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Preface to the Classics Edition

The first version of this book was written in 1985 and published in 1987.
Its principal goal was the exposition of bounds for the distance between the
eigenvalues of two matrices A and B in terms of expressions involving
|A — B||. The prototype of such bounds is H. Wey!’s inequality from 1912.

This subject flourished in the 1950s, with important contributions by
A. M. Ostrowski, V. B. Lidskii, A. J. Hoffman, H. W. Wielandt, and others.
Three noteworthy papers were added to these in the early 1960s. One
of them, by L. Mirsky (1960), was an illuminating survey article and it
formulated some problems concerning normal matrices. The other two by
F. L. Bauer and C. T. Fike (1960) and by P. Henrici (1962) focused on
nonnormal matrices. Then for several years not much was added to this
aspect of the subject, even as the venerable books by T. Kato and J. H.
Wilkinson appeared in 1965—66. |

A revival, in which the predominant role was played by my coworkers,
occurred around 1980. It was a happy coincidence that the appearance of
Marshall and Olkin’s book just at this time kindled widespread interest in
majorization. As a result, lots of matrix inequalities, among them several
perturbation bounds, were discovered in the 1980s.

This book, written as these developments were taking place, attempted
to present a unified picture of the old and the new results. It seems to have
had more success than I could have imagined at that time, capturing the
attention of several prominent practitioners of the subject, stimulating fur-
ther work, and receiving favorable reviews. I am grateful for this response.

Appearing, as it did, in a series of “Research Notes” that are considered
to be of transient value, the book went out of print three years after its
publication. I am both pleased and honored that, twenty years later, the
editors at SIAM have considered it appropriate to republish this book in
the series Classics in Applied Mathematics.

In these intervening years, a lot of work has taken place in the subject.
To maintain the value of the book as a research resource I have added an
appendix entitled “Supplements 1986—2006.” This consists of seven parts,
five of which supplement Chapters 2 to 6 of the original book, and have
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been given the same chapter titles for the convenience of the reader. The
supplements are divided into sections numbered 26 to 43 in continuity with
the 25 sections in the first edition. Again I have chosen to include only those
results that have the same form as the prototype Weyl’s inequality. The
book can be used for a short “topics” course in linear algebra or functional
analysis at the graduate level. Keeping that use in mind, the supplement
to Chapter 2 even contains a bit of classical material that is used in later
sections. |

The introduction in the first edition contained a summary of the impor-
tant inequalities presented in the book. This could have been the prompt
for a kind reviewer to say that “the monograph should also prové a boon for
those who merely want to use it quickly and run.” The quick and the pa-
tient reader both may appreciate being informed about prominent changes
in the subject since that introduction was written. I list them in brief in
the next paragraphs.

For several years the most prominent conjecture on perturbation in-
equalities, which attracted the attention of several mathematicians, was
that the inequality (3) in the introduction,

d(Eig A, EigB) < |A-B||,

would be true for all normal matrices A and B. In 1992, J. Holbrook
published a counterexample to this with 3 x 3 matrices. It is now known
that the inequality (4)

d(Eig A, EigB) < c|A— B||

is true for all n X n normal matrices A and B with ¢ < 2.904 and
that the best constant ¢ here is bigger than 1.018.

The inequality (9) of the introduction has been significantly improved.
The factor n occurring there can be replaced by a small number indepen-
dent of n. For any two n X n matrices A and B we have

d(Eig A, EigB) < 4(2M)!~Y/" |A - B||/".

This is a consequence of work done by D. Phillips and by R. Bhatia, L. -
Elsner, and G. Krause in 1990.
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If A is normal and B arbitrary, the inequality (8) can be improved
to

d(Eig A, EigB) < n ||A—- B|.

This was shown by J.-G. Sun in 1996. In Section 40 the reader will find
inequalities for other norms in this situation.

The theorems in Chapters 3 and 4 have been significantly generalized
in various directions. The new Chapter 10 deals with pairs of diagonalizable
matrices. These are matrices A and B suchthat A = SD;S™! and B =
TD,T~! where D; and D, are diagonal, and S and T are invertible
matrices. The number ¢(S) = ||S]| |S~!| is called the condition number
of S. When A is normal, S can be chosen to be unitary, and then
c(S) = 1. Suppose the diagonal matrices D; and D, are real. Then we
have |

||Eig, (4) — Eig, (B)||| < v¢(S)e(T) |||A~ B||-

This is a pleasant generalization of the inequality (12) in the introduction.
Exactly the same type of extension of the inequality (16) has been estab-
lished for arbitrary diagonalizable matrices, and of inequalities (3) and (14)
for diagonalizable matrices whose spectra are on the unit circle.

In another direction these theorems on Hermitian, unitary, and normal
operators have been extended to the case when A and B are operators
on an infinite-dimensional Hilbert space with the restriction that A— B is
compact. These results are summarized in Section 41.

The somewhat daunting proof of Lidskii’s Theorem in Chapter 3 can
be substantially simplified by an argument of C.-K. Li and R. Mathias.
This is presented in Section 30. One of the most spectacular developments
in recent years has been the solution of Horn’s problem. This is related to
our discussion but is not our main theme. Another important advance that
has taken place is the proof of Lax’s conjecture on hyperbolic polynomials.
A direct consequence of this for our problem is that when A and B are
matrices all whose real linear combinations have only real eigenvalues, then
not only the inequality (1) but also the inequality (12) of the introduction
holds good.

I am thankful to Jim Demmel, Ludwig Elsner, Leon Gurvits, John
Holbrook, Roger Horn, Adrian Lewis, Chi-Kwong Li, Ren-Cang Li, Roy
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Mathias, and Xingzhi Zhan, all of whom responded to my request for in-
formation that I needed for preparing the supplements.

‘'The proposal to reprint this book originated from series editor Nick
Higham. I thank him for this interest in giving the book a new life, and 1
thank the editors and the staff at SIAM for their help and support.
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Preface

These notes are based on lectures that I gave at Hokkaido University in the
fall of 1985. Substantial parts of this material were presented earlier in
seminars at the University of Bombay, the University of Tbronto and the
Indian Statistical Institute. It is a pleasure to record my thanks to
Professors T. Ando, Ch. Davis and M.G. Nadkarni who organized these seminars.

Professors F; Hiai and K.R. Pérthasarathy were kind enough to go through
my héndwritten notes. Their observations led to the elimination of several
errors. [Ihe ones that have survived are, of course, solely my responsibility

I thank the editorial staff of Longman Scientific and Technical for their
typing of this monograph in its present form and for its production.

The library resources available to me while preparing these notes were
somewhat limited. It is, therefore, likely that the work of some authors

has been misrepresented or overlooked. 1 apologise for all such omissions.

Rajendra Bhatia






Introduction

Introduction

Ever since the publication of the classic Methods of Mathematical Physics b
Courant and Hilbert, eigenvalues have occupied a central position in applie«
mathematics and engineering. Vibrations occur everywhere in nature; each
vibration has a certain frequency; these frequencies are the eigenvalues of
some differential operator describing the physical system.

Finding the eigenvalues of an operator is not always an easy task.
Sometimes it is easier to calculate the eigenvalues of a nearby operator an
then use this knowledge to locate approximately the eigenvalues of the
original operator. In some problems, the underlying physical system may be
subjected to changes (perturbations) and we may want to determine the S
consequent change in eigenvalues. On other occasions, we may know an
operator only approximately due to errors of observation, or we may have to
feed an approximation of it to a computing device. In each case we would
like to know how much this error or approximation would affect the eigenvall
of the operator.

All these considerations give rise to one mathematical problem: if we
know how close two operators are, can we say how close their eigenvalues mus
be? It is to this problem - or rather to one of the several facets of this
problem - that the following pages are devoted.

First of all we restrict ourselves here to the study of finite-dimension:
operators (matrices). The finite-dimensional theory from the mathematical
physicist's point of view has been dealt with in the mohographs of
Baumgartel [1] and Kato [1]. The central question here is: if A(t) is a
family of matrices varying smoothly with a parameter t then do the
eigenvalues, eigenvectors, eigenprojections and eigennilpotents of A(t) alsc
vary smoothly with t? If so, what are the power series expansions, their
radii of convergence and the error estimates when the power series are
truncated? From the numer;bal analyst's point of view, the theory has been

expounded in the book of Wilkinson [1] and its successor, the recent work of

Parlett [1]. Here the emphasis is on actual methods of computation, the



rates of convergence of various algorithms and how to accelerate them, how
to use one part of a computation to simplify the remaining. One of the many
topics dealt with in all these books is finding good error bounds or
perturbation inequalities for eigenvalues. That is the only topic we will
study here, though in greater detail.

We further restrict ourselves to the study of only one kind of
perturbation inequalities. Our object here would be global, a priori bounds
for the distance between the eigenvalue n-tuples of two nxn matrices. Thbs)
we would not require that the two matrices should be close to each other by
a preassigned amount; we would not require or use any knowledge about one
part of the spectrum (or any of the associated objects like the Jordan form)
of one of the operators; and we would deal with all the eigenvalues at the
same time. We must emphasize that in practical situations some of this
knowledge is readily available, either to begin with or at some intermediate
stage of a calculation. So it may be unwise to discard it. Nevertheless,
we will assume that we are given only the size of the difference, ”A—B”, for
two matrices A and B and perhaps that A,B are from some special class of
matrices.

We now give a brief summary of the major inequalities which are proved
(occasionally just stated) in this monograph. This could serve as a preview
for some readers, while others just looking for an inequality to use would
be saved the trouble of digging it out from the text.

The prototype of (almost) all of our inequalities is the following
result of H. Weyl (1912). Let A,B be Hermitian matrices with eigenvalues
a, > ... >a_ and 81 > .. > Bn’ respectively. Then

—

max |a -B.| < ||A-B| . (1)
] J J
Here, ||A|| denotes the operator bound norm of A.

P. Lax (1958) showed that the same result is true when A,B are any two
matrices all whose real linear combinations have only real eigenvalues.
Such matrices arise in the study of hyperbolic partial differential
equations. (In fact, Lax's proof of this result relied on methods of
partial differential equations).

If A,B are arbitrary nxn matrices with eigenvalues a ¢ 50 and

) 1°°°
81,...,Bn, respectively, define the optimal matching distance between their
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eigenvalues as

d(Eig A, Eig B) = min max ]aj~80(j)|, (2
Y J
where the minimum is taken over all permutations on n symbols.
" R. Bhatia and C. Davis (1984) showed that if A,B are unitary matrices
then

d(Eig A, Eig B) < ||A-8J. | (3.

Note that,’if A,B are Hermitian, then the left hand side of (1) is equsi to
d(Eig A, Eig B). So this result is analogous to that of Weyl.

It has long been conjectured that the inequality (3) remains true when
A,B are normal matrices. Only some special cases of this conjecture have
been proved so far. It is true when A,B and A-B are all normal (R.Bhatia
(1982)), when A,B are constant multiples of unitaries (R.Bhatia and J.A.R.
Holbrook (1985)) and when A is Hermitian and B skew-Hermitian (V.S. Sunder |
(1982)). | o

More interesting, perhaps, is the fact that a weaker form of the
conjecture has been established. R. Bhatia, C. Davis and A. McIntosh (1983,

showed that if A,B are normal matrices then
d(Eig A, Eig B) < c||A-B]|| (4,

where ¢ is a universal constant independent of the dimension. The value of
this constant is not known, but Koosis (unpublished) has shown that c < m.

W. Kahan (1975) showed that if A is Hermitian and B arbitrary then
d(Eig A, Eig B) < (y_ + 2) ||a-B| : (5)

where Y, is a constant depending on the size n of the matrices. Further he

showed that the optimal constant for this inequality is bounded as
-% lIn n - 0(1) < vy, < log, n + 0.038. - (6)

The value of this constant was found by A. Pokrzywa (1981) who showed



Y = %- ) cot-Z%%l . | (7)

n

One can see that if A is normal and B arbitrary then
d(Eig A, Eig B) < (2n-1) ||A-BJ|. (8)

If, in addition, B is Hermitian then the factor (2n-1) can be replaced by /2
in the above inequality.

When A,B are arbitrary nxn matrices the situation is not so simple.
Results of this type in the general case were obtained by A. Ostrowski (1957),
P. Henrici (1962), R. Bhatia and K.K. Mukherjea (1979), R. Bhatia and
S. Friedland (1981) and L. Elsner (1982) and (1985). This latest result of
Elsner says that for A,B arbitrary nxn matrices

1/n

=1/ 1), (9)

d(Eig A, Eig B) < n (2M)

where, M = max(||Al|, ||8]]).

Let us now turn to another kind of generalization of Weyl's inequality (1).
All through the above discussion we used the operator bound norm to measure
the size of an operator. For some problems this norm is not very suitable.
For one thing, it is not always easy to compute it; for another, it is not
always possible to assert that an operator is uniformly small on the entire
space (which is what the assertion ||A|| < € would mean). So, it is often
advantageous to obtain estimates in other norms as well. Of particular

geometrical interest are the "unitarily-invariant norms", like the Frobenius

norm
IAlle = (tr A2 = (5 Ja; D12 (10)
7 ]
1,]
or the trace norm
1Al = tea™m V2 (11)
Unitary-invariance here means the property ||A| = |UAV||, for any two

unitary matrices U and V. We will denote by |

-||| any of the family of

4



unitarily-invariant norms, and the statement |||A]|| < |||B||| would mean that
this inequality is true for all these norms simultaneously.

Lel A be a Hermitian matrix with eigenvalues a, > cee 20 and denote by

1
Eig#(A) the diagonal matrix with @.,...,0 as its diagonal entries. Then

the inequality (1) can be restated as
lEsa, (A) - Eig,®)] < [A-8].

From a theorem of V. Lidskii (1950) together with von Neumann's
characterization of unitarily-invariant norms and some inequality results of
Hardy, Littlewood and Polya, one obtains a big generalization of this. We

have for A,B Hermitian
llEsa, (&) - Eig @] < [Ia-8lI- (12)

For arbitrary matrices A,B we can define a distance between their
eigenvalues in any norm as follows. Denote by Eig A the diagonal matrix

with the eigenvalues of A placed on the diagonal in any order. Then defing;
| W

where W runs over all permutation matrices. Note that

d(Eig A, Eig B) = ||(Eig A, Eig B)||. Since Weyl's inequality (1) can be
generalized to the inequality (12) for Hermitizn matrires, one is tempted tc
conjecture that the inequ-iity (3) for uritary matrices can be #:milarly
generalized. Thkis, hovever, is not the —ise. It wa: :roved by #. Bhatia,

C. Davis and A. McIntosh (1983) that f:»: %,B unitary
i (€ig A, Eig B)|I| < T [lja-8]. (14)
Further, no constant smaller than w/2 can replace it in thi: :tatemeni
It is not known what the best such inequality for normal ..itrices :suld

be. If A,B and A-B are all normal then it was shown by R. Bhatia (% #2)
that

Il Eig A, Eig B < [f|A-8]|. (15!



A more interesting result was obtained by Hoffman and Wielandt (1953).
They showed that for any two normal matrices A,B and for the Frobenius norm

we have
IEig A, Eig B < [IA-8]|. (16)

Several other results related to these may be found in the text.

This mpnograph is reasonably self-contained. In Chapter 1 we have
collected some statements which are used in later chapters. These results
may be found in standard books, references to which have been provided. The
contents of Chapter 2 can also be found in the books of Schatten and of
Gohberg and Krein. We have only picked up those results which provide an
adequate working knowledge of unitarily-invariant norms and singular values.
The contents of the remaining chapters are scattered in the research
literature, though some of these results have already found a place in
books. While organizing them into a coherent systematic whole, we have
tried to find a common strand running through several results. Thus when
two different proofs are available for the same result we have chosen not the
one which is cleverer or the one which gives a little stronger conclusion but
the one which leads to at least one more significant result. We, therefore,
hope that the reader will not only find the inequalities interesting, but

also the mathematics behind them.



1 Preliminaries

In this chapter we collect some miscellaneocus facts for later use. Many of
these are well known elementary statements. They are recalled here briefly

and stated without proof.

§1. The marriage problem

Let B = {b1""’bn} and G = {g1,...,gn} be two finite sets with the same
cardinality and let R be a subset of BxG. The triple (B,G,R) will be called
a society. It will be called an espousable society if there is a bijection
f from B to G whose graph is contained in R. The "marriage problem" is to
decide when a society is espousable. (Think of B as a set of boys, G as a
set of girls and say (bi’ gj) € R iff the boy b, and the girl 9, are
compatible with each other. The problem is to decide whether it is possible
to arrange a monogamous marriage in which each boy is married to a girl with
whom he is compatible).

For each 1 = 1,2,...,n let Gi = {gj : (bi’ gj) € E}, and for each k-tuple

of indices 1 < i, < i, <...< 1, < n let G. . = u G. . The nontrivial
- 1 2 k""‘ 11ooolk r_,] lr

half of the following theorem is attributed to P. Hall.

THEOREM 1.1 (Hall): A society (B,G,R) is espousable iff for every

k =1,2,...,n and for every choice of indices 1 g.i1 <... < ik <n

| > k (1.1)

Here, |X| denotes the cardinality of the set X.

Notice that the condition (1.1) involves a gender asymmetry, in that, it
only demands that for each set of boys we should be able to line up at least
as many girls each of whom is compatible with one or more of these boys. If

we banish such lack of reciprocity we get a stronger result.
For each 1 = 1,2,...,n let Bi = {bj : (bj’ gi) € R} and, as before, let



k
B. . = U Bi . For any real number t let {t} denote the smallest
1°"""k r=1 r
integer larger than t. The following theorem was proved by Elsner, Johnson,

Ross and Schonheim.

THEOREM 1.2 : A society (B,G,R) is espousable iff for every k = 1,2,...,{n/2}

and for every choice of indices 1 5‘11 <...< ik <n

6.

>k and |B,
i = i

————

; | > k. (1.2)
10 RS

Proof : We shall show that this hypothesis implies that of Theorem 1.1. For

any r = 1,2,...,n choose any indices 1 5‘11 <...< ir < n. We have to show

'Gi ;| >r. If r < {n/2} there is nothing to prove. Suppose there
1...r :

exist an r > {n/2} + 1 and indices 1 < i, <...< i < n such that

| < r. Then there aren - r + 1 girls, say 945999+ 10 who

IG' Nn-r+1

1 . o .i
1 r
are incompatible with each of the boys bi ,...,bi ; i.e. (bi , gm) Z R for
1 r J

j=1,2,...,randm=1,2,...,n-r+1. So, |B1 n—r+1| < n-r. On the other
hand, n - r + 1 < n - {n/2} < {n/2} and so, by the hypothesis,

|B1 n r+1| >n -r1 + 1. This contradiction proves our assertion. &

We will use these theorems to estimate the distance between two unordered
n-tuples of complex numbers under certainAconditions.
Let {A1,...,An} and {u1,...,un} be two unordered n-tuples of complex
numbers. (Some of the A's or the u's may be equal). Let L and M be the
" subsets of the complex plane which have the A's and the u's as their.
elements. (The cardinality of L or M may be less than n if the A's or the
u's occur with multiplicity). The Hausdorff distance between the closed

subsets L and M in the metric space € is defined, as usual, by
h(L,M) = max(v(L,M), v(M,L))

where



v(L,M) = sup dist(A,M)
AEL
The optimal matching distance between the n-tuples {A1,...,An} and
{u1,...,un} is defined as

d({x,,..., 2}, {py...1 }) = min max X, - u_ .\,
1 n 1 n 0€S_ 1<icn i o(i)
where Sn denotes the group of permutations on n symbols.

The following statements are easy to verify.

1.3 h(L,M) = € iff € is the smallest number with the property that each
Ai is within an €-neighbourhood of some uj and vice versa.

1.4 (i) h(L,M) id({)\1,...,)\n}, {“1""’“n})'

(ii) When n = 2, there is equality in the above inequality.

(iii) When n = 3, there may be strict inequaiity even in th« absence
of multiplicity.

(iv) The optimal matching distance may be¢uwe arbitrarily iarge even’
when the Hausdorff distance remains bodnde@u This is best :ilustrated

by the example
L = {0, m-e, me}, M = {m,c,-c}.

Later on, we will come across a situatioi: where some additiocnsl
information about ths relative positions of %EE,...,An}, {u

avallable. We will then need to use

THEOREM 1.5 : Let {11,...,Xn}, {u1,...,un} be two n-tuplss of complex

numbers. Let'ﬁ(x,e) denote the closed disk with :«ntre » and radius e. L
n

C denote any connected component of the set u D{ ,e) or of the =ot
i=1 Q

n

U D(ui,e). It e2ach st C coriivins as many A's &+ it coni: .ns p's then
i=1 '

the optimal matci:::w; distanwce bes w:en thesi n-tuples is bound: & by 0 if n

is odd and by (n-1:: if n is eve: .



Proof : Let B and G denote the sets B = {A1,...,An}, G = {u1,...,un}.

(Here we allow ourselves a misuse of notation. Some of the A's or the u's

may be identical. But for this argument we regard them as distinguishable,

so that |B| = |G| = n). Say that A, and Aj are joined by a p-string if
there exists a sequence A. , A. ,...,A. such that A. = A., A. = A. and
i i i i i’ 7i J
. D 1 D
‘B(Ai ,€) has a nonempty intersection with'ﬁ(ki ,€) for k = 1,2,...,p-1.
k k+1

In the same way, define the joining of a M. with a yu. by a p-string.

Note that if Xi and Aj are joined by a p-string then Iki—kjl 5.2(p—1)€ﬁ

Now define a relati?n R c BxG as follows. Say that (Xi,kj) € R either if
there exists a My in D(Ai,e) such that My, and Mj are joined by a p-string
for some p < {n/2}, or if there exists a A in’U(uj,e) such that A and Xi
are joined by a p-string for some p < {n/2}.

Note that if (xi,uj) € R then |xi-uJ| < e+ 2({n/2} - Ve = (2{n/2} - 1)e.
And this last quantity is equal to (n-1)e if n is even and ne if n is odd.

To prove the theorem it suffices to show that the society (B,G,R) is
espousable. For this we use Theorem 1.2. Since there is a complete
symmetry in the definition of R in our problem, we only need to verify that
the first of the conditions (1.2) is satisfied for k = 1,2,..., {n/2}.

First consider the case when each connected component C of the set
‘S 'B(Ui,e) is formed of no more than {n/2} of these disks. By the
;;;othesis of the theorem all A's must lie in one of these components. Each

A is then related to a y if both of them lie in the same component and so

|Gi ; | >k for k = 1,2,..., {n/2}. (In fact in this case this is true
1 b
for all k). | n
Now suppose there is a connected component C of the set v ‘B(Ui,e) which
i=1

is constituted of more than {n/2} of these disks. Note that there can be
only one such component. Any X lying in this C is then related to {n/2} of

the p's. Thus if Ai ,...,Ai are chosen arbitrarily for any k < {n/2} then
1 k
those of this set which lie in C are all related to {n/2} u's, and for each

A not lying in C we can appeal to the earlier case. So, once again the

condition |Gi ; | > k is satisfied for k = 1,2,..., {n/2}.
1eeeip

This proves the theorem. .
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With a weaker hypothesis we get a weaker result:

THEOREM 1.6 : Let notations be as above. Suppose every connected component
n

of the set wu 'B(Ai,s) contains as many A's as pu's. Then the optimal
i=1 |
- matching distance between these n-tuples is bounded by (2n-1)e.

Proof : As in the earlier proof define a relation R by saying (Ai,uj) € R

it [a-ugl < (2n-1)e. Use Theorem 1.1. =

§2. Birkhoff's theorem

An nxn matrix A is called doubly stochastic if its entries 3; ; satisfy the

following conditions

(i) aij-z 0 for i, = 1,2,.0..,n;
n |
(ii) ’Z aij =1 for i=1,2,...50n3
J=1
n
(iii) 2 a.. =1 for j=1,2,...,n.
i1 *J

A matrix is called a permutation matrix if each row and each column have

a single entry one and all other entries zero.

The following beautiful theorem also turns out to be extremely useful.

THEOREM 2.1 (Birkhoff) : The set Qn of nxn doubly stochastic matrices is

convex; each permutation matrix is an extreme point of Qn; the set Qn is the

convex hull of the set of permutation matrices.

§3. Majorization

Let x = (x1,...,xn) be an element of R". Rearrange the components of x in

decreasing order and denote them as

X[1] 2 X[2] 22 X[a]*

11



The same components arranged in increasing order will be denoted as

X(,|) < X(2) LeeeL X(n).

Let

X
|

L (X[1]""’X[n])’

X
|

s C (x(1),...,x(n)).

Let x,y € R"'. We say that x is majorized by y if

n M x

k
oX1 s

Y. k = 1,2,...,n
i=1 L1l

i
and if equality holds in the above iﬁequality for k = n. We will use the
notation x < y to say x is majorized by y.

The following theorem due to Hardy, Littlewood and Pdlya is a basic

result in the study of majorization.

THEOREM 3.1 (The HLP Theorem) : For x,y € R" the following conditions are

equivalent

(i) x< vy,
(i1) there is a doubly stochastic matrix A such that x = Ay,
(iii) the vector x lies in the convex hull of the n! vectors obtained

by permuting the coordinates of the vector y.

We will also have occasion to use the related notion of (weak)

submajorization. We say x is (weakly) submajorized by y if

1N MM x

k
51 X[i] <

< Yi:, k =1,2,...,n.
=1 [i]

i
This relation between x and y 1is denoted by x-(.w Y.

There is an analogue of the HLP Theorem which characterizes submajorizatior

An nxn matrix A = ((aij)) is called doubly substochastic if it satisfies

the following conditions

12



ij 2
n
(ii) I a..< 1 for i=1,2, ,N3
: ij
j=1
n
(iii) I a..< 1 for j=1,2,...,n.
i=1

Let ]{: denote the set of all vectors in R" with nonnegative components.

The following theorem runs parallel to the HLP Theorem.

THEDREM 3.2 : For x,y € Iﬂ: the following conditions are equivalent

(i) x L, Y

(ii) there is a doubly substochastic matrix A such that x = Ay,
(iii) the veétor x lies in the convex hull of the 2" n! vectors obtaine
from y by permutations and sign changes of its coordinates, 1i.e. x'liesﬁ

in the convex hull of all vectors z which have the form

z = (e:1 Yg(1)?* 7 €q yo(n))’

where ¢ 1s a permutation and each ej =-+1.

If x,y € R" we say x < y if xj S.Yj for all j = 1,2,...,n. A map
¢ : R"+ R" is called monotone increasing if ®(x) < ®(y) whenever x < y.
It is called convex if @(tx + (1-t)y) < t &(x) + (1-t)®(y) for 0 < t < 1 and
for all x,y € R". |

A map & : R'> R™ is called isotone if Q(x)x(w ®(y) whenever x < vy.
Isotone maps are also called Schur - convex, though some authors use this
latter term only when m = 1. The map ¢ is called strongly isotone if
<I>(x)‘<w ®(y) whenever x<L Y-

THEOREM 3.3 : Let ® : R"> R" be a convex map. Suppose for every

permutation matrix A of order n there exists a permutation matrix A of order
m such that ®(Ax) = A®(x) for every x € R". Then & is isotone. If, in

addition, ¢ is monotone increasing then it is strongly isotone.

13



COROLLARY 3.4 : Let f : R+ R be a convex function. Then the map induced

by f on R" is isotone. If, in addition, f is monotone increasing then the

induced map is strongly isotone.

In particular, note that this implies that if x £ y then lXIA(W ly]|.

(Here |x| denotes the vector (|x1l,...,|xn|).

COROLLARY 3.5 : If ® : R'> R is convex and permutation-invariant then @ is

isotone. If, 1in addition, ¢ 1s monotone increasing then it 1is strongly

isotone.

§4. Tensor products

Let H be a Hilbert space of dimension n with inner product {.,.) . The
k-fold tensor power of H will be denoted by ®k H. The tensor product of
vectors Xqoeees X, in H is denoted by x1®...®xk. The space ®k H has dimension

n . The inner product in this Hilbert space is defined by

o= X

<x1®...®xk, y1®...®yk> =

T (xy,) (4.1)
1

1

For 1 < k< n, let S

K be the symmetric group of degree k. Define a map
Pk on ®k H by defining it on product vectors as

1
Pk(x1®...®xk) = T g sgn(c)x0(1)®...®x0(k),

where the summation runs over o € Sk and sgn(o) denotes the signature of the

permutation o. Then Pk is an orthogohal projection and the range of this

projection is denoted as Ak H. This space is called the k-fold exterior
power or the Grassman power or the antisymmetric tensor power of H.

The exterior product of x is an element of AkH defined by

1009 Xy

x, Aeo A X, = (k!)1/2

1 y ).

Pk(x1®...®xk

The inner product in the space Ak H is given by

<x,|A...Axk, y1A...Ayk> = det (( <xi,yj>')).

14



Here ((aij)) denotes a matrix with entries a_ ..
n
NI
If e,,...,e_ is an orthonormal basis for H then e. ®...®e. ,
1 n 1, 1
1< 1, <...8 4 ﬁ.h’ is an orthonormal basis for @ H and e; A...he, ,
1 k

The dimension of Ak H is

: A : : k
1< i, <...< i< n, is an orthonormal basis for A" H.

Given a linear operator A on H we can define its kth tensor power ®k A

as an operator on ®k H by defining its action on product vectors as

&< A (x1®...®xk) - Ax.®. . .®AX

1 K’

This operator leaves invariant the subspace Akfiof ®k H. Its restriction tc

Ak H is denoted as Ak A. This operator acts on product vectors as

k _
A A(x1A...Axk) = Ax1A7..AAxk.

The map A - ®k A has the functorial properties

k

&<(AB) = @A.@" B

®k(1) =1
(®k A)* =-®k(A*).

These properties are shared by the map A -» Ak A.

If A has eigenvalues «o FIL then ®k A has elgenvalues Oy ...0

TEE

1< i, <...< 1, < n and Ak A has eigenvalues a., ...a., , 1< i, <...< i, < n.
- 1-=""= "k = 1, 1, — 1 k —

For 1 f_k < n let

Q = {a : a = (a1,.;.,a

K,n ), 1< a, <...< o < n}

k — 1 —
be the collection of strictly increasing sequences of k integers chosen fron
1,2,...,n. An element o of @ is called a k-index. The cardinality of

k,n
Qk n is (E} . We order the set Qk n by the usual lexicographic ordering.
, |

’

15



Fop two k-indices o = (a1,...,ak) and B = (81""’8k) we denote’by A[qls]
the submatrix of the matrix A constructed by picking the OyseeeyOy TOWS and
the 81""’Bk columns of A. In other words, if A 1s an nxn matrix with

entries 8, 5 then Ala|B] is a kxk matrix whose (ij)th entry is 8, 8." The
7]

entries of the matrix Ak A of order are conveniently indexed by pairs

n
k
a,B chosen from Q The (a,B)th entry of Ak A is det A[a|B]. Notice that

k,n
the trace of A" A is the sum of the kxk principal minors of A.

Thus if the characteristic polynomial of the matrix A is written as
n-1 n-2

n n
Xp(t) =t - a, t +a, t ~or (W17 A,

then

Notes and references for Chapter 1

Theorem 1.1, known as Hall's Marriage Theorem can be found in any text on
combinatorial mathematics, e.g., Wilson [1]. It was first proved in Hall
[1]. Theorem 1.2 was proved recently by Elsner, Johnson, Ross and Schonheim
[1]. They actually prove a little more general graph theoretic theorem. The
proof given here is adapted from there. Theorem 1.5 is proved in the above |
paper of Elsner et al. Theorem 1.6 has been known for a long time. It
occurs in Ostrowski [1] and also in his book [3].

Doubly stochastic matrices have been studied extensively. Theorem 2.1
was proved by Birkhoff [1]. Several different proofs can be found in the
literature now.

The idea of majorization has been used widely by analysts, physicists and
economists. It forms the basis of the proof of several inequalities. See
the classic work of Hardy, Littlewood and Pélya [1], the more recent
comprehensive treatise of Marshall and Olkin [1] or the concise lecture
notes of Ando [1]. The proofs of the theorems in section 3 and several

related results can be found in these sources.
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The material in section 4 can be found in any text on algebra, e.qg.
Lang [1]. More detailed treatment can be found in texts on multilinear
algebra like Greub [1] or Marcus [1]. A quick but complete survey can be
found ih Marcus and Minc [1]. For a very brief éummary with several

interesting applications see Blokhuis and Seidel [1].
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2 Singular values and norms

In this chapter we define a special class of norms, called the unitarily-
invariant norms, on the space of linear operators. We prove two key |
theorems; one due to von Neumann shows that these norms arise as
symmetric gauge functions of the singular values of an operator; another due
to Ky Fan is a very useful tool in pfoving inequalities for this whole class
of norms. We provide proofs of all statements (except those which can be

found in any linear algebra text at the level of Halmos [1]).

§5. Sinqular values and polar decomposition

All linear operators, from now onwards, will be assumed to be acting on a
fixed Hilbert space H of dimension n. As usual we will identify operators
with matrices.

We call an operator A positive if the inner product (Ax,x) is
nonnegative for all x € H. A positive operator is Hermitian and all ité
eigenvalues are positive. A positive operator A has a unique positive
square root (i.e. a positive operator B such that B? - A).

For any operator A, the operator A*A 1s always positive. The positive
square root of this operator will be denoted by |A|. The eigenvalues of |A|
are called the singular values of A. We will always count these singular

values with multiplicity, we will always number them in decreasing order:
5,(A) > 8,(A) >...>s (A) >0

and we will denote by Sing A the vector in I{i whose coordinates are the
singular values of A.
The following facts are easily deduced from the polar decomposition

theorem stated below.

18



THEOREM 5.1 (Polar decomposition) : Given a linear operator A, there exist :

unitary operator U and a positive operator P such that A = UP. The operato:

P is unique, in fact, P = lAl; the operator U is uhique if A is invertible.

| 'THEDREM 5.2 (Singular value decomposition) : Given a linear operator A,

there exist unitéry operators U and V and a diagonal operator D with
positive entries on the diagonal such that A = UDV. The diagonal entries of

D are the singular values of A.

Note the above two theorems can be derived from each other using the

spectral theorem.

THEOREM 5.3 : Let A,B be two linear operators. Then the following two

conditions are equivalent

(i) Sing A = Sing B,

(ii) there exist unitary operators U,V such that A = UBV.

If M(n) denotes the space of nxn matrices and U(n) the multiplicative group
bf unitary matrices then we can think of A -+ UAV as an action of the group
U(n) x U(n) on M(n). Theorem 5.3 says that Sing A is a cdmplete invariant
for this action.

Let A = UP be the polar decomposition of A. Choose an orthonormal basis
I ERERELM For‘H consisting of eigenvectors of P corresponding to the
eigenvalues Sq9eeesS respectively. Let UeJ = FJ, J=12,...,n. Then FJ-

also form an orthonormal basis for H. Note

Ae . = s.Ue. = s. f_,
i id i
* *
AF. = PUF. = s.e.,
i j Jod
Ahe. = sle.,
i i ©
AAE. = 82 F..
i i

19



Thus FJ are the eigenvectors of AR” corresponding to the eigenvalues s§

¥*
(which are the same as the eigenvalues of A A).
We say that € is a left singular vector and FJ. is a right singular vector

of A corresponding to the singular value Sj'

§6. The minmax principle

Let A be a Hermitian operator with eigenvalues arranged in a decreasing

order as

The following elementary result (see, e.g., Halmos [1]) is extremely useful.

THEOREM 6.1 (The minmax principle) : For every Hermitian operator A we have

Ar.q(A) = max min (Ax,x)
L] M:dim M=j xEM, |[x]|=1 ’
= min max (Ax,x)

N:dim Nzn-j+1 x€N, ||x||=1

Here M and N denote subspaces of the Hilbert space H (of dimension n) on

which A 1is acting.

COROLLARY 6.2 (The minmax principle for singular values) : For any operator

A we have
s.(A) = max min l|Ax|
J M:dim M= xEM, ||x||=1
= min min l|Ax||

N:dim N=n-j+1  x€N, ||x|}=1

20



COROLLARY 6.3 : Let A and B be Hermitian operators such that A < B (i.e. B-

is a positive operator). Then
)\[J](A) < )\[J](B), J=12,...,n.

We denote by ||A|| the operator norm of A defined by

Al = sup  ||AX]|. (6.1.
I[}=1
We have
1Al = s, (A). (6.2!

PROPOSITION 6.4 : Let A,B be any two operators. Then
- s.(BA) < ||B (A
SJ( ) < ” “ SJ( ) ’ 7

sj(AB) < ||8]] SJ(A).

Proof : We have, for every vector x,

(A'B" BA x,x) = |BAx|?
< l8ll* [Iax])®
- B2 (A%Ax,x)
So, we have the operator.inequality
A'B'BA < ||B||® A"A.

So, by Corollary 6.3,

21



2 _ * *
< |BlIZ Ap.q(A )
-~ [j]
i .
= |8 SJ(A).

This proves the first inequality. The second follows from this by taking

adjoints. =

We next derive an extremal characterization of the sum of the k highest
eigenvalues of a Hermitian operator. For this it will be convenient to use
a multilinear device.

(k)

Given an operator A on H define an operator A on ®k H by

5 (K)

= Rlg...@l + A...@l + ... + Iel®...cA

where, there are k summands on the right hand side. Let A[k] denote the

restriction of A(k) to Ak H. Then

+oo.t x1A x2A...A Axk.
(6.3)

So, if A has eigenvalues o, with respective eigenvectors X 1< 1< n, then
[k]
A

A[k](x1A...Axk) = Ax_A...AXx, + X, A szA...Ax

1 k 1 k

has eigenvalues a. + ... + a. with respective eigenvectors x. A...Ax. ,
t 'k H K

1 5_11 <...< 1k < n.

In particular, this means that if A is normal/Hermitian/positive then so

(k]

is A

THEOREM 6.5 (Ky Fan's maximum principle) : Let A be any Hermitian operator.

Then for k = 1,2,...,n, we have

k k
E Ar.1(A) = max I {Ax.,x.)

where the maximum is taken over all orthonormal k-tuples {x1,...,xk} varying

in H.
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Proof : For brevity, put Aj = A[J](A) for the duration of this proof. Let
e1,...,en be orthonormal eigenvectors of A for the eigenvalues_x1,...,kn.

k] is A1 +euot Ak‘ Apply

the minmax principle to this operator in the space Ak H, to get

The highest eigenvalue of the Hermitian operator A

Ay +eoud A, = sup (A[k] Xy X )
XEAH, ||x|| =1

> sup (A[k](x1A...Ax X Moo Ax )

k)’

where the last supremum is taken over all orthonormal k-tuples {x1,...,xk}

chosen from H. Now note,

k] |
(A[ (Ao A )y x A hx ) = (AX AL LA, x Moo Ax )

1

+ <X1A AXZA"'AXk’ X1A"fAXk>

+ (x1A...AAxk, x1A.,.Axk>._

The first of the above terms is the determinant

(Ax1,x1> <Ax1,x2> c e e (Ax1,xk>
0 1 0
0 0 1

and this is equal to (Ax1,x1> . In the same way, the jth summand in the
above relation equals <AXJ,XJ> .  So,
N

A, +...+ A >s8up L

1 k Pt CAxgoxg) -
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Now choosing Xj = e. we find that this supremum is actually attained and is

equal to X1 oot Xk. -

COROLLARY 6.6 : Let A,B be any two Hermitian operators on H. Then for

1 < k <n,

k kl k
L Ar.q(A4B) < T Ap.q(A) + Ap.1(B).

COROLLARY 6.7 : Let A,B be any two operators on H. Then, for 1 < k < n,

k k
s.(A+B) < I s.(A) + I
1 J J=1 J j=1

i MR

s.(B).
j J

Proof : This statement can be derived from that of Corollary 6.6 by a very

useful device due to Wielandt. Note that if A is any matrix then the matrix

>
]

~

is Hermitian and the eigenvalues of A are the singular values of A together
with their negatives.

Apply Corollary 6.6 to A and B to get Corollary 6.7. =

COROLLARY 6.8 : Let A be a Hermitian matrix. Let d and A denote the vectors

in R" whose coordinates are the diagonal entries of A and the eigenvalues

of A, respectively. Then d is majorized by A.

§7. Symmetric gauge functions and norms

Let |||+||| be a norm on the space of nxn matrices. Such a norm is called

unitarily-invariant if for all A and for any unitary U,V we have
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ALl = Jlluavi] | (7.1)

We shall- always assume that a norm is normaliied so that the diagonal
matrix with a single entry 1 and the other entries zero has norm 1. This
normalization is inessential but convenient.

An example of such a norm is the operator norm ||A|| defined by (6.1).
Another example is the Frobenius norm or the Hilbert-Schmidt norm defined by

1/2 | |
12 ) , (7.2)

* 1/2
Ialle = ex a0 7 = ( 2 ey

1,]
where tr A denotes the trace of A and aij are the entries of the matrix A.

|-

without a suffix will always denote the operator norm. With a suffix it

We shall adopt the following notational convention. The symbol

will denote some other norm, as in (7.2) above. The symbol |”i|“ will stand
for any of the family of unitarily-invariant norms.

From Theorem 5.3 it is clear that a unitérily-invariant norm is a functio
only of the singular values of an operator. What kind of a function can it |
be? Once this question is answered, we will be able to construct several %
other such norms. _

Amap & : R~ R, is called a symmetric gauge function if it satisfies

the following conditions

(i) &(x) >0 ; &(x) =0 iff x =0
(ii) ®(ax) = |a| ®(x) for all o € R
(iii) O(x+y) < @(x) + @(y)
(iv) @®(lix) = ®(x) for every permutation matrix II
(v) @(e1x1,...,enxn) = Q(x1,.,.,xn) for sj =1, j=1,2,...,n
(vi) &0(1,0,...,0) =1
(The last condition is an inessential normalization).

Examples of such functions are

¢1(x)

"
Hn o2
X

¢ _(x)

i
3
Y]
X
X
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Qp(X)_

I
TN

@k(x)

I
3
o))
X
N
X
+
+
x
-
A
~
| A
S

Note that @p for p = 1 and Qk for k = 1 mean quite different things. To
avoid confusion we will always say @p for p = 1 and ®k for k = 1 for these

objects, reserving the symbols p and k as above.

PROPOSITION 7.1 : Every symmetric gauge function ¢ satisfies the following

properties

(i) for every x € R" and for real numbers t
0 and 1

,...,t between
1 n

@(t1x1,...,tnxn) §~¢(X1""’Xn)’

(i) 0 _(x) < 8(x) < 8,(x) for all x € R",

(iii) & is continuous.

Proof : (i) By property (v) of symmetric gauge functions assume without los:

of generality that XJ.Z 0 for all j. Note that it is enough to prove the

statement for the case when only one tj £ 1. We have

@(x1,...,txj,...,xn)

- T+t « 4 1-t « 1+t « 4 1-t (=x ) 1+t « 1-t «

=TT YT e T Xy YT it T % YT X
T+t 1-t

f_—§-®(x1,...,xn) + 5 ®(x1, SRRTRERRL )

= @(X1,...,Xn>.

This proves (i). The other two assertions are equally easy to prove. [
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5 COROLLARY 7.2 : Every symmetric gauge function is monotonically increasing

n
R .
on K

lﬁEOREM 7.3 : For x,y € I{: the following two conditions are equivalent

(ii) &(x) < ®(y) for every symmetric gauge function ®.

Proof : Suppose (ii) holds. Choose, in particular, the symmetric gauge

functions Qk’ 1 < k < n. By definition, these inequalities mean XA(W y.
Conversely, note that any symmetric gauge function is convex, permutation

invariant and monotone increasing on Iﬁ:. So, by Corollary 3.5 & is strongl

isotone. Thus (i) implies (ii). =

Remark : The proof could also have been based on Theorem 3.2. By that
theorem x‘<w y implies that x is a convex combination of vectors obtained
from y by permutations and sign changes of coordinates. On each of these
vectors ¢ takes the same value ®(y). This together with properties (ii) and

(iii) of symmetric gauge functions implies ®(x) < ®(y).

THEOREM 7.4 : Let & be a symmetric gauge function on R". For A E M(n), the

space of nxn matrices, define

ANl = (sC(A), ... s (RD).

Then this defines a unitarily-invariant norm.
Conversely given any unitarily-invariant norm |||+||| on M(n) define a

function on ]R:]_ by

| (5q0eeasy) = Al

:
|
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where A is any operator with Sing A = (s

1,...,sn). Then this defines a
symmetric gauge function.

Proof : Since Sing A = Sing UAV, clearly ||

-|||<I> is unitarily-invariant. To
show that it is a norm we need to show that it satisfies the triangle

inequality, the other properties of a norm being obviously satisfied.

For
this use Corollary 6.7, which implies

Sing (A+B)<(w Sing A + Sing B.

So, by Theorem 7.3,
®(Sing (A+B)) < ®(Sing A + Sing B)

< ®(Sing A) + ®(Sing B)

Thus,

HA+Blllg < HllAlllg + MBIl -

The proof of the second part of the Theorem is left to the reader. =

Thus there is a one-to-one correspondence between unitarily-invariant
: . n
norms on M(n) and symmetric gauge functions on R .

Two important families of unitarily-invariant norms are the Schatten p'
norms defined for 1 < p < o by

ol < ( 3 s,0°) "
J=1
and the Ky Fan k norms defined for k = 1,2,...,n by
k
1ALl = j§1 Sj(A)'

Note that the Schatten p norm for p = « and the Ky Fan k norm for k = 1

coincide with the operator norm. The Schatten p norm for p = 2 is the
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? Frobenius norm. The Schatten p norm for p = 1 is equal to the Ky Fan k
norm for k = n. It is called the trace norm and is denoted by 1Al -

f_ THEOREM 7.5 : Let A,B be two linear operators. If [[A| < [[B]| for all

- Ky Fan norms k = 1,2,...,n, then [||A]|| < ||IB||| for every unitarily-invariant

norm.

Proof : Use Theorems 7.3 and 7.4. [

PROPOSITION 7.6 : Every unitarily-invariant norm dominates the operator norn

and is dominated by the trace norm, i.e.,

1Al < AN < 1Al

for all operators A.

Proof : Use Proposition 7.1 (ii). -

PROPOSITION 7.7 : For any three opérators A,B and C we have

IBACHE < sl [ItANF fiell (7.3)

Proof : By Proposition 6.4

s.(BAC) < |IB]| |IC|| s.(A).
J J
So, by Theorem 7.3

®(Sing BAC) < |IB]| |Ic|| @(Sing A).

So 7.3 follows from Theorem 7.4 now. -
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A norm v on M(n) is called a symmetric norm if for all A,B,C
v(BAC) < [I8]| v(A) ic]|.

Proposition 7.7 says that every unitarily-invariant norm is symmetric.

Conversely, note that if v is a symmetric norm and if U,V are unitary then
v(UAV) < ||u]| w(A) |IV]| = v(A)

and
v(A) = v oAy vy < v(uav).

So v is unitarily-invariant.
In Chapter 4 we will need another property of unitarily-invariant norms.

Let P1,P2,...,Pr be a complete family of mutually orthogonal projection

operators in H. The pinching of an operator A by the projections P1""’Pr
is the operator
r .
C(A) = Z P. AP.. (7.4)
i=1 ! !

In an appropriate coordinate system the pinching operation takes the matrix
A to a block diagonal matrix consisting of r diagonal blocks whose sizes are
the ranks of the projections Pi' This matrix is obtained from A by
replacing the entries outside these blocks by zeros.

A pinching induced by a family of r projections as in 7.4 will be called
an r-pinching. ¥for j = 1,2,...,r-1, put Qj =P, +...+ Pj and define a

1
2-pinching Cj by

C.(A) = Q. AQ. (1-Q.) A (I-Q.).
i ) QJ QJ + QJ ( QJ
It is easy to see that the pinching 7.4 can be expressed as

C(A) = C C C1(A). (7.5)

01 T2

Thus an r-pinching can be obtained by successively applying Z-pinchings.
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THEOREM 7.8 : Every unitarily-invariant norm is diminished by a pinching,

i.e.,

HICCRIE < HITATl

for every pinching C and for every operator A.

Proof : Because of the decomposition 7.5, it is enough to prove this whenC

is a 2-pinching. In a suitable coordinate system we can write in this case

B 7 [~
A Arg Al 0

A = ' C(A) =

Ay Ay 0 Ao

b - e -

But then we can write
C(A) :»% (A + UAUY) v

where,

Since U is a unitary operator the theorem follows. -

Notes and references for Chapter 2

The minmax principle is a powerful tool in the study of variational
properties of eigenvalues. Its power stems from the fact that it provides
information about eigenvalues without any reference to eigenvectors or the
characteristic polynomial. The principle was first stated by Fischer [1].
It was generalized and extended to wide classes of infinite-dimensional
operators by Courant [1]. An early effective use for problems arising in

differential equations was made by Courant [1] and by Weyl [1].
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Consequently, it is referred to as the Fischer Minmax Theorem (as in
Beckenbach and Bellman [1]) or the Courant-Fischer Minmax Theorem (as in
Bellman [1] and Ando [1]). Parlett [1] traces its history back to Poincaré.

Singular values or "s-numbers" seem to have been introduced by E. Schmidt;
Despite their usefulness in operator theory (see, for example, Gohberg and
Krein [1]), in statistics (see, for example, Rao [1]), and in numerical
analysis (see, for example, Stewart [1]), they have been benignly neglected
by the authors of most linear algebra texts.

Weyl [2] initiated a study of inequalities for singular values and
eigenvalues which was continued, among others, by Pdlya, Horn and Fan. A
complete, systematic and readable account of the work of these authors may
be found in Gohberg and Krein [1].

Theorem 6.5 occurs in Ky Fan [1] with a different proof. (The minmax
principle was generalized further by Wielandt; this 1s presented in the next
chapter). The statement of Corollary 6.7 occurs in Fan [3]. The idea of
using the matrix A is attributed to Wielandt by Fan and Hoffman [1]. The
majorization assertion of Corollary 6.8 is a famous result of Schur [1].
Though Schur proved this only for positive definite matrices, his proof
works for all Hermitian matrices. This was observed by Mirsky [2]. It is
easy to see that the statements of Theorem 6.5 and Corollary 6.8 are
equivalent.

The connection between symmetric gauge functions and unitarily-invariant
norms was pointed out by von Neumann [1]. An exhaustive account is given in
the famous monograph of Schatten [1], whereas Mirsky [1] provides a quick
complete introduction. Theorem 7.4 is due to von Neumann. Theorems 7.3 and
7.5 are due to Fan [3].

The pinching operator is called the diagonal-cell operator by Gohberg and
Krein [1]. Theorem 7.8 is proved there (p.52) for the class of Ky Fan norms.
That gives a different proof of Theorem 7.8. Davis [1] has studied several
properties of pinchings, the effect of pinchings on eigenvalues, etc.

The operator norm is familiar to everyone with a first course in
functional analysis. The other norms are less familiar, though they are
used extensively in numerical analysis of matrices. There are two reasons
for their usefulness. The operator norm is not easy to compute, whereas,
the Frobenius norm, for instance, can easily be computed from the entries of |

a matrix. Second, to say that an operator has a small operator norm means
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f@hat it is uniformly small. To quote Davis and Kahan [1] : "Saying an
 bperat0r is smaller than € everywhere is good if you can do it, but it may
1be more important and/or more feasible to say that it is smaller than €/10
éxcept on a subspace of small dimensionality. This sort of assertion
involves the other unitary-invariant norms". | |
Extensive use of matrix norms was made by Householder [1] in analysing
matrix processes. See also the book by Collatz [1]. Though the unitarily
invariant norms are geometrically appealing, we must point out that there
are important norms used by the numerical analyst which are not unitarily-

invariant. For example, the norms

“A”r = max Z | ijl
i .

”A”C = max ; | ijl
j i

IAll, = max fa |
1,)]

are not unitarily-invariant.

Unitary invariance in the sense used here implies the weaker invariance
~ property |||A]l| = |“UAU-1|” but is not equivalent to it. For example, the
norm V(A) = ||A|] + |tr A| is invariant under the conjugate action of U(n),
(A -+ UAU™"), but is not unitarily-invariant in the above sense. The theory
of such "weakly unitarily-invariant norms" is not as well developed as the
Schatten-von Naumann Théory of unitarily-invariant norms. Several interestir
results on such norms may be found in Fong and Holbrook [1] and in the |

references cited therein.
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3 Spectral variation of Hermitian
matrices

The spectral variation problem for the class of Hermitian matrices has been
completely solved in the following sense. For any two Hermitian matrices

a tight upper bound for the distance between their eigenvalues is known.
Such bounds are known when the distance is measured in any unitarily-
invariant norm. Further, 1n this case lower bounds for spectral variation

are also known. All these results are presented in this chapter.

§8. Weyl's inequalities

The prototype of the spectral variation inequalities, to which most of this

monograph is devoted, is the following result of H. Weyl:

THEOREM 8.1 : Let A and B be Hermitian matrices with eigenvalues

A[1](A)_Z--22 A[n](A) and A[1](B)_Z--22 A[n](B) respectively. Then
max |A[J](A) - Am(a)l < ||A-8||. (8.1)

J

The proof of the Theorem can be based on

THEOREM 8.2 : For A,B Hermitian

Proof : Let XqoeeosXy be eigenvectors of A for the eigenvalues
A[1](A),...,A[n](A) respectively. Let M be the subspace spanned by

x1,...,xj. By the minmax principle (Theorem 6.1) we have
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X[j](A+B) > min ((A+B)x,x>

xEM, ||x||=1

> min (Ax,x) + min  (Bx,x)
xEM, ||x||=1 xEM, ||x||=1

= Apsq(A) o+ min (Bx,x)
L3 e, xll=1

_Z )\[J](A) + min <BX,X>

[Ix|l=1

X[j](A) -+ X[n](B).

ffThis proves the first inequality. To prove the second, write A = (A+B) + (-B

}Vand use the above to get
A[J](A) > Arj (A+8) + Ap,1(-B)

Proof of Theorem 8.1 : From the inequalities (8.2), we get

|A[J]§A+B) - x[j](A)l 5max(|x[1](8)|, Aa®D) = |8l -

By a change of variables this leads to (8.1). -

REMARK 8.3 : We can prove Theorem 8.1 without recourse to the minmax

principle. We have given the minmax proof because a generalization of
Theorem 8.1 will soon be obtained by using a generalization of the minmax
principle. We give another proof because this other idea will also be used

at a later point.
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Recall that for any operator A, the numerical range of A is the convex

set

W(A) = {(Ax,x) : x € H, ||x]] = 1}. (8.3)

If A is Hermitian then

W(A) = [A[n](A), A[1](A)]. (8.4)

(In fact, we have used a part of this fact already in the proof of Theorem
8.2). |

Let Xj be the eigenvector of A corresponding to the eigenvalue X[J](A)
and Y ; the eigenvector of B for the eigenvalue A[j](B). Let M be the linear
span of x1,...,xj and N the linear span of yj,...,yn. Then M and N have a
nontrivial intersection. Choose a vector x in this intersection. Then
{Ax,x) lies in the interval [X[J](A), A[1](A)] and also in the interval
[X[n](B), X[j](B)]. We have

A8l = sup  [((A-BIv,v))

lIvll=1
2 [(Axx) - (Bx, X))

> {(Ax,x) - (Bx,x)

v

x[j](A) - x[j](a).

50, by symmetry

Theorem 8.2 i1s a special case of a whole family of inequalities which
follow from the minmax principle. Without aiming at completeness we record

two such results.

In accordance with our notation in section 3, we denote the eigenvalues

of A arranged 1in ascending order as
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X(1)(A) g,f.g_k(n)(A)f

THEOREM 8.4 : Let A,B be any Hermitian operators on an n-dimensional space

H. Then for any indices 1i,j satisfying 1 < i+j-1 < n we have

AL injo11A*8) < Ap;g(A) + Ap54(B), | (8.5)

Ai)(A) + X y(B) 5_x(i+j_1)(A+B). (8.6)

Proof : As before, let Xj be the eigenvector of A for the eigenvalue
x[j](A) and yj the eigenvector of B for the eigenvalue x[j](B). Let M be

the linear span of x N the linear span of YqseeerYs and S the

(EARAAS T -1
linear span of M and N. Then dim M = i-1, dim N = j-1 and dim S < i+j-2.
Let k = dim S+1. Since i+j-1 > k, the ordering of the eigenvalues and the

minmax principle imply

x[i+j—1](A+B) < A[k](A+B)

——

< max ((A+B)x,x )
1
x€S , ||x||=1
< max (Ax,x) + lmax (Bx,x)
1
XES ,"X":'I XES ,”X":'I
< | max (Ax,x) + max (Bx,x)
x€M , ||x]|=1 xEN || |

= X[i](A) + X[j](B).
1
Here, S means the orthogonal complement of S in H. This proves (8.5).

The inequality (8.6) can be obtained from this by taking the negatives of

all the operators involved. B
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Using either Theorem 8.4 or the arqgument used in Remark 8.3, one also

gets
1A-BJl < max  ([Ap;1(A) = Ap 1B, [Ap 1CA) = Apy1(BY]). (8.7)

Let us combine (8.1) and (8.7) in a form which will be useful for later
generalizations. For a given matrix A let Eig (A) denote the unordered
n-tuple gonsisting of the eigenvalues of A. Let Eig*(A) = (A[1](A)""’X[an:
and EigT(A) = (X(1)(A),...,A(n)(A)) be the decreasing and the increasing
rearrangements of Eig (A). Denote also by Eig*(A) the diagonal matrix with
entries X[1](A),...,A[n](A) down the diagonal. Other n-tuples will also

describe diagonal matrices in the same fashion. With these notations we have

THEOREM 8.5 : For any two Hermitian matrices A and B we have

IEig (A) - Eig (B)|| < [|A-B|| < [Eig (A) - Eig, (B)]| (8.8)

Proof : The norm of a diagonal matrix is the maximum modulus of its entries.

This then is just a restatement of (8.1) and (8.7). =

Note that both inequalities in (8.8) can become equalities, as is seen by

choosing A,B to be appropriate diagonal matrices.

§9. The Lidskii-Wielandt theorem

The Courant-Fischer minmax principle is an extremal characterization of.fhe
eigenvalues A[J](A); Ky Fan's minmax principle (a part of which is stated

as Theorem 6.5 is an extremal characterization of the sum of the top k
eigenvalues of A. A generalization due to Wielandt subsumes these
principles by giving an extremal characterization of the sum oF'any k
eigenvalues of A. Though our main interest will be in some corollaries of
this principle, which can be derived by other means as well, we give a proof

of it here because it 1is the culmination of one circle of ideas studied 1in
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;fhis monograph.

THEOREM 9.1 (Wielandt's minmax principle)

the n-dimensional space H.

: Let A be a Hermitian operator on

Then for any indices 1 < i, <...< i, < n we have

1 k —

A[i1](A) + oot X[ik](A)

k
= max min )X (ij,xj>
M1 c...C Mk xj € Mj J=1
dim M. = i. x . orthonormal
J J J
k
= min max z (ij,x >
N,l D...0 Nk xj € Nj J=1
dim N. = n-1i.+1 x . orthonormal
J J J

The proof is rather intricate and we split it into smaller propositions.

We will denote the subspace spanned by the vectors x yX, as

100 X

[x1,...,xk].

LEMMA 9.2 : Let W, D W, D...D W

1 2 k
jg=12,...,k. Let Woseoo oW g

W, € Wj and let U = [w1,...,wk;1].

W1 - U such that for the space U + [u] we can find a basis Vasee sV where

v. E W.,
J J

be subspaces of H such that dim Wj_z k-j+1,

be linearly independent vectors such that

Then there exists a nonzero vector u in

Proof : This will be proved by induction on k. The statement is trivial

when there is only one subspace involved. Assume it is true for k-1

subspaces.
Let WageoosWy g be given as above. Put S = [w2,...,wk_1] and apply the
induction hypothesis to the subspaces W2 D...D Wk to pick a vector v in -
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W2 - S such that S + [v] = [v2,...,vk] for some linearly independent

vectors vj € Wj’ J=2,...,k.
Suppose v € U. Then S + [v] = U. Now U is a proper subspace of W

(because dim U = k-1 and dim W

1

1_3 k). Choose a nonzero vector u in W1 - U,

Then u, v,,...,v, form a basis for [u] + U where u € W1 and Vi € Wj for
J:Z’...’k.

Suppose v € U. Then W, S + [v], for if W, were a linear combination

of w and v, then v would be a linear combination of w

LA
and hence be an element of U. So in this case Wys V

1,...,wk_1,"
.»V| span a

EW, and v. E W.
L S

2’..
k-dimensional space which coincides with U + [v]. Again w

J=2,...,k. =

1

PROPOSITION 9.3 : Let V1 Cc V2 c...C Vk be subspaces of H with dim Vj = ij’

1 < iy <. qo<n. Let W1 > W2 2...2 Wk be subspaces of H with

dim W. = n - 1. + 1 = codim V. + 1.
J J J

Then there exist linearly independent vectors Vj € Vj and wj € Wj’
J=12,...,k such that

[V1""’Vk] = [w1,...,wk].

Proof : We will apply induction on k. The statement is trivially true when

there is only one V1 and W1. Assume it is true when k-1 pairs of subspaces

are given.
Let V1 c...C Vk and W1 2...0 Wk be given. By the induction hypothesis
] =

choose v € Vj and W € WJ for j = 1,2,...,k=1 such that [v1,...,vk__1

[w1,...,wk_1] = U, say. Note U is a subspace of V.-

Let S, =W, nV, Jj=1,...k

We have,

dim W. + dim V, - dim S. < n.
J k J —
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So,

dimS. > 1i, - i. + 1 > k-3+1
i = kTt 2

Note that 51 >...D Sk are subspaces of Vk and wj € Sj' Apply Lemma 9.2.
There exists a vector u in Sy - U such that for the space U + [u] we can
find a basis u,,...,u, where u, € Sj c Wj, j=1,2,...,k. But U+ [u] is

also spanned by VisesssVp_qs U where u € Vk' Put u = v, . We have thus

k
found vj and uJ in Vj and Wj respectively, for j = 1,...,k, such that they

span the same k-dimensional space. B

Remark : By applying the Gram-Schmidt Process we could orthonormalize the

vectors chosen above while they continue to satisfy the same properties.

Proof of Theorem 9.1 : We will prove the first statement (the second can be

obtained from the first). Let V,s..sv, be eigenvectors of A for the

eigenvalues A[1](A),...,A[n](A) respectively. Let

V. = [v1,v2,...,v. ], J=12,...,k.

1.
J j

1 2 k
orthonormal vectors such that X € Vj’ j=12,...,k. Then (ij,xj) is

Then V, c V, c...c V., and dim Vj = ij' Let XgoeeesX) be any set of

larger than X[i ](A). Since X; were arbitrarily chosen we have shown
J

inf
X. € V. i
i J

Xj orthonormal

k
(Ax . ,x.) > z

nmMxX

Ar. 1(A).
1 [13]

This infimum is actually attained for Xj = vy
J
We will be through if we show that for any subspaces M, c...c M with

1 k
dim M. = 1., we can find x. € M. such that
J J J J
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" MxX

j=1

Then W1 ) W2 D...D Wk and

dimW. =n-1. + 1 = codim M. + 1.
J J J

So, by Proposition 9.3, there exist Xj € Mj’ yj € Wj’ jg=1,2,...,k such
that

[x1,...,xk] = [y1,...,yk] = W, say.

As remarked, these vectors can actually be chosen to be orthonormal.

Let AW denote the compression of A to the subspace W, i.e. Aw.is the

operator defined on W by wa = PW Ax where PW is the projection onto W. Then

A, is a Hermitian operator on W. Note <wa,x) = {Ax,x) for all x € W. By

the minmax principle

Ar.1(A ) = min max (A, Xyx)
[317w N C W x € N W
dim Nzk-j+1 |x||=1
= min max {Ax,x)

NcWw x €N
dim Nz=k-j+1 ||x]|=1
< max (Ax,x) ,
x €L
|x|[=1

where, L is the orthogonal complement of [y1,...,yj_1] in W. Note that
L cW.. So,
J

Apq(Ay) < max (Ax,x )
N xEWJ,“xH=1 ’

= X[ij](A)'
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60, we have

<ij,xj>

1
n ™M x
AN
>
=
X
X
~
T
ﬁ
-
S

This completes the proof. .

Remark : Note that

x

Ap: 1(A) +...+ Ap. 1(A) = 2 {Av. ,v. )
[i,] (i) ] =1 it

where v, are the eigenvectors of A. We have shown that the maximum in the
first assertion of Wielandt's minmax principle is attained when

Mj = Vj = [v1,v2,...,vi.], j=1,2,...,k. With this choice the minimum is

~ J
attained for Xj = Vi J=1,2,...,k.
J
As a corollary we have

THEOREM 9.4 (Lidskii's theorem) : Let A,B be Hermitian operators on the

n-dimensional space H. Then for any indices 1 < i, <...< i, < n we have

1 k —
k k k
I Ap. 1(A+B) < I A, (A) + Ar . 1(B).
j=1 [1j] j=1 [lj] j=1 [j]
Proof : Use Theorem 9.1 to choose subspaces M1 c...C Mk with dim Mj = ij
such that
k k
2 Ar. 1(A+B) = min Z {(A+B)x.,x.).
j=1 Hg! xj €M, j=1 I

Xj orthonormal
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By Ky Fan's maximum principle (Theorem 6.5) for any choice X of

orthonormal vectors

k

n ™M x

J

The above two relations imply

*
n ™Mx

Ar. 1(A+4B) < min
[i.] T x. €M,
J J

Xj orthonormal

Now, use Theorem 9.1 once again to conclude that the first term on the

right-hand side of the above inequality is dominated by I A

COROLLARY 9.5 : For A,B Hermitian the following majorization relation

between eigenvalues holds:

Eig¢(A+B) - Eig*(A)A(,Eig(B)

" ™mx

J=1

k

<A.XJ,XJ> + X )\[J](B).

J=1

k

J=1

Proof : Note if x and y are any two vectors such that for any

1 5_i1 <eo.¥< -k < n we have xl +eoot x

X1

In (9.1) change B to B-A to get

y
t

Eig (B) - Eig¢(A)‘( Eig (B-A).

Using the HLP Theorem (Theorem 3.1) this gives an equivalent version of

Lidskii's Theorem:
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THEOREM 9.6 (Lidskii's theorem) : Let A,B be any two Hermitian
operators on an n-dimensional space H. Then the vector

- _ : . '
(A[1](B) A[1](A),...,A[n](8) X[n](A)) lies in the convex hull of the n!
vectors obtained by permuting the coordinates of the vector
(X,' (B"A)’ .« s e ’)\n(B"A))o

An inequality complementary to (9.2) can be obtained by using

Corollary 6.6 of the (more elementary) Ky Fan's maximum principle. It
follows from there that

Eig (A+B) < Eig*(A) + Eig$(B).
Replace A by -A and note that Eig*(—A) = —Eigf(A). This givés
Eig(B-A) < Eig (B) - Eig (A). | (9.3)
The majorization inequalities occurring above lead to inequalities for

spéctral variation in all unitarily-invariant norms. The following theorem

is a very pleasing generalization of Theorem 8.5.

THEOREM 9.7 : For any two Hermitian operators A and B, we have

llEig, (&) - Eig (B[] < [||A-8]]| < [l|Eig, (A) - Eig, (B) ||

Proof : By (9.2) Eig+(A) - Eig+(B)‘< Eig (A-B). So, by Corollary 3.4 (see

the remark following it), we have
|tig, (A) - Eig (B)| £ |Eig (A-B)].

Since A-B is Hermitian |Eig (A-B)|= Sing (A-B). So this weak majorization
implies that the first inequality of the Theorem holds for every Ky Fan norn
Hence by Theorem 7.5, it holds for every unitarily-invariant norm.

The second inequality is derived by applying the same argument to (9.3)
instead of (9.2). =

Using the argument employed in proving Corollary 6.7, we have
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THEOREM 9.8 : Let A,B be any two nxn matrices. Then

ll|sing(A) - Sing(B)||| < |||A-B]||-

(Recall Sing A denotes the singular values of A arranged in decreasing

order).

§10. Matrices with real eigenvalues and Lax's theorem

Matrices considered in this section will not necessarily be Hermitian, but
these results fit in here naturally and so are included here. The class
of matrices studied here is a real vector space each element of which has
real eigénvalues. Hermitian matrices form an important subclass of this
class. Matrices of this kind occur in the study of vectorial hyperbolic
differential equations. |

Recall that we call a matrix positive 1if it 1s Hermitian and all its
eigenvalues are nonnegative. We will call a matrix A laxly positive if all
its eigenvalues are nonnegative. (If none of these eigenvalues is zero, we
will call the matrix strictly laxly positive). Lax positivity of A will be
symbolically denoted as O 5} A. We will say A 5} B (A is smaller than B in
the Lax order) if B-A is laxly positive.

We will see that if R is a real vector space of matrices the eigenvalues
of which are all real, then the laxly positive elements of R form a convex
cone. So the Lax order g} defines a partial order on R.

Given two matrices A and B we say that A is an eigenvalue of A with
respect to B if there exists a nonzero vector x such that Ax = ABx. Thus,

eigenvalues of A with respect to B are the n roots of the equation
det (A-AB) = 0.

LEMMA 10.1 : Let A,B be two matrices such that every real linear

combination of A and B has real eigenvalues. Suppose B is strictly laxly
positive. Then for every real A, -A + AI has real eigenvalues with respect
to B.
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Proof : We have to show that for a fixed real A the equation
det(-A + XI - uB) = 0O (10.1)

is satisfied by n real p's.
Let y be any given real number. Then by hypothesis there exist n real
A's satisfying (10.1), namely the eigenvalues of A + uB. Denote these A's

as
¢, () > 9, (1) 200> 0 ().
We have,

n
det(-A + AI - uB) = T

(X-g, (W) . | (10.2)
k .

1

As a function of p each ¢k(u) is continuous and piecewise analytic. (See
notes at the end of this chapter). For large u,u-1(A + uB) is close to B. )
Thus as u approaches o, u—1 ¢k(p) approaches the top kth eigenvalue X[k](Bj
of B; and as p approaches -w, u_1 ¢k(u) approaches X[n-k+1](B)‘ Since B is

strictly laxly positive this implies @k(u)~+ t0 @s | - oo,
So for any fixed A and for every k = 1,2,...,n there exists some p such

that A = (pk(u). So there are n real p satisfying (10.1). =

PROPOSITION 10.2 : Let A,B be two matrices such that every real linear

combination of A and B has real eigenvalues. Suppose A is (strictly) laxly

negative. Then every eigenvalue of A + iB has (strictly) negative real part

Proof : Let py = p, + iu2 be an eigenvalue of A + iB. Then

1
det [A + iB - u,I - in, I] = 0. Multiplying by i" this gives

det[ (-B + UZI) + i(A - u1I)] = 0.

So, the matrix -B + u21 has an eigenvalue -i with respect to the matrix
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A - u1I and it has an eigenvalue i with respect to the matrix -(A - u1I).
- By hypothesis, every real linear combination of A - u1I and B has real
elgenvalues So by Lemma 10.1 A - u1I can neither be strictly laxly positivg

nor strictly laxly negative. So

So if A[1](A) is (strictly) negative then so is T .

Remark : We could prove in the same way that

THEOREM 10.3 : Let R be a real vector space of matrices each of which has real

eigenvalues. Let A,B be two elements of R such that A g} B. Then

](A) i )\ ](B), k = 1,2,-._.,”. (10-5)

X[k [k

Proof : We shall prove that if A, B € R and B is laxly positive then

[k](A+B) > X[k](A) A llttle more generally we shall show that X[k](A+uB)
is monotonically increasing in the variable p if B is laxly positive. In
the notation of Lemma 10.1, [k](A+uB) = mk(u). Suppose there is some
u-interval in which @k(u) decreases. Then choose a A such that X - ¢k(u)
increases from a negative to a positive value in this interval. But
wk(u) + t0 as 4 + o, So, for this value of A, A - wk(u) vanishes for at
least three values of p. So, in the representation (10.2) this factor
produces at least three zeros, whereas the remaining factors contribute at
least one zero each. So, for this A, equation (10.1) has at least n+2 roots

u, which is impossible. =
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EHEDREM 10.4 : Let R be a real vector space of matrices each of which has

real eigenvalues. Let A,B € R. Then, for k = 1,2,...,n,

X[k](A) + A[n](B) 5_X[k](A+B) E.X[k](A) + A[1](B). (10-6)

‘Proof : Let c g_k[n](B). Then B.— cl is laxly positive. So, as observed in
the proof of Theorem 10.3, X[k](A+u(B—cI)) = X[k](A+uB) - uc is monotonicall
increasing in p. In particular,vk[k](A+uB) - uk[n](B) is monotonically
increasing in y. Choose u = 0 and 1 to get the first inequality in (10.6).
The same argument shows that X[k](A+uB) - uk[1](B).is monotonically

decreasing in p and yields the second inequality in (10.6). =

COROLLARY 10.5 : On R the function A[1](A) is convex and the function

A[n](A) is concave in the argument A.

THEOREM 10.6 : Let A and B be two matrices such that all their real linear

- combinations have real eigenvalues. Then

max |A[k](A) - A 1(®)| < spr (A-B) < ||A-8J. (10.7)

(Here spr denotes the spectral radius of a matrix).

Proof : Let R be the real vector space generated by A and B. Use Theorem
10.4 with B-A in place of B to get

X[k](A) + X[n](B~A) S.X ](B) g_k[k](A) + X[1](B—A).

[k

This gives
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A 7(B) - MM < max(gx[”(B-A)[,|x[n](B-A)|)
= spr(B-A) < ||A-B||. =

Remarks : Neither of the inequalities in (10.6) holds if we are only given

that A,B and A+B have real eigenvalues. For example, let

[ 4

Lax [1] gives an example to show that there exist spaces with the

property assumed above which contain non Hermitian matrices.

Notes and References for Chapter 3

The basic reference for section 8 is Weyl's famous paper (Weyl [1]).
Several consequences of the minmax principle have been noted by various
authors. See, in particular, Chapter 10 of Parlett [1] for an excellent
account which includes this material and much more.

Lidskii's Theorem has an interesting history. It seems to have been
proved by Berezin and Gel'fand [1] in connection with their work on the
representation theory of Lie groups. Their proof relies on the methods of
representation theory. Lidskii [1] provided an elementary proof. This
"elementary" proof, however, could not be clearly understood by several
other mathematicians including Wielandt [2] who proved his minmax principle
and then derived Lidskil's Theorem from it. There are several different
proofs of Lidskii's Theorem available now. See, for example, Kato [1],
Parthasarathy [1] or Bhatia and Parthasarathy [1], Simon [1].

The inequality of Theorem 9.4 has been generalized by Amir-Moez [1], [2].
The latter monograph contains several interesting results around this circle
of ideas. Our proof of Wielandt's Theorem is adapted from the one given by
Amir-Moez. Note that the inequality in Theorem 9.4 is not symmetric in A

and B. One of the symmetric versions proved by Thompson and Freede [1] stat

50



k

k
=1 J=1

J

IIMX"

1.
j=1 '[ jPyd

for any indices with 1 §_i1 <...< ik <n, 1« Py <:-e< P SNy and
ik + P - k < n. |
Amir-Moez and also Ando [1] discuss another kind of generalization of
Wielandt's theorem in which sums of eigenvalues are replaced by other
functions.

For a generalization of Wielandt's minmax principle to infinite
dimensions and for topological analogues of these ideas see Riddell [1].

The first part of Theorem 9.7 was explicitly recorded in Mirsky [1].

The second part was proved by Sunder [1] using a different approach from the
one we have adopted here. Theorem 9.8 is proved in Mirsky [1].

Several results related to the ones presented in section 9 can be found
in Marshall and Olkin [1] and in Ando [1].

The theorems in section 10 were proved by Lax [1] using the theory of
linear partial differential equations of hyperbolic type. The paper of Lax
was followed by one of Weinberger [1] who gave the simple matrix theoretic .-
proofs which we have reproduced here. Garding pointed out that these result:
are special cases of his results for hyperbolic polynomials (Garding [1],[2]
Two related papers are Wielandt [4] and Gerstenhaber [1]. |

In the proof of Lemma 10.1 we have used the fact fhat the eigenvalues of
matrix family T(z) = A + zB can be enumerated as X1(Z),...,An(z) in such a
way that each Ak(z) is continuous as a function of z and analytic except at
a finite number of peoints. If the eigenvalues are real then the above
enumeration can be taken as the descending enumeration X1(Z)_Z--:Z Xn(z) for

each z. Such results can be found, e.qg., in Kato [1] or in Bhatia and

Parthasarathy [1].
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4 Spectral variation of normal
matrices

§11. Introduction to Chapter 4

In the preceding chapter, we worked with pairs of matrices each of which had
real eigenvalues. This reality helped us in pairing the eigenvalues in a
natural way : we arranged them in decreasing ofder and paired the jth
eigenvalue of A with the jth eigenvalue of B. When the eigenvalues are
complex, no natural order is available and this makes the spectral variation
problem for arbitrary matrices more complicated.

Let Eig A = {a1,...,an} and Eig B = {81,...,Bn} be the unordered n-tuples
consisting of the eigenvalues of two nxn complex matrices A and B. As in

section 1, define the optimal matching distance between Eig A and Eig B as

d(Eig A, Eig B) = min max o, = B_ .y]- (11.1)
oes_ 1<i<n i Teli)

Some other useful distances can be defined using symmetric gauge
functions (unitarily-invariant norms). Let D(A) and D(B) be the diagonal

matrices with a1,...,an and 81""’Bn down their diagonals. Then we have

d(Eig A, Eig B) = min |[D(A) - wD(B)W™!| (11.2)
i |

where, W runs over the group of permutation matrices. Write ||[(Eig A, Eig B)||

for d(Eig A, Eig B) and define more generally
| (Eig A, Eig B)||| = min [||[D(A) - wD(BW || (11.3)
W .

for any unitarily-invariant norm.

We have seen in Chapter 3 that for A, B Hermitian we have

I (Eig A, Eig B)||| = [[|Eig,(A) - Eig (B)]| (11.4)
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'and in this case
l| (Eig A, Eig B)]||| < |||A-B]||- (11.5.
In this chapter, we study the problem of finding bounds for
| (Eig A, Eig B)||| when A and B are normal. Though our knowledge in this

case is not as complete as that in the case of Hermitian matrices, several

interesting results are known.

§12. The Hausdorff distance between spectra

Let D(a,p) and D(a,p) denote, fespectively, the open and the closed disks

with centre a and radius p.

PROPOSITION 12.1 : Suppose A, B are normal nxn matrices with ||A-B|| = €.

Suppose a disk D(a,p) contains k eigenvalues of A. Then the disk D(a,p+€)

contains at least k eigenvalues of B.

Proof : Assume, without loss of generality, that a = 0. Suppose D(0,p)

contains k eigenvalues of A but D(0, p+€) contains less than k eigenvalues
of B, Then there exists a unit vector x in the intersection of the
eigenspace of A corresponding to its eigenvalues lying inside D(0,p) and the
eigenspace of B corresponding to its eigenvalues lying outside D(O0, pfe).
For this x, ||Ax]] < p, ||Bx|| > p+€. On the other hand,

I1Bxll - [lax]l < [[(B-P)x]| < e.

This 1is a contradiction. -
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COROLLARY 12.2 : Let A,B be normal with ||A-B|| = €. Then within a distance
e of every eigenvalue of A there is at least one eigenvalue of B and vice

versa.

Proof : Choose p = 0 in the above Proposition. n
Let Spec A denote the subset of the plane consisting of points which are

eigenvalues of A. By statements 1.3 and 1.4 we have

THEOREM 12.3 : Let A,B be nxn normal matrices. Then the Hausdorff distance
h(Spec A, Spec B) satisfies the inequality

h(Spec A, Spec B) < ||A-B].
When n = 2 we have
d(Eig A, Eig B) < ||A-B||.

In the asymmetric situation when only one of the matrices is normal we

have

THEOREM 12.4 : Let A be a normal and B an arbitrary nxn matrix. Let

|A-B|]| = €. Then every eigenvalue of B is within a distance € of an

eigenvalue of A.

Proof : Let B be any eigenvalue of B. To prove the assertion, we can

assume, by applying a translation, that g = 0. Suppose every eigenvalue aj
of A is outside the disk D(0,e). Then A is invertible and

A s ——< 1. so
. €
min |aj|

1A~ @-m| < a7 f18-All < 1.
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gince 8 = A(I+A’1(B—A)), the above inequality shows that B is invertible,

but this contradicts our assumption that B has a zero eigenvalue. B
If A,B were both normal this would give another proof of the statement

of Corollary 12.2.

For later use we record

PROPOSITION 12.5 : Let A,B be nxn normal matrices. Suppose there exist two

sets K,, K, containing, respectively, k eigenvalues of A and at least n-k+1

A’ B
eigenvalues of B, and such that the convex hulls of K, and K, are at distanc

A B
§ from each other. Then § < ||A-B||.

Proof : By the hypothesis there exists a unit vector x in the intersection

of the eigenspace of A for the eigenvalues in K, and the eigenspace of B for

A
the eigenvalues in K;. Since A,B are normal {(Ax,x) is in the convex hull of

K, and {Bx,x) is in the convex hull of K So

A B

§ < [{Ax,x) - (Bx,x}| < [|A-Bl.

Let us also record a fact which is well-known (and which we will prove in

a much stronger form in Chapter'S.

PROPOSITION 12.6 : The map A + Eig A is a continuous map from the space M(n)

of matrices to the space ﬂ?n/Sn of unordered n-tuples of complex numbers,

i.e. if ||A _-All > 0 then d(Eig A Eig A) » 0.

We remark here that the optimal matching distance is a metric on the

space En/Sn.

'§13. Geometry and spectral variation I

We now introduce a geometric technique which will lead to several spectral

variation results. Denote by N(n) or N the class of all nxn normal matrices
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Since tA is normal for every real t if A is normal, the set N is path

connected. However, N is not an affine set.

LEMMA 13.1 : Let A,B € N. Then the line segment joining A and B lies in N

iff A-B is a normal matrix.

Proof : The line segment joining A and B consists of the matrices

A(t) = (1-t)A + tB, 0 < t < 1. One can check by an explicit computation
that each A(t) is normal iff A-B is normal. [ | |

A continuous map y : [a,b] - N, where [a,b] is any interval, will be

called a normal path or a normal curve. The length of y with respect to a

[ ]

norm |||+ ||| is defined as

m-1
1| .”('y) = sup k)::.D Myt ) = vl = a=t <ty <...ct = b}
(13.1)

The path y is called rectifiable if this length is finite. Often the path
Yy would be continuously differentiable (the differentiation of a matrix

function is defined entrywise). In such a case

1| l(y) =fb I}y () ]]|dt. (13.2)
a

If y(a) = A and y(b) = B we say that y is a path joining the matrices A
and B.

The key theorem of this section is
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%HEOREM 13.2 : Let A and B be normal matrices and let y be a rectifiable

normal path joining them. Then
||(Eig A, Eig B)" < l"."(Y)

Proof : For convenience, let us suppose that theApath Y is parametrized on
the interval [0,1]. Denote by Y, that part of the curve which is parametrize
on [O,r]. Let |

G = {r € [0,1] : ||(Eig A, Eig y(r))|| < Iyt

 The theorem will be proved if we show 1 € G.

By the continuity of y and of the arclength and by Proposition 12.6, the
i set G is closed. So, if R = sup G, then R € G. So, the theorem will be “
 proved if we show that R = 1.

Suppose R < 1. Let S = y(R) and let d be the minimum distance between
the distinct eigenvalues of the normal operator S. Using the éontinuity of
v and Proposition 12.6, we can find a t € (R,1] such that if T = y(t) then
|ICEig S, Eig T)|| < d/2. This inequality says that we can label the

eigenvalues of S as A .,An and those of T as HyseoesHo in such a way

yoo
that max|xi- ui| < d/;. We claim that in this labelling each p. is paired
with that A, which is closest to it, i.e. |A;- u,]| 5_|xj— w.| for all i,j.
For, if this inequality is violated for some A, Z )., then for these
defaulting indices Ixi— XJI 5_|Xi— ui] + Iui- le < ZIXi— ui| < d, and this
goes against the definition of d. Next, we claim that max|X - u.| < |Is-1].
For, if [x;~ w | > |Is-T|| for any i then |r.- u.| > Is-T|]] for this i and all
Jj, which goes against Theorem 12.4. Thus ||(Eig S, Eig T)|| < ||S-T]|. But then

I(Eig A, Eig y(t))|| < |I(Eig A, Eig S)|| + |[(Eig S, Eig T)||
< Iy nlvyg) S-T
< Y b) + Is-Tl

< A e
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But this would mean t € G, which is not possible. n

THEOREM 13.3 : Let A,B be normal matrices such that A-B is also normal.
Then

[(Eig A, Eig B)|| < [|A-B|.

Proof : By Lemma 13.1 the path y consisting of the line segment joining

A and B is a normal path. Its length is ||A-B||. m

Note that this theorem includes Weyl's Theorem B.1 as a special case.

To obtain spectral variation bounds from Theorem 13.2 one has to evaluate
the minimal length of a normal path joining A and B. This seems a
difficult problem. Theorem 13.3 concerns a very special case. In general
A-B is not normal and so the straight line~joining A and B goes outside N.
However, it turns out that for certain A and B there exists a normal path
joining them which is different from a straight line but has length
l“.“(y) = ||A-B||, the length of the straight line joining A,B. (This is
possible because the metric under consideration is not Euclidean and so
geodesics are not necessarily straight lines. Note, however, that by the
triangle inequality and the definition of arclength the length of any path
joining A and B can not be less than ||A-B||).

We will call a path y : [0,1] - M(n) a short path if l“.“(y) = |ly(0)-y (1|,
i.e. the length of vy is the same as that of the straight line path joining
the end points of y. We will call a subset X of M(n) a plain if any two
points in X can be joined by a short path lying within X. Our next theorem
identifies one subset of normal matrices which is not an affine set but which

1s a plain.

THEOREM 13.4 : The set T.U(n) consisting of constant multiples of nxn

unitary matrices 1s a plain.

58



Proof : First note that €C.U(n) = R _.U(n). Let N =rU, N =r,U be any

two elements of this set, where r,,r, are nonnegative real numbers and

1
Uo’U are unitary matrices. Choose an orthonormal basis of the underlying

space in which the unitary matrix U U;1 takes the form

1

gy i9, s
uu, = diag(e ,...,e ), (13.3)

where

¢ | <. 8] < 7. (13.4)

y O

Here diag(a1,...,an) stands for a diagonal matrix with entries a,,...,a

down the diagonal.

By the spectral theorem, we can achieve the reduction to the form (13.3)y
by a unitary conjugation. Since norms as well as eigenvalues do not changg,
under unitary conjugations we may assume that all matrices are written with

respect to a basis in which U U;1 has the above form. Let

1

K = diag(is1,...,isn).' | (13.5)

Note K is a skew-Hermitian matrix with eigenvalues lying in the interval

(-im,im]. We have,

-1
v, I - c U Ut

”No— N1” 171

= mix |r .- r, exp(ig )].

Since T and r, are nonnegative, this gives

IN, - N1” = |-, exp(id )], (13.6)
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which is the length of the straight line joining the points r and T, exp(is1u
in the plane. Parametrize this line segment as r(t) exp(it &1), 0<t<. .
This can be done except when |31| = m, to which case we will return later.

The length of this line segment 1is also given by

1
j e (t) exp(it 8.) + r(t) i%, exp(it & )|dt
0o

1
= j |e' (t) + r(t) 131|dt.
0

So, we have

1

IN - NI = JO o' (t) + £(t) ig, |dt. (13.7)
Now define
N(t) = r(t).exp(tK).Uo, 0<t< .

Then N(t) traces out a smooth curve in C.U(n) and its endpoints are N, and

N,. The length of this path is given by

1
1 o (N) = [N ()]|dt
TR Jﬁ IN* CE) |

1
= Jé |c* (t) exp(tK)U0 + r(t)K exp(tK)UOHdt

1
- J o' ()1 + r(OK|dt. (13.8)
0

(At the last step we have used, as before, the unitary invariance of the
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THEOREM 13.7 : The set N(2) of 2x2 normal matrices is a plain.

Proof : Let A,B be any two elements of N(2). Each has two eigenvalues. If

the eigenvalues of A and the eigenvalues of B do not lie on parallel lines
then an elementary geometric construction shows that they lie on concentric
circles. If a is the common centre then this shows that A and B lie in

a + C.U(2) which is a plain by Theorem 13.4. If the eigenvalues lie on
parallel lines then by an appropriate scalar multiplication we may assume
that these lines are parallel to the real axis. In this case the skew-
Hermitian part of A-B is a scalar. 5o A-B is normal. By Lemma 13.1 then,

the line joining A and B lies in N(2). =

Note that Theorem 13.7 (together with Theorem 13.2) provide another
proof of the second part of Theorem 12.3.
It is natural now to wonder whether N(n) is a plain for n > 2. That this

cannot be so is shown by the folllowing ingenious example constructed by
M.D. Choi.

Example 13.8 : Consider 3x3 normal matrices

0o 1 0 0 0
A = 0 , B = |-1 0
0 1] 0 - 0|

Then ||A-B|| = 2. So, if there were a short normal path joining A and B then

its midpoint would be a normal matrix C such that
|a-c|| = ||B-C|| = 1. (13.10)

Since each entry of a matrix is dominated in modulus by the norm of the

matrix, this implies that

-1 <1 and |c

lCQ'] b
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These two conditions force Coq = 0. The same argument shows C3p = 0. Thus
% * * |

A-C = |1 * * | (13.11)
* ’| *

where the * represent entries not yet known. However, the norm of a matrix
dominates the Euclidean vector norm of each row and each column. So (13.10)
and (13.11) imply

0 0 *
A-C = |1 0 0
._0 -
So,
0 1 *] )
C=1{o 0 1

- But then C cannot be normal.

Thus N(3) is not a plain.

Notice that in the above example A is Hermitian and B skew-Hermitian.

§14. Geometry and spectral variation II

In this section, we will extend Theorem 13.2 to cover all unitarily—invérian
norms and then reap some corollaries of the extended theorem. Whereas,-the
differential geometry used in section 13 was elementary, here we wili'need a
few slightly more sophisticated notions. (Specifically, we use the notions
of a manifold, the tangent space to a manifold, tangent vectors and their
action on functions defined on the manifold. We use the fact that the
similarity class of a matrix is a smooth manifold. This is a special case
of a general theorem. All these facts are normally covered in a graduate

course on differential geometry. A reader who is not familiar with these
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ideas could refer to one of the standard texts).
To fix the ideas, we will first work with the Frobenius norm. The space
M(n) of nxn complex matrices becomes a Hilbert space with the inner product

defined by
(A,B) = tr B*A.

The norm arising from this inner product is the fFrobenius norm
IAlle = (Le ax )12,
The matrix AB-BA is denoted by [A,B] and called the Lie bracket or the

commutator of A and B. We denote by Z(A) the commutant of A in M(n), i.e.
Z(A) = {X € M(n) : [A,X] = 0}.

Note this is a subspace of M(n).

Let GL(n) be the multiplicative group of all nxn invertible matrices.
The adjoint action of GL(n) on M(n) is the map A » gAg—1 defined for
A € M(n), g € GL(n). The orbit of A under this action is the set

L g € GL(n)}

OA = {gAqg
consisting of all matrices similar to A. This set is a smooth submanifold
in the Hilbert space M(n). The tangent space to 0, at the point A will be
denoted by T, OA. This is a linear subspace of M(n). The following
proposition identifies TA OA and its orthogonal complement in the Hilbert

space M(n).

PROPOSITION 14.1 : Let A € M(n). Then

T, O

a 04 span {[A,X] : X € M(n)}

1l
(T 0y) Z(A*),

where L denotes the orthogonal complement of a subspace in the Hilbert

space M(n).
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proof : A differentiable curve in 0A passing through A can be parametrized

as
A(t) = g(t) Ag(t)~", A(D) = A.

Note that these equations imply that A = g(())"1 Ag(0) and hence,

M) = h(t) An(t)™", where h(t) = g(t) g(0)™".

Thus every differentiable curve in UA passing through A has the form
A(t) = h(t) Ah(t)_1, where h(0) = I.

Differentiating at t = 0 gives
£(0) = R(B)A - AR(D) = [A(D),A].

Thus tangent vectors to 0, at the point A can be written as commutators

A
[A,X]. Further, every such commutator can be obtained as a tangent vector
to the curve A(t) = exp(tX)A exp(-tX). The tangent space Ta OA’ by
definition, is the linear span of all these tangent vectors.

Now note that B is orthogonal to this space iff for all X € M(n) we have

0 = ([A,X],B) = tr B*(AX-XA)

tr(B*A - AB*)X = ([B*,A],X*).
This is possible iff [B*,A] = 0, i.e., iff B € Z(A*). =
For each A, we thus have a direct sum decomposition

M(n) = TA OA ® Z(A%). | (14.1

Recall thét A is normal iff Z(A) = Z(A*). So,

M(n) = Ty 0y @ Z(A) if A is normal. (14.2
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Let B € Z(A). Then there exists a unitary U such that uau™

= T(A),
UBU—1 = T(B), where T(A), T(B) are upper triangular matrices. Since the
diagonal entries of these triangular matrices are the eigenvalues of A and B

it follows that
[(Eig A, Eig B)||. < IIT(R) - T(B)||- = [|A-B], (14.3)

if B is any matrix in Z(A).

Also note that if B € 0, then Eig A = Eig B. So,

A

|(Eig A, Eig B)[ =0 if B € Q. (14.4)

Relations (14.2), (14.3) and (14.4) suggest that we can try to estimate
the spectral variation of a normal matrix componentwise along two
complementary directions. A little more precisely, let Ao be a given
normal matrix and let y(t), 0 < t < 1 be a normal curve with y(0) = Ao'
Consider the function ¢(A) = | (Eig A, Eig A)”F defined for every matrix A.
At each point y(t) consider the decomposition M(n) = TY(t) OY(t) @ Z(y(t)).
As we move along the curve y, the rate of change of ¢ is zero in the first
direction because of (14.4), in the second direction it does not change
faster than the argument because of (14.3). So it is "obvious" that for

0<t<1

t
@(y(t)) 5.J0 Iv' ()]l ds.

In particular, if y(1) = A1 then

I(Eig A, Eig A1)”F < the Frobenius length of the path Y.

We will now prove this statement and extend it to all unitarily-invariant

norms.
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First of all note that the decomposition (14.2) of M(n) is valid, as a
vector space direct sum decomposition, irrespective of the norm used.
Inequality (14.3) extends to all unitarily-invariant norms because of

Theorem 7.8,and (14.4) is true for all norms trivially.

‘LgMMA 14.2 : Let ¢ be a real valued ¢! function on a Banach space X. Let

vy : [0,1] + X be a piecewise ¢! curve. Suppose

(i) +vy(0) = X0 v(1) = X1 w(xo) =

(ii) for every t in [0,1] the space X (which is also the tangent

(1) (2)
space Ty(t) X in our notation) splits as X = T (t)( ) v(£) in such a

(1)

way that the directional derivatives v' "¢ and v '"’¢ of ¢ in these

two directions satisfy the conditions

(1)
€ To(t)

v(2)¢ S_"V(Z)" for all v( 2) € T(%z)

(D) (1)

¢ =0 for all

Let P(1) P(z) denote the complementary projections in X onto the subspaces

(12) and T((z) respectively. Then,

1

p(x,) 5.I0

IPEZ) yr (et

Proof : We have

1
9(x,) = jg ¥' (£) (g)dt

1 1

_ f P () (p)dt + j Py () (@)t
o

0
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1
<0+ Jo ||Pé2) Y (U)|dt. =

The statement of this lemma remains valid if ¢ is C1 on a dense open
set G in X and Y is a piecewise C1 curve which intersects the complement of
G at a finite number of points. In such a case we say that ¢ is generically
¢! and y is a curve adapted to ¢. |
Let X be the space M(n) with any of the norms |
matrix and let @(A) = |||(Eig A, Eig A)|||. Then ¢ is a generically ¢! function,

(It will fail to be differentiable at those points where the differences of

||. Let A0 be a Fixeq

the eigenvalues of A0 and A do not have distinct modulii or where the
minimum in the definition of |||(Eig A, Eig A)||| is attained at two
different permutations. Such matrices A form a closed nowhere dense set in

M(n)).

We can now prove the key theorem of this section:

THEOREM 14.3: Let M(n) be the space of matrices with any of the unitarily-
|. Let A : [0,1] + M(n) be a piecewise ¢! curve with

invariant norms ||| -

the following properties
(i) A(t) is normal for all O< t < 1,

(ii) A(0) = A A(1)'= Al

(iii) A(t) is adapted to the generically ¢! function

@(A) = |||(Eig A, Eig M| -
(1) (2) L :
Let Pt and Pt denote the complementary projection operators in M(n)

corresponding to the direct sum decomposition M(n) = TA(t) DA(t) ® Z(A(t)).
Then

1 1
I(Eig A_, Eig A )] __<__j0 1PE?) Aoy |lfat _<_j0 II[A* (£) ||| dt, (14.5)
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where A'(t) denotes the derivative of A(t).

Proof : We apply Lemma 14.2 to the Banach space M(n), the function @(A) and

the curve A(t). Let ngz) = TA(t) OA(t)’ Té%z) = Z(A(t)). Choose and fix ¢

point s in [0,1]. For every B in OA(S) we have ¢(B) = ¢(A(s)). So, the

derivative of ¢ in the direction of DA(S) is zero, i.e.,

v(1)¢ 0 for all v(1) € T;};) .

Define Y(A) = |||(Eig A(s), Eig A)|||, and put
h(A) = @(A(s)) + Y(A) = ||| (Eig A,» Eig A(s) ||| + ||| (Eig A(s), Eig A)]|.
Note that @(A(s)) = h(A(s)) and ¢(A) < h(A) for all A € M(n). Hence

(2@ (2)

@ <v 'h for all v € T(2)

A(s) °

Also, note

v(z)h = v(2)¢ for all v(2) € Té%;)
and
vy IVl For atr v e (2

A(s)®

The last statement follows from the inequality (14.3) (which, we noted,

) and the fact that T\2)
A(s

holds for any |

) = Z(A(s)). so, we have

v(2) (2)

for all v € T(Z)

(2)
I A(s)®

@ < |||v

So, from Lemma 14.2 we have
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1

2
Q(A,) g_jo 1PE?) arce)||lat.

This proves the first inequality in (14.5). To prove the second we claim
that |”Pé2) B||| < ||IB]||] for all B. Choose a basis in which the normal
matrix A(t) is diagonal. Then Z(A(t)) consists of block-diagonal matrices
and Péz) B is the pinching of B by the spectral projections of A(t). So our

claim fo}lows from Theorem 7.8. -

Remark 14.4 : To sum up, we have proved that (subject to some technical

- : : : . 1
restrictions) if A and B are two normal matrices and y a piecewise C curve

joining them and passing only through normal matrices, then

|| (Eig A, Eig B)|| 5_1|”_|”(y). (14.6)
This generalizes Theorem 13.2.

Now note that by continuity the above inequality would hold for all
matrices if it holds on an everywhere dense set of matrices. 5o by
perturbing our given matrices slightly we may assume that the technical
restrictions stipulated in Theorem 14.3 are satisfied by A and B. Since
our concern 1is with inequalities of type 14.6 we will, henceforth, assume
these conditions are always satisfied.

The plodding is over. We can now enjoy the fruits of our labour.

THEOREM 14.5 : Let A,B be normal matrices such that A-B is also normal.

Then for every unitarily-invariant norm we have

Il (Eig A, Eig BI|]| < |||A-B]|| .

Proof : The same as that of Theorcem 13.3. [
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Note that this Theorem applies, as a special case, to Hermitian A and B.

. THEOREM 14.6 : Let A,B be unitary matrices and let K be any skew-Hermitian:

matrix such that BA”1 = exp K. Then for every unitarily-invariant norm:

I (Eig A, Eig B) ||| < |IK]ll-

Proof : Let A(t) = (exp tK)A, 0 < t < 1. Then A(t) is unitary, A(0) = A,

A(1) = B, A'(t) = K(exp tK)A, [|JA" ()|l = |lIK|||- So, the length of the path
A(t) is

1 .
J A lide = ki m

THEOREM 14.7 : Let A,B be unitary matrices. Then for every unitarily-

invariant norm

Il (Eig A, Eig B ||| < 5 [llA-B]| (14.7)

Proof : In view of Theorem 14.6 we need to show

inf{[|IKIll = 8A™" = exp K} < T ||[a-B]].

Choose a K whose eigenvalues are contained in the interval (-im,iw]. Assume

by applying a unitary conjugation that
K = diag(is1,...,i&n).

Then
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1 131 i&n
A8l = lllT-BA™ ||| = [||diag(i-e °,...,1-e |-
Now note that |&| 5_%~|1~eig| for all & € (-w,n]. Recall that every
unitarily-invariant norm is a symmetric gauge function of singular values

and every symmetric gauge function is monotonically increasing (Corollary
7.2). It follows that [|[K[|| <3 [||A-8|||. =

We now give an example to show that the constant in the inequality (14.7)
cannot be replaced by a smaller constant if the inequality is to hold for
all unitarily-invariant norms. (We saw in section 13 that if the operator

norm alone is involved we can replace m/2 by 1).

Example 14.8 : Choose the trace norm

Al =

.
i ™MD
-

SJ(A).

Let A+ and A_ be the unitary matrices obtained by adding an entry 1 in the

bottom left corner to an upper Jordan nilpotent matrix, i.e.,

) 0 . ]
0 0
A =} . ... .
+
0 .
+ . 0

Then ||A_ - A—”tr = 2. The eigenvalues of A_are the n roots of +1. One can

see that [|(Eig A_, Eig A_)||tr approaches T as n - o,

- Finally, we digress from our main concern and give a proof of the

following famous theorem:
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THEOREM 14.9 : Every complex matrix with trace zero can be expressed as a

commutator of two matrices.

Proof : We have to show that if tr A = 0 then there exist two matrices B and

C such that A = [B,C]. Since we can find a unitary U such that UAU"'1 is

—1, UCU~1], it is enough to prove

upper triangular and since U[B,C]Uf1 = fusu
this for an upper triangular‘matrix A.
We will show that if A is upper triangular with tr A = 0 then A = [B,C]

where B is the nilpotent upper Jordan matrix

By Proposition 14.1 we need to show that A belongs to the orthogonal
complement of Z(B*), Now Z(B*) contains only polynomials in B*. (This is
a general fact : the commutant of X consists of polynomials in X iff the
matrix X is non derogatory, i.e. in its Jordan decomposition there is just
one block for each distinct eigenvalue). Thus Z(B*) consists of matrices
of the form

'd1 0 . 0
- a2 a1 . 0

a3 a2 a1... 0

han [ ] a2 a/'—

i.e. lower triangular matrices with the same entry on each sub-diagonal.

Now if A = ((aij)) is upper triangular with trace zero, then for X as above
tr A*X = 0.

1
So AEZBY) . =
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§15. The Hoffman-Wielandt theorem

The spectral variation problem for arbitrary normal matrices in the

Frobenius norm is completely solved. We have:

THEOREM 15.1 (Hoffman and Wielandt) : Let A,B be normal matrices. Then

|(Eig A, Eig B)"F < ”A‘B"F'

Proof : Let Opyeees@ and 81,...,Bn be the respective eigenvalues of A and B,

We have to show

(% )" < Il '
min Y |a.- B _,. ] < ||A-B (15.1)
0] 1=1 i Toli) J
n
where the minimum is taken over all permutations. Write A = I 04 Pi’
1=1
n
B= 1L Bi Qi’ where Pi’ Qi are the one-dimensional eigenprojections of A,B
i=1

respectively. Then

o |2+

2
"A‘B“r = '
1 i

i

I M2
I~ 3

B, - 2Re I a. Bj te Py Q. (15.2)
1 1,]

Put dij = tr Pi Qj’ i,j=1,2,...,n. Then the matrix D = ((dij)) is doubly
stochastic. So by Birkhoff's Theorem (Theorem 2.1) we can write D as a

convex combination of permutation matrices, 1.e.

D= X a_ o , ) a_ =1,

o€S
n

where a5 > 0. We will use the same symbol o to denote a permutation on n

symbols and also the corresponding permutation matrix.
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Let a = (a1,...,a ) be the vector with n coordinates oy and
2 2\1/2
lell = (|a1| +eoot |a |7)

written as

N its Euclidean vector norm. Then (15.2) can b

IA-8llZ = = a_tllell’ + 18I - 2 Re {a,0(8))}

o

2 a_{lle - o(8))%}
z ag{lla

> min |ja - o()]?
0)

= min Z |a1 - 80_(1)12- .
g 1

REMARK 15.2 : The above argument also gives an equality complementary to
(15.1) :-

2,1/2
IA-8]l- < mgx (Zog= Byeiyl ™) 77 (15.3

REMARK 15.3 : In general there is no good prescription for describing the

permutation ¢ for which the minimum in (15.1) is attained. However, if A
is Hermitian and B arbitrary normal then the minimum is attained for the

ordering in which

a, >...>a; ReB, >..>Ref .

To see this one only has to note that if a, > a

12 and Re 81.3 Re 62, then

2
2 2 2 2
‘a1‘ B1| + |a2‘ 82‘ ﬁ.|a1‘ le + |32‘ 81| y
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REMARK 15.4 : The conclusion of Theorem 15.1 is no longer valid if only A

is normal (even Hermitian) but B is arbitrary. For example, if

then, ||(Eig A, Eig B)||c = v2, [A-B| = 1.

§16. Perturbation of spectral spaces

In these notes we have not touched upon the problem of perturbation of
eigenvectors or eigenspaces. In this section we will use one result in
that direction to derive an eigenvalue variation bound.

As seen in section 14, the inequality of Theorem 15.1 does not extend
to all unitarily-invariant norms even when A,B are unitary. However, in
section 13 we saw that for the case of unitary matrices, the cbrresponding
inequality holds for the operator norm. One would like to extend this
analogue of Weyl's Inequality to all normal operators. Notice that since
IAll < lIAlle < v/n [|A]l, the Hoffman-Wielandt theorem gives

|(Eig A, Eig B)|| < /n ||A-B||,

for normal A,B. (Actually n here can easily be replaced by the rank of
A-B). 1In this section we will show that in this inequality vn can be
replaced by a universal constant independent of the dimension and of A,B.
To come to this result we will need some results on operator equations and

spectral subspaces which are of independent interest.

THEOREM 16.1 : Let A,B be any two nxn matrices with disjoint spectra (sets

of eigenvalues). Then given any matrix S the equation

AQ - @B =5 (16.1)

has a unique solution Q.
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? Proof : Consider the operators LA and RB defined on M(n) by LA(Q) = AQ,

: RB(Q) = QB. If x is an eigenvector of A for the eigenvalue a then the

~ matrix X with one column x and the rest of the columns zero is an
eigenvector of LA for the eigenvalue a. Thus the eigenvalues of the
operator LA are the eigenvalues of A each with multiplicity n times as much,
This accounts for all the n2 eigenvalues of LA. In the same way the
eigenvalues of RB are the eigenvalues of B each with multiplicity n times

as much. Let IA,B = LA - RB. Since LA and RB commute

Spec (IA,B) C Spec (LA) - Spec (RB)
= Spec (A) - Spec (B).

So if the spectra of A and B are disjoint, then zero is not an eigenvalue of
IA g So IA B is an invertible operator. This proves the theorem. 8

? ? :

We will now write the solution Q of (16.1) when A,B are normal matrices:
Let

§ = dist (Spec A, Spec B). (16.2
Write A = A1 + iA2 where A1,A2 are commuting Hermitian matrices. In the
same way write B = B1 + iB?‘

We will need to use Fourier transforms hwiRz. As usual we write points
in the plane as s = (81,82), t = (t1,t2), etc. The inner product s.t is
defined by s.t = s,t, + s,t.. If f is any function in L1(R2) its Fourier

171 2°2°
transform is defined by

f(t) = fj exp(-it.x) f(x)dx.
:RZ

Define two-parameter unitary groups U(t), V(t) by

U(E) = expli(t A + t,A)], V(E) = expli(t,B, + £,8,)] (16.3
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(Note that since A,, A, are commuting Hermitian matrices, U(t) is unitary
for every t and the map t + U(t) is a group homomorphism from the additive

group Ié? to the multiplicative group of unitary matrices).

THEOREM 16.2 : If A and B are normal matrices with disjoint spectra then the
solution to the equation (16.1) is given by

qQ - U U(-t) SV(t) F(t)dt (16.4)
R2

where U(t), V(t) are defined by (16.3), § > 0 is the number defined by (16.2)

and fﬁ is any function in L1(]f2)whose Fourier transform has the property

p 1
fo®) = g for Itl 26 (16.5)

Proof : Let u be an eigenvector of A for the eigenvalue a,v an eigenvector
of B for the eigenvalue B. Write a = a, + iuz, B = 81 + 182. (This is in
conflict with our earlier notation but should not cause any confusion since

this notation will be dropped after this proof). Note A,u = a
it.a 1
U(t)u = e”""u, etc.

1Y A2u = a,u,

Since eigenvectors of A and B form orthonormal bases for the underlying

Hilbert space it will be enough to prove that if Q is defined by (16.4) then
for any such u,v

{(AQ - @B)v,u) = {(Sv,u). - (16.6)

Note that
{(AU(-t) SV(t)v,u) = {SV(t)v,U(t) A*u)

- <SelB.tV, ela.t (a1_ 102)U>
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(a, + ia,) el(B-a).t (Sv,u).

’In the same way

(U(-t) SV(t)Bv,u)

(B1 + 182) el(B—a).t (Sv,u) .
Solif Q is defined by (16.4) then

((AQ-QB)v,u) = {Sv,u) (a,- B+ ila,- B,)) Jf ei(B“a)'t fﬁ(t)dt
' 2
R

= (_Sv,u)
by (16.5) and the fact that |B-a| > §. =

(We assumed above the existence of a function fﬁ in L1(R2) whose
Fourier transform satisfies the condition (16.5). Such functions indeed
exist. We will briefly indicate how to prove this at the end of the

chapter).

THEOREM 16.3 : Let A,B be normal operators with dist(Spec A, Spec B) = § > C
Let Q@ be the unique solution of the equation (16.1). Then

. | | \
lall < 2 |is} | (16.7)

where 02 is the constant defined as

if |t| > 1}. (16.8.

- 2 .
c, = mf{IlfHL1 : FEL (R, f(t) =

1
t1 + .1t2
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Proof : Use the representation (16.4) and the unitary-invariance of the normf

to conclude

ol < sl ff - Irgted ot
R
= Il gl

A change of variables in f leads to the statement of the theorem. ®

THEOREM 16.4 : Let A,B be two normal operators and let KA, KB be two
subsets of the plane such that dist(KA,KB) = § > 0. Let E be the spectral
projection of A corresponding to its eigenvalues lying in KA and F the
spectral projeqtion of B corresponding to its eigenvalues lying in KB‘ Let

Q be any operator. Then

C
lEaF]l < £ llECan - a8)F]) (16.9)

where c.,, is the constant defined in (16.8).

2

4 4
Proof : Let E and F denote projections orthogonal to E and F respectively.

Then for a sufficiently large constant a, we have
: 1 1
dist(Spec (EA + aE ), Spec(BF - aoF )) = §.
Note that the projections E and F commute with A and B respectively. So
4 4
(EA + aF ).EQF - (EQF).(BF - of ) = E(AQ - QB)F.

The result now follows from Theorem 16.3. .
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REMARK 16.5 : The special case when Q = I is the one we will use. We have

under the above conditions:

2 2 \
lEFll < & llECA-B)F]| < = [|A-B]|. - (16.10;

This inequality gives us a bound for the "angle" between two spectral
subspaces E and F belonging to some parts of the spectra of A and B, in
terms of ||A-B|| and the separation § of the relevant parts of the spectra.

As a corollary we have the following spectral variation result:

THEOREM 16.6 : There exists a universal constant c such that for any two

normal matrices A and B
|(Eig A, Eig B)|| < c||A-B].

Further c < c,, where c, is defined by (16.8).

2

Proof : Let A,B be given normal matrices with eigenvalues a

1,...,an and
Bys--.,B, respectively. Put n = CZHA—B". We have to show that there is a

permutation o such that

m?x |ai— Bc(i)l~§-n - (16.11

Suppose this is not the case. Then there exists § > n such that for
every permutation ¢ there exists an index i such that |ai— Bc(i)l > 6.
~ We now appeal to the Marriage Theorem (see section 1). Let
B = {a1,...,an}, G = {81,...,Bn} and define a relation R € B x G by
stipulating that (ai’Bj) € R iff |ai- le < §. Then the statement of the
above paragraph implies that the society (B,G,R) is not espousable. So

such that |G, . | < k. In other
ip..01)

there exist some k indices i
: 1

ey
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words if KA = {ai yo ey } then the set of those B which are within a

1 k
distance § from some element of KA has cardinality less than k. Let KB be
those B which are not in Gi ;o Then KB contains at least n - k + 1
1°° -1

eigenvalues of B, and dist (KA, KB).Z S.
Let £, F be the spectral projections of A, B corresponding to the sets

Kps KB respectively. Then by (16.10) we have

C2 . Il
IEF < 5 llA-Bll = § < 1.

But £ is a projection of rank k and F is a projection of rank at least
n-k+ 1. So there is a common nonzero vector in their range spaces.

Hence ||EF|| = 1. This is a contradiction. m

REMARK 16.7 : It is possible (and likely) that the constant c of Theorem

16.6 is strictly smaller than c

9 The exact value of c, is not known.
There are some unpublished results of Koosis which show that c, < .

§17. The cyeclic order

So far in this chapter we have not attempted to prescribe any order on the
eigenvalues of A and B for which the optimal matching between them could
be attained. This is in contrast with the results in Chapter 3 where the
eigenvalues, being real, could be naturally ordered in a descending order.
In one interesting case - the unitary matrices - the eigenvalues lie on
the unit circle, where the cyclic order presents itsel% naturally. We will
now briefly indicate how this order can be exploited to give another proof
of Theorem 13.6. This proof 1s not only completely different but also
reveals more.

Let Y5 Yo be two points on the unit circle. We will write Y1 < Yy if the
minor arc from y1'to Y, goes counter~clockwise.

The following special result is easier to prove than the general result

and is illuminating:
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THEOREM 17.1 : Let A, B be two unitary matrices with all their eigenvalues
lying in one semi-circle. Arrange the eigenvalues of A and B as

Ay S...< @ and 81 53..5_Bn respectively. Then

max |ai‘ Bil f."A‘B”-
1<i<n

Proof : Suppose the maximum on the left-hand side is attained at i = j and
is equal to §. Let Ky = {01,...,aj}, Kg = {Bj""’Bn}' Assume, without
loss of generality, aj < Bj' The sets KA’ KB in the plane can be separated

by two parallel straight lines at distance §. Apply Proposition 12.5 now. |

For the case of arbitrary unitary matrices this argument no longer works,
but it can be modified. We cannot explicitly prescribe an order now but it
turns out that one permutation for which the optimal matching distance is

attained arranges the a's and the B's both in a cyclic order.

Another proof of Theorem 13.6 : The case n = 2 is trivial. We assume n > 3.

Assume for simplicity that all the o, and B, are distinct and that all the
distances lai- le are distinct. Matrices with such eigenvalues are dense,
so the general case would follow from this by continuity.

We will write (aBy) to mean that the points a,B,y are in counter-clockwis
cyclic order on the unit circle. We will adopt a similar notation for more

than three points. Indices will be numbered modulo n, thus o = Qy etc.

+1
Number the a; SO that (a1a2 e an). Let

§ = min max Iai— Bo(i)l'
5] i

- Assume § < 2, otherwise we have nothing to prove. Let the eigenvalues of B
be numbered 81""’Bn in such a way that for any subset J of {1,2,..f,n} and

for any permutation o of J we have
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max lai— Bi| < max Iai— Bo(i)" (17.1)

ieJ i€J
This implies that max |ai— Bil = §. Assume, without loss of generality
1<1<n |

that this maximum 1is attained for 1 = 1 and further that a1 < 81 (in the

notation introduced earlier in this section).

Now the following facts can be verified:

(i) If for any i, Bi < a; then neither (oz1 Bi 81) nor
(oa1 a; 81). To see this apply (17.1) to indices 1 and 1i.

(ii) There exists j such that laj+1 - ejg > §. If not, then we
could have paired each L with Bi to get an optimal matching

distance smaller than §.
Choose and fix one such j.

(iii) Apply (i) and (17.1) to see that (Ot1 B, BJ aj+1).
(iv) For 1 < i < j we have (B1 Bi Bj)' This can be seen separately
for the several different cases which can arise. Verify this first
for the case aj < B.. This is easy. Let B. < a.. First note that
in this case (iii) and the condition lBJ— ajl < § imply the
configuration (a1 B1 BJ o. o, 1). Now consider the two subcases

J J+
a, < Bi and Bi < a, separately. In each case (iv) has to be true.

Now let KA be the arc from aj+1 positively to a, and KB the arc from 81
positively to BJ' By the original numbering of the a, there are n - j + 1
of the a, lying in KA' By (iv) above there are j of the Bi lying in Kg.

Consider the lines o, 81 and Bj aj+1. They cannot be parallel, for if
they were then a, B1 Bj QJ+1 would be a rectangle whereas we had assumed
that the distances between eigenvalues are all distinct. So these lines
meet. If the point a at which they meet is closer to a, than to 81 then we

can find a disk D(a,p) containing K, and a disk D(a,p+8) which contains no
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point of Kg. So by Proposition 12.1, § < €. If the point a is closer to
B4 than to a, the same argument works with the roles of A and B interchangec

1

§18. _An inequality of Sunder

Another instance when the eigenvalues of A and B can be naturally ordered
for optimal matching is the case when A is Hermitian and B is skew-Hermitiar

The following result was proved by Sunder:

THEOREM 18.1 : Let A be a Hermitian matrix and B a skew—Hermftian matrix

with their respective eigenvalues numbered so as to satisfy

] 2.2 o] and [B,| <...< |8,

Then for 1 = 1,2,...,n

Iai‘ Bi| < ||A-BJ|.

Proof : For any index j consider the eigenspaces of A and B corresponding t

their eigenvalues {a1,...,a.} and {Bj""’Bn} respectively. Choose a unit
vector x in their intersection. Recall ||[X*|| = ||X|| for every matrix X. We

have, therefore,

2
1A-8]|

H

7 {lA-8]|° + [|a+B]|%}
25 B + [[(AsB)x|1*)

2 2
= [|Ax]|® + |IBx]]

2 2 2
2 'QJ' + 'BJ' = 'aj“ le .
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(We used the parallelogram identity for the Euclidean vector norm and the

fact that aj is real and Bj imaginary). =

In section 14 we saw that the inequality |||(Eig A, Eig B)||| < [||A-B]|
does not hold in all unitarily-invariant norms if A,B are unitary. Nor

does it hold if A is Hermitian and B skew-Hermitian. To see this let

and choose any Schatten p norm for 1 < p < 2. This simple example was also

discovered by Sunder.

Notes and references for Chapter 4

One of the most interesting problems concerning spectral variation is the

long-standing conjecture that the inequality
|(Eig A, Eig B)|| < ||A-8| (1)

proved by Weyl for Hermitian matrices would remain true for normal matrices
A and B. This conjecture remains open.

However, the stronger conjecture that the Lidskii-Wielandt inequality
I (Eig A, Eig B ||| < [l|A-B]] | (@)

would also extend from Hermitian to normal matrices turns out to be false,
as seen in this chapter, even when A,B are unitary. This stronger
conjecture seems to have been first raised explicitly in 1960 by Mirsky [1]
and is stated as an open problem in the 1979 book of Marshall and Olkin [1].
That the inequality (1) remains valid for unitary matrices was first
proved by Bhatia and Davis [1] and soon afterwards the same result was
proved by a different method (and generalized) by Bhatia and Holbrook [1].

Section 17 and 13 are based, respectively, on these two papers. The
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beautiful Example 13.8 was discovered by Choi [unpublished].

Section 14 is based essentially on the paper of Bhatia [1], where the
results upto Theorem 14.6 are proved, and the paper by Bhatia, Davis and
McIntosh [1], where Theorem 14.7 and Example 14.8 are given. For the
differential geometric notions used here see Auslander and MacKenzie [1].
Proposition 14.1 has been used by Arnol'd [1] for finding a smooth canonical
form for matrices under the action of the group GL(n). Theorem 14.9 is
common knowledge. (For its history and related matters see Halmos [2]).

The proof given here is due to Sunder.

Section 15 is based on a famous paper by Hoffman and Wielandt [1].

The contents of Section 16 are taken from the paper by Bhatia, Davis and
McIntosh [1]. The equation (16.1) is known as Rosenblum's Equation (see, fo
example, Radjavi and Rosenthal [1]). Theorem 16.1 (in a much more general
setting) was proved by Rosenblum [1]. For arbitrary A, B Rosenblum wrote a
solution in a form different from (16.4). If T is any contour with winding
number 1 around every point of Spec (B) and winding number 0 around every

point of Spec (A) then Rosenblum's solution to equation (16.1) is given by

_ -1 -1 -1
- L jr (A-0)"1 se-0)7" dc.

Without any assumption of normality on A and B no estimate of the type (16.7
can be derived. An example to that effect is given in the above paper of
Bhatia, Davis and McIntosh where Theorems 16.2 to 16.6 were first proved.
Bounds of the kind (16.10) are called "Sin § theorems". They were studied,
among several other things, by Davis and Kahan [1] for the case of

A? KB. For an
interpretation of ||EF|| in terms of angles between the subspaces E and F see

Hermitian A, B and for some special kinds of sets K

the above paper of Davis and Kahan. (The whole question of perturbation of
eigenvectors is discussed in detail in this paper and the paper of Bhatia,
Davis and McIntosh).

One proof of the existence of a function f in L1(R2) whose Fourier

transform satisfies the relation f(t) = €~11T€~ if |t| > 1 is given in the
1 2

paper of Bhatia, Davis and McIntosh. Another quick simple proof (due to
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M.S. Narasimhan) goes as follows. Let ¢ be a function on the z-plane which

is € everywhere, vanishes in a neighbourhood of 0 and is 1 outside the unit

disk. Let Y(z) = ﬂﬁ;ﬁl . We wish to show that @ € L1. Put

n(z) = J1.¢(z)»= 1 de (Here, as usual, 4 -9 59y The function
— z —  dx dy
dz dz dz

n is a €™ function with compact support. So it belongs to the Schwartz

space S. Hence its Fourier transform n also belongs to S which is contained
in L,. Hence h(w) = ”&y) also belongs to L,.
above discussion, constants like 2m etc. which do not affect the conclusion).

(We have dropped, in the

Since such functions exist we can be sure that the constant 02 is not

infinite!

The result in Section 18 was proved by Sunder [2].

The contents of Section 12 are "folklore". Many of them are known with
several different proofs and have been used by various authors. Thus, for
example, Theorem 12.4 can be regarded as a special case of a theorem of
Bauer and Fike [1] which they proved for the case when A is diagonalizable
(by a similarity transformation). Another simple proof of Theorem 12.4 may

be found in Bhatia and Holbrook [1] (and in several other papers).
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5 The general spectral variation
problem

In this chapter, we will obtain bounds for the distance d(Eig A, Eig B)

when A and B are any two arbitrary matrices.

§19. The distance between roots of polynomials

Consider two monic polynomials
f(z) =2z + a
g(z) =z + b,z +...+ b (19.1)

with complex coefficients. Let Qgsyeeer and 81""’Bn be their

respective roots. We will denote by Root f the unordered n-tuple {a1,;..,an

and also the subset of the plane whose elements are roots of f. (It will
be clear from the context which object we are referring to at a particular

moment). Let

Y = max (Iakl’ IBkI)’ (19-2)
1<k<n
$ = {Z|b, - a| vl UAL | (19.3)

THEOREM 19.1 : The Hausdorff distance between the root sets of f and g is

bounded as

h(Root f, Root g) < §. ~ | (19.4)

89



Proof : We have

n
g(z) - f(z) = £ (b, -a, ) z
k=1 k k

nf-k

So if 0 denotes any of the roots a cesQ_, We have

1,

n
n-k n
|g(ao)| < I |bk - ak|y =9 .

k=1

Factorizing g we can write this as

(19.5)

So, for at least one i we must have |a0 - Bil < 8.

Thus 1if aJ 1s any root of f, then in the disk D(a ,9) there is at least
one Bi' By symmetry, for every j the disk D(B 3) contalns at least one o,

This proves the theorem. n

REMARK 19.2 : The quantity & involves y and hence depends on the oy and B

However, by an elementary inequality for polynomials, max la.| < 2 max'aJl /3,
J

So we can replace y by 2T where T = max(|a|

A |bji1/j).
J

We now obtain a bound for the optimal matching distance d(Root f, Root g).

For this, we will need:

LEMMA 19.3 : Let B be a closed region in the complex plane whose boundary T

consists of a finite number of circular arcs. Let f and h be two analytic
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functions on B. Suppose for 0 < t < 1, f(z) + th(z) has no zero on T.

Then the number N(t) of zeros of f + th inside B is constant for 0 < t < 1.

Proof : Put ut(z) = f(z) + th(z). Let t, be any point in [(0,1]. By the

hypothesis |u, (z)| >p >0 for all z € T and for some p. Choose |§| small
0
enough so that |8h(z)| < p for all z € T. Then |u, (z) + 8h(z) - u, (2)] <
0 0

Jup (z)| for all z € T. So, by Rouché's Theorem u, + 8h and u_ have the
0 0 0
same number of zeros inside B. In other words N(t_ + &) = N(t_ ) for 18|

sufficiently small. Thus N(t) is a continuous function of t, and being

integer-valued it must be constant. "

THEOREM 19.4 : The optimal matching distance between the n-tuples Root f and

Root g is bounded as
d(Root f, Root g) < c(n)¥, (19.6)

where c(n) = n or n-1 according to whether n is odd or even.

Proof : If n = 2 then this follows from Theorem 19.1. 5o, let n > 3.

Suppose for some o picked from Qyyees,O wWe have |a0 - Bi|‘3 9 for all 1i.
Then from (19.5) we must have ]ao - Bi] =8 for all i. So for all i,j we
have |Bi - le < 28. Since every $ 1is within a distance $ of some B, this
means that |a, - le < 39 for all k,j. So the theorem is proved in this
case.

So, for the remaining part, assume that for every j the open disk D(aJ,S)

contains at least one Bi and vice versa.

Let B =
J=1
made up of k of these disks. For 0 < t < 1 let gt(z) = f(z) + t(g(z)-f(z))

D(a.,8). Let M be a connected component of B. Suppose M is

n 3
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Suppose § is any root of 91(2). Note 9, = Q. So by the preceding
paragraph ]g- aj| < § for at least one j. Suppose £ is a root of gt(z) for

some t < 1. Then by Theorem 19.1 there exists some j for which

Ig_ aJI _<__ t1/n

the open disk D(aj,3) for some o5 Hence, no root of any g, can lie on the

$ < 8. 5So for every 0 < t < 1 any root & of 9, lies within

boundary T of M. So by Lemma 19.3 each 9y s 0 <t <1 has the same number
of roots inside M. Since g, = f, which has exactly k roots inside M, 9,
also has _k roots inside M. But 9, = G- Thus we have shown that every

connected component of B contains an equal number of roots of f and g. By
n .

symmetry every connected component of the set u D(B.,B) also contains the
j=1

same number of a's and B's. Go the assertion follows from Theorem 1.5. |

We will call an n-tuple (X1""’Xn) of complex numbers Carrollian if it
satisfies the condition : x is a member of this n-tuple iff -x is also a
member with the same multiplicity as that of x. Note that when n is odd, a
Carrollian n-tuple must contain 0 with an odd multiplicity.

Recall that if o

then we have

.,a_ are the roots of F(z) = 2" + a1zn-1 Fout B

12°° n

k
a, = (=17 s (a,...5a ), T<kg<n

where S, is the elementary symmetric function defined as

s, = ) Q. ... O.

X ) i i
15}1<...<1k5n 1 k

Now suppose (a1,...,an)-is a Carrollian n-tuple. Then we can arrange it

as (o O -a1,...,—ar) when n = 2r and as (0, a yeresO, =0

1 1

TRRE
when n = 2r+1. In this case we have

,---,—ar)'

) 2 2
(-1) sj(a1,...,ar)

—
| A
.
A
-
-

aZJ =

=0 0

| A
.
A
=]

92+
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Thus ai,...,az are the r roots of the polynomial

__r r-1 r-j
F(z) = 2z~ + a, z +...+ a?j ya +ooot @, .

This observation leads to the following corollary of Theorem 19.4.

COROLLARY 19.5 : Let f,g by polynomials defined by (19.1). Let n = 2r

or 2r+1. Suppose the roots a I of f(z) and 81,...,8n of g(z) both

19
form Carrollian n-tuples. Let

r

9 ={Z |b, -a,|¥
k=1 2k 2k

2(e-k)y1/r (19.7)

where y is defined by (19.2). Then the roots can be arranged in such a way
that for 3 = 1,2,...,n

|a§ - Bil < c(r)9" (19.8)

where c(r) = r or r - 1 according to whether r is odd or even.

Note that (19.8) gives a bound for the optimal matching distance between
the squares of the roots of f and g. A bound for the optimal matching
distance between the roots themselves can be obtained under an additional

hypothesis.

COROLLARY 19.6 : Let notations be as in Corollary 19.5. Suppose, in
addition, that either the roots QyyeeeyO and 81""’Bn are all located

outside a circle of radius R around the origin, or they contain 0 with the
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same multiplicity and the nonzero ones are located outside this circle.
Then

d(Root f, Root g) i%ﬂ 9'. (19.9)

are any two complex numbers, each of

Proof : Use the fact that if X190 Xo
modulus not less than R, then either lx1 - le_z R or lx1 + x2|.z R. Then
(19.9) follows from (19.8). =

§20. Variation of Grassman powers and spectra

One strategy for deriving spectral variation bounds could be: first study
the variation of the coefficients of the characteristic polynomial of a
matrix and then use the results of section 19 to get bounds on

d(Eig A, Eig B). As pointed out in section 4, if the characteristic

polynomial of a matrix A is written as

XA(t) -t" - a t +at" e (-1 a

then

where AkA denotes the kth Grassman power of A. So, to study the variation
of a, ., we should bggin by studying the variation of the map A - AkA. This
is best done in the language of calculus in Banach spaces. (See, for
example, Dieudonné [1]).

For a Hilbert space H let us denote by L(H) the Banach space of all
linear operators on H equipped with the operator norm. Consider the kth
tensor power ®k H of H and the induced map Qk : A~ Qk A from L(H) to
L(®k H). (See section 4 for notations.) The derivative of ®k at a point A
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is the linear map D@k(A) from L(H) to L(®k H) defined as

@ﬁ (A + tB)
t=0

k ' d
D@ (A)(B) = gt

(the directional derivative of ®k at A in the direction of B). By the
multilinearity properties of tensor powers one sees

D" (A)(B) =BR A® ... @A + A® B® ... ® + ... + A® ... ®A @B.
Since ||X @Y|| = ||X|| ||Y]| for any two operators X,Y, this shows

Ioe Ay )| < K||Al“|i8|l-

Taking supremum over all B with ||B]| = 1 and considering the special case
B = A/||A]] we obtain

s (a)] = KAl . (20.1).

Now let Pk : ®k H -~ Ak H be the canonical projection operator defined in
section 4 and let Qk : Ak H - ®k H be the inclusion map. Consider the
induced map P : L(@" H) + L(A H) defined by

5k(T) = PkT Qk for all T € L(®k H).

~

Then P, is a projection and UﬁkH = 1. The map Ak L(H)-+_L(Ak H) factors

through the map ®k : L(H) » L(®k H) via the projection Pk’ i.e.

~

Ak(A) = 5k(®k A) for all A € L(H).

By the chain rule of differentiation and the fact that the derivative of the

linear map Pk-is Pk itself, we have

DAK(A) = ﬁk-o(a" A). (20.2)
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From (20.1) and (20.2) we have

THEOREM 20.1 : For k = 1,2,...,n

oAk (a)|| < kA" . (20.3)

COROLLARY 20.2 : For any A, B in L(H) we have

1A% 8 - A% Al < K M<B-a]l. (20.4)
where

M = max(||A]l,[I8]]) .

Proof : Consider the map f : [0,1] + L(H) defined by f(t) = (1-t)A + tB.
Apply the mean value theorem to the composite map Ak o f from [0,1] to
L(Ak H). This gives |

1A B - A% al| < s DA% F(e)|| |IpFC)]|
<L .

< sup  K[(1-t)A + tB|<T ||B-a]|
0<t<1

<k M B-a m

—

Denote by (tr)n the trace map from the space L(H) to €, where dim H = n.

This map is linear and hence

HD(tr)n(A)” = “(tr)n“ =n for all A € L(H).
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Since dim AkH = [E) s using Theorem 20.1 and the chain rule of

differentiation we get

PROPOSITION 20.3 : Let g (A) = tr A“A be the kth coefficient in the

characteristic polynomial of A. Then

IDg, (A)]| < & [E] A ?. | (20.5)
If A, B are any two operators on H, then
lo, (B) - @ (A)] < k [“) MK ||B-Al (20.6)
k k - k ’ )

where M = max(]|A]l,||8]])-

Using this and results of section 19 we obtain

THEOREM 20.4 : Let A, B be any two nxn matrices. Then the Hausdorff

distance between their spectra and the optimal matching distance between

their eigenvalues are bounded as

h(Spec A, Spec B) < n'/"(2n)11/" Jja-p| /" , | (20.7;
d(Eig A, Eig B) < c(n) AN AL “A—Bu1/n, | (20.8;

where M = max(||A]|,||B||) and where c(n) = n or n-1 according to whether n is

odd or even.
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Proof : Use Theorem 19.1 and Proposition 20.3. Use the fact that the

eigenvalues of A are bounded in modulus by [|Al]]. This gives

A n-k | 1/n
h(Spec A, Spec B) <4 I g (B) - ¢ (A)|M
k=1

n
f-{k§1 k[ E) =1 llB—All}1/n.

Now use the combinatorial identity

to get (20.7). The inequality (20.8) follows likewise from Theorem 19.4. m

REMARK 20.5 : The bounds given by Theorem 20.4 differ from those derived for

special matrices in Chapters 3 and 4. These earlier results bounded the

spectral distance by expressions like c||A-B|| where c was a constant
independent of A, B and n. In most cases ¢ was 1. Now the bounds (20.7)
and (20.8) involve ”A—B"1/n, a common bound M for ||A]|, ||B|| and a constant
growing with n. Let us see whether this is the best we can do.

First, let A be the nilpotent upper Jordan matrix of order n (i.e. A has
ones on the first super diagonal and zeros elsewhere). Let B be the matrix
obtained by adding an entry € in the southwest corner of A. Then ||A-B| = e.
But the eigenvalues of A are all zero and the eigenvalues of B are the nth
roots of €. So the left-hand sides of (20.7) and (20.8) are both equal to
e1/n. Thus the order 1/n with which ||A-B|| occurs in these estimates cannot
be improved in general. Note that, in perturbation theory, we are mainly

interested in the case when A is close to B. Then HA—B“1/n is much larger

than ||A-B||.
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Next, note that if we multiply A and B by a constant t then the left-hanc
sides of (20.7) and (20.8) will be multiplied by t. But ||A-B||"/™ will be

multiplied by only g1/n, So, if the right-hand side has to involve "A—B"1/r

then it must involve a compensatory factor mi-1/n,

Now we have to see whether the remaining factor n1/n.21—1/n in (20.7) car
be improved. Take A = I and B = -1I. Then h(Spec A, Spec B) = 2. But
=177 1a-g||"/™ = 27/™. s, the Ffactor by which this should be multiplied
to bound h(Spec A, Spec B) has to grow with n. Let ¢@(n) be the optimal
choice for this factor, i.e. @(n) is the smallest constant depending on n

such that
h(Spec A, Spec B) < g(n) Mi-1/n "A—B“1/n.
“Then by the above example and by (20.7)

21N (n) < nl/M 21N,

So our bound (20.7) is quite sharp.
The bound (20.8) involves an additional factor c(n) = n or n-1. It is

possible that this could be drastically cut down.

§21. Some more spectral variation bounds

In this section, we will deviate from our practice of using, in every
spectral variation inequality, the same norm to measure the distance

| (Eig A, Eig B)||| between eigenvalues and the distance [|A-B||| between
operators. This has served us well so far. But there are some results
known for arbitrary matrices which give bounds for d(Eig A, Eig B) in terms
of norms other than the operator norm. We will summarize here these results

without proof.
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Given an nxn matrix A = ((aij)) define its L-norm as

: 1
"A"L =h iz' laijl'
+J

(This norm is easy to compute for a matrix. But it is not unitarily-
invariant, so it is defined only for a particular matrix representation of

an operator).

THEOREM 21.1 : For any two nxn matrices A, B

d(Eig A, Eig B) < c(n)(n+2) Ml‘”” ||A-Bl|l1_/n (21.1)
where M = max(||A]l , [IB]l, ) and where c(n) = n or n-1 according to whether n
is odd or even.

The Frobenius norm [|A[l. = [ z |aij|2 )1/2 is almost as easy to
i’j '
calculate for every matrix as the norm ”A"L. It has the additional
advantage of being unitarily-invariant. For this norm we have: |
THEOREM 21.2 : For any two nxn matrices A, B
n

d(Eig A, Eig B) < C(n){ g K1K/2 (;’(‘)}1/“ ML=/ a-g) 1" (21.2)

k=1

where M. = max(|[Al|l-, ||B]|-) and where c(n) = n or n-1 according to whether
n is odd or even.
Note that
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L I AL (21.3)
()

and the inequality is strict for n > 2. Using this (21.2) can be replaced

by a weaker but neater inequality

1/n

F (21.4)

d(Eig A, Eig B) < 2 c(n) MI™V/" [a-g|

REMARK 21.3 : The following relations between norms can be easily verified

Al < NAlle < v Al

Al < NAlle < ollAll, -

Using these relations it is not possible to derive either of the above
‘theorems from the other, or from Theorem 20.4.

However, note that using these relations we get from (21.2)

i/n

d(Eig A, Eig B) < c(n) (2"- 1/ o M!-1/" lIa-8]|;*

A (21.5)

So, after this crude substitution the inequality (21.5) is still better

than (21.1) for n = 2, by a factor of v/3/2. For n > 2 it is worse than
(21.1) by a factor smaller than %%%?, which is less than 2. -However, after
a similar substitution the inequality (21.1) suffers in comparison with
(21.4) by a factor of Z5%

Another approach to the study of spectral variation was followed by
Henrici, who instead of using the characteristic polynomial employed some
estimates of the norm of the resolvent (A—uI)“1 and a measure of non-

normality of a matrix.
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Given a matrix A we can find a unitary matrix U such that

UAU* = T =D + N

where T is an upper triangular matrix, D and N are the diagonal and the

nilpotent parts of T. Such a T is not unique. 1If v is any matrix norm,
define the v-departure from normality of A by

Av(A) = inf v(N)

where the infimum is taken over all N which appear as the nilpotent parts
in the upper triangular forms of A. Note that Av(A) =0 iff A is normal.

The measure of nonnormality is difficult to evaluate.
norm one can prove that

For the Frobenius

3 1/4

A(R) < (” ;2”) 1A"A - AR"||1/2

[ (21.6)

This inequality and the following theorem were proved by Henrici:

THEOREM 21.4 : Let A be a nonnormal matrix and let B £ A.

Let v by any
matrix norm which majorizes the operator norm. Let
A, (A)
Y = V(B—A) | (21.7)

and let g(y) be the unique nonnegative solution of the equation
2 n
g+9g +...+9g =Y.

Let
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n = 5{57 V(A-B) . | (21.8)

"Then every eigenvalue of B is within a distance n of an eigenvalue of A.

Further
d(Eig A, Eig B) g_(?n - 1)n. (21.9)

If A is normal then the expression y/g(y) in (21.8) can be replaced by 1.

REMARKS : When A is normal the first part of this theorem reduces to
Theorem 12.4. | |

However, the bounds for d(Eig A, Eig B) obtained earlier for the case
when both A and B are normal cannot be deduced from (21.9).

The bound (21.9) has two apparent weaknesses when compared to other
‘bounds presented in this chapter (the inequalities (20.8), (21.1) and (21.4).
It involves more complicated expressions and it is "local" in the sense
that it uses some special knowledge about one of the matrices A via (21.7).
However, Elsner has shown that by a little modification of Henrici's
argument, together with some inequality manipulations, one can derive not
only the bounds (20.8) and (21.2) but also slight improvements/thereof. Thue
1/n

for example, using this method Elsner shows that the factbr n occurring

in (20.8) can be replaced by

For n > 2 we have

‘Yn<(1+-r—]-_—_--
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§22. Spectral variation for the classical Lie algebras

Let At denote the transpose of the matrix A. We call a complex matrix A
symmetric if At = A and skew-symmetric if At = -A. Let In denote the nxn
identity matrix and let J denote a (2r) x (2r) matrix with a block

decomposition
o [ ]
r
Jd =
1 0 1.
L—r ek
Let

s0(n,L) = {nxn complex skew-symmetric matrices}

t

sp(r,t) = {A : At = _3a07 3.

It is easy to see that A € sp(r,C) if

A1 AZT
A =
t
A -A
|3 1]

99 A3 are skew-symmetric.

It is clear that the eigenvalues of matrices coming from these two sets

where A1, A2, A3 are rxr matrices of which A

form Carrollian n-tuples. 5So we can use the method of section 20 together
with Corollary 19.5 to obtain different spectral variation bounds for such
matrices.

We thus have:

THEOREM 22.1 : Let A,B be two matrices of order n = 2r or n = 2r+1.
Suppose A,B are elements either of the Lie algebra so(n,l) or the Lie
algebra sp(r,C). Then |
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d(Eig A2, Eig B2) < 2(M2V/T () VT W21/ 0 g /T (22.1)

where M = max(||Al|, ||B]]> and c(r) is r or r-1 depending on whether r is odd

or even.

Further, if A, B both have 0 as one of their eigenvalues with the same
multiplicity and the rest of their eigenvalues lie outside a circle or

radius R around the origin, then we have
d(Eig A, Eig B) < w/R (22.2)
where w denotes the right hand side of (22.1).

The point of these inequalities is that the order 1/n with which ||A-B|
entered on the right hand side of (20.8) has now been improved to 1/r.

Notes and references for Chapter 5

&7

The results and the methods of section 19 are essentially due to Ustrowski
[1], [3]. Theorem 19.1 was proved by him. Theorem 19.4 was proved by him
in a weaker form, with a factor of (2n-1) in place of c¢(n) in (19.6). The
significant improvement to the constant c(n) in place of (2n-1) is due to
Elsner [1]. The crucial observation of Elsner is that, exploiting'symmetry,
one can use Theorem 1.5 for matching the roots rather than Theorem 1.6
which Ostrowski used. Ostrowski gave an example to show that the bound
(19.4) cannot be improved and another example to show that the factor c(n)
in (19.6) cannot be replaced by 1.

It has been well knoWn to numerical analysts that even though the roots
of a polynomial vary continuously with the coefficients they can change
drastically with small perturbations of the coefficients. Wilkinson [2]
gave the following example which caused considerable consternation among

numerical analysts. Let

20
f(x) = T (x+ j) = «?0 4 210 xV7 +...+ 201.

J=1
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The zeros of this polynomial are -20, -19,...,-1. If the coefficient 210
of x'” is changed to 210 + 27%% the new polynomial has 10 real roots
-20, -9, -8,...,-1 and 10 complex roots with large imaginary parts.
Nevertheless, the change in the roots can be bounded by a function of the
change in coefficients as shown in Section 19. For an interesting
discussion of Wilkinson's example see Poston and Stewart [1].

An interesting formulation of the continuity of the roots of a
polynomial is the following topological theorem. Let mgym = En/Sn be the
space of unordered n-tuples of complex numbers, obtained as a quotient space
under the action of the permutation group Sn on C". Then the map |
S : mgym

elementary symmetric polynomial in the variables x

+ C" which takes {X1""’Xn} to (81""’Sn)’ where Sj is the jth
TR is a

homeomorphism. Recall that s .58 are the coefficients of a monic

100

polynomial of degree n which has x «9X  8s roots. So the continuity of

y o
the roots follows from this homeom;rphism. For an easily accessible proof
of this well-known theorem see Bhatia and Mukher jea [2].

The idea of studying spectral variation via calculus and exterior
algebra occurs in a paper of Bhatia and Mukherjea [1]. Using this a weaker
version of Theorem 21.72 waé proved there. The same approach was Followed,
with greater success, by Bhatia and Friedland [1]. Section 20 is based on
this paper. To us this approach seems appealing because A - Eig A is a map
from the space M(n) of matrices into the space Egym. If S is the
homeomorphism mentioned in the preceding paragraph then the composite map
K - tr AkA. So

the variation of the map Eiqg is best studied via the variation of the map

SeEiqg takes a matrix A to the n tuple (a1,...,an) where a

A - AkA. In the above mentioned paper of Bhatia and Friedland a result

much stronger than Theorem 20.1 is proved. It is shown there that
oAkl = s, L (v V)
A2 EEEEEA

where v, >...> v, are the singular values of A and s is the (k—1)th’

1 —
elementary symmetric polynomial.

k-1

[k]

It 1s interesting to note that the operator A introduced in section. &
is equal to the derivative DAk(I)(A).
Theorem 21.1 was proved by Ostrowski [2], [3], with the constant (2n-1)

in place of c(n). Theorem 21.4 is due to Henrici [1]. 1In this paper he
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praoved several other results for arbitrary matrices in terms of their
measure of nonnormality. For instance, we know that the convex hull H(A)
of the eigenvalues of a matrix A is equal to its numerical range W(A) if A
is normal; otherwise H(A) is contained in W(A). One of the theorems in the
above paper of Henrici gives a bound for the distance between the boundary
of W(A) and the set H(A) in terms of the measure of nonnormaliiy of A.

In an important paper Elsner [1] improved all these spectral variation
bounds obtained by Ostrowski, Bhatia-Mukher jea and Bhatia-Friedland by
cutting down the factor (2n-1) which originally occurred in these results
to c(n). In the same paper he showed how to derive Theorems 20.4 and 21.2 b
Henrici's method.

Theorem 22.1, in a weaker form, is proved in Bhatia [2].

Notice that for k = n, the inequality (20.4) gives a perturbation bound

for the determinant
|det A - det B| < n M""" ||a-B].

Using the same analysis one can prove that the right-hand side above
also dominates |per A - per B| where per A is the permanent of A. (See
Bhatia [3]).

For an analysis parallel to that in section 20 in some more general norms
see Friedland [1]. |
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6 Arbitrary perturbations of
constrained matrices

All our results obtained so far had one common feature: the matrices A, B
either both belonged to a familiar class simultaneously or were completely '
arbitrary. (One exception was made in section 18). This is justified
because most often the context demands that both the matrices must satisfy
the same constraint; for example, symmetric matrices occur most frequently
in physical problems. However, when a matrix is subjected to random errors
then it may go outside the class to which it initially belonged. In this
chapter, we present some results on spectral variation when one of the
matrices is Hermitian or normal and the other is arbitrary.

The other feature of our results has been that all the bounds we derived
were global and a priori. The first adjective refers to the fact that we
assumed no special knowledge about any one of the matrices save the fact
that it belonged to a special class. (One exception was made in section 21
where a measure of nonnormality was required for one of the matrices). By
an @ priori bound we mean a bound which uses no knowledge about the
eigenvalues of one of the matrices. In practice such knowledge is often
available. We will not study any of the several useful a posteriori bounds
known. We do present one more local result - the celebrated Bauer-Fike
Theorem.

Proofs in this chapter will be somewhat sketchy.

§23. Arbitrary perturbations of Hermitian matrices and Kahan's results

Suppose Z is an nxn complex matrix with real spectrum. Then we have
* *
1Z-2 ¢ < 1Z+2 |- (23.1)

(The easiest way of seeing this is by converting Z into an upper triangular
form). Since [|A]| < |[All- < /n [|A]l, this gives
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1Z-2 || < /7 ||z+2 ). (23.2)

This is, however, too crude. An interesting refinement was obtained by

Kahan.

THEOREM 23.1 : If Z is an nxn complex matrix with real spectrum then
* *
Nz-2' || < v liz+Z |l | (23.3)

where the constant Y which depends only on n is bounded as

2

=1nn -0(1) < v, < log, n + 0.038. | (23.4)

This bound for the constant occurring in (23.3) was slightly improved be
Schonage. Later Pokrzywa evaluated the best constant exactly. His result

can be stated as

THEOREM 23.2 : Let

»*
Iz-z"]]
Y,. = max = (23.5)
Iz+z |
where the maximum is taken over all complex nxn matrices Z with real
spectrum. Then
[n/2] :
y =2 17 cot =Ll (23.6)
n_ n . 2n
J=1
where [:g-] denotes the integral part of-g .
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We will assume the above results and use them to prove

THEOREM 23.3 : Let A be a Hermitian matrix with eigenvalues

Oy 20y 2e0n> 0 and let B be an arbitrary matrix with eigenvalues 81,...,8

n
arranged so that Re 81_2 Re 82‘3..52 Re Bn. Then

max |o.- B.]| < (y, +2) |A-B||, | (23.7)

where y_ is the constant defined by (23.6).

* *
ProoF:PutC:B—A,X:—QtZ-[—:——,Y:C—C

21
X1 < Kl HvIb < llellts  liell < ixIE -+ [1vil-

Since the eigenvalues and the norms are invariant under unitary

We have

conjugation, we can assume, without loss of generality that B is upper

triangular and write

B =L + 1M + iN

where L

diag(Re 81,..., Re Bn), M = diag(Im 81,...,Im Bn), and N is a

strictly upper triangular matrix. Note that

B B* N N*
— + — -
A X = 5 = L i 5 .
B B* N N*
- +
Y = F = M+ 5

21

Now note that Im Bj are the diagonal entries of the matrix . Hence

\ |
|im 8| < 7 lIB-8]) = |Ivil. (23.8)
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By Weyl's Inequality (Theorem 8.1)
_ 1 ¥
o, - Re 8| < ALl = X - 3 (v - )]
’l *
< XN+ 5 (IN-NI.

Put Z = M+N. Then Z has real spectrum. Further Z—Z* = N-N ,
¥*
747 = 2M + N+ N = 2Y. So by Theorem 23.1

¥*
IN-NCIf <2y IV
Hence
jo; - Re 85| < Xl + v, IIvIl.
So,

|o.

i - le 5_|aj - Re le + |Im le

< Xl + G+ 1) 1Yl
< Gy, + 2) ]|

This proves the theorem. [

EXAMPLE 23.4 : Let A be the Hermitian matrix with entries

1
|i-3|

if 1#j

Y]
I

ij
a.. = 0, i=1,2,...,Nn.

11

Let C be the skew-Hermitian matrix with entries
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_ ] - - :
Cii =13 if 1# ]

cii'z 0, i=1,2,...,n.
Let B = A+C. Then B is strictly lower triangular. So Spec B = {0}. It was
shown by Kahan that ||C|]| < w (independent of n), whereas |
2 log n - 0(1) < ||A]]| < 2 log n. Since A is Hermitian this means that the
spectral radius of A grows like log n. So d(Eig A, Eig B) grows as log n

whereas ||A-B|| < m. Thus the right-hand side of (23.7) must involve a factor

Y
like y . Further it can be seen from.(23.6) that —— 4 2 as n » . So,
n logn @

this example shows that the bound (23.7) is not too loose.

REMARK 23.5 : If B is normal then N = 0 (in the proof of Theorem 23.3).

In this case we have

o 12
|aj B B'l

R A N e N L 1

2 2
< 2llc]|® = 2||a-8]°.
So we have

max |a, - 8.| <2 ||A-8|| (23.9)
1<jen )

when A is Hermitian and B is normal

§24. Arbitrary perturbations of normal matrices

THEOREM 24.1 : Let A, B be nxn matrices. If A is normal then

d(Eig A, Eig B) < (2n-1) ||A-B]| (24.1)
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proof : Let CITREEFI and 81""’Bn be the respective eigenvalues of A and B
We have shown (Theorem 12.4) that if € = ||A-B|| then |

n
Spec B ¢ u 'ﬁ(aj,e) =D

j=1

where ﬁlaj,e) is the closed disk with centre aj and radius €.

Let A(t) = (1-t)A + tB, 0 < t < t. Then ||[A(t) - A]| = te < € for all t.
So, Spec A(t) is also contained in D for 0 < t < 1. By the argument used
in section 19 one can conclude from this that each connected component of D

contains as many a's as B's. The theorem now follows from Theorem 1.6.

Remarks : If both A, B were given to be normal then this argument, via
Theorem 1.5 would lead to the inequality d(Eig A, Eig B) < c(n) ||JA-B|| where
e(n) = n or n-1 according to whether n is odd or even. But in this case we’
have proved a stronger result in section 16 where we showed that c(n) here
could be replaced by a constant independent of n.

Henrici's Theorem - the inequality (21.9) - is a very good generalization
of the above theorem. In fact, Henrici's result reduces to (24.1) when A
is normal.

It seems likely that the constant 2n-1 occurring in (24.1) could be

reduced.

§25. The Bauer-Fike theorem

Our main concern in these notes has been finding bounds for |||Eig A, Eig B)|

We have, however, occasionally run into some results which say that Spec B
is contained in the union of certain disks around the eigenvalues of A.
(See Theorem 12.4 and Theorem 21.4). We will not attempt to list all such
results. Only the two most famous results of this type are given in this

section.
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If T is an invertible matrix then the condition number of T is defined ag

-1
c(T) = [Tl I

THEOREM 25.1 (Bauer-Fike) : Let A be similar to a diagonal matrix, i.e.

suppose there exists an invertible matrix T such that A = TAT-1 where

A = diag(a1,...,an). Let B be an arbitrary matrix. Let

€ = ”A—B «c(T). Then

n
Spec B ¢ U 'ﬁ(ai,e).
1=1

Proof : Let B € Spec B and choose a nonzero vector x such that Bx = Bx.

Suppose B € Spec A. Then the equation (B-A)x = (B-A)x can be rewritten as

x = (BI-A)"1(B-A)x

[T(BI~A)T_1]_1(B—A)x

TB1-0)7" TN (B-A)x.
So
Il < 1BI-1) "] [1B-All e(T) ix|

ie. 1 < [|BI-M7 e

= max |B—a |_1 €
J
i.e. min |B-a.| < E.
) j' =
J
This proves the Theorem. -
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Remarks : (1) The properties of norms uged in the above proof are
lAx|| < ([All IIx]ls for all vectors x
48] < llall [18ll,
Al = max fa,| if A = diag(a,,...,a ).

If ||x|| is any norm defined on t", then a norm defined on matrices which

satisfies the above conditions is said to be a matrix norm consistent with

the given vector norm ||x||.
(2) When A is normal then the invertible matrix T is unitary. So

c(T) = 1. So we get Theorem 12.4 in this special case.

(3) Using the continuity argument employed in section 19 and also in
the proof of Theorem 24.1, we can see that if D is any connected component
of the union of the n disks of the Theorem then D contains as many !

eigenvalues of B as of A.

In a similar vein we have:

THEOREM 25.2 : Let B be any matrix with entries bij' Then the eigenvalues
of B lie in the union of the n Gersgorin disks {z : |z—bii| < I Ibijl}’

i=1,2,...,n, j#i

Proof : Imitate the above proof of the Bauer-Fike Theorem using the vector

norm ”x”°° = max |x.| on C" and the corresponding operator norm
1<i<n |
ANl = sup{[ax||_ = [Ix]l = 1}
n
=  max L |a..]|-
1<i<n  j=1
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This norm satisfies the conditions of Remark (1). Note that if ||A||co <1
then I-A is invertible.
Let A = diag(b11,...,bnn) and H = B-A. Let B be an eigenvalue of B and

suppose B # by, for any i. Then
BI-B = BI - H - A = (BI-A){I - (BI-M)™' H}.
Since BI-A is invertible and BI-B is not, we must have

1< ||(BI-1\)‘-’l H||m = max{—~—-—~1--—- ) lbi'&'
i “|B-by,| gAY

This proves the Theorem. .

Once again by the continuity argument used earlier, any connected
component of the set consisting of the union of these disks contains as
many eigenvalues of B as of A, i.e. if a connected component is formed out

out k Gersgorin disks then it contains k eigenvalues of B.

Notes and references for Chapter 6

Theorem 23.1 was proved by Kahan in his paper [1]. Based on it was
Theorem 23.3, which was proved by Kahan [2] among several other results.
Up to dimension 16 the inequality (23.2) provides a better estimate than
(23.4). For large n, of course the estimate (23.2) is much weaker. Kahan's
estimates were improved by Schonage [1] who also refined the results in
another direction deriving better inequalities using information about the
sizes of the clusters of eigenvalues of A. (We have not touched upon such
results in this monograph at all.) Theorem 23.2 was proved by Pokrzywa [1].
Example 23.4 occurs in the above papers of Kahan.

Theorem 25.1 was proved by Bauer and Fike [1]. Theorem 25.2 is known as
the Gersgorin Disk Theorem and was proved by Gersgorin [1].

There are several perturbation results based on these two theorems. See
the classical book of Wilkinson [1]. This book and the more recent book of
Parlett [1] contain several results on perturbation bounds which invblve

some information about A, the separation of its eigenvalues from each other,
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its Jordan structure, etc. We also refer the reader to the papers of
Jiang [1] and Kahan, Parlett and Jiang [1] for such results. Another

important addition to recent literature is the book of Chatelin [1].
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Postscripts

Between the writing of these notes and their going to press some further
results on the topics discussed here have been announced/published. We
give below a brief summary of these results arranged according to their

L J
relevance to the various sections of the text.

1. A postscript to Chapter 4, sections 13 and 14

In the preprint "Unitary invariance and spectral variation", R. Bhatia and
J.A.R. Holbrook consider a class of norms wider than the unitarily-
invariant norms. A norm T from this class satisfies the weaker invariance

property
T(UAU™) = 1(A)

for all unitary operators U. (See our remarks in Notes and references for
Chapter 2).

In this paper Bhatia and Holbrook show that the '"path-inequality'" proved
in Theorems 13.2 and 14.3 of Chapter 4 for the operator norm and for all
unitarily-invariant norms, respectively, can be extended to this wider class

of norms.

2. A postscript to Chapter 4, section 16

In the preprint "An extremal problem in Fourier analysis with applications
to operator theory", R. Bhatia, C. Davis and P. Koosis show that the

constant C, defined as in (16.8) of Chapter 4 is bounded as

il

T < c, <7 Si(w) < 2.91.

2
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3, A postscript to Chapter 4, section 18

o——

Let A be a Hermitian matrix and B a skew-Hermitian matrix with their

respective eigenvalues a1,...,an and.B1,...,Bn both arranged in decreasing
order of modulus, |a1|‘2..x3 |an| and |B1|.Z°°22 |Bn|. In the preprint
"Eigenvalue inequalities associated with the Cartesian decomposition”,

T. Ando and R. Bhatia prove the following relations:

-

1 n-j+4|p]1/p < |A-Blly  for  Z<p <o

n
( L |a, - s.|p}1/p < 2VP V2 aB| for 1<p <2,
=1 J J - P - -
J_
where | «||  denotes the Schatten p-norm for 1 < p < «» with the convention
|- o = -l. In particular, these inequalities imply

I(Eig A, Eig 8)]|) < [|IA-B]|, for 2 <p <<,
I(Eig A, Eig B)]|_ < 2V/P-1/2 la-8ll ) for 1<p < 2.

Notice that Theorem 18.1 of Chapter 4 due to Sunder is included in the
first of these inequalities as a special case. The example given at the enc
of section 18 shows that none of the above inequalities can be improved.

It is reasonable to conjecture that for A, B as above we should have
I (Eig A, Eig B)||| < v2 [||A-B]|

For every unitarily-invariant norm. The authors of the paper mentioned

above prove this when the eigenvalues of A and B lie in the first quadrant,
i.e. when A and -iB are positive operators. In the general case, a weaker
inequality with the constant 2 in place of /2 on the right hand side can be

easily derived using the triangle inequality for norms.
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4. A postscript to Chapter 5, sections 20 and 21

1/n

L. Elsner (1985) (see references section) has shown that the factor n
occurring on the right-hand sides of the inequalities (20.7) and (20.8) can
be dropped. We outline Elsner's delightfully simple proof.

We will need to use the famous Hadamard Inequality which says that the
absolute value of the determinant of a matrix is bounded by the product of
the Euclidean norms of its column vectors.

Let A,B be two nxn matrices with eigenvalues Qyyeees@ and 81"“’Bn’

respectf@ely. Define

v(Spec A, Spec B) = max min |a, - B.]|
: : i J
J i
(See section 1).
Let, now, j denote the index at which the maximum in the above definition
is attained. Choose an orthonormal basis B reeer€ such that Be1 = Bje1.
Then

(v(Spec A, Spec B = min ]ai - len
i
n |
< I |a, - B.| = |det(A - B.1)]
izt J

< |I[¢A - BJI)e1"....."(A - BJI) e I,

by Hadamard's inequality. Now note that the first factor on the right-hand

side of the above inequality can be written as ||(A-B)e,|| and is, therefore,

1
bounded by ||A-B]|. The remaining n-1 factors can be bounded as

(A - 8;Deyll < llae, | + |81 < llAll + [IBll, for k = 2,3,...,n-1. This shows
1/n 1-1/n
v(Spec A, Spec B) < ||A-B]| ClIAll + |18l

Since the Hausdorff distance h(Spec A, Spec B) is defined as the maximum of

v(Spec A, Spec B) and v(Spec B, Spec A) this shows

h(Spec A, Spec B) 5_"A—BH1/” (2M)1_1/n

where M = max(||A|ll, [|8]]).
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This is an improvement on the bound (20.7). The passage from this to an
estimate for d(Eig A, Eig B) is effected by an argument like the one we
have used in Chapter 5. This leads to an improvement of the bound (20.8)

1/n

by knocking off the factor n on the right-hand side.
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7 Singular values and norms

526 The minmax principle

One of the important corollaries of the minmax principle is Cauchy’s In-
terlacing Theorem. This theorem gives interesting inequalities between the
eigenvalues of a Hermitian matrix A and those of a principal submatrix
B. |

Let A be a Hermitian operator on an n -dimensional Hilbert space
H. Let N be an (n— k) -dimensional subspace of H, and let V be the
injection map from A into H. Then B = V*AV is a linear operator
on N, and is called the compression of A to the subspace N. In an
appropriate coordinate syst.em A has a matrix representation

in which B is the (n — k) x (n — k) block in the top left corner of the
n X n matrix A.

Theorem 26.1 (Cauchy’s Interlacing Theorem) Let A be a Her-
mitian operator on H and let B be its compression to an (n — k) -
dimensional subspace N. Then for j=1,2,...,n—k

Ap1(A) = Ay (B) = s (A). (26.1)

Proof Let 1 < j <n—k, andlet M be the j-dimensional space spanned |
by the eigenvectors of B corresponding to its eigenvalues Apy(B),...,
Aj1(B). Then (Bz,x) = (Az,x) for all x € M, and hence

11(B) weAI/lr,llllgll=1<Bx’x> wEﬁI;]]:l(Aw,x)
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CH. 7. SINGULAR VALUES AND NORMS

So, by the minmax principle (Theorem 6.1)
Al(B) < App(d), 1<j<n—k

This is the first inequality in (26.1). Replace in this 1nequa11ty A and B
by their negatives. Then observe that

)\[j](-—A) = _>‘[n——j+1] (A) for 1<j<n,

and
)\[J](—B) = _A[n—k——j+1](B) for 1 S] <n-— k.

This leads to the inequality
An—k—j+1](B) = Ajn—j+11(4) for 1 <5< n-—k,
which on renaming indices becomes
Ai)(B) = Ait(4) for 1<i<n-—k.

This is the second inequality in (26.1). B

These inequalities have a particularly attractive form when B is the
compression of A toan (n—1) dimensional subspace. In this case if the
eigenvalues of A are enumerated as a3 > a2 > --+ > o, and those of B
as (1 > B2 > -+ > Bn-1, then the interlacing theorem says

o1 > P12 > 2> Bro1 2 Oy (26.2)

This “interlacing” of the two sets of eigenvalues gives the theorem its name.
Another important and useful theorem that can be easily derived from
the minmax principle is Sylvester’s law of inertia.
The inertia of an n x n Hermitian matrix A is the triple

In(A) = (7(4),((4),v(A)),

where w(A), ((A), v(A) are nonnegative integers that count the pos-
itive, zero, and negative eigenvalues of A (counted with multiplicities).

Two n xn matrices A and B are said to be congruent if there exists an
invertible matrix X such that B = X*AX.

Theorem 26.2 (Sylvester’s Law of Inertia) Two Hermitian matrices
A and B are congruent if and only if In(A) = In (B).

134



27. SYMMETRIC GAUGE FUNCTIONS AND NORMS

Proof By the minmax principle Apjj(A) > 0 if and only if there exists a
j -dimensional subspace M such that

min  (Au,u) > 0.
uEM,u#0

If X is an invertible operator, then the space N'= X"1(M) has dimen-
sion 7, and

min (Auw,u) = min (AXv,Xv)= min (X*AXv,v).
uEM,u#0 VEN,v#0 vEN,v#£0

This argument shows that if B = X*AX, then n(A) = n(B). By the
same argument v(A) = v(B), and hence In(A) =In(B).

It is easy to see that any Hermitian matrix with inertia (m, ( V) s
congruent to the diagonal matrix with entries 1, 0, —1 occurring ,

¢, and v times on its diagonal. Thus two Hermitian matrices with equal
inertias are congruent. WM

Let A be a Hermitian matrix partitioned as

. H1 E '
A-._.[ - Hz}, (26.3)

where H; and H, are Hermitian matrices, possibly of different sizes.
Suppose Hs is invertible, then

I —-EH;'|[H E I O] [ H,-EH;'E* O
o B mllme T[0T 2]

(26.4)
The matrix ﬁg = H; — EH; lE* is called the Schur complement of Hoy
in A. The matrix A is congruent to the block diagonal matrix

o~

Hy, O
O H
In particular, this shows that
In(A) = In(H,) + In (Hy). (26.5)
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§27 Symmetric gauge functions and norms

To the discussion in Section 7 we add some techniques that have been found |
to be especially useful in proving inequalities involving unitarily invariant
norms.

Let ® be any norm on R". Its dual defined by the relation

Z x’&y’&

‘is another norm on R™. Obviously ®” = ®, and it is easy to see that if
a norm is a symmetric gauge function, then so is its dual norm.

(I),CC = maXx x, =
(0) = max |(@y)l= max

Let ® be a symmetric gauge function, and let ||-||s be the unitarily-
invariant norm it induces on M(n). Then we have

1l Allle = (s1(A), .-, 8n(4)) = <I>’(a) 1

Z a;s;(A)|.

It is not difficult to see that

“lA”l(I) q),(a) 1 Zazsz (271)

a€RY

where RY  is the set of all n -vectors whose coordinates are decreasingly
ordered nonnegative numbers.

For each « € R’f; \ letv

|Alle = Zaisi(A). (27.2)

Then aj'||A|lo is a unitarily-invariant norm (the factor o' has the
effect of normalisation in keeping with our convention). The relation (27.1)
shows that every unitarily-invariant norm has a representation

I1Allle = max [[Alla, (27.3)

where Kg is the compact subset of R7 | consisting of all a for which
d'(a) = 1.
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Let ||A|lx, 1<k <n, be the family of Ky Fan norms. Then we have
the identity | |

1Alla = D> (0% — ckt1) 1Al (27.4)
k=1

for all o € R? 1 with the convention that a,4; =0.

So, if A and B are two operators such that |A|x < ||B|lx for
1 <k <mn, then (27.4) shows that ||A|lo <|[B| forall a € R}, and it
follows from (27.3) that |||A||| < |||B]|| for every unitarily-invariant norm.
Thus we have a simple alternative proof for Theorem 7.5.

Another illustration of the use of the norms || - ||, is given in the
following proof. | |

Proposition 27.1 Let A,B, and C be operators such that | 4|7 <

|B||z||C||x for all Ky Fan norms. Then |||A|||2 < IBIIIIIIC||| for all
unitarily-invariant norms.

Proof The given condition may be stated in another way: for each k, the

2 X 2 matrix
[ |Bllx ||Allx ]
I1Allx NIC|l%

is positive semidefinite. This implies that for each a € R? T the matrix

1Bla Al ] _ &, 1Bl [l
[nAna IClle | = 2(e = ex) | L o),

k=1

is positive semidefinite. This shows that ||A||2 < ||B||lo||C]la for all «,
and hence by (27.3) [||A]||? < |||B||| IIIC||| for every unitarily-invariant
norm. W |

The next theorem gives yet another representation of Ky Fan norms.

Theorem 27.2 For k=1,2,...,n we have

IAlle = min {||Bllgy +IC|| : B+ C = A} . (27.5)

Proof By definition
k n
IXI = 51(X) < s(X) <) 8;5(X) = [ Xllgy-
j=1 j=1
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827 Symmetric gauge functions and norms

To the discussion in Section 7 we add some techniques that have been found
to be especially useful in proving inequalities involving unitarily invariant
norms.

Let & be any norm on R". Its dual defined by the relation

Z x’&y’&

‘is another norm on R™. Obviously ®” = ®, and it is easy to see that if
a norm is a symmetric gauge function, then so is its dual norm.

Let ® be a symmetric gauge function, and let ||-||l¢ be the unitarily-
invariant norm it induces on M(n). Then we have

®'(x) = max |(z =
(z) <][)(y“I( Y| = 20X

Z a;8;(A)] .

14]lle = 2(51(A), ..., 50(4)) = max

It is not difficult to see that

A :8:(A), 27.1
||| |||<1> ERilﬁggi(a)zl ;as( ) | ( )

where R is the set of all n -vectors whose coordinates are decreasingly
ordered nonnegative numbers.

For each « € R'f; \ let_

IA]le = Z%‘Si(A). (27.2)

Then o] '||Allo is a unitarily-invariant norm (the factor o' has the
effect of normalisation in keeping with our convention). The relation (27.1)
shows that every unitarily-invariant norm has a representation

Allle = :
l14llls = max [lA]a, (27.3)

where Kg is the compact subset of R | consisting of all a for which
d'(a) = 1.
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Let ||A|lx, 1 <k <n, be the family of Ky Fan norms. Then we have
the identity | |

n

1Alla = D (0% — k1) | Allk, (27.4)
k=1

~ for all o € RY T with the convention that o,41 =0.

So, if A and B are two operators such that ||A|x < ||B|lx for
1 <k <n, then (27.4) shows that [|Allo <|[B|lo forall a € R}, and it
follows from (27.3) that |||A||| < |||B]|| for every unitarily-invariant norm.
Thus we have a simple alternative proof for Theorem 7.5.

Another illustration of the use of the norms || - ||, is given in the
following proof. | |

Proposition 27.1 Let A,B, and C be operators such that ||A||7 <

IBllx|ICllz for all Ky Fan norms. Then [||A[|[®> < |[IBI|||IIC]|| for all
unitarily-invariant norms.

Proof The given condition may be stated in another way: for each k, the

2 X 2 matrix
[ 1Bl IlAllx ]
Al ICllx

is positive semidefinite. This implies that for each a € R? T the matrix

1Bla 1Ala ] _ &, 1Bl [14lx
[nAna 1l | = 2@ =) | aie el

k=1

is positive semidefinite. This shows that ||A||2 < ||B|la||C|lo for all «,
and hence by (27.3) |||A]|[? < |||B||| IIIC||| for every unitarily-invariant
norm. W | |

The next theorem gives yet another representation of Ky Fan norms.

Theorem 27.2 For £k =1,2,...,n we have

| A|l%

min {||Bllg; + ||| : B+ C = A} . (27.5)

Proof By definition |
k n
IXI = s1(X) < ) s(X) <D s;5(X) = [ Xllgs-
j=1 j=1
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So, if B and C are any two operators such that A = B + C, then
IAllx < [IBllx + ICllx < [IBligr + ~ICII.

Let A have the singular value decomposition A = USV, where S =
diag(s1,...,8n). Put B=UTV, and C =UAV with

I' = diag(sy — sk, 82 — Sky---, S8k — Sk, 0,...,0),

and
A= dia'g(SkH Sky+oySkySk+1s Sk+25 - -+ 73n)7

then B+C = A. In this case ||Bllgy = .5, 5; — ksi = ||Allx — ks, and
IC|| = sk. Thus ||A|lx = ||Blltr + k||C|| for this particular choice of B
and C. B

Let us denote by {s;(A)} the n -tuple of singular values of A. We
have seen that the weak majorisation

{si(A)} <w {s;(B)} - (27.6)
is equivalent to the condition

II|Alll < ||IB|l| for all unitarily-invariant norms. (27.7)

Since f(x) = z? is convex and monotone increasing on R, the condition
(27.6) implies that

{s5(4)} <w {s5(B)}- (27.8)

In several cases the weak majorisation (27.8) is true but not (27.6). It is
useful to translate this to norm inequalities.

We say that a unitarily-invariant norm ||| - ||| is a @ -norm if there
exists another unitarily-invariant norm |||- ||| such that
IIIA]I1% = |||A*4]||” for all A. (27.9)

A Schatten p-norm is a @ -norm if and only if p > 2, because
1A[l5 = [ 4*Allp/2-
The condition (27.8) is equivalent to the following inequalities for norms

|Allo < ||B]lg for all @-norms. (27.10)
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Notes and references

To the list of basic books on numerical linear algebra we should add J.
Demmel [D], G. H. Golub and C. F. Van Loan [GV], and N. J. Higham
[Hi]. Closer to our book in content and spirit is the work G.W. Stewart
and J.-G. Sun[SS|. Closer still are Chapters 6-8 of [B1].

The norms (27.2) seem to have been introduced as “generalized spectral
norms” by C.-K. Li, T.-Y. Tam and N.-K. Tsing [LTS]. They were used
to good effect by R. A. Horn and R. Mathias [HM] in proving inequalities
for unitarily-invariant norms. The ideas of this paper recur in C.-K. Li and
R. Mathias [LM1] from whom we have taken the proof of Proposition 27.1.
An alternate proof due to T. Ando and F. Hiai is given in R. Bhatia, F.
Kittaneh and R.-C. Li [BKL] where this problem arose in the first place. A
good use of the representation (27.5) was made by F. Hiai and Y. Nakamura
[HN] after whom other authors used it. The idea that norms like (27.9) are
special occurs in C. Davis and W. M. Kahan[DK], page 22. In the mid
1980°s there was vigorous activity around majorization and inequalities
for unitarily-invariant norms. Looking for majorization principles behind
some famous inequalities for the Schatten p -norms (like Clarkson’s) that
change direction as the condition p > 2 is replaced by p < 2, this author
introduced the terminology @ -norms in [B2]. After that it was observed
in several papers that inequalities that are true for all p -norms are often
true for all unitarily-invariant norms, those that are valid only under the
restrictions p > 2, or p < 2 are often true for all @ -norms and their
dual norms, respectively. See, for example, [AB|, [BH2| and [BH3].
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8 Spectral variation of Hermitian matrices

§28 Bounds in the Frobenius norm

In 1934 Karl Lowner (later Charles Loewner) wrote a most remarkable
paper that is widely known for initiating the theory of matrix monotone
functions. In this paper Lowner states, without proof, the Frobenius norm
analogue of Theorem 8.5. As we have seen, this was subsequently general-
ized in two different directions: Theorem 9.7 for Hermitian matrices assert-
ing the same inequality for all unitarily-invariant norms, and Theorem 15.1
of Hoffman and Wielandt valid for normal matrices but restricted to the
Frobenius norm. We present two proofs of Léwner’s theorem that depend
on ideas simpler than the ones needed for these more general versions.

Lemma 28.1 Let £ and y be any two vectors in R". Then

(1, 91) < (2,9) < (z1,3y). (28.1)

Proof It is enough to prove this for n = 2. In this case the assertion is
that whenever x; > zo, and Y1 > Y2, then zi1y1 + r2y2 > 1y2 + T2y1-
The latter inequality can be written as (zr; — z2)(y1 — y2) > 0 and is
obviously true. W

A matrix version of this is the following.

Proposition 28.2 Let A and B be n xn Hermitian matrices. Then

(Eig,(A),Eig,(B)) < trAB < (Eig(A),Eig,(B)). (28.2)

Proof If A and B were commuting matrices, this would reduce to the
preceding Lemma. The general case, in turn, can be reduced to this special
one as follows. |

140



28. BOUNDS IN THE FROBENIUS NORM

Let U(n) be the group consisting of n x n unitary matrices and let
Up ={UBU*:U € U(n)}.

If we replace B by any element of U, then Eig(B) is not changed, and
hence nor are the two inner products in (28.2). Consider the function

f(X)=trAX, X elUp.

The two inequalities in (28.2) are, in fact, lower and upper bounds for
f(X). We prove them by showing that the maximum and the minimum of
f are attained at matrices that commute with A. In fact we will prove
more than this: if Xy is any extreme point for f, then Xy commutes
with A.

If a point Xy on Up is an extreme point for f, then

d

—| rAU®XU ()" =0

t=0

for every differentiable curve U(t) with U(0) = I. Equivalently,

d

7 tr Aet Xpe K =0

t=0

for every skew-Hermitian matrix K. Expanding the exponential function
into a series, we see that this condition reduces to |

tr (AKXO — AX()K) = (.
By the cyclicity of the trace this is the same as the statement
tr K (X()A — AX()) = (. (283)

On the space of skew-Hermitian matrices (K, L) = —tr KL is an inner

product. So, if (28.3) is valid for all skew-Hermitian K, then we must have
XoA—-AXo=0. N

Second Proof We can apply a unitary similarity and assume that A is
diagonal, and further A = Eig,(A) = diag(a,...,an). Then

tr AB = Zazdz = <Oé, d),
=1
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where d = (dy,...,d,) is the diagonal of B.

By Corollary 6.8 the vector d is majorised by A(B), the vector whose
coordinates are the eigenvalues of B. It follows from Theorem 3.1 that d
lies in the convex hull of the vectors A\,(B) whose coordinates are permu-

tations of the coordinates of A(B). On this convex set (2, the function
n

f(w) = > oyw; is affine, and hence attains its maximum and minimum

on the vertices of ). These vertices are among the points A,(B). So the

Proposition follows from Lemma 28.1. W

Theorem 28.3 Let A and B be Hermitian matrices. Then
|Eig,(A) — Eig|(B)|lr < [|[A—B|lr < |Eig (A) — Eig;(B)|lr- (28.4)

Proof Let ai,...,a,, and 31,...,08, be the eigenvalues of A and B,
respectively. Then |

lA - Bll%

IAIZ + IBIF — 2tr AB

Zn:a? + Zn:ﬂf — 2tr AB
i=1 i=1

By the second inequality in Proposition 28.2

IA-BlF = > of+)> 6 —2ay,B).
i=1 i=1

This proves the first inequality in (28.4). The second follows, in the same
way, from the first inequality in (28.2). W |

§29 Partitioned Hermitian matrices

Consider the Hermitian matrices

[ H E [H o
T T R R

in which the blocks H; and H,; are m x m and n X n Hermitian
matrices, respectively. From Theorem 8.5 we know that

|Eig, (4) — Eig,(B)|| < ||A - B|| = |E|. (29.2)
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It has long been known to numerical analysts that if the spectrum of H,
is well separated from the spectrum of Hs, then the bound (29.2) can be
replaced by one that involves ||E||> on the right rather than ||E]||.

Such bounds are of interest in the context of computations of eigenval-
ues. If an approximate eigenspace for a Hermitian operator A has been
found, then with respect to this space and its orthogonal complement, A
~ has a block matrix decomposition in which the “residual” FE is small. We
are interested in knowing the effect of discarding E.

The best result of this kind was published in 2005 by C.-K. Li and
R.-C. Li.

Theorem 29.1 Let A and B be Hermitian matrices as in (29.1). Let
n = d (Spec Hy, Spec H) = min {|u; — p2| : p1 € Spec Hi, 2 € Spec Ha}

be the distance between the spectra of H; and Hs. Then

AEP
1+ /2 + B

|Eig, (A) — Eig (B)|| < (29.3)

Before giving its proof we point out a few salient features of this bound.
Let R be the quantity on the right-hand side of (29.3). Then R < ||E||,
and the two are equal if n = 0. For large 7, (29.3) is a substantial
improvement on (29.2). Also we have R < ||E||?/n. A bound with this
latter quantity instead of R was proved by R. Mathias in 1998.

When m = n =1, the inequality (29.3) can be proved using elemen-

tary algebra. Let
a €
A=
(5 5)

and assume, without loss of generality, that o > (3. The two eigenvalues
of A are

a+8+/[c-pP i
5 :
The quantities A\; —a and B — A_ are positive and both are equal to

Ar =

—(@-p)+ @ BETaE _ 22

2 (@=B)+a— PP+

So, in this case we even have equality of the two sides of (29.3).
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Now let m and n be any two positive integers. Let the eigenvalues of
A and B belistedas a;j > a2 > - > am+n and 81 > 062> -+ 2 Bmtn,
respectively. We have to prove that

lo; —B;)| <R forl <j<m+n. (29.4)

Our proof will show a little more. Each B; is either in Spec H; or in
Spec Hy. If (3; isin Spec Hy, let n; = dist (B, Spec H2), and if it is in
Spec Hy let n; = dist (B;,Spec Hy). Evidently, n = min n;. Let

1<j<m+n
E 2
R — 2B
nj + /n} + 41 |
Then R; < R. We will show that
la; — Bj| < R; for all j. - (29.5)

This implies the inequality (29.4).

We prove (29.5) by induction on m + n. We have proved it when
m + n = 2, and assume that it has been proved for Hermitian matrices of
size m+n — 1. |

Suppose U and V are unitary matrices such that UH;U* and
VHyV* are diagonal. Then |

U O H, E v* O | | UH,U* UEV*
OV E* H, O V*| | VE*U* VH,V*

Since ||[UEV*| = ||E||, it is no loss of generality if we assume that H;
and Hs are diagonal. Further, we can assume that the diagonal entries of
A are distinct. The general case follows from this by continuity.

First we prove (29.5) for j=1 and m + n.

We have assumed that B is diagonal. So 3; is one of the diagonal
entries of B, and we can assume that it is the first one. We know that
(051 > <A61,61> = ,81. The matrix

A—allm[Hl_all E ]

E* H2 — 0411

is congruent to

Hl(Oél) O
O H2 — 0411 ’
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where H;(a;) = Hy—a;I1— E(Hs—o,1)" E* is the Schur complement of
Hy—oy1 in A—a;1. (See the discussion in §26.) The highest eigenvalue of
A—a;l is zero. Hence, by Sylvester’s'law of inertia, the highest eigenvalue
of Hi(ay) is also zero. The highest eigenvalue of H; —a31 is 81 —a; < 0.
So, by Theorem 8.1 applied to the pair H; —a;] and H;(aj;) we have

1(B1 — 1) — 0| < |E(Hz — anI) T E¥||
< |EI? (Hz—aiD)7H.

o1 — B

(29.6)

The matrix Hs is diagonal and all its entries are less than (3;, which in
turn is less than ;. Thus )

I(Hz — a1 D)7

1 —1
min |oy —
| peSpec Ha l 1 /L']

= [te1—p)+ min wl—u.)]_l

uESpec Hy
1

b1+m’
where 6; = (a3 — 31). Putting this into (28.10) we get

2
5, < | E| |
61 +m

buae.

A small calculation shows that this implies

6 < 2 E17 = Ry (29.7)
M+ Vi + 4l E? |
which is the inequality we are seeking. We have proved this assuming (;
is an entry of H;. The argument can be modified to handle the case when
B1 is an entry of Ho.
We have shown that |a; — (1| < R;. Applying the same argument to
—A in place of A, we see that |am+n — Bm+n| < Rmtn- |
Now consider any index i, 1 <i¢ < m+n. If a; = 3;, we have
nothing to prove. If not, we can assume (; > «;. (Otherwise we replace
A by —A. ) Delete from A the row and column that contain (the diagonal
entry) (,. Let A be the resulting matrix of size m +n — 1, and let the
eigenvalues of this matrix be enumerated as v; > v2 > -+ > Vpin—1. By
Cauchy’s interlacing theorem «; > v;, and hence, §; — a; < B; — v;.

145



CH. 8. SPECTRAL VARIATION OF HERMITIAN MATRICES

~~

If the diagonal blocks of the truncated matrix A are H 1 and ﬁg,
then 3; does not belong to one of them, say H ;. Let n; = dist (Bi, H j) :

Then 7; > ;. If E is the top right block of A. Then ||E| < ||E].
In order to estimate |a; — B;|, first note that

| s = Bil = Bi —ei < Bi — i
The induction hypothesis says that
812
i+ \/ﬁf + 4|\ E||2

To complete the proof we show that ﬁz < R;. Since 71; > n; we have

Bi—vi < R, =

_ B V2 + 4B - n
R < - > .
mi + /7 + 4B
Since ||E|| < ||E||, this quantity is bounded by

Vi HAIERP —m _
2 S

Thus the inequality (29.5) is valid for all j. W

§30 Lidskii’s Theorem

In Section 9 we derived Lidskii’s Theorem from Wielandt’s minmax prin-
ciple. This proof was discovered by Wielandt as he “did not succeed in
completing the interesting sketch of a proof given by Lidskii”.

Lidskii’s Theorem has inspired much research and now many different
proofs of it are known. Some of these can be found in the book Matrix
Analysis by R. Bhatia. A proof much simpler than all others was published
by C.-K. Li and R. Mathias in 1999. Their proof is presented in this section.

The theorem says that if A and B are n X n Hermitian matrices,
then for all £ = 1,2,...,n and for all choices of indices 1 < ¢; < -+ <
i < n we have

k k k
Y A j(A+B) <> Ngg(A) + ) Ap(B). (30.1)
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Choose and fix k. Replacing B by B —Apj(B)I does not affect the
inequality (30.1) as both sides are diminished by kA (B). So, it is enough
to prove the inequality under the assumption that A (B) = 0.

Let B = B, — B_ be the decomposition of B into its positive
and negative parts. By this we mean the following. In an appropriate
orthonormal basis B can be represented as a diagonal matrix

B = diag(ai, ..., Qp, Opt1y---r0n)
where aq,... , 0y, are nonnegative, and op41,...,q, arenegative. In this
basis
B, = diag(ai,...,a,,0...,0)
and

B_ = diag(0,...,0, —apt1,-- -, —Cp).
Then B < B4, and by Corollary 6.3 we have

)\[j](B) < )\{j}(B.,.) for1 <j3 <n.
| Hence
k |
Z AiJ(A+ B) — Mg (4)] < MijJ(A+ By) — A, (4)] . (30.2)
=1 J=1
By the same argument, since A < A+ By,
So, the sum on the right-hand side of (30.2) is not bigger than

n

S (A -+ Ba) — Ay ()]

=1

This last sum is equal to tr By, and since Ak(B) = 0, this trace is equal

to
k
> (B
Jj=1
We have shown that

k
Z Nig(A+ B) = Mg ) (A)] < DA (B
71=1 Jj=1

This is the inequality (30.1).
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§31 Horn’s problem

The Lidskii-Wielandt theorem was the stimulus for a lot of work that cul-
minated in the formulation of a conjecture by Alfred Horn in 1962. Subse- |
quehtly, it was realised that this conjecture is related to many important
questions in diverse areas of mathematics—algebraic geometry, representa-
tions of Lie groups, combinatorics, quantum cohomology, and others. One
of the most spectacular developments in the last few years is the proof of
Horn’s conjecture by A. Klyachko, and A. Knutson and T. Tao in papers
published in 1998 and 1999, respectively.

The inequalities (8.5) due to H. Weyl, Ky Fan’s inequalities in Corol-
lary 6.6, Lidskii’s in (30.1) and their generalization due to R. C. Thompson
and L. Freede are linear inequalities between eigenvalues of Hermitian ma-
trices A,B, and A+ B. They have a common feature. Each of them iden-
tifies three equinumerous sets of indices I, J, K contained in {1,2,...,n}
such that

Z)\[k](A-I—B) < ZA[i](A)—l_Z)\'[j](B)' (31.1)

keK el JjedJ

Horn’s problem consists of two questions. Is there a description of
all such “admissible triples” (I,J,K)? Are these inequalities sufficient to
characterize eigenvalue triples of Hermitian matrices, in that if {ay,...,a,},
{B1,...,08n}, and {m,...,7} are three n -tuples of real numbers ar-
ranged in decreasing order, and

ZFYk < Zai“"z/gja

kEK i€l jeJ

for all admissible triples (I, J, K), then do there exist Hermitian matrices
A and B such that a, (3, and + are the eigenvalues of A, B, and
A+ B, respectively? |

A. Horn conjectured that this is so and gave an inductive procedure
for describing all admissible triples. We do not discuss this further. There
- exist several expositions of the problem and its solution from which the
reader can learn more.
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§32 Lax’s theorem and hyperbolic polynomials

Let R be areal vector space consisting of matrices each of which has purely
real eigenvalues. In Section 10 we saw that several eigenvalue inequalities
valid for Hermitian matrices A and B are, in fact, valid for pairs of
matrices A and B in R.

One such inequality is

)\[1](14 + B) < )\[1](14) -+ )\[1](3).

Applying this to multilinear operators Al¥l and Bl¥ defined in (6.3) we
see that

k ok k
Z Mjj(A+B) < Z Ap1(A) + Z A1 (B),
j=1 j=1 j=1

for 1 < k < n. This is the inequality of Corollary 6.6 for Hermitian ma-
trices. It is natural to wonder whether a Lidskii type inequality (Theorem
9.4) is valid in this context.

Very recently it has been observed that this, and much more, is true.
This is a consequence of work on hyperbolic polynomials by J. W. Helton
and V. Vinnikov. The application to matrix eigenvalues occurs in papers
of L. Gurvits and L. Rodman.

Let p(&,7m,\) be a homogeneous polynomial of degree n in &,7n, A
such that

(i) the coefficient of A\™ is one, and

(ii) for each fixed real £ and 7, p(£,n,A) has only real zeros in A.

Such a polynomial is called hyperbolic.
If A and B are nxn real symmetric matrices, then the polynomial

p(€,m, A) = det(£A + 1B — Al)

is hyperbolic. In his paper in 1958 that we cited in Chapter 3, P. Lax
~ conjectured that, conversely, every hyperbolic polynomial is of this form.
This has now been proved.

As a consequence many problems about eigenvalues of matrix pairs A
and B in R have the same answers as for Hermitian pairs. In particular,
they satisfy not just Lidskii’s inequalities but all of Horn’s inequalities as
well. ,
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We give pointers to the literature in the Notes at the end. It is worth-
while to record here perturbation bounds in this context.

Let A and B be n xn matrices such that for all real numbers &
and 7 the matrix £A + nB has purely real eigenvalues. Then we have
the majorisations

Eig,(A) + Eig;(B) < Eig(A+ B) < Eig (A) + Eig,(B).

From this we can derive, as we did for Hermitian matrices in Chapter 3,
the inequalities |

I|Eig, (4) — Eig,(B)lIl < |I[Eig(A— B)||| < ||[Eig,(A) — Eig,(B)Il
| | (32.1)
for all unitarily invariant norms.

A word of caution should be injected here. It A and B are Hermi-
tian, then |||Eig(A—B)||| = |||A—B]|||- This is not always true in the more
general context. From relations between eigenvalues and singular values we
have

I[Eig(A — B)||| < [[|A— Bl
for all matrices. So, we do get from (32.1) the inequality
1|Eig, (4) — Eig (B)Ill < |l|A - B|l-

This is the first inequality of Theorem 9.7. However, the second inequality
there

IlA-BJl| < |||Eig (A) — Eigy(B)]l|

may not always be true in this context. For example, if a; > as and

| (051 1 (85) —1
A - B o=
l 0 (87) ] ’ l 0 a1 ] ’
then Eig,(A)—Eig,(B) is the diagonal matrix with entries a; — a2 and

a2 — a1 on its diagonal, but A — B has an additional nonzero entry 2 in
the top right corner.

Notes and references

K. Lowner states the inequality (28.4) on page 190 of [Lo] and says that it
can be established via a simple variational consideration, which can be left
to the reader. This seems to have been ignored in much of the literature on
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perturbation inequalities, even though the paper is extremely famous for
other things. We learnt about this from M. Fiedler’s commentary on the
Hoffman-Wielandt paper, see page 141 of [W]|. The great impact of this
latter paper can be judged from the fact that the collection [W] contains
seven commentaries on it with hardly any overlap between their contents.
A. J. Hoffman remarks that “the reason for the theorem’s popularity is the
publicity given it by Wilkinson in his book”. Incidentally, this book does
contain a special calculus-based proof of Theorem 28.3.

Theorem 29.1 was proved by C.-K. Li and R.-C. Li [LL]. References
to earlier work in this direction can be found in this paper.

The marvelous proof of Lidskii’s theorem in Section 30 is taken from
[LM2]. Those familiar with the earlier proofs, some of which are given
in [B1] will appreciate its simplicity. Yet another proof using nonsmooth

analysis is given in [Le]. From Ky Fan’s maximum principle (Theorem 6.5)
it follow that Zk: A](A) is a convex real valued function on the space of
i=1

Hermitian mati*ices, for each 1 < k <n. Thus each eigenvalue Aj;(4) isa
difference of two convex functions. This simple observation is used to good
effect by Hiriart-Urruty and Ye [HY]. The genesis of Horn’s problem, its
solution, and the connections it has with other areas, have been explained
in several expository articles. Two of them are [B3| and [F]. The original
papers in which the problem is solved are [Kl] and [KT].

The original work on hyperbolic polynomials that we alluded to in
Section 32 is in [V] and [HV]. An excellent article on hyperbolic polynomi-
als and their diverse applications by Bauschke, Giiler, Lewis, and Sendov
[BGLS] is of special interest for our problems. The authors of [LPR] specif-
ically note that the Lax conjecture follows from the work in [HV]. Several
consequences of this for eigenvalues of matrix pairs whose combinations

have real roots are derived by Gurvits and Rodman [GR].
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9 Spectral variation of normal matrices

833 The elusive bound

At the time of writing of (the original version of) this book the most intrigu-
ing open problem in this subject was whether for any two normal matrices
A and B we have the inequality

|(Eig A, EigB)|| < ||A - B||. (33.1)

This was known to be true whenever A and B are Hermitian, when A
is Hermitian and B skew Hermitian, when A and B are unitary or are
constant multiples of unitaries, when A, B, and A — B are normal, and
when A and B are any 2 x 2 normal matrices.

~ To the surprise of everyone involved in this problem, John Holbrook
discovered a 3 x 3 counterexample in 1989. Holbrook did this with the
assistance of a computer. A bare-hands example was then made up by G.
Krause. This is given below. Let

4 + 5v/ 31 —1 4+ 2v32
=1, A= AENEE L Z1H2VE
13 13
let v be the vector
5/8
v = 1/2 ,
1/8

and U the 3 x3 unitary matrix I—2vv*. Let A = diag(A1, A2, A3) and
B = -U*AU. Then A and B are normal, and the eigenvalues of B are
the negatives of the eigenvalues of A. A calculation shows

28 97
Eie A. Eig B)|| = 1/ = _Bll=4/2L
|(Big A, BigB)l| = /2, |l4-Bl| = /=
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So, in this example
||(Eig A, Eig B)|| > 1.0183 ||A — B||.
In Section 16 we proved that there exists a number ¢ such that
I(Eig A, EigB)|| <c |4 - B, (33.2)

and that ¢ < ¢z, where cz is defined in (168) The extremal problem
leading to c; was reformulated by R. Bhatia, C. Davis and P. Koosis and
it was shown that |

0o 1
cy = inf {/ |9(¢)| dt : geven,suppg = [—1, 1],/ g=1,g¢€ Ll} :
0 ~1

(33.3)
An obvious choice of a function g in the class above is g(t) =1—[¢|. In
this case
- sin®(t/2)
g(t) = 72
and, therefore co < w. Choosing another function g Bhatia, Davis, and
Koosis showed that

e < = / 05 < 2.90901. (33.4)
2Jo t \.

It turns out that this bound is very nearly the best for c;. The extremal

problem (16.8) occurs in an entirely different context in the work of L.

Hoérmander and B. Bernhardsson. They also show the equivalence of that

problem and (33.3) and then go on to show that

2.903887282 < cp < 2.90388728275228.

The only method for finding any bound for ¢ in (33.2) that has been
successful so far is the one that shows ¢ < ¢3. The discussion above shows
that no further significant improvement on estimating c is possible via
this argument. | |

In Section 13 we introduced a different method for estimating ||(Eig A4,
Eig B)|| that had some success: it led to the inequality (33.1) in special
cases covered by Theorems 13.3 and 13.5. These considerations lead to an
interesting question.

Let N(n) be the set consisting of all n x n normal matrices. For
any two elements of AM(n) let v be a rectifiable normal path joining A
and B and let

¢(A,B) = inf £(v)
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be the infimum of the lengths of all such paths measured in the norm ||-||.
We conjecture that there exists a number k(n) such that

¢(A,B) < k(n) ||A—B|| forall A, B € N(n). (33.55

Theorem 13.7 shows that k(2) = 1, and k(3) > 1. Let k = sup k(n).

n .
With no evidence to support us, we do not conjecture a value for k, but
we will not be surprised if it turns out that k& = 7 /2.

We do know from our discussion in Section 13 that the inequality (33.2)
is valid with ¢ = k. There could well be better ways of finding the best
c.

The problem of finding an upper bound for ||A — B|| akin to the one
in (8.8) is not difficult. If A and B are normal matrices with eigen-
values {ai,...,o,} and {Bi,...,0,}, respectively, then there exists a
permutation o such that |

—B|| < = Boiil- .
IA=Bll < v2 max |a; B, (33.6)
One proof of this can be based on the fact that there exists a point ~ in
the plane such that

max |a; — | + max[8; -9 < V2 max|a; — 1.

The 2 x 2 example on Page 86 shows that the inequality (33.6) is best
possible.

§34 Hermitian and skew-Hermitian matrices

In Section 18 we proved an inequality for the distance between the eigen-
values of a Hermitian and a skew-Hermitian matrix, and on Page 119 men-
tioned some generalizations (then new) and a conjecture (since then proved
by X. Zhan). This case is not of much practical interest since a small per-
turbation will either change a Hermitian matrix to an arbitrary one, or
(if it is a structured perturbation) keep it Hermitian. However, the study
of this special case reveals several interesting phenomena of the general
perturbation problem, involves very interesting matrix techniques, leads to
striking results, and is connected to other important problems. Therefore,
we present it here in brief. |
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Let {x;}; stand for an n -vector whose jth component is z;.

Theorem 34.1 Let A and B be Hermitian matrices with eigenvalues
a; and (;, respectively, ordered so that

1| 2 - 2 oy| and  [Bi] 2 -+ 2 [Bnl.

Let s; be the singular values of T'= A+ ¢B. Then we have the majoriza-
tion relations

{la + iBusial?}; < {3}, (34.1)

s2+s82 .,
{J 5 J“} < {|aj+wj12}j. (34.2)
j

Proof For any two Hermitian matrices X and Y we have the majoriza-
tions (proved in Section 9):

Eig) (X) + Eig,(Y) < Eig(X +Y) < Eig (X) + Eig| (Y). (34.3)
If X =A% and Y = B?, this gives
{|aj + iﬁn_j+1|2}j < {s;j(4*+ Bz)}j < {laj + i6j|2}j : (34.4)
If we choose X =T*T/2, Y =TT*/2, use the identity

™*T+TT™
2

and the fact s;(T*T) = s;(T'T*) = 5%, then from the first majorization in
(34.3) we get

55+ Sn—ji1 2 | p2 2
5 | < {sj(A’+B )}J < {sj}j. (34.5)

J

The two assertions of the theorem follow from (34.4) and (34.5). W

The two relations (34.1) and (34.2) contain a wealth of information.
The function g(t) = t?/2 is convex on [0,00) when p > 2. So, using
Corollary 3.4, we obtain from (34.1) the weak majorization

{la; + z’ﬁn_j+1|2’}j ~w {s’;}j for 2 < p. (34.6)
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This implies several inequalities, one of which says
’ n n
> oy +iBnjial? Z r2<p. (34.7)

For 1 < p < 2, the function g(t) = t?/2 is concave, and the inequality
(34.7) is reversed.
The same arguments applied to (34.2) lead to the inequality

1 n
7 20+ o) S ZI%H@I’“ for2<p.  (348)

The inequality is reversed for 1 <p < 2.

For fixed nonnegative real numbers a; and ay the function (a} +
a)/t is a monotonically decreasing function of ¢ on (0,00). Hence for
p=2

?

p p 2 2 p/2
S5+ < (5 +5mj41)

and the inequality is reversed for 1 < p < 2. Hence, from (34.8) we obtain

21-7/2 Zs? < Z lo; + 4357 for 2 < p. | (34.9)
j=1 j=1

The inequality is reversed for 1 <p < 2.

These inequalities can be interpreted as perturbation bounds analo-
gous to results for Hermitian matrices in Chapter 3. Let us denote by
Eig, (A) the n -tuple of eigenvalues of A arranged in decreasing order
of their absolute values, and by Eig;|(A) the same n -tuple arranged in
increasing order of absolute values. With an obvious change of notation,
the inequalities (34.8) and (34.9) can be stated as follows.

Theorem 34.2 Let A be a Hermitian and B a skew-Hermitian matrix.
Then for 2 <p < o0, we have

|Eig, (4) — Eig;y(B)|
|A — Bllp

IA

“A — B“p7
2'/2-1/7||Eig, || (A) — Eig|||(B) |,

IA

and for 1 <p <2 we have

|Eig)) (A) — Eig),(B)||
IA = Bl

2'/P=1/2| A - B|lp,
|Eig)|,(A) — Eig;(B)||-

IA A
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The 2 x 2 example on Page 86 shows that all these inequalities are
sharp. |

An interesting feature of these inequalities is that the optimal matching
of eigenvalues—the permutation W that minimises

ID(A) = WD(B)W ™|,

in (11.3), is different for 2 <p and 1 < p < 2. In fact the best matching in
one case is the worst in the other. This is quite different from the behaviour
of Hermitian pairs A and B, where the same matching is optimal for all
unitarily-invariant norms. - |

For the sake of completeness, it is desirable to have bounds for the
whole family of unitarily-invariant norms in this case as well. The upper
bound for |||A — B||| comes cheap. We have

[M]=

k
Y si(A-B) <

1

.
i

k
[s;(4) +s;(B)] = Z[Iajlﬂﬁjl]
k

<

\/5(063 +,8?)1/2 = Z\/i IOéj — 2,89|

1 j=1

M=

<.
i

Thus, when A is Hermitian and B skew-Hermitian, we have
1A - BJl| < V2 |||Eig);(4) — Eig);,(B)|l| (34.10)

for all unitarily-invariant norms. This inequality is sharp for the operator
norm || -||.

To prove the complementary lower bound we need a little more intri-
cate argument. Switch to the notations of Theorem 34.1 for convenience.
We will prove that

{ly +iB51}; =<w V2 {s5};, (34.11)
or, in other words,
| diag(er + B1, .- -, an + Ba)lll < V2 [IITII- (34.12)

We will use the characterisation of Ky Fan norms given in Theorem 27.2.

| Since |a;| and |B;| are bounded by s;, we have |og+i6:| < V2 s1.
So the inequality (34.12) is true for the norm || -||. It is true also for the
norm || - |ty by the remark following (34.9).
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Now fix k£, 1< k <n. By Theorem 27.2 there exist matrices X and
Y suchthat T =X +Y and ||T|x = || X|t + k||Y|. Let C,D,E, F
be Hermitian matrices such that X = C+¢D and Y = E 4 ¢F. Then
A=C+E, and B=D+ F. Thus |

k
Idiag(os + B, - .-, 0% + Br)lle = D _|s;(C + E)+i s5;(D + F)|.
j=1

By Corollary 6.2, s;(C + E) < s;(C)+ s1(E) and s;(D+ F) <s;(D)+
51(F). So the last sum above is bounded by

k
> 185(C) + s1(E) +i(s5(D) + s1(F))|

J=1

k
< Z|sj(0)+z°sj(1))|+k |s1(E) + 4 s1(F)]

S
VA
S

< (C)+1i s;(D)| + k|s1(E) +4 s1(F)| .

Q.
Pt

We have observed that the inequality (34.12) is true for the norms || - ||¢r
and | -||. So, this expression is bounded by

V2 | Xllgr + V2 KNV = V2 [|IT]] |5

This proves (34.12).
With a change of notation, this says that if A is Hermitian and B
skew-Hermitian, then for all unitarily-invariant norms

|[Eig), (4) — Eig), (B)|Il < v2||A~B]|. (34.13)
This inequality complements (34.10), and is sharp for the norm | - ||; =

I llgx- |
Finally we remark that some of the majorizations in this section in-

volve squares of vectors. They lead to inequalities for @ -norms that we
introduced in Section 27.

§35 A table of known and unknown constants

We are interested in finding the best constants in inequalities of the form

I (Eig A, EigB) |l, < c(p)llA — Bllp, (35.1)
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where A and B are n xn matrices in some subclass of normal matri-
ces, and the constant c(p) depends on the Schatten norm |- ||, but is
independent of n. It is clear that we must have c(p) > 1 in all cases.
The following table shows what is known on this problem. As usual, || |co
stands for the operator norm.

p=1]1<p<2|p=2|2<p<oo|p=o0 |alllll-]ll
A, B Hermitian 1 1 1 1 1 1
A=A* B=—-B* | 2 | 2t/p-1/2 1 1 1 V2
A, B unitary /2 ? 1 ? 1 /2
A, B normal ? ? 1 ? | 2.91 ?

The table should be interpreted as follows. The entry 1, wherever
it occurs, is the sharp value of c¢(p) in (35.1) for the special case under
consideration. In the second row the constant /2 is best possible for

p =1, and it works for all unitarily-invariant norms. For other p the best
- possible values are as indicated. In the third row 7/2 is the best possible
for p =1 and works for all unitarily-invariant norms. The question marks
indicate that the best constants are not known for these cases. The number
2.91 in the last row is an upper bound for the best constant. From the data
in the first two rows of the table it is reasonable to conjecture that

(i) For A, B wunitary, c¢(p) =1 for all 2 <p < oo0.

(ii) For A,B unrestricted normal matrices, c¢(p) = 1 only in the case
p=2. (We do know that c(p) > 1 for 1 <p <2 and for p = oo.
From the latter it follows that there exist large values of p for which

c(p) > 1.)

Notes and references

Holbrook’s example showing that the inequality (33.1) is not true for all nor-
mal matrices appears in [Ho|. The bound (33.4) is established in [BDKo],
“and the narrowing down mentioned after that in [HB]. The proof of (33.6)
and its generalization (42.6) may be found in [BES].

Theorems 34.1 and 34.2 were proved by T. Ando and R. Bhatia [AB].
The bound (34.11) was conjectured there and later proved by X. Zhan
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CH. 9. SPECTRAL VARIATION OF NORMAL MATRICES

[Z]. Let T = A+ ¢B be the decomposition of any operator T into its
Hermitian and skew-Hermitian parts. Then ||T||% = ||A||% + ||B||%. For
norms other than the Frobenius norm, interesting inequalities relating the
three operators T, A, and B can be found in [BK], [BZ1] and [BZ2].
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10 Spectral variation of diagonalizable
matrices

Some of the inequalities in Chapters 3 and 4 can be generalized to matrices
that are diagonalizable (similar to diagonal matrices). Normal matrices
are special in being diagonalizable via unitary similarities. This feature is
highlighted in these more general versions. |

§36 The Sylvester equation and commutator inequalities

In Section 16 we saw that if A and B are any two matrices whose spectra
are disjoint from each other, then for any S the Sylvester equation

AQ-QB=S (36.1)

has a unique solution ). For normal A and B we obtained a bound for
|Q|| in Theorem 16.3. This bound can be improved if the spectra of A
and B are separated in special ways.

Theorem 36.1 Let A and B be any two matrices whose spectra are
contained in the open right-half plane and the open left-half plane, respec-
tively. Then the solution of the equation (36.1) can be expressed as

Q= / e t4 SetBdt. (36.2)
0

Proof The hypotheses on A and B ensure that the integral is conver-
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CH. 10. SPECTRAL VARIATION OF DIAGONALIZABLE MATRICES

gent. If @) is given by this formula, then
AQ-QB = / (Ae7t SetP — et 5e!BB) dt
- 0
= e 4GB =8.

Thus @ satisfies the equation (36.1). W

Corollary 36.2 Let A and B be normal matrices whose spectra are
contained in half-planes separated by distance 6. Then the solution of
(36.1) satisfies the inequality |

QI < sl (363

Proof By applying a rotation and translation, we may assume that Spec A
and SpecB are subsets of the half-planes Rez > 6/2 and Rez < —6/2,
respectively. Then for ¢ >0, |e~*4|| and ||e!B| are bounded by e~%/2,
So, from (36.2) we have, using Proposition 7.7 | |

el < /0 le=*411 1ISII] llet® lde

< / e tdt |||9|
0

1
= < lis. -

We use this to estimate norms of operators of the form AI' — I'B. -
These are called generalised commutators.

Theorem 36.3 Let A and B be Hermitian matrices andlet I' > I > 0
(a positive definite matrix with smallest eigenvalue ~ ). Then

I|AT = T'BJ|| = ~ |[|A - B|l. (36.4)

Proof Let T=AT' —TB and S=T*+T. Then
| S = I'(A—B)+ (A - B)L.

This is an equation of the type (36.1), and Corollary 36.2 shows that

1 1 1
A-BJ|| < —[ISIl € =lITll| = =|||AT =TB||. =
Il il = STl il I
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37. DIAGONALIZABLE MATRICES

Now if I' is as above but A and B are any two -matrices, then
applying the Theorem to the Hermitian matrices [ & 5], [ 5 & |,
andto [ 5 7 | we obtain

[ AT —=T'B 9 g A—B O
| O A*T — T'B* =7 O A*—B*

The matrix A* — B* has the same singular values as A — B. If A
and B are unitary, then

|- @9

sj(A*T' = T'B*) = s5;(A(A'T —T'B*)B) =s,;(I'B — AT')
= s;(AI' —T'B).

So in this case we see from (36.5) that ||AL' — I'B||x > v||A — B||x for all
Ky Fan norms, and hence we have:

Corollary 36.4 If A and B are unitary, and I' > I > 0, then
I|JAT —T'BJ|| > v [||A - B||.

Next consider the case when A and B are normal. If A1y ee.yQp
are the eigenvalues of A, then using an orthonormal basis of eigenvectors,
one sees that for every X we have

IAX — XAlF =) las — ayl? |wigl® = | A" X — X A*||%.
,J
Applying thisto [ 5 3 | inplaceof A, and [ g 5 ] in place of X,
we see that |
|IAX — XB||% = ||A*X — XB*||%. (36.6)

Hence, we have from (36.5):

Corollary 36.5 If A and B are normal, and I' > vI > O, then
|AT —T'B||r >~ |A — B||F- (36.7)

In the case of normal matrices we have to be content with the special
Frobenius norm, as there are examples that show (36.7) is not always valid
for the operator norm |- ||.
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§37 Diagonalizable matrices

In this section we consider matrices
A=5D5"' and B=TD,T', (37.1)

where D; and D, are diagonal, and S and T are invertible. The
condition number of S is defined as

o(S) = ISI IIS7HI-

We prove three theorems covering the cases when the spectra of A and
B are real, lie on the unit circle, or are unrestricted. When the matrices
S and T are unitary, their condition numbers are equal to one, and our
results reduce to those proved in Chapters 3 and 4 for Hermitian, unitary,
and normal matrices.

Theorem 37.1 Suppose A and B are as in (36.8) and assume further
that D; and D, are real. Then

||Eig, (4) - Eigy(B)ll| < V(S)aT) lIA-Blll  (37.2)
for every unitarily-invariant norm.
Proof From the equations
A—B=S8(D,S™'T - S™'TD,)T™},

and
A—-B=T(T7'SD; — D, T7'8)8™1,

we get the inequalities

IIDLST'T = ST'TDs|l| < IS (A= B)TII| < [IS7HI 114~ BlIl |ITll,
and |
IIT~SDy = DT7HS|I| < ITHA - B)SIII < 177 {114 =Bl [ISI-

Let S™'T = UTV be the singular value decomposition. Then

||D1S~T — S™ITDy||| = |||D.UTV —UTVD,||
= |||[U*D,UT =TV D, V*|||
= |||A'T -=TB'|||,
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37. DIAGONALIZABLE MATRICES

where A’ = U*D;U and B’ = VD,V* are Hermitian matrices. The
same argument, with the relation 7-'S = V*I'"1U*, shows

IIT~SDy ~ D,T71S|| = ||IT7* A" = BT},
So, the two inequalities above can be expressed as
af||A - BJ|| = |||A'T —=TB'|l|,
and |
BlllA - B||| > |[lAT~! =T~ B[]},

where a = ||S7|||T||, and B = ||T~!||||S||. The last two inequalities,
combined with the triangle inequality, give

(T T r T ,
2lll4- Blll > 14 (5 + 5 ) - (£ +55) B

The arithmetic-geometric mean inequality implies that

r.r'_ 2 .
a B8 T VaB

Theorem 36.3 can now be applied to get

2]llA - Bl|| B|I.

2
A~
—= I

The matrices A’ and B’ are Hermitian and have the same eigenvalues as
those of A and B. So using Theorem 9.7 we get

14— B||| > "}w-r’b' | Eig, (A) — Eig, (B)]|I

This is the desired inequality (37.2). B
Exactly the same arguments combining Corollary 36.4 with Theorems
13.6 and 14.7, and Corollary 36.5 with Theorem 15.1 give the following.

Theorem 37.2 Let A and B be as in (37.1) and assume in addition
that all eigenvalues of A and B have modulus 1. Then

|(Eig 4, EigB)|| < v/c(S)e(T) ||A - B,

and

ll(Eig 4, EigB)lll < Z+/e(S)e(T) Ill4 - Blll,
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for all unitarily-invariant norms.

Theorem 37.3 Let A and B be any two matrices as in (37.1). Then

|(Eig A, EigB)||r < v/¢(S)e(T) ||A - Bl|p-

J. H. Wilkinson ( The Algebraic Eigenvalue Problem, p.87) remarks that
the overall sensitivity of the eigenvalues of a diagonalizable matrix A is de-
pendent on the size of ¢(S) which may be regarded as a condition number
of A with respect to its eigenvalue problem. Theorem 25.1 due to Bauer
and Fike is one manifestation of this. Results of this Section carry this line
of thinking further and bring out the special role that normality plays in
controlling the behaviour of eigenvalues under perturbations. Chapter 4 of
Wilkinson’s book contains an illuminating discussion of condition numbers.

Notes and references

The Sylvester equation (36.1) arises in diverse contexts. An expository
article on this theme is [BR|. The ideas behind the theorems in Sections
36 and 37 go back to W. Kahan [K]. The inequality (36.4) for the special
operator norm was proved by Kahan, and was the motivation for J.-G.
Sun [S1] to prove (36.7). This, in turn, provided the motivation for the
generalization (36.4) in [BDKi|. All these authors applied their results
to derive the perturbation bounds of Section 37 in a weaker form. Their
versions of the inequalities had the factors ¢(S)c(T) without the square

root. The inequality (37.2) for the operator norm alone was proved by
T.-X. Lu [Lu]. All the theorems of Section 37 are due to R. Bhatia, F.
Kittaneh, and R.-C. Li [BKL].
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11 The general spectral variation problem

The bounds (19.6) and (20.8) for the optimal matching distance between
the roots of two polynomials of degree n, and for the eigenvalues of two
n X n matrices, contain a factor c¢(n). The best value of ¢(n) known
at the time of writing the original version was n. Since then significantly
stronger bounds have been established with c¢(n) < 4. We present these
and draw attention to the problems that remain open.

§38 The distance between roots of polynomials

A well-known theorem of Chebyshev, used frequently in approximation the-
ory, says that if p is a monic polynomial of degree n, then

max [p(t)] > ——
OSta‘S)_(]. p | - 22??,-—-1.

(38.1)

We need a small extension of this:

Lemma 38.1 Let C be a continuous curve in the complex plane with
endpoints a and b. Then for every monic polynomial of degree n

b —a|”
max |p(N)] = S

- (38.2)

Proof Let L be the straight line through the points a and b, and S
the segment between a and b:

L = {z:z=a+tlb—a), teR},
S = {z:z=a+tlb—a), 0<t<1}.
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For z € C let 2’ be its orthogonal projection onto L. Then |z —w| >

|2/ —w'| forall z, w e C. |
Let A1,...,A, betheroots of p, and let A\, =a+t;(b—a) be their

projections onto L. If z=a+ t(b— a) is any point on L, then

H|z—A'|—H|t—t> —a>|—|b—a|“H|t—t|

=1 =1

n
The inequality (38.1), applied to the polynomial [] (¢t —t;), shows that
< i=1
there exists a point zg on S such that

/ |b_a|n
leO_Al = 22n1'

The point 2o is the projection onto L of some point Ay on C; i.e.
20 = Ap- Since |Ag — A;| = |Ag — A|, the inequality displayed above shows

that N
b —a|”
II [Ao — il 2 92n—1 °

This proves (38.2). W
Let f and g be monic polynomials as in (19.1) with roots aj, ..., ay,

and (1,...,0,, respectively. As mentioned in Remark 19.2, we have
max|o;| < 2 max|a;|'/. Let T = max (|a;|*/7,|b;|'/7) and let
j J J
v =2I. (38.3)
(This is different from the definition in (19.2), and the change is needed for

our argument.). Let © be the quantity defined by (19.3) with this new

definition of . We have the following significant improvement of Theorem
19.4.

Theorem 38.2 The optimal matching distance between the n -tuples
Root f and Root g is bounded as

d (Root f, Root g) < 4 ©. (38.4)

Proof Let g =(1—-t)f+tg, 0<t<1. Then g; is a family of monic
polynomials. If A is a root of any g;, then |A\| <+. Since g;()\) =0, we
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have

IF)L = [ELfA) =gl < [F(A) —g(A)]

< ) lax—b PPF <o
k=1

As t changes from 0 to 1, the roots of g; trace out m continuous
curves in the plane starting at the roots of f and ending at the roots of
g. Let C be any one of these curves, and let a and b be its endpoints.
- Then by Lemma 38.1 there exists a point A on C such that |

b—al|"
N

The two inequalities displayed above show that
la—b| <4-27Y" 6.

This implies that (38.4) is true. W

How sharp is this inequality? For each positive integer n, let

c(n) = sup { d(Root f, Root g) : f, g monic polynomials of degree n} :

e(f,9)
(38.5)

where O(f,g) is the quantity defined by (19.3). We have shown that

sup c(n) < 4. (38.6)

n

It is known that
sup c(n) > 2. | (38.7)

n

This follows from an example constructed in a paper of R. Bhatia, L. Elsner,
and G. Krause. We conjecture that

sup ¢(n) = 2.

n

G. Krause has shown that sup,c(n) < 3.08.
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§39 The distance between eigenvalues

In Section 20 we derived the general spectral variation bound (20.8) using
the inequality (19.6) for roots of polynomials. Since the factor c(n) in the
latter can be replaced by 4, the same improvement of (20.8) follows as a
consequence. However, it is possible to prove a slightly better inequality
by a simpler argument that avoids the use of characteristic polynomial.
Let X and Y beanytwo nxn matrices, and let \ be an eigenvalue
of Y. The argument with Hadamard’s inequality on Page 120 shows that

det(X —AD)] < X =Y (IX|+(YI)" ™" (39.1)

Theorem 39.1 Let A and B be any two n x n matrices. Then

d(Eig A, EigB) < 4(|A| +IB|)'~/" |4~ B|'/ (39.2)

Proof The proof is very similar to that of Theorem 38.2. Let A(t) =
(1—t)A+tB, 0<t<1. As t changes from 0 to 1, the eigenvalues
of A(t) trace out n curves in the plane starting at the eigenvalues of A
and ending at the eigenvalues of B. So, to prove (39.2) it suffices to show
that if C is one of these curves and a,b are its endpoints, then |a — b
is bounded by the right-hand side of (39.2).

Assume, without loss of generality, that ||A| < ||B||. Then ||A(?)| <
|B|| for 0 <t <1. By Lemma 38.1, there exists a point A\¢ on C such

that
b—a|”

det(4 = XoD)| > L=

The point \o is an eigehvalue of some matrix A(tg). The inequality (39.1)
shows that

|det(A — No| 1A — A@)| (1Al + | Ato) )™

l4~ Bl (141 + 1 BIN" .

IA A

Hence,
b—a| < 4-27Y7(|A|+ BN |1A - B|MV7,

and this proves the theorem. W
G. Krause has shown that the factor 4 in (39.2) can be replaced by
3.08. A sharp bound will be of much interest.
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Notes and references

The argument involving Chebyshev polynomials, in Sections 38 and 39,
seems to have been first used by A. Schénhage [S], and then rediscovered
by D. Phillips [P] who proved an inequality weaker than (39.2) with a factor
8 instead of 4. The arguments of Phillips were simplified and improved by
R. Bhatia, L. Elsner and G. Krause [BEK| who proved (38.4), (38.7) and
(39.2). The further improvement mentioned in Sections 38 and 39 is given
in [Kr].
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12 Arbitrary perturbations of constrained
matrices

The theorem in Section 24.1 has been improved as well as extended in

scope. This is presented in the next section.

840  Arbitrary perturbations of normal matrices

Let A be any matrix and let Ap be the diagonal part of A, and Ar, Ay
its parts below and above the diagonal. Thus

A=A, + Ap + Ap.

Proposition 40.1 Let A be an n X n normal matrix. Then

|ALllFr < vVn—1||Av|lr, [[Avllr £ V-1 ||AL|F.

Proof If A is normal, then the Euclidean norms of its jth row and jth
column are equal. So, if A is partitioned as

vV W
A=
x v ]

where V is a kX k matrix, 1 < k <n -1, then |[W|% = || X|%.
Summing up all these equalities over £k =1,2,...,n— 1, we get

n—1 n—1

YD = Dlagel* = DD (G - Olajel*

j=1£>j =1 j>4
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This is used at the third step in the following calculation.

n—1 n—1
1AvlE = DD lagel® < > > (€~ lagel’

=14>j i=14>3

S 576 - Olazel®

n
=1 j>¢
n—1
< (=1 ) el = (n—1)||AL|.
=1 j>4 |

This proves one of the assertions. By symmetry, the other is also true. W
If A is the n xn unitary matrix -

o 1 o0 ... O
o o0 1 ... O
A=1| ... ... ... .. o,
o 0 o0 ... 1
|1 0o o ... 0]
then |Ay|lr = vn —1 ||AL||r. This shows that the inequalities in the

proposition above are best possible.

Theorem 40.2 Let A and B be n x n matrices and suppose A is
normal. Then

I(Eig A4, EigB)|r < vn ||A-B|F. (40.1)

Proof We can apply a unitary similarity to A and B, and assume that
B is upper triangular. In this basis let

A=A+ Ap + Ay, B = Bp + By.

The matrix Bp is normal and has the same eigenvalues as those of B.
Therefore, from Theorem 15.1 we get

|(Eig A, Eig B)||r < ||A— Bpl|F.
Since B; =0 we have
14——£ﬁ)==(fl—mB)D-+(f1—-f”L;+x4U.
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So
IA=Bpllz = |(A=B)plz+ I(A=B)Llz + |Aviz
< (A=B)plF+ I(A=B)L|% + (n = 1)||ALllZ
= |(A=B)plz+n ||(A-B)L||%
< n|A-B|%.

This proves the theorem. W

Remark 40.3 If A is Hermitian, then |Ayl|lr = ||AL||r. Then the
argument above leads to a stronger inequality

|(Eig A, EigB)||r < V2 ||A—-B|r. (40.2)

Remark 40.4 The Schatten p -norms and the Frobenius norm (p = 2)
are related by the inequalitites

Al < 4, < P2 AlE, 1<p<2,
lAl, < [Alr < 2> 7|4l 2<p< oo

So, from (40.1) we obtain two families of inequalities (valid if A is normal
and B arbitrary):

|(Eig A, EigB)|, < n'/? |[A=Bl,, 1<p<2, (40.3)

|(Eig A, EigB)|, < n* VP ||A-B|,, 2<p<oo. (40.4)
The case p = oo is the operator norm, and we have
I(Eig A, Eig B)|| < n ||A - B|. (40.5)

This is an improvement on (24.1) where we had (2n — 1) instead of n.

- The inequalities (40.3) are best possible. This can be seen by choosing
A to be the unitary matrix displayed before Theorem 40.2, and B to be
the matrix obtained by replacing the bottom left entry of A by zero. The
same example shows that the bound (40.2) is attained for 2 x 2 matrices.
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Remark 40.5 When A is Hermitian and B normal, special results hold.
In this case

I(Eig A, EigB)|l, < 2*P7'||A=Bl|p,, 1<p<2, (40.6)

|(Eig A, EigB)||, < 2V27Y?P |A-B|,, 2<p< oo (40.7)

This was observed by R. Bhatia and L. Elsner. The case p = oo of (40.7)
says |
|(Eig A, Eig B)| < v2|lA- B,

and this is the inequality (23.9) noted earlier.

Notes and references

Results in Section 40 are due to J.-G. Sun [S2], except for those in Remark
40.5 which can be found in [BE].
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13  Related Topics

§41 Operators on infinite-dimensional spaces

Let H be a complex, separable, and infinite-dimensional Hilbert space,
and B(H) the space of bounded linear operators on H. For every A
in B(H) its spectrum Spec A is a compact subset of the complex plane.
The map A+ Spec A, in general, is discontinuous: a small change in the
operator can cause a big change in the spectrum. However, on the special
class of normal operators, the spectrum is continuous. More precisely, if
h(E, F) stands for the Hausdorff distance between two compact subsets of
the plane, then

h(Spec A, SpecB) < ||A - B|,

whenever A and B are normal. The proof is a slight modification of the
finite-dimensional case as given for Theorem 12.4.

Quantitative estimates for the distance between spectra are far more
intricate and difficult to obtain. In this section we briefly outline results
that are parallel to the ones we have given for the finite-dimensional case.

The simplest case to consider is that of compact self-adjoint operators
A and B. Allnonzero pointsin Spec A are isolated eigenvalues with finite
multiplicities. The point zero is either an eigenvalue of infinite multiplicity
or a limit point of the nonzero eigenvalues.

In the finite-dimensional case we arranged the eigenvalues of A and
B in decreasing order, and then paired them as in Theorems 8.1 and 9.7.
The presence of zero amidst the spectra creates problems in the infinite-
dimensional case and there are different ways of getting around them. Let
{a;j:j=1,2,...} and {a—;:7=1,2,...} be two infinite sequences with
the following properties
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i) o >az>--->0,
a1 < a_o<-.-<0;

(ii) all nonzero eigenvalues of A are included in these sequences with
their proper multiplicities;

(iii) if A has infinitely many positive eigenvalues, then these make up

~ the entire sequence {a; :j =1,2,...}; but if A has finitely many

positive eigenvalues, then in addition to them this sequence contains
infinitely many zeros;

(iv) similarly the sequence {a—_;:j =1,2,...} contains only the negative
eigenvalues of A if there are infinitely many of them, and if there
are only a finite number of these, then it contains in addition to them
infinitely many zeros.

The collection {o; : j = *1,£2,...} is called an enumeration of the
eigenvalues of A.

Let A and B be compact operators and suppose A — B is in the
Schatten class C, for some 1 < p < oo. Let {oj 1 j£1,£2,...} and
{B; : 3 = £1,%+2,...} be enumerations of the eigenvalues of A and B,
respectively. Then

- - e
D los =BiP+ ) laej — BjlP < |4 - Bl (41.1)
Jj=1 J=1

A similar statement is true for any unitarily invariant norm |- ||s.

This theorem, due to A. S. Markus, is analogous to Theorem 9.7. There
is another kind of result in which it is not necessary to add a spurious zero
to the genuine eigenvalues of A and B, but the information about the
pairing of eigenvalues is lost. This says that if A and B are Hermitian
operators in C, for some 1 < p < oo, and {a;} and {B;} are the
eigenvalues of A and B where each eigenvalue is counted with its proper
multiplicity, then there exists a permutation o0 of N such that

1/p

> o = Bo|” < [|A = Bllp- (41.2)
J

J. A. Cochran and E. W. Hinds proved that for p = 2, the inequality
(41.2) is true, more generally, for normal operators A and B. This is
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the Hoffman-Wielandt inequality extended to compact (Hilbert-Schmidt)
operators. |

Next we consider the case when A and B are any two bounded
normal operators whose difference A — B is compact. In this case good
analogues of perturbation bounds of Chapters 3 and 4 have been estab-
lished. |

The spectrum of a normal operator A is a disjoint union of two sets,
the discrete spectrum consisting of those isolated points of the spectrum
which are eigenvalues of finite multiplicity, and the essential spectrum. If
P is the spectral measure corresponding to A, then a point A\ is in
the essential spectrum if and only if for every neighbourhood E of A
the projection P(E) is infinite-dimensional. The essential spectrum is a .
closed subset of the plane. There is a theorem of H. Weyl that says that if
A — B is compact, then the essential spectra of A and B coincide. Thus
taking the discrete spectrum as the kind of spectrum familiar from linear

~ algebra, we may seek for it perturbation bounds resembling the matrix case.

Here a problem arises. A compact perturbation could completely wipe off
the discrete spectrum,; i.e., the operator A could have a nonempty discrete
spectrum while that of B could be empty even though A— B is compact.
To get around this difficulty T. Kato introduced an interesting idea.

An extended enumeration of the discrete eigenvalues of A is any
sequence {a;} that includes all points of the discrete spectrum of A each
counted as often as its multiplicity as an eigenvalue, and that in addition
may include some boundary points of the essential spectrum of A. (Not
all boundary points of the essential spectrum are required to be present in
{a;}, and those that are may be repeated arbitrarily often.)

In 1987, Kato proved the following

Theorem 41.1 Let A and B be self-adjoint operators on H such that
A — B is a compact operator, and is in the class C,. Then there exist

extended enumerations {o;} and {3;} of discrete eigenvalues of A and
B such that

1/p
oo
> lag = il < |4~ Blls. (41.3)
=1
A similar statement is true for all unitarily invariant norms || - ||¢-

This theorem includes in it the result of Markus as a special case.

(When A is compact the only possible point in its essential spectrum is
0.)
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Kato’s paper was soon followed by one by R. Bhatia and K. B. Sinha
who proved a similar extension of Theorem 14.7 for unitary operators A
and B whose difference is compact. In the finite-dimensional case, these
results for Hermitian and unitary operators and a few more, can be derived
as corollaries of Theorem 14.3. An extension of this general theorem to
infinite dimensions was published by R. Bhatia and C. Davis in 1999.

Theorem 41.2 Let Ay and A; be normal operators whose difference

Ag — A; is in the class Cs corresponding to a unitarily-invariant norm
|- |la. Let A(t), 0<t<1, be a piecewise C! curve such that

(i) A(t) is normal for all ¢,
(ii) A(0) = Ao, A(1) = Ay,
(iii) A(t) — Ap isin Cg for all t.

Then there exist extended enumerations {A;(0)} and {A;(1)} of discrete
eigenvalues of Ay and A,;, respectively, for which

2 ({3(0 / 14/l dt.

This is a master theorem, from which we can derive as in Chapter 4,
analogues of Theorem 13.6 ( A and B unitary), Theorem 14.5 ( A, B
and A — B normal), and Theorem 14.7 ( A and B unitary). Two theo-
rems in which A and B are arbitrary normal operators do need separate
proofs. These have been proved by R. Bhatia and C. Davis (analogue of
Theorem 16.6) and by L. Elsner and S. Friedland (analogue of Theorem
15.1). The formulations involve extended enumerations as in the other re-
sults stated above and the proofs need suitable extensions of the marriage
lemma.

842 Joint spectra of commuting matrices

In 1991 A. Pryde initiated a program of extending the perturbation bounds
in this book to commuting tuples of matrices. We briefly indicate the nature
of the problem and the results obtained.
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Let A= (AM,...,A™) bean m -tuple of pairwise commuting op-
erators on an n -dimensional Hilbert space H. A point A = ()\(1), e )\(m))
in C™ is called a joint eigenvalue of A if there exists a vector =z in H
such that

AWz =20z 1<j<m.

The vector x is called a joint eigenvector of A corresponding to the joint
eigenvalue .

By the Schur triangularization theorem there exists an orthonormal
basis of H in which the matrix of each operator A() is upper triangular:

. 0 AP« .«
AW = ? 1<j<m
i o 0 .. .. ,\,(:f')_

This is called a Schur basis for A. The joint eigenvalues of A are the n
points A\, = ()\(1) )\(2) )\(m)) , 1<k <n. If the operators AW are
normal, then in a Schur basis, they are all diagonal.

We can view the m -tuple A as a column vector

Alm)
and think of it as an operator from H to the space HOHD---dH (m
copies). The Frobenius norm of A is defined as

1/2

|AlF = (trA*A)Y? = ZnA@nF . (42.1)

The following theorem is an analogue of the Hoffman-Wielandt in-
equality.

Theorem 42.1 Let A = (AD,...,A(™) and B = (BW,...,B(™) be
two m -tuples of pairwise commuting normal operators on an n -dimensional
‘Hilbert space ‘H. Let ¢; and B, 1<k<n, be the joint eigenvalues of
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A and B, respectively. Then there exists a permutatlon o on n indices
such that o |

2 2
S llak - B, I < 1A — B2 (42.2)
k=1 | :

The norm occuring in the expression on the left is the Euclidean vector
norm on C™. The inequality can be written in another way as

ZZ‘@) a&) SiHA(j)_B(j)H;' | (42.3)
j=1 |

k=1 j=1

when m = 1, this is the Hoffman-Wielandt inequality. The noteworthy
feature of (42.3) is that the same permutation ¢ does the job for each of
the components.

This inequality was first proved by R. Bhatia and T. Bhattacharyya.
Soon afterwards, L. Elsner gave a much simpler proof. In the special case
m = 1 this becomes a very economical proof of the original Hoffman -
Wielandt theorem. Here is how this argument goes. -

Choose unitary operators U and V such that for all 1 < 5 < m,
the operators UAWU* and VBWV* are diagonal; i.e.,

UADU* = AW

diag (a(lj),ag), ,ag))
VBOWY* = TW = diag( §j), §j),...,ﬂ,§j>).

Then

Z |AD — BO|2, = Z [T*ADU — V* TOV |2
—

= Y [ADUV*—UVTY|%

Jj=1

mo ™ . (2 5 '
- % |a§g>~.gy>| ke, (42.4)

j:]_ k,ez]_

where W = UV™ is an n X n unitary matrix, and its entries are wgy.
The matrix whose entries are |wge|® is doubly stochastic. Let S be any
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n X n doubly stochastic matrix and let

Then f is an affine linear functional on the set €2, consisting of n xn
doubly stochastic matrices. Hence the minimum value of f is attained at
one of the extreme points of 2,,. By Birkhoff’s theorem such a point is
a permutation matrix P. Thus the expression in (42.4) is greater than or

equal to
NS |0 a0
Z Z lo‘kj _5/1 Pke-
j=1 k=1 _
The matrix P is associated with a permutation o on {1,2,...,n}, and

this expression, in turn, is equal to

This proves the inequality (42.3).
Instead of the Frobenius norm (42.1) we could consider
1/2

Al = A A2 =y AD=ADY (42.5)

=1

and expect analogues of Theorem 8.1 and 16.6. No good results of this kind
have been proved.

An upper bound for ||A—B|| analogous to (33.6) has been established.
If A and B are two m -tuples of commuting normal operators, then

|A-B| < V2 max|ig; - 8, llcm- (42.6)

Analogues of some other theorems like those of Bauer-Fike, and Henrici
have been proved. The distance between the tuples A and B is defined
via Clifford operators associated with them. We do not state these theo-
rems here. More theorems, and better ones, can perhaps be proved in this
context.
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843 Relative perturbation theory

All the bounds studied in this book have two features. We restricted our-
selves to additive perturbations: the matrix A is perturbedto B = A+ E
and FE is regarded as the error or the perturbation. We obtained abso-
lute error bounds: the quantities for which we found bounds involved the
absolute errors |a; — 3;|, and all of these at the same time.

There are other kinds of perturbations and perturbation bounds. We
illustrate the problems with an old theorem of A. Ostrowski.

Let A be a Hermitian matrix, and let X be any nonsingular matrix.
Then B = X*AX may be thought of as a multiplicative perturbation of
A. How are the eigenvalues of A and B related? Sylvester’s Law tells
us that the inertias of A and B are equal. Finer information is provided

by a theorem of Ostrowski: there exist positive real numbers #;, such that
)\[n](X*X) <tk < A (X*X) and

Alk] (B) = L A[k] (4), 1 < k<n. (43.1)

From this we see that

Ak} (B) — A\ (4) \
< |- .
Jmax Al () < [T -X"X|, (43.2)

provided Ajx(A4) # 0. The quantities on the left now involve not the
absolute errors |ay — Bx| but the relative errors |ox — Bk|/|akl.

The subject of relative perturbation bounds has seen much activity
in the last fifteen years, and very interesting theorems of importance in
numerical analysis have been proved by several authors. The reader can
find a convenient summary and references to some of the important papers
in the two survey articles by I. C. F. Ipsen and R.-C. Li.

Notes and references

The inequality (41.1) is given in [M] and (41.2) in [BSe]. The paper
[CW] contains the extension of the Hoffman-Wielandt inequality to normal
Hilbert-Schmidt operators, and [EF] to normal operators whose difference
is Hilbert-Schmidt. The paper by T. Kato [Ka] stimulated the subsequent
work of [BSi] and [BD]. A recent paper [KMM] contains a study of other
" infinite-dimensional problems related to the material in this book.
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The stimulus for the work in Section 42 came from [Prl] and [Pr2].
This led to the work in [BB1], [BB2] and [E].

Much work in relative perturbation theory has been done in recent
years by several authors. We do not attempt to list the important papers.
Instead we refer the reader to the survey [I], and a recent handbook article
[Li] where an up-to-date summary of both the absolute and the relative
perturbation theory and a comprehensive bibliography are included.

184



Bibliography

[AB] T. Ando and R. Bhatia, Eigenvalue inequalities associated with the
Cartesian decomposition, Linear and Multilinear Algbera, 22(1987)
133-147. (Cited on pp. 139, 159.)

[BGLS] H. Bauschke, O. Giiler, A. S. Lewis, and H.S. Sendov, Hyperbolic
polynomials and convex analysis, Canad. J. Math., 53 (2001) 470-488.
(Cited on p. 151.) |

[B1] R. Bhatia, Matriz Analysis, Springer, 1997. (Cited on pp. 139, 151.)

[B2] R. Bhatia, Some inequalities for norm ideals, Commun. Math. Phys.
111 (1987) 33-39. (Cited on p. 139.)

[B3] R. Bhatia, Linear algebra to quantum cohomology: The story of Alfred
Horn’s inequalities, Amer. Math. Monthly, 108 (2001) 289-318. (Cited
on p. 151.) |

[BB1] R. Bhatia and T. Bhattacharyya, A generalization of the Hoffman-
Wielandt theorem, Linear Algebra Appl., 179 (1993) 11-17. (Cited on
p. 184.) | |

[BB2] R. Bhatia and T. Bhattacharyya, A Henrici theorem for joint spectra
of commuting matrices, Proc. Amer. Math. Soc., 118 (1993) 5-14.
(Cited on p. 184.) |

[BD] R. Bhatia and C. Davis, Perturbation of extended enumerations of
eigenvalues, Acta Sci. Math. (Szeged), 65 (1999) 277-286. (Cited on
p. 183.) |

[IBDKi] R. Bhatia, C. Davis, and F. Kittaneh, Some inequalities for com-
mutators and an application to spectral variation, Aequationes Math.,
41 (1991) 70-78. (Cited on p. 166.)

185



BIBLIOGRAPHY

[BDKo| R. Bhatia, C. Davis, and P. Koosis, An extremal problem in Fourier

analysis with applications to operator theory, J. Functional Anal., 82
(1989) 138-150. (Cited on p. 159.)

[BE| R. Bhatia and L. Elsner, The Hoffman- Wz’elandt inequality in infinite
dimensions, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 483-494.
(Cited on p. 175.) .

[BEK]| R. Bhatia, L. Elsner, and G. Krause, Bounds for the variation of the
roots of a polynomial and the eigenvalues of a matriz, Linear Algebra
Appl., 142 (1990) 195-209. (Cited on p. 171.)

[BES] R. Bhatia, L. Elsner, and P. Semrl, Distance between commuting
tuples of normal operators, Arch. Math., 71 (1998) 229-232. (Cited
on p. 159.)

[BH1| R. Bhatia and J. A. R. Holbrook, Unitary invariance and spectral
variation, Linear Algebra Appl., 95 (1987) 43-68.

[BH2] R. Bhatia and J. A. R. Holbrook, On the Clarkson-McCarthy in-
equalities, Math. Ann., 281 (1988) 7-12. (Cited on p. 139.)

[BH3] R. Bhatia and J. A. R. Holbrook, A softer, stronger Lidskii theorem,
Proc. Indian Acad. Sci. (Math. Sci.) 99 (1989) 75-83. (Cited on p. 139.)

[BK]| R. Bhatia and F. Kittaneh, Cartesian decompositions and Schatten
norms, Linear Algebra Appl., 318 (2000) 109-116. (Cited on p. 160.)

[BKL] R. Bhatia, F. Kittaneh, and R.-C. Li, Some inequalities for commu-
tators and an application to spectral variation I, Linear and Multilin-
ear Algebra, 43 (1997) 207-219. (Cited on pp. 139, 166.)

[BR] R. Bhatia and P. Rosenthal, How and why to solve the operator equa-
tion AX —XB =Y, Bull. London Math. Soc., 29 (1997) 1-21. (Cited
on p. 166.) .

[BSe] R. Bhatia and P. Semrl, Distance between Hermitian operators in
Schatten classes, Proc. Edinburgh Math. Soc., 39 (1996) 377-380.
(Cited on p. 183.)

[BSi] R. Bhatia and K. B. Sinha, A unitary analogue of Kato’s theorem on
variation of discrete spectra, Letters Math. Phys., 15 (1998) 201-204.
(Cited on p. 183.)

186



BIBLIOGRAPHY

[BZ1] R. Bhatia and X. Zhan, Compact operators whose real and imagi-
nary parts are positive, Proc. Amer. Math. Soc., 129 (2001) 2277-2281.
(Cited on p. 160.)

[BZ2] R. Bhatia and X. Zhan, Norm inequalities for operators with positive
real part, J. Operator Theory, 50 (2003) 67-76. (Cited on p. 160.)

[CW] J. A. Cochran and E. W. Hinds, Improved error bounds for the eigen-
values of certain normal operators, SIAM J. Numer. Anal., 9 (1972)
446-453. (Cited on p. 183.)

[D] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997. (Cited
on p. 139.) |

[DK] C. Davis and W. M. Kahan, The rotation of eigenvectors by a pertur-
bation 111, SIAM J. Numer. Anal., 7 (1968) 1-46. (Cited on p. 139.)

[E] L. Elsner, A note on the Hoffman-Wielandt theorem, Linear Algebra
Appl., 182 (1993) 235-237. (Cited on p. 184.)

[EF] L. Elsner and S. Friedland, Variation of the discrete eigenvalues of
normal operators, Proc. Amer. Math. Soc., 123 (1995) 2511-2517.
(Cited on p. 183.)

[EH] L. Elsner and C. He, Perturbation and interlace theorems for the uni-
tary eigenvalue problem, Linear Algebra Appl., 188/189 (1993) 207-
229.

[Fa] F. O. Farid, The spectral variation of two matrices with spectra on two
intersecting lines, Linear Algebra Appl., 177 (1992) 251-273. |

[F] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schu-
bert calculus, Bull. Amer. Math. Soc., 37 (2000) 209-249. (Cited on
p. 151.)

[GR] L. Gurvits and L. Rodman, On matriz polynomials with real roots,
SIAM J. Matrix Anal. Appl., 26 (2005) 758-764. (Cited on p. 151.)

[GV] G. H. Golub and C. F. Van Loan, Matriz Computations, 3rd ed.,
~ Johns Hopkins University Press, 1996. (Cited on p. 139.)

[HN] F. Hiai and Y. Nakamura, Majorization for generalized s-numbers in
- semifinite von Neumann algebras, Math. Z., 195 (1987) 17-27. (Cited
on p. 139.)

- 187



BIBLIOGRAPHY

[Hi] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd |
ed., STAM, 2002. (Cited on p. 139.)

[Ho] J. A. R. Holbrook, Spectral variation of normal matrices, Linear Al-
gbera Appl., 174 (1992) 131-144 (Cited on p. 159.).

[HB] L. Hérmander and B. Bernhardsson, An extension of Bohr’s inequal-
ity, in Boundary Value Problems of Partial Differential Equations and
Applications, J.-L. Lions and C. Baiocchi eds., Masson 1993. (Cited
on p. 159.) .

[HM] R. A. Horn and R. Mathias, Cauchy-Schwarz inequalities associated
with positive semidefinite matrices, Linear Algebra Appl., 142 (1990)
63 - 82. (Cited on p. 139.)

[HV] J. W. Helton and V. Vinnikov, Linear matriz inequality represen-
tation of sets, Technical report, University of California, San Diego,
2002. (Cited on p. 151.)

[HY] J.-B. Hiriart-Urruty and D. Ye, Sensitivity analysis of all eigenvalues
of a symmetric matriz, Numer. Math., 70 (1992) 45—72 (Cited on
p. 151.)

[I] I. C.F.Ipsen, Relative perturbation results for matriz eigenvalues and
singular values, Acta Numer., 7 (1998) 151-201. (Cited on p. 184.)

[K] W. Kahan, Inclusion theorems for clusters of eigenvalues of Hermitian
- matrices, Technical Report, Computer Science Department, University
of Toronto, 1967. (Cited on p. 166.)

[Ka] T. Kato, Variation of discrete spectra, Commun. Math. Phys., 111
(1987) 501-504. (Cited on p. 183.)

[K1] A. A. Klyachko, Stable bundles, representation theory and Hermitian
operators, Selecta Math. 4 (1998) 419-445. (Cited on p. 151.)

[KMM] V. Kostrykin, K. A. Makarov, and A. K. Motovilov, Perturbation
of spectra and spectral subspaces, Trans. Amer. Math. Soc., 359 (2007)
77-89. (Cited on p. 183.)

[KT] A. Knutson and T. Tao, The honeycomb model of GL,(C) tensor
products’ I : Proof of the saturation conjecture, J. Amer. Math. Soc.,
12 (1999) 1055-1090. (Cited on p. 151.)

188



BIBLIOGRAPHY

[Kr] G. Krause, Bounds for the variation of matriz eigenvalues and poly-
nomial roots, Linear Algebra Appl., 208/209 (1994) 73-82. (Cited on
p. 171.) '

[Le] A.S. Lewis, Lidskii’s theorem via nonsmooth analysis, SIAM.J . Matrix
Anal. Appl., 21 (1999) 379-381. (Cited on p. 151.)

[LPR] A.S. Lewis, P. A. Parrilo, and M. V. Ramana, The Lazx conjecture
is true, Proc. Amer. Math. Soc., 133 (2005) 2495-2499. (Cited on
- p. 151.) -

[LL] C.-K. Li and R.-C. Li, A note on eigenvalues of perturbed Hermz'tz'an
matrices, Linear Algebra Appl., 395 (2005) 183-190. (Cited on p. 151.)

[LM1] C.-K. Li and R. Mathias, Generalizations of Ky Fan’s dominance
theorem, SIAM J. Matrix Anal. Appl., 19 (1998) 99-106. (Cited on
p. 139.)

[LM2] C.-K. Li and R. Mathias, The Lidskii- Mirsky- Wielandt theorem—
additive and multiplicative versions, Numer. Math., 81 (1999) 377-413.
(Cited on p. 151.)

[LTS] C.-K Li, T.-Y. Tam and N.-K. Tsing, The generalized spectral radius,
numerical radius and spectral norm, Linear and Multilinear Algebra,
16 (1984) 215-237. (Cited on p. 139.)

[Li] R.-C. Li, Matriz Perturbation Theory, in Handbook of Linear Algebra,
L. Hogben ed., Chapman and Hall/CRC, 2006. (Cited on p. 184.)

[Lo] K. Léwner, Uber monotone Matrizfunctionen, Math. Z., 38 (1934)
177-216. (Cited on p. 150.)

[Lu] T.-X. Lu, Perturbation bounds for eigenvalues of symmetrizable ma-

trices, Numerical Mathematics: a Journal of Chinese Universities, 16
(1994) 177-185 (in Chinese). (Cited on p. 166.)

[M] A. S. Markus, The eigen and singular values of the sum and product
of linear operators, Russian Math. Surveys, 19 (1964) 92-120. (Cited
on p. 183.)

[P] D. Phillips, Improving spectral variation bounds with Chebyshev poly-
nomials, Linear Algebra Appl., 133 (1990) 165-173. (Cited on p. 171.)

189



[Pr1] A.Pryde, A Bauer-Fike theorem for the joint spectrum of commuting
matrices, Linear Algebra Appl., 173 (1992) 221-230. (Cited on p. 184.)

[Pr2] A.Pryde, Optimal matching of joint eigenvalues of normal matrices,
Monash University Analysis Paper 74, March, 1991. (Cited on p. 184.)

[S] A. Schénhage, Quasi-GCD computations, J. Complexity, 1 (1985) 118-
137. (Cited on p. 171.)

[SS] G. W. Stewart and J.-G. Sun, Matriz Perturbation Theory, Academic
Press, 1990. (Cited on p. 139.) |

[S1] J.-G. Sun, On the perturbation of the eigenvalues of a normal matriz,
Math. Numer. Sinica, 6 (1984) 334-336. (Cited on p. 166.) -

[S2] J.-G. Sun, On the variation of the spectrum of a normal matriz, Linear
Algebra Appl., 246 (1996) 215-222. (Cited on p. 175.)

[W] H. Wielandt, Mathematical Works, Vol. 2, B. Huppert and H. Schnei-
der eds., Walter de Gruyter, 1996. (Cited on p. 151.)

[V] V. Vinnikov, Self-adjoint determinantal representations of real plane
curves, Math. Ann., 296 (1993) 453-479. (Cited on p. 151.)

[Z] X.Zhan, Norm inequalities for Cartesian decomposition, Linear Alge-
bra Appl., 286 (1999) 297-301. (Cited on p. 160.)

190



Page 20, last line :
Page 33, line 3¢ :
Page\36, liﬁe 11, :
Page 91, line 7; :

Page 120, line 6 :

Errata

replace the second “min” by “max”
replace “Naumann” by “Neumann”

replace “a vector” by “a unit vector”
replace “ 0, ” by “ar”

replace “n—1" by “n”
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