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1. Introduction

In this set of lecture notes, we present a culmination of
results on infinite matrices which were evolved by the members of the
Katowice Branch of the Mathematics Institute of the Polish Academy of
Sciences. In the early history of functional analysis "sliding hump”
methods were used extensively to establish some of the early abstract
results in functional analysis. For example, the first proofs of
versions of the Uniform Boundedness Principle by Hahn and Banach and
Hildebrand utilized sliding hump methods ({181, [39], [42), [35]1).
Since Banach and Steinhaus gave a proof of the Uniform Boundedness
Principle based on the Baire Category Theorem, category methods have
proven to be very popular in treating various topics in functional
analysis [191. In recent times, there has been a return to "sliding
hump” methods in treating various topics in functional analysis and
measure theory. For example, in [34] Diestel and Uhl use a lemma of
Rosenthal ((64]) as an abstract sliding hump method to treat a
variety of topics in vector measure theory.

In a somewhat similar fashion, the Antosik-Mikusinski Diagonal
Theorem (1531, [2], (31, [9]) can be considered to be an abstract
sliding hump method and has been emploved to treat a wide variety
of topics in functional analysis and measure theory ({4}, {51, 161,
{91, (121, 153), (541, [56], [57]). The Antosik-Mikusinski Diagonal
Theorem is a result concerning infinite matrices and has proven to be
quite effective in treating various topics that were previously
treated by Baire category methods (see in particular the texts [12],
{561). These notes present a result concerning infinite matrices
which is of an even simpler and more elementary character than the
Diagonal Theorem, and which can still be used to treat a wide variety

of topics in functional analysis and measure theory ({16]1).



In section 2, we present the two basic matrix results evolved by
P. Antosik in references {6] - [11], and then in subsequent sections
we present various applications of the matrix results to topics in
functional analysis and measure theory. After the basic material has
been presented in sections 2 and 3, there has been an attempt to make
the subsequent chapters on applications independent of one another.
Thus, there is some repetition in some of the chapters; for example,
summability is mentioned in both sections 5 and 8 and other topics
are repeated.

In section 3, we introduce and study the notions of X conver-
gence and X boundedness which were also discovered and studied by
the Katowice mathematicians ([6] -~ [111). An equivalent form of X
convergence was introduced by S. Mazur and W. Orlicz in [52] and also
studied by A. Alexiewicz in [1], The idea was rediscovered in the
seminar of P. Antosik and J. Mikusinski. In subsequent sections the
notions of X convergence and X boundedness will be shown to be
effective substitutes for completeness and barrelledness assump-
tions in many of the classical results of functional analysis. For
example, in section 4, we treat the Uniform Boundedness Principle.
The classical Uniform Boundedness Principle is well-known to be false
in the absence of completeness or barrelledness assumptions, but we
present a version of the Uniform Boundedness Principle in Theorem 4.2
which is valid in the absence of any completeness assumption and
which contains the classical Uniform Boundedness Theorem for F-spaces
as a special case. To illustrate the utility of our general Uniform
Boundedness Principle in the absence of completeness, we give a
derivation of the Nikodym Boundedness Theorem based on the general
Uniform Boundedness Principle.

In section 5, we discuss a classical result on the convergence
of operators which is sometimes attributed to Banach and Steinhaus.

This result, like the Uniform Boundedness Principle, is known to be



false without completeness or barrelledness assumptions. Neverthe-
less, using the notion of X convergence, we present a version of
this theorem which is valid without any completeness assumptions. As
an application of the general result in the absence of completeness,
we use it to derive the Nikodym Convergence Theorem, the Brooks-
Jewett Theorem, and a result of Hahn, Schur and Toeplitz on
summability.

In section 6, we treat bilinear maps using our matrix methods.
We derive the classical result of Mazur and Orlicz on the joint
continuity of separately continuous bilinear maps and also, using the
notion of X convergence, present several hypocontinuity type of
results which are valid without completeness assumptions. Our
hypocontinuity results generalize results of Bourbaki.

In section 7, we treat various Orlicz-Pettis type results on
subseries convergent series by matrix methods. We derive the
classical Orlicz-Pettis Theorem as well as Orlicz-Pettis results for
compact operators and the topology of pointwise convergence on
certain well-known function spaces.

In section 8, we give generalizations of the classical lemmas of
Schur and Phillips to the group~valued case. We show that these gen-
eral results contain the classical lemmas of Schur and Phillips as
special cases. A result of Hahn and Schur on summability is also
obtained from the general results.

In section 9, we present a version of the Schur lemma for
bounded multiplier convergent series in a metric linear space. This
version for bounded multiplier convergent series is motivated by a
sharper conclusion of the classical Schur lemma for B-spaces which
is obtained in Corollary 8.4. Some general remarks on the vector
versions of the summability results of Schur and Hahn are also

included.



In section 10, we consider the problem of imbedding o and 2%
into a B-space. Using the basic matrix lemma of section 2, we
obtain the classical results of Bessaga-Pelczynski and Diestel-Faires
on imbedding o and 2% into B-spaces. We also indicate appli-
cations to a large number of well-known results in Banach space
theory. The results and method of proof are very analogous to those
of Diestel and Uhl ([34) 1.4) except that the basic matrix lemma is
employed instead of the Rosenthal lemma.

There are two themes which prevail throughout these notes. The
first is that the matrix results presented here, although being very
elementary in character, are extremely effective in treating various
topics in measure theory and functional analysis which have been
traditionally treated by Baire category methods. The other theme is
that the idea of X convergence can be used as an effective substi-
tute for completeness assumptions in many classical results in
functional analysis. For example, we present versions of the Uniform
Boundedness Principle, the Banach-Steinhaus Theorem and classical
hypocontinuity results which are valid with no completeness assump-
tions whatever being present. Applications of these general results
in the absence of completeness are indicated.

Many of the topics treated in these notes are standard topics in
functional analysis which are treated in a great number of the func-
tional analysis texts by various means including the popular Baire
category methods. The matrix methods employed in these notes are of
a very elementary character and can be presented without requiring a
great deal of mathematical background on the part of the reader. For
this reason these matrix methods would seem to be quite appropriate
for presentation of some of the classical functional analysis topics
to readers with modest mathematical backgrounds. It is the authors’
hope that the matrix methods presented here will find their way into

the future functional analysis texts.



We conclude this introduction by fixing the notation which will
be used in the sequel.

Throughout the remainder of these notes, unless explicitly
stated otherwise, E, F and G will denote normed groups. That is,
E 1is assumed to be an Abelian topological group whose topology is
generated by a quasi-norm || : E > R,. (|| is a quasi-norm if
J0}= 0, }-x| = |x| and |[x+y] € |x| + |yl; a quasi-norm generates a
metric topology on E via the translation invariant metric
dix,y) = |x-v}.)

Recall that the topology of any topological group is always gen-
erated by a family of quasi-norms ([27)). Thus, many of the results
are actually valid for arbitrary topological groups. We present the
results for normed groups only for the sake of simplicity of exposi-
tion.

Similarly, X, Y and Z will denote metric linear spaces whose
topologies are generated by a quasi-norm |]|. (For convenience, all
vector spaces will be assumed to be real; most of the results are
valid for complex vector spaces with obvious modifications.) If it
is further assumed that X is a normed space, we write |] || for
the norm on X.

The space of all continuocus linear operators from X into Y
will be denoted by L(X,Y). If X and Y are normed spaces, the
operator norm of an element T € L(X,Y) 1is defined by
HTI] = supt [ ITx|] : [Ix]] < 1}.

If X and Y are two vector spaces in duality with one another
by the bilinear pairing <, >, the weakest topology on X such that
the linear maps x » <x, y> are continuous for all vy €Y is
denoted by o(X,Y). o(X,Y) is referred to as the weak topology on
X induced by Y ([79] 8.2).

Other notations and terminology employed in the notes is

standard. Specifically, we follow [38] for the most part.



Finally, for later use, we record a lemma of Drewnowski ([361)
which will be used at several junctures in the text.

Let I be an algebra of subsets of a set S, If p: I »G
is a finitely additive set function, then p is said to be strongly

additive (exhaustive or strongly bounded) if lim u(Ei) = () for each

disjoint sequence {Ei} from X . We have the following result due

to Drewnowski.

Lemma 1. Let I be a o-algebra. If By ot L +»G is a sequence of
strongly additive set functions and {Ej} is a disjoint sequence

from X , then there is a subsequence (Ek_} of (Ej) such that
J

By is countably additive on the o-algebra gererated by {Ek.}‘
J

Drewnowski states this result for a single strongly additive
measure in [36]1 (see also Diestel and Uhl [34] 1.6), but the lemma
above can be derived from Drewnowski’s result in the following way:
let GN be the space of all G-valued sequences. Equip GN with

the quasi-norm | | defined by

el =

=
nM™Mg

i
. lg;17(1 + |g; D2

where g = (gl, -2 ...) and |gi| is the "norm” of g; in G .
Now define g : L » GN by p(E) = (ul(E). ﬂz(E), ...) . Then p Iis
strongly additive so by Drewnowski’'s lemma, there is a subsequence

{Ek_} of {Ej} such that p is countably additive on the o-algebra,
J
ZO , generated by {Ek.}‘ Then each By is clearly countably addi-
J

tive on the o-algebra ZO .



2. DBasic Matrix Results

In this section we establish the two basic results on infinite
matrices which will be used throughout the sequel. The first result
is a very simple and elementary result on matrices of non-negative
real numbers. This result is then used to establish a convergence
type result for matrices with elements in a topological group. Both
results are of an elementary character and require only elementary

techniques in their proofs.

Lemma 1. Let X5 20 and €..>0 for i,jEN. If limx;, =0

ij i 1]
for each j and lim Xij = 0 for each i, then there is a subse-
J
quence {m,} of positive integers such that x < €53 for i # j.
1)

Proof: Put m = 1. There is an my > my such that xmlm <€p
and xmml < €5 for m > m,. Then there is an ny > m, such that
xmlm € €13» xmzm < €57, xmm1 < €3¢ and xmmz < €35 for m 2 m3.
An easy induction completes the proof.

Lemma 1 will be used directly in several later results but the
principle application of Lemma 1 will be to establish the basic

matrix convergence result below.

Basic Matrix Theorem 2. Let E be a normed group and X €E E for

i,j € N. Suppose

{I) lim x.. = x. exists for each j and
i iJ J



(II) for each subsequence (mj) there is a subsequence (nj) of

{m.} such that { £ x._ } is Cauchy.
J o in.
J= J
Then lim X5 j = x‘j uniformly with respect to j.
i
In particular, l@m Xi; = 0.

1

Proof: If the conclusion fails, there is a & > 0 and a subsequence

{k;} such that sup |x

k.j le > 8. For notational convenience as-
J i
sume k, = i. Set i; =1 and pick j; such that Ixiljl - lel > 8.
B I h i i, > 1 R >
y (I) there is i, > i; such that Ix11J1 x’231| 5 and

Ixij - le <8 for i>1i, and 1€ j € j;. Nowpick j, such that

|x. . =x. | >86 and note that j, > j,. Continuing by induction,
1535 Jp 2 1

we obtain subsequences (i } and {j } such that

| | > 6. Set Zyy =X and note

X: . = X. . Lo = X, .
1kdx 1k+13k kg 1k+1dp

(1) |z, | > 6.

Consider the matrix [|Zk2|] = Z. By (I), the columns of this

matrix converge to O. By (II), the rows of the matrix I[x..]1 con-

1]
verge to 0 so the same holds for the matrix Z. Let eij >0 be
such that I eij < w. By Lemma 1, there is a subsequence (mk} such

ij
that Ikamzl <€, for k#2.

By (I11) there is a subsequence {nk} of (mk) such that

(2) lim & Z = 0.
=1 MxMp

Then

(3) | Z | € | A4 [

r Z < I € +
DMy LAk kM p=1 "k Lk kM



| z |.

e=1 "kMp
Now the first term on the right hand side of (3) goes to 0 as k » =
by the convergence of the series I €kl and the second term goes to O
by (2). But this contradicts (1) and establishes the first part of the

conclusion.

The uniform convergence of the limit, lim xij = xj and the fact
i

that lim Xij = 0 for each i implies that the double limit lim %53
J 1]

exists and is equal to 0. In particular, this implies

im x.. = 0.
li Xii 0

This matrix result will be the basic tool used throughout the

sequel. A matrix [xij

Theorem 2 will be called a X matrix {the reason for the use of this

1 which satisfies conditions (I) and (II) of

terminology will be indicated in the next section).

The Basic Matrix Theorem 2 has a very different character than the
Antosik~Mikusinski Diagonal Theorem in that the hypothesis and the con-
clusions have very different forms ([2], [53]1). However, Theorem 2 can
also be viewed as a diagonal theorem in the sense that the hypotheses

of Theorem 2 imply that the diagonal sequence { } converges to

Xii
zero. In fact, if one first shows only that the diagonal sequence
converges to zero, then it is not difficult to use this to show that in
fact the columns of the matrix are uniformly convergent.

Matrix results of a very similar nature to Theorem 2 have been
established in [6] - [11]1 and [73). The matrix results of these papers
have been used to treat a wide variety of topics in both measure theory
and functional analysis. Much of the content of these papers will be
treated in chapters 4, 5, 8 and 9.

It should be pointed out that the functional analysis text of
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E. Pap ((561) uses the Antosik-Mikusinski Diagonal Theorem in a
systematic manner to treat a variety of classical topics in function-
al analysis and in this sense is very much in the spirit of these

notes except that we systematically employ the Basic Matrix Lemma.



3. X Convergence

In this section we introduce the notion of a X convergent se-
quence. This notion was introduced by P. Antosik in [6] and was
further explored in [7] - [11]; further applications to the Uniform
Boundedness Principle and bilinear maps are given in [14] and [75].
The " X " in the description below is in honor of the members of the
Katowice Branch of the Mathematics Institute of the Polish Academy of
Sciences who have extensively studied and developed many of the
results pertaining to X convergent sequences.

As a historical note, it should be pointed out that S. Mazur and
W. Orlicz introduced a concept very closely related to that of a X
convergent sequence in [82), Axiom II, p. 169. They essentially
introduced the notion of a X (metric linear) space which is defined
below and noted that the classical Uniform Boundedness Principle
holds in such spaces. A. Alexiewicz also studied consequences of
this notion in convergence spaces ([1] axiom Aé , p. 203). It
should also be noted however that the notion of a X convergent
sequence and that of a K bounded set permits the formulation of
versions of the Uniform Boundedness Principle in arbitrary metric
linear spaces (Theorem 4.2 below) in contrast to the situation

encountered in the classical Uniform Boundedness Principle.

Definition 1. Let (E,7v) be a topological group. A sequence {xi}
in E is a 7- X convergent sequence if each subsequence of {xi}

has a subsequence {xi } such that the series X X5 is T-conver-
k k “k

gent to an element x € E.

If the topology T 1is understcod, we drop the 7 in the descrip~-

tion of 71~ K convergence.
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Note that any T- X convergent sequence {xi) is T-convergent

to O by the Urysohn property, i.e., any subsequence of (xi) has a

subsequence which converges to 0. In complete spaces the converse
holds.

Notice in the Basic Matrix Theorem 2.2, assumption (II) implies
that the rows of the matrix are X convergent (in some uniform

sense}. This is the reason for the terminology: X matrix.

Example 2. Let E be a complete normed group and (xi) converge to

0 in E. Then any subsequence of {x;} has a subsequence {xi }
k

such that X lxi | <« ». The completeness implies that the series
k k
r X{ converges in E. Thus, in complete spaces a sequence is X
k

convergent iff it converges to O.
In general the statement in Example 2 is false as the following

example shows.

00

such that tj = 0 eventually. Equip oo

e be the sequence in ¢ which has 2 1 1in the kth coordinate

00
and O elsewhere. Consider the sequence ((1/j)ej) in ¢,,- This

sequence converges to 0 in €0 but no subseries of the series

Z(l/j)ej converges to an element of €o0" That is, this sequence

Example 3. Let ¢ be the vector space of all real sequences (tj}

with the sup~norm. Let

converges to O but is not X convergent.

Examples 2 and 3 might suggest that a (normed) space is complete
iff it has the property that every sequence which converges to 0 is
X convergent. There are, however, normed spaces which have this
property but are not complete. A topological group which has the
property that any sequence which converges to 0 is X convergent

is called a _X space. Klis ([45]) has given an example of a normed
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space which is a X space but is not complete. {See also [26]1,
Theorem 2 and [48] Theorem 1.) The example given by Klis is fairly
involved and we do not present it here since it is not needed in the
sequel.

The notion of a X space was originally introduced in another
equivalent form by S. Mazur and W. Orlicz in [521, Axiom II, p. 169,
where it was observed that the classical Uniform Boundedness Princi-
ple holds for such spaces. A. Alexiewicz also studied this notion in
{11, Axiom Aé , p. 203.

We record here several other interesting properties of X
spaces and give references to the literature where these results can
be found. We do not present the results here since they are not
germane to the theme of these lecture notes.

First, any metric group which is a X space is also a Baire
space ([26] Theorem 2). More generally, any Frechet topological
group is also a Baire space ([26] Theorem 2). Second, there exist
Baire spaces which are not X spaces. Indeed, Burzyk, Klis and
Lipecki have shown that any infinite dimensional F~space contains a
subspace which is a Baire space but is not a X space ({26] Theoren
3).

Recall that a subset B of a topological vector space is
bounded iff for each sequence {xj) < B and each sequence of scalars
(tj} which converges to 0, the sequence (tjxj) converges to O.
Using this criteria and the notion of X convergence, we can intro-

duce the concept of a X bounded set.

Definition 4. Let (E,7) be a topological vector space. A subset
BcE is 7- X bounded iff for each sequence (xj} ¢ B and each
sequence of real numbers {tj} such that lim tj = 0, the sequence
(tjxj) is 71 X convergent.
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Since a X convergent sequence converges to 0, any X
bounded set is always bounded. The converse is false; consider the
sequence {ej} in Example 3. This sequence is bounded im o0 but
is not X bounded (by the argument in Example 3}. By the observation
in Example 2, if follows that in an F-space a subset is bounded iff
it is X bounded.

As will be noted later the notion of X boundedness is quite
useful, particularly in reformulating the classical uniform bounded-
ness principle (Corollary 4.4). There are, however, some annoying
difficulties associated with the notion of X boundedness. A
convergent sequence in a topological vector space is always bounded;

however, a X convergent sequence needn’t be K bounded. We

present an example of this phenomena in the example below.

Example 5. Let m, be the space of all real sequences {tj) such

that (t; : j € N} is finite. Pick () € 2! with ¢ #0 for

each k. Define a norm (induced by (¢k)) on mg by

ll(tj}ll = § l¢jtjl. Consider the sequence (ej) in m . The

series L e; is || ||-subseries convergent in m, (because

n w©
IHZe =Cop s =2 lg. | +0
jo1 Kj {kj : j €N} j=n+1 Kj

for each subsequence, where CE denotes the characteristic function

of E), and, therefore, {ej) is |} |- X convergent in m,. If
(sj} € o and the (sj :+ j € N} are distinct, then no subseries

o

L s, e is |1 }l-convergent to an element of m_ (indeed

=1 555 °

o
~zlsk e, converges coordinatewise to an element of 2% \ mo}.
J:

Hence, (ej} is |} |]- X convergent but not || ||- X bounded.
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The construction in Example S can be generalized to give a large
number of examples of X convergent sequences which are not X
bounded. Let ¥ be a o-algebra of subsets of a set S. Let
v:IE+»R be a positive, bounded, finitely additive set function.

If 3(X) 1is the space of all X-simple functions, then v induces a
semi-norm on S(X) by |lgll, = ]l = [Igldv. Let (E;} be any

disjoint sequence from I and consider the sequence (Cg } in S(),
J

where CE denotes the characteristic function of E. By Drewnowski’s

Lemma 1.1, any subsequence of {Ej} has a subsequence {Ej } such
k

that v is countably additive on the o-algebra generated by (E. }.

Ik
n
Thus, {Cp } is Il 11- X convergent (since || ZC; ~-Cyp Il >0
J k=1 Ji Jy
by countable additivity). However, if (tj) € 6 and the {tj : jJ EN)
are distinct, then no subseries of I tjCE is || }|- K convergent to
J
an element of S(X). Thus, {(Cg } is |} ||- X convergent but not
J
Il {1- X bounded.

This construction actually shows that the Drewnowski Lemma can
be viewed as a result concerning X convergence. Namely, if {Ej}
is a disjoint sequence from X, then the sequence

(Cg ) is I ||v~ X convergent for any v. More generally, if
J

vi is a sequence of positive, bounded, finitely additive measures on
¥ and T 1is the metric topology on S(X) induced by the sequence

of semi~norms {}| I, }, then ({Cg } is 7- X convergent.
1 J

In the remainder of this section we collect scme miscellaneous
results concerning X convergence which, hopefully, will illustrate
some of the applications of the notion of K convergence.

First, it is well known that in the dual of a normed space X,
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a set may be weak™ bounded but not norm bounded. For example, in the

1

dual, &7, of ¢ the sequence (jej} is weak™ bounded but not

oo’
norm bounded. However, for weak*— X bounded sets we have the fol-

lowing result.
Theorem 6. Let X be a normed space. If Bc X is weak - X
bounded, then B 1is norm bounded {(and, hence, norm- X bounded since

X is complete).

Proof: Let {x;} c B and {tj} be a sequence of scalars which

converges to 0. For each j pick X5 € X such that {llel =1
and |<x;,xj>] > IIX;II - 1/j. Consider the matrix

[zijl = [</|tj|xj, Jltilxi>]. Since ./ltilxi + 0 in norm and
{Jltj[xj} is weak - X convergent, the matrix [Zij] is a X matrix.

By the Basic Matrix Theoren,

11

] ]
lim z;; = lim [t ]<x;,x;> = 0 so that lim |t;| ||x;]|| = 0.
i i i'7i i i i

Thus, B is norm bounded.

The proof above also shows that the (undesirable) phenomenon dis-
played in Example S does not occur in weak* topologies. That is, the
proof above shows that a weak’- X convergent sequence {x3) is norm
bounded and since X' is complete, the sequence (x;) is also norm- X
bounded and, therefore, weak’ - X bounded.

Another interesting property of X convergence concerns tha
weak topology in a normed space. Again it is well known that in
infinite dimensional normed spaces a sequence which converges to 0
weakly will generally not be norm convergent, (21 is an interesting
exception to this statement.) For example, the sequence {e.} in

3

o is weakly convergent to 0O but is certainly not norm convergent.

For weak- X convergent sequences, we, however, have
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Theorem 7. Let X be a normed space. If (xj) c X is weak- X
convergent, then (xj) converges to O in norm.
Proof: By replacing X by the closed linear subspace generated by

the {xj}, we may assume that X is separable., For each j pick

X5 € X such that llx}}} =1 and <xj,xj> = lixj[}. By the Banach-

Alaogu Theoren, {xj} has a subsequence {x;.} which converges weak®
J

to an element x € X . Consider the matrix f{z..] = [<x, ,x, >].
ij ki kj

By the weak™ convergence of {xk_} and the weak~ X convergence of
J

(xj}. (zij] is a X matrix. By the Basic Matrix Theoren,

lim z,. = lim lek.ll = 0., Since the same argument can be applied
1

to any subsequence of {xi}, the Urysohn property implies that
lim leill = 0.
Actually, Theorem 7 can be improved to conclude that a sequence

in a normed space is weak- X convergent iff it is norm- X convergent.

That is, we have

Corollary 8. Let X be a normed space. Then a sequence in X is

weak- K convergent iff it is norm- X convergent.
Proof: Clearly norm- K convergence implies weak- X convergence.

Suppose {xn} is weak- X convergent. By Theorem 7, {x,} is

norm convergent to 0. Let {yn} be a subsequence of (xn) such
that llyn1| € 1727, Next, let {zn} be a subsequence of {y )} and

z € X be such that

(1) r oz, =z,

where the convergence is in the weak topology. But,
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n n i
r izl € £ 1/2
i=m i=m

so the series Zzi is norm Cauchy. Consequently, (1) holds with
respect to the norm topology.

We indicate an application of Theorem 7 by using Theorem 7 to
derive the classical Orlicz-Pettis Theorem. Recall that a series

in in a normed space X 1is norm (weakly) subseries convergent if

each subseries Ixy is norm {weakly) convergent in X. The

1

remarkable Orlicz-Pettis Theorem ([S55], [59]) is given by

Theorem 9. Let X be a normed space. If Ix; is weak subseries

convergent in X, then Ix; is norm subseries convergent.

Proof: It suffices to show that ||xi|| + 0 (See Theorem 7.1 or
[301 IV. 1.1; Orlicz-Pettis results are discussed at some length in
length in section 7). But (xi} is clearly weak- K convergent so

Theorem 7 gives the result.

Note that the analogue of Theorem 7 is false for the weak’ topo-
logy. For example, the sequence (ej} is weak** X convergent in 27
but is certainly not norm convergent. Concerning the weak® topology,

we do, however, have

Theorem 10. Suppose X 1is a normed space which contains no subspace
isomorphic (topologically) to 21. If {xj} c X is weak®- X con-

vergent, then {xj} converges to (O in norm.

Proof: Pick X; € X such that ]{xj]l = 1 and <x;,xj> + (173) >

!{xj!{. Since X contains no subspace isomorphic to 21. the se-
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quence {xj} contains a subsequence {xkv} which is weak Cauchy
J

({49] 2.e.5). Consider the matrix zij = <x;_,xk'>. From the facts
j i
that {x, } 1is weak Cauchy and {xj} is weak™- X convergent, it
J

follows that {z..] is a X matrix. The Basic Matrix Theorem im~

ij
plies that lim z,; =0 so that lim llxk.ll = 0. Since the same
i i

argument can be applied to any subsequence of (x;}. the Urysohn
property implies that lim ||x;|| = 0.

This result is somewhat analagous to the Diestel-Faires Theorem
on weak® subseries convergence ({33] or Theorem 10.10).

It is not known if the converse of Theorem 10 holds.

We conclude this section by establishing a result due to E. Pap
concerning the boundedness of adjoint operators (private communica-
tion). Recall that- if X and Y are normed spaces and T is a
linear operator with domain, D(T), a dense subspace of X and range
in Y, then the adjoint operator T' is defined by the following:
the domain, D(T ), of T is D(T)=1{y €Y :vy T is
continuous on D(T}} and T' : D(T‘) > X' is defined by T'y. is
the unique continuous extension of y'T to X. (It is necessary
that D(T) be dense in X for this definition to make sense.)

Thus, for x € D(T), y’ € D(T'), we have <T'y',x> = <y.,Tx> ; this
formula agrees with the usual definition of the adjoint of a bounded
linear operator. It can happen, when T 1is not continuous, that
D(T‘) consists of only the 0O vector; however, if T 1is a closed
operator, then D(T') is weak™ dense in Y'. Concerning the adjoint

operator, we have the following interesting result of E. Pap.

Theorem 11. Let X bea X - spaceand T : X > Y be linear.

Then T 1is a bounded linear operator on D(T').
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Proof: It suffices to show that if {yi'} cD(T) and ||yi'll <1,
then {T'yi'} is bounded. Pick x; € X such that leill =1 and
iIT'yi'Ii < <T'yi.,xi> + 1. Thus, it suffices to show that
(<T'yi',xi>} is bounded. For this, it suffices to show that if
{ti} is a positive sequence of scalars which converges to 0, then

{ti <T Vi o xi>) converges to O.

Put zy5 = <t Ty, th xj>(= vty s T(thxj)>). Ve show
that [zij] is a X - matrix. First for each i,
l;m zj5 = l§m </?;T Y5 ,Jfng> = 0 since JT} x5 > 0. Next, for each
Js 1im 2y = lim <ty T(thxj)> = 0 since J?;yi + 0. Now

J?;xj + 0 and X is a X - space so there is a subsequence {kj}

such that the subseries I J?;.xk. converges in norm to an element
J 7l

J
x € X. Then,
Tz, =L < Ty, JIg x, >
F 1kj i i kj kj
= <JtiT Y x>
= <ty Tx> » 0
_l
since /tiyi + 0 . Thus, [zij] is a X-matrix.



4. The Uniform Boundedness Principle

In this section we discuss the well-known Uniform Boundedness
Principle (UBP). We give a proof of the UBP based on the Basic Ma-
trix Theorem (2.2) instead of the familiar Baire Category proof which
is so often given {(cf. for example, {191, [38] II.1.11). By employ-
ing matrix methods we are actually able to establish a version of the
UBP which is valid with no completeness assumptions and which yields
the classical UBP for F-spaces as an immediate corollary. In order
to indicate how the general UBP can be used in the absence of com-
pleteness, we derive a version of the Nikodym Boundedness Theorem of
measure theory from the general UBP.

We first state the classical UBP for normed spaces in order to

motivate the discussion of the general UBP.

Theorem 1. Let X be a B-space. If (Ti} c L(X,Y) 1is pointwise
bounded on X, then (T;} 1is uniforaly bounded on the |l ||-bounded

subsets of X.

The conclusion of the norm version of the UEP is usually written
in the form : (IlTiII) is bounded, where }|T|| 1is the operator
norm of T. This conclusion clearly implies the conclusion in Theo-

rem 1 since if B € X is bounded, then

HT;xI1 < sup [T 1] sup |Ix|]
i B

for each i and x € B.
It is well-known that the conclusion in Theorem 1 is false if
the completeness assumption on X is dropped. For example, the se-

1

= iti is pointwise bounded but not uniformly bounded on the bounded

quence of linear functionals ({f.} definedon ¢ by <f{,, {tj} >
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subset {ej : JEN} of ¢

Thus, if one is to seek a version of the UBP which is valid for

.
o0

arbitrary normed spaces X, the family of bounded subsets of X is
too large to insure that a pointwise bounded sequence of operators is
uniformly bounded on each member of the family. It would be desir-
able to have a family of subsets of X with the property that a
pointwise bounded sequence of operators is uniformly bounded on each
member of the family. In order to be interesting this family should
be as large as possible, and it would be of interest to find a family
of sets which coincides with the family of bounded sets when the
space X 1is complete. It is shown in Corollary 4 that the family of
X bounded sets has this property.

We first establish our general UBP. If T < L(X,Y), let =(I')
be the weakest topology on X such that each member of I' is con-
tinuous; thus, a sequence {xj} in X converges to 0 in T(I) if
and only if ij + 0 for each TE€TI'. In order to shorten the nota-
tion we write TI'- X bounded (I'- X convergent) for 7(I')- K bounded

{(7(I')- X convergent).

Theorem 2. Let X,Y be metric linear spaces and let Ti € L(X,Y)
be such that {Tix} is bounded for each x € X. Then

(i) {T;} 1is uniformly bounded on {Ti}- X convergent sequences
and

(ii) {T;} 1is uniformly bounded on {11~ X bounded sets.

Proof: If (i) is false, there is a balanced neighborhocod U of O
in Y and a (T;}- K convergent sequence (xj) such that (Tixj} is
not absorbed by U, Thus, there exists positive integers my and ny

such that Tmlxn1 ¢ U. Set kl = 1. Then by the pointwise bounded-

ness and the fact that lim Tixj = (0 for each 1, there exists
J
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ky > kg such that {Tixj : 1 €1 g n, 1gj<=»} U {Tixj : 1 g1 <

w, 1€j% nl) c k2 U. By assumption, there exist m,y and n,

such that T

X
my Ny

ing this construction produces subsequences {mi}, {n;} and {k;}

¢ k2 U. Note that m, > my and ny > n,;. Continu-

such»that Tmixni ¢ kiU. If t; = llki, then (ti} € o

Now consider the matrix [tiTm.xn.]' By the pointwise bounded-
i

ness assumption and the ({T;}- X convergence of the sequence {xj).

this is a X matrix. Hence, by Theorem 2.2, lim t.T_x. = 0,
i i'm;"ny

Thus, ty Tm.xn. € U for large i. This contradicts the construction
i

and establishes (i).

For (ii}), let B be (Ti}° X bounded. To show {TiB} is
bounded, as in part (i), it suffices to show {Tixi) is bounded for
each (xi} cB. Let (t ,}€ o Then (Jltil xi} is {Ti}- X

convergent so part (i) implies {Ti(JltiI x;)} is bounded. Hence,

lim ] T, %)) = lim It;1T;x; = 0 so that (T;x;} is bounded.

Note that the conclusion in Theorem 2 is much sharper than the
conclusion of the classical UBP in the sense that the family of sub-
sets of X where the given sequence {Ti) is uniformly bounded
depends very much on the particular sequence {Ti}. Indeed, given a
sequence {Ti}’ the family of (Ti)- X convergent sequences (T, }- X
bounded sets) may even contain subsets of X which are not norm-
bounded. (It is easy to check that if a family of subsets of a
normed space X has the property that any pointwise bounded sequence
of continuous linear functionals on X 1is uniformly bounded on each
member of the family, then each member of the family is a bounded

set. Indeed, if {xi} is an unbounded sequence in a normed space
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X, pick x; € X such that <x;, x;> = ||xi|| and leill = 1. Then
(x;) is uniformly bounded on bounded subsets of X but is not uni-

formly bounded on the sequence (xi).) For example, the sequence

{i ezi} in 21 = (c_.) is pointwise bounded on c¢__ and is also

uniformly bounded on the unbounded subsct {j €241 J €N of
c,..-

In order to obtain the largest possible family 3 with the pro-
perty that each pointwise bounded sequence of operators is uniformly

bounded on each member of 3, we use the 7(L{X,Y)) tcpology of X.

Corollary 3. Let ({T;} ¢ L(X,Y) be pointwise bounded. Then
(i) {Ti} is uniformly bounded on L(X,Y)- K convargent se-~
quences and

(ii) {Ti} is unifermly bounded on L(X,Y)- X bounded sets.

It is worthwhile noting that the families of X convergent se-
quences ( X bounded sets) in Theorem 2 and Corollary 3 are in general
not the same. That is, for certain topologies these families can be
different. For example, in m, the scquence (ei} is (ui}- X con-
vergent for any given sequence {ui} in ba = m; by Drewnowski’s
Lemna. However, (ei} is not ba- X convergent since given any sub-
sequence {nk} of positive integers, there exists a finitely addi-

tive measure £ on the power set P of N such that u(g(nk}) =1

and u({nk}) = 0 for each k. (The existence of such a measure
can be shown as follows: Let f be the one-one map k » ny from N
onto {nk : kEN =R, Let 0 be a0-1 finitely additive measure
on P (i41] p. 358, 20. 38). Define p by u(A) = (£ 1(A)). Then
p(R) =1 but p({n)) =0 for each k.) Thus, the family of (T}~
X convergent sequences in Theorem 2 is, in general, larger than the

family of L(X,Y)- K convergent sequence in Corollary 3.
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Since the T(L(X,Y)) topology of X 1is weaker than the natural

topology of X, we obtain immediately.

Corollary 4. Let {Ti} c L{X,Y) be pointwise bounded. Then
(i) {T;} is uniformly bounded on ||~ X convergent sequences
and
(ii) (T,} 1is uniformly bounded on 1= X bounded sets.

Since the families of norm bounded sets and X bounded sets co-
incide in B-spaces, Corollary 4 in particular contains the UBP for
B-spaces given in Theorem 1 as a Corollary. More generally, Corol-
lary 4 yields the UBP for X spaces as presented by Mazur and
Orlicz (1521, p. 169) (recall that a metric linear space is a X
space if every sequence which converges to 0 is a X sequence).
Again it should be noted that the notions of X convergent sequence
and K bounded set allow one to formulate versions of the UBP which
are valid in arbitrary metric linear spaces. This should be con-
trasted with the classical UBP as well as the version of the UBP
given by Mazur and Orlicz in [52].

Corollary 4 now yields immediately the classical UBP for F-

spaces.

Corollary 5. Let X be an F-space and let ({T;} ¢ L{X,Y) be point-
wise bounded. Then
(1) {T;} is uniformly bounded on |[-bounded subsets of X and

(ii) {T;} is equicontinuous.

Proof: Conclusion (i) follows from Corollary 4 (ii) since in a
complete space the families of bounded sets and X bounded sets
coincide.

To establish (ii), it suffices to show that Tixi + 0 whenever
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X; * 0 in X. Let X, * 0 in X and pick a sequence of positive
scalars (ti) such that t, > and tix; > 0. By (i), {Ti(tixi)}
is bounded. Consequently, (llti) Ti (tixi) = Tixi + 0 since
{17t} € c,.

The conclusion in (ii) is the conclusion in the usual statement
of the classical UBP for F-spaces {(cf. [38] II.1.11).

To indicate an application of the general UBP in Theorem 2, we
derive a version of the Nikodym Boundedness Theorem. The classical

Nikodym Boundedness Theorem is given in the following statement:

Theorem 6. Let ¥ be a o-algebra of subsets of a set S and let
#; + T >R be countably additive. If {n;(E}} is bounded for each
E € £, then {”i(E) : 1 €N, EEZL} is bounded.

This result is called "a striking improvement of the UBP" for
the space ca(X) by Dunford and Schwartz ({38} III.1.5). We recast
this theorem in a form which is more analogous to the usual statement
in the UBP and then indicate why the result does not follow from the
classical UBP.

Let S(I) be the space of all XI-simple functions equipped with

the sup~norm. Each *y induces a continuous linear functional fi on
S(2) via integration, <f;, y> = jyd“i' The dual norm of f 1is the

variation of p;, [e;|, on S, i.e. , [|If;l] = {u;1(S). This vari-
ation norm is, however, equivalent to the norm ||ui||' =
sup{lni(E)i : EE€ ¥Z}). In this notation, Theorem 6 takes the familiar
form: if {f;} is pointwise bounded cn S(X), then 1y is
bounded.

Note that this result is not cobtainable from Theorem 1 since the
space S(X) 1is not complete (or even 2nd category (66]1), We will

derive Theorem 6 from the general UBP given in Theorem 2.
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Actually, Darst (134]1) has shown that Theorem 6 is even valid for
bounded, finitely additive set functions, and, furthermore, it is
known that Theorem 6 is also valid for certain algebras of sets which
are not o-algebras ([67]1; see also Theorem 5.12). We will derive a
version of the Nikodym Boundedness Theorem for bounded finitely addi-
tive set functions on o-algebras.

For the proof of the Nikodym Boundedness Theorem, we require the

following "well-known" lemma ([37]).

Lemma 7. Let A be an algebra of subsets of a set S and let
By v A& » R be bounded and finitely additive. Then (ui(E) : i €N,
E € A} 1is bounded if and only if {ui(EJ) : i, j € N} is bounded

for each disjoint sequence (Ei} c A.

Proof: Suppose sup { |p;(E) | : i €N, E € A} = ». Note that for
each M > 0 there is a partition (E,F) of S and an integer 1

such that min { Iui(E) |, Iui(F) | } > M. (This follows since
| BE) | >M+sup { | u;(S) | : i €N} implies | p;(S\E) | 2
| i (E) | - | £ (S) | > M.) Hence, there exist i; and a partition

(E{,F{) of S such that min{ | uil(El) [, | uii(Fl) | } > 1.

Now either sup { | p;(HNE;) | : HE A, i EN} == or sup { |
p(HNF) | : HE A, i €N} = ». Pick whichever of E, or F,
satisfies this condition and label it B1 and set A1 = S\ Bl' Now
treat B1 as S above to obtain a partition (AZ’BZ) of B1 and
an i, > i, satisfying | uiz(Az) | >2 and sup { | p; (HNBy) :

HE A, i € N} = «. Proceeding by induction produces a subsequence

(ij} and a disjoint sequence (Aj} such that | ui_(Aj) | > j.
J

This establishes the sufficiency; the necessity is clear.
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The Nikodym Boundedness Theorem for finitely additive set func~

tions is given by

Theorem 8. Let I be a o-algebra and let B, 2 E > R be bounded
and finitely additive. If {ui(E)} is bounded for each E € I,
then (ui(E) : 1€ N, E€X} is boundad.

Proof: By Lemma 7, it suffices to show that {gi(Ej) : i, j ERN} is
bounded for each disjoint sequence {Ej} c . Let (Ej} be a dis-
joint sequence from I.

Let S(I) be the spuce of ZI-simple functions equipped with the

sup~norm. Each by induces a continuous linear functional fi on

S(zX) via integration, <fi’ &> = Iéd“i‘ Consider the sequence {CE.}
J

in S(X), where CE denotes the characteristic function of E. By
Drewnowski’s Lemma 1.1, any subsequence of {Ej} has a subsequence
(Fj} such that each {g;} 1is countably additive on the c-algebra

generated by (Fj). That is, {(Cg } is (f;})- X convergent in S(I).
J
By Theorem 2 (i}, (fi(CE.)} = (ui(Ej)) is bounded, and the result
J

is established.

Theorem 8 is also valid for measures with values in locally
convex spaces, and the vector version of Theorem 8 can easily be
obtained from Theorem 8 by employing the classical UBP ({341 I1.3.1).

The Nikodym Boundedness Theorem is also valid for measures
defined on certain algebras that are not necessarily o-algebras. For
example, see [67] and the remarks following Theorem 5.10.

In conclusion, it should also be noted that Corollary 4 cannot
be used in the proof of Theorem 8 given above since the sequence

(CE.} is clearly not || ||~ X convergent.
J



S. Convergence of Operators

In this section we consider two classical results concerning
convergent sequences of operators which are usually attributed to
Banach and Steinhaus. We first note that one of the results, usually
referred to as the Banach-Steinhaus Theorem, follows immediately from

the results on the UBP in section 4.

Theorem 1. (Banach-Steinhaus) Let X be an F-space and let

{T;} ¢ LIX,Y). If lim T;x = Tx exists for each x, then T : XY
1

is continuous and linear.

Proof: From Corollary 4.5, the sequence {Ti) is equicontinuous.

Let {xj) converge to 0 in X. Then, from the equicontinuity, we

have lim Tx. = lim lim T.x. = lim lim T.,x. = 0. Hence, T is
. . . J : N i)
J J 1 1 J

continuous.

We next consider another result which is sometimes attributed to
Banach and Steinhaus ([47] 39.5). This result also pertains to con-
vergent sequences of operators and is usually presented under either
barrelledness or completeness assumptions on the domain space. We
present a version of the result which is valid without any complete-
ness assumptions; the proof is again based on the Basic Matrix
Theorem instead of the familiar Baire category methods. Our general
result yields the classical result of Banach-Steinhaus for F-spaces
as an immediate corollary. To indicate an application of —our general
result, we use it to derive a version of the Nikodym Convergence
Theorem and also consider two classical results in summability due to
Hahn and Schur.

We begin by giving a statement of the classical result for
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F-spaces. The result is sometimes given for barrelled spaces as well

{1471 39.5).

Theorem 2. (Banach-Steinhaus) Let X be an F-space. If (Ti}

c L(X,Y) is such that lim Tix = Tx exists for each x € X, then
i

T is continuous and lim Tix = Tx converges uniformly for x
i

belonging to any compact subset of X.

Again it is well-known that this result is false if the com-
pleteness assumption is dropped. For example, the sequence (izei}
in 2' = (coo)' converges pointwise to 0 on c¢__ but the conver-
gence is not uniform on the relatively compact sequence {(llj)ej} c
c,,- Using the notion of X convergence, we formulate a version of
Theorem 2 which is valid in the absence of completeness and which
contains Theorem 2 as an immediate corollary. We will refer to

Theorem 3 below as the General Banach-Steinhaus Theoremn.

Theorem 3. (General Banach-Steinhaus Theorem) Let Ti € L(X,Y). If

lim Tix = Tx exists for each x € X, then lim T;x = Tx uniformly
i i

for x belonging to any {Ti)- X convergent sequence (xj) in X.
{T is not assumed to belong to L{X,Y).}

Proof: Let {xj) be (Ti}- K convergent. Consider the matrix
[Tixj]' By the pointwise convergence of (T;} and the {T;}- X con-
vergence of (xj). this is a X matrix. The Basic Matrix Theorem 2.2

implies lim Tixj = ij uniformly in j and establishes the result.
i

One can also introduce the notion of " X compactness” or " K
relative compactness™ and give a formulation of Theorem 3 which is

more analogous to the classical statement in Theorem 2. If (E,T)
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is a topological group, then a subset A of E is said tobe 7 - X

compact (T - X relatively compact) if every sequence in A has a

subsequence {xn') which is T - X convergent to an element
1

X € A(x € E). Using the notion of X compactness, the conclusion of
Theorem 3 can be sharpened to state:

lim T;x = Tx uniformly for x belonging to 7T({T;}) - X relatively

compact subsets of X .
Using Theorem 3 we can establish Theorem 2 as an immediate

corollary.

Proof of Theorem 2: It suffices to consider the case when the com-

pact subset of X 1is a sequence (xj}. From the compactness, it
suffices to consider the case when the sequence (xj} converges to
some x € X. The sequence {xj—x) is ]|- X convergent by the com-

pleteness of X so Theorem 3 implies that lim Ti(xj- x) = T(xj- X)
1

uniformly in j. Since lim Tix = Tx, this means lim Tixj = ij
i i

uniformly in j, and the proof of Theorem 2 is complete.
Since any sequence (xj} ¢ X which is ||- K convergent in X
is {Ti}_ X convergent, Theorem 3 also has the following corollary

which is perhaps more analogous to the statement in Theorem 2.

Corolliary 4. Let {Ti} c L{X,Y). If lim Tix = Tx exists for
i

each x € X, then lim Tixj = ij uniformly in j for any ||- X
1

convergent sequence (xj} in X.

Remark §. Notice that neither the scalar multiplication in X and
Y or the homogeneity of the operators Ti was used in the state-

ments or proofs above. Thus, the results above are actually valid
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for additive maps ’r-1 between two normed groups X and Y. It is
not known if the general versions of the results above for normed

groups have any useful applications.

In order to illustrate the utility of Theorem 3 we give an
application to a situation where completeness is not present. In
particular, we consider a classical result of Nikodym on convergent
sequences of measures ([381 III.7.4). This result of Nikodym, some-
times referred to as the Nikodym Convergence Theorem, is one of the
most useful results in measure theory, and the original result for
scalar measures has been generalized in several directions. For
example, the result has been generalized to vector-valued measures
and also to certain finitely additive set functions. We first con-
sider one of these generalizations, sometimes referred to as the
Brooks-Jewett Theorem ({241, [36]), to certain vector-valued finitely
additive set functions.

Let I be an algebra of subsets of a set S and let Y be a
locally convex metric linear space. A finitely additive set function

gL :Z»Y is said to be strongly additive (strongly bounded or

exhaustive) if lim u(Ej) = 0 for each disjoint sequence (Ej} c I

A sequence {ui} of additive set functions is said to be uniformly

strongly additive if lim ui(EJ) = 0 uniformly in i for each
J

disjoint sequence (EJ). A countably additive vector measure on a
o~-algebra is clearly strongly additive, and a uniformly countably
additive sequence of vector measures defined on a c-algebra is also
uniformly strongly additive. The Nikodym Convergence Theorem has
been generalized to strongly additive set functions by Brooks and

Jewett ([24], [36]); we first consider this generalization.

Theorem 6. Let XL be a o-algebra. Let By o I +Y be strongly
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additive. If lim ui(E) = p(E) exists for each E € Z, then
1

(i) p is strongly additive and

(ii) {p;} 1is uniformly strongly additive.

Proof: Let S{(Z) be the space of I-simple functions equipped with
the sup-norm. Since each [ is bounded, each ’y induces a con-

tinuous linear operator Ti : S(£) + Y by integration, Ti¢ = Js¢dui.

(Note that even though Y is not assumed to be complete there is no
elaborate integration theory required here since only simple func-
tions are being integrated.) Let (Ej) be a disjoint sequence from

¥. Consider the sequence (G} in S(X), where CE denotes the
J

characteristic function of E. By Drewnowski’s Lemma 1.1, this

sequence is {Ti}- X convergent. By Theorem 2,
lim T, ( )
in T,(Cg

lim T.(C. )
i UE;

lim ui(EJ) = u(EJ) uniformly in j. Since
i

lim p,(E;) = 0 for each i, we have lim p,(E.) =0
i b i b

uniformly in i. This establishes (ii).
For (i), note that from the uniform convergence,

lim p(E;) = lim lim . (E.) = lim lim p.(E.) = 0 so that p is
S T

strongly additive.

Remark 7. Note that Theorem 6 can be established directly from the
Basic Matrix Theorem without referring to Theorem 2 by considering
the matrix [ui(Ej)] and invoking the Drewnowski Lemma. The
original version of the Brooks-Jewett Theorem was established for
B-spaces whereas the version above does not assume completeness and

is valid for locally convex metric linear spaces (see also [361).

We now establish the usual version of the Nikodym Convergence
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Theorem for vector-valued measures. A sequence {ni} of countably

additive Y-valued measures, By o L +»Y, is said to be uniformly

w
countably additive if lim ¥ ui(Ej) = 0 wuniformly in i for each
n  j=n

disjoint sequence {Ej}. For the Nikodym Convergence Theorem, we

require the following criteria for uniform countable additivity.

Lemma 8. Let I be a o-algebra. Let By ot L+ Y be countably
additive. The following are equivalent:

(i) {g;} is uniformly countably additive

(ii) for each decreasing sequence {Ej} from I with

NE. =¢g, limup.(E.) = 0 uniformly in 1i.
J j 1]

(iii) {p;} is uniformly strongly additive.

Proof: (i) and (ii) are clearly equivalent for countably additive
measures and (i) clearly implies (iii).

Suppose (iii) holds and (ii) fails to hold. Then we may assume
{by passing to a subsequence if necessary) that there exist a
decreasing sequence {Fj} with 0N Fj =¢g and a & > 0 such that
| #;(F;) | > 8 for each i. There exists k; such that

| ul(Fkl} | < 8/2. Then there exists a k, > k; such that
| pkl(sz) | < 8/2. Continuing by induction produces a subsequence
{k.} such that | p, (F }y | < 872, If E.=F,_ \F .
J ki Kje b kg Tk
then (Ej) is a disjoint sequence from X with

Iy, (ES}Y 12|y (Fp, ) | = gy (F ) | > 8/2. But this means
k; Py kP kP iy

that {g;} 1is not uniformly strongly additive.
We now obtain immediately the Nikodym Convergence Theorem for

vector-valued measures ([38] I111.7.4).
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Theorzm 9. Let X be a o-algebra. Let By s £ »Y be countably
additive. If lim ui(E) = u(E} exists for each E € £, then
1

(i) p 1is countably additive and

(ii) {m;} is uniformly countably additive.

Proof: (ii) follows from Theorem 6 (ii) and Lemma 8.
For (i), let {Ej} be a disjoint sequence from X. Then
from the uniform countable additivity in (ii), we have
o m n n
p(U E)=limp (U E,) =lim lim ¥ u.(E.) = limp( U E.)
j=1 J i tg=r i n =1 Y J n  j=1 J
so that (i) holds.
We now show that a version of the classical Vitali-Hahn-Saks
Theorem (VHS) can be obtained from the results above. If

A:X>» [o,o] 1is a non-negative (possibly infinite) set function and

p:IL»>Y, we say that p 1is absolutely continuous with respect to

A (written p < < A) if for each ¢ » 0 there exists & > 0
such that | p(E) | < € whenever E € £ and XA(E) < 8. (That is,
we use the €-8 notion of absolute continuity.) If {ui} is a
sequence of Y-valued set functions, {“i} is said to uniformly

absolutely continuous with respect to X\ if the 6 in the defini-

tion above works for each [ Using Theorem 9 we obtain a version
of the VHS Theorem for countably additive measures from Theorem 9

({381 111.7.2).

Theorem 10. Let I be a o-algebra. Let By 1 D Y be countably
additive and let X : I » [o,»] be countably additive. If

By << A for each i and if lim ui(E) = p{(E} exists for each
1

E€ Z, then
(i) p << A

(ii) (ui} is uniformly absolutely continuous with
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respect to A.

Proof: First note that if {Ej} is a decreasing sequence from I
with E =0 Ej and A(E) = 0, then 13m ui(Ej) = 0 uniformly in 1i.
For {Ej \ E} 1is a decreasing sequence with empty intersection so
Theorem 9 and Lemma 8 imply that
1§m ”i(Ej \ E) = 1§m (ui(Ej) - ui(E)) = 1§m ui(EJ) =0
uniformly in 1.

Now suppose that (ii) fails to hold. Then there is an € > 0
such that for each &8 > 0 there exist 2 positive integer k and
F € £ such that | i (F) | 2 € and MF) < 8. Put 6, =1, k=1
and F1 = ¢. Then we may inductively define a subsequence (kj} and

sequences {Fj} c £ and (6j} c R, such that

B4 <852, | pkj+1(F.+1) | > e MFj,)) <6502

J+l J

and | By 1(E) | < €/2 whenever XA(E) < 6j+1' Set E:= U Fp.
j+

Then, by the countable subadditivity,
(1)

)\(Ej \ Fj) € X(Ej+1) € I MF <

5,/2 < I 5./2K7 3%l 5.
k=j+1 J J

k=]j

W™M8

k=j

so that p (E.,; \F.,.) <e€/2. But | pu (F.,{) | =
kj+ Jj+1 Jj+l ka"_1 J+1

1

i n (E..,;) - & (E.., \F...) | > e so that
kj+1 j+1 kj+1 j+1 j+1

(2) |y By | 3 er2,
j

But (Ej} is decreasing and if E =N Ej' then AE) =0 by (1).

By the observation in the first paragraph lim ui(Ej) = 0 uniformly
J

in i. But this contradicts (2) and (ii) follows.

Condition (i) follows immediately from (ii).
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The Nikodym Convergence Theorem, the Vitali-Hahn-Saks Theorem
and the Nikodym Boundedness Theorem have also been generalized to set
functions with domains which are not necessarily o-algebras. 1In
Schachermayer’s treatise ([67}) these results (and others) are
treated in detail, and we refer the reader to [67]) for more complete
details. To give a further application of our matrix methods we show
that the Brooks~Jewett Theorem 6 is valid for bounded, finitely
additive scalar set functions which are defined on quasi-o-algebras.
(In [67], Schachermayer refers to the conclusion of Theorem 6 as the

Vitali-Hahn-Saks property instead of as the Brooks-Jewett property.)

Definition 11. A family A of subsets of a set S is called a

quasi-c-algebra if A 1is an algebra of sets such that each disjoint

sequence {Aj} from A has a subsequence {Ak‘}
J
such that U A, € A ([281).
J

This property (for Boolean algebras) is also considered in [40]

under the name, subsequential completeness property; a slightly

weaker form of this property is referred to in [67] as property (E)
([67] 4.2).

Theorem 12. Let A be a quasi-o-algebra and let By A+R be a
bounded, finitely additive set function for each i € N. 1If
lim g, (A) = p(A) exists for each A€ A, then {g;} 1is uniformly

strongly additive.

Proof: First assume that each Ky is countably additive. Consider
the matrix Z = [”i(AJ)]' where (Aj) is a disjoint sequence from
A. From the assumption that A 1is a quasi-o-algebra and the count-
able additivity of the {ui}. it follows that Z 1is a X -matrix.

Hence, from the Basic Matrix Theorem, lim pi(Ej) = 0 uniformly for
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i €E N, and the result is established for this case.

Consider the case when the k; are only finitely additive. If
the conclusion fails, we may assume (by passing to a subsequence if
necessary) that there exist € > 0 and a disjoint sequence (Aj)

from & such that
(3) | mi(A) | > e.

Let ¥ be the o-algebra generated by #A. Extend each Ly toa
bounded, finitely additive set function By on E. By Drewnowski ‘s

Lemma there is a subsequence (Ak.) of {Aj} such that each g, is
J
countably additive on the o-algebra, I , generated by the {Ak.}'
J

By the quasi-o-algebra assumption, we may also assume that

Put AA ={BNA:B€A}). Then & =4, NI is a quasi-
o-algebra of subsets of A. Each T is countably additive on &
and lim ui(B) = p(B) exists for each B € & . Therefore, by the

first part, lim ”i(Ak,} = 0 wuniformly in 1i. This contradicts (3).
J J

In the terminology of [67]1, any quasi-o-algebra has the Vitali~
Hahn-Saks property (compare with [67] 4.3). Theorem 12 also gives an
improvement of Proposition 1.B of [40] for quasi-o-algebras of sets.

In an entirely similar fashion, the Nikodym Boundedness Theorenm
can also be shown to hold for quasi-o-algebras (see [28] Theorem
1.7). In [67] it is shown that the Vitali-Hahn-Saks property always
implies the Nikodym Boundedness Property, so we do not give the proof
(1671 2.5).

To further illustrate the applicability of the General Banach-
Steinhaus Theorem we consider a result in classical summability due

to Schur ({50] 7.1.6) Let A = [a..] be an infinite matrix of real

ij
numbers. The matrix A is said to be of class (Rm,c) if
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{jgl aij xj}i is a convergent sequence for each sequence
X = (xj) € 2°. That is, if ¢ 1is the space of all real sequences
which converge, the formal matrix product Ax produces a sequence in
¢ for each sequence x € £7. The classic Schur Theorem of summabil-
ity gives necessary and sufficient conditions for a matrix A to be
of class (27,¢). In his treatment of the Schur Theorem, Maddox
makes the remark that his proof is "classical™ and that no functional
analytic proof of the theorem seems to be known ([S501, p. 168). We
will give a proof below (of a more general summability result due to
Hahn [39], [681) based on the General Banach-Steinhaus Tuneorem; in
the terminology of Maddox this might be considered a "functional
analytic proof”.

Recall that m_ is the subspace of 2® consisting of those
sequences with finite range. We say that a matrix A 1is of class
{m ,c) if Ax € ¢ for each x € m . We give a characterization of
matrices A of class (m_,c).

We first require a lemma. Note that a sequence of real series

L | 2 | converges uniformly in i if and only if for each € > 0
J
there exists N such that | X a.,. | <€ for each finite set o

j€o M

with min o 2 N and each i. (This is immediate since if the condi-

o
tion above is satisfied, then X l a.. | €2 € for each i

j=N M
(1611 1.1.2.).).

@

Lemma 13. Let X | 35 | <= for each i. If the series

Jj=1
| 2, ; | do not converge uniformly in i, there exist € > 0, a
J

disjoint sequence of finite sets {o;} and a subsequence {k;}

such that | L a, ; | >e for each i.
j€o; Tid
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Proof: By the observation concerning uniform convergence above, if

i 3 ; | doesn’t converge uniformly in i, there exists € > 0 such
J

that for each i there are finite o; ¢ N and a positive integer k

with min o; > i and | & ap | 3 €.
j€o;  id
Applying the observation above to i1 =1 implies that there
exist a positive integer kl and a finite set o, such that

] .E akljl > €. There exists j; such that
Jeo,

(4) | a,

i | <e¢ for 1 i g 3}

nMs8

=i
Applying the observation in the paragraph above to the integer
max{max oy + 1, jl} = 12 implies that there exist a positive integer
k2 and a finite set o, with min oy > i2 such that
| a, : | > e. Note that o; and o, are disjoint and by

j€o, 23
(4), kz > k.

Induction then produces the sequences in the conclusion of the
lemma.

We now establish the summability result of Hahn.

Theorem 14. A€ {mo,c) if and only if

(iy = | aijl converge uniformly in 1
J
(ii) lim a;, = a; exists for each j.
i J J

Proof: We prove first that conditions (i) and (ii) imply that
A€ (2%,¢c) so that in particular, A€ (m_,c). Let {xj) €2,

where we may assume ]le €1 for each j. Let € > 0. By (i),

m
there exists N such that m 2> n > N implies I_Z a, .x. | < e.
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oo

m
Thus, by (ii), } Z a.x. | € € so that the series ¥ a.x, con-
j-_-nJJ j=13‘}

verges. We now have,

© @ N=-1 @
L X, - x. | g .- a. .- oal.)x.
(5) IjzlaleJ jEIaJxJ | \jgl | 3~ 3 | + IjEN(alJ al)le
N-1

Since the first term on the right hand side of (S5) can be made less
that € for i large, this shows that
. ® @ N ©
l;m jflaiixi = jElajxj , i.e., AE (£ ,c) .
If A€ (m_,c), then (ii) holds by taking x = €; €Em.
Suppose that A € (m_,c) and that (i) fails. Let the notation

be as in Lemma 13 and consider the sequence {C; } in m_ . Each row
J

{aij}§=1 of A induces a continuous linear functional R; on m by

=
R.x= I a

i & ij X . where x = (xj). and lim Rix = Rx exists. The

J’ i

sequence (C_} is p1- X convergent in the duality between El and
‘]

o, . Therefore, by the General Banach-Steinhaus Theorem 3,

limR.(C_)=1lim £ a,,  =R(C, }) = Z a, uniformly in j. This
i 19 i kEo; ik °'  Eo, k
implies lim I Ay = 0 uniformly in i and contradicts the con-
J k€o.
J
clusion in Lemma 13.
Theorem 14 hdas as an immediate corollary the summability result
of Schur, i.e., A€ {(£7,c) if and only if (i) and (ii) hold. We

record these equivalences for later reference ([68]1).

Corollary 15. The following are equivalent:
(a) A€ (%)
(b) AE (m_,c)
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(c) (i) and (ii) of Theorem 14 hold.

A consequence of the Hahn-Schur summability result is another
result due to Schur which states that a sequence in ﬁl is norm con-
vergent if and only if it converges in the weak topology of 21 ([50]
p. 170). Theorem 14 can be used to give an improved version of this
result: a sequence in 21 converges in norm if and only if it is a
Cauchy sequence with respect to the weak topology O(El,mc) induced

by the subspace m_ of 2% .

To see that Theorem 14 yields this result, let x; = (aij}?=1
be a sequence in 21. Note that the sequence {xi} is a Cauchy
sequence in the weak topology o(zl,mo) iff the matrix [aij] = A

belongs to (m_,c). Thus, if the sequence {xi} is o(Ql.mo)-
Cauchy, the matrix A satisfies conditions (i) and (ii) of Theorem
14. Let x = {aj) be the sequence given by (ii). We claim that x

belongs to 21 and lixi - xﬂl + 0. Let € > 0. By (i), there

exists N such that I |a..| <€ for all i € N. Then from (ii)

j=N 1
P ™
it follows that for P> N, I J|a.| € ¢ and, hence, r Ja.| € €.
o J - J
J=N j=N
In particular, this shows that x = {aj) belongs to 21. Now, from

(ii), there exists M such that Iaij

1 < j<N-1. Hence, if i 2> M, we have

- ajl <e /N for i M and

@ N"l

[+ o
T | -a.| g L Iaij - ajl + L |aij| + I IaJI <3e,

PR S LR j=N j=N
and, therefore, X; > X in Rl—norm. Of course, any norm convergent
sequence converges with respect to o(zl,mo).

In Chapter 8, Theorem 1, we establish a version of this result
for group-valued sequences and show that the abstract group version
yields the result above (Corollary 8.2).

In Chapter 8, we also consider and establish versions of the

summability results of Schur and Hahn for matrices whose entries are
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elements of a Banach space (Theorem 8.5). Another vector version of
the summability result of Schur is given in Corollary 9.5_for bounded
multiplier series in an F-space.

We conclude this section by indicating that another classical
result in summability due to Toeplitz can also be derived from the
Generalized Banach-Steinhaus Theorem. A matrix A = [313] is said
to be of class (c,c) if Ax € c for every x € c , and A is said

to be regular if A is convergence preserving, i.e.,

lim x. = lim Z a. .X. for x = {x.}) € ¢ . The result of Toeplitz
i 1 i j=1 1579 1

gives necessary conditions for a matrix A to be regular ([501

7.1.3); the necessary conditions are aiso sufficient (Silverman).

Theorem 16. The matrix A = {aij} is regular iff the following

conditions hold:

(i) sup Z la l < w
i j=1
(ii) lima.. = 0 for each j EN
i lJ
(iii) lim Z a.. =1
i =1 ij

Proof: The sufficiency of (i) - (iii), due to Siverman, are class-
ical, and we do not repeat the proof (see [50] 7.1.3).

The necessity of (ii) and (iii) are easily obtained by putting
x = e and x = {(1,1,...). We show how the necessity of (i} can
be established by utilizing the Generalized Banach-Steinhaus Theorem.
Suppose that (i) does not hold. Then there exists a sequence, {oi},

of finite subsets of N such that max o; < min o, and

i+l

(6) sup | £ a,
i JEO i

Now each row ({a..}% of A induces a continuous linear functional

ij’i=1
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R, on ¢ by R;x = jElaijxj' where x = (xj} € ¢, and lim R;x = Rx

exists for each x € ¢ . The sequence (Cj } is ol - x convergent
J

in the duality between 21 and ¢ so by the General Banach-Steinhaus

Theorem 3,
limR(C_)=1lim L a,, =R(C_ ) = T a
i i °j i k€o.1k oj kEo-k
J J
uniformly in j. Since lim X a;, = 0, we have lim T ap = 0,
i k€oj i ko,

and this contradicts (6).



6. Bilinear Maps and Hypocontinuity

In this section we consider bilinear maps and use the Basic
Matrix Theorem to derive a classical result of Mazur and Orlicz on
the joint continuity of separately continuous bilinear maps. We also
present some results pertaining to the hypocontinuity of bilinear
maps. OQOur initial results do not use the vector space structure of
the spaces involved and so are valid for normed groups. Many of the
results in this section are contained in [75], but the results pre-
sented here are slightly more general.

lLet E,F and G be normed groups and let b : ExF > G be 2
biadditive map (i.e., the functions b(x,:) : F » G, b(x,-){y)
= b(x,y), and b{-,y) : E» G, b(-,y)(x) = b(x,y), are additive for
each x and vy).

For bilinear maps between topological vector spaces, Bourbaki
has introduced the notion of hypocontinuity which lies between sepa-
rate continuity and joint continuity for bilinear maps. We define an
analogous notion for biadditive maps between topological groups and.
establish some results on the hypocontinuity of such maps.

If X 1is a family of subsets of F, b 1is said to be

X-hypocontinuous if for each neighborhood V of 0 in G and each

N € R, there is a neighborhood U of O in E such that

b(U,N) ¢ V. Since the groups involved are metrizable, this is
equivalent to the following condition: if x; » 0 in E and NE€ R,
then lim b(xi,y) = 0 wuniformly for y € N.

Let o(E,F) be the weakest topology on E such that each addi-
tive map b(-,y), y € F, is continuous. (The topology o(E,F) also
depends upon G and b, but this is suppressed in the notation and
should cause no difficulties.} o(F,E) is defined similarly. The

family of all o(E,F)~ X convergent sequences in E is denoted by
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X(E,F) (X(F,E) is defined similarly).

We now state our first result; it is essentially a restatement

of Theorem 5.3 for this particular setting.

Theorem 1. Let b be separately continuous. If X; 0 in o(E,F)

and (yj) is o(F,E)- X convergent, then lim b(xi,yj) =0
1

uniformly in j.

Proof: Consider the matrix [b(xi.yj)l. From the facts that b is
separately continuous, x; + 0 in o(E,F) and (yj) is o(F,E)- X
convergent, it follows that this matrix is a X matrix. The Basic
Matrix Theorem 2.2 gives the result.

We now present several hypocontinuity-type corollaries of

Theoren 1.

Corollary 2. Let b be separately continuous. Then b is
X(F,E)-hypocontinuous.

Proof: This follows immediately from Theorem 1 since if x; + 0
in E, then X * 0 in o(E,F!}.

Let X(F) be the family of all X convergent sequences in F
(with respect to the original topology of F). Since the metric

topology of F is stronger than of(F,E), X(F) c XK(F,E), and we have

Corollary 3. Let b be separately continuous. Then b is
X(F)-hypocontinuous.

Corollary 3, which is a result concerning only the original
topologies on E and F, now yields the following very interesting

generalization of a classical result on joint continuity.
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Corollary 4. Let b be separately continuous and let F be com-

plete. Then b 1is continuous (i.e., jointly continuous).

Proof: Let x; » 0 (y; » 0) in E (F). Since F is complete, {y;}

is K convergent. By Corollary 3, lim b(xi,yj) = 0 wuniformly in
i
j. In particular, lim b(xi.yi) =0, i.e., b is continuous.
i

For the case of metric linear spaces, Corollary 4 seems to be
originally due to Mazur and Orlicz ([51]1). The result seems to have
been rediscovered many times and is sometimes attributed to Bourbaki
([22] 1S.14) although the Bourbaki version requires the completeness
of both of the (metric linear) spaces E and F. Baire category
methods are usually utilized in the proofs of Corollary 4 found in
the literature (cf [22] 15.14) as contrasted with the matrix methods
used above. In the absence of completeness there do not appear to be
any hypocontinuous-type of results of the nature of Corollaries 2 and
3. Of course, it should also be noted that the results above are
valid for normed groups whereas the classical results pertaining to
bilinear maps in the literature consider the case of (complete)
metric linear spaces.

As an interesting application of Corollary 4, we consider the
definition of a metrizable linear space due to Banach ([20], [46]
15.13). Banach developes a theory of metrizable linear spaces under
the following set of axioms which (formally) appear to be weaker than
those for a metric linear space. Let X be a vector space with a
translation invariant metric d defined on X which satisfies the
following properties:

(a) t x>0 for each x€X if t >0

(b) tx, + 0 for each scalar t if x -+ 0

(c) X is complete with respect to the translation invariant

metric d.
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It can be shown that the vector space X under the topology
induced by d 1is actually a topological vector space {([46] 15.13) if
axioms (a) - (c) are satisfied. Using Corollary 4, it follows
immediately that if X satisfies only axioms (a) and (b), then X
is a toplogical vector space, i.e., the completeness in (c) is not
necessary. The proof of the fact that X 1is a topological vector
space given in [46] uses the Baire Category Theorem and, therefore,
will not yield the result in the absence of axiom (c}.

A somewhat similar discussion concerning quasi-normed spaces is

carried out in [80] I.2. If X 1is a vector space, a quasi-norm on

X 1is a non-negative function || || on X satisfying:
(1) |1 x}] 20 and || x ]| =0 iff x=0
2) Hx+yll<silx|l+1lyll
3 It =-x1]l=11x1{1

and (a) and (b). It is shown in [80] I.2.2, that any quasi-normed
space is a topological vector space. The method of proof in [80]
relies on results of measure theory and should be contrasted with the
elementary matrix methods employed above.

We now consider the case when the spaces E, F and G are top-
ological vector spaces, i.e., in our case metric linear spaces. In
this case, the analogues of Corollaries 2 and 3 are valid for the
family of X bounded sets. We let b : ExF > G be a bilinear
map and retain the previous topological notation. Further, let
KE(E,F) be the family of all o(E,F)- X bounded subsets of E
(similarly for X((F,E)), and let X{(E) be the family of all X
bounded subsets of E (similarly for Xt{(F)). We then have the

following analogue of Corollary 2 for X bounded sets.

Corollary S. Let b be separately continuous. Then b is
Xt (F,E)-hypocontinuous.
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Proof: Let xj + 0 in E. It suffices to show that lim b(xi,yj) =0
i

uniformly in j for each o(F,E)- X bounded sequence {yj} c F.
If this condition fails to hold, there exist a o(F,E)- X
bounded sequence (yj} and an € > 0 such that for each i there

exist k; > i, j; with |blx, , y; )| » e. In particular, if
i i

i, =1, there exist k; and j; with |b(x, , y. )| > €. Now since
1 1 1 k' Vi

1§m b(xi,yj) = 0 for each j, there exists i2 such that
i

lb(xi.yj}l <e for i3 i, and 1< j € j;. For i, there exist
k, > i, and j, such that |b(xk2, yjz)l >e. Thus j, > jg.

This construction can be continued to produce subsequences {ki} and

{j;} such that lb(xk., yj.)l > €. Thus, it suffices to show that
i i

lim b{xi.yi) = 0 for each sequence X; * 0 in E and each o(F,E)-X
bounded sequence {y;}.

Pick a sequence of positive scalars {ti} such that t; » =
and t;x; » 0. Then ({(1/t;)y;} is of(F,E)- X convergent so Corol-
lary 2 implies that lim b(t;x;, (1/t;)y;} = lim b(x;,y;) =0, and
the result is established.

Since Xt (F) < XK¢(F,E), Corollary S has the following corollary

for the original topologies of E and F.

Corollary 6. Let b be separately continuous. Then b is
K(F)-hypocontinuous.

In particular, if F is complete, Corollary 6 implies that b
is Xt(F)-hypocontinuous when E£(F) is the family of all bounded
subsets of F (1221, [471).

Note that there are no completeness or barrelledness assumptions

in either Corollary S or 6. The typical result in the literature
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asserting some type of hypocontinuity has some sort of completeness
or barrelledness assumption on the spaces involved (for example, [47]
40.2).

We next consider some results for sequences of bilinear mappings
on the topological vector spaces E and F. OQur results give a gen-
eralization of a result of Bourbaki for equicontinucus families of

bilinear maps ([22]1 15.14.3}.

Theorem 7. Let (bi) be a sequence of separately continuous bilin-
ear maps from E x F into G such that {b,{(x,y) : i} is bounded
for each (x,y) € E x F. Then {bi} is uniformly bounded on each
product A x BC E x F when

(i) A (B) is the range of a X convergent sequence in E (F).

(ii}) A (B) is a X bounded subset of E (F).

Proof: Consider (i). Let {xi}. (yi) be X convergent sequences
in E and F, respectively.

Fix y € F and consider bi(-,y) : E » G. This sequence of
continuous linear operators is pointwise bounded and, therefore,
uniformly bounded on X convergent sequences in E (Corollary 4.4).
Hence, {bi(xj,y) : i,j} 1is bounded for each y € F, i.e.,‘the
family of operators {bi(xj’ «) 1+ i,j} is pointwise bounded on F.
By Corollary 4.4, this family is wuniformly bounded on X convergent
sequences in F. Thus, {bi(xj’yk) : i, j, k} is bounded. This
establishes (i).

Condition (ii) is established in a similar fashion using
Corollary 4.4 (ii).

Theorem 7 can be viewed as a version of the Generalized Uniform
Boundedness Principle (Theorem 4.2) for sequences of separately con-
tinuous bilinear maps. (In this regard also see Corollary 15 below.)

For complete spaces we have the following
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Corollary 8. Let (bi} be as in Theorem 7. If E and F are
complete, then (bi} is uniformly bounded on products of bounded

subsets of E and F.

Proof: The corollary follows immediately from Theorem 7 since in
complete spaces a set is K bounded iff it is bounded.

Compare Corollary 8 with 40.4.9 of 1[47],

If E, F and G are normed spaces, the conclusion in Corollary
8§ implies that the sequence {bi} is equicontinuous since it is uni-
formly bounded on the product of the unit balls in E and F, and,
thus, in the case of normed spaces, Corollary 8 gives the Bourbaki
result in [22] 15.14.3.

We present an example which shows that the completeness assump-

tion in Corollary 8 cannot be completely dropped.

i
Example 9. Define b : L x ¢ o * R by bilx,y) =X x.y

o j=1 J

where x = (xi}. y = (yi). Then each bi is separately continuous,

J

and the sequence (b;} is pointwise bounded on 27 x Coo- 1f €€ [

is the constant sequence with a 1 in each coordinate, then

bi(e'fi) = i, where fi =
J
bounded on the product fe} x {f, : i € N}.

ej. so that the sequence {bi) is not
1

[ D

We next present another corollary which gives the general form

of the Bourbaki result given in [22] 15.14.3.

Corollary 10. Let {bi} be as in Theorem 7. If E 1is complete,

then lim bi(xj,yj) = 0 wuniformly in i for each sequence {xj} in
J

E which converges to 0 and each sequence {yj} in F which is X

convergent.
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Proof: If the conclusion fails, there exists a neighborhood U of 0
in G such that for each i there are positive integers m,, n > i

with b_ (x_  ,y_ ) & U.

For i, =1 there exist m, n; such that bml(xnl, ynl) ¢ u.

By Corollary 3 there exists i2 > 0y such that j 2 i2 implies

bi(xj'yj) €U for 1 g1i € m, . Now there exist n, > 12 and m,
such that bmz(xnz,ynz) € U. Note that my, >m; and n, > ny.

Thus this construction can be continued to produce two subsequences

{mi) and {n.} such that bm-( ) € U.

Xo 0y
i iRy

Pick a sequence of positive scalars {ti} such that tix, * 0
i

and t; » =. The sequence (tixn.) is X convergent by the complete-
1

ness of E so by Theorem 7, (bm.(t
i

ixni‘yni)} is bounded. Thus,

(1/t;)bg (¢

)= bm.( }) » 0 contradicting the construc-
1

X LY X, WY
in;*7ng n, 'n,
tion above.

Corollary 10 now yields the Bourbaki result ([22! 15.14.3) in

its full generality as an immediate corollary.

Corollary 11. Let {bi} be as in Theorem 7. If E and F are

complete, (bi) is equicontinuous.

Proof: Let X, > 0 in E and y; * 0 in F. By the completeness,

{yi} is X convergent. By Corollary 10, lim bi(xj’yj) = 0 uniformly
J

in i, 1i.e., (bi} is equicontinuous.
The example presented in Example 9 again shows that the com-

pleteness assumption in Corollary 11 cannot be completely dropped.

(The calculations given below in Example 13 show that the sequence

{b;} is not equicontinuous.)
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Corollary 10 also yields an analogue of the Banach-Steinhaus

Theorem for bilinear maps (see 4.5 and S.1).

Corollary 12. Let {bi} be separately continuous and such that
lim bi(x,y) = b(x,y) exists for each (x,y} EE xF. If E and F
1

are complete, then ({(b,} is equicontinuous and b is continuous.

Proof: The equicontinuity follows from Corollary 11. 1If xj > 0 in
E and v * 0 in F, then (yj} is X convergent by the complete-
ness of F so Corollary 10 implies that

lim b(x,,y.}) = lim lim b, (x.,y;) = 0, and b is continuous.
jJinlJJ

The sequence in Example 9 shows that the completeness assump-
tions cannot be completely dropped.

We now consider some results on separate equicontinuity for bi-
linear maps. If (b;} is a sequence of bilinear maps from

ExF+ G, then (bi} is right (left) equicontinuous if the family

of linear maps ({b,(x,-) : i} ({b;(-,y) : i}) is an equicontinuous
family of linear maps from F into G (E into G) for each x € E

(y € F). The sequence is separately equicontinuous if it is both

right and left equicontinuous.
We give an example of a sequence of bilinear maps which is left

equicontinuous but not separately equicontinuous.

Example 13. Let {bi} be as in Example 9. Fix y = {yj} € o0 and

n
assume that y. =0 for j2n. Then forizn b.(x,y) = I x.y.
J 1 j=1JJ
- n
for x = (xj} € 27 so that |[|b(-,y)|] € X ]yjl and, therefore,
J=1

{bi(-.y)} is equicontinuous. Hence, (bi) is left equicontinuous.

If e € 8° 1is the constant sequence with a 1 in each coordinate,
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then l!bi(e.-)l{ = i so that {bi(e,-)} is not equicontinuous.
That is, {bi} is not right equicontinuous and, therefore, not

separately equicontinuous.

We next observe that a left equicontinuous sequence of bilinear

maps is pointwise bounded.

Proposition 14. Let bi : ExF +» G be left equicontinuous. Then

{bi} is pointwise bounded.

Proof: Let (x,y) € E xF and (t;} € c,. Then t.x-» 0 in E so
that tibi(x,y) = bi(tix,y) + 0. Hence, (bi(x,y)} is bounded.

From Proposition 14, it follows that the conclusions of Theorem
7 and Corollaries 8, 10 and 11 hold for sequences of separately con-
tinuous, left equicontinuous bilinear maps.

Note that it follows from Corollary 4.5.(ii) that if {bi} is a
pointwise bounded sequence of separately continuous bilinear maps and

if E 1is complete, then {bi) is left equicontinuous. Combining

this observation with Proposition 14 gives the following corollary.

Corollary 15. Let {bi} be separately continuous. If E 1is com-
plete, the following are equivalent:
(i) {bi} is left equicontinuous

(ii) {bi} is pointwise bounded.

The sequence in Example 13 shows that the completeness assump-
tion on E in Corollary 15 cannot be dropped. (Reverse the spaces
© .
Coo and £ in Example 13).
Corollary 15 can be viewed as a version of the Uniform Bounded-
ness Principle for sequences of separately continuous bilinear maps.

(See Corollary 4.5.(ii).)
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We now establish a generalized version of 40.2.2 of {47] for
F~spaces. Since a left equicontinuous sequence of separately contin-
uous bilinear functions is pointwise bounded, the corollary below
follows immediately from Corollary 11. However, we give a direct

proof based only on the Basic Matrix Theorem.

Corollary 16, Let bi : ExF > G be separately continuous and left
equicontinucus. If E and F are complete, then {bi} is equicon-

tinuous.

Proof: Let {xj} and (yj} converge to 0 in E and F, respec-
tively.
Consider the matrix [zij] = [bi(xi’yj)]‘ By the left equicon-

tinuity lim zy5 = 0 for each j. 1If (mj} is any increasing
1

sequence of positive integers, by the completeness of F (mj) has a

subsequence {nj) such that the series I Yn. is convergent. By

J
the separate continuity, I zZi,. = b.(x., vy, ), and the left
- . it?ir % n.
J J J
equicontinuity then implies that lim I zh = 0. That is, the matrix
1] J
[Zij] is a X matrix. By the Basic Matrix Theorenm,

lim z,; = lim bi(xi'yi) = 0, and the result follows.

For the case of complete metric linear spaces, Corollary 16
gives a generalization of 40.2.2 of [47] where it is shown that any
separately equicontinuous sequence is equicontinuous. Note that the
result above uses only the equicontinuity in one of the variables.
The sequence in Example 13 shows that the completeness assumption
cannot be completely eliminated.

Finally, we conclude this section by considering a result on
uniform hypocontinuity of bilinear maps. Let {bi} be a sequence of

bilinear maps from E x F into G and let X be a family of sub-
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sets of F. The sequence {bi} is said to be X-equihypocontinuous

if given any neighborhood U of 0 in G and any N € X, there is
a neighborhood V of 0 in E such that bi(V,N) < U for all i.
We now establish the analogues of Corollaries 3 and S for

sequences of bilinear maps.

Theorem 17. Let bi : ExF > G be separately continuous and
left equicontinuous. Then (bi) is

(i) X(F)-equihypocontinuous and

{(ii) ZXt(F)-equihypocontinuous

Proof: For (i), it suffices to show that lim bi(xi'yj) =0 uni-
i

formly in j when x; » 0 in E and {yj} is X convergent in F.

Consider the matrix ( 1= [bl(x., yj)l. 1f (mj) is any subse-

Zij i

quence, then by the X convergence of {yj) there is a subsequence

{nj) of {mj) such that Iy, converges to an element y of F.
J

By the separate continuity I z;,. converges and
J J

limZz, = lim bi(xi' y) exists by the left equicontinuity. Since
1

1 J

lim zij= 0 for each j by the left equicontinuity, (zij] isa X
i

matrix. By the Basic Matrix Theorem, lim bi(xi' yj) = 0 uniformly
1

in j.

For (ii), it suffices to show that lim bi(xi’yj) = 0 uniform-
i

in j when X, > 0 in E and (yj} is K bounded. If this condi-
tion fails to hold, then, as in the proof of Corollary 10, there
exist a neighborhood U of 0 in G and subsequences (mi}. (ni)

such that bm.(xm‘.yn_) € U. Pick a sequence of positive scalars
1 1 1

m.

{ti} such that t, > and t;x =+ 0. Then (17t )y, b is X
1 1
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convergent so by the first part,

limb (t.x_, (1/t.)y_ ) =1limb_(x_,y_ ) = 0.
i omy o itmy i'ng i mom ot Yng

i
This gives the desired contradiction.

For the case when F 1is a complete metric linear space, Theorem
17 yields 40.2.3(b) of {471 (or Proposition II1.4.14 of [22]) as an
immediate corollary. That is, if F 1is complete, then {bi} is
equihypocontinuous with respect to the family of bounded subsets of
F. Note that only the equicontinuity in one of the variables is used
in this result. It is also worthwhile noting that Theorem 17 is
valid with no completeness or barrelledness assumptions, and also
that the non-locally convex case is covered in Theorem 17.

Finally, note that if both E and F are complete and {b;}
is a sequence of pointwise bounded, separately continuous bilinear
maps, then Corollary 1S and Theorem 17 imply that {bi} is equihy-
pocontinuous with respect to the family of bounded subsets of F.

(Compare with Exercise 40.8.c of [22].)



7. Orlicz-Pettis Theorems

In this section we consider the application of matrix methods
to Orlicz-Pettis type theorems. The classical Orlicz-Pettis Theorem
for normed spaces has been considered in section 3 as an application
of a result on X convergent sequences (3.7). The classical Orlicz~
Pettis Theorem guarantees that any series in a normed space which is
subseries convergent for the weak topology is actually subseries
convergent for the stronger norm topology. This result was original-
ly proven by Orlicz for sequentially weakly complete spaces ([55]1),
and the first proof of the result for general normed spaces which was
available to non-Polish speaking mathematicians was given by Pettis
(i591). An Orlicz-Pettis type of result is a theorem that asserts
that a series which is subseries convergent in some topology is
actually subseries convergent in some stronger topology. The liter-
ature abounds with such Orlicz-Pettis type results. We will present
several such results which can be obtained by matrix methods, but no
attempt will be made to give a complete survey of such Orlicz-Pettis
type results. For historical remarks and extensive references to
Orlicz-Pettis results, the reader is referred to [34] 1.6 or [31].

Recall that a series Exj in the topological group E is

subseries convergent if for each subsequence (xk_). the subseries
J

Zxk. converges in E. When there is more than one group topology
J

on E, we have the following criteria for subseries convergence in

both topologies.

Theorem 1. Let o be a group topology on E which is weaker than
the original topology of E and such that E has a basis at O

which consists of sets which are closed for o. If each series in
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in E which is subseries convergent for o satisfies limlxil = 0,
then each series in E which is subseries convergent for o 1is also

subseries convergent for the original topology.

For the proof of Theorem 1, see {771, II.1 or (301, IV.1.1.

We first consider the classical Orlicz-Pettis Theorem. This
result was derived in 3.8 as a corollary of a result on X conver-
gence; here we give a simple direct proof based on the Basic Matrix

Theorem.

Theorem 2. (Orlicz-Pettis) Let X be a normed space and let in
be subseries convergent with respect to the weak topology. Then Ix,

is subseries convergent with respect to the norm topology.

Proof: By replacing X by the closed subspace spanned by the {xi}.
we may assume that X 1is separable.
1
Let {xn } be a subsequence of (xi} and set s; = I X
i k=
We claim that (Si} is a norm Cauchy sequence. For this, let {pi}

be an increasing sequence of positive integers and

Pi+1
z, =s -s = I Xn s and note that it suffices to show
Pi+1 Pi  k=p;+1 "k
that ||zi|| + 0. For each i, pick z; € X such that ||z;|| =1
and <z;,z;> = ||Zi||' Since X 1is separable, by the Banach-Alaoglu

Theorem, {zi} has a subsequence {Zk.} which converges weak™ to an
1

element z' € X..

Consider the matrix [zij] = [<zk_,zk.>]. By the weak* conver-
1 J

gence of (zk‘} and the weak subseries convergence of Iz, the
1

matrix [zij] is a X matrix. The Basic katrix Theorem implies

that lim z,. = lim ||zk.|| = 0. Since the same argument can be
i
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applied to each subsequence of (zi} , this shows that Ilzill + 0.

Since (si) is norm Cauchy and weakly convergent, it follows
that in is norm subseries convergent.

The locally convex version of the Orlicz-Pettis Theorem follows
directly from Theorem 2 by simply applying Theorem 2 to each contin-
uous semi-norm on the space. That is, if X is a locally convex
space and if the series in is subseries convergent with respect to
the weak topology of X, then the series is also subseries con-
vergent with respect to the Mackey topology of X. 1In (78], Tweddle
has established a very general form of the Orlicz-Pettis topology for
locally convex spaces. We now give a result of somewhat the same
nature as Tweddle’s result which can be derived from the Basic Matrix
Theorem.

Let E be a locally convex space and let J be the family of
all series in E which are weak subseries convergent. Let G' be

the vector space of all linear functionals y on E such that

<y', Ix;> = & <y',xi> for all Ix; € 3. Clearly E ¢ G'. With
i i

’
respect to the natural duality between E and G , we have the

following Orlicz-Pettis type result.

Theorem 3. 1If Ix;, 1is weak subseries convergent in the locally con-
vex space E, then Ix; is subseries convergent with respect to the

topology of uniform convergence on o(G ,E)-Cauchy sequences in G .

Proof: Let {y;} c G be o(G',E)-Cauchy. Consider the matrix

[zijl = [<yi,xj>}. Now lim Z; 5 exists since (yj} is o(G ,E)-

Cauchy. For any subsequence {kj}, the sequence (I zik.} =
J J

} is o(G.,E)-Cauchy. Thus,

{<yj» Z x, >} converges since {y;
J J

(zij} is a X matrix. The Basic Matrix Theorem implies that
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lgm z;

. = 0 wuniformly in i, i.e., lim x; = 0 in the topology of
J

3 j
uniform convergence on o{G',E)~Cauchy sequences. Theorem 1 now
gives the result.

Tweddle’s Orlicz-Pettis result is somewhat different than
Theorem 3 and in some sense is the strongest type of Orlicz-Pettis
result that can be obtained for locally convex spaces. Tweddle shows
that if in is weak subseries convergent, then in is subseries
convergent with respect to the Mackey topology T(E,G'). Moreover,
he shows that T(E,G') is the strongest locally convex topology on
E such that every element of & is subseries convergent.

Although Tweddle’s result is more comprehensive than Theorem 3,
Theorem 3 is general enough to have some interesting consequences.

At this point we present an application of Theorem 3 to the scalar
version of the Nikodym Convergence Theorem for countably additive
measures. That is, we show that the Nikodym Convergence Theorem can
be viewed as an Orlicz-Pettis result. Let I be a o-algebra of sub-
sets of a set S and let By oG I » R be countably additive for each

i € N. Assume that lim “i(E) = u(E) exists for each EE L. Let
i

S(Z) be the vector space of all I-simple functions and let ca(E} be
all countably additive measures on L. Equip S(Z) with the weak
topology o{S(Z), ca{l)) = o from the natural duality between S(I)
and ca{X). If {Ej} is a disjoint sequence from X, the series

z CE. is o-subseries convergent in S(X). By Theorem 3, the series
J 3

is subseries convergent in the toplogy of uniform convergence on
o(ca({Z), S(X)) - Cauchy sequences. But, the sequence {1 is
ol{calf}, S(X)) Cauchy by hypothesis. This means that the series

b3 ui(Ej) converge uniformly in i, i.e., the (“i) are uniformly
J

countably additive. This is part of the conclusion in the Nikodym
Convergence Theorem (Theorem 5.9 (ii)). The other part of the con-

clusion (Theorem 5.9 (i)) follows from this.
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Notice that the analogue of Theorem 2 for the weak® topology is
in general false. For example, the series Zej in 2% is weak®
subseries convergent but certainly not norm subseries convergent.
Diestel and Faires have given necessary and sufficient conditions for
an Orlicz-Pettis result to hold relative to the weak™ and norm topo-
logies (1331). We derive the Diestel~-Faires result in its full
generality in section 10. At the present time we derive a somewhat
less general result that follows quickly from the matrix methods

employed up to this point.

Theorem 4. Let X be a normed space such that X contains no sub-
space isomorphic (topologically) to RI. If Ix; is weak™ subseries

] ¥
convergent in X , then Exi is norm subseries convergent.

Proof: For each i pick x; € X such that leill = 1 -and

<X, %>+ (1/1) > ||x;||. By a result of Rosenthal ({49) 2.e.5),

{xi} has a subsequence (xk.) which is weak Cauchy. Consider the
1

matrix [ z.,.] = [<x, , %, »]. Since {x.} 1is weak Cauchy and the
ij kj ki i
series ij is weak™ subseries convergent, Izijl is a X matrix.
The Basic Matrix Theorem implies that lim z;,, = 0 so that
1
lim llxiii = 0. Theorem 1 now gives the result.

The Diestel-Faires result mentioned above replaces the condition
that X contains no subspace isomorphic to Ql by the more general
condition that X' contains no subspace isomorphic to L. We con-
sider this more general result in section 10.

We next consider an Orlicz-Pettis result for compact operators
which is due to Kalton ((44)). If X and Y are normed spaces, let
K(X,Y) be the space of compact operators from X into Y. Recall
that the weak operator topology on Ki{X,Y) is generated by the semi-
norms T+ | <y, Tx>|, x€X, y €Y (1381 VI. 1.3). Kalton’s
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result is given in

Theorem S. Let I Ti be subseries convergent in K(X,Y) with re-
spect to the weak operator topology. If X contains no subspace
isomorphic to 2%, then I Ti is subseries convergent with respect

to the norm topology of K(X,Y).

Proof: First note that since each Ti is compact, it has separable
range. Therefore, by replacing Y by the closed subspace spanned by
the ranges of the {Ti}, we may assume ithat Y is separable.

Next, observe that the subseries convergence of L Tj in the
weak operator topology implies that the series I ij =Ly Tj is
weak™ subseries convergent in X' for each y' € Y'. Since X' con-
tains no copy of L%, the series ¥ T;y' is actually norm subseries
convergent {([33) 1.2 or 10.10).

For each j pick y; € Y such that lIy;II =1 and
I}ijjll + (1/7§) » llTjil = [ilef. Since Y is separable, the

Banach-Alaoglu Theorem implies that (yj} has a subsequence (yk_}
J

which converges weak” to an element y € Y . To avoid notational
difficulties later, we assume ki = i.
Now consider the matrix [Zij] = [iji] = [yiTj]' For each j,

lim z, . = lim T.y. exists in norm by the compactness of T,
i ij i J71 J

({381 VI. 5.6). If {m.} 1is any subsequence, the series

J

rz. =L T y. converges in norm for each 1i. Moreover,
. lm. : m."1

J J J J

linfz,_ =limry, T =1limy, £ET =lim(ET_ ) vy,
S T T U Rl iy "yt
exists in norm by the compactness of I Tm_ ({381 VI. 5.6). Hence,

J J
[Zij] is a X matrix. By the Basic Matrix Theorem,

lim |lzg511 = Lim [ITyy{1l =0 so lim |IT{l] = Lim |IT;|| = O,
1 1 1 1
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and Theorem 1 gives the result.

There are several observaticns concerning Theorem 5 that should
be made. First, Theorem § is basically only valid for compact opera-
tors, such a result will not generally hold for L(X,Y) unless
L(X,Y) = K{X,Y). For example, let X be a B-space with an uncondi-
tional Schauder basis {xi,fi} (where f, is the coefficient
functional with respect to xi). Now suppose X has the property
that in the space L(X,Y) any series which is subseries convergent
in the weak operator topology is subseries convergent for the norm
topology. Let Pk be the projection ka = <fk, X>X) . Then for any

TE L(X,Y), the series L TPk is subseries convergent for the
k

strong operator topology and, therefore, for the weak operator topo-

logy. If this series is norm subseries convergent, the sequence of

i
compact operators { I TPk} is norm convergent to T so that

T € K(X,Y). That is, L(X,Y) = K(X,Y). In particular, if X =Y
and X has the property above, L(X,X) = K(X,X), and X must be
finite dimensional.

Next note that the assumption that X' contains no subspace
isomorphic to &% is actually necessary in the following sense. If
the conclusion of Theorem S5 holds for all normed spaces Y, it must
hold for the scalar field R. But the weak operator topology of
K(X,R) = X' is just the weak™ topology of X.. Therefore, if the
conclusion of the theorem holds, weak™ subseries convergent series
must be norm subseries convergent. By the Diestel-Faires result
(133]), X' cannot contain a subspace isomorphic to £° . A more
complete study of this situation is given in [32].

We next consider results concerning the topology of pointwise
convergence in several of the classical function spaces. Let S be
a compact Hausdorff space and let CG(S) be the space of all contin-

uous functions from S into G, where G 1is a normed group. The
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topology of pointwise convergence on CG(S) is the topology induced
by the family of quasi-norms, f » |f(t)|, where t €S and || is
the quasi-norm which generates the topology of G. The topology of
uniform convergence on CG(S) is generated by the quasi-norm

If| = sup{|{f(t)] : t € S}. Concerning the function space Ca(S), we

have the following Orlicz~Pettis result.

Theorem 6. Let (f;} c Cy(S). If Xf, is subseries convergent with
respect to the topology of pointwise convergence, then Zfi is
subseries convergent with respect to the topology of uniform conver-

gence.

Proof: From Theorem 1, it suffices to show that {fi} converges to

0 in norm. For each i pick t;, € Si such that
lfi(ti)l = sup (Ifi(ti)l : tES)= Ifil.

We make the following claim: there exist a subsequence (tm.}
J

of {(t.} anda t €S such that lim f.(t ) = f.(t) for each
i i N - H j

JjEN,
For this, let GN be the space of all G-valued sequences
equipped with the quasi-norm

lel= £ lg;l 72" (1 + [g;]) ,
i=1

where g = (gl.gz,...) € GN. Define F : S » GN by

F(s) = (f{(s),fy(s),...). Note that F is continuous since each f;
is continuous. The set F(S) is compact and, moreover, since GN
is a metric group, this set is sequentially compact. Thus, there is

a subsequence {F(t '} of (F(t;)} and an element F(t) € F(S) such
1

} = fj(t) for each

that F(t_ } » F(t) or, equivalently, lim f_{t
m, i 3t my

1

Jj. This establishes the claim above.
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Now suppose that {lfil} doesn’t converge to 0. Then we may
assume that there exists € > 0 such that lfil 2 € for each i. By

the claim above there exist a subsequence {t, } of {ti} and t €S
1

such that lim fj(tm‘) = fj(t) for each j. To avoid subscripts
1 1

assume that m; = i. Note that fj(t) + 0 by the pointwise subser-
ies convergence. Consider the matrix Z = [zij] = [fj(ti) - fj(t)].
Note that the rows and columns of Z both converge to 0. Choose

eij > 0 such that I € ij < », By Lemma 2.1, there is an increasing
i,

| <e.. for

sequence of positive integers {p;} such that |z ij

pipj

i#j. Let f € CG(S) be such that ‘Zlfp.(s) = f(s) for s € S.
J= J

In particular, Z f (t ) =f(t_ ) for each i. By the claim above,
=1 Pj *p; Pi
there exist a subsequence {q;} of {p;} and an x € S -such that

lim fpj(tqi) = fpj(X) for each j and f(tqi) + f(x). Moreover,
lim f_(t_ ) =f_(t). Hence, fp (x) =f_(t) for each j, and,

i Py % Pj 3 Pj
therefore,
[f(x) - £(t)} = | Z f o (x) - f (1) €Ef (x}-°f_ (t)] =
Pj i P i P Pj
By the triangle inequality, we have
I£ (¢ )—f (t)l< zlf )-f (t)] + |£(t_ ) - £(1t)]
94 9 #i qJ q J q;
€

P €55+ |f(tqi) - f(x)] + |f{x)} - £{1)}

j=1

©
jgleij + |f(tqi) - f(x)].

i

Thus, Ifq.(t ) - £, (t)| » 0 and since fq_(t) + 0, we have
i i

-
£

-
L
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Ifq.(tq‘)| + 0 which contradicts the assumption that |[f .| > e.
1 1

Hence, Ifil +» 0 and the theorem is established.

The theorem above was established by Thomas for the case when G
is a normed space ({771 II.4). Note that the matrix methods above
easily handle the group case. The group case of the result above was
established in [70] by using the Antosik-Mikusinski Diagonal Theorem.

In the case when S is metrizable, Thomas also shows that if a
series Zfi in CG(s) is subseries convergent with respect to the
topology of pointwise convergence on a dense subset D of S, then
it is also subseries convergent with respect to the topology of uni-
form convergence. The matrix method employed in the proof of Theorem
6 also yields this result.

Let D be a dense subset of S. The topology of pointwise
convergence on D is the topology generated by the family of quasi-
norms, f » |[f(t)|, t € D. Concerning this topology, we have the
Orlicz-Pettis result of Thomas ([771).

Theorem 7. Let S be metrizable and let D be a dense subset of
S. If Efi is subseries convergent with respect to the topology of
point-wise convergence on D, then Zfi is subseries convergent

with respect to the topology of uniform convergence.

Proof: For each i, pick t; € D such that lfi(ti}i + (171) >

lfi!. By the metrizability, (ti) has a subsequence (tk_} which
1

converges to a point t € S. It is easily checked that the matrix

(z..] = [f, (t, )] is a X matrix, and the proof is completed as in
i] kj ki

Theorem 6.
It should also be noted that the general case of Theorem 6 can
be derived from the metric case established above in Theorem 7 by

using a method of Thomas in [771, p. 183 {(see also [381, VI.7.6).
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Since the metric case of the theorem is very easily established, this
method of Thomas represents an interesting contrast to the proof of
Theorem 6 given above.

It is also worth noting that the scalar case of Theorem 6 con-
tains the classical Orlicz-Pettis Theorem (Theorem 2) as a special
case. Let X be a normed space and let in be subseries conver-
gent in the weak topology. Let S be the unit ball of X' equipped
with the weak™ topology. Then S is compact and each X; 1is a con-
tinuous function on S. The series in is subseries convergent
with respect to the topology of pointwise convergence in C(S), and,
therefore, Exi is subseries convergent with respect to the topology
of uniform convergence in C(S). This implies that Ix; is subser-
ies convergent with respect to the norm topology.

It is of interest to note that the analogue of Theorem 6 is
false for the space of bounded measurable functions; that is, the
continuity of the functions in Theorem 6 is important. (The contin-
uity was certainly utilized in the proofs of Theorems 6 and 7.) For
let ¥ be a o-algebra of subsets of a set S and let B(S,X) be
the B space of all bounded real-valued functions on § which are
I-measurable equipped with the sup~-norm. If (Ej} is a disjoint

sequence of sets from I, the series ZCE. is pointwise subseries
J

convergent but not norm subseries convergent. In particular, this
holds for the space &%. For the space B(S,I) we have the follow-

ing result for the topology of pointwise convergence.

Theorem 8. 1If If, 1is subseries convergent in B(S,I) with respect
to the topology of pointwise convergence, then Zfi is subseries

convergent with respect to the Mackey topology T(B(S,I}, ca(X)).

Proof: If o 1is an infinite subset of N, we write ¥ fi for the
i€o
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{pointwise) sum of the subseries f where o 1is ordered as the
J )

subsequence (mj}. If o is finite, the meaning of ‘E fi is clear.
i€o

Define a family of countably additive scalar measures (ut : t €8S}

on the power set P of N by ut(o) = (‘g fi)(t). Since each
i€o

‘g f; € B(S,r), this family of measures is point-wise bounded on P.
i€oc

By the Nikodym Boundedness Theorem the family is uniformly bounded.

That is, the family { X f, roc N} is uniformly bounded in

i€o
B(S5,1).
If {mj} is any increasing sequence of positive integers, the
k
partial sums (jzlfmj} are uniformly bounded, so if v 1is a count-

ably additive measure on LI, the Bounded Convergence Theorem implies

that <v, I fm >=%¥ «v, £ »>. That is, the series IXf. is subseries
i%od J

convergent with respect to the topology o(B(S,I), ca(X)). By the
version of the Orlicz~Pettis Theorem for locally convex spaces, Zfi
is subseries convergent for the Mackey topology 7(B(S,I), ca(I))
(t771).

The results in [71] give a more detailed study of this situation
and, in a certain sense, show that Theorem 8 is the best result pos-
sible for the space B(S,I).

We next consider the analogue of Theorem 6 for the zp-spaces.
Let 0 < p < ». The space QP(G) is the space of all sequences
£:N>G suchthat I; |f(i)|P <= For 1gp<w, |f],=
{(z If(i)lp)l‘fp defines a quasi~norm on RP(G), and for 0 <p<1,
If]p = £ |f(i)|P defines a quasi-norm on 2PG).

The topology of pointwise convergence on ZP(G) is the topology
generated by the quasi-norms, f + [f(i)] for 1 € N. Concerning

this topology we have the analogue of Theorem 6 for QP(G).
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Theorem 9. Let I fi be subseries convergent with respect to the
topology of pointwise convergence. Then I fi is subseries conver-

gent with respect to the topology generated by ||

P

Proof: Consider the matrix Zij = (fj(l), es

£.(i), 0, 0, ...) € 2P(G). First limz., =f. in 2P(G) since
J i 1] J

fj € QP(G). Next let {mj} be an increasing sequence of positive

o«
integers and let L fm represent the subseries sum with respect to

J=1 7]
the topology of pointwise convergence. Now
T =(Zf (i), ... , L fmA(i), 0, ...) by the pointwise

Z. .
1M = By j=i O

J

[+~ 0w
convergence and lim ¥ z,. = { £ f (k))p_, in 2P(G) since

=1 M =1 @y

r fm_ € RP(G). Thus, [zij] is a X matrix. By the Basic Matrix
J

Theorem, lim lim Izijlp

= lim |f.|. = 0. Theorem 1 gives the
j J'p
result.

For the case when G is a normed space, Theorem 9 is due to
Thomas ([771 11.4 and I1.8). The group case was established in (70]
by employing the Antosik-Mikusinski Diagonal Theorem.

Theorem 9 motivates the following abstract Orlicz-Pettis type

result which is applicable to several of the classical sequence

spaces as well as certain spaces having a Schauder basis ({741).

Theorem 10. Let X be a metric linear space with a vector topo-
logy o that is weaker than the original metric topology. Suppose
there exists a sequence of linear operators T; : X+ X such that
(i) each T, is o - || continuous
(ii) lim T;x = x for each x € X (i.e., {Ti} converges to the

identity operator in the strong operator topology). If the series
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Ix; 1is o-subseries convergent, then Ix; is | |-subseries

convergent.

Proof: Consider the matrix [z..] = {Tixj]. From (ii), it follows

1]
that lim Zij = Xj for each j. From (i), it follows that for any
i
increasing sequence of positive integers (mj). Lz, converges to
J J

T,(Z x; ) (where I x is the o-limit of the subseries). Hence,

Py m. : m.

J J J J
(ii) implies that limZ z, ~=E Xp. exists. Thus, [zij] is a

1 J J J
X matrix. The Basic Matrix Theorem implies that

lim lim T;x, = lim xj =0 (in the metric topology). Theorem 1 now
J 1 J

yields the result.

It is easy to see that the topological vector space version of
Theorem 9 is a corollary of Theorem 10 by taking o to be the topo-
logy of pointwise convergence and by defining T, : 2P(X) » QP(X)

by Ti(xl’ Xoy «ex) = %y, ... %3, 0, ...). The topology of point-

i
wise convergence on the sequence spaces co(X) and c¢(X) can be
treated in a similar fashion.

A B-space with a Schauder basis can also be treated by using
Theorem 10. Let X be a B-space with a Schauder basis (xi. fi}
(fi is the coordinate functional relative to x;). Let T be the
subspace of X' spanned by the {f;} and let o be the weak topo-
logy o(X,I'}). In the case of lp, €, Or ¢, this topology is just
the topology of pointwise convergence.

Define Ti : X»X by Tix =kél<fk, X> Xp. Then each Ti is

o - || || continuous and {T,} converges to the identity operator in
the strong operator topology. By Theorem 10 any series L Y in X
which is o-subseries convergent is also norm-subseries convergent.

We conclude this section by establishing an abstract type of
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Orlicz-Pettis result which was presented in [70]. Let E, F and G
be normed groups and let b : ExF » G be a biadditive map. As in
section 6, we let o{(E,F) be the weakest topology on E such that
each of the additive maps {b(-,y) : y € F} is continuous. {The
topology o(F,E) is defined similarly.) Again the topology o(E,F)
also depends on the space G and the map b, but the notation should
cause no difficulties.
Let C€; be the family of all of(F,E)-Cauchy sequences in F.
We let C(E,F) be the topology on E of uniform convergence on ele-
ments of the family CF of o(F,E)-Cauchy sequences in F, i.e., a
net {xV} in E converges to 0 in the topology C(E,F) iff
lim b(xv,fi) = 0 uniformly in i for each (fi) € ¢F. The topology
C(E,F) 1is generated by the quasi-norms lxla = sup{b(x,fi)l, where
a = (fi} ranges over the family of all of(F,E)-Cauchy sequences.
Concerning these topologies, we have the following Orlicz-

Pettis result.

Theorem 11, If ¥ X5 is subseries convergent with respect to

o(E,F), then I X; 1is subseries convergent with respect to C(E,F).

Proof: Let (fi} be o(F,E)-Cauchy, Consider the matrix

[zij] = [b(xj,fi)l. Since (fi} is o(F,E)-Cauchy, lim Zj § exists.

If {mj} is an increasing sequence of positive integers, then

Lz =blix, , f;), where Ix  ~ is the o(E,F)-sum of the sub-

J J J J

series. Thus, lim I Z;m. exists since {fi} is o(F,E)~Cauchy.
i J

Hence, 1[z..] is a X matrix. The Basic Matrix Theorem implies that

ij
lim b(xj,fi) = 0 wuniformly in i, i.e., xj + 0 in C(E,F).
J

Theorem 1 now gives the result.

Theorem 11 is established in [{70] by employing the Antosik-
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Mikusinski Diagonal Theorem, and it is shown in [70] that a large
number of known Orlicz-Pettis results can be derived from Theorem 11
as corollaries. For example, Theorems 6 and 9 can be obtained

directly from Theorem 11. We refer the reader to [70] for details.



8. The Schur and Phillips Lemma

In this section we discuss the classical lemmas of Schur and
Phillips and show how these results can be treated by the matrix
methods developed in section 2. One version of the classical Schur
lemma asserts that a sequence in 21 converges weakly iff it con-
verges strongly. This result and some of its more general forms have
found many applications in functional analysis; for example, many of
the proofs of the Orlicz-Pettis Theorem, including the original proof
of Pettis ([591), use the Schur lemma in some form. Similarly,
Phillips’ lemma has many applications in both measure theory and
functional analysis; for example, the original application of
Phillips showed that there is no continuous projection of £° onto
<o (160] 14.4.0). Both of these results have been generalized to
various abstract settings. For example, Brooks has given Banach
space versions for both the Schur and Phillips’ lemmas ([23]1) and
Robertson has given a group version of the Schur lemma ([62]). In
this section we present group-valued versions of both the Schur and
Phillips lemmas. As an application of our general Schur lemma, we
give a generalization of another classical result in summability
theory which is also due to Schur.

We first establish our generalization of the Schur lemma and
then indicate how this result can be legitimately viewed as a gener-
alization of the classical Schur lemma.

Throughout this section, G will denote a normed group. If o
is an infinite subset of N and if ?xj is subseries convergent in
G, we write L x. for the sum of the series ; X. , where the

j€o J =1 "
elements of o are arranged in the subsequence {nj}. If oc N is

finite, the meaning of I x. is clear.
j€o J
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Theorem 1. Let xij €EG for i,j € N. Assume that the rows of the

matrix Ixijl are subseries convergent and lim xij = xj exists for
1

each j. If (X xij) is convergent in G for each o c N, then
Jeo
(i) the series ij is subseries convergent and

(ii) lim £ x,. = ¥ x. uniformly for o c K.
i jeo Y jEo

Proof: First we show that the sequence { I xij) satisfies a Cauchy
JjEo

condition uniformly with respect to o ¢ N. If this is not the case,

there is a & > 0 and a subsequence {ni} such that

(1) sup | T (x

-x_ .} | » 6.
o jEo n; hyd

i+1d
Set Zy5 = xni+1j - xnij and m = 1. By (1) there exists a finite

o, suchthat | X 2z_ .| >8. Set N, = max 0,. Since the columns
1 . ®, j 1 1
3601 1
of (zij) go to O, there is an m, > my such that
N

L |z,.]|<86/2 for i3 m,. Again by (1), there is a finite o,
=t Y

such that | I z, jl >5. Set 71y =0, and T, =0, \ {j:lgieNy ).
JEUz 2
Note Ty and T, are disjoint with
Ny
max T, <min 7T, and | Z z_ .|| L z_.|~-Z |z, .| > &/2.
1 2 jEr, M2 j€o, M3 j=1 M)

Continuing this construction produces a subsequence {mi) and

disjoint finite sets {ri) satisfying

(2) | Tz .| > 6/2.
j€r, MiJ

Now consider the matrix [yi.l = [Z z, k]. The columns of
J kETj i
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{ } goto O, and if {p.} is any subsequence, I y. is a

i ] j=1 1P;

subseries of the series I Zn_j Thus, the matrix (yij) isa X
J i

matrix. Hence, lim Yii = 0. But this contradicts (2).
1

We now establish (i) and also

[+

(3) Ix =lim¥ x._,
LSRR O R

for any subsequence (nj). Let € > 0. By what we have just

established, there exists an N such that

(4) '"xkj)‘ < €/3 for i,k 2 N.

| T (x,
j€o 1

M
Hence, for each M and k >N, | T (x, -x, )| < €/3. Thus
=t 7j J

M -~ M x5
(5) JZx, -Zx._ | €T (x, =%, +] I (x,. ~X. )|
. kn. =1 M kn‘j j=M+1 knj Nnj

o« o«
+ | Z an‘l <2/3+ | T x

[
jeM+1ND 5 j=Me1 NR

and the last term on the right hand side of (5) is small for M
large. This establishes (3).

From (3) and the uniform Cauchy condition (4}, it follows that
lim X %3 =X X uniformly for o ¢ N and the proof is complete.

i j€o Jj€o

Theorem 1 generalizes the version of the Schur lemma for B~
spaces as given by Brooks in (23], Corollary 2. Brooks methods do
not generalize to non-locally convex spaces or groups since they
depend upon duality methods. Robertson has established a (more gen-
eral) form of Theorem 1 in [62]; his methods are quite different than
the matrix methods employed above and depend heavily on Baire cate-

gory methods.



77

We now derive the classical Schur lemma from Theorem 1 thus in-
dicating that Theorem 1 can be viewed as a legitimate generalization

of the classical Schur lemma.

Corollary 2. (Schur) Let [ti.] be a real matrix. If lim I ti
J i j€o J

exists for each o € N and if t. = lim t

1
j : j* then (tj) €2

and limjglltij - tj| = 0.

Proof: Let € > 0. By Theorem 1, for large 1i,

| & (ti--t')l < e for o ¢ N. But then for such i,
j€o J )

~t.] €2 (1611 1.1.2).

ElltiJ J

J

The usual statement of the Schur lemma has tj = 0 in Corollary
2 ([791 1.3.1). This slightly more general form has been given by
Brooks and Mikusinski in [25). The function space interpretation of
Corollary 2 is the following. Let Xy = {tij} € 21 for each i and
let o, be the subspace of &% which consists of the sequences with
finite range. The hypothesis in Corollary 2 is just that the
sequence (xi} is a Cauchy sequence in the topology o(ﬁl,mo). The
conclusion is then that the sequence (xi) is actually norm conver-
gent in zl. In particular, this implies that any weakly convergent
sequence 1in 21 is norm convergent; this is one way that the Schur
lemma is sometimes stated ({791 14.4.7).

For use in section 9 we also note that the conclusion in Theorem
1 can be strengthened somewhat when the matrix has values in a Banach

space. Recall that a series in in a topological vector space is

said to be bounded multiplier convergent if for each sequence {tj)

of bounded scalars, the series Ztixi is convergent. In a B-space
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subseries convergence and bounded multiplier convergence are equiva-
lent ({63} I11.6.5). For series in B~spaces which satisfy the
conditions in Theorem 1, we have the following uniform bounded

multiplier result.

Corollary 3. Let X be a B-space and xij € X satisfy the
hypothesis of Theorem 1. Then

l;mJXItJXIJ -jEItJXJ uniformly for {tj} € £¥ with ]I{tj}l} < 1.

Proof: lLet € > 0. By Theorem 1, there exists N such that i 2 N

implies {l Z (x5 7% )il <€ for o c N. Thus, for x €X and
llx'll €1, | £« X %;:x: > | <e for i 3N and oc N This
j€o ij 7

implies that

o0

(6) < x Xy = X: > | €2 for izN, llx'll g1

(611 1.1.2). Now for {tj} € 2° with |tj| €1, we have from (6)

II Z t % 7% )| = supt] < x , . tx; 57x;) > s 1Ix 1] € 1)
j=1
€ sup{nglt | | <x, X% > | : llx Il €1} € 2¢
for i 3> N.

Corollary 3 has the following interesting operator interpreta-

tion. Each subseries convergent series inj induces a bounded
J
linear operator T, : L° + X by T (t }=Z ¢ J Xij The hypothesis
J

of Theorem 1 implies that the sequence {Ti} is a Cauchy sequence

for the topology of pointwise convergence on the subspace m, of 2%.

The conclusion of Corollary 3 is then that there exists a bounded



79

linear operator T which is induced by the subseries convergent
series ij and the sequence {Ti} actually converges to T in the
uniform operator or norm topology of L(27,X). With this interpre-
tation, Corollary 3 can be viewed as a vector version of the
classical Schur lemma (Corollary 2).

We next use Theorem 1 to derive a generalization of a classical
summability result which is also due to Schur (see Corollary 5.13).

Recall that a scalar matrix A = [ai ] is said to be of class

J
(£7,c) ((mo,c)) if for each x = {tj) € 2 ((tj) € mo), the se-

}; is convergent, i.e., if for each x € £” (x € m_),

quence (I a; i
J

i
the formal matrix product Ax is well-defined and produces a
sequence belonging to ¢ (& 5 or (50} § 7). The classical summa-
bility result of Hahn and Schur gives necessary and sufficCient
conditions for a matrix A to be of class (2%,c) or (m,,c) (Cor.
5.15, [68) or (501 7.6). We use Theorem 1 to give a generalization
of this sufficient condition to matrices with values in a group.

Namely, we have the following corollary to Theorem 1.

Corollary 4. Let xij be as in Theorem 1. Then the series inj
J

are unordered uniformly convergent in the sense that if € > 0, there
exists N such that | & xiji < e for all 1 when min o » N,

Jj€o
Proof: By the uniform Cauchy condition of Theorem 1, there is an M

such that | T {xi.—xk.)l <e/2 for i,k >M and o c N. Since each
j€Eo J J

z xij is subseries convergent, there is an N such that
J

I.E xijl < €/2 whenever 1 € i €M and min o > N. Hence, for
JjEo

min o3 N and i3 M, | Zx..] € | I (x::=xg:)| + | Z xy:] <€
j€o 1J j€o 1 M) j€o M
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and the result follows.

For scalar matrices A = Iaijl, the conclusion of Corollary 4
is equivalent to the sufficient condition (i) in Theorem 5.14., For,

if the conclusion of Corollary 4 holds for A, then j);Nlaijl € 2e
({61} 1.1.2) and this is just condition 5.14 (i) in the classical
Schur summability result. Thus, Theorem 1 and Corollary 4 yield
another proof of the Schur summability result given in 5.15.

We can also use the results in Theorem 1 and Corollaries 3 and 4
to consider a vector version of the classical summability results
above. Let X be a B-space and let c¢(X) be the space of all X-
valued sequences {xj} which are convergent. If A = [xij] is an
infinite matrix with values in X, then A is said to be in the
class (m,c(X)) ((2%,¢c(X))) if for each y = (tj) € m, ({tj} € %),

*ijh belongs to c¢{X), 1i.e., if the formal

the sequence { L t.x. .}
3

matrix product Ay is well-defined for each vy € m, (y € 27) and

produces a sequence in c¢(X). Using the results above, we have the

following vector summability result which gives a vector version of

the classical Hahn-Schur summability results (5.15).

Theorem 5. Let A = [ ] be an infinite matrix whose rows are

X: .
1

subseries convergent. The following are equivalent:

(a) A E (L%, c(X))

(b) A€ (m,, c(X}))

(c) (i) the series ;xij are unordered uniformly convergent
J

{see Cor. 4) and

(ii) lim x; . = x, exists for each j.
i J J

(d) lim X x,. =X x. uniformly for o c N.
i jeo ' j€o J



81

Proof: That (a) implies (b) is clear and (b} implies (a) by
Corollary 3. Corollary 4 shows that (b) implies (c¢)(i) and clearly

(b) implies (c){(ii) by considering e; € m,.

We next show (c¢) implies (d). Let € > 0. By (i) there

exists N such that || & xij!l <€ for all i and mino » N.
Jj€o

Let oc N and let o(n) =ocN{j: jzn} If

q
o = (ni Pongo<nyLg, i €N} and if q>p > N, then ] X xn.l € €

by (ii). Hence, since X is a B-space, the subseries Exm‘ con-
1

verges. That is, the series in is subseries convergent, and the
sum X X, exists. Then
i€o

N
IE (xo=x ] €Z Jx =01+ |1 £ x . |[+]]
j€o 13 j=t 13 J jE€o(N)*

N xjil < 3¢

T
jeo(N)
for i » M. Hence (d) holds.

That (d) implies (b) is clear.

In a very similar fashion, one can formulate and consider ana-
logues of the classical summability results of Hahn and Schur for
matrices whose entries are bounded linear operators between metric
linear spaces. Such analogues of the classical summability results
are obtained in [76) and are based on the matrix methods of these
notes.

We conclude this section with a discussion of the Phillips
lemma. First, we give a statement of the classical scalar version of

the Phillips lemma ({601, [79] 14.4.4).

Theorem 6. (Phillips [60]1) Let ¥ be the power set of N and let
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By o P » R be bounded and finitely additive. If lim ui(E) = u{E)
1

exists for each E c N, then lim'illui(j) - ulj)| = 0.
i j=

Theorem 6 is often stated in this form with p(E) = 0 ([60],
{791).

Theorem 6 has the following function space interpretation. The
dual of 2% 1is the space, ba, of all bounded, finitely additive set
functions on P with the total variation norm. For each v € ba,

the series Zv(j) 1is absolutely convergent, and v » {v(j)}
J

defines a projection P from ba onto il. Theorem 6 then asserts
that if the sequence (ui) in ba is Cauchy in the topology

o(ba, mo), then the sequence {Pui) is norm convergent in Ql. In
particular, the projection P is sequentially continuous with
respect to the o(ba, mo) and norm topologies.

We now give a generalization of Theorem 6 to group-valued
measures. Recall that if I is a o-algebra of subsets of a set S,
then g : £ » G is strongly additive iff lim u(Ei) = 0 for each
disjoint sequence (Ei} from ¥ (§5). If G 1is complete, a
finitely additive set function g 1is strongly additive iff the
series Zu(Ei) converges for each disjoint sequence (E;} (134]

1.1.18).

Theorem 7. Let G be sequentially complete and let ’y ~L +» G be
strongly additive. If lim ui(E) = p(E) exists for each E € I,
then for each disjoint sequence {Ej} from I

lim Z p. (E.) = X p(E

i :} uniformly for o c N. (In particular, p
i o' jeo J

is strongly additive.)

Proof: By Theorem 1, it suffices to show that lim T ui(Ej) exists
i jEo

for each o ¢ N. First consider the case when p = 0. We claim that
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in this case lim E By (E ) =0 for each o. If this is not the case,
i jEo

there is a disjoint sequence {Ej} such that { Z By (E l) doesn’t
3-1

converge to 0. Thus, there exist 6 > 0 and a subsequence ({k;}

such that | Z ”k (E )] > 6. For convenience assume k; = i. Now
J-
ny
there exists ng, such that | Z ul(E }} > 8. There exists my such
j=1
n
that leu (E )] < 8/2 for i 2 m;. There exists n, > n; such that
J—
| 2 I I - | > | > I
Zu (E.)| » 8. Hence, r pu (EN]l2]lZp (ED)]| -
=™ J j=n +#171 j=1 ™ 3
i
T lu (E-)l > §/72.
j=t J

Continuing this construction produces subsequences {m;} and ({(n;}

Mi+l Diel
such that | I (E )| >8/2. Put F, = U E.. Then ({F.}
J=n; +1 j=n;+1 J 3

is a disjoint sequence in X with I“m.(Fi)l > 8/2.
i

Consider the matrix [zij] = [um‘(Fj)]. By Drewnowski ‘s Lemma,
i

{zijl is a X matrix. Hence, by the Basic Matrix Theorem,

z;; » 0. But lziil = lu, (F;)| > 6/2. This contradiction establishes
1

the result in the case when p = 0.

If p#0 and lim Z By (E ) fails to exist for some disjoint
i j=1

sequence (Ej). there exist 8 > 0 and a subsequence {ki} such

that | T (g (Ej) -y (Ej))l > 8. Applying the first part to the
i=1 i+l i
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sequence U, = =l gives the desired contradiction.
i+ i

1
We now show that the classical Phillips lemma (Theorem 6) fol-

lows as a corollary of Theorem 7.

Proof of Theorem 6: Let e > 0. By Theorem 7,

| & (e; €3 - (j))} <€ for i large. But then
Jj€o

o
.le”i(j) - p(j)] € 2¢ for large i ([56] 1.1.2).
J=

Theorem 7 can also be derived from Theorem 1 by employing the
Brooks-Jewett result, Theorem 5.6 {(see [14]). Most of this section

is taken from [(14].



9. The Schur Lemma For Bounded Multiplier Convergent Series

In this section we consider bounded multiplier convergent series
in a metric linear space and present a version of the Schur lemma for
such series. Our result is based on the strengthened version of the
Schur lemma for Banach spaces which was given in Corollary 8.3.

Throughout this section X will denote a metric linear space.

A series in in X 1is said to be bounded multiplier convergent if
the series ztixi is convergent in X for each bounded sequence of
scalars {ti}. A series Ix; which is bounded multiplier convergent
is clearly subseries convergent (take t, = 0 or 1), but, in gen-
eral, the converse of this statement is false. In a normed space it
is easy to give an example of a series which is subseries convergent
but not bounded multiplier convergent by using the normed space in
Example 3.5. That is, pick (¢k} € 21 such that ¢k # 0 for each
k. Then define a norm on m_ by Il{tilll = L Iti¢i|. The series

o
Te. is || ||-subseries convergent but is not bounded multiplier

coivergent since, in particular, the series E(l/j)ej doesn’t con-
verge to an element of m. Rolewicz gives an example of a series in
an (non-locally convex) F-space which is subseries convergent but not
bounded multiplier convergent ([63] 111.6.9). In a locally convex
F-space a series is subseries convergent iff it is bounded multiplier
convergent ([63] III.6.5).

We first establish two preliminary lemmas. The first is an

elementary property of the scalar multiplication in a metric linear

space which is an immediate corollary of 6.6.

Lemma 1. If lim x; = 0 in X, then lim itle = 0 uniformly for
J J

[t] € 1.
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See also [80] I.2.2 for a proof.
The next lemma is a special case of the general Schur lemma

which will be established in Theorem 3.

Lemma 2. Let X j €X for i,j EN be such that :xij is bounded
J

multiplier convergent for each i. If lim Z tJXIJ = 0 for each
i j=1
{t.}) €27, then lim Z t.x.. =0 uniformly for ||{t.}|] € 1.
J i j=1 JTij J

Proof: If the conclusion fails to hold, we may assume {by passing to

a subsequence if necessary) that there is a & > 0 such that

sup{ | Z

X
J’ 1

| }tj} €1} >8 for each i. Set i; =1. Then there

Jtid

exists a; = (tlj) € 2” such that |[la;|| €1 and | Z tlJ 1IJI > 8.

M
1
There exists M; such that | Z tlJ 11J| > 8. Since lim Xiy = 0 for

each j, by the observation in Lemma 1 above there exists i2 > il

M
1
such that i > i, implies X lt X4 | < 8/2 for Itjl € 1.
Jj=1
Now there exists a, = {th} € £¥ such that l]azil €1 and
M2 M2

. T i . Xl . .
| Z t23 123' > 5 here exists M, > M; such that |j§1t23x1231 > 8

M2 M
1
Note | & th:x: | 32| Zty.x. .| ~% Jty.x. .| > &/2.
M1 23782 j=1 237100 yoy 2iTip)
Continuing this construction inductively gives subsequences

{i) and (M} of positive integers such that
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My
(1) | t | > 6/2 for all k,
My +1 LI
where Mo = 0.
MP
Now consider the matrix I zkpl ={ X t..x. .J. Since

i pl1 1)
J-Mp_1+1 p

lﬁm Xji = 0 for each i, 1im Zyp = 0 for each p since ltpil £ 1.
Ve claim that [zkp] is a X matrix. Let o c N. Define a sequence

o - . . . =
{sj) € L by s; = tpj if Mp_1 +1 €1 ¢ Mp and j € o and S; 0

o

otherwise. Then L Zpo = L SiX; converges to 0 as k » =« by
pEc KPP j=p I 1l

hypothesis. Thus, the matrix (zkpl is a2 X matrix and the Basic

Matrix Theorem implies that lim Zyg = 0. But this contradicts (1).
k

We now present our Schur-type lemma for bounded multiplier
convergent series. Note that conclusion (ii) in the theorem below is

just the conclusion of the Schur lemma for B-spaces given in 8.3.

Theorem 3. Let X; E X for i,j € N be such that gxij is
J

bounded multiplier convergent for each i. Assume that lim X t.x;.

ij=14 1
exists for each {t.} € 2. If lim x.. = x., then
i PR N N
(i) the series ij is bounded multiplier convergent and
ii 1 = i f . .
(ii) iszlth‘J JEIthJ uniformly for ]]{tJ}II g1

Proof: First we claim that the sequence { Z thIJ) satisfies a
=1

Cauchy condition uniformly for Il{tj}II € 1. If this is not the

case, there exist a subsequence {i,} and a & > 0 such that
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(2) supl | Z t; (x; iy )] ll(t Ml €1} > 8.

= X
j=1 9 Tke1d 1y

Consider the series ZI(x. -). This sequence of series satis-
j iggrd A

fies the hypothesis of Lemma 2 so that lim Z t. (xl -X3 3 =0
k je1 3 iperd Thpd
uniformly for !l{tj}li € 1. This contradicts {(2) and establishes

the claim.

We now establish (i) and also

= .x. f h : m.
(3) liszlthlJ jEIthJ or eac (tJ} € L
Let € > 0. By what has been established above, there exists an

N such that i,k » N implies | L t; (x4 i7%%j )| < € for
j€o J J

o ¢ N. Hence, for every M and i > N | Z t (x4 i o€
3-1
Thus, for i » N,
M w©

(4) | Z tx, ~ Lt l < | Z t (x -X.

)
=1 37 J=1 =1

ij

N+l ot XNJI < 26 + | Z tijj"

+ 1 I t.xy.~x
TN JMe1 =M+

j=M#1 ij

The last term on the right hand side of (4) goes to 0 as M+ =

for N fixed. Condition (i) and (3) follow from this estimate.
Condition (ii) follows by applying Lemma 2 to the series

E(Xij'xj).

Theorem 3 has as a corollary a generalization of another result
of Schur on summabiiity which was discussed previously in 5.15, 8.4

and 8.5. Let A = Iaijl be a real matrix such that the sequence
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{ tjaij} is convergent for each {tj} €2”, i. e., A is of class
J=1
(2%, ¢). The Schur summability result then asserts that the series

I la
J

This condition (for real series) clearly implies that the series

ij] converge uniformly in i (Corollary 5.15 or [50] 7.6).

gtjaij are uniformly convergent for ll(tj}ll €1 and i € N.
J

Using Theorem 3 we obtain the analogous result for bounded multi-

plier convergent series in X.

Corollary 4. Let xij satisfy the hypothesis of Theorem 3. Then

the series It;x;; converge uniformly for ll(tj}II £1 and i€ N.
J

Proof: First note that if the series ij is bounded multiplier
J

convergent, then the series thxj converge uniformly for
J

||{tj)(| €< 1. (This follows from Theorem 3 but is also easily

checked directly.)
let € > 0. By Theorem 3, there exists N such that i 2 N

implies | X t. (x,.-x.)| <€ for ||{t.}]] € 1. By the observation
j=1 J 1) ) J
above, there exists M such that m > M implies

| Etx..] <€, | Etx.] <€ for 1gi N, [lt.}]] 1.
jem 4 1 jem 4 3 J

Hence, m» M implies

o

| t-xiji g |jZ t-(x.‘~xj)| + ]z tjxj! < 2€

j=m J =m J J j=m

for i 2 N, Il(tj}ll € 1, and the result follows.
Corollary 4 can be used to obtain a characterization of

matrices of class (2%, ¢(X)) when X is a metric linear space (see
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8.5). Recall the matrix A = Ixij} is of class (QQ,C(X))((mO,c(X)))

if the sequence { L tjxij) is convergent in X for each sequence
(t;) € [ ({t;) € m)). From Corollary 4 we have the following vector

version of the Schur summability theorem for metric linear spaces.

Corollary 5. Let the matrix A = [le] be such that the rows are

bounded multiplier covergent. The following are equivalent:

(a) A€ (£%,c(X))

{b) (i) the series Zthxg converge uniformly for i € N
J
and |t <1
(ii) lim i3 = xj exists for each j.

(c) lim E 1%, exists uniformly for |[[{t.}]|] € 1.
i j=1 91 J

Proof: That (a) implies (b) (i) follows from Corollary 4. That (a)
implies (b) (ii) follows by setting {tj) = ej.

Suppose (b) holds. Let € > 0. By (i) there exists N such

o«

that | Z t.x

i" <e for i €N and |t.] £ 1. Then (ii) implies
j=NJ J J

that | Z t i%j | € ¢ for ltjl € 1. By (ii) and Lemma 1 there exists

N-1
M > 0 such that I lt (x5 §7%; )| < e for Itjl €1 and i 32 M.
J=1

Thus for i » M and ltjl €1,

N-1
] Z t; (% i g & lt (x; i )I + | Z t.x. .| + | Z t
jaN ST

N JxJI < 3e,
J—

and (c) holds.
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That (c) implies (a) is clear.

This result along with the conclusion of Theorem 8.5 suggests
the following question. If the matrix A is of class (mo,c(X)), is
A also of class (27,c(X))? If X is a B-space, this is the case
(Theorem 8.5). We show that this is not the case for metric linear
spaces. Of course, if the rows of the matrix are only subseries con-
vergent and not bounded multiplier convergent, the matrix could not
be of class (R2%,c(X)), but we give an example of a matrix whose
rows are bounded multiplier convergent and which belongs to
(my,c(X)) but not (27,c(X)).

Let X be a metric linear space containing a series ij which
is subseries convergent but not bounded multiplier convergent. (For
an example in a normed space, see the example given in the introduc-
tion to this section; for an example in a complete metric linear

space see [63) I11.6.9.) Set

xij = X if 1€ j<€i and xij =0 if j > i. Then ?xij
is subseries convergent, and for each i, the sequence (xij}j=1
lies in a finite dimensional subspace of X so that Exij is

J

bounded multiplier convergent. By the subseries convergence of

Yx., we have lim I X = ¥ x; for each o c N; that is,
i i j€o Y j€o J

A= [xi-] is of class (m_,c(X)). But, since Ix. is not
J 0 j J

bounded multiplier convergent, condition (i) of Theorem 3 fails to
hold; that is, A 1is not of class (2%,c(X)).

Actually, Theorem 8.5 and its proof shows that A belongs to
(mo,c(X)) iff condition (c¢) or {d) of Theorem 8.5 holds. This
observation along with Corollary S give characterizations of the
classes (2%,c(X)) and {m,,c(X)) in the case when X is a metric
linear space.

The example given above also shows that the hypothesis in
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Theorem 3 cannot be replaced by the weaker hypothesis that lim.g X5
1 jeo

exists for each o c N.

Another interesting type of series generated by multiplying a
given series by certain sequences of scalars is also discussed by
Rolewicz in [631. Rolewicz calls a series ij in a metric linear
space X a C-series if the series It;x; converges in X for each
scalar sequence {ti) € Cq- {This is a slight departure from the
terminology of Rolewicz ([63] III.8).) These series have been stud-
ied in detail in the case of normed spaces and it is known that a
Banach space X has the property that every C-series is (subseries)
convergent iff X contains no subspace (topologically) isomorphic to
o (f211) (The series Eei in o is C-convergent but not
convergent.) A natural question that arises in the light of Theorem
3 is whether the analogue of Theorem 3 is valid for C-convergent
series. We first note that the analogue of Theorem 3 (i) is indeed

valid for C-convergent series.

Proposition 6. Let xij € X be such that ﬁxij is C-convergent
J

o

for each i. Assume that lim I tjxij exists for each {tj} € Cor
i j=1

If xj = lim xij’ then the series ij is C-convergent.
i

Proof: Let {tj} € c,. Note that for each {sj) € 2%, the sequence
{sjtj} € Cor Therefore, Theorem 3 can be applied to the series

thxij, and condition (i) implies that the series thxj is convergent.
J

Whereas the analogue of Theorem 3 (i) does hold for C-convergent
series, it is easy to see that the analogue of Theorem 3 (ii) does

not hold for such series. For an example, let e, be the unit
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vector in c,. Set €ij = € for 1 € j €i and ejj = 0 for
j > i. Then each series ;eij is C-convergent. For {tj} € Cor
J

@ i @
lim & te = limX t.e. =X t.e., but the convergence is not unifornm
ij=1JJ ij=1JJj=1.}J
for ;l{tj}l! € 1. Note also that the analogue of the conclusion in
Corollary 8.4 is false for this particular example.

Much of the material from this section is contained in [73].



10. Imbedding c, and L=

In this section we consider imbedding the classical sequence
spaces C, and L7 in a given Banach space X. In Theorem 3 we
establish a general result which gives a sufficient condition for a

Banach space to contain a subspace isomorphic to ¢ This general

0"
result is then employed to give the Bessaga-Pelczynski character-
ization of B-spaces which contain subspaces isomorphic to Cyr @
result of Diestel on vector measures and a result of Pelczynski on
unconditionally converging operators. In Theorem 7 we give a suffi-
cient condition for a B-space to contain a subspace isomorphic to

2”. As a corollary of Theorem 7 we obtain the Diestel-Faires char-
acterization of B-spaces ccotaining a subspace isomorphic to L% as
well as a result of Rosenthal on bounded linear operators on A&%.
The results and style of proof are very similar to those of section
1.4 of Diestel and Uhl ([29]1). Whereas Diestel and Uhl employ
Rosenthal ‘s lemma, we use the Basic Matrix Lemma.

Throughout this section X will denote a Banach space. A ser-

ies in in X 1is said to be weakly unconditionally Cauchy (w.u.c.)

L] L] 1]
if T J<x X > <« for each x € X (such series are sometimes

called weakly unconditionally convergent ([{21]1)). Such series may

not be convergent in X; for example, consider the series Zei in

Cor The following result gives several characterizations of w.u.c.

series which will be needed later.

Proposition 1. Let {xi} c X. The following are equivalent:

(i) in is w.u.c.

(ii) {E X; : 0o <N finite} is (norm) bounded
i€o

(iii) for each {ti} € Cor Ztixi converges
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> | fix']l €1} =M <o and

«© 0
(iv) sup{ L | <x, X3

i=1

||i§1tixi|| < M [{t;}|| for each {t;} € c,.

n
(v) ﬂizltixiﬂ <M B(ti)ﬂ for each {ti) € o and n € N.

Proof: Assume (i) and let 3 be the finite subsets of N. Then for
x € X',{ < x: Zx; > g2 | < x', x; > ]
i€o i=1

for each o € 3. Hence, the set ( L x; : 0€ J} is weakly bounded
i€o

and, thus, norm bounded. That is, (ii) holds.

Assume (ii). Let M > 0 be such that || & xill €M for
i€o
c€ 3. If llx’ll g1, | X« x‘.xi > «M for o€ 3 so that
i€o
E ] <x.x; > | €«2M((S6] 1.1.2). If {t;}) € c, and

i€o

C> 1z |k 1] g 1)

n n .
n>m || L tixi}l = sup{| & ty < x,x;
1=m

1=m
£ 2M sup{lti{ :m<€i<€n} and (iii) holds.

Assume (iii). For {ti} € Cyr Ve have
(1 1 Etyx; 10 = supl £ty <x ,x;>: [Ix ] €1} <=
i=] i=1

Thus, for each x € X., lix'll < 1, the sequence ({< x', x>} is

in 21, and (1) implies that the set
B = ({<x x> € 2L ¢ % || € 1)

is weak**bounded in Ql. Hence, B 1is norm bounded in 21. i.e.,
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supf le<x X2t x| €11 =M < =,
1-

For {t;} € c,, (1) implies that || Z tx; <M il{t Hi, or {iv})

holds.

That (iv) implies (i) and (v) is clear.

Thus, (i) - (iv) are equivalent and since (iv) implies (v), it
suffices to show that (v) implies (iii).

Assume that (v) holds. Define the linear operator T on the

linear subspace €00 of o consisting of the finitely non-zero

sequences by T{ti} Z t, Then (v) implies that T is a

X,
1111

bounded linear operator on ¢ and, therefore, has a bounded linear

00
extension, still denoted by T, to o with norm less than or equal

to M. Thus, if {t,} € Co» We have T(t;} = 1§1t X;,» and (iii)
holds.

These properties of w.u.c. series are well~known and most of
them are given in [21] 5.2.

We next derive the basic matrix result which will be employed to
obtain the main results of this section. This result is based on the

basic matrix Lemma 2.1 and is a simple consequence of Lemma 2.1.

Lemma 2. Let X; E X be such that lim xij = 0 for each j and
i
lim xij =0 for each i. Given € > 0 there exists a subsequence
J
«
{m.} such that X Z Fx Il < e.
1 i=1 j#i mlmj
J=1

Proof: Pick eij » 0 such that .Z.eij < ¢ (for example,

1,]
€ = e/21+3+1). Let {m;} be the subsequence given by the matrix
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Lemma 2.1 (applied to llxijll)' Then ||xm n |l < €5 j for i # j
ij
and the result follows easily.

Using Lemma 2 we now establish our main result concerning the

imbedding of o in X.

Theorem 3. Suppose that X contains a w.u.c. series Ix; which is
such that IIxill 2 6§ >0 for each i. Then there exists a subse~

quence {mi} such that for any subsequence {n;} of

{m;} T{t;} =L t;x defines a topological isomorphism T of ¢

i=1 10y o

into X.

Proof: By replacing X by the closed subspace generated by the

(xi}, we may assume that X is separable. For each i pick X4 € X

such that llxill =1 and <x;,x;> = lixi!l. By the Banach-Alaoglu

Theoren (xi) has a subsequence which converges weak™ to an element
v L] L] L]

x € X . To avoid cumbersome notation later, assume that x; + X

* ¥ L]
weak™. Now l<xi - x ,xi>l > 86 ~ |<x, xi>] > 8/2 for large i
L]
since lim <x Xy> = 0. Again to avoid cumbersome notation, assume

that [<x; - x', xi>l > 86/2 for all 1.

The matrix I<xi - X ,xj>] satisfies the condition of the Mat~-

rix Lemma 2. Let (mi} be the subsequence given by the conclusion
of lemma 2 with ¢ = &§/74.
Now define a bounded linear operator T : € * X by

=
T{t;} = L tix, . {(Note this map is well-defined and is continuous
i=1 i

by Proposition 1.) If z, =x_ = x , then, using the conclusion

of Lemma 2,
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L3

20Tt T 3 | < 24, Tt} > P2 Ity <zi,xmi>| —jgiltjl I<z;,x; >I
> It 1872 - ll(tj}ll6/4. Taking the supremum over i gives

ZflT{tj}l} > %l{tj}l}5/4 which implies that T has a bounded
inverse.
The same computation holds for any subsequence {ni} of (mi).
This result was derived in [69] by using a form of the Antosik-
Mikusinski Diagonal Theorem. (See also [131.) The proof given here is
somewhat simpler and is based on Lemma 2 which is a more elementary
result than the Diagonal Theorem.

We now give several applications of Theorem 3. First we derive

a classic result of Bessaga and Pelczynski on w.u.c. series ([21]1).

Corollary 4. The B-space X 1is such that every w.u.c. series in X
is subseries convergent (norm) iff X contains no subspace isomor-
phic to o

Proof: Suppose X contains a series Ix; which is w.u.c. but not

subseries convergent. Then there is a subseries Exn which does
i

not converge. Hence, there is a & > 0 and an increasing sequence
{pj} in N such that {izjfi > & for each j, where
Pj+1

z. = L X, - By Proposition 1 (ii), the series Iz, is w.u.c.
J i=p;#1 " J

and satisfies the hypothesis of Theorem 3. By Theorem 3, X contains
a subspace isomorphic to Co
The other implication is obvious since Co contains a series
which is w.u.c. but not subseries convergent (namely, Xej).
Bessaga and Pelczynski derive Corollary 4 from results on basic
sequences in B-spaces ([211); Diestel and Uhl give a proof of Corol-
lary 4 based on a result of Rosenthal ([34] 1.4.5). The methods

employed in the proof given above should be contrasted with those of
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Diestel and Uhl ({341) where the Rosenthal lemma is used.
We next derive a result of Diestel on vector measures from

Theorem 3 ([34) 1.4.2).

Corollary 5. Let A be an algebra of subsets of a set S. If

m: A+»X is a bounded, finitely additive set function which is not
strongly additive, then X contains a subspace isomorphic to Co*
Proof: If m is not strongly additive, there is a disjoint sequence
{A;} in A and a &> 0 such that ||m(A;)|]| > & for each i.
{See chapters 1 or 4.) For x' € X', the A scalar set function
x'm is bounded and finitely additive and, therefore, has bounded
variation. Hence, I l<x',m(Aj)>l < ». That is, the series Zm(Aj)

is w.u.c. Theorem 3 now gives the result.

A proof of Corollary 5 is given by Diestel and Uhl in [34] and
is based on Rosenthal ‘s Lemma.

Finally we use Theorem 3 to derive a result of Pelczynski on un-
conditionally converging operators. A bounded linear operator T

from a2 B-space X into a B-space Y 1is an unconditionally converg-

ing operator if T carries w.u.c. series in X into subseries
convergent series in Y (I581). A weakly compact operator is uncon-
ditionally converging and in certain B-spaces the converse is also
true (i58]1). The identity operator on ﬁl gives an example of an
operator which is unconditionally converging but not weakly compact.
We have the following interesting result of Pelczynski on._uncondi-

tionally converging operators ([581).

Corollary 6. Let T : X » Y be a bounded linear operator which is
not unconditionally converging. Then there exist isomorphisms

I1 P Cy X and 12 P Cy Y such that T11 = 12 (i.e., T has a
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bounded inverse on a subspace isomorphic to co).

Proof: By hypothesis there exists a w.u.c. series in in X such
that ZTxi is w.u.c. but not subseries convergent. Since ZTxi
contains a subseries which is not convergent, we may as well assume

that ZITx; 1is not convergent. Thus, there exist 8 > 0 and a sub-

sequence (pi} such that ||zj|| > 8, where z; = Tuj and
Pj+1
u; = I x. By Proposition 1 (ii), the series ZITu. 1is w.u.c.
J i=p +1 J
Since |Ix|| 3 || Tx|] 7 |IT]| for each x € X, the series Zuj is

w.u.c. in Y by Proposition 1 (ii) and, moreover,
llujll > &8 /7 |IT||. Applying Theorem 3 to the series Zuj and ZTuj

there is a subsequence {mi} such that Il(tj) = thum‘ and
J

Iz{tj} = thTumj define isomorphisms I1 and 12 from <o into

X and Y, respectively. Evidently TIl = 12.

Pelczynski derives Corollary 6 by using a deep theorem of [21]
on the existence of basic sequences ([S81). Corollary 6 is estab-
lished in [69] by employing the Antosik-Mikusinski Diagonal Theorem.
The proof above is of a much more elementary character.

The converse of Corollary 6 holds and furnishes an interesting
characterization of unconditionally converging operators ([43]).

We now consider the problem of imbedding &% in X.

In what follows, let P be the power set of N. If
Jd ¢ N, 27(J) will denote the subspace of 2% which consists of
those sequences which vanish outside of J. We establish the ana-

logue of Theorem 3 for measures.

Theorem 7. Let p : P » X be bounded and finitely additive. If

{p(j)} doesn’t converge to O, then there exists a subsequence
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{n;} such that for any subsequence {p;} of (n;}, Tg = jd¢d”

defines a topological isomorphism T : £7(J) » X, where
d = {pj : j € N

Proof: We may assume (by passing to a subsequence if necessary) that
there exists a & > 0 such that |[|u(j)}| > 8 for each j. Pick

x; € X' such that [lx;ll =1 and <x;,u(j)> = [lu(j)]l. Let X,
be the closed subspace spanned by {p(j) : j € N}. Let z; be X;

restricted to the subspace Xo. Since Xo is separable, (zj) is
c(XO,Xo) relatively sequentially compact and, therefore, has a

subsequence which is O(XO,XO) convergent to an element z E X0

with ||z || € 1. For convenience of notation, assume that (zj} is
L] []

o(Xo,Xo) convergent to z . Extend z to an element x € X

with ||x || € 1. Thus, we have

(2) lim <x3 - x'. p(i)> = 0 for each 1.
J
Consider the matrix ly;;] = [<x; = x , u(j)>]. Now
lyii( > 5 - |<x., pli)>| > 8/2 for large i since x'u is strongly

additive so, again for convenience of notation, assume that
{3) ]yiil > 8/2 for all i.

By (2) and the strong additivity of each (x; - X.}ﬁ, we have

= O for each 1i.

lim yij =0 for each j and lim yij
i

J
Therefore, we may apply Lemma 2 and obtain a subsequence {mi} such
that

(4) r I ly
i=1 j#i 7%

| < 8/4.

Since each (xi - x )u is strongly additive, Drewnowski's

Lemma implies that (mi} has a subsequence (ni) such that each

(xm' - x )g is countably additive on the o-algebra generated by
1
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(ni}. Put J = {ni : i € N}. Define a bounded linear operator
T: 7)) »X by Té = [ gdu,
J
From the countable additivity, (3) and (4), we have

(5) 2111811 3 1<, ~x , IJ¢du>1 - |JJ¢d(x;_-x')u] -
1 1

«© 1] ¥
P Tt <x_ -x ,uin.) >} > |t |
=1 MM J i

ly !
ot |y P> 1t 1872 - |18]]6/4,
i D nin; n;
where ¢ = {tj}. Taking the supremum over i in (5) implies
11181l > |14116/8, or T has a bounded inverse.
The same calculation holds for any subsequence of ({n,}.
This result is established in {13] by means of another
matrix type result. (See also [72].)
Theorem 7 has an immediate corollary the following result
of Diestel and Faires ([33] I1.4.2, (34]).

Corollary 8. Let I be a o-algebra of subsets of a set S and let
m: X »X be bounded, finitely additive but not strongly additive.

Then X contains a subspace isomorphic to 2°.

Proof: If m is not strongly additive, there are a disjoint

sequence {Ej} cZ anda &8 2 0 such that ilm(Ej)II > 6. Define

g P>»X by p(A) = m UAEJ)' Then p satisfies the conditions
JE

of Theorem 7 and the result is immediate.

Note that the converse of Corollary 8 also holds and, therefore,
gives an interesting characterization of B-spaces containing sub-
spaces isomorphic to L%. (The set function p : P +» £° defined by

(o) =‘£ e; is bounded, finitely additive but not strongly additive.)
i€o
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Corollary 8 has a number of interesting applications (see [33]
I1.4). Ve present two such applications. First we consider the fol-

lowing result due to Bessaga and Pelczynski {([211).

Corollary 9. If X contains no subspace isomorphic to £, then

X contains no subspace isomorphic to Co

¥ 1
Proof: Let in be a w.u.c. series in X . Then, in particular,
z|<xi,x>| <o for each x € X. Thus, the series Ix; is weak’
subseries convergent. Now define a bounded, finitely additive set

function g : P » X' by plo) = L x;. By Corollary 8, p is
i€o

strongly additive. Hence, for any subsequence (mi),
lim IIu(mi)ll = lim lem'll = 0. Theorem 7.1 implies that the series
i

in is norm subseries convergent. Corollary 4 gives the result.

As a second application, we establish the result of Diestel and
Faires on weak® subseries convergent series which was referred to
earlier in sections 3 and 7.

Coroliary 10. Let X contain no subspace isomorphic to L=, If

* *
Ix; is weak® subseries convergent in X , then Ix; is norm

subseries convergent.

Proof: Define a bounded, finitely additive set function p : P » X

by pl{oc) = E X, - By Corollary 8 g 1is strongly additive. Hence, for
i€o
any subsequence {mi}, lim n(mi) = lim x;' = 0 in norm. Theorem 7.1

1

v
implies that the series in is norm subseries convergent.

The converse of Corollary 10 also holds and gives an interesting

characterization of dual spaces containing copies of L% (see [33]
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Corollary 1.2 for the proof).
Finally, we obtain as a corollary of Theorem 7 the following

result of Rosenthal ([651}.

Corollary 11. (Rosenthal) Let T : 2° + X be bounded and linear.
If there is an infinite 1 c N such that T restricted to c(I)
is an isomorphism, then there is an infinite J ¢ I such that T

restricted to £%(J) is an isomorphism.

Proof: Define p : P> X by p(A) = T(CA), where C, denotes the
characteristic function of A. Then g is bounded, finitely additive

and Tf = JNfdu. By hypotheses there is a & » 0 such that

edi) ) = llTC{i}f{ » 8 for i € I. Thus, Theorem 7 gives the result.
Rosenthal actually obtains a more general result than Corollary
11 in Proposition 1.2 of [65]. For the countable case of his result

which is given in Corollary 11 our methods are much simpler.
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KE) . ..

K¢ (E,F)

KE(E)
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