FUNDAMENTALS OF

ONIGS

Fundamentals of
Mechatronics

This page intentionally left blank

Fundamentals of
Mechatronics

Musa Jouaneh
Department of Mechanical,
Industrial, and Systems Engineering
University of Rhode Island

~ ¢ CENGAGE
1% Learning

ia * Brazil « Japan « Korea » Mexico « Singapore » Spain « United Kingdom « United States

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

www.cengage.com/highered

~% CENGAGE
1% Learning

Fundamentals of Mechatronics
Musa Jouaneh

Publisher, Global Engineering:
Christopher M. Shortt

Acquisitions Editor: Swati Meherishi

Senior Developmental Editor:
Hilda Gowans

Editorial Assistant: Tanya Altieri
Team Assistant: Carly Rizzo
Marketing Manager: Lauren Betsos
Media Editor: Chris Valentine

Director, Content and Media
Production: Patricia M. Boies

Content Project Manager:
Jennifer A. Ziegler

Production Service: RPK Editorial
Services, Inc.

Copyeditor: Shelly Gerger-Knechtl
Proofreader: Harlan James
Indexer: Shelly Gerger-Knechtl

Compositor: MPS Limited, a Macmillan
Company

Senior Art Director: Michelle Kunkler

Internal Designer: Juli Cook/Plan-
IT_Publishing

Cover Designer: Andrew Adams/
4065042 Canada Inc.

Cover Image: © Raimundas/Shutterstock

Rights Acquisitions Specialist:
Sam Marshall

Text and Image Permissions Researcher:
Kristiina Paul

Senior First Print Buyer: Doug Wilke

Printed in the United States of America

1234567131211

© 2013 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced, transmitted, stored, or used
in any form or by any means graphic, electronic, or mechanical,
including but not limited to photocopying, recording, scanning,
digitizing, taping, web distribution, information networks, or
information storage and retrieval systems, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act,
without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.
Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2011934121

ISBN-13: 978-1-111-56901-3
ISBN-10: 1-111-56901-0

Cengage Learning

200 First Stamford Place, Suite 400
Stamford, CT 06902

USA

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including
Singapore, the United Kingdom, Australia, Mexico, Brazil, and
Japan. Locate your local office at:
international.cengage.com/region.

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

For your course and learning solutions, visit
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

Certain materials contained herein are reprinted with the
permission of Microchip Technology Incorporated. No further
reprints or reproductions may be made of said materials without
Microchip Technology Inc.’s prior written consent.

SIMULINK and MATLAB are registered trademarks of
The MathWorks, 3 Apple Hill Drive, Natick, MA.

www.cengage.com/permissions
www.cengage.com/engineering
www.cengagebrain.com

To the LORD who has done wonderful things in my life
and to my lovely wife for her encouragement and support

ABOUT THE AUTHOR

Musa Jouaneh received his B.S. in Mechanical Engineering from the
University of Louisiana, Lafayette in 1984 and then went on to the
University of California at Berkeley where he received his M.Eng
in 1986 and his Ph.D. in 1989. He is currently a Professor of
Mechanical Engineering and Applied Mechanics at the University of
Rhode Island. His teaching interests include Mechatronics,
Robotics, Real-Time Monitoring and Control, and Engineering
Mechanics. Professor Jouaneh has been the recipient of several
awards including URI Outstanding Contributions to Intellectual
Property Award (2004), The URI Foundation Teaching Excellence
Award (2003), The 2002-2003 Edmund and Dorothy Marshall
Faculty Excellence Award in Engineering, Albert E. Carlotti Faculty
Excellence Award in Engineering (1993), and Graduate Fellowship,
University of California at Berkeley (1984-1985). Dr. Jouaneh is a
member of American Society of Mechanical Engineers (ASME) and a senior
member of Institute of Electrical and Electronic Engineers JEEE).

vi

CONTENTS

Preface ... xi
CHAPTER 1
INTRODUCTION TO MECHATRONICS 1
1.1 Introductionciininn.. 1
1.2 Examples of Mechatronic Systems 3
1.3 Overviewof Text 5
QUESTIONS . ..o oot 6
CHAPTER 2
ANALOG CIrcuITS AND COMPONENTS7
2.1 Introduction 7
2.2 Analog Circuit Elements 8
2.3 Mechanical Switches 10
2.4 Circuit Analysis 12
2.5 Equivalent Circuits 14
26Impedance 16
27ACSignals ... oo 20
2.8 Powerin Circuitsovuvunn... 21
2.9 Operational Amplifiers 22
2.9.1 Comparator Op-Amp 24
2.9.2 Inverting Op-Amp 24
2.9.3 Non-Inverting Op-Amp 26
2.9.4 Differential Op-Amp 27
2.9.5 Integrating Op-Amp 28
2.9.6 Power Amplifier 29
210 Groundingo 30
2.11 Solenoids and Relays 31
2.11.1 Solenoids 31
2.11.2 Electromechanical Relays 31
2.12 Chapter Summary 32
Questions 33
CHAPTER 3
SEMICONDUCTOR ELECTRONIC DEVICES
AND DIGITAL CIRCUITSvvvvnnn. 36
3.1 Introductioniiiiin.... 36
32Di0des . .o 37
3.2.1Zener Diode 38
322LED 39
3.2.3 Photodiode 39

3.3 Thyristors . ..ovvvvviiiiiai 40
3.4 Bipolar Junction Transistor 42
3.4.1 Transistor Switch Circuit 43
3.4.2 Emutter Follower Circuit 45
3.4.3 Open Collector Output 47
3.4.4 Phototransistor, Photo Interrupter,
and Opto-Isolator 48
3.5 Metal-Oxide Semiconductor Field Effect
Transistoro 49
3.6 Combinational Logic Circuits 51
3.6.1 Boolean Algebra 52
3.6.2 Boolean Function Generation
from Truth Tables 54
3.6.3 Multiplexers and Decoders 56
3.7 Sequential Logic Circuits 57
3.8 Circuit Families 64
3.9 Digital Devices ..., 68
3.10 H-Bridge Drives 72
3.11 Chapter Summary 74
QuUestions 74
CHAPTER 4
MICROCONTROLLERStvvnunnnn.. 78
4.1 Introduction, 78
4.2 Numbering Systems 79
4.2.1 Decimal System 79
4.2.2 Binary System 79
4.2.3 Hexadecimal System 80
4.2.4 Negative Number Representation 81
4.2.5 Representation of Real Numbers 82
4.3 Microprocessors and Microcontrollers 82
4.4 PIC Microcontroller 84
4.4.1 PIC Microcontrollers Families 85
4.4.2 Pin Layout 87
4.4.3 PIC MICU Components 89
4.4.4 Clock/Oscillator Source 91
4.4.5 I/O and A/D Operation 92
4.4.6 PWM Output and Reset
Operations 93

vii

viii Contents

4.5 Programming the PIC Microcontroller94

4.5.1 Programmeers 94
4.5.2 Bootloaders 96
4.6 C-Language Programming 96
4.6.1 PIC-C I/O Functions 98
4.6.2 PIC-C A/D Functions 99
4.6.3 PIC-C Timing Functions 99
4.6.4 PIC-C PWM Functions 100
4.7 PIC MCU Devices and Features 101
4.7.1 Data Memory 101
4.7.2 EEPROM Data 101
4.7.3 Program Memory 101
4.7.4 Delays and Timers 102
4.7.5 PWM Timing and Duty Cycle 103
4.7.6 Watchdog Timer 104
4.7.7 Power Saving 105
4.7.8A/E/USART 106
4.7.9 Analog Comparator 107
4.7.10 Synchronous Serial Port (SSP)
Interface 107
4.8 Interruptst 108
4.8.1 Interrupts Applications 108
4.8.2 Interrupt Processing 109
4.8.3 PIC-C Interrupts Handling 111
4.9 Assembly Language Programming 113
4.9.1 Assembly Instructions 113
4.9.2 Assembly Language Programming
Examples 113
4.9.3 Integrating C and Assembly 116
4.9.4 PIC18 Assembly Instructions 117
4.10 Chapter Summary 118
Questions 118
CHAPTER 5
DATA ACQUISITION AND MICROCONTROLLER/
PC INTERFACING .. .cvvvverennnnnnn 122
5.1 Introduction 122
5.2 Sampling Theory 123
5.3 Analog-to-Digital Converter 123
5.3.1 A/D Characteristics 123
5.3.2A/D Operation 126
5.3.3 A/D Input Signal Configuration 127

5.4 Digital-to-Analog Converter 128
5.4.1 D/A Characteristics 128
5.4.2 D/A Operation 128

5.5Parallel Port 130

5.6 Data-Acquisition Board Programming131

5.7 USART Serial Port 132

5.8 Serial Peripheral Interface 136

5.9 Inter-Integrated Circuit Interface 138

5.10 USB Communication 140
5.10.1 USB Standards and Terminology 140
5.10.2 USB Data Transfer 142
5.10.3 Transfer Modes 144
5.10.4 USB Support on PIC Microcontrollers . . .144

5.11 Network Connection 145
5.11.1 Structure and Operation 146
5.11.2 VBE Programming Support 148

5.12 Chapter Summary 150
Questions 150

CHAPTER 6

CONTROL SOFTWARE 153

6.1 Introduction 153

6.2 Time and Timers 154

6.3 Timing Functions 156
6.3.1 Timer Implementation in MATLAB156
6.3.2 Timer Implementation in VBE 159
6.3.3 Performance Counter 160
6.3.4 Timing in PIC Microcontroller 161

6.4 Control Tasks 162
6.4.1 Discrete-Event Control Tasks 164
6.4.2 Feedback Control Tasks 169

6.5 Task Scanning 170
6.5.1 Requirements 170
6.5.2 Implementation 171

6.6 State Organization 173

6.7 Control Task Implementation

inSoftware 174
6.7.1 Implementation in MATLAB 174
6.7.2 Implementation in VBE 178
6.7.3 Implementation in a PIC

Microcontroller 180

6.8 Multitasking, 184

6.9 Threadingin VBE 186
6.9.1 BackgroundWorker 186
6.9.2 Thread Class 188

6.10 Resource Sharing 188

6.11 Real-Time Operating Systems 192
6.11.1 PIC-C RTOS System 194
6.11.2ThreadX 195

6.12 Graphical User Interface 197
6.12.1 MATLAB Graphical User Interface198
6.12.2 VBE Graphical User Interface 202

6.13 Chapter Summary 205
Questions 206

CHAPTER 7

SENSORSiitiininnnnnnnnnnnnnn 209

7.1 Introduction 209

7.2 Sensor Performance Terminology 210
7.2.1 Static Chavacteristics 210
7.2.2 Dynamic Characteristics 211

7.3 Displacement Measurement 212
7.3.1 Potentiometers 213
T32LVDT ... 215
7.3.3 Incremental Encoder 216
7.3.4 Absolute Encoder 219
7.3.5 Resolver 221

7.4 Proximity Measurement 221
7.4.1 Hall-Effect Sensors 221
7.4.2 Inductive Proximity Sensors 223
7.4.3 Ultrasonic sensors 225
7.4.4 Contact-Type Proximity Sensors 225

7.5 Speed Measurement 226
7.5.1 Tachometer 226
752 Encoder 227

7.6 Strain Measurement 227

7.7 Force and Torque Measurement 230
7.7.1 Force Sensors 230
7.7.2 Force-Sensing Resistor 231
7.7.3 Torque Sensors 231

7.8 Temperature Measurement 233
7.8.1 Thermistors 233
7.8.2 Thermocouples 234
T83RTD 236
7.8.4 IC Temperature Sensors 237

Contents
7.9 Vibration Measurement 238
7.9.1 Seismic Mass Operating Principle 238
7.9.2 Piezoelectric Accelerometers 241
7.9.3 Integrated Circuit (IC)
Accelerometers 243
7.10 Signal Conditioning 244
7.10.1 Filtering 244
7.10.2 Amplification 250
7.10.3 Bridge Circuits 250
7.11 Sensor Output 255
7.12 Chapter Summary 256
Questions 256
CHAPTER 8
ACTUATORS .« .t v vviiiiiiinnneeennns 259
8.1 Introduction, 259
82DCMOtOrs . oo vvee e 260
821 BrushDC 260
8.2.2 Brushless DC 269
8.2.3 Servo Drives 272
8.2.4 PWM Control of DC Motors 274
8BIACMOLOrS ..o oo e i 275
8.4 Stepper Motors 279
8.4.1 Drive Methods 280
8.4.2 Wiring and Amplifiers 283
8.5 Other Motor Types 287
8.6 Actuator Selection 289
8.7 Chapter Summary 290
QuUestions 291
CHAPTER 9
FEEDBACK CONTROLcovuvuunn 293
9.1 Introductionccvuuiiinn... 293
9.2 Open- and Closed-Loop Control 294
9.3 Design of Feedback Control Systems 295
9.4 Control Basics 295
9.5PID Controller 298
9.5.1 Speed Control of an Inertia 299
9.5.2 Position Control of an Inertia 302
9.6 Digital Implementation of a PID
Controller 305
9.7 Nonlinearitiescovvuieenn. .. 305
9.7.1 Saturationc...0.... 305
9.7.2 Nonlinear Friction 308

ix

X Contents

9.8 Other Control Schemes 309
9.8.1 On-Off Controller 309
9.8.2 State Feedback Controller 310

9.9 Chapter Summary 314
Questions 314

CHAPTER 10

MECHATRONICS PROJECTS 316

10.1 Introductionccoiiin.... 316

10.2 Stepper-Motor Driven Rotary Table 316
10.2.1 Project Objectives 317
10.2.2 Setup Description 317
10.2.3 Interface Circuit 317
10.2.4 Operation Commands 318
10.2.5 Microcontroller Code 319
10.2.6 Results 324
10.2.7 List of Parts Needed 324

10.3 A Paper-Dispensing System That Uses

a Roller Driven By a Position-Controlled
DCMotoroiiiii.. 325
10.3.1 Project Objectives 325
10.3.2 Setup Description 325
10.3.3 User Interface 326
10.3.4 Motion Profile 327
10.3.5 Control Software 328
10.3.6 Modeling and Simulation of System332
10.3.7 Feedback Controller Simulation
imMATLAB 333
10.3.8 Results 334
10.3.9 List of Parts Needed 336

10.4 A Temperature-Controlled Heating

System That Uses a Heating Coil, a
Copper Plate, and a Temperature Sensor .336
10.4.1 Project Objectives

10.4.2 Setup Description 336

10.4.3 VBE PC User Interface 338
10.4.4 Microcontroller Code 339
10.4.5 Modeling and Simulation

of Physical System 342
10.4.6 Controller Simulation in MATLAB344
104.7Results, 344

10.4.8 List of Parts Needed 345

10.5 Chapter Summary 345
BIBLIOGRAPHY00000euenn. 347
ANSWERS TO SELECTED PROBLEMS 349
APPENDIX A
VISUAL BASIC EXPRESS 351
AllIntroductioncoiiiii.... 351
A.2 Console Application 351
A.3 Windows Forms Applications 353
A4 Files and Directory Structure 355
ASVariables 356
AGOPperatorsoovvniiiiininenn.. 358
A.7 Looping and Conditional Statements 358
A.8 Functions and Sub-Procedures 360
A.9 Objects and Classes 363
A.10 Error Handling 365
A.11 Graphics Programming 366
A.12 ToolBox Controls 367
A.13 File Input/Output 368
APPENDIX B
SYSTEM RESPONSE 370
B.1 Time Response of First-Order Systems . ..370
B.2 Time Response of Second-Order
Systems o il 371
B.3 Frequency Response 374
ApPENDIX C
MATLAB SIMULATION
OF DYNAMIC SYSTEMSo vvvvvnnnnn 377
C.1 Solution of Differential Equations
inMATLAB 377
C.1.1 State-Space Solution Method 377
C.1.2 Direct Integration Using
ODE Solversc.. ... 379
C.1.3 Tiansfer Function Methods 380
C.2 Block Diagram Representation
and Simulation in MATLAB 381
APPENDIX D
7-BITASCIICODE cvvvvnnn. 383
INDEX ...oiiiiii it 385

PREFACE

Fundamentals of Mechatronics is designed to serve as a textbook for an undergradu-
ate course in Mechatronics Systems Design. It has been written with the primary
objective of covering both hardware and software aspects of mechatronics system
design in a single text, providing a complete treatment of the subject matter. To
design a complete mechatronics system, the student must not only learn about sen-
sors, actuators, microcontrollers and other electronics, but must also understand
how to design the software that interacts with these hardware elements. This book
lays emphasis on a structured way for developing such software. Software concepts
are applicable to both microcontrollers and PC-based systems. Software code
examples are presented in C, MATLAB, and Visual Basic Express to appeal to a
wide variety of students and instructors.

CONTENT AND ORGANIZATION

Fundamentals of Mechatronics focuses on applications, modeling considerations, and
relevant practical issues that arise in the selection and design of mechatronics com-
ponents and systems. The textbook provides a comprehensive discussion of the use
microcontrollers in control of mechatronics systems, using the PIC microcontroller
as a vehicle for teaching. It also discusses software topics such as timing, task/states,
graphical user interfaces, and Real-Time Operating Systems that are needed to
implement control of mechatronics systems. Interfacing of microcontrollers/PCs
with mechatronics components is covered, illustrating techniques such as asynchro-
nous serial, synchronous serial, USB, and Ethernet. The book also includes descrip-
tions of several simple-to-build experimental systems that instructors teaching the
course can build and use in their courses.

The book is organized into 10 chapters and several appendices. Chapter 1 is an
introductory chapter. Chapters 2 and 3 focus on circuits and electronics. Chapters 4-6
focus on microcontrollers, interfacing, and control software development. Chapters 7
and 8 focus on sensors and actuators, while Chapter 9 focuses on the basics of
feedback control. The last chapter lists the details of three mechatronics projects.

The textbook uses several programming languages to illustrate key topics.
Different programming platforms are presented to give the instructor a choice to
select the programming language most suitable for their course objectives. MATLAB
is used as tool for modeling and simulation as well as for illustrating timing and
Graphical User Interfaces. Visual Basic Express is used for illustrating timing,
task/state, and GUI development for code running on a PC. The C language is used
for programming of PIC microcontrollers. The author does not expect the student
to have any appreciable knowledge of programming except familiarity with basic pro-
gramming concepts through a prior introductory course on MATLAB. An appendix
that covers Visual Basic Express in included in the text. If the student is expected to
develop PC-based applications that interact with code running on a microcontroller,
then both the VBE and the C-language should be emphasized.

COURSE OUTLINES

Although the intended market for this text is junior/senior-level undergraduate
students, the text could also be used in an advanced undergraduate/beginning
graduate-level course with focus on control software. For a junior/senior level

Xi

Xii

Preface

undergraduate course, some of the sections in Chapter 4 (Microcontrollers),
Chapter 5 (Data Acquisition and Microcontroller/PC Interfacing), and Chapter 6
(Control Software) could be skipped. For an advanced undergraduate level/
beginning graduate-level course with focus on control software, the course could
just focus on the contents of Chapters 1, 4-6, 9-10, and selected topics from the
remaining chapters. In the undergraduate mechatronics course (MCE433) that
the author teaches at the University of Rhode Island (URI), he covers Chapter 1,
most of the material in Chapters 2, 3, and 4, selected topics from Chapter 5, most
of Chapter 6, and selected topics from Chapter 7-10, in addition to the appendix
on VBE.

SUPPLEMENTS AND ANCILLARIES

A separate laboratory book called Laboratory Exercises in Mechatronics is available for
purchase through Cengage Learning. Laboratory Exercises in Mechatronics details a
number of laboratory exercises and projects to facilitate guided hands-on experi-
ence with many of the topics covered in this text.

Instructors Solutions Manuals for both Fundamentals of Mechatronics and
Laboratory Exercises in Mechatronics are available from the publisher on request. To
request access to the solutions manuals and additional course materials, please visit
www.cengagebrain.com. At the cengagebrain.com home page, search for the
ISBN of your title (from the back cover of your book) using the search box at the

top of the page. This will take you to the product page where these resources can
be found.

ACKNOWLEDGEMENTS

I would like to acknowledge the many students who were enrolled in the mecha-
tronics class at the University of Rhode Island and who had provided useful sug-
gestions and comments which shaped the current manuscript. These include
Michael Andrews, Scott Carlson, Anthony Digiulio, William Fanning III, Andrew
Krytiun, Daniel Ouellete, Paul Schumacher, and Andrew Wild.

I would also like to acknowledge James Byrnes, the electronic technician in the
Mechanical, Industrial, and Systems Engineering Department at URI who has
helped in building and wiring some of the circuits used in this book.

I am also thankful to several of my colleagues at the University of Rhode Island
who provided valuable comments. These include Professors William Palm and
Godi Fisher.

I also wish to acknowledge the valuable comments and suggestions of the man-
uscript reviewers:

Alan A. Barhorst, Texas Tech University

Jordan M. Berg, Texas Tech University

William W. Clark, University of Pittsburgh
Burford Furman, San Jose State University
Hector Gutierrez, Florida Institute of Technology
Steve Hung, Clemson University

Marcia K. O’Malley, Rice University

www.cengagebrain.com

Thanks to Swati Meherishi, Acquisitions Editor, and Hilda Gowans, Senior
Developmental Editor, of Cengage Learning, for their help in bringing this book
to fruition.

The manuscript of this book was class tested at the Pennsylvania State
University, State College. The author and the publisher are grateful for the support
extended by the instructors at Penn State. We also thank the many students who
used the manuscript and provided useful comments.

Musa Jouaneh
Kingston, Rbode Island

Preface

xiii

This page intentionally left blank

CHAPTER

Introduction to Mechatronics

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:
e Explain what is a mechatronic system
e List the components of a mechatronic system
¢ Give examples of real-world mechatronic systems
¢ Give an overview of the topics covered in the text

| 1.1 INTRODUCTION

Mechatronics is the field of study concerned with the design, selection, analysis,
and control of systems that combine mechanical elements with electronic compo-
nents, including computers and/or microcontrollers. Mechatronics topics involve
elements from mechanical engineering, electrical engineering, and computer sci-
ence, and the subject matter is directly related to advancements in computer tech-
nology. The term ‘mechatronics’ was coined by Yasakawa Electric Company [1]
to refer to the use of electronics in mechanical control (i.e., ‘mecha’ from mechan-
ical engineering and ‘tronics’ from electrical or electronic engineering). Auslander,
et al. [2] have defined mechatronics as the application of complex decision-making
to the operation of physical systems. This definition removes the specific technol-
ogy to be used to perform the operation from the definition.

A block diagram of a typical mechatronic system is shown in Figure 1.1. A
mechatronic system has at its core a mechanical system which needs to be com-
manded or controlled. Such a system could be a vehicle braking system, a position-
ing table, an oven, or an assembly machine. The controller needs information about
the state of the system. This information is obtained from variety of sensors, such
as those that give proximity, velocity, temperature, or displacement information. In
many cases, the signals produced by the sensors are not in a form ready to be read
by the controller and need some signal conditioning operations performed on
them. The conditioned, sensed signals are then converted to a digital form (if not
already in that form) and presented to the controller.

The controller is the ‘mind’ of the mechatronic system, which processes user
commands and sensed signals to generate command signals to be sent to the actua-
tors in the system. The user commands are obtained from a variety of devices,
including command buttons, graphical user interfaces (GUISs), touch screens, or
pads. In some cases, the command signals are sent to the actuators without utilizing
any feedback information from the sensors. This is called open-loop operation, and

Chapter 1 Introduction to Mechatronics

Figure 1.1 Drive
X Circuits
Typical components of
a mechatronics system R
' Digi |
i Digitalto Actuators
: Analog |
User Controller Mechanical
Interface (PC or MCU) System
I Analoe to |
Analog to
| |
| Digital 1 Sensors
________ J
’ Signal

Conditioning

for it to work, this requires a good calibration between the input and output of the sys-
tem with minimal disturbances. The more common mode of operation is the closed-
loop mode in which the command signals sent to the actuators utilize the feedback
information from the sensors. This mode of operation does not require calibration
information, and it is much better suited for handling disturbances and noise.

In many cases, the command signals to the actuators are first converted from
a digital to an analog form. Amplifiers implemented in the form of drive
circuits also can be used to amplify the command signals sent to the actuators. The
actuator is the mechanism that converts electrical signals into useful mechanical
motion or action. The choice of the controller for the mechatronic system depends
on many factors, including cost, size, ease of development, and transportability.
Many mechatronic systems use personal computers (PCs) with data acquisition
capabilities for implementation. Examples include control of manufacturing
processes such as welding, cutting, and assembly. A significant number of control-
lers for a mechatronic system are implemented using a microcontroller unit (MCU),
which is a single-chip device that includes a processor, memory, and input-output
devices on the same chip. Microcontrollers often are used for control of many
consumer devices, including toys, hand-held electronic devices, and vehicle safety
systems. Control systems that use MCUs often are referred to as embedded con-
trol systems.

The control system for a mechatronic system can be classified as either a discrete-
event control system or a feedback control system. In a discrete-event system, the
controller controls the execution of a sequence of events, while in a feedback control
system, the controller controls one or more variables using feedback sensors and feed-
back control laws. Almost all realistic systems involve a combination of the two. This
textbook will discuss these two classes in detail.

A mechatronic system integrates mechanical components, electronic compo-
nents, and software implemented either on a PC or MCU to produce a flexible and
intelligent system that performs the complex processing of signals and data. In
many cases, a mechatronic system can be used to improve the performance of a sys-
tem beyond what can be achieved using manual means. An example includes the
speed control of rotating equipment. In some cases, a mechatronic system is the
only means by which that system can operate (such as the control of magnetic bear-
ings and in nano-positioning control applications).

12 Examples of Mechatronic Systems

| 1.2 EXAMPLES OF MECHATRONIC SYSTEMS

Modern society depends on mechatronic-based systems for its conveniences and
luxurious standard of living. From intelligent appliances to safety features in cars
(such as air bags and anti-lock brakes), mechatronic systems are widely used in
everyday life. The availability of low-cost, compact, and powerful processors in the
form of MCUs accelerated the widespread use of mechatronic systems. An exam-
ple is the use of embedded controllers to control many of the devices in a vehicle.
A list of such applications is shown in Table 1.1.

Application Area

Safety Comfort Power Train

e Airbag system e Door locks e Engine controls

e Anti-lock breaking system e Keyless entry system e Fuel pump controls

e Daytime running light e Heating system controls e Fuel sensing controls
o Flectronic stability controls e Seat positioning controls e (Gearbox controls

To further illustrate mechatronic systems, we will discuss four available systems: an
industrial robot, a mobile robot, a flatbed scanner, and a parking-garage gate.

Industrial Robots Robots, whether of the fixed type (such as industrial robots)
or of the mobile type, are good examples of mechatronic systems. Figure 1.2 shows
an industrial robot arm. A robot is a mechanical device that can be programmed to
perform a wide variety of applications. The main components of a robot system are
the controller and the mechanical arm. The controller handles several operations,
including the user interface, programming, and control of the arm. The mechani-
cal arm consists of several mechanical links that are connected at joints. An actua-
tor is used to drive each link, and each actuator has a feedback sensor to indicate
the location of the link. A multi-link robot is a complicated device that requires
coordination of the motion of the links. This job is done by the control software,
which processes information from the desired motion of the arm, and the feedback
sensors, which send commands to the actuators or the servomotors to perform the
desired task. To enable a robot to handle variation in the environment in which it
operates, additional sensors are normally used (such as vision and proximity).

Mobile Robots Mobile robots are currently being used in a wide diversity of
applications. Whether vacuum cleaning, assisting soldiers in combat operations, or
delivering food and medicine in hospitals, their use is increasing. Similar to their fixed
counterparts, a mobile robot consists of a number of modules that are commanded
by a controller. Due to their operation in unstructured environments, mobile robots
rely heavily on sensors to guide them in navigation and to avoid obstacles. Examples
of sensors used by mobile robots include ultrasonic proximity sensors, vision sensors,
and global positioning system sensors. An example of a mobile robot is the Roomba®
vacuum-cleaning robot (see Figure 1.3) made by iRobot® Corporation. The Roomba
has a cylindrical shape, two wheel modules, and a sensor to detect obstacles. The
Roomba has all of the main components of a mechatronic system: actuators (wheel
modules), sensors (target and dirt), and a controller.

Table 1.1

Listing of sample
applications of
mechatronic systems
in vehicles

Figure 1.2

Industrial robot
(© Balonicci/ Shutterstock.com)

Chapter 1 Introduction to Mechatronics

Figure 1.3

Roomba® vacuum-
cleaning robot

(iRobot Corporation,
Bedford, MA)

Figure 14

A flatbed scanner

(© CreativeAct-Technology
series/Alamy)

Figure 1.5

Parking gate
(© BigPileStock/Alamy)

Scanner A scanner (see Figure 1.4) is a device that captures an image of a doc-
ument and converts it into a format suitable for electronic storage. The main com-
ponents of a scanner include the scanning head, the transport device, the controller,
and the control software. The controller commands the transport device which
carries the scanner head. The transport device uses a stepper motor and a system
of gears and belts to move the scanning head in precise steps. After each step, the
transport device stops, and a scan is sampled. The scanning head involves some
form of a line camera that measures the reflectivity of a scanned line. The scanned
line is brought to the scan sensor through a system of mirrors and lenses. The out-
put of the scanning head is processed by the control software to create a map of the
scanned document. This map is further analyzed to reveal all of the features in the
document and to filter any noise signals from the captured data. The control soft-
ware sequences the operation of the scanner and communicates with the PC. When
the scanning job is completed, the scanned image is then transferred to a PC using
a USB or a parallel-port connection. This mechatronic system involves all of the
elements of a typical control system: sensor, actuator, and controller. It is also an
example of a discrete-event system.

Parking Gate A parking garage gate (see Figure 1.5) is another example of
a mechatronic system that involves a number of elements. The system has an elec-
tric motor to raise and lower the gate arm. It also has a proximity sensor to prevent
the gate from striking people and vehicles. In addition, it has a microcontroller in
which software is used to run the gate in different operating modes. Typically, a
parking-garage gate operates as follows: The user presses a button to get a ticket or
swipes a card in a card scanner. Once the ticket is picked up by the user or the card
is validated, the gate arm rotates upward. The gate arm remains in a raised position
until the vehicle has completely cleared the gate, at which point the gate drops
down. The operation of each stage of this system is dependent on sensor feedback
and timing information. The controller for this system cycles between the different
operating stages each time a vehicle needs to enter the parking garage.

13 Overview of Text

The previous examples illustrate a wide range of mechatronic systems. With the
increased use of automation systems in manufacturing and the integration of mobile
robots in many applications, the study of mechatronics will further increase. It
should be noted that mechatronics encompasses many enabling technologies that
are key to the design, operation, and control of modern, smart systems. These tech-
nologies include signal processing, system interfacing, sensor integration, drive
technology, actuation systems, software programming, and motion-control systems.

| 1.3 OVERVIEW OF TEXT

"This book covers topics that are needed to design, analyze, and implement a com-
plete mechatronic system. The text is organized into ten chapters and several appen-
dices and covers all of the areas related to the mechatronic components shown in
Figure 1.1. Chapter 2 covers the basics of analog circuits and components. Virtually
every mechatronic device has some form of an electric circuit, and thus under-
standing and analyzing electrical circuits is important in mechatronics. Chapter 3
discusses the operation of semiconductor electronic devices (such as diodes, thyris-
tors, and transistors) that are used in many circuits and devices for switching or
amplification purposes. It also covers digital circuits. In many situations, the current
and voltage capabilities of interface devices available on PCs and MCUs are not ade-
quate to operate real devices (such as motors and heaters) and semiconductor elec-
tronic components (such as transistors) are needed. Chapter 4 discusses the use and
programming of microcontrollers in detail. The objective of this chapter is to give
the reader complete coverage of the features and capabilities of a typical microcon-
troller. Unlike combinational and sequential circuits, microcontrollers and micro-
processors offer a flexible but complex method to implement control logic.

Chapter 5 discusses techniques to interface a processor to the outside world
using different interface devices (such as analog-to-digital converters, digital-to-
analog converters, digital input/output ports, asynchronous and synchronous serial
ports, Internet, and USB). Chapter 6 focuses on software development issues when
using a microcontroller (and to a less extent, a PC) as the controller in a mechatronic
system. Some of these issues include how to incorporate time into a control program,
how to structure the operation and control of physical systems into tasks and states,
and how to write control code that is suitable for real-time implementation. A soft-
ware-based control system offers flexibility over a hardware-based one, since the con-
troller structure and control logic can be changed by simply changing the code in the
program. Chapter 7 focuses on sensors. Sensors are vital components of mechatronic
systems, since they provide the feedback information that enables automated systems
to function. A sensor is an element that produces an output in response to changes in
physical quantity (such as temperature, force, or displacement). Chapter 8 discusses
actuators, which are the key components of all mechanized equipment. An actuator
is a device that converts energy to mechanical motion. This chapter focuses on elec-
trically powered actuators, which are commonly used in mechatronic systems.
Chapter 9 covers the basics of feedback control systems. The objective is to illustrate
to the reader the design, simulation, and implementation of basic feedback control
systems. Chapter 10 discusses several experimental systems that are suitable for
extended or final project topics. These projects are intended to illustrate the integra-
tion of the various topics covered in the text. The text has also several appendices.
Appendix A gives a detailed overview of Visual Basic Express. Appendix B covers
basics of system response, while Appendix C discusses MATLAB simulation of
dynamic systems. Appendix D has a list of 7-bit ASCII codes.

6 Chapter 1 Introduction to Mechatronics

QUESTIONS

1.1 What is mechatronics?
1.2 What are the elements of a mechatronic system?

1.3 How are mechatronic systems implemented?

PROBLEMS

P1.1 Perform research on mechatronic systems that are
used in vehicles. Identify the type of sensors
and/or actuators that are used in the following
systems.

a. Air bag
b. Door locks

c. Powered side mirrors

P1.2 Research and identify all the mechatronic compo-
nents used in the following devices.

a. Modern washing machine
b. Servo-driven industrial robot

c¢. Automated entry door

_CHAPTER

Analog Circuits
and Components

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:
e Explain the characteristics of basic circuit components
¢ Explain the different types of switches
e Perform circuit analysis using Kirchhoff's voltage law (KVL) and
Kirchhoff’s current law (KCL)
¢ Determine an equivalent circuit for a given two-terminal circuit
e Explain the concept of impedance and loading effects
¢ Determine the RMS current and voltage in an AC circuit
¢ Determine the components of power in an AC circuit
¢ Analyze different op-amp circuits
e Explain proper grounding techniques
¢ Explain the function of a solenoid
¢ Use arelay as an interface element

| 2.1 INTRODUCTION

Virtually every mechatronic device has some form of an electric circuit, and thus,
understanding and analyzing electrical circuits is important in mechatronics.
A circuit is defined as a closed path through a series of electronic components in
which a current flows through. Electric circuits can be of the analog or digital type.
In analog circuits, the voltage is continuous and can have any value over a speci-
fied range, while in a digital circuit, the voltage signal is usually represented by just
two different levels (such as 0 and 5 volts (V)). Analog circuits are more sensitive
to noise or disturbances than digital circuits. In an analog circuit, any noise in the
circuit is translated into changes in the analog signal or a loss of information, while
in a digital circuit, small disturbances have no effect. As long the signal stays with-
in a specified range in a digital circuit, it represents the same information. Digital
circuits are used to perform logic operations using hardware instead of software.
"Two basic quantities in electrical circuits are voltage or electric potential, and
current. Voltage refers to the capability of driving a stream of electrons through a
circuit, similar to the concept of a force in a mechanical system, while current is a
measure of the flow of charge in the circuit. The unit of measurement for current
is Amperes (A). The time integral of the current is defined as electrical charge and
has units of Coulombs (C). When the voltage or current does not change its value
with respect to time in a circuit, it is called a direct current (DC) circuit. On the

Chapter 2 Analog Circuits and Components

Figure 2.1

A schematic of an
electrical circuit

(21)

Table 2.1

Symbols of basic circuit
elements

other hand, when the voltage or current varies sinusoidaly with time it is called an
alternating current (AC) circuit.

"This chapter covers the basics of analog circuits and components. Digital cir-
cuits are covered in the next chapter. For further reading, see [3-6].

| 2.2 ANALOG CIRCUIT ELEMENTS

Circuit elements include power sources (such as a power supply or a battery),
switches to open and close the circuit, and circuit components (such as resistors and
capacitors). A schematic of an electrical circuit is shown in Figure 2.1. The figure
shows a closed loop where a conducting element (such as a copper wire) connects
a voltage source (or a current source) to load elements on the circuit.

Anode [+ +
Voltage Source (;) Load
Cathode [— -

Figure 2.1 also shows the direction of conventional current flow from the
anode (positive terminal) of the power source to the cathode (negative terminal).
The conventional current flow direction is the opposite of the direction of actual
electron flow in the circuit but was kept due to Benjamin Franklin, who thought
that electrical current is due to the motion of positively charged particles.

Circuit components can be of the passive type, which require no external
power to operate (such as resistors and capacitors), or active components which
require power to operate (such as operational amplifiers). We will focus on the
three basic passive circuit elements in this section, namely, the resistor, the capaci-
tor, and the inductor. Table 2.1 shows the electrical symbols for these elements.
The table also shows the symbols for two energy sources that are normally repre-
sented in circuits. These include an ideal voltage source, and an ideal current
source. These sources are considered ideal because they do not have any internal
resistance, capacitance, or inductance.

The resistor is an element that dissipates energy. The constitutive relation for
an ideal resistor is given by Ohm’s law, in which the voltage drop across the resis-
tor is linearly related to the current through the resistor, or

V=R

Element Reference Circuit Symbol

Resistor R —AMM—

Capacitor C _| |_

Inductor L - AT—
+

Ideal Voltage Source v

Ideal Current Source /

2.2 Analog Circuit Elements 9

The resistance is measured in units of ohms (£)). Resistors can be either of the
fixed type or variable. Fixed-type resistors are made in made in a variety of forms
including surface mount, wire wound, thick film, and carbon composition (see
Figure 2.2).

Typical fixed-type, low-wattage resistors are made of molded carbon composi-
tion and have a resistance that ranges from a few ohms to about 20 MQ. These
resistors have a cylindrical shape, and have sizes that increase with the power rating
of the resistor. Typical power rating is 1/4 to 1 Watt (W). The resistance can be
read from the color code printed on the resistors. Typically, four color bands are
shown on the resistor, as shown in Figure 2.3, but resistors with five or six color
bands are also available. For four color bands, the left three bands give the resistor
value, while the fourth band gives the resistance tolerance (Tol). The resistance is
given by the formula

R = ab X 10°(F%Tol)

where the # band is the value of the tens digit, the » band is the value of the ones
digit, the ¢ band is the base-10 exponent power value, and the Tol band gives the
tolerance or expected percentage variation in the resistor value. Table 2.2 gives
these values.

abc Value Tol Band Value
Black 0 Silver 10%
Brown 1 Gold 5%
Red 2 Brown 1%
Orange 3 Red 2%
Yellow 4 Green 0.5%
Green 5 Blue 0.25%
Blue 6 Violet 0.1%
Violet 7 Gray 0.05%
Gray 8

White 9

Figure 2.2

Resistor types

(a) surface mount,

(b) wire wound,

(c) thick film, and

(d) carbon composition

(Courtesy of Ohmite Mfg.
Co., Arlington Heights, IL)

Figure 2.3
Resistor color bands

ab ¢ Tol

—{ILTD—

(22)

Table 2.2

Resistor bands color
code

10

Chapter 2 Analog Circuits and Components

(23)

(24)

As an example, a resistor whose bands are colored brown, black, orange, and
silver has a resistance of 10k +/—10% ohms. The resistance of real resistor is not
actually constant, but it increases with temperature.

Commercial resistors are available in certain preferred values. These values
are dependent on the resistance tolerance. For example, preferred resistor values
include 1 Q, 100 €, 10 kQ, and 1 MQ; 22 Q, 2.2 kQ, and 220 kQ; or 16 2, 1.6 k),
and 160 k().

Variable-type resistors include rheostats and potentiometers. Rheostats are
two-terminal resistors, while potentiometers are three-terminal resistors. They
can be of the linear or rotary type, and the resistance between the terminals is
changed as the position of the wiper terminal is changed.

Unlike a resistor, a capacitor is an energy storage element. The constitutive
relation for a capacitor is

a1 |

dat C
where C is the capacitance in Farads (F). Small capacitors are typically of the
ceramic type, which can be used in both AC and DC circuits. These capacitors have
capacitance that is less than 0.1 micro-Farads (uF). Capacitors with large capaci-
tance (up to several thousand micro Farads) are of the electrolytic type. These are
used only in DC circuits, and their leads are polarized. One characteristic of capac-
itors is the leakage current, which is the current that flows between the capacitor
plates when a voltage is applied across the plates of the capacitor. This current leads
to the loss of charge over time from the capacitor. This current, however, is typi-
cally small, unless the capacitor is of the electrolytic type. Similar to resistors,
capacitors are also available as fixed or variable type.

An inductor is also an energy storage element. Inductive elements in practice
include solenoids and motors. The constitutive relation for an inductor is

a_1,
dat L
where L is the inductance, and it is measured in units of Henry (H). Small-sized
inductors are of the molded type, and they have inductance that varies from sub-
mirco to several thousand microHenry (uH).

| 2.3 MECHANICAL SWITCHES

Mechanical switches are devices that make or break contact in electrical circuits.
There are a variety of mechanical switches available, including toggle, push-button,
rocker, slide, and others (see Figure 2.4).

Toggle switches are specified in terms of their number of poles and throws.
Poles refer to the number of circuits that can be completed by the same switching
action, while throws refer to the number of individual contacts for each pole.
Figure 2.5 shows four different configurations of toggle switches. In Figure 2.5(a),
a single-pole, single-throw (SPST) switch is shown, which is the configuration of
basic switches (such as on-off switches and mechanical contact limit switches).
In Figure 2.5(b), a single-pole, double-throw (SPDT) switch is shown. The
Figure 2.5(b) configuration is commonly used in the residential wiring of rooms
that have two switches to operate a light fixture, and Figure 2.6 shows an example
of such a circuit which uses two SPDT switches. Note that the SPDT switch is
commonly known as a ‘three-way switch. Figure 2.5(c) shows a double-pole,

2.3 Mechanical Switches

(a) SPST (b) SPDT (c) DPST (d) DPDT

Neutral Live

single-throw (DPST) switch, which is equivalent to two SPST switches controlled
by a single mechanism. Figure 2.5(d) shows a double-pole, double-throw (DPDT)
switch configuration. This configuration is commonly used in the construction or
electromechanical relays (to be discussed in the next section).

A DPDT switch which is internally wired for polarity reversal applications is
commonly called ‘a four-way switch’ (see Figure 2.7). Such a switch has only four
wires coming out of it (instead of six) and can be inserted between two SPDT
switches to enable wiring of a single light bulb using three switches (see Problem 2.3).

Toggle switches are known as ‘break before make’ type, which means that the
switch pole never connects to both terminals in SPDT or DPDT switch configu-
ration. Push-button switches have the symbol shown in Figure 2.8. They can be
either of two types: normally open (NO) or normally closed (NC). Normally open
or normally closed refer to the state of the switch before it is activated. Push-
button switches are widely used as reset switches and doorbell switches.

One disadvantage of mechanical switches is switch bouncing. Since the switch
arm is typically a small flexible element, the opening and closing of mechanical
switches causes the switch to bounce a number of times before settling at its desired
state. Figure 2.9 shows a typical pattern in closing a switch. Note that each of the
contacts during the bouncing interval, which is typically about 15 to 25 ms long,
may register by a processor as separate switch action unless means were incorpo-
rated to address this issue. The most common approach to solve this problem is to

Figure 2.4

Mechanical switches
(a) toggle, (b) push-
button, (c) rocker,
and (d) slide

(Courtesy of CIT Relay &
Switch, Minneapolis, MN)

Figure 2.5

Different
configurations of
toggle switches

Figure 2.6

Wiring circuit for a
light bulb using two
SPDT switches

Figure 2.7

DPDT switch wired as
‘a four-way switch’

e
T

Figure 2.8

Push-button switch
(a) normally open and
(b) normally closed

NO NC

L1

(a) (b)

n Chapter 2 Analog Circuits and Components

Figure 2.9

Switch bounce pattern
for switch closure

Figure 2.10

A typical electric circuit

()

(2.6)

(1)

(28)

Switch Closed

Switch Open

f«—— 151025 ms—>]

provide for each switch a debouncing circuit that makes use of flip-flop circuit
elements (to be discussed in Chapter 3).

| 2.4 CiRcuIT ANALYSIS

A typical analog circuit is shown in Figure 2.10. The objective of circuit analysis is
to determine the voltage and current at any point in the circuit. This is done with
the aid of two laws: Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law
(KCL).

Vi 1 I
1 3
— — B —
+ = ¢ I,
+ + +
] L v
A

Kirchhoff’s voltage law states that the algebraic sum of the voltage drops and
rises around any closed path in a circuit is zero. In equation form, it is stated as
i=N

Sv=0

=1

where N is the number of elements in the selected path. To illustrate this, consider
the left loop of the circuit shown in Figure 2.10. Starting at any point in the circuit
(such as point A), and going clockwise, we get

Vo=V — V=0

In getting the Equation (2.6), potential rises are considered positive, and poten-
tial drops are considered negative. As we go around the loop, the potential of the
voltage source V rises (goes from — to +), and the potential across the second and
third elements drops (goes from + to —). We would get an equivalent expression if
we went counterclockwise around the loop. Here the sign of the potental drops and
rises for the three elements would be opposite, but the final form is equivalent.

Kirchhoff’s current law states that sum of the current into a node is zero, or
in equation form:

N
=10
=
With reference to Figure 2.10, KCL gives the following relationship between the
currents at node B in the circuit.

/1_/2_/3:0

2.4 Circuit Analysis

T % Figure 2.1
i U & (a) Voltage dividing

Vin T R, R, circuit and (b) current
l RE oy, dividing circuit
L

where the current is considered positive if it goes into the node, and is negative if
it leaves the node. Example 2.1 illustrates the use of KVL and KCL.

When two resistors are connected in series in a circuit, as in Figure 2.11(a), it is
called a voltage dividing circuit because the voltage is divided among the two resis-
tors, with the voltage drop across each resistor being proportional to the resistance
of each resistor. For example, the output voltage across resistor R; is given by

__h
V2 = R + R, Vi (29)

Similarly, when two resistors are connected in parallel in a circuit, as in
Figure 2.11(b), it is called a current dividing circuit. The current through resistor
R, is given by
b=
2 H“ + HZ (2'10)

Note that the current through R, is the product of the input current [and the
resistance of the other resistor R divided by the sum of the resistance of the two
resistors in the circuit.

In many circuits, we could have several elements in serial or parallel configu-
ration. 'Table 2.3 gives the total resistance, capacitance, and inductance for serial
and parallel combinations of these elements. The total values expressions can be
derived by using the constitutive relation for the element in question and by apply-
ing KVL or KCL.

Element Series Connection Parallel Connection Table 2.3

R Total resistance,
_ R, Ry capacitance, and
—MAM—AMN— -
Resistor inductance
Rr =R + R, /Ry = 1/R, + 1/R,
Cl

G G

Capacitor —| |—| G,

1/C; = 1/C, + 1/G Cr=0C + G
L

L L,
—N—T0—
Inductor

LT:LW +L2 LT:1/L1 +1/LZ

[} Chapter 2 Analog Circuits and Components

Example 2.1 Application of KVL and KCL

For the circuit shown in Figure 2.12, determine the voltage drop across each of the
three resistors as well as the current through each one of them.

1 I
R=1kQ Vi 'L 5, 2,
NV
. "
+ +L Vs
vs=10v () R2=2kQ§V2 §R g
Z e _SRy=
Figure 2.12
Solution:
Applying KCL at node B, we get
I1 = /2 + /3 (1)
Applying KVL to the left loop gives
10 = V1 + Vz (2)

From Ohm's law applied to each resistor and using Equation (2), we get
I = (Vs = V3)/Ri, I = Va/Ry, and I3 = V3/R3 3
From KVL applied to the right loop, we get
V3 -V,=0 (4
Substituting the expressions in Equations (3) and (4) into Equation (1), we get
(10 = V3)/Ry = Va/Ry + V3/R3

Solving for V,, we get V, = 4 V. Substituting this result into Equations (2) and (4)
givesVy =6V, Vo =V3=4V,/; =6mA, [, =2mA, and 5 = 4 mA.

| 2.5 EQUIVALENT CIRCUITS

For any two-terminal circuit or network that has only resistive elements (or any
type of elements if impedance (see next section) is used instead of resistance), the
circuit can be simplified into one of two forms. These are the Thevenin equivalent
circuit or the Norton equivalent circuit. These simplified forms allow us to focus
on a specific portion of a network by replacing the remaining network with an
equivalent circuit. The Thevenin equivalent circuit, as in Figure 2.13(a) consists

Figure 2.13 R

(a) Thevenin equivalent
circuit and (b) Norton
equivalent circuit

(a) (b)

25

of an ideal voltage source (V1y) connected in series with a resister (Rtyy). The value
of V' is the open-circuit voltage of the original circuit at the terminals. Ry is
defined as the ratio of the open-circuit voltage Vg to the short-circuit current
(Isc), where the short-circuit current is the current that would flow through the
terminals if the terminals were short circuited. Ry alternatively can be found by
determining the equivalent resistance at the terminals when the voltage sources are
shorted and the current sources are replaced with open ones.

The Norton equivalent circuit, as in Figure 2.13(b) consists of an ideal cur-
rent source Igc connected in a parallel with a resistor Rryy.

As an illustration, consider the circuit shown in Figure 2.14. We would like to
replace the circuit to the left of the nodes # and 4 with an equivalent Thevenin cir-
cuit. The open-circuit voltage of the left circuit at the terminals # and 4 is simply
the voltage across the R, resistor when the load is disconnected. This voltage is
given by

i

Vey = —=——
™R + R,

Vs

To determine Ry, we need first to find the short-circuit current Igc. This is the
current that would flow through the terminals when the terminals # and 4 are short-
ed with the portion of the circuit to the right of the # and 4 terminals removed. This
current is simply

Lk
SC_H1

since no current will flow through R;. Thus Ry is

o Vw_ RA
" TR+
SC 1 2

Alternatively, we can determine Ry by determining the resistance at the # and
b terminals when the supply voltage is short circuited. In this case, the two resistors
Ry and R; act as two resistors in parallel, and the resistance at the terminals is the
effective resistance of these two resistors. Thus,

RiR,

Ry = R = R +R

This concept is further illustrated in Example 2.2.

Example 2.2 Thevenin Equivalent Circuit

Determine the Thevenin equivalent circuit for the circuit shown in Figure 2.15. Let
Vs =8V, R ZZQ,andR2:R3:4Q.

Ry
AAAY °

S

Figure .15

Equivalent Circuits 15

Figure 2.14

Circuit to be replaced
with a Thevenin
equivalent circuit

R,

vs(O)

()

(1)

(2B)

(214)

16

Chapter 2 Analog Circuits and Components

(15)

Figure .17

(a) RC circuit and
(b) RL circuit

Solution:

We start by determining the open-circuit voltage at the terminals a and b when
the load is removed. This is the same as the voltage drop across the R3 resistor.
Note that with no connection between terminals a and b, the resistors R, and R;3
are in series, and the two of them are in parallel with the Ry resistor. The voltage
drop across R, and R3 is the same as the voltage across the R, resistor or 8 V. Using
the voltage dividing rule, the voltage across Rs is

4

=——8=4V
4+4

Vin = VR3

To determine Ry, we find the total resistance of this circuit at the terminals a and
b when Vs is short circuited. In this case, the Ry resistance does not come to play,
and the resistance of this network is the parallel combination of the resistors R,
and R3, which is 2 Q. Thus, Rty is 2 Q). The Thevenin equivalent circuit is shown in
Figure 2.16.

Ry,

Figure .16
Note if the load resistance is 8 (), then the current through the load is simply

Vw4
R+ R, 2+8

I, =04A

The reader should verify that the same value of current would have been obtained
if the original circuit was analyzed.

| 2.6 IMPEDANCE

The concept of impedance is useful in analyzing loading effects that occur when
measurement devices are connected to circuits. Impedance is a generalization of the
concept of resistance. The impedance of a circuit that has only resistive elements is
simply the resistance of the circuit. We define impedance for a two-terminal element
as the ratio of the voltage to the current in that element or

For circuits that contain other than resistive elements, the impedance is a func-
tion of the AC excitation frequency. We will obtain the impedance of different types
of circuits under sinusoidal AC excitation. This allows us to see the effect of fre-
quency on impedance. We will start with the RC circuit shown in Figure 2.17(a).

(a) (b)

Applying KVL, the relationship between the supply voltage and the current
through the circuit is given by

wm:mm+2/wm

Using the Laplace Transform, we can convert Equation (2.16) to an algebraic
equation in the Laplace variable s as

Vs(s) = Rils) + éi(s)
Solving for the ratio of Vs(s) to i(s), we obtain

Vsls) 1
s [’“ cJ

Substituting s = jw where w is the angular frequency and j = V—1 to obtain this
ratio as function of w, we obtain

_ Vsljw) e
4=) {H * /wc}

Equation (2.19) shows that the impedance of an RC circuit is a complex quan-
tity that is a function of the excitation frequency w. If the resistor in the above cir-
cuit was removed, then the impedance due to the capacitor is

1 1
227:—7.
ot wC’

Equation (2.20) shows that the impedance of a capacitor is infinite with DC exci-
tation, and approaches zero as the frequency goes to infinity. In the same fashion, we
can see that the impedance of a resistor is independent of the excitation frequency
and just equal to R. Using a similar approach to that used with the RC circuit, the
impedance of the RL circuit shown in Figure 2.17(b) can be obtained as

_ Vsljw) _
iljoo)

(A + jol]

The impedance due to the inductor is simply given by

_ Vsljo) _ i
iw)

Similar to the capacitor, Equation (2.22) shows that impedance of an inductor
is a complex quantity that depends on the frequency w. For DC excitation, an
inductor has zero impedance and acts as a short circuit, but as the frequency
approaches infinity, its impedance goes to infinity and acts as open circuit.

Because impedance can be a complex quantity, we can express impedance as

7=R+jX

2.6 Impedance 7

(216)

(1)

(218)

(219)

(2.20)

(1)

(1)

(1)

18 Chapter 2 Analog Circuits and Components

(2.29)

(2.25)

Figure 2.18

Voltage source
Rg

Vs

Figure .19

Measuring using ideal
voltmeter

Rg

.
vs() () Vn

Figure 2.20

Measuring using a real
voltmeter

(2.26)

where the real part of Z is defined as the resistance R, and the imaginary part of Z
is defined as the reactance X. Thus, the reactance of a capacitor is

1

XC:_E

and that of an inductor is
XL = (1)[

Note that similar to resistors, the total impedance of several elements arranged in
series is the sum of the individual impedances of the elements.

Measurement devices such as voltmeters and oscilloscopes are not ideal.
They have finite input impedances that could affect the value of the measured
quantity. Similarly, amplifiers are not ideal devices, but have finite input imped-
ances that could affect the output of the amplifier. Also, power supply sources
are not ideal and have small output impedances. When any of these devices is
interfaced to a circuit, they create loading effects which are explained below. In
general, it is desirable for a voltage source to have a very small output imped-
ance and for a measurement device or amplifier to have a very large input
impedance.

To illustrate loading effects, assume we have a voltage source Vg connected in
series with a resistance Ry, as shown in Figure 2.18. This voltage source can be the
output of a sensor or the output of a real power supply. Now assume that the value
of this voltage will be measured by a multimeter or an oscilloscope. If we assume
an ideal meter, then the meter has an infinite input impedance and will draw no
current. Such an arrangement is shown in Figure 2.19. Because the ‘ideal’ voltmeter
draws no current, the voltage measured by the ideal voltmeter will be the open-
circuit voltage of the voltage source or V.

Now assume that the ideal voltmeter is replaced with a real-voltmeter that has
finite impedance. Such meter can be represented as an ideal voltmeter in parallel
with the voltmeter finite impedance (R,,). When this meter is connected to the
voltage source, (see Figure 2.20), the output of the voltmeter will be the voltage
drop across the R, resistor.

vs () () Vn

This value is given by the expression:

A

" Rt s

Vs

If R,, is much larger than Rg, then the ratio - Rjj %, is almost equal to 1,and V),

will be close to V. If however, R,, is comparable to Rg, then the measured
voltage by the voltmeter will be significantly different from V. Multimeters and

oscilloscopes have large impedance (1 M€ or higher), and power supplies have
small Rg resistance (less than 1), so the loading effect is negligible. However, if a
voltmeter is used to measure the voltage in a circuit with large resistance, then
error due to loading effects could be significant. Loading effects are illustrated in
Example 2.3.

Example 2.3 Loading Effects

A sensor with an output voltage of 1 V and a series internal resistance of 1 kQ is
connected to an amplifier that has a gain of 10 V/V and an internal resistance of
5 kQ. Determine the output of the amplifier due to this sensor input.

Solution:

If we treat the amplifier as an ideal amplifier, then the amplifier output is simply
the voltage applied to the amplifier times the amplifier gainor 1 X 10 = 10 V.
However, the amplifier internal resistance acts as a voltage divider with the
sensor internal resistance (a circuit similar to that shown in Figure 2.20). The volt-
age drop across the amplifier internal resistance is:
Vin= A= 2
Ra + Rs 5+ 1

Thus, Vot = Gain X Vj, = 83V

1=083V

Hence, due to overloading, the amplifier output deviates from the ideal output by
more than 16%. Obviously, this error can be minimized by using an amplifier with
high input impedance. Operational amplifiers are such type of amplifiers. Note
that if the ratio of the amplifier impedance to the sensor impedance is more than
100:1, then the error due to loading effects is less than 1%.

When signals are transmitted between devices that are interfaced together, it
is important to ensure that the impedances of the different devices are properly
matched. If the impedances are not matched, then a high-impedance input device
can reflect back some of the input signal contents that are produced by the low-
impedance output device. As an example, a function generator is a low-impedance
device that has a 50 Q output impedance. If a function generator needs to be inter-
faced to a high-impedance device, then we can match the output impedance of the
function generator by inserting a 50 () resistor in parallel with the high-impedance
device. This is shown in Figure 2.21. The effective resistance of the inserted resis-
tor and the high-impedance circuit is almost equal to the output impedance of the
function generator. Impedance matching is important in many applications includ-
ing the transmission of audio signals between the audio amplifier and the speakers,
and in transmitting signals from ultrasonic transducers through cables.

In many cases, we also would like to deliver the maximum power to a circuit
from a supply source. To achieve this, the impedances of the supply circuit and the

Function Generator

Output Amplifier
High
Impedance
50Q Circuit

50 Q

2.6 Impedance

Figure 2.21

Signal connection for
impedance matching

19

20 Chapter 2 Analog Circuits and Components

)

(228)

(229)

(230)

Figure 2.2

Two sinusoidal voltage
signals

(231)

load circuit need to be matched. As an illustration, the power delivered to a resis-
tive load with a resistance Ry, from a power supply with an output voltage of Vy,
and an output impedance Rg is given by the following expression (see Figure 2.20
for a similar circuit).

%4 R} 1 R
Power:—‘:i‘zvgx—:i‘zvg
B (R + Ry R (R + Ry

It can be easily shown that, if Equation (2.27) was differentiated with respect to Ry,
and set equal to zero, then the maximum power is obtained when

HL:HS

| 2.7 AC SIGNALS

While DC voltages are common in battery-powered devices and laboratory setups,
AC voltages are used in power transmission and operation of industrial and resi-
dential equipment such as compressors and kitchen appliances. AC voltage signals
have the advantage that they are more efficient to transmit over long distances.
When an AC voltage signal, such as a sinusoidal voltage signal, is applied to a cir-
cuit, the voltage in the circuit will also be sinusoidal with a frequency the same as
the applied frequency. Two sinusoidal voltage signals are shown in Figure 2.22. The
solid signal is defined by

V= Vpsin(wt + 6)
while the dashed signal is defined by
V= Vpsin (wt)

where V is the amplitude of the signal, and w is the angular frequency in units of
radians/second. Theta () is defined as the phase angle and is a measure of the
lead/lag in the signal. A positive phase angle (such as that for the solid signal) means
that the signal is ahead or leads the dashed signal. The lead time is given by (6/w).

i S |

ignal Period

Note that the circular frequency w in radians/second (rad/s) and the cycle fre-
quency fin Hertz (Hz) are related by w = 2#f, and that the cycle frequency is the
inverse of the signal period 7.

For AC circuits, the magnitude of the voltage or current is specified by using
the amplitude, the peak-to-peak value, or the root mean square (RMS) value. The
RMS voltage and current are defined by

Vs = VUL V2 dt

2.8 Power in Circuits

and
s = VTS, 2 dt

If the signal is sinusoidal, then the RMS voltage is simply equal to 0.707 V),
and the RMS current is 0.707 Iy, where V and I are the amplitude of the sinu-
soidal voltage and current signals, respectively. Note that multimeters measure the
RMS and not the amplitude value when they measure AC voltages and currents.
Note also that 110 or 220 V supply is the RMS value of the voltage signal.

In resistive networks, both the current and the voltage will have the same
phase angle. However, in circuits that have capacitive and inductive elements, the
voltage and current will be out of phase. This is due to the fact that the imped-
ance of these elements has an imaginary or j-component. In an inductor, the volt-
age will lead the current by 90° (the reactance is positive for an inductor), while
in a capacitor; the voltage lags the current by 90° (the reactance is negative for a
capacitor).

| 2.8 PoweR IN CIRCUITS

Power is defined as the rate of doing work. Power is an important specification for
electrical components as it defines the rated capability for these components. In
electrical circuits, the instantaneous power in an element at any point of time is
defined as the product of the voltage and current through that element or

P(t) = V(t) 1)

If the voltage and current do not change with time as in DC circuits, then the
instantaneous power and average power are the same. For a resistor in a DC-circuit,
the power can also be written as

VZ
- — =L —
P(t) = Py = V/—?—/B’

However, in AC circuits the voltage and current vary with time, and we need
to distinguish between instantaneous power and average power. For an AC circuit
with voltage V(#) = Vi sin (wt + 0)) and current I(r) = [psin (wt + 6;), the instan-
taneous power is given as

P(t) = Vplpsinlwt + 6,) sin(wt + 0)

And the average power over one period is obtained as

Vo lo

RV cos(d)

where 6 is the difference between the voltage and current phase angles, i.e.,
(0 = 6, — 0. The term cos(f) in Equation (2.36) is called the power factor and
is a measure of the presence of reactive components (capacitors and inductors in
the circuit). For a purely resistive network, the power factor is 1, and for a purely
inductive network, the power factor is 0. Power factor is also defined as the ratio of
the real (or useful) power to the apparent power (see Figure 2.23). A component of
the apparent power is the reactive (or nonworking) power that is exchanged in
capacitive and inductive components. Power factor is an important specification for
devices with reactive components (such as AC-powered motors), as it defines how
much of the supplied power is converted to real or useful power. Power supply

Pavg = Vawms frms cos(B) =

(232)

2.3)

(239)

(2.35)

(236)

Figure 2.23

1

Real and apparent

power

Real Power

Apparent
Power

Reactive
Power

n Chapter 2 Analog Circuits and Components

Figure 2.24

Symbol and connections
for an op-amp

companies charge industrial and commercial customers fees for operating devices
with low-power factor, since a low-power factor means that these devices draw
larger currents that result in bigger power distribution lines. Example 2.4 illustrates
the computation of power in AC circuits.

Example 2.4 Power in AC circuits

A load with an impedance of 500 + 600 j() is connected to a 110 V, 60 Hz source.
Determine the power factor and the power absorbed by the load.

Solution:

The power factor can be determined from the angle that the load reactance
makes with the load resistance. Using Equation (2.23), 6 is given by

6 = tan~' (X/R) = tan' (600/500) = 50.2°

But the power factor is cos(f) or cos(50.2°) = 0.640
From Equation (2.15), the current through the load is given by

Vo M0 bma

Z \/500% + 6002

Using Equation (2.36), the absorbed or real power is

Power = Vrms lrms €os(0) = 110 X 0.141 X 0.640 = 9.93 W

| 2.9 OPERATIONAL AMPLIFIERS

Operational amplifiers (op-amps) are analog circuit components that require
power to operate. They are widely used in amplification and signal-conditioning
circuits. The symbol for an op-amp is shown in Figure 2.24. The symbol is a tri-
angle, with two leads drawn on one side of the triangle, and the third lead is
drawn at the apex opposite to that side. One lead is defined as the inverting
input (—), the other lead is defined as the non-inverting input (+), and the third
lead is the output. The voltages at these two inputs and at the op-amp output are
referenced to the ground. Figure 2.24 also shows the connections for the posi-
tive and negative supply voltages, although these connections are normally
omitted when an op-amp is drawn in a circuit. The supply voltage is typically
+15 V. There are two other connections to the op-amp (called the balance or
null offset) that permit adjustment of the op-amp output, but they are typically
not shown.

+Ve Supply
p

Inverting Input

Output

Non-Inverting
Input
]

—Ve Supply

29 Operational Amplifiers

Commercially, op-amps are available in a variety of forms. A common form is
the single op-amp in the form of an 8-pin integrated circuit (IC), an example of
which is the LM741 chip from National Semiconductor. The pin-layout of this
chip is shown in Figure 2.25(a). Note that there is no connection to pin 8, and the
positive and negative supply voltages are connected at pins 7 and 4, respectively.
Another form is the dual op-amps on a single 8-pin package, and the pin layout
for this form is different than that of single op-amp IC. Many vendors manufac-
ture op-amp ICs, and they are available in other chip numbers such as the LF411
chip that is also available from National Semiconductor. An op-amp is construct-
ed from a number of components including transistors, diodes, capacitors, and
resistors.

Offset Null — 1 U 8 - NC
Inverting Input — 2 T7F V.,
Non-Inverting Input — 3 6 — Output
y 14 5 |+ Offset Null =

() (d)

An ideal op-amp can be modeled as shown in Figure 2.25(b). The inputs to
the op-amp can be thought to be connected internally by a high-impedance resis-
tor R;,. The value of this resistance is high enough (more than 1 M), such that for
ideal behavior, we can assume that no current flows between the V_ and V' input
terminals. The output of the op-amp is modeled as a voltage source connected to a
low impedance resistor R, (less than 100) in series. The voltage output is propor-
tional to the difference between the input voltages, i.e.,

V, = Ky X (Vs — V)

where Koy, is the open-loop gain of the op-amp. The open-loop gain of the op-amp
is usually very high (10° to 10°), so a very small voltage difference between the
two inputs results in a saturation of the output. For example, if the gain is 10%, and
the saturation voltage is 10 V, then the op-amp will saturate if the voltage differ-
ence between the input leads exceeds 10 uV. Since the op-amp output is finite, but
the op-amp has a very large gain, we assume that I, = V_. The assumption that
V. = V_ along with the assumption that no current flows into the input terminals
are the two basic rules that are used to analyze ideal op-amp circuits.

It should be noted that the saturation voltage of an op-amp is a function of
the supply voltage for the op-amp and it is slightly smaller than it. For example, at
supply voltage of £15 V, the saturation voltage is about £13 V. The open-loop
input output relationship for an op-amp is shown in Figure 2.26. In most cases,
however, op-amps are not used in open-loop configuration but are used with a
feedback loop between the output voltage lead and the inverting input lead. The
closed-loop gain is much smaller than the open-loop gain, but the feedback pro-
vides more stable operating characteristics.

Figure 2.25

(a) Pin layout for the
LM741 and (b) model
of an ideal op-amp

(237)

)]

Chapter 2 Analog Circuits and Components

14
Figure 2.26
Open-loop input/
output relationship
for an op-amp
Figure 2.27
Comparator op-amp
circuit
‘/ref |-
—o ‘/u
V. e—+
(238)
(239)
(240)

sat [

-1-v,

sat

Note that an op-amp gives a zero output if the two input voltages are the
same. This is called the common-mode rejection property of the op-amp. In reality,
the output will not be exactly zero, but one can use the null offset terminals on the
op-amp to adjust this output. Op-amps have good frequency response characteris-
tics, and their bandwidth exceeds 1 MHz.

Op-amps can perform various operations such as comparison, amplification,
inversion, summation, integration, differentiation, or filtering. The particular oper-
ation depends on how the op-amp is wired and what external components are con-
nected to the op-amp. We will discuss below some of these operations assuming
ideal behavior. In most cases, the real-behavior closely follows the ideal behavior.

2.9.1 COMPARATOR OP-AMP

A comparator is used to compare two voltage signals, and switch the output to
+ Viar if one of the signals is larger than the other, and to —V,, otherwise, where
Viar 1s the saturated output of the op-amp. The circuit for an op-amp operating as
a comparator is shown in Figure 2.27. Here the op-amp is operating in open-loop,
which means there is no feedback from the op-amp output to the input. The input
voltage V; is connected to the non-inverting input (+), and the reference voltage
Vet is connected to the inverting input (—). The comparator output V, is then

V _{ VsatrV/'> Vref
=
_VsatrV/< |/ref

A comparator can be used, as an example, in situations where it is needed to set
an output on if a sensor input exceeds a certain value. Microcontrollers such as the
PIC16F690 (discussed in Chapter 4) have a built-in comparator feature.

2.9.2 INVERTING OP-AMP

The inverting op-amp circuit is shown in Figure 2.28 which has a feedback loop
between the op-amp output and the inverting input (—). An input voltage V; is
applied to the inverting input through a resistor Ry, and the non-inverting input (+)
is grounded. Since the non-inverting input is connected to ground,

Vo=V, =0

The current I is equal to I, because virtually no current flows between the invert-
ing and the non-inverting inputs. The current I; is equal to
Vi— Vo VW

/77
"R R

29

RZ
MW\
R, _1;
V; =AM —
— —L oV
I] + o
V.
and the current I, is equal to
Vo =V, A
h=——=——
5’2 4
Equating I; to I3, and solving for the op-amp output V), gives
i
Vo=~ E Vi

Operational Amplifiers

Figure 2.28

Inverting op-amp
circuit

(241)

(242)

Thus in this circuit the op-amp inverts the input voltage and amplifies it by a
factor equal to the ratio of the resistance of R; to R;. An application of this circuit is to
perform signal inversion where the output will have a 180° phase shift with the input.

Example 2.5 illustrates the use of the inverting op-amp circuit.

Example 2.5 Summing Circuit

Draw a circuit that shows how op-amps can be used to perform summation of
three analog voltage signals.

Solution:

R

V3 '—‘WW—‘
R R R
V, e AA M
R
Vi

AW
l—LDW e
| L

Figure 2.19

The circuit that performs this operation is shown in Figure 2.29. It basically consists
of two cascaded op-amps each wired as an inverting amplifier. The three voltage
signals are connected to the left op-amp. Note that the sum of the currents
through the three resistors that are connected to the input voltages V;, V5, and V3
is the same as the current that goes through the resistor in the feedback loop in
the left op-amp circuit:

VvV, —V_ V, —V_ V; - V_ L=
1 .2 LY Vo _ V- Va
R R R R

Q)]

Since V_ = 0, and cancelling R from each term in Equation (1), this gives
Va=—(Vi +Vy + Va) (2)
From the second op-amp circuit, we get

Vo=—-Va=Vi+ Vo + V3 (3)

25

26

Chapter 2 Analog Circuits and Components

Figure 2.30

Non-Inverting
op-amp circuit

(2.43)

(244)

Figure 2.31

Voltage follower

L oy

2.9.3 NoN-INVERTING OP-AMP

The non-inverting op-amp circuit is shown in Figure 2.30. Here the non-inverting
input (+) is connected to an input voltage V7, and the inverting input (—) is con-
nected to ground through a resistor R;. There is also a feedback loop between the
op-amp output and the inverting input.

R,
AW
R, '12
1 - V_ L eV,
= I v,
Vs

The voltage V', is equal to V'_ and is also equal to V; in this case. But the voltage
at the inverting input is also given by
CR+RC

since Ry and R; act as a voltage-dividing circuit between V, and ground. Thus, the
output V, of the op-amp is given by

V—H1+H2v—<1+ﬁz>v
[H] I H1 /

Notice how the gain of the op-amp in this case is always greater than 1. Now if
we let R, to be zero and R; to be infinite, this gives the circuit shown in Figure 2.31.
This circuit is known as a voltage follower or buffer, and V, = V; in this case.
Because the op-amp has a low output impedance (about 75)), and a high input
impedance (about 2 MQ), the voltage follower circuit can be used in a variety of
ways to reduce loading effects. The output of a voltage source can be connected to
the buffer input to isolate the source from the rest of the circuit, or the buffer out-
put can be connected to a high-impedance circuit.

Note that in both the inverting and the non-inverting op-amp circuits shown
above, the feedback between the output voltage and the inverting input is known
as negative feedback. Negative feedback results in a linear relationship between the
output and input voltages. If the feedback loop was between the output voltage and
the non-inverting input, then the output-input relationship is nonlinear. The non-
linearity is a hysteresis where the input has to change by a certain amount before
the output changes state. Non-linear op-amp circuits are utilized in the design of
Schmitt triggers, which are IC circuits that are used for converting slowly chang-
ing or noisy analog signals into two-level digital signals (see Section 7.4.1 which
discusses their use in the wiring circuit for a Hall-effect proximity sensor). The
symbol for a standard (non-inverting) Schmitt trigger and the input and output
voltages from a Schmitt trigger are shown in Figure 2.32. Note how the output of
the Schmitt trigger goes to V;,,x when the input signal voltage exceeds the positive
going threshold voltage (V). The output signal stays at V},,, until the input sig-
nal drops below the negative going threshold voltage (V1_), at which point the out-
put goes to Viin. In Figure 2.32, V.., and Vi, are the positive (typically 5 VDC)
and the negative (typically 0 VDC) supply voltage, respectively, for the Schmitt
trigger device. The 74HC7014 IC has six non-inverting Schmitt triggers with
Vry = 3.1 Vand V- = 2.9V when used with a 5-VDC supply voltage.

29 Operational Amplifiers

Input A Figure 2.3
Signal Vinax
’ Schmitt trigger:
Ve (a) symbol and
(b) input/output
Vi relationship
Vmin
Output
Signal Vinax
Vmin
(@) (®)
2.9.4 DiFreRENTIAL OP-AMP
An op-amp circuit with two voltages (V7 and V) applied to its inputs is shown in
Figure 2.33. Two inputs (differential input) are used to reduce the circuit sensitiv-
ity to noise, since any noise applied to the circuit will be most probably the same
on each of the inputs.
R, Figure 2.33
MWW
R, Differential input

Vi e—AMA \ op-amp circuit
oV

R3 V- o
V) o—ANN—T——+
Vi
Ry

For this circuit, the current through the Ry and the R, resistors is the same, since
no current goes through the inverting input. This current is given by

/_\/1—V,_ =,
m = R, - 'R R, (2.45)
The voltage at the non-inverting input V, is given by
v, =y,
TR +R (246)

But I, = V_. Substituting the expression for V; in Equation (2.45) and solving
for V, gives

g = <1+H2>V—H2V
° R+ AR, A (247)

If Ry = Ry and Ry = R,, this expression simplifies to

h
V, = E(Vz - W (248)

and shows that the output of this op-amp circuit is proportional to the voltage dif-
ference between the inputs V5 and V. A differential amplifier circuit can be used,

18

Chapter 2 Analog Circuits and Components

Figure 2.34

Proportional control
feedback loop

(249)

Figure 2.35

Integrating
op-amp circuit

(2.50)

(251)

(252)

(2.53)

(254)

+
Vi(s) ——(%)—— K, > Plant - V,(s)

for example, to implement an analog proportional control feedback loop (see
Figure 2.34). Feedback control is covered in Chapter 9.

If the reference signal V' is the V5 voltage, the actual or measured signal V4 is
the /] voltage, and the ratio R,/R, is the proportional gain K, then the output of
the differential amplifier will be

Vo = Kp(Vp — Vi)

Another application of the differential amplifier circuit is to amplify the difference
between the voltage outputs from the arms of a Wheatstone bridge used to meas-
ure strain (see Section 7.10.3).

2.9.5 INTEGRATING OP-AMP

The circuit for an integrating op-amp is shown in Figure 2.35, which has a capac-
itor C in the feedback loop.

C
]
1

- \AV

0
+

From Equation (2.3), the current through a capacitor is given by
av
lp=C—
=

For this capacitor, V' = V_ — V, = =V, since V_ = 0. But the current through
this capacitor is the same as the current that passes through the resistor R, since no
current flows through V_. This current is given by

R
R R
Thus,
dv, V;
- RC

Integrating Equation (2.52) from time ¢z = 0 to time ¢ = #; gives

RC

where V(0) is the initial condition for the capacitor voltage. Thus, in this circuit, the
op-amp produces an inverted output of the integral of the applied input voltage. Note
that if the capacitor and the resistor were interchanged in this circuit, the op-amp will
act as a differentiator of the input signal. The op-amp output in this case will be
dvi{t

dt

Note that any noise in the input signal will be amplified by differentiation.

d
AT / Vi) de + V(o)
0

V, = —AC

29 Operational Amplifiers 9

2.9.6 POWER AMPLIFIER

A standard op-amp (such as the LM741) has a current output rating of about
25 mA. This is not sufficient to meet the current needs of driving loads (such as
valve actuators, servo motors, and audio amplifiers). Commercial op-amps with a
higher current output rating are available. These op-amps are called power op-
amps, an example of which is the OPA547 chip from Texas Instruments. The
OP547 can provide a continuous output current of 500 mA with the ability to con-
trol the output current limit. Power op-amps can be conveniently used to interface
a digital-to-analog (D/A) converter (see Chapter 5) that needs to drive a DC motor.
Table 2.4 gives a sampling of power op-amp devices.

Continuous Slew Adjustable Table 2.4

Power Supply Output Peak Rate Current Limit
Device Range Current (A) Current (A) (V/ps) (Y/N) Power op-amp devices
0PAb547 +8Vto +60V 0.5 0.75 6 Y

+4Vto £30V
LM675 +8Vto +£30V 3 4 8 N
0PAG41 +20Vto +80V 5 10 10 Y

+10Vto £40V
0PA549 +4Vto £30V 8 10 9 Y

In Table 2.4, the ‘Power Supply Range’ column defines the allowable voltage lev-
els that can be applied to the positive and negative supply inputs of the op-amp.
The power supply range affects the op-amp output voltage swing, which is the
maximum voltage that the op-amp can produce without saturation for a given load.
Note that the output voltage swing is proportional to the power supply range.
The “‘Slew Rate’ column defines the rate at which the op-amp output voltage will
change when the op-amp gain is set to unity. Several of the power op-amps listed in
the Table 2.4 allow adjustment of the maximum output current of the op-amp. Due
to their large output current, power op-amps are available in packages with a built-in
copper tab to allow easy mounting to a heat sink for good thermal performance.

"To show further the application of op-amps, Example 2.6 illustrates the use of
op-amps in analog feedback control loops.

Example 2.6 Pl Analog Feedback Loop

Illustrate how op-amps can be used to implement an analog proportional integral
(P1) feedback control loop.

Solution:

A PI controller has the following relationship between the control output V,(t)
and the error signal e(?):

V(D) = Kpe(t) + K, [e(t) dt (1)
where the error signal is defined as
e(t) = Vier(t) — Va(t) (2

with V,.(t) as the reference or desired value and V(t) as the actual or measured
value. The PI controller can be implemented as the cascade of three op-amps cir-
cuits (Figure 2.36). The first circuit is a differential op-amp circuit to compute the

30 Chapter 2 Analog Circuits and Components

Figure 2.37

(a) Ground return
symbol and

(b) Chassis return
symbol

1 4

(a) (b)

Figure 2.38

Illustration of a wiring
that leads to ground
loops

Circuit

Figure 2.39

Polarized wall socket

Neutral Live

Ground

R
R
Va -
Vrcf +
R
R,
Figure 2.36

error signal. The second circuit, which actually consists of two op-amps, imple-
ments the P and / actions. The last stage sums and inverts the outputs from the
P and / action circuits. Note that the Kp gain is the ratio of R4 to R3 and the K| gain
is equal to 1/(R,C). To allow for variable gains, a potentiometer can be used to
replace the R4 and R; resistors.

| 2.10 GROUNDING

When we talk about voltage or potential difference, we always refer to the value of
one voltage level with respect to another level. Ground voltage or zero voltage is
commonly used as a reference. It is indicated in circuit diagrams by the symbol shown
in Figure 2.37(a). Using that voltage as reference, one can measure the other voltages
in the circuit. Technically, a true ground voltage refers to the earth ground voltage
which is obtained by a connecting a wire to a metal pole that is inserted into the
earth’s surface. However, in many circuits, a ground symbol does not mean connec-
tion to an earth ground but to a current return path to the negative terminal of the
power supply. Another type of ground reference is called the Chassis return. This is
indicated by the symbol shown in Figure 2.37(b). A chassis return refers to the con-
nection between a device housing or casing and the earth line in the power cord.

It is important in circuits to have a common ground to avoid the problem that
arises from ground loops. Ground loops form when there is more than one path
to connect a circuit or system to ground. An example of a ground loop wiring is
shown in Figure 2.38. Ground loops lead to voltage differences between the two
ground points, which results in noise in the circuit. A way to eliminate ground loops
is to connect all of the return paths in a circuit to a common ground point. If this
is not practically possible, then all of the return paths should be connected to a
common ground bus which is itself connected to ground. In addition, if the circuit
has analog and digital elements, then the analog ground and digital ground should
be connected at one point.

In discussing grounding, it is important to understand how this is done in AC
circuits. In AC circuits (such as those in a typical home), the electrical wall socket
outlet has three slots (see Figure 2.39). One slot is called live or hot, the other is
neutral or return, and the third is earth or ground. The live slot carries the alter-
nating current to the load (such as a small appliance) that is plugged into the wall
socket. The neutral or return slot provides a return path of the current back to the
source. The ground line, which is connected to earth ground, normally does not
carry any current, but is provided as a safety feature in case of an electrical fault
within the connected equipment. The metal case or covering of the electrical

21

device, where humans typically contact, is connected to the ground line to provide
a path for current in fault situations. In the USA and many countries, polarized
plugs are used in which there is only one way of connecting the plug to the wall
socket to prevent the interchange of the live and neutral lines. This is done as a
safety feature to prevent, for example, a switch to open a circuit using the neutral
line. While such an arrangement interrupts the current flow through the device,
the live line is still connected to the device, which would cause a safety hazard if
one services the equipment while the plug is still connected.

| 2.11 SoLENOIDS AND RELAYS

2.11.1 SoLENOIDS

A solenoid is an example of an inductive element that is widely used. It is commonly
used for on-off applications such as locking or triggering. Applications include the
switching of electromechanical relays, door locks, ratcheting devices, and gate
diverters.

The solenoid is an electrically actuated mechanical device that has two states:
retracted and extended. It is typically constructed from a movable armature core
that moves inside a stationary iron core. A typical layout is shown in Figure 2.40.
When the armature coil is energized with current, it moves out to increase the flux
linkage by closing the air gap between the cores. The moveable core is spring
loaded and will retract when the current is switched off.

[

Moveable Armature

D

d
Coil
d
g % Springs
i

Commercially, solenoids are available in two forms: linear and rotary. The lin-
ear form can be either pull-type or push-type. In a pull-type solenoid, the force is
directed toward the solenoid body when the solenoid is energized, while in a push-
type solenoid, the force is directed away from the solenoid body when the sole-
noid is energized. Linear solenoids have a stroke that is typically less than 1 inch,
while rotary solenoids have a typical stroke of about 45°.

Stationary
Iron Core

2.11.2 ELECTROMECHANICAL RELAYS

Many computer interfacing applications use electromechanical relays which are
electrically actuated switches that use a solenoid to make or break the mechanical
contact between electrical leads. The connection diagram of a typical small power
relay is shown in Figure 2.41. When the coil circuit is closed (terminals 1 and 16),
the solenoid will move the two poles that contact terminals 6 and 11 to contact ter-
minals 8 and 9, respectively. The switch configuration in this relay is an example of

Solenoids and Relays 3

Figure 240

Schematic of a solenoid

3 Chapter 2 Analog Circuits and Components

(Courtesy of Omron
Corporation)

Figure 241 :“_1______““_““;_;
|

i 45
G5V-2, a typical small | 6 E E |
power relay [:I |
|
|
|
|
|

the double-pole, double-throw switch configuration that was previously discussed.
Some of the important characteristics of this relay are listed in Table 2.5. This relay
can be used to switch up to 60 W (or 62.5 VA) using a coil (solenoid) that requires
5 VDC at 100 mA to operate. This current input value is beyond the current out-
put limits of digital output ports (discussed in Chapters 4 and 5), so a current
amplifying component (such as a transistor) is normally used to interface the digi-
tal output port to the coil terminals of the relay. The advantage of a relay is that the
input circuit is electrically insulated from the output circuit. So any noise-induced
voltages in the output circuit have a minimal impact on the input circuit. The sec-
ond advantage is that a small coil current can be used to switch a much larger load

current.
Table 2.5 Coil Rating Rated voltage 5VDC
Characteristics of the Rated current 100 mA
G5V-2 OMRON relay Coil resistance 50 O

Rated load 0.5Aat 125 VAC, 2 A at 30 VDC

125 VAC, 125 VDC

Contact Rating
Maximum switching voltage
Maximum switching current 2A

Operating 7 ms maximum

Characteristics

Operate time
Release time 3 ms maximum

Maximum operating frequency Mechanical: 36,000 operations/hr

Electrical: 18,000 operations/hr

One disadvantage of electromechanical relays is their relatively long switching
time. For the previous relay, the maximum operate-release cycle time is 10 ms, and
the maximum mechanical switching frequency is 10 Hz. This is in contrast to solid-
state transistors (discussed in Chapter 3), which have nanoseconds switching time.

| 2.12 CHAPTER SUMMARY

This chapter discussed analog circuits and components.
The chapter started by discussing basic circuit elements
(such as resistors, capacitors, and inductors) and the laws
for their combination in series or parallel form. It then dis-
cussed the various configurations of mechanical switches,
including push-button and toggle switches. Circuit analy-
sis was then covered. Kirchhoff’s voltage law (KVL) and
Kirchhoff’s current law (KCL) are the two basic laws that

are used to perform circuit analysis. KVL states that the
algebraic sum of the voltage drops and rises around any
closed path in a circuit is zero, while KCL states that the
sum of the current into a node is zero. To simplify certain
circuits, equivalent circuits are used. The equivalent circuit
can be in one of two forms: the Thevenin equivalent cir-
cuit or the Norton equivalent circuit. The concept of
impedance, which is a generalization of the concept of

resistance, was then covered. Impedance concepts are use-
ful in analyzing loading effects that occur when measure-
ment devices are connected to circuits. Alternating current
circuits were also discussed, including computing the
power in these circuits. Operational amplifiers or op-amps
are analog circuit components that require power to oper-
ate. Op-amps can perform various operations (such as com-
parison, amplification, inversion, summation, integration,

QUESTIONS

212 Chapter Summary B

differentiation, or filtering). The particular operation
depends on how the op-amp is wired and what external
components are connected to the op-amp. Several
op-amps circuits were discussed. The concepts of ground
loops and proper grounding techniques were also
presented. The last section discussed solenoids and their
use in electromechanical relays, which are used as interface
elements.

2.1 Define what is meant by an analog circuit.

2.2 Name the two laws that are used to analyze electrical circuits.

2.3 List the different types of toggle switches.
2.4 Define impedance.

2.5 What impedance characteristic is desirable in measuring devices, and why?

2.6 What device has a very large impedance at low frequencies?

2.7 What characteristic of an op-amp make it useful to use it as an interface?

2.8 List the two rules that are used to analyze ideal op-amp circuits.

2.9 List the different types of op-amp circuits.

2.10 What type of op-amp circuit is used in the implementation of an analog proportional control feedback loop?

2.11 Can the output voltage of an op-amp circuit exceed the supply voltage?

2.12 List an advantage of AC signals.

2.13 Name one way to avoid a ground loop.
2.14 Define real power of an AC circuit.
2.15 List several applications of solenoids.

2.16 What is a relay?

PROBLEMS

P2.1 Tllustrate how an SPDT switch can be used for
wiring the low/high beam for car headlights
using the car battery as the voltage
source.

P2.2 Identify three household/consumer applications
where push-button switches are used, and
identify whether the switch is NO or NC

type.

P2.3 Draw the wiring circuit for a light bulb that can
be turned on/off from three switch locations.

P2.4 Draw the switching circuit for a three-position
light bulb. A three-position light bulb has two
filaments. At the low switch position, the low-
intensity filament is turned on. At the medium set-
ting, the medium-intensity filament is turned on.
At the high position, both filaments are turned on.

34 Chapter 2 Analog Circuits and Components

P2.5 Determine the unknown currents through the P2.9 Determine the impedance for the following com-
resistor network shown in Figure P2.5. ponents at 60 Hz. What is the total impedance of
these components if they were connected in
Iy I .
1kQ ', - series?
+ *12 a. 1000 resistor
5V 2kQ § 1 kQ
<>, b. 500 mH inductor
MW c. 1 pF capacitor
2kQ 1 kQ
Figure P15 P2.10 What is the power factor if the t.hree components
in Problem 2.9 were connected in series?
P2.6 Determine the unknown currents through the P2.11 A load made up of a resistor and a capacitor
resistor network shown in Figure P2.6. connected in series draws 0.2 A from a 60-Hz,
110-V source with a 0.8 power factor. Determine
2k N 5 s the resistance and reactance of the load.
AN — — —
. # L # L P2.12 Plot the output of the circuits shown in
10V <> § 2140 § 41KO 31KQ Figure P2.12 for the following input signal. Note
Z that R; = R, = 100 kQ, and C = 10 uF.
ANWWY MWV Input A
1kQ 2kQ 1kQ Signal, V,
Figure P2.6 zv——m:
wvd oo L
P2.7 The terminal voltage of a power supply is A Lo
24 VDC before a load is applied. When a 100 Q e [/ e e S ! Tirr:e .
resistor is connected to the power supply, the v '
voltage drops to 23 V. What is the internal
resistance of the supply source? &
2
P2.8 Determine the Thevenin equivalent circuit at the
nodes 2 and & for each of the two circuits shown
in Figure P2.8.
VOU'.
10 Q 12Q
(@ (b)
20V C
||
il
RI
AW, >
Via V. S
+ Vout
s 1
n a1 (©)
10 Q 5Q .
_<> 10V [Loud] Figure PL12
be
() P2.13 The input signal shown in Figure P2.13 is

applied to a non-inverting Schmitt trigger with

Figure P2.8

Vs = 3.1 Vand V- = 2.9 V. Plot the output
signal if V¢ 1s 5 V and Vi, is O V.

Input
Signal

40V~

35V

30V -

25V >
Figure P2.13

P2.14 An engineer has proposed the circuit shown in
Figure P2.14 for performing closed-loop pro-
portional control of the speed of a DC motor
using a tachometer as the feedback signal. Show
if this circuit will operate as proposed.

R,
MWV
Tach R,
O v o
= Desired Speed +
(Voltage) V. Motor
Figure P1.14

P2.15 Design an op-amp circuit to implement an ana-
log PD controller action. Select components to
give a K, gain value of 5 and a K, value of 0.1.

LABORATORY/ PROGRAMMING EXERCISES

212 Chapter Summary 35

P2.16 Design an amplifier circuit that uses LM741 op-
amps. The circuit should take an input voltage V;,
and produce an output voltage V,, that is equal
to k Vi, where 0 = & = 10. Specify all of the
components that are used in the circuit, the
output voltage, and the current limits of
the amplifier.

P2.17 Research and identify three household, commer-
cial, or automotive applications that use solenoids.
For each application, specify the type of solenoid
used.

P2.18 Draw a circuit that uses two relays (similar to the
one shown in Figure 2.41) to switch the direction
of rotation of a DC motor. The circuit has three
inputs, the supply voltage for the motor and two
control inputs 4 and B, as shown in Figure
P2.18. When A4 is 5 V and B is 0 V, the motor
rotates in one direction, and when A is 0 V
and B is 5 V, the motor rotates in the opposite
direction.

Supply Voltage

A —

’_I

Circuit Motor

B_

Figure P2.18

L/P2.1 Build the circuit shown in Figure P2.5, and
measure the voltages and currents in the circuit.
Compare the measured values to the computed
ones.

L/P2.2 Build and test the circuit described in

Problem P2.18.

77

CHAPTER

Semiconductor Electronic
Devices and Digital Circuits

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:

e Explain the function of diodes and thyristors

¢ Predict the output of simple circuits involving regular and Zener diodes

¢ Explain the use of transistors in switching applications

e Analyze circuits containing bipolar junction and MOSFET transistors

e Analyze digital combinational logic circuits and generate a logic circuit
from a truth table specification

¢ Generate the timing diagrams for various types of flip-flops

e Explain the properties of TTL and CMOS circuit families, their
characteristics, and how to interface them

e Draw a wiring circuit for digital devices (such as timers and H-bridge drives)

| 3.1 INTRODUCTION

The previous chapter considered the design and analysis of analog circuits. This
chapter discusses the operation of semiconductor electronic devices (such as
diodes, thyristors, and transistors) that are used in many circuits and devices for
switching or amplification purposes. A semiconductor is a material whose proper-
ties are in between a conductor and an insulator. Examples of naturally available
semiconductor materials include silicon and germanium. For use in semiconductor
electronic circuits, small quantities of other elements (such as boron and
phosophorous) are added to silicon or germanium crystals to alter their properties.
Semiconductor electronic devices have properties that depend on temperature,
lighting conditions, or the amount and direction of voltage applied to them. A basic
and important semiconductor device is the transistor, whose invention has led to
the development of digital circuits in which transistors form the building blocks.
An important feature of a transistor is that it can amplify an input signal.
Semiconductor electronic devices (such as transistors) are commonly used as an
interface in the operation of real devices (such as motors and heaters). Digital cir-
cuits are widely used in devices such as computers, wireless phones, and digital
cameras. This chapter considers both combinational and sequential digital logic
circuits as well as digital devices. Digital circuits form the foundation for micro-
processors and microcontrollers, and the next chapter will discuss microcontrollers
that give a flexible but complicated method of implementing control logic. For fur-
ther reading on the topics covered in this chapter, see [7-9].

36

| 3.2 DioDEs

Diodes and transistors are examples of solid-state switches. Solid-state switches are
devices in which the switching action is caused by non-mechanical motion and is
due to the change in the electrical characteristics of the device. A diode is a direc-
tional element that allows current to flow in one direction. The characteristics of a
real diode (i.e., not ideal) are shown in Figure 3.1. Unlike a resistor or a capacitor,
the diode current—voltage relationship is highly nonlinear and does not follow
Ohm’s law. The figure shows that, when the diode is forward biased or the anode
voltage is positive with respect to the cathode, current flows in the diode in the
direction of the arrow of the diode symbol. The current becomes very large when
the forward-bias voltage approaches V', which is the diode forward voltage. The
forward-voltage value is dependent on the material from which the diode is
made. For silicon diodes (such as the 1N914 diode), the V5 voltage is about 0.6 V
(at T = 300°K). When a reverse-biased voltage is applied to the diode, very little
current (in the nano-ampere range—see scale in Figure 3.1) flows unless the
applied voltage reaches the breakdown voltage (or V'3 about 75 V for the 1N914),
which causes the diode to break down. Regular diodes are not designed to operate
with a voltage lower than Vg unless a Zener diode is used.

Current !
I
I
i | Forward
10 mA — 1] Biased
i
+ '\I —]l : >
Anode L~ Cathode h y. Voltage
F
1 nA
everse

One common use of diodes is to change AC voltages to DC voltages, which is
a process called rectification. Figure 3.2(b) shows the output of the circuit shown
in Figure 3.2(a), which is called a half-wave rectifier. The rectification occurs only
if the amplitude of the sinusoidal signal exceeds the forward voltage (V) value for
the diode. Notice how the negative portion of the sinusoidal input voltage is elim-
inated and how the amplitude of the positive portion of the output signal is smaller
than the input voltage.

Vi

Vo

(a)

3.2 Diodes 37

Figure 3.1

Characteristics of
a diode

Figure 3.2

Half-wave rectification:
(a) circuit and
(b) output voltage

38 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.3
Diode clamp circuit
R
4 v,

+3V

Figure 34
Flyback diode circuit

Figure 3.5

Zener diode symbol

—5—

Figure 3.6

Voltage regulation
using a Zener diode

Another use of diodes is to limit the range of a signal in a circuit. This is called
voltage clamping, and the diode is called a diode clamp when used in such a cir-
cuit. Figure 3.3 shows such a circuit.

Notice that, because a diode conducts large current only when the forward-
bias voltage is greater than V' (or about 0.6 V for 1N914 diode), the above circuit
will limit the output voltage V' to 3.6 V (0.6 V plus the voltage applied at the cath-
ode). Any input voltage lower than that (including negative voltage above the
breakdown voltage) is passed as an output. This is because, when the diode is not
conducting, no current is flowing across the resistor R in the circuit of Figure 3.3,
and thus, Vy = 1}

A further application of diodes is to limit voltage spikes generated when
switching off inductive loads (such as DC motors or relay coils). The use of the
diode in this case is called a flyback diode. A typical wiring is shown in Figure 3.4.

L1
AN

+V o— O O_||’

r

To understand the function of the flyback diode, assume first that the diode is
not present. Note that when the switch is opened, the current in the motor coil
starts to change. Since a coil has inductance, a large voltage of opposite polarity
develops across the motor lead according to the relationship V' = L di/dr. Thus, the
two sides of the switch will have voltages of opposite polarity, leading to arcing and
premature wear of the switch contact. If, on the other hand, a diode was added as
shown in Figure 3.4, the diode provides a path for the current in the coil leading to
a reduced voltage spike at the switch leads.

3.2.1 Zener DioDE

A special type of diode is called the Zener diode, and its symbol is shown in
Figure 3.5. A Zener diode behaves like a normal diode when it is forward biased,
but it can conduct current without destroying itself when the reverse-biased volt-
age exceeds the breakdown voltage, V. The breakdown voltage or Zener voltage,
V7, can be smaller than that for a normal diode. Common low Zener voltages
include 2.7, 3.0, 3.6, 3.9, 4.7, 5.1, 5.6, and 6.2 V, but Zener voltages of 20, 51, 100,
and even 200 V are available (for example, the 1N5221 to 1N5281 silicon Zener
diodes series from Sematech Electronics ITD).

A common use of Zener diodes is to regulate the output voltage in a circuit when
the supply voltage is variable or unstable. The circuit for performing this operation
is shown in Figure 3.6. Note that the output voltage of this circuit or the voltage drop
across the load resistor R, always will be I if the voltage drop across R, is about to
exceed V. Example 3.1 illustrates the use and sizing of such a diode.

Example 3.1 Voltage Regulation using a Zener Diode

For the circuit shown in Figure 3.6, assume that the voltage source is an unregu-
lated supply that varies between 10 to 12 V. Select a Zener diode and appropriate
resistors to give close to a 5 V drop across the load resistor R, using this supply.

Solution:

Let us select a Zener diode with a breakdown voltage of 5.1 V (which is the clos-
est to 5 V). Select R, to be 100 Q). Then the current across the load resistor R, is
51 mA, because the potential drop across the R, resistor is the same as that across
the Zener diode for cases when the voltage drop across R, is about to exceed V3.
The current through the resistor R has to be greater than the current through the
load resistor, because the Zener diode will not operate unless some current flows
through it, since Iz, = Iy + Ig,. This implies that Ry has to be less than 96.1 Q for
Vs = 10 V from the requirement that

I, > Ig,
or
Vs — V.
s—Vz_ Ve

If we select Ry to be 90 Q, then the current through R; will be 54.4 mA for
Vs = 10 V and 76.7 mA for Vs = 12 V. Notice that the current that is not passing
through the load is being dissipated through the Zener diode. For the diode not
to heat up, the diode power rating must be greater than 5.1V X (76.7 — 51) mA or

0.13W. A 0.25 W diode will do this. A commercially available diode with such spec-
ifications is the 1N4689.

3.2.2 LED

One common form of a diode is the light-emitting diode (LED). These diodes
emit light when forward biased, and the amount of light they emit is proportional
to the current passing through the LED. They are typically encased in a colored
plastic casing. An advantage of an LED over other light sources is that it takes only
a few milliamps to light the diode. They also can be powered by a digital power
supply (5 VDC), since the voltage drop across the LED when it is on is about 2 V.
A typical LED and its symbol are shown in Figure 3.7. Note that the anode or the
positive terminal is the one that has a longer lead.

| Anode L Cathode

Anode —>-|

(a) (b)

3.2.3 PHOTODIODE

Another form of a diode is the photodiode. A photodiode (see Figure 3.8 for a
symbol) behaves like an LED but in an opposite fashion. The amount of current
that the photodiode passes is proportional to the amount of light it receives, and
the current flows from the cathode to the anode (reverse biased). Photodiodes are
commonly used as light sensors.

3.2 Diodes 39

Figure 3.7

(a) LED and
(b) symbol

Figure 3.8
Symbol of a photodiode

e

Anode L Cathode

40

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.9

(a) Thyristor symbol
and (b) typical
component

Figure 3.10

Current-voltage
relationship for a
thyristor

| 3.3 THYRISTORS

A thyristor (silicon-controlled rectifier or SCR) is a three-terminal semiconductor
device that behaves like a diode but with an additional terminal. The additional ter-
minal is called a gate, and when a small current flows into the gate, it allows a much
larger current to flow from the anode to the cathode (provided that the voltage
between the anode and the cathode is forward biased). The symbol and a typical
component form of a thyristor are shown in Figure 3.9.

\o

T
KAG
(@) (b)

Anode (A) l\l Cathode (K)

Gate (G)

The current-voltage characteristics of a thyristor are shown in Figure 3.10.
When no current is applied to the gate (off state), the current flow between the
anode and the cathode in the thyristor is negligible for voltages greater than V'3 and
less than Vp. Note that the forward voltage (Vp) of a thyristor is quite large (from
50 up to several hundred volts), unlike that of a regular diode. When a small cur-
rent (mA range) is applied to the gate, the thyristor conducts if the voltage applied
to it causes it to be forward biased. When the thyristor is conducting (on state), the
forward voltage across the thyristor is small (1 to 2 V), and the thyristor current can
be in the several ampere range. Note that if the current to the gate is cut off, the
thyristor continues to conduct as long as the voltage applied to it causes it be for-
ward biased. The thyristor is turned off only when the current between the anode
and the cathode drops below a certain value called the holding current (I;). The
gate current (I7) that causes the thyristor to conduct is small and is typically a
few milliamps or less. For example, for the 2N6401 SCR, Vp is 100 V when not
conducting and 1.7 V when conducting, I57is about 30 mA, and I is about 20 mA.
The ability of the thyristor to remain on even though the gate current is switched
off is called latching.

Current 4

<—— On State

—> 12V

Off State

Reverse Forward
Biased Biased

Thyristors are commonly used in power control applications to control
heaters, dimming switches, and motors. They are particularly useful in controlling
the current from an AC source to control the speed of AC-driven motors, such as
the Universal Motor. Figure 3.11 shows such a circuit used for this purpose.

© V] RS

This circuit is called a half-wave variable-resistance phase-control circuit.
Because a thyristor is unidirectional, the circuit only affects the positive portion of
the AC signal or half-wave. When the voltage crosses the zero mark, the thyristor
stops conducting. As seen in Figure 3.11, the gate current to the thyristor is con-
trolled by a potentiometer through a diode. The diode is used to prevent the neg-
ative half of the AC signal from affecting the gate. Changing the resistance of the
potentiometer causes the gate current to change. Since the applied voltage is sinu-
soidal (not constant), this causes the gate to trigger at different times with respect
to the AC signal (hence the name phase control). If the triggering occurs at the
beginning of the positive half of the voltage signal, then all of the current is passed,
as shown in Figure 3.12(b). If the triggering occurs at a later time, then only a por-
tion of the current is passed, as shown in Figure 3.12(c). Since the duration of the
current passed affects the speed or delivered power to the controlled device, the
thyristor offers a simple way to control the power.

(a) Input Voltage /\\//\

/\ No Delay
(b) Load Current

K ,'[\ Delayed Triggering
(c) Load Current ’

Another application of thyristors is to use them in overvoltage protection
circuits. The circuit shown in Figure 3.13 is commonly referred to as a crowbar
circuit. It is used to protect from power surges or power-supply malfunction prob-
lems. It basically uses a Zener diode in combination with a thyristor. The Zener
voltage should be selected to be higher than the nominal supply voltage. When the
Zener diode switches on due to overvoltage condition, this causes a current to flow
to the gate of the thyristor. The thyristor will conduct, allowing a large current to
flow, thus acting as a short circuit and blowing the circuit fuse. The capacitor is
added to prevent the thyristor from triggering when powered up. Because of com-
ponent tolerances, this circuit will operate reliably only if the overvoltage is 30 to
40% higher than the nominal voltage.

33 Thyristors L

Figure 3.1

Half-wave variable-
resistance phase-control
circuit

Figure 3.12

Current output of a
half-wave variable-
resistance phase-control
circuit

L] Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.3

Crowbar circuit for
overvoltage protection

Figure 3.14

Schematic of an npn
bipolar junction
transistor (BJT)

C

Crowbar Circuit

supply

| 3.4 BIPOLAR JUNCTION TRANSISTOR

A transistor is a solid-state switch that opens or closes a circuit. Unlike an electro-
mechanical relay, the switching action in a transistor is caused by non-mechanical
motion and is due to the change in the electrical characteristics of the device. A
transistor is a three-terminal device. One terminal is used as the control input,
another is connected to the load voltage, while the third is connected to ground or
a constant potential. There are several types of transistors available: the bipolar
junction transistor (BJT), the field effect transistor (FET), and the metal-oxide
semiconductor field effect transistor (MOSFET). We will discuss the BJT and the
MOSFET, which are widely used. We will start by discussing the BJT. There are
two types of BJ'T: npn and pnp, which refer to the arrangement of n-type (negative)
and p-type (positive) semiconductors in the construction of the transistor. We
will limit the discussion to the npn configuration, which is more widely used.
A schematic of an npn BJ'T is shown in Figure 3.14. The terminals of the BJT are
labeled as the emitter (E), base (B), and collector (C).

Let us label the voltages applied to the B, C, and E terminals as Vp, Ve, and Vg,
respectively. Let us further define the following voltage differences:

Vor = Vg — Ve
Vee = Vo — Ve

Some general characteristics of a BJ T are
¢ A BJT is an active device that requires power to operate.

* The BJT is a current-controlled device whose operation depends on the
magnitude of the current supplied to the base.

* A small base current allows a much larger current to flow between the collec-
tor and the emitter.

* The BJT has three states of operation. These include the off or non-conducting
state, the linear state, and the saturation state. These states of operation are
determined by the magnitude of the Vpp and Vg voltage. The former is set
by the current supplied to the base.

* The voltage at the emitter (V) is always lower than the voltage at the base
(Vp) by about 0.6 V.

¢ The collector voltage (V) has to be more positive than the emitter voltage (Vp).

¢ If AC voltages are applied to the base input, then a DC offset voltage (called a
bias voltage) needs to be added in series to the AC voltage to enable the tran-
sistor to be controlled by both the positive and negative parts of the AC signal.

34 Bipolar Junction Transistor 't}

"Two of the most common standard BJT circuits are called the transistor switch (or
common emitter circuit) and the emitter follower circuit. These circuits are dis-
cussed next.

3.4.1 TRANSISTOR SWITCH CIRCUIT

The transistor switch or common emitter circuit is shown in Figure 3.15. In this
circuit, V;, is the control voltage, V. is the output voltage, and Vg is the supply
voltage. This circuit is also called the comon emitter circuit, because both the emitter
and the supply voltage ground are connected to the same common point. In this cir-
cuit, a resistor (R¢) is always placed between the supply voltage lead and the collec-
tor. In practice, this resistor represents the resistance of a load (such as an LED or
motor) that needs to be switched on and off, and hence, the name of this circuit.

* Vee
ELs
Vou‘
R C
B B
—ww—2

1

The transfer and output characteristics of a B]T are shown in Figure 3.16.
In Figure 3.16(a), the collector current (I¢) is plotted against Vpg. The figure shows
that the collector current () is zero unless Vpp exceeds 0.6 V, at which point I¢
starts increasing. Figure 3.16(b) shows the relationship between I and Vip as a
function of the base current (Ip). The figure shows that away from the vertical axis
or in the linear region, the collector current is mainly a function of the base cur-
rent and does not change appreciably with an increase in V¢p. This region is called
the active or linear region. Close to the vertical axis or in the saturation region, I¢
is a function of both Vg and Ip.

As mentioned before, a BJT has three states of operation. When
Ve < ~0.6 V, the transistor is said to be in the off state (non-conducting state).
In this state, no current flows between the collector and the emitter, so I = 0. The
Vout voltage will be the same as the V¢ voltage, because no current flows between
VCC and Vc.

Ic Saturation Region

Linear Region

T > T
0.6V Ve y, <06 -7 Vee

(@ (b)

Figure 3.15

Common emitter circuit

Figure 3.16

(a) Transfer and
(b) output
characteristics of a BJT

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

(1)

(3.2)

33)

(34)

When Vpgis >= ~0.6 Vand < ~0.7 V and Vg > 0.2V, the transistor is in
the linear operation state. In the linear operation state, the collector current (I()
is linearly related to the base current (Ip) by the following relationship:

le = Blg = heelg

where B or hgy is the current gain. The current gain is not constant, and its value
is dependent on the current (I¢) as well as Vg and temperature. A typical value for
B is 100, but it could range from 50 to 1000 due to variations in the manufactur-
ing process.

When Vg is >= ~0.7 V, the transistor is in the saturation state. In the satu-
ration state, current flows between the collector and the emitter, and Vg has a
value of ~0.2 V. V,, in this case will be same as Vg, and the output voltage will
switch from Ve to ~0.2 V when the transistor switches from the off state to the
saturation state.

In the transistor switch circuit, the transistor is normally designed to operate
in either the off state or the on (saturation) state, but not in the linear state. The
question is then what is the minimum V7, voltage needed to cause the transistor to
saturate? By referencing Figure 3.15 and using KVL, we get

Vio = IgRg + Ve
and just before saturation, Ip is related to I by
lg = Ic/B
where I is determined from
le = Ve — Vel /Re

These equations can be solved to find Vj, to cause saturation. Example 3.2
illustrates these calculations with data from a widely used small transistor, the
2N3904 (see website for complete data sheet).

Example 3.2 Voltage Saturation Calculations for the 2N3904

Transistor

Using the data sheet for the 2N3904 transistor and with reference to Figure 3.15,
determine the input voltage needed to cause the transistor to saturate. What is
the output voltage (V,t) of this circuit during the saturation and the off states if
Vce = 10 V? Let Rc be 1 kQ, and Rg be 5 kQ. Also, determine the power output of
this transistor.

Solution:

From the data sheet, Vs = 0.2 V at saturation for /c = 10 mA. From Equation (3.4),
Ic is given by

Ic = (10 — 0.2)/1000 = 9.8 mA

which is close to the assumed value for /.. Notice that /c has to be smaller than the
200 mA limit for the collector current, which is satisfied in this case. Also from the
data sheet, beta or hgg is 100 for Ic = 10 mA, and Vg is greater than 0.65 V at satu-
ration. We set Ve = 0.7 V. From Equation (3.3), /g just before saturation is given by

Iz = 9.8/100 = 0.098 mA
Now plugging this value into Equation (3.2) gives
Vin = 0.098 X 5 + 0.70 = 1.19 V

34 Bipolar Junction Transistor 5

To insure saturation, Vi, has to be greater than 1.19 V. This can be achieved easily
if we let Vj, be 2 V for example.

When this transistor is off, V;, has to be less than Ve when the transistor just turns
on (less than 0.6 V). In this case, V,: will be equal to V¢ (10 V). When the transis-
tor is in saturation, Vout = Vg = 0.2 V.

The output power of this transistor is the power that is dissipated by the load,
which in this case is the Rc resistor. Power is then computed from I R:

Power = (9.8 X 1073)2 X 1000 = 9.6 X 1072 W

3.4.2 EMITTER FoLLOWER CIRCUIT

The emitter follower circuit is shown in Figure 3.17. Note how the output is con-
nected to the emitter is this case, and there is no resistor between V¢ and the col-
lector. This circuit is called the emitter follower, because the output voltage follows
the input voltage with a difference of about 0.6 V. Assume first that there is no resis-
tor Rp in this circuit. Then Vp =V,

Vo = Ve = Viy — Vgr = Vj; — 0.6for I, > 06V
and
Vour = Ofor Vi, < 06V

Now if the resistor Rp was present, we need to account for the voltage drop across
this resistor and V,, is then equal to

Vout =V, — IgRg — 06for V, > 06V

But Iy = I¢ + I, Iy = Vo /R, and I = B Ip when the transistor is in the linear
state. This gives

I
U0+ BIRe

and
le = lg(1 + B)

Equation (3.9) shows the current gain of this circuit is (8 + 1). Substituting
Equation (3.8) into Equation (3.7) and solving for V,, we get

o (1 + BIRe
Vout - (V| 06) HB + (1 + B)HE

Equation (3.10) shows that the output voltage is linearly related to the input volt-
age and is independent of the supply voltage V. The output voltage is also in

V.

in T

(3.3)

(3.6)

()

(3.8)

(39)

(310)

Figure 3.17

Emitter follower circuit

46

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Table 3.1

Characteristics of
common npn
BJT transistors

Figure 3.18

Schematic of a
Darlington transistor

c

phase with the input voltage, and voltage, gain is slightly less than 1 as seen from
Equation (3.10). Equations (3.8) through (3.10) apply as long as the transistor is not
in saturation. When the transistor saturates, V. is equal to Ve — 0.2 because Vg
is about 0.2 volts at saturation. Example 3.3 further illustrates the voltage calcula-
tions for a BJT.

BJT transistors have certain parameters that should not be exceeded. These
parameters include maximum collector current and the power dissipation capabil-
ity. These parameters are listed in Table 3.1 for three common 7npn transistors. The
TIP102 transistor is called a Darlington transistor and it consists of two cascaded
BJT transistors to amplify the collector current (see Figure 3.18). Note that the
power dissipation capability of a transistor is dependent on the environment tem-
perature. In Table 3.1, the power is listed for air temperature of 25°C. The power
dissipation decreases with increasing temperature.

Power Dissipation at

Part # Max Ve Max Vge Max /¢ B Ty = 25°C
2N3904 oV 6V 200 mA 30-300 0.625 W
TIP29 40V 5V TA 15-75 30W
TIP102 100V 5V 8A 200-20000 80 W

In a BJT, the power that is seen by the load is computed from the product of the
square of the collector current and the load resistance. B] Ts are typically used for
low power applications. Note that while a transistor has a very fast switching time
in the order of 10’ of ns or less, there is no electrical isolation between the base cir-
cuit and the load circuit unlike that of an electro-mechanical relay. In a relay, the
coil circuit and the contact circuits are electrically isolated, so they are better suited
to handle noise.

Example 3.3 Analysis of a BJT circuit

Determine the voltages at points 1 and 2 in the circuit shown in Figure 3.19 for
a) Vi, =0.1Vandb) Vi, =3 V.Let Rc = 1 kQ, Rg = R = 100), and V- = 10 V.

1

Figure 3.19

Solution:

a) For Vi, = 0.1V, the transistor is off because V;, has to be larger than 0.6 V to
cause the transistor to start conducting. So V; = V¢ = 10 V since the current
Ic is zero. V; is equal to zero because Vg is less than 0.6 V.

34 Bipolar Junction Transistor

b) For Vi, = 3V, the transistor is either operating in the linear range or saturated.
We will assume that the transistor is just at the point of being saturated, and
we will check this assumption by comparing the currents /- and /p.

Applying KVL to the V¢ loop gives

Vee = IcRc + Ve + IeRe (1
Similarly, applying KVL to the V;, loop gives

Vin = IgRp + Ve + IR ()

Noting that /¢ = Ic + Ig, and using the given values for Rg, Rc, Rg, Vin and V¢, and
assuming Ve = 0.2 V and Ve = 0.7 V at saturation, Equations (1) and (2) give

10 = 1100 /c + 0.2 + 100 /g (3)

Solving Equations (3) and (4) for /g and I, we get Ic = 8.24 mA, and Iz = 7.36 mA.
For Ic = 10 mA, the current gain B is about 100 if the transistor is operating in the
linear range. Since Ic # B Ig, the transistor is in saturation and the assumption is
correct. This gives V4 = 1.76 V and V, = 1.56 V.

3.4.3 OPeN CoLLECTOR OUTPUT

Many sensors used in mechatronic applications such as proximity sensors, see
Section 7.4, have electronic circuits that use an internal B] T transistor as an inter-
face. The output of the sensor electronic circuit drives the base of the transistor.
These circuits are normally known as open collector output voltage circuits. To
get an output from these sensors, an appropriate ‘pull-up’ resistor or load, and the
supply voltage needs to be applied to the terminals of the sensor. Figure 3.20 shows
a typical wiring for such a sensor. In this example, a positive voltage needs to be
applied to terminal 1 and a ‘pull-up’ resistor needs to be connected between termi-
nals 1 and 2. When the proximity sensor is OFE, the transistor is not in saturation,
and there will be no voltage drop across the load resistor, since the collector termi-
nal (2) is open with respect to the emitter terminal (3). The output in this case will
be ‘pulled up’ by the load resistor to the value of the external supply voltage V.
When an object is detected by the proximity sensor, the transistor conducts and a
voltage drop develops across the load resistor, resulting in the output voltage
changing from the value of the supply voltage to almost zero. Example 3.4 illus-
trates an open collector circuit.

|
l +V

| |

| |

| : Rload
|

| 12

: Sensor | Vout
|| Circuit :

|

| = |

| |

| |

| 13

1 —

Figure 3.20

Typical circuit for an
npn type non-contact,
capacitive-type
proximity sensor

4

48

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.22

(a) Phototransistor and
(b) photo interrupter

@

(Courtesy of ROHM
Semiconductor,
USA, San Diego, CA)

(b)

Example 3.4 Open Collector Calculation

A proximity sensor with an output circuit similar to that shown in Figure 3.20
requires a 24-VDC supply voltage. Select a pull-up resistor and a wiring scheme for
this sensor so the voltage output of the sensor can be read by a digital input port
with 0 and 5 V logic levels. The maximum current through the pull up load resis-
tor should be limited to 100 mA.

|
i |1 i1
! 24 VDC
! ™ i
! | 2R =1kQ
|
| | 2
: Sensor - : Vout
: Circuit |
! — § Ry=240Q
! l
| _ 13
_______________]
Figure 3.11

Solution:

The wiring scheme to perform this function is shown in Figure 3.21. Since the out-
put voltage should be limited to 5 V when the sensor is off, we need to use a volt-
age dividing circuit in this setup. The resistors R; and R, are selected to have a
resistance of 1 kQ and 240 Q respectively to achieve this. Note that these resist-
ance values are standard. When the sensor is off, V,; will be

24
24 — 1000 —— =465V
1240

which is well within the voltage threshold for the high logic (see Table 3.12). When
the sensor is on, V4 is about 0.2 V. The maximum current through the load resis-
tor occurs when the sensor is on. The current in this case is
24 — 0.2
1000
This is well within the desired specification.

= 23.8 mA

3.4.4 PHOTOTRANSISTOR, PHOTO INTERRUPTER, AND OPTO-ISOLATOR

Instead of using a voltage source to saturate the transistor, a phototransistor (see
Figure 3.22(a)) uses light that is received by a photodiode to do the same thing.
Typically a phototransistor and an LED are packaged together to make optical sensors
that can be used to detect the presence of objects. In these sensors, which are com-
monly referred to as photo interrupters (see Figure 3.22(b)), the LED provides a light
source that is received by the phototransistor. An interruption of the light received by
the phototransistor causes the phototransistor to change state, thus indicating the
presence of an object in the path between the LED and the phototransistor.

An opto-isolator or an optocoupler combines two elements (a light-emitting
device such as a diode and a light-sensitive device) similar to a photo interrupter
but in an enclosed package. An opto-isolator is also designed for a different pur-
pose, which is to provide an optical coupling between the input and the output
sides. The light emitter on the input side takes a voltage signal and converts it into
a light signal. On the output side, the light-sensitive device detects the light from
the emitter and converts it back to a voltage signal. The light-sensitive device could
be a phototransistor, a photodiode, or a thyristor. This optical coupling provides

3.5 Metal-Oxide Semiconductor Field Effect Transistor

electrical noise isolation between the input and the output sides. To take advantage
of this isolation, a separate power supply should be used for the input and output
sides. Opto-isolators are used to prevent voltage spikes on one side of the device to
damage or affect components on the other side. Opto-isolators are available with
isolation of 5 kV or more between the input and output sides.

| 3.5 METAL-OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR

Metal-oxide semiconductor field effect transistors (MOSFETTS) are the other fam-
ily of transistors that are commonly used. The MOSFET is based on the original
field effect transistor (FET) that was introduced in the 1960s. Similar to the BJ T
family, they are also three terminal devices, but they have different names for the
terminals, and they operate differently. The three terminals are the gate (similar to
base), drain (similar to collector), and source (similar to emitter). The naming of
the terminals comes from the flow of electrons between the source and drain when
the transistor is conducting. The most commonly used MOSFET is the enhanced
type and is available as n- or p-type. We will limit the discussion to the n-type
enhanced MOSFET here. Figure 3.23 shows the symbol of the #-type MOSFET.
MOSFETSs have the following characteristics.

* The voltage applied to the gate (or the electric field) is the signal that controls
the operation of the transistor and hence the name field effect transistor. This is
in contrast to a BJ'T where the current applied to the base controls its operation.

* The gate is insulated from the drain-source circuit. This is indicated in the
symbol by the separation of the gate terminal from the drain-source connec-
tion. The gate has a very high internal resistance (Rgye = ~10'* Q), such that
almost no current flows into the gate. This insulation makes it easy to analyze
MOSFET circuits, because the gate circuit can be analyzed separately from the
drain-source circuit. In addition, the high input resistance means that the gate
draws no current except for a small leakage current in the nanoampere range.

* The high-input impedance of a MOSFET gives it an advantage in interfac-
ing with other logic circuits.

e MOSFETs have three states: cutoff, active, and saturation, which are similar to
BJTs.

* They act as voltage-controlled resistors. When the transistor is OFF, the
drain-source resistance is very high, and when the transistor is fully ON, the
drain-source resistance is very low (can be less than 1 Q). When the transistor
is ON, current flows from the drain to the source (electrons travel in the
opposite direction).

* n-type enhancement MOSFETs operate with a positive voltage applied to the
gate.

* MOSFETS have a higher power rating and generate less heat than BJTs.

The transfer and output characteristics of a MOSFET are shown in
Figure 3.24. Figure 3.24(a) shows the relationship between the drain current (Ip)
and the voltage between the gate and the source (Vs). The figure shows that the
drain current is zero until Vg exceeds the threshold voltage (V) for the MOSFET.
When Vs < Vrpy, the MOSFET is said to be in the cutoff or non-conducting
state. The threshold voltage for normal MOSFETs (such as 2N4351) is between
2 to 5V, while for logic-level MOSFETs (ones that are designed to be driven

Figure 3.3

Symbol of an n-type
MOSFET

5

49

50 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.24

(a) Transfer and
(b) output
characteristics of a
MOSFET

Figure 3.25

MOSFET circuit for
driving a motor

+Vaa

>}

Table 3.2

Parameters of selected
MOSFETs

Ip4 Active Region
Fully On

Saturation Region

Ip

\4

V. 1
! Vos Ves<Vr Vs

(a) (b)

directly from outputs of logic gates, such as microcontrollers) the threshold voltage
is about 0.3 to 1.0 V. As I/gg increases above I, the drain current increases.
Figure 3.24(b) shows the relationship between the drain current and the voltage
between the source and the drain (Vpg) for different values of Vgg. For a given
Vas > Vi, the drain current increases with g for a small V. This is called the
active or ohmic region, where the MOSFET acts like a variable resistor whose
resistance is controlled by Vgs. However, as Vg increases, the drain current levels
off and stays constant. This is called the saturation region, where the drain cur-
rent value is independent of Vpg. When Vg is significantly higher than the thresh-
old voltage (approximately 10 V for a normal MOSFET), the transistor is said to
be in the fully ON state where the drain current is maximum.

MOSFETs are typically used for switching applications (ON/OFF) to drive
motors or LEDs. A typical circuit is shown in Figure 3.25. When the transistor is
OFF, no current flows from the drain to the source, and the motor is OFF. When
the transistor is fully ON, current flows to the motor, and the motor is ON. Note
the use of the flyback diode in the circuit to protect the transistor from the large
voltage build-up that occurs when the transistor is switched off. The resistor at the
input is used to drive the gate input to ground and completely turns OFF the tran-
sistor when the input voltage is zero.

Some of the parameters of a logic-level MOSFET (NTE2980), normal
MOSFET (2N4351), and a Power MOSFET (IRFZ14) are shown in Table 3.2.

These parameters are defined here.

Ryon) The resistance between the drain and source terminals when the
MOSET is fully turned on

IDmay) The maximum current between the drain and source that can be
passed by the transistor. It is a function of R, and the package type of the

transistor
Gate Drain-to-
On Power Threshold Source
Part Resistance Max. Drain Dissipation Voltage Breakdown
Number Rys (on) Current Ip (max) Py Vesith) Voltage Vjss
2N4351 <=3000 100 mA 375 mW 1-5V >= 725V
NTE2980 0.2-0.28 6.7A (Vgs = 5V) 25W 1-2V >=60V

IRFZ14 02Q 10A 43 W 2-4V >=60V

3.6 Combinational Logic Circuits

P, The power dissipation rating for the transistor

VGs(ehy The minimum voltage between the gate and the source that causes
the transistor to start conducting

Vs The maximum voltage between the drain and source when the transis-
tor is OFF

Similar to BJIs, the power-handling capacity of MOSFET transistors is a very
important consideration in the selection of these components. When the power to
be dissipated is above 1 W, the MOSFET is mounted on a heat sink. In these
MOSFETS5, the package has a metal tab which is mounted against the heat sink.

The dissipated power in a MOSFET is the product of the drain current and
the voltage across the transistor. Since the voltage across the transistor is equal to
the product of current and the resistance, the power is then given by

Pd = /LZ7 Hdslon)

when the transistor is fully conducting.

| 3.6 CoMBINATIONAL LoGic CIRCUITS

The invention of the transistor has led to the development of digital circuits in
which transistors form the building blocks. Digital logic circuits can be classified
into two categories. These are combinational logic circuits and sequential logic
circuits. In a combinational logic circuit, the output is not dependent on the his-
tory of the input, and the circuit uses rules of mathematical logic to generate the
output. On the other hand, in a sequential logic circuit, signal history is impor-
tant and determines the output of the system. We start with combinational logic
circuits. Table 3.3 lists the basic combinational logic devices that are used along
with their symbols, logic function expressions, and truth tables. A truth table gives
the output logic for all combinations of the input logic. Note that a bar above a
logic variable means the inverse of that variable.

An example of a logic circuit that uses these devices is shown in Figure 3.26.
The associated truth table and logic function are also shown.

Logic Function
Device Symbol Expression Truth Table

A = A-
AND gate B:DC C=A-B

=R ~]
==]
k===~

NAND gat A _ 7B
gate 81 »c =48

= e i ~]
==]
ol —| ==/

OR gate 2®C C=A+8B

—_0 -0 P>
- -0 ow
- — o0

()

Table 3.3

Basic combinational
logic devices

51

51

Table 3.3

(Continued)

Figure 3.26

An example of a
combinational logic
circuit

Figure 3.27
SN7402 package

(Courtesy of Texas

Instruments, Dallas, TX)

1Y [
1A O
1B O
2y
2A O
2B [
GND [

~N NN R W =

%

14
13
12
1
10

o]

8]

Vee
4Y

4B
4A
3y
3B
3A

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Logic Function

Device Symbol Expression Truth Table
A B C
4 0 0 1
NOR gate =
g a D c C=A+B8 (1) (11 8
1 1 0
A B C
A 0 0 0
XOR gate BDD—C C=A®B g] ? 1
1 1 0
A C
Buffer A ~I>c C=A 0 0
1 1
A C
Inverter A ~I>cH cC C=A 0 1
10
Circuit
A B C
E
F
Truth Table
G
A BC EFG
0 00 001
0 0 1 111
0 1 0 1 10
Logic Functions 011 110
E=B+C 1 00 001
_ _ 1 0 1 1 0 1
F=4-E=4-B+ () 1 10 101
G=BF 111 101

The gates shown in Table 3.3 are available in packages. For example,
Figure 3.27 shows the SN7402 package from Texas Instruments, which contain
four independent two-input NOR gates. The A’s and the B’s are the gate’s input,
and the Y’s are the gate’s output. V¢ is the supply-voltage connection pin. Note
that the semicircular notch at the top of the IC is used as a mark for orientation of
the device. Logic AND, NAND, OR, and NOR gates are also available with three
and four inputs.

3.6.1 BOOLEAN ALGEBRA

Since digital circuits perform logic operations, we need to understand the logic
rules that govern these operations. Here is a listing of rules that can be used to sim-
plify Boolean expressions.

l.A+A=A4
2.4+1=1
3.A+0=4

3.6 Combinational Logic Circuits 5

4.4-4A=4

5.A+B=B+4
6.AB+C)=A-B+A-C
7.A+B-C)=U+B)-A+C)

8.A+A=1

9.4-A=0
10.A4-0=0
11.A-1=A4

The following two rules are called De Morgan rules and are useful in converting
between AND and OR gates:

2A+B+C+...=A4A"B-C...
13.A-B-C...=A+B+C Figure 3.18

To illustrate these rules, consider the following example. Assume we are given ~ Two-gate circuit
a circuit, as shown in Figure 3.28.

A
The output of this circuit in terms of the inputs is given by B %
C=(A+ BB ¢

Using rule 6 and then rule 4, we can write the above expression as
C=A-B+B-B=A-B+B
Also applying rule 11 and then rule 6, we get
C=A-B+B=A-B+B-1=(A+1)-B
Since 4 + 1 =1 by rule 2 and (1 - B) = B by rule 11, the output of this circuit is
C = B. Thus, by using the above rules, we were able to convert a circuit that has

two gates into one that requires no gate—just a wire between B and C.
As a further illustration of the above rules, consider Example 3.5.

Example 3.5 Boolean Logic Simplification

Simplify the following output function:
Q=A-Q+(B-0+(A-B-Q
Solution:
Q can be written as
Q= +B):-C+(A-B)-C

by applying rule 6 to the first two expressions and factoring C from the third
expression.

Application of rule 6 again gives
Q=[A+B)+(A-B)]-C
Factoring out A and then applying rules 2 and 11 gives
Q=[A-(1+B)+B]:C=(A-1+B):-C=(A+B)-C

Thus, the original expression which would need one inverter gate, four two-input
AND gates, and two two-input OR gates now can be realized using just one OR
gate and one AND gate.

54

>

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Logic truth table

Table 3.5
Graphical
representation
of Table 3.4
B B
0 1
0 0

Table 3.4

3.6.2 BOOLEAN FUNCTION GENERATION FROM TRUTH TABLES

In this section, we look at the problem of finding a logic gate system with the min-
imum number of gates that can be used to realize a logic circuit operation that is
specified in terms of a truth table. An application of this would be the design of a
circuit to process the output from a number of ON/OFF sensors. The basic
approach is to manipulate the logic functions into one of two equivalent forms.

Sum of products form: AB+ A-C
Or
Product of sums form: A+ B-Ad+0

In the sum of products form, different combinations of the inputs are
AND-ed together to form products, and these products then are OR-ed together
to generate the output. In the product of sums form, different combinations of the
inputs are OR-ed together to form sums, and sums then are AND-ed together to
generate the output. The sum of products form is more commonly used. As an
example, consider the following truth table (Table 3.4) that defines the output Q in
terms of the inputs A and B. Using the sum of products form, we included in each
row of the table the product form that generates the output in that row. If the input
is low (or zero), then that input is shown with a bar above it in the products expres-
sion. From the table, we can then say that this logic system is given by

Q=A-B

Note that we only considered rows that have an output of 1. Rows with zero out-
put do not contribute to the final expression.

A B Output 0 Products
0 0 A-B
0 1 1 A-B
1 0 0 A-B
1 1 0 A-B

This example also can be solved graphically, as shown in Table 3.5, where we con-
struct a table that has all of the input combinations. The output of the system is
decided from the cells that have a non-zero output. In this case, we have only one
non-zero cell, so we can read the output as determined before as Q = A+ B.

"This graphical technique works very well for logic functions with many inputs
and is part of a method using Karnaugh maps (K-maps). A Karnaugh map is a
graphical method that can be used to produce simplified Boolean expressions from
sums of products obtained from truth tables. We will give a brief overview of
Karnaugh maps in this text. For more detail, the reader should consult textbooks
on digital logic design (see, for example, [8]). To illustrate the Karnaugh map
approach, consider the truth table for a three-variable input problem that is shown
in Table 3.6. We added a column to that table to show the product form for rows
that have non-zero output. Unlike the truth table shown in Table 3.4, which has
only one non-zero output, this truth table has five non-zero outputs. Trying to sim-
plify these five products using the Boolean rules discussed earlier is not always
straightforward. We will instead use the Karnaugh map approach for this example,
since it offers a simpler method to obtain the output.

3.6 Combinational Logic Circuits 55

ABC Output Products
000 0
001 1 A-B-C
010 0
011 1 A-B-C
100 0
101 1 .B-C
110 1 .B-T
111 1 .B-C

The Karnaugh map for the data in Table 3.6 is shown in Table 3.7. Because we have
three input variables in this problem, the Karnaugh map has eight elements. Note
how the rows in the map are labeled such that only one variable changes in adja-
cent rows (i.e.,, A*B—>A+B—>A+-B—>A-B). In the first step in this approach,
map cells corresponding to non-zero output have a value of 1 placed in them. The
next step is to group adjacent horizontal or vertical map cells that have a 1 in them.
For this example, we have two groupings: a vertical group that has four cells and a
horizontal group that has two cells. The last step is to derive a logic expression
from the cell groupings. As seen in Table 3.7, the 1-output in the vertical group is
independent of the values of 4 and B, so Q corresponding to this group is C.
Also from the horizontal group, the 1-output is independent of the value of C, so
QisA-B.

[c
A-B 1
A-B 1
A-B 1 1
A-B 1

Combining these expressions, the output of the truth table is then Q = C + 4-B.
This output can be realized by the circuit shown in Figure 3.29.
Example 3.6 illustrates the use of combinational logic circuits.

Example 3.6 Application of combinational logic circuits

Design a combinational logic circuit to process the output from three sensors (A, B,
and Q). The circuit output should be on if the following is true:

e Ais ON, but both B and C are OFF
e A is OFF, but either B or Cis ON

Solution:

We first construct a truth table (Table 3.8) that has all of the input combinations
and follows the above rules. Then we construct a Karnaugh map (Table 3.9) to

Table 3.6

Three-variable input
truth table

Table 3.7

Karnaugh map for data
in Table 3.6

Figure 3.19

Circuit corresponding
to Table 3.6

56

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.30

A multiplexer

map all the non-zero outputs. Both of these entities are shown below:

Table3.8 Truth table

ABC Output Products

000 0

001 1 A-B-C

010 1 A-B-T Table39 Karnaugh map

011 1 A-B-C C C
100 1 A-B-C A-B 1
101 0 A-B 1 1
110 0 A-B

111 0 A-B 1

We then group adjacent cells that have a 1 in them. From the Karnaugh map, we
see that the output corresponding to the vertical group is A C because it is inde-
pendent of the value of B. Similarly, the output corresponding to the horizontal
group is A+ B because it is independent of the value of C. From the last row, the

output is A- B- C. Combining these expressions, the output can be written as:
Q=A-C+A-B+A-B-C=A-B+0Q +A-B-C

This output can be realized using the appropriate gates (see Problem 3.11). Note
the correspondence between the circuit output-logic expression and the problem
statement.

Combinational logic circuits are used in a variety of useful applications, including
multiplexers, decoders, and converters. A discussion of multiplexers and decoders
follows.

3.6.3 MULTIPLEXERS AND DECODERS

A multiplexer is a circuit that selects one input out of the several available to be
connected to the output (see Figure 3.30). It is commonly used in the design of
analog-to-digital convertors and in microcontroller circuits to select the timing source.

Multiplexer circuits are built from a combination of basic logic gates.
Figure 3.31 shows the circuit for a two-input channel multiplexer. The desired
channel number is selected by setting the value of the Channel Selector input. If the
Channel Selector input value is 0, then channel 0 is selected. The input connected to
channel 0 will then be transmitted to the output channel in this case. Similarly, if
the Channel Selector input value is 1, then channel 1 is selected. If the multiplexer
has four input channels instead of two, then we can see that we need to have two
channel selector inputs. We can generalize this to a multiplexer with 2” input chan-
nels, which will need 7 channel selector inputs.

Input _| | Output
Channels] Channel

[
Input
Selector

3.7 Sequential Logic Circuits

Output

Channel
Selector

A decoder or a demultiplexer operates in an opposite fashion to a multiplexer.
A decoder with # inputs and 7 outputs will activate only one of the 7 outputs for
a specified pattern of the 7 inputs. For example, a decoder with four inputs and one
output will have a high output for only one combination of the four inputs. For all
other combinations, the output will be low. Decoder circuits are used to select
devices that are connected on a common line or a bus system. To select a particu-
lar device, the address of the device is placed on the bus that connects all of the
devices. If the binary pattern of the address placed on the bus matches the individ-
ual address for that device, then that device is selected.

/

BCD{DI O1 160 Vee
Inputs | D,]2 150f
LT3 14¢
BL[]4 13[a
IECS 1260 7-Segment
outputs
BCD{D3I:6 11[dc
Inputs | Dy []7 101dd
GND [] 8 9e

A particular use of decoder circuits is in binary-coded decimal (BCD) format
(see Section 4.2) to decimal-conversion applications. A popular commercial chip is
the BCD-to-7 chip, such as the CD74HC4511 IC (see Figure 3.32) that is used to
drive seven-segment digital displays (see Figure 3.33). Here the input to this IC is
the BCD corresponding to the digit to be displayed on the display, and the output
is a combination of the segments # through g.

| 3.7 SequeNTIAL LoGic CIRCUITS

Unlike a combinational logic circuit, a sequential-logic circuit output is dependent
on the history of the input. A sequential logic circuit can be thought of as consist-
ing of a combinational logic circuit and memory. A basic sequential logic circuit is
the flip-flop, which is a sequential logic device that can store and switch between
two binary states. Examples of other sequential circuits include counters, shift reg-
isters, and microprocessors. We will discuss several types of flip-flops including the
SR, the clocked SR, the JK, the D, and the T. We will start by talking about the SR
flip-flop.

SR Flip-Flop The set-reset (SR) flip-flop has the symbol shown in Figure 3.34.
It has two inputs, called S and R, and two outputs, called Q and complementary Q.
The operation of the SR flip-flop is set by the following rules.

1. When S = 0 and R = 0, the output of the flip-flop does not change.
2. When S = 1 and R = 0, the flip-flop isset to Q = 1 and Q = 0.

Figure 3.31

Two-input channel
multiplexer circuit

Figure 3.3

Pin layout for the
BCD-to-7 decoder
CD74HC4511 IC

(Courtesy of Texas
Instruments, Dallas, TX)

Figure 3.33

Seven-segment digital
display

S b
g
e C
d
Figure 3.34
SR flip-flop
—R é |

57

58 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.35
Equivalent circuit for an
SR flip-flop
K 0
s 0
Figure 3.36

Clock transitions
Negative-edge
1 /
CK
0

Positive-edge

Figure 3.37

Clocked SR flip-flops:
(a) positive edge-
triggered and

(b) negative edge-
triggered

Figure 3.38

Timing diagram for a
positive edge-triggered
clocked SR flip-flop

3. When S = 0 and R = 1, the flip-flop is reset to Q = 0 and Q = 1.

4. S and R are not allowed to be set to 1 simultaneously, since the output will
not be predictable.

"To understand the operation of the SR flip-flip, consider the equivalent circuit
made up of two NOR gates with feedback shown in Figure 3.35. Assume that we
started with Q = 0 and Q = 1. Now if Sis set to 1 and R is 0, Q will reset to zero.
Due to feedback, Q will also change from 0 to 1. By tracing the output of this cir-
cuit for different combinations of S and R, we can verify all of the above rules.

Clocked SR Flip-Flop A clock signal is a two-state signal. It is commonly a peri-
odic square-wave signal, but it also can be a non-periodic signal made up of a col-
lection of pulses. A periodic square-wave clock signal is shown in Figure 3.36.
When a device that uses a clock input responds to the low-to-high change in the
clock signal, it is called a positive edge-triggered device. Similarly, a device that
responds to the high-to-low clock transition is called a negative edge-triggered
device.

A clocked SR flip-flop is an SR flip-flop with added clock input. In a clocked
SR flip-flop, the output changes state at clock transitions. This is done as to pro-
vide synchronization of the output change in complex circuits. Note that a flip-flop
with no clock input is called a simple or transparent flip-flop. Two variations of a
clocked SR flip-flop are shown in Figure 3.37.

s 0 s 0
—p CK —p CK
—R éi —R éi

(@) (b)

The flip-flop shown in Figure 3.37(a) is said to be positive-edge triggered. In
a circuit diagram, this is shown with a small triangle or wedge at the clock (CK)
input. A negative edge-triggered flip-flop is shown in Figure 3.37(b), where the
negative edge-transition is indicated with a small circle and a triangle at the clock
input. Figure 3.38 shows a timing diagram for a positive edge-triggered SR gate.
Notice how the output Q changes state at the instant of the positive edge transi-
tions of the clock signal and not when the input S and R change states. In reality,
the output does not change instantaneously, but there is a small propagation delay
on the order of few nanoseconds or less.

S

: T

SOOI Y o

— |

I

The truth table for a positive edge-triggered SR flip-flop is shown in
Table 3.10. The up arrow (1) in the clock column refers to the positive edge tran-
sition of the clock, while 0 and 1 in that column refer to the clock state. In
‘Table 3.10, an X entry in any of the cells means that the output is not affected by
that entry.

3.7 Sequential Logic Circuits 59

Clock S R 0; — Qpyq Table 3.10
7 0 0 0—0 Truth table for a
1 0 0 1—1 positive edge-triggered
SR flip-flop
7 0 1 0—0
7 0 1 1—0
7 1 0 0—1
7 1 0 1—1
) 1 1 Not Allowed
0,1 X X 0—0
0,1 X X 1—1

A common use for the SR flip-flop is to debounce switch input. Example 3.7
illustrates this case. Example 3.8 shows a further application of flip-flops.

Example 3.7 SPDT Switch Debouncing Circuit

Illustrate how an SR flip-flop can be used as a switch debouncer for a SPDT switch.

Solution:

The circuit that does the job is shown in Figure 3.39. The switch leads are connect-
ed to the flip-flop inputs through an inverter. When the switch pole is in the
upper position, D is low and E is high. S is 1 in this case, and R is 0. The flip-flop
output Q will be 1. As the pole leaves the upper switch position, the switch
bouncing at that position will not affect the output of the flip-flop, since S
becoming 0 does not reset the output. When the switch pole reaches the lower
position, the first contact at the position will cause the flip-flop output to be
turned off, since R will be 1, and S will be zero. Any subsequent bouncing at the
lower position will not change the output, since S is 0. Note that for this circuit
to work, the bouncing at the upper switch position should be completed before
the pole reaches the lower position, which is the case in reality. Thus, using this
circuit, the output of the flip-flop changes with no bouncing as the switch is
rotated from the D to the E position.

5V
D
D 4|_|-|-|-|-|-|
S or— E
e ML
E 0
5V

Figure 3.39

60

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

s

Figure 3.41
JK flip-flop

J Preset fo) =

CK

1K Clear o

7

Example 3.8 Wire Game

An interesting skill game is to guide a closed ring around a wire path without the
wire and the ring touching. Design a circuit that uses an SR flip-flop so that, when
the ring and the wire touch, a buzzer is turned on and remains on even when the
two no longer touch. The buzzer can be turned off by pressing a reset switch.

Solution:

The circuit that performs this function is shown in Figure 3.40. The ring and wire
contact are represented by a NO push-button switch. When the ring and the wire
are not in contact, the voltage at the S and R leads is zero, and the buzzer will
be off, since output Q will be zero (the flip-flop can be initialized to this state
through the reset switch). The instant the ring and the wire contact, the input S
will be set, causing the buzzer to be tuned on. The buzzer will remain on even if
the ring and the wire are no longer in contact. When the NC push-button reset
switch is activated and assuming that the ring and wire are not in contact, R will
be set and S will be reset, causing the buzzer to turn off.

+5V
Ring-Wire I
Contact
S 0
Reset Switch
R 0
= +5V
Figure 3.40

JK Flip-Flop A JK flip-flop is similar to an SR flip-flop, but allows a simultane-
ous input of J = 1 and K = 1 similar to S = 1 and R = 1 in an SR flip-flop. The
symbol for a JK flip-flop is shown in Figure 3.41, and a truth table for its operation
is listed in Table 3.11. Figure also shows two other input lines for this flip-flop,
called Preset and Clear. Many flip-flops have these additional inputs which can be
used to force the output of the flip-flop irrespective of the clock signal. These types
of inputs are called asynchronous inputs, since they are not synchronized with the
clock signal. The Preser input sets the output Q to 1 or high when it is activated,
and the Clear input sets the output Q to 0 or low. In Figure 3.41, both of these
inputs are active low-type (indicated by the small circle at the input lead), which
means that the desired action occurs when the input is low. These inputs can be used
to initialize the flip-flop output at power-up.

InTable 3.11, an X entry in any of the cells means that the output is not affected
by that entry. Notice that when J = 1 and K = 1, the output will toggle between
Oand 1.

D Flip-Flop A D flip-flop or data flip-flop is used to store data and make it avail-
able at clock transitions. The symbol of the D flip-flop and its equivalent circuit are
shown in Figure 3.42. Due to the use of the clock input, the output only changes
at low-to-high clock transitions. The D flip-flop is typically used to implement data

3.7 Sequential Logic Circuits 61

Preset Clear Clock J K 0;— Q4
1 0 X X X 0—0
1 0 X X X 1—0
0 1 X X X 0—1
0 1 X X X 1—1
0 0 Not Allowed
1 1 0 0 0 0—0
1 1 1 0 0 1—1
1 1 1 0 1 00
1 1) 0 1 1—0
1 1 0 1 0 0—1
1 1 1 1 0 1—1
1 1 0 1 1 0—1
1 1 1 1 1 1—0
1 1 0.1 X X 0—0
1 1 0.1 X X 1—1

1D o J o+
—p CK
—b CK 0 D K o

(@) (b)

registers, which are sets of memory elements that are used to hold information
until it is needed. Example 3.9 illustrates this function.

A flip-flop that looks similar to the D flip-flop (but its clock input is not edge
triggered) is called a latch. The symbol for the latch is shown in Figure 3.43.
Notice that there is no triangle shown at the clock lead. With reference to the tim-
ing diagram shown in Figure 3.44, the latch flip-flop output changes when the
clock signal is high and not at the clock transition. Latches are commonly used to
maintain the output in a digital-to-analog converter (see Chapter 5).

LT

L3

p | 1

CK

]

Table 3.11

Positive edge-triggered
JK flip-flop truth table

Figure 3.42

(a) D flip-flop and
(b) its equivalent circuit

Figure 3.43
Latch
—D o
—CK Q —
Figure 3.44

Latch Timing Diagram

62 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Example 3.9

Show how a D flip-flop can be used as a 3-bit data register.

Figure 3.46

T flip-flop (a) symbol
and (b) equivalent
circuit

Figure 3.47

T flip-flop timing
diagram

Solution:

The circuit to perform this operation is shown in Figure 3.45. Each bit input is con-
nected to the D lead on the D flip-flop. The clock input is combined with a load
input using an AND gate. In this way, the outputs are updated at the low-to-high
clock transitions but only when the /oad line is high.

Input 0

Input 1

Input 2

Load
Clock D

Figure 3.45

D O — Output 0
—p>CK 0 [—

D Q — Output 1
—> CK 0

D Q — Output 2
—> CK 0

T Flip-Flop If the J and K inputs of the flip-flop are permanently set to 1, and
the input is applied at the clock input, we get what is called a “I” or toggle flip-flop.
The symbol for a positive edge-triggered T flip-flop and its equivalent circuit are
shown in Figure 3.46. The T flip-flop has a single input, and its output (Q) changes
state (or toggles) at each low-to-high clock transition. The timing diagram for a T
flip-flop is shown in Figure 3.47. A characteristic of the T flip-flop is that the out-
put changes its state at a frequency that is half of the input clock frequency. This
feature is utilized in the construction of binary counters and frequency dividers.

QI

(a)

1 —
T —

CK

QI
|

(b)

As an example of using T flip-flops for counting, consider a 3-bit counter that
uses T flip-flops. The circuit for this binary counter is shown in Figure 3.48. A

3.7 Sequential Logic Circuits

Input — T T T

QI
I
QI
I
QI
|

D, D, D,

clock signal is applied only to the first flip-flop T input, but the output of each flip-
flop is fed to the T input of the next flip-flop in the circuit.

Figure 3.49 shows the timing diagram for the output of this circuit when
square pulses are applied to the leftmost T flip-flop. The outputs Dy through D,
count the applied pulses in a count-down fashion with D being the least signifi-
cant bit. As seen in Figure 3.49, the counter reads 7 after the first pulse, 6 after the
second pulse, and so forth. If we had used a negative edge-triggered T flip-flop (see
Problem 3.17), this counter would count in count-up fashion with the counter
reading 1 after the first pulse. Note how the frequency of each output line is half
the frequency of the previous one. Thus, the Dy output is a ‘divide by 2’ line, and
the Dy is a ‘divide by 4’ output, and so forth. Thus, this circuit can be used for
either counting or frequency division.

D, —]

o

There are many commercially available counter ICs. These include 4-bit binary
counters that count from 0 to 15 and decimal (or decade) counters that count from
0 to 9. The 7490 IC is an example of a 0 to 9 decimal counter (see Figure 3.50).
The signal to be counted is applied to the clock input of the 7490, and the count is
available from the output lines labeled Q4 through Qp as a 4-bit BCD. The 7490
counts from 0000 (0) to 1001(9), and then resets back to 0. At the reset from 1001
to 0000, the Qp line goes from high to low. Since the clock input on the 7490 is
negative edge-triggered, the Qp line from one 7490 can be fed to the clock input
of another 7490 to create a counter that can also count the tens digit. In
Figure 3.50, the counter counts from 0 to 999 using three cascaded 7490 ICs. Note
that this IC has other inputs and other modes of operation, and the reader should
consult the data handbook for detailed information on this IC.

Reset
\\— Reset CK \\— Reset CK<¢p— \\— Reset CK<p— Clock
-+ o + o -+ 0
-+ 0 - 0 40
-+ o -+ oc +oc
—+ Op Op Op

Figure 3.48

3-bit binary counter

Figure 3.49

Timing Diagram for
3-bit counter

Figure 3.50

A 0 to 999 counter
using three 7490 IC

63

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

64
Figure 3.51
Bypass capacitor
* Vee
Circuit
0.1 uF ==
Table 3.12

TTL and CMOS*
voltage levels

The counter circuit shown in Figure 3.50 is called a ripple counter, because
the counter output lines for each decade or digit in one IC do not change at the
same time as the lines in the next IC. This is because each IC triggers the next IC
in series in the order of the connection of the ICs. This creates no problem if the
output from each IC is connected to a digital display and is read by human eye,
since the ‘ripple’ effect is too fast to be seen by the human eye. However, if the out-
put lines were connected to other digital circuits, this creates glitches. To circum-
vent this problem, a synchronous counter should be used. In a synchronous
counter, all of the digits of the counter change at the same time. This is done by
feeding the same clock signal (or the signal to be counted) to the clock input line on
each of the cascaded ICs. This causes all of the output lines on all ICs to change at
the same clock transition. An example of a synchronous counter IC is the 74160 IC.

There are many other applications for flip-flops. For example, JK flip-flops can
be used in serial-to-parallel conversion or in parallel-to-serial conversion.

It is very important in digital circuits to reduce the noise in the power supplied
to the circuit. This is done with the help of a bypass capacitor. Typically a 0.1uF
capacitor is placed between the voltage source and ground on the power line to the
circuit, as seen in Figure 3.51. The purpose of the bypass capacitor is to dampen
any AC component in the DC power signal.

| 3.8 CircuIT FAMILIES

Digital circuits are commonly available in two families: transistor-transistor logic
(TTL) and complementary metal-oxide semiconductor (CMOS). There are other
families, such as emitter-coupled logic (ECL), but they are not as widely used. TTL
devices are based on the bipolar junction transistor technology, while CMOS
devices are based on the FET transistor technology. Table 3.12 shows the voltage
levels for the two families for a 5 V supply. The values define the allowable voltage
ranges for the low and high logic states.

Note how the output level range for either logic state is smaller than the cor-
responding input level range for that state. This is to allow for noise and signal vari-
ation in the output voltage values. Table 3.13 compares the two families in several
categories. In general, CMOS ICs consume less power than TTL ICs and can
operate over a wider voltage supply range, but they can be easily damaged by stat-
ic electricity, and proper grounding is needed when handling CMOS ICs. In
Table 3.13, gate propagation delay refers to the time it takes for a gate to switch
logic levels from either high to low or from low to high. The propagation delay
time from low to high (tp;y) and from high to low (¢pyy) are generally not the
same, and the largest of the two is used. Fan out refers to the number of inputs that
can be driven by one output. CMOS devices have a higher fan out than TTL
devices. The terms current sinking and sourcing are commonly used when listing

Low State Voltage Range High State Voltage Range
Operation TTL CMo0S TTL CMo0S
Input 0-08V 0-1.5V 20-50V 3550V
Output 0-05V 0-0.05V 27-50V 49550V

*CMOS data is for operation using a 5 VDC supply

TTL

Tight supply voltage (about 4.50 to
5.50)

Supply Voltage

Power Consumption High but power consumption does

not increase with signal frequency

Static Sensitivity Not sensitive
Can be left floating

Higher than CMOS

Unused Inputs

Operating Frequency

Gate Propagation Time ~10ns

Input Current High current draw

Output Current Source about 2 mA but can sink
about 16 mA
Fan-out One output can drive about 10 inputs

* Advanced CMOS logic features gate delays of less than 0.1 ns

3.8 Circuit Families 65

Cmos Table 3.3

Comparison between
TTL and CMOS families

Can operate over a wide supply
range from 3to 18 V

Much lower power consumption
than TTL, but power consumption
increases with frequency

Very sensitive

Should be tied to ground or to +V

Lower than TTL due to MOSFET
gate capacitances

Slower than TTL*
Very low current draw at gate input

Can sink or source about 4 mA

One output can drive about 50 inputs

specifications about IC. A device is said to be sinking current if the current flows
into the output gate of the IC device when the output is low, while a device is said
to be sourcing current if the current flows fiom the output gate of the IC device
when the output is high. As listed in Table 3.13, TTL devices can sink much more

current than CMOS devices.

Within each family, there are several sub-families or series of ICs. The differ-
ent subfamilies are listed in Table 3.14 along with some information about each
sub-family. This table is not comprehensive, as there exist over 30 sub-families.
Most TTL and CMOS devices are designated using the notation:

mmNNssddp

where

mm is a 2- or 3-letter code for the manufacturer (such as DM for National
Semiconductor and SN for Texas Instruments)

NN is either 74 or 54 and refers to operating temperature range, where 74
is for industrial applications (0 to 70°C), and 54 is for military appli-

cations (—55 to 125°C).

ss refers to the sub-family (such as LS for low-power Schottky)

dd is a 2- to 4-digit device number (such as 08 for an AND gate)

p is the designation for the type of package in which the device is avail-

able (such as N for plastic DIP)

For example, the SN74LSOSN is a TTL AND gate of the low-power Schottky
series designed for commercial applications and manufactured by Texas
Instruments in the DIP plastic package type. Note that TTL and CMOS devices
have been in existence for many years, and several of the sub-families listed in
"Table 3.14 are now obsolete but are mentioned for reference.

66 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Table 3.14

Listing of TTL and
CMOS circuit families

TTL
Example
Series Designation Device Feature Notes
Regular TTL — 7408 Original TTL series. Has high Obsolete
power consumption
Low-Power L 74108 Lower power than regular Obsolete
TTL TTL but also lower speed
High-Speed H 74H08 Double the speed and power Obsolete
TTL of the regular TTL series
Schottky TTL S 74508 Uses more power than Obsolete
regular TTL but is faster
Low-Power LS 741508 Lower power version of Very commonly
Schottky TTL S series used
Advanced AS 74AS08 Faster than S series with
Schottky TTL lower input current
requirements
Advanced ALS 74ALS08 Very low power dissipation
Low-Power
Schottky TTL
Fast TTL F 74F08 Lower power than S and
LS series
CMo0s
Metal Gate C 74C08 Pin-compatible with TTL Canuse3to 15V
power supply
High-Speed HC 74HC08 Pin-compatible with TTL Requires 2to 6 V
Silicon Gate and has same speed as the power supply. Can
74 LS drive 74LS devices
but not driven by
them
High-Speed HCT 74HCT08 Pin compatible with TTL Requires 5 = 0.5V
Silicon Gate supply. Can be
TTL interfaced with
Compatible 74LS devices for
both input and
output
Advanced ACT 74ACT08 Inputs are TTL-voltage Requires 5 = 0.5V
CMOS compatible supply

In data sheets for TTL and CMOS devices, several parameters are defined:

Vee
Vor
Vonr
Vi

Vin

Supply voltage

Output voltage when the output is LOW

Output voltage when the output is HIGH

Input voltage when the input is LOW

Input voltage when the input is HIGH

Ip;, Output current when the output is LOW
Ipp Output current when the output is HIGH
Iy Input current when the input is LOW
Iy Input current when the input is HIGH

As an example, Table 3.15 lists the values of these parameters for the SN74LS08
and the SN74HCT08 AND gates.

Parameter SN74LS08 SN74HCTO08
Vee 4.75-5.25V 4555V
Vi (max) 05V 0.1V
Vo (min) 27V 44V
Vi (max) 0.8V 08V

Vig (min) 2V 2V

Ig (max) 8 mA 4 mA
Iy (max) —0.4 mA —4mA

Iy (max) —0.4 mA +1 pA
Ijy(max) 20 uA +1 uA

Note that for current, the convention is that the current entering a device (sink-
ing) is positive, and a current leaving a device (sourcing) is negative. By examining the
values of the input and output currents at low and high logic states, one can deter-
mine how many inputs can be connected to the output of one gate or fan out. For
example, for the TLL AND gate in Table 3.15, one output can drive up to 20 TTL
AND inputs (Ip;/I;;, = 8 mA/0.4 mA = 20). Table 3.15 shows that for the CMOS
AND gate, the input current is significantly smaller than that for the TTL gate.

TTL devices are available with different types of outputs. These include
totem-pole, open-collector, and tristate. Totem-pole is the most commonly used
construction. The output gate has two transistors stacked on the top of each other,
as seen in Figure 3.52(a) and, hence, the name totem pole. When the output is high,

VC C

Rest of
Circuit

Rest of

Circuit
out

(@) (b)

Circuit Families

Table 3.15

Voltage and current

61

parameters for an AND

gate

Figure 3.52

(a) Totem-pole output
and (b) open-collector
output

68

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.53

Wiring of open-
collector AND gate

transistor Q4 is ON and transistor Qs is OFF. In this case, current flows through
Q4 and out of the device. Thus, when the output is high, the gate is sourcing cur-
rent, and Iy is negative. When the output is low, transistor Q4 is off, and transis-
tor Qs is on. Current flows into the output gate through transistor Q3 Thus, the
output gate is sinking current, and in this case, Ioy, is positive.

In open-collector configuration, an external ‘pull-up’ resistor needs to be
connected to the output gate. This situation is similar to the totem-pole configu-
ration of Figure 3.52(a) with transistor Q4 not present (Figure 3.52(b)). Figure 3.53
shows a typical wiring of an open-collector AND gate. When the transistor Qj is
ON, the output voltage of the gate will be at a low logic level or close to 0 V (about
0.2 V). When transistor Qs is OFF, the output voltage of the gate will be pulled to
the supplied voltage (V). Note that with open-collector output, the high logic-
state voltage output is not limited to the IC V¢ voltage but could be any voltage
higher or lower than Ve An example of open collector AND gate is the
DM74LS09 IC. ICs with open-collector output are typically used to interface ICs
from different logic families (such as T'TL and CMOS).

In tristate output, the gate has an additional input called enable. When the
enable input is low, the output can be either low or high, depending on the input
applied to the gate. When the enable input is high, the output is disconnected
from the rest of the circuit. The gate will have a high output impedance in this
state. Three-state output is used in cases where data from several digital devices is
transferred on a common line or bus. The enable signal is then used to connect/
disconnect these devices from the bus. Examples of such devices include buffers,
flip-flops, and memory chips.

The question that arises is whether devices from different families can be inter-
faced together. The answer depends on the sub-family of the device. In general,
most TLL and CMOS sub-families cannot be directly interfaced due to voltage-
level incompatibility, but the CMOS 74HCT and the T'TL 74LS sub-families can
be mixed together without using any additional components. For interfacing a
TTL output to a CMOS input where there is a voltage incompatibility, a pull-up
resistor is added to the output of a T'TL device before it is interfaced with the
CMOS device. This insures that the high-output voltage of the T'TL device (Vpp)
is higher than the high-input voltage (V) of the CMOS device. The pull-up resis-
tor resistance value should be selected such that the I, for the TTL device is not
exceeded. A CMOS device from the HC or HCT series can drive a single LS
device. For driving multiple LS devices, a buffer is inserted between the CMOS
output and the T'TL inputs to meet the current requirements.

| 3.9 DiGITAL DEvICES

In addition to logic gates such as AND or NOR integrated circuits, many specialized
integrated circuits are commercially produced. We previously discussed a few of
them (such as digital counters and multiplexers). This section discusses another
commonly used digital device; the 555 timer chip. The 555 timer chip (such as the
NE555 8-pin chip from Texas Instruments) is an integrated circuit that uses a tran-
sistor, resistors, flip-flops, comparators, and capacitors to produce a variety of clock
signals, including a fixed pulse, a periodic signal, and a frequency dividing signal.
The NES555 can operate over a wide voltage supply range (5 to 15 VDC). With a
5V supply, it has a TTL-compatible output that can sink or source up to 200 mA.

39 Digital Devices 69

Vee Figure 3.54
RESET .
% CONT (a) Pin layout and (b) a
THRES R, functional diagram of
+ . .
U R 0bs ouT the NE555 timer chip
GND — 1 8 Ve - s
TRIG — 2 7 - DISCH é >
TRIG
OUT — 3 6 - THRES -
RESET | 4 5| CONT § ¥ N\ _PIscH
— GND

(2) (b)

The pin layout and a functional block diagram of the NE555 timer are shown in
Figure 3.54.

The chip operation is controlled by the inputs applied to the trigger (TRIG)
and threshold (THRES) pins. Each of these inputs is connected to a two-input
comparator. The comparator outputs are attached to the set (S) and reset (R) inputs
of the SR flip-flop. The trigger and threshold inputs are irrelevant if the RESET
input is low. When the RESET input is high, the timer output changes according
to the trigger and threshold levels. The functional operation is shown in Table 3.16.
The trigger input sets the timer output to high if the trigger voltage level is below
one-third of the supply voltage (V) regardless of the voltage level applied to the
threshold input. When the trigger voltage is larger than one-third of the supply
voltage, the timer switches from high to low if the threshold voltage exceeds two-
thirds of the supply voltage and maintains its output if the threshold voltage is
below two-thirds of the supply voltage.

Threshold Discharge Table 3.16
RESET Trigger Voltage Voltage Timer Qutput Switch
Functional operation of
Low X X Low On the 555 timer chip
High < 1/3 Vg X High Off
High > 1/3 Ve > 2/3 Vpp Low On
High > 1/3 Vg < 2/3 Vp No change No change

While the NES555 timer chip has several modes of operation, we will focus on
two of them here. These are the monostable (or fixed-pulse generation) mode and
the astable (or self-generating periodic signal) mode. In the monostable mode, the
pulse properties are controlled by one external resistor and one capacitor. In the
astable mode, two external resistors and one capacitor control the duty cycle and
the frequency of the timing signal. The wiring diagram for monostable operation
is shown in Figure 3.55(a), and the timing diagram is shown in Figure 3.55(b). Here
the output of the timer is controlled by the input signal applied to the trigger input.
Initially, the internal SR flip-flop output is OFF, and the external capacitor C is

170 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.55

(a) Wiring diagram for
monostable operation
and (b) timing diagram

(1)

Vee
p

1 GND Ve 8 J §RA

Input 2 TRIG DISCH 7

|I_‘
|I_

J Trigger

Output

30UT THRES 6

—9 4 RESET CONT 5 _

0.1 uF / / / Thteshold

(a) (b)

held in the uncharged state by the internal transistor inside the timer. When a
falling-edge pulse signal is applied to the trigger input with a voltage level less than
one-third of the supply voltage, it causes the internal SR flip-flip to turn ON, and
the timer output will be high. This happens because the internal, lower-comparator
output will be high, which will set the S input of the internal RS flip-flop to high.
When the timer output turns high, the internal transistor is not conducting. This
causes the capacitor C to charge through the resistor R4, since the DISCH pin is
not connected to ground voltage in this case. When the voltage level at the capac-
itor C has reached two-thirds of the supply voltage, the internal flip-flop will reset,
because the internal, upper-comparator output will be high and the internal lower
comparator output will be low (provided that the trigger input has returned to high
at this point). This causes the output of the timer to go low, and the voltage across
the capacitor C will discharge through the internal transistor. This cycle is repeated
for every application of a falling-edge trigger pulse. The output pulse duration is
approximately given by

TH: 1.1 RAC

Note that trigger signal duration has to be smaller than the output pulse duration.
Otherwise, the timer output will remain high.

The wiring diagram for astable operation is given in Figure 3.56(a), and the
timing diagram is shown in Figure 3.56(b). A second resistor (Rp) is added to the
monostable circuit of Figure 3.55(a), and the threshold and trigger inputs are con-
nected together causing the timer to self trigger. In this configuration, the capaci-
tor C charges through the resistors R4 and Rp, and discharges through Rp only.
When Ve is first turned on, the capacitor C is discharged, and the trigger input
voltage level is zero. The timer output will be high. When the voltage across the
capacitor reaches two-thirds of the supply voltage, the internal SR flip flop resets,
the timer output switches to low, and the voltage across the capacitor C discharges
through the internal transistor. In the astable mode, the capacitor C alternates
between charging and discharging states with the charging time is a function of the

39 Digital Devices

Vee Figure 3.56

(a) Wiring diagram for
astable operation and
R, (b) timing diagram

1 GND Vee 8 H §

,|;_|

2 TRIG DISCH 7

30UT THRES 6 —<>—L§

—9 4 RESET CONT 5

o B

(a)

values of the resistors R4 and Rp and the capacitor C, and the discharging time is a
function of the resistor Rp and the capacitor C.
The on-time period (Ty) and the off-time period (77) are given by

TH = 0693(HA + HB)C (S.B)
and
T, = 0.693 RsC (314)

Example 3.10 illustrates the selection of components for a 555 timer.

Example 3.10 555 Timer

Design a 555 timer circuit to produce a timing signal at a frequency of 1 kHz, and
a duty cycle of 75%.

Solution:
For 75% duty cycle, we obtain from Equations (3.13) and (3.14):

0.75 X 1073 = 0.693(R4 + Rp)C
0.25 X 1073 = 0.693 RzC

Dividing these equations, we obtain
3R = Ry + Rs

Selecting C as 0.15 uF and solving, we obtain Rg as 2405 () and R, as 4810 Q. The
2.4 kQ and the 4.8 kQ) are standard resistor values which can be used.

n

n

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure 3.57

H-bridge circuit using
switches

Figure 3.58

H-bridge
implementation using
DPDT relays

| 3.10 H-BRIDGE DRIVES

A very common application of transistors is to construct drivers to drive motors.
One such circuit is the H-bridge driver circuit, which is commonly used to drive
motors in both directions. The circuit looks like the letter ‘H’ in circuit schemat-
ics, so it is called an H-bridge. An H-bridge circuit is constructed using four switch-
ing elements that are situated at the corners of the ‘H’ as the main components.
The switching elements used are transistors. The transistors can be of the B] T type
or MOSFET type, but depending on the transistors used, the circuit will have dif-
ferent power ratings. To understand the operation of an H-bridge circuit, consider
first the simple schematic shown in Figure 3.57, which shows four switches con-
nected to a DC motor. Let us assume that for this motor to turn clockwise, a pos-
itive voltage needs to be applied to the left lead, and the right lead should be
grounded. This can be achieved by closing switches 1 and 4 and keeping switches
2 and 3 open. This causes current to flow from the power source to ground through
switch 1, the motor leads, and switch 4. If we want to rotate the motor in a coun-
terclockwise fashion, then switches 2 and 3 should be closed, and switches 1 and 4
should be open. This reverses the voltage polarity across the motor and causes the
motor to rotate in the opposite direction. Obviously, closing switches 1 and 3 or 2
and 4 at the same time should not be done, as this will lead to a short circuit.

T+V

Sl\ SZ;\

l¢]
Motor

O
33\ 4 O\

o o

L

Figure 3.58 shows an implementation of the H-bridge circuit using the G5V-2
Omron® relay as the switching element. The wiring for the relay coil is not shown
in the figure. Notice that using two relays, there are four states of operation for this

T+Ve
PR I I it
[L pa
r16 1 16 1
V130 4 V134
v d La Motor ! H
L g g L ¢ Ly
' 9. 8. 19 .8

310 H-Bridge Drives

circuit. When both relays are OFF, the switch configuration is as shown in the fig-
ure, and the motor will not operate. Similarly, if both relays coils are ON, the
motor still will not operate. In the third state when the left relay is ON and the
right relay is OFF, the motor will rotate in one direction. In this case, a positive
voltage is applied to the left lead of the motor through pin #9 on the left relay,
while the right lead of the motor is grounded through pin #6 on the right relay. In
the fourth state, the left relay is OFF, and the right relay is ON. The polarity of the
voltage applied to the motor will be opposite to that of state three, and the motor
will rotate in the opposite direction.

While Figure 3.58 shows how an H-bridge can be implemented using electro-
mechanical relays, typical H-bridge circuits are implemented using transistors due
to the fast switching time of transistors compared to electromechanical relays.
Figure 3.59 shows such an implementation using MOSFET power transistors.
This L6203 chip from STMicroelectronics supplies up to 1 A current, which is
enough to drive small brush type DC motors. The supply voltage can be up to 48 V.
The L6203 H-bridge operates as follows. There are two input signals INT and IN2
and one ENABLE input signal. The INT and IN2 signals are used to select the par-
ticular leg of the H-bridge. The ENABLE input has to be high for the H-bridge to
operate. The motor leads are connected to OUT1 and OUT?2 leads. If IN1 is high
and IN2 is low, OUTI will be at the supply voltage (Vs), and OUT2 will be grounded.
In this case, the upper-left and lower-right transistors will be conducting, and the
upper-right and lower-left transistors will not be conducting. Similarly, if INT is
low and IN2 is high, OUT1 will be grounded, and OUT?2 will be at the supply volt-
age (Vs), thus reversing the polarity of the voltage supplied to the motor.

Notice that the chip has a temperature-sensor circuit that shuts down the
H-bridge if the temperature exceeds a preset value (typically 150°C). The flyback
diode that is placed between the source and drain leads of the MOSFET transistor
is called an intrinsic diode and is built-in as part of the transistor. Its purpose is to
protect the transistor when the transistor switches its state with inductive loads
attached to the chip. Section 8.2.4 has additional information on using H-bridge
drives in DC motor control.

H-bridge drives are used to control various types of actuators, including brush
DC, brushless DC, and stepper motors. H-bridge drivers are typically packaged
with additional components to produce what is called a servo drive, which is used
in controlling actuators. Actuators and servo drives are discussed in Chapter 8.

Out1 Out2

Vief Voltage Charge
Reference Pump
T
b
— L
sz e | [e
— L
In 1 '5|>>Z :'<<13 In2
Thermal
Shutdown

Sense _T_

— GND

Figure 3.59

Block diagram of the
L6203 H-bridge

(STMicroelectronics P/N
L6203 Datasheet)

n

14 Chapter 3 Semiconductor Electronic Devices and Digital Circuits

| 3.11 CHAPTER SUMMARY

"This chapter discussed the operation of semiconductor elec-
tronic devices (such as diodes, thyristors, and transistors)
that are used in many circuits and devices for switching or
amplification purposes. These devices are examples of solid-
state switches, which are devices in which the switching
action is caused by non-mechanical motion and is due to the
change in the electrical characteristics of the device. Solid-
state devices do not obey Ohm’s law. A diode is a directional
element that allows current to flow in one direction and is a
two-terminal device. There are several varieties of diodes,
including regular, Zener, LEDs, and photodiodes. A thyris-
tor is a three-terminal semiconductor device that behaves
like a diode but with an additional terminal called a gate that
controls its operation. A transistor is a three-terminal device
and has three states of operation. These are the off state, the
linear state, and the saturation state.

This chapter discusses the bipolar junction transis-
tors (BJTs) and the metal-oxide semiconductor field effect
transistors (MOSFETs). The BJT is a current-controlled

QUESTIONS

device, while the MOSFET is a voltage-controlled device.
Transistors form the basis for the construction of digital
circuits. Both combinational and sequential logic circuits
were discussed. In a combinational logic circuit, the output
is not dependent on the history of the input, and the circuit
uses rules of mathematical logic to generate the output. On
the other hand, in a sequental logic circuit, the past
sequence of the input is important and determines the out-
put of the system.

This chapter also discussed application of digital cir-
cuits in the design of devices such as digital counters, mul-
tiplexers, and timers. The two most commonly available
families (transistor-transistor logic (T'TL) and comple-
mentary metal-oxide semiconductor (CMOS)) for digital
circuits were discussed along with information on how to
interface them. This chapter discussed the 555-timer chip.
It also discussed the H-bridge driver circuit, which is com-
monly used to drive motors in both directions and is based
on the use of transistors as the switching elements.

3.1 What is the functional difference between a normal diode and a Zener diode?

3.2 What is a thyristor?

3.3 What is the difference between a relay and a transistor?

3.4 What are the three states of operation of a BJT?

3.5 How does a phototransistor operate?

3.6 Name one major difference between a BJT and a MOSFET.

3.7 What is meant by an open-collector output circuit? Why do manufacturers make devices with such an

output type?

3.8 What information does a timing diagram give?

3.9 What is the difference between combinational and sequential logic circuits?

3.10 What is a Karnaugh map?
3.11 Why do many digital circuits have clocked input?

3.12 Explain the function of a multiplexer.

3.13 What is the difference between an SR and a JK flip-flop?

3.14 How is a latch different from a D flip-flop?
3.15 WhatisaT flip-flop?
3.16 List the names of digital circuit families.

3.17 Define what is meant by ‘fan out’.

3.18 List the different output methods of digital circuits.
3.19 Define current sinking and current sourcing.
3.20 Name two modes of operation of the 555 timer chip.

3.21 For what purpose is an H-bridge driver circuit used?

PROBLEMS

31 Chapter Summary 15

P3.1 Consider the half-wave diode rectifier circuit
shown in Figure 3.2. Assume a V' value of 0.6 V.
Plot the output voltage of the circuit for an AC
sinusoidal signal with the following amplitudes.

a. 0.5V
b. 2V
c. 5V

P3.2 Consider the signal conditioning op-amp
circuit shown in Figure P3.2 with an ideal diode
in the feedback loop. Show that, for the case

V; > 0and V, < 0, the input—output relationship

is given by

Vo Rofs
Vi RiR + R

Ry

o
R, D
R,
Vi e—AMWY
— VU
Figure P3.2

P3.3 Draw a circuit that uses a solar cell (can be repre-
sented as a voltage source) with a small output
current to turn on a lamp (that uses a much larger
current). We want the brightness of the lamp to
be controllable by the amount of light received by
the solar cell.

P3.4 Consider the BJT circuit shown in Figure P3.4
where Voo = 15V, R = 5 kQ, Iy = 40 pA, and
B = 70. Determine I and Vg

+
Figure P34

P3.5 Figure P3.5 shows a BJT transistor circuit with a
bias current. Determine the voltages at points 1
and 2 in the circuit. Let 8 = 50, Vzp = 0.6V,
Rc=2%kQO, Ry =100 Q, R, = 2kQ,

R, =200 Q,and Ve = 10 V.

? Vee

Rc

MWV
=
)
&}

I =

Figure P3.5

16

P3.6

Ip, Drain-source current (A)

Chapter 3 Semiconductor Electronic Devices and Digital Circuits

Figure P3.6(a) shows the output characteristics of
a power MOSFET transistor with a Vo = 2 V.
Assume Vpp = 5 V. Determine the maximum I
current in the circuit in Figure P3.6(b) for the
following cases.

a Vy=1V
b. V, =4V
’ 6d 50 | 4s

Vgs=10vy 6050 4.
. /"

/ y 40
N
35
2 / 30
25

% 1 2 3 4

Vps» Drain-source voltage (V)

(a)

(Courtesy of Fairchild Semiconductor, South Portland, ME)

+Vpp

+Vin

Figure P3.6

P3.7

P3.8

Draw a circuit to show how to use the proximity
sensor shown in Figure 3.20 to turn on the coil of
the small relay shown in Figure 2.41. Assume that
the proximity sensor uses a 24 VDC supply.
Specify the value of all the resistors that are
needed. Make the coil current compatible with
the relay characteristics in Table 2.5.

Design a circuit that uses the 2N3904 transistor
to activate the coil of the small relay shown in
Figure 2.41. Design your circuit so that it is
compatible with the 2N3904 and the relay

characteristics.

P3.9

P3.10

P3.11

P3.12

P3.13

P3.14

P3.15

J

k— 1

Using only NAND gates, draw a circuit that
operates as follows.

a. AND gate
b. OR gate

Using the Boolean rules, simplify the following
expressions.

a. Q=AB+ AB + A.C
b. Q =AB + A.C + AB.C

Draw a circuit realization of the output Q of
Example 3.6.

An overheating monitoring system uses three dig-
ital temperature sensors operating in ON/OFF
mode. The output of each sensor is turned ON
when the temperature exceeds a specified value
and is OFF otherwise. Design a combinational
logic circuit to process the output from these sen-
sors such that the circuit output should go high
when the output of any two of the three tempera-
ture sensors goes high.

Redo Problem 3.12, but assume the system uses
four temperature sensors and the circuit output
should go high when the output of any three of

the four temperature sensors goes high.

Draw a combinational logic circuit that imple-
ments a four-channel multiplexer which uses
two input lines to select the input channel to be
connected to the output.

Complete the timing diagram in Figure P3.15 for
a positive edge-triggered JK flip-flop.

N S R

[I

w— LTI LT LT LT 1L

Q —
Figure P3.15

P3.16

P3.17

Referring to the data sheet for the 7490 decade
counter IC, draw a circuit that shows how a single
7490 IC can be used as a divide-by-5 counter.

Draw the timing diagram for the counter circuit
shown in Figure 3.48, but assume that a negative
edge-triggered T-flip flop was used.

31 Chapter Summary n

LABORATORY/ PROGRAMMING EXERCISES

L/P3.1 Build the common-emitter transistor circuit in the circuit. Use 1 uF for C; and 0.1 uF for C,.
shown in Figure 3.15. Use R = 1 kQ and Try 100 kQ, and 1 MQ values for Ry, and
Rp = 1 k. Starting from zero, increase the measure the duration of the output pulse.

voltage V, in increments of 0.1 V over the range
of 0 to 2 V and measure V. Change Rp to

V,
10 kQ, and repeat the procedure. At what input «
voltage did the transistor turn on in each case? ?
How do the measured results agree with theory? Input T J
Usea Vocof 5V. 1 GND Ve 8 R
cc i i
L/P3.2 Build the wire-game circuit discussed in N 2TRIG DISCH7
Example 3.8 that uses an SR flip-flop. = 2OUT THRES 6
L/P3.3 Build the circuit shown in Figure L/P3.3 that ARESET CONTS
uses a NO push-button switch and a 555-timer 1 TG
chip which act as a bounceless switch. Pressing G,
the switch should cause the circuit to produce 1
a clean, single pulse. The pulse duration is a . -
S b Figure L/P33

function of the resistor and capacitor values used

77

CHAPTER

Microcontrollers

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:

¢ Write and interpret data in different numbering systems

¢ Explain the difference between microprocessors and microcontrollers

e Explain the process of programming a microcontroller

e Explain the basic components of a microcontroller

¢ Develop code for performing basic operations (such as digital I/O, A/D,
timing, and PWM)

¢ Explain advanced features (such as serial communication, and interrupts)

¢ Develop code in PIC-C language for programming microcontrollers

¢ Develop code to incorporate interrupts into programs

¢ Explain the purpose and usage of assembly language programming and
develop code for incorporating it with C-language

| 4.1 INTRODUCTION

This chapter focuses on microprocessors and microcontrollers. Unlike combina-
tional and sequential circuits, which were covered in the previous chapter, micro-
controllers and microprocessors offer a flexible but complex method to implement
control logic. The flexibility comes from the fact that the control logic is software-
based and can be changed by changing the software or control program. The com-
plexity comes from the fact that a typical microprocessor or microcontroller is
made up of a very large number of digital circuits. Microcontrollers are widely used
for control applications in vehicles, toys, appliances, and telecommunication
devices. Microcontrollers are also known as embedded controllers, since they nor-
mally are not seen in the control application. Due to their small size, micro-
controllers do not have many of the components that a typical PC has (such as a
display device, a keyboard or a mass-storage device).

This chapter discusses the use and programming of microcontrollers in detail.
The objective of this chapter is to give the reader a complete coverage of the fea-
tures and capabilities of a typical microcontroller. To understand the operation
details and the performance characteristics of microcontrollers, this chapter starts
by discussing different numbering systems. This is followed by some background
information about microprocessors and microcontrollers. This chapter then dis-
cusses different types of memory and buses before it continues with the details of
using and programming a microcontroller.

18

4.2 Numbering Systems

"This book focuses on PIC-type microcontrollers made by Microchip, Inc. In
particular, it focuses on the PIC16F690 microcontroller, which is a mid-range
microcontroller that supports digital input/output (I/O), analog-to-digital (A/D)
conversion, pulse-width modulation (PWM), and serial interfacing. It also covers
the PIC18F4550 microcontroller, which has more advanced features. This chapter
covers the basic elements of a microcontroller (such as clock sources, different
memory areas, and basic interface devices) and how to program a microcontroller
using the PIC-C language. It also covers advanced features on a microcontroller
(such as timers, the watchdog timer, and interrupts). Coverage of assembly lan-
guage also is included. This chapter has code examples in PIC C-language. For fur-
ther reading on PIC microcontrollers, see [10-11].

| 4.2 NUMBERING SYSTEMS

Data can be represented using different numbering systems. For everyday opera-
tions, we use the decimal system, which has as its basis ten digits (0, 1, 2, ..., 8,9).
For computer operations, other numbering systems are used (such as the binary
and hexadecimal systems). This section will discuss the representation of numbers
using different numbering systems.

4.2.1 DECIMAL SYSTEM

In the decimal or base-10 system, a number is represented as a combination of any
of the base-10 digits that are used in that system. The value of the number is found
by summing the product of each digit in the number multiplied by ten raised to the
power of the location of that digit in the number where the rightmost digit has a
location of zero and increases by 1 for every place when moving to the left. For
example, the value of the number 763 is found from

763=7 X 102 + 6 x 10" + 3 x 10°

While the decimal system is convenient for financial, scientific, and everyday math-
ematical operations, it is not convenient to use when representing numbers that are
used in computer systems.

4.2.2 BINARY SYSTEM

The binary or base-2 system uses two digits (0 and 1) to represent numbers. This
is similar to how data is stored inside the computer memory. Similar to the decimal
system, the value of the number represented by this system is equal to the sum of
the product of each digit multiplied by two raised to the power of the location of
that digit. For example, the binary number 10110 is equivalent to the decimal num-
ber 22. This can be seen by writing

VMI=2T X2+ 0X2P+ 1 X2+ 1 X2+ 0x 2=

"To convert from decimal to binary representation, we start by dividing the dec-
imal number by the largest power of 2 that it can be divided by. We then take the
remainder and divide by the next-highest power of 2 possible. We repeat this
process until the remainder is zero. For example, consider converting the decimal
number 59 into binary representation (see Example 4.1).

9

80

Chapter 4 Microcontrollers

Example 4.1 Decimal-to-Binary Conversion

Represent the decimal number 59 in binary form

Solution:

We start by dividing 59 by 32, which is the largest power of 2 that we can divide
59 into. We take the remainder, which is 27, and then divide by the next-largest
power of 2, which in this case is 16. The remainder after the second division oper-
ation is 11. This process is continued until we get a remainder of 0 when we divide
1 by 1. The details are shown here, where r is the remainder after each division.

59/32 = 1r 27
27116 = 1r 11
11/8 =1r3
3/4=0r3
32=1r1
171 =1r0

The binary equivalent is then formed by arranging the quotients to form the binary
number, so 59 = 111011.

The smallest unit of storage in a computer system is the bit (which comes from
combining letters from the words binary and digit). A single bit can store either 0
or 1. A group of eight bits is called a byte, and two bytes are called a word. When
dealing with binary numbers, the rightmost bit of a binary number is called the
least significant bit (LSB), since it represents the smallest power of 2. The left-
most bit is called the most significant bit (MSB), since it represents the largest
power of 2. The LSB is referred to as bit zero, the bit adjacent to it as bit 1, and so
forth. Binary digits can be added in the same fashion as decimal digits with a carry
of 1 to the next-higher order bit if the sum of the two bits is 2. As an example, the
binary sum of 0011 and 0010 is 0101. Here, when 1 was added to 1 in the first bit
location, we get a zero with a carry of 1 to the second bit location. When referring
to computer memory, the term 1K is normally used, and 1K of memory is actually
1024 bytes. Similarly, 64K of memory is 65536 or 64 X 1024. The different num-
ber of combinations that can be stored in an z-bit wide memory location is 2”.
Thus, a byte can store 256 different combinations of 0 and 1. If these values are
limited to unsigned integers, then all numbers from 0 to 255 can be stored in a
byte. Similarly, a 16-bit memory location can store 65536 different combinations.

4.2.3 HEXADECIMAL SYSTEM

When evaluating the contents of a large memory location (such as a 32-bit field),
it is more convenient if we can write the values of each 4-bit into one digit. This
can be done using the hexadecimal or base-16 system, which uses sixteen digits to
represent numbers. The first ten digits are the same as the decimal digits 0 through
9, while the last six digits (10, 11, 12, 13, 14, and 15) are represented using the let-
ters A, B, C, D, E, and F respectively. The value of the number represented by the
hexadecimal system is found in a similar fashion to that of the decimal and binary
systems with the exception that the base used in this case is 16. Table 4.1 shows the
numbers 0 through 15 in decimal, hexadecimal, binary, and binary coded decimal
(BCD) systems. A hexadecimal number is indicated by a suffix b or H or a prefix Ox
added to the number. For example, 12h (or 12H) is hexadecimal 12 or decimal 18.
Similarly, 0x10 indicates hexadecimal 10 or decimal 16.

4.2 Numbering Systems

Binary Coded Decimal

Decimal Hexadecimal Binary (BCD)
0 0 0000 0000 0000
1 1 0001 0000 0001
2 2 0010 0000 0010
3 3 0011 0000 0011
4 4 0100 0000 0100
5 5 0101 0000 0101
6 6 0110 0000 0110
7 7 01 0000 0111
8 8 1000 0000 1000
9 9 1001 0000 1001

10 A 1010 0001 0000
" B 1011 0001 0001
12 C 1100 0001 0010
13 D 1101 0001 0011
14 E 1110 0001 0100
15 F 111 0001 0101

Note that, in the BCD system, each decimal digit is coded separately in binary.
Thus the BCD representation of decimal 12 is the binary representation of deci-
mal 1 digit and decimal 2 digit grouped together. The BCD system is normally
used to drive decimal display systems. Example 4.2 addresses conversions between
the binary, hexadecimal, and decimal systems.

Example 4.2 Conversions between Binary, Hexadecimal, and Decimal

A 16-bit port has the following binary pattern. Determine the value of this data in
hexadecimal and decimal.

Binary Pattern: b0110100101010011

Solution:

Using Table 4.1, the 16-bit binary number will be first converted to a four-digit
hexadecimal number. This will be done by finding the hexadecimal digit that cor-
responds to each 4-bit grouping of the binary number starting from the right end.
This gives us 0x6953. The next step is to determine the value of the hexadecimal
number. This is obtained by evaluating

6 X 16>+ 9 X 162+ 5 x 16" + 3 X 16° = 24576 + 2304 + 80 + 3 = 26963

4.2.4 NeGATIVE NUMBER REPRESENTATION

Negative numbers are represented using a method called the 2’s complement. It
is calculated for a given number by taking the complement of its bit pattern and
adding 1 to it. For example, consider the representation of —1 in binary format. We
will assume an 8-bit field. We start by writing the number 1 in binary format using

Table 4.1

Different numbering
systems

81

Chapter 4 Microcontrollers

(41)

(42)

the 8-bit field. This gives us 00000001. Next, we find the complement of this
number, which is the bit pattern that contains the exact opposite values of the given
bit pattern (i.e., 1 changes to 0, and 0 changes to 1). So the complement of 1 is then
1111110. The last step is we to add 1 to the complement, which givesus 11111111
as the 2’s complement representation of —1. Note that the representation of nega-
tive numbers in binary or hexadecimal format is very dependent on the number of
bits that are used to represent the number. If we had used 4 instead of 8 bits to rep-
resent —1, the answer would be 1111. An alternative method to determine the 2’
complement is to find the binary pattern representation for the result of the fol-
lowing operation:

2" — number

where 7 is the bit field width. So applying Equation (4.1) to the representation of
—1 and using a 4-bit field gives 15 2* — 1 = 15), which has binary representation
of 1111.

For an n-bit field, the range of signed numbers that can be represented by that
field is from —2""! to 2"~! — 1. For example, for » = 4, the range is —8 to 7 or a
total of 16 numbers including 0. For » = 8, the range is —128 to 127.

4.2.5 RePRESENTATION OF REAL NUMBERS

The representation of real or floating-point numbers in binary format is more
complicated than the representation of integer numbers. There are several methods
available to represent real numbers; the most common is the IEEE-754 floating-
point method, which is used by all modern CPUs. The representation is depend-
ent on the number of bits that are used to represent the number. We will illustrate
this method using a 32-bit field or single-precision representation. In this method,
bits 0 to 22 are used to represent the mantissa or fraction, bits 23 to 30 are used to
represent the exponent, and the MSB or bit 31 is used to represent the sign. For
positive numbers, the sign bit is 0, and for negative numbers, the sign bitis 1. The
value of the exponent is computed from bits 23 to 30 by subtracting 127. This
allows both positive and negative exponents to be represented. A value of 1 in bit
22 represents a one-half fraction; a value of 1 in bit 21 represents a one-quarter
fraction, etc. Note that in this representation, an invisible leading bit with a value
of 1 is assumed to be placed in front of bit 22. Thus, the values of these fractions
are added to the invisible one to give a mantissa value between 1 and 2. The value
of a floating-point number in this representation is then computed from

Sign X 28¥onent ¢ mantissa

As an example, the binary pattern 0100 0000 0[111 1000 0000 0000 0000 0000
is a representation for the number 3.875. Here the exponent value is 1 (128 — 127),
the mantissa value is 1.9375 (1 + 1/2 + 1/4 + 1/8 + 1/16), and the value is
21 X 1.9375 = 3.875.

| 4.3 MICROPROCESSORS AND MICROCONTROLLERS

The microprocessor, which is the brain of modern computers, is an integrated cir-
cuit (or a chip) that has a processor which consists of many digital circuits. For exam-
ple, microprocessors such as the Core i5 contain millions of transistor elements. For
personal computers, the microprocessor is housed on the motherboard of the PC
and uses an external bus to interface with memory and other components on the
PC (such as mass memory and system I/O). A bus is a set of shared communication

43 Microprocessors and Microcontrollers

lines (physically, it could be tracks on a printed circuit board or wires in a ribbon
cable). The combination of the microprocessor and the other elements on the
motherboard is called a microcomputer. The microcontroller, on the other
hand, is a single-chip device that contains a processor along with memory and
interface devices on the same integrated circuit chip. The microcontroller uses an
internal bus to communicate with memory and other devices on the chip. Note that
microprocessors require peripheral chips to interface with I/O devices.

The basic job of a processor is to execute program instructions which are the
low-level code that is generated by the compiler in translating a high-level computer
program (such as C code) into machine instructions that are used by that particu-
lar processor. The processor is also called the central processing unit (CPU) and
contains three basic elements: the control unit, the arithmetic and logic unit
(ALU), and the registers. The function of each of these elements is described here.

Control Unit: Determines timing and sequence operations. This unit gener-
ates timing signals that are used to fetch a program instruction from mem-
ory and execute it.

Arithmetic and Logic Unit: This unit performs logical evaluations and actual
data manipulation such as the addition of two numbers.

Registers: Memory locations inside the CPU that hold internal data while
instructions are being executed.

For example, to add two numbers, the following operations occur. The first
number is brought from memory and then held in one of the registers. The second
number is brought from memory, and the ALU operates on the two numbers. The
result of the operation is stored first in one of the registers before it is transferred
back into memory.

During operation, a processor stores and retrieves data from memory devices.
"Table 4.2 explains the different types of memory devices that are used. In read-only

Memory Type Description

ROM Read Only Memory Nonvolatile memory that is programmed with required content
during manufacture of the IC chip. Data can be read but cannot
be written during use, and it does not lose its data when
power is turned off. It is used for fixed programs such as
computer operating systems.

PROM Programmable ROM Same as ROM but can be programmed once by the user with
no further changes allowed.

EPROM Erasable PROM Can be programmed more than once during use. Contents can
be erased by shining ultraviolet (UV) light through a quartz
window on top of the device.

EEPROM Electrically Erasable Similar to EPROM, but contents can be erased by applying a
PROM high-voltage signal rather than a UV light.
RAM Random Access Volatile memory that requires power to operate. Data is lost
Memory when power is removed. The access time for the data is constant
and is not dependent on the physical location of the data.
SRAM Static RAM A RAM in which data does not need to be refreshed as long as

the power is applied. The data can be accessed faster than
DRAM, but it is more expensive.

DRAM Dynamic RAM A RAM that uses capacitors to store data. Data must be
refreshed (rewritten) periodically because of charge leakage.

Table 4.2

Different types of
memory

8

84

Chapter 4 Microcontrollers

memory (ROM) or any variation of it (such as erasable programmable ROM
(EPROM)), the data remains in memory even after the power is turned off, while
in random access memory (RAM), the data is lost if the power is turned off. Recent
microcontrollers use electrically erasable programmable ROM (EEPROM) to
store program instructions, which are downloaded to the microcontroller through
a serial or USB connection.

In addition to memory, a processor system needs the means to transfer data
between the microprocessor and the other devices on the system. This data trans-
fer occurs over a bus. There are different kinds of buses.

Data Bus: Used to transport data from/to the CPU and the memory or the
input/output devices. Data length could be 4, 8, 16, 32, or 64 bit.

Address Bus: Used to select devices on the bus or specific data locations with-
in memory. Each memory location has an address that must be specified
before the contents of that location can be accessed. The size of the address
bus determines the number of locations to be addressed. A 16-bit bus
will access 216 addresses or 64K locations, while a 32-bit bus can access 4G
locations.

Control Bus: Used to synchronize the operation of the different elements.
It transmits read and write signals, system clock signals, and other control
signals.

Microprocessors and microcontrollers are designed using two design approaches.
These are the complex instruction set computer (CISC) approach and the
reduced instruction set computer (RISC) approach. In general, a RISC proces-
sor uses a small number of simple instructions optimized for fast execution, while
a CISC processor uses more complicated instructions that can perform more func-
tions. The compiled program for a RISC processor tends to be larger than that for
a CISC processor, but it can run faster. The PIC MCUs are designed using the
RISC design approach.

While microprocessors and microcontrollers share many features, they had
different evolution paths. Microprocessors were developed for use in personal
computers and workstations, while microcontrollers were developed for use in con-
trol applications in the appliance, automotive, entertainment, and telecommunica-
tion industries. In microprocessors, the emphasis is on high speed and large word
size (such as 32 or 64-bit), while in microcontrollers, the emphasis is on compact-
ness and low cost. In microprocessors, the RAM size is typically in Mega to
Gigabyte ranges, while in microcontrollers size is given in 1 to 100K of bytes. In
microprocessors, clock speed is in the range of several GHz, while in microcon-
trollers, it is in the tens of MHz.

| 4.4 PIC MICROCONTROLLER

This textbook will discuss the PIC microcontroller unit (PIC MCU) manufactured
by Microchip Technology, Inc. There are many other microcontrollers on the mar-
ket today (such as those made by Atmel (AVR), Freescale (HCS12), Intel (MCS-51
family), and Motorola (68HC)). We selected the PIC microcontrollers due to their
widespread use (several billions of PIC MCUs have been manufactured so far), low
cost, and ease of use. As mentioned before, a microcontroller is a single-chip device

44

CPU RAM
EEPROM Digital
1/0
A/D Serial Interface Clock/Timers

that includes a microprocessor, memory, and interface devices. The components of
a typical microcontroller are shown in Figure 4.1. These components include the
CPU, the nonvolatile memory (such as EEPROM) to store the code, the volatile
RAM memory to store data while a program is executing, interface devices (such as
digital input/output (I/O) ports, analog-to-digital (A/D) converter, serial port, or
USB), the clock, and timers. Note that in a volatile memory, stored information is
lost when the power supply is cut off.

4.4.1 PIC MICROCONTROLLERS FAMILIES

Microchip manufactures several families of 8-, 16-, and 32-bit microcontrollers.
The number of bits refers to the size of the data bus which is used to transport data
from/to the CPU and the memory or the input/output devices. Within each family,
several microcontrollers are available that differ in their physical size, number of
pins, memory size (program memory, RAM, and EEPROM), and type of interface
devices provided. We will focus on the PIC16 and PIC18 families, which are 8-bit
microcontrollers available in packages ranging from 8 to 100 pins. Table 4.3 shows
a few of the many microcontrollers that are currently available in these families
along with some pertinent data about them. Note that due to market forces, these
microcontrollers are continually replaced by newer ones with improved features.
Program memory refers to the area on the chip that is used to store program
instructions. Most of the chips in the PIC16 family have program instructions that
are 14-bits wide, while those in the PIC18 family have program instructions that
are 16-bits wide. Thus, for example, the PIC16F84A chip, which has 1.75 Kbytes
(or 1792 bytes) of program memory, can store 1024 instructions (or 1K words).
Microchip calls the PIC16 MCUs that have 14-bit program instructions as the
mid-range architecture (the baseline architecture uses a 12-bit program instruc-
tion), and the PIC18 MCUs are called the PIC18 architecture. RAM refers to the
area that stores variables and register values during program execution, while data
EEPROM can be used to store data values during program execution (at a longer
access time than RAM storage) but has the advantage that the data will not be lost
if the power was lost. Many of the MCUs made by Microchip have program mem-
ory that is referred to as ‘flash’ memory. Flash memory can be erased and
programmed electrically, similar to an EEPROM, but without the need for a ded-
icated programmer. However, a flash memory does not allow an individual memory

PIC Microcontroller

Figure 4.1

Typical components of
a microcontroller

85

86 Chapter 4 Microcontrollers

PIC MCU
PIC16F84A
PIC16F872

PIC16F690

PIC16F76

PIC18F2220

PIC18F4550

PIC18F86J60

PIC18F8722

A sampling of different
PIC MCUs in the PIC16
and PIC18 families

Program
Memory
(Kbytes)

1.75
25

7

32

64

Table 4.3

Data CPU
EEPROM RAM A/D PWM Pin Speed
(bytes) (bytes) I/0 Lines Channels A/D Bits Channels Count (MIPS) Interface
64 68 13 0 N/A 0 18 5 -
64 128 22 5 10-bit 1 28 5 MIZC /SPI, MSSP
256 256 18 12 10-bit 4 20 5 A/E/USART,
I2C/SPI
0 368 22 5 8-bit 2 28 5 USART, I12C/SPI
256 512 25 10 10-bit 2 28 10 A/E/USART,
MSSP(SPI/I”C)
256 2048 35 13 10-bit 4 40 12 A/E/USART,
MSSP(SPI/I%C),
USB
0 3808 55 15 10-bit 12 80 95 A/E/USART,
MSSP(SPI/IC),
Ethernet
1024 3936 70 16 10-bit 12 80 10 A/E/USART,
MSSP(SPI/IC),
LIN

location to be erased; only a single block of memory locations can be erased.
Program memory and data memory have separate buses to allow concurrent access
and faster throughput.

The number of I/O lines refers to the number of TTL digital input/digital
output lines available on the chip. These I/O lines are bi-directional and are con-
figured by program code to be either an input or output type. Some chips come
with analog-to-digital converter capability with 8- or 10-bit resolution. Some A/D
channels use the same pins as those used for digital I/O lines, but they can be con-
figured by program code to operate as A/D channels. Some chips have one or
more PWM lines which can be conveniently used to drive motors through an H-
bridge driver or a transistor. The pin count refers to the number of physical pins
on the chip. Some chips are available in different pin counts, depending on the
chip packaging configuration (see Section 4.4.2). For example, the PIC18F4550
MCU is available as 40 pins in the PDIP configuration and as 44 pins in the
TQFP configuration.

The CPU speed refers to the maximum speed of the chip in units of millions
of instructions per second (MIPS). A chip with a higher MIPS rating can execute
a program faster than one with a lower rating. Some high-end chips have built-in
interfaces for ease of communication with other devices. An explanation of some
of these interfaces is given in Table 4.4. A Universal Synchronous Asynchronous
Receiver Transmitter (USART or any variation of it such as AUSART) is a mod-
ule commonly used for asynchronous serial communication using the RS232 pro-
tocol, while a Master Synchronous Serial Port (MSSP) is used for synchronous
serial communication. The MSSP is commonly used to communicate with exter-
nal EPROM or RAM. USB stands for universal serial bus, while the Local
Interconnect Network (LIN) is a serial communication system. Other MCUs in
the PIC18 family have an integrated liquid crystal display (LCD) module for

Interface Feature

USART

AUSART

EUSART

MSSP

SPI™

12c™

MIZC
USB
LIN

44

Explanation

Universal Synchronous Asynchronous Receiver Transmitter (USART) module is
used for synchronous (data line and clock signal) and asynchronous (data line but
no clock signal) serial communication

Addressable Universal Synchronous Asynchronous Receiver Transmitter
(AUSART) module can be configured as asynchronous (full duplex),
synchronous—master (half duplex), or synchronous—slave (half duplex) serial
communication line

Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
module supports RS-485, RS-232, and LIN compatibility with auto-baud detect
and auto-wake-up on start bit

Master Synchronous Serial Port (MSSP) module includes an SPI™ and 12C™

Synchronous serial port (SSP) configured as three-wire serial peripheral
interface (SPI)

Synchronous serial port configured as a two-wire inter-integrated circuit
(I’C™) bus

Master 1C port
Universal serial bus

Local Interconnect Network, which is a serial communication system

directly driving LCD devices. These MCU s are ideal for applications such as ther-
mostats, handheld meters, and portable medical devices.

4.4.2 PN Lavout

As an example of the pin layout for a typical PIC MCU], consider Figure 4.2 which
shows the pin configuration for the PIC16F84A, which is a popular PIC MCU.
This MCU has 18 pins. Note that some of the pins have dual functions (such as
pins 3 and 6). As is the case with many of the PIC MCUs, they are available in dif-
ferent pin layouts. A common layout is the PDIP, which stands for plastic dual
inline package (PDIP). In this layout, the pins are arranged in two parallel oppo-
site rows, and this layout is normally used with breadboards. The small-outline
integrated circuit (SOIC) package uses gull-wing pins extending outward, while
in the shrink small outline package (SSOP), the pins are also gull-wing shaped

PDIP, SOIC
N
RA2 ~—— [l 18 [1<—RAl
RA3 ~—[] 2 17 [1<~—RAO
RA4/TOCK1 ~—[] 3 - 16[J~—OSCI/CLKIN
MCLR —[] 4 = 15 [J— 0SC2/CLKOUT
Vg—0O5 3 140~—Vpp
RBO/INT ~—[] 6 § 13 [1~—RB7
RBl ~—[] 7 12 [1<— RB6
RB2 ~—[] 8 11 [J<~—RB5
RB3 ~—[]9 10 [1<— RB4

PIC Microcontroller

Table 4.4

A list of interfaces
available on some PIC
MCUs

Figure 4.1

Pin layout for the
PIC16F84A chip

(Reprinted with the
permission of Microchip
Technology Incorporated)

87

Chapter 4 Microcontrollers

Figure 4.3

(a) PDIP, (b) SOIC, and
(c) SSOP packaging

(Reprinted with the
permission of Microchip
Technology Incorporated)

Figure 4.4

Pin diagram for the
PIC16F90

(Reprinted with the
permission of Microchip
Technology Incorporated)

() (b) (©

but are more closely spaced than in SOIC package. The last two layouts are normally
used in surface-mount type circuits. Figure 4.3 shows examples of these package
types.

The PIC16F84A MCU is a good choice for applications that require no A/D
conversion or PWM output. In this text, we will focus on both the PIC16F690
MCU and the PIC18F4550 MCU, which have more features than the PIC16F84A
chip. The PIC16F690 chip has the following features.

* Program memory size of 7 Kbytes

* Twelve A/D channels

¢ Eighteen I/O pins arranged as ports A, B, or C
* Three timers

¢ PWM output

¢ Several options for serial communications

The PIC18F4550 adds USB communication, larger program memory, RAM
size, and multiple interrupt-handling capability. The discussion about the
PIC18F4550 will be limited to some of the features on that chip that are not avail-
able on the PIC16F690. Figure 4.4 shows the pin diagram for the PIC16F690
MCU. Due to the fact that this MCU has only twenty pins but supports many
interface functions, many of the pins are designed for more than one function. For
example, pin 3 can be configured as channel 4 of digital input/output port A
(RA4), analog channel 3 (AN3), timer 1 gate input (T1G), oscillator crystal con-
nection pin #2 (OSC2), or clock output (CLKOUT). The limited number of
external pins also means that you cannot have 12 A/D channels and 18 I/O lines
operating at the same time. Table 4.5 provides an explanation of the functions of
some of these pins.

20-pin PDIP, SOIC, SSOP

Vpp — 1 S 20 [1~— Vg
RAS5/T1CKI/OSC1/CLKIN <—[] 2 19 [1<— RAO/ANO/C1IN+/ICSPDAT/ULPWU
RA4/AN3/T1G/OSC2/CLKOUT ~——[3 18 [~— RAI/AN1/C12INO—~/Vgpr/ICSPCLK
RA3/MCLR/Vep — [4 2 17 [~— RA2/AN2/TOCKI/INT/C1OUT
RC5/CCP1/P1A ~—[] 5 é 16 [] ~— RCO/AN4/C2IN+
RC4/C20UT/P1B ~——[] 6 T 15 [d<— RCI/AN5/C12IN1-
RC3/AN7/C12IN3—/P1C ~—[] 7 & 14 [0<~— RC2/AN6/CI2IN2—/P1D
RC6/ANS/SS ~——[] 8 13 [J<—= RB4/AN10/SDI/SDA
RC7/AN9/SDO ~——[] 9 12 [d~— RB5/AN11/RX/DT
RB7/TX/CK <——[] 10 11 [<— RB6/SCK/SCL

44

AN Analog-to-digital input channel

C1IN, C10UT Comparator input and comparator output
CcCcP Capture/compare/PWM module

CK EUSART synchronous clock

CLKIN External clock input/RC oscillator connection
CLKOUT Fosc/4 output line

DT EUSART synchronous data

ICSPDAT, ICSPCKL
INT

Integrated circuit serial programming (ICSP) data /0 and ICSP clock signal

External interrupt

MCLR Master clear

0sC Crystal/resonator

P1A, P1B, P1C, PID PWM output line

RA, RB, RC General purpose I/0. The A, B, and C refer to the A, B, or C port

RX EUSART asynchronous input

SCK, SCL SPI clock and I2C clock

SDI, SDA, SDO SPI data in, IC data input/output, and SPI data out

SS Slave select line for SPI

T1CK1 Timer1 clock input

X EUSART asynchronous output

VDD Positive lead of supply voltage. This chip operates at an input voltage range of
2t055V

VPP Programming voltage pin

VREF External voltage reference for A/D

VsS Ground reference line

4.4.3 PIC MCU COMPONENTS

Figure 4.5 shows a block diagram of the main components of the PIC16F690
MCU, including the data and program buses. Some of these components include
the three digital I/O ports (A, B, and C), the three timers (0, 1, and 2), the EUSART
module for RS232 communication, the A/D converter module, the synchronous
serial port (SPI and I>C), the enhanced capture compare PWM (ECCP) module,
the program memory, and the CPU. Most of these components are explained in
detail in later sections of this chapter. Note how the 8-bit data bus connects the
CPU (the ALU and CPU registers such as the W and STATUS registers) to the
other components on the MCU.

Program instructions are brought to the CPU through the 14-bit program bus
under the control of the program counter. The program counter (PrC) is a spe-
cial register that holds the address of the next instruction to be executed. The PrC
size is made so that it should be able to access all of the instructions in program
memory. On the PIC16F690, the PrC is 13-bits wide and thus can access up to
8192 instructions. When the MCU is powered on or is reset, the PrC is cleared and
points to the address 0x0000. Associated with the PrC is the stack, which is a spe-
cial area of memory that is not associated with data or program memory. The stack

PIC Microcontroller

Table 4.5

Pin functions on the

PIC16F690 MCU

89

90 Chapter 4 Microcontrollers

Configuration

INT

Program 14

Bus 4 oRAMAd|
Addr MUX

2 Program Counter Data Bus 8’ PORTA
Flash g — ’ <>X RAO
4k x 14 [<> RAI
Program - RAM [<> RA2
Memory 8-Level Stack (13—b1t)| 256 bytes <X RA3
File <X RA4
Registers ~<>X] RAS

Instruction Reg ‘
Direct Addr 7 1 g | Indirect <>[X RB4

Z

7 1 Addr <>X RB5
FSR Reg |~ <X RB6
-<>[X] RB7

—>| STATUS Reg|-<—

8
Z.
4 PORTC
3l X RCO
Power-up / MUX <X RCI
Instructi Timer ~<>X RC2
nstruction . <>[X] RC3
Decode and <> S Oscﬂlz};.or Y > ~>[X] RC4
Control tart-up Timer ALU <>X RCS
OSC1/CLKI Power-on <> RC6
X Reset y8 X RC7
Timing Watchdog WR
OSC2/CLKO | Generation Timer E'E
X Brown-out
Reset
Internal
Oscillator
Block MCLR Vpp Vs
CCP1/ SDI/SCK/
ULPWU TOCKI TIG TICKI TX/CK RX/DT P1A P1B P1C P1D SDO SDA SCL SS
| [FA A I A A A O O
Ultra Low-Power| | o Timer 1 Timer 2 EUSART ECCP+ Synchronous
Wake-up Serial Port

L

t t t t t

AN8 AN9 ANI0ANI1 Jt
? T ? ? EEDAT
256 Bytes
2 A 8 Data
Analog-To-Digital Converter Analog Comparators EEPROM
and Reference EEADR

Ldbdl

Y

Vrer ANO ANT AN2 AN3 AN4 AN5 AN6 AN7 CI1IN- C1IN+ CIOUT C2IN- C2IN+ C20UT

Figure 4.5

A block diagram of the
PIC16F690 MCU

(Reprinted with the
permission of Microchip
Technology Incorporated)

operates in a first-in, last-out (FILO) fashion and is used as a storage area of the
contents of the PrC when executing a subroutine call or an interrupt (see Section 4.8).
When a program needs to perform a branching operation (such as when executing
a subroutine call), the contents of the PrC are placed on the stack (pushed), and the
address of the subroutine to be executed is loaded into the PrC. When the routine

44

completes execution, the address of the next instruction is loaded from the stack
(popped) back into the PrC. The size of the stack determines the number of
subroutine calls or interrupts that can occur. In the PIC16F690, the stack is eight
levels deep.

"To get a PIC MCU to run, you need to wire at least three pins. These include
the VDD pin, which should be connected to the positive lead of the supply voltage
(2 to 5.5 V for most chips but some chips are designed to operate with 1.8 to 3.6 V
range); the VSS pin, which should be connected to ground voltage; and the MCLR
pin, which should be connected to the VDD (through a resistor) to prevent the
MCU from resetting itself. If the MCLR pin is a shared pin (such as in the
PIC16F690 MCU), then the MCLR does not need to be wired to the VDD if it is
programmed to treat the pin as the other function. For microcontrollers without
internal clock sources, you also need to connect the external clock source to the
microcontroller. The remainder of this section gives details on the basic operations
of this chip.

4.4.4 CLOCK/OSCILLATOR SOURCE

A microcontroller needs a clock source in order to function, since all CPU opera-
tions are synchronized with the clock. A clock is any device that can produce a train
of pulses at a fixed frequency. Some chips have a built-in clock source (such as the
PIC16F690, which has two internal clocks: an 8 MHz and a 31 kHz), while others
require or allow an external device to produce the clock pulses. These external
devices include a quartz crystal resonator, a ceramic resonator, a resistor-capacitor
(RC) circuit, or an external clock source (such as the 555 timer chip). The micro-
controller allows the selection of the clock source through software.

A quartz crystal resonator uses the mechanical resonance of a piezoelectric
crystal to generate a very accurate timing signal, while a ceramic resonator uses
the mechanical resonance of piezoelectric ceramics, commonly lead zirconate
titanate (PZT). Ceramic resonators are small, rugged, and inexpensive, while
quartz crystal resonators are more expensive, but more precise. Ceramic and quartz
crystal resonators are available with different clock frequencies. A photo of a quartz
crystal resonator is shown in Figure 4.6.

Using either type of resonator, the clock signal is connected to pins OSC1 and
OSC2 on the chip. For a crystal oscillator, the clock circuit wiring is shown in
Figure 4.7. Two capacitors (C and C3) of 15 pF for an 8-MHz crystal oscillator are
needed. In addition, a series resistor (Rg) may be required for quartz crystals with a
low drive level. The value of the parallel feedback resistor (Rp) is dependent on the
oscillator mode and varies between 2 to 10 M.

o

i
[Crystal : :RF

PIC Microcontroller

Figure 4.6

A quartz crystal
resonator

(Jouaneh, University of
Rhode Island)

Figure 4.7

Connection diagram
for a quartz crystal
resonator for a
PIC16F690 MCU

9

91

Chapter 4 Microcontrollers

An RC circuit uses the charge and discharge time of an RC circuit to produce
a clock signal. It is normally used in applications where clock accuracy (1 to 10%
error) is not very important. The RC circuit connects to pin OSC1 on the micro-
controller. Pin OSC2 becomes a general purpose I/0 line (if the clock mode is set
to RCIO) or can be used to output the RC oscillator frequency divided by 4 (f
clock mode is set to RC). An external clock source (such as the 555 timer) also
can be used as the clock. The clock output connects to the OSC1 pin on the chip,
and the OSC2 pin is available for general purpose I/0. A 555 timer chip (such as
the NE555 8-pin chip from Texas Instruments, discussed in Section 3.9) is an inte-
grated circuit that uses transistors, resistors, and diodes to produce a variety of
clock signals, including periodic signal output and time delays.

The PIC16F690 has two internal oscillators: an 8-MHz high-frequency
oscillator and a 31-kHz low-frequency oscillator. The output frequency of the 8
MHz oscillator can be further divided by software. If an internal oscillator is used
as the system clock source, then the OSC1/CLKIN pin is available for general I/O.
The OSC2 pin can be used either for general purpose I/O (clock mode set to
INTOSCIO) or to output the clock frequency divided by 4 (clock mode set to
INTOSC). Note that the PIC instructions execute at a frequency that is one-quarter
of the clock oscillator frequency (Fosc). In the microcontroller documentation,
this is referred to as Fogc/4. Thus, a PIC chip with an 8-MHz clock source will
execute one instruction every 0.5 us.

In chips that support USB communication (such as the PIC18F4550), an addi-
tional clock branch is given on the chip to provide a 48 MHz clock with full USB
operation. For the USB operation, a phase locked loop (PLL) circuit is used to pro-
vide the 48-MHz clock signal using input clock sources that can range in frequency
from 4 to 48 MHz. While a single, primary oscillator (such as a 20 MHz crystal)
can be used to provide timing signals for both the USB module and for instruction
execution, the chip also allows the use of two oscillator types at once. In this
case, the primary oscillator is used for USB timing, but the internal oscillator is
used for instruction timing. Regardless of the use of single or dual oscillators, the
instruction timing signals can be run at a different frequency than those used for
USB timing.

4.4.51/0 AND A/D OPERATION

Many PIC MCUs support both digital input/digital output functions and analog-
to-digital conversion. Before a digital I/O pin is used, the pin should be configured
to either input or output. This is done by writing to the tristate (see Section 3.8)
register (a register is a memory location set for a particular purpose) associated
with the port to which the pin belongs to. For example, the PIC16F690 has three
I/O ports (referred to as ports A, B, and C) and three tristate registers associated
with these ports (referred to as TRISA, TRISB, and TRISC), respectively. A value
of 1 written to the tristate register bit corresponding to a particular I/O pin causes
that pin to function as digital input, while a value of 0 causes that pin to function
as digital output. Note that each component on the MCU (such as an 1/O line, an
A/D converter, or a timer) has a number of registers that control its operation. The
detailed listing of all of these registers is not the intention of this text, and the
reader is encouraged to read the data sheet file for the particular MCU for further
information.

If a pin is designated both as digital I/O and A/D (such as pin 3 in Figure 4.4),
then one needs to select the desired function by writing to the appropriate register.
A shared pin will function as an A/D if the bit corresponding to that pin in the

44

ANSEL (analog select) or ANSELH (analog select high) register is set to 1.
Similarly, setting the same bit to 0 will cause that pin to function as digital I/O. Note
that to use a pin for A/D, the corresponding bit in the tristate register has to be set
to 1 (i.e., to function as an input). Some compilers (such as the PIC-C compiler that
will be discussed later) can perform these setup operations automatically.

The PIC MCU A/D converter coverts analog voltages to digital numbers. The
analog voltage range is 0 to either VDD (2.0 to 5.5 V) or to an external reference
voltage (if +Vref is set). The resolution is 8, 10, or 12 bits. On the PIC16F690, the
resolution is 10 bits, but the output can be mapped into 8 bits. The converted volt-
age can be either right or left justified. Default is left justified unless told in the
software (by writing to the ADCONQO register for PIC16F690).

4.4.6 PWM Outrut AND RESET OPERATIONS

None of the MCUs in the PIC16 or PIC18 families have a digital-to-analog con-
version capability, but many PIC MCUs have a built-in module to generate pulse-
width modulated (PWM) output (such as pins 5, 6, 7, or 14 in Figure 4.4). A PWM
signal is a square-wave signal of fixed amplitude and frequency, but the width of
the on and off parts of the signal (or duty cycle) can be varied (see Figure 4.8). The
PWM output can be used to conveniently drive H-bridge drives and digital ampli-
fiers. The PWM output mode is one of the three modes of operation of the
Capture/Compare/PWM (CCP) module or enhanced CPP (ECCP) module on
the MCU. The other modes are capture and compare. In the capture mode, the
value of the particular timer associated with the CCP module is copied to a partic-
ular register when an input event occurs on a designated CCP pin. Thus, the cap-
ture mode can be used for timing input events. In the compare mode, an action is
triggered when the value in the CCP registers matches the value stored in the par-
ticular timer associated with the CCP module.

Output 4 Duty Cycle = Toy/Teye X 100%
Teyete ! Frequency = 1/Ty .
<~ T(m —
High
Low >
Time

There are different reset operations that are available on a PIC MCU. These
include power-on reset (POR), brown-out reset (BOR), watchdog timer reset, and
external MCLR reset. These are discussed next. A POR occurs whenever the power
(VDD line) is turned off and then on to the chip. After a POR, the code on the chip
starts executing at the first program memory instruction, and some of the registers
on the chip will reset to their “Reset” state. A BOR (if enabled) produces the same
result as a POR and occurs whenever the VDD voltage level falls below the rated
voltage (between 2 to 5.5 V for most chips). The BOR does not occur unless cer-
tain registers on the chip were set to detect this condition. This feature is useful in
battery-powered applications to detect low voltage conditions. The watchdog timer
reset occurs whenever the counter associated with the watchdog timer overflows,
while a MCLR Reset occurs whenever the MCLR pin line goes to low. Note that
the PIC MCU has a special register (called PCON or power control) that can indi-
cate which type of reset has occurred.

PIC Microcontroller

Figure 4.8

lllustration of a PWM
signal

9

9

Chapter 4 Microcontrollers

Figure 4.9

PICSTART Plus

(Reprinted with the
permission of Microchip
Technology Incorporated)

Figure 4.10

(a) PICkit 2 and
(b) PICkit 3
programmers

(Reprinted with the
permission of Microchip
Technology Incorporated)

| 4.5 PROGRAMMING THE PIC MICROCONTROLLER

The development of a control program running on a microcontroller shares some
similarities with developing a program to run on a PC. On a PC, a high-level pro-
gramming language (such as C or Visual Basic (VB)) is used to prepare the code.
Using the built-in compiler in the integrated development environment (IDE) that
comes with that particular language, the high-level code is translated into binary
machine code. The binary code is then linked with other needed files to form the
executable program that can be run by simply calling its name. The developed code
can be debugged for errors by simply utilizing the Debugging function that comes
with the IDE.

In a microcontroller, a program can be similarly developed using a high-level
programming language (such as C or VB), but also can be developed using assem-
bly language. Assembly language is a low-level programming language that is spe-
cific to the microcontroller used. For most PIC MCUs in the PIC16 family, the
assembly language is made of just 35 instructions. While it is more difficult to pro-
gram the code in assembly language, the user has better control of the execution
timing of the code, because the execution timing of each instruction (in terms of
the number of clock cycles it takes to execute that instruction) is known. Another
advantage of programming in assembly language is that you do not need to buy any
additional software tools, since the assembly compiler is provided free of charge.
Similar to a high-level program, the assembly code needs to be compiled and trans-
lated into binary code. The binary code (or hex code file) is then downloaded to the
microcontroller to be stored in the non-volatile program memory.

Microchip provides the MPLAB Integrated Development Environment free
of charge for use in developing code for their line of microcontrollers. MPLAB
is an integrated editor, compiler, linker, and debugger. It has a built-in assembly
compiler.

4.5.1 PROGRAMMERS

The process of transferring a compiled binary code to the MCU is called “pro-
gramming” a chip. Originally, Microchip provided the PICStart Plus® programmer
(see Figure 4.9), in which the user plugs the chip to be programmed into the device.
Then, through a serial line from the PC to the PICStart Plus, the MPLAB IDE is
used to transmit the binary code to the chip. Once the chip is programmed, the
chip is removed from the programmer and transferred into the target system in
which it will be used. More recently, Microchip introduced the PICkit 2 and then
the PICkit 3 Microcontroller Programmer. These are low-cost development pro-
grammers that can be conveniently used to program many MCU chips.

Both the PICkit 2 and the PICkit 3 programmers (see Figure 4.10) connect to
a PC through a USB cable. Using the software that comes with them, one can

(b)

4.5 Programming the PIC Microcontroller 9

Rotary Pot

SW1
Switch

LED

download programs to the PIC MCU. Both programmers conveniently plug into
a number of development boards (an example of such one is shown in Figure 4.11).
"This ‘low pin-count’ development board has four LEDs, a single-turn potentiome-
ter, and a switch. The development board can be used to run basic code without the
need to build a custom board to house the PIC MCU. Microchip manufactures
many different types of these development boards.

The PICkit 2 programmer can be used from the MPLAB IDE or through the
use of a separate stand-alone program called the PICkit 2 program that Microchip
provides. There is no stand-alone program for PICkit 3, and PICkit 3 has to be
called from the MPLAB IDE. The PICkit 3 also can be used as a debugger to step
and to examine a code as it executes.

Note that the PICkit 2 programmer can be used to provide power to the con-
nection target provided that the power drawn from the development board is min-
imal. This is done by checking the On check box in the VDD PICkit 2 group area
(see Figure 4.12) and adjusting the VDD voltage value (normally set to 5.0 V).

Programming the PIC MCU through the use of the PICkit 2 or PICkit 3 makes
use of a useful feature that is available on many PIC MCUs. This feature is called
integrated circuit serial programming (ICSP). The ICSP uses two pins (data and
clock) to transfer code in a serial fashion into/from the PIC MCU. To do ICSP, three
other pins on the chip need to be connected. These include the supply voltage pin
(VDD), the ground pin (VSS), and the programming voltage pin (VPP). An advan-
tage of ICSP is that the chip does not have to be removed from the development or
target hardware board. This allows an unprogrammed chip to be mounted into the
board and then to be programmed later.

B FICkt 2 Programmer

File DeviceFamily Programmer Tools View Help ||
Mickarnye /Slanderd Corligusation |

Devics: PICIEFES0 Configuration: OFFC
Liser IDs: FFFFFFFF

Checieum: DESF

; —1 @anocmp I

| sl i) el)) | B 2 ||

Figure 4.1

Microchip low pin-count
development board

(Jouaneh, University of
Rhode Island)

Figure 4.12

PICkit 2 interface

(Jouaneh, University of
Rhode Island)

96

Chapter 4 Microcontrollers

Table 4.6

Variable types
supported in the
CCS C-compiler

4.5.2 BOOTLOADERS

Another way to program PIC microcontrollers is to use a bootloader program. A
bootloader is code that resides on the MCU program memory. The bootloader
code resides on an area of program memory that is not normally used for main pro-
gram execution. The bootloading code on the MCU uses an RS-232 serial line to
communicate with a corresponding PC bootloading application. The PC bootload-
ing application allows the user to download a hex file to the PIC MCU without the
use of any external programmer. The code is simply transferred from the PC to the
MCU through an RS-232 serial line. The PC bootloading application also allows
the user to read or verify application code on the MCU. Note that the user has to
initially load the bootloader code into the PIC device using a programmer such as
PICkit 2. Microchip Technology provides the AN1310 software package, which is
a high-speed bootloader for PIC16 and PIC18 devices.

| 4.6 C-LANGUAGE PROGRAMMING

There are several programming languages available to program PIC MCUs. These
include PicBasic Pro, C, and assembly. While the PICBasic Pro language (devel-
oped by microEngineering Labs, Inc., Colorado Springs, CO) is easy to learn, the
language has some limitations. These include the lack of floating-point variables,
lack of passing arguments to subroutines, and mathematical operations that treat all
variables as unsigned (with the exception of a new version of the complier that sup-
ports a 32-bit signed variable).

There are several C-language compilers for PIC MCUs that have several of the
features that are lacking in the PICBasic Pro compiler. Among these compilers is the
PCWH compiler (will be referred to as the PIC-C compiler) developed by CCS,
Inc. of Brookfield, WI. The PIC-C compiler has actually several versions: PCB for
12-bit program instruction MCUs (such as the PIC10F200), PCM for 14-bit pro-
gram instruction MCUs (such as the PIC16F690), and PCH for 16-bit program
instruction MCU s (such as the PIC18F4550), but all have a similar interface.

This section will only give a brief highlight of some features of this compiler.
Further details about the compiler can obtained from the company website
(www.ccsinfo.com). Details of the C-programming language can be found in [12]. We
will start by talking about the supported variables types. Table 4.6 shows the five vari-
able types supported by this compiler. They include four integer type variables: a
one-bit variable (intl), an 8-bit (int8) integer, a 16-bit (intl6) integer, and a 32-bit
(int32) integer; as well as a 32-bit signed floating-point variable (float32). The four
integer types are by default unsigned but can be changed to signed (not applicable to
intl) variables by adding the signed keyword to the variable type. The last column in
"Table 4.6 shows the standard C variable types that correspond to these variables.

Range
Type Size Unsigned Signed C-Standard type
int1 1 bit number 0to1 N/A short
int8 8 bit number 0 to 255 —128 to 127 int
int16 16 bit number 0 to 65535 —32768 to 32767 long
int32 32 bit number 0 to 4294967295 —2147483648 to 2147483647 long long

float32 32 bit float —15 X 10%1t03.4 X 10% float

www.ccsinfo.com

4.6 C-Language Programming

Directive Purpose Example
#device To specify chip options for the devices on a chip #device (ADC = 10)
#fuse To specify specific configuration settings #fuse NOWDT
#include To include the device specific functionality #include <16F690.h>
#include To include specific c-functions that are not included #include <string.h>
in the standard library
#use To specify the configuration parameters for built-in #use delay(internal=8M)
libraries for devices such as the clock, RS232,
and I°C

The compiler uses pre-processor directives to define the particular chip used
as well as the chip settings. Pre-processor directives begin with a # and are followed
by a specific command. A list of some of these directives is given in Table 4.7.

The #device directive is used to specify the options for the various devices on
the chip (such as the number of bits that the A/D convertor should return) or to
generate code compatible with the integrated circuit debugging hardware. The
#fuse directive is a very nice feature of the PIC-C compiler. The user does not need
to write to specific registers to set the configurations for the various elements on
the chip. The user simply specifies a particular fuse setting. The list of allowable
fuse settings is available in the VIEW tab in the compiler IDE. Figure 4.13 shows
the fuse setting list for the PIC16F690 chip.

B Fuse Reiew =)
[FCTEF R0 -

1.00/LP Low power osc < 200 khe

1,007 Crystal osc <= amhg for POMJPCH , Jmihz to 10 mhy for PCD
1,00 15 14gh speed Oz (> 4mhg for PCMPOH) [>10mhy for PCD)
1LODECID _ External dodk

100 INTRC_IO Internal RC Ose, no CLKOUT

LO0INTRE Interral RE Osc

1.00/AC_i0 Resstor Capacibor O

1.00 AC [Resestew Capuacibor Dise with CLEOLT

L.03WDT [¥¥atch Dog Timer

1.03/NOWDT ‘o Watch Dog Timer

1,04 PUT Pmar L Timar

1,04 HOPUT Tio Power LD Tmer

1.05 MOLR Master Clear pin erabied

LOSNOMCLR Master Clear pin used for 1/0

V.OGPAOTELT _ Code protected fomreads

1.06/NOPROTECT (Cocde not protected from reading

1.07/CPD DNiata FEPROM Code Protected

1.07/NOCPD o EE protection

108 NOERTWND... Mo brommout reset

1.00 DACWHNOUT Recet when brownout detected

1,00 BROWHOUT,.. brownout snabled dumng opertion, deabied duing SLELP
1.00 BACWNDUT,. Brownout controbied by configuration bit in speciel fie register

1.100E50 Intarnal Extarral Sutch Crver mode enabled
110NOIESD linternal External Switch Over made dssbled
1.11 NOFCMEN Fal safe dock monitor disabled
1.11 FCMEN Fad-safr cnck monitor enahied

The #fuse directive is used primarily to specify the timer operating modes,
including the watchdog timer and the reset modes on the chip. Note that each chip
has its own header file (with an .5 extension) which has a listing of all of the con-
stants that are used in the functions that access the devices on that chip. That file
is included using the #include directive. The #use directive is used to specify the con-
figuration parameters for built-in libraries for devices such as the clock, RS232, and
I’C. The PIC-C compiler has many other pre-processor directives that were not
included in Table 4.7. These include the standard C directives (such as #define and
#if), directives for pre-defined identifiers (such as — DEVICE —), and for mem-
ory control (such as #asm).

Table 4.7

Listing of some pre-
processor directives in
PIC-C language

Figure 4.3

Fuse settings list for
the PIC16F690 chip

97

98

Chapter 4 Microcontrollers

Figure 4.14

Code listing for
performing digital
1/0 using the PIC-C

compiler

The PIC-C compiler has many built-in functions to setup and use the various
devices on the MCU (such as digital I/O lines, A/D convertors, timers, the serial
port, PWM output, and I>C interface). Some of these functions are discussed next.

4.6.1 PIC-C 170 FuNcTIONS

For I/O, the PIC-C compiler provides functions that can affect a single bit or the
entire port. The pin functions are

output_high(pin) //Set the selected pin to high
output_low(pin) //Set the selected pin to low

output_pin(pin, value) //Send a specified value (0/1) to selected pin
input(pin) //Returns the state of the selected pin

and the port functions are

output_x(value) //Send an entire byte to port x (x = a, b,c,d..)

input_x() //Read an 8-bit integer representing the port input value

The compiler has directives to specify the type of input/output. In the
STANDARD_IO (default method) mode (#use standard_io(port_name)), the compil-
er automatically generates code to make an I/O pin either input or output every
time it is used The tristate register is automatically updated in this mode. In the
FAST IO mode (#use fast_io(port_name)), the compiler will perform I/0 without
programming of the direction register. The user has to set the direction by calling
the set tristate register function (sez_tris_x()).

The C-language code listing for turning a bit ON and OFF is shown in
Figure 4.14. The code uses the #include <16F690.h> directive to include the constant
definitions for the chip used (such as PIN_C0, which refers to pin 0 on port C). The
code also specifies (through the #use delay directive) the clock frequency as that of

T T T

1/ BitOnOff.c
/// This program turn on/off bit 0 of Port C
/1

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T T

#include <16F690.h> //Include file for the particular chip used
#use delay(internal=8M) //Use Internal 8 MHz-clock
#fuses INTRC_IO, NOMCLR //Set clock mode to internal oscillator with

// no clkout. Master clear pin is used for 1/0

void main(void) //Main function

{
while (2> 1) // Start infinite loop
{
output_high(PIN_CO); //Set the selected pin to high
delay_ms(1000); //Set a time delay of 1000 ms
output_low(PIN_CO); //Set the selected pin to low
delay_ms(1000); //Set a time delay of 1000 ms
}

4.6 C-Language Programming

the internal 8 MHz oscillator. The #fuse directive specifies the clock mode as the
internal oscillator and disables the use of the MCLR line. Due to the simplicity of
the operation performed here, only one function (zain) is used in the code to
implement the infinite Do-Loop operation.

4.6.2 PIC-C A/D FuNCcTIONS

"To use the A/D converter, the compiler provides several functions for this purpose.
First, the user needs to call the function setup_adc(), which sets up the clock source
for the A/D converter. The user can select either a sub-frequency of the oscillator
frequency (such as Fogc/2 or Fosc/16) or the A/D dedicated internal oscillator
(FRre) as the clock source. The clock frequency determines the time it takes to do a
one-bit conversion (7 4p). To do a full 10-bit conversion, it takes 11 T 4p cycles to
complete the conversion. Thus, with an oscillator frequency of 8 MHz and A/D
clock frequency of Fogc/16, it takes 22.0 usec, to do one full 10-bit conversion. For
accurate A/D conversion, the T4p interval should be as short as possible but greater
than the minimum 7,4p (about 0.7 to 1.4 wsec, but it is device dependent). This
means that if the oscillator frequency is 20 MHz, then the A/D clock source should
not be set to Fosc/2, since it results in 74p value which is less than the minimum
T 4p required. Note that, using the A/D dedicated internal oscillator, it takes about
2 to 6 usec to just do one-bit conversion. Thus, if the oscillator frequency is above
1 MHz, it is not recommended to use the Fgc mode, since it will result in a longer
time to do the conversion.

Next one needs to select which pins on the MCU will be used for the A/D con-
version and the voltage reference to use when computing the A/D value. This is
done by calling the function setup_adc_ports() function. Using this function, all,
some, or none of the channels can be set to perform A/D. In addition, this function
can be used to specify the channel number to be used as the analog reference volt-
age if a voltage reference other than VDD is used. The above two functions need
only to be called once.

"To read a particular A/D channel, the channel needs to be selected first by call-
ing the set_adc_channel() before the read_adc() function is called. If the same A/D
channel is read each time, then only the read_adc() function has to be called after
the set_adc_channel() function was called once. The bit resolution of the A/D con-
version is set by including the directive #DEVICE ADC = Num_of bits at the top of
the C-language file.

As an example, the PIC-C language code for turning ON/OFF an LED based
on reading an analog input is shown in Figure 4.15. In the main() routine, the
setup_ade() function is called first to select the main oscillator frequency divided by
sixteen (Fogc/16) as the clock source for A/D conversion. Then the function
setup_adc_ports() is called to configure channel RAQ to operate as an A/D channel.
"This is followed by calling the function set_adc_channel() to select channel RAQ for
the conversion. In the infinite loop, the A/D channel is read using the function
read_adc(), and the 10-bit read value is assigned the variable addata, which is a
16-bit integer.

4.6.3 PIC-C TimING FuNCTIONS

The PIC-C compiler has functions for setting and reading the timers available on
the chip. To setup timer0Q for example, the setup_timer_0() function is called. The
function gives the user the choice of a clock source (internal or external) and the
prescale factor (see discussion in next section about delays and timers) to use. As an

99

100 Chapter 4 Microcontrollers

Figure 4.15

PIC-C code listing for
turning on/off an LED
based on analog input

T
1/ Analog_Input_LED.c

1/

/// This program set on/off LED on pin CO based the value read

/// from A/D channel 0 (RAQ)

1/

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T T

#include <16F690.h> //Constant definitions for chip used
#DEVICE ADC = 10 //10-bit A/D return value
#fuses INTRC_IO, NOMCLR //Set clock mode to internal oscillator with
// na clkout. Master clear pin is used for 1/0
#use delay (INTERNAL=8M) //Use Internal 8 MHz clock
void main()
{
int16 addata;
setup_adc(ADC_CLOCK_DIV_16); //Set A/D clock frequency as FOSC/16
setup_adc_ports(sANO); //Set channel 0 for A/D
set_adc_channel(0); //Select channel 0
while (2> 1) // Start infinite loop
{
addata = read_adc(); //Read selected A/D channel
if (addata < 512)
{
output_high(PIN_CO); //Set port CO to high
1
else
{
output_low(PIN_CO); // Set port CO to low
}
delay_ms(1000); // Wait 1000 ms
b}

example, to use the internal clock on the MCU, and a prescale factor of 8, the func-
tion is called as

Setup_timer_0 (RTCC_INTERNAL, RTCC_DIV_8)

where the particular parameters used are dependent on the selected MCU (done
by adding the header file for the MCU used to the C-language file). Once the timer
is set up, the timer is accessed by using the provided get_timer0() function, which
returns the count value of the counter associated with this timer. The compiler also
provides the set_timer0() function, which sets the count value of the counter to a
particular value.

4.6.4 PIC-C PWM FunNcTIONS

As mentioned previously, the PIC16F690 MCU can supply PWM output signals from
pins 5, 6, 7, or 14 (see Figure 4.4). The PIC-C complier provides functions for this
operation. The PWM output functions are part of the CCP module on the MCU, and
thus, the CPP module has to be configured for PWM operation by the calling the
function setup_ccp1(CCP_PWM), which configures the P1A channel to operate in
PWM mode. The timing for the PWM signals are controlled by timer2 on the chip,
and the frequency of the PWM signals is set by calling the setup_timer_2() function.
The duty cycle of the PWM signal is set by calling the sez_pwm1_duty() functon,
which sets the duty cycle from 0 to 100%. The function uses a 10-bit value to set the
duty cycle. Further details about PWM operation are provided in the next section.

47 PIC MCU Devices and Features

| 4.7 PIC MCU Devices AND FEATURES

In this section, we will discuss devices and features of the PIC MCUs. These
include data memory, EEPROM data, program memory, delays and timers, PWM
duty cycle and timing, watchdog timer, power saving, A/E/USART, analog com-
parator, synchronous serial interface (SSP) module, and I>C interface.

4.7.1 DATA MEMORY

In a PIC MCU, the data memory (in which data is stored during program opera-
tion) is portioned into banks. In the PIC16F690 MCU, the data memory is divided
into four banks, each 128 bytes in length. Each bank consists of general purpose
registers and special function registers. The first 32 locations of each bank contain
the special function registers, and the remaining 96 locations are for the general
purpose registers. The special function registers are used by the CPU and the
peripheral devices to control the operation of the MCU. Examples of special func-
tion registers include the tristate register (TRISA), the analog select register
(ANSEL), and the timerl control register (TIMCONI). The general purpose reg-
isters are used to store variables declared inside the code, and there are 256 of these
registers. Note that while there are a total of 512 memory locations (4 banks X 128
location per bank), not all of the memory locations are implemented.
Unimplemented data memory locations read as 0. The selection of a particular
bank is done using the RP0 and RP1 bits of the STATUS register.

In the PIC18F4550 MCU, the data memory is portioned into 16 banks
(256 bytes each) but with a different organization. Fifteen banks (bank 0 through 14)
are used as general purpose registers, while one bank (bank 15) is used for the spe-
cial function registers. When using a high-level compiler (such as C or Basic), the
user does not need to know in which bank the data will be stored. On the other
hand, when using assembly language, the user has to explicitly select the memory
bank when writing or reading data.

4.7.2 EEPROM DaTtA

The EEPROM Data can be used to store data at program time or during program
execution. Storage time access during program execution takes longer time than
writing to a RAM location. However, the data is permanently stored and will be
maintained even if power is lost. The PIC-C compiler has the following functions
for accessing EEPROM data:

read_eeprom(address) //Read the data EEPROM at the specified memory location
write_eeprom(address, value) //Erases and writes value to data EEPROM at the specified
//memory location

These two functions are designed for use during run time. The PIC-C compiler also
has a pre-processor directive (#ROM) that can be used to access EEPROM data.

4.71.3 PROGRAM MEMORY

Program memory refers to the area on the chip that is used to store program
instructions. The PIC16F690 has 7 Kbytes of program memory, while the
PIC18F4550 has 32 Kbytes of program memory. Most of the chips in the PIC16
family have program instructions that are 14-bits wide, while those in the PIC18
family have program instructions that are 16-bits wide. The execution of program

101

102 Chapter 4 Microcontrollers

Figure 4.16

Program memory and
stack map on PIC16F690

(Reprinted with the
permission of Microchip
Technology Incorporated)

PC<12:0>
CALL, RETURN. 13
RETFIE, RETLW 4

Stack Level 1
Stack Level 2

Stack Level 8

Reset Vector 0000h
Interrupt Vector 0004h
0005h

On-Chip Page 0
Program 8;5&?
Memory Page 1 OFFFh
1000h

Access 0-FFFh

1FFFh

instructions is controlled by the program counter (PrC). On the PIC16F690, the
PrC is 13 bits and can access 8K instructions. However, only the first 4K (0000h —
OFFFh) instructions are physically implemented on the PIC16F690, as seen in
Figure 4.16. Accessing a location beyond this limit will cause a wraparound. The
Reser Vector address (0000h) is the address of program start after the MCU is pow-
ered on or reset. The Interrupt Vecror address (0004h) is the starting address of the
interrupt service routine.

4.7.4 DeLAYS AND TIMERS

Compilers such as the PIC-C compiler provide built-in functions for timing delays.
These include delay_ms(time), which delays execution up to 65535 ms;
delay_us(time), which delays execution up to 65535 microsecond; and
delay_cycles(count), which delays execution from 1 to 255 instruction clocks, where
each instruction clock is equal to four oscillator clocks. All of the above functions
work by executing a precise number of instructions to cause the requested delay.
They do not use any timers. Note that no code can execute while one is waiting for
the delay to expire with the exception of interrupt service routines. Time spent in
an interrupt does not count toward the delay time. Furthermore, these functions
cannot give us the time of occurrence of an event relative to some other point in
the code (need to access timers directly).

The PIC16F690 has three timers referred to as Timer0, Timerl, and Timer2.
More information about these timers is included in Chapter 6. Timerl uses a 16-
bit counter, while Timer0 and Timer2 use 8-bit counters. Timers 0 and 1 can oper-
ate as either timers or counters. In the timing mode, the count value is incremented
every instruction cycle (or at a multiple of it if a prescaler is used). In the counter
mode, the Timer0 or Timerl module will increment on every rising or falling edge
of the external signal connected to the microcontroller. The user has a choice of
setting the clock source for these timers, as well as setting the maximum overflow

47 PIC MCU Devices and Features

interval. All three timers have a prescalar, which is a user-set factor that can divide
the input clock frequency for that timer. For example, Timerl has a choice of four
prescale factors (1:1, 1:2, 1:4, and 1:8). Having a prescale factor higher than 1:1
increases the maximum counting interval before the counter overflow. Example 4.3
illustrates the use of the prescale factor.

Example 4.3 Timer Counting Interval

Using an 8 MHz internal clock, and 1:8 prescale factor, determine the maximum
counting interval for Timer1 on the PIC16F690.

Solution:

The input clock frequency to Timer1 would be 0.25 MHz (8 X 1/4 X 1/8) or a
counter resolution of 4 us. The one-quarter factor is due to the fact that the
instruction cycle frequency on all of the PIC chips is one-quarter of the clock fre-
quency (Fosc)- Since Timer1 is associated with a 16-bit counter, the maximum
counting interval is 2'® X 4 us = 262144 us or 262.1 ms. Thus, with a 1:8 prescale
factor, the Timer1 counter will overflow once every 0.2621 s.

Timerl counter values are available by reading the low and high bytes of
Timerl registers (TMRIL and TMRIH registers). The operating mode of this
timer is first set by writing to the Timerl control register (T1CON).

Unlike timers 0 and 1, Timer2 has also a postscaler factor defined for it. A
postscaler factor increases the time interval (by the postscalar factor) at which the
interrupt flag bit in the peripheral interrupt request register (PIR1) is set due to
Timer2 overflow. For example, if Timer2 overflows every 2.048 ms, then with a
postscalar factor of 1:16, the interrupt flag bit will be set once every 32.768 ms.

Chapter 6 includes code listings for implementing a timing function that can
return the time, since the timer was started as long as the timer was read often to
prevent overflow errors.

4.1.5 PWM TiMING AND Duty CycLE

Timer?2 is used to control the frequency of the PWM signal. The frequency of the
PWM signal is given by

PWMfreq = (Fosc/4)/((1 + PRZ) X t2pres)

where Fogc is the oscillator frequency, #2pres is the prescaler factor for Timer2, and
PR2 is Timer2 period register value (0 to 255). For example, at a clock frequency
of 8 MHz, a t2pres value of 4, and a Timer2 period register value of 255, the PWM
frequency will be 1.953 kHz.

Using the PIC-C compiler, the command to setup Timer2 to obtain the above
frequency is

setup_timer_2(T2_DIV_BY_4, 255,1)

where the first argument is the prescale factor, the second argument is the Timer2
period register value, and the third argument is the Timer2 postscaler value. Note
that the Timer2 postscaler is not used in the determination of the PWM frequency.
The duty cycle is given by

Duty_cycle = value/(4 X (1 + PR2))

(43)

(44)

103

104

Chapter 4 Microcontrollers

(45)

where value is the parameter written to registers CCPRIL and CCP1COM (or
equivalently the parameter of the sez_pwm™ duty() function in the PIC-C compiler).
For a 50% duty cycle and a PR2 value of 255, value is 512 in Equation (4.4). Note
that the number of available discrete duty cycle values is dependent on the value of
the PR2 register. When PR2 is 255, the PWM bit resolution is at a maximum at
10 bits, and 1024 discrete duty cycles values can be used. The bit resolution as a
function of the PR2 register value is given by Equation (4.5).

Resolution (in bits) = log (4 (PR2 + 1))/log(2)

Note that while the PIC16F690 has four PWM output channels, they all run from
a single PWM generator. This means that the user cannot independently control
the frequency and duty cycle of each of these channels. The user can however con-
trol which channel is used for PWM output (default channel is P1A on
PIC16F690). This is done through the Pulse Steering Control (PSTRCON) reg-
ister (see data sheet for details). PIC MCUs with the ECCP module (such as
PIC16F690) can also be configured for full or half H-Bridge PWM control (see
data sheet for details).

Example 4.4 illustrates the determination of the minimum and maximum
PWM frequencies as well as the bit resolution.

Example 4.4 PWM Frequency

Determine the minimum and maximum PWM frequencies that can be achieved
using an oscillator clock frequency of 8 MHz. What is the PWM bit resolution at
the maximum frequency?

Solution:

From Equation (4.3), the minimum frequency is achieved with the largest value for
PR2 and t2pres. Using a value of 255 for PR2 and 16 for t2pres, we obtain a PWM
frequency of 488.28 Hz. If we need to have a lower frequency than 488.28 Hz,
then we need to use an oscillator with a lower frequency. Similarly, the maximum
frequency is obtained by setting PR2 to 0 and using a t2pres value of 1. This gives
a PWM frequency of 2MHz.

From Equation (4.5), the bit resolution at the maximum frequency is given as
log(4)/log(2) = 2. This means that there are four possible duty cycle value settings
(0 through 3). However, because the PWM period (0.5 us) is the same as the
instruction period (0.5 us) in this case, the achievable duty cycles are only 0 and
100%. Note that if the duty cycle pulse-width setting results in a signal larger than
the PWM signal period, then the PWM output will not change.

4.7.6 WATCHDOG TIMER

The watchdog timer (WDT) is a special counter that resets the processor if it over-
flows. The purpose of the WD is to cause the processor to reset if it times out in
a lengthy operation. To prevent overflow, the program needs to periodically reset
the counter associated with the watchdog timer. The operation of the WDT is con-
trolled by the WDTCON register. The watchdog timer uses the internal low fre-
quency clock (LFINTOSC typically running at 31 kHz) for its timing functions,
which is independent of the internal high frequency oscillator clock. The overflow
period is processor dependent. On the PIC16F690, the overflow period can range

47 PIC MCU Devices and Features

T T T

1/ WDT_Test.c

/"

/// This program test the WDT reset function
/I

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
Y s

#include <16F690.h> //Include file for the particular chip used
#use delay(internal=8M) //Use Internal 8 MHz- clock
#fuses INTRC_IO, NOMCLR, WDT //Set clock mode to internal oscillator with
// no clkout. Master clear pin is used for I/0. Enable WDT
void main(void) //Main function
{
setup_wdt(WDT_2304MS); //Set WDT to reset every 2304 ms
while (2>1)
{
output_high(PIN_CO); //Set the selected pin to high
delay_ms(1000); //Set a time delay of 1000 ms
output_low(PIN_CO); //Set the selected pin to low
delay_ms(1000); //Set a time delay of 1000 ms
restart_wdt(); //Restart WDT to prevent resetting

}
}

from 1 ms up to 268 s, while on the PIC18F4550, the overflow period can range
from 4 ms to 131 s.

The PIC-C compiler has built-in functions to control the WDT. These
include the function setup_wdt() that sets up the WDT timer overflow period and
the function restart_wdt(), which causes the WD'T to restart. Figure 4.17 shows a
code listing to illustrate the operation of the WD'T. In the code, the WD'T is set to
overflow every 2304 ms after which an infinite loop is called, in which an LED is
turned ON and OFF every 2 s. The WD'T is restarted in every scan through the
loop. Since the loop duration (2000 ms) is less than the WD'T overflow period, the
given program will cause the LED to flash as set in the code. However, if we change
the delay interval when the LED is on from 1000 ms to 3000 ms, then the LED
will remain on all the tdme. This is because the 3000 ms delay is longer that the
WDT overflow period, so there is no chance to restart the WDT before it over-
flows. Thus, the WDT will keep resetting (i.e. causing the program to start from
the beginning) every 2304 ms and the code will not be able to turn off the LED or
execute the restart_wdt() statement.

4.7.7 POWER SAVING

PIC MCUs have a mode of operation called sleep mode which offers a very low
current power-down mode. During sleep, the oscillator driver is turned OFF, and
I/0 ports maintain the status they had before the MCU went into sleep mode. If
the watchdog timer was enabled, then the WDT will keep running, but its counter
will be reset before the MCU goes to sleep. The program can wake up from a sleep
mode through an external reset input on the MCLR pin, through a watchdog timer
waking up, or through external or peripheral interrupts.

An MCU enters the sleep mode by issuing the sleep instruction in assembly or
by calling the sleep() function in the PIC-C compiler. When the MCU wakes up

Figure 4.17

Code listing for a
program to illustrate
WDT reset

105

106 Chapter 4 Microcontrollers

Figure 4.18

Code listing to illustrate
sleep operation and
wake-up

T T T

1/ WDT_Sleep.c

"

/// A program to illustrate wake-up from sleep using the WDT
/1

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
s

#include <16F690.h> //Include file for the particular chip used
#use delay(internal=8M) //Use Internal 8 MHz- clock
#fuses INTRC_I0, NOMCLR, WDT //Set clock mode to internal oscillator with
// no clkout. Master clear pin is used for I/0. Enable WDT
void main(void) //main function
{
int8 i;
setup_wdt(WDT_1152MS|WDT_TIMES_8); //Set WDT to reset every 1152 ms x 8
for (i=1; i<= 10; i++)
{
output_high(PIN_CO); //Set the selected pin to high
delay_ms(1000); //Set a time delay of 1000 ms
output_low(PIN_CO); //Set the selected pin to low
delay_ms(1000); //Set a time delay of 1000 ms
if (i==3)
{
sleepl);
1
}

due to other than external reset input, it continues execution at the instruction that
follows the sleep instruction. Figure 4.18 shows a PIC-C code listing that illustrates
waking up from sleep using the WD'T. In the code, the WDT is configured to reset
every 9.216 seconds before the code goes into a loop to turn ON and OFF an LED
ten times. After the third iteration in the loop, the sleep() function is called. Before
the MCU goes to sleep, it clears the WD'T. When the WD'T resets 9.216 seconds
after clearing the WDT,] it executes the instruction after the sleep() command. In
this program, the LED will flash three times, then sleeps for 9.216 seconds, wakes
up and continues with 7 = 4 in the loop. It will then flashes eight times (five times
before the next WD'T reset with 7 = 4 to 8 and three times after the WD'T reset
with 7 = 1 to 3) before it goes to the next sleep cycle. The program operation
repeats every 24.432 (6 + 9.216 + 9.216) seconds.

4.7.8 A/E/USART

Many PIC chips have a built-in universal synchronous asynchronous receiver trans-
mitter (USART), an enhanced USART (EUSART), or an addressable USART
(AUSART) module. The USART module can be used for synchronous (data line
and clock signal) and asynchronous (data line but no clock signal) serial communi-
cation. Serial synchronous communication is normally used to communicate with
devices that do not have an internal clock for baud generation such as A/D or D/A
devices or serial EEPROMs. These devices need a master synchronous device to
provide the needed external clock. Asynchronous serial communication is used
with devices that have their own internal clocks for baud generation. The EUSART
has more features than a USART. These features include automatic detection and

47 PIC MCU Devices and Features

calibration of the baud rate. Some PIC MCUs have an AUSART which allows the
USART to ignore all data on the bus until a new address byte is present.

Note that while a USART provides the mechanism for converting parallel data
into serial data and vice versa, additional hardware is needed to wire a PIC MCU
to a PC for serial RS232 communication. This is needed since the PIC does not
supply the voltages needed (up to +/— 15 volts) for serial communication with a
PC. A commonly used device is the DS275 or the MAX232/233 interface chip.
The connection diagram using the MAX233 chip is shown in Figure 4.19.

,,,,,,, MAX233 PIC16F690

~<— 5T1IOUT T1IN 2 Tx

> 4 R1IN R10UT 3 Rx

The CSS compiler has several functions for serial communication. These
include the gezc(), gets(), putc(), printf(), and kbhit() functions. The getc() gets a sin-
gle character from the buffer. The gezc() function is blocking, and thus, one should
use first the kbbit() to determine if a character is available in the buffer before call-
ing the getc() function. The gets() gets a string from the buffer until a carriage
return is encountered. The purc() places a character in the output buffer, while
printf() sends a formatted string to the buffer. The next chapter has more details
about serial communication including example code.

4.7.9 ANALOG COMPARATOR

Many PIC MCUs have an analog comparator module. The analog comparator com-
pares two analog voltages and provides a digital output value that is an indication of
the relative magnitude of the two analog voltages. This module is useful in interfac-
ing analog-to-digital circuits. On the PIC16F690, there are two analog comparators
called C1 and C2. Each comparator has two inputs labeled IN+ and IN—. When the
analog input to the IN+ pin is higher than the analog input to the IN— pin, the out-
put of the comparator is 1, otherwise it is zero. The analog comparator has several
modes of operation, including simple comparison as discussed previously, synchro-
nizing the comparator output with Timerl, and simultaneous read of comparator
outputs to eliminate the timing skew of reading separate registers. The CSS compiler
provides the function sezup_comparator() to set up the analog comparator.

4.7.10 SYNCHRONOUS SERIAL PORT (SSP) INTERFACE

"To provide higher communication speeds, many PIC chips have a built-in synchro-
nous serial port interface module. The PIC16F690 supports both the Serial
Peripheral Interface (SPI) and the Inter-Integrated Circuit (I?C™) interface. The
SPI operates in full duplex and at speeds of 1 Mbps or higher. It is simple to imple-
ment (needs only four wires), and uses the concept of master/slave. The I*C interface
(pronounced I-squared-C) is a synchronous serial communication protocol that was
developed by Philips Semiconductor. The I>C or the Inter-Integrated Circuit (I?C™)
interface uses just two wires, one for data transmission and the other for the clock
signal, for interface between two devices. Chapter 5 has more details about the
programming and operation of these interfaces.

Figure 4.19

Wiring between
a PIC16F690 and
a MAX233

107

108

Chapter 4 Microcontrollers

| 4.8 INTERRUPTS

An interrupt is a mechanism in which a predefined event (such as the overflow of a
hardware timer, the change of state in a digital input line, or the arrival of a charac-
ter in a serial line) causes a program to stop execution after the current instruction,
saves the state of the program, and then executes a predefined routine called an
Interrupt Service Routine (ISR). After the ISR completes execution, the program
resumes its operation at the next instruction. Interrupts are typically used in time
critical applications to make the CPU take immediate action in response to situations
such as alarm conditions. Interrupts are also used so as not to waste the computing
resources in checking if an event occurs. The process of continuous checking is called
polling. An example of a polling operation is the process of continuously reading a
digital input pin to check if the pin has changed state.

4.8.1 INTERRUPTS APPLICATIONS
Typical applications of interrupts include the following.

* Use of timer overflow interrupts to schedule the execution of a code segment
that needs to run periodically. Such code can be used to implement a digital
feedback controller (see Chapters 6 and 9). For example, if we want our
controller to run every Tsamp interval, then without the use of interrupts,
the program has to repeatedly read a timer to determine if one Tsamp
interval has elapsed since the last time the controller was called. If that is the
case, then the controller is called again, and the process repeats. This is not
very efficient. If a timer overflow interrupt was used instead, then the MCU
will automatically execute the control code whenever the timer overflows.
"The control code will execute as part of the ISR. There is no need for the
program to read the timer to check if the specified interval has elapsed.
Note that the timer overflow interval has to be set as a function of the
desired controller run interval or Tsamyp.

* Use of a digital input line change of state interrupt to indicate a change in
the output of a sensor. An example would be the use of a non-contact digital
proximity sensor (see Chapter 7) to indicate the arrival of a part in an assem-
bly line or the close proximity of a part to an obstacle. It is not very efficient
to keep reading the sensor output value to see if the sensor output has
changed state. With the use of a digital input line change of state interrupt, a
change in the state of the sensor (i.e., from low-to-high or from high-to-low)
will generate an interrupt which will automatically cause an ISR to execute to
handle the change of state (such as starting or stopping a motion sequence or
tuning ON/OFF a valve).

* Use of a serial line character receive (EUSART Receive) interrupt to read a
character that was received by the serial port input buffer. In serial communi-
cation between a MCU and a PC (see details in next chapter), it is not known
when characters will be transmitted from the PC to the MCU. Since the
receive input buffer has a limited capacity, the MCU program has to continu-
ously check the input buffer and read a character if it is available to prevent
the buffer from overfilling and thus overwriting previously received charac-
ters. With the use of EUSART Receive interrupt, the arrival of a character
over the serial line will cause the program to automatically execute an ISR to
read the received character. There is no need for the program to continuously
check the input buffer.

4.8.2 INTERRUPT PROCESSING
On the PIC16F690, several sources can cause interrupts. These include:

Timer0 or Timerl Overflow
PORTA or PORTB change
EUSART Receive and Transmit
External Interrupt on pin RA2

The PIC16F690 has several registers dedicated for interrupt processing. These
registers are listed in Table 4.8.

Register Name Function

INTCON Interrupt Control To enable individual and global interrupts. Also to record individual
Register interrupt requests from INT pin interrupt, PORTA/PORTB change

interrupts, and TMRO overflow interrupt in flag bits.

PIE1,PIE2 Peripheral Interrupt To enable individual interrupts through their corresponding
Enable Register enable bits

PIR1,PIR2 Peripheral Interrupt To record individual interrupt requests in flag bits from the
Request Register remaining interrupt sources such as A/D, Timer1 overflow,

comparator, etc.

"To use interrupts, one needs to do the following.

1. Set the global interrupt enable (GIE) bit in the INTCON Register. Without
enabling this bit, none of the unmasked interrupts are allowed to happen.

2. Enable (unmask) the interrupt(s) that you need to process such as timer] over-
flow interrupt by writing to the appropriate register (such as INTCON, PIEI,
or PIE2). Since there are many possible interrupt sources, the specific interrupt
enable bits are spread over three registers: the interrupt control register
(INTCON) and the two peripheral interrupt enable registers (PIE1 and PIE2).

3. Write an ISR or interrupt handler to handle each interrupt source.

When an interrupt is serviced by the MCU, the GIE bit is cleared to disable any
further interrupt. The address of the next instruction is pushed onto the stack, and
the program counter is loaded with the address of the ISR which is stored in a spe-
cific memory location (0x0004 on PIC16F690). Figure 4.20 shows a graphical view
of interrupt handling on a PIC MCU. It shows the interaction between the main
program and the ISR in program memory.

Writing an ISR is a tricky process. If not done carefully, it will leads to unpre-
dictable behavior. An ISR normally consists of four parts. The first part has code
to save the status of the processer. In most MCUs, this means the values of the
STATUS and W registers, as well as registers related to the PrC. These registers
are not saved by the MCU. The values of these registers should be saved, because
there is a possibility that when the interrupt executes it will modify them. Once the
ISR completes its work, the original register values should be restored, and the pro-
gram can continue to do what it was doing before the interrupt happened.

The second part of the ISR is to check and clear the Interrupt Request bit on the
INTCON, PIR1, or PIR2 registers. Checking the Interrupt Request bit can tell
which source caused the interrupt if more than one interrupt source was enabled.
While some processors allow a dedicated ISR for each interrupt source, some do
not allow that, and thus, checking the Interrupt Request bits is needed. The set

4.8 Interrupts

Table 4.8

Interrupt registers on
the PIC16F690

109

10 Chapter 4 Microcontrollers

Figure 4.20

Typical interrupt
handling on a PIC MCU

Program Memory

Reset Vector

Address of ISR is

Interrupt Vector -~
P Stored Here

| Instruction 7 | Interrupt Occurs in the
) Middle of this Instruction
[
*——\ | — Main Program
Main <— Resumes Here after
Program | Instruction n + 1 | ISR Completion
. Program Branches to
+2 N , .
| Instruction 7 | < ISR after Completion of
.o Current Instruction
N~
| Instruction 1 |
Interrupt
Service < | Instruction 2 |
Routine
| RETFIE |

Interrupt Request bit should be cleared to avoid multiple interrupt requests once the
interrupts are re-enabled.

The third part of the ISR is to have code to handle that specific interrupt such
as incrementing a counter, initiating control action, or setting a flag. The fourth
part of the ISR should restore the state of the registers, plus code to inform the
processor that interrupt handling was completed. In assembly, this is done by exe-
cuting the RETFIE instruction. The RETFIE instruction exits the ISR and sets
the GIE bit, which re-enables interrupts.

The handling and processing of interrupts depends on the chip used. The
PIC16F690 MCU supports only basic interrupt processing (such as discussed previ-
ously). Some chips (such as those in the PIC18 or PIC 24 families) have advanced
interrupt features (such as the ability to setup a priority level for each interrupt and
the use of interrupt vectors). In the PIC18F4550 MCU, each interrupt source can be
assigned a high-priority level or a low priority level. A high-priority interrupt source
can interrupt a low-priority interrupt. Also, low-priority interrupts are not processed,
while high-priority interrupts are being serviced. Due to the use of priorities, each
interrupt source has three bits to control its operation. These include the flag bit and
the enable bit that were discussed before, plus a priority bit to select the priority level.
There are also two global interrupt enable bits: GIEH to enable all interrupts with a
high-priority levels, and GIEL to enable all interrupts with a low-priority level. When
an interrupt occurs, the ISR will execute at one of two predefined addresses, depend-
ing on the priority bit setting. If the interrupt priority feature is disabled (default

setting), interrupt processing is compatible with the PIC mid-range devices (such as
PIC16F690), and all interrupts branch to just one address.

4.8.3 PIC-C INTERRUPTS HANDLING

The CCS compiler provides several functions for interrupt processing. These
include disable_interrupts(), which disables a specified interrupt, and enable_inter-
rupts(), which enables a specified interrupt. The #int_xxx directive (where xxw is
the specified interrupt name) is placed before the code listing for the interrupt
service routine to inform the compiler to use the following function with inter-
rupts associated with the specified interrupt name. We will show in this section
the PIC-C code listing for two different types of interrupts. Figure 4.21 shows

T T
// TimerQint.c

//

// A program to illustrate timerQ overflow interrupt

// Compiler: PCWH from CS, Inc. (Version 4.103)
s
#include <16F690.h>

#fuses INTRC_IO,NOWDT,NOPROTECT,NOMCLR

#use delay(clock=8M)

#define INT_PER_2SECONDS 61 //((8000000*2)/(4*256%256))

int8 seconds; // Seconds counter
int8 int_count; // Number of interrupts left before 2 seconds has elapsed
int8 LED_state = 0; // Flag to keep track of the LED state
#int_timerQ // This ISR function is called every time
void clock_isr() { // timer0 overflows (255->0).
// For this program this happens 30.5 times/sec (or 61 times/2 sec)
if(--int_count==0) // Check if interrupt counter is zero
{
seconds = seconds + 2; // Increment seconds counter
if (LED_state == 0) // Turn on LED if it was off
{
output_high(PIN_CO);
LED_state = 1;
1
else
{
output_low(PIN_CO); //Turn off LED if it was on
LED_state = 0;
1
int_count= INT_PER_2SECONDS;//Reload number of interrupts per 2 second
}
}
void main()
{
int_count=INT_PER_2SECONDS;
set_timer0(0); // Initialize timer0 to zero

setup_timer_O(RTCC_INTERNAL | RTCC_DIV_256); // Set timer0 to use internal clock with a prescale of 256
enable_interrupts(INT_TIMERO); // Enable timerQ interrupt

enable_interrupts(GLOBAL); // Activate timer0 interrupt
while (2> 1) // Start an infinite loop

{
; // Do nothing
}

4.8 Interrupts m

Figure 4.21

Code listing for Timer0
overflow interrupt
using the PIC-C
compiler

m Chapter 4 Microcontrollers

Figure 4.12

Code listing for RA2/INT
external interrupt using
the PIC-C compiler

a code listing for Timer0 overflow interrupt. The code alternatively flashes an
LED ON and OFF every two seconds. The timing interval is kept by a variable
that is decremented whenever the interrupt occurs. The frequency of the inter-
rupts is controlled by setting the timing parameters for Timer(0. Note that
TimerO is also referred to as the real-time clock (RTTC). In the code shown in
Figure 4.21 for an 8 MHz clock and a prescale value of 256, the Timer0O clock
frequency is 7812.5 Hz. Since the interrupt occurs when the 8-bit Timer0 over-
flows, then the interrupts are generated at the rate of 30.52 interrupts per sec-
ond or (7812.5/256).

Figure 4.22 shows a code listing for RA2/INT external interrupt. This inter-
rupt is edge triggered, occurring on the rising or falling edge of the signal connected
to the RA2/INTpin. In the code, the interrupt is set to occur on the falling edge.
The ISR for this interrupt makes an LED (pin RCO) flash whenever the interrupt
is detected. Obviously, this code can be replaced by some other action that needs
to be performed.

T i,
// Interrupt_EXT.c

// This program illustrates external interrupts on INT/RAZ pin
// Compiler: PCWH from CS, Inc. (Version 4.103)
Ty

#include <16F690.h> // Include file for the particular chip used
#use delay(internal=8M) // Use Internal 8 MHz- clock
#fuses INTRC_IO, NOMCLR // Set clock mode to internal ocsillator with

// no clkout. Master clear pin is used for 1/0

#INT_EXT // The ISR function

void ext_isr()

{
output_high(PIN_CO); // Set the selected pin to high
delay_ms(500); // Set a time delay of 500 ms
output_low(PIN_CO); // Set the selected pin to low
delay_ms(500); // Set a time delay of 500 ms

}

// Main program

void main()
{
ext_int_edge(H_TO_L); // Set interrupts to occur on H_TO_L
enable_interrupts(INT_EXT); // Enable interrupts for external INT pin
enable_interrupts(GLOBAL); // Activate interrupts
while(TRUE) // Start an infinite loop
{
; // Do nothing
}

}

Note that due to the use of C-language to handle the interrupt, all low-level
interrupt processing activities (such as checking and resetting of the interrupt flag
bits) are handled by the compiler and are not explicitly shown in the code.

49 Assembly Language Programming

| 4.9 AsseMBLY LANGUAGE PROGRAMMING

As mentioned before, assembly language is a low-level programming language that
is specific to the microcontroller used. It is more difficult to program the code in
assembly language, but the user has better control on the execution timing of the
code, and can also get more compact code in terms of file size in hex.

4.9.1 AsSEMBLY INSTRUCTIONS
For the PIC16F690, each assembly instruction is 14-bit word that consists of two parts:

Opcode: Specifies the instruction type.
Operand: One or more values that specify the operation of the instruction.

Table 4.9 shows a list of some assembly instructions along with an explanation of
the operation of these instructions. Note that many of the assembly instructons make
reference to the W-register and the f-register. The W-register is the accumulator
register or the working register. There is only one present in the system. The
f-register refers to a 7-bit file register address. The file register is a designation for
any data (a general purpose register) or any special function register (such as the
STATUS or TRISB registers). The term ‘literal’ is also used in some of the commands,
which is the term used to designate a numerical value or label (i.e., 10 or 207).

Some of the assembly instructions change the status of certain bits in the
STATUS register. These status bits are defined below:

C—Carry bit (bit 0 of STATUS Register): This bit is set to 1 when a carry-
out occurs from the most significant bit of the result and is set to 0 when no
carry-out occurs.

DC—Digit carry bit (bit 1 of STATUS Register): This bit is set to 1 when
a carry-out occurs from the 4th low-order bit of the result and is set to 0
when no carry-out occurs.

Z—Zero bit (bit 2 of STATUS Register): This bit s set to 1 when the result of
an arithmetic or logic operation is zero and is set to 0 when the result is not zero.

PD—Power down bit (bit 3 of STATUS Register): This bit is set to 1 after
power-up or after executing a clear watchdog timer instruction (CLRWDT)
and is set to 0 by execution of the SLEEP instruction.

TO—Time out bit (bit 4 of STATUS Register): This bit is set to 1 after
power-up, CLRWD'T, or SLEEP instruction. The bit is set to 0 after a time-
out from the watchdog timer.

The status bits are useful in performing comparison operations or getting sta-
tus information. For example, after performing a subtraction operation using the
SUBWEF instruction, we can check the value of the carry bit (C) to determine
which of the two values that are being subtracted is larger than the other. Similarly,
the 0 bit (Z) can be used, for example, to indicate if a variable that is being incre-
mented (using the INCF instruction) has overflowed.

4.9.2 AsseMBLY LANGUAGE PROGRAMMING EXAMPLES

To illustrate assembly language programming, consider the operation of adding the
values of two variables and storing the result in one of the variables. If we are using
VB or C-language, we can write this operation as

VALUEZ = VALUE1 + VALUEZ2

m

4 Chapter 4 Microcontrollers

Table 4.9 Assembly Status
Instruction Example 14-bit Code Bits
A listing of some of the Syntax Description Syntax MSB LSB Affected
assembly instructions ADDWF f,d Add the contents of the file register ~ ADDWF 00 0111 dfff ffif C.DC,Z
for the PIC16F690 'f'to the Wregister. If ‘d'is 0, store VALUE,O

the result in the W-register. If 'd"is 1,
then result is stored in the f-register.

BCF f,b Clear bit ‘b’ in file register ‘f'. BCF STATUS,5 01 00bb bfff ffff

BSFf,b Set bit 'b" in file register ‘f'. BSF TRISA,0 01 01bb bfff ffff

BTFSC f,b Test bit “b" in file register “f". If bit BTFSC 01 10bb bfff ffff
“b" is “1", the next instruction is STATUS,2

executed. If bit “b” is “0", the next
instruction is skipped and a NOP is
executed making this a two-cycle

instruction.

CALL k Call subroutine defined by 11-bit CALL 2000 10 Okkk kkkk kkkk
variable k.

CLRF f Clear the contents of the file CLRF PORTA 00 0001 1fff ffff Z

register ‘f'. The Z bit in the STATUS
register is set after this operation.

DECFSZ fd Decrement the contents of the file DECFSZ 00 1011 dfff ffff
register 'f'. If ‘d" is 0, store the VALUE,1
result in the W-register. If ‘d"is 1,
then the result is stored in the
f-register. If the result is "1", the
next instruction is executed. If the
result is 0", then a NOP is executed
instead. In this case, it becomes a
two-cycle instruction.

GOTO k Perform an unconditional branching = GOTA 1100 10 Tkkk kkkk kkkk
to a label defined by 11-bit variable k.

INCF f.d Increment the contents of the file INCF VALUE,1 00 1010 dfff ffff VA
register ‘f'. If d" is 0, store the result
in the W-register. If ‘d" is 1, then
the result is stored in the f-register.

MOVF f,d Move the contents of the file MOVF 00 1000 dfff ffff VA
register ‘f'. If 'd" is 0, the destination ~ VALUE,0
is the W-register. If ‘'d" is 1, the
destination is the file register

‘f-itself.
MOVLW k Move an 8-bit literal 'k’ to the MOVLW 100 11 00xx kkkk kkkk
W-register
MOVWEF f Move data from the W-register to MOVWEF 00 0000 1ff ffff
the file register ‘f’ VALUE
NOP No operation NOP 00 0000 0xx0 0000
SUBWF f.d Subtract using 2's complement SUBWF 00 0010 dfff ffff C DC, 2z
method the contents of the VALUE 1

W-register from the f-register. If ‘d’
is 0, store the result in the
W-register. If ‘d" is 1, then result is
stored in the f-register.

49 Assembly Language Programming

Assembly Instruction Comments
MOVF VALUE1, 0 Move the contents of the file register, VALUET, to the W-register
ADDWF VALUE2, 1 Add the contents of the file register, VALUEZ, to the W-register, and

stores the result in the file register, VALUEZ

where the two variables are defined as VALUEI and VALUE2. In assembly lan-
guage, this operation is programmed as shown in Table 4.10 (we are assuming each
variable to be an 8-bit in size). Here, the addition of the two numbers is performed
after one of the variables was transferred to the W-register, which is part of the
CPU of the microcontroller.

As another example, consider the following Visual Basic Express (VBE) code,
which compares the values of two variables and performs a call to subroutine Sub1
if the value of one of the variables is equal to the other.

IF (VALUE2 = VALUE1) Then
Call Sub1
ENDIF
"This code can be programmed in assembly language, as shown in Table 4.11. In the
code listing, after performing the subtraction operation, the 0 bit in the status reg-
ister is set to 1 if VALUE?2 is equal to VALUEI and to 0 if otherwise. Since the 0 bit

is set to 1 only if VALUE2 = VALUEI, the CALL statement is not skipped if
VALUE2 = VALUEI. In that case, the program calls subroutine Sub1.

Assembly Instruction Comments
MOVF VALUE1, 0 Move the contents of the file register, VALUET, to the W-register
SUBWEF VALUE2, 0 Subtract the contents of the W-register from the variable VALUEZ
(i.e. perform VALUEZ-VALUET)
BTFSC STATUS, 2 Perform a test on the zero bit, and skips the next statement if the bit is
clear.
CALL Sub1 The code will execute this statement if the zero bit is set

Assembly language does not have a command to perform a Do-Loop for a cer-
tain number of operations. A Do-Loop is implemented using a combination of sev-
eral instructions. For example, the following VBE Do-Loop is implemented in
assembly using the code listed in Table 4.12.

For I=1to 200
Call Sub1
Next |

The first two instructions place the loop counter (200 in this case) in the variable
I In each iteration of the code that follows the LoopI label, the variable [is decre-
mented by 1. If the result of the decrement operation is not 0, the code branches to
label Loop2, which calls the subroutine SubI. When I reaches 0, the code branches to
the label ExitLoop, at which point the Do-Loop code is no longer executed.

Table 4.10

Listing of assembly
code to add two
variables

Table 4.11

Listing of assembly
code to perform com-
parison and branching

15

Chapter 4 Microcontrollers

Table 412 Assembly Instruction Comments
Listing of assembly MOVLW 200 Move the number 200 to the W-register
code that performs a MOVWE | Move the contents of the W-register to the variable | (loop counter)
Do-Loo
P Loop1: Label Loop1
DECFSZ 11 Decrement the contents of the variable | and place the result back in
the | variable.
GOTO Loop2: Branch to label Loop? if the result of the previous instruction is not
z€r0.
GOTO ExitLoop: Branch to label ExitLoop when the | variable becomes 0.
Loop2: Label Loop2
CALL Sub1 Call Sub1
GOTO Loop1: Branch back to Loop1
ExitLoop: Label ExitLoop
Figure 4.3 bsf STATUS5 // Select Register Page 1 by writing to the RPO bit
Listing of an assembly bef TRISC,0 // Make 10 Pin CO an output
bcf STATUS 5 // Back to Register Page 0
program that turns bsf PORTC,0 // Turn on LED CO

on an LED

To illustrate assembly language for performing I/O operations, consider the
code shown in Figure 4.23. The figure has a listing of a program that turns on
an LED that is connected to pin 0 on port C. Note that in this example, because
the TRISC register and the PORTC registers are on different memory banks
(see data sheet), the appropriate memory bank is first selected before writing to
the particular register on that bank (we do not have to worry about this if we
used C-language). This is due to the limitation that only 7 bits are allowed to
define a file register address, while there are possibly 512 file register locations
spread over four pages (or memory banks).

In the PIC16 family, all assembly instructions take either one or two instruc-
tion cycles to execute, where as mentioned before, the instruction cycle frequency
is one-fourth of the clock frequency. Conditional instructions (such as BTFSS or
DECFSZ) take two instruction cycles to execute when the conditional test is true
and one instruction cycle when the conditional test is false. When the conditional
test is true, the NOP instruction is executed in the second cycle, while the PrC
loads the address to be branched to.

4.9.3 INTEGRATING C AND ASSEMBLY

There are two ways to incorporate assembly code. In the first way, you write the
assembly code in a separate file (with the *.asm extension), compile with an appro-
priate compiler (such as MPLAB), and then download the hex file to the chip. In
the other way, you can add assembly instructions to a C or VB code, because many
compilers allow the integration of assembly commands with a high-level program-
ming language in the same file.

49 Assembly Language Programming m

T
/1] AssemblyForLoop.c

/"

/// This program illustrates the incorporation of assembly code

///into c-program. The code below turns on pin_c0 when | reach 0

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T
#include <16F690.h>

#fuses INTRC_IO,NOWDT,NOPROTECT

#use delay(internal=8M)

// main program that executes assembly routine to decrement the variable |

void main()

{

int8 [;

#asm // Start assembly code
MOVLW 200 // Move 200 into the WW-register
MOVWF | // Move the contents of the W-register to variable |

Loop1: DECFSZ 1,1 // Decrement | and place the result back in | variable
GOTO Loop2 // Branch to label Loop? if the result of the previous instruction is not zero
GOTO ExitLoop // Branch to label ExitLoop when | becomes 0

Loop2: NOP // Do nothing (NOP operation) to simulate a function call
GOTO Loop1 // Branch back to Loop1

ExitLoop: // Label ExitLoop

#endasm // End assembly code

if (I==0) // Turn on pin CO when | reaches zero

output_high(Pin_CO0);

In the PIC-C compiler, assembly instructions are added to a C-file by placing
them between the #asm and #endasm directives. As an example, the assembly code list-
ing for the Do-Loop operation of Table 4.12 is incorporated into a C-code, as shown
in Figure 4.24. The variable I is declared in the C-code, as an 8-bit integer. In the
assembly code, I is assigned a value of 200 and then gets decremented 200 times. The
NOP instruction (used to simulate a function call) is executed in each iteration of the
loop when I is greater than 0. To check the result of the Do-Loop, bit CO is turned ON
in C-code that follows the assembly code if I is equal to 0. One feature of the PIC-C
compiler is that it also can provide an assembly listing for any C-program. The
assembly listing is accessed in the compile menu under the C/ASM tab.

4.9.4 PIC18 AssEMBLY INSTRUCTIONS

In the PIC18 family, most of the assembly instructions are 16-bit wide, while a few
of them are 32-bit wide. In addition, there many more instructions in the PIC18
family (about 70) than in the PIC16 family (about 35). Table 4.13 lists some of the
assembly instructions that are only available in the PIC18 family. The additional
instructions include those to perform a comparison of the f- and W-registers (such
as CPFSEQ), to multiply the contents of the WREG and the f-registers
(MULWE), to perform branching (such as BC, BNC, and BRA), to perform soft-
ware reset (RESET), and to perform stack operations (POP and PUSH). In addi-
tion, the PIC18 instruction set includes instructions to perform program memory
read and write operations (such as TBLRD and TBLWT).

Figure 4.24

PIC-C code
incorporating assembly
code to perform a
Do-Loop operation

18 Chapter 4 Microcontrollers

PIC18 Instruction
CPFSEQ
CPFSGT
MULWF

Table 4.13

List of additional
assembly instructions in
the PIC18F family

Operation
Compare f-register with WREG, skip if equal
Compare f-register with WREG, skip if greater than

Perform unsigned multiplication of the contents of the WREG and f-registers

NEGF
BTG
BC

BN
BNC
BRA
RESET

POP
PUSH
TBLRD
TBLWT

Negate f-register

Bit toggle the f-register

Branch if the carry bit is 1

Branch if the negative bit is set to 1

Branch if the carry bit is 0

Unconditional branch

Perform a software reset. It performs the same action as an MCLR Reset.
Pop top of return stack

Push top of return stack

Table read. It reads the contents of program memory.

Table write. It writes to program memory

| 4.10 CHAPTER SUMMARY

This chapter focused on PIC microcontrollers. A micro-
controller is a single chip device that has a processor, mem-
ory, and interface devices located on the same chip. The
chapter focused on the PIC16F690 microcontroller but
also discussed some of the features of the PIC18 family of
microcontrollers. This chapter started by discussing the
different numbering systems that are used in programming
and interfacing of microcontrollers. It then covered the
basic elements of a microcontroller (such as clock sources,
different memory areas) and basic interface devices (such
as digital I/O and A/D convertor). The chapter presented
the PIC C-programming language from CCS, Inc., a high-
level programming language to program PIC microcon-
trollers. A high-level programming language simplifies the
programming of microcontrollers, since all of the low-level
hardware details are taken care of by the compiler. This

QUESTIONS

chapter also discussed methods to download programs to
the MCU using the PICKit 2 or PiCKit 3 programmer. In
addition, the chapter covered many of the features and
devices on a PIC MCU. These features include timing,
EEPROM memory, PWM actuation, comparator, watch-
dog timer, power saving, and serial interfacing. This chap-
ter also covered interrupt processing as well as the use
of assembly language in programming a microcontroller.
Interrupts are typically used in time critical applications to
make the CPU take immediate action in response to situ-
ations such as alarm conditions. Interrupts are also used in
order to not waste the computing resources in checking if
an event occurs. Assembly language is a low-level pro-
gramming language that is specific to the microcontroller
used, which gives the user better control on the execution
timing of the code and more compact code.

4.1 What distinguishes a microcontroller from a microcomputer?

4.2 Where are program instructions stored in a microcontroller?

4.3 'Which bus handles the transfer of data between CPU and memory in a PIC microcontroller?

410 Chapter Summary m

4.4 How many instructions can the PIC16F690 MCU store in program memory?
4.5 What are the minimum connections needed for a PIC MCU to operate?
4.6 How is a PIC MCU ‘programmed’?
4.7 Name three external oscillator sources.
4.8 Why it is desirable to operate an MCU at a high oscillator speed?
4.9 What is the advantage of storing data in program memory?
4.10 What register controls the direction of I/O operations in a PIC MCU?
4.11 What is the difference between a prescaler and a postscaler?
4.12 What feature on a PIC MCU allows the comparison between two input signals?
4.13 What happens after a power-on reset?
4.14 What is the purpose of a watchdog timer?
4.15 What happens when a PIC MCU goes to ‘sleep’?
4.16 Why can’t an MCU be connected directly to the serial port on a PC?
4.17 What is an interrupt?

4.18 What are the advantages of programming in assembly language?

PROBLEMS
P4.1 Convert the following decimal numbers to hexa- P4.4 Find the binary representation for the following
decimal and binary. Do not use a built-in function numbers using the IEEE 742 standard.
to do the conversion.
a. 0.078125
a. 22
b. —0.5
b. 184
c. 10.5
c. 630
P4.5 Using the Microchip website, select one or more
P4.2 Find the 2’s complement representation for 8-bit MCUs with a small number of pins that is
the following numbers using an 8-bit field. suitable for the following applications.
a. —1 a. Monitoring of four digital input lines and
writing to five digital output lines.
b. —43
b. Monitoring and updating 10 digital I/O lines,
c. —121

reading four analog inputs, and communicat-

P4.3 Perform the following binary operations. ing with a PC using RS-232 protocol.

4 1011 + 0010 c. Same as part ‘b’ but also using 3 PWM lines.
b. 00011101 + 01001111

c. 1010 — 0011

120

P4.6

P4.7

P4.8

P4.9

P4.10

Chapter 4 Microcontrollers

Using the PIC16F690 MCU, draw an interface
diagram for an application that requires the
following.

a. Reads four digital I/0O lines

b. Writes to four digital I/O lines

c. Reads two analog signals

d. Uses the internal clock as the clock source

e. Uses the comparator feature to compare two
signals and to turn ON an LED if one is larger
than the other

Be sure to identify and label all the pins on the
chip that need to be used.

Using the PIC16F690 MCU, draw an interface
diagram for an application that requires the
following.

a. Reads two digital I/O lines

b. Writes to four digital I/O lines

c. Reads two analog signals

d. Sends one PWM signal

e. Uses RS-232 serial communication

f. Uses crystal resonator as the clock
source

Be sure to identify and label all of the pins on the
chip that need to be to be used.

Determine the maximum counting interval for
Timerl on the PIC16F690 using 1:4 prescale
factor and a 20 MHz external clock.

Determine the parameters of Timer2 on the
PIC18F4550 to enable a PWM operation at a
frequency of 5 kHz and a duty cycle of 25%.
Assume a clock frequency of 10 MHz.

A simplified block diagram of PWM operation
on some PIC MCUs is shown in Figure P4.10.
Using this diagram and discussion about PWM
operation in this chapter, explain how the PWM
signals are generated.

Duty Cycle Registers

!

Comparator R 0

PWM

1 Output

TMR2

!

Comparator S

f

PR2 (PWM Period)

Figure P4.10

P4.11

P4.12

P4.13

P4.14

P4.15

P4.16

Determine the parameters of TimerO on the
PIC16F690 so that the Timer0 overflow inter-
rupts will occur approximately every 1 ms.
Assume the microcontroller is used at a clock
frequency of 8 MHz.

Draw a circuit for interfacing a digital I/O on a
PIC MCU to a MOSFET transistor that switches
a small 12 V motor ON and OFF.

Draw a circuit for interfacing the PIC16F690 to
the following components.

a. An LED that is turned ON/OFF by the MCU

b. A NO push-button switch that is read by the
MCU

c. A rotary potentiometer that is used to set the
desired operating value for a control system

Research and identify three features of some PIC
microcontrollers for saving power. Explain how
each feature saves power.

Write out the result of separately performing
each of the two assembly commands: complement
and negate on the following register values.

a. Ox2a
b. 0x7d

Write assembly code that shows how to imple-
ment a timing delay by using loops combined
with the NOP statement.

410 Chapter Summary m

LABORATORY/ PROGRAMMING EXERCISES

L/P4.1 This problem requires the availability of a devel- L/P4.3 Using code that accesses Timer0 on any PIC

opment board with built-in LEDs and a rotary
pot (such as Microchip low pin-count board,
Microchip PIC18 Explorer board, or Olimex
PIC-STK-USB board). Develop and download a
C-program for the microcontroller that does the
following.

a. Turn ON and OFF the LEDs on the board in
a particular pattern (one ON and the next
OFF, two ON and the next two OFF, etc.).
You can create any pattern you like.

b. Use the A/D reading from the pot input (for
example, Channel RAO on the low pin-count
board) to vary the timing speed of the pattern.
Turning the pot CW (as seen from above)
should cause the pattern to turn ON and OFF
more rapidly. Use a delay function (such as
delay_ms() in PIC-C compiler) function to
create the timing delay.

L/P4.2 Write a simple program to test the PWM feature

on the PIC16F690 or any other PIC MCU.
Connect the output of the PWM to a scope and
monitor the output. What are the minimum and
maximum PWM frequencies that can be achieved
using the 8 MHz internal clock? Add a loop in
the code to generate PWM signals with increas-
ing or decreasing duty cycles.

board, write a C-program to time the turning
ON and OFF of an LED with intervals ranging
from 1 to 5 seconds. Do not use any of the built-
in delay functions to solve this problem.

L/P4.4 Redo Lab Programming Exercise 4.3, but use a

timer overflow interrupt to handle the timing
(i-e., do not poll the timer to check if the desired
timing interval has elapsed).

L/P4.5 Write a C-program that integrates assembly code

to check the following relationships between
and 15, where Vj and V/; are 8-bit variables
defined in the C part of the code. If the condition
is true, turn on an LED to indicate that.

a. V7yisequal to V;

b. Vis less than 1>

L/P4.6 Design and build a circuit to interface a

PIC16F690 or another MCU to an LED, a push-
button switch, and a rotary potentiometer. Specify
any resistors needed plus the wiring of all needed
pins. Test your circuit by writing a simple pro-
gram to turn ON the LED if the value read by
the rotary potentiometer exceeds a specified
value. Your code should turn OFF the LED
whenever the push button is pressed.

77

CHAPTER

Data Acquisition and
Microcontroller/PC Interfacing

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:

¢ Explain the difference between analog and digital signals

® Determine the requirements for proper sampling of analog signals

® Determine the voltage resolution, digitizing accuracy, and input and
output values of an analog-to-digital convertor

® Determine the voltage resolution, digitizing accuracy, and input and
output values of a digital-to-analog convertor

® Explain how to set or read a particular bit in a parallel port

e Explain RS-232 communication and develop code using this interface
method

¢ Outline the I1°C and SPI interfacing methods and develop code using
these interfacing methods

e Explain the serial-client model for Internet connection and develop a
PC-based application that uses Internet interfacing

e Explain the USB Interface and USB code for PIC microcontrollers using
the CDC class

| 5.1 INTRODUCTION

The heart of any mechatronics system is a computer or an embedded processor
that is connected to the actuators and sensors that are part of that system. To do
any useful work, data must be transferred back and forth between the processor and
these components. The data can be in the form of analog or digital signals. Analog
signals are continuous signals that can have any value over a certain range, while
digital or discrete signals are discontinuous signals that have few specific values.
The term ‘analog’ means analogous or similar, so a pressure transducer with an ana-
log output maps the time-varying pressure measured by the sensor to an analogous
time-varying voltage signal. Examples of analog voltage signals include the voltage
signals supplied from a power company, the voltage applied to drive DC-type elec-
tric motors (see Chapter 8), and the voltage output of sensors such as thermocou-
ples and tachometers (see Chapter 7). An example of a digital signal is the output
from a digital displacement measurement sensor (such an encoder, see Chapter 7)
which produces two output levels. Digital signals are found in all microprocessor
circuits. Digital signals are better in handling noise which can affect the resolution
of analog signals. Converting a signal from the analog domain to the digital domain

m

53 Analog-to-Digital Converter

requires the use of an analog-to-digital converter (A/D). Similarly, converting a
signal from the digital domain to the analog domain requires the use of a digital-
to-analog (D/A) converter.

"This chapter discusses techniques to interface a processor to the outside world
using different interface devices (such as analog-to-digital converters, digital-to-
analog converters, parallel ports, asynchronous and synchronous serial ports, net-
work connection, and USB). In Chapter 4, we discussed interface devices on a PIC
microcontroller (such as the A/D converter, the USART, and the ’c/ SPI). In this
chapter, more information is given on the operation and programming of these
devices. Interfacing is important for the operation of control systems, because a con-
trol system interacts with sensors and actuators through these interface devices.

| 5.2 SAMPLING THEORY

In converting an analog signal to a digital signal, the analog signal is ‘sampled’ to
obtain the digital values. By sampling, we mean that the analog signal is read at
defined time instances and the continuous-time signal is replaced by a sequence of
numbers [13]. We must be careful in performing the sampling operation so that the
analog signal characteristics do not get distorted in the sampling process. The
requirement for proper sampling is given by Shannon’s sampling theory [14], which
states that the sampling frequency should be at least twice that of the highest fre-
quency in the signal. Otherwise, distortions (or aliasing) in the sampled signal will
occur. Thus, a 1000-Hz sinusoidal analog signal should be sampled at a frequency
of 2000 Hz or higher. In practice, a sampling rate of at least five times higher than
the highest frequency in the signal is typically used.

To illustrate signal aliasing, Figure 5.1 on the next page shows a 1-Hz sinu-
soidal signal and the corresponding sampled signals at three different frequencies:
5 Hz, 2.1 Hz, and 1.25 Hz. Note the distortion in the signal sampled at 1.25 Hz,
since it is below the minimum frequency specified by Shannon’s sampling theory.

| 5.3 ANALOG-TO-DIGITAL CONVERTER

An analog-to-digital converter is a hardware device for converting analog signals to
digital signals. To prevent variation in the input signal from affecting the output while
the conversion is taking place, the analog signal is first passed through a sample
and hold circuit (which holds the input voltage) before it is converted.

Many microcontrollers have several A/D channels. On a PC, the A/D converter
is packaged with a digital-to-analog converter and a parallel port to form a data
acquisitions card. The card is placed in one of the available computer slots, and
a cable then is used to connect the card to an interface board commonly known as
a distribution panel or screw terminal.

5.3.1 A/D CHARACTERISTICS

The most important characteristics of an A/D converter are its conversion rate,
voltage range, bit resolution, and quantization error. Conversion rate refers to
how many conversions are performed in a unit of time. On a microcontroller, the
conversion rate is dependent on the choice of the clock signal, its speed, as well as
the bit range. A/D devices on a PC data acquisition card have conversion rates of
less than 100 K conversions per second for low-end devices, while high-end devices
have ranges in excess of one mega conversions per second. These numbers are the

m

14

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.1

Illustration of signal
aliasing

(51)

o o <) o)
| o o Q o) o)
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Sampled at 2.1 Hz
1 ; ; ; —o— T 5 ©
‘ o
| | o] | |
0p------ S P R (R (H
o] ‘ ‘
| o |
‘ ‘ o
-1 o o
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Sampled at 1.25 Hz

1 w T —o
! o I

O R e e e EEEE o e
30 | |

-1 o : : o)

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time (s)

upper limits on the performance of the A/D device by itself. When an A/D converter
is used as part of a digital feedback control system, the effective conversion rate is
lower and is highly dependent on processor speed.

The voltage range of an A/D converter refers to the analog voltage range that
the device can handle. On a microcontroller, the range is 0 to V'pp (the supply volt-
age) unless an external reference voltage (Vo and/or V) is used, in which case
the range is 0 to Ve or View to Vigrs. On a PC data acquisition card, most A/D
devices allow both unipolar and bipolar ranges ranging from 0.05 to 10 V, but can
tolerate an overload voltage of up to +/— 30 V. The voltage conversion range is
normally set by a software call to the device controller. The bit resolution of the
A/D device is quoted as the number of bits that the converted analog signal is
mapped into. Common bit sizes are 12 to 16 bits, but many microcontrollers have
A/D devices that have only a 10-bit range. The bit resolution affects the voltage
resolution or increment of the device, which is defined as

Voltage resolution = range/2”

where 7 is the bit resolution of the A/D convertor. To understand the relationship
between voltage range and voltage resolution, let us consider a 12-bit A/D device
with a —10 to 10 V range. In this case, a 20-V range (=10 to 10 V) is mapped

53 Analog-to-Digital Converter

into 2'? binary combinations. Thus, the device can map voltage values to discrete
values at increments of

Range/2" = 20/4096 = 4.88 mV

This means that the input voltage can increase by up to 4.88 mV without
changing the output value of the A/D converter. For example, if the input voltage
that was measured by this device was the output of an analog temperature sensor
with a sensitivity of 10 degrees per volt (°/V), then the device will not be able to
measure temperature changes that are less than 0.0488°. The discrete output of an
A/D converter subjected to an input voltage V;, is given by

Digital output = ceiling ((V{, — V- — voltage resolution)/voltage resolution)

Along with the voltage resolution of the device, the quantization error (or dig-
itization accuracy) of the A/D converter is also an important performance parameter
and is directly related to the bit range of the device. The digitization accuracy refers
to the uncertainty in the discretized voltage value, and it is +/— one-half of a bit.
To further understand the concept of digitization accuracy, let us consider an ideal
2-bit A/D device with a range of 0 to 5 V. This A/D device maps a 5 V analog range
(0 to 5 V) into four different binary values (2% or 0, 1, 2, and 3). As seen in Figure 5.2,
the output of the A/D converter will be 0 if the input analog voltage happens to be
in the range of 0 to 1.25 V, will be 1 if the input analog voltage happens to be in the
range of 1.25 to 2.5V, and so forth. Notice that the maximum digital output level
(3 in this case) is reached before the input reaches full scale or 5 V. Nominally, we say
that if the A/D converter outputs a value of 1, then this corresponds to a nominal
analog voltage of 1.875 V. The input voltage can change up to +/—0.625 V (or +/—
one-half of a bit) without any change in the output of the A/D. Thus, at any of the
discrete output values of the A/D converter, we say that we have an uncertainty of
+/— half the voltage increment of the A/D device. Some A/D converters are built
with an intentional offset of —1/2 bit. The staircase output curve of such a device will
be shifted to the left and will start at 0.625 V for the 2-bit A/D example. The input/
output relationship of an A/D converter is further illustrated in Example 5.1.

W
Ly

NS}
|

A/D Output
I

(=]

T T T
1.25 2.5 3.75 5.0

Input Voltage

Example 5.1 A/D Converter

Determine the voltage resolution and digitization accuracy of an ideal 12-bit A/D
converter with a 0 to 10 V range. Determine the output level if the input voltage
is 6.5 V. Also, determine the corresponding analog input voltage at the following
digital output values: 0 and 1000.

(=]

Solution:

From Equation (5.1), the voltage resolution of this A/D device is 10/212 = 2.441 mV.
Thus, the digitization accuracy of the conversion is +/— 1.220 mV.

(52)

Figure 5.2
2-bit A/D mapping

125

126

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

From Equation (5.2), the discrete output level is given as the integer ceiling of
((6.5V — 2.441 mV)/2.441 mV) or 2662.

This 12-bit A/D converter maps the 0 to 10 analog voltage range into 0 to 4095
digital values. When the A/D converter outputs a value of 0, the analog input volt-
age of this ideal A/D converter is in the range of 0 X 2.441 mV to 1 X 2.441 mV or
0 to 2.441 mV. Similarly, when the A/D converter outputs a value of 1000, the ana-
log input voltage is in the range of 1000 X 2.441 mV to 1001 X 2.441 mV or 2.441
to 2.443 V.

5.3.2 A/D OPERATION

Most A/D converters are built to operate on the principle of successive approxima-
tion. In the successive approximation method, an internal D/A converter and a
comparator circuit are used to converge on the digital signal that is closest to the
sampled analog signal. Starting with the MSB, the bits in the D/A converter are
set/reset one at a time until the sampled analog signal matches the output signal
from the D/A converter to within the least significant bit. The binary pattern of the
D/A converter is then the digital input signal. This conversion technique is a good
compromise between speed, resolution, and cost. Example 5.2 illustrates the oper-
ation of a successive approximation 3-bit A/D converter with 0 to 10 V analog
input range. Other types of A/D converters include flash/parallel, integrating, and
digital ramp. To set up an A/D converter in a PC data acquisition board, the user
has to make certain important selections, including the input range and the input
signal configuration. The input range is normally set using software.

Example 5.2 Successive Approximation A/D

Illustrate the operation of a 3-bit, 0 to 10 V successive approximation A/D subjected
to an analog input voltage of 8 V.

From Control Internal Analog
. —>-—>Dl
Logic - D/A Voltage
- Comparator
Circuit
To Control
Logic

Figure 5.3

Solution:

With reference to Figure 5.3, the control logic of this A/D device will first turn the
most significant bit (bit D2) of the internal D/A device associated with this A/D. The
analog output voltage corresponding to this bit is 5 V (see table in Example 5.3).
The comparator circuit will then compare the analog output of the internal D/A
with the supplied analog input (8 V). Since the output of the internal D/A is smaller
than the supplied voltage, bit D2 remains on, and the next bit (bit D1) is turned
ON. The analog output (7.5 V) of the internal D/A is still less than the supplied volt-
age, so bit D1 remains ON. When bit DO is turned ON, the analog output is 8.75 V,
which is greater than the supplied voltage. Thus, bit DO is turned OFF, and the out-
put of the A/D will be 0x06, which is the same digital pattern on the internal D/A.

53 Analog-to-Digital Converter m

5.3.3 A/D INPUT SIGNAL CONFIGURATION

The A/D input signal configuration refers to either single-ended input or differen-
tial input. In a single-ended input mode, the input signal is referenced to the
A/D board’s signal ground. The signal is connected using two wires, as shown in
Figure 5.4(a), where the wire that carries the signal is connected to any one of the
input channels terminals and the other wire is connected to the board’s signal
ground (called low-level ground or LLGND). In this configuration, the A/D con-
verter measures the difference between the signal and the ground at the board. A
single-ended connection is sensitive to noise, since the signal wire can act as an
antenna picking up electrical noise. Note that the single-ended configuration
should be used only with a floating signal source (i.e., one that does not have any
connection to ground at the signal source), otherwise ground loops can be formed.

0 CHO IN +——© CHOIN
o CH8IN -F @ CH8IN
o CHIIN @ CHIIN
© CH9IN [R] |eo CHOIN
o ... o ...
-0 LLGND ©® LLGND
(a) Single-Ended Wiring (b) Differential Input Wiring

In differential input mode, the high (or positive) input signal is measured
with respect to the low input (or negative) signal. The input signal is normally con-
nected to the board using three wires. The wire that carries the high-input signal
to be measured is connected to any of the 0, 1, 2, ..., 7 A/D input channel termi-
nals (assuming we have 16 single-input channels). The low signal is connected to
an adjacent channel (such as channel 8 in Figure 5.4(b) if the signal was connected
to channel 0). The low signal wire is also connected to the board’s signal ground
through a resistor. When the board is set for differential input mode, the number
of available input channels is halved (i.e., a board that has 16 single-ended input
channels will have eight differential mode channels).

The differential input mode is a better configuration for handling noise than
the single-ended mode. Any electromagnetic interference induced in one lead of the
signal is usually induced in the other lead. Since the A/D convertor in differential
input mode measures the difference between the high and low ends, any voltage
common to the high and low ends is removed in this mode. Differential input mode
should be used to read the output of analog sensors (such as thermocouples and
strain gages, see Chapter 7) which are susceptible to noise. A measure of the
ability of an A/D converter used in differential input mode to eliminate the com-
mon voltage is called the common mode rejection ratio (CMRR). In an ideal
A/D converter, any voltage common to both signal wires will be completely can-
celled. In a real A/D converter, a perfect cancellation does not occur, and a fraction
of the common voltage will show. The CMRR, which is expressed in decibels (dB),
is the reciprocal of the voltage fraction that is passed. It is desirable to have an
A/D convertor with a high CMMR ratio.

Note that the PIC16F690 and the PIC18F4550 MCUs do not support differ-
ential mode A/D input, but Microchip manufactures special chips that support
differential A/D input. An example is the MCP3301 chip, which is a dedicated
13-bit differential input A/D converter chip.

Figure 5.4

Data acquisition board
wiring for single-ended
and differential

input mode

ns

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

(53)

| 5.4 DIGITAL-TO-ANALOG CONVERTER

5.4.1 D/A CHARACTERISTICS

A D/A converter is a device that converts digital signals to analog signals. Most
microcontrollers do not have a D/A converter, but the function of the D/A
converter is approximated on microcontrollers using the PWM output feature
(see Section 4.7.5). All of the performance parameters of an A/D (such as conver-
sion rate, voltage range, bit resolution, and digitization accuracy) that were dis-
cussed before are similarly applied here for the D/A converter, so they will not be
repeated, but we include an example that discusses the mapping between digital
input values and analog output values.

Example 5.3 D/A Mapping

A 3-bit D/A converter is set for 0 to 10 V output range. Map all of the possible dig-
ital input values to their corresponding analog output values.

Solution:

A 3-bit D/A converter has 23 possible digital input values (0 to 7 decimal or 000 to
111 binary). The voltage resolution is 10/23 = 1.25 V. The corresponding analog
output values for each possible digital input value are shown here:

Binary Input Analog Output (V) Binary Input Analog Output (V)

000 0.00 100 5.00
001 1.25 101 6.25
010 2.50 110 7.50
011 3.75 111 8.75

Note that while this D/A converter’s nominal range is 0 to 10 V, the maximum out-
put analog value is only 8.75 V due to the coarseness of its resolution. If the bit
resolution was 10 instead of 3, then the maximum analog output voltage would
be 9.990 V, or to generalize:

Maximum output = range — resolution = 10 — 10/2'® = 9.990 V

The digital input that gives a certain analog output voltage V. is given by
Digital input = ceiling ((V,,; — Vimin — voltage resolution)/voltage resolution)

where Vi, is the minimum voltage supplied by the D/A. Using the data from
Example 5.3, the digital input needs to be 6 for an output of 8 V. Due to the
coarse resolution of this A/D converter, the analog output will only be 7.5V
(6 X 1.25). If this was a 10-bit D/A converter instead, then the output would be
7.998 V at a digital input of 819. Most commercial D/A converters have a 12-bit
output resolution.

5.4.2 D/A OPERATION

To illustrate the operation of a D/A converter, let us consider the weighted resis-
tor summing amplifier circuit shown in Figure 5.5. The digital input acts as an
electronic switch in this circuit, providing a connection between Vy and the respec-
tive resistor if the binary value is 1. For the digital input 1011 shown in the figure,
the output of this circuit is —11 V. This circuit is not used in practice, because it

54 Digital-to-Analog Converter

requires resistances of certain ratios which are difficult to satisty with good accuracy.
This is especially true for a D/A convertor with more than 4 bits. For example, a
12-bit D/A would require that the 11th bit resistor have a resistance of 1/2048 of
the Oth bit resistor.

A commonly used circuit for D/A conversion is the R/2R ladder resistor net-
work [15]. Unlike the weighted resistor summing amplifier circuit, the R/2R ladder
circuit requires only two resistor values R and 2R regardless of the number of bits
used. The R/2R ladder circuit is shown in Figure 5.6. It consists of a repeating pat-
tern of 2R and R resistors arranged in a ladder form. The 2R termination resistor is
connected to ground and is used to make the Thevenin resistance of the network at
each ladder leg equal to R when all the bits are grounded (see Figure 5.6).

Thevenin
Resistance R

Thevenin
Resistance R

R R R Vo
=MW MM MW o
R 2R 2R 2R
: bit 3 bit 2 bit 1
................... - MSB

The output voltage Vp when a voltage V% is connected to a bit7 (1 =i = N)
with all the other bits grounded is given as

Z

2

If more than one bit is connected to Vp, then the principle of superposition applies.
Thus for example, if we have a 3-bit D/A with all the bits connected to V', then the
analog output is equal to Vz/2 + Vi/4 + Vi/8 = 7/8 V. If Vy is equal to 10V,
then the output is 8.75 V, as was the case in Example 5.3. The R/2R network pro-
vides the most accurate method of digital-to-analog conversion.

A/D and D/A converters on data acquisition boards have different data trans-
fer modes. These include direct memory access (or DMA) and programmed 1/0.

VU =

Figure 5.5

Weighted resistor
summing amplifier
circuit

Figure 5.6

R/2R ladder resistor
network

(54)

19

130

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Table 5.1

TTL input and output
levels

In DMA, the data is transferred directly between the memory and the data acqui-
sition board without using the system processor to perform the operation. In pro-
grammed I/O, the system processor directly controls the transfer of data between
the memory and the board. While DMA allows fast data transfer rates (300 KHz
or higher), extra set-up is needed for DMA operation, which makes it advantageous
only in transferring large amounts of data.

Practical D/A converters employ a zero-order hold circuit. This means that
the current output of the D/A device will remain constant until a new output is sent
to the device. In using a D/A converter in a sampled feedback control system, the
output will remain constant between updates.

| 5.5 PARALLEL PORT

Many data acquisition cards (DACs), as well as microcontroller chips, allow digital
I/O signals to be sent back and forth through what is called a parallel port. The
name parallel port comes from the fact that all the data that is presented to the
device is transmitted simultaneously, thus the name parallel. The printer port,
which is available in some old PCs, is an example of a parallel port. Common con-
figuration of a parallel port on PC data acquisition cards is four 8-bit ports, such as
those that are available with the Measurement Computing DAC. Each port can be
configured through software to be an input type or an output type, or even a com-
bination of the two. Most parallel ports are constructed using transistor-transistor
logic (T'TL) family chips, which have different voltage ranges for input and output.
These ranges are shown in Table 5.1.

Operation Low State Voltage Range High State Voltage Range
Input 0-08V 2050V
Output 0-05V 27-50V

The input parallel port is commonly used to read data from switches and
on/off type sensors, such as proximity sensors and limit switches. The output par-
allel port is normally used to activate lights, solenoids, and relays. While the soft-
ware that comes with most data acquisition boards provides functions to access the
parallel port, it does not provide means to read a single bit on the card or set a par-
ticular output bit without disturbing the rest of the bits. These operations can be
done by using the bit-wise logical operators that are available with VBE or C.
Example 5.4 illustrates this using VBE syntax.

Example 5.4 Parallel Port

Illustrate how bit #5 of an 8-bit parallel port can be set either high or low without
changing the current output on the port.

Solution:

To enable us to perform this operation, we need to have a variable that stores
whatever was sent to the port. Let us call this variable PortValue. To set bit #5 to
high, we simply perform a bitwise OR operation between the variable PortValue
and the value &H20. We can write it as

PortValue = PortValue OR &H20

5.6 Data-Acquisition Board Programming

Notice that in using this operation, the value of each bit, other than bit #5, is not
changed from its current value, since ‘oring’ a bit with 0 does not change its value.
To set bit #5 to low, we need to perform a bitwise AND operation with the value
&HDF, which has a value of 1 in all its bits except bit #5, which has a value of 0.

PortValue = PortValue AND &HDF
The updated value of PortValue is then sent to the port.

| 5.6 DATA-AcQuISITION BOARD PROGRAMMING

To illustrate programming issues in using a data-acquisition card, we will discuss a
data-acquisition card made by Measurement Computing of Norton, MA. The par-
ticular card is the PCIM-DAS1602/16 which has sixteen 16-bit A/D channels, two
12-bit D/A channels, thirty-two digital input/output lines, and three 16-bit coun-
ters. The card is installed on one of the available slots on the PC, and using a rib-
bon cable, the interface pins are brought to a screw terminal where the user can
conveniently wire up signals to the card. (See Figure 5.7).

Figure 5.7

Screw terminal for a
data acquisition card

(Courtesy of Measurement
Computing, Norton, MA)

The user has to develop a set of interface functions to use the card. An example
of such interface functions (in Visual Basic Express) are provided here (the complete
code is provided on the text website).

Sub Write_DA (ByVal Chan%, ByVal DataVolts!)—sends a voltage signal (—10
to 10 V) to D/A channel 0 or 1

Function Read_ADByVal Chan%) as double—reads a voltage signal (=10 to
10 V) from channel 0, 1, ..., 15

Function Read_IO() as UShort—reads a byte from the parallel port B
Sub Send_IO(ByVal DataValue%)—sends out a byte to parallel port A
Note that in the above A/D and D/A interface functions the range is set for

—10 V to 10V, but the range can be conveniently changed in software by accessing
the Range enumeration, which has a wide variety of bipolar and unipolar (such as

Bl

1]

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.8

Serial packet structure

0 to 1 V) range settings. This card, similar to many other cards from other vendors,
has a built-in function (called DagBoard. ToEngUnits) to convert the read digital A/D
value (raw data) to engineering units (volts). This relieves the user from doing the
conversion.

The 32 digital input/output lines on the card are split into four 8-bit ports.
These ports can be set in software to operate as digital input, digital output, or a
combination of the two. This gives the user flexibility in configuring the port.

| 5.7 USART SeriAL PorT

A parallel port is appropriate to use when the data is transmitted over a short dis-
tance. When data needs to be transmitted over longer distances, a serial port is
more suited to use, as it is more immune to noise. Furthermore, a serial connection
normally requires fewer wires than a parallel connection. In addition, a serial port
has the means to set up communications in asynchronous fashion, which is not the
case with parallel ports. A serial port is an input/output device that takes data in a
parallel form and transmits it in a serial fashion. Terminals, modems, mice, and key-
boards are examples of devices that connect to a PC or an MCU through a serial
port. In a serial port, the data is transmitted one bit at a time, rather than simulta-
neously. The data to be transmitted is broken up into packets, each packet is made
up of a number of bits, and then the bits in these packets are transmitted sequen-
tially, thus the name serial port. The speed of transmission or baud rate refers to
the number of bits per second that can be transmitted. The baud rate can range
from 300 to several hundred thousand.

Serial data can be transmitted in an asynchronous or in a synchronous fashion.
Asynchronous transmission is used when the transmitter and the receiver operate
independently, each using its own clock signal, while synchronous transmission is
used when the transmitter and receiver have a common clock signal. Asynchronous
transmission is the default on PC’s, since the required hardware for synchronous
transmission is normally not present on PCs.

In asynchronous transmission, means must be provided to inform the receiver
of the start and end of a data packet, since the timing of the transmission of the
packet is not known in advance. This is accomplished by structuring the data
packet to include a start bit at the beginning of the packet to inform the receiver
of the start of the packet and a stop bit at the end of the packet to indicate its
completion. The 10-bit serial data packet is thus structured to include one start
bit (the first bit that is transmitted), 7 or 8 bits of data representing the charac-
ter to be transmitted, an optional parity bit for 7-bit data, and one stop bit (or
two stop bits for 7-bit data with no parity bit) at the end of the packet. The start
bit is always low (space) while the stop bit is always high (mark). Figure 5.8
shows the packet structure for one start bit, seven data bits, one parity bit, and
one stop bit.

1 (mark) [[
Start DO ! Dl H D2 H D3 H D4 | DS H D(, P St()p
0 (space) I I S S T .
0 1 2 3 4 5 6 7 8 9
10-Bit Serial Packet

5.7 USART Serial Port

Since the receiving end does not know ahead what data is transmitted, the parity
bit can be used to provide a crude method of error checking. The different parity
methods are listed here.

Even: Means that the total number of one bits in the packet (excluding stop
bit) is even. Thus, the value of parity bit is set to 1 or 0 to make the total
number of one bits even.

Odd: Means that the total number of one bits in the packet (excluding stop
bit) is odd. Thus, the value of parity bit is set to 1 or 0 to make the total
number of one bits odd.

Mark: Parity bit is always set to logical 1 (mark).
Space: Parity bit is always set to logical 0 (space).
None: No parity bit is sent at all.

For even/odd parity, the parity method of error checking works by counting the
total number of one bits in the packet (excluding the stop bit) that is received. If
even (odd) parity was selected, then a transmission error has occurred if that num-
ber is not even (odd). For mark or space parity, the parity bit in the received packet
is checked to see if it matches the parity set mode. The parity method can detect a
single-bit error but is not guaranteed to detect multibit errors. The seven or eight
bits of data are converted using the ASCII code (See Appendix D for a list of the
codes). Example 5.5 illustrates the serial packet structure.

Example 5.5 Serial Packet Structure

Show the 10-bit serial packet for the letter ‘B’ using a 7-bit data, one start bit, one
stop bit and a parity bit. lllustrate for both even and odd parity.

Solution:

The 7-bit ASCII code for the letter ‘B’ is 0x42 or b100 0010 (see Appendix D). Thus,
for even parity, the 10-bit serial packet is

0 + 0100001 + 0 + 1
Start + 7-bit ASCIl + parity + stop bit

or ‘0010000101".
For odd parity, the 10-bit serial packet is

0 + 0100001 + 1 + 1
Start + 7-bit ASCIl + parity + stop bit

or ‘0010000111’. Note that the start of the packet is from the left end.

Serial ports installed on PCs and laptops take the form of a 9-pin male ‘D’ con-
nector (older PCs have a 25-pin male connector but only nine pins of these were
actually used). In a serial connection, the data can be sent in full-duplex mode or
half-duplex mode. Full-duplex mode means that the data between the two devices
in communication can be transmitted simultaneously in both directions. In half-
duplex mode (which is outdated and not commonly used), data is transmitted in
one direction at a time, but the direction can be changed. For full-duplex mode,
a serial connection between two ports requires (physically) a minimum of three
wires if no hardware flow control is used. One wire is used for sending the data, the

133

134

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

(5.5a)
(5.5b)

second wire is used for receiving the data, and the third is used as ground. The
remaining pins in the connector are used for control purposes.

There are several protocols for serial interface. The most common is the
RS-232C protocol (now called EIA-232). RS-232 stands for recommend standard
number 232, and C is the latest revision of the standard. A subset of the RS-232C
standard is used in the serial ports on most computers. The RS-232 protocol has
limits on speed, cable distance, and device support. Another protocol is the RS-422,
which permits longer cable distances at higher cost, since each signal is carried by
two wires due to the use of differential mode in signal transmission.

To prevent overflow of the buffer that receives the data, handshaking or flow
control methods can be used. Software-based flow control, hardware-based flow
control, or a combination of the two can be used. The XOnXOff is a software
flow control method in which these characters are sent from the receiver to the
transmitter to control when data can be sent. XOnXOff stands for transmit
on/transmit off. If the receiver is ready to accept characters, it will send an XON
character (typically 0x11) to the transmitter. If the receiver buffer is full, it will
transmit an XOFF (typically 0x13) character to the transmitter to stop the trans-
mission of data. Note that this method of handshaking is software based, and thus
can be used with a three-wire serial cable.

An alternative method of handshaking is the use of the Request-to-Send (RTS)
and Clear-t0-Send (CTS) signals, but it is hardware based. If the input buffer is not
full, the RTS line will be set to true indicating that the receiver can accept charac-
ters. If the input buffer becomes full, the RT'S line will be set to false. Both the RTS
hardware control and the XON/XOFF software controls can also be used at the
same time.

The common method of using a USART on a PIC MCU is to implement full-
duplex asynchronous serial communication using the RS-232 protocol. The
USART has a two-character input buffer and a single character output buffer on
the PIC16F690. It allows 8-bit or 9-bit character length and has means to detect
input buffer overrun errors and received character framing errors. A framing error
is defined as a serial packet thatis not in the expected format (such as having a wrong
number of bits). With the use of a 9-bit character length, the serial packet becomes
11 bits in length (with the addition of the start and stop bits). The USART allows a
range of baud rate settings that are depended on the oscillator clock frequency.
The SPBRG register controls the period of the baud rate generator (BRG) which is
implemented as a free-running, 8-bit timer. Actually, the PIC MCU allows two
ranges of baud rates: low and high. The high range is obtained when the BRGH bit
of the TXSTA register is set to 1, and the low range is obtained when that bit is set
to 0. The formula for the desired baud rate for asynchronous transmission is

Desired baud rate (low speed) = Fysc/(64(X + 1)) (BRGH = 0)

Desired baud rate (high speed) = Fysc/(16(X + 1)) (BRGH

1)

where Fogc is the oscillator frequency in Hz and X (0 to 255) is the value written
into the SPBRG register. Note that because X is limited to only 256 values, the
actual baud rate may be different from the desired baud rate. As an illustration, con-
sider an 8 MHz oscillator, and a desired baud rate of 9600. With BRGH = 0, we
can solve the top equation for the value of X to give this desired baud rate. Doing
this, we get X to be 12.02. Since X is limited to integer values, using a value of
X = 12 gives us an actual baud rate of 9615, which is 0.16% higher than the
desired baud rate. When the actual baud rate is different from the desired baud rate
by more than 1 to 2%, transmission errors such as missing or wrongly received bits

5.7

could occur. Microchip provides data sheets with the appropriate value of X to use
to obtain a particular baud rate. When using a high-level compiler (such as C or
Basic), the user does not need to write to these registers to set up the baud rate. The
compiler provides functions for this purpose. On the other hand, when using
assembly language, the user has to explicitly write to these registers.

Figure 5.9 shows a code listing for serial communication on a PIC MCU using
the PIC-C compiler. The example code has an infinite loop which continuously
reads the serial port. If the read character matches a specified character, the char-
acter ‘1’ is transmitted.

T

11/ Serial_In_Out.c

/1

/// Program that demonstrates RS-232 communication

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T
#include <18F8722.h>

#fuses HS, NOMCLR, NOWDT, NOPROTECT, NOBROWNOUT

#use delay (clock=10000000)

#use rs232(baud=38400, BITS = 8, PARITY = N,ERRORS, xmit=PIN_C8, rcv=PIN_C7)

char ReadSer();
void WriteSer(char);

// Function prototyping in C
// Function prototyping in C

void main() // Main routine
{
char c;
while (2> 1) // Start infinite loop
¢ = ReadSer(); // Read the serial port
if (c=="a) // s the read character ‘a"?
{
WriteSer("1'); // If the read char is ‘a’, then send the char ‘1’
1
}
}
// ReadSer function
char ReadSer() // Read a character from the serial port
{
if (kbhit() == 1) // s there a character in the buffer
return(getc(); // Return character if available
else
return(‘0’);
}
// WriteSer function
void WriteSer(char d) // Send a char to the serial port

printf("%c\n\r",d);
}

// Send a new line and carriage return

VBE includes a control for handling serial communication. The control name
is SerialPort, and it is of the indirect type. When this control is added to a form, it
does not show in the form when the program is executed.

For sending out data, VBE has several functions, including the following.

Werite()—sends a string to port

WeriteLine()—sends a string and a new line char to port

USART Serial Port

Figure 5.9

PIC-C code for serial

communication

135

136

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.10

VBE code listing for

serial port setup and
communication

For receiving data, VBE has several functions, including the following.

Read()—reads a specified number of bytes

ReadExisting()—reads all available characters in the input buffer

Figure 5.10 gives VBE code listing for a serial port that is configured for eight
data bits, 19200 baud rate, one stop bit, no parity, and no handshaking. It also
includes code for transmitting a string using the WriteLine function. The code list-
ing makes use of the ‘With’ keyword which can used to access multiple elements of
an object using the ‘dot’ operator without the need to repeat the name of the
object. This code writes to the ‘com3’ serial port. This port can be a dedicated seri-
al port or a USB port (see next section) that is configured by the operating system
(through the Windows Device Manager) to operate as a serial port.

‘VBE 2010 code for transmitting a string data using serial port
Private Sub serial_send(ByVal data As String)

With SerialPort1
.PortName = “com3”
.DataBits = 8
.BaudRate = 19200
.Handshake = 10.Ports.Handshake.None
.StopBits = 10.Ports.StopBits.One
.Parity = 10.Ports.Parity.None
.Open()
Writeline(data + vbCr)
Close()

End With

End Sub

| 5.8 SERIAL PERIPHERAL INTERFACE

"To provide higher communication speeds, many PIC chips have a built-in synchro-
nous serial port (SSP) module. Both the PIC16F690 and the PIC18F4550 support
the two modes of operation of the SSP: the Serial Peripheral Interface (SPI) and
the Inter-Integrated Circuit (I’C™) interface (described in the next section). The
SPI operates in full duplex and at speeds of 1 Mbps or higher. It is simple to imple-
ment (needs only four wires) and uses the concept of master/slave. These four wires
are given here.

Clock Signal (SCK pin): This is the clock pulse signal that the master
sends to the slave. One bit of data is transmitted for each clock pulse.

Master Out Slave In (SDO pin): Output data from master to slave.
Slave Out Master In (SDI pin): Output data from slave to master.

Slave Select (SS pin): This signal is used to select the particular slave in the
case of one master and several slaves.

Each end of an SPI consists of a buffer and a shift register. A shift register is
a grouping of flip-flops connected in a chain in which a binary number can be

5.8 Serial Peripheral Interface

Shift Register

Shift Register

|
Master Out | Slave In
|
|
|
|
Serial Input Buffer : Serial Input Buffer
|
Master In :
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

Slave Out :
|

|

|

|

|

|

|

|

|

MSB LSB MSB LSB
Controller 1 [Controller 2
,,,,,,,,,,,,,,,, J Clock - ______ _________.
Signal

stored. The number can be shifted to the right or the left when a shift pulse is
applied. Data is read/written to the SPI through reading and writing to the buffer
register on each end of the SPI. Data is then copied to the shift register and trans-
mitted by shifting out one bit at a time on each clock pulse. To illustrate the oper-
ation of an SPI, consider Figure 5.11. It shows the connections between two SPI
ends. On each clock pulse, one bit is shifted out from the shift register on either
end on the MSB side. The shifting out of the MSB on the master shift register
allows the MSB from the slave shift register to be placed in the LSB bit location
on the master side. After eight clock pulses, the contents of both shift registers are
exchanged. At this instant, the contents of the shift register are copied to the
buffer register if the SPI was performing a read operation, or the contents of the
buffer register are copied to the shift register for next transmission if the SPI was
performing a write operation.

In creating an SPI interface between two devices, one device should be desig-
nated as the master and the other as the slave. The master sends out the clock pulses,
while the slave does not send out the clock pulses but receives them from the mas-
ter. The clock rate is set in the master. In PIC MCU s, the SPI clock rate can be set
to Fosc/4, Fosc/16, Fosc/64, or Timer2-output/2, and the maximum allowed data
rate is typically less than 10.0 Mbps. In addition to specifying the clock rate, the
user also needs to specify whether the output data is sent on the rising or the falling
edge of the clock signal.

The PIC-C compiler has built in-functions to set and access the SPI interface.
They include the setup_spi() function to configure the SPI device (i.e., master or
slave, clock rate, and clock edge), and the spi_read() and spri_write() functions to
read and write to the interface, respectively. Calling the spi_write() function causes
the clock pulses to be generated and a byte to be sent to the SPI interface. As the
data is being sent, the incoming data is clocked in and stored in the buffer. The
spi_read() function can be called with or without a data argument passed to it. If
called without an argument, the function will read the data received from a previ-
ous spi_write() operation or wait for the data if no data is ready. Calling the
spi_read() function with an argument causes the data to be clocked out and the
incoming data to be received.

Figure 5.12 shows a PIC-C code listing for reading and writing to an EEP-
ROM (Microchip 25L.C256 EEPROM) using the SPI interface. The particular
sequence of commands in the write_ext_eeprom() and read_ext_eeprom() functions
correspond to the details of accessing this EEPROM as defined in the manufacturer
data sheet.

Figure 5.11

Illustration of SPI
Interface

137

138 Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.12

PIC-C code listing for
reading and writing to
an EEPROM using the
SPI interface

T T
/// Acollection of routines for SPI communication with the 25L.C256 EEPROM

1/

/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T T
#define EEPROM_SELECT PIN_A3

#define EEPROM_ADDRESS long int

#define READ 0x03

#define WRITE 0x02

#define WREN 0x06

void init_ext_eeprom() // Initialize EEPROM function - called once

{
output_high(EEPROM_SELECT); // Make EEPROM_SELECT line high
setup_spi(SPI_MASTER |SPI_XMIT_L_TO_H| SPI_CLK_DIV_16); // Set SPI mode

1

void write_ext_eeprom(EEPROM_ADDRESS address, BYTE data)

{
output_low(EEPROM_SELECT); // Make EEPROM_SELECT line low
spi_write(WREN); // Send code to enable writing
output_high(EEPROM_SELECT); // Make EEPROM_SELECT line high
output_low(EEPROM_SELECT); // Make EEPROM_SELECT line low
spi_write(WRITE); // Send code to start writing
spi_write(address>>8); // Send MSB byte first
spi_write(address); // Send LSB byte
spi_write(data); // Send data
output_high(EEPROM_SELECT); // Make EEPROM_SELECT line high
delay_ms(6); // Delay to complete the erase and writing of data

1

BYTE read_ext_eeprom(EEPROM_ADDRESS address)

{
BYTE data;
output_low(EEPROM_SELECT); // Make EEPROM_SELECT line low
spi_write(READ); // Send code to start reading
spi_write(address>>8); // Send MSB byte first
spi_write(address); // Send LSB byte
data=spi_read(0); // Read data
output_high(EEPROM_SELECT); // Make EEPROM_SELECT line high
return(data); // Return data to calling function

1

| 5.9 INTER-INTEGRATED CIRCUIT INTERFACE

The I°C interface (pronounced I-Squared-C) is a synchronous serial communication
protocol that was developed by Philips Semiconductor. The I>C or the inter-integrated
circuit (I?C™) interface uses just two wires—one for data transmission and the other
for the clock signal—for the interface between two devices. On the PIC16F690, the
data line is the SDA pin (pin 13), and the clock line is the SCL pin (pin 11). Figure 5.13
shows the wiring between an I?C master (i.e., a PIC MCU) and an I>C slave (such as
a serial EEPROM). Note that the SDA and SCL lines are open-collector types, and a
pull-up resistor is needed on each line.

While there are several modes of I°C interface, the most common one is that
of a single master and a single slave. In this mode, the master controls the com-
munication between the two IC devices. The master starts the communication by
sending a start bit followed by the slave address and a bit indicating whether it
wants to perform a write or read operation. If the sent address matches the internal
address of the slave, then the slave will send back an acknowledgment bit to the

5.9 Inter-Integrated Circuit Interface 139

+V
R
R g
SDA SCL SDA SCL
PIC16F690
or I’C Master I°C Slave

master. Upon receiving the acknowledgment bit, the master will send out a data
byte to the slave if it was performing a write operation, or will read a data byte from
the slave if it was performing a read operation. The master terminates the commu-
nication by sending a stop bit to the slave. Note that after each data write (read)
operation, the slave (master) will send an acknowledgement bit to the master
(slave). The T°C standard interface speed is 100 kHz, but higher speeds (400 kHz
and 1 MHz) can be used with the understanding that the PIC MCU I°C interface
does not conform to high-speed (above 100 kHz) I°C specification in all details.
Note that the I°C interface speed is less than the maximum SPI interface speed.
The PIC-C compiler has several functions for accessing the I’C interface. They
include i2¢_start() to issue a start condition, i2¢_stop() to issue a stop condition,
i2c_poll() to check if the hardware has received a byte in the buffer, i2c_read()
to read a byte from the I>C interface, and i2c_write() to write a byte to the I°C
interface. Figure 5.14 shows the code listing in PIC-C language that uses the

Vs
/// Code for accessing an 12C RAM chip

/1l

/// - Compiler: PCWH from CCS, Inc. (Version 4.103)
T

void write_ext_ram_byte(long int address, byte data)

{
i2c_start(); //Issue a start condition
i2c_write(0xa0); //Set mode for data transfer from master to slave
i2c_write((byte) (address>>8)); //Address MSh
i2c_write(address); //Address LSh
i2c_write(data); //Send out data
i2c_stop(); //Issue a stop condition
}
byte read_ext_ram_byte(long int address)
{
byte data;
i2c_start(); //Issue a start condition
i2c_write(0xa0); //Set mode for data transfer from master to slave
i2c_write((byte) (address>>8)); //Address MSh
i2c_write(address); //Address LSh
i2c_start(); //Issue a start condition
i2c_write(0xal); //Set mode for data transfer from slave to master
data=i2c_read(0); //Read data without sending an acknowledgement
i2c_stop(); //Issue a stop condition
return(data); //Return data from function

Figure 5.13

12C wiring

Figure 5.14

PIC-C code listing for
I2C interface functions

140

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

I’C interface to communicate with an external RAM chip (RAMTRON FM24C256).
The figure shows two routines: one for writing a byte and the other for reading a
byte. Note that in the read_ext_ram_byte() routine, all of the code above the second
i2¢_start() statement is used to go to the specified address on the chip, but instead of
performing a write operation, it is followed by code to perform a read operation.

| 5.10 USB COMMUNICATION

A USB port or Universal Serial Bus is an external bus interface that is available on
almost all PCs and laptops that were made in the last few years. It is designed to
connect to external devices that connect to a PC (such as external hard drives, mice,
scanners, printers, digital cameras, and DVDs). The term ‘Universal’ is used since
the port can communicate with many types of devices. The ‘serial’ term refers to
the flow of information on the bus. A USB is built with a ‘bus’ architecture, which
provides an organized method to move information from many devices into and
out of a computer system. One advantage of a USB port is that it allows a device to
be connected or disconnected to a computer without powering down or rebooting
the computer.

The ‘Universal’ aspect of the USB port stems from the requirements placed on
developers of USB devices by the USB Implementers Forum (USB-IF). Devices
that plug into a USB port are classified into one of several classes. Examples of
device classes include the USB human interface device (HID) class, which
includes USB mice and keyboards, and the mass storage device class, which
includes USB flash drives. When a standard USB device that fits into one of the
defined classes (such as a USB mouse) is plugged into a PC, the operating system
should be able to automatically identify the device. In addition, a Windows appli-
cation can communicate with that device using a driver that is supposed to be pro-
vided by the operating system without loading any additional software. For cases
where the device does not belong to one of the device classes specified by USB-IF,
a custom driver needs to be developed to access the USB.

USB communication is quite an involved process, and this section gives only a
brief outline of the process of USB communication. For further information on this
topic, the reader is encouraged to read books with details on this topic, such as [16].

5.10.1 USB STANDARDS AND TERMINOLOGY

There are several standards for USB communication; the most recent is the USB 3.0
specification, which supports speeds up to 5 Gbps or SuperSpeed. This standard is
not yet widely available in PCs and devices, so we restrict most of our discussion to the
USB 2.0 standard. This standard supports data transmission rates of up to 480 Mbps,
which is forty times faster than the rate allowed by the previous USB 1.1 standard.
The USB 2.0 standard supports three speeds: high speed (480 Mbps), full speed
(12 Mbps), and low speed (1.5 Mbps).

In USB terminology, the PC is known as the host that communicates with
devices that are attached to the host. The host has a bost controller which formats the
data that is transmitted on the bus and also manages the communication on the
bus. The host also has a 700t hub which has one or more connectors for attaching
devices. All USB communication is between a host and a device (exception in USB
3.0), and direct communication is not allowed between hosts or between devices.
Up to 127 devices or hubs can connect to a single host controller at one time, either
through the installed USB ports on the PC or through external hubs, which can

510 USB Communication

Root Hub
Tier 1

Device Device Tier 2

Device Device Tier 3

connect between two to seven devices to one port on the PC. Modern PCs have
several host controllers, each controlling an independent bus, to improve the com-
munication bandwidth. Figure 5.15 shows the physical connection structure
between a host and hubs or devices. This structure is referred to as a tiered star
structure. Note that the physical connection between a host and a device (i.e.,
through more than one hub or not) does not affect the programming between host
and device.

A device is a physical or logical unit that performs a particular function.
Devices include hubs and physical devices (such as printers and keyboards). The
host assigns a unique address to each device on the bus. This is needed because
multiple devices can share the data path on the bus. Every device that supports
USB communication has a controller chip to manage the communication. Also,
every USB device has identifiers (Vendor ID and Product ID) that identify the device
to the operating system.

A USB cable has four shielded wires. Two of these wires are used for power
(+5 volts and ground), and the remaining two carry the data. In the USB 2.0 stan-
dard, the bus carries the data in one direction and at one speed at a given time. The
cable end can be either of the A or B forms (see Figure 5.16). The A form is
designed to connect to the computer side, while the B form is used to connect to
the device side. Cable length is limited to about 4 m. Smaller size USB plugs and
receptacles called mini-B and micro-USB are also available.

One nice feature of the USB interface is that a device can draw its power from
the USB bus instead of using a dedicated power supply. The current limit is 500 mA
for USB 2.0 and 900 mA for USB 3.0.

The operating system prevents applications from directly accessing the USB
hardware. Applications need to access the USB hardware through a driver that the
operating system assigns to the device connected to a particular port. The driver in
turn communicates with lower-level drivers that manage communication on the

Figure 5.15

Physical connection
structure with USB
communication

Figure 5.16

A and B forms of USB
connector

(© Nenov Brothers/
Shutterstock.com)

14

141 Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.17

Illustration of logical
channels in a USB
connection between a
host and a device

bus. Developing a driver for a USB device is not a trivial task, as it requires detailed
knowledge about USB protocols and buses. VBE (or even VB.NET) does not provide
built-in code to directly access a USB port. While a USB connector on a PC is called
a port, it differs from other ports on a PC (such as a serial port). The primary differ-
ence is that a USB port is part of a bus system, while a serial port is an I/O port with
a specific location address. Note that for PCs that do not have a serial port, the USB
can be used as a standard RS-232 port. This is accomplished by software/hardware
that makes the USB device look to the host software like a COM (RS-232) port.
Configuration of this port is done using the Windows Device Manager.

When a device first attaches itself to a USB port, the PC searches for an INF
(information) file, which specifies the driver that the PC will use with the device
and will load. On every subsequent attachment of the device to a host, the host
undergoes a process of enumeration. In it, the host requests information from
the device so it can assign the appropriate driver to use when communicating
with the device. In the enumeration process, the host requests information from
the device, assigns an address for the device, and selects a configuration that
reflects the device’s power and interface requirements.

5.10.2 USB DATA TRANSFER

In USB communication, data is transmitted between the host and devices based on
requests from the host. Data communication between the host and the device is
done through logical channels or pipes which connect the host controller’s soft-
ware to entities called endpoints on the device. An endpoint is a buffer that holds
transmitted or received data. Physically, an endpoint is a block of memory or a reg-
ister. While the host has buffers to hold transmitted and received data, they are not
called endpoints. Each endpoint is defined by an address that has two components:
an endpoint number in the range of 0 to 15 and a direction labeled either IN or
OUT. The direction is from the perspective of the host. Thus, the IN endpoint has
data to transmit to the host, while the OUT endpoint has data that was received
from the host. The number of endpoints for a device is dependent on the USB
speed mode with full and high-speed modes having up to 32 endpoints. Every
device must have an endpoint zero, which is used for control purposes. The com-
munication pipes are established by the host during the enumeration process. They
can be removed by the host if the device is no longer attached to the host, or
changed if the host asked for a new interface to the device. Figure 5.17 shows a
schematic of the logical interface between a host and a device.

Data transfer between the host and an endpoint is performed using one or more
transactions. There are three kinds of transactions: Serup, In, and Out. A Setup
transaction sends control information from host to endpoint. An Iz transaction
sends data from the device to the host, while an Out transaction sends data from the

Device: Ex. Disk Drive PC
Endpoints . .
Logical Pipes

0| OUT

0 IN
Host
Controller

1| OuUT

1 IN

510 USB Communication 43

host to the device. A transaction consists of a series of packets, where a packet is a
block of information with a defined structure. There are different types of packets,
including token, data, and handshake packets. A token packet identifies the transac-
tion type such as In or Serup. A data packet carries data or status information, while
a handshake packet carries status code. Each transaction has a token packet that is
always sent by the host and may also include a data and/or a handshake packet.
Figure 5.18 shows the relationship between transfers, transactions, and packets.

Transfer
A
r . . A
Transaction Transaction
Token E Data . E Handshake E Token . Data E E Handshake E
Packet E Packet E E Packet E Packet E Packet E E Packet E

All packets begin with a packet ID (PID) that contains information that iden-
tifies the packet. For example, the PID name for a token packet is either Out, In,
Setup, or SOF (start of frame). The SOF is used for timing purposes. A handshake
packet PID name could be ACK (which means that the receiver accepts error-free
data packets). The remaining entries in the packet are dependent on the packet type
and may include the endpoint address, data, status information, or errors-checking
bits (CRC). Figure 5.19 shows the packet format for token, data, and handshake
packets. Note that there are other packet types (such as the PRE packet) that are
not discussed here. When an endpoint receives a packet from the host, it uses the
packet ID to determine what to do. For example, in receiving an Out token packet,
the endpoint stores the data that follow in the data packet. The device hardware
usually triggers an interrupt after the data is received, and software is then used to
process the received data. The size of a packet varies with USB bus speed.

Token Packet:| PID | Address | Endpoint | CRC ‘

Data Packet:| PID | Data | CRC |

Handshake Packet:

The scheduling of data transfer on the USB bus is handled by the host. Time
is divided into 1-ms frames at low and full speed and into 125-us microframes
at high speed. A portion of the frame or microframe is allocated for each transfer.
The transactions for a particular data transfer can be split over several frames
or microframes, but each USB 2.0 transaction is completed within a frame or a
microframe without interruption. A schematic of the timing of data transfers is
shown in Figure 5.20.

Frame or
Microframe

»L Transfer: One or More Transactions

Figure 5.18

Illustration of a USB
transfer

Figure 5.19
USB packet format

Figure 5.20

Timing of data transfers
on a USB bus

144

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

5.10.3 TRANSFER MODES

There are four different modes of data transfer through a USB. These are control,
bulk, interrupt, and isochronous. The application typically determines which mode
to use. The control mode is used to obtain information about the device and to set
the device address and configuration parameters. This mode must be supported by
all USB devices. The bulk mode is typically used in applications where data trans-
fer rates are not critical (such as sending data to a printer, receiving data from a
scanner, or performing file access operations on a disk). The interrupt mode is used
when data transfer must occur within a specific amount of time or latency and is typ-
ically used in mouse or keyboard interfaces and in data-acquisition applications. In
isochronous mode, the data is transferred at a constant rate, and this mode is typ-
ically used in audio and video data-streaming applications. There is a tradeoff in the
different modes in terms of error detection, recovery, and bandwidth.

In a USB connection, the data can be transmitted at three different speeds. In
the slow-speed mode, the maximum data transmission rate is 1.5-M bits/s, and this
speed is used for devices such as a USB mouse. In full-speed mode, the maximum
data transmission rate is 12-M bits/s, and this speed is used for most devices. The
high-speed mode (USB 2.0 standard) allows rates to up to 480-M bits/s, with a typ-
ical speed range of 25- to 400-M bits/s. Note that the slow-speed mode does not
support bulk and isochronous data transfer modes.

5.10.4 USB SurpoRT ON PIC MICROCONTROLLERS

Some of the PIC MCUs support USB communication (such as the PIC18F4550
MCU). The USB interface in these MCUs can be made to support several USB
communication classes (such as HID and Communications Device Class (CDC)).
We will talk about the CDC class here. The CDC is a class that covers a large num-
ber of telecommunication devices (such as analog phones, digital phones, cable
modems, Ethernet adapters, and virtual COM-port devices). When a PIC MCU
with USB support for CDC is connected to a PC, it will appear on the PC as a vir-
tual COM-port. The PC can communicate with the device using standard RS-232
communication routines.

The PIC-C compiler has support for USB communication. It has a number of
functions to handle USB communication for any class (such as usb_attach, which
attaches a PIC device to the USB bus; ush_put_packet, which places a packet of data
into a specified endpoint; and usb_get_packet, which reads a maximum number of
bytes from a specified endpoint). It also has a number of routines to use exclusively
with the CDC class. These routines are placed in a library called the CDC. These
routines have a calling format similar to standard RS-232, and they hide from the
user all of the details of USB communication. For example, the routine to get a
character from the receive buffer is usb_cdc_getc(), and the routine to send a char-
acter is usb_cdc_putc().

Figure 5.21 shows an example of code using the CDC library to communicate
with a PC. The code sends back to the PC the character ‘s’ if it was received by the
MCU and ignores all other characters. The #include <usb_cdc.h> file has all of the
needed code for CDC communication. Note that the function usb_init_cs() needs
to be called once to initialize the USB hardware. Also, the routine usb_task() has to
be called periodically. The wusb_task() function monitors the USB bus for device
connection/disconnection. It also enables and uses the USB interrupt. Because
the CDC class makes the USB port looks like a COM-port to the PC, one also
needs to set the RS232 communications parameters (done here with the #use 75232
command).

51

I T

/1! USB_IN_OUT.c

/1

/// This program demonstrates USB communication using the CDC library
/1

/// Compiler: PCWH from CCS, Inc. (Version 4.103)

T T T

#include <18F4550.h>

#fuses HSPLL,NOWDT,NOPROTECT,NOLVPNODEBUG,USBDIV,PLL5,CPUDIV1,VREGEN
#use delay(clock=48000000)

#use rs232(baud=38400, BITS=8, xmit=PIN_C8, rcv=PIN_C7,ERRORS)
#include <usb_cdc.h>

void main()
{
ush_init_cs(); //Initialize USB Hardware but do not wait for device to be
// connected to bus
charc;
while (2>1) // Start infinite loop
{
ush_task(); // Monitor Bus
if (usb_cdc_kbhit() == 1) //Check if there is a char available in the receive buffer
¢ = usb_cdc_getc(); // Read char to variable ¢
if(c=="3)
{
printf{ush_cdc_putc,”%c\n \r” c); // send the char back if it is ‘s’
c=""
}
}
}

When using a PIC MCU with a USB, one has to be careful in specifying the
oscillator configuration for the chip. As mentioned in Chapter 4, in chips that sup-
port USB communication (such as the PIC18F4550), an additional clock branch is
provided on the chip to give a 48 MHz clock for full-speed USB operation. For the
USB operation, a phase locked loop (PLL) circuit on the MCU is used to provide
the 48-MHz clock signal using as input clock sources that can range in frequency
from 4 to 48 MHz. In the code example shown in Figure 5.21, we have used a board
that has a 20 MHz crystal as the external clock source. Thus, in specifying the clock
information using the #fuse settings, we defined the clock source high speed with
phase locked loop (HSPLL). We also used the fuse setting PLL5, which means that
the external oscillator clock frequency is divided by a prescale factor of 5. This is
needed to cause the input to the PLL circuit to be at 4 MHz (20 MHz/5), which is
the required input frequency to the PLL circuit. The PLL circuit gives a clock out-
put of 96 MHz, so the fuse setting USBDIV is used to cause the output signal fre-
quency to be divided by 2, thus giving the required 48 MHz clock.

| 5.11 NETWORK CONNECTION

A serial interface is an example of point-to-point network connection. When a PC
or a MCU needs to interface to many devices, a network form of connection is
more appropriate. A common method of network interfacing is the Internet. Some
8-bit PIC MCUs support Ethernet communication; for example, the PIC18F97J60

Network Connection

Figure 5.21

Code listing that uses
the CDC class in PIC-C
compiler

145

146 Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Table 5.2

Four layers TCP/IP
model

Figure 5.22
IPv4 and IPv6 addresses

IPv4 Address notation:
192.168.1.101

IPv6 Address notation

2002:C0A8:165:0:0:0:0:0

family is one which the reader can refer to for further information. This section will
discuss Internet interfacing on PCs.

5.11.1 STRUCTURE AND OPERATION

There are several protocols for Internet communication (see [17-18] for further
reading). The Transport Control Protocol/Internet Protocol (T'CP/IP) is the
basis of the Internet. TCP and IP were developed by the Department of Defense
(DoD) to connect a number of different networks into a network of networks
(i.e., the Internet). The TCP/IP protocol is based on a stacked layered model,
where each layer performs a separate function. There are two commonly refer-
enced models. These are the Open Systems Interconnect (OSI) model, which has
seven layers, and the DoD model, which has four or five layers depending on its
version. The DoD four-layer version is shown in Table 5.2. The topmost layer is
related to the application program, while the bottommost layer is related to the
physical transport of the data. At the application layer, several protocols are used
(such as Hypertext Transfer Protocol (HTTP) and File Transfer Protocol
(FTP)). At the transport layer, there are several protocols including the User
Datagram Protocol (UDP) and the T'CP protocol. At the Internet layer, protocols
such as IP route the data to the proper address. At the network access layer, sever-
al methods can be used (such as Ethernet or Wi-Fi). We will focus on the use of the
TCP protocol in the transport layer. The TCP protocol assembles a message or file
into a group of packets that are sent over the network and performs re-assembly of
the packet when it arrives at its destination.

Layer Function Example Protocol
4- Process/Application Layer Applications that use network HTTP, FTP

3- Transport Layer Data delivery service UDP, TCP

2- Internet Layer Routing of data IP

1- Network Access Layer Access of physical networks Ethernet, Wi-Fi

IP Address The Internet Protocol (IP) address gives the location for data trans-
mission and sourcing on a network. IP addresses are currently unsigned 32-bit num-
bers that are displayed in IPv4 dotted-quad notation. In this notation, the address
is displayed as four decimal numbers that are separated by dots with each number
corresponding to one byte of the 32-bit address. The Internet regulators assign a
range of addresses to different organizations. These organizations in turn assign
their addresses to different departments within their organization. For example, in
large organizations, the first two bytes represent the organization address, while the
last two bytes represent the computer number or workstation in that organization.
Using a 32-bit address space gives only a total of about 2.9 billion publicly available
addresses. Some addresses are reserved for private networks or government use. To
allow for a much larger number of addresses, a new format of IP addresses was pro-
posed. The new format, called the IPv6 colon-hexadecimal notation, uses 16 bytes
(or 128 bits) to represent the address. In the IPv6 notation, the address is displayed
as eight four-digit hexadecimal numbers with colons separating each of the 16-bit
blocks. In addition to providing an inexhaustible supply of addresses, the new
address scheme enables a hierarchical routing infrastructure that is designed for
more efficient routing. Figure 5.22 displays an IP address in both formats.

A static address is a permanent IP address (similar to a fixed telephone num-
ber) while a dynamic address is generated from a pool of available addresses by

51

some Internet service providers when one connects to the Internet. Dynamic
addresses are used to overcome the limitation of limited IP address availability.

Server and Client 'The common programming model for Internet communi-
cation is the client/server model, where each computer or process on the network
is either a client or a server. In this model, the client requests a service from the
server, and the server responds by sending the requested information to the client.
Many clients can be connected to the server at one time. The servers are typically
powerful computers or workstations. Another model for Internet communication
is the peer-to-peer model (P2P), where each computer has a similar capability
and can initiate communication with the other computer. The P2P model is com-
monly used in home and small office networks where a limited number of comput-
ers want to share resources (such as printers and scanners). It is not suitable to use
for shared database applications.

Nodes A node is a computer or some other device (such as a printer) that is
connected to the network. Nodes can be a gateway type (connected at the entrance
to the network) or a host type, (connected at an end-point of the network).

Sockets and Ports A socket is the abstract designation for a network connec-
tion on a PC. If a PC has more than one process that is interfaced with the Internet,
then each process needs to have its own socket. A port, on the other hand, is the
abstract designation for the channel that the data is sent to. When a client requests
a service from a server, it informs the server of the port number to which the data
should be sent. The port numbers are unsigned integer values, and there are 64K
possible ports. The port numbers are split into three groups depending on the
application: the well known ports (0 to 1023), the registered ports (1024 to 49151), and
the dynamic and/or private ports (49152 to 65535). The port assignments are regu-
lated by the Internet Assigned Numbers Authority IANA). The well known and
registered ports should not be used without IANA registration.

Network Access There are several models for network access. These include
rotating access and collision detection. In the rotating-access method, each node
gets a turn in writing data to the network. In the collision-detection method, a
node checks to see if there is any activity on the network before it writes the data
to the network. If no activity was detected, it starts to write the information to the
network. If while writing the information the node detected information on the
network from other nodes (i.e., a collision), then all the involved nodes stop trans-
mitting. Each node then waits a random time interval to reduce the probability of
another collision before attempting again.

TCP and UDP Protocols The most popular network architecture is one that
uses Ethernet for the physical layer and TCP/IP for the upper layers. The Ethernet
or physical layer uses the collision-detection method for network access. Ethernet
is not deterministic and a given PC on the network cannot guarantee when it can
use the network. The TCP protocol uses handshaking and has a built-in structure
for error detection and correction. This protocol is referred to as a connection-
oriented protocol.

In the user datagram protocol (UDP), there is no handshaking, and there is
no error detection or correction above the network access layer. This protocol is
connectionless, and using it, you cannot tell if a packet did not arrive at its target
destination. The UDP is a faster protocol than TCP due to the use of a smaller
header in its packet structure and the lack of error detection and correction. Due to

Network Connection

147

148 Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

Figure 5.23

Interface screen for the
server and client
example programs

this, UDP is suitable only for private networks where network traffic is very pre-
dictable and overload is unlikely to occur. It also is commonly used to send streaming
audio and video data when there is a need for high-speed transmission but the
fidelity of the transmitted data is not of utmost concern.

5.11.2 VBE PROGRAMMING SUPPORT

VBE provides programming interfaces for several of the protocols used on the net-
works today. It supports both the TCP/IP protocol and the UDP protocol that were
discussed as part of the transport layer. We will discuss an example application that
has two programs running: one acting as a client and the other as a server. These
programs can run on the same PC or on two different PCs. A complete listing of the
code for this application is provided on the text website. Figure 5.23 shows the inter-
face screens for these two example programs. To start the server program, the user
clicks on the Listen button. This makes the program wait for a connection to be
established by the client. If the server is listening, then the client can connect to the
server by pressing Make Connection button. Any message that the user types in the
Msg to Server textbox is sent to server when the client hits the Send Msg button. The
server will display the received message in the Msg from Client textbox. The server
also replies back to the client with a message, which is the content of the Msg to
Client textbox. The server can terminate the connection by pressing the Release
Button. Also, the client can disconnect from the network by pressing the Disconnect
button. The client can specify the address of the server to be connected to or can
choose a local server connection. In the latter case, the server Internet address is
automatically obtained by interrogating the Domain Name System (DNS) object
for the PC on which the client and server programs are running.

ot Chient borm

o Server Form - ===

Conmmection Slalus Stebes Chend Corpmected

Cennected to Server
Msg from Client Msg to Client

| Disconmed Hedo Mag Meceived

Mg les S Mgy ot Sraven

Meg Racaived
Hella

Let us now look at the details for this example application. To implement a net-
work connection based on the TCP/IP protocol, the TépClient and the TipListener
objects need to be used.

A new client in the client program is created with the command:

Client = New Net.Sockets.TcpClient (server_address, port_num)

where server_address is the IP address of the server to which the client desires to
communicate with and porz_num is the desired port number on the client machine.

51

Once the client has been created, a stream is established for communication
using the GetStream method with the command:

Stream = Client.GetStream()

To send data to the server, the Stream.write() method is used. The message to
be sent has first to be parsed into ASCII format and stored in an array of bytes
before being sent to the port. This is done using the command:

Dim Sentdata As [Byte]() = System.Text.Encoding.ASCII.GetBytes(message)

Similarly to reading items from the server, the Stream.read() method is used. In the
same fashion, the data that is received in bytes need to regrouped into a message using

ReceivedMessage = system.Text.Encoding.ASCII.GetString(data, 0, num_of_bytes)

where data is the byte array containing the data that is received from the port and
num_of_bytes is the array size.
Similarly, a new server in the server program is created using

Server = New TepListener(local_add, port)
Server.Start()

where Jocal_add is the IP address for the server machine. Once a request from the
client to connect to the server is received, a client reference is created in the server
program using

Sclient = Server.AcceptTcpClient()

Similar to the client program, communication with the client is done using a
stream established with the command:

Stream = Sclient.GetStream()

Note that the Stream.read() method is blocking (i.e., it has unpredicable execu-
tion time) if no data is available. To prevent blocking code, the Stream. DataAvailable
property should be checked to see if data is available, and the code that handles the
communication in both the client and server programs should be structured as a
state-transition diagram (covered in Chapter 6). Figure 5.24 shows an example of
state-transition diagrams for the client and server programs. Notice that once com-
munication has been established between the client and the server, the client pro-
gram is in the Wairt state. The program remains in this state unless data is available
from the server or the client wants to send a message to the server. Similarly, the
server program remains in the Wair state unless a request comes from the client.

Start Start
Disconnect Connect Release Listen
Stream.DataAvailable Wait Wait [€ Stream.DataAvailable
I—»
Get Data Send Msg Get Data
Send Send
Data Data

(a) Client (b) Server

Network Connection 149

Figure 5.24

State-transition
diagram for (a) client
program and (b) server
program

150 Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

| 5.12 CHAPTER SUMMARY

This chapter discussed means for interfacing a processer to
external devices. It started with a discussion of Shannon’s
sampling theory, which states that the sampling frequency
should be at least twice that of the highest frequency in the
signal in order to prevent aliasing. This theorem applies
when an analog signal is ‘sampled’ to obtain the digital val-
ues. It was then followed by discussion of the operating
principles of an analog-to-digital converter, a digital-to-
analog converter, and a parallel port. For A/D and D/A
converters, the important characteristics of sampling rate,
voltage range, bit resolution, and quantization error were
discussed. Single and differential input modes of an A/D
converter were also discussed concerning the differential
input mode being a better configuration for handling noise
than the single-ended mode. The features of a commercial

QUESTIONS

data PC data-acquisition card were also presented. Serial
interfacing techniques were covered next. The legacy
RS-232 communication protocol was discussed in detail
along with software support in the VBE and PIC-C com-
piler. To provide higher communication speeds, many PIC
chips have a built-in synchronous serial port (SSP) module.
Both modes of operation of the SSP (the Serial Peripheral
Interface (SPI) and the Inter-Integrated Circuit (I?°C™)
interface) were discussed along with example code using
the PIC-C compiler. The basics of USB communication
were discussed along with an example code for the PIC-C
compiler that illustrates the use of the CDC class. The last
section covered Internet interfacing, including both the
TCP/IP and UDP protocols. The development of a client/
server application using VBE was illustrated.

5.1 Explain what is meant by signal aliasing.

5.2 What affects the voltage resolution of an A/D converter?
5.3 What is the purpose of differential wiring in A/D reading?
5.4 Does the PIC16F690 MCU have a D/A converter?
5.5 What advantages does serial interfacing have over parallel interfacing?
5.6 How is a PC interfaced to analog signals?
5.7 Explain the different types of parity methods used in the RS-232 protocol.
5.8 List the differences and similarities between RS-232 interfacing and SPI/I°C interfacing.
5.9 Which serial communication method has the fastest data transfer rate?
5.10 Name two Internet protocols.
5.11 Is USB communication allowed between devices?
5.12 Explain ‘packets’ and ‘transactions’ in USB communication.
5.13 Name two USB classes.
5.14 Name two programming models for Internet communication.

5.15 Identify a major limitation of Internet communication.

PROBLEMS

512 Chapter Summary 151

P5.1

pP5.2

P53

P54

What is the minimum sampling frequency needed
to sample the following signals to prevent aliasing?

a. f(t) = sin(mrr)
b. f(®) = 3 sin(2z) + 3 cos(2¢)

Determine the digital output of a 10-bit A/D
convertor with 0 to 5 V analog voltage range if
subjected to the following analog inputs.

a. 1V
b. 25V
c. 5V

A PIC18 MCU with a 10-bit A/D has its A/D
convertor set with V¢, = 2.5V, and

Vit = —2.5 V. Determine the digital output of
the A/D convertor if subjected to the following
analog inputs.

a. -1V
b. 0V
c. 2V

A temperature sensor was connected to a 16-bit
A/D converter with 0 to 5 V analog range. The
sensor sensitivity is 10 mV/°C and the sensor

LABORATORY/ PROGRAMMING EXERCISES

pPs5.5

P5.6

pP5.7

P5.8

output is 0 volts at zero degrees. Determine the
following.

a. The temperature reading if the A/D converter
output is 1000.

b. The measurement uncertainty due to the
quantization error of the A/D.

For an R/2R ladder resistor network similar to
that shown in Figure 5.6 with N = 8, determine
the voltage output of the network if bits 1 to 5
were connected to Vp.

Estimate the time it takes send a file that has
20000 characters using RS232-serial interfacing if
the baud rate is set at 38400 bps using a 10-bit
data packet.

Show the 10-bit serial packet for the following
characters using a 7-bit data, one start bit, one
stop bit, and a parity bit. Illustrate for both even
and odd parity.

a. 5
b. L

Perform research to identify three different sensors
that use SPI or I°C interfacing. For each sensor,
list the manufacturer and part number, and the
sensor details.

L/P5.1 Write a MATLAB program to show the effects of

signal aliasing. Assume the input signal is sinu-
soidal with a frequency of 5 Hz. Plot the sampled
signal if the signal is sampled at the following
sampling frequencies: 4 Hz, 8 Hz, and 20 Hz.

L/P5.2 Build a circuit on a bread board to interface any

PIC MCU with the DS275 or the MAX232/3
chip to enable the microcontroller to have
RS-232 interfacing with a PC. Test your circuit
by developing a program that allows the MCU
to receive and transmit characters to a terminal
program (such as HyperTerminal or PuTTY).

L/P5.3 Using a PIC development board with a built-in

RS-232 interfacing (such as Microchip PIC18
Explorer board or Olimex PIC-STK-USB board),
write a program that allows the MCU to receive

and transmit characters to a terminal program
(such as HyperTerminal or PuTTY).

L/P5.4 Using the VBE serial component, write a VBE

program that sends and reads data from a COM
port. For flexibility, write the code to allow the
user to select a particular port from the available

COM ports.

Chapter 5 Data Acquisition and Microcontroller/PC Interfacing

L/P5.5 With reference to the data sheet of a digital tem-

perature sensor (such as MAXIM DS1631 sensor
that uses I°C interfacing), do each the following.

a. Build a circuit on a bread board to interface
this sensor to a PIC MCU.

b. Develop a program to read the temperature
measured by the sensor.

c. Display the read temperature by transmitting
the temperature data to a terminal program.

L/P5.6 With reference to the data sheet of a digital

potentiometer (such as Microchip MCP42050-
I/P that uses SPI interfacing), do each of the
following.

a. Build a circuit on a bread board to interface
this potentiometer with a PIC MCU.

b. Develop a program to set the resistance of the
potentiometer. Note that the resistance is set
by a sending a byte to the chip. Use a multi-
meter to verify the set resistance.

L/P5.7 Using any PIC microcontroller development

board, do each of the following.

a. Build a circuit on a bread board to interface
the PIC MCU to a small DC motor with a
tachometer. Use the A/D converter on the
MCU to read the tachometer output and a
PWM line to actuate the motor through a
transistor or H-bridge driver.

b. Develop a program for the MCU to vary the
speed of a DC motor by changing the duty
cycle of the PWM signal sent to the transistor
or the H-Bridge driver. Use the rotary pot on
the development board as a speed dial to vary
the desired motor speed. Set the duty cycle as
a function of the desired speed, which is read
from the 10-bit A/D channel connected to the
rotary pot. Read the actual motor speed from
the tachometer, and display it to the user on a
terminal program using the RS-232 interface.

L/P5.8 Develop a VBE program to test the A/D, D/A,

and digital IO functions on a data acquisition
card. For testing the A/D and D/A, the program
should allow the user to specify which channel to
test. In addition, the program should provide
three testing modes: single reading from or writ-
ing to a particular channel, repeated testing of a
particular channel (for reading only), and contin-
uous testing of a combination of an A/D and D/A
channels (for example reading a sine wave
through the A/D and sending it back through the
D/A). In the second testing mode, the program
should allow the user to specify the number of
times the individual reading need to be taken, and
should display the average reading and the range
of the readings taken during the test. For testing
the digital I/O port, the program should be able
to send a value (0 or 1) to any one of the 8 bits
on the digital output port without affecting the
current values on the other remaining 7 bits.

For testing the digital input port, the program
should be able to read the input value on any
one of 8 bits. (Note: This problem assumes the
availability of a data-acquisition card with a
software library for accessing the A/D, the D/A,
and the parallel port.)

L/P5.9 Modify the provided code for the client-server

(see text website) to perform remote control or
actuation. Specifically, do each of the following.

a. Run the server code on a PC that has a data
acquisition card or I/0 capability. Add code to
allow the server program to interface with a
motor and/or sensors on the server station.

b. Run the client code on another PC, and use

the client program to issue commands to the
physical system that is attached to the server.
Examples of such commands are to start/stop
the physical system or to get status informa-

tion (such as speed or temperature).

Control Software

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:
e Explain the concept of time and timers
® Outline how timers are implemented in different computing platforms
® Organize the operation and control of physical systems into tasks and
states
Develop state-transition diagrams for control of physical systems
Explain code organization in state-transition diagrams
Implement state-transition diagrams in different computing platforms
Explain the concept of a thread
Identify mechanisms for resource sharing
Explain the operation of an RTOS
Develop user interface for the PC portion of a control system

| 6.1 INTRODUCTION

The previous two chapters discussed microcontrollers and the means of interfacing
microcontrollers or PCs. This chapter focuses on software development issues
when using a microcontroller (and to a lesser extent, the personal computer) as the
controller in a mechatronic system. Some of these issues include how to incorpo-
rate time into a control program, how to structure the operation and control of
physical systems into tasks and states, and how to write control code that is suitable
for real-time implementation. Incorporating time is essential in many software sit-
uations, especially in digital implementation of closed-loop control systems, since
the sampling rate, which is the frequency at which the control signals are sent to
the system, affects the response of the system.

Software development is a very important piece in the development of a mecha-
tronic system. Without software, a MCU or PC cannot function. A software-based
control system offers flexibility over a hardware-based one, since the controller
structure and control logic can be changed by simply changing the code in the pro-
gram. Due to the different types of control activities that need to be performed (such
as feedback control or discrete event control), it is advantageous to develop a uni-
form control software structure that can handle a variety of control applications.
This chapter presents such a structure that is based on the task/state software struc-
ture. According to Lyshevski [19], developing a control software structure is one of
the most challenging problems in mechatronics system design.

153

154

Chapter 6 Control Software

In many situations, more than one control task needs to be controlled at the
same time, and this chapter addresses the issue of multitasking. Multitasking brings
the problem of resource sharing among the different tasks and the tools available
to properly share these resources. The chapter also discusses the requirements for
real-time operating systems (RTOS) and discusses two commercial RT'OS for use
in microcontrollers. The last section of this chapter addresses the development of
graphical user interfaces of the PC portion of a control program. Approaches using
Visual Basic Express (VBE) and MATLAB are discussed.

| 6.2 TIME AND TIMERS

Time is a very important element in the software used in mechatronic applications.
Timing needs in mechatronic applications include the use of a timer to record the
time of occurrence of an event (such as when the temperature of a process reaches
a certain value), to implement time delays, and to schedule repeated execution of
code segments (such as those used for monitoring and feedback control).

Some programs used in mechatronic applications are called real-time pro-
grams. A real-time program is one where the timing of the output result is as
important as the result itself [20]. Not only does the program have to produce the
correct output, but that output has to be produced at a certain time or within a
specified interval, otherwise the output is worthless. For example, if you wrote a
program to find a solution for the roots of a quadratic equation, the program oper-
ation and output is not affected by what time you start the program or how long it
takes to solve for the roots (as long as it is done in a reasonable time interval). On
the other hand, in a program to implement anti-lock braking, it is very important
that the program output is produced in a very short interval from the instance that
wheel skidding was detected, otherwise a catastrophic failure could happen.
Another example where the timing of the control output is important is in the cut-
ting of a sheet of material by a heat source such as laser. Here, the cutting opera-
tion is very dependent on how long the laser beam remains over the cutting area
(controlled by the speed of the laser head relative to the material). If the exposure
time is not controlled properly, then either the material will not cut due to under-
heating or it will burn due to overheating. Hence, in the laser-cutting example, the
timing of the control output is important.

We will consider both absolute and relative timing modes as well as how to
implement time in software. In some applications (such as alarm monitoring and
scheduling), there is a need for absolute time, which includes the date and time
information. As an example, consider a programmable thermostat to control the
temperature in a house. The thermostat includes the means to allow the user to set
a certain temperature value, depending on the time of the day (morning or night)
and the particular day of the week. Thus, the thermostat, which is an example of
an ON-OFF type of controller, synchronizes its operation with absolute time.
Another application where absolute time is important is in security or alarm mon-
itoring, where the time when an event happens (such as the opening of a door) is
important and needs to be recorded.

Relative time or interval timing is needed when we need to implement a par-
ticular sampling rate in feedback control systems or to implement time delays. In
interval timing, the time interval from the current instance to the future instance
in which the next operation needs to be performed is controlled, but not at what
hour of the day or day of the month.

6.2 Time and Timers

Regardless of the mode of timing, a timer is implemented in a computer sys-
tem using a combination of a clock and a counter. The clock is any device (such as
a stable crystal oscillator) that can generate a uniform train of pulses at a particular
frequency. These pulses are fed to a counter, which keeps track of them. To access
the counter, the program simply reads the counter value through a function call.
Counters can operate in two modes: count-up or count-down. In the count-up
mode, the counter starts at 0 (or any other value), and then the count value is incre-
mented by 1 whenever a new pulse has arrived. In the count-down mode, on the
other hand, the counter is loaded with a starting value, and this value gets decre-
mented with the arrival of each new pulse. Due to the finite size of counters (i.e.,
16-bit or 32-bit), a count-up counter will overflow when the count exceeds the
maximum number of counts for that counter. Similarly, a count-down counter will
overflow when the count goes below 0. When a counter overflows, the counter is
reloaded with the starting value, and the counting process repeats.

An important characteristic of a timer is its resolution. This refers to the
smallest time change that can be measured by a timer. For a clock that generates
pulses at a frequency of f pulses per second, the timer resolution in seconds is

Timer resolution = 1/f

The maximum time interval that can be measured by an #-bit counter before
it overflows is given by

Maximum interval = 2"/f

For example, a clock that operates at a frequency of 12000 Hz and a 16-bit counter
have a maximum time interval of 65536/12000 = 5.461 s.

In relative-timing mode, time intervals are obtained by dividing the difference
between two counter readings by the clock frequency. For example, a counter oper-
ating in count-up mode has the time interval given by

AT = (G — C)/If
for C, > Cy, and
AT =(2"—- C + G)/f

for C; < Cy, where C; and Cj are the counter readings at the end and start of the
interval, respectively, and # is the bit size of the counter. C, can be less than Cj if
the second reading of the counter was obtained after the counter has overflowed.

"To determine time in absolute timing mode, the starting time is first synchro-
nized with a reference time (such as the current time and date information). The
absolute time is then determined by adding the interval between the current time and
the last time the counter was read to the starting time. To have accurate absolute tim-
ing information, the counter has to be read at least once during an overflow period.

To illustrate counter overflow problems, let us consider a counter that over-
flows every 24 hours (similar to the Timer property in VBE, which will be discussed
later). If this counter was read after one hour from the last time it overflowed, and
then read again after six hours from the last time it overflowed, then by taking the
time difference between these two readings, we say that five hours have elapsed.
However, if the second reading of this counter was done the next day instead
(29 hours after the first reading), we still get a difference of five hours between the
two readings, although the two readings are actually separated by 29 hours. This is
because, when the counter overflows, it resets itself back to zero.

(61)

(6)

(63)

155

156

Chapter 6 Control Software

Figure 6.1

lllustration of counter
overflow

. Counter Overflow Period |
[|

|«— AT,y = 17 hr —{<——— AT, .,y = 26 hr ——>|

02 19 24 21 24

For accurate time keeping over periods longer than the counter overflow peri-
od, the counter has to be read at least once during each overflow period to prevent
timing errors resulting from overflow of the counter. The successive time intervals
between the current and the last time the counter was read are added to obtain the
current time. The question that now arises is how to implement a scheme to check
that the readings are actually done before the counter overflowed. The answer is to
set a maximum read interval for the counter that is less than the overflow interval
and to call any reading in which the time difference exceeds the maximum read
interval as overflow. This scheme, which was proposed in [2], may not be able to
detect all overflow instances, but should be able to detect the overflow error over
many readings of the counter.

To illustrate this, let us consider again our counter example that overflows once
every 24 hours and set the maximum read interval to 16 hours. Assume the count-
er readings were 2, 19, and 21 (see Figure 6.1). Then according to this scheme, we
get an overflow at the second reading, since the difference between the second and
the first reading is 17 hours, which is greater than the maximum read interval that
we set (16). On the other hand, at the third reading of 21, this scheme does not
detect an overflow error, since the difference between the third and the second
counter readings is only 2, while in reality the third reading was obtained in the
second day. Nevertheless, this scheme will be able to detect some overflow errors
over many readings of the counter. Detection of such errors tells us that we need
to revise our code to read the timer more often.

| 6.3 TIMING FUNCTIONS

Most programming languages provide functions for accessing time information
that make use of the hardware timer that is available on the microcontroller or the
PC. In this section, we will discuss timer implementation in PCs and PIC micro-
controllers. In PCs, we discuss timer implementation in MATLAB and Visual Basic
Express. We also discuss the performance counter that is available on some PCs.

6.3.1 TIMER IMPLEMENTATION IN MATLAB

MATLAB has several functions to obtain timing information. In this section, we
will discuss

e TIC and TOC functions
e CLOCK and ETIME functions
¢ TIMER object

The TIC and TOC built-in functions are designed to be used together and use the
PC clock. The TIC function starts a stopwatch timer, while the TOC function
reads the current time in seconds from when the TIC function was called. To get
timing information, the TIC function is called first. A subsequent call to the TOC

6.3

function returns the elapsed time since the TIC function was called. For example,
if we type in the command window:

tic

toc

Then MATLAB will print:
Elapsed time is 2.647394 seconds.

The TIC and TOC functions are useful to use as an interval timer. For exam-
ple, the following MATLAB code (see Figure 6.2) can be used to check if a certain
time interval (such as 10 s) has elapsed.

tic;
start_time = toc;
while (toc - start_time) < 10

end
disp ("10s seconds has elapsed')

The TIC/TOC functions have a sub-millisecond time resolution, but the actu-
al resolution obtained in a given application is dependent on the computer hard-
ware used and on what other applications are running at the same time.

The CLOCK function returns a six-element vector that has the current date and
time information in decimal format. Typing CLOCK in the command window gives

clock

ans =

1.0e+003 *

2.0100 0.0070 00140 0.0120 0.0020 0.0128

where the first element is the year information and the remaining five elements are
respectively: month, day, hour, minute, and seconds. To access only one element of
the date and time information, the CLOCK function is assigned to a variable, and
the corresponding element of that variable is used. To get the information in inte-
ger format, the clock function is called using the FIX function or fix(clock). The
ETIME function along with the CLOCK function can be used to determine the
time (in seconds) that has elapsed between two values of clock vector. Thus, the fol-
lowing code will give the elapsed time:

t1 = clock;
etime(clock,t1);

MATLAB does not recommend the CLOCK and ETIME functions for accu-
rate timing, since they are based on the system time, which the operating system
can adjust periodically. The TIC/TOC functions give a more accurate event or
interval timing.

MATTLARB allows the creation of a TIMER object that can be used to automat-
ically time the execution of a special function called the timer callback function.
The TIMER object is created using the command:

T = timer("PropertyName1’, PropertyValue1, ‘PropertyNameZ2’, PropertValueZ, ...)

Timing Functions 157

Figure 6.2

MATLAB code listing
for implementation of
an interval timer

158 Chapter 6 Control Software

Table 6.1
TIMER object properties

Figure 6.3

Illustration of the
different execution
modes of the TIMER
object

Property Name Property Description

AveragePeriod Average time between Timerfcn executions since the timer started.
ExecutionMode Determines how the timer object schedules execution of the Timerfen.

Period The delay in seconds between execution of the TimerFcn.

TasksToExecute The number of times the timer should execute the Timerfcn if the ExecutionMode

is not singleShot.

TasksExecuted The number of times the timer has called the Timerfcn since the timer was
started.
Timerfcn Timer callback function.

where T (or any other name) is the TIMER object, and the property name/value
pairs are used to specify the operating characteristics of the TIMER object. Some
of the available properties and their description are listed in Table 6.1.

The timer Period property cannot be less than 1 ms. If unspecified, the default
setting is then 1.0 s. The ExecutionMode property of the timer defines how the timer
is run. It can run once (if the property is singleShot, which is the default setting) or
it can do multiple executions (if the property is set to fixedDelay, fixedRate, or
fixedSpacing). Figure 6.3 shows the different execution modes. Note that in this fig-
ure the timer period is the same in all cases, but the point of time at which the exe-
cution begins is different. In the fixedRate mode, the timer period starts at the point
where the timer callback function is added to the queue. In the fixedDelay mode,
the timer period starts at the beginning of the execution of the timer callback func-
tion, while in the fixedSpacing mode, the timer period begins at the point where the
timer callback function finishes executing. Note how the absolute timing of the
execution of the TimerFcn is different in each mode.

r Timer Executes

|<7 Start Delay ~>|<f Timer Period —»l

FixedRate Q. TimerFcn Q TimerFcn
Lag Lag

|<7 Timer Period —>|

FixedDelay Q TimerFcn Q TimerFcn
Lag Lag
|<— Timer Period %l
FixedSpacing Q TimerFcn Q TimerFcn
La Lag

Note: Q. Lag means Queue Lag

Once the TIMER object has been created, it needs to be started. It can be
started immediately by calling the function star#(T), or it can be started to run at a
specified time using the function startat (1, start_time). The timer can be stopped by
calling the stop(7T) function.

As an example, Figure 6.4 shows the code listing to create and start a TIMER
object with period of 0.5 s. The timer has a callback function that needs to be
executed 20 times in fixedRate mode. Included in this code is a listing of the
timer_callback_fcn.

6.3 Timing Functions 159

% Demo of Timer Object
% File: DemoTimer.m

function DemoTimer

% Create the timer object T

T = timer('TimerFcn', @timer_callback_fcn, ‘period’, 0.5, TasksToExecute', 20, ExecutionMode’,
‘fixedRate');

% Start the timer

start(T);

% Wait for the timer to complete the tasks

while(get(T, TasksExecuted') < 20)

% do nothing

end

disp('Tasks Execution is done’);

% Remove the timer from memory
delete(T);

% Listing of the timer callback function
function timer_callback_fcn(obj,event)

disp('In timer call back function \n')

Once the timer has completed its execution, the timer should be removed from
memory using the delete command. The TIMER object will be utilized later in this
chapter for the implementation of state-transition diagrams in MATLAB.

6.3.2 TIMER IMPLEMENTATION IN VBE
VBE has several functions that access the counters that are kept by the operating
system. In this section, we will discuss two of these timing functions:

* Timer property

¢ Timer component (Windows Forms): Allows Windows-based application to

respond to events that are spaced regularly

The Timer property returns the number of seconds since midnight. It is
called by using the following syntax, where CurrrentTime is the number of seconds
since midnight at the instant at which this statement is executed:

CurrentTime = Microsoft.VisualBasic.DateAndTime. Timer

The Timer property is convenient to use for implementing an interval-type
timer in a program. Figure 6.5 shows an example of code that uses the timer prop-
erty to delay the execution of a program by 10 s. In this example, the code contin-
uously monitors time by repeatedly calling the Timer property and will exit the

Dim StartTime As Double

StartTime = Microsoft.VisualBasic.DateAndTime.Timer

While (Microsoft.VisualBasic.DateAndTime.Timer - StartTime <= 10)
End While

MsgBox("10 sec time interval has elapsed")

Figure 6.4

MATLAB code listing
demonstrating the
TIMER object

Figure 6.5

A timing delay using
the Timer property

160

Chapter 6 Control Software

Figure 6.6

Timer component

ﬂmﬂ]é

While-Loop when the 10 seconds time interval had elapsed. At that point, the code
prints a message to the user using the msghox function.

Notice that this timer overflows once every 24 hours, and hence, it is not suit-
able to keep time for applications where the program needs to run for extended
periods, unless means were made to address the overflow issue.

Unlike the Timer property, which can be used in any type of VBE applications
(Windows or Console), the Timer component only can be used in Windows
applications. The Timer component is used when a certain code needs to be run
periodically (such as to perform periodic monitoring of a sensor output or to
implement a feedback controller that needs to run at a certain rate). To incorporate
a Timer component into an application, it has to be placed on a VBE form (see the
clock symbol in Figure 6.6).

When this timer is activated (by setting the enable property to true), this timer
will cause a particular function to be called automatically at intervals that are spec-
ified by the Interval property of this component (value is in milliseconds). This
automatic function is called Timer*_Tick, where * is the timer number (1, 2, etc.),
and will continue to execute indefinitely as long as the enabled property is true. You
can think of the Timer*_Tick function as an event-enabled function, where the event
that triggers this function to execute is the elapse of the Timer component inter-
val. For example, if the Timer component interval is set to 100 ms, then the
Timer*_Tick function will execute approximately once every 100 ms, or ten times
per second. Note that, because of the multitasking nature of the Windows operat-
ing system, the Timerl_Tick function does not execute precisely every 100 ms, but
itis close to that. Furthermore, while the Interval property can be set as low as 1 ms,
the effective resolution of the Timer component is about 15 ms, as tested by the
author. Note that the Timer* Tick routine offers a very convenient method for
implementing a periodic activity (such as the monitoring of sensors or switch
inputs) when timing precision is not very important.

6.3.3 PERFORMANCE COUNTER

While the VBE timing functions discussed previously are easy to use, they do not have
a high resolution. Fortunately, many processors have a high-resolution counter called
the Performance Counter. This counter runs from a clock operating at a frequency
of about 1.2 MHz or higher, so it has a sub-microsecond resolution. The counter is
typically used by Windows applications to time the execution of sections of code.
However, VBE does not provide a built-in function to access that counter. Using func-
tion calls to the application programming interface (API), one can access that counter
(see code listing on text website). The class called PerformanceTimer provides functions
to access that counter. The class makes use of two Windows operating system-—
provided functions: QueryPerformanceCounter and QueryPerformanceFrequency. The
QueryPerfomanceCounter function returns the current value of the Performance
Counter in counts. The QueryPerformanceFrequency function returns the frequency of
the Performance Counter. If the installed hardware supports a Performance Counter,
this function returns a non-zero value, otherwise it returns a zero. Note that the fre-
quency of the Performance Counter is processor dependent. On some systems, the
frequency is the cycle rate of the processor clock. With access to the Performance
Counter, we can determine time intervals using Equation (6.3).

In order to use a timer that is based on the Performance Counter, a variable
(such as tmr of type PerformanceTimer) has to be declared and an object created
using a statement such as

Dim tmr As NEW PerformanceTimer

6.3 Timing Functions 161

The timer is then initialized by calling the function tmer.Start Timer(), which stores
the initial reading of the counter. The time is read using the ReadTime() function,
which returns the time since the timer was started. The ReadTime() function makes
use of the tmr TimeElapsed() function, which divides the difference between the
current counter reading and the initial counter reading by the counter frequency
to return the time.

Notice that the Performance Counter has a field width of 64 bits. This means
at an operating frequency of ~1.2 MHz, this counter will overflow once every
487,000 years, which is more than needed for all engineering applications!

6.3.4 TIMING IN PIC MICROCONTROLLER

Similar to PCs, microcontrollers also have timers that can be used for timing pur-
poses. We will discuss the timing features on the PIC16F690, a popular 8-bit
microcontroller (details of this microcontroller were covered in Chapter 4). The
PIC16F690 has three timers called Timer0, Timerl, and Timer2. Table 6.2 lists
information about these timers.

Timer0 Timer1 Timer2 Table 6.2
Bit Size 8-bit 16-bit 8-bit Timers in PIC16F690
Operate as a Counter? Yes Yes No microcontroller
Programmable Prescaler? Yes Yes Yes
Prescaler Values 1:1 to 1:256 1:1,1:2,1:4,1:8 1:1,1:4,1:16
Postscaler? No No Yes
Postscaler Values - - 1:1t0 1:16
S T mervl 0128 X 256 = 32.768 % 8 = 262.1 ms 0128 X 16 =
at 8 MHz Clock [wit 32.768 ms 2.048 ms
maximum prescale)
Timer Overflow Interrupts Yes Yes Yes

Timers 0 and 1 can operate as either timers or counters. In the timing mode,
the count value is incremented every instruction cycle (or at a multiple of it if a
prescaler is used). In the counter mode, the Timer0 or Timerl module will incre-
ment on every rising or falling edge of the external signal connected to a specific
pin on the microcontroller. Note that all PIC microcontrollers execute instructions
at a rate that is one-quarter of the clock rate. For example, if this microcontroller
was running on an 8 MHz clock, then the instruction cycle rate is 2 MHz. The use
of a programmable prescaler reduces the instruction cycle rate, as seen by the timer
allowing for longer timing intervals to be counted by the timer before overflow.
For example, if the 16-bit Timerl was used as a timer with no prescaler (or a
prescale value of 1:1), then at a clock rate of 8 MHz, this timer will overflow every
32.768 ms. This is obtained from Equation (6.2) or

16
Max interval = ———— = 32.786 ms
2 % 10°

With a 1:8 prescaler, the overflow period will be eight times longer or 262.1 ms.

Any of the three timers can be used to keep time as long as they are read often
to prevent timer overflow from affecting the accuracy of the reading. When any of

162

Chapter 6 Control Software

Figure 6.7

PIC-C code listing for
implementing the
ReadTimeNow()
function

the three timers overflow, a flag is set up. The program can poll this flag to check
for this overflow condition. Alternatively, the overflow of the timer can be set to
generate an interrupt (see Chapter 4). A postscaler factor, which is only defined for
Timer2, affects the interval at which the overflow flag is set. At a postscaler factor
of 1:8 for example, it takes eight overflow intervals of Timer2 to generate a single
setting of the overflow flag.

Figure 6.7 shows a code listing for implementing the ReadTimeNow() function
using the PIC-C compiler. This function returns the time since the timer was started.
Such a timing function will enable implementation of feedback control tasks in a
PIC MCU using the cooperative control strategy that will be discussed later.
Figure 6.7 also has code for setting up this timer (SetupTimer() function). Note that
the ReadTimeNow() function returns the time in integer units, which are multiples
of the timer resolution, since the SetupTimer() function was called. The
ReadTimeNow() function has code to handle the case that the Timerl counter has
overflowed since the last read. Note that, because the Time variable is a 32-bit
unsigned integer, the ReadTimeNow() function can read time correctly up to 2147 s
(22 X 0.5 pusec) unless we use a larger prescale factor. Note that the variables Tinze,
TimerRes, and LastCount have to be defined somewhere else in the code before they
are used in the timing functions.

T T
/// Code for setting up a timer in software
/1
/// " Compiler: PCWH from CCS, Inc. (Version 4.103)
T T
void SetupTimer(void)
{
setup_timer_1(T1_INTERNAL); //At 8 Mhz internal clock and 1:1 prescale, the timer
// has a resolution of 0.5 usec
TimerRes = 0.0000005;
LastCount = 0;
Time =0;
set_timer1(0);
}
int32 ReadTimeNow(void) //Returns time in units that are multiple of the timer resolution
{
int16 ReadTime;
ReadTime = get_timer1();
if (ReadTime > LastCount)
Time = (ReadTime - LastCount) + Time;
else
Time = Time + ((65536 - LastCount) + ReadTime);

LastCount = ReadTime;
return(Time);

}

| 6.4 CONTROL TASKS

The first step in setting up a control system in software is to organize the control
actions that need to be performed into separate groups. Each group will be called
a task. Depending on the nature of the control job, the grouping will be done dif-
ferently. For example, if the control job is to control the operation of an assembly

machine that consists of a number of modules that work together, such as that
shown later in Figure 6.12, then we need to set up a separate task to control each
module of this assembly system. Similarly, if we need to control a multiple-axis
positioning system, then we can set up a separate task for each axis of the system.
"Thus, the grouping of control actions in both examples is set based on the physical
structure of the machine to be controlled. Depending on the complexity of the
control actions that needed to be performed for each module or axis, more than
one task can be designed to control that unit too. The grouping also can be done
based on the software activities to be performed (such as handling of Internet com-
munication, see Section 5.11).

Within a control task, the code should be organized into separate states. Each
state signifies a distinct condition of the machine. A machine or a process can be
in only one state at a time. A crude example of the state structure is the states of an
aircraft flying from location A to B. Regarding the motion of the plane, we can sep-
arate it into five states. These are taxiing from the terminal to the runway at loca-
tion A, takeoff at location 4, flying from location 4 to B, landing at location B, and
taxiing from the runway to the terminal at location B. Obviously, we can break up
each of the above five states into further states, but the point here is that the plane,
at any point of time, can be in only one of these five states. There are also distinct
conditions that cause the transition from one state to the other. The states of a task
and their transitions are shown graphically using a state-transition diagram.

As an illustration of task/state organization, let us create a state-transition
diagram for a program that needs to generate the following periodic signal (see
Figure 6.8). The program should start sending this signal pattern in response to a
Start command and should shut OFF the output in response to a Stop command.

< Tcycle > !
'
'
< Ton > !

ON

OFF >
Time

The state transition diagram for this task is shown in Figure 6.9. We have bro-
ken the operation of this simple program into three states shown as rectangular
blocks in the figure. The conditions that cause transitions between these states are
shown in italics along the arrows that connect the blocks. The program starts in the

Initial
State
T>T,, Start Command
or Stop
Stop Command Command Output_On
State
T S TOll
L Output_Off
| State T>Teyere

T>T,,and T<T,

on cycle

6.4 Control Tasks 163

Figure 6.8
Periodic ON/OFF signal

Figure 6.9

State-transition
diagram for generating
periodic signal

164

Chapter 6 Control Software

Initial state waiting for the Start command to be issued by the user. Once the Start
command is received, the program switches states to the Output_On state where the
output is turned ON. The program remains in this state while the elapsed time (7),
from the beginning of each cycle, is less than or equal to 7T, which is the on-time
interval. When the elapsed time exceeds T, the program switches to the Output-
Off state, where the signal is switched OFF and remains in this state while the
elapsed time is less than or equal to Ty, which is the cycle time. The program
cycles between the Outpur_On and Outpur_Off states based on timing signals, unless
the Stop command was issued, which causes the program to go back to the Initial
State and wait for a new Start command. This example clearly shows that the pro-
gram only can be in one state at a time and the transitions between the states are
caused by either timing signals or user commands.

In this section, we will apply the state-transition diagram concepts to the con-
trol of discrete-event tasks and feedback control tasks. State-transition diagrams are
widely used in the design of digital logic circuits. The material presented in this
section uses concepts similar to those presented in [2] and [21].

6.4.1 DiscReTE-EVENT CONTROL TASKS

Discrete-event control refers to the control of a sequence of actions. These actions
include, among other things, opening or closing of a valve; turning on or off a
heater, fan, or pump; monitoring of a sensor; or waiting for a time interval to
elapse. Examples of discrete-event systems include operations of automated cut-
ting, assembly, item dispensing machines, entry/exit systems, and process control
systems. Some actions are time based (the valve should be on for 3 s) while others
are sensor-based (the robot arm is commanded to go up when a part is available as
detected by the part sensor).

The task/state control software structure is ideally suited for the control of
discrete-event systems. The first step in controlling a discrete-event system is to
model the system operation using a state-transition diagram. Example 6.1 illustrates
this for the operation of an automated entry door that is commonly available in
public places. Five states are used in the example with the transitions between the
states being either sensor-based or time-based. Each of the five states represents a
unique state of operation of the automated entry door. The control system for this
door can be in only one of these states at any point of time. For this automated entry
door, a single task is sufficient to represent the operation of the system.

Example 6.1 Automated Entry Door State-Transition Diagram

Develop a state-transition diagram for the operation of an automated entry door
that is commonly available in public places. Assume that the control system will
open the door when signaled from the sensor attached to the door. Assume also
that the door will stay open while the detection sensor is ON and for a specified
interval after the detection sensor switches to OFF.

Solution:

The state-transition diagram for the operation of the automated entry door is
shown in Figure 6.10. The control system starts in the Start state, at which point
the door is closed and the detection sensor is OFF. When the detection sensor turns
on, the control system switches to the OpenDoor state. When this state first runs,
control signals are sent to the actuators to open the door. The control system will
stay in this state until the proximity sensors (or limit switches) that indicate that

Detection-Sensor Is OFF

Door-Close Sensor Is ON Start |

State

Detection-Sensor Is ON
Detection-Sensor

CloseDoor Is ON OpenDoor
State State
Wait Interval Door-Open Sensor Is ON
Is Over Detection-Sensor
Wait Is ON DoorIsOpen
State State

Detection-Sensor
Is OFF

Figure 6.10

the door is fully open are trigged on. The control system then switches to the
DoorlsOpen state and stays in that state until the detection sensor is no longer ON.
For safety reasons, rather than closing the door right away, the control system
switches to a Wait state to wait for the elapse of an interval timer before issuing
the command to close the door. Since it is possible that while the control system is
waiting for the timer interval to elapse the detection sensor is triggered again, the
control system switches back to the DoorlsOpen state if this occurs. When the wait
interval is over, the control system switches to the CloseDoor state. Similar to the
OpenDoor state, the control system waits for the door to fully close before switch-
ing from the CloseDoor state to the Start state. Similarly, the control system can
go back from the CloseDoor state to the OpenDoor state if the detection sensor
was triggered while the door was closing.

To further illustrate this topic, let us consider the state-transition diagram
modeling of the operation of a digital heating thermostat. The thermostat has a
switch that turns it ON and OFE. The thermostat should operate according to the
following rules:

a) The thermostat operates when the switch is in the ON position. The
thermostat does not do any control if the switch is in the OFF position.

b) The thermostat turns ON the heating equipment when the room temperature
is 1° below the desired temperature.

¢) The thermostat turns OFF the heating equipment when the room temperature
is 1° higher than the desired temperature.

d) When the heating equipment is turned ON, it cannot be turned off unless a
user specified delay interval (such as 2 minutes) has elapsed since it was turned
ON. This is done as to protect the equipment from rapid turn ON/turn OFF.

The state-transition diagram for the operation of a thermostat that follows the
above rules is shown in Figure 6.11. It has five states. The state diagram starts in
the SwitchOffHeaterOff state where the ON/OFF switch is OFF and the heater is
OFF. When the user moves the switch to the ON position, the state changes to the
SwitchOn state. There are three possible transitions from this state. If the current
temperature is 1° or more below the desired temperature, then the state switches

6.4 Control Tasks

165

166 Chapter 6 Control Software

Figure 6.11

State-transition
diagram for the
operation of a heating
thermostat

SwitchOffHeaterOff
DelaylsOver = True State
Switch = Off AND o o
DelaylsOver = True Switch = Off Switch = On
. Switch = Off
SwitchOffHeaterOn SwitchOn
State State
T<Tyes — 1 T2Tyes+ 1
Switch = Off AND T<Tgs—1
DelaylsOver = False + |
HeaterOn HeaterOff
State State

I 4

T2Ts+ 1 AND
DelaylsOver = True

to the HeaterOn state. If the current temperature is 1° or more above the desired
temperature, then the state switches to the HearerOff state. Moving the ON/OFF
switch to the OFF position will cause the state to switch back to the
SwitchOffHeaterOff state.

In the HeaterOn state, the heater is turned ON and the current time is recorded.
Both of these actions should be done in a section of the code that is only executed
once (more on this in the next section). From the HeaterOn state, the state
switches to the HeaterOff state (where the heater is turned OFF) only if the tem-
perature exceeds the desired temperature by at least 1° and the waiting interval
since the heater was started is over. The other possible transitions from the
HeaterOn State are activated by the user turning the switch to the OFF position.
Since the switch can be turned OFF before the time delay interval is over, the state
switches to the SwitchOffHeaterOn state (where the heater is still on) to wait for the
interval to be completed before switching to the SwitchOffHeaterOff state where the
heater is OFF. Note that at a steady state, the state diagram switches between the
HeaterOn and HeaterOff states based on the relationship between the desired and
current temperature. Similar to the automated entry door example, a single task is
used to model the operation of the thermostat.

In more complicated systems, more than one task is needed to organize the
operation of the system. This is the case for the operation of automated assembly
systems such as the one shown in Figure 6.12, which is a simplified version of auto-
mated multiple-part industrial assembly systems. This assembly system assembles
two components. A circular disk is placed on a rectangular base via the use of a four-
station rotary indexing table. The rectangular and circular parts are fed using a con-
veyer belt. The assembly operation proceeds as follows. First, the rectangular part is
transferred to station 1 on the indexing table, using pick and place robot #1. After
the indexing table rotates 90° clockwise, the circular disk is placed on the rectan-
gular base at station 2, using pick-and-place robot #2. After another 90° rotation of
the indexing table, the two-part assembly of the circular and rectangular parts is
inspected at station 3. After the third motion of the indexing table, the completed
assembly (if passed inspection) is transferred to conveyer belt C, using pick-and-place
robot #3. If the assembled part failed inspection, then either the machine operator
is alerted to address this situation, or the failed assembly is picked and dropped onto

Pick-and- Conveyer B
Place Robot
Conveyer A
I .
OOOof O e
—————— -

o

Conveyer C

.o

a rejection bin (not shown here). At steady state, each station of the indexing table
will be performing its part of the assembly process while the indexing table is sta-
tionary. When all of these actions are completed, the indexing table will rotate 90°,
and the process repeats again. As a first step in designing a control system for this
machine, the operation of each module in this assembly machine should be struc-
tured as a separate task. Each task will have a number of states depending on the
operations done on that task. Example 6.2, which follows, shows the state transition
diagram for the operation of pick-and-place robot #1 of this system.

Example 6.2 Assembly Robot #1 State-Transition Diagram

Draw a state-transition diagram for the operation of pick-and-place robot #1 in
the assembly system shown in Figure 6.12. Assume that the robot used in this
setup is a pneumatically driven one. Such robots are assembled from linear or
rotary motion axes with two possible locations for each axis. Thus, moving the
robot to the Pick-Up Location entails sending a digital signal to the solenoid
valve(s) that controls the air supply to the particular robot axis (axes) that causes
the desired motion. To determine if the robot has completed its travel, assume
that end-of-travel proximity sensors (see Section 7.4), which are mounted at either
end of the motion, are used. Picking or dropping a part corresponds to closing or
opening the gripper that is attached to the end of the robot. Assume that a pneu-
matically actuated gripper is used here, and the opening and closing actions of the
gripper are similarly accomplished by actuating the solenoid valve that controls
the air supply to the gripper.

Solution:

The state-transition diagram for pick-and-place robot #1 is shown in Figure 6.13.
The diagram consists of eight states, and the robot will be waiting in the Start
state until it receives a signal from the cell controller to start its sequence and a
part is ready for pick-up at the end of conveyer belt A. At this point, the robot
will be in the Move-to-Pickup-Location state where it will be moving to the part
pick-up location. When the robot reaches the part-pick-up location, as indicated

6.4 Control Tasks 167

Figure 6.12

A simplified automated
assembly system

168

Chapter 6 Control Software

Part Ready for Pick-Up

Start and Start Sequence Is On
State
Robot at Starting
Location
Move-to-Starting- Move-to-Pick-Up-
Location Location
State State
LA Part Placed
Successfully
Wait-for-Operator-2 Wait-for-Operator-1| Resume | Robot Is at
State State Pick-Up Location
Part not Placed Pick-Up Not
Successfully Successful
Place-Part-on-
Indexing-Table Pick-and-Lift-Part
State State
Robot Is at Indexing Pick- Up.
Table Location Transfer-Part-to- Successful
Indexing-Table
State

Figure 6.13

by feedback signal(s) from an end of travel sensor(s), the robot changes state to
the Pick-and-Lift-Part state. If the pick-up was successful, the robot switches states
to the Transfer-Part-to-Indexing-Table state, where the carried part is moved to
station 1 on the indexing table. If the pick-up was not successful, the robot switches
states to the Wait-for-Operator-1 state. In this state, the operator is alerted to
check the system, and on receiving a Resume signal from the operator, the pick-up
is attempted again. Similarly, when the part has reached the drop-off location, the
state changes to Place-Part-on-Indexing-Table state. After the part was successfully
transferred to the indexing table, the robot changes state to the Move-to-
Starting-Location state. Similarly, if the placement was not successful, the robot
switches states and waits for a Resume signal from the operator before switching
to the Move-to-Starting-Location state. When the robot reaches the starting loca-
tion, the state switches back to the Start state. As seen from this example, each
state of this diagram represents a distinct phase of operation for the robot.
Transition between these phases is initiated by the appropriate sensor signals or
operator input.

The state-transition diagrams for the other pick-and-place robots are similar
in structure. The state-transition diagrams for the other components can be simi-
larly developed, but each will have different states specific to that component. For
example, part of the state-transition code for the indexing table should include a
homing sequence to determine a starting position for the table. This homing
sequence is executed once during the initialization phase. Thus, to control the
operation of this assembly machine, we should have nine tasks: one for each
component of the machine plus one task to schedule the operation of the machine.
The function of the scheduling task is to decide which components of the machine
will be active during a particular cycle of the machine. Note that in this assembly
system, not all components of the machine will be active during the start and end

phases of the assembly. For example, in the first step of making the first assembly,
all of the operations will take place at station #1 on the indexing table, and all of
the components on the other stations will be idle. Similarly, during the last step of
making the last assembly, all of the operations will take place on station #4, and all
of the other components will be idle.

In this assembly example, some of the components could require feedback con-
trol action for their proper operation (for example, if the robots were servo driven).
In this case, a feedback control task (to be discussed next) will be needed, but from
the point of view of the task/state methodology, the structure would remain the
same. We just replace the state that checks if the robot has reached its end of trav-
el by monitoring a proximity sensor with one that waits for a flag that is set when
the desired motion was completed by the feedback controller.

6.4.2 FeepBAcK CONTROL TASKS

Feedback control systems are used for regulation or tracking control applications.
The analysis and design of feedback control systems is covered in Chapter 9. The
advantage of a feedback control system is that it can follow the desired signal in the
presence of disturbances. Furthermore, there is no need for calibration, since the
input to the system is automatically determined by the feedback control action.
Examples of feedback control tasks include speed and position control of electric
motors, temperature control of ovens, and environmental control. The basic elements
of a digital feedback control system are the controller, the controlled element, the
feedback device(s), and interface components (such as A/D or D/A between the
controller and the controlled element). Figure 6.14 shows a block diagram of a
digital feedback control loop. Note that a digital control system is a sampled data
system that operates at a sampling frequency that is a function of the dynamics of
the system to be controlled, and hence, task timing is important. A typical feedback
control cycle involves reading one or more of the output variables, computing a
control input using a feedback control law, and transmitting the computed control
output to the system under control.

Digital Controller

: Desired !

I Output . | Output
Controller —> D/A _7%#_» Controlled
* ! Element

Sensor

The task/state control software structure also can be used for feedback control
applications. The only thing that we need to have is access to a timer, so we can
properly time the control actions. Figure 6.15 is a state-transition diagram that can
be used to implement a feedback control loop. This task has only one state. We first
initialize the timer, record the starting time, and set the counting variable K to 1 in
a section of the code that is only executed once (entry section as discussed in
Section 6.6). In the action part of the state, the current time is read in every scan of
this state. If the difference between the current time and the start time is a multiple
of the sampling interval, then the software calls the DoControl function in which
the control action is performed. The DoControl routine will have the code for the

6.4 Control Tasks

Figure 6.14

Block diagram of a
digital controller
feedback loop

169

170 Chapter 6 Control Software

Figure 6.15

State-transition
diagram for a feedback
control task

Figure 6.16

Example of blocking
code

‘Example of blocking code

While (Input <= 5)
Input1 = Read_AD(1)
End While

(Current Time — Start Time) > = K * Tsamp

feedback controller used such as a PID controller (see Chapter 9). After the con-
troller completes its job, the counting index K is incremented, and the task goes
back to wait for elapse of the next sampling interval to perform the control action
again. As seen here, the control of a feedback task has an identical structure to a dis-
crete-event control task.

| 6.5 TASK SCANNING

The breakup of a task into a number of states gives us a mechanism for easily imple-
menting these state-transition diagrams in software. The mechanism is a scanning
mechanism which upon calling the task (through a function call for example) goes
through the states in that task (i.e., scans the states), identifying and executing the
current state. Once the code for current state is executed, the software exits the task.
This process is repeated again on the next scan through the task.

6.5.1 REQUIREMENTS

"To implement this scanning mechanism in a single-processor system, two impor-
tant assumptions should be satistied. The first is that the execution time of the
active state should be short. This is to give almost near parallel execution for mul-
tiple tasks running cooperatively. With the availability of high-speed processors,
this can be accomplished easily as long as the computations done in the active state
are limited to a few lines of code. The second condition is that the code in any state
should be non-blocking. A non-blocking code is one that has a predictable execu-
tion time. A blocking code includes waiting for user inputs or waiting for a change
in signal levels. An example of blocking code in VBE programming language is
shown in Figure 6.16.

In this example, the use of the While statement halts the execution of the pro-
gram until the variable Inputl has a value greater than 5. Since it is not known when
the value of Inputl will be greater than 5, this code is blocking. While waiting for
the input to change value, no other code in the program can be executed. This can
cause serious problems if we have other tasks that need to be scanned and if these
other tasks include time-sensitive actions (such as counting, motion tracking, or
screen updates).

Other examples of blocking code include the use of the scanf() statement in
C-language programs to read user input and the use of the zsghox function in VBE
programs to display messages to the user. The scanf() statement is blocking because
it waits for the user to hit the carriage return before the next statement is allowed
to execute. The msgbox code is blocking because no other code can execute until the
user hits the OK on the message box. These two assumptions are needed for imple-
menting control systems based on this model.

The use of non-blocking code for each state coupled with the scanning mech-
anism discussed gives us a control software structure that can be easily implemented.
This control structure is called the cooperative control mode. In this mode, all
tasks have the same priority, and we cannot preempt the operation of one task and
start another. In the cooperative control mode, the tasks to be controlled are placed
in a list (see Figure 6.17). Each task in the list is scanned once per scanning cycle
in the order of its placement on the list. In each scan, code corresponding to the
active state in the scanned task is executed. The execution of the next task on
the list cannot be started until the previous task has completed its operation. With
the use of fast processors that provide high scanning rates (over 1,000,000 scans per
second) and the requirement that no blocking code is used; the tasks operate in
nearly parallel fashion in this mode.

Task 1 Task 2 Task M
State 1: State 1: State 1:
State 2: State 2: State 2:
State 3: State 3: State 3:
State n: State r: State g:

One major advantage of the cooperative control mode is that data can be
easily exchanged between tasks without concern about data corruption for cases
where more than one task uses the same data. This is because each task completes
its operation before another task starts. A disadvantage of the cooperative con-
trol mode is that control actions (such as activating a relay or recording the posi-
tion signal from an encoder) cannot be guaranteed to occur within a particular time
interval relative to the event that requires these control actions. This is because we
cannot stop the execution of one task and start another. Each task has to wait for
its turn to execute. This control mode or scheduling method is sometimes referred
to as ‘round-robin.” Nevertheless, the simplicity of this control mode make it very
attractive to use in many applications.

6.5.2 IMPLEMENTATION

The cooperative control mode can be easily implemented in any programming
language, as shown in Figure 6.18. Here we set up an infinite Do-Loop that runs

While (Stop not equal to 1)
{
Increment Count
Call Task1()
Call Task2()
Call Task3()
If (Count mod 1000) = 0 then
Call function to allows background processing
Endif

6.5 Task Scanning

Figure 6.17

Scanning of multiple
tasks in a cooperative
control mode

Figure 6.18

Pseudocode for
implementing the
cooperative control
mode in software

m

m

Chapter 6 Control Software

Figure 6.19

State-transition
diagram for the
scheduling task of the
assembly system of
Figure 6.12

indefinitely while the Stop variable is not equal to 1. Within the infinite loop, we
include functions to call up the tasks that we want to scan. In the example, we con-
sidered three tasks. When a task is called, the code in the active state in that task is
executed. Once the code completes execution, the next task on the list is called, and
the process repeats.

The last three lines inside the loop in Figure 6.18 consist of code that allows
background processing. This code is necessary if the code is implemented in a
Windows operating system to allow Windows to process any background events
that have occurred during the execution of this code. These include command but-
tons that have been clicked, radio buttons that have selected, or other user actions.
Without the processing of background events while the infinite loop is active, the
control program appears to have hung up, since the program will not respond to
user input. Note that how often you perform the check (once every 1000 scans in
the example code) depends on how much delay is acceptable in responding to back-
ground events. The point here is that you do not need to perform background pro-
cessing in every scan, as this will slow down the scanning rate.

The assembly system of Figure 6.12 can be controlled easily using the coop-
erative control mode discussed here. In this mode, each of the nine tasks in this
assembly system is scanned once per cycle (see Figure 6.17), and the active state in
each task in that scan is then executed. The scheduling task should be the first task
to be scanned, as it determines which task should be active, but the order of scan-
ning of the remaining tasks is not important.

The scheduling task state-transition diagram is shown in Figure 6.19. Note
that in this assembly system there are two basic operations that are done in each
cycle. The first is the rotation of the indexing table and the advancement of the
conveyer belts. Once the indexing table and the conveyers have completed their
motion, then the second operation of the parts transfer to and from the indexing
table and the inspection operation takes place. Similarly, the next motion of the
indexing table and the conveyer belts cannot be started until all of the inspection
and assembly operations have been completed. This alternating sequence of oper-
ation remains until the requested number of assemblies has been made. It should
be obvious that the processing time for the longest task in each operation deter-
mines the cycle time (and hence the throughput of this system).

Initial
State

Assemblies not
Completed

Active Tasks 1
State
Set Start Signal On for
All Tasks 2 Done Indexing Table and Active
Conveyers A, B, and C Tasks

All Tasks 1 Done

Active Tasks 2
State
Set Start Signal On for
Active Robots and
Inspection Station

6.6 State Organization m

| 6.6 STATE ORGANIZATION

Within a particular state, the code should be organized into one of four different
types depending on the actions that need to be done:

Entry Code: Executed only once on entry to the state

Action Code: Executed on every scan of the state

Test Code: Executed to check the condition for transition (to go to another state)
Exit Code: Executed if the associated transition is taken

As an example, consider the OpenDoor state in Example 6.1. Refer to
Figure 6.20, which gives an implementation of the state code for this state in VBE.
For this state, the Entry Code section should include the code that causes the door to
open (such as actuating the mechanism that opens the door by sending a signal to a
relay). Note that this code should be executed once on the first entry to this state.
On subsequent entries to this state, the code should not be executed again. This
easily can be accomplished in the software through the use of a flag variable
(EntryOpenState) whose value indicates whether the code has been executed or not.
There is no Action Code here for this state. The Test Code for this state is the code that
checks if the door is fully open. This is a logical check that returns either a true or
a false condition. This code should be executed in every scan of this state. The Exit
Code, which only gets executed if the test condition is true (i.e., the door is fully open
as indicated by the appropriate sensor), should include code that resets the entry flag
to its initial value, so that the next time this state becomes active, the code executes
in a similar fashion. The exit code should also cause the DoorlsOpen state to be
scanned in the next scan of this task. This easily can be accomplished using a vari-
able named, for example, NextState, whose value indicates which state needs to be
scanned in the next scan. The value of the NextState variable is only updated when
we need to transition from one state to another. On the next scan of the task, the
program will go directly to the state that is currently indicated by the CurrentState
variable, which is assigned the contents of the NextState variable. Figure 6.21 shows

Case “OpenDoor” F'S“"e 6.20
If EntryOpenState = False Then ‘Executes only in first entry to state State organization for
Call SetDoor(1) * A Sub that causes the door to open
Entry Code — the OpenDoor state of
EntryOpenState = True
End If Example 6.1
n o Test Code
If DoorOpenSensorOn () = True Then}
. NextState = “DoorlsOpen”
Exit Code ——
e Lode { EntryOpenState = False * Reset Entry Flag
End If
Sub DoorTask(Figure 6.21
Code example to
CurrentState = NextState P
update and select
Select Case (CurrentState) active state in a task

Case “Start”

Case “OpenDoor”

174

Chapter 6 Control Software

Figure 6.12

State organization for
the Wait state of

Example 6.1

how this is done in code using VBE syntax as an example. Note that the use of the
Select . .. Case statement in VBE or the Swizch . .. Case statement in C offers an
elegant method of selecting the current state in each scan of the task.

For further illustration of state organization, let us consider the coding for the
Wait state in Example 6.1 (see Figure 6.22). In the Entry Code section, the start time
is read from the timing function ReadTimer and stored in a variable called
StartTime. Since there are two possible transitions from this state, two test codes
are included here. The first Test Code checks if the detection sensor returns a true
value. In this case, the next state should be the DoorIsOpen state. The other Test Code
checks if the delay interval (5 s here) has elapsed. If that is the case, then the code
should go to the CloseDoor State in the next scan. Note how the entry flag
(EntryWaitState) is reset to its initial value in the exit code section.

Case "Wait"
If EntryWaitState = False Then
StartTime = ReadTimer () * Record the start time
EntryWaitState = True
End If
[1f DetectionSensor () = True Then
NextState = “DoorlsOpen”
EntryWaitState = False * Reset Entry Flag
Text and End If
Exit Code | If ((ReadTimer () - StartTime) >= 5) Then ‘Check if 5s have elapsed
NextState = “CloseDoor”
EntryWaitState = False ' Reset Entry Flag
| End If

Entry Code —

| 6.7 CONTROL TASK IMPLEMENTATION IN SOFTWARE

In this section, we will illustrate the software implementation of the heating ther-
mostat state-transition diagram using three computing platforms: MATLAB, VBE,
and PIC microcontrollers. The state-transition diagram will be implemented as a
single task using the cooperative control mode. One feature of the heating thermo-
stat is that it easily can be simulated in the software without the need for any actual
hardware. With proper software structuring, code for simulation easily can be
transferred into actual implementation by replacing few functions in the code.

6.7.1 IMPLEMENTATION IN MATLAB

MATLAB offers two ways to implement a state-transition diagram. One way is to
implement each task as a function that is called by the timer object callback
function. The timer callback function offers a built-in mechanism for repeatedly
calling one or more software tasks. Coupled with the use of the graphical user
interface (GUI) in MATLAB, one can build an application with an interface com-
parable to that created by VBE or other languages.

The other way to implement a state-transition diagram is to use the Stateflow
toolbox in conjunction with Simulink. This approach is not covered in this text.

The user interface for the thermostat problem is shown in Figure 6.23(a), and
a snapshot of the code while operating is shown in Figure 6.23(b). The user inter-
face uses two pushbuttons, one for the START command and the other for the EXIT
command. It also uses a group panel on which several controls were placed. These
include a toggle button for the thermostat on/off switch, a pop-up menu for a list of

6.7 Control Task Implementation in Software 175

o thermentathig B 5 m tharmaitat | — ol
Ble Edit Veew Lsyout Took Help i
s DI b
— Ihermostat Panel
[
— Tharmaun Paas Desit e Teany Actual Temp
B Dewired Temp Actual Temg
L= o 72 - 70
=] GRGFF Swech OniOFF Switch |
L i] aif o
e o
e Hemler O
5 |lax aler LN
Sunt tag
Fxn
Tag: figurel Cument Poink: [175,279] Position: (520, 506, 392, 204] |
!
@ (b)

desired temperatures, and static textboxes to display the actual temperature and the
current state. More detail about creating graphical user interfaces (GUIs) is
covered in Section 6.12.

The code works by pressing the START push button (which disappears after
this action). The callback function (see code listing in Figure 6.24) associated with
the START button performs initialization as well as setting two timer objects,
TIMER]1 and TIMER?. The callback function associated with TIMER]1 runs every
0.5 s and handles the Thermostat task state transition diagram. The callback func-
tion associated with TIMER?2 runs every 5 s and is used for code that simulates
heating/cooling action. The START callback function also calls the function TIC,
which will be used later with the function 7OC to implement the heater delay.

The code for the Thermostat task, which implements the state-transition dia-
gram of Figure 6.11, is shown in Figure 6.25. The code has five states with names

% --- Executes on button press in Startbutton.

function Startbutton_Callback(hObject, eventdata, handles)

% hObject handle to Startbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
tic; % reads the hardware timer

global TIMER1 TIMERZ Temp SwitchOn HeaterOn HeaterDelay

% Perform Initialization

Temp = 65;

SwitchOn = 0;

HeaterOn = 0;

HeaterDelay = 0;

% Read the timer

tic;

9%Read the desired temperature

valuepop = get(handles.Desiredpopupmenu, 'Value');
stringpop = (get(handles.Desiredpopupmenu,’String’));
DesTemp = str2num(stringpop{valuepop});

9%Setup the two timer objects

TIMER1 = timer('TimerFcn’, @timer_callback_fcn1,
‘fixedRate’);

start(TIMER1);

TIMER2 = timer('TimerFcn’, @timer_callback_fcn2,
‘fixedRate’);

start(TIMER2);

set(handles.Startbutton, Visible','Off");

‘period’, 0.5,"ExecutionMode’,

‘period’, 4.0,"ExecutionMode’,

Figure 6.13

(a) User interface
created using MATLAB
GUIDE and (b) snapshot
of the interface while
code is running

Figure 6.24

MATLAB code listing
for the START button
callback function

176 Chapter 6 Control Software

Figure 6.25

Thermostat task
implemented inside the
TIMER1 callback
function in MATLAB

function timer_callback_fcn1(obj, event)
global HANDLESVAR UPDOWN Temp SwitchOn HeaterOn DesTemp HeaterDelay
persistent StartTime DelaylsOver NextState EntryHeaterOnState
if isempty(NextState)
NextState = ‘SwitchOffHeaterOff’;
end
if isempty(EntryHeaterOnState)
EntryHeaterOnState = 0;
end
if (toc - StartTime) >= HeaterDelay
DelaylsOver = 1;
else
DelaylsOver = 0;
end
State = NextState;
switch State

case 'SwitchOffHeaterOff’
if SwitchOn ==
NextState = ‘SwitchOn’;
end

case ‘SwitchOn'’

if Temp <= (DesTemp - 1)
NextState = ‘HeaterOn’;

elseif Temp > = (DesTemp + 1)
NextState = ‘HeaterOff’;

elseif SwitchOn ==
NextState = ‘SwitchOffHeaterOff’;

end

case ‘HeaterOn’
if EntryHeaterOnState == 0
StartTime = toc; % Record the start time
HeaterOn=1; % Turn On Heater
HeaterDelay = 10;
DelaylsOver = 0;
EntryHeaterOnState = 1;
end
if (Temp >= (DesTemp+1)) && DelaylsOver
NextState = ‘HeaterOff’;
HeaterOn = 0;
EntryHeaterOnState = 0;
elseif SwitchOn ==
if DelaylsQver
HeaterOn = 0;
NextState = ‘SwitchOffHeaterOff’;
else
NextState = 'SwitchOffHeaterOn’;
end
EntryHeaterOnState = 0;
end

case 'HeaterOff’
if (Temp <= (DesTemp - 1))
NextState = ‘HeaterOn’;
elseif SwitchOn ==0
NextState = ‘SwitchOffHeaterOff’;
end

case ‘SwitchOffHeaterOn’
if DelaylsOver
HeaterOn = 0;
NextState = ‘SwitchOffHeaterOff’;
end
end
set(HANDLESVAR StateText, string’,State);
set(HANDLESVAR.ActualTempText, string’,int2str(Temp));

6.7 Control Task Implementation in Software m

similar to those used in the state-transition diagram and is implemented using a switch-
case structure. Note the use of the NextState variable for transition between states.
Note also the use of the global variables which are shared among the functions that
make use of these variables. Also note the use of persistent declaration for variables that
are local to this function but need to keep their values in each call of the function.

The elapse of the timing delay for the heater is implemented by setting the
variable DelaylsOver to 1 whenever the current time (obtained by reading the 7OC
function) minus the StartTime is larger than the HeaterDelay. Note that HeaterDelay
is set to 0 during initialization (see Figure 6.24) and is set to the desired amount
in the entry code section of the HeaterOn state. Simulation of the heater operation
is done by setting the global variable HeaterOn to either 1 or 0. This variable is used
in the callback function associated with TIMER?2 (see Figure 6.26) to update the
temperature.

The code for simulating the heating/cooling action is shown in Figure 6.26.
A simple scheme is used here in which the temperature is increased by one unit if
HeaterOn is set to 1 and is decreased by one unit every four calls of the TIMER?2
callback function (controlled by the count variable) if HeaterOn is set to 0. The
decrease in temperature when the heater is OFF is to simulate the heat loss that
occurs when the current temperature is higher than the ambient temperature.

function timer_callback_fcn2(obj, event)
global HeaterOn Temp
persistent count
if isempty(count)
count=0;
end
if HeaterOn
Temp=Temp + 1;
else
count=count + 1;
if count ==
Temp=Temp - 1;
count =0;
end
end

It is recommended to dispose the timer objects once the program completes its
execution. This is done inside the code of the callback function associated with the
Exit pushbutton. The code listing is shown in Figure 6.27, and it stops the two
timer objects and then deletes them. If the timer objects were not deleted, then on
subsequent call of the program, the timing could be OFF.

% --- Executes on button press in ExitButton.

function ExitButton_Callback(hQObject, eventdata, handles)

% hQbject handle to ExitButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global TIMER1 TIMER2

stop(TIMER1);

delete(TIMER1);

stop(TIMER2);

delete(TIMER2);

close;

Figure 6.26

MATLAB code listing
for simulating
heating/cooling action,
which is implemented
inside the TIMER2
callback function

Figure 6.27

MATLAB code listing
for the Exit push-
button callback
function

178 Chapter 6 Control Software

Figure 6.18

(a) User interface
created using VBE and
(b) snapshot of the
interface while code

is running

6.7.2 IMPLEMENTATION IN VBE

The user interface form for the thermostat task implemented in VBE is shown in
Figure 6.28(a). Section 6.12 gives an overview of developing a GUI in VBE, and
Appendix A gives an overview of VBE. The interface design is similar to that created
in MATLAB. Command buttons are used for the Start and Exit commands. The
remaining controls are placed on a pane/ window. A numeric #pdown control is used
to display the list of desired temperatures. The ON/OFF switch is implemented
using a button that is set to behave like a toggle switch by making the text displayed
on the button switches each time the button is pressed. The actual temperature is dis-
played in a textbox. A checkbox placed below the panel is used to enable the use of a dif-
ferential model to simulate the heating/cooling action instead of a simple scheme.

Foeml =x=] s
Heating Thermostat Heating I hermostat
OFF P oM
Desead Tamp Comart Tamp L Dessed Tamp Cusent Temp
@ (b)

When the user presses the Start button, the ThermostatTask function (see
Figure 6.29) is called repeatedly inside an infinite loop. The ThermostatTask is
structured as five states implemented using the Select Case structure. At startup, the
NextState variable is initialized in the formload function to SwitchOffHeaterOff-

The heater operations are controlled by the functions TurnHeaterOn() and
TurnHearerOff(), which are used to set the global variable HeaterOn to true or
false. The timing is obtained using the ReadTimer() function, which in this case is
used to read the Timer property in VBE. Since timer resolution is not an issue in
this, the Timer property is sufficient to meet the timing needs. If smaller timer res-
olution is needed, then we just simply replace the code inside the ReadTimer()
function to make it use a finer resolution timer such as the Performance Counter
that was discussed in Section 6.3, but none of the other code in this task has to
change. Note how the heater shut-off delay is implemented by determining the
value of (ReadTimer() — StartTime) in every scan of the thermostat task. If the
elapsed interval exceeds the HeaterDelay, then the DelayIsOver variable is set to
true. The HeaterDelay variable is initially set to zero.

The heater operation is simulated by the tick routine of a Timer component.
The code listing is shown in Figure 6.30. The execution rate is set by the Tsamp prop-
erty of the component. Two schemes are shown for simulating the heating
cooling/operation. In the simple scheme (DynamicModel is false), when HeaterOn is
true, the temperature is incremented by one unit in every call of the tick routine. If
HeaterOn is false, the temperature is decremented by one unit in every four calls of
the tick routine. In another scheme (DynamicModel is true and is set by checking the
checkbox in the GUI), the temperature is obtained by numerically integrating the
energy equation for a thermal system. In using the dynamic model, one needs to

6.7

Sub ThermostatTask()
Static Dim EntryHeaterOnState As Boolean
Static Dim StartTime As Double

If (ReadTimer() - StartTime) >= HeaterDelay Then
DelaylsOver = True

Else
DelaylsOver = False

End If

State = NextState
Select Case (State)

Case “SwitchOffHeaterOff"
If SwitchOn = True Then
NextState = “SwitchOn”
End If

Case “SwitchOn”

If Temp <= (DesTemp - 1) Then ‘And DelaylsOver Then
NextState = “HeaterOn”

Elself Temp >= (DesTemp + 1) Then * And DelaylsOver Then
NextState = “HeaterOff”

Elself SwitchOn = False Then
NextState = “SwitchOffHeaterOff"

End If

Case “HeaterOn”
If EntryHeaterOnState = False Then
StartTime = ReadTimer() * Record the start time
Call TurnHeaterOn() " Turn On Heater
HeaterDelay = 20
DelaylsOver = False
EntryHeaterOnState = True
End If
If (Temp >= (DesTemp + 1)) And DelaylsQver Then
NextState = “HeaterOff”
Call TurnHeaterOff()
EntryHeaterOnState = False
Elself SwitchOn = False Then
If DelaylsOver Then
Call TurnHeaterOff()
NextState = “SwitchOffHeaterOff”

Else
NextState = “SwitchOffHeaterOn"
End If
EntryHeaterOnState = False
End If

Case “HeaterOff"
If (Temp <= (DesTemp - 1)) Then ‘And DelaylsOver Then
NextState = “HeaterOn”
Elself SwitchOn = False Then
NextState = “SwitchOffHeaterOff"
End If

Case “SwitchOffHeaterOn"
If DelaylsQver Then
Call TurnHeaterOff()
NextState = “SwitchOffHeaterOff"

End If
End Select
End Sub

Control Task Implementation in Software 179

Figure 6.29

VBE code listing for the
thermostat task

180 Chapter 6 Control Software

Figure 6.30

VBE code listing for the
timer tick routine,
which simulates

the heater operation

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Timer1.Tick
Static count As Short
Dim heat As Single
Static TempC As Single
If DynamicModel = False Then
If HeaterOn Then
Temp = Temp + 1
Else
count = count + 1
If count =4 Then
Temp=Temp—1
count=0
End If
End If
Else
If HeaterOn Then
heat = gheat
Else
heat=0
End If
TempC = (Temp—-32) *5/9
TempC = (1 /RC) * (R * heat — TempC + Ta) + TempC
Temp =TempC *9/5+ 32
End If

select values for the thermal resistance R, the thermal capacitance C, and the heater
output gheat. In the code listing in Figure 6.30, the temperature is converted from
Fahrenheit to Celsius (centigrade) before the integration is performed and then con-
verted back to Fahrenheit, since we used SI units for the R, C, and gheat values.

6.7.3 IMPLEMENTATION IN A PIC MICROCONTROLLER

In the previous two sections, we have illustrated the implementation of the ther-
mostat control problem using a PC computing platform. In this section, we illus-
trate it using a PIC16F690 microcontroller. While an MCU is normally not used
to just implement simulation code, it was done here to illustrate coding using an
MCU. One major difference between a PC and an MCU is the lack of a built-in
display device on the microcontroller. While we can use a serial interface to display
the microcontroller variables on a PC, we will opt here for a solution with no
graphical user interface. We will just make use of the interface features available on
the low pin-count development board to solve this problem (If the low pin-count
development board is not available, then one can use another development board
or construct an equivalent setup using a breadboard and equivalent components).
The low pin-count board (see Figure 4.11) has a rotary pot that we will use to spec-
ify the desired temperature. For the purpose of simplifying the interface, we will
make the desired temperature to range from 6 to 10 degrees. Thus, we will map the
10-bit A/D range of the pot into five numbers (i.e., 0 to 204 — 6, 205 to 409 — 7,
etc.). For displaying the current temperature, we will use the four LEDS on the
board to display the temperature in binary form. With the four LEDS, this will be
enough to display a temperature ranging from 0 to 15 degrees. At startup, the
current temperature will be set to 2. The built-in NO push-button switch (SW1)
on the board will be used as the thermostat switch ON/OFF button with the OFF
action indicated with the switch pressed all the time.

6.7 Control Task Implementation in Software

T T

11/ Thermostat.c

1/

/// This program implements the thermostat state diagram on

/// PIC16F690 using the Low pin count board

/// " Compiler: PCWH complier from CCS, Inc.
T T
#include <16F690.h> //Include file for the particular chip used
#DEVICE ADC =10 //10-bit A/D return value

#use delay(internal = 8M) //Use Internal 8 MHz- clock

#fuses INTRC_IO, NOMCLR, NOWDT, NOPROTECT, NOBROWNOUT

#define SwitchOffHeaterOff 1 //Define the states
#define SwitchOn 2

#define HeaterOn 3

#define HeaterOff 4

#define SwitchOffHeaterOn 5

unsigned int32 Time; //Variable to record time using Timer1
unsigned int16 LastCount; //Internal variable used by GetTimeNow()
unsigned int32 Tupdate; //Update interval for heater simulation
float TimerRes; //Resolution of Timer1

int8 count = 0; //Variable used in heater simulation

int8 EntryHeaterOnState = 0; //HeaterOnState Entry variable

int8 DelaylsOver; //Variable to indicate heater delay is over
int32 StartTime1, StartTime2; //Variables used for interval timing

int8 State, NextState; //State and NextState of transition diagram
int HeaterDelay = 0; //Heater delay variable with initialization
int8 Temp = 3; //Actual temperature

int8 DesTemp; //Desired temperature

int8 HeatOn; //Variable to indicate heater status

//Declaration of functions used in program
void Thermostat_Task(void); //Thermostat state transition diagram function

void heater(void); //Function to simulate heater
int32 GetTimeNow(void); //Returns time in multiple of timer resolution
void SetUpTimer{void); //Function to setup timer 1

Figure 6.31 shows the variable declaration section for the C program written for
the thermostat control problem. The code is compiled using the PIC-C compiler. The
#define statement is used to define each of the five states in the state-transition diagram.

"The main() routine as well as the routine to simulate the heater operation and
the timing functions are shown in Figure 6.32. In the main() routine, the function
SetupTimer() is called to setup Timerl, which is then read using the GetTimeNow()
function. A/D channel 0, which is connected to the rotary pot, is also setup here.
"The main() routine then enters an infinite loop in which the Thermostat_Task() and
the beater() routines are repeatedly called. The heater() routine updates the current
temperature every Tipdate interval using a simple scheme. If the variable HeatOn is
set to 1, then the temperature is increased by one unit every Tupdate interval. If
HeatOn is set to zero, then the temperature is decreased by one unit every four
Tupdate intervals. The beater() routine also updates the current temperature output
on the microcontroller.

The implementation of the state-transition diagram for the thermostat task is
shown in Figure 6.33. The coding is very similar to that used in the MATLAB and
VBE versions. The switch-case statement is used to implement the state-transition

Figure 6.31

Variable declaration
for the thermostat
implementation

in C-code on

the PIC16F690
microcontroller

Chapter 6 Control Software

Figure 6.32

Main, heater, and {
timing routines for
the thermostat
implementation on
the PIC16F690

void main(void)
SetUpTimer();

setup_adc_ports(sANO);
set_adc_channel(0);

Tupdate =5 * 1000000;
StartTime1 = GetTimeNow();
StartTime2 = GetTimeNow();
NextState = SwitchOffHeaterOff;
output_c(temp);

while (2 > 1) // Start infinite loop

{
Thermostat_Task();
heater();
}

}

void heater(void)

{

setup_adc(ADC_CLOCK_DIV_16);

//main function

//Setup timer 1

//Setup A/D

//Select channel RAO for A/D
//Update interval in units of usec

//Record initial time

//Display initial temperature

if ((GetTimeNow() — StartTime2) > = Tupdate)
{

[f (HeatOn == 1)
{
Temp=Temp + 1;
1
else
{
count =count + 1;
if (count == 4)
{
count=0;
Temp = Temp -1;
}
1
StartTime2 = GetTimeNow();
output_c(Temp);
}
}

void SetupTimer(void)

{

//Heating action

//Cooling action

//Display current temperature

setup_timer_1(T1_INTERNAL| T1_DIV_BY_2); //At 8 Mhz internal clock and
//2 prescale, the timer has a resolution of 1 usec

TimerRes = 0.000001;

LastCount = 0;
Time =0;
set_timer1(0);

}

//Initialize the timer

int32 GetTimeNow(void) //Returns time in units of usec

{

unsigned int16 ReadTime;

ReadTime = get_timer1();
if (ReadTime > LastCount)

Time = (ReadTime — LastCount) + Time;

else

Time = Time + ((65536 — LastCount) + ReadTime);

LastCount = ReadTime;
return(Time);

}

6.7

void Thermostat_Task(void)
{
if ((GetTimeNow() — StartTime1) >= HeaterDelay)
{
DelaylsOver = 1;
}
else
{
DelaylsOver = 0;
}

DesTemp = 6 + (int8)(read_adc()/204.0);//Read desired temp from pot
// DesTemp will range from 6 to 10
State = NextState;
switch (State)
{

case SwitchOffHeaterOff:

if (input(PIN_A3) == 1)// Is OnOffSwitch on?
{
NextState = SwitchOn;

}

break;

case SwitchOn:

if (Temp <= (DesTemp — 1))
NextState = HeaterOn;

else if (Temp >= (DesTemp + 1))
NextState = HeaterOff;

else if (input(PIN_A3)==0)
NextState = SwitchOffHeaterOff;

break;

case HeaterOn:

if (EntryHeaterOnState == 0)

{
StartTime1 = GetTimeNow(); // Record the start time
HeatOn=1; // Turn On Heater
HeaterDelay = 10 * 1000000;
DelaylsOver = 0;
EntryHeaterOnState = 1;

}

if ((Temp >= (DesTemp + 1)) && (DelaylsOver == 1))
{
NextState = HeaterOff;
HeatOn =0;
EntryHeaterOnState = 0;
}
else if (input(PIN_A3) == 0)
{
if (DelaylsOver == 1)
{
HeatOn = 0;
NextState = SwitchOffHeaterOff;

else
{
NextState = SwitchOffHeaterOn;
}

EntryHeaterOnState = 0;

Control Task Implementation in Software 183

Figure 6.33

The state-transition
diagram for the
thermostat task
implemented on
the PIC16F690

184 Chapter 6 Control Software

Figure 6.33

The state-transition
diagram for the
thermostat task
implemented on

the PIC16F690
(continued)

}

break;

case HeaterOff:
if (Temp <= (DesTemp — 1))
NextState = HeaterOn;
else if (input(PIN_A3)==0)
NextState = SwitchOffHeaterOff;
break;

case SwitchOffHeaterOn:
if (DelaylsOver == 1)
{
HeatOn =0;
NextState = SwitchOffHeaterOff;
}

break;

diagram. The delay before turning off the heating action is controlled by the vari-
able DelayIsOver which is set to 1 if the time interval since the heater was turned on
has elapsed.

Note that the code shown in Figures 6.31 to 6.33 can be changed easily if
another microcontroller is used instead of the PIC16F690. These changes include
changing the header file (<16F690.h>) to that corresponding to the other chip
used. It also involves changing some of the constants that are used to identify
parameters of functions that set the timer and the A/D (such as the parameter that
selects pin RAO for A/D).

| 6.8 MULTITASKING

Real systems have many tasks that need to be controlled at the same time. This
brings the issue of how to manage the control of these tasks. The answer to this
question depends on the level of control we want over these tasks. Issues that need
to be considered include: Do all the control tasks have the same level of priority or
do some have higher priority than the rest? Will we have a situation in which we
need to preempt the execution of one task and start another task instead? And is it
acceptable if there was a delay in starting the execution of a task?

We have already discussed the cooperative control mode in the previous
section. In the cooperative control mode, all tasks have the same priority, and we
cannot preempt the operation of one task and start another. We will discuss the
preemptive control mode in this section.

The preemptive control mode allows the stopping of one task and the start
of execution of another task. This is needed in situations like alarm processing
where a certain task needs to run immediately in response to an alarm signal. For
this scheme to work, each task needs to have a priority level assigned to it. A task
that has a higher priority than a currently executing task can stop the execution
of the lower priority task and run instead of it. When the higher priority task com-
pletes its execution, the lower priority task will resume its operation. Similarly, if
two tasks are ready to run, but one task has a higher priority than the other, then

the preemptive scheduler will allow the higher priority task to run first. The lower
priority task will run only after the higher priority task has completed its job.

Preemptive schedulers are much more difficult to implement in software. For
example, VBE does not offer built-in code to implement such a scheduler. The
closest thing to preemptive scheduling in VBE is the thread class (to be discussed
later), but since Windows is a general operating system, the preemption is differ-
ent from that implemented in a preemptive real-time operating system (discussed
in Section 6.11).

It is informative to discuss how an operating system (such as the Windows
operating system) handles the operation of a program that it runs. When a program
executes, it runs as one or more processes. A process is the term that is used by the
operating system to designate the address (or memory) space needed to run the
program as well as the control information that is used to control the execution of
the program. Windows also gives process designation to Windows services (such as
Windows time keeping and Windows events logging). Processes do not share
memory space. When several programs are run on the same computer, each one is
run as a separate process. In the case of a single processor, the processor switches
among the processes, giving each one a share of the Central Processing Unit (CPU)
time. If we have multiple processors, each processor could be assigned to run one
process. Each time a processor switches from one process to another, which is a
procedure called context switching, it needs to save and restore process informa-
tion as well as to point the processor to a new address location. Context switching
can consume a considerable amount of CPU time if there are a large number of
processes that are running. Since processes do not share memory space, communi-
cation between processes also is more difficult and has to be done through operat-
ing system resources (such as pipes and sockets).

To improve on the overhead associated with context switching between
processes, a process can be split into several entities of code called threads, where
each thread has its own control information but shares memory space with the
other threads running in the same process (see Figure 6.34 for illustration). A
thread can therefore be defined as the entity within the process that is scheduled
for execution. A process starts as one thread, but it can add or create more threads
as needed. Because of address sharing between threads, it requires less overhead
to communicate between threads as well as to switch between one thread and
another. Similar to a process, threads share CPU time, and only one thread can be
active at a time. However, it is more difficult to write threaded code. In addition,
there is the possibility that threads can have a conflict with accessing shared
resources (such as memory and open files).

Threads are a key to implement multitasking programs. The Windows oper-
ating system is an example of a multitasking system, where several threads from

Process A Process B Process C
Thread A1 Thread B1 Thread C1
Thread A2 Thread C2

Thread A3

Computer Memory

6.8 Multitasking 185

Figure 6.34

Graphical illustration of
process and threads

186

Chapter 6 Control Software

Figure 6.35

BackgroundWorker
DoWork code listing
in VBE

many processes appear to run concurrently on a single processor. The operating
system can start, terminate, or suspend the execution of a particular thread. Due to
the fast operating speed of modern PCs, these threads appear to execute simulta-
neously. A typical process (such as Microsoft® Word) is split into over 10 threads,
and in a typical PC, hundreds of threads are scheduled for execution. The reader is
encouraged to call the Windows Task Manager on a PC and examine the processes
and threads that are running.

| 6.9 THREADING IN VBE

6.9.1 BACKGROUNDWORKER

The most reliable method of implementing multi-threaded applications in VBE is
to use the BackgroundWorker control. This control is included in the Components
folder in the 7oolbox. The System.ComponentModel namespace should be added to
the application when using this control. The BackgroundWorker creates a thread
that runs in the background in parallel with the application code that runs in the
foreground or main thread. Note that in VBE, the foreground and the background
threads’ use of the computing resources is similar. The difference between the two
concerns the existence of the background thread. A foreground thread runs indef-
initely, while a background thread terminates once the last foreground thread has
stopped. The BackgroundWorker thread can be used to run lengthy operations
(such as handling file input/output, complex computations, or Internet communi-
cation). By placing computationally intensive operations in a separate thread that
runs in the background, the main thread can remain responsive to user input and
the application interface does not freeze. There is no need to use the VBE
DoEvents() method, which can lead to slow performance if called repeatedly, to
handle any pending user interface commands. In addition, blocking code in one
thread does not stop the execution of code in another thread which has no block-
ing code. Note that more than one BackgroundWorker thread can be set up to run
in one application.

To illustrate how to use the BackgroundWorker control, let us assume that the
lengthy computations that need to be done are placed in a function called
BackgroundFunction(). This BackgroundFunction() should be called from the
BackgroundWorker*_DoWork() function, which is the VBE specified method of per-
forming the work done by the BackgroundWorker thread. The *in the name of the
function is an integer number that defines the particular BackgroundWorker. An
example code is shown in Figure 6.35. Note that the BackgroundWorker*_DoWork()
function is not explicitly called by another procedure in the application. This func-
tion is automatically called as the event handler when the BackgroundWorker is
started by executing

BackgroundWorker* RunWorkerAsync()

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, ByVal e As
System.ComponentModel.DoWorkEventArgs) Handles BackgroundWorker1.DoWork

BackgroundFunction()

End Sub

6.9 Threading in VBE 187

The foreground thread can cancel the operation of the background worker
at any time by executing the following statement, provided that the
WorkerSupportsCancelation property is set to true:

BackgroundWorker*.CancelAsync()

The BackgroundWorker*_DoWork() function can monitor for cancellation
by checking the value of the CancellationPending proporty. If the foreground
thread has requested cancellation of the background thread, then the
BackgroundWorker*.CancellationPending property will be set to true.

In addition to the DoWork event handler function, the application should also
include a function to handle the event when the BackgroundWorker completes its
operation. This event handler is called BackgroundWorker* RunWorkerCompleted()
and should include code to handle cases where the background function completes
its operation normally, was canceled by the user, or generates an exception during
its execution. While it may not needed in every application, the BackgroundWorker
also supports an event that can inform the foreground thread of the progress
of the background operation. This progress reporting is handled by the
BackgroundWorker*_ProgressChanged() function provided that the Worker-
ReportsProgress property is set to true.

Note that VBE does not allow the BackgroundWorker thread (or any created
thread in general) to communicate directly with any of the controls on the applica-
tion form. If the BackgroundFunction() happens to update one of the controls, then
an InvalidOperationException is generated, since cross-thread calls are generally
not allowed. This exception can be overridden by setting the property
FormName.CheckForlllegalCrossThreadCalls to false where FormName is the name of
the form file in the application, but it is not the preferred method. A preferred way
of cross-thread communication is to use the Invoke method which compares the
thread ID of the calling thread to the ID of the thread on which the controls were
created. If the threads are different, a function should be created to call itself asyn-
chronously using the Invoke method to update the control. If the threads are the
same, then the control can be updated directly. Figure 6.36 shows the VBE code
listing for a function Sez7ex2 that sends output to a textbox named ZexzBox2 using
the invoke method.

Private Sub SetText2(ByVal [text] As String)

" InvokeRequired compares the thread ID of the

* calling thread to the thread ID of the creating thread.

" If these threads are different, it returns true.

If Me.TextBox2.InvokeRequired Then
Dim d As New SetTextCallback(AddressOf SetText2)
Me.Invoke(d, New Object() {[text]})

Else
Me.TextBox2.Text = [text]

End If

End Sub

The SetTextCallback() tunction has to be declared as a delegate function as
shown below in the file in which the function Sez7ext2 is defined. The delegate des-
ignation enables asynchronous calls for setting the text property on the TextBox
control:

Delegate Sub SetTextCallback(ByVal [text] As String)

Figure 6.36

Cross-thread
communication using
Invoke method in VBE

188

Chapter 6 Control Software

6.9.2 THREAD CLASS

In addition to the BackgroundWorker control, VBE has a class called thread that can
be used to implement multithreaded programs. Each task in a program can be
assigned to a separate thread, and using the methods provided for the thread class
one can start, abort, or sleep (put on hold) a particular thread. Starting a thread
means that the code associated with the thread will start executing. Aborting a
thread means that the thread is removed from the list of executing threads. Note
that aborting a thread is not guaranteed to abort the thread immediately or even at
all. This depends on what the thread is doing when the call is issued. Sleeping a
thread blocks the execution of the thread for certain amount of time as specified
by the integer timeout argument, whose value is in milliseconds (ms), that is passed
to it. Note that the Suspend method, which stops the execution of a thread, is obso-
lete and not supported in VBE. In addition, different priorities can be assigned for
different threads to manage the execution of the threads.

To use the thread class, the System. Threading namespace should be added to the
form in which the thread code is written. To assign a task to a thread, the follow-
ing statement is used:

Threadl = New System.Threading.Thread(AddressOf Taskl)

where Taskl is the code associated with Threadl. To start the execution of a thread,
the following statement is used:

Threadl.Start()

The user can monitor the execution state of a thread by looking at the
ThreadState property. When a task is assigned to a thread variable, the thread is
in the Unstarted state. The state changes to Running when the thread has started.
During the process of aborting a thread, the thread is in the AbortRequested State.
If the abortion is successful, the state changes to the Stopped state. The thread is also
in the Stopped state if it has completed its work. If the thread is blocked as a result
of a sleep request, the state is in the WaitSleepFoin. Note that you cannot start a
thread that has been aborted or has completed its work. The thread has to be cre-
ated again (with the New keyword) before it can be started.

The thread class allows five levels of priority for threads. These priorities
from lowest to highest are: Lowest, BelowNormal, Normal, AboveNormal, and Highest,
with Normal being the default priority. The priority of a thread is set by changing
the Priority property of the thread object. Note that the priority property of a
stopped thread cannot be changed. Only threads in the Unstarted or Running state
can have their priority changed.

| 6.10 RESOURCE SHARING

Sharing resources (such as variables and data) is very tricky in multithreaded appli-
cations. If not done properly, it can lead to data corruption. To illustrate this, con-
sider the statement listed as

X=x+1

This single-line, high-level programming statement increments the value of
the variable x by 1. When this statement is compiled, it is translated into several

6.10 Resource Sharing

machine instructions:
* Move « from memory into addition register
* Add1tox
* Move the result back to the original memory location of x

In a threaded application on a PC, the runtime language manager can stop
the execution of one thread at the end of any machine instruction (and not the
end of a VBE statement) and jump to another thread. Now assume we have two
threads, the variable « has originally a value of 1, and the first thread just com-
pleted the execution of the first instruction when the computational resources
were shifted to the second thread. Now assume further that the second thread
works with the same shared variable x, and it assigns a value of 10 to x when it
runs. Now, when thread 1 resumes its operation, the value of x would be 2 and
not 11 after the last two machine instructions were executed. This is because
thread 1 executes the last two machine instructions with the original value of x,
which was already moved into the addition register. Thus, we have a situation
here where the computation done in the first thread nullifies the works done in
the second thread. This type of error is called a race condition and can be
prevented if we design the code to prevent thread switching in the middle of
performing a data update operation.

Programming languages such as VBE support several mechanisms for thread
synchronization and resource sharing. These mechanisms include the Interlocked
keyword, the Synclock keyword, and the Mutex and the Semaphore classes.

"The Interlocked keyword offers an easy way to prevent thread switching in the
middle of certain commonly performed operations (such as incrementing a vari-
able, decrementing a variable, and addition of two variables). The statement
x = x + 1 can be written as

Interlocked.Increment(x)

where the increment method of the Interlocked keyword is used here. This Interlocked
statement makes the machine instructions that increments the variable x by 1 to act
as one big machine instruction (i.e., interlocked) or as one atomic operation, and thus
it prevents thread switching in the middle of execution of this statement.

In many situations, we have computations other than incrementing or decre-
menting a variable, and thus, we need another mechanism to perform thread syn-
chronization. The Synclock keyword offers such a mechanism. Synclock is a mecha-
nism that can create a critical section of code where only one thread can access that
code. It is done through the concept of a lock. If a thread owns a lock on an object,
all other threads are prevented from acquiring that lock. The format of the Synclock
statement is

Synclock ObjectVariable
Critical code here
End Synclock

where the critical code is placed between the Synclock ObjectVariable and End
Synclock statements. Now if we have two threads and the first thread got a hold
on the Synclock, the code in the Synclock statement in the second thread is pre-
vented from execution until the first thread releases the lock by executing the
End Synclock statement. Thus, the second thread is blocked while waiting for the

189

190

Chapter 6 Control Software

lock to be available. Obviously, the same ObjectVariable name should be used in
both Synclock statements to achieve the synchronization. There are two limita-
tions about the Synclock statement that we should mention. The first is that the
lock name (or ObjectVariable) has to be an object type and not a simple variable
such as integer. Second, if the first thread does not release the lock, then the sec-
ond thread will wait indefinitely for that lock to be available with no time out
possibility.

A more sophisticated method of creating a critical section can be done using
a Mutex. A Mutex is an abbreviation for mutual exclusion. It is used to give one
thread an exclusive use of a shared resource for the case where two or more
threads need to share the same resource. When a thread requests access to a Mutex
that is acquired by another thread, the requesting thread normally will be sus-
pended until the other thread has released the Mutex (default method) or until the
end of a timeout period if the thread is not available and a timeout period was
specified. Furthermore, by passing a name to the constructor when creating a
Mutex object, the Mutex can be used to perform synchronization across different
processes.

"To use a Mutex, first the Mutex has to be declared. An example of such a state-
ment is

Dim mutex1 As New Mutex()

"To request access to the Mutex, the following statement is used:
mutex1.WaitOne()

And to release the Mutex, the following method is used:
mutex!1.ReleaseMutex()

Note that the WaitOne() method is overloaded. When called without a param-
eter, the WaitOne() waits indefinitely until the resource become available. To wait
only a limited amount of time, the following form is used:

mutex1.WaitOne(TimeoutPeriod, ExitContext)

where TimoutPeriod is the waiting period in ms and ExitContext is a Boolean vari-
able that allows the Mutex to exit before the wait is over if the resource becomes
available (if set to true). With this calling format, the calling thread gives up on
waiting on the resource if did not become available by the end of the timeout
period.

To illustrate the use of the Mutex, consider two threads each performing the
same For-Loop operation 100 times using the same global variable count. In each run
through the For-Loop, the corresponding thread is called to sleep for 20 msec. The
example code is listed here. The * symbol is replaced by 1 or 2 in actual coding.

Dim i As Integer
For i = 1 To 100
count = count + 1
thread*.Sleep(20)
Next

If we run the two threads without using any synchronizing mechanism and we
displayed the counted variable from each thread when the threads complete their

6.10 Resource Sharing

work, in some cases, the count variable will be less than 200 when both threads
complete their work. Due to thread switching, the computation done in one
thread nullifies the work done in the other thread if the switching happens in the
middle of data increment operation. As explained previously, if the switching hap-
pens after the count variable was moved into the addition register, then the updated
value of count in the second thread is lost when the first thread resumes its opera-
tion. Now if we use a Mutex as shown next, the final tally for the count variable is
always 200.

Dim i As Integer
For i = 1 To 100
mutexl.WaitOne/()
count = count + 1
thread*.Sleep(20)
mutexl.ReleaseMutex()
Next

Here each thread does not execute the data update operation while the other
thread is incrementing the count variable, and thus, the work done in one thread is
not nullified by the other thread. Since the count variable is incremented 100 times
in each thread, the final tally will always be 200.

The last thread synchronization mechanism that we will consider is the
Semaphore. While the Semaphore can perform the same functions as a Mutex, it is
fundamentally different. A Semaphore is primarily used to control the number of
entries to a shared resource, while a Mutex allows only one entry. The Semaphore
is initially set with the allowed number of entries or count. Each time a thread
enters the Semaphore, the count on the Semaphore is decremented. The count is
incremented when the thread releases the Semaphore. When the count is zero, all
calls to the Semaphore are blocked until the other threads release the Semaphore.
Similar to a Mutex, we can declare Semaphores that can be used across processes as
well with a timeout capability. As an example, let us consider a Semaphore initial-
ized with a count value of 1 and with two resources that can use it. The declara-
tion for such a Semaphore is given in the following statement.

Dim seml As New Semaphore(l, 2)

Entering the Sernaphore is done with the following statement:
seml.WaitOne()

And exiting the Semaphore is done with the following statement:
seml.Release()

The above Semaphore will do exactly the same function as a Mutex. If on the
other hand we initialized the Semaphore with 2 as the initial count, then the
Semaphore does not effectively block one thread from executing while the other
thread is inside the semaphore, since two threads can enter the Semaphore at the
same time. However, if we declare the semaphore with 0 as the initial code, then
both threads will not execute, since either thread cannot enter the Semzaphore.

Threaded code is more complex than non-threaded code and is subject to
errors that do not occur in non-threaded applications. These errors include races

91

192

Chapter 6 Control Software

and deadlocks. Race is the situation that occurs when the computation done by one
thread nullifies the work done by another thread (discussed before).

Deadlocking is the situation that arises when one is not very careful in access-
ing shared resources. As an example, consider two threads that share two resources
(4 and B). Assume that thread 1 locks resource A, while at the same time, thread 2
locks resource B. Now if thread 1 requests resource B, while thread 2 requests
resource A, both threads would be blocked from execution. This is because each
thread is waiting for the other thread to release the resource it needs before it can
continue. Thus, the two threads are in deadlock situation. The only way to prevent
such a situation to occur is to request resources in both threads in the same order.
"This means that thread 1 requests resource 4 and then B. Similarly, thread 2 should
requests resource 4 and then B. Now if resource 4 was not available when it was
requested by thread 2, thread 2 waits for this resource to be available. This resource
will be made available to thread 2 after thread 1 is done with it, and thus, deadlock-
ing is avoided.

| 6.11 REAL-TIME OPERATING SYSTEMS

For many real-world applications, the cooperative control mode is not sufficient to
meet the strict iming requirements for many of these applications. For some appli-
cations, it is not acceptable to just have the correct computational value produced
by a control program, but it has to be produced at a particular time or within a
specified time interval or the value is worthless. Examples of these applications
include weapon delivery systems, space navigation, automotive safety systems, and
high-speed motion control applications. These applications require the resources
available from a priority-based preemptive real-time operating system (RTOS).
Note that not all RT'OSs use a preemptive scheduling method.

The heart of an RTOS is the kernel which is the component of the operating
system that provides most of the basic services for the application programs that
run on the system. These basic services include:

¢ Task management
¢ Timing and timers
¢ Intertask communication

¢ Dynamic memory allocation

I/0 device support

"Task management service is concerned with starting and stopping the different
control tasks as well as assigning priorities to tasks, while timing and timers service
is concerned with providing means to time events and to include time delays. The
intertask communication service provides means for tasks to pass information from
one task to another without worrying about data corruption or interference that
can result from two separate tasks trying to access the same data. Dynamic memory
allocation service is concerned with the ability of a task to create and use a certain
amount of memory while the task is executing and releasing that memory when it
is no longer needed. Finally, the I/O device support service provides a uniform
method to access the many hardware devices that the application needs to commu-
nicate with.

611 Real-Time Operating Systems

Real-Time operating systems can be classified into soft and hard real-time sys-
tems [22]. In a soft real-time system, there is no guarantee that the system can
handle the response to an event within a specified interval, while a hard real-time
system can do that. A hard real-time operating system should support the follow-
ing features.

1. Be multithreaded and preemptible
2. Supports different priority levels

3. Have predictable thread synchronization mechanisms such as mutexes and
semaphores

4. Have known and deterministic performance and timing parameters
5. Supports priority inheritance

While the Windows operating system was not designed for time-critical con-
trol applications, it still satisfies the first three features listed. Windows is different
from a dedicated RTOS in the fourth and fifth feature. Unlike a Windows operat-
ing system or any other general computing operating system, the services per-
formed by a hard RTOS have a predictable and a fixed execution time and are not
dependent on how many applications are running on the processor. There are no
random delays that could affect the responsiveness of a hard RTOS. As such, a hard
RTOS has a deterministic and very fast response to external events. The timing
response of a hard RTOS is the same whether two or ten tasks are running in the
system, which is not the case of a soft RTOS.

The priority inheritance problem is illustrated in Figure 6.37. Here we have
three threads T'1, T2, and T3, where T'1 has the highest priority and T3 has the
lowest priority. Assume that after T3 has locked a shared resource, the Thread T'1
starts executing. Because the shared resource was already locked by thread T3,
thread T'1 will be suspended, waiting for that resource to be available. If only the
Tl and T3 threads are running, this would not be a problem. When T3 completes
its work, the locked resource would be released, at which point thread T'1 would
continue. This delay in execution of the high-priority thread is deterministic. The
problem happens if we have a thread 12 with a priority in between T'1 and T3. If
T2 happens to run after T'l was suspended, then T3 is prevented from running
until T2 has completed its operation. Since the running time of 12 is not known,
we cannot determine when T'1 would be able to run again. This situation can be
prevented by having an RTOS that supports priority inheritance. In this case, the
RTOS will boost the priority of the lowest-priority thread above the middle one

Highest
Priority T1/Suspended

1
1 Pend on Resource

Shared .
T2/Running

Lock Resource

T3/Ready

Lowest
Priority

\J

Figure 6.37

Illustration of priority
inversion

193

194

Chapter 6 Control Software

Figure 6.38

Code structure for
implementing a RTOS
in PIC-C

and up to the suspended thread, causing T3 to run, which releases the locked
resource so 'I'l can run.

From this, we conclude that a general computing operating system like
Windows is sufficient for a soft real-time system application, but a preemptive hard
RTOS is needed for a time-critical application. If one is interested in using a PC
platform in a time-critical application, then one needs to use a hard RTOS that
can operate on a PC platform. One such operating system is VxWorks® from Wind
River Systems of Alameda, CA. This operating system has an extension that can
work on PC platforms.

There are many commercial RTOSs available for embedded processors.
Examples include VxWorks form Wind River Systems and ThreadX® from
Express Logic. We will discuss two RTOS operating systems for microcontrollers
in this section. The first is the PIC-C RTOS for PIC microcontrollers. The other
one is the ThreadX RTOS.

6.11.1 PIC-C RTOS SYSTEM

The C-compiler for PIC microcontrollers from CCS, Inc. supports a cooperative
scheduling RTOS. The RTOS can be used to schedule tasks to run at specified time
intervals, but tasks cannot have a priority level assigned to them nor preempt each
other. To start the operation of the RTOS, the rtos_run() function needs to be
called. The operation of the RTOS is terminated by calling the 7tos_terminate()
function. The code structure for using the RTOS is shown in Figure 6.38.

Since the tasks scheduled by the CSS RTOS are time based, the #use rtos direc-
tive needs to be called to specify the timer used for time keeping as well as the timer

T T
/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T T

//Define timer to use for RTOS
#use rtos(timer = 0,minor_cycle = 100ms)

//Define first task
#task(rate = 1000ms,max = 100ms)
void first_task ()
{
printf("In task 1\n\r");

}
//Define second task
#task(rate = 500ms,max = 100ms,queue = 2)
void second_task ()
{
printf("In task 2\n\r");

} .
//Define third task
;/.(-)id main()

{

//Call RTOS to run
rtos_run();

611 Real-Time Operating Systems

minor cycle, which is the interval at which the RTOS will be called to run the pend-
ing tasks. In the code structure shown in Figure 6.38, Timer 0 is used for time keep-
ing, and the minor cycle interval is set to 100 ms. Each of the tasks that need to be
run by the RTOS need to have the #task directive located above it to inform the com-
piler that the following function is an RTOS function. There is no restriction on the
code listing for a task. In the #task directive, the timing rate at which the task should
run is specified as well as the maximum budgeted time for the task when it is run. The
task budgeted time should be less than or equal to the RTOS timer minor cycle.

We can also specify in the #task directive a queue size in bytes to be used for
messaging between RTOS tasks, as shown in the declaration for the second task.
A task can send a message to another task using the rtos_msg_send() function, which
takes two arguments: the task name specified in the first argument and the value of
the variable specified in the second argument. Similarly, a message is read using the
rtos_msg_read() function, which returns the next byte of data available in the task’s
message queue. The rtos_msg_poll() function, which returns true if there is data in
the task’s message queue, should be called before calling the rtos_msg_read() func-
tion to ensure that there is data to read, since the rtos_msgs_read() function is block-
ing if there is no data to read. An executing task can yield to another task by calling
the function rtos_yield(). This causes the task to break out at a given point and return
to the same point the next time the task is executed.

"To prevent conflicts arising from tasks trying to access a shared resource, tasks
can use the rtos_wait() and rtos_signal() functions to implement a semaphore
mechanism. Calling the rtos_wait(sem) function will decrement the semaphore
variable sez by 1. Similarly, calling rtos_signal(sem) will cause the semaphore vari-
able sezz to be incremented by 1. When sem is equal to 0, another task cannot exe-
cute the code included between rtos_wait(sern) and rtos_signal(sem) until the other
task has released the resource by executing 7ros_signal (sem) function. Figure 6.39
shows a code listing that illustrates the use of the semaphore mechanism to control
access to an LED. A different LED is used in each task so the program operation
can be easily observed. The code is run on Microchip PIC18 Explorer Board (see
Fig. 10.29), which uses the PIC18F8722 MCU. The RTOS code was not able to be
compiled for the PIC16F690 MCU.

In the code listing shown in Figure 6.39, the first task flashes LED1 four times
every two seconds, while the second task flashes LED2 one time every one second.
Both tasks use the same semaphore when accessing the LEDs. When the program
runs with the rtos_yield() statement in the first task commented out, LED2 will flash
once, then after a delay of one second, LED1 will flash four times immediately fol-
lowed by LED? flashing once, and the process repeats. The flashing of the LEDs in
this case is set by the execution rate for each task. Now if we run the program with
the rtos_yield() statement in place, then LED2 will flash one time, then LED1 will
flash a total of four times (once every two seconds) followed by LED2 flashing once,
and the process repeats. Note here that while the second task is designed to run
every second, it is prevented from flashing LED2 while the first task is running. This
is because the first task calls the 7tos_yield() function in each run through the for loop
in that task, so the release of the semaphore (by calling 7tos_signal(sem)) is done only
after the first task is called four times (or the for loop in that task is completed).

6.11.2 THreADX

ThreadX (developed by Express Logic, San Diego, CA) is a hard RTOS designed
for embedded applications running on microcontrollers including PIC microcon-
trollers and others. The software supports preemptive scheduling. We have selected

195

196 Chapter 6 Control Software

Figure 6.39

C-Program to illustrate
semaphore mechanism
using the CCS compiler

T T
//1/// Compiler: PCWH from CCS, Inc. (Version 4.103)

N e s
#include <18F8722.h>
#fuses HS,NOWDT,NOPROTECT,NOLVP
#use delay (clock=10M)
#use rtos(timer=0, minor_cycle= 50ms)
#define LED1 PIN_DO
#define LED2 PIN_D1
int8 sem; //Semaphore variable to control access
//Define first task
#task(rate=2000ms,max=50ms)
void first_task ()
{ int8i;
rtos_wait(sem);
for (i=0; i < 4; i++) {
output_high(LED1); delay_ms(5); output_low(LED1);
rtos_yield();
1

rtos_signal(sem);}

//Define second task

#task(rate=1000ms,max=20ms)

void second_task ()

{
rtos_wait(sem);
output_high(LED2); delay_ms(5); output_low(LED2);
rtos_signal(sem);

}

void main()

{
sem=1;
rtos_run();

ThreadX because a demo version of the software can be downloaded freely, and it
can be used to illustrate the detailed operation of an RTOS. The reader can get fur-
ther information about ThreadX from the company website (www.rtos.com) or
from [23], so we want to focus here on just two aspects of ThreadX. The first is the
execution flow of threads in ThreadX, and the second is the priority mechanisms
that are implemented.

Figure 6.40 shows the state-transition diagram for thread operation in
ThreadX, which shares some similarities with thread operation in MS Windows.
After a thread is created, it can be either in the Ready state (auto start) or in the
Suspended state (manual start). ThreadX selects the highest-priority thread from
all of the ready threads and changes its state to the Executing state. Obviously,
because of the use of a single processor, only one thread can be in the Executing
state. While executing, several things can happen. If the thread completes its work,
its state changes to the Completed state. If the thread was suspended (for example,
due to an unavailable resource that it needs to use or because a higher-priority
thread needs to run), then it moves to the Suspended state. If the cause of suspen-
sion was no longer present, then the thread moves to the Ready state. A thread ends
up in the Terminated state if the thread was terminated in either the Ready,
Suspended, or Executing state.

www.rtos.com

6.12 Graphical User Interface

Thread Creation

Auto Start Manual Start
Ready Services wlSuspension Suspended
State State
Thread Scheduling
Self
Terminate Executing Suspend Terminate
Service State Service
Return from
Threaél Entry Self
Function co
Terminate
Completed Terminated
State State

ThreadX has as a default 32 levels (can be expanded up to 1024 levels) of pri-
ority for each thread, ranging from 0 (highest) to 31 (lowest). If multiple threads of
the same priority are ready for execution, they are executed in a first input-first
output (FIFO) fashion. ThreadX uses two methods, time slicing and voluntary
relinquishing, to schedule threads that have the same priority. In time slicing, each
thread is given a certain number of ticks (i.e., a time slice). When the thread’s time
slice expires, all other ready threads of the same priority are given a chance to exe-
cute before the time-sliced thread is executed again. In voluntary relinquishing, the
thread issues a call to voluntary relinquish resources, which causes the thread to
stop executing (similar to calling rtos_yield() in PIC-C compiler).

As mentioned before, ThreadX has a preemptive scheduler. Preemption is the
process of stopping the execution of a thread of a lower priority and the executing
of a thread that has a higher priority. ThreadX implements preemption threshold
which allows the selection of the priority of threads (ceiling) that can preempt
other threads (with priority higher than ceiling).

| 6.12 GRAPHICAL USER INTERFACE

Control or measurement programs should have means to interact with the user.
This should serve two purposes. The first is to provide feedback information
for monitoring the operation of the program. This information typically includes
the current actual value of the controlled or measured variable(s) (such as temper-
ature or speed), the desired value of the controlled variable(s), and/or the value of
the control input. The second purpose is to let the user have the capability to
start/stop the control or measurement action and to modify the desired value of the
controlled variable(s), the control gains, or the measurement setting parameters. An
operator interface is the mechanism that can perform this function. While an
operator interface can be built using hardware elements (such as switches, control
knobs, and display devices), advances in PC technology and software allow one to
create a sophisticated user interface in software. This section focuses on develop-
ing graphical user interfaces using MATLAB and VBE.

Figure 6.40

State-transition
diagram for thread
operation in ThreadX

197

198

Chapter 6 Control Software

Figure 6.41
GUIDE icon

A graphical user interface (GUI) can be built for a control or measurement
program running on a PC or on a microcontroller. Due to the lack of built-in dis-
play devices in microcontroller-based systems, a graphical user interface for a
microcontroller-based system needs to communicate with the microcontroller
through either a serial or USB interface. Thus, designing a user interface for such
a configuration requires attention to the data communication and transmission
aspects.

Operator interface operations are quite important in many industries such
as oil and gas processing, waste water treatment, and electric power distribution,
and many vendors provide custom-made programs to handle these operations.
These programs are commonly known as HMI, which stands for Human Machine
Interface. Many of these HMI programs come with a set of graphical tools to rep-
resent control devices (such as knobs and switches) and control system components
(such as tanks, pumps, and motors).

6.12.1 MATLAB GRAPHICAL USER INTERFACE

MATLAB offers a tool to build a graphical user interface or GUI The graphical
user interface tool in MATLAB is called GUIDE or GUI development environ-
ment. This section gives only a brief overview of GUIDE. For more detailed infor-
mation, see MATLAB documentation or one of the many texts available on this
topic, such as [24].

The process of building a GUI in MATLAB is as follows.

* The user selects controls from a palette to design the layout of the user inter-
face in a figure file. The user customizes these controls to make them display
the needed information by changing some of their properties.

* The user saves the figure file. This causes MATLAB to process the layout
information and to generate an m-file with the same name as the figure file
that has a skeleton code for the controls that the designer has selected.

* The designer modifies the skeleton code in the m-file so the GUI performs
the intended action.

* Once the user completes the editing of the m-file, the interface operates as
intended.

To start building a user interface, the designer needs to type the word GUIDE
in the command window or to click on the GUIDE icon circled in Figure 6.41.

File Edit Debug Desktop Window Help

-___I: 5] =| | €& | Current Fold

Shortcuts 2] How to Add [2] What's New

Current Folder 0 a x Command Window

This will bring the GUIDE Quick Start form shown in Figure 6.42 where the
user can either open an existing graphical user interface (GUI) or create a new one.
Selecting a new blank GUI displays the form shown in Figure 6.43 which is
called the Layout Editor. This is the design form where the user can select controls
or objects from the left menu and drop them into the design area (gray area with
gridlines) on the form. The top of the form has a toolbar that contains a number of

6.12 Graphical User Interface 199

B GUIDE Quick Start [Figllre 6.42

Caeste Mew GUL | Open Existing GUT

GUIDE Quick Start form
GLIDE repnplates Preview

& GULwath Uscontrols

GUTwith Aues and Menu

Modal Question Dialog

Save new figure as:

0K Caneel | " Heln
) untitledig |) o]) Figure 6.43
File Edit View Layout Tools Help T ObjeCt Browser
15 | 90 aEMHh LAY > | Layout Editor form
& = Property Inspector
Design Area — e
®
Wl |
GUI Objects — = =
m Bl
ME o
o e o For ch.angmg size
’ of design area
Tagfigurel Cument Point: [318,35] Positiorc (520, 539, 342, 201

tools including an object browser, and a property inspector. The user can change
the size of the form by dragging the lower-right corner of the design area.

As an illustration, we will create a simple GUI with two objects: a push button
and a static text. Selecting these objects and dropping them onto the form and
enlarging them, we obtain the form shown in Figure 6.44.

e B =lo Figure 6.44

File Edit View Loyout Tools Help

T A0 0 ke S '@—— Execute Icon GUI with two objects

Push Button —+{i=i|==
e E Pugn Butten

At Tt

Static Text —

Togfiguel Curvent Poing: [225,151] Position: [520, 559, 242, 201]

Any object placed on the form has properties such as background color, font
size, text displayed, and tag information that can be customized. For example, we
can change the text displayed on the push button by changing the string property
from the property inspector menu (see Figure 6.45) that is displayed when we right
click on the object in question. The property inspector menu also can be directly
accessed from the toolbar of the Layout Editor form (see Figure 6.43). For this
example, we will change the text displayed from Push Button to Display. The tag
property is the name that MATLAB uses to refer to the object in the m-file asso-
ciated with the GUI The tag should be changed from the default label selected by
MATLAB to make it easy to distinguish the object in the case where several objects

200 Chapter 6 Control Software

Figure 6.45

Portion of the property
inspector menu for the
push button

Figure 6.46

A list of the functions
created in the m-file
associated with the GUI

[et ._-.m.nul-,?x-._;_-.-!?_mm_'n_u_,_i_.m I=|-E|-EH_

WS S0 b >
(1] s

HitTest

% % %N e

SebecsionHighlight

¥ Sideritep
thring
Serle
Tag

Toahipltring Fi

of the same type are used. For this example, we will change the tag for the push but-
ton from pushbuttonl to DisplayButton.

We will save the created GUI with the name SimzpleGUI. When we save the fig-
ure file, MATLAB will save it with the .fig extension and will create an m-file with
the same name. The generated m-file has a number of functions in skeleton form
to process user interface actions. To see a list of these functions, click on the icon
circled in Figure 6.46 in the generated m-file.

s

Debug Desktop Window Help
Mea(f)B -2 RRE BB | S

¢ o e® | @ SimpleGUI
T - Displaybutton_Callback
SimpleGUL OpeningFen
efore SimpleGU SimpleGUL OutputFcn

Figure 6.46 shows that four functions were created. The SimpleGUI function,
where SimpleGUI is the name we used when the GUI was saved, is the main func-
tion in the GUI. This function sets up a data structure that contains control infor-
mation plus function handles for some of the subfunctions. Normally, the user does
not need to edit this function. The Displaybutton_Callback function is the function
that processes the event of clicking on the push button. We need to add code to this
function to get any action from clicking on the button. The SimpleGUI_OpeningFcn
is the function that is automatically executed when the GUI is called. This function
executes before the GUI is made visible, and we can use this function to add any
initialization code that is needed. The SimpleGUI_OutputFen sends outputs from
this function to the command line. If our GUI had more objects, then the m-file
will have additional callback functions to handle the events associated with these
objects. Note that the static textbox object that we used in SimpleGUI example does
not respond to a mouse click, and thus, MATLAB did not provide a callback func-
tion for it. The static text box has other events (such as ButtonDown event created
by pressing down on key while the control is in focus), but unless we explicitly
called for them, MATLAB will not provide code to process them.

In the SimpleGUI example, we would like to display the text ‘Simple GUI” in
the static textbox when the user clicks on the push button. To do this, we need to
modify the callback function associated with the push button. Figure 6.47 shows
the skeleton code created by MATLAB for the Displaybutton_Callback function. The

6.12 Graphical User Interface 201

% --- Executes on button press in Displaybutton.

function Displaybutton_Callback(hObject, eventdata, handles)

% hObject handle to Displaybutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

variable ‘handles’ in the argument list is a data structure that contains a reference to
all the objects in the GUI. Any object in the GUI can be referred to using syntax
handles.tag_name, where tag_name is the tag property of the object in question. For
example, to refer to the static textbox we created, we simply use bandles.textl.

Thus to display the message, we need to add the following code to the above
callback function:

set(handles.textl, 'string’,'Simple GUI’);

The ser function is used here to modify the string property of the static textbox
so it can display the ‘Simple GUT’ text. A static text box also can be used to display
the value of integer or real variables, but the value needs to be converted to a string
first using int2str() or num2str() functions.

Now, the SimpleGUI interface is ready to run. We can type SimpleGUI in the
command window, or we can click on the Execute arrow button (see Figure 6.44) to
run the GUI Doing this, we get the interface shown in Figure 6.48(a). If we click
on the Display button, the message ‘Simple GUI is displayed in the static textbox,
and the interface looks like that shown in Figure 6.48(b).

B simpleGul Lo [] | B simpleGu (ol

Unpiay Dmsplay

Siatic Tex Simpla G418

@ (b)

Realistic GUIs are more complicated than the simple interface illustrated, but
the process of creating one is the same. Depending on the type of the object
we have in the GUI, we need to add code in the callback function(s) to handle the
event(s) associated with that object. We have shown in Section 6.7.1 an interface
for simulating a heating thermostat. The thermostat GUI used a popup menu
object, two push buttons, four static text boxes, and a panel control. For example,
for the popup menu, we used the code shown in Figure 6.49 to get the desired
temperature.

One important issue to consider in building a GUI is the scope and sharing of
variables in the GUI file. In the thermostat example, we had used the global decla-
ration to share user defined variables among several callback functions. User-defined
variables also can be made accessible among the different functions in the file by
adding them to the handles data structure (see documentation on GUIDE in MAT -
LAB). We also used the persistent declaration for local variables that only are used in

Figure 6.47

Callback function for
the DisplayButton

Figure 6.48

(a) Interface in
operation and (b) after
pushbutton was
pressed

202 Chapter 6 Control Software

Figure 6.49

MATLAB code
for handling

the popup menu
in the thermostat
example

Figure 6.50

Controls available
in VBE 2010

Bile Bt View Project Debug Data Toal

LG 2 bl

Tealbax

-4 X

% --- Executes on selection change in Desiredpopupmenu.

function Desiredpopupmenu_Callback(hObject, eventdata, handles)

% hObject handle to Desiredpopupmenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, String’)) returns Desiredpopupmenu contents as cell array
% contents{get(hObject, Value')} returns selected item from Desiredpopupmenu

global DesTemp

valuepop = get(handles.Desiredpopupmenu, 'Value');

stringpop = (get(handles.Desiredpopupmenu,String’));

DesTemp = str2num(stringpop{valuepop});

one function, but they need to keep up their values in repeated calls of that function.
If we need to access any of the objects in the GUI in a user-defined functon (i.e.,
not in one of the GUI objects’ callback functions) such as the TIMER]I object call-
back function in the thermostat example, then we need to save the handles variable
in a global variable (such as the HANDLESVAR variable in the listing shown in
Figure 6.25) that is shared by the user function that needs to use it.

6.12.2 VBE GRAPHICAL USER INTERFACE

VBE is a high-level programming language that is primarily used to produce
Windows-type applications although console-type applications (with MS-DOS
type interface) also can be produced. Since Windows applications are event driven
and have inherently a graphical user interface, VBE was thus designed to offer the
user an easy way of creating friendly and powerful graphical user interfaces, which
are needed in software-based instrumentation, measurement, or control applica-
tions. Note that VBE is used by a large number of programmers worldwide to pro-
duce professional code for a multitude of applications. VBE is also available to be
downloaded free of charge, so users will not incur additional costs or restrictions in
using the language. Moreover, the executable version of the code can run on its
own (no need to have VBE installed) which is not the case with MATLAB.
Appendix A gives a detailed overview of VBE, including variables, operators, func-
tions, sub-procedures, looping and conditional statements, classes, and error han-
dling. For further reading, see [25-26].

The process of creating a GUI in VBE is somewhat similar to that to in
MATLAB, although the terminology used is different. To develop code in VBE,
first you need to create a project that consists of a set of files grouped together. In
VBE, you can create different types of projects, with the most common being the
Windows Forms Application and Console Application. To develop a Windows Forms
Application, the user places controls on a Windows form and then writes code to
manage events from these controls in another file. VBE offers a diverse set of con-
trols that are grouped in different categories. The controls are placed in the To0/Box
window in VBE. Figure 6.50 shows the controls available in the Common Controls
category. These include Button, CheckBox, PictureBox, ProgressBar, and TextBox.

Similar to what we did in the previous section on the MATLAB GUI, we will
illustrate in this section the development of a simple GUI in VBE. Our simple GUI
will utilize a button and a textbox. Selecting these controls and dropping them on
the design form that is created when we select a Windows Form Application, we get
the form shown in Figure 6.51.

6.12 Graphical User Interface 203

Figure 6.51

VBE form with button
and textbox controls

We will modify the 7ext property of the button control to display ‘Run’ instead
of the default value ‘Buttonl’. We will also change the Nasme property (similar to
the tag property in MATLAB) of the button from ‘Buttonl’ to ‘emdRun.” The
properties window is normally displayed in the lower-right corner of the VBE
integrated development environment (see Figure 6.51) but also can be accessed by
clicking the right mouse button.

Now if we double-click on the button control, the design form will disappear,
and we will get a window named Form1.vb, as shown in Figure 6.52 where the
code is added. The design window has a function called ezzdRun_Click to handle
the event of clicking on the button. Similar to a MATLAB callback function, this
event-handling function is in skeleton form and does not do any useful action
unless we add code to it. In addition to mouse clicking, the button control has
many events associated with it (such as mouse hovering over the control, mouse
entering the control, pressing and releasing a key while the control is in focus,
etc.), and a similar event-handling function can be created for any of these events.
For example, to create a handling function for mouse hovering, we locate this
event in the property/events window for the control and then we double click on
it. VBE will automatically create the event-handling function for that particular
event.

= " .
(78 DEGL - Micrasaft Visual Basic 2010 € E=al=l] F|gure 6,52
File Fdit View Project Drbug Data Teok dew Help -
QS A-d@swaladl=2(9-0-p a2l H|GFR 0B 40 Form1.vb code listing
Formilab® X L
4 foeraral) iGeneral) - [) Dectaratians)) = EE
—PUBIic Class] 5l chaptersveicul

Theearern
e e 4 My o
usabde controls m

| Farmi vh

Private Sib cmdfun Click(Byval sender As System. , Byval e As Systen.

et to add it to
the toalbo

We would like our simple GUI to display in the textbox the number of times
we have clicked on the Run button. We thus need to create a variable called count
to keep track of the number of clicks. This variable should not lose the count value
on repeated clicks of the Run button that would occur if it was declared as a local
variable inside the event-handling function. Thus, the variable has to be either
declared outside of the event-handling function or declared as a szatic variable

204 Chapter 6 Control Software

Figure 6.53

Code added to
cmdRun_Click function

Static count As Integer =0
count = count + 1
TextBox1.Text = count

Figure 6.54

(a) Program at start
and (b) after the Run
button was clicked
several times

inside the event-handling function to retain its value (see material on variable scope
in Appendix A). Choosing the static declaration method, we will add the code shown
in Figure 6.53. Note how the value of the count variable is displayed by setting the
text property of the textbox (accessed by using the dot operator).

Now our simple VBE application is ready to run. We will run the program
from the IDE by selecting Start Debugging from the Debug menu. We will get the
form shown in Figure 6.54(a). After we have clicked on the Run button several
times, the form will look as shown in Figure 6.54(b), where the number 12 in the
textbox is the number of times we had clicked on the Run button.

o Fomm =l 9 Form1 [
Fn Run
12
= =] L
(@) (b)

This example shows that the process of creating a GUI in MATLAB or VBE
is similar, but there are some differences:

* Since VBE was specifically designed for ease of use graphical interface input,
each control in VBE has many more events associated with it than in MATLAB.

* Any user-defined function in the design form in VBE can access any of the
controls on the form. This is not the case in MATLAB unless the handles
variable is made accessible to the user-defined function.

In Section 6.7.2, we developed a VBE GUI and program for the thermostat
control problem that looks and behaves similar to the MATLAB created one.
The interface used a panel window with a number of controls placed on it. To sim-
ulate the operation of the thermostat, we implemented code beyond just handling
the events from clicking on the controls. As discussed in Section 6.7.2, we imple-
mented the state-transition diagram as a software task that is run inside an infinite
loop that is called when the user presses on the Start button. Thus, the thermostat
example shows the integration between the user interface and the software struc-
ture for a discrete event system.

As an added example, we will discuss the design of an interface in VBE for con-
trolling the speed of a DC motor. The purpose is to discuss some of the issues that
arise in using an operator interface. The DC-motor control operator interface will
consist of two control buttons, one to start and one to stop the control action. It
also has three text boxes to display information about the control system: one box
to display the current speed, the second box to display the current control input,
and the third box to display the elapsed time since the control action has started.
The user input consists of the desired speed and the control gains of a PI-controller
(see Chapter 9).

Figure 6.55 shows the form layout for this operator interface. For readability,
the form is divided into three groups using the GroupBox control in VBE, which
displays a frame around a set of controls. These are the User Input, the Monitored
Signals, and the Control Actions. For this program to do any useful action, we need

613 Chapter Summary 205

[58 Cperator Trerface Window [Flgllre 6-55
Corrd ptors Form layout for
Star Stop operator interface
User gt Mordiored Snals
!Deﬁimd Speed (v) | Actual Speed (v} | 151
Kp Cantrol Gaun (v/v) | 15 Conlrol Inpat {v) | 57
|Ki Control Gain (v/v) | 2 Tima (s) ER v

to add additional code including code to either simulate the motor or interface to
a real one. The motor dynamics can be simulated by a simple first-order dynamic
model that is numerically integrated using the Euler method (see Section 10.3.8),
or an actual motor can be used by adding code to interface with the motor/
tachometer system through a D/A and an A/D convertors.

One issue in Windows interfaces is that the user can click on any of the but-
tons or access any of the controls at any point in time. When textboxes are used for
user input, as shown in Figure 6.55, problems could happen when the program
attempts to read the values in the textboxes while the user is changing these values.
These problems occur due to having incorrect or incomplete values in the textboxes
while the user is changing the values. To avoid passing incomplete or wrong
data, one of the several methods can be used:

* The user input is blocked after the control has started. This can be done by
changing the Enabled property of the user input textboxes (or the entire
group) to false. The user, however, cannot change the input while the control
program is running.

¢ Adding an Update command button to the User Input group. The user input
values are updated inside the code only after the user presses on this button.
This assumes that the user has entered correct values in the textboxes before
the Update button was pressed.

¢ Adding an event of clicking on the textbox. The event handler for clicking
the textbox will cause the input values to be updated.

For outputting values to the interface, the data does not need to be updated in
every scan through the code. First, this wastes computational resources. Second,
the human eye will not be able to respond to such a fast update rate. An update rate
of about 5 Hz is sufficient. Furthermore, with the use of real variables, one should
format the output so only a few digits are displayed. This can be accomplished
using the Format function in VBE.

| 6.13 CHAPTER SUMMARY

This chapter addressed timing and control software struc-
tures. It focused on software issues that arise when using a
microcontroller or a PC as the controller in a mechatronics
system. This chapter started by discussing how timers are
implemented using a combination of clock source and a
counter. It then discussed timer issues such as resolution

and overflow. This was followed by a discussion about the
timing functions in MATLAB, VBE, and a PIC microcon-
troller. The chapter then focused on the task/state software
structure for control of mechanical systems, the concept of
task scanning, and state organization. The task/state soft-
ware structure uses a state-transition diagram to represent

206 Chapter 6 Control Software

the task activity and can be used for structuring software for
both discrete-event and feedback control applications.
Discrete-event control refers to the control of a sequence of
events or actions, while feedback control is used for regula-
tion or tracking applications. States are mutually exclusive,
and a task can be in only one state at a given time. Coding
examples for state-transition diagrams in MATLAB, VBE,
and in a PIC microcontroller were presented. This was fol-
lowed by discussing the cooperative and the preemptive
control modes, the two basic control software structures for
handling multitasking control programs. The concept of a
thread and a process was also discussed. Threading brings
the issue of resource sharing among the different tasks and

QUESTIONS

the means available to handle shared resources such as
mutual exclusion and semaphores are discussed in this
chapter. The limitations of common operating systems was
also discussed, and the need for real-time operating systems
(RTOSs) in certain applications was addressed. RTOS
implementation in PIC microcontrollers using the CCS
compiler was discussed. Also, a commercial preemptive
RTOS system (ThreadX) that is widely used in embedded
control applications was discussed in this chapter.
Developing a graphical user interface (GUI) for a control
program was the last topic covered in this chapter. MAT-
LAB and Visual Basic Express approaches for building a
GUI were presented.

6.1 How is a timer implemented in a processor?

6.2 Explain what is meant by timer overflow.

6.3 How can timer overflow be detected?

6.4 Name two timing functions in VBE.

6.5 For what cases the is Performance Counter used?
6.6 List the available timing functions in MATLAB.
6.7 Name the types of control tasks.

6.8 What is a state-transition diagram?

6.9 Why are state-transition diagrams important?

6.10 List conditions that cause transitions between states.

6.11 Name the code sections in a particular state.

6.12 Is performing a ‘For-Loop’ inside a state considered a blocking code?

6.13 List several examples of blocking code.

6.14 What is the difference between cooperative and preemptive control modes?
6.15 Can data-corruption occur when running tasks in cooperative control mode?
6.16 What is the difference between a thread and a process?

6.17 For what purpose is the BackgroundWorker component used in VBE?

6.18 Name several resource-sharing mechanisms.

6.19 What s a ‘race’ condition in multithreaded applications?
6.20 For what purpose are RTOS systems used?
6.21 How is a GUI created in MATLAB?

PROBLEMS

613 Chapter Summary 207

P6.1

P6.2

P6.3

P6.4

P6.5

Pé6.6

Determine the resolution and the maximum
counting interval of a timer that uses a 1 MHz
clock that feeds into a 16-bit counter.

Write pseudocode (syntax is not important) that
allows one to determine the execution time of a
certain function or code segment. Assume you
have access to the function that returns the
current time information.

Describe the type of timer (interval or absolute)
needed and a reason for the following operations.

a. Alarm monitoring system

b. Climate control system

c. Elevator door opening/closing
d. Screen saver program

Monitor the operation of an appliance (such as

a dishwasher or a washing machine) and write a
state-transition diagram for the different states

of operation.

Develop a state-transition diagram for a software
counter. The counter should count up when the
user presses the UP command, and count down
when the user presses the DOWN command. The
counting should stop when the user presses the
STOP command or when the count reaches a
user-specified limit such as +100 or —100. Show
the different states and the conditions that cause
transitions between states.

Develop a state-transition diagram for the opera-
tion of a linear motion positioning table system
that operates as follows. The system is controlled
by three commands: Move Right, Move Left, and
Stop, which cause the system to move right, left,
or stop, respectively. At each end of the travel, a

LABORATORY/ PROGRAMMING EXERCISES

P6.7

P6.8

P6.9

P6.10

limit switch is mounted that should cause the sys-
tem to stop if the table touches the switch. Show
the different states and the conditions that cause
transitions between states.

Develop a state-transition diagram for the opera-
tion of a garage entry system that operates as
follows. The user presses a button to get a ticket
or swipes a card in a card scanner. Once the ticket
is picked up by the user or the card is validated,
the gate arm rotates upward. The gate arm
remains in a raised position until the vehicle has
completely cleared the gate or a waiting interval
has elapsed, at which point the gate drops down.
The system has a proximity sensor to prevent the
gate from striking people and vehicles, and the
gate rotates upward if an object is detected while
moving downward.

Develop a state-transition diagram for the opera-
tion of the four-position rotary indexing table
shown in Figure 6.12 and discussed in Example 6.2.
Assume that the indexing table needs to be first
homed to determine a starting position for the

table.

Develop a state-transition diagram for the opera-
tion of a vending machine. The vending machine
operates as follows. The user enters the required
money and then selects an item to be bought.
The machine dispenses the selected item and
returns change to the user if needed. The
machine displays a message if the selected item is
not available. The user can cancel the transaction
before an item is selected.

A resource needs to be used by three different
tasks with only one task having access to the
resource at a given time. Describe a resource-
sharing mechanism that one can use to control
access to the resource.

L/P6.1 Using the Timer property in VBE, which

overflows every 24 hours, write code to dis-
play the time since the application started
when the user presses a button called
‘GetTimeSinceStart.’

L/P6.2 Write a program that uses the Timer component in

VBE to trigger events at intervals ranging from
one second to 10 hours. Set the Timer compo-
nent interval to 100 ms. Note that such a

program can be used for scheduled monitoring

108

Chapter 6 Control Software

of signals or to perform control actions at a
defined interval.

L/P6.3 Using the Timer object in MATLAB, implement

MATLAB code that displays a message to the
command window every 10 s.

L/P6.4 Using the Performance Counter, write a VBE

program that can capture the open-loop step
speed response of a motor or any other dynamic
system. The user specifies the sampling interval,
the test duration, and the desired step magnitude.
The program applies the step input to the system
at time zero and then records the desired number
of samples at the desired sampling rate. When the
test duration is over, the program writes the data
to a text file. (Note: This problem assumes the
availability of a data-acquisition card with a soft-
ware library for accessing the A/D and D/A.)

L/P6.5 Implement, using MATLAB or VBE, the software

counter discussed in Problem 6.5. The count
value should be displayed to the user in a textbox.
The counting rate is controlled by a timer, and
the user should be able to change the counting
rate while the code is running. Ensure that the
software program that is implemented follows
the design of the state-transition diagram.

L/P6.6 Implement, using any PIC MCU, the software

counter discussed in Problem 6.5. The count
value should be displayed to the user using either
LEDs or through an RS-232 connection to a PC.
The UP, DOWN, and STOP commands should be
implemented through push-button switches that
are connected to the MCU. Use a rotary pot to
vary the counting rate.

L/P6.7 Use MATLAB to implement the state-transition

diagram for the operation of the positioning
system in Problem 6.6. Develop a MATLAB GUI
for the user interface.

L/P6.8 Use MATLAB to implement the state-transition

diagram and a GUI for the thermostat control
problem discussed in Section 6.7.1.

L/P6.9 Use VBE to implement the state-transition

diagram and a GUI for the thermostat control
problem discussed in Section 6.7.2.

L/P6.10 Use the PIC MCU to implement the state-

L/Pé6.11

L/P6.12

transition diagram for the thermostat control
problem discussed in Section 6.7.3.

Using the PIC-C compiler with the RTOS-
provided functions, develop an RTOS program
that implements a feedback control system that
runs every 2 ms.

Download an evaluation copy of ThreadX
RTOS and run the provided example code to
familiarize yourself with the operation of a
commercial RTOS system. In particular, do
the following:

a. Run the project for few minutes and observe
the behavior of the system. In particular,
track the thread counters and explain the
sequence of threads operation.

b. Change the priority and the preemption
threshold of one of the threads in the thread
create statement. Compile the project, and
animate the system. Explain what you
observe in the execution of threads that
interact with the thread whose priority has
been changed. Be specific in your explana-
tion. Repeat this approach for other threads.

c. Change the initial value of one of the sema-
phores from 1 to 2 in tx_semaphore_create(..)
statement in the code. Compile the project,
and animate the system. Explain what you
observe in the execution of threads that
use that semaphore. Be specific in your
explanation.

d. Change the initial value of one of the sema-
phores from 1 to 0 in the tx_semaphore_create(..)
statement in the code. Compile the project,
and animate the system. Explain what you
observe in the execution of threads that
use that semaphore. Be specific in your
explanation.

CHAPTER

Sensors

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:

® |Interpret a sensor performance specification

e Select a specific sensor for a given measurement application

e Explain the different types of displacement, proximity, speed,
temperature, and vibration sensors

® Predict the output of strain gage-based sensors

e Explain the principle of operation of many of the different sensors
covered in this chapter

e Explain the use of filters in signal processing

® Analyze a bridge circuit to process the output of resistance-type
sensors

| 7.1 INTRODUCTION

Sensors are vital components of mechatronic systems, since they provide informa-
tion that allows us to monitor and to control the operation of these systems.
Without the availability of sensory information, automated systems cannot operate.
A sensor is an element that produces an output in response to changes in physical
quantity (such as temperature, force, or displacement). The active element of some
sensors is called a transducer, which is the part of the sensor that converts the phys-
ical quantity (such as the force or displacement into an equivalent electrical signal in
the form of voltage or current). The physical quantity changes a property of the
transducer (such as its resistance, inductance, or magnetic coupling). Through elec-
tronic circuits, these property changes of the transducer are converted into a low-
level voltage or current electrical signals. The terms sensor and transducer are some-
times treated as synonyms, but note that not all sensors produce an electrical signal
as an output. Examples include the mercury bulb thermometer and the spring scale
force sensor. Figure 7.1 shows a block diagram of the process of measurement using
a sensor with a transducer. Normally, the output from the transducer is not in a form
suitable to be read by a display device or meter, and signal conditioning operations
(such as filtering or amplification) are needed to process the output.

There are a variety of sensors available that are commonly used. These include
sensors that measure motion-related information (such as strain, speed, displacement,
and acceleration). Also, sensors are available to measure process parameters (such
as temperature, level, and pressure). This chapter will focus more on sensors that

109

110

Chapter 7 Sensors

Figure 71

Measurement process

Physical Quantity Signal Display or
to be Measured (e.g., Transducer Conditioning Recording
velocity or force) Device Device

measure motion-related information. The next chapter will discuss electric actuators.
Both sensors and actuators are key to implementing feedback control of motion-
control systems. We start this chapter by discussing some of the performance param-
eters of sensors. For further reading on sensors and measurements, see [27-29].

| 7.2 SENsOR PERFORMANCE TERMINOLOGY

There are a number of parameters that characterize sensors’ performance. The
time-independent characteristics are called the static characteristics, while the
time-dependent characteristics are called the dynamic characteristics. The static
characteristics characterize the sensor output after it has settled due to changes in
the physical quantity being measured. The dynamic characteristics describe the
sensor characteristics from the time the physical quantity has changed to the time
before the output has settled.

7.2.1 STATIC CHARACTERISTICS

Range Minimum to maximum value that can be measured is the range. The range
defines the allowable range of the physical quantity that can be detected by the sensor.

Accuracy ‘The difference between true and actual measured value is the accuracy.
It is commonly expressed as a percentage of full-scale value. For example, if a tem-
perature sensor has a range of 0 to 200°C and an accuracy of +/—0.5% full-scale
value, then the temperature read by the sensor is off from the true actual tempera-
ture by +/—1°. Note that the accuracy error can be improved by calibration.

Sensitivity The relationship between the measured input and the output of the
sensor is its sensitivity. If the sensor has a linear input-output relationship, then the
sensitivity is the slope of this curve. Sometimes, this parameter is used to indicate
the sensitivity of the sensor to non-measured input (response due to transverse
motion when the sensor is designed to measure axial motion) or the environment
(temperature).

Resolution The smallest change in input value that will produce an observable
change in the output is the resolution. The inherent resolution should be distin-
guished from the display device resolution.

Hysteresis The maximum difference in sensor output for the same input quan-
tity is the hysteresis, with one measurement taken while the input was increasing
from zero and the other by decreasing the input from the maximum input. A sen-
sor with hysteresis will have a different output value that is a function of whether
the input quantity was increasing or decreasing when the measurement was made.
The hysteresis error is illustrated in Figure 7.2.

Repeatability Error in output value for repeated application of the same input
value is called repeatability or precision. The smaller the repeatability error, the
higher the measurement precision would be. Repeatability is affected by signal

72 Sensor Performance Terminology m

Output

Hysteresis Error

Input

interference, vibration, and temperature fluctuation. Repeatability error cannot be
reduced by calibration.

Non-Linearity Error Most sensors are designed to have a linear output, but
their output is not perfectly linear. The non-linearity error is a measure of the max-
imum difference between the sensor actual output and a straight line fit to the sen-
sor input-output data and is usually specified as a percentage of the full-scale out-
put. There is no unique way to obtain the straight line fit. The straight line can
connect the minimum and maximum output values that define the sensor range, or
it can be obtained from a least-square fit to the entire input—output data or from a
least-square fit to the input-output data with one end of the line passing through
the origin. Figure 7.3 illustrates these cases and shows that the magnitude of this
error is dependent on how this error is defined.

Output Output 4 Output

Error
Error Error

Input Input Input

(a) (®) (©

Stability Stability or drift refers to the variation of the output with time when the
input quantity is not changing. When no input is applied to the sensor, the output
variation is called the zero drift. Stability affects the repeatability of the measurement.

7.2.2 DYNAMIC CHARACTERISTICS

Rise Time The time it takes the output to change a certain percentage is the rise
time. A common measure is the time for the output to change from 10 to 90% of
the final steady-state value.

Time Constant This is defined as the time it takes the output to reach 63.2%
of the final output. A large time constant implies a sluggish sensor, while one with
a small value indicates a rapidly responding sensor. If the sensor has a first-order
response characteristics, then it takes about four time constants to reach the final
value when subjected to a step input.

Settling Time 'The time it takes the output to reach within certain percentage
of the final steady-state value is the settling time. A common value is the 2%

S

Figure 7.2

Illustration of hysteresis
error

(a) Minimum to
maximum fit

(b) Least-square fit
through data

(c) Least-square fit with
one end through
the origin

Figure 7.3

lllustration of non-
linearity error

m

Chapter 7 Sensors

Figure 74

Illustration of basic
dynamic response
characteristics

Table 7.1

An example of the
specifications for a
load cell sensor

Output Rise

100% H[~——-= et Sy &
90%
/ 2%
63.2% |- -

10% —f--|-

Time — ~— Time
Constant

Settling Time

settling time. The rise time, time constant, and settling time are illustrated in
Figure 7.4 for a sensor with first-order response characteristics.

Bandwidth The bandwidth defines the frequency range for which the sensor is
designed to operate. At the bandwidth frequency, the sensor output will be 70.7%
of the DC level. The sensor can operate at frequencies higher than the bandwidth,
but the output of the sensor will be significantly diminished. When a sensor is used
to provide feedback information in a closed loop control system, the sensor band-
width should be larger than the controller bandwidth.

Values for each of these sensor performance characteristics are found in the
manufacturer data sheet for the particular sensor. Normally, the specification in the
data sheet is grouped into categories, including dynamic or performance, electrical,
mechanical, environmental, and physical. An example of some of the characteristics
for a compression load cell is shown in Table 7.1, including a description of each
specification.

Item Value Explanation

Rated Capacity 10 Ibs The maximum weight that the cell is rated to handle

Excitation 10 VDC The cell requires a 10-V DC power supply to operate

Rated Qutput 2 mV/V nominal The nominal cell output at the maximum load (10 Ibs)
will be 20 mV (2 mV/V X 10V)

Linearity +/—0.25% FS With a 5-Ib load applied, the cell output will indicate
aload of 5 Ibs +/—0.025 Ib

Hysteresis +/—0.15% FS Due to hysteresis, the cell output can be vary by
+/-0.0151b

Maximum Load 150% of rated The allowable increase in the rated capacity. For

(Safe Overload) capacity this load cell, the maximum load should not

exceed 15 Ibs

Bridge Resistance 350 Q) The resistance of the strain gage inside the load cell

| 7.3 DiSPLACEMENT MEASUREMENT

Displacement sensors are ones that provide information about the change in
the position of a rigid body. The sensors can be classified as those that provide
analog output (such as potentiometers and resolvers) and those that provide

73 Displacement Measurement

digital output (such as encoders). Displacement sensors also can be classified as
contact or non-contact, depending on whether the sensor contacts the object
during measurement. Contact-type displacement sensors include strain gages
and potentiometers, while non-contact displacement sensors include encoders
and capacitive-type displacement sensors. This section will discuss different types
of displacement sensors.

7.3.1 POTENTIOMETERS

A potentiometer is a contact-type sensor that provides displacement information
by measuring the voltage drop across a resistor. Potentiometers can be of the
linear or rotary type. A linear potentiometer is designed to measure linear
displacement. The sensor has a linear slider that is attached to the object whose
displacement needs to be measured (see Figure 7.5). The displacement of the slider
changes the electrical resistance between nodes # and 4, which then can be used
as a measure of displacement. In normal operation, a DC voltage is applied
between nodes # and ¢, and the voltage output between nodes # and b is used as a
measure of displacement. If node # is connected to the ground, then the # node
voltage will increase as the slider travels from # to ¢. The # node is commonly
called the wiper.

A rotary-type potentiometer (see Figure 7.6) is designed to measure angu-
lar displacement. The sensor has a rotary knob that is coupled to the shaft of the
object whose angular displacement needs to be measured. Similar to a linear
potentiometer, the rotation of the knob changes the electrical resistance
between the leads of two nodes on the potentiometer. Rotary potentiometers are
available as single-turn or multi-turn devices. Multi-turn devices can measure
several shaft revolutions, while single-turn devices are designed to measure a
rotation of up to one revolution. Note that some single-turn devices cannot
measure a complete revolution due to the construction of the potentiometer
with a dead zone, which prevents the wiper on the potentiometer from making
a complete turn. The contact element in a potentiometer is constructed either
from a wound wire or from conductive plastic. Wire-wound elements provide
better stability and linearity than conductive plastic, but conductive plastic
offers better resolution and longer life. The use of a wound wire results in a step
change in the output voltage (and hence a coarser resolution than conductive
plastic) as the slider moves from one turn in the coil to the next turn.
Potentiometers have the advantage that they are easy to use, but because they
are contact-type devices, they have a frictional resistance, which affects the

Figure 7.5

Model of a linear
potentiometer

N Wy

b

Figure 7.6

A commercial rotary
potentiometer
(© Wayne Higgins/Alamy)

m

n4 Chapter 7 Sensors

Figure 7.7

Model of a potentio-
meter interfaced with a
measuring device with
load resistance (R;)

a —x)RP

viga
i

(™)

< = >

Figure 7.8
A plot of Equation (7.1)

motion of the measured object. Because potentiometers provide an analog volt-
age as their output, they also need to be interfaced with an A/D converter before
the signal is read by a PC or a microcontroller.

The resistance of a potentiometer is important. A high resistance results in
a smaller current and hence less heat loss through the potentiometer while it is
in operation, but it also worsens the loading error, since in practice, the output
voltage of the potentiometer is read by a device that does not have infinite
impedance (see Section 2.6). Loading introduces nonlinearities into the poten-
tiometer output. To see this, refer to Figure 7.7, and assume that the poten-
tiometer has a resistance Rp, the measuring device has a resistance Ry, and the
supply voltage is V. Then the voltage output at any position ¥ (0 < x = 1) is
given by the relationship

XVS
+ x(1 — X) fe

This relationship is obtained by using the voltage dividing rule to compute the
output voltage (V) and noting that the load resistor (R;) and the potentiometer
resistor (x Rp) are two resistors in parallel. Note that if the load resistance (Ry) is
infinite, then Rp/R;, is zero, and Equation (7.1) reduces to Vy = x Vg, where the
output voltage is directly proportional to the slider position x. If Ry, is not infinite,
then the output voltage varies nonlinearly with the slider position x. The nonlin-
earity worsens as the ratio of Rp/R; increases.

Figure 7.8 shows a plot of Equation (7.1) for three values of the ratio Rp/R;;
one for Rp/R; = 0, another for Rp/R; = 0.1, and the third for Rp/R; = 1.0. Note
how the output voltage varies nonlinearly with x, especially for Rp/R; = 1. To
eliminate this problem, one should select a potentiometer with as small a resistance
as possible. Example 7.1 illustrates computations for a potentiometer.

Example 7.1 Potentiometer

A single-turn rotary potentiometer with a 330° measurement range is used to pro-
vide angular-position feedback information for a positioning application. A 5-V
DC voltage is applied across the potentiometer leads, and the potentiometer out-
put is connected to a 12-bit A/D convertor with a +/—5 V range. The potentiome-
ter resistance is 50). Determine:

a. The effective resolution of this sensor
b. The power loss by the potentiometer, assuming a half-motion displacement

73 Displacement Measurement

Solution:

a. Assuming that the potentiometer uses a film as the resistance element, then
the resolution is determined by the A/D resolution. The 330° motion range
is mapped into the 5-V output, and the A/D total voltage range of 10 V is
mapped into 2'2 positions. Thus, the angular resolution is

1/4096 X 10/5 X 330° = 0.161°

b. If the load impedance is considered to be infinite, then all of the current is
passed through the potentiometer. In this case, the current is

5V/50 Q = 0.1 A
and the power loss is i°R or 0.5 W.

If the load impedance is not infinite, then some of the current will pass
through the load, and the power dissipated by the potentiometer will be
smaller than computed above.

1.3.2 LVDT

The linear variable differential transformer (LVDT) is a device for measuring
mechanical displacement. The device has a simple construction and consists of a
moveable iron core surrounded by three transformer coils (see Figure 7.9). An exter-
nal AC voltage is applied to the center (primary) coil, and the output signal is
obtained from the two end (secondary) coils which are connected in opposite phase.
The excitation frequency is typically several kHz, but it could range from 100 Hz to
20 kHz. Similar to a regular transformer, the voltage in the secondary coil is propor-
tional to the number of turns in the secondary coil that are coupled to the turns in the
primary coil. The position of the core affects the coupling between the center and the
two end coils, and thus, the AC output signal is proportional to the displacement of
the core relative the windings. The AC output signal, which has the same frequency
as the excitation frequency, is processed to produce a DC output signal proportional
to the displacement that can be read by an A/D convertor or connected to a display
device. Processing the AC signal includes rectification to produce a DC signal, filter-
ing to remove high-frequency signals, and amplification to produce a suitable voltage
output level. A low-pass filter with a cut-off frequency about 10% of the excitation
frequency is used. The filter passes the components associated with the low-frequency
mechanical motion but filters the high-frequency excitation signal.

Output Voltage

T q
Secondary
/ Winding
Displacement
— JJJJ LLLL S = heveane
AN Iron Core

Primary
Input Voltage Winding
-— |

To reduce noise sensitivity, the voltage-output signals from the two secondary
coils (4 and B) are computed using a ratiometric formula where the difference
between the voltage signals is divided by the sum of the two signals as

Va— Vs

Vy= — 2=
L VANENVA

Figure 7.9

LVDT construction

(12)

105

26

Chapter 7 Sensors

Figure 7.10

Output from a single

light/sensor combination

An LVDT has the advantage that it can be constructed to measure displace-
ment ranging from a few centimeters to a few inches with almost infinite resolu-
tion. There is also no damage from overloading, as overloading simply separates
the core from the device, and it is relatively insensitive to temperature changes.
However, being a contact displacement sensor, the LVDT has a limited frequency
response. Also, signal conditioning is required to process the output signal. LVD'Ts
are available as DC or AC power operated. The DC configuration offers ease of
installation and the ability to use battery power in measurement situations where
AC power is not available, while the AC version results in a smaller body size and
more accurate signal.

7.3.3 INCREMENTAL ENCODER

Encoders are non-contact, optical-based digital devices that are used for measuring
displacement. Similar to potentiometers, they can be used to measure both linear
and rotary displacement. We will concentrate on rotary-type encoders, which are
widely used in motion-control applications. Rotary encoders are available as incre-
mental or absolute type. An incremental encoder measures changes in rotation
from some datum position, while an absolute encoder measures the actual angu-
lar position. When an incremental encoder is used, the motion system needs to be
‘homed’ to establish reference information.

In its basic form, an incremental encoder is constructed from two light sources
that shine light through a disk that has an alternating pattern of black and clear
stripes. The light is sensed by two photodetector sensors that are located on the
other side of the disk. To understand the operation of an incremental encoder, let
us assume first that we have only one light source and one sensor. When the disk
rotates, the light signal (as measured by the photo detector sensor) looks like that
shown in Figure 7.10. The output of the sensor will be a train of pulses with each
pulse corresponding to the light pattern that is captured by the optical sensor while
one strip on the disk passes through the light sensor zone. To get angular displace-
ment information, we simply count the number of pulses generated as the disk
rotates from one position to another. Unfortunately, this simple scheme cannot
provide us with direction information.

"To get direction information, incremental encoders have another light source
and sensor (called channel B). The channel B sensor is located one-half slot-width
apart from the first sensor and photodetector (channel A). There are two ways to
implement this offset in practice.

1. There is only one track of lines: one light source-sensor combination is located
to line up with the edge of one of the slots, while the other light source-
sensor combination is located to have an offset of one half-slot with respect
to the edge of one of the slots.

2. Two concentric tracks of lines are used: the slots in one track have an offset
of one-half slot with respect to the slots in the other track, but the sensors
have no offset between them.

The pattern of the two sensor signals generated for clockwise (CW) and coun-
terclockwise (CCW) rotations of a disk under constant angular speed are shown in

73 Displacement Measurement

CW Rotation
Al | | | L AB
0 00
01
g B R
0 10
0:0:1:1.0 00

0/ 1:1:0:0
CCW Rotation

|_ AB
1

1
ol L] 0
1:1:0:0 ?
0110

S
S -

=]

SO == O

1
0

Figure 7.11. Notice how the B signal leads the channel A signal by a quarter of a
cycle for CW rotation, and how it lags behind the channel A4 signal by the same
amount for CCW rotation. The cycle that we are referring to is the chord distance
made up of one black strip and one clear strip. This lead/lag between the two chan-
nel outputs enables one to determine the direction of the rotation of the shaft that
is attached to the encoder disk.

To understand this further, examine the A4 and B channel signal patterns for
CW and CCW rotations that are shown in Figure 7.11. Notice that the output
switches between one of four possible states for either rotation direction, and the
order of these states is different for each direction. For example, if the photodetec-
tor sensors output is 00, then the next state will be 10 for CCW rotation and 01 for
CW rotation. The different transitions for CW and CCW rotations enable one to
write state-transition logic to determine the direction of rotation. Figure 7.12
shows an example of a state-transition diagram (see Section 6.4) that can do this
job. Notice that, regardless of what state the output of the two sensors starts at, the
diagram can determine the direction of rotation by examining the transitions from
any one of the four possible states.

ccw
| asB AB |_
00 . 10
cew cw cw cew
| | aB oW AB |
01 11
cew

As noted before with the use of two sensors, we get four distinct states for each
strip on the disk. Thus, if an encoder has 1000 strips (or lines), we will get 4000 dis-
tinct states per one revolution of the encoder disk. Thus, the use of two sensors
improves the resolution of the encoder by a factor of 4, since we can count 4000
leading and trailing edges per one revolution compared to counting 1000 pulses
per revolution for a single sensor. An encoder that gives four times the number of

Figure 7.11

Output of an
incremental encoder

Figure 7.12

State-transition
diagram for an
incremental encoder

7

it}

Chapter 7 Sensors

lines is operating in quadrature mode. In practice, the number of counts per
second can get very large. For example, if the 1000-line encoder was rotating at
1000 rpm, then we will get 66.6e3 counts per second if the encoder was operating
in quadrature mode. Most PC’s or microcontrollers cannot keep up with counting
at this rate if the output from the 4 and B channels is directly connected to the dig-
ital input port of the PC/microcontroller. In practice, hardware counters are used
to process the 4 and B signals instead of using a software counting solution. These
dedicated counters implement logic very similar to the method shown in
Figure 7.12. The counter value is incremented by 1 on each state transition if the
motion happens to be in one direction and is decremented by 1 for a motion in the
opposite direction. To get the current position information, the PC or the micro-
controller simply reads the output of the hardware counter. Thus, the processor
does not have to worry about accuracy problems resulting from failing to count a
particular transition. Example 7.2 illustrates the application of encoders.

Example 7.2 Incremental Encoder

A DC motor equipped with an incremental optical encoder is used to drive a lead-
screw positioning table, as shown in Figure 7.13. The screw has a lead of
0.1 in./rev., the encoder disk has 1000 lines, and the encoder is operated in quad-
rature mode. Determine the measurement resolution of this encoder for the
following.

a. The setup shown Figure 7.13.
b. The motor replaced with a geared one with a 5:1 gear ratio.

Encoder
/ P
| ——]
Lead Screw
Motor
Figure 7.3

Solution:

a. The table travels a distance of 0.1 in. or 2.54 mm per one revolution of the
motor. During this interval, the encoder will output 4000 counts (1000 X 4).
Thus, the measurement resolution of this encoder setup is

2.54 mm/4000 counts = 0.635 um per count

b. The encoder is mounted on the input side of the motor. Thus, if the motor
rotates one revolution, the lead screw will rotate 0.2 revolution due to the
use of a 5:1 gear on the output shaft of the motor. Hence, the encoder will
generate 4000 counts for 0.508 mm (0.1 in. X 0.2) travel of the table, and
the measurement resolution in this case is

0.508 mm/4000 counts = 0.127 um per count

Note that while the measurement resolution is high, the part (b) configuration is
not normally used for high-precision applications due to backlash in the gears and
lead screw. A linear encoder mounted directly on the table is used instead.

Figure 7.14 shows an example of a commercial counter IC. The LS7166 1C
is a 24-bit counter that can count in different modes, including up/down and quad-
rature. From Example 7.2 using 1000 rpm rotation speed and a 1000-line encoder
operating in quadrature mode, this counter can count an interval exceeding 250 s
before overflow. The incremental encoder 4 and B lines are connected to the 4 and

73 Displacement Measurement 119

20-PIN
DIP and SOIC

WR] 1 ru 201 Vg (V)
csge2 2 191 RD
LCTR/LLTC] 3 181 ¢/D
ABGT/RCIR [4 — 170 BW
Voo (+V) O35 4 161 CY
ALl 6 § 151 D7
BO7 14 [0 D6
DO] 8 13 [D5
D19 12 [0 D4
D2 [] 10 11 [J D3

B pins on this IC. This counter uses an 8-bit (pins DO through D7) three-state I/O
bus to communicate with external circuits. An 8-bit bus is used instead of a 24-bit
to reduce the number of wires needed but also to be compatible with most micro-
controllers/external devices, which have a limited number of I/O lines. An external
device can read the counter value by simply sending a preset control value over the
I/0 bus. This causes the 24-bit counter value to be transferred to the output port
of the counter or the output latch. The three byte contents of the output latch are
then transferred by performing three successive read operations of the output latch
where (after each byte is read) the address pointer for the next byte is automatically
incremented.

While incremental encoders do not have the limitations of potentiometers in
terms of limited motion range and friction due to contact, they need to be ‘homed’
before they can be used in a motion-control application. In homing, the motor is
rotated in one direction until a reference signal changes state. The output of the
counter is recorded at this location, and displacements are measured with respect
to this reference counter or home position. Most commercial incremental encoders
have a third output called the marker or z-channel that is used in the homing
sequence. A limitation of incremental encoders is that homing may not be safe to
perform at all times. An example would be a robot arm that uses incremental
encoders and is used for operations inside a vehicle frame or in regions with obsta-
cles. If the robot happens to lose power while it is inside the vehicle, the robot will
lose its current position information after the power is turned back on. In this case,
the robot should not be homed automatically because of the possibility of the robot
hitting the vehicle or one of the obstacles. It would be better in this case to use a
position sensor that does not need to be homed. Such sensors are called absolute
encoders and are discussed in the following section.

7.3.4 ABsoLUTE ENCODER

An absolute encoder is one which has different track information for different
angular positions of the encoder disk. Figure 7.15 shows a layout of a commercial
absolute encoder disk. There is no need for homing with an absolute encoder, since
each angular position of the disk has a unique output.

Absolute encoders are available with two different types of output: natural
binary and gray code. In natural binary, the output of the encoder as the disk
rotates changes in the normal way that binary numbers increase (i.e., 00, 01, 10,
11,...). In gray code, the output only changes one bit at time as the disk rotates
(i.e., 00,01, 11, .. .). This makes gray code useful to reduce errors when reading the
encoder if all the bits have not changed at the same time. Figure 7.16 shows the
disk pattern (shown as linear for ease of display) and the corresponding output of
the encoder for a 3-bit natural binary and gray code absolute encoders. Table 7.2

Figure 7.14

Commercial counter IC

(Courtesy of LSI Computer
Systems, Melville, NY)

Figure 7.15

8-bit commercial
absolute encoder disk

(Courtesy of BEI Sensors,
Goleta, CA)

00 Chapter 7 Sensors

Figure 716

Disk pattern and
output from each track
of an absolute encoder

Table 7.2

Encoder output for
natural binary and
gray code

Natural Binary Gray Code
Bit O
Bit 1
Bit 2
. 1
Bit 0
0 I
X 1
Bit 1
0
1
Bit 2 0
Encoder Output
Angular Segment
Position (degrees) Natural Binary Gray Code
1 0-45 000 000
2 45-90 001 001
3 90-135 010 011
4 135-180 01 010
5 180-225 100 110
6 225-270 101 1M1
7 270-315 110 101
8 315-360 111 100

gives the binary output patterns for both types of encoders for the eight different
positions of the encoder disk.

Notice that this 3-bit absolute encoder (which has three tracks) can measure
eight distinct absolute positions, each 45 degree in size (i.e., 045, 45-90, . . . etc).
Commercial absolute encoders have typically 10-bit (or 10 tracks) or higher reso-
lution, which give them an angular resolution of 360/1024 degrees or less. With the
use of a geared motor, the resolution of the angular measurement of the output
shaft increases by the gear ratio factor.

To use an absolute encoder for multi-revolution measurement, multiple
disks need to be used. A high-resolution disk is used for the detailed position infor-
mation and one or more disks are used for counting turns. For example, to use an
absolute encoder having a measurement range of 16 revolutions, two disks are used.
The second disk will have four tracks (to indicate 16 different turns) and should be
coupled to the high-resolution disk through a 16:1 gear ratio. If the primary disk
has a 10-bit resolution, then this two-disk encoder will measure 16 X 1024 or
16384 discrete positions.

Commercial absolute encoders are available with different types of output.
These include parallel digital output, which uses a single line for each bit. For a
multi-turn encoder with a 14-bit disk, this results in an interface cable that has over
30 wires, which increases the cost of the encoder. A smaller sized cable (and hence
lower cost) is obtained if an encoder with SPI output is used. The SPI interface (see
Chapter 5) uses only three wires for transmitting the data. Other output formats
include DeviceNet™, Profibus, and Interbus.

74 Proximity Measurement

7.3.5 RESOLVER

A resolver is an absolute angular-displacement measuring device, similar to an
absolute encoder, but giving analog voltages as an output. Resolvers were originally
developed for military applications, and they normally are used in rugged, harsh
environments where encoders may not be suitable.

There are different types of resolvers. The most common is the rotary brush-
less resolver control transmitter. A schematic of the construction of such a
resolver is shown in Figure 7.17. It has two parts: a rotor and a stator. The rotor has
a winding, called the reference winding, which gets energized by an AC voltage
signal in a non-contact fashion using a rotary transformer. The stator has two
windings, called the SIN and COS winding, which are offset from each other by 90°.
The rotation of the rotor induces voltages in the SIN and COS windings. These
voltages are a function of the angular position of the rotary shaft. The revolver gives
two analog output signals: one from the SIN winding and the other from the COS
winding. The ratio of the SIN and the COS outputs is the tangent of the shaft angle.

Ve=Vrcost
COS Winding
d
Reference Winding
Fa
o SIN Winding
vr L>
——o0

© 0 Vg=Vrsin0

o0

Rotary Transformer

Similar to absolute encoders, resolvers are available in single- or multi-turn
configuration. The multi-turn configuration actually uses two resolvers that oper-
ate similar to a vernier.

| 7.4 PROXIMITY MEASUREMENT

A proximity sensor measures the presence or absence of an object. Proximity sen-
sors are widely used in products in various industries, including automotive, appli-
ance, and manufacturing. Examples include sensors to detect seat-belt on/off status
in vehicles, door and lid open/close detection in appliances, obstacle presence in
closing powered doors, rotor angle position in brushless DC-motors, and end-of-
travel detection in pneumatic actuators. There are several types of proximity sen-
sors, including Hall-effect, inductive, capacitive, photoelectric, ultrasonic, and
switch-type contact. Some of these sensor types will be discussed here.

7.4.1 HALL-EFFECT SENSORS

A Hall-effect sensor is a non-contact type sensor that is based on the Hall effect,
which was discovered by Hall in 1877. The Hall effect states that a voltage
difference is developed in a current-carrying conductor when subjected to a mag-
netic field. This voltage is perpendicular to both the current and the magnetic field.

Figure 7.17

Schematic of rotary
brushless resolver
control transmitter

m

m Chapter 7 Sensors

Figure 718

Illustration of the Hall
effect (a) Current in a
conductor with no
magnetic field applied
and (b) current in a
conductor with a
magnetic field
perpendicular to the
current flow

(13)

Figure 719

Hall-effect proximity
sensor

Figure 7.20

Hall-effect proximity
switch wiring

(@) (b)

The Hall effect is illustrated in Figure 7.18. Figure 7.18(a) shows a thin conduct-
ing plate in which a current is flowing. The voltage difference across the sides of
the plate will be zero in this case. If, however, we apply a magnetic field to the plate
perpendicular to the direction of current flow, as shown in Figure 7.18(b), then the
current distribution will be affected, and a voltage difference will be developed at
the plate sides. The voltage is given by Lorentz’s law and is equal to
Vy= 1 X B

where I is the current vector and B is the magnetic flux vector.

Note that the voltage difference is perpendicular to both the current flow and
the magnetic flux direction. The amount of voltage that is generated is typically small
(microvolt, uV) and a differential amplifier is used to amplify this voltage signal.

Hall-effect sensors are solid-state sensors that are constructed using semicon-
ductor processing techniques. A Hall-effect proximity sensor consists of two pieces:
a stationary sensor package and a magnet that is attached to the object whose pres-
ence needs to be detected, as seen in Figure 7.19. The magnet and the sensor pack-
age are separated by an air gap. There are two variations of Hall-effect sensors:
unipolar and bipolar. In the unipolar design, when a south pole magnet approach-
es the designated package surface within a specified distance, the sensor turns ON.
When the magnet is removed, the sensor turns OFF. In the bipolar design,
removal of the south pole does not cause the sensor to turn OFF; a north pole
needs to approach the sensor to cause the sensor to switch OFF. A typical circuit
for a Hall-effect digital proximity switch is shown in Figure 7.20.

Magnet J

\%
N S Sensor [o

Air Gap *>| F 1 GND

Regulator | o Ve

Hall Sensor
oul
. — 0

o GND

74 Proximity Measurement m

In this circuit, the supply voltage is connected to the Hall sensor through a
voltage regulator. The Hall-effect voltage is processed through a differential op-
amp (see Section 2.9.4) to amplify the voltage generated by the Hall-effect sensor.
The output of the differential op-amp is connected to a Schmitt trigger. The
Schmitt trigger (see Section 2.9.3) compares the output voltage form the differen-
tial op-amp to a preset voltage level. If the output voltage exceeds the preset
voltage, the switch output will be set high. When the differential op-amp output
falls below a threshold level, the switch output will be set low. The hysteresis
of the Schmitt trigger is used to reduce the sensitivity of the sensor to noise and
false triggering. The Schmitt trigger output can also be connected to a switching
transistor.

An example of a commercially available Hall-effect sensor is shown in
Figure 7.21.

7.4.2 INDUCTIVE PROXIMITY SENSORS

Inductive proximity sensors utilize the eddy current generated when a metallic ele-
ment is placed within the proximity of an electromagnetic coil. The principle of
operation of the sensor is shown in Figure 7.22. The sensor has an oscillator circuit
that creates a magnetic field in front of the sensor through the coil inductance.
When a metal target enters this magnetic field, it changes the magnetic field in the
oscillator. This causes a swirling current, called eddy current, to be generated in
the coil. The change in current in the coil is detected by a circuit that is connected
to a switching amplifier. The oscillator, the current-detection, and the switching-
amplifier circuits are all normally housed within the resin of the sensor.

Magnetic Field

Metal Oscillator Current Switching
Target Detection Amplifier

Inductive Proximity Sensor

Figure 7.23(a) shows commercially available inductive proximity sensors.
While most inductive sensors are cylindrical in shape, rectangular-shaped sensors
are also available. Cylindrical-shaped sensors are available with threaded or flat sur-
faces. Some units have an LED built into the sensor head to provide indication of
object detecton. The sensor electronics can be built into the sensor head or located
separately from the head. Unlike Hall-effect sensors in which the target material is
magnetic, inductive proximity sensors detect all metal objects at distances ranging
from 1 to 30 mm. The larger the size of the sensor, the longer the detection range
is. Standard inductive proximity sensors have a reduced detection range for nonfer-
rous metals (such as copper, aluminum, and brass) than for ferrous metals (such as
steel and iron, see Figure 7.23(b)). For non-metal objects, capacitive-type sensors
can be used instead.

Inductive proximity switches, as all switches, are available in either NO or NC
switch configuration. Furthermore, wiring to these sensors is available in either two-
or three-wire configuration. In the three-wire configuration, the output is available

Figure 7.21

Commercially available
Hall Effect sensor

(Courtesy of OPTEK
Technology, Carrollton, TX)

Figure 7.22

Inductive proximity
sensor

04 Chapter 7 Sensors

_::' / » _|d; -

\ " g / _ T : _)li 77777777777777777777777777 Iron |
T : =
\ b ﬁ v / é 15 o EE% 777777777777777777777777777777777777
\ S ;‘i% / é AT~ - tainless steel (SUS304)
K Q N ——————
& ':‘ : g 10---f- o
‘-J./ﬁ 4 “ = g_,: g L Brass
’-4/‘F/ S| Aluminunr -~
) / 0 ! I I I
o / 0 20 40 60 80 100
;:-”' Side Length of Sensing Object: d (mm)
b
@) (b)

Figure 7.3

with either NPN or PNP transistor configuration. Example 7.3 illustrates the wiring
(a) Commercially circuit for a two-wire NO inductive proximity sensor used as a switch in relay circuit.
available inductive Inductive proximity sensors are also used to detect vehicle presence at intelli-
proximity sensors and gent traffic lights. These traffic lights are commonly used in rural or country
(b) detection range for roads where the traffic volume is variable. The sensor takes the form of a wire loop
a typical sensor for that is placed in groove that is cut in the asphalt surface. When a vehicle passes over
different metals the Joop, the inductance of the loop is affected by the presence of the metallic body
(c°“”eé‘ér%fo%”t"i;%r; of the car. The electronics sense the vehicle presence and use this information to
adjust the traffic light timing.

Example 7.3 Two-Wire Inductive Proximity Sensor

Draw a wiring circuit for a two-wire NO inductive proximity sensor used as a
switch in a relay circuit. The output circuit of the sensor is shown on the left side
of Figure 7.24.

Solution:

The circuit is shown below. The supply voltage (typically 24 VDC) is connected to
one end of the relay coil, with the relay coil acting as the load resistor on the sen-
sor output circuit. The other end of the relay coil is connected to the load input
on the sensor circuit. The other wire of the sensor circuit is connected to ground.
Since this is a NO sensor switch, the relay coil will not energize unless an object
came within the detection range of the sensor. The detection of an object will thus
cause the relay switch to close and to transmit power to the load connected to the
relay.

Proximity Switch VSUDPIY_I Relay
|

|

|

I

| | Sensor

: Circuit Z
|

|

| .

[S

|

|

%Coi] :
= = }

-
|
|
|
|
|

Figure 7.24

74 Proximity Measurement 125

7.4.3 ULTRASONIC SENSORS

Ultrasonic proximity sensors detect the presence of objects by measuring the
travel time of a high-frequency sound wave that is reflected off an object in the
path of the transmitted signal. The sensor has a transducer that periodically
emits a burst of sound at high frequency (200 kHz or higher) for a short time
interval. After the transmission of the burst signal, the sensor switches to receiv-
ing mode and records the time when the echo signal was received by the sensor.
This process is repeated continuously. Since the speed of sound is known in the
transmission medium such as air, the time between the transmission of the
source signal and the arrival of the reflected signal is then used to infer the posi-
tion of the object.

Ultrasonic sensors have a much larger detection distance than inductive
proximity sensors (m versus mm), but they cannot be used to measure the pres-
ence of very close-by objects (few centimeters away). This is because the echo of
the leading burst signal for such nearby objects could be received while the trail-
ing edge of the burst signal has not left the sensor, since the sensor is not set to
monitor for echoed signals while it is still transmitting. The size of the object
detected by these sensors is dependent on the frequency of the sound signal, with
small objects needing a lower maximum frequency than larger objects. Ultrasonic
proximity sensors are available with an analog output voltage that is a function of
the distance of the object away from the sensor or with two states of digital out-
put that indicate object presence/absence within a defined zone. They are typi-
cally used for liquid level measurement and for object detection on production
lines. One feature of ultrasonic sensors is that they are not affected by the color,
transparency, or lighting conditions of the object being detected. However, they
are not very suitable to use for detecting material that absorb high-frequency
sound, such as cotton or sponge.

7.4.4 CoNTACT-TYPE PROXIMITY SENSORS

Contact mechanical switches known as ‘limit switches’ are used in robotic and
machine tool applications to detect the end of travel for a moving axis. They are
also used in conveyer systems and transfer machines to detect objects and packages
as well as in elevators, scissor lifts, and safety guarding applications. These sensors
are available with different ‘operator’ types that provide the interface between the
contact object and the switch mechanism. These types include a roller plunger, a
dome plunger, a roller lever, a telescoping arm, and a short lever. Figure 7.25 illus-
trates a few of these operator types. These sensors are rugged and can be used in
harsh situations.

e

Roller Plunger Dome Plunger Roller Lever

Figure 7.25

Operator types for limit
switches

06 Chapter 7 Sensors

Figure 7.26

A tachometer

(Jouaneh, University of
Rhode Island)

Figure 7.27

RC filter on tachometer
leads

Figure 7.18

Output speed of DC
motor tachometer
with and without
an RC filter

| 7.5 SPEED MEASUREMENT

1.5.1 TACHOMETER

While speed information can be obtained by differentiating the position data, this
approach is not very desirable as it amplifies the noise if the position signal is noisy. A
better method is to use a sensor that can directly provide the speed information. A
tachometer (see Figure 7.26) is a speed-measuring device that provides an analog out-
put voltage that is proportional to the speed. A tachometer is constructed similar to a
brush DC motor (see next chapter), but it is designed to operate in reverse. When the
tachometer shaft rotates, the tachometer gives a DC output voltage. A characteristic
of a tachometer is its sensitivity, which refers to the output voltage of the tachometer
for a given speed. It is normally reported as a number of volts per 1000 rpm but other
speed units can be used. Another characteristic of a tachometer is its ripple. Ripple
refers to the AC component of the output signal. Due to the use of a commutator in
the construction of the tachometer, the output signal of the tachometer exhibits fluc-
tuation which can be as high as 3 to 4% of the nominal output voltage.

"The ripple affects the operation of a closed loop speed control system since the
control system responds to variation in the tachometer output voltage regardless of
whether the variation is caused by a speed change in the motor or is due to ripple
effect. One way to eliminate ripple is to place a low-pass filter constructed using an
RC circuit on the output leads of the tachometer (see Figure 7.27). The R and C
values should be chosen such that the cut-off frequency of the RC filter is below
the ripple frequency. However, the use of an RC filter changes the dynamics of the
feedback system.

Interfacing Leads

Tachometer

RC Circuit

Figure 7.28 shows the output speed of a DC motor tachometer with and without
using an RC filter to eliminate ripple.

45
43
4.1
39
3.7
35
33

3.1
29 —— No RC Filter
P S T TR Lk RC Filter

Tachometer Voltage

25 | | | | | | | | 1 |
0.4 041 042 043 044 045 046 047 048 049 0.5
Time(s)

7.6 Strain Measurement

1.5.2 ENCODER

Incremental encoders can also be used to measure speed. There are two techniques
that are normally used. These are the pulse-counting method and the pulse-timing
method. In the pulse-counting method, the encoder count values are read at a cer-
tain fixed sampling frequency. The speed is obtained by dividing the difference
between two successive encoder counter readings by the sampling time interval. If the
encoder disk has / lines, the sampling interval is 7 in seconds, and the count difference
between two successive readings is N, then the angular speed w in rad/s is given by

_ 27N
CTr

If quadrature is used, the above expression needs to be multiplied by /%. The
resolution of this technique increases with an increase in the speed, because more
counts are generated in the given sampling interval as the speed increases.

In the pulse-timing method, a high-frequency clock is used to record the time
interval for the motion travel between two adjacent lines on the encoder disk.
Assuming a clock frequency of fcycles/s, an encoder disk with / lines, and 7 clock
cycles recorded, then the angular speed w is given by

3 27/l _ 2nf
¢ m/f ml

This technique is particularly suitable for low-speed measurement. Note that
as the speed increases, the resolution of this pulse-timing method decreases, since
fewer clock cycles are used to record the motion travel between two adjacent lines
on the encoder disk.

| 7.6 STRAIN MEASUREMENT

Strain is a basic quantity in solid mechanics. When a force (torque) acts on a mem-
ber, it leads to a deformation of the member. The deformation is expressed in terms
of strain. For elastic loading, the resulting stress (o) and strain (€) are linearly related
through the modulus of elasticity of the material, E or

o =¢€f

Strain is measured using a strain gage which is a resistor whose change of
resistance is used as a measure of strain. The most commonly used strain gage is
the metal-foil strain gage shown in Figure 7.29, which replaces the wire-resistance
strain gage that was developed over 70 years ago. Other types of strain gages
include a semi-conductor strain gage, which has a sensitivity of over 100 times that
of the metallic gage.

The metal-foil strain gage consists of a metal alloy foil, typically constantan, in
the form of a grid placed on a flexible polyimide backing. The backing material
serves as an electrical insulator from the metal part to which the gage is attached.
The gage is bonded using adhesive to the surface of the part whose strain needs to
be measured. Some gages are made with the lead wires already attached to the gage,
but other gages provide an area where one can solder the lead wires. Standard rec-
tangular gages are made with a grid gage lengths varying from 1.5 to 25 mm and
grid gage widths varying from 1.2 to 8 mm.

Strain is defined as

(714)

(75)

(76)

Figure 7.29

Metal-foil strain gage

ni

(Reproduced with permission

of Micro-Flexitronics Ltd.
(MFL), courtesy of Omega

Engineering, Inc., Stamford,

CT 06907 USA
www.omega.com)

SOE A

L4

(1)

www.omega.com

128

Chapter 7 Sensors

(78)

(79)

(710)

()

(1)

(13)

(114)

(715)

(716)

where Alis the change in length of a part of length /. Using a strain gage, the meas-
ured strain is obtained using the relationship:
_14R
F R
where F is called the gage factor and its value is provided by the strain gage manu-

facturer. We will show next how Equation (7.8) was obtained. For this, consider a bar
with a cross-sectional area A, and length L. The resistance of the bar is given by

€

ol
A
where p is the resistivity of the material. The area can be expressed as 4 = CD?,

where C is a constant and D is the section dimension. For a square section,
C = 1; for a circular section, C = 7/4; etc. Equation (7.9) can be written as

R

pl
R=-— = flp,LD
e (p.L.D)
Differentiating Equation (7.10), we get
of af of L p pl
dR=_—dp+—d+_—-dd=——=dp+——d —2_—dD
PP REFTRFY) 2’ o Co°

Dividing Equation (7.11) by Equation (7.10), we get

a_dp d D
R p 1 D

but

where €, is the axial strain, €, is the longitudinal strain, and v is the Poisson’s ratio.
Replacing the terms in Equation (7.12) by the equivalent terms in Equation (7.13),
we get

a
ﬁzfp-l—ea-f—Zvea
R p

Dividing Equation (7.14) by €,, we get

df/R dp/p
e, L

The right-hand side of Equation (7.15) is termed the gage factor F. The value
of F depends on the Poisson’s ratio v of the strain gage material as well as on how
the resistivity changes with strain. For Constantan, F'is 2.0. From Equation (7.15),
if we replace dR by AR we thus get

+ 14+ 2v

_TAR
‘T FR

In most cases, the strain is a very small quantity, and the term microstrain is
used where the strain is multiplied by one million. Strain gages are made with a
standard resistance of 120 to 1000 € with 120 Q being very common. When they
are used, the change in resistance is small and is typically less than a fraction of one
percent. Example 7.4 illustrates this point. To improve sensitivity, a bridge circuit

7.6 Strain Measurement 09

is typically used with a strain gage (see Section 7.10.3), since it can measure the
change in resistance more precisely than a normal ohmmeter.

Strain gages are used in a variety of applications. In addition to their use in
directly measuring the strain and the resulting stresses on members subjected to
loading, they are also used in the construction of force and torque sensors (see next
section), some types of pressure sensors, and in temperature sensors, since they can
measure the elongation due to a temperature change. Due to its finite size, a strain
gage measures only the average strain over an area and not the exact strain. This
approximation is acceptable in cases where the strain is uniform, but it can lead to
errors in cases where the strain changes considerably, such as in stress concentra-
tion areas.

Example 7.4 Strain Under Axial Loading

A 2-cm diameter steel rod is subjected to a tensile axial force of 2500 N. Assume a
strain gage with a resistance of 120 (), and a gage factor F of 2 is used to meas-
ure the strain due to this loading. Determine the change in resistance of the gage
under this loading.

Solution:
The stress due to this loading is given by
o=t 200 _;96mpa
A 7(0.01%)
The strain is obtained from equation (7.6), which gives
7.9610°
e=Z= 7.9610 = 39.8 microstrain
E 20010°

The change in resistance of the strain gage is then given by
AR = €FR = 39.8107 X 2 X 120 = 0.00955 Q

Note that the change in resistance is very small (~0.008%) and cannot be precisely
read from an ordinary ohmmeter, which does not have such a sensitivity.

While the single, linear-pattern strain gage (Figure 7.29) is very common,
strain gages are also made with many other configurations. These include the dual-
grid gage (Figure 7.30(a)) that is typically used to measure bending strain, the biax-
ial strain gage (Figure 7.30(b)) to measure axial strain where the principal strain
directions are generally known such as in pressure vessels, and the three-element
rosette (Figure 7.30(c)) to measure strain in cases where the principal strain direc-
tions are not known in advance. The biaxial and the three-element rosette gages are

A
- -
q

v

@

Figure 7.30

Other configurations of
strain gages: (a) dual-
grid gage, (b) biaxial,
and (c) three-element
rosette.

(Reproduced with permission
of Micro-Flexitronics Ltd.
(MFL), courtesy of Omega
Engineering, Inc., Stamford, CT
06907 USA www.omega.com)

www.omega.com

B0

Chapter 7 Sensors

Figure 731
Different

configurations of load

cells

available with the grids stacked as in Figure 7.30(b) or in planar form
(Figure 7.30(c)). The stacked configuration is more compact, but it is stiffer and
less conformable than its planar counterpart.

| 7.7 Force AND TORQUE MEASUREMENT

There are two methods to measure forces and torques. One is the direct compari-
son method, which is based on the use of some form of beam balance with known
weights. The other is the indirect comparison method, which is based on the use of
calibrated transducers. This textbook will focus on the second method, since the
output of the transducers can be easily interfaced to a PC or a microcontroller.

1.7.1 FORCE SENSORS

Transducer-type force sensors or load cells can be hydraulic, pneumatic, or strain-
gage based. Hydraulic load cells measure the weight by sensing the pressure change
in the fluid system, while pneumatic load cells measure changes in air pressure.
Strain-gage types are one of the most common types. They are based on the use of
an elastic element combined with one or more strain gages. The resistances of the
gages are processed by a Wheatstone bridge circuit (See Section 7.10.3). Strain
gage load cells are available in different configurations:

¢ Compression type

* 'Tension/compression type
* S-beam load cells

¢ Universal mounts

* Rectangular beam cells

A schematic of these configurations is shown in Figure 7.31.

e }r

||
|
F
br
(@) (b) (©)
¢ F
[T] ¢ F (a) Compression
(b) Tension/Compression

] (c) S-Beam
(d) Universal Mount
(e) Rectangular Beam

(d) (e)

77 Force and Torque Measurement Bl

The compression-type cell is designed to handle compressive loads. It has a
low profile, a small size, and can be made to handle high loads, but the load has
to be centered. The tension/compression type can handle both compressive and
tensile center loads. The S-beam load cell can also handle both compression and
tensile loads, but it is better suited for harsh environments and offers good resist-
ance to side loads. The universal mount is similar to the compression type, but it
can handle off-center loads. The rectangular beam is a low-cost sensor that can
handle compressive eccentric loading. This design is also known as the single-
point load cell. Load cells typically use more than one strain gage to increase the
sensitivity of the sensor. In many cases, four strain gages are used as seen in
Figure 7.32, and they are laid out so that the change in resistance of the strain
gages under the applied loading adds to improve the output of the Wheatstone
bridge (see Section 7.10.3). Strain gages with a 350 () resistance are commonly
used in load cells.

Manufacturers of load cells list the output of the load cells in mV/V (such as
2mV/V). Due to the use of a bridge circuit, the output is directly related to the exci-
tation input. For example, if the supply voltage is 10V, then the full-scale output of
the load cell is 20 mV for a load cell with a 2 mV/V output rating. An external
amplifier can be used to amplify the output signal of the load cell before it is read
by a display device or a microcontroller. Load cells are calibrated so the output cor-
responds to the units of measurement of the load cell such as pounds (Ibs) or
Newtons (N). As with any sensor, a load cell is not 100% accurate; load cells are
sensitive to thermal errors resulting primarily from the thermal expansion/contraction
of the elastic element employed in the load cell.

1.7.2 FORCE-SENSING RESISTOR

A force-sensing resistor (FSR) is a sensor that uses electrical resistance to measure
the force applied to the sensor. It is made using polymer film technology
Figure 7.33 shows a photo of an FSR with a round active area.

When no pressure is applied to it, the sensor has an infinite resistance. As
pressure is applied to the sensor, the resistance decreases. Note that the resistance
decreases nonlinearly with an increase in pressure. At maximum pressure the
resistance approaches several hundred ohms. One advantage of FSRs is their low
cost and simplicity. The sensor has just two leads. It is normally wired with a fixed
resistor in a voltage-dividing circuit form. A disadvantage of FSRs is their low
accuracy.

1.7.3 TORQUE SENSORS

Measurement of torque is done using two different configurations of sensors.
These are the reaction torque sensors and the rotating torque sensors. Both con-
figurations are based on the use of strain gages that are mounted on elastic mem-
bers. The elastic element in both configurations of torque sensors could be a

Figure 7.32

Four strain gages used
in a load sensor

?
!
|

I
!

Figure 7.33

Force-sensing resistor

(Courtesy of Interlink
Electronics, Inc.,
Camarillo, CA)

Bl Chapter 7 Sensors

Figure 7.34

Schematic of different
elastic elements used in
torque sensors

Figure 7.35

Illustration of reaction
and rotary torque
sensors

/\ /
N =
(a) Solid Shaft (b) Solid Cruciform (c) Solid Square Shaft

solid or hollow circular shaft, a solid or hollow cruciform, or a solid square shaft
(see Figure 7.34). Hollow cruciform is typically used for low-torque measure-
ment applications, while the solid circular and square shafts are used for high-
torque applications.

The reaction torque sensor is used to measure torque in non-rotating applica-
tions. In this configuration, the sensor is stationary, and the shaft of the part of which
the torque needs to be measured is connected through a coupling to the sensor.
Reaction torque sensors are used, for example, to measure the motor torque output at
zero speed or the starting torque. Other applications include bearing friction measure-
ment and automotive brakes torque sensing. The rotary torque sensor on the other
hand is used to measure torque between rotating devices. The sensor is typically
mounted inline between the torque source and the load. Typical applications for
rotary torque sensors include engine dynamometer testing, fan and blower testing, and
clutch testing. Figure 7.35 illustrates the use of these two sensors. Similar to load cells,
torque sensors give an output voltage that is proportional to the applied torque.

Reaction Torque
Elastic Element

{

Torque
Source

) Load

Strain Gages J_

Coupling

L X
- — ===
X

f

Coupling

Rotary Torque
Elastic Element

Because the sensing element is rotating in a rotary torque sensor, inertia effects
are important. This is especially important during the power up and power down
phases of the rotating member when the rotational speed is not constant. Thus,
torque sensors with low inertia are desirable. Also, means must be provided to
transmit the sensor signals from the rotating strain gage transducer to the station-
ary electronics. Common methods for transmitting the signals include the use of
slip rings and rotary transformers. Slip rings are similar to a commutator in a brush
DC motor (Chapter 8) and are suitable for low—rotation speed applications. At
speeds above 5000 rpm, the noise induced from brush friction make them not very

7.8 Temperature Measurement

suitable. A rotary transformer is a non-contact device and is similar to a regular
transformer but the secondary coil is rotating relative the primary coil. Two rotary
transformers are used: one for transmitting the supply voltage to the Wheatstone
bridge circuit and the other for transmitting the output from the bridge circuit (see
Figure 7.36). Some rotary torque sensors also output the rotation angle of the sen-
sor, which is obtained from an encoder that is built into the sensor. Reaction torque
sensors have a higher torque-measurement capability than rotary torque sensors,
and some units are made to measure torque values up to a few million pound inch-
es. End connections to both configurations include the use of a keyed shaft, a
flange, or a spline.

Rotary
Transformer

Output Voltage |

|

-—
Supply Voltage
PRE—

| 7.8 TEMPERATURE MEASUREMENT

Temperature is a basic quantity in process control systems, and there are several
types of sensors available to measure temperature. These include thermistors, ther-
mocouples, RTD, and IC sensors. These different types will be discussed below.
"Table 7.3 lists and compares several properties of these sensors.

Property Thermistor Thermocouple RTD IC
Resolution Very high Average High High
Temperature Range Small Very broad Broad Limited
Output Highly non-linear Nonlinear Almost linear Linear
Accuracy Very high Limited High Limited
Ruggedness Fragile Very rugged Rugged Fragile

7.8.1 THERMISTORS

A thermistor is a resistance-based temperature measurement sensor made of a
semiconductor material, and the thermistor resistance typically decreases with an
increase in temperature. A thermistor has a very high sensitivity to temperature
changes, but its output is highly nonlinear and is typically used over a limited tem-
perature range that is less than 300° C. A typical resistance versus temperature plot
for a thermistor is shown in Figure 7.37. Note the highly nonlinear relationship
between the temperature and resistance. The resistance—temperature relationship
for a thermistor can be approximately expressed by the exponential function:

R = Rehl

Figure 7.36

Wheatstone bridge
with rotary
transformers

Table 7.3

Comparison of
different temperature
sensors

(1)

133

B4 Chapter 7 Sensors

Figure 737

Typical resistance versus
temperature plot for
a thermistor

Figure 738

Typical leaded
thermistors
(© sciencephotos/Alamy)

Figure 739

Thermocouple junctions

Figure 740

Illustration of the law
of intermediate metals

8 400 600
= c
1
& 300 g 400
g 200 El
% 100 3 200
2 0 0
-100 0 100 200 50 70 90 110 130 150
Temperature, °C Temperature, °C

where B is a constant that depends on the thermistor material used and R, is the
resistance at the reference temperature 7,. A thermistor has the characteristic that
the relationship between resistance and temperature is very precise, which allows
some thermistors to have a precision of 0.05° or less.

Thermistors are available in several forms including two-lead, surface mount,
and leadless chip form. Typical two-lead thermistors are shown in Figure 7.38. For
the two-lead thermistor, the thermistor can be epoxy coated or glass encapsulated.

7.8.2 THERMOCOUPLES

Thermocouples are one of the most widely used temperature sensors. A thermo-
couple is a thermoelectric type sensor and operates on the principle that an elec-
tromotive force (EMF) is created when two junctions of different metals are oper-
ated at different temperatures. This characteristic behavior was discovered by
Seebeck in 1821. Figure 7.39 illustrates this situation and shows two dissimilar met-
als 4 and B connected at two different points. If one of the junctions is at a known
reference temperature, then the voltage between the nodes is a function of the dif-
ference between the temperatures of the two junctions. This fact is used to indicate
the temperature of the other node.

There are several laws or properties that apply to thermoelectric circuits.

Law of Intermediate Metals This law states that a third metal introduced
into a thermocouple circuit will not affect the EMF output of the circuit provided
that the two junctions introduced by the third metal are at the same temperature.
This situation is illustrated in Figure 7.40 where a third metal C is introduced into

7.8 Temperature Measurement 85

the circuit. Provided that the two junctions of the metal C with metal 4 are at the
same temperature or 73 = Ty, the EMF output of the circuit is not affected. Note
that this law still applies if the third metal C was introduced at either junction of
metals 4 and B.

Application of this law permits the insertion of a measuring device into the cir-
cuit or brazing or welding of the junction without affecting the temperature meas-
urement function of the thermocouple circuit.

Law of Homogenous Circuits This law states that if the thermocouple con-
ductors are homogenous, then they are not affected by intermediate tempera-
tures of the conductors away from the junctions. This situation is illustrated in
Figure 7.41 where the lead wires away from the junctions have a temperature that
is different from 77 and 75, but that does not affect the output voltage of the cir-
cuit. Application of this law permits the use of thermocouple grade extension
wires and implies that shielding of lead wires is not needed in thermocouple
circuits.

There are different types of commercially available thermocouples. These
include the ¢J’ thermocouple (iron-constantan), the ‘K’ thermocouple (chromel-
alumel), and the “I” thermocouple (copper-constantan). Constantan is an alloy that
is primarily made up of copper and nickel. The temperature measurement range for
these types of thermocouples is shown in Table 7.4. Note that type J is designed to
be used in reducing environments, while type K is used in oxidizing environments
since its nickel-chromium alloy is resistant to oxidation at high temperature. Type T
is suitable for ambient and sub-freezing environments.

Type J Type K Type T
Temperature —200 to 1000°C —250 to 1372°C —250 to 400°C
Range —328 to 1832°F —418 to 2502°F —418 to 752°F

The measuring junction of a thermocouple can be enclosed in a probe cover
or can be exposed directly to the measuring atmosphere. An exposed junction has
a faster response time than an enclosed one, but it is not suitable for use in a cor-
rosive environment. When a thermocouple is used to measure temperature, it is
typically wired as shown in Figure 7.42. One of the junctions is inserted into an ice
bath to create a reference junction with a known temperature, while the other junc-
tion is used to measure the temperature. The leads of the thermocouple circuit are
connected to a voltage-measuring device, which reads the voltage output of the
thermocouple circuit, which is typically in millivolts. Some form of filtering is usu-
ally needed to reduce electromagnetic noise picked by the thermocouple wires,
which act as an antenna. To improve the resolution, the output can be also ampli-
fied before being read by the voltage-measuring device. Thermocouple reading

Figure 741

Illustration of the law
of homogenous circuits

Table 74

Temperature range of J,
K, and T thermocouples

36 Chapter 7 Sensors

Figure 742

Typical thermocouple
configuration

(118)

Figure 743

Resistance versus
temperature
relationship for
platinum RTDs

Voltage
Measuring B Measurement
Temperature Device
Junction A 1
Reference
Temperature Ice Bath
Junction

instruments replace the ice bath mixture with a solid-state sensor or thermistor to
measure the temperature of the reference junction.

The output voltage of a thermocouple does not vary linearly with tempera-
ture except for K-type thermocouples, where for average accuracy one can assume
a linear relationship between output voltage and temperature over the range of 0
to 1000°C. For other thermocouples or for better accuracy, a calibration curve
needs to be used to relate the temperature to voltage. The calibration curve takes
the form:

T=a,+ ax+ ax> + ag®+ -+ a,x"

where T is the temperature in degrees C, x is the EMF voltage of the thermocou-
ple, and 4, 41, . . . , a4, are the curve coefficients, which are a function of the partic-
ular thermocouple material used. The National Bureau of Standards publishes
tables of these coefficients for different types of thermocouples. The order varies
from 5 to 7. For these coefficients, the accuracy varies from +/—0.1°C for type] to
+/=0.7°C for type K thermocouples.

1.8.3 RTD

The resistance temperature detector (RTD) is another resistance-based temperature
sensor that is based on the principle that the resistance of certain metals
increases/decreases in a defined fashion with an increase/decrease in temperature.
Platinum is the most commonly used material in making RTDs, but RTDs are also
made using copper and nickel. Platinum offers the advantage of a broad temperature
measuring range (—200 to 850°C), high temperature stability, and good accuracy.
An RTD does not have the high sensitivity of a thermistor, but its temperature
resistance relationship is not highly nonlinear. Figure 7.43 shows a typical temper-
ature resistance relationship for platinum RTD. Note that RTDs are made with
different nominal resistance at 0°. A common value is 100 ohms, but RT'Ds with
500 or 1000 ohms are also made. RTDs are made with specific temperature coef-
ficient (T'C) or alpha factor. Two commonly used T'C factors for platinum RTDs

300

[\]
(=
S

(=
(=]

Resistance,

0 100 200 300 400 500
Temperature, °C

7.8 Temperature Measurement ni

are the European Standard and the American Standard. The European Standard
has a TC value of 0.00385 Q/Q/°C over the range of 0 to 100°C, while the

American Standard has a T'C value of 0.00392 Q/Q/°C. Using the temperature
coefficient, the resistance of an RTD can be approximated as

R= R+ al - T)

where R, is the nominal resistance at the nominal temperature 7,. Note that the
exact resistance at any temperature can be obtained from RTD manufacturers who
publish tables with exact values of resistance at different temperatures for a given
TC and nominal 0° resistance. RTDs are also available with different tolerance
levels.

Although RTDs do not have the large temperature measuring range as ther-
mocouples, they are more linear than thermocouples and inherently more stable,
and there is no need for a reference junction. However, an RTD has a slower
response than a thermocouple.

RTDs are available in different forms. These include thin film and wire wound.
In the thin-film form, a small layer of platinum is deposited on a substrate, and
then wires are attached to the substrate. The substrate is then coated in epoxy. In
the wire-wound form, a wire coil is either inserted inside a cylindrical glass or
ceramic tube, or wound around a glass or ceramic core and then covered with glass
or ceramic material. RT'Ds are available with two-, three-, or four-wire configura-
tion. The two-wire configuration is most sensitive to errors resulting from the
additional resistance introduced by the lead wires. With the three- or four-wire
configuration, a compensating bridge-type circuit (discussed in Section 7.10.3) can
be constructed to compensate for the lead wire resistance.

7.8.4 1C TEMPERATURE SENSORS

Due to advancements in integrated circuit technology, IC temperature sensors are
becoming widely available. These sensors are based on transistor technology,
specifically the fact that the difference in forward voltage of a silicon pn junction is
directly proportional to temperature. While IC temperature sensors have a smaller
temperature measurement range than thermocouples or RTDs, they, however, give
an output that is linearly proportional to temperature, are inexpensive, and are fairly
accurate. IC temperature sensors are available with either analog or digital output.
The latter type includes an integrated A/D to convert the analog voltage or current
signal into a digital signal that is transmitted using a PWM, a T*C, or an SPI
interface. An example of an analog IC temperature sensor is the LM35C sensor
manufactured by National Semiconductor and shown in Figure 7.44. Another is
the AD590 sensor manufactured by Analog Devices. The LM35C sensor can meas-
ure temperature over the range of —40 to 110°C. An example of an IC temperature
sensor with digital output is the TMPOS5 sensor manufactured by Analog Devices,
which has an accuracy of +/—1°C and provides its output in PWM format.

The LM35C sensor is available in several packages (see Figure 7.44), includ-
ing the hermetic TO-46 metal can package and the TO-92 plastic package. The
sensor has three leads, one for 4 to 30 VDC input power, the other for ground, and
the third for the analog voltage output from the sensor. The analog output of the
sensor is proportional to temperature in degrees C with sensitivity of 10.0 mV/°C.
This sensor is very suitable for use with microcontrollers since it draws very little
current (less than 60 nA), and its output is directly calibrated in degrees Celsius,
thus avoiding any conversion operations. Note that the LM35C is designed to
measure temperature in ambient air and not to be immersed in a liquid. To use in
liquid, the sensor has to be encapsulated.

(1m9)

Figure 7.44

LM35C sensor (a) TO-46
metal can package

and (b) TO-92 plastic
package

(Courtesy Digi-Key
Corporation)

88

Chapter 7 Sensors

(720)

Figure 7.45

Schematic of a seismic
mass

(1.21)

(112)

(133)

(124)

| 7.9 VIBRATION MEASUREMENT

Vibratory motion (for further reading, see [30]) commonly occurs in machinery and
flexible structures. Measurement of vibration is important for machine health mon-
itoring of motors, pumps, fans, gearboxes, machine tool spindles, blowers, and
chillers. Vibration measurement is also important in safety devices such as automo-
tive airbags. Vibration is measured by either accelerometers or vibrometers. The two
devices have a similar operating principle but differ in their natural frequency and
damping. They are based on the measurement of the motion of a small, spring and
damper supported mass that is placed in a housing. The mass is commonly referred
to as a seismic mass, and the housing is attached to the structure whose vibration
motion needs to be measured. The motion of the structure is transferred to the seis-
mic mass through the support spring and damper. The motion of the seismic mass
can be obtained using different transducers. These include resistance-type strain
gages and piezoelectric and piezoresistive crystals. The following section illustrates
the theory behind the operation of such a device.

7.9.1 SEisMic MAss OPERATING PRINCIPLE

With reference to Figure 7.45 let us assume that the support base has a displace-
ment of y;, and the seismic mass has a displacement of y,,. From a free-body dia-
gram of the seismic mass, we can write the following equation of motion for the
seismic mass:

_k(ym - yb) - C(ym - yb) = mym

Seismic Mass

Ym T

L
1 L

Base

\4 \4

Let us define 2 as the relative displacement between the supported mass and the
base or

Z=VYn =W
Equation (7.20) can be written as
mz+ cz+ kz= —my,

If we assume the base displacement to be a sinusoidal with amplitude " and fre-
quency w as y, = Ysin (w?), then Equation (7.22) can be written as

mz + ¢z + kz = me?Ysin(wt)

Equation (7.23) is a second-order linear differential equation with a forced input.
The steady-state solution of this equation is given by

Z(t) = Zsin(wt — ¢4)

7.9 Vibration Measurement 39

where ¢ is the phase shift angle and Z is the amplitude given by the expression

maw?Y rry

[k = mo® + (cwP]2 ~ [(1 = P2 + (24rP]"?

where 7 is the frequency ratio w/w, and w,, is the natural frequency given by V &/m.
The phase angle ¢, is given by the expression

Cw 2¢ér
= tan‘() = tan”()
1 k — ma? 1 — 2

A plot of the ratio of Z/Y and the phase angle ¢; as a function of the frequency
ratio 7 is given in Figure 7.46. The plot shows that the ratio Z/Y is very dependent
on the damping ratio ¢, and Z/Y approaches 1 for » greater than 3 regardless of
the damping ratio . The ratio Z/Y equals 1 means that the relative displacement
of the seismic mass is equal to the displacement of the base. Thus, if we can meas-
ure the relative displacement, then we have a measurement of the motion of the
base. This is the principal behind the operation of vibrometers, which provide an
output that is proportional to the displacement of the base. To make 7 greater than
3, the natural frequency of the vibrometer has to be small. This is achieved by using
a large mass 7 and a support spring with a small stiffness k. This results in a bulky
instrument.

4 180 ol
X =00 5 150 ¢=0.
(=05 g 120 =03
=0)
x 26=03 2 9 [=(s5 (=07 ¢=10
N 2
1 é 60
=07 =10 30 £=0.0
0 0
0 1 2 3 4 0 1 2 3 4
Frequency ratio, r Frequency ratio, r
(@) (b)

Notice the phase shift between the relative displacement and the base displace-
ment in Figure 7.46(b). For { equal to 0, the phase shift is 180° for any » greater
than 1. For ¢ other than 0, the phase shift is dependent on the frequency ratio 7.
A phase shift means that relative displacement lags the base displacement by a time
amount equal to ¢/ w.

Since 7 = w/w,, Equation (7.24) can be written as
— & Ysin(wt — @)
(1 = r?? + (240772

But the acceleration of the base is given by

- w,,zz(t) =

Polt) = —w?Ysin (wf)

This means that the term —w,2z(1) is proportional to the acceleration of the base.
To make

—w,22(t) = —w?Ysin(wt — @)
the denominator of the right-hand side of Equation (7.27) has to be equal to 1, or
1
(1 — 22 + (2¢rP)7 -

(1.25)

(7.26)

Figure 7.46

Plots of (a) Equation
(7.25) and (b) Equation
(7.26)

(121)

(128)

(129)

(730)

40 Chapter 7 Sensors

Figure 747

A plot of the ratio
1/[(1 =)% + (2¢n?)"?

,,

Ratio
h
i
N
i
i
i
i
i
\
i
i
y

0.5 R T S ——
0 01 02 03 04 05 06 07 08 09 I

Frequency Ratio, r

Figure 7.47 shows a plot of the left-hand side of Equation (7.30). The plot shows
that the term is equal to 1 for all less than 0.05, regardless of the value of the damp-
ing ratio {. For { equal to 0.7, the term has a value of 1 for 7 less than 0.2. This means
that if the seismic mass is made to have a very high natural frequency, then the setup
shown in Figure 7.45 can be used to directly measure the acceleration of the base
through measurement of the relative displacement between the seismic mass and the
base for cases where 7 is very small. This is the principle of operation of accelerom-
eters, which give an output that is proportional to the acceleration. Note that the
term w? in Equation (7.27) is fixed for a given device and does not change with the
applied frequency. The phase lag expression given by Equation (7.26) also applies for
this case. To achieve low 7 ratio in practice, accelerometers are made with a small mass
m and with a spring that has a large stiffness to result in a system with high natural
frequency. Due to their compact size, accelerometers are more widely used than
vibrometers, and the next section discusses piezoelectric accelerometers, one of the
most commonly used types of accelerometers. Other types of accelerometers include
piezo-resistive and strain-gage based accelerometers. Example 7.5 illustrates the
effect of damping and frequency ratio on the output of an accelerometer.

Example 7.5 Accelerometer Error

An accelerometer with a natural frequency of 1 kHz and a damping ratio of 0.6 is
used to measure the vibration of a motor rotating at 3600 rpm. The accelerome-
ter gave a reading of 1 g. What is the actual acceleration of the motor?

Solution:
The rotation frequency of the motor is

2
3600 X = = 377 rad/s
60
The frequency ratio r = w/w, is therefore 377/(1000 X 27r) = 0.06
From Equation (7.27), the actual acceleration is equal to
Measured acceleration X [(1 — 2)? + (2zr)?]"?
=1g X [(1 — 0.06%)% + (2 X 0.6 X 0.06)]"2
or 1g X 0.999 = 0.999 g

The error is therefore is 0.1%, which is small.

7.9 Vibration Measurement

71.9.2 PIEZOELECTRIC ACCELEROMETERS

Certain naturally occurring materials such as quartz and Rochelle salt, and manu-
factured ceramic materials such as lead zirconate and barium titanate exhibit a
property called the direct piezoelectric effect when subjected to a force or pres-
sure. They give an electric charge proportional to the applied force. Conversely,
these materials deform if they are subjected to an electric field in the direction of
polarization of the material. The piezoelectric effect was discovered by the Curie
brothers in 1880, and the direct piezoelectric effect is utilized in the design of
accelerometers and force sensors. The converse piezoelectric effect is used in the
design of piezoactuators that are used in precision positioning and machining
applications. Note that the term ‘piezo’ is a Greek word for ‘pressure’.

There are different designs of piezoelectric accelerometers. These include
compression and shear type. A section view of a typical compression-type piezo-
electric accelerometer is shown in Figure 7.48. The supported mass is sand-
wiched between a piezoelectric element and a compression spring. The compres-
sion spring could take the form of a bolt and a washer compressing the mass and
the piezoelectric element. The accelerometer base is typically bolted or bonded to
the structure whose acceleration needs to be measured, but accelerometers with
magnetic bases are also available. The motion of the structure results in a motion
of the supported mass, and the inertial force of the supported mass pushes against
the piezoelectric element producing a charge signal. Since the supported mass is
constant, the force exerted on the piezoelectric element is thus proportional to
acceleration. In a shear-type accelerometer, the supported mass is designed to
exert a shear force rather than a compressive force on the piezoelectric element.
Shear-type accelerometers are used in flexible structures applications or where
thermal gradients can cause distortion of the base. All of the elements of the
accelerometer are housed in a metal housing, typically made of stainless steel,
which is sealed to prevent the entrance of dust, water, or dirt.

L Compression
Spring
Output
Leads
Mass
\ N _ Piezoelectric
Element
| A
Electrodes

Piezoelectric accelerometers have the advantage of compact size, high sensitiv-
ity, high-frequency measurement range, and rugged construction. Figure 7.49
shows several commercially available piezoelectric accelerometers. Accelerometers
are available with a top or side connector location; single axis, biaxial, or triaxial
measurement capability; frequency measurement range up to 25 kHz; acceleration
measurement range up to 500 g; and sensitivity that ranges from 10 mV/g to
10 V/g. Example 7.6 illustrates the relationship between accelerometer sensitivity
and range. Note that piezoelectric accelerometers are not very suitable for measur-
ing low-frequency (a few Hertz) oscillations, and they give a zero output at zero
frequency.

Figure 748

A section view of a
compression-type
accelerometer

ul

pLy] Chapter 7 Sensors

Figure 749

Commercially available
piezoelectric
accelerometers

(Courtesy of Wilcoxon
Research, Inc.,
Germantown, MD)

(731)

Example 7.6 Accelerometer Selection

An accelerometer is needed to measure acceleration with a range up to +20 g.
If the analog output of the accelerometer is read by an A/D convertor with a
+10 volts input range, recommend a suitable sensitivity for the accelerometer.

Solution:

The voltage output of the accelerometer at the maximum desired acceleration
affects the choice of the sensitivity. In this application, the accelerometer voltage
output at 20 g should be equal or less than 10 V. This gives a maximum sensitivity
of 10 V/20 g or 500 mV/g. Thus any accelerometer with a sensitivity of 500 mV/g
or less would work in this application. Note, however, that high sensitivity is pre-
ferred since it results in a better signal-to-noise ratio.

Piezoelectric accelerometers are available with two different types of output.
These include high-impedance charge output, and low-impedance voltage out-
put. In the high-impedance version, the accelerometer gives a charge signal
proportional to acceleration. The sensitivity of the accelerometer in this case is
specified in pico (1071%) Coulomb per g or pC/g. The charge signal cannot be read
by a low-impedance device (such as a voltmeter) due to the large loading errors
caused by the high source impedance and due to charge leakage through the load.
The charge output is processed instead by a special amplifier called a charge
amplifier, which takes the charge output from the accelerometer and produces a
low-impedance analog output voltage. When using a charge amplifier, the capaci-
tance of the cable that connects the accelerometer output to the charge amplifier
input does not affect the output voltage of the amplifier. The output voltage is sim-
ply a function of the input charge and the feedback capacitance of the amplifier and
is given by Equation (7.31):

Gin

Vour = o

7.9 Vibration Measurement 43

where gy, is the charge produced by the accelerometer, and ¢¢is the feedback capac-
itance of the charge amplifier. This can be seen if we analyze the op-circuit shown
in Figure 7.50. The input charge ¢;, is distributed as:

Gin = e t Ginp t G¢
But the charge is related to voltage by
g=-cV
Substituting Equation (7.33) into (7.32), we get

Gin = (c + Cinp)v_ + ¢V

But /7~ = 0 since the inverting input potential is equal to the noninverting input,
and the noninverting input is grounded in this circuit. Thus, we get
Gin = CiVo

This is not the case if the charge output was directly connected to a high-
impedance voltage amplifier. In that case, the capacitance of the sensor, the cable,
and the amplifier has to be taken into account.

Ry
—MWW—
¢ C..: Cable Capacitance
H Cinp: Amplifier Capacitance
Gin Cy: Feedback Capacitance
— A R;: Feedback Resistance

. L o1 v,
Piezo Sensor C‘\T Ciin +

A0

Voltage-output accelerometers include a small built-in circuit in the
accelerometer housing that converts the charge output into a low-impedance out-
put voltage. Charge output accelerometers are self generating and require no exter-
nal power; thus they can be used in high-temperature or high-radiation applications
without any damage. This is not the case with voltage-output accelerometers,
where the electronics could be damaged under such conditions.

7.9.3 INTEGRATED CIRCUIT (IC) ACCELEROMETERS

Integrated circuit (IC) accelerometers are low-cost sensors that are widely used in
applications such as air bag deployment, computer hard drive protection, and virtual
reality input devices. IC accelerometers are based on the use of silicon capacitive
micromachined technology. The accelerometer consists of a surface mircomachined
capacitive sensing cell (g-cell) and a CMOS signal conditioning circuit both housed
in a single IC package. The g-cell is a mechanical structure that is constructed using
wafer processing techniques. The sensing cell can be modeled as two stationary plates
with a moveable center plate placed in between the fixed plates as seen in Figure 7.51.
The center plate deflects in response to the acceleration of the part to which the
accelerometer is attached. This deflecdon changes the distance between the center
plate and the two fixed plates and effectively the capacitance of the two capacitors
that are formed between the fixed plates and the center plate. The change in capaci-
tance of these two capacitors is then used as a measure of the acceleration.

(73)

(13

(734)

(735)

Figure 7.50

Charge amplifier wiring

Figure 7.51

Model of a
silicon capacitive
micromachined
accelerometer

244

Chapter 7 Sensors

Figure 7.52

MMA1250EG sensor

(Jouaneh, University of
Rhode Island)

Figure 7.53

Wiring diagram for
MMA1250EG sensor

IC accelerometers are designed to be mounted on circuit boards, and they are
available with different sensitivities and acceleration measurement ranges.
Figure 7.52 shows a photo of the MMA1250EG z-axis sensor made by Freescale
Semiconductor. This sensor has a sensitivity of 380 to 420 mV/g and a measure-
ment range of £5g.

The wiring diagram for this sensor is shown in Figure 7.53 which shows that
only three wires are needed to be interfaced to the sensor: supply voltage, ground,
and output line. The sensor simply needs a DC supply voltage in the range of 4.75
to 5.25 VDC. With a 5 VDC supply voltage, the sensor output is about 2.65 V at
zero gravity. An advantage of IC accelerometers is their low cost, their low current
consumption (about 2 mA), their built-in signal conditioning, and their linear out-
put. IC accelerometers can also be economically interfaced to microcontrollers
since their output is DC voltage in the range that can be directly read by an A/D
convertor, and they do not require a charge amplifier. However, their temperature
operating range is more restrictive than charge output piezoelectric accelerome-
ters, and they are not as rugged.

MMA1250EG

A1 Vour
0.1 uF = 1kQ

0.1 uF

| 7.10 SiGNAL CONDITIONING

In many situations, the raw output of the sensor may not be in a form suitable to be
interfaced to a measurement device or an A/D convertor, and some form of signal
conditioning is needed to be applied to the sensor output. These signal condition-
ing operations include filtering, amplification, or using a bridge circuit. These
operations are discussed next.

7.10.1 FILTERING

In dynamic measurements, the output of a sensor or a transducer consists of many
frequency components. The output can also be corrupted with noise. The noise
can be from external disturbances such as heat or vibration, imperfections in
the sensor component materials, or from external signal interference. The noise
reduces the sensor resolution and worsens the repeatability error. Filtering is the

710 Signal Conditioning

process of attenuating unwanted components or noise from the sensor output and
allowing other components to pass. We will discuss different types of filters. These
include low-pass, high-pass, notch, and bandpass. The naming of these filters is in
reference to desired frequency characteristics of the filter.

A filter can be implemented using analog circuit components such as op-amps
and capacitors and is thus referred to as an analog filter, or using computer code
in a digital signal processer chip and thus referred to as a digital filter. Digital fil-
ters offer flexibility over analog filters since changing the filter characteristics
involves only code change. However, analog filters are inexpensive and more
robust. Analog filters can be classified as passive or active. A passive filter does not
require any external power to operate. An example of a passive analog filter is the
first-order RC-circuit filter. An active filter, on the other hand, requires external
power to operate. Active filters use components such as op-amps.

The filtering action is best described using frequency response plots and trans-
fer function concepts. Frequency response plots are reviewed in Appendix B. A
frequency response plot shows the output-input relationship for the filter as a func-
tion of frequency. The plot has two components: magnitude and phase. The magni-
tude is the ratio of the output signal to the input signal, while the phase is the time
shift between the output and the input signals. A positive phase angle means that the
output signal leads the input signal, while a negative phase shift means that the out-
put signal lags the input signal. The magnitude plot is normally shown in units of dB,
where 1 dB = 20 logg(output/input). The ideal magnitude frequency response char-
acteristics for the low-pass, high-pass, bandpass, and notch filters are shown in
Figure 7.54, where f; is the filter corner frequency. The figure shows that over the fre-
quencies at which the filtering is active the output signal is zero. In reality, these ideal
frequency characteristics cannot be achieved. First, filters with zero passing are diffi-
cult to construct. Second, the sharp transitions shown in the figure cannot be achieved.

V,/V; V,/V;
1 1
0 > 0 >
e Frequency Jer fea Frequency
Low-Pass Bandpass
V,/V,; Vo/Vi
1 1
0 > 0 >
fe Frequency Jer Jeo Frequency
High-Pass Notch

Low-pass filters are used to attenuate frequency signals above the corner
frequency f; such as the 60-Hz interference signals from AC power operated equip-
ment. These filters are commonly used to process signals from tachometer and
temperature sensors. There are many forms of low-pass filters, so we will restrict
our discussion to the first-order, low-pass filter given by the transfer function

1 1
H(S) = = —
7s + 1 T 1

Figure 7.54

Ideal magnitude
frequency response
characteristics of
various filters

(736)

245

46 Chapter 7 Sensors

where 7 is the time constant of the filter. The time constant 7 in seconds and the
corner frequency f; in Hz are related by
1

=
27T

The order of the filter refers to the highest power in the denominator of the
filter transfer function. A first-order filter is also known as a single-pole filter, since
the characteristic equation of the filter has only one pole or one root. The magni-
tude and phase frequency response plots of this filter are shown in Figure 7.55. The
magnitude plot shows that the filter output-to-input magnitude has a unity gain
before the corner frequency at w,, where (w, = 1/7), but the gain decreases slowly
as the frequency approaches the corner frequency. At the corner frequency, the out-
put magnitude is —3 dB with the output at 70.7% of the input. After the corner
frequency, the magnitude starts dropping much faster at the rate of 20 dB/decade,
where a decade means a factor of 10 increase or decrease in the frequency.
Example 7.7 illustrates the computation of the filter output at any frequency. The
phase plot shows that the filter has nearly zero phase lag at low frequencies. At the
corner frequency, the phase angle is —45 degrees, and the phase angle approaches
—90 degrees for frequencies much higher than the corner frequency.

Bode Diagram l—3 dB

(131)
0
o 10t
=
S
E 20 f------"---- AP
‘g
2
= 30 f----------- re-r--

Phase (deg)

Figure 7.55

Magnitude and phase
for first-order low-pass
filter (w. = 100 rad/s)

10! 102 103 10*
Frequency (rad/sec)

Example 7.7 Filter Output

If the corner frequency of the low-pass, first-order filter is 100 Hz, determine the
filter output at 500 Hz.

Solution:

We will obtain the output using two methods. The first is an exact method that is
based on plugging the value of the frequency into the transfer function. The sec-
ond is based on using the slope information.

710

From Equation (7.36), if we substitute s = jo, where w is the circular frequency, we
obtain

1 1 - 1o

Hls) = Tjw + 1 1+ 202

and the magnitude of the above complex expression is given by
Vol ___ 1

Vol " VA ¥

Replacing w with 277(500) and = with 1/(277100) in the above expression, we obtain
an output-to-input ratio of 0.196, or the output is 19.6% of the input.

Using the slope information, we first determine the number of decades between
the 500 Hz and the 100 Hz frequency by taking the logarithm of the ratio of
the two frequencies or 10g;¢(500/100) = 0.699. A first-order filter has a slope
of —20 dB/decade, so at 500 Hz, the filter output is —13.98 dB (0.699 X —20 dB) or
20% of the input. Thus, there is an 80% attenuation at a frequency of 500 Hz. The
result is very close to that using the transfer function method.

Note that if we had used a Butterworth filter with a slope of —60 dB/decade, then
the attenuation at 500 Hz would have been 99.2%.

A simple passive low-pass filter can be easily constructed using a resistor and a
capacitor circuit as shown in Figure 7.56(a). The filter time constant 7 is the prod-
uct of the resistance and the capacitance or 7 = RC. An active low-pass filter is
implemented using op-amps as shown in Figure 7.56(b), where the filter time con-
stant is given as 7 = R,C. Note for the active filter, the filter gain is given by
(—=R,/R;). The attenuation rate of the first-order low-pass-filter is, however, not
high. It is desirable to have high attenuation rates such as —60 dB/decade. Such an
attenuation rate can be achieved by other types of filters such as Butterworth and
Chebyshev. The details of these and other filter types can be found in many signal-
processing texts such as [14].

RZ
——VWW—
: i
— N T
Vi >
Vinpm C =/ VOquut input — AW\ a)
+ output
L

(@ (b)

If the sensor data is available digitally, then one can use a digital filter instead.
A digital low-pass filter can be implemented using Equation (7.38).

y(k) = (1 = a)xk) + aylk = 1)
where y(k) is the output sequence, x(k) is the input sequence, £ is the current index,
and «a is a factor that is dependent on the filter corner frequency f; and the sam-
pling time 7. Alpha is given by:
o = gl 27l
For example, if f; = 10 Hz, and T is 1 ms, then a is 0.9391, and the digital filter
equation is

y(k) = 0.0609x(k) + 0.9391y(k — 1)

Signal Conditioning LY}

Figure 7.56

Circuit for (a) passive
low-pass RC filter and
(b) active low-pass filter

(738)

(739)

(740)

Chapter 7 Sensors

2148

o g
5542 LELR 53 e e
o, & fm.U = £ Q9 o f
ISR — H @ @ e..m.b
S = — = =~ .IFU =] < O
— 1%}
— _— e etdm [oalie] =
£55 8 1€8y EcoiEl g =87
sy 2 2 = . Q < =
nEZE =2 g™ mnmsy =2 &
2NN R =z Eg hcmlmmlb 2858
b=t < = 2
==z FEwE TEELS 2558
.=
1 mHZ..I.m..mb bCO...Mb.mD dwam
[o < o =9 & = .=
2 EE 22285 ST
— Q [+
STU®8 =S3m 9@ <287
e ~a gSof &, 2% =&
S oo g D EE 3 : c
o .= =2 e s lng
T =g e R A, g e s
L o=@ ! S th & =
5 NS &5 o = s o B
a N =
O & g O g) g 0
BT o g — x X =
mwOa B9 mh, . o~Es
— llm emoer heeVﬂ
Q= e = QO w4+ H o5
VT M T o 8 < = ..mc
£ 2 3 = Wb =
“EE= 89558 C og.20. 9
25 5E zeg8l) SE =2
FENE EZSSEF I E2g8g
@ a..m ~ S B8 Q. = — B I
< I N mnme, =) ean
= o Lo 2 QO »n QO T Lm %)
= L2250 =5 8 85 5 0 -7
= 238 ZESSS o 82F
== 3] o w O o4 @
=52E Sgpge 275
O ISE= Q < 2 o O ¥
D~ =) QO @ = A 49 g 2= .0
njm..g 25298 T3 s 52$
RSN = v BB @ 2 =
9] o 172} LM
B = B O = 3 & 5
< O 4 < 0.5 3 e ¥ .a 5
SETs SeEL B SEE 3
queu @ = RZ) .
e.lnml rmh.umd 0.8 B >
viL & 5 =T gEg 82
W mO lf.:mmu ltmm
58o90 L 2,52 S5T i
o B P 3L) 3 oo
S B &2+ =820 5 2395
R . ek E'H < 9o ad 3
entWS_ o= % 3 23 L =T
VOYO%h[kSSe.U i 2 5
29 g8=g8®mn—5 =5 - 892 M
O—UBHSQEAQ [ha O O B s o= g = = o
' S o — O HCH ly=i) o O
= S5 9 g &S P ro,.mCO
Lau.,manoom Qn.w.m.mer ERETED
e e
F&3ZE Gabzd 52855
_ = n — eS)
c T O = 2>
5 223 = R 8383
~ + c — ~ < ¥
> 0 o —
g 50Y @ <
S £+« 3 5 ©v.28
o c S
22 350 8o 5 € -
= E 52 g
= =
I ob g
o) m = F (gp) epmrusey (3p) aseyq
a L

Frequency (rad/sec)

710 Signal Conditioning 19

Vinput R output

A simple high-pass filter can also be constructed using a resistor and capacitor
circuit as shown in Figure 7.59. The circuit is similar to the low-pass filter, but the
resistor and the capacitor locations are interchanged.

Bandpass filters are used to allow signals in a certain frequency range and to
attenuate all signals outside of this range. The two corner frequencies that define
this frequency range are f; and f7;. A bandpass filter is a cascade combination of a
low-pass and a high-pass filter, with the transfer function given as

Figure 7.59

Circuit for a first-order,
high-pass filter

H(s) _ TS
C(mis + s + 1) (142)
where 7y = 1/Q2nf)) = 1l/wy and 1, = 1/Q7 f;;) = 1/w,. The magnitude and
phase frequency response plots of this filter are shown in Figure 7.60. The magni-
tude plot shows that the filter has nearly a unity gain inside the desired frequency Figure 7.60

band. Outside this band, the magnitude increases or drops at the rate of
20 dB/decade. The phase angle is close to zero around the center of the pass band,
but approaches +/—90 degrees away from the frequency band.

Bode Diagram

Magnitude and phase
for bandpass filter

(fy = 10 rad/s,

f., = 1000 rad/s)

Magnitude (dB)

7777777777

Phase (deg)

1 [RN 1 [RN

1 [RN 1 [N EE

fmmmLo-bLololoLalbllooooo Lol LooLiLwl
[

1 [RN [RN [INEEER L
B U Sy SRR S o Sy SRy Sy (AP Sy W R japepe pag bo 4 ololoidld o oo o oo o3 o d b d gl e T——

10! 102 103 104 10°

Frequency (rad/sec)

Notch filters are used to attenuate a narrow band of frequencies from a sig-
nal. For example, if we know that the noise is originating at a particular frequency
such as 60 Hz, then we can design a filter to eliminate this noise. A notch filter is a

second-order system and has the following transfer function:
2.2
T8 + 1
Hisg) = ————
x 7257 + 4rs + 1

where, as before, the time constant 7 and the notch frequency f; are related by
Equation (7.37). The magnitude and phase frequency response plots of this filter

(14)

1250

Chapter 7 Sensors

Bode Diagram
0
Y

o —100
2
3

3 -200
=
3

= —300

-400

90

—~ 45
&
=

[5) 0
3
£

45

-90

10° 10! 102 10°

Figure 7.61

Magnitude and phase
for notch filter

Figure 7.62

Wheatstone bridge
circuit

Frequency (rad/sec)

are shown in Figure 7.61. The magnitude plot shows that the filter has zero output
at the notch frequency (107 rad/s), with a sharp roll down and roll up at either side
of the notch frequency. The phase plot shows that away from the notch frequency,
the phase angle is zero. Note that if the disturbance frequency is different from f;,
then the disturbance frequency is not completely eliminated.

7.10.2 AMPLIFICATION

In many cases, a sensor output voltage is too small to provide a meaningful resolu-
tion and some form of amplification is needed to amplify the output voltage. To have
a good accuracy, the impedances of the sensor and the amplifier have to be taken into
account in selecting an amplifier. In general, it is desirable for a sensor to have a very
small output impedance and for the amplifier to have a very large input impedance.
However, amplifiers are not ideal devices, but have finite impedances that could affect
the accuracy of the amplification process. When the output impedance of the sensor
is not very small compared with the input impedance of the amplifier, the input volt-
age seen by the amplifier is different than the open circuit voltage of the sensor. This
condition is called loading and was discussed in detail in Chapter 2.

Amplifiers are available as single IC circuits, or can be built using a combina-
tion of discrete elements such as transistors, diodes, and resistors, or can be built
using op-amps. Op-amp amplifiers have high input impedances and thus are very
suitable for use in amplification circuits. Chapter 2 discussed different types of
op-amp circuits. These included simple amplification, amplification with either
integration or differentiation, voltage following, and differential amplification. The
next chapter discusses amplifiers that are used for motor control applications.

7.10.3 BripGe CIRcuITS

A bridge circuit is used to improve the accuracy and sensitivity of the output of cer-
tain sensors. It is commonly used to process signals from resistive, capacitive, and
inductive type sensors. Consider the bridge circuit shown in Figure 7.62 made of
resistive elements with a constant DC voltage applied to it. This four-arm bridge cir-
cuit is commonly known as the Wheatstone bridge and is commonly used to process
the signal output from strain gages and resistance-based thermal sensors. The strain

710 Signal Conditioning

gage resistance or the temperature sensor resistance form one arm of the bridge.
External power from a battery or a power supply is applied to two opposite vertices of
the bridge, while the output of this circuit is read from the remaining two opposite
vertices. Normally, the resistances of the arms of the bridge are chosen so that the
bridge is initially balanced (output voltage is zero). A bridge circuit can then be used
in one of two ways. In the first way (the null method), when one of the resistances
changes (such as Ry) due to a change in the variable that is being measured, another
resistance is changed (such as R;) to bring the output of the bridge back to zero. This
assumes that means are available to adjust the resistance R,. This technique is only
used with slowly varying resistance changes. In the other way (deflection method),
the three resistances of the bridge are fixed, and only one is changed. When one of the
resistances of the bridge changes, the change in the output of the bridge is used as a
measure of the resistance change. The second way is suitable for dynamic measure-
ments. The bridge is known as a deflection bridge in this mode of operation.

As a first step, let us determine the conditions that make the output of the
bridge to be balanced. If the bridge is balanced, then the voltage V) is zero. The
voltage drop across R, is given by

__h
R + R,

% Vs

because the resistances Ry and R; act as a voltage-dividing circuit. In a similar fash-
ion, the voltage drop across Rj; is given by

A

=R A,

Vs

Vo is then given as V] — V3 or

i By MRy — Fofis
VO = - VS = VS
R+ R R+AhA (R + R) (R + R
For Iy to be zero, the numerator in Equation (7.46) has to be zero or

L

R R

Thus if the resistances of the bridge follow the ratios given by Equation (7.47),
then the bridge will be balanced and the output voltage V' will be zero. Notice that
the balance condition is independent of the magnitude of the supply source.

Now let us assume that the resistance R; of the bridge has changed by a small
amount 6R;. We want to determine the resulting change in the bridge output due
to this change. From Equation (7.46), the output of the bridge will be

Ri+oR R)v
B+ 6R + R B+ R)°

V0+6V0:<

The change in output is then given by subtracting Equation (7.46) from (7.48) or

Ri+oR R)V
R +6R +R R +R)°

(Vo + 8Vp) — VUZ(

If we let Ry = R, = R; = Ry = R and 8R; = 6R, Equation (7.49) becomes

oR

Vo= 1R 28R

Vs

(144)

(145)

(746)

(747)

(748)

(749)

(750)

151

252 Chapter 7 Sensors

or
sV, SRR
(751) Vs 4+ 28R/R

Equation (7.51) is plotted in Figure 7.63, and it shows the output change of the
bridge is nonlinear especially for negative 8R/R values.

Figure 7.63 0.3

Plot of Equation (7.51) 0.2
0.1

BV Vs

0
0.1
-0.2

-0.3
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

OR/R

However, if we assume that 8R/R is small, then Equation (7.51) can be
approximated as
oV _ o

(152) Ve — 4R

The factor % in Equation (7.52) is the sensitivity of the voltage output change due
to resistance change. Equation (7.52) can be solved to get the resistance change as
a function of the voltage output change of the bridge, or

573 _ 48V,
(7.53) R Vs

In some cases, more than one resistance in the Wheatstone bridge can be
active. From Equation (7.46), we can derive an expression for 6V using differen-
tiation rules from calculus. This gives

8Vp _ (B8R — RidRy) (RSRy — R30R,)
(754) o IR+ R (A; + Rif

For example, we can mount two strain gages on a beam subjected to bending to
increase the measurement sensitivity as shown in Figure 7.64. When the beam end
deflects downward under the applied loading, the resistance of the upper gage will
increase and the resistance of the lower gage will decrease by the same amount. For

Figure 7.64

Beam with two strain
gages F

710 Signal Conditioning

the case where Ry = R, = R, we have here 6R; = 8R and 6R, = —8R. Substituting
into Equation (7.54), we get
Vo _ R6R + RSR _ 8R
Vs (2R) 4R
Notice here how the bridge output is now double the case if we had just used a single

strain gage (Equation 7.52). We can generalize this case and rewrite Equation (7.55)
in the form:

Vs 4R
where K is the bridge constant and is defined as

K = Output of bridge
~ Qutput of bridge if only one strain gage is active

1% of
0 _ o

Examples 7.8 and 7.9 illustrate the use of bridge circuits.

Example 7.8 Strain Gage Output

If the strain gage considered in Example 7.4 was connected to a Wheatstone
bridge with Vs = 10 V, determine the output change of the bridge for the load-
ing given in that example.

Solution:

For the 120 Q gage, the change in resistance was found to be 0.00955 Q). Using
Equation (7.52) (since 8R/R is very small), the change in the bridge voltage output
is given as

oR 0.00955

8Vp = ==
" 4R 4x 120

10 = 0.199 mV

Note if the bridge was used in the deflection mode, this output can be amplified
1000 times or more before being read by an A/D due to the absence of a large fixed
voltage component. This is one of the main reasons why a Wheatstone bridge is
used to process the output of a strain gage. This is not the case if the gage was one
of the resistors in a two-resistor voltage-dividing circuit, as shown in Figure 7.65.
The presence of the initial voltage drops across the gage resistor makes it very dif-
ficult to measure the minute change in voltage drop due to the applied loading.

Ry
AN *

s
VS <> Rgﬂge <> Vmeter

Figure 7.65

There are several varieties of bridge circuits. The bridge circuit that was pre-
viously analyzed is known as a constant-voltage resistance bridge due to the use
of a constant voltage source as the supply source. If the supply source is a con-
stant-current source (through the use of a current-regulated DC power source),
then the bridge circuit is known as a constant-current bridge circuit. The
constant-current bridge has a better linearity than the constant-voltage bridge, and

(755)

(756)

(157)

153

254 Chapter 7 Sensors

(758)

Figure 7.66

(a) Two-lead and
(b) three-lead
connections to a bridge

Example 7.9 Bridge Circuit with an RTD Sensor

A Wheatstone bridge similar to that shown in Figure 7.62 is used to process the out-
put from a two-lead platinum RTD. The RTD has an alpha of 0.00385 Q//°C and a
nominal resistance of 100 Q) at 0°C. The bridge was initially balanced when the tem-
perature is 20°C. What will be the output voltage of the bridge if the sensor tem-
perature was increased by 10°C? Assume that the bridge supply voltage is 10 VDC.

Solution:

The resistance of an RTD sensor is given by Equation (7.19). At T = 20°C, the resist-
ance is Ry = R,(1 + (T — T,)) = 100(1 + 0.00385(20 — 0)) = 107.7 Q. Since the
bridge is balanced at this temperature, we will assume the other three arms to
have the same resistance.

For a 10° temperature increase, the change in resistance is equal to (R,aAT) or
SR = 100 X 0.00385 X 10 = 3.85 . Using the linear relationship first (Eq. (7.52)),
the output of the bridge circuit will be

6R
Vo = EVS = (3.85 X 10/(4 X 107.7)) = 89.4 mV
If we have used the exact relationship (Eq. (7.50)), the output will be
_ SR Ve = 3.85
4R + 28R ° 4 X 107.7 + 2 X 3.85
The error due to the linear approximation is 1.9%.

10 = 87.8 mV

Vo

the output voltage change for the case where R = R, = R; = R, = R, and
8R; = 6R, (see Problem 7.12) is given by the relationship

ofR

sV, = 2,
0= 4R 1 8RS

where g is the supply current. Similarly, an AC bridge circuit is one in which the
supply voltage is alternating. With an AC supply, the bridge can be used to measure
inductance, capacitance, or resistance. A bridge circuit can be used to compensate for
lead wire resistance. This is needed in situations where the sensor is located away
from the signal conditioning equipment and long leads are used to connect the sen-
sor. The RT'D temperature sensor which was discussed in Section 7.8 is available with
two- or three-lead configuration. In the two-lead configuration (see Figure 7.66(a))

R,
— AW

the bridge output is sensitive to the variation of the resistance of the lead wire due to
environmental influences. However, in the three-lead configuration (Figure
7.66(b)), any environmental effect on the resistance of the two lead wires will equal-
ly effect both “legs” of the bridge assuming the same wire type, wire thickness, and
wire length is used in both leads; thus, the sensor is insensitive to lead wire effects.

A bridge circuit can also be used to compensate for temperature change in
strain gages. This is done by using a dummy strain gage located next to where the
actual measurement is made and placed on material very similar to the test material.
The connection diagram is shown in Figure 7.67. Any temperature change will
change the Ry and R, resistances by the same amount, making the circuit just sen-
sitive to variation in the Ry resistance due to loading.

Dummy
Gage

=i
=i

R,

| 7.11 Sensor OuTPuUT

We have seen that some sensors produce an analog signal while others produce a
digital signal as their output. Many sensors produce or can be made to produce a
current output commonly known as 4-20 mA as their output. This section will dis-
cuss this output method. In this output method, the sensor uses a current transmitter,
which produces a current signal proportional to pressure, temperature, or any
other physical quantity that is being measured by the sensor. The output current
from the transmitter varies from 4 mA at one end of the measurement to a maxi-
mum of 20 mA at the other end.

Current transmitters are available in different forms, with the two-wire trans-
mitter being very commonly used. A schematic of a wiring diagram that uses a two-
wire transmitter is shown in Figure 7.68. An external DC voltage is supplied to the
transmitter through a wire with a lead resistance Ry. The output current from the
transmitter goes through another wire with a resistance R;, and then through a
receiver resistor with a resistance R¢. The current produced by the transmitter pass-
es through all the elements in the circuit. Since it is easier to measure voltage than
current, the voltage drop across the precision receiver resistor is measured and is

Ry

NV
1
Current L DC Voltage

Transmitter “T_ Supply

Al

Sensor Output

Figure 7.67

Dummy gage for
temperature
compensation

Figure 7.68

Wiring for a two-wire
current transmitter

255

256 Chapter 7 Sensors

used as an indication of the sensor output. For example, if a 250 Q) receiver resistor
is used, then the voltage across the receiver resistor will vary between 1 and 5 V.

An advantage of the current output method is its insensitivity to supply-voltage
variation and to noise in the circuit. Because the current transmitter has a high
impedance (Mega ohms (M(2)), any noise voltage in the circuit is dropped mostly
across the current transmitter with very little voltage dropped across the receiver
resistor. Because of this feature, current transmitters are used in many industrial
applications to transmit sensor output over long distances.

| 712 CHAPTER SUMMARY

This chapter discussed the different types of sensors used ¢ Strain-gage sensors for strain, force, and torque
in mechatronic and measurement applications. The chap- measurement, and force-sensitives resistors for
ter started by discussing the static and dynamic character- force measurement.

istics that characterize a sensor performance. It then dis- . .
. .. p . ¢ Thermistors, thermocouples, RTDs, and integrated
cussed and explained the principle of operation for many .
. . .. circuit sensors for temperature measurement.

types of sensors used in various measurement applications.

These sensors include the following. * Piezoelectric and integrated circuit sensors for vibra-

. tion measurement.
* Potentiometers, LVDTs, encoders, and resolvers for

displacement measurement. The chapter also discussed the use of signal-

. . . conditioning operations (such as filtering, amplification
¢ Hall-effect, inductive-type, ultrasonic, and contact- . g. p. (. & amp ’

L f . . and bridge circuits) that are applied to the sensor output,
e proximity sensors for proximity measurement. Lo . .
Ypep v P v making it suitable to be interfaced to a measurement device

* Tachometers and encoder-type sensors for speed or an analog-to-digital converter. The last topic covered in
measurement. this chapter was the 4-20 mA sensor output method.
QUESTIONS

7.1 Name two static performance characteristics of sensors.

7.2 Define what is meant by sensor bandwidth.

7.3 What is the difference between sensor accuracy and repeatability?
7.4 Explain why repeatability error cannot be improved by calibration.
7.5 List several sensors that are covered in this chapter that produce an analog output.
7.6 List several sensors that are covered in this chapter that produce a digital output.
7.7 List some disadvantages of potentiometers.
7.8 What are the differences between resolvers and encoders?
7.9 What is the Hall effect?
7.10 Explain the operation of ultrasonic proximity sensors.
7.11 Which type of non-contact proximity sensors can detect only metal objects?
7.12 What is ‘ripple’ in tachometers?
7.13 What is the principle of operation of a strain gage?

7.14 Explain the difference between reaction and rotary torque sensors.

712 Chapter Summary 257
7.15 What is a thermistor?
7.16 What is the difference between a thermocouple and an RTD sensor?
7.17 What is the difference between a vibrometer and an accelerometer?
7.18 Why is a Wheatstone bridge circuit used in some signal conditioning circuits?
7.19 What condition causes a Wheatstone bridge’s arms to be balanced?
7.20 Why are filters used?
7.21 Name three different filter types.
7.22 What is the advantage of the 4-20 mA sensor output method?
PROBLEMS
P7.1 Research and identify the type of sensors used in P7.5 Draw a circuit to interface the output of a two-
the following applications. wire NO proximity sensor (see Example 7.3) that
g app p ty p
. uses a 24 VDC power supply to the digital input
a. Kitchen oven line of an MCU that operates with Vpp of 5 V.
b. RPM indicator in vehicles P7.6 A strain gage with a resistance of 120 Q and a
‘ _ . gage factor of 2 has a resistance change of
c. Back-up sensor in certain vehicles 0.005 €. a) Determine the microstrain measured
d. “Trunk compartment closure by. the gage. b) If this microstrain is due to t.he
axial elongation of a rectangular steel bar with a
e. Refrigerator door closure cross sectional area of 0.4 X 1073 m?, determine
the axial force acting on the bar.
f- Laptop cooling system P7.7 A platinum RTD sensor has a nominal resistance
g. Vehicle engine cooling system of 100 © at 0° and a TC factor of 0.00392 Q/Q/°C.
Determine the temperature read by the sensor if
h. Servo robot the RTD resistance is 200 Q.
P7.2 A rotary potentiometer with a resistance of 5 k() P7.8 An I.C. 4igital temperature sensor has an output
and a measuring range of 325° uses a 10 V supply. sensitivity of 10 mV/°C. The output of the sensor
The potentiometer output was read by a measur- was reaq by a 10-bit A/D with a 5 V reference.
ing device with a resistance of 100 kQ. Determine Detetr mine the actual temperature if the A/D
the angle measured by the potentiometer if the reading is 84.
measuring device output is6V. What “TOUId t.he P7.9 An IC vibration sensor has a range of +5 gand a
meast.lred angl.e be if the measuring device resist- sensitivity of 400 mV/g. The signal-conditioning
ance is 1 M) instead? circuit for this sensor gives an output of 2.65 V at
P7.3 A geared DC motor has a built-in incremental 0 g. For positive acceleration, the output increases
encoder that is connected to the motor side. The above 2.65 V, and for negative acceleration, the
encoder disk has 1250 lines, and the gear ratio is output decreases below 2.65 V. Determine the
9:1. Determine the angular resolution of this actual acceleration if the sensor output is a) 2.0 V
encoder, assuming that the encoder is operated in orb)3.8 V.
quadrature mode. P7.10 A Wheatstone bridge similar to that shown in
P7.4 A single-turn, 10-bit absolute encoder has a gray Figure 7.62 is used to determine the unknown

code output. Determine a) the resolution of this
encoder and b) the encoder output for the first 16
angular positions read by the encoder.

resistance Ry by adjusting the resistance R;. The
resistance R3 was found to be 151 Q when the
bridge was first balanced. When the resistances R,

1258

P7.11
P7.12

P7.13

P7.14

Chapter 7 Sensors

and R4 were interchanged and the bridge was bal-
anced again, R3 was found to be 182.5 . What is
the value of R;?

Show how Equation (7.54) was obtained.

Derive Equation (7.58) for a constant-current
source bridge.

For the strain gage considered in Example 7.8,
design an op-amp circuit to amplify the bridge
output voltage signal by a factor of 1000.

For the assembly system shown in Fig. 6.12, do
the following:

. Select an appropriate sensor to detect the part

presence on conveyer A at the location where the
part is picked up by robot #1. Assume that the
part is metal, made of steel, has dimensions of

2 X 2 X 1.5 in., and it is detected using one of
its side surfaces. Justify your selection, and explain
how the selected sensor will be interfaced to a PC
or a microcontroller system.

LABORATORY/ PROGRAMMING EXERCISES

b.

P7.15

Select an appropriate sensor to check for the
‘quality’ of the completed assembly at station #3.
Assume that the quality of the assembly is done
by measuring the height of the two-part assembly
relative to the indexing table surface. Justify your
selection, and explain how the selected sensor will
be interfaced to a PC or a microcontroller
system.

Consider a back-up obstacle warning system
(similar to that found in some vehicles) that just
uses one ultrasonic distance sensor. Assume that
the sensor provides a 0 to 10 VDC analog voltage
output that is proportional to the distance of the
object from the sensor. The sensor output is zero
when the object is at the near limit setting of the
sensor. Design a circuit that can process the
output of this sensor to inform the user of the
closeness of the object to the sensor. You can use
multiple LEDs or a buzzer as an indication of the
output. Make any reasonable assumptions.

L/P7.1 Build an RC filter circuit with R = 5.1 kQ and

C = 0.1 uF. Use the function generator to apply
a sinusoidal signal with frequencies ranging from
10 to 3000 Hz. Record the amplitude of the input
and output signals as well as the phase shift as a
function of frequency. Plot the filter response
data (magnitude and phase) and compare to that
expected from theory.

L/P7.2 Write code (use MATLAB or Excel) to simulate

the operation of a low-pass digital filter
(Equation 7.38) with a corner frequency of 5 Hz
and a sampling frequency of 1 ms. Generate plots
to show the filtering effects for sinusoidal signals
with a frequency of 1, 10, and 20 Hz.

L/P7.3 Use MATLAB to create a notch filter with a

notch frequency of 60 Hz. Apply sinusoidal
signals with the same amplitude but with the
following frequencies: 54 Hz, 59 Hz, 60 Hz, and

61 Hz. For each signal, record the steady state
output amplitude of the notch filter.

L/P7.4 Using any PIC MCU, develop a program to read

the voltage output from an analog sensor such as
the LM35C temperature sensor. Convert the read
voltage value to temperature in engineering units,
and then display the temperature reading to the
user every 1 second through an RS-232 interface
to a terminal program (such as HyperTerminal or
PuTTY).

L/P7.5 Develop a VBE program that can display the

room temperature using the LM35C temperature
sensor. Connect the sensor output to one of the
A/D channels on the data acquisition card that
the PC has. Display the temperature every one
second in a textbox. (Note: this lab exercise
assumes the availability of a data-acquisition card
with a software library for accessing the A/D).

Actuators

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:
® List the advantages of electrically powered actuators
e Explain the common configurations of brush-type DC motors
* Model the electro-mechanical behavior of a PM brush DC motor
¢ Explain the working principle of BLDC, AC, stepper, universal, and hobby
servo motors
¢ Explain the construction and drive techniques for stepper motors
¢ Interpret the torque-speed characteristics of an actuator
¢ Explain drive methods and amplifiers for different actuators
¢ Select an appropriate actuator for a given mechatronic application

| 8.1 INTRODUCTION

Actuators are the key components of all mechanized equipment. An actuator is a
device that converts energy to mechanical motion. There are many types of actua-
tors available to drive machinery such as electric, internal-combustion, pneumatic,
and hydraulic. Electrically powered actuators are widely used in equipment (such as
pumps, compressors, machine tools, and robots). Internal-combustion actuators are
normally used for mobile applications (such as in vehicles, boats, and in power gen-
eration equipment). Pneumatic actuators, which use compressed air as the power
source, are mostly used in machinery applications (such as pick-and-place robots
and in air-powered tools). Hydraulic actuators, which use a pressurized oil to drive
a piston, are used in applications for lifts and presses, among others.

This chapter focuses on electrically powered actuators, which are commonly
used in mechatronic systems. Electrically powered actuators have the characteris-
tics that they are clean (no leaking pressurized fluids), require no extra equipment
(no need for air storage tanks, fuel tanks, or air filters), can operate indoors with-
out the need for exhaust systems, and can be easily controlled (especially DC-type
electric motors). One disadvantage of electrically powered actuators is their low
power-to-size ratio. In this chapter, the characteristics of several types of electric
motors are discussed, along with information on how to select and size an actuator
for a mechatronic system.

Electric motors can be broadly classified into direct current (DC) and alternat-
ing current (AC), which refer to the type of electric power that drives the motor.
Within each category, the motors can be further classified depending on the

1259

260 Chapter 8 Actuators

(81)

Figure 8.1

Simplified construction
of a brush DC motor

physical construction of the motor and how the motor is wired. All electrically
powered motors consist of two main components: a stator and a rotor, which are
separated by an air gap. The stator is the fixed part of the actuator, while the rotor
is the movable part of the actuator. In rotary-type electric motors, the stator takes
the form of a hollow cylinder that is attached to the housing, while the rotor has a
shaft that is supported by bearings. For further reading, see [31-33].

| 8.2 DC MoTORS

Direct-current or DC motors are motors that require non-alternating or steady
voltages to be operated. DC motors are available in variety of sizes ranging from a
few watts up to 5 horsepower (hp). There are two classes of DC motors: brush and
brushless. We will start by taking about brush-type motors.

8.2.1 BrusH DC

A brush type DC motor is a very common type of electric motor. This motor is
used in many battery-powered devices such as electric toys, and in industrial appli-
cations such as conveyers, indexing tables, and material handling. A brush-type
motor, as the name suggests, uses a pair of brushes to transfer the electric current
to the rotating coil to allow continuous flow of current in the same direction as the
rotor rotates. The brushes, which historically used to be made of copper bristles,
are constructed out of spring-loaded graphite, and are designed to contact the
commutator, which consists of a ring of alternating conducting and insulating seg-
ments that is attached to the rotor. To illustrate the working principle of the brush
DC motor, consider Figure 8.1, which shows a simplified arrangement of two
brushes and a two-piece commutator. The leads of the rotor coil, which are
situated between a magnetic field, are attached to the commutator. A brush-type
DC motor develops a torque (and hence rotation of the rotor) when a current flows
in the rotor coils through the magnetic field created by the stator. The torque is the
result of the two equal but opposite forces acting on the sides of the coil. The force
is given by Lorentz’s law which states that when a conductor carries a current
through a magnetic field, a force acts on the conductor and is given as the vector
cross product of the current and the magnetic field, or mathematically:

F=1IXB

Where I is the current vector and B is the magnetic field vector. For the current
arrangement shown in Figure 8.1, these forces will cause the coil to rotate clockwise

Current Direction
Brush

Commutator
Ring

Torque Torque

ANANDANDAN:
\/ RANARNVERN

\ (A NANA
INSNINSNN N

Angle Angle
(@) (b)

as seen from the brush end. Without the use of a commutator to maintain the
direction of the current, the torque direction will reverse the moment the coil
passes through the vertical plane (called the commutation plane), producing no
useful motion. Using a two-piece commutator, the resulting torque will not be
smooth and will exhibit the ripple shown in Figure 8.2(a). Note that the torque is
maximum when the coil is horizontal because at this position, the moment arm dis-
tance between the forces acting on the coil is maximum. Similarly, the torque is
zero when the coil is in the commutation plane because the moment arm distance
is zero. In general, the torque is a function of the sine of the angle between the
magnetic field direction and the vector normal to the plane of the coil, 6, where
6 is 90° for the coil position shown in Figure 8.1. If we had used a six-piece
commutator (and also three coils, one for each commutator pair) instead of using a
two-piece commutator, the torque would be smoother (Figure 8.2(b)) since the
torque at any point in time is the sum of all the torques in all the coils. If the sta-
tor magnetic field could be made radial [34], then the ripple is eliminated since the
angle 0 will always be 90°. To improve the torque characteristics, commercial
motors have a commutator that is split into 50 or more segments. Figure 8.3 shows
the brushes and commutator of a small DC motor.

Brush

Note that the mechanical contact between the brushes and the commutator
leads to wear of these components as well as the formation of arcs which require
these components to be serviced periodically.

One common configuration of brush DC motors is the permanent magnet
DC motor where the stator is constructed of permanent magnets, and the rotor is
made of wire coils (see Figure 8.4(a)). This configuration has the property of linear
torque-speed characteristics. Other configurations can be obtained by using elec-
tromagnets for the stator and by how the stator and rotor coils are wired. These
configurations include series-wound motors, shunt-wound motors, and compound-
wound motors (see Figure 8.4). In a series-wound motor, the stator and rotor coils
are connected in series. In a shunt-wound motor, the stator coils and the rotor
coils are connected in parallel, while in the compound-wound configuration both
series and parallel fields are used. Notice how the torque-speed curve is nonlinear

8.2 DC Motors 261

Figure 8.2

Resultant torque
output as function of
the angle (a) single-coil
and (b) three-coil
segments

Commutator

Figure 8.3

Commercial brush and
commutator of a brush
DC motor

(Jouaneh, University of
Rhode Island)

262 Chapter 8 Actuators

Figure 8.4

Common configurations
of brush-type DC
motors

Magnet Field Windings Armature
:)/
DC Supply DC Supply
Voltage Voltage
Q [}
E E
= =
g g
Speed Speed
(a) PM DC Motor (b) Series-Wound DC Motor
Field Windings Field Windings
DC Supply DC Supply
Voltage Voltage

! {

Torque
Torque

> >

Speed Speed

(¢) Shunt-Wound DC Motor (d) Compound-Wound DC Motor

for series, shunt, and compound-wound configurations. Notice also that in the
series-wound configuration the motor speed increases uncontrollably if the load
acting on the motor was accidentally disconnected since the speed at zero torque is
not limited. In small motors, the internal friction is usually sufficient to limit the
breakdown speed, but in large motors, external safety devices need to be imple-
mented. Series-wound motors are used where there is a need for a very large torque
at low speed. An example would be moving a very heavy load from rest such as an
electric train, an elevator, or a hoist. Shunt-wound motors have a nearly constant
speed under varying loads. This makes them attractive to drive machine tools and
rotating equipment such as fans and blowers where it is desirable to have steady
speeds. Compound-wound motors combine the characteristics of both series-
wound and shunt-wound motors. They are used where there is a need for both a
high starting torque and a constant speed operation such as in punch presses, and
shears. They are also safer to use in cases where the load might disconnect such as
in cranes since they have a controlled no-load speed.

Now let us examine the torque-speed characteristics of a PM brush DC motor.
Such a motor can be modeled as shown in Figure 8.5. On the electrical side, the

L R

(i

V.

T

rotor coil inductance and its electrical resistance are modeled as an inductor and a
resistor in series. The back electromotive force (EMF) voltage due to the
rotation of the conducting coil in the stator magnetic field is represented as a volt-
age source. On the mechanical side, the rotating coil is represented as inertia with
friction acting on it. The motor inductance will be neglected in the modeling since
it is usually small. This point is illustrated in Example 8.3. The current through the
motor coil is then given by

XX

= V/H = (Vm - Vbemf)/R

The torque developed by the motor is proportional to the current through the
motor coil, and is given by

T= Kl

where Kpis the torque constant. Since the back EMF voltage (Vpems) is proportional
to the rotating speed of the coil, we can write

Voemt = Kr @

where w is the rotational speed of the motor and Ky is the back EMF constant.
Combining Equations (8.2) through (8.4), we get

Vi)
T=K—— KrKe—
TR rRep
If we set K V;,/R to be the starting torque 7 and K7 Kg/R to be the constant e,
then the torque speed relationship is written as
T=T— aw

The above relationship is plotted in Figure 8.6 for three different values (/7,
V5, and V3) of the supply voltage Vi, where V3 > 1, > V7. The three plots have

0 4
=
E V3 Starting Torque Vi>V,>V,
. \ﬁ Motor Power
Load Curve
Operating —>-| No-Load Speed
Torque

Operating Speed

8.2 DC Motors 163

Figure 8.5

Electro-mechanical
model of a PM brush
DC motor

(8)

(83)

(84)

(85)

(8.6)

Figure 8.6

Typical torque—speed
characteristics of a PM
brush DC motor

264 Chapter 8 Actuators

the same slope, but the starting torque increases (decreases) with an increase
(decrease) in the supply voltage. For a given supply voltage, the torque speed curve
is linear and is defined by two parameters, the starting torque or the stalled torque,
and the no-load speed. The starting torque is the maximum torque that can be
obtained from the motor. This maximum torque is obtained when the motor is
stationary. As shown by Equation (8.5), as the motor starts rotating, the back EMF
voltage generated due to the rotation of the conducting rotor through the mag-
netic field generated by the stator acts against the voltage applied to the motor
leads. This causes the current through the motor coils to reduce, and thus the out-
put torque, since the output torque is linearly related to the current through the
coil. So, as the motor picks up speed, the torque further reduces and it will go to
zero at the no-load speed, which is the maximum speed that can be obtained
from a DC motor. Figure 8.6 also shows the output power of the PM brush DC
motor as a function of the operating speed. Notice that the maximum power is
obtained when the motor is operating at a speed equals to half the no-load speed.
This can be verified by writing an expression for the power, differentiating it,
and setting it equal to zero to solve for the speed at which the power is maximum.
When a motor drives a load, the operating speed of the motor will be less than the
no-load speed, and it will be at the point where the load torque matches the
motor torque as seen in the figure. Notice that if the load torque changes linearly
with speed, the operating speed of the motor then linearly increases (decreases)
with an increase (decrease) in the supply voltage. The easy adjustment of operat-
ing speed through voltage input control is one advantage of PM brush DC motors
over other types of electric motors. Example 8.1 shows how to determine the
operating conditions of a load driven by a PM brush DC motor, while
Example 8.2 considers the dynamic modeling of a mechanical system driven by a
PM DC-motor.

Example 8.1 Operating Conditions of a Load Driven by a

PM DC-Motor

A one-quarter hp DC-geared motor is used in a lift mecha-
nism to lift a load of 10 kg using a simple pulley arrange-
ment, as shown in Figure 8.7. The no-load motor speed is
300 rpm, and the starting torque is 23.8 N-m (or 210 |b-in.).
The frictional resistance in the pulley drive is 2 N.m.
Neglecting the inertia of the rotor, the pulley, and the cable,
determine:

a. The initial acceleration of this load.
b. The steady-state lifting speed of the load.
c. Output horsepower of the motor at steady state.

Figure 8.7
Solution:

a. At startup, the available torque to accelerate the load is the starting torque
minus the friction torque and the gravity torque. Or 23.8 — 2 — 10 X 9.81 X
0.15 = 7.1 N-m. At a radius of 0.15 m, this corresponds to a starting force of
7.1/0.15 = 47.3 N. Thus, the starting acceleration of the load is 47.3/10 =
4.73 m/s%. Note that as the motor speed starts increasing, the acceleration
will decrease.

b. At a steady state, the load is moving up at a constant speed. The torque
that the motor needs to overcome will be the sum of the friction torque

8.2 DC Motors 165

and gravity torque. This is given by:

Tioad = 2 + 10 X 9.81 X 0.15 = 16.7N:m

When the motor is used to lift the load, the steady-state speed is deter-
mined from

Tmotor = 23.8 — (23.8/300) @ = Tjpaq = 16.7 N-m
=>w = 89.5rpm
Viteady = @ r = (89.5 X 27/60) X 0.15 = 1.41 m/s

c. At steady state, the output horsepower of the motor is hp = 16.7 X 89.5 X
27/60 X 1/746 = 0.21 hp. Notice that the output hp is less than the rated
hp for the motor since the steady-state speed is not half the no-load speed.

Example 8.2 Modeling of a Mechanical System Driven
by a PM DC Motor

For the drive system shown in Figure 8.8 with a gear ratio of N:1, assume that the
motor is a PM DC motor. Develop a dynamic model that relates the input voltage
applied to the motor to the motor speed as measured by a tachometer mounted
on the motor shaft. The tachometer has a sensitivity of kiscn V/rpm. Let the viscous
damping coefficient at the input shaft be by and at the output shaft be b,. Assume
that the shafts are rigid, and let /; represents the combined inertia of the motor
shaft, input shaft, coupling, and the pinion, and /, represents the combined iner-
tia of the gear, the output shaft, and the load link.

Tachometer Motor Bearing

<— Gear Reducer

X

&

Output Shaft

<— Load Link

Figure 8.8

Solution:

With the shafts assumed to be rigid, and since there are no external torques act-
ing on the system, the torque (T,,) supplied by the motor is only used to overcome
the inertia and damping in the system. Thus, we can write

T = 1161 + b161 + (0, + by6,)/N (1)

where 6, is the angular velocity of the input shaft, and 6, is the angular velocity
of the output shaft. Due to gearing,

0,/6; = 1/N ()
Using Equation (2) to express the velocity and acceleration of the output shaft in
terms of the input shaft, we obtain

(01 + by0,)
7

T = 1167 + b6y + = lefi01 + besy (3)

166

Chapter 8 Actuators

Figure 8.9

Nominal speed and
torque for a PM
DC-motor

Where It = 17 + % and bgss = by + %. Note that similar to inertia, the damping

coefficient is reduced by the factor N? when reflected to the input shaft. Equation (3)
is a model for this system that relates the input torque to the angular acceleration of
the input shaft. Using the angular velocity of the motor shaft as the output variable,
the model is

T = letf @1 + begr 4 (4)

From Equation (8.5), the torque supplied by a PM DC motor is given as

T = Kp 20 gk 2 5)
m TR TRep
and the tachometer output voltage is related to the motor speed by
Viach = Ktach k2 01 (6)

Where k, = 60/2#@ is a conversion factor from rad/s to rev/min. Combining
Equations (4) through (6), we obtain:

: 1
Viach = Rlur (K7Vinktachka — (K7Kg + bettR) Viach) (7)
e

Using Laplace transform, the transfer function between Vi, and Vi, is

Vtach _ KTktacth _ km
Vin Rletts + (K7Kg + bers R) 7pps + 1

(8

Where k., and 7, are constants that can be obtained from Equation (8). As shown
by Equation (7) or (8), the model is a first-order system.

In manufacturer data for a PM DC motor, the manufacturer typically lists the
nominal speed (or rated speed) and nominal torque (or rated torque) values for the
given motor in addition to the stall torque and no-load speed. The relationships
between these parameters are shown in Figure 8.9. Typically, the nominal speed is 75
to 90% of the no-load speed, and the nominal torque is 10 to 25% of the stall torque.
Figure 8.10 shows manufacturer data for a small PM brush DC motor made by
Pittman, and Example 8.3 explains some of this data. Note that PM brush DC
motors are not suitable for continuous duty operation due to thermal effects. The
nominal torque parameter defines the maximum torque that can be applied to the
given motor for continuous duty operation with the temperature of the motor wind-
ing not exceeding the permissible temperature for operation at room temperature.

For intermittent duty operation, the applied torque can exceed the nominal
torque. The duration of this over torque operation depends on the thermal time
constant for the given motor, and it can range from few seconds to few minutes.

Stalled
Torque

Nominal
Torque

Nominal No-Load

Speed Speed

8.2 DC Motors 267
1
Brush Commutated DC Servo Motors P I "M AN® Figure 8.10
9236 Series Manufacturer

Specification

5 \

(il
L / y 41 !
-G)y \ 2=/
-] 3) \;_-/ /‘
- 0.1561 (93,965 | 0500
[THRL T s | or2nl
iy ™

Units

9236120V 9236 15.2 V

9236 19.1 V

Part/Model Number

9236 24.0V 9236 30.3 V 9236 38.2 V

data for
a Pittman 9236
Series PM brush

5624030 = 3,053 MAX, LEADS 22 AWG
1 14328 (7755 MAX) ULSTYLE 1007/1569
\y 1800 +.50 LENGTH DC motor
#6.32 UNC-28 (4572 +12.7) LENGTH — OPTIONAL

3 350 (8.89) DEEP MAX, D622.002 9632 UNC-28

l 4 HOLES ECL 57 ON A = .82 - 350 (.59} DEEP MAX. (Courtesy of AMETEK,

|| @10000e25.808C ™ il {() | swouscaseona Kent, OH)
e \ @1.000 (325.40) B.C.

9236 48.0 V

Supply Voltage VDC 9.55 12.0 15.2 19.1 24.0 30.3 38.2 48.0
Conti T 0z-in 9.50 9.50 9.50 9.50 9.50 9.50 9.50 8.50
it Nm 0.0671 0.0671 0.0671 0.0671 0.0671 0.0671 0.0671 0.0671
Spead @ Cont. Torque RPM 3530 3750 3850 3880 3980 3980 4010 3990
Current @ Cont. Torque Amps (A) 4.52 3.65 2.88 2.26 1.82 1.44 1.14 0.90
Continuous Cutput Power | Walts (W) 25 26 27 27 28 2 28 28
Motor Congtant oz-in/sqrt W) 3.7 3.9 4.0 4.1 4.1 4.2 4.2 4.2
Nmv/sqrt W 0.026 0.028 0.028 0.029 0.028 0.03 0.03 0.03
oz-in/A 2.62 3.25 412 5.24 6.49 B.24 10.4 131
Tape Gonslant Nm/A 0.019 0,023 0.029 0.037 0.046 0.058 0.073 0.093
Voltage Constant Vikrpm 1.94 2.40 3.05 3.87 4.80 6.09 7.66 9.69
Virad/s 0.019 0.023 0.029 0.037 0.046 0.058 0.073 0.093
Terminal Resistance Ohms 0.50 0.71 1.07 1.64 2.49 3.91 6.14 9.72
Inductance mH 0.43 0.66 1.06 1.72 2.63 4.24 70 10.7
No-Load Current Amps (A) 0.40 0.33 0.26 0.20 0.16 0.13 10 0.080
No-Load Speed RPM 4730 4800 4800 4750 4820 4790 4810 4770
Peak Currant Amps (A) 19.1 16.9 14.2 11.6 9.64 7.75 6.22 4.94
Peak Torque oz-in 49.0 53.9 57.5 60.0 61.5 62.8 63.4 63.7
Nm 0.3459 0.3805 0.406 0.4236 0.4342 0.4434 0.4478 0.4497
Coulomb Friction Torque oz-in 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Nm 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056
Viscous Damping Factor oz-in/krpm 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053
Nm sfrad 3.56E-6 3.56E-6 3.56E-6 3.56E-6 3.56E-6 3.56E-6 3.56E-6 3.56E-6
Electrical Time Constant ms 0.86 0.93 0.99 1.0 14 1.1 1.1 1.1
Mech | Time Constant ms 10 10 8.9 8.5 8.4 8.2 8.1 8.0
Thermal Time C min 14 14 14 14 14 14 14 14
Thermal Resistance Celsius/W 14 14 14 14 14 14 14 14
Max. Winding Temperature | Celsius 155 155 155 155 155 155 155 155
Rotor Inartia 0z-in-sec2 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
kg-m2 7.06E-6 7.08E-6 7.06E-6 7.06E-6 7.06E-6 7.06E-6 7.06E-6 7.06E-6
Weight (Mass) oz 138 13.8 13.8 138 13.8 138 13.8 13.8
g 391.2 391.2 391.2 391.2 391.2 391.2 391.2 391.2
6000 12 + Sintered Bronze Bearings + 7-Slot Armature « Copper-Graphite Brushes
» 2-Pole Stator » Heavy-Gage Steel Housing * Diamend-Turned Commutator
5000 —Speed 110 « Ceramic Magnets = Silicon Steel Laminations
== Current s
g < I
-'g 3000 | 6 E « Encoders |
5 | - Gearboxes
& 2000 | |4 Y| Brakes
1000 o
of § — lo 1 All values specified at 25°C ambient temperature and without heat sink,
0 10 20 30 40 50 B0 7O 2 Peak values are theoretical and supplied for reference only.
Torque (oz-in)

This document is far informational purpeses anly and showld not be considared s a binding description of the products or their LEY Tha data on ihis page depicts typical performance under conircied
Inboratory conditions. Actual performance will vary depending on fhe operating environmant and application. AMETEK products are not designed for and should nof be used in medical ife support applications. AMETEK resenves the night fo
révise its products without nolifcation. Tha above charactarisiics represent standard products. For product designed o meet specilic apphcations. contact AMETEK Technieal & Industrial Products Sales department.

AMETEK TECHNICAL & INDUSTRIAL PRODUCTS
AMETEK

343 Godshall Drive, Harleysville, PA 19438
USA: +1 215-256-6601 - Eurape: +44 (D) B45 366 9664 - Asla: +86 21 5763 1258
TECHNICAL & INDUSTRIAL PRODUCTS

www.amatektip.com

G17

268 Chapter 8 Actuators

Example 8.3 Characteristics of a PM Brush DC Motor

Using the motor data in Figure 8.10 for 24 V operation, do the following.

a. Verify the listed peak torque and no-load speed values.
b. Verify the listed electrical and mechanical time constants.

Solution:

a. The torque-speed relationship for a PM brush DC motor is given by Equa-
tion (8.5). Using Sl units, Vi, is 24 V, Ky is 0.046 N-m/A, K¢ is 0.046 V/rad/s,
and R is 2.49 . Substituting these values into Equation (8.5) and evaluat-
ing, we get

T=0443 -850 X 104w 1)

The peak (or stalled) torque is obtained at w = 0. This gives 0.443 N-m. The
max no-load speed is obtained by solving Equation (1) for T = 0. This gives a
rotational speed of 521 rad/s. These values are very close (0.443 versus 0.434)
and (521 versus 505) to the listed values in Figure 8.10.

b. The electrical time constant (7¢) of the motor is a measure of the relationship
between the input voltage to the motor and the output torque. If we do not
neglect the armature inductance, then KVL applied to Figure 8.5 gives

di
Vi.=L—+ iR + K 2
dt ! E®W (2)

Using Equation (8.3) and converting to the algebraic domain using the
Laplace transform, we get the following expression for the motor torque:

Kr
Ls + R

T(s) = (Vin(s) — Kew(s)) 3)

The transfer function between input voltage and output torque is then
) Ky

= 4
Vin(s) Ls+ R @)
Substituting the given values for K7, L, and R, we get
4.6e 2 1.85¢ 2
€ or € (5)

2.63e 35 +249 1.06e 35 + 1

or an electrical time constant of 1.06 ms (or in general, 7 is given as L/R),
which matches the value listed in Figure 8.10. We note that if the electrical
time constant is small (such as in this case), then the inductance can be
neglected in dynamic modeling without appreciably changing the accuracy
of the dynamic model.

The mechanical time constant can be found from Equation (8) in
Example 8.2, or

Rlets

o Mleft 6
K:Ke + bertR ©)

Tm

For the motor data, bes = 3.56e~° N-m-sfrad, and /o is 7.06e° kg - m?.
Substituting these values and the values of K7, K¢, and R into Equation (6),
we get

a 2.49 X 7.06e °
4.6e7% X 4.6e % + 3.56e % x 2.49

which is very close to the listed value of 8.4 ms. Note that in practice, the
effective load inertia is added to the rotor inertia giving a larger time
constant.

= 8.27 ms

Tm

8.2.2 BRusHLESs DC

Unlike a brush DC motor, a brushless DC (BLDC) motor, as the name suggests
has no brushes. Because there are no brushes, a BLDC motor produces little elec-
trical and acoustic noise, and does not suffer from the wear of brushes and the need
to replace them periodically. Thus a BLDC motor is more reliable than a brush DC
motor. In a BLDC motor, the rotor is made of permanent magnets, and the stator
is constructed of coils. There is no wiring to the rotor. Because the rotor is lighter
than that in a brush motor, a BLDC motor can operate at much higher speeds than
a brush motor. In addition, a BLDC is more efficient than a brush motor due to the
absence of brush friction, and is thermally better suited to dissipate heat since the
powered coils are located on the exterior portion of the motor. Brushless motors
are normally used in machinery applications that require fast response, low heat
generation, and long life. Hence, they are used in high-end machine tools and
robots and computer disk drives.

In a BLDC motor, unlike a brush motor, commutation is not mechanically done,
but is performed through electronic means in which the stator fields are electronical-
ly commutated, depending on the position of the rotor. In most cases, the rotor posi-
tion is obtained from non-contact, Hall-effect type, proximity sensors (see
Section 7.4.1) that are mounted on the stator, but encoder feedback also can be used.
Some BLDC motor drivers perform sensorless control, which is based on using the
EMEF voltage over an unpowered coil to determine when to perform commutation of
the current in the remaining coils. BLDC motors are available in single phase, two-
phase, and three-phase configurations, where the phase refers to the number of inde-
pendent windings on the stator, with the three-phase being the most common
configuration for industrial motors. For a typical three-phase winding, the phases are
wired in either a delta or a Y configuration (see Figure 8.11). The Y configuration is
more commonly used and is electrically more efficient. A three-phase BLDC motor
cable typically has three wires, one for each motor phase, in addition to the five wires
for the three Hall Effect sensors (one wire for each sensor output plus ground and sup-
ply voltages wires). The brushless amplifier drives two of the three motor phases with
DC current during each 120° rotation segment of the rotor.

To illustrate the operation principle of a BLDC motor, let us consider a simpli-
fied three-phase BLDC motor with a two-pole rotor as shown in Figure 8.12. The
stator coils are labeled phase A (®A), phase B (®B), and phase C (PC) and wired
using a single circuit similar to that shown in Figure 8.11a. Real motors have multiple
circuits that are wired in parallel to each other, and a corresponding number of

[100] & ®A

[101]
Range when
Sensor A
Output is 1

Stator
Flux Vector

wn

4

[001] [010]

[011]

8.2 DC Motors 269

Figure 8.11

(a) Y wiring and (b)
delta wiring of a
three-phase BLDC

motor
DA
DB oC
(a)
DA @C
DB
(b)
Figure 8.12

Schematic of an
simplified three-phase
BLDC motor

270 Chapter 8 Actuators

Figure 8.3

Illustration of phase
activation to produce a
particular stator flux
vector

multi-pole rotors [35]. In the simplified schematic of Figure 8.12, one electrical rev-
olution of the motor corresponds to one mechanical revolution. If two electrical cir-
cuits were used, then there are two electrical revolutions per one mechanical revolu-
tion. The figure also shows three Hall-effect sensors labeled 4, B, and C that are
placed on the stator. Each sensor outputs a high signal for 180° of electrical rotation
and a low signal for the other 180°. The sensor output is high when the north pole
of the rotor is pointing towards the sensor. Using this sensor arrangement, there are
six combinations of the sensors’ output, with one combination or state for each 60°
of electrical rotation. Each combination is indicated in Figure 8.12 using the notation
[CBA], where the least significant bit corresponds to sensor A output, and the most
significant bit corresponds to sensor C output. In practice, the particular labeling of
each sensor (i.e., whether it is 4 or B) is not important. What is important is the asso-
ciation of the sensors output states with the position of the rotor.

In a BLDC motor, the phases are electronically commutated as the rotor
moves from one sensors state to another. For each combination of the sensors’ out-
put, two of the three phases are activated such as to produce an angle close to 90°
between the stator and rotor flux vectors [36]. There are six possible stator flux
vectors shown as arrows in Figure 8.12. A particular stator flux vector is generated
for a given position of the rotor and a desired direction of rotation. For the rotor
position shown in Figure 8.12, the stator flux vector should be horizontal and
pointing toward to the left for CCW rotation or horizontal and pointing to the
right for CW rotation. Figure 8.13 shows the generation of this stator flux vector
for CCW rotation through activation of phases C and B and leaving phase A float-
ing, with phase C connected to high voltage and phase B connected to low voltage.
The commutation sequence for all possible sensors states are listed in Table 8.1 for
both CW and CCW rotation. The reader can verify the commutation sequence for
other positions. Using this commutation sequence, on can create a drive timing
diagram for CW rotation of the rotor as shown in Figure 8.14. The 0° electrical
position corresponds to the 12 o’clock position.

A brushless motor requires a special driver that can provide the proper excita-
tion voltages to the stator coils. The driver is of the bipolar type and is commonly
referred to as a three-phase bridge driver (see Figure 8.15). Such a driver consists
of three parallel half H-bridge legs. As seen in Figure 8.15, closing switch S1 on the
first leg and switch S4 the second leg and keeping the remaining switches open
causes power to be applied to phases 4 and B of the motor with Phase C floating.

[100] ¢ ®A

[101] - o . [110]
Stator \\\ N ’,/"
Flux Vector \ SN L
©B SN ®C
0011 ¢~ «~ /N NN YN [010]
GND 011 +V
' ' Current

flow

Sensor Qutput CW Rotation CCW Rotation
¢ B A DA ®B ®C DA ®B ®C
1 0 NC Hi Low NC Low Hi
1 0 1 Low Hi NC Hi Low NC
0 0 1 Low NC Hi Hi NC Low
0 1 1 NC Low Hi NC Hi Low
0 1 0 Hi Low NC Low Hi NC
1 1 0 Hi NC Low Low NC Hi
H 1 1
®A NC R e e ERRE R
Lfob :
H B I o Pomehe-
®B NC |-- R S R R R R S
L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
oC ;
Hlooo
Sensor A L ‘ ,,J:,,,l,,,L 777777 J,l_
Sensor B 7 ! ‘ ! ‘ 777777777777777777
Lo o
Sensor C L I \ ‘ | Lo
o R i
0° 60° 120° 180° 240° 300° 360° Electrical Angle
100 | 110 | 010 | o1t | 001 | 101 | 100 Sensor Reading [CBA]
IW
High S1 S3 S5
S2 S4 S6
LOW/ (. /
L
oC

8.2 DC Motors m

Table 8.1

Commutation sequence
for CW and CCW
rotation

Figure 8.14

Drive timing diagram
for CW rotation

Figure 8.15

Three-phase bridge
driver for driving a
BLDC motor

m Chapter 8 Actuators

Figure 8.16

Brushless DC cooling fan
(Photos.com)

Figure 8.17

Components of a
BLDC fan

(Jouaneh, University of
Rhode Island)

Figure 8.18

Torque-speed
characteristics of a
BLDC motor

"To reverse the current flow for phases 4 and B, switch S3 on the second leg is
closed with switch 2 on the first leg. The particular switches to close are deter-
mined from a commutation table (such as Table 8.1), which provides the commu-
tation sequence for correctly driving the motor. Obviously, the switches in
Figure 8.15 are a representation for transistors in actual implementation.

An example of a brushless DC-motor is the motor that powers the small cool-
ing fans in personal computers (see Figure 8.16). Since BLDC are very light, and
produce little electrical and acoustic noise, they are preferred to use for this appli-
cation. These fans are typically constructed using a two-phase BLDC motor.

A layout of the components of a BLDC fan is shown in Figure 8.17. The rotor
has surface-mounted permanent magnets, while the stator has two-phase coils. The
fan uses a single Hall-effect sensor that is mounted on the stator circuit board.
When the rotor axis is aligned with the sensor, the sensor sends out two comple-
mentary 50% duty cycle waves. These cycles are fed to the transistor gate input that
controls the current flow through each of the two coils. Since the two square waves
are complementary, only one coil will be active at a time. Increasing the voltage
supplied to the motor causes the motor to increase its speed. Some BLDC fans
come with an output that indicates the speed of the fan.

Permanent
Magnets

Rotor

Stator
Hall-effect

Sensor

The torque—speed characteristics of a BLDC motor are different from a brush
motor. Typical characteristics are shown in Figure 8.18. The figure shows that a
brushless motor has a constant or slowly decreasing torque over a wide speed range
up to the rated speed. After the rated speed, which is normally above 3000 rpm, the
torque starts decreasing more rapidly. In the constant-torque region, the motor
horsepower increases linearly with speed.

Torque

Rated

Speed

8.2.3 Servo DRIVES

For motion control applications, servo drives or amplifiers are used to amplify the
reference signal sent to the actuator since they place in one convenient package all
the components needed to amplify the input signal. Drives can be broadly classified

as digital or analog. Digital drives can take input signals in various forms such as
analog, digital (step and direction or PWM and direction), RS-232, or through an
Ethernet connection, while analog drives take as an input analog (+/—10 VDC
such as that supplied by a D/A converter) or PWM and direction signals. In a dig-
ital drive, the drive is configured using a software program running on a PC, while
an analog drive is configured using switches and potentiometers. Analog amplifiers
can be further classified as brush or brushless amplifiers, referring to the type of
electric motor that they can drive. Brush-type analog amplifiers are designed to
drive brush-type DC motors, and other inductive-type loads such as voice-coil
motors, and magnetic bearings.

An example of an analog, brush-type amplifier is the 12A8 amplifier made by
Advanced Motion Controls and shown in Figure 8.19. This amplifier is suitable for
driving small motors, takes £10 VDC as input, is rated at 24 W, and uses an
H-bridge circuit for the amplification. It requires a single unregulated DC power
supply that can supply a DC voltage in the range of 20 to 80 V. This amplifier
allows the user to adjust the following parameters using 14-turn potentiometers:
loop gain, current limit, input gain and offset.

Loop Gain: The loop gain factor when the amplifier is operated in the volt-
age or velocity mode (see below).

Current Limit: The peak and continuous current that can be supplied by the
amplifier. When the current limit is adjusted, the ratio of the continuous to
peak current is maintained.

Input Gain: The ratio between the output variables (voltage, current, or
velocity) and the input signal

Offset: A signal that can be used to adjust any imbalance in the input signal
or the amplifier output.

"This amplifier can operate in various modes including voltage, velocity, and
current (torque) modes. In voltage mode, the amplifier produces an output voltage
signal that is proportional to the input voltage signal regardless of variation in the
supply power. The output amplification or loop gain is variable and set by adjusting
the Loop Gain pot. In velocity mode, the amplifier supplies a voltage to maintain the
motor at a specific speed. For this mode, the amplifier uses the actual motor speed,
as measured by the tachometer that is attached to the motor shaft, as a feedback sig-
nal. In current mode, the amplifier produces an output current signal to the motor.
Because the output torque of DC motors is proportional to the input current, the
current operation mode is sometimes referred to as torque mode.

"This amplifier, like many other commercial servo amplifiers, gives a high fre-
quency (36 kHz) pulse width modulated output (or PWM output). Rather than
changing the amplitude of the output signal, a PWM amplifier varies the duty cycle
of fixed-amplitude, fixed-frequency signal as means of modulating the output
power. This results in a very efficient way to deliver power to the load since it
reduces the power lost in the output stage of the drive.

Another analog drive that is suitable for driving small motors is shown in
Figure 8.20. This drive takes only PWM and direction signals as input, and thus, it
is very suitable to be interfaced to microcontrollers, many of which can provide this
type of output. Figure 8.21 shows the minimum wiring needed to drive a motor
using this amplifier. The amplifier has other connections (such as current output
monitor, fault output, and inhibit line), but these do not need to be connected for
the amplifier to operate, and thus are not shown.

8.2 DC Motors m

Figure 8.19

12A8 PWM amplifier

(Courtesy of ADVANCED
Motion Controls,
Camarillo, CA)

4

VANC

LT
A CON Ty

Figure 8.20
AZ6A8DDC analog drive

(Courtesy of ADVANCED
Motion Controls, Camarillo,
CA)

174

Chapter 8 Actuators

Figure 8.21

Minimum wiring for
the AZ6A8DDC drive

Figure 8.12

Wiring of L6203
H-bridge for

(a) sign-magnitude
drive method and
(b) locked anti-phase
drive method

Direction

Input

PWM ‘ Connections

Ir

— +24 VDC

Power-Supply
Connections

AZ6ASDDC

| | Motor Leads

8.2.4 PWM ConTtroL oF DC MOTORS

As discussed in the previous section, most commercial servo drives accept PWM and
direction signals as input. Also, many servo drives produce a PWM output voltage
signal to the load such as a motor coil instead of a linearly variable output voltage. This
section will discuss PWM motor control in more detail. A plot of a PWM signal was
shown in Figure 4.8, and we explained in Section 4.7.5 how one can set the parame-
ters of the PWM signal using a PIC MCU. The duty cycle of a PWM voltage signal
corresponds to the average voltage delivered to the load. For example, if the amplitude
of the PWM signal is 12 'V, then ata 25% duty cycle, an average voltage of 3 V is deliv-
ered to the load. Similarly, at 75% duty cycle, an average voltage of 9 V is delivered to
the load. Normally, the PWM signal pulse period is much smaller than the time con-
stant of the actuated load, so the load does not respond to each ON and OFF portion
of the PWM signal but to the average value of the PWM signal.

There are actually two methods of using PWM signals in motor control. The
first is called the sign-magnitude method and the other is called the locked anti-
phase method. In the sign-magnitude method, the controller (such as a PIC
MCU) provides two signals: a PWM signal to control the magnitude of the volt-
age supplied to the load and a digital two-level signal to control the direction or
sign. In the sign-magnitude method, the higher the duty cycle of the PWM signal,
the higher the average voltage (or magnitude) delivered to the load. At 0% duty
cycle, no voltage is supplied to the load, while at 100% duty cycle, the full voltage
signal is supplied to the load. For example, the sign-magnitude method can be used
to drive the servo drive shown in Figure 8.21 or an H-bridge driver such as the
L6203 shown in Figure 3.59. In using the L.6203 bridge driver, additional circuitry
is needed to interface the sign and magnitude signals to the INI, IN2, and
ENABLE leads of Figure 3.59 (see Figure 8.22(a)).

In the locked anti-phase method, a single PWM signal is used to control the
voltage delivered to the load and the direction of rotation. In this method, opposite

L6203 L6203
Magnitude Voo

| | I | I —1 ENABLE — ENABLE

IN1 IN2 — IN1 IN2

PWM

Direction | | | | |—

(@) (b)

pairs of switches in an H-bridge circuit (such as SI and S4 or S2 and S3 in
Fig. 3.57) alternate between being ON and OFF according to the duty cycle. If the
duty cycle is 50%, the opposite pairs of switches in the H-bridge circuit will close for
the same duration in each PWM cycle, resulting in the net voltage applied to the
motor leads to be zero and hence no rotation of the motor. If the duty cycle is 60%
for example, then a net 20% (60% — 40%) of the available voltage is applied to the
motor leads in each PWM cycle. The direction of rotation is set by which motor lead
has more positive net voltage in each cycle. Thus when the duty cycle is less than
50%, then the motor will rotate in one direction, and when the duty cycle is above
50%, the motor will rotate in the opposite direction. At both 0 and 100% duty cycles,
the maximum voltage is applied to the motor in each case but in opposite directions.

On advantage of the locked anti-phase method is that a single control signal
is used to control the speed and direction of a motor load. A disadvantage of this
method is that it creates more ripple currents in the motor. In servo drives (such as
the one shown in Figure 8.21) or H-bridge drives (such as LMD18200) with ded-
icated direction and PWM input lines, the PWM input line is wired to high logic,
and the PWM control signal is applied to the direction line in using the locked
anti-phase drive method. For the L6303 H-bridge driver of Figure 3.59, it is wired
as shown in Figure 8.22(b) using the locked anti-phase drive method.

| 8.3 AC MoTORs

AC motors can be broadly classified into single-phase and multi-phase ones. A
single-phase AC motor runs on the electrical power commonly available in homes
and light industrial settings. A three-phase motor on the other hand uses three
similar voltage signals, but each signal is 120° out of phase with the other. Both
single-phase and multi-phase motors can be further classified into asynchronous
and synchronous types. AC motors are very rugged, are very widely used in indus-
trial applications, and are available in power ratings up to several thousand hp.

The single-phase, asynchronous AC motor, commonly called an induction
motor, is one of the most widely used AC motors. It is commonly used in applica-
tions such as fans, pumps, and compressors. The rotor of an induction motor con-
sists of a stack of thin, flat disks of steel called laminations. The laminations have
holes in them through which copper wire is passed and looped around to form a set
of continuous coils or windings. The rotor is commonly referred to as squirrel cage
(see Figure 8.23).

The stator is made up of coils to which the electrical leads are connected. The
lack of any wiring to the rotor leads to a simple construction that is rugged and
requires very little maintenance. When the time-varying AC voltage signal is
applied to the stator windings, voltages are induced in the rotor. The induced
voltage causes the rotor to rotate, but the rotor rotates at speed that is slightly
lower than the speed of rotating stator fields or the synchronous speed. This reduc-
tion in speed is called slip and is about 3 to 5% for most motors. Because the motor
rotates at a speed that is lower than the excitation speed, these motors are known
as asynchronous motors. The synchronous speed of an AC motor is a function of
the excitation frequency (50 or 60 Hz) and the number of poles in the stator. For
four-pole motors at 60 Hz frequency, the synchronous speed is 1800 rpm, and the
operating speed is about 1725 to 1750 rpm due to slip. In general, the synchro-
nous speed (in rev/min) is given as

f
Ng = 1200
S p

8.3 AC Motors 115

Figure 8.23

Rotor (squirrel cage) of
an AC induction motor

(Jouaneh, University of
Rhode Island)

(87)

176

Chapter 8 Actuators

(8.8)

Figure 8.24

Typical torque—speed
characteristics of a
single-phase AC
induction motor

where f'is the frequency of the AC power supply in Hz and p is the number of poles.

The operating speed is
100 — % Slip
= Ns(100 >

In a synchronous motor on the other hand, the alternating voltage is supplied
to both the stator and rotor windings. This causes the rotor to rotate at the same
speed as the excitation frequency, and hence the name synchronous motor. Similar
to brush DC motors, means must be provided to connect the voltage leads to the
rotating rotor. This is accomplished by the use of a slip ring which performs the
same function as the commutator ring. Synchronous AC motors are used in timers
and instruments and in applications where the speed of several motors must be syn-
chronized such as the case of multiple conveyer belts running together.

One problem of the AC induction motor is that it is not self starting. This
means that an additional coil or circuitry is needed to cause the motor to start
rotating. 'This additional circuitry causes a net initial torque to be applied to the
rotor to give it the initial push. Another limitation of the AC induction motor is
that it normally operates at one speed. To allow for variable speed operation of AC
motors, adjustable frequency controls are used that vary the frequency of the sup-
ply voltage and hence the rotational speed of the motor. Single-phase AC induction
motors are available in power rating up to 3 hp. For a higher power rating, three-
phase motors can be used.

There are several varieties of AC single-phase motors that affect how the
motor starts.

Shaded Pole: A short circuit is used to make one side of the field magnetize
before the other side.

Split Phase: Uses two windings, one with higher resistance than the other

Capacitor Start: Uses two windings and a capacitor on one of the windings
to create a leading phase

The torque-speed characteristics of an AC induction motor depend on the
design of the motor. A typical characteristic is shown in Figure 8.24. On the verti-
cal axis, the torque developed by the motor as a percentage of full-load (or rated
load) is shown. On the horizontal axis, the rotational speed as a percentage of syn-
chronous speed is shown. Similar to a DC motor, the starting torque is larger than
the rated torque. After an initial dip, the motor torque increases with speed until it
reaches the breakdown point, at which point the torque start decreasing. The
steeper the torque—speed curve after the breakdown point, the more the motor has
almost constant speed operation as the load varies.

Breakdown Torque

Starting Torque

Torque
(as a percentage of rated torque)

Rated Torque

Rated Speed \
Speed (as a percentage of synchronous speed'

8.3 AC Motors m

"Typical torque-speed data for a 1 hp induction motor made by LEESON Electric
are shown in Figure 8.25. Notice how the speed of this motor changes as the load
changes. At the rated load (3 Ib-ft of torque) and at 230 V operation, the rated speed
is 1747 rpm. If the load reduces by 50%, the speed increases to only 1774 rpm.
Similarly, if the load increases by 50%, the speed decreases to just 1708 rpm. The
motor speed changes by less than +/—2.5% from its rated speed for a load change of
+/—50% from the rated load. This “near constant” speed operation under load

Catalog No 110167.00 Model M6C17DB7J Figure 8.25
Product type AC MOTOR Stock Stock Torque speed data for
Description 1HP.1725RPM.56.DP/V.1PH.60HZ. CONTMANUAL.40C.1.15SF RIGID. GENERAL a 1 hp, single-phase
PURPOSE.M6C17DB7J AC induction motor
Information shown is for current motor's design View Outline | View Connection E:gteri?y LEESON
Engineering Data (Courtesy of Leeson Electric
Corporation)
Volts 115 Volts 208-230 Volts
FL. Amps 128 FL. Amps 6.4 FL. Amps
S.FAmps 136 S.FAmps 6.8 S.F Amps
RPM 1800 Hertz 60
HP 1 Duty CONTINUOUS TYPE CD
KW 75
Frame E56 Serv. Factor 1.15 Phase 1
Max Amb 40 Design N Code K
Insul Class B Protection MANUAL Therm.Prot. CEJ50CA
Eff 100% 75 Eff 75% PF 68
UL Yes CSA Yes Bearing OPE 0
CC Number CE No Bearing PE 0
Load Type Inverter Type NONE Speed Range NONE
Performance
Torque UOM LB-FT Inertia (WK?) 1 LB-FTA2
Torque 3(Full Load) 6.9(Break Down) 6.7(Pull Up) 9(Locked Rotor)
CURRENT (amps) 6.4(Full Load) 0(Break Down) 0(Pull Up) 33(Locked Rotor)
Efficiency (%) O(Full Load) 72.8(75% Load) 69.7(50% Load) 56(25% Load)
PowerFactor O(Full Load) 58(75% Load) 45.6(50% Load) 31.1(25% Load)

Load Curve Data @60 Hz, 230 Volts, 1 Horsepower

Load Amps KW RPM Torque EFF PF Rise By Resis Frame Rise
0.0 4.6 0.148 1798 0.0 0.0 14.0 0.0

0.25 476 0.34 1786 0.75 56.0 311 0.0

0.5 5.17 0.542 1774 15 69.7 456 0.0

0.75 58 0.774 1762 2.25 72.8 58.0 0.0

1.0 6.42 0.993 1747 3.0 75.0 67.2 52.0 40.0

1.15 6.85 1.135 1737 3.45 75.0 72.0 56.0 44.0

1.25 7.56 1.27 1728 375 72.4 73.1 0.0

1.5 8.82 1.552 1708 45 70.3 76.5 0.0

18 Chapter 8 Actuators

variation is typical of several types of AC motors. Example 8.4 illustrates the use of an
AC motor’s torque speed characteristics in determining the operating conditions,
while Example 8.5 explains some of the characteristics shown in Figure 8.25.

Example 8.4 Operating Conditions of a Load Driven by an AC

Induction Motor

Assume that the PM DC-motor in Example 8.1 was replaced by a geared one-quarter hp
AC single-phase motor with 20:1 gear ratio. If the motor has the torque-speed
data given in Table 8.2 (with no gearing), determine the steady-state lifting speed

of the load.
Table 8.2"
Rated Load 0.75 Ib-ft
% of Rated Load 25 50 75 100 125 150
Speed (rpm) 1786 1772 1757 1748 1735 1719
*Data is for LEESON C6C17FK48C, General Purpose, AC single-phase motor under 230V/60Hz
excitation
Solution:

From Example 8.1, the steady-state load torque at the gear output side is 16.7 Nm or

16.7 Nm X 1 Ib-ft/1.36 Nm = 12.3 Ib-ft
Because of the 20:1 gear ratio, the load torque as seen by the motor is

12.3/20 = 0.615 Ib-ft.
For the above motor, this load represents
0.615/0.75 X 100% = 82%
of the rated load.
Interpolating from the above table gives the motor speed as
1757 + (82 — 75) X (1757 — 1748)/(75 — 100) = 1754 rpm
or the lifting speed of the load to be
Viteady = @ r = (1754/20 X 27/60) X 0.15 = 1.38 m/s

Example 8.5 Characteristics of an AC Induction Motor

Explain the performance data for the AC motor of Figure 8.25 under 230 V, 60 Hz
operation.

Solution:

We will explain the performance data using three load conditions: 50%, 100%,
and 150% of rated load. Table 8.3 shows the output mechanical horsepower, the
input mechanical horsepower, and the real electrical power delivered to the motor
for these three load conditions.

The output mechanical horsepower is given by the formula:

Output mechanical power = T n/63025

8.4 Stepper Motors 179

where T is in Ib-in and n is in rpm. For a 50% rated load, the output mechanical
horsepower is then % X 3 X 12 X 1774/63025 = 0.507 hp.

The input mechanical horsepower is the output mechanical horsepower divided
by the motor efficiency. For the 50% rated load case, the input mechanical horse-
power is

0.507/0.697 = 0.727 hp

The real electrical power delivered to the motor should be equal to the input
mechanical horsepower. From Equation (2.36), the real power is given as

P (in Watts) = V,ns Irms Power_factor

For the 50% rated load case, the real electrical power is

230 X 5.17 X 0.456 = 542 W = 0.727 hp

which is the same as the input mechanical horsepower. The data for the 100% and
150% load given in Table 8.3 show a similar agreement.

Table 8.3
50% Rated Load 100% Rated Load 150% Rated Load

Output Mechanical
Horsepower 0.507 0.998 1.46

Input Mechanical
Horsepower 0.727 1.33 2.08

Real Electrical
Horsepower 0.727 1.33 2.08

| 8.4 STEPPER MOTORS

A stepper motor can be classified as a DC motor, since it is driven by non-alternating
voltages, but its construction and operation is distinct from a DC motor. Stepper
motors, as the name suggests, can move in small angular increments, or steps, rang-
ing from 0.9° per step to 90° per step, depending on the construction of the motor
and on how it is driven.

One feature of stepping motors is that they can be used in position control
applications without the need for a position sensor. As long as the motor is operated
within its specified limits, the nominal position of the stepper motor can be
controlled by the number of steps that were sent to the motor. Another feature is
that they can be easily controlled with digital circuits, since the stepper motor
driver, which generates the appropriate signals to drive the poles of the motor,
requires two digital input signals: a pulse signal and a direction signal. A third fea-
ture is that there are no wires connected to the rotor, which eliminates the need for
brushes and a commutator. A fourth feature is that they can generate a large torque
at low speed, which eliminates the need for gears.

There are three types of stepper motors. These are permanent magnet (PM),
variable reluctance (VR), and hybrid. Figure 8.26 shows photos of a PM and a
hybrid stepper motor. The configurations differ primarily in the construction of
the rotor. In a PM stepper motor, the rotor is a permanent magnet and has no
teeth, while in a VR motor the rotor is constructed from non-magnetized soft iron
material and has teeth. A VR motor has the advantage of a faster dynamic response,
while a PM stepper motor has the capability of exerting a small holding torque,

Figure 8.26

(a) PM and (b) hybrid
stepper motors

(Courtesy of Anaheim
Automation, Anaheim, CA)

180

Chapter 8 Actuators

Figure 8.27

A schematic of a
two-phase PM
stepper motor

Figure 8.28

Wave drive actuation

steps

called a detent torque, when the stator is not energized due to the use of a mag-
netized rotor. PM motors are widely used in nonindustrial applications such as
computer printers and typewriters. A hybrid motor, as the name suggests, com-
bines features from both PM and VR motors. Its rotor is a permanent magnet but
also has teeth. Furthermore, in a hybrid motor, the magnet is magnetized along the
axis of the rotor with the upper half of the rotor having one polarity while the lower
half has another polarity. The hybrid configuration is the most widely used in indus-
trial applications. In all configurations, the stator is constructed from pairs of elec-
tromagnets commonly referred to as poles.

8.4.1 Drive METHODS

To understand how stepper motors work, let us first consider the two-phase PM
stepper motor shown in Figure 8.27. A phase refers to a coil winding; thus, a two-
phase motor has two separately activated coil windings, and the coil windings are
placed perpendicular to the rotor. This motor has four poles with two poles for
each phase. The motion of the motor depends on how the stator coils or phases are
actuated. There are four possible ways of actuating the phases:

¢ Wave Drive

Full Stepping

Half Stepping

Micro Stepping
Phase 1

Pole

Phase 2
o

—

We will illustrate these drive techniques for the two-phase PM motor.
Figure 8.28 shows the actuation steps for a wave drive. The two phases are labeled
A and B. The rotor goes through the positions 1, 3, 5, and 7 in 90° steps in this drive

[N] A
]

[s]a
1

method. To do a complete rotation, the motor has to go through the four steps
shown. If the phases are activated in the reverse fashion, the motor will rotate in the
opposite direction. Notice that in each of these steps, the rotor as shown is in equi-
librium, and moves only if the polarity of the stator coils has changed. Notice also
that in a wave drive, only one phase is active or on at a time. This means that only
50% of the available coils are active, which limits the torque applied to the rotor.

The full-stepping actuation sequence is shown in Figure 8.29. Here both
phases of the stator are active at any point. The resulting motion is similar to wave
drive actuation (90° between steps) but the rotor moves through positions 2, 4, 6,
and 8 in this case. Due to both phases being on, the torque applied to the rotor is
higher in this case than in the wave drive.

2

3

Step 1: AB Step 2: AB Step 3: AB Step 4: AB

The half-stepping actuation sequence is shown in Figure 8.30. This actua-
tion method alternates between activating one phase and two phases at a time, and
it takes eight steps to complete one rotation. The rotor is this case travels in 45°
steps from position 1 to position 8. Similar to the previous two actuations methods,
the direction of rotation can be reversed by simply reversing the sequence of actu-
ation steps.

3

Step 2: AB Step 3: B Step 4: AB

[S]a [N] A
1 1

5

Step 5: A Step 6: AB Step 7: B Step 8: AB

Notice that in the above three drive techniques, the voltage polarity to the sta-
tor coil is reversed in some of the steps. This is called bipolar excitation and requires
supplying a voltage of opposite polarity to the coil. If we are only interested in a
unipolar voltage excitatdon, then we need to use a four-phase motor instead. A

8.4 Stepper Motors

Figure 8.29

181

Full-stepping actuation

B

Figure 8.30

Half-stepping actuation

B

282 Chapter 8 Actuators

Figure 8.31

Full stepping excitation
for a four-phase
unipolar PM rotor

Figure 8.32

Microstepping
excitation

(89)

four-phase motor has four coils, each of which can be activated separately. In
practice, a four-phase motor is constructed such that there are two coils for each set of
stator poles. These two coils are wound in opposite fashion, and only one of them is
energized at a time. This is called bifilar winding as opposed to unifilar winding,
which is the winding used with the two-phase motor. Using a four-phase motor, the
excitation steps for full stepping are shown in Figure 8.31. The four phases are labeled
A, B, C, and D. Notice here how the 4 and C phases activate the same set of stator
poles but in an opposite fashion. Notice also here that only one-half of the coils avail-
able are excited at any point of time compared to all the coils in the bipolar two-phase
motor case. For example, in step 1 coils 4 and B are ON while C and D are OFF.

5 5
(] ¢]

Step 1: AB Step 2: BC Step 3: CD Step 4: DA

Rather than having the phases fully ON or OFF as illustrated above, in
microstepping drive, the current to both phases is varied in small steps as shown
in Figure 8.32. This allows the motor to have a smaller resolution than that of full
or half stepping since it increases the number of equilibrium positions for the rotor.
The resolution can be increased by a factor of up to 250 or more in microstepping
actuation. Microstepping actuation results in a smoother motion of the motor with
less vibration, but the applied torque to the rotor is reduced by 30 to 40% com-
pared to full-stepping actuation.

+
Current
0 Phase A
+
Current
0 Phase B

Notice that in the two-phase PM motor discussed above the step angle is 90°
for full stepping. In general, the full-stepping step angle of a PM stepper motor
is given by the formula

360

8.4 Stepper Motors 183

where
P is the number of rotor pole pairs
S is the number of stator pole pairs

In the two-phase PM motor discussed before, the motor has one rotor pole pair
and two stator pole pairs. Thus, its angular resolution is 90° according to Equa-
tion (8.9).

For industrial applications, the hybrid motor is widely used. A cut-out view of
a hybrid motor is shown in Figure 8.33(a). The rotor has two toothed cups, each of
which has a separate polarity (N or S). Each cup has 50 teeth that are equally
spaced, and the teeth in one cup are offset from those in the adjacent cup by a half
a tooth pitch or 3.6°. The stator also has teeth. A typical cross section of a two-
phase hybrid motor is shown in Figure 8.33(b). This motor has four poles per
phase, with the poles 180° from each other having the same polarity, and those 90°
from each other having opposite polarity. In this configuration, the motor advances
1.8° per step in wave or full-stepping mode. The motion of this motor for the dif-
ferent actuation methods is very similar to that of a PM stepping motor shown in
Figures 8.28 through 8.30 but replacing the 90° step with 1.8° step.

Rotor Cup 1

Permanent Magnet

Phase A

Rotor Cup 2

Winding Stator

@

From the previous discussion we see that permanent-magnet stepper motors
are constructed somehow similar to BLDC motors but without the use of Hall-
effect sensors. In both motor types, the rotor is a permanent magnet, and the stator
is made of a number of coils that are activated in sequence. While stepper motors
are designed to operate in open-loop fashion, open-loop operation of BLDC motors
would result in a very coarse positioning, even in unstable operation.

8.4.2 WIRING AND AMPLIFIERS

Stepper motors are available with different lead configurations (see Figure 8.34). The
four-lead configuration is not bifilar wound and is only used with bipolar excitation.
The six-lead configuration is very commonly used for four-phase unipolar motors,
but can also be used with bipolar excitation. Note that in this configuration, one lead
serves as a common connection for each pair of bifilar wound coils. The five-lead
configuration is not very common. In this configuration, the common connection to
all the coils is brought out as one lead. In the eight-lead configuration, the leads of

Figure 8.33

Hybrid stepper motor
(a) major components
and (b) cross-section.

(Images Courtesy of Oriental
Motor Corp USA)

284 Chapter 8 Actuators

Figure 8.34

Lead wires for
stepper motors

joNg—
2| —
w_
Sy —
> —
B —
m_
3 —
S

2

™

B Al||A B||B
vt vt vt vtyt vty
(a) Four-lead (b) Five-lead (c) Six-lead (d) Eight-lead

each bifilar wound coil are brought out separately. This configuration gives the great-
est flexibility in the wiring options for the motor.

The driver for a stepper motor can be constructed in different ways. On a basic
level, one can use a transistor to drive each phase or coil winding for unipolar drives
or an H-bridge for bipolar drives (see Figure 8.35).

Figure 8.35 1 v+

Unipolar and bipolar
drive wiring: (a) bipolar

wiring for phase A and A (E i (/E—
(b) unipolar wiring for

phases A and A mm

2
© 0|
= i
L
(a) (b)

Alternatively, one can use a commercial stepper motor interface IC (such as the
EDE1200 Unipolar Stepper Motor IC shown in Figure 8.36). The EDE1200 has
very low current-output rating (25 mA), and power transistors or a transistor array
IC (such as ULN2003A) need to be placed between the EDE1200 output and the
motor coils (see Problem 8.9). One nice feature of the EDE1200 is that it can run
in two modes: ‘Step’ mode and ‘Run’ mode. In the ‘Step’ mode, the phases are
driven in response to external step and direction signals applied to the IC, while in

Figure 8.36 EDE1200
The ED1200 stepper Phase Three Drive Signal 1 [] Out 3 ~ Out 2 [18 Phase Two Drive Signal
motor interface IC Phase Four Drive Signal 2 [] Out 4 Out 1 [117 Phase One Drive Signal
(Courtesy of E-Lab Digital Connect to +5V DC 3 [] +5V OSCI [116 Oscillator Connection
Indep::g:\i:”&% _'rF\g-; Connect to +5V DC 4 [] +5V 0SC2 [115 Oscillator Connection
EDE1200 see PDN1200 at Digital Ground 5[] GND +5V [J 14 Connect to +5V DC
www.paladinsemi.com.) 0 = Disable Motor Drivers 6 [] Free Spin C 013 Speed Control (MSB)
1 = Clockwise, 0 = Counter-Clockwise 7 [] Direction B [012 Speed Control
1 = Normal Stepping, 0 = Half-Stepping 8 [] Wepping A1 Speed Control (LSB)
Single-Step on Falling Edge in ‘STLP’ Mode 9 [] % Run [110 1= ‘STLP’ Mode, 0= ‘RUN’ Mode

www.paladinsemi.com

the ‘Run’ mode, the IC uses an external clock source to self-clock. The pulse rate
in the ‘Run’ mode can be set to one of eight values. A more powerful driver (but
now obsolete) is the UCN 5804 translator/driver chip, which supplies a continuous
output current of 1.25 A per phase with a 35 V output sustaining voltage.

In industrial applications, a stepper motor drive system is setup as shown in
Figure 8.37. It consists of a computer or a programmable logic controller (PLC)
that interfaces to an indexer. The indexer in turn interfaces to a driver, which is
connected to the stepper motor.

Desired Step Pulses Motor
Position/Speed & Direction Currents
Computer/PLC l Indexer l Driver l Motor

The computer or PLC sends the desired position and speed information to the
indexer. The indexer converts this information into a sequence of pulses at the
appropriate frequency and a direction signal. The step pulses and the direction sig-
nals are interpreted by the driver to generate the voltages and currents that drive
the different phases of the motor to obtain the desired motion. In certain applica-
tions, the indexer can be eliminated, and the computer can directly send the step
pulses and direction information to the driver. Figure 8.38 shows a commercial
stepper motor driver that can operate from 110/220V outlet power. The driver can

Mounting Hole

— Signal Connector

Signal Connector (Step, Dir, Enable)

(Ext Speed,Tach Out)

=125mA)

(Base

Trimpots
(Speed, Accel, Decel)
— Switches
(Current Setting
Full/Half Step)

Switches
(OSC Set Up)

Motor Connector

AC Power Connector

Mounting Hole

8.4 Stepper Motors 185

Figure 8.37

Typical stepper motor
drive system

Figure 8.38

Stepper motor driver

(Courtesy of Applied Motion
Products, Inc.)

286 Chapter 8 Actuators

Figure 8.39

Connections for a
six-lead stepper motor
with a four-position
amplifier: (a) Series
connection and

(b) center tap connection

Figure 8.40

Connections for an
eight-lead stepper
motor with a four-
position amplifier:

(a) Parallel connection,
(b) series connection,
and (c) two windings

Figure 8.41

Torque speed
characteristics of a
stepper motor

accept pulse and direction inputs or can use the built-in potentiometer to control
the speed. The current per phase, as well as the full- and half-stepping modes are
set with dip switches. This driver has a dual bipolar H-bridge amplifier. The ampli-
fier outputs are available at the four-position ‘motor connector’ to which the step-
per motor leads are connected. Four-lead stepper motors are simply connected to
the four position connecter. For a six-lead motor, the motor leads can be connected
in one of two ways: series connection and center tap connection. Figure 8.39 shows
these two connections. In the series connection, the motor torque will be higher
than the center-tap connection. For an eight-lead motor, many possibilities are
available for connection including parallel, series, and two of four windings (see
Figure 8.40). Note that the amount of current per winding is set differently for

each type of connection.
[[[[
A ANC B BNC

ANCA BNCB

(a) (b)
B AANCNC BBNCNC

(@) (b) ©

g

A

_f

S
o]
S
>
>}

Typical torque speed characteristics of a stepper motor are shown in
Figure 8.41. The speed is typically given in terms of pulses per second (PPS) or Hz.
The figure shows two regions of operation. These are the start/stop region or the
locked step region, and the slewing region. In the start/stop region, the motor can
start, stop, or reverse direction instantly without losing any steps. In the slewing
region, on the other hand, the motor cannot be instantaneously started, stopped,
or reversed. There must be a gradual acceleration of the motor to enter this region,

Holding

Torque Pull-Out Torque

Torque

Slewing Region

Pull-In Torque
Start/Stop
Region

Speed

85

and a gradual deceleration of the motor to leave this region. To operate in this
region, the motor must start first in the start/stop region. The curve that defines
the torque-speed limits of the start/stop region is called the pull-in torque curve,
while the curve that defines the limits of the slew region is called the pullout
torque. For a stepper motor, the torque at zero speed is defined as the holding
torque, which represents the maximum torque that can be applied to a powered
(but not rotating) motor without moving it from its rest position and causing spin-
dle rotation. It should be noted that the torque speed characteristics are a function
of both the motor and the driver that is used to actuate the motor phases. For a
given motor, its torque—speed characteristics will change if the driver was changed
or the driving mode was changed. Stepper motor manufacturers usually provide
only the pull-out torque curve. Example 8.6 examines the performance data of a
commercial stepper motor.

Example 8.6 Stepper Motor Characteristics

A two-phase hybrid stepper motor with six-lead wires has the specifications given
in Table 8.4.

Table 8.4*
Holding Rated Rotor
Connection Torque Current Voltage Resistance Inertia
Type (N.m) A/phase VDC Q/phase (kg.mz)
Bipolar Series 0.43 0.85 5.6 6.6
68 x 1077
Unipolar 0.32 1.2 4 3.3

*Data is for Oriental Motor PK245-01 motor

Explain the torque and current characteristics of this motor.

Solution:

Since this motor has six leads, it has bifilar windings. The wiring diagram for
bipolar-series connection is as shown in Figure 8.39(a), while for unipolar connec-
tion it is as shown in Figure 8.34 (six-lead case). Since both coils are active in bipo-
lar wiring, a correspondingly higher holding torque is obtained as shown in the
above table. The rated current per phase is simply the voltage divided by the
phase resistance or 5.6/6.6 = 0.85 A for bipolar series-connection. Note the resist-
ance for unipolar connection is half that of bipolar-series connection due to the
fact that only half of the available coils are activated in unipolar connection.

| 8.5 OTHER MOTOR TYPES

Universal Motor A universal motor is an electric motor that can be operated
using both AC and DC voltage signals. It is mostly used in hand tools such as drills
and in appliances such as vacuum cleaners, mixers, and blenders. The motor uses
brushes for commutation and its construction is similar to that of a series-wound
DC motor with a wound rotor and a wound stator. The current in the rotor and
the field coils changes polarity at the same time, making the direction of the result-
ant force acting on the rotor constant. The universal motor is also known as an AC
series motor or an AC commutator motor. One feature of the universal motor
is that it allows variable speed control of the motor similar to a DC motor but using

Other Motor Types

281

288 Chapter 8 Actuators

Figure 8.4

A standard size hobby
servo motor

(Courtesy of Hitec RCD
USA, Poway, CA)

Figure 8.43

Hobby servo position
as a function of
pulse width

AC power, thus eliminating the need for an AC to DC transformer. The speed
control can be implemented using phase control with SCR (see Chapter 3), a rheo-
stat, or a chopper drive (uses PWM duty cycle to control the effective voltage).
Universal motors have a high power-to-size ratio, and they have a high no-load
speed (20,000-40,000 rpm) which is much higher than the line frequency of either
50 or 60 Hz. However, a DC motor of the same size as a universal motor is more
efficient than a universal motor.

Servo, Gear, and Brake Motors Many of the motors that were discussed before
can be referred to by different names depending on the application. For example, a
servomotor is a motor that is equipped with either a position or velocity feedback
device to be used in closed-loop control applications. The motor itself can be a DC
or AC type. Another example is a gear motor, which is a motor that has a gear
attached to it to reduce the speed of the motor and increase the output torque of the
motor. A third example is the brake motor, which has an attached brake to prevent
the shaft from rotation when the power is disconnected to the motor.

Hobby Motors A special class of motors is called hobby or RC servo motors.
These motors are widely used in radio-controlled cars, planes and boats. A typical
standard hobby servo motor is shown in Figure 8.42. Hobby servo motors are rel-
atively inexpensive, are driven by low voltages (about 5 VDC), and are available in
several sizes including standard, mini-micro, and quarter scale. The standard size is
the most common, and has the advantage that its physical size and mounting holes
are the same regardless of the manufacturer. The mini-micro size is half or smaller
than the size of the standard servo. The rotational speed of the hobby servo is about
0.2 s for 60° of angular travel.

The hobby servo motor actually consists of four components that are packaged
together. These are: a small DC motor, a gear reducer, a potentiometer, and a con-
trol board. These servos have three leads labeled power, ground, and control signal.
The power signal ranges from 4.8 to 7.2 V and can be conveniently obtained from
battery power packs. The control signal is a PWM signal (5 V) at a frequency of 20
to 60 Hz. This signal can be conveniently generated from a microcontroller or a
commercial control board.

The pulse width of the control signal, which ranges from about 0.7 to 2.3 ms
for most servos, controls the position of the servo. At 0.7 ms, the servo is at one
extreme of its motion range, while at 2.3 ms it is at the other extreme. At 1.5 ms
pulse width, the servo is in the center or mid-position. Most servos have a motion
range of £90°. Figure 8.43 shows the typical relationship between the pulse width
and the hobby servo position.

Hobby servos operate in closed-loop position control fashion (see Chapter 9).
On the control board, the duration of the PWM control signal is converted to a
voltage signal. This voltage signal is compared with the voltage output from the

—| |—0.7ms — [«<—1.5 ms — [«<— 2.3 ms

Control Control Control
Signal ‘ ‘ Signal ‘ Signal ‘

> > >
S

Time Time Time

© ® ©

Servo Position Servo Position Servo Position

8.6 Actuator Selection 189

potentiometer that is connected to the motor shaft. The difference voltage between
these two signals is then used to drive the motor so the error between these two

signals goes to zero.

| 8.6 ACTUATOR SELECTION

When selecting an electric motor for a mechatronic application, the selection
should include the type of motor (DC or AC), the power rating and speed, the
operating voltage and frequency, the motor frame size, and mounting details.

To provide means for interchangeability of motors, commercial motors are
made in standard mounting sizes called NEMA (National Electrical Manufacturers

Figure 8.44

Illustration of the
NEMA ‘D' dimension

Motor Front View

Association) frame sizes. Small size motors have a NEMA frame sizes of 17 to 56,

while large size motors have NEMA frame size of 240 or higher. The NEMA frame
size specifies only the size of the mounting frame and not the motor body diame-
ter. The two or three digit NEMA frame size specifies the ‘D’ dimension of the
motor which is the distance between the center of the motor shaft and the bottom

+
1 I

of the base mount (see Figure 8.44). For a two-digit frame size, the ‘D’ dimension
distance in inches is obtained by dividing the frame size by 16. For a three-digit
frame size, the ‘D’ dimension is obtained by dividing the first two digits by 4. For
example, a 34 frame size motor has a ‘D’ dimension of 2.125 in. and a 405 frame

size has a ‘D’ dimension of 10 in.

Motors can also differ in the details of their mounting and the type of enclo-
sure they have. Common mounting configurations include foot mounted,
cushion base, C-Face mounting, and vertical mounting. The common enclo-
sure types are shown in Table 8.5. There are many things that should be con-
sidered when selecting an actuator. The most important of these would be that
the torque-speed characteristics of the actuator should match that of the desired
application. Secondary considerations include control method, cost, size, and
ease of maintenance. Table 8.6 compares DC, AC, and stepper motors in sever-

al categories.

Enclosure Abbreviation Description

oDP Open Drip Proof

TEFC Totally Enclosed Fan Cooled

TEAO Totally Enclosed Air Over

TEBC Totally Enclosed Blower
Cooled

TENV Totally Enclosed
Non-Ventilated

TEWC Totally Enclosed Water Cooled

Comments

Table 8.5

Common enclosure
type for electric motors

For normal applications where low cost
is important

Commonly used motor enclosure. The
enclosure is dust tight but cannot stand
high water pressure. Uses a fan to cool
the motor

Normally used with fans or blowers and
utilizes the air drawn by the fan or blower
for cooling

Uses a blower for cooling. The enclosure
is dust tight but cannot stand high water
pressure

For use with small hp rated motors and
utilizes fins on the mator body for cooling

Expensive motors that utilize a double-
shell body through which water flows for
cooling

290 Chapter 8 Actuators

Table 8.6

Comparison of brush
DC, brushless DC, AC,
and stepper motors

Characteristic

Supply voltage

Direction change

Speed change

Starting

Maintenance

Available sizes

Brush DC

Needs a
simple DC
voltage power
source

Easily done by
reversing
polarity to the
motor leads

Easily done by
changing the
value of the
input voltage

Self starting

Need to
periodically
replace the
brushes and
resurface the
commutator

Few watts to
several hp
rating

Brushless DC

Uses DC voltage
but uses a
special
amplifier

By activating
the phases in a
reverse fashion

By changing
the rate of
activating the
phases

Self starting

No need to
replace brushes
or resurface the
commutator

Few watts to
few hundred hp

AC

Can be readily run from
the AC line voltage

By changing the wiring
in the starting circuitry
in single-phase motors,
and by changing two of
the phases in three-
phase motors

More difficult to do and
requires a variable-
frequency input device

Single-phase motors
are not self-starting and
need a special starting
winding/circuitry. Three-
phase motors are
self-starting

Requires less
maintenance especially
for AC induction motors

Single-phase up to few
hp and multiphase up to
several thousand hp

Stepper

Uses DC voltage but
requires special
amplifier to drive
each phase

By activating the
phases in a reverse
fashion or by
changing the direction
signal if a stepper
driver is used

By changing the rate
of activating the
phases or the pulse
rate if a stepper
driver is used

Self-starting

No wear problems
due to the absence
of brush contact

Stepper motors do not
have a hp rating since
they do not rotate
continuously. The
equivalent max hp
rating is a fraction of
1 hp. They could have
torque rating up to a
few thousand oz-in.

l | 8.7 CHAPTER SUMMARY

This chapter focused on electric actuators. The chapter
covered brush and brushless DC motors, AC motors, uni-
versal motors, stepper motors, and hobby servo motors.
Brush DC motors are commonly used in many consumer
and industrial applications, and they use brushes to trans-
fer the electric current to the rotating coil to allow contin-
uous flow of current in the same direction as the rotor
rotates. Brushless DC motors are more reliable than brush
DC motors. In a brushless DC motor, the rotor is made of
permanent magnets, and the stator is constructed of coils.
There is no wiring to the rotor. Brushless DC motors use
electronic commutation rather than mechanical commuta-
tion. AC motors are very rugged, are very widely used in
industrial applications, and are available in power ratings
up to several thousand hp. A universal motor is an electric

motor that can be operated using both AC and DC voltage
signals. Stepper motors are typically used in open-loop
position control applications because they can operate
without the need for a position sensor. They move in small
angular increments or steps. Hobby servo motors are
widely used in radio-controlled planes and boats, and they
consists of four components that are packaged together.
These are a small brush PM DC motor, a gear reducer, a
potentiometer, and a control board.

The operating principles of each type of actuator are
given as well as the torque-speed characteristics. Driving
methods, amplifiers, and drive circuitry are also provided for
some of the actuators. The information given in this chap-
ter will enable the user to select the appropriate actuator
for a given mechatronic application.

QUESTIONS

8.7 Chapter Summary 91

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

What type of DC motor has linear torque-speed characteristics?

What type of motor has a nearly constant speed over a large torque range?

Compare brush DC and brushless DC motors.

Explain what is meant by ‘slip’ in AC induction motors.

List several advantages of stepper motors.

Compare brushless DC and stepper motors

What type of driver is used to drive brushless DC motors?

Explain what is meant by microstepping.

What is a universal motor?

What type of sensor does a hobby servo motor have?

What is meant by NEMA 34 size motor?

PROBLEMS

P8.1 Research and identify the type of actuator used in

P8.2

the following devices. List also the approximate
power rating and nominal voltage level for the
actuator.

a. Kitchen sink garbage disposal
b. Powered car window

c. Powered car mirror

d. Food blender

e. Cordless electric drill

f. Camera focus system

g. Hybrid electric vehicle

h. Residential garage door opener

Suggest brush DC, brushless DC, AC, or stepper
motors for the following applications and explain
your selection.

a. Low-maintenance, outdoor, and constant
speed operation

b. Low heat generation and controlled speed
operation

c. Low-cost and controlled position operation

P8.3

P8.4

P8.5

P8.6

P8.7

P8.8

Research and explain how a) the speed and b) the
direction of an AC induction motor can be changed.

Determine the operating speed and power of a
PM DC brush motor with the following operat-
ing characteristics: Starting torque = 200 oz-in.
no-load speed = 4000 rpm, load = 80 oz-in.

A geared PM DC brush motor has a gear ratio of
50:1. The input speed is 4000 rpm at an input
power of one-half horsepower. Determine the
output torque of this motor, assuming a 5%
power loss in the gear drive.

Show that the maximum power for a PM brush
DC motor is obtained when the motor is operating
at a speed equal to half the no-load speed.

A stepper motor has a specification of 200 steps/
revolution. The motor shaft drives a linear
positioning table using a lead screw with a lead of
0.1 in./rev. Determine the linear speed of the
table if the motor is operated in half-stepping
mode at a rate of 500 pulses/s.

A PM stepper motor has a 45° step angle in full
stepping mode. If the motor has two stator pole
pairs, determine the number of rotor pole pairs
that this motor has.

191

P8.9

P8.10

P8.11

Chapter 8 Actuators

Draw a wiring diagram to drive a four-phase
unipolar stepper motor using a PIC MCU and a
stepper motor IC, such as the EDE1200. Use an
interface IC such as ULN2003A between the
stepper IC and the motor coils so that a stepper
motor with a current requirement of up to

500 mA per phase can be driven by this circuit.
Set the circuit so that the motor can run in
half-stepping mode. Refer to the data sheets

for the used ICs for pin details.

Research and explain how a hobby servo motor
uses the pulse width of the control signal to
control the desired position of the motor.

A 5-hp induction motor with 80% efficiency is
operated from a 220 V line. If the power factor is
0.7, determine the amount of current drawn by
the motor.

LABORATORY/ PROGRAMMING EXERCISES

P8.12 A PM DC brush motor (data is for Pittman

14207/24V motor) is used to drive a lead-screw
table motion system similar to that shown in
Example 7.2. The table has a mass of 5 kg, the
combined inertia of the coupling and the lead
screw is 2.0 X 10~ * kg m?, the viscous damping
coefficient due to the bearings is 0.001 N - m.s/
rad, and the lead is 2 mm. The motor has the fol-
lowing specifications:

Continuous (nominal) torque = 0.353 N -m
Speed at continuous torque = 2810 rpm

Stalled (peak) torque = 285N-m
No-load speed = 3160 rpm

Rotor inertia = 4.73 X 10 kg m?

Determine the maximum acceleration of the
table. Make any reasonable assumptions in solving
this problem.

L/P8.1 Implement the GUI for the DC-motor control

problem shown in Figure 6.55 in MATLAB or
VBE. Use a software model to simulate the
dynamics of the motor to be controlled.

L/P8.2 Use any PIC microcontroller to drive a stepper

motor by outputting pulse and direction signals
to the stepper motor driver. Use the PWM
feature in the MCU to generate the pulses. Play
with setup features of the PWM function to
allow the stepper motor to be driven at different
frequencies.

L/P8.3 Use any PIC MCU and four transistors to build a

system that drives a four-phase stepper motor. In
this exercise, each phase of the motor is driven by a
transistor using control signals that are sent by the
PIC MCU. The PIC MCU uses one digital output
line for each phase. The code inside the MCU
should send out timed signals (use a short delay
between actuation of the different phases(s)) to

drive the four phases of the motor in either full or
half-stepping modes. The full/half stepping mode is
set by a digital I/O line that the user sets high/low.

L/P8.4 Use any PIC microcontroller to drive a hobby

servo motor such as the Hitec HS-311 by out-
putting a pulse signal to the hobby servo motor.
Use the PWM feature in the MCU to generate
the pulse. Use a rotary potentiometer to adjust
the pulse width (or duty cycle) setting of the
control signal to change the angle of the motor.
When the rotary pot is at one extreme of its
travel, the pulse width setting should be at its
minimum setting. Turning the pot clockwise from
that position should increase the pulse width set-
ting. When the rotary pot is at the other extreme
of its motion, the pulse width setting should be at
its maximum setting. Implement an infinite do-
loop to read the desired pulse width and to adjust
the duty cycle of the PWM signal. Add a small
delay (100 ms) in each run through the loop.

Feedback Control

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:
e Explain the difference between open- and closed-loop control systems
® Derive the closed-loop transfer function of a control system
® Obtain the steady-state error for first- and second-order systems under
P, Pl, or PID control
Explain the digital implementation of a PID controller
Simulate in Simulink a closed-loop control system
Explain the effect of nonlinearities on control system behavior
Explain the operation of a state feedback controller

| 9.1 INTRODUCTION

Modern society depends on feedback control systems for the luxury and conven-
ience of living. From thermostat-controlled heating and cooling systems to high-
speed elevators, feedback control is the key behind these conveniences. A feedback
control system is one that tends to maintain a prescribed relationship between the
output and the reference input by comparing these and using the difference as a
means of control [37]. The components of a feedback control system are the con-
troller, which is the mind of the system; the plant or process to be controlled; and
the measuring element or sensor. In the previous chapters we have covered the
details, models, and working principles for many of these components. For exam-
ple, in Chapter Four, we covered microcontrollers which are commonly used as the
computing medium to implement controllers. In Chapter Five, we discussed data
acquisition and interfacing of digital systems with analog components, which is
needed in digital implementation of controllers. In Chapter Six, we discussed control
software structures for the implementation of discrete-event and feedback control
systems. In the previous two chapters, we have covered sensors and actuators that
are key elements in feedback control systems.

This chapter covers the basics of feedback control systems. The objective is to
illustrate to the reader the design, simulation, and implementation of feedback con-
trol systems. The chapter starts by comparing open- and closed-loop control meth-
ods followed by a review of basic feedback control topics. It then discusses the PID
controller, one of the most widely used controllers. For the PID controller, the
chapter uses as an example the velocity and position control of a simple inertia

193

294

Chapter 9 Feedback Control

Figure 9.1

Block diagram of an
open-loop control
system

Figure 9.2

Block diagram of a
closed-loop control
system

system. It discusses a dynamic model for the system and how the model parameters
can be experimentally identified by performing an open-loop step input speed
response measurement. It then discusses the effect of different control actions such
as P, PD, PI, or PID on the response of the system. These control actions are illus-
trated using MATLAB simulations. The implementation logic for a digital PID
controller with no reset-windup for the I-action is also discussed. Nonlinear con-
trol effects and other control schemes such as the on-off controller and state feed-
back controller are also discussed in this chapter.

| 9.2 OpeN- AND CLOSED-LooP CONTROL

Before we discuss in detail feedback control systems, which are also referred to as
closed-loop control systems, let us contrast them with open-loop control systems.
In an open-loop system, the actual output of the system does not influence the
input to the system, while in a closed-loop system the input to the system is a
function of both the actual output and the reference input. The terms open- and
closed-loop come from the fact that in control systems each element in the control
system is represented by a block that symbolizes the input—output relationship for
that element. In an open-loop control system (see Figure 9.1), there is no closed
loop that connects the blocks in the system while in a closed-loop control system
(see Figure 9.2) there is one.

Input Output
—> Controller Plant or Process F—>
Input Output
—>| Controller Plant or Process
Sensor or

Measuring Element

Examples of open-loop control systems include the motion of a stepper motor—driven
stage with no feedback sensors, or the operation of a window air-conditioner with
no thermostat control. While simpler to implement than closed-loop control
systems since stability of the control system is not an issue here, open-loop
control systems have the following limitations:

* Accuracy of the system depends on having a proper calibration between the
input and output, and the system has to be re-calibrated if the operating
parameters change such as load variation in motor-driven systems.

* System performance degrades if there is any internal or external
disturbance acting on the system such as noise, dirt, temperature
fluctuation, or wear.

On the other hand, a closed-loop control system does not suffer from these
limitations.

| 9.3 DesiGN OF FEEDBACK CONTROL SYSTEMS

"To design a feedback control system means to select a particular control law and to
determine the parameters of the controller such that acceptable transient and
steady-state performance parameters are obtained for the system. Some of these
performance parameters include overshoot, rise time, and steady-state error. Due
to the possibility of instability in closed-loop control systems, which causes an
unbounded output for a given bounded input, it is very important to analyze and
simulate the designed feedback controller to make sure that it behaves as designed
before it is implemented on the real system. Otherwise, breakage or damage to the
physical system could occur if the controller is unstable.

In order to analyze and simulate a control system, a dynamic model of the sys-
tem to be controlled needs to available. Dynamic models can either be obtained from
application of the appropriate laws of physics such as Newton’s law or from fitting
experimental response data with mathematical models. Having a model of the system
does not guarantee that the real system will behave as the simulated system, because
for many systems due to real-life effects such as friction, it is difficult to obtain sim-
ple models that can accurately capture the dynamic response of the system.

While all mechanical plants or processes to be controlled such as motors,
heaters, and mixing tanks are continuous-time systems, the controller for such a
system can be either an analog type or a digital type. Analog controllers are
implemented using analog circuit components such as operational amplifiers (see
Section 2.9), resistors, and capacitors, while digital controllers are implemented
using computers and microcontrollers (see Chapters 4 and 6). Digital controllers
have the feature that the gains of the controllers can easily be changed in software
by changing the values of the parameters in the control law without the need to
replace circuit components or to rewire circuits. Almost all modern control systems
are implemented using digital controllers. When a digital controller is used, means
must be provided to interface the digital controller with the continuous-time plant
such as through an A/D or a D/A converter (see Chapter 5). Because a digital con-
troller is an example of a discrete-time system, the controller effectively operates in
closed-loop fashion only at the sampling instances, and the system is in open-loop
fashion the rest of the time. However, with the use of modern processors that allow
high sampling rates, the controller can be modeled as a continuous-time system
without much loss of accuracy. Therefore, in the remainder of this chapter, we will
only consider continuous-time models of plants and control laws.

Once a model is available for a control system, analysis can be performed in
either state space form (or differential equation form) or in algebraic form (if the
system is linear) using Laplace transform methods. For single-input, single-output
(SISO) systems, it is usually easier to perform the analysis in the algebraic domain.
The Laplace transform is an operator that converts differential equations into alge-
braic equations. All control textbooks have coverage of this topic; see for example
reference [38], so its principles will not be covered here.

| 9.4 ConTROL BaSics

This section covers some basic control systems material. We start by discussing
transfer functions and poles and zeros of transfer functions. The transfer function
defines the input output relationship for each block in a control system, and thus
we need to have a transfer function for each block in order to obtain a mathemat-
ical model of the entire system (see Appendix C which discusses transfer functions

94 Control Basics

195

296 Chapter 9 Feedback Control

(91)

Figure 9.3

Block representation of
a transfer function

Figure 94

Combined transfer
function, Ggpen(s)

(92)

Figure 9.5

Overall closed-loop
transfer function

in the context of solving dynamic models in MATLAB). The transfer function of
a linear, time-invariant system is defined as the ratio of the Laplace transform of
the output to the Laplace transform of the input under the assumption of zero ini-
tial conditions. The transfer function is written as a ratio between two polynomi-
als, B(s) and A(s), using the Laplace variable s shown in Equation (9.1):

_Bls) bys" A+ b+ by
Als) as"+ as" T+ + a,

G(s)

The roots of the numerator polynomial (B(s)) are called the zeros of the trans-
fer function, and they have a direct effect on the shape of the response. The roots
of the denominator polynomial (A(s)) are called the poles of the transfer function
whose value determines whether the system is stable or not. All poles have to have
a negative real-part in order for the output of the transfer function to be stable. A
block diagram representation of a transfer function is shown in Figure 9.3, where
UC(s) is the input and Y(s) is the output.

U(s) —>| G(s) = B(s)/A(s) —> Y(s)

If we have three blocks in series, one to represent a controller with a transfer
function G(5), another to represent the actuator with a transfer function G,(s), and
a third that represents a plant with a transfer function G,(s) as seen in Figure 9.4,
then the overall transfer function that represents the effect of the controller,
actuator, and plant combined together is given by the product of the three transfer
functions G(s), G,(s) and Gy(s).

R(s) —>| G.(s) G(s) G,(s)

—> Y(s)

—~—
Gopen(8) = G (5) G(s) G, (5)

Now assume we added a sensor with a transfer function H(s) to measure the
output of the plant, and then we used the sensor signal to place the system under
closed-loop control as shown in Figure 9.5. Using block diagram rules, the output
of the system, ¥(s), is given by

Ys) = Gpls)GalsIG(S)E(s) = Gp(s)Ga(s)Ge(sI(Rls) — His)VIs))

+ E(s)

R(s) ——>< 2)—» G.(s) G, (s) G,(s) Y(s)

Vxc

closed(s)

Where E(s) is the error and is defined as R(s) — H(s)Y(s). The overall closed loop
transfer function, G ju.4(5), is defined as the ratio between the actual output of the
system, Y{(s), and the reference input, R(s). This ratio can be obtained from
Equation (9.2) and is

Vis) Gy(5)G,(5)Gs) Gopents)

Gooseds) = 1y = 7+ HISIG,(8)Ga(SIGoAs) 1 + HI(S)Gapenis

Note that Gpsed(s) is equivalent to the effect of all the components in the
dashed block in Figure 9.5. Note also that the form of the closed loop transfer
function. In the numerator, it has the product of all the blocks in the forward loop
between R(s) and Y(5) 0r Gopen(s), while in the denominator, it has the form of 1 plus
the product of all the blocks in the feedback loop between R(s) and Y(s), or
H(X)Gopen(s)

The overall closed-loop transfer can be first, second, or a higher order,
depending on the plant dynamics model and the type of controller used.
Example 9.1 illustrates the determination of the closed-loop transfer function for a
system represented in a block diagram.

Example 9.1 Overall Closed-Loop Transfer Function

Determine the overall closed-loop transfer function for the control system repre-
sented with the block diagram shown in Figure 9.6.

+ + K
Gd(s)»(T). K, »(?—» K, p— -|->

Figure 9.6

0(s)

O | —

Solution:

The given block diagram has two loops, an inner and an outer loop. From
Equation (9.3), the closed-loop transfer function for the inner loop is given by

K
Ky
7s + 1 KK
Ginner(s) = K = —— KKV 1 (1)
1+ K, v
7s + 1

The block diagram can now be represented as shown in Figure 9.7 with only one loop.

KK,

ar ¥ 1
0,(s) —~(X—> K, STRK T 1 ~|-> 0(s)

Figure 9.7
The overall transfer function is:
o KK, 1
0(s) Prs + KK, + 1's KoKK,
Goverall(s) = = = B (2)
04(s) KK, T s + (KK, + 1)s + KKK,

T
Prs + KK, +1's

The transfer function is second order and represents the dynamics between the
desired position 64(s) and the actual position 6(s).

94 Control Basics

(93)

91

198

Chapter 9 Feedback Control

(94)

(95)

Figure 9.8

Simple inertia model

(9.6)

97)

(98)

| 9.5 PID CONTROLLER

The proportional, integral, derivative (PID) controller it is one of the most widely
used controllers in industry. More than 90% of all industrial controllers are imple-
mented using this popular control law [39]. In continuous time, the controller takes
the form:

Y1) = Keelt) + K,-/e(t)dt + Kdgdte(t)

As seen in Equation (9.4), the output of the controller is proportional to the
error signal (P-term), the integral of the error signal (I-term), and the derivative of
the error signal (D-term) through the gains K, K, and K}, respectively. The trans-
fer function of the PID controller is given by Equation (9.5).

Y(s)
Gels) = ols) = (K, + Kjs + Kys)

In practice, variations of the above control law are also implemented, such as a
PI controller, which has only the P and I terms, or a PD controller, which has
only the P and D terms. To illustrate the effect of different control actions on the
response of a mechanical system, we will consider the problem of speed and posi-
tion control of a simple inertia as shown in Figure 9.8.

/ Inertia J

Damping B
IZIAl/
X

Torque T \

N
)
¥

This model can represent the dynamics of an inertia load driven by a PM DC
motor which has a small inductance (see Example 9.2). In this case the dynamics of
the electrical parts of the motor can be neglected, and only the dynamics of the
inertia element need to be considered. The equation of motion of this system is
given by

T=4J0+ B

where 6 is the angular position of the inertia, J is the inertia of the rotating parts,
and B is the viscous damping coefficient. The transfer function between the torque
input, 7(z), and speed, w(?), is given by

wsg 1 VYB K

Ms) Js+B JBs+1 75+ 1

Note in the above form, 7 is the time constant for this first-order system and
is given by the ratio of J to B. The time constant is defined as the time it takes to
reach 63.2% of the final steady-state output for a step change in input, and the
smaller the time constant, the faster the response of the system. When this first
order system is subjected to a unit torque step input, the output speed is given by

K1
7$+ 15§

w(s) =

In the time domain, the output is given by Equation (9.9):
wlt) = K(1 — &™)
A plot of this equation is shown in Figure 9.9 for a system with J = 0.7 kg m?

and B = 0.5 N -m s/rad. These same parameters are used for all the simulations
shown in this chapter.

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Speed (rad/s)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Notice how the final steady value of this system is a function of the parameter
K, and is equal to K (2 in this case) for a unit step input. From differentiating the
expression for the speed and evaluating it at time zero, we see that the slope of the
speed response curve at time zero is the ratio of K to 7. This fact can be used to
experimentally determine the parameters K and 7 of a first-order system from a
step response plot.

9.5.1 SPEED CONTROL OF AN INERTIA

Let us place the simple inertia system under a closed-loop proportional controller.
The block diagram for this case is shown in Figure 9.10. The closed-loop transfer
function for the overall system is K,/(Js + B + K,) and is still a first-order system.

+ 1
wd(s)»(?—» K, — 1B -|->a)(s)

Under a unit step input, the output of this system is shown in Figure 9.11. As
seen in the figure, the final steady-state value does not reach the reference input,
and the system has a steady-state error.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Speed (rad/s)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

9.5

PID Controller 199

(99)

Figure 9.9

Open-loop unit step
response of a simple
inertia

Figure 9.10

Simple inertia under
closed-loop P-control

Figure 9.1

Speed response under
closed-loop P-control
(Kp =3)

300 Chapter 9 Feedback Control

(910)

Figure 9.12

Speed response under
closed-loop Pl-control

(91)

The value of this steady-state error can be obtained by first applying the final
value theorem to determine the final output as time tends to infinity:

(t) = limsw(s) = lims ’ T %
B 0 T S s+ B Ky B K,

and then subtracting the final output from the unit input. As seen in Equation
(9.10), the final steady-state error approaches zero only for very large gain K.

Ky
= — *
t—>e(2> 1 B + K, 0

"To eliminate the steady-state error, we need to use a PI controller. The closed-
loop transfer function for the overall system under closed-loop PI control is
Kys + K))/ (Js> + Bs + K,s + K;) and is of second order. This means that response
could exhibit oscillation depending on the value of the parameters of the system
(see Appendix B). The speed response of the system under this case is shown in
Figure 9.12 for two values of K;, and shows no steady-state error.

L4 T T T L4 S — —
1.2 |rmmmbmmede e d e e 1.2 |rmmmbmm e dme e d b
2 1| 2 1| fT— —
3 2 3 T
<08 08
5] ' ' ' ' ' ' ' o ' ' ' ' ' ' '
8.4067 T e T T R R a067 T T T T R
wn 1 ' ' ' 1 1 1 w 1 1 1 1 1 1 1
O e 04 |- rmmi
02 - o2 -
0 I S R 0 L
0 05 1 15 2 25 3 35 4 25 3 35 4
Time (s) Time (s)
@K, =3,K =3 b K,=3,K=6

This also can be confirmed by determining the final steady-state error as shown in
Equation (9.11).

KpS + K, 1
o) = limsw(s) = lims =
200 50 =0 JS + Bs + Kys + K S

So
ety =1—-1=0

— 00
Example 9.2 illustrates the modeling of a PM DC motor under P-control, while

Example 9.3 illustrates the selection of a PI controller gains for a speed control
problem.

Example 9.2 P-Control of a PM DC Motor

Develop a block diagram model of a speed P-control system that uses a PM brush
DC motor to drive the simple inertia system shown in Figure 9.8. An amplifier with
a gain K volt/volt amplifies the voltage signal sent to the motor. The shaft speed
is obtained from a tachometer with a sensitivity of kyacn, volts/rpm.

9.5 PID Controller 301

Solution:

A block diagram of the components of this system is shown in Figure 9.13. The
inductance of the PM brush DC motor is neglected here. The PM brush DC motor
characteristics are given in Equation (8.5). The diagram has two loops: an inner loop
to represent the PM DC motor characteristics; and an outer loop to represent the
P-control action. The shaft speed measured by the tachometer is compared against
the reference speed wgesired: Which should be in voltage units, to obtain the error
voltage V.. The factor 27/60 in the outer loop is a conversion factor from rad/s to
rpm units. The error voltage is multiplied by the gain K, (with units of volt/volt) to
obtain the input voltage Vj, that is sent to the amplifier. The amplifier output volt-
age V), is sent to the motor. The back EMF voltage generated due to motor shaft
rotation is subtracted from V,,, and the net voltage is divided by the motor resistance
R to get the armature current /,. The armature current is multiplied by the motor
torque constant Ky to get the torque T, sent to the inertia system.

Oesired (5) + + 1 Oyequal (8)
(O <
<> v, Vi, v, _ I T, Js+B

T L]

Kiach 21/60
Figure 9.3

Note that the inner loop in the above diagram can be represented by the follow-
ing transfer function:

®actual (5) _ Kr
V,(s) RJs + RB + K7Kg

This transfer function has the same structure as that of the simple inertia transfer
function given in Equation 9.7 but with different parameter values. Thus, one can
see that using the model given by Equation 9.7 in the control analysis done in this
chapter gives the same information as using a more detailed model such as the
one above.

Example 9.3 Design of a Pl Speed Controller

The model given by Equation (9.7) is placed under a Pl speed controller. Determine
the proportional and integral gains of the PI controller such that the controlled
system has a critical damping ratio and a desired time constant of 7.

Solution:

The closed-loop transfer function of the model given by Equation (9.7) under a PI
controller was used in Equation (9.11). The characteristic equation, which is second
order, is

Js? + (K, + B)s + Ki =0 (1

The above characteristic equation can be equated to the characteristic equation
of an underdamped second-order system that is given in Appendix B (see Equa-
tion (B.7)). This gives

(Ko + B)

Sz+fs+7i=sz+2§w,,s+w,2,)

302 Chapter 9 Feedback Control

For critical damping, { = 1. From Figure B.5, we know that the time constant and
the natural frequency of a second-order system are related by

1

= (3)
{wp
Using equations (2) and (3), the gains K, and K; are then obtained as
Kp:y—B:B(Zl—O @)
Td Td
and
J
K,‘ = 7 (5)
Td

where 7 = J/B.ForJ=0.7, B=0.5, and 74 = 7/4, K, is 3.5 and K; is 5.714. Figure 9.14
is the step response of the system using these gains.

1.4

12
1

Speed (rad/s)
o o o
>~ o ®

<
S

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

Figure 9.14

9.5.2 PosITION CONTROL OF AN INERTIA

Let us examine the response of the inertia system when the angular position of the
inertia is controlled instead of the angular speed. A block diagram for the system
under P-control is shown in Figure 9.15. The diagram shows an input disturbance
that is also applied to the system. Note that since the angular position is the inte-
gral of the angular speed, the controlled plant is second order in this case.

Figure 9.15 l D(s)

+

Closed-loop P-control + 1 |
. - o —>(g)_> K | 1 .
of inertia position 0a(s) Js+B s 0(s)

Using block diagram rules, we can determine an expression for the angular dis-
placement 6(s) as a function of both the desired displacement 6,(s) and an input dis-
turbance D(s). For a step reference input 6,(s) and a constant disturbance D(s), the
output is given by

1

4
08 +
Js* + Bs + K, ds! Js* + Bs + K,

(1) Bls) = Dlsi

So the steady-state output is

. 1
ot) = S||m050(s) =6, + 7/(D

t— 00 D

and the steady-state error is

1
elt) = 6, olt) = —ED

Since disturbances are always present in a real system, there will always be a
steady error if only P-action control was used. Similar behavior would be obtained
if PD control was used. Figure 9.16 shows the position response under closed-loop
P-control without and with constant disturbance (K, = 0.2 and D = 0.1). Notice
the large steady-state error when the disturbance is present.

14 1.6
—’g\ 1.2 14
= —~
s 1 E 1.2
= s 1
z2 08 2
A~ Z 0.8
s 06
el = 06
04 5 04

0.2 < 02

0 0

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (s) Time (s)
(a) No Disturbance (b) Constant Disturbance (D =0.1)

Now let us examine the response of the system under PI control. The block dia-
gram for this case is shown in Figure 9.17.

D(s)
I,

+ K. 1
Gd(s)—>®—> KP+TI —>®—> 5

|

The transfer function between the actual displacement and the desired displace-
ment is given by

6(s)

©| -

ols) Kys + K
04(s) Js® + Bs® + Kys + K;

and the transfer function between the actual output and the disturbance is
given by

olsl _ s

Dis) Js* + Bs” + Kys + K;

9.5 PID Controller 303

(933)

(934)

Figure 9.16

Position response under
closed-loop P-control
without and with
constant disturbance
(Ko =0.2)

Figure 9.17

Closed-loop PI-control
of inertia position

(915)

(936)

304 Chapter 9 Feedback Control

(917)

Figure 9.18

Position response under
closed-loop PI control
without and with
disturbance

Table 9.1

Ruth-Hurwitz stability
conditions

Similar to the P-action case, we can determine the final steady-state output for
the case of step reference input and a constant disturbance. The final steady-state
output is 6, as seen in Equation (9.17).

0f) = limsO(s) = 6, + 0 =6,

o0 50
So, unlike P-action control, the addition of the I-action produces a response with
zero steady-state error even with the presence of disturbances. Thus, for position
control, PI or PID control should give a response with no steady-state error.
Figure 9.18 shows the position response under closed-loop PI-Control (K, = 0.2,
K; = 0.02) without and with input disturbance present.

1.4 1.8

= 1.6
9 1.2 —~

£ T 14
= 1)

502

é 0.8 ~§ 1

g 06 ~ 08

= = 0.6

%‘) 04 B -

Z 04

02 0.2

0 0

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (s) Time (s)
(a) No Disturbance (b) Constant Disturbance (D =0.1)

One important issue in the design of a feedback controller is the stability of
the controller system. Ruth and Hurwitz [38] have come up with a quick method
to determine the stability of a control system based on the values of the coefficients
of the closed-loop characteristic equation of the system. Table 9.1 lists these stabil-
ity conditions for first-, second-, and third-order systems.

System Order Characteristic Equation Stability Conditions

First as+a=0 Stable if and only if & and ay have
the same sign

Second 3252 +as+a=0 Stable if and only if a5, a;, and g all
have the same sign

Third as’ + gt +as+a=0 For a5 > 0, stable if and only if &, a;,
and gy all have the same sign and
aa; > a3q

As an example, let us apply these stability conditions for the characteristic
equation of the transfer function of Equation (9.15). Since the inertia and viscous
damping coefficients are always positive for this third-order system, the system is
stable if both K, and K; are positive and if K,/K; > J/B. This is the case for the
parameters used to obtain the plots of Figure 9.18.

9.7 Nonlinearities

| 9.6 DiGITAL IMPLEMENTATION OF A PID CONTROLLER

Due to the discrete nature of digital control, when a PID controller is implemented

on a PC or a microcontroller, the controller is approximated by
k=1
y(kT) = KelkT) + KT, e(jT) + Kylle(kT) — ellk — 1)T))/T (918)
=0

or alternatively

ui(kT) = ul(k — 1)T) + KiTellk — 1)T)
YIKT) = KelkT) + u{kT) + Kylle(kT) — eltk — NTI)/T (919)

where T is the sampling interval, #; is the I-action control output, and ¥ (k = 0, 1, 2,
...)is an index that represents the number of the instance at which control is done.
Notice how the integral for the I-action term is now replaced by a summation and
the derivative for the D-action is now replaced by a difference equation. This sum-
mation expression comes from approximating the area under the error vs. time plot.
While there are several ways to do the approximation (such as backward approxima-
tion, and trapezoidal), Equation (9.18) is based on the forward rectangular approx-
imation scheme. This is illustrated in Figure 9.19, for example, where at £ = 3 the
sum of all the errors to that point is given by the sum of the three shaded areas.

1 Figure 9.19
e(2T)

e(0) e(T) —- y Forward rectangular
approximation

Error

k—=0 1

In Section 6.4.2, we had discussed a control software structure for implementation
of a feedback control system. The next chapter discusses the details of implemen-
tation of this control software structure where a digital PI controller was imple-
mented in two different platforms, one using an MCU and the other using a PC.

| 9.7 NONLINEARITIES

Real systems have nonlinearities such as saturation and Coulomb friction. These
nonlinearities cause a deviation from the ideal linear system behavior discussed
before. This section will discuss the effect of these nonlinearities.

9.7.1 SATURATION

In real systems, the output from the controller is limited. This is the case since the
amplifiers that amplify the control output that is sent from the computer or the

305

306 Chapter 9 Feedback Control

Figure 9.20

Illustration of the
saturation nonlinearity

Figure 9.21

Pl simulation with no
controller output
limits

u+ u

—_— m

‘min

microcontroller to the actuators are power limited. The inability to exceed a par-
ticular output level is called saturation, and a plot of the saturation nonlinearity
is shown in Figure 9.20, where « is the controller output and 2 is the amplifier out-
put. When the controller output exceeds u+ (o7 is smaller than u—), the output sat-
urates at the maximum (minimum) value of 72,4 (Or #21;,). In some systems such
as a heating system, #2,,;, is zero, since a heater can not apply a negative heat.

The saturation of the controller output causes the PID controller to overshoot
and to delay the response of the system. To illustrate this point, consider
Figure 9.21 which shows a PI simulation (K, = 3 and K; = 3) of the simple inertia
system considered earlier with no saturation limits placed on the controller output.
Notice how the speed overshoot is very limited, and the speed error goes to zero
just before ¢ = 3.4 s. However, the controller output is initially high and stays above
1.0 N+ m for approximately the first 0.4 s. The Simulink model (see Appendix C)
that is used to obtain this plot is shown in Figure 9.22. The model uses the contin-
uous time PID Controller block in Simulink.

Now the PI simulation was repeated but with a limit of +/— 1 N+ m placed on
the controller output. This simulation is obtained by specifying the lower saruration

5 1 E 05
E .
bt ia

2 05 2 0
w (5]
o
%]

0 -0.5

0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

3 0.4
= >

= 03
< E
= £

5 E 0.2
2 1 -

g E 0.1
= 3]

0 0

0 1 2 3 4 0 1 2 3 4

Time (s) Time (s)

W pid_simulation 1 ﬂg
File Edt View Smulstion Format Tools Help
.U FHS B - =2 3 _1'ﬂ_l'imd BB rEER®
[r=a==] =
| Lorssas | B |
Tranafar Fen Spuend
' -F\l, ¥ Controidutput
Heterence P Camtrater r@
[TI Error Sum
Ready 0% oded
1.5 1
2 E
3 1 £ 05
£ 5
3 5
2 05 z 0
n [}
2,
%)
0 -0.5
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)
1 0.8
e @
= 0.6
< 03 2
5 &
£ E 04
8 06 2
=) .
g E 02
= S8
0.4 0
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

limit and the upper saturation limit in the PID advanced section of the block param-
eters for the PID controller block. The simulation results are shown in Figure 9.23.
The controller saturation is shown in the plot of the torque input to the system
where the torque stays at the limit value for approximately the first 1.1 s. Notice
now the significant overshoot in the speed response plot. This overshoot is a direct
result of the I-action and is explained below. Due to P-action alone, the controller
output is close to 3 N - m at the beginning of the simulation, assuming zero initial
conditions. Having I-action in this time interval is not useful, since the additional
control output from the I-action will not be utilized due to saturation of the con-
trol output. Furthermore, due to the summing nature of the I-action, the I-action
term keeps increasing in value until the error switches sign and will supply a non-
zero input to the system even if the error is zero. Thus, for systems that have
saturation, it would have been better to shut off completely the I-action while the
contribution from the P-action alone (or from the P and D-action if a PID con-
troller is implemented) exceeds the controller limit. This behavior of the PI
controller is called reset windup or integrator buildup and can occur with any
controller with integrator action and saturation.

9.7 Nonlinearities

Figure 9.12

Simulink model for
simulating a Pl
controller of a first-
order system

Figure 9.3

Pl simulation with a
limitof +/— 1 N-m
placed on the
controller output

307

308 Chapter 9 Feedback Control

Figure 9.24

Simulation of PI
controller with no reset
windup feature

With the use of digital controllers, it is possible to implement the PID con-
troller in software so as to avoid the above-mentioned problem. Such implementa-
tion is called a PID controller with anti-windup or no reset windup. The turning
off or adjustment of the I-action contribution helps to prevent the reset windup of
the system. In Simulink, no reset windup simulation is obtained by selecting an anti-
windup method in the PID advanced section of the block parameters for the PID
control block. Figure 9.24 shows the simulation results with the camping method is
chosen as the anti-windup method. In this method, Simulink stops integration
action when the sum of the PID block components exceeds the output limits and the
integrator output and block input have the same sign. The I-action integration is
resumed when the sum of the block components exceeds the output limits and the
integrator output and PID block input have opposite sign. Here the speed response
is slower than the response shown in Figure 9.23, but there is no overshoot.

1 1
—~ 3
z g
el Nad
£ 05 € 05
3 a
& 3
o
7]
0 0
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)
1 0.8
E z
< 03 e
z g
5 E 04
wn
(]
5 0.6 5
g E 02
F LU
0.4 0
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

9.7.2 NONLINEAR FRICTION

Mechanical systems subjected to dry or Coulomb friction exhibit a nonlinear
response behavior. This point is illustrated in Figure 9.25, which shows the open-
loop speed step response of a small PM brush DC motor subjected to different
input voltages. At a 3.0 V input, the final speed steady-state value is less than 1 V.
At double the input voltage value or 6V, the final steady-state value is about 3 'V,
which is more than three times the response at 3.0 V input. This behavior is char-
acteristic of dry or Coulomb friction where the output speed is not proportional
to the input voltage. In addition, the input voltage (or torque) has to exceed a cer-
tain value before motion occurs. For example, in this particular system, the motor
does not rotate unless the input voltage exceeds 2.25 V.

A linear model for such a system (such as Equation 9.7) will only reproduce the
actual behavior at input conditions similar to those used in obtaining the model
parameters. At other input values, the model prediction would deviate from real
behavior. This point is illustrated in the next chapter in modeling the paper
dispensing system (see Section 10.3.6). Fortunately in many cases, with closed-loop
PI or PID control action, the nonlinear behavior becomes a disturbance to the

9.8 Other Control Schemes 309

Open Loop Response

R
in

IS

75V

N e
&} W w in

—_
W

Tachometer Output (volts)

k _‘,./v'/"'"/'\‘""\""”"\O"'""’"'""‘~"""\-wﬁ-a.\‘“.'\ﬁ./v\/.,..s'\--\.N\-l.
0.5 fr 3.0V
I
7
0
0 0.2 0.4 0.6 0.8 1 1.2
Time (s)

system, and the feedback control system can produce a response with zero steady-
state error for such a system.

| 9.8 OTHER CONTROL SCHEMES

In addition to the PID controller, there are many other control schemes that are used
in practice. Some of these include the ON-OFF controller, and the state feedback con-
troller. Each of these control schemes will be briefly discussed in this section.

9.8.1 ON-OFF CONTROLLER

The on-off controller is a simple, but nonlinear controller in which the controller is
either on or off. A heating/cooling system controlled by a thermostat is an example
of an on-off controller. In Chapter 6, we illustrated the simulation of such a controller
in discussing the implementation of a digital thermostat state-transition diagram in
software using different computing platforms. An on-off controller can be easily
implemented in a PC or MCU using a combination of a digital output line and a
relay or a transistor to turn on/off the control voltage to the actuator or heater.

Because the on-off controller is nonlinear (the output is not proportional to
the error but is fixed at either one of two values), the closed loop transfer function
of the overall system cannot be simply obtained as was done for the PID controller.
However, we can simulate the behavior of the controller using MATLAB.
Figure 9.26 shows a simulation of a heated plate in which the output is either 0 or
12 V (the model of this system is discussed in Section 10.4.5).

The on-off controller was implemented as a Simulink MATLAB function
block with a sample time of 1 second. The left part of Figure 9.26 shows the tem-
perature response of the plate for a 10° step change in temperature as well as the
output from the on-off controller. As seen in the plot, when the plate temperature
was below the desired temperature, the controller was fully on. After the
plate reaches the desired temperature at # = 146 s, the on-off controller alternates
between being fully on and off. Since the controller cannot supply any cooling, the
off interval is longer than the on interval, as seen in Figure 9.26(b).

Figure 9.25

Open-loop step
response of a small
DC motor system with
a tachometer

310 Chapter 9 Feedback Control

Figure 9.26

Simulink simulation of
an on-off controller
for the heater system
considered in

Section 10.4.

(a) Response and
controller output and
(b) detailed view

of response and
controller output

(9.20)

(9.21)

(9.22)

(9.3)

(9.4)

15 10.1
o~ O o~
=0 =0
g 10 g < 10.05
O &) L B
o o
ES 5 ES 10
= O =
0 9.95
0 50 100 150 200 250 300 140 145 150 155 160 165 170
Time (s) Time (s)
- 15 - 12
2 2 10
R R
I cs
g% 5 £< 4
I} s} 2
“ 0 “ 0
0 50 100 150 200 250 300 140 145 150 155 160 165 170

Time (s) Time (s)

(a) (b)

9.8.2 STATE FEEDBACK CONTROLLER

One limitation of the PID controller is that the location of the closed-loop poles of

the system cannot be arbitrarily selected but are a function of the control gains used.

If we want to exactly specify the location of the closed-loop control poles (and hence

the dynamic response behavior), then we need to use a state feedback controller.
For a linear system represented in the form (see Appendix C)

X = Ax + Bu
the state feedback controller takes the form
u= —Kx

where Kis the 1 X 7 state feedback gains matrix. Substituting the controller expres-
sion into Equation (9.20), a system under state feedback control has a dynamics
given by

X = (A — BK)x

The gain matrix K is determined by matching the poles of the system matrix A-BK
to a user specified set of pole locations. In MATLAB, this operation is performed
using the PLACE function. For arbitrary placement of the closed-loop poles, the
given system needs to be controllable [40].

The controller form given by Equation (9.21) performs a regulation of the sys-
tem around the origin (i.e., if the system is subjected to disturbances, it will bring the
state vector back to the origin). If we need the state feedback controller to track a
particular reference signal 7, then the state feedback controller is given in the form

u=—Kx+ Nr

where N isa 1 X m gain matrix to produce zero steady-state error for a reference
7. The determination of the N matrix is discsussed in many control texts, see for
example [40]. For a single input, single output system, N is given by

N= —1/ClA — BK'B)

Example 9.4 illustrates the design of a state feedback controller for a non-rigid gear
drive system.

9.8 Other Control Schemes m

Example 9.4 State Feedback Controller for Non-Rigid Gear Drive System

Design and simulate in MATLAB a state feedback controller to control the load
link displacement in the gear drive system considered in Example 8.2 and repro-
duced in Figure 9.27. Let the torque output of the motor be the input to the sys-
tem, and take into consideration the compliance of the input and output shafts.
Use the following parameter values: N = 10, k1 = 1200 N/m, k5 = 1900 N/m, b, =
0.015 Nm s/rad, b, = 0.030 Nm s/rad, /; = 0.002 kg m?, and I, = 0.925 kg m?.

Bearing
Motor
-
m_X
< Gear Reducer
Output Shaft X >
utput Sha —>L|Z,_
I Load Link
=
Figure 9.27

Solution:

If the shaft compliance is taken into account, then the motor inertia and the load
inertia are connected through compliant members and our model needs to reflect
this fact. The system is modeled as shown in Figure 9.28(a). The rotor is connected
in series with a spring k; that represents the elasticity of the shaft connecting the
rotor to the gear. Similarly, spring k, represents the elasticity of the shaft connect-
ing the gear to the link. We assume the gears to be rigid since the gear stiffness
is normally much higher than the shaft stiffness. The model in Figure 9.28(a) can
be represented by an equivalent system based on the input shaft as shown in
Figure 9.28(b). In this representation, the gear reduction is eliminated and the
parameters that represent the output shaft stiffness k,, the output inertia /5, and
the friction torque Tf, are modified to reflect the effect of the gear reduction (i.e.,
ks = ka/N? 13 = I,/N%, and Tfs = Tf,/N). The springs k; and kj are in series and can
be combined to have an effective stiffness of k. Let 61 be the motor angular posi-
tion, and let 0, be the angular position of the output link measured in the input
shaft coordinate system

I N I I L
Tin C Tin C]—'
kl kz kl k2’
T If, 1 Tfy

(a) Model with Shaft Compliance (b) Model Incorporating Gear Effects
Figure 9.28

The equations of motion for the system are then obtained as
Tin = k(61 — 62) + b16y + 1,6, (1
k(67 — 62) — b36, = 156, (2)

where 1/k = 1/kq+1/k'3, k'y = ka/N? I'; = I,/N? and b'; = by/N* where N is the
gear ratio.

n

Chapter 9 Feedback Control

If we let x; to be the input shaft (or motor) angular displacement, x, to be the
input shaft angular speed, x3 to be output link angular displacement measured in
the input shaft coordinate system, and x4 be the output link angular speed mea-
sured in the input shaft coordinate system, then the above equations can be rep-
resented in state space form with:

0 1 0 0 0
| —k/h —byl K/ 0 yh| ~
A=l 0 0 . | B=| 'l c=M0010landD=10] (3)
k1 0 —k/ly —byly 0

For the given parameters, the A and B matrices are given in MATLAB as

A= B =
1.0e + 003*
0 0.0010 0 0 0
~9.3519 ~0.0075 9.3519 0 and 509
0 0 0 0.0010 0
2.0220 0 ~2.0220 —0.0000 0

If we let the desired closed-loop poles of the system be clp = [=3 —4 —5 —6], then
the state feedback gain matrix K is determined from the MATLAB command:

K = place(A, B, clp)

This gives the K vector as:

K=[-22.5111 0.0209 22.5115 -0.0355]

From equation (9.24), the N parameter is 3.5608e-004. The state feedback simula-
tion of the above system model for a unit step response of x3 is shown in Figure 9.29.
The model is simulated as the following system

sysl = ss(A-B * K, B, C, D);

with the elements of the input vector multiplied by the parameter N. The plot
also shows the response for two other sets of closed-loop pole locations. The
state feedback controller achieved a zero steady-state error and as expected,
the response speed improves as the poles are placed farther away from the imag-
inary axis.

Full State Feedback
1 —
VaRvad
0.9 7~/
/ /
~ 08
2 1/
= 07 k-t
) |1
: 06 i
g 05 I
ira) 1
& 041y
S osl-fi
2 031
=)]
8 0o i — 3450
i - — = —1043i —10-3i —5+0i —o+0i
0Lt — — —1043i —10-3i —8+0i —12+0i
0

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

Figure 9.29

9.8 Other Control Schemes n

Note that a state feedback controller requires availability of all the states of the
system. In reality, all states may not be available. For example in many positioning
systems, only the position signal is available, and the velocity signal is not meas-
ured. The unavailable states can be created in software using an observer [40], but
this topic is beyond the scope of this textbook. State feedback control can also pro-
duce large actuator output if the poles are not selected carefully.

Even if the position and velocity signals are available, for many positioning
applications, such as the system considered in Example 9.4, we have the choice of
placing the position/velocity sensors on the motor shaft or on the output link shaft
but not on both shafts to reduce the cost and complexity of the feedback system.
"To illustrate these choices, consider the system of Example 9.4 with a state feed-
back controller of the form

ln=HRK —K xn— Ky x
where x; is the motor shaft angular displacement and «; is the motor shaft angular
speed. The unit step response of the link position for different combinations of K, and
K gains is shown in Figure 9.30(a). The figure shows that the motor shaft-based state
feedback controller behaves adequately, and the response behavior is dependent on the
K, gain. Let us now replace the controller in Equation (9.25), by one that is based on
the output link shaft. The state feedback controller in this case is

Tm:HKp_KpX:;_KdX[l

Motor Shaft Controller
1.4 3

(9.5)

(9.26)

Link Shaft Controller

— K,=1.0,K,=0.0
25

Sl =—=K,=10,K,=0.05
ol ---K,=1.0,K,=0.1

p—
-

— K,=10.K,=0.1
-—K,=10.K,=04
-== K,=3.0,K,=04

Link Displacement (rad)
A
Link Displacement (rad)

Time (s) Time (s)
(a) (b)

where x3 is the output link angular displacement measured in the input shaft coor-
dinate system and x4 is the output link angular velocity measured in the input shaft
coordinate system. The response of the system under such a controller is shown in
Figure 9.30(b). Notice here how the system becomes unstable with increasing val-
ues of K;. The second control configuration is an example of a non-collocated
actuator-sensor system [41]. The instability arises from the compliance of the drive
elements between the actuator and the sensor. Thus to avoid instability problems,
the controller should be based on the input shaft at the expense of less accurate
positioning of the link since a motor shaft controller does not compensate for any
hysteresis or compliance in the gear train.

1.5 2 2.5 3 35 4 0 05 1 1.5 2 2.5

Figure 930

Response of the system
in Example 9.4 to

(a) state feedback
controller based on the
input (motor) shaft and
(b) a state feedback
controller based on the
output (link) shaft

314 Chapter 9 Feedback Control

| 9.9 CHAPTER SUMMARY

This chapter gave a brief overview of feedback control
systems. A feedback control system is one in which the
input to the system is a function of borh the actual output
and the reference input, unlike an open-loop system in
which the input is only a function of the reference input.
The chapter focused primarily on the PID control algo-
rithm, which is one of the most widely used feedback con-
trol laws. Through analysis, it was shown that a P or PD
controller would not achieve a zero steady-state error in
controlling a first-order system under a step input.
However, a PI or PID controller would achieve a zero-
steady-state for the same system with or without constant

QUESTIONS

disturbances acting on the system. For a second-order sys-
tem, a P-controller would achieve a zero steady-state
error for step input provided that there are no distur-
bances, while the PI or PID controller would achieve no
steady-state error with or without the presence of constant
disturbances. The effect of saturation nonlinearity on the
behavior of feedback control system with integrator action
was also considered. A simulation of the behavior of a
PID controller with no reset windup was presented in this
chapter. Other control schemes such as the on-off con-
troller and the state feedback controller were also
discussed in this chapter.

9.1 List two limitations of open-loop control.

9.2 What assumption is made in obtaining a transfer function?

9.3 What do the poles and zeros of a transfer function mean?

9.4 Does a P-action closed-loop control of a first-order system achieve a zero steady-state error?

9.5 What condition assures stability of a closed-loop control system?

9.6 What causes reset-windup problems when using a PID controller?

9.7 List two nonlinear effects that are encountered in control of real systems.

9.8 What limits the application of the state feedback controller in some cases?

PROBLEMS

P9.1 The controller transfer function and the plant
transfer function are given below. Determine the
overall closed transfer function of this system.
What is the final steady-state value for a unit step
input applied to the closed-loop system?

s+ 3

GC(S)_S-O-B

5
Gyls) = ——
! 24+ s+5

P9.2 Determine the closed-loop transfer function of
the system shown in Figure P9.2.

+
0,(5) =X 2+1 f—z 0(s)

Figure P9.2

P9.3 For the system shown in Figure P9.2, determine
the transfer function between 6(s) and a distur-
bance D(s) applied to the system between the
controller and the plant blocks. What is the final
steady error if the disturbance is constant and has
a magnitude of 2?

P9.4 For the block diagram shown in Figure 9.6,
determine the transfer function between 6(s) and
a disturbance D(s) applied to the diagram between
the K, and the K/7s+1 blocks. What is the final

steady output if the disturbance is constant?

P9.5 If the P-controller in Figure 9.15 was replaced
with a PD-controller with a transfer function of
K, + K; s, determine the closed-loop transfer
function between the angular displacement 6(s)
and the desired displacement 6,(s) as well as

P9.6

P9.7

between the angular displacement 6(s) and the
input disturbance D(s).

A first-order system with the transfer function
G(s) = 1/(0.5 s + 1) was placed under a closed-
loop P-control. Determine the value of the con-
trol gain K, so that the closed-loop control sys-
tem time constant is 0.1 seconds. What is the
value of the steady-state error for a unit-step
input using this gain?

The system in Problem 9.6 was placed under a
closed-loop PI control. Determine if the system
will have an overshoot for a step input:

aK,=2and K;=1

b.K, = 1and K; = 3

LABORATORY/ PROGRAMMING EXERCISES

P9.8

P9.9

99 Chapter Summary 315

For the system given in Problem 9.7, determine
the K, and K; gains so that the closed-loop system
has a natural frequency of 5 rad/s and a damping
ratio of 1.

For the inertia system represented by Equation 9.6
and using the velocity and position as state vari-
ables, determine:

a. State space model matrices (A, B, C, and D)
for the system assuming that the position (x1)
is used as the output.

b. The state feedback gains for desired closed-
loop poles of —5+3iand —5 —3i. Use
the same B and J values as those used in
Figure 9.9.

L/P9.1 Using the following transfer function G(s) =

1/(0.5 s + 0.1), model a PI controller for this sys-
tem in Simulink and perform the following:

a. Obtain the unit step response for K, = 1.0 and
K;=0.

b. Repeat the step response but use K, = 3 and
Ki = 0.5.

c. Repeat the step response but use K, = 1 and
K =1.

d. Repeat the step responses in parts a through c,
but consider the effect of saturation on system
response by adding a saturation block after the

controller block with output limits of +/— 0.5.

L/P9.2 Design and implement in MATLAB a state feed-

back controller for controlling the position of the
system given by Equation (9.6). Use the model
parameters given in Example 9.3. Try at least two
different locations for the closed-loop system

poles. Plot the response of the system for each of
these cases.

L/P9.3 Implement a closed-loop PI controller in a PIC-

microcontroller for a first-order system such as a
motor-tachometer system. Use the A/D converter
on the board to read the output of the system and
the PWM feature to send the control output to
the system. Connect the microcontroller to the
PC to display to the user information about the
performance of the system.

L/P9.4 Use Simulink to model the Coulomb friction

nonlinearity. Use the data shown in Figure 9.25
to obtain the parameters of the model. Test your
model with different inputs and compare the
model results to the actual data in Figure 9.25.

L/P9.5 Implement in VBE the logic for a PID controller

with no reset windup. Test your code by simulat-
ing the speed control of an inertia similar to the
one done in this chapter.

77

CHAPTER

Mechatronics Projects

CHAPTER OBJECTIVES:

When you have finished this chapter, you should be able to:

® Apply state-transition diagrams concepts to the operation and control of
different mechatronic systems

® Apply circuit design for the construction of circuits to interface PIC
microcontrollers with physical systems

® Develop software for control of mechatronic systems

® Develop software for the interface between a PC and a microcontroller
system

* Apply modeling techniques to develop a dynamic model of a mechatronic
system

* Apply MATLAB to simulate the response of mechatronic systems

e Explain the integration of the different components of a mechatronic
system such as sensors, actuators, amplifiers, interface circuits, and control
software that were covered in the book

| 10.1 INTRODUCTION

This chapter discusses several experimental systems that are suitable for extended or
final project topics. These systems include a) a stepper-motor driven rotary table,
b) a toilet-paper dispensing system that uses a roller driven by a position-controlled
DC motor, and c) a temperature-controlled heating apparatus that uses a heating
coil, a copper plate, and a temperature sensor. All three systems combine various
mechatronics elements. The discussed projects objective is to link the topics covered
in the previous chapters into an integrated unit. All of the suggested projects include
software design issues, hardware interfacing, data-acquisition, timing, and control
software. The second and third projects also include dynamic modeling. A list of the
main components needed to fabricate each of these systems is provided.

| 10.2 STEPPER-MOTOR DRIVEN ROTARY TABLE

Stepper motors are widely available and offer a low-cost actuation system that can
operate in open-loop fashion without the need for feedback sensors. Stepper motors
require digital signals for actuation, and these can be conveniently supplied from a
PC or microcontroller. This project uses a PIC MCU as the controller.

316

10.2 Stepper-Motor Driven Rotary Table

10.2.1 PrROJECT OBJECTIVES

This project focuses on the open-loop control of a stepper-motor—driven rotary
table. The project objectives are to illustrate:

* State-transition diagram for a discrete-event control system

¢ Circuit for interfacing the microcontroller (PIC16F690) and the stepper
motor system

* The use of PWM signals for driving the stepper motor

* The development of a C program for the control code

10.2.2 SetupP DESCRIPTION

The setup consists of a four-phase stepper motor with its rotation axis oriented ver-
tically and mounted on a small aluminum support base, as shown in Figure 10.1(a).
An optical CD with a notch is mounted on the stepper-motor shaft, as shown in
Figure 10.1(b). The notch presence on the disk is detected by a photo interrupter
optical sensor. A PIC16F690 microcontroller is used as the controller, and it trans-
mits the step and pulse information to either a stepper-motor driver chip or a com-
mercial stepper-motor driver. The PIC16F690 microcontroller is mounted on a
Microchip low pin-count development board (see Figure 4.11).

Figure 10.1

and (b) mounting
details of the CD

Rhode Island)

10.2.3 INTERFACE CIRCUIT

The PIC16F690 can be interfaced to the stepper motor using either a stepper-
motor interface chip (such as the EDE1200 in Figure 8.36) or a commercial
stepper-motor driver. Figure 10.2 shows an interface circuit using the PD0O2035

Figure 10.2

Optical Isolator Interface circuit
of PIC16F690 and

Stepper Driver

PIC16F690

GND Common
P1A Step
RC5 Direction

Amplifier

A+
A— Stepper :I
B+ Motor

B—-

(Jouaneh, University of

stepper-motor driver

n

(a) Rotary table system

318

Chapter 10 Mechatronics Projects

Figure 10.3

Interface circuit for
photo interrupter
sensor

stepper-motor driver from Applied Motion Products, which was discussed in
Section 8.4.2. The stepper motor used in this project is a four-phase, six-lead
motor and was connected using a series connection (see Figure 8.39(a)). The
MUCU sends pulse and step signals to the driver, and the driver in turn sends the
appropriate signals to the phases of the stepper motor. The direction signal is sup-
plied from the RC5 port on the PIC16F690, while the pulses are supplied from
the PIA PWM port. Full- and half-stepping modes as well as the current setting
per phase are set using dip switches on the driver.

The circuit for processing the signal from the photo interrupter is shown in
Figure 10.3. As discussed in Section 4.4, a photo interrupter is a combination of an
LED and a phototransistor. When the light beam sent by the diode is interrupted
by an object, the phototransistor stops conducting, and the output of the sensor is
pulled up to the supply voltage.

JUL

Bottom View
3001 —— 0 — =
+5V eAMAN—— + D

|
|
: —— : Signal is high when beam
I —_— | is interrupted
] S ———— ! 45V
/ \ 1kQ
Emitter LED Phototransistor
(E) (D)

10.2.4 OPeRATION COMMANDS

The motion of the table should be controlled by three commands. An explanation
of the desired function of each of these commands is given here.

CW: This command should cause the table to rotate clockwise (as seen from
above the disk) and should cause the table to automatically stop when it
reaches the optical sensor. If the table was originally at the home position,
this command should cause the table to make one complete revolution.

CCW: This command should cause the table to rotate counterclockwise
(as seen from above the disk) and should cause the table to automatically
stop when it reaches the optical sensor. If the table was originally at the
home position, this command should cause the table to make one complete
revolution.

Stop: This command should stop the table if it was moving, but the program
should still be running.

At startup, the program should rotate the disk until the notch on the disk is
aligned with the optical sensor (home position). If the disk is already aligned with
the sensor, then there is no need to home the table.

Since the low pin-count development board has only one built-in switch
(SW1) input, we can implement the three commands using the rotary pot (see
Section 7.3.1) on the development board. The rotary pot is connected to a 10-bit
analog channel RAO. We map the output of the analog port as shown in
Figure 10.4. The nearly three-quarter revolution of the rotary pot is split into four

10.2 Stepper-Motor Driven Rotary Table

Stop CwW CCW Stop
0-255 256-511 512-767 768-1023

zones: Stop, CW, CCW, and Stop. The use of two separate Stop zones allows the user
to easily change between the different commands. To replicate button input in a GUI,
the CW, CCW, and Stop commands are only active when the built-in SW1 switch on
the board is pressed. This prevents the command from being active all the time.

The desired operating commands can be translated into seven states as shown
in the state-transition diagram in Figure 10.5. At startup, the program starts in
the Start state. If the disk happens to be at the home position, then the state tran-
sitions to the AtHome state. If the disk is not at the home position, then the disk is
set to rotate clockwise until it hits the home position. In the AtHosme state, the table
can transition to either the Initial CW Motion or Initial CCW Motion state, depend-
ing on the user input. These initial motion states are used for a short time while the
disk clears the home sensor zone. No monitoring of the home sensor is done in
either state to prevent a transition based on false triggering. When the short time
interval elapses, the table is in the CW Motion or CCW Motion state. Monitoring is
done in each of these states for a home sensor signal, a Stop command, or a rever-
sal of the motion direction command, and the corresponding transition is taken. In
the Stopped state, the table waits for a CW or CCIW command to start moving again.
While the table is stopped in both the AtHome state and the Stopped state, two states
are used here to distinguish the fact that in the AtHome state the table is at the
home position, which is not the case with the Sropped state.

Start

At Home Sensor

cCwW cw
AtHome
Initial CCW Initial CW
Motion Motion
X steps X steps
Exceeded At Home At Home Exceeded
Sensor Sensor
CcCwW
CCW CwW
Motion cw Motion
Stop Stop
CCW cw

Stopped

10.2.5 MICROCONTROLLER CODE

The program for controlling the stage motion is implemented on a PIC16F690
microcontroller that was mounted on the low-pin-count development board. The
PIC-C compiler (see Section 4.6) was used for this project. The variable definitions
are shown in Figure 10.6, while the code listing for the muain(), GetCommand(),
and Move'luble() functions is shown in Figure 10.7. The code listing for the

Figure 10.4

Mapping interface
between commands
and A/D output

Figure 10.5

State-transition
diagram for the
operation of the
stepper-driven rotary
table

39

310

Chapter 10 Mechatronics Projects

Figure 10.6

Variable definitions
for code to control
the rotary stage

T
11/ RotaryTable.c

/1

/// This program implements the state diagram for the stepper-motor driven
/// rotary table. The solution uses PIC16F690 using the Low pin count board
/// Compiler: PCWH from CCS, Inc. (Version 4.103)
T

#include <16F690.h> //Include file for the particular chip used
#DEVICE ADC =10 //10-bit A/D return value
#use delay(internal = 8M) //Use Internal 8 MHz- clock

#fuses INTRC_IO, NOMCLR, NOWDT, NOPROTECT, NOBROWNOUT

#define Start 1 //Define the states
#define AtHome 2

#define InitialCWMotion 3

#define Initial CCWMotion 4

#define CWMotion 5

#define CCWMotion 6

#define Stopped 7

#define HomeSensor PIN_A1 //Define input line for Home sensor (Use A1)
#define DirectionLine PIN_C5 //Define output line for direction signal
#define CW 1 //CW rotation direction constant

#define CCW 2 //CCW rotation direction constant

#define STOP 3 //Stop constant

unsigned int32 Time; //Variable to record time using Timer1
unsigned int16 LastCount; //Internal variable used by GetTimeNow()
float TimerRes; //Resolution of Timer1

int8 EntryStartState = 0; //Start state entry flag

int8 Entrylnitial CWMotionState = 0; //InitialCWotion state entry flag

int8 Entrylnitial CCWMotionState = 0; //Initial CCWotion state entry flag

int8 EntryCWMotionState = 0; //CWMotion state entry flag

int8 EntryCCWMotionState = 0; //CCWNMotion state entry flag

int8 EntryStoppedState = 0; //Stopped state entry flag

int32 StartTime; //Variable used for interval timing

int8 State, NextState; //State and NextState of transition diagram

//Declaration of functions used in program
void Table_Task(void); //Rotary table state transition diagram function
void MoveTable(int8); //Function to send pulses and direction signals

//to stepper motor driver
int8 GetCommand(void);
int32 GetTimeNow(void); //Returns time in multiple of timer resolution
void SetUpTimer(void); //Function to setup Timer 1

Table_Task() function is shown in Figures 10.8 and 10.9. Note how the timer, the
A/D converter, and the PWM functions are set in the main() routine. The code for
setting and accessing the timer (Timerl in this case) is very similar to the one shown
in Section 6.3.4, so it is not repeated here. The timer is set to operate at a frequency
of 1 MHz, so the GetTimeNow() function returns time in units that are multiples of
the timer resolution (1 us). Note how the A/D converter is set to use Fogc/16
as the timer source for the A/D conversion. This gives a T4p value of 2.0 us (see
Section 4.6.2). The PWM signal generated from channel PIA is used as the step
signal for the stepper-motor driver. Using the internal 8 MHz clock, a prescale
factor of 16 for timer 2, and a register period of 255, gives a PWM frequency of

10.2 Stepper-Motor Driven Rotary Table m

void main(void) //main function Figure 10.7
{S WUpTimer) /Setup timer 1 Code listing for main(),
etuplimer{); etup timer
setup_adc(ADC_CLOCK_DIV_16) //Setup A/D GetCommand(), and

MoveTable() functions

setup_adc_ports(sANO);
set_adc_channel(0);

setup_timer_2(T2_DIV_BY_16,255,2);

setup_ccp1(CCP_PWM);
set_pwm1_duty(0);
NextState = AtHome;

while (2> 1)
{
Table_Task();
1}

int8 GetCommand(void)

{
int8 inputv;

inputv = (int8) (read_adc()/255.0);

if (input(PIN_A3) == 0)
{

if ((inputv == 0) || (inputv == 3))

{
CommandV = 0;
return (3);
}
else
{
if (inputv == 1)
CommandV = 0x08;
else if (inputv == 2)
CommandV = 0;
return(inputv);
}
}
else
{
return(0);
}
}

void MoveTable(int8 value)
{
switch (value)
{
case CW:
output_low(DirectionLine);
set_pwm1_duty(128);
break;

case CCW:

output_high(DirectionLine);

set_pwm1_duty(128);
break;

case STOP:
set_pwm1_duty(0);
break;
}

}

//Select channel RAQ for A/D

//Set-up timer2 for PWM.
///At 8 MHz clock => 488.28 Hz PWM freg.

// Start infinite loop

//Read user commands from rotary pot

//Read Motion command from pot

//0-255 -> Stop, 256-511-> CW, 512-767-> CCW, 768-1023 ->Stop

//Check if switch SW1 is pressed

//Stop command

//CW command

//Variable to lit LED C3 if CW motion

//CCW command

// Input is valid only when SW1 is pressed

//Send step and direction information to stepper driver

//Set direction bit for CW motion
//send pulses to stepper driver

//Set direction bit for CW motion
//send pulses to stepper driver

//Shut of pulses when table is stopped

m Chapter 10 Mechatronics Projects

LG void Table_Task(void)
Code listing for { . -
TableTask() GetTimeNow()

Command = GetCommand();
output_c(State | CommandV);

State = NextState;
switch (State)
{
case Start:
if (input(HomeSensor) == 0)
{
NextState = AtHome;
MoveTable(STOP);
EntryStartState = 0;
1
else
{
if (EntryStartState == 0)
{
MoveTable(CW);
EntryStartState = 1;
}
}

break;

case AtHome:
if (Command == CW)
NextState = Initial CWWMotion;
else if (Command == CCW)
NextState = Initial CCWMotion;
break;

case InitialCWMotion:

if (Entrylnitial CWMotionState == 0)
{
StartTime = GetTimeNow();
MoveTable(CW);
EntryInitial CWMotionState = 1;

1

else if ((GetTimeNow() - StartTime) >= (1*100000))
{
NextState = CWMotion;
Entrylnitial CWMotionState = 0;

}

break;

case InitialCCWMotion:
if (Entrylnitial CCWMotionState == 0)
{
StartTime = GetTimeNow();
MoveTable(CCW);
EntryInitial CCWMotionState = 1;
t
else if ((GetTimeNow() - StartTime) >= (1*100000))
{
NextState = CCWMotion;
EntryInitial CCWMotionState = 0;
1
break;

//Keep reading the timer to avoid overflow

//Send state and command value to

// to 4 LEDS attached to port C. C0-C2 ->State,
C3->CommandV

//Update State variable
//Go to active state

//Is Disk at home position?

//Reset Entry flag on transition to another state

//Set Entry Flag on first entry to state

//Check if user selected CW motion

//Check if user selected CCW motion

// Record the start time
//Set Entry Flag on first entry to state

//Check if 0.1 second has elapsed

//Reset Entry flag on transition to anather state

//Record the start time
//Set Entry Flag on first entry to state

//Check if 0.1 second has elapsed

//Reset Entry flag on transition to another state

case CWMotion:
if (EntryCWMotionState == 0)
{
MoveTable(CW);
EntryCWMotionState = 1;
1

else if (input(HomeSensor) == 0)

{
NextState = AtHome;
MoveTable(STOP);
EntryCWMotionState = 0;
1

else if (Command == CCW)
{
NextState = CCWMotion;
EntryCWMotionState = 0;
1

else if (Command == STOP)
{
NextState = Stopped;
EntryCWMotionState = 0;
1

break;

case CCWMoation:

if (EntryCCWMotionState == 0)

{
MoveTable(CCW);
EntryCCWMotionState = 1;
1

else if (input(HomeSensor) ==
{
NextState = AtHome;
MoveTable(STOP);
EntryCCWMotionState = 0;
1

else if (Command == CW)
{
NextState = CWMotion;
EntryCCWMotionState = 0;
1

else if (Command == STOP)
{
NextState = Stopped;
EntryCCWMotionState = 0;
1

break;

case Stopped:

if (EntryStoppedState == 0)
{
MoveTable(STOP);
EntryStoppedState = 1;
1

else if (Command == CW)
{
NextState = CWMotion;
EntryStoppedState = 0;
1

else if (Command == CCW)
{
NextState = CCWMotion;
EntryStoppedState = 0;
1

break; }}

10.2 Stepper-Motor Driven Rotary Table B

Figure 10.9

Continuation of code
listing for TableTask()

//Set Entry Flag on first entry to state

//Is Disk at home position?

//Reset Entry flag on transition to another state

//Check if user selected CCW motion

//Reset Entry flag on transition to another state

//Reset Entry flag on transition to anather state

//Set Entry Flag on first entry to state

//Is Disk at home position?
//Reset Entry flag on transition to another state
//Check if user selected CW motion

//Reset Entry flag on transition to anather state

//Reset Entry flag on transition to another state

//Set Entry Flag on first entry to state

//Check if user selected CW motion

//Reset Entry flag on transition to another state

//Check if user selected CCW motion

//Reset Entry flag on transition to another state

34

Chapter 10 Mechatronics Projects

Table 10.1

Main components
for the stepper-
motor-driven rotary
table setup

488.28 Hz (see Equation (4.3)). The stepper motor used in this project has a spec-
ification of 200 pulses per revolution, so this gives a disk rotation speed of 2.44
rev/s. The user can change the rotation speed by changing the parameters of the
setup_timer_2() function.

The function GetCommand() reads the user commands. As discussed previously,
the user uses a combination of rotating the pot (connected to RAO channel) and
pressing the SW1 switch (RA3 channel) to issue a CW, CCW, or Stop command.
The A/D value obtained from reading channel RAOQ is converted to a digital value
(0 to 3) by dividing by 256 and converting the result to an integer form. The vari-
able CommandV is used to set pin RC3, which indicates to the user if the input set-
ting is CCW or CW.

The Movelable() function controls the motion of the table by controlling the
step signal. If the table is rotating either CW or CCW, the function also sets the
value of the direction bit (RC5) to cause the proper motion. If the table is com-
manded to stop, then the PWM duty cycle is set to 0.

The TableTask() function implements the state-transition diagram that is
shown in Figure 10.5. The coding for this function follows the material discussed
in Section 6.6. Note the code division in some of the states into entry section,
action section, and test and exit section, as was discussed in Section 6.6.

10.2.6 ResuLts

The material presented in this section shows how an MCU can be used as a stand-
alone controller for a discrete-event system. The code presented for this system
was divided into modular pieces. This is done to give flexibility in case of hardware
changes, so the user has only to change some of the code. For example, if the user
input was changed to use a PC or a terminal to transmit commands to the MCU
instead of using the rotary pot and switch SW1, then only the GetCommand() code
needs to be changed. The reader should also keep in mind that developing a state-
transition diagram for the operation of a physical system is a very important step.
One needs to make sure that the state-transition diagram operates correctly on
paper before coding it.

10.2.7 List oF PARTS NEEDED

Table 10.1 shows a list of the main components needed to fabricate this setup. If
the low pin-count board is not available, any other development board can be used
(such as The PICDEM PIC18 Explorer Demonstration Board from Microchip

Component Manufacturer/Part # Comments

Stepper mator Superior Electric SLO-SYN Any four-phase stepper motor can work
Synchronous/Stepping motor
Model # M062-LS09

Sensor Photointerrupter Fairchild H21B1

Microcontroller Microchip low pin-count Any other PIC development board will work.
development board with An example is Microchip PIC18 Explorer
PIC16F690 MCU Board with the PIC18F8722 MCU

Stepper-motor driver Applied Motion Products PDO
2035 step-motor driver

Disk Any CD computer disk The notch is created by sawing a small slit in
the disk

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor 35

Technology). Note that, while the availability of PIC development board will elim-
inate the wiring needed for the LEDS and the pot, this project still can be done just
using a bare PIC16F690 or another PIC MCU.

10.3 A PAPER-DISPENSING SYSTEM THAT USES A ROLLER DRIVEN
By A PosiTioN-CoNTROLLED DC MOTOR

10.3.1 ProjecT OBJECTIVES

"This project focuses on the control of a paper-dispensing system using a PC as the
control medium. The project objectives are to illustrate:

¢ Control of a system that involves discrete-event and feedback control activities
* Modeling and control of a positioning system
¢ Development of a PC GUI using VBE

¢ PC interfacing and data acquisition

Use of the Performance Counter for time keeping
* Use of trapezoidal motion profile

¢ Simulation of a feedback controller

10.3.2 SeTuP DESCRIPTION

The toilet paper roll is pulled between two spring-loaded rollers, one of which is
driven by a geared permanent-magnet brush DC motor with an incremental
encoder, as shown in Figure 10.10. The gear ratio is 5.9:1, the encoder has 512 lines
per revolution, and it operates in quadrature mode (see Section 7.3.3). A solenoid-
operated arm acts as a stopper when a certain length of paper needs to be removed
(not demonstrated here). The control signal is sent to a servo amplifier
(see Figure 8.19) using a 12-bit D/A converter. The motor position is obtained
from a 24-bit hardware counter that is connected to the incremental encoder.

Driven

Roller Gear Box

Encoder

Solenoid

A block diagram of the components of the control system for this setup is
shown in Figure 10.11.

The signal flow and units of the relevant quantities in this system are shown in
Figure 10.12. The figure assumes a simple gain for the amplifier and a linear model
for motor and gearbox dynamics. The roller diameter is 1.55 inches.

Figure 1010

Paper-dispensing setup

(Jouaneh, University of
Rhode Island)

326 Chapter 10 Mechatronics Projects

Figure 10.11

Block diagram of
system components

Figure 1012

Signal flow and units of
relevant quantities in
paper-dispensing setup

PC
GUI Dispensing System
D/A Amplifier
Discrete Motor H Encoder
Event/Feedback
Controller
Counter
Vin (V) (N/m) (rad/s) (rad) (counts) (inches)
V= — Vi
k m 1
‘ Ty + 1 s 19231 24814
Amplifier Motor & Integrator Encoder Roller
Gearbox (reflected to

output shaft)

10.3.3 USER INTERFACE

A graphical user interface (GUI) should be developed to control the operation of
the paper-dispensing machine. The user specifies unwinding ‘jobs’ that the machine
needs to perform. Each job is specified by two entries: the number of sheets of paper
to be dispensed, and the speed of unwinding (in units of sheets per second). The GUI
should use a form to list all of the pending jobs and should have the ability to delete
a particular job after it has been entered into the system. For flexibility, the control
system should allow the user to enter new jobs while a job is being executed. The sys-
tem also should have several control buttons, including START/RESUME, ABORT,
and SAVE DATA. The user interface also should display information about the cur-
rent/pending/executed jobs. This information should include:

* The number of jobs waiting to be processed

* The total number of sheets waiting to be dispensed

* The number of jobs completed since the control system started

* The total number of sheets dispensed since the control system started
* The number and data of the currently executing job

* The number of seconds that has elapsed in executing the current job
* The execution time of the current job

An example of a GUI design in VBE (see Section 6.12.2) that meets these
requirements is shown in Figure 10.13. A screenshot of the GUI while the
program is operating is shown in Figure 10.14. The user selects the job data
(number of sheets and speed) by clicking on the appropriate radio buttons. The
job information is displayed using a four-column ListView control. A job is added
to the list by clicking on the Add Job button, and a listed job is removed from the
list by highlighting the job number and then clicking on the Delete Job button.
The control system starts by clicking on the Enable Control Button. A job is

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor

1=} |ftzm] |

o Mapeilinpenuing —
dob # Hof Sheets Tpeed Status Sintus nfn Postion Profile
Jokrs Ferding
Sheets Pendng
Joba Complesed
Sherss Compicted
Activ Job 17
Gy Speend
T
5 Sheetn ek Job Timer
10 Sheeta 2 shoeta/s Time Completed o - =
20 Shoets Jahoets/s User Commands
ez Feedback Controller
Job Commands pp
- e Des. Posior
fdd Jobs Dieletis Join :
Ao el Peation
Solact Job First —
Same Uda Cortrel Output
Fa

2 oo
dek 5 EoiShedts Speed St Satn o - Fustin P
i 2 T
| 10 2 Process. S S | =]
2 L ! Pendng Soels Perding 45 |
3 2 1 Pendng [4
: 5 1 sl Jobre Compielnd I /, .
Shests Completed 0 A
Active Job Bt 1 1
Grusritty Speed 2 /
4 5 Shoets B 1sheetss kR n 7 P
0 Tiow Corrgleeed 5.7 2] 1
0 Sheeta 2shecinis o o
20 Sheets Jshestas Ve Cormmards
Feedhack Conimiler
i Des. Postin %36
el b Dbl Jobs
Mt Jetal Postion 3537
Cortrol Quiput 0,17
Ea

processed by clicking on the Start/Resume button. While a job is being executed,
its status in the job list is displayed as Processing. When the job completes execu-
tion, the job information is removed from the list, and the status info is updated.
A currently executed job is aborted by clicking on the Abort button. This causes
the job information to be removed from the system, and its data not to be included
in the status information.

A panel control is used to graphically display the current position of the roller
versus time. Both the desired and actual (or simulated) position of the roller are
displayed.

10.3.4 MoTtION PROFILE

To make the roller motion smooth, a trapezoidal velocity trajectory profile should
be used for planning the motion of the roller for each job. A typical trapezoidal
velocity profile is shown in Figure 10.15. 7, and T, are the acceleration and decel-
eration zone time intervals, respectively, and w.,, is the speed during the constant
speed portion of the profile (corresponding to the dispensing speed). Since we are
doing position control in this project, one of the things that needs to be done is to
derive an expression for the displacement of the roller corresponding to this pro-
file. This is done by integrating this profile. Once we have an expression for the
angular displacement, we can use it to specify values for the desired rotation of the
roller in the feedback control system.

Figure 10.13

GUI design in VBE for
paper-dispensing
system

Figure 10.14

GUI for paper-
dispensing system

n

318

Chapter 10 Mechatronics Projects

Figure 10.15 ey

Trapezoidal velocity P
profile for planning o I I
the motion of the ! !
drive roller for each job ! !
l l
| |

fe—1,— e—7,—

10.3.5 CONTROL SOFTWARE

The control system for the paper-dispensing system was implemented on a PC
with the code developed using VBE 2010 (see Appendix A). The code implements
a cooperative control-mode program (see Section 6.5.2) in which the ControlTask
is called repeatedly inside an infinite do-loop. The program enters the infinite
do-loop when the user clicks on the Enable Control command button. The VBE
DoEvents() method is called inside the infinite do-loop to handle any pending user
commands. The variables used in the project are listed in Figure 10.16, while the
code listing for the ComtrolTask is shown in Figures 10.17 and 10.18. The
Controllask has two states: an Initial state and an Execution state. The Initial state

Figure 10.16

Variable definitions for

the paper-dispensing
program

Dim pen1 As New System.Drawing.Pen(Color.Blug)
Dim Sheets As Integer

Dim Speed As Integer

Dim JobsPending As Integer

Dim SheetsPending As Integer

Dim JobsDone As Integer

Dim SheetsDone As Integer

Dim ActiveJobSheets As Integer
Dim ActiveJobSpeed As Integer

Dim ActiveJobTime As Single

Dim ActiveJobNumber As Integer
Dim ActiveJobElapsedTime As Single
Dim ListInfoltem As ListViewltem
Dim itemnum As Integer

Dim State, NextState As Integer
Dim StartTime1 As Double

Dim StartTime2 As Double

Dim Command As String

Dim DesPos(10000) As Double

Dim ActPos(10000) As Double

Dim Tupdate As Double = 0.01

Dim Tsamp As Double = 0.001

Dim NumAccel As Short

Dim NumConst As Short

Dim Simulation As Boolean = True
Dim SheetsTolnches As Single = 3.65
Dim index As Short = 0

Dim Vk As Double = 0.0

Dim Xk As Double = 0.0

Dim ControlOutput As Double

Dim tmr1 As New PerformanceTimer
Dim CounterResetValue As Long

‘Pen used in drawing graphics

‘Number of sheets in a job

‘Job Speed in sheets/sec

‘Number of jobs waiting to be executed
‘Number of sheets waiting to be dispensed
‘Number of jobs completed

‘Number of sheets dispensed

‘Number of Sheets in current job
‘Desired speed for current job
‘Execution time for current job

‘Job number for current job

‘Time since active job started

‘Listview ‘view' property needs to be set to ‘detail’in the design window
‘Index for jobs on the list

‘Variables for state transition diagram

‘Start Time Value

‘Start Time Value

‘User command

‘Array of desired position values

‘Array of actual position values

‘Trajectory update interval in sec

‘Sampling Time in seconds

‘Number of points in accel. phase

‘Number of points in constant speed phase
‘Flag to indicate simulation or real operation
‘Number of inches per sheet

‘Variable for stepping through the trajectory profile
‘Simulated model speed

‘Simulated model position

‘Output from PI Controller

‘Variable of type PerformanceTimer

‘Value of encoder when reset

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor 39

Sub ControlTask()
Static xdes As Double
Static xact As Double
Static State2EntryFlag As Boolean = False
Static OpenlLoop As Boolean = True
Static OpenLoopVoltage As Single = 7.0
State = NextState
Select Case State

Case 1 ‘Initial State

If Command = “Start” Then

Command = "

If JobsList.Items.Count <> 0 Then
cmdAbort.Visible = True
cmdStart.Visible = False
ExecuteJobStartSequence()
GenerateTraj()
draw_traj()

‘Desired roller position

"Actual roller position

‘Entry flag for state #2

‘Flag for open/closed loop operation
‘Open loop step input voltage
‘Update state variable

‘Go to current state

‘Execute the following code if the user pressed the ‘Start’ command
‘Reset Command

‘Check if there are jobs on the list

‘Make Abort command button visible

‘Hide Start command button

‘Update displays related to the new job

‘Generate desired trajectory data

‘Draw desired trajectory in panel

ActiveJobTime = (2*NumAccel + NumConst)*Tupdate ‘Compute job execution time

textJobTime.Text = ActiveJobTime
StartTime1 = ReadTimeNow()
StartTime2 = ReadTimeNow()
NextState = 2
Else
textActiveJobNum.Text = “
textJobTime.Text =" "
Panel1.CreateGraphics.Clear(Color.Aqua)
End If
End If
Case 2 "Execution State
If State2EntryFlag = False Then
If Simulation Then
xact=0
If OpenLoop Then
RollerModel(OpenLoopVoltage)
End If
Else
ZeroCounter()
xact = ReadPosition()
If OpenLoop Then
SendToMotor(OpenLoopVoltage)
End If
End If
ActPos(0) = xact
State2EntryFlag = True
End If
If (ReadTimeNow() - StartTime1) >= Tsamp Then
xdes = DesPos(index)
If Simulation Then
If OpenLoop = False Then
xact = RollerModel(ControlQutput)
Else
xact = RollerModel(OpenLoopVoltage)
End If
Else
xact = ReadPosition()
End If
ControlQutput = PIControl(xact, xdes)
If Simulation = False Then
If OpenLoop = False Then
SendToMotor(ControlOutput)
End If
End If
StartTime1 = ReadTimeNow()
End If

‘Display job execution time

‘Record start time for doing control
‘Record start time for updating trajectory
‘Transition to state 2

‘Clear active job display if start button was pressed with no jobs on list

‘Start at zero position in simulation mode

"Zero encoder output reading in real mode

‘Store the initial position in an array
‘Set entry flag to true

‘Check if it is time to do control

‘Get desired position from created profile

‘Set actual position to model output in simulation mode

‘Set actual position to encoder supplied data in real mode

‘Call PI control routine

‘Send control output to motor in real mode

‘Record start time for doing control

Figure 10.17

VBE code listing for
ControlTask()

330 Chapter 10 Mechatronics Projects

Figure 10.18

Continuation of code
listing for ControlTask()

If (ReadTimeNow() - StartTime2) >= Tupdate Then ‘Check if it is time to update the trjectory
index = index + 1 ‘Increment counter for trajectory
ActPos(index) = xact ‘Store current position
StartTime2 = ReadTimeNow() ‘Record start time for trajectory update
draw_currentpoint(index) ‘Update current position in panel window

End If

If Command = “Abort” Then ‘Check if user pressed ‘Abort” command
Command = " ‘Reset Command
ExecuteAbortSequence() ‘Update displays to reflect aborted job

cmdAbort.Visible = False
cmdStart.Visible = True

State2EntryFlag = False ‘Reset entry flag to its initial value
NextState = 1 ‘Transition to state 1

End If

If (index >= (2*NumAccel + NumConst)) Then ‘Check if profile is completed
ExecuteJobEndSequence() ‘Update textboxes to reflect profile completion
State2EntryFlag = False ‘Reset entry falg to initial value
cmdSaveData.Visible = True ‘Make visible save data button
cmdStart.Visible = True ‘Make visible start button
NextState = 1 ‘Transition to state 1

End If

End Select

(state 1) waits for the user to click on the Start/Resume command button. Once this
button is clicked, and there is pending job on the list, the program goes through a
series of activities before transitioning to the Execution state (state 2). These activi-
ties include updating displays related to the current job, generating the desired tra-
jectory data from the given job information, and drawing the desired trajectory in
the control panel. The code listing for generating the desired trajectory data is
shown in Figure 10.19. Note that the trajectory generation routine can generate a
profile with either a fixed-acceleration time interval (7}) or a variable-acceleration
time interval, depending on the setting of the FixvedAccelerationRate flag. The latter
case keeps the acceleration rate constant for any desired constant speed. The tra-
jectory generation routine handles also the case where there is no constant speed
interval, which happens when the desired displacement is short. In this case, the
resulting velocity profile is triangular and not trapezoidal.

In the entry part of the Execution state, the program records the initial position
of the roller. In the active part of the state, the program performs a PI closed-loop
control (see Section 9.6) of the roller position every Tsamp interval, where the cur-
rent and desired roller displacements are supplied to the PI control function to
compute the control output that is sent to the motor through the D/A converter
(see Section 5.4). The desired roller displacement is updated every Tupdate interval,
where the Tupdate interval (10 ms) is normally larger than the Tsamp interval. The
Performance Counter (see Section 6.3.3) is used to obtain timing information since
the built-in timer in VBE has a coarse resolution of about 15 ms, and we used a
Tsamp value of 1 ms. The actual position profile is updated in the drawing panel
every Tupdate interval.

The ControlTask jumps back to the Initial state when either the travel time
for the current job time has been completed or the Abort command was issued
by the user. In normal completion, the user can click the Szve command button

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor

Private Sub GenerateTraj()
Dim Accel As Single = 1
Dim FixedAccelerationRate As Boolean = False
Dim SheetLength As Single
Dim Vconst As Single
Dim Ta As Single = 2.0
Dim Tconst As Single
Dim Ttotal As Single
Dim DistAcc As Single
Dim m As Short
Sheetlength = ActiveJobSheets*SheetsTolnches
Vconst = ActiveJobSpeed*SheetsTolnches

If FixedAccelerationRate = True Then
Ta = Vconst / Accel

End If

DistAcc = 0.5*Ta*Vconst

If (2*DistAcc) >= SheetlLength Then
DistAcc = 0.5*SheetlLength

‘Acceleration in inches/sec

‘Flag to indicate fixed acceleration rate mode

‘Total length of sheets (in inches) for active job

‘Constant speed value in in/sec for active job

"Accelertion time in sec

‘Constant speed time interval in sec

‘Total time for profile

‘Distance travelled during acceleration/deceleration phases

‘Convert sheets data to inches
‘Convert speed data to inches/sec

‘Determine the profile time parameters

‘Distance travelled during acceleration phase
‘Check if there is no constant speed phase
‘For triangular vel. profile, set accel. distance to half of travel distnace

Teonst = 0.0 ‘Constant speed time interval is zero for a triangular velocity profile
Veonst = (2*DistAcc) / Ta ‘Compute peak velocity
Ttotal =2*Ta ‘Compute profile time

Else

Teonst = (SheetLength - 2*DistAcc) / Vconst
Ttotal = 2*Ta + Tconst

End If

NumAccel = Int(Ta / Tupdate)

NumConst = Int({Tconst / Tupdate)

‘Compute profile time

‘Convert time interval to a count

‘Generate points during acceleration phase
For i As Short =1 To NumAccel
DesPos(i) = 0.5*(i*Tupdate)*(i / NumAccel)*Vconst
Next
‘Generate points during constant speed phase
For j As Short = (NumAccel + 1) To (NumAccel + NumConst)
DesPos(j) = DesPos(NumAccel) + Vconst*(j - NumAccel)*Tupdate
Next
‘Generate points during deceleration phase
For k As Short = (NumAccel + NumConst + 1) To (2*NumAccel + NumConst)
m =k - (NumAccel + NumConst)
DesPos(k) = DesPos(NumAccel + NumConst) + 0.5*m*Tupdate*(Vconst + Veonst™((NumAccel - m) / NumAccel))
Next

to save in a file the actual (or simulated) and desired roller displacement data
versus time.

The feedback information from the incremental encoder that is attached to
the motor is read by a 24-bit hardware counter that is part of the Measurement
Computing PCI-QUADO04 four-channel quadrature encoder board. The connec-
tion diagram for the encoder and the counter board are shown in Figure 10.20.
Note that the 24-bit counter will overflow once every 16.77 million counts. This is
more than enough to completely dispense a 1000-sheet roll of paper.

The code for the Add Job and Delete Job commands that manage the job list are
shown in Figure 10.21. Note that the variables Speed and Sheets that appear in the

‘Compute constant travel time for a trapezoidal velocity profile

Figure 10.19

VBE code for
generating the
desired trajectory

B

3 Chapter 10 Mechatronics Projects

Figure 10.20 Red Counter Board
. . +5V
Connection diagram Yello
. W
between incremental Incremental Phase 1A+
encoder and counter Encoder Brown
board Phase 1B+
Black
GND

Private Sub cmdAddJob_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdAddJob.Click

LabelSelectJob.Visible = False ‘Hide warning label if it was displayed
itemnum += 1 ‘Increment counter for number of jobs
ListInfoltem = JobsList.Items.Add(itemnum) ‘Add job number to 1st coloum in job list
ListInfoltem.Subltems.Add(Sheets) ‘Add number of sheets to 2nd column in job list
Listinfoltem.Subltems.Add(Speed) ‘Add job speed to 3rd column in job list
ListInfoltem.Subltems.Add("“Pending”) ‘Add job status to 4th column in job list
JobsPending +=1 ‘Increment the number of pending jobs
textJobsPending.Text = JobsPending ‘Update display in jobs pending text box
SheetsPending = SheetsPending + Sheets ‘Update the number of sheets pending
textSheetsPending.Text = SheetsPending ‘Update display in sheets pending text box
End Sub
Private Sub cmdDeleteJob_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDeleteJob.Click
If JobsList.Selectedltems.Count = 1 Then ‘Check if only one job is selected for deletion at a time
If JobsList.Selectedltems(0).Subltems(3).Text <> “Processing” Then ‘Delete only pending jobs
LabelSelectJob.Visible = False ‘Hide warning label
SheetsPending = SheetsPending - JobsList.Selectedltems(0).Subltems(1).Text ‘Update sheets pending data
JobslList.Items.Remove(JobsList.Selectedltems(0)) ‘Delete selected job data
JobsPending -= 1 ‘Decrement jobs pending counter
textJobsPending.Text = JobsPending ‘Update jobs pending display text box
textSheetsPending.Text = SheetsPending ‘Update sheets pending text box
End If
Else
LabelSelectJob.Visible = True ‘Display label if no jobs were selected or more than one job is selected
End If
End Sub
Figure 10.21

AddJob function are updated in the code which handles the event associated with

VBE code listing for the selecting the speed or sheet number radio buttons, respectively.

Add Job and Delete Job
commands

10.3.6 MODELING AND SIMULATION OF SYSTEM

In this system, the angular displacement of the driven roller is used to control the
quantity of the paper to be dispensed. Due to the use of a geared DC motor, any
torque applied to the driven roller by the tension in the paper has a minimal impact
on the motor shaft. The torque due to friction in the motor bearings and gears has
a more important effect. To identify the dynamics of the system, a series of step-
input voltages are applied to the motor, and the angular displacement of the motor
is recorded using the PC software discussed in the previous section. To obtain this
data, the OpenLoop flag was set to true (see Figure 10.17). A plot of the open-loop
step-input position response is shown in Figure 10.22 for three different input volt-
ages sent by the D/A to the amplifier. The figure shows that the system is nonlin-
ear, since the final position reached for each input voltage is not proportional to the
input voltage. This nonlinearity is caused primarily by nonlinear friction, which is
typical of many positioning systems.

Position (inch)

3.5

2.5

1.5

0.5

0
0

100
90
80
70
60
50
40
30
20
10

Position (inch)

The position data is digitally differentiated to obtain the speed response. A plot

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor 33

-7
- 2

¢/ <
o //:/ ~ ---- 5V - Real
. y IRPe — 0V - Real
‘/ ,’.’—/’——‘ -— 7V - Real
e -==5V-Sim
Lo — — 6V - Sim
i —— 7V - Sim

0 2 4 8
Time (s)

of the open-loop position and velocity step responses are shown in Figure 10.23.

Using the speed data for the 6 V case, the parameters of a linear first-order
model can be identified as discussed in Section 9.5. The model, which relates the
output speed of the driven roller (inches/s) to the input voltage applied to the
amplifier, is given by Equation (10.1), and it will be utilized in the design of a feed-

back controller to control the roller motion in the next section.

v(s) _ ks

1.833

Vils) o5+ 1 00ds+ 1

’
’
7z
’

// ,__' N\=
R Lo z
24 il §
’,,"' -=-- 5V - Real 2

,”/ —— 0V - Real

‘_x' -==7V - Real

0.1 0.2 0.3 0.4
@)

20

. --=-=5V - Real teet
! — 0V - Real
-=="T7V - Real
0.1 0.2 0.3
(b)

0.4

In the model, &, is the open-loop gain of the system, and 7 is the time constant
of the system. The open-loop position step response of the dynamic model given
by Equation (10.1) was simulated, and the simulated response is plotted in
Figure 10.22. The data is obtained by setting the OpenLoop and Simulation flags to
‘true’ in the software. Note the close correspondence between the actual and sim-
ulated response for the 6 V case (which is the case on which the model is based) but
the divergence for the 5 and 7 V case.

10.3.7 FeepBACK CONTROLLER SIMULATION IN MATLAB
A model of a PI closed-loop controller was created in Simulink to simulate the
response of the system. The model is shown in Figure 10.24. The motor-gear
dynamics are represented by the linear model given in Equation (10.1).

Figure 10.22

Measured and
simulated open-loop
step position response
of driven roller to
step-input voltages

(104)

Figure 10.23

(a) Measured open-
loop step position
response of driven
roller and (b) measured
(differentiated)
open-loop step

velocity response

of driven roller to
step-input voltages

334 Chapter 10 Mechatronics Projects

Figure 10.24

Simulink model for
roller-position control
system

Figure 10.25

Simulated closed-loop
step position response
in MATLAB

Figure 10.26

Desired and actual
displacement profiles
for a 10-sheet job at
3 sheets/sec

¥ et R =<
DEd&S "= L] » 7 iNDnnuI -|| & M &

kp.s+ki Al Ks 1
e > 23
= Te.g+1 5
Pl Contioller Plant Model Integrator Position
Ready 116% oded5
'ﬂ Pastion {imh) =]
@E Oee WEERE DA S -

The Simulink model was used to determine control gains that give a satisfactory
performance. Figure 10.25 shows the closed-loop position step response obtained
in MATLAB for K}, and K; gains of 5 and 1, respectively. As expected, Figure 10.25
shows that the PI controller produces a response with zero steady-state error.

10.3.8 ResuLts

Figure 10.26 shows the desired and actual position profiles for a 10-sheet job at
3 sheets/sec dispensing speed. The data was obtained while the machine was run-
ning in closed-loop control using the PI gains determined in the previous section.
The data is plotted from the data file that is written when the user clicks on the

40 ‘ ‘ ‘ ‘ ‘
35 SRR LR,
0f e 74 IETEIE R
Y] N S L
a0l S
R 4 A

10f-----s-m ommo- R R b kel helelebely
—Desiredi

Displacement (inches)

' === Actual
0 1 2 3 4 5 6
Time (s)

103 A Paper-Dispensing System That Uses a Roller Driven By a Position-Control DC Motor

Save command after running a job. Figure 10.26 shows that a closed-loop control
system achieves a good job of controlling the motion of the driven roller in spite of
the nonlinearities present in the system.

"This project can be run in either real or simulation mode by simply changing
the value of the Simulation flag inside the code. The simulation mode allows the
user to run the software with no need for any hardware or data-acquisition system.
In the simulation mode, the actual hardware (motor, encoder, and drive amplifier)
is replaced by a dynamic model of the system in the software. Instead of reading the
actual roller position from the counter, the position is obtained from the model
output. Similarly, instead of using the D/A to send the control output to the ampli-
fier, the control output is sent to the model. No other changes are needed in the
code for the simulation mode except for the two mentioned. The model is numeri-
cally integrated using the Euler method, and Figure 10.27 shows the code listing
that implements a simulated model of the system.

Private Function RollerModel(ByVal Controllnput As Double) As Double

Dim Inertia As Double = 0.02182 ‘Ks = 1.833, tau = 0.04

Dim Bviscous As Double = 0.5456 ‘Bviscous = 1/Ks, Inertia = tau x Bviscous
Dim DeltaT As Double ‘Integration time interval

Dim AccelV As Double ‘Computed acceleration

Dim Xk1, Vk1 As Double ‘Computed position and velacity

DeltaT = Tsamp ‘Tsamp is set to 0.001 s

AccelV = (1 / Inertia)*(Controlinput - Bviscous*Vk)
Vk1 = AccelV*DeltaT + Vk
Xk1 = Xk + Vk*DeltaT + 0.5*AccelV*DeltaT*DeltaT
‘Update the initial values
Vk = VK1
Xk = Xk1
Return (Xk1) ‘Return position in inches
End Function

It should be noted that the PI feedback controller implemented in this project
used the Performance Counter (see Section 6.3.3) for timing the execution of the
controller. The Performance Counter, which has a sub-microsecond resolution, is
called repeatedly through the use of the ReadTimeNow() function (see code in
Figure 10.17) to determine if one Tsamp interval has elapsed since the last time the
controller was called. If that is the case, then the controller is run, and the process
repeats. Since the feedback controller is implemented as part of a control task oper-
ating in cooperative control mode on a PC platform, there is no guarantee that
the feedback controller will be called exactly every Tsamyp interval. While there is
only one task in this project (and thus there is no other task to compete for the com-
putational resources), the application is running on a PC platform where many
processes are active at the same time and sharing the computational resources (see
Section 6.8). Thus, there is the possibility that another process could be executing
when it is time to execute the feedback controller. This results in a delay or an
effective Tsamp interval larger than the nominal Tsamp interval. The average delay
however is very small, especially on high-speed processors (> 2 GHz clock speed)
and reasonable sampling rates (few kHz).

This project illustrates the integration of a discrete-event task (dispensing of
paper) with a feedback-control task (controlling the displacement of the driver roller),
and should serve as an illustration for the control of many other mechatronic systems
that involve a combination of these types of tasks.

Figure 10.27

VBE code listing
for simulating the
motor/encoder system

335

36 Chapter 10 Mechatronics Projects

10.3.9 List oF PARTS NEEDED

A list of the main parts (excluding support frame) needed for this project are given
in Table 10.2. Note that while fabricating a paper-dispensing system gives the user
the experience of controlling a ‘real’ piece of machinery, most of the tasks required
in this project can be achieved by just using a motor with an incremental encoder
without the need to fabricate the complete setup. A simulated roller diameter can
be specified in software to dispense ‘simulated’ paper lengths.

Table 10.2 Component Manufacturer/Part # Comments

DC-geared motor with Pitman GM9236C 534-R2\Motor

Main components .
incremental encoder

needed for the
paper-dispensing
project Data-acquisition card Measurement Computing PCIM- Any data-acquisition card will
DAS1602/16 work, provided that the
manufacturer provides a library of
VBE functions for accessing the
hardware

Counter board Measurement Computing
PCI-QUADO4 four-channel quadrature
encoder board

Motor amplifier 12A8 PWM amplifier from Advanced
Mation Controls

10.4 A TEMPERATURE-CONTROLLED HEATING SYSTEM THAT USES
A HEATING CoiL, A CoPPER PLATE, AND A TEMPERATURE
SENSOR

10.4.1 ProjJECT OBJECTIVES

This project focuses on the implementation of a feedback controller for a dynamic
system in a microcontroller and the use of the PC as a GUI for the control system
operation. The project objectives are to illustrate:

¢ Implementation of a feedback controller in a PIC MCU

* Development of a GUI for the control system operation

¢ Communication between a PC and a PIC MCU

* Use of a BackgroundWorker thread for a lengthy task

¢ [llustration of the use of interrupts to schedule control tasks
* Determination of feedback-control gains

* Simulation of a control system in MATLAB

* Interfacing of sensors and actuators to a microcontroller

10.4.2 SetupP DESCRIPTION

The experimental hardware (see Figure 10.28) consists of a small rectangular
(50.8 mm X 38.1 mm X 12.7 mm) copper plate heated by a 10-W flexible

104 A Temperature-Controlled Heating System That Uses a Heating Coil, a Copper Plate 1)

Heater
Temperature
sensor

silicone-rubber heat strip that is glued to the bottom of the plate. The plate is
mounted horizontally on a 76.2 mm X 102 mm polycarbonate base that acts an
insulator. A small hole is drilled into one side of the plate, and a thermo-transistor
temperature sensor (LM35C plastic package from National Semiconductor) is
inserted into the plate to read to read the temperature of the plate. The temperature
sensor has a sensitivity of 10 mV/°C, and a measurement range of —40 to 110°C.

While we have a choice of several microcontrollers to use for this project, we
have chosen the PIC18F8722 MCU in this project. The primary reason for using
the PIC18F8722 is that it has a large RAM capacity (3936), which allows the user to
store data without the need to use an external RAM chip. If another MCU was used,
additional RAM can be added by using a chip such as the RAMTRON FM24C256
chip and by using the I°C interface (see Section 5.9) to read and write to the exter-
nal RAM chip. Instead of using a stand-alone MCU, we have used a commercially
available development board (PICDEM™ PIC18 Explorer Demonstration Board
from Microchip Technology, Inc. in Figure 10.29). The development board has a
built MAX-232 chip (see Section 4.7.8) and an RS-232 connector (which simplifies
the interfacing of the MCU to a PC using a standard RS-232 DB9 cable). Other
features of this development board are the availability of eight built-in LEDs and a
two-line character display LCD (not demonstrated here).

RS232 —— | |
Connecter |

LEDs

>
MicrocHIP

A block diagram of the components of the system is shown in Figure 10.30. The
PIC18F8722 MCU implements a feedback controller to control the plate tempera-
ture. A PC acts as a GUI interface for this control system and uses the RS-232 seri-
al line to communicate with the MCU. The control input to the heater is supplied

Figure 10.28

Plate and heater
experimental setup

(Jouaneh, University of
Rhode Island)

Figure 10.29

PICDEM™ PIC18
Explorer Demonstration
Board

(Jouaneh, University of
Rhode Island)

38 Chapter 10 Mechatronics Projects

Figure 10.30

A block diagram of
the control system
components

Figure 10.31

Interface circuit
between MCU
and heater

+12V

Heater

D

G
PWM S

Figure 10.32

GUI design for heater
control

12 V External
Supply

PWM Transistor or

H-Bridge Circuit

Heater and

PC GUI PIC18F8722

RS-232 Plate

Analog Signal

Temperature
Sensor

from the PWM output of the microcontroller through either a transistor or an H-
Bridge driver. The temperature is measured using the 10-bit A/D converter on the
microcontroller. With a voltage reference of 5.0 V for the A/D, the temperature
measurement resolution is 0.488°C. The heat output rate ¢ from the heater is directly
proportional to the heater voltage v as ¢ = Kv, where K = 10/12 W/ V.

The interface circuit between the microcontroller and the heater is developed
using the material covered in Chapter 3. Figure 10.31 shows such a circuit using
the IRFZ14 power transistor. The heater element is connected to the drain line.
The PWM output of the MCU is connected to the gate input of the IRFZ14 tran-
sistor (see Section 3.5) to modulate the 12 volt external supply to the heater. The
IRFZ14 has a 10 A maximum drain-current rating and a power rating of 43 W,
which is more than sufficient to drive the 10 W heater.

10.4.3 VBE PC UsER INTERFACE

A GUI for the PC portion of the control program was developed in VBE. The GUI
design is shown in Figure 10.32. The GUI allows the user to enter the control test
parameters as well as the ability to start and abort the control program. The user
interface allows the user to select one of four test duration times (1 minute, 15 min-
utes, 30 minutes, and 1 hour) plus the capability to enter the control gains (K, and
K;) as well as the desired temperature (or open-loop input voltage). The program
also allows the user to run the system in open-loop fashion if the user checks the
Open Loop check box. In this case, the entry in the Desired Value textbox is interpreted
as the open-loop voltage (0 to 12 V) to be sent to the heater.

o= Heater Conteol Progeam [e

Cammands

Sl LSt | Ao Test [Sove Dota

Exparment Prograss

Statrs | Test Commurication . |

Teat Duamtion Cordrd Parnenedrry
Dessed Value UstBa2
Ko Gain

KiGan

Open Lo

104 A Temperature-Controlled Heating System That Uses a Heating Coil, a Copper Plate

3 Hester Control Progearr = G e

A screenshot of the GUI in operation is shown in Figure 10.33. The user first
clicks on the Set-Up command to set the parameters for the control system. These
include the duration time and the feedback-control parameters. Once the experi-
mental parameters are selected, the user checks the Setup Done check box. This dis-
ables the Sez-Up selections and enables the Start command, which starts the con-
trol system upon pressing. The control progress is indicated by a progress bar, but
the user can abort the control system by pressing the Abort Test command. When the
control is completed, the Save Data command is enabled, which allows the user to
store the collected data into a file upon pressing it. The collected data then can be
imported into plotting software (such as Excel).

When the user clicks on the Start button, the program calls a control task (see
Section 6.4) that controls the interaction between the PC and the MCU. The state
transition diagram for the control task is shown in Figure 10.34. The PC acts as
the master that initiates all communication between the two devices. Since the PC
and the MCU are running independently, a handshaking mechanism is employed
in the transfer of data between the two programs to ensure that the data is trans-
mitted properly. No new data is sent from the PC to the MCU unless the PC
receives an acknowledgment from the MCU on the previous data transfer. For
example, in the Start state, after it sends a start character to the MCU, the PC
waits to receive an acknowledgment from the MCU before it transitions to the
Second state.

Note that for transmitting data after the control experiment is performed, the
PC GUI uses a BackgroundWorker thread (see Section 6.9) to signal the commu-
nication. The code for this portion of the program is shown in Figure 10.35. The
call to setup the BackgroundWorker thread is performed just before entering the fifth
state. Note that, since the PC knows how many data points need to be sent back
from the MCU, it will exit the BackgroundWorker thread once the required number
of data points has been received.

10.4.4 MICROCONTROLLER CODE

The code structure implemented in the MCU is shown in Figure 10.36. The struc-
ture consists of a state-transition diagram to sequence the control activities and
communication with the PC and an interrupt service routine that executes the
teedback controller. The state-transition diagram is shown in Figure 10.37 and has
five states. The MCU begins in the Start state waiting for a start signal (s’ charac-
ter) from the PC. Upon receiving this character, it sends it back to the PC as an
acknowledgment. It then transitions to the Second state and waits to receive the

Figure 10.33

A screen shot of the
control program in
operation

39

340

Chapter 10 Mechatronics Projects

Figure 10.34 Start State

Entry code: Send char ‘s’

State-transition . :
Action code: Read serial port

diagram for PC GUI

Ack from MCU

Second State
Entry code: Send duration
Action code: Read serial port

Ack from MCU

Third State
Entry code: Send control gains
Action code: Read serial port

Ack from MCU

Fourth State
Action Code: Update
progress bar

Control Duration is Over

Fifth State
Figure 10.35 Action code: Receive data from
MCU using BackgroundWorker
BackgroundWorker
code in VBE for Exit Task when Data Transmission
transmitting is Complete

experiment data
from MCU to PC

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, ByVal e As System.ComponentModel.DoWorkEventArgs)
Handles BackgroundWorker1.DoWork

i=0 " Counter for number of data elements

Dim vstr As String * String variable

While (i <= ((TestDuration / Tsamp))) ‘Loop until the specified number of data points has been received by the PC

SendtoSerialPort("d") ‘Send char ‘d" to MCU to inform MCU to send data
vstr = SerialPort1.ReadLine() ‘Read data from serial port
xdata(i, 1) =i ‘Store recieved data in an array

xdata(i, 2) = Val(vstr)

i=i+1 ‘Increment counter for number of data elements received

If (i Mod 200) = 0) Then ‘Send number of data elements received to GUI
Me.SetText2(Str(i))

End If

If BackgroundWorker1.CancellationPending = True Then
SendtoSerialPort("a") ‘Abort control job if requested by user

End If

End While

End Sub

104 A Temperature-Controlled Heating System That Uses a Heating Coil, a Copper Plate 341

Continuous
Scanning
Timer0 Interrupt Control Task
Service Routine
P Case ‘Start’:
Calls DoControl
Function (Every Tsamp) Case ‘Second’:
Start State
Wait for Start char
Start char Received
Data
Transmission is Second State
Complete or Wait for Duration Data
Abort Command
Duration Data Received
Abort
Fifth State Command Third State
Transmit Data to PC Wait for Control Gains
Control Gains Received
c | X Fourth State
ontrol Action Wait for Control Action

is Complete to Complete

experiment duration time data. In a similar fashion, once that data is received, an
acknowledgment is sent back to the PC, and the MCU transitions to the Third
state, where it waits to receive the desired temperature and the control gains (or the
open-loop control voltage). Just before the state diagram enters the Fourth State, it
sets and enables a Timer0 overflow interrupt (see Section 4.8). The state diagram
waits in this state undil the required number of control samples has been completed.
At that point, it transitions to the Fifth state and waits for commands from the PC
to transmit the measured temperature data to the PC. When all of the data has
been transmitted or an Abort command was received from the PC, the program dis-
ables interrupts and moves back to the Szt state to wait for another start signal to
begin the process again.

The execution rate of the interrupt service routine is controlled by the setting
parameters for Timer0. Using a prescsale factor of 1:1 and a 10-MHz Fogc fre-
quency, the 16-bit T7mer0 will overflow at the rate of 38.14 times per second. The
ISR will decrement a counter that is set to the desired number of interrupts per
sampling interval. For a Tsamp of one second, it is set to 38. For a Tsamp of two sec-
onds, it is set to 76. The two-second Tsamp interval is used for the one hour-long
control test so that the collected data (1800 points of int16) can be stored within the

Figure 10.36
Code structure in MCU

Figure 10.37

State-transition
diagram for code
in MCU

341 Chapter 10 Mechatronics Projects

Figure 10.38

DoControl and
PiControl functions
implemented on MCU

(10.2)

available RAM space on the chip. Note that, due to the use of an integer number
of interrupts per sampling interval, the actual Tsamzp interval is slightly shorter than
one or two seconds by less than 0.4%.

At each Tsamp interval, the ISR calls the DoControl function, which in turn calls
the PIControl function to compute the control output. The code listing for the
DoControl and PIControl functions are shown in Figure 10.38. The measured
temperature is converted to volts, and the control output from the PI controller is
converted to duty cycle. Note that if an open-loop mode was specified, the
DoControl function simply would store the measured temperature, skip computing
and sending a control output signal.

Y s
/// - Compiler: PCWH from CCS, Inc. (Version 4.103)

Y s
void DoControl(void) //Routine that is called inside Timer0 ISR

{

float error,controlout;

int16 addata;

addata = read_adc();
datastorage[j] = addata;
i=j+1;

//Read actual temperature
//Store temperature in an array

if (ClosedLoop == 1)
{
error = desired - addata*0.0048828;
controlout = PIControl(error);

//closed loop

//A/D to volts units
//Call pidcontrol routine to compute control output

duty = (controlout/12.0)*1023;
if(duty>=0)
{
if (duty >= 1023)
{
duty =1023;
1
set_pwm4_duty(duty);
}
}

counter = counter + 1;

}

float PIControl(float error)

{
float out;
out = kp*error + ki*sumerror*Tsamp;

SUMError = SUMEITor + error;
return (out);

}

//Convert control output to duty cycle
//lgnore negative control output

//Check if duty cycle exceeds limit

//Send PWM signal to transistor or H-bridge

//Increment counter that keeps count of the
// number of control cycles

//P and | terms of Pl controller. Current error is not used in

//Computation of I-term (see Equation 9.19)
//Update sum of errors expression

10.4.5 MODELING AND SIMULATION OF PHYSICAL SYSTEM

Using the Conservation of Heat Energy principle and Newton’s law of cooling
[38], a basic model of the copper plate (excluding radiation effects) is

ar
RG—=T,— T+ R
Cdt @ q

104 A Temperature-Controlled Heating System That Uses a Heating Coil, a Copper Plate 2]

where T" = plate temperature, 7, = ambient temperature, ¢ = heater output (W),
C = thermal capacitance, and R = convective resistance.
The solution is (assuming that 7(0) = T,)

T(t) = T, + Rg(1 — e ")

The parameters R and C can be determined experimentally from analyzing the
open-loop temperature response of the plate to a given heat input. For example,
using the data in Figure 10.39, R is 8.00°C/W, and the time constant 7 (or RC) is
1100 s. Figure 10.39 also shows the solution of the model. The model shows a close
agreement with the data.

100
90
80
70
60
50
40
30
20
10

Temperature (Deg. C)

——— Model
Actual

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Letting AT = T — T,, the plate model transfer function with the heater volt-
age V(¢ = KV) as the input is

AT(s) AK
V(s) RCs + 1

Using PI control action, the closed-loop transfer function (see Section 9.5) is

AT(s) RK(Kps + K)
ATga(s) RCs® + (RKK» + 1)s + RKK,

where ATy is the desired value of AT.

For a damping ratio of { = 1 and a desired closed-loop time constant 7, the
PI gains can be calculated as

1)ty — 1
T R
and
_ (RKKp + 1V
" ArRK

Note that, in implementing the PI controller in the PIC MCU, the control
gains obtained from Equations (10.6) and (10.7) need to be multiplied by a factor
of 100, because the temperature sensor has an output sensitivity of 0.01 V/°.

(103)

Figure 10.39

Open-loop response of
the plate/heater system
withg =7.5W (9 V)

(104)

(10.5)

(10.6)

(10.7)

344 Chapter 10 Mechatronics Projects

Figure 10.40

Heater model in
MATLAB

Figure 10.41

Simulated response of
heater control system
in MATLAB: (a) control
output (volts) and

(b) temperature change
(°C) with the horizontal
axis indicating time in
seconds

10.4.6 CONTROLLER SIMULATION IN MATLAB

A Simulink model of the heater control system is shown in Figure 10.40. The
model incorporates a saturation limit of 12 V to simulate the maximum voltage that
can be sent to the heater for 100% duty cycle.

[B hcatermedel l—w‘: W= i
' File Edit View Simulation Format Tools Help |
LUeds &6 ; S » 500 [Nomal e e Rk

—

Control Quiput (v)

p.5+Hi 14 o _FK o1
3 rI:' I I i RC.5:1 il
Step Pl Controller Saturation Plant Model Temperslue Chanye (dey. C)
Ready 118% oded5

A plot of the simulated closed-loop temperature response of the system using
the gains K, = 0.4141 and K; = 4.824 X 10~ *for a 30° step change in temperature
is shown in Figure 10.41. Since the heater voltage is limited to 12 V if 7, is selected
too small, the heater will saturate. The Simulink model allows us to investigate how
small 7, could be made without causing saturation. It was found that 7, close to
585 s was the smallest possible value.

"Bl Control Cutput) =8 = B Temperature Change (deg, £} l=

aBDeH ARE DA & -

10.4.7 ResuLts

A plot of the actual closed-loop control system performance for a one-hour test with
a desired temperature of 50°C and using the same gains as used in the MATLAB
simulation is shown in Figure 10.42. The result shows a good agreement between
the simulated and the real system behavior.

The measured temperature data is noisy. One source of noise is the coarse res-
olution of the temperature sensor. The measurement resolution can be improved
by using an external supply voltage to act as a reference for the A/D. For example,
if we have a connected a 2.5 V signal to the Vg, line on the MCU, then the tem-
perature measurement resolution would be 0.244°C instead of 0.488°C. It should

10.5

55
50
45
40

Temperature (°C)

30

25 === Model
Actual

1500 2000 2500 3000 3500 4000
Time (s)

20
0

500 1000

be noted that the heated plate system could be easily replaced by another system
(such as a small motor-tachometer system). The main difference would be that the
time constant of the motor-tachometer system would be much smaller than that of
this heater system (tens of ms versus several minutes), which requires the use of a
much smaller sampling interval (1 ms versus 1 second) and correspondingly shorter
control times.

While this project demonstrates the use of the PC as a GUI for a control job
implemented on an MCU, this project also could be implemented without the use
of the VBE-developed GUI that is discussed here. The user can simply use a ter-
minal program (such as HyperTerminal or PuTTY ') to communicate with the MCU.
Data stored in the MCU will then be sent to the terminal program instead of being
written to a file as done here.

10.4.8 List oF PARTS NEEDED

A list of the main components needed to implement the heater control system is
shown in Table 10.3.

Component

Heater

Temperature Sensor

PIC 18 Development Board

Transistor

Manufacturer/Part #

McMaster-Carr #7945T52

DC Volt Flexible Silicone-Rubber
Heat Strip Adhesive Backed,

1" X 2", 10 W

National Semiconductor LM35C

Microchip PICDEM™ PIC18 Explorer
Demonstration Board

IRFZ14 transistor

| 10.5 CHAPTER SUMMARY

Comments

This heater has a 10 W output
power value. A heater with a
different power output will
decrease/increase the time
constant of the system

Any PIC MCU with enough RAM
capacity can be used

Any transistor with a power rating
of 10 W or higher and a current
limit of 1 A can be used

Chapter Summary 345

Figure 10.42

Experimental and
simulated data for the
plate setup

Table 10.3

Main components for
heater control system

This chapter illustrated the integration of several of the
topics covered in this book in the form of extended proj-
ects. The first project illustrated the use of a PIC MCU to

perform open-loop control of the motion of a stepper-
driven rotary stage that uses a photo interrupter as a
homing sensor. A state-transition diagram was created to

// S/

346 Chapter 10 Mechatronics Projects

handle the commands that were specified for the operation
of the stage, and the control code was coded in C-language
using the PIC-C compiler. The second project considered
the closed-loop position control of a custom-built DC
motor-driven machine that is used for dispensing paper. A
VBE GUI was created to handle the user interface for the
machine. The dynamics of the motor were identified using
step-response tests, and a closed-loop PI controller was

designed and simulated in MATLAB. The third project
considered the temperature control of a small copper plate
heated by a flexible heater. The dynamics of the heated
plate were identified from open-loop step-response
tests, and the developed model was used to design a PI
controller. The PI-controller was implemented on a
PIC-microcontroller with connection to a PC program
created using VBE that acts as the user interface.

BIBLIOGRAPHY

(1]

3]

F. Harashima, M. Tomizuka, and T. Fukuda.
“Mechatronics—What Is It, Why and How.”
IEEE/ASME Tians. on Mechatronics, Vol. 1, No. 1,
1996, pp. 1-4.

D. Auslander, J. Ridgely, and J. Ringgenberg. Control
Software for Mechanical Systems: Object-Oriented Design
in a Real-Time World. Prentice Hall PTR, Upper
Saddle River, NJ, 2002.

R. Boylestad. Introductory Circuit Analysis. 3rd Edition,
Charles E. Merrill Publishing Company, Columbus,
OH, 1977.

[4] J. Irwin and R. Nelms. Basic Engineering Circuit

(3]

9]

(10]

(11]

[14]

Analysis. 9th Edition, Wiley, Hoboken, NJ, 2008.

G. Rizzoni. Principles and Applications of Electrical
Engineering. 5th Edition, McGraw-Hill, New York,
NY, 2007.

R. Coughlin and F. Driscoll. Operational Amplifiers
and Linear Integrated Circuits. 6th Edition, Prentice
Hall, 2000.

P. Horowitz and W. Hill. The Art of Electronics.
Cambridge University Press, Cambridge, UK, 1980.

C. Roth. Fundamentals of Logic Design. 3rd Edition,
West Publishing Co., St. Paul, MN, 1985.

M. Rafiquzzaman. Fundamentals of Digital Logic and
Microcomputer Design. Sth Edition, Wiley-Interscience,
2005.

H-W. Huang and L. Chartrand. PIC Microcontroller:
An introduction to Software and Hardware Interfacing.
Delmar Learning, Clifton Park, NY, 2005.

T. Wilmshurst. Designing Embedded Systems with PIC
Microcontrollers: Principles and Applications. Newnes,
Oxford, UK, 2007.

B. Kernighan and D. Ritchie. The C Programming
Language. 2nd Edition, Prentice Hall, 1988.

K. Astrom and B. Wittenmark. Computer-Controlled
Systems: Theory and Design. 3nd Edition, Prentice
Hall, 1997.

S. Smith. The Scientist & Engineer’s Guide to Digital

Signal Processing. California Technical Publishing,
San Diego, CA, 1997.

[15] J. Seams. “R/2R Ladder Networks.” Application

Note IRC/AFD006, International Resistive Company,
Inc., 1988.

(16]

(17]

(18]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

J. Axelson. USB Complete: The Developer’s Guide.
4th Edition, Lakeview Research, Madison, WI,
2009.

E. Hall. Internet Core Protocols: The Definitive Guide.
O’Reilly Media, Cambridge, MA, 2000.

C. Kozierok. The TCP/IP Guide: A Comprebensive,
Lllustrated Internet Protocols Reference. No Starch Press,
San Francisco, CA, 2005.

S. Lyshevski. “Mechatronic curriculum—retrospect and
prospect.” Mechatronics, Vol. 12, pp. 195-205, 2002.

P. Laplante. Real-Time Systems Design and Analysis.
3rd Edition, Wiley, 2004.

D. Auslander, A. Huang, and M. Lemkin. “A Design
and Implementation Methodology for Real Time
Control of Mechanical Systems.” Mechatronics, Vol. 5,
No. 7, pp. 811-832, 1995.

W. Cedefio and P. Laplante. “An Overview of Real-
time Operating Systems.” Journal of the Association
for Laboratory Automation, Vol. 12, No. 1, pp. 40-45,
2007.

E. Lamie. Real-Time Embedded Multithreading Using
ThreadX and MIPS. Newnes, 2009.

S. Smith. MATLAB: Advanced GUI Development. Dog
Ear Publishing, Indianapolis, IN, 2006.

E. Petroutsos. Mastering Visual Basic 2010, Wiley,
2010.

A. Boehm, Murach’s Visual Basic 2010. Mike Murach
& Associates, Fresno, CA, 2010.

T. Beckwith, R. Marangoni, and J. Lienhard V.
Mechanical Measurements. 6th Edition, Prentice Hall,
2007.

The Measurement, Instrumentation and Sensors
Handbook. J. Webster, Editor-in-Chief, CRC Press,
Boca Raton, FL, 1999.

J. Holman. Experimental Methods for Engineers. 7th
edition, McGraw-Hill, 2001.

S. Rao. Mechanical Vibrations. 3rd Edition, Addison-
Wesley, Reading, MA, 1995.

A. Hughes. Electric Motors and Drives: Fundamentals,
Types and Applications. 3rd Edition, Newnes, 2006.

I. Gottlieb. Electric Motors and Control Techniques. 2nd
Edition, TAB Books, McGraw-Hill, 2004.

347

348

(33]

(34]

(35]

(36]

Bibliography

T. Kenjo. Electric Motors and their Controls: An
Introduction. Oxford University Press, Oxford, UK,
1991.

C. de Silva. Sensors and Actuators: Control System
Instrumentation. CRC Press, 2007.

W. Brown. “Brushless DC Motor Control Made
Easy” Application Note AN857, Microchip

Technology, Inc., 2002.

L. Elevich. “3-Phase BLDC Motor Control with Hall
Sensors Using 56800/E Digital Signal Controllers.”
Application Note ANI1916, Rev. 2.0, Freescale
Semiconductor, 2005.

K. Ogata. Modern Control Engineering. 4th Edition,
Prentice Hall, 2002.

(38]
(39]

W. Palm III. Systern Dynamics. McGraw-Hill, 2005.

The Control Handbook. W. Levine, Editor, Chapter
10, CRC Press, 1996.

G. Franklin, J. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems. 4th Edition,
Prentice Hall, 2002.

A. Preumont. Vibration Control of Active Structures.
2nd Edition, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2002.

W. Palm III. Introduction to MATLAB for Engineers.
3rd Edition, McGraw-Hill, New York, NY, 2011.

A. Gilat. MATLAB: An Introduction with Applications.
3rd Edition, Wiley, 2008.

CHAPTER 2

P25 I} =125mA, L = L = 0.625 mA

P2.6 I, = 231 mA, L, = 1.54mA, I; = 0.77 mA,
L = I = 0385 mA

P28 (a) Ry = 17Q, Vi = 10V
() Ryy =333 Q, Vi = 333V

P2.10 0.376

P2.11 R=4290,X =343 Q

P2.14 Circuit will not operate as proposed

CHAPTER 3

P3.4 Io = 2800 uA, Vey = 1V
P3.5 V= 414V, 7, = 3.84V

P3.7
+24 VDC
§R=24OQ
b Ty =) &
4 6
|
|
________________ i |
: P : | Em e e E:
: N : N e
: Sensor ° |
| | Circuit !
: e :
! |
l o
e = J__
P3.9

(a) (b)
P3.10 @) Q=B+ A4-C
b)) Q=4-B+ 0
P3.12 Q=A-B+A-C+ B-C

—
. e T i
x— LI LI LI LI 1
o LT 1
P3.16
| | | | Input Input/5
14 | | 11 | 10 | |
7490
2 3 5 6 | 7
Vee =

CHAPTER 4

P4.2 (a) OxFF (b) 0xD5 (c) 0x87
P43 (a) 1111 (b) 01101100 (c) OI11
P44 (a) 0.078125 =1 x27* X 1.25
(b) —0.5=-1x2""x1
(¢) 10.5 =1 %2 x 13125
P4.8 Maximum counting interval is 0.0524 seconds

P4.9 PR2 = 124, t2pres = 4, Value = 125

P4.11 Use a prescale factor of 8 which gives an overflow
period of 1.024 ms which is 2.4% higher than the
desired interrupt period

349

350 Answers to Selected Problems

P4.15 (a) Complement: 0xD5, Negate: 0xD6
(b) Complement: 0x82, Negate: 0x83

CHAPTER 5

P5.2 (a) 204 (b) 511 (c) 1023

P53 (a) 307 (b) 511 (c) 921

P5.4 (a) 7.6294to 7.6370°C (b) +/— 3.8147 e-3 °C
P5.5 0.96875 Vi

P5.6 5.208 seconds

CHAPTER 6

P6.1 Timer resolution = 1 usec, Maximum counting
interval = 65.536 msec

P6.3 (partal answer)

(a) Absolute (b) Absolute
(c¢) Interval (d) Interval
P6.5
Stop or reached Stop or reached
Lower Limit Upper Limit
Stop
Down and not Up and not at
at Lower Limit Upper Limit
D
Counting o Counting
Down Up
Up
P6.7
Arm lower position Ticket picked up or
sensor is on card validated
Start
Proximity
Arm Moving sensor is on Arm Moving
Down Up
Arm Up
Vehicle cleared sensor Arm upper position
or waiting interval Sensor is on

has elapsed

CHAPTER 7

P7.2 197.3 degrees, 195.2 degrees
P7.3 0.008 degrees

P7.6 20.8 microstrain, 1.66 kN
P7.7 255°C

P79 (@) —1.63g (b) 2.88¢g
P7.10 166 O

CHAPTER 8

P8.4 2400 rpm, 0.190 hp

P8.5 374 Ib-in

P8.7 0.125 inch/sec
P8.11 303 A

CHAPTER 9

POl G _0(3‘)_ 10s + 5
’ 4 0,6) &+ 105+ 5

o(s) Ss
P93 Gy= o=
"UD6) #4105+ 5

Steady state error = 0

P95 9(5) . KP + de'
T 0 U2+ (B+ K)s + Kp
o _ 1

DG) J? + B+ K)s + Kp

P9.6 Kp = 4 Steady state error = 0.2

P9.9 (a)A:{O L },B:[O },C:u

0 -B/J 1/J
D=10,B=05J=07

b) K=[238 6.50]

APPENDIX A

Visual Basic Express

| A.1 INTRODUCTION

Visual Basic (VB) is a high-level programming language that is used by many pro-
grammers worldwide to produce professional code for a multitude of applications.
In addition, Visual Basic provides an easy way of creating powerful window-based
user interfaces. Microsoft introduced the Visual Basic programming language in
the early 1990s, starting with VB1 as the first version. Five updated versions were
introduced in the 1990s with VB6 being the latest in that series before the
VB.NET was introduced in 2002. Visual Basic Express (VBE) is a simplified ver-
sion of the VB.NET edition of Visual Basic, and it was first released in late 2005 as
VB 2005 Express. This was followed by VB 2008 Express in 2008 and VB 2010
Express in 2010. VBE was created specifically to meet the needs of students, hob-
byists, and novice programmers who do not need all of the intricacies and details
of the .NET version. Also VBE is available to be downloaded free of charge.

VBE is designed around the .NET Framework, which provides tools for security,
deployment, memory management, and versioning. An important component of the
NET Framework is the Base Class Library, which has a large number of program-
ming components that programmers can combine with their code to produce appli-
cations. The NET Framework enables interoperability between objects, so an object
created in a VBE can be used in another NET Framework compatible language.

"This appendix gives a general overview of VBE with code examples that use VB
2010 Express. It is not intended to give an in-depth coverage of the language and
its development environment, but to simply highlight some of the basic concepts.
Readers without a previous knowledge of Visual Basic are encouraged to read any
of the many books that cover the language in more detail.

"To develop code in VBE, first you need to create a project that consists of set
files grouped together. In VBE, you can create different types of projects—the most
common being Windows Forms application and Console application. A Windows
Forms application will create a program that has a Windows user interface similar
to that used in programs such as MS Word. On the other hand, a Console applica-
tion creates an MS-DOS type interface, similar to the interface that programs had
in the pre-Windows age. Console applications are easier to create, since they are
not event driven (as are Windows applications).

| A.2 CONSOLE APPLICATION

We will first demonstrate how to create a simple console application before we talk
about Windows applications. Our simple console application will ask the user to
type his/her name and then it will display a greeting message. To start on this ap-
plication, call up VBE, then select New Project from the File drop-menu bar.

3l

352 Appendix A Visual Basic Express

Figure A.l

Console application in
VBE

Figure A.2

Code listing for consol
application

Select Console Application from the New Project window that shows up, and
then click OK. On the screen, you will see a display similar to that shown in
Figure A.1. For this console application, VBE has created a Visual Basic file called
modulel.vb. Module type files can only contain code that does not control a win-
dow. This module has one subroutine called Main(), which we will edit to write the
code for the greeting message. Notice on the right hand of the screen the Solution
Explorer window, which shows the files that make up this project. In addition to
modulel.vb, this project has a My Project folder which contains information about
this application. The Solution Explorer window can be activated from the View
menu.

[= [o |

[z] ConsoleApplication] - Micrasoft Visusl Rasic 2010 Fapress

| Fite Edit View Project Debug Data Tools Window Help

A B ey 1Y [[R o R I T B o e v
Modulelvk %
4 Module1 -] & iDeclarations) o | B E]
Madule Madulel +) 3 Consalenpplication]
. i) My Praject
Sub main() |] Modulel vb

End Sub

End Module

Show output fram: | Debug

A
iv

i Enor Lt ey

The edited Main() routine is shown in Figure A.2. It has three lines of code
consisting of the Console. Write() and Console.ReadLine() functions. To compile and
run this console application, select Build ConsoleApplicationl from the Debug
menu. Then select Start Debugging from the Debug menu.

Sub Main ()
Console.Write ("Type your name ")
Console.Write (“Hello " + Console.ReadLine ()
Console.ReadLine ()

End Sub

The first Console. Write() statement causes the text enclosed in parentheses to
be displayed in the console when this application is run. When the user types a
name and hits the Enter key, the message “Hello,” followed by the typed name, is
displayed. Notice that the Console. ReadLine() statement waits for the user to hit the
Enter key before the greeting message is printed. The third line in the code was
added to make the console window stay open until the user hit the Enter key the
second time. (Try to run this application with the third line removed and see what
happens.)

A3 Windows Forms Applications

| A.3 Winpows FORMS APPLICATIONS

Unlike console applications, Windows Forms applications are event driven. This
means the operation of a Windows program is not preset but depends on which
events happen as the program is executed. For example, events are created by click-
ing on a command box, moving the mouse, or activating a form. To develop a
Windows Forms application, the user places controls on a Windows Form, and then
writes code to manage events from these controls in another file. To illustrate a
Windows Forms application, we will create a simple application that displays a mes-
sage in a textbox when a user clicks on a button. "To start on this application, call up
VBE, then select New Project from the File drop-menu bar. Select Windows
Forms Application from the New Project window that shows up and then click
OK. On the screen, you will see a display similar to that shown in Figure A.3.

T

VBE has created a blank window form labeled Formz1.vb[Design]. VBE calls this
form the Design form since in this form the user designs the program interface.
Next we will add two controls to this form. In the Toolbox window shown to the
left of the form, we click on the Button control and drag and place it on the form.
We repeat this process to add a TextBox control. After these operations, our form
looks similar to that shown in Figure A.4. If you build and run this application,
nothing will happen when you click on the button control, since we have not added
any code to process this clicking event. What VBE has done so far is to set up a
framework for the application to handle events, but the programmer has to provide
the details of what needs to be done with these events.

Button

Figure A3

Design form in a
Windows Forms
application

Figure A4

Windows form with
two controls

353

354 Appendix A Visual Basic Express

Figure A.5

Code window for
Form1.vb

Figure A.6
Code for Button1_click

TextBox1.Text = "Hello"

Now close the application, and go back to the development environment.
Double click on the button control. We notice that the Formz1.vb[Design] has disap-
peared, and a window named Form1.vb has shown up, as shown in Figure A.5.

VBE is an object-oriented language. As such, a component (like a Windows
form, for instance) is an object (referred to as a class in code), and the code belong-
ing to a particular form is grouped in the class belonging to that object. In our ex-
ample, the class has a single procedure called Buttonl_Click. This procedure is of
the Private type, which means that it can be accessed only from code within this
class. The Buttonl_Click routine is the code that handles the event associated with
clicking on the button (Buttonl.Click event). This routine has two arguments: sender
and e. Sender is a variable that indicates which object is associated with this routine,
which in this case is Buttonl, while e has the details of the mouse click event that
caused the routine to be called.

The button control has many other events (such as the mouse hovering over
the control, called MouseHover event or the mouse leaving the button, called
MouseLeave event). We will add one line of code to the Buttonl_click routine, as
shown in Figure A.6, so that it displays a message in the textbox when one clicks
the button. Now build and run this application. Observe what happens when you
click on the button.

Let us now change the label on the control button to one that is more descrip-
tive. The button label is one of many properties of the button object. Other proper-
ties include color, size, location, and text font among others. Go back to the Form1.vb
[Design] window, click on the Buztonl object, then replace ‘Buttonl’ in the text prop-
erty window with ‘Run’. Notice that the button label is now ‘Run’. Experiment with
changing other properties such as the location of the button and the font.

In developing applications with many controls, one should make use of the ‘vis-
ible’ and ‘enabled’ properties of these controls to help the application user in nav-
igating through the available controls. Setting the ‘visible’ property of a control to
false makes the control not show up at run-time, while setting the ‘enabled’ prop-
erty to false cause the control to show up at run-time, but it is inactive.

Notice that any control element in VBE or any object for that matter has
properties, methods, and events. We have already talked about properties and
events. Methods are actions that the object or control can perform in the form of
sub-procedures and functions. For example, for the button control, the methods in-
clude Focus (which sets input focus to the control), and GerType (which gets the type
of the current instance of the object).

VBE has a very useful feature that helps in debugging and tracing console and
Windows applications. It is available under the Debug menu. Instead of using the

A4 Files and Directory Structure 355

Start Debugging command under the Debug menu to run the application in the
IDE, one can use the Step Into command. With the Step Into command, VBE exe-
cutes one line of code at a time, stopping at the start of the next executable state-
ment. With the code stopped at each statement, one can check program flow and
use the mouse to hover over the variables in each statement to see their values. To
continue program execution, the user simply needs to press F8 or the Step Into
command again.

If the user wants to make the program stop at particular line instead of stepping
through all of the lines in the code, then one can use the Toggle Breakpoint com-
mand in the Debug menu to mark lines where the code should be stopped. When
the program is run using the Start Debugging command, the program will stop at the
beginning of each of these marked lines. Each breakpoint can be removed by sim-
ply clicking on the toggle breakpoint mark on that line, or all toggle breakpoints can
be removed by clicking on the Delete All Breakpoints command.

| A.4 FiLes AND DIRECTORY STRUCTURE

Before we discuss some details of the VBE programming language, let us have a
look at the files and directory structure (see Figure A.7 for illustration) that are cre-
ated with a project in VBE. When a project is saved in VBE, a folder is created to
store the files related to the project. The folder has three subfolders labeled bin, My
Project, and obj. The folder also has some other files, including a VB project file
(with extension *.vbproj) and a file with extension *.s/n (or solution file) that also
has the same name as the parent folder.

"To edit the project, you simply click on the solution file. The bin folder holds
binary files, while the obj folder holds compiled files. The bin folder is where the
application looks for the files it needs when running. The files that are needed are
copied from the ol folder to the bin folder before the application is run. Both the
bin and the obj folders have two folders each, labeled Debug and Release, correspon-
ding to the debug or release configuration of the code, respectively. The debug
configuration stores extra data that enables the application to interface with the de-
bugger when the application is run. The release configuration does not store this
extra data; therefore, it is smaller and runs faster than the debug version but does
not offer linking to a debugger. Before the application is built using the Build com-
mand, the release folder will be empty. The My Project folder holds the settings and
resource files that are used by the application (such as external libraries).

ProjectName
Folder
Bin : Obj : My Project ProjectName.sln ~ *.vbproj
I
Debug g Debug

Table A.1 lists some of the common file type extensions and their usage that
are present when a project is created.

Figure A.7

Folder and directory
structure for the
Windows project in VBE

356 Appendix A Visual Basic Express

Table A.l

Common file type
extensions in VBE

Table A.2

Common variables
in VBE

File Extension File Usage

*.Designer.vb The file extension for the designer view of a form.

*.exe The executable file. The application can be run by clicking on this file.

*.myapp Application configuration file.

*.pab A program database (PDB) file that holds debugging and state information. It is
created when the application is built in Debug mode.

*.resx A file to store .Net application resources.

*.settings A file for user-settings information.

*.sln The solution file. A solution can have one or more projects.

*.vb A file for storing the code associated with a Form, class, module, assembly
information, or user settings.

*.vbproj Visual basic project file. Clicking on this file causes the project to be displayed in the
VBE integrated development environment.

* vhost.exe A hosting process file that is used by Visual Studio 2010. The file should not run directly.

*xml Afile that holds data in extensible markup language format.

| A.5 VARIABLES

As with any programming language, the user should be aware of the different types
of variables that can be used in the code. A variable is a name or a character that
can store a value or any information that is used in the program. VBE supports
many variable types ranging in size from Byte (1 byte) to Decimal (16 bytes). Some
VBE variables are designed to store integer data types (such as Integer), others can
store floating-point data types (such as Single and Double), and some can store any
collection of numeric and non-numeric characters (such as String). Table A.2 lists
some of the common variables in VBE, their respective size, and the range of values

Variable Type Size Range of Values

Byte 1 byte Integer numbers from 0 to 255 (unsigned).

Char 2 bytes Integer numbers from 0 to 65535 (unsigned).

Short 2 bytes Integer numbers from —32768 to 32767.

Integer 4 bytes Integer numbers from ~ —2.14e9 to ~2.14e9.

Long 8 bytes Integer numbers from ~ —9.2e18 to ~9.2e18.

Single 4 bytes Single-precision floating-point numbers from ~ +/ —1.4e—45 to
~ +/—3.4e38.

Double 8 bytes Double-precision floating-point numbers from ~ +/—4.94e-324
to ~ +/—1.79e308.

String Varies Any collection of characters.

Decimal 16 bytes Floating-point numbers 0 to ~ +/—7.9e28 with no decimal,

or 0 to ~ +/—7.92 with 28 places to the right of the decimal.

Object* 4-8 bytes Any type can be stored. Object is the default type if type is not
explicitly declared.

*Depends on platform 32-bit or 64-bit.

that they can store. Notice that Short, Integer, and Long types can be restricted to
handle only unsigned integers if they are replaced by UShort, Ulnteger, and ULong
respectively. Similarly, the Byze type can be made to handle signed integers if re-
placed by SByte.

Any collection of characters can be assigned to a string variable by enclosing
the characters between double quotes and using the equal sign operator for assign-
ment, such as

StringVar=“Numl23”

where StringVar is a variable of type string. VBE has many built-in functions that
operate on strings. These include the Len function to find the length of a string
(i.e., the number of characters in the string), the Mid function to get a substring
from a given spring, and the Format function to format a string.

"To use a variable in VBE, first you need to declare the variable through a
declaration statement (for example, Dim varl As Integer). The declaration state-
ment should precede any location in the program where that variable is used. The
declaration statement defines what kind of data that variable should hold (such
as Integer for varl above). In addition, the location of the declaration statement
defines the scope of the variable. The scope refers to the area in the program in
which the variable can be accessed. There are three different scope levels. The most
restrictive is the block-level scope, which is the case when the variable is declared
inside a defined block of code (such as a for-loop or a do-while statement). Such a
variable is only defined within the block of code in which it is declared, and cannot
be accessed outside the block. The second level of scope is the procedure-level
scope, which applies to variables declared inside a function or sub-procedure but
outside of a block of code. These variables are known only within that procedure
in all of the statements that follow their declaration statements. The third level of
access is the file-level scope, which applies to a variable declared outside any func-
tion or sub-procedure. In this case, the variable is accessible by all of the procedures
inside the file in which it is declared.

Furthermore, by including certain qualifiers (such as public or private) in the
declaration statement, one can modify the access level for that variable. For example,
a public variable (default setting) declared outside any function or sub-procedure is
accessible from other files or modules in the project, while a private variable is only
accessed from code within the file in which is declared. Note that, for cases where
a variable needs to be accessed in several files including a form file, the variable
should not be declared in the form file but in the other files (such as a module file).
Moreover, the declaration statement location defines the lifetime of the variable,
which defines how long the variable should continue to exist. A variable declared
outside of any function or sub-procedure continues to exist as long as the program
is running. On the other hand, a variable declared inside a function or a sub-
procedure exists only when that procedure is running. The use of the ‘static’ qual-
ifier in a declaration statement causes the variable to have an infinite lifetime,
regardless of where it is declared. When the data that needs to be stored remains
constant during the program execution, VBE allows the use of the Const data type
to store data that does not change.

In addition to regular variables, VBE supports the use of single and multi-
dimensional arrays. For example, to declare an array of integers, we write (Dim
arrayl (10) As Integer). Because the first element of an array is the zero element (i.e.,
arrayl (0)), the previous statement has declared 11 array elements. Similarly, the
statement (Dim array2(10,1) As Integer) declares a two-dimensional array named
array?2 that has 22 elements (11 rows by 2 columns).

A5 Variables

37

358 Appendix A Visual Basic Express

Table A3

Truth table for VBE
logical operators

Figure A.8

Illustration of the
“For-Loop”

Dim i, sum As Integer
sum =0
Fori=1To 10

SUM = sum + i
Next

| A.6 OPERATORS

VBE supports different groups of operators. These include mathematical, logical,
and relational. The mathematical operators include addition (+), subtraction (—),
multiplication (*), floating-point result division (/), integer result division (\), and
exponentiation ().

Mathematical functions (such as sine, cosine, and logarithm) are also avail-
able but are called as a component of the Math class (through the use of the dot
operator). For example, the sine function is called as Math.Sin() and the natural
logarithm function is called as Math.Log().

Logical operators compare Boolean expressions and return a value of true or
false (called Boolean). These operators include And, Or, AndAlso, OrElse, Xor, and
Not. The first five operators are binary in the sense that they operate on two ex-
pressions, while the last operator is unary because it operates on only one expres-
sion. Table A.3 gives the truth table for these logical operators. Note that the
AndAlso and OrElse operators have the same truth table as the And and Or opera-
tors, respectively, but these operators are short circuiting. This means that the
compiled code can bypass the evaluation of the second expression depending on the
result of the first expression. This is done to improve performance. For example,
the second expression for the AndAlso operator is not evaluated if the first expres-
sion is false, since in this case, the first expression being false determines the result
of the operation (which is false). Similarly, the second expression in the OrElse
operation is not evaluated if the first expression evaluates to true.

X Y XAndY XO0rY X AndAlso Y X OrElse Y X XorY Not X
F F F F F F F T
F T F T F T T T
T F F T F T T F
T T T T T T F F

Unlike the C-language, VBE does not have dedicated bitwise logical opera-
tors, but the And, Or, Xor, and Not operators also act as bitwise logical operators if
the operands happen to be of an integer type. The bitwise operators operate on
identically positioned bits in each of the two numeric expressions. For example,
9 AND 3 gives 1, since both numbers have a 1 only in their zero bit location.
Similarly, 9 Or 3 gives 11, since the zero, first, and third bit positions have 1 in at
least one of the two expressions.

Relational operators compare two expression to decide if they are equal
(= operator), not equal (<> operator), less than (< operator), less than or equal to
(<= operator), greater than (> operator), and greater than or equal to (>= oper-
ator). The result of the comparison is a true or false value.

| A.7 LooPING AND CONDITIONAL STATEMENTS

VBE provides the means to repeat the execution of a group of statements through
the ‘For-loop’ or any variation of the ‘While’ statement. Figure A.8 shows an exam-
ple of code that uses a For-loop to sum all the integer numbers from 1 to 10. Notice
that when this For-loop starts, the index 7 is set to 1. This index is incremented by

A7 Looping and Conditional Statements

1 (which is the default setting but could be any positive or negative increment value
if explicitly specified by using the step statement) after each run through the loop.
Before the statements in the body of the loop get executed again, the index value is
always checked to see that it does not exceed the upper limit for the index (10 in
this case). Once the check condition is no longer valid, the statement in the For-
loop is skipped, and the next statement below the For-loop gets executed. After the
execution of this For-loop the sum variable will have a value of 55, and the index 7
will have a value of 11.

The Do-While statement in VBE also allows for repeated execution. A basic
form of the statement is shown in Figure A.9. In this example, the statements in-
side the Do-While-loop get executed as long as the test condition (7 <= 10) is true.
Once the test condition is no longer true, the statements in the body of the
Do-While-loop are skipped, and the execution moves to the statements that follow
the Do-While-loop. Similar to the For-loop code, the variable suz will have a value
of 55, and 7 will have a value of 11 after the execution of this Do-While-loop. Note
that VBE initializes the variables i and sum to zero when they are declared.

Similar to all programming languages, VBE supports the If-Then statement
that offers conditional execution. In its basic form, the If-Then statement checks if
the conditional statement is true. If this is the case, then the statements in the body
of the If-Then statement are executed; otherwise, they are skipped. Figure A.10
shows such an example which uses both relational operators (less than) and logical
operators (And in this case) in the conditional statement. In this example, both re-
lational statements are true, and thus the logical combination of these statements
through the And logical operator evaluates to be true. Hence, the conditional part
of the If-Then is true, and the variable d will have a value of 50 instead of 0 after
the execution of this statement.

Now let us add an Else part to the If~Then statement, which applies if the con-
ditional part evaluates to be false. Figure A.11 shows a variation of the case consid-
ered in Figure A.10. Since the variable # is greater than 4 here, the conditional
statement evaluates to false, and the variable 4 is assigned a value of 60.

A more elaborate form of the If~Then statement is shown in Figure A.12. This
form uses multiple Elself statements followed by a single Else statement. The same
example considered before is expanded here to show this form.

Note that in this example if the condition in the If part of the statement eval-
uates to false, then the condition in the first Elself statement is evaluated. If that
condition evaluates to false again, then the condition in the next Elself statement is
evaluated. The statement following the Else statement is only evaluated if none of
the other conditional statements evaluates to be true. While there is no limit on the
number of Efself conditions, only one Else condition can be included in the If-Then

Dim a, b, ¢, d As Integer

a=25
b=20
c=30
d=0

If (a < b) And (b < c) Then
d=50

Else
d=60

End If

Figure A9

lllustration of the
Do-While statement

Dim i, sum As Integer

Do While (i <=10)
SUM = sum + i
i=i+1

Loop

Figure A10

lllustration of the
If-Then statement

Dim a, b, ¢, d As Integer

a=10
b=20
c=30
d=0

If (a<b)And (b < c) Then

d=50
End If

Figure A1

359

If-Then statement with

an Else part

360 Appendix A Visual Basic Express

Figure A.12

If-Then statement with
multiple Elself
statements

Figure A.3

Select case statement

Select Case (a)
Case 1
b=2
Case 4
b=3
Case 10
b =50
End Select

Dim a, b, ¢, d As Integer
a=10
b=20
c=30
d=0

Ifa<bAndb<cThen
d=50

Elself a < b Then
d=70

Elself b <c Then
d=80

Else
d=60

End If

statement. Note that if any of the conditional statements evaluates to true, then all
of the remaining conditional statements are not evaluated.

A more elegant method of branching is provided by the Select Case statement,
an example of which is shown in Figure A.13. An expression, which should evaluate
to one of the elementary data types (such as Boolean, integer, or string), is placed in
the Select Case part of the statement followed by a number of possible branches—
each corresponding to a different possible value of the evaluated expression.

Similar to the If~Then statement, a Case-Else statement can be included which
gets executed if none of the other listed cases matches the evaluated expression.
Furthermore, the Select Case statement allows the use of a range of values or multiple
expressions in each Cuase clause. For example, one can use the following code:

Case 5 To 8, 9, 20 To 25

| A.8 FUNCTIONS AND SUB-PROCEDURES

"To provide modularity and ease of program flow, a program should be structured
as a collection of procedures instead of a single procedure with a large number of
statements. Sub-procedures and functions are code elements that are executed by
calling their name. Arguments can be passed to both subs and functions in the call
statement. The difference between a function and a sub-procedure is the way in
which values are returned to the calling program. A sub-procedure cannot directly
return a value, but it can include a return value in its argument list. On the other
hand, a function can directly return a value.

"To illustrate sub-procedures and functions, let us consider a simple example of
writing a routine to add two numbers. We will implement this using both sub-
procedures and functions. Figure A.14 shows the code listing for both methods,
while Figure A.15 shows the calling statements that are needed to execute these
procedures. Note that providing a code listing for a sub-procedure or a function
does not cause that routine to execute. The routine has to be explicitly called in the
calling statements, as shown in Figure A.15, to execute. In the code listing shown
in Figure A.14, the ‘Sub Procedure Method is a comment line. It is a good practice to
add comment statements to code to explain what the code is doing. Note that the
comments statements are not translated by the compiler to machine code, and thus,
they do not affect the compiled size of the code.

'Sub Procedure Method

Sub Addsub (ByVal v1 As Integer, ByVal v2 As Integer, ByRef v3 As Integer)
v3=vl+Vv2

End Sub

'Function Method

Function Addfun (ByVal v1 As Integer, ByVal v2 As Integer) As Integer

addfun =v1 +v2
End Function

Dim x1, x2, x3 As Integer
x1=110
X2 =322

A.8 Functions and Sub-Procedures

Figure A.14

Illustration of a sub-
procedure and a
function

Figure A.15

Calling statements for
sub-procedure and
function

Call Addsub (x1, x2, x3) ‘Addition using a sub procedure

x3 = Addfun (x1, x2) ‘Addition using a function

Note that the format of calling a sub-procedure through the use of the
Call statement is optional, and it can be called by just using its name. Since a sub-
procedure does not directly return a value to the calling function, the result of the
addition of variables v1 and v2 in Addsub was assigned to the third argument, v3.
"This was not the case for the function method Addfun, since a function can return
a value by assigning the result to the name of the function (as shown in this exam-
ple) or by the use of the keyword return followed by the value that needs to be re-
turned. Notice the use of the keyword ByVal in the code listings for these routines
for all variables except v3. This keyword determines how the argument variables
are passed to the called procedure. There are two ways to pass arguments to a pro-
cedure: ByVal and ByRef. The ByVal method is the default in VBE. ByVal means that
a copy of the variable is passed to the called procedure. The procedure can not alter
the original value of the passed variable. In the ByRef method, the called procedure
can modify the value of the passed variable, since a reference to the location in
memory where the variable is stored is passed to the routine. By analogy, you can
think of ByVal versus ByRef as sending a copy versus an original document to a per-
son. Even if the copy gets destroyed, nothing happens to the original document if
you sent only the copy.

"To return the result of the addition performed in the sub-procedure, v3 was
passed as ByRef. In this way, the Addsub procedure is able to place the addition re-
sult in the memory location corresponding to variable x3 (the variable that was
passed to the sub-procedure). If we change the ByRef designation for v3 to ByVal,
x3 will have a value of zero after the sub-procedure finishes execution. As an alter-
native to passing a variable to get the result of an operation in a sub-procedure, we
could assign the result to a global variable that is defined elsewhere in the file.

In certain situations, the passed arguments could be array elements or even
represent a whole array. Passing a single array element to a procedure is identical
to passing any other variable. The particular array element, such as data(2), is sim-
ply listed as such in the argument list in the calling statement. If instead we want
to pass the whole array to a procedure, then in the calling statement the array is

361

361 Appendix A Visual Basic Express

Figure A.16

Passing an array to a
procedure

Figure A17

Illustration of
procedure
overloading

Dim data (10) As Integer 'Declaring an array with 11 elements (0-10)

Call sub1 (data(2)) 'Passing a single array element to sub procedure 1
Call sub2 (data) ‘Passing the entire array to sub procedure 2

Sub sub1 (ByVal v1 As Integer) 'Sub listing with single array element

End Sub
Sub sub2 (ByVal v1() As Integer) 'Sub listing with entire array

End Sub

passed as the array name alone (for example daza) with no parenthesis following the
array name. In the procedure listing, the array is listed as a variable name with the
() following it, but the size of the array is not included within the parenthesis. This
is illustrated in Figure A.16.

VBE allows procedure overloading, which means a given function or sub can
be called in many different ways but using the same procedure name. These ways
include a different number of arguments, different types of arguments, or a differ-
ent ordering of the arguments in the calling statement. To implement procedure
overloading, the code listing for each variation of the procedure is preceded with
the Overloads keyword. For example, Suppose we have a sub-procedure named
subl, but we want to have two variations of calling it—one passing two arguments
to it and the other passing just a single argument. Then the listing for these two
variations is shown in Figure A.17.

Public Overloads Sub sub1 (ByVal x1 As Integer, ByVal x2 As Integer)
‘Add needed code below
End Sub

Public Overloads Sub sub1 (ByVal x1 As Integer)
‘Add needed code below
End Sub

VBE has a large number of built-in functions for specific purposes. We already
have talked about the string manipulation functions when we discussed variables.
Other applications include functions to perform data conversion (i.e., to convert
from one data type to another) such as the Clnt function, which converts an expres-
sion to an integer data type, and mathematical functions.

Having talked about functions and sub-procedures, let us now have a look at
how VBE organizes the different code elements in a Windows Forms Application.
Assume we have developed an application that has a single button and a TextBox
control similar to that shown in Figure A.4. Assume also we have developed in our
application two simple functions, called functionl and function2, that are called from
the Buttonl_Click routine (the code that handles the event associated with clicking
on the Button control). The code listing for these routines is shown in Figure A.18.

Notice the two drop-down lists just above the Public Class Forml line in
Figure A.18. The left drop-down list has the entry Forml shown, while the right
drop-down list has the entry (Declarations) shown. The left drop-down list lists all
of the objects that are used in this application, while the right drop-down list shows
all of the code elements (or procedures) associated with the selected object from the
left list. For example, if we expand the right drop-down list, we see the two functions

A9 Objects and Classes 363

Figure A.18

[T VEN S Formil.vi [Design]

%% Form1 -]) Dectarations) -1 L.
Fublic ciass ¥ Code listing for
Private Sub Buttonl_Click{ByVal sender As System.Object, DyVal & As System.Cuenta-gs) Handles Buttaonl.Click - BUttOI’)T_C/iCk routine
Dim x1, x2, x3, x4 As Integer .
x3 =28 and two functions
x = 18

x1 = functionl(x3, x4)
x2 = function2(x3, x4) E
End Sub

Function functionl(ByVal vi, ByVal v2) As Tnteger
Re: (vi = v2)
End Function

Function function2(Byval vl, Byval v2) Az Integer
Return (vl / v2)
End Functian

End Class

B | Figure A19

% Form1 -l (Dedarations) —I . .
=Public Class i:]Dectarations) Right drop-down list
W Mew

Private Sub Buttanl_Click(ByVal sender As System.
Dim x1, x2, x3, x4 As Integer
x3 = 20 -
xd = 18
x1 = functionl(x3, w4)

¥ Finalize

¥ functionl

x? = function?{x1, xd) “# function2
End Sub it
Function functioni{ByVal vi, ByVal v2) As Integer

Return (vi * v2)

End Function

that we developed listed in bold font (see Figure A.19). If we want to go to the list-
ing for any of these functions, we simply select that function from the list.

Similarly, if we selected the Buttonl element from the left list and we expand
the right list, we see all of the code elements associated with the Buttonl object (see
Figure A.20). We notice that the c/ick event is shown in bold, while the rest of the
events on the list are not bold. An entry in bold font means that there is code asso-
ciated with that entry, which is the case with the c/ick event.

Formlvh x b [Desig Figllre A.zo

,* Buttonl -| # Click - .)
~Public Class - 7 Uick . Right drop-down list
Private Sub Rultund_Click{Ayval sender ds System.D HEalisCian ol for Button1 object

Dim %1, x2, %3, %4 As Integer # ConteaMenuChanged

x3 = 28 # ContetMenuStipChanged

i # ControlAdded 2

1 = functionl{x3, xd})

¥2 = tunction2(x3, x4)
Cnd Sub # CursorChanged

ControlRemoved

- . # Disposed
Function functionl(Byval vi, Byval w2) As integer .
Return (vl * v2) #* DockUhanged
End Function # DuubileClick
DragDrop
Function function2(DyVal v1, DyVal v2) As Integer
Return (vl f v2)
end Function # Dragl eave
- Miraafier

Dragknter

| A.9 OBjECTS AND CLASSES

As mentioned before, all of the control elements in VBE are objects, and almost
everything that is done in VBE is associated with objects. An object is an entity or
a structure that contains both variables (and data) and procedures (or methods) that

364

Appendix A Visual Basic Express

Figure A.21

Code for creating
a class

operate on these variables. While classes and objects are used interchangeably, they
mean different things. Microsoft defines a class as an abstract designation of some-
thing while an object is a realization of the thing that the class refers to. For exam-
ple, we can create a class named Identity that contains data such as name and age,
and procedures to operate on these data elements. An example VBE code for such
a class is shown in Figure A.21. This class has two data members, name and age; a
procedure named setage; and a property named agevalue. This class becomes an
object when we create an instance of this class.

Private Class Identity
Public name As String
Private age As Byte

Public Sub setage (ByVal num As Byte) ' Setting age using a sub
age = num
End Sub

Public Property agevalue () As Byte'setting/reading age using a
property
Get
agevalue = age
End Get
Set (ByVal value As Byte)
age = value
End Set
End Property
End Class

Creating an object from a user-defined or VBE-defined class is done using
the New keyword. For this example, an object of type Identity is created with the
statement:

Dim citizen As Identity

citizen = New Identity

In this example, Identity is the class, and citizen is an object of that class. There is no
limit on how many objects we can create from the same class. As an alternative, we
can declare and create an object using a single statement:

Dim citizen As New Identity

"To access the public members of the class, the dot operator is used. For example, if
we want to specify the name of the citizen object to be Joe, this can done using the
statement:

citizen.name=*Joe"”

Note that because the #ge data member is defined as private in Figure A.21, it can-
not be accessed using the dot operator as was the case for the name data member.
The listing in Figure A.21 provides two different ways of setting the age: one using
the procedure setage and the other using the property agevalue. Using the procedure
setgage, the age is set with the statement:

citizen.setage (21)
Or using the property agevalue, the age is set using

citizen.agevalue = 21

and is read using
Agel = citizen.agevalue

where Agel is a variable. A special keyword in VBE is the ME keyword. This key-
word can be conveniently used to refer to the current instance of a class or data
structure. Thus, instead of passing the name of the current object to a function or
sub-procedure, the ME keyword can be used.

VBE allows us to create a new class (called a derived class) from an already
existing class called the base class. This process is called inheritance. Any class can
be used as the base class, unless the keyword Notlnberitable was used in creating the
base class. However, the derived class can inherit from only one base class.
Inheritance allows the creation of reusable code, where one class is based on another
class. VBE is supplied with thousands of classes that one can use as a base for the
derived classes.

As an example of creating a derived class, let us consider creating a class called
Information that uses the Identity class we created before as the base class. The code
listing for creating the Information class is shown in Figure A.22.

Private Class Information
Inherits Identity
Public Telphone As String
Public Occupation As String
End Class

As seen in Figure A.22, in addition to the Identity class, we added two new
members (telepbone and occupation) to the Information class. Assume we have created
an object of this class called record. All members of the base class are now members
of the derived class, and we access them as if we are dealing with the base class. For
example, the name member of the base class can be accessed in the derived object
record as

record.name = “Jack”

| A.10 ERROR HANDLING

The Integrated Development Environment IDE) of VBE does a good job of iden-
tifying syntax errors during the development of computer programs, but means
should be included in the code to handle errors that occur during the execution of
a program. These errors are called exceptions in VBE and could occur due to a fault
in the code or unexpected behavior during program execution. A convenient way
to do this is to use the Tiy/Catch statement to handle errors. Code that is prone to
generate error (such as the possibility of dividing by zero) is included in the Tiy
statement. The Catch part of the code has statements to handle the error (such as
providing a message to inform the user what causes the error). If not included, a
fatal error could occur which causes the program to crash. Figure A.23 shows an
example of implementing a Tiy/Carch statement to check for the possibility of
dividing by zero.

Since v2 is set to zero here, an exception will be generated when evaluating v1.
The exception will cause the program to display the message “dividing by zero”

A0 Error Handling 365

Figure A.22

Code listing for the
derived class
Information

Figure A.23

Try-Catch method of
error handling

Dim v1, v2 As Integer
v2=0

Try

vi=5/v2
Catch

MsgBox ("dividing by zero")
End Try

366

Appendix A Visual Basic Express

Figure A.24

Offset sine wave

that is sent to the screen using the MsgBox function. Implement the above code for
evaluating v! without using a Tiy/Catch structure, and notice what happens when
you execute the code.

| A.11 GRAPHICS PROGRAMMING

In many situations, it is desirable to graphically display a certain variable or an
input data since the data trend can be easily seen in a graphical form. VBE supports
the ‘panel’ control which can be used to display data. This control creates a rectan-
gular area on the form to which commands to create lines, arcs, etc. can be applied.
Note that the location of any point in the panel area is defined by an (x,y) coordi-
nate system in pixel units that is attached to the top-left corner of the panel with
the positive x-axis pointing horizontally to the right and the positive y-axis point-
ing vertically downward. Thus, the top-left corner of the panel has a coordinate
value of (0,0), while the lower-right corner has a coordinate value of (Panel*. Width,
Punel*.Height), where Panel*.Width is the width property of the panel area in pix-
els, and Panel*.Height is the height property of the panel area in pixels. To draw
lines in the panel area, one uses the function DrawLine (pen, x1, yl, x2,
y2) which takes as an input the pen type to use and the start and the end (x,y)
coordinates of the line. In actual usage, this functdon is called as
Panel*.CreateGraphics.DrawLine (). To clear the graphics area, one uses
the function Panel*.CreateGraphics.Clear (). Many other functions are
provided in the CreateGraphics class to draw items such as arcs, rectangles, and
curves.

The data to be plotted is usually specified in engineering units (such as meters
or volts). Thus, before plotting, one needs to convert and scale the data so it can fit
in the graphics area. The scaling easily can be done (for example, by multiplying
the x-coordinate of each data point in engineering units by the ratio of the panel
width to the range of x units). In a similar fashion, the y-coordinates can be scaled.
Furthermore, to make the plotting easier, one can also transform the origin of the
coordinate system (with simple mathematical manipulation) to be at the lower-left
corner with the positive y-axis pointing upward. Figure A.24 shows an offset sine
wave plotted in a panel window with the origin transformed to the lower-left
corner.

ol Graphics Example e T =20l

Al12 ToolBox Controls

The gridlines in Figure A.24 are drawn as a series of horizontal and vertical
lines, since VBE does not have a built-in function to draw a grid.

In situations where the panel window is covered by another form, the graphic
display is erased. In this case, the graphic data needs to be re-drawn. An automatic
way of doing this would be to activate the ‘paint’ event associated with the panel
control. Whenever the graphics display needs to be re-drawn, the paint event
handler is then automatically called. Obviously, the user needs to provide all of the
code that is needed in the event handler to redraw the graphics.

| A.12 TooLBox CONTROLS

The ToolBox which shows up in the Designer view in the Windows Forms applica-
tion lists many types of controls, but only a few of them are needed to make simple
applications. The controls are organized in several categories, including Common
Controls, Containers, Menus & Toolbars, and Dialogs. We have already used the
Button and the TextBox controls in the examples we have covered in this appen-
dix. These controls are listed in the Comemon Controls category. Next, we will discuss
additional controls that are useful in many applications. One such control is the
ToolTip control (also included in the Common Controls category). When this con-
trol is added to a form, it allows the user to enter display information for each con-
trol on the form. This information will be displayed when the user moves the
pointer over that control which has the associated 700/Ti#p information. To illustrate
this, assume we have a button control added to our form. We would like to display
the message “Hit This Button to Run the Program” when the user moves the mouse
over this button. If we have added the 700/Tip control to our form, then we simply
type the message in the 700/Tip on ToolTipl property for the button control. The
message will be displayed when the program is run and when the pointer moves
over this button (see Figure A.25). Thus, the 700/Tip control offers a simple and
convenient method of adding display and help information to an application.

s Forml = E

Fugton

{ Hit This Ruttan ta Run the Pragram

In many applications, we need to select only one choice among several avail-
able. This can be handled using the Radio Button control. Figure A.26 shows three
radio button controls labeled Low, Medium, and High placed in a GroupBox con-
trol. While not needed for a single set of radio button controls, the GroupBox con-
tainer control offers a convenient method of separately grouping each set of radio
buttons when we have two or more sets of them. When a particular button is
pressed, the Checked property of that radio button is set to true. The code can check
that property to tell if the button is pressed or not.

When we need to create a list of items to display or to select from a list of
items, a ListBox control is used. Figure A.27 shows a ListBox that displays three
items. Items are added to the list by using the ListBox1.Items.Add(“textstring”)
method, where textstring is the item to be displayed in the list.

Figure A.25

Illustration of the
ToolTip information
display

Figure A.26

Radio button controls

GroupBex1
o Luw

) Medium
© High

367

368 Appendix A Visual Basic Express

Figure A.27

ListBox for displaying
a list of items

Job 1
Job 2
Job 3

Figure A.28

Example code for
saving data to a file

Figure A.29

Save dialog interface
corresponding to code
shown in Figure A.28

"To get an item from a list of items, the ListBox1.Items(index). ToString() method
is used, where index is the item number. For example, to retrieve Job 3 in the above
example, index should be set to 3.

| A.13 FiLe INPUT/OuTPUT

In many applications, we need the capability to store or retrieve information from
a file. VBE offers the OpenFileDialog and the SaveFileDialog controls to open and
save a file, respectively. The procedure Save_Data() in Figure A.28 shows a typical
code for saving data to a file using the SaveFileDialog component. The resulting
dialog when the Save_Datra() procedure is called is shown in Figure A.29.

Private Sub Save_Data()
Dim Npoints As Long
Dim Fname$
Dim w As StreamWriter
Npoints = 100
Dim saveFileDialog1 As New SaveFileDialog

saveFileDialog1.Filter = "txt files (*.txt)|*.txt|All files (*.*)]*.*"
saveFileDialog1.Filterindex = 1
saveFileDialog1.RestoreDirectory = True

If saveFileDialog1.ShowDialog() = DialogResult.0K Then
Fname$ = saveFileDialog1.FileName

Dim fs As New FileStream(Fname$, FileMode.OpenQOrCreate)
w = New StreamWriter(fs)

" Write data to file

Dim i As Long

For i =1 To Npoints
w.WriteLine(Str§(xdata(i)))

Next i
w.Close()
fs.Close()
End If
End Sub
o Save As
v i = » Mechatrunics_
File name: -
Save as type: [txtfiles (*.tut) V]
Allfiles ()]
* Browse Folders | Save | | Cancel
| B
I: =—_ — ——]

In using these dialogs, the user sets the file extension type (such as .txt) of the
files to open or save. This process is called filtering, as it allows the user to select
which types of files in the current directory will appear in the dialog. In

A3

Figure A.29, the “Save as type” drop-down list is expanded to show the file types that
are displayed. In the example code, we included two file types: zxt files and Al files.
Since the Filterlndex property is set to 1, the #xt files choice is first displayed, since
it is the first in the list of file types. The RestoreDirectory property of the
SaveFileDialog restores the current directory after the dialog closes if it was set to
true.
When the user clicks on the Save button in the dialog, the result of the dialog
is OK, and the code proceeds to save the data to the user-specified or selected
filename. This example stores 100 elements of the array xdata, which is assumed to
be defined somewhere else in the code, to a file. Note that to read or write from a
file, the streamn method is used, which requires that the System.lo namespace be
included in the VBE form file. This is done by including the statement Imports
System. IO at the top of the Form1.vb file before the Public Class Form1 statement.

File Input/Output

369

APPENDIX B

(B1)

(8)

Figure B.1

Free response of model
given by Equation (B.1)

370

System Response

Many physical systems can be represented by either a first-order or a second-order
differential equation model. Examples of first-order systems include the model of
the speed of a mass subjected to a force input, the model of the height of fluid in a
tank with flow input, or the model of the temperature of a heated plate. Examples
of second-order systems include the model of the position of a mass subjected to
a force input and the model of the height of fluid in a coupled two-tank system. We
will consider in this appendix both the time and frequency response of first- and
second-order systems.

| B.1 TIME ResPONSE OF FIRST-ORDER SYSTEMS

The time response of a system is the output of the system as a function of time
when subjected to an input signal (such as a step or a ramp). In general, the
response of a system is the sum of the free response plus the forced response.
The free response is the response of the system due to initial conditions, while the
forced response is the response due to an external input. As an example, let us
assume that our first-order system is represented by the differential equation:

mv + bv = f(1)

For positive 7 and 4, the response of the system due to an initial condition v(0) and
a step input force of magnitude F is given by

—bt, F —bt,
v(t) = viD)e " + S0 - g’

The first term in Equation (B.2) is the free response while the second term is the
forced response. The free and the forced responses are shown in Figures B.1 and
B.2, respectively.

Initial 1
Condition 0.9
v o8

0.7

0.6

v(t) 0.5

0.4

0.3

0.2

0.1

12% of'v(0)

0
0 1 2 3 4 s 6
<7 > | Time
4T |

B.2 Time Response of Second-Order Systems

lZ%

F/b 1
0.9

0.8

0.7

0.6

W) 0.5

0.4

03

0.2

0.1

0
0 1 2 3 4 5 6
T +| Time
4T |

As seen in Figure B.1, the free response takes the form of an exponential decay
with a time constant 7 = m/b. The response v starts at the initial condition v(0),
and after four time constants, the free response is only about 2% of the initial value.
As time increases further, the free response goes to zero. The forced response starts
at zero, and increases in an exponential fashion. After four time constants, the out-
put is within 2% of the final steady value. From this, we see that for a first-order
system the time constant of the system solely determines the responsiveness of the
system. Systems that have a small time constant (such as DC motor-driven systems)
have a fast response, while those that have a large time constant (such as thermal
systems) have a slow response.

| B.2 TIME RESPONSE OF SECOND-ORDER SYSTEMS

Similar to a first-order system, a second-order system response has free and forced
components. The details of the response are dependent on the roots of the charac-
teristic equation of the system model. While the following differential equation
represents the dynamics of a mass, spring, and damper system subjected to a force
input, any second-order system can be represented by such a model:

mx + cx + kx = f(t)

For this model, the transfer function between F(s) and X(s) is given as

As)_ 1
Fls) ms® + cs+ k

and the characteristic equation is
ms? + ¢cs+ k=10

Equation (B.5) has two roots. These are

—c+ V- dmk

2m

S12 =

The roots can be real or imaginary, depending on the sign of the quantity
under the square root. They also can have positive or negative real parts. When the

Figure B.2

Forced response of
model given by
Equation (B.1)

(83)

(84)

(B5)

(B.6)

n

mn Appendix B System Response

(87)

Figure B.3

Free response of a
second-order system for
various values of

Figure B.4

Forced response of a
second-order system
under a unit step input
for various values of

root has a positive real part, the response of the system is unbounded or unstable,
while a non-zero imaginary part means that the response of the system will be os-
cillatory. For the case of stable response (the roots lie in the negative half plane), we
can characterize the type of response by determining the damping ratio of the char-
acteristic equation. 1o do this, we write the characteristic Equation (B.5) in the form
shown in Equation (B.7). We let k/m = w2, and ¢/m = 2éw,, where w, is defined as
the natural frequency and ¢ is the damping ratio. The damping ratio is defined
as the ratio of ¢/c,, where ¢, is the critical damping, which is the value of the damp-
ing that causes the roots of the characteristic Equation (B.5) to have two repeated
real roots or the term under the square root in Equation (B.6) to be zero:

§7 + 2w,s + 0’ =10

Using the damping ratio ¢ to characterize the response, we can have three cases.

Underdamped Case (0 < { < 1) In this case the roots will have an imagi-
nary part and the free response or the step-input response will be oscillatory.
Figure B.3 shows the free response, and Figure B.4 shows the forced step response,
respectively, for various values of £. The plots are shown for the case w, = 1 rad/s,
m = 1kg,and F = 1 N.

0.8
0.6
0.4
0.2

Displacement (m)

-0.2
-0.4

-0.6

Time (s)

._.
=)}

=02

._.
~

=05

—_
(3]

)

£=10

Displacement (m)
S o ©
= o oo

7=2.0

e
o v

Time (s)

Critically Damped Case ({ = 1) The roots in this case will be two repeated

roots with no imaginary component. The response will not be oscillatory.

B.2 Time Response of Second-Order Systems

Overdamped Case ({ > 1) The roots will also be real in this case, but not
repeated. The response will not be oscillatory and will be slower than the critically
damped case.

Note that when the damping ratio is zero, the roots are purely imaginary and
have no real component. The free response in this case will be oscillatory but will
not decay with time.

Figure B.5 gives a graphical interpretation of the location of the root of a
second-order system. For 0 < ¢ < 1, the root has real and imaginary components.
The vector from the origin to the root location has a length of w, and makes an
angle of 6 with the negative real axis. The real component magnitude is given by
£w,. Note that { = cos (6). Thus, when ¢ is 1, 6 is zero, the root has no imaginary
component; while when ¢ = 0, 6 is 90°, the root has no real component. Note that
the real part of the root is equal to 1/7, where 7 is the time constant. Thus, the fur-
ther the root is away from the imaginary axis, the smaller the time constant is, and
the faster the response would be. The imaginary component magnitude is equal to

wy; = w, V1 — , where w, is the damped natural frequency. The damped natural
frequency w, is smaller than the natural frequency w,,. Note that the further away the
root is from the real axis, the higher the frequency of oscillation will be.

s=—{w,+w,1-0%j Imaginary

wg= wnv‘sl - 52

1 Real
|<7 (wn =7]

The parameters of a second-order model can be obtained from analyzing the
response plot of the system. Figure B.6 shows a typical plot and a few of the per-
formance characteristics of the plot. These include the percentage overshoot, the
peak time, and a 2% settling time. These parameters are defined in the right side
of Figure B.6.

Maximum percent overshoot:

RCSPOI’ISB M% = 1006771{/ 17§2
MY%
A

; PR LU
| AN M% N s 2

"
Peak time:

L, =

T
oV1 -7

s Settling time (2%):

Time

Figure B.5

Graphical
interpretation
of root location

Figure B.6

Performance
characteristics of a
second-order system

B

314

Appendix B System Response

(88)

(89)

(810)

(B.11)

Figure B.7

Magnitude plot of a
first-order system

| B.3 FREQUENCY RESPONSE

The frequency response of a system is the response of the system to a periodic
input signal (such as a sinusoidal input as a function of the frequency of the sinusoid).
The frequency response is normally shown as two plots: a magnitude plot and a
phase plot. In the magnitude plot, the ratio of the output of the input is plotted as
a function of frequency. Normally, the magnitude plot is displayed in units of dB
where 1 dB = 20 log (output to the input). In the phase plot, the angle between the
output and the input signals is displayed as a functon of frequency. To illustrate the
process of generating the frequency response plots, let us consider the transfer func-
tion of a low-pass filter, which is given by G(s) = 1/(1 + 7s) (see Section 7.10). We
replace the variable s in the transfer function with jw. Performing this, we obtain

1
1+ jor

Gljw) =

To get rid of the complex quantity in the denominator, we multiply the numerator
and the denominator of Equation (B.8) by the complex conjugate of 1 + jwr,
which is 1 — jwr. This gives

. 1 1 — jot 1 — jot 1 JoT
Gljw) = () = =

1+jw7'/1—jw7'_1+w27'2 1+ o’ 1+ ot
The magnitude of the transfer function is then obtained by taking the square root
of the sum of the squares of the real and imaginary parts in Equation (B.9). This gives

Mo J(L) () - o
w = =
! 1+ wir 1+ o) N+ ot

The phase angle is obtained from evaluating the inverse tangent of the ratio of the
imaginary part to the real part or

= tan1<_:w> = —tan (rw)

Equations (B.10) and (B.11) can be plotted as functions of the angular frequency w to
obtain the frequency response plot of the transfer function. These plots are given in
Figures B.7 and B.8, respectively, where the magnitude plot is displayed in dB units.
From Equation (B.10), we see that when w7 is very small; the magnitude is
approximately equal to 1. Since the logarithm of 1 is zero, then the magnitude in
dB units is equal to 0 for small values of wr. Similarly, when wr is very large,
Equation (B.10) can be approximated by (wr)~!. Hence, the magnitude in dB is

Bode Diagram

Magnitude (dB)
|
9

1072 107! 10° 10! 10
Frequency (rad/sec)

B.3

0
™
Q
=2
o —45|
%
=
[al
790 —
1072 107! 10° 10! 102

Frequency (rad/sec)

equal to —20 log w — 20 log 7. Thus, the slope of the frequency magnitude plot is
—20 dB per decade, where a decade is a 10 times increase or decrease in the fre-
quency. When w = 1/7, or is at the corner frequency, the magnitude has a value
of —3 dB. Similarly for the phase plot, we can see from Equation (B.11) that when
ot is very small, its inverse tangent is close to 0°, while when w7 is very large, its in-
verse tangent is close to —90°. A negative phase angle means that the output sig-
nal lags the input signal, while a positive phase angle means that the output signal
leads the input signal. The relationship between the phase angle (¢ in degrees) and
the lead/lag time (At in seconds) at any particular frequency (w in rad/s) is given by

ol
At 1800w
As an example, at a frequency of 10 rad/s, the output signal from the low-pass fil-
ter will lag the input signal by 0.147 seconds.
MATLAB has two commands for generating the frequency response plots.
They are the Bode and Bodemag. The Bode command generates both the magnitude
and phase plots, while the Bodemag generates the magnitude plot. Figure B.9 shows

Bode Diagram

Magnitude (dB)

Phase (deg)

107! 10° 10!
Frequency (rad/sec)

Frequency Response

Figure B.8

Phase plot of a
first-order system

(812)

Figure B.9

Frequency response
plot for an
underdamped
second-order system

315

316 Appendix B System Response

the Bode plot for the second-order system given by Equation (B.3). Notice the
hump in the magnitude plot, which is due to the fact that the system is under-
damped. For this second-order system, the magnitude decreases at the rate of
40 dB per decade after the corner frequency (versus 20 dB per decade for a first-
order system), and the phase plot approaches —180° for large frequencies.

One property of linear systems is that the frequency response of the product
of several transfer functions is the same at that obtained by summing the fre-
quency response of each individual transfer function. This follows from the fact
that log (#b) = log (a) + log (b).

APPENDIX C

MATLAB Simulation
of Dynamic Systems

MATLAB is a software package used for modeling and simulating a variety of
linear and nonlinear systems in both the continuous and discrete domains. The
program is widely used in engineering programs throughout the world, so most of
the readers of this textbook should be familiar with it. We will give in this appen-
dix only a brief overview of how one can use MATLAB to obtain a solution for a
dynamic model, and readers should consult any of the many available textbooks on
this subject for further reading, see [42-43]. We also discuss block diagram repre-
sentation and simulation in MATLAB.

| C.1 SoLuTioN OF DiFrereNTIAL EQUATIONS IN MATLAB

MATLAB offers several ways to obtain the solution for the set of differential equa-
tions that are obtained when a model of a dynamic system is obtained. The partic-
ular method depends on the characteristics of the system. The three common
methods are listed here.

* State space solution methods for linear differential equation systems

* Direct integration using ODE solvers for nonlinear differential equation systems

* Transfer function methods for linear differential equation systems with zero
initial condition

A brief outline of each method follows.

C.1.1 STATE-SPACE SOLUTION METHOD

This method is applicable to linear differential equation systems. The obtained dif-
ferential equation(s) are represented as a set of # first-order differential equations
in the form

x=Ax+ Bu
and the input output relationship is represented as
y= Cx+ Du

where «x is the # X 1 state space vector, # is the 7 X 1 input vector, A is the n X n
model coefficient matrix, B is the # X 7z input coefficients matrix, y is the ¢ X 1 out-
put vector, C is the ¢ X 7 output matrix, and D is the ¢ X output-input matrix.
For single-input, single-output systems, 7z = ¢ = 1. With the 4, B, C, and D matri-
ces specified, the state-space model is created with the MATLAB command

sys1=ss(AB,CD)

in

318

Appendix C MATLAB Simulation of Dynamic Systems

@)

(1)

(C3)

(c4)

Figure C.1

Step response for
system defined by
Equation (C.4)

(a) angular position
response and

(b) angular velocity
response

where sys1 is a user-defined name for the system. The response of the system then
can be obtained in several ways. If we are interested in obtaining the response of
the system to a predefined input signal (such as a step signal), then the step com-
mand can be used with the typical calling format:

step(sys1)

If we would like to obtain the response for a user-defined input vector #v, then
the Isime command be used with the calling format:

Isim(sys1, uv, t)

where uv is a user-defined input vector specified over the time interval z.
As an illustration of this method, let us consider the differential equation
model for a motor-driven geared system. The equation is

T = let0) + Degr 0,

"This is a second-order linear differential equation, and thus, we need two state vari-
ables to represent this model. Let x; be the angular position 6; and x, be the angu-
lar velocity 6y; then the following two first-order differential equations are
equivalent to Equation (C.1).
X 1= X
and
X = /7(7'/77 = besxo)

eff

If the output of the system is the angular position 6y, then the state-space
matrices for this system are

0 1 0
—bg |, B=1 11| C=1010,0=10]

0

/eff /eff

Letting Igs = 0.1 kg - m?, and b = 0.2 N - m/sec, and 7, = 1 N - m, Figure C.1(a)
shows the unit step response obtained by using the command

step(sys1,2)

for the state-space system defined by Equation (C.4), where 2 is the time duration
of the simulation. Figure C.1(b) shows the corresponding step response when the
angular speed was made as the output of the system (C in this case is equal to [0 1]).

Step Response Step Response

9 6
8
~ 25
N 3
g6 24
b= §3)
3 <3
< 4 2
< =
_— <
%3 :502
<2 x
< 1
1
0

0
0 02040608 1 12141618 2 0 02040608 1 12141618 2
Time (sec) Time (sec)

() (b)

C1 Solution of Differential Equations in MATLAB

C.1.2 DirecT INTEGRATION USING ODE SOLVERS

For nonlinear differential equations, we can obtain the solution by direct integra-
tion using any of the ODE solvers in MATLAB. The user needs to define the dif-
ferential equation model, the time span to perform the integration, and the initial
conditions before the ODE solver is called. The differential equation model is de-
fined using the function script in MATLAB. As an illustration of this process, let us
consider the following nonlinear differential equation (Equation (C.5)) which rep-
resents the motion of a pendulum.

1,0 + ksing =0

This differential equation is represented in the MATLAB function f{z,y) listed in
Figure C.2.

function dydt = flt,y)
dydt = [y(2); -k/I10 * sin(y(1)];
end

The function f{#,y) is dependent on time and the vector y. The angular position
of 6 is y(1) and the angular velocity 6 is y(2). Note the output argument dydr defines
a 2 X 1 vector, which gives expressions for the derivatives of y, i.e.,

{ym}:m:{ y(2) }
v(2)) — k/q0sinly(1)

"To integrate this problem, the following statements are typed in MATLAB:
tspan = [0, 2.5];
y0 = [pi()/4; 0];
[t,y] = oded45(@f, tspan, y0);

where y0 is the initial-condition vector, and ode45 is a differential equations solver
based on the use of an explicit Runge-Kutta formula. The ode45 solver is used to
solve ordinary differential equations with high accuracy. MATLAB has other dif-
ferential equations solvers such as ode23, but ode45 is the preferred solver for most
problems, since it offers higher accuracy than ode23. It should be noted that ode45
is the default solver in Simulink.

Figure C.3 shows the solution of Equation (C.5) for the following set of
parameters:

Ip=0.775kg-m*> and k= 15.696 N -m/rad

— Angular Position DA .

- == Angular Velocity | ,* N 4

Angular Position (rad)
and Angular Velocity (rad/s)

t(s)

(c5)

Figure C.2

MATLAB function for
Equation (C.5)

(C.6)

Figure C.3

Pendulum simulation

379

380

Appendix C MATLAB Simulation of Dynamic Systems

Figure C4

A block diagram
representation of a
transfer function

U(s) —>

G(s)

—>Y(s)

(€7)

(c8)

(€9)

(C10)

()

(cn)

where the initial condition 8, = 7/4 and 6, = 0. Note that due to the lack of fric-
tion, the pendulum keeps oscillating between 7/4 and —/4. Note also how the
pendulum angular velocity is maximum when the pendulum goes through the zero
position and is zero at the extremes of motion.

C.1.3 TRANSFER FUNCTION METHODS

For linear systems with zero initial conditions, the differential equation model can
be transformed into transfer function form using the Laplace transform, and the
transfer function commands in MATLAB can then be used to obtain a solution.
The transfer function (see Section 9.4 for more details) of a system is defined as the
ratio of the output to the input of the system under zero initial conditions. It is ex-
pressed as the ratio of two polynomials in the parameter s. Thus, the transfer func-
tion G(s) between the input signal U and the output signal ¥ is written as

NS bs" A bs" e by
U(S) 303n+ 318[771 + -+ a,

G(s)

where 7z = n. The transfer function relationship can be graphically represented
using block diagram concepts. A block diagram of the transfer function given by
Equation (C.7) is shown in Figure C.4. In a block diagram, input and output are in-
dicated by the direction in which the arrows point.

The Laplace transform of a function f{(z) is defined as

Flsh = L) = f; flle“'at

where s is a complex number. This definition can be used to obtain the Laplace
transform of given time functions. For example, the Laplace transform of the unit
step function #(2) is obtained as

o0 e}

1 ©
Fls) = / f(t)e ™t dt = / 167 gt = {—esr} _1
0 0 S 0 S

The Laplace transform is usually covered in detail in textbooks on system dynamics
(see [38]) or feedback control, so the details of it will not be covered here. We will
only point out certain aspects of it as it relates to converting differential equations
into algebraic equations. One such aspect is the derivative property, which gives
an expression for the Laplace transform of the time derivative of a function of time.
For the first time derivative, the property is

L(dg:)) = sL{f(t) — fI0) = sF(s) — (0)

and for the second time derivative, the property is

d?f(4
L(dt?

) = s2Fls) — sf0) — f(0)

As an illustration of this method, let us consider again the differential equation
obtained for the dynamics of a motor-driven geared system. Applying the Laplace
transform to Equation (C.1), and using Equation (C.11) with the assumption of
zero initial conditions, we obtain

Tls) = kys?01(s) + besr 564(s)

C.2 Block Diagram Representation and Simulation in MATLAB

"This equation can be written in transfer function form as

04(s) 1

() g s?

TSl kit S” + Dee S
The transfer function in Equation (C.13) can be defined in MATLAB using the
Transfer Function command or TF(NUM, DEN) function, which creates a con-
tinuous time transfer function. NUM and DEN are row vectors that specify the
numerator and denominator coefficients, respectively, of the transfer function in a

descending order. Thus, the transfer function in Equation (C.13) is specified with
the command

G1 = th[1L[e Dete O))

If we are interested in obtaining the response of the system to a predefined input
signal (such as a step signal), then the step command can be used with the typical
calling format

step(G1)

While multi-input, multi-output systems can be represented in transfer function
form, the transfer function method is better suited for single-input, single-output
systems.

C.2 BLock DIAGRAM REPRESENTATION AND SIMULATION
IN MATLAB

A block diagram representation of a dynamic system offers a graphical representa-
tion of the interaction of the different elements in the system. MATLAB offers
(through the Simulink package) a mechanism for performing this representation in
software. Simulink is an add-on to MATLAB and cannot run unless MATLAB is
installed.

Simulink offers a library of many predefined elements (called blocks in soft-
ware) that one can choose from (see Figure C.5). These blocks are grouped in dif-
ferent categories. For simulation of dynamic systems in the continuous-time
domain, blocks from the Continuous category are used. This category includes a
transfer-function block, a state-space block, a derivative block, an integrator block,
and different types of time-delay blocks.

"To build a dynamic model using Simulink, the user selects and drops the
needed blocks into the Simulink model sheet. The blocks are then joined together

i

=
(5|
(=]

@ B |
Il @ @

EEBHDE

&l

(1)

Figure C.5

Simulink block
categories

381

381 Appendix C MATLAB Simulation of Dynamic Systems

Figure C.6

Simulink representation
of the model given by
Equation (C.13)

Figure C.7

Speed and position
response for model
in Figure C.6

to represent the desired signal flow between the blocks. Before the simulation is
started, the block parameters for each block need to be defined so that the
Simulink model corresponds to the dynamic system that is modeled. The block
parameters can be either set to numeric values or left as variables that need to be
defined in an .7 file that is run before the simulation is started.

To illustrate the use of Simulink, let us build a model of the dynamics of the
motor-driven geared system considered previously. The transfer function of this
system was given in Equation (C.13). As seen in Figure C.6, we represent this trans-
fer function in Simulink using two cascaded blocks: a Tiunsfer Function block and
an Integrator block. While we could have used a single transfer-function block, we
choose this representation so we can access the velocity of the system, which is
obtained from the output of the transfer-function block. Also, the given transfer
function allows this representation because we can factor out an s term from the
denominator. The model parameters I.g and Beg are left in variable form here. The
values of these parameters need to be defined either in the Command Window in
MATLAB or by running an . file that defines these variables before the simula-
tion is started, otherwise the model will not run. The Simulink model library
includes many blocks to supply inputs. We have chosen the Step block here, which
supplies a step torque input to the system. To capture the speed and position re-
sponse of this model, two Scope blocks are included in the diagram. Once the model
is built and the model parameters are defined, the simulation is started by pressing
the arrow button on the menu list.

The speed and position response with I = 0.1 and Begr = 0.2 are shown in
Figure C.7.

W tuampiel_tmulnkModel =
Fle Eft View Samulston Format Tooks Help

N W& =] e 3 o0 [Hoemal - e s REE®

Soope- Speed

| | 1
lell 5+ Bedl

Step Transfer Ecn Integrator Scopet Position

Eracy 155 ety

B Scope- Speed =8 5 B scopel-Pastion [
GaFer ARE B8

Al

GEPLL ABRB BAF -

APPENDIX D

7-Bit ASCII Code

ASCII codes
Dec Hex Code Dec Hex Code Dec Hex Code Dec Hex Code
0 00 NUL 32 20 space 64 40 @ 96 60
1 01 SOH 33 21 / 65 41 A 97 61 a
2 02 STX 34 22 “ 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EoT 36 24 & 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 $ 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 / 105 69 i
10 0A LF 2 ZA * 74 4A J 106 6A J
11 0B VT 43 2B + 75 4B K 107 68 k
12 0c fF 44 2C , 76 4 L 108 6C /
13 0D CR 45 2D - 77 4D M 109 6D m
14 OF SO 46 2E . 78 4F N 110 6E n
15 OF Sl 47 2F / 79 4F 0 111 6F 0
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 S
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
2 16 SYN 54 36 6 86 56 v 118 76 %
23 17 ETB 55 37 7 87 57 w 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 X
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 c FS 60 3C < 2 5C | 124 7C |
29 1D GS 61 3D = 93 50] 125 7D }
30 1E RS 62 3E > 94 5E A 126 7E ~
31 1F us 63 3F 7 95 5F 127 7F DEL

383

This page intentionally left blank

/4

2’s complement, 81-82, 84

A

Aborting a thread, 188
Absolute timing modes, 154
Accelerometers, 238, 240-243
Accuracy, 210
Active region, 50
Actuators, 259-290
AC motors, 275-276
brush DC, 290
brushless DC, and AC, 290
common enclosure type for electric motors, 289
DC motors, 260-275
hobby motors, 288
illustration of NEMA D dimension, 289
selection, 289-290
stepper motors, 279-287, 290
universal motor, 287-288
Address bus, 84
Alternating current (AC)
signals, 20-21
two sinusoidal voltage signals, 20
Alternating current (AC) motors, 275-276
induction, 275, 276, 277
rotor squirrel cage, 275
single-phase, 276, 276, 277
torque speed data, 277
typical torque-speed characteristics, 276
Analog circuit(s), 7-33
AC signals, 20-21
analog circuit elements, 8-10
circuit analysis, 12-14
and components, 7-33
equivalent circuits, 14-16
impedance, 16-20
mechanical switches, 10-12
operational amplifier, 24-30
operational amplifiers, 22-30
power in circuits, 21-22
Analog circuit elements, 8—10
basic circuit elements symbols, 8
electrical circuit element schematic, 8
resistor bands color code, 9
resistor color bands, 9
resistor types, 9
Analog controllers, 295

Analog drives, 273
Analog filter, 245
Analog-to-digital converter (ADC), 123-127
2-bit mapping, 125
characteristics, 123-125
data acquisition board wiring, 127
input signal configuration, 127
operation, 126
signal aliasing illustration, 124
single-ended and differential input mode, 127
AND gate, 51, 53, 62, 65, 67-68
Anode, 8
Arithmetic and logic unit (ALU), 83
Arrays, 362
single and multidimensional, 357
ASCII code
7-bit, 383
Assembly language programming, 113-118
assembly instructions, 113
examples, 113115
integrating C and assembly, 116-117
listing of assembly code that performs
Do-Loop, 116
listing of assembly code to add two
variables, 115
listing of assembly code to perform comparison
and branching, 115
listing of assembly program turns on
an LED, 116
list of additional assembly instructions in
PICI18F family, 118
PIC18 assembly instructions, 117
PIC-C code to perform Do-Loop operation, 117
PIC16F690 listing of assembly instructions, 114
Astable mode, 69
Asynchronous transmission, 132
Automated assembly systems, 166
Automated entry door, 164

Back electromotive force, 263

Bandpass filters, 249

Bandwidth, 212

Baud rate settings, 134

Bifilar winding, 282

Binary coded decimal (BCD) system, 57, 63, 81
Binary system, 79-80

385

386 Index

Bipolar design, 222
Bipolar junction transistor (BJT), 42-49
common emitter circuit, 43
common npn characteristics, 46
Darlington transistor schematic, 46
emitter follower circuit, 45-47
npn schematic, 42
npn type non-contact, capacitive-type proximity
sensor circuit, 47
open collector output, 47-48
opto-isolator, 48-49
phototransistor and photo interrupter, 48-49
transfer and out characteristics of B] T, 43
transfer and output characteristics, 43
transistor switch circuit, 43-45
Bit, 80
logical operators, 358
power down, 113
resolution, 124
Block diagram representation in MATLAB,
381-382
Simulink block categories, 381
Simulink representation of model, 382
speed and position response, 382
Blocking code, 170
Board programming, 131-132
DAQ, 131-132
screw terminal for data acquisition card, 131
Boolean algebra, 52-56
Bootloaders, 96
Brake motors, 288
Brushes, 260
DC motors, 260-268
Brushless
DC motors, 269-272
resolver control transmitter, 221
Buffer gate, 52
Bulk mode, 144
Bypass capacitor, 64
Byte, 80

C

Calling statements for sub-procedure and function
in VBE, 361

Capacitor, 10
start, 276

Capture/Compare/PWM (CCP), 93

Capture mode, 93

Carry bit, 113

Cathode, 8

Central processing unit (CPU), 83, 185
speed, 86

Ceramic resonator, 91

Channel Selector input, 56
Charge amplifier, 242
Chassis return, 30
Circuit(s), 2, 7
Circuit analysis, 12-14
total resistance, capacitance, and inductance, 13
typical electric circuit, 12
voltage dividing circuit and current dividing
circuit, 13
Circuit families, 64-69
totem-pole output and open-collector output, 67
TTL and CMOS comparison, 65
TTL and CMOS listing, 66
TTL and CMOS voltage levels, 64
voltage and current parameters for AND gate, 67
wiring of open-collector AND gate, 68
C-language programming, 96-100
code listing for performing digital I/O, 98
listing of preprocessor directives, 97
PIC-C A/D functions, 99
PIC-C code listing for turning on/off LED, 100
PIC-C I/0 functions, 98-99
PIC-C PWM functions, 100
PIC-C timing functions, 99-100
PIC16F690 chip fuse settings, 97
variable types supported in CCS C-compiler, 96
Classes and VBE, 363-365
Clear-to-send (CTS) signals, 134
Clock, 155
oscillator frequency, 92
Clock Signal (SCK pin), 136
Closed-loop control, 294
block diagram, 294
Collision-detection method, 147
Combinational logic circuits, 51-57
basic combinational logic devices, 51-52
Boolean algebra, 52-53
Boolean function generation from truth
tables, 54-56
circuit corresponding, 55
example, 52
Karnaugh map for data, 55
logic truth table, 54
logic truth table graphical representation, 54
multiplexers, 56
multiplexers and decoders, 56-57
SN7402 package, 52
three-variable input truth table, 55
two-gate circuit, 53
two-input channel multiplexer circuit, 57
Common emitter circuit, 43
Common mode rejection ratio (CMRR), 127
Communications Device Class (CDC), 144

Commutation plane, 261
Commutation table, 272
Commutator, 260
Compare mode, 93
Complementary metal-oxide semiconductor
(CMOS), 64
Complex instruction set computer (CISC), 84
Compound-wound motors, 261, 262
Conditional statements and VBE, 358-360
Console application and VBE, 351-352
Context switching, 185
Control basics, 295-297
block representation of transfer function, 296
combined transfer function, 296
overall closed-loop transfer function, 296
Control bus, 84
Controller, 1
Control mode, 144
Control schemes, 309-313
on-off controller, 309-310
response of system, 313
simulink simulation of on-off controller for
heater system, 310
state feedback controller, 310-313
Control software, 153-206

control task implementation in software, 174-184

control tasks, 162-170

graphical user interface, 197-204

multitasking, 184-186

real-time operating systems, 192-197

resource sharing, 188-192

state organization, 173-174

task scanning, 170-172

threading in VBE, 186-188

time and timers, 154-156

timing functions, 146-162

Control task(s), 162-170

block diagram of digital controller feedback
loop, 169

discrete-event control tasks, 164-169

feedback control tasks, 169-170

periodic ON/OFF signal, 168

simplified automated assembly system, 167

state-transition diagram for feedback control
task, 170

state-transition diagram for generating periodic

signal, 168

state-transition diagram for operation of heating

thermostat, 166

Control task implementation in software, 174-184

C-code on PIC16F690 microcontroller, 181
implemented on PIC16F690, 183-184
main, heater and timing routines, 182

Index

MATLAB code listing for Exit pushbutton
callback function, 177
MATLAB code listing for simulating
heating/cooling, 177
MATLAB code listing for START button
callback function, 175
MATLAB implementation, 174-178
PIC microcontroller implementation, 180-184
snapshot of interface while code is running,
175,178
state-transition diagram for thermostat, 183-184
thermostat implementation PIC16F690, 182
thermostat task implemented inside
TIMERI, 176
user interface created using MATLAB, 175
user interface created using VBE, 178
variable declaration for thermostat
implementation, 181
VBE code listing for thermostat task, 179
VBE code listing for timer tick routine
simulating heater operation, 180
VBE implementation, 178-180
Control unit, 83
Conversion rate, 123
Cooperative control mode, 171, 184
Coulomb friction, 7, 242
Count-down mode, 155
Counter overflow problems, 155
Count-up mode, 155
Cross-thread calls, 187
Crowbar, 41
Current, 7
dividing circuit, 13
sinking and sourcing, 64
Cutoff state, 49

Darlington transistor, 46

Data acquisition (DAQ)
analog-to-digital converter, 123-127
board programming, 131-132
data-acquisition board programming, 131-132
digital-to-analog converter, 128-130
inter-integrated circuit interface, 138-140
and microcontroller/PC interfacing, 122-150
network connection, 145-149
parallel port, 130-131
sampling theory, 123
serial peripheral interface, 136-138
USART serial port, 132-136
USB communication, 140-145

Data acquisition cards (DAC), 130
screw terminal, 131

388 Index

Data bus, 84
Data packet, 132, 143
Deadlocking, 192
Decimal system, 79
Declaration statement, 357
Decoder, 57
Demultiplexer, 57
Design of feedback control systems, 295
Device, 141
Differential equations in MATLAB
block diagram representation of transfer
function, 380
direct integration using ODE solvers, 379-389
MATLAB function, 379
pendulum simulation, 379
simulation of dynamic systems, 377-381
state-space solution methods, 377-378
step response for system, 378
transfer function methods, 380-381
Difterential input mode, 127
Differentiator, 28
Digital circuit, 7
Digital circuits, 36-74
circuit families, 64—-69
combinational logic circuits, 51-57
digital devices, 68-71
H-bridge drives, 72-73
sequential logic circuits, 57-64
Digital controllers, 295
Digital devices, 68-71
functional operation of 555 timer chip, 69
pin layout and functional diagram of NE355
timer chip, 69
wiring diagram for astable operation and timing
diagram, 71
wiring diagram for monostable operation and
timing diagram, 70
Digital drives, 273
Digital filter, 245
Digital heating thermostat, 165
Digital implementation of PID controller, 305
forward rectangular approximation, 305
Digital-to-analog converter, 128-130
D/A characteristics, 128
D/A operation, 128-130
R/2R ladder resistor network, 129
weighted resistor summing amplifier circuit, 129
Digit carry, 113
Diode clamp, 38
Diodes, 37-39
characteristics, 37
diode clamp circuit, 38

flyback diode circuit, 38
half-wave rectification, 37
LED, 39
photodiode, 39
Zener diode, 38
Zener diode symbol, 38
Zener diode voltage regulation, 38
Direct current (DC) motors, 260-275
AZ6A8DDC analog drive, 273
BLDC fan components, 272
brush, 260268
brushless, 269-272
brushless DC cooling fan, 272
commercial brush, 261
common configurations of brush-type, 262
commutation sequence for CW and CCW
rotation, 271
commutator of brush, 261
delta wiring of three-phase, 269
drive timing diagram for CW rotation, 271
electromechanical model of PM brush, 263
illustration of phase activation, 270
manufacturer data for Pittman 9236 Series, 267
minimum wiring for AZ6ASDDC drive, 274
nominal speed and torque for PM
DC-motor, 266
PM brush, 263
produce particular stator flux vector, 270
PWM control, 274-275
resultant torque output, 261
schematic of simplified three-phase, 269
servo drives, 272-273
simplified construction of brush, 260
single-coil and three-coil segments, 261
three-phase bridge driver, 271
torque-speed characteristics, 272
typical torque-speed characteristics, 263
wiring of L6203 H-bridge, 274
Y wiring of three-phase, 269
Directory structure, 355-356
Discrete-event system, 2
Displacement measurement of sensors, 212-221
absolute encoder, 219-220
8-bit commercial absolute encoder disk, 219
commercial counter IC, 219
commercial rotary potentiometer, 213
disk pattern from each track of absolute
encoder, 220
encoder output for natural binary and gray
code, 220
incremental encoder, 216-219
linear potentiometer model, 213

load resistance model, 214
LVDT, 215-216
LVDT construction, 215
output from each track of absolute encoder, 220
output from single light/sensor combination, 216
output of incremental encoder, 217
plot, 214
potentiometer interfaced with measuring
device, 214
potentiometers, 213-215
resolver, 221
rotary brushless resolver control transmitter
schematic, 221
state-transition diagram for incremental
encoder, 217
track of absolute encoder, 220
Domain Name System (DNS), 148
Do-While statement, 359
Drive actuator, 2

8-bit (int8) integer, 96
Electrical charge, 7
Electrically erasable programmable ROM
(EEPROM), 84
Electromotive force (EMF), 263
Electronically commutated, 270
Electromechanical relays, 31-32
Embedded control system, 2
Emitter-coupled logic (ECL), 64
Enabling technologies, 5
Encoder, 216-220
absolute, 219-220
incremental, 216-219
Endpoint, 142
Enhanced CPP (ECCP) module, 93
Enumeration, 142
Equivalent circuits, 14-16
circuit to be replaced with Thevenin equivalent
circuit, 15
Norton equivalent circuit, 14
Thevenin equivalent circuit, 14
Erasable programmable ROM (EPROM), 84
Error handling, 365-366
External clock source, 92

F

Fan out, 64

Feedback control, 2, 293-314
control basics, 295-297
cycle, 169
design of systems, 295

Index 389

digital implementation, 305
nonlinearities, 305-309
open- and closed-loop control, 294
other control schemes, 309-313
PID controller, 298-304, 305
Field effect transistor (FET), 42
File input/output, 368-369
File structure, 355-356
File Transfer Protocol (FTP), 146
Filtering, 24, 33, 209, 235, 244-250
analog, 245
bandpass, 249
corner frequency, 246
digital, 245, 247
frequency response plot, 245
high-pass, 248
low-pass, 245-246
notch, 249
time constant, 246
555 timer chip, 68
Fixed-pulse generation mode, 69
Flag variable, 173
Flash memory, 85
Flip-flops, 57-64
D, 60-61
JK, 60
SR, 57-58
T, 62-64
Floating-point variable (float32), 96
Flow control methods, 134
Flyback diode, 38
Forced response, 370
Force measurement of sensors, 230-233
elastic elements used in torque sensors
schematic, 232
force-sensing resistor, 231
force sensors, 230-231
four strain gages in load sensor, 231
load cells configuration, 230
reaction and rotary torque sensors
illustration, 232
torque sensors, 231-233
Wheatstone bridge with rotary transformers, 233
Forward rectangular approximation scheme, 305
Forward voltage, 37
Framing error, 134
Free response, 370
Frequency response, 374-376
magnitude plot of first-order system, 374
phase plot of first-order system, 375
plot, 245
plot of underdamped second-order system, 375

390 Index

Full-duplex mode, 133
Full-stepping actuation, 281
Full-stepping step angle, 282

G

Gage factor, 228
Gate current, 40
Gate propagation delay, 64
Gear motors, 288
General purpose registers, 101
Graphical user interface (GUI), 197-204
callback function for DisplayButton, 201
code added to cmdRun_Click
function, 204
form layout for operator interface, 205
Form1.vb code listing, 203
GUIDE icon, 198
GUIDE Quick Start form, 199
interface in operation and after pushbutton
was pressed, 201
list of functions created in m-file, 200
MATLAB code for handling popup
menu, 202
MATLAB graphical user interface, 198-202
portion of property inspector menu for push
button, 200
program at start and after Run button clicked
several times, 204
with two objects, 199
VBE 2010 controls, 202
VBE graphical user interface, 202-204
Graphic programming and VBE, 366-367
Grounding, 30-31
loops, 30
voltage, 30

Half-duplex mode, 133
Half-stepping actuation, 281
Half-wave variable-resistance phase-control
circuit, 41
Hall-effect sensor, 221
Handshake packet, 143
H-bridge drives, 72-73
circuit using switches, 72
implementation using DPDT delays, 72
L6203 H-bridge block diagram, 73
Heating system, 336-345. See also Temperature-
controlled heating system
Hexadecimal system, 80-81

High-impedance charge output, 242
High-pass filters, 248
Hobby motors, 288
position as function of pulse width, 288
standard size, 288
Holding current, 40
Holding torque, 287
Hybrid motor, 280, 283
Hypertext Transfer Protocol (HTTP), 146
Hysteresis, 210

Ideal current source, 8, 15
Ideal op-amp, 23
Ideal voltage source, 8, 15
If-Then statement
with Else part, 359
with multiple Elself statements, 360
VBE, 359
Impedance, 16-20
matching, 19
measuring using ideal voltmeter, 18
measuring using real voltmeter, 18
RC circuit, 16
RL circuit, 16
signal connection, 19
voltage source, 18
Indexing table, 168
Inductor, 10
Industrial robots
mechatronics, 3
Input impedance, 18-19, 26

Integer
8-bit, 96
16-bit, 96

one-bit variable, 96
Integrated circuit (IC) accelerometers, 243-244
Integrated circuit serial programming (ICSP), 95
Intelligent traffic lights, 224
Interfaces, 86
Inter-integrated circuit, 107, 138-140
I2C wiring, 139
interface, 138-140
PIC-C code listing for 12C interface
functions, 139
Internal oscillators, 92
Internet Protocol (IP)
address, 146
v6 colon-hexadecimal notation, 146
v4 dotted-quad notation, 146

Interrupts, 108-112
applications, 108
code listing for RA2/INT external interrupt
using PIC-C compiler, 112
mode, 144
PIC-C interrupts handling, 111-112
PIC MCU, 110
processing, 109-111
registers on PIC16F690, 109
Timer0 overflow interrupt using PIC-C
compiler, 111
Interrupt Service Routine (ISR), 108
Inverter gate, 53
Invoke method, 187
1/0 lines, 86
Isochronous mode, 144

K

Karnaugh maps (K-maps), 54
Kirchhoff’s current law (KCL), 12
Kirchhoff’s voltage law (KVL), 12

L

Ladder resistor network, 129
Laplace transform, 17, 266, 268, 295, 296, 380
Latch, 61
Law of homogenous circuits, 235
Law of intermediate metals, 234
Least significant bit (LSB), 80
LED, see Diode, 37
Light-emitting diode (LED), 39
Linear operation state, 44
Linear potentiometer, 213
Loading effects, 18

example, 19
Locked anti-phase method, 274
Logical operators, 358
Looping statements, 358-360
Lorentz’s law, 260
Low-pass filters, 245

M

Master Out Slave In (SDO pin), 136
Mathematical functions, 358
MATLAB simulation of dynamic systems, 377-382
block diagram representation, 381-382
solution of differential equations, 377-381
Maximum power, 264
Mechanical switches, 10-12
DPDT switch wired as four-way switch, 11

Index 391

push-button switch, 11
switch bounce pattern for switch closure, 12
toggle switches configurations, 11
types, 11
wiring circuit for light bulb using two SPDT
switches, 11
Mechatronics, 1-5
components, 2
definition, 1-2
examples of systems, 3—4
industrial robots, 3
listing of applications, 3
mobile robots, 3
parking gate, 4
Roomba vacuum-cleaning robot, 4
scanner, 4
Mechatronics projects, 316-346
paper-dispensing system, 325-326
stepper-motor driven rotary table, 316-325
temperature-controlled heating system, 336-345
Message, 195
Metal-oxide semiconductor field effect transistor
(MOSFET), 42, 49-51
circuit for driving a motor, 50
digital circuits, 49-51
output characteristics, 49, 50
parameters, 50
semiconductor electronic devices, 49-51
symbol, 49
transfer characteristics, 49, 50
Microcomputer, 83
Microcontroller(s), 78-118, 122-150. See also Data
acquisition (DAQ)
assembly language programming, 113-118
C-language programming, 96-100
interrupts, 108-112
microprocessors and microcontrollers, 82-84
numbering systems, 79-82
PC interfacing, 122-150
PIC MCU devices and features, 101-107
PIC microcontroller, 84-93
programming PIC microcontroller, 94-96
Microcontroller unit (MCU), 2, 84-93. See also
PIC MCU
Microprocessors, 82—-84
different types of memory, 83
Microstepping drive, 282
Millions of instructions per second (MIPS), 86
Mobile robots, 3
Monostable mode, 69
Most significant bit (MSB), 80

392 Index

Multidimensional arrays, 357

Multiplexer, 56

Multi-revolution measurement, 220

Multitasking, 184-186
graphical illustration of process and threads, 185
programs, 185

Multi-turn device, 213

NAND gate, 51
Negative edge-triggered, 58
Negative number representation, 81-82
Network connection, 145-149
client example programs, 148
client program, 149
four layers TCP/IP model, 146
interface screen for server, 148
IP address, 146-147
IPv4 and IPv6 addresses, 146
network access, 147
nodes, 147
server and client, 147
server program, 149
sockets and ports, 147
stage-transition diagram, 149
structure and operation, 146-148
T'CP protocols, 146, 147-148
UDP protocols, 147-148
VBE programming support, 148-149
Noise, 244
No-load speed, 264
Non-blocking code, 170
Non-collocated actuator-sensor system, 313
Non-conducting state, 49
Nonlinearities, 305-309
illustration of saturation nonlinearity, 306
nonlinear friction, 308-309
open-loop step response, 309
PI simulation with limit of +/—1 N-m, 307
PI simulation with no controller output
limits, 306
saturation, 305-308
simulation of PI controller, 308
simulink model for simulating PI controller, 307
Non-linearity error, 211
NOR gate, 52, 58
Norton equivalent circuit, 15
Notch filters, 249
Numbering systems, 79-82
binary system, 79-80
decimal system, 79
different numbering systems, 81

hexadecimal system, 80-81
negative number representation, 81-82
representation of real numbers, 82

0

Objects and VBE, 363-365

Off state (non-conducting state), 43

Ohmic region, 50

Ohm’s law, 8

One-bit variable integer (intl), 96

Opcode, 113

Open-collector configuration, 68

Open collector output, 47

Open-loop control, 294
block diagram, 294

Operand, 113

Operational amplifiers, 22-30
comparator op-amp, 24
comparator op-amp circuit, 24
differential input op-amp circuit, 27
differential op-amp, 27-28
integrating op-amp, 28
integrating op-amp circuit, 28
inverting op-amp, 24-25
inverting op-amp circuit, 25
non-inverting op-amp, 26-27
non-inverting op-amp circuit, 26
pin layout for LM741 and model of idea

op-amp, 23

power amplifier, 29-30
power amplifier devices, 29
proportional control feedback loop, 28
Schmitt trigger, 27
symbol and connections for op-amp, 22
voltage follower, 26

Operators, 358

Optocoupler, 48

OR gate, 51, 53

Output impedance, 18-20, 26, 68

Output pulse duration, 70

Output voltage swing, 29

Overloading, 362

P

Packet, 143
Packet ID (PID), 143
Paper-dispensing system, 325-336
block diagram of system components, 326
connection diagram between incremental encoder
and counter board, 332
control software, 328-332

desired and actual displacement profiles for
10-sheet job, 334
feedback controller simulation in
MATLAB, 333-334
GUIL, 327
GUI design in VBE, 327
main components needed, 336
measured open-loop step position response, 333
measured open-loop step velocity response, 333
modeling and simulation of system, 332-333
motion profile, 327-328
paper-dispensing setup, 325
partial list of parts needed, 336
planning motion of drive roller for each
job, 328
setup description, 325
simulated closed-loop step position
response, 334
simulated open-loop step position response, 333
simulink model for roller-position control
system, 334
step-input voltages, 333
trapezoidal velocity profile, 328
user interface, 326-327
using roller driven by position-controlled DC
motor, 325-326
variable definitions for paper-dispensing
program, 328
VBE code for generating desired
trajectory, 331
VBE code listing for Add Job and Delete Job
commands, 332
VBE code listing for ControlTask, 329-330
VBE code listing for simulating motor/encoder
system, 335
Parallel port, 130-131
TTL input and output levels, 130
Parity bit, 132
Parity methods, 133
Parking gate, 4
PC interfacing, 122-150. See also Data
acquisition (DAQ)
Performance terminology of sensors, 210-212
dynamic characteristics, 211-212
hysteresis error illustration, 211
illustration of basic dynamic response
characteristics, 212
nonlinear error illustration, 211
specifications for load cell sensor example, 212
static characteristics, 210-211
Permanent magnet, 261
Phase, 280

Index

Photo interrupter, 318
PIC16F84A, 84-88
PIC16F690, 79, 86, 88-92, 96-97, 100-104, 107,
109-111, 114, 118
PIC18F4550, 79, 84-85, 87-88, 92, 96,
101, 105, 117
PIC MCU, 84-93
A/E/USART, 106-107
analog comparator, 107
clock/oscillator source, 91-92
code listing for program to illustrate WD'T'
reset, 105
code listing to illustrate sleep operation and
wake-up, 106
components, 89-91
data memory, 101
delays and timers, 102-103
devices, 101-107
duty cycle, 103-104
EEPROM data, 101
families, 85-87
features, 101-107
interfaces, 87
170 and A/D operation, 92-93
PIC16 and PIC18 families, 86
PIC 16F84A chip PIN layout, 87
PIC 16F690 MCU block diagram, 90
PIC16F690 MCU connection diagram, 91
PIC 16F90 pin diagram, 88
PIDP, 88
PIN layout, 87-88
power saving, 105-106
program memory, 101-102
PWM output, 93
PWM signal illustration, 93
PWM timing, 103-104
quartz crystal resonator, 91
reset operations, 93
SOIC, 88
SSOP packaging, 88
SSP interface, 107
stack map on PIC16F690, 102
watchdog timer, 104-105
wiring between PIC16F690 and
MAX233, 107
Pin count, 86
Pipes, 142
Plastic dual inline package (PDIP), 87
Poles, 10, 296
Positive edge-triggered, 58
Postscaler factor, 103
Potentiometers, 10

393

394 Index

Power
in AC circuits example, 22
average, 22
in circuits, 21-22
defined, 21
factor, 21
instantaneous, 21
reactive, 21
real and apparent, 21

Power down, 113

Preemptive control mode, 184

Prescaler, 102-103

Priority inheritance problem, 193

Procedure overloading, 362

Product of sums, 54

Program counter (PrC), 89

Programmed 1/0O, 130

Program memory, 85

Programming PIC microcontroller, 94-96
bootloaders, 96
microchip low pin-count development board, 95
PICkit 2 and PICkit 3 programmers, 94
PICkit 2 interface, 95
PICSTART Plus, 94
programers, 94-95

Proximity measurement of sensors, 221-225
commercially available inductive proximity

sensors, 224

contact-type proximity sensors, 225
Hall effect illustration, 222
Hall effect proximity sensor, 222
Hall effect proximity switch wiring, 222
Hall effect sensor commercially available, 223
hall-effect sensors, 221-223
inductive proximity sensors, 223-225
operator types for limit switches, 225
ultrasonic sensors, 225

Pull-in torque curve, 287

Pullout torque, 287

Pull-type solenoid, 31

Push-button switches, 11

Push-type solenoid, 31

PWM signal, 93

PWM control of DC motors, 274-275

Q

Quantization error (digitization accuracy), 125
Quartz crystal resonator, 91

Race, 192
RA2/INT external interrupt, 112

RAM, 83-85
Random access memory (RAM), 84
Range, 210
Reactance, 18
Reaction torque sensor, 232
Read-only memory (ROM), 83-84
Real-time operating systems, 192-197
code structure for implementing RTOS in
PIC-C, 194
C-Program illustrates semaphore mechanism, 196
PIC-C RTOS system, 194-195
priority inversion illustration, 193
state-transition diagram for thread operation, 197
ThreadX, 195-197
Real-time programs, 154
Rectification, 37
Reduced instruction set computer (RISC), 84
Registers, 83
Relational operators, 358
Relative timing modes, 154, 155
Relay, 31-32, 38, 42, 46, 72-73
Repeatability, 210
Request-to-send (RT'S) signals, 134
Reset windup, 294
Resistor, 8
Resistor capacitor (RC) circuit, 92
Resolution, 155, 210
Resolver, 212-213, 221
Resource sharing, 188-192
Rheostats, 10
Ripple, 226
Ripple counter, 64
Rise time, 211
Robot, 3
Roomba vacuum-cleaning robot, 4
Root mean square (RMS)
value, 20, 21
voltage and current, 20, 21
Rotary brushless resolver control
transmitter, 221
Rotary torque sensor, 232
Rotary-type potentiometer, 213
Rotating-access method, 147
RTD, 233, 236-237

)

Sample and hold circuit, 123
Saturation nonlinearity, 306
Saturation region, 50
Saturation state, 44
Saturation voltage, 23
Scanner, 4

Index

Scanning mechanism, 170 Serial peripheral interface (SPI), 107, 136-138
Scheduling task state-transition diagram, 172 PIC-C code listing for reading and writing
Schmitt triggers, 26, 223 to EEPROM, 138
Seismic mass, 238 Series-wound configuration, 262
Self-generating periodic signal, 69 Servo, gear, and brake motors, 288
Semaphore mechanism, 195 Settling time, 211
Semiconductor electronic devices, 36-74 Shaded pole, 276
bipolar junction transistor, 42-49 Short circuiting, 358
diodes, 37-39 Shrink small outline package (SSOP), 87
MOSFET, 49-51 Shunt-wound motor, 261, 262
MOSFET symbol, 49 Signal conditioning of sensors, 244-255
thyristors, 40-42 active low-pass filter, 247
Sensitivity, 210 amplification, 250
Sensors, 210-256 bridge circuits, 250-255
displacement measurement, 212-221 circuit for first-order high-pass filter, 249
dummy gage for temperature compensation, 255 circuit for passive low-pass RC filter, 247
force and torque measurement, 230-233 digital filter output for different corner
output, 255-256 frequencies, 248
performance terminology, 210-212 filtering, 244-250
proximity measurement, 221-225 ideal magnitude frequency response
signal conditioning, 244-255 characteristics of filters, 245
speed measurement, 226-227 magnitude for bandpass filter, 249
strain measurement, 227-230 magnitude for first-order low-pass filter, 246, 248
temperature measurement, 233-238 magnitude for notch filter, 250
vibration measurement, 238-244 phase for bandpass filter, 249
wiring for two-wire current transmitter, 255 phase for first-order low-pass filter, 246
Sequential logic circuits, 51, 57-64 phase for notch filter, 250
BCD-to-7 decoder CD 74HC4511 IC pin plot of equation, 252
layout, 57 three-lead connections to bridge, 254
3-bit binary counter, 63 two-lead connections to bridge, 254
bypass capacitor, 64 Wheatstone bridge circuit, 250
clock transitions, 58 Signal conditioning operations, 1
D flip-flop, 60-61 Signed keyword, 96
equivalent circuit, 58, 62 Sign-magnitude method, 274
JK flip-flop, 60 Silicon-controlled rectifier (SCR), 40. See also
latch, 61 Thyristors
latch timing diagram, 61 Simulation in MATLAB, 381-382
negative edge-triggered clocked SR flip-flops, Simulink block categories, 381
58-59 Simulink representation of model, 382
positive edge-triggered clocked SR flip-flops, speed and position response, 382
58-59 Single and multidimensional arrays, 357
positive edge-triggered clocked SR flip-flops Single-chip device, 83
timing diagram, 58 Single master and single slave, 138
positive edge-triggered JK flip-flop truthtable, 61 Single-phase AC, 275
positive edge-triggered SR flip-flop truth Single-turn device, 213
table, 59 16-bit (intl6) integer, 96
seven-segment digital display, 57 Slave Out Master In (SDI pin), 136
SR flip-flop, 57-58 Slave Select (SS pin), 136
T flip-flop, 62 Slewing region, 286
T flip-flop timing diagram, 62 Slip ring, 276
0 to 999 counter using three Small-outline integrated circuit (SOIC), 87

7490 IC, 63 Solenoid, 7, 10, 31-32

396 Index

Special function registers, 101
Speed measurement of sensors, 226-227
encoder, 227
output speed of DC motor tachometer, 226
tachometer, 226
tachometer leads RC filter, 226
Split phase, 276
SRAM, 83-84
Stability, 211
Stack, 89
Start bit, 132
Starting a thread, 188
Start/stop region, 286
State organization, 173-174
code example to update and select active
state in task, 173
OpenDoor state, 173
Wait state, 174
State-transition diagram, 163, 196, 319
Static qualifier, 357
Stator flux, 270
Status bits, 113
Stepper motor(s), 279-287
connections for eight-lead with four-position
amplifier, 286
connections for six-lead with four-position
amplifier, 286
drive methods, 280-283
driver, 285
ED1200 stepper motor interface IC, 284
full-stepping actuation, 281
full stepping excitation for four-phase unipolar
PM rotor, 282
half-stepping actuation, 281
hybrid, 279
hybrid major components and cross-
section, 283
lead wires for stepper motors, 284
microstepping excitation, 282
PM, 279
torque speed characteristics, 286
two-phase PM schematic, 280
unipolar and bipolar drive wiring, 284
wave drive actuation steps, 280
wiring and amplifiers, 283-287
Stepper motor driven rotary table, 316-325
code listing for TableTask, 322-323
driver, 317-318
IC for photo interrupter sensor, 318
interface circuit of PIC16F690, 317-318
list of parts needed, 324-325
main components setup, 324

mapping interface between commands and A/D
output, 319
microcontroller code, 319-324
mounting details of CD, 317
operation commands, 318-319
setup description, 317
state-transition diagram for operation, 319
variable definitions for code to control rotary
stage, 320
Stop bit, 132
Strain gage, 227
Strain gage load cells, 230
Strain measurement of sensors, 227-230
biaxial strain gage, 229
dual-grid strain gage, 229
metal-foil strain gage, 227
strain gages configurations, 229
three-element rosette strain gage, 229
Sub-procedure and function
visual basic express (VBE), 361
Successive approximation method, 126
Summing circuit example, 25
Sum of products form, 54
Switch bouncing, 11
Switches, 10-12
doorbell, 11
DPDT, 11
DPST, 11
mechanical, 10-12
push button, 11
SPDT, 10, 11
SPST, 10, 11
toggle, 10
Synchronous counter, 64
Synchronous motor, 276
Synchronous transmission, 132
System response, 370-376
frequency response, 374-376
time response of first-order systems, 370-371
time response of second-order systems, 371-373

T

Task scanning, 170-172

assembly system, 172

blocking code example, 170

implementation, 171-172

pseudocode for implementing cooperative
control mode, 171

requirements, 170-171

scanning of multiple tasks in cooperative
control mode, 171

state-transition diagram, 172

"Task state-transition diagram, 172
"Temperature-controlled heating system, 336-345
BackgroundWorker code in VBE, 340
code structure in MCU, 341
controller simulation in MATLAB, 344
DoControl and PIControl functions on MCU, 342
experimental and simulated data for plate
setup, 345
GUI design for heater control, 338
heater control system parts, 345
heater model in MATLAB, 344
interface circuit between MCU and heater, 338
list of part needed, 345
microcontroller code, 339-341
modeling and simulation of physical system,
342-343
open-loop response of plate/heater system, 343
PICDEM PIC18 Explorer Demonstration
Bord, 337
plate and heater experimental setup, 337
screen shot of control program in operation, 339
setup description, 336-338
simulated response of heater control system
in MATLAB, 344
state-transition diagram for PC GUI, 340
transmitting experiment data from MCU
to PC, 340
using heating coil, copper plate, and temperature
sensor, 336-345
VBE PC user interface, 338-339
"Temperature measurement of sensors,
233-238
IC temperature sensors, 237
law of homogenous circuits, 235
law of intermediate metals, 234
leaded thermistors, 234
LM35 sensor, 237
resistance vs. temperature relationship for
platinum RTD, 236
RTD, 236-237
temperature range of J, K, and T
thermocouples, 235
temperature sensors comparison, 233
thermistors, 233-234
thermocouple junctions, 234
thermocouples, 234-236
typical leaded thermistors, 234
typical resistance versus temperature plot for
thermistors, 234
typical thermocouple configuration, 236
Thermistors, 233-234
Thermocouples, 122, 126

Index 397

Thevenin equivalent circuit, 14
example, 15
32-bit signed floating-point variable (float32), 96
Threading in VBE, 185-188
background worker, 186-187
background worker DoWork code listing in
VBE, 186
cross-thread communication using Invoke
method in VBE, 187
synchronization, 189
thread class, 188
Three-lead configuration, 255
Three-phase
bridge driver, 270
motor, 275
winding, 269
Throws, 10
"Thyristors, 40-42
current output of half-wave variable-resistance
phase-control circuit, 41
current-voltage relationship, 40
half-wave variable-resistance phase-control
circuit, 41
semiconductor electronic devices, 40-42
symbol and typical component, 40
Time
constant, 211
critical application, 194
slicing, 197
Time response of first-order systems, 370-371
forced response of model, 371
free response of model, 370
Time response of second-order systems,
371-373
forced response of second-order system under
unit step input, 372
free response of second-system for various
values, 372
graphical interpretation of root location, 373
overdamped case, 373
performance characteristics of second-order
system, 373
underdamped case, 372
Timers, 154-156
555 chip, 68
component, 160
counter overflow illustration, 156
implementation in MATLAB, 156-159
implementation in VBE, 159-160
out bit, 113
PIC16F690 microcontroller, 161
property, 159

398 Index

Timing functions, 146-162
illustration of different execution
modes, 158
MATLAB code listing demonstrating, 159

MATLAB code listing for implementation, 157

performance counter, 160-161
PIC-C code listing for implementing of
ReadTimeNow() function, 162
timer component, 160
timer implementation in MATLAB, 156-159
timer implementation in VBE, 159-160
TIMER object properties, 158
timers in PIC16F690 microcontroller, 161
timing delay using timer property, 159
timing in PIC microcontroller, 161-162
Toggle switches, 10
"Token packet, 143
"ToolBox controls
illustration of information display, 367
radio button controls, 367
VBE, 367-368
"Torque measurement of sensors, 230-233
elastic elements, 232
force-sensing resistor, 231
force sensors, 230-231
four strain gages in load sensor, 231
load cells configuration, 230
reaction and rotary torque sensors
illustration, 232
torque sensors, 231-233

Wheatstone bridge with rotary transformers, 233

"Totem-pole, 67

Transactions, 142

"Transistor-transistor logic (I'TL), 64

"Transport Control Protocol/Internet Protocol
(TCP/IP), 146

"Tristate output, 68

"Tristate register, 92

Truth table, 51

"Truth table for VBE logical operators, 358

"Try-Catch method of error handling, 365

"Two-lead configuration, 254

U

Unifilar winding, 282
Unipolar design, 222
USART serial port, 132-136
PIC-C code for serial communication, 135
serial packet structure, 132
VBE code listing for serial port setup and
communication, 136

USB communication, 140-145

A and B forms of USB connector, 141

data transfer, 142-143

illustration of logical channels in USB
connection between host and device, 142

illustration of USB transfer, 143

packet format, 143

physical connection structure with USB
communication, 141

standards and terminology, 140-142

support on PIC microcontrollers, 144-145

timing of data transfers on USB bus, 143

transfer modes, 144

User commands, 1
User datagram protocol (UDP), 147

Vacuum-cleaning robot, 4
Vibration measurement of sensors, 238-244

charge amplifier wiring, 243

commercially available piezoelectric
accelerometers, 242

IC accelerometers, 243-244

MMA 1250EG sensor, 244

model of silicon capacitive micromachined
accelerometer, 243

piezoelectric accelerometers, 241-243

plots, 239, 240

section view of compression-type
accelerometer, 241

seismic mass operating principle, 238-240

seismic mass schematic, 238

wiring diagram MMA1250EG sensor, 244

Vibrometers, 239
Visual basic express (VBE), 351-369

calling statements for sub-procedure and
function, 361

code for Buttonl_click, 354

code for creating a class, 364

code listing for Button1_Click routine and two
functions, 363

code listing for consol application, 352

code listing for derived class information, 365

code window for Form1.vb, 354

common file type extensions in VBE, 356

common variables, 356

conditional statements, 358-360

console application, 351-352

design form in Windows Forms application, 353

directory structure for Windows project, 355

error handling, 365-366

Index

example code for saving data to file, 368 "Try-Catch method of error handling, 365
file input/output, 368-369 variables, 356-357
files and directory structure, 355 Windows forms applications, 353-355
folder structure for Windows project, 355 Windows form with two controls, 353
functions, 360-363 Voltage, 7
graphic programming, 366-367 dividing circuit, 13
If-Then statement with an Else part, 359 follower or buffer, 26
If-Then statement with multiple Elself range, 124
statements, 360 resolution, 124
illustration of Do-While statement, 359 Voluntary relinquishing, 197
illustration of For-Loop, 358
illustration of If-Then statement, 359 w
illustration of information display, 367 Weighted resistor summing amplifier circuit, 128
illustration of procedure overloading, 362 Wheatstone bridge, 250
illustration of sub-procedure and function, 361 rotary transformers, 233
ListBox for displaying list of times, 368 signal conditioning of sensors, 250
looping statements, 358-360 Word, 80
objects and classes, 363-365 W-register, 113
offset sine wave, 366
operators, 358 X
passing array to procedure, 362 XOR gate, 52
radio button controls, 367
right drop-down list, 363 Y

right drop-down list for Buttonl object, 363
save dialog interface corresponding to code, 368
select case statement, 360

sub-procedures, 360-363 L

ToolBox controls, 367-368 Zero bit, 113

truth table for logical operators, 358 Zero-order hold circuit, 130

Yasakawa Electric Company, 1

	Cover
	Title Page
	Copyright
	Contents
	Preface
	CHAPTER 1 INTRODUCTION TO MECHATRONICS
	1.1 Introduction
	1.2 Examples of Mechatronic Systems
	1.3 Overview of Text
	Questions

	CHAPTER 2 ANALOG CIRCUITS AND COMPONENTS
	2.1 Introduction
	2.2 Analog Circuit Elements
	2.3 Mechanical Switches
	2.4 Circuit Analysis
	2.5 Equivalent Circuits
	2.6 Impedance
	2.7 AC Signals
	2.8 Power in Circuits
	2.9 Operational Amplifiers
	2.9.1 Comparator Op-Amp
	2.9.2 Inverting Op-Amp
	2.9.3 Non-Inverting Op-Amp
	2.9.4 Differential Op-Amp
	2.9.5 Integrating Op-Amp
	2.9.6 Power Amplifier

	2.10 Grounding
	2.11 Solenoids and Relays
	2.11.1 Solenoids
	2.11.2 Electromechanical Relays

	2.12 Chapter Summary
	Questions

	CHAPTER 3 SEMICONDUCTOR ELECTRONIC DEVICES AND DIGITAL CIRCUITS
	3.1 Introduction
	3.2 Diodes
	3.2.1 Zener Diode
	3.2.2 LED
	3.2.3 Photodiode

	3.3 Thyristors
	3.4 Bipolar Junction Transistor
	3.4.1 Transistor Switch Circuit
	3.4.2 Emitter Follower Circuit
	3.4.3 Open Collector Output
	3.4.4 Phototransistor, Photo Interrupter, and Opto-Isolator

	3.5 Metal-Oxide Semiconductor Field Effect Transistor
	3.6 Combinational Logic Circuits
	3.6.1 Boolean Algebra
	3.6.2 Boolean Function Generation from Truth Tables
	3.6.3 Multiplexers and Decoders

	3.7 Sequential Logic Circuits
	3.8 Circuit Families
	3.9 Digital Devices
	3.10 H-Bridge Drives
	3.11 Chapter Summary
	Questions

	CHAPTER 4 MICROCONTROLLERS
	4.1 Introduction
	4.2 Numbering Systems
	4.2.1 Decimal System
	4.2.2 Binary System
	4.2.3 Hexadecimal System
	4.2.4 Negative Number Representation
	4.2.5 Representation of Real Numbers

	4.3 Microprocessors and Microcontrollers
	4.4 PIC Microcontroller
	4.4.1 PIC Microcontrollers Families
	4.4.2 Pin Layout
	4.4.3 PIC MCU Components
	4.4.4 Clock/Oscillator Source
	4.4.5 I/O and A/D Operation
	4.4.6 PWM Output and Reset Operations

	4.5 Programming the PIC Microcontroller
	4.5.1 Programmers
	4.5.2 Bootloaders

	4.6 C-Language Programming
	4.6.1 PIC-C I/O Functions
	4.6.2 PIC-C A/D Functions
	4.6.3 PIC-C Timing Functions
	4.6.4 PIC-C PWM Functions

	4.7 PIC MCU Devices and Features
	4.7.1 Data Memory
	4.7.2 EEPROM Data
	4.7.3 Program Memory
	4.7.4 Delays and Timers
	4.7.5 PWM Timing and Duty Cycle
	4.7.6 Watchdog Timer
	4.7.7 Power Saving
	4.7.8 A/E/USART
	4.7.9 Analog Comparator
	4.7.10 Synchronous Serial Port (SSP) Interface

	4.8 Interrupts
	4.8.1 Interrupts Applications
	4.8.2 Interrupt Processing
	4.8.3 PIC-C Interrupts Handling

	4.9 Assembly Language Programming
	4.9.1 Assembly Instructions
	4.9.2 Assembly Language Programming Examples
	4.9.3 Integrating C and Assembly
	4.9.4 PIC18 Assembly Instructions

	4.10 Chapter Summary
	Questions

	CHAPTER 5 DATA ACQUISITION AND MICROCONTROLLER/PC INTERFACING
	5.1 Introduction
	5.2 Sampling Theory
	5.3 Analog-to-Digital Converter
	5.3.1 A/D Characteristics
	5.3.2 A/D Operation
	5.3.3 A/D Input Signal Configuration

	5.4 Digital-to-Analog Converter
	5.4.1 D/A Characteristics
	5.4.2 D/A Operation

	5.5 Parallel Port
	5.6 Data-Acquisition Board Programming
	5.7 USART Serial Port
	5.8 Serial Peripheral Interface
	5.9 Inter-Integrated Circuit Interface
	5.10 USB Communication
	5.10.1 USB Standards and Terminology
	5.10.2 USB Data Transfer
	5.10.3 Transfer Modes
	5.10.4 USB Support on PIC Microcontrollers

	5.11 Network Connection
	5.11.1 Structure and Operation
	5.11.2 VBE Programming Support

	5.12 Chapter Summary
	Questions

	CHAPTER 6 CONTROL SOFTWARE
	6.1 Introduction
	6.2 Time and Timers
	6.3 Timing Functions
	6.3.1 Timer Implementation in MATLAB
	6.3.2 Timer Implementation in VBE
	6.3.3 Performance Counter
	6.3.4 Timing in PIC Microcontroller

	6.4 Control Tasks
	6.4.1 Discrete-Event Control Tasks
	6.4.2 Feedback Control Tasks

	6.5 Task Scanning
	6.5.1 Requirements
	6.5.2 Implementation

	6.6 State Organization
	6.7 Control Task Implementation in Software
	6.7.1 Implementation in MATLAB
	6.7.2 Implementation in VBE
	6.7.3 Implementation in a PIC Microcontroller

	6.8 Multitasking
	6.9 Threading in VBE
	6.9.1 BackgroundWorker
	6.9.2 Thread Class

	6.10 Resource Sharing
	6.11 Real-Time Operating Systems
	6.11.1 PIC-C RTOS System
	6.11.2 ThreadX

	6.12 Graphical User Interface
	6.12.1 MATLAB Graphical User Interface
	6.12.2 VBE Graphical User Interface

	6.13 Chapter Summary
	Questions

	CHAPTER 7 SENSORS
	7.1 Introduction
	7.2 Sensor Performance Terminology
	7.2.1 Static Characteristics
	7.2.2 Dynamic Characteristics

	7.3 Displacement Measurement
	7.3.1 Potentiometers
	7.3.2 LVDT
	7.3.3 Incremental Encoder
	7.3.4 Absolute Encoder
	7.3.5 Resolver

	7.4 Proximity Measurement
	7.4.1 Hall-Effect Sensors
	7.4.2 Inductive Proximity Sensors
	7.4.3 Ultrasonic sensors
	7.4.4 Contact-Type Proximity Sensors

	7.5 Speed Measurement
	7.5.1 Tachometer
	7.5.2 Encoder

	7.6 Strain Measurement
	7.7 Force and Torque Measurement
	7.7.1 Force Sensors
	7.7.2 Force-Sensing Resistor
	7.7.3 Torque Sensors

	7.8 Temperature Measurement
	7.8.1 Thermistors
	7.8.2 Thermocouples
	7.8.3 RTD
	7.8.4 IC Temperature Sensors

	7.9 Vibration Measurement
	7.9.1 Seismic Mass Operating Principle
	7.9.2 Piezoelectric Accelerometers
	7.9.3 Integrated Circuit (IC) Accelerometers

	7.10 Signal Conditioning
	7.10.1 Filtering
	7.10.2 Amplification
	7.10.3 Bridge Circuits

	7.11 Sensor Output
	7.12 Chapter Summary
	Questions

	CHAPTER 8 ACTUATORS
	8.1 Introduction
	8.2 DC Motors
	8.2.1 Brush DC
	8.2.2 Brushless DC
	8.2.3 Servo Drives
	8.2.4 PWM Control of DC Motors

	8.3 AC Motors
	8.4 Stepper Motors
	8.4.1 Drive Methods
	8.4.2 Wiring and Amplifiers

	8.5 Other Motor Types
	8.6 Actuator Selection
	8.7 Chapter Summary
	Questions

	CHAPTER 9 FEEDBACK CONTROL
	9.1 Introduction
	9.2 Open- and Closed-Loop Control
	9.3 Design of Feedback Control Systems
	9.4 Control Basics
	9.5 PID Controller
	9.5.1 Speed Control of an Inertia
	9.5.2 Position Control of an Inertia

	9.6 Digital Implementation of a PID Controller
	9.7 Nonlinearities
	9.7.1 Saturation
	9.7.2 Nonlinear Friction

	9.8 Other Control Schemes
	9.8.1 On-Off Controller
	9.8.2 State Feedback Controller

	9.9 Chapter Summary
	Questions

	CHAPTER 10 MECHATRONICS PROJECTS
	10.1 Introduction
	10.2 Stepper-Motor Driven Rotary Table
	10.2.1 Project Objectives
	10.2.2 Setup Description
	10.2.3 Interface Circuit
	10.2.4 Operation Commands
	10.2.5 Microcontroller Code
	10.2.6 Results
	10.2.7 List of Parts Needed

	10.3 A Paper-Dispensing System That Uses a Roller Driven By a Position-Controlled DC Motor
	10.3.1 Project Objectives
	10.3.2 Setup Description
	10.3.3 User Interface
	10.3.4 Motion Profile
	10.3.5 Control Software
	10.3.6 Modeling and Simulation of System
	10.3.7 Feedback Controller Simulation in MATLAB
	10.3.8 Results
	10.3.9 List of Parts Needed

	10.4 A Temperature-Controlled Heating System That Uses a Heating Coil, a Copper Plate, and a Temperature Sensor
	10.4.1 Project Objectives
	10.4.2 Setup Description
	10.4.3 VBE PC User Interface
	10.4.4 Microcontroller Code
	10.4.5 Modeling and Simulation of Physical System
	10.4.6 Controller Simulation in MATLAB
	10.4.7 Results
	10.4.8 List of Parts Needed

	10.5 Chapter Summary

	BIBLIOGRAPHY
	ANSWERS TO SELECTED PROBLEMS
	APPENDIX A: VISUAL BASIC EXPRESS
	A.1 Introduction
	A.2 Console Application
	A.3 Windows Forms Applications
	A.4 Files and Directory Structure
	A.5 Variables
	A.6 Operators
	A.7 Looping and Conditional Statements
	A.8 Functions and Sub-Procedures
	A.9 Objects and Classes
	A.10 Error Handling
	A.11 Graphics Programming
	A.12 ToolBox Controls
	A.13 File Input/Output

	APPENDIX B: SYSTEM RESPONSE
	B.1 Time Response of First-Order Systems
	B.2 Time Response of Second-Order Systems
	B.3 Frequency Response

	APPENDIX C: MATLAB SIMULATION OF DYNAMIC SYSTEMS
	C.1 Solution of Differential Equations in MATLAB
	C.1.1 State-Space Solution Method
	C.1.2 Direct Integration Using ODE Solvers
	C.1.3 Transfer Function Methods

	C.2 Block Diagram Representation and Simulation in MATLAB

	APPENDIX D: 7-BIT ASCII CODE
	INDEX

