space. The zero vector in 3 is
0¼ [00 0], and this vector is clearly not in  because all elements in  have a first

z

y0
1

1

2
3

x

FIGURE 2.13

x

y

z

FIGURE 2.12
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component of 3. Often we can determine by inspection whether the zero vector
of a vector space is included in a given subset. If the zero vector is not included, we
may conclude immediately that the subset is not a vector space and, therefore,
not a subspace. If the zero vector is part of the set, then the two closure properties
must be verified before one can determine whether the given set is a subspace.

One simple subspace associated with any vector space is the following:

▶THEOREM 2
For any vector space , the subset containing only the zero vector is a subspace.◀

Proof: It follows from the definition of a zero vector that 0þ0¼0. It also follows
from Theorem 2 of Section 2.2 that a0¼0 for any scalar a. Both closure condi-
tions of Theorem 1 are satisfied, and the set  containing just the single element
0 is a subspace.

Example 4Determine whether the set ¼{[a 2a 4a]|a is a real number} is a sub-

space of 3.

Solution: Setting a¼0, we see that the zero vector, 0¼ [00 0], of 3 is an element
of , so we canmake no conclusion a priori about  as a subspace. Wemust apply
Theorem 1 directly. Elements u and v in  have the form

u ¼ t 2t 4t½ � and v ¼ s 2s 4s½ �
for some choice of the scalars s and t. Therefore,

uþ v ¼ t þ s 2t þ 2s 4t þ 4s½ �
¼ t þ sð Þ 2 t þ sð Þ 4 t þ sð Þ½ � 2 

and for any real scalar a,

au ¼ a t a 2tð Þ a 4tð Þ½ �
¼ atð Þ 2 atð Þ 4 atð Þ½ � 2 

Because  is closed under vector addition and scalar multiplication, it follows

from Theorem 1 that  is a subspace of 3.

The subspace in Example 4 also has an interesting graphical representation. If we
rewrite an arbitrary vector u as

u ¼ t 2t 4t½ � ¼ t 1 2 4½ �
we see that every vector is a scalar multiple of the directed line segment having its
tail at the origin and its tip at the point (1, 2, 4). Because t can be any real number,
zero, positive or negative, we can reach any point on the line that contains this
directed line segment. Thus, the subspace  is represented graphically by the
straight line in 3 illustrated in Figure 2.14.

If a subset of a vector
space does not include
the zero vector, that
subset cannot be a
subspace.
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As a result of Examples 2 through 4 and Theorem 2, one might suspect that a

proper subset  of 3 is a subspace if and only if  is the zero vector or else
the graph of  is either a straight line through the origin or a plane that contains
the origin. This is indeed the case as we shall prove in Section 2.5.

The two conditions specified in Theorem 1 can be collapsed into a single
condition.

▶THEOREM 3
A nonempty subset  of a vector space  is a subspace of  if and only if whenever u and v

are any two elements in  and a and b are any two scalars, then

auþ bv (2.15)

is also in .◀

Proof: If  is a subspace, then it must satisfy the two conditions of Theorem 1. In
particular, if u is an element of  and a a scalar, then au is in  as a consequence
of condition (ii). Similarly, bv must be an element of  whenever v is an ele-
ment and b is a scalar. Knowing that au and bv are two elements in , we
may conclude that their sum, given by Equation (2.15), is also in  as a conse-
quence of condition (i).

Conversely, if Equation (2.15) is an element in  for all values of the scalars a and
b, then condition (i) of Theorem 1 follows by setting a¼b¼1. Condition (ii)
follows by setting b¼0 and leaving a arbitrary.

(1, 2, 0)

(1, 2, 4)

5

z

x

y

4

3

3

2

2

1

1

1 2 3 4

u
line that contains u

FIGURE 2.14

Lines through the origin
and planes that contain
the origin are subspaces
of 3.
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Example 5 Determine whether  ¼ p tð Þ 2 2
��p 2ð Þ ¼ 1

� �
is a subspace of 2.

Solution: 2 is a vector space (see Example 7 of Section 2.2 with n¼2). The zero

vector 0 in 2 has the property 0(t)¼0 for all real values of t. Thus, 0(2)¼0 6¼1,
the zero vector is not in , and  is not a subspace.

Example 6 Determine whether  ¼ p tð Þ 2 2
��p 2ð Þ ¼ 0

� �
is a subspace of 2.

Solution: Let u¼p and v¼q be any two polynomials in . Then p(2)¼0 and
q(2)¼0. Set w¼auþbv, for arbitrary values of the scalars a and b. Then
w is also a polynomial of degree two or less or the zero polynomial.
Furthermore,

w 2ð Þ ¼ apþ bqð Þ 2ð Þ ¼ ap 2ð Þ þ bq 2ð Þ ¼ a0þ b0 ¼ 0,

sow is also an element of . It follows from Theorem 3 that  is a subspace of n.

Expression (2.6) in Theorem 3 is a special case of a linear combination. We say
that a vector u in a vector space is a linear combination of the vectors v1, v2, . . . vn
in  if there exists scalars d1, d2, . . . , dn such that

u ¼ d1v1 þ d2v2 þ � � � þ dnvn (2.16)

Example 7 Determine whether u¼ [1 2 3] is a linear combination of

v1 ¼ 1 1 1½ �, v2 ¼ 2 4 0½ �, and v3 ¼ 0 0 1½ �

Solution: These vectors are all in the vector space 3, considered as rowmatrices.
We seek scalars d1, d2, and d3 that satisfy the equation

1 2 3½ � ¼ d1 1 1 1½ � þ d2 2 4 0½ � þ d3 0 0 1½ �
or

1 2 3½ � ¼ d1 þ 2d2 d1 þ 4d2 d1 þ d3½ �

This last matrix equation is equivalent to the system of equations

1 ¼ d1 þ 2d2

2 ¼ d1 þ 4d2

3 ¼ d1 þ d3

Using Gaussian elimination, we find that the only solution to this system is
d1¼0, d2¼1/2, and d3¼3. Thus,

1 2 3½ � ¼ 0 1 1 1½ � þ 1

2
2 4 0½ � þ 3 0 0 1½ �

and the vector u¼ [1 2 3] is a linear combination of the other three.

A vector u is a linear
combination of a finite
number of other vectors if
u can be written as a sum
of scalar multiples of
those vectors.
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Example 8 Determine whether u ¼ �1 0
2 4


 �
is a linear combination of

v1 ¼ 1 1
2 2


 �
and v2 ¼ 3 2

3 5


 �

Solution: These vectors are in the vector space2�2.We seek scalars d1 and d2 that
satisfy the equation

�1 0
2 4


 �
¼ d1

1 1
2 2


 �
þ d2

3 2
3 5


 �
(2.17)

or

�1 0
2 4


 �
¼ d1 þ 3d2 d1 þ 2d2

2d1 þ 3d2 2d1 þ 5d2


 �
which is equivalent to the system of equations

�1 ¼ d1 þ 3d2

0 ¼ d1 þ 2d2

2 ¼ 2d1 þ 3d2

4 ¼ 2d1 þ 5d2

Using Gaussian elimination, we find that this system has no solution. There are
no values of d1 and d2 that satisfy Equation (2.8), and, therefore, u is not a linear
combination of v1 and v2.

The set of all linear combinations of a finite set of vectors,  ¼ v1; v2; . . . ; vnf g, is
called the span of , denoted as span {v1,v2, . . . ,vn} or simply span(). Thus, the
span of the polynomial set {t2, t, 1} is 2 because every polynomial p(t) in 2 can
be written as

p tð Þ ¼ d1t
2 þ d2t þ d3 1ð Þ

for some choice of the scalars d1, d2, and d3. The span of the set {[10 00],
[01 00]} are all row-vectors of the form [d1 d2 00] for any choice of the real
numbers d2 and d3.

The span of a finite set of vectors is useful because it is a subspace! Thus, we create
subspaces conveniently by forming all linear combinations of just a few vectors.

▶THEOREM 4
The span of a set of vectors  ¼ v1; v2; . . . ; vnf g in a vector space  is a subspace of .◀

Proof: Let u and w be elements of span (). Then

u ¼ d1v1 þ d2v2 þ � � � þ dnvn and w ¼ c1v1 þ c2v2 þ � � � þ cnvn

The span of a finite
number of vectors is
the set of all linear
combinations of those
vectors.
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for some choice of the scalars d1 through dn and c1 through cn. It follows that

auþ bw ¼ a d1v1 þ d2v2 þ � � � þ dnvnð Þ þ b c1v1 þ c2v2 þ � � � þ cnvnð Þ
¼ ad1ð Þv1 þ ad2ð Þv2 þ � � � þ adnð Þvn þ bc1ð Þv1 þ bc2ð Þv2 þ � � � þ bcnð Þvn
¼ ad1 þ bc1ð Þv1 þ ad2 þ bc2ð Þv2 þ � � � þ adn þ bcnð Þvn

Each quantity in parentheses on the right side of this last equation is a com-
bination of scalars of the form adjþbcj (for j¼1, 2, . . . , n) and is, therefore, itself
a scalar. Thus, auþbw is a linear combination of the vectors in  and a member
of span(). It follows from Theorem 3 that span() is a subspace of .

Not only is the span() a subspace that includes the vectors in , but it is the smal-
lest such subspace. We formalize this statement in the following theorem, the
proof of which is left as an exercise for the reader (see Problem 50).

▶THEOREM 5
If  ¼ v1v2, . . . , vnf g is a set of vectors in a vector space and if is a subspace of that

contains all the vectors in , then  contains all the vectors in span().◀

Problems 2.3
In Problems 1 through 23, determine whether each set is a subspace of the indi-
cated vector space.

(1)  ¼ a b½ � 2 2
��a ¼ 0

� �
:

(2)  ¼ a b½ � 2 2
��a ¼ �b

� �
:

(3)  ¼ a b½ � 2 2
��b ¼ �5a

� �
:

(4)  ¼ a b½ � 2 2
��b ¼ aþ 3

� �
:

(5)  ¼ a b½ � 2 2
��b � a

� �
:

(6)  ¼ a b½ � 2 2
��a ¼ b ¼ 0

� �
:

(7)  ¼ a b c½ � 2 3
��a ¼ b

� �
:

(8)  ¼ a b c½ � 2 3
��b ¼ 0

� �
:

(9)  ¼ a b c½ � 2 3
��a ¼ bþ 1

� �
:

(10)  ¼ a b c½ � 2 3
��c ¼ a� b

� �
:

(11)  ¼ a b c½ � 2 3
��c ¼ ab

� �
:

(12)  ¼ a b c½ � 2 3
��a ¼ b and c ¼ 0

� �
:
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(13)  ¼ a b c½ � 2 3
��b ¼ 3a and c ¼ aþ 3

� �
:

(14)  ¼ a 2a 0
0 a 2a


 �� ����a is real
�
asasubsetof2�3:

(15)
a b c
d e f


 �
: 2 2�3

� ����c ¼ e ¼ f ¼ 0

�
:

(16)
a b c
d e f


 �
: 2 2�3

� ����c ¼ e ¼ f ¼ 1

�
:

(17)  ¼ 0 0 0
0 0 0


 �� �
as a subset of 2�3:

(18)  ¼ A 2 3�3

��A is lower triangular
� �

:

(19)  ¼ A 2 3�3

��A is a diagonal matrix
� �

:

(20)  ¼
a a2 a3

a2 a a2

a3 a2 a

2
4

3
5�����a is real

8<
:

9=
;asasubsetof3�3:

(21)  ¼ A 2 2�2

��A is invertible
� �

:

(22)  ¼ A 2 2�2

��A is singular
� �

:

(23)  ¼ f tð Þ 2  �1,1½ ���f �tð Þ ¼ �f tð Þ� �
:

(24) Determine whether u is a linear combination of v1¼ [12] and v2¼ [36].

(a) u¼ [24], (b) u¼ [2�4],

(c) u¼ [�3�6], (d) u¼ [22].

(25) Determine which, if any, of the vectors u defined in the previous problem
are in span {v1, v2}.

(26) Determine whether u is a linear combination of v1¼ [10 1] and v1¼ [11 1].

(a) u¼ [32 3], (b) u¼ [33 2],

(c) u¼ [00 0], (d) u¼ [01 1].

(27) Determine which, if any, of the vectors u defined in the previous problem
are in span {v1, v2}.

(28) Determine whether the following vectors are linear combinations of

v1 ¼
1
0
0

2
4
3
5, v2 ¼

1
1
0

2
4
3
5, v3 ¼

1
1
1

2
4
3
5:
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(a)
1
0
1

2
4
3
5, (b)

1
0

�1

2
4

3
5, (c)

2
2
0

2
4
3
5,

(d)
2
2
4

2
4
3
5, (e)

1
2
3

2
4
3
5, (f)

2
�5


 �
:

(29) Determine whether the following matrices are linear combinations of

A1 ¼ 1 0
0 0


 �
, A2 ¼ 0 1

0 0


 �
, A3 ¼ 1 1

1 0


 �
:

(a)
0 1
1 1


 �
, (b)

1 2
3 0


 �
, (c)

1 1
0 0


 �
,

(d)
0 0
0 0


 �
, (e)

2 0
�2 0


 �
, (f)

0 0
1 �1


 �
:

(30) Determine which, if any, of thematrices given in parts (a) through (f) of the
previous problem are in span {A1, A2, A3}.

(31) Determine whether the following polynomials are linear combinations of

t3 þ t2, t3 þ t, t2 þ t
� �

:

(a) t3þ t2þ t, (b) 2t3� t, (c) 5t, (d) 2t2þ1.

(32) Find span {v1, v2} for the vectors given in Problem 24.

(33) Find span {A1, A2, A3} for the matrices given in Problem 29.

(34) Find span {p1(t), p2(t), p3(t)} for the polynomial given in Problem 31.

(35) Describe the graph of all points in the set  described in Problem 3.

For problems 36 and 37, let S represent a set of vectors of the form [x y z] in 3

that satisfy the given equations. Determine if S forms a subspace in 3.

(36)  ¼ x y z½ ���x� 2y þ z ¼ 0
� �

(37)  ¼ x y z½ ���xþ y � z ¼ 1
� �

(38) Determine if {[1,1,1], [2,2,0] [3,0,0]} spans 3.

(39) Determine if {[1,1,2], [1,0,1] [2,1,3]} spans 3.

(40) Show that 2 is a subspace of 3. Generalize to m and n when m<n.

(41) Show that if u is a linear combination of the vectors v1, v2, . . .vn and if each
vi is a linear combination of the vectors (i=1, 2, . . . , n), then u can also be
expressed as a linear combination of w1, w2, . . .wm.
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(42) Let A be an n�nmatrix and both x and y n�1 columnmatrices. Prove that
if y�Ax, then y is a linear combination of the columns of A.

(43) Show that the set of solutions of the matrix equation Ax¼0, where A is a
p�n matrix, is a subspace of n.

(44) Show that the set of solutions of the matrix equation Ax¼b, where A is a
p�n matrix, is not a subspace of n when b 6¼0.

(45) Prove that span{u, v}¼ span{u+v, u�v}.

(46) Prove that span{u, v, w}¼ span{u+v, v+w, u+w}.

(47) Prove that span{u, v, 0}¼ span{u, v}.

(48) Prove Theorem 5.

2.4 LINEAR INDEPENDENCE
Most vector spaces contain infinitely many vectors. In particular, if u is a nonzero
vector of a vector space and if the scalars are real numbers, then it follows from
the closure property of scalar multiplication that au 2  for every real number a.
It is useful, therefore, to determine whether a vector space can be completely
characterized by just a few representatives. If so, we can describe a vector space
by its representatives. Instead of listing all the vectors in a vector space, which are
often infinitely many in number, we simplify the identification of a vector space
by listing only its representatives. We then use those representatives to study the
entire vector space.

Efficiently characterizing a vector space by its representatives is one of the major
goals in linear algebra, where by efficiently we mean listing as few representatives
as possible. We devote this section and the next to determining properties that
such a set of representatives must possess.

A set of vectors {v1, v2, . . . , vn} in a vector space  is linearly dependent if there
exist scalars, c1, c2, . . . , cn, not all zero, such that

c1v1 þ c2v2 þ � � � þ cnvn ¼ 0 (2.18)

The vectors are linearly independent if the only set of scalars that satisfies Equa-
tion (2.18) is the set c1¼ c2¼ . . .¼ cn¼0.

To test whether a given set of vectors is linearly independent, we first form vector
Equation (2.18) and ask, “What values for the c’s satisfy this equation?” Clearly,
c1¼ c2¼ . . .¼ cn¼0 is a suitable set. If this is the only set of values that satisfies
Equation (2.18), then the vectors are linearly independent. If there exists a set of
values that is not all zero, then the vectors are linearly dependent.

It is not necessary for all the c’s to be different from zero for a set of vectors to be
linearly dependent. Consider the vectors v1¼ [12], v2¼ [14], and v3¼ [24]. The
constants c1¼2, c2¼0, and c3¼�1 is a set of scalars, not all zero, such that
c1v1+ c2v2+ c3v3¼0. Thus, this set is linearly dependent.

The set of vectors
{v1, v2, . . . , vn} is linearly
independent if the only
set of scalars that
satisfy c1v1+c2v2+ � � �
+cnvn¼0 is
c1¼c2¼ . . .¼cn¼0.
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Example 1 Is the set {[12], [34]} in 2 linearly independent?

Solution: Here v1¼ [1 2], v2¼ [3 4], and Equation (2.18) becomes

c1 1 2½ � þ c2 3 4½ � ¼ 0 0½ �
This vector equation can be rewritten as

c1 2c1½ � þ 3c2 4c2½ � ¼ 0 0½ �
or as

c1 þ 3c2 2c1 þ 4c2½ � ¼ 0 0½ �
Equating components, we generate the system

c1 þ 3c2 ¼ 0

2c1 þ 4c2 ¼ 0

which has as its only c1¼ c2¼0. Consequently, the original set of vectors is lin-
early independent.

Example 2 Determine whether the set of column matrices in 3

2
6

�2

2
4

3
5; 3

1
2

2
4
3
5; 8

16
�3

2
4

3
5

8<
:

9=
;

is linearly independent.

Solution: Equation (2.18) becomes

c1

2
6

�2

2
4

3
5þ c2

3
1
2

2
4
3
5þ c3

8
16
�3

2
4

3
5 ¼

0
0
0

2
4
3
5 (2.19)

which can be rewritten as

2c1
6c1

�2c1

2
4

3
5þ

3c2
c2

2c2

2
4

3
5þ

8c3
16c3
�3c3

2
4

3
5 ¼

0
0
0

2
4
3
5

or

2c1 þ 3c2 þ 8c3

6c1 þ c2 þ 16c3

�2c1 þ 2c2 � 3c3

2
4

3
5 ¼

0

0

0

2
4
3
5

This matrix equation is equivalent to the homogeneous system of equations

2c1 þ 3c2 þ 8c3 ¼ 0

6c1 þ c2 þ 16c3 ¼ 0

�2c1 þ 2c2 � 3c3 ¼ 0
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Using Gaussian elimination, we find the solution to this system is c1¼�2.5, c3,
c2¼�c3, c3 arbitrary. Setting c3¼2, we obtain c1¼�5, c2¼�2, c3¼2 as a par-
ticular nonzero set of constants that satisfies Equation (2.18). The original set
of vectors is linearly dependent.

Example 3 Determine whether the set of matrices

1 1
0 0


 �
;

0 1
0 1


 �
;

0 0
1 1


 �
;

1 0
1 1


 �
;

1 1
0 1


 �� �
in 2�2 is linearly independent.

Solution: Equation (2.17) becomes

c1
1 1
0 0


 �
þ c2

0 1
0 1


 �
þ c3

0 0
1 1


 �
þ c4

1 0
1 1


 �
þ c5

1 1
0 1


 �
¼ 0 0

0 0


 �
or

c1 þ c4 þ c5 c1 þ c2 þ c5
c3 þ c4 c2 þ c3 þ c4 þ c5


 �
¼ 0 0

0 0


 �
which is equivalent to the homogeneous system of equations

c1 þ c4 þ c5 ¼ 0

c1c2 þ c5 ¼ 0

c3 þ c4 ¼ 0

c2 þ c3 þ c4 þ c5 ¼ 0

This system hasmore unknowns than equations, so it follows from Theorem 3 of
Section 1.4 that there are infinitely many solutions, all but one of which are non-
trivial. Because nontrivial solutions exist to Equation (2.18), the set of vectors is
linearly dependent.

Example 4Determine whether the set {t2+2t�3, t2+5t, 2t2�4} of vectors in 2

is linearly independent.

Solution: Equation (2.18) becomes

c1 t2 þ 2t � 3
� 	þ c2 t2 þ 5t

� 	þ c3 2t2 � 4
� 	 ¼ 0

or

c1 þ c2 þ 2c3ð Þt3 þ 2c1 þ 5c2ð Þt þ �3c1 � 4c3ð Þ ¼ 0t2 þ 0t þ 0

Equating coefficients of like powers of t, we generate the system of equations

c1 þ c2 þ 2c3 ¼ 0

2c1 þ 5c2 ¼ 0

�3c1 � 4c3 ¼ 0
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Using Gaussian elimination, we find that this system admits only the trivial solu-
tion c1¼ c2¼ c3¼0. The given set of vectors is linearly independent.

The defining equations for linear combinations and linear dependence, Equa-
tions (2.16) and (2.18), are similar, so we should not be surprised to find that
the concepts are related.

▶THEOREM 1
A finite set of vectors is linearly dependent if and only if one of the vectors is a linear com-

bination of the vectors that precede it, in the ordering established by the listing of vectors in

the set.◀

Proof: First, we must prove that if a set of vectors is linearly dependent, then one
of the vectors is a linear combination of other vectors that are listed before it in
the set. Second, wemust show the converse: if one of the vectors of a given set is a
linear combination of the vectors that precede it, then the set is linearly
dependent.

Let {v1, v2, . . . , vn} be a linearly dependent set. Then there exists scalars c1, c2, . . . ,
cn, not all zero, such that Equation (2.18) is satisfied. Let ci be the last nonzero
scalar. At the very worst i¼nwhen cn 6¼0, but if cn¼0, then i<n. Equation (2.18)
becomes

c1v1 þ c2v2 þ � � � þ ci�1vi�1 þ civi þ 0viþ1 þ 0viþ2 þ � � � þ 0vn ¼ 0

which can be rewritten as

vi ¼ � c1
ci
v1 � c2

ci
v2 � � � � � ci�1

ci
vi�1 (2.20)

Consequently, vi, is a linear combination of v1, v2, . . . , vi�1, with coefficients
d1¼�c1/ci, d2¼�c2/ci, . . . , di�1¼�ci�1/ci.

Now let one vector of the set {v1, v2, . . . , vn}, say vi, be a linear combination of
the vectors in the set that precede it, namely, v1, v2, . . . , vi�1. Then there exist
scalars d1, d2, . . . , di�1 such that

vi ¼ d1v1 þ d2v2 þ � � � þ di�1vi�1

which can be rewritten as

d1v1 þ d2v2 þ � � � þ di�1vi�1 þ �1ð Þvi þ 0viþ1 þ 0viþ2 þ � � � þ 0vn ¼ 0

This is Equation (2.18) with cj¼dj (j¼1, 2, . . . , i�1), ci¼�1, and cj¼0 (j¼ i+1,
i+2, . . . , n). Because this is a set of scalars not all zero, in particular ci¼�1, it
follows that the original set of vectors is linearly dependent.

It is not necessary for every vector in a given set to be a linear combination of
preceding vectors if that set is linearly dependent, but only that at least one vector
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in the set have this property. For example, the set {[10], [20], [01]} is linearly
dependent because

�2 1 0½ � þ 1 2 0½ � þ 0 0 1½ � ¼ 0 0½ �

Here [01] cannot be written as a linear combination of the preceding two vec-
tors; however, [20] can be written as a linear combination of the vector that pre-
cedes it, namely, [2 0]¼2[10].

▶THEOREM 2
A subset of a vector space  consisting of the single vector u is linearly dependent if and

only if u¼0.◀

Proof: If the set {u} is linearly dependent, then there exists a nonzero scalar c that
satisfies the vector equation

cu ¼ 0 (2.21)

It then follows from Theorem 7 of Section 2.2 that u¼0. Conversely, if u¼0,
then it follows from Theorem 1 of Section 2.2 that Equation (2.21) is valid
for any scalar c. Thus nonzero scalars exist that satisfy Equation (2.21) and
the set {u} is linearly dependent.

▶THEOREM 3
A subset of a vector space  consisting of two distinct vectors is linearly dependent if and

only if one vector is a scalar multiple of the other.◀

Proof: If the set {v1, v2} is linearly dependent, then it follows from Theorem 1
that v2 can be written as a linear combination of v1. That is, v2¼d1v1, which
means that v2 is a scalar multiple of v1.

Conversely, if one of the two vectors can be written as a scalar multiple of the
other, then either v2¼av1 or v1¼av2 for some scalar a. This implies, respectively,
that either

av1 þ �1ð Þv2 ¼ 0 or 1ð Þv1 � av2 ¼ 0

Both equations are in the formof Equation (2.18), the first with c1¼a, c2¼�1 and
the secondwith c1¼1, c2¼�a. Eitherway,wehave a set of scalars, not all zero, that
satisfy Equation (2.18), whereupon the set {v1, v2} is linearly dependent.

Theorem 3 has an interesting geometrical representation in both 2 and 3. We
know from our work in Section 1.7 that a scalar multiple of a nonzero vector in

2 or 3 is an elongation of the nonzero vector (when the scalar in absolute
value is greater than unity) or a contraction of that nonzero vector (when the
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scalar in absolute value is less than unity), followed by a rotation of 180� if the
scalar is negative. Figure 2.15 illustrates two possibilities in 2 for a particular
nonzero vector v2. If v2¼2v1, we have the situation depicted in Figure 2.15a;
if, however, v2¼�1/2v1, we have the situation depicted in Figure 2.15b. Either

way, both vectors lie on the same straight line. The same situation prevails in 3.

We conclude that two vectors are linearly dependent in either 2 or 3 if and
only if both vectors lie on the same line. Alternatively, two vectors are linearly

independent in either 2 or 3 if and only if they do not lie on the same line.

A set of three vectors in 3, {v1, v2, v3}, is linearly dependent if any two of the
vectors lie on the same straight line (see Problem 31). If no two vectors lie on the
same straight line but the set is linearly dependent, then it follows from Theorem
1 that v3 must be a linear combination of v1 and v2 (see Problem 32). In such a
case, there exist scalars d1 and d2 such that v3¼d1v1+d2v2. This situation is illus-
trated graphically in Figure 2.16 for the particular case where both vectors v1 and
v2 are in the x-y plane, d1 is a positive real number that is less than unity, and d2 is
a positive real number that is slightly greater than unity. It follows from our work
in Section 1.7 that v3¼d1v1+d2v2 is another vector in the x-y plane. The situation

v
1

x

(a)

y

−2v1

v
1

v
1

x

(b)

y

1
−2

FIGURE 2.15

Two vectors are linearly
dependent in 2, or 3 if
and only if they lie on the
same line.

A set of three vectors in
3 is linearly dependent
if and only if all three
vectors lie on the same
line or all lie in the
same plane.
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is analogous for any two vectors in3 that do not lie on the same line: any linear
combination of the two vectors will lie in the plane formed by those two vectors.

We see, therefore, that if a set of three vectors in 3 is linearly dependent, then
either all three vectors lie on the same line or all three lie in the same plane.

▶THEOREM 4
A set of vectors in a vector space  that contains the zero vector is linearly dependent.◀

Proof: Consider the set {v1, v2, . . . , vn, 0}. Pick c1¼ c2¼ . . .¼ cn¼0 and cn+1¼5
(any other nonzero number will do equally well). This is a set of scalars, not all
zero, such that

c1v1 þ c2v2 þ � � � þ cnvn þ cnþ10 ¼ 0

Hence, the set of vectors is linearly dependent.

▶THEOREM 5
If a set of vectors  in a vector space  is linearly independent, then any subset of  is also

linearly independent.◀

Proof: See Problem 42.

▶THEOREM 6
If a set of vectors  in a vector space is linearly dependent, then any larger set containing

 is also linearly dependent.◀

Proof: See Problem 43.

v
1

v 2

d 2
v 2

d 2
v 2

d
1v

1

x

y

+d1v1 d2v2

FIGURE 2.16

Vector Spaces CHAPTER 2 133

Figure 2.16


Problems 2.4
In Problems 1 through 30, determine whether each set is linearly independent.

(1) 1 0½ �; 0 1½ �f g:
(2) 1 1½ �; 1 �1½ �f g:
(3) 2 �4½ �; �3 6½ �f g:
(4) 1 3½ �; 2 �1½ �; 1 1½ �f g:

(5)
1

2


 �
;

3

4


 �� �
:

(6)
1

�1


 �
;

1
1


 �
;

1
2


 �� �
:

(7)
1
0
1

2
4
3
5; 1

1
0

2
4
3
5; 0

1
1

2
4
3
5

8<
:

9=
;:

(8)
1
0
1

2
4
3
5; 1

0
2

2
4
3
5; 2

0
1

2
4
3
5

8<
:

9=
;:

(9)
1
0
1

2
4
3
5; 1

1
1

2
4
3
5; 0

�1
1

2
4

3
5

8<
:

9=
;:

(10)
0
0
0

2
4
3
5; 3

2
1

2
4
3
5; 2

1
3

2
4
3
5

8<
:

9=
;:

(11)
1
2
3

2
4
3
5; 3

2
1

2
4
3
5; 2

1
3

2
4
3
5

8<
:

9=
;:

(12)
1
2
3

2
4
3
5; 3

2
1

2
4
3
5; 2

1
3

2
4
3
5; �1

2
�3

2
4

3
5

8<
:

9=
;:

(13)

4

5

1

2
4
3
5; 3

0

2

2
4
3
5; 1

1

1

2
4
3
5

8<
:

9=
;:

(14) 1 1 0½ �; 1 �1 0½ �f g:
(15) 1 2 3½ �; �3 �6 �9½ �f g:
(16) 10 20 20½ �; 10 �10 10½ �; 10 20 10½ �f g:
(17) 10 20 20½ �; 10 �10 10½ �; 10 20 10½ �; 20 10 20½ �f g:
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(18) 2 1 1½ �; 3 �1 4½ �; 1 3 �2½ �f g:

(19)

2
1
1
3

2
664
3
775;

4
�1
2

�1

2
664

3
775;

8
1
4
5

2
664
3
775

8>><
>>:

9>>=
>>;:

(20)
1 0
0 0


 �
;

0 1
0 0


 �
;

0 0
1 0


 �
;

0 0
0 1


 �� �
:

(21)
1 1
0 0


 �
;

1 1
1 1


 �
;

0 0
1 1


 �� �
:

(22)
1 1
0 0


 �
;

1 0
1 1


 �
;

0 0
1 1


 �� �
:

(23)
1 0
1 1


 �
;

1 1
1 0


 �
;

1 1
0 1


 �
;

0 1
1 1


 �� �
:

(24)
1 0
1 1


 �
;

1 1
1 0


 �
;

2 2
0 2


 �
;

1 0
2 0


 �� �
:

(25) {t,2}.

(26) {t3+ t2, t3+ t, t2+ t}.

(27) {t3+ t2, t2� t2, t3�3t2}.

(28) {t3+ t2, t3� t2, t3� t, t3+1}.

(29) {t2+ t, t2+ t�1, t2+1, t}.

(30) {t2+ t, t2+ t�2,1}.

(31) Consider a set of three vectors in 3. Prove that if two of the vectors lie on
the same straight line, then the set must be linearly dependent.

(32) Consider a linearly dependent set of three vectors {v1, v2, v3} in 3. Prove
that if no two vectors lie on the same straight line, v3 must be a linear com-
bination of v1 and v2.

(33) Prove that a set of vectors is linearly dependent if and only if one of the vec-
tors is a linear combination of the vectors that follow it.

(34) Prove that if {u, v} is linearly independent, then so too is {u+v, u�v}.

(35) Prove that if {v1, v2, v3} is linearly independent, then so too is the set
{u1, u2, u3} where u1¼v1+v2+v3, u2¼v2 +v3, and u3¼v3.

(36) Prove that if {v1, v2, v3} is linearly independent, then so too is the set
{u1, u2, u3} where u1¼v1+v2+v3, u2¼v2 +v3, and u3¼v3.

(37) Prove that if {v1, v2, v3} is linearly independent, then so too is the set
{a1v1, a2v2, a3v3} for any choice of the nonzero scalars a1, a2, and a3.
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(38) Prove that the nonzero rows, considered as row matrices, of a row-reduced
matrix is a linearly independent set.

(39) Let A be an n�n matrix and let {x1, x2, . . . vk} and {y1, y2, . . . yk} be two
sets of n-dimensional column vectors having the property that
Axi¼yi(i¼1,2, . . . ,k). Show that the set {x1, x2, . . . vk} is linearly indepen-
dent if the set {y1, y2, . . . yk} is.

(40) What can be said about a set of vectors that contains as a proper subset a set
of linearly independent vectors?

(41) What can be said about a subset of a linearly dependent set of vectors?

(42) Prove Theorem 5.

(43) Prove Theorem 6.

(44) An extension of Theorem 2 in Section 1.5 to 3 states that the volume of

parallelpiped generated by three column matrices u1, u2, and u3 in 3 is
|det[u1u2u3]|. Find the volumesof the parallelepipedsdefinedby the vectors:

(a) [12 1]T, [2�10]T, [21 1]T.

(b) [12 3]T, [32 1]T, [11 1]T.

(c) [10 1]T, [21 1]T, [43 1]T.

(45) Use Problem 44 to show that the determinant of a 3�3matrix with linearly
dependent columns must be 0.

(46) What can be said about the determinant of an upper triangular matrix?
A lower triangular matrix?

(47) What can be said about the determinant of a matrix containing a zero row?
A zero column?

2.5 BASIS AND DIMENSION
We began the previous section with a quest for completely characterizing vector
spaces by just a few of its representatives and determining the properties repre-
sentativesmust have if the characterization is to be an efficient one. One property
we want is the ability to recreate every vector in a given vector space from its rep-
resentatives; that is, we want the ability to combine representatives to generate all
other vectors in a vector space. The only means we have for combining vectors is
vector addition and scalar multiplication, so the only combinations available to
us are linear combinations (see Section 2.3). We define a set of vectors  in a vec-
tor space  as a spanning set for  if every vector in  can be written as a linear
combination of the vectors in ; that is, if  ¼ span f g.
Example 1Determine whether any of the following sets are spanning sets for2,
considered as column matrices:

(a) 1 ¼ e1 ¼ 1
0


 �
, e2 ¼ 0

1


 �� �

The set of vectors  is a
spanning set for a vector
space if every vector in
 can be written as a
linear combination of
vectors in .
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(b) 2 ¼ e1 ¼ 1
0


 �
, e2 ¼ 0

1


 �
, f1 ¼ 1

1


 �� �

(c) 3 ¼ f1 ¼ 1
1


 �
, f2 ¼ 2

2


 �� �

Solution: An arbitrary column matrix u 2 2 has the form

u ¼ a
b


 �

for some choice of the scalars a and b.

(a) Since

a
b


 �
¼ a

1
0


 �
þ b

0
1


 �

it follows that every vector in2 is a linear combination of e1 and e2. Thus, 1 is a
spanning set for 2.

(b) Since

a
b


 �
¼ a

1
0


 �
þ b

0
1


 �
þ 0

1
1


 �

it follows that 2 is also a spanning set for 2.

(c) 3 is not a spanning set for 2. Every linear combination of vectors in 3
has identical first and second components. The vector [12]T does not have
identical components and, therefore, cannot be written as a linear combi-
nation of f1 and f2.

If  is a spanning set for a vector space , then  is said to span . As a spanning
set,  represents  completely because every vector in  can be gotten from the
vectors in . If we also require that  be a linearly independent set, then we are
guaranteed that no vector in  can be written as a linear combination of other
vectors in  (Theorem 1 of Section 2.4). Linear independence ensures that the
set  does not contain any superfluous vectors. A spanning set of vectors, that
is, also a linearly independent set meets all our criteria for efficiently representing
a given vector space. We call such a set a basis.

Example 2 Determine whether the set  ¼ t2 þ 2t � 3, t2 þ 5t, 2t2 � 4f g is a

basis for 3.

Solution: is not a spanning set for 3, because t3 is a third-degree polynomial in

3 and no linear combination of the vectors in can equal it. Because does not

span 3,  cannot be a basis. We could show that  is linearly independent (see
Example 4 of Section 2.4), but that is now irrelevant.

A basis for a vector space
 is a set of vectors that
is linearly independent
and also spans .
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Example 3 Determine whether the set

 ¼ 1 1
0 0


 �
;

0 1
0 1


 �
;

0 0
1 1


 �
;

1 0
1 1


 �
;

1 1
0 1


 �� �
is a basis for 2�2.

Solution: It follows from Example 3 of Section 2.4 that  is linearly dependent,
not independent, so cannot be a basis. We could show that  does indeed span
2�2, but that no longer matters.

Example 4 Determine whether the set  ¼ e1 ¼ 1
0


 �
, e2 ¼ 0

1


 �� �
is a basis for

2, considered as column matrices.

Solution:We need to show that span ð Þ ¼ 2 and also that  is linearly indepen-

dent. We showed in part (a) of Example 1 that  is a spanning set for2. To dem-
onstrate linear independence, we form the vector equation

c1
1
0


 �
þ c2

0
1


 �
¼ 0

0


 �
or

c1
c2


 �
¼ 0

0


 �

The only solution to this vector equation is c1¼ c2¼0, so the two vectors are lin-

early independent. It follows that  is a basis for 2.

A straightforward extension of Example 4 shows that a basis forn, considered as
column vectors, is the set of the n-tuples

e1 ¼

1
0
0
..
.

0
0

2
6666664

3
7777775, e2 ¼

0
1
0
..
.

0
0

2
6666664

3
7777775, e3 ¼

0
0
1
..
.

0
0

2
6666664

3
7777775, . . . , en�1 ¼

0
0
0
..
.

1
0

2
6666664

3
7777775, en ¼

0
0
0
..
.

1
0

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(2.22)

where ej (j¼1, 2, 3, . . . , n) has its jth component equal to unity and all other
components equal to zero. This set is known as the standard basis for n.

Example 5 Determine whether the set  ¼ f1 ¼ 1
1


 �
, f2 ¼ 1

�1


 �� �
is a basis

for 2, considered as column matrices.

Solution: An arbitrary vector u in 2 has the form

u ¼ a
b


 �
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for some choice of the scalars a and b.  is a spanning set for 2 if there exist
scalars d1 and d2 such that

d1
1
1


 �
þ d2

1
�1


 �
¼ a

b


 �
(2.23)

Note thatwedonot actuallyhave to find the scalars d1 and d2,weonlyneed to show
that they exist. System (2.14) is equivalent to the set of simultaneous equations

d1 þ d2 ¼ a
d1 � b2 ¼ b

which we solve by Gaussian elimination for the variables d1 and d2. The aug-
mented matrix for this system is

1 1
1 �1

����� ab
" #

! 1 1
0 �2

����� a
b� a

" #
by adding to the
secondrow� 1
times the first row

! 1 1
0 1

����� a12a�1
2 b

" #
bymultiplying
thesecondrow
by � 1=2

The system of equations associated with this row-reduced augmented matrix is

d1 þ d2 ¼ a

d2 ¼ 1

2
a� 1

2
b

(2.24)

System (2.24) has a solution for d1 and d2 for every choice of the scalars a and b.
Therefore, there exist scalars d1 and d2 that satisfy Equation (2.23) and  is a

spanning set for 2.

We next show that is linearly independent, which is tantamount to showing that
the only solution to the vector equation d1f1+d2f2¼0 is the trivial solution
d1¼d2¼0. This vector equation is precisely Equation (2.23) with a¼b¼0, and it
reduces to Equation (2.24) with a¼b¼0. Under these special conditions, the sec-
ond equation of Equation (2.24) is d2¼0, and when it is substituted into the first

equationwe findd1¼0.Thus, is alsoa linearly independent set, andabasis for2.

▶OBSERVATION
To show that a set of vectors is a basis for a vector space, first verify that the set spans.
Muchof theworkcanbe reused todeterminewhether theset isalso linearly independent.◀

A vector space is finite-dimensional if it has a basis containing a finite number of

vectors. In particular,2 is finite-dimensional because, as shown in Example 4, it
has a basis with two (a finite number) of the vectors. A vector space that is not

A vector space is finite-
dimensional if it has a
basis containing a finite
number of vectors.
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finite-dimensional is called infinite dimensional, but we shall not consider such
vector spaces in this book. It follows from Examples 4 and 5 that a finite-
dimensional vector space can have different bases. The fact that different bases
of a vector space must contain the same number of vectors is a consequence
of the next two theorems.

▶THEOREM 1
If  ¼ v1; v2; . . . ; vnf g is a basis for a vector space , then any set containing more than n

vectors is linearly dependent.◀

Proof: Let  ¼ u1;u2; . . . ;up

� �
be a set of p vectors in  with p>n. We need to

show that there exist scalars c1, c2, . . . , cp, not all zero, that satisfy the vector
equation

c1u1 þ c2u2 þ � � � þ cpup ¼ 0 (2.25)

Because  is a spanning set for , it follows that every vector in , in particular
those vectors in , can be written as a linear combination of the vectors in .
Therefore,

u1 ¼ a11v1 þ a21v2 þ � � � þ an1vn
u2 ¼ a12v2 þ a22v2 þ � � � þ an2vn
..
.

up ¼ a1pv1 þ a2pv2 þ � � � þ anpvn

(2.26)

for some values of the scalars aij (i¼1, 2, . . . , n; j¼1, 2, . . . , p). Substituting the
equations of system (2.26) into the left side of Equation (2.25) and rearranging,
we obtain

c1a11 þ c2a12 þ � � � þ cpa1p
� 	

v1

þ c1a21 þ c2a22 þ � � � þ cpa2p
� 	

v2

þ� � � þ c1an1 þ c2an2 þ � � �cpanp
� 	

vn ¼ 0

Because  is a basis, it is a linearly independent set, and the only way the above
equation can be satisfied is for each coefficient of vj (j¼1, 2, . . . , n) to be zero.
Thus,

a11c1 þ a12c2 þ � � � þ a1pcp ¼ 0
a21c1 þ a22c2 þ � � � þ a2pcp ¼ 0

..

.

an1c1 þ an2c2 þ � � � þ anpcp ¼ 0

But this is a set of n-equations in p-unknowns, c1, c2, . . . , cp, with p>n, so it
follows from Theorem 3 of Section 1.4 that this set has infinitely many solutions.
Most of these solutions will be nontrivial, so there exist scalars, not all zero, that
satisfy Equation (2.16).
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As an immediate consequence of Theorem 1, we have

▶COROLLARY 1
If  ¼ v1; v2; . . . ; vnf g is a basis for a vector space, then every linearly independent set of

vectors in  must contain n or fewer vectors.◀

We are now in the position to state and prove one of the fundamental principles
of linear algebra.

▶THEOREM 2
Every basis for a finite-dimensional vector spacemust contain the samenumber of vectors.◀

Proof: Let  ¼ v1; v2; . . . ; vnf g and  ¼ u1;u2; . . . ;unf g be two bases for a finite-
dimensional vector space . Because  is a basis and  is a linearly independent
set, it follows from Corollary 1 that p<n. Reversing roles,  is a basis and  is a
linearly independent set, so it follows from Corollary 1 that n<p. Together, both
inequalities imply that p¼n.

Because the number of vectors in a basis for a finite-dimensional vector space is
always the same, we can give that number a name. We call it the dimension of the
 and denote it as dim().

The vector space containing just the zero vector is an anomaly. The only nonempty
subset of this vector space is the vector space itself. But the subset {0} is linearly
dependent, as a consequence of Theorem 2 of Section 2.4 and, therefore, cannot
be a basis. We define the dimension of the vector space containing just the zero
vector to be zero, which is equivalent to saying that the empty set is the basis for
this vector space.

Example 6 Determine the dimension of n.

Solution: A basis for this vector space is  ¼ tn, tn�1, . . . , t,1f g. First,  is a span-
ning set, because if p(t) is a vector in n, then

p tð Þ ¼ ant
n þ an�1t

n�1 þ � � � þ a1t þ a0 1ð Þ
for some choice of the scalars aj (j¼0, 1, . . . , n). Second,  is a linearly indepen-
dent set, because the only solution to

cnt
n þ cn�1t

n�1 þ � � � þ c1t þ c0 1ð Þ ¼ 0 ¼ 0tn þ 0tn�1 þ � � � þ 0t þ 0

is c0¼ ci¼ . . . ,¼ cn¼0. The basis  contains n+1 elements, and it follows that
dim nð Þ ¼ nþ 1.  is often called the standard basis for n.

Example 7 The standard basis for 2�2 is

 ¼ 1 0
0 0


 �
;

0 1
0 0


 �
;

0 0
1 0


 �
;

0 0
0 1


 �� �

The dimension of a vector
space is the number of
vectors in a basis for that
vector space.
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(See Problem 5.) Thus, dim(2�2)¼4.More generally, the standard basis forp�n

is the set of pn matrices, each having a single 1 in a different position with all
other entries equal to zero. Consequently, dim p�n

� 	 ¼ pn.

Example 8 The dimension of n is n. n ¼ 1�n when we represent n-tuples
as row matrices, whereas n ¼ n�1 when we represent n-tuples as column
matrices. Either way, it follows from Example 7 that dim nð Þ ¼
dim 1�nð Þ ¼ dim n�1ð Þ ¼ n. The standard basis for n, considered as column
matrices, is depicted in Equation (2.22).

As an immediate consequence of Theorem 1, we obtain one of the more impor-
tant results in linear algebra.

▶THEOREM 3
In an n-dimensional vector space, every set of n+1 or more vectors is linearly

dependent.◀

Example 9 The set  ¼ 1 5½ �; 2� 4½ �; �3� 4½ �f g is a set of three vectors in the

two-dimensional vector space2, considered as rowmatrices. Therefore, is lin-

early dependent. The set  ¼ t2 þ t, t2 � t, t þ 1, t � 1f g is a set of four vectors

in the three-dimensional vector space 2. Therefore,  is linearly dependent.

In Section 2.3, we surmised that lines through the origin and planes that include

the origin are subspaces of 3. The following theorem formalizes this conjecture

and provides a complete geometric interpretation of subspaces in 3.

▶THEOREM 4
Let  be a subspace of 3.

(i) If dim ð Þ ¼ 0, then  contains just the origin.

(ii) If dim ð Þ ¼ 1, then the graph of  is a straight line through the origin.

(iii) If dim ð Þ ¼ 2, then the graph of  is a plane that includes the origin.◀

Proof: By definition, a vector space has dimension zero if and only if the vector

space contains just the zero vector, which for 3 is the origin [00 0]. This proves
part (i).

If  is a one-dimensional subspace, then it has a basis consisting of a single non-
zero vector, which we denote as u. Every vector in  can be written as a linear
combination of vectors in a basis for , which here implies that every vector v
in  is a scalar multiple of u; that is, v¼au for some scalar a. The set of all such
vectors graph as a line through the origin that contains u (see Figure 2.14 for the
special case u¼ [1 2 4]). In Figure 2.14, a>1 generates a point on the line that is
further from the origin than u but in the same direction as u; a<1 but still pos-
itive generates a point on the line that is closer to the origin than u but still in the

dim nð Þ ¼ n-
dim nð Þ ¼ nþ 1
dim p�n

� 	 ¼ pn
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same direction as u; a<0 generates a point in the opposite direction of u. Finally,
ifQJ is a two-dimensional subspace, then it has a basis consisting of two nonzero
vectors, which we denote as v1 and v2. The vectors in such a basis must be linearly
independent, so v2 cannot be a scalar multiple of v1. Therefore, v2 does not lie on
the line through the origin containing vi. Any vector v in  can be written as a
linear combination of v1 and v2, so

v ¼ av1 þ bv2

for particular values of the scalars a and b. Consider the plane that contains the
two basis vectors. From the geometric representation of vector addition and sca-
lar multiplication in 3 developed in Section 1.5, it follows that every point in
the plane containing the two basis vectors can be reached as a linear combination
of v1 and v2 and that every linear combination of these two vectors is in the plane
defined by those two vectors. (See Figure 2.17 where v denotes a point in the
plane defined by v1 and v2; here 0<a<1 and b is negative.)

The standard basis in 2, considered as column vectors, consists of the two
vectors

e1 ¼ 1
0


 �
and e2 ¼ 0

1


 �
which in many engineering texts are denoted by i and j, respectively. Both are
graphed in Figure 2.18. For an arbitrary vector v in 2, we have

v ¼ a
b


 �
¼ ae1 þ be2 ¼ aiþ bj

The standard basis in 3, considered as column vectors, consists of the three
vectors

e1 ¼
1
0
0

2
4
3
5, e2 ¼

0
1
0

2
4
3
5, ande3 ¼ 0

0
1

2
4
3
5

which inmany engineering texts are denoted by i, j, and k, respectively. These are
graphed in Figure 2.19. For an arbitrary vector v in 3, we have

Plane containing v1 and v2
v1

v2

bv2

αv 1
v

FIGURE 2.17
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v ¼
a
b
c

2
4
3
5 ¼ ae1 þ be2 þ ce3 ¼ aiþ bjþ ck

More generally, if  ¼ v1; v2; . . . ; vnf g is a basis for a vector space , then  is a
spanning set. Consequently, if v 2 , then there exist scalars d1, d2, . . . , dn such
that

v ¼ d1v1 þ d2v2 þ � � � þ dnvn (2.27)

We shall prove shortly that this set of scalars is unique for each v; that is, for each
v there is one and only one set of scalars d1, d2, . . . , dn that satisfies Equa-
tion (2.27). These scalars are called the coordinates of v with respect to  and
are represented by the n-tuple

z

y
k

i
j

x

3

2

1

1

1

2

3

2 3

FIGURE 2.19

1−1−2 2 3
x

y

j
i

1

−1

−2

2

3

FIGURE 2.18
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v $
a1
b2
..
.

dn

2
6664

3
7775
S

Example 10 Find the coordinate representations of the vector v¼ [72]T, first with

respect to the standard basis  ¼ 1 0½ �T ; 0 1½ �T
n o

and then with respect to the

basis 1 ¼ 1 1½ �T ; 1� 1½ �T
n o

.

Solution: With respect to the standard basis, we have

7
2


 �
¼ 7

1
0


 �
þ 2

0
1


 �
so the coordinates are 7 and 2 and the 2-tuple representation is

7
2


 �
$ 7

2


 �


To determine the representation with respect to 1, we need to first write the
given vector as a linear combination of the vectors in 1. We need values of
the scalars d1 and d2 that satisfy the equation

7
2


 �
¼ d1

1
1


 �
þ d2

1
�1


 �

This is equivalent to the system of equations

d1 þ d2 ¼ 7
d1 � d2 ¼ 2

which admits the solution d1¼9/2 and d2¼5/2. These are the coordinates of v
with respect to 1, and we may write

7
2


 �
¼ 9

2

1
1


 �
þ 5

2

1
�1


 �
$ 9=2

5=2


 �


It was no accident in the previous example that the n-tuple representation of the
vector v with respect to the standard basis was the vector itself. This is always the
case for vectors in n with respect to the standard basis. Consequently, we drop
the subscript notation on the n-tuple representation of the coordinates of a vec-
tor whenever we deal with the standard basis.

Example 11Determine the coordinate representation of thematrix
4 3
6 2


 �
with

respect to the basis

 ¼ 0 1
1 1


 �
;

1 0
1 1


 �
;

1 1
0 1


 �
;

1 1
1 0


 �� �
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Solution: We first determine scalars d1, d2, d3, and d4 that satisfy the matrix
equation

4 3
6 2


 �
¼ d1

0 1
1 1


 �
þ d2

1 0
1 1


 �
þ d3

1 1
0 1


 �
þ d4

1 1
1 0


 �

This is equivalent to the system of equations

d2 þ d3 þ d4 ¼ 4

d1 þ d3 þ d4 ¼ 3

d1 þ d2 þ d4 ¼ 6

d1 þ d2 þ d3 ¼ 2

which admits the solution d1¼1, d2¼2, d3¼�1, and d4¼3. These are the coor-
dinates of the given matrix with respect to , and we may write

4 3
6 2


 �
$

1
2

�1
3

2
664

3
775


The notation $ signifies that the n-tuple on the right side equals the sum of the
products of each coordinate times its corresponding vector in the basis. The sub-
script on the n-tuple denotes the basis under consideration. In Example 10, the
notation

9=2
5=2


 �

denotes the sum

9

2

1
1


 �
þ 5

2

1
�1


 �

while in Example 11, the notation

1
2

�1
3

2
664

3
775


denotes the sum

1ð Þ 0 1
1 1


 �
þ 2ð Þ 1 0

1 1


 �
þ �1ð Þ 1 1

0 1


 �
þ 3ð Þ 1 1

1 0


 �

Although a vector generally has different coordinate representations for different
bases, a vector’s coordinate representation with respect to any one basis is
unique! In Example 10, we produced two coordinate representations for the vec-
tor [72]T, one for each of two bases. Within each basis, however, there is one and
only one coordinate representation for a vector. We formalize this fact in the
following theorem.
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▶THEOREM 5
Let {v1, v2, . . . , vn} be a basis for a vector space  and let v 2 . If

v ¼ c1v1 þ c2v2 þ � � � þ cn and v ¼ d1v1 þ d2v2 þ � � � þ dnvn

are two ways of expressing v as linear combinations of the basis vectors, then ci¼di for

each i (i¼1, 2, . . . , n).◀

Proof:
0 ¼ v � v

¼ c1v1 þ c2v2 þ � � � þ cnvnð Þ � d1v1 þ d2v2 þ � � � þ dnvnð Þ
¼ c1 � d1ð Þv1 þ c2 � d2v2ð Þ þ � � � þ cn � dnð Þvn

Vectors in a basis are linearly independent, so the only solution to the last equa-
tion is for each of the coefficients within the parentheses to be 0. Therefore,
(ci�di)¼0 for each value of i (i¼1, 2, . . . , n), which implies that ci¼di.

We conclude this section with a two-part theorem, the proofs of which we leave
as exercises for the reader (see Problems 18 and 22).

▶THEOREM 6
Let  be an n-dimensional vector space.

(i) If  is a spanning set for , then some subset of  forms a basis for ; that is,  can be

reduced to a basis by deleting from  a suitable number (perhaps 0) of vectors.

(ii) If  is a linearly independent set of vectors in , then there exists a basis for  that

includes in it all the vectors of ; that is,  can be extended to a basis by augmenting

onto it a suitable number (perhaps 0) of vectors.◀

Problems 2.5

(1) Determine which of the following sets are bases for 2, considered as row
matrices.

(a) 1 0½ �; 1 1½ �f g: (b) 1 0½ �; 1 1½ �f g:
(c) 1 1½ �; 1 2½ �f g: (d) 1 2½ �; 1 3½ �f g:
(e) 1 2½ �; 2 4½ �f g: (f) 10 20½ �; 10 �20½ �f g:
(g) 10 20½ �; �10 �20½ �f g: (h) 1 1½ �; 1 2½ �; 2 1½ �f g
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(2) Determine which of the following sets are bases for 2, considered as col-
umn vectors.

(a)
2
3


 �
;

2
�3


 �� �
: (b)

1
2


 �
;

0
0


 �� �
:

(c)
1
2


 �
;

1
�2


 �� �
: (d)

1
2


 �
;

�1
�2


 �� �
:

(e)
10
20


 �
;

20
30


 �� �
: (f)

50
100


 �
;

100
150


 �� �
:

(g)
1
2


 �� �
: (h)

1
2


 �
;

1
3


 �
;

1
4


 �� �
:

(3) Determine which of the following sets are bases for 3, considered as row
vectors.

(a) 1 0 0½ �; 0 1 0½ �; 0 0 1½ �f g:
(b) 1 1 0½ �; 0 1 1½ �; 1 0 1½ �f g:
(c) 1 0 0½ �; 1 1 0½ �; 1 1 1½ �f g:
(d) 1 1 0½ �; 0 1 1½ �; 1 2 1½ �f g:
(e) 1 1 0½ �; 0 1 1½ �; 1 3 1½ �f g:
(f) 1 1 0½ �; 0 1 1½ �; 1 4 1½ �f g:
(g) 1 2 3½ �; 4 5 6½ �; 0 0 0½ �f g:
(h) 1 2 3½ �; 4 5 6½ �; 7 8 9½ �f g:

(4) Determine which of the following sets are bases for 3, considered as col-
umn vectors.

(a) 1 2 1½ �T; 1 2 0½ �T
n o

:

(b) 1 2 0½ �T; 1 2 1½ �T; 1 2 2½ �T
n o

:

(c) 1 2 0½ �T; 1 2 1½ �T; 2 4 1½ �T
n o

:

(d) 1 2 0½ �T; 2 4 0½ �T; 2 4 1½ �T
n o

:

(e) 1 2 �3½ �T; 1 2 0½ �T; 1 0 �3½ �T
n o

:

(f) 1 1 1½ �T; 2 1 1½ �T; 2 2 1½ �T
n o

:

(g) 2 1 1½ �T; 2 2 1½ �T; 2 2 �1½ �T
n o

:

(h) 1 2 1½ �T; 1 3 1½ �T; 1 4 1½ �T; 1 5 1½ �T
n o

:
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(5) Determine which of the following sets are bases for 2�2.

(a)
1 0
0 0


 �
;

0 1
0 0


 �
;

0 0
1 0


 �
;

0 0
0 1


 �� �
:

(b)
1 1
0 0


 �
;

�1 1
0 0


 �
;

0 0
1 1


 �
;

0 0
0 �1


 �� �
:

(c)
1 0
0 0


 �
;

1 1
0 0


 �
;

1 1
1 0


 �
;

1 1
1 1


 �� �
:

(d)
1 1
1 0


 �
;

1 1
0 1


 �
;

1 0
1 1


 �
;

0 1
1 1


 �� �
:

(6) Determine which of the following sets are bases for 1.

(a) {t+1, t}. (b) {t+1,1}.

(c) {t+1, t,1}. (d) {t+1, t�1}.

(7) Determine which of the following sets are bases for 2.

(a) {t2+ t+1, t}.

(b) {t2+ t, t+1, t2+1,1}.

(c) {t2+ t+1, t+1,1}.

(d) {t2+ t+1, t+1, t�1}.

(e) {t2+ t, t+1, t2+1}.

(f) {t2+ t+1, t+1, t2}.

(8) Determine which of the following sets are bases for 3.

(a) {t3+ t2+ t, t2+ t+1, t+1}.

(b) {t3,t2,t,1}.

(c) {t3+ t2+ t, t2+ t+1, t+1,1}.

(d) {t3+ t2, t2+ t, t+1,1}.

(e) {t3+ t2+ t, t3+ t2, t2+ t, t, t+1,1}.

(f) {t3+ t2, t3� t2, t+1, t�1}.

(g) {t3+ t2+1, t3+ t2, t+1, t�1}.

(h) {t3+ t2+ t, t3+ t2, t2+ t, t3+ t}.

(9) Find an n-tuple representation for the coordinates of [13] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(d).
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(10) Find an n-tuple representation for the coordinates of [22] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(d).

(11) Find an n-tuple representation for the coordinates of [1�1] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(b).

(12) Find an n-tuple representation for the coordinates of [1�2]T with respect to
the sets given in (a) Problem 2(c) and (b) Problem 2(e).

(13) Find an n-tuple representation for the coordinates of [100�100]T with
respect to the sets given in (a) Problem 2(e) and (b) Problem 2(f).

(14) Find an n-tuple representation for the coordinates of [11 0] with
respect to the sets given in (a) Problem 3(a), (b) Problem 3(b), and (c)
Problem 3(c).

(15) Find an n-tuple representation for the coordinates of t+2with respect to the
sets given in (a) Problem 6(a) and (b) Problem 6(b).

(16) Find an n-tuple representation for the coordinates of t2 with respect to the
sets given in (a) Problem 8(c) and (b) Problem 8(d).

(17) Let  be a spanning set for a vector space , and let v 2 . Prove that if v is a
linear combination of other vectors in the set, then the set that remains by
deleting v from  is also a spanning set for .

(18) Show that any spanning set for a vector space can be reduced to a basis by
deleting from  a suitable number of vectors.

(19) Reduce the set displayed in Example 3 to a basis for 2�2.

(20) Show that the set displayed in Problem 1(h) is a spanning set for 2 and
reduce it to a basis.

(21) Show that the set displayed in Problem 7(b) is a spanning set for 2 and
reduce it to a basis.

(22) Prove that any linearly independent set of vectors in a vector space can be
extended to a basis for . Hint: Append to the set a known basis and then
use Problem 18.

(23) Extend the set displayed in Example 2 into a basis for 3.

(24) Show that the set displayed in Problem 4(a) is linearly independent and

extend it into a basis for 3.

(25) Show that the set displayed in Problem 8(a) is linearly independent and

extend it into a basis for 3.

(26) Prove that a spanning set for a vector space  cannot contain less elements
then the dimension of .

(27) Prove that any set of two vectors in 2 is a basis if one vector is not a scalar
multiple of the other.
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(28) Let be a subspace of a vector space and let  be a basis for. Prove that
 can be extended to a basis for .

(29) Let  be a subspace of a vector space . Prove that dim ð Þ � dim ð Þ.
(30) Let  be a subspace of a vector space . Prove that if

dim ð Þ � dim ð Þ, then  ¼ .

(31) Prove that in an n-dimensional vector space  no set of n�1 vectors can
span .

(32) Prove that if {v1, v2} is a basis for a vector space, then so too is {u1, u2},
where u1¼v1+v2, and u2¼v1�v2.

(33) Prove that if {v1, v2, v3} is a basis for a vector space, then so too is {u1,u2,u3},
where u1¼v1+v2+v3, u2¼v2�v3, and u3¼v3.

(34) Prove that if {v1, v2, . . . , vn} is a basis for a vector space, then so too is {k1v1,
k2v2, . . . , knvn} {u1, u2, u3}, where k1, k2, . . . , kn is any set of nonzero scalars.

2.6 ROW SPACE OF A MATRIX
An m�n matrix A contains m-rows and n-columns. Each row, considered as a
row matrix in its own right, is an element of n, so it follows from Theorem 4
of Section 2.4 that the span of the rows, considered as rowmatrices, is a subspace.
We call this subspace the row space of the matrix A. The dimension of the row
space is known as the row rank of A.

Example 1 The matrix A ¼ 1 2 3
4 5 6


 �
1 has two rows, [12 3] and [45 6], both

of which are elements of 3. The row space of A consists of all linear combina-
tions of these two vectors; that is, if we set  ¼ 1 2 3½ � 4 5 6½ �f g, then the row space
of A is span(). The dimension of span() is the row rank of A.

To determine the row rank of a matrix, we must identify a basis for its row space
and then count the number of vectors in that bases. This sounds formidable, but
as we shall see that it is really quite simple. For a row-reduced matrix, the pro-
cedure is trivial.

▶THEOREM 1
The nonzero rows of a row-reducedmatrix form a basis for the row space of that matrix, and

the row rank is the number of nonzero rows.◀

Proof: Let v1 designate the first nonzero row, v2 the second nonzero row, and so
on through vr, which designates the last nonzero row of the row-reduced matrix.
This matrix may still have additional rows, but if so they are all zero. The row
space of this matrix is span {v1, v2, . . . , vr}. The zero rows, if any, will add nothing
to the span.

The row space of a matrix
is the subspace spanned
by the rows of the matrix;
the dimension of the row
space is the row rank.
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Wewant to show the nonzero rows form a basis for the row space. Thus, wemust
show that these rows, considered as rowmatrices, span the subspace and are lin-
early independent. They clearly span the subspace, because that is precisely how
the row space is formed. To determine linear independence, we consider the vec-
tor equation

c1v2 þ c2v2 þ � � � þ crvr ¼ 0 (2.28)

The first nonzero element in the first nonzero row of a row-reduced matrix must
be one. Assume it appears in column j. Then, no other row has a nonzero ele-
ment in column j. Consequently, when the left side of Equation (2.28) is com-
puted, it will have c1 as its jth component. Because the right side of
Equation (2.28) is the zero vector, it follows that c1¼0. With c1¼0, Equa-
tion (2.28) reduces to

c2v2 þ c3v3 þ � � � þ crvr ¼ 0

A similar argument then shows that c2¼0. With both c1¼ c2¼0, Equation (2.28)
becomes

c3v3 þ c4v4 þ � � � þ crvr ¼ 0

A repetition of the same argument shows iteratively that c1, c2, . . . , cr are all zero.
Thus, the nonzero rows are linearly independent.

Example 2 Determine the row rank of the matrix

A ¼
1 0 �2 5 3
0 0 1 �4 1
0 0 0 1 0
0 0 0 0 0

2
664

3
775

Solution: A is in row-reduced form. Because A contains three nonzero rows, the
row rank of A is 3.

Most matrices are not in row-reduced form. All matrices, however, can be trans-
formed to row-reduced form by elementary row operations, and such transfor-
mations do not alter the underlying row space.

▶THEOREM 2
If B is obtained from A by an elementary row operation, then the row space of A is the same

as the row space of B.◀

Proof: We shall consider only the third elementary row operation and leave the
proofs of the other two as exercises (see Problems 46 and 47). Let B be obtained
from A by adding l times the jth row of A to the kth row of A. Consequently,
if we denote the rows of A by the set of row matrices
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 ¼ A1; A2; . . . ; Aj; . . . ; Ak; . . . ;An

� �
and the rows of B by

 ¼ B1;B2; . . . ;Bj; . . . ;Bk; . . . ;Bn

� �
, then Bi,¼Ai for all i¼1, 2, . . . , n except

i¼k, and Bk¼Ak+lAj. We need to show that if v is any vector in the span of
, then it is also in the span of  and vice versa.

If v is in the span of , then there exists constants c1, c2, . . . , cn such that

v ¼ c1A1 þ c2A2 þ � � � þ cjAj þ � � � þ ckAk þ � � � þ cnAn:

We may rearrange the right side of this equation to show that

v ¼ c1A1 þ c2A2 þ � � � þ cj þ lck � lck
� 	

Aj þ � � � þ ckAk þ � � � þ cnAn

¼ c1A1 þ c2A2 þ � � � þ cj � lck
� 	

Aj þ � � � þ ck Ak þ lAj

� 	þ � � � þ cnAn

¼ c1B1 þ c2B2 þ � � � þ cj � lck
� 	

Bj þ � � � þ ckBk þ � � � þ cnBn

Thus, v is also in the span of .

Conversely, if v is in the span of , then there exists constants d1, d2, . . . , dn such
that

v ¼ a1B1 þ a2B2 þ � � � þ djBj þ � � � þ dkBk þ � � � þ dnBn

We may rearrange the right side of this equation to show that

v ¼ d1A1 þ d2A2 þ � � � þ djAj þ � � � þ dk Ak þ lAj

� 	þ � � � þ dnAn

¼ d1A1 þ d2A2 þ � � � þ dj þ dkl
� 	

Aj þ � � � þ dkAk þ � � � þ dnAn

Thus, v is also in the span of .

As an immediate extension of Theorem 2, it follows that if B is obtained from A
by a series of elementary row operations, then both A and B have the same row
space. Together Theorems 1 and 2 suggest a powerful method for determining
the row rank of any matrix. Simply use elementary row operations to transform
a givenmatrix to row-reduced form and then count the number of nonzero rows.

Example 3 Determine the row rank of

A ¼
1 3 4
2 �1 1
3 2 5
5 15 20

2
664

3
775

Solution: In Example 5 of Section 1.4, we transformed this matrix into the row-
reduced form

B ¼
1 3 4
0 1 1
0 0 0
0 0 0

2
664

3
775

To find the row rank of a
matrix, use elementary
row operations to
transform the matrix to
row-reduced form and
then count the number of
nonzero rows.
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Because B is obtained from A by elementary row operations, both matrices have
the same row space and row rank. B has two nonzero rows, so its row rank, as
well as the row rank of A, is 2.

Example 4 Determine the row rank of

A ¼
1 2 1 3
2 3 �1 �6
3 �2 �4 �2

2
4

3
5

Solution: In Example 6 of Section 1.4, we transformed this matrix into the row-
reduced form

B ¼
1 2 1 3
0 1 3 12
0 0 1 5

2
4

3
5

B has three nonzero rows, so its row rank, as well as the row rank of A, is 3.

A basis for the row space of a matrix is equally obvious: namely, the set of nonzero
rows in the row-reducedmatrix. Thesevectors are linearly independent and,because
they are linear combinations of the original rows, they span the same space.

Example 5 Find a basis for the row space of the matrix A given in Example 3.

Solution: The associated row-reduced matrix B (see Example 3) has as nonzero
rows the row matrices [13 4] and [01 1]. Together these two vectors are a basis
for the row space of A.

Example 6 Find a basis for the row space of the matrix A given in Example 4.

Solution: The associated row-reduced matrix B (see Example 4) has as nonzero
rows the row matrices [12 13], [01 312], and [00 15]. These three vectors form
a basis for the row space of A.

A basis of the row space of amatrix A is a basis for the span of the rows of A. Thus,
we can determine a basis for any set of n-tuples simply by creating a matrix A
having as its rows those n-tuples and then finding a basis for the row space of
A. This is an elegant procedure for describing the span of any finite set of vectors
 in n.

Example 7 Find a basis for the span of  ¼
2
6

�2

2
4

3
5 3

1
2

2
4
3
5 8

16
�3

2
4

3
5

8<
:

9=
;:

Solution: We create a matrix A having as its rows the vectors in . Note that the
elements of  are column matrices, so we use their transposes as the rows of A.
Thus,

A ¼
2 6 �2
3 1 2
8 16 �3

2
4

3
5

A basis for the row space
of a matrix is the set of
nonzero rows of that
matrix, after it has been
transformed to row-
reduced form by ele-
mentary row operations.

To find a basis for a set of
n-tuples, create a matrix
having as its rows those
n-tuples and then find a
basis for the row space of
that matrix.
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Reducing this matrix to row-reduced form, we obtain

1 3 �1
0 1 �5=8
0 0 0

2
4

3
5

The nonzero rows of this matrix, [13�1] and [01�5/8], form a basis for the row
space of A. The set of transposes of these vectors

 ¼
1
3

�1

2
4

3
5 0

1
�5=8

2
4

3
5

8<
:

9=
;

is a basis for the span of , therefore, span() is the set of all linear combinations
of the vectors in .

We can extend this procedure to all finite-dimensional vector spaces, not just n-
tuples. We know from Section 2.5 that every vector in a finite-dimensional vector
space can be represented by an n-tuple. Therefore, to find a basis for the span of a
set of vectors  that are not n-tuples, we first write coordinate representations for
each vector in , generally with respect to a standard basis when one exists. We
then create a matrix A having as its rows the coordinate representations of the
vectors in . We use elementary row operations to identify a basis for the row
space of A. This basis will consist of n-tuples. Transforming each n-tuple in this
basis vector back to the original vector space provides a basis for the span of .

Example 8 Find a basis for the span of the vectors in

 ¼ t3 þ 3t2, 2t3 þ 2t � 2, t3 � 6t2 þ 3t � 3, 3t2 � t þ 1
� �

Solution: The vectors in  are elements of the vector space 3, which has as its
standard basis {t3, t2, t, 1}. With respect to this basis, the coordinate representa-
tions of the polynomials in  are

t3 þ 3t2 $
1
3
0
0

2
664
3
775, 2t3 þ 2t � 2 $

2
0
2

�2

2
664

3
775,

t3 � 6t2 þ 3t � 3 $
1

�6
3

�3

2
664

3
775, and 3t2 � t þ 1 $

0
3

�1
1

2
664

3
775

We create a matrix A having as its rows these 4-tuples. Thus,

A ¼
1 3 0 0
2 0 2 �2
1 �6 3 �3
0 3 �1 1

2
664

3
775
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Reducing this matrix to row-reduced form, we obtain

B ¼
1 3 0 0
0 1 �1=3 1=3
0 0 0 0
0 0 0 0

2
664

3
775

The nonzero rows of B, namely, [13 00] and [01�1/31/3], forma basis for the
row space of A. The set of transposes of these vectors are coordinate representa-
tives for the polynomials

1
3
0
0

2
664
3
775$ t3 þ 3t2, and

0
1

�1=3
1=3

2
664

3
775$ t2 � 1

3
t þ 1

3
:

These two polynomials are a basis for span().

Example 9 Describe the span of the vectors in set

 ¼ 1 1
0 0


 �
;

0 1
0 1


 �
;

1 0
0 �1


 �
;

0 0
1 �1


 �
;

0 1
1 0


 �� �

Solution: The vectors in  are elements of the vector space2�2, which has as its
standard basis

1 0
0 0


 �
;

0 1
0 0


 �
;

0 0
1 0


 �
;

0 0
0 1


 �� �

Coordinate representations of the matrices in  with respect to the standard
basis are

1 1
0 0


 �
¼ 1ð Þ 1 0

0 0


 �
þ 1ð Þ 0 1

0 0


 �
þ 0ð Þ 0 0

1 0


 �
þ 0ð Þ 0 0

0 1


 �
$

1
1
0
0

2
664
3
775

0 1
0 1


 �
¼ 0ð Þ 1 0

0 0


 �
þ 1ð Þ 0 1

0 0


 �
þ 0ð Þ 0 0

1 0


 �
þ 1ð Þ 0 0

0 1


 �
$

0
1
0
1

2
664
3
775

1 0
0 �1


 �
¼ 1ð Þ 1 0

0 0


 �
þ 0ð Þ 0 1

0 0


 �
þ 0ð Þ 0 0

1 0


 �
þ �1ð Þ 0 0

0 1


 �
$

1
0
0

�1

2
664

3
775
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0 0
1 �1


 �
¼ 0ð Þ 1 0

0 0


 �
þ 0ð Þ 0 1

0 0


 �
þ 1ð Þ 0 0

1 0


 �
þ �1ð Þ 0 0

0 1


 �
$

0
0
1

�1

2
664

3
775

0 1
1 0


 �
¼ 0ð Þ 1 0

0 0


 �
þ 1ð Þ 0 1

0 0


 �
þ 1ð Þ 0 0

1 0


 �
þ 0ð Þ 0 0

0 1


 �
$

0
1
1
0

2
664
3
775

We create a matrix A having as its rows these 4-tuples. Thus,

A ¼

1 1 0 0
0 1 0 1
1 0 0 �1
0 0 1 �1
0 1 1 0

2
66664

3
77775

Reducing this matrix to row-reduced form, we obtain

B ¼

1 1 0 0
0 1 0 1
0 0 1 �1
0 0 0 0
0 0 0 0

2
66664

3
77775

The nonzero rows of B, [11 00], [01 01], and [00 1�1], form a basis for the row
space of B. The set of transposes of these vectors are coordinate representatives
for the matrices

1
1
0
0

2
664
3
775$ 1ð Þ 1 0

0 0


 �
þ 1ð Þ 0 1

0 0


 �
þ 0ð Þ 0 0

1 0


 �
þ 0ð Þ 0 0

0 1


 �
¼ 1 1

0 0


 �

0
1
0
1

2
664
3
775$ 0ð Þ 1 0

0 0


 �
þ 1ð Þ 0 1

0 0


 �
þ 0ð Þ 0 0

1 0


 �
þ 1ð Þ 0 0

0 1


 �
¼ 0 1

0 0


 �

0
0
1

�1

2
664

3
775$ 0ð Þ 1 0

0 0


 �
þ 0ð Þ 0 1

0 0


 �
þ 1ð Þ 0 0

1 0


 �
þ �1ð Þ 0 0

0 1


 �
¼ 0 0

1 �1


 �
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These three matrices form a basis for span(). Consequently, every matrix in the
span of  must be a linear combination of these three matrices; that is, every
matrix in span() must have the form

a
1 1
0 0


 �
þ b

0 1
0 1


 �
þ g

0 0
1 �1


 �
¼ a aþ b

g bþ g


 �

for any choice of the scalars a, b, and g.

Row rank is also useful for determining if a set of n-tuples is linearly
independent.

▶THEOREM 3
Let  be a set of k n-tuples and letA be the k�nmatrix having as its rows the n-tuples in . 
is linearly independent if and only if the row rank of A is k, the number of elements in .◀

Proof: Assume that the k n-tuples of  are linearly independent. Then these
k n-tuples are a basis for span(), which means that the dimension of span()
is k. But the row rank of A is the dimension of the row space of A, and the
row space of A is also span(). Because every basis for the same vector space must
contain the same number of elements (Theorem 2 of Section 2.5), it follows that
the row rank of A equals k.

Conversely, if the row rank of A equals k, then a basis for span() must contain k
n-tuples. The vectors in  are a spanning set for span(), by definition. Now,
either  is linearly independent or linearly dependent. If it is linearly dependent,
then one vector must be a linear combination of vectors that precede it. Delete
this vector from . The resulting set still spans . Keep deleting vectors until no
vector is a linear combination of preceding vectors. At that point we have a lin-
early independent set that spans  that is a basis for span(), which contains
fewer than k vectors. This contradicts the fact that the dimension of span()
equals k. Thus,  cannot be linearly dependent, which implies it must linearly
independent.

Example 10 Determine whether the set

 ¼ 0 1 2 3 0½ �, 1 3 �1 2 1½ �,f
2 6 �1 �3 1½ �, 4 0 1 0 2½ �g

is linearly independent.

Solution: We consider the matrix

A ¼
0 1 2 0
1 3 �1 1
2 6 �1 1
4 0 1 2

2
664

3
775
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which can be transformed (after the first two rows are interchanged) to the row-
reduced form

B ¼
1 3 �1 2 1
0 1 2 3 0
0 0 1 �7 �1
0 0 0 1 27=231

2
664

3
775

Matrix B has four nonzero rows, hence the row rank of B, as well as the row rank
of A, is four. There are four 5-tuples in , so it follows from Theorem 3 that  is
linearly independent.

We can extend Theorem 3 to all finite-dimensional vector spaces, not just
n-tuples. We represent every vector in a given set  by an n-tuple with respect
to a basis and then apply Theorem 3 directly to the coordinate representations.

Example 11 Determine whether the set of four polynomials in Example 8 is lin-
early independent.

Solution: Coordinate representations for each of the given polynomials with

respect to the standard basis in 3 were determined in Example 8. The matrix
A in Example 8 has as its rows each coordinate representation. A can be trans-
formed into the row-reduced form of the matrix B in Example 8. It follows that
the row rank of B is two, which is also the row rank of A. This number is less than
the number of elements in , hence  is linearly dependent.

Problems 2.6
In Problems 1 through 21, find a basis for span().

(1)  ¼
1
1
2

2
4
3
5 2

�1
0

2
4

3
5 4

1
4

2
4
3
5

8<
:

9=
;:

(2)  ¼
1
1
2

2
4
3
5 2

1
0

2
4
3
5 4

1
4

2
4
3
5

8<
:

9=
;:

(3)  ¼
2
1
2

2
4
3
5; �2

�1
�2

2
4

3
5; 4

2
4

2
4
3
5; �4

�2
�4

2
4

3
5

8<
:

9=
;:

(4)  ¼
1
0
2

2
4
3
5; �1

1
�1

2
4

3
5; 0

1
1

2
4
3
5; �1

2
0

2
4

3
5

8<
:

9=
;:

(5)  ¼ 1 2 �1 1½ �; 0 1 2 1½ �; 2 3 �4 1½ �; 2 4 �2 2½ �f g:
(6)  ¼ 0 1 1 1½ �; 1 0 0 1½ �; �1 1 1 0½ �; 1 1 0 1½ �f g:
(7)  ¼ 1 0 �1 1½ �; 3 1 0 1½ �; 1 1 2 �1½ �; 3 2 3 �1½ �f g,

2 1 0 0½ �g:
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(8)  ¼ 2 2 1 2½ �; 1 �1 0 1½ �; 0 �4 �1 1½ �; 1 0 2 1½ �f g,
0 �1 2 2½ �g:

(9)  ¼ 1 2 4 0½ �; 2 4 8 0½ �; 1 �1 0 1½ �; 4 2 8 2½ �f g,
4 �1 4 3½ �g:

(10)  ¼ t2 þ t, t þ 1, t2 þ 1,1f g:
(11)  ¼ t2 þ t þ 1, 2t2 � 2t þ 1, t2 � 3tf g:
(12)  ¼ t, t þ 1, t � 1, 1f g:
(13)  ¼ t2 þ t, t � 1, t2 þ 1f g:
(14)  ¼ t2 þ t þ 1, t þ 1, t2f g:
(15)  ¼ t3 þ t2 � t, t3 þ 2t2 þ 1, 2t3 þ 3t2 � t þ 1, 3t3 þ 5t2 � t þ 2f g:
(16)  ¼ 2t3 þ t2 þ 1, t2 þ t,2t3 � t þ 1, t þ 1, 2t3 þ 2f g:
(17)  ¼ t3 þ 3t2, t2 þ 1, t þ 1, t3 þ 4t2 þ t þ 2, t2 þ t þ 2f g:

(18)  ¼ 1 0
0 0


 �
;

0 1
0 0


 �
;

1 2
0 0


 �
;

1 3
0 0


 �� �
:

(19)  ¼ 1 1
1 0


 �
;

�1 1
1 0


 �
;

1 �1
1 0


 �
;

1 1
�1 0


 �� �
:

(20)  ¼ 1 0
0 1


 �
;

0 1
1 0


 �
;

1 1
1 1


 �
;

1 �1
�1 1


 �� �
:

(21)  ¼ 1 3
1 2


 �
;

1 2
1 1


 �
;

0 1
0 1


 �
;

2 7
2 5


 �� �
:

In Problems 22 through 43, use row rank to determine whether the given sets are
linearly independent.

(22) 1 0½ � 0 1½ �f g:
(23) 1 1½ � 1 �1½ �f g:
(24) 2 �4½ � �3 6½ �f g:

(25)

1

0

1

2
64
3
75; 1

1

0

2
64
3
75; 0

1

1

2
64
3
75

8><
>:

9>=
>;:

(26)

1

0

1

2
64
3
75; 1

0

2

2
64
3
75; 2

0

1

2
64
3
75

8><
>:

9>=
>;:

(27)

1

0

1

2
64
3
75; 1

1

1

2
64
3
75; 1

�1

1

2
64

3
75

8><
>:

9>=
>;:
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(28)
0
0
0

2
4
3
5; 3

2
1

2
4
3
5; 2

1
3

2
4
3
5

8<
:

9=
;:

(29)
1
2
3

2
4
3
5; 3

2
1

2
4
3
5; 2

1
3

2
4
3
5

8<
:

9=
;:

(30) 1 1 0½ � 1 �1 0½ �f g:
(31) 1 2 3½ � �3 �6 �9½ �f g:
(32) 10 20 20½ �, 10 �10 10½ � 10 20 10½ �f g:
(33) 2 1 1½ �; 3 �1 4½ �; 1 3 �2½ �f g:

(34)
1 1
0 0


 �
;

1 1
1 1


 �
;

0 0
1 1


 �� �
:

(35)
1 1
0 0


 �
;

1 0
1 1


 �
;

0 0
1 1


 �� �
:

(36)
1 0
1 1


 �
;

1 1
1 0


 �
;

1 1
0 1


 �
;

0 1
1 1


 �� �
:

(37)
1 0
1 1


 �
;

1 1
1 0


 �
;

2 2
0 2


 �
;

1 0
2 0


 �� �
:

(38) {t,2}.

(39) {t3+ t2, t3+ t, t2+ t}.

(40) {t3+ t2, t3� t2, t3�3t2}.

(41) {t3+ t2, t3� t2, t3� t, t3+1}.

(42) {t2+ t, t2+ t�1, t2+1, t}.

(43) {t2+ t, t2+ t�2,1}.

(44) Can a 4�3 matrix have linearly independent rows?

(45) Prove that if the row rank of anm�nmatrix is k, then k�minimum {m, n}.

(46) Prove that if a matrix B is obtained from a matrix A by interchanging the
positions of any two rows of A, then both A and B have the same row space.

(47) Prove that if a matrix B is obtained from a matrix A by multiplying one row
of A by a nonzero scalar, then both A and B have the same row space.

2.7 RANK OF A MATRIX
We began this chapter noting that much of mathematical analysis is identifying
fundamental structures that appear with regularity in different situations, devel-
oping those structures in the abstract, and then applying the resulting knowledge
base back to the individual situations to further our understanding of those
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situations. The fundamental structure we developed was that of a vector space.
We now use our knowledge of this structure to further our understanding of sets
of simultaneous linear equations and matrix inversion.

In the last section we defined the row space of a matrix A to be the subspace
spanned by the rows of A, considered as row matrices. We now define the col-
umn space of a matrix A to be the subspace spanned by the columns of A, con-
sidered as column matrices. The dimension of the column space is called the
column rank of A.

Example 1 The matrix A ¼ 1 2 3
4 5 6


 �
has three columns, all belonging to 2.

The column space of A consists of all linear combinations of the columns of A;
that is, if we set

 ¼ 1
4


 �
;

2
5


 �
;

3
6


 �� �
then the column space of A is span(). The dimension of span() is the column
rank of A.

The row space of a p�n matrix A is a subspace of n while its column space is a
subspace of p, and these are very different vector spaces when p and n are
unequal. Surprisingly, both have the same dimension. The proof of this state-
ment is a bit lengthy, so we separate it into two parts.

▶LEMMA 1
The column rank of a matrix is less than or equal to its row rank.◀

Proof: Let A1, A2, . . . , Ap be the rows, considered as rowmatrices, of a p�nmatrix
A¼ [aij]. Then

Ai ¼ ai1 ai2 . . . ain½ �; i ¼ 1, 2, . . . , pð Þ
Let k denote the row rank of A. Thus, k is the dimension of the subspace spanned
by the rows of A, and this subspace has a basis containing exactly k vectors. Des-
ignate one such basis as the set  ¼ u1;u2; . . . ;ukf g. Each vector in the basis is an
n-tuple of the form

ui ¼ ui1 ui2 . . . uin½ �; i ¼ 1, 2, . . . , kð Þ
Since  is a basis, every vector in the subspace spanned by the rows of A can be
written as a linear combination of the vectors in , including the rows of A them-
selves. Thus,

A1 ¼ d11u1 þ d12u2 þ � � � þ d1kuk

A2 ¼ d21u1 þ d22u2 þ � � � þ d2kuk

..

.

Ap ¼ dp1u1 þ dp2u2 þ � � � þ dpkuk

The column space of a
matrix is the subspace
spanned by the columns
of the matrix; the
dimension of the column
space is the column rank.
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for some set of uniquely determined scalars dij (i¼1, 2, . . .; j¼1, 2, . . . , k). In
each of the preceding individual equalities, both the left and right sides are n-
tuples. If we consider just the jth component of each n-tuple (j¼1, 2, . . . , n), first
the jth component of A1, then the jth component of A2, sequentially through the
jth component of Ap, we obtain the equalities

a1j ¼ d11u1j þ d12u2j þ � � � þ d1kukj

a2j ¼ d21u1j þ d22u2j þ � � � þ d2kukj

..

.

apj ¼ dp1u1j þ dp2u2j þ � � � þ dpkukj

which can be rewritten as the vector equation

a1j
a2j

..

.

apj

2
6664

3
7775 ¼ u1j

d11
d21
..
.

dp1

2
6664

3
7775þ u2j

d12
d22
..
.

dp2

2
6664

3
7775þ � � � þ ukj

d1k
d2k
..
.

dpk

2
6664

3
7775

Thus, the jth column of A can be expressed as a linear combination of k vectors.
Since this is true for each j, it follows that each column of A can be expressed as a
linear combination of the same k vectors, which implies that the dimension of
the column space of A is at most k. That is, the column rank of A�k¼ the row
rank of A.

▶THEOREM 1
The row rank of a matrix equals its column rank.◀

Proof: For any matrix A, we may apply Lemma 1 to its transpose and conclude
that the column rank of AT is less than or equal to its row rank. But since the
columns of AT are the rows of A and vice versa, it follows that the row rank of
A is less than or equal to its column rank. Combining this result with Lemma
1, we have Theorem 1.

Since the row rank and column rank of a matrix A are equal, we refer to them
both simply as the rank of A, denoted as r(A).

With the concepts of vector space, basis, and rank in hand, we can give explicit
criteria for determining when solutions to sets of simultaneous linear equations
exist. In other words, we can develop a theory of solutions to complement our
work in Chapter 1.

The rank of a matrix A,
denoted as r(A), is the
row rank of A, which is
also the column rank
of A.

Vector Spaces CHAPTER 2 163



A system of m simultaneous linear equations in n unknowns has the form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

(2.29)

or the matrix form

Ax ¼ b (2.30)

If we denote the columns of A by the w-dimensional column matrices

A1 ¼
a11
a21
..
.

am1

2
6664

3
7775, A2 ¼

a12
a22
..
.

am2

2
6664

3
7775, � � �, An ¼

a1n
a2n
..
.

amn

2
6664

3
7775

then we can rewrite Equation (2.20) in the vector form

x1A1 þ x2A2 þ � � � þ xnAn ¼ b (2.31)

Example 2 The system of equations

x� 2y þ 3z ¼ 7

4xþ 5y � 6z ¼ 8

has the vector form

x
1
4


 �
þ y

�2
5


 �
þ z

3
�6


 �
¼ 7

8


 �

Solving (2.29) or (2.30) is equivalent to finding scalars x12 . . . , xn that satisfy
Equation (2.31). If such scalars exist, then the vector b is a linear combination
of the vectors A1, A2, . . . , An. That is, b is in the span of {A1, A2, . . . , An} or, equiv-
alently, in the column space of A. Consequently, adjoining b to the set of vectors
defined by the columns of Awill not change the column rank of A. Therefore, the
column rank of Amust equal the column rank of [A|b]. On the other hand, if no
scalars x1, x2, . . . , xn satisfy Equation (2.31), then b is not a linear combination of
A1, A2, . . . , An. That is, b is not in the span of {A1, A2, . . . , An}, in which case, the
column rank of [A|b] must be greater by 1 than the column rank of A. Since
column rank equals row rank equals rank, we have proven Theorem 2.

▶THEOREM 2
The system Ax¼b is consistent if and only if r(A)¼ r[A|b].◀
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Example 3 Determine whether the following system of equations is consistent:

xþ y � z ¼ 1

xþ y � z ¼ 0

Solution:

A ¼ 1 1 �1
1 1 �1


 �
,b ¼ 1

0


 �
, A½ jb� ¼ 1 1 �1

1 1 �1


 ���� 10
�

[A|b] is transformed to row-reduced form

1 1 �1
1 1 �1


 ���� 10
�
! 1 1 �1

0 0 0


 ���� 1
�1

�

! 1 1 �1
0 0 0


 ���� 11
�

by adding to the
second row� 1 times
the first row by
multiplying the second
row by � 1

2.32

This matrix has two nonzero rows, hence r[A|b]¼2. If we delete the last column
from the matrix in Equation (2.32), we have A in the row-reduced form

1 1 �1
0 0 0


 �

This matrix has one nonzero row, so r(A)¼1. Since r(A) 6¼ r[A|b], it follows from
Theorem 2 that the given set of equations has no solution and is not consistent.

Example 4 Determine whether the following system of equations is consistent:

xþ y þ w ¼ 3

2xþ 2y þ 2w ¼ 6

�x� y � w ¼ �3

Solution:

A ¼
1 1 1
2 2 2

�1 �1 �1

2
4

3
5, b ¼

3
6

�3

2
4

3
5, A

��b� � ¼ 1 1 1
2 2 2

�1 �1 �1

�����
3
6

�3

2
4

3
5

By transforming both A and [A|b] to row-reduced form, we can show that
r(A)¼ r[A|b]¼1. Therefore, the original system is consistent.

Once a system is determined to be consistent, the following theorem specifies the
number of solutions.

▶THEOREM 3
If the system Ax¼b is consistent and if r(A)¼k, then solutions to the system are express-

ible in terms of n�k arbitrary unknowns,where n denotes the total number of unknowns in

the system.◀
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Proof: To determine the rank of the augmented matrix [A|b], reduce the aug-
mented matrix to row-reduced form and count the number of nonzero rows.
With Gaussian elimination, we can solve the resulting row-reduced matrix for
the variables associated with the first nonzero entry in each nonzero row. Thus,
each nonzero row defines one variable and all other variables remain arbitrary.

Example 5 Determine the number of solutions to the system described in
Example 4.

Solution: The system has three unknowns, x, y, and w, hence n¼3. Here r(A)¼ r
[A|b]¼1, so k¼1. The solutions are expressible in terms of 3�1¼2 arbitrary
unknowns. Using Gaussian elimination, we find the solution as x¼3� y�w
with both y and w arbitrary.

Example 6 Determine the number of solutions to the system

2x� 3y þ z ¼ �1

x� y þ 2z ¼ 2

2xþ y � 3z ¼ 3

Solution:

A ¼
2 �3 1
1 �1 2
2 1 �3

2
4

3
5, b ¼

�1
2
3

2
4

3
5, A

��b� � ¼ 2 �3 1
1 �1 2
2 1 �3

�����
�1
2
3

2
4

3
5

By transforming both A and [A|b] to row-reduced form, we can show that r(A)¼
r[A|b]¼3; hence, the given system is consistent. In this case, n¼3 (three vari-
ables) and (rank) k¼3; the solutions are expressible in terms of 3�3¼0 arbi-
trary unknowns. Thus, the solution is unique (none of the unknowns is
arbitrary). Using Gaussian elimination, we find the solution as x¼ y¼2, z¼1.

A homogeneous system of simultaneous linear equations has the form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ 0

a21x1 þ a22x2 þ � � � þ a2nxn ¼ 0

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ 0

(2.33)

or the matrix form

Ax ¼ 0 (2.34)

Since Equation (2.34) is a special case of Equation (2.30) with b¼0, Theorems 2
and 3 remain valid. Because of the simplified structure of a homogeneous sys-
tem, however, we can draw conclusions about it that are not valid for nonhomo-
geneous systems. In particular, a homogeneous system is consistent, because the
trivial solution x¼0 is always a solution to Ax¼0. Furthermore, if the rank of A

A homogeneous system
of equations is always
consistent, and one
solution is always the
trivial solution.
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equals the number of unknowns, then the solution is unique and the trivial solu-
tion is the only solution. On the other hand, it follows from Theorem 3 that if the
rank of A is less than the number of unknowns, then the solution will be in terms
of arbitrary unknowns. Since these arbitrary unknowns can be assigned nonzero
values, nontrivial solutions exist. Thus, we have Theorem 4.

▶THEOREM 4
A homogeneous system of equations Ax¼0 in n unknowns will admit nontrivial solutions if

and only if r(A) 6¼n.◀

The concept of rank also provides the tools to prove two results we simply stated
in the previous chapter. We can now determine a criterion for the existence of
an inverse and also show that, for square matrices, the equality AB¼ I implies
the equality BA¼ I. For convenience, we separate the analysis into segments.

▶LEMMA 2
Let A and B be n�n matrices. If AB¼ I, then the system of equations Ax¼y has a solution

for every choice of the vector y.◀

Proof: Once y is specified, set x¼By. Then

Ax ¼ A Byð Þ ¼ ABð Þy ¼ Iy ¼ y

hence x¼By is a solution of Ax¼y.

▶LEMMA 3
If A and B are n�n matrices with AB¼ I, then the rows of A, considered as n-dimensional

row matrices, are linearly independent.◀

Proof: Designate the rows of A by A1, A2, . . . , An, respectively, and the columns of
I as the vectors e1, e2, . . . , en, respectively. It follows from Lemma 2 that the set of
equations Ax¼ej (j¼1, 2, . . . , n) has a solution for each j.Denote these solutions
by x1, x2, . . . , xn respectively. Therefore,

Axj ¼ ej (2.35)

Since ej is an n-dimensional column matrix having a unity element in row j and
zeros elsewhere, it follows from Equation (2.26) that, for i¼1, 2, . . . , n,

ithcomponentof Axj ¼ 1 when i ¼ j
0 when i 6¼ j

�
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This equation can be simplified if wemake use of the Kronecker delta dij defined as

ithcomponentof Axj ¼ 1 when i ¼ j
0 when i 6¼ j

�
(2.36)

Thus, Equation (2.35) may be written as
ithcomponentofAxj¼dij

or, more simply, as

Aixj ¼ dij (2.37)

Now consider the vector equation

Xn
i¼1

ciAi ¼ 0 (2.38)

We want to show that each constant ci (i¼1, 2, . . . , n) must be 0. Multiplying
both sides of Equation (2.38) on the right by the vector xj, and using Equa-
tions (2.36) and (2.37), we have

0 ¼ 0xj ¼
Xn
i¼1

ciAi

 !
xj
Xn
i¼1

ciAið Þxj ¼
Xn
i¼1

ci Aixj
� 	 ¼Xn

i¼1

cidij ¼ cj

Thus, for each xj (j¼1, 2, . . . , n) we have cj¼0, which implies that
c1¼ c2¼ ···¼ cn¼0 and that the rows of A, namely, A1, A2, . . . , An, are linearly
independent.

It follows directly from Lemma 3 and the definition of an inverse that if an n�n
matrix A has an inverse, then A must have rank n. This in turn implies that if A
does not have rank n, then A does not have an inverse.We also want the converse:
that is, if A has rank n, then A has an inverse.

▶LEMMA 4
If an n�n matrix A has rank n, then there exists a square matrix C such that CA¼ I.◀

Proof: If an n�n matrix A has rank n, then its row-reduced form is an upper tri-
angular matrix with all elements on the main diagonal equal to 1. Using these
diagonal elements as pivots, we can use elementary row operations to further
transform A to an identity matrix. Corresponding to each elementary row oper-
ation is an elementary matrix. Therefore, if A has rank n, then there is a sequence
of elementary matrices E1, E2, . . . , Ek�1, Ek such that

EkEk�1 . . .E2E1A ¼ I (2.39)

Setting

C ¼ EkEk�1 . . .E2E1
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we have

CA ¼ I (2.40)

▶LEMMA 5
If A and B are n�n matrices such that AB¼ I, then BA¼ I.◀

Proof: If AB¼ I, then it follows from Lemma 3 that A has rank n. It then follows
from Lemma 4 that there exists a matrix C such that CA¼ I. Consequently,

C ¼ CI ¼ C ABð Þ ¼ CAð ÞB ¼ IB ¼ B

so the equality CA¼ I implies that BA¼ I.

If we replace A by C and B by A in Lemma 5, we have that, if C and A are n�n
matrices such that CA¼ I, then it is also true that

AC ¼ I (2.41)

Therefore, if A is an n�n matrix with rank n, then We want to show that each
constant Equation (2.40) holds, whereupon Equation (2.41) also holds.
Together Equations (2.40) and (2.41) imply that C is the inverse of A. Thus,
we have proven Theorem 5.

▶THEOREM 5
An n�n matrix A has an inverse if and only if A has rank n.◀

In addition, we also have Theorem 6.

▶THEOREM 6
A square matrix has an inverse if and only if it can be transformed by elementary row oper-

ations to an upper triangular matrix with all elements on the main diagonal equal to 1.◀

Proof: An n�nmatrix A has an inverse if and only if it has rank n (Theorem 5). It
has rank n if and only if it can be transformed by elementary row operations into
a row-reduced matrix B having rank n (Theorem 2 of Section 2.6). B has rank n if
and only if it contains n nonzero rows (Theorem 1 of Section 2.6). A row-
reduced, n�n matrix B has n nonzero rows if and only if it is upper triangular
with just ones on its main diagonal.
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Problems 2.7
In Problems 1 through 7, find the ranks of the given matrices.

(1)
1 2 0
3 1 �5


 �
: (2)

2 8 �6
�1 �4 3


 �
:

(3)
4 1
2 3
2 2

2
4

3
5: (4)

4 8
6 12
9 18

2
4

3
5:

(5)
1 4 �2
2 8 �4

�1 �4 2

2
4

3
5: (6)

1 2 4 2
1 1 3 2
1 4 6 2

2
4

3
5:

(7)
1 7 0
0 1 1
1 1 0

2
4

3
5:

(8) What is the largest possible value for the rank of a 2�5 matrix?

(9) What is the largest possible value for the rank of a 4�3 matrix?

(10) What is the largest possible value for the rank of a 4�6 matrix?

(11) Show that the rows of a 5�3 matrix are linearly dependent.

(12) Show that the columns of a 2�4 matrix are linearly dependent.

(13) What is the rank of a zero matrix?

(14) Use the concept of rank to determine whether [37] can be written as a linear
combination of the following sets of vectors.

(a) {[12], [48]} (b) {[12], [32]}.

(15) Use the concept of rank to determine whether [2 3] can bewritten as a linear
combination of the following sets of vectors.

(a) {[1015], [46]}, (b) {[11], [1�1]},

(c) {[2�4], [�36]}.

(16) Use the concept of rank to determine whether [11 1]T can be written as a
linear combination of the following sets of vectors.

(a)
1
0
1

2
4
3
5; 1

1
0

2
4
3
5; 0

1
1

2
4
3
5

8<
:

9=
;, (b)

1
0
1

2
4
3
5; 1

0
2

2
4
3
5; 2

0
1

2
4
3
5

8<
:

9=
;,

(c)
1
0
1

2
4
3
5; 1

1
1

2
4
3
5; 1

�1
1

2
4

3
5

8<
:

9=
;:
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In Problems 17 through 25, discuss the solutions of the given systems of equa-
tions in terms of consistency and number of solutions. Check your answers by
solving the systems wherever possible.

(17) x� 2y ¼ 0

xþ y ¼ 1

2x� y ¼ 1

(18) xþ y ¼ 0

2x� 2y ¼ 1

x� y ¼ 0

(19) xþ y þ z ¼ 1

x� y þ z ¼ 2

3xþ y þ 3z ¼ 4

(20) xþ 3y þ 2z� w ¼ 2

2x� y þ zþ w ¼ 3

(21) 2x� y þ z ¼ 0

xþ 2y � z ¼ 4

xþ y þ z ¼ 1

(22) 2xþ 3y ¼ 0

x� 4y ¼ 0

(23) x� y þ 2z ¼ 0

2xþ 3y � z ¼ 0

�2xþ 7y � 7z ¼ 0

(24) x� y þ 2z ¼ 0

2x� 3y þ 5z ¼ 0

�2xþ 7y � 9z ¼ 0

(25) x� 2y þ 3zþ 3w ¼ 0

y � 2zþ 2w ¼ 0

xþ y � 3zþ 9w ¼ 0

(26) Prove that if one row of a square matrix is a linear combination of another
row, then the determinant of the matrix must be 0.

(27) Prove that if the determinant of an n�n matrix is 0, then the rank of that
matrix must be less than n.

(28) Prove that if A and B are square matrices of the same order, then AB is non-
singular if and only if both A and B are nonsingular.

CHAPTER 2 REVIEW
Important Terms
additive inverse
basis
column rank
column space
coordinates
dimension
equivalent directed line segments
finite-dimensional vector space
linear combinations
linearly dependent vectors
linearly independent vectors

p�n

normalized n-tuple
n

n

rank
right-handed coordinate
system
row rank
row space
span of vectors
spanning set
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subspace
vector

vector space
zero vector

Important Concepts
Section 2.1

▪ Addition, subtraction, and scalar multiplication of 2-tuples can be done
graphically in the plane.

Section 2.2

▪ The zero vector in a vector space is unique.

▪ The additive inverse of any vector v in a vector space is unique and is equal
to �1 �v.

Section 2.3

▪ A nonempty subset  of a vector space  is a subspace of  if and only if  is
closed under addition and scalar multiplication.

▪ If a subset of a vector space does not include the zero vector, then that subset
cannot be a subspace.

▪ Lines through the origin and planes that contain the origin are subspaces

of 3.
▪ The span of a set of vectors  in a vector space  is the smallest subspace of 

that contains .

Section 2.4

▪ A set of vectors is linearly dependent if and only if one of the vectors is a linear
combination of the vectors that precede it.

▪ Two vectors are linearly dependent in 2 or 3 if and only if they lie on the
same line.

▪ A set of three vectors in3 is linearly dependent if and only if all three vectors
lie on the same line or all lie on the same plane.

Section 2.5

▪ dim nð Þ ¼ n; dim nð Þ ¼ nþ 1; dim p�n

� 	 ¼ pn.

▪ Every basis for a finite-dimensional vector space contains the same number of
vectors.

▪ In an n-dimensional vector space, every set of nþ1 or more vectors is linearly
dependent.

▪ A spanning set of vectors for a finite-dimensional vector space  can be
reduced to a basis for ; a linearly independent set of vectors in  can be
expanded into a basis.

Section 2.6

▪ If matrix B is obtained from matrix A by an elementary row operation, then
the row space of A is the same as the row space of B.
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▪ To find the row rank of a matrix, use elementary row operations to transform
the matrix to row-reduced form and then count the number of nonzero rows.
The nonzero rows are a basis for the row space of the original matrix.

Section 2.7

▪ The row rank of a matrix equals its column rank.

▪ The system of equation Ax¼b is consistent if and only if the rank of A equals
the rank of the augmented matrix [A|b].

▪ If the system Ax¼b is consistent and if r(A)¼k, then the solutions to the sys-
tem are expressible in terms of n�k arbitrary unknowns, where n denotes the
total number of unknowns in the system.

▪ A homogeneous system of equations is always consistent, and one solution is
always the trivial solution.

▪ An n�n matrix A has an inverse if and only if A has rank n.
▪ A square matrix has an inverse if and only if it can be transformed by elemen-

tary row operations to an upper triangular matrix with all unity elements on
its main diagonal.
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3.1 FUNCTIONS
Relationships between items are at the heart of everyday interactions, and if
mathematics is to successfully model or explain such interactions, then mathe-
matics must account for relationships. In commerce, there are relationships
between labor and production, between production and profit, and between
profit and investment. In physics, there are relationships between force and
acceleration, and between mass and energy. In sociology, there is a relationship
between control and evasions. We need, therefore, mathematical structures to
represent relationships. One such structure is a function.

A function is a rule of correspondence between two sets, generally called the
domain and range, that assigns to each element in the domain exactly one ele-
ment (but not necessarily a different one) in the range.

Example 1 The rules of correspondence described by the arrows in Figures 3.1
and 3.2 between the domain {A, B,C} and the range {1, 2, 3, 4, 5} are functions.
In both cases, each element in the domain is assigned exactly one element in the
range. In Figure 3.1, A is assigned 1, B is assigned 3, andC is assigned 5. Although
some elements in the range are not paired with elements in the domain, this is of
no consequence. A function must pair every element in the domain with an ele-
ment in the range, but not vice versa. In Figure 3.2, each element in the domain is

A function is a rule of
correspondence between
two sets, a domain and
range, that assigns to
each element in the
domain exactly one
element (but not
necessarily a different
one) in the range.

175

Linear Algebra

Copyright © 2014, Elsevier Inc. All rights reserved.



assigned the same element in the range, namely, 2. This too is of no consequence.
A function must pair every element in the domain with an element in the range,
but not necessarily with a different element.

Example 2 The ruleof correspondencedescribedby thearrows inFigure3.3between
the domain and range, which are both the set of words {dog, cat, bird}, is not a func-
tion. The word cat, in the domain, is not matched with any element in the range.
A function must match every element in the domain with an element in the range.

A 2

1

3

4

5

B

C

FIGURE 3.1

A 2

1

3

4

5

B

C

FIGURE 3.2

dog dog

bird bird

cat cat

FIGURE 3.3

Linear Algebra176

Figure 3.1
Figure 3.2
Figure 3.3


The image of a function consists of those elements in the range that are matched
with elements in the domain. An element y in the range is in the image only if
there is an element x in the domain such that x is assigned the value y by the rule
of correspondence. In Figure 3.1, the image is the set {1, 3, 5} because 1, 3, and 5
are the only elements in the range actually assigned to elements in the domain. In
Figure 3.2, the image is the set {2} because the number 2 is the only number in
the range matched with elements in the domain.

The domain and range of a function can be any type of set, ranging from sets of
letters to sets of colors to sets of animals, while the rule of correspondence can be
specified by arrows, tables, graphs, formulas, or words. If we restrict ourselves to
sets of real numbers and rules of correspondence given by equations, then we
have the functions studied most often in algebra and calculus.

Whenever we have two sets of numbers and a function f relating the
arbitrary element x in the domain to the element y in the range through
an equation, we say that y is a function of x and write y¼ f(x). Letters
other than x and y may be equally appropriate. The equation R¼ f(N) is
shorthand notation for the statement that we have a function consisting
of two sets of numbers and an equation, where N and R denote elements
in the domain and range, respectively. If the domain is not specified, it
is assumed to be all real numbers for which the rule of correspondence
makes sense; if the range is not specified, it is taken to be the set of all real
numbers.

If we have a rule of correspondence defined by the formula f(x), then we find the
element in the range associated with a particular value of x by replacing x with
that particular value in the formula. Thus, f(2) is the effect of applying the rule of
correspondence to the domain element 2, while f(5) is the effect of applying the
rule of correspondence to the domain element 5.

Example 3 Find f(2), f(5), and f(�5) for f(x)¼1/x2.

Solution: The domain and range are not specified, so they assume their default
values. The formula 1/x2 is computable for all real numbers except 0, so this
becomes the domain. The range is the set of all real numbers. The image is all
positive real numbers because those are the only numbers actually matched to
elements in the domain by the formula. Now

f 2ð Þ ¼ 1= 2ð Þ2 ¼ 1=4 ¼ 0:25

f 5ð Þ ¼ 1= 5ð Þ2 ¼ 1=25 ¼ 0:04

f �5ð Þ ¼ 1= �5ð Þ2 ¼ 1=25¼ 0:04

Problems 3.1
In Problems 1 through 16, the rules of correspondence are described by arrows.
Determine whether the given relationships are functions and, for those that are,
identify their images.

The image of a function is
the set of all elements in
the range that are
matched with elements
in the domain by the rule
of correspondence.
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(1)
A

1 2 3 4 5

B C D E
(2)

A B C D E

A B C D E

(3)
A

1 2 3 4 5

B C D E
(4)

1

1 2 3 4 5

2 3 4 5

(5) a

10 20 30 40 50 60

b c d (6) 10

10 20 30 40 50 60

20 30 40

(7) 5

8 7 6 5 4 3

6 7 8 (8) 2

4 5 6 7 8 9

3 4 5

(9) yxwvu

a b c d e f

(10)
yxwvu

a b c d e f

(11)

108642

1 2 3 4 5 6 (12)

108642

1 2 3 4 5 6
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(13) 1

red blue green yellow

2 3 4 5

(14) 1

blue green yellow

2 3 4 5

(15) -1

10.3 18.6 22.7

-2 -3 -4 -5

In Problems 16 through 18, determine whether the given tables represent func-
tions where the rule of correspondence is to assign to each element in the top row
the element directly below it in the bottom row.

(16) (17)

(18)

In Problems 19 through 22, determine whether the specified correspondences
constitute functions.

(19) The correspondence between people and their weights.

(20) The correspondence between people and their social security numbers.

(21) The correspondence between cars and the colors they are painted.

(22) The correspondence between stocks listed on the New York Stock Exchange
and their closing prices on a given day.
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In Problems 23 through 29, determine whether a domain exists on
the horizontal axis so that the given graphs represent functions. The
rule of correspondence assigns to each x value in the domain all y
values on the vertical axis (the range) for which the points (x, y) lie on
the graph.

(23)
2

1

1 2 3 4
x

y

0
-1

(24) 5

3

4 5
x

y

3

2
1

1-1
-2
-3
-4

-4

-5

(25)

5

5
x

y

-5

-5

(26)

4

x

y

5-5
-4

(27)

4

x

y

5-5
-4

(28)
(0,3)

0
x

y

(4,0)(-4,0)

(0,-4)

(29)
(0,3)

0
x

y

(4,0)(-4,0)

(0,-4)

(30) Determine whether the following equations represent functions on the
specified domains:

(a) y ¼ þ ffiffiffi
x

p
for �1 < x < 1:

(b) y ¼ þ ffiffiffi
x

p
for 0 < x < 1:

(c) y ¼ � ffiffiffi
x

p
for 0 < x < 1:

(d) y ¼ ffiffiffi
x3

p
for �1 < x < 1:

Linear Algebra180



(31) Given the function y¼ f(x)¼x2�3xþ2 defined on all real numbers, find
(a) f(0), (b) f(1), (c) f(�1), (d) f(2x).

(32) Given the function y¼ f(x)¼2x2�x defined on all real numbers, find
(a) f(1), (b) f(�1), (c) f(2x), (d) f(aþb).

(33) Given the function y¼ f(x)¼x3�1 defined on all real numbers, find
(a) f(�2), (b) f(0), (c) f(2z), (d) f(aþb).

(34) A function is onto if its image equals its range. Determine whether either of
the functions defined in Example 1 are onto.

(35) Determine which of the functions defined in Problems 1 through 15
are onto.

(36) A function is one to one if the equality f(x)¼ f(z) implies that x¼ z; that is, if
each element in the image is matched with one and only one element in the
domain. Determine whether either of the functions defined in Example 1
are one to one.

(37) Determine which of the functions defined in Problems 1 through 15 are
one to one.

3.2 LINEAR TRANSFORMATIONS
Two frequently used synonyms for the word function aremapping and transforma-
tion. In high-school algebra and calculus, the domain and range are restricted
to subsets of the real numbers and the word function is used almost exclusively.
In linear algebra, the domain and range are vector spaces and the word transfor-
mation is preferred.

A transformation T is a rule of correspondence between two vector spaces,
a domain  and a range , that assigns to each element in  exactly one
element (but not necessarily a different one) in . Such a transformation is
denoted by the shorthand notation T: ! . We write w¼T(v) whenever the
vector w in  is matched with the vector v in  by the rule of correspondence
associated with T.Wewill, on occasion, discard the parentheses and writew¼Tv
when there is no confusion as to what this notation signifies.

The image of T is the set of all vectors in  that are matched with vectors in 
under the rule of correspondence. Thus,w is in the image of T if and only if there
exists a vector v in  such that w¼T(v).

A transformation T :  !  is linear if for any two scalars, a and b, and any two
vectors, u and v, in  the following equality holds:

T auþ bvð Þ ¼ aT uð Þ þ bT vð Þ (3.1)

For the special case a¼b¼1, (3.1) reduces to

T uþ vð Þ ¼ T uð Þ þ T vð Þ (3.2)

A transformation is a
function with vector
spaces for its domain
and range.
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while for the special case b¼0, (3.1) becomes

T auð Þ ¼ aT uð Þ (3.3)

Verifying (3.1) is equivalent to verifying (3.2) and (3.3) separately (see
Problem 47).

The left side of (3.1) is the mapping of the linear combination auþbv
from the vector space  into the vector space . If T is linear, then the result
of mapping auþbv into  is the same as separately mapping u and v into ,
designated as T(u) and T(v), and then forming the identical linear combination
with T(u) and T(v) in  as was formed in  with u and v; namely, a times
the first vector plus b times the second vector. Linear combinations are funda-
mental to vector spaces because they involve the only operations, addition and
scalar multiplication, guaranteed to exist in a vector space. Of all possible trans-
formations, linear transformations are those special ones that preserve linear
combinations.

Example 1 Determine whether the transformation T :  !  defined by
T(v)¼kv for all vectors v in  and any scalar k is linear.

Solution: In this example,  ¼ ; that is, both the domain and the range are the
same vector space. For any two vectors u and v in , we have

T auþ bvð Þ ¼ k auþ bvð Þ ¼ a kuð Þ þ b kvð Þ ¼ aT uð Þ þ bT vð Þ
Thus, (3.1) is valid, and the transformation is linear.

The linear transformation in Example 1 is called a dilation. In 2, a dilation
reduces to a scalar multiple of a 2-tuple, having the geometrical effect of elongat-
ing v by a factor of |k| when |k|>1 or contracting v by a factor of |k| when |k|<1
followed by a rotation of 180� when k is negative and no rotation when k is pos-

itive. These dilations are illustrated in Figure 3.4. When  ¼ 2 and k¼�1, the
transformation  is sometimes called a rotation through the origin. It is illustrated
in Figure 3.5.

x

y

3v

v

u
u

u
1−

1
2

2

−2v

FIGURE 3.4

A transformation is linear
if it preserves linear
combinations.
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Example 2 Determine whether the transformation T :  !  defined by
T(v)¼0 for all vectors v in  is linear.

Solution: For any two scalars a and b and for any two vectors u and v in, we have

T auþ bvð Þ ¼ 0 ¼ 0þ 0 ¼ a0þ b0 ¼ aT uð Þ þ bT vð Þ
Thus, (3.1) is valid, andT is linear. Transformations of this type are called zero trans-
formations because they map all vectors in the domain into the zero vector in.

Example 3 Determine whether the transformation L is linear if L: 3 ! 2 is
defined by

L a3t
3 þ a2t

2 þ a1t þ a0
� � ¼ 3a3t

3 þ 2a2t þ a1

where ai (i¼0, 1, 2, 3) denotes a real number.

Solution: A transformation is linear if it satisfies (3.1) or, equivalently, both (3.2)
and (3.3). For practice, we try to validate (3.2) and (3.3). Setting

u ¼ a3t
3 þ a2t

2 þ a1t þ a0 and v ¼ b3t
3 þ b2t

2 þ b1t þ b0

we have L(u)¼3a3t
2þ2a2tþa1, L(v)¼3b3t

2þ2b2tþb1, and

L uþ vð Þ ¼ L a3t
3 þ a2t

2 þ a1t þ a0
� �þ b3t

3 þ b2t
2 þ b1t þ b0

� �� �
¼ L a3 þ b3ð Þt3 þ a2 þ b2ð Þt2 þ a1 þ b1ð Þt þ a0 þ b0ð Þ� �
¼ 3 a3 þ b3ð Þt2 þ 2 a2 þ b2ð Þt þ a1 þ b1ð Þ
¼ 3a3t

2 þ 2a2t þ a1
� �þ 3b3t

2 þ 2b2t þ b1
� �

¼ L uð Þ þ L vð Þ

v

w

x
z

y

u

−u

−v

−z

−w

FIGURE 3.5
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For any scalar a, we have

L auð Þ ¼ L a a3t
3 þ a2t

2 þ a1t þ a0
� �� �

¼ L aa3ð Þt3 þ aa2ð Þt2 þ aa1ð Þt þ aa0ð Þ� �
¼ 3 aa3ð Þt2 þ 2 aa2ð Þt þ aa1ð Þ
¼ a 3a3t

2 þ 2a2t þ a1
� �

¼ aL uð Þ

Therefore, both (3.2) and (3.3) are satisfied, and L is linear. Readers familiar with
elementary calculus will recognize this transformation as the derivative.

Example 4 Determine whether the transformation T is linear if T : 2 ! 1 is
defined by T[a b]¼ab for all real numbers a and b.

Solution: This transformation maps 2-tuples into the product of its compo-
nents. In particular, T[2�3]¼2(�3)¼�6 and T[1 0]¼1(0)¼0. In general, set-
ting u¼ [a b] and v¼ [c d], we have T(u)¼ab, T(v)¼ cd, and

T uð Þ þ T vð Þ ¼ abþ cd (3.4)

while

T uþ vð Þ ¼ T a b½ � þ c d½ �ð Þ
¼ T aþ c bþ d½ �
¼ aþ cð Þ bþ dð Þ ¼ abþ cdþ cdþ ad

(3.5)

Equations (3.4) and (3.5) are generally not equal, hence (3.2) is not satisfied, and
the transformation is not linear. In particular, for u¼ [2 �3] and v¼ [1 0],

T uþ vð Þ ¼ T 2� 3½ � þ 1 0½ �ð Þ ¼ T 3�3½ � ¼ 3 �3ð Þ ¼ �9
6¼ �6þ 0 ¼ T 2� 3½ � þ T 1 0½ � ¼ Tuþ Tv

We can also show that (3.3) does not hold, but this is redundant. If either (3.2) or
(3.3) is violated, the transformation is not linear.

Example 5 Determine whether the transformation T is linear if T : 2 ! 2 is
defined by T[a b]¼ [a �b] for all real numbers a and b.

Solution: This transformationmaps2-tuples into2-tuplesbychangingthesignofthe
second component. Here, T[2 3]¼ [2 �3], T[0 �5]¼ [0 5], and T[�1 0]¼ [�1 0].
In general, setting u¼ [a b] and v¼ [c d], we have T(u)¼ [a �b], T(v)¼ [c �d], and

T uþ vð Þ ¼ T a b½ � þ c d½ �ð Þ
¼ T aþ c bþ d½ �
¼ aþ c� bþ dð Þ½ �
¼ aþ c� b�d½ �
¼ a�b½ � þ c�d½ �
¼ T uð Þ þ T vð Þ
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For any scalar a, we have

T auð Þ ¼ T a a b½ �ð Þ ¼ T aa ab½ � ¼ aa�ab½ � ¼ a a�b½ � ¼ aT uð Þ

Thus, (3.2) and (3.3) are satisfied, and the transformation is linear.

The linear transformation T defined in Example 5 is called a reflection across the
x-axis. For vectors graphed on an x-y coordinate system, the transformationmaps
each vector into itsmirror image across the horizontal axis. Some illustrations are

given in Figure 3.6. The counterpart to T is the linear transformation S : 2 ! 2

defined by S[a b]¼ [�a b], which is called a reflection across the y-axis. For vectors
graphed on an x-y coordinate system, the transformation Smaps each vector into
its mirror image across the vertical axis. Some illustrations are given in Figure 3.7.

Example 6 Determine whether the transformation L is linear if L : 2 ! 2 is
defined by L[a b]¼ [a 0] for all real numbers a and b.

Solution:Here L[�2 5]¼ [�2 0], L[0 4]¼ [0 0], and L[4 0]¼ [4 0]. In general, set-
ting u¼ [a b] and v¼ [c d], we have L(u)¼ [a 0], L(v)¼ [c 0], and for any scalars a
and b,

L auþ bvð Þ ¼ L a a b½ � þ b c d½ �ð Þ
¼ L aaþ bc abþ bd½ �
¼ aaþ bc 0½ �
¼ a a 0½ � þ b c 0½ �
¼ aL uð Þ þ bL vð Þ

Equation (3.1) is satisfied, hence L is linear.

(4, 2)

4

5

3

2

1
u

v

x

y

1 2 3 4 5

−2

−1
−1−2−3

−3

−4

(4, −2)

(−1,−4)

(−1, 4)

T (v)

T (u)

FIGURE 3.6
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The linear transformation defined in Example 6 is called a projection onto the x-axis.

Its counterpart, the transformation M : 2 ! 2 defined by M[a b]¼ [0 b] for all
realnumbersaandb, is also linear and is calleda projection onto the y-axis.Someillus-

trations are given in Figure 3.8. Note that for any vector v in 2, v¼L(v)þM(v).

Example 7 Determine whether the transformation R is linear, if R is defined by

R
a
b

� �
¼ cos y �sin y

sin y cos y

� �
a
b

� �
¼ a cos y� b sin y

a sin yþ b cos y

� �
where a and b denote arbitrary real numbers and y is a constant.

(3, 3)

4

3

2

1
u

v

x

y

1 2 3 4

−2

−1

−3

−4

−5

(2, −4)
(−2, −4)

(−3, 3)

S (v)

S (u)

FIGURE 3.7

5

4

4

3

3

2

2

1

1
−1

−1

−2

−2

−3
(−3, −3)

(2, 4)

−4

u

x

y

M (u)

L (u) L (v)

M (v)

−4 −3

v

FIGURE 3.8
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Solution: R is a transformation from2 to2 defined by a matrix multiplication.
Setting

u
a
b

� �
, v ¼ c

b

� �
, and A ¼ cos y �sin y

sin y cos y

� �
it follows directly from the properties of matrix multiplication that

R auþ bvð Þ ¼ A auþ bvð Þ ¼ aAuþ bAv ¼ aR uð Þ þ bR vð Þ
for any choice of the scalars a and b. Equation (3.1) is valid, hence R is linear.

The linear transformation defined in Example 7 is called a rotation, because it has
the geometric effect of rotating around the origin each vector v by the angle y in
the counterclockwise direction. This is illustrated in Figure 3.9.

The solution to Example 7 is extended easily to any linear transformation defined
bymatrix multiplication on n-tuples. Consequently, every matrix defines a linear
transformation.

▶THEOREM 1
If L:n ! m is defined as L(u)¼Au for an m�n matrix A, then L is linear.◀

Proof: It follows from the properties of matrices that for any two vectors u and v
in n, and any two scalars a and b, that

L auþ bvð Þ ¼ A auþ bvð Þ ¼ A auð Þ þ A bvð Þ
¼ a Auð Þ þ b Avð Þ ¼ aL uð Þ þ bL vð Þ

Problems 3.2

(1) Define T : 2 ! 2 by T[a b]¼ [2a 3b]. Find

(a) T[2 3], (b) T[�1 5],

(c) T[�8 200], (d) T[0 �7].

y

x

u
θ

R (u)

FIGURE 3.9
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(2) Redo Problem 1 with T[a b]¼ [aþ2 b�2].

(3) Define S : 3 ! 2 by S[a b c]¼ [aþb c]. Find

(a) S[1 2 3], (b) S[�2 3 �3],

(c) S[2 �2 0], (d) S[1 4 3].

(4) Redo Problem 3 with S[a b c]¼ [a� c c�b].

(5) Redo Problem 3 with S[a b c]¼ [aþ2b�3c 0].

(6) Define N : 2 ! 3 by N[a b]¼ [aþb 2aþb bþ2]. Find

(a) N[1 1], (b) N[2 �3],

(c) N[3 0], (d) N[0 0].

(7) Redo Problem 6 with N[a b]¼ [aþb ab a�b].

(8) Define P : 2�2 ! 2�2 as P
a b
c d

� �
¼ c a

d b

� �
. Find

(a) P
1 2
3 4

� �
, (b) P

1 �1
3 3

� �
,

(c) P
10 20
�5 0

� �
, (d) P

28 �32
13 44

� �
.

(9) Redo Problem 8 with P
a b
c d

� �
¼ aþ b 0

0 c� d

� �
(10) Define T : 2 ! 2 by T(a2t

2þa1tþa0)¼ (a2�a1)t
2þ (a1�a0)t. Find

(a) T(2t2�3tþ4), (b) T(t2þ2t),

(c) T(3t), (d) T(�t2þ2t�1).

InProblems11 through40,determinewhether the given transformations are linear.

(11) T: 2 ! 2, T[a b]¼ [2a 3b].

(12) T: 2 ! 2, T[a b]¼ [aþ2 b�2].

(13) T: 2 ! 2, T[a b]¼ [a 1].

(14) S: 2 ! 2, S[a b]¼ [a2 b2].

(15) S: 3 ! 2, S[a b c]¼ [aþb c].

(16) S: 3 ! 2, S[a b c]¼ [a� c c�b].

(17) S: 3 ! 2, S[a b c]¼ [aþ2b�3c 0].

(18) S: 2 ! 3, S[a b]¼ [aþb 2aþb bþ2].

(19) S: 2 ! 3, S[a b]¼ [a 0 b].

Linear Algebra188



(20) N: 2 ! 3, N[a b]¼ [0 0 0].

(21) N: 2 ! 3, N[a b]¼ [aþb ab a�b].

(22) N: 2 ! 3, N[a b]¼ [0 0 2a�5b].

(23) T: 2 ! 3, T[a b]¼ [aþ �a �8a].

(24) T: 3 ! 1, T[a b c]¼a� c.

(25) S: 3 ! 1, S[a b c]¼abc.

(26) L: 3 ! 1, L[a b c]¼0.

(27) P: 3 ! 1, P[a b c]¼1.

(28) P: 2�2 ! 2�2, P
a b
c d

� �
¼ c a

d b

� �
.

(29) P: 2�2 ! 2�2, P
a b
c d

� �
¼ aþ b 0

0 c� d

� �
.

(30) T: 2�2 ! 2�2, T
a b
c d

� �
¼ 2d 0

0 0

� �
.

(31) T: 2�2 ! 2�2, T
a b
c d

� �
¼ ad 0

cd 0

� �
.

(32) T: 2�2 ! 1, T
a b
c d

� �
¼ ad� bc:

(33) R:2�2 ! 1, R
a b
c d

� �
¼ bþ 2c� 3d:

(34) S: p�n ! n�p, S(A)¼AT.

(35) S: p�n ! p�n, S(A)¼�A.

(36) L: n�n ! n�n, L(A)¼A�AT.

(37) L: 2 ! 2, L(a2t
2þa1tþa0)¼a0t.

(38) T: 2 ! 2, T(a2t
2þa1tþa0)¼a2(t�1)2þa1(t�1)þa0.

(39) T: 2 ! 2, T(a2t
2þa1tþa0)¼ (a2�a1)(t2þ (a1�a0)t.

(40) S: 2 ! 2, S(a2t
2þa1tþa0)¼ (a2�1)t2.

(41) Let S: n�n ! 1 map an n�n matrix into the sum of its diagonal
elements. Such a transformation is known as the trace. Is it linear?

(42) Let T:n�n! n�n be defined as T Að Þ ¼ A�1 if A is nonsingular
0 if A is singular

:

�
Is T

linear?
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(43) Let I :  !  denote the identity transformation defined by I(v)¼v for all
vectors v in . Show that I is linear.

(44) Let L:  !  denote a linear transformation and let {v1, v2, . . . , vn} be a
basis for . Prove that if L(vi)¼vi, for all i (i¼1, 2, . . ., n), then L must
be the identity transformation.

(45) Let 0 :  !  denote the zero transformation defined by 0(v)¼0 for all vec-
tors v in . Show that 0 is linear.

(46) Let L:  !  denote a linear transformation and let {v1, v2, . . . , vn} be a
basis for . Prove that if L(vi)¼0 for all (i¼1, 2, . . ., n), then Lmust be the
zero transformation.

(47) Prove that Equations (3.2) and (3.3) imply (3.1).

(48) Determine whether T:n�n ! n�n defined by T(A)¼AAT is linear.

(49) Find T(uþ3v) for a linear transformation T if it is known that T(u)¼22 and
T(v)¼�8.

(50) Find T(u) for a linear transformation T if it is known that T(uþv)¼2uþ3v
and T(u�v)¼4uþ5v.

(51) Find T(v) for a linear transformation T if it is known that T(uþv)¼u and
T(u)¼u�2v.

(52) Let L:  !  denote a linear transformation. Prove that L(v1þv2þv3)¼
L(v1)þL(v2)þL(v3) for any three vectors v1, v2, and v3 in. Generalize this
result to the sum of more than three vectors.

(53) Let S:  !  and T: !  be two linear transformations. Their sum is
another transformation from  into  defined by (SþT)v¼S(v)þT(v)
for all v in . Prove that the transformation SþT is linear.

(54) Let T:  !  be a linear transformation and k a given scalar. Define a new
transformation kT:  !  by (kT)v¼k(Tv) for all v in . Prove that the
transformation kT is linear.

(55) Let S:  !  and T: !  be two linear transformations and define their
product as another transformation from  into  defined by (ST)v�S(Tv)
for all v in. This product first applies T to a vector and then S to that result.
Prove that the transformation ST is linear.

(56) Let S: 2 ! 2 be defined by S[a b]¼ [2aþb 3a] and T: 2 ! 2 be defined
by T[a b]¼ [b�a]. Find ST(v) for the following vectors v:

(a) [1 2], (b) [2 0], (c) [�1 3],

(d) [�1 1], (e) [�2 �2], (f) [2 �3].

(57) Find TS(v) for the vectors and transformations given in the previous
problem.
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(58) Let S: 2 ! 2 be defined by S[a b]¼ [aþb a�b] and T: 2 ! 2 be
defined by T[a b]¼ [2b 3b]. Find ST(v) for the following vectors v:

(a) [1 2], (b) [2 0], (c) [�1 3],

(d) [�1 1], (e) [�2 �2], (f) [2 �3].

(59) Find TS(v) for the vectors and transformations given in the previous
problem.

(60) Let S:2 ! 2 be defined by S[a b]¼ [a aþ2b] and T:2 ! 2 be defined
by T[a b]¼ [aþ2b a�2b]. Find ST(v) for the following vectors v:

(a) [1 2], (b) [2 0], (c) [�1 3],

(d) [�1 1], (e) [�2 �2], (f) [2 �3].

(61) Let L be defined as in Example 6. Show that L2¼L.

(62) Let L andM be transformations from 2 into 2, the first a projection onto
the x-axis and the second a projection onto the y-axis (see Example 6). Show
that their product is the zero transformation.

3.3 MATRIX REPRESENTATIONS
We showed in Chapter 2 that any vector in a finite-dimensional vector space can
be represented as an n-tuple with respect to a given basis. Consequently, we can
study finite-dimensional vector spaces by analyzing n-tuples. We now show that
every linear transformation from an n-dimensional vector space into an m-
dimensional vector space can be represented by an m�n matrix. Thus, we can
reduce the study of linear transformations on finite-dimensional vector space
to the study of matrices!

Recall from Section 2.4 that there is only one way to express v as a linear com-
bination of a given set of basis vectors. If v is any vector in a finite-dimensional
vector space , and if  ¼ v1; v2; . . . ; vnf g is a basis for , then there exists a
unique set of scalars c1, c2, . . ., cn such that

v ¼ c1v1 þ c2v2 þ � � � þ cnvn (3.6)

We write

v $
c1
c2
..
.

cn

2
6664

3
7775


(3.7)

to indicate that the n-tuple is a coordinate representation for the sum
on the right side of (3.6). The subscript on the n-tuple denotes the underly-
ing basis and emphasizes that the coordinate representation is basis
dependent.
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Example 1 Find a coordinate representation for the vector v¼4t2þ3tþ2 in 2

with respect to the basis  ¼ t2 þ t, t þ 1, t � 1f g.
Solution: To write v as a linear combination of the basis vectors, we must
determine scalars c1, c2, and c3 that satisfy the equation

4t2 þ 3t þ 2 ¼ c1 t2 þ 1
� �þ c2 t þ 1ð Þ þ c3 t � 1ð Þ

¼ c1t
2 þ c1 þ c2 þ c3ð Þt þ c2 � c3ð Þ

Equating coefficients of like powers of t, we generate the system of equations

c1 ¼ 4

c1 þ c2 þ c3 ¼ 3

c3 � c3 ¼ 2

which has as its solution c1¼4, c2¼1/2, and c3¼�3/2. Accordingly (3.6)
becomes

4t2 þ 3t þ 2 ¼ 4 t2 þ t
� �þ 1=2ð Þ t þ 1ð Þ þ �3=2ð Þ t � 1ð Þ

and (3.7) takes the form

4t2 þ 3t þ 2 $
4

1=2
�3=2

2
4

3
5


If T:  !  is a linear transformation and v is any vector in  expressed in form
(3.6), then

T vð Þ ¼ T c1v1 þ c2v2 þ � � � þ cnvnð Þ
¼ c1T v1ð Þ þ c2T v2ð Þ þ � � � þ cnT vnð Þ (3.8)

Consequently, T is described completely by its actions on a basis. Once we know
how T transforms the basis vectors, we can substitute those results into the right
side of (3.8) and determine how T affects any vector v in .

Example 2 A linear transformation T: 2 ! 3 has the property that

T
1
0

� �
¼

1
2
0

2
4
3
5 and T

0
1

� �
¼

0
3
4

2
4
3
5

Determine T(v) for any vector v 2 2.

Solution: If v 2 2, then v¼ [a b]T for some choice of the real numbers a and b.

The set {[1 0]T, [0 1]T} is the standard basis for 2, and with respect to this basis

a
b

� �
¼ a

1
0

� �
þ b

0
1

� �

A linear transformation is
described completely by
its actions on a basis for
the domain.
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Consequently,

T
a
b

� �
¼ aT

1
0

� �
þbT

0
1

� �
¼ a

1
2
0

2
4
3
5þ b

0
3
4

2
4
3
5 ¼

a
2aþ 3b

4b

2
4

3
5

Example 2 has an interesting geometrical interpretation. We see from the solu-
tion that

T a
1
0

� �
þ b

0
1

� �� 	
¼ a

1
2
0

2
4
3
5þ b

0
3
4

2
4
3
5

Thus, linear combinations of the vectors in the standard basis for 2 are mapped
into linear combinations of the vectors w1¼ [1 2 0]T and w2¼ [0 3 4]T. All linear

combinations of the vectors in the standard basis for 2 generate the x-y plane. All

linear combinations of w1 and w2 is the span of {w1, w2}, a plane in 3, which is
partially illustrated by the shaded region in Figure 3.10. Thus, the linear transforma-
tion defined in Example 2maps the x-y plane onto the plane spanned by {w1,w2}.

Example 3 A linear transformation T:2 ! 2 has the property that

T
1
1

� �
¼ 5

6

� �
and T

1
�1

� �
¼ 7

8

� �

Determine Tv for any vector v 2 2.

Solution: The set of vectors {[1 1]T, [1�1]T} is a basis for2. If v¼ [a b]T for some
choice of the real numbers a and b, then

a
b

� �
¼ aþ b

2

1
1

� �
þ a� b

2

1
�1

� �

5

w 2

w 1

4

4

z

y

x

3

3

2

2
1

1
2

3
4

1

FIGURE 3.10
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and

T
a

b

" #
¼ aþ b

2
T

1

1

" #
þ a� b

2
T

1

�1

" #

¼ aþ b

2

5

6

" #
þ a� b

2

7

8

" #
¼ 6a� b

7a� b

" #

With these two concepts—first, that any finite-dimensional vector can be repre-
sented as a basis dependent n-tuple, and second, that a linear transformation is
completely described by its actions on a basis—we have the necessary tools to
show that every linear transformation from one finite-dimensional vector space
into another can be represented by a matrix. Let T designate a linear transforma-
tion from an n-dimensional vector space  into an m-dimensional vector space
, and let  ¼ v1; v2; . . . ; vnf g be a basis for  and  ¼ w1;w2; . . . ;wmf g be a
basis for . Then T(v1), T(v2), . . ., T(vn) are all vectors in  and each can be
expressed as a linear combination of the basis vectors in .

In particular,

T v1ð Þ ¼ a11w1 þ a21w2 þ � � � þ amlwm

for some choice of the scalars a11, a21, . . ., am1,

T v2ð Þ ¼ a12w1 þ a22w2 þ � � � þ am2wm

for some choice of the scalars a12, a22, . . ., am1, and, in general,

T vj
� � ¼ a1jw1 þ a2jw2 þ � � � þ amjwm (3.9)

for some choice of the scalars a1j,a2j, . . .,amj(j¼1,2, . . .,m). The coordinate
representations of these vectors are

T v1ð Þ $

a11

a21

..

.

am1

2
66664

3
77775


, T v2ð Þ $

a12

a22

..

.

am2

2
66664

3
77775


, . . . ,

T vj
� �$

a1j

a2j

..

.

amj

2
66664

3
77775


, . . . , T vnð Þ $

a1n

a2n

..

.

anm

2
66664

3
77775


If we use these n-tuples as the columns of a matrix A, then, as we shall show
shortly, A is thematrix representation of the linear transformation T. Because this
matrix is basis dependent, in fact dependent on both the basis  in  and the
basis  in , we write A

 to emphasize these dependencies. The notation A


denotes the matrix representation of T with respect to the  basis in  and

Every linear transforma-
tion from one finite-
dimensional vector space
into another can be
represented by a matrix.

A denotes a matrix
representation of a linear
transformation with
respect to the  basis in
the domain and the 
basis in the range.
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the  basis in . Often, the subscript  or the superscript  is deleted when
either is the standard basis in n and m, respectively.

Example 4 Find the matrix representation with respect to the standard basis in

2 and the standard basis  ¼ t2; t; 1f g in 2 for the linear transformation

T: 2 ! 2 defined by

T
a
b

� �
¼ 2at2 þ aþ bð Þt þ 3b

Solution:

T
1
0

� �
¼ 2ð Þt2 þ 1ð Þt þ 0ð Þ1 $

2
1
0

2
4
3
5


and

T
0
1

� �
¼ 0ð Þt2 þ 1ð Þt þ 3ð Þ1 $

0
1
3

2
4
3
5


so

A ¼
2 0
1 1
0 3

2
4

3
5

We suppressed the subscript notation for the basis in the domain because it is the

standard basis in 2.

Example 5 Redo Example 4 with the basis for the domain changed to

 ¼ 1 1f �T; ½1� 1�Tg .
Solution:

T
1
1

� �
¼ 2ð Þt2 þ 2ð Þt þ 3ð Þ1 $

2
2
3

2
4
3
5


and

T
1

�1

� �
¼ 2ð Þt2 þ 0ð Þt þ �3ð Þ1 $

2
0

�3

2
4

3
5


hence,

A
 ¼

2 2
2 0
3 �3

2
4

3
5



Example 6 Find thematrix representation with respect to the standard basis in2

and the basis 2 ¼ t2 þ t, t þ 1, t � 1f g in  for the linear transformation

T: 2 ! 2 defined by
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T
a
b

� �
¼ 4aþ bð Þt2 þ 3að Þt þ 2a� bð Þ

Solution: Using the results of Example 1, we have

T
1

0

" #
¼ 4t2 þ 3t þ 2 $

4

1=2

�3=2

2
64

3
75


Similar reasoning yields

T
0
1

� �
¼ t2 � 1 ¼ 1ð Þ t2 þ t

� �þ �1ð Þ t þ 1ð Þ þ 0ð Þ t � 1ð Þ $
1

�1
0

2
4

3
5


Thus,

A ¼
4 1

1=2 �1
�3=2 0

2
4

3
5

Example 7 Find the matrix representation for the linear transformation
T: 2�2 ! 2�2 defined by

T
a b
c d

� �
¼ aþ 2bþ 3c 2b� 3cþ 4d

3a� 4b� 5d 0

� �

with respect to the standard basis

 ¼ 1 0

0 0

" #
;

0 1

0 0

" #
;

0 0

1 0

" #
;

0 0

0 1

" #( )

Solution:

T
1 0
0 0

� �
¼ 1 0

3 0

� �
¼ 1ð Þ 1 0

0 0

� �
þ 0ð Þ 0 1

0 0

� �
þ 3ð Þ 0 0

1 0

� �

þ 0ð Þ 0 0
0 1

� �
$

1
0
3
0

2
664
3
775


T
0 1
0 0

� �
¼ 2 2

�4 0

� �
¼ 2ð Þ 1 0

0 0

� �
þ 2ð Þ 0 1

0 0

� �
þ �4ð Þ 0 0

1 0

� �

þ 0ð Þ 0 0
0 1

� �
$

2
2

�4
0

2
664

3
775

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T
0 0

1 0

� �
¼ 3 �3

0 0

� �
¼ 3ð Þ 1 0

0 0

� �
þ �3ð Þ 0 1

0 0

� �
þ 0ð Þ 0 0

1 0

� �

þ 0ð Þ 0 0
0 1

� �
$

3

�3

0

0

2
6664

3
7775


T
0 0

0 1

� �
¼ 0 4

�5 0

� �
¼ 0ð Þ 1 0

0 0

� �
þ 4ð Þ 0 1

0 0

� �
þ �5ð Þ 0 0

1 0

� �

þ 0ð Þ 0 0
0 1

� �
$

3

4

�5

0

2
6664

3
7775


Therefore,

A
 ¼

1 2 3 0

0 2 �3 4

3 �4 0 �5

0 0 0 0

2
6664

3
7775




To prove that A
 , as we defined it, is a matrix representation for a linear

transformation T, we begin with a vector v in the domain . If
 ¼ v1; v2; . . . ; vnf g is a basis for , then there exists a unique set of scalars
c1, c2, . . ., cn such that

v ¼ c1v1 þ c2v2 þ � � � þ cnvn ¼
Xn
j¼1

cjvj

The coordinate representation of v with respect to the  basis is

v $

c1
c2

..

.

cn

2
66664

3
77775


Setting w¼T(v), it follows from (3.8) and (3.9) that

w ¼T vð Þ ¼ T
Xn
j¼1

cjvj

 !

¼
Xn
j¼1

cjT vj
� �
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¼
Xn
j¼1

cj a1jw1 þ a2jw2 þ � � � þ amjwm

� �

¼
Xn
j¼1

cj
Xn
j¼1

aijwi

 !

¼
Xm
i¼1

Xn
j¼1

aijcj

 !
wi

We now have w in terms of the basis vectors in  ¼ w1;w2; . . . ;wmf g. Since
the summation in the last parentheses is the coefficient of each basis
vector, we see that the coordinate representation for w with respect to the 
basis is

T vð Þ ¼ w $

Xn
j¼1

a1jcj

Xn
j¼1

a2jcj

..

.

Xn
j¼1

amjcj

2
66666666666664

3
77777777777775


This vector is the matrix product

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

am1 am2 � � � amn

2
666664

3
777775

c1

c2

..

.

cn

2
66664

3
77775

Thus,

T vð Þ ¼ w $ A
v (3.10)

We can calculate T(v) in two ways: first, the direct approach using the left side
of (3.10), by evaluating directly how T affects v; or second, the indirect
approach using the right side of (3.10), by multiplying the matrix representa-

tion of T by the coordinate representation of v to obtain A
v, the m-tuple

representation of w, from which w itself is easily calculated. These two
processes are shown schematically in Figure 3.11, the direct approach by the-
single solid arrow and the indirect approach by the path of three dashed
arrows.
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Example 8 Calculate T
1
3

� �
using both the direct and indirect approaches illus-

trated in Figure 3.11 for the linear transformation T: 2 ! 2 defined by T
a
b

� �
¼ 2 at 2 (a þ b)t þ 3b. With the indirect approach, use  ¼ 1 1½ �T; 1� 1½ �T

n o
as

the basis for 2 and  ¼ t2; t;1f g as the basis for 2.

Solution: Using the direct approach, we have

T
1
3

� �
¼ 2 1ð Þt2 þ 1þ 3ð Þt þ 3 3ð Þ ¼ 2t2 þ 4t þ 9

Using the indirect approach, we first determine the coordinate representation for
[1 3]T with the respect to the  basis. It is

1
3

� �
¼ 2

1
1

� �
þ �1ð Þ 1

�1

� �
$ 2

�1

� �

¼ v

Then, using the results of Example 5, we have

A
v ¼

2 2
2 0
3 �3

2
4

3
5



2
�1

� �

¼

2
4
9

2
4
3
5


$ 2t2 þ 4t ¼ 9

which is the same result obtained by the direct approach.

Example 9 Calculate T
2

�3

� �
using both the direct and indirect approaches illus-

trated in Figure 3.11 for the linear transformation and bases described in
Example 6.

v w = T (v)

vB wC = A�
�v�

FIGURE 3.11
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Solution: Using the direct approach, we have

T
2

�3

� �
¼ 4 2ð Þ þ �3ð Þ½ �t2 þ 3 2ð Þt þ 2 2ð Þ � �3ð Þ½ � ¼ 5t2 þ 6t þ 7

Using the indirect approach, we note that

2
�3

� �
¼ 2

1
0

� �
þ �3ð Þ 0

1

� �
$ 2

�3

� �

¼ v

Then, using the results of Example 6, we have

A
v

4 1
1=2 �1

�3=2 0

2
4

3
5



2
�3

� �

¼

5
4

�3

2
4

3
5


$ 5 t2 þ t
� �þ 4 t þ 1ð Þ þ �3ð Þ t � 1ð Þ ¼ 5t2 þ 6t þ 7

which is the same result obtained by the direct approach.

The direct approach illustrated in Figure 3.11 is clearly quicker. The indirect
approach, however, is almost entirely in terms of matrices and matrix
operations, which are conceptually easier to understand and more tangible.
Theorem 1 of Section 2.2 states that every matrix represents a linear trans-
formation. We just showed that every linear transformation can be repre-
sented by a matrix. Thus, matrices and linear transformations are
equivalent concepts dressed somewhat differently. We can analyze one by
studying the other.

The subscript-superscript notation we introduced on matrices and coordi-
nate representations is actually helpful in tracking a linear transformation
T: ! , where  and  are vector spaces of dimensions n and m, respec-
tively. Suppose w¼T(v). We let v denote the coordinate representation
of v with respect to a  basis and w denote the coordinate representation
of w with respect to a  basis. The indirect approach yields the matrix
equation

w ¼ A
v

The matrix A maps an n-tuple with respect to the  basis into an m-tuple with
respect to the  basis. The subscript on A must match the subscript on v. The
superscript on Amatches the subscript on w. Figure 3.12 demonstrates the direc-
tional flow with arrows.

w� = A�
�v�

FIGURE 3.12
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Problems 3.3
In Problems 1 through 25, find the matrix representation for T :  !  with
respect to the given bases,  for a vector space  and  for a vector space .

(1) T : 2 ! 3 defined by T
a
b

� �
¼

aþ b
a� b
2b

2
4

3
5, ¼ 1

0

� �
;

1
1

� �� 

, and

 ¼
1
0
0

2
4
3
5; 0

1
0

2
4
3
5; 0

0
1

2
4
3
5

8<
:

9=
;:

(2) Problem 1 with  ¼ 1
1

� �
;

1
2

� �� 

:

(3) Problem 1 with  ¼
1
1
0

2
4
3
5; 1

0
1

2
4
3
5; 0

1
0

2
4
3
5

8<
:

9=
;:

(4) Problem 1 with  ¼ 1
1

� �
;

1
2

� �� 

and  ¼

1
1
0

2
4
3
5; 1

0
1

2
4
3
5; 0

1
0

2
4
3
5

8<
:

9=
;:

(5) T : 3 ! 2 defined by T
a
b
c

2
4
3
5¼ 2aþ 3b� c

4bþ 5c

� �
,¼

1
0
0

2
4
3
5; 1

1
0

2
4
3
5; 1

1
1

2
4
3
5

8<
:

9=
;,

and  ¼ 1
1

� �
;

0
1

� �� 

:

(6) Problem 5 with  ¼
1

�1
0

2
4

3
5; 1

0
�1

2
4

3
5; �1

1
1

2
4

3
5

8<
:

9=
;:

(7) Problem 5 with  ¼ 1
1

� �
;

1
�1

� �� 

:

(8) Problem 2 with  ¼
1

�1
0

2
4

3
5; 1

0
�1

2
4

3
5; �1

1
1

2
4

3
5

8<
:

9=
;, and  ¼ 1

1

� �
;

1
�1

� �� 

:

(9) Problem 5 With T
a
b
c

2
4
3
5 ¼ aþ 2b� 3c

9a� 8b� 7c

� �
:

(10) T : 2 ! 2 defined by T
a
b

� �
¼ 25aþ 30b

�45aþ 50b

� �
,

 ¼  ¼ standard basis in 2.

(11) Problem 10 with  ¼ 10
10

� �
;

0
5

� �� 

and  again the standard basis.
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(12) Problem 10 with  ¼ 10
10

� �
;

0
5

� �� 

and  again the standard basis.

(13) Problem 10 with  ¼  ¼ 10
10

� �
;

0
5

� �� 


(14) Problem 10 with  ¼ 1
�1

� �
;

1
2

� �� 

and  ¼ 1

2

� �
;

2
1

� �� 


(15) Problem 10 with T
a
b

� �
¼ 2a

3b� a

� �
:

(16) The transformation in Problem 15 with the bases of Problem 14.

(17) T : 2 ! 3 defined by T(at2þbtþ c)¼ t(at2þbtþ c),  ¼ t2; t; 1f g , and

 ¼ t3; t2; t; 1f g:
(18) Problem 17 with  ¼ t2 þ t, t2 þ 1, t þ 1f g with  ¼ t2, t2 þ 1, t2 � 1, tf g:
(19) T : 3 ! 2 defined by T at3 þ bt2 þ ct þ dð Þ ¼ 3at2 þ 2bt þ c,

 ¼ t3, t2 þ 1, t2 � 1, t
� �

and ¼ t2 þ t, t2 þ 1, t þ 1
� �

(20) T : 2 ! 2 defined by T at2 þ bt þ cð Þ ¼ 2aþ b
3a� 4bþ c

� �
,

 ¼ t2, t2 � 1, tf gand  ¼ 1
1

� �
;

1
�1

� �� 

:

(21) T : 2 ! 2 defined by T at2 þ bt þ cð Þ ¼
2aþ 3b
4a� 5c
6bþ 7c

2
4

3
5,  ¼ t2, t2 � 1, tf g

and  ¼
1
0
0

2
4
3
5; 1

1
0

2
4
3
5; 1

1
1

2
4
3
5

8<
:

9=
;:

(22) T : 2 ! 2�2 defined by T at2 þ bt þ cð Þ ¼ 2aþ b
4a� 5c

c� 3a
6bþ 7c

� �
 ¼ t2, t2 � 1, tf g and  ¼ 1 0

0 0

� �
;

1 1
0 0

� �
;

0 0
1 1

� �
;

0 0
1 �1

� �� 

:

(23) Problem 22 with  ¼ 1 0
0 0

� �
;

1 1
0 0

� �
;

1 1
0 1

� �
;

1 1
1 1

� �� 

:

(24) T : 2�2 ! 3defined by T
a b
c d

� �
¼ aþ bð Þt3þ a� 2bð Þt2þ 2a�3bþ4cð Þtþ

a� dð Þ,

¼ 1 0
0 0

� �
;

1 1
0 0

� �
;

0 0
1 1

� �
;

0 0
1 �1

� �� 

, and ¼ t3, t2 � 1, t� 1,1f g.
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(25) T: 2�2 ! 2 defined by T
a b
c d

� �
¼ aþ bþ 3c

bþ c� 5d

� �
,

 ¼ 1 0
0 0

� �
;

1 1
0 0

� �
;

0 0
1 1

� �
;

0 0
1 �1

� �� 

, and  ¼ 1

2

� �
;

2
1

� �� 

:

In Problems 26 through 37, find the indicated mapping directly and by the
indirect approach illustrated in Figure 3.11.

(26) T
1
3

� �
with the information provided in Problem 1.

(27) T
2

�1

� �
with the information provided in Problem 1.

(28) T
�5
3

� �
with the information provided in Problem 2.

(29) T
1
2
3

2
4
3
5 with the information provided in Problem 5.

(30) T
2
2
2

2
4
3
5 with the information provided in Problem 5.

(31) T
2

�1
�1

2
4

3
5 with the information provided in Problem 5.

(32) T
2

�3

� �
with the information provided in Problem 10.

(33) T(3t2�2t) with the information provided in Problem 19.

(34) T(3t2�2tþ5) with the information provided in Problem 19.

(35) T(t2�2t�1) with the information provided in Problem 20.

(36) T(t2�2t�1) with the information provided in Problem 21.

(37) T(4) with the information provided in Problem 21.

(38) A matrix representation for T : 1 ! 1 is
1 2

3 4

� �


with respect to

 ¼ t þ 1, t � 1f g. Find T(atþb) for scalars a and b.

(39) A matrix representation for with respect to T : 1 ! 1 is
1 2

3 4

� �

with

respect to ℂ¼{tþ1, tþ2}. Find T(atþb) for scalars a and b.
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(40) A matrix representation for T : 2 ! 2 is

1 2 3

1 1 2

2 0 1

2
64

3
75




with respect to

 ¼ t2, t2 þ t, t2 þ t þ 1f g. Find T(at2þbtþ c) for scalars a, b, and c.

(41) A matrix representation for T : 2�2 ! 2�2 is

1 1 0 2

0 1 1 0

1 0 2 1

1 1 1 1

2
6664

3
7775




with

respect to the basis  ¼ 1 0
0 0

� �
;

1 1
0 0

� �
;

1 1
1 0

� �
;

1 1
1 1

� �� 

: Find

T
a b

c d

� �
for scalars a, b, c, and d.

3.4 CHANGE OF BASIS
Coordinate representations for vectors in an n-dimensional vector space are basis
dependent, and different bases generally result in different n-tuple representa-
tions for the same vector. In particular, we saw from Example 10 of Section 2.4
that the 2-tuple representation for v¼ [7 2]T is

v ¼ 7

2

� �


(3.11)

with respect to the standard basis¼{[1 0]T, [0 1]T} for 2, but

v ¼ 9=2

5=2

� �


(3.12)

with respect to the basis  ¼ 1 1½ �T; ; 1� 1½ �T
n o

. It is natural to ask, therefore,
whether different coordinate representations for same vector are related.

Let  ¼ u1;u2; . . . ;unf g and  ¼ v1; v2; . . . ; vnf g be two bases for a vector
space . If v 2 , the v can be expressed as a unique linear combination
of the basis vectors in ℂ; that is, there exists a unique set of scalars c1, c2, . . ., cn
such that

v ¼ c1u1 þ c2u2 þ � � � þ cnun ¼
Xn
j¼1

cjuj (3.13)

Similarly, if we consider the  basis instead, there exists a unique set of scalars
d1, d2, . . ., dn such that

v ¼ d1v1 þ d2v2 þ � � � þ dnvn ¼
Xn
i¼1

divi (3.14)

In general, a vector has
many coordinate
representations, a
different one for
each basis.
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The coordinate representations of v with respect to  and , respectively, are

v ¼

c1

c2

..

.

cn

2
66664

3
77775


and v ¼

d1

d2

..

.

dn

2
66664

3
77775


Now since each basis vector in  is also a vector in , it too can be expressed as a
unique linear combination of the basis vectors in . In particular,

u1 ¼ p11v1 þ p21v2 þ � � � þ pn1vn

for some choice of the scalars p11, p21, . . ., pn1;

u2 ¼ p12v1 þ p22v2 þ � � � þ pn2vn

for some choice of the scalars p12, p22, . . ., pn2; and, in general,

uj ¼ p1jv1 þ p2jv2 þ � � � þ pnjvn ¼
Xn
i¼1

pijvi (3.15)

for some choice of the scalars p1j, p2j, . . ., pnj, (j¼1, 2, . . ., n). The n-tuple repre-
sentations of these vectors with respect to the  basis are

u1 $
p11

p21

..

.

pn1

2
6664

3
7775


. . . ,u2 $
p12

p22

..

.

pn2

2
6664

3
7775


. . . ,uj $

p1j

p2j

..

.

pnj

2
6664

3
7775


. . . ,un $
p1n

p2n

..

.

pnn

2
6664

3
7775


If we use these n-tuples as the columns of a matrix P, then

P
 ¼

p11 p12 � � � p1j � � � p1n

p21 p22 � � � p2j � � � p2n

..

. ..
. ..

. ..
.

pn1 pn2 � � � pnj � � � pnn

2
666664

3
777775

where the subscript-superscript notation on P indicates that we are mapping
from the  basis to the  basis. The matrix P

 is called the transition matrix from
the  basis to the  basis. It follows from (3.13) and (3.15) that

v ¼
Xn
j¼1

cjuj ¼
Xn
j¼1

cj
Xn
j¼1

pijvi

 !
¼
Xn
i¼1

Xn
j¼1

pijci

 !
vi

But we also have from (3.14) that

v ¼
Xn
i¼1

divj
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and because this representation is unique (see Theorem5 of Section 2.4), wemay
infer that

di ¼
Xn
j¼1

pijcj

Therefore,

d1
d2
..
.

dn

2
6664

3
7775


¼

Xn
j¼1

p1jcj

Xn
j¼1

p2jcj

..

.

Xn
j¼1

pnjcj

2
666666666666664

3
777777777777775

which can be written as the matrix product

d1
d2
..
.

dn

2
6664

3
7775


¼

p11 p12 � � � p1j � � � p1n
p21 p22 � � � p2j � � � p2n

..

. ..
. ..

. ..
.

pn1 pn2 � � � pnj � � � pnn

2
6664

3
7775

c1
c2
..
.

cn

2
6664

3
7775


or

v ¼ P
v (3.16)

We have proven:

▶THEOREM 1
If v and v are the n-tuple (coordinate) representations of a vector v with respect to

the bases  and , respectively, and if Pj is the n-tuple representation of the jth basis

vector in  (j¼1, 2, . . ., n) with respect to the  basis, then v ¼ P
v where the jth

column of P
 is Pj.◀

Example 1 Find the transition matrix between the bases  ¼ 1 0½ �T; ; 0 1½ �T
n o

and for 1 and  ¼ 1 1½ �T; ; 1� 1½ �T
n o

in 2, and verify Theorem 1 for the coor-

dinate representations of v¼ [7 2]T with respect to each basis.

Solution: We have

1
0

� �
¼ 1

2

1
1

� �
þ 1

2

1
�1

� �
$ 1=2

1=2

� �

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and

0
1

� �
¼ 1

2

1
1

� �
� 1

2

1
�1

� �
$ 1=2

�1=2

� �


and the transition matrix from  to  as

P
 ¼ 1=2 1=2

1=2 �1=2

� �

The coordinate representation of [7 2]T with respect to the  and  bases were
found in Example 10 of Section 2.4 to be, respectively,

v ¼ 7
2

� �
and v ¼ 9=2

5=2

� �

Here

P
v ¼ 1=2 1=2

1=2 �1=2

� �
7
2

� �
¼ 9=2

5=2

� �
¼ v

Although Theorem1 involves the transitionmatrix from to, it is equally valid
in the reverse direction for the transition matrix from to. If P

 represents this
matrix, then

v ¼ P
v (3.17)

Example 2 Verify (3.17) for the bases and vector v described in Example 1.

Solution: As in Example 1, ℂ¼{[1 0]T, [0 1]T} and  ¼ 1 1½ �T; ; 1� 1½ �T
n o

.

Now, however,

1
0

� �
¼ 1

1
0

� �
þ 1

0
1

� �
$ 1

1

� �


and

1
�1

� �
¼ 1

1
0

� �
� 1

0
1

� �
$ 1

�1

� �


and the transition matrix from  to  is

P
 ¼ 1 1

1 �1

� �

Here

P
v ¼ 1 1

1 �1

� �
9=2
5=2

� �
¼ 7

2

� �
¼ v
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Note that the subscript-superscript notation is helpful in tracking which transi-
tion matrix can multiply which coordinate representation. The subscript on the
matrix must match the subscript on the vector being multiplied! The superscript
on the transition matrix must match the subscript on the vector that results from
the multiplication. Equation (3.16) is

vD = PD
CvC

while equation (3.17) is

vC = PC
DvD

The arrows show thematches that must occur if the multiplication is to bemean-
ingful and if the equality is to be valid.

An observant reader will note that the transition matrix P
 found in Example 2 is

the inverse of the transition matrix P
 found in Example 1. This is not a

coincidence.

▶THEOREM 2
The transition matrix from to, where both and are bases for the same finite dimen-

sional vector space, is invertible and its inverse is the transition matrix from  to .◀

Proof: Let P
 denote the transition matrix from basis  to basis  and let P


be the transition matrix from  to . If the underlying vector space is
n-dimensional, then both of these transition matrices have order n�n, and their
product is well defined. Denote this product as A¼ [aij]. Then

P
P


 ¼ A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

2
6666664

3
7777775 (3.18)

We claim that A is the n�n identity matrix.

We have from Theorem 1 that v ¼ P
P


. Substituting into the right side of this

equation the expression for vℂ given by (3.17), we obtain

v ¼ P
P




� �
v ¼ Av (3.19)

Equation (3.18) is valid for any n-tuple representationwith respect to the basis.
For the special case, v ¼ 1 0 0 . . . 0½ �T, equation (3.19) reduces to
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1
0

0

0

..

.

0

2
666666664

3
777777775
¼

a11 a12 � � � a1n

a21 a22 � � � a2n

a31 a32 � � � a3n

..

. ..
. . .

. ..
.

an1 an2 � � � ann

2
666666664

3
777777775

1
0

0

0

..

.

0

2
666666664

3
777777775

or

1

0
0

..

.

0

2
666664

3
777775 ¼

a11

a21

a31

..

.

an1

2
6666664

3
7777775

which defines the first column of the product matrix in (3.18). For the special
case, v ¼ 0 1 0 . . . 0½ �T, equation (3.19) reduces to

0
1

0

..

.

0

2
666664

3
777775 ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
a31 a32 � � � a3n

..

. ..
. . .

. ..
.

an1 an2 � � � ann

2
6666664

3
7777775

0
1

0

..

.

0

2
666664

3
777775

or

0
1
0
..
.

0

2
66664

3
77775 ¼

a12
a22
a32
..
.

an2

2
666664

3
777775

which defines the second column of A. Successively, substituting for v the var-
ious vectors in the standard basis, we find that

P
P


 ¼ 1

from which we conclude that P
 and P

 are inverses of one another.

Example 3 Find transition matrices between the two bases  ¼ t þ 1, t � 1f g
and ¼ 2t þ 1, 3t þ 1f g for 1 and verify the results for the coordinate represen-
tations of the polynomial 3tþ5 with respect to each basis.

Solution: Setting v¼3tþ5, wemay express v as a linear combination of vectors in
either basis. We have

3t þ 5 ¼ 4½ � t þ 1ð Þ þ �1½ � t � 1ð Þ
and

3t þ 5 ¼ 12½ � 2t þ 1ð Þ þ �7½ � 3t þ 1ð Þ
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so the coordinate representations of v with respect to these bases are

v ¼ 4
�1

� �


and v ¼ 12
�7

� �


Now writing each vector in the  basis as a linear combination of the vectors in
the  basis, we obtain

2t þ 1 ¼ 1:5½ � t þ 1ð Þ þ 0:5½ � t � 1ð Þ $ 1:5
0:5

� �


and

3t þ 1 ¼ 2½ � t þ 1ð Þ þ 1½ � t � 1ð Þ $ 2
1

� �


Consequently, the transition matrix from the  basis to the  basis is

P
 ¼ 1:5 2

0:5 1

� �
while the transition matrix from the  basis to the  basis is

P
 ¼ P



� ��1 ¼ 2 �4
�1 3

� �

Then

P
v ¼ 1:5 2

0:5 1

� �
12
�7

� �
¼ 4

�1

� �
¼ v

and

P
v ¼ 2 �4

�1 3

� �
4

�1

� �
¼ 12

7

� �
¼ v

If we graph the standard basis in 2 in the x-y plane, we have the directed line

segments e1 and e2 shown in Figure 3.13. Another basis for 2 is obtained

y

y'

xe1

θ
θ

(1, 0)

(0, 1)

(cos θ, sin θ)

(−sin θ, cos θ) e2
u2

u1

x'

FIGURE 3.13
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by rotating these two vectors counterclockwise about the origin by an angle y,
resulting in the directed line segments u1 and u2 graphed in Figure 3.13. The
magnitudes of all four directed line segments are one. It then follows from ele-
mentary trigonometry that the arrowhead for u1 falls on the point (cos y, sin y)
while that for u2 falls on the point (�sin y, cos y). Setting  ¼ e1; e2f g and
 ¼ u1; e2f g, we have

cos y
sin y

� �
¼ cos y

1
0

� �
þ sin y

0
1

� �
$ cos y

sin y

� �


and

�sin y
cos y

� �
¼ �sin y

1
0

� �
þ cos y

0
1

� �
$ �sin y

cos y

� �


The transition matrix from the  basis to the  basis is

P
 ¼ cos y �sin y

sin y cos y

� �

Hence, the transition matrix from the  basis to the  basis is

P
 ¼ P



� ��1 ¼ cos y sin y
�sin y cos y

� �

Consequently, if

v
x

y

� �


and v
x
0

y
0

� �


denote, respectively, the coordinate representation of the vector vwith respect to
the standard basis  and the coordinate representation of v with respect to the
 basis, then

x
0

y
0

� �
¼ v ¼ P

 v ¼
cos y sin y

�sin y cos y

� �
x
y

� �
¼ xcos yþ y sin y

�x sin yþ y cos y

� �
Equating components, we have the well-known transformations for a rotation of
the coordinate axis in the x-y plane by an angle of y in the counterclockwise
direction:

x
0 ¼ xcos yþ y sin y
y
0 ¼ �x sin yþ y cos y

We showed in Section 3.3 that a linear transformation from one finite-
dimensional vector space to another can be represented by a matrix. Such a
matrix, however, is basis dependent; as the basis for either the domain or range
is changed, the matrix changes accordingly.

Example 4 Find matrix representations for the linear transformation

T : 2 ! 2 defined by

In general, a linear
transformation has many
matrix representations, a
different matrix for each
pair of bases in the
domain and range.
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T
a

b

� �
¼ 11aþ 3b

�5a� 5b

� �
(a) with respect to the standard basis ℂ¼{[1 0]T, [0 1]T}, (b) with respect to

the basis  ¼ 1 1½ �T; 1� 1½ �T
n o

, and (c) with respect to the basis

 ¼ 3� 1�T; ½1� 5½ �T
n o

.

Solution: (a) Using the standard basis, we have

T
1
0

� �
¼ 11

�5

� �
¼ 11

1
0

� �
� 5

0
1

� �
$ 11

�5

� �


T
0
1

� �
¼ 3

�5

� �
¼ 3

1
0

� �
� 5

0
1

� �
$ 3

�5

� �


and

T $ 11 3
�5 �5

� �

¼ A



(b) Using the  basis, we have

T
1
1

� �
¼ 14

�10

� �
¼ 2

1
1

� �
� 12

1
�1

� �
$ 2

12

� �


T
1

�1

� �
¼ 8

0

� �
¼ 4

1
1

� �
þ 4

1
�1

� �
$ 4

4

� �


and

T $ 2 4
12 4

� �

¼ A



(c) Using the  basis, we obtain

T
3

�1

� �
¼ 30

�10

� �
¼ 10

3
�1

� �
þ 0

1
�5

� �
$ 10

0

� �


T
1

�5

� �
¼ �4

20

� �
¼ 0

3
�1

� �
� 4

1
�5

� �
$ 0

�4

� �


and

T $ 10 0
0 �4

� �

¼ A



It is natural to ask whether different matrices representing the same linear trans-
formation are related. We limit ourselves to linear transformations from a vector
space into itself, that is, linear transformations of the form T :  ! , because
these are the transformations that will interest us the most. When the domain
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and range are identical, both have the same dimension, and anymatrix represen-
tation of T must be square. The more general case of transformations that map
from one vector space  into a different vector space  is addressed in
Problem 40.

Let T:  !  be a linear transformation on an n-dimensional vector space 
with w¼T(v). If ℂ is a basis for a vector space , then the n-tuple representation
for w with respect to ℂ, denoted by wℂ, can be obtained indirectly (see
Section 3.3), by first determining the n-tuple representation for v with respect
to ℂ, denoted by vℂ, then determining the matrix representation for T with

respect to the ℂ basis, denoted by A
, and finally calculating the product

A
v. That is,

w ¼ A
v (3.20)

If we use a different basis, denoted by , then we also have

w ¼ A
v (3.21)

Since vℂ and v are n-tuple representations for the same vector v, but with respect
to different bases, it follows from Theorem 1 that there exists a transition matrix

P
 for which

v ¼ P
v (3.22)

Because (3.22) is true for any vector in , it is also true for w, hence

w ¼ P
w (3.23)

Now, (3.21) and (3.22) imply that

w ¼ A
v ¼ A

P

v (3.24)

while (3.23) and (3.20) imply that

w ¼ P
v ¼ P

P

v (3.25)

It follows from (3.24) and (3.25) that

P
A


v ¼ A

P

v

This equality is valid for all n-tuples vℂ with respect to the ℂ basis. If we succes-
sively take vℂ to be the vector having 1 as its first component with all other com-
ponents equal to zero, then the vector having 1 in its second component with all
other components equal to zero, and so on through the entire standard basis, we
conclude that

P
A


 ¼ A

P



We know from Theorem 2 that the transition matrix is invertible, so we may
rewrite this last equation as
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A
 ¼ P



� ��1
A
P


 (3.26)

Conversely, the same reasoning shows that if (3.26) is valid, then A
 and A


are matrix representations for the same linear transformations with respect to
the ℂ basis and  basis, respectively, where these two bases are related by the

transition matrix P
. If we simplify our notation by omitting the subscripts

and superscripts and using different letters to distinguish different matrices,
we have proven:

▶THEOREM 3
Two n�n matrices A and B represent the same linear transformation if and only if there

exists an invertible matrix P such that

A ¼ P�1BP (3.27)◀

Although equation (3.27) is notationally simpler, equation (3.26) is more
revealing because it explicitly exhibits the dependencies on the different bases.

Example 5 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (b) of Example 4.

Solution: From Example 4,

A
 ¼

11 3
�5 �5

� �
,A

 ¼ 2 4
12 4

� �
and from Example 1,

P
 ¼

1

2

1

2

1

2
� 1

2

2
6664

3
7775

Therefore,

P


� ��1
A
P


 ¼ 1 1

1 �1

� �
2 4
12 4

� � 1

2

1

2

1

2
� 1

2

2
6664

3
7775

¼ 11 3
�5 �5

� �
¼ A



Example 6 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (c) of Example 4.

Solution:Here the bases are  ¼ 1 0½ �T; 0 1½ �T
n o

and  ¼ 3� 1�T; ½1� 5½ �T
n o

, so

equation (3.26) takes the notational form

Linear Algebra214



A
 ¼ P



� ��1
A
P




From Example 4,

A
 ¼ 11 3

�5 �5

� �
, and A

 ¼ 10 0
0 �4

� �

Writing each vector in the  basis as a linear combination of vectors in the 
basis, we find that

1
0

� �
¼ 5

14

3
�1

� �
� 1

14

1
�5

� �
$ 5=14

�1=14

� �


0
1

� �
¼ 1

14

3
�1

� �
� 3

14

1
�5

� �
$ 1=14

�3=14

� �


whereupon

P
 ¼ 5=14 1=14

�1=14 �3=14

� �

Therefore,

P


� ��1
A
P


 ¼ 3 1

�1 �5

" #
10 0

0 �4

" #
5=14 1=14

�1=14 �3=14

" #

¼ 11 3

�5 �5

" #
¼ A



We say that two matrices are similar if they represent the same linear transforma-
tion. It follows from equation (3.27) that similar matrices satisfy the matrix
equation

A¼P–1BP (3.27 repeated)

If we premultiply equation (3.27) by P, it follows that A is similar to B if and only
if there exists a nonsingular matrix P such that

PA ¼ BP (3.28)

Of all the similar matrices that can represent a particular linear transforma-
tion, some will be simpler in structure than others and onemay be the simplest
of all. In Example 4, we identified three different matrix representations for the
same linear transformation. We now know all three of these matrices are sim-
ilar. One, in particular, is a diagonal matrix, which is in many respects the sim-
plest possible structure for a matrix. Could we have known this in advance?
Could we have known in advance what basis would result in the simplest
matrix representation? The answer is yes in both cases, and we will spend

Matrices A and B are
similar if they represent
the same linear
transformation, in which
case there exists a
transition matrix P such
that A¼P�1 BP.
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much of Chapters 4 and 6 developing methods for producing the appropriate
bases and their related matrices.

Problems 3.4
In Problems 1 through 13, find the transition matrix from the first listed basis to
the second.

(1)  ¼ 1 0½ �T; 1 1½ �T
n o

, ¼ 0 1½ �T; 1 1½ �T
n o

.

(2)  ¼ 1 0½ �T; 1 1½ �T
n o

, ¼ 1 1½ �T; 1 2½ �T
n o

.

(3)  ¼ 0 1½ �T; 1 1½ �T
n o

, ¼ 1 1½ �T; 0 2½ �T
n o

.

(4) Same as Problem 3 but with  listed first.

(5)  ¼ 1 2½ �T; 1 3½ �T
n o

, ¼ �1 1�T; ½0 1½ �T
n o

.

(6) Same as Problem 5 but with  listed first.

(7)  ¼ 10 20½ �T; 10� 20T½ g, ¼ �1 1T�; ½0 1f �T
n o

.

(8)  ¼ 1 0 0½ �T; 0 1 0½ �T; 0 0 1½ �T
n o

, ¼ 1 1 0½ �T; 0 1 1½ �T; 1 0 1½ �T
n o

.

(9)  ¼ 1 0 0½ �T; 0 1 0½ �T; 0 0 1½ �T
n o

, ¼ 1 0 0½ �T; 1 1 0½ �T; 1 1 1½ �T
n o

.

(10) Same as Problem 9 but with  listed first.

(11)  ¼ 1 0 0½ �T; 1 1 0½ �T; 1 1 1½ �T
n o

, ¼ 1 1 0½ �T; 0 1 1½ �T; 1 0 1½ �T
n o

.

(12)  ¼ 1 1 0½ �T; 0 1 1½ �T; 1 3 1½ �T
n o

, ¼ 1 1 0½ �T; 0 1 1½ �T; 1 0 1½ �T
n o

.

(13)  ¼ 1 1 0½ �T; 0 1 1½ �T; 1 3 1½ �T
n o

, ¼ 1 0 1½ �T; ; 1 1 0½ �T; 1 1 1½ �T
n o

.

In Problems 14 through 25, a linear transformation is defined and two bases are
specified. Find (a) thematrix representation for T:  !  with respect to the first
listed bases, (b) the matrix representation for the linear transformation with
respect to the second listed basis, and (c) verify equation (3.26) using the results
of parts (a) and (b) with a suitable transition matrix.

(14) T
a
b

� �
¼ 2aþ b

a� 3b

� �
;  and  as given in Problem 1.

(15) T
a
b

� �
¼ 2aþ b

a� 3b

� �
;  and  as given in Problem 5.

(16) T
a
b

� �
¼ 8a� 3b

6a� b

� �
;  and  as given in Problem 2.

Linear Algebra216



(17) T
a
b

� �
¼ 2a

3a� b

� �
;  and  as given in Problem 1.

(18) T
a
b

� �
¼ 11a� 4b

24a� 9b

� �
;  and  as given in Problem 5.

(19) T
a
b

� �
¼ 11a� 4b

24a� 9b

� �
;  and  as given in Problem 2.

(20) T
a
b

� �
¼ a

b

� �
;  and  as given in Problem 5.

(21) T
a
b

� �
¼ 0

0

� �
;  and  as given in Problem 3.

(22) T
a
b
c

2
4
3
5 ¼

3a� bþ c
2a� 2c
3a� 3bþ c

2
4

3
5;  and  as given in Problem 8.

(23) T
a
b
c

2
4
3
5 ¼

3a� bþ c
2a� 2c
3a� 3bþ c

2
4

3
5;  and  as given in Problem 9.

(24) T
a
b
c

2
4
3
5 ¼

a� b
2b

a� 3c

2
4

3
5;  and  as given in Problem 8.

(25) T
a
b
c

2
4
3
5 ¼

a
2b

�3c

2
4

3
5;  and  as given in Problem 9.

(26) Show directly that A ¼ 2 0
0 2

� �
and B ¼ 2 1

0 2

� �
are not similar.

Hint: Set P ¼ a b
c d

� �
and show that no elements of this matrix exist that

make equation (3.27) valid.

(27) Show directly that there does exist an invertible matrix P this satisfies

equation (3.27) for A ¼ 4 3
�2 �1

� �
and B ¼ 5 �4

3 �2

� �
.

(28) Prove that if A is similar to B then B is similar to A.

(29) Prove that if A is similar to B and B is similar to C, then A is similar to C.

(30) Prove that if A is similar to B, then A2 is similar to B2.

(31) Prove that if A is similar to B, then A3 is similar to B3.

(32) Prove that if A is similar to B, then AT is similar to BT.

(33) Prove that every square matrix is similar to itself.
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(34) Prove that if A is similar to B, then kA is similar to kB for any constant k.

(35) Prove that if A is similar to B and if A is invertible, then B is also invertible
and A�1 is similar to B�1.

(36) Show that there are many P matrices that make equation (3.26) valid for
the two matrix representations obtained in Problem 20.

(37) Show that there are many P matrices that make equation (3.26) valid for
the two matrix representations obtained in Problem 21.

(38) Let ℂ¼{v1, v2, . . ., vn} and let  ¼ v2, v3, . . . , vn, v1f g be a re-ordering
of the ℂ basis by listing v1 last instead of first. Find the transition matrix
from the ℂ basis to the  basis.

(39) Let  be the standard basis for n written as column vectors. Show that if
 ¼ v1; v2; . . . ; vnf g is any other basis of column vectors for n, then the
columns of the transition matrix from  to  are the vectors in .

(40) Let ℂ and  be two bases for a vector space , , and  be two bases for a
vector space , and T:  !  be a linear transformation. Verify the
following:

(i) For any vector v in  there exists a transition matrix P such that

v ¼ P
v.

(ii) For any vector w in  there exists a transition matrix Q such that

w ¼ Q
v.

(iii) If A is a matrix representation of T with respect to the ℂ and  bases,

then w ¼ A
v.

(iv) If A is a matrix representation of T with respect to the  and  bases,

then w ¼ A
v.

(v) w ¼ A
P


v.

(vi) w ¼ Q
A


v.

(vii) A
P


 ¼Q

A

.

(viii) A
 ¼ Q



� ��1
A
P


 .

3.5 PROPERTIES OF LINEAR TRANSFORMATIONS
Because a linear transformation from one finite-dimensional vector space to
another can be represented by a matrix, we can use our understanding of matri-
ces to gain a broader understanding of linear transformations. Alternatively,
becausematrices are linear transformations, we can transport properties of linear
transformations to properties of matrices. Sometimes it will be easier to discover
properties dealing with matrices, because the structure of a matrix is so concrete.
Other times, it will be easier to work directly with linear transformations in the
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abstract, because their structures are so simple. In either case, knowledge about
one, either linear transformations or matrices, provides an understanding about
the other.

▶THEOREM 1
If T:  !  is a linear transformation, then T(0)¼0.◀

Proof: We have from Theorem 1 of Section 2.1 that 00¼0. In addition, T(0) is a
vector in , so 0T(0)¼0. Combining these results with the properties of linear
transformations, we conclude that

T 0ð Þ ¼ T 00ð Þ ¼ 0T 0ð Þ ¼ 0

Note how simple Theorem 1 was to prove using the properties of vector spaces
and linear transformations. To understand Theorem 1 in the context of matrices,
we first note that regardless of the basis  ¼ u1;u2; . . . ;up

� �
selected for a vector

space, the zero vector has the form

0ð Þ ¼ 0u1 þ 0u2 þ � � � þ 0up

The zero vector is unique (Theorem 4 of Section 2.1) and can be written only one
way as a linear combination of basis vectors (Theorem 5 of Section 2.4), hence
the coordinate representation of the zero vector is a zero columnmatrix. Thus, in
terms of matrices, Theorem 1 simply states that the product of a matrix with a
zero column matrix is again a zero column matrix. Theorem 1 is obvious in
the context of matrices, but only after we set it up. In contrast, the theorem
was not so obvious in the context of linear transformations, but much simpler
to prove. In a nutshell, that is the advantage (and disadvantage) of each
approach.

Theorem 1 states that a linear transformation always maps the zero vector in the
domain into the zero vector in . This may not, however, be the only vector

mapped into the zero vector; there may be many more. The projection L: 2 !
2 defined in Example 7 of Section 3.2 as

L a b½ � ¼ a 0½ �
generates the mappings L[0 1]¼ [0 0]¼0, L[0 2]¼ [0 0]¼0, and, in general,
L[0 k]¼0 for any real number k. This projection maps infinitely many different
vectors in the domain into the zero vector. In contrast, the identity mapping
I(v)¼v maps only the zero vector into the zero vector. We define the kernel
(or null space) of a linear transformation T: ! , denoted by ker(T), as the
set of all vectors v 2  that are mapped by T into the zero vector in ; that is,
all v for which T(v)¼0. It follows from Theorem 1 that ker(T) always contains
the zero vector from the domain, so the kernel is never an empty set. We can say
even more.

The kernel of a linear
transformation T is
the set of all vectors v in
the domain for which
T(v)¼0.
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▶THEOREM 2
The kernel of a linear transformation is a subspace of the domain.◀

Proof: Let u and v be any two vectors in the kernel of a linear transformation T,
where T(u)¼0 and T(v)¼0. Then for any two scalars a and b, it follows from the
properties of a linear transformation that

T auþ bvð Þ ¼ aT uð Þ þ bT vð Þ ¼ a0þ b0 ¼ 0þ 0 ¼ 0

Thus, auþbv is also in the kernel and the kernel is a subspace.

In terms of a specific matrix A, the kernel is the set of column vectors x that satisfy
the matrix equation Ax¼0. That is, ker(A) is the set of all solutions to the system
of homogeneous equations Ax¼0. Theorem 2 implies that this set is a subspace.

Example 1 Determine the kernel of the matrix A ¼ 1 1 5
2 �1 1

� �
.

Solution: The kernel of A is the set of all three-dimensional column matrices
x¼ [x y z]T that satisfy the matrix equation

1 1 5
2 �1 1

� � x
y
z

2
4
3
5 ¼

0
0
0

2
4
3
5

or, equivalently, the system of linear equations

xþ y þ 5z ¼ 0
2x� y þ z ¼ 0

The solution to this system is found by Gaussian elimination to be x¼�2z,
y¼�3z, with z arbitrary. Thus, x2ker(A) if and only if

x ¼
x
y
z

2
4
3
53 ¼ z

�2
�3
1

2
4

3
5

where z is an arbitrary real number. The kernel of A is a one-dimensional
subspace of the domain 3; a basis for ker(K) consists of the single vector
[�2 �3 1]T.

The image of a transformation T:  !  is the set of vectors in  that
are matched with at least one vector in ; that is, w is in the image of
T if and only if there exists at least one vector v in the domain for which
T(v)¼w. We shall denote the image of T by Im(T). If T is linear, it follows
from Theorem 1 that Im(T) always contains the zero vector in , because the
zero vector in V is mapped into the zero vector in . We can say even more.

The set of vectors that
satisfy the homogeneous
matrix equation Ax¼0 is
a subspace called the
kernel of A.

The image of a linear
transformation T is the
set of all vectors w in the
range for which there is a
vector v in the domain
satisfying T(v)¼w.

Linear Algebra220



▶THEOREM 3
The image of a linear transformation T: !  is a sub space of .◀

Proof: Letw1 andw2 be any two vectors in the image of a linear transformation T.
Then there must exist vectors v1 and v2 in the domain having the property that
T(v1)¼w1 and T(v2)¼w2. For any two scalars a and b, it follows from the prop-
erties of a linear transformation that

aw1 þ bw2ð Þ ¼ aT v1ð Þ þ bT v2ð Þ ¼ T av1 þ av1ð Þ
Because  is a vector space, av1þbv2 is in the domain, and because this linear
combination maps into aw1þbw2, it follows that aw1þbw2 is in the image of
T. Consequently, Im(T) is a subspace.

In terms of a specific matrix A, the image is the set of column matrices y that sat-
isfy the matrix equation Ax¼y. That is, Im(A) is the set of products Ax for any
vector x in the domain. Theorem 3 implies that this set is a subspace. Denote
the columns of A by A1, A2, . . ., An, respectively, and a column matrix x as x¼
[x1 x2 . . . xn]

T. Then

Ax ¼ x1A1 þ x2A2 þ � � � þ xnAn

That is, the image of A is the span of the columns of A, which is the column space
of A.

Example 2 Determine the image of the matrix A ¼ 1 1 5
2 �1 1

� �
.

Solution: The column space of A is identical to the row space of AT. Using elemen-
tary row operations to transform AT to row-reduced form, we obtain

1 2
0 1
0 0

2
4

3
5

Thismatrix has two nonzero rows; hence, its rank is 2. Thus the rank ofAT, as well

as the rank of A, is 2. A is a 2�3 matrix mapping 3 into 2. The range 2 has
dimension 2, and since the image also has dimension 2, the image must be the

entire range. Thus, Im Að Þ ¼ 2.

Example 3 Identify the kernel and the image of the linear transformation

T: 2 ! 2�2 defined by

T at2 þ bt þ c
� � a 2b

0 a

� �
for all real numbers a, b, and c.

Solution: This transformationmaps polynomials in t of degree 2 or less into 2�2
matrices. In particular,

The image of a matrix is
its column space.
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T 3t2 þ 4t þ 5
� � 3 8

0 3

� �
and

T �t2 þ 5t þ 2
� � ¼ T �t2 þ 5t � 8

� � ¼ �1 10
0 �1

� �

A polynomial in the domain is mapped into the zero matrix if and only if
a¼b¼0, so the kernel is the set of all polynomials of the form 0t2þ0tþ c; that
is, the subspace of all zero-degree polynomials. A basis for ker(T) is {1}. Thus, the

kernel is a one-dimensional subspace of 2.

2�2 is a four-dimensional vector space. The image of T is the subspace contain-
ing all matrices of the form

a 2b
0 a

� �
¼ a

1 0
0 1

� �
þ b

0 2
0 0

� �
which is spanned by the two matrices

1 0
0 1

� �
and

0 2
0 0

� �

It is a simplematter toprove that these twomatrices are linearly independent, so they
form a basis for the image of T. Thus, Im(T) is a two-dimensional subspace of2�2.

It is important to recognize that the kernel and image of a linear transformation
T:  !  are conceptually different subspaces: the kernel is a subspace of the
domain  while the image is a subspace of the range . Figure 3.14 is a sche-
matic rendition of these concepts. The vector space  is depicted by the palette
on the left, the vector space by the palette on the right, and because these vec-
tor spaces can be different, the palettes are drawn differently. Each point in the
interior of a palette denotes a vector in its respective vector space.

Needless to say, both palettes are just symbolic representations of vector spaces
and not true geometrical renditions of either the domain or range.

The palettes in Figure 3.14 are partitioned into two sections, one shaded and one
not. The shaded portion of the left palette represents ker(T), and, as such, every
point in it must be mapped into the zero vector in. This is shown symbolically
by the vector v1. Vectors in the unshaded portion of the left palette, illustrated by

v2

v1

v3
v4

Ker (T )

Im (T )

O O

w1w2

FIGURE 3.14
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the vectors v2, v3, and v4, are mapped into other vectors in. The zero vector in
 is mapped into the zero vector in  as a consequence of Theorem 1.

The shaded portion of the right palette represents the image of T. Any vectorw in
this region has associated with it a vector v in the left palette for which w¼T(v).
The unshaded portion of the right palette is not in the image of T and vectors in it
are not matched with any vectors in domain represented by the left palette.

Even though the kernel and image of a linear transformation are conceptually
different, their bases are related.

▶THEOREM 4
Let T be a linear transformation from an n-dimensional vector space  into  and let

{v1, v2, . . ., vk} be a basis for the kernel of T. If this basis is extended to a basis {v1, v2,

. . ., vk, vkþ1, . . ., vn} for , then {T(vkþ1), T(vkþ2), . . ., T(vn)} is a basis for the image of T.◀

Proof: Wemust show that {T(vkþ1), T(vkþ2), . . ., T(vn)} is a linearly independent
set that spans the image of T. To prove linear independence, we form the
equation

ckþ1T vkþ1ð Þ þ ckþ2T vkþ2ð Þ þ � � � þ cnT vnð Þ ¼ 0 (3.29)

and show that the only solution to this equation is ckþ1¼ ckþ2¼ ¼ � � �¼ cn¼0.
Because T is linear, equation (3.29) can be rewritten as

T ckþ1vkþ1 þ ckþ2vkþ2 þ � � � þ cnvnð Þ ¼ 0

which implies that the sum ckþ1vkþ1þckþ2vkþ2þ� � � cnvn in a vector in the kernel
of T. Every vector in the kernel can be expressed as a unique linear combination
of its basis vectors (Theorem 5 of Section 2.5), so there must exist a unique set of
scalars c1, c2, . . ., ck such that

ckþ1vkþ1 þ ckþ2vkþ2 þ � � � þ cnvn ¼ c1v1 þ c2v2 þ � � � þ ckvk

which can be rewritten as

�c1v1 � c2v2 � � � � � ckvk þ ckþ1vkþ1 þ ckþ2vkþ2 þ � � � þ cnvn ¼ 0 (3.30)

But {v1, v2, . . ., vn} is basis for; consequently, it is linearly independent and the
only solution to equation (3.30) is �c1¼�c2¼� � �¼�ck¼ ckþ1¼ ckþ2 ¼� � �¼
cn¼0. Thus, ckþ1¼ ckþ2¼� � �¼ cn¼0 is the only solution to equation (3.29),
and {T(vkþ1), T(vkþ2), . . ., T(vn)} is linearly independent.

It remains to show that {T(vkþ1), T(vkþ2), . . ., T(vn)} spans the image of T. Let
w denote an arbitrary vector in the image. Then theremust be at least one vector v
in the domain having the property that T(v)¼w. Writing v as a linear combina-
tion of basis vectors, we have v¼d1v1þd2v2þ� � �þdkvkþdkþ1vkþ1þdkþ2vkþ2

þ� � �þdnvn for a unique set of scalars d1, d2, . . ., dn. Then
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w ¼ T vð Þ ¼ T d1v1 þ d2v2 þ � � � þ dkvk þ dkþ1vkþ1 þ dkþ2vkþ2 þ � � � þ dnvnð Þ
¼ d1T v1ð Þ þ d2T v2ð Þ þ � � � þ dkT vkð Þ þ dkþ1T vkþ1ð Þ þ dkþ2T vkþ2ð Þ

þ� � � þ dnT vnð Þ
¼ d10þ d20þ � � � þ dk0þ dkþ1T vkþ1ð Þ þ dkþ2T vkþ2ð Þ þ � � � þ dnT vnð Þ
¼ dkþ1T vkþ1ð Þ þ dkþ2T vkþ2ð Þ þ � � � þ dnT vnð Þ

because v1, v2, . . ., vk are (basis) vectors in the kernel of T and all vectors in ker(T)
map into the zero vector. We conclude that every vector w in the image of T can
be written as a linear combination of {T(vkþ1), T(vkþ2), . . ., T(vn)}, so this set
spans the image.

We have shown that {T(vkþ1), T(vkþ2), . . ., T(vn)} is a linearly independent set
that spans the image of T; hence, it is a basis for that image.

Example 4 Apply Theorem 4 to the linear transformation given in Example 3.

Solution: A basis for the kernel was found to be the set {1} while a basis for the
domain is {1, t, t2}. Theorem 4 states that

T t2
� � ¼ T 1t2 þ 0t þ 0

� � ¼ 1 0
0 1

� �
and

T tð Þ ¼ T 0t2 þ 1t þ 0
� � ¼ 0 2

0 0

� �
form a basis for the image of T, which is precisely the same result obtained in
Example 3.

Example 5 Apply Theorem 4 to the linear transformation T: 4 ! 3 defined by

T

a
b
c
d

2
664
3
775 ¼

aþ b
bþ cþ d
a� c� d

2
4

3
5

Solution: A vector in 4 is in the kernel of T if and only if its components a, b, c,
and d satisfy the system of equations

aþ b ¼ 0
bþ cþ d ¼ 0
a� c� d ¼ 0

Using Gaussian elimination on this system, we obtain as its solution a¼ cþd,
b¼�c�d with c and d arbitrary, which takes the vector form

a
b
c
d

2
664
3
775 ¼

cþ b
�c� d

c
d

2
664

3
775 ¼ c

1
�1
1
0

2
664

3
775þ d

1
�1
0
1

2
664

3
775
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Every vector of this form is in the kernel of T. It is clear that the two vectors on the
right side of this last equation span the kernel of T. It is also easy to show that
these two vectors are linearly independent, so they form a basis for ker(T).

This basis for ker(T) can be extended to the set

1
�1
1
0

2
664

3
775,

1
�1
0
1

2
664

3
775,

1
0
0
0

2
664
3
775,

0
1
0
0

2
664
3
775

8>><
>>:

9>>=
>>;

which forms a basis for 4. It now follows that

T

1
0
0
0

2
664
3
775 ¼

1
0
1

2
4
3
5 and T

0
1
0
0

2
664
3
775 ¼

1
1
0

2
4
3
5

form a basis for the image of T.

Because the kernel and image of a linear transformation T:  ! 
are subspaces, each has a dimension. The dimension of the kernel is its
nullity, denoted by v(T); the dimension of the image is its rank, denoted by
r(T). Assume that dim ð ÞI ¼ n. It follows from Theorem 4 that if there are k
vectors in the basis {v1, v2, . . ., vk} for the kernel of T, so that v(T)¼k, then
a basis for the image of T given by {T(vkþ1), T(vkþ2), . . ., T(vn)} contains
n�k vectors and r(T)¼n�k. Together, r(T)þv(T)¼(n�k)þk¼n, the dimen-
sion of .

The proof of Theorem 4 assumes that 1�k<n. If k¼0, then ker(T) contains just
the zero vector, which has dimension 0. In this case, we let {v1, v1, . . ., vn} be any
basis for , and with minor modifications the proof of Theorem 4 can be
adapted to show that {T(v1), T(v2), . . ., T(vn)} is a basis for the image of T. Once
again, r(T)þv(T)¼nþ0¼n. Finally, if v(T)¼n, then ker(T) must be all of the
domain, all vectors in  map into 0, the image of T is just the zero vector,
r(T)¼0, and r(T)þv(T)¼0þn¼n. We have, therefore, proven one of the more
fundamental results of linear algebra.

▶COROLLARY 1
For any linear transformation T from an n-dimensional vector space  to , the rank of

T plus the nullity of T equals n, the dimension of the domain. That is,

r Tð Þ þ u Tð Þ ¼ n:◀

The startling aspect of Corollary 1 is that the dimension of  is of no conse-
quence. Although the image of T is a subspace of , its dimension when

The nullity and rank of a
linear transformation are,
respectively, the dimen-
sions of its kernel
and image.
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summed with the dimension of the null space of T is the dimension of the
domain.

Example 6 Verify Corollary 1 for the linear transformation T: 2 ! 2�2

defined by

T at2 þ bt þ c
� � ¼ a 2b

0 a

� �
for all real numbers a, b, and c.

Solution: The domain 2 has dimension 3. We showed in Example 3 that a basis
for the kernel contains a single vector and a basis for the image of T contains two
elements. Thus, r(T)¼2, v(T)¼1, and r(T)þv(T)¼2þ1¼3, the dimension of
the domain.

Example 7 Verify Corollary 1 for the linear transformation T: 4 ! 3 defined by

T

a
b
c
d

2
664
3
775 ¼

aþ b
bþ cþ d
a� c� d

2
4

3
5

Solution: The domain 4 has dimension four. We showed in Example 5 that
bases for both the kernel and the image contain two vectors, so r(T)þv(T)¼
2þ2¼4, the dimension of the domain.

If we restrict our attention to an n�p matrix A, then the kernel of A is the sub-
space of all solutions to the homogeneous system of equation Ax¼0 and the
dimension of this subspace is v(A), the nullity of A. The image of A is the column
space of A and its dimension is the column rank of A, which is the rank of the
matrix. Thus, Corollary 1 is simply an alternate formulation of Theorem 3 of
Section 2.6.

A linear transformation T:  !  is one-to-one if the equality T(u)¼
T(v) implies u¼v. A one-to-one linear transformation maps different vectors
in  into different vectors in , as illustrated in Figure 3.15a. If two different
vectors u and v in  map into the same vector in , as illustrated in
Figure 3.15b, then T(u)¼T(v) with u 6¼v, and the transformation is not
one-to-one.

Example8Determinewhether the linear transformationT : 2 ! 2�2 definedby

T at2 þ bt þ c
� � ¼ a 2b

0 a

� �
is one-to-one.

Solution: Here

T �t2 þ 5t þ 2
� � ¼ T �t2 þ 5t � 8

� � ¼ �1 10
0 �1

� �

A linear transformation is
one-to-one if it maps
different vectors in the
domain into different
vectors in the range.
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Setting u¼� t2þ5tþ2 and v¼� t2þ5t�8, we have T(u)¼T(v) with u 6¼v,
hence T is not one-to-one.

Example 9Determine whether the linear transformation T : 2 ! 3 defined by

T
a
b

� �
¼

aþ b
a� b

2aþ 3b

2
4

3
5

is one-to-one.

Solution:Settingu¼ [a b]T, v¼ [c d]T, andT(u)¼T(v),weobtain the vector equation

aþ b
a� b

2aþ 3b

2
4

3
5 ¼

cþ d
c� d

2cþ 3d

2
4

3
5

which is equivalent to the system of equations

aþ b ¼ cþ d
a� b ¼ c� d

2aþ 3b ¼ 2cþ 3d

Solving this system by Gaussian elimination for the variables a and b, thinking of
c and d as fixed constants, we generate the single solution a¼ c and b¼d. There-
fore, the equality T(u)¼T(v) implies that u¼v, and T is one-to-one.

Often, the easiest way to showwhether a linear transformation is one-to-one is to
use the following:

(a) T is one-to-one.

(b) T is not one-to-one.

T

T

T

T

v2

v2

v1

v1

w1

w1

w2

FIGURE 3.15
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▶THEOREM 5
A linear transformation T :  !  is one-to-one if and only if the kernel of T contains just

the zero vector, i.e., v(T)¼0.◀

Proof: Assume that T is one-to-one. If v2ker(T), then T(v)¼0. We know from
Theorem 1 that T(0)¼0. Consequently, T(v)¼T(0), which implies that v¼0,
because T is one-to-one. Thus, if v2ker(T), then v¼0, from which we conclude
that the kernel of T contains just the zero vector.

Conversely, assume that the kernel of T contains just the zero vector. If u and v
are vectors in the domain for which T(u)¼T(v), then T(u)�T(v)¼0 and
T(u�v)¼0, which implies that the vector u�v is in the kernel of T. Since this
kernel contains only the zero vector, it follows that u�v¼0 and u¼v. Thus, the
equality T(u)¼T(v) implies u¼v, from which we conclude that T is one-to-one.

Example 10 Determine whether the linear transformation T : 4 ! 3

defined by

T

a
b
c
d

2
664
3
775 ¼

aþ b
bþ cþ d
a� c� d

2
4

3
5

is one-to-one.

Solution:We showed in Example 5 that a basis for the kernel of T contained two
vectors. Thus, v(T)¼2 6¼0, and the transformation is not one-to-one.

A linear transformation T :  !  is onto if the image of T is all of ; that is,
if the image equals the range. The dimension of the image of T is the rank of
T. Thus, T is onto if and only if the rank of T equals the dimension of . This
provides a straightforward algorithm for testing whether a linear transformation
is onto.

Example 11 Determine whether the linear transformation T : 2 ! 2�2

defined by

T at2 þ bt þ c
� � ¼ a 2b

0 a

� �

is onto.

Solution: We showed in Example 3 that a basis for the kernel of the trans-

formation is the set {1}, hence v(T)¼1. The dimension of the domain 2 is
3, so it follows from Corollary 1 that r(T)þ1¼3 and r(T)¼2. Here
 ¼ 2�2 has dimension 4. Since r Tð Þ ¼ 2 6¼ 4 ¼ dim ð Þ, the transformation
is not onto.

A linear transformation is
onto if its image is
its range.

Linear Algebra228



Example 12 Determine whether the linear transformation T : 2�2 ! 3

defined by

T
a b
c d

� �
¼

aþ b
bþ c
cþ d

2
4

3
5

is onto.

Solution:Amatrix in2�2 is in the kernel of T if and only if its components a, b, c,
and d satisfy the system of equations

aþ b ¼ 0
bþ c ¼ 0
cþ d ¼ 0

The solution to this system is found immediately by back substitution to be
a¼�d, b¼d, c¼�d, with d arbitrary. Thus, amatrix in ker(T)must have the form

�d d
�d d

� �
¼ d

�1 1
�1 1

� �

which implies that the kernel of T is spanned by the matrix

�1 1
�1 1

� �

This matrix is nonzero. It follows from Theorem 2 of Section 2.4 that, by itself,
this matrix is a linearly independent set. Consequently, this matrix forms a basis
for ker(T), and v(T)¼1. The dimension of the domain  ¼ 2�2 is 4, so it fol-
lows from Corollary 1 that r(T)þ1¼4 and r(T)¼3. The dimension of the range

3 is also 3, hence the transformation is onto.

Alternatively, wemay show that thematrix representation of Twith respect to the

standard bases in both 2�2 and 3 is

A ¼
1 1 0 0
0 1 1 0
0 0 1 1

2
4

3
5

A is in row-reduced form and has rank 3. Therefore, r Tð Þ ¼ r Að Þ ¼ 3 ¼ dim 3
� �

,

and we once again conclude that the transformation is onto.

In general, the attributes of one-to-one and onto are quite distinct. A linear
transformation can be one-to-one and onto, or one-to-one and not onto,
onto but not one-to-one, or neither one-to-one nor onto. All four possibilities
exist. There is one situation, however, when one-to-one implies onto and
vice versa.

Linear Transformations CHAPTER 3 229



▶THEOREM 6
Let a linear transformation T: !  have the property that the dimension of  equals the

dimension of . Then T is one-to-one if and only if T is onto.◀

Proof: T is one-to-one if and only if (from Theorem 5) v(T)¼0, which is
true if and only if (Corollary 1) r Tð Þ ¼ dim ð Þ. But dim ð Þ ¼ dim ð Þ; hence,
T is one-to-one if and only if r Tð Þ ¼ dim ð Þ, which is valid if and only if T
is onto.

Problems 3.5

(1) Define T : 3 ! 2 by T[a b c]¼ [aþb c]. Determine whether any of the
following vectors are in the kernel of T.

(a) [1�1 3], (b) [1�1 0],

(c) [2�2 0], (d) [1251 0].

(2) Define S : 3 ! 2 by S[a b c]¼ [a� c c�b]. Determine whether any of the
following vectors are in the kernel of S.

(a) [1 �1 1], (b) [1 1 1],

(c) [�2 �2 �2], (d) [1 1 0].

(3) Define L : 3 ! 2, L[a b c]¼ [aþ2b�3c 0]. Determine whether any of the
following vectors are in the kernel of L.

(a) [1 1 1], (b) [5 �1 1],

(c) [�1 2 1], (d) [�1 5 3].

(4) Define P : 2�2 ! 2�2,P
a b
c d

� �
¼ aþ b 0

0 c� d

� �
. Determine whether

any of the following matrices are in the kernel of P.

(a)
1 1
1 1

� �
, (b)

1 �1
1 1

� �
, (c)

1 1
1 �1

� �
, (d)

1 �1
�1 �1

� �
:

(5) Define T : 2 ! 2 by T(a2t
2þa1tþa0)¼ (a2�a1)t

2þ (a1�a0)t. Determine
whether any of the following vectors are in the kernel of T.

(a) 2t2�3tþ4, (b) t2þ t, (c) 3tþ3, (d) �t2� t�1.

(6) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 1. For each one that is, produce an
element in the domain that maps into it.

(a) [1 1], (b) [1 �1], (c) [2 0], (d) [1 2].
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(7) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 3. For each one that is, produce an
element in the domain that maps into it.

(a) [1 1], (b) [1 0], (c) [2 0], (d) [1 2].

(8) Determine whether any of the following matrices are in the image of the
linear transformation defined in Problem 4. For each one that is, produce
an element in the domain that maps into it.

(a)
1 1
1 1

� �
, (b)

1 0
0 0

� �
, (c)

0 1
0 0

� �
, (d)

3 0
0 �5

� �
:

(9) Redo Problem 8 for P : 2�2 ! 2�2, by P
a b
c d

� �
¼ c a

d b

� �
.

(10) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 5. For each one that is, produce an
element in the domain that maps into it.

(a) 2t2�3tþ4, (b) t2þ2t, (c) 3t, (d) 2t�1.

In Problems 11 through 30, find the nullity and rank of the given linear trans-
formations, and determine which are one-to-one and which are onto.

(11) T: 2 ! 2,T a b½ � ¼ 2a3b½ �.
(12) T: 2 ! 2,T a b½ � ¼ aaþ b½ �.
(13) T: 2 ! 2,T a b½ � ¼ a0½ �.
(14) S: 3 ! 2, S a b c½ � ¼ aþ b c½ �.
(15) S: 3 ! 2, S a b c½ � ¼ a� c c� b½ �.
(16) S: 3 ! 2, S a b c½ � ¼ aþ 2b� 3c0½ �.
(17) S: 2 ! 3, S a b½ � ¼ aþ b2aþ b a½ �.
(18) S: 2 ! 3, S a b½ � ¼ a0b½ �.
(19) N : 2 ! 3,N a b½ � ¼ aþ b2aþ b b½ �.
(20) N : 2 ! 3,N a b½ � ¼ 0 0 2a� 5b½ �.
(21) T: 2 ! 3,T a b½ � ¼ a � a � 8a½ �.
(22) T: 3 ! 1,T a b c½ � ¼ a� c.

(23) L : 3 ! 1, L a b c½ � ¼ 0.

(24) P : 2�2 ! 2�2,P
a b
c d

� �
¼ c a

d b

� �
.
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(25) P:2�2 ! 2�2,P
a b
c d

� �
¼ aþ b 0

0 c� d

� �
.

(26) T: 2�2 ! 2�2,T
a b
c d

� �
¼ 2d 0

0 0

� �
.

(27) R:2�2 ! 1,R
a b
c d

� �
¼ bþ 2c� 3d:

(28) L: 2 ! 2, L a2t
2 þ a1t þ a0ð Þ ¼ a0t.

(29) T: 2 ! 2, T a2t
2 þ a1t þ a0ð Þ ¼ a2 � a1ð Þt2 þ a1 � a0ð Þt.

(30) S: 2 ! 2, S a2t
2 þ a1t þ a0ð Þ ¼ 0.

(31) Determine whether any of the following vectors are in the image of

A ¼ 1 3
0 0

� �
:

(a)
2
6

� �
, (b)

2
0

� �
, (c)

0
2

� �
, (d)

0
0

� �
:

(32) Redo the previous problem for the matrix A ¼ 1 3
0 0

� �
.

(33) Determine whether any of the following vectors are in the image of

A ¼
1 0
1 1
1 1

2
4

3
5.

(a)
1
0
1

2
4
3
5, (b)

2
0
0

2
4
3
5, (c)

4
3
3

2
4
3
5, (d)

4
4
3

2
4
3
5:

In Problems 34 through 42, find a basis for the kernels and a basis for the image
of the given matrices.

(34) A ¼ 1 2
2 4

� �
: (35) B ¼ 1 2

2 5

� �
:

(36) C ¼ 1 �1 0
�1 1 0

� �
: (37) D ¼ 1 0 2

3 0 4

� �
:

(38) E ¼
1 0 1
2 1 3
3 1 4

2
4

3
5: (39) F ¼

1 1 1
1 1 1
1 1 1

2
4

3
5:

(40) G ¼
1 1 0
1 0 1
0 1 1

2
4

3
5: (41) H ¼

1
2
3

2
4
3
5:
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(42) K¼ [1 1 2 2].

(43) What can be said about the ranks of similar matrices?

(44) Prove that if a linear transformation T:  !  is onto, then the dimension
of  cannot be greater than the dimension of .

(45) Use the results of the previous problem to show directly that the transfor-
mation defined in Example 3 is not onto.

(46) Use the results of Problem 44 to show directly that the transformation
defined in Example 9 is not onto.

(47) Prove that if {w1, w2, . . ., wk} are linearly independent vectors in the image
of a linear transformation L :  ! , and ifw1¼T(vi) (i¼1, 2, . . ., k), then
{v1, v2, . . ., vk} is also linearly independent.

(48) Prove that a linear transformation T:  !  cannot be one-to-one if the
dimension of  is less than the dimension of .

(49) Use the result of the previous problem to show directly that the transforma-
tion defined in Example 5 cannot be one-to-one.

(50) Use the result of Problem 48 to show directly that the transformation
defined in Example 12 cannot be one-to-one.

(51) Let {v1, v2, . . ., vp} be a spanning set for  and let T:  !  be a linear
transformation. Prove that {T(v1), T(v2), . . ., T(vp)} is a spanning set for
the image of T.

(52) Prove that a linear transformation T:  !  is one-to-one if and only if the
image of every linearly independent set of vectors in is a linearly indepen-
dent set of vectors in .

(53) Let T:  !  be a linear transformation having the property that the
dimension of  is the same as the dimension of . Prove that T is one-
to-one if the image of any basis of  is a basis for .

(54) Prove that a matrix representation of a linear transformation T:  !  has
an inverse if and only if T is one-to-one.

(55) Prove that a matrix representation of a linear transformation T:  !  has
an inverse if and only if T is onto.

CHAPTER 3 REVIEW
Important Terms

coordinate representation
dilation
domain
function
image

projection onto the x-axis
projection onto the y-axis
range
rank
reflection across the x-axis
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kernel
linear transformation
nullity
null space
one-to-one
onto

reflection across the y-axis
rotations in the x-y plane
similar matrices
transformation
transition matrix
zero transformation

Important Concepts
Section 3.1

n A function is a rule of correspondence between two sets, a domain and range,
that assigns to each element in the domain exactly one element (but not nec-
essarily a different one) in the range.

Section 3.2

n A transformation T is a rule of correspondence between two vector spaces, a
domain  and a range , that assigns to each element in  exactly one ele-
ment (but not necessarily a different one) in .

n A transformation is linear if it preserves linear combinations.
n Every matrix defines a linear transformation.

Section 3.3

n A linear transformation is described completely by its actions on a basis for the
domain.

n Every linear transformation from one finite-dimensional vector space to
another can be represented by a matrix that is basis dependent.

Section 3.4

n In general, a vector has many coordinate representations, a different one for
each basis.

n The transition matrix from ℂ to , where both ℂ and  are bases for the same
finite-dimensional vector space, is invertible and its inverse is the transition
matrix from  to ℂ.

n If vℂ and v are the coordinate representations of the same vector with respect
to the bases ℂ and , respectively, then v ¼ Pv where P is the transition
matrix from ℂ to .

n In general, a linear transformation may be represented by many matrices, a
different one for each basis.

n Two square matrices A and B represent the same linear transformation if and
only if there exists a transition matrix P such that A¼P�1 BP.
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Section 3.5

n A linear transformation alwaysmaps the zero vector in the domain to the zero
vector in the range.

n The kernel of a linear transformation is a nonempty subspace of the domain;
the image of a linear transformation is a nonempty subspace of the range.

n The kernel of the linear transformation defined by a matrix A is the set of all
solutions to the system of homogeneous equations Ax¼0; the image of the
linear transformation is the column space of A.

n If {v1, v2, . . ., vk} is a basis for the kernel of a linear transformation T and if
this basis is extended to a basis {v1, v2, . . ., vk, vkþ1, . . ., vn} for the domain,
then {T(vkþ1), T(vkþ2), . . ., T(vn)} is a basis for the image of T.

n The rank plus the nullity of a linear transformation from one finite-
dimensional vector space to another equals the dimension of the domain.

n A linear transformation is one-to-one if and only if its kernel contains just the
zero vector.

n A linear transformation is onto if and only if its rank equals the dimension of
the range.

n A linear transformation T :  ! , having the property that
dim ð Þ ¼ dim ð Þ, is one-to-one if and only if the transformation is onto.
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CHAPTER 4

Eigenvalues, Eigenvectors,
and Differential Equations
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4.1 EIGENVECTORS AND EIGENVALUES
Many of the uses and applications of linear algebra are especially evident by con-
sidering diagonal matrices. In addition to the fact that they are easy to multiply, a
number of other properties readily emerge: their determinants (see Appendix A)
are trivial to compute, we can quickly determine whether such matrices have
inverses and, when they do, their inverses are easy to obtain. Thus, diagonal matri-
ces are simple matrix representations for linear transformations from a finite-
dimensional vector space to itself (see Section 3.4). Unfortunately, not all linear
transformations from  to  can be represented by diagonal matrices. In this sec-
tion and Section 4.3, we determine which linear transformations have diagonal
matrix representations and which bases generate those representations.

To gain insight into the conditions needed to produce a diagonal matrix repre-

sentation, we consider a linear transformation T: 3 ! 3 having the diagonal
matrix representation

D ¼
l1 0 0
0 l2 0
0 0 l3

2
4

3
5

with respect to the basis ¼{x1, x2, x3}. The first column of D is the coordinate
representation of T(x1) with respect to , the second column of D is the
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coordinate representation of T(x2) with respect to, and the third column ofD is
the coordinate representation of T(x3) with respect to . That is,

T x1ð Þ ¼ l1x1 þ 0x2 þ 0x3 ¼ l1x1

T x2ð Þ ¼ 0x1 þ l2x2 þ 0x3 ¼ l2x2

T x3ð Þ ¼ 0x1 þ 0x2 þ l3x3 ¼ l3x3

Mapping the basis vectors x1, x2, or x3 from the domain of T to the range of T
is equivalent to simply multiplying each vector by the scalar l1, l2, or l3,
respectively.

We say that a nonzero vector x is an eigenvector of a linear transformation T if
there exists a scalar l such that

T xð Þ ¼ lx (4.1)

In terms of a matrix representation A for T, we define a nonzero vector x to be an
eigenvector of A if there exists a nonzero scalar l such that

Ax ¼ lx (4.2)

The scalar l in Equation (4.1) is an eigenvalue of the linear transformation T; the
scalar l in Equation (4.2) is an eigenvalue of the matrix A. Note that an eigenvec-
tor must be nonzero; eigenvalues, however, may be zero.

Eigenvalues and eigenvectors have an interesting geometric interpretation in 2

or 3 when the eigenvalues are real. As described in Section 2.1, multiplying a
vector in either vector space by a real number l results in an elongation of the
vector by a factor of |l| when |l|>1, or a contraction of the vector by a factor
of |l| when |l|<1, followed by no rotation when l is positive, or a rotation
of 180� when l is negative. These four possibilities are illustrated in Figure 4.1

for the vector u in 2 with l¼1/2 and l¼�1/2, and for the vector v in 2 with

l¼3 and l¼�2. Thus, an eigenvector x of a linear transformation T in 2 or 3

is always mapped into a vector T(x) that is parallel to x.

Not every linear transformation has real eigenvalues. Under the rotation trans-
formation R described in Example 7 of Section 3.2, each vector is rotated around
the origin by an angle y in the counterclockwise direction (see Figure 4.2). As
long as y is not an integral multiple of 180�, no nonzero vector is mapped into
another vector parallel to itself.

Example 1 The vector x ¼ �1
1

� �
is an eigenvector of A ¼ 1 2

4 3

� �
because

Ax ¼ 1 2
4 3

� � �1
1

� �
¼ �1

1

� �
¼ �1ð Þ �1

1

� �
¼ �1ð Þx

The corresponding eigenvalue is l¼�1.

Example 2 The vector x ¼
4
1
�2

2
4

3
5 is an eigenvector of A ¼

1 2 3
2 4 6
3 6 9

2
4

3
5 because

A nonzero vector x is an
eigenvector of a square
matrix A if there exists a
scalar l, called an
eigenvalue, such that
Ax¼lx.
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Ax ¼
1 2 3
2 4 6
3 6 9

2
4

3
5 4

1
�2

2
4

3
5 ¼ 0

0
0

2
4
3
5 ¼ 0

4
1
�2

2
4

3
5 ¼ 0x

The corresponding eigenvalue is l¼0.

Eigenvectors and eigenvalues come in pairs. If x is an eigenvector of a matrix A,
then theremust exist an eigenvalue l such that Ax¼lx, which is equivalent to the
equation Ax�lx¼0 or

A � lIð Þx ¼ 0 (4.3)

y

x

R u

uq

FIGURE 4.2

y

3 v

− 2 v

− 2 − 1 1 2 3
x

−1

−2

−3

u

1

2

3

4

1
2

− u

1
2

−

u

FIGURE 4.1
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Note that we cannot write Equation (4.3) as (A�l)x¼0 because subtraction
between a scalar l and a matrix A is undefined. In contrast, A�lI is the dif-
ference between two matrices, which is defined when A and I have the
same order.

Equation (4.3) is a linear homogeneous equation for the vector x. If (A�lI)�1

exists, we can solve Equation (4.3) for x, obtaining x¼ (A�lI)�10¼0, which
violates the condition that an eigenvector be nonzero. It follows that x is an
eigenvector for A corresponding to the eigenvalue l if and only if (A�lI) does
not have an inverse. Alternatively, because a square matrix has an inverse if and
only if its determinant is nonzero, we may conclude that x is an eigenvector for A
corresponding to the eigenvalue l if and only if

det A � lIð Þ ¼ 0 (4.4)

Equation (4.4) is the characteristic equation of A. If A has order n�n, then det
(A�lI) is an nth degree polynomial in l and the characteristic equation of
A has exactly n roots, which are the eigenvalues of A. Once an eigenvalue is
located, corresponding eigenvectors are obtained by solving Equation (4.3).

Example 3 Find the eigenvalues and eigenvectors of A ¼ 1 2
4 3

� �
.

Solution:

A � lI ¼ 1 2
4 3

� �
� l

1 0
0 1

� �
¼ 1� l 2

4 3� l

� �

with det (A�lI)¼ (1�l)(3�l)�8¼l2�4l�5. The characteristic equation of
A is l2�4l�5¼0, having as its roots l¼�1 and l¼5. These two roots are the
eigenvalues of A.

Eigenvectors of A have the form x¼ [x y]T. With l¼�1, Equation (4.3) becomes

A � lIð Þx ¼ 1 2
4 3

� �
� �1ð Þ 1 0

0 1

� �� �
x
y

� �
¼ 0

0

� �
or

2 2
4 4

� �
x
y

� �
¼ 0

0

� �

The solution to this homogeneous matrix equation is x¼�y, with y arbitrary.
The eigenvectors corresponding to l¼�1 are

x ¼ x
y

� �
¼ �y

y

� �
¼ y

�1
1

� �
for any nonzero scalar y. We restrict y to be nonzero to insure that the eigen-
vectors are nonzero.

To find eigenvalues
and eigenvectors for a
matrix A, first solve the
characteristic equation,
Equation (4.4), for the
eigenvalues and then for
each eigenvalue solve
Equation (4.3) for the
corresponding
eigenvectors.
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With l¼5, Equation (4.3) becomes

A � lIð Þx ¼ 1 2
4 3

� �
� 5

1 0
0 1

� �� �
x
y

� �
¼ 0

0

� �
or

�4 2
4 �2

� �
x
y

� �
¼ 0

0

� �

The solution to this homogeneous matrix equation is x¼ y/2, with y arbitrary.
The eigenvectors corresponding to l¼5 are

x ¼ x
y

� �
¼ y=2

y

� �
¼ y

2

1
2

� �

for any nonzero scalar y.

Example 4 Find the eigenvalues and eigenvectors of A ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5.

Solution:

A � lI ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5� l

1 0 0
0 1 0
0 0 1

2
4

3
5 ¼ 2� l �1 0

3 �2� l 0
0 0 1� l

2
4

3
5

Using expansion by cofactors with the last row, we find that

det A � lIð Þ ¼ 1� lð Þ 2� lð Þ �2� lð Þ þ 3½ � ¼ 1� lð Þ l2 � 1
� �

The characteristic equation of A is (1�l)(l2�1)¼0; hence, the eigenvalues of
A are l1¼l2¼1 and l3¼�1.
Eigenvectors of A have the form x¼ [x y z]T. With l¼1, Equation (4.3) becomes

A � lIð Þx ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5� 1ð Þ

1 0 0
0 1 0
0 0 1

2
4

3
5

8<
:

9=
;

x
y
z

2
4
3
5 ¼ 0

0
0

2
4
3
5

or

1 �1 0
3 �3 0
0 0 0

2
4

3
5 x

y
z

2
4
3
5 ¼ 0

0
0

2
4
3
5

The solution to this homogeneous matrix equation is x¼ y, with both y and z
arbitrary. The eigenvectors corresponding to l¼1 are
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x ¼
x
y
z

2
4
3
5 ¼ y

y
z

2
4
3
5 ¼ y

1
1
0

2
4
3
5þ z

0
0
1

2
4
3
5

for y and z arbitrary, but not both zero to insure that the eigenvectors
are nonzero.

With l¼�1, Equation (4.3) becomes

A � lIð Þx ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5� �1ð Þ

1 0 0
0 1 0
0 0 1

2
4

3
5

8<
:

9=
;

x
y
z

2
4
3
5 ¼ 0

0
0

2
4
3
5

or

3 �1 0
3 �1 0
0 0 2

2
4

3
5 x

y
z

2
4
3
5 ¼ 0

0
0

2
4
3
5

The solution to this homogeneous matrix equation is x¼ y/3 and z¼0, with y
arbitrary. The eigenvectors corresponding to l¼�1 are

x ¼
x
y
z

2
4
3
5 ¼ y=3

y
0

2
4

3
5 ¼ y

3

1
3
0

2
4
3
5

for any nonzero scalar y.

The roots of a characteristic equation can be repeated. If l1¼l2¼l3¼� � �lk, the
eigenvalue is said to be ofmultiplicity k. Thus, in Example 4, l¼1 is an eigenvalue
of multiplicity 2 while l¼�1 is an eigenvalue of multiplicity 1.

Locating eigenvalues is a matrix-based process. To find the eigenvalues of a more
general linear transformation, we could identify a matrix representation for the
linear transformation and then find the eigenvalues of that matrix. Because a lin-
ear transformation has many matrix representations, in general a different one
for each basis, this approach would be useless if different matrix representations
of the same linear transformation yielded different eigenvalues. Fortunately, this
cannot happen. We know from Theorem 3 of Section 3.4 that two different
matrix representations of the same linear transformation are similar. To this
we now add:

▶THEOREM 1
Similar matrices have the same characteristic equation (and, therefore, the same

eigenvalues).◀
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Proof: Let A and B be similar matrices. Then there must exist a nonsingular
matrix P such that A¼P�1 BP. Since

lI ¼ lP�1P ¼ P�1lP ¼ P�1lIP

it follows that

jA � lIj ¼ jP�1BP� P�1lIPj ¼ jP�1 B� lIð ÞPj
¼ jP�1jjB� lIjjPj Theorem 1 of Appendix A

¼ 1

Pj j jB� lIjjPj Theorem 8 of Appendix A

¼ jB� lIj

Thus the characteristic equation of A, namely |A�lI|¼0, is identical to the
characteristic of B, namely |B�lI|¼0.

It follows from Theorem 1 that if twomatrices do not have the same characteristic
equations then the matrices cannot be similar. It is important to note, however,
that Theorem1makes no conclusions aboutmatrices with the same characteristic
equation. Such matrices may or may not be similar.

Example 5 Determine whether A ¼ 1 2
4 3

� �
is similar to B ¼ 1 2

4 3

� �
.

Solution: The characteristic equation of A is l2�4l�5¼0 while that of B is
l2�3l�10¼0. Because these equations are not identical, A cannot be
similar to B.

The eigenvectors x corresponding to the eigenvalue l of amatrixA are all nonzero
solutions of the matrix Equation (A�lI)x¼0. This matrix equation defines
the kernel of (A�lI), a vector space known as the eigenspace of A for the eigen-
value l. The nonzero vectors of an eigenspace are the eigenvectors. Because basis
vectors must be nonzero, the eigenvectors corresponding to a particular eigen-
value are described most simply by just listing a basis for the corresponding
eigenspace.

Example 6 Find bases for the eigenspaces of A ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5.

Solution:Wehave from Example 4 that the eigenvalues of A are 1 and�1. Vectors
in the kernel of A�(1)I have the form

x ¼ y
1
1
0

2
4
3
5þ z

0
0
1

2
4
3
5

If two matrices do
not have the same
characteristic equations,
then they are not similar.
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with y and z arbitrary, but not both zero. Clearly [1 1 0]T and [0 0 1]T span
the eigenspace of A for l¼1, and because these two vectors are linearly indepen-
dent they form a basis for that eigenspace.

Vectors in the kernel of A� (�1)I have the form

x ¼ y

3

1
3
0

2
4
3
5

Because every vector in the eigenspace of A for l¼�1 is a scalar multiple of
[1 3 0]T, this vector serves as a basis for that eigenspace.

If A
 is a matrix representation of a linear transformation with respect to a

basis C and if A
 is a matrix representation of the same linear transformation

but with respect to a basis , then it follows from Equation (3.26) of
Section 3.4 that

A
 ¼ P



� ��1
A
 P



where P
 denotes a transition matrix from  to . Let l be an eigenvalue of A


with a corresponding eigenvalue x. Then

A
x ¼ lx

P


� ��1
A
 P

x ¼ lx

and

A
 P

x ¼ P
 lxð Þ ¼ lP

x

If we set

y ¼ P
x (4.5)

we have

A
y ¼ ly

which implies that y is an eigenvector of A
. But it follows from Theorem 1 of

Section 3.4 that y is the same vector as x, just expressed in a different basis. Thus,
once we identify an eigenvector for a matrix representation of a linear transfor-
mation T, that eigenvector is a coordinate representation for an eigenvector of T,
in the same basis used to create the matrix.

We now have a procedure for finding the eigenvalues and eigenvectors of a
linear transformation T from one finite-dimensional vector space to itself.
We first identify a matrix representation A for T and then determine the
eigenvalues and eigenvectors of A. Any matrix representation will do, although
a standard basis is used normally when one is available. The eigenvalues of
A are the eigenvalues T (see Theorem 1). The eigenvectors of A are coordinate

An eigenspace of A for
the eigenvalue l is the
kernel of A�lI. Nonzero
vectors of this vector
space are eigenvectors
of A.

To find the eigenvalues
and eigenvectors for a
linear transformation
T : ! , find the
eigenvalues and eigen-
vectors of any matrix
representation for T.
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representations for the eigenvectors of T, with respect to the basis used to
generate A.

Example 7 Determine the eigenvalues and a basis for the eigenspaces of

T: 1 ! 1 defined by

T at þ bð Þ ¼ aþ 2bð Þt þ 4aþ 3bð Þ

Solution: A standard basis for 1 is  ¼ t; 1f g. With respect to this basis

T tð Þ ¼ t þ 4 ¼ 1ð Þt þ 4 1ð Þ $ 1
4

� �

T 1ð Þ ¼ 2t þ 3 ¼ 2ð Þt þ 3 1ð Þ $ 2
3

� �

so the matrix representation of T with respect to  is

A ¼ 1 2
4 3

� �

We have from Example 3 that the eigenvalues of this matrix are�1 and 5, which
are also the eigenvalues of T. The eigenvectors of A are, respectively,

y
�1
1

� �
and

y

2

1
2

� �
with y arbitrary but nonzero.

The eigenspace of A for l¼�1 is spanned by [�1 1]T, hence this vector serves as
a basis for that eigenspace. Similarly, the eigenspace of A for l¼5 is spanned by
[1 2]T, so this vector serves as a basis for that eigenspace. These 2-tuples are coor-
dinate representations for

�1
1

� �
$ �1ð Þt þ 1ð Þ1 ¼ �t þ 1

and

1
2

� �
$ 1ð Þt þ 2ð Þ1 ¼ t þ 2

Therefore, the polynomial �tþ1 is a basis for the eigenspace of T for the eigen-
value �1 while the polynomial tþ2 is a basis for the eigenspace of T for the
eigenvalue 5. As a check, we note that

T �t þ 1ð Þ ¼ t � 1 ¼ �1 �t þ 1ð Þ
T t þ 2ð Þ ¼ 5t þ 10 ¼ 5 t þ 2ð Þ

The characteristic equation of a real matrix may have complex roots, and these
roots are not eigenvalues for linear transformations on real-valued vector spaces.

Eigenvalues, Eigenvectors CHAPTER 4 245



If a matrix is real, then eigenvectors corresponding to complex eigenvalues have
complex components and such vectors are not elements of real vector space.
Thus, there are no vectors in a real-valued vector space that satisfy Ax¼lx when
l is complex.

Example 8 Determine the eigenvalues of T: 3 ! 3 defined by

T
a
b
c

2
4

3
5 ¼ 2a

2bþ 5c
�b� 2c

2
4

3
5

Solution: Using the standard basis for 3, we have

T
1
0
0

2
4
3
5 ¼ 2

0
0

2
4
3
5 ¼ 2

1
0
0

2
4
3
5þ 0

0
1
0

2
4
3
5þ 0

0
0
1

2
4
3
5$ 2

0
0

2
4
3
5

T
0
1
0

2
4
3
5 ¼ 0

2
�1

2
4

3
5 ¼ 0

1
0
0

2
4
3
5þ 2

0
1
0

2
4
3
5þ �1ð Þ

0
0
1

2
4
3
5$ 0

2
�1

2
4

3
5

T
0
0
1

2
4
3
5 ¼ 0

5
�2

2
4

3
5 ¼ 0

1
0
0

2
4
3
5þ 5

0
1
0

2
4
3
5þ �2ð Þ

0
0
1

2
4
3
5$ 0

5
�2

2
4

3
5

where (as always when using this basis) the coordinate representation for any
vector in 3 is the vector itself. The matrix representation for T with respect to
the standard basis is

A ¼
2 0 0
0 2 5
0 �1 �2

2
4

3
5

Here

A � lI ¼
2� l 0 0

0 2� l 5
0 �1 �2� l

2
4

3
5

Using expansion by cofactors with the first row, we find that

det A � lIð Þ ¼ 2� lð Þ 2� lð Þ �2� lð Þ þ 5½ � ¼ 2� lð Þ l2 þ 1
� �

The characteristic equation of A is (2�l)(l2þ1)¼0 with roots l1¼2, l2¼ i, and
l3¼� i. The only real root is 2, which is the only eigenvalue for the given linear
transformation.

Once an eigenvalue of a matrix is known, it is straightforward to identify the cor-
responding eigenspace. Unfortunately, determining the eigenvalues of a matrix,
especially a square matrix with more than 10 rows, is difficult. Even some square
matrices with just a few rows, such as
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A ¼
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

2
664

3
775

can be problematic. In most applications, numerical techniques (see Sections 4.4,
5.4, and Appendix D) are used to approximate the eigenvalues.

Problems 4.1
(1) Determine by direct multiplication which of the following vectors are

eigenvectors for A ¼ 1 2
�4 7

� �
.

(a)
1
1

� �
, (b)

1
�1
� �

, (c)
2
1

� �
,

(d)
1
2

� �
, (e)

2
2

� �
, (f)

0
0

� �
,

(g)
�4
�4
� �

, (h)
4
�4
� �

, (i)
2
4

� �
:

(2) What are the eigenvalues that correspond to the eigenvectors found in
Problem 1?

(3) Determine by direct multiplication which of the following vectors are

eigenvectors for A ¼
2 0 �1
1 2 1
�1 0 2

2
4

3
5.

(a)
1
0
0

2
4
3
5, (b)

0
1
0

2
4
3
5, (c)

1
�2
1

2
4

3
5,

(d)
�3
6
�3

2
4

3
5, (e)

�1
0
1

2
4

3
5, (f)

1
0
1

2
4
3
5,

(g)
2
0
�2

2
4

3
5, (h)

1
1
1

2
4
3
5, (i)

0
0
0

2
4
3
5:

(4) What are the eigenvalues that correspond to the eigenvectors found in
Problem 3?

(5) Determine by direct evaluation which of the following matrices are eigen-
vectors for the linear transformation T: 2�2 !2�2 defined by

T
a b
c d

� �
¼ aþ 3b a� b

cþ 2d 4cþ 3d

� �
.
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(a)
1 �1
0 0

� �
, (b)

0 0
1 �1
� �

, (c)
1 0
0 �1
� �

,

(d)
3 1
0 0

� �
, (e)

0 0
0 0

� �
, (f)

1 1
0 0

� �
:

(6) What are the eigenvalues that correspond to the eigenvectors found in
Problem 5?

(7) Determine by direct evaluation which of the following polyno-

mials are eigenvectors for the linear transformation T: 1 ! 1 defined
by T(atþb)¼ (3aþ5b)t–(2aþ4b).

(a) t � 1, (b) t2þ1, (c) 5t � 5,

(d) 5t � 2, (e) 5t, (f) �10tþ2.

(8) What are the eigenvalues that correspond to the eigenvectors found in
Problem 7?

In Problems 9 through 32, find the eigenvalues and a basis for the eigenspace
associated with each eigenvalue for the given matrices.

(9)
1 2
�1 4

� �
. (10)

2 1
2 3

� �
. (11)

2 3
4 6

� �
.

(12)
3 6
9 6

� �
. (13)

1 2
4 �1
� �

. (14)
2 5
�1 �2
� �

.

(15)
3 1
0 3

� �
. (16)

3 0
0 3

� �
. (17)

0 t
2t �t
� �

.

(18)
4y 2y
�y y

� �
.

(19)
1 0 3
1 2 1
3 0 1

2
4

3
5. (20)

2 0 �1
2 2 2
�1 0 2

2
4

3
5.

(21)
3 0 �1
2 3 2
�1 0 3

2
4

3
5. (22)

2 1 1
0 1 0
1 1 2

2
4

3
5. (23)

2 1 1
0 1 0
1 2 2

2
4

3
5.

(24)
1 2 3
2 4 6
3 6 9

2
4

3
5. (25)

0 1 0
0 0 1

27 �27 9

2
4

3
5. (26)

4 2 1
2 7 2
1 2 4

2
4

3
5.

(27)
5 �7 7
4 �3 4
4 �1 2

2
4

3
5. (28)

3 1 �1
1 3 �1
�1 �1 5

2
4

3
5.

(29)

0 1 0 0
0 0 1 0
0 0 0 1
�1 4 �6 4

2
664

3
775.

(30)

1 0 0 0

0 0 1 0

0 0 0 1

0 1 �3 3

2
6664

3
7775. (31)

1 0 0 0

1 2 1 1

1 1 2 1

1 1 1 2

2
6664

3
7775. (32)

3 1 1 2

0 3 1 1

0 0 2 0

0 0 0 2

2
6664

3
7775.
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In Problems 33 through 37, find a basis of unit eigenvectors for the eigenspaces
associated with each eigenvalue of the following matrices.

(33) The matrix in Problem 9.

(34) The matrix in Problem 10.

(35) The matrix in Problem 11.

(36) The matrix in Problem 19.

(37) The matrix in Problem 20.

In Problems 38 through 53, find the eigenvalues and a basis for the eigenspace
associated with each eigenvalue for the given linear transformations.

(38) T: 1 ! 1 such that T(atþb)¼ (3aþ5b)tþ (5a�3b).

(39) T: 1 ! 1 such that T(atþb)¼ (3aþ5b)t� (2aþ4b).

(40) T: 2 ! 2 such that T(at2þbtþ c)¼ (2a� c)t2þ (2aþb�2c)tþ (�aþ2c).

(41) T: 2 ! 2 such that T
a
b

� �
¼ 2a� b

aþ 4b

� �
.

(42) T: 2 ! 2 such that T
a
b

� �
¼ 4aþ 10b

9a� 5b

� �
.

(43) T: 3 ! 3 such that T
a
b
c

2
4
3
5 ¼ aþ b� c

0
aþ 2bþ 3c

2
4

3
5.

(44) T: 3 ! 3 such that T

a

b

c

2
4
3
5 ¼ 3a� bþ c

�aþ 3b� c

a� bþ 3c

2
4

3
5.

(45) T: ! , where  is the set of all 2�2 real upper triangular matrices,
such that

T
a b

0 c

� �
¼ b c

0 a� 3bþ 3c

� �
.

(46) T: 1 ! 1 such that T¼d/dt; that is, T at þ bð Þ ¼ d

dt
at þ bð Þ ¼ a.

(47) T: 2 ! 2 such that T¼d/dt; that is, T at2 þ bt þ cð Þ ¼ d

dt
at2 þ bt þ c
� �

¼ 2at þ b.

(48) T: 2 ! 2 such that T¼d2/dt2; that is, T at2 þ bt þ cð Þ ¼ d2

dt2
at2 þ bt þ c
� �

¼ 2a.

(49) T: !  such that T¼d/dt and  ¼ span e3t; e�3tf g.
(50) T: !  such that T¼d2/dt2 and  ¼ span e3t; e�3tf g.
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(51) T: !  such that T¼d/dt and  ¼ span sin t, cos tf g.
(52) T: !  such that T¼d2/dt2 and  ¼ span sin t, cos tf g.
(53) T: !  such that T¼d2/dt2 and  ¼ span sin 2t, cos 2tf g.
(54) Consider the matrix

C ¼

0 1 0 . . . 0
0 0 1 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 0 ..
.

1
�a0 �a1 �a2 . . . �an�1

2
666664

3
777775:

Use mathematical induction to prove that

det C� lIð Þ ¼ �1ð Þn ln þ an�1ln�1 þ � � � þ a2l
2 þ a1lþ a0

� �
:

Deduce that the characteristic equation for this matrix is

ln þ an�1ln�1 þ � � � þ a2l
2 þ a1lþ a0 ¼ 0:

The matrix C is called the companion matrix for this characteristic equation.

4.2 PROPERTIES OF EIGENVALUES
AND EIGENVECTORS
The eigenvalues of a linear transformation T from a finite-dimensional vector
space to itself are identical to the eigenvalues of any matrix representation for
T. Consequently, we discover information about one by studying the other.

The kernel of A�lI is a vector space for any square matrix A, and all nonzero
vectors of this kernel are eigenvectors of A. A vector space is closed under scalar
multiplication, so kx is an eigenvector of A for any nonzero scalar kwhenever x is
an eigenvector. Thus, in general, a matrix has a finite number of eigenvalues but
infinitely many eigenvectors. A vector space is also closed under vector addition,
so if x and y are two eigenvectors corresponding to the same eigenvalue l, then so
too is xþy, providing this sum is not the zero vector.

The trace of a square matrix A, designated by tr(A), is the sum of the elements on
the main diagonal of A. In particular, the trace of

A ¼
�1 2 0
�3 6 8
5 4 �2

2
4

3
5

is tr(A)¼�1þ6þ (�2)¼3.

▶THEOREM 1
The sum of the eigenvalues of a matrix equals the trace of the matrix.◀
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We leave the proof of Theorem 1 as an exercise (see Problem 21). This result pro-
vides a useful check on the accuracy of computed eigenvalues. If the sum of the
computed eigenvalues of a matrix do not equal the trace of the matrix, there is an
error! Beware, however, that Theorem 1 only provides a necessary condition on
eigenvalues, not a sufficient condition. That is, no conclusions can be drawn
from Theorem 1 if the sum of a set of eigenvalues equals the trace. Eigenvalues
of amatrix can be computed incorrectly and still have their sum equal the trace of
the matrix.

Example 1 Determine whether l1¼12 and l2¼�4 are eigenvalues for

A ¼ 11 3
�5 �5
� �

Solution: Here tr(A)¼11þ (�5)¼6 6¼8¼l1þl2, so these numbers are not the
eigenvalues of A. The eigenvalues for this matrix are 10 and �4, and their
sum is the trace of A.

The determinant of an upper (or lower) triangular matrix is the product of ele-
ments on the main diagonal, so it follows immediately that

▶THEOREM 2
The eigenvalues of an upper or lower triangular matrix are the elements on the main

diagonal.◀

Example 2 The matrix
1 0 0
2 1 0
3 4 �1

2
4

3
5 is lower triangular, so its eigenvalues are

l1¼l2¼1 and l3¼�1.
Once the eigenvalues of a matrix are known, one can determine immediately
whether the matrix is singular.

▶THEOREM 3
A matrix is singular if and only if it has a zero eigenvalue.◀

Proof: A matrix A has a zero eigenvalue if and only if det (A�0I)¼0, or (since
0I¼0) if and only if det (A)¼0, which is true (see Theorem 11 of Appendix A) if
and only if A is singular.

A nonsingular matrix and its inverse have reciprocal eigenvalues and identical
eigenvectors.
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▶THEOREM 4
If x is an eigenvector of an invertible matrix A corresponding to the eigenvalue l, then x is

also an eigenvector of A�1 corresponding to the eigenvalue 1/l.◀

Proof: Since A is invertible, Theorem 3 implies that l 6¼0; hence 1/l exists. We
have that Ax¼lx. Premultiplying both sides of this equation by A�1, we obtain

x ¼ lA�1x or A�1x ¼ 1=lð Þx

Thus, x is an eigenvector of A�1 with corresponding eigenvalue 1/l.

We may combine Theorem 3 with Theorem 10 of Appendix A and Theorems 5
and 6 of Section 2.6 to obtain the following result.

▶THEOREM 5
The following statements are equivalent for an n�n matrix A:

(i) A has an inverse.

(ii) A has rank n.

(iii) A can be transformed by elementary row operations to an upper triangular matrix with

only unity elements on the main diagonal.

(iv) A has a nonzero determinant.

(v) Every eigenvalue of A is nonzero.◀

Multiplying the equation Ax¼lx by a scalar k, we obtain (kA)x¼ (kl)x. Thus we
have proven Theorem 6.

▶THEOREM 6
If x is an eigenvector of A corresponding to the eigenvalue l, then kl and x are a corre-

sponding pair of eigenvalues and eigenvectors of kA, for any nonzero scalar k.◀

Theorem 1 provides a relationship between the sum of the eigenvalues of a
matrix and its trace. There is also a relationship between the product of those
eigenvalues and the determinant of the matrix. The proof of the next theorem
is left as an exercise (see Problem 22).

▶THEOREM 7
The product of all the eigenvalues of a matrix (counting multiplicity) equals the determinant

of the matrix.◀
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Example 3 The eigenvalues of A ¼ 11 3
�5 �5
� �

are l1¼10 and l2¼�4. Here

det(A)¼�55þ15¼�40¼l1l2.

▶THEOREM 8
If x is an eigenvector of A corresponding to the eigenvalue l, then ln and x are a

corresponding pair of eigenvalues and eigenvectors of An, for any positive integer n.◀

Proof: We are given that Ax¼lx and we need to show that

Anx ¼ lnx (4.6)

We prove this last equality by mathematical induction on the power n. Equa-
tion (4.6) is true for n¼1 as a consequence of the hypothesis of the theorem.
Now assume that the proposition is true for n¼k�1. Then

Ak�1x ¼ lk�1x

Premultiplying this equation by A, we have

A Ak�1x
� � ¼ A lk�1x

� 	
or

Akx ¼ lk�1 Axð Þ
It now follows from the hypothesis of the theorem that

Akx ¼ lk�1 lxð Þ
or

Akx ¼ lkx
which implies that the proposition is true for n¼k. Thus, Theorem 8 is proved by
mathematical induction.

The proofs of the next two results are left as exercises for the reader (see Problems
16 and 17).

▶THEOREM 9
If x is an eigenvector ofA corresponding to the eigenvalue l, then for any scalar c, l�c and

x are a corresponding pair of eigenvalues and eigenvectors of A�cI.◀

▶THEOREM 10
If l is an eigenvalue of A, then l also an eigenvalue of AT.◀
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Problems 4.2

(1) One eigenvalue of the matrix A ¼ 8 2
3 3

� �
is known to be 2.

Determine the second eigenvalue by inspection.

(2) One eigenvalue of the matrix A ¼ 8 3
3 2

� �
is known to be 0.7574 rounded

to four decimal places. Determine the second eigenvalue by inspection.

(3) Two eigenvalues of a 3�3matrix are known to be 5 and 8.What can be said
about the third eigenvalue if the trace of the matrix is �4?

(4) Redo Problem 3 if �4 is the determinant of the matrix instead of its trace.

(5) The determinant of a 4�4 matrix is 144 and two of its eigenvalues are
known to be�3 and 2. What can be said about the remaining eigenvalues?

(6) A 2�2 matrix A is known to have the eigenvalues �3 and 4. What are the
eigenvalues of

(a) 2A, (b) 5A, (c) A�3I, (d) Aþ4I.

(7) A 3�3matrixA is known to have the eigenvalues�2, 2, and 4.What are the
eigenvalues of
(a) A2, (b) A3, (c) �3A, (d) Aþ3I.

(8) A 2�2 matrix A is known to have the eigenvalues �1 and 1. Find a matrix
in terms of A that has for its eigenvalues

(a) �2 and 2, (b) �5 and 5, (c) 1 and 1, (d) 2 and 4.

(9) A 3�3 matrix A is known to have the eigenvalues 2, 3, and 4. Find a matrix
in terms of A that has for its eigenvalues

(a) 4, 6, and 8, (b) 4, 9, and 16, (c) 8, 27, and 64, (d) 0, 1, and 2.

(10) Verify Theorems 1 and 7 for A ¼ 8 3
3 2

� �
.

(11) Verify Theorems 1 and 7 for A ¼
1 3 6
�1 2 �1
2 1 7

2
4

3
5.

(12) What are the eigenvalues of A�1 for the matrices defined in Problems 10
and 11?

(13) Show by example that, in general, an eigenvalue of AþB is not the sum of
an eigenvalue of A with an eigenvalue of B.

(14) Show by example that, in general, an eigenvalue of AB is not the product of
an eigenvalue of A with an eigenvalue of B.

(15) Show by example that an eigenvector of A need not be an eigenvector of AT.
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(16) Prove Theorem 9.

(17) Prove Theorem 10.

(18) The determinant of A�lI is known as the characteristic polynomial of A. For
an n�n matrix A it has the form

det A � lIð Þ ¼ �1ð Þn ln þ an�1ln�1 þ an�2ln�2 þ � � � þ a2l
2 þ a1lþ a0

� �
,

where an�1, an�2, . . . , a2, a1, and a0 are constants that depend on the ele-
ments of A. Show that (�1)na0¼det(A).

(19) (Problem 18 continued.) Convince yourself by considering arbitrary 2�2,
3�3, and 4�4 matrices that (�1)an�1¼ tr(A).

(20) Consider an n�n matrix A with eigenvalues l1, l2, . . . , ln, where some or
all of the eigenvalues may be equal. Each eigenvalue li(i¼1, 2, . . . , n) is a
root of the characteristic polynomial; hence (l�li) must be a factor of that
polynomial. Deduce that det(A � lI)¼ (�1)n(l � l1)(l � l2) . . . (l � ln).

(21) Use the results of Problems 19 and 20 to prove Theorem 1.

(22) Use the results of Problems 18 and 20 to prove Theorem 7.

(23) The Cayley-Hamilton theorem states that every square matrix A satisfies
its own characteristic equation. That is, if the characteristic equation
of A is

ln þ an�1ln�1 þ an�2ln�2 þ � � � þ a2l
2 þ a1lþ a0 ¼ 0;

then

An þ an�1An�1 þ an�2An�2 þ � � � þ a2A
2 þ a1Aþ a0I ¼ 0:

Verify the Cayley-Hamilton theorem for

(a)
1 2
3 4

� �
, (b)

1 2
2 4

� �
, (c)

2 0 1
4 0 2
0 0 �1

2
4

3
5,

(d)

1 �1 2

0 3 2

2 1 2

2
4

3
5, (e)

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

2
6664

3
7775:

(24) Let the characteristic equation of a square matrix A be as given in Problem
23. Use the results of Problem 18 to prove that A is invertible if and only
if a0 6¼0.

(25) Let the characteristic equation of a square matrix A be given as in Problem
23. Use the Cayley-Hamilton theorem to show that
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A�1 ¼ �1
a0

An�1 þ an�1An�2 þ � � � þ a2Aþ a1I
� �

when a0 6¼0.

(26) Use the result of Problem 25 to find the inverses, when they exist, for the
matrices defined in Problem 23.

4.3 DIAGONALIZATION OF MATRICES
We are ready to answer the question that motivated this chapter: Which linear
transformations can be represented by diagonal matrices and what bases gen-
erate such representations? Recall that different matrices represent the same
linear transformation if and only if those matrices are similar (Theorem 3 of
Section 3.4). Therefore, a linear transformation has a diagonal matrix represen-
tation if and only if any matrix representation of the transformation is similar to
a diagonal matrix.

To establish whether a linear transformation T has a diagonal matrix represen-
tation, we first create one matrix representation for the transformation and then
determine whether that matrix is similar to a diagonal matrix. If it is, we say the
matrix is diagonalizable, in which case T has a diagonal matrix representation.

If a matrix A is similar to a diagonal matrix D, then the form ofD is determined.
Both A and D have identical eigenvalues, and the eigenvalues of a diagonal
matrix (which is both upper and lower triangular) are the elements on its main
diagonal. Consequently, the main diagonal ofDmust be the eigenvalues of A. If,
for example,

A ¼ 1 2
4 3

� �
with eigenvalues �1 and 5, is diagonalizable, then A must be similar to either

�1 0
0 5

� �
or

5 0
0 �1
� �

Now let A be an n�nmatrix with n linearly independent eigenvectors x1, x2, . . . , xn
corresponding to the eigenvalues l1, l2, . . . , ln, respectively. Therefore,

Axj ¼ ljxj (4.7)

for j¼1,2, . . . , n. There are no restrictions on the multiplicity of the eigenvalues,
so some or all of them may be equal. Set

M ¼ x1 x2 . . . xn½ � and

D ¼

l1 0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ln

2
6664

3
7775

A matrix is diagonalizable
if it is similar to a
diagonal matrix.
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Here M is called a modal matrix for A and D a spectral matrix for A. Now

AM ¼ A x1 x2 . . . xn½ �
¼ Ax1 Ax2 . . . Axn½ �
¼ l1x1 l2x2 . . . lnxn½ �
¼ x1 x2 . . . xn½ �D
¼ MD

(4.8)

Because the columns ofM are linearly independent, the column rank ofM is n, the
rank ofM is n, and M�1 exists. Premultiplying Equation (4.8) byM�1, we obtain

D ¼ M�1AM (4.9)

Postmultiplying Equation (4.8) by M�1, we have

A ¼ MDM�1 (4.10)

Thus, A is similar toD. We can retrace our steps and show that if Equation (4.10)
is satisfied, then M must be an invertible matrix having as its columns a set of
eigenvectors of A. We have proven the following result.

▶THEOREM 1
An n�n matrix is diagonalizable if and only if the matrix possesses n linearly independent

eigenvectors.◀

Example 1 Determine whether A ¼ 1 2
4 3

� �
is diagonalizable.

Solution: Using the results of Example 3 of Section 4.1, we have l1¼�1 and
l2¼5 as the eigenvalues of A with corresponding eigenspaces spanned by the
vectors

x1 ¼ �1
1

� �
and x2 ¼ 1

2

� �
respectively. These two vectors are linearly independent, so A is diagonalizable.
We can choose either

M ¼ �1 1
1 2

� �
or M ¼ 1 �1

2 1

� �
Making the first choice, we find

D ¼ M�1AM ¼ 1

3

�2 1
1 1

� �
1 2
4 3

� � �1 1
1 2

� �
¼ �1 0

0 5

� �

Making the second choice, we find

D ¼ M�1AM ¼ 1

3

1 1
�2 1

� �
1 2
4 3

� �
1 �1
2 1

� �
¼ 5 0

0 �1
� �
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In general, neither themodal matrixM nor the spectral matrixD is unique. How-
ever, onceM is selected, then D is fully determined. The element of D located in
the jth row and jth column must be the eigenvalue corresponding to the eigen-
vector in the jth column of M. In particular,

M ¼ x2 x1 x3 . . . xn½ �
is matched with

D ¼

l2 0 0 . . . 0
0 l1 0 . . . 0
0 0 l3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . ln

2
666664

3
777775

while

M ¼ xn xn�1 . . . x1½ �
is matched with

D ¼
ln 0 . . . 0
0 ln�1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . l1

2
6664

3
7775

Example 2 Determine whether A ¼
2 �1 0
3 �2 0
0 0 1

2
4

3
5 is diagonalizable.

Solution: Using the results of Example 6 of Section 4.1, we have

x1 ¼
1
1
0

2
4
3
5 and x2 ¼

0
0
1

2
4
3
5

as a basis for the eigenspace corresponding to eigenvalue l¼1 of multiplicity 2
and

x3 ¼
1
3
0

2
4
3
5

as a basis corresponding to eigenvalue l¼�1 of multiplicity 1. These three vec-
tors are linearly independent, so A is diagonalizable. If we choose

M ¼
1 0 1
1 0 3
0 1 0

2
4

3
5, then M�1AM ¼

1 0 0
0 1 0
0 0 �1

2
4

3
5

Linear Algebra258



The process of determining whether a given set of eigenvectors is linearly inde-
pendent is simplified by the following two results.

▶THEOREM 2
Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly independent.◀

Proof: Let l1, l2, . . . , lk denote the distinct eigenvalues of an n�n matrix A
with corresponding eigenvectors x1, x2, . . . , xk. If all the eigenvalues have mul-
tiplicity 1, then k¼n, otherwise k<n. We use mathematical induction to prove
that {x1, x2, . . . , xk} is a linearly independent set.

For k¼1, the set {x1} is linearly independent because the eigenvector x1 cannot
be 0. We now assume that the set {x1, x2, . . . , xk�1} is linearly independent and
use this to show that the set {x1, x2, . . . , xk�1, xk} is linearly independent. This is
equivalent to showing that the only solution to the vector equation

c1x1 þ c2x2 þ � � � þ ck�1xk�1 þ ckxk ¼ 0 (4.11)

is c1¼ c2¼� � �¼ ck�1¼ ck¼0.

Multiplying Equation (4.11) on the left by A and using the fact that Axj¼ljxj for
j¼1,2, . . . , k, we obtain

c1l1x1 þ c2l2x2 þ � � � þ ck�1lk�1xk�1 þ cklkxk ¼ 0 (4.12)

Multiplying Equation (4.11) by lk, we obtain

c1lkx1 þ c2lkx2 þ � � � þ ck�1lkxk�1 þ cklkxk ¼ 0 (4.13)

Subtracting Equation (4.13) from (4.12), we have

c1 l1 � lkð Þx1 þ c2 l2 � lkð Þx2 þ � � � þ ck�1 lk�1 � lkð Þxk�1 ¼ 0

But the vectors {x1, x2, . . . , xk�1} are linearly independent by the induction
hypothesis, hence the coefficients in the last equation must all be 0; that is,

c1 l1 � lkð Þ ¼ c2 l2 � lkð Þ ¼ � � � ¼ ck�1 lk�1 � lkð Þ ¼ 0

from which we imply that c1¼ c2¼� � �¼ ck�1¼0, because the eigenvalues are dis-
tinct. Equation (4.11) reduces to ckxk¼0 and because xk is an eigenvector, and
therefore nonzero, we also conclude that ck¼0, and the proof is complete.

It follows from Theorems 1 and 2 that any n�n real matrix having n distinct real
roots of its characteristic equation, that is a matrix having n eigenvalues all of
multiplicity 1, must be diagonalizable (see, in particular, Example 1).

Example 3 Determine whether A ¼
2 0 0
�3 3 0
2 �1 4

2
4

3
5 is diagonalizable.
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Solution: The matrix is lower triangular so its eigenvalues are the elements on the
main diagonal, namely 2, 3, and 4. Every eigenvalue hasmultiplicity 1, hence A is
diagonalizable.

▶THEOREM 3
If l is an eigenvalue of multiplicity k of an n�n matrix A, then the number of linearly inde-

pendent eigenvectors of A associated with l is n� r(A�lI), where r denotes rank.◀

Proof: The eigenvectors of A corresponding to the eigenvalue l are all nonzero
solutions of the vector Equation (A�lI)x¼0. This homogeneous system is
consistent, so by Theorem 3 of Section 2.6 the solutions will be in terms
of n� r(A�lI) arbitrary unknowns. Since these unknowns can be picked
independently of each other, they generate n� r(A�lI) linearly independent
eigenvectors.

In Example 2, A is a 3�3matrix (n¼3) and l¼1 is an eigenvalue of multiplicity
2. In this case,

A � 1ð ÞI ¼ A � I ¼
1 �1 0
3 �3 0
0 0 0

2
4

3
5

can be transformed into row-reduced form (by adding to the second row �3
times the first row)

1 �1 0
0 0 0
0 0 0

2
4

3
5

having rank 1. Thus, n� r(A� I)¼3�1¼2 and A has two linearly independent
eigenvectors associated with l¼1. Two such vectors are exhibited in Example 2.

Example 4 Determine whether A ¼ 2 1
0 2

� �
is diagonalizable.

Solution: Thematrix is upper triangular so its eigenvalues are the elements on the
main diagonal, namely, 2 and 2. Thus, A is 2�2 matrix with one eigenvalue of
multiplicity 2. Here

A � 2I ¼ 0 1
0 0

� �

has a rank of 1. Thus, n� r(A�2I)¼2�1¼1 and A has only one linearly inde-
pendent eigenvector associated with its eigenvalues, not two as needed. Matrix A
is not diagonalizable.

We saw in the beginning of Section 4.1 that if a linear transformation T: !  is
represented by a diagonal matrix, then the basis that generates such a
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representation is a basis of eigenvectors. To this we now add that a linear trans-
formation T: ! , where is n-dimensional, can be represented by a diagonal
matrix if and only if T possesses n-linearly independent eigenvectors. When such
a set exists, it is a basis for .

Example 5 Determine whether the linear transformation T: 1 ! 1 defined by

T at þ bð Þ ¼ aþ 2bð Þt þ 4aþ 3bð Þ
can be represented by a diagonal matrix.

Solution: A standard basis for 1 is  ¼ t; 1f g, and we showed in Example 7 of
Section 4.1 that a matrix representation for T with respect to this basis is

A ¼ 1 2
4 3

� �

It now follows from Example 1 that this matrix is diagonalizable; hence T can be
represented by a diagonal matrix D, in fact, either of the two diagonal matrices
produced in Example 1.

Furthermore, we have from Example 7 of Section 4.1 that�tþ1 is an eigenvector
of T corresponding to l1¼�1 while 5tþ10 is an eigenvector correspon-
ding l2¼5. Since both polynomials correspond to distinct eigenvalues, the
vectors are linearly independent and, therefore, constitute a basis. Setting
 ¼ �t þ 1, 5t þ 10f g, we have the matrix representation of T with respect
to  as

A
 ¼ D ¼ �1 0

0 5

� �

Example 6 Let  be the set of all 2�2 real upper triangular matrices. Determine
whether the linear transformation T: !  defined by

T
a b
0 c

� �
¼ 3aþ 2bþ c 2b

0 aþ 2bþ 3c

� �
can be represented by a diagonal matrix and, if so, produce a basis that generates
such a representation.

Solution: is closed under addition and scalar multiplication, so it is a sub-space
of 2�2: A simple basis for  is given by

 ¼ 1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
0 1

� �� �

With respect to these basis vectors,

T
1 0
0 0

� �
¼ 3 0

0 1

� �
¼ 3

1 0
0 0

� �
þ 0

0 1
0 0

� �
þ 1

0 0
0 1

� �
$

3
0
1

2
4
3
5

If  is an n-dimensional
vector space, then a lin-
ear transformation
T : !  may be
represented by a diago-
nal matrix if and only if T
possesses a basis of
eigenvectors.
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T
0 1
0 0

� �
¼ 2 2

0 2

� �
¼ 2

1 0
0 0

� �
þ 2

0 1
0 0

� �
þ 2

0 0
0 1

� �
$

2
2
2

2
4
3
5

T
0 0
0 1

� �
¼ 1 0

0 3

� �
¼ 1

1 0
0 0

� �
þ 0

0 1
0 0

� �
þ 3

0 0
0 1

� �
$

1
0
3

2
4
3
5

and a matrix representation for T is

A ¼
3 2 1

0 2 0

1 2 3

2
4

3
5

The eigenvalues of this matrix are 2, 2, and 4. Even though the eigenvalues are
not all distinct, the matrix still has three linearly independent eigenvectors,
namely,

x1 ¼
�2
1
0

2
4

3
5, x2 ¼

�1
0
1

2
4

3
5, and x3 ¼

1
0
1

2
4
3
5

Thus, A is diagonalizable and, therefore, T has a diagonal matrix representation.
Setting

M ¼
�2 �1 1
1 0 0
0 1 1

2
4

3
5, we have D ¼ M�1AM ¼

2 0 0
0 2 0
0 0 4

2
4

3
5

which is one diagonal representation for T.

The vectors x1, x2, and x3 are coordinate representations with respect to the 
basis for

�2
1
0

2
4

3
5$ �2ð Þ 1 0

0 0

� �
þ 1

0 1
0 0

� �
þ 0

0 0
0 1

� �
¼ �2 1

0 0

� �

�1
0
1

2
4

3
5$ �1ð Þ 1 0

0 0

� �
þ 0

0 1
0 0

� �
þ 1

0 0
0 1

� �
¼ �1 0

0 1

� �

1
0
1

2
4
3
5$ 1

1 0
0 0

� �
þ 0

0 1
0 0

� �
þ 1

0 0
0 1

� �
¼ 1 0

0 1

� �

The set

 ¼ �2 1
0 0

� �
;
�1 0
0 1

� �
;

1 0
0 1

� �� �
is a basis of eigenvectors of T for the vector space . A matrix representation of
T with respect to the  basis is the diagonal matrix D.
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Problems 4.3
In Problems 1 through 11, determine whether the matrices are diagonalizable. If
they are, identify a modal matrix M and calculate M�1AM.

(1) A ¼ 2 �3
1 �2
� �

. (2) A ¼ 4 3
3 �4
� �

.

(3) A ¼ 3 1
�1 5

� �
. (4) A ¼

1 1 1
0 1 0
0 0 1

2
4

3
5.

(5) A ¼
1 0 0
2 �3 3
1 2 2

2
4

3
5. (6) A ¼

5 1 2
0 3 0
2 1 5

2
4

3
5.

(7) A ¼
1 2 3
2 4 6
3 6 9

2
4

3
5. (8) A ¼

3 �1 1
�1 3 �1
1 �1 3

2
4

3
5.

(9) A ¼
7 3 3
0 1 0
�3 �3 1

2
4

3
5. (10) A ¼

3 1 0
0 3 1
0 0 3

2
4

3
5.

(11) A ¼
3 0 0
0 3 1
0 0 3

2
4

3
5.

In Problems 12 through 21, determine whether the linear transformations can
be represented by diagonal matrices and, if so, produce bases that will generate
such representations.

(12) T: 1 ! 1 defined by T(atþb)¼ (2a � 3b)tþ(a � 2b).

(13) T: 1 ! 1 defined by T(atþb)¼ (4a þ 3b)tþ(3a � 4b).

(14) T: 2 ! 2 defined by T(at2þbtþ c)¼at2þ(2a � 3bþ3c)tþ (aþ2bþ2c).

(15) T: 2 ! 2 defined by T(at2þbtþ c)¼ (5aþbþ2c)t2þ3btþ(2aþbþ5c).

(16) T: 2 ! 2 defined by T(at2þbtþ c)¼ (3aþb)t2þ (3bþ c)tþ3c.

(17) T: !  where  is the set of all 2�2 real upper triangular matrices and

T
a b
0 c

� �
¼ aþ 2bþ 3c 2aþ 4bþ 6c

0 3aþ 6bþ 9c

� �
:

(18) T: !  where  is the set of all 2�2 real upper triangular matrices and

T
a b
0 c

� �
¼ 7aþ 3bþ 3c b

0 �3a� 3bþ c

� �
:
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(19) T: ! where is the set of all 2�2 real lower triangular matrices and

T
a 0
b c

� �
¼ 3a� bþ c 0
�aþ 3b� c a� bþ 3c

� �
:

(20) T: 3 ! 3 defined by T
a
b
c

2
4

3
5 ¼ c

a
b

2
4

3
5:

(21) T: 3 ! 3 defined by T
a
b
c

2
4

3
5 ¼ 3aþ b

3bþ c
c

2
4

3
5.

4.4 THE EXPONENTIAL MATRIX
In this section and the next section (Section 4.5), we will use eigenvalues and
eigenvectors extensively and conclude our chapter with sections dealing with
differential equations.

One of the most important functions in the calculus is the exponential function
ex. It should not be surprising, therefore, to find that the “exponentials of matri-
ces” are equally useful and important.

To develop this idea, we extend the idea of Maclaurin series to include matrices.
As we further our discussion, we will make reference to the Jordan canonical
form (see Appendix A).

We recall that this function can be written as a Maclaurin series:

ex ¼
X1
k¼0

xk

k!
¼ 1þ xþ x2

2!
þ x3

2!
þ � � � (4.14)

Then we can use this expansion to define the exponential of a square
matrix A as

eA ¼
X1
k¼0

Ak

k!
¼ Iþ A

1!
þ A2

2!
þ A3

3!
þ � � � (4.15)

Equation (4.14) converges for all values of the variable x; analogously, it can-
be shown that Equation (4.15) converges for all square matrices A, although
the actual proof is well beyond the scope of this book. Using Equa-
tion (4.14), we can easily sum the right side of Equation (4.15) for any diagonal
matrix.

Example 1 For A ¼ 2 0
0 �0:3
� �

, we have

The exponential of a
square matrix A is
defined by the infinite
series

eA ¼
X1
k¼0

Ak

k!

¼ Iþ A

1!
þ A2

2!

þ A3

3!
þ � � �
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eA ¼ 1 0

0 1

" #
þ 1

1!

2 0

0 �0:3

" #
þ 1

2!

2 0

0 �0:3

" #2
þ 1

3!

2 0

0 �0:3

" #3
þ � � �

¼ 1 0

0 1

" #
þ 2=1! 0

0 �0:3ð Þ=1!

" #
þ 2ð Þ2=2! 0

0 �0:3ð Þ2=2!

" #

þ 2ð Þ3=3! 0

0 �0:3ð Þ3=3!

" #
þ . . .

¼

X1
k¼0

2k

k!
0

0
X1
k¼0

�0:3ð Þk
k!

2
666664

3
777775 ¼

e2 0

0 e�0:3

" #

In general, if D is the diagonal matrix

D ¼

l1 0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ln

2
66664

3
77775

Then

eD ¼

el1 0 . . . 0

0 el2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . eln

2
6664

3
7775 (4.16)

Example 2 Find eD for D ¼
1 0 0

0 2 0

0 0 2

2
4

3
5.

Solution:

eD ¼
e1 0 0

0 e2 0

0 0 e2

2
4

3
5

If a square matrix A is not diagonal, but diagonalizable, then we know from our
work in Section 4.3 that there exists a modal matrix M such that

A ¼ MDM�1 (4.17)

To calculate the
exponential of a diagonal
matrix, replace each
diagonal element by the
exponential of that
diagonal element.
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where D is a diagonal matrix. It follows that

A2 ¼ AA ¼ MDM�1
� �

MDM�1
� � ¼ MD M�1M

� �
DM�1

¼ MD Ið ÞDM�1 ¼ MD2M�1

A3 ¼ A2A ¼ MD2M�1
� �

MDM�1
� � ¼ MD2 M�1M

� �
DM�1 ¼ MD2 Ið ÞDM�1

¼ MD3M�1

and, in general,

An ¼ MDnM�1 (4.18)

for any positive integer n. Consequently,

eA ¼
X1
k¼0

Ak

k!
¼
X1
k¼0

MDkM�1

k!
¼ M

X1
k¼0

Dk

k!

 !
M�1 ¼ MeDM�1 (4.19)

Example 3 Find eA for A ¼ 1 2

4 3

� �
.

Solution: The eigenvalues of A are �1 and 5 with corresponding eigenvectors

1
�1
� �

and
1
2

� �
. Here,

M ¼ 1 1

�1 2

� �
,M�1 ¼ 2=3 �1=3

1=3 1=3

� �
, and D ¼ �1 0

0 5

� �
:

It follows first from Equation (4.19) and then from (4.16) that

eA ¼ MeDM�1 ¼ 1 1

�1 2

" #
e�1 0

0 e5

" #
2=3 �1=3
1=3 1=3

" #

¼ 1

3

2e�1 þ e5 �e�1 þ e5

�2e�1 þ 2e5 e�1 þ 2e5

� �

Even if a matrix A is not diagonalizable, it is still similar to a matrix J in Jordan
canonical form (see Appendix B). That is, there exists a generalized modal matrix
M such that

A ¼ MJM�1 (4.20)

If A is similar to a matrix J
in Jordan canonical form,
so that A¼MJM�1 for a
generalized modal matrix
M, then eA¼MeJM�1

(see Appendix A).
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Repeating the derivation of (4.18) and (4.19), with J replacing D, we obtain

eA ¼ MeJM�1 (4.21)

Thus, once we know how to calculate eJ for a matrix J in Jordan canonical form,
we can use Equation (4.21) to find eA for any square matrix A.

A matrix J in Jordan canonical form has the block diagonal pattern

J ¼
J1 0 . . . 0
0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
6664

3
7775 (4.22)

with each Ji(i¼1, 2, . . . , r) being a Jordan block of the form

Ji ¼

li 1 0 . . . 0 0

0 li 1 . . . 0 0

..

. ..
. ..

. . .
. . .

. . .
.

0 0 0 . . . li 1

0 0 0 . . . 0 li

2
66666664

3
77777775

(4.23)

Powers of a matrix in Jordan canonical form are relatively easy to calculate.

J2 ¼ JJ ¼

J1 0 � � � 0

0 J2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Jr

2
66664

3
77775

J1 0 � � � 0
0 J2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Jr

2
6664

3
7775 ¼

J21 0 � � � 0
0 J22 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � J2r

2
6664

3
7775

J3 ¼ JJ2 ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
66664

3
77775

J21 0 . . . 0
0 J22 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . J2r

2
6664

3
7775 ¼

J31 0 . . . 0
0 J32 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . J3r

2
6664

3
7775

and, in general,

Jk ¼
Jk1 0 . . . 0
0 Jk2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jkr

2
6664

3
7775

for any positive integer value of k. Consequently,
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eJ ¼
X1
k¼0

Jk

k!
¼
X1
k¼0

1

k!

Jk1 0 . . . 0

0 Jk2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jkr

2
666664

3
777775 ¼

X1
k¼0

Jk1
k!

0 . . . 0

0
X1
k¼0

Jk2
k!

. . . 0

..

. ..
. . .

. ..
.

0 0 . . .
X1
k¼0

Jkr
k!

2
66666666666664

3
77777777777775

¼

eJ1 0 . . . 0

0 eJ2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . eJr

2
66664

3
77775

ð4:24Þ

Thus, once we know how to calculate the exponential of a Jordan block, we can
use Equation (4.24) to find eJ for a matrix J in Jordan canonical form and then
Equation (4.21) to obtain eA for a square matrix A.

A 1�1 Jordan block has the form [l] for some scalar l. Such a matrix is a diag-
onal matrix, indeed all 1�1 matrices are, by default, diagonal matrices, and it
follows directly from Equation (4.16) that e[l]¼ [el]. All other Jordan blocks have
superdiagonal elements, which are all ones. For p�p Jordan block in the form of
Equation (4.23), we can show by direct calculations that each successive power
has one additional diagonal of nonzero entries, until all elements above the
main diagonal become nonzero. On each diagonal, the entries are identical. If
we designate the nth power of a Jordan block as the matrix [aij

n], then the entries
can be expressed compactly in terms of derivatives as

ani, iþj ¼
1

j!

dj

dlji
lni
� �

for j ¼ 0,1, . . . , n

0 otherwise

8><
>:

Equation (4.15) then reduces to

eJi ¼ eli

1
1

1!

1

2!

1

3!
. . .

1

p� 1ð Þ!
0 1

1

1!

1

2!
. . .

1

p� 2ð Þ!
0 0 1

1

1!
. . .

1

p� 3ð Þ!
� � � � � � � � � � � � . . . � � �
0 0 0 0 . . . 1

2
666666666664

3
777777777775

(4.25)

The exponential of a
matrix in Jordan
canonical form (Equation
4.22) has block diagonal
form (Equation 4.24),
with the exponential of
each Jordan block given
by Equation (4.25).
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Example 4 Find eJ for J ¼
2t 1 0
0 2t 1
0 0 2t

2
4

3
5.

Solution: J is a single Jordan block with diagonal elements li¼2t. For this matrix,
Equation (4.25) becomes

eJ ¼ e2t
1 1 1=2
0 1 1
0 0 1

2
4

3
5

Example 5 Find eJ for J ¼

2 0 0 0 0 0
0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

2
6666664

3
7777775

Solution: J is in the Jordan canonical form

J ¼
J1 0 0
0 J2 0
0 0 J3

2
4

3
5

with J1¼ [2] and J2¼ [3] both of order 1�1, and

J3 ¼
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

2
664

3
775

Here,

eJ1 ¼ e2

 �

, eJ2 ¼ e3

 �

, and

eJ3 ¼ e1

1 1 1=2 1=6
0 1 1 1=2
0 0 1 1
0 0 0 1

2
664

3
775 ¼

e e e=2 e=6
0 e e e=2
0 0 e e
0 0 0 e

2
664

3
775

Then,

eJ ¼

e2 0 0 0 0 0
0 e3 0 0 0 0
0 0 e e e=2 e=6
0 0 0 e e e=2
0 0 0 0 e e
0 0 0 0 0 e

2
6666664

3
7777775
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Example 6 Find eA for A ¼
0 4 2
�3 8 3
4 �8 �2

2
4

3
5.

Solution: A canonical basis for this matrix has one chain of length 2:
x2¼ [0 0 1]T and x1¼ [2 3 �4]T, and one chain of length 1: y1¼ [2 1 0]T, each
corresponding to the eigenvalue 2. Setting

M ¼
2 2 0
1 3 0
0 �4 1

2
4

3
5 and J ¼

2 0 0
0 2 1
0 0 2

2
4

3
5

we have A¼MJM�1. Here J contains two Jordan blocks, the 1�1 matrix J1¼ [2]

and the 2�2 matrix J2 ¼ 2 1
0 2

� �
. We have,

eJ1 ¼ e2

 �

, eJ2 ¼ e2
1 1
0 1

� �
¼ e2 e2

0 e2

� �

eJ ¼ 65 ¼
e2 0 0
0 e2 e2

0 0 e2

2
4

3
5

eA ¼ MeJM�1 ¼
2 2 0

1 3 0

0 �4 1

2
4

3
5 e2 0 0

0 e2 e2

0 0 e2

2
4

3
5 3=4 �1=2 0

�1=4 1=2 0

�1 2 1

2
4

3
5

¼ e2
�1 4 2

�3 7 3

4 �8 �3

2
4

3
5

Two important properties of the exponential of a matrix are given in the next
theorems.

▶THEOREM 1
e0¼ I, where 0 is the n�n zero matrix and I is the n�n identity matrix.◀

Proof: In general,

eA ¼
X1
k¼0

Ak

k!
¼ Iþ

X1
k¼1

Ak

k!
(4.26)

With A¼0, we have

e0 ¼ Iþ
X1
k¼1

0k

k!
¼ I

▶THEOREM 2
(eA)�1¼e�A.◀
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Proof:

eAe�A ¼
X1
k¼0

Ak

k!

2
4

3
5 X1

k¼0

�Að Þk
k!

2
4

3
5

¼ Iþ Aþ A2

2!
þ A3

3!
þ � � �

2
4

3
5 Iþ Aþ A2

2!
þ A3

3!
þ � � �

2
4

3
5

¼ IIþ A 1� 1½ � þ A2 1

2!
� 1þ 1

2!

2
4

3
5þ A3 � 1

3!
þ 1

2!
� 1

2!
þ 1

3!

2
4

3
5þ � � �

¼ I

Thus, e�A is the inverse of eA.

We conclude from Theorem 2 that eA is always invertible even when A is not. To
calculate e�A directly, set B¼�A, and then determine eB.

A particularly useful matrix function for solving differential equations is eAt,
where A is a square constant matrix (that is, all of its elements are constants)
and t is a variable, usually denoting time. This function may be obtained directly
by setting B¼At and then calculating eB.

Example 7 Find eAt for A ¼
3 0 4
1 2 1
�1 0 �2

2
4

3
5.

Solution: Set B ¼ At ¼
3t 0 4t
t 2t t
�t 0 �2t

2
4

3
5.

A canonical basis for B contains one chain of length 1, corresponding to the
eigenvalue �t of multiplicity 1, and one chain of length 2, corresponding to
the eigenvalue 2t of multiplicity 2. A generalized modal matrix for B is

M ¼
1 0 4
0 3t 0
�1 0 �1

2
4

3
5

Then,

J ¼ M�1BM ¼
�t 0 0
0 2t 1
0 0 2t

2
4

3
5, eJ ¼ e�t 0 0

0 e2t e2t

0 0 e2t

2
4

3
5

eAt ¼ eB ¼ MeJM�1 ¼
1 0 4

0 3t 0

�1 0 �1

2
4

3
5 e�t 0 0

0 e2t e2t

0 0 e2t

2
4

3
5 �1=3 0 �4=3

0 1= 3tð Þ 0

1=3 0 1=3

2
4

3
5

¼ 1

3

�e�t þ 4e2t 0 �4e�t þ 4e2t

3te2t 3e2t 3te2t

e�t � e2t 0 4e�t � e2t

2
4

3
5

To calculate eAt, where A
is a square constant
matrix and t is a variable,
set B¼At and calculate
eB.
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Observe that this derivation may not be valid for t¼0 becauseM�1 is undefined
there. Considering the case t¼0 separately, we find that eA0¼ e0¼ I. Our answer
also reduces to the identity matrix at t¼0, so our answer is correct for all t.

The roots of the characteristic equation of B¼At may be complex. As noted in
Section 4.1, such a root is not an eigenvalue when the underlying vector space
is n, because there is no corresponding eigenvector with real-valued compo-
nents. Complex roots of a characteristic equation are eigenvalues when the
underlying vector space is the set of all n-tuples with complex-valued compo-
nents. When calculating matrix exponentials, it is convenient to take the under-
lying vector space to be complex-valued n-tuples and to accept each root of a
characteristic equation as an eigenvalue. Consequently, a generalized modal
matrix M may contain complex-valued elements.

If A is a real matrix and t a real-valued variable, then Bt is real-valued. Because all
integral powers of matrices with real elements must also be real, it follows from
Equation (4.26) that eB must be real. Thus, even if J andM have complex-valued
elements, the product eB¼MeJM�1 must be real. Complex roots of the character-
istic equation of a real matrix must appear in conjugate pairs, which often can be
combined into real-valued quantities by using Euler’s relations:

cos y ¼ eiy þ e�iy

2
and sin y ¼ eiy � e�iy

2i

Example 8 Find eAt for A ¼ 0 1
�1 0

� �
.

Solution: Set B ¼ At ¼ 0 t
�t 0

� �
.

The eigenvalues of B are l1¼ it and l2¼� it, with corresponding eigenvectors
[1 i]T and [1 �i]T, respectively. Thus,

M ¼ 1 1
i �i

� �
, J ¼ it 0

0 �it
� �

and

eAt ¼ eB ¼ 1 1

i �i

" #
eit 0

0 e�it

" #
1=2 �i=2
1=2 i=2

" #

¼

eit þ e�it

2

eit � e�it

2i

� eit � e�it

2i

eit þ e�it

2

2
666664

3
777775 ¼

cos t sin t

�sin t cos t

" #

If the eigenvalues of B¼At are not pure imaginary but rather complex numbers
of the form bþ iy and b� iy, then the algebraic operations needed to simplify eB
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are more tedious. Euler’s relations remain applicable, but as part of the following
identities:

ebþiy þ eb�iy

2
¼ ebeiy þ ebe�iy

2
¼ eb eiy þ e�iy

� �
2

¼ ebcos y

and

ebþiy � eb�iy

2i
¼ ebeiy � ebe�iy

2i
¼ eb eiy � e�iy

� �
2i

¼ ebsin y

The exponential of a matrix is useful in matrix calculus for the same reason the
exponential function is so valuable in the calculus: the derivative of eAt is closely
related to the function itself. The derivative of a matrix is obtained by differenti-
ating each element in the matrix. Thus, a matrix C¼ [cij] has a derivative if and
only if each element cij has a derivative, in which case, we write

_C tð Þ ¼ dC tð Þ
dt
¼ dcij tð Þ

dt

� �
(427)

Example 9 If C tð Þ ¼ t2 sin t
ln t et

2

� �
, then

_C tð Þ ¼ dC tð Þ
dt
¼

d t2ð Þ
dt

d sin tð Þ
dt

d ln tð Þ
dt

d et
2

� 	
dt

2
666664

3
777775 ¼

2t cos t
1=t 2tet

2

� �

▶THEOREM 3
If A is a constant matrix, then

deAt

dt
¼ AeAt ¼ eAtA.◀

Proof:

deAt

dt
¼ d

dt

X1
k¼0

Atð Þk
k!

0
@

1
A ¼ d

dt

X1
k¼0

Aktk

k!

0
@

1
A ¼X1

k¼0

d

dt

Aktk

k!

0
@

1
A ¼X1

k¼0

kAktk�1

k!

¼ 0þ
X1
k¼1

AAk�1tk�1

k� 1ð Þ! ¼ A
X1
k¼1

Ak�1tk�1

k� 1ð Þ!

0
@

1
A

¼ A
X1
j¼0

Ajtj

j!

0
@

1
A ¼ A

X1
j¼0

Atð Þj
j!

0
@

1
A ¼ AeAt

If we factor A on the right, instead of the left, we obtain the other identity.

The derivative of a
matrix is obtained by
differentiating each
element in the matrix.

Eigenvalues, Eigenvectors CHAPTER 4 273



By replacing A with �A in Theorem 3, we obtain:

▶COROLLARY 1
If A is a constant matrix, then

de�At

dt
¼ �AeAt ¼ �eAtA.◀

Problems 4.4
In Problems 1 through 29, find the exponential of each matrix.

(1)
�1 0
0 4

� �
. (2)

2 0
0 3

� �
. (3)

�7 0
0 �7

� �
.

(4)
0 0
0 0

� �
. (5)

�7 1
0 �7

� �
. (6)

2 1
0 2

� �
.

(7)
3 1
0 3

� �
. (8)

0 1
0 0

� �
. (9)

2 0 0
0 3 0
0 0 4

2
4

3
5.

(10)
1 0 0
0 �5 0
0 0 �1

2
4

3
5. (11)

2 0 0
0 2 0
0 0 2

2
4

3
5. (12)

2 1 0
0 2 1
0 0 2

2
4

3
5.

(13)
�1 1 0
0 �1 1
0 0 �1

2
4

3
5. (14)

0 1 0
0 0 1
0 0 0

2
4

3
5. (15)

�1 0 0
0 �1 1
0 0 �1

2
4

3
5.

(16)
2 0 0
0 2 1
0 0 2

2
4

3
5. (17)

1 0 0 0
0 5 0 0
0 0 �5 0
0 0 0 3

2
664

3
775. (18)

�5 0 0 0
0 �5 0 0
0 0 �5 0
0 0 0 �5

2
664

3
775.

(19)

�5 0 0 0
0 �5 0 0
0 0 �5 1
0 0 0 �5

2
664

3
775. (20)

�5 0 0 0
0 �5 1 0
0 0 �5 1
0 0 0 �5

2
664

3
775.

(21)

�5 1 0 0
0 �5 0 0
0 0 �5 1
0 0 0 �5

2
664

3
775. (22)

�5 1 0 0
0 �5 1 0
0 0 �5 1
0 0 0 �5

2
664

3
775.

(23)
2 0 1
0 2 0
0 0 2

2
4

3
5. (24)

1 3
4 2

� �
. (25)

4 �1
1 2

� �
.

(26)
1 1 2
�1 3 4
0 0 2

2
4

3
5. (27)

p p=3 �p
0 p p=2
0 0 p

2
4

3
5. (28)

2 1 0
0 2 2
0 0 2

2
4

3
5.
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(29)
1 0 0
2 3 �1
1 1 1

2
4

3
5.

(30) Verify Theorem 2 for A ¼ 1 3
0 1

� �
.

(31) Verify Theorem 2 for A ¼ 0 1
�64 0

� �
.

(32) Verify Theorem 2 for A ¼
0 1 0
0 0 1
0 0 0

2
4

3
5. What is the inverse of A?

(33) Find eAeB, eBeA, and eAþB when

A ¼ 1 1
0 0

� �
and B ¼ 0 1

0 1

� �
,

and show that eAþB 6¼ eAeB 6¼ eBeA.

(34) Find two matrices A and B such that eAeB ¼ eAþB.

(35) Using Equation (4.15) directly, prove that eAeB¼ eAþB when A and B
commute.

In Problems 36 through 54, find eAt for the given matrix A.

(36)
4 4
3 5

� �
. (37)

2 1
�1 �2
� �

. (38)
4 1
�1 2

� �
.

(39)
0 1

�14 9

� �
. (40)

�3 2
2 �6

� �
. (41)

�10 6
6 �10

� �
.

(42)
2 1
0 2

� �
. (43)

0 1 0
0 0 1
0 0 0

2
4

3
5. (44)

1 0 0
4 1 2
�1 4 �1

2
4

3
5.

(45)
�1 1 0
0 �1 1
0 0 �1

2
4

3
5. (46)

4 1 0
0 4 0
0 0 4

2
4

3
5. (47)

2 1 0
0 2 0
0 0 �1

2
4

3
5.

(48)
2 3 0
�1 �2 0
1 1 1

2
4

3
5. (49)

3 1 0
�1 1 0
1 2 2

2
4

3
5. (50)

5 �2 2
2 0 1
�7 5 �2

2
4

3
5.

(51)
0 1

�64 0

� �
. (52)

2 5
�1 �2
� �

. (53)
0 1

�25 �8
� �

.

(54)
3 1
�2 5

� �
.

(55) Verify Theorem 3 for the matrix A given in Example 7.

(56) Verify Theorem 3 for the matrix A given in Example 8.
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(57) Using the formula

d A tð ÞB tð Þ½ �
dt

¼ dA tð Þ
dt

� 

B tð Þ þ A tð Þ dB tð Þ

dt

� 

;

derive a formula for differentiating A2(t). Use this formula to find dA2(t)/
dt when

A tð Þ ¼ t 2t2

4t3 et

� �
;

and show that dA2(t)/dt 6¼2A(t)dA(t)/dt. Therefore, the power rule of differ-
entiation does not hold for matrices unless a matrix commutes with its
derivative.

4.5 POWER METHODS
The analytic methods described in Section 4.1 are impractical for calculating the
eigenvalues and eigenvectors of matrices of large order. Determining the charac-
teristic equations for suchmatrices involves enormous effort, and finding its roots
algebraically is usually impossible. Instead, iterativemethods that lend themselves
to computer implementation are used. Ideally, each iteration yields a new approx-
imation, which converges to an eigenvalue and the corresponding eigenvector.

The dominant eigenvalue of a matrix is the eigenvalue with the largest absolute
value. Thus, if the eigenvalues of amatrix are 2, 5, and�13, then�13 is the dom-
inant eigenvalue because it is the largest in absolute value. The power method is an
algorithm for locating the dominant eigenvalue and a corresponding eigenvector
for a matrix of real numbers when the following two conditions exist:

Condition 1. The dominant eigenvalue of a matrix is real (not complex) and is
strictly greater in absolute value than all other eigenvalues.

Condition 2. If thematrix has order n�n, then it possesses n linearly independent
eigenvectors.

Denote the eigenvalues of a given square matrix A satisfying Conditions 1 and 2
by l1, l2, . . . , ln, and a set of corresponding eigenvectors by v1, v2, . . . , vn, respec-
tively. Assume the indexing is such that

jl1j > jl2j � jl3j � � � � � jlnj
Any vector x0 can be expressed as a linear combination of the eigenvectors of A,
so we may write

x0 ¼ c1v1 þ c2v2 þ � � � þ cnvn

Multiplying this equation by Ak, for some large, positive integer k, we get

Akx0 ¼ Ak c1v1 þ c2v2 þ � � � þ cnvnð Þ
¼ c1A

kv1 þ c2A
kv2 þ � � � þ cnA

kvn

The dominant eigenvalue
of a matrix is the one
having the largest
absolute value.
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It follows from Theorem 8 of Section 4.2 that

Akx0 ¼ c1l
k
1v1 þ c1l

k
2v2 þ � � � þ cnl

k
nvn

¼ lk1 c1v1 þ c2
l2
l1

0
@

1
Ak

v2 þ � � � þ cn
ln
l1

0
@

1
Ak

vn

2
64

3
75

� lk1c1v1 for large k

This last pseudo-equality follows from noting that each quotient of eigenvalues
is less than unity in absolute value, as a result of indexing the first eigenvalue as
the dominant one, and therefore tends to 0 as that quotient is raised to succes-
sively higher powers.

Thus, Akx0 approaches a scalar multiple of v1. But any nonzero scalar multiple of
an eigenvector is itself an eigenvector, so Akx0 approaches a scalar multiple of v1,
which is itself an eigenvector of A corresponding to the dominant eigenvalue,
providing c1 is not 0. The scalar c1 will be 0 only if x0 is a linear combination
of {v2, v3, . . ., vn}.

The power method begins with an initial vector x0, usually the vector having all
ones for its components, and then iteratively calculates the vectors

x1 ¼ Ax0

x2 ¼ Ax1 ¼ A2x0

x3 ¼ Ax2 ¼ A3x0

..

.

xk ¼ Axk�1 ¼ Akx0

As k gets larger, xk approaches an eigenvector of A corresponding to its dominant
eigenvalue.

THE POWER METHOD
Step 1. Begin with an initial guess x0 for an eigenvector of amatrixA, having the property

that the largest component of x0 in absolute value is one. Set a counter k equal

to 1.

Step 2. Calculate xk¼Axk�1.
Step 3. Set l equal to the largest component of xk in absolute value and use l as an

estimate for the dominant eigenvalue.

Step 4. Rescale xk by dividing each of its components by l. Relabel the resulting vector

as xk.

Step 5. If l is an adequate estimate for the dominant eigenvalue, with xk as a

corresponding eigenvector, stop; otherwise increment k by one and return to

Step 2.
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We can even determine the dominant eigenvalue. If k is large enough so the xk is a
good approximation to the eigenvector to within acceptable roundoff error, then
it follows that Axk¼l1xk. If xk is scaled so that its largest component in absolute
value is 1, then the component of xkþ1¼Axk¼l1xk that has the largest absolute
value must be l1. We can now formalize the power method.

Example 1 Find the dominant eigenvalue and a corresponding eigenvector for

A ¼ 1 2
4 3

� �

Solution: We initialize x0¼ [1 1]T. Then, for the first iteration,

x1 ¼ Ax0 ¼
1 2

4 3

� �
1

1

� �
¼ 3

7

� �
l � 7

x1  1

7
3 7½ �T ¼ 0:428571 1½ �T

For the second iteration,

x2 ¼ Ax1 ¼
1 2

4 3

� �
0:428571

1

� �
¼ 2:428571

4:714286

� �
l � 4:714286

x2  1

4:714286
2:428571 4:714286½ �T ¼ 0:515152 1½ �T

For the third iteration,

x3 ¼ Ax2 ¼
1 2

4 3

� �
0:515152

1

� �
¼ 2:515152

5:060606

� �
l � 5:060606

x3  1

5:060606
2:515152 5:060606½ �T ¼ 0:497006 1½ �T

For the fourth iteration,

x4 ¼ Ax3 ¼
1 2

4 3

� �
0:497006

1

� �
¼ 2:497006

4:988024

� �
l � 4:988024

x4  1

4:988024
2:497006 4:988024½ �T ¼ 0:500600 1½ �T

The method is converging to the eigenvalue 5 and its corresponding eigenvector
[0.5 1]T.
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Example 2 Find the dominant eigenvalue and a corresponding eigenvector for

A ¼
0 1 0
0 0 1

18 �1 �7

2
4

3
5

Solution: We initialize x0¼ [1 1 1]T. Then, for the first iteration,

x1 ¼ Ax0 ¼
0 1 0
0 0 1

18 �1 �7

2
4

3
5 1

1
1

2
4
3
5 ¼ 1

1
10

2
4

3
5

For the second iteration,

x2 ¼ Ax1 ¼
0 1 0

0 0 1

18 �1 �7

2
64

3
75 0:1

0:1

1

2
64

3
75 ¼ 0:1

1

�5:3

2
64

3
75

l � �5:3
x2  1

�5:3 0:1 1 �5:3½ �T ¼ �0:018868 �0:188679 1½ �T

For the third iteration,

x3 ¼ Ax2 ¼
0 1 0

0 0 1

18 �1 �7

2
64

3
75 �0:018868
�0:188679

1

2
64

3
75 ¼ �0:188679

1

�7:150943

2
64

3
75

l � �7:150943
x3  1

�7:150943 �0:188679 1 �7:150943½ �T

¼ 0:026385 �0:139842 1½ �T

Continuing in this manner, we generate Table 4.1, where all entries are rounded
to four decimal places. The algorithm is converging through six decimal places to
the eigenvalue �6.405125 and its corresponding eigenvector

0:024375 �0:156125 1½ �T

Although effective when it converges, the power method has deficiencies. It does
not converge to the dominant eigenvalue when that eigenvalue is complex, and it
may not converge when there is more than one equally dominant eigenvalue
(see Problem 12). Furthermore, the method, in general, cannot be used to locate
all the eigenvalues.
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A more powerful numerical method is the inverse power method, which is the
power method applied to the inverse of a matrix. This, of course, adds another
assumption: The inverse must exist, or equivalently, the matrix must not have
any zero eigenvalues. Since a nonsingular matrix and its inverse share identical
eigenvectors and reciprocal eigenvalues (see Theorem 4 of Section 4.4), once we
know the eigenvalues and eigenvectors of the inverse of a matrix, we have the
analogous information about the matrix itself.

The power method applied to the inverse of a matrix Awill generally converge to
the dominant eigenvalue of A�1. Its reciprocal will be the eigenvalue of A having
the smallest absolute value. The advantages of the inverse power method are that
it converges more rapidly than the power method, and it often can be used to
find all real eigenvalues of A; a disadvantage is that it deals with A�1, which is
laborious to calculate for matrices of large order. Such a calculation, however,
can be avoided using LU decomposition.

The power method generates the sequence of vectors

xk ¼ Axk�1

The inverse power method will generate the sequence

xk ¼ A�1xk�1

which may be written as

Axk ¼ xk�1

We solve for the unknown vector xk using LU decomposition (see Section 1.7).

Example 3 Use the inverse power method to find an eigenvalue for

A ¼ 2 1
2 3

� �

Solution:We initialize x0¼ [1 1]T. The LU decomposition for A has A¼LUwith

L ¼ 1 0
1 1

� �
and U ¼ 2 1

0 2

� �

Table 4.1

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.1000 0.1000 1.0000 10.0000
2 �0.0189 �0.1887 1.0000 �5.3000
3 0.0264 �0.1398 1.0000 �7.1509
4 0.0219 �0.1566 1.0000 �6.3852
5 0.0243 �0.1551 1.0000 �6.4492
6 0.0242 �0.1561 1.0000 �6.4078
7 0.0244 �0.1560 1.0000 �6.4084
8 0.0244 �0.1561 1.0000 �6.4056

The inverse power
method is the power
method applied to the
inverse of a matrix A; in
general, the inverse
power method converges
to the smallest eigen-
value of A in
absolute value.
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For the first iteration, we solve the system LUx1¼x0 by first solving the system
Ly¼x0 for y, and then solving the system Ux1¼y for x1. Set y¼ [y1 y2]

T and
x1¼ [a b]T. The first system is

y1 þ 0y2 ¼ 1
y1 þ y2 ¼ 1

which has as its solution y1 ¼ 1 and y2¼0. The system Ux1¼y becomes

2aþ b ¼ 1

2b ¼ 0

which admits the solution a¼0.5 and b¼0. Thus,

x1 ¼ A�1x0 ¼ 0:5 0½ �T
l � 0:5 an approximation to an eigenvalue for A�1

� �
x1  1

0:5
0:5 0½ �T ¼ 1 0½ �T

For the second iteration, we solve the system LUx2¼x1 by first solving the system
Ly¼x1 for y, and then solving the system Ux2¼y for x2. Set y¼ [y1 y2]

T and
x2¼ [a b]T. The first system is

y1 þ 0y2 ¼ 1

y1 þ y2 ¼ 0

which has as its solution y1¼1 and y2¼�1. The system Ux2¼y becomes

2aþ b ¼ 1

2b ¼ �1
which admits the solution a¼0.75 and b¼�0.5. Thus,

x2 ¼ A�1x1 ¼ 0:75 �0:5½ �T
l � 0:75

x2  1

0:75
0:75 �0:5½ �T ¼ 1 �0:666667½ �T

For the third iteration, we first solve Ly¼x2 to obtain y¼ [1 �1.666667]T, and
then Ux3¼y to obtain x3¼ [0.916667 �0.833333]T Then,

l � 0:916667

x3  1

0:916667
0:916667 �0:833333½ �T ¼ 1 �0:909091½ �T

Continuing, we converge to the eigenvalue 1 for A�1 and its reciprocal 1/1¼1 for
A. The vector approximations are converging to [1 �1]T, which is an eigenvec-
tor for both A�1 and A.
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Example 4 Use the inverse power method to find an eigenvalue for

A ¼
7 2 0
2 1 6
0 6 7

2
4

3
5

Solution: We initialize x0¼ [1 1 1]T. The LU decomposition for A has A¼LU
with

L ¼
1 0 0

0:285714 1 0
0 14 1

2
4

3
5 and U ¼

7 2 0
0 0:428571 6
0 0 �77

2
4

3
5

For the first iteration, set y¼ [y1 y2 y3]
T and x1¼ [a b c]T. The first system is

y1 þ 0y2 þ 0y3 ¼ 1

0:285714y1 þ y2 þ 0y3 ¼ 1

0y1 þ 14y2 þ y3 ¼ 1

which has as its solution y1¼1, y2¼0.714286, and y3¼�9. The system Ux1¼y
becomes

7aþ 2b ¼ 1

0:428571bþ 6c ¼ 0:714286

�77c ¼ �9

which admits the solution a¼0.134199, b¼0.030303, and c¼0.116883. Thus,

x1 ¼ A�1x0 ¼ 0:134199 0:030303 0:116833½ �T
l � 0:134199 an approximation to an eigenvalue forA�1

� �
x1  1

0:134199
0:134199 0:030303 0:116833½ �T

¼ 1 0:225806 0:870968½ �T

For the second iteration, solving the system Ly¼x1 for y, we obtain

y ¼ 1 �0:059908 1:709677½ �T

Then, solving the system Ux2¼y for x2, we get

x2 ¼ 0:093981 0:171065 �0:022204½ �T
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Therefore,

l � 0:171065

x2  1

0:171065
0:093981 0:171065 �0:022204½ �T

¼ 0:549388 1 �0:129796½ �T

For the third iteration, solving the system Ly¼x2 for y, we obtain

y ¼ 0:549388 0:843032 �11:932245½ �T

Then, solving the system Ux3¼y for x3, we get

x3 ¼ 0:136319 �0:202424 0:154964½ �T

Therefore,

l � �0:202424
x3  1

�0:202424 0:136319 �0:202424 0:154964½ �T

¼ �0:673434 1 �0:765542½ �T

Continuing in this manner, we generate Table 4.2, where all entries are rounded
to four decimal places. The algorithm is converging to the eigenvalue �1/3 for
A�1 and its reciprocal �3 for A. The vector approximations are converging to
[�0.2 1 �0.6]T, which is an eigenvector for both A�1 and A.

Table 4.2

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 1.0000 0.2258 0.8710 0.1342
2 0.5494 1.0000 �0.1298 0.1711
3 �0.6734 1.0000 �0.7655 �0.2024
4 �0.0404 1.0000 �0.5782 �0.3921
5 �0.2677 1.0000 �0.5988 �0.3197
6 �0.1723 1.0000 �0.6035 �0.3372
7 �0.2116 1.0000 �0.5977 �0.3323
8 �0.1951 1.0000 �0.6012 �0.3336
9 �0.2021 1.0000 �0.5994 �0.3333
10 �0.1991 1.0000 �0.6003 �0.3334
11 �0.2004 1.0000 �0.5999 �0.3333
12 �0.1998 1.0000 �0.6001 �0.3333
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We can use Theorem 9 of Section 4.2 in conjunction with the inverse power
method to develop a procedure for finding all eigenvalues and a set of corre-
sponding eigenvectors for a matrix, providing that the eigenvalues are real and
distinct, and estimates of their locations are known. The algorithm is known
as the shifted inverse power method.

If c is an estimate for an eigenvalue of A, then A� cI will have an eigenvalue near
0 and its reciprocal will be the dominant eigenvalue of (A� cI)�1. We use the
inverse power method with an LU decomposition of A� cI to calculate the dom-
inant eigenvalue l and its corresponding eigenvector x for (A� cI)�1. Then 1/l
and x are an eigenvalue and eigenvector pair forA� cIwhile cþ (1/l) and x are an
eigenvalue and eigenvector pair for A.

Example 5 Find a second eigenvalue for the matrix given in Example 4.

Solution: Since we do not have an estimate for any of the eigenvalues, we
arbitrarily choose c¼15. Then

A � cI ¼
�8 2 0
2 �14 6
0 6 �8

2
4

3
5

which has an LU decomposition with

L ¼
1 0 0

�0:25 1 0
0 �0:444444 1

2
4

3
5 and U ¼

�8 2 0
0 �13:5 6
0 0 �5:333333

2
4

3
5

Applying the inverse power method to A�15I, we generate Table 4.3, which is

converging to l¼�0.25 and x ¼
1

3

2

3
1

" #T
. The corresponding eigenvalue

of A is (1/�0.25)þ15¼11, with the same eigenvector.

THE SHIFTED INVERSE POWER METHOD
Step 1. Begin with an initial guess x0 for an eigenvector of a matrix A, having the

property that the largest component of x0 in absolute value is one. Set a

counter k equal to 1 and choose a value for the constant c (preferably an

estimate for an eigenvalue if such an estimate is available).

Step 2. Calculate xk¼ (A�cI)xk�1.
Step 3. Set l equal to the largest component of xk in absolute value.

Step 4. Rescale xk by dividing each of its components by l. Relabel the resulting vector
as xk.

Step 5. If cþ (1/l) is an adequate estimate for an eigenvalue of A, with xk as a

corresponding eigenvector, stop; otherwise increment k by one and return to

Step 2.
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Using the results of Examples 4 and 5, we have two eigenvalues, l1¼�3 and
l2¼11, of the 3�3 matrix defined in Example 4. Since the trace of a matrix
equals the sum of the eigenvalues (Theorem 1 of Section 4.2), we know
7þ1þ7¼�3þ11þl3, so the last eigenvalue is l3¼7.

Problems 4.5
In Problems 1 through 10, use the power method to locate the dominant eigen-
value and a corresponding eigenvector for the given matrices. Stop after five
iterations.

(1)
2 1
2 3

� �
. (2)

2 3
4 6

� �
. (3)

3 6
9 6

� �
.

(4)
0 1
�4 6

� �
. (5)

8 2
3 3

� �
. (6)

8 3
3 2

� �
.

(7)
3 0 0
2 6 4
2 3 5

2
4

3
5. (8)

7 2 0
2 1 6
0 6 7

2
4

3
5. (9)

3 2 3
2 6 6
3 6 11

2
4

3
5.

(10)
2 �17 7

�17 �4 1
7 1 �14

2
4

3
5.

(11) Use the power method on

A ¼
2 0 �1
2 2 2
�1 0 2

2
4

3
5

and explain why it does not converge to the dominant eigenvalue l¼3.

Table 4.3

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.6190 0.7619 1.0000 �0.2917
2 0.4687 0.7018 1.0000 �0.2639
3 0.3995 0.6816 1.0000 �0.2557
4 0.3661 0.6736 1.0000 �0.2526
5 0.3496 0.6700 1.0000 �0.2513
6 0.3415 0.6683 1.0000 �0.2506
7 0.3374 0.6675 1.0000 �0.2503
8 0.3354 0.6671 1.0000 �0.2502
9 0.3343 0.6669 1.0000 �0.2501
10 0.3338 0.6668 1.0000 �0.2500
11 0.3336 0.6667 1.0000 �0.2500
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(12) Use the power method on

A ¼ 3 5
5 �3
� �

and explain why it does not converge.

(13) Shifting can also be used with the power method to locate the next most
dominant eigenvalue, if it is real and distinct, once the dominant eigen-
value has been determined. Construct A�lI, where l is the dominant
eigenvalue of A, and apply the power method to the shifted matrix. If
the algorithm converges to m, and x, then mþl is an eigenvalue of Awith
the corresponding eigenvector x. Apply this shifted power method algo-
rithm to the matrix in Problem 1. Use the result of Problem 1 to deter-
mine the appropriate shift.

(14) Use the shifted power method as described in Problem 13 on the matrix
in Problem 9. Use the results of Problem 9 to determine the appropriate
shift.

(15) Use the inverse power method on the matrix defined in Example 1. Stop
after five iterations.

(16) Use the inverse power method on the matrix defined in Problem 3. Take
x0¼ [1 �0.5]T and stop after five iterations.

(17) Use the inverse power method on the matrix defined in Problem 5. Stop
after five iterations.

(18) Use the inverse power method on the matrix defined in Problem 6. Stop
after five iterations.

(19) Use the inverse power method on the matrix defined in Problem 9. Stop
after five iterations.

(20) Use the inverse power method on the matrix defined in Problem 10.
Stop after five iterations.

(21) Use the inverse power method on the matrix defined in Problem 11.
Stop after five iterations.

(22) Use the inverse power method on the matrix defined in Problem 4.
Explain the difficulty and suggest a way to avoid it.

(23) Use the inverse power method on the matrix defined in Problem 2.
Explain the difficulty and suggest a way to avoid it.

(24) Can the power method converge to a dominant eigenvalue if that eigen-
value is not distinct?

(25) Apply the shifted inverse power method to the matrix defined in Prob-
lem 9, with a shift constant of 10.

(26) Apply the shifted inverse power method to the matrix defined in
Problem 10, with a shift constant of �25.
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CHAPTER 4 REVIEW
Important Terms
characteristic equation
determinant
derivative of a matrix
diagonalizable matrix
dominant eigenvalue
eAt

eigenspace
eigenvalue
eigenvector

Euler’s relations
exponential of a matrix
inverse power method
modal matrix
model
power method
shifted inverse power method
spectral matrix
trace

Important Concepts
Section 4.1

▪ A nonzero vector x is an eigenvector of a squarematrix A if there exists a scalar
l, called an eigenvalue, such that Ax¼lx.

▪ Similar matrices have the same characteristic equation (and, therefore, the
same eigenvalues).

▪ Nonzero vectors in the eigenspace of the matrix A for the eigenvalue l are
eigenvectors of A.

▪ Eigenvalues and eigenvectors for a linear transformation T : !  are deter-
mined by locating the eigenvalues and eigenvectors of any matrix represen-
tation for T; the eigenvectors of the matrix are coordinate representations of
the eigenvector of T.

Section 4.2

▪ Any nonzero scalar multiple of an eigenvector is again an eigenvector; the
nonzero sum of two eigenvectors corresponding to the same eigenvalue is
again an eigenvector

▪ The sum of the eigenvalues of a matrix equals the trace of the matrix.

▪ The eigenvalues of an upper (lower) triangular matrix are the elements on the
main diagonal of the matrix.

▪ The product of all the eigenvalues of a matrix (counting multiplicity) equals
the determinant of the matrix.

▪ A matrix is singular if and only if it has a zero eigenvalue.

▪ If x is an eigenvector of A corresponding to the eigenvalue l, then
▪ for any nonzero scalar k, kl and x are a corresponding pair of eigenvalues

and eigenvectors of kA,
▪ ln and x are a corresponding pair of eigenvalues and eigenvectors of An, for

any positive integer n,
▪ for any scalar c, l� c and x are a corresponding pair of eigenvalues and

eigenvectors of A� cI,
▪ 1/l and x are a corresponding pair of eigenvalues and eigenvectors of A�1,

providing the inverse exists,
▪ l is an eigenvalue of AT.
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Section 4.3

▪ An n�n matrix is diagonalizable if and only if it has n linearly independent
eigenvectors.

▪ Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly
independent.

▪ If l is an eigenvalue of multiplicity k of an n�nmatrix A, then the number of
linearly independent eigenvectors of A associated with l is n� r(A�lI),
where r denotes rank.

▪ If  is an n-dimensional vector space, then a linear transformation T : ! 
may be represented by a diagonal matrix if and only if T possesses a basis of
eigenvectors.

Section 4.4

▪ To calculate the exponential of a diagonal matrix, replace each diagonal ele-
ment by the exponential of that diagonal element.

▪ If A is similar to a matrix J in Jordan canonical form, so that A¼MJM�1 for
a generalized modal matrix M, then eA¼MeJM�1.

▪ e0¼ I, where 0 is the n�n zero matrix and I is the n�n identity matrix.

Section 4.5

▪ The powermethod is a numerical method for estimating the dominant eigen-
value and a corresponding eigenvector for a matrix.

▪ The inverse power method is the power method applied to the inverse of a
matrix A. In general, the inverse power method converges to the smallest
eigenvalue in absolute value of A.
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Applications of Eigenvalues
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Problems 5.7 319
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5.1 DIFFERENTIAL EQUATIONS
A differential equation is an equation involving an unknown function and one or
more of its derivatives. For the next few sections of this chapter, we will take
advantage of some of the concepts we have thus far developed and apply them
to solving differential equations.

5.2 DIFFERENTIAL EQUATIONS IN
FUNDAMENTAL FORM
An important application of Jordan canonical forms (see Appendix A), in
general, and the exponential of a matrix, in particular, occurs in the solution
of differential equations with constant coefficients. A working knowledge of
the integral calculus and a familiarity with differential equations is required to
understand the scope of this application. In this section, we show how to trans-
form many systems of differential equations into a matrix differential equation.
In the next section, we show how to solve such systems using the exponential of
matrix.
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A differential equation in the unknown functions x1(t), x2(t), . . . , xn(t) is an
equation that involves these functions and one or more of their derivatives.
We shall be interested in systems of first-order differential equations of the form

dx1 tð Þ
dt

¼ a11x1 tð Þ þ a12x2 tð Þ þ � � � þ a1nxn tð Þ þ f1 tð Þ

dx2 tð Þ
dt

¼ a21x1 tð Þ þ a22x2 tð Þ þ � � � þ a2nxn tð Þ þ f2 tð Þ

..

.

dxn tð Þ
dt

¼ a11x1 tð Þ þ a12x2 tð Þ þ � � � þ a1nxn tð Þ þ f1 tð Þ

ð5:1Þ

Here, aij (i, j¼1,2, . . . , n) is restricted to be a constant and fi(t) is presumed to be a
known function of the variable t. If we define,

x tð Þ ¼
x1 tð Þ
x2 tð Þ
..
.

xn tð Þ

2
6664

3
7775, A ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. . .
. ..

.

an1 an2 � � � ann

2
6664

3
7775, and f tð Þ ¼

f1 tð Þ
f2 tð Þ
..
.

fn tð Þ

2
6664

3
7775 ð5:2Þ

then Equation (5.1) is equivalent to the single matrix equation

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ ð5:3Þ

Example 1 The system of equations

dx tð Þ
dt

¼ 2x tð Þ þ 3y tð Þ þ 4z tð Þ þ t2 � 1
� �

dy tð Þ
dt

¼ 5y tð Þ þ 6z tð Þ þ et

dz tð Þ
dt

¼ 7x tð Þ � 8y tð Þ � 9z tð Þ
is equivalent to the matrix equation

dx tð Þ=dt
dy tð Þ=dt
dz tð Þ=dt

2
4

3
5 ¼

2 3 4
0 5 6
7 �8 �9

2
4

3
5 x tð Þ

y tð Þ
z tð Þ

2
4

3
5þ

t2 � 1
et

0

2
4

3
5

This matrix equation is in form (4.30) with

x tð Þ ¼
x tð Þ
y tð Þ
z tð Þ

2
4

3
5, A ¼

2 3 4
0 5 6
7 �8 �9

2
4

3
5, and f tð Þ ¼

t2 � 1
et

0

2
4

3
5

In this example, x1(t)¼x(t), x2(t)¼y(t), and x3(t)¼z(t).
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We solve Equation (5.3) in the interval a� t�b by identifying a column matrix
x(t) that when substituted into Equation (5.3) makes the equation true for all
values of t in the given interval. Often, however, we need to solve more than just
a set of differential equations. Often, we seek functions x1(t), x2(t), . . . , xn(t) that
satisfy all the differential equations in Equation (5.1) or, equivalently, Equa-
tion (5.3) and also a set of initial conditions of the form

x1 t0ð Þ ¼ c1, x2 t0ð Þ ¼ c2, . . . , xn t0ð Þ ¼ c0 ð5:4Þ
where c1, c2, . . . , cn are all constants, and t0 is a specific value of the variable
t inside the interval of interest. Upon defining

c ¼
c1
c2
..
.

cn

2
6664

3
7775

it follows that

x t0ð Þ ¼
x1 t0ð Þ
x2 t0ð Þ

..

.

xn t0ð Þ

2
6664

3
7775 ¼

c1
c2
..
.

cn

2
6664

3
7775 ¼ c

Thus, initial conditions (Equation 4.31) have the matrix form

x t0ð Þ ¼ c ð5:5Þ
We say that a system of differential equations is in fundamental form if it is given
by the matrix equations

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ

x t0ð Þ ¼ c

ð5:6Þ

Example 2 The system of equations

dr tð Þ
dt

¼ 2r tð Þ � 3s tð Þ

ds tð Þ
dt

¼ 4r tð Þ þ 5s tð Þ

r pð Þ ¼ 10, s pð Þ ¼ �20

is equivalent to the matrix equations

dr tð Þ=dt
ds tð Þ=dt

� �
¼ 2 �3

4 5

� �
r tð Þ
s tð Þ

� �
þ 0

0

� �

A system of differential
equations is in
fundamental form if it
is given by the matrix
equations

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ

x t0ð Þ ¼ c:
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r pð Þ
s pð Þ

� �
¼ 10

�20

� �

This set of equations is in fundamental form (4.33) with

x tð Þ ¼ r tð Þ
s tð Þ

� �
,A ¼ 2 �3

4 5

� �
, f tð Þ ¼ 0

0

� �
, and c ¼ 10

�20

� �

In this example, x1(t)¼ r(t) and x2(t)¼ s(t).

A system of differential equations in fundamental form is homogeneous when
f(t)¼0 and nonhomogeneous when f(t) 6¼0 (i.e., when at least one element of
f(t) is not zero). The system in Example 2 is homogeneous; the system in Exam-
ple 1 is nonhomogeneous.

Generally, systems of differential equations do not appear in fundamental form.
However, many such systems can be transformed into fundamental form by
appropriate reduction techniques. One such group are initial-value problems
of the form

an
dnx tð Þ
dtn

þ an�1
dn�1x tð Þ
dtn�1

þ . . .þ a1
dx tð Þ
dt

þ a0x tð Þ ¼ f tð Þ

x t0ð Þ ¼ c1,
dx t0ð Þ
dt

¼ c2 . . . ,
dn�1x t0ð Þ
dtn�1

¼ cn�1

ð5:7Þ

This is a system containing a single nth-order, linear differential equation with
constant coefficients along with n�1 initial conditions at t0. The coefficients
a0, a1, . . . , an are restricted to be constants and the function f(t) is presumed
to be known and continuous on some interval centered around t0.

A method of reduction for transforming system (5.5) into fundamental form is
given by the following six steps.

Step 1. Solve system (5.5) for the nth derivative of x(t).

dnx tð Þ
dtn

¼ � an�1

an

� �
dn�1x tð Þ
dtn�1

� . . .� a1
an

� �
dx tð Þ
dt

� a0
an

� �
x tð Þ þ f tð Þ

an

Step 2. Define n new variables (the same number as the order of the differential
equations) x1(t), x2(t), . . . , xn(t) by the equations

x1 ¼ x tð Þ, x2 ¼ dx

dt
, x3 ¼ d2x

dt2
, . . . , xn�1 ¼ dn�2x

dtn�2
, xn ¼ dn�1x

dtn�1
ð5:8Þ

Here, we simplified xj(t) (j¼1,2, . . . , n) to xj. By differentiating the last
equation in system (5.8), we obtain

dxn
dt

¼ dnx

dtn
ð5:9Þ

A system of differential
equations in fundamental
form is homogeneous
when f(t )¼0.

Linear Algebra292



Step 3. Substitute Equations (5.8) and (5.9) into the equation obtained in Step 1,
thereby obtaining an equation for dxn/dt in terms of the new variables.
The result is

dxn
dt

¼ � an�1

an

� �
xn � . . .� a1

an

� �
x2 � a0

an

� �
x1 þ f tð Þ

an
ð5:10Þ

Step 4. Using Equations (5.8) and (5.10), construct a system of n first-order
differential equations for x1, x2, . . . , xn. The system is

dx1
dt

¼ x2

dx2
dt

¼ x3

..

.

dxn�1

dt
¼ xn

dxn
dt

¼ � a0
an

� �
x1 � a1

an

� �
x2 � . . .� an�1

an

� �
xn þ f tð Þ

an
ð5:11Þ

In this last equation, the order of the terms in Equation (5.10) was rear-
ranged so that x1 appears before x2, which appears before x3 and so on.
This was done to simplify the next step.

Step 5. Write system (5.11) as a single matrix differential equation. Define

x tð Þ ¼

x1
x2
..
.

xn�1

xn

2
666664

3
777775, f tð Þ ¼

0
0
..
.

0
f tð Þ=an

2
66664

3
77775

A ¼

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 1

� a0
an

� a1
an

� a2
an

� a3
an

. . . � an�1

an

2
666666666664

3
777777777775

Then Equation (5.11) is equivalent to the matrix equation
dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ:
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Step 6.Write the initial conditions as a matrix equation. Define c¼ [c1 c2 . . . cn]
T.

Then,

x t0ð Þ ¼

x1 t0ð Þ
x2 t0ð Þ

..

.

xn t0ð Þ

2
66664

3
77775 ¼

x t0ð Þ
dx t0ð Þ=dt

..

.

dn�1x t0ð Þ=dtn�1

2
66664

3
77775 ¼

c1

c2

..

.

cn

2
66664

3
77775 ¼ c

The results of Steps 5 and 6 are a matrix system in fundamental form.

Example 3 Write the initial-value problem

d2x tð Þ
dt2

þ x tð Þ ¼ 2; x pð Þ ¼ 0,
dx pð Þ
dt

¼ �1

in fundamental form.

Solution: The differential equation may be rewritten as

d2x tð Þ
dt

¼ �x tð Þ þ 2

This is a second-order differential equation, so we define two new variables

x1 ¼ x tð Þandx2 ¼ dx

dt
. Thus,

dx2
dt

¼ d2x

dt2
and the original differential equation

becomes
dx2
dt

¼ �x1 þ 2. A first-order system for the new variables is

dx1
dt

¼ x2 ¼ 0x1 þ 1x2

dx2
dt

¼ �x1 þ 2 ¼ �1x1 þ 0x2 þ 2

Define x tð Þ ¼ x1
x2

� �
, A ¼ 0 1

�1 0

� �
, f tð Þ ¼ 0

2

� �
, and c ¼ 0

�1

� �
. Then,

the initial-value problem is equivalent to the fundamental form

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ; x pð Þ ¼ c

Example 4 Write the initial-value problem

2
d4x

dt4
� 4

d3x

dt3
þ 16

d2x

dt2
� dx

dt
þ 2x ¼ sin t

x 0ð Þ ¼ 1,
dx 0ð Þ
dt

¼ 2,
d2x 0ð Þ
dt2

¼ �1,
d3x 0ð Þ
dt3

¼ 0

in fundamental form.
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Solution: The differential equation may be rewritten as

d4x

dt4
¼ 2

d3x

dt3
� 8

d2x

dt2
þ 1

2

dx

dt
� xþ 1

2
sin t

This is a fourth-order differential equation, so we define four new variables

x1 ¼ x tð Þ, x2 ¼ dx

dt
, x3 ¼ d2x

dt2
, and x4 ¼ d3x

dt3

Thus,
dx4
dt

¼ d4x

dt4
and the original differential equation becomes

dx4
dt

¼ 2x4 � 8x3 þ 1

2
x2 � x1 þ 1

2
sin t

A first-order system for the new variables is

dx1
dt

¼ x2

dx2
dt

¼ x3

dx3
dt

¼ x4

dx4
dt

¼ �x1 þ 1

2
x2 � 8x3 þ 2x4 þ 1

2
sin t:

Define x tð Þ ¼

x1

x2

x3

x4

2
6664

3
7775, A ¼

0 1 0 0

0 0 1 0

0 0 0 1

�1
1

2
�8 2

2
666664

3
777775, f tð Þ ¼

0

0

0
1

2
sin t

2
666664

3
777775, and

c ¼
1
2

�1
0

2
664

3
775.

Then, the initial-value problem is equivalent to the fundamental form

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ; x 0ð Þ ¼ c
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Problems 5.2
Put the following initial-value problems into fundamental form

(1) dx tð Þ
dt

¼ 2x tð Þ þ 3y tð Þ

dy tð Þ
dt

¼ 4x tð Þ þ 5y tð Þ

x 0ð Þ ¼ 6, y 0ð Þ ¼ 7

(2) dy tð Þ
dt

¼ 3y tð Þ þ 2z tð Þ

dz tð Þ
dt

¼ 4y tð Þ þ z tð Þ

y 0ð Þ ¼ 1, z 0ð Þ ¼ 1

(3) dx tð Þ
dt

¼ �3x tð Þ þ 3y tð Þ þ 1

dy tð Þ
dt

¼ 4x tð Þ � 4y tð Þ � 1

x 0ð Þ ¼ 0, y 0ð Þ ¼ 0

(4) dx tð Þ
dt

¼ 3x tð Þ þ t

dy tð Þ
dt

¼ 2x tð Þ þ t þ 1

x 0ð Þ ¼ 1, y 0ð Þ � 1

(5) dx tð Þ
dt

¼ 3x tð Þ þ 7y tð Þ þ 2

dy tð Þ
dt

¼ x tð Þ þ y tð Þ þ 2t

x 1ð Þ ¼ 2, y 1ð Þ ¼ �3

(6) du tð Þ
dt

¼ u tð Þ þ v tð Þ þ w tð Þ

dv tð Þ
dt

¼ u tð Þ � 3v tð Þ þ w tð Þ

dw tð Þ
dt

¼ v tð Þ þ w tð Þ

u 4ð Þ ¼ 0, v 4ð Þ ¼ 1, w 4ð Þ ¼ �1

(7) dx tð Þ
dt

¼ 6y tð Þ þ z tð Þ

dy tð Þ
dt

¼ x tð Þ � 3z tð Þ

dz tð Þ
dt

¼ �2y tð Þ

x 0ð Þ ¼ 10, y 0ð Þ ¼ 10, z 0ð Þ ¼ 20

(8) dr tð Þ
dt

¼ r tð Þ � 3s tð Þ � u tð Þ þ sin t

ds tð Þ
dt

¼ r tð Þ � s tð Þ þ t2 þ 1

dt tð Þ
dt

¼ 2r tð Þ þ s tð Þ � u tð Þ þ cos t

r 1ð Þ ¼ 4, s 1ð Þ ¼ �2, u 1ð Þ ¼ 5
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(9)
d2x tð Þ
dt2

� 2
dx tð Þ
dt

� 3x tð Þ ¼ 0

x 0ð Þ ¼ 4,
dx 0ð Þ
dt

¼ 5

(10)
d2x tð Þ
dt2

þ dx tð Þ
dt

� x tð Þ ¼ 0

x 1ð Þ ¼ 2,
dx 1ð Þ
dt

¼ 0

(11) d2x tð Þ
dt2

� x tð Þ ¼ t2

x 0ð Þ ¼ �3,
dx 0ð Þ
dt

¼ 0

(12) d2x tð Þ
dt2

� 2
dx tð Þ
dt

� 3x tð Þ ¼ 2

x 0ð Þ ¼ 0,
dx 0ð Þ
dt

¼ 0

(13) d2x tð Þ
dt2

� 3
dx tð Þ
dt

þ 2x tð Þ ¼ e�t

x 1ð Þ ¼ 2,
dx 1ð Þ
dt

¼ 2

(14) d3x tð Þ
dt3

þ d2 tð Þ
dt2

� x tð Þ ¼ 0

x �1ð Þ ¼ 2,
dx �1ð Þ

dt
¼ 1,

d2x tð Þ
dt2

¼ �205

(15) d4x

dt4
þ d2x

dt2
¼ 1þ dx

dt

x 0ð Þ ¼ 1,
dx 0ð Þ
dt

¼ 2,
d2x 0ð Þ
dt2

¼ p,
d3x 0ð Þ
dt3

¼ e3

(16) d6x

dt6
þ 4

d4x

dt4
¼ t2 � t

x pð Þ ¼ 2,
dx pð Þ
dt

¼ 1,
d2x pð Þ
dt2

¼ 0,
d3x pð Þ
dt3

¼ 2

d4x pð Þ
dt4

¼ 1,
d5x pð Þ
dt5

¼ 0

5.3 SOLVING DIFFERENTIAL EQUATIONS
IN FUNDAMENTAL FORM
We demonstrated in Section 5.2 how various systems of differential equations
could be transformed into the fundamental matrix form

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ

x t0ð Þ ¼ c

ð5:12Þ

The matrix A is assumed to be a matrix of constants, as is the columnmatrix c. In
contrast, the column matrix f(t) may contain known functions of the variable t.
Such differential equations can be solved in terms of eAt.

The matrix differential equation in Equation (5.12) can be rewritten as

dx tð Þ
dt

� Ax tð Þ ¼ f tð Þ
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If we premultiply each side of this equation by e�At, we obtain

e�At dx tð Þ
dt

� Ax tð Þ
� �

¼ e�At f tð Þ

which may be rewritten as (see Corollary 1 of Section 4.4)

d

dt
e�Atx tð Þ� 	 ¼ e�At f tð Þ

Integrating this last equation between the limits of t0 and t, we have

ðt
t0

d

dt
e�Atx tð Þ� 	

dt ¼
ðt
t0

e�Atf tð Þdt

or

e�Atx tð Þ





t

t0

¼
ðt
t0

e�Asf sð Þds ð5:13Þ

Note that we have replaced the dummy variable t by the dummy variable s in the
right-side of Equation (5.13), which has no effect on the definite integral (see
Problem 1). Evaluating the left side of Equation (5.13), we obtain

e�Atx tð Þ � eAt0x t0ð Þ ¼
ðt
t0

e�Asf sð Þds

or

e�Atx tð Þ ¼ eAt0cþ
ðt
t0

e�Asf sð Þds ð5:14Þ

where we substituted for x(t0) the initial condition x(t0)¼c. We solve explic-
itly for x(t) by premultiplying both sides of Equation (5.14) by (e�At)�1,
whence

x tð Þ ¼ e�At
� ��1

eAt0cþ e�At
� ��1

ðt
t0

e�Asf sð Þds ð5:15Þ
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But (e�At)�1¼ eAt (see Theorem 2 of Section 4.4). Also, At commutes with At0,
so eAteAt0¼ eA(t�t0) (see Problem 36 of Section 4.4). Equation (5.15) may be
simplified to

x tð Þ ¼ e�A t�t0ð Þcþ eAt
ðt
t0

e�Asf sð Þds ð5:16Þ

and we have proven

▶THEOREM 1
The solution to the system

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ; x t0ð Þ ¼ c in fundamental form is

x tð Þ ¼ eA t�t0ð Þcþ eAt
ðt
t0

e�Asf sð Þds.◀

A simple technique for calculating the matrices eA(t�t0) and e�As is to first find eAt

and then replace the variable t wherever it appears by the quantities (t� t0) and
(�s), respectively.

Example 1 eA t ¼ e�t te�t

0 e�t

� �
for A ¼ �1 1

0 �1

� �
. Consequently,

eA t�t0ð Þ ¼ e� t�t0ð Þ t � t0ð Þe� t�t0ð Þ

0 e� t�t0ð Þ

� �
and e�As ¼ es �ses

0 es

� �
.

Note that when t is replaced by (t� t0) in e�t, the result is e�(t�t0)¼e�tþt0 and note
e�t�t0. That is, we replace the quantity t by the quantity (t� t0); we do not simply
add �t0 to the variable t wherever t appeared.

Example 2 Use matrix methods to solve

du tð Þ
dt

¼ u tð Þ þ 2v tð Þ þ 1

dv tð Þ
dt

¼ 4u tð Þ þ 3v tð Þ � 1

u 0ð Þ ¼ 1, v 0ð Þ ¼ 2

Solution: This system can be transformed into fundamental form if we define

x tð Þ ¼ u tð Þ
v tð Þ

� �
, A ¼ 1 2

4 3

� �
, f tð Þ ¼ 1

�1

� �
, and c ¼ 1

2

� �
and take t0¼0. For this A, we calculate

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

� �
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Hence,

e�As ¼ 1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

" #

and

eA t�t0ð Þ ¼ eAt

since t0¼0. Thus,

eA t�t0ð Þc ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
1

2

" #

¼ 1

6

1 2e5t þ 4e�t½ � þ 2 2e5t � 2e�t½ �
1 4e5t � 4e�1½ � þ 2 4e5t þ 2e�t½ �

" #

¼ e5t

2e5t

" #
: ð5:17Þ

e�Asf sð Þ ¼ 1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

" #
1

�1

" #

¼ 1

6

1 2e�5s þ 4es½ � � 1 2e�5s � 2es½ �
1 4e�5t � 4es½ � � 1 4e�5s þ 2es½ �

" #
¼

es

�es

" #
:

Hence,

ðt
t0

e�Asf sð Þds ¼
Ð t
0 e

sdsÐ t
0 �esds

" #
¼ esjt0

�esjt0

" #
¼ et � 1

�et þ 1

� �

eAt
ðt
t0

e�Asf sð Þds ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
et � 1ð Þ
1� etð Þ

" #
ð5:18Þ

¼ 1

6

2e5t þ 4e�t½ � et � 1½ � þ 2e5t � 2e�t½ � 1� et½ �
4e5t � 4e�t½ � et � 1½ � þ 4e5t þ 2e�t½ � 1� et½ �

" #

¼ 1� e�tð Þ
�1þ e�tð Þ

" #
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Substituting Equations (5.17) and (5.18) into Equation (5.16), we have

u tð Þ
v tð Þ

� �
¼ x tð Þ ¼ e5t

2e5t

� �
þ 1� e�t

�1þ e�t

� �
¼ e5t þ 1� e�t

2e5t � 1þ e�t

� �
or

u tð Þ ¼ e5t � e�t þ 1
v tð Þ ¼ 2e5t þ e�t � 1

Example 3 Use matrix methods to solve

d2y

dt2
� 3

dy

dt
þ 2y ¼ e�3t

y 1ð Þ ¼ 1,
dy 1ð Þ
dt

¼ 0

Solution: This system can be transformed into fundamental form if we define

x tð Þ ¼ x1 tð Þ
x2 tð Þ

� �
, A ¼ 0 1

�2 3

� �
, f tð Þ ¼ 0

e�3t

� �
, andc ¼ 1

0

� �
and take t0¼0. For this A, we calculate

eAt ¼ �e2t þ 2et e2t � et

�2e2t þ 2et 2e2t � et

� �

Thus,

eA t�t0ð Þc ¼ �e2 t�1ð Þ þ 2e t�1ð Þ e2 t�1ð Þ � e t�1ð Þ

�2e2 t�1ð Þ þ 2e t�1ð Þ 2e2 t�1ð Þ � e t�1ð Þ

" #
1

0

� �

¼ �e2 t�1ð Þ þ 2e t�1ð Þ

�2e2 t�1ð Þ þ 2e t�1ð Þ

" # ð5:19Þ

Now

f tð Þ ¼ 0
e�3t

� �
, f sð Þ ¼ 0

e�3s

� �

e�Asf sð Þ ¼ �e�2s þ 2e�s e�2s � e�s

�2e�2s þ 2e�s 2e�2s � e�s

" #
0

e�3s

" #

¼ e�5s � e�4s

2e�5s � e�4s

" #
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Hence,

ðt
t0

e�Asf sð Þds ¼

ðt
1

e�5s � e�4s
� �

ds

ð1
1

2e�5s � e�4s
� �

ds

2
66666664

3
77777775

¼

� 1

5

0
@

1
Ae�5t þ 1

4

0
@

1
Ae�4t þ 1

5

0
@

1
Ae�5 � 1

4

0
@

1
Ae�4

� 2

5

0
@

1
Ae�5t þ 1

4

0
@

1
Ae�4t þ 2

5

0
@

1
Ae�5 � 1

4

0
@

1
Ae�4

2
66666664

3
77777775

eAt
ðt
t0

e�Asf sð Þds ¼
�e2t þ 2etð Þ e2t � etð Þ

�2e2t þ 2etð Þ 2e2t � etð Þ

2
4

3
5

�
� 1

5
e�5t þ 1

4
e�4t þ 1

5
e�5 � 1

4
e�4

0
@

1
A

� 2

5
e�5t þ 1

4
e�4t þ 2

5
e�5 � 1

4
e�4

0
@

1
A

2
66666664

3
77777775

¼

1

20
e�3t þ 1

5
e 2t�5ð Þ � 1

4
et�4

� 3

20
e�3t þ 2

5
e 2t�5ð Þ � 1

4
et�4

2
6664

3
7775 ð5:20Þ

Substituting Equations (5.19) and (5.20) into Equation (5.16), we have that

x tð Þ ¼ x1 tð Þ
x2 tð Þ

� �
¼ �e2 t�1ð Þ þ 2et�1

�2e2 t�1ð Þ þ 2et�1

" #
þ

1

20
e�3t þ 1

3
e 2t�5ð Þ � 1

4
et�4

1

20
e�3t þ 2

5
e 2t�5ð Þ � 1

4
et�4

2
66664

3
77775

¼
�e2 t�1ð Þ þ 2et�1 þ 1

20
e�3t þ 1

5
e 2t�5ð Þ � 1

4
et�4

�2e2 t�1ð Þ þ 2et�1 þ 3

20
e�3t þ 2

5
e 2t�5ð Þ � 1

4
et�4

2
66664

3
77775
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It follows that the solution to the original initial-value problem is

y tð Þ ¼ x1 tð Þ ¼ �e2 t�1ð Þ þ 2et�1 1

20

� �
e 2t�5ð Þ � 1

4
et�4

The most tedious step in Example 3 was multiplying the matrix eAt by the

column matrix
Ðt
t0

e�Asf sð Þds. This step can be eliminated if we are willing to

tolerate a slightly more complicated integral. The integration in Equa-
tion (5.16) is with respect to the dummy variable s. If we bring the matrix
eAt, appearing in front of the integral, inside the integral, we may rewrite
Equation (5.16) as

x tð Þ ¼ eA t�t0ð Þcþ
ðt
t0

e�Ate�Asf sð Þds ð5:21Þ

But At and �As commute, so eAte�As¼ eA(t�s) and Equation (5.21) becomes

x tð Þ ¼ eA t�t0ð Þcþ
ðt
t0

eA t�sð Þf sð Þds ð5:22Þ

The matrix eA(t�s) is obtained by replacing the variable t in eAt by the quantity
(t� s).

Example 4 Use matrix methods to solve

d2x

dt2
þ x ¼ 2

x pð Þ ¼ 0,
dx pð Þ
dt

¼ �1

Solution: This system can be transformed into fundamental form if we define

x tð Þ ¼ x1 tð Þ
x2 tð Þ

� �
, A ¼ 0 1

�1 0

� �
, f tð Þ ¼ 0

2

� �
, and c ¼ 0

�1

� �

and take t0¼p. The solution to this initial-value problem is given by either Equa-
tion (5.16) or (5.22). In this example, we shall evaluate Equation (5.22), thereby
saving one matrix multiplication. For this A, eAt was determined in Example 8 of
Section 4.4 to be

eA t ¼ cos t sin t

�sin t cos t

� �

An alternate form of the
solution to a matrix
differential equation in
fundamental form
is x tð Þ ¼ eA t�t0ð Þcþðt

t0

eA t�sð Þf sð Þds:
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Thus,

eA t�t0ð Þc ¼ cos t � pð Þ sin t � pð Þ
�sin t � pð Þ cos t � pð Þ

" #
0

�1

" #

¼ �sin t � pð Þ
�cos t � pð Þ

" #

eA t�sð Þf sð Þ ¼ cos t � sð Þ sin t � sð Þ
�sin t � sð Þ cos t � sð Þ

" #
0

2

" #

¼ 2sin t � sð Þ
2cos t � sð Þ

" #
ð5:23Þ

Hence,

ðt
t0

eA t�sð Þf sð Þds ¼
Ð t
p 2sin t � sð ÞdsÐ t
p 2cos t t � sð Þds

2
4

3
5

¼
2� 2cos t � pð Þ
2sin t � pð Þ

" # ð5:24Þ

Substituting Equations (5.23) and (5.24) into Equation (5.22) and using
the trigonometric identities sin(t�p)¼�sin t and cos(t�p)¼�cos t,
we have

x1 tð Þ
x2 tð Þ

" #
¼ x tð Þ ¼ �sin t � pð Þ

�cos t � pð Þ

" #
þ 2� 2cos t � pð Þ

2sin t � pð Þ

" #

¼ sin t þ 2cos t þ 2

cos t � 2sin t

" #

Thus, since x(t)¼x1(t), it follows that the solution to the initial-value problem is
given by

x tð Þ ¼ sin t þ 2cos t þ 2

A great simplification to both Equation (5.16) and Equation (5.22) is effected
when the differential equation is homogeneous, that is, when f(t)¼0. In both
formulas, the integral becomes a zero-column matrix, and the solution
reduces to

x tð Þ ¼ eA t�t0ð Þc ð5:25Þ
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Occasionally, one needs to solve a differential equation by itself, andnot an entire
initial-value problem. In such cases, the general solution is (see Problem 2)

x tð Þ ¼ eAtkþ eAt
ð
e�At f tð Þdt ð5:26Þ

where k is an arbitrary column matrix of suitable dimension. The general solu-
tion to a homogeneous differential equation by itself is

x tð Þ ¼ eAtk ð5:27Þ

Example 5 Use matrix methods to solve

du tð Þ
dt

¼ u tð Þ þ 2v tð Þ

dv tð Þ
dt

¼ 4u tð Þ þ 3v tð Þ

Solution: This system can be transformed into fundamental form if we define

x tð Þ ¼ u tð Þ
v tð Þ

� �
, A ¼ 1 2

4 3

� �
, and f tð Þ ¼ 0

0

� �

This is a homogeneous system with no initial conditions specified; the general
solution is given in Equation (5.27). For this A, we have

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

� �

Thus,

eAtk ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
k1

k2

" #

¼ 1

6

k1 2e
5t þ 4e�t½ � þ k2 2e

5t � 2e�t½ �
k1 4e

5t � 4e�t½ � þ k2 4e
5t þ 2e�t½ �

" #

¼ 1

6

e5t 2k1 þ 2k2ð Þ þ e�t 4k1 � 2k2ð Þ
e5t 4k1 þ 4k2ð Þ þ e�t �4k1 þ 2k2ð Þ

" #
ð5:28Þ

Substituting Equation (5.28) into Equation (5.27), we have that

u tð Þ
v tð Þ

" #
¼ x tð Þ ¼ 1

6

e5t 2k1 þ 2k2ð Þ þ e�t 4k1 � 2k2ð Þ
e5t 4k1 þ 4k2ð Þ þ e�t �4k1 þ 2k2ð Þ

" #

The solution to the
homogeneous system

dx tð Þ
dt

¼ Ax tð Þ;

x t0ð Þ ¼ c is
x tð Þ ¼ eA t�t0ð Þc:
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or

u tð Þ ¼ 2k1 þ 2k2
6

0
@

1
Ae5t þ 4k1 � 2k2

6

0
@

1
Ae�t

v tð Þ ¼ 2
2k1 þ 2k2

6

0
@

1
Ae5t þ �4k1 þ 2k2

6

0
@

1
Ae�t

ð5:29Þ

We can simplify the expressions for u(t) and v(t) if we introduce two new arbi-
trary constants k3, and k4 defined by

k3 ¼ 2k1 þ 2k2
6

, k4 ¼ 4k1 � 2k2
6

Substituting these values into Equation (5.29), we obtain

u tð Þ ¼ k3e
5t þ k4e

�t

v tð Þ ¼ 2k3e
5t � k4e

�t

Problems 5.3
(1) Show by direct integration that

ðt
t0

t2dt ¼
ðt
t0

s2ds ¼
ðt
t0

p2dp

In general, show that if f(t) is integrable on the interval [a, b], then

ðb
a

f tð Þdt ¼
ðb
a

f sð Þds

Hint: Assume
Ð
f(t)dt¼F(t)þ c. Hence,

Ð
f(s)ds¼F(s)þ c. Then use the

fundamental theorem of integral calculus.

(2) Derive Equation (5.26). Hint: Follow the derivation of Equation (5.16)
using indefinite integration, rather than definite integration, and note that

ð
d

dt
e�Atx tð Þ� 	

dt ¼ e�Atx tð Þ þ k

where k is an arbitrary column matrix of integration.
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(3) Find (a) e�At, (b) eA(t�2), (c) eA(t�s), (d) e�A(t�2), if

eAt ¼ e3t
1 t t2=2

0 1 t

0 0 1

2
4

3
5

(4) Find (a) e�At, (b) e�As, (c) eA(t�3), if

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

� �

(5) Find (a) e�At, (b) e�As, (c) e�A(t�s), if

eAt ¼ 1

3

�sin 3t þ 3 cos t 5 sin 3t

�2 sin 3t sin 3t þ 3cos 3t

� �

(6) Determine which of the following column vectors x are solutions to the
system

d

dt

x1 tð Þ
x2 tð Þ

� �
¼ 0 1

�1 0

� �
x1 tð Þ
x2 tð Þ

� �
;

x1 0ð Þ
x2 0ð Þ

� �
¼ 1

0

� �

að Þ sin t
cos t

� �
, bð Þ et

0

� �
, cð Þ cos t

�sin t

� �
:

(7) Determine which of the following column vectors x are solutions to the
system

d

dt

x1 tð Þ
x2 tð Þ

� �
¼ 1 2

4 3

� �
x1 tð Þ
x2 tð Þ

� �
;

x1 0ð Þ
x2 0ð Þ

� �
¼ 1

2

� �

að Þ e�t

�e�t

� �
, bð Þ e�t

2e�t

� �
, cð Þ e5t

2e5t

� �
:

(8) Determine which of the following column vectors x are solutions to the
system

d

dt

x1 tð Þ
x2 tð Þ

� �
¼ 0 1

�2 3

� �
x1 tð Þ
x2 tð Þ

� �
;

x1 1ð Þ
x2 1ð Þ

� �
¼ 1

0

� �

að Þ �e2t þ 2et

�2e2t þ 2et

� �
, bð Þ �e2 t�1ð Þ þ 2e t�1ð Þ

�2e2 t�1ð Þ þ 2e t�1ð Þ

� �
, cð Þ e2 t�1ð Þ

0

� �
:

Solve the systems described in Problems 9 through 16 by matrix methods.
Note that Problems 9 through 12 have the same coefficient matrix.
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(9) dx tð Þ
dx

¼ �2x tð Þ þ 3y tð Þ

dy tð Þ
dt

¼ �x tð Þ þ 2y tð Þ

x 2ð Þ ¼ 2, y 2ð Þ ¼ 4

(10) dx tð Þ
dt

¼ �2x tð Þ þ 3y tð Þ þ 1

dy tð Þ
dt

¼ �x tð Þ þ 2y tð Þ þ 1

x 1ð Þ ¼ 1, y 1ð Þ ¼ 1

(11) dx tð Þ
dt

¼ �2x tð Þ þ 3y tð Þ

dy tð Þ
dt

¼ �x tð Þ þ 2y tð Þ

(12) dx tð Þ
dt

¼ �2x tð Þ þ 3y tð Þ þ 1

dy tð Þ
dt

¼ �x tð Þ þ 2y tð Þ þ 1

(13) d2x

dt2
þ 4x ¼ sin t; x 0ð Þ ¼ 1,

dx 0ð Þ
dt

¼ 0

(14)
d3x

dt3
¼ t; x 1ð Þ ¼ 1,

dx 1ð Þ
dt

¼ 2,
d2x 1ð Þ
dt2

¼ 3

(15)
d2x

dt2
� dx

dt
� 2x ¼ e�e; x 0ð Þ ¼ 1,

dx 0ð Þ
dt

¼ 0

(16) d2x

dt2
¼ 2

dx

dt
þ 5y þ 3

dy

dt
¼ � dx

dt
� 2y

x 0ð Þ ¼ 0,
dx 0ð Þ
dt

¼ 0, y 0ð Þ ¼ 1:

5.4 MODELING AND DIFFERENTIAL EQUATIONS
Mathematical models are used in virtually all branches of science, technology, and
engineering. Manymodels are presented in terms of differential equations. There
is a delicate balance between making sure a model is “reflective enough” to gov-
ern or mirror a situation, and—at the same time—“easy enough” to solve the
associated equations.

In this section, we consider amixing problemwhich will bemodeled by a system
of differential equations. In our discussion, we will make various assumptions
and then “tweak” the model by changing various parameters.

Consider Figure 5.1. A saline solution, of concentration 2 pounds of salt/gal, is
introduced into Tank 1 at a rate of 5 gal/min. As we can see from the diagram, the
tanks are connected by a system of pipes.
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Assuming that the salt is distributed uniformly in the solution, we will model the
problem with the following variables:

t¼ time (min)
S1(t)¼amount of salt in Tank 1 at time t (pounds)

S2(t)¼amount of salt in Tank 2 at time t (pounds)

S3(t)¼amount of salt in Tank 3 at time t (pounds)

dSk
dt

¼ rate of change of salt in Tank k (pounds/min), k¼1,2,3

Let us now consider Tank 1. Because there are three pipes connected to the tank,
the rate of change of the salt in this tank will have three terms:

dS1
dt

¼ 5gal

min
� 2lbs

gal
� S1 lb

100gal
� 2gal

min
� S1 lb

100gal
� 3gal

min
ð5:30Þ

We note in this equation the consistency of units (lbs/min) and the division by
the capacity of Tank 1 (100 gal).

The two other tanks are modeled as follows:

dS2
dt

¼ S1 lb

100gal
� 2gal

min
þ S3 lb

100gal
� 4gal

min
� S2 lb

50gal
� 1gal

min
� S2 lb

50gal
� 3gal

min
ð5:31Þ

dS3
dt

¼ S2 lb

50gal
� 1gal

min
� S3 lb

100gal
� 4gal

min
� 0lb

gal
� 3gal

min
ð5:32Þ

We note here that the last term of Equation (5.32) is 0, because there is no salt in
the incoming solution from the right.

Finally, let us assume that initially there is no salt in any tank. That is,

S1ð0Þ ¼ S2ð0Þ ¼ S3ð0Þ ¼ 0

Tank 1 Tank 2 Tank 3
2 gal/min 4 gal/min

5 gal/min

1 gal/min

5 gal/min

3 gal/min

2 lb/gal
100
gal

100
gal

50
gal

3 gal/min

FIGURE 5.1
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We now will rewrite our problem in matrix notation

d

dt

S1
S2
S3

2
4

3
5 ¼

�5

100
0 0

2

100

�6

50

4

100

0
1

50

�4

100

2
666666664

3
777777775

S1
S2
S3

2
4

3
5þ

10
0
0

2
4

3
5 ð5:33Þ

We can now expand on the techniques discussed in Sections 5.2 and 5.3 to solve
this problem.However, in this case, the use of technologicalmethods is preferred
(see Appendix D). This is primarily due to the fact that we have a 3-by-3 coeffi-
cient matrix instead of a 2-by-2 matrix.

We end our discussion with the following observations and ask the following
questions:

We note that the system was “closed”; that is, the amount of solution coming in
(8 gal) is equal to the amount going out (8 gal). What if this was not the case?

We assumed no salt was initially present. What if this was not the case?

If the salt in the solution was not uniformly distributed, the modeling of our
problem becomes much more difficult. The same is true if the solution is not
introduced continuously. In these cases, our approach must be radically altered
and a numerical approach might be more useful.

Problems 5.4
(1) Assume vat V1 is placed above vat V2 and that both vats have a capacity of

100 l. If 7 l of a sucrose solution (5 kg sugar/l) is poured into V1 every
minute, how much sugar is in each vat at time t, if V1 drains into V2 at
the rate of 7 l/min, while V2 drains off at the same rate and there is no
sugar in either vat initially?

(2) Consider the previous problem. If vat V2 drains off at a rate of 8 l/min,
how much sugar will it contain in the long run, realizing that it will even-
tually be empty?

(3) Consider the previous problem. If vat V2 drains off at a rate of 6 l/min,
how much sugar will it contain in the long run, realizing that it will even-
tually overflow?

(4) Solve problem 1 if V1(0)¼5 and V2(0)¼12.

(5) Suppose two lakes (x and y) are connected by a series of canals in such a
way that the rate of change of the pollution in each lake can be modeled
by the following matrix equation:

d

dt

x
y

� �
¼ �2 3

4 �3

� �
x
y

� �
þ 1

0

� �
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where x(t) and y(t) represent the amount of pollution (in tons) at time t
(months). If both lakes are initially clean, find the amount of pollution at
time t, along with the long-range pollution in each lake.

(6) Do the previous problem if the model is given by

d

dt

x
y

� �
¼ �2 �3

�4 �3

� �
x
y

� �
þ 1

0

� �

(7) Suppose Problem 5 is modeled by

d

dt

x
y

� �
¼ �2 �3

�4 �3

� �
x
y

� �

with x(0)¼100, and y(0)¼300. Find the long-range pollution of each lake.

5.5 A BRIEF INTRODUCTION TO GRAPHS
AND NETWORKS
One area of Mathematics that has a definite starting point is the field of Graph
Theory, which can trace its origin to Leonhard Euler’s 1736 solution to the
Königsberg Bridge Problem (for more information, see Hopkins, Brian, and
Robin J. Wilson, (2004). “The bridges of Königsberg.” The College Mathematics
Journal 35.3: 198-207). A graph can be thought of as a picture that shows a set
of points, some of which are related. The relationship is indicated by the place-
ment of lines between the points. In graphs, the lines have no direction, so tra-
versal between the points can occur in either direction along the line. If the order
mattered, they would be called directed graphs, but they are not under
consideration here.

The points are called vertices, and lines are called edges. If a pair of vertices is
joined by more than one edge, the edge is called a multiple edge, and the graph
is called a multigraph. Graphs without multiple edges are called simple graphs.
When a graph on n vertices has an edge between every pair of vertices, the graph
is called a complete graph on n vertices, denoted Kn. The number of edges incident
on a vertex is the degree of the vertex, and if all the vertices have equal degree r, the
graph is regular of degree r.

If in a graph, one can begin at a particular vertex, traverse through several other
vertices via incident edges, never repeated a vertex or edge, and return to the start-
ing vertex, then the part of the graph just described is called a cycle. Figure 5.6 of
Section 5.6 depicts the graph C4, a cycle on four vertices. Not every graph con-
tains a cycle, or cycles. In some graphs, it might not be possible to find a sequence
of vertices and edges between every pair of vertices. If there is a pair of vertices
for which such a sequence does not exist, the graph is said to be disconnected.
Otherwise, the graph is connected, and there is a sequence of vertices and edges
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between every pair of vertices. If such a sequence exists and is unique for every
pair of vertices, then the graph is a tree. Trees also are acyclic, that is, they have no
cycles. A tree which includes every vertex of a graph is a spanning tree.

In Figure 5.2 of Section 5.6, the vertex sequence (and incident edges) formed by
1-2-3 is a tree, while 1-2-3-1 is a cycle (as is 1-2-3-4-1), and 1-2-3-4 is a
spanning tree.

Graphs can be used to model different types of networks, such as transportation
networks, communications networks, or computer networks. The actual behav-
ior of such a network can be modeled more completely by including some
assumptions about the vertices and edges, and matrices play a critical role in this
analysis. One such model assumes that the vertices (i.e., the landmasses, tele-
phones, or computers) are always “operational”, while the edges (i.e., the brid-
ges, telephone lines, or computer cables) fail with some numerical probability.
This is an example of a problem in network reliability: can any pair of vertices com-
municate with each other via a path through the surviving links? Our way of
framing the question is: does failure of certain links still lead to a surviving graph
that has a spanning tree? If so, how many spanning trees does it have?

5.6 THE ADJACENCY MATRIX
Figure 5.2 shows a graph; its vertices are labeled 1, 2, 3, and 4 arbitrarily, and its
edges are labeled using the end vertices in numerical order, although such an
order does not matter for undirected graphs. We define Adjacency Matrix of a
simple graph A(G) to be an n�n matrix with entry aij denoting the number
of edges from vi to vj. For simple graphs these entries are always either 0 or 1.
The adjacency matrix for the graph in Figure 5.2 would, therefore, have first
row [0,1,1,0] because there are no edges labeled “(1,1) ” or “(1,4)”, but one edge
each has label “(1,2)” and “(1,3).” Note that, if edge “(1,1)” were to exist, it
would be a so-called self-loop from vertex 1 to itself. The existence of at least
one self-loopmeans that the graph would be termed a pseudograph. The full adja-

cency matrix for the graph in Figure 5.2 would therefore be A ¼
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

2
664

3
775.

Note that all zeroes down the main diagonal indicate that the graph has no

3 4(3,4)

(2,4)(2,3)(1,3)

(1,2)1 2

FIGURE 5.2

Linear Algebra312

Figure 5.2


self-loops. We note that A is symmetric about the main diagonal, that is, the (x,y)
entry is equal to the (y,x) entry, where x and y represent a row or column number.

We will define the left hand side of the characteristic equation, det(A�lI)¼
0 (4.4), as the characteristic polynomial for the matrix in question. The character-
istic polynomial for the adjacency matrix of a graph contains some very impor-
tant information about the graph, as we see in our next theorem.

▶THEOREM 2
Let G be a graph having adjacency matrix A and characteristic polynomial det(A�lI)¼
a0þa1lþa2l

2þ...þan�2l
n�2þan�1l

n�1þln. Then the coefficients of the characteristic

polynomial give the following information about the graph:

(i) �an�2 is the number of edges in G;

(ii) �an�3 is twice the number of triangles in G;

(iii) the number of edge sequences of length k joining the vertices vi and vj of a graph G is

equal to the ij-th entry of the matrix A(G)k.◀

We will explore the proof of part (iii) of Theorem 1 in the exercises, and observe
that part (iii) is demonstrated when the exponent k¼1, that is, any edge is itself
an edge sequence of length one between its end vertices. We further observe that
the numbering convention we select is not absolute, that is, we would obtain the
same characteristic polynomial and information if the nodes were numbered dif-
ferently, and the matrix entries altered accordingly. It is beyond the scope of this
text to prove this notion.

Example 1 For the graph in Figure 5.2,

det A � lIð Þ ¼ det

�l 1 1 0
1 �l 1 1
1 1 �l 1
0 1 1 �l

2
664

3
775

0
BB@

1
CCA ¼ �4l� 5l2 þ l4. Here, n¼4,

indicating that there are �an�2¼�an�2¼�a2¼�(�5)¼5 edges in the
graph, and �an�3¼�a4�3¼�a1¼–(�4)¼4¼2(2), so G has two triangles
(namely, formed by vertices 1-2-3 and their incident edges, and vertices 2-3-
4 and their incident edges). If we raise A to the second power, we will find
out the number of paths of length two between each pair of vertices, including

those that begin and end at the same vertex, so A2 ¼ A � A ¼
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

2
664

3
775�

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

2
664

3
775 ¼

2 1 1 2
1 3 2 1
1 2 3 1
2 1 1 2

2
664

3
775 Thus, for example, the (1,4) (and, of course,
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(4,1)) entry of A2 is 2, so there are two paths of length 2 between that pair of ver-
tices in G, that is, 1-2-4 and 1-3-4, and no others. The (2,2) entry is 3, indicating 3-
4-3, 3-2-3, and 3-1-3 are the only paths of length 2 from vertex 2 to itself.

As was demonstrated in Chapter 4, the zeros of the characteristic polynomial are
the eigenvalues for the matrix, and the eigenvalues of adjacency matrices contain
more information about the graph’s structure. The list of a matrix’s eigenvalues is
its spectrum. Theorem3 gives somedetails about the spectra of adjacencymatrices.

▶THEOREM 3
Let G be a (nonpseudo) graph having adjacency matrix A, whose characteristic

polynomial det(A�lI)¼a0þa1lþa2l
2þ...þan�2l

n�2þan�1l
n�1þln has factorization

(l�a1)(l�a2) � � � (l�an�1)(l�an), where a1�a2�� � ��an. Then

(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �an�2ð Þ n� 1ð Þ

n

r
� an;

(ii)
Xn

i¼1
ai ¼ 0;

(iii)
Xn

i¼1
atð Þ2 ¼ 2 �an�2ð Þ:◀

Example 2 For the graph given in Figure 5.2, its characteristic polynomial

l4�5l2�4l has roots
1

2
�

ffiffiffiffiffiffi
17

p

2
,�1, 0,

1

2
þ

ffiffiffiffiffiffi
17

p

2
. Clearly, the upper bound on

the largest eigenvalue for this graph is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �an�2ð Þ n� 1ð Þp

n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sð Þ 4� 1ð Þp

4
¼ffiffiffiffiffiffi

30

4

r
¼

ffiffiffiffiffiffi
15

2

r
� a4 ¼ 1

2 þ
ffiffiffiffiffiffi
17

p

2
, satisfying (i), while

1

2
�

ffiffiffiffiffiffi
17

p

2
þ �1ð Þ þ 0þ 1

2
þffiffiffiffiffiffi

17
p

2
¼ 0, demonstrating (ii), and

1

2
�

ffiffiffiffiffiffi
17

p

2

� �2

þ �1ð Þ2 þ 02 þ 1

2
þ

ffiffiffiffiffiffi
17

p

2

� �2

¼
10 ¼ 2 5ð Þ, or twice the number of edges of, as per (iii).

As stated earlier, graphs that have vertices of all the same degree, say, r, are called
regular graphs. We present the following theorem regarding the eigenvalues of
regular graphs.

▶THEOREM 4
Let G be a graph that is regular of degree r having adjacency matrix A. Then

(i) r is an eigenvalue of A;

(ii) r is the largest magnitude of an eigenvalue for A, that is, |ai|� r for all i.◀

Problems 5.6
We recommend the use of computer software to assist in the computation of
characteristic polynomials and eigenvalues in the next two sections.

Linear Algebra314



Problems 1-6 refer to the graph in Figure 5.3. The graph is a path on four vertices
and will be referred to as P4.

(1) Find the adjacency matrix for the graph P4.

(2) Find the characteristic polynomial for the adjacency matrix for P4.

(3) Verify Theorem 2, parts (i) and (ii) for P4.

(4) (a) Find A3 for P4.
(b) How many paths of length 3 are there between vertex “1” and each of

the other vertices in P4?

(5) Find the eigenvalues for the characteristic polynomial found in
problem 2.

(6) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 2.

(7) Prove Theorem 2, part (iii).

Problems 8-13 refer to the graph in Figure 5.4. The graph is on four vertices and
will be referred to as G1.

(8) Find the adjacency matrix for the graph G1.

(9) Find the characteristic polynomial for the adjacency matrix for G1.

(10) Verify Theorem 2, parts (i) and (ii) for G1.

(11) (a) Find A3 for G1.
(b) How many paths of length 3 are there between vertex “2” and each of

the other vertices in G1?

(12) Find the eigenvalues for the characteristic polynomial found in
problem 9.

(13) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 9.

1

2

3 4

FIGURE 5.4

1 2 3 4

FIGURE 5.3
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Problems 14-17 refer to the graph in Figure 5.5. The graph is on four vertices and
will be referred to as G2.

(14) Find the adjacency matrix for the graph G2.

(15) Find the characteristic polynomial for the adjacency matrix for G2.

(16) Find the eigenvalues for the characteristic polynomial found in
problem 15.

(17) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 15.

Problems 18-22 refer to the graph in Figure 5.6. The graph is on four vertices and
will be referred to as C4.

(18) Find the adjacency matrix for the graph C4.

(19) Find the characteristic polynomial for the adjacency matrix for C4.

(20) Find the eigenvalues for the characteristic polynomial found in
problem 19.

(21) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 19.

(22) Verify Theorem 4, part (i), for the characteristic polynomial found in
problem 19.

(23) Prove Theorem 4, part (i).

1 2

3 4

FIGURE 5.6

1 2

3 4

FIGURE 5.5
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5.7 THE LAPLACIAN MATRIX
For example 1, we consider the graph in Figure 5.2.

Example 1 Since the degree of vertices 1, 2, 3, and 4 are, respectively, 2, 3, 3,
and 2, we can form a diagonal matrix using the degrees of the corres-
ponding vertices as the diagonal entries. For the graph in Figure 5.2, the

matrix is D ¼
2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

2
664

3
775:

Recall that the graph had adjacency matrix A ¼
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

2
664

3
775. We can form

the Laplacian matrix for the graph, denoted L, where L¼D�A, by

L ¼
2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

2
664

3
775�

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

2
664

3
775 ¼

2 �1 �1 0
�1 3 �1 �1
�1 �1 3 �1
0 �1 �1 2

2
664

3
775.

We remark that the Laplacianmatrix is sometimes referred to as the nodal admit-
tance matrix in Electrical Engineering applications. Further, this matrix’s main
diagonal is comprised of the degrees of its corresponding vertices, it has a
“�1” wherever there is an edge between the two associated vertices, and each
row and column sum up to “0.”

In 1847, Gustav Robert Kirchhoff published a paper, the title of which trans-
lates to “On the solution of the equations obtained from the investigation
of the linear distribution of galvanic currents,” Annalen der Physik und
Chemie, in which his work led to the study of spanning trees of connected
graphs.

▶THEOREM 5. KIRCHHOFF’S MATRIX-TREE THEOREM
All cofactors of L are equal and their common value is the number of spanning trees in the

associated graph.◀

The proof of this well-known theorem involves some advanced matrix theory
that is beyond the scope of this text.

Theorem5 can be employed to prove amore useful way to determine the number
of spanning trees of a graph. It appeared in the paper by A. K. Kelmans and V. M.
Chelnokov, (1974). “A certain polynomial of graph and graphs with an extremal
numberof trees,” Journal ofCombinatorial TheoryB16:197-214andwestate ithere.
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▶THEOREM 6
The number of spanning trees t(G) of the Laplacian matrix of a graph is related to the eigen-

values as follows: t Gð Þ ¼ 1

n

Yn
i¼2

li Gð Þ,0 ¼ l1 � l2 � ::: � ln◀

Example 2 For the graph in Figure 5.2, we have L ¼
2 �1 �1 0

�1 3 �1 �1
�1 �1 3 �1
0 �1 �1 2

2
664

3
775 and

det L� lIð Þ ¼
2� l �1 �1 0
�1 3� l �1 �1
�1 �1 3� l �1
0 �1 �1 2� l



















 ¼ l4 � 10l3 þ 32l2 � 32l

¼ l l� 2ð Þ l� 4ð Þ2:

This translates to
1

4
(2)(4)(4)¼8 spanning trees for the graph in Figure 5.2. One

such spanning tree is 1-2-3-4; yet another is 1-2-4-3. In the exercises, you will be
asked to determine the remaining six spanning trees for the graph.

We note that the eigenvalue product to determine the number of spanning trees
of a graph eliminates the first (smallest) eigenvalue, which is always zero. The
number of Laplacian eigenvalues that equal zero indicates the number of con-
nected pieces (called components) that constitute the graph. Therefore, a con-
nected graph will have a single eigenvalue equal to zero, and a graph that has
three distinct pieces, betweenwhich there are not any links, will have three eigen-
values equaling zero. Since the formula only removes one such eigenvalue, there
will be zeros in the spanning tree product, which indicates zero spanning trees
for a disconnected graph (which, of course, is the case).

We illustrate this fact with an example.

Example 3 For the graph in Figure 5.5, we have

L ¼ D� A ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775�

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2
664

3
775 ¼

1 0 �1 0
0 1 0 �1

�1 0 1 0
0 �1 0 1

2
664

3
775

and

det L� lIð Þ ¼
1� l 0 �1 0
0 1� l 0 �1
�1 0 1� l 0
0 �1 0 1� l



















 ¼ l4 � 4l3 þ 4l2 ¼ l2 l� 2ð Þ2:

This translates to
1

4
(0)(2)(2)¼0 spanning trees.
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We conclude this section with some useful results about a graph’s Laplacian
eigenvalues.

▶THEOREM 7
Let G be a graph on n vertices and e edges, and L its associated Laplacian matrix. Then,

(i) for all i, li�0;

(ii) ln�n;

(iii) trace(L)¼2e¼P
i¼1
n lt◀

Problems 5.7
We recommend the use of computer software to assist in the computation of
characteristic polynomials and eigenvalues in this section and the previous
section.

(1) List the spanning trees for the graph in Figure 5.2 of the previous section.

Problems 2-6 refer to the graph P4 in Figure 5.3 of the previous section.

(2) Find the Laplacian matrix for the graph P4.

(3) Find the characteristic polynomial for the Laplacian matrix for P4.

(4) Find the eigenvalues for the characteristic polynomial found in problem 3.

(5) Apply Theorem 6 to determine the number of spanning trees for P4.

(6) Verify Theorem 7 for the eigenvalues of the Laplacian matrix associated
with P4.

Problems 7-12 refer to the graph G1 depicted in Figure 5.4 of the previous
section.

(7) List the spanning trees for the graph in Figure 5.4.

(8) Find the Laplacian matrix for the graph G1.

(9) Find the characteristic polynomial for the Laplacian matrix for G1.

(10) Find the eigenvalues for the characteristic polynomial found in problem 9.

(11) Apply Theorem 6 to determine the number of spanning trees for G1.

(12) VerifyTheorem7for theeigenvalues for theLaplacianmatrixassociatedwithG1.

Recall: When a graph on n vertices has an edge between every pair of vertices, the
graph is a complete graph on n vertices, denoted Kn. Exercises 13-17 ask you to work
with complete graphs and conjecture a general formula for their number of
spanning trees.

(13) (i) Draw K3.
(ii) Find the Laplacian matrix for K3.

(iii) Find the eigenvalues for K3.
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(14) (i) Draw K4.
(ii) Find the Laplacian matrix for K4.
(iii) Find the eigenvalues for K4.

(15) (i) Draw K5.
(ii) Find the Laplacian matrix for K5.
(iii) Find the eigenvalues for K5.

(16) What pattern do you see in your responses to questions 13c, 14c, and 15c?
Can you formulate a conjecture about the Laplacian eigenvalues for any
complete graph Kn?

(17) Using your response to question 16, and using Theorem 6, can you gener-
alize a formula for the number of spanning trees for any graph Kn? This
result is known as Cayley’s Theorem, after Arthur Cayley.

CHAPTER 5 REVIEW
Important Terms

fundamental form of differential
equations
homogeneous differential
equation
initial conditions
model
nonhomogeneous differential
equation

regular graph
complete graph
adjacency matrix
Laplacian matrix
spanning trees

Important Concepts
Section 5.1

▪ A differential equation in the unknown functions x1(t), x2(t), . . . , xn(t) is
an equation that involves these functions and one or more of their
derivatives.

Section 5.2

▪ The solution to the system

dx tð Þ
dt

¼ Ax tð Þ þ f tð Þ; x t0ð Þ ¼ c is

x tð Þ ¼ eA t�t0ð Þcþ eAt
ðt
t0

e�Asf sð Þds

¼ eA t�t0ð Þcþ
ðt
t0

e�A t�sð Þf sð Þds
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▪ The solution to the homogenous equation

dx tð Þ
dt

¼ Ax tð Þ; x t0ð Þ ¼ c is

x tð Þ ¼ eA t�t0ð Þc

Section 5.3

▪ Models are useful in everyday life.

Section 5.4

▪ Graphs can be used to model different types of networks, such as transpor-
tation networks, communications networks, or computer networks.

▪ Matrices can play a critical role in analysis of networks represented by graphs.

Section 5.5

▪ The coefficients in the characteristic polynomial and the eigenvalues of the
adjacency matrix give information about the corresponding graph.

Section 5.6

▪ The Laplacian matrix of a graph can be formed from the adjacency matrix.
▪ The eigenvalues of the Laplacianmatrix can be used to determine the number

of spanning trees in the corresponding network represented by the graph.
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Euclidean Inner Product
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6.1 ORTHOGONALITY
Perpendicularity is such a useful concept in Euclidean geometry that we want to
extend the notion to all finite dimensional vector spaces. This is relatively easy for
vector spaces of two or three dimensions, because such vectors have graphical
representations. Each vector in a two-dimensional vector space can be written
as a 2-tuple and graphed as a directed line segment (arrow) in the plane. Simi-
larly, each vector in a three-dimensional vector space can be written as a 3-tuple
and graphed as a directed line segment in space. Using geometrical principles on
such graphs, we can determine whether directed line segments from the same
vector space meet at right angles. However, to extend the concept of perpendic-
ularity to Rn, n>3, we need a different approach.

The Euclidean inner product of two column matrices x¼ [x1 x2 x3 � � �xn]T and
y¼ [y1 y2 y3 � � �yn]T in Rn, denoted by hx, yi is

x; yh i ¼ x1y1 þ x2y2 þ x3y3 þ � � � þ xnyn (6.1)

To calculate the Euclidean inner product, we multiply corresponding compo-
nents of two column matrices in Rn and sum the resulting products. Although
we will work exclusively in this chapter with n-tuples written as columnmatrices,
the Euclidean inner product is equally applicable to rowmatrices. Either way, the
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Euclidean inner product of two vectors in Rn is a real number and not another
vector in Rn. In terms of column matrices,

x; yh i ¼ xTy (6.2)

Example 1 The Euclidean inner product of x ¼
1
2
3

2
4
3
5 and y ¼

4
�5
6

2
4

3
5 in R3 is

x; yh i ¼ 1 4ð Þ þ 2 �5ð Þ þ 3 6ð Þ ¼ 12

while the Euclidean inner product of u ¼
20
�4
30
10

2
664

3
775 and v ¼

10
�5
�8
�6

2
664

3
775 in R4 is

u; vh i ¼ 20 10ð Þ þ �4ð Þ �5ð Þ þ 30 �8ð Þ þ 10 �6ð Þ ¼ �80

▶THEOREM 1
If x, y, and z are vectors in Rn, then

(a) hx, xi is positive if x 6¼0; hx, xi¼0 if and only if x¼0.

(b) hx, yi¼hy, xi.
(c) hlx, yi¼lhx, yi, for any real number l.
(d) hxþz, yi¼hx, yiþhz, yi.
(e) h0, yi¼0.◀

Proof: We prove parts (a) and (b) here and leave the proofs of the other parts as
exercises (see Problems 28 through 30). With x¼ [x1 x2 x3 . . . xn]

T, we have

x; xh i ¼ x1ð Þ2 þ x2ð Þ2 þ x3ð Þ3 þ . . . þ xnð Þ2

This sum of squares is zero if and only if x1¼x2¼x3¼ . . . ¼xn¼0, which in turn
implies that x¼0. If any component is not zero, that is, if x is not the zero vector
in Rn, then the sum of the squares must be positive.

For part (b), we set y¼ [y1 y2 y3 . . . yn]
T. Then

x; yh i ¼ x1y1 þ x2y2 þ x3y3 þ . . . þ xnyn

¼ y1x1 þ y2x2 þ y3x3 þ . . . þ ynxn

¼ y; xh i

The magnitude of an n-tuple x (see Section 2.1) is related to the Euclidean inner
product by the formula

xk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
x; xh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23 þ . . . þ x2n:

q
(6.3)

The inner product of two
vectors x and y in Rn is a
real number determined
by multiplying
corresponding
components of x and y
and then summing the
resulting products.
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Example 2 The magnitude of x¼ [2 �3 �4]T in R3 is

xk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
x; xh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð Þ2 þ �3ð Þ2 þ �4ð Þ2

q
¼

ffiffiffiffiffiffi
29
p

while the magnitude of y¼ [1 �1 1 �1]T in R4 is

yk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
y; yh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð Þ2 þ �1ð Þ2 þ 1ð Þ2 þ �1ð Þ2

q
¼ 2

A unit vector is a vector having a magnitude of 1. A nonzero vector x is normalized
if it is divided by its magnitude. It follows that

1

xk k x,
1

xk k x
* +

¼ 1

xk k x,
1

xk k x
* +

Part cð Þ of Theorem1

¼ 1

xk k
1

xk k x, x
* +

Part bð Þ of Theorem1

¼ 1

xk k

0
@

1
A2

x; xh i Part cð Þ of Theorem1

¼ 1

xk k

0
@

1
A2

xk k2

¼ 1

Thus, a normalized vector is always a unit vector.

As with other vector operations, the Euclidean inner product has a geometrical
interpretation in two or three dimensions. For simplicity, we consider two-
dimensional vectors here; the extension to three dimensions is straightforward.

Let u and v be two nonzero vectors inR2 represented by directed line segments in
the plane, each emanating from the origin. The angle between u and v is the angle y
between the two line segments, with 0� �y�180� as illustrated in Figure 6.1. The

q

u

v

FIGURE 6.1

The magnitude of a
vector x in Rn is the
square root of the inner
product of x with itself.
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vectors u and v, along with their difference u�v, form a triangle (see Figure 6.2)
having sides kuk, kvk, and ku�vk. It follows from the law of cosines that

u� vk k2 ¼ uk k2 þ vk k2 � 2 uk k vk kcos y
where upon

uk k vk kcos y ¼ 1

2
uk k2 þ vk k2 � u� vk k2� �

¼ 1

2
u;uh i þ v; vh i � u� v,u� vh ið Þ

¼ 1

2
u;uh i þ v; vh i � u;uh i � 2 u; vh i þ v; vh i½ �ð Þ

¼ u; vh i

(6.4)

and

cos y ¼ u; vh i
uk k vk k (6.5)

We use Equation (6.5) to calculate the angle between two directed line segments
in R2.

Example 3 Find the angle between the vectors u ¼ 2
5

� �
and v ¼ �3

4

� �
.

Solution:

u; vh i ¼ 2 �3ð Þ �3ð Þ þ 5 4ð Þ ¼ 14; uk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 25
p ¼ ffiffiffiffiffiffi

29
p

; vk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16
p ¼ 5,

so, cos y ¼ 14

5
ffiffiffiffiffiffi
29
p � 0:5199, and y � 58:7�:

If u is a nonzero vector in R2, we have from Theorem 1 that (u, u) is positive and
then, from Equation (6.3), that kuk>0. Similarly, if v is a nonzero vector in R2,
then kvk>0. Because

q

u

v

u − v

FIGURE 6.2
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u; vh i ¼ uk k vk kcos y (6.4 repeated)

We see that the inner product of two nonzero vectors in R2 is 0 if and only if
cos y¼0. The angle y is the angle between the two directed line segments repre-
senting u and v (see Figure 6.1) with 0��y<180�. Thus, cos y¼0 if and only if
y¼90�, from which we conclude that the inner product of two nonzero vectors
in R2 is 0 if and only if their directed line segments form a right angle. Here now
is a characteristic of perpendicularity we can extend to n-tuples of all dimensions!
We use the word orthogonal instead of perpendicularity for generalizations to
higher dimensions, and say that two vectors in the same vector space are orthog-
onal if their inner product is 0.

Example 4 For the vectors x ¼
1
2
3

2
4
3
5, y ¼ �3

�6
5

2
4

3
5, and z ¼

0
5
6

2
4
3
5 in R3 we have

that x is orthogonal to y and y is orthogonal to z, because

x; yh i ¼ 1 �3ð Þ þ 2 �6ð Þ þ 3 5ð Þ ¼ 0

and

y; zh i ¼ �3ð Þ 0ð Þ þ �6ð Þ 5ð Þ þ 5 6ð Þ ¼ 0

but x is not orthogonal to z, because

x; zh i ¼ 1 0ð Þ þ 2 5ð Þ þ 3 6ð Þ ¼ 28 6¼ 0

As a direct consequence of Theorem 1, part (e), we have that the zero vector inRn

is orthogonal to every vector in Rn.

▶THEOREM 2. (GENERALIZED THEOREM OF PYTHAGORAS)
If u and v are orthogonal vectors in Rn, then ku�vk2¼kuk2þkvk2.◀

Proof: In the special case of R2, this result reduces directly to Pythagoras’s theo-
rem when we consider the right triangle bounded by the directed line segments
representing u, v and u�v (see Figure 6.3). More generally, if u and v are orthog-
onal, then hu, vi¼0 and

u� vk k2 ¼ u� v,u� vh i
¼ u;uh i � 2 u; vh i þ v; vh i
¼ u;uh i � 2 0ð Þ þ v; vh i
¼ uk k2 þ vk k2

▶THEOREM 3. (CAUCHY-SCHWARZ INEQUALITY)
If u and v are vectors in Rn, then |hu,vi|�kukkvk.◀

Two vectors in the same
vector space are
orthogonal if their
Euclidean inner product
is zero.
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Proof: In the special case of R2, we have

u; vh i ¼ uk k vk kcos y, (6.4 repeated)

hence

u; vh ij j ¼ uk k vk kcos yj j
¼ uk k vk kcos yj j
� uk k vk k

because |cos y|�1 for any angle y. The proof formore general vector spaces is left
as an exercise (see Problems 35 and 36).

Matrices can form a Euclidean inner product, but not every combination of
matrices produces a Euclidean inner product.

Example 5 Show that hA,Bi¼det(AB) does not represent a Euclidean inner
product in the vector space M2�2.

Solution: Let A ¼ x x
x x

� �
and B ¼ x x

x x

� �
. Then det ABð Þ ¼ det

2x2 2x2

2x2 2x2

� �
¼ 0,

but A 6¼0, so part (a) of Theorem 1 is violated.

The Euclidean inner product inRn induces an inner product on pairs of vectors in
other n-dimensional vector spaces. A vector in an n-dimensional vector space 
has a coordinate representation with respect to an underlying basis (see
Section 2.5). We define an inner product on two vectors x and y in  by forming
the Euclidean inner product on the coordinate representations of both vectors
with respect to the same underlying basis.

u

v

y

x
u − v

FIGURE 6.3
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Example 6 Calculate A;Bh i for A ¼ 4 3
6 2

� �
and  ¼ 1 2

1 2

� �
in the vector

space 2�2 with respect to the standard basis

 ¼ 1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �� �

Solution: The coordinate representations with respect to this basis are

4 3
6 2

� �
$

4
3
6
2

2
664
3
775 and

1 2
1 2

� �
$

1
2
1
2

2
664
3
775

The induced inner product is

A;Bh i ¼ 4 1ð Þ þ 3 2ð Þ þ 6 1ð Þ þ 2 2ð Þ ¼ 20

With respect to the standard basis, the induced inner product of two matrices of
the same order is obtained by multiplying corresponding elements of both matri-
ces and summing the results.

Example 7 Redo Example 6 with respect to the basis

 ¼ 0 1
1 1

� �
;

1 0
1 1

� �
;

1 1
0 1

� �
;

1 1
1 0

� �� �

Solution: The coordinate representations with respect to this basis is (see
Example 13 of Section 2.5)

x ¼ 4 3
6 2

� �
$

1
2
�1
3

2
664

3
775


and y ¼ 1 2
1 2

� �
$

1
0
1
0

2
664
3
775


The induced inner product is now

A;Bh i ¼ 1 1ð Þ þ 2 0ð Þ þ �1ð Þ 1ð Þ þ 3 0ð Þ ¼ 0

which is different from the inner product calculated in Example 6.

It follows from the previous two examples that an inner product depends on the
underlying basis; different bases can induce different inner products. Conse-
quently, two vectors can be orthogonal with respect to one basis, as in Example
6, and notorthogonal with respect to another basis, as in Example 5. We can see
this distinction graphically, by considering the vectors

x ¼ 1
1

� �
and y ¼ 1

�1
� �

An inner product is basis
dependent. Two vectors
can be orthogonal with
respect to one basis and
not orthogonal with
respect to another basis.

An inner product is basis
dependent. Two vectors
can be orthogonal with
respect to one basis and
not orthogonal with
respect to another basis.
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With respect to the standard basis

 ¼ e1 ¼ 1
0

� �
, e2 ¼ 0

1

� �� �
hx, yi¼0, and x is perpendicular to y, as illustrated in Figure 6.4. If, instead, we
take as the basis

 ¼ d1 ¼ 2
1

� �
,d2 ¼ 5

2

� �� �
then we have as coordinate representations in the  basis,

x ¼ 1
1

� �
¼ 3ð Þ 2

1

� �
þ �1ð Þ 5

2

� �
$ 3
�1
� �



y ¼ 1
�1
� �

¼ �7ð Þ 2
1

� �
þ 3ð Þ 5

2

� �
$ �7

3

� �


d1 ¼ 2
1

� �
¼ 1ð Þ 2

1

� �
þ 0ð Þ 5

2

� �
$ 1

0

� �


d2 ¼ 5
2

� �
¼ 0ð Þ 2

1

� �
þ 1ð Þ 5

2

� �
$ 0

1

� �


Graphing the coordinate representations in the  basis, we generate
Figure 6.5. Note that x and y are no longer perpendicular. Indeed, hx, yi¼3
(�7)þ (�1)(3)¼24 6¼0. Furthermore, hx, xi¼(3)2þ(�1)2¼10, hy, yi¼ (�7)2
þ (3)2¼58, and it follows from Equation (6.5) that the angle between x
and y is

y ¼ arccos
�24ffiffiffiffiffiffi
10
p ffiffiffiffiffiffi

58
p � 175�

y

x

y

2

1

1 2

−1

−1−2

−2

x
e2 e1

FIGURE 6.4
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Example 8 Calculate hp(t),q(t)i with respect to the standard basis in ℙ2 for

p tð Þ ¼ 3t2 � t þ 5 and q tð Þ ¼ �2t2 þ 4t þ 2

Solution: Using the standard basis  ¼{t2,t,1}, we have the coordinate
representations

3t2 � t þ 5$
3
�1
5

2
4

3
5 and � 2t2 þ 4t þ 2$

�2
4
2

2
4

3
5

The induced inner product is

p tð Þ, q tð Þh i ¼ 3 �2ð Þ þ �1ð Þ 4ð Þ þ 5 2ð Þ ¼ 0

and the polynomials are orthogonal. With respect to the standard basis, the
induced inner product of two polynomials is obtained by multiplying the coef-
ficients of like powers of the variable and summing the results.

Problems 6.1
In Problems 1 through 17, (a) find hx, yi, (b) find |x|, and (c) determine whether
x and y are orthogonal.

(1) x ¼ 1 2½ �T, y ¼ 3 4½ �T:
(2) x ¼ 1 1½ �T, y ¼ �4 4½ �T:
(3) x ¼ �5 7½ �T, y ¼ 3 �5½ �T:

−1 1 2 3 4−2−3−4−5−6−7−8

4

3

2

1

−1

−2

−3

−4

y

x

x

y

q

d2
d1

FIGURE 6.5

An induced inner product
of two polynomials is
obtained by multiplying
the coefficients of like
powers of the variable
and summing the results.
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(4) x ¼ �2 �8½ �T, y ¼ 20 �5½ �T:
(5) x ¼ �3 4½ �T, y ¼ 0 0½ �T:
(6) x ¼ 2 0 1½ �T, y ¼ 1 2 4½ �T:
(7) x ¼ �2 2 �4½ �T, y ¼ �4 3 �3½ �T:
(8) x ¼ �3 �2 5½ �T, y ¼ 6 �4 �4½ �T:
(9) x ¼ 10 20 30½ �T, y ¼ 5 �7 3½ �T:

(10) x ¼ 1
4

1
2

1
8

	 
T
, y ¼ 1

3
1
3

1
3

	 
T
.

(11) x ¼ 1 0 1 1½ �T, y ¼ 1 1 0 1½ �T:
(12) x ¼ 1 0 1 �1½ �T, y ¼ 1 1 0 1½ �T:
(13) x ¼ 1 0 1 0½ �T, y ¼ 0 1 0 1½ �T:
(14) x ¼ 1

2
1
2

1
2

1
2

	 
T
, y ¼ 1 2 3 � 4½ �T:

(15) x ¼ 1
2

1
2 0 1

2

	 
T
, y ¼ 1

3
1
2 1 �2

3

	 
T
.

(16) x ¼ 1 2 3 4 5½ �T, y ¼ 1 2 �3 4 �5½ �T:
(17) x ¼ 1 2 3 4 5 6½ �T, y ¼ 1 2 3 4 5½ �T:
(18) Normalize the following vectors:

(a) y as defined in Problem 1.

(b) y as defined in Problem 4.

(c) y as defined in Problem 6.

(d) y as defined in Problem 7.

(e) y as defined in Problem 10.

(f) y as defined in Problem 17.

In Problems 19 through 26, find the angle between the given vectors.

(19) x ¼ 1 2½ �T, y ¼ 2 1½ �T:
(20) x ¼ 1 1½ �T, y ¼ 3 5½ �T:
(21) x ¼ 3 �2½ �T, y ¼ 3 3½ �T:
(22) x ¼ 4 �1½ �T, y ¼ 2 8½ �T:
(23) x ¼ �7 �2½ �T, y ¼ 2 9½ �T:
(24) x ¼ 2 1 0½ �T, y ¼ 2 0 2½ �T:
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(25) x ¼ 1 1 0½ �T, y ¼ 2 2 1½ �T:
(26) x ¼ 0 3 4½ �T, y ¼ 2 5 5½ �T:
(27) Show that, for real numbers a,b, ha,bi¼ |aþb| does not form a Euclidean

inner product over the set of real numbers.

(28) Prove that if x and y are vectors inRn, then hlx,yi¼lhx, yi for any real num-
ber l.

(29) Prove that if x, y and z are vectors in Rn, then hxþz,yi¼hx, yiþhz, yi.
(30) Prove for any vector y in Rn that h0, yi¼0.

(31) Prove that if x and y are orthogonal vectors in Rn, then
kxþyk2¼kxk2þkyk2.

(32) Prove the following: kxþyk¼kx�yk if and only if x and y are orthogonal.

(33) Prove the parallelogram law for any two vectors x and y in Rn:

x þ yk k2 þ x � yk k2 ¼ 2 xk k2 þ 2 yk k2:

(34) Prove that for any two vectors x and y in Rn:

x þ yk k2 � x � yk k2 ¼ 4 x; yh i:

(35) Let x, y and z be vectors in Rn. Show that if x is orthogonal to y and if x is
orthogonal to z then x is also orthogonal to all linear combinations of the
vectors y and z.

(36) (a) Prove that, for any scalar l,

0 � lx � yk k2 ¼ l2 xk k2 � 2l x; yh i þ yk k2:

(36) (b) Take l¼hx, yi/kxk2 and show that

0 � � x; yh i2
xk k2 þ yk k2

From this deduce that

x; yh i2 � xk k2 yk k2

and then the Cauchy-Schwarz inequality.

(37) Prove that the Cauchy-Schwarz inequality is an equality in R2 if and only if
one vector is a scalar multiple of the other.

(38) Use the Cauchy-Schwarz inequality to show that
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�1 � u; vh i
uk k vk k � 1:

Thus, Equation (6.5) can be used to define the cosine of the angle between
any two vectors in Rn. Use Equation (6.5) to find the cosine of the angle
between the following x and y vectors

(a) x ¼ 0 1 1 1½ �T, y ¼ 1 1 1 0½ �T;
(b) x ¼ 1 2 3 4½ �T, y ¼ 1 �2 0 �1½ �T;
(c) x ¼ 1

2
1
2

1
2

1
2

	 
T
, y ¼ �1� 1� 1� 1½ �T;

(d) x ¼ 1 1 2 2 3½ �T, y ¼ 1 2 3 2 1½ �T;
(e) x ¼ 1 2 3 4 5 6½ �T, y ¼ 1 1 1 1 1 1½ �T:

(39) Verify the following relationships:

x þ yk k2 ¼ xk k2 þ 2 x; yh i þ yk k2
� xk k2 þ 2 xk k yk k þ yk k2
¼ xk k þ yk kð Þ2

and then, using the Cauchy-Schwarz inequality, deduce the triangle
inequality

x þ yk k � xk k þ yk k
(40) Calculate induced inner products for the following pairs of matrices with

respect to standard bases:

(a) A ¼ 1 5
6 2

� �
and B ¼ 5 5

1 4

� �
in 2�2,

(b) A ¼ 1 �2
0 4

� �
and B ¼ 3 �3

2 �8
� �

in 2�2,

(c) A ¼ �2 7
1 1

� �
and B ¼ 2 �3

2 6

� �
in 2�2,

(d) A ¼
4 2
1 �3
3 �5

2
4

3
5 and B ¼

1 2
3 4
5 6

2
4

3
5 in 3�2,

(e) A ¼ 1 2 3
4 5 6

� �
and B ¼ 1 1 2

�3 2 �3
� �

in 2�3,

(f) A ¼
1 2 3
4 5 6
7 8 9

2
4

3
5 and B ¼

�3 4 1
2 0 �4
5 1 2

2
4

3
5 in 3�3:

Linear Algebra334



(41) Redo parts (a), (b), and (c) of Problem 40 with respect to the basis

 ¼ 1 1
0 0

� �
;

1 �1
0 0

� �
;

0 0
1 1

� �
;

0 0
1 �1
� �� �

:

(42) A generalization of the inner product for n-dimensional column matrices
with real components is

x; yh iA ¼ Ax;Ayh i
where the inner product on the right is the Euclidean inner product
between Ax and Ay for a given n�n real, nonsingular matrix A. Show that
hx, yiA satisfies all the properties of Theorem 1.

(43) Calculate hx, yiA for the vectors in Problem 1 when A ¼ 2 3
1 �1
� �

:

(44) Calculate hx, yiA for the vectors in Problem 7 when A ¼
1 1 0
1 0 1
0 1 1

2
4

3
5:

(45) Redo Problem 44 with A ¼
1 �1 1

0 1 �1
1 1 1

2
4

3
5:

(46) Show that hx, yiA is the Euclidean inner product when x and y are
coordinate representations with respect to a basis  made up of the col-
umns of A and A is the transition matrix from the  basis to the
standard basis.

(47) Calculate induced inner products for the following pairs of polynomials
with respect to standard bases:

(a) p(t)¼ t2þ2tþ3 and q(t)¼ t2þ3t�5 in ℙ2,

(b) p(t)¼10t2�5tþ1 and q(t)¼2t2� t�30 in ℙ2,

(c) p(t)¼ t2þ5 and q(t)¼2t2�2tþ1 in ℙ2,

(d) p(t)¼2t2þ3t and q(t)¼ tþ8 in ℙ2,

(e) p(t)¼3t3þ2t2� tþ4 and q(t)¼ t3þ t in ℙ3,

(f) p(t)¼ t3� t2þ2t and q(t)¼ t2þ tþ1 in ℙ3.

(48) Redo parts (a) through (d) of Problem 47 with respect to the basis

 ¼ t2, t þ 1, t
� �

:

(49) A different inner product on ℙn is defined by
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p tð Þ, q tð Þh i ¼
ðb
a

p tð Þq tð Þdt

for polynomials p(t) and q(t) and real numbers a and b with b>a. Show
that this inner product satisfies all the properties of Theorem 1.

(50) Redo Problem 47 with the inner product defined in Problem 48, taking
a¼0 and b¼1.

6.2 PROJECTIONS AND GRAM-SCHMIDT
ORTHONORMALIZATION
An important problem in the applied sciences is to write a given nonzero vector x
in R2 or R3 as the sum of two vectors uþv where u is parallel to a known refer-
ence vector a and v is perpendicular to a (see Figure 6.6). In physics, u is called
the parallel component of x and v is called the perpendicular component of x, where
parallel and perpendicular are relative to the reference vector a.

If u is to be parallel to a, it must be a scalar multiple of a; that is, u¼la for some
value of the scalar l. If x¼uþv, then necessarily v¼x�u¼x�la. If u and v are
to be perpendicular, then

0 ¼ u; vh i ¼ la, x � lah i
¼ l a; xh i � l2 a; ah i
¼ l a; xh i � l a; ah i½ �

Either l¼0 or l¼ha, xi/ha, ai. If l¼0, then u¼la¼0a¼0, and x¼uþv¼v,
from which we conclude that x and a, the given vector and the reference vector,
are perpendicular and ha, xi¼0. Thus, l¼ha, xi/ha, ai is always true and

u ¼ a; xh i
a; ah i a and v ¼ x � a; xh i

a; ah i a

u

x
v a

FIGURE 6.6
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In this context, u is the projection of x onto a and v is the orthogonal complement.

Example 1 Write the vector x ¼ 2
7

� �
as the sum of two vectors, one parallel to

a ¼ �3
4

� �
and one perpendicular to a.

Solution:
a; xh i ¼ �3 2ð Þ þ 4 7ð Þ ¼ 22

a; ah i ¼ �3ð Þ2 þ 4ð Þ2 ¼ 25,

¼ a; xh i
a; ah i a ¼

22

25

�3
4

� �
¼ �2:64

3:52

� �

v ¼ x � u ¼ 2

7

� �
� �2:64

3:52

� �
¼ 4:64

3:48

� �

Then, x¼uþv, with u parallel to a and v perpendicular to a.

Example 2 Find the point on the line xþ4y¼0 closest to (�3, �1).
Solution: One point on the line is (4, �1), so a ¼[4�1]T is a reference vector in
the plane parallel to the line. The given point (�3, �1) is associated with the
vector x¼ [�3 �1]T, and we seek the coordinates of the point P (see
Figure 6.7) on the line xþ4y¼0. The vector u that begins at the origin and
terminates at P is the projection of x onto a. Therefore,

a; xh i ¼ 4 �3ð Þ þ �1ð Þ �1ð Þ ¼ �11
a; ah i ¼ 4ð Þ2 þ �1ð Þ2 ¼ 17

u ¼ a; xh i
a; ah i a ¼

�11
17

4

�1

� �
¼ �44=17

11=17

� �

−1 2 3 4−2
x

v

−3−4−5

4

3

2

1

−1

−2

−3

−4

y

x

a
1

P
u

Line: x + 4y = 0

(−3, −1) (4, −1)

FIGURE 6.7
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P ¼ �44=17, 11=17ð Þ
The concepts of projections and orthogonal complements in R2 can be extended
to any finite dimensional vector space with an inner product. Given a nonzero
vector x and a reference vector a, both in , we define the projections of x onto a as

projax ¼
a; xh i
a; ah i a (6.6)

It then follows (see Problem 34) that

x � a; xh i
a; ah i a is orthogonal to a (6.7)

Subtracting from a nonzero vector x the projection x onto another nonzero vec-
tor a leaves a vector that is orthogonal to both a and the projection of x onto a.

Example 3 Write the polynomial x(t)¼2t2þ3tþ4 in ℙ2 as the sum of two poly-
nomials, one that is the projectionof x(t) onto a(t)¼5t2þ6 andone that is orthog-
onal to a(t) under the inner product induced by the Euclidean inner product inR3.

Solution: The induced inner product between two polynomials is obtained by
multiplying the coefficients of like powers of t and summing the resulting prod-
ucts (see Example 7 of Section 6.1). Thus,

a tð Þ, x tð Þh i ¼ 5 2ð Þ þ 0 3ð Þ þ 6 4ð Þ ¼ 34

a tð Þ, a tð Þh i ¼ 5ð Þ2 þ 0ð Þ2 þ 6ð Þ2 ¼ 61

u tð Þ ¼ a tð Þ, x tð Þh i
a tð Þ, a tð Þh i a tð Þ ¼ 34

61
5t2 þ 6
� � ¼ 170

61
t2 þ 204

61

is the projection of x(t) onto a(t).

v tð Þ ¼ x tð Þ � u tð Þ ¼ � 48

61
t2 þ 3t þ 40

61

is orthogonal to a(t), and x(t)¼u(t)þv(t).

A set of vectors is called an orthogonal set if each vector in the set is orthogonal to
every other vector in the set.

Example 4 The vectors {x, y, z} in R3 defined by

x ¼
1
1
1

2
4
3
5, y ¼ 1

1
�2

2
4

3
5, z ¼ 1

�1
0

2
4

3
5

are an orthogonal set of vectors because hx, yi¼hx, zi¼hy, zi¼0. In contrast, the
set of vectors {a, b, c} in R4 defined by

a ¼ 1 1 0 1½ �T,b ¼ �1 1 2 0½ �T, c ¼ 1 1 0 2½ �T

is not an orthogonal set because ha, ci 6¼0. If c is redefined as

If x is a nonzero vector,
then x minus its
projection onto another
nonzero vector a yields a
vector that is orthogonal
to both a and the
projection of x onto a.
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c ¼ 1 1 0 �2½ �T

then {a, b, c} is orthogonal, because now ha, bi¼ha, ci¼hb, ci¼0.

An orthogonal set of unit vectors (vectors all having magnitude 1) is called an
orthonormal set. Using the Kronecker delta notation,

dij ¼ 1 if i ¼ j
0 if i 6¼ j

�
(6.8)

We say that a set of vectors {x1, x2, . . . , xn} is orthonormal if and only if

xi; xj

 � ¼ dij i, j ¼ 1,2, ::: , mð Þ (6.9)

Example 5 The set of vectors {u, v, w} in R3 defined by

u ¼
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p
0

2
4

3
5, v ¼ 1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

0

2
4

3
5,w ¼ 0

0
1

2
4
3
5

is an orthonormal set of vectors because each vector is orthogonal to the other
two and each vector is a unit vector.

Any orthogonal set of nonzero vectors can be transformed into an orthonormal
set by dividing each vector by its magnitude. It follows from Example 4 that the
vectors

x ¼
1
1
1

2
4
3
5, y ¼ 1

1
�2

2
4

3
5, z ¼ 1

�1
0

2
4

3
5

form an orthogonal set. Dividing each vector by its magnitude, we generate

x

xk k ;
y

yk k ;
z

zk k
� �

¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5; 1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

�2= ffiffiffi
6
p

2
4

3
5; 1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

0

2
4

3
5

8<
:

9=
;

as an orthonormal set.

▶THEOREM 1
An orthonormal set of a finite number of vectors is linearly independent.◀

Proof: Let {x1, x2, . . . , xn} be an orthonormal set and consider the vector
equation

c1x1 þ c2x2 þ :::þ cnxn ¼ 0 (6.10)

where cj(j¼1, 2, . . . , n) is a scalar. This set of vectors is linearly independent if
and only if the only solution to Equation (6.10) is c1¼ c2¼ . . . ¼ cn¼0. Taking
the inner product of both sides of Equation (6.10) with xj, we have

An orthonormal set of
vectors is an orthogonal
set of unit vectors.
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c1x1 þ c2x2 þ :::þ cjxj þ :::þ cnxn, xj

 � ¼ 0; xj


 �
Using parts (c), (d), and (e) of Theorem 1 of Section 6.1, we rewrite this last
equation as

c1 x1; xj

 �þ c2 x2; xj


 �þ :::þ cj xj; xj

 �þ :::þ cn xn; xj


 � ¼ 0

or

Xn
i¼1

ci xi; xj

 � ¼ 0

As a consequence of Equation (6.9),

Xn
i¼1

cidij ¼ 0

or cj¼0 ( j¼1, 2, . . . , n).

If ¼{x1, x2, . . . , xn} is a basis for , then any vector x in  can be written as a
linear combination of the basis vectors in one and only one way (see Theorem 5
of Section 2.5). That is,

x ¼ c1x1 þ c2x2 þ :::þ cnxn ¼
Xn
i¼1

cixi

with each cj(i¼1, 2, . . . , n) uniquely determined by the choice of the basis. If the
basis is orthonormal, we can use the additional structure of an inner product to
say more. In particular,

x; xj

 � ¼ Xn

i¼1
cixi, xj

* +

¼
Xn
i¼1

cixi, xj

 �

¼
Xn
i¼1

ci xi; xj

 �

¼
Xn
i¼1

cidij ¼ cj:

We have proven Theorem 2.

▶THEOREM 2
If {x1, x2, . . . , xn} is orthonormal basis for a vector space , then for any vector x in ,
x¼hx,x1ix1þhx,x2ix2þ . . . þhx,xnixn◀
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Theorem 2 is one of those wonderful results that saves time and effort. In general,
to write a vector in an n-dimensional vector space in terms of a given basis, we
must solve a set n simultaneous linear equations (see Example 11, Section 2.5).
If, however, the basis is orthonormal, the work is reduced to taking n-inner prod-
ucts and solving no simultaneous equations.

Example 6 Write x¼ [1 2 3]T as a linear combination of the vectors

q1 ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,q2 ¼

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2= ffiffiffi
6
p

2
4

3
5,q3 ¼

1=
ffiffiffi
2
p

�1= ffiffiffi
2
p

0

2
4

3
5

Proof: The set {q1, q2, q3} is an orthonormal basis for R3. Consequently,

x;q1h i ¼ 1
1ffiffiffi
3
p

0
@

1
Aþ 2

1ffiffiffi
3
p

0
@

1
Aþ 3

1ffiffiffi
3
p

0
@

1
A ¼ 6ffiffiffi

3
p

x;q2h i ¼ 1
1ffiffiffi
6
p

0
@

1
Aþ 2

1ffiffiffi
6
p

0
@

1
Aþ 3 � 2ffiffiffi

6
p

0
@

1
A ¼ �3ffiffiffi

6
p

x;q3h i ¼ 1
1ffiffiffi
2
p

0
@

1
Aþ 2

�1ffiffiffi
2
p

0
@

1
Aþ 3 0ð Þ ¼ �1ffiffiffi

2
p

1

2

3

2
664
3
775 ¼ 6ffiffiffi

3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
664

3
775þ �3ffiffiffi

6
p

0
@

1
A 1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

�2= ffiffiffi
6
p

2
664

3
775þ �1ffiffiffi

2
p

0
@

1
A 1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

0

2
664

3
775

Example 7 Write A ¼ 1 2
3 4

� �
as a linear combination of the four matrices

Q1 ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1= ffiffiffi
3
p

0

" #
,

Q2 ¼
0 �1= ffiffiffi

3
p

�1= ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
,

Q3 ¼
1=

ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
,

Q4 ¼
�1= ffiffiffi

3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #
,
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Solution: The set {Q1, Q2, Q3, Q4} is an orthonormal basis for 2�2 under
the induced inner product (see Example 5 of Section 6.1) defined by multiplying
corresponding elements and summing the resulting products. Consequently,

A;Q1h i ¼ 1 2

3 4

" #
;

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

�1= ffiffiffi
3
p

0

" #* +

¼ 1
1ffiffiffi
3
p

0
@

1
Aþ 2

1ffiffiffi
3
p

0
@

1
Aþ 3

�1ffiffiffi
3
p

0
@

1
Aþ 4 0ð Þ ¼ 0

A;Q2h i ¼
1 2

3 4

" #
;

0 �1= ffiffiffi
3
p

�1= ffiffiffi
3
p

1=
ffiffiffi
3
p

" #* +

¼ 1 0ð Þ þ 2
�1ffiffiffi
3
p

0
@

1
Aþ 3

�1ffiffiffi
3
p

0
@

1
Aþ 4

1ffiffiffi
3
p

0
@

1
A ¼ �1ffiffiffi

3
p

A;Q3h i ¼
1 2

3 4

" #
;

1=
ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #* +

¼ 1
1ffiffiffi
3
p

0
@

1
Aþ 2 0ð Þ þ 3

1ffiffiffi
3
p

0
@

1
Aþ 4

1ffiffiffi
3
p

0
@

1
A ¼ 8ffiffiffi

3
p

A;Q4h i ¼
1 2

3 4

" #
;
�1= ffiffiffi

3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #* +

¼ 1
�1ffiffiffi
3
p

0
@

1
Aþ 2

1ffiffiffi
3
p

0
@

1
Aþ 3 0ð Þ þ 4

1ffiffiffi
3
p

0
@

1
A ¼ 5ffiffiffi

3
p

and

1 2

3 4

� �
¼ 0ð Þ 1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1= ffiffiffi
3
p

0

" #
þ �1ffiffiffi

3
p

0
@

1
A 0 �1= ffiffiffi

3
p

�1= ffiffiffi
3
p

1=
ffiffiffi
3
p

" #

þ 8ffiffiffi
3
p

0
@

1
A 1=

ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
þ 5ffiffiffi

3
p

0
@

1
A �1= ffiffiffi

3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #
:

An inner product space is a vector space with an inner product defined between
pairs of vectors. Using projections, we can transform any basis for a finite
dimensional inner product space  into an orthonormal basis for . To see
how, let {x1, x2, x3} be a basis for R3. Taking x1 as our reference vector, it follows
from Equation (6.7), with x2 replacing x, that

x4 ¼ x2 � x1; x2h i
x1; x1h i x1 is orthogonal to x1

An inner product space is
a vector space with an
inner product defined
between pairs of vectors.
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Similarly, it follows from Equation (6.7), with x3 replacing x, that

x5 ¼ x3 � x1; x3h i
x1; x1h i x1 is orthogonal to x1

These formulas may be simplified when x1 is a unit vector, because
hx1,x1i¼kx1k2¼1. We can guarantee that the first vector in any basis be a unit
vector by dividing that vector by its magnitude. Assuming this has been done
and noting that hx1, x2i¼hx2, x1i and hx1, x3i¼hx3, x1i, we have that

x4 ¼ x2 � x2; x1h ix1 is orthogonal to x1

and

x5 ¼ x3 � x3; x1h ix1 is orthogonal to x1

Furthermore, x4 6¼0 because it is a linear combination of x1 and x2, which are
linearly independent, with the coefficient of x2 equal to 1. The only way for a
linear combination of linearly independent vectors to be 0 is for all the coeffi-
cients of the vectors to be 0. Similarly x5 6¼0 because it is a linear combination
of x1 and x3 with the coefficient of x3 set to 1. Thus, the set {x1, x4, x5} has
the property that x1 is a unit vector orthogonal to both nonzero vectors x4
and x5. The vectors x4 and x5 are not necessarily unit vectors and may not be
orthogonal, but we have made progress in our attempt to create an orthonormal
set. Now, taking x4 as our reference vector, it follows from Equation (6.7), with x5
replacing x, that

x6 ¼ x5 � x4; x5h i
x4; x4h i x4 is orthogonal to x4

This formula may be simplified if x4 is a unit vector, a condition we can force by
dividing x4 by its magnitude. Assuming this has been done and noting that
hx4, x5i¼hx5, x4i, we have that

x6 ¼ x5 � x5; x4h ix4 is orthogonal to x4

Also,

x6; x1h i ¼ x5 � x5; x4h ix4, x1h i
¼ x5; x1h i � x5; x4h ix4, x1h i
¼ x5; x1h i � x5; x4h i x4; x1h i
¼ 0

because x1 is orthogonal to both x4 and x5. Thus, x1 is orthogonal to both x4 and
x6 and these last two vectors are themselves orthogonal. Furthermore, x6 6¼0,
because it can be written as a linear combination of the linearly independent vec-
tors x1, x2, and x3 with the coefficient of x3 set to one. If x6 is not a unit vector, we
may force it to become a unit vector by dividing x6 by its magnitude. Assuming
this is done, we have that {x1, x4, x6} is an orthonormal set.
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If we apply this construction to arbitrary n-dimensional inner product
spaces, and use qi to denote the ith vector in an orthonormal set, we have
Theorem 3.

▶THEOREM3. (THE GRAM-SCHMIDT ORTHONORMALIZATION
PROCESS)
Let {x1, x2, . . . , xn} be a basis for an inner product space . For k¼1, 2, . . . , n, do

iteratively:

Step 1. Calculate rkk¼|xk|.

Step 2. Set qk¼ (1/rkk)xk.

Step 3. For j¼kþ1, kþ2, . . . , n, calculate rkj¼hxj,qki.
Step 4. For j¼kþ1, kþ2, . . . , n, replace xj with yj¼xj� rkjqk; that is, xj xj� rkjqk.

After the kth iteration (k¼1, 2, . . . , n), {q1, q2, . . . , qk} is an ortho-normal set, the span of

{q1, q2, . . . , qk} equals the span of {x1, x2, . . . , xR}, and each new xj (j¼kþ1, kþ2, . . . , n)

is a nonzero vector orthogonal to each qi (i¼1, 2, . . . , k)◀

Proof: (by mathematical induction on the iterations). Setting q1¼x1/kx1k, we
have span{q1}¼ span{x1} and kq1k¼1. Furthermore, it follows from Equa-
tion (6.7) that xj� r1jq1, (j¼2, 3, . . . , n) is orthogonal to q1. Thus, the proposi-
tion is true for n¼1.

Assume that the proposition is true for n¼k. Then xkþ1 is nonzero and orthog-
onal to q1, q2, . . . , qk, hence qkþ1¼xkþ1/kxkþ1k is a unit vector and {q1, q2, . . . ,
qk, qkþ1} is an orthonormal set. From the induction hypothesis,

span q1;q2; . . . ;qkf g ¼ span x1; x2; . . . ; xkf g, so
span q1;q2; . . . ;qk;qkþ1

� � ¼ span x1; x2; . . . ; xk;qkþ1
� �

¼ span x1, x2, . . . , xk, xkþ1= xkþ1k kf g
¼ span x1; x2; . . . ; xk; xkþ1f g:

For j¼kþ2, kþ3, . . . , n, we construct yj¼xj� rkþ1, jqkþ1. It follows from
Equation (6.7) that each yj vector is orthogonal to qkþ1. In addition, for
i¼1, 2, . . . , k,

yj;qi

D E
¼ xj � rkþ1, jqkþ1,qi


 �
¼ xj;qi


 �� rkþ1, j qkþ1;qi


 �
¼ 0

Here hxj, qii¼0 as a result of the induction hypothesis and hqkþ1, qii¼0 because
{q1, q2, . . . , qk, qkþ1} is an orthonormal set. Letting xj yj, j¼kþ2, kþ3, . . . , n,
we have that each new xj is orthogonal to each qi, i¼1, 2, . . . , kþ1. Thus,
Theorem 3 is proved by mathematical induction (see Appendix A).
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Thefirst twosteps in theorthonormalizationprocess createunitvectors; the thirdand
fourth steps subtract projections from vectors, thereby generating orthogonality.
These four steps are also known as the revised (or modified) Gram-Schmidt algorithm.

Example 8 Use the Gram-Schmidt orthonormalization process to construct an
orthonormal set of vectors from the linearly independent set {x1, x2, x3}, where

x1 ¼
1
1
0

2
4
3
5, x2 ¼ 0

1
1

2
4
3
5, x3 ¼ 1

0
1

2
4
3
5

Solution: For the first iteration (k¼1),

r11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1; x1h i

p
¼

ffiffiffi
2
p

q1 ¼
1

r11
x1 ¼ 1ffiffiffi

2
p

1

1

0

2
64
3
75 ¼

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
664

3
775

r12 ¼ x2;q1h i ¼ 1ffiffiffi
2
p

r13 ¼ x3;q1h i ¼ 1ffiffiffi
2
p

x2  x2 � r12q1 ¼
0

1

1

2
64
3
75� 1ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
664

3
775 ¼

�1=2
1=2

1

2
64

3
75

x3  x3 � r13q1 ¼
1

0

1

2
64
3
75� 1ffiffiffi

2
p � 1ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
664

3
775 ¼

1=2

�1=2
1

2
64

3
75

Note that both x2 and x3 are now orthogonal to q1.

For the second iteration (k¼2), using vectors from the first iteration, we compute

r22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2; x2h i

p
¼

ffiffiffiffiffiffiffiffi
3=2

p

q2 ¼
1

r22
x2 ¼ 1ffiffiffiffiffiffiffiffi

3=2
p �1=2

1=2

1

2
64

3
75 ¼ �1= ffiffiffi

6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
64

3
75

r23 ¼ x3;q2h i ¼ 1ffiffiffi
6
p

x3  x3 � r23q2 ¼
1=2

�1=2
1

2
64

3
75� 1ffiffiffi

6
p

�1= ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
64

3
75 ¼

2=3

�2=3
2=3

2
64

3
75
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For the third iteration (k¼3), using vectors from the second iteration, we compute

r33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3; x3h i

p
¼ 2ffiffiffi

3
p

q3 ¼
1

r33
x3 ¼ 1

2=
ffiffiffi
3
p

2=3
�2=3
2=3

2
4

3
5 ¼ 1=

ffiffiffi
3
p

�1= ffiffiffi
3
p

2=
ffiffiffi
3
p

2
4

3
5

The orthonormal set is {q1, q2, q3}.

Example 9 Use the Gram-Schmidt orthonormalization process to construct an
orthonormal set of vectors from the linearly independent set {x1, x2, x3, x4},
where

x1 ¼
1
1
0
1

2
664
3
775, x2 ¼

1
2
1
0

2
664
3
775, x3 ¼

0
1
2
1

2
664
3
775, x4 ¼

1
0
1
1

2
664
3
775

Solution: Carrying eight significant figures through all computations but round-
ing to four decimals for presentation purposes, we get

For the first iteration (k¼1)

r11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1; x1h i

p
¼

ffiffiffi
3
p
¼ 1:7321,

q1 ¼
1

r11
x1 ¼ 1ffiffiffi

3
p

1

1

0

1

2
666664

3
777775 ¼

0:5774

0:5774

0:0000

0:5774

2
666664

3
777775,

r12 ¼ x2,q1h i ¼ 1:7321,

r13 ¼ x3,q1h i ¼ 1:1547,

r14 ¼ x4,q1h i ¼ 1:1547,

x2  x2 � r12q1 ¼

1

2

1

0

2
66664

3
77775� 1:7321

0:5774

0:5774

0:0000

0:5774

2
66664

3
77775 ¼

0:0000

1:0000

1:0000

�1:0000

2
66664

3
77775,

x3  x3 � r13q1 ¼

0

1

2

1

2
66664

3
77775� 1:1547

0:5774

0:5774

0:0000

0:5774

2
66664

3
77775 ¼

�0:6667
0:3333

2:0000

0:3333

2
66664

3
77775,

Linear Algebra346



x4  x4 � r14q1 ¼

1

0

1

1

2
66664

3
77775� 1:1547

0:5774

0:5774

0:0000

0:5774

2
66664

3
77775 ¼

0:3333

�0:6667
1:0000

0:3333

2
66664

3
77775:

For the second iteration (k¼2), using vectors from the first iteration, we compute

r22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2; x2h i

p
¼ 1:7321,

q2 ¼
1

r22
x2 ¼ 1

1:7321

0:0000

1:0000

1:0000

�1:0000

2
6666664

3
7777775 ¼

0:0000

0:5774

0:5774

�0:5774

2
6666664

3
7777775,

r23 ¼ x3;q2h i ¼ 1:1547,

r24 ¼ x4;q2h i ¼ 0:0000,

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

x3  x3 � r23q2 ¼

�0:6667
0:3333

2:0000

0:3333

2
666664

3
777775� 1:1547

0:0000

0:5774

0:5774

�0:5774

2
666664

3
777775 ¼

�0:6667
�0:3333
1:3333

1:0000

2
666664

3
777775,

x4  x4 � r24q2 ¼

0:3333

�0:6667
1:0000

0:3333

2
666664

3
777775� 0:0000

0:0000

0:5774

0:5774

�0:5774

2
666664

3
777775 ¼

0:3333

�0:6667
1:0000

0:3333

2
666664

3
777775:

For the third iteration (k¼3), using vectors from the second iteration, we
compute

r33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3; x3h i

p
¼ 1:8257,

q3 ¼
1

r33
x3 ¼ 1

1:8257

�0:6667
�0:3333
1:3333

1:0000

2
666664

3
777775 ¼

�0:3651
�0:1826
0:7303

0:5477

2
666664

3
777775,

r34 ¼ x4;q3h i ¼ 0:9129,
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x4  x4 � r34q3 ¼
0:3333
�0:6667
1:0000
0:3333

2
664

3
775� 0:9129

�0:3651
�0:1826
0:7303
0:5477

2
664

3
775 ¼

0:6667
�0:5000
0:3333
�0:1667

2
664

3
775:

For the fourth iteration (k¼4), using vectors from the third iteration, we
compute

r44 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4; x4h i

p
¼ 0:9129,

q4 ¼
1

r44
x4 ¼ 1

0:9129

0:6667

�0:5000
0:3333

�0:1667

2
666664

3
777775 ¼

0:7303

�0:5477
0:3651

�0:1826

2
666664

3
777775:

The orthonormal set is {q1, q2, q3, q4}.

If ¼{x1, x2, . . . , xp} is a linearly independent set of vectors in an inner product
space, and not necessarily a basis, then the Gram-Schmidt orthonormalization
process can be applied directly on  to transform it into an orthonormal set of
vectors with the same span as . This follows immediately from Theorem 3
because  is a basis for the subspace ¼ span{x1, x2, . . . , xp}.

Problems 6.2
In Problems 1 through 10, determine (a) the projection of x1 onto x2, and (b) the
orthogonal complement.

(1) x1 ¼ 1
2

� �
, x2 ¼ 2

1

� �
: (2) x1 ¼ 1

1

� �
, x2 ¼ 3

5

� �
:

(3) x1 ¼ 3
�2
� �

, x2 ¼ 3
3

� �
: (4) x1 ¼ 4

�1
� �

, x2 ¼ 2
8

� �
:

(5) x1 ¼ �7
�2
� �

, x2 ¼ 2
9

� �
:

(6) x1 ¼
2
1
0

2
4
3
5, x2 ¼ 2

0
2

2
4
3
5:

(7) x1 ¼
1
1
0

2
4
3
5, x2 ¼ 2

2
1

2
4
3
5: (8) x1 ¼

0
3
4

2
4
3
5, x2 ¼ 2

5
5

2
4
3
5:

(9) x1 ¼
0
1
1
1

2
664
3
775, x2 ¼

1
1
1
0

2
664
3
775: (10) x1 ¼

1
2
3
4

2
664
3
775, x2 ¼

1
�2
0
�1

2
664

3
775:
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In Problems 11 through 23, show that the set  is an orthonormal basis
(under the Euclidean inner product or the inner product induced by the
Euclidean inner product) for the given vector space and then write x as a
linear combination of those basis vectors.

(11)  ¼ 3=5
4=5

� �
;

4=5
�3=5
� �� �

in 2; x ¼ 3
5

� �
:

(12)  ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
;

1=
ffiffiffi
2
p

�1= ffiffiffi
2
p

� �� �
in 2; x ¼ 3

5

� �
:

(13)  ¼ 1=
ffiffiffi
5
p

2=
ffiffiffi
5
p

� �
;
�2= ffiffiffi

5
p

1=
ffiffiffi
5
p

� �� �
in 2; x ¼ 2

�3
� �

:

(14)  ¼
3=5
4=5
0

2
4

3
5; 4=5
�3=5
0

2
4

3
5; 0

0
1

2
4
3
5

8<
:

9=
;in 3; x ¼

1
2
3

2
4
3
5:

(15)  ¼
3=5
4=5
0

2
4

3
5; 4=5
�3=5
0

2
4

3
5; 0

0
1

2
4
3
5

8<
:

9=
;in 3; x ¼

10
0

�20

2
4

3
5:

(16)  ¼
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p
0

2
4

3
5; �1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
4

3
5; 1=

ffiffiffi
3
p

�1= ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5

8<
:

9=
;in 3; x ¼

10
0

�20

2
4

3
5:

(17)  ¼
�1= ffiffiffi

2
p

1=
ffiffiffi
2
p

0

2
4

3
5; 1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

�2= ffiffiffi
6
p

2
4

3
5; �1=

ffiffiffi
3
p

�1= ffiffiffi
3
p

�1= ffiffiffi
3
p

2
4

3
5

8<
:

9=
;in 3; x ¼

10
0

�20

2
4

3
5:

(18) ¼{0.6t�0.8, 0.8tþ0.6} in ℙ1; x¼2tþ1.

(19) ¼{0.6t2�0.8, 0.8t2þ0.6, t} in ℙ2; x¼ t2þ2tþ3.

(20) ¼{0.6t2�0.8, 0.8t2þ0.6, t} in ℙ2; x¼ t2�1.

(21)  ¼ 1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

�1= ffiffiffi
3
p

0

� �
;

0 �1= ffiffiffi
3
p

�1= ffiffiffi
3
p

1=
ffiffiffi
3
p

� �
;

1=
ffiffiffi
3
p

0
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

� �
;
�1= ffiffiffi

3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

� �� �

in 2�2; x ¼ 1 1
�1 2

� �
:

(22)  ¼ 3=5 4=5
0 0

� �
;

4=5 �3=5
0 0

� �
;

0 0
3=5 �4=5
� �

;
0 0
�4=5 �3=5
� �� �

;

in 2�2; x ¼ 1 2
3 4

� �
:

(23)  ¼ 1=2 1=2
1=

ffiffiffi
2
p

0

� �
;
�1=2 �1=2
1=

ffiffiffi
2
p

0

� �
;
�1=2 1=2
0 1=

ffiffiffi
2
p

� �
;

1=2 �1=2
0 1=

ffiffiffi
2
p

� �� �

in 2�2; x ¼ 4 5
�6 7

� �
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In Problems 24 through 32, use the Gram-Schmidt orthonormalization
process to construct an orthonormal set from the given set of linearly inde-
pendent vectors.

(24) The vectors in Problem 1.

(25) The vectors in Problem 2.

(26) The vectors in Problem 3.

(27) x1 ¼
1
2
1

2
4
3
5, x2 ¼ 1

0
1

2
4
3
5, x3 ¼ 1

0
2

2
4
3
5:

(28) x1 ¼
2
1
0

2
4
3
5, x2 ¼ 0

1
1

2
4
3
5, x3 ¼ 2

0
2

2
4
3
5:

(29) x1 ¼
1
1
0

2
4
3
5, x2 ¼ 2

0
1

2
4
3
5, x3 ¼ 2

2
1

2
4
3
5:

(30) x1 ¼
0
3
4

2
4
3
5, x2 ¼ 3

5
0

2
4
3
5, x3 ¼ 2

5
5

2
4
3
5:

(31) x1 ¼
0
1
1
1

2
664
3
775, x2 ¼

1
0
1
1

2
664
3
775, x3 ¼

1
1
0
1

2
664
3
775, x4 ¼

1
1
1
0

2
664
3
775:

(32) x1 ¼
1
1
0
0

2
664
3
775, x2 ¼

0
1
�1
0

2
664

3
775, x3 ¼

1
0
�1
0

2
664

3
775, x4 ¼

1
0
0
�1

2
664

3
775:

(33) The vectors x1 ¼
1
1
0

2
4
3
5, x2 ¼ 0

1
1

2
4
3
5, x3 ¼ 1

0
�1

2
4

3
5:

are linearly dependent. Apply the Gram-Schmidt orthonormalization pro-
cess to them and use the results to deduce what occurs when the process is
applied to a linearly dependent set of vectors.

(34) Prove directly that x � a; xh i
a; ah i a is orthogonal to a.

(35) Prove that if x and y are orthonormal, then ||sxþ ty||2¼ s2þ t2 for any two
scalars s and t.

(36) Let Q be any n�n real matrix having columns that, when considered as
n-dimensional vectors, form an orthonormal set. What can one say about
the product QTQ?
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(37) Prove that if hy, xi¼0 for every n-dimensional vector y, then x¼0.

(38) Let A be an n�n real matrix and p be a real n-dimensional column matrix.
Show that if p is orthogonal to the columns of A, then hAy,pi¼0 for every
n-dimensional real column matrix y.

(39) Prove that if  is an orthonormal set of vectors that span a vector space ,
then  is a basis for .

6.3 THE QR ALGORITHM
To express a matrix in amore convenient form as a product of two other matrices
is called a factorization. One of the more useful of these is the QR factorization,
which is based on Gram-Schmidt orthonormalization. The QR algorithm is a
robust numerical method for computing eigenvalues of real matrices. In contrast
to the power methods described in Section 4.5, which converge to a single dom-
inant real eigenvalue, the QR algorithm generally locates all eigenvalues of a
matrix, both real and complex, regardless of multiplicity.

To use the algorithm, we must factor a given matrix A into the matrix product

A ¼ QR (6.11)

where R is an upper (or right) triangular matrix and the columns of Q, consid-
ered as individual columnmatrices, form an orthonormal set. Equation (6.11) is
a QR decomposition of A. Such a decomposition is always possible when the
columns of A are linearly independent.

Example 1 Two QR decompositions are

1 3

1 5

" #
¼ 1=

ffiffiffi
2
p �1= ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

" # ffiffiffi
2
p

4=
ffiffiffi
2
p

0
ffiffiffi
2
p

" #

and

1 2

2 2

2 1

2
64

3
75 ¼ 1=3 10=

ffiffiffiffiffiffiffiffi
153
p

2=3 2=
ffiffiffiffiffiffiffiffi
153
p

2=3 �7= ffiffiffiffiffiffiffiffi
153
p

2
64

3
75 3 8=3

0
ffiffiffiffiffiffiffiffi
153
p

=9

" #

It is apparent from Example 1 that QR decompositions exist for square and rect-
angular matrices. The orders of A and Q are the same and R is a square matrix
having the same number of columns as A. For the remainder of this section,
we restrict A to be square because we are interested in locating eigenvalues,
and eigenvalues are defined only for square matrices. Then both Q and R are
square and have the same order as A.

AQR decomposition of amatrix A comes directly from the Gram-Schmidt ortho-
normalization process (see Theorem 3 of Section 6.2) applied to the linearly
independent columns of A. The elements of R¼ [rij] are the scalars from Steps
1 and 3 of the orthonormalization process, and the columns ofQ are the ortho-
normal columnmatrices constructed in Step 2 of that process. To see why, we let

In a QR decomposition
of a matrix A, the
elements of R¼ [rij] are
the scalars from Steps
1 and 3 of the
Gram-Schmidt
orthonormalization
process applied to the
linearly independent
columns of A, while the
columns of Q are the
orthonormal column
matrices constructed
in Step 2 of the
Gram-Schmidt process.
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xj
(i) denote xj after the ith iteration of the Gram-Schmidt process (j> i). Thus, xj

(1)

is the new value of xj after the first iteration of the orthonormalization process,
xj
(2) is value of xj after the second iteration, and so on. In this context, xj

(0) is the
initial value of xj.

▶THEOREM 1
After the ith iteration of the Gram-Schmidt orthonormalization process, xj

(i)¼xj
(0)� r1,

j q1� r2,j q2� . . . � ri,j qi◀

Proof: (by mathematical induction on the iterations): After the first iteration, we
have from Step 4 of the process that xj

(1)¼xj
(0)� r1,j q1 for j¼2, 3, . . . , n, so the

proposition is true for n¼1.

Assume the proposition is true for n¼ i. Then after the iþ1 iteration, it follows
from Step 4 that for j¼ iþ2, iþ3, . . . , n.

x
iþ1ð Þ
j ¼ x

ið Þ
j � riþ1, j qiþ1

and then from the induction hypothesis that

x
iþ1ð Þ
j ¼ x

0ð Þ
j � r1, jq1 � r2, jq2 � . . . � ri, jqi

h i
� riþ1, jqiþ1

which is of the required form. Therefore, Theorem 1 is proved by mathematical
induction.

Designate the columns of an n�nmatrix A as x1, x2, . . . , xn, respectively, so that
A¼ [x1 x2 . . . xn]. Set

Q ¼ q1 q2���qn½ �: (6.12)

and

R ¼

r11 r12 r13 � � � r1n

0 r22 r23 � � � r2n

0 0 r33 � � � r3n

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 � � � rnn

2
66666664

3
77777775

(6.13)

Then it follows from Theorem 1 that A¼QR.

Example 2 Construct a QR decomposition for A ¼
1 0 1
1 1 0
0 1 1

2
4

3
5:
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Solution: The columns of A are

x1 ¼
1
1
0

2
4
3
5, x2 ¼ 0

1
1

2
4
3
5, x3 ¼ 1

0
1

2
4
3
5

Using the results of Example 8 of Section 6.2, we have immediately that

Q ¼
1=

ffiffiffi
2
p �1= ffiffiffi

6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
2
p

1=
ffiffiffi
6
p �1= ffiffiffi

3
p

0 2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

2
64

3
75,R ¼

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0
ffiffiffiffiffiffiffiffi
3=2

p
1=

ffiffiffi
6
p

0 0 2=
ffiffiffi
3
p

2
64

3
75

from which A¼QR.

Example 3 Construct a QR decomposition for A ¼
1 1 0 1
1 2 1 0
0 1 2 1
1 0 1 1

2
664

3
775.

Solution: The columns of A are

x1 ¼
1
1
0
1

2
664
3
775, x2 ¼

1
2
1
0

2
664
3
775, x3 ¼

0
1
2
1

2
664
3
775, x4 ¼

1
0
1
1

2
664
3
775

Using the results of Example 9 of Section 6.2, we have immediately that

Q ¼

0:5774 0:0000 �0:3651 0:7303

0:5774 0:5774 �0:1826 �0:5477
0:0000 0:5774 0:7303 0:3651

0:5774 �0:5774 0:5477 �0:1826

2
6666664

3
7777775,

R ¼

1:7321 1:7321 1:1547 1:1547

0 1:7321 1:1547 0:0000

0 0 1:8257 0:9129

0 0 0 0:9129

2
6666664

3
7777775

from which A¼QR to within round-off error.

The QR algorithm uses QR decompositions to identify the eigenvalues of a
square matrix. The algorithm involves many arithmetic calculations, making it
unattractive for hand computations but ideal for implementation on a com-
puter. Although a proof of the QR algorithm is beyond the scope of this book,
the algorithm itself is deceptively simple.
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We begin with a square real matrix A0 having linearly independent columns. To
determine its eigenvalues, we create a sequence of newmatrices A1, A2, . . . , Ak�1,
Ak, . . . , having the property that each newmatrix has the same eigenvalues as A0,
and that these eigenvalues become increasingly obvious as the sequence pro-
gresses. To calculate Ak (k¼1, 2, . . . ) once Ak�1 is known, we construct a QR
decomposition of Ak�1:

Ak�1 ¼ Qk�1Rk�1

and then reverse the order of the product to define

Ak ¼ Rk�1Qk�1 (6.14)

Each matrix in the sequence {Ak} has identical eigenvalues (see Problem 29),
and the sequence generally converges to one of the following two partitioned
forms:

S
0 0 0 ... 0 a

T ð6:15Þ
or

U
0 0 0 0 b c
0 0 0 ...

...
0 d e

V ð6:16Þ

If matrix (6.15) occurs, then the element a is an eigenvalue, and the remaining
eigenvalues are found by applying theQR algorithm anew to the submatrix S. If,
on the other hand, matrix (6.16) occurs, then two eigenvalues are determined by
solving for the roots of the characteristic equation of the 2�2matrix in the lower
right partition, namely,

l2 � bþ eð Þlþ be� cdð Þ ¼ 0

The remaining eigenvalues are found by applying theQR algorithm anew to the
submatrix U.

Convergence of the algorithm is accelerated by performing a shift at each itera-
tion. If the orders of all matrices are n�n, we denote the element in the (n, n)
position of the matrix Ak�1 as wk�1, and construct a QR decomposition for
the shifted matrix Ak�1�wk�1I. That is,

Ak�1 � wk�1I ¼ Qk�1Rk�1 (6.17)

We define

Ak ¼ Rk�1Qk�1 þ wk�1I (6.18)

Example 4 Find the eigenvalues of

A0 ¼
0 1 0
0 0 1

18 �1 �7

2
4

3
5
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Solution: Using theQR algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute

A0� �7ð ÞI

¼
7 1 0

0 7 1

18 �1 0

2
664

3
775

¼
0:3624 0:1695 �0:9165
0:0000 0:9833 0:1818

0:9320 �0:0659 0:3564

2
664

3
775

19:3132 �0:5696 0:0000

0:0000 7:1187 0:9833

0:0000 0:0000 0:1818

2
664

3
775

¼ Q0R0

A1 ¼ R0Q0 þ �7ð ÞI

¼
19:3132 �0:5696 0:0000

0:0000 7:1187 0:9833

0:0000 0:0000 0:1818

2
664

3
775

0:3624 0:1695 �0:9165
0:0000 0:9833 0:1818

0:9320 �0:0659 0:3564

2
664

3
775þ

�7 0 0

0 �7 0

0 0 �7

2
664

3
775

¼
0:0000 2:7130 �17:8035
0:9165 6:8704 1:6449

0:1695 �0:0120 �6:9352

2
664

3
775

A1 � �6:9352ð ÞI

¼
6:9352 2:7130 �178035
0:9165 6:8704 1:6449

0:1695 �0:0120 0:0000

2
664

3
775

¼
0:9911 �0:1306 �0:0260
0:1310 0:9913 0:0120

0:0242 �0:0153 0:9996

2
664

3
775

6:9975 3:5884 �17:4294
0:0000 6:4565 3:9562

0:0000 0:0000 0:4829

2
664

3
775

¼ Q1R1

A2 ¼ R1Q1 þ �6:9352ð ÞI ¼
0:0478 2:9101 �17:5612
0:9414 �0:5954 4:0322

0:0117 �0:0074 �6:4525

2
664

3
775
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Continuing in this manner, we generate sequentially

A3 ¼
0:5511 2:7835 �16:8072
0:7826 �1:1455 6:5200

0:0001 �0:0001 �6:4056

2
64

3
75

A4 ¼
0:9259 2:5510 �15:9729
0:5497 �1:5207 8:3583
0:0000 �0:0000 �6:4051

2
4

3
5

A4 has form (6.15) with

S ¼ 0:9259 2:5510
0:5497 �1:5207
� �

and a ¼ �6:4051

One eigenvalue is�6.4051, which is identical to the value obtained in Example 2
of Section 4.6. In addition, the characteristic equation of R is
l2þ0.5948l�2.8103¼0, which admits both �2 and 1.4052 as roots. These
are the other two eigenvalues of A0.

Example 5 Find the eigenvalues of

A0 ¼
0 0 0 �25
1 0 0 30
0 0 1 �18
0 0 1 6

2
664

3
775

Solution: Using theQR algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute

A0 � 6ð ÞI ¼

�6 0 0 �25
1 �6 0 30

0 1 �6 �18
0 0 1 0

2
6664

3
7775

¼

�0:9864 �0:1621 �0:0270 �0:0046
0:1644 �0:9726 �0:1620 �0:0274
0:0000 0:1666 �0:9722 �0:1643
0:0000 0:0000 0:1667 �0:9860

2
6664

3
7775

�

6:0828 �0:9864 0:0000 29:5918

0:0000 6:0023 �0:9996 �28:1246
0:0000 0:0000 6:0001 13:3142

0:0000 0:0000 0:0000 2:2505

2
6664

3
7775

¼ Q0R0
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A1 ¼ R0Q0 þ 6ð ÞI ¼

�0:1622 �0:0266 4:9275 �29:1787
0:9868 �0:0044 �4:6881 27:7311

0:0000 0:9996 2:3858 �14:1140
0:0000 0:0000 0:3751 3:7810

2
666664

3
777775

A1 � 3:7810ð ÞI ¼

�3:9432 �0:0266 4:9275 �29:1787
0:9868 �3:7854 �4:6881 27:7311

0:0000 0:9996 �1:3954 �14:1140
0:0000 0:0000 0:3751 0:0000

2
666664

3
777775

¼

�0:9701 �0:2343 �0:0628 �0:0106
0:2428 �0:9361 �0:2509 �0:0423
0:0000 0:2622 �0:9516 �0:1604
0:0000 0:0000 0:1662 �0:9861

2
666664

3
777775

�

4:0647 �0:8931 �5:9182 35:0379

0:0000 3:8120 2:8684 �22:8257
0:0000 0:0000 2:2569 8:3060

0:0000 0:0000 0:0000 1:3998

2
666664

3
777775

¼ Q1R1

A2 ¼ R1Q1 þ 3:7810ð ÞI

¼

�0:3790 �1:6681 11:4235 �33:6068
0:9254 0:9646 �7:4792 21:8871

0:0000 0:5918 3:0137 �8:5524
0:0000 0:0000 0:2326 2:4006

2
666664

3
777775

Continuing in this manner, we generate, after 25 iterations,

A25 ¼

4:8641 �4:4404 18:1956 �28:7675
4:2635 �2:8641 13:3357 �21:3371
0:0000 0:0000 2:7641 �4:1438
0:0000 0:0000 0:3822 1:2359

2
6664

3
7775

which has form (6.16) with

U ¼ 4:8641 �4:4404
4:2635 �2:8641

� �
and

b c

d e

� �
¼ 2:7641 �4:1438

0:3822 1:2359

� �
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The characteristic equation of U is l2�2lþ5¼0, which has as its roots
1	2i; the characteristic equation of the other 2�2 matrix is
l2�4lþ4.9999¼0, which has as its roots 2	 i. These roots are the four
eigenvalues of A0.

Problems 6.3

(1) Given the matrix A ¼
1 2
2 0
0 2

2
4

3
5 and matrix Q ¼

ffiffiffi
5
p

5

4
ffiffiffi
5
p

15
� 2

3

2
ffiffiffi
5
p

5
� 2

ffiffiffi
5
p

15

1

3

0

ffiffiffi
5
p

3

2

3

2
6666666664

3
7777777775
,

find an upper triangular matrix R such that A¼QR.

In Problems 2 through 12, construct QR decompositions for the given
matrices.

(2)
1 2
2 1

� �
: (3)

1 3
1 5

� �
:

(4)
3 3
�2 3

� �
:

(5)
1 2
2 2
2 1

2
4

3
5:

(6)
1 1
1 0
3 5

2
4

3
5:

(7)

3 1
�2 1
1 1
�1 1

2
664

3
775:

(8)
2 0 2
1 1 0
0 1 2

2
4

3
5: (9)

1 2 2
1 0 2
0 1 1

2
4

3
5:

(10)
0 3 2
3 5 5
4 0 5

2
4

3
5:

(11)

0 1 1
1 0 1
1 1 0
1 1 1

2
664

3
775:

(12)

1 0 1
1 1 0
0 �1 �1
0 0 0

2
664

3
775:
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(13) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼
0 1 0
0 0 1

18 �1 7

2
4

3
5:

Note that this matrix differs from the one in Example 4 by a single sign.

(14) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼
2 �17 7

�17 �4 1
7 1 �14

2
4

3
5:

(15) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼
0 0 0 �13
1 0 0 4
0 1 0 �14
0 0 1 4

2
664

3
775:

In Problems 16 through 24, use the QR algorithm to calculate the eigen-
values of the given matrices.

(16) The matrix in Problem 13.

(17) The matrix in Problem 14.

(18)
3 0 0
2 6 4
2 3 5

2
4

3
5: (19)

7 2 0
2 1 6
0 6 7

2
4

3
5:

(20)
3 2 3
2 6 6
3 6 11

2
4

3
5: (21)

1 1 0
0 1 1
5 �9 6

2
4

3
5:

(22) The matrix in Problem 15.

(23)

0 3 2 �1
1 0 2 �3
3 1 0 �1
2 �2 1 1

2
664

3
775: (24)

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

2
664

3
775:

(25) Prove that R is nonsingular in a QR decomposition.

(26) Evaluate QTQ for any square matrix Q in a QR decomposition, and then
prove that Q is nonsingular.

(27) Using Problem 25, show that Ak is similar to Ak�1 in theQR algorithm and
deduce that both matrices have the same eigenvalues.
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6.4 LEAST SQUARES
Analyzing data to interpret and predict events is common to business, engineer-
ing, and the physical and social sciences. If such data are plotted, as in Figure 6.8,
they constitute a scatter diagram, which may provide insight into the underlying
relationship between system variables. Figure 6.8 could represent a relationship
between advertising expenditures and sales in a business environment, or
between time and velocity in physics, or between formal control and deterrence
in sociology.

The data in Figure 6.8 appears to follow a straight line relationship, but with
minor random distortions. Such distortions, called noise, are expected when data
are obtained experimentally. To understand why, assume you are asked to ride a
bicycle on a painted line down the middle of a straight path. A paint pot with a
mechanism that releases a drop of paint intermittently is attached to the bicycle
to check your accuracy. If you ride flawlessly, the paint spots will all fall on the
line you are to follow. A perfect ride, however, is not likely. Wind, road imper-
fections, fatigue, and other random events will move the bicycle slightly away
from its intended path. Repeat this experiment three times, and the paint spots
from all three rides would look like the data points in Figure 6.8.

Generally, we have a set of data points obtained experimentally from a process of
interest, such as those in Figure 6.8, and we want the equation of the underlying
theoretical relationship. For example, we have the spots left by a bicycle, and we
want the equation of the path the rider followed. In this section, we limit our-
selves to relationships that appear linear.

A straight line in the variables x and y satisfying the equation

y ¼ mxþ c (6.19)

wherem and c are constants, will have one y value on the line for each value of x.
This y value may not agree with the data at each value of x where data exists (see
Figure 6.9). The difference between the y value of the data point at x and the y
value defined by Equation (6.19) for this same value of x is known as the residual
at x, which we denote e(x).

y

x

FIGURE 6.8

Small random variations
from expected patterns
are called noise.
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Example 1 Calculate the residuals between the five data points in Figure 6.9 and
their corresponding points on the line defined by y¼2xþ1.5.

Solution: Data points are provided at x¼0, x¼1, x¼2, x¼3, and x¼4. Evaluat-
ing the equation y¼2xþ1.5 at these values of x, we generate Table 6.1. The resid-
uals are

e(0)¼1�1.5¼�0.5
e(1)¼5�3.5¼1.5

e(2)¼3�5.5¼�2.5
e(3)¼6�7.5¼�1.5
e(4)¼9�9.5¼�0.5

Note that these residuals can be read directly from Figure 6.9.

In general, we have N data points at (x1, y1), (x2, y2), (x3, y3), . . . (xN, yN) with
residuals e(x1), e(x2), e(x3), . . . , e(xN) between the data points and a straight line

1 2 3 4

3

2

1

6

5

4

7

9

8

10

y

x
0

��

�

�

� e (4)

e (3)

e (2)

e (0)

e (1)

Denotes a data point
y 

= 
2x

 +
 1

.5

Denotes a point on the
straight line for the same
x-value as the data point

�

FIGURE 6.9

Table 6.1

Given Data Evaluated from
y¼2xþ1.5

x y y

0 1 1.5
1 5 3.5
2 3 5.5
3 6 7.5
4 9 9.5
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approximation to the data. Residuals may be positive, negative, or 0, with a zero
residual occurring only when a data point is on the straight line approximation.
The least-squares error E is the sumof the squaresof the individual residuals. That is,

E ¼ e x1ð Þ½ �2 þ e x2ð Þ½ �2 þ e x3ð Þ½ �2 þ . . . þ e xNð Þ½ �2

The least-squares error is 0 if and only if all the residuals are 0.

Example 2 Calculate the least-squares error made in approximating the data in
Figure 6.9 by the straight line defined by y¼2xþ1.5.

Solution: Using the residuals determined in Example 1, we have

E ¼ e 0ð Þ½ �2 þ e 1ð Þ½ �2 þ e 2ð Þ½ �2 þ e 3ð Þ½ �2 þ e 4ð Þ½ �2

¼ �0:5ð Þ2 þ 1:5ð Þ2 þ �2:5ð Þ2 þ �1:5ð Þ2 þ �0:5ð Þ2

¼ 0:25þ 2:25þ 6:25þ 2:25þ 0:25

¼ 11:25

Corresponding to every straight line approximation to a given set of data is a set of
residuals and a least-squares error. Different straight lines can produce different
least-squares errors, and we define the least-squares straight line to be the line that
minimizes the least-squares error. Anonvertical straight line satisfies the equation

y ¼ mxþ c (6.19 repeated)

and has residuals

e xið Þ ¼ yi � mxi þ cð Þ
at xi(i¼1, 2, . . . , N). We seek values of m and c that minimize

E ¼
XN
i¼1

yi �mxi � cð Þ2

This occurs when

@E

@m
¼
XN
i¼1

2 yi �mxi � cð Þ �xið Þ ¼ 0

@E

@c
¼
XN
i¼1

2 yi �mxi � cð Þ �1ð Þ ¼ 0

or, upon simplifying, when

XN
i¼1

x2i

 !
mþ

XN
i¼1

xi

 !
c ¼

XN
i¼1

xiyi

XN
i¼1

xi

 !
mþNc ¼

XN
i¼1

yi

(6.20)

The least-squares error is
the sum of the squares of
the individual residuals,
and the least-squares
straight line is the line
that minimizes the least-
squares error.
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System(6.20)makesup thenormal equations for a least-squares fit in twovariables.

Example 3 Find the least-squares straight line for the following xy data:

x 0 1 2 3 4
1 5 3 6 9y

Solution: Table 6.2 contains the required summations. For this data, the normal
equations become

30mþ 10c ¼ 65

10mþ 5c ¼ 24

which has as its solution m¼1.7 and c¼1.4. The least-squares straight line is
y¼1.7xþ1.4.

The normal equations have a simple matrix representation. Ideally, we would
like to choose m and c for Equation (6.19) so that,

yi ¼ mxi þ c

for all data pairs (xi, yi), i¼1, 2, . . . ,N. That is, we want the constantsm and c to
solve the system

mx1 þ c ¼ y1

mx2 þ c ¼ y2

mx3 þ c ¼ y3

⋮

mxN þ c ¼ yN

or, equivalently, the matrix equation

x1 1
x2 1
x3 1
⋮ ⋮
xN 1

2
66664

3
77775 m

c

� �
¼

y1
y2
y3
⋮
yN

2
66664

3
77775

Table 6.2

xi yi (xi)
2 xiyi

0 1 0 0
1 5 1 5
2 3 4 6
3 6 9 18
4 9 16 36X5
i¼1

xi ¼ 10
X5
i¼1

yi ¼ 24
X5
i¼1

xið Þ2 ¼ 30
X5
i¼1

xiyi ¼ 65
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This system has the standard form Ax¼b, where A is defined as a matrix having
two columns, the first being the data vector [x1 x2 x3 . . . xN]

T, and the
second containing all ones, x¼ [m c]T, and b is the data vector
[y1 y2 y3 . . . yN]

T. In this context, Ax¼b has a solution for x if and only
if the data falls on a straight line. If not, then the matrix system is inconsistent,
and we seek the least-squares solution. That is, we seek the vector x that
minimizes the least-squares error having the matrix form

E ¼ Ax � bk k2 (6.21)

The solution is the vector x satisfying the normal equations, which take the
matrix form

ATAx ¼ ATb (6.22)

System (6.22) is identical to system (6.20) when A and b are as just defined.

We now generalize to all linear systems of the form Ax¼b. We are primarily
interested in cases where the system is inconsistent (rendering the methods
developed in Chapter 1 useless), and this generally occurs when A hasmore rows
than columns. We place no restrictions on the number of columns in A, but we
will assume that the columns are linearly independent. We seek the vector x that
minimizes the least-squares error defined by Equation (6.21).

▶THEOREM 1
If x has the property that Ax�b is orthogonal to the columns of A, then x minimizes

kAx�bk2.◀

Proof: For any vector x0 of appropriate dimension,

Ax0 � bk k2 ¼ Ax0 � Axð Þ þ Ax � bð Þk k2

¼ Ax0 � Axð Þ þ Ax � bð Þ, Ax0 � Axð Þ þ Ax � bð Þh i
¼ Ax0 � Axð Þ; Ax0 � Axð Þh i þ Ax � bð Þ; Ax � bð Þh i
þ 2 Ax0 � Axð Þ; Ax � bð Þh i

¼ Ax0 � Axð Þk k2 þ Ax � bð Þk k2 þ 2 Ax0, Ax � bð Þh i � 2 Ax; Ax � bð Þh i

It follows directly from Problem 38 of Section 6.2 that the last two inner products
are both 0 (take p¼Ax�b). Therefore,

Ax0 � bk k2 ¼ Ax0 � Axð Þk k2 þ Ax � bð Þk k2


 Ax � bð Þk k2

and x minimizes Equation (6.21).
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As a consequence of Theorem 1, we seek a vector x having the property that
Ax�b is orthogonal to the columns of A. Denoting the columns of A as
A1, A2, . . . , An, respectively, we require

Ai,Ax � bh i ¼ 0 i ¼ 1, 2, . . . , nð Þ

If y¼ [y1 y2 . . . yn]
T denotes an arbitrary vector of appropriate dimension,

then

Ay ¼ A1y1 þ A2y2 þ � � � þ Anyn ¼
Xn
i¼1

Aiyi

Ay; Ax � bð Þh i ¼
Xn
i¼1

Aiyi Ax � bð Þ
* +

¼
Xn
i¼1

Aiyi, Ax � bð Þh i

¼
Xn
i¼1

yi Ai; Ax � bð Þh i

¼ 0

(6.23)

It follows from

x; yh i ¼ xTy (6.2 repeated)

that

Ay; Ax � bð Þh i ¼ Ayð ÞT Ax�bð Þ
¼ yTAT
� �

Ax � bð Þ
¼ yT ATAx � ATb

� �
¼ y; ATAx � ATb

� �
 �
(6.24)

Equations (6.23) and (6.24) imply that hy,(ATAx�ATb)i¼0 for any y. Using
the results of Problem 37 of Section 6.2, we conclude that (ATAx�ATb)¼0
or that ATAx¼ATb, which has the same form as Equation (6.22)! thus, we have
Theorem 2.

▶THEOREM 2
A vector x is the least-squares solution to Ax¼b if and only if x is a solution to the normal

equations ATAx¼ATb.◀

Euclidean Inner Product CHAPTER 6 365



The set of normal equations has a unique solution whenever the columns of A
are linearly independent, and these normal equationsmay be solved using any of
the methods presented in the previous chapters for solving systems of simulta-
neous linear equations.

Example 4 Find the least-squares solution to

xþ 2y þ z ¼ 1

3x� y ¼ 2

2xþ y � z ¼ 2

xþ 2y þ 2z ¼ 1

Solution: This system takes the matrix form Ax¼b, with

A ¼
1 2 1
3 �1 0
2 1 �1
1 2 2

2
664

3
775, x ¼ x

y
z

2
4
3
5, and b ¼

1
2
2
1

2
664
3
775

Then,

ATA ¼
15 3 1
3 10 5
1 5 6

2
4

3
5 and ATb ¼

12
4
1

2
4

3
5

and the normal equations become

15 3 1
3 10 5
1 5 6

2
4

3
5 x

y
z

2
4
3
5 ¼ 12

4
1

2
4

3
5

Using Gaussian elimination, we obtain as the unique solution to this set of equa-
tions x¼0.7597, y¼0.2607, and z¼�0.1772, rounded to four decimals, which
is also the least-squares solution to the original system.

Example 5 Find the least-squares solution to

0xþ 3y ¼ 180

2xþ 5y ¼ 100

5x� 2y ¼ 60

�xþ 8y ¼ 130

10x� y ¼ 150
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Solution: This system takes the matrix form Ax¼b, with

A ¼

1 3
2 5
5 �2
�1 8
10 �1

2
66664

3
77775, x ¼ x

y

� �
, and b ¼

80
100
60

130
150

2
66664

3
77775

Then,

ATA ¼ 131 �15
�15 103

� �
and ATb ¼ 1950

1510

� �
and the normal equations become

131 �15
�15 103

� �
x
y

� �
¼ 1950

1510

� �

Theunique solution to this set of equations is x¼16.8450and y¼17.1134, rounded
to four decimals, which is also the least-squares solution to the original system.

Problems 6.4
In Problems 1 through 8, find the least-squares solution to the given systems of
equations.

(1) 2xþ 3y ¼ 8,

3x� y ¼ 5,

xþ y ¼ 6:

(2) 2xþ y ¼ 8,

y ¼ 4,

�xþ y ¼ 0,

3xþ y ¼ 13:

(3) xþ 3y ¼ 65,

2x� y ¼ 0,

3xþ y ¼ 50,

2xþ 2y ¼ 55:

(4) 2xþ y ¼ 6,

xþ y ¼ 8,

�2xþ y ¼ 11,

�xþ y ¼ 8,

3xþ y ¼ 4:

(5) 2xþ 3y � 4z ¼ 1,

x� 2y þ 3z ¼ 3,

xþ 4y þ 2z ¼ 6,

2xþ y � 3z ¼ 1:

(6) 2xþ 3y þ 2z ¼ 25,

2x� y þ 3z ¼ 30,

3xþ 4y � 2z ¼ 20,

3xþ 5y þ 4z ¼ 55:

(7) xþ y � z ¼ 90,

2xþ y þ z ¼ 200,

xþ 2y þ 2z ¼ 320,

3x� 2y � 4z ¼ 10,

3xþ 2y � 3z ¼ 220:

(8) xþ 2y þ 2z ¼ 1

2xþ 3y þ 2z ¼ 2,

2xþ 4y þ 4z ¼ �2,
3xþ 5y þ 4z ¼ 1,

xþ 3y þ 2z ¼ �1:
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(9) Themonthly sales figures (in thousands of dollars) for a newly opened shoe
store are

Month 1 2 3 4 5

Sales 9 16 14 15 21

(a) Plot a scatter diagram for this data.

(b) Find the least-squares straight line that best fits this data.

(c) Use this line to predict sales revenue for month 6.

(10) Major League Baseball attendance for every ten years since 1960 is

Year Attendance (in millions)
1960 19.9
1970 28.7
1980 43.0
1990 54.8
2000 72.7
2010 73.1

Source: www.ballparksofbaseball.com

(a) Find the least-squares straight line that best fits this data.

(b) Use this line to predict total major league baseball attendance in 2020.

(11) Annual rainfall data (in inches) for a given town over the last seven years are

Year 1 2 3 4 5 6 7

Rainfall 10.5 10.8 10.9 11.7 11.4 11.8 12.2

(a) Find the least-squares straight line that best fits this data.

(b) Use this line to predict next year’s rainfall.

(12) Solve system (6.20) algebraically and explain why the solution would be
susceptible to round-off error.

(13) (Coding) To minimize the round-off error associated with solving the nor-
mal equations for a least-squares straight line fit, the (xi, yi) data are coded
before using them in calculations. Each xi value is replaced by the difference
between xi and the average of all xi data. That is, if

X ¼ 1

N

XN
i¼1

xi

then set x
0
i ¼ xi � X and fit a straight line to the x

0
i; yi

� �
data instead.

Explain why this coding scheme avoids the round-off errors associated with
un-coded data.
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(14) (a) Code the data given in Problem 9 using the procedure described in
Problem 13.

(b) Find the least-squares straight line fit for this coded data.

(15) Census figures for the population (in millions of people) for a particular
region of the country are as follows:

Year 1950 1960 1970 1980 1990

Population 25.3 23.5 20.6 18.7 17.8

(a) Code this data using the procedure described in Problem 13, and then
find the least-squares straight line that best fits it.

(b) Use this line to predict the population in 2000.

(16) Show that if A¼QR is aQR decomposition of A, then the normal equations
given by Equation (6.22) can be written as RTRx¼RTQTb, which reduces to
Rx¼QTb. This is a numerically stable set of equations to solve, not subject
to the same round-off errors associated with solving the normal equations
directly.

(17) Use the procedure described in Problem 16 to solve Problem 1.

(18) Use the procedure described in Problem 16 to solve Problem 2.

(19) Use the procedure described in Problem 16 to solve Problem 5.

(20) Use the procedure described in Problem 16 to solve Problem 6.

(21) Determine the column matrix of residuals associated with the least-squares
solution of Problem 1, and then calculate the inner product of this vector
with each of the columns of the coefficient matrix associated with the given
set of equations.

(22) Determine the column matrix of residuals associated with the least-squares
solution of Problem 5, and then calculate the inner product of this vector
with each of the columns of the coefficient matrix associated with the given
set of equations.

6.5 ORTHOGONAL COMPLEMENTS
Two vectors in the same inner product space are orthogonal if their inner product is
zero. More generally, we say that the two subspaces  and of an inner product
space  are orthogonal, written ┴, if hu,wi¼0 for every u2 and every w2.

Example 1 The subspaces

 ¼ at2 þ bt þ c 2 2jb ¼ 0
� �

and  ¼ at2 þ bt þ c 2 2ja ¼ c ¼ 0
� �

are orthogonal with respect to the induced Euclidean inner product. If p(t)2,
then p(t)¼at2þ c, for some choice of the real numbers a and c. If q(t)2, then
q(t)¼bt for some choice of the real number b. Then

Two subspaces and
of the inner product
space  are orthogonal if
(u, w)¼0 for every u2
and every w2.
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p tð Þ, q tð Þh i ¼ at2 þ c, bt

 � ¼ at2 þ 0t þ c,0t2 þ bt þ 0


 �
¼ a 0ð Þ þ 0 bð Þ þ c 0ð Þ ¼ 0

Example 2 The subspaces  ¼ span 1 1 1½ �T; 1 �1 0½ �T
n o

and

 ¼ span 1 1 �2½ �T
n o

in R3 are orthogonal with respect to the Euclidean

inner product. Every vector in u2 must have the form

u ¼ a
1
1
1

2
4
3
5þ b

1
�1
0

2
4

3
5 ¼ aþ b

a� b
a

2
4

3
5

for some choice of scalars a and b, while every vector inw2must have the form

w ¼ c
1
1
�2

2
4

3
5 ¼ c

c
�2c

2
4

3
5

for some choice of scalar c. Here,

u;wh i ¼ aþ bð Þ cð Þ þ a� bð Þ cð Þ þ a �2cð Þ ¼ 0

Orthogonal subspaces inR3donot always agreewithourunderstandingofperpen-
dicularity. The xy-plane isperpendicular to the yz-plane, as illustrated inFigure6.10,
but the two planes are not orthogonal. The xy-plane is the subspace defined by

 ¼ x y z½ �T 2 3jz ¼ 0
n o

Therefore, u¼ [1 1 0]T is a vector in. The yz-plane is the subspace defined by

 ¼ x y z½ �T 2 3jx ¼ 0
n o

and w¼ [0 1 1]T is in . Here,

yz-plane

xy-plane

z

x

y

FIGURE 6.10
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u; vh i ¼ 1 0ð Þ þ 1 1ð Þ þ 0 1ð Þ ¼ 1 6¼ 0

If  is a subspace of an inner product space , we define the orthogonal comple-
ment of, denoted as┴, as the set of all vectors in that are orthogonal to every
vector in , that is,

? ¼ v 2 j u; vh i ¼ 0 for every u 2 f g (6.25)

Example 3 In R3, the orthogonal complement of the z-axis is the xy-plane. The
z-axis is the subspace

 ¼ x y z½ �T 2 3jx ¼ y ¼ 0
n o

so any vector in this subspace has the form [0 0 a]T for some choice of the scalar a.
A general vector inR3 has the form [x y z] T for any choice of the scalars x, y, and z. If

x
y
z

2
4
3
5; 0

0
0

2
4
3
5* +
¼ za

is to be zero for every choice of the scalar a, then z¼0. Thus, the orthogonal com-
plement of the z-axis is the set

x y z½ �T 2 3jz ¼ 0
n o

which defines the xy-plane.

▶THEOREM 1
If  is a subspace of an inner product space , then so too is the orthogonal complement

of .◀

Proof: Let x and y be elements of┴, and let u2. Then (x, u)¼0, (y, u)¼0, and
for any two scalars a and b

ax þ by,uh i ¼ ax,uh i þ by,uh i ¼ a x;uh i þ b y;uh i ¼ a 0ð Þ þ b 0ð Þ ¼ 0:

Thus, axþby2┴ and ┴ is a subspace of .

▶THEOREM 2
If is a subspace of an inner product space, then the only vector common to both  and

┴ is the zero vector.◀

Proof: Let x be a vector in both  and ┴. Since x2┴, it must be orthogonal to
every vector in , hence x must be orthogonal to itself, because x2. Thus,
(x, x)¼0, and it follows immediately from Theorem 1 of Section 6.1 that x¼0.

If  is a subspace of an
inner product space ,
then ┴, the orthogonal
complement of , is the
set of all vectors in that
are orthogonal to every
vector in .
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Identifying the orthogonal complement of subspaces  of Rn is straightforward
when we know a spanning set ¼{u1, u2, . . . , uk} for . We define a matrix A
to be

A ¼

uT
1

uT
2

⋮

uT
k

2
66664

3
77775 (6.26)

where the column matrices in  become the rows of A. We then transform A to
row-reduced form using elementary row operations, obtaining

A!

v T
1

v T
2

⋮

v T
k

2
66664

3
77775

The nonzero rows of this row-reduced matrix are a basis for . Any vector x2┴
must be orthogonal to each basis vector in , so

vj; x

 � ¼ 0 j ¼ 1, 2, . . . , kð Þ: (6.27)

Equation (6.27) yields a set of k; equations (some of which will be 0¼0when the
rank of A is less than k) for the components of x. These equations define all vec-
tors in the orthogonal complement of . But Equation (6.27) also defines the
kernel of the matrix A in Equation (6.26), so we have proven Theorem 3.

▶THEOREM 3
If  is a spanning set for a subspace  of Rn (considered as column matrices) and if a

matrix  is created so that each row of  is the transpose of the vectors in , then
┴¼ker(A).◀

Example 4 Find the orthogonal complement of the sub space in R4 spanned by

 ¼
1
3
1
�1

2
664

3
775;

2
7
2
1

2
664
3
775;

1
4
1
2

2
664
3
775

8>><
>>:

9>>=
>>;

Solution: For these vectors, matrix (6.26) becomes

A ¼
1 3 1 �1
2 7 2 1
1 4 1 2

2
4

3
5

which is transformed by elementary row operation to the row-reduced form
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!
1 3 1 �1
0 1 0 3

0 1 0 3

2
64

3
75

!
1 3 1 �1
0 1 0 3

0 0 0 0

2
64

3
75

A basis for  is {[1 3 1 �1]T, [0 1 0 3]T}, hence  is a two-
dimensional subspace of R4. If we let x¼ [x1, x2, x3, x1]

T, denote an arbitrary ele-
ment in the kernel of A, then

x1 þ 3x2 þ x3 � x4 ¼ 0

x2 þ 3x4 ¼ 0

0 ¼ 0

whence, x1¼�x3þ10x4, x2¼�3x4 with x3 and x4 arbitrary. Thus the kernel
of A is

�x3 þ 10x4
�3x4
x3
x4

2
664

3
775 ¼ x3

�1
0
1
0

2
664

3
775þ x4

10
�3
0
1

2
664

3
775x3 and x4 arearbitrary

8>><
>>:

9>>=
>>;

A basis for and ┴ is {[�1 0 1 0]T, [10 �3 0 1]T}, and T also a two-
dimensional subspace of R4.

▶THEOREM 4
If U is a subspace of Rn, then dim(U)þdim(U┴)¼n.◀

Proof: The proposition is true when ¼{0}, because h0, yi¼0 for every y2Rn

and (┴¼Rn. In all other cases, let ¼{u1, u2, . . . , uk} be a basis for , and
construct A as in Equation (6.26). Then A is a linear transformation from Rn to
Rk. Because  is a basis, r(A)¼dim()¼k, where r(A) denotes the rank of A. The
nullity of A, v(A), is the dimension of the kernel of A, hence v(A) is the dimen-
sion of ┴. But r(A)þv(A)¼n (Corollary 1 of Section 3.5), so Theorem 4 is
immediate.

▶THEOREM 5
If  is a subspace of Rn, then (┴)┴¼U.◀

Proof: If u2, then u is orthogonal to every vector in┴, so u2(┴)┴ and is a
subset of (┴)┴. Denote the dimension of as k. It follows from Theorem 4 that
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dim(┴)¼n�k. But it also follows from Theorem 4 that dim(┴)þdim
((┴)┴)¼n, whereupon dim((┴)┴)¼n� (n�k)¼k¼dim(). Thus,
�(┴)┴ with each subspace having the same dimension, hence ¼ (┴)┴.

We began Section 6.2 by writing a vector x2R2 as the sum of two vectors uþv,
which were orthogonal to one another. We now do even more.

▶THEOREM 6
If  is a subspace of Rn, then each vector x2Rn can be written uniquely as x¼uþu┴,
where u2 and u┴2┴.◀

Proof: If ¼Rn, then ┴¼{0}, and, conversely, if ¼{0}, then ┴¼Rn,
because x¼xþ0¼0þx. In all other cases, let {u1, u2, . . . , uk} be a basis for
(k<n), and let {ukþ1, ukþ2, . . . , un} be a basis for ┴. We first claim that
the set S¼{u1, u2, . . . , uk, ukþ1, ukþ2, . . . , un } is linearly independent, which
is equivalent to showing that the only solution to

c1u1 þ c2u2 þ � � � þ ckuk þ ckþ1ukþ1 þ ckþ2ukþ2 þ � � � þ cnun ¼ 0 (6.28)

is c1¼ c2¼ . . . ¼ cn¼0. If we rewrite Equation (6.28) as

c1u1 þ c2u2 þ � � � þ ckuk ¼ �ckþ1ukþ1 � ckþ2ukþ2 � � � � � cnun

we see that the left side of this equation is a vector in  while the right side is a
vector in┴. Since the vectors are equal, they represent a vector in both and┴
that, from Theorem 2, must be the zero vector. Thus,

c1u1 þ c2u2 þ � � � þ ckuk ¼ 0

and since {u1, u2, . . . , uk} is a linearly independent set (it is a basis for ), we
conclude that c1¼ c2¼ . . . ¼ ck¼0. Similarly

ckþ1ukþ1 þ ckþ2ukþ2 þ � � � þ cnun ¼ 0

and since {ukþ1, ukþ2, . . . , un} is a linearly independent set (it is as basis for
┴), we conclude that ckþ1¼ ckþ2¼ . . . ¼ cn¼0. Thus, S is linearly independent
as claimed.

Since the dimension of Rn is n and  is a linearly independent set of n-vectors in
Rn, it follows that  is a basis forRn. We now have (see Theorem 5 of Section 2.5)
that each vector in Rn can be written uniquely as a linear combination of the vec-
tors in . That is, if x2Rn, then there exists a unique set of scalars
d1¼d2¼ . . . ¼dn such that

x ¼ d1u1 þ d2u2 þ � � � þ dkuk þ dkþ1ukþ1 þ dkþ2ukþ2 þ � � � þ dnun

Setting u¼d1u1þd2u2þ . . . þdkuk and u┴¼dkþ1ukþ1þdkþ2ukþ2þ . . . þdnun,
we have u2, u┴2┴, and x¼uþu┴.
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Example 5 Decompose x¼ [�14 �10 12]T into the sum of two vectors, one
in the subspace  spanned by {[1 1 5]T, [2 �1 1]T } and the other in ┴.

Solution: The vectors u1¼ [1 1 5]T and u2¼ [2 �1 1]T are linearly inde-
pendent, so they form a basis for . We set

A ¼ 1 1 5
2 �1 1

� �

and then determine that u3¼ [�2 �2 1]T is a basis for ker(A) (see Example 1
of Section 3.5) and, therefore, a basis for ┴. Thus, ¼{u1, u2, u3} is a basis
for R3.

We want the coordinates of the given vector x¼ [�14 �10 12]T with
respect to the  basis; that is, we want the values of the scalars d1, d2, and
d3 so that

d1

1
1
5

2
4
3
5þ d2

2
�1
5

2
4

3
5þ d3

�2
�3
1

2
4

3
5 ¼ �14

�10
12

2
4

3
5:

Solving the associated system of simultaneous linear equations by Gaussian
elimination, we find d1¼2, d2¼�3, and d3¼5. Finally setting

u ¼ 2u1 þ �3ð Þu2 ¼ 2

1

1

5

2
64
3
75þ �3ð Þ

2

�1
5

2
64

3
75 ¼ �4

5

7

2
64

3
75

u? ¼ 5u3 ¼
�10
�15

5

2
64

3
75

we have u2, u┴ ┴ ┴, and x¼uþu┴.

Whenever we have a decomposition of a given vector x into the sum of two vec-
tors as described in Theorem 6, x¼uþu┴, then u is called the projection of x on.
In the special case where  is a one-dimensional subspace spanned by a single
vector a, the projection of x on  is obtained most easily by Equation (6.6) in
Section 6.2.

Example 6 Using the results of Example 5, we have that u¼ [�4 5 7]T is the
projection of the vector x¼ [�14 �10 12]T on the subspace  spanned by
{[1 1 5]T, [2 �1 1]T}.

A vector space  is the direct sum of two subspaces  and , written
¼�, if each vector in  can be written uniquely as the sum uþv, where
u2 and v2. It follows from Theorem 6 that Rn¼�┴ for each subspace
 of Rn.

A vector space  is the
direct sum of two
subspaces  and  if
each vector in  can be
written uniquely as the
sum of a vector in  and
a vector in .
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Problems 6.5
In Problems 1 through 10, (a) find the orthogonal complement for the subspace
 of R3 spanned by the given set of vectors, and then (b) find the projection of
x¼ [1 1 0]T on .

(1) {[0 1 1]T}.

(2) {[1 1 1]T}.

(3) {[2 1 1]T}.

(4) {[1 1 1]T, [0 1 2]T}.

(5) {[2 1 1]T, [0 1 2]T}.

(6) {[0 1 1]T, [0 1 2]T}.

(7) {[1 1 1]T, [2 2 0]T}.

(8) {[1 1 1]T, [2 2 2]T}.

(9) {[1 1 1]T, [0 1 1]T, [3 2 2]T}.

(10) {[1 1 1]T, [1 0 1]T, [1 1 0]T}.

In Problems 11 through 20, (a) find the orthogonal complement for the
subspace  of R4 spanned by the given set of vectors, and then (b) find the
projection of x¼ [1 0 1 0]T on .

(11) {[0 0 1 1]T}.

(12) {[0 1 1 1]T}.

(13) {[0 0 1 1]T, [0 1 1 1]T}.

(14) {[0 1 0 1]T, [0 1 0 2]T}.

(15) {[1 1 1 0]T, [1 1 0 1]T}.

(16) {[1 1 1 0]T, [1 1 0 1]T, [1 0 1 1]T}.

(17) {[1 1 1 0]T, [1 1 1 1]T, [1 1 1 2]T}.

(18) {[1 1 0 0]T, [0 1 0 1]T, [1 0 1 0]T}.

(19) {[1 1 1 0]T, [1 1 0 1]T, [1 0 1 1]T, [0 1 1 1]T}.

(20) {[1 1 1 0]T, [1 1 0 1]T, [1 2 1 1]T, [3 4 2 2]T}.

(21) Is it possible for x¼ [1 1 0]T to be in the kernel of a 3�3 matrix A and
also for y¼ [1 0 1]T to be in the row space of A?

(22) Show that if x¼uþu┴ as in Theorem 6, then xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2k k þ u?k k2

q
:
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(23) Let  be a subspace of a finite-dimensional vector space  with a basis ,
and let be subspace ofwith basis. Show that if¼�, then[
is a basis for .

(24) Prove that if  and  are subspaces of a finite-dimensional vector space 
with ¼�, then the only vector common to both  and  is 0.

(25) Prove that if  and  are subspaces of a finite-dimensional vector space 
with ¼�, then dim()þdim()¼dim().

CHAPTER 6 REVIEW
Important Terms

angle between n-tuples
Cauchy-Schwarz Inequality
direct sum
Euclidean inner product
Gram-Schmidt orthonormalization
process
induced inner product
inner product space
Kronecker delta
least-squares error
least-squares straight line
magnitude of an n-tuple
noise

normal equations
normalized vector
orthogonal complement
orthogonal vectors
orthonormal set of vectors
orthogonal subspaces
projection
QR algorithm
QR decomposition
residual
scatter diagram
unit vector

Important Concepts
Section 6.1

n The Euclidean inner product of two vectors x and y in Rn is a real number
obtained by multiplying corresponding components of x and y and then
summing the resulting products.

n The inner product of a vector with itself is positive, unless the vector is the
zero vector, in which case the inner product is zero.

n The inner product of a vector with the zero vector yields the zero scalar.
n hx, yi¼hy, xi¼hy, xi for vectors x and y in Rn.
n hlx, yi¼lhx, yi, for any real number l.
n hxþz, yi¼hx, yiþhz, yi.
n The magnitude of a vector x2Rn is the square root of the inner product of x

with itself.
n If u and v are vectors in Rn, then |(u,v)|�kuk kvk.
n An induced inner product on two matrices of the same order is obtained by

multiplying corresponding elements of both matrices and summing the
results.
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n An induced inner product of two polynomials is obtained by multiplying the
coefficients of like powers of the variable and summing the results.

n Two vectors can be orthogonal with respect to one basis and not orthogonal
with respect to another basis.

Section 6.2

n Subtracting from a nonzero vector x its projection onto another nonzero
vector a yields a vector that is orthogonal to both a and the projection of x
onto a.

n An orthonormal set of vectors is an orthogonal set of unit vectors.
n An orthonormal set of a finite number of vectors is linearly independent.
n If {x1, x2, . . . , xn} is orthonormal basis for a vector space , then for any vec-

tor x2, x¼hx, x1ix1þhx, x2ix2þ� � �þhx, xnixn.
n Every set of linearly independent vectors in an inner product space can be

transformed into an orthonormal set of vectors that spans the same subspace.

Section 6.3

n If the columns of a matrix A are linearly independent, then A can be factored
into the product of amatrixQ, having columns that form an orthonormal set,
and another matrix R, that is upper triangular.

n The QR algorithm is a numerical method of locating all eigenvalues of a real
matrix.

Section 6.4

n The least-squares straight line is the line thatminimizes the least-squares error
for a given set of data.

n A vector x is the least-squares solution to Ax¼b if and only if x is a solution to
the normal equation ATAx¼ATb.

Section 6.5

n If  is a subspace of an inner product space , then so too is the orthogonal
complement of .

n If  is a subspace of an inner product space , then the only vector common
to both  and ┴ is the zero vector.

n If  is a spanning set for a subspace  of Rn (considered as column matrices)
and if a matrix is created so that each row of A is the transpose of the vectors
in , then ┴¼ker(A).

n If  is a subspace of Rn, then dim()þdim(┴)¼n.
n If  is a subspace of Rn, then each vector x2Rn can be written uniquely as

x¼uþu┴, where u2 and u┴2┴.
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APPENDIX A

Jordan Canonical Forms

In Chapter 4, we began identifying bases that generate simple matrix represent-
ations for linear transformations of the form T :  ! , when  is an
n-dimensional vector space. Every basis for  contains n-vectors, and every matrix
representation of T has order n�n. We concluded (see Section 4.3) that Tmay be
represented by a diagonal matrix if and only if T possesses n linearly independent
eigenvectors.

Eigenvectors for a linear transformationT are foundby first producing amatrix rep-
resentation for T, generally thematrixwith respect to a standard basis, and then cal-
culating the eigenvectors of that matrix. Let A denotes a matrix representation of T.
Eigenvectors ofA are coordinate representations for the eigenvectors of T. IfAhas n
linearly independent eigenvectors, then so does T, and T can be represented by a
diagonalmatrix that is similar toA. IfAdoesnot haven linearly independent eigen-
vectors, then neither does T, and T does not have a diagonal matrix representation.

In this appendix, we focus on identifying simple matrix representations for all lin-
ear transformations from a finite-dimensional vector space back to itself. We clas-
sify amatrix representation as simple if it containsmany zeros. Themore zeros, the
simpler thematrix. By this criterion, the simplestmatrix is the zeromatrix. The zero
matrix represents the zero transformation 0, having the property 0(v)¼0 for every
vector v2V. The next simplest class of matrices is diagonal matrices, because they
have zeros for all elements not on themain diagonal. Thesematrices represent lin-
ear transformations having sufficiently many linearly independent eigenvectors.
The elements on the main diagonal are the eigenvalues.

Another simple class of matrices are block diagonal matrices having the parti-
tioned form

A ¼
A1 0

A2

. .
.

0 Ak

2
666664

3
777775 (A.1)

We will show that every linear transformation from a finite-dimensional
vector space  back to itself can be represented by a matrix in block

The more zeros a matrix
has, the simpler it is as a
matrix representation for
a linear transformation.
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diagonal form. To do so, we must develop the concepts of direct sums and
invariant subspaces.

Direct sums were introduced in Section 6.5. A vector space  is the direct
sumof two subspaces and,written ¼ �, if eachvector in canbewrit-
ten uniquely as the sumof a vector in and a vector in.We know fromourwork
in the last chapter that if is an inner product space and if is any subspace of,
then  ¼ �  ┴. However, there are many other direct sums available to us.

▶THEOREM 1
Let and  be subspaces of a finite dimensional vector space , with  being a basis for

 and  being a basis for .  ¼ �  if and only if  [  is a basis for .◀

Proof: Assume that  ¼ � . If x 2 , then x can be written uniquely as the
sum yþz with y 2  and z 2 . Let  ¼ m1;m2; . . . ;mrf g. Since  is a basis
for , there exist scalars c1, c2, . . . , cr such that

y ¼ c1m1 þ c2m2 þ � � � þ crmr (A.2)

Let  ¼ n1;n2; . . . ;nsf g. Since  is a basis for , there exist scalars and

d1, d2, . . . , ds such that

z ¼ d1n1 þ d2n2 þ � � � þ dsns (A.3)

Therefore,

x ¼ y þ z ¼ c1m1 þ c2m2 þ � � � þ crmr þ d1n1 þ d2n2 þ � � � þ dsns (A.4)

and  [  is a spanning set for .

To show that [  is a linearly independent set of vectors, we consider the vector
equation

0 ¼ c1m1 þ c2m2 þ � � � þ crmrð Þ þ d1n1 þ d2n2 þ � � � þ dsnsð Þ
Clearly,

0 ¼ 0m1 þ 0m2 þ � � � þ 0mrð Þ þ 0n1 þ 0n2 þ � � � þ 0nsð Þ
The last two equations are two representations of the vector 0 as the sum of a
vector in (the terms in the first set of parentheses of each equation) and a vec-
tor in  (the terms in the second set of parentheses of each equation). Since
 ¼ � , the zero vector can only be represented oneway as a vector inwith
a vector in, so it must be the case that cj¼0 for j¼1, 2, . . . , r and dk¼0 for k¼1,
2, . . . , s. Thus,  [  is a linearly independent set of vectors. A linearly indepen-
dent spanning set of vectors is a basis, hence  [  is a basis for . Conversely,
assume that  [  is a basis for. If x 2 , then there exists a unique set of scalars
c1, c2, . . . , cr and d1, d2, . . . , ds such that Eq. (A.4) is satisfied. If we now use
Eqs. (A.2) and (A.3) to define y and z, we have x written uniquely as the sum
of a vector y 2  and a vector z 2 . Therefore,  ¼ � .
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Example 1  ¼ x1 ¼
1
1
0
0

2
664

3
775, x2 ¼

5
2
0
0

2
664

3
775, x3 ¼

1
0

�1
2

2
664

3
775, x4 ¼

�1
0
1
3

2
664

3
775

8>><
>>:

9>>=
>>; is a basis

for 4. If we set  ¼ x1; x2f g,  ¼ x3; x4f g,  ¼ span Bf g, and  ¼ span f g,
then it follows from Theorem 1 that 4 ¼ � . Alternatively, if we set

 ¼ span x2; x3f g and  ¼ span x1; x4f g, then 4 ¼ � . Still a third possibility

is to set  ¼ span x1; x2; x3f g and  ¼ span x4f g, in which case 4 ¼ �.

A subspace of an n-dimensional vector space is invariant under a linear trans-
formation T :  !  if T uð Þ 2  whenever u 2 . That is, T maps vectors in 
back into vectors in .

Example 2 The subspace ker{T} is invariant underTbecauseTmaps every vector in
the kernel into the zero vector, which is itself in the kernel. The subspace Im(T) is
invariant under T because T(u)2 Im(T) for every vector in , including those in
Im(T). If x is an eigenvector of T corresponding to the eigenvalue l, then span{x}
is invariant under T if u2 span{x}, then u¼ax, for some choice of the scalar a, and

T uð Þ ¼ T axð Þ ¼ aT xð Þ ¼ a lxð Þ ¼ alð Þx 2 span xf g:

▶THEOREM 2
Let  ¼ u1; u2; . . . ; umf g be basis for a subspace  of an n-dimensional vector space . 
is an invariant subspace under the linear transformation T :  !  if and only if T uj

� � 2 
for j¼1, 2, . . . , m.◀

Proof: If  is an invariant subspace under T, then T uð Þ 2  for every vector
u 2 . Since the basis vectors uj(j¼1, 2, . . . , m) are vectors in , it follows that
T(uj)2U. Conversely, if u 2 , then there exist scalars c1, c2, . . . , cm such that

u ¼ c1u1 þ c2u2 þ � � � þ cmum

Now

T uð Þ ¼ T c1u1 þ c2u2 þ � � � þ cmumð Þ
¼ c1T u1ð Þ þ c2T u2ð Þ þ � � � þ cmT umð Þ

Thus, T(u) is a linear combination of the vectors T(uj) for j¼1, 2, . . . , m. Since
each vector T(uj)2, it follows that T uð Þ 2  and that  in invariant under T.

Example 3 Determine whether the subspace

 ¼ span

1
1
0
0

2
664

3
775;

5
2
0
0

2
664

3
775

8>><
>>:

9>>=
>>; is invariant underT

a
b
c
d

2
664

3
775 ¼

aþ b� d
b

cþ d
d

2
664

3
775

Solution: The two vectors that span  are linearly independent and, therefore,
are a basis for . Here,
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T

1

1

0

0

2
6664

3
7775 ¼

2

1

0

0

2
6664

3
7775 ¼ 1

3

0
@

1
A

1

1

0

0

2
6664

3
7775þ 1

3

0
@

1
A

5

2

0

0

2
6664

3
7775 2 

T

5

2

0

0

2
6664

3
7775 ¼

7

2

0

0

2
6664

3
7775 ¼ � 4

3

0
@

1
A

1

1

0

0

2
6664

3
7775þ 5

3

0
@

1
A

5

2

0

0

2
6664

3
7775 2 

It follows from Theorem 2 that  is an invariant subspace of R4 under T.

Example 4 Determine whether the subspace

N ¼ span

1

0

�1

2

2
664

3
775;

�1

0

1

3

2
664

3
775

8>><
>>:

9>>=
>>;

is invariant under the linear transformation defined in Example 3.

Solution: The two vectors that span are linearly independent and, therefore, are
a basis for . Here,

T

1

0

�1

2

2
6664

3
7775 ¼

�1

0

1

2

2
6664

3
7775 ¼ � 1

5

0
@

1
A

1

0

�1

2

2
6664

3
7775þ 4

5

0
@

1
A

�1

0

1

3

2
6664

3
7775 2 

T

�1

0

1

3

2
6664

3
7775 ¼

�4

0

4

3

2
6664

3
7775 ¼ � 9

5

0
@

1
A

1

0

�1

2

2
6664

3
7775þ 11

5

0
@

1
A

�1

0

1

3

2
6664

3
7775 2 

It follows from Theorem 2 that  is an invariant subspace of R4 under T.

The next result establishes a link between direct sums of invariant subspaces and
matrix representations in block diagonal form.

▶THEOREM 3
If and are invariant subspaces of a finite-dimensional vector spacewith ¼ � ,
and if T :  !  is linear, then T has a matrix representation of the form

A ¼ B 0

0 C

� �
where B and C are square matrices having as many rows (and columns) as the dimensions

of  and , respectively.◀
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Proof: Let ¼{m1,m2, . . . ,mr} be a basis for and let ℂ¼{n1, n2, . . . , ns} be a
basis for . Then, because  is the direct sum of  and , it follows that

 ¼  [  ¼ m1;m2; . . . ;mr;n1;n2; . . . ;nsf g

is a basis for  (see Theorem 1).  is given to be an invariant subspace of T,
so all vectors in , in particular the basis vectors themselves, map into
vectors in . Every vector in  can be written uniquely as a linear com-
bination of the basis vectors for . Thus, for jth basis vector in
 j ¼ 1, 2, . . . , rð Þ, we have

T mj

� � ¼ b1jm1 þ b2jm2 þ � � � þ brjmr

¼ b1jm1 þ b2jm2 þ � � � þ brjmr þ 0n1 þ 0n2 þ � � � þ 0ns

for some choice of the scalars b1j, b2j, . . . , brj. T(mj) has the coordinate
representation

T mj

� � $ b1jb2j . . . brj00 . . . 0
� �T

:

Similarly,  is an invariant subspace of T, so all vectors in , in particular the
basis vectors themselves, map into vectors in . Every vector in  can be written
uniquely as a linear combination of the basis vectors for . Thus, for kth basis
vector in  (k¼1, 2, . . . , s), we have

T nkð Þ ¼ c1kn1 þ c2kn2 þ � � � þ cskns

¼ 0m1 þ 0m2 ¼ � � � þ 0mr þ c1kn1 þ c2kn2 þ � � � þ cskns

for some choice of the scalars c1k, c2k, . . . , csk. T(nk) has the coordinate
representation

T nkð Þ $ 0 0 . . . 0c1k c2k . . . csk½ �T:

These coordinate representations forT(mj) (j¼1,2, . . . , r) andT(nk) (k¼1,2, . . . , s)
become columns of the matrix representation for T with respect to the  basis.
That is,

T $ A
 ¼

b11 b12 b1r 0 0 0
b21 b22 b2r 0 0 0

br1 br2 brr 0 0 0

0 0 0 c11 c12 c13
0 0 0 c21 c22 c23
0 0 0 cs1 cs2 css

2
6666664

3
7777775

which is the form claimed in Theorem 3.
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Example 5 We showed in Example 1 that 4 ¼ �  when

 ¼ span

1

1

0

0

2
6664

3
7775;

5

2

0

0

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>; and  ¼ span

1
0

�1
2

2
664

3
775;

�1
0
1
3

2
664

3
775

8>><
>>:

9>>=
>>;

We established in Examples 3 and 4 that both  and  are invariant subspaces
under

T

a

b

c

d

2
6664

3
7775 ¼

aþ b� d

b

cþ d

d

2
6664

3
7775

It now follows from Theorem 3 and its proof that T has amatrix representation in
block diagonal form with respect to the basis

 ¼

1

1

0

0

2
6664

3
7775;

5

2

0

0

2
6664

3
7775;

1

0

�1

2

2
6664

3
7775;

�1

0

1

3

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

for R4. Here,

T

1

1

0

0

2
6664

3
7775 ¼

2

1

0

0

2
6664

3
7775 ¼ 1

3

� 	 1

1

0

0

2
6664

3
7775þ 1

3

� 	 5

2

0

0

2
6664

3
7775þ 0ð Þ

1

0

�1

2

2
6664

3
7775þ 0ð Þ

�1

0

1

3

2
6664

3
7775 $

1=3

1=3

0

0

2
6664

3
7775


T

5

2

0

0

2
66664

3
77775 ¼

7

2

0

0

2
66664

3
77775 ¼ � 4

3

� 	 1

1

0

0

2
66664

3
77775þ 5

3

� 	 5

2

0

0

2
66664

3
77775þ 0ð Þ

1

0

�1

2

2
66664

3
77775þ 0ð Þ

�1

0

1

3

2
66664

3
77775 $

�4=3

5=3

0

0

2
66664

3
77775


T

1

0

�1

2

2
66664

3
77775 ¼

�1

0

1

2

2
66664

3
77775 ¼ 0ð Þ

1

1

0

0

2
66664

3
77775þ 0ð Þ

5

2

0

0

2
66664

3
77775þ �1

5

� 	 1

0

�1

2

2
66664

3
77775þ 4

5

� 	 �1

0

1

3

2
66664

3
77775 $

0

0

�1=5

4=5

2
66664

3
77775


T

�1

0

1

3

2
66664

3
77775 ¼

�4

0

4

3

2
66664

3
77775 ¼ 0ð Þ

1

1

0

0

2
66664

3
77775þ 0ð Þ

5

2

0

0

2
66664

3
77775þ �9

5

� 	 1

0

�1

2

2
66664

3
77775þ 11

5

� 	 �1

0

1

3

2
66664

3
77775 $

0

0

�9=5

11=5

2
66664

3
77775

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The matrix representation of T with respect to the  basis is

A
 ¼

1=3 �4=3 0 0

1=3 5=3 0 0

0 0 �1=5 �9=5

0 0 4=5 11=5

2
66664

3
77775

Theorem 3 deals with two invariant subspaces, but that result is easily general-
ized to any finite number of subspaces. If1,2, . . . ,k are invariant subspaces
of a linear transformation T :  !  with  ¼ 1 �2 � � � � �k, then the
union of bases for each subspace is a basis for . A matrix representation of T
with respect to this basis for has the block diagonal formdisplayed in Eq. (A.1).
Thus, the key to developing block diagonal matrix representations for linear
transformations is to identify invariant subspaces.

The span of any set of eigenvectors of a linear transformation generates an invari-
ant subspace for that transformation (see Problem 35), but there may not be
enough linearly independent eigenvectors to form a basis for the entire vector
space. A vector xm is a generalized eigenvector of type m for the linear transformation
T corresponding to the eigenvalue l if

T � lIð Þm xmð Þ ¼ 0 and T � lIð Þm�1 xmð Þ 6¼ 0 (A.5)

As was the case with eigenvectors, it is often easier to find generalized eigenvec-
tors for a matrix representation for a linear transformation than for the linear
transformations, per se. A vector xm is a generalized eigenvector of type m corre-
sponding to the eigenvalue l for the matrix A if

A � lIð Þmxm ¼ 0 and A � lIð Þm�1xm 6¼ 0 (A.6)

Example 6 x3¼ [0 0 1]T is a generalized eigenvector of type 3 corresponding
to l¼2 for

A ¼
2 1 �1
0 2 1
0 0 2

2
4

3
5

because

A � 2Ið Þ3x3 ¼
0 0 0
0 0 0
0 0 0

2
4

3
5 0

0
1

2
4

3
5 ¼

0
0
0

2
4

3
5

while

A � 2Ið Þ2x3 ¼
0 0 0
0 0 0
0 0 0

2
4

3
5 0

0
1

2
4

3
5 ¼

1
0
0

2
4

3
5 6¼ 0

A vector xm is a gener-
alized eigenvector of type
m corresponding to the
eigenvalue l for the
matrix A if (A�lI)m

(xm)¼0 and (A�lI)m�1

(xm) 6¼0.
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Also, x2¼ [�1 1 0]T is a generalized eigenvector of type 2 corresponding to
l¼2 for this same matrix because

A � 2Ið Þ3x3 ¼
0 0 1
0 0 0
0 0 0

2
4

3
5 �1

1
0

2
4

3
5 ¼

0
0
0

2
4

3
5

while

A � 2Ið Þ1x2 ¼
0 0 �1
0 0 1
0 0 0

2
4

3
5 �1

1
0

2
4

3
5 ¼

1
0
0

2
4

3
5 6¼ 0

Furthermore, x1¼ [1 0 0]T is a generalized eigenvector of type 1 correspond-
ing to l¼2 for A because (A�2I)1x1¼0 but (A�2I)0x1¼ Ix1¼x1 6¼0.

Example 7 It is known, and we shall see why later, that the matrix

A ¼
5 1 �2 4
0 5 2 2
0 0 5 3
0 0 0 4

2
664

3
775

has a generalized eigenvector of type 3 corresponding to l¼5. Find it.

Solution: We seek a vector x3 such that

A � 5Ið Þ3x3 ¼ 0 and A � 5Ið Þ2x 6¼ 0

Set x3¼ [w x y z]T. Then

A � 5Ið Þ3x3 ¼
0 0 0 14

0 0 0 �4

0 0 0 3

0 0 0 �1

2
664

3
775

w

x

y

z

2
664

3
775 ¼

14z

�4z

3z

z

2
664

3
775

A � 5Ið Þ2x3 ¼
0 0 2 �8
0 0 0 4
0 0 0 �3
0 0 0 1

2
664

3
775

w
x
y
z

2
664

3
775 ¼

2y � 8z
4z
�3z
z

2
664

3
775

To satisfy the condition (A�5I)3x3¼0, we must have z¼0. To satisfy the condi-
tion (A�5I)2x3 6¼0, with z¼0, we must have y 6¼0. No restrictions are placed on
w and x. By choosing w¼x¼ z¼0, y¼1, we obtain x3¼ [0 0 1 0]T as a gen-
eralized eigenvector of type 3 corresponding to l¼5. There are infinitely many
other generalized eigenvector of type 3, each obtained by selecting other values
for w, x, and y (y 6¼0) with z¼0. In particular, the values w¼�1, x¼2, y¼15,
z¼0 lead to x3¼ [� 1 2 15 0]T. Our first choice, however, is the simplest.

Generalized eigenvectors are the building blocks for invariant subspaces. Each
generalized eigenvector propagates a chain of vectors that serves as a basis for

The chain propagated by
xm, a generalized eigen-
vector of type m corre-
sponding to the
eigenvalue l for a matrix
A, is the set of vectors
{xm, xm�1, . . . , x1}
defined sequentially by
xj¼ (A�lI)xjþ1 for j¼1,
2, . . . , m�1.
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an invariant subspace. The chain propagated by xm, a generalized eigenvector
of type m corresponding to the eigenvalue l for A, is the set of vectors
{xm, xm�1, . . . , x1} given by

xm�1 ¼ A � lIð Þxm
xm�2 ¼ A � lIð Þ2xm ¼ A � lIð Þxm�1

xm�3 ¼ A � lIð Þ3xm ¼ A � lIð Þxm�2

..

.

x1 ¼ A � lIð Þm�1xm ¼ A � lIð Þx2

(A.7)

In general, for j¼1, 2, . . . , m�1,

xj ¼ A � lIð Þm�jxm ¼ A � lIð Þxjþ1 (A.8)

▶THEOREM 4
The jth vector in a chain, xj, as defined by equation (B.8), is a generalized eigenvector of

type j corresponding to the same matrix and eigenvalue associated with the generalized

eigenvector of type m that propagated the chain.◀

Proof: Let xm be a generalized eigenvector of type m for a matrix A with eigen-
value l. Then, (A�lI)mxm¼0 and (A�lI)m�1xm 6¼0. Using equation (A.8),
we conclude that

A � lIð Þjxj ¼ A � lIð Þj A � lIð Þm�jxm

h i
¼ A � lIð Þmxm ¼ 0

and

A � lIð Þj�1xj ¼ A � lIð Þj�1 A � lIð Þm�jxm

h i
¼ A � lIð Þm�1xm 6¼ 0

Thus, xj is a generalized eigenvector of type j corresponding to the eigenvalue
l for A.

It follows from Theorem 4 that once we have a generalized eigenvector of typem,
for any positive integer m, we can use Eq. (A.8) to produce other generalized
eigenvectors of type less than m.

Example 8 In Example 7, we showed that x3¼ [0 0 1 0]T is a generalized
eigenvector of type 3 for

A ¼
5 1 �2 4
0 5 2 2
0 0 5 3
0 0 0 4

2
664

3
775
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corresponding to l¼5. Using Theorem 4, we now can state that

A � 5Ið Þx3 ¼
0 1 �2 4
0 0 2 2
0 0 0 3
0 0 0 �1

2
664

3
775

0
0
1
0

2
664

3
775 ¼

�2
2
0
0

2
664

3
775

is a generalized eigenvector of type 2 for A corresponding to l¼5, while

A � 5Ið Þx2 ¼
0 1 �2 4
0 0 2 2
0 0 0 3
0 0 0 �1

2
664

3
775

�2
2
0
0

2
664

3
775 ¼

�2
2
0
0

2
664

3
775

is a generalized eigenvector of type 1, and, therefore, an eigenvector of A
corresponding to l¼5. The set

x3; x2; x1f g ¼
0
0
1
0

2
664

3
775;

�2
2
0
0

2
664

3
775;

2
0
0
0

2
664

3
775

8>><
>>:

9>>=
>>;

is the chain propagated by the x3.

The relationship between chains of generalized eigenvectors and invariant sub-
spaces is established by the next two theorems.

▶THEOREM 5
A chain is a linearly independent set of vectors.◀

Proof: Let {xm, xm�1, . . . , x1} be a chain propagated from xm, a generalized eigen-
vector of type m corresponding to the eigenvalue l for A. We consider the vector
equation

cmxm þ cm�1xm�1 þ � � � þ c1x1 ¼ 0 (A.9)

To prove that this chain is linearly independent, we must show that the only
solution to Eq. (A.9) is the trivial solution cm¼ cm�1¼ . . .¼ c1¼0. We shall do
this iteratively. First, wemultiply both sides of Eq. (A.9) by (A�lI)m�1. Note that
for j¼1, 2, . . . , m�1,

A � lIð Þm�1cjxj ¼ cj A � lIð Þm�j�1 A � lIð Þjxm
h i

¼ cj A � lIð Þm�j�1 0½ � becausexj isageneralized

eigenvector of type j

¼ 0

Thus, Eq. (A.9) becomes cm(A�lI)m�1 xm¼0. But xm is a generalized eigenvector
of type m, so the vector (A�lI)m–1 xm 6¼0. It then follows (see Section 2.2) that
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cm¼0. Substituting cm¼0 into Eq. (A.9) and thenmultiplying the resulting equa-
tion by (A�lI)m�2, we find, by similar reasoning, that cm�1¼0. Continuing this
process, we find iteratively that cm¼ cm�1¼� � �¼ c1¼0, which implies that the
chain is linearly independent.

▶THEOREM 6
The span of a set of vectors that forms a chain of generalized eigenvectors for a matrix A

corresponding to an eigenvalue A is an invariant subspace for A.◀

Proof: The span of any set of vectors in a vector space is a subspace, so it only
remains to show that the subspace is invariant under A. Let {xm, xm�1, . . . , x1}
be a chain propagated from xm, a generalized eigenvector of type m for A
corresponding to the eigenvalue l. It follows that

xj ¼ A � lIð Þxjþ1 j ¼ 1, 2, . . . , m� 1ð Þ (A.8 repeated)

This equation may be rewritten as

Axjþ1 ¼ lxjþ1 j ¼ 1,2, . . . , m� 1ð Þ (A.10)

A generalized eigenvector of type 1 is an eigenvector, so we also have

Ax1 ¼ lx1 (A.11)

If v2 span{xm, xm�1, . . . , x2, x1}, then there exists a set of scalars dm, dm�1, . . . , d2,
d1 such that

v ¼ dmxm þ dm�1xm�1 þ � � � þ d2x2 þ d1x1

Multiplying this equation by A and then using (A.10) and (A.11), we have

Av ¼ dmAxm þ dm�1Axm�1 þ � � � þ d2Ax2 þ d1Ax1

¼ dm lxm þ xm�1ð Þ þ dm�1 lxm�1 þ xm�2ð Þ þ � � �d2 lx2 þ x1ð Þ þ d1 lx1ð Þ
¼ ldmð Þxm þ dm þ ldm�1ð Þxm�1 þ dm�1 þ ldm�2ð Þxm�2 þ � � �

þ d3 þ ld2ð Þx2 þ d2 þ ld1ð Þx1
which is also a linear combination of the vectors in the chain and, therefore, in
the subspace spanned by the vectors in the chain. Thus, if v2 span{xm, xm�1, . . . ,
x2, x1}, then Av2 span{xm, xm�1, . . . , x2, x1} and span{xm, xm�1, . . . , x2, x1} is an
invariant subspace of A.

It follows from Theorems 5 and 6 that a chain of generalized eigenvectors is a
basis for the invariant subspace spanned by that chain.

We now have the mathematical tools to produce a simple matrix representation
for a linear transformation T :  !  on a finite-dimensional vector space . A
linear transformation Tmay not have enough linearly independent eigenvectors
to serve as a basis for  and, therefore, as a basis for a diagonal matrix represen-
tation of T. We shall see shortly that a linear transformation always has enough

Jordan Canonical Forms APPENDIX A 389



generalized eigenvectors to form a basis for, and the matrix representation of T
with respect to such a basis is indeed simple.

A generalized eigenvector xj of type j in the chain propagated by xm is related to its
immediate ancestor, the generalized eigenvector xjþ1 of type jþ1, by the formula

xj ¼ T � lI½ � xjþ1

� � ¼ T xjþ1

� �� lxjþ1

which may be rewritten as

T xjþ1

� � ¼ lxjþ1 þ xj j ¼ 1,2, . . . , m� 1ð Þ (A.12)

Since a generalized eigenvector of type 1 is an eigenvector, we also have

T x1ð Þ ¼ lx1 (A.13)

Now let be the invariant subspace of spanned by the chain propagated by xm.
This chain forms a basis for . If we extend this chain into a basis for , say

 ¼ x1; x2; . . . ; xm�1; xm; v1; v2; . . . ; vn�mf g
and define  ¼ span v1, v2, . . . , vn�mf g, then it follows from Theorem 1 that
 ¼ �. If is also an invariant subspace of T, then we have from Theorem 3
thatamatrixrepresentationofTwithrespect tothebasishastheblockdiagonalform

A ¼ B 0
0 C

� �
(A.14)

But now we can say even more.

Using (A.12) and (A.13), we have

T x1ð Þ ¼ lx1 ¼ lx1 þ 0x2 þ 0x3 þ � � � þ 0xm�1 þ 0xm
þ0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation with respect to the  basis of

T x1ð Þ $ l 0 0 . . . 0½ �T

T x2ð Þ ¼ lx2 þ x1 ¼ lx1 þ lx2 þ 0x3 þ � � � þ 0xm�1

þ0xm þ 0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation of

T x2ð Þ $ 1 l 0 . . . 0½ �T

T x3ð Þ ¼ lx3 þ x2 ¼ 0x1 þ 1x2 þ lx3 þ � � � þ 0xm�1 þ 0xm
þ0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation of

T x3ð Þ $ 0 1 l 0 . . . 0½ �T

This pattern continues through T(xm). In particular,

T x4ð Þ $ 0 0 1 l 0 . . . 0½ �T

T x2ð Þ $ 0 0 0 1 l 0 . . . 0½ �T
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and so on. The resulting coordinate representations become the first m columns
A as given by (A.14). Because the basis forU is a chain, the submatrix B in (A.13)
has the upper triangular form

B ¼

l 1 0 � � � 0 0
0 l 1 � � � 0 0
..
. ..

. ..
. . .

. . .
. ..

.

0 0 0 � � � l 1
0 0 0 � � � 0 l

2
66664

3
77775 (A.15)

with all of its diagonal elements equal to l, all elements on its superdiagonal (i.e., all
elements directly above the diagonal elements) equal to 1, and all of its other ele-
ments equal to 0.

We call matrices having form (A.15) Jordan blocks. Jordan blocks contain many
zeros and are simple building blocks for matrix representations of linear trans-
formations. Amatrix representation is in Jordan canonical form if it is a block diag-
onal matrix in which every diagonal block is a Jordan block.

Example 9 The linear transformation T: R4!R4 defined by

T

a
b
c
d

2
664

3
775 ¼

4a� c� d
�4aþ 2bþ 2cþ 2d

2aþ bþ 2c
2a� b� 2c

2
664

3
775

has a matrix representation with respect to the standard basis of

G ¼
4 0 �1 �1

�4 2 2 2
2 1 2 0
2 �1 �2 0

2
664

3
775

which is not simple. We will show in Example 11 that G has two linearly inde-
pendent generalized eigenvectors of type 2 corresponding to the eigenvalue 2.
Using the techniques previously discussed, we find that two such vectors are

x2 ¼
1
0
0
0

2
664

3
775 and v2 ¼

1
0
0
0

2
664

3
775

Creating chains from each of these two vectors, we obtain

x1 ¼ G� 2Ið Þx2 ¼
2 0 �1 �1

�4 0 2 2
2 1 0 0
2 �1 �2 �2

2
664

3
775

1
0
0
0

2
664

3
775 ¼

2
�4
2
2

2
664

3
775

v1 ¼ G� 2Ið Þv2 ¼
2 0 �1 �1

�4 0 2 2
2 1 0 0
2 �1 �2 �2

2
664

3
775

0
1
0
0

2
664

3
775 ¼

0
0
1

�1

2
664

3
775

To emphasize, a matrix is
in Jordan canonical form
if it is a block diagonal
matrix in which every
diagonal block is a
Jordan block.
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Setting ¼ span x1; x2f g and ¼ span v1; v2f g, we have two invariant subspaces

of 4, each having as a basis a single chain. Thus, we expect the matrix represen-
tation of T with respect to the basis  ¼ x1; x2; v1; v2f g to contain two Jordan
blocks. Using this basis, we have

T

2
�4
2
2

2
664

3
775 ¼

4
�8
4
4

2
664

3
775 ¼ 2ð Þ

2
�4
2
1

2
664

3
775þ 0ð Þ

1
0
0
0

2
664

3
775þ 0ð Þ

0
0
1

�1

2
664

3
775þ 0ð Þ

0
1
0
0

2
664

3
775 $

2
0
0
0

2
664

3
775


T

1
0
0
0

2
664

3
775 ¼

4
�4
2
2

2
664

3
775 ¼ 1ð Þ

2
�4
2
1

2
664

3
775þ 2ð Þ

1
0
0
0

2
664

3
775þ 0ð Þ

0
0
1

�1

2
664

3
775þ 0ð Þ

0
1
0
0

2
664

3
775 $

1
2
0
0

2
664

3
775


T

1
0
0
0

2
664

3
775 ¼

0
0
2

�2

2
664

3
775 ¼ 0ð Þ

2
�4
2
2

2
664

3
775þ 0ð Þ

1
0
0
0

2
664

3
775þ 2ð Þ

0
0
1

�1

2
664

3
775þ 0ð Þ

0
1
0
0

2
664

3
775 $

0
0
2
0

2
664

3
775


T

0
1
0
0

2
664

3
775 ¼

0
2
1

�1

2
664

3
775 ¼ 0ð Þ

2
�4
2
2

2
664

3
775þ 0ð Þ

1
0
0
0

2
664

3
775þ 1ð Þ

0
0
1

�1

2
664

3
775þ 2ð Þ

0
1
0
0

2
664

3
775 $

0
0
1
2

2
664

3
775


The matrix representation of T with respect to the  basis is

A ¼
2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2

2
664

3
775

A 1�1 Jordan block has only a single diagonal element. Therefore, a diagonal
matrix is a matrix in Jordan canonical form in which every diagonal block is a
1�1 Jordan block.

In Example 9, we wrote the domain R4 of a linear transformation as the direct
sum of two invariant subspaces, with each subspace having a single chain as a
basis. Perhaps it is possible to always write the domain of a linear transformation
T :  !  as the direct sum of a finite number of subspaces, say
 ¼ 1 � 2 � � � � � p, where each subspace is invariant under T, and each sub-

space has as a basis a single chain of generalized eigenvectors for T. If so, we could
produce a matrix representation of T that is in Jordan canonical form.

When finding eigenvalues and eigenvectors, we generally work with matrix
representations of linear transformations rather than with the linear transforma-
tions per se because it is easier to do so. Either we begin with a matrix or we
construct a matrix representation for a given linear transformation, generally
a matrix with respect to a standard basis as we did with the matrix G in
Example 9.
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A generalized eigenvector xm of rank m corresponding to an eigenvalue l of an
n�n matrix A has the property that

A � lIð Þmxm ¼ 0 and A � lIð Þm�1xm 6¼ 0 (A.6 repeated)

Thus, xm is in the kernel of (A�lI)m but not in the kernel of (A�lI)m�1.
Clearly, if x2ker[(A�lI)m�1], then x2ker[(A�lI)m]. Consequently, the dimen-
sion of ker[(A�lI)m�1]<ker[(A�lI)m] or, in terms of rank (see Corollary 1
of Section 3.5),

r A � lIð Þm�1� �
> r A � lIð Þm½ � (A.16)

The converse is also true. If (A.16) is valid, then there must exist a vector xm that
satisfies (A.6), in which case xm is a generalized eigenvector of typem correspond-
ing to A and l. The difference

rm ¼ r A � lIð Þm�1� �� r A � lIð Þm½ � (A.17)

is the number of linearly independent generalized eigenvectors of type m corre-
sponding to A and its eigenvalue l. The differences pm, m¼1, 2, . . . are called
index numbers.

Example 10 The matrix

A ¼

2 1 �1 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 4

2
66666664

3
77777775

has an eigenvalue 4 of multiplicity 1 and an eigenvalue 2 of multiplicity 5. Here,

A � 2I ¼

0 1 �1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

2
66666664

3
77777775

has rank 4.

A � 2Ið Þ2 ¼

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 2

0 0 0 0 0 4

2
666666664

3
777777775
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has rank 2.

A � 2Ið Þ3 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 4

0 0 0 0 0 8

2
66666664

3
77777775

has rank 1.

A � 2Ið Þ4 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 4

0 0 0 0 0 8

0 0 0 0 0 16

2
66666664

3
77777775

also has rank 1. Therefore, we have the index numbers

r1 ¼ r A � 2Ið Þ0� �� r A � 2Ið Þ1� � ¼ r Ið Þ � 4 ¼ 6� 4 ¼ 2

r2 ¼ r A � 2Ið Þ1� �� r A � 2Ið Þ2� � ¼ 4� 2 ¼ 2

r3 ¼ r A � 2Ið Þ2� �� r A � 2Ið Þ3� � ¼ 2� 1 ¼ 1

r4 ¼ r A � 2Ið Þ3� �� r A � 2Ið Þ4� � ¼ 1� 1 ¼ 0

Corresponding to l¼2, A has two linearly independent generalized eigenvectors
of type 1 (which are eigenvectors), two linearly independent generalized eigen-
vectors of type 2, one linearly independent generalized eigenvector of type 3, and
no generalized eigenvectors of type 4. There are also no generalized eigenvectors
of type greater than 4 because if one existed we could create a chain from it and
produce a generalized eigenvector of type 4. The eigenvalue 4 has multiplicity 1
and only one linearly independent eigenvector associated with it.

Example 11 The matrix

G ¼
4 0 �1 �1

�4 2 2 2
2 1 2 0
2 �1 �2 0

2
664

3
775

has an eigenvalue 2 of multiplicity 4. Here,

G� 2I ¼
2 0 �1 �1

�4 0 2 2
2 1 0 0
2 �1 �2 �2

2
664

3
775
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has rank 2.

G� 2Ið Þ2 ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
664

3
775

has rank 0, as will every power of G�2I greater than 2. The associated index
numbers are

r1 ¼ r G� 2Ið Þ0� �� r G� 2Ið Þ1� � ¼ r Ið Þ � 2 ¼ 4� 2 ¼ 2

r2 ¼ r G� 2Ið Þ1� �� r G� 2Ið Þ2� � ¼ 2� 0 ¼ 2

r3 ¼ r G� 2Ið Þ2� �� r G� 2Ið Þ3� � ¼ 0� 0 ¼ 0

Corresponding to l¼2,G has two linearly independent generalized eigenvectors
of type 1 (eigenvectors) and two linearly independent generalized eigenvectors
of type 2.

Once we have a generalized eigenvector xm of typem, we can identify a sequence
of generalized eigenvectors of decreasing types by constructing the chain prop-
agated by xm. An n�nmatrixAmay not have enough linearly independent eigen-
vectors to constitute a basis forRn, but Awill always have n linearly independent
generalized eigenvectors that can serve as a basis. If these generalized eigenvec-
tors are chains, then they form invariant subspaces.

We define a canonical basis for an n�nmatrix to be a set of n linearly independent
generalized eigenvectors composed entirely of chains. Therefore, once we have
determined that a generalized eigenvector xm of type m is part of a canonical
basis, then so too are the vectors xm�1, xm�2, . . . , x1 that are in the chain prop-
agated by xm. The following result, the proof of which is beyond the scope of this
book, summarizes the relevant theory.

▶THEOREM 7
Every n�n matrix possesses a canonical basis in Rn.◀

In terms of a linear transformation T :  ! , where  is an n-dimensional vec-
tor space, Theorem 1 states that has a basis consisting entirely of chains of gen-
eralized eigenvectors of T. With respect to such a basis, a matrix representation of
Twill be in Jordan canonical form. This is as simple amatrix representation as we
can get for any linear transformation. The trick is to identify a canonical basis. It
is one thing to know such a basis exists, and it is another matter entirely to find it.

If xm is a generalized eigenvector of typem corresponding to the eigenvalue l for
the matrix A, then

A � lIð Þmxm ¼ 0 and A � lIð Þm�1xm 6¼ 0 (A.6 repeated)

A canonical basis for an
n�n matrix is a set of n
linearly independent
generalized eigenvectors
composed entirely of
chains.

Jordan Canonical Forms APPENDIX A 395



This means that xm is in the kernel of (A�lI)m and in the range of (A�lI)m�1.
If we find a basis for the range of (A�lI)m�1 composed only of vectors that are
also in the kernel of (A�lI)m, wewill then have amaximal set of linearly indepen-
dent generalized eigenvectors of typem. This number will equal the index number
pm. Let us momentarily assume that pm¼ r, and let us designate these generalized
eigenvectors of type m as v1, v2, . . . , vr. These r vectors are linearly independent
vectors in the range of (A�lI)m�1, so the only constants that satisfy the equation

c1 A � lIð Þm�1v1 þ c2 A � lIð Þm�1v2 þ � � � þ cr A � lIð Þm�1vr ¼ 0 (A.18)

are c1¼ c2¼ . . .¼ cr¼0. It follows that {v1, v2, . . . , vr} is a linearly independent set,
because if we multiply the equation

c1v1 þ c2v2 þ . . .þ cnvr ¼ 0

by (A�lI)m�1, we obtain (A.18) and conclude that c1¼ c2¼ . . .¼ cr¼0. It also
follows that the set {(A�lI)v1, (A�lI)v2, . . . , (A�lI)vr} of generalized eigen-
vectors of type m�1 is also linearly independent, because if we multiply the
equation

c1 A � lIð Þv1 þ c2 A � lIð Þv2 þ � � � þ cn A � lIð Þvr ¼ 0

by (A�lI)m�2, we again obtain (A.18) and conclude that c1¼ c2¼ . . .¼ cr¼0.
Thus, we have proved Theorem 8.

▶THEOREM 8
If ¼ {v1, v2, . . . , vr} is a set of generalized eigenvectors of type m such that {(A�lI)m�1v1,

(A�lI)m�1v2, . . . , (A�lI)m�1vr} is a linearly independent set, then  itself is a linearly

independent set as is the set {(A�lI)v1, (A�lI)v2, . . . , (A�lI)vr} of generalized eigenvec-
tors of type m�1. ◀

Example 12 The linear transformation T: R6!R6 defined by

T ¼

a
b
c
d
e
f

2
6666664

3
7777775 ¼

5aþ bþ c
5bþ c
5c

5dþ e� f
5eþ f
5f

2
6666664

3
7777775

has as its matrix representation with respect to the standard basis

A ¼

5 1 1 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 5 1 �1
0 0 0 0 5 1
0 0 0 0 0 5

2
6666664

3
7777775
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This matrix (as well as T) has one eigenvalue 5 of multiplicity 6. Here,

A � 5I ¼

0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 �1
0 0 0 0 0 1
0 0 0 0 0 0

2
6666664

3
7777775

has rank 4,

A � 5Ið Þ2 ¼

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775

has rank 2, and all higher powers equal the zero matrix with rank 0. The index
numbers are

r1 ¼ r A � 5Ið Þ0� �� r A � 5Ið Þ1� � ¼ r Ið Þ � 4 ¼ 6� 4 ¼ 2

r2 ¼ r A � 5Ið Þ1� �� r A � 5Ið Þ2� � ¼ 4� 2 ¼ 2

r3 ¼ r A � 5Ið Þ2� �� r A � 5Ið Þ3� � ¼ 2� 0 ¼ 2

r4 ¼ r A � 5Ið Þ3� �� r A � 5Ið Þ4� � ¼ 0� 0 ¼ 0

Ahas twogeneralized eigenvectors of type3, two generalized eigenvectors of type2,
and two generalized eigenvectors of type1.Generalized eigenvectors of type3must
satisfy the two conditions (A�5I)3 x¼0 and (A�5I)2x 6¼0. Here, (A�5I)3¼0, so
the first conditionplacesnorestrictionsonx. Ifwe let x¼ [a b c d e f]T, then

A � 5Ið Þ2x ¼

c
0
0
f
0
0

2
6666664

3
7777775

and, this will be 0 if either c or f is nonzero. If we first take c¼1 with
a¼b¼d¼ e¼ f¼0 and then take f¼1 with a¼b¼ c¼d¼ e¼0, we generate

x3 ¼

a
b
c
d
e
f

2
6666664

3
7777775 ¼

0
0
1
0
0
0

2
6666664

3
7777775 and y3 ¼

a
b
c
d
e
f

2
6666664

3
7777775 ¼

0
0
0
0
0
1

2
6666664

3
7777775
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as two generalized eigenvectors of type 3. It is important to note that x3 and y3
were not chosen to be linearly independent; they were chosen so that

x1 ¼ A � 5Ið Þ2x3 ¼

1
0
0
0
0
0

2
6666664

3
7777775 and y1 ¼ A � 5Ið Þ2y3 ¼

0
0
0
1
0
0

2
6666664

3
7777775

are linearly independent. It follows from Theorem 2 that x3 and y3 are linearly
independent, as are

x2 ¼ A � 5Ið Þ2x3 ¼

1
1
0
0
0
0

2
6666664

3
7777775 and y2 ¼ A � 5Ið Þy3 ¼

0
0
0

�1
1
0

2
6666664

3
7777775

The vectors x1, x2, x3 form a chain as do the vectors y1, y2, y3. A canonical basis is
{x1, x2, x3, y1, y2, y3}, and with respect to this basis a matrix representation of T is
in the Jordan canonical form

J ¼

5 1 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5

2
6666664

3
7777775

Theorem8provides the foundation for obtaining canonical bases.Webeginwith a
setof indexnumbers foraneigenvalue.Letmdenotes thehighest typeofgeneralized
eigenvector.We first find a set of generalized eigenvectors of typem, {v1, v2, . . . , vr},
such that {(A�lI)m�1v1, (A�lI)m�1v2, . . . , (A�lI)mvr} is a basis for the range of
(A�lI)m�1. The vectors {w1¼ (A�lI)v1,w2¼ (A�lI)v2, . . . ,wr¼(A�lI)vr} are
a linearly independent set of generalized eigenvectors of typem�1. If more gener-
alized eigenvectors of typem�1 are needed, we find them. That is, if pm�1¼ s> r,
thenwe find s� r additional generalized eigenvectors,wrþ1,wrþ2, . . . ,ws, such that

A � lIð Þm�2w1, A � lIð Þm�2,w2, . . . A � lIð Þm�2wr ,



A � lIð Þm�2wrþ1, . . . , A � lIð Þm�2wsg
is a basis for the range of (A�lI)m�2. It follows from Theorem 8 that

A � lIð Þw1, A � lIð Þw2, . . . , A � lIð Þwr, A � lIð Þwrþ1, . . . , A � lIð Þwsf g
is a linearly independent set of generalized eigenvectors of type m�2. Now the
process is repeated sequentially, in decreasing order, through all types of gener-
alized eigenvectors.
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Example 13 Find a matrix representation in Jordan canonical form for the linear
transformation T: R6!R6 defined by

T ¼

a

b

c

d

e

f

2
6666666664

3
7777777775
¼

2aþ b� c

2bþ c

2c

2dþ e

2eþ f

4f

2
6666666664

3
7777777775

Solution: The matrix representation of T with respect to the standard basis is the
matrix A exhibited in Example 10. It follows from Example 10 that A has one
eigenvalue 2 of multiplicity 5 and one eigenvalue 4 of multiplicity 1. Associated
with the eigenvalue 2 are one generalized eigenvector of type 3, two generalized
eigenvectors of type 2, and two generalized eigenvectors of type 1. A generalized
eigenvector of type 3 is

x3 ¼

0

0

1

0

0

0

2
666666664

3
777777775

TO CREATE A CANONICAL BASIS
For each distinct eigenvalue of a matrix A, do the following:

Step 1. Using the index numbers, determine the number of linearly independent

generalized eigenvectors of highest type, say type m, corresponding to l.
Determine one such set, {v1, v2, . . . , vr}, so that the product of each of these

vectors with (A�lI)m�1 forms a basis for the range of (A�lI)m�1. Call the set

of v vectors the current set.

Step 2. If m¼1, stop; otherwise continue.

Step 3. For each vector v in the current set of vectors, calculate (A�lI)v, the next

vector in its chain.

Step 4. Using the index numbers, determine the number of linearly independent

generalized eigenvectors of the type m�1. If this number coincides with the

number of vectors obtained in Step 3, call this new set of vectors the current

set and go to Step 6; otherwise continue.

Step 5. Find additional generalized eigenvectors of typem�1 so that when these new

vectors are adjoined to the current set, the product of each vector in the newly

expanded set with (A�lI)m�2 forms a basis for the range of (A�lI)m�2. Call

this newly expanded set the current set of vectors.

Step 6. Decrement m by 1 and return to Step 2.
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Then,

x2 ¼ A � 2Ið Þx3

�1

1

0

0

0

0

2
6666666664

3
7777777775

is a generalized eigenvector of type 2. We still need another generalized eigenvec-
tor of type 2, so we set y2¼ [a b c d e f]T, and choose the components so
that y2 is in the kernel of (A�2I)2 and also so that (A�2I)y2 and (A�2I)x2 con-
stitute a basis for the range of (A�2I). If y2 is to be in the kernel of (A�2I)2, then
c¼ f¼0. Furthermore,

A � 2Ið Þy2 A � 2Ið Þ

a

b

0

d

e

0

2
6666666664

3
7777777775
¼

b

0

0

e

0

0

2
6666666664

3
7777777775
, A � 2Ið Þx2 ¼

1

0

0

0

0

0

2
6666666664

3
7777777775

and y2 must be chosen so that these two vectors are linearly
independent. A simple choice is b¼0 and e¼1. There are many choices for
y2¼ [a 0 0 d 1 0]T, depending how a and d are selected. The simplest is
to take a¼d¼0, whereupon

y2 ¼

0
0
0
0
1
0

2
6666664

3
7777775

Next,

y1 ¼ A � 2Ið Þy2 ¼

0

0

0

1

0

0

2
6666664

3
7777775 and x1 ¼ A � 2Ið Þx2 ¼

1

0

0

0

0

0

2
6666664

3
7777775

are the required generalized eigenvectors of type 1. There is only one linearly
independent generalized eigenvector associated with the eigenvalue 4. A suitable
candidate is
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z1 ¼

0

0

0

1

2

4

2
66666664

3
77777775

We take our canonical basis to be {z1, y1, y2, x1, x2, x3}. With respect to this basis,
T is represented by the matrix in Jordan canonical form

J ¼

4 0 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 2

2
66666664

3
77777775

The Jordan canonical form found in Example 13 contained a 1�1 Jordan block
with the eigenvalue 4 on the main diagonal, a 2�2 Jordan block with the eigen-
value 2 on the main diagonal, and a 3�3 Jordan block again with the eigenvalue
2 on themain diagonal. The 1�1 Jordan block corresponds to the single element
chain z1 in the canonical basis, the 2�2 Jordan block corresponds to the two
element chain y1, y2 in the canonical basis, while the 3�3 Jordan block corre-
sponds to the three element chain in the canonical basis. If we rearrange the
ordering of the chains in the canonical basis, then the Jordan blocks in the Jordan
canonical formwill be rearranged in a correspondingmanner. In particular, if we
take the canonical basis to be {x1, x2, x3, y1, y2, z1}, then the corresponding Jor-
dan canonical form becomes

J ¼

2 1 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 4

2
66666664

3
77777775

If, instead, we take the ordering of the canonical basis to be {x1, x2, x3, z1, y1, y2},
then the corresponding Jordan canonical form becomes

J ¼

2 1 1 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 4 0 0

0 0 0 0 0 1

0 0 0 0 0 2

2
66666664

3
77777775
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Two criteriamust be observed if a canonical basis is to generate amatrix in Jordan
canonical form. First, all vectors in the same chainmust be grouped together (not
separated by vectors from other chains), and second, each chainmust be ordered
by increasing type (so that the generalized eigenvector of type 1 appears before
the generalized eigenvector of type 2 of the same chain, which appears before the
generalized eigenvector of type 3 of the same chain, and so on). If either criterion
is violated, then the ones will not appear, in general, on the superdiagonal.
In particular, if vectors are ordered by decreasing type, then all the ones appear
on the subdiagonal, the diagonal just below the main diagonal.

Let A denote a matrix representation of a linear transformation T :  !  with
respect to a basis  (perhaps the standard basis), and let J be a matrix represen-
tation in Jordan canonical form for T. J is the matrix representation with respect
to a canonical basis ℂ. Since J and A are two matrix representations of the same
linear transformation, with respect to different basis, they must be similar. Using
the notation developed in Section 3.4 we may write

J ¼ P


� ��1
A
P


 (A.19)

where P
 is the transition matrix from the  basis to the ℂ basis.

Let {x1, x2, . . . , xn} be a canonical basis of generalized eigenvectors for A. A gen-
eralizedmodal matrix is amatrixMwhose columns are the vectors in the canonical
basis, that is,

M ¼ x1 x2� � �xn½ � (A.20)

If xjþ1 is a direct ancestor of xy in the same chain corresponding to the eigenvalue
l, then

Axjþ1 ¼ lxjþ1 þ xj (A.10 repeated)

If x1 is an eigenvector corresponding to l, then

Ax1 ¼ lx1 (A.11 repeated)

Using these relationships, it is a simple matter to show that AM¼MJ. Since the
columns of M are linearly independent, M has an inverse. Therefore,

J ¼ M�1AM (A.21)

A ¼ MJM�1 (A.22)

Comparing (A.21) with (A.22), we see that the generalized modal matrix is just
the transition matrix from the canonical basis ℂ to the B basis. It then follows
that M�1 is the transition matrix from the B basis to the ℂ basis.

PROBLEMS APPENDIX A

(1) LetL:R2!R2bedefinedbyT
a
b

� �
¼ aþ 2b

4aþ 3b

� �
:Determinewhether thesub-

spaces spanned by the following sets of vectors are invariant subspaces of L.

In a canonical basis, all
vectors from the same
chain are grouped
together, and generalized
eigenvectors in each
chain are ordered by
increasing type.
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(a)  ¼ 1
1

� �
;

1
�1

� �� �
, (b)  ¼ 1

1

� �
;

�1
�1

� �� �
,

(c)  ¼ 2
1

� �� �
, (d)  ¼ 1

2

� �� �
,

(e)  ¼ 0
0

� �� �
, (f)  ¼ 0

0

� �
;

1
�1

� �� �
,

(2) Let T: R3!R3 be defined by T
a
b
c

2
4

3
5 ¼

4bþ 2c
�3aþ 8bþ 3c
4a� 8b� 2c

2
4

3
5. Determine

whether the subspaces spanned by the following sets of vectors are invari-
ant subspaces of T.

(a)  ¼
2
1
0

2
4

3
5; 2

3
�4

2
4

3
5

8<
:

9=
;, (b)  ¼

0
�2
4

2
4

3
5; 4

4
�4

2
4

3
5

8<
:

9=
;,

(c)  ¼
2
1
0

2
4

3
5; 0

0
1

2
4

3
5

8<
:

9=
;, (d)  ¼

0
0
1

2
4

3
5; 2

3
�4

2
4

3
5

8<
:

9=
;,

(e)  ¼
0
0
1

2
4

3
5

8<
:

9=
;, (f)  ¼

2
3

�4

2
4

3
5

8<
:

9=
;,

(3) Let R: R4!R4 be defined by T

a
b
c
d

2
664

3
775 ¼

2aþ b� d
2bþ cþ d

2c
2d

2
664

3
775. Determine whether

the subspaces spanned by the following sets of vectors are invariant
subspaces of R.

(a) A ¼
1
0
0
0

2
664

3
775;

�1
1
0
0

2
664

3
775

8>><
>>:

9>>=
>>;, (b) B ¼

1
0
0
0

2
664

3
775;

0
0
0
1

2
664

3
775

8>><
>>:

9>>=
>>;,

(c) C ¼
1
0
0
0

2
664

3
775;

0
�1
1

�1

2
664

3
775

8>><
>>:

9>>=
>>;, (d) D ¼

0
0
0
1

2
664

3
775;

0
�1
1

�1

2
664

3
775

8>><
>>:

9>>=
>>;,

(e) E ¼
1
0
0
0

2
664

3
775;

�1
1
0
0

2
664

3
775;

0
0
0
1

2
664

3
775

8>><
>>:

9>>=
>>;, (f) F ¼

1
0
0
0

2
664

3
775;

�1
1
0
0

2
664

3
775;

0
�1
1

�1

2
664

3
775

8>><
>>:

9>>=
>>;,
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(4) Determine whether the subspaces spanned by the following sets of vectors

are invariant subspaces of A ¼ 3 1
�1 5

� �
.

(a)  ¼ 0
1

� �� �
,

(b)  ¼ 1
1

� �� �
,

(c)  ¼ 1
2

� �� �
,

(d)  ¼ 1
1

� �
;

0
1

� �� �
,

(e)  ¼ 1
1

� �
;

2
2

� �� �
,

(f)  ¼ 1
1

� �
;

1
2

� �� �
,

(5) Determine whether the subspaces spanned by the following sets of vectors

are invariant subspaces of A ¼
5 1 �1
0 5 2
0 0 5

2
4

3
5.

(a)  ¼
0
0
1

2
4

3
5; 2

3
�4

2
4

3
5

8<
:

9=
;,

(b)  ¼
2
0
0

2
4

3
5; �1

2
0

2
4

3
5

8<
:

9=
;,

(c)  ¼
2
0
0

2
4

3
5; 0

0
1

2
4

3
5

8<
:

9=
;,

(d)  ¼
2
0
0

2
4

3
5

8<
:

9=
;,

(e)  ¼
0
0
1

2
4

3
5

8<
:

9=
;,

(f)  ¼
�1
2
0

2
4

3
5

8<
:

9=
;,

(6) Determine whether the subspaces spanned by the following sets of vectors

are invariant subspaces of A ¼
3 1 0 �1
0 3 1 0
0 0 4 1
0 0 0 4

2
664

3
775.

(a)  ¼
1
0
0
0

2
664

3
775;

0
1
0
0

2
664

3
775

8>><
>>:

9>>=
>>;,

(b)  ¼
1
0
0
0

2
664

3
775;

1
1
1
0

2
664

3
775

8>><
>>:

9>>=
>>;,

(c)  ¼
1
0
0
0

2
664

3
775;

0
0
1
1

2
664

3
775

8>><
>>:

9>>=
>>;,

(d)  ¼
0
1
0
0

2
664

3
775;

1
1
1
0

2
664

3
775

8>><
>>:

9>>=
>>;,

(e)  ¼
1
0
0
0

2
664

3
775;

1
1
1
0

2
664

3
775;

3
1
0

�1

2
664

3
775

8>><
>>:

9>>=
>>;,

(f)  ¼
1
0
0
0

2
664

3
775;

0
1
0
0

2
664

3
775;

1
1
1
0

2
664

3
775

8>><
>>:

9>>=
>>;,
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(7) Using the information provided in Problem 1, determine which of the fol-
lowing statements are true:

(a) 2 ¼ span f g � span f g
(b) 2 ¼ span f g � span f g

(c) 2 ¼ span f g � span f g
(d) 2 ¼ span f g � span f g

(8) Using the information provided in Problem 2, determine which of the
following statements are true:

(a) 3 ¼ span f g � span f g
(b) 3 ¼ span f g � span f g

(c) 3 ¼ span f g � span f g
(d) 3 ¼ span f g � span f g

(9) Using the information provided in Problem 4, determine which of the
following statements are true:

(a) 2 ¼ span f g � span f g
(b) 2 ¼ span f g � span f g

(c) 2 ¼ span f g � span f g
(d) 2 ¼ span f g � span f g

(10) Using the information provided in Problem 5, determine which of the
following statements are true:

(a) 3 ¼ span f g � span f g
(b) 3 ¼ span f g � span f g

(c) 3 ¼ span f g � span f g
(d) 3 ¼ span f g � span f g

(11) Characterize the subspace  ¼ span f Þg � span f g for the sets  and 
described in Problem 5.

(12) Let T : 4 ! 4 be defined by T

a

b

c

d

2
6664

3
7775 ¼

3aþ b� d

3bþ c

4cþ d

4d

2
6664

3
7775. Set  ¼

1

1

0

0

2
6664

3
7775;

1

�1

0

0

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;,

 ¼
�1

�1

�1

0

2
6664

3
7775;

3

1

0

�1

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;,  ¼ span ð Þ, and  ¼ span ð Þ.

(a) Show that and are both invariant subspaces of Twith4 ¼ � .
(b) Show that T has a matrix representation in the block diagonal form

with respect to the basis  [ .

(13) Let T : 4 ! 4 be defined by T

a

b

c

d

2
664

3
775 ¼

2aþ b� d

2bþ cþ d

2c

2d

2
664

3
775. Set  ¼

0

1

�1

1

2
664

3
775

8>><
>>:

9>>=
>>;,

 ¼
1

1

0

0

2
664

3
775;

1

�1

0

0

2
664

3
775;

0

0

0

1

2
664

3
775

8>><
>>:

9>>=
>>;,  ¼ span ð Þ, and  ¼ span ð Þ.

(a) Show that and are both invariant subspaces of Twith4 ¼ � .
(b) Show that T has a matrix representation in the block diagonal form

with respect to the basis  [ .
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(14) Let T:R4!R4 be defined by T

a

b

c

d

2
666664

3
777775 ¼

4aþ c

2aþ 2bþ 3c

�aþ 2c

4aþ cþ 2d

2
666664

3
777775. Set  ¼

0

1

0

1

2
666664

3
777775;

0

0

0

1

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

 ¼

1

�1

�1

3

2
666664

3
777775;

1

3

0

1

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,  ¼ span ð Þ, and  ¼ span ð Þ.

(a) Show that and are both invariant subspaces of Twith4 ¼ � .
(b) Show that T has a matrix representation in the block diagonal form

with respect to the basis  [ .

(15) Determine whether the following vectors are generalized eigenvectors of
type 3 corresponding to the eigenvalue l¼2 for the matrix

A ¼

2 2 1 1

0 2 �1 0

0 0 2 0

0 0 0 1

2
66664

3
77775

að Þ

1

1

1

0

2
6664

3
7775, bð Þ

0

1

0

0

2
6664

3
7775, cð Þ

0

0

1

0

2
6664

3
7775, dð Þ

2

0

3

0

2
6664

3
7775, eð Þ

0

0

0

1

2
6664

3
7775, fð Þ

0

0

0

0

2
6664

3
7775:

For the matrices in Problems 16 through 20, find a generalized eigenvector of
type 2 corresponding the eigenvalue l¼�1.

(16)
�1 1
0 �1

� �
(17)

�1 1 0
0 �1 1
0 0 1

2
4

3
5 (18)

0 4 2
�1 4 1
�1 �7 �4

2
4

3
5

(19)
3 �2 2
2 �2 1

�9 9 �4

2
4

3
5 (20)

2 0 3
2 �1 1

�1 0 �2

2
4

3
5

(21) Find a generalized eigenvector of type 3 corresponding to l¼3 and a gen-
eralized eigenvector of type 2 corresponding to l¼4 for

A ¼

4 1 0 0 1

0 4 0 0 0

0 0 3 1 0

0 0 0 3 2

0 0 0 0 3

2
66666664

3
77777775
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(22) The vector [1 1 1 0]T is known to be a generalized eigenvector of type 3
corresponding to the eigenvalue 2 for

A ¼
2 2 1 1

0 2 �1 0

0 0 2 0

0 0 0 1

2
6664

3
7775

Construct a chain from this vector.

(23) Redo Problem 22 for the generalized eigenvector [0 0 1 0]T, which is
also of type 3 corresponding to the same eigenvalue and matrix.

(24) The vector [0 0 0 0 1]T is known to be a generalized eigenvector of
type 4 corresponding to the eigenvalue 1 for

A ¼

1 0 1 0 �1
0 1 0 0 0
0 0 1 �1 2
0 0 0 1 1
0 0 0 0 1

2
66664

3
77775

Construct a chain from this vector.

(25) Redo Problem 24 for the generalized eigenvector [0 0 0 1 0]T, which
is of type 3 corresponding to the same eigenvalue and matrix.

(26) The vector [1 0 0 0 �1]T is known to be a generalized eigenvector of
type 3 corresponding to the eigenvalue 3 for

A ¼

4 1 0 0 1
0 4 0 0 0
0 0 3 1 0
0 0 0 3 2
0 0 0 0 3

2
66664

3
77775

Construct a chain from this vector.

(27) Redo Problem 26 for the generalized eigenvector [0 1 0 0 0]T, which
is of type 2 corresponding to the eigenvalue 4 for the same matrix.

(28) Find a generalized eigenvector of type 2 corresponding to the eigenvalue
�1 for

A ¼ �1 1
0 �1

� �
and construct a chain from this vector.

(29) Find a generalized eigenvector of type 2 corresponding to the eigenvalue
�1 for

A ¼
�1 1 0
0 �1 1
0 0 1

2
4

3
5

and construct a chain from this vector.
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(30) Find a generalized eigenvector of type 2 corresponding to the eigenvalue
�1 for

A ¼
0 4 2

�1 4 1

�1 �7 �4

2
64

3
75

and construct a chain from this vector.

(31) Find a generalized eigenvector of type 4 corresponding to the eigenvalue
2 for

A ¼
2 1 3 �1

0 2 �1 4

0 0 2 1

0 0 0 2

2
6664

3
7775

and construct a chain from this vector.

(32) Find a generalized eigenvector of type 3 corresponding to the eigenvalue
3 for

A ¼

4 1 1 2 2

�1 2 1 3 0

0 0 3 0 0

0 0 0 2 1

0 0 0 1 2

2
666664

3
777775

and construct a chain from this vector.

(33) Prove that a generalized eigenvector of type 1 is an eigenvector.

(34) Prove that a generalized eigenvector of any type cannot be a zero vector.

(35) Let T :  !  be a linear transformation. Prove that the following sets are
invariant subspaces under T.
(a) {0},
(b) ,
(c) span{v1, v2, . . . , vk} where each vector is an eigenvector of T (not nec-

essarily corresponding to the same eigenvalue).

(36) Let  be a finite-dimensional vector space. Prove that  is the direct sum of
two subspaces  and if and only if (i) each vector in  can be written as
the sum of a vector in  with a vector in , and (ii) the only vector com-
mon to both  and  is the zero vector.

(37) Let  be a basis of k-vectors for , an invariant subspace of the linear trans-
formation T :  ! , and let ℂ be a basis for, another subspace (but not
invariant) with  ¼ �. Show that the matrix representation of T with
respect to the basis  [  has the partitioned form

A ¼ A1 A2

0 A3

� �
with A1 having order k�k.
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(38) Determine the length of the chains in a canonical basis if each chain is asso-
ciated with the same eigenvalue l and if a full set of index numbers is given
by each of the following.
(a) r3¼r2¼r1¼1, (b) r3¼r2¼r1¼2,

(c) r3¼1, r2¼r1¼2, (d) r3¼1, r2¼2, r1¼3,

(e) r3¼r2¼1, r1¼3, (f) r3¼3, r2¼4, r1¼3,

(g) r2¼2, r1¼4, (h) r2¼4, r1¼2,

(i) r2¼2, r1¼3, (j) r2¼r1¼2.

In Problems 39 through 45, find a canonical basis for the given matrices.

(39)
3 1

�1 1

� �
. (40)

7 3 3
0 1 0

�3 �3 1

2
4

3
5.

(41)
5 1 �1
0 5 2
0 0 5

2
4

3
5. (42)

5 1 2
0 3 0
2 1 5

2
4

3
5.

(43)

2 1 0 �1
0 2 1 1
0 0 2 0
0 0 0 2

2
664

3
775. (44)

3 1 0 �1
0 3 1 0
0 0 4 1
0 0 0 4

2
664

3
775.

(45)

4 1 1 0 0 �1

0 4 2 0 0 1

0 0 4 1 0 1

0 0 0 5 1 0

0 0 0 0 5 2

0 0 0 0 0 4

2
666666664

3
777777775

In Problems 46 through 50, a full set of index numbers are specified for the
eigenvalue 2 of multiplicity 5 for a 5�5 matrix A. In each case, find a matrix
in Jordan canonical form that is similar to A. Assume that a canonical basis is
ordered so that chains of length 1 appear before chains of length 2, which appear
before chains of length 3, and so on.

(46) r3¼r2¼1, r1¼3. (47) r3¼1, r2¼r1¼2.

(48) r2,¼2, r1¼3. (49) r4¼r3¼r2¼1, r1¼2.

(50) r5¼r4¼r3¼r2¼r1¼1.

In Problems 51 through 56, a full set of index numbers are specified for the
eigenvalue 3 of multiplicity 6 for a 6�6 matrix A. In each case, find a matrix
in Jordan canonical form that is similar to A. Assume that a canonical basis is
ordered so that chains of length 1 appear before chains of length 2, which appear
before chains of length 3, and so on.
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(51) r3¼r2¼r1¼2. (52) r3¼1, r2¼2, r1¼3.

(53) r3¼r2¼1, r1¼4. (54) r2¼r1¼3.

(55) r2¼2, r1¼4. (56) r2¼1, r1¼5.

(57) A canonical basis for a linear transformation T: R4!R4 contains three
chains corresponding to the eigenvalue 2: two chains x1 and y1, each of
length 1, and one chain w1, w2 of length 2. Find the matrix representation
of T with respect to this canonical basis, ordered as follows.

(a) {x1, y1, w1, w2}, (b) {y1, w1, w2, x1},

(c) {w1, w2, x1, y1}, (d) {w1, w2, y1, x1},

(58) A canonical basis for a linear transformation T: R6!R6 contains two
chains corresponding to the eigenvalue 3: one chain x1 of length 1 and
one chain y1, y2 of length 2, and two chains corresponding to the eigen-
value 5: one chain u1 of length 1 and one chain of v1, v2 of length 2. Find
the matrix representation of T with respect to this canonical basis, ordered
as follows.

(a) {x1, y1, y2, u1, v1, v2}, (b) {y1, y2, x1, u1, v1, v2},

(c) {x1, u1, v1, v2, y1, y2}, (d) {y1, y2, v1, v2, x1, u1},

(e) {x1, u1, y1, y2, v1, v2}, (f) {v1, v2, u1, x1, y1, y2}.

In Problems 59 through 73, find a matrix representation in Jordan canonical
form for the given linear transformation.

(59) T
a
b

� �
¼ 2a� 3b

a� 2b

� �
. (60) T

a
b

� �
¼ 3aþ b

�aþ 5b

� �
.

(61) T
a
b

� �
¼ 2a� b

aþ 4b

� �
. (62) T

a
b

� �
¼ aþ 2b

�aþ 4b

� �
.

(63) T
a
b

� �
¼ 2aþ b

2aþ 3b

� �
. (64) T

a
b

� �
¼ 2a� 5b

a� 2b

� �
.

(65) T
a
b
c

2
4

3
5 ¼

9aþ 3bþ 3c
3b

�3a� 3bþ 3c

2
4

3
5. (66) T

a
b
c

2
4

3
5 ¼

2aþ 2b� 2c
2bþ c
2c

2
4

3
5.

(67) T
a
b
c

2
4

3
5 ¼

bþ 2c
�2b
2aþ b

2
4

3
5. (68) T

a
b
c

2
4

3
5 ¼

2a� c
2aþ b� 2c
�aþ 2c

2
4

3
5.

(69) T
a
b
c

2
4

3
5 ¼

aþ bþ c
0

aþ 2bþ 2c

2
4

3
5. (70) T

a
b
c

2
4

3
5 ¼

aþ 2bþ 3c
2aþ 4bþ 6c
3aþ 6bþ 9c

2
4

3
5.

(71) T

a
b
c
c

2
664

3
775 ¼

3aþ b� d
3bþ cþ d

3c
3d

2
664

3
775. (72) T

a
b
c
c

2
664

3
775 ¼

aþ b� d
bþ c
2cþ d
2d

2
664

3
775
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(73)

T

a
b
c
d
e
f
g

2
666666664

3
777777775
¼

�a� cþ dþ eþ 3f
b

2aþ bþ 2c� d� d� 6f
�2a� cþ 2dþ eþ 3f

e
f

�a� bþ dþ 2eþ 4f þ g

2
666666664

3
777777775
, with l¼1 as the only eigenvalue.

(74) The generalized null space of an n � n matrix A and eigenvalue l, denoted by
l Að Þ, is the set of all vectors x2Rn such that (A�lI)k x¼0 for some non-
negative integer k. Show that if x is a generalized eigenvector of any type
corresponding to l, then x 2 l Að Þ.

(75) Prove that l Að Þ, as defined in Problem 74, is a subspace of Rn.

(76) Prove that every square matrix A commutes with (A�lI)n for every positive
integer n and every scalar l.

(77) Prove that l Að Þ is an invariant subspace of Rn under A.

(78) Prove that if A has order n�n and x 2 l Að Þ, then (A�lI)nx¼0.
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APPENDIX B

Markov Chains

Eigenvalues and eigenvectors arise naturally in the study of matrix representa-
tions of linear transformations, but that is far from their only use. In this Appen-
dix, we present an application to those probabilistic systems known as Markov
chains.

An elementary understanding of Markov chains requires only a little knowledge
of probabilities; in particular, that probabilities describe the likelihoods of dif-
ferent events occurring, that probabilities are numbers between 0 and 1, and that
if the set of all possible events is limited to a finite number that are mutually
exclusive then the sum of the probabilities of each event occurring is 1. Signifi-
cantly more probability theory is needed to prove the relevant theorems about
Markov chains, so we limit ourselves in this section to simply understanding the
application.

▶DEFINITION 1
A finite Markov chain is a set of objects (perhaps people), a set of consecutive time

periods (perhaps five-year intervals), and a finite set of different states (perhaps

employed and unemployed) such that

(i) during any given time period, each object is in only one state (although different

objects can be in different states) and

(ii) the probability that an object will move from one state to another state (or remain

in the same state) over a time period depends only on the beginning and ending

states.◀

We denote the states as state 1, state 2, state 3, through state N, and let pij desig-
nate the probability of moving in one time period into state i from state j(i, j¼1,
2, . . . , N). The matrix P¼ [pij] is called a transition matrix.

Example 1Construct a transitionmatrix for the followingMarkov chain. A traffic
control administrator in the Midwest classifies each day as either clear or cloudy.
Historical data show that the probability of a clear day following a cloudy day is
0.6, whereas the probability of a clear day following a clear day is 0.9.

A transition matrix for an
N-state Markov chain is
an N�N matrix with
nonnegative entries; the
sum of the entries in each
column is 1.
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Solution: Although one can conceive of many other classifications such as rainy,
very cloudy, partly sunny, and so on, this particular administrator opted for only
two, so we have just two states: clear and cloudy, and each day must fall into one
and only one of these two states. Arbitrarily, we take clear to be state 1 and cloudy
to be state 2. The natural time unit is 1 day. We are given that p12¼0.6, so it must
follow that p22¼0.4, because after a cloudy, day the next day must be either clear
or cloudy and the probability that one or the other of these two events occurring
is 1. Similarly, we are given that p11¼0.9, so it also follows that p21¼0.1. The
transition matrix is

P ¼
clear cloudy

0:9 0:6

0:1 0:4

2
4

3
5 clear

cloudy

Example 2 Construct a transition matrix for the following Markov chain. A med-
ical survey lists individuals as thin, normal, or obese. A review of yearly check-
ups from doctors’ records showed that 80% of all thin people remained thin
1 year later while the other 20% gained enough weight to be reclassified as nor-
mal. For individuals of normal weight, 10% became thin, 60% remained nor-
mal, and 30% became obese the following year. Of all obese people, 90%
remained obese 1 year later while the other 10% lost sufficient weight to fall into
the normal range. Although some thin people became obese a year later, and vice
versa, their numbers were insignificant when rounded to two decimals.

Solution:We take state 1 to be thin, state 2 to be normal, and state 3 to be obese.
One time period equals 1 year. Converting each percent to its decimal represen-
tation so that it may also represent a probability, we have p21¼0.2, the proba-
bility of an individual having normal weight after being thin the previous
year, p32¼0.3, the probability of an individual becoming obese 1 year after hav-
ing a normal weight, and, in general,

P ¼
thin normal obese

0:8 0:1 0

0:2 0:6 0:1

0 0:3 0:9

2
6664

3
7775
thin

normal

obese

Powers of a transition matrix have the same properties of a transition matrix: all
elements are between 0 and 1, and every column sum equals 1 (see Problem 20).
Furthermore,

▶THEOREM 1
If P is a transition matrix for a finite Markov chain, and if pij

(k) denotes the i-j element of Pk,

the kth power of P, then pij
(k) is the probability of moving to state i from state j in k time

periods.◀
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For the transition matrix created in Example 2, we calculate the second and third
powers as

P2 ¼
thin normal obese

0:66 0:14 0:01

0:28 0:41 0:15

0:06 0:45 0:84

2
6664

3
7775
thin

normal

obese

and

P3 ¼
thin normal obese

0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
6664

3
7775
thin

normal

obese

Here, p11
(2) 5¼0.66 is the probability of a thin person remaining thin 2 years

later, p32
(2) 6¼0.45 is the probability of a normal person becoming fat 2 years

later, while p13
(2) 7¼0.023 is the probability of a fat person becoming thin

3 years later.

For the transitionmatrix created in Example 1, we calculate the second power to be

P2 ¼
clear cloudy

0:87 0:78

0:13 0:22

2
4

3
5 clear

cloudy

Consequently, p12
(2) 9¼0.78 is the probability of a cloudy day being followed by a

clear day 2 days later, while p22
(2) 10¼0.22 is the probability of a cloudy day being

followed by a cloudy day 2 days later. Calculating the 10th power of this same
transitionmatrix and rounding all entries to four decimal places for presentation
purposes, we have

P10 ¼
clear cloudy

0:8571 0:8571

0:1429 0:1429

2
4

3
5 clear

cloudy
ðB:1Þ

Since p11
(10) 12¼p12

(10) 13¼0.8571, it follows that the probability of having a
clear day 10 days after a cloudy day is the same as the probability of having a
clear day 10 days after a clear day.

An object in a Markov chain must be in one and only one state at any time, but
that state is not always known with certainty. Often, probabilities are provided to
describe the likelihood of an object being in any one of the states at any given
time. These probabilities can be combined into an n-tuple. A distribution vector
d for anN-stateMarkov chain at a given time is anN-dimensional columnmatrix
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having as its components, one for each state, the probabilities that an object in
the system is in each of the respective states at that time.

Example 3 Find the distribution vector for the Markov chain described in Exam-
ple 1 if the current day is known to be cloudy.

Solution: The objects in the system are days, which are classified as either clear,
state 1, or cloudy, state 2.We are told with certainty that the current day is cloudy,
so the probability that the day is cloudy is 1 and the probability that the day is
clear is 0. Therefore,

d ¼ 0

1

" #

Example 4 Find the distribution vector for the Markov chain described in Exam-
ple 2 if it is known that currently 7% of the population is thin, 31% of popula-
tion is of normal weight, and 62% of the population is obese.

Solution: The objects in the system are people. Converting the stated percentages
into their decimal representations, we have

d ¼
0:07

0:31

0:62

2
64

3
75

Different time periods can have different distribution vectors, so we let d(k)

denote a distribution vector after k time periods. In particular, d(1) is a distribu-
tion vector after 1 time period, d(2) is a distribution vector after 2 time periods,
and d(10) is a distribution vector after 10 time periods. An initial distribution vec-
tor for the beginning of a Markov chain is designated by d(0). The distribution
vectors for various time periods are related.

▶THEOREM 2
If P is a transition matrix for a Markov chain, then

d kð Þ ¼ Pkd 10ð Þ ¼ Pd k�1ð Þ,

where Pk denotes the kth power of P.◀

For the distribution vector and transition matrix created in Examples 1 and 3, we
calculate

A distribution vector for
an N-state Markov chain
at a given time is a col-
umn matrix whose ith
component is the proba-
bility that an object is in
the ith state at that
given time.
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d 1ð Þ ¼ Pd 0ð Þ ¼
0:9 0:6

0:1 0:4

" #
0

1

" #
¼

0:6

0:4

" #

d 2ð Þ ¼ P2d 0ð Þ ¼
0:87 0:78

0:13 0:22

" #
0

1

" #
¼

0:78

0:22

" #

d 10ð Þ ¼ P10d 0ð Þ ¼
0:8571 0:8571

0:1429 0:1429

" #
0

1

" #
¼

0:8571

0:1429

" #
ðB:2Þ

The probabilities of following a cloudy day with a cloudy day after 1 time period,
2 time periods, and 10 time periods, respectively, are 0.4, 0.22, and 0.1429.

For the distribution vector and transition matrix created in Examples 2 and 4, we
calculate

d 3ð Þ ¼ P3d 0ð Þ ¼
0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
64

3
75

0:07

0:31

0:62

2
64

3
75 ¼

0:10061

0:22943

0:66996

2
64

3
75

Rounding to three decimal places, we have that the probabilities of an arbitrarily
chosen individual being thin, normal weight, or obese after three time periods
(years) are, respectively, 0.101, 0.229, and 0.700.

The 10th power of the transitionmatrix created in Example 1 is given by Eq. (B.1)
as

P10 ¼ 0:8571 0:8571
0:1429 0:1429

� �

Continuing to calculate successively higher powers of P, we find that each is iden-
tical to P10 when we round all entries to four decimal places. Convergence is a bit
slower for the transition matrix associated with Example 3, but it also occurs. As
we calculate successively higher powers of that matrix, we find that

P10 ¼
0:2283 0:1287 0:0857

0:2575 0:2280 0:2144

0:5142 0:6433 0:6999

2
64

3
75

P20 ¼
0:1294 0:1139 0:1072

0:2277 0:2230 0:2210

0:6429 0:6631 0:6718

2
64

3
75

ðB:3Þ
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and

lim
n!1Pn ¼

0:1111 0:1111 0:1111

0:2222 0:2222 0:2222

0:6667 0:6667 0:6667

2
4

3
5

where all entries have been rounded to four decimal places for presentation
purposes.

Not all transition matrices have powers that converge to a limiting matrix L, but
many do. A transition matrix for a finite Markov chain is regular if it or one of its
powers contains only positive elements. Powers of a regular matrix always con-
verge to a limiting matrix L.

The transition matrix created in Example 1 is regular because all of its elements
are positive. The transition matrix P created in Example 2 is also regular because
all elements of P2, its second power, are positive. In contrast, the transition
matrix

P ¼ 0 1
1 0

� �

is not regular because each of its powers is either itself or the 2�2 identitymatrix,
both of which contain zero entries.

By definition, some power of a regular matrix P, say the mth, contains only pos-
itive elements. Since the elements of P are nonnegative, it follows from matrix
multiplication that every power of P greater than m must also have all positive

components. Furthermore, if L ¼ lim
k!1

Pk, then it is also true that L ¼ lim
k!1

Pk�1.

Therefore,

L ¼ lim
k!1

Pk ¼ lim
k!1

PPk�1
� � ¼ P lim

k!1
Pk�1

� �
¼ PL ðB:4Þ

Denote the columns of L as x1, x2, . . . , xN, respectively, so that L¼ [x1 x2 , . . . xN].
Then equation (C.4) becomes

x1; x2; . . . ; xN½ � ¼ P x1; x2; . . . ; xN½ �
where xj¼Pxj, (j¼1, 2, . . . ,N), or Pxj¼ (1)xj. Thus, each column of L is an eigen-
vector of P corresponding to the eigenvalue 1. We have proved part of the follow-
ing important result.

▶THEOREM 3
If an N�N transition matrix P is regular, then successive integral powers of P converge to a

limiting matrix L whose columns are eigenvectors of P associated with eigenvalue l¼1.

The components of this eigenvector are positive and sum to unity.◀

A transition matrix is
regular if one of its
powers has only
positive elements.
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Even more is true. If P is regular, then its eigenvalue l¼1 has multiplicity 1, and
there is only one linearly independent eigenvector associated with that eigen-
value. This eigenvector will be in terms of one arbitrary constant, which is
uniquely determined by the requirement that the sum of the components is
1. Thus, each column of L is the same eigenvector.

We define the limiting state distribution vector for an N-state Markov chain as an
N-dimensional column vector d(1) having as its components the limiting
probabilities that an object in the system is in each of the respective states after
a large number of time periods. That is,

d 1ð Þ ¼ lim
n!1d nð Þ

Consequently,

d 1ð Þ ¼ lim
n!1d nð Þ ¼ lim

n!1 Pnd 0ð Þ
� 	

¼ lim
n!1Pn

� 	
d 0ð Þ ¼ Ld 0ð Þ

Each column of L is identical to every other column, so each row of L contains a
single number repeatedN times. Combining this with the fact that d(0) has com-
ponents that sum to 1, it follows that the product Ld(0) is equal to each of the
identical columns of L. That is, d(1) is the eigenvector of P corresponding to
l¼1, having the sum of its components equal to 1.

Example 5 Find the limiting state distribution vector for the Markov chain
described in Example 1.

Solution: The transition matrix is

P ¼ 0:9 0:6

0:1 0:4

� �

which is regular. Eigenvectors for this matrix have the form

x ¼ x
y

� �

Eigenvectors corresponding to l¼1 satisfy the matrix equation (P�1I)x¼0, or
equivalently, the set of equations

�0:1xþ 0:9y ¼ 0

0:1x� 0:6y ¼ 0

Solving by Gaussian elimination, we find x¼6y with y arbitrary. Thus,

x ¼ 6x
y

� �

The limiting state distri-
bution vector for a tran-
sition matrix P is the
unique eigenvector of P
corresponding to l¼1,
having the sum of its
components equal to 1.
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If we choose y so that the sum of the components of x sum to 1, we have 7y¼1, or
y¼1/7. The resulting eigenvector is the limiting state distribution vector, namely,

d 1ð Þ ¼ 6=7

1=7

" #

Furthermore,

L ¼ 6=7 6=7

1=7 1=7

" #

Over the long run, 6 out of 7 days will be clear and 1 out of 7 days will be cloudy.
We see from Eqs. (B.1) and (B.2) that convergence to four decimal places for the
limiting state distribution and L is achieved after 10 time periods.

Example 6 Find the limiting state distribution vector for the Markov chain
described in Example 2.

Solution: The transition matrix is

P ¼
0:8 0:1 0

0:2 0:6 0:1

0 0:3 0:9

2
4

3
5

P2 has only positive elements, so P is regular. Eigenvectors for this matrix have
the form

x ¼
x

y

x

2
64

3
75

Eigenvectors corresponding to l¼1 satisfy the matrix equation (P�1I)x¼0, or
equivalently, the set of equations

�0:2xþ 0:1y ¼ 0

0:2x�0:4y þ 0:1z ¼ 0

0:3y � 0:1z ¼ 0

Solving by Gaussian elimination, we find x¼ (1/6)z, y¼ (1/3)z, with z arbitrary.
Thus,

x ¼
z=6

z=3

z

2
64

3
75
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We choose z so that the sum of the components of x sum to 1, hence (1/6)zþ
(1/3)zþ z¼1, or z¼2/3. The resulting eigenvector is the limiting state distribu-
tion vector, namely,

d 1ð Þ ¼
1=9
2=9
6=9

2
4

3
5

Furthermore,

L ¼
1=9 1=9 1=9
2=9 2=9 2=9
6=9 6=9 6=9

2
4

3
5

Compare Lwith Eq. (B.3). The components of d(1) imply that, over the long run,
one out of nine people will be thin, two out of nine people will be of normal
weight, and six out of nine people will be obese.

PROBLEMS APPENDIX B

(1) Determine which of the following matrices cannot be transition matrices
and explain why:

(a)
0:15 0:57
0:85 0:43

� �
, (b)

0:27 0:74
0:63 0:16

� �
,

(c)
0:45 0:53
0:65 0:57

� �
, (d)

1:27 0:23
�0:27 0:77

� �
,

(e)
1 1=2 0
0 1=3 0
0 1=6 0

2
4

3
5, (f)

1=2 1=2 1=3
1=4 1=3 1=4
1=4 1=6 7=12

2
4

3
5,

(g)
0:34 0:18 0:53
0:38 0:42 0:21
0:35 0:47 0:19

2
4

3
5, (h)

0:34 0:32 �0:17
0:78 0:65 0:80

�0:12 0:03 0:37

2
4

3
5:

(2) Construct a transition matrix for the following Markov chain: Census fig-
ures show a population shift away from a large midwestern metropolitan
city to its suburbs. Each year, 5% of all families living in the city move to
the suburbs, while during the same time period, only 1% of those living
in the suburbs move into the city. Hint: Take state 1 to represent families
living in the city, state 2 to represent families living in the suburbs, and
1 year as one time period.

(3) Construct a transition matrix for the following Markov chain: Every
4 years, voters in a New England town elect a new mayor because a town
ordinance prohibits mayors from succeeding themselves. Past data
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indicate that a Democratic mayor is succeeded by another Democrat 30%
of the time and by a Republican 70% of the time. A Republican mayor,
however, is succeeded by another Republican 60% of the time and by a
Democrat 40% of the time. Hint: Take state 1 to represent a Republican
mayor in office, state 2 to represent a Democratic mayor in office, and
4 years as one time period.

(4) Construct a transition matrix for the following Markov chain: The apple
harvest in New York orchards is classified as poor, average, or good. His-
torical data indicate that if the harvest is poor 1 year then there is a 40%
chance of having a good harvest the next year, a 50% chance of having
an average harvest, and a 10% chance of having another poor harvest.
If a harvest is average 1 year, the chance of a poor, average, or good harvest
the next year is 20%, 60%, and 20%, respectively. If a harvest is good, then
the chance of a poor, average, or good harvest the next year is 25%, 65%,
and 10%, respectively. Hint: Take state 1 to be a poor harvest, state 2 to
be an average harvest, state 3 to be a good harvest, and 1 year as one
time period.

(5) Construct a transition matrix for the following Markov chain: Brand X and
brand Y control the majority of the soap powder market in a particular
region, and each has promoted its own product extensively. As a result
of past advertising campaigns, it is known that over a two-year period
of time, 10% of brand Y customers change to brand X and 25% of all other
customers change to brand X. Furthermore, 15% of brand X customers
change to brand Y and 30% of all other customers change to brand Y.
The major brands also lose customers to smaller competitors, with 5%
of brand X customers switching to a minor brand during a two-year time
period and 2% of brand Y customers doing likewise. All other customers
remain loyal to their past brand of soap powder. Hint: Take state 1 to be
a brand X customer, state 2 a brand Y customer, state 3 another brand’s
customer, and 2 years as one time period.

(6) (a) Calculate P2 and P3 for the two-state transition matrix:

P ¼ 0:1 0:4
0:9 0:6

� �
(b) Determine the probability of an object beginning in state 1 and

remaining in state 1 after two time periods.
(c) Determine the probability of an object beginning in state 1 and

ending in state 2 after two time periods.
(d) Determine the probability of an object beginning in state 1 and

ending in state 2 after three time periods.
(e) Determine the probability of an object beginning in state 2 and

remaining in state 2 after three time periods.
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(7) Consider a two-state Markov chain. List the number of ways an object in
state 1 can end in state 1 after three time periods.

(8) Consider the Markov chain described in Problem 2. Determine (a) the
probability a family living in the city will find themselves in the suburbs
after 2 years, and (b) the probability a family living in the suburbs will
find themselves living in the city after 2 years.

(9) Consider the Markov chain described in Problem 3. Determine (a) the
probability there will be a Republican mayor 8 years after a Republican
mayor serves, and (b) the probability there will be a Republican mayor
12 years after a Republican mayor serves.

(10) Consider the Markov chain described in Problem 4. It is known that this
year that the apple harvest was poor. Determine (a) the probability next
year’s harvest will be poor, and (b) the probability that the harvest in
2 years will be poor.

(11) Consider the Markov chain described in Problem 5. Determine (a) the
probability that a brand X customer will remain a brand X customer after
4 years, (b) after 6 years, and (c) the probability that a brand X customer
will become a brand Y customer after 4 years.

(12) Consider the Markov chain described in Problem 2. (a) Explain the signif-
icance of each component of d(0)¼ [0.6 0.4]T. (b) Use this vector to find
d(1) and d(2).

(13) Consider the Markov chain described in Problem 5. (a) Explain the signif-
icance of each component of d(0)¼ [0.4 0.5 0.1]T. (b) Use this vector
to find d(1) and d(2).

(14) Consider the Markov chain described in Problem 3. (a) Determine an
initial distribution vector if the town currently has a Democratic mayor,
and (b) show that the components of d(1) are the probabilities that the
next mayor will be a Republican and a Democrat, respectively.

(15) Consider the Markov chain described in Problem 4. (a) Determine an ini-
tial distribution vector if this year’s crop is known to be poor, (b) Calculate
d(2) and use it to determine the probability that the harvest will be good
in 3 years.

(16) Find the limiting distribution vector for the Markov chain described in
Problem 2, and use it to determine the probability that a family eventually
will reside in the city.

(17) Find the limiting distribution vector for the Markov chain described in
Problem 3, and use it to determine the probability of having a Republican
mayor over the long run.
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(18) Find the limiting distribution vector for the Markov chain described in
Problem 4, and use it to determine the probability of having a good harvest
over the long run.

(19) Find the limiting distribution vector for the Markov chain described in
Problem 5, and use it to determine the probability that a person will
become a Brand Y customer over the long run.

(20) Use mathematical induction to prove that if P is a transition matrix for an
n-state Markov chain, then any integral power of P has the properties that
(a) all elements are nonnegative numbers between 0 and 1, and (b) the
sum of the elements in each column is 1.

(21) A nonzero row vector y is a left eigenvector for a matrix A if there exists a
scalar l such that yA¼ly. Prove that if x and l are a corresponding pair
of eigenvectors and eigenvalues for a matrix B, then xT and l are a corre-
sponding pair of left eigenvectors and eigenvalues for BT.

(22) Show directly that the n-dimensional row vector y¼ [1 1 1 . . . 1] is a left
eigenvector for any N�N transition matrix P. Then, using the results of
Problem 20, deduce that l¼1 is an eigenvalue for any transition matrix.

(23) Prove that every eigenvalue l of a transition matrix P satisfies the inequality
|l|�1. Hint: Let x¼ [x1 x2 . . . xN]

T be an eigenvector of P corresponding
to the eigenvalue l, and let xi¼max {x1, x2, . . . , xN}. Consider the ith
component of the vector equation Px¼lx, and show that |l| |xi|� |xi|.

(24) A state in a Markov chain is absorbing if no objects in the system can leave
the state after they enter it. Describe the ith column of a transition matrix
for a Markov chain in which the ith state is absorbing.

(25) Prove that a transition matrix for a Markov chain with one or more
absorbing states cannot be regular.
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APPENDIX C

More on Spanning Trees
of Graphs

As we explored in Chapter 5, Sections 5–7, some networks can be modeled by
graphs, these graphs can be represented by some special matrices, and the eigen-
values and characteristic polynomials in turn tell us some important information
about the graphs (and hence, the networks they represent).

A graph is bipartite if its vertex set can be decomposed into two disjoint sets such
that no two graph vertices within the same set are adjacent. In Figure C.1, we
observe that vertices 2, 4, and 6 do not have any edges between them, but each
has an edge between it and vertices 1, 3, and 5. Vertices 1, 3, and 5 have no edges
between them as well. Thus, the graph is bipartite.

We first state four theorems about adjacency matrices of bipartite graphs.

▶THEOREM 1
A graph G is bipartite if and only if �r is an adjacency matrix eigenvalue of G

(where r denotes the largest positive eigenvalue of G). ◀

Proof: Wewill prove this in the forward direction only, i.e., if G is bipartite, then
–r is an eigenvalue of G. Assume G is bipartite, then A(G) can be written in the

form
0 B
Bt 0

� �
where B is a p�qmatrix. Let r be the largest eigenvalue of G and

let
x
y

� �
denote its corresponding eigenvector, where x is a p�1 column vector

and y is a q�1 column vector. It follows that B � y¼ r �x and that (Bt) �x¼ r �y. Also,
B �(�y)¼ (�r) �x and (Bt) �x¼ (�r) � (�y). Therefore, (�r) is an eigenvalue and

x
�y

� �
is the corresponding eigenvector.

We present another theorem about adjacency matrix eigenvalues for bipartite
graphs.

▶THEOREM 2
Theadjacencymatrix eigenvalues of a graphGarepaired if andonly ifG is a bipartite graph.◀
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Proof: Necessity: If G is bipartite, then the eigenvalues of G are paired. Assume G

is bipartite, then A(G) can be written in the form
0 B
Bt 0

� �
, where B is a p�q

matrix. Let l be an eigenvalue of G and let its corresponding eigenvector be

x
y

� �
, where x is a p�1 vector and y is a q�1 column matrix. It follows that

B �y¼l �x and that (Bt) �x¼l � y. Also, B �(�y)¼ (�l) �x and (Bt) �x¼ (�l) � (�y).

Therefore, (�l) is an eigenvalue and
x

�y

� �
is the corresponding eigenvector,

and hence the eigenvalues of G are paired. Sufficiency. If the eigenvalues of G
are paired, then G is bipartite. From Theorem 1, we know that if (�r) is an eigen-
value of G, then G is bipartite. Since the eigenvalues of the graph are paired, then
it follows that the largest eigenvalue, denoted by r, is paired. Hence,�r is also an
eigenvalue. Therefore, G is bipartite.

A complete bipartite graph is a set of graph vertices decomposed into 2 disjoint sets
such that no two graph vertices within the same set are adjacent but every pair of
graph vertices in the 2 disjoint sets are adjacent. It is represented by Kp,q,
where p and q represent the number of nodes in the partite sets. The graph in
Figure C.1 is a representative of this special type of bipartite graph, namely, K3,3.

▶THEOREM 3
The adjacency matrix eigenvalues of the complete bipartite graph kp,q are zero with multi-

plicity (pþq�2) and � ffiffiffiffiffi
pq

p
.◀

Proof: Let A be the adjacency matrix of a complete bipartite graph Kp,q. Then A

can be written in the form
0 B
Bt 0

� �
, where B denotes the p�qmatrix consisting

entirely of ones (since complete). By looking at the matrix A�lIpþq, we can use
basic row reduction techniques to see that pþq�2 of the eigenvalues are zero.
We also know from Theorem 2 that if a graph is bipartite, its eigenvalues are
paired. Therefore, the remaining 2 eigenvalues are paired, call them k and �k.
From Theorem 3, part (iii), of Chapter 5, section 6, we know that the sum of

FIGURE C.1
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the squares of the eigenvalues of G is equal to twice the number of edges in G,
so (01

2þ02
2þ� � �þ0pþq�2

2 )þk2þ (�k)2¼2e, and for any complete bipartite
graph, the number of edges is equal to p.q. Thus, we have 2k2¼2(p.q), and
so k ¼ ffiffiffiffiffi

pq
p

and �k ¼ � ffiffiffiffiffi
pq

p
.

Example 1 The graph in Figure C.1 has adjacency matrix

A ¼

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

2
6666664

3
7777775. This matrix has characteristic polynomial

l6�9l4¼ (l�0)(l�0)(l�0)(l�0)(l�3)(lþ3), so its eigenvalues are 3, 0,
0, 0, 0,�3. Since p and q are both 3, (pþq�2)¼ (3þ3�2)¼4, confirming that

0 occurs with multiplicity 4, and � ffiffiffiffiffi
pq

p ¼ � ffiffiffiffiffiffiffi
3:3

p ¼ �3.

Our final Theorem for bipartite graphs refers to Theorem3, part (iii), of Chapter 5,
section 6, on the adjacency matrix raised to a power.

▶THEOREM 4
A graph G is bipartite if and only if no power of its adjacency matrix A consists entirely of

strictly positive entries (i.e., every power of A must contain zeros). ◀

Proof: We will sketch the proof of the sufficiency only, i.e., if a graph G is bipar-
tite, then no power of its adjacency matrix A consists entirely of strictly positive

entries. Again, since bipartite, A can be written in the form
0 B
Bt 0

� �
.

A2 ¼ 0 B
Bt 0

� �
� 0 B

Bt 0

� �
¼ BBt 0

0 BtB

� �

A3 ¼ BBt 0
0 BtB

� �
� 0 B

Bt 0

� �
¼ 0 BBtB

BtBBt 0

� �

A4 ¼ 0 BBtB
BtBBt 0

� �
� 0 B

Bt 0

� �
¼ BBtBBt 0

0 BtBBtB

� �

And so on So for all k, this demonstrates that Ak will have entries that are zero.
Since G is bipartite, the vertices can be split into two disjoint sets {u1,u2,. . .un}
and {v1,v2,. . .,vn}. There is no path of even length from any ux to vy. Therefore, fol-
lowingTheorem3,part (iii),ofChapter5, section6, therewillbezeros inevery even
power of the adjacencymatrix. In the samemanner, there is no path of odd length
from any ux to uy or vx to vy and thus, there will be zeros in every odd power of the
adjacencymatrix. Hence, no power ofA consists entirely of strictly positive entries.
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We defined a regular graph to be one in which all n of its vertices have the same
degree, r. The adjacency matrix eigenvalues for these graphs can help us to deter-
mine their number of spanning trees, and we know from Theorem 4 of Chapter 5
that the maximum eigenvalue of such graphs is r itself.

▶THEOREM 5
The number of spanning trees for a graph G on n vertices that is regular of degree r and

having adjacency matrix eigenvalues a1�a2�� � ��an¼ r is 1
n

Yn�1

i�1
r � aið Þ:◀

Proof: Recall that the Laplacian matrix L¼diag(d1,d2, . . .,dn)�A, where A is the
adjacency matrix of the graph G and d1,d2, . . .,dn are the degrees of the vertices.
Thus, if G is a regular graph, each vertex having degree equal to r, it follows that
li¼ r�ai for I¼1, 2, . . ., n�1.

Example 2 Besides being complete bipartite, the graph in Figure C.1 is regular of
degree 3. As seen in Example 1, its adjacency matrix has entries of each row after
the first one is formed by shifting the entries (and wrapping around the last entry
back to the beginning). This is called a circulant matrix.When a graph’s vertices can
be ordered in such a way that its adjacencymatrix is a circulant matrix, the graph is
called a circulant graph. As stated earlier, thismatrix has eigenvalues 3, 0, 0, 0, 0,�3.
We eliminate the largest eigenvalue (namely, r¼3) and produce the product
1
6 3� 0ð Þ4 3� �3ð Þð Þ1 ¼ 81,meaning thegraphinFigureC.1has81spanningtrees.

In Chapter 5, section 7, we discussed the calculation of the number of spanning
trees using Laplacian eigenvalues. Consider a graph on n vertices. If we then con-
sider a complete graph on n vertices, Kn, and “subtract” the edges of G from Kn,

then the resulting n vertex graph is called the complement of G, denoted G. We
present the following theorem specifying the relationship between the Laplacian

eigenvalues of G and those of G.

▶THEOREM 6
If a graph G has Laplacian eigenvalues 0�l1�l2�� � ��ln, then G has Laplacian eigen-

values lk ¼ n� ln�k0 k¼2,. . .n.◀

Example 3 The graph in Figure C.2 depicts the complement of the graph in
Figure C.1. Note that the complement of K3,3 is two disjoint K3 graphs. (In fact,
the complement of any complete bipartite graph Kp,q is KpandKq. In question 16
of Chapter 5, section 7, the Laplacian eigenvalues for the complete graph Kn

are shown to be n with multiplicity n�1 and 0. Thus, the Laplacian eigenvalues
for a graph comprised of two disjoint K3 graphs are 0, 0, 3, 3, 3, 3, and then the
Laplacian eigenvalues for K3,3 are 6-0, 6-3, 6-3, 6-3, 6-3, and the obligatory zero
eigenvalue, i.e., 0, 3, 3, 3, 3, 6. Wewill use this technique to determine the number
of spanning trees in complete bipartite graphs in exercises 7-12 in this appendix.
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PROBLEMS APPENDIX C
We recommend the use of computer software to assist in the computation of char-
acteristic polynomials and eigenvalues in this appendix, particularly problem 6.

Complete graphs are also regular graphs. In fact, every Kn is regular of degree
n�1. Exercises 1-5 deal with complete graphs and conjecture a general formula
for their number of spanning trees using the adjacency matrix.

(1) (a) Draw K3.
(b) Find the adjacency matrix for K3.

(c) Find the eigenvalues for K3.

(2) (a) Draw K4.
(b) Find the adjacency matrix for K4.
(c) Find the eigenvalues for K4.

(3) (a) Draw K5.
(b) Find the adjacency matrix for K5.

(c) Find the eigenvalues for K5.

(4) What pattern do you see in your responses to questions 1c, 2c, and 3c? Can
you formulate a conjecture about the adjacency eigenvalues for any com-
plete graph Kn?

(5) Using your response to question (4), and using Theorem 5 of this appendix,
can you generalize a formula for the number of spanning trees for any
graph Kn? How does this compare with the one that you found in Chapter
5, section 7?

Figure C.3 depicts a very famous and interesting graph, the Petersen Graph.
It is regular of degree 3.

(6) (a) Find the adjacency matrix for the Petersen Graph.
(b) Find the adjacency eigenvalues for the Petersen graph.
(c) Does Theorem 1 of this appendix apply to the Petersen graph? What, if

anything, can be concluded?
(d) Does Theorem 2 of this appendix apply to the Petersen graph? What, if

anything, can be concluded?
(e) Use Theorem 5 to determine the number of spanning trees in the

Petersen graph.
(f) Find the Laplacian eigenvalues for the Petersen graph.

FIGURE C.2
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(g) Use Theorem 6 of Section 5.7 to calculate the number of spanning trees
in the Petersen graph. Does your answer agree with the one you found
in part (e)?

Exercises 7-12 deal with complete bipartite graphs and conjecture a
general formula for their number of spanning trees using the Laplacian
matrix.

(7) (a) Draw K4,4.

(b) Find K4, 4 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K4,4.

(8) (a) Draw K4,5.

(b) Find K4, 5 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K4,5.

(9) (a) Draw K4,6.

(b) Find K4, 6 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K4,6.

(10) (a) Draw K5,5.

(b) Find K5, 5 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K5,5.

(11) (a) Draw K5,7.

(b) Find K5, 7 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K5,7.

FIGURE C.3
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(12) (a) Based on your answers to part (c) of questions 7-11, conjecture a for-
mula for the Laplacian eigenvalues for a complete bipartite graph.

(b) Based on your answer to part (a) of this question, conjecture a formula
for the number of spanning trees for a complete bipartite graph.

A graph is complete multipartite on k parts if its vertex set can be decom-
posed into k disjoint sets such that no vertex is adjacent to any of the
other vertices in its part, but each vertex is adjacent to all the vertices in
the K�1 other parts. A complete multipartite graph having k parts of
order r1, r2, . . . , rk, respectively, on n¼ r1þ r2þ . . .þ rk nodes is
denoted Kr1, r2, . . ., rk

. In problems 13-17, we will formulate a conjecture
about the number of spanning trees of such graphs, but consider
only multipartite sets with equal part sizes, i.e., Kr1, r2, . . ., rk

with
r1¼ r2¼ . . .¼ rk. We will also confine our study to complete multipar-
tite graphs having exactly three parts. We will refer to the graphs under
consideration as regular complete tripartite graphs.

(13) (a) Draw K3,3,3.

(b) Determine K3, 3, 3 .
(c) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K3,3,3.

(14) For K4,4,4.

(a) Determine K4, 4, 4 .
(b) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K4,4,4.

(15) For K5,5,5.

(a) Determine K5, 5, 5 .
(b) Use Theorem 6 and Example 3 of this section to compute the

Laplacian eigenvalues for K5,5,5.

(16) For K6,6,6.

(a) Determine K6, 6, 6 .
(b) Use Theorem 6 and Example 3 of this section to compute the Laplacian

eigenvalues for K6,6,6.

(17) (a) Based on your answers to part (c) of question 13 and part (b) of ques-
tions 14-16, conjecture a formula for the Laplacian eigenvalues for a
regular complete tripartite graphs.

(b) Based on your answer to part (a) of this question, conjecture a formula
for the number of spanning trees for regular complete tripartite graphs.
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APPENDIX D

Technology

As we have demonstrated in this text, linear algebra is a very powerful tool. It can
be applied to such diverse areas as differential equations (see Chapter 5) and to
least-squares techniques (see Chapter 6). Yet the actual calculations needed to
arrive at solutions can be very tedious. The computation of higher-order determi-
nants (see Chapter 1) and the application of the QR algorithm (see Section 6.3)
can likewise require much time.

The field of numerical analysis can assist with calculations and, if appropriate,
with approximations. But even when numerical techniques are uses, one almost
always needs computational assistance in the form of technology.

One of the most useful tools is MATLAB® (http://www.mathworks.com/prod
ucts/matlab/). This software is employed by educators and is very useful with
respect to many topics in linear algebra.

Another software package is MATHEMATICA® (http://www.wolfram.com/). To
illustrate this computer algebra system, the reader is asked to refer to the model-
ing problem of Section 5.4.

The syntax for the system of differential equations is given by:

DSolve fS1½t� ¼ 10� S1½t�=20, S20½t� ¼ S1½t�=50þ S3½t�=25� 6=50ð Þ�S2½t�, S30½t½ �
¼ S3 t½ �=25þ S2 t½ �=50, S1 0½ � ¼ 0, S2 0½ � ¼ 0, S3 0½ � ¼ 0g,

S1 t½ �, S2 t½ �, S3 t½ �f g, t�

The solution, obtained by hitting the “Shift” and “Enter” keys simultaneously, is
as follows:
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50 �2þ3
ffiffi
2

pð Þtþ 1
100 1þ6

ffiffi
2

pð ÞtÞÞ,
S3 t½ � ! � 1

1491
ð50� t

20 � 1
50 �2þ3

ffiffi
2

pð Þtð � 336
1
50 �2þ3

ffiffi
2

pð Þt

þ45
t
20 þ3

ffiffiffi
2t

p
25 þ 1

50 �2�3
ffiffi
2

pð Þt
� 85

ffiffiffi
2

p


t
20 þ3

ffiffiffi
2t

p
25 þ 1

50 �2�3
ffiffi
2

pð Þt
þ 381

t
20 þ 1

50 �2þ3
ffiffi
2

pð Þt

þ85
ffiffiffi
2

p


t
20 þ 1

50 �2þ3
ffiffi
2

pð Þt
� 45

t
20 þ 1

50 �2�3
ffiffi
2

pð Þtþ 1
50 �2þ3

ffiffi
2

pð Þt

þ85
ffiffiffi
2

p


t
20 þ 1

50 �2�3
ffiffi
2

pð Þtþ 1
50 �2þ3

ffiffi
2

pð Þt
� 168

t
10 þ 1

50 �2�3
ffiffi
2

pð Þtþ 1
50 �2þ3

ffiffi
2

pð Þt

�14
ffiffiffi
2

p


t
10 þ 1

50 ð�2�3
ffiffiffiffi
2Þ

p
tþ 1

50ð�2þ3
ffiffi
2

p Þt
� 45

t
20 þ 1

25 �2þ3
ffiffi
2

pð Þt

�85
ffiffiffi
2

p


t
20 þ 1

25ð�2þ3
ffiffi
2

p Þt
� 168

t
10 þ 1

25 �2þ3
ffiffi
2

pð Þt
þ 14

ffiffiffi
2

p


t
10 þ 1

25 �2þ3
ffiffi
2

pð Þt

þ168
t
20 þ 1

50 �2�3
ffiffi
2

pð Þtþ 1
100 1þ6

ffiffi
2

pð Þt
þ 14

ffiffiffi
2

p


t
10 þ 1

50 ð�2�3
ffiffi
2

p Þtþ 1
100 1þ6

ffiffi
2

pð Þt

þ168
t
20 þ 1

50 �2þ3
ffiffi
2

pð Þtþ 1
100 1þ6

ffiffi
2

pð Þt
� 14

ffiffiffi
2

p


t
20 þ 1

50 �2þ3
ffiffi
2

pð Þtþ 1
100 1þ6

ffiffi
2

pð ÞtÞÞ
One readily sees why this problemwould be difficult to solve without technology.
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APPENDIX E

Mathematical Induction

In Problems 1 through 10, prove the given propositions using mathematical
induction. First show proposition is true for k¼1. Then show proposition is true
for k¼nþ1 assuming proposition is true for k¼n.

(1) 1þ2þ� � �þnþn(nþ1)/2.

(2) 1þ3þ5þ� � �þ(2n�1)¼n2.

(3) 12þ22þ� � �þn2þn(nþ1)(2nþ1)/6.

(4) 13þ23þ� � �þn3þn2(nþ1)2/4.

(5) 12þ32þ52þ� � �þ (2n�1)2¼n(4n2�1)/3.

(6)
Xn
k¼1

3k2 � k
� � ¼ n2 nþ 1ð Þ:

(7)
Xn
k¼1

1

k kþ 1ð Þ ¼ n

nþ 1ð Þ:

(8)
Xn
k¼1

2k�1 ¼ 2n � 1:

(9) For any real number x 6¼1,
Xn
k¼1

xk�1 ¼ xn�1
x�1 .

(10) 7nþ2 is a multiple of 3.

If a proposition is true for
n¼1 and also if the
proposition is true for
n¼k whenever it is
assumed true for
n¼k�1, then the prop-
osition is true for all nat-
ural numbers n¼1, 2, 3,
. . .
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Answers and Hints to
Selected Problems

CHAPTER 1
Section 1.1
(1) A is 2�2, B is 2�2, C is 2�2, D is 4�2, E is 4�2,

F is 4�2, G is 2�3, H is 3�3, J is 1�5.

(2) a12¼2, a31 does not exist;
b12¼6, b31 does not exist;
c12¼0, c31 does not exist;
d12¼1, d31 ¼ 3;
e12¼2, e31 ¼ 5;
f12¼1, f31 ¼ 0;
g12¼1/3, e31 does not exist;
h12 ¼ ffiffiffi

3
p

, h31 ¼ ffiffiffi
5

p
;

j12¼0, j31 does not exist.

(3) a11¼1, a21¼3, b32 does not exist, d32¼–2,
d23 does not exist, e22¼–2, g23¼–5/6,
h33 ¼ ffiffiffi

3
p

, j21 does not exist.

(4) A, B, C, and H. (5) J is a row matrix.

(6)

1
2
3
4

2
664
3
775: (7) [1 4 9 16 25].

(8) A ¼ 1 �1
�1 1

� �
: (9) A ¼

1 1=2 1=3
2 1 2=3
3 3=2 1

2
4

3
5:

(10) B ¼
1 0 �1
0 �1 �2

�1 �2 �3

2
4

3
5: (11) C ¼ 1 1 1 1

1 2 3 4

� �
:
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(12) D ¼
1 �1 �2 �3
3 0 �1 �2
4 5 0 �1

2
4

3
5: (13)

2 4
6 8

� �
:

(14)
�5 �10
�15 �20

� �
: (15)

9 3
�3 6
9 �6
6 18

2
664

3
775: (16)

�20 20
0 �20

50 �30
50 10

2
664

3
775:

(17)

0 �1
1 0
0 0

�2 �2

2
664

3
775: (18)

6 8
10 12

� �
: (19)

0 2
6 1

� �
:

(20)

1 3
�1 0
8 �5
7 7

2
664

3
775: (21)

3 2
�2 2
3 �2
4 8

2
664

3
775: (22) Does not exist.

(23)
�4 �4
�4 �4

� �
: (24)

�2 �2
0 �7

� �
: (25)

5 �1
�1 4
�2 1
�3 5

2
664

3
775:

(26)

3 0
0 2
3 �2
0 4

2
664

3
775: (27)

17 22
27 32

� �
: (28)

5 6
3 18

� �
:

(29)
�0:1 0:2
0:9 �0:2

� �
: (30)

4 �3
�1 4

�10 6
�8 0

2
664

3
775: (31) X ¼ 4 4

4 4

� �
:

(32) Y ¼ �11 �12
�11 �19

� �
: (33) X ¼

11 1
�3 8
4 �3
1 17

2
664

3
775:

(34) Y ¼
�1:0 0:5
0:5 �1:0
2:5 �1:5
1:5 �0:5

2
664

3
775: (35) R ¼ �2:8 �1:6

3:6 �9:2

� �
:

(36) S ¼
�1:5 1:0
�1:0 �1:0
�1:5 1:0
2:0 0

2
664

3
775:

(37)
�y3 þ 6y2 þ y 6y� 6

21 �y3 � 2y2 � yþ 6=y

� �
:
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(38) [aij]þ [bij]¼ [aijþbij]¼ [bijþaij]¼ [bij]þ [aij].

(39) [aij]þ [0ij]¼ [aijþ0ij]¼ [aijþ0]¼ [aij].

(40) (l1þl2)[aij]¼ [(l1þl2)aij]¼ [l1aijþl2aij]¼ [l1aij]þ
[l2aij]¼l1[aij]þl2[aij].

(41) (l1l2)[aij]¼ [(l1l2)aij]¼ [l1(l2aij)]¼l1[l2aij]¼l1(l2[aij]).

(42)

Refrigerators Stoves Washing machines Dryers

3 5 3 4

0 2 9 5

4 2 0 0

2
4

3
5 store 1store 2

store 3

(43)
72 12 16
45 32 16
81 10 35

2
4

3
5:

(44)

Purchase price Interest rate

1, 000 0:07

2, 000 0:075

3, 000 0:0725

2
64

3
75
first cerificate

second cerificate

third cerificate

(45) (a) [200 150], (b) [600 450], (c) [550 350].

(46) (b) [11 2 6 3], (c) [9 4 10 8].

(47) (d) [10,500 6,000 4,500], (e) [35,500 14,500 3,300].

Section 1.2

(1) (a) 2�2, (b) 4�4, (c) 2�1,

(d) Not defined, (e) 4�2, (f) 2�4,

(g) 4�2, (h) Not defined, (i) Not defined,

(j) 1�4, (k) 4�4, (l) 4�2.

(2)
19 22
43 50

� �
: (3)

23 24
31 46

� �
: (4)

5 �4 3
9 �8 7

� �
:

(5) A ¼ 13 �12 11
17 �16 15

� �
:

(6) Not defined. (7) [–5 –6]. (8) [–9 –10].

(9) [–7 4 –1]. (10) Not defined. (11)
1 �3
7 �3

� �
:
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(12)
2 �2 2
7 �4 1

�8 4 0

2
4

3
5: (13) [1 3].

(14) Not defined. (15) Not defined.

(16) Not defined.

(17)
�1 �2 �1
1 0 �3
1 3 5

2
4

3
5:

(18)
2 �2 1
2 0 0
1 �2 2

2
4

3
5: (19) [–1 1 5].

(21) AB¼0.
(22) AB ¼ AC ¼ 8 6

4 3

� �
:

(23) AB ¼ CB ¼ 8 16
2 4

� �
:

(24)
xþ 2y

3xþ 4y

� �
:

(25)

x� z

3xþ y þ z

xþ 3y

2
4

3
5: (26)

a11xþ a12y
a21xþ a22y

� �
:

(27)
b11xþ b12y þ b13z
b21xþ b22y þ b23z

� �
: (28)

0 0
0 0

� �
:

(29)
0 40

�16 8

� �
:

(30)
0 0 0
0 0 0
0 0 0

2
4

3
5:

(33) Let the ith row of an m�n matrix A be 0. If C¼AB, then for j¼1,2,. . .,n,

cij ¼
Xn
k¼1

aikbkj ¼
Xn
k¼1

0ð Þbkj ¼ 0

(34)
1 2
1 4

� �
1 1
0 0

� �
¼ 1 1

3 3

� �
:

(35) Let they jth column of an m�n matrix B be 0. If C¼AB, then for
i¼1,2,. . .,m,

cij ¼
Xn
k¼1

aikbkj ¼
Xn
k¼1

aik 0ð Þ ¼ 0

(36)
1 0
1 0

� �
1 2
3 4

� �
¼ 1 2

1 2

� �
:
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(37) aij
� �

bij
� �

cij
� �� � ¼ aij

� � Xn
k¼1

bikckj

" #
¼

Xm
p¼1

aip
Xn
k¼1

bpkckj

 !" #

¼
Xm
p¼1

Xn
k¼1

aipbpkckj

" #
¼

Xn
k¼1

Xm
p¼1

aipbpkckj

" #

¼
Xn
k¼1

Xm
p¼1

aipbpk

 !
ckj

" #

¼
Xm
p¼1

aipbpj

" #
cij
� � ¼ aij

� �
bij
� �� �

cij
� �

(39)
2 3
4 �5

� �
x
y

� �
¼ 10

11

� �
: (40)

5 20
�1 4

� �
x
y

� �
¼ 80

�64

� �
:

(41)
3 3
6 �8

�1 2

2
4

3
5 x

y

� �
¼

100
300
500

2
4

3
5: (42)

1 3
2 �1

�2 �6
4 �9

�6 3

2
66664

3
77775 x

y

� �
¼

4
1

�8
�5
�3

2
66664

3
77775:

(43)
1 1 �1
3 2 4

� � x
y
z

2
4
3
5 ¼ 0

0

� �
: (44)

2 �1 0
0 �4 �1

� � x
y
z

2
4
3
5 ¼ 12

15

� �
:

(45)
1 2 �2
2 1 1

�1 1 �1

2
4

3
5 x

y
z

2
4
3
5 ¼

�1
5
�2

2
4

3
5: (46)

2 1 �1
1 2 1
3 �1 2

2
4

3
5 x

y
z

2
4
3
5 ¼

0
0
0

2
4
3
5:

(47)
1 1 1
2 1 3
1 3 0

2
4

3
5 x

y
z

2
4
3
5 ¼

2
4
1

2
4
3
5: (48)

1 2 �1
2 �1 2
2 2 �1
1 2 1

2
664

3
775 x

y
z

2
4
3
5 ¼

5
1
7
3

2
664
3
775:

(49)

5 3 2
1 1 0
3 2 2
1 1 2

4
1
0
3

2
664

3
775

x
y
z
w

2
664

3
775 ¼

5
0

�3
4

2
664

3
775:

(50)
2 �1 1
1 2 �1
1 �3 2

�1
2

�3

2
4

3
5 x

y
z
w

2
664

3
775 ¼

1
�1
2

2
4

3
5:

(51) (a) pn¼ [38,000], which is the total revenue for the flight.

(b) np ¼
26, 000 45, 500 65, 000
4, 000 7, 000 10, 000
2, 000 3, 500 5, 000

2
4

3
5, which is of no significance.
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(52) (a) hP¼ [9,625 9,762.50 9,887.50 10,100 9,887.50], which tabulates the
value of the portfolio each day.

(b) Ph does not exist.

(53) Tw¼ [14.00 65.625 66.50]T, which tabulates the cost of producing each
product.

(54) qTw¼ [33,862.50], which is the cost of producing all items on order.

(55) FC ¼
613 625

887 960

1870 1915

2
4

3
5, which tabulates the number of each gender in each

state of sickness.

Section 1.3

(1) (a) ABð ÞT ¼ BT AT ¼
�3 �1

6 �7

3 4

2
4

3
5, ATBT is not defined:

(b) ABð ÞT ¼ BT AT ¼ 18 40

24 52

� �
, ATBT

8 18 28

10 22 34

12 26 40

2
64

3
75:

(c) ABð ÞT ¼ BT AT ¼
27 11 22

8 �19 56

�4 11 �23

2
4

3
5, ATBT

8 2 �15

54 3 2

�27 6 �36

2
64

3
75:

(2)
7 4 �1
6 1 0
2 2 �6

2
4

3
5:

(3) xTx ¼ 29½ � xxT ¼
4 6 8

6 9 12

8 12 16

2
4

3
5:

(4) (a) BAT, (b) 2ATþB, (c) (BTþC)A, (d) ABþCT,

(e) ATATþATA–AAT–AA.

(5) (a), (b), and (d).

(6)
a b
c d

� �
, a b½ �, c d½ �, b

c

� �
,

d
c

� �
, a½ �, b½ �, c½ �, d½ �:

(7) Partition A into four 2�2 submatrices. Then
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(8) Partition B into four 2�2 submatrices. Then

(9)

(10)

(11) A, B, F, M, N, R, and T.

(12) E, F, H, K, L, M, N, R, and T.

(13) Yes.

(14) No, see H and L in Problem 11.

(15) Yes, see L in Problem 11.

(16) AB ¼ BA ¼
�5 0 0
0 9 0
0 0 2

2
4

3
5:

(18) No.

(19) If D¼ [dij] is a diagonal matrix, then they jth column of AD is they jth col-
umn of A multiplied by djj.

(20) If D¼ [dij] is a diagonal matrix, then the ith row of DA is the ith row of A
multiplied by dii.

(21) Let A¼ [aij]. Then (AT)T¼ [aji]
T¼ [aij]¼A.

(22) Let A¼ [aij]. Then (lA)T¼ [laji]¼l[aji]¼lAT.

(23) (AþB)T¼([aij]þ [bij])
T¼ [aijþbij]

T¼ [ajiþbji]¼ [aji]þ [bji]¼ATþBT.
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(24) (ABC)T¼ [(AB)C]T¼CT(AB)T¼CT(BTAT).

(25) BT ¼ A þ AT
� �

=2
� �T ¼ 1

2
A þ AT
� �T ¼ 1

2
AT þ AT

� �Th i
¼ 1

2
AT þ A
� � ¼ B:

(26) CT ¼ A � AT
� �

=2
� �T ¼ 1

2
A � AT
� �T ¼ 1

2
AT � AT

� �Th i
¼ 1

2
AT � A
� � ¼ � 1

2
A � AT
� � ¼ �C:

(27) A ¼ 1

2
A þ AT
� �þ 1

2
A � AT
� �

:

(28)
1 7=2 �1=2

7=2 1 5
�1=2 5 �8

2
4

3
5 þ

0 3=2 �1=2
�3=2 0 �2
1=2 2 0

2
4

3
5:

(29)
6 3=2 1

3=2 0 �4
1 �4 2

2
4

3
5 þ

0 �1=2 2
1=2 0 3
�2 �3 0

2
4

3
5:

(30) (AAT)T¼ (AT)TAT¼AAT

(31) Each diagonal element must equal its own negative and, therefore, must
be zero.

(33) For any n�n matrix A, consider sequentially the equations ADi¼DiA,
where all the elements in Di (i¼1,2,. . .,n) are zero except for a single 1
in the i-i position.

Section 1.4
(1) (a) No. (b) Yes.

(2) (a) Yes. (b) No. (c) Yes.

(3) k¼1.

(4) k¼1/12.

(5) k is arbitrary; any value will work.

(6) xþ 2y ¼ 5
y ¼ 8

Solution: x ¼ �11, y ¼ 8

(7) x� 2y þ 3z ¼ 10
y � 5z ¼ �3

z ¼ 4
Solution : x ¼ 32, y ¼ 17, z ¼ 4

(8) x1 � 3x2 þ 12x3 ¼ 40
x2 � 5x3 ¼ �200

x3 ¼ 25
Solution : x1 ¼ �410,

x2 ¼ �50,
x3 ¼ 25

(9) xþ 3y ¼ �8
y þ 4z ¼ 2

0 ¼ 0
Solution : x ¼ �14þ 12z,

y ¼ 2� 4z
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(10) x1 � 7x2 þ 2x3 ¼ 0
x2 � x3 ¼ 0

0 ¼ 0
Solution : x1 ¼ 5x3,
x2 ¼ x3,
x3 is arbitrary

(11) x1 � x2 ¼ 1
x2 � 2x3 ¼ 2

x3 ¼ �3
0 ¼ 1

No solution

(12) x¼51, y¼23.

(13) x¼–103, y¼18.

(14) x¼18.5, y¼–6.

(15) x¼y¼0.

(16) x¼3y, y is arbitrary.

(17) x¼–3/29, y¼–2/29, z¼41/29.

(18) x¼3/23, y¼28/23, z¼–32/23.

(19) x¼48/35, y¼–10/35,z¼–9/35.

(20) No solution.

(21) x¼2y � z, y and z are arbitrary.

(22) x¼y¼ z¼0.

(23) x1¼– x3, x2¼0, x3 is arbitrary.

(24) x1¼x2 – 2 x3, x2 and x3 are arbitrary.

(25) x1¼1,x2¼–2.

(26) x1 ¼ 5
7 � x3, x2 ¼ � 6

7 , x3 is arbitrary.

(27) x1¼–3,x2¼4.

(28) x1¼13/3,x2¼x3¼–5/3.

(29) No solution.

(30) Each equation graphs as a plane. If the planes do not intersect, the equa-
tions have no solutions. If the planes do intersect, their intersection is either
a line or a plane, each yielding infinitely many solutions.

(31) Au¼A(yþz)¼AyþAz¼bþ0¼b.

(32) (a) a can be any real number.
(b) a¼1.

(33) 50r þ 60s ¼ 70,000
30r þ 40s ¼ 45,000
Solution : r ¼ 500, s ¼ 750
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(34) 5dþ 0:25b ¼ 200
10dþ b ¼ 500
Solution : d ¼ 30, b ¼ 200

(35) 8, 000Aþ 3, 0005Bþ 1, 000C ¼ 70,000
5, 000Aþ 12, 0005Bþ 10, 000C ¼ 181, 000
1, 000Aþ 3, 0005Bþ 2, 000C ¼ 41,000
Solution : A ¼ 5, B ¼ 8, C ¼ 6

(36) bþ 0:05cþ 0:05s ¼ 20, 000
c ¼ 8, 000
0:03cþ s ¼ 12, 000
Solution : b ¼ $19,012

(37) (a) C ¼ 800, 000þ 30B
S ¼ 40B

(b) Add the additional equation S¼C. Then B¼80,000.

(38) �0:60p1 þ 030p2 þ 0:50p3 ¼ 0
0:40p1 � 0:75p2 þ 0:350p3 ¼ 0
0:20p1 þ 0:45p2 þ 0:85p3 ¼ 0
Solution : p1 ¼ 48=33ð Þp3, p2 ¼ 41=33ð Þp3, p3is arbitrary:

(39) �1=2ð Þp1 þ l=3ð Þp2 þ l=6ð Þp3 ¼ 0
l=4ð Þp1 � 2=3ð Þp2 þ l=3ð Þp3 ¼ 0
l=4ð Þp1 þ 1=3ð Þp2 � 1=2ð Þp3 ¼ 0
Solution : p1 ¼ 8=9ð Þp3, p2 ¼ 5=6ð Þp3, p3is arbitrary:

(40)

�0:85p1 þ 0:10p2 þ 0:15p4 ¼ 0
0:20p1 � 0:60p2 þ 1

3p3 þ 0:40p4 ¼ 0

0:30p1 þ 0:15p2 � 2
3p3 þ 0:45p4 ¼ 0

0:35p1 þ 0:35p2 þ 1
3p3 � p4 ¼ 0

Solution : p1 � 0:3435p4, p2 � 1:4195p4, p3 � 1:1489p4, p4is arbitrary:

(41) 4. (42) 5. (43) 4. (44) 9. (45) 3. (46) 4.

Section 1.5

(1) –2. (2) 38. (3) 38. (4) –2.

(5) 82. (6) –82. (7) 9. (8) –20.

(9) 21. (10) –6. (11) 22. (12) 0.

(13) –9. (14) –33. (15) 15. (16) –5.

(17) –10. (18) 0. (19) 0. (20) 0.

(21) 119. (22) –8. (23) 22. (24) –7.

(25) –40. (26) 52. (27) 25. (28) 0.
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(29) 0. (30) –11. (31) 0.

(32) 0 and 2. (33) –1 and 4. (34) 2 and 3.

(35) � ffiffiffiffi
6:

p
(36) l2 – 9l – 2.

(37) l2 – 9lþ38. (38) l2 – 13l – 2.

(39) l2 – 8lþ9. (40) l3þ7lþ22.

(41) l3þ4l2 – 17l. (42) –l3þ6l – 9.

(43) –l3þ10l2 – 22l – 33.

(44) |A|¼11, |B|¼5, |AB|¼55.

(45) 3. (46) 24. (47) 28.

(48) –1. (49) 0. (50) –311.

(51) –10. (52) 0. (53) –5.

(54) 0. (55) 0. (56) 119.

(57) –9. (58) –33. (59) 15.

(60) 2187. (61) 52. (62) 25.

(63) 0. (64) 0. (65) 152.

(66) Multiply the first row by 2, the second row by –1, and the second column
by 2.

(67) Apply the third elementary row operation with the third row to make the
first two rows identical.

(68) Multiply the first column by 1/2, the second column by 1/3, to obtain iden-
tical columns.

(69) Interchange the second and third rows, and then transpose.

(70) Use the third column to simplify both the first and second columns.

(71) Factor the numbers –1, 2, 2, and 3 from the third row, second row, first col-
umn, and second column, respectively.

(72) Factor a 5 from the third row. Then use this new third row to simplify the
second row and the new second row to simplify the first row.

(74) det 3
1 3

�3 4

� �	 

¼ 3 9

�9 12

����
���� ¼ 117 ¼ 9 13ð Þ ¼ 3ð Þ2 1 3

�3 4

����
����:

(75) det �2
2 3

�3 �2

� �	 

¼ �4 �6

6 4

����
���� ¼ 20 ¼ 4 5ð Þ ¼ �2ð Þ2 2 3

�3 �2

����
����:

(76) det �1
1 2 �2
1 3 3
2 5 0

2
4

3
5

8<
:

9=
; ¼

�1 �2 2
�1 �3 �3
�2 �5 0

������
������ ¼ 1 ¼ �1ð Þ �1ð Þ ¼ �1ð Þ3

1 2 �2
1 3 3
2 5 0

������
������:
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Section 1.6

(1) (c) (2) None.

(3)
0 1
1 0

� �
: (4)

3 0
0 1

� �
:

(5)
3 0
0 �5

� �
.

(6)
1 0 0
0 �5 0
0 0 1

2
4

3
5:

(7)
1 0
3 1

� �
: (8)

1 3
0 1

� �
:

(9)
1 0 0
0 1 3
0 0 1

2
4

3
5: (10)

1 0 0
0 1 0
5 0 1

2
4

3
5:

(11)

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775:

(12)
1 0
0 7

� �
:

(13)
1=2 0
0 1

� �
: (14)

1 �2
0 1

� �
:

(15)
1 0
3 1

� �
: (16)

1 0
�1 1

� �
:

(17)
1 0 0
0 1=2 0
0 0 1

2
4

3
5: (18)

0 1 0
1 0 0
0 0 1

2
4

3
5: (19)

1 0 �3
0 1 0
0 0 1

2
4

3
5:

(20)
1 0 0
0 1 2
0 0 1

2
4

3
5:

(21)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775: (22)

1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1

2
664

3
775:

(23)
4 �1
�3 1

� �
: (24)

1

3

2 �1
�1 2

� �
:

(25) Does not exist.

(26) 1
2

1 1 �1
1 �1 1
�1 1 1

2
4

3
5: (27)

0 1 0
0 0 1
1 0 0

2
4

3
5:

(28)
�1 �1 1
6 5 �4
�3 �2 2

2
4

3
5: (29) Does not exist.
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(30)
1

2

1 0 0
�5 2 0
1 �2 2

2
4

3
5: (31)

1

6

3 �1 �8
0 2 1
0 0 3

2
4

3
5:

(32)
9 �5 �2
5 �3 �1

�36 21 8

2
4

3
5: (33)

1

17

1 7 �2
7 �2 3
�2 3 4

2
4

3
5:

(34)
1

17

14 5 �6
�5 �3 7
13 1 �8

2
4

3
5: (35) Does not exist.

(36)
1

33

5 3 1
�6 3 12
�8 15 5

2
4

3
5: (37)

1

4

0 �4 4
1 5 �4
3 7 �8

2
4

3
5:

(38)
1

4

4 �4 �4 �4
0 4 2 5
0 0 2 3
0 0 0 �2

2
664

3
775: (39)

1 0 0 0
2 �1 0 0
�8 3 1=2 0
�25 10 2 �1

2
664

3
775:

(41) (a)
4 �1
�3 1

� �
: (b)

4 �6
�6 12

� �
:

(42) x¼1, y¼–2.

(43) a¼–3, b¼4.

(44) x¼5/4, y¼1/2.

(45) l¼1, p¼3.

(46) Not possible; the coefficient matrix is singular.

(47) x¼–8, y¼5, z¼3.

(48) x¼y¼ z¼1.

(49) l¼1, m¼–2, n¼0.

(50) Not possible; the coefficient matrix is singular.

(51) x¼y ¼1, z¼2.

(52) (a) x¼70, y¼–40.

(53) (a) x ¼13/3, y¼–5/3, z¼–5/3.

(b) x ¼113/30, y¼–34/30, z¼–31/30.

(c) x ¼79/15, y¼–32/15, z¼–38/15.

(d) x ¼41/10, y¼–18/10, z¼–17/10.

(54) (a) A�2 ¼ 11 �4
�8 3

� �
, A�3 ¼ 41 �15

�30 11

� �
:
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(b) A�2 ¼ 9 �20
�4 9

� �
, A�3 ¼ �38 85

17 �38

� �
:

(c) A�2 ¼ 19 �5
�15 4

� �
, A�3 ¼ 91 �24

�72 19

� �
:

(d) A�2 ¼
1 �2 1
0 1 �2
0 0 1

2
4

3
5, A�3 ¼

1 �3 3
0 1 �3
0 0 1

2
4

3
5:

(e) A�2 ¼
1 �4 �4
0 1 2
0 0 1

2
4

3
5, A�3 ¼

1 �6 �9
0 1 3
0 0 1

2
4

3
5:

(56) Use the result of Problem 19 or Problem 20 of Section 1.3.

(58) BA�1
� �T

A�1BT
� ��1 ¼ A�1

� �T
BT

h �
BT
� ��1

A�1
� ��1

h i
¼ AT
� ��1

BT
h �i

BT
� ��1

A
h i

¼ A�1 BT BT
� ��1

h i
A ¼ A�1IA ¼ A�1A ¼ I

(60) [(1/l)A–1][lA]¼(1/l)(l)A–1A¼1I¼ I.

(61) (ABC)–1¼ [(AB)C]–1¼C–1 (AB)–1¼C–1 (B–1A–1)

Section 1.7

(1)
1 0
3 1

� �
1 1
0 1

� �
, x ¼ 10

�9

� �
:

(2)
1 0
0:5 1

� �
2 1
0 1:5

� �
, x ¼ 8

�5

� �
:

(3)
1 0

0:625 1

� �
8 3
0 0:125

� �
, x ¼ �400

1275

� �
.

(4)
1 0 0
1 1 0
0 �1 1

" #
1 1 0
0 �1 1
0 0 2

" #
, x ¼

3
1

�2

" #
:

(5)
1 0 0
�1 1 0
�2 �2 1

" # �1 2 0
0 �1 1
0 0 5

" #
, x ¼

5
2

�1

" #
:

(6)
1 0 0
2 1 0
�1 0 1

" #
2 1 3
0 �1 �6
0 0 1

" #
, x ¼

�10
0

10

" #
:

(7)

1 0 0
4

3
1 0

1
�21

8
1

2
66664

3
77775

3 2 1

0 �8

3
�8

3

0 0
1

8

2
66664

3
77775, x ¼

10

�10

40

2
4

3
5:
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(8)
1 0 0
2 1 0
�1 �0:75 1

2
4

3
5 1 2 �1

0 �4 3
0 0 4:25

2
4

3
5, x ¼

79
1
1

2
4

3
5:

(9)
1 0 0
0 1 0
0 0 1

2
4

3
5 1 2 �1

0 2 1
0 0 1

2
4

3
5, x ¼

19
�3
5

2
4

3
5:

(10)

1 0 0
3 1 0
1 1

2 1

2
64

3
75 1 0 0

0 2 0
0 0 2

2
4

3
5, x ¼

2
�1
1=2

2
4

3
5:

(11)

1 0 0 0
1 1 0 0
1 1 1 0
0 1 2 1

2
664

3
775

1 0 1 1
0 1 �1 0
0 0 1 �1
0 0 0 3

2
664

3
775, x ¼

1
�5
2
1

2
664

3
775:

(12)

1 0 0 0
1
2 1 0 0

0 0 1 0

0 2
7

5
7 1

2
66664

3
77775

2 1 �1 3

0 7
2

5
2 �1

2

0 0 �1 1

0 0 0 3
7

2
66664

3
77775, x �

266:67

�166:67

166:67

266:67

2
6664

3
7775:

(13)

1 0 0 0
1 1 0 0
1 1 1 0
0 �1 �2 1

2
664

3
775

1 2 1 1
0 �1 1 0
0 0 �1 1
0 0 0 3

2
664

3
775, x ¼

10
10
10

�10

2
664

3
775:

(14)

1 0 0 0

1 1 0 0

�2 1:5 1 0

0:5 0 0:25 1

2
6664

3
7775

2 0 2 0

0 2 �2 6

0 0 8 �8

0 0 0 3

2
6664

3
7775, x ¼

�2:5

�1:5

1:5

2:0

2
6664

3
7775:

(15) (a) x¼5, y¼–2; (b) x¼ –5/7, y¼1/7.

(16) (a) x¼1, y¼0, z¼2; (b) x¼140, y¼–50, z¼–20.

(17) (a)
8

�3
�1

2
4

3
5, (b)

2
0
0

2
4
3
5, (c)

35
5

15

2
4

3
5, (d)

�0:5
1:5
1:5

2
4

3
5:

(18) (a)

�1
�1
1
1

2
664

3
775, (b)

0
0
0
0

2
664
3
775, (c)

80
50

�10
20

2
664

3
775, (d)

�1=3
1=3
1=3
1=3

2
664

3
775:

(21) (d) A is singular.
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CHAPTER 2
Section 2.1

(1) 1 43 52−1−4 −3−5 −2

5

4

3

2

1

−1

−2

−3

−4
−5

y

x
u

u+
vv

(4)

1 43 52−1−4 −3−5 −2

5
4

3

2
1

−1

−2
−3
−4

y

x

y

x

x+
y

6

(6)

1 432−1−3 −2

5

4

3

2

1

−1

−2

−3

−4

y

xy

x

y−
x
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(7)

1 43 52−1−4 −3 −2

5

4

3

2

1

−1

−2

−3

y

x
u

v u−v

6

(10)

12

10
9
8
7
6
5
4
3
2

−2
−2−4−6−8−10

−4

−6

−8

−10

1

1

z

y

x

2z

2 3 4 5 6 7 8 910 12

(12)

12

10
9
8
7
6
5
4
3
2

−2
−2−4−6−8−10−12

−4

−6

−8

−10

1

1

z

y

x

−2z

2 3 4 5 6 7 8 910 12



(16)
1

1

w

w

x

y

1
4

2

3

−1

−1

−2

−3

−4

−2−3−4 4−5

2 3 4

w1−

(17) (a) 341.57�, (b) 111.80�, (c) 225�,

(d) 59.04�, (e) 270�.

(19)
ffiffiffi
2

p
: (20) 5. (21)

ffiffiffi
5

p
: (22)

ffiffiffi
3

p
:

(23)
ffiffiffiffiffiffiffiffi
3=4

p
: (24)

ffiffiffi
3

p
: (25)

ffiffiffiffiffiffi
15

p
: (26) 2.

(27)
ffiffiffi
2

p
: (28)

ffiffiffiffiffiffi
39

p
: (29)

ffiffiffi
5

p
:

(30)

4

3

2

1

(3,1,2)

(3,1,0)

(3,0,0)

1
1

2

3

4

5

2
y

z

x

3 4
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(33)

z

5

5

4

4

3

3

2

2

1

1
y

x

(−1, 2, 3)

(−1, 2, 3)(−1, 0, 0) −1

−2

−3

−4

−5

(38)
y

z

x

(1000, −500, 200)

(1000, −500, 0)
(1000, 0, 0)

800

600

400

200

200
400

600
800

1000
1200

−1
00

0
−8

00
−6

00
−4

00
−2

00

(39)

z

x

y

(−400, −50, −300)

(−400, −50, 0)

−50

−450−400−350−300−250−200−150
−50

−100

−100
−150
−200

−2
00

−1
50

−1
00

−5
0

−250

−300

−350

(−400, 0, 0)

Answers and Hints to Selected Problems 455



(40) Not normalized. (41) Not normalized. (42) Normalized.

(43) Normalized. (44) Not normalized. (45) Normalized.

(46) Normalized. (47) Normalized. (48) Normalized.

Section 2.2
(1) Vector space. (2) Violates (A1). (3) Vector space.

(4) Vector space. (5) Violates (A1). (6) Violates (A1).

(7) Vector space. (8) Vector space. (9) Violates (S3).

(10) Violates (S3). (11) Violates (S3). (12) Violates (S3).

(13) Violates (A4). (14) Violates (A5). (15) Violates (S4).

(16) Violates (S5). (17) Violates (S5). (18) Violates (S3).

(19) Vector space. (20) Violates (A1). (21) Vector space.

(22) Violates (S4,S5). (23) Violates (S3). (24) Vector space.

(26) Let 01 and 02 be two zero vectors. Then 01¼01þ02¼02.

(27) v� (u–v)¼v� (u�–v)¼v� (–v�u)¼ (v�–v)�u¼0�u¼u.

(28) v ¼ 0�v ¼ �u�uð Þ�v ¼ �u� u�vð Þ
¼ �u� u�wð Þ ¼ �u�uð Þ�w ¼ 0�w ¼ 0:

(29) u�u¼1	u�1	u¼(1þ1)	u¼2	u.

(30) Given 2	u¼2	v. Then,

u¼1	u¼ (½	2)	u¼½	 (2	u)¼½	(2	v)¼ (	2)½	v¼1	v¼v.

(31) First show that –b	u¼(–b)	u. Then

0¼ (a	u)� (–b	u)¼a	u� (–b)	u¼ [aþ (–b)]	u¼ (a–b)	u and
the result follows from Theorem 7.

(32) 0�0¼0. Thus, 0 is an additive inverse of 0, and the additive inverse is
unique.

Section 2.3
Problems 4, 5, 9, 11, 13, 16, 20, 21, and 22 are not subspaces; all the others are
subspaces.

(24) (a) and (c). (25) (a) and (c).

(26) (a) and (c). (27) (a) and (c).

(28) All except (f). (29) (b), (c), (d), and (e).
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(30) (b), (c), (d), and (e). (31) (a), (b), and (c).

(32)
x
y

� �
2 2

	 ����y ¼ 2xg: (33)
a b
c d

� �
2 2�2

	 ����d ¼ 0g:

(34) a3t
3 þ a2t

2 þ att þ a0e3
��a0 ¼ 0


 �
:

(35) The straight line through the origin defined by the equation y¼5x in an x – y
coordinate system.

(36) Yes (37) No (38) Yes (39) Yes

(41) Given that u ¼
Xn
i¼1

civi and vi ¼
Xm
j¼1

aijwj: Then,

u ¼
Xn
i¼1

ci
Xm
j¼1

aijwj

 !
¼
Xn
i¼1

Xm
j¼1

ciaijwj ¼
Xm
j¼1

Xn
i¼1

ciaij

 !
wj:

Define dj ¼
Xn
i¼1

ciaij:

(42) Denote the columns of A as A1, A2, . . ., An and x ¼ [x1x2 . . .xn]
T. Then

y¼x1A1þx2A2þ . . .þxnAn.

(43) Let Ay¼Az¼0. Then A(ayþbz)¼a(Ay)þb(Az)¼a(0)þb(0)¼0.

(44) A(2x)¼2(Ax)¼2b 6¼b.

(45) uþv and u – v belong to span{u,v}. Also, u¼ 1
2 (uþv)þ 1

2 (u – v) and v¼ 1
2

(uþv) – 1
2 (u – v), so u and v belong to span{uþv,u – v}.

(46) uþv, vþw, and uþw belong to span{u,v,w}. Also,

u ¼ 1
2 uþ vð Þ � 1

2 v þ wð Þ þ 1
2 uþ wð Þ

v ¼ 1
2 uþ vð Þ þ 1

2 v þ wð Þ � 1
2 uþ wð Þ

w ¼ �1
2 uþ vð Þ þ 1

2 v þ wð Þ þ 1
2 uþ wð Þ

so u, v, and w belong to span{uþv, vþw, uþw}.

(48)  contains all linear combinations of vectors in , hence it contains all
vectors in the span().

Section 2.4

(1) Independent. (2) Independent. (3) Dependent.

(4) Dependent. (5) Independent. (6) Dependent.

(7) Independent. (8) Dependent. (9) Dependent.
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(10) Dependent. (11) Independent. (12) Dependent.

(13) Independent. (14) Independent. (15) Dependent.

(16) Independent. (17) Dependent. (18) Dependent.

(19) Dependent. (20) Independent. (21) Dependent.

(22) Independent. (23) Independent. (24) Dependent.

(25) Independent. (26) Independent. (27) Dependent.

(28) Independent. (29) Dependent. (30) Dependent.

(31) One vector is a scalar multiple of the other.

(32) v2 is not a scalar multiple of v1, and the result follows from Theorem 1.

(34) 0¼ c1(uþv)þ c2(u – v)¼ (c1þ c2)uþ (c1 – c2)v. Then (c1þ c2)¼0 and
(c1 – c2)¼0, whereupon c1¼ c2¼0.

(35) 0¼ c1(v1 – v2)þ c2(v1þv3)þ c3(v2 – v3)
¼ (c1þ c2)v1þ( – c1þ c3)v2þ(c2 – c3)v3.

Then (c1þ c2)¼0, ( – c1þ c3)¼0, and (c2 – c3)¼0, whereupon
c1¼ c2¼ c3¼0.

(36) 0¼ c1(v1þv2þv3)þ c2(v2þv3)þ c3(v3)
¼ (c1)v1þ (c1þ c2)v2þ (c1þ c2þ c3)v3.

Then (c1)¼0, (c1þ c2)¼0, and (c1þ c2þ c3)¼0, whereupon c1¼ c2¼ c3¼0.

(38) Let R1, R2,. . ., Rp be the nonzero rows, and form the equation

c1R1 þ c2R2 þ . . .þ cpRp ¼ 0

Let k be the column containing the first nonzero element in R1. Since no
other row has an element in this column, it follows that the kth component
on the left side of the equation, after it is summed, is just c1. Thus, c1¼0.
Now repeat this argument for the second row, using c1¼0 and conclude
that c2¼0.

(39) Consider c1x1þ c2x2þ . . .þ ckxk¼0. Then c1Ax1þ c2Ax2þ . . .þ ckAxk¼
A0¼0 and c1y1þ c2y2þ . . .þ ckyk¼0, whereupon c1¼ c2¼ . . .¼ ck¼0.

(40) Nothing.

(41) Nothing.

(43) If {v1, v2, . . ., vk} is linearly dependent, then there exists a set of scalars
c1, c2, . . ., ck, not all zero such that c1v1þ c2v2þ . . .þ ckvk¼0. For the set
{v1, v2, . . ., vk, w1, w2, . . ., wr}, we have c1v1þ c2v2þ . . .þ ckvkþ0w1þ
0w2þ . . .þ0wr¼0.

(44) (a) 1, (b) 0, (c) 0.
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(45) If the columns are linearly independent, then the parallelpiped generated
by the three vectors collapses into either a parallelogram, a line segment, or
the origin (Theorem 4 of Section 2.4), all of which have zero volume.

(46) It is the product of the diagonal elements.

(47) It must be zero.

Section 2.5

(1) (a), (b), (c), (d), and (f). (2) (a), (c), (e), and (f).

(3) (a), (b), (c), (e), and (f). (4) (e), (f), and (g).

(5) (a), (b), (c), and (d). (6) (a), (b), and (d).

(7) (c), (d), and (e). (8) (b), (c), (d), and (f).

(9) (a) [–2 3]T, (b) [0 1]T.

(10) (a) [0 2]T, (b) [4 –2]T.

(11) (a) [2 –1]T, (b) [–2 1]T.

(12) (a) [0 1]T, (b) [–0.7 0.4]T.

(13) (a) [–50 30]T, (b) [–10 6]T.

(14) (a) [1 1 0]T, (b) [1 0 0]T, (c) [0 1 0]T.

(15) (a) [2 –1]T, (b) [1 1]T.

(16) (a) [0 1 –1 0]T, (b) [0 1 –1 1]T

(17) Denote the spanning set as {x1, x2, . . ., xn v}with v ¼
Xn
k¼1

dkxk: If y 2 V, then

y ¼
Xn
k¼1

ckxk þ cnþ1v ¼
Xn
k¼1

ckxk þ cnþ1

Xn
k¼1

dkxx ¼
Xn
k¼1

ck þ cnþ1dkð Þxk:

(18) Delete any zero vectors from the set. Order the remaining vectors in the
spanning set, and then consider them one at a time in the order selected.
Determine whether each vector is a linear combination of the ones preced-
ing it. If it is, delete it and use Problem 17 to conclude that the remaining set
spans . After all vectors have been considered and, perhaps, deleted, the
set remaining has the property that no vector is a linear combination of the
vectors preceding it.

(19) First four matrices.

(20) {[1 1], [1 2]}.

(21) {t2þ t, tþ1, t2þ1}.
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(23) {t2þ2t – 3, t2þ5t, 2t2 – 4, t3}.

(24) {[1 2 1]T, [1 2 0]T, [1 0 0]T}.

(25) {t3þ t2þ t, t2þ tþ1, tþ1, t3}.

(26) If it did, then the process described in Problem 18 would yield a basis hav-
ing less vectors than the dimension of the vector space.

(27) If the second vector is not a scalar multiple of the first vector, then the sec-
ond vector is not a linear combination of the first, and the two vectors are
linearly independent.

(28) Choose a basis for , then use the results of Problem 22.

(29) Let {w1, w2,. . ., wm} be a basis for  and extend it into a basis for .

(30) Use Problem 26.

(31) Use Problem 18.

Section 2.6

(1) 1 1 2½ �T, 0 1 4=3½ �T (2) 1 1 2½ �T, 0 1 4½ �T, 0 0 1½ �T :

(3) 1
1

2
1

" #T
: (4) 1 0 2½ �T, 0 1 1½ �T:

(5) First two vectors.

(6) 1 0 0 1½ �, 0 1 0 0½ �, 0 0 1 1½ �:
(7) 1 0 �1 1½ �, 0 1 3 �2½ �, 0 0 1 0½ �:

(8) 1 0 2 1½ �, 0 1 2 0½ �, 0 0 1 1=2� 0 0 0 1½ �:
h

(9) 1 2 4 0½ �, 0 1 4=3 �1=3½ �:
(10) t2þ tþ1, tþ1. (11) t2þ1, tþ1, 1

4.

(12) t, 1. (13) First two vectors.

(14) First two vectors. (15) t3þ t2 – t, t2þ tþ1.

(16) t3 þ 1
2 t

2 þ 1
2, t

2þ t, tþ1. (17) t3þ3 t2, t2þ1, tþ1.

(18) First two vectors.
(19)

1 1
1 0

� �
,

0 1
1 0

� �
,

0 0
1 0

� �
:

(20) First two vectors.
(21)

1 3
1 2

� �
,

0 1
0 1

� �
:

(22) Independent. (23) Independent. (24) Dependent.
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(25) Independent. (26) Dependent. (27) Dependent.

(28) Dependent. (29) Independent. (30) Independent.

(31) Dependent. (32) Independent. (33) Dependent.

(34) Dependent (35) Independent. (36) Independent.

(37) Dependent. (38) Independent. (39) Independent.

(40) Dependent. (41) Independent. (42) Dependent.

(43) Dependent. (44) No

(45) k¼ row rank
number of rows¼m. Also, each row, considered as a row
matrix, is an n-tuple and, therefore, an element in an n-dimensional vector
space. Every subset of such vectors contains most n-linearly independent
vectors (Corollary 1 of Section 2.5), thus k
n.

Section 2.7

(1) 2. (2) 1. (3) 2. (4) 1. (5) 1.

(6) 2. (7) 3. (8) 2. (9) 3. (10) 4.

(11) Row rank
3. (12) Column rank
2. (13) 0.

(14) (a) No, (b) Yes.

(15) (a) Yes, (b) Yes, (c) No.

(16) (a) Yes, (b) No, (c) Yes.

(17) Consistent with no arbitrary unknowns: x¼2/3, y¼1/3

(18) Inconsistent.

(19) Consistent with one arbitrary unknown: x¼ (1/2) (3 – 2z), y¼�1/2

(20) Consistent with two arbitrary unknowns: x¼(1/7) (11 – 5z – 2w), y¼ (1/7)
(1 – 3zþ3w).

(21) Consistent with no arbitrary unknowns: x¼ y¼1, z¼–1.

(22) Consistent with no arbitrary unknowns: x¼ y¼0.

(23) Consistent with no arbitrary unknowns: x¼ y¼ z¼0.

(24) Consistent with one arbitrary unknown: x¼–z, y¼z.

(25) Consistent with two arbitrary unknowns: x¼z – 7w, y¼2z – 2w.

(26) That row can be transformed into a zero row using elementary row
operations.
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(27) Transform the matrix to row-reduced form by elementary row operations;
at least one row will be zero.

(28) Use Theorem 1 and Theorem 10 of section 1.5.

CHAPTER 3
Section 3.1

(1) Function; image¼{1, 2, 3, 4, 5}. (2) Not a function.

(3) Not a function. (4) Function; image¼{2, 4}.

(5) Not a function. (6) Function; image¼{10, 30,
40, 50}.

(7) Not a function. (8) Function; image¼{6}.

(9) Function; image¼{a, c, d, f}. (10) Function; image¼{a, b, c, d, f}.

(11) Not a function. (12) Function; image¼ {2, 4, 6, 8, 10}.

(13) Not a function.

(14) Function; image¼{blue, yellow}.

(15) Function; image¼{10.3, 18.6, 22.7}.

(16) Function. (17) Function.

(18) Function. (19) Function.

(20) Not a function. (21) Not a function.

(22) Function. (23) Not a function.

(24) Function. (25) Function.

(26) Not a function.

(27) A function when the domain is restricted to be all real numbers excluding
–3<x<3.

(28) Not a function.

(29) A function when the domain is limited to –4
x
4.

(30) (a) No, (b) Yes, (c) No, (d) Yes.

(31) (a) 2, (b) 0, (c) 6, (d) 4x2 – 6xþ2.

(32) (a) 1, (b) 3, (c) 8x2 – 2x, (d) 2a2þ4abþ2b2–a–b.

(33) (a) –9, (b) –1,

(c) 8z3 – 1, (d) a3 – 3a2bþ3ab2 – b3 – 1.
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(34) Neither is onto. (35) 1, 12, and 15.

(36) Figure 3.1 is one-to-one; Figure 3.2 is not.

(37) 1, 6, and 10.

Section 3.2
(1) (a) [4 9], (b) [–2 15],

(c) [–16 600], (d) [0 –21].

(2) (a) [4 1], (b) [1 3],

(c) [–6 198], (d) [2 –9].

(3) (a) [3 3], (b) [1 –3],

(c) [0 0], (d) [5 3].

(4) (a) [–2 1], (b) [1 –6],

(c) [2 2], (d) [–2 –1].

(5) (a) [–4 0], (b) [13 0],

(c) [–2 0], (d) [0 0].

(6) (a) [2 3 3], (b) [–1 1 –1],

(c) [3 6 2], (d) [0 0 2].

(7) (a) [2 1 0], (b) [–1 –6 5],

(c) [3 0 3], (d) [0 0 0].

(8) (a)
3 1
4 2

� �
, (b)

3 1
3 �1

� �
,

(c)
�5 10
0 20

� �
, (d)

13 28
44 �32

� �
:

(9) (a)
3 0
0 �1

� �
, (b)

0 0
0 0

� �
,

(c)
30 0
0 �5

� �
, (d)

�4 0
0 �31

� �
:
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(10) (a) 5t2 – 7t, (b) –t2þ2t,

(c) –3t2þ3t, (d) –3t2þ3t.

(11) Linear. (12) Not linear. (13) Not linear. (14) Not linear.

(15) Linear. (16) Linear. (17) Linear. (18) Not linear.

(19) Linear. (20) Linear. (21) Not linear. (22) Linear.

(23) Linear. (24) Linear. (25) Not linear. (26) Linear.

(27) Not linear. (28) Linear. (29) Linear. (30) Linear.

(31) Not linear. (32) Not linear. (33) Linear. (34) Linear.

(35) Linear. (36) Linear. (37) Linear. (38) Linear.

(39) Linear. (40) Not linear. (41) Linear. (42) Not linear.

(43) I(auþbv)¼auþbv¼aI(u)þbI(v).

(44) If v 2 , then v ¼
Xn
i¼1

civi and

L vð Þ ¼ L
Xn
i¼1

civi

 !
¼
Xn
i¼1

ciL við Þ ¼
Xn
i¼1

civi ¼ v:

(45) 0(auþbv)¼0¼a0þb0¼a0(u)þb0(v).

(46) If v 2 , then v ¼
Xn
i¼1

civi and

L vð Þ ¼ L
Xn
i¼1

civi

 !
¼
Xn
i¼1

ciL við Þ ¼
Xn
i¼1

ci0 ¼ 0:

(47) T(auþbv)¼T(au)þT(bv) from equation (3.2)

¼ aT(u)þbT(v) from equation (3.3)

(48) Not Linear.

(49) –2.

(50) 3u–4v.

(51) 2v.

(52) L(v1þv2þv3)¼L[v1þ (v2þv3)]¼L(v1)þL(v2þv3)¼ L(v1)þL(v2)þL(v3).
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(53) Sþ Tð Þ auþ bvð Þ ¼ S auþ bvð Þ þ T auþ bvð Þ
¼ aS uð Þ þ bS vð Þ½ � þ aT uð Þ þ bT vð Þ½ �
¼ a S uð Þ þ T uð Þ½ � þ b S vð Þ þ T vð Þ½ �
¼ a Sþ Tð Þ uð Þ þ b Sþ Tð Þ vð Þ:

(54) kTð Þ auþ bvð Þ ¼ k T auþ bvð Þ½ � ¼ k aT uð Þ þ bT vð Þ½ �
¼ a kT uð Þ½ � þ b kT vð Þ½ �
¼ a kTð Þ uð Þ þ b kTð Þ vð Þ:

(55) STð Þ auþ bvð Þ ¼ S T auþ bvð Þ½ � ¼ S aT uð Þ þ bT vð Þ½ �
¼ aS T uð Þ½ � þ bS T vð Þ½ � ¼ a STð Þ uð Þ þ b STð Þ vð Þ:

(56) (a) [3 6], (b) [–2 0], (c) [7 9],

(d) [3 3]. (e) [–2 –6], (f) [–8 –9].

(57) (a) [3 –4], (b) [6 –4], (c) [–3 –1],

(d) [–3 1]. (e) [–6 6], (f) [6 –1].

(58) (a) [10 –2], (b) [0 0], (c) [15 –3],

(d) [5 –1]. (e) [–10 2], (f) [–15 3].

(59) (a) [–2 –3], (b) [4 6], (c) [–8 –12],

(d) [–4 –6]. (e) [0 0], (f) [10 15].

(60) (a) [5 –1], (b) [2 6], (c) [5 –9],

(d) [1 –5]. (e) [–6 –2], (f) [–4 12].

(61) L2 [a b]¼L(L[a b])¼L([a 0])¼ [a 0]¼L[a b].

(62) (LM)[a b]¼L(M[a b])¼L[0 b ]¼ [0 0]¼0.

Section 3.3

(1)

1 2

1 0

0 2

2
4

3
5: (2)

2 3

0 �1

2 4

2
64

3
75:

(3)

1 0

0 2

0 0

2
4

3
5: (4)

0 �1

2 4

0 0

2
64

3
75:

(5)
2 5 4

�2 �1 5

� �
: (6)

�1 3 0

�3 �8 9

� �
:
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(7)
1 9=2 13=2
1 1=2 �5=2

� �
: (8)

�5=2 �1 9=2
3=2 4 �9=2

� �
:

(9)
1 3 0
8 �2 �6

� �
: (10)

25 30
�45 50

� �
:

(11)
550 150
50 250

� �
: (12)

5=2 3
�14 4

� �
:

(13)
55 15

�100 20

� �
: (14)

�185=3 25=3
85=3 115=3

� �
:

(15)
2 0

�1 3

� �
: (16)

�10=3 8=3
8=3 �1=3

� �
:

(17)

1 0 0
0 1 0
0 0 1
0 0 0

2
664

3
775: (18)

1 1 0
1=2 0 1=2
1=2 0 1=2
0 1 1

2
664

3
775:

(19)
3=2 1 1
3=2 �1 �1

�3=2 1 1

�1=2
1=2
1=2

2
4

3
5: (20)

5=2 2 �3=2
�1=2 0 5=2

� �
:

(21)
�2 �7 3
4 16 �6
0 �7 6

2
4

3
5:

(22)

5 6 1
�3 �4 0
2 1 3
2 8 �3

2
664

3
775:

(23)

5 6 1
�3 3 �6
�4 �16 6
4 9 0

2
664

3
775: (24)

1 2 0
1 �1 0
2 �1 4
4 �1 3

0
0
4
5

2
664

3
775:

(25)
�1=3 0 �11=3
2=3 1 10=3

3
0

� �
:

(26)
4

�2
6

2
4

3
5:

(27)
1
3

�2

2
4

3
5: (28)

�2
�8
�6

2
4

3
5:

(29)
5

23

� �
: (30)

8
18

� �
:

(31)
2

�9

� �
: (32)

�65
�240

� �
:

(33) 6t – 2. (34) 6t – 2.
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(35)
0

10

� �
:

(36)
�4
9

�19

2
4

3
5:

(37)

0

�20

28

2
4

3
5:

(38) (5a – b)t – 2a

(39) (2a þ 2b)tþ (4a þ3b).

(40) (4a – bþ3c)t2þ (3a – 2bþ2c)tþ (2a – 2bþ c).

(41)
3aþ c 2aþ 2c� 2d

2a� bþ 2c� d a

� �
:

Section 3.4

(1)
�1 0
1 1

� �
: (2)

2 1
�1 0

� �
:

(3)
�1 1
1 0

� �
: (4)

0 1
1 1

� �
:

(5)
�1 �1
3 4

� �
: (6)

�4 �1
3 1

� �
:

(7)
�10 �10
30 �10

� �
:

(8) 1
2

1 1 �1
�1 1 1
1 �1 1

2
4

3
5:

(9)
1 �1 0
0 1 �1
0 0 1

2
4

3
5: (10)

1 1 1
0 1 1
0 0 1

2
4

3
5:

(11) 1
2

1 2 1
�1 0 1
1 0 1

2
4

3
5: (12)

1 0 3=2
0 1 3=2
0 0 �1=2

2
4

3
5:

(13)
0 �1 �2
1 0 2
0 1 1

2
4

3
5:

(14) (a)
1 5
1 �2

� �
, (b)

�4 �5
1 3

� �
:

(15) (a)
17 23

�13 �18

� �
, (b)

1 �1
�5 �2

� �
:
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(16) (a)
2 0
6 5

� �
, (b)

5 0
0 2

� �
:

(17) (a)
�1 0
3 2

� �
, (b) �1 0

0 2

� �
:

(18) (a)
3 0
0 �1

� �
, (b)

15 4
�48 �13

� �
:

(19) (a)
�13 �8
24 15

� �
, (b)

�1 0
8 3

� �
:

(20) (a)
1 0
0 1

� �
, (b)

1 0
0 1

� �
:

(21) (a)
0 0
0 0

� �
, (b)

0 0
0 0

� �
:

(22) (a)
3 �1 1
2 0 �2
3 �3 1

2
4

3
5, (b)

2 0 0
0 �2 0
0 0 4

2
4

3
5:

(23) (a)
3 �1 1
2 0 �2
3 �3 1

2
4

3
5, (b)

1 0 3
�1 2 �1
3 0 1

2
4

3
5:

(24) (a)
1 �1 0
0 2 0
1 0 3

2
4

3
5, (b)

1=2 �1 �3=2
3=2 3 3=2

�1=2 0 5=2

2
4

3
5:

(25) (a)
1 0 0
0 2 0
0 0 �3

" #
, (b)

1 �1 �1
0 2 5
0 0 �3

" #
:

(26) If PA¼BP, then P ¼ a b
0 0

� �
, which is singular.

(27) If PA¼BP, then P ¼ d
3

�2 1
0 3

� �
with d arbitrary. Choose d 6¼0 to make P

invertible.

(29) Given that transition matrices P1 and P2 exist such that A¼P1
�1BP1 and

B¼P2
�1CP2.

Then

A ¼ P�1
1 P�1

2 CP2

� �
P1 ¼ A ¼ P�1

1 P�1
2

� �
C P2P1ð Þ ¼ A ¼ P2P1ð Þ�1C P2P1ð Þ:

Take P¼P2P1.

(30) If A¼P–1BP, then

A2¼AA¼ (P–1BP)(P–1BP)¼ (P–1B)(PP–1)(BP)¼ (P–1B)I(BP)¼P–1B2P.

(32) If A¼P–1BP, then AT¼(P–1BP)T¼PTBT(P–1)T¼PTBT(PT)–1. Take the new
transition matrix to be PT.
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(33) Take P¼ I.

(35) If A¼P–1BP, then B¼PAP–1. First show that PA–1P–1 is the inverse of B.
Next, A–1¼ (P–1BP)–1¼P–1B–1(P–1)–1¼P–1B–1P.

(36) P can be any invertible 2�2 matrix.

(37) P can be any invertible 2�2 matrix.

(38) P ¼

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 1

1 0 0 0 . . . 0

2
666666664

3
777777775
:

Section 3.5

(1) (b) and (c).

(2) (b) and (c).

(3) (a), (b), (c), and (d).

(4) (b) and (d).

(5) (d).

(6) (a) [1 0 1], (b) [1 0 –1], (c) [2 0 0], (d) [1 0 2].

(7) (a) Not in the range. (b) [1 0 0],
(c) [2 0 0], (d) Not in the range.

(8) (a) Not in the range, (b)
1 0
0 0

� �
,

(c) Not in the range, (d)
3 0
0 5

� �
:

(9) (a)
1 1
1 1

� �
, (b)

0 0
1 0

� �
, (c)

1 0
0 0

� �
, (d)

0 �5
3 0

� �
:

(10) (a) Not in the range. (b) t2 – 2, (c) –3, (d) Not in the range.

(11) Nullity is 0, rank is 2, one-to-one and onto.

(12) Nullity is 0, rank is 2, one-to-one and onto.

(13) Nullity is 1, rank is 1, neither one-to-one nor onto.

(14) Nullity is 1, rank is 2, not one-to-one but onto.

(15) Nullity is 1, rank is 2, not one-to-one but onto.
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(16) Nullity is 2, rank is 1, neither one-to-one nor onto.

(17) Nullity is 0, rank is 2, one-to-one but not onto.

(18) Nullity is 0, rank is 2, one-to-one but not onto.

(19) Nullity is 0, rank is 2, one-to-one but not onto.

(20) Nullity is 1, rank is 1, neither one-to-one nor onto.

(21) Nullity is 1, rank is 1, neither one-to-one nor onto.

(22) Nullity is 2, rank is 1, not one-to-one but onto.

(23) Nullity is 3, rank is 0, neither one-to-one nor onto.

(24) Nullity is 0, rank is 4, one-to-one and onto.

(25) Nullity is 2, rank is 2, neither one-to-one nor onto.

(26) Nullity is 3, rank is 1, neither one-to-one nor onto.

(27) Nullity is 3, rank is 1, not one-to-one but onto.

(28) Nullity is 2, rank is 1, neither one-to-one nor onto.

(29) Nullity is 1, rank is 2, neither one-to-one nor onto.

(30) Nullity is 3, rank is 0, neither one-to-one nor onto.

(31) (b) and (d).

(32) (a) and (d).

(33) (b) and (c).

(34)
�2
1

� �	 

for the kernel;

1
2

� �	 

for the range.

(35) The kernel contains only the zero vector; the range is R2.

(36)
1
1
0

2
4
3
5, 0

0
1

2
4
3
5

8<
:

9=
; for the kernel;

1
�1

� �	 

for the range.

(37)
0
1
0

2
4
3
5

8<
:

9=
; for the kernel; the range is R2.

(38)
�1
�1
0

2
4

3
5

8<
:

9=
; for the kernel;

1
2
3

2
4
3
5, 0

1
1

2
4
3
5

8<
:

9=
; for the range.

(39)
�1
1
0

2
4

3
5, �1

0
1

2
4

3
5

8<
:

9=
; for the kernel;

1
1
1

2
4
3
5

8<
:

9=
; for the range.

(40) The kernel contains only the zero vector; the range is R3.
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(41) The kernel contains only the zero vector; the range is R1.

(42)

�1
1
0
0

2
664

3
775,

�2
0
1
0

2
664

3
775,

�2
0
0
1

2
664

3
775

8>><
>>:

9>>=
>>; for the kernel; the range is R1.

(43) They are the same.

(44) Rank of T¼dimension of. Use Corollary 1 and the fact that the nullity of
T is nonnegative.

(45) dim 2�2ð Þ ¼ 4 > 3 ¼ dim 2
� �

:

(46) dim 2
� � ¼ 3 > 2 ¼ dim 2

� �
:

(47) If
Xk
i¼1

civi ¼ 0, then

0 ¼ T 0ð Þ ¼ T
Xk
i¼1

civi

 !
¼
Xk
i¼1

ciTvi ¼
Xk
i¼1

ciwi, and c1 ¼ c2 ¼ . . . ck ¼ 0:

(48) If dim ð Þ < dim ð Þ, then the nullity of  is greater than zero and many
vectors map into the zero vector.

(49) dim 3
� � ¼ 3 < 4 ¼ dim 4

� �
:

(50) dim 3
� � ¼ 3 < 4 ¼ dim 2�2ð Þ:

(51) If w 2 Im(T), then there exists a vector v 2  such that T(v)¼w. Since

v ¼
Xp
i¼1

civi, it follows that

w ¼ T vð Þ ¼ T
Xp
i¼1

civi

 !
¼
Xp
i¼1

ciT við Þ:

(52) 0 ¼
Xk
i¼1

ciT við Þ implies that 0 ¼ T
Xk
i¼1

civi

 !
. Then

Xk
i¼1

civi ¼ 0 if T is one-

to-one and c1¼ c2¼ . . .¼ cn¼0 if {v1, v2 . . ., vn} is linearly independent.
Conversely, let {v1, v2 . . ., vn} be a basis for. This set is linearly indepen-
dent, and by hypothesis so is {T(v1), T(v2) . . ., T(vn)}.

If T uð Þ ¼ T vð Þ, with u ¼
Xn
i¼1

civi and v ¼
Xn
i¼1

divi, then

Xn
i¼1

ciT við Þ ¼ T uð Þ ¼ T vð Þ ¼
Xn
i¼1

diT við Þ and
Xn
i¼1

ci � dið ÞT við Þ ¼ 0,

whereupon ci – di¼0(i¼1, 2, . . ., n), and u¼v.
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(53) Let {v1,v2 . . .,vn} be a basis for. We are given that {T(v1),T(v2) . . .,T(vn)}.

is a basis for . If T(u)¼T(v), with u ¼
Xn
i¼1

civi and v ¼
Xn
i¼1

divi, then

Xn
i¼1

ciT við Þ ¼ T uð Þ ¼ T vð Þ ¼
Xn
i¼1

diT við Þ, and it follows from Theorem 5

of Section 2.5 that u¼v.

(54) Let the dimension of¼ n. T is one-to-one if and only if v(T)¼0 (Theorem
5) if and only if the rank of T equals n (Corollary 1) if and only if an n�n
matrix representation of T has rank n if and only if the matrix has an inverse
(Theorem 5 of Section 2.7).

(55) T is onto if and only if T is one-to-one (Theorem 6). Then use the results of
Problem 54.

CHAPTER 4
Section 4.1

(1) (a), (d), (e), (g), and (i).

(2) l¼3 for (a), (e), and (g); l¼5 for (d) and (i).

(3) (b), (c), (d), (e), and (g).

(4) l¼2 for (b); l¼1 for (c) and (d); l¼3 for (e) and (g).

(5) (a), (b), and (d).

(6) l¼–2 for (a); l¼–1 for (b); l¼2 for (d).

(7) (a), (c), and (d).

(8) l¼–2 for (b) and (c); l¼1 for (d).

(9)
2
1

� �	 

for l ¼ 2;

1
1

� �	 

for l ¼ 3:

(10)
1

�1

� �	 

for l ¼ 1;

1
2

� �	 

for l ¼ 4:

(11)
3

�2

� �	 

for l ¼ 1;

1
2

� �	 

for l ¼ 4:

(12)
1

�1

� �	 

for l ¼ �3;

2
3

� �	 

for l ¼ 12:

(13)
1
1

� �	 

for l ¼ 3;

1
�2

� �	 

for l ¼ �3:

(14) No real eigenvalues.
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(15)
1
0

� �	 

for l ¼ 3;with multiplicity 2:

(16)
1
0

� �
;

0
1

� �	 

for l ¼ 3;with multiplicity 2:

(17)
1
1

� �	 

for l ¼ t;

�1
2

� �	 

for l ¼ �2t:

(18)
1
1

� �	 

for l ¼ 2y;

�2
1

� �	 

for l ¼ 3y:

(19)
0
1
0

2
4
3
5

8<
:

9=
; for l ¼ 2;

1
1
1

2
4
3
5

8<
:

9=
; for l ¼ 4;

�1
0
1

2
4

3
5

8<
:

9=
; for l ¼ �2:

(20)
1

�4
1

2
4

3
5

8<
:

9=
; for l ¼ 1;

0
1
0

2
4
3
5

8<
:

9=
; for l ¼ 2;

�1
0
1

2
4

3
5

8<
:

9=
; for l ¼ 3:

(21)
1

�4
1

2
4

3
5

8<
:

9=
; for l ¼ 2;

0
1
0

2
4
3
5

8<
:

9=
; for l ¼ 3;

�1
0
1

2
4

3
5

8<
:

9=
; for l ¼ 4:

(22)
1
0

�1

2
4

3
5; 1

�1
�0

2
4

3
5

8<
:

9=
; for l ¼ 1;with multiplicity 2;

1
0
1

2
4
3
5

8<
:

9=
; for l ¼ 3:

(23)
1
0

�1

2
4

3
5

8<
:

9=
; for l ¼ 1;with multiplicity 2;

1
0
1

2
4
3
5

8<
:

9=
; for l ¼ 3:

(24)
3
0

�1

2
4

3
5; �1

5
�3

2
4

3
5

8<
:

9=
; for l ¼ 0;with multiplicity 2

1
2
3

2
4
3
5

8<
:

9=
; for l ¼ 14:

(25)
1
3
9

2
4
3
5

8<
:

9=
; for l ¼ 3;with multiplicity 3:

(26)
�1
0
1

2
4

3
5; �2

1
0

2
4

3
5

8<
:

9=
; for l ¼ 3;with multiplicity 2

1
2
1

2
4
3
5

8<
:

9=
; for l ¼ 9:
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(27)

0

1

1

2
4
3
5

8<
:

9=
; for l ¼ 1;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ �2

1

1

1

2
4
3
5

8<
:

9=
; for l ¼ 5:

(28)

�1

1

0

2
4

3
5

8<
:

9=
; for l ¼ 2;

1

1

1

2
4
3
5

8<
:

9=
; for l ¼ 3;

�1

�1

2

2
4

3
5

8<
:

9=
; for l ¼ 6:

(29)

1

1

1

1

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 1;with multiplicity 4:

(30)

1

0

0

0

2
6664
3
7775;

0

1

1

1

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 1;with multiplicity 4:

(31)

�1

0

0

1

2
6664

3
7775;

�1

0

1

0

2
6664

3
7775;

�1

0

0

1

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 1 with multiplicity 3;

0

1

1

1

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 4:

(32)

0

�1

1

0

2
6664

3
7775;

�1

�1

0

1

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 2 with multiplicity 2;

1

0

0

0

2
6664
3
7775

8>>><
>>>:

9>>>=
>>>; for l ¼ 3 with multiplicity 2:

(33)
2=

ffiffiffi
5

p

1=
ffiffiffi
5

p
" #( )

for l ¼ 2;
1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
" #( )

for l ¼ 3:

(34)
1=

ffiffiffi
2

p

�1=
ffiffiffi
2

p
" #( )

for l ¼ 1;
1=

ffiffiffi
5

p

2=
ffiffiffi
5

p
" #( )

for l ¼ 4:

(35)
3=

ffiffiffiffiffiffi
13

p

�2=
ffiffiffiffiffiffi
13

p
" #( )

for l ¼ 0;
1=

ffiffiffi
5

p

2=
ffiffiffi
5

p
" #( )

for l ¼ 8:

(36)

0

1

0

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 2;

1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 4;

�1=
ffiffiffi
2

p

0

1=
ffiffiffi
2

p

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ �2:
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(37)

1=
ffiffiffiffiffiffi
18

p

�4=
ffiffiffiffiffiffi
18

p

1=
ffiffiffiffiffiffi
18

p

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 1;

0

1

0

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 2;

�1=
ffiffiffi
2

p

0

1=
ffiffiffi
2

p

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 3:

(38) {–5tþ(3 � ffiffiffiffiffiffi
34

p
)} for l ¼ ffiffiffiffiffiffi

34
p

; {–5tþ (3 þ ffiffiffiffiffiffi
34

p
)} for l ¼ � ffiffiffiffiffiffi

34
p

(39) {–5tþ2} for l ¼ 1{t – 1} for l ¼ –2

(40) {t2þ1, t} for l ¼ 1{–t2 – 2 t þ1} for l ¼ 3

(41)
1

�1

" #( )
for l ¼ 3 with multiplicity 2.

(42)
5

3

" #( )
for l ¼ 10;

2

�3

" #( )
for l ¼ �11;

(43)

5

�4

1

2
664

3
775

8>><
>>:

9>>=
>>;for l ¼ 0

�1

0

1

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 2 with multiplicity 2:

(44)

1

0

�1

2
64

3
75;

1

2

1

2
64
3
75

8><
>:

9>=
>;for l ¼ 2 with multiplicity 2;

1

�1

1

2
64

3
75

8><
>:

9>=
>; for l ¼ 5:

(45)
1 1

0 1

" #( )
for l ¼ 1 with multiplicity 3:

(46) {1} for l¼0 of multiplicity 2.

(47) {1} for l¼0 of multiplicity 3.

(48) {t, 1} for l¼0 of multiplicity 3.

(49) {e}{e3t} for l¼3; {e–3t} for l¼–3.

(50) {e3t, e–3t} for l¼9 of multiplicity 2.

(51) No real eigenvalues.

(52) {sin t, cos t} for l¼1 of multiplicity 2.

(53) {sin 2 t, cos 2 t} for l¼4 of multiplicity 2.
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(54) Expanding by the first column,

�l 1 0 � � � 0 0
0 �l 1 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 1 0
0 0 0 � � � �l 1

�a0 �a1 �a2 � � � �an�1 �an�l

�����������

�����������

¼ �l

�l 1 0 � � � 0 0
0 �l 0 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � �l 1
�a1 �a2 �a3 � � � �an�1 �an � l

����������

����������

þ �1ð Þna0

1 0 � � � 0 0
�l 1 � � � 0 0
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 0
0 0 � � � �l 1

����������

����������
Use the induction hypothesis on the first determinant and note that the second
determinant is the determinant of a lower triangular matrix.

Section 4.2

(1) 9.

(2) 9.2426.

(3) 5þ8þl¼–4, l¼–17.

(4) (5)(8)l¼–4, l¼–0.1

(5) Their product is –24.

(6) (a) –6, 8; (b) –15, 20; (c) –6, 1; (d) 1, 8;

(7) (a) 4, 4, 16; (b) –8, 8, 64; (c) 6, –6, –12; (d) 1, 5, 7.

(8) (a) 2A, (b) 5A, (c) A2, (d) Aþ3I.

(9) (a) 2A, (b) A2, (c) A3, (d) A – 2I.

(10) 8þ 2 ¼ 10 ¼ 5þ ffiffiffiffiffiffi
18

p Þ þ 5� ffiffiffiffiffiffi
18

p Þ ¼ l1 þ l2;
��

det(A) ¼7¼ (5 þ ffiffiffiffiffiffi
18

p Þ (5 –
ffiffiffiffiffiffi
18

p Þ ¼ l1l2.

(11) 1þ2þ7¼10¼0þ (5 þ ffiffiffiffiffiffi
10

p Þ þ (5 � ffiffiffiffiffiffi
10

p Þ ¼ l1 þ l2 þ l3;

det(A)¼0¼ (0)(5 þ ffiffiffiffiffiffi
10

p Þ (5 –
ffiffiffiffiffiffi
10

p Þ ¼ l1l2l3.
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(12)
1

5þ ffiffiffiffiffiffi
18

p ¼ 1

7
5� ffiffiffiffiffiffi

18
p� �

and
1

5� ffiffiffiffiffiffi
18

p ¼ 1

7
5þ

ffiffiffiffiffiffi
18

p
Þ

� �
for Problem 10.

The matrix in Problem 11 has a zero eigenvalue and no inverse.

(13) A ¼ 1 2
4 3

� �
has eigenvalues –1 and 5; A ¼ 2 �1

3 �2

� �
has eigenvalues 1

and –1; A þ B ¼ 3 1
7 1

� �
has eigenvalues 2� 2

ffiffiffi
2

p
:

(14) Use A and B from the solution to Problem 13. Then AB ¼ 8 �5
14 �10

� �
has

eigenvalues �1� ffiffiffiffiffiffi
11

p
:

(15) x ¼ �1
1

� �
is an eigenvector of A ¼ 1 2

4 3

� �
, but ATx ¼ 1 4

2 3

� � �1
1

� �
¼

3
1

� �
6¼ lx for any real constant l.

(16) (A – cI)x¼Ax – cx ¼ lx – cx¼ (l – c)x.

(17) det(AT – lI)¼det(A – lI)T¼ (det(A – lI).

(23) (a) A2 � 4A � 5I ¼ 1 2
4 3

� �
1 2
4 3

� �
� 4

1 2
4 3

� �
� 5

1 0
0 1

� �
¼ 0 0

0 0

� �
:

(b) A2 � 5A ¼ 1 2
2 4

� �
1 2
2 4

� �
� 4

1 2
2 4

� �
� 5

1 0
0 1

� �
¼ 0 0

0 0

� �
:

(24) Use the results of Problem 18 and Theorem 7 of Appendix A.

(25) An þ an�1A
n�1 þ . . . a1A þ a0I ¼ 0

A An�1 þ an�1A
n�2 þ . . .þ a1I½ � ¼ �a0I

or

A � 1

a0
An�1 þ an�1A

n�2 þ . . .þ a1I
� �2

4
3
5 ¼ I

Thus, (–1/a0)(A
n–1þan–1A

n–2 þ. . .þ a1I) is the inverse of A.

(26) (a) A�1 ¼ �2 1
3=2 �1=2

� �
, (b) since a0¼0, the inverse does not exist,

(c) since a0¼0, the inverse does not exist,

(d) A�1 ¼
�1=3 �1=3 2=3

�1=3 1=6 1=6

1=2 1=4 �1=4

2
4

3
5, (e) A�1 ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

2
6664

3
7775:
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Section 4.3

(1) Yes; M ¼ 3 1
1 1

� �
,D ¼ 1 0

0 �1

� �
:

(2) No, if the vector space is the set of real two-tuples.

(3) No.

(4) No.

(5) Yes; M ¼
�10 0 0

1 1 �3
8 2 1

2
4

3
5,D ¼

1 0 0
0 3 0
0 0 �4

2
4

3
5:

(6) Yes; M ¼
1 0 1

�2 �2 0
0 1 1

2
4

3
5,D ¼

3 0 0
0 3 0
0 0 7

2
4

3
5:

(7) Yes; M ¼
3 �2 1
0 1 2

�1 0 3

2
4

3
5,D ¼

0 0 0
0 0 0
0 0 14

2
4

3
5:

(8) Yes; M ¼
1 0 1
0 1 �1

�1 1 1

2
4

3
5,D ¼

2 0 0
0 2 0
0 0 5

2
4

3
5:

(9) No.

(10) No.

(11) No.

(12) Yes;{3 tþ1, tþ1}.

(13) Yes;{3 tþ1, –tþ3}.

(14) Yes;{–10 t2þ tþ8, tþ2, –3 t þ1}.

(15) Yes;{t2 – 2 t, – 2 tþ1, t2 þ1}.

(16) No.

(17) Yes,
3 0
0 �1

� �
;

�1 5
0 �3

� �
;

1 2
0 3

� �	 

:

(18) No.

(19) Yes,
1 0
0 �1

� �
;

1 0
2 1

� �
;

1 0
�1 1

� �	 

:

(20) No.

(21) No.
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Section 4.4

(1)
e�1 0

0 e0

� �
: (2)

e2 0
0 e3

� �
:

(3)
e�7 0

0 e�7

� �
: (4)

1 0
0 1

� �
:

(5)
e�7 e�7

0 e�7

� �
: (6)

e2 e2

0 e2

� �
:

(7)
e3 e3

0 e3

� �
: (8)

1 1
0 1

� �
:

(9)

e2 0 0

0 e3 0

0 0 e4

2
4

3
5: (10)

e1 0 0
0 e�5 0
0 0 e�1

2
4

3
5:

(11)

e2 0 0

0 e2 0

0 0 e2

2
4

3
5:

(12)

e2 e2
1

2
e2

0 e2 e2

0 0 e2

2
664

3
775:

(13)

e�1 e�1 1

2
e�1

0 e�1 e�1

0 0 e�1

2
664

3
775: (14)

1 0 1=2
0 1 1
0 0 1

2
4

3
5:

(15)

e�1 0 0

0 e�1 e�1

0 0 e�1

2
4

3
5: (16)

e2 0 0

0 e2 e2

0 0 e2

2
4

3
5:

(17)

e1 0 0 0

0 e5 0 0

0 0 e�5 0

0 0 0 e3

2
6664

3
7775: (18)

e�5 0 0 0

0 e�5 0 0

0 0 e�5 0

0 0 0 e�5

2
6664

3
7775:

(19)

e�5 0 0 0

0 e�5 0 0

0 0 e�5 e�5

0 0 0 e�5

2
6664

3
7775: (20)

e�5 0 0 0

0 e�5 e�5 1

2
e�5

0 0 e�5 e�5

0 0 0 e�5

2
666664

3
777775:
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(21)

e�5 0 0 0

0 e�5 0 0

0 0 e�5 e�5

0 0 0 e�5

2
6664

3
7775:

(22)

e�5 e�5 1

2
e�5 1

6
e�5

0 e�5 e�5 1

2
e�5

0 0 e�5 e�5

0 0 0 e�5

2
66666664

3
77777775
:

(23)
e2 0 e2

0 e2 0
0 0 e2

2
4

3
5: (24) 1

7

3e5 þ 4e�2 3e5 � 3e�2

4e5 � 4e�2 4e5 þ 3e�2

" #
:

(25) e3
2 �1
1 0

� �
:

(26) e2
0 1 3

�1 2 5
0 0 1

2
4

3
5:

(27) ep
1 p=3 p2=12� p
0 1 p=2
0 0 1

2
4

3
5: (28) e2

1 1 1
0 1 2
0 0 1

2
4

3
5:

(29)
e 0 0

�eþ 2e2 2e2 �e2

e2 e2 0

2
4

3
5:

(30) eA ¼ e 3e
0 e

� �
and e�A ¼ e�1 �3e�1

0 e�1

� �
:

(31) eA ¼

1

2
e8i þ e�8i
� � �i

16
e8i � e�8i
� �

4i e8i � e�8ið Þ 1

2
e8i þ e�8i
� �

2
6664

3
7775 and e�A ¼

1

2
e8i þ e�8i
� � � i

16
e8i � e�8i
� �

�4i e8i � e�8ið Þ 1

2
e8i þ e�8i
� �

2
6664

3
7775:

(32) eA ¼
1 1 1=2
0 1 1
0 0 1

2
4

3
5 and e�A ¼

1 �1 1=2
0 1 �1
0 0 1

2
4

3
5: A hasno inverse:

(33) eA ¼ e e� 1
0 1

� �
, eB ¼ 1 e� 1

0 1

� �
, eAeB ¼ e 2e2 � 2e

0 e

� �
,

eBeA ¼ e 2e� 2
0 e

� �
, eAþB ¼ e 2e

0 e

� �
:

(34) A ¼ 1 0

0 2

� �
,B ¼ 3 0

0 4

� �
:

(36) 1=7
3e8t þ 4et 4e8t � 4et

3e8t � 3et 4e8t þ 3et

� �
:
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(37)
2=

ffiffiffi
3

p� �
sinh

ffiffiffiffiffi
3t

p þ cosh
ffiffiffiffiffi
3t

p
1=

ffiffiffi
3

p� �
sinh

ffiffiffiffiffi
3t

p

�1=
ffiffiffi
3

p� �
sinh

ffiffiffiffiffi
3t

p �2=
ffiffiffi
3

p� �
sinh

ffiffiffiffiffi
3t

p þ cosh
ffiffiffiffiffi
3t

p

2
4

3
5:

Note: sinh
ffiffiffiffiffi
3t

p ¼ e
ffiffiffi
3t

p
�e�

ffiffiffi
3t

p

2 and cosh
ffiffiffiffiffi
3t

p ¼ e
ffiffiffi
3t

p
þe�

ffiffiffi
3t

p

2 :

(38) e3t
1þ t t

�t 1� t

" #
:

(39)
1:4e2t � 0:4e7t 0:2e2t � 0:2e7t

2:8e2t � 2:8e7t �0:4e�2t þ 1:4e�7t

" #
:

(40) �
0:8e�2t þ 0:2e�7t 0:4e�2t � 0:4e�7t

0:4e�2t � 0:4e�7t 0:2e�2t þ 0:8e�7t

" #
:

(41)
0:5e�4t þ 0:5e�16t 0:5e�4t � 0:5e�16t

0:5e�4t � 0:5e�16t 0:5e�4t þ 0:5e�16t

" #
:

(42) e2t
1 t

0 1

� �
: (43)

1 t t2=2

0 1 t

0 0 1

2
4

3
5:

(44)
1

12

12et 0 0

�9et þ 14e3t � 5e�3t 8e3t þ 4e�3t 4e3t � 4e�3t

�24et þ 14e3t þ 10e�3t 8e3t � 8e�3t 4e3t þ 8e�3t

2
664

3
775

(45) e�t

1 t t2=2

0 1 t

0 0 1

2
64

3
75: (46) e4t

1 t 0

0 1 0

0 0 1

2
64

3
75:

(47)
e2t te2t 0
0 e2t 0
0 0 e�t

2
4

3
5: (48) 1=2ð Þ

�e�t þ 3et �3e�t þ 3et 0
e�t � et 3e�t � et 0
2tet 2tet 2et

2
4

3
5:

(49) e2t

1þ t t 0

�t 1� t 0

t � 1

2
t2 2t � 1

2
t2 1

2
6664

3
7775:

(50) et

t2 þ 4t � 7=2 2t2 � 2t 2t

2t � t2

2
t2 � t þ 1 t

3t2

2
� 7t �3t2 þ 5t �3t þ 1

2
6666664

3
7777775:
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(51)
cos 8tð Þ 1

8sin 8tð Þ
�8sin 8tð Þ cos 8tð Þ

" #
:

(52)
2sin tð Þ þ cos tð Þ 5sin tð Þ

�sin tð Þ �2sin tð Þ þ cos tð Þ
� �

:

(53)
1

3
e�4t

4sin 3tð Þ þ 3cos 3tð Þ sin 3tð Þ
�25sin 3tð Þ �4sin 3tð Þ þ 3cos 3tð Þ

" #
:

(54) e4t
�sin t þ cos t sin t

�2sin t sin t þ cos t

� �
:

(55)
1

3

e�t þ 8e2t 0 4e�t þ 8e2t

3e2t þ 6te2t 6e2t 3e2t þ 6te2t

�e�t � 2e2t 0 �4e�t � 2e2t

2
4

3
5

¼ 1

3

�e�t þ 4e2t 0 �4e�t þ 4e2t

3te2t 3e2t 3te2t

e�t � e2t 0 4e�t � e2t

2
4

3
5 3 0 4

1 2 1

�1 0 �2

2
4

3
5:

(56)
�sin t cos t

�cos t �sin t

� �
¼ cos t sin t

�sin t cos t

� �
0 1

�1 0

� �
:

(57) dA2 tð Þ=dt ¼ 2t þ 40t4 6t2 þ 4tet þ 2t3et

16t3 þ 12t2et þ 4t3et 40t2 þ 2e2t

� �
,

2A tð ÞdA tð Þ=dt ¼ 2t þ 48t4 8t2 þ 4t2et

8t3 þ 24t2et 32t4 þ 2e2t

� �
:

Section 4.5
(1) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 0.6000 1.0000 5.0000
2 0.5238 1.0000 4.2000
3 0.5059 1.0000 4.0476
4 0.5015 1.0000 4.0118
5 0.5004 1.0000 4.0029

(2) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 0.5000 1.0000 10.0000
2 0.5000 1.0000 8.0000
3 0.5000 1.0000 8.0000
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(3) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 0.6000 1.0000 15.0000
2 0.6842 1.0000 11.4000
3 0.6623 1.0000 12.1579
4 0.6678 1.0000 11.9610
5 0.6664 1.0000 12.0098

(4) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 0.5000 1.0000 2.0000
2 0.2500 1.0000 4.0000
3 0.2000 1.0000 5.0000
4 0.1923 1.0000 5.2000
5 0.1912 1.0000 5.2308

(5) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 1.0000 0.6000 10.0000
2 1.0000 0.5217 9.2000
3 1.0000 0.5048 9.0435
4 1.0000 0.5011 9.0096
5 1.0000 0.5002 9.0021

(6) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 1.0000 0.4545 11.0000
2 1.0000 0.4175 9.3636
3 1.0000 0.4145 9.2524
4 1.0000 0.4142 9.2434
5 1.0000 0.4142 9.2427
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(7) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.2500 1.0000 0.8333 12.0000
2 0.0763 1.0000 0.7797 9.8333
3 0.0247 1.0000 0.7605 9.2712
4 0.0081 1.0000 0.7537 9.0914
5 0.0027 1.0000 0.7513 9.0310

(8) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.6923 0.6923 1.0000 13.0000
2 0.5586 0.7241 1.0000 11.1538
3 0.4723 0.6912 1.0000 11.3448
4 0.4206 0.6850 1.0000 11.1471
5 0.3883 0.6774 1.0000 11.1101

(9) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.4000 0.7000 1.0000 20.0000
2 0.3415 0.6707 1.0000 16.4000
3 0.3343 0.6672 1.0000 16.0488
4 0.3335 0.6667 1.0000 16.0061
5 0.3333 0.6667 1.0000 16.0008

(10) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.4000 1.0000 0.3000 –20.0000
2 1.0000 0.7447 0.0284 –14.1000
3 0.5244 1.0000 –0.3683 –19.9504
4 1.0000 0.7168 –0.5303 –18.5293
5 0.6814 1.0000 –0.7423 –20.3976

(11)
1
1
1

2
4
3
5 is a linear combination of

1
�4
1

2
4

3
5 and

0
1
0

2
4
3
5, which are eigenvectors

corresponding to l¼1 and l¼2, not l¼3. Thus, the power method con-
verges to l¼2.
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(12) There is no single dominant eigenvalue. Here,
��l1�� ¼ ��l2�� ¼ ffiffiffiffiffiffi

34
p

:

(13) If we shift by l¼4, the power method on A ¼ �2 1
2 �1

� �
will not work

because one eigenvalue is zero. We will not be able to obtain a dominant
value for this matrix regardless of the initial value used (see answer to
problem 25).

(14) Shift by l¼16. The power method on A ¼
�13 2 3

2 �10 6
3 6 �5

2
4

3
5 converges

after three iterations to m¼�14. lþm¼2.

(15) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 –0.3333 1.0000 0.6000
2 1.0000 –0.7778 0.6000
3 –0.9535 1.0000 0.9556
4 1.0000 –0.9904 0.9721
5 –0.9981 1.0000 0.9981

(16) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 –0.5000
1 –0.8571 1.0000 0.2917
2 1.0000 –0.9615 0.3095
3 –0.9903 1.0000 0.3301
4 1.0000 –0.9976 0.3317
5 –0.9994 1.0000 0.3331

(17) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 0.2000 1.0000 0.2778
2 –0.1892 1.0000 0.4111
3 –0.2997 1.0000 0.4760
4 –0.3258 1.0000 0.4944
5 –0.3316 1.0000 0.4987
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(18) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000
1 –0.2000 1.0000 0.7143
2 –0.3953 1.0000 1.2286
3 –0.4127 1.0000 1.3123
4 –0.4141 1.0000 1.3197
5 –0.4142 1.0000 1.3203

(19) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 1.0000 0.4000 –0.2000 0.3125
2 1.0000 0.2703 –0.4595 0.4625
3 1.0000 0.2526 –0.4949 0.4949
4 1.0000 0.2503 –0.4994 0.4994
5 1.0000 0.2500 –0.4999 0.4999

(20) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 0.3846 1.0000 0.9487 –0.1043
2 0.5004 0.7042 1.0000 –0.0969
3 0.3296 0.7720 1.0000 –0.0916
4 0.3857 0.6633 1.0000 –0.0940
5 0.3244 0.7002 1.0000 –0.0907

(21) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000
1 –0.6667 1.0000 –0.6667 –1.5000
2 –0.3636 1.0000 –0.3636 1.8333
3 –0.2963 1.0000 –0.2963 1.2273
4 –0.2712 1.0000 –0.2712 1.0926
5 –0.2602 1.0000 –0.2602 1.0424
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(22) We cannot construct an LU decomposition. Shift as explained in
Problem 13.

(23) We cannot solve for Lx1¼y uniquely for x1, because one eigenvalue is zero.
Since the rows are linearly dependent, we have at least one “free variable”.
In this case, we could try to eliminate a variable to obtain a system which is
both “smaller” and “determined”.

(24) Yes, on occasion.

(25) Inverse power method applied to A ¼
�7 2 3
2 �4 6
3 6 1

2
4

3
5 converges to

m¼1/6. lþ1/m¼10þ6 ¼16.

(26) Inverse power method applied to A ¼
27 �17 7

�17 21 1
7 1 11

2
4

3
5 converges to

m¼1/3. lþ1/m¼–25þ3¼–22.

CHAPTER 5
Section 5.2

(1) x tð Þ ¼ x tð Þ
y tð Þ
� �

,A ¼ 2 3

4 5

� �
, f tð Þ ¼ 0

0

� �
, c ¼ 6

7

� �
, t0 ¼ 0:

(2) x tð Þ ¼ y tð Þ
z tð Þ
� �

,A ¼ 3 2

4 1

� �
, f tð Þ ¼ 0

0

� �
, c ¼ 1

1

� �
, t0 ¼ 0:

(3) x tð Þ ¼ x tð Þ
y tð Þ
� �

,A ¼ �3 3

4 �4

� �
, f tð Þ ¼ 1

�1

� �
, c ¼ 0

0

� �
, t0 ¼ 0:

(4) x tð Þ ¼ x tð Þ
y tð Þ
� �

,A ¼ 3 0

2 0

� �
, f tð Þ ¼ t

t þ 1

� �
, c ¼ 1

�1

� �
, t0 ¼ 0:

(5) x tð Þ ¼ x tð Þ
y tð Þ
� �

,A ¼ 3 7

1 1

� �
, f tð Þ ¼ 2

2t

� �
, c ¼ 2

�3

� �
, t0 ¼ 1:

(6) x tð Þ ¼
u tð Þ
v tð Þ
w tð Þ

2
4

3
5,A ¼

1 1 1

1 �3 1

0 1 1

2
4

3
5, f tð Þ ¼

0

0

0

2
4
3
5, c ¼ 0

1

�1

2
4

3
5, t0 ¼ 4:

(7) x tð Þ ¼
x tð Þ
y tð Þ
z tð Þ

2
4

3
5,A ¼

0 6 1

1 0 �3

0 �2 0

2
4

3
5, f tð Þ ¼

0

0

0

2
4
3
5, c ¼ 10

10

20

2
4

3
5, t0 ¼ 0:
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(8) x tð Þ ¼
r tð Þ
s tð Þ
u tð Þ

2
4

3
5,A ¼

1 �3 1

1 �1 0

2 1 �1

2
4

3
5, f tð Þ ¼

sin t

t2 þ 1

cos t

2
4

3
5, c ¼ 4

�2

5

2
4

3
5, t0 ¼ 1:

(9) x tð Þ ¼ x1 tð Þ
x2 tð Þ
� �

,A ¼ 0 1

3 2

� �
, f tð Þ ¼ 0

0

� �
, c ¼ 4

5

� �
, t0 ¼ 0:

(10) x tð Þ ¼ x1 tð Þ
x2 tð Þ
� �

,A ¼ 0 1

1 �1

� �
, f tð Þ ¼ 0

0

� �
, c ¼ 2

0

� �
, t0 ¼ 1:

(11) x tð Þ ¼ x1 tð Þ
x2 tð Þ
� �

,A ¼ 0 1

1 0

� �
, f tð Þ ¼ 0

t2

� �
, c ¼ �3

3

� �
, t0 ¼ 0:

(12) x tð Þ ¼ x1 tð Þ
x2 tð Þ
� �

,A ¼ 0 1
3 2

� �
, f tð Þ ¼ 0

2

� �
, c ¼ 0

0

� �
, t0 ¼ 0:

(13) x tð Þ ¼ x1 tð Þ
x2 tð Þ
� �

,A ¼ 0 1
�2 3

� �
, f tð Þ ¼ 0

e�t

� �
, c ¼ 2

2

� �
, t0 ¼ 1:

(14) x tð Þ ¼
x1 tð Þ
x2 tð Þ
x3 tð Þ

2
4

3
5,A ¼

0 1 0
0 0 1
1 0 �1

2
4

3
5, f tð Þ ¼

0
0
0

2
4
3
5, c ¼ 2

1
�205

2
4

3
5, t0 ¼ �1:

(15) x tð Þ ¼
x1 tð Þ
x2 tð Þ
x3 tð Þ
x4 tð Þ

2
664

3
775,A ¼

0 1 0 0
0 0 1 0
0 0 0 1
0 1 �1 0

2
664

3
775, f tð Þ ¼

0
0
0
1

2
664
3
775, c ¼

1
2
p
e3

2
664

3
775, t0 ¼ 0:

(16) x tð Þ ¼

x1 tð Þ
x2 tð Þ
x3 tð Þ
x4 tð Þ
x5 tð Þ
x6 tð Þ

2
6666664

3
7777775,A ¼

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 �4 0

2
6666664

3
7777775, f tð Þ ¼

0
0
0
0
0

t2 � t

2
6666664

3
7777775, c ¼

2
1
0
2
1
0

2
6666664

3
7777775, t0 ¼ p:

Section 5.3

(3) (a) e�3t

1 �t t2=t

0 1 �t

0 0 1

2
4

3
5, (b) e3 t�2ð Þ

1 t � 2ð Þ t � 2ð Þ2=2
0 1 t � 2ð Þ
0 0 1

2
4

3
5,

(c) e3 t�sð Þ
1 t � sð Þ t � sð Þ2=2
0 1 t � sð Þ
0 0 1

2
64

3
75,
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(d) e�3 t�2ð Þ
1 � t � 2ð Þ t � 2ð Þ2=2
0 1 � t � 2ð Þ
0 0 1

2
64

3
75:

(4) (a)
1

6

2e�5t þ 4et 2e�5t � 2et

4e�5t � 4et 4e�5t þ 2et

" #
,

(b)
1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

" #
,

(c)
1

6

2e5 t�3ð Þ þ 4e� t�3ð Þ 2e5 t�3ð Þ � 2e� t�3ð Þ

4e5 t�3ð Þ � 4e� t�3ð Þ 4e5 t�3ð Þ þ 2e� t�3ð Þ

" #
:

(5) (a)
1

3

sin 3t þ 3cos 3t �5sin 3t

2sin 3t �sin 3t þ 3cos 3t

" #
,

(b)
1

3

sin 3sþ 3cos 3s �5sin 3s
2sin 3s �sin 3sþ 3cos 3s

� �
,

(c)
1

3

sin 3 t � sð Þ þ 3cos 3 t � sð Þ �5sin 3 t � sð Þ
2sin 3 t � sð Þ �sin 3 t � sð Þ þ 3cos 3 t � sð Þ

" #
:

(6) Only (c). (7) Only (c). (8) Only (b).

(9) x(t)¼5e(t–2) – 3e–(t–2), y(t)¼5e(t–2) – e–(t–2).

(10) x(t)¼2e(t–1) – 1, y(t)¼2e(t–1) – 1.

(11) x(t)¼k3e
tþ3k4e–t, y(t)¼k3e

tþk4e
–t.

(12) x(t)¼k3e
tþ3k4e

–t – 1, y(t)¼k3e
tþk4e

–t – 1.

(13) x(t)¼cos 2t – (1/6) sin 2tþ (1/3) sin t.

(14) x(t)¼ t4

24
þ 5t2

4
� 2t

3
� 5

8
.

(15) x(t)¼ (2/9)e2tþ (5/9)e–t – (11/3)te–t.

(16) x(t)¼–8 cos t – 6 sin tþ8þ6t, y(t)¼4 cos t – 2 sin t – 3.

Section 5.4
Note that the units are kg of sugar for problems (1) through (4) and tons of
pollution for problems (5) through (7).

(1) x tð Þ ¼ 500e�7t=100 �1þ e7t=100
� �

y tð Þ ¼ 5e�7t=100 �100� 7t þ 100e7t=100
� �

(2) x(t)!500, y(t)!437.5 (kg of sugar)
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(3) x(t)!500, y(t)!583.333 (kg of sugar)

(4) x tð Þ ¼ �495e
� 7t
100 þ 500

y tð Þ ¼ � 3475

100
te
� 7t
100 � 488e

� 7t
100 þ 500

(5) x tð Þ ¼ 1

14
e�6t �1� 7e6t þ 8e7t

� �
y tð Þ ¼ 2e�6t

21
6e7t � 7e6t þ 1
� �

x tð Þ ! 1, y tð Þ ! 1 as t ! 1

(6) x tð Þ ¼ 1

14
e�6t �1� 7e6t þ 8e7t

� �
y tð Þ ¼ �2

21
e�6t �1þ etð Þ2 1þ 2et þ 3e2t þ 4e3t þ 5e4t þ 6e5t

� �
x(t)!1, y(t)!–1 as t!1 (Note that this is not a realistic model, due
to the behavior of y(t).)

(7) x(t)!�1, y(t)!1 as t!1.

Section 5.6

(1)

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2
664

3
775 (2) l4�3l2þ1 (3) 3 edges, 0 triangles

(4) (a)

0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0

2
664

3
775, (b) entry (1,1)¼0, (1,2)¼2, (1,3)¼0, (1,4)¼

1

(5)
�1� ffiffiffi

5
p

2
,
1� ffiffiffi

5
p

2
(8)

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

2
664

3
775

(9) l4�4l2�2lþ1 (10) 4 edges, 1 triangle

(11) (a)

0 3 1 1
3 2 4 4
1 4 2 3
1 4 3 2

2
664

3
775, (b) entry (2,1)¼3, (2,2)¼2, (2,3)¼4, (2,4)¼4

(12) approx.. -1.48, -1, 0.31, 2.17
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(14)

0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0

2
664

3
775 (15) l4�2l2þ1 (16) -1,-1,1,1

(18)

0 1 0 0
1 0 0 1
1 0 0 1
0 1 1 0

2
664

3
775 (19) l4�4l2

(20) 0,0,-2,2 (23) hint: use definition of eigenvalue and let eigenvector
x¼ [1,1, . . .,1]

Section 5.7

(2) L ¼ D� A ¼
0 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 1

2
664

3
775

(3) l4�6l3þ10l2�4l

(4) 0,2, 2� ffiffiffi
2

p

(5) 1 spanning tree (i.e., the graph itself)

(8) L ¼ D� A ¼
1 �1 0 0
�1 3 �1 �1
0 �1 2 �1
0 �1 �1 2

2
664

3
775

(9) l4�8l3þ19l2�12l

(10) 0,1,3,4

(11) 3 spanning trees

(13) (b)
2 �1 �1
�1 2 �1
�1 �1 2

2
4

3
5 (c) 0,3,3

(14) (b)

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

2
664

3
775 (c) 0,4,4,4

(15) (b)

4 �1 �1 �1 �1
�1 4 �1 �1 �1
�1 �1 4 �1 �1
�1 �1 �1 4 �1
�1 �1 �1 �1 4

2
66664

3
77775 (c) 0,5,5,5,5

(16) For Kn, 0 with multiplicity 1 and n with multiplicity n -1

(17) t(G) ¼ 1
n n

n�1 ¼ nn�2, which is Cayley’s formula
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CHAPTER 6
Section 6.1

(1) (a) 11, (b)
ffiffiffi
5

p
, (c) no.

(2) (a) 0, (b)
ffiffiffi
2

p
, (c) yes.

(3) (a) –50, (b)
ffiffiffiffiffiffi
74

p
, (c) no.

(4) (a) 0, (b)
ffiffiffiffiffiffi
68

p
, (c) yes.

(5) (a) 0, (b) 5, (c) yes.

(6) (a) 6, (b)
ffiffiffi
5

p
, (c) no.

(7) (a) 26, (b)
ffiffiffiffiffiffi
24

p
, (c) no.

(8) (a) –30, (b)
ffiffiffiffiffiffi
38

p
, (c) no.

(9) (a) 0, (b)
ffiffiffiffiffiffiffiffiffiffiffi
1400

p
, (c) yes.

(10) (a) 7/24,
(b)

ffiffiffiffiffiffi
21

p

8
,

(c) no.

(11) (a) 2, (b)
ffiffiffi
3

p
, (c) no.

(12) (a) 0, (b)
ffiffiffi
3

p
, (c) yes.

(13) (a) 0, (b)
ffiffiffi
2

p
, (c) yes.

(14) (a) 1, (b) 1, (c) no.

(15) (a) 1/12, (b)
ffiffi
3

p
2 , (c) no.

(16) (a) –13, (b)
ffiffiffiffiffiffi
55

p
, (c) no.

(17) Inner product undefined.

(18) (a) [3/5 4/5]T,

(b) 20=
ffiffiffiffiffiffiffiffi
425

p
5=

ffiffiffiffiffiffiffiffi
425

p� �T
,

(c) 1=
ffiffiffiffiffiffi
21

p
2=

ffiffiffiffiffiffi
21

p
4
ffiffiffiffiffiffi
21

p� �T
,

(d) �4=
ffiffiffiffiffiffi
34

p
3=

ffiffiffiffiffiffi
34

p � 3
ffiffiffiffiffiffi
34

p� �T
,

(e)
ffiffiffi
3

p
=3

ffiffiffi
3

p
=3

ffiffiffi
3

p
=3

� �T
,

(f) 1=
ffiffiffiffiffiffi
55

p
2=

ffiffiffiffiffiffi
55

p
3
ffiffiffiffiffiffi
55

p
4
ffiffiffiffiffiffi
55

p
5
ffiffiffiffiffiffi
55

p� �T
:

(19) 36.9�. (20) 14.0�. (21) 78.7�.
(22) 90�. (23) 118.5�. (24) 50.8�.
(25) 19.5�. (26) 17.7�. (27) violates 1c

(28) With x¼ [x1 x2 x3 . . . xn]
T and y¼ [y1 y2 y3 . . . yn]

T,

<lx,y>¼ (lx1)(y1)þ (lx2)(y2)þ . . .þ(lxn)(yn)

¼ l[x1y1þx2y2þx3y3þ . . .þxnyn]¼l<x,y> .
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(29) x1

x2

..

.

xn

2
66664

3
77775þ

z1

z2

..

.

zn

2
66664

3
77775,

y1

y2

..

.

yn

2
66664

3
77775

* +
¼

x1 þ z1

x2 þ z2

..

.

xn þ zn

2
66664

3
77775;

y1

y2

..

.

yn

2
66664

3
77775

* +

¼ x1 þ z1ð Þy1 þ x2 þ z2ð Þy2 þ . . . xn þ znð Þyn
¼ x1y1 þ x2z2 þ . . .þ xnynð Þ þ z1y1 þ z2y2 þ . . .þ znynð Þ
¼ x; yh i þ z; yh i

(30) h0,yi¼h00,yi¼0h0,yi¼0.

(31) x þ yk k2 ¼ x þ y, x þ yh i ¼ x; xh i þ x; yh i þ y; xh i þ y; yh i
¼ x; xh i þ 0þ 0þ y, yh i ¼ xk k2 þ yk k2:

(32) Note: hx,yi¼0 when x and y are orthogonal.

x þ yk k ¼ x � yk k , x þ yk k2 ¼ x � yk k2 ,
xk k2 þ 2 x; yh i þ yk k2 ¼ xk k2 � 2 x; yh i þ yk k2 , 2 x; yh i ¼ �2 x; yh i ,
4 x; yh i ¼ 0 , x; yh i ¼ 0:

(33) x þ yk k2 þ x � yk k2 ¼ x þ y, x þ yh i þ x � y, x � yh i
¼ x; xh i þ x, yh i þ y, xh i þ y, yh i½ � þ x, xh i � x, yh i � y, xh i þ y, yh i½ �
2 x; xh i þ 2 y, xh i ¼ 2 xk k2 þ 2 yk k2

(31) x þ yk k2 � x � yk k2 ¼ xþ y, xþ yh i � x � y, x � yh i
¼ x; xh i þ x, yh i þ y, xh i þ y, yh i½ � � x, xh i � x, yh i � y, xh i þ y, yh i½ �
¼ 2 x; yh i þ 2 y, xh i ¼ 4 x:yh i

(35) x, ay þ bzh i ¼ ay þ bz, xh i ¼ ay, xh i þ bz, xh i ¼ a y, xh i þ b z, xh i
¼ a 0ð Þ þ b 0ð Þ 0

(36)

(a)

0 
 lx þ yk k2 ¼ lx þ y, lx þ yh i
¼ lx, lxh i � lx, yh i � y,lxh i þ y, yh i
¼ l2 x; xh i � l x, yh i � l y, xh i þ y, yh i

(37) From Problem 35, 0¼ klx�yk2 if and only if lx – y¼0 if and only if y¼ lx.

(38) (a) 48.2�, (b) 121.4�, (c) 180�, (d) 32.6�, (e) 26.0�.

(40) (a) 44, (b) –23, (c) –17, (d) –16, (e) –11, (f) 53.

(41) (a) 22, (b) –11.5, (c) –8.5.

(42) 145. (43) 27. (44) 32.

(47) (a) –8, (b) –5, (c) 7, (d) 3, (e) 2, (f) 1.

(48) (a) –22, (b) –184, (c) 22, (d) –21.
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(50) (a) –763/60, (b) -325/6, (c) 107/30,
(d) 113/6, (e) 303/70, (f) 2.

Section 6.2

(1) (a)
1:6
0:8

� �
, (b)

�0:6
1:2

� �
.

(2) (a)
0:7059
1:1765

� �
, (b)

0:2941
�0:1765

� �
.

(3) (a)
0:5
0:5

� �
, (b)

2:5
�2:5

� �
:

(4) (a)
0
0

� �
, (b)

4
�1

� �
:

(5) (a)
�0:7529
�3:3882

� �
, (b)

�6:2471
1:3882

� �
:

(6) (a)
1
0
1

2
4
3
5, (b)

1
1

�1

2
4

3
5:

(7) (a)
8=9
8=9
4=9

2
4

3
5, (b)

1=9
1=9

�4=9

2
4

3
5:

(8) (a)

1:2963
3:2407
3:2407

2
4

3
5, (b)

�1:2963
�0:2407
0:7593

2
4

3
5:

(9) (a)

2=3
2=3
2=3
0

2
664

3
775, (b)

�2=3
1=3
1=3
1

2
664

3
775:

(10) (a)

�7=6
7=3

0
7=6

2
664

3
775, (b)

13=6
�1=3
3

17=6

2
664

3
775:

(11)
3

5

� �
¼ 29

5

3=5

4=5

� �
� 3

5

4=5

�3=5

� �
:

(12)
3

5

� �
¼ 8ffiffiffi

2
p 1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
� �

� 2ffiffiffi
2

p 1=
ffiffiffi
2

p

�1=
ffiffiffi
2

p
� �

:

(13)
2

�3

� �
¼ �4ffiffiffi

5
p 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

� 7ffiffiffi
5

p �2=
ffiffiffi
5

p
1=

ffiffiffi
5

p
� �

:
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(14)

1

2

3

2
4
3
5 ¼ 11

5

3=5

4=5

0

2
4

3
5� 2

5

4=5

�3=5

0

2
4

3
5þ 3

0

0

1

2
4
3
5:

(15)

10

0

�20

2
4

3
5 ¼ 6

3=5

4=5

0

2
4

3
5þ 8

4=5

�3=5

0

2
4

3
5� 20

0

0

1

2
4
3
5:

(16)

10

0

�20

2
4

3
5 ¼ 10ffiffiffi

2
p

1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

2
4

3
5� 50ffiffiffi

6
p

�1=
ffiffiffi
6

p
1=

ffiffiffi
6

p
2=

ffiffiffi
6

p

2
4

3
5� 10ffiffiffi

3
p

1=
ffiffiffi
3

p
�1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

2
4

3
5:

(17)

10

0

�20

2
4

3
5 ¼ � 10ffiffiffi

2
p

�1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

2
4

3
5þ 50ffiffiffi

6
p

1=
ffiffiffi
6

p
1=

ffiffiffi
6

p
�2=

ffiffiffi
6

p

2
4

3
5þ 10ffiffiffi

3
p

�1=
ffiffiffi
3

p
�1=

ffiffiffi
3

p
�1=

ffiffiffi
3

p

2
4

3
5:

(18) 2 tþ1¼0.4(0.6 t – 0.8)þ2.2(0.8 tþ0.6).

(19) t2þ2 tþ3¼– 1.8(0.6 t2 – 0.8)þ2.6(0.8 t2þ0.6)þ2(t).

(20) t2 – 1 ¼1.4(0.6 t2 – 0.8)þ0.2 (0.8 t2þ0.6)þ0(t).

(21)
1 1

�1 2

" #
¼ 3ffiffiffi

3
p 1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

�1=
ffiffiffi
3

p
0

" #
þ 2ffiffiffi

3
p 0 �1=

ffiffiffi
3

p

�1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
" #

:

þ 2ffiffiffi
3

p 1=
ffiffiffi
3

p
0

1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
" #

þ 2ffiffiffi
3

p �1=
ffiffiffi
3

p
1=

ffiffiffi
3

p

0 1=
ffiffiffi
3

p
" #

:

(22)
1 2

3 4

" #
¼ 11

5

3=5 4=5

0 0

" #
� 11

5

4=5 �3=5

0 0

" #

� 7

5

0 0

3=5 �4=5

" #
� 24

5

0 0

�4=5 �3=5

" #
:

(23)
4 5

�6 7

" #
¼ 9� 6

ffiffiffi
2

p

2

1=2 1=2

1=
ffiffiffi
2

p
0

" #
� 9þ 6

ffiffiffi
2

p

2

�1=2 �1=2

1=
ffiffiffi
2

p
0

" #

þ 1þ 7
ffiffiffi
2

p

2

�1=2 1=2

0 1=
ffiffiffi
2

p
" #

� 1� 7
ffiffiffi
2

p

2

1=2 �1=2

0 1=
ffiffiffi
2

p
" #

:

(24)
1=

ffiffiffi
5

p

2=
ffiffiffi
5

p
� �

,
1=

ffiffiffi
5

p

�1=
ffiffiffi
5

p
� �

:

(25)
1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
� �

,
�1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
� �

:
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(26)
2=

ffiffiffiffiffiffi
13

p

�2=
ffiffiffiffiffiffi
13

p
" #

,
2=

ffiffiffiffiffiffi
13

p

3=
ffiffiffiffiffiffi
13

p
" #

:

(27)

1=
ffiffiffi
6

p

2=
ffiffiffi
6

p

1=
ffiffiffi
6

p

2
64

3
75, 1=

ffiffiffi
3

p

�1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

2
64

3
75, �1=

ffiffiffi
2

p

0

1=
ffiffiffi
2

p

2
64

3
75:

(28)

2=
ffiffiffi
5

p

1=
ffiffiffi
5

p

0

2
64

3
75, �2=

ffiffiffiffiffiffi
45

p

4=
ffiffiffiffiffiffi
45

p

5=
ffiffiffiffiffiffi
45

p

2
64

3
75, 1=3

�2=3

2=3

2
64

3
75:

(29)

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0

2
64

3
75, 1=

ffiffiffi
3

p

�1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

2
64

3
75, �1=

ffiffiffi
6

p

1=
ffiffiffi
6

p

2=
ffiffiffi
6

p

2
64

3
75:

(30)

0

3=5

4=5

2
64

3
75, 3=5

16=25

�12=25

2
64

3
75, 4=5

�12=25

9=25

2
64

3
75.

(31)

0

1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

1=
ffiffiffi
3

p

2
6664

3
7775,

3=
ffiffiffiffiffiffi
15

p

�2=
ffiffiffiffiffiffi
15

p

1=
ffiffiffiffiffiffi
15

p

1=
ffiffiffiffiffiffi
15

p

2
6664

3
7775,

3=
ffiffiffiffiffiffi
35

p

3=
ffiffiffiffiffiffi
35

p

�4=
ffiffiffiffiffiffi
35

p

1=
ffiffiffiffiffiffi
35

p

2
6664

3
7775,

1=
ffiffiffi
7

p

1=
ffiffiffi
7

p

1=
ffiffiffi
7

p

�2=
ffiffiffi
7

p

2
6664

3
7775:

(32)

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0

0

2
6664

3
7775,

�1=
ffiffiffi
6

p

1=
ffiffiffi
6

p

�2=
ffiffiffi
6

p

0

2
6664

3
7775,

1=
ffiffiffi
3

p

�1=
ffiffiffi
3

p

�1=
ffiffiffi
3

p

0

2
6664

3
7775,

0

0

0

�1

2
6664

3
7775:

(33) One of the q vectors becomes zero.

(34) a, x � a; xh i
a; ah i a

� �
¼ a; xh i � a,

a; xh i
a; ah i a

� �
¼ a; xh i � a; xh i

a; ah i a; ah i ¼ 0:

(35) sx þ tyk k2 ¼ sx þ ty, sx þ tyh i ¼ s2 x; xh i þ 2st x; yh i þ t2 y; yh i
¼ s2 1ð Þ þ st 0ð Þ þ t2 1ð Þ

(36) An identity matrix.

(37) Set y¼x and use part (a) of Theorem 1 of Section 6.1.

(38) Denote the columns of A as A1, A2,. . ., An, and the elements of y as y1, y2, . . .
yn, respectively. Then, Ay A1y1þA2y2þ . . .þAnyn and hAy,pi¼y1hA1,
piþ y2 hA2,piþ . . .þ ynhAn,pi.

(39) Use Theorem 1.
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Section 6.3

(1)

ffiffiffi
5

p 2
ffiffiffi
5

p

5

0
6
ffiffiffi
5

p

5

0 0

2
6666664

3
7777775

(2)
0:4472 0:8944

0:8944 �0:4472

� �
2:2361 1:7889

0:0000 1:3416

� �
:

(3)
0:7071 �0:7071

0:7071 0:7071

� �
1:4142 5:6569

0:0000 1:4142

� �
:

(4)
0:8321 0:5547

�0:5547 0:8321

� �
3:6056 0:8321

0:0000 4:1603

� �
:

(5)

0:3333 0:8085

0:6667 0:1617

0:6667 �0:5659

2
4

3
5 3:0000 2:6667

0:0000 1:3744

� �
:

(6)

0:3015 �0:2752

0:3015 �0:8808

0:9045 0:3853

2
4

3
5 3:3166 4:8242

0:0000 1:6514

� �
:

(7)

0:7746 0:4034

�0:5164 0:5714

0:2582 0:4706

�0:2582 0:5378

2
6664

3
7775 3:8730 0:2582

0:0000 1:9833

� �
:

(8)

0:8944 �0:2981 0:3333

0:4472 0:5963 �0:6667

0:0000 0:7454 0:6667

2
4

3
5 2:2361 0:4472 1:7889

0:0000 1:3416 0:8944

0:0000 0:0000 2:0000

2
4

3
5.

(9)

0:7071 0:5774 �0:4082

0:7071 �0:5774 0:4082

0:0000 0:5774 0:8165

2
4

3
5 1:4142 1:4142 2:8284

0:0000 1:7321 0:5774

0:0000 0:0000 0:8165

2
4

3
5.

(10)

0:00 0:60 0:80

0:60 0:64 �0:48

0:80 �0:48 0:36

2
4

3
5 5 3 7

0 5 2

0 0 1

2
4

3
5:

(11)

0:0000 0:7746 0:5071

0:5774 �0:5164 0:5071

0:5774 0:2582 �0:6761

0:5774 0:2582 0:1690

2
6664

3
7775

1:7321 1:1547 1:1547

0:0000 1:2970 0:5164

0:0000 0:0000 1:1832

2
4

3
5.
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(12)

0:7071 �0:4082 0:5774

0:7071 0:4082 �0:5774

0:0000 �0:8165 �0:5774

0:0000 0:0000 0:0000

2
6664

3
7775

1:4142 0:7071 0:7071

0:0000 1:2247 0:4082

0:0000 0:0000 1:1547

2
4

3
5.

(13) A1¼R0Q0þ7I

¼
19:3132 �1:2945 0:0000

0:0000 7:0231 �0:9967

0:0000 0:0000 0:0811

2
4

3
5 �0:3624 0:0756 0:9289

0:0000 �0:9967 0:0811

0:9320 0:0294 0:3613

2
4

3
5

þ7
1 0 0
0 1 0
0 0 1

2
4

3
5 ¼

0:0000 2:7499 17:8357
�0:9289 �0:0293 0:2095
0:0756 0:0024 70:293

2
4

3
5

(14) A1¼R0Q0 – 14I

¼
24:3721 �17:8483 3:8979

0:0000 8:4522 �4:6650

0:0000 0:0000 3:6117

2
4

3
5 0:6565 �0:6250 0:4223

�0:6975 �0:2898 0:6553

0:2872 0:7248 0:6262

2
4

3
5

�14

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

15:5690 �7:2354 1:0373

�7:2354 �19:8307 2:6178

1:0373 2:6178 �11:7383

2
4

3
5

(15) Shifr by 4.

R0 ¼
4:1231 �0:9701 0:0000 13:5820

0:0000 4:0073 �09982 �4:1982

0:0000 0:0000 4:0005 12:9509

0:0000 0:0000 0:0000 3:3435

2
6664

3
7775

Q0 ¼
�0:9701 �0:2349 �0:0586 �0:0151

0:225 �0:9395 �0:2344 �0:0605

0:0000 0:2495 �0:9376 �0:2421

0:0000 0:0000 0:2500 �0:9683

2
6664

3
7775

A1 ¼ R0Q0 þ 4I ¼
�0:2353 �0:0570 3:3809 �13:1545

0:9719 �0:0138 �1:0529 4:0640

0:0000 0:9983 3:1864 �13:5081

0:0000 0:0000 0:8358 0:7626

2
6664

3
7775

(16) 7.2077, – 0.1039�1.5769i. (17) –11, – 22, 17. (18) 2, 3, 9.

(19) Method fails. A0 – 7I does not have linearly independent columns, so no
QR decomposition is possible.
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(20) 2, 2, 16. (21) 2, 3� i. (22) �i, 2�3i

(23) 3.1265�1.2638i, – 2.6265�0.7590i.

(24) 0.0102, 0.8431, 3.8581, 30.2887.

(25) Each diagonal element of the upper triangular matrix R is the magnitude of
a nonzero vector (see Theorem 3 of Section 6.2) and is, therefore, nonzero.
Use Theorems 4 and 10 of Section 1.5.

(26) QTQ¼ I. Thus, QT¼Q–1.

(27) AkRk–1¼Rk–1Qk–1Rk–1¼Rk–1Ak–1.

Set P¼ (Rk–1)
–1 and use Theorem 1 of Section 4.1.

Section 6.4
(1) x � 2.225, y � 1.464.

(2) x � 3, y � 3.

(3) x � 9.879, y � 18.398.

(4) x � –1.174, y � 8.105.

(5) x � 1.512, y � 0.639, z � 0.945.

(6) x � 7.845, y � 1.548, z � 5.190.

(7) x � 81.003, y � 50.870, z � 38.801.

(8) x � 2.818, y � –0.364, z � –1.364.

(9) (b) y¼2.3xþ8.1 (c) 21.9.

(10) (a) y¼1.2xþ19.4,

(b) y¼1.2(60)þ19.4¼91.4, so total mlb attendance in 2020 projects to
91.4 million

(11) (a) y¼0.27xþ10.24, (b) 12.4.

(12) m ¼
N

XN
i¼1

xiyi�
XN
i¼1

xi
XN
i¼1

yi

N

XN
i¼1

x2i �
XN
i¼1

xi

 !2 , c ¼

XN
i¼1

yi
XN
i¼1

x2i �
XN
i¼1

xi
XN
i¼1

xiyi

N

XN
i¼1

x2i �
XN
i¼1

xi

 !2 :

If N
P

i¼1
N xi

2 is near (
P

i¼1
N xi)

2, then the denominator is near 0.

(13)
P

i¼1
N xi

’¼0 so the denominators form and c found in Problem 13 reduce toP
i¼1
N (xi

’)2.

(14) y¼2.3x0 þ15.
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(15) (a) y¼–0.198x0 þ21.18 (b) year 2000 is coded as x0 ¼30; y(30)¼15.24.

(21) E ¼
0:842
0:211

�2:311

2
4

3
5: (22) E ¼

0:161
0:069

�0:042
�0:172

2
664

3
775:

Section 6.5

(1) (a) span
1
0
0

2
4
3
5; 0

�1
1

2
4

3
5

8<
:

9=
;, bð Þ

0
1=2
1=2

2
4

3
5:

(2) (a) span
�1
1
0

2
4

3
5; �1

0
1

2
4

3
5

8<
:

9=
;, bð Þ

2=3
2=3
2=3

2
4

3
5:

(3) (a) span
�1
2
0

2
4

3
5; �1

0
2

2
4

3
5

8<
:

9=
;, bð Þ

1
1=2
1=2

2
4

3
5:

(4) (a) span
1

�2
1

2
4

3
5

8<
:

9=
;, bð Þ

7=6
4=6
1=6

2
4

3
5:

(5) (a) span
1

�4
2

2
4

3
5

8<
:

9=
;, bð Þ

8=7
3=7
2=7

2
4

3
5:

(6) (a) span
1
0
1

2
4
3
5

8<
:

9=
;, bð Þ

1
1
0

2
4
3
5:

(7) (a) span
�1
1
0

2
4

3
5

8<
:

9=
;, bð Þ

1
1
0

2
4
3
5:

(8) Same as Problem 2

(9) (a) span
0

�1
1

2
4

3
5

8<
:

9=
;, bð Þ

1
1=2
1=2

2
4

3
5:

(10) (a) {0}, (b)
1
1
0

2
4
3
5:
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(11) (a) span

1
0
0
0

2
664
3
775;

0
1
0
0

2
664
3
775;

0
0

�1
1

2
664

3
775

8>><
>>:

9>>=
>>;, bð Þ

0
0

1=2
1=2

2
664

3
775:

(12) (a) span

1
0
0
0

2
664
3
775;

0
�1
1
0

2
664

3
775;

0
�1
0
1

2
664

3
775

8>><
>>:

9>>=
>>;, bð Þ

0
1=3
1=3
1=3

2
664

3
775:

(13) (a) span

1
0
0
0

2
664
3
775;

0
0

�1
1

2
664

3
775

8>><
>>:

9>>=
>>;, bð Þ

0
0

1=2
1=2

2
664

3
775:

(14) (a) span

1
0
0
0

2
664
3
775;

0
0
1
0

2
664
3
775

8>><
>>:

9>>=
>>;, bð Þ

0
0
0
0

2
664
3
775:

(15) (a) span

�1
1
0
0

2
664

3
775;

�1
0
1
1

2
664

3
775

8>><
>>:

9>>=
>>;, bð Þ

3=5
3=5
4=5
�1=5

2
664

3
775:

(16) (a) span

�2
1
1
1

2
664

3
775

8>><
>>:

9>>=
>>;, bð Þ

5=7
1=7
8=7
1=7

2
664

3
775:

(17) (a) span

�1
1
0
0

2
664

3
775;

�1
0
1
0

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

2=3
2=3
2=3
0

2
664

3
775:

(18) (a) span

1
�1
�1
1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

1
0
1
0

2
664
3
775:

(19) (a) {0}, (b)

1
0
1
0

2
664
3
775:
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(20) (a) span

0
�1
1
1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

1
1=3
2=3

�1=3

2
664

3
775:

(21) No.

(22) xk k2 ¼ uþ u?,uþ u?� � ¼ u;uh i þ u;u?� �þ u?;u
� �þ u?; ;u?� �

¼ u;uh i þ 0þ 0þ u?; ;u?� � ¼ uk k2 þ u?�� ��2:
(23) Let  ¼ u1, u2 . . . , urf g and  ¼ w1,w2 . . . ,wsf g. If v 2 , then there

exists a u 2  and w 2  such that v¼uþw. But u ¼
Xr
i¼1

ciui and

w ¼
Xs
j¼1

djwi for scalars c1, . . ., cr, and d1, . . .,ds. Then,

v ¼
Xr
i¼1

ciui þ
Xs
j¼1

djwj and  [  is a spanning set for . Consider the

equation
Xr
i¼1

ciui þ
Xs
j¼1

djwj ¼ 0. Since
Xr
i¼1

0ð Þui þ
Xs
j¼1

0ð Þwj ¼ 0, it follows

from uniqueness that ci¼0(i¼1,2, . . ., r) and dj¼0(j¼1,2, . . ., s). Thus,
 [  is linearly independent.

(24) Let v 2  with basic  ¼ u1;u2; . . . ;urf g. Then v ¼
Xr
i¼1

ciui for scalars

c1, . . ., cr.

Let v 2  with basic  ¼ w1;w2; . . . ;wsf g. Then v ¼
Xs
j¼1

djwi for scalars
d1, . . ., ds.

0 ¼ v � v ¼
X
i¼1

r
ciui �

Xs
j¼1

djwj. But 0 ¼
Xr
i¼1

0ð Þui �
Xs
j¼1

0ð Þwj, so it follows

from uniqueness that ci¼0(i¼1,2, . . ., r) and dj¼0(j¼1, 2, . . ., s). Thus,

v ¼
Xr
i¼1

ciui ¼
Xs
j¼1

0ð Þui ¼ 0:

(25) Use the results of Problem 23.

APPENDICES
Appendix A

(1) (a) Yes, (b) No, (c) No, (d) Yes,

(e) Yes, (f) Yes.
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(2) (a) Yes, (b) Yes, (c) No, (d) Yes,

(e) No, (f) Yes.

(3) (a) Yes, (b) No, (c) Yes, (d) No,

(e) Yes, (f) Yes.

(4) (a) No, (b) Yes, (c) No, (d) Yes,

(e) Yes, (f) Yes.

(5) (a) No, (b) No, (c) No, (d) Yes,

(e) No, (f) No.

(6) (a) Yes, (b) Yes, (c) No, (d) No,

(e) Yes, (f) Yes.

(7) (a) No, (b) No, (c) Yes, (d) No.

(8) (a) No, (b) Yes, (c) No, (d) Yes.

(9) (a) Yes, (b) Yes, (c) Yes, (d) No.

(10) (a) Yes, (b) No, (c) Yes, (d) No.

(11)
a
b
c

2
4
3
5 2 R3

8<
:

������b ¼ 0

)
:

(12)

7=2 �1=2 0 0
1=2 5=2 0 0
0 0 4 1
0 0 0 4

2
664

3
775:

(13)

2 0 0 0
0 5=2 �1=2 0
0 1=2 3=2 �1
0 0 0 2

2
664

3
775:

(14)

2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

2
664

3
775:

(15) (a) Yes, (b) No, (c) Yes, (d) Yes, (e) No, (f) No.

(16)
0
1

� �
: (17)

0
1
0

2
4
3
5: (18)

0
0
1

2
4
3
5: (19)

0
0
1

2
4
3
5: (20)

1
0

�1

2
4

3
5:
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(21) For l ¼ 3, x3 ¼

1
0
0
0

�1

2
66664

3
77775, and for l ¼ 4, x2 ¼

0
1
0
0
0

2
66664

3
77775:

(22) x3 ¼
1
1
1
0

2
664
3
775, x2 ¼

3
�1
0
0

2
664

3
775, x1 ¼

�2
0
0
0

2
664

3
775:

(23) x3 ¼
0
0
1
0

2
664
3
775, x2 ¼

1
�1
0
0

2
664

3
775, x1 ¼

�2
0
0
0

2
664

3
775:

(24) x4 ¼

0
0
0
0
1

2
66664

3
77775, x3 ¼

�1
0
2
1
0

2
66664

3
77775, x2 ¼

2
0

�1
0
0

2
66664

3
77775, x1 ¼

�1
0
0
0
0

2
66664

3
77775:

(25) x3 ¼

0
0
0
1
0

2
66664

3
77775, x2 ¼

0
0

�1
0
0

2
66664

3
77775, x1 ¼

�1
0
0
0
0

2
66664

3
77775:

(26) x3 ¼

1
0
0
0

�1

2
66664

3
77775, x2 ¼

0
0
0

�2
0

2
66664

3
77775, x1 ¼

0
0

�2
0
0

2
66664

3
77775:

(27) x2 ¼

0
1
0
0
0

2
66664

3
77775, x1 ¼

1
0
0
0
0

2
66664

3
77775: (28) x2 ¼ 0

1

� �
, x1 ¼ 1

0

� �
:

(29) x2 ¼
0
1
0

2
4
3
5, x1 ¼

1
0
0

2
4
3
5: (30) x2 ¼

0
0
1

2
4
3
5, x1 ¼

2
1

�3

2
4

3
5:

(31) x4 ¼
0
0
0
1

2
664
3
775, x3 ¼

�1
4
1
0

2
664

3
775, x2 ¼

7
�1
0
0

2
664

3
775, x1 ¼

�1
0
0
0

2
664

3
775:
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(32) x3 ¼

0
0
1
0
0

2
66664

3
77775, x2 ¼

1
1
0
0
0

2
66664

3
77775, x1 ¼

2
�2
0
0
0

2
66664

3
77775:

(33) x is a generalized eigenvector of type 1 corresponding to the eigenvalue l if
(A – lI)1 x¼0 and (A – lI)0 x 6¼0. That is, if Ax¼lx and x 6¼0.

(34) If x¼0, then (A – lI)nx¼(A – lI)n 0¼0 for every positive integer n.

(35) (a) Use Theorem 1 of Section 3.5.

(b) By the definition of T, T(v) 2  for each v 2 .

(c) Let T(vi)¼livi. If v 2 span{v1, v2,. . .,vk}, then there exist scalars

c1, c2, . . ., ck such that v ¼
Xk
i¼1

civi. Consequently, T vð Þ ¼ T
Xk
i¼1

civi

 !
¼

Xk
i¼1

ciT við Þ ¼
Xk
i¼1

ci livið Þ ¼
Xk
i¼1

cilið Þvi, which also belongs to span{v1,

v2,. . .,vk}.

(36) If  ¼  � , then (i) and (ii) follow from the definition of a direct sum
and Problem 24 of Section 6.5. To show the converse, assume that
v¼u1þw1 and also v¼u2þw2, where u1 and u2 are vectors in , and
w1 and w2 are vectors in . Then 0¼v – v¼(u1þw1)¼ (u2þw2)¼
(u1 – u2)þ (w1 –w2), or (u1 – u2)¼ (w2 –w1). The left-side of this last equa-
tion is in, and the right side is in. Both sides are equal, so both sides are
in  and . It follows from (ii) that (u1 – u2)¼0 and (w2 – w1)¼0. Thus,
u1¼u2 and w1¼w2.

(38) (a) One chain of length 3;

(b) two chains of length 3;

(c) one chain of length 3, and one chain of length 2;

(d) one chain of length 3, one chain of length 2, and one chain of length 1;

(e) one chain of length 3 and two chains of length 1;

(f) cannot be done, the numbers as given are not compatible;

(g) two chains of length 2, and two chains of length 1;

(h) cannot be done, the numbers as given are not compatible;

(i) two chains of length 2 and one chain of length 1;

(j) two chains of length 2.

(39) x2 ¼ 0
1

� �
, x1 ¼ 1

�1

� �
:
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(40) x1 ¼
�1
1
1

2
4

3
5 corresponds to l¼1 and y2 ¼

0
0
1

2
4
3
5, y1 ¼

3
0

�3

2
4

3
5 correspond

to l¼4.

(41) x3 ¼
0
0
1

2
4
3
5, x2 ¼

�1
2
0

2
4

3
5, x1 ¼

2
0
0

2
4
3
5:

(42) x1 ¼
1

�2
0

2
4

3
5, y1 ¼ 0

�2
1

2
4

3
5 both correspond to l¼3 and z1 ¼

1
0
1

2
4
3
5:

corresponds to l¼7

(43) x3 ¼
0
0
0
1

2
664
3
775, x2 ¼

�1
1
0
0

2
664

3
775, x1 ¼

1
0
0
0

2
664
3
775, y1 ¼

0
�1
1

�1

2
664

3
775:

(44) x2 ¼
0
1
0
0

2
664
3
775, x1 ¼

1
0
0
0

2
664
3
775 correspond to l¼3 and y2 ¼

3
1
0

�1

2
664

3
775, y1 ¼

�1
�1
�1
0

2
664

3
775

correspond to l¼4.

(45) x4 ¼

0
0
0
2

�2
1

2
6666664

3
7777775, x3 ¼

�1
1
2
0
0
0

2
6666664

3
7777775, x2 ¼

3
4
0
0
0
0

2
6666664

3
7777775, x1 ¼

4
0
0
0
0
0

2
6666664

3
7777775: correspond to l¼4, and

y2 ¼

�5
�2
0
1
1
0

2
6666664

3
7777775, y1 ¼

3
2
1
1
0
0

2
6666664

3
7777775 correspond to l¼5.

(46)

2 0 0 0 0
0 2 0 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

2
66664

3
77775: (47)

2 1 0 0 0
0 2 0 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

2
66664

3
77775:
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(48)

2 0 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

2
66664

3
77775: (49)

2 0 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

2
66664

3
77775:

(50)

2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

2
66664

3
77775: (51)

3 1 0 0 0 0
0 3 1 0 0 0
0 0 3 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775:

(52)

3 0 0 0 0 0
0 3 1 0 0 0
0 0 3 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775: (53)

3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775:

(54)

3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775: (55)

3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775:

(56)

3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775:

(57) (a)

2 0 0 0
0 2 0 0
0 0 2 1
0 0 0 2

2
664

3
775, (b)

2 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2

2
664

3
775,

(c)

2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

2
664

3
775, (d)

2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

2
664

3
775:
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(58) (a)

3 0 0 0 0 0
0 3 1 0 0 0
0 0 3 0 0 0
0 0 0 5 0 0
0 0 0 0 5 1
0 0 0 0 0 5

2
6666664

3
7777775, (b)

3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 5 0 0
0 0 0 0 5 1
0 0 0 0 0 5

2
6666664

3
7777775,

(c)

3 0 0 0 0 0
0 5 0 0 0 0
0 0 5 1 0 0
0 0 0 5 0 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775, (d)

3 1 0 0 0 0
0 3 0 0 0 0
0 0 5 1 0 0
0 0 0 5 0 0
0 0 0 0 3 0
0 0 0 0 0 5

2
6666664

3
7777775,

(e)

3 0 0 0 0 0
0 5 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 5 1
0 0 0 0 0 5

2
6666664

3
7777775, (f)

5 1 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 3 0 0
0 0 0 0 3 1
0 0 0 0 0 3

2
6666664

3
7777775:

(59)
1 0
0 �1

� �
with basis

3
1

� �
;

1
1

� �	 

:

(60)
4 1
0 4

� �
with basis

1
1

� �
;

0
1

� �	 

:

(61)
3 1
0 3

� �
with basis

�1
1

� �
;

1
0

� �	 

:

(62)
2 0
0 3

� �
with basis

2
1

� �
;

1
1

� �	 

:

(63)
4 0
0 1

� �
with basis

1
2

� �
;

1
�1

� �	 

:

(64) Not similar to a real matrix in Jordan canonical form. If matrices are

allowed to be complex, then
i 0
0 �i

� �
with basis

2þ i
1

� �
;

2� i
1

� �	 

:

(65)
3 0 0
0 6 1
0 0 6

2
4

3
5 with baiss

�1
1
1

2
4

3
5; 3

0
�3

2
4

3
5; 0

0
1

2
4
3
5

8<
:

9=
;:

(66)
2 1 0
0 2 1
0 0 2

2
4

3
5 with baiss

2
0
0

2
4
3
5; �2

1
0

2
4

3
5; 0

0
1

2
4
3
5

8<
:

9=
;:
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(67)
�2 0 0
0 �2 0
0 0 2

2
4

3
5 with baiss

1
�2
0

2
4

3
5; 0

�2
1

2
4

3
5; 1

0
1

2
4
3
5

8<
:

9=
;:

(68)
1 0 0
0 1 0
0 0 3

2
4

3
5 with baiss

0
1
0

2
4
3
5; 1

0
1

2
4
3
5; 1

2
�1

2
4

3
5

8<
:

9=
;:

(69)
0 0 0
0 2 1
0 0 2

2
4

3
5 with basis

5
�4
1

2
4

3
5; �1

0
1

2
4

3
5; 1

0
0

2
4
3
5

8<
:

9=
;:

(70)
0 0 0
0 0 0
0 0 14

2
4

3
5 with basis

3
0

�1

2
4

3
5; �1

5
�3

2
4

3
5; 1

2
3

2
4
3
5

8<
:

9=
;:

(71)

3 0 0 0
0 3 1 0
0 0 3 1
0 0 0 3

2
664

3
775 with basis

0
�1
1

�1

2
664

3
775;

1
0
0
0

2
664
3
775;

�1
1
0
0

2
664

3
775;

0
0
0
1

2
664
3
775

8>><
>>:

9>>=
>>;:

(72)

1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

2
664

3
775 with basis

1
0
0
0

2
664
3
775;

0
1
0
0

2
664
3
775;

�1
�1
�1
0

2
664

3
775;

3
1
0

�1

2
664

3
775

8>><
>>:

9>>=
>>;:

(73)

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

2
666666664

3
777777775
with basis

0
0

�1
�2
1
0
0

2
666666664

3
777777775
;

1
3
1
0
0
1
0

2
666666664

3
777777775
;

�1
0
1

�1
0
0
0

2
666666664

3
777777775
;

0
0
1
0
0
0

�1

2
666666664

3
777777775
;

0
1
0
0
0
0
0

2
666666664

3
777777775
;

�2
0
2

�2
0
0

�1

2
666666664

3
777777775
;

1
0
0
0
0
0
0

2
666666664

3
777777775

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

(74) If x is a generalized eigenvector of typem corresponding to the eigenvalue l,
then (A – lI)mx¼0.

(75) Let u and v belong to ℕl(A). Then there exist nonnegative integersm and n
such that (A�lI)mu¼0 and (A�lI)nv¼0. If n�m, then
(A�lI)nu¼ (A�lI)n�m(A�lI)mu¼ (A�lI)n�m0¼0. For any scalars a

Answers and Hints to Selected Problems 509



and b, (A�lI)n(auþbv)¼a[(A�lI)nu]þb[(A�lI)nv)]¼a0þb0¼0.
The reasoning is similar if m>n.

(76) (A – lI)n is an nth degree polynomial in A, and A commutes with every
polynomial in A.

(77) If (A – lI)kx¼0, then (A�lI)k(Ax)¼A[(A�lI)kx]¼A0¼0.

(78) If this was not so, then there exists a vector x2Rn such that (A – lI)k¼0 and
(A – lI)k–1 6¼0 with k>n. Therefore, x is a generalized eigenvector of type k
with k>n. The chain propagated by x is a linearly independent set of k vec-
tors in Rn with k>n. This contradicts Theorem 3 of Section 2.5.

Appendix B
(1) Matrix (a) can be a transition matrix. The other matrices are not transition

matrices because: (b) Second column sum is less than unity. (c) Both col-
umn sums are greater than unity. (d) Matrix contains a negative element.
(e) Third column sum is less than unity. (f) Third column sum is greater
than unity. (g) None of the column sums is unity. (h) Matrix contains neg-
ative elements.

(2)
0:95 0:01
0:05 0:99

� �
:

(3)
0:6 0:7
0:4 0:3

� �
:

(4)
0:10 0:20 0:25
0:50 0:60 0:65
0:40 0:20 0:10

2
4

3
5:

(5)
0:80 0:10 0:25
0:15 0:88 0:30
0:05 0:02 0:45

2
4

3
5:

(6) (a) P2 ¼ 0:37 0:63
0:28 0:72

� �
and P3 ¼ 0:289 0:316

0:711 0:684

� �
,

(b) 0.37,
(c) 0.63,
(d) 0.711,
(e) 0.684.

(7) 1!1!1!1, 1!1!2!1, 1!2!1!1, 1!2!2!1.

(8) (a) 0.097,
(b) 0.0194.

(9) (a) 0.64,
(b) 0.636.
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(10) (a) 0.1,
(b) 0.21.

(11) (a) 0.6675,
(b) 0.577075,
(c) 0.267.

(12) (a) There is a 0.6 probability that an individual chosen at random initially
will live in the city; thus, 60% of the population initially lives in
the city, while 40% lives in the suburbs.

(b) d(1)¼ [0.574 0.426]T,
(c) d(2)¼ [0.54956 0.45044]T.

(13) (a) 40% of customers now use brand X, 50% use brand Y, and 10% use
other brands.

(b) d(1)¼ [0.395 0.490 0.075]T,
(c) d(2)¼ [0.3875 0.47343 0.06330]T.

(14) (a) d(0)¼ [0 1]T,
(b) d(1)¼ [0.7 0.3]T.

(15) (a) d(0)¼ [0 1 0]T,
(b) d(3)¼ [0.192 0.592 0.216]T. There is a probability of 0.216 that the har-

vest will be good in three years.

(16) (a) [1/65/6]T,
(b) 1/6.

(17) [7/11 4/11]T; probability of having a Republican is 7/11�0.636.

(18) [23/120 71/120 26/120]T; probability of a good harvest is
26/120�0.217.

(19) [40/111 65/111 6/111]T; probability of a person using brand Y is
65/111¼0.586.

Appendix C

(1) (b)
0 1 1
1 0 1
1 1 0

2
4

3
5: (c) �1,�1,2

(2) (b)

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

2
664

3
775: (c) �1,�1,�1,3

(3) (b)

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

2
66664

3
77775: (c) �1,�1,�1,�1,4
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(4) The adjacency eigenvalues of Kn are n�1 copies of�1 and one copy of n�1.

(5) t Gð Þ ¼ 1

n
n� 1� �1ð Þð Þn�1 ¼ nn�2, , which is Cayley’s Theorem.

(6) (b) 5 copies of 1, 4 copies of �2, 1 copy of 3,
(c) an eigenvalue of 3 but none of �3 so not bipartite,
(d) not paired
(e) 2000 spanning trees
(f) 0,2,2,2,2,2,5,5,5,5
(g) 2000

(7) (b) complement is two disjoint K4 graphs,
(c) 8 with multiplicity 1, 4 with multiplicity 6, 0 with multiplicity 1

(8) (b) complement is disjoint K5 and K4 graphs
(c) 9 withmultiplicity 1, 5 withmultiplicity 3, 4 with multiplicity 4, 0 with

multiplicity 1

(9) (b) complement is disjoint K6 and K4 graphs,
(c) 10 with multiplicity 1, 6 with multiplicity 3, 4 with multiplicity 5,

0 with multiplicity 1

(10) (b) complement is two disjoint K5 graphs,
(c) 10 with multiplicity 1, 5 with multiplicity 8, 0 with multiplicity 1

(11) (b) complement is disjoint K5 and K7 graphs,
(c) 12withmultiplicity 1, 7withmultiplicity 4, 5withmultiplicity 6, 0with

multiplicity 1

(12) (a) For Kpq has eigenvalues 0 with multiplicity 1, q with multiplicity p – 1,
p with multiplicity q �1, pþq with multiplicity 1,

(b) t Gð Þ ¼ 1
pþq qð Þp�1 pð Þq�1 pþ qð Þ ¼ qð Þp�1 pð Þq�1

(13) (b) complement is three disjoint K3 graphs,
(c) 9 with multiplicity 2, 6 with multiplicity 6, 0 with multiplicity 1

(14) (a) complement is three disjoint K4 graphs,
(b) 12 with multiplicity 2, 8 with multiplicity 9, 0 with multiplicity 1

(15) (a) complement is three disjoint K5 graphs,
(b) 15 with multiplicity 2, 10 with multiplicity 12, 0 with multiplicity 1

(16) (a) complement is three disjoint K6 graphs,
(b) 18 with multiplicity 2, 12 with multiplicity 15, 0 with multiplicity 1,

(17) (a) complement is three disjoint Kr graphs, graph has eigenvalues 3r with
multiplicity 2, 2r with multiplicity 3(r-1), 0 with multiplicity 1,

(b) t Gð Þ ¼ 1
3r 3rð Þ2 2rð Þ3 r�1ð Þ
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Appendix D
(1) x¼30 x model bicycles; y¼20 y model bicycles; P¼$410.

(2) x¼35 x model bicycles; y¼0 y model bicycles; P¼$3500.

(3) x¼120 x model bicycles; y¼120 y model bicycles; P¼$2640.

Appendix E
(1) (1þ2þ� � �þn)þ (nþ1)¼n(nþ1)/2þ (nþ1)¼ (nþ1)(nþ2)/2.

(2) [1þ3þ5þ . . .þ (2n�1)]þ (2nþ1)¼n2þ (2nþ1)¼ (nþ1)2.

(3) 12 þ 22 þ . . .þ n2ð Þ þ nþ 1ð Þ2
¼ n nþ 1ð Þ 2nþ 1ð Þ=6þ nþ 1ð Þ2
¼ nþ 1ð Þ n 2nþ 1ð Þ=6þ nþ 1ð Þ½ �
¼ nþ 1ð Þ 2n2 þ 7nþ 6½ �=6
¼ nþ 1ð Þ nþ 2ð Þ 2nþ 3ð Þ=6

(4) 13 þ 23 þ . . .þ n3ð Þ þ nþ 1ð Þ3
¼ n2 nþ 1ð Þ2=4þ nþ 1ð Þ3
¼ nþ 1ð Þ2 n2=4þ nþ 1ð Þ½ �
¼ nþ 1ð Þ2 nþ 2ð Þ2=4:

(5) 12 þ 32 þ 52 þ . . .þ 2n� 1ð Þ2� �þ 2nþ 1ð Þ2
¼ n 4n2 � 1ð Þ=3þ 2nþ 1ð Þ2
¼ n 2n� 1ð Þ 2nþ 1ð Þ=3þ 2nþ 1ð Þ2
¼ 2nþ 1ð Þ n 2n� 1ð Þ=3þ 2nþ 1ð Þ½ �
¼ 2nþ 1ð Þ 2nþ 3ð Þ nþ 1ð Þ=3
¼ 2 nþ 1ð Þ � 1½ � 2 nþ 1ð Þ þ 1½ � nþ 1ð Þ=3
¼ 4 nþ 1ð Þ2 � 1
� �

nþ 1ð Þ=3

(6)
Xnþ1

k¼1

3k2 � k
� � ¼Xn

k¼1

3k2 � k
� �þ 3 nþ 1ð Þ2 � nþ 1ð Þ� �
¼ n2 nþ 1ð Þ þ 3 nþ 1ð Þ2 þ nþ 1ð Þ� �
¼ nþ 1ð Þ n2 þ 3 nþ 1ð Þ þ 1½ �
¼ nþ 1ð Þ nþ 2ð Þ nþ 1ð Þ
¼ nþ 1ð Þ2 nþ 2ð Þ
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(7)
Xnþ1

k¼1

1

k kþ 1ð Þ

¼
Xn
k¼1

1

k kþ 1ð Þ þ
1

nþ 1ð Þ nþ 2ð Þ
¼ n

nþ 1
þ 1

nþ 1ð Þ nþ 2ð Þ

¼ n2 þ 2nþ 1

nþ 1ð Þ nþ 2ð Þ
¼ nþ 1

nþ 2

(8)
Xnþ1

k¼1

2k�1 ¼
Xn
k¼1

2k�1 þ 2n ¼ 2n � 1½ � þ 2n ¼ 2 2nð Þ � 1 ¼ 2nþ1 � 1:

(9)
Xnþ1

k¼1

xk�1 ¼
Xn
k¼1

xk�1 þ xn ¼ xn � 1

x� 1
þ xn

¼ xn � 1þ xn x� 1ð Þ
x� 1

¼ xnþ1 � 1

x� 1
:

(10) 7nþ1þ2¼7n(6þ1)þ2¼6(7n)þ (7nþ1).6(7n) is a multiple of 3 because 6
is, and (7nþ1) is a multiple of 3 by the induction hypothesis.
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Note: Page numbers followed by f indicate figures and t indicate tables.

A
Additive inverse, vectors in vector

space, 112, 113
Adjacency matrix

characteristic polynomial, 314
definition, 313–314
regular graphs, eigenvalues, 315
spectrum, 315

Angle between vectors, 325–326,
325f, 326f, 327

Answers to selected problems,
437–514

Area, parallelogram, 52–53, 52f, 53f,
54–55

Associativity
matrix addition, 4, 5
matrix multiplication, 15–17

Augmented matrix
definition, 36–37
Gaussian elimination, 37–39, 40,

41, 42, 43
inverse, 71, 72, 73–74

B
Basis

change of, 125, 204, 205–207,
208–210, 210f, 211–216

eigenspace, 243, 244–246
image of linear transformation,

223–224
kernel of linear transformation, 223
linear transformation, 195–198,

199, 199f, 200, 200f
orthogonal vector, 329, 330, 330f,

331
orthonormal basis, 340, 341
row space, 155–157, 158
vector space, 136, 137, 138–141,

155
Block diagonal matrix, 25, 382–384

C
Canonical basis

creation, 399, 400

definition, 395
generalized eigenvector,

379–412
Cauchy-Schwartz Inequality, 327
Chain. See Markov chain; Vector

Chain
Characteristic equation, 240
Closure under addition, 103, 104
Closure under scalar multiplication,

104
Coefficient matrix, 11, 16–17, 75,

76, 85
Cofactor, 49, 50–51
Column index, 3
Column matrix, 3–4
Column rank, matrix, 162–163, 164
Column space, 162
Commutativity, matrix addition, 5
Complete graph on n vertices, 312
Complex vector space, 104
Component, matrix, 3–4
Connected graph, 312–313
Consistent system, simultaneous

linear equations, 33, 35,
165–166

Coordinate representation basis
change, 204, 205–207,
208–211

Euclidean inner product,
325–326, 325f, 326f

handedness, 99, 99f
vector, 142–143, 143f

Correspondence, rules of, 175–176,
176f, 177

D
Dependence, linear. See Linear

dependence
Derivative, of a matrix, 273
Derived set, linear equations, 37–39,

40, 41, 42
Determinant

calculation
cofactors, 49, 50–52

diagonal matrix, 55
elementary row operations, 57,
58–59

pivotal condensation, 61,
62–63

rules based on minors, 48
triangular matrices, 54–55, 54f

definition, 47
invertible matrices, 63
parallelogram area, 52, 52f, 53,

53f, 54–55
similar matrices, 63

Diagonal element, matrix, 3
Diagonal matrix

definition, 25
derivative, 55
diagonalization, 237, 256–264

Differential equations
adjacency matrix, 313–317
definition, 289
fundamental form
definition, 292, 293
solution, 298–309
transformation, 293, 294, 295

graphs and networks, 312–313
Laplacian matrix, 318–321
matrix representation, 289–298,

291t
modeling, 309–312, 310f
software solutions, 433–434

Dilation, linear transformation, 182
Dimension

matrix, 3–4
n-space, 95
nullity and kernel dimension,

225
vector space, 141

Directed line segment, 95–97, 95f,
96f, 97f

Direct sum, 380–381, 382–384
Disconnected graph, 312–313
Distribution vector, 415–417
Domain, 175–176, 176f, 181
Dominant eigenvalue, 276, 278, 279
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E
Eigenspace

basis, 243, 244–245
definition, 243

Eigenvalue
applications
adjacency matrix, 313–317
differential equation, 289–312
graphs and networks,
312–313

Laplacian matrix, 318–321
calculation for matrix, 240,

241–247
definition, 238
dominant eigenvalue, 276, 278,

279
eigenvector pair, 239
exponential matrices, 266
geometric interpretation in n-

space, 238
inverse power method, 280, 281,

282, 283, 283t, 284
multiplicity, 242
properties, 250, 251–252,

253–254
QR algorithm for determination,

354, 355, 356–357, 358
similar matrices, 242, 243

Eigenvector
calculation for matrix, 240,

241–242, 243
definition, 238
diagonalization of matrices, 256,

257, 258, 259, 260–262
eigenvalue pair, 239
exponential matrices, 272
generalized, 395, 396,

397–398
geometric interpretation in

n-space, 238
properties, 250, 251, 252,

253–254
type 2, 387–388
type 3, 385, 386

Elementary matrix, 68, 69–71
Elementary row operations

elementary matrix, 69–71
pivot, 38–39

Element, matrix, 2–3
Equations, simultaneous linear.

See Simultaneous linear
equations

Equivalent directed line segments,
96–97

Euclidean inner product.
See also Orthogonal
complement

calculation, 323–325
definition, 323
geometrical interpretation,

325–326
induced inner product, 329

Euler’s relations, 272
Expansion by cofactors, 50, 51
Exponential matrix

calculation, 264–266, 267–268
definition, 264
inverse, 271
Jordan canonical form, 266,

267–268, 269, 270

F
Finite-dimensional vector space,

139–141
Finite Markov chain, 413,

414, 418
Function. See also Transformation

definition, 175
notation, 177
rules of correspondence,

175–176, 177
Fundamental form, differential

equations
definition, 292
solution, 184, 185, 187, 188,

298–309
transformation, 293, 294, 295

G
Gaussian elimination, simultaneous

linear equation solution,
37–39, 40, 41, 42, 139, 166

Generalized eigenvector, 395, 396,
397–398

Generalized modal matrix, 402
Generalized Theorem of Pythagoras,

327
Gram-Schmidt orthonormalization

process, 344, 345,
346–351

Graphs
cycle, 312–313
definition, 312
directed graphs, 312
networks, 313
tree, 312–313
types, 312
vertices and edges, 312

H
Homogeneous system

differential equations, 293
simultaneous linear equations,

35, 36

I
Identity matrix, 25
Image, linear transformation,

221–224, 225
Inconsistent system, simultaneous

linear equations, 33
Independence, linear. See Linear

independence
Index numbers, 393–394
Induced inner product, 329, 338
Infinite-dimensional vector space,

139–141
Initial conditions, 292, 293, 304
Initial-value problem, 293, 294, 295,

296
Inner product space, 342
Invariant subspace, 381–382, 383,

384, 385, 389
Inverse

determinant of matrix, 62
exponential matrix, 271
matrix, 67–68, 70–71, 72–74, 75,

76–77
Inverse power method, 280, 281,

282, 283, 284

J
Jordan block, 391, 392
Jordan canonical form, matrix, 245,

247–248, 266, 267–268, 269

K
Kernel, linear transformation, 219,

220–224, 225
Kronecker delta, 339

L
Laplacian matrix

diagonal matrix, 318
graph’s Laplacian eigenvalues,

320
Kirchhoff’s matrix-tree theorem,

318
spanning trees of graph, 319

Least-squares error, 361–362
Least-squares solution, 365, 366,

367
Least-squares straight line, 362
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Left distributive law, matrix
multiplication, 15

Limiting state distribution vector,
419, 420

Linear combination, vectors
determination, 122
span, 123

Linear dependence
definition, 127
vector sets, 130–133, 132f, 133f,

140
Linear equations. See Simultaneous

linear equations
Linear independence

definition, 127
matrices, 129
polynomials, 159
row matrix, 167
row rank in determination,

158–159
three-dimensional row matrices,

128
two-dimensional row matrices,

128
vector sets, 129, 130–133
vectors in a basis, 147

Linear transformation.
See Transformation

Line segment, directed, 96–97
Lower triangular matrix, 25–26, 231,

251
LU decomposition, 81, 82–83,

84–86

M
MacLaurin series, 264
Magnitude

n-tuple, 324–325
row matrix, 95–97
vector, 325

Main diagonal, 3
Markov chain

definition, 413
distribution vector, 416
limiting state distribution vector,

419, 420
transition matrix construction,

413
MATHEMATICA®, 433
MATLAB®, 433
Matrix. See al so n-tuple

block diagonal matrix, 25
column matrix, 3–4
definition, 1–2

diagonal element, 1–2
diagonal matrix, 25
differential equation

representation, 289–298
element(s), 2–3
elementary matrix, 68, 69–70
Gaussian elimination for

simultaneous linear equation
solution, 37–39, 40, 41, 42

identity matrix, 25
inverse, 67–68, 70–71, 72–74, 75,

76–77
lower triangular matrix, 25–26
LU decomposition, 81, 82–83,

84–86
partitioned matrix, 23
row matrix, 3–4, 89
row space, 151, 152–153, 154,

155–157, 158–159
square matrix, 3
submatrix, 22
technology, 433–434
trace, 250–251
transpose of matrix, 21, 22
upper triangular matrix, 26
zero row, 23–25

Matrix addition
associativity, 5
commutativity, 5
sum of matrices of same order, 4

Matrix multiplication
associativity, 15
coefficient matrix, 11, 16–17, 75,

76, 85
left distributive law, 15
packages approach, 11
postmultiplication, 13
premultiplication, 13
product of two matrices, 12,

13–14, 15–17
right distributive law, 15
scalar multiplication, 6, 7

Matrix representation
change of basis, 212–216
linear transformation, 191, 192,

193–194, 195–198, 199,
200, 211

Matrix subtraction, 6
Minor, matrix, 48–49
Modal matrix, 257, 265–266
Modeling, differential equations,

309–312
Multigraph, 312
Multiplicity, eigenvalue, 242

N
Noise, 360
Nonhomogeneous system

differential equations, 293
simultaneous linear equations, 35

Nonpseudo graph, 315
Nonsingular matrix, 67, 74, 75
Normal equations, 363, 366
Normalization, n-tuples, 101
Normalized vector, 325
n-space

definition, 93–94
linear transformation, 193–194,

195–196
row space (see Row space)
subspace, 118–120, 121–122
three-dimensional row matrices,

99
two-dimensional row matrices,

93–94, 95–97, 98, 99
n-tuple

definition, 4
normalization, 101
sets. See (n-space)
three-dimensional row matrices,

99
4-tuple, 101
5-tuple, 101
two-dimensional row matrices,

94, 95–97
Nullity, kernel dimension, 225
Null space, linear transformation, 219

O
One-to-one linear transformation,

226, 227–228, 227f, 229–230
Order, matrix, 2
Orthogonal complement

definition, 371
projection, 337–338, 337f
subspaces, 369–370, 370f, 371,

372–374
Orthogonal vector, 327, 329, 330,

330f, 331, 331f
Orthonormal basis, 340, 341
Orthonormalization, Gram-Schmidt

orthonormalization process,
344, 345, 346–348

Orthonormal set, 339–341, 343

P
Parallelogram, area, 52–53, 54–56
Partitioned matrix, 23
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Pivot
definition, 38–39
elementary matrix, 70–71

Pivotal condensation, 61, 62–63
Postmultiplication, matrices, 13
Power method

calculation, 277, 278
conditions, 276
inverse power method, 280, 281,

282, 283
shifted inverse power method,

284, 285
Premultiplication, matrices, 13
Problems, answers to, 437–514
Product, inner. See Inner product

Projection
onto x-axis, 186
onto y-axis, 186
orthogonal complement,

337–338
vector, 336, 337–341, 342, 343,

344–345, 346–348
Pythagorean theorem, 327

Q
QR algorithm, 351–359, 433
QR decomposition, 351–352,

353

R
n. See n-space
Range, 175–176, 176f, 181
Rank, 393–394, 397
Real number space. See n-space
Real vector space, 104
Reciprocal. See Inverse
Rectangular coordinate system,

handedness, 99
Reflection

across x-axis, 185
across y-axis, 185

Regular graphs, eigenvalues, 315
Regular of degree r graph, 312
Regular transition matrix, 418,

419
Representation, matrix. See Matrix

representation
Residual, 360
Right distributive law, matrix

multiplication, 15
Row matrix. See also n-tuple

features, 3–4
linear independence, 167
three-dimensional row matrices,

99, 100f

two-dimensional row matrices,
94, 94f, 95, 95f, 96–97, 96f,
97f, 98f

Row rank
column rank relationship,

162–163, 164
definition, 151
determination, 152–153, 154
linear independence

determination, 158–159
Row-reduced matrix

Gaussian elimination, 37–39, 40,
41, 42

transformation, 71
Row space

basis, 155–157, 158
definition, 151
operations, 151, 152–153, 154,

155–157, 158–159
Rules of correspondence, 175–176,

176f, 177

S
Scalar. See also Cofactor;

Determinant; Eigenvalue
definition, 7
linear equations, 32–33

Scalar multiplication
closure under scalar

multiplication, 187
matrix, 6, 7–8
subspace, 117–118
vector space, 104, 109, 111, 112

Scatter diagram, 98f, 360
Shifted inverse power method,

284
Similar matrices

definition, 215–216
determinants, 63
eigenvalues, 242

Simple graphs, 312
Simultaneous linear equations

consistent system, 33, 35, 164,
165–166

forms, 30–31, 32–33, 33f
Gaussian elimination for

solution, 37–39, 40, 41, 42
homogeneous system, 35, 36, 41,

166
inconsistent system, 33
matrix representations, 31, 36
nonhomogeneous system, 35
trivial solution, 35

Singular matrix, 67, 251–252
Skew symmetric matrix, 22

Span
basis, 155–156
row space of matrix, 151
subspace, 123–124, 136–137,

218
vector chain, 389

Spanning trees, 312–313, 319
Spectral matrix, 257
Square matrix, 3
Standard basis, 141–144
Submatrix, 15–17
Subspace

definition, 116–117
kernel of linear transformation,

219, 220–221
n-space, 118, 119–120, 119f,

121–122, 121f
scalar multiplication, 117–118,

119f
span, 123–124, 136–137, 218
vector space, 122

Superdiagonal, 389
Symmetric matrix, 22

T
Three-dimensional row matrices, 99,

100f
Trace, 250, 251
Transformation. See also Function

change of basis, 204–218
definition, 181
diagonalization of matrices, 237,

256–264
dilation, 182
image, 220–222, 222f, 223–224,

225–226
kernel, 220–222, 222f, 223–224,

225
linear transformation
determinations, 182, 182f, 183,
183f, 184, 185, 185f, 186f,
187, 187f

properties, 218–233
matrix representation, 191–204
one-to-one transformation, 226,

227–228, 227f, 229–230
Transition matrix

change of basis, 205–207,
208–210, 210f, 211

construction for Markov chain,
413, 414

definition, 413
powers of, 414–418
regular, 418, 419

Transpose, of matrix, 21, 22
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Triangular matrix
triangular matrix, lower, 25–26,

231, 251
triangular matrix, upper, 25–26,

54, 261
Two-dimensional row matrices, 94,

94f, 95, 95f, 96–97, 96f,
97f, 98f

U
Unit vector, 325
Upper triangular matrix, 25–26,

54, 261

V
Vector. See also Eigenvector; n-tuple

angle between vectors, 325–327,
326f

distribution vector, 415–417
least-squares solution, 365, 366,

367
limiting state distribution vector,

419, 420

linear combination
determination, 93–174
span, 123

linear independence, 129,
130–133, 133f, 147

magnitude, 324–325
orthogonal vector, 329, 330, 330f
orthonormal set, 339–341, 343
projection, 336–351
unit vector, 325
zero vector, 111–114

Vector chain, 386–391
Vector multiplication. See Inner

product
Vector space

additive inverse of vectors, 112,
113

basis, 136, 137, 138–141
closure under addition, 103, 104
closure under scalar

multiplication, 103, 104, 109
complex vector space, 104
definition, 93–174

dimension, 141
efficient characterization,

127
finite-dimensional vector space,

139–141
infinite-dimensional vector space,

139–141
linear independence,

127–136
proof of properties, 105–107,

108–109
real vector space, 104
row space of matrix, 151–161
set notation, 104
standard basis, 141–144, 143f,

144f
subspace (see Subspace)

Z
Zero matrix, 379
Zero row, 23–24
Zero transformation, 183, 190
Zero vector, 93–174
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