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Text Features
Continuing Text Features

• Linear transformations are introduced early on in the text to make the discus­
sion of matrix operations more meaningful and easier to visualize.

• Visualization and geometrical interpretation are emphasized extensively 
throughout.

• The reader will find an abundance of thought-provoking (and occasionally 
delightful) problems and exercises.

• Abstract concepts are introduced gradually throughout the text. The major 
ideas are carefully developed at various levels of generality before the student 
is introduced to abstract vector spaces.

• Discrete and continuous dynamical systems are used as a motivation for eigen­
vectors, and as a unifying theme thereafter.

New Features in the Fourth Edition

Students and instructors generally found the third edition to be accurate and well 
structured. While preserving the overall organization and character of the text, some 
changes seemed in order.

• A large number of exercises have been added to the problem sets, from the 
elementary to the challenging. For example, two dozen new exercises on conic 
and cubic curve fitting lead up to a discussion of the Cramer-Euler Paradox 
on fitting a cubic through nine points.

• The section on matrix products now precedes the discussion of the inverse 
of a matrix, making the presentation more sensible from an algebraic point 
of view.

• Striking a balance between the earlier editions, the determinant is defined 
in terms of “patterns”, a transparent way to deal with permutations. Laplace 
expansion and Gaussian elimination are presented as alternative approaches.

• There have been hundreds of small editorial improvements—offering a hint 
in a difficult problem for example—or choosing a more sensible notation in a 
theorem.





Preface (with David Steinsaltz)

A police officer on patrol at midnight, so runs an old joke, notices a man 
crawling about on his hands and knees under a streetlamp. He walks over 
to investigate, whereupon the man explains in a tired and somewhat slurred 

voice that he has lost his housekeys. The policeman offers to help, and for the next 
five minutes he too is searching on his hands and knees. At last he exclaims, “Are 
you absolutely certain that this is where you dropped the keys?”

“Here? Absolutely not. I dropped them a block down, in the middle of the 
street.”

“Then why the devil have you got me hunting around this lamppost?”
“Because this is where the light is.”

It is mathematics, and not just (as Bismarck claimed) politics, that consists in “the 
art of the possible.” Rather than search in the darkness for solutions to problems of 
pressing interest, we contrive a realm of problems whose interest lies above all in 
the fact that solutions can conceivably be found.

Perhaps the largest patch of light surrounds the techniques of matrix arithmetic 
and algebra, and in particular matrix multiplication and row reduction. Here we 
might begin with Descartes, since it was he who discovered the conceptual meeting- 
point of geometry and algebra in the identification of Euclidean space with R 3; the 
techniques and applications proliferated since his day. To organize and clarify those 
is the role of a modem linear algebra course.

Computers and Computation

An essential issue that needs to be addressed in establishing a mathematical method' 
ology is the role of computation and of computing technology. Are the proper subjects 
of mathematics algorithms and calculations, or are they grand theories and abstrac- 
tions that evade the need for computation? If the former, is it important that the 
students learn to carry out the computations with pencil and paper, or should the al­
gorithm “press the calculator’s x  ~ 1 button” be allowed to substitute for the traditional 
method of finding an inverse? If the latter, should the abstractions be taught through 
elaborate notational mechanisms or through computational examples and graphs?

We seek to take a consistent approach to these questions: Algorithms and com­
putations are primary, and precisely for this reason computers are not. Again and 
again we examine the nitty-gritty of row reduction or matrix multiplication in or­
der to derive new insights. Most of the proofs, whether of rank-nullity theorem, 
the volume-change formula for determinants, or the spectral theorem for symmetric 
matrices, are in this way tied to hands-on procedures.

The aim is not just to know how to compute the solution to a problem, but to 
imagine the computations. The student needs to perform enough row reductions by 
hand to be equipped to follow a line of argument of the form: “If we calculate the 
reduced row echelon form of such a matrix . . . , ” and to appreciate in advance the 
possible outcomes of a particular computation.

In applications the solution to a problem is hardly more important than recog­
nizing its range of validity and appreciating how sensitive it is to perturbations o f the 
input. We emphasize the geometric and qualitative nature of the solutions, notions of 
approximation, stability, and “typical” matrices. The discussion of Cramer’s rule, for 
instance, underscores the value of closed-form solutions for visualizing a system’s 
behavior and understanding its dependence from initial conditions.
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The availability of computers is, however, neither to be ignored nor regretted. 
Each student and instructor will have to decide how much practice is needed to be 
sufficiently familiar with the inner workings of the algorithm. As the explicit compu­
tations are being replaced gradually by a theoretical overview of how the algorithm 
works, the burden of calculation will be taken up by technology, particularly for 
those wishing to carry out the more numerical and applied exercises.

Examples, Exercises, Applications, and History

The exercises and examples are the heart of this book. Our objective is not just to 
show our readers a “patch of light” where questions may be posed and solved, but 
to convince them that there is indeed a great deal of useful, interesting material 
to be found in this area if they take the time to look around. Consequently, we 
have included genuine applications of the ideas and methods under discussion to 
a broad range of sciences: physics, chemistry, biology, economics, and, of course, 
mathematics itself. Often we have simplified them to sharpen the point, but they use 
the methods and models of contemporary scientists.

With such a large and varied set of exercises in each section, instructors should 
have little difficulty in designing a course that is suited to their aims and to the needs 
of their students. Quite a few straightforward computation problems are offered, 
of course. Simple (and, in a few cases, not so simple) proofs and derivations are 
required in some exercises. In many cases, theoretical principles that are discussed 
at length in more abstract linear algebra courses are here found broken up in bite-size 
exercises.

The examples make up a significant portion of the text; we have kept abstract 
exposition to a minimum. It is a matter of taste whether general theories should 
give rise to specific examples or be pasted together from them. In a text such as this 
one, attempting to keep an eye on applications, the latter is clearly preferable: The 
examples always precede the theorems in this book.

Scattered throughout the mathematical exposition are quite a few names and 
dates, some historical accounts, and anecdotes. Students of mathematics are too 
rarely shown that the seemingly strange and arbitrary concepts they study are the 
results of long and hard struggles. It will encourage the readers to know that a mere 
two centuries ago some of the most brilliant mathematicians were wrestling with 
problems such as the meaning of dimension or the interpretation of el\  and to realize 
that the advance of time and understanding actually enables them, with some effort 
of their own, to see farther than those great minds.

Outline of the Text

Chapter I This chapter provides a careful introduction to the solution of systems 
of linear equations by Gauss-Jordan elimination. Once the concrete problem is 
solved, we restate it in terms of matrix formalism and discuss the geometric properties 
of the solutions.

C hapter 2 Here we raise the abstraction a notch and reinterpret matrices as linear 
transformations. The reader is introduced to the modem notion of a function, as 
an arbitrary association between an input and an output, which leads into a dis­
cussion of inverses. The traditional method for finding the inverse of a matrix is 
explained: It fits in naturally as a sort of automated algorithm for Gauss-Jordan 
elimination.
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We define linear transformations primarily in terms of matrices, since that is how 
they are used; the abstract concept of linearity is presented as an auxiliary notion. 
Rotations, reflections, and orthogonal projections in R 2 are emphasized, both as 
archetypal, easily visualized examples, and as preparation for future applications.

Chapter 3 We introduce the central concepts of linear algebra: subspaces, image 
and kernel, linear independence, bases, coordinates, and dimension, still firmly fixed 
in R".

Chapter 4 Generalizing the ideas of the preceding chapter and using an abun­
dance of examples, we introduce abstract vector spaces (which are called linear 
spaces here, to prevent the confusion some students experience with the term 
“vector”).

Chapter 5 This chapter includes some of the most basic applications of linear 
algebra to geometry and statistics. We introduce orthonormal bases and the Gram- 
Schmidt process, along with the QR factorization. The calculation of correlation 
coefficients is discussed, and the important technique of least-squares approxima­
tions is explained, in a number of different contexts.

Chapter 6 Our discussion of determinants is algorithmic, based on the counting 
of patterns (a transparent way to deal with permutations). We derive the properties of 
the determinant from careful analysis of this procedure, tieing it together with Gauss- 
Jordan elimination. The goal is to prepare for the main application of determinants: 
the computation of characteristic polynomials.

C hapter 7 This chapter introduces the central application of the latter half of 
the text: linear dynamical systems. We begin with discrete systems and are nat­
urally led to seek eigenvectors, which characterize the long-term behavior of the 
system. Qualitative behavior is emphasized, particularly stability conditions. Com­
plex eigenvalues are explained, without apology, and tied into earlier discussions of 
two-dimensional rotation matrices.
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Chapter 8  The ideas and methods of Chapter 7 are applied to geometry. We discuss 
the spectral theorem for symmetric matrices and its applications to quadratic forms, 
conic sections, and singular values.

C hapter 9 Here we apply the methods developed for discrete dynamical systems 
to continuous ones, that is, to systems of first-order linear differential equations. 
Again, the cases of real and complex eigenvalues are discussed.

Solutions Manuals

• Student's Solutions Manual, with carefully worked solutions to all odd- 
numbered problems in the text (ISBN 0-13-600927-1)

• Instructor's Solutions Manual, with solutions to all the problems in the text 
(ISBN 0-13-600928-X)
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Linear Equations

IHlntroduction to Linear Systems

Traditionally, algebra was the art of solving equations and systems of equations. 
The word algebra comes from the Arabic al-jabr ), which means restoration 
(of broken parts) .1 The term was first used in a mathematical sense by Mohammed 
al-Khowarizmi (c. 780-850), who worked at the House of Wisdom, an academy 
established by Caliph al-Ma’mun in Baghdad. Linear algebra, then, is the art of 
solving systems of linear equations.

The need to solve systems of linear equations frequently arises in mathematics, 
statistics, physics, astronomy, engineering, computer science, and economics.

Solving systems of linear equations is not conceptually difficult. For small 
systems, ad hoc methods certainly suffice. Larger systems, however, require more 
systematic methods. The approach generally used today was beautifully explained 
2,000 years ago in a Chinese text, the Nine Chapters on the Mathematical Art 
(Jiuzhang Suanshu, A, #  #  #f).2 Chapter 8 of that text, called Method o f  Rectan­
gular Arrays (Fang Cheng, 31), contains the following problem:

The yield of one bundle of inferior rice, two bundles of medium grade rice, 
and three bundles of superior rice is 39 dou of grain.3 The yield of one 
bundle of inferior rice, three bundles of medium grade rice, and two bundles 
of superior rice is 34 dou. The yield of three bundles of inferior rice, two 
bundles of medium grade rice, and one bundle of superior rice is 26 dou. 
What is the yield of one bundle of each grade of rice?

In this problem the unknown quantities are the yields of one bundle of inferior, 
one bundle of medium grade, and one bundle of superior rice. Let us denote these 
quantities by jc, v, and c, respectively. The problem can then be represented by the

1 At one time, it was not unusual to see the sign Algehrista y Sangrador (bone setter and blood letter) at 
the entrance of a Spanish barber’s shop.
2Shen Kangshen et al. (ed.). The Nine Chapters on the Mathematical Art, Companion and 
Commentary, Oxford University Press, 1999.
3The dou is a measure of volume, corresponding to about 2 liters at that time.
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following system of linear equations:

x +  2 y +  3z =  39 
jc +  3y +  2z =  34 

3x +  2y +  z =  26

To solve for jc, y, and z, we need to transform this system from the form

xx  +  2y +  3z =  39 
x  +  3y +  2z =  34 

3a* +  2y +  z = 26
into the form v =

In other words, we need to eliminate the terms that are off the diagonal, those circled 
in the following equations, and make the coefficients of the variables along the 
diagonal equal to 1 :

* +  (2v) +  (3z) =  39

(^x) +  3y +  (2^) =  34

@  +  @  +  z = 26.

We can accomplish these goals step by step, one variable at a time. In the past,
you may have simplified systems of equations by adding equations to one another 
or subtracting them. In this system, we can eliminate the variable jc from the second 
equation by subtracting the first equation from the second:

■r + 2 v + 3z =  39 — ► x  + 2x +  3c =  39
■r + 3v + 2 z =  34 — 1st equation v -  z = - S

3jc + 2 v 4- c =  26 3.v +  2y +  z =  26

To eliminate the variable jc from the third equation, we subtract the first equation 
from the third equation three times. We multiply the first equation by 3 to get

3jc +  6 y +  9z =  117 (3 x 1st equation)

and then subtract this result from the third equation:

* +  2v +  3z =  39 
v -  z =  - 5  

3jc +  2v +  z =  26

x  +  2y +  3z =  39
v -  z =  - 5  

— 4v — 8 z =  —91—3 x 1st equation 

Similarly, we eliminate the variable y above and below the diagonal:

—2 x 2 nd equationjc +  2y +  3z =  39
v -  z =  - 5

— 4y — 8 z =  -9 1

* +  5z =  49
v -  z =  - 5

-  12z =  — 111-1-4 x 2nd equation

Before we eliminate the variable z above the diagonal, we make the coefficient of z 
on the diagonal equal to 1, by dividing the last equation by — 12:

x + 5 z =  49 .r +  5 ; =  49
>• -  c =  - 5 — ► v -  c =  - 5

-  \2z =  - 1 1 1 -M —12) z =  9.25

Finally, we eliminate the variable z above the diagonal:

+  5c =  49 —5 x third equation * =  2.75
v -  z =  —5 +  third equation v =  4.25

c =  9.25 — ► c =  9.25

The yields of inferior, medium grade, and superior rice are 2.75,4.25, and 9.25 dou 
per bundle, respectively.
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By substituting these values, we can check that x  =  2.75, y =  4.25, z =  9.25 
is indeed the solution of the system:

2.75 +  2 x 4.25 +  3 x 9.25 =  39
2.75 +  3 x 4.25 +  2 x 9.25 =  34

3 x 2.75 +  2 x 4.25 +  9.25 =  26.

Happily, in linear algebra, you are almost always able to check your solutions.
It will help you if you get into the habit of checking now.

G e o m e tr ic  In te rp re ta tio n
How can we interpret this result geometrically? Each of the three equations of the 
system defines a plane in jc-y-z-space. The solution set of the system consists of 
those points ( jc, y, z) that lie in all three planes (i.e., the intersection of the three 
planes). Algebraically speaking, the solution set consists of those ordered triples of 
numbers ( jc, y, z) that satisfy all three equations simultaneously. Our computations 
show that the system has only one solution, ( j c, v , z ) =  (2.75,4.25,9.25). This 
means that the planes defined by the three equations intersect at the point ( jc, y , z) =  
(2.75,4.25, 9.25), as shown in Figure 1.

While three different planes in space usually intersect at a point, they may have 
a line in common (see Figure 2a) or may not have a common intersection at all, as 
shown in Figure 2b. Therefore, a system of three equations with three unknowns 
may have a unique solution, infinitely many solutions, or no solutions at all.

Figure 2(a) Three planes having a line in Figure 2(b) Three planes with no common
common. intersection.



4 C H A P T E R  I Linear Equations

A S y s tem  with Infini te ly M a n y  S o lu t i ons
Next, let’s consider a system of linear equations that has infinitely many solutions:

2x +  Ay +  6z =  0 
4x  +  5_y +  6 z =  3 
Ix  +  8 v +  9z =  6

We can solve this system using elimination as previously discussed. For sim­
plicity, we label the equations with Roman numerals.

2x +  4y -(- 6 z =  0 
4x  +  5y +  6z =  3 
7x +  Sy + 9z =  6

x  +  2 y  +  3z — 0
— 3 v — 6z =  3
— 6  y — 12 z =  6

x — z =  2
v +  2z, =  — 1 

0 =  0

-e-2

-H -3 )

x +  2 j  +  3z =  0 
4x +  5>» +  6z =  3 
I x  +  8 y +  9z =  6

-4 (1 )  
- 7  (I)

^ +  2y  +  3z =  0
y + 2z =  - 1  

— 6 v — 12z =  6

-2(11) 

+ 6  (II)

x — z = 2
v + 2z = - \

After omitting the trivial equation 0 =  0, we are left with only two equations 
with three unknowns. The solution set is the intersection of two nonparallel planes 
in space (i.e., a line). This system has infinitely many solutions.

The two foregoing equations can be written as follows:

x = z + 2 
y = - 2 z - \

We see that both x  and y  are determined by z. We can freely choose a value of z, an 
arbitrary real number; then the two preceding equations give us the values of x  and 
y for this choice of z. For example,

• Choose z =  1. Then x  =  z +  2 =  3 and v =  —2z — 1 =  —3. The solution is 
( jr ,y ,z )  =  (3, - 3 ,  1).

• Choose z =  7. Then x  =  z +  2 =  9 and y =  —2z — 1 =  —15. The solution 
is (x, y ,z )  =  (9, -1 5 , 7).

More generally, if we choose z = t, an arbitrary real number, we get x =  t +  2 
and y =  —21 -  1. Therefore, the general solution is

( x ,y \ z )  =  ( f +  2 , —2 r — 1 , 0  =  (2 , - 1, 0 ) +  f ( l ,  

This equation represents a line in space, as shown in Figure 3.

-2, 1).
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A S y s t e m  wi thout  So lu t i ons
In the following system, perform the eliminations yourself to obtain the result shown:

x + 2y + 3z = 0 x  -  z =  2
4x + 5y +  6 z =  3 — ► y + 2z = - \
I x  +  8 y +  9z =  0 0  =  - 6

Whatever values we choose for jc, >’, and z, the equation 0 =  —6  cannot be 
satisfied. This system is inconsistent; that is, it has no solutions.

EXERCISES 1.1
GOAL Set up and solve systems with as many as three 
linear equations with three unknowns, and interpret the 
equations and their solutions geometrically:

In Exercises 1 through 10, find all solutions of the linear 
systems using elimination as discussed in this section. Then 
check your solutions.

1.

3.

5.

7.

x + 2y = 1 
2jc +  3y =  1

2x 4  4y =  3 
3jc +  6y = 2

2x +  3y = 0 
4jc 4  5y =  0

jc 4- 2y +  3z =  1 
x  +  3y 4  4z =  3 
x +  4y +  5z =  4

jc +  2y +  3z =  1 
3x 4  2y +  z =  1 
7jc 4  2y — 3z =  1

2 .

8.

10.

4jc +  3y =  2 
Ix  4  5y =  3

2x 4  4y = 2 
3jc 4  6y =  3

a +  2y 4  3z =  8 
jc 4  3y 4  3z =  10 
a +  2 y +  4z =  9

x 4  2v 4  3z =  0 
4x 4  5 y 4  6z — 0 
7jc 4  8y +  lOz =  0

jc +  2 y  +  3z =  1 
2jc +  4y  4  I z  =  2 
3x 4  7y 4  1 lz =  8

/n Exercises 11 through 13, find all solutions o f the linear 
systems. Represent your solutions graphically, as intersec­
tions of lines in the x-y-plane.

11.

13.

JC -  2y =  2 
3jc +  5y =  17

J c - 2 y  =  3 
2x -  4y =  8

12. x
2x

2 y = 3 
4v =  6

In Exercises 14 through 16, find all solutions o f the linear 
systems. Describe your solutions in terms o f intersecting 
planes. You need not sketch these planes.

14.

16.

x  4  4y +  z =  0 
4x 4  13y +  l z  = 0  
Ix  +  22y 4  13z =  1

x 4  4y 4  z =  0 
4x 4  13y 4  l z  =  0 
Ix  4  22y 4  13z =  0

15.
x - b y -  z =  0 

4jc -  y 4  5z = 0 
6a: 4  y 4  4z =  0

17. Find all solutions of the linear system

x  4  2y =  a 
3jc 4  5 y = b

where a and b are arbitrary constants.

18. Find all solutions of the linear system

x 4  2v 4  3 z = a 
x  4  3v 4  8z =  b 
x  4  2y 4  2z =  c

where a, b, and c are arbitrary constants.

19. Consider a two-commodity market. When the unit prices 
of the products are P\ and Pi, the quantities demanded, 
D\ and Dj, and the quantities supplied, S] and S2, are 
given by

D 1 =  70 -  2P{ 4  Pi, 
D2 =  105 4  P\ -  P2,

5, =  —14 4  3 P j, 
S2 =  - 7 4  2P2.

20.

a. What is the relationship between the two commodi­
ties? Do they compete, as do Volvos and BMWs, or 
do they complement one another, as do shirts and 
ties?

b. Find the equilibrium prices (i.e., the prices for which 
supply equals demand), for both products.

The Russian-born U.S. economist and Nobel laureate 
Wassily Leontief (1906-1999) was interested in the fol­
lowing question: What output should each of the indus­
tries in an economy produce to satisfy the total demand 
for all products? Here, we consider a very simple exam­
ple of input-output analysis, an economy with only two 
industries, A and B. Assume that the consumer demand 
for their products is, respectively, 1,000 and 780, in mil­
lions of dollars per year.

What outputs a and b (in millions of dollars per year) 
should the two industries generate to satisfy the demand ?
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You may be tempted to say 1,000 and 780, respectively, 
but things are not quite as simple as that. We have to take 
into account the interindustry demand as well. Let us 
say that industry A produces electricity. Of course, pro­
ducing almost any product will require electric power. 
Suppose that industry B needs 10^worth of electricity 
for each $1 of output B produces and that industry A 
needs 20^worth of B’s products for each $1 of output 
A produces. Find the outputs a and b needed to satisfy 
both consumer and interindustry demand.

21. Find the outputs a and b needed to satisfy the consumer 
and interindustry demands given in the following figure 
(see Exercise 20):

22. Consider the differential equation

d 2x dx
■ jy  — j ------ x =  cos(f).
d t2 dt

This equation could describe a forced damped oscilla­
tor, as we will see in Chapter 9. We are told that the 
differential equation has a solution of the form

jt(/) =  a sin(r) +  fccos(r).

Find a and b, and graph the solution.

23. Find all solutions of the system

I x  — y =  kx r
—6x  +  8y =  ky  ’ ° r

a. A. =  5 b. k =  10, and c. k  =  15.

24. On your next trip to Switzerland, you should take the 
scenic boat ride from Rheinfall to Rheinau and back. 
The trip downstream from Rheinfall to Rheinau takes 
20 minutes, and the return trip takes 40 minutes; the 
distance between Rheinfall and Rheinau along the river 
is 8 kilometers. How fast does the boat travel (relative 
to the water), and how fast does the river Rhein flow 
in this area? You may assume both speeds to be constant 
throughout the journey.

25. Consider the linear system
x +  y -  z =  - 2

3 jc — 5y +  13z =  18 ,
jc — 2y +  5z = k

where k is an arbitrary number.
a. For which value(s) of k does this system have one or 

infinitely many solutions?
b. For each value of k you found in part a, how many 

solutions does the system have?
c. Find all solutions for each value of k.

26. Consider the linear system
jf +  y -  Z =  2
x +  2y +  z = 3 ,

x + y +  (k2 -  5)z = k

where k is an arbitrary constant. For which value(s) of 
k does this system have a unique solution? For which 
value(s) of k does the system have infinitely many solu­
tions? For which value(s) of k is the system inconsistent?

27. Emile and Gertrude are brother and sister. Emile has 
twice as many sisters as brothers, and Gertrude has just 
as many brothers as sisters. How many children are there 
in this family?

28. In a grid of wires, the temperature at exterior mesh points 
is maintained at constant values (in °C) as shown in the 
accompanying figure. When the grid is in thermal equi­
librium, the temperature T at each interior mesh point 
is the average of the temperatures at the four adjacent 
points. For example,

+ T\ +  200 +  0
72 = ~ -------- 4---------- '

Find the temperatures T\, 72, and 73 when the grid is 
in thermal equilibrium.

29. Find the polynomial of degree 2 [a polynomial of the 
form f i t )  =  a +  bt +  ct2] whose graph goes through 
the points (1, -1 ) , (2, 3), and (3, 13). Sketch the graph 
of this polynomial.

30. Find a polynomial of degree < 2 [a polynomial of the 
form f ( t )  = a +  bt + ct2] whose graph goes through
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the points (1, p), (2, q ), (3, r), where p , q , r  are ar­
bitrary constants. Does such a polynomial exist for all 
values of p> q , r?

31* Find all the polynomials / ( f )  of degree < 2 whose 
graphs run through the points (1,3) and (2, 6), such that 
/ ' ( l )  =  1 [where / '( f )  denotes the derivative].

32. Find all the polynomials / ( f )  of degree < 2 whose 
graphs run through the points (1,1) and (2,0), such that 
f?  f i t )  dt =  -1 .

33. Find all the polynomials / ( f )  of degree < 2 whose 
graphs run through the points (1,1) and (3, 3), such that 
/ '(2 )  =  1.

34. Find all the polynomials / ( f )  of degree < 2 whose 
graphs run through the points (1,1) and (3,3), such that 
/ '(2 )  =  3.

35. Find the function / (f) of the form / ( / )  =  ae3t 4- be2t 
such that /(0 )  =  1 and / '(0 )  =  4.

36. Find the function / (f) of the form / ( f )  =  a cos(2f) 4- 
fcsin(2f) such that / " ( f ) + 2 / '( f )  +  3 /(f )  =  17cos(2f). 
(This is the kind of differential equation you might have 
to solve when dealing with forced damped oscillators, 
in physics or engineering.)

37. Find the circle that runs through the points (5,5), (4, 6), 
and (6, 2). Write your equation in the form a 4- bx +  
cy 4- x 2 +  y2 = 0. Find the center and radius of this 
circle.

38. Find the ellipse centered at the origin that runs through 
the points (1, 2), (2, 2), and (3, 1). Write your equation 
in the form ax2 +  bxy +  cy2 =  1.

39. Find all points (a , b, c) in space for which the system

x +  2 v +  3z = a 
4x +  5y 4- 6z = b 
I x  +  8>> -I- 9z =  c

has at least one solution.

40. Linear systems are particularly easy to solve when they 
are in triangular form (i.e., all entries above or below the 
diagonal are zero).
a. Solve the lower triangular system

x\ =  - 3
-3jci + X2 = 1 4

*1 +  2X2 +  *3 =  9
—x\ +  8*2 ~  5*3 +  *4 =  33

by forward substitution, finding x\ first, then *2, then 
*3, and finally *4.

b. Solve the upper triangular system

*1 +  2*2 — *3 +  4x4 = - 3
X2 +  3*3 -I- 7*4 =  5

*3 4- 2*4 =  2
*4 =  0

41. Consider the linear system

* 4- V =  1

where f is a nonzero constant.
a. Determine the *- and ^-intercepts of the lines *4-y =

1 and * 4- (t /2 )y  =  f ; sketch these lines. For which 
values of the constant f do these lines intersect? For 
these values of f, the point of intersection (*, y) de­
pends on the choice of the constant f; that is, we 
can consider * and y as functions of f. Draw rough 
sketches of these functions.

1 -

1 --

Explain briefly how you found these graphs. 
Argue geometrically, without solving the system 
algebraically.

b. Now solve the system algebraically. Verify that the 
graphs you sketched in part (a) are compatible with 
your algebraic solution.

42. Find a system of linear equations with three unknowns
whose solutions are the points on the line through
(1,1, l)and  (3 ,5 ,0).

43. Find a system of linear equations with three unknowns
*, y, z whose solutions are

* =  6 4- 5f, y =  4 4- 3f, and z =  2 +  f,

where f is an arbitrary constant.

44. Boris and Marina are shopping for chocolate bars. Boris 
observes, “If I add half my money to yours, it will be 
enough to buy two chocolate bars.” Marina naively asks, 
“If I add half my money to yours, how many can we 
buy?” Boris replies, “One chocolate bar.” How much 
money did Boris have? (From Yuri Chernyak and Robert 
Rose, The Chicken from Minsk, Basic Books, 1995.)

45. Here is another method to solve a system of linear equa­
tions: Solve one of the equations for one of the variables, 
and substitute the result into the other equations. Repeat
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this process until you run out of variables or equations. 
Consider the example discussed on page 2:

x -f 2 v +  3c =  39 
x +  3>’ +  2c =  34 .

3.v +  2 y +  c =  26

We can solve the first equation for x:

x = 3 9 -  2y -  3c.

Then we substitute this equation into the other equations:

(39 — 2v — 3c) +  3v +  2c =  34 
3(39 -  2y -  3z) +  2y +  c =  26

We can simplify:

v -  c =  - 5  
—4y -  8c =  -91

Now, v =  c — 5, so that —4(c -  5) — 8c =  —91, or

-12c  =  -111.

We find that c =  - -  =  9.25. Then 
12

and

v =  c -  5 =  4.25.

x = 39 -  2v -  3c =  2.75.

Explain why this method is essentially the same as the 
method discussed in this section; only the bookkeeping 
is different.

46. A hermit eats only two kinds of food: brown rice and yo­
gurt. The rice contains 3 grams of protein and 30 grams 
of carbohydrates per serving, while the yogurt contains
12 grams of protein and 20 grams of carbohydrates.
a. If the hermit wants to take in 60 grams of protein 

and 300 grams of carbohydrates per day, how many 
servings of each item should he consume?

b. If the hermit wants to take in P grams of protein 
and C grams of carbohydrates per day, how many 
servings of each item should he consume?

47. I have 32 bills in my wallet, in the denominations of 
US$ 1, 5. and 10, worth $100 in total. How many do I 
have of each denomination?

48. Some parking meters in Milan, Italy, accept coins in the 
denominations of 20tf, 50tf, and €2. As an incentive pro­
gram, the city administrators offer a big reward (a brand 
new Ferrari Testarossa) to any meter maid who brings 
back exactly 1,000 coins worth exactly € 1,000 from the 
daily rounds. What are the odds of this reward being 
claimed anytime soon?

Matrices, Vectors, and Gauss-Jordan Elimination

When mathematicians in ancient China had to solve a system of simultaneous linear 
equations such as4

3.v +  21 v -  3z =  0
—6x  — 2 v — z =  62

2x -  3 v +  8c =  32

they took all the numbers involved in this system and arranged them in a rectangular
pattern (Fang Cheng in Chinese), as follows:5

21 0

- 6  - 2  1 - 1  , 62

2 - 3  8 , 32

All the information about this system is conveniently stored in this array of numbers.
The entries were represented by bamboo rods, as shown below; red and black 

rods stand for positive and negative numbers, respectively. (Can you detect how this

4This example is taken from Chapter 8 of the Nine Chapters on the Mathematical Art: sec page 1. Our 
source is George Gheverghese Joseph, The Crest o f the Peacock, Non-European Roots o f Mathematics, 
2nd ed., Princeton University Press, 2000.
5 Actually, the roles of rows and columns were reversed in the Chinese representation.
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number system works?) The equations were then solved in a hands-on fashion, by 
manipulating the rods. We leave it to the reader to find the solution.

Ill —  | III
T II 1 111
II III m Ell

Today, such a rectangular array of numbers,

is called a matrix.6 Since this particular matrix has three rows and four columns, it 
is called a 3 x 4 matrix (“three by four”).

Note that the first column of this matrix corresponds to the first variable of the 
system, while the first row corresponds to the first equation.

It is customary to label the entries of a 3 x 4 matrix A with double subscripts 
as follows:

The first subscript refers to the row, and the second to the column: The entry atj is 
located in the / th row and the yth column.

Two matrices A and B are equal if they are the same size and if corresponding 
entries are equal: =  btj.

If the number of rows of a matrix A equals the number of columns (A is n x n), 
then A is called a square matrix, and the entries a i j , a22, .. •, ann form the (main) 
diagonal of A. A square matrix A is called diagonal if all its entries above and below 
the main diagonal are zero; that is, =  0 whenever / /  j .  A square matrix A is 
called upper triangular if all its entries below the main diagonal are zero: that is, 
aij =  0 whenever i exceeds j .  Lower triangular matrices are defined analogously. 
A matrix whose entries are all zero is called a zero matrix and is denoted by 0 
(regardless of its size). Consider the matrices

3 21 - 3  0
- 6  - 2  - 1  62

2 - 3  8 32

The four columns of the matrix

/  /\ \
[ 3  2 1 - 3  O'

The three rows of the matrix —6  - 2  - 1  62
2 - 3  8 32

a K a 12 a 13 a u
A = U2\ 022 Ql 3 #24

_fl3l CIJ2 a .13 ^34

"2 0 O'
C =  0 3 0

0 0 0

■5 0 O'
K =  4 0 0

3 2 1

Alt appears that the term matrix was first used in this sense by the English mathematician 
J. J. Sylvester, in 1850.
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The matrices # , C, D, and E  are square, C is diagonal, C and D are upper triangular, 
and C and £  are lower triangular.

Matrices with only one column or row are of particular interest.

Vectors and vector spaces
A matrix with only one column is called a column vector, or simply a vector. The 
entries of a vector are called its components. The set of all column vectors with 
n components is denoted by Rn; we will refer to R n as a vector space.

A matrix with only one row is called a row vector.
In this text, the term vector refers to column vectors, unless otherwise stated. 

The reason for our preference for column vectors will become apparent in the 
next section.

Examples of vectors are

“1“
2
9 1 

.1 .

a (column) vector in R4, and

[1 5 5 3 7 ] ,

a row vector with five components. Note that the m columns of an n x m matrix are 
vectors in R ".

In previous courses in mathematics or physics, you may have thought about 
vectors from a more geometric point of view. (See the Appendix for a summary of 
basic facts on vectors.) Let’s establish some conventions regarding the geometric 
representation of vectors.

(*<y)

X JC
y v =

V

Figure I

(a +x, b + y)

Standard representation of vectors
The standard representation of a vector

in the Cartesian coordinate plane is as an arrow (a directed line segment) from 
the origin to the point ( jc, y ), as shown in Figure 1.

The standard representation of a vector in R 3 is defined analogously.
In this text, we will consider the standard representation of vectors, unless 

stated otherwise.

Occasionally, it is helpful to translate (or shift) the vector in the plane (preserv­
ing its direction and length), so that it will connect some point (a , b) to the point 
{a +  jc, b +  y ), as shown in Figure 2.

When considering an infinite set of vectors, the arrow representation becomes
JC

impractical. In this case, it is sensible to represent the vector u =
,y.

simply by the

point ( jc, >t), the head of the standard arrow representation of v.
x

x - \ - \
represented as the line y  =  jc 4-1. For a few special values of jc we may still use the 
arrow representation, as illustrated in Figure 3.

For example, the set of all vectors v = (where jc is arbitrary) can be
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In this course, it will often be helpful to think about a vector numerically, as a 
list of numbers, which we will usually write in a column.

In our digital age, information is often transmitted and stored as a string of 
numbers (i.e., as a vector). A section of 10 seconds of music on a CD is stored as 
a vector with 440,000 components. A weather photograph taken by a satellite is 
transmitted to Earth as a string of numbers.

Consider the system

2x +  8 v +  4z = 2
2x +  5 v +  z =  5 .
Ax +  lOy — z =  1

Sometimes we are interested in the matrix

'2 8 4'
2 5 1
4 10 - 1.

which contains the coefficients of the system, called its coefficient matrix. 
By contrast, the matrix

'2 8 4 2

2 5 1 5
4 10 - 1 1

which displays all the numerical information contained in the system, is called its 
augmented matrix. For the sake of clarity, we will often indicate the position of the 
equal signs in the equations by a dotted line:

'2 8 4 2 '
2 5 1 5
4 10 - 1 1.

To solve the system, it is more efficient to perform the elimination on the aug­
mented matrix rather than on the equations themselves. Conceptually, the two ap­
proaches are equivalent, but working with the augmented matrix requires less writing
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yet is easier to read, with some practice. Instead of dividing an equation by a scalar,7 
you can divide a row by a scalar. Instead of adding a multiple of an equation to 
another equation, you can add a multiple of a row to another row.

As you perform elimination on the augmented matrix, you should always re­
member the linear system lurking behind the matrix. To illustrate this method, we 
perform the elimination both on the augmented matrix and on the linear system it 
represents:

'2 8 4 2' +2 2x + Sy + 4 z = 2 +2
2 5 1 5 2x + 5y + z 5
4 10 - 1 1. 4x + 10? - z = 1

I

'1 4 2 r x + 4y + 2z = 1
2 5 1 5 -2 (1 ) 2x + 5 y  + z = 5 -2 (1 )
4 10 -1 1. - 4  (I) 4x + 10? - z = 1 - 4  (I)

1 4 2  i r * +  4y + 2 z =  1
0 - 3 - 3 3 - ( - 3 ) - 3 y - 3 z = 3 -H —3)
0 - 6 - 9  : - 3 - 6 y  - 9z =  —3

1 4 2 r - 4  (II) x +  4 y  + 2 z =  1
0 1 1 - l y + z =  -1
0 - 6 - 9 - 3 . + 6  (II) - 6 y - 9z =  - 3

- 4  (II) 

+ 6  (II)

"1 0 - 2  :i 5" x  — 2z =  5
0 1 i i — 1 V +  z =  —1
0 0 -3  i - 9 . -H-3) -3z =  - 9 -H-3)

"1 0 —2  | 5 ' + 2  (III) x -  2 z =  5
0 1 1 - 1 -  (HI) v +  z = -  I
0 0 i i 3. z =  3

+ 2  (III) 
-  (HD

'1 0 0 i r X =  n
0 1 0 - 4 y =  - 4
0 0 1 3. z =  3

The solution is often represented as a vector:

x ' ' 11 '
y = - 4

_z_ 3.

Thus far we have been focusing on systems of 3 linear equations with 3 un­
knowns. Next we will develop a technique for solving systems of linear equations 
of arbitrary size.

7In vector and matrix algebra, the term scalar is synonymous with (real) number.
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Here is an example of a system of three linear equations with five unknowns: 

X\  -  X 2 +  4* 5 =  2
*3 -  * 5 = 2

*4 *5 =  3

We can proceed as in the example on page 4. We solve each equation for the leading 
variable:

X[ =  2 +  X2 — 4*5
* 3  =  2  +  * 5  .

*4 =  3 +  *5

Now we can freely choose values for the nonleading variables, *2 =  / and *5 =  r,
for example. The leading variables are then determined by these choices:

*1 =  2 +  f — 4r, *3 =  2 +  r, *4 =  3 +  r.

This system has infinitely many solutions; we can write the solutions in vector form as

’■*1" "2 +t - 4  r~
*2 t
*3 = 2 + r
*4 3 + r
*5 _ r

Again, you can check this answer by substituting the solutions into the original 
equations, for example, *3 — *5 =  (2  +  r) — r =  2 .

What makes this system so easy to solve? The following three properties are 
responsible for the simplicity of the solution, with the second property playing a key 
role:

• PI : The leading coefficient in each equation is 1. (The leading coefficient is 
the coefficient of the leading variable.)

• P2: The leading variable in each equation does not appear in any of the other 
equations. (For example, the leading variable *3 of the second equation appears 
neither in the first nor in the third equation.)

• P3: The leading variables appear in the “natural order,” with increasing indices 
as we go down the system (*1, *3 , *4 as opposed to *3, * 1, *4, for example).

Whenever we encounter a linear system with these three properties, we can solve 
for the leading variables and then choose arbitrary values for the other, nonleading 
variables, as we did above and on page 4.

Now we are ready to tackle the case of an arbitrary system of linear equations. 
We will illustrate our approach by means of an example:

2*i +  4*2 — 2*3 +  2*4 +  4*5 =  2
*1 +  2*2 — *3 +  2*4 =  4

3*i +  6*2 — 2*3 +  *4 +  9*5 =  1
5*i +  10*2 — 4*3 +  5*4 +  9*5 =  9

We wish to reduce this system to a system satisfying the three properties (PI, P2, 
and P3); this reduced system will then be easy to solve.

We will proceed from equation to equation, from top to bottom. The leading 
variable in the first equation is * 1, with leading coefficient 2. To satisfy property PI, 
we will divide this equation by 2. To satisfy property P2 for the variable * 1, we will 
then subtract suitable multiples of the first equation from the other three equations
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to eliminate the variable x\ from those equations. We will perform these operations 
both on the system and on the augmented matrix.

2*i + 4*2 — 2*3 +  2*4 +  4*5 = 2 t 2 '2 4 - 2 2 4 2 ' t 2
*1 + 2*2 -  *3 +  2*4 = 4 1 2 - 1 2 0 4

3*i + 6*2 — 2*3 +  *4 +  9*5 = 1 3 6 - 2 1 9 1
5*i +  10*2 — 4*3 +  5*4 -1- 9*5 = 9

1

_5 10 - 4 5 9 9

+ 2*2 -  *3 +  *4 +  2*5 = 1 '1 2 - 1 1 2 r
*1 + 2*2 -  *3 +  2*4  = 4 - ( / ) 1 2 - 1 2 0 4 - ( / )

3*i + 6*2 -  2*3 +  *4 +  9*5 = 1 —3 (/) 3 6 - 2 1 9 1 —3(7)
5*i +  10*2 — 4*3 +  5*4 +  9*5 = 9 -5 (1 )

1

_5 10 - 4 5 9 9 -5 (1 )

*1 + 2*2 — *3 +  *4 +  2*5 = 1

■V

'1 2 - 1 1 2 r

£ I to * II 3 0 0 0 1 - 2 3
X3 — 2X4 +  3*5 = - 2 0 0 1 - 2 3 - 2

-*3 ~  *5 = 4 0 0 1 0 - 1 4

Now on to the second equation, with leading variable * 4  and leading coefficient
1. We could eliminate *4 from the first and third equations and then proceed to the 
third equation, with leading variable *3. However, this approach would violate our 
requirement P3 that the variables must be listed in the natural order, with increasing 
indices as we go down the system. To satisfy this requirement, we will swap the 
second equation with the third equation. (In the following summary, we will specify 
when such a swap is indicated and how it is to be performed.)

Then we can eliminate *3 from the first and fourth equations.

+ ( / / )

*1 +  2X2

X3 + x4 +  2x5 = 1 + (//) '1 2 - 1 1 2 1
x-$ — 2^4  +  3X5 = - 2 0 0 1 - 2 3 - 2

IIV-)
A1r̂H 3 0 0 0 1 - 2 3

x 3 -  x 5 = 4 - ( / / ) 0 0 1 0 - 1 4

— X4 +  5X5 = - 1 '1 2 0 - 1 5 - 1
x3 -  2x4 +  3x5 = - 2 0 0 1 - 2 3 - 2

x4 -  2x5 = 3 0 0 0 1 - 2 3

to * 4* 1 4̂ * II 6 0 0 0 2 - 4 6

(II)

Now we turn our attention to the third equation, with leading variable *4 . We 
need to eliminate *4 from the other three equations.

X\  +  2X2 — X4 +  5X5 =  —1 + (///) '1 2 0 - 1 5 - 1 '

X3 — 2 x 4  3x 5 =  —2 +2(111) 0 0 1 - 2 3 - 2

X4 — 2 x 5  =  3 0 0 0 1 - 2 3
2 x 4  — 4x 5 =  6 - 2  (III) 0 0 0 2 - 4 6

+ ( / / / )
+2(111)

- 2  (III)

X]  +  2x2
*3

+  3 * 5  :

-  *5
*4 — 2*5 : 

0

1 2 0 0 3 ! 2
0 0 1 0 -1  ! 4
0 0 0 1 - 2  ! 3
0 0 0 0 0  i 0
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Since there are no variables left in the fourth equation, we are done. Our system 
now satisfies properties P I, P2, and P3. We can solve the equations for the leading 
variables:

* | = 2  — 2*2 — 3*5
* 3 = 4  +  *5
*4 =  3 +  2*5

If we let *2 =  t and *5 =  r, then the infinitely many solutions are of the form

•*l" '2  - 2 t  - 3  r
X2 t
X3 = 4 + r
*4 3 + 2  r

. X5. r

Let us summarize.

Solving a system of linear equations
We proceed from equation to equation, from top to bottom.

Suppose we get to the ith equation. Let x j  be the leading variable of the 
system consisting of the ith and all the subsequent equations. (If no variables are 
left in this system, then the process comes to an end.)

• If Xj does not appear in the / th equation, swap the ith equation with the first 
equation below that does contain x j.

• Suppose the coefficient of x } in the ith equation is c; thus this equation is of
the form cxj H----- =  • • •. Divide the ith equation by c.

• Eliminate xj from all the other equations, above and below the /th, by sub­
tracting suitable multiples of the ith equation from the others.

Now proceed to the next equation.
If an equation zero =  nonzero emerges in this process, then the system fails 

to have solutions; the system is inconsistent.
When you are through without encountering an inconsistency, solve each 

equation for its leading variable. You may choose the nonleading variables freely; 
the leading variables are then determined by these choices.

This process can be performed on the augmented matrix. As you do so, just 
imagine the linear system lurking behind it.

In the preceding example, we reduced the augmented matrix

'2 4 - 2 2 4 1 2" 1 2 0 0 3 ! 2"
1 2 - 1 2 0 ! 4 0 0 1 0 - 1 i 4
3 6 - 2 1 9 i 1

to E  = 0 0 0 1 - 2 i 3
5 10 - 4 5 9 19 0 0 0 0 0 ! 0

We say that the final matrix E  is in reduced row-echelon form (rref).
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Reduced row-echelon form
A matrix is in reduced row-echelon form if it satisfies all of the following 
conditions:

a. If a row has nonzero entries, then the first nonzero entry is a 1, called the 
leading 1 (or pivot) in this row.

b. If a column contains a leading 1, then all the other entries in that column are 0.
c. If a row contains a leading 1, then each row above it contains a leading 1 

further to the left.

Condition c implies that rows of 0’s, if any, appear at the bottom of the matrix.

Conditions a, b, and c defining the reduced row-echelon form correspond to the 
conditions PI, P2, and P3 that we imposed on the system.

Note that the leading 1 ’s in the matrix

© 2 0 0 3 | 2

0 0 (D 0 - 1 4

0 0 0 ® - 2 3

0 0 0 0 0 0

correspond to the leading variables in the reduced system,

@  +  2^2 +  3*5

I ©  *5
I 0 )  -  2^5

Here we draw the staircase formed by the leading variables. This is where the name 
echelon form  comes from. According to Webster, an echelon is a formation “like a 
series of steps."

The operations we perform when bringing a matrix into reduced row-echelon 
form are referred to as elementary row operations. Let’s review the three types of 
such operations.

Types of elementary row operations
• Divide a row by a nonzero scalar.
• Subtract a multiple of a row from another row.
• Swap two rows.

Consider the following system:

X\  — 3 * 2  — 5 * 4

3*1 — 12*2 — 2*3 — 27*4
— 2*i 4- 10*2 +  2*3 -I- 24*4

— * i 4- 6*2 +  *3 -I- 14*4

=  - 7  
=  -3 3  
=  29 
=  17

=  2 

=  4 

=  3
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The augmented matrix is

• 1 - 3 0 - 5 —T
3 -1 2 - 2 -2 7 -3 3

- 2 10 2 24 29
.- 1 6 1 14 17.

The reduced row-echelon form for this matrix is

’1 0 0 1 | 0“
0 1 0 2 | 0
0 0 1 3 i 0 ’
0 0 0 0 11.

(We leave it to you to perform the elimination.)
Since the last row of the echelon form represents the equation 0 =  1, the system 

is inconsistent.

This method of solving linear systems is sometimes referred to as Gauss-Jordan 
elimination, after the German mathematician Carl Friedrich Gauss (1777-1855; see 
Figure 4), perhaps the greatest mathematician of modem times, and the German 
engineer Wilhelm Jordan (1844-1899). Gauss himself called the method eliminatio 
vulgaris. Recall that the Chinese were using this method 2,000 years ago.

Figure 4 Carl Friedrich Gauss appears on an old German 10-mark note. (In fact, this is the 
mirror image of a well-known portrait of Gauss.8)

How Gauss developed this method is noteworthy. On January 1, 1801, the 
Sicilian astronomer Giuseppe Piazzi (1746-1826) discovered a planet, which he 
named Ceres, in honor of the patron goddess of Sicily. Today, Ceres is called a 
dwarf planet, because it is only about 1,000 kilometers in diameter. Piazzi was able 
to observe Ceres for 40 nights, but then he lost track of it. Gauss, however, at the 
age of 24, succeeded in calculating the orbit of Ceres, even though the task seemed 
hopeless on the basis of a few observations. His computations were so accurate 
that the German astronomer W. Olbers (1758-1840) located the asteroid on Decem­
ber 31, 1801. In the course of his computations, Gauss had to solve systems of 17 
linear equations.9 In dealing with this problem, Gauss also used the method of least

* Reproduced by permission of the German Bundesbank.
gFor the mathematical details, see D. Tcets and K. Whitehead, “The Discovery of Ceres: How Gauss 
Became Famous." Mathematics Magazine, 72, 2 (April 1999): 83-93.
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squares, which he had developed around 1794. (See Section 5.4.) Since Gauss at first 
refused to reveal the methods that led to this amazing accomplishment, some even 
accused him of sorcery. Gauss later described his methods of orbit computation in 
his book Theoria Motus Corporum Coelestium (1809).

The method of solving a linear system by Gauss-Jordan elimination is called 
an algorithm.10An algorithm can be defined as “a finite procedure, written in a fixed 
symbolic vocabulary, governed by precise instructions, moving in discrete Steps, 1,
2, 3 , . . . ,  whose execution requires no insight, cleverness, intuition, intelligence, or 
perspicuity, and that sooner or later comes to an end” (David Berlinski, The Advent 
o f  the Algorithm: The Idea that Rules the World, Harcourt Inc., 2000).

Gauss-Jordan elimination is well suited for solving linear systems on a com­
puter, at least in principle. In practice, however, some tricky problems associated 
with roundoff errors can occur.

Numerical analysts tell us that we can reduce the proliferation of roundoff errors 
by modifying Gauss-Jordan elimination, employing more sophisticated reduction 
techniques.

In modifying Gauss-Jordan elimination, an interesting question arises: If we 
transform a matrix A into a matrix B by a sequence of elementary row operations 
and if B is in reduced row-echelon form, is it necessarily true that B  =  rref(y4)? 
Fortunately (and perhaps surprisingly) this is indeed the case.

In this text, we will not utilize this fact, so there is no need to present the 
somewhat technical proof. If you feel ambitious, try to work out the proof yourself 
after studying Chapter 3. (See Exercises 3.3.84 through 3.3.87.)

10 The word algorithm is derived from the name of the mathematician al-Khowarizmi, who introduced 
the term algebra into mathematics. (See page 1.)

EXERCISES 1.2

GOAL Use Gauss-Jordan elimination to solve linear 
systems. Do simple problems using paper and pencil, and 
use technology to solve more complicated problems.

In Exercises 1 through 12, find all solutions o f the equa­
tions with paper and pencil using Gauss-Jordan elimina­
tion. Show all your work. Solve the system in Exercise 8 
for the variables x \, x i, *3 , * 4 , and x$.

1.

7.

8.

*1 4- 2x2

X 2 +  2x4 +  3*5 =  0 
4*4 4- 8*5 =  0

2*4 +  3*5 =  0
4- 3*4 +  2*5 =  0
4- 4*4 -  *5 =  0

*5 =  0

* 4- y -  2z =  5 2. 3* 4- 4 v -  z = 8 *4 4- 2*5 - * 6  =  2

2* 4- 3y 4- 4z = 2 6* 4- 8y — 2z =  3 9. *1 4- 2*2 +  *5 “  *6 =  0
*1 4- 2*2 4- 2*3 -  *5 4- *6 =  2

3. * 4- 2y 4- 3z =  4

*3 4- *4 =  0 
*2 + *3 =  0

*1 4- *2 =  0

*1 + * 4  =  0

*4- V =  1 
2 x -  v =  5 
3* 4- 4 v =  2

6.
*1 -  7*2 4- *5 =  3 

*3 — 2*5 =  2
*4 4- *5 =  1

10.

11.

4* i  4- 3* 2 4- 2 * 3 — *4 =  4
5* i 4- 4*2 4- 3 * 3  — *4 =  4

- 2* i — 2*2 — *3 4- 2*4 =  —3
1 l*i 4- 6*2 4- 4*3 4- *4 =  11

*1 -I- 2*3 4- 4*4 =  —8
*2 — 3*3 — *4 =  6

3*i 4- 4*2 — 6*3 4- 8*4 =  0
— *2 4- 3*3 4- 4*4 =  —12
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12.

2*1 “  3*3 +  7*5 +  7*6 =  0
—2*1 x2 6*3 — 6*5 — 12*6 =  0

*2 —  3*3 +  *5 +  5*6 =  0

-  2*2 +  *4 +  *5 +  *6 =  0
2*1 +  *2 ”  3*3 +  8*5 -I- 7*6 =  0

Solve the linear systems in Exercises 13 through 17. You 
may use technology.

3x +  U y  +  l9z  =  - 2
13. 7* 4- 23y 4- 39z =  10

- 4 *  -  3y -  2z =  6

3* +  6;y +  14z =  22
14. 7* -I- 14y + 30z = 46

4* +  +  7 z =  6

3* +  Sy +  3z =  25
15. 7* + 9y 4- 19z = 65 

-4* +  5;y +  1 lz  =  5

3*i +  6*2 +  9*3 4- 5*4 +  25*5 =  53
16. 7*i +  14*2 +  21*3 +  9*4 +  53*5 =  105

-4*i -  8*2 — 12*3 +  5*4 -  10*5 =  11

2*i +  4*2 +  3*3 +  5*4 +  6*5 =  37
4*i 4- 8*2 +  7*3 +  5*4 4- 2*5 =  74

17. - 2 * i  -  4*2 +  3*3 +  4*4 -  5*5 =  20
*1 +  2*2 4- 2*3 -  *4 +  2*5 =  26

5*i — 10*2 4- 4*3 4- 6*4 4- 4*5 =  24

18. Determine which o f the matrices below are in reduced 
row-echelon form:

a.

1 2 0 2 0
0 0 1 3 0
0 0 1 4 0
0 0 0 0 1

1 2 0 3“
0 0 0 0
0 0 1 2

0 1 2 0 3"
b. 0 0 0 1 4

0 0 0 0 0

d. [0 1 2 3 4]

19. Find all 4 x 1 matrices in reduced row-echelon form.

20. We say that two n x m  matrices in reduced row-echelon 
form are of the same type if they contain the same num­
ber of leading l ’s in the same positions. For example,

'®  2 O ' ’CD 3 0 "
0 0 ® and

0 0 ®

are of the same type. How many types of 2 x 2 matrices 
in reduced row-echelon form are there?

21. How many types of 3 x 2 matrices in reduced row-
echelon form are there? (See Exercise 20.)

22. How many types of 2 x 3 matrices in reduced row-
echelon form are there? (See Exercise 20.)

23* Suppose you apply Gauss-Jordan elimination to a ma­
trix. Explain how you can be sure that the resulting 
matrix is in reduced row-echelon form.

24. Suppose matrix A  is transformed into matrix B  by means 
of an elementary row operation. Is there an elementary 
row operation that transforms B  into A1 Explain.

25. Suppose matrix A  is transformed into matrix B by a se­
quence of elementary row operations. Is there a sequence 
of elementary row operations that transforms B  into A? 
Explain your answer. (See Exercise 24.)

26. Consider an n x m  matrix A. Can you transform rref( A) 
into A  by a sequence of elementary row operations? (See 
Exercise 25.)

27. Is there a sequence of elementary row operations that 
transforms

"1 2 3“ 'l 0 0"
4 5 6 into 0 1 0
7 8 9 0 0 0

Explain.

28. Suppose you subtract a multiple of an equation in a sys­
tem from another equation in the system. Explain why 
the two systems (before and after this operation) have 
the same solutions.

29. Balancing a chem ical reaction. Consider the chemical 
reaction

a N 02 +  b H20  -*  c H N 02 4- d  HNO3,

where a, b , c\ and d arc unknown positive integers. The 
reaction must be balanced; that is, the number of atoms 
of each element must be the same before and after the 
reaction. For example, because the number of oxygen 
atoms must remain the same,

2a 4* b =  2c 3d.

While there are many possible values for a , b, t \  and d  
that balance the reaction, it is customary to use the small­
est possible positive integers. Balance this reaction.

30. Find the polynomial of degree 3 [a polynomial of the 
form f ( t )  = a + bt + c t2 + d t 3] whose graph goes 
through the points (0, 1), (1, 0), ( — 1.0), and (2, —15). 
Sketch the graph of this cubic.

31. Find the polynomial of degree 4 whose graph goes 
through the points (1, 1), (2, —1), (3, —59), (—1,5), 
and (—2. —29). Graph this polynomial.

32. Cubic splines. Suppose you are in charge of the design 
of a roller coaster ride. This simple ride will not make 
any left or right turns; that is, the track lies in a verti­
cal plane. The accompanying figure shows the ride as 
viewed from the side. The points (a, , /?,) are given to 
you, and your job is to connect the dots in a reasonably 
smooth way. Let aj+ \ > ai.
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Find all vectors in R3 perpendicular to

(«2. *>2)

One method often employed in such design problems is 
the technique of cubic splines. We choose ft (r), a poly­
nomial of degree < 3, to define the shape of the ride 
between (a, _ i , _ 1) and (a,-,/?/), for / =  l , , . . , / j .

(«r + l A + l)

Obviously, it is required that ft  (at) =  bi and ft  (a/_ i ) =  
bj - 1, for i =  1 , . . . ,  n . To guarantee a smooth ride at the 
points (ai,bi),  we want the first and the second deriva­
tives of f t  and / /+ 1 to agree at these points:

=  //+ ](« ,) 
f l ’iat) = f!'+x(a;).

and
for / =  1,. ,n -  1.

Explain the practical significance of these conditions. 
Explain why, for the convenience of the riders, it is also 
required that

f\  (00) =  / > i . )  =  0.

Show that satisfying all these conditions amounts to 
solving a system of linear equations. How many vari­
ables are in this system? How many equations? (Note: It 
can be shown that this system has a unique solution.)

33. Find the polynomial f ( t )  of degree 3 such th a t / ( l )  =  1, 
/(2 )  =  5, / ' ( l )  =  2, and / '(2 )  =  9, where f ( t )  is the 
derivative of f( t) .  Graph this polynomial.

34. The dot product of two vectors

’*1" ">’1"
x2 y2

and v =

_yn_

in R" is defined by

x - y  = x\y \  +  *2^2 +  ' + XnVn-

Note that the dot product of two vectors is a scalar. We 
say that the vectors x and y  are perpendicular if Jc -y = 0 .

Draw a sketch.

35. Find all vectors in ] 
vectors

1
3

-1

that are perpendicular to the three

1 1 1
1 2 9
1 ’ 3 ’ 9
1 4 7

(See Exercise 34.)

36. Find all solutions x \ , *2, *3 of the equation

b  =  X ] V \  + X 2 V 2  + * 3 ? 3 >

where

b =

37. For some background on this exercise, see Exer­
cise 1.1.20.

Consider an economy with three industries, Ij, I2,
I3. What outputs jci , *2, *3 should they produce to sat­
isfy both consumer demand and interindustry demand? 
The demands put on the three industries are shown in 
the accompanying figure.

" - 8 “ " f ~2 4"

- 1 4 5 6
2 . VI = 7 < V2 = 8 . h  = 9

15 5 3 1

38. If we consider more than three industries in an input- 
output model, it is cumbersome to represent all the de­
mands in a diagram as in Exercise 37. Suppose we have 
the industries 11, 12, . . . ,  Iw, with outputs jcj , X2,
The output vector is

*1
JC?
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The consumer demand vector is

V  
b2

b  =

bn

where bi is the consumer demand on industry I, . The 
demand vector for industry I j  is

a \j
a2j

unj
where aij is the demand industry Iy puts on industry 1/, 
for each $1 of output industry I j produces. For exam­
ple, 032 =  0.5 means that industry I2 needs 50tfworth of 
products from industry I3 for each $1 worth of goods I2 
produces. The coefficient an need not be 0: Producing 
a product may require goods or services from the same 
industry.
a. Find the four demand vectors for the economy in 

Exercise 37.
b. What is the meaning in economic terms of xj vj ?
c. What is the meaning in economic terms of

* 1?1 + * 2?2 H------- h xnvn + b ?
d. What is the meaning in economic terms of the equa­

tion

*1^1 +  *202 H--------\-x n vn +  b =  X?

39. Consider the economy of Israel in 1958.11 The three 
industries considered here are

I[ : agriculture,
12 : manufacturing,
13 : energy.

Outputs and demands are measured in millions of Israeli 
pounds, the currency of Israel at that time. We are told 
that

"13.2“ "0.293“
b = 17.6 01 = 0.014

- L8_ _0.044_

'0 ■ '0
v2 = 0.207 * h  = 0.017

0.01 0.216

a* Why do the first components of v2 and J3 equal 0?
b. Find the outputs x \ , x 2yx^ required to satisfy 

demand.

40. Consider some particles in the plane with position vec­
tors r j ,  ?2, . . . ,  rn and masses m j, m2.......mn.

The position vector of the center of mass of this system 
is

1
=  T7^w lr l +  m2'*2 + -----\~mnrn),M

where M = m\ +  m 2 H-----+  mn.
Consider the triangular plate shown in the accom­

panying sketch. How must a total mass of 1 kg be dis­
tributed among the three vertices of the plate so that

r 2l
the plate can be supported at the point ^ ; that is,

r cm — ? Assume that the mass of the plate itself

is negligible.

41. The momentum P of a system of n particles in space with 
masses mi, m2, . . . ,  mn and velocities 0i, v2, . . . ,  vn is 
defined as

P = m \d\  +  m 2v2 H-------- f-m nvn.

Now consider two elementary particles with velocities

^nPut~OutPut Economics, Oxford University Press,1966.

" 1" " 4"
01 = 1 and 02 = 7

1 10
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The particles collide. After the collision, their respective 
velocities are observed to be

"4' "2“

II 7 and w2 = 3
4 00

Assume that the momentum of the system is conserved 
throughout the collision. What does this experiment tell 
you about the masses of the two particles? (See the ac­
companying figure.)

Particle 1

Particle 2

42. The accompanying sketch represents a maze of one­
way streets in a city in the United States. The traffic 
volume through certain blocks during an hour has been 
measured. Suppose that the vehicles leaving the area dur­
ing this hour were exactly the same as those entering it.

What can you say about the traffic volume at the 
four locations indicated by a question mark? Can you 
figure out exactly how much traffic there was on each 
block? If not, describe one possible scenario. For each 
of the four locations, find the highest and the lowest 
possible traffic volume.

43. Let S(t) be the length of the fth day of the year 2009 
in Mumbai (formerly known as Bombay), India (mea­
sured in hours, from sunrise to sunset). We are given the 
following values of S(t):

t S(t)

47 11.5
74 12

273 12

For example, 5(47) =  11.5 means that the time 
from sunrise to sunset on February 16 is 11 hours and 
30 minutes. For locations close to the equator, the func­
tion S(t) is well approximated by a trigonometric func­
tion of the form

S(, ) =  „ + *  c o s ^ + c i n ^ ) .

(The period is 365 days, or 1 year.) Find this approxima­
tion for Mumbai, and graph your solution. According to 
this model, how long is the longest day of the year in 
Mumbai?

44. Kyle is getting some flowers for Olivia, his Valentine. 
Being of a precise analytical mind, he plans to spend 
exactly $24 on a bunch of exactly two dozen flowers. At 
the flower market they have lilies ($3 each), roses ($2 
each), and daisies ($0.50 each). Kyle knows that Olivia 
loves lilies; what is he to do?

45. Consider the equations

* +  2y +  3z = 4
x + ky + 4 2 =  6 ,
x + 2y + (k + 2)z = 6

where k is an arbitrary constant.
a. For which values of the constant k does this system 

have a unique solution?
b. When is there no solution?
c. When are there infinitely many solutions?

46. Consider the equations

y +  2kz =  0
x 4- 2y 4- 6z =  2 ,

kx  +  2z = 1
where k is an arbitrary constant.
a. For which values of the constant k does this system 

have a unique solution?
b. When is there no solution?
c. When are there infinitely many solutions?

47. a. Find all solutions jq , x2, *3, *4 of the system
x 2 =  j ( x i  + * 3), *3 =  \ ( X2 +X 4 ) .

b. In part (a), is there a solution with x\ =  1 and
X4 =  13?

48. For an arbitrary positive integer n > 3, find all solutions 
* 1, x2, *3, . . . ,  xn of the simultaneous equations x2 =  
5(* l+ *3),-*3  =  5 (JC2+X4) , . . . , X n_|  =  3(*„_2 + * „ ).  
Note that we are asked to solve the simultaneous equa­
tions** =  \ (x k - \  +  Xk+\), fork  =  2, 3 , . . . ,  n — 1.

49. Consider the system

2x + y =  C 
3 y +  z = C , 

jc +  4z = C

where C is a constant. Find the smallest positive integer 
C such that jc, v , and z are all integers.
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50 Find all the polynomials f ( t )  of degree < 3 such that 
' /(0 )  =  3, / ( l )  =  2, /(2 )  =  0, and f Q2 f ( t ) d t  = 4. (If 

you have studied Simpson’s rule in calculus, explain the 
result.)

Exercises 51 through 60 are concerned with conics. A conic 
is a curve in M2 that can be described by an equation 
o f the form f i x ,  y) =  cj +  c2x  +  c3y  +  c4x 2 + csxy  +  
C6y2 =  o, where at least one o f the coefficients c, is 
nonzero. Examples are circles, ellipses, hyperbolas, and 
parabolas. I f  k is any nonzero constant, then the equa­
tions f ( x ,  y) =  0 and k f ( x ,  y) =  0 describe the same 
conic. For example, the equation - 4  +  x 2 +  y2 =  0 and 
—12 +  3x2 +  3y 2 =  0 both describe the circle o f radius
2 centered at the origin. In Exercises 51 through 60, find  
all the conics through the given points, and draw a rough 
sketch o f your solution curve(s).

51. (0,0), (1,0), (2,0), (0,1), and (0,2).

52. (0,0), (2,0), (0,2), (2,2), and (1,3).

53. (0,0), (1,0), (2,0), (3,0), and (1,1).

54. (0,0), (1,1), (2,2), (3, 3), and (1.0).

55. (0,0), (1,0), (0,1), and (1,1).

56. (0,0), (1,0), (0,1), and (1, -1) .

57. (5,0), (1,2), (2, 1), (8,1), and (2,9).

58. (1.0), (2,0), (2,2), (5, 2). and (5, 6).

59. (0,0), (1.0), (2,0), (0, 1), (0,2), and (1, 1).

<0. (0,0), (2,0), (0,2), (2, 2), (1,3), and (4, 1).

61. Students are buying books for the new semester. Eddie 
buys the environmental statistics book and the set theory 
book for $178. Leah, who is buying books for herself and 
her friend, spends $319 on two environmental statistics 
books, one set theory book, and one educational psy­
chology book. Mehmet buys the educational psychol­
ogy book and the set theory book for $147 in total. How 
much does each book cost?

62. Students are buying books for the new semester. Brigitte 
buys the German grammar book and the German novel, 
Die Leiden des jungen Wert her, for €64 in total. Claude 
spends €98 on the linear algebra text and the German 
grammar book, while Denise buys the linear algebra text 
and Werther, for €76. How much does each of the three 
books cost?

63* At the beginning of a political science class at a large 
university, the students were asked which term, liberal or 
conservative, best described their political views. They 
were asked the same question at the end of the course, 
to see what effect the class discussions had on their 
views. Of those that characterized themselves as “lib­
eral initially, 30% held conservative views at the end. 
Of those who were conservative initially, 40% moved 
to the liberal camp. It turned out that there were just

as many students with conservative views at the end as 
there had been liberal students at the beginning. Out of 
the 260 students in the class, how many held liberal and 
conservative views at the beginning of the course and 
at the end? (No students joined or dropped the class 
between the surveys, and they all participated in both 
surveys.)

64. At the beginning of a semester, 55 students have signed 
up for Linear Algebra; the course is offered in two 
sections that are taught at different times. Because of 
scheduling conflicts and personal preferences, 20% of 
the students in Section A switch to Section B in the 
first few weeks of class, while 30% of the students in 
Section B switch to A, resulting in a net loss of 4 stu­
dents for Section B. How large were the two sections 
at the beginning of the semester? No students dropped 
Linear Algebra (why would they?) or joined the course 
late.

Historical Problems

65. Five cows and two sheep together cost ten liang12 of 
silver. Two cows and five sheep together cost eight liang 
of silver. What is the cost of a cow and a sheep, respec­
tively? (Nine Chapters,13 Chapter 8, Problem 7)

66. If you sell two cows and five sheep and you buy 13 pigs, 
you gain 1,000 coins. If you sell three cows and three 
pigs and buy nine sheep, you break even. If you sell 
six sheep and eight pigs and you buy five cows, you 
lose 600 coins. What is the price of a cow, a sheep, 
and a pig, respectively? (Nine Chapters, Chapter 8, 
Problem 8)

67. You place five sparrows on one of the pans of a balance 
and six swallows on the other pan; it turns out that the 
sparrows are heavier. But if you exchange one sparrow 
and one swallow, the weights are exactly balanced. All 
the birds together weigh 1 jin. What is the weight of a 
sparrow and a swallow, respectively? [Give the answer in 
liang, with 1 jin = 16 liang.] (Nine Chapters, Chapter 8, 
Problem 9)

68. Consider the task of pulling a weight of 40 dan14 up 
a hill; we have one military horse, two ordinary horses, 
and three weak horses at our disposal to get the job done. 
It turns out that the military horse and one of the ordi­
nary horses, pulling together, are barely able to pull the

12 A liang was about 16 grams at the time of the Han Dynasty.
13 See page 1; we present some of the problems from the Nine 
Chapters on the Mathematical Art in a free translation, with 
some additional explanations, since the scenarios discussed in a 
few of these problems are rather unfamiliar to the modern 
reader.
141 dan =  120 jin =  1,920 liang. Thus a dan was about 
30 kilograms at that time.
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weight (but they could not pull any more). Likewise, 
the two ordinary horses together with one weak horse 
are just able to do the job, as are the three weak horses 
together with the military horse. How much weight can 
each of the horses pull alone? (Nine Chapters, Chapter 8, 
Problem 12)

69. Five households share a deep well for their water supply. 
Each household owns a few ropes of a certain length, 
which varies only from household to household. The 
five households, A, B, C, D, and E, own 2, 3, 4, 5, and
6 ropes, respectively. Even when tying all their ropes to­
gether, none of the households alone are able to reach the 
water, but A’s two ropes together with one of B\s ropes 
just reach the water. Likewise, B’s three ropes with one 
of C’s ropes, C’s four ropes with one of D’s ropes, D’s 
five ropes with one of E’s ropes, and E’s six ropes with 
one of A’s ropes all just reach the water. How long are 
the ropes of the various households, and how deep is 
the well?
Commentary: As stated, this problem leads to a system 
of 5 linear equations in 6 variables; with the given in­
formation, we are unable to determine the depth of the 
well. The Nine Chapters gives one particular solution, 
where the depth of the well is 7 zhang, '5 2 chi, 1 cun, 
or 721 cun (since 1 zhang =  10 chi and 1 chi =  10 cun). 
Using this particular value for the depth of the well, find 
the lengths of the various ropes.

70. “A rooster is worth five coins, a hen three coins, and 
3 chicks one coin. With 100 coins we buy 100 of them. 
How many roosters, hens, and chicks can we buy?” 
(From the Mathematical Manual by Zhang Qiujian, 
Chapter 3, Problem 38; 5th century a.d.)
Commentary: This famous Hundred Fowl Problem has 
reappeared in countless variations in Indian, Arabic, and 
European texts (see Exercises 71 through 74); it has 
remained popular to this day (see Exercise 44 of this 
section).

71. “Pigeons are sold at the rate of 5 for 3 panas, sarasabirds 
at the rate of 7 for 5 panas, swans at the rate of 9 for
7 panas, and peacocks at the rate of 3 for 9 panas. A 
man was told to bring 100 birds for 100 panas for the 
amusement of the King’s son. What does he pay for each 
of the various kinds of birds that he buys?” (From the 
Ganita-Sara-Sangraha by Mahavira, India; 9th century 
A .D .) Find one solution to this problem.

72. “A duck costs four coins, five sparrows cost one coin, 
and a rooster costs one coin. Somebody buys 100 birds 
for 100 coins. How many birds of each kind can 
he buy?” (From the Key to Arithmetic by Al-Kashi; 
15th century)

73. “A certain person buys sheep, goats, and hogs, to the 
number of 100, for 100 crowns; the sheep cost him ^ a 
crown a-piece; the goats, 1 ^ crown; and the hogs 3^ 
crowns. How many had he of each?” (From the Elements 
of Algebra by Leonhard Euler, 1770)

74. “A gentleman has a household of 100 persons and orders 
that they be given 100 measures of grain. He directs that 
each man should receive three measures, each woman 
two measures, and each child half a measure. How many 
men, women, and children are there in this household?” 
We are told that there is at least one man, one woman, and 
one child. (From the Problems for Quickening a Young 
Mind by Alcuin [c. 732-804], the Abbot of St. Martins 
at Tours. Alcuin was a friend and tutor to Charlemagne 
and his family at Aachen.)

75. A father, when dying, gave to his sons 30 barrels, of 
which 10 were full of wine, 10 were half full, and the 
last 10 were empty. Divide the wine and flasks so that 
there will be equal division among the three sons of both 
wine and barrels. Find all the solutions of this problem. 
(From Alcuin)

76. “Make me a crown weighing 60 minae, mixing gold, 
bronze, tin, and wrought iron. Let the gold and bronze 
together form two-thirds, the gold and tin together three- 
fourths, and the gold and iron three-fifths. Tell me how 
much gold, tin, bronze, and iron you must put in ” (From 
the Greek Anthology by Metrodorus, 6th century A.D.)

77. Three merchants find a purse lying in the road. One mer­
chant says “If I keep the purse, 1 shall have twice as much 
money as the two of you together” “Give me the purse 
and I shall have three times as much as the two of you 
together” said the second merchant. The third merchant 
said “I shall be much better off than either of you if I 
keep the purse, I shall have five times as much as the two 
of you together.” If there are 60 coins (of equal value) in 
the purse, how much money does each merchant have? 
(From Mahavira)

78. 3 cows graze 1 field bare in 2 days,
7 cows graze 4 fields bare in 4 days, and
3 cows graze 2 fields bare in 5 days.
It is assumed that each field initially provides the same 
amount, x , of grass; that the daily growth, y , of the fields 
remains constant; and that all the cows eat the same 
amount, z, each day. (Quantities *, >\ and z are mea­
sured by weight.) Find all the solutions of this problem. 
(This is a special case of a problem discussed by Isaac 
Newton in his Arithmetica Universalis, 1707.)

151 zhang was about 2.3 meters at that time.
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On the Solutions of Linear Systems; Matrix Algebra

In this final section of Chapter 1, we will discuss two rather unrelated topics:

• First, we will examine how many solutions a system of linear equations can 
possibly have.

• Then, we will present some definitions and rules of matrix algebra.

The N u m b e r  o f  Solu t ions o f  a L inear  Sys tem
EXA M PLE  I The reduced row-echelon forms of the augmented matrices of three systems are 

given. How many solutions are there in each case?

a.

1 2  0 !  0
0 0 1 | 0
o  o  o  i i
o o  o  i o

'1 2 0 r '1 0 0 r
b. 0 0 1 2 c. 0 1 0 2

0 0 0 0 . 0 0 1 3.

Solution

a. The third row represents the equation 0 =  1, so that there are no solutions. 
We say that this system is inconsistent.

b. The given augmented matrix represents the system

* i 4- 2x2 = 1
*3 =  2 or, *1 =  1 -  2X2 

*3 =  2

We can assign an arbitrary value, t , to the free variable *2, so that the system 
has infinitely many solutions,

where t is an arbitrary constant.

c. Here there are no free variables, so that we have only one solution, *j =  I,
*2 =  2, *3 =  3. ■

~X\~ '1  - I t '
X2 = t

-*3. 2

We can generalize our findings: 16

Theorem 1.3.1 Number of solutions of a linear system
A system of equations is said to be consistent if there is at least one solution; it is 
inconsistent if there are no solutions.

A linear system is inconsistent if (and only if) the reduced row-echelon form 
of its augmented matrix contains the row [0 0  • • • 0  j l], representing the
equation 0 = 1.

If a linear system is consistent, then it has either

• infinitely many solutions (if there is at least one free variable), or
• exactly one solution (if all the variables are leading). ■

^Starting in this section, we will number the definitions we give and the theorems we derive. The //th 
theorem stated in Section p.q is labeled as Theorem p.q.n.
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Example 1 illustrates what the number of leading 1 ’s in the echelon form tells 
us about the number of solutions of a linear system. This observation motivates the 
following definition:

D e fin it io n  1.3.2 The rank of a m atrix17
The rank of a matrix A is the number of leading l ’s in rref(A).

'1 2 3' '1 2 3’ r ® 0 -1 '
E XA M PLE  2 rank 4 5 6 =  2, since rref 4 5 6 = 0 CD 2

7 8 9 7 8 9 0 0 0.

Note that we have defined the rank of a matrix  rather than the rank of a linear 
system. When relating the concept of rank to a linear system, we must be careful 
to specify whether we consider the coefficient matrix or the augmented matrix of 
the system.

EXA M PLE  3 Consider a system of n linear equations in m variables; its coefficient matrix A  has 
the size n x m. Show that

a. The inequalities rank(A) < n and rank(A) < m hold.
b. If rank(A) =  n , then the system is consistent.
c. If rank(A) =  m, then the system has at most one solution.
d. If rank(A) < m, then the system has either infinitely many solutions, or 

none.

To get a sense for the significance of these claims, take another look at Example 1. 

Solution
a. By definition of the reduced row-echelon form, there is at most one leading

1 in each of the n rows and in each of the m  columns of rref(A).
b. If rank(A) =  «, then there is a leading 1 in each row of rref(A). This

implies that the echelon form of the augmented matrix cannot contain the 
row [0 0 ■ • • 0 | l ] . This system is consistent.

c. For parts c and d, it is worth noting that

(  number of \  _  / total number \  /  number of
\free variables/  \  of variables )  \leading variables

If rank(A) =  m, then there are no free variables. Either the system is incon­
sistent or it has a unique solution (by Theorem 1.3.1).

d. If rank(A) < m, then there are free variables (m — rank A of them, to be
precise). Therefore, either the system is inconsistent or it has infinitely many 
solutions (by Theorem 1.3.1). ■

EXA M PLE  4 Consider a linear system with fewer equations than variables. How many solutions 
could this system have?

Solution
Suppose there are n equations and m variables; we are told that n < m. Let A  
be the coefficient matrix of the system, of size n x m. By Example 3a, we have

17This is a preliminary, rather technical definition. In Chapter 3, we will gain a better conceptual 
understanding of the rank.
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rank(A) < n < m, so that rank(A) < m. There are free variables (m — rank A 
of them), so that the system will have infinitely many solutions or no solutions 
at all. ■

Theorem  1.3.3 Systems with fewer equations than variables
A linear system with fewer equations than unknowns has either no solutions or 
infinitely many solutions.

To put it differently, if a linear system has a unique solution, then there must be 
at least as many equations as there are unknowns. ■

To illustrate this fact, consider two linear equations in three variables, with each 
equation defining a plane. Two different planes in space either intersect in a line or 
are parallel (see Figure 1), but they will never intersect at a point! This means that a 
system of two linear equations with three unknowns cannot have a unique solution.

Figure I (a) Two planes intersect in a line, (b) Two parallel planes.

EXA M PLE  5 Consider a linear system of n equations in n variables. When does this system have 
a unique solution? Give your answer in terms of the rank of the coefficient matrix A.

Solution
If rank(A) < n, then there will be free variables (n — rank A of them), so that 
the system has either no solutions or infinitely many solutions (see Example 3d). 
If rank(A) =  n , then there are no free variables, so that there cannot be infinitely 
many solutions (see Example 3c). Furthermore, there must be a leading 1 in every 
row of rref(A), so that the system is consistent (see Example 3b). We conclude that 
the system must have a unique solution in this case. ■

Theorem 1.3.4 Systems of n equations in n variables
A linear system of n equations in n variables has a unique solution if (and only if) 
the rank of its coefficient matrix A is n. In this case,

1 0 0 • • 0
0 1 0 • • 0

rref(A) 0 0 1 0

0 0 0 • 1

the n x n matrix with l ’s along the diagonal and 0 ’s everywhere else. ■
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D e fin it io n  1.3.5

EXA M PLE  6 

EXA M PLE  7

D e fin it io n  1.3.6

EXA M PLE  8

Matrix Algebra
We will now introduce some basic definitions and rules of matrix algebra. Our 
presentation will be somewhat lacking in motivation at first, but it will be good to 
have these tools available when we need them in Chapter 2.

Sums and scalar multiples of matrices are defined entry by entry, as for vectors 
(see Definition A .l in the Appendix).

Sums of m atrices

The sum of two matrices of the same size is defined entry by entry:

~an  . • .  d\m ~b i i  . b\m 0 1 1 + ^ 1 1  ■ ■ • a \m +  b\m

_an\ &nm _

+

J>n\ . brim _
—

_an\ + b n\ . &nm “ 1“  bnm _

Scalar Multiples of Matrices
The product of a scalar with a matrix is defined entry by entry:

a\\ . Q\m 'k a n ■ kd] m

Qn\ • &nm. _k(Xnl kOnm.

2 3' '7 3 1 '8 5 4'
5 6 + 5 3 - 1 .9 8 5.

2 f ' 6 3
- 1 3 - 3  9

The definition of the product of matrices is less straightforward; we will give 
the general definition only in Section 2.3.

Because vectors are special matrices (with only one row or only one column), 
it makes sense to start with a discussion of products of vectors. The reader may be 
familiar with the dot product of vectors.

D ot product of vectors
Consider two vectors v and w with components i>j, . . . ,  vn and w \ , . . . ,  wny respec­
tively. Here i; and w may be column or row vectors, and they need not be of the 
same type. The dot product of v and w is defined to be the scalar

v - w = v\W\ H------- 1- vnwn.

Note that our definition of the dot product isn’t row-column-sensitive. The dot 
product does not distinguish between row and column vectors.

[1 2 3] =  1 -3 +  2 - 1 +  3 -2  =  11

Now we are ready to define the product A x, where A is a matrix and Jc is a 
vector, in terms of the dot product.
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D e fin it io n  1.3.7

EXA M PLE  9

EXA M PLE  10

EXA M PLE  I I

The p ro d u c t Ax
If A is an n x  m  matrix with row vectors ib \ , . . .  ,w„, and x  is a vector in Rm, then

A x =

In words, the ith component of Ax  is the dot product of the ith row of A  with Jc. 
Note that A x  is a column vector with n components, that is, a vector in R".

■ -  U) 1

1

S* —
1

; X  =
_ _

w n -W>n ■ * _

1 2 3"
'3'
1

.2.

1 -3 +  2 - 1 + 3 - 2 11'
1 0 1 1 • 3 +  0- 1 +  (— 1) - 2 1

'I 0 O' ’x \ ' ■jtr ~X\

0 1 0 X 2 = X2 for all vectors X2
0 0 1. _X3_ --*3. A 3.

in J

Note that the product A x  is defined only if the number of columns of matrix A 
matches the number of components of vector Jc:

n x m m x 1

A x  .
'----- v----- '

n x 1

The product A x =
1 2 3' ■3'
1 0 - 1 1

is undefined, because the number of columns

of matrix A fails to match the number of components of vector Jc. ■

In Definition 1.3.7, we express the product A x  in terms of the rows of the matrix 
A. Alternatively, the product can be expressed in terms of the columns.

Let’s take another look at Example 9:

A x =
1 2 3
1 0 -1

'3 '
1 =

.2.

1 -3  +  2 - 1 + 3 2  
1 -3 +  0-  1 +  ( - l ) - 2

1 -3  
1 -3 +

2 -1
0 - 1

3 - 2
( - D - 2

=  3

We recognize that the expression 3
T '2'
1 +  1 0 +  2

+  I

3
- 1

+ 2 3
- 1

involves the vectors

1 
1

*3 =  2, t

t>l = , V3 =
3

- 1
, the columns of A, and the scalars x \ = 3 ,  *2 =  1,

le components of Jc. Thus we can write

A x  =
' J  J  J  ' _^ l ’

V\  V 2 V 3 *2

_ 1 1 1 .
=  *iV| + X 2V2 +^3?3-

We can generalize:
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Theorem 1.3.8 The product Ax in terms of the columns of A
If the column vectors of an n x m matrix A are v \ ...........vm and x is a vector in
with components x \ , . . . ,  *m, then

=  X \ V \ + - -  - + x m v m .

■ 1 1 ■ 'x \  ‘

= Vm
. 1 1 . Am.

P roo f As usual, we denote the rows of A by w j , . . . ,  wn and the entries by £j,7 . It suffices
to show that the zth component of Ax  is equal to the ith component of *j H-------h
xm vm, for z =  1, . . .  a?. Now

(zth component of A x) ^ ^  • x = cii\X\ H----- ajmx m
Step I

=  JC)(zth component of v\) H-----+  *m(zth component of vm)
zth component of *1 v\ +  • • • +  xm vm

Step 4

In Step 1 we are using Definition 1.3.7, and in Step 4 we are using the fact that vector 
addition and scalar multiplication are defined component by component. ■

EXA M PLE  12 Ax =
'1 2 3 ' ' 2" T '2 ' '3'

= 4 5 6 —4 I 4 +  ( - 4 ) 5 +  2 6
1 8 9. 2. 7. .8. .9.

2 8 6 0
= 8 - 20 + 12 0

14 32 18 0

Note that something remarkable is happening here: Although A isn't the zero 
matrix and jc isn’t the zero vector, the product A x  is the zero vector. (By contrast, 
the product of any two nonzero scalars is nonzero.) ■

The formula for the product A x  in Theorem 1.3.8 involves the expression x \v \ +
• • • +  x mvm, where v \ ........ v„, are vectors in R", and .V|..........xm are scalars. Such
expressions come up very frequently in linear algebra; they deserve a name.

D e fin it io n  1.3.9 Linear combinations

A vector b in R" is called a linear combination of the vectors ? |, 
there exist scalars x \ ........ xm such that

b = x i ? H -----+ x mvm.

Vm in r  if

Note that the product A x  is the linear combination of the columns of A with the 
components o f*  as the coefficients:

— X \ V \  +  • • • +  xm v„

Take a good look at this equation, because it is the most frequently used formula 
in this text. Particularly in theoretical work, it will often be useful to write the product

‘ 1 1 ‘ '  X \  ■

-- v,„

_ 1 1 . . X m .
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A x  as the linear combination x\V\ +  • • • +  x mvm. Conversely, when dealing with 
a linear combination x\V\  +  • • • +  x„,vm. it will often be helpful to introduce the 
matrix

' 1 J  ' "*i '

Pi Vm and the vector * =
. 1 1 _ -

and then write * i? i H-----+  xmvm =  Ax.
Next we present two rules concerning the product Ax. In Chapter 2 we will see 

that these rules play a central role in linear algebra.

Theorem 1.3.10 Algebraic rules for Ax
If A is an n x m matrix; jc and y are vectors in and k is a scalar, then

a. A(* +  y ) =  A* + Ay, and
b. A(kx)  =  k(Ax) .

We will prove the first equation, leaving the second as Exercise 45.
Denote the / th row of A by ibj. Then

Step 2
(/th component of A(* -I- v)) =  • (* +  y) tr, • x  -f u1, • y
=  (/th component of AJc) -f (zth component of A v)
=  (zth component of Ax +  Av).

In Step 2 we are using a rule for dot products stated in Theorem A.5b, in the Appendix.

Our new tools of matrix algebra allow us to see linear systems in a new light, 
as illustrated in the next example. The definition of the product Ajc and the concept 
of a linear combination will be particularly helpful.

EXA M PLE  I 3 Consider the linear system

T3 l : 71 
with augmented matrix  ̂ 2 * 4 ’

We can interpret the solution of this system as the intersection of two lines in the 
jci*2-plane, as illustrated in Figure 2.

3x\ +  .v: = 7  
.V| +  2*2 =  4

Figure 2
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Alternatively, we can write the system in vector form, as

3 x \  +  X2 7 3* i " x { 1 3 t ' T

X\  +  2*2. — 4
or +

2 * 2 .
—

4
or JC]

1
+  X2 2 —

4

We see that solving this system amounts to writing the vector as a linear com­

bination of the vectors and (see Definition 1.3.9). The vector equation

'3' T 7
•*!

1
+  X2

2
— 4

and its solution can be represented geometrically, as shown in Figure 3. The prob-
\1
4

lem amounts to resolving the vector into two vectors parallel to

respectively, by means of a parallelogram.

"3" 1'
1

and
_2

We can go further and write the linear combination

so that the linear system

'3' r ■3 r •̂ lXl _1 +  X2 2
as

1 2 _x 2.

'3 ' 1‘ 7
^1

1
+  x 2

2_
— 4

takes the form

the matrix form  of the linear system.
Note that we started out with the augmented matrix

■3 r 'x \' 1
1 2 *2. 4

and we ended up writing the system as

3 1
2

'3 1' •*i" r
1 2 xi. 4 or. A x  =  b.

A x  b
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We can generalize:

Theorem 1.3.11 Matrix form of a linear system

We can write the linear system with augmented matrix | A j b

Ax = b.

in matrix form as

Note that the /th component of Ax  is di\X\ H------- K aimxm, by Definition 1.3.7.
Thus, the /th component of the equation Ax = b is

+ ------VQimXm =  bi\

this is the /th equation of the system with augmented matrix A j S j .

EXAM PLE 14 Write the system
2 x \  -  3 x 2 +  5jc3 =  7 
9*i +  4*2 — 6*3 =  8

in matrix form.

Solution

The coefficient matrix is A =
2 - 3  5'
9 4 - 6

, and b = . The matrix form is

'2 - 3  5' V '1
9 4 - 6 X2 — 8

_*3_

A x = b , or,

Now that we can write a linear system as a single equation, Ax = b , rather than 
a list of simultaneous equations, we can think about it in new ways.

For example, if we have an equation ax  =  b of numbers, we can divide both 
sides by a to find the solution *:

* =  -  =  a ~ xb (if a ^  0). 
a

It is natural to ask whether we can take an analogous approach in the case of the 
equation Ax = b. Can we “divide by A,” in some sense, and write

-  bx = — = A bl  
A

This issue of the invertibility of a matrix will be one of the main themes of Chapter 2.

exercises 1.3
COAL Use the reduced row-echelon form of the aug- 
mented matrix to find the number of solutions o f a linear 
system. Apply the definition o f the rank of a matrix. Com­
pute the product Ax in terms o f the rows or the columns
/  Represent a linear system in vector or in matrix 
form.

The reduced row-echelon forms of the augmented 
matrices of three systems are given below. How many 
solutions does each system have?

1 0 2
0 1 3
0 0 0

b. 1 0 
0 1

c. '0 1 0 ! 2"
0 0 1 i 3

Find the rank o f the matrices in Exercises 2 through 4.

' l 2 3" ' l 1 1“ 'l 4 1
0 1 2 3. 1 1 1 4. 2 5 8
0 0 1 1 1 1 3 6 9
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5. a. Write the system

.v +  2 y =  7
3 a  4- v =  11

in vector form, 
b. Use your answer in part (a) to represent the system 

geometrically. Solve the system and represent the so­
lution geometrically.

Consider the vectors v\. $2. ?3 in R 2 (sketched in the 
accompanying figure). Vectors iJ| and i>2 are parallel. 
How many solutions a . v does the system

A V j +  X V 2 =  ?3

have? Argue geometrically.

7. Consider the vectors uj, v2< in R 2 shown in the ac­
companying sketch. How many solutions a , y  does the 
system

.v v i +  yv 2 =  

have? Argue geometrically.

8. Consider the vectors v2< 1̂3, £4 in shown in the 
accompanying sketch. Arguing geometrically, find two 
solutions a , y, c of the linear system

.v5| +  y?2 +  -^3 =  *>4-

How do you know that this system has in fact infinitely 
many solutions?

"2

9. Write the system

in matrix form.

a- +  2y + 3:. =  1 
4a +  5 y -h 6^ =  4 
7a +  8v +  9z = 9

Compute the dot products in Exercises 10 through 12 (i f  the 
products are defined).

Y 1“ '6"
10. 2 - 2 11. [1 9 9 7 ] 6

3 1 6

12. [1 3 4

Compute the products Ax in Exercises 13 through 15 using 
paper and pencil In each case, compute the product two 
ways: in terms o f the columns o f A (Theorem 1.3.8) and in 
terms o f the rows o f A (Definition 1.3.7).

13.
1 2 ' 7'
3 4 11

14. 1 2 3
2 3 4

-1
2
1

15. [l 2 3 4]

Compute the products Ax in Exercises 16 through 19 using 
paper and pencil (if the products are defined).

16.

18.

0 1
3 2

'l 2 
3 4 
5 6

2
- 3

17.

19.

'l  2 3' '7'
4 5 6

00

I -1  
1 1

3

Y
2
3

"2 3' "7 5'
20. a. Find 4 5 + 3 1

_6 7 0 -1

1 7 8 9
1 2 9 1
1 5 1 5
1 6 4 8

1 -1 2b. Find 9 !
3 4 5

21. Use technology to compute the product

22. Consider a linear system of three equations with three 
unknowns. We are told that the system has a unique so­
lution. What does the reduced row-echelon form of the 
coefficient matrix of this system look like? Explain your 
answer.

23. Consider a linear system of four equations with three 
unknowns. We are told that the system has a unique so­
lution. What does the reduced row-echelon form of the 
coefficient matrix of this system look like? Explain your 
answer.

24. Let A be a 4 x 4 matrix, and let b and c be two vectors in 
R4. We are told that the system A a =  b has a unique so­
lution. What can you say about the number of solutions 
of the system Ax =  ??
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25. L e t  A be a 4 x 4 matrix, and let b and c be two vectors in 
R4. We are told that the system A x  = h is inconsistent. 
What can you say about the number of solutions of the 
system A x  =  ??

26. L e t  A be a 4 x 3 matrix, and let b and c be two vectors in 
R4. We are told that the system A x  = b  has a unique so­
lution. What can you say about the number of solutions 
of the system A x  =  ??

27. If the rank of a 4 x 4 matrix A is 4, what is rref(A)?

28. If the rank of a 5 x 3 matrix A is 3, what is rref(/4)?

36. Find a 3 x 3 matrix A such that

5“ 2
In Problems 29 through 32, let x  = 3 and y = 0

- 9 1

29. Find a diagonal matrix A such that Ax =  y.

30. Find a matrix A  of rank 1 such that Ax =  v.

31. Find an upper triangular matrix A such that Ax  = y.
Also, it is required that all the entries of A on and above
the diagonal be nonzero.

32. Find a matrix A with all nonzero entries such that 
Ax =  y.

33. Let A be the n x n matrix with all 1 ’s on the diagonal 
and all 0’s above and below the diagonal. What is A x , 
where Jc is a vector in R'? ?

34. We define the vectors

e\ =
Y ’o“ "o'
0 11n 1 • h  = 0
0 0 1

inR3.
a. For

a b c
A = d e f

g h k

compute Ae\, Ae2, and A£3.
b. If B  is an n x 3 matrix with columns v \ , f  2» an^ ^3, 

what is B e  1, B e2, B e3?

35. In Rm, we define

e; =
zth component.

1 1 0 4
A 0 — 2 , A 1 = 5

0 _3_ 0 6
L  J L J

"0" "7"
and A 0 = 8

1 9

'l 2 o ' ‘2
0 0 1 and h = 1
0 0 0 0

37. Find all vectors x  such that A x  =  b, where

A =

38. a. Using technology, generate a random 3 x 3 matrix
A. (The entries may be either single-digit integers or 
numbers between 0 and 1, depending on the technol­
ogy you are using.) Find rrefM). Repeat this exper­
iment a few times,

b. What does the rcduced row-echelon form of most 
3 x 3  matrices look like? Explain.

39. Repeat Exercise 38 for 3 x 4 matrices.

40. Repeat Exercise 38 for 4 x 3  matrices.

41. How many solutions do most systems of three linear 
equations with three unknowns have? Explain in terms 
of your work in Exercise 38.

42. How many solutions do most systems of three linear 
equations with four unknowns have? Explain in terms 
of your work in Exercise 39.

43. How many solutions do most systems of four linear equa­
tions with three unknowns have? Explain in terms of 
your work in Exercise 40.

44. Consider an n x m  matrix A with more rows than 
columns (n > m ). Show that there is a vector b in R n 
such that the system A x  =  b is inconsistent.

45. Consider an n x m matrix A , a vector x  in ! 
scalar k . Show that

A( k x )  =  k ( Ax ) .

46. Find the rank of the matrix

a b c
0 d e
0 0 f

If A is an n x m matrix, what is Ae,"!

where a, d, and /  are nonzero, and />, r, and e are arbi­
trary numbers.

47. A linear system of the form

A x  =  0

is called homogeneous. Justify the following facts: 
a. All homogeneous systems are consistent.
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b. A homogeneous system with fewer equations than 
unknowns has infinitely many solutions.

c. If.? i and x 2 are solutions of the homogeneous system 
A jc =  0, then Jc i +  x 2 is a solution as well.

d. If x  is a solution of the homogeneous system Ax = 0
and k is an arbitrary constant, then kx is a solution 
as well.

48. Consider a solution x\  of the linear system Ax =  b.
Justify the facts stated in parts (a) and (b):
a. If x h is a solution of the system Ax =  0, then -hr/, 

is a solution of the system Ax =  b.
b. If j?2 is another solution of the system Ax  =  b, then

x i  — x \ is a solution of the system Ax =  0.
c. Now suppo&e A is a 2 x 2 matrix. A solution vector 

.vj of the system Ax =  b is shown in the accom­
panying figure. We are told that the solutions of the 
system A jc =  0 form the line shown in the sketch. 
Draw the line consisting of all solutions of the system 
Ax =  h.

49.

solutions of Av = 0

If you are puzzled by the generality of this problem, 
think about an example first:

A =

Consider the accompanying table. For some linear sys­
tems A jc =  b, you are given either the rank of the co­
efficient matrix A, or the rank of the augmented matrix 
[A  | b\. In each case, state whether the system could 
have no solution, one solution, or infinitely many solu­
tions. There may be more than one possibility for some 
systems. Justify your answers.

’ 1 2 "3“ r
3 6 , b = and x\ —

9 1

Number of 
Equations

Number of 
Unknowns

Rank 
of A

Rank 
o f [A \ b]

a. 3 4 — 2
b. 4 3 3 —

c. 4 3 — 4
d. 3 4 3 —

50. Consider a linear system Ax =  b , where A is a 4 x 3 
matrix. We are told that rank [A | b] = 4 .  How many 
solutions does this system have?

"l 0‘
and B = 0 - f

1 2 1 0

51. Consider an n x m matrix A, an r x s matrix B , and a 
vector jc in R p . For which values of n, m, r, s, and p  is 
the product

A(Bx)

defined?

52. Consider the matrices

A =

Can you find a 2 x 2 matrix C such that 

A(Bx) = Cx.

for all vectors jc in R2?

53. If A and B are two n x m matrices, is

(A +  B)x =  A.c +  Bx

for all jc in Rm?

54. Consider two vectors v\ and v2 in R 1 that are not paral­
lel. Which vectors in R3 are linear combinations of 
and v2l  Describe the set of these vectors geometrically. 
Include a sketch in your answer.

55. Is the vector a linear combination of

" f "4"
2 and 5
3 _6

56. Is the vector

30
- 1
38
56
62

a linear combination of

1 5 9 - 2
7 6 2 - 5
1 , 3 , 3 , 4
9 2 5 7
4 8 2 9
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57. Express the vector as the sum of a vector on the

line y = 3jc and a vector on the line y =  x / 2.
62. For which values of the constant c is

combination of

arbitrary constants?

■ 1 “ ' 1 ‘
a and b
-> _ b \

a linear

where a and b are

In Exercises 63 through 67, consider the vectors v and w 
in the accompanying figure.

58. For which values of the constants b and c is the vector

3" T Y ’- f
b a linear combination of 3 6 , and - 3
c 2 4 - 2

59. For which values of the constants c and d is

combination of

"l“ Y
1 and

2
1 3
1 4

a linear

60. For which values of the constants a, by r, and d is

a linear combination of

O’ "l‘ ~2 V

0 0 0 .V

3 4
, and

5
9 X  +  V

0 0 6

63. Give a geometrical description of the set of all vectors 
of the form v +  cw, where c is an arbitrary real number.

64. Give a geometrical description of the set of all vectors 
of the form v +  cw , where 0 < c < 1.

65. Give a geometrical description of the set of all vectors 
of the form av  -1- bw , where 0 < a < 1 and 0 < b < 1.

66. Give a geometrical description of the set of all vectors 
of the form av  4- bw. where a +  b =  1.

67. Give a geometrical description of the set of all vectors of 
the form av +  bw, where 0 < a, 0 < b, and a +  b < 1.

68. Give a geometrical description of the set of all vectors u 
in such that u v = u • w.

69. Solve the linear system

+ z = b 
=  c

61. For which values of the constant c is

"l" Y
combination of 2 and 3

4 9

a linear
where a , and c are arbitrary constants.

70. Let A be the n x n matrix with 0's on the main diago^ 
nal, and 1 ’s everywhere else. For an arbitrary vector b 
in R '\  solve the linear system Ax =  b? expressing the 
components jit i , . . . ,  xn of x  in terms of the components 
of b. (See Exercise 69 for the case n — 3.)
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Chapter One Exercises

TRUE OR FALSE?18
Determine whether the statements that follow are true or 
false, and justify your answer.

1. There exists a 3 x 4 matrix with rank 4.

2. If A is a 3 x 4 matrix and vector r is in ; 
A? is in R3.

, then vector

3. If the 4 x 4 matrix A has rank 4, then any linear system 
with coefficient matrix A will have a unique solution.

4. There exists a system of three linear equations with three 
unknowns that has exactly three solutions.

5. There exists a 5 x 5 matrix A of rank 4 such that the 
system AJc =  0 has only the solution x =  0.

6. If matrix A is in rref, then at least one of the entries in 
each column must be 1.

7. If A is an n x n matrix and x is a vector in R", then the 
product Ax is a linear combination of the columns of 
matrix A.

8. If vector u is a linear combination of vectors v and 
w, then we can write u = av 4- bw for some scalars 
a and b.

'l  2 O'
is in rref.9, Matrix 0 1 

0 0

10. A system of four linear equations in three unknowns is 
always inconsistent.

11. If A is a nonzero matrix of the form 

rank of A must be 2.

I 1 r
12. rank 1 2 3

1 3 6

- b
a

, then the

13, The system Ax =

matrices A.

is inconsistent for all 4 x 3

We will conclude each chapter (except lor Chapter 9) with some 
true-false questions, over 400 in all. We will start with a group of 
about 10 straightforward statements that refer directly to definitions 
and theorems given in the chapter. Then there may be some 
computational cxercises. and the remaining ones are more 
conceptual, calling for independent reasoning. Jn some chapters, a 
few of the problems toward the end can be quite challenging. Don’t 
expect a balanced coverage of all the topics: some concepts are 
better suited for this kind of questioning than others.

14. There exists a 2 x 2 matrix A such that

r r '2 '2— and A =
i 2 2 1

15. rank
2 2 2
2 2 2
2 2 2

= 2

16. 11 13 15
17 19 21

- l " "13
3 = 19

-1 21

17. There exists a matrix A such that A
-1

2

18. Vector is a linear combination of vectors

“4“ "7“
5 and 8

_6 9L J L J

' l  2 3“ T
19. The system 4 5 6 v = 2 is inconsistent.

0 0 0 3

20. There exists a 2 x 2 matrix A such that A

21. If A and B are any two 3 x 3  matrices of rank 2, then A 
can be transformed into B by means of elementary row 
operations.

22. If vector u is a linear combination of vectors i> and w, 
and v is a linear combination of vectors p , q , and r, then 
u must be a linear combination of p, q, r, and w.

23. A linear system with fewer unknowns than equations 
must have infinitely many solutions or none.

24. The rank of any upper triangular matrix is the number 
of nonzero entries on its diagonal.

25. If the system Ax =  b has a unique solution, then A must 
be a square matrix.

26. If A is any 4 x 3  matrix, then there exists a vector b in 
R4 such that the system Ax =  b is inconsistent.

27. There exist scalars a and b such that matrix
0 1 a

-1  0 b
^—a - b  0

has rank 3.
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28. If v and w are vectors in R4, then v must be a linear 
combination of v and w.

29. If 2, v, and w are nonzero vectors in R2, then w must be 
a linear combination of u and v.

30. If v and w are vectors in R4, then the zero vector in R4 
must be a linear combination of v and w.

31. There exists a 4 x 3 matrix A of rank 3 such that
T
2 = 0.
3

32. The system Ax  =  b is inconsistent if (and only if) 
rref(A) contains a row of zeros.

33. If A is a 4 x 3 matrix of rank 3 and AC =  Aw for two 
vectors v and w in R3, then vectors v and w must be 
equal.

34. If A is a 4 x 4 matrix and the system Ax = has

a unique solution, then the system Ax  =  0 has onJy the 
solution x =  0.

35. If vector u is a linear combination of vectors v and w , 
then w must be a linear combination of u and v.

, then
"l 0 2“

36. If A = U V w and rrcf(A) = 0 1 3
- 0 0 0

the equation w = 2u + 3v must hold.

37. If A and B are matrices of the same size, then the formula 
rank(A +  B) =  rank(A) +  rank(2?) must hold.

38. If A and B are any two n x n matrices of rank n, then A 
can be transformed into B by means of elementary row 
operations.

39. If a vector i; in R4 is a linear combination of u and wy 
and if A is a 5 x 4 matrix, then Av must be a linear 
combination of Au and Aw.

40. If matrix E is in reduced row-echelon form, and if we 
omit a row of E, then the remaining matrix must be in 
reduced row-echelon form as well.

41. The linear system Ax = b is consistent if (and only if) 
rank(A) =  rank [A j b].

42. If A is a 3 x 4 matrix of rank 3, then the system
~r

must have infinitely many solutions.Ax =

43. If two matrices A and B have the same reduced row- 
echelon form, then the equations Ax — 0 and Bx = 0  
must have the same solutions.

44. If matrix E is in reduced row-echelon form, and if we 
omit a column of £ , then the remaining matrix must be 
in reduced row-echelon form as well.

45. If A and B are two 2 x 2  matrices such that the equa­
tions Ax =  0 and Bx =  0 have the same solutions, then 
rref(A) must be equal to rref( B ).
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Linear Transformations

Introduction to Linear Transformations and Their Inverses

Imagine yourself cruising in the Mediterranean as a crew member on a French 
coast guard boat, looking for evildoers. Periodically, your boat radios its position to 
headquarters in Marseille. You expect that communications will be intercepted. So, 
before you broadcast anything, you have to transform the actual position of the boat,

(x[ for Eastern longitude, x 2 for Northern latitude), into an encoded position

You use the following code:

y i =  X\ ~h 3x2 
y2 = 2x\ +  5*2-

For example, when the actual position of your boat is 5° E, 42° N, or

jc =
X] ' ' 5
*2. 42

your encoded position will be

v = V *1 +  3*2 ' 5 +  3 - 4 2 131'
J2 . 2*i 4- 5*2 _ _2 • 5 +  5 • 42_ 220

(See Figure 1.)
The coding transformation can be represented as

\v f AT) +  3*2 1 3 ' ’* 1"
J 2. 2x\ +  5*2. 2 5 *2.

40
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or, more succinctly, as

y  =  Ax.

The matrix A is called the (coefficient) matrix of the transformation.
A transformation of the form

v =  Ax

is called a linear transformation. We will discuss this important concept in greater 
detail later in this section and throughout this chapter.

As the ship reaches a new position, the sailor on duty at headquarters in Marseille 
receives the encoded message

He must determine the actual position of the boat. He will have to solve the linear 
system

A jc =  b ,

or, more explicitly,

x\ +  3*2 =  133 
2x\ +  5*2 =  223

Here is his solution. Is it correct?

X]' ' 4'
X2_ 43.

As the boat travels on and dozens of positions are radioed in, the sailor gets a 
little tired of solving all those linear systems, and he thinks there must be a general 
formula to simplify the task. He wants to solve the system

+  3*2 =  y\
2 * |  +  5 * 2  =  V2

when y\ and y2 are arbitrary constants, rather than particular numerical values. He 
is looking for the decoding transformation
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which is the inverse1 of the coding transformation

x y.

The method of finding this solution is nothing new. We apply elimination as we 
have for a linear system with known values y\ and y2\

Xi +  3X2 =  Vl 
2x\ +  5*2 =  V2 -2  (I)

X] + 3*2 =  y i
-* 2  =  -2?1 +  V2 + ( - D

*1 4- 3*2 =  yi
*2 =  2yi -  y2

- 3  (II) *i =  —5^1 +  3 y2 
*2 =  2yi -  ^2

The formula for the decoding transformation is

*i =  —5 vi +  3 j2, 
*2 =  2>>1 -  ?2,

or

* =  B y, where B = - 5  3
2 -1

Note that the decoding transformation is linear and that its coefficient matrix is

B =
- 5  3

2 -1

The relationship between the two matrices A  and B is shown in Figure 2.

Coding, with matrix A = 1 3
2 5

Decoding, with matrix B = 

Figure 2

-5  3 
2 -1

Since the decoding transformation x  =  B y  is the inverse of the coding trans­
formation v =  A x, we say that the matrix B is the inverse of the matrix A. We can 
write this as B =  A-1 .

Not all linear transformations

are invertible. Suppose some ignorant officer chooses the code

"1 2 
2 4

Vl =  *1 +  2x2 a ,  A~ ' A with matrix A =
V2 =  2 X )  +  4 * 2

for the French coast guard boats. When the sailor in Marseille has to decode a 
position, for example,

b =
' 89' 
178

1 We will discuss the concept of the inverse of a transformation more systematically in Section 2.4.
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EXAM PLE I

EXA M PLE  2

he will be chagrined to discover that the system

+  2x2 =  89 
2x\ -f- 4*2 =  178

V ' 8 9 - 2 1
*2. t

where r is  an arbitrary number.
Because this system does not have a unique solution, it is impossible to recover 

the actual position from the encoded position: The coding transformation and the 
coding matrix A  are noninvertible. This code is useless!

Now let us discuss the important concept of linear transformations in greater 
detail. Since linear transformations are a special class of functions, it may be helpful 
to review the concept of a function  first.

Consider two sets X  and Y. A function T  from X  to Y  is a rule that associates 
with each element * of X  a unique element y  of Y. The set X  is called the domain 
of the function, and Y  is its target space. We will sometimes refer to x  as the input 
of the function and to y  as its output. Figure 3 shows an example where domain X  
and target space Y  are finite.

Figure 3 Domain X and target
space Y o f a function T .

In precalculus and calculus, you studied functions whose input and output are 
scalars (i.e., whose domain and target space are the real numbers R or subsets of R); 
for example,

t 2 - 2
y  =  x 2, f ( x )  =  e \  gi t)  =  y — p

In multivariable calculus, you may have encountered functions whose input or output 
were vectors.

y = x 2 +  x \  +  xj

This formula defines a function from the vector space R 3 to R. The input is the 

~Xl1
vector * =  jc2 , and the output is the scalar y. ■

-*3_

r —
cos(0
sin(0

t

This formula defines a function from R to the vector space R 3, with input / and 
output?. ■
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D e fin it io n  2.1.1

EXA M PLE  3

Linear transformations2
A function T  from Rm to R n is called a linear transformation if there exists an n x m  
matrix A such that

We now return to the topic of linear transformations.

T(x)  = Ax,

for all Jc in the vector space!

It is important to note that a linear transformation is a special kind of function . 
The input and the output are both vectors. If we denote the output vector T  (*) by y, 
we can write

y = A x.

Let us write this equation in terms of its components:

a\\ a \2 ••• a\,
a2\ a22 ••• aim

> r

=

. a n \ Gn2

“1 '* 1 " O] 1*1 +  fll2*2 +  • '■ ■ o\mxm
x 2

=
<*21*1 +  a22x 2 +  ’ • • +  02 m*m

_xm _ _fl„l*l +  a„ 2*2 +  • “I” onmx m

or

y I =  0 n * l  +  # 1 2 * 2  +  * * ’ +  0 . \m X m 

y 2 = a 2 \ X \  +  0 2 2 * 2  H---------- +  & 2m Xm

yn =  0*1*1 +  0*2*2 H----- +  0nm*m-

The output variables y, are linear functions of the input variables x j.  In some 
branches of mathematics, a first-order function with a constant term, such as 
y = 3x\ — l x 2 +  5*3 +  8, is called linear. Not so in linear algebra: The linear func^
tions of m  variables are those of the form y  =  c\X\ +  C2*2 H--------1- cmx m, for somd
coefficients C[ , c2, . • .,  cm. By contrast, a function such as y =  3*i — l x 2 +  5*3 +  ^ 
is called affine.

The linear transformation
y  1 =  7*] +  3*2 — 9*3 +  8*4
y2 =  6*1 +  2*2 -  8*3 +  7*4
y3 =  8*| +  4*2 +  7*4

(a function from R4 to R 3) is represented by the 3 x 4 matrix

A =

2This is one o f several possible definitions of a linear transformation; we could just as well have 
chosen the statement of Theorem 2.1.3 as the definition (as many texts do). This will be a recurring 
theme in this text: Most of the central concepts of linear algebra can be characterized in two or more 
ways. Each of these characterizations can serve as a possible definition: the other characterizations
will then be stated as theorems, since we need to prove that they are equivalent to the chosen
definition. Among these multiple characterizations, there is no “correct” definition (although 
mathematicians may have their favorite). Each characterization will be best suited for certain purport 
and problems, while it is inadequate for others.

"7 3 - 9 8'
6 2 - 8 7
8 4 0 7
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EXA M PLE  4 The coefficient matrix of the identity transformation

y  i = * i
yi  =  *2

yn — x n

(a linear transformation from Rn to R" whose output equals its input) is the n x n 
matrix

1 0 . . .  0 
0 1 . . .  0

0 0 1

All entries on the main diagonal are 1, and all other entries are 0. This matrix is 
called the identity matrix and is denoted by /„:

h  =
1 O'

1 0 O'

0 1 , h  = 0 1 0
0 0 1.

and so on.

We have already seen the identity matrix in other contexts. For example, we 
have shown that a linear system Ax  =  b of n equations with n unknowns has a 
unique solution if and only if rref(/4) =  (See Theorem 1.3.4.)

EXA M PLE  5 Consider the letter L (for Linear?) in Figure 4, made up of the vectors 

Show the effect of the linear transformation

and

0 - 1
1 0

T(x)  =

on this letter, and describe the transformation in words.

Solution 

We have

0 - 1
1 0

and T - 1 '
0

- 2'

0

Figure 4
as shown in Figure 5.

0  " ' I1 °J

Figure S
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EXA M PLE  6

The L is rotated through an angle of 90° in the counterclockwise direction.
"*iLet’s examine the effect of transformation T  on an arbitrary vector x =
* 2.

0 - 1 ' Y — 0 - f ~X\ - x 2

.! 0.
A ■

1 0 *2. x\_
T(x)  =

We observe that the vectors jc and T (jc) have the same length,

and that they are perpendicular to one another, since the dot product equals zero (see 
Definition A.8 in the appendix):

jc • T (jc) = 'x \' ' -X2
X2_ . x \.

=  — * i *2  +  * 2*1 =  0 .

Paying attention to the signs of the components, we see that if x  is in the first quadrant
' “ *2(meaning that jcj and x 2 are both positive), then T(x)  =  

quadrant. See Figure 6.
*i

is in the second

We can conclude that T (jc) is obtained by rotating vector jc through an angle o

90° in the counterclockwise direction, as in the special cases jc = and jc =

considered earlier. (Check that the rotation is indeed counterclockwise when jc is in 
the second, third, or fourth quadrant.) I

Consider the linear transformation T (jc) =  Ax,  with

A =
n
4
7

Find

T 'O'
T 0 and T 0

.0. .1.

T /
where for simplicity we write T 0 instead of H

0. \

T
0
0
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Theorem 2 .1.!

Solution
A straightforward computation shows that

and

T '1 2 3' T '1 '
T 0 = 4 5 6 0 = 4

0. 7 8 9. 0. .7.

'O' '1 2 3' 'O' '3 '
T 0 = 4 5 6 0 - 6

.1. 7 8 9. .1. 9.

Note that T 
column.

is the first column of the matrix A and that T is its third

We can generalize this observation:

! The columns of the matrix of a linear transformation
Consider a linear transformation T  from R m to R n. Then, the matrix of T  is

0 
0

A = T{e  i) T(e2) 

I I

T(em) where 2, =
ith

To justify this result, write

A = V] v2

Then

T(ei)  =  Aej = v\ v2

I I

=  Vi

by Theorem 1.3.8.
The vectors e \ , e2y. . . ,  in the vector space R m are sometimes referred to as 

thq standard vectors in R m. The standard vectors ?i, m are often denoted 
by i, j , k .
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EXA M PLE  7 Consider a linear transformation T(jc) =  A jc from Rm to R".

a. What is the relationship between 7(i;), T ( w ), and T(v  4- w),  where v and 
w are vectors in R m?

b. What is the relationship between T (C) and T (k v ), where i; is a vector in Rm 
and k is a scalar?

Solution

a. Applying Theorem 1.3.10, we find that

T(v + w) = A(v  +  w) = Av  + Aiu = T(v) + T(w).

In words, the transform of the sum of two vectors equals the sum of the 
transforms.

b. Again, apply Theorem 1.3.10:

T (kv) =  A(kv)  = kAv  =  kT(v) .

In words, the transform of a scalar multiple of a vector is the scalar multiple 
of the transform. ■

Figure 7 illustrates these two properties in the case of the linear transformation 
T from R 2 to R 2 that rotates a vector through an angle of 90c in the counterclockwise 
direction. (Compare this with Example 5.)

Figure 7 (a) Illustrating the property T( v +  w ) =  T( v) + T( w ). 
(b) Illustrating the property T( k v )  = kT( v ) .

In Example 7, we saw that a linear transformation satisfies the two equations 
T(v + w) =  T(v)  +  T(w)  and T(kv)  = kT(v) .  Now we will show that the converse 
is true as well: Any transformation from Rm to R" that satisfies these two equations 
is a linear transformation.

Theorem 2 .1.3 Linear transform ations
A transformation T from R m to R n is linear if (and only if)

a. T(v  +  w) = T(v)  +  T (w ), for all vectors v and w in R"1, and
b. T(kv)  = k T ( v ), for all vectors ? in R m and all scalars k.

P roof In Example 7, we saw that a linear transformation satisfies the equations in (a)
and (b). To prove the converse, consider a transformation T from Rm to R" that 
satisfies equations (a) and (b). We must show that there exists a matrix A such that
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T (jc) =  A x , for all jc in the vector space Rm. Let e \ ........ em bc the standard vectors
introduced in Theorem 2.1.2.

T(x)  =  T

x\
X2

=  T ( x \ e i) +  T(x2e2) H-' cT(xmem) (by property a)

= x \ T ( e ]) + x 2T(e2) + ----- \-xmT (em) (by property b)

=  Ax

■ 1 1 1 '*1 '
x 2

T(e 1) T(e2) T(em)

1 1 1 . x m _

Here is an example illustrating Theorem 2.1.3.

EXAM PLE 8 Consider a linear transformation T  from R 2 to R 2 such that r(i;i) =  and 
T (v 2) =  2v2> for the vectors and v2 sketched in Figure 8. On the same axes, 
sketch T (jc ),  for the given vector x. Explain your solution.

Solution
Using a parallelogram, we can represent x as a linear combination of Cj and C2, as 
shown in Figure 9:

JC =  C \ V \  +  C i V l -

By Theorem 2.1.3,

T(x)  =  r ( c | C ,  ~h C2V2) =  c,|7 ,(u i) + c 2T ( v 2) =  5C1U1 4- 2c’2V2- 

The vector c\d\  is cut in half, and the vector c2? 2 is doubled, as shown in Figure 10.

Figure 10

Imagine that vector jc is drawn on a rubber sheet. Transformation T  expands 
this sheet by a factor of 2 in the P2-direction and contracts it by a factor of 2 in the 
?i-direction. (We prefer "contracts by a factor of 2” to the awkward “expands by a 
factor of V ’) ■
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EXERCISES 2.
GOAL Use the concept o f a linear transformation in 
terms o f the formula v =  Ax, and interpret simple linear 
transformations geometrically. Find the inverse o f a lin­
ear transformation from  R2 to R 2 (if it exists). Find the 
matrix o f a linear transformation column by column.

Consider the transformations from R3 to R3 defined in 
Exercises 1 through 3. Which o f these transformations are 
linear?

1. yi =  2.x2 2. y i =2x2  3. vj =  *2 — *3
V’2 = X2 + 2 \'2 =  3*3 V’2 = *1*3
V’3 =  2*2 V3 =  *1 V’3 — *i -  *2

4. Find the matrix of the linear transformation
yi = 9 * | +  3*2 -  3*3
\ ’2 = 2 * 1  —  9 * 2  +  * 3

V’3 =  4*1 — 9*2 — 2*3 
V4 =  5*1 +  *2 +  5*3.

5. Consider the linear transformation T from R3 to R2 with
■f "o'
0

' 1 '6 '—
11 , T 1 —

_0 0 9

"o'
’- 1 3 “0 _

17
1

and T

Find the matrix A of T.

6. Consider the transformation T from IR2 to R3 given by

r 1 " l " "4 "
*1

=  *1 2 + x2 5
*2 3 6

Is this transformation linear? If so, find its matrix.

7. Suppose 5,, \>2........ vm are arbitrary vectors in W
Consider the transformation from R"1 to R" given by

*i
*T

= *1^1 -b *21™2 H---- + *,„?,„.

Is this transformation linear? If so, find its matrix A in 
terms of the vectors v\, 52........Vm-

8. Find the inverse of the linear transformation
yi =  a' i +  7*2  
\’2 = 3*i + 20*2.

In Exercises 9 through 12, decide whether the given matrix 
is invertible. Find the inverse if  it exists. In Exercise 12, 
the constant k is arbitrary.

9.
2 3 
6 9

10.

1 1. 1 2 .

13. Prove the following facts:
a. The 2 x 2  matrix

A =

is invertible if and only if ad — be ^  0. (Hint: Con­
sider the cases a ^  0 and a = 0 separately.)

b. If

is invertible, then

a b -1 _ 1 r̂~1

c d ad — be

—
1

cT

[The formula in part (b) is worth memorizing.]

14. a. For which values of the constant k is the matrix
'2 3'
5 k

invertible?

b. For which values of the constant k are all entries of
[2 3‘T 1 •^ ^ integers?

(See Exercise 13.)

15. For which values of the constants a and b is the matrix

- b
A =

invertible? What is the inverse in this case? (See Exer­
cise 13.)

Give a geometric interpretation o f the linear transforma­
tions defined by the matrices in Exercises 16 through 23. 
Show the effect o f these transformations on the letter L 
considered in Example 5. In each case, decide whether the 
transformation is invertible. Find the inverse if it exists, 
and interpret it geometrically. See Exercise 13.

16.

19.

22.

3 0 

0 3 .

1 ()'
0 0

1 0
0 - I

17.

20.

23.

-1 0 
0 - I

0 I
1 0

0 2 
-2 0

18.

21.

0.5 0
0 0.5

0 1 
-1  0

Consider the circular face in the accompanying figure. For 
each o f the matrices A in Exercises 24 through 30, draw 
a sketch showing the effect o f the linear transformation 
T(x) = Ax on this face.
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24.

27.

30.

0 -1
1

1 
0

0 0 
0 1

'2 0 r
25. 26.

0 2.

28.
'l  O' 29.
0 2

0 1

1 0
-1  0 

0 -1

31- In Chapter 1, we mentioned that an old German bill 
shows the mirror image of Gauss’s likeness. What linear 
transformation T can you apply to get the actual picture 
back?

32. Find an n x n matrix A such that Ax  =  3*, for all x 
in R n.

33. Consider the transformation T from R2 to R 2 that rotates 
any vector jc through an angle of 45c in the counterclock­
wise direction, as shown in the following figure:

34.

35.

You are told that T is a linear transformation. (This will 
be shown in the next section.) Find the matrix of T.

Consider the transformation T from R2 to R2 that rotates 
any vector jc through a given angle 0 in the counterclock­
wise direction. (Compare this with Exercise 33.) You are 
told that T is linear. Find the matrix of T in terms of 0.

In the example about the French coast guard in this sec­
tion, suppose you are a spy watching the boat and listen­
ing in on the radio messages from the boat. You collect 
the following data:

When the actual position is they radio

37.

When the actual position is , they radio

Can you crack their code (i.e., find the coding matrix), 
assuming that the code is linear?

36. Let T be a linear transformation from R 2 to R 2. Let v \ , 
?2, and w be three vectors in R 2, as shown below. We 
are told that T{v\ ) =  v\ and T(vi) = 3v2-On the same 
axes, sketch T(w).

Consider a linear transformation T from R2 to R2. Sup­
pose that v and w are two arbitrary vectors in R2 and that 
.v is a third vector whose endpoint is on the line segment 
connecting the endpoints of v and w. Is the endpoint 
of the vector T (jc) necessarily on the line segment con­
necting the endpoints of T(v) and T(w) l  Justify your 
answer.

38.

k between 0 and 1.]
We can summarize this exercise by saying that a 

linear transformation maps a line onto a line.

The two column vectors v i and Co of a 2 x 2 matrix A are 
shown in the accompanying sketch. Consider the linear 
transformation T(x) = A x , from R2 to R2. Sketch the 
vector

- Li1

39. Show that if T is a linear transformation from R"' to R ", 
then

-V|
.r->

=  x \T{e\)  +  x iT ie i )  + -----h xmT(em).

where e \ , e i ........em are the standard vectors in !
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40. Describe all linear transformations from R  (=  R 1) to R. 
What do their graphs look like?

41. Describe all linear transformations from R 2 to R  (=  R 1). 
What do their graphs look like?

42. When you represent a three-dimensional object graphi­
cally in the plane (on paper, the blackboard, or a com­
puter screen), you have to transform spatial coordinates,

x2 
*3

into plane coordinates, The simplest choice is a

linear transformation, for example, the one given by the 
matrix

1

- k  0

a. Use this transformation to represent the unit cube 
with comer points

0 1 0 0
0 , 0 , 1 , 0
0 0 0 1

1 0 1 1
1 , 1 , 0 , 1
0 1 1 1

Include the images of the x \ , JC2, and *3 axes in your 
sketch:

yi

-1
y\

b. Represent the image of the point

in part (a). Explain.
c. Find all the points

12
1 

L 2 J

in your figure

that are transformed to

in .

. Explain.

43. a. Consider the vector v = . Is the transformation

b.

T( x )  = v ■ x  (the dot product) from R 3 to R  linear? 
If so, find the matrix of T.
Consider an arbitrary vector 5 in R 3. Is the transfor­
mation T(x) = v - x linear? If so, find the matrix of 
T (in terms of the components of 5).
Conversely, consider a linear transformation T  from 
R 3 to R. Show that there exists a vector v in R 3 such

44.

that T(x) =  v ■ x, for all x in R  . 

The cross product of two vectors in ] p3 ;is given by

Cl\ V
a2 X b2 = aib\ -  a  1^3

_«3_ h a\b2 — a2b\

45.

(See Definition A.9 and Theorem A. 11 in the Appendix.) 
Consider an arbitrary vector v in R 3. Is the transforma­
tion T(x) = v x x  from R 3 to R 3 linear? If so, find its 
matrix in terms of the components of the vector v.

Consider two linear transformations y =  T(x)  and 
z =  L(y), where T goes from R m to R p and L goes 
from R p to R n. Is the transformation z =  L ( T (.?)) lin­
ear as well? [The transformation z  =  L ( j ( x ) )  is called 
the composite of T and L .]

46. Let

A = a b and B =

1------------------------------------------------

Cl.

c d r s

47.

Find the matrix of the linear transformation T ( jc) =  
B(Ax).  (See Exercise45.) [Hint: Find T(e \ ) and T (?2)-l

Let T be a linear transformation from R 2 to R 2. Three 
vectors ?i, V2 , w in R 2 and the vectors r ( ? i) ,  T(v 2 ) 
are shown in the accompanying figure. Sketch T(w).  
Explain your answer.

48. Consider two linear transformations T and L from R 2 to 
R 2. We are told that 7 (0 ]) =  L(v\)  and T(v2) =  £(£2) 
for the vectors and V2 sketched below. Show that 
T(x) = L(x),  for all vectors x in R 2.
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49. Some parking meters in downtown Geneva, Switzerland, 
accept 2 Franc and 5 Franc coins.
a. A parking officer collects 51 coins worth 144 Francs. 

How many coins are there of each kind?
b. Find the matrix A that transforms the vector

number of 2 Franc coins 
number of 5 Franc coins

into the vector

total value of coins 
total number of coins

c. Is the matrix A in part (b) invertible? If so, find the 
inverse (use Exercise 13). Use the result to check your 
answer in part (a).

50. A goldsmith uses, a platinum alloy and a silver alloy to 
make jewelry; th^ densities of these alloys are exactly 
20 and 10 grams per cubic centimeter, respectively.
a. King Hiero of Syracuse orders a crown from this 

goldsmith, with a total mass of 5 kilograms (or 
5,000 grams), with the stipulation that the platinum 
alloy must make up at least 90% of the mass. The 
goldsmith delivers a beautiful piece, but the king’s 
friend Archimedes has doubts about its purity. While 
taking a bath, he comes up with a method to check 
the composition of the crown (famously shouting 
“Eureka!’' in the process, and running to the king’s 
palace naked). Submerging the crown in water, he 
finds its volume to be 370 cubic centimeters. How 
much of each alloy went into this piece (by mass)? 
Is this goldsmith a crook?

b. Find the matrix A that transforms the vector

52.

b. Is the matrix A in part (a) invertible? If so, find the 
inverse (use Exercise 13). Use the result to write a 
formula expressing F in terms of C.

In the financial pages of a newspaper, one can sometimes 
find a table (or matrix) listing the exchange rates between 
currencies. In this exercise we will consider a miniature 
version of such a table, involving only the Canadian dol­
lar (C$) and the South African Rand (ZAR). Consider 
the matrix

C$ ZAR

A = 1/8
1

C$
ZAR

representing the fact that C$1 is worth ZAR8 (as of 
June 2008).
a. After a trip you have C$100 and ZAR 1,600 in your 

pocket. We represent these two values in the vector 
100

1,600
. Compute Ax. What is the practical

significance of the two components of the vector Ax?
b. Verify that matrix A fails to be invertible. For which 

vectors b is the system Ax = b consistent? What 
is the practical^ significance of your answer? If the 
system Ax = b is consistent, how many solutions jc 
are there? Again, what is the practical significance 
of the answer?

53. Consider a larger currency exchange matrix (see Exer­
cise 52), involving four of the world’s leading currencies: 
Euro (€), U.S. dollar ($), Japanese yen (¥), and British 
pound (£).

51.

mass of platinum alloy 
mass of silver alloy

into the vector
total mass 

total volume

for any piece of jewelry this goldsmith makes,
c. Is the matrix A in part (b) invertible? If so, find the in­

verse (use Exercise 13). Use the result to check your 
answer in part (a).

The conversion formula C =   ̂(F —32) from Fahrenheit 
to Celsius (as measures of temperature) is nonlinear, in 
the sense of linear algebra (why?). Still, there is a tech­
nique that allows us to use a matrix to represent this 
conversion.
a. Find the 2 x 2 matrix A that transforms the vector

. (The second row of A will
> ■ " c "

1 into the vector
1

be [0 l] .)

$ ¥ £

A -
8 ** * * 

* * * 2
170 * * *
* * * *

The entry cijj gives the value of one unit of the 7 th 
currency, expressed in terms of the zth currency. For 
example, 031 =  170 means that €l =  ¥170 (as of 
June 2008). Find the exact values of the 13 missing 
entries of A (expressed as fractions).

54. Consider an arbitrary currency exchange matrix A (see 
Exercises 52 and 53).
a. What are the diagonal entries an of A ‘?
b. What is the relationship between aij and aj -{ ?
c. What is the relationship between a/*, and a,7?
d. What is the rank of A1 What is the relationship 

between A andrref(y4)?
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Linear Transformations in Geometry

In Example 2.1.5 we saw that the matrix represents a counterclockwise

EXA M PLE  I

0 - 1  

J  OJ
rotation through 90° in the coordinate plane. Many other 2 x 2  matrices define simple 
geometrical transformations as well; this section is dedicated to a discussion of some 
of those transformations.

Consider the matrices 

A =
f2 O' '1 O' - 1  O'

l--
---

---
---

o 2_

II

0 0.
, c  =

0 1

D =
0  1

- 1  0
E =

1 0.2
0  1

and F =
1 -1
1 1

Show the effect of each of these matrices on our standard letter L ,3 and describe 
each transformation in words.

a.

A = 2 0 
0 2

The L gets enlarged by a factor of 2; we will call this transformation a scaling 
by 2 .

b.

1 o
0 0

The L gets smashed into the horizontal axis. We will call this transformation 
the orthogonal projection onto the horizontal axis.

3See Example 2.1.5. Recall that vector is the foot of our standard L, and is its back.
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C = -1 o l 
0 U

, 
1

0

The L gets flipped over the vertical axis. We will call this the reflection about 
the vertical axis.

D = o 1 
-1 0

The L is rotated through 90°, in the clockwise direction (this amounts to a 
rotation through —90°). The result is the opposite of what we got in Exam­
ple 2.1.5.

1 0.2
0 1

1 1
_0_ _0_

The foot of the L remains unchanged, while the back is shifted horizontally 
to the right; the L is italicized, becoming L. We will call this transformation 
a horizontal shear.

F= 1 -1
1 1
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There are two things going on here: The L is rotated through 45° and also enlarged 
(scaled) by a factor of y/2. This is a rotation combined with a scaling (you may 
perform the two transformations in either order). Among all the possible composites 
of the transformations considered in parts (a) through (e), this one is particularly 
important in applications as well as in pure mathematics (see Theorem 7.5.3, for 
example). ■

We will now take a closer look at the six types of transformations we encountered 
in Example 1.

S ca l in g s
For any positive constant k y the matrix

k 0  

0  k

k O' - 'k  O' ~ x \ ' kx\
—  1 ’x \ '

°  k
X  =

0  k * 2 . kx  2
----  A.

* 2 _

defines a scaling by k , since

= kx.

This is a dilation (or enlargement) if k exceeds 1, and it is a contraction (or shrinking) 
for values of k between 0 and 1. (What happens when k is negative or zero?)

O rthogonal P roject ion s4
Consider a line L in the plane, running through the origin. Any vector x  in R 2 can 
be written uniquely as

jc =  Jc11 +  X 1 ,

where jc11 is parallel to line L, and x 1  is perpendicular to L. See Figure 1.

Figure 2

The transformation T (x) = x 11 from R 2 to R 2 is called the orthogonal projection 
o f x  onto L , often denoted by projL(jc):

p ro j jx )  =  x 11.

You can think of projL(jt) as the shadow vector x  casts on L if you shine a ligM] 
straight down on L.

Let L 1  be the line through the origin perpendicular to L. Note that x 1  is paralle 
to L 1 , and we can interpret x 1 as the orthogonal projection of jc onto L 1 , as illustrate! 
in Figure 2.

4The term orthogonal is synonymous with perpendicular. For a more general discussion of projection!
see Exercise 33.
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We can use the dot product to write a formula for an orthogonal projection. 
Before proceeding, you may want to review the section “Dot Product, Length, 
Orthogonality” in the appendix.

To find a formula for Jc11 , let w be a nonzero vector parallel to L . Since Jc11 is 
parallel to w, we can write

jc11 =  k w ,

for some scalar k about to be determined. Now x ± = x  — x^ = x  — kw  is perpen­
dicular to line L, that is, perpendicular to u>, meaning that

(jc —  kw) • w =  0 .

It follows that
x  • w

x w — k(w  • w) =  0 , or, k =

We can conclude that
w • w

pro)L(x) =  jc11 = kw  =  ^ w.

See Figure 3. Consider the special case of a u n i t  vector u  parallel to L. Then the 
formula for projection simplifies to

projj/.?) =  « =  (■?• u)u

since u • u =  II m II2 =  1 for a unit vector u.

Is the transformation T (3c) =  projL(jc) linear? If so, what is its matrix? If we write

then

JC = ’*l" and u =
'u  i"

.*2. _W2 .

proj; (x) =  (x • u)u =

=  (X\U\ + x 2u2)

Mi Wl
.*2 . .M2_ J _M2.

u  i 

u 2
U {X\  +  U \ U 2X2 
U \ U 2X\  +  u \ x  2

U\U2 

u2
U ) U2

U \ U 2

U \ U 2

J
JC.
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EXA M PLE  2

D efin itio n  2.2.1

It turns out that T(x)  =  projL(jc) is indeed a linear transformation, with matrix
u U\U2

U\U2 

matrix is

. More generally, if w is a nonzero vector parallel to L, then the

W\W2 1

w 2 +  w2

w 2

W\W2 w l
. (See Exercise 12.)

Find the matrix A of the orthogonal projection onto the line L  spanned by w =

Solution 

A =
1 w] W\W2 1 16 1 2 ' 0.64 0.48'

Wj +  U>2 W\U)2 W2 “  25 12 9 0.48 0.36

Let us summarize our findings.

Orthogonal Projections

Consider a line L  in the coordinate plane, running through the origin. Any vector x 
in R2 can be written uniquely as

x  =  j c 11 +  jc 1 ,

where j c 11 is parallel to line L, and jc 1  is perpendicular to L.
The transformation T  ( jc )  = x 11 from R 2 to R 2 is called the orthogonal projection 

o fx  onto L, often denoted by proj^(jc). If w is a nonzero vector parallel to L, then

In particular, if u =
u i
u2

. /  X • w \  _
proj7 (x) = — — w.

\ w  • w J

is a unit vector parallel to L, then

projL(jc) =  (x • u)u.

The transformation T (x) =  projL(jc) is linear, with matrix

1 W\W2 ■ u\ U\U2

w] +  w l W\W2 w2 U\U2 U2

R e fle c tio n s
Again, consider a line L in the coordinate plane, running through the origin, and let 
jc be a vector in R2. The reflection ref^(jc) of x  about L is shown in Figure 4: We 
are flipping vector jc over the line L. The line segment joining the tips of vectors x 
and ref^x  is perpendicular to line L and bisected by L. In previous math courses you 
have surely seen examples of reflections about the horizontal and vertical axes [when 
comparing the graphs of y =  / ( jc ) ,  y =  —/ ( * ) ,  and y =  / ( —jc ) ,  for example].

We can use the representation x = x^ -h jc-1 to write a formula for ref^(jc). See 
Figure 5.

We can see that

ref^(jc) =  j c 11 -  jc1 .

Alternatively, we can express ref^(jc) in terms of jc1  alone or in terms of jc11 a lo n e :

refi(jc) =  jc" — jc 1  =  ( jc —  jc1 ) — jc1  =  jc — 2x 1
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- \r cf ,(A

(use Figure 5 to explain this formula geometrically) and

ref^(x) =  jc11 — x 1  =  jc11 — (Jc — x 11) =  2Jc11 — x 
=  2 projL(x) — x  =  2 (x • u)u — x,

where u is a unit vector parallel to L.
The formula ref(Jc) =  2(x • u)u — x  allows us to find the matrix of a reflection.

It turns out that this matrix is of the form ^  , where a 2 +  b2 =  1 (see
b ~ a \

Exercise 13), and that, conversely, any 2 x 2  matrix of this form represents a reflection 
about a line (see Exercise 17).

D e fin it io n  2.2.2 Reflections
Consider a line L  in the coordinate plane, running through the origin, and let 
jc =  x 11 4 - x 1- be a vector in R2. The linear transformation T (x) =  jc11 — Jc1  is 
called the reflection o fx  about L, often denoted by ref^C?):

ref^(f) =  f 11 — j?1 .

We have a formula relating refLC?) to projL(Jc):

ref^(Jc) =  2 projL(x) — x = 2 (x • u)u — x.

, where a2 +  b2 =  1. Conversely, any matrixThe matrix of T  is of the form
a b
b —a

of this form represents a reflection about a line.

Use Figure 6 to explain the formula ref^(jc) =  2projL(jt) — x geometrically.

Figure 6
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Orthogonal Projections and Reflections in Space
Although this section is mostly concerned with linear transformations from R 2 to 
R 2, we will take a quick look at orthogonal projections and reflections in space, 
since this theory is analogous to the case of two dimensions.

Let L  be a line in coordinate space, running through the origin. Any vector x  
in R 3 can be written uniquely as x  =  jc11 +  x 1 , where jc11 is parallel to L, and x 1  is 
perpendicular to L. We define

projL(*) =  xK

and we have the formula

projL(Jt) =  Jc11 =  (x • 2)5,

where u is a unit vector parallel to L. See Definition 2.2.1.
Let L L =  V  be the plane through the origin perpendicular to L; note that the 

vector x ± will be parallel to L x =  V. We can give formulas for the orthogonal 
projection onto V, as well as for the reflections about V and L, in terms of the 
orthogonal projection onto L :

projy(x)  =  x  — projL(;c) =  Jc — (Jc * u)u,

ref^(jc) =  projL(ic) — projv (f) =  2 projL(Jc) — x  =  2 (Jc • u)u — Jc, and

refy(jc) =  projv (jc) — projL(Jc) =  — ref/^0?) =  x — 2 (x • u)u.

See Figure 7, and compare with Definition 2.2.2.

EXA M PLE  3 Let V be the plane defined by 2x\ + x 2 — 2x$ =  0, and let x =
' 5] 

4 
- 2

. Find refy (*)

Solution
Note that the vector v = is perpendicular to plane V (the components of

are the coefficients of the variables in the given equation of the plane: 2 , 1, and —2] 
Thus

- - _L-_ -

M l ” 3

2 '
1

- 2
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R otat ions
Consider the linear transformation T  from R 2 to R 2 that rotates any vector x  through 
a fixed angle # in the counterclockwise direction ,5 as shown in Figure 8 . Recall 
Example 2.1.5, where we studied a rotation through 0 = n /2 .

T(x)

Now consider Figure 9, where we introduce the auxiliary vector v, obtained
Vby rotating x  through n j l .  From Example 2.1.5 we know that if x — 

. Using basic trigonometry, we find that

X l
then

y =
- * 2

X\

T (x) =  (cos 0)x  +  (sin 6?) y =  (cos#)=  (cos#) x\~ +  (sin#) —X l

X2 *i.
(C 0S#)JC 1 --  (sin#)jC2
(sin#)*i +  (cos 0 )x2_

cos 0 —sin 0 
sin# cos#

cos# —sin# 
sin# cos#

5 We can define a rotation more formally in terms of the polar coordinates of x. The length of T (x) 
equals the length of x\ and the polar angle (or argument) of T (x) excceds the polar angle of.? by 6.
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Theorem 2.2.3

EXA M PLE  4

EXA M PLE  5

This computation shows that a rotation through # is indeed a linear transformation, 
with the matrix

cos# —sin# 
w sin # cos #

Rotations
The matrix of a counterclockwise rotation in M2 through an angle # is

cos# —sin# 
sin# cos#

Note that this matrix is of the form
a —b 
b a

matrix of this form represents a rotation.

, where a 2 +  b2 =  1. Conversely, any

The matrix of a counterclockwise rotation through n /6  (or 30°) is

c o s ( 7t / 6 ) — sin(jr/6)" 1 V3 - l "
sin(7r/6) cos(7r/6) ~  2 1 A

R otations  C o m b in ed  with a S ca l in g  
Examine how the linear transformation

_  \a - b  
T (x) =

b a.

affects our standard letter L. Here a and b are arbitrary constants.

Solution
Figure 10 suggests that T  represents a rotation combined with a scaling. Think polar 

coordinates: This is a rotation through the phase angle # of vector ^ , combined

with a scaling by the magnitude r — \ / a 2 +  b2 of vector . To verify this claim

algebraically, we can write the vector in polar coordinates, as

a~ r cos#"
b_ r sin#

a - b  
b a

Figure 10
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r cos#

Figure 11

Theorem 2.2.4

/

as illustrated in Figure 11. Then

a —b r cos# —r sin# cos# — sin#
b a r sin# r cos#

— r
sin # cos#

It turns out that matrix
- b

a
is a scalar multiple of a rotation matrix, as claimed.

Rotations combined with a scaling
a —b

A matrix of the form represents a rotation combined with a scaling.

,thenMore precisely, if r and # are the polar coordinates of vector 

represents a rotation through # combined with a scaling by r.

- b
a

Shears
We will introduce shears by means of some simple experiments involving a ruler 
and a deck of cards.6

In the first experiment, we place the deck of cards on the ruler, as shown in 
Figure 12. Note that the 2 of diamonds is placed on one of the short edges of the 
ruler. That edge will stay in place throughout the experiment. Now we lift the other 
short edge of the ruler up, keeping the cards in vertical position at all times. The 
cards will slide up, being “fanned out,” without any horizontal displacement.

Figure 13 shows a side view of this transformation. The origin represents the 
ruler’s short edge that is staying in place.

O
Ruler

Figure 13

Such a transformation T  is called a vertical shear. If we focus on the side view 
only, we have a vertical shear in R 2 (although in reality the experiment takes place 
in space).

6T w o  h in ts fo r  in structors:

• Use several decks of cards for dramatic effect.
• Hold the decks together with a rubber band to avoid embarrassing accidents.
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Theorem  2.2.5

Now let’s draw a vector x = on the side of our deck of cards, and let’s find

a formula for the sheared vector T (jc), using Figure 14 as a guide. Here, k denotes 
the slope of the ruler after the transformation:

T (x) Xi 1 O' X\~ 1 O'
*2. ) - kx  1 +  *2 . k 1 X2. k 1

JC.

Deck of Cards

Slope k

Figure 14

We find that the matrix of a vertical shear is of the form
1 0 
k 1

, where k is an

arbitrary constant.
Horizontal shears are defined analogously; consider Figure 15.

Ruler

O / / ~ / / / /

Deck of 
Cards

Figure 15

We leave it as an exercise to the reader to verify that the matrix of a horizontal
1 k 1
q j . Take another look at part (e) of Example 1.

Oblique shears are far less important in applications, and we will not consider 
them in this introductory text.

shear is of the form

Horizontal and vertical shears

The matrix of a horizontal shear is of the form

shear is of the form

1 k 
0 1

1 0
k 1

, and the matrix of a vertica 

, where k is an arbitrary constant. ■

The Scottish scholar d’Arcy Thompson showed how the shapes of related species 
of plants and animals can often be transformed into one another, using linear as well 
as nonlinear transformations.7 In Figure 16 he uses a horizontal shear to transform 
the shape of one species of fish into another.

7Thompson, d’Arcy W., On Growth and Form, Cambridge University Press, 1917. P. B. Medawar calti 
this “the finest work of literature in all the annals of science that have been recorded in the English 
tongue.”
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Argyropelecus olfersi. Sternoptyx diaphana.

Figure 16

EXERCISES 2.2
/

GOAL Use the matrices o f orthogonal projections, re­
flections, and rotations. Apply the definitions o f shears, 
orthogonal projections, and reflections.

1. Sketch the image of the standard L under the linear trans­
formation

'3  r  
1 2 JC.

(See Example 1.)

2. Find the matrix of a rotation through an angle of 60° in 
the counterclockwise direction.

3. Consider a linear transformation T from M2 to R3. Use 
T (?i) and T  (?2) to describe the image of the unit square 
geometrically.

4. Interpret the following linear transformation geometri­
cally:

T(x) =
1 1

-1  1 x .

5. The matrix

- 0.8 - 0.6
0.6 - 0.8

represents a rotation. Find the angle of rotation (in 
radians).

Let L be the line in R3 that consists of all scalar multi- 
"2“

. Find the orthogonal projectionpies of the vector

of the vector onto L.

^  Let L be the line in
V

Pies of l

L2
foe line L.

that consists of all scalar multi- 
, f

. Find the reflection of the vector about

8. Interpret the following linear transformation geometri­
cally:

0 - f
T(x) = -1 0

9. Interpret the following linear transformation geometri­
cally:

T(x)
1 0 
1 1 JC.

10. Find the matrix of the orthogonal projection onto the 
line L in R2 shown in the accompanying figure:

11. Refer to Exercise 10. Find the matrix of the reflection 
about the line L.

12. Consider a line L in the plane, running through the ori- 
w \"

gin. If w =
w 2

is a nonzero vector parallel to L, show

that the matrix of proj^(Jc) is

1
tv2 +  u;2

w
W\U)2

W\W2 
1̂ 2

13. Suppose a line L in R2 contains the unit vector

u =

Find the matrix A of the linear transformation 
T (x ) =  ref^(jc). Give the entries of A in terms of u\

\a b\and u2. Show that A is of the form 

a2 + b 2 =  I.
b —a , where



66 C H A P T E R  2 Linear Transformations

14. Suppose a line L in R3 contains the unit vector

wi
M 2 

M3
Find the matrix A of the linear transformation 
T(x)  =  proj^C?). Give the entries of A in terms 
of the components mi, M2, M3 of u.
What is the sum of the diagonal entries of the matrix 
A you found in part (a)?

Suppose a line L in R3 contains the unit vector

a.

b.

15.

u =

Find the matrix A of the linear transformation T(x) = 
ref/  ̂( jc). Give the entries of A in terms of the components
M l,  U 2> U 3 Of 5.

16. Let T ( jc)  =  ref^ ( jc) be the reflection about the line L in 
R2 shown in the accompanying figure.
a. Draw sketches to illustrate that T is linear.
b. Find the matrix of T in terms of 0.

18. The linear transformation T (x) =

17. Consider a matrix A of the form A = “ , wherea
a2 + b2 =  1. Find two nonzero perpendicular vectors 
v and w such that Av  =  v and Aw = —w (write the 
entries of v and w in terms of a and b). Conclude that 
T (Jc) =  A jc represents the reflection about the line L 
spanned by v.

0.6 0.8' _ . 
0.8 -0 .6  X lS 

a reflection about a line L (see Exercise 17). Find the 
equation of line L (in the form y =  mx).

Find the matrices o f  the linear transformations from M3 to 
R3 given in Exercises 19 through 23. Some o f  these trans­
formations have not been formally defined in the text. Use 
common sense. You may assume that all these transforma­
tions are linear.

19. The orthogonal projection onto the jc- v-plane.

20. The reflection about the jc- z-plane.

21. The rotation about the z-axis through an angle of jt/ 2, 
counterclockwise as viewed from the positive z-axis.

22. The rotation about the v-axis through an angle 0 , coun­
terclockwise as viewed from the positive y-axis.

23. The reflection about the plane y =  z.

24. Rotations and reflections have two remarkable proper­
ties: They preserve the length of vectors and the an­
gle between vectors. (Draw figures illustrating these 
properties.) We will show that, conversely, any linear 
transformation T from R2 to R2 that preserves length 
and angles is either a rotation or a reflection (about a 
line).
a. Show that if T ( jc) =  Ax preserves length and angles, 

then the two column vectors v and w of A must be 
perpendicular unit vectors.

b. Write the first column vector of A as v = ? ; noteb
that a2 H- b2 =  1, since t; is a unit vector. Show that 
for a given v there are two possibilities for w y the 
second column vector of A. Draw a sketch showing 
v and the two possible vectors w. Write the compo­
nents of w in terms of a and b.
Show that if a linear transformation T from R2 to R2 
preserves length and angles, then T is either a rota­
tion or a reflection (about a line). See Exercise 17.

1 k 
0 \ j

arbitrary constant. Interpret your result geometrically.

c.

25. Find the inverse of the matrix , where k is an

26. a. Find the scaling matrix A that transforms into

b. Find the orthogonal projection matrix B that trans­

forms '2 into "2
03

c. Find the rotation matrix C that transforms

3
4

d. Find the shear matrix D that transforms

7 
3

e. Find the reflection matrix E that transforms

-5 
5

27. Consider the matrices A through E below.

into

into

intt

A =
0.6 0.8
0.8 - 0.6

B =

C = 0.36 -0.48' D = '-0 .8 0.6'
-0.48 0.64 -0 .6 -0 .8

E = 1 0
-1  1
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Fill in the blanks in the sentences below.
We are told that there is a solution in each case.
Matrix______represents a scaling.
Matrix______represents an orthogonal projection.
Matrix______ represents a shear.
Matrix______represents a reflection.
Matrix______ represents a rotation.

28. Each of the linear transformations in parts (a) through 
(e) corresponds to one (and only one) of the matrices A 
through J . Match them up.
a. Scaling b. Shear c. Rotation
d. Orthogonal Projection e. Reflection

A =

D =

G =

0 o' B =0 1

'1 0̂ E =
0 7_

2 1 
1 0

1 0
-3  1

C =
- 0.6
- 0.8

0.8
- 0.6

0.6 0.6
0.8 0.8

H =
2 -1
1 2 I = 0 0 

1 0

J =
0.8 - 0.6
0.6 - 0.8

29. Let T be a function from R m to R n, and let L be a func­
tion from Rn to R m. Suppose that L ( T (j?)) =  x for all 
x in Rm and T (/.(>)) =  v for all y in R n. If T is a lin­
ear transformation, show that L is linear as well. [Hint: 
v +  w =  T(L(v)) +  T(L(w)) =  T(L(v) +  L(w)) 
since T is linear. Now apply L on both sides. |

30. Find a nonzero 2 x 2  matrix A such that Ax  is parallel 
" fto the vector , for all x in ]

31. Find a nonzero 3 x 3  matrix A such that Ax is perpen- 
" f

dicular to 2 , for all x in F 3
3

32. Consider the rotation matrix D =

, where a  and p  are arbi-

cos a — sin a 
sin a  cos ct

cos p 
sin

and the vector v =  

trary angles.

a. Draw a sketch to explain why Dv = cos(of +  ft) 
sin(a +  P)^

b* Compute Dv. Use the result to derive the addition 
theorems for sine and cosine:

cos (a + P) = m. "  sin(a +  p) = . . . .

33. Consider two nonparallel lines L i and Li  in R 2. Explain 
why a vector C in R 2 can be expressed uniquely as

V  =  V \  +

where v\ is on Lj and v2 on L2. Draw a sketch. The 
transformation 7(u) =  v\ is called the projection onto 
L\ along L2. Show algebraically that T is linear.

34. One of the five given matrices represents an orthogonal 
projection onto a line and another represents a reflec­
tion about a line. Identify both and briefly justify your 
choice.

A = ~̂
"l
2

2
1

2
2

1
, B = -

' l  1 f  
1 1 1

3 2 2 1 3 1 1 1

C = D =  —  
3

1 "-1 2 2

F =
0.6
0.8

0.8'
-0 .6

1
E = -  

3
2
2

-1
2

2
-1

35. Let T be an invertible linear transformation from R 2 to 
R 2. Let P be a parallelogram in R 2 with one vertex at 
the origin. Is the image of P a parallelogram as well? 
Explain. Draw a sketch of the image.

36. Let T be an invertible linear transformation from R2 to 
R 2. Let P be a parallelogram in R 2. Is the image of P a 
parallelogram as well? Explain.

C l'

37. The trace of a matrix is the sum a + d of its

diagonal entries. What can you say about the trace of a 
2 x 2  matrix that represents a(n)
a. orthogonal projection b. reflection about a line
c. rotation d. (horizontal or vertical) shear.
In three cases, give the exact value of the trace, and in 
one case, give an interval of possible values.
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38. The determinant of a matrix is ad  — be (we

have seen this quantity in Exercise 2.1.13 already). Find 
the determinant of a matrix that represents a(n) 
a. orthogonal projection b. reflection about a line 
c. rotation d. (horizontal or vertical) shear.
What do your answers tell you about the invertibility of 
these matrices?

39. Describe each of the linear transformations defined by 
the matrices in parts (a) through (c) geometrically, as 
a well-known transformation combined with a scaling. 
Give the scaling factor in each case.

a.

c.

1 1 
1 1

3 4
4 - 3

b. 3 0 
-1  3

40. Let P and Q be two perpendicular lines in R  . For 
a vector x  in R 2, what is projp(jc) +  proj^(jc)? Give 
your answer in terms of jc. Draw a sketch to justify your 
answer.

41. Let P and Q be two perpendicular lines in R 2. For a 
vector jc in R 2, what is the relationship between refp (jc) 
and ref^O?)? Draw a sketch to justify your answer.

42. Let T (jc) =  proj^(jc) be the orthogonal projection onto 
a line in R2. What is the relationship between T (x) and 
T(T( x) )  ? Justify your answer carefully.

43. Use the formula derived in Exercise 2.1.13 to find the 
inverse of the rotation matrix

A =
cos# -s in #  
sin# cos#

Interpret the linear transformation defined by A 
metrically. Explain.

- l geo-

44. A nonzero matrix of the form A =
- b

represents

a rotation combined with a scaling. Use the formula de­
rived in Exercise 2.1.13 to find the inverse of A . Interpret 
the linear transformation defined by A-1 geometrically. 
Explain.

45. A matrix of the form A = , where a1 +b2 =  1,a b 
b —a

represents a reflection about a line (see Exercise 17). Use 
the formula derived in Exercise 2.1.13 to find the inverse 
of A. Explain.

A nonzero matrix of the form A =  f  ^ repre-
b - a

sents a reflection about a line L combined with a scaling. 
(Why? What is the scaling factor?) Use the formula de­
rived in Exercise 2.1.13 to find the inverse of A. Interpret

the linear transformation defined by A 1 geometrically. 
Explain.

47. Let T be a linear transformation from R2 to R2. Consider 
the function

/ ( ' )  =  T
cos(/) — sin(/)
sin(f) > V cos(r)

from R to R. Show the following:
a. The function f ( t )  is continuous. You may take for 

granted that the functions sin(r) and cos(0 are contin­
uous, and also that sums and products of continuous 
functions are continuous.

b. / ( tt/2 ) =  - / ( 0 ) .
c. There exists a number c between 0 and 7r/2 such 

that f ( c )  =  0. Use the intermediate value theorem 
of calculus, which tells us the following: If a func­
tion g(t) is continuous for a < t < b, and L is 
a number between g(a) and g(b), then there exists 
at least one number c between a and b such that 
8 (c) = L.

d. There exist two perpendicular unit vectors v\ and 
?2 in R2 such that the vectors 7’(tJi) and T(v2) are 
perpendicular as well. See the accompanying figure. 
(Compare with Theorem 8.3.3 for a generalization.)

48. Refer to Exercise 47. Consider the linear trans­
formation

T {x) =
0 4 
5 - 3

Find the function f ( t )  defined in Exercise 47, graph 
(using technology), and find a number c between 0 and 
7r/2 such that f ( c )  =  0. Use your answer to find two 
perpendicular unit vectors v 1 and v2 such that 7  (£4 ) an< 
T (?2) are perpendicular. Draw a sketch.

49. Sketch the image of the unit circle under the linear trans­
formation

T(x) =
5 0
0 2
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50. Let T  be an invertible linear transformation from R2 to 
R2. Show that the image of the unit circle is an ellipse 
centered at the origin.8 [Hint: Consider two perpendic­
ular unit vectors ?i and v2 such that 7"(01) and T(v2) 
are perpendicular.] (See Exercise 47d.) The unit circle 
consists of all vectors of the form

v =  cos(/)5i +  sin(r)i»2^

where t is a parameter.

51. Let w i and w2 be two nonparallel vectors in R2. Con­
sider the curve C in R2 that consists of all vectors of 
the form cos(f)u>i -I- s\n(t)w2, where t is a parameter. 
Show that C is an ellipse. (Hint: You can^nterpret C 
as the image of the unit circle under a suitable linear 
transformation; then use Exercise 50.)

52. Consider an invertible linear transformation T  from R2 
to R2. Let C be an ellipse in R2. Show that the image of 
C under T is an ellipse as well. (Hint: Use the result of 
Exercise 51.)

Matrix Products

Figure I

Recall the composition of two functions: The composite of the functions y  =  sin(jc) 
and z =  cos(;y) is z — cos(sin(jc)), as illustrated in Figure 1.

Similarly, we can compose two linear transformations.
To understand this concept, let’s return to the coding example discussed in

Section 2.1. Recall that the position Jc = of your boat is encoded and that you

y\
>’2j

radio the encoded position y  =

y =  A x, with A =

to Marseille. The coding transformation is

In Section 2.1, we left out one detail: Your position is radioed on to Paris, as you 
would expect in a centrally governed country such as France. Before broadcasting 
to Paris, the position y is again encoded, using the linear transformation

Z = B y, with B =

8An ellipse in R2 centered at the origin may be defined as a curve that can be parametrized as

cos(/)u>i 4- sin(r)tZ'2.
for two perpendicular vectors ib\ and w2. Suppose the length of ib\ exceeds the length of wj. Then we 
call the vectors ±w \ the semimajor axes of the ellipse and ± u >2 the semiminor axes.

Convention: All ellipses considered in this text are centered at the origin unless stated otherwise.
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this time, and the sailor in Marseille radios the encoded position z to Paris. (See 
Figure 2.)

Paris: £
6 7 
8 9

-[5 5]
Figure 2

We can think of the message z received in Paris as a function of the actual 
position x of the boat,

z =  £(A ?),

the composite of the two transformations y  =  A x  and z = By. Is this transformation 
z = T (x )  linear, and, if so, what is its matrix? We will show two approaches to these 
important questions: (a) using brute force, and (b) using some theory.

a. We write the components of the two transformations and substitute.

andZl =  6yi +  7_y2 
Z2 =  8yi +  9v2

y i =  *i +  2x 2 
V2 =  3JC1 +  5*2

so that

Z\  =  6(.*i +  2 x 2 )  +  7(3xi +  5 * 2 )  =  (6 • 1 +  7 • 3)xi +  (6 • 2 +  7 • 5 ) X 2

= 21 x\ +  47*2,
z2 =  i +  2*2) +  9(3*1 +  5*2) =  (8 • 1 +  9 • 3)jfi +  (8 • 2 +  9 • 5)*2

=  35jci +  61*2-

This shows that the composite is indeed linear, with matrix

' 6 1 + 7 - 3 6 - 2  + 7 - 5 ' '27 47'
8 1 + 9 - 3 8 -2 +  9 -5. 35 61

b .  We can use Theorem 1.3.10 to show that the transformation T (x) =  B(Ax) 
is linear:

T (v + w) = B (A (v  +  w)) = B (A v  +  Aw)
=  B (A v) -+■ B (A w ) = T (v) + T (w ),

T (kv) =  B (A (kv)) =  B(k(Av)) =  k(B (A v))  =  kT (v ).

Once we know that T  is linear, we can find its matrix by computing the 
vectors T(e  1) =  B (A e  1) and T fa )  = B(A e2)\ the matrix of T  is thel 
[T(e 1) T (?2)]. by Theorem 2.1.2:

T (e ,) =  B (A e \) =  B(first column of A) =  

T (e2) =  B (A e2) =  B(second column of A) =

'6 7' T '27'
8 9 .3 35

'6 7' '2' '47'
.8 9 5 61
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We find that the matrix of the linear transformation T (jc) =  B(Ax)  is

'27 47'
35 61

■ i
T (ei) T (e2)

. I I
This result agrees with the result in (a), of course.

The matrix of the linear transformation T (x) = B (A x) is called the product of 
the matrices B and A , written as B A . This means that

T (x) = B (A x) =  (B A )x ,

for all vectors x  in R 2. (See Figure 3.)
Now let’s look at the product of larger matrices. Let B be an n x p  matrix and A  a 

p x m  matrix. These matrices represent linear transformations as shown in Figure 4.

-  Paris: z z in

z = B ( A x )  = (BA)x,  

where BA  =

z = By, where B = 6 7 
8 9

Marseille: y

v = Ax,  where A ■[J5]

y  in Rp

v = Ax

x in (fT

Figure 4

Again, the composite transformation z = B (A x) is linear. (The foregoing jus­
tification applies in this more general case as well.) The matrix of the linear trans­
formation z = B (A x) is called the product of the matrices B and A, written as BA. 
Note that BA  is an n x m matrix (as it represents a linear transformation from R m 
to R"). As in the case of M2, the equation

2 =  B (A x) =  (B A )x  

holds for all vectors Jc in Mm, by definition of the product BA. (See Figure 5.)

z in R" z in R"

z -  By

y in Uf) 
y in WfP1p * q

x in IRm

Figure 5

v = Ax

Figure 6

In the definition of the matrix product B A, the number of columns of B matches 
the number of rows of A. What happens if these two numbers are different? Suppose 
B is an n x p  matrix and A is a q x m matrix, with p ^  q.

In this case, the transformations z = B y  and y =  A jc cannot be composed, 
since the target space of y =  A jc is different from the domain of z =  By. (See 
Figure 6.) To put it more plainly: The output of y = Ax  is not an acceptable input 
for the transformation z =  By. In this case, the matrix product BA is undefined.
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D efin itio n  2.3.1

Theorem  2.3.2

Matrix multiplication

a. Let B be an n x  p  matrix and A a <7 x m matrix. The product BA  is defined 
if (and only if) p  =  q.

b. If B is an n x p  matrix and A a p x m  matrix, then the product BA  is defined 
as the matrix of the linear transformation T (Jc) =  B (A x). This means that 
T ( jc )  =  B (A x) =  (BA))c , for all x  in the vector space R w . The product BA  
is an n x m matrix.

Although this definition of matrix multiplication does not give us concrete 
instructions for computing the product of two numerically given matrices, such 
instructions can be derived easily from the definition.

As in Definition 2.3.1, let B be an n x p  matrix and A a p  x m matrix. Let’s 
think about the columns of the matrix BA:

(/th column of BA) =  (BA)2,
=  B(Aei)
= B (ith column of A).

If we denote the columns of A by v \ , v2, . . . ,  vm, we can write

BA  =  B

1
. 

Cl
 

__
. 

__
N>

1 '
Vm =

1 1 
Bv  1 B v2

1
B vm

1 1 1 . \ \ 1

The columns of the matrix product

Let B be an n x p  matrix and A a p x m  matrix with columns v \ , v2, . . . ,  vm. Then, 
the product BA is

B A  =  B
'  1 1 
01 02

1 '
0m =

1 1 
B v  1 B 02

1
B vm

. 1 1 1 . 1 1 1

To find BA, we can multiply B with the columns of A and combine the resulting 
vectors.

This is exactly how we computed the product 

BA =

on page 70, using approach (b).

'6 r '1 2' '27 47
8 9 3 5 35 61

column of AB is
’1 2' '6 ' '22'
3 5 8 58

; the second is
1 2 '7' '25'
3 5 9 66

. Thus,

AB =
'1 2' '6 7' '22 25'
.3 5. 8 9 58 66

Compare the two previous displays to see that AB  ^  BA: Matrix multiplicatio 
is noncommutative. This should come as no surprise, in view of the fact that
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matrix product represents a composite of transformations. Even for functions of one 
variable, the order in which we compose matters. Refer to the first example in this 
section and note that the functions cos (sin(jc)) and sin (cos(x)) are different.

(
Theorem 2.3.3 Matrix multiplication is noncommutative

A B  ^  B A , in general. However, at times it does happen that AB  =  BA; then we 
say that the matrices A and B commute. ■

It is useful to have a formula for the i j  th entry of the product BA  of an n x p  
matrix B and a p x  m matrix A.

Let v \ , V2, .. - * vm be the columns of A. Then, by Theorem 2.3.2,

' | | | 1 “ | | | 1

BA — B V] v 2 

_ 1 1

Vj

1

Vm 

1 .

= B v  1 B v 2 

1 1

B vj

1

Bv,„

1

The i;th  entry of the product BA  is the ith  component of the vector B v j , which is 
the dot product of the ith row of B and v j, by Definition 1.3.7.

Theorem 2.3.4 The entries of the matrix product
Let B be an n x p matrix and A a p x m matrix. The i7 th entry of BA  is the dot 
product of the zth row of B with the j  th column of A.

b\\ b \2 

b2\ b22

BA =

V \ p

t>2p

bn bi 2

b,,1 bn 2

'ip

a 11 a 12
Cl2\ Cl 22 

_Clp\ Qp2

axj
a2j

*pj

is the n x  m matrix whose i7 th entry is

p
bi\d \j + bi2Ci2j +  • ■ ■ +  bipdpj =  ^  bjkdkj-

Q\m
dim

1 p m  J

A - l

EXAM PLE '6  1 '1 2 ' '6 - 1 + 7 - 3 6  • 2 +  7 • 5' '27 47'
.8  9 3 5 8 • 1 +  9 • 3 8 • 2 +  9 • 5 35 61

We have done these computations before. (Where?)

EXAM PLE 2 Compute the products B A  and A B  for A =
0

and B =
-1
0

. Interpret

your answers geometrically, as composites of linear transformation. Draw compo­
sition diagrams.

Solution

BA = - 1  O' '0 f

TO

0 !. 1 0 1 0
and A B  =

0 f '- 1  O' 0  r
1 0 1 0 1 1 O

Note that in this special example it turns out that BA = — AB.
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Theorem  2.3.5

From Section 2.2 we recall the following geometrical interpretations:

A =  

B =  

B A  =  

A B  =

0 1 
1 0

-1  0 

0 V 
0 - 1  
1 0

0 1 
- 1  0

represents the reflection about the vector 

represents the reflection about

n
represents the rotation through —; and

7T
represents the rotation through — —.

Let’s use our standard L to show the effect of these transformations. See Figures 7 
and 8. ■

B A

Figure 7

i d

AB

Figure 8

M atrix A lgeb ra
Next let’s discuss some algebraic rules for matrix multiplication.

• Composing a linear transformation with the identity transformation, on either 
side, leaves the transformation unchanged. (See Example 2.1.4.)

Multiplying with the identity matrix

For an n x m matrix A,

A Im ~  In A =  A.
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• If A is an n x p  matrix, B a p  x q matrix, and C a q x m matrix, what is the 
relationship between (A B )C  and A (B C )1

One way to think about this problem (although perhaps not the most 
elegant one) is to wr^te C in terms of its columns: C = [v\ v2 • • • vm ]. 
Then

(.A B )C  = (A B ) [0| v2 vm] =  [(v4B)i>i (A B )v 2 (A B )vm] ,

and

A (B C ) = A [B v} B v 2 B vm\ =  [A(Bw,) A (B v2) A (B vm)] .

Since (AB)?,- =  A (B vi), by definition of the matrix product, we find that 
(.A B )C  = A(B C ).

Theorem 2.3.6 Matrix multiplication is associative

(.A B )C  =  A (B C )

We can simply write A B C  for the product (A B )C  = A (B C ). ■

A more conceptual proof is based on the fact that the composition of functions 
is associative. The two linear transformations

T (x) =  ((A B )C )x  and L (x) = (A (B C ))x

are identical because, by definition of matrix multiplication,

^A(BC) T (x) =  ((A B )C )x  = (A B )(C x) = A (B (C x ))

and 

L (x) = (A (B C ))x  =  A ((B C )x ) =  A (B (C x)).

The domains and target spaces of the linear transformations defined by the matrices 
Figure 9 B, C, BC, A B , A (B C ), and (A B )C  are shown in Figure 9.

Theorem 2.3.7 Distributive property for matrices
If A and B are n x p  matrices, and C and D  are p x m matrices, then 

A(C  +  D) — AC  + A D , and
(A + B)C  =  AC + BC. ■

You will be asked to verify this property in Exercise 27.

Theorem 2.3.8 If A is an n x p  matrix, B is a p  x m matrix, and k is a scalar, then

(kA )B  = A (kB ) = k(A B ). m

You will be asked to verify this property in Exercise 28.

B lo ck  M atrices (O ptional)
In the popular puzzle Sudoku, one considers a 9 x 9 matrix A that is subdivided into 
nine 3 x 3  matrices called blocks. The puzzle setter provides some of the 81 entries 
of matrix A, and the objective is to fill in the remaining entries so that each row of 
A, each column of A, and each block contains each of the digits 1 through 9 exactly 
once.
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Theorem  2.3.9

EXAM PLE 3

5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

This is an example of a block matrix (or partitioned matrix), that is, a matrix that is 
partitioned into rectangular submatrices, called blocks, by means o f horizontal and 
vertical lines that go all the way through the matrix.

The blocks need not be of equal size.
For example, we can partition the matrix

B =
"1 2 3' "1 2 3'
4 5 6 as B = 4 5 6 _ B\\ B ]2

6 7 9. .6 7 9 _b2\ b 22

where B\ \ =
1 2 
4 5

,B 2 j =  [6 7], and B22 = [9].

A useful property of block matrices is the following:

Multiplying block matrices

Block matrices can be multiplied as though the blocks were scalars (i.e., using the 
formula in Theorem 2.3.4):

A B  =

is the block matrix whose ij th  block is the matrix
p

A n B \j  +  Aj2B2j  +  •••-)- AjpBpj =  ^  ' AjkBkj, 

provided that all the products A,* Bkj are defined.

A i, A 12 A |P
A 21 A22 A 2p ’ B n B 12 B ij B \m

B 21 B 22 B2j B2m

An A ii Aip

An 1 An 2 Anp _

.B p\ B P 2 Bpj Bpm

*=i

Verifying this fact is left as an exercise. A numerical example follows.

0 1 
1 0

- 1
1

' 1 2 3
4 5 6

7 8 9

" o  r  
1 o

-3 
8

1 2 
4 5 +

- 1
1

[7 8]
0 1 
1 0

3
6 +

- 1 '
1 [9]

- 3
10

—3
12
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Compute this product without using a partition, and see whether or not you find 
the same result. ■

In this simple example, using blocks is somewhat pointless. Example 3 merely 
illustrates Theorem 2.3.9. In Example 2.4.7, we will see a more sensible application 
of the concept of block matrices.

EXERCISES 2.3
GOAL Compute matrix products column by column and 
entry by entry. Interpret matrix multiplication in terms 
of the underlying linear transformations. Use the rules o f 
matrix algebra. Multiply block matrices.

I f  possible, compute the matrix products in Exercises I 
through 13, using paper and pencil.

Use the given partitions to compute the products in Exer­
cises 15 and 16. Check your work by computing the same 
products without using a partition. Show all your work.

1.
1 1 
0 1

1 2 
3 4

5.

1 2  3 
4 5 6

1 0 
0 1 
0 0

1 2 
3 4

a b 
c d

4.

6.

1 -
- 2

1 -1
0 2
2 1

a b 
c d

"J

3 1

3 2
1 0

d - b  
—c a

1 0 0
15. 0 1 0

1 3 4

‘ 1 0 1 0

16.
0 1 0 1

0 0 1 0
. 0 0 0 1

1 0
2 0

3 4

■ 1 2 2 3
3 4 4 5

0 0 1 2
. 0 0 3 4

In the Exercises 17 through 26, find all matrices that com­
mute with the given matrix A.

17. A = 18. A =

1 0 - f "l 2 3' CN1c

2 3'
7. 0 1 1 3 2 1 19. A =

2 0
20. A =

- 3  2
1 -1  - 2 2 1 3

0 1 
0 0

0 1 
0 0 9.

1 2 
2 4

-6 8 
3 - 4

10. [l 0 -1 ]

[1 2

"l 2 "3“
2 1 11. [1 2 3] 2
1 1 1

12.

21. A =

23. A =

25. A =

2
-1

3
6

2 
0
0 0

0 0 
3 0

22. A =

24. A =

26. A =

1 f
1 1

'2 0 0
0 3 0
0 0 4

'2 0 0
0 2 0
0 0 3

a b c "o '
0 1] d e f 1

_g h k _ 0

27. Prove the distributive laws for matrices: 

A(C + D) = AC + AD
and

(A +  fl)C =  AC + BC.

A = 1 1 
1 1

C =

B =  [l 2

' l 0 - f Y
2 1 0 , D = 1
3 2 1 1

3 ].

E =  [5] .

28. Consider an n x p matrix A, a p x m matrix B, and a 
scalar k. Show that

(kA)B = A(kB) = k(AB).

29. Consider the matrix

determine which of the 25 matrix products A A, AB,
* • • •, ED, E E  are defined, and compute those that 
defined.

Da = cos a — sin a 
sin a cos a

We know that the linear transformation T (x) = Dax is 
a counterclockwise rotation through an angle a.
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a. For two angles, a and ft, consider the products Da Dp 
and Dp Da . Arguing geometrically, describe the lin­
ear transformations y =  Da Dpx and y = DpDax. 
Are the two transformations the same?

b. Now compute the products Da Dp and DpDa. Do 
the results make sense in terms of your answer in 
part (a)? Recall the trigonometric identities

sin(a ±  ft) =  sin a  cos ft ±  cos a  sin ft 
cos(a ±  fi) = cos a  cos fi sin a  sin p.

30. Consider the lines P and Q in R2 sketched below. Con­
sider the linear transformation 7"(Jc) =  refg (ref/>(Jc)), 
that is, we first reflect x  about P and then we reflect the 
result about Q.

a. For the vector x  given in the figure, sketch T ( x ) .  
What angle do the vectors x  and T  (jc) enclose? What 
is the relationship between the lengths of x  and T ( x )?

b. Use your answer in part (a) to describe the trans­
formation T geometrically, as a reflection, rotation, 
shear, or projection.

c. Find the matrix of T.
d. Give a geometrical interpretation of the linear trans­

formation L ( x )  =  ref/>(ref^(jc)), and find the 
matrix of L.

31. Consider two matrices A and B whose product AB  is 
defined. Describe the ith row of the product A B in terms 
of the rows of A and the matrix B.

32. Find all 2 x 2 matrices X  such that AX = XA  for all 
2 x 2  matrices A.

For the matrices A in Exercises 33 through 42, compute 
A2 =  A A , A3 =  AAA, and A4. Describe the pattern that 
emerges, and use this pattern to find A1,001. Interpret your 
answers geometrically; in terms o f rotations, reflections, 
shears, and orthogonal projections.

“0 1 
1 0

0 -1  
1 0

33. - 1
0

o'
-1

34. ‘l
0

O'
-1

35.

36. ‘l f  
0 1

37.
1

-1
O'
1

oo

39.
1

7 !
i i

- i  i 40. -1  -V 3
V3 -1

1 l" _  1 1 f
42. -

1 -1 2 1 1
41. —

V 2

In Exercises 43 through 48, find a 2 x 2  matrix A with 
the given properties. (Hint: It helps to think o f geometrical 
examples.)

43. <4 ^  h ,  A2 = I2

45. A2 ±  h , A3 =  h

46. A2 =  A, all entries of A are nonzero.

47. A3 =  A, all entries of A are nonzero.

44. A2 ^  l2, A4 =  h

48. A '° =
1 1 
0 1

In Exercises 49 through 54> consider the matrices

A =

D =

G =

0 1 
1 0

0 -1  
-1  0

o r  
-1  0

B =

E =

H =

1 0
0 1

0.6 0.8
0.8 - 0.6

0.8 - 0.6
0.6 0.8

C =
1 0 
0 -1

F =

J  =

0 -
1

1 -1
1 1

Compute the indicated products. Interpret these prod­
ucts geometrically; and draw composition diagrams, as in 
Example 2.

50. CG and CG49. A F and FA 

51. F J and J F 

53. CD and DC

52. J H and H J  

54. BE  and EB.

In Exercises 55 through 64, find all matrices X that satis} 
the given matrix equation.

55.
1 2
2 4

X =

56. X

58. X

2 1 
4 2

1 2 
3 5

0 0 
0 0

0 0 
0 0 57.

1 2
3 5 X = I2

= h

60.

62.

64.

X = h 61.

2 1 
4 2

1 2 
0 1

= h

X = I2

X  =  h 63. X = I3

X = I3

65. Find all upper triangular 2 x 2  matrices X such that. 
is the zero matrix.



2.4 The Inverse of a Linear Transformation 79

66. Find all lower triangular 3 x 3  matrices X such that X3 
is the zero matrix.

67. Consider any 2 x 2  matrix A that represents a horizon­
tal or vertical shear. Compute (A — I2)2. Explain your 
answer geometrically: If x is any vector in IR2, what is 
(A -  h ) 2x =  A2x  -  2Ax +  jf?

68. Consider an n x m matrix A of rank n. Show that there 
exists an m x n matrix X such that AX  =  /„. If n < m, 
how many such matrices X  are there?

69. Consider an n  x  n matrix A of rank n. How many n x n  
matrices X are there such that AX = /„?

The Inverse of a Linear Transformation

Let’s first review the concept of an invertible function. As you read these abstract 
definitions, consider the examples in Figures 1 and 2, where X  and Y are finite sets.

Figure I T is invertible. R is not invertible: The equation R(x) =  yo has two solutions, X[ and x 
S is not invertible: There is no x such that 5(.v) =  >0 .

T-i

Figure 2 A function T and its inverse T 1.

D e fin it io n  2.4.1 Invertible Functions

A function T  from X  to Y is called invertible if the equation T(x)  = y has a unique 
solution jc in X  for each v in Y .

In this case, the inverse T ~ [ from Y to X  is defined by

T ~ [(y) = (the unique x  in X  such that T(x)  =  > ).

To put it differently, the equation

.v =  T ~ l (v) means that v =  T ( jc) .

Note that

T - l ( T ( x ) ) = x  and T ( T ~ ]( y ) ) = y

for all jc in X  and for all y in Y.
Conversely, if L is a function from Y to X  such that

L{T(x) )  = x  and T (L(y))  =  v

for all x  in X  and for all y  in Y , then T is invertible and T ~ l = L.
If a function T  is invertible, then so is T ~ { and (T -1 )-1 =  T.
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D e f in i t io n  2.4.2

T h e o r e m  2.4.3

T h e o r e m  2.4.4

If a function is given by a formula, we may be able to find the inverse by solving 
the formula for the input variable(s). For example, the inverse of the function

jc3 — l
v =  — -—  (from R  to R)  

x = \ /  5 v +  1.

Now consider the case of a linear transformation T  from R n to R n given by

v =  T  (jc) =  Ax,

where A is an n x n matrix. (The case of an n x m matrix will be discussed in 
Exercise 48.)

According to Definition 2.4.1, the linear transformation y =  T(x)  =  Ax  is 
invertible if the linear system

Ax =  v

has a unique solution jc in R n for all y in the vector space R n. By Theorem 1.3.4, 
this is the case if (and only if ) rank(A) =  n , or equivalently, if

1 0 0 0
0 1 0 0

rrefM ) = 0 0 1 0 =  /„

0 0 0 1

Invertible matrices

A square matrix A is said to be invertible if the linear transformation 
v =  T(x)  = Ax  is invertible. In this case, the matrix9 of T ~ { is denoted by 
A _I. If the linear transformation y =  T ( x ) =  Ax  is invertible, then its inverse is 
x  =  T~' ( y )  = A~' y .

Invertibility

A n n  x  n matrix A is invertible if (and only if)

rref (A) =  /„

or, equivalently, if

rank(/l) =  rt. B

The following proposition follows directly from Theorem 1.3.4 and Exam* 
pie 1.3.3d.

Invertibility and linear systems

Let A be an n x  n matrix.

a. Consider a vector b in IR". J f  A is invertible, then the system Ax = b has thg 
unique solution x  =  A ~ ]b. If A is noninvertible, then the system Ax  =  I  
has infinitely many solutions or none.

gThe inverse transformation is linear. (See Exercise 2.2.29.)
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EXAM PLE I

b. Consider the special case when b =  0. The system Ax  =  0 has * =  0 as a 
solution. If A is invertible, then this is the only solution. If A is noninvertible, 
then the system Ax  =  0 has Infinitely many solutions. ■

Is the matrix

invertible?

Solution

"1 1 1'
A = 2 3 2

3 8 2

1 1 1* '1 1 r - a n
2 3 2 -2 (7 ) 0 1 0 -►
3 8 2. —3 (/) 0 5 - i _ -5(11)

1 0 r "1 0 r - ( / / / ) "i 0 0"
0 1 0 —> 0 1 0 0 1 0
.0 0 - l. - ( - 1 ) 0 0 i_ 0 0 1.

=  ly =  rref(y4)

Matrix A is invertible since rref(/4) =  /?. 

Let’s find the inverse of the matrix

A =
1 1 1
2 3 2
3 8 2

in Example 1, or, equivalently, the inverse of the linear transformation

\v f X\  +  X 2 “h *3"

y = Ax  or y i = 2x\ +  3 jc2 +  2*3

->’3. _3.fi 8*2 H” 2a‘3_

To find the inverse transformation, we solve this system for the input variables *i, 
JC2, and xy.

A'l + X2 + *3 =  Vl --- ►
2*1 +  3*2 +  2*3 = y2 - 2 (1)
3*i +  8*2 +  2*3 = V3 -3 (1 )

X\ H- x 2 + *3 =  V| - ( I I )
X2 =  —2 y 1 + V2 — ►

5*2 — * 3 =  — 3 yi +  V3 -5(11)

X\ + *3 =  3 v i - V2 — ►
X2 =  —2 vi + y2

— * 3 =  7v, - 5X2 +  V3 M - D

X \ + * 3 =  3y i  - y 2 -  (HI)
* 2 =  — 2 vi + V’2 — ►

* 3 =  — 7 1 +  5y2 “  V3

X \ =  10yi - 6 > ’2 +  V3
* 2 =  —2 y , + V2

X} = - 1 \\ + 5y2 V3
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Theorem  2.4.5

Theorem  2.4.6

We have found the inverse transformation; its matrix is

10 -6  1
B =  A-1 = - 2

- 7
1 0 
5 - 1

We can write the preceding computations in matrix form:

'1 1 1 1 0 O' — ► 1 1 1 1 0 O'
2 3 2 0 1 0 - 2  (I) 0 1 0 - 2 1 0

.3 8 2 0 0 1. -3 (1 ) .0 5 - 1 - 3 0 1.

- ( H )  

- 5  (II)

'1 0 1 I 3 - 1 O' — ► ‘l 0 1 3 - 1 O'
0 1 o 1 - 2 1 0 0 1 0 - 2 1 0
0 0 - 1  i 7 - 5 1. - K - l ) 0 0 1 - 7 5 - 1 .

-  (Ill)

1 0  0 
0 1 0

10
- 2

- 6
1

.0 0 1 1 - 7  5 - 1 .

This process can be described succinctly as follows.

Finding the inverse of a matrix
To find the inverse of an n x n matrix A, form the n x (In) matrix [ A j /„] and 
compute rref [A | /„ ].

• If rref [ A j /„ ] is of the form [ /„ j B ], then A is invertible, and A ~ l =  B.

• If rref [ A j /„ ] is of another form (i.e., its left half fails to be /„), then A L
not invertible. Note that the left half of rref [ A j /„ ] is rref( A).

Next let’s discuss some algebraic rules for matrix inversion.

• Consider an invertible linear transformation T (x) = A x  from M" to R".
By Definition 2.4.1, the equation T ~ {( T (jc)) =  x holds for all x  in R"
Written in matrix form, this equation reads A ~ 1 Ax  =  x  =  I„x. It follows tha 
A-1 A =  /„. Likewise we can show that AA-1 =  /„.

Multiplying with the inverse

For an invertible n x  n matrix A,

a - ' a =  /„ and A A '1 =  /„.

If A and B are invertible n x  n matrices, is BA  invertible as well? If so, whi 
is its inverse?

To find the inverse of the linear transformation

y = B A x ,

we solve the equation for x  in two steps. First, we multiply both sides of th 
equation by B ~ { from the left:

B ~ xy =  B ~ ] B A x  =  InA x  =  Ax.

Now, we multiply by A-1 from the left:

A ~ l B ~ ly = A ~ lAx  = x .
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Theorem 2.4.7

Theorem 2.4.8

This computation shows that the linear transformation

y =  B A x

is invertible and that its inverse is

x  =  A ~ x B ~ xy.

The inverse of a product of matrices
If A and B are invertible n x n matrices, then BA is invertible as well, and

(B A )"1 =  A - XB ~ X.

Fay attention to the order of the matrices. (Order matters!) ■

To verify this result, we can multiply A-1 B _1 by BA (in either order), and check 
that the result is /„:

B A A ~ XB ~ X =  B I nB ~ x = B B ~ X =  /„ ,and  
A ~ [B ~ X BA = A ~ x A  =  /„.

Everything works out!
To understand the order of the factors in the formula (BA)-1 =  A ~ x B ~x, think 

about our French coast guard story again.
To recover the actual position x  from the doubly encoded position z, you first 

apply the decoding transformation y  =  B ~ xz and then the decoding transformation 
x  =  A ~ [y.  The inverse of z = B A x  is therefore x  =  A_ IB_1z, as illustrated in 
Figure 3.

The following result is often useful in finding inverses:

A criterion for invertibility
Let A and B be two n x n matrices such that

BA =  /„.

Then

a. A and B are both invertible,
b. A-1 =  B and B ~ ] =  A, and
c. AB =  /„.
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Proof

EXA M PLE  2

EXAM PLE 3

It follows from the definition of an invertible function that if A B =  In and 
BA =  /„, then A and B are inverses, that is, A = B ~ [ and B =  A-1 . Theorem 2.4.8 
makes the point that the equation BA  =  /„ alone guarantees that A and B are 
inverses. Exercise 107 illustrates the significance of this claim.

To demonstrate that A is invertible, it suffices to show that the linear system A x  =  0 
has only the solution x =  0 (by Theorem 2.4.4b). If we multiply the equation 
A x =  0 by B from the left, we find that B A x  =  £0  =  0. It follows that jc =  
Inx  =  B A x  =  0, as claimed. Therefore, A is invertible. If we multiply the equation 
BA  =  /„ by A ~ ] from the right, we find that B =  A-1 . Matrix B , being the inverse 
of A, is itself invertible, and B ~ ] =  (A-1 )-1 =  A. (See Definition 2.4.1.) Finally, 
A B  =  A A "1 =  ln.

You can use Theorem 2.4.8 to check your work when computing the inverse of 
a matrix. Earlier in this section we claimed that

' 10 - 6 r '1 1 1"
B = - 2 1 0 is the inverse of A = 2 3 2

- 7 5 - i . 3 8 2.

Let’s use Theorem 2.4.8b to check our work:

"10  -6  1“

B A =  —2 1 0
- 7  5 -1

' 1 1 r ' 1 0 0‘
2 3 2 — 0 1 0

.3 8 2. 0 0 1.
=  /v

Suppose A, B , and C are three n x n matrices such that A B C  =  /„. Show that B is 
invertible, and express B ~ x in terms of A and C.

Solution
Write A B C  =  (A B )C  =  /„. We have C(AB)  =  /„, by Theorem 2.4.8c. Since 
matrix multiplication is associative, we can write (CA) B  = In. Applying Theo­
rem 2.4.8 again, we conclude that B is invertible, and B ~ l = CA.

a b 
e d

When is A invertible? If so, what is A-1 ?

For an arbitrary 2 x 2  matrix A = , compute the product
' d - b ' a b

1
S301j e d

Solution
d —b a b

o1

i1
_______

i

e d 0 ad — be

If ad — be ^  0, we can write

=  (ad -  be) 12. 

1
ad — be

d - b a b'
—c a ) c d

= li­

lt now follows from Theorem 2.4.8 that A is invertible, with A

----------- ^ ^ . Conversely, if A is invertible, then we can multiply
ad — be

equation

^  ^ =  (ad — be)A ~{. Since some of the scalars a, b, c, d are nonz
—c a\

(being the entries of the invertible matrix A), it follows that ad — be ^  0.

' d - b ' a b

<3I
_______

i

c d
=  (ad — b c )l2 with A 1 from the right, find
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Theorem  2.4.9 Inverse and determinant of a 2 x 2 matrix

a. The 2 x 2  matrix ^

A =
a b 
c d

is invertible if (and only if) ad  — be ^  0.
Quantity ad — be is called the determinant of A , written det(A):

a b

b. If

det (A) =  det

A =

=  ad — be.

a b 
c d

is invertible, then

a b -  _  i ' d  - b 1 d - b
e d ad — be —e a det(A) —e a

WfOt =

In Chapter 6 we will introduce the determinant of a square matrix of arbitrary 
size, and we will generalize the results of Theorem 2.4.9 to n x n matrices. See 
Theorems 6.2.4 and 6.3.9.

What is the geometrical interpretation of the determinant of a 2 x 2 matrix A?

Write A =
a b 
c d

, and consider the column vectors v =
a

and w =
b

e d

turns out to be helpful to introduce the auxiliary vector vrot =
—c 

a

. It

, obtained by

rotating vector v =
Figure 4

71
through an angle of —. Let 0 be the (oriented) angle from

v to w , with — n  < 6 < Tt. See Figure 4. Then
71

det A = ad — be ^ = ^ v rot • w v ^  ||i;ro/|| cos -  0 J  ||u;|| =  ||v|| sin0||tu ||.
Step 2 Step 3

In Steps 2 and 3 we use the definition of the dot product and its geometrical inter­
pretation. See Definition A.4 in the Appendix.

Theorem  2.4. 10 Geometrical interpretation of the determinant of a 2 x 2 matrix
If A =  [0 w] is a 2 x 2 matrix with nonzero columns v and w , then

det A =  det [5 w] =  ||v|| sin#||u>||, 

where 6 is the oriented angle from v to w , with —re < 6 < 7t. It follows that

• |det A | =  ||i; || |sin0| ||u>|| is the area o f the parallelogram spanned by v and 
w (see Figure 5),

• det A =  0 if v and w are parallel, meaning that 0 = 0 o r  0 = tt,

• det A > 0 if 0 < 0 < 7r, and
• det A < 0 if —7r < 0 < 0. ■

In Chapter 6 we will go a step further and interpret det A in terms of the linear
transformation T (x ) =  Ax.

EXAM PLE 4 Is the matrix A =  

rically.

1 3
2 1

invertible? If so, find the inverse. Interpret det A geomet-
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Figure 6

EXA M PLE  5

E XA M PLE  6

Solution
We find the determinant det(A ) =  1 1  — 3 - 2  
invertible, by Theorem 2.4.9a. Then

=  —5 ^  0, so that A is ind

i - i 1 d  - b 1 ' 1 —3 ' 1 3" 
5 5

det A —c  a “  ( - 5 ) — 2 1 2 1 
5 5.

by Theorem 2.4.9b.
Furthermore, |det A| =  5 is the area o f the shaded parallelogram in Figui 

and det A is negative since the angle 8 from v  to  w  is negative.

For which values of the constant k is the m atrix  A  =
1 - i t  2

4 3 - k
invertibl

Solution
By Theorem 2.4.9a, the matrix A  fails to be invertible if det A  =  0. Now

det A =  det 1 - k  2
4 3 - k

=  (1 - * ) ( 3 - * ) - 2 - 4  

=  k 2 _  4 k  -  5 =  (k -  5)(k + 1) =  0

when k =  5 or it =  - 1 .  Thus A  is invertible for all values of k except k =  5 
k =  - 1 .

Consider a matrix A that represents the reflection about a line L in the plane, 
the determinant to verify that A  is invertible. F ind A-1 . Explain your answer' 
ceptually, and interpret the determinant geom etrically.

Solution

By Definition 2.2.2, a reflection matrix is o f  the form A  =
a b 
b —a , w

a + b =  1. Now det A  =  det

A is invertible, and A 1 =

a b  
b —a

, _  1 —a - b a b'

( - D - b a b —a

=  —a 2 — b2 =  —1. It turns out

=  A. It makes j

sense that A is its own inverse, since A ( A x )  =  x  for all x in R 2, by definition 
reflection. See Figure 7.

x  = A ( A x )
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E X A M P L E  7

U) =

To interpret the determinant geometrically, recall that v = 

b
—a

= Ae i and

=  Ae2. The parallelogram spanned by v and w is actually a unit
7T

square, with area 1 =  |det A |, and 6 is — — since the reflection about L reverses the 
orientation of an angle. See Figure 8 . ■

The  Inverse of a Block Matr ix (Optional)
We will conclude this chapter with two examples involving block matrices. To refresh 
your memory, take another look at Theorem 2.3.9.

Let A be a block matrix

A = A n
0

A, 2
A 22

where A\ \ is an n x n matrix, A 22 is an m x m matrix, and A \2 is an n x m matrix.

a. For which choices of A 11, A 12, and A22 is A invertible?
b. If A is invertible, what is A-1 (in terms of A n, A12, A22)?

Solution

We are looking for an (n 4- rn) x (n + m) matrix B such that

BA  — /«+m — In 0

0 lm

Let us partition B in the same way as A:

B\\ B \2

£ 2 1  B 2 2
B =

where B\\ is n x n, B22 is m x m, and so on. The fact that B is the inverse of A 
means that

B U B 12 ^ 1 1  ^ 1 2 In O '

B21 B n 0  A 2 2 . . 0  l m _

or, using Theorem 2.3.9,

B uA \\ =  /„
B\ 1A 12 +  B12A22 =  0 

#21 An =  0 
^ 2 1 A 12 +  B 2 2 A 2 2  =  I m

We have to solve for the blocks Bjj. Applying Theorem 2.4.8 to the equation 
Bn A n =  we find that A\\  is invertible, and B\\ = A7/ .  Equation 3 now 
implies that B2\ =  0A7/ =  0. Next, Equation 4 simplifies to B22A22 =  Am- By 
Theorem 2.4.8, A22 is invertible, and B22 =  A^1. Lastly, Equation 2 becomes
A u' A \2 +  B12A22 =  0, or B 12A22 =  ~ A n An, or B 12 =  -A \ A 12 A 22 • W e

conclude that

a. A is invertible if (and only if) both An and A22 are invertible (no condition 
is imposed on A12), and

b. If A is invertible, then its inverse is

A" 1 = In
0

A n ' - A n 1A i 2 A 22
A "1 ^22
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Verify this result for the following example:

'  1 ] 1 2 3 "
- 1

'  2 -1 2 1 0
1 2 4 5 6 -1 1 -3 -3 —3

E X A M P L E  8 0 0 1 0 0 — 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0

_ 0 0 0 0 1 0 0 0 0 1

----------- --- — ~ — ---------- ... .—  _ — —— — -------------- ------ -------- ------ — ...........—  -

EXERCISES 2.4

GOAL Apply the concept o f an invertible function. De­
termine whether a matrix (or a linear transformation) is 
invertible, and find the inverse if it exists.

Decide whether the matrices in Exercises 1 through 15 are 
invertible. I f  they are, find the inverse. Do the computa­
tions with paper and pencil. Show all your work.

1.

3.

7.

1 1 .

13.

15.

'2 3“
5 8

0 2
1 1

"l 2 2
1 3 1
1 1 3

"I 2 3"
0 0 2
0 0 3_

"l 1 f
1 1 1

_1 1 1_

"l 0 f
0 1 0
0 0 1_

'l 0 0 0
2 1 0 0
3 2 1 0

_4 3 2 1

"l I 3
2 iX 7
3 7 14
4 11 25

4.

6.

8.

10.

12.

14.

1 1
1 1

1 2 f
1 3 2
1 0 1

1 2 3“
0 1 2
0 0 I

0 0 f
0 1 0
1 0 0

1
1

1
2

f
3

1 3 6

1 l :2 3
0 1 0  0
2 2 ;5 4
0 3 0 1

2 5 0 o'
1 3 0 0
0 0 I 2
0 0 2 5

4
11

Decide whether the linear transformations in Exercises 16 
through 20 are invertible. Find the inverse transformation 
if it exists. Do the computations with paper and pencil. 
Show all your work.

17. y\ =  x\ +  2*2,
\’2 =  4jcj +

19. vi =  *i + X2 +
v2 = x\  +  2*2 +
V3 = + 4*2 +

16. vi = 3*i + 5*2, 
y2 =  5*i + 8*2

18. y i = * 2 ,
>2 =  -*3,
>’3 =  *1

20. yi =  *j + 3*2  + 3 * 3 ,
>’2 =  X \  +  4*2  +  8 * 3 ,

Y3 =  2*1 +  7*2  +  12*3

Which o f the functions f  from R to R in Exert 
through 24 are invertible?

21. f ( x )  = x 2 

23. f ( x )  = x* + .v

22. / ( x) = 2x 

24. f ( x )  =  x 3 - x

Which o f the (nonlinear) transformations from R: 
in Exercises 25 through 21 are invertible? Find til# 
i f  it exists.

25.

27,

vi _ [*?1 26. vi _
V2 *2 _V2_

X2 
*1 +*2

yi _  * i+ * 2
}'2 X i • *2

28. Find the inverse of the linear transformation

*1 22 " 13
*2 -16 -3
*3

= X\ 8 +  *2 9
_V4_ 5 4

8' ’ 3
_2 -2

7
+  *4 2

3 1
+ ■*3

from R4 to R4.
• A

29. For which values of the constant k is the follawiljl 
invertible? j|

1 1 1
1 2 k
1 4 k2
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^ j » c h  v a l u e s  of the constants
*  jogtrix invertible?

b and c is the following

0 1 b 
-1  0 c
- b  - c  0

RywWch values of the constants a , b, and c is the 
Allowing matrix invertible?

0 a b 
-a  0 c 
—b —c 0

32. Rod all matrices
a b 
c d

such that ad — be =  1 and

a- '- A .

33. Ci r m ^  the matrices of the form A =
a b
b - a

____i a and b arc arbitrary constants. For which val­
ues of a and b is A” 1 =  A?

34. Consider the diagonal matrix

A =
a 0 0
0 b 0
0 0 c

a. For which values of a, 6, and c is A invertible? If it 
is fiiv&tible, what is A-1 ? 

k  Rw which values of the diagonal elements is a diag­
onal matrix (of arbitrary size) invertible?

35. Consider the upper triangular 3 x 3 matrix

a b c
'■ A =  0 d e

0 0 /

•• R*whiehvaluesofa,£,c,d,£,and /  is A invertible? 
k  ^ te. y DcraUy» when is an upper triangular matrix

(of tAifiary size) invertible?^ i f  _  __
upper triangular matrix is invertible, is its in­

tone an upper triangular matrix as well?
b  a lower triangular matrix invertible?

whcther a square matrix A is invertible, 
edMlm necessary to bring it into reduced row- 

Justify the following rule: To determine 
matrix A is invertible, reduce it to tri- 

opoyHcm a or l°wer), using elementary row
tfe flfinrttini Jp “^ ^ b l e  if (and only if) all entries on 

w^onai this triangular form are nonzero.

^ ^ • ^ “ vwible i* matrix and c is a nonzero scalar, is
hetHlmi A** ^  S0, w^at *s l^e relati°nship(^A) ?

l k
0 -1

39. Consider a square matrix that differs from the identity 
matrix at just one entry, off the diagonal, for example,

1 0 0
0 1 0
I-A 0 1

In general, is a matrix M of this form invertible? If so, 
what is the A/-1 ?

40. Show that if a square matrix A has two equal columns, 
then A is not invertible.

41. Which of the following linear transformations T from 
R3 to K3 are invertible ? Find the inverse if it exists.
a. Reflection about a plane
b. Orthogonal projection onto a plane
c. Scaling by a factor of 5 [i.e., T(v) = 5i\  for all 

vectors P]
d. Rotation about an axis

42. A square matrix is called a permutation matrix if it con­
tains a 1 exactly once in each row and in each column, 
with all other entries being 0. Examples are /„ and

0 0 1
1 0 0
0 1 0

Are permutation matrices invertible? If so, is the inverse 
a permutation matrix as well?

43. Consider two invertible n x n matrices A and B. Is the 
linear transformation v =  A(Bx)  invertible? If so, what 
is the inverse? [Hint: Solve the equation y =  A(Bx)  
first for Bx  and then for j c . ]

44. Consider the n x n matrix Mn that contains all integers
1, 2,3 ........n2 as its entries, written in sequence, column
by column; for example,

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

A/4 =

a. Determine the rank of M4.
b. Determine the rank of Mn, for an arbitrary n > 2.
c. For which integers n is Mn invertible?

45. To gauge the complexity of a computational task, math­
ematicians and computer scientists count the number 
of elementary operations (additions, subtractions, mul­
tiplications, and divisions) required. For a rough count, 
we will sometimes consider multiplications and divi­
sions only, referring to those jointly as multiplicative 
operations. As an example, we examine the process of 
inverting a 2 x 2 matrix by elimination.
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1 o'
c d 0 1

1 y e O'
c d

—
1

0

j y
0 d'

i y  
o 1

1 o 
o 1

e 0 

*

e 0 
*' *

-f-a, requires 2 multiplicative 
operations: b/a and \ /a

(where b' =  b /a , and e =  1 /a) 
—c (I), requires 2 multiplicative 

operations: ah' and ce

+d', requires 2 multiplicative 
operations

—bf (II), requires 2 multiplicative 
operations

e' /  
g' h

The whole process requires 8 multiplicative operations. 
Note that we do not count operations with predictable 
results, such as l<z, 0a, a /a , 0 /a.
a. How many multiplicative operations are required to 

invert a 3 x  3 matrix by elimination?
b. How many multiplicative operations are required to 

invert an n x  n matrix by elimination?
c. If it takes a slow hand-held calculator 1 second to 

invert a 3 x  3 matrix, how long will it take the same 
calculator to invert a 12 x  12 matrix? Assume that the 
matrices are inverted by Gauss-Jordan elimination 
and that the duration of the computation is propor­
tional to the number of multiplications and divisions 
involved.

46. Consider the linear system

Ax  =  b,

where A is an invertible matrix. We can solve this system 
in two different ways:
• By finding the reduced row-echelon form of the aug­

mented matrix [A j b]
• By computing A " 1 and using the formula x  =  A ~ 1 b
In general, which approach requires fewer multiplicative 
operations? See Exercise 45.

47. Give an example of a noninvertible function /  from R 
to R and a number b such that the equation

f i x )  =  b

has a unique solution.

48. Consider an invertible linear transformation T(x)  =  Ax 
from Rm to R \  with inverse L = T ~ [ from R" to Rm. 
In Exercise 2.2.29 we show that L is a linear transfor­
mation, so that L(y) =  By  for some m x n matrix B. 
Use the equations BA = In and AB  =  Im to show that

n =  m. (Hint: Think about the number of solutions^ 
the linear systems Ax — 0 and By =  5.)

49. Input-Output Analysis. (This exercise builds on Exer
cises 1.1.20, 1.2.37, 1.2.38, and 1.2.39.) Consider the 
industries J  j, J2, . ., •/„ in an economy. Suppose the 
consumer demand vector is b , the output vector is i  and 
the demand vector of the 7th industry is vj.  (The *th 
component aij of dj is the demand industry Jj 0r] 
industry 7/, per unit of output of Jj.) As we have seer 
in Exercise 1.2.38, the output jc  just meets the aggregat, 
demand if

X[ V\  +  * 2̂ 2 +  • • • +  x n v n +  b  —  .

aggregate demand output

This equation can be written more succinctly as

I I
V\ V2 Vn

*1
X2

_xn _

+ b =  Jc,

or Ax  4- b =  jc .  The matrix A is called the technolof 
matrix of this economy; its coefficients ay  describe tbc 
interindustry demand, which depends on the technoio§;< 
used in the production process. The equation

Ax  +  b = x

describes a linear system, which we can write in tk 
customary form:

x — Ax — by 
lnx — Ax = b,
Un -  A)x = b.

If we want to know the output x required to satidf * 
given consumer demand b (this was our objectiwp 
the previous exercises), we can solve this linear sysl* 
preferably via the augmented matrix.

In economics, however, we often ask other 
tions: If b changes, how will jc change in resp 
If the consumer demand on one industry increa
1 unit and the consumer demand on the other i 
tries remains unchanged, how will jc  change? i

10 The relevance of questions like these became pa 
clear during World War II, when the demand on certain 4 
industries suddenly changed dramatically. When U.S.1 
President F. D. Roosevelt asked for 50,000 airplanes I 
built, it was easy enough to predict that the country 1 
have to produce more aluminum. Unexpectedly, the £ 
for copper dramatically increased (why?). A copper s 
then occurred, which was solved by borrowing silver* 
Fort Knox. People realized that input-output analysis! 
effective in modeling and predicting chains of incn 
demand like this. After World War II, this technique* 
gained acceptance and was soon used to model the t 
of more than 50 countries.
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. auestions like these, we thinkof the output * as a 
r ^ “Tof the consumer demand b.
^ J l h e  matrix (/„ -  A) is invertible,

find a vector b in R4 such that the system Ax  =  b is 
inconsistent. See Exercise 51.

we can express

-  as a function of b (in fact, as a linear transformation): 
* x  = (In - A ) - ]b.

Consider the example of the economy of Israel in 
1958 (discussed in Exercise 1.2.39). Find the tech- 
oology matrix A, the matrix (/„ -  A), and its inverse

b  fo the example discussed in part (a), suppose the con­
sumer demand on agriculture (Industry 1) is 1 unit 
(1 nv11'™1 pounds), and the demands on the other 
two industries are zero. What output x  is required in 
this case? How does your answer relate to the matrix

d n - A r ' i
c. Explain, in terms of economics, why the diagonal el­

ements of the matrix (/* -  A)-1 you found in part a 
must be at least 1.

d. If the consumer demand on manufacturing increases 
by 1 (from whatever it was), and the consumer de­
mand on the two other industries remains the same, 
how will the output have to change? How does your 

"answer relate to the matrix (In -  A )~ 1 ?
e. Using your answers in parts (a) through (d) as a guide, 

explain in general (not just for this example) what the 
colomns and the entries of the matrix (In — A )~ 1 tell 
you* in terms of economics. Those who have stud­
ied multivariable calculus may wish to consider the 
partial derivatives

dx i 
db]'

5®. This exercise refers to Exercise 49a. Consider the entry 
k *  « ii =  0.293 of the technology matrix A. Ver­
ify tiiat the entry in the first row and the first column 
Of (In -  A ) '1 is the value of the geometrical series 
1 + k + k H----. Interpret this observation in terms of
economics.

51* a. Consider an n x m m atrix / with rank (A) < n.Show 
that there exists a vector b in M" such that the system 

• =  ^ is inconsistent. [Hint: For E =  rref (A), show
«Wthwe exists a vector c in R" such that the system 
«  *= c is inconsistent; then, “work backward.”]

^  A^ ! i d e r m n x m  mairix A with n > m. Show that 
ousts a vector b in R" such that the systemA* =  jo:------ ■. J

52. For

0 1 2 
0 2 4
0 3 6
1 4 8

53. Let A = in all parts of this problem.

a. Find a scalar k (lambda) such that the matrix A —k l  2 
fails to be invertible. There are two solutions; choose 
one and use it in parts (b) and (c).

b. For the a you chosc in part (a), find the matrix 
A — k h  \ then find a nonzero vector x  such that 
(A — \ 1 2)x  =  0. (This can be done, since A — k l 2 
fails to be invertible.)

c. Note that the equation (A — \ h ) x  =  0 can be writ­
ten as Ax — Xx — 0, or, Ax = kx.  Check that the 
equation Ax =  kx  holds for your k from part (a) and 
your jc from part (b).

54. Let A =   ̂ . Using Exercise 53 as a guide, find

a scalar k and a nonzero vector x such that Ax  =  k:c.

In Exercises 55 through 65, show that the given matrix 
A is invertible, and find the inverse. Interpret the linear 
transformation T(x) — Ax and the inverse transforma­
tion T ~ l (y) = A ~ l y geometrically. Interpret det A geo­
metrically. In your figure, show the angle 0 and the vectors 
v and w introduced in Theorem 2.4.10.

55.

57.

59.

61.

63.

65.

2 0 
0 2

CO S Of

sin a

0.6
0.8

1
-1

- 3
4

sin a
■ cos a

- 0.8

0.6

56.

58.

60.

62.

64.

- 3  0
0 - 3

cos or —sin a  
sin a  cos a

- 0.8 0.6 

0.6 0.8

3 4
- 4  3

I -1  
0 1

case for a “productive” economy. See

66. Consider two n x  n matrices A and B such that the 
product A B is invertible. Show that the matrices A and 
B are both invertible. [Hint: A B (A B )~ ] = In and 
(A B)~ ]AB = 1„. Use Theorem 2.4.8.j

For two invertible n x n matrices A and B, determine 
which o f the formulas stated in Exercises 67 through 75 
are necessarily true.

67. (A +  B )2 = A2 + 2AB + B2

68. A2 is invertible, and M 2)-1 = (y l-1)2

69. A + B is invertible, and (A +  B)-1 =  A-1 +  B-1

70. (A -  B)(A +  B) = A 2 -  B2

71. A B B ~ ' A ~ '  = /„
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72. A B A =  B

73. ( A B A - ' ) *  = A B 3A ~ ]

74. (/n + A ) ( /„ + A - | ) =  2/„ +  A + A - 1

75. A-1 B is invertible, and (A-1 B)_l =  B ~ ] A

76. Find all linear transformations T from K2 to R2 such
that

and T

[Hint: We are looking for the 2 x 2 matrices A such that 

and A

These two equations can be combined to form the matrix 
equation

1 2 '2  f
2 5 1 3

77. Using the last exercise as a guide, justify the following 
statement:
Let v \ , V2....... vm be vectors in Rw such that the matrix

S = V i V2

I

is invertible. Let w \ , u>2» • • •» Wm be arbitrary vectors 
in R”. Then there exists a unique linear transforma­
tion T from Rm to R" such that T(vi) = wt , for all
i =  1, . . . ,  m. Find the matrix A of this transformation 
in terms of S and

B =
I I

U)\ w2

78. Find the matrix A of the linear transformation T from 
R2 to R3 with

and T

(compare with Exercise 77).

79. Find the matrix A of the linear transformation T from 
R2 to R2 with

’3* _3‘ r f
1

= 2
1

and T =  32 2

(compare with Exercise 77).

80. Consider the regular tetrahedron sketched below, whose 
center is at the origin.

Let T from R3 to R3 be the rotation about the axis 
through the points 0 and P2 that transforms Pi into 
Find the images of the four comers of the tetrahedrat 
under this transformation.

Po-^
P\ P3 

Pi ^
Pi

Let L from R3 to R3 be the reflection about the plane 
through the points 0, Po* and P3. Find the images of the 
four comers of the tetrahedron under this transformatioa

P o-^
P\ -►
P i ^
Pi ^

in parts (a) throughDescribe the transformations 
(c) geometrically,
a. T ~ l b. L-1
c. T2 = T o T (the composite of T with itself)
d. Find the i mages of the four comers under the transfor­

mations ToL  and LoT.  Are the two transformation 
the same?

^0
To L

Po
L o T

P\ P\
Pi -> Pi -►
P3 P3 -►

e. Find the images of the four comers under the traafr 
formation L o T  o L. Describe this transform*!** 
geometrically.

81. Find the matrices of the transformations T and L defin  ̂
in Exercise 80.

82. Consider the matrix 

E =
1

-3
0

and an arbitrary 3 x 3  matrix 

1 a ^
A = '
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Compute E A. Comment on the relationship between 
** A and E A , in terms of the technique of elimination 

we learned in Section 1.2.
k  Consider the matrix

E =
0
i
4
0

and an arbitrary 3 x 3  matrix Compute EA.  Com­
ment on the relationship between A and EA.

c. Can you think of a 3 x 3 matrix E such that EA  is 
obtained from A by swapping the last two rows (for 
any 3 x 3 matrix A)?

d. The matrices of the forms introduced in parts (a), (b), 
and (c) are called elementary: A n n  x n matrix E is 
elementary if it can be obtained from ln by perform­
ing one of the three elementary row operations on ln. 
Describe the format of the three types of elementary 
matrices.

83. Aie elementary matrices invertible? If so, is the inverse 
of an elementary matrix elementary as well? Explain the 
significance of your answers in terms of elementary row 
operations.

Justify the following: If A is an n x  m matrix, then 
there exist elementary n x n matrices E \ , E2,

84. a.

Ep such that

EpA.rref(A) =  E \E 2

b. Find such elementary matrices E \ , E2, . . . ,  Ep for

A =

85. a. Justify the following: If A is an n x m matrix, then 
there exists an invertible n x n matrix S such that

rref(A) =  SA.

b. Find such an invertible matrix S for

A =

•• Justify the following: Any invertible matrix is a 
product of elementary matrices.

as a product of elementaryfc* Write A =  

/matrices.

JEMT* P°ss*ble forms of elementary 2 x 2  matrices 
each case, describe the transformation y =  Ex  

Symmetrically.

tojot » /  811 n x n  matrix A and an n x n  ma-
tran 8 fc »n ^ A am Se<*Uence elementary  row operations

y y  you get when you apply the same row op- 
0ns m  t o  same order to the matrix AB?

b. What do you get when you apply the same row op­
erations to In ?

89. Is the product of two lower triangular matrices a lower 
triangular matrix as well? Explain your answer.

90. Consider the matrix

A =

91.

a. Find lower triangular elementary matrices E\,  
E2, . . . ,  Em such that the product

Em E2E\A

is an upper triangular matrix U. Hint: Use elemen­
tary row operations to eliminate the entries below the 
diagonal of A.

b. Find lower triangular elementary matrices M\,  
M2, . . . ,  Mm and an upper triangular matrix U such 
that

A =  M \M 2 • • • MmU.

c. Find a lower triangular matrix L and an upper trian­
gular matrix U such that

A =  LU.

Such a representation of an invertible matrix is called 
an LU -factorization. The method outlined in this ex­
ercise to find an L U -factorization can be streamlined 
somewhat, but we have seen the major ideas. An LU-  
factorization (as introduced here) does not always 
exist (see Exercise 92).

d. Find a lower triangular matrix L with l ’s on the di­
agonal, an upper triangular matrix U with l ’s on 
the diagonal, and a diagonal matrix D such that 
A =  LDU.  Such a representation of an invertible 
matrix is called an LDU-factorization.

Knowing an L U -factorization of a matrix A makes it
much easier to solve a linear system

Ax  =  b.

Consider the L U -factorization

A =

1 2 -1 4
- 3 - 5 6 - 5

1 4 6 20
-1 6 20 43

1 0

oo

' l 2 -1 4
- 3 1 0 0 0 1 3 1

1 2 1 0 0 0 1 2
-1 8 - 5  1 0 0 0 1

=  LU.
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Suppose we have to solve the system Ax  =  LUx  =  b, 
where

" -3 “
14
9 

33

b =

a. Set y =  Ux, and solve the system Ly = b, by for­
ward substitution (finding first y\, then y2, etc.). Do 
this using paper and pencil. Show all your work.

b. Solve the system Ux =  y, using back substitution, 
to find the solution x of the system Ax  =  b. Do this 
using paper and pencil. Show all your work.

92. Show that the matrix A = 0 1 
1 0 cannot be written in

the form A =  LU,  where L is lower triangular and U is 
upper triangular.

93. In this exercise we will examine which invertible n x n  
matrices A admit an L U -factorization A =  LU, as dis­
cussed in Exercise 90. The following definition will be 
useful: For m = 1 , . . . ,  n the principal submatrix A ^  
of A is obtained by omitting all rows and columns of A 
past the mth. For example, the matrix

A =
1 2 3
4 5 6
7 8 7

has the principal submatrices

' l  2 
4 5

“l 2 3 '
A(1) =  [1], A(2) = IIII

rn

4 5 6

--j 00 7

We will show that an invertible n x n  matrix A admits 
an L U -factorization A =  LU  if (and only if) all its 
principal submatrices are invertible.
a. Let A =  LU  be an L U -factorization of an 

n x n  matrix A. Use block matrices to show that
A(m) =  L (m)fj(m) for m =  t ........

b. Use part (a) to show that if an invertible n x n  ma­
trix A has an L U -factorization, then all its principal 
submatrices A^  are invertible.

c. Consider an n x n  matrix A whose principal 
submatrices are all invertible. Show that A ad­
mits an LU -factorization. (Hint: By induction, you 
can assume that A ^ -1) has an L U -factorization 
AC77 i) =  L'U'.) Use block matrices to find an LU-  
factorization for A. Alternatively, you can explain 
this result in terms of Gauss-Jordan elimination (if

all principal submatrices are invertible, then no row 
swaps are required).

94. a. Show that if an invertible n x n  matrix A ad­
mits an L [/-factorization, then it admits an LDU - 
factorization (see Exercise 90 d).
Show that if an invertible n x n  matrix A admits an 
L D U -factorization, then this factorization is unique. 
(Hint: Suppose that A =  L\D\U\  =  L 2D2U2.)

b.

Then U2UX 1 =  D2 1L2 1 L\D\  is diagonal (why?). 
Conclude that U2 = U\.

95. Consider a block matrix

A = An
0

0
A22

where A\\  and A22 are square matrices. For which 
choices of An and A22 is A invertible? In these cases, 
what is A-1 ?

A =

96. Consider a block matrix
An 0 '
A21 A 22 _

where A\\  and A22 are square matrices. For which 
choices of A\\ ,  A21, and A22 is A invertible? In these 
cases, what is A-1?

97. Consider the block matrix
Am A12 A13A = 0 0 A23

where A\ \  is an invertible matrix. Determine the rank 
of A in terms of the ranks of the blocks A11, A12, A13, 
and A 23.

98. Consider the block matrix

A = In

w

where v is a vector in R”, and u> is a row vector with n 
components. For which choices of v and w is A invert­
ible? In these cases, what is A-1 ?

99. Find all invertible n x n  matrices A such that A2 =  A.

100. Find a nonzero n x n  matrix A with identical entJ 
such that A2 =  A.

101. Consider two n x n  matrices A and B whose entries i 
positive or zero. Suppose that all entries of A are le 
than or equal to s, and all column sums of B are le 
than or equal to r (the j  th column sum of a matrix is t 
sum of all the entries in its yth column). Show that i 
entries of the matrix AB are less than or equal to sr.

102. (This exercise builds on Exercise 101.) C onsider) 
n x n  matrix A whose entries are positive or zero. Su 
pose that all column sums of A are less than 1. Let r \ 
the largest column sum of A.
a. Show that the entries of Am are less than or equal J 

r m, for all positive integers m.
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b. Show that

lim Am =  0m—>oo
(meaning that all entries of Am approach zero),

c. Show that the infinite series

/„ +  A +  A2 +  • • • +  Am +  • • •

converges (entry by entry).
<L Compute the product

(In — A)(In +  A +  A2 +  • • • +  Am).

Simplify the result. Then let m go to infinity, and thus 
show that

(/„ — A)-1 =I„ + A + A 2 + ' ■ ■ + A m +  ■

103. (This exercise builds on Exercises 49, 101, and 102.)
a. Consider the industries J \ , . . . ,  Jn in an economy. 

We say that industry Jj is productive if the yth col­
umn sum of the technology matrix A is less than 1. 
What does this mean in terms of economics?

b. We say that an economy is productive if all of its 
industries are productive. Exercise 102 shows that 
if A is the technology matrix of a productive econ­
omy, then the matrix /„ -  A is invertible. What does 
this result tell you about the ability of a productive 
economy to satisfy consumer demand?

c. Interpret the formula

(/„ -  A)-1 =  /„ +  A +  A2 +  • ■ • +  A m +  • • • 

derived in Exercise 102d in terms of economics.

104. The color of light can be represented in a vector

R 
G 
B

where R =  amount of red, G =  amount of green, and 
B =  amount of blue. The human eye and the brain trans- 
form the incoming signal into the signal

c.

Consider a pair of yellow sunglasses for water sports 
that cuts out all blue light and passes all red and green 
light. Find the 3 x 3 matrix A that represents the 
transformation incoming light undergoes as it passes 
through the sunglasses.
Find the matrix for the composite transformation that 
light undergoes as it first passes through the sun­
glasses and then the eye.
As you put on the sunglasses, the signal you receive 
(intensity, long- and short-wave signals) undergoes a 
transformation. Find the matrix M of this transfor­
mation.

M

then through eyes.

105. A village is divided into three mutually exclusive groups 
called clans. Each person in the village belongs to a clan, 
and this identification is permanent. There are rigid rules 
concerning marriage: A person from one clan can only 
marry a person from one other clan. These rules are en­
coded in the matrix A below. The fact that the 2-3 entry 
is 1 indicates that marriage between a man from clan III 
and a woman from clan II is allowed. The clan of a child 
is determined by the mother’s clan, as indicated by the 
matrix B. According to this scheme siblings belong to 
the same clan.

Husband’s clan
I II III

~ r '0 1 0 “ I
L A = 0 0 ® II
S 1 0 0_ m

where

intensity
R + G + B Mother’s clan

I =
3 I II III

long-wave signal r* II * 1 O "l 0 O"' i

short-wave signal
B = 0

0
0
1

1
0

ii
in

Wife’s
clan

*• Find the matrix P representing the transformation 
from

Child’s
clan

The identification of a person with clan I can be repre­
sented by the vector

~R~
G to L
B S

e\ =
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and likewise for the two other clans. Matrix A transforms 
the husband’s clan into the wife’s clan (if x represents 
the husband’s clan, then Ax represents the wife’s clan).
a. Are the matrices A and B invertible? Find the in­

verses if they exist. What do your answers mean, in 
practical terms?

b. What is the meaning of £ 2, in terms of the rules of 
the community?

c. What is the meaning of AB and BA , in terms of the 
rules of the community? Are AB and BA the same?

d. Bueya is a young woman who has many male first 
cousins, both on her mother’s and on her father’s 
sides. The kinship between Bueya and each of her 
male cousins can be represented by one of the four 
diagrams below:

Her mother

Bueya

6

An aunt on the mother’s side

A male first cousin

/ \

$ 6

$  6

/ \

9  8

/ \

In each of the four cases, find the matrix which gives 
you the cousin’s clan in terms of Bueya’s clan.

e. According to the rules of the village, could Bueya 
marry a first cousin? (We do not know Bueya’s clan.)

106. As background to this exercise, see Exercise 45.
a. If you use Theorem 2.3.4, how many multiplica­

tions of scalars are necessary to multiply two 2 x 2 
matrices?

b. If you use Theorem 2.3.4, how many multiplications 
are needed to multiply an n x p and a p x m matrix?

In 1969, the German mathematician Volker Strassen sur­
prised the mathematical community by showing that two 
2 x 2 matrices can be multiplied with only seven mul­
tiplications of numbers. Here is his trick: Suppose you 

\a b nhave to find A B for A = 

First compute

and B =

hi = (a + d ) ( p + s )
hi  = (c +  d)p
h 3 = a(q -  s)
/14 = d(r -  p)
h 5 = (a + b)s
hf> = (c - a ) ( p + q )
hi  = ( b -■ d){r + s)

Then
AB _  h\ +/14  - h 5 +/17  /13+/15

[  /12 +  h4 h 1 +  /Z3 -  h 2 +  he

107. Let N be the set of all positive integers, 1, 2, 3, 
define two functions /  and g from N to N:

.We

/ (jc) =  2jc, for all jc in N
fjc/2  if jc is even
^ ( jc  + 1 )/2  ifjcisoddg(x)

108.

Find formulas for the composite functions g ( /(* )) and 
/  (#(jc)) . Is one of them the identity transformation from 
N to N? Are the functions /  and g invertible?

Geometrical optics. Consider a thin biconvex lens with 
two spherical faces.

A

V
This is a good model for the lens of the human eye and 
for the lenses used in many optical instruments, such as 
reading glasses, cameras, microscopes, and telescopes, j 
The line through the centers of the spheres defining the 
two faces is called the optical axis of the lens.

Optical axis

Center of sphere 
defining the left face

/
Center of sphere 
defining the right face

In this exercise, we learn how we can track the path OE 
a ray of light as it passes through the lens, provided that 
the following conditions are satisfied:
• The ray lies in a plane with the optical axis.
• The angle the ray makes with the optical axis is si

‘d uwi 

small*!
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To keep track of the ray, we introduce two reference 
planes perpendicular to the optical axis, to the left and 
to the right of the lens.

plane plane

We can characterize the incoming ray by its slope m and 
its intercept x with the left reference plane. Likewise, we 
characterize the outgoing ray by slope n and intercept y.

We want to know how the outgoing ray depends on the 
incoming ray, that is, we are interested in the transfor­
mation

T: I p2. JC y
— >

m n

We will see that T can be approximated by a linear trans­
formation provided that m is small, as we assumed. To 
study this transformation, we divide the path of the ray 
into three segments, as shown in the following figure:

We have introduced two auxiliary reference planes, di­
rectly to the left and to the right of the lens. Our trans­
formation

X y
— >

m n

can now be represented as the composite of three simpler 
transformations:

V w y
— >• — >

m n n

From the definition of the slope of a line we get the 
relations v =  jc +  Lm and y =  w +  Rn.

V x +  Lm
m m

y 1 R'
n 0 1

1 L JC

0 1 m

V w

'1 L' m n 1 R'
.0 1. _0 1.

It would lead us too far into physics to derive a formula 
for the transformation

V W—y
m n

here.12 Under the assumptions we have made, the trans­
formation is well approximated by

W 1 0" V
n - k  1 m

for some positive constant k (this formula implies that 
w =  v).

X V

m 1 L 
.0 1 ,

m ‘ 1 0 ‘ 

. ~ k 1

w
n \ M R] l n[o l J

12 See, for example, Paul Bamberg and Shlomo Sternberg, A 
Course in Mathematics for Students o f Physics 1, Cambridge 
University Press, 1991.
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x y
The transformation — > is

m n
matrix product

is represented by the

1 L 
0 1

1 -  Rk 
- k

L + R - k L R  
1 - k L

Focusing parallel rays. Consider the lens in the hu­
man eye, with the retina as the right reference plane. 
In an adult, the distance R is about 0.025 meters 
(about 1 inch). The ciliary muscles allow you to vary 
the shape of the lens and thus the lens constant k, 
within a certain range. What value of k enables you 
to focus parallel incoming rays, as shown in the fig­
ure? This value of k will allow you to see a distant 
object clearly. (The customary unit of measurement 
for k is 1 diopter =  r ^ . )

}>

(Hint: In terms of the transformation

X y
— >•

m n

you want v to be independent of x (>’ must depend 
on the slope m alone). Explain why \ / k  is called the 
focal length of the lens.)

Chapter Two Exercises

TRUE OR FALSE?
1. If A is any invertible n x n  matrix, then rref(A) =  In.

2. The formula (A2)-1 =  (A-1 )2 holds for all invertible 
matrices A.

3. The formula AB = BA  holds for all n x n matrices A 
and B.

4. If AB  =  In for two n x n  matrices A and B , then A 
must be the inverse of B.

5. If A is a 3 x 4 matrix and B is a 4 x 5 matrix, then A B 
will be a 5 x 3 matrix.

b. What value of k enables you to read this text from a 
distance of L = 0.3 meters? Consider the following 
figure (which is not to scale):

c. The telescope. An astronomical telescope consists of 
two lenses with the same optical axis.

Left reference 
plane

Right reference 
plane

Find the matrix of the transformation

X y
— ►

m n

in terms of k \ , k2, and D. For given values of k\ and 
&2, how do you choose D so that parallel incoming 
rays are converted into parallel outgoing rays? What 
is the relationship between D and the focal lengths 
of the two lenses, \ / k \  and i / k 2?

6. The function T
X y
_y_ l

7. The matrix
5 6

-6 5

is a linear transformation.

represents a rotation combinec

with a scaling.

8. If A is any invertible n x n  matrix, then A commute 
with A-1 .

9. The function T 

formation.

x - y
y - x

is a linear trans
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10. Matrix
1/2 - 1/2 

1/2  1/2
represents a rotation.

11 There exists a real number k such that the matrix
' r * - 2  3 "

—3 i t - 2  

12. Matrix

fails to be invertible.

- 0.6 0.8
- 0.8 - 0.6 represents a rotation.

13. The formula det(2A) =  2det(A) holds for all 2 x 2 
matrices A.

14. There exists a matrix A such that
1 2 '5 6 1 r
3 4

A 1 8 1 1

15. Matrix

16. Matrix

1 2 
3 6

is invertible.

1 1 1 
1 0 1 
1 1 0

is invertible.

17. There exists an upper triangular 2 x 2  matrix A such that

A2 =
1 1 
0 1

18. The function T
X '(y  + 1)2 -(> > - l ) 2 '
y _ _(x — 3)2 — (x +  3)2_

linear transformation 
Jc - 2  
5 k - 6

19. Matrix

is a

is invertible for all real numbers k .

20. There exists a real number k such that the matrix 
'* - 1  - 2

- 4  k -  3 fails to be invertible.

a b 1*T3

c d 1 is always a21. The matrix product 

scalar multiple of I2.

22. There exists a nonzero upper triangular 2 x 2  matrix A 
'0 Olsuch that A2 =
0 0

23* There exists a positive integer n such that
0 - l l "

=  /2-

24. There exists an invertible 2 x 2  matrix A such that
1 1 
1 1

25. There exists an invertible n x n  matrix with two identical 
rows.

^  A2 =  //j, then matrix A must be invertible.

There exists a matrix A such that A 1 I "l 2
1 1 1 2

28. There exists a matrix A such that

29. The matrix

30.

1 2 ' l  f
A =

1 2 1 1

1 1
1 -1 represents a reflection about a line.

'l  k 3 1 3 k
0 1 0 1

for all real numbers k.

a b c n h
31. If matrix d e f is invertible, then matrix

a 0 
d e

8 h i

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

must be invertible as well.

If A2 is invertible, then matrix A itself must be invertible.

If A 17 =  /2, then matrix A must be I2.

If A2 =  12, then matrix A must be either I2 or —12.

If matrix A is invertible, then matrix 5 A must be invert­
ible as well.

If A and B are two 4 x 3  matrices such that Av =  Bv 
for all vectors v in R3, then matrices A and B must be 
equal.

If matrices A and B commute, then the formula A2B =  
B A 2 must hold.

If A2 =  A for an invertible n x n  matrix A, then A must 
be ln.

If matrices A and B are both invertible, then matrix 
A +  B must be invertible as well.

The equation A2 =  A holds for all 2 x 2 matrices A 
representing a projection.

The equation A-1 =  A holds for all 2 x 2 matrices A 
representing a reflection.

The formula (Au) ■ (Aw) = v • w holds for all invertible 
2 x 2  matrices A and for all vectors v and w in R2.

There exist a 2 x 3 matrix A and a 3 x 2 matrix B such 
that AB  =  I2.

There exist a 3 x 2 matrix A and a 2 x 3 matrix B such 
that AB = I3.

If A2 +  3A +  4/3 =  0 for a 3 x 3 matrix A, then A must 
be invertible.

If A is an n x « matrix such that A2 =  0, then matrix 
In +  A must be invertible.

If matrix A commutes with 5 , and B commutes with C, 
then matrix A must commute with C.

If 7  is any linear transformation from R3 to R3, then 
T(v x  w) =  T(v) x T(w) for all vectors v and w in R3.

There exists an invertible 10x10 matrix that has 92 ones 
among its entries.
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50. The formula rref(Afl) =  rref(A) rref(B) holds for all 
n x p matrices A and for all p x m matrices B.

51. There exists an invertible matrix S such that
0 1 
0 0

S is a diagonal matrix.

52. If the linear system A2x = b is consistent, then the 
system Ax =  £ must be consistent as well.

53. There exists an invertible 2 x 2  matrix A such that 
A "1 =  —A.

54. There exists an invertible 2 x 2  matrix A such that

A2 = 1 0 
0 -1

55. If a matrix A = represents the orthog­

onal projection onto a line L, then the equation 
a2 -f b2 +  c2 -I- d2 =  1 must hold.

56. If A is an invertible 2 x 2  matrix and B is any 2 x 2  
matrix, then the formula rref(Afl) =  rref(fl) must hold.
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3

Subspaces of M" and Their Dimensions

D e f i n i t i o n  3.1.1 Image of a function
The image of a function consists of all the values the function takes in its target 
space. If /  is a function from X  to Y , then

image ( / )  =  { /(* ) :*  in X]
= {b in Y: b =  / ( j c ) ,  for some jc  in X}.

EXAM PLE I A group X  of students and a group Y of professors stand in the yard. Each student

Image and Kernel of a Linear Transformation

You may be familiar with the notion of the image1 of a function.

throws a tomato at one of the professors (and each tomato hits its intended target). 
Consider the function y = f ( x )  from X  to Y that associates with each student* the 
target y  of his or her tomato. The image of /  consists of those professors that are 
hit. See Figure 1. ■

/
X : the domain Y: the target space of /

image ( / )

Figure I

- "jI
1 Some authors use the term range for what we call the image, while others use the term range for what 
we call the target space. Because of this ambiguity, we will not use the term range at all. Make sure to 
check which definition is used when you encounter the term range in a text.

101



C H A P T E R  3 Subspaces of Mn and Their Dimensions

EXAM PLE 2

EXAM PLE 3

The image of the exponential function / ( j c )  =  ex from R to R consists of all positive 
numbers. Indeed, / ( j c )  =  ex is positive for all j c ,  and every positive number b can 
be written as b = elTlb = f ( \ nb) .  See Figure 2. ■

More generally, the image of a function / ( jc)  from R to R consists of all numbers 
b such that the line y =  b intersects the graph of /  (take another look at Figure 2). 
The image of /  is the orthogonal projection of the graph of /  onto the vertical axis.

The image of the function

f ( t )  =
cos t 
sinr

from R to R 2

cosr
sinr

is a unit vectoris the unit circle centered at the origin (see Figure 3). Indeed,

for all r, since cos2 1 +  sin2 1 =  1, and, conversely, any unit vector u in R 2 can be
cos t 
sin t

written in polar coordinates as u = , where t is its polar angle. :

Figure 3

The function /  in Example 3 is called a parametrization of the unit circle. Mo 
generally, a parametrization of a curve C in R2 is a function g from R to R 2 who* 
image is C.
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EXAM PLE 4

EXAM PLE 5

EXAM PLE 6

If the function /  from X  to Y is invertible, then the image of /  is Y . Indeed, for 
every b in Y there exists one (and only one) x  in X  such that b =  / (jc), namely, 
x  =  f ~ ' ( b ) :

b = f ( f - \ b ) ) .

See Figure 4. ■

Consider the linear transformation T  from R 3 to R 3 that projects a vector Jc orthog-
*1

onally into the x i-jt2-plane, meaning that T *2 = *2 . See Figure 5
_*3_ . 0 .

The image of T  is the -ri-jr2-plane in R3, consisting of all vectors of the form
x\
x i
0

Describe the image of the linear transformation

T (Jc) =  AJc from R 2 to R 2, where A =
1 3
2 6

Solution
The image of T  consists of all the values of T,  that is, all vectors of the form

’* 1" *1 i 3 ■*i' r
+ X2

3
*2.

=  A
.*2. _2 6. _x 2.

=  x, 2_ 6

=  X] +  3*2
T
2

=  (*! +  3x2)
T
2
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EXAM PLE 7

Since the vectors 

multiples of  the vector

1 '3'
and2 6

are parallel, the image of T  is the line of all scalar

, as illustrated in Figure 6.

Describe the image of the linear transformation

T (jc) =  Ax  from R2 to R 3, where A =

Solution
The image of T  consists of all vectors of the form

1 1 
1 2 
1 3

1 r T T
x\ = 1 2 X\' = Xl 1 + x 2 2
X-2. .1 3. *2. .1 . .3 .

that is, all linear combinations of the column vectors of A,

T T
v { = 1 and t>2 = 2

1 3

The image of T  is the plane V “spanned” by the two vectors v\ and 02. that 
the plane through the origin and the end points (1, 1, 1) and (1 ,2 , 3) of 0i and i 
respectively. See Figure 7.

Figure 7
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D e f i n i t i o n  3.1.2

Theorem 3 .1.3

Theorem 3 .1.4

P roof

EXAM PLE 8

The observations we made in Examples 6 and 7 motivate the following definition. 

Span
Consider the vectors V |, . . . , i J m in R". The set of all linear combinations 
c i iJ i H------- K cm vm of the vectors v \ v m is called their span:

span(Cj........ vm) =  {cil?i H-------- \-cmvm: c \ , . . .  ,c m in R } .

Image of a linear transformation
The image of a linear transformation T (Jc) =  Ax  is the span of the column vectors 
of A ?  We denote the image of T  by im (T) or im(A). ■

To justify this fact, we write the transformation T  in vector form as in Examples 6 
and 7:

s II II v { .
1

5

~X\  “
-  j f iCi  +  • • • +  X m v m

. X m .

This shows that the image of T  consists of all linear combinations of the column
vectors i>i, . . . ,  vm of matrix A. Thus im (T) is the span of the vectors v \ ........ vm.

The image of a linear transformation has some noteworthy properties.

Some properties of the image
The image of a linear transformation T  (from Rm to R n) has the following properties:

a. The zero vector 0 in R n is in the image of T.
b. The image of T  is closed under addition: If v\ and v2 are in the image of T , 

then so is ui +  v2.
c. The image of T  is closed under scalar multiplication: If P is in the image of 

T  and k is an arbitrary scalar, then is in the image of T as well.

a. 0 =  AO = T(0).
b. There exist vectors w\ and w2 in R m such that v\ =  T(w\ )  and v2 = T ( w 2). 

Then +  v2 =  T(w\ )  4- T ( w 2) =  T(w\  +  w2), so that S| +  v2 is in the 
image of T  as well.

c. If v =  T(w),  then kv = k T ( w)  = T(kw) .  g

It follows from properties (b) and (c) that the image of T  is closed under linear 
combinations: If some vectors v \ ........ vp are in the image and c \ , . . . ,  cp are arbi­
trary scalars, then c\v\ H-------h cpvp is in the image as well. In Figure 8 we illustrate
this property in the case when p  =  2 and n =  3 (that is, the target space of T  is R 3).

Consider a n n x n  matrix A.  Show that im(A2) is a subset of im(A), that is, each 
vector in i m(A2) is also in im(i4).

Solution

Consider a vector b = A 2v = A A v  in the image of A 2. We can write 
b =  A(AiJ) =  Aw,  where w =  Av.  The equation b — Aw  shows that b is in 
the image of A.  See Figure 9. ■

2The image of T is also called the column space of A.
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Figure 8 If vi and v2 are in the image, then so are all vectors 
in the plane V  in M3 spanned by t>i and v2-

A 2 

Figure 9

D e f i n i t i o n  3.1.5

T he  Kernel o f  a Linear Transform ation
When you study functions y  =  / ( jc) of one variable, you are often interested in 
the zeros of /(jc ), that is, the solutions of the equation f ( x )  =  0. For example, the 
function y  =  sin(jc) has infinitely many zeros, namely, all integer multiples of n. 

The zeros of a linear transformation are of interest as well.

Kernel

The kernel3 of a linear transformation T (Jc) =  A jc from Rm to Rn consists of all 
zeros of the transformation, that is, the solutions of the equation T (jc) =  AJc =  0. 
See Figure 10, where we show the kernel along with the image.

In other words, the kernel of T  is the solution set of the linear system

A jc =  0 .

We denote the kernel of T  by ker(7) or ker(A).

For a linear transformation T from R m to R",

• im (r)  =  {T(x)  : Jc in Mm} is a subset of the target space R" of 7 \ and
• ker(T) =  {Jc in Rm : T (Jc) =  0} is a subset of the domain Rm of T.

EXA M PLE  9 Consider the linear transformation T  from R 3 to R 3 that projects a vector ortho 
nally into the jci-jc2-plane (see Example 5 and Figure 5).

The kernel of T  consists of the solutions of the equation T (Jc) =  0, that I 
the vectors whose orthogonal projection onto the jci-jc2-plane is zero. Those arei 
vectors on the jC3-axis, that is, the scalar multiples of e3. See Figure 11.

3The kernel of T is also called the null space of A.
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EXAM PLE

EXAM PLE I I

) Find the kernel of the linear transformation

1 1 1
T(x)  =

1 2 3
fro m ' to .

Solution

We have to solve the linear system

1 1
2 3

x  = 0.T(x)  =

Since we have studied this kind of problem carefully in Section 1.2, we can be brief, 

rref
1 1 1 ; O' 1 0 -1  j O'oCM 0 I 2 I 0,

— *3 =  0 
X2 +  2jc3 =  0 or *1 =  *3

*2 =  -2X 3

~X\ ' '  r
X2 = - 2 t =  t - 2

.*3 . l .

where t is an arbitrary constant.

The kernel of T  is the line spanned by in

Consider a linear transformation T (jc) =  Ax  from Rm to R", where m exceeds 
n (as in Example 10, where m =  3 and n =  2). There will be free variables for 
the equation T (x ) =  AJc =  0; that is, this system has infinitely many solutions. 
Therefore the kernel of T  consists of infinitely many vectors. This agrees with our 
intuition: We expect some collapsing to take place as we transform the “large” vector 
space R m into the “smaller” R”. (Recall that the kernel consists of everything that 
“collapses to zero”)

I Find the kernel of the linear transformation T(x)  = Ax  from R 5 to R4, where

1 2 2 - 5  6'
_  —1 —2 —1 1 -1

4 8 5 - 8  9
3 6 1 5 - 7
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Theorem  3 .1 j

EXAM PLE I

Solution
We have to solve the linear system

TOc) =  Ax  =  0. 

We leave it to the reader to verify that

rref(A) =

There is no need to write the zeros in the last column of the augmented matrix. The 
kernel of T  consists of the solutions of the system

'1 2 0 3 —4"
0 0 1 - 4 5
0 0 0 0 0
0 0 0 0 0.

x\ -I- 2x2 +  3*4 -  4*5 =  0
*3 — 4x 4 +  5*5 =  0

The solutions are the vectors of the form

or, x\ =  —2*2 ~  3*4 +  4*5 
*3 =  4*4 — 5*5

* =

x\ —2s - 3 f + 4 r - 2 - 3 4
*2 s 1 0 0
*3 = At —5r — s 0 +  / 4 +  r - 5

X4 t 0 1 0
/S . r 0 0 1

where s , f, and r are arbitrary constants. Using the concept of the span introduced 
in Definition 3.1.2, we can write

- 2 - 3 4 \
1 0 0
0 , 4 - 5
0 1 0
0 0 1 /

k er(r) =  span

The kernel has some remarkable properties, analogous to the properties of the 
image listed in Theorem 3.1.4.

Some properties of the kernel

Consider a linear transformation T  from : to J

a. The zero vector 0 in R m is in the kernel of T.
b. The kernel is closed under addition.
c. The kernel is closed under scalar multiplication.

The verification of Theorem 3.1.6 is left as Exercise 49. 

[ For an invertible n x n  matrix A, find ker(A).

Solution
By Theorem 2.4.4b, the system

A x  =  0

has the sole solution * =  0, so that ker(A) =  {0}. c
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Conversely, if A is a noninvertible n x n  matrix, then ker(A) ^  {0}, meaning 
that the kernel consists of more than just the zero vector (again by Theorem 2.4.4b).

EXA M PLE  I 3 For which n x m  matrices A is ker(A) =  {0}? Give your answer in terms of the rank 
of A.

Solution
It is required that there be no free variables for the system Ajc =  0, meaning that all 
m variables are leading variables. Thus we want rank(A) =  m, since the rank is the 
number of leading variables. ■

Let us summarize the results of Examples 12 and 13.

Theorem 3.1.7 When is ker(A) =  {0}?
a. C onsiderannxm m atrixA .T henker(A ) =  {0}if(andonlyif)rank(A ) = m.
b. Consider an n x  m matrix A. If ker(A) =  {0}, then m < n. Equivalently, if 

m > rt, then there are nonzero vectors in the kernel of A.
c. For a square matrix A, we have ker(A) =  {0} if (and only if) A is invertible.

■

We conclude this section with a summary that relates many concepts we have 
introduced thus far.

SUMMARY 3 .1.8 Various characterizations of invertible matrices

I For an n x n  matrix A, the following statements are equivalent; that is, for a given 
: A they are either all true or all false.

i. A is invertible.
ii. The linear system Ax = b has a unique solution j c , for all b in R".

iii. rref(A) =
iv. rank(A) =  n.
v. im(A) =  R".

vi. ker(A) =  {0}.

In Figure 12 we briefly recall the justification for these equivalences.

Definition of 
(ii) invertibility

(2.4.1 and 2.4.2)

(i) (Hi) (iv) (V)

Theorem 2.4.3 Definition of rank (1.3.2) Example 1.3.3b and
Exercise 2.4.51 *

Theorem 3.1.7c

*Note that B is in the image of A if and only if the system A x  = b is consistent (by definition of the image).

Figure 12
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EXERCISES 3.1
GOAL Use the concepts o f the image and the kernel o f 
a linear transformation (ora matrix). Express the image 
and the kernel o f any matrix as the span o f some vectors. 
Use kernel and image to determine whether a matrix is 
invertible.

For each matrix A in Exercises 1 through 13, find vectors 
that span the kernel o f A. Use paper and pencil.

1. A =

3. A =

5. A =

7. A =

9. A =

11. A =

12. A =

1 2 
3 4

0 0 
0 0

2. A =
2 3 
6 9

4. A = [l 2 3]

6. A =

8. A =

10. A =

1 1 
1 1

1 
1

1 1

I f
> 3

1 2  3 4
0 1 2  3
0 0 0 1

0 
1 
4

0 -1  

1 - -1  1 1
0 - 2  2 

- 2  0 3
-1  3 4

13. A =

1 2 0 0 3 0
0 0 1 0  2 0 
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

For each matrix A in Exercises 14 through 16, find vectors 
that span the image o f A. Give as few vectors as possible. 
Use paper and pencil.

14. A =

1 1
1 2
1 3
1 4

1 2 3
1 2 3
1 2 3

15. A =
1 1 1 1
1 2  3 4

For each matrix A in Exercises 17 through 22, describe the 
image o f the transformation T(x)  =  Ax geometrically (as 
a line, plane, etc. in R2 or M3).

17. A = "1
3

2
4

18. A =
'l
_3

4
12

19. A =
1

—2
2

-4
3

- 6
Tf 

oo 1

"l 1 f "4 7 3 '
20. A = 1 1 1 21. A = 1 9 2

1 1 1 5 6 8

'2 1 3"
22. A = 3

6
4
5

2
7

Describe the images and kernels o f the transformations in 
Exercises 23 through 25 geometrically.

23. Reflection about the line y =  x/3  in K2

24. Orthogonal projection onto the plane x +  2y +  3z =  0 
in R3

25. Rotation through an angle of jt/4  in the counterclock­
wise direction (in R2)

26. What is the image of a function /  from R to R given by

/ ( / )  =  f3 +  at2 +  bt +  c,

where a , b , c  are arbitrary scalars?

27. Give an example of a noninvertible function /  from R 
to R with im( / )  =  M.

x 2 + ? - = \

28. Give an example of a parametrization of the ellipse

4

in R2. (See Example 3.)

29. Give an example of a function whose image is the unit 
sphere

x 2 +  y2 +  z2 =  1

in R3.

30. Give an example of a matrix A such that im(A) *s 

spanned by the vector ^

31. Give an example of a matrix A such that im(A) is
~r

plane with normal vector in J
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32. Give an example of a linear transformation whose image 
is the line spanned by

in R .

33. Give an example of a linear transformation whose kernel 
is the plane * +  2y +  3z =  0 in R3.

34. Give an example of a linear transformation whose kernel 
is the line spanned by

-1
1
2

inR-3

35. Consider a nonzero vector 5 in R3. Arguing geomet­
rically, describe the image and the kernel of the linear 
transformation T  from R3 to R given by

T(x) = v- x.

36. Consider a nonzero vector v in R3. Arguing geomet­
rically, describe the image and the kernel of the linear 
transformation T from R3 to R3 given by

T(x)  =  v x x .

See Definition A.9 in the Appendix.

37. For the matrix

A =
0 1 0 
0 0 1 
0 0 0

describe the images and kernels of the matrices A, A2,
and A3 geometrically.

38. Consider a square matrix A.
#• What is the relationship between ker(A) and 

ker(A2)? Are they necessarily equal? Is one of them 
necessarily contained in the other? More generally, 
what can you say about ker(A), ker(A2), ker(A3), 
ker(A4) , ...?

k  What can you say about im(A), im(A2), 
im(A3) , . ..?

Wint: Exercise 37 is helpful.)

Consider an n x p  matrix A and a p x m  matrix B.
*• What is the relationship between ker(AZ?) and 

ker(fl)? Are they always equal? Is one of them al­
ways contained in the other?

k  What is the relationship between im(A) and 
im(Afi)?

40. Consider an n x p  matrix A and a p x m matrix B. If 
ker(A) =  im(B)y what can you say about the product 
AB1

41. Consider the matrix A = 0.36 0.48 
0.48 0.64

a. Describe ker(A) and im(A) geometrically.
b. Find A2. If v is in the image of A, what can you say 

about Av?
c. Describe the transformation T ( jc) =  A jc geometri­

cally.

42. Express the image of the matrix

A =

1 1 1 6
1 2  3 4
1 3  5 2
1 4  7 0

as the kernel of a matrix B. Hint: The image of A 
consists of all vectors y in R4 such that the sys­
tem Ax  =  y is consistent. Write this system more 
explicitly:

*1 +  x 2 4- *3 +  6 jc4 =  y i
*1 -|- 2X2 +  3*3 +  4*4 =  V2 
*1 -I- 3*2 4* 5*3 +  2*4 =
*1 4- 4*2 +  7*3 =

>’3
y4

Now, reduce rows:

*1 -  *3 +  8*4 =  4v’3 -  3^4
*2 -f- 2*3 -  2*4 =  -  V3 -I- >’4

o =  Vl -  3>’3 4- 2.V4
0 =  y2 — 2y3 4" J4

For which vectors y is this system consistent? The an­
swer allows you to express im(A) as the kernel of a 2 x 4 
matrix B.

43. Using your work in Exercise 42 as a guide, explain how 
you can write the image of any matrix A as the kernel 
of some matrix B.

44. Consider a matrix A, and let B =  rref (A).
a. Is ker(A) necessarily equal to ker(fi)? Explain.
b. Is im(A) necessarily equal to im(Z?)? Explain.

45. Consider an n x m matrix A with rank(A) =  r < m. 
Explain how you can write ker(A) as the span of m — r 
vectors.

46. Consider a 3 x 4 matrix A in reduced row-echelon form. 
What can you say about the image of A? Describe all 
cases in terms of rank(A), and draw a sketch for each.

47. Let T be the projection along a line L\ onto a line L2. 
(See Exercise 2.2.33.) Describe the image and the kernel 
of T geometrically.
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48. Consider a 2 x 2 matrix A with A2 — A.
a. If w is in the image of A , what is the relationship 

between w and A w l
b. What can you say about A if rank(A) =  2? What if 

rank (A) =  0?
c. If rank(A) =  1, show that the linear transforma­

tion T(x)  =  A* is the projection onto im(A) along 
ker(A). (See Exercise 2.2.33.)

49. Verify that the kernel of a linear transformation is closed 
under addition and scalar multiplication. (See Theo­
rem 3.1.6.)

50. Consider a square-matrix A with ker(A2) =  ker(A3). Is 
ker(A3) =  ker(A4)? Justify your answer.

51. Consider an n x p matrix A and a p x m  matrix B such 
that ker(A) =  {0} and ker(Z?) =  {0}. Find ker(A£).

52. Consider a p x m  matrix A and a q x m  matrix B, and 
form the block matrix

b. Form the 7 x 4 matrix

C =

What is the relationship between ker(A), ker(B), and 
ker(C)?

53. In Exercises 53 and 54, we will work with the binary 
digits (or bits) 0 and 1, instead of the Teal numbers R. 
Addition and multiplication in this system are defined 
as usual, except for the rule 1 -1- 1 =  0. We denote this 
number system with F2, or simply F. The set of all vec­
tors with n components in F is denoted by Fn; note that 
F” consists of 2n vectors. (Why?) In information tech­
nology, a vector in F8 is called a byte. (A byte is a string 
of 8 binary digits.)

The basic ideas of linear algebra introduced so far 
(for the real numbers) apply to F without modifications.

A Hamming matrix with n rows is a matrix that 
contains all nonzero vectors in F" as its columns (in any 
order). Note that there are 2n — 1 columns. Here is an 
example:

3 rows 
’ 23 — 1 =  7 columns.

a. Express the kernel of H as the span of four vectors 
in F7 of the form

1 0 0 1 0 1 1
H = 0 1 0 1 1 0 1

0 0 1 1 1 1 0

v\ =

* * * *

* * * *

* * * *

1

IICM 0 < V3 = 0 , v 4 = 0
0 1 0 0
0 0 1 0
0 0 0 1

M = V\ V2 V3
I

V4

Explain why \m(M) = ker(//). If x is an arbitrary 
vector in F4, what is H (M x)l

54. (See Exercise 53 for some background.) When infor­
mation is transmitted, there may be some errors in the 
communication. We present a method of adding extra 
information to messages so that most errors that oc­
cur during transmission can be detected and corrected. 
Such methods are referred to as error-correcting codes. 
(Compare these with codes whose purpose is to con­
ceal information.) The pictures of man’s first landing 
on the moon (in 1969) were televised just as they had 
been received and were not very clear, since they con­
tained many errors induced during transmission. On later 
missions, much clearer error-corrected pictures were 
obtained.

ln computers, information is stored and processed 
in the form of strings of binary digits, 0 and 1. This 
stream of binary digits is often broken up into “blocks” 
of eight binary digits (bytes). For the sake of simplicity, 
we will work with blocks of only four binary digits (i.e., 
with vectors in F4), for example,

•••| 1 0 1 1 | 1 0 0 1 | 1 0 1 0 | 1 0 1 1 |
1 0 0 0 I . . . .

Suppose these vectors in F4 have to be transmitted from 
one computer to another, say, from a satellite to ground 
control in Kourou, French Guiana (the station of the 
European Space Agency). A vector u in F4 is first trans­
formed into a vector i; =  Mu in F7, where M is the 
matrix you found in Exercise 53. The last four entries of
v are just the entries of «; the first three entries of v are 
added to detect errors. The vector v is now transmitted 
to Kourou. We assume that at most one error will oc­
cur during transmission; that is, the vector w received 
in Kourou will be either v (if no error has occurred) or 
w = v +  5/ (if there is an error in the zth component of 
the vector).
a. Let H be the Hamming matrix introduced in Ex­

ercise 53. How can the computer in Kourou use 
Hw to determine whether there was an error ifl 
the transmission? If there was no error, what is 
H w ? If there was an error, how can the com­
puter determine in which component the error was 
made?
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b. Suppose the vector Kourou

0_

is received in Kourou. Determine whether an error 
was made in the transmission and, if so, correct it. 
(That is, find v and u.)

Subspaces of R"; Bases and Linear Independence

In the last section, we saw that both the image and the kernel of a linear transformation 
contain the zero vector (of the target space and the domain, respectively), are closed 
under addition, and are closed under scalar multiplication. Subsets of the vector 
space R n with these three properties are called (linear) subspaces of R".

Definition 3.2.1 Subspaces of R n
A subset W of the vector space W 1 is called a (linear) subspace o f  R" if it has the 
following three properties:

a. W  contains the zero vector in R".
b. W is closed under addition: If w\ and w2 are both in W , then so is W\ + u>2.
c. W  is closed under scalar multiplication: If w is in W and k is an arbitrary 

scalar, then kw  is in W .

Theorem 3.2.2

Properties (b) and (c) together mean that W  is closed under linear combina­
tions'. If vectors w \ , . . . ,  wm are in W and k \ , . . . ,  km are scalars, then the linear
combination k\W\ +  • • • +  kmw,n is in W as well.

Theorems 3.1.4 and 3.1.6 tell us the following:

Image and kernel are subspaces
If T ( jc )  =  A jc is a linear transformation from R m to R w, then

• ker(T) =  ker(A) is a subspace of R "\ and
• image (T ) =  im(A) is a subspace of R u. ■

EXAM PLE I Is w  =
JC

L?]
in 2 : jc > 0 and y > 0 j a subspace of R 2?

Solution
Note that W consists of all vectors in the first quadrant of the jc-y-plane, including 
the positive axes and the origin, as illustrated in Figure 1.

W contains the zero vector and is closed under addition, but it is not closed 
under multiplication with a negative scalar. (See Figure 2.) Thus W fails to be a 
subspace of R 2. ■
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W

Figure I

EXAM PLE 2 Show that the only subspaces of R2 are 
through the origin.

itself, the set {0}, and any of the lines

Solution
Suppose W is a subspace of R 2 that is neither {0} nor a line through the origin. 
We have to show that W must equal R 2. Consider a nonzero vector Pi in W . (We 
can find such a vector since W ^  {0}.) The line L spanned by V[ is a subset of 
W , since W is closed under scalar multiplication; but W does not equal L, since 
W isn’t a line. Consider a vector v2 in W that isn’t on L (see Figure 3). Using a 
parallelogram, we can express any vector i; in R 2 as a linear combination of v\ and 
v2- Therefore, i; belongs to W , since W is closed under linear combinations. This 
shows that W =  R 2, as claimed. ■

inJSimilarly, the only subspaces of R 3 are R 3 itself, the planes through the origin; 
the lines through the origin, and the set {0}. (See Exercise 5.) Note the hierarchy of 
subspaces, arranged according to their dimensions. (The concept of dimension will 
be made precise in the next section.)

Subspaces of R2 Subspaces of R3

Dimension 3 
Dimension 2 
Dimension 1 
Dimension 0

R2
Lines through 0 

{0}

R3
Planes through 0 
Lines through 0 

{0}

We have seen that both the kernel and the image of a linear transformation art 
subspaces (of domain and target space respectively). Conversely, can we expresi
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EXAM PLE 3

any subspace V of R" as the kernel or the image of a linear transformation (or, 
equivalently, of a matrix)?

Let us consider an example.

Consider the plane V in R 3 given by the equation x\ +  2x2 +  3*3 =  0.

a. Find a matrix A such that V =  ker(A).
b .  Find a matrix B such that V =  im(B).

*i
X2

L*3j
=  0 , so

Solution

a. We can write the equation *i +  2*2 +  3*3 =  0 as [ 1 2 3 ]
that V =  ker [ 1 2 3].

b .  Since the image of a matrix is the span of its columns, we need to describe
V as the span of some vectors. For the plane V, any two nonparallel vectors

will do, for example,

A subspace of R” is usually given either as the solution set of a homogeneous 
linear system (that is, as a kernel), as in Example 3, or as the span of some vectors 
(that is, as an image). Sometimes, a subspace that has been defined as a kernel must 
be given as an image (as in part b of Example 3), or vice versa. The transition from 
kernel to image is straightforward: Using Gaussian elimination, we can represent the 
solution set as the span of some vectors. (See Examples 10 and 11 of Section 3.1.) A 
method of writing the image of a matrix as a kernel is discussed in Exercises 3.1.42 
and 3.1.43.

' - 2 ' '-3 * ' - 2  - 3 '
1 and 0 . Thus V =  im 1 0

0. 1. 0  1.

EXAM PLE 4
B a ses  and Linear Independence  
Consider the matrix

A =
2
2
2

Find vectors in R 3 that span the image of A. What is the smallest number of vectors 
needed to span the image of A?

Solution
We know from Theorem 3.1.3 that the image of A is spanned by the four column 
vectors of A,

T '2 ' T "2'
Vl = 1 , V2 = 2 , «3 = 2 , t>4 = 3

1 2 . 3. 4

Figure 4 illustrates that the image of A is a plane; we don’t need all four vectors 
to span im(A). We observe that 02 =  2v\ and 04 =  0| +  S3, so that the vectors 02 
and V4 are “redundant” as far as the span is concerned:

im
1

1

2
2
2

=  span (Ci, V2, S3, S4) =  span (Si, S 3).

The image of A can be spanned by two vectors, but not by one vector alone.
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D e fin it io n  3.2.3

Theorem 3.2.4

Let us verify the equation span(0j, 02, 03 , 04) =  span(0i, 03) algebraically. If 
a vector 0 is in span(0 |, 02 , 03 , 04), then

0 =  C’l 0 1 +  C'202 +  C’303 +  C4V4 

=  1̂ 01 + C 2(20i) + C 303 + C 4(0i +  03)
=  (Cl +  2C2 +  C4)01 +  (c*3 +  C4)03,

showing that 0 is in span(0i, 03), as claimed. ■

The preceding example motivates the following important definitions.

Redundant vectors4; linear independence; basis 
Consider vectors 0 i , . . . ,  vm in R".

a. We say that a vector 0/ in the list 0j, . . . ,  vm is redundant if 0/ is a linear 
combination of the preceding vectors 0i , . . . ,  0, _ i  . 5

b. The vectors 0 j , . . . ,  vm are called linearly independent if none of them is 
redundant. Otherwise, the vectors are called linearly dependent (meaning 
that at least one of them is redundant).6

c. We say that the vectors 0 i , . . . ,  vm form a basis of a subspace V of R" if
they span V and are linearly independent. (Also, it is required that vectors 
............ vm be in V.)7

Let’s take another look at Example 4: In the list

T ''2' T '2 '
V| = 1 . h  = 2 . «>3 = 2 ,  v4 = 3

1 2 3 4.

of column vectors of A, the vectors 02 and 04 are redundant, since 02 =  20] and
04 =  0, +  03. If we omit the redundant vectors from the list, then the remaining 
vectors

'1 ' T
1 . V3 = 2

.1. .3.

are linearly independent; they form a basis of V = image (A).
We can generalize the result of Example 4.

Basis of the image
To construct a basis of the image of a matrix A , list all the column vectors of A, and 
omit the redundant vectors from this list. ■

But how can we identify the redundant column vectors? In simple cases, this can 
often be done by inspection (as in Example 4); in the next section we will develop 
a general algorithm, based on Gaussian elimination.

4The notion of a redundant vector is not part of the established vocabulary of linear algebra. H o w e v e r ,  

we will find this concept quite useful in discussing linear independence.
5We call the first vector, £1, redundant if it is the zero vector. This agrees with the convention that the 
empty linear combination of vectors is the zero vector.
6A list of alternative characterizations of linear independence will be presented in Summary 3.2.9. Id 
many texts, characterization (iv) of that list is used to define linear independence.
7 An alternative characterization of a basis will be presented in Theorem 3.2.10.
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EXAM PLE 5

Theorem 3.2.5

EXAM PLE 6

Are the following vectors in R 7 linearly independent?

’7 " '6 ' '5 ' '4 '
0 0 0 5
4 7 6 3
0 . h  = 1 i>3 = 2 , v4 = 3
1 4 3 2
9 8 1 2
0 0 7. A

Solution
Let’s look for redundant vectors in this list. Vectors Cj and v2 are clearly nonredun- 
dant, since v\ is nonzero and v2 fails to be a scalar multiple of V[ (look at the fourth 
components). Looking at the last components, we realize that P3 cannot be a linear 
combination of i?i and v2, since any linear combination of Ci and v2 will have a 0 
in the last component, while the last component of C3 is 7. Looking at the second 
components, we can see that C4 isn’t a linear combination of v\, v2> C3. Thus the 
vectors v\, v2, £ 3, V4 are linearly independent. ■

We will frequently use the approach of Example 5 to show linear independence. 

Linear independence and zero components
Consider vectors v \ , . . . ,  vm in R". If v\ is nonzero, and if each of the vectors C, 
(for i > 2 ) has a nonzero entry in a component where all the preceding vectors 
Ci , . . . ,  C/_i have a 0 , then the vectors v \ , . . . ,  vm are linearly independent. ■

To understand what we are trying to say in Theorem 3.2.5, take another look at 
the vectors in Example 5.

7 6 5 4
0 0 0 ©
4 7 6 3
0 , ® , 2 , 3
1 4 3 2

9 8 1 2

0 0 © 4

Are the vectors

T ’4" '7 '
Vl = 2 , V2 = 5 , *>3 = 8

.3. 6. .9.

linearly independent?

Solution
Theorem 3.2.5 doesn’t help here, since these vectors don’t have any zero components. 
The vectors v\ and v2 are clearly nonredundant, as v\ is nonzero and v2 fails to be 
a scalar multiple of v \ . To see whether vector C3 is redundant, we need to examine
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whether C3 can be written as v$ =  c\ S\ +  c2S2. Considering the augmented matrix

'1 4 7" 1 0 - 1"
M  = 2 5 8 with rref(M) = 0 1 2

.3 6 9. 0 0 0

we find the unique solution c\ =  — 1, c2 =  2 , so that

V} =  —v\ +  2v2.

It turns out that vector C3 is redundant, making vectors v \ , v 2, C3 linearly dependent.
■

For good reasons, mathematicians like to write their equations in the form

(Something) =  0.

Applying this principle,8 we can write the equation C3 =  —v \+ 2 v 2 from Example6 
as

v\ — 2v2 +  S3 =  0 .

This equation is called a linear relation among the vectors S\, S2, and C3.

D e fin it io n  3.2.6 Linear Relations

Consider the vectors S \ , . . . ,  Sm in R n. An equation of the form

c\S\ + * - -  +  f m5WI = 0

is called a (linear) relation among the vectors C |........vm. There is always the trivial
relation, with c\ =  • • • =  cm =  0. Nontrivial relations (where at least one coefficient 
Cj is nonzero) may or may not exist among the vectors S \ ........ Sm.

Example 6  suggests the following result.

Theorem  3.2.7 Relations and linear dependence

The vectors S \ ........Sm in M" are linearly dependent if (and only if) there are non­
trivial relations among them.

P roof • Suppose vectors S \ , . . . ,  vm are linearly dependent, and v, = c\S\ - f -----1-
c ,- \v , - \  is a redundant vector in this list. Then we can generate a nontrivial 
relation by subtracting D, from both sides: c \S \H------ H ‘,- i  P ,-i -h(—1)5/ = 0 .

• Conversely, if there is a nontrivial relation c\S\ H------ h c, S,- H------ h cmSm = 0 ,
where i is the highest index such that c, ^  0 , then we can solve for Si and 
thus express 5, as a linear combination of the preceding vectors:

C l- C/ - I -
Vi  = --------V \ ------------------------- V i - \ .

Ci a

This shows that vector Si is redundant, so that vectors Ci........ Sm are linearly
dependent, as claimed. ■

*This method was popularized by Descartes, and is often credited lo him, but it was used earlier 
by the English geographer Thomas Harriot (1560-1621). For more on “Harriot's Principle," see 
W. P. Berlinghoff and FQ. Gouvea, Math Through the Ages. Oxton House Publishers and MAA, 2004.j
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EXAM PLE 7

Theorem 3.2.8

EXAM PLE 8

Suppose the column vectors of an n x m matrix A are linearly independent. Find 
the kernel of matrix A.

Solution
We need to solve the equation

Ax = 0 or v\
’ *1 “

_Xm _

=  0 or x\V \-\------- \-xmvm = 0 .

We see that finding the kernel of A amounts to finding the relations among the 
column vectors of A. By Theorem 3.2.7, there is only the trivial relation, with 
* ! = ■ • ■ =  xm =  0, so that ker(A) =  {0}. ■

Let us summarize the findings of Example 7.

Kernel and relations
The vectors in the kernel of an n x m matrix A correspond to the linear relations 
among the column vectors C |........ vm of A : The equation

Ax = 0  means that Cj H------- h xmvm =  0.

In particular, the column vectors of A are linearly independent if (and only if) 
ker(A) =  {0}, or, equivalently, if rank(A) =  m. This condition implies that m < n. 

Thus we can find at most n linearly independent vectors in R". ■

Consider the matrix

A =
1 4 7
2 5 8
3 6 9

to illustrate the connection between redundant column vectors, relations among the 
column vectors, and the kernel. See Example 6.

Redundant column vector:
'T T '4 '
8 =  - 2 +  2 5

.9. 3. .6.

Relation among column vectors: 1
T '4 ' ~T
2 _  2 5 +  1 8

.3. 6. 9_
=  0

Vector
'  r '1 4 r ■ r ‘O'
-2 is in ker(j4), since 2 5 8 -2 = 0

i. .3 6 9. 1. .0 .

In the following summary we list the various characterizations of linear indepen­
dence discussed thus far (in Definition 3.2.3b, Theorem 3.2.7, and Theorem 3.2.8). 
We include one new characterization, (iii). The proof of the equivalence of state­
ments (iii) and (iv) is left to the reader as Exercise 35; it is analogous to the proof of 
Theorem 3.2.7.
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SUMMARY 3.2.9

EXAM PLE 9

Theorem 3.2.10

For a list t?i , . . . ,  vm of vectors in R n, the following statements are equivalent:

i. Vectors v \ , . . . ,  vm are linearly independent.
ii. None of the vectors u j , . . . ,  vm is redundant, meaning that none of them 

is a linear combination of preceding vectors.
iii. None of the vectors C/ is a linear combination of the other vectors 

Ci, . . . ,  Vi- \ , C/+1, . . . ,  vm in the list.
iv. There is only the trivial relation among the vectors Ci , . . . ,  Cm, mean­

ing that the equation c\V\ +  • • • +  cmvm =  0 has only the solution 
c\ =  • •• =  cm =  0.

Various characterizations of linear independence

v. ker 

vi. rank

=  {0}.

=  m.

We conclude this section with an important alternative characterization of a 
basis. (See Definition 3.2.3c.)

If Ci, . . . ,  vm is a basis of a subspace V of Rw, and if v is a vector in V, how many 
solutions c i , . . . ,  cm does the equation

v =  c\V\ H------- h cmvm
have?

Solution
There is at least one solution, since the vectors Cj, . . . ,  vm span V (that’s part of the 
definition of a basis). Suppose we have two representations

v = c \v i H----- -f cmvm
— d\V\ +  • • • +  dmvm.

By subtraction, we find

(d  -  d\)v\ H----- + (cm -  dm)vm =  0,

a relation among the vectors v \ , . . . ,  vm. Since the vectors Ci, . . . ,  vm are linearly, 
independent, this must be the trivial relation, and we have c\ — d\ =  0, 
cm — dm =  0, or c*i =  d\, . . . ,  cm = dm. It turns out that the two representa­
tions v = c\d[ -\----- +  cmvm and v = d jC| +  ■ • • +  dmvm are identical. We have
shown that there is one and only one way to write v as a linear combination of thd 
basis vectors Ci, . . . ,  vm. Bj

Let us summarize. |

Basis and unique representation
Consider the vectors v \ , . . . ,  vm in a subspace V

The vectors Ci, . . . ,  vm form a basis of V if (and only if) every vector v in V\ 
can be expressed uniquely as a linear combination

V = C]Vi + ----- b cmvm

(In Section 3.4, we will call the coefficients c j , . . . ,  cm the coordinates of v wil 
respect to the basis v \ , . . . ,  Cm.) 1
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P roof In Example 9 we have shown only one part of Theorem 3.2.10; we still need to verify
that the uniqueness of the representation v = c\v  H ------- h cmvm (for every v in V)
implies that v \ , . . . ,  vm is a basis of V. Clearly, the vectors v \ , . . .  , v m span V, since 
every 0 in V can be written as a linear combination of 0 i ........ vm.

To show the linear independence of vectors 0 i , . . . ,  0m, consider a relation 
c\V\ + - •• + cmvm =  0. This relation is a representation of the zero vector 
as a linear combination of 0 i , . . . , 0 m. But this^representation is unique, with
c\ =  • • • =  cm =  0, so that c i H ------- h cmvm =  0 must be the trivial relation. We
have shown that vectors 0i , . . . ,  vm are linearly independent. ■

Consider the plane V = image (A) =  span(0i, 02, 03 , 04) introduced in Exam­
ple 4. (Take another look at Figure 4.)

We can write
04 =  10, +  002 +  1 03 +  004 

=  0l>i ~h 0l>2 “1“ OU3 +  11 4̂ ,

illustrating the fact that the vectors 0 i, 02, 03 , 04 do not form a basis of V. However, 
every vector v in V  can be expressed uniquely as a linear combination of 0i and 03 
alone, meaning that the vectors 0j, 03 do form a basis of V.

EXERCISES 3.2
GOAL Check whether or not a subset o f R" is a sub­
space. Apply the concept o f linear independence (in terms 
of Definition 3.2.3, Theorem 3.2.7, and Theorem 3.2.8). Ap­
ply the concept o f a basis, both in terms o f Definition 3.2.3 
and in terms o f Theorem 3.2.10.
Which o f the sets W in Exercises 1 through 3 are subspaces 
o/R3?

1. W =

2. W =

3. W =

:jc +  y +  z =  1

'•x < y < z

x  +  2y +  3z 
4x +  5y + 6z 
Ix  4- Sy +  9z

:x, y , z  arbitrary constants

4. Consider the vectors 0i,02, -.,0m  in R” . Is 
span(0i * • • •, 0m) necessarily a subspace of R n ? Justify 
your answer.

5. Give a geometrical description of all subspaces of R3. 
Justify your answer.

6* Consider two subspaces V and W of Rn.
Is the intersection V n  W necessarily a subspace 
of Rn?

b* Is the union V U W necessarily a subspace of R” ?

Consider a nonempty subset W of R” that is closed under 
addition and under scalar multiplication. Is W necessar­
ily a subspace of R"? Explain.

8. Find a nontrivial relation among the following vectors:

Y ~2 "3'
2 ’ 3 ’ 4

9. Consider the vectors 0 | , 0 2 ,. . . ,  vm in R n, with vm =  0. 
Are these vectors linearly independent?

In Exercises 10 through 20, use paper and pencil to identify 
the redundant vectors. Thus determine whether the given 
vectors are linearly independent.

10.

12.

14.

16.

18.

19.

' 7 o'
11 ’ 0

1 1 1
0 2 2
0 0 3

1 3 6
1 2 > 5
1 1 4

1 1 1
1 2 4
1 ’ 3 ’ 7
1 4 1C

11.

13.

15.

" 11"

’ 7

1 2 3
2 3 4

1 1 1
17. 1 , 2 , 3

1 3 6

1 2 0 0 3
0 0 1 0 4
0 ’ 0 ’ 0 1 y 5
0 0 0 0 0
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20.

In Exercises 21 through 26, find a redundant column vec­
tor o f the given matrix A , and write it as a linear com- 
bination o f preceding columns. Use this representation to 
write a nontrivial relation among the columns, and thus 
find a nonzero vector in the kernel o f A. (This procedure 
is illustrated in Example 8.)

"l f
21.

1 1

"l 3 6"
24. 1 2 5

1 1 4_

‘ l 0 2 0
26. 0 1 3 0

0 0 0 1

22. 1 3
2 6

25.

23.

1 0 1
1 1 1
1 0 1

0 1 
0 2

Find a basis o f the image o f the matrices in Exercises 21 
through 33.

21.

30.

32.

1 1 
1 2 
1 3

0 1 0 
0 0 1 
0 0 0 

0 1 2

28.
1 1 1
1 2 5
1 3 7

29. 1 2 3
4 5 6

L J
“l 5"
2 631. 3 7

- 5 8

0 0 0 1
0 0 3

0 4
0 0 0 0 1 5
0 0 0 0 0 0

33

0 1 2  0 3 0
0 0 0 1 4  0
0 0 0 0 0 1
0 0 0 0 0 0_

34. Consider the 5 x 4 matrix

A = J J J J
01 03 04

We are told that the vector is in the kernel of A.

Write 04 as a linear combination of 0 j, 02, 03.

35. Show that there is a nontrivial relation among the vec­
tors 0i , . . . ,  vm if (and only if) at least one of the vec­
tors fij is a linear combination of the other vectors
01....... 0/-1, 0/ + 1.........0m-

36. Consider a linear transformation T from R" to R p and 
some linearly dependent vectors 0i, 02, . . . ,  vm in Rn. 
Are the vectors T(0i), T(v2) , . . . ,  T(vm) necessarily 
linearly dependent? How can you tell?

37. Consider a linear transformation T from Rn to R p and 
some linearly independent vectors 0 |, 02, . . . ,  0m in Rn. 
Are the vectors r(0j),  7 \02),.. •, T(vm) necessarily 
linearly independent? How can you tell?

38. a. Let V be a subspace of Rn. Let m be the largest num­
ber of linearly independent vectors we can find in V. 
(Note that m < /t, by Theorem 3.2.8.) Choose lin­
early independent vectors 0 j, 02, - . . ,  vm in V. Show 
that the vectors v \ , 02....... vm span V and are there­
fore a basis of V. This exercise shows that any sub­
space of Rn has a basis.

If you are puzzled, think first about the special 
case when V is a plane in R3. What is m in this case? 

b. Show that any subspace V of Rn can be represented 
as the image of a matrix.

39. Consider some linearly independent vectors 0 j, 02, . . . ,  
vm in Rn and a vector v in Rn that is not contained in 
the span of 0 i, 02, . . . ,  vm. Are the vectors 0 i, 02, . . . ,  
Vfn, 0 necessarily linearly independent? Justify your 
answer.

40. Consider an n x p matrix A and a p x m matrix B. 
We are told that the columns of A and the columns of B 
are linearly independent. Are the columns of the product 
AB linearly independent as well? Hint: Exercise 3.1.51 
is useful.

41. Consider an m x n matrix A and an n x m  matrix B (with 
n ^  m) such that AB = Im. (We say that A is a left in­
verse of B.) Are the columns of B linearly independent? 
What about the columns of A ?

42. Consider some perpendicular unit vectors 0i, 02, • • •. 
vm in R". Show that these vectors are necessarily lin­
early independent. (Hint: Form the dot product of 0/ and 
both sides of the equation

C \  0 1  +  Q 0 2  +  • • ' +  C'i V j  +  • • • +  C m V m  =  0 . )

43. Consider three linearly independent vectors v \y 02, ?3 
in Rn. Are the vectors 01, 01 + 02, 01 +  02 +  03 linearly 
independent as well? How can you tell?

44. Consider linearly independent vectors 0 i, 02, . . . ,  vm i® 
R", and let A be an invertible m x m matrix. Are the 
columns of the following matrix linearly independent?

I
v 1 v2 
I I

45. Are the columns of an invertible matrix linearly inde­
pendent?
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46. Find a basis of the kernel of the matrix
"1 2 0 3 5 '
0 0 1 4  6

Justify your answer carefully; that is, explain how you 
know that the vectors you found are linearly independent 
and span the kernel.

47. Consider three linearly independent vectors ? i, 02* 03 
in R4. Find

rref V l V2  l>3

I I I

48. Express the plane V in R3 with equation 3x\ +  4*2 +  
5x3 =  0 as the kernel of a matrix A and as the image of 
a matrix B.

49. Express the line L in R3 spanned by the vector as

the image of a matrix A and as the kernel of a matrix B.

50. Consider two subspaces V and W of Rn. Let V + W be 
the set of all vectors in R" of the form 0 +  where v 
is in V and w in W. Is V +  W  necessarily a subspace 
ofR"?

If V and W are two distinct lines in R3, what is 
V +  W l  Draw a sketch.

51. Consider two subspaces V and W of R" whose intersec­
tion consists only of the vector 0.
a. Consider linearly independent vectors 0 |, 02, . . . ,  

vp in V and w \ , £>2, • • •, wq in W. Explain why the

b.

vectors i>i, i>2........v f
independent.
Consider a basis 0 |,

w 1, w2, . . . ,  \bq are linearly

v D of V and a ba­
sis u>j, W2, • • •, wq of W . Explain why 0 | , 02, . . . ,  
vp , w 1, 0>2, is a basis of V +  W. (See Exer­
cise 50.)

52. For which values of the constants a, b,c, d , e, and /  are 
the following vectors linearly independent? Justify your 
answer.

a b d

0 C e

0 0 1
f

0 0 0

53. Consider a subspace V of R” . We define the orthogonal 
complement V1 of V as the set of those vectors w in Rn 
that are perpendicular to all vectors in V ; that is, w • v =
0, for all v in V. Show that V1 is a subspace of Rw.

in J Find a basis54. Consider the line L spanned by

of (See Exercise 53.)

55. Consider the subspace L of R5 spanned by the given 
vector. Find a basis of Lx . (See Exercise 53.)

Y
2
3
4 

J

56. For which values of the constants a y b , . . . ,  m are the 
given vectors linearly independent?

/ k
8 m
h 1
i ’ 0
j 0
1 0

57. Consider the matrix

A =

0 1 2 0 0 3 0
0 0 0 1 0 4 0
0 0 0 0 1 5 0
0 0 0 0 0 0 0

Note that matrix A is in reduced row-echelon form.
For which positive integers j  = 1 , . . . ,  7 does there 

exist a vector if in the kernel of A such that the 7 th com­
ponent xj  of x  is nonzero, while all the components 
X j + 1, . . . ,  xj  are zero?

58. Consider an n x m  matrix A. For which positive integers 
j  =  1 , . . . ,  m  does there exist a vector jc  in the kernel 
of A such that the j th  component x j  of x is nonzero,
while all the components x j+ \____ xm are zero? Use
Exercise 57 as a guide. Give your answer in terms of the 
redundant column vectors of A.

The Dimension of a Subspace of R"

Consider a plane V in R \  Using our geometric intuition, we observe that all bases of
V consist of two vectors. (Any two nonparallel vectors in V will do: see Figure 1.) 
One vector is not enough to span V, and three or more vectors are linearly dependent. 
It turns out that, more generally, all bases of a subspace V of R n consist of the same 
number of vectors. In order to prove this important fact, we need an auxiliary result.
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Theorem 3.3.1

P roof

IR*

W’ ----------------------► R"
B

Figure 2

Theorem 3.3.2

Consider vectors v \ , . . . ,  vp and w \ , . . . ,  wq in a subspace V of R n. If the vectors 
v \ , . . . ,  vp are linearly independent, and the vectors w \ , . . . ,  wq span V , then q > p.

For example, let V be a plane in R3. Our geometric intuition tells us that we 
can find at most two linearly independent vectors in V, so that 2 > p, and we need 
at least two vectors to span V, so that q > 2. Therefore, the inequality q > p  does 
indeed hold in this case.

This proof is rather technical and not very illuminating, ln the next section, when 
we study coordinate systems, we will gain a more conceptual understanding of this 
matter.

Consider the matrices

W1

1
S’ and B = 01 0/7

_ _ _ _

Note that im(y4) =  V, since the vectors w \ , . . . ,  wq span V. The vectors 5( , . . . ,  vp 
are in the image of A, so that we can write

ui =  A u \ ............. vp — A up

for some vectors u i , . . . ,  u p in . We can combine these equations and write

" " _

01 0 , =  A u i U p
_ _

c

See Figure 2. _ j
The kernel of C is a subset of the kernel of B (if Cx =  0, then B x  =  A C x  =  0)̂  

But the kernel of B is {0}, since the vectors v \ , . . .  yv p are linearly independent1 
Therefore, the kernel of C is {0} as well. Theorem 3.1.7b now tells us that the q x p 
matrix C has at least as many rows as it has columns, that is, q > p, as claimed. I

!
N um ber of vectors in a basis
All bases of a subspace V of R n consist of the same number of vectors.
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P roof Consider two bases ? i , . . . ,  vp and w \ , . . . ,  wq of V. Since the vectors v \ , . . .  , v p 
are linearly independent and the vectors ib\ , . . . ,  wq span V, we have q > p, by 
Theorem 3.3.1. Likewise, since the vectors w \ , . . . ,  wq are linearly independent and 
the vectors v \ ........ vp span V , we have p > q. Therefore, p  =  q. ■

Consider a line L and a plane V in R3. A basis of L consists of just one vector 
(any nonzero vector in L will do), while all bases of V consist of two vectors. 
A basis of R3 consists of three vectors. (The standard vectors e\, h  are one 
possible choice.) In each case, the number of vectors in a basis corresponds to what 
we intuitively sense to be the dimension of the subspace.

D e fin it io n  3.3.3 Dimension
Consider a subspace V of Rn. The number of vectors in a basis of V is called the 
dimension of V , denoted by dim (V).9

This algebraic definition of dimension represents a major advance in the 
development of linear algebra, and indeed of mathematics as a whole: It allows us to 
conceive of spaces with more than three dimensions. This idea is often poorly under­
stood in popular culture, where some mysticism still surrounds higher-dimensional 
spaces. The German mathematician Hermann Weyl (1855-1955) puts it this way: 
“We are by no means obliged to seek illumination from the mystic doctrines of spiri­
tists to obtain a clearer vision of multidimensional geometry” (Raum , Zeit, Materie, 
1918).

The first mathematician who thought about dimension from an algebraic point 
of view may have been the Frenchman Jean Le Rond d’Alembert (1717-1783). In 
the article on dimension in the Eneyclopedie, he writes the following:

The way of considering quantities having more than three dimensions is just 
as right as the other, because letters can always be viewed as representing 
numbers, whether rational or not. I said above that it was not possible to 
conceive more than three dimensions. A thoughtful gentleman [un homme 
d'esprit] with whom I am acquainted believes that nevertheless one could 
view duration as a fourth dim ension... . This idea may be challenged, but it 
has, it seems to me, some merit, were it only that of being new [eette idee peut 
etre contestee, mais elle a, ee me semble, quelque merite, quand ce serait que 
eelui de la nouveaute}. (Eneyclopedie, vol. 4, 1754)

This homme d'esprit was no doubt d’Alembert himself, afraid of being attacked 
for what appeared as a risky idea at that time.

The idea of dimension was later studied much more systematically by the 
German mathematician Hermann Gunther Grassmann (1809-1877), who introduced 
the concept of a subspace of R”. In fact, most of the concepts discussed in this chap­
ter can be traced back to Grassmann’s work. Grassmann presented his ideas in 1844 
in the book Die lineare Ausdehnungslehre, ein neuer Zweig der Mathematik (The 
Theory o f Linear Extension, a New Branch o f Mathematics). Grassmann’s methods 
were only slowly adopted, partly because of his obscure writing. He used unfamiliar 
authentic German terms, rather than the customary Latin, for mathematical concepts; 
he writes about “Schatten,” shadows, for example, rather than projections. While his 
ideas have survived, most of his terminology has not.

9For this definition to make sense, we have to be sure that any subspace of R” has a basis. This 
verification is left as Exercise 3.2.38a.
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Similar work was done by the Swiss mathematician Ludwig Schlafli (1814— 
1895), a contemporary of Grassmann.

Today, dimension is a standard and central tool in mathematics, as well as in 
physics and statistics. The concept can be applied to certain nonlinear subsets of R", 
called manifolds, generalizing the idea of curves and surfaces in R 3.

After this brief historical digression, let us return to the more mundane: What 
is the dimension of R"? We expect this dimension to be w, of course. This is indeed 
the case: The vectors e \ , . . . ,  en form a basis, called the standard basis of R".

A plane V in R 3 is two dimensional. Earlier, we mentioned that we cannot find 
more than two linearly independent vectors in V and that we need at least two vectors 
to span V. If two vectors in V are linearly independent, then they form a basis of V . 
Likewise, if two vectors span V, then they form a basis of V.

We can generalize these observations as follows:

Theorem 3.3.4 Independent vectors and spanning vectors in a subspace of R n
Consider a subspace V of R" with dim(V) =  m.

a. We can find at most m linearly independent vectors in V .
b. We need at least m vectors to span V.
c. If m vectors in V are linearly independent, then they form a basis of V.
d. If m vectors in V span V, then they form a basis of V.

Part (a) allows us to define the dimension of V alternatively as the maximal 
number of linearly independent vectors in V. Likewise, part (b) tells us that the 
dimension of V is the minimal number of vectors needed to span V.

In parts (c) and (d) we make the following point: By Definition 3.2.3, some 
vectors , . . . ,  vm in V form a basis of V if they are linearly independent and span 
V . However, if we are dealing with “the right number” of vectors (namely, m, the 
dimension of V), then it suffices to check only one of the two properties; the other 
will then follow “automatically ”

P roof We prove Theorem 3.3.4, parts (a) and (c). We leave the proofs of parts (b) and (d) 
as Exercises 78 and 79.

a. Consider linearly independent vectors v\, V2, ..., vp in V, and let
ib\, W2, . . .  ,w m be a basis of V. Since the vectors w\, w 2 , . . . ,  wm span
V , we have p < m, by Theorem 3.3.1, as claimed.

c. Consider linearly independent vectors ? i , . . . ,  vm in V. We have to show 
that the vectors v \ , . . .  , v m span V. If v is any vector in V, then the m +  1 
vectors v \ , . . . ,  vm, v will be linearly dependent, by part (a). Since vectors
v i , . . .  , v m are linearly independent and therefore nonredundant, vector i; 
must be redundant in the list v \ , . . . ,  vm, v, meaning that v is a linear com­
bination of P i..........vm. Since v is an arbitrary vector in V, we have shown
that vectors v \ , . . . ,  vm span V, as claimed. ■

In Section 3.2, we saw that the kernel and image of a linear transformation are 
subspaces of the domain and the target space of the transformation, respectively. We 
will now examine how we can find bases of the image and kernel and thus determine 
their dimension.
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EXAM PLE I

Finding B a ses  o f  Kernel and Image  
Consider the matrix

A =

1 2 2 - 5 6 ‘
- 1 - 2 - 1 1 — 1

4 8 5 - 8 9
3 6 1 5 - 7

a. Find a basis of the kernel of A , and thus determine the dimension of the 
kernel.

b .  Find a basis of the image of A , and thus determine the dimension of the 
image.

Solution

'1 2 0 3 —4"
0 0 1 - 4 5
0 0 0 0 0

0 0 0 0 0.

a. We will solve the linear system A x =  0, by Gaussian elimination. From 
Example 3.1.11 we know that

B =  rref (A) =

Note that ker(A) =  ker(B), by the definition of the reduced row-echelon 
form. In Chapter 1 we learned to solve the equation Ax  =  0 by solving the 
simpler equation B x =  0 instead. In Example 3.1.11 we have seen that the 
vectors in ker(A) =  ker(Z?) are of the form

x =

U'l Uh W l

where s y t , and r are arbitrary constants.
We claim that the three vectors u>i, u>2, u>3 form a basis of the kernel of 

A. The preceding equation, x = sw\ +  tW2 +  r£>3, shows that the vectors 
u)\,W 2,w i  span the kernel.

Theorem 3.2.5 tells us that the vectors u) \ , u)2, u>3 are linearly indepen­
dent, since each has a 1 in a component where the other two vectors have a 
0 ; these components correspond to the free variables X2, *4 , and *5 .

Thus, a basis of the kernel of A is

*1 - 2 s  - 3 1 + 4  r - 2 - 3 A

x 2 s 1 0 0
X3 - At —5 r =  .V 0 + t 4 +  r - 5
x4 t 0 1 0
*5 r 0 0 1

- 2 - 3 4
1 0 0
0 > 4 1 - 5
0 1 0
0 0 1

and dim(kerA) =  3.
b .  To construct a basis of the image of A by means of Theorem 3.2.4, we need 

to find the redundant columns of A. Let’s see how we can use B =  rref(A) to 
carry out this task. To keep track of the columns of_A and B , we will denote 
the columns of A by a \ , . . . ,  05 and those of B by b \ ........ b$.
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Theorem 3.3.5

The redundant columns of B =  rrefM ) are easy to spot. They are the 
columns that do not contain a leading 1, namely, b2 =  2b\, b4 =  3b\ — 463 , 
and b$ =  —4b\ +  5b^.

And here comes the key observation: The redundant columns of A corre­
spond to those of B , meaning that 5, is redundant if and only if fr, is redundant. 
We will illustrate this fact by means of an example. We know that b^ is redun- 
dant, with b5 =  —4b\ +  56 3 . This induces the relation 4b\ — 5/?3 -f b$ =  0, 
meaning that the vector

4"
0

- 5
0
1

is in ker(Z?) =  ker(A); see part (a) of this example. But this in turn induces 
the relation 451 — 55} +  a$ =  0 among the columns of A , showing that S5 is 
redundant, with a$ =  -4 5  \ +  5 5 3 .10

Thus the redundant columns of A are 02 = 25i, 54 =  35i — 453 and 
55 =  —451 +  55i. By Theorem 3.2.4, the nonredundant columns 5 j and 53 
form a basis of the image of A.

Thus, a basis of the image of A is

■ r  
- l  

4

' T  
1

•
— 1

5
3. 1.

and dim(im A) =  2. ■

Using Example lb as a guide, we can establish the following general rule for 
finding a basis of the image of a matrix.

Using rref to construct a basis of the image
To construct a basis of the image of A, pick the column vectors of A that correspond 
to the columns of rref (A) containing the leading 1 ’s. ■

Again, here are the three main points that make this procedure work:

• The nonredundant column vectors of A form a basis of the image of A (The­
orem 3.2.4).

• The redundant columns of A correspond to those of rref( A).
• The nonredundant column vectors of rref(/4) are those containing the leading

1 ’s.

Note that in Theorem 3.3.5 you need to pick columns of matrix A, not of 
rref(A), because the matrices A and rref(A) need not have the same image (see 
Exercise 3.1.44b).

In Theorem 3.3.5, we are constructing a basis of im(A) that contains as many 
vectors as there are leading l ’s in rrefM ). By Definition 1.3.2, this number is the 
rank of A.

I0A general proof of the claim that the redundant cojumns of A correspond to those of B goes along
similar lines. Suppose bj is redundant, with b, = c\b\ -I-----4- This induces a relation
—c\b\ — • • — c * , - _ | +  bj = 0, and so forth, as above.
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Theorem 3.3.6

Theorem 3.3.7

EXAM PLE 2

Dimension of the image
For any matrix A,

dim (imA) =  rank(A).

Now back to the kernel. In Example la  we are constructing a basis of the kernel 
of an n x m matrix A that contains as many vectors as there are free variables. Thus

(, A _  (  number of \  _  ( total number \  _  /  number of \  
dim(ker A) -  ^ free variables ) - {  of variab]es )  ~  pleading variables ;

=  m — rank(A).

Adding up the equations dim(ker A) =  m — rank(A) anddim(im A) =  rank(A), 
we find the remarkable equation dim(kerA) -I- dim(im A) =  m for any n x m 
matrix A.

Rank-Nullity Theorem
For any n x m matrix A, the equation

dim(ker A) +  dim(imA) =  m

holds. The dimension of ker(A) is called the nullity of A, and in Theorem 3.3.6 
we observed that dim(imA) =  rank(A). Thus we can write the preceding equation 
alternatively as

(nullity of A) 4- (rank of A) =  m.

Some authors go so far as to call this the fundamental theorem o f linear algebra. ■

We can write the rank-nullity theorem as

m — dim(ker A) =  dim(imA);

we can interpret this formula geometrically as follows.
Consider the linear transformation

T (j?) =  A jc from Rm to R".

Note that m is the dimension of the domain of transformation T . The quantity 
nullity(A) =  dim(kerA) counts the dimensions that “collapse” as we perform 
transformation 7\ and rank(A) =  dim(imA) counts the dimensions that “survive” 
transformation T .

Consider the orthogonal projection T  onto a plane V in R3 (see Figure 3). Here, the 
dimension of the domain is m =  3, one dimension collapses (the kernel of T  is the

Figure 3
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EXA M PLE  3

line V 1- orthogonal to V), and we are left with the two-dimensional im (r)  =  V. 
See Examples 3.1.5 and 3.1.9.

m — dim (ker7) =  d im (im ager) 
t  t  t
3 - 1 = 2  ■

If we can find the redundant column vectors of a matrix A by inspection; then 
we can construct bases for image and kernel of A without computing the reduced 
row-echelon form of A . This shortcut is illustrated in the following example.

Find bases of the image and kernel of the matrix

A =

1 2 0 1 2 '
1 2 0 2 3
1 2 0 3 4

.1 2 0 4 5.

Solution
We can spot the redundant columns, 02 =  2 v \ , P3 =  0, and v$ =  0i 4- 04 - Proposi­
tion 3.2.4 tells us that the nonredundant columns

T T
1 _ 2

Vl = 1 V4 = 3
1 4

form a basis of the image of A. Thus dim(im A) =  2.
Applying the method outlined in Example 3.2.8 to the redundant vectors 02, t?3, 

and 05 , we can generate three vectors in the kernel of A. We will organize our work 
in a table.

Redundant Vector

02 = 2v\

Relation

- 2 ? i  +  02 =  0

Vector in Kernel o f A

r-2 "
1

W 2=  0
0 
0

03 =  0 03 =  0 t l> 3  =

05 =  0i +  04 — 01 — 04 +  05 =  0 W5 =

0 
0 
1 
0 
0

"-1
0
0

- 1
1

To facilitate the transition from the relation to the vector in the kernel, it can be 
useful to write the coefficients of a relation above the corresponding columns of the
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matrix , 11 as follows (for the last relation):

- 1  0 0 -1 1
1 2 0 1 2 *
1 2 0 2 3
1 2 0 3 4
1 2 0 4 5

We claim that the three vectors u>2, w3, w$ constructed above form a basis o f the 
kernel o f  A. Theorem 3.2.5 tells us that these vectors are linearly independent, since 
vector ibi has a 1 in the / th component, while the preceding vectors have a 0  in that 
component.

From Theorem 3.3.7, we know that dim(ker A) =  5 — dim(im A) = 3. Because 
u>2, u>3, u>5 are three linearly independent vectors in the three-dimensional space 
ker(A), they form a basis of ker(A), by Theorem 3.3.4c. ■

More generally, if A is an n x m matrix, then this procedure generates as many 
linearly independent vectors in ker(A) as there are redundant columns vectors in A. 
But this number is

m — (  1 =  m — dim(im A) =  dim(ker A),y nonredundant columns J

by Theorem 3.3.7, showing that we have enough vectors to form a basis of the kernel 
(again, we are invoking Theorem 3.3.4c).

Theorem 3.3.8 Finding bases of the kernel and image by inspection
Suppose you are able to spot the redundant columns of a matrix A.

Express each redundant column as a linear combination of the preced­
ing columns, v,■ = c\V\ +  •_;• +  q - i 0 /_i, write a corresponding relation, 
—ci -  • • • — c*,_ 1 Vi-\ + Vi =  0 , and generate the vector

~c\

Cj — I
1
0

0

in the kernel of A. The vectors so constructed form a basis of the kernel of A.
The nonredundant columns form a basis of the image of A.
The use of Kyle Numbers can facilitate this procedure (see Example 3). ■

B a ses  o f  Rn
We know that any basis of R n consists of n vectors, since we have the standard basis 

(recall Theorem 3.3.2). Conversely, how can we tell whether n given 
vectors v \ , . . . ,  vn in R n form a basis?

11 We will refer to these numbers above the matrix as the Kyle Numbers, after Kyle Burke (Colby 
2003), who introduced them.



C H A P T E R  3 Subspaces of R n and Their Dimensions

Theorem 3.3.9

EXA M PLE  4

By Theorem 3.2.10, the vectors 0 i , . . . ,  vn form a basis of R" if (and only if) 
every vector b in R" can be written uniquely as a linear combination of the vectors 
v i , . . . ,  t v

[J
b =  c i H ------- \-cnv„ =  0i

. I

By definition of invertibility, the linear system

mc\~

_ Cn _

' \ 1 ' 'c \ '

01 Vn =
. 1 1 . Sn .

has a unique solution for all b if (and only if) the n x n  matrix

vi
I

is invertible. We have shown the following result:

Bases of R n
The vectors 0 1........ vn in R” form a basis of R" if (and only if) the matrix

J J
0| u
I I

is invertible.

For which values of the constant k do the following vectors form a basis of K3?

T '  1' " r
1 -1 k
1 1 k2

Solution
We need to examine when the matrix

I 1 1
1 - 1  k
1 1 k 2

is invertible. This matrix reduces to

f l  1 1
0 1 (1 — k ) / 2

0 0 k 2 -  1

We can reduce this matrix all the way to I3 if (and only if) k 2 — 1 ^  0, that is, if k 
is neither 1 nor — 1.

Thus the three given vectors form a basis of R3 if (and only if) k is neither 1 
nor — 1. B

Theorem 3.3.4, parts (c) and (d), applied to V  =  R", and Theorem 3.3.9 provide 
us with three new characterizations of invertible matrices. I
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SUMMARY 3.3.10 I Various characterizations of invertible matrices
F o rann x  n matrix A, the following statements are equivalent.

i. A is invertible.
ii. The linear system Ax = b has a unique solution jc, for all b in '

iii. rref(A) =  /„.
iv. rank(A) =  n.
v. im(A) =  R".

vi. ker(A) =  {0}.
vii. The column vectors of A form a basis of R".

viii. The column vectors of A span R".
ix. The column vectors of A are linearly independent.

EXERCISES 3.3

GOAL Use the concept o f dimension. Find a basis o f the 
kernel and o f the image o f a linear transformation.

In Exercises 1 through 20, find the redundant column vec­
tors o f the given matrix A  “by inspection.” Then find a 
basis o f the image o f A and a basis o f the kernel o f A.

"l 0 5 3 o ' "l 0 5 3 - 3 “
0 1 4 2 0 20. 0 0 0 1 3
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1.

3.

5.

7.

9.

11.

1 3
2 6

IS.

17.

1 0 1 
0 1 o 
0 1 o

13. [1 2 3 ]

1 0 2 0‘ 
0 1 2  0 
1 0  2 0 
0 1 2  0

0 1 2  0 3
0 0 0 1 4

2. 1 4
2 8

1 2.

16.

18.

19.

In Exercises 21 through 25, find the reduced row-echelon 
form o f the given matrix A. Then find a basis o f the image 
of A and a basis o f the kernel o f A.

' l 2 4. '0 f “l 3 9“ "2 4 8"
3 4 0 2 21. 4 U\ 00 22. 4 5 1

7 6 3 7 9 3
'l I 3

6. ' l 1 3 L L J
2 L* 6 2 1 iX "l 0 2 t "4 8 1 1 6

23. 0 1 -3 _ 1 24. 3 6 1 2 5
1 2 3'

8.
"1 - 3" 3 4 -6 8 2 4 1 9 10

1 2 4 2 —6 0 -1 3 1 1 2 3 2 0
3 —9

'l 2 3 2 1"
"l 2 f '0 1 l “

25. 3 6 9 6 3
1 2 2 10. 0 1 2 1 2 4 1 2
1 2 3 0 1 3 2 4 9 1 2

“l 0 o" 26. Consider the matrices

1 0 0 ” l 1 f ' l 0 f
_1 1 1 C = 1 0 0 , H = 1 1 1

1 1 1 1 0 1
0 1 2] L J - -

■ J "l 0 o' ' l 1 1“
‘ l 1 5 r L = 1 0 0 , T = 0 1 0
0 1 2 2 _1 1 1 _0 1 0
0 1 2 3 "1 0 f 1 0 r0 1 2 4 X = 0 1 0 , Y = 0 1 0

“l -2 0 -1 0" 1 0 1 0 1 0
0 0 1 5 0 a. Which of the matrices in this list have the san0 0 0 0 1 as matrix C?
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b. Which of the matrices in this list have the same image 
as matrix C?

c. Which of these matrices has an image that is different 
from the images of all the other matrices in the list?

27. Determine whether the following vectors form a basis 
of R4:

1 1 1 1
1 -1 2 - 2
1 1 4 4
1 -1 8 - 8

28. For which value(s) of the constant k do the vectors below 
form a basis of R4?

1 0 0 2
0 1 0 3
0 0 1 4
2 3 4 k

29. Find a basis of the subspace of R3 defined by the 
equation

2x\ +  3*2 +  *3 =  0.

30. Find a basis of the subspace of R4 defined by the 
equation

2a* ] -  *2 +  2 * 3  +  4 * 4  =  0 .

31. Let V be the subspace of R4 defined by the equation

*i — *2 + 2*3 + 4*4 =  0 .

Find a linear transformation T from R3 to R4 such 
that ker(7) =  {0} and im(T) =  V . Describe T by its 
matrix A.

32. Find a basis of the subspace of R4 that consists of all 
vectors perpendicular to both

f 0“
0

and
1

-1 2
1 3

See Definition A.8 in the appendix.

33. A subspace V of R" is called a hyperplane if V is defined 
by a homogeneous linear equation

C \ X \  + < ’2 * 2  +  ••• + c n x „  = 0 ,

where at least one of the coefficients ct is nonzero. What 
is the dimension of a hyperplane in R” ? Justify your an­
swer carefully. What is a hyperplane in R3? What is it
in R2?

34. Consider a subspace V in Rm that is defined by n ho­
mogeneous linear equations:

tfii*i +  a 12*2 +  ■ * ■ +  a\mxm =  0
021*1 + 022*2 + ■ ■ • + «2 m*m =  0

a«l*i +  tf/i2*2 +  • • • +  anmxm =  0

What is the relationship between the dimension of V and 
the quantity m — n l  State your answer as an inequality. 
Explain carefully.

35. Consider a nonzero vector v in R”. What is the dimen­
sion of the space of all vectors in R" that are perpendic­
ular to v?

36. Can you finda3x 3 matrix A such that im( A) =  ker(A)? 
Explain.

37. Give an example of a 4 x 5 matrix A with 
dim(ker /\) =  3.

38. a. Consider a linear transformation T from R5 to R3.
What are the possible values of dim(ker T)1 Explain,

b. Consider a linear transformation T from R4 to R7. 
What are the possible values of dim(im7')? Explain.

39. We are told that a certain 5 x 5  matrix A can be written
as

A =  BC,

where B is a 5 x 4 matrix and C is 4 x 5. Explain how 
you know that A is not invertible.

In Exercises 40 through 43, consider the problem offitting a 
conic through m given points y i ) , . . . ,  Pm(xw, ym) 
in the plane; see Exercises 51 through 60 in Sec­
tion 1.2. Recall that a conic is a curve in R2 
that can be described by an equation o f the form 
/ ( * ,  y) =  ci +  C2X + c$y +  c4x 2 +  csxy  +  c6y2 =  0.

40. Explain why fitting a conic through the points
(*i ♦ y i) , ___Pm (*m. Vm) amounts to finding the ker­

nel of an m x 6 matrix A. Give the entries of the ith row 
of A.

Note that a one-dirrensional subspace of the ker­
nel of A defines a unique conic, since the equations 
/(;c , v) = 0  and kf(x,  y) = 0  describe the same conic.

41. How many conics can you fit through 4 distinct points
P\(x\<\\ ) ........P4U4. y4)?

42. How many conics can you fit through 5 distinct points
P\{x\. y i) ........P5(x$. >’5)? Describe all possible sce­
narios, and give an example in each case.

43. How many conics can you fit through 6 distinct points
Pi(* i. y j) ......../>6(*6-.V6)‘? Describe all possible sce­
narios, and give an example in each case.

For Exercises 44 through 53, consider the problem of 
fitting a cubic through m given points P \(x\, y \ ) , . . .»  
Pm (xm, ym ) in the plane. A cubic is a curve in R2 that
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can be described by an equation o f the form f ( x , y )  =
Cl +  Ctx +  C3y  +  C4X2 +  csx y  +  c6y 2 +  c7x 3 +  cgx2y  +  
C9x y 2 +  cio3-3 =  0. I f k  is any nonzero constant, then the  
equations f  ix ,  y ) =  0 and k f ( x ,  y)  =  0 define the same 
cubic. Find all cubics through the given points.

44. (0,0), (1,0), (2,0), (3,0). (0,1), (0, 2), (0.3). (1.1)

45. (0,0), (1,0), (2,0), (3,0), (0, 1), (0,2), (0,3), (1. I), 
(2,2)

46. (0,0). (1,0), (2,0), (3,0), (4,0). (0. 1). (0.2). (0. 3), 
(1, 1)

47. (0,0), (1,0), (2,0), (3.0), (0, 1). (0,2), (0. 3), (1. 1). 
(2,2), (2, 1)

48. (0,0), (1,0), (2,0). (3,0). (0, 1), (0. 2), (0. 3). (1. 1),
(2, 2), (3. 3)

49. (0,0), ( 1.0), (2.0). (3.0), (4.0). (0. 1). (0. 2). (0. 3). 
(0,4).(1, 1)

50. (0,0). (1.0), (2.0), (0. 1). (1. 1), (2. 1). (0. 2). (1.2)

51. (0,0). (1.0). (2.0). (0, 1),(1. 1). (2. 1). (0.2). (1.2).
(3.2)

52. (0.0). (1.0). (2.0). (0. l ). (l .  I). (2. I). (0.2), (1.2).
(2. 2)

53. (0.0). (1.0). (2.0). (0. 1).(1. I). (2. I ) . (0.2).(1.2).  
(2,2). (3.3)

54. Explain why fitting a cubic through the m points
P\(x\< v i)........y„i) amounts to finding the ker­
nel of an m x 10 matrix A. Give the entries of the /th 
row of A .

55. How many cubics can you fit through 8 distinct points
P iU i. y \ )........yx)?

56. How many cubics can you fit through 9 distinct points
P\{x\, v j)........yy)? Describe all possible sce­
narios, and give an example in each case.

57. How many cubics can you fit through 10 distinct
points P\ U | . y i )........ />io(-Vio. yio)? Describe all pos­
sible scenarios, and give an example in each case.

58. On September 30, 1744, the Swiss mathematician 
Gabriel Cramer (1704-1752) wrote a remarkable let­
ter to his countryman Leonhard Euler, concerning the 
issue of fitting a cubic to given points in the plane. 
He states two “facts" about cubics: (1) Any 9 distinct 
points determine a unique cubic. (2) Two cubics can 
intersect in 9 points. Cramer points out that these two 
statements are incompatible. If we consider two specific 
cubics that intersect in 9 points (such as x* -  x = 0 and 
y' — v =  0), then there is more than one cubic through 
these 9 points, contradicting the first “fact.” Something is 
terribly wrong here, and Cramer asks Euler, the greatest 
mathematician of that time, to resolve this apparent con­
tradiction. (This issue is now known as the Cramer-Euler 
Paradox.)

Euler worked on the problem for a while and put 
his answer into an article he submitted in 1747, “Sur 
one contradiction apparente dans la doctrine des lignes 
courbes” [Me mo ires de I'Academie des Sciences de 
Berlin,4  (1750): 219-233].

Using Examples 44 through 57 as a guide, explain 
which of the so-called facts stated by Cramer is wrong, 
thus resolving the paradox.

59. Find all points P in the plane such that you can fit in­
finitely many cubics through the points (0,0). (1,0), 
(2.0). (3.0), (0. 1), (0.2), (0,3), (1, 1), P.

60. Consider two subspaces V and W of R'1, where V is 
contained in W . Explain why dim( V) < dim( W ). (This 
statement seems intuitively rather obvious. Still, we can­
not rely on our intuition when dealing with R".)

61. Consider two subspaces V and W of M", where V is con­
tained in W. In Exercise 60 we learned that dim(V) < 
dim(W). Show that if dim( V) =  dim(W), then V =  W.

62. Consider a subspace V ofR" withdim( V) = n. Explain 
why V = R n.

63. Consider two subspaces V and W of R '1, with V D W = 
{0}. What is the relationship between dim(V), dim( W), 
and dim(V +  W )‘? (For the definition of V +  W, see 
Exercise 3.2.50: Exercise 3.2.51 is helpful.)

64. Two subspaces V and W of R” are called complements 
if any vector x  in R n can be expressed uniquely as 
x  =  v +  where v is in V and w is in W. Show that V 
and W are complements if (and only if) V n W =  {0} 
and dim( V) +  dim( W) = n.

65. Consider linearly independent vectors V\ ,V2........vp in
a subspace V of R'1 and vectors w \ , w j , . . . ,  wq that 
span V. Show that there is a basis of V that consists of 
all the Vj and some of the wj. Hint: Find a basis of the 
image of the matrix

A =
I

v\
I

UJI

66. Use Exercise 65 to construct a basis of I 
of the vectors

wa

that consists

~\ T
2 4
3 6
4 8

and some of the vectors e \ , ar|d in R4.

67. Consider two subspaces V and W of R". Show that

dim( V) 4- dim(W) =  dim(V fllV) + dim( V +  W).

(For the definition of V +  W, see Exercise 3.2.50.) (Hint: 
Pick a basis z7|,M2.mm of V O W .  Using Exer­
cise 65, construct bases il\ , u2........v \ . ?2.................
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of V and wi, u2, . • •, um, w \ , u)2, . . . ,  wq of W .) Show 
that u\, «2, . . . ,  um, 51, V2, • • •, Vp, w\, u>2* • • •, Wq is 
a basis of V +  W. Demonstrating linear independence 
is somewhat challenging.

68. Use Exercise 67 to answer the following question: If
V and W are subspaces of M10, with dim(V) =  6 
and dim(W) =  7, what are the possible dimensions of
v  n w i

In Exercises 69 through 72, we will study the row space of 
a matrix. The row space o f an n x  m matrix A is defined as 
the span o f the row vectors o f A  (i.e., the set o f their linear 
combinations). For example, the row space o f the matrix

1 2 3 4"
1 1 1 1  

L2 2 2 3j 
it is the set o f all row vectors o f the form  
a [ l  2 3 4 ] + * [ l  1 1 l ]  +  c [2 2 2 3]

69. Find a basis of the row space of the matrix

E =

0 1 0  2 0 
0 0 1 3  0
0 0 0 0 1
0 0 0 0 0

70. Consider an n x m matrix E in reduced row-echelon 
form. Using your work in Exercise 69 as a guide, ex­
plain how you can find a basis of the row space of E. 
What is the relationship between the dimension of the 
row space and the rank of E l

71. Consider an arbitrary n x m matrix A.
a. What is the relationship between the row spaces of 

A and E =  rref(A)? {Hint: Examine how the row 
space is affected by elementary row operations.) 
What is the relationship between the dimension of 
the row space of A and the rank of A?

b.

12. Find a basis of the row space of the matrix

A =

1 1 1 1
2 2 2 2
1 2  3 4
1 3  5 7

73. Consider an n x n  matrix A. Show that there exist 
scalars co, c \ , . . . ,  cn (not all zero) such that the matrix
coin +  c\ A +  C2A2 H------ H cn An is noninvertible. Hint:
Pick an arbitrary nonzero vector v in Rn. Then the n +  1 
vectors v, Av, A2v , . . . ,  A"? will be linearly dependent. 
(Much more is true: There are scalars co, c \ , . . . ,  cn such
that coIn +  ci A +  C2 A2 H------ h cn An = 0 . You are not
asked to demonstrate this fact here.)

74. Consider the matrix

A = - 2
1

Find scalars co, ci, C2 (not all zero) such that the matrix 
coh  +  ci A +  C2 A2 is noninvertible. (See Exercise 73.)

75. Consider an n x m matrix A. Show that the rank of A 
is n if (and only if) A has an invertible n x n  submatrix 
(i.e., a matrix obtained by deleting m — n columns of A).

76. An n x n matrix A is called nilpotent if Am =  0 
for some positive integer m. Examples are triangu­
lar matrices whose entries on the diagonal are all 0. 
Consider a nilpotent n x n  matrix A , and choose the 
smallest number m such that A™ = 0. Pick a vector 
v in Rn such that Am~ ]v j=. 0. Show that the vec- 

Am~ xv are linearly independent.tors v , Av, A2v,
(Hint: Consider a relation cov + c\Av + C2A2v -\------ h
cm- \A m- xv = 0. Multiply both sides of the equation 
with Am~ x to show that co =  0. Next, show that ci =  0, 
and so on.)

77. Consider a nilpotent n x n  matrix A. Use the result 
demonstrated in Exercise 76 to show that An = 0.

78. Explain why you need at least m vectors to span a space 
of dimension m. (See Theorem 3.3.4b.)

79. Prove Theorem 3.3.4d: If m vectors span an m- 
dimensional space, they form a basis of the space.

80. If a 3 x  3 matrix A represents the projection onto a plane 
in R3, what is rank (A)!

81. Consider a 4 x  2 matrix A and a 2 x  5 matrix B.
a. What are the possible dimensions of the kernel of 

AB1
b. What are the possible dimensions of the image of 

AB1

82. Consider two n x m  matrices A and B. What can you say 
about the relationship between the quantitites rank(A), 
rank(fl), and rank(A + B)1

83. Consider an n x p matrix A and a p x m matrix B.
a. What can you say about the relationship between 

rank(A) and rank(AZ?)?
b. What can you say about the relationship between 

rank(B) and rank(A#)?

84. Consider the matrices

A =

and

B =

1 0 2 0 4 0
0 1 3 0 5 0
0 0 0 1 6 0
0 0 0 0 0 1

1 0 2 0 4 0
0 1 3 0 5 0
0 0 0 1 7 0
0 0 0 0 0 1

Show that the kernels of matrices A and B are different 
(Hint: Think about ways to write the fifth column as 4 
linear combination of the preceding columns.)
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85. Consider the matrices
1 0  2

A =

0
0 1 3  0
0 0 0 1
0 0 0 0 0 1

and

B =

1 0 2 0 0
0 1 3  0 0
0 0 0 1 0
0 0 0 0 1

Show that the kernels of matrices A and B are different. 
Hint: Think about ways to write the fifth column as a 
linear combination of the preceding columns.

86. Let A and B be two different matrices of the same size, 
both in reduced row-echelon form. Show that the kernels

of A and B are different. (Hint: Focus on the first column 
in which the two matrices differ, say, the kth columns 
aic and bk of A and B , respectively. Explain why at least 
one of the columns a* and bk fails to contain a leading 
1. Thus, reversing the roles of matrices A and B if nec­
essary, we can assume that a* does not contain a leading
1. We can write ak as a linear combination of preced­
ing columns and use this representation to construct a 
vector in the kernel of A. Show that this vector fails 
to be in the kernel of B. Use Exercises 84 and 85 as a 
guide.)

87. Suppose a matrix A in reduced row-echelon form can be 
obtained from a matrix M by a sequence of elementary 
row operations. Show that A =  rref(Af). (Hint: Both A 
and rref(M) are in reduced row-echelon form, and they 
have the same kernel. Exercise 86 is helpful.)

Coordinates

Coordinates are one of the “great ideas” of mathematics. Rene Descartes (1596- 
1650) is credited with having introduced them, in an appendix to his treatise Discours 
de la Methode (Leyden, 1637). Myth has it that the idea came to him as he was laying 
on his back in bed one lazy Sunday morning, watching a fly on the ceiling above 
him. It occurred to him that he could describe the position of the fly by giving its 
distance from two walls.

Descartes’s countryman Pierre de Fermat (1601 -1665) independently developed 
the basic principles of analytic geometry, at about the same time, but he did not 
publish his work.

We have used Cartesian coordinates in the x-y-plane and in jc-v-z-space 
throughout Chapters 1 through 3, without much fanfare, when representing vec­
tors in R 2 and M3 geometrically. In this section and in Chapter 4, we will discuss 
coordinates more systematically.

EXAM PLE I Consider the vectors
T T

U| = 1 and V2 = 2
.1. 3

in R 3, and define the plane V =  span(0i, vt) in M3. Is the vector

"51
x  =

on the plane V I  Visualize your answer.

Solution
We have to examine whether there exist scalars c\ and ci such that x = c \v i +  c*2?2- 
This problem amounts to solving the linear system with augmented matrix

'1 1 5 ' 1 0 ! 3 1
M = 1 2 7 and rref(M ) = 0 1 i 2

.1 3 9. 0 0 i 0
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This system is consistent, with the unique solution c i =  3 and cj =  2, so that

X  =  C \ V \  +  Q ? 2  =  3 U |  +  2 V 2 -

In Figure 1, we represent this solution geometrically. It turns out that the vector is 
indeed on the plane V.

To visualize the coefficients 3 and 2 in the linear combination x  =  3v\ +  202, it 
is suggestive to introduce a coordinate grid on the plane V , with the axes pointing 
in the directions of the vectors vj and V2 , as in Figure 2, where we label the axes 
c\ and C2. In this grid, our vector x  has the coordinates c\ = 3 and c2 = 2. The 
coordinate vector of v =  3Pi +  2 v2 in this coordinate system is

C l’ '3 '

. C 2 . 2

We can think of as the “address” of x  in the c i - o  coordinate system. By

introducing c \-c 2 coordinates in V, we transform the plane V into !

Don’t be alarmed by the fact that the axes aren’t perpendicular; Cartesian coor­
dinates work just as well with oblique axes.

The following notation can be helpful when discussing coordinates, although it 
is a bit heavy. Let’s denote the basis v\, V2 of V by s£ . Then the coordinate vectol 
of jc with respect to si3 is denoted by [Jc] ^  .



3.4 Coordinates 139

Definition 3.4.1

’5" r , r
If x = 7

9
=  C| 0| +  c-2?2 =  3?i +  2 ?2. then ^1 II Cl

.C2_
=

2

Let’s generalize the ideas introduced in Example 1.

C oordinates in a subspace of ?.n
Consider a basis 33 =  (ui , ........ vm) of a subspace V o f R ”. By Theorem 3.2.10,
any vector jc in V can be written uniquely as

X  = C \ V  | + c 2 v  2 H-----------

The scalars c \ , o ........ cm are called the ^-coordinates of jc , and the vector

c  i

C'2

is the coordinate vector o f f ,  denoted by [jc]^. Thus

c i
Ci

Note that

x = S [x]^  , where S = i>i v2 v„ an n x m matrix.

The last equation, x = S [Jc],M, follows directly from the definition of coordinates:

.V =  Cl V\  +  C2V 2 H-----------b c , „ v m  =

in Example 1 we considered the case where

" Cl"
C2

Cl ?2 Cm —

_ Cm _

=  S [ jc

X  = and S =

You can verify that

=  5 [x L ,, or
'5" '1 1"

or 7 = 1 2
9 1 3

n 1
1 2
1 3
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Theorem 3.4.2

P roo f

EXAM PLE 2

It turns out that coordinates have some important linearity properties:

Linearity of Coordinates
If S3 is a basis of a subspace V of R", then

a. [Jc +  jl]8 =  [ j c ] +  [ y ] f o r  all vectors Jc and y  in V,  and

b. [kx],-g =  k for all x in V and for all scalars k.

We will prove property (b) and leave part (a) as Exercise 51. Let 33 =  (vi , V2, ■ ■.,
vm). If x  =  cit>i +  C2V2 H----------------1- cmvm, then kx  =  kc{V\ + kc2$2 H---1- kcmvm,
so that

[k*]® —

‘ kc \ " mc 1 “
kc2 C2

= k

-Cm .

=  * ’

as claimed.

As an important special case of Definition 3.4.1, consider the case when V is 
all of R n. It is often useful to work with bases of R" other than the standard basis, 
?i, • • • * When dealing with the ellipse in Figure 3, for example, th e c j-c 2 axes
aligned with the principal axes may be preferable to the standard x \ - x 2 axes.

Figure 3

Consider the basis 93 of R 2 consisting of vectors Ci =

a. If x = , find [*](«. b. If [y L  =

'3
1

2"
-1

and v2 =  

, find y.

- 1
3

Solution
a. To find the 93-coordinates of vector jc, we write jc as a linear combination of! 

the basis vectors: !

x = c \ V \  +  c 2 V2 or 

The solution is c\ =  4, C2 =  2, so that [x] ^  =

10' 3 -1 '
10 =  C\ 1 +  c2 3
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[*]« =  s _ l* =

Alternatively, we can solve the equation x =  S [jc]^  for [x]^:

'3 - f
— 1

10‘ 1 3 f '10' '4 '
1 3 10 ”  10 - 1  3 10 2

b. By definition of coordinates, [ v] o, =
2'

-1
means that

y =  2v\ +  (—1)^2  =  2 

Alternatively, use the formula

y = s [y]* =

These results are illustrated in Figure 4.

'3 ' - 1 ' 1
1 +  ( -1 ) 3. — - 1

'3 - \ ' 2' 7'
1 3 -1 - 1

We will now go a step further and see how we can express a linear transformation 
in coordinates.

EXAM PLE 3 Let L be the line in M2 spanned by vector . Let T  be the linear transformation from

M2 to R 2 that projects any vector x  orthogonally onto line L, as shown in Figure 5. 
We can facilitate the study of T  by introducing a coordinate system where L is one 
of the axes (say, the ci-axis), with the C2-axis perpendicular to L, as illustrated in

Figure 6. If we use this coordinate system, then T transforms 

C\-C2 coordinates, T is represented by the matrix B =

Cl" into V
.c2. 0

. In

1 0
0 0

, since

Cl' 1 O' 'c  r
0 0 0 ,c2
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Let’s make these ideas more precise. We start by introducing a basis 93 =  
(Ci, V2) of R 2 with vector Ci on line L and vector v2 perpendicular to L, for example,

■3 ' - f
1 and C2 =

3
Vi =

If x  = c\V\ + C 2C2, then T (x) =  projL(j?) =  cjCi. Equivalently, if 

in L in L1

[■*]* =  cc '2 • then [ n * ) ] *  =

see Figure 6.

The matrix B =
1 0 

[0 0
called the 53-matrix of T :

that transforms [ . f ] =  C| into [T 0?)]o, =
C 2 ^

19

[U ? ) ] , ,  =  5  [* ] ,,.

We can organize our work in a diagram as follows:

in L in L1-

X  =  Ci Ci +  C2 C2

I 
=

-> T (x) = c  1 Ci

B = 1 0 
0 0

I
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D e fin it io n  3.4.3

EXAM PLE 4

“ I' — l' 1 X t’2

5! x "3 =

Figure 7

When setting up such a diagram, we begin in the top left by writing an arbitrary input 
vector jc as a linear combination of the vectors in the given basis 93. In the top right 
we have T (jc), again written as a linear combination of the vectors of basis 33. The 
corresponding entries below are the coordinates vectors [jc] and [T (Jc)] Finding 
those is a routine step that requires no computational work, since jc and T ( jc) have 
been written as linear combinations of the basis vectors already. Finally, we find the 
matrix B that transforms [x]^  into [ r ( . t ) ] ^ ;  this is again a routine step. ■

Let’s generalize the ideas of Example 3.

The matrix of a linear transformation

Consider a linear transformation T  from R rt to R" and a basis 93 of R". The n x n
matrix B that transforms [x]^  into [T (x )]sn is called the ^-m atrix  of T :

[7-(*)],, =  S [ * ] * ,

for all jc in R”. We can construct B column by column as follows: If
93 =  (Ci........ 0„), then

B = [ns.)]#

We need to verify that the columns of B are [7 (0 1  ) ] ^ ____ [ r (0 „ ) ]ov Let
x = c\V\ +  • • • +  cnvn. Using first the linearity of T and then the linearity of 
coordinates (Theorem 3.4.2), we find that

and

T (x)  =  o n C j )  H------- 1- cnT (v n)

as claimed. We can use this result to construct B , although it is often more enlight­
ening to construct B by means of a diagram, as in Example 3.

Consider two perpendicular unit vectors v\ and vj in R 3. Form the basis 
33 =  (C|, 02, 03) of R 3, where C3 =  v\ x  C2- (Take a look at Theorem A .10 
in the Appendix to review the basic properties of the cross product.) Note 
that C3 is perpendicular to both 0i and 02, and 03 is a unit vector, since 
IIS3 II =  \\v\ x  C2|| =  IIi?i IIII02II sin(7r/2) =  1 • 1 • I =  1.

a. Draw a sketch to find 0i x 03.
b. Find the 33-matrix B of the linear transformation T (.v) =  v\ x x.

Solution

a. Note first that 0i x 03 is a unit vector.
Figure 7 illustrates that 0| x 03 =  — 02.
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b. We will organize our work in a diagram, as in Example 3.

X  =  C \ V \  +  C2 V2 +  C3V3

1

T (x ) = v 1 x (ci iJi +  c2v 2 -I- C3U3)
_I----- =  c j (£? 1 x 0 0  +  c 2( v  1 x v 2) +  C3 ( 0 l  x v 3)

=  C2 v 3 -  C3 V2

[*]«  =

C1
Q

IC3]
B  =

0 0 0 
0 0 - I
0 1 0

0
C3 

L c2 J

Alternatively, we can construct B column by column,

B =  [7 (5 ,) ]*  [7 (52)]*  [T(53)]^

We have r (Ci )  =  v\ x v\ = 0 ,  T f a )  =  v\ x  v2 
T (v 3) =  ?! x C3 =  — ?2, so that

=  C3 and

[r (S ,) ]*  =
"O' 'O' '  O'
0 [7(52)] q j  — 0 . [7 (5 3)]*  = - 1

0 . . 1. 0 .

'0  0 O'
B = [7 (5 ,)]*  [7 (5 2)]*  [7(53)]* = 0 0 - 1

0 1 0.

Note the block

7T
2 ’

0 - 1
in matrix B, representing a rotation through

, we can interpret
'0 0 O' 1 0 0 ‘ '0 0 O'

Writing 0 0 - 1 = 0 0 - 1 0 1 0

0 1 0 0 1 0 0 0 1
transformation T  geometrically. It is the orthogonal projection onto the 
C1-C3 plane followed by a rotation through — about the c\ axis, counter­
clockwise as viewed from the positive c\ axis. ■

EXA M PLE  5 As in Example 3, let T be the linear transformation from R 2 to R 2 that projects any
T31vector orthogonally onto the line L spanned by the vector

found that the matrix of B of T  with respect to the basis 93 =

. In Example 3, we

'3' - 1'
1 3

is

B =
1 0 
0 0

What is the relationship between B and the standard matrix A of T  (such that 
T (x) =  A j c ) ?  We introduced the standard matrix of a linear transformation back in 
Section 2.1; alternatively, we can think of A as the matrix of T  with respect to the 
standard basis 91 =  (e \ , e2) of M2, in the sense of Definition 3.4.3. (Think about it!)
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Theorem 3.4.4

Definition 3.4.5

EXA M PLE  6

Solution
Recall from Definition 3.4.1 that

Jc =  5[Jc ]^ ,  where S =  

and consider the following diagram:

3 - r 1 O' ( 1 3 1' 0.9 0.3'
1 3 0 0 V io - 1  3 ) - 0.3 0.1.

T (x)  

s

[ * ] « --------------------►

Note that T (x) =  AS [Jc]^ = SB  [it]^ for all x  in R 2, so that

A S  =  SB, B = S ~ l A S , and A = S B S ~ l .

We can use the last formula to find the standard matrix A of T:

A = S B S ~ 1 =

Alternatively, we could use Definition 2.2.1 to construct matrix A. ■

Standard matrix versus 33-matrix
Consider a linear transformation T  from R n to R n and a basis 53 =  (vj , . . . ,  £?„) of 
R n. Let B be the 33-matrix of 7 \ and let A be the standard matrix of T  (such that 
T (jc) =  A x  for all jc in R n). Then

A S = SB , B = S ~ lA S , and A = S B S ~ [, where S =  iJ]

The formulas in Theorem 3.4.4 motivate the following definition.

Similar matrices

Consider two n x n  matrices A and B. We say that A is similar to B if there exists 
an invertible matrix S such that

AS =  SB, or B =  S~'AS.

Thus two matrices are similar if they represent the same linear transformation with 
respect to different bases.

Is matrix A =

Solution
At this early stage of the course, we have to tackle this problem with “brute force,” 
using Definition 3.4.5. In Chapter 7, we will develop tools that allow a more con­
ceptual approach.

'1 2 '
similar to B =

'5 O'
4 3 0 -1
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We are looking for a matrix 5 = such that A S  =  S B ,  or

X + 2 z y + 2 t ' 1*

4x +  3z 4y + 3t >  - t .
These equations simplify to

z = 2x, t =  - y ,  

so that any invertible matrix of the form

S = x y
2x - y

does the job. Note that det(S) =  —3xy . By Theorem 2.4.9, matrix S is invertible if 
det(S) =  —3xy  /  0, meaning that neither x  nor y  is zero. For example, we can let

L 0 ri i 1
x  = y =  1, so that S = 2 j

Matrix A turns out to be similar to B .

•

EXAM PLE 7 Show that if matrix A is similar to B , then its power A* is similar to S ',  for all 
positive integers t. (That is, A 2 is similar to B 2, A 3 is similar to B 3, and so on.)

Solution
We know that B = S ~ l A S  for some invertible matrix S. Now

B‘ =  ( S - l A S ) (S - l A S ) - - ( S ~ l A S )(S ~ l AS) =  S 'M 'S ,
V------------------------- v------------------------- '

t times

c proving our claim. Note the cancellation of many terms of the form 5 5 _1. ■
--------------- » •
Figure 8 conclude this section with some noteworthy facts about similar matrices.

Theorem 3.4.6 Similarity is an equivalence relation

a. A nn  x n  matrix A is similar to A itself (reflexivity).
b. If A is similar to B, then B is similar to A (symmetry).
c. If A is similar to B and B is similar to C, then A is similar to C (transitivity).

P roo f We will prove transitivity, leaving reflexivity and symmetry as Exercise 65.
The assumptions of part (c) mean that there exist invertible matrices P and Q 

such that A P  =  P B  and B Q  = QC. Using Figure 8 as a guide, we find that 
A P Q  = P B Q  =  PQ C . We see that A S  = SC, where 5 =  P Q  is invertible, 
proving that A is similar to C. ■

EXERCISES 3.4
GOAL Use the concept o f coordinates. Apply the defini­
tion o f the matrix o f a linear transformation with respect 
to a basis. Relate this matrix to the standard matrix o f the 
transformation. Find the matrix o f a linear transformation 
(with respect to any basis) column by column. Use the con­
cept o f similarity.

In Exercises 1 through 18, determine whether the vectoi 
x is in the span V o f the vectors v \ , . . . ,  vm (proceed “b) 
inspection ” if  possible, and use the reduced row-echeloi 
form if  necessary). I f  x is in V, find the coordinates o f i  
with respect to the basis $ 3 = ( v i , . . . , v m)of V,  and writi 
the coordinate vector [jc]
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2‘ Y 'o'
l. £ = 3 ; v\ = 0 i V2 = 1

14. jc =

2. x =
3

-4 i = V2 =

'31" 23' "31"
3. x = 37_ ; v\ = 29 , vi = 37

23' '46' 61
4. Jc =

29
; v\ =

58 , V2 = 67

8. x =

9. x =

’ 7 "2 " ' 5'
JC =

16 ; 5 i  = _5 . 2̂ = 12

' - 4 ' "i“ 5*
x = 4 ; wi = 2 . 2̂ = 6

3“ f o'

II 1 ; Ci = - i . C2 = 1
-4 0 -1J L

"1“
; Ci = 1 , C2 =

_o_

Y
; Ci = 1 . C2 =

0

2
0
1

0
-1

2

-5 " - f ~-2
10. JC = 1

3
; Ci = 0

1
, C2 = 1

0

-1 Y " - 3"
11. x — 2

2
; Ci = 2

1

to II 2
3

1 8" 5'

K> II - 2 ; Ci = 4 . C2 = 2
-2 -1 - I

Y Y "o' 0"

II
IXa

1 ; Ci = 2 . C2 = 1 . C3 = 0
1 3 2 1u j L J L J L

" 3' Y 'o' "o'
7 ; C, = l ci II 1 , C3 = 0

13 l 1 1

Y “1" Y Y
x = 0 ; Ci = 2 . C2 = 3 II 4

_o_ 1 4 8_

' 7" Y Y Y
x = 1 ; Ci = 1 »C2 = 2 » C3 = 3

3 1 3 6

18. x =

Y "0" "O'
0 1 0

; Ci =
2 . C2 = 3 . C3 = 4
0 0 1

Y 'o' o'
1 1 -1

; Ci = 0 . C2 = 1 , c3 =
0

0 0 1

In Exercises 19 through 24, find the matrix B o f the lin­
ear transformation T(x) = Ax with respect to the basis 
33 =  (jTj, v2)- For practice, solve each problem in three 
ways: (a) Use the formula B =  S ~ l AS (b) use a commu­
tative diagram (as in Examples 3 and 4), and (c) construct 
B “column by column. ”

0 1 
1 0

1 1 
1 1

1 2 
3 6 

-3  4 
4 3

5 -3
6 -4

; Ci =
Y
1 , V2 =

r
-1

; Ci =
Y
1 , C2 =

r
-1

Y ' - 2 '
; Ci =

3 , C2 = 1

Y _ 2
; Ci = 2 > C2 = 1

Y 1"
; Ci = 1 . C2 = 2

13 -20" ~2 ~5
6 -9

; Ci = 1 . V2 = 3

19. A =

20. A =

21. ,4 =

22. >4 =

23. A =

24. A =

In Exercises 25 through 30, find the matrix B o f the lin­
ear transformation T(x) =  Ax with respect to the basis

25. /I =

26. A =

27. A =

v\ =

28. A =

v\ =

'l 2 Y Y
3 4

; Ci = 1 , C2 = 2

"0 f Y Y
2 3

; Ci = 2 , V2 = 1

4
2

-4

2 -4
1 -2 

-2 4

2" "o' Y
1 , V2 = 2 , C3 = 0

- 2 1 1

5 -4  -2
-4  5 -2
- 2  - 2  8

"2" 1“ 0 “
2 . C2 = -1 > C3 = 1
1 0 -2
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'- 1 1 0" 45. Consider the plane 2x\ -  3*2 + 4;
A = 0 - 2 2

93 of this plane such that [jc] =21 - 9 6
Y Y Y

Ci = 1 . h  = 2 * C3 = 3 46. Consider the plane x\ +  2*2 +  *3
1 3 6 r

2
"2" for x = 03 -1

30. A =
2 -1  

-1  0 
- 4  1

Let 93 =  (vi, V2, v3) be any basis o/M3 consisting o f per­
pendicular unit vectors, suc/i that v$ =  vx x  v2-I*1 Exer­
cises 31 through 36,find the 23-matrix B o f the given linear 
transformation T from R3 to R3. Interpret T geometrically.

31. T(x) = C2 x x 32. T(x) = x x vi

33. T (jc) =  (v2 ' x)v2 34. T(x) = x — 2 (t>3 • Jc)£>3

35. T (x) = x — 2(v\ ■ x)v2

36. r(Jc) =  Ci x x +  (Ci • i)Ci
In Exercises 37 through 42, find a basis 23 of R" such that 
the 93-matrix B o f the given linear transformation T is 
diagonal.

37. Orthogonal projection T onto the line in R2 spanned by
Y

38. Reflection T about the line in R2 spanned by

39. Reflection T about the line in R3 spanned by

40. Orthogonal projection T onto the line in R3 spanned by 
’ 1'

1 
_1

41. Orthogonal projection T onto the plane 3x\ +  x2 +  
2x3 =  0 in R3

42. Reflection T about the plane x\ — 2x2 +  2*3 =  0 in R3

43. Consider the plane x\ + 2x2 +  *3  =  0 with basis 93 con­

sisting of vectors 

find jc .

44. Consider the plane 2jci- 3 jc2-1-4jc3 =  0 with basis 93 con-
5"

and

"-1" ~-2
0 and 1 •if [*]« =

2"
-31 0

sisting of vectors 

find x.

4
-1

2
-1

.I f  [x]v  =

2
-1

for x =of this plane such that [jc] =

47. Consider a linear transformation T from R2 to R2. We

1
-1

1

Y 'o' Y are
Ci = 1 . h  = 1 * c3 = 2 o’

l 2 4 1
is a b 

c d
Find the standard matrix of T in

terms of a, b, c, and d.

48. In the accompanying figure, sketch the vector x with
-1  

2
of the vectors C, w.
[*]# = , where 93 is the basis of R2 consisting

49. Consider the vectors 5, C, and w sketched in the accom­
panying figure. Find the coordinate vector of w with1 
respect to the basis w, C.

50. Given a hexagonal tiling of the plane, such as you migtt 
find on a kitchen floor, consider the basis 93 of R2 coil: 
sisting of the vectors C, w in the following sketch:
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and [53],a. Find the coordinate vectors n  P
L J*  L

Hint: Sketch the coordinate grid defined by the basis 
93 =  (v,  w) .

b. We are told that =  2

R. Is R a vertex or a center of a tile?
17'

. Sketch the point

Is S a center or ac. We are told that ^

vertex of a tile?

51. Prove part (a) of Theorem 3.4.2.

52. If 93 is a basis of Rn, is the transformation T from 
to R" given by

T(x) = [ i ] „  

linear? Justify your answer.

53. Consider the basis 23 of R2 consisting of the vectors

and for a certainWe are told that [jc] ^  =

vector Jc in R2. Find j c .

54. Let 23 be the basis of Rn consisting of the vectors 
5i, 02> • • • 1 vn, and let X  be some other basis of R". 
Is

[5> ] f  N j ’ • ••’
a basis of W1 as well? Explain.

'l55. Consider the basis 93 of R2 consisting of the vectors 

and , and let SK be the basis consisting of 

Find a matrix P such that

[*];« =  P [*]« •
for all x in R2.

56. Find a basis 23 of R2 such that

■f '3'
_2 * 4

Y '3 ' ■3" '2
— and —

2 * 5 4 * 3

57. Show that if a 3 x 3 matrix A represents the reflec­
tion about a plane, then A is similar to the matrix
ri 0 ol
0 1 0
0 0 -1

58. Considej a 3 x 3 matrix A and a vector v in R3 such that 
A3v =  0, but A2v 0.
a. Show that the vectors A2v , Av, v form a basis of 

R3. (Hint: It suffices to show linear independence. 
Consider a relation c\A 2v + C2Av + civ  =  0 and 
multiply by A2 to show that C3 =  0 .) 

k  Find the matrix of the transformation T (Jc) =  Ax 
with respect to the basis A2v, A vy 0.

59. Is matrix

60. Is matrix

2 0
0 3

1 0
0 -1

similar to matrix

similar to matrix

2 1 
0 3

0 1 
1 0

61. Find a basis 23 of R2 such that the 23-matrix of the linear 
transformation

T(x) = -5 - 9
4 7 Jc is B = 1 1 

0 1

62. Find a basis 23 of R2 such that the 23-matrix of the linear 
transformation

T(x) = 1 2 
4 3 jc is B = 5 0

0 -1

63. Is matrix P - q similar to matrix P <1
3 P_ P _

p and q l

64. Is matrix a ^ similar to matrixc a
a , b, c, d l

65. Prove parts (a) and (b) of Theorem 3.4.6.

66. Consider a matrix A of the form A =

a c 
b d

a b 
b —a

for all

for all

, where

a2 +  b2 =  1 and a ^  1. Find the matrix B of the lin­
ear transformation T ( j c )  =  Ax with respect to the basis

. Interpret the answer geometrically.

-0 & 1

1—
 

1 0 1 1 sj
-

1__
__

__
__

__
__

67. If c ^  0, find the matrix of the linear transformation
r a b
c dT(x) = x with respect to basis Y a

0 ’ c

68. Find an invertible 2 x 2  matrix S such that

1 2 
3 4

0 b 
1 d

is of the form 

69. If A is a 2 x 2 matrix such that 

A

. See Exercise 67.

Y '3' ‘2 '- 2— and A —
2 6 1 -1

show that A is similar to a diagonal matrix D. Find an 
invertible S such that S~] AS =  D.

70. Is there a basis 23 of R2 such that 23-matrix B of the 
linear transformation

0 - 1“T(x) = 1 0
is upper triangular? (Hint: Think about the first column 
of B.)

71. Suppose that matrix A is similar to B, with B =  S-1 AS. 
a. Show that if jc is in ker(Z?), then Sx is in ker(A).
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b. Show that nullity(A) =  nullity(B). Hint: If 0i,
02, . . . ,  vp is a basis of ker(fl), then the vectors 
5Ci, Sv2....... Svp in ker(A) are linearly indepen­
dent. Now reverse the roles of A and B.

72. If A is similar to B , what is the relationship between 
rank(>4) and rank(fl)? See Exercise 71.

73. Let L be the line in R3 spanned by the vector

c. Let T be the linear transformation with T(vo) =  03, 
T(v3) =  0i, and T(0i) =  0q. What is T(v2)? De­
scribe the transformation T geometrically (as a re­
flection, rotation, projection, or whatever). Find the 
matrix B of T with respect to the basis 01, 02, 03. 
What is Z?3? Explain.

75. Find the matrix B of the rotation T (x) =

"0.6“ 0" ‘- f
0 = 0.8 with respect to the basis 1 • 0

0 swer geometrically.

0 -1
1 0

Let T from R3 to R3 be the rotation about this line 
through an angle of 7t/2, in the direction indicated in 
the accompanying sketch. Find the matrix A such that 
T (Jc) =  Ax.

74. Consider the regular tetrahedron in the accompanying 
sketch whose center is at the origin. Let 0o, 0i, 02, 03 
be the position vectors of the four vertices of the tetra­
hedron:

00 =  OPq, . . . ,  03 =  OP3.

a. Find the sum 0o +  0i +  02 +  03-
b. Find the coordinate vector of 0o with respect to the 

basis 0i, 02, 03.

. Interpret your an-

76. If t is any real number, what is the matrix B of the linear 
transformation

T(x) =
cos (f) -  sin(r)
sin(r) cos(r)

with respect to basis 

your answer geometrically.

cos (/) — sin(0
sin(r) ’ cos(r) Interpret

77. Consider a linear transformation T (Jc) =  Ax from Rn 
to R ". Let B be the matrix of T with respect to the basis 
en, en- \ , . . . ,  <?2, e\ ofR". Describe the entries of B in 
terms of the entries of A.

78. This problem refers to Leontief’s input-output model,
first discussed in the Exercises 1.1.20 and 1.2.37. Con­
sider three industries I\, I2, h , each of which produces 
only one good, with unit prices p\ =  2, P2 =  5, =  10
(in U.S. dollars), respectively. Let the three products be 
labeled good 1, good 2, and good 3. Let

a\\ *12 013 "0.3 0.2 O .f
A = 021 022 023 = 0.1 0.3 0.3

*31 032 033 0.2 0.2 0.1

be the matrix that lists the interindustry demand in terms 
of dollar amounts. The entry a/y tells us how many dol­
lars’ worth of good / are required to produce one dollar’s 
worth of good j .  Alternatively, the interindustry demand 
can be measured in units of goods by means of the matrix

B =
b  11 612 ^13
/?21 b22 b23
631 />32 />33

where bij tells us how many units of good / are require* 
to produce one unit of good j .  Find the matrix B for the 
economy discussed here. Also write an equation relatim 
the three matrices A, By and 5, where

5 =
2 0 0
0 5 0
0 0 10

is the diagonal matrix listing the unit prices on the diagO 
nal. Justify your answer carefully.
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Chapter Three Exercises

t r u e  o r  f a l s e ?
1. If v \ , v2, . • •, vn are linearly independent vectors in R", 

then they must form a basis of R n.

2. There exists a 5 x 4 matrix whose image consists of all 
o f ! 5.

3. The kernel of any invertible matrix consists of the zero 
vector only.

4. The identity matrix In is similar to all invertible n x n  
matrices.

5. If 2u +  3v +  4w = 5u +  65 +  Iw, then vectors w, 5, w 
must be linearly dependent.

6. The column vectors of a 5 x 4 matrix must be linearly 
dependent.

7. If Ci, v2, . • •, vn and w \ , w2, • • •, u>m are any two bases 
of a subspace V of R 10, then n must equal m .

8. If A is a 5 x 6 matrix of rank 4, then the nullity of A 
is 1.

9. The image of a 3 x 4 matrix is a subspace of R 4.

10. The span of vectors Ci, v2, . ■., vn consists of all linear 
combinations of vectors v \ , v2, . •., vn.

11. If vectors v\, v2, £>3, C4 are linearly independent, then 
vectors Cj, v2, C3 must be linearly independent as 
well.

12. The vectors of the form (where a and b are arbitrary

real numbers) form a subspace of R4.

13. Matrix 1 0
0 -1 is similar to

0 1 
1 0

1 2 3
14. Vectors 0 , 1 2

0 0 1
form a basis of R3.

15. If the kernel of a matrix A consists of the zero vec­
tor only, then the column vectors of A must be linearly 
independent.

16. If the image of an n x n matrix A is all of R”, then A 
must be invertible.

17. If vectors Cj, v2%. . . ,  vn span 
to 4.

, then n must be equal 

, then18. If vectors t?, C, and w are in a subspace V of 
vector 2u — 35 +  4w must be in V as well.

If matrix A is similar to matrix B , and B is similar to C, 
then C must be similar to A.

20.

2 1 .

22.

23.

24.

25.

26.

If a subspace V of Rw contains none of the standard 
vectors e \ , e2, then V consists of the zero vec­
tor only.

If A and B are n x n matrices, and vector v is in the 
kernel of both A and B , then 0 must be in the kernel of 
matrix A B as well.

If two nonzero vectors are linearly dependent, then each 
of them is a scalar multiple of the other.

:3, then
>3

If v \ , v 2, £3 are any three distinct vectors in 
there must be a linear transformation T from R3 to 1 
such that 7"(l?i) =e \ ,  T( v2) =  e2, and T(v3) =  £3.

If vectors w, v , w  are linearly dependent, then vector w 
must be a linear combination of u and v.

If A and B are invertible n x n  matrices, then AB  must 
be similar to BA.

If A is an invertible n x n  matrix, then the kernels of A 
and A-1 must be equal.

27. Matrix

28. Vectors

0
0

1“
0

is similar to

1 
1

0 
0 0

1

1 5 9 5 1
2 6 8 4 0
3 7 7 ’ 3 ’ - 1
4 8 6 2 - 2

are linearly

independent.

29. If a subspace V of R3 contains the standard vectors

30.

e \ , then V must be R3.

If a 2 x 2 matrix P represents the orthogonal projec­
tion onto a line in R 2, then P must be similar to matrix 

1 O'
0 0

31. R 2 is a subspace of R*.

32. If an n x n matrix A is similar to matrix B , then A + l I n 
must be similar to B + l l n.

33. If V is any three-dimensional subspace of R 5, then V 
has infinitely many bases.

34. Matrix ln is similar to 2/„.

35. If AB  = 0 for two 2 x 2  matrices A and B , then BA 
must be the zero matrix as well.

36. If A and B are n x n matrices, and vector v is in the 
image of both A and B , then v must be in the image of 
matrix A +  B as well.

37. If V and W are subspaces of R ”, then their union V U W 
must be a subspace of Rn as well.
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D e fin it io n  4.1.1

f ( x ) =  ci sin(jc) +  t'2 cos(jc)

are solutions of this DE. It can be shown that all solutions are of this form; we leave 
the proof as Exercise 58.

Let F(R, R) be the set of all functions from R to R. Since the solution set V 
of our DE is closed under addition and scalar multiplication, we can say that V is a 
“subspace” of F( R, R).

How many solutions does this differential equation have? There are infinitely 
many solutions, of course, but we can use the language of linear algebra to give a 
more precise answer. The functions sin(*) and cos(jc) form a “basis” of the “solution 
space” V, so that the “dimension” of V is 2.

In summary, the solutions of our DE form a two-dimensional subspace of 
F(R , R), with basis sin(jc) and cos(jc). ■

We will now make the informal ideas presented in Example 1 more precise. 
Note again that all the basic concepts of linear algebra can be defined in terms 

of sums and scalar multiples. Whenever we are dealing with a set [such as F(R , R) 
in Example 1] whose elements can be added and multiplied by scalars, subject to 
certain rules, then we can apply the language of linear algebra just as we do for 
vectors in R". These “certain rules” are spelled out in Definition 4.1.1. (Compare 
this definition with the rules of vector algebra listed in Appendix A.2.)

Linear spaces (or vector spaces)
A linear space3 V  is a set endowed with a rule for addition (if /  and g are in V, 
then so is /  +  g) and a rule for scalar multiplication (if /  is in V and k in R, then 
k f  is in V) such that these operations satisfy the following eight rules4 (for all / ,  g , 
h in V and all c, k in R):

It follows that all “linear combinations”2

1. ( f  + g) + h =  f  + (g + h).
2. f  + 8 = 8 + f  •
3. There exists a neutral element n in V such that /  +  n =  / ,  for all /  in V.

This n is unique and denoted by 0.
4. For each /  in V there exists a g in V such that /  +  g -= 0. This g is unique

and denoted by (—/ ) .

5. k { f  + g) = k f  + kg.
6. (c +  k ) f  = c f  + k f .
7. c(kf )  =  (c k ) f .
8. 1 /  =  / .

This definition contains a lot of fine print. In brief, a linear space is a set with two 
reasonably defined operations, addition and scalar multiplication, that allow us to 
form linear combinations. All the other basic concepts of linear algebra in turn rest 
on the concept of a linear combination.

2 We are cautious here and use quotes, since the term linear combination has been officially defined ft* 
vectors in R" only.
3The term vector space is more commonly used in English (but it's espace lineaire in French). We 
prefer the term linear space to avoid the confusion that some students experience with the term vector 

in this abstract sense.
4These axioms were established by the Italian mathematician Giuseppe Peano (1858-1932) in his 
Calcolo Geometrico of 1888. Peano calls V a “linear system.”
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EXA M PLE  2 

EXA M PLE  3

EXA M PLE  4 

EXA M PLE  5

EXA M PLE  6 

EXAM PLE 7

EXAM PLE 8

In R", the prototype linear space, the neutral element is the zero vector, 0. ■

Probably the most important examples of linear spaces, besides R", are spaces 
o f functions.

Let F(R , R) be the set of all functions from K to K (see Example 1), with the 
operations

( f  + g ) W  = f ( x )  + g(x)  
and

(* /)(* ) =  k f ( x ).

Then F( R, R) is a linear space. The neutral element is the zero function, f ( x )  =  0 
for all jc. ■

If addition and scalar multiplication are given as in Definition 1.3.5, then R'Ixm, the 
set of all n x m matrices, is a linear space. The neutral element is the zero matrix, 
whose entries are all zero. ■

The set of all infinite sequences of real numbers is a linear space, where addition 
and scalar multiplication are defined term by term:

Uo, x \ , jc2, . . . )  +  (yo, v i, y i , . . . )  =  (*o +  >’o, x\ +  y \ , x 2 +  V2, . . . )  
k(xo, x \ , x 2, . . . )  =  (kxo, kx \, k x 2, . . . ) .

The neutral element is the sequence

( 0 , 0 , 0 , . . . ) .  ■

The linear equations in three unknowns,

ax  +  by +  cz = d ,

where a, b, c,  and d  are constants, form a linear space.
The operations (addition and scalar multiplication) are familiar from the process 

of Gaussian elimination discussed in Chapter 1. The neutral element is the equation
0 =  0 (with a = b = c = d =  0). ■

Consider the plane with a point designated as the origin, O , but without a coordinate 
system (the coordinate-free plane). A geometric vector C in this plane is an arrow 
(a directed line segment) with its tail at the origin, as shown in Figure 1. The sum 
v +  w of two vectors v and w is defined by means of a parallelogram, as illustrated 
in Figure 2. If /c is a positive scalar, then vector kv  points in the same direction as
5, but kv  is k times as long as v\ see Figure 3. If k is negative, then kv  points in 
the opposite direction, and it is \k\ times as long as 2; see Figure 4. The geometric 
vectors in the plane with these operations forms a linear space. The neutral element 
is the zero vector 0, with tail and head at the origin.

By introducing a coordinate system, we can identify the plane of geometric vec­
tors with R 2 ; this was the great idea of Descartes’s Analytic Geometry. In Section 4.3, 
we will study this idea more systematically. ■

Let C be the set of the complex numbers. We trust that you have at least a fleeting 
acquaintance with complex numbers. Without attempting a definition, we recall that 
a complex number can be expressed as z = a + bi, where a and b are real numbers.
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3v

v + w

Figure I Figure 2 Figure 4

Addition of complex numbers is defined in a natural way, by the rule

(a + ib) +  (c-h/rf)  =  (a +  c) + i(b + d).

If A: is a real scalar, we define

k(a +  ib) = ka +  i(kb).

There is also a (less natural) rule for the multiplication of complex numbers, but we 
are not concerned with this operation here.

The complex numbers C with the two operations just given form a linear space; 
the neutral element is the complex number 0 =  0 +  0/. ■

We say that an element /  of a linear space is a linear combination of the elements
f \ , f l ..........f n  i f

f  =  C \ f \  + C 2 f 2  H---------h C „ f „

for some scalars c \ , t-2, . . . ,  c„.

EXAM PLE 9 Let A =
0  f '2 3

. Show that A 2 =
6 112 3

is a linear combination of A and h .

Linear Combination

Kernel

Image
Matrix of a 
Transformation

Figure 5

Solution
We have to find scalars c\ and C2 such that

A 2 =  c\A  +  C2/ 2,

or

'2 3" 0  r 1 O'
6 11 =  c 1

2  3
+  C2 0 1

In this simple example, we can see by inspection that c 1 =  3 and c2 =  2. We could 
do this problem more systematically and solve a system of four linear equations to 
two unknowns.

Since the basic notions of linear algebra (initially introduced for W 1) are de­
fined in terms of linear combinations, we can now generalize these notions without 
modifications. A short version of the rest of this chapter would say that the concept 
of linear transformation, kernel, image, linear independence, span, subspace, bastf» 
dimension, and coordinates can be defined for a linear space in just the same way 
as for W 1. Figure 5 illustrates the logical dependencies between the key concepts 01 
linear algebra introduced thus far.
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D e fin it io n  4.1 .2  Subspaces
A subset W  of a linear space V is called a subspace of V if

a. W contains the neutral element 0 of V.
b. W is closed under addition (if /  and g  are in W , then so is /  +  g).
c. W  is closed under scalar multiplication (if /  is in W and k is a scalar, then 

k f  is in W).

We can summarize parts (b) and (c) by saying that W is closed under linear combi­
nations.

Note that a subspace W  of a linear space V  is a linear space in its own right.
(Why do the eight rules listed in Definition 4.1.1 hold for W l)

EXAM PLE 10 Show that the polynomials of degree <2, of the form f i x )  = a + bx + c x 2, are a
subspace IV of the space F (R , R) of all functions from R to R.

Solution

a. W  contains the neutral element of F(M, R), the zero function f ( x )  =  0. 
Indeed, we can write f ( x )  =  0 +  Ojc +  Ox2.

b. W is closed under addition: If two polynomials f ( x )  =  a +  bx  +  cx2 and 
g(x)  =  p  +  qx  +  r x 2 are in IV, then their sum f ( x )  +  g(x)  =  (a +  p)  +  
(b + q) x  +  (c +  r ) x 2 is in IV as well, since f ( x )  +  g(x) is a polynomial of 
degree <2.

c. IV is closed under scalar multiplication: If f ( x )  =  a +  bx  +  cx2 is a poly­
nomial in W and k is a constant, then k f ( x )  = ka +  (kb)x + (kc )x2 is in W 
as well. b

EXAM PLE I I Show that the differentiable functions form a subspace W of F(M, R).

Solution

a. The zero function /(jc ) =  0 is differentiable, with / '(jc ) =  0.
b. W is closed under addition: You learned in your introductory calculus class 

that the sum of two differentiable functions /  (x) and g(jt) is differentiable, 
with (f ( x ) + g(x)) '  = f ' ( x ) +  g'(x).

c. W is closed under scalar multiplication, since any scalar multiple of a differ­
entiable function is differentiable as well. ^

In the next example, we will build on Examples 10 and 11.

EXAM PLE 12 Here are more subspaces of F (R , R):

a. C °°, the smooth functions, that is, functions we can differentiate as many 
times as we want. This subspace contains all polynomials, exponential func­
tions, sin(jc), and cos(jt), for example.

b. P , the set of all polynomials.
c. Pn, the set of all polynomials of degree <  n. g

What follows is the long version, with many examples.



C H A P T E R  4 Linear Spaces

EXAM PLE I

EXAM PLE

D e f i n i t i o n  4 .1.

! Show that the matrices B that commute with A = 0 1
2 3

form a subspace of R2x*%

Solution

a. The zero matrix 0 commutes with A , since AO =  OA =  0.
b. If matrices B\ and Bj commute with A, then so does matrix B =  B\ +  

since

B A  =  ( $ i  -|- B i ) A  — B \ A  -|- B 2A  =  A B \  -1- A B j  — A ( B \  H- B 2) =  A B .

c. If B commutes with A, then so does k B , since

( kB) A = k ( BA)  = k ( AB)  = A{ k B ).

Note that we have not used the special form of A. We have indeed shown that 
the n x n  matrices B that commute with any given n x n  matrix A form a subspace

Consider the set W of all noninvertible 2 x 2  matrices. Is W a subspace o fR 2x2? 

Solution
The following example shows that W isn’t closed under addition:

1 0 
0 0 +

0 0 
0 1

\  /  
in W

Therefore, W fails to be a subspace of R 2x2.

1 0 
0 1

t

not in W

Next, we will generalize the notions of span, linear independence, basis, coor­
dinates, and dimension.

\ Span, linear independence, basis, coordinates 
Consider the elements f \ , . . . ,  f n in a linear space V .

a. We say that f \ , . . . ,  f n span V if every /  in V can be expressed as a linear 
combination of f \ , . . . ,  /„ .

b. We say that is redundant if it is a linear combination of / 1, . . . ,
The elements f \ ____ /„ are called linearly independent if none of them is
redundant. This is the case if the equation

“1“ * * * “I” Cnfn — 0

has only the trivial solution

c ! = • • •  =  c„ = 0. |

c. We say that elements f \ , . . . ,  f n are a basis of V if they span V and artj 
linearly independent. This means that every /  in V can be written uniqueM 
as a linear combination /  =  c\ f \  +  • • • +  cnf„. The coefficients c \ , . .  •»cm 
are called the coordinates of /  with respect to the basis 33 =  ( f \ , . . . ,  /«)|
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Theorem 4 .1.4

Theorem 4 .1,5

The vector
ci

in R n is called the 33-coordinate vector of / ,  denoted by [/ ] sn. 
The transformation

L ( f )  =  [ / ] *  =

c 1
from V to R w

is called the ^-coordinate transformation, sometimes denoted by Lo

The 33-coordinate transformation is invertible, with inverse

’c\'
-l =  c \ f \  H------- 1" Cnfn-

L Ln J

Note in particular that L ~ ] (?,-) =  f .
We can represent the coordinate transformation in the following diagram.

/  =  c\ f \  H-----+ c„f„ in V [ / ] «  =

c 1
in

As in the case of R '\  coordinates have important linearity properties.

Linearity of the coordinate transformation Ly
If 33 is a basis of a linear space V , then

a* [ /  +  #]** =  [f]^\  +  [s]s#> for a]1 elements /  and g of V, and
b. [k f ] sn = k [ / ] %n, for all /  in V and for all scalars k. ■

The proof is analogous to that of Theorem 3.4.2.
Now we are ready to introduce the key concept of the dimension of a linear 

space.

Dimension
If a linear space V has a basis with n elements, then all other bases of V consist of 
n elements as well. We say that n is the dimension of V :

dim(V) =  n. ■

To prove this important theorem, consider two bases 3? =  ( f \ ........ /„ ) and
(£  =  ( g \ ..........g m )  of V; we have to show that ai =  m.

We will show first that the m vectors [g\]sn........ ^  are linearly
independent, which implies that m < n (by Theorem 3.2.8). Consider a relation

C’l [#l ]^ “I-------  ̂c'm
By Theorem 4.1.4, we have

[c|£l +  • • • +  Ongmjs)* =  0, so that C \ g \  +  • • • +  c m g m =  0.
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Since the elements g \ , . . . ,  gm are linearly independent, it follows that c\ =  • •. -. 
cm =  0, meaning that c\ [gi ]^ +  • • • +  c'm [«m]^ =  0 is the trivial relation, as 
claimed.

Reversing the roles of the two bases, we see that the n vectors [ / i  ] , . . . ,  [/„] I 
in R"1 are linearly independent, so that n < m.

We can conclude that n =  m, as claimed. ■

EXAM PLE I 5 Find a basis of R 2x2, the space of all 2 x 2 matrices, and thus determine the dimension 
of R 2x2.

Solution

We can write any 2 x 2  matrix
a  b  

c d
as

a b' 1 O'
+ b

0 1' 0 O'
+ d 0 O'

=  a
0 0 _0 0 +  c

J 0 1c d

This shows that matrices

span Kl x2. The four matrices are also linearly independent: None of them is a linear 
combination of the others, since each has a 1 in a position where the three others 
have a 0. This shows that

1 O' 0  r

OO

0 0OO ’ OO
1

1

V 0

—
1

0

33 =
1 o ' 0  1 '

1
OO

1
OO

l

0 0 
1 0

0 0 
0 1

is a basis (called the standard basis of R2x2), so that dim(R2x2) =  4.
The 33-coordinate transformation L*\ is represented in the following diagram:

A =
a b  

c d
in R 2x2 L* in J

EXAM PLE I 6 Find a basis of Pi, the space of all polynomials of degree <2, and thus determine 
the dimension of Ab­

so lu tio n
We can write any polynomial f ( x )  of degree <2 as

/ ( j c )  =  a  +  b x  +  c j c 2 =  a  • 1 +  b  • *  +  c • . r 2 ,

showing that the monomials 1, jc, jc2 span fS- We leave it as an exercise to the reader 
to verify the linear independence of these monomials. Thus 33 =  ( 1, jc, jc2 )  is a basis 
(called the s t a n d a r d  b a s i s  of P2), so that dim( P2) =  3.

The 33-coordinate transformation L y  is represented in the following diagram: 1

/ ( j c )  =  a  +  bje  +  c x "  in P2
Ln

[ / (* ) ]  SH = in J

Using Examples 1 5  and 1 6  as a guide, we can present the following strategy f° r  

finding a basis of a linear space.
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S U M M A R Y  4.1.6

EXAM PLE 17

Theorem 4 .1.7

a. Write down a typical element of V, in terms of some arbitrary constants.
b. Using the arbitrary constants as coefficients, express your typical element 

as a linear combination of some elements of V.
c. Verify that the elements of V in this linear combination are linearly inde­

pendent; then they will form a basis of V.

Finding a basis of a linear space V

In Examples 10 and 11 of Section 3.1, we used this method to find a basis of a 
kernel.

Find a basis of the space V of all matrices B that commute with A =  

Example 13.)

Solution

We need to find all matrices B =

. (See

a b 
c d

such that

a b 0 1 0 r a b
c d 2 3 2 3 c d

The entries of B must satisfy the linear equations

2b = c, a +  3b =  d, 2d = 2a + 3c, c +  3 d = 2b +  3d.

The last two equations are redundant, so that the matrices B in V are of the form

B =
a b 1 O'

+ b
0 f

2b a + 3b
=  a

2 3
= al2 +  bA.

Since the matrices h  and A are linearly independent, a basis of V is 

(h - A) = (
1 0 ‘

o

O ’ 2 3 ) '

In the introductory example of this section, we found that the solutions of the 
differential equation

/" ( * )  +  / ( * )  =  0

form a two-dimensional subspace of C°°, with basis (cos jc, sin jc).
We can generalize this result as follows:

Linear differential equations
The solutions of the differential equation

/"(jc) +  af ' ( x )  +  b f ( x )  = 0 (where a and b are constants)

form a two-dimensional subspace of the space of smooth functions.
More generally, the solutions of the differential equation

f u,\ x )  + an- \ f in~ x\ x )  H----- + a \ f ( x ) + a o f ( x )  =  0

(where ........ an-\ are constants) form an ^-dimensional subspace of C 00. A dif­
ferential equation of this form is called an nth-order linear differential equation with 
constant coefficients. ■
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EXAM PLE 18

EXAM PLE 19

D e fin it io n  4 . 1.8

Second-order linear DEs are frequently used to model oscillatory phenomena 
in physics. Important examples are damped harmonic motion and LC  circuits.

Consider how cumbersome it would be to state the second part of Theorem 4. l j  
without using the language of linear algebra. (Try it!) This may convince you that it 
can be both natural and useful to apply the language of linear algebra to functions. 
Theorem 4.1.7 will be proven in Section 9.3.

Find all solutions of the DE

/" ( * )  +  / '( * )  -  6f ( x )  =  0.

[Hint: Find all exponential functions f i x )  =  ekx that solve the DE.]

Solution
An exponential function f i x )  =  ekx solves the DE if

f " W  +  f i x )  -  6 f { x )  =  k2ekx +  kekx — 6ekx
= {k2 + k -  6)ekx = {k +  3){k -  2)ekx =  0.

The solutions are k = 2 and k =  —3. Thus, e2x and e~3x are solutions of the DE. 
(Check this!) Theorem 4.1.7 tells us that the solution space is two-dimensional. Thus 
the linearly independent functions e2x, e~3x form a basis of V , and all solutions are 
of the form

f ( x )  =  c ,e2x +C2e~3x. m

Let / | , . . . ,  f n be polynomials. Explain why these polynomials will not span the 
space P of all polynomials.

Solution
Let N  be the maximum of the degrees of the polynomials f \ , . . . ,  /„ . Then all linear 
combinations of / i ,  are in fV , the space of polynomials of degree <N.
Any polynomial of higher degree, such as f i x )  =  jcn + i, will not be in the span of 
/ i  , proving our claim. ■

Example 19 implies that the space P of all polynomials does not have a finite 
basis

Here we are faced with an issue that we did not encounter in Chapter 3, when 
studying R n and its subspaces (they all have finite bases). This state of affairs calls 
for some new terminology.

Finite dimensional linear spaces

A linear space V is called finite dimensional if it has a (finite) basis f \ , . . . ,  /„, so 
that we can define its dimension dim( V) =  n. (See Definition 4.1.5.) Otherwise, the 
space is called infinite dimensional.5

As we have just seen, the space P of all polynomials is infinite dimensional (as 
was known to Peano in 1888).

Take another look at the linear spaces introduced in Examples 1 through 8 of 
this section and see which of them are finite dimensional.

The basic theory of infinite dimensional spaces of functions was establishe 
by David Hilbert (1862-1943) and his student Erhard Schmidt (1876-1959), in the

5More advanced texts introduce the concept of an infinite basis.
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first decade of the twentieth century, based on their work on integral equations. A 
more general and axiomatic approach was presented by Stefan Banach (1892-1945) 
in his 1920 doctoral thesis. These topics (Hilbert spaces, Banach spaces) would be 
discussed in a course on Functional Analysis rather than linear algebra.

EXERCISES 4.1
GOAL Find a basis o f a linear space and thus determine 
fts dimension. Examine whether a subset o f a linear space 
is a subspace.
Which o f the subsets o f Pi given in Exercises 1 through
5 are subspaces o f P2? Find a basis for those that are 
subspaces.

1. [pHYpi0) =  2} 2. [p(t):p(2) =  0}
3. {pity P' (0  =  Pi2)) iP 'is the derivative.)

4. {p(0: fo P(0 dt =  °l

5. {p(tY p(~t )  = for all t }
Which o f the subsets of M3x3 given in Exercises 6 
through 11 are subspaces o/K 3x3?

6. The invertible 3 x 3  matrices

7. The diagonal 3 x 3  matrices

8. The upper triangular 3 x 3  matrices

9. The 3 x 3  matrices whose entries are all greater than or 
equal to zero

' f
10. The 3 x 3 matrices A such that vector is in the

kernel of A

11. The 3 x 3  matrices in reduced row-echelon form
Let V be the space o f all infinite sequences o f real num­
bers. (See Example 5.) Which o f the subsets o f V given in 
Exercises 12 through 15 are subspaces o f V?

12. The arithmetic sequences [i.e., sequences of the form 
(a, a +  k, a +  2ky a + 3k, ...),  for some constants a 
and k]

13. The geometric sequences [i.e., sequences of the form 
(a, ary ar2, <?r3, ...), for some constants a and r]

14. The sequences ( j c o , x \ , . . . )  that converge to zero (i.e.,
lim xn =  0) 

n-> 00

15. Thesquare-summablesequences (*0 , x \ , . . . )  (i.e., those
00

for which ^  xf  converges)
/= 0

a basis for each o f the spaces in Exercises 16 through 
9 and  determine its dimension.

16. R3x2 yj

The real linear space C2
18. Pn

a b 
c d in R2x2 such20. The space of all matrices A 

that a +  d = 0

21. The space of all diagonal 2 x 2  matrices

22. The space of all diagonal n x n  matrices

23. The space of all lower triangular 2 x 2  matrices

24. The space of all upper triangular 3 x 3  matrices

25. The space of all polynomials /( r )  in P2 such that
/ ( I )  =  0

26. The space of all polynomials f ( t )  in P3 such that 
/ ( l )  =  0 and J \ f ( t ) d t =  0

27. The space of all 2 x 2 matrices A that commute with 
1 O'B =
0 2

28. The space of all 2 x 2 matrices A that commute with
1 fB = 0 1

29. The space of all 2 x 2 matrices A such that 

A '1 f ’o o'
1 1 0 0

30. The space of all 2 x 2 matrices A such that

' l  2 A = 0 o'
3 6 0 0

31. The space of all 2 x 2 matrices S such that

10• 1—01

5 = 51 0 0 1

1 1 
1 1

2 0 

0 0

32. The space of all 2 x 2 matrices S such that

5 =  5

33. The space of all 2 x 2 matrices 5 such that

5 = 5

34. The space of all 2 x 2 matrices 5 such that

3 2 s - s4 5

I 1 
1 1
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35. The space of all 3 x 3 matrices A that commute with

B =
2 0 
0 3 
0 0

36. The space of all 3 x 3 matrices A that commute with

B =
2 0 0
0 3 0
0 0 3

37. If B is a diagonal 3 x 3  matrix, what are the possi­
ble dimensions of the space of all 3 x 3 matrices A 
that commute with B ‘? Use Exercises 35 and 36 as a 
guide.

38. If B is a diagonal 4 x 4  matrix, what are the possible 
dimensions of the space of all 4 x 4 matrices A that 
commute with B1

39. What is the dimension of the space of all upper triangular 
n x n  matrices?

40. If u is any vector in R ", what are the possible dimensions 
of the space of all n x n matrices A such that Av  =  0?

41. If B is any 3x3  matrix, what are the possible dimensions 
of the space of all 3 x 3 matrices A such that BA =  0?

42. If B is any n x n  matrix, what are the possible dimensions 
of the space of all n x n matrices A such that BA = 01

43. If matrix A represents the reflection about a line L in 
R2, what is the dimension of the space of all matrices S 
such that

AS = S
1 0 
0 -1

(Hint: Write S =  [5 £>], and show that 5 must be par­
allel to L, and w must be perpendicular to L.)

44. If matrix A represents the orthogonal projection onto a 
plane V in R3, what is the dimension of the space of all 
matrices S such that

AS = S
1
0 1 
0 0

0 0 
0
0

See Exercise 43.

45. Find a basis of the space V of ail 3 x 3 matrices A that 
commute with

B =
0 1 
0 0 
0 0

and thus determine the dimension of V .

46. In the linear space of infinite sequences, consider the 
subspace W of arithmetic sequences (see Exercise 12).

Find a basis for W, and thus determine the dimension 
of W.

47. A function / ( / )  from R to R is called even if f ( - t )  =
/( r ) ,  for all t in R, and odd if / ( —t) =  - /( r ) ,  for
all t. Are the even functions a subspace of F(R, R), the
space of all functions from R to R? What about the odd 
functions? Justify your answers carefully.

48. Find a basis of each of the following linear spaces, and 
thus determine their dimensions. (See Exercise 47.)
a. { / in P4: f  is even)
b. { / in P4: f  is odd}

49. Let L(Rm, R”) be the set of all linear transformations 
from Rm to Rn. Is L (Rm, R ") a subspace of F(R m, Rw), 
the space of all functions from Rm to R'1? Justify your 
answer carefully.

50. Find all the solutions of the differential equation 
f " ( x )  +  8 / ' ( jc)  -  20f ( x )  = 0.

51. Find all the solutions of the differential equation 
/ " ( * ) - 7 / '( jc) + 1 2 / ( jc) = 0.

52. Make up a second-order linear DE whose solution space 
is spanned by the functions e~x and e~5x.

53. Show that in an n-dimensional linear space we can find 
at most n linearly independent elements. Hint: Consider 
the proof of Theorem 4.1.5.

54. Show that if W is a subspace of an n -dimensional lin­
ear space V, then W is finite-dimensional as well, and 
dim(V^) < n. Compare with Exercise 3.2.38a.

55. Show that the space F(R, R) of all functions from R to 
R is infinite dimensional.

56. Show that the space of infinite sequences of real numbers 
is infinite dimensional.

57. We say that a linear space V is finitely generated if it
can be spanned by finitely many elements. Show that 
a finitely generated space is in fact finite dimensional 
(and vice versa, of course). Furthermore, if the elements 
g l ........gm span V, then dim(V) < m.

58. In this exercise we will show that the functions cos(*) 
and sin(jc) span the solution space V of the differen­
tial equation f " ( x )  =  —f (x) .  (See Example 1 of this 
section.)
a. Show that if #(jr) is in V, then the function (g{x)) +

(s'C*))2 is constant. Hint: Consider the derivative.
b. Show that if g(;t) is in V, with #(0) =  #'(0) =  0,

then g(jt) =  0 for all x.
c. If / (jc) is in V , then g(jc) =  f ( x )  — f ( 0) cos(x)

/ ' ( O)sin(jc) is in V as well (why?). Verify that 
£(0) =  0 and #'(0) =  0. We can conclude that 
g(x)  =  0 for all jc, so that /(jc) =  / ( O)cos(x) + 
/ '(0 )  sin(jc). It follows that the functions cos(x) and 
sin(jc) span V , as claimed.
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Linear Transformations and Isomorphisms

In this section, we will define the concepts of a linear transformation, image, kernel, 
rank, and nullity in the context of linear spaces.

D e fin it io n  4.2.1 Linear transformations, image, kernel, rank, nullity

Consider two linear spaces V  and W.  A function T  from V to W is called a linear 
transformation if

T ( f  + g) = T ( f )  + T(g)  and T ( k f )  = k T ( f )

for all elements /  and g of V and for all scalars k.
For a linear transformation T  from V to W,  we let

im (r)  =  ( T ( f ) : f  in V}

and

ker(D  = [ f \ n V :  T ( f )  =  0}.

Note that im (r) is a subspace of target space W and that ker(T) is a subspace of 
domain V.

If the image of T  is finite dimensional, then dim(im T)  is called the rank of T,
and if the kernel of T  is finite dimensional, then dim(ker T) is the nullity of T.

If V is finite dimensional, then the rank-nullity theorem holds (see Theo­
rem 3.3.7):

dim (V) =  rank(T) +  nullity (r) =  dim(im T) +  dim(ker T).

A proof of the rank-nullity theorem is outlined in Exercise 81.

EXAM PLE I Consider the transformation D ( f )  =  / '  from C 00 to C°°. It follows from the rules 
of calculus that D is a linear transformation:

£>(/ +  «) =  ( /  +  gY = f '  + g' equals D ( f )  +  D(g)  = f  +  gf and 
D( k f )  = ( k f Y  = k f  equals k D ( f )  = k f .

Here /  and g are smooth functions, and A: is a constant.
What is the kernel of D? This kernel consists of all smooth functions /  such that 

D ( f )  =  / '  =  0. As you may recall from calculus, these are the constant functions 
/ ( j c )  =  k. Therefore, the kernel of D is one dimensional; the function f ( x )  =  1 is 
a basis. The nullity of D is 1.

What about the image of D? The image consists of all smooth functions g such 
that g = D ( f )  = / '  for some function /  in C°° (i.e., all smooth functions g that 
have a smooth antiderivative / ) .  The fundamental theorem of calculus implies that 
all smooth functions (in fact, all continuous functions) have an antiderivative. We 
can conclude that

im(D) =  C°°. m

EXAM PLE 2 Let C[0, 1] be the linear space of all continuous functions from the closed interval 
[0, 11 to M. We define the transformation

I ( f ) =  I  f ( x ) d x  from C[0, 1] to R.
Jo
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EXA M PLE  3

We adopt the simplified notation 1 ( f )  =  f Ql f .  To check that /  is linear, we apply 
basic rules of integration:

I ( /  +  g) =  f  ( /  +  8 )  =  f  f + f  g equals 1 ( f )  +  1 ( g )  =  f  / +  [  g
Jo Jo Jo Jo Jo

and

I ( k f )  =  [  (k f ) =  k  [  f  equals k l ( f )  =  k  [  f  
Jo Jo Jo

What is the image of /?  The image of I  consists of all real numbers b such that

b = I ( f )  = f  f  
Jo

for some continuous function / .  One of many possible choices for f  is the constant 
function f ( x )  = b. Therefore,

im(/ )  =  R, and rank(/) =  1.

We leave it to the reader to think about the kernel of / .  ■

Let V be the space of all infinite sequences of real numbers. Consider the 
transformation

T(Xo,*i,JC2, •••) =  U |,* 2 ,* 3 , •••) 

from V to V.  (We drop the first term, Jto, of the sequence.)

a. Show that T  is a linear transformation.
b. Find the kernel of T.
c. Is the sequence (1, 2, 3 , . . . )  in the image of T1
d. Find the image of T .

Solution

a. T{(xo,  x \ , x 2, . . . )  +  (.vo* vi, • • •)) =  7'(*o +  >,o ^ i  +  y i ,* 2  +  y i , . . . )
=  C*i +y i , * 2  + y2* *3 +  V3, • • •) equals

T( x q , x i , x 2, . •.) + T ( y o , y \ , y 2, . . . )  = ( x \ , x 2, xi ,  . . . )  +  (yi, >’2, J3, •.•) 
=  ( x \  + y\,  x 2 + y2, x$ + y3, . . .).

We leave it to the reader to verify the second property of a linear 
transformation.

b. The kernel consists of everything that is transformed to zero, that is, all 
sequences ( j c o , x \ , x 2 , . . . )  such that

T (*o, x \ , x 2, . . . )  =  ( x \ , x2, x s , . . . )  =  (0, 0, 0 , . . . ) .

This means that entries x  \ , x 2, x ^ , . . .  all have to be zero, while xo is arbitrary. 
Thus, ker(T) consists of all sequences of the form (jco, 0, 0 , . . . ) ,  where xo 
is arbitrary. The kernel of T  is one dimensional, with basis (1, 0, 0, 0 , .. .)• 
The nullity of T is 1.

c. We need to find a sequence (xq, x \ , x2, . . . )  such that

T(x0, x i , x 2, . . . )  =  (jri ,*2, * 3, . . . )  =  ( 1 , 2 , 3 , . . . ) .

It is required that X[ =  1, x 2 =  2, *3 =  3 , . . . ,  and we can choose any value 
for xo, for example, xo =  0. Thus,

( 1 , 2 , 3 . . . . )  =  7 (0 , 1 , 2 , 3 , . . . )

is indeed in the image of T.
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d. Mimicking our solution in part (c), we can write any sequence (bo,b\, b2, . . . )  
as

(b0, b \ , b2, . . . )  =  T (0, bo, b {, b 2, . . .), 

so that i m(T)  = V.  ■

Consider the transformation

from R 2x2 to R4.

Note that L is the coordinate transformation with respect to the standard basis 

33 =
1 O' 0 1'

oo oo

OO ’ O O ’ 1 o

-----------------------------------------------------------------1

o

of R 2x2; see Example 4.1.15. Being a coordinate transformation, L is both linear 
and invertible; see Theorem 4.1.4.

Note that the elements of both R 2x2 and R4 are described by a list of four scalars 
a , b , c, and d.  The linear transformation L merely “rearranges” these scalars, and 
L _1 puts them back into their original places in ' 2x2

I2*2 and R4 have essentially the same structure. We say that 
l2x2 and R 4 are isomorphic, from Greek foo? (isos), same, 

and fioptprj (morphe), structure. The invertible linear transformation L is called an 
isomorphism. ■

The linear spaces 
the linear spaces

Isomorphisms and isomorphic spaces

An invertible linear transformation T  is called an isomorphism. We say that the linear 
space V is isomorphic to the linear space W if there exists an isomorphism T  from
V to W.

We can generalize our findings in Example 4.

Coordinate transformations are isomorphisms
If 33 =  ( / i , f 2, . . . ,  f n) is a basis of a linear space V, then the coordinate transfor­
mation L ^ ( / )  =  [f]sn fr°m y  t0 ^  is an isomorphism. Thus V is isomorphic to 
R” ; the linear spaces V and R" have the same structure. ■

/  = c \ f \  + ' -  + c„ fn in V
{Ly)

[ / ] «  =

C1
in J

Let’s reiterate the main point: Any n-dimensional linear space V is isomorphic to 
R '1. This means that we don’t need a new theory for finite dimensional spaces. By 
introducing coordinates, we can transform any n -dimensional linear space into R'1 
and then apply the techniques of Chapters 1 through 3. Infinite dimensional linear
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spaces, on the other hand, are largely beyond the reach of the methods of elementary 
linear algebra.

Show that the transformation

T( A)  = S ~ l A S  from R 2*2 to M2x2 

'1 21is an isomorphism, where S =
3 4

Solution
We need to show that T  is a linear transformation, and that T  is invertible.

Let’s check the linearity first:

T( Ai  + A 2) =  S ~ l (Ai  + A 2)S =  S - H A i S + A2S) =  S " 1 A, 5  +  S ~ l A2S
equals

T( Ai )  +  T ( A 2) =  S~' A ,S  +  S ~ l A 2S,
and

T( kA)  = S ~ \k A )S  =  k ( S ~ l AS)  equals kT{A)  = k ( S ~ l AS) .

The most direct way to show that a function is invertible is to exhibit the inverse. Here 
we need to solve the equation B = S ~ ] AS  for input A.  We find that A = S B S ~l, 
so that T  is indeed invertible. The inverse transformation is

t ~ \ b ) =  s b s ~1. m

Properties of isomorphisms
a. A linear transformation T  from V to W is an isomorphism if (and only if) 

ker(7) =  {0} and im (T) = W.

In parts (b) through (d), the linear spaces V and W are assumed to be finite dimen­
sional.

b. If V is isomorphic to W,  then dim( V)  =  dim (iy).
c. Suppose T  is a linear transformation from V to W with ker(7) =  {0}. If 

dim(V) =  dim(W), then T  is an isomorphism.
d. Suppose T is a linear transformation from V to W  with im (T)  =  IV. If 

dim(V) =  dim(W), then T  is an isomorphism.

a. Suppose first that T  is an isomorphism. To find the kernel of T, we have 
to solve the equation T ( / )  =  0. Applying T ~ [ on both sides, we find that 
f  =  T ~ l (0) =  0, so that ker(7) =  {0}, as claimed (see Exercise 76). To see 
that im (7) =  IV, note that any g in V can be written as g = T  (T ~ l (g)).

Conversely, suppose that ker(7) =  {0} and im (r)  =  W.  We have to 
show that T is invertible, that is, the equation T ( / )  =  g has a unique solution 
/  for every g in W (by Definition 2.4.1). There is at least one solution / ,  since 
im(T) =  W.  Consider two solutions f \  and / 2, so that T( f \ )  =  T ( / 2) =  8- 
Then

0 = T ( f i )  -  T ( f 2) = T ( f -  / 2),

so that / j  -  / 2 is in the kernel of T.  Since the kernel of T  is (0), we must 
have f \  — / 2 =  0 and f \  =  / 2, as claimed.
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b. This claim follows from part (a) and the rank-nullity theorem (Defini­
tion 4.2.1):

dim(V) =  dim (kerT) +  dim(im T)  =  0 +  dim(W) =  dim(W).

c. By part (a), it suffices to show that im(T) =  W , or, equivalently, that 
d i m( i mr )  =  dim(W); compare with Exercise 3.3.61. But this claim fol­
lows from the rank-nullity theorem:

dim(W) =  dim(V) =  dim(ker T)  + dim(im T)  =  dim(im T ).

d. By part (a), it suffices to show that ker(7) =  {0}. The proof is analogous to
part (c). ■

a. Is the linear transformation

7 ( D '
L { f ( x ) ) =  f  (2)

. / ( 3)J

b. Is the linear transformation

7 ( D
T ( f ( x ) ) =  f  (2)

. / ( 3 ) J

from Pi  to R3 an isomorphism?

from Pi  to R 3 an isomorphism?

Solution

a. Consider Theorem 4.2.4b. Since d i m ^ )  =  4 and dim(R3) =  3, the spaces 
Pi and R 3 fail to be isomorphic, so that L fails to be an isomorphism.

b. In this case, domain and target space have the same dimension,

dimC/^) =  dim(R3) =  3.

Figure I Is the linear transformation T from V to W an isomorphism? (V and W are 
finite dimensional linear spaces.)
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This fact alone does not guarantee that T  is an isomorphism, however. Let’s 
find the kernel of T  and use Theorem 4.2.4c. The kernel of T  consists of all 
polynomials f ( x )  in Pi such that

70)' ‘O'
T { f ( x ) )  = / ( 2) = 0

7 ( 3 ) . 0.

that is, / ( l )  =  0, f {2)  =  0, and / ( 3 )  =  0. Since a nonzero polynomial in 
Pi has at most two zeros, the zero polynomial is the only solution, so that 
k e r(r)  =  {0}. Thus T is indeed an isomorphism. ■

The diagram in Figure 1 can be a useful guide in determining whether a given 
linear transformation T  from V to W  is an isomorphism. Here we assume that both
V and W are finite dimensional. (We leave it as an exercise to the reader to adapt 
the diagram to the case of infinite dimensional spaces.)

EXERCISES 4.2
GOAL Examine whether a transformation is linear. 
Find the image and kernel o f a linear transformation. Ex­
amine whether a linear transformation is an isomorphism.
Find out which o f the transformations in Exercises 1 
through 50 are linear. For those that are linear, determine 
whether they are isomorphisms.

t. T(M)  =  M + h  from R2*2 to M2*2

2. T(M)  =  I M from R2x2 to R2x2

3. T(M) = (sum of the diagonal entries of M ) from M2x2
to R

4. T{M)  =  det(Af) from R2x2 to R

5. T(M) = M2 fromIR2x2 toIR2x2

'l  2 
3 6

6. T(M)  =  M

7. 7(Af) =

8. T(M) = M

from IR2x2 to M2x2

1 2 
3 4

M from iR2x2 to M2x2

1 2 
3 4

M from R2x2 to R2x2

9. T(M) = S~' MS.  where S =

R2x2

10. T{M)  =  P MP ~ l. where P =

3 4 
5 6

'2 3 
5 7

from IR2x2 to

from R2x2 to

11. T(M) = PMQ , where P = 

to]

and Q =

3 5 
7 11

, from P 2x2 - i»2x2

12. Tic) =  c 2 3 
4 5

from R to R2x2

13.

14.

T{M) = 

T{M)  =

M '1 2 to

° 1 0 1

15. T(M) =

2 3 
5 7

2 0 
0 3

M - M

M - M

2 3 
5 7

4 0 
0 5

M from IR2 x 2 to R2x2 

from IR2 x 2 to R2x2 

from IR2x2 to R2x2

16. T(M) = M '2 o' ‘3 o'
0 3 0 4

M from R2 x2 to R2x2

17.

18.

19.

20. 

2 1. 
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

T(x +  iy 

T(x -h iy 

T (x + iy 

T(x +  ix 

T(x + iy

T{f ( t ) )  

T { f ( 0 )  

T ( / U)) 

T( f U) )  

T{ f ( D)
c t 2) =  a

T { f ( 0 )  
c t 2) =  a

T{ f U) )

T ( f ( t ))

T{.fU))

T ( f ( » )

T ( m )

) =  jc from C to C

) =  x 2 + y2 from C to C

) =  / (.v + iy)  from C to C

) =  x -  i y  from C to C

) =  y + ix from C to C

=  J*7 f ( t )dt  from Pi to R

= f(7)  from Pi to IR

=  f i t )  f i t )  from P2 to P2

= f "i t )  ■+■ 4f ' ( t )  from Pi to Pi

= / ( - 0  from Pi to Pi, that is, T(a +bt  + 
-  bt + ct2
= f(2t )  from Pi to Pi , that is, T(a +  bt + 
+  2 bt +  4cr2

=  / (2 1) -  / ( / )  from Pi to Pi 

=  f i t )  from Pi to Pi 

=  ; ( / ' ( / ) )  from Pi to Pi

/(0 ) / ( l )
/(2 ) ./ (3)

=  f i t )  + 12 from Pi to Pi

from Pi to IR2x2
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In Exercises 33 through 36, V denotes the space o f infinite 
sequences o f real numbers.

33. T(x0 , x \ , x2. *3, * 4 , . . .) =  0*o, A*2 , * 4, • • •) from V to 
V (we are dropping every other term)

34. T(x0, x i , •. ■) =  (0, *0, * 1, *2* •• ) from V to V

35. 7"(/(/)) =  ( / ( 0 ) , / '( 0 ) , / " ( 0 ) , / " '( 0 ) , . . . )  from /> 
to V, where P denotes the space of all polynomials

36. T ( f ( 0 )  =  (/(0), / ( l ) , / ( 2 ) , / ( 3 ) . . . . ) f r o m / 5 toV. 
where P denotes the space of all polynomials

37. T(f )  =  /  +  / '  from C00 to C *

38. r ( / )  =  /  +  / "  from C°° to C°°

39. T( f )  =  / "  -  5 / '  +  6 /  from C°° to C00

40. T (/)  =  f "  + 2 f  + f  from Cx  to Cx

41. r ( / ( f ) )  =  f i t )  +  /" ( /)  +  sin(r) from C°° to Cx

>242. r (/( /> ) =

43. T ( f ( 0 )  =

44. 7" ( /( /) )  =

f O )
/ ( I D .

' / (5 )  
/(7 )  

/ ( l l )

' / ( I ) '  
/ '(2 ) 
/  (3)

from P2 to R^

from P2 to R3

from P2 to ]

45. T( f ( t ) )  = t { f (D)  from P to P

46. r ( / ( / ) )  =  (/ — l)/ (f)  from P to P

47. r ( / ( / ) )  =  J j /U )  from P to P

48. T (/ ( / ))  =  / ' (f)  from P to P

49. T( / (r ))  =  / ( r 2) from P to P

so. r(/(/)) = J(t + 2̂ ~/(/) from P t0 P

51. Find kernel and nullity of the transformation in
Exercise 13.

52. Find kernel and nullity of the transformation in
Exercise 6.

53. Find image, rank, kernel, and nullity of the transforma­
tion in Exercise 25.

54. Find image, rank, kernel, and nullity of the transforma­
tion in Exercise 22.

55. Find image and kernel of the transformation in
Exercise 33.

56. Find image, rank, kernel, and nullity of the transforma­
tion in Exercise 30.

57. Find kernel and nullity of the transformation in
Exercise 39.

58. Find image and kernel of the transformation in Exer­
cise 34.

59. Find image, rank, kernel, and nullity of the transforma­
tion in Exercise 23.

60. Find image, rank, kernel, and nullity of the transforma­
tion in Exercise 42.

61. Find image and kernel of the transformation in Exer­
cise 45.

62. Find image and kernel of the transformation in Exer­
cise 48.

63. Define an isomorphism from P3 to R3, if you can.

64. Define an isomorphism from P3 to R2x2, if you can.

65. We will define a transformation T from R',xm to 
F(Rn\ R n)\ recall that F(R"',R") is the space of all 
functions from Rm to Rn. For a matrix A in R',xm, the 
value T(A)  will be a function from Rm to Rn\ thus we 
need to define (T(A))(v)  fora vector t) in Rm. We let

(7'(A))(i5) =  Av.

a. Show that T is a linear transformation.
b. Find the kernel of T.
c. Show that the image of T is the space L(Rm, R” ) of 

all linear transformation from Rm to Rn. (See Exer­
cise 4.1.49.)

d. Find the dimension of L(Rm, R").

66 . Find the kernel and nullity of the linear transformation 
T( f )  = f  -  f f from C°° to C°°.

67. For which constants k is the linear transformation

T(M)  =
2 3 
0 4

M -  M
3 0 
0 k

an isomorphism from ] 2x2 to!

68. For which constants k is the linear transformation

= ° ] - [ J

an isomorphism from R2x2 to R2x2?

69. If matrix A is similar to #, is T{M)  =  AM — MB  an 
isomorphism from R2x2 to R2x2?

70. For which real numbers to, c 1........cn is the linear trans­
formation

./‘(co)
/U ’l )

f(Cn)

1 +  I 9

7 ( / < n )  =

an isomorphism from Pn to 1
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71. Does there exist a polynomial f ( t )  of degree < 4 such 
that /(2 ) =  3, /(3 ) =  5, /(5 ) =  7, /(7 ) =  11, and 
/ ( l l )  =  2? If so, how many such polynomials are there? 
Hint: Use Exercise 70.

In Exercises 72 through 74, let Zn be the set of all polyno­
mials o f degree < n such that f  (0) =  0.

72. Show that Zn is a subspace of Pn, and find the dimension
of Z„.

73. Is the linear transformation 7 ( / (f))  =  Jq / ( j c )  dx an 
isomorphism from Pn~\ to Znl

74. Define an isomorphism from Zn to Pn~\ (think 
calculus!).

75. Show that if 0 is the neutral element of a linear space 
then 0 + 0 =  0 and kO =  0, for all scalars k.

76. Show that if 7 is a linear transformation from V to W, 
then T(0y)  =  Oyy, where 0y and 0w are the neutral 
elements of V and W, respectively.

77. If 7 is a linear transformation from V to W and L is 
a linear transformation from W to U, is the composite 
transformation L o T  from V to U linear? How can you 
tell? If T and L are isomorphisms, is L o T an isomor­
phism as well?

78. Let R+ be the set of positive real numbers. On R+ we 
define the “exotic” operations

jc  ® y =  xy  (usual multiplication)

and

k O jc =  xk.

a. Show that R + with these operations is a linear space; 
find a basis of this space.

b. Show that T(x) =  ln(jc) is a linear transformation 
from R+ to R, where M is endowed with the ordinary 
operations. Is T an isomorphism?

79. Is it possible to define “exotic” operations on R2, so that 
dim(R2) =  1?

80. Let X be the set of all students in your linear algebra 
class. Can you define operations on X that make X into 
a real linear space? Explain.

81. In this exercise, we will outline a proof of the rank-nullity 
theorem: If T is a linear transformation from V to W , 
where V is finite dimensional, then

dim( V) =  dim(im T)  + dim(ker T)
=  rank(7) +  nullity(T).

a. Explain why ker(7) and image (7) are finite dimen­
sional. Hint: Use Exercises 4.1.54 and 4.1.57.

Now consider a basis v\ , . . . ,  vn of ker(7), 
where n = nullity(7), and a basis w\ , . . . , w r 
of im(7), where r =  rank(7). Consider elements
u \ ....... ur in V such that 7(m;) =  u)j for i =
1, . . . ,  r. Our goal is to show that the r +  n elements 
u i , . . . ,  ur , i>i, . . . ,  vn form a basis of V ; this will 
prove our claim.

b. Show that the elements u i , . . . ,  ur , i>i, . . . ,  vn are 
linearly independent. Hint: Consider a relation 
ci u i +  • • • +  crur + d\ v\ +  • • • +  dn vn =  0, ap­
ply transformation T to both sides, and take it from 
there.

c. Show that the elements u \ , . . . ,  wr , U|____ vn span
V. [Hint: Consider an arbitrary element v in V, and 
write T (v ) =  d\ w\ +  • • ■ +  drwr . Now show that
the element v — d \u \ -------- drur is in the kernel of
7, so that v — d\u\ — . . .  — drur can be written as a 
linear combination of u j.......

82. Prove the following variant of the rank-nullity the­
orem: If T is a linear transformation from V to 
Wy and if ker T and im T are both finite dimen­
sional, then V is finite dimensional as well, and 
dim V =  dim(ker T) +  dim(im T).

83. Consider linear transformations T from V to W and 
L from W to U . If ker T and ker L are both finite di­
mensional, show that ker(L o T) is finite dimensional as 
well, and dim (ker(LoD)  < dim(ker 7 )+  dim(kerL). 
[Hint: Restrict 7 to ker(L o 7) and apply the rank-nullity 
theorem, as presented in Exercise 82.]

84. Consider linear transformations 7 from V to W
and L from W to U. If ker 7 and kerL are bothj 
finite dimensional, and if im 7 =  W, show that 
ker(L o 7) is finite dimensional as well and tha  ̂
dim (ker(L o7) )  =  dim(ker 7) +  dim(ker L). !

J 0 T h e  Matrix of a Linear Transformation

Next we will examine how we can express a linear transformation in coordinates.

EX A M PLE I Consider the linear transformation

T(f) =  f' +  / "  from P2 to P2,
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or, written more explicitly,

T { f ( x ) ) = f ' ( x )  + f " ( x ) .

Since P2 is isomorphic to R 3, this is essentially a linear transformation from R 3 to 
R 3, given by a 3 x 3 matrix B. Let’s see how we can find this matrix.

If we let /(jc) =  a 4- bx  +  c x2, then we can write transformation T  as

T{a +  bx  +  c x 2) = (a +  bx +  cx2)' +  (a +  bx  +  cx2)"
=  (b +  2cx)  +  2c =  (b + 2c) +  2cx.

Next let’s write the input f ( x )  = a +  bx 4 - cx 2 and the output T ( f ( x ) )  = 
(b +  2c) +  2cx  in coordinates with respect to the standard basis 33 =  (1 , jc, jc2 ) 

of P2.

f  ( jc) =  a +  bx  +  cx 2 

L*

[ / ( * ) ]*  =

_► T ( f i x ) )  =  ib + 2c) +  2cx

Lsn,

~ a ~b +  2 c"
b ---------► [ T ( m ) U  = 2c
c 0

Written in 33-coordinates, transformation T  takes [ / ( jc) ] ^  to 

~b + 2c~\ [ 0  1 2 ] [ « ]
[ T ( f M ) U  =

b +  2 c" "0 1 2 " "a" "0  1 2 "
2 c - 0  0  2 b = 0  0  2

0

OOO

_c_ O O o

[ / ( * ) ] * •

The matrix

"0 1 2 "
B = 0 0 2

. 0 0 0 .

is called the 33-matrix of transformation T.  It describes the transformation T  if 
input and output are written in 33-coordinates. Let us summarize our work in two 
diagrams:

P2 Pi

L'$

f

L<$ 

[ / l *

T ( f )

L*

-> [ 7 \ / ) ] *

The 33-matrix of a linear transformation

Consider a linear transformation T from V to V,  where V is an /2-dimensional linear 
space. Let 33 be a basis of V . Consider the linear transformation L y  o T  o L^ 1 from 
R" to R '\  with standard matrix B y meaning that Bx = L y ( T ( L ^ ] (x)))  for all jc
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in Rn. This matrix B is called the 53-matrix of transformation T . See the diagrams 
below. Letting /  =  L^ 1 (Jc) and jc =  [ / ] ^ ,  we find that

[7,( / ) ] „  =  B [ / ] 4J, for all /  in V.

Consider the following diagrams: 
t

f  

[ / ] »

Compare this with Definition 3.4.3.
We can write B in terms of its columns. Suppose that 93 =  ( f \ / „).  

Then

-> T ( f )

Ly

[ T ( f M

=  B U ] *  =  B *i =  (fth column of B)

The columns of the ^-matrix of a linear transformation
Consider a linear transformation T  from V to V, and let B be the matrix of T  with 
respect to a basis 93 =  ( / i  of V.  Then

B = [ T ( f i)]

The columns of B are the 33-coordinate vectors of the transforms of the basis elements 
of V. ■

Use Theorem 4.3.2 to find the matrix B of the linear transformation T  ( / )  =  / '  +  / "  
from P2 to P2 with respect to the standard basis 33 =  (1, jc, jc2 ) ;  see Example 1.

Solution
By Theorem 4.3.2, we have

B =

Now
n o  =  r  +  r  

=  0

[T(  D]o, [ T ( x ) ] v  [T(x 2) ] v

T(x)  = x'  + x"  
=  1

T ( x 2) =  (x2y  + (x2)" 
=  2 +  2*

'O' T ' 2 '
0 II 0 [ * V ) ] »  = 2

0 . 0 . 0 .

' 0  1 2 '
B = [ n » ] v = 0  0 2

00

0 .
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EXAM PLE 3

EXAM PLE 4

A problem concerning a linear transformation T  can often be done by solving 
the corresponding problem for the matrix B of T  with respect to some basis 33. We 
can use this technique to find the image and kernel of T, to determine whether T  is 
an isomorphism (this is the case if B is invertible), or to solve an equation T  ( / )  =  g 
for /  if g is given (this amounts to solving the linear system B [ / ] ^  =  [g]^)-

Let V be the span of cos(;t) and sin(jc) in C°°; note that V consists of all trigonometric 
functions of the form f ( x )  =  a cos(jc) +  b sin(jt). Consider the transformation

T ( f )  = 3 f  + 2 f  -  f "  from V to V.

We are told that T  is a linear transformation.

a. Using Theorem 4.3.2, find the matrix B of T  with respect to the basis 
33 =  (cos(jt), sin(jc)).

b. Is T  an isomorphism?

Solution

a. Here

B = [r(cosjc)L , [ /(s in * )]

Now

T ( cosjc)
=  3 cos(jc) — 2 sin(jc) +  cos(jc) 
=  4 cos(jc) — 2 sin(;t)

r(s in jt)
=  3 sin(jt) +  2 cos(*) +  sin(jc) 
=  2 cos(x) +  4sin(jt)

[ r (c o s ^ ) ]^  =
4

- 2 [r(sinjf)]4, =

B = 4 2 
- 2  4

Matrix B represents a rotation combined with a scaling.
b. Matrix B is invertible, since det(B) =  ad  — be =  20 ^  0. Thus transforma­

tion T  is invertible as well, so that T  is an isomorphism (we were told that 
T  is linear). H

Consider the linear transformation

T(M)  =
0  1 

0  0
M - M

0  1 

0  0
from R 2x2 to M2x2.

a. Find the matrix B of T  with respect to the standard basis 33 of M2x2 .
b. Find bases of the image and kernel of B.
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c. Find bases of the image and kernel of T , and thus determine rank and nullity 
of transformation T.

S olution

a. For the sake of variety, let us find B by means of a diagram.

a b T 0 r a b a b' 0 1'
c d ------- > 0 0 c d c d 0 0

c d ' 0 a c d — a
0 0 0 c

... 
1 

1O

Ly\

~a C
b ------- > d — a
c B 0

d. —c

We see that

- 0 0 1 0 -

B =
- 1 0 0 1

0 0 0 0

0 0 - 1 0 .

b . Note that columns V2 and V4 of B are redundant, with V2 =  0 and V4 =  —Si, 
or 5i +  V4 =  0. Thus the nonredundant columns

form a basis of im (B),

■ O' ■ r
- 1 0

5i =
0 . ?3 = 0

0 . . - 1.

and

'O' 1'
1 0

0 0

0 . . 1.

is a basis of ker(fi).

c. We apply L^ 1 to transform the vectors we found in part (b) back into R 2x2f 
the domain and target space of transformation T :

0  - f 1  0 ‘

0  0
’

0  
1_

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__

is a basis of im (r) ,

and

ro 11 1 O'

1--
--

--
--

--
--

--
--

--
--

--
--

O O < h  = 0 1 is a basis of ker(7).

Thus rank(T) =  dim(im T) — 2 and nullity(r) =  dim(ker T)  =  2. ^
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D e fin it io n  4 .3 .3

EXAM PLE 5

C h an ge  o f  B asis
If SI and 93 are two bases of a linear space V,  what is the relationship between the 
coordinate vectors [ / ]  >)( and [/ ] ^ ,  for an element /  of VI

Change of basis matrix
Consider two bases St and 53 of an n-dimensional linear space V.  Consider the 
linear transformation Ly o L ^ [ from M" to Rn, with standard matrix 5, meaning 
that Sx =  Lsii ( L y l (Jc)) for all x  in R". This invertible matrix S  is called the change 
o f basis matrix from 53 to SI, sometimes denoted by %_♦'>!• See the accompanying 
diagrams. Letting /  =  L ,^1 (.v) and x  =  [ / ] 4,, we find that

[ / ] *  =  $ [ / ] * ,  for a l l / i n  V.

If 93 =  (bi ........ b i , . . . , b„) ,  then

[fe,]?l =  S [b,]^ = Set =  (ith column of 5),

so that

%->VI =

What is the relationship between the change of basis matrices and
Solving the equation [ / ] , )( =  ( -S ^ a )  [ / ] 4, for [ / ] ,  we find that 

[ / ] $  =  (5>iw?i)_l [ f ] n , so that

=  (S«—si)-1 .

Let V be the subspace of C°° spanned by the functions ex and e~x , with the bases 
SI =  (ex , e '  ) and 93 =  (ex +  e~x , ex — e~x). Find the change of basis matrix

Solution
By Definition 4.3.3,

S = [ e * [ e * - e -
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EXA M PLE  6

EXA M PLE  7

Now

=

Let SI =  (e\ , . . . ,  e„) be the standard basis of R”, and let $8 =  (b\ , . . . ,  bn) be an 
arbitrary basis of R ". Find the change of basis matrix .

Solution
By Definition 4.3.3,

P ‘k  P"]«

But note that

since

[jc] ^ =  x  for all jc in Rn,

x  =
X\

_Xn _

= x\e\ + - - - + x nen;

the components of jc are its coordinates with respect to the standard basis. Thus

i =

Compare this with Definition 3.4.1. ■

The equation x\  +  x 2 +  *3 =  0 defines a plane V in R 3. In this plane, consider the 
two bases

and 93 =  (£1, £2)=

a. Find the change of basis matrix S from 93 to 91.
b. Verify that the matrix 5 in part (a) satisfies the equation

5.

/ ' O' ' r
SI =  (a i,a 2)= 1 1 0

V. - 1. . - 1.

'  r '  4 '
2 1 - 1

. - 3 . . - 3 .

b\ t>2 — a\ ci2

Solution
a. By inspection, we find that

T21
so that S =

2 -1 
1 4
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Theorem 4.3.4

b. We can verify that

' 1 4 ' ' 0 r
b\ bj = 2 - 1 = 1 0

-3 -3 - 1 - l

This equation reflects the fact that the two columns of S are the coordinate 
vectors of b\ and b2 with respect to the basis 91 =  (a \ , a2). We can illustrate 
this equation with a commutative diagram, where jc represents a vector in V :

Let us remind ourselves where the equation jc =  ^b\ b2 [ x ] ^  comes 
from: If c \ , c2 are the coordinates of jc with respect to 93, then

[*]«■
C1

x  =  c\b\ +  cjbj  = b\ b2 — b\ b2

We can generalize.

Change of basis in a subspace of R n
Consider a subspace V of R" with two bases 21 =  ( a \ , . . . , a m) and 9? =  
(bi , . . . ,  bm). Let 5 be the change of basis matrix from 93 to 91. Then the following 
equation holds:

~ ■ ■

b \ bm = Si a m
. _ _ .

As in Example 7, this equation can be justified by means of a commutative 
diagram:

Now consider a linear transformation T from V to V, where V is a finite 
dimensional linear space. Let 91 and 93 be two bases of V , and let A and B be the 
91- and the 93-matrix of 7 , respectively. What is the relationship between A, B,  and 
the change of basis matrix S from 93 to 9t?
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Theorem 4.3.5

EXAM PLE 8

[ / ] , ,  —

Consider the following diagram.

[ w > ] .

As in Section 3.4, we see that [T X /)]^ =  AS  [ / ] 4, =  S B  [ / ]  ^  for all /  in V, so 
that A S  = SB.

Change of basis for the matrix of a linear transform ation
Let V be a linear space with two given bases 91 and 93. Consider a linear transforma­
tion T  from V to V, and let A and B be the 91- and the 93-matrix of T , respectively. 
Let 5 be the change of basis matrix from 93 to 91. Then A is similar to B y and

AS = S B  or A = S B S ~ ] or B = S ~ ]AS.  ■

As in Example 5, let V be the linear space spanned by the functions ex and e~x, 
with the bases 91 =  (ex, e~x) and 93 =  (ex +  e~x, ex — e~x). Consider the linear 
transformation D( f )  =  / '  from V to V.

a. Find the 91-matrix A of D.
b. Use part (a), Theorem 4.3.5, and Example 5 to find the 93-matrix B of D.
c. Use Theorem 4.3.2 to find the 93-matrix B of D in terms of its columns.

Solution
a. Let’s use a diagram. Recall that (e~x)' = —e~xy by the chain rule.

Daex +  be aex — be

a a
b_ A = 1 O' 

0 -1
- b _

b. In Example 5 we found the change of basis matrix 5 =  

91. Now

1 1

1 - 1
from 93 to

r»-l 1 1 1 1 O' i  r o  r
2 1 - 1 0  - 1 1 - 1 i  o

c. B = [D(ex + e - ' ) ] v  [D(e'  - e ~x ) ] 9

o  r
1 0
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EXERCISES 4.3

GOALS Use the concept o f coordinates. Find the ma­
trix o f a linear transformation. Use this matrix to find the 
image and kernel o f a transformation.

1. Are the polynomials /( f )  =  1 -I- 3f +  /2,
g(t) =  9 +  9f 4- 4f2, and h(t) =  3 +  2t +  f2 linearly 
independent?

2. Are the matrices

1 1 1 2 2 3 1 4
1 1 3 4 5 7 ’ 6 8

linearly independent?

3. Do the polynomials /( f )  =  1 +  2/ +  9f2 +  f3, 
g(/) =  1 +  It  +  7f3, /i(f) =  1 +  8/ +  t2 +  5f3, and 
fc(/) =  1 +  8r -f 4/ 2 -1- 8f3 form a basis of P3?

4. Consider the polynomials /( f )  = t +  1 and
g(t) =  (f +  2)(f +  k), where k is an arbitrary con­
stant. For which values of the constant k are the three 
polynomials /(f) , f / ( f ), and g(f) a basis of P21

In Exercises 5 through 40, find the matrix o f the given lin­
ear transformation T with respect to the given basis. I f  
no basis is specified, use the standard basis: 91 =  (1, f, t2) 
for P2,

0 0 00 00

0 0 1 0 0 1 0 0 1
91 =

for R2x2, and 91 =  (1 ,i) for  C. For the space U2x2 of 
upper triangular 2 x 2  matrices, use the basis

91 = 0 0 1

00

0 0 1
00 ’ 0 1

unless another basis is given. In each case, determine 
whether T is an isomorphism. I f  T isn ’f an isomorphism, 
find bases o f the kernel and image o f T, and thus determine 
the rank o f T.

5. T(M)  = 1 2 
0 3

6. T(M) =

to the basis 33 =

1 2
0 3

A/from U2x2 i oU2x2 

M from C/2x2 to£/2x2, with respect

1 0 0 1 0 1
0 0 ’

1 0 0 0 1

‘ l 2 '1 2
0 1 0 1

7. T(M)  =  M

with respect to the basis

33 =

8. T(M) = M

M from U2x2 to U2x2,

0

0

0 1 0 0 ’

1 2 ' l  2
0 1 0 1

M from U2x2 to U2x2

1 o' - 1 ' l o'
— 0 2

M
0 2

'1 2
- 1

M 1 2
0 3 0 3

= '1
0

2
3

-\
M 1

0
2
3

from U2x2 to U2x2 

from U2x2 to U2x2 

from U2x2 to U2x2,

with respect to the basis

33 = 1 - 1 0 1 0 1
0 0 1 0 1 ’ 0 0

12. T(M) = M

13. T(M) =

2 0 
0 3

1 1
2 2

from M2x2 to R2x2 

M from IR2x2 to IR2x2

14. T(M) = 

to the basis

1 1
2 2

M from R2x2 to R2x2, with respect

33 = 1 0
- 1  0

0 1 1 0 0 1
% 10

2 0 ’ 0 2

15. T(x  -h / v) =  x — iy from C to C

16. T(x  +  iy) = x -  iy from C to C, with respect to the
basis 33 =  (1 +  /, 1 — /)

17. T(z) = iz from C to C

18. T(z) = (2 +  3/)zfrom CtoC

19. T(z) =  (p +  iq)z from C to C, where p and q are 
arbitrary real numbers

20. T( f )  =  / '  from P2 to P2

21. T( f )  = f  -  3 /  from P2 to P2

22. T ( f )  =  / "  -h 4 / '  from P2 to P2

23. ^ ( / ( f ) )  =  /(3) from P2 to P2

24. T (/(f))  =  /(3) from P2io P2, with respect to the basis
3̂  =  (l, f — 3, (r — 3)2)

25. T ( /(f))  =  / ( —f) from P2 to P2

26. T ( /(f ))  =  /(2f) from P2 to P2

27. T( f i t ) )  =  /(2f — 1) from P2 to P2

28. T ( / (f)) =  /(2 / — 1) from P2 to P2, with respect to the
basis ® =  ( 1. t — 1, (f — 1 )2)

29. T{ f ( t j )  = / 02 f ( t )d t  from P2 to P2
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30. T ( f i t ) )  =  ^ r̂ om ^2to ^2> where h is

a nonzero constant. Interpret transformation T geomet­
rically.

31- T ( f  (f)) =  ^  ^  off " — ~  r̂om to 2̂’ w êre
h is a nonzero constant. Interpret transformation T 
geometrically.

32. T ( f i t ) )  = / ( l )  +  / '( l ) ( r - l ) f r o m P 2 to P2.Interpret 
transformation T geometrically.

33. T( f i t ) )  =  / ( l )  +  / '( l ) ( r  -  1) from P2 to />2, with 
respect to the basis =  (l, t — 1 At  — l)2)

34. T(M)  =

35. TiM) =

36. T(M)  =

37. T(M) =

1 1 
1 1

1 1 
1 1

M - M

M - M

M - M

M - M

with respect to the basis

from R2x2 to M2x2 

from R2x2 toR 2*2 

from R2x2 to R2x2 

from R2x2 toM2x2,

1 1
-1 -1

"l - f 1 ol 0 f
’ 1 - 1 ’ 0 1 1 1 0

38. T(M)  = M - M0 1

J  0
x2, with respect to the basis

from R2x2 to

® -

39. T(M) =

R2x2

40. T(M) =
Ep2x2

'1 0 " 1 o'

o o

1 0 ’ - 1  0 ’ 0 1

To

0 1 
1 0

1 2 
4 3

M - M

M - M

from R2x2 to

from R2x2 to

41. a. Find the change of basis matrix S from the basis 93 
considered in Exercise 6 to the standard basis 91 of 
(J2x2 considered in Exercise 5.

b. Verify the formula SB = AS for the matrices B and 
A you found in Exercises 6 and 5, respectively.

c. Find the change of basis matrix from 91 to 93.

43. a. Find the change of basis matrix S from the basis 93
considered in Exercise 11 to the standard basis 21 of 
U2*2 considered in Exercise 10.

b. Verify the formula SB  =  AS  for the matrices B and 
A you found in Exercises 11 and 10, respectively.

c. Find the change of basis matrix from 21 to 93.

44. a. Find the change of basis matrix S from the basis 93
considered in Exercise 14 to the standard basis 21 of 
M2x2 considered in Exercise 13. 

b. Verify the formula SB = AS  for the matrices B and 
A you found in Exercises 14 and 13, respectively.

45. a. Find the change of basis matrix S from the basis
33 considered in Exercise 16 to the standard basis 
21 =  (1, i) of C considered in Exercise 15.

b. Verify the formula SB = A S for the matrices B and 
A you found in Exercises 16 and 15, respectively.

c. Find the change of basis matrix from 21 to 93.

46. a. Find the change of basis matrix S from the basis
93 considered in Exercise 24 to the standard basis 

=  (1, t y t2) of P2 considered in Exercise 23.
b. Verify the formula SB = AS for the matrices B and 

A you found in Exercises 24 and 23, respectively.
c. Find the change of basis matrix from 21 to 33.

47. a. Find the change of basis matrix S from the basis
93 considered in Exercise 28 to the standard basis 
91 =  (1, /, t2) of Pi considered in Exercise 27.

b. Verify the formula SB = AS  for the matrices B and 
A you found in Exercises 28 and 27, respectively.

c. Find the change of basis matrix from 21 to 93.

In Exercises 48 through 53, let V be the space spanned 
by the two functions cos it) and sin it). In each exercise, 
find the matrix o f the given transformation T with respect 
to the basis cos(t), sin(0, and determine whether T is an 
isomorphism.

48. T i f )  = f 49. T i f )  = f "  +  2 / '  +  3 /

considered in Exercise 7 to the standard basis 21 of 1 5'
U2x2 considered in Exercise 8 . respect to the basis 1 9 - 4
Verify the formula SB =  AS for the matrices B and ~ 1 1
A you found in Exercises 7 and 8, respectively, 

c. Find the change of basis matrix from 21 to 93.

50. T ( / )  =  / "  + a f f +  b f , where a and b are arbitrary real 
numbers

51. T ( f ( t ) ) = f ( t - n / 2)

52. T ( f « ) ) = f « - n / 4 )

53. r  ( / ( / ) )  — where 6* is an arbitrary real number. 
(Hint: Use the addition theorems for sine and cosine.)

In Exercises 54 through 58, let V be the plane with equa­
tion jci +  2x 2 +  3x3 =  0 *n eac^ exercise, find the
matrix B o f the given transformation T from V to V , with

. Note that domain and

target space o f T are restricted to the plane V, so that B 
will be a 2 x 2 matrix. |
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54. The orthogonal projection onto the line spanned by
r r

vector 1
- 1

55. The orthogonal projection onto the line spanned by 
f

vector

56. T(x) =

57. T(x) =

- 2
1

f
2
3

x JC

- 2  - 3  
1 0 
0 1

I
- 2

1

/ f 1"
58. T(ic) =  \ x 1 1

V -1 / -1

59. Consider a linear transformation T from V to V with 
ker(D =  {0}. If V is finite dimensional, then T is an 
isomorphism, since the matrix of T will be invertible. 
Show that this is not necessarily the case if V is in­
finite dimensional: Give an example of a linear trans­
formation T from P to P with ker(T) =  (0) that is 
not an isomorphism. (Recall that P is the space of all 
polynomials.)

60. In the plane V defined by the equation 
2x\ +X2 -  2jc3 =  0 , consider the bases

21 =  (au a2) =

and

■f
2 ,

2_ 1

T "3"
2 , 0
2 3

a. Find the change of basis matrix S from 83 to 81.
b. Find the change of basis matrix from 21 to 33.
c. Write an equation relating the matrices [a\ a2\,

[£i 1>2 ], and S =

M. In R2, consider the bases

and

§1 =  (2 1, a2) =

a* Find the change of basis matrix S from 33 to 91. Inter­
pret the transformation defined by S geometrically.

5“ 10'
—10 ’ 5

"2“ ~-2
1 , 0
0 1

b. Find the change of basis matrix from 91 to 23.
c. Write an equation relating the matrices [a\ a2],

[b| b2 ], and S — .

62. In the plane V defined by the equation 
x i — 2x2 +  2x3 =  0 , consider the basis

a. Construct another basis 33 =  (b\ , b2) of V, such that 
neither b\ nor b2 has any zero components.

b. Find the change of basis matrix S from 33 to 21.
c. Find the change of basis matrix from 91 to 33.
d. Write an equation relating the matrices [a\ a2],

[b\ b2], and S =

63. In the plane V defined by the equation 
x\ +  3*2 — 2x3 =  0 , consider the basis

91 =  (a\ ,a2) =

a. Construct another basis 23 =  (b\ ,b2)of  V, such that 
neither b\ nor b2 has any negative components.

b. Find the change of basis matrix S from 23 to 91.
c. Find the change of basis matrix from 91 to 23.
d. Write an equation relating the matrices [a\ a2\,

[bi b2], and S =

64. Let V be the space of all upper triangular 2 x 2  matrices. 
Consider the linear transformation

'-3 "
i

" -T
ii

0 _
i
l

a b 
0 c = aI2 + bP + c P 2

from V to V, where P =

a. Find the matrix A of T with respect to the basis 

- (
91 o 0 1 0 0

1---
---

---
---

---
---

---
---

---
---

---
---

---
---

---
---

---
---

---
---

---
---

---
---

-
o o 1

* 0 0 ’ 0 1

2 1 12 and P = a b
2^ - 1 J c d

b. Find bases of the image and kernel of 7\ and thus 
determine the rank of T.

65. Let V be the subspace of R2x2 spanned by the matrices 

where b ^  0 .

a. Compute P2 and find the coordinate vector [^ 2] ŝ  
where 3̂  =  (I2, P) .

b. Consider the linear transformation T(M) = M P 
from V to V. Find the 23-matrix B of T. For which 
matrices P is T an isomorphism?

c. If T fails to be an isomorphism, find the image and 
kernel of T . What is the rank of T in that case?
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66 . Let V be the linear space of all functions in two variables 
of the form q(x\ , x2) =  ax\  +bx \x i  +  cx\ . Consider 
the linear transformation

t v n  df  dfT ( f ) = x  2- ------*i —
dJf] ox 2

from V to V.
a. Find the matrix of T with respect to the basis jc2, 

X\X2, x\  of V.
b. Find bases of the kernel and image of T .

67. Let V be the linear space of all functions of the form

/( / )  =  ci cos(/) +  C2 sin(t) +  ctf cos(t) +  c^t sin(r).

Consider the linear transformation T from V to V given 
by

T( f )  = f "  +  /.

a. Find the matrix of T with respect to the basis cos(r), 
sin(f), t cos(f), t sin(/) of V.

b. Find all solutions f  in W of the differential equation

T( f )  =  / "  +  /  =  cos(r).

Graph your solution(s). [The differential equation 
/ "  -f /  =  cos(f) describes a forced undamped oscil­
lator. In this example, we observe the phenomenon 
of resonance.]

68 . Consider the linear space V of all infinite sequences 
of real numbers. We define the subset W of V 
consisting of all sequences ( j c o , x\ , jc2 , ...)  such that 
jc„ + 2 = xn+i +  6xn for all n > 0 .
a. Show that W is a subspace of V.
b. Determine the dimension of W.
c. Does W contain any geometric sequences of the form 

(1, c, c2, c3, ...), for some constant cl Find all such 
sequences in W.

d. Can you find a basis of W consisting of geometric 
sequences?

e. Consider the sequence in W whose first two terms 
are jco  =  0, j c i  = 1. Find jc 2 , JC3, JC4. Find a closed 
formula for the nth term jc„  of this sequence. Hint: 
Write this sequence as a linear combination of the 
sequences you found in part (d).

69. Consider a basis / 1, . . . ,  f n of Pn- \ . Let a \ , . . . ,  an 
be distinct real numbers. Consider the n x n matrix M 
whose 1 yth entry is /,(« /). Show that the matrix M is 
invertible. [Hint: If the vector

is in the kernel of M , then the polynomial
/  =  C\ f \  H---------------- +  cnf n in pn- 1 vanishes at a\ ..an\
therefore, /  = 0 .]

70. Consider two finite dimensional linear spaces V and W. 
If V and W are isomorphic, then they have the same di­
mension (by Theorem 4.2.4b). Conversely, if V and W 
have the same dimension, are they necessarily isomor­
phic? Justify your answer carefully.

71. Let a \ , . . . ,  an be distinct real numbers. Show that there 
exist “weights” w \ , . . .  , wn such that

/ l «
f ( t ) d t  = ' * T w i f ( a i ) 

1 /=!

for all polynomials / ( / )  in Pn- \ .  Hint: It suffices to 
prove the claim for a basis f \ ....... /„ of Pn- \ .  Exer­
cise 69 is helpful.

72. Find the weights w\ , w 2, wi  in Exercise 71 for 
a\ ~  — 1 ,a2 = 0,03 =  1. (Compare this with Simpson’s 
rule in calculus.)

Chapter Four Exercises

TRUE OR FALSE?
1. The space R2x3 is 5-dimensional.

2. If / 1, is a basis of a linear space V, then any
element of V can be written as a linear combination of

3. The space P\ is isomorphic to C .

4. If the kernel of a linear transformation T from P4 to P4 
is {0}, then T must be an isomorphism.

5. If Wi and W2 are subspaces of a linear space V, then the 
intersection W\ n  W2 must be a subspace of V as well.

6 . If T is a linear transformation from P̂  to R2x2, then thi 
kernel of T must be 3-dimensional.

7. The polynomials of degree less than 7 form a 7- 
dimensional subspace of the linear space of all poly-j 
nomials.

8 . The function T( f )  =  3 /  -  4 / '  from C°° to C°° is«! 
linear transformation.

9. The lower triangular 2 x 2  matrices form a subspace ol
the space of all 2 x 2 matrices. j
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11.
12.
13.

14.

15.

16.

17.

18.

19.

20. 
21. 

22.
23.

24.

25.

26.

27.

28.

10.

29.

The kernel of a linear transformation is a subspace of 
the domain.

The linear transformation T ( / )  = f  + f "  from C°° to 
C°° is an isomorphism.

All linear transformations from P} to R2* 2 are isomor­
phisms.

If T is a linear transformation from V to V, then the 
intersection of in ^ r) and ker(T) must be {0 }.

The space of all upper triangular 4x4  matrices is isomor­
phic to the space of all lower triangular 4 x 4  matrices.

Every polynomial of degree 3 can be expressed as a lin­
ear combination of the polynomial (f — 3), (/ — 3)2, and 
(/ -  3)3.

If a linear space V can be spanned by 10 elements, then 
the dimension of V must be < 10.

The function T(M)  =  det(M)fromR2x2toRisalinear 
transformation.

There exists a 2 x 2 matrix A such that the space of all 
matrices commuting with A is 1-dimensional.

All bases of P3 contain at least one polynomial of degree 
< 2 .

-1 must be an isomor-If T is an isomorphism, then T 
phism as well.

If the image of a linear transformation T from P to P is 
all of P , then T must be an isomorphism.

If / h  / 2» h  is a basis of a linear space V, then f \ ,  
f \  +  / 2> f \  +  f i  +  h  must be a basis of V as well.

If a , b, and c are distinct real numbers, then the polyno­
mials (x — b)(x — c), (x — a)(x — c), and (x —a)(x —b) 
must be linearly independent.

The linear transformation 7 (/(f))  =  /(4 f — 3) from 
P to P is an isomorphism.

The linear transformation T(M) = 

R2x2 to R2x2 has rank 1.

M from

If the matrix of a linear transformation T (with respect to 
3 5“some basis) is 0 4 , then there must exist a nonzero

element /  in the domain of T such that T ( / )  =  3 /.

The kernel of the linear transformation T (/(f))  =  
/ ( f 2) from P to P is {0}.

If S is any invertible 2 x 2 matrix, then the linear trans­
formation T(M) = SMS  is an isomorphism from R2x2 
to R2x2.

There exists a 2 x 2 matrix A such that the space of all 
matrices commuting with A is 2-dimensional.

30.

31.

32.

33.

34.

35.

There exists a basis of R2x2 that consists of four invert­
ible matrices.

If W is a subspace of V, and if W is finite dimensional, 
then V must be finite dimensional as well.

There exists a linear transformation from R3x3 to R2x2 
whose kernel consists of all lower triangular 3 x 3  ma­
trices, while the image consists of all upper triangular 
2 x 2 matrices.

Every two-dimensional subspace of R2x2 contains at 
least one invertible matrix.

If =  (/, g) and 23 =  ( / , /  +  g) are two bases of a 
linear space V, then the change of basis matrix from 21

1 rto 23 is
0 1

If the matrix of a linear transformation T with respect 
" l 2to a basis (/, g) is 4 

respect to the basis (g, / )  is

, then the matrix of T with

36.

37.

38.

39.

40.

41.

42.

43.

44.

The linear transformation T ( f )  = f  from Pn to Pn has 
rank /1, for all positive integers n.

If the matrix of a linear transformation T (with respect to 
”2 3l , then T must be an isomorphism.some basis) is 5 7

There exists a subspace of R3x4 that is isomorphic 
to P9.

There exist two distinct subspaces W\ and W2 of R2x2 
whose union W[ U W2 is a subspace of R2x2 as well.

There exists a linear transformation from P to P5 whose 
image is all of P5.

If f \ , . . . ,  /„ are polynomials such that the degree of /*
is k (for k =  1, . . . ,  n ), then f \ ....... f n must be linearly
independent.

The transformation D(f )  =  / '  from C°° to C°° is an 
isomorphism.

If T is a linear transformation from P4 to W with 
im(D = VV, then the inequality dim(W) < 5 must 
hold.

The kernel of the linear transformation
l

T ( f ( t ) ) =  I f ( t ) d t’( / ( '»  =  /  
Jo

45.

46.

from P to R is finite dimensional.

If T is a linear transformation from V to V, then
{/ in V : T( f )  =  /}  must be a subspace of V .

If T is a linear transformation from P6 to P6 that
transforms tk into a polynomial of degree k (for k =
1, . . . ,  6 ), then T must be an isomorphism.
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47. There exist invertible 2 x 2  matrices P and Q such that 
the linear transformation T(M)  =  PM — MQ is an 
isomorphism.

48. There exists a linear transformation from P& to C whose 
kernel is isomorphic to M2x2.

49. If f \  , / 2, /3 is a basis of a linear space V, and if /  is 
any element of V, then the elements f \  +  / ,  f i  +  / ,  
/3  +  /  must form a basis of V as well.

50. There exists a two-dimensional subspace of R2 x 2 whose 
nonzero elements are all invertible.

51. The space P\ \ is isomorphic to R3x4 .

52. If T is a linear transformation from V to W, and if both 
im(T) and ker(7) are finite dimensional, then W must 
be finite dimensional.

53. If T is a linear transformation from V to R2x2 with 
ker(7) =  {0}, then the inequality dim(V) < 4 must 
hold.

54. The function

d /‘3r+4 

■ w - t t  ■
f ( x ) d x

from Ps to Ps is an isomorphism.

55. Any 4-dimensional linear space has infinitely many 
3-dimensional subspaces.

56. If the matrix of a linear transformation T (with respect to
5l L L, then there must exist a nonzerosome basis) is

0 4
element /  in the domain of T such that T ( / )  = 4 / .

57. If the image of a linear transformation T is infinite 
dimensional, then the domain of T must be infinite 
dimensional.

58. There exists a 2 x 2 matrix A such that the space of all 
matrices commuting with A is 3-dimensional.

59. If A , B , C, and D are noninvertible 2 x 2  matrices, 
then the matrices AB , AC, and AD must be linearly 
dependent.

60. There exist two distinct 3-dimensional subspaces W\ 
and W2 of P4 such that the union W[ U W2 is a subspace 
of P4 as well.

61. If the elements / i , . . . , / „  (where f \  ^  0) are lin­
early dependent, then one element /* can be expressed 
uniquely as a linear combination of the preceding ele­
ments / 1 ....... /*_i.

62. There exists a 3 x 3 matrix P such that the linear trans­
formation T(M) = MP — PM  from 
an isomorphism.

3x3 to R3x3 is

63. If f \ , f i % / 3, / 4 , f s  are elements of a linear space V, 
and if there are exactly two redundant elements in 
the list / 1, / 2, / 3, / 4 , /s, then there must be exactly 
two redundant elements in the list / 2 , / 4 , fs,  / 1, /3  
as well.

64. There exists a linear transformation T from P& to ffc 
such that the kernel of T is isomorphic to the image 
of T.

65. If T is a linear transformation from V to W , and if both 
im(T) and k e r^ ) are finite dimensional, then V must 
be finite dimensional.

66 . If the matrix of a linear transformation T (with respect to 

, then there must exist a nonzerosome basis) is 0 4
element /  in the domain of T such that T( f )  =  5 /.

67. Every three-dimensional subspace of IR2x2 contains at 
least one invertible matrix.
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Orthogonality and Least Squares

Orthogonal Projections and Orthonormal Bases

In Section 2.2, we took a first look at some linear transformations that are important 
in geometry: orthogonal projections, reflections, and rotations in particular. In this 
chapter, we will generalize these ideas. In Sections 5.1 and 5.2, we will discuss the 
orthogonal projection onto a subspace V of R". In Section 5.3, we will study linear 
transformations that preserve length, such as reflections and rotations. In Section 5.4, 
we will present an important application of orthogonal projections: the method of 
least squares in statistics. Finally, in Section 5.5, we will go a step further and 
generalize all these ideas from R" to linear spaces.

First, we will discuss some basic concepts of geometry.

Definition 5.1.1 Orthogonality, length, unit vectors
a. Two vectors i* and w in R" are called perpendicular or orthogonal1 if

v u) = 0.
b. The length (or magnitude or norm) of a vector 5 in R '7 is ||D|| = Vû ~u.
c. A vector u in R ,? is called a unit vector if its length is 1, (i.e., \\u\\ = 1, or 

u • u = 1).

If v is a nonzero vector in R", then
1 _

U =  - z r - V
M l

is a unit vector. (See Exercise 25b.)
A v ecto r  x in  R n is  sa id  to  be  o r th o g o n a l to  a su b sp a c e  V o f  R ” i f  jc is  orth o g o n a l 

to  all the v ecto rs v in V , m e a n in g  that x  • v =  0  for all v e c to r s  v in  V .

'The two terms are synonymous: Perpendicular comes from Latin and orthogonal from Greek.

187
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D e fin it io n  5 .1 .2

EXAM PLE I 

EXAM PLE 2

EXAM PLE 3

If we are given a basis v \ , . . . ,  vm of V, then 3c is orthogonal to V if (and only 
if) x  is orthogonal to all the vectors i5i,. . . ,  vm. (See Exercise 22.)

For example, a vector x  in R 3 is orthogonal to a plane V in R 3 if (and only if) 
x  is orthogonal to two vectors u j, V2 that form a basis of V. (See Figure 1).

Orthonormal vectors
The vectors u \ , W2, . . . ,  um in R" are called orthonormal if they are all unit vectors 
and orthogonal to one another:

f l  if I = j  
[ 0  i f f  #  j

The vectors e \ , e i , .. - ,e n in R '1 are orthonormal.

For any scalar 0 , the vectors
’cos#" sind'
sin# cos 0

are orthonormal. (See Figure 2.)

Figure 2

The vectors

f l / 2 l r 1/21 1/2 1
1/2 1/2 - 1 / 2

U 1 =
1/2 . «2 = - 1/2 , M3 = 1/2

Ll/2j L - 1/ 2J L-1/2J

in R4 are orthonormal. (Verify this.) Can you find a vector S4 in R4 such that all the 
vectors U\,U2, W3, W4 are orthonormal? (See Exercise 16.) B
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The following properties of orthonormal vectors are often useful:

T h e o rem  5 .1.3 Properties of orthonormal vectors
a. Orthonormal vectors are linearly independent.
b. Orthonormal vectors u i , . . . ,  un in R" form a basis of R ".

P roo f a. Consider a relation

Cl M i +  C2U2 H--------CiUi H--------- b cmum =  0

among the orthonormal vectors M2 , . . . ,  in R". Let us form the dot
product of each side of this equation with w, :

(c\U\ +  C2U2 H------- h c/5, H------- h cmum) ■ Uj =  0  • Uj =  0 .

Because the dot product is distributive (see Theorem A5 in the Appendix),

Cl (Ml • Ui) +  C2(jU2 • 2 / )  H---------h C i d i  • Ui)  H---------\ ~cm ( u m • Ui)  =  0.

We know that ii, • ut =  1, and all other dot products uj  • 5, are zero. 
Therefore, c,- =  0. Since this holds for all i =  1 , . . . ,  m,  it follows that 
the vectors u \ , . . . ,  um are linearly independent.

b. This follows from part (a) and Summary 3.3.10. (Any n linearly independent 
vectors in R” form a basis of R '1.) ■

O rthogonal Projections
In Section 2.2 we discussed the basic idea behind an orthogonal projection: If Jc is a 
vector in R 2 and L is a line in R 2, then we can resolve the vector x  into a component 
3c11 parallel to L and a component jc1  perpendicular to L,

x  =  jc11 +  3c1 ,

and this decomposition is unique. The vector 3c11 is called the orthogonal projection 
of x  onto L.  See Figure 3.

Figure 3

Let’s see how we can generalize this idea to any subspace V of R'1.

Theorem 5.1.4 Orthogonal projection
Consider a vector 3c in R" and a subspace V of R". Then we can write

3c =  3c11 +  3cx ,

where 3c11 is in V and 3cx is perpendicular to V , and this representation is unique.
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The vector Jr11 is called the orthogonal projection of x  onto V, denoted by 
projv (jc). See Figure 4.

The transformation T(x)  =  projv (jc) — jc11 from Rn to R n is linear.

P roo f Consider an orthonormal basis u \ , . . . ,  um of V (see Definition 5.1.2).2 If a decom­
position jc =  jc11 +  jcx (with Jc11 in V and jc1 orthogonal to V)  does exist, then we 
can write

x 11 =  C|i<i +  • • • +  c,Ui H------- 1- cmiim,

for some coefficients c i , . . . ,  c; , . . . ,  cm yet to be determined (since x 11 is in V). We 
know that

X 1  =  X  -  J 11 =  X  -  C \ U \ -------------- C / 2 ; ----------------Cm Um

is orthogonal to V, meaning that x — c \ U\ --------- c ,2 , ---------- cmum is orthogonal
to all the vectors 2 , in V :

0 =  2/ • ( X  -  C ) U \ ----------Cj U j -----------cmum)
=  Ui  ■ X  -  C,  ( Uj  • M l ) --------------a  ( Uj  U j ) --------------- Cm  ( Ui  • U m )  =  Uj  ■ X  -  Cj .

0 1 0

(See Definition 5.1.2.) It follows that c, =  u, • x,  so that

J 11 =  (Ml -£)M| H------- 1- (2; x)iii H------- 1- (2m •x ) u m

and

x L = x  -  X11 = x  -  (u 1 x ) u i ----------(2, •x ) i i i -----------(2m - x ) u m.

Note that 2, • =  0, by construction, so that x L is orthogonal to V,  as required.
(Recall the remarks preceding Figure 1.) :

We leave the verification of the linearity of the transformation T(x)  =i 
projv (ic) =  Jc11 as Exercise 24. B

2In the next section we will introduce an algorithm for constructing an orthonormal basis of any 
subspace V of Rn. Here we need to convince ourselves merely that such a basis of V does indeed 
exist. For those who are familiar with this proof technique, we will present a proof by induction on 
m =  dim(V). If dim(V) = 1, then a unit vector u in V will form an orthonormal basis of V. Now 
consider a subspace V of Rn with dim( V) = m, and let u be a unit vector in V. Consider the linear 
transformation T{x) = x u from V to R. By the rank-nullity theorem, the kernel of T will be an 
(m — 1 )-dimensional subspace W of V, consisting of all vectors x in V that are orthogonal to u [sine 
T(x) = x • u =  0]. By induction hypothesis, there exists an orthonormal basis (ui , . . . ,  Mm_i) of W» 
and (mi.......wm-i, u) will be an orthonormal basis of V. ^
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Theorem 5 .1.5 Formula for the orthogonal projection
If V is a subspace of R" with an orthonormal basis u \ , . . . ,  um, then

projv(jf) =  -?11 =  ( m i  • x)u \ H------- b (um • x ) u m.

for ail x  in R n.

Note that projv (3c) is the sum of all vectors (5, • jc)2;, for / =  1 , . . . ,  m ,  repre­
senting the orthogonal projections of jc onto the lines spanned by the basis vectors 
u \ ........ um of V (see Definition 2.2.1).

For example, projecting a vector in R 3 orthogonally onto the jci-jc2-plane 
amounts to the same as projecting it onto the ;t]-axis, then onto the jC2-axis, and 
then adding the resultant vectors. (See Figure 5.)

Figure 5

EXAM PLE 4 Consider the subspace V =  im M) of R4, where

"1 1“

A -  1
A ~  I -1 •

.1 1.

Find proj v5, for

T
3

* =  1 •
.7.

Solution
Since the two column vectors of A happen to be linearly independent, they form a 
basis of V.  Since they happen to be orthogonal, we can construct an orthonormal 
basis of V merely by dividing each of these two vectors by its length (2 for both 
vectors):

r i / 2 i ' 1/2-
1/2 - 1 / 2

M| = 1/2 , « 2  = - 1 / 2
Ll/2j 1/2J
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Theorem 5 .1 j

Then

projj,.? =  («i • .v) u i 4- («2 • =  6«i +  2ui =

To check this answer, verify that x  -  projv.x is perpendicular to both u i and u2. ■

What happens when we apply Theorem 5.1.5 to the subspace V = R" of Rn
with orthonormal basis u \ ,  u 2 .m„? Clearly, projvi  =  x,  for all x  in R" by
Theorem 5 .1.4. Therefore,

"3" '  r '4"
3 - l 2
3 +

- i - 2
.3. i. 4.

x  =  (Ml x ) u  1 +  - - -  +  (Mn x )m„,

for all x  in R".

i Consider an orthonormal basis u i ........u„ of R". Then

X =  (M| ■ x ) i i  I H--------- h (m„ •x ) u „ ,

for all x  in R". g

This means that if you project x  onto all the lines spanned by the basis vectors 
ii, and add the resultant vectors, you get the vector .v back. Figure 6  illustrates this 
in the case n = 2 .

Figure 6

What is the practical significance of Theorem 5.1.6 ? Whenever we have a basis 
i5i........v„ of R", any vector x  in R" can be expressed uniquely as a linear combi­
nation of the Vi, by Theorem 3.2.10:

x — c |5i +  c'2v2 H------ +  cHrv„

To find the coordinates c , , we generally need to solve a linear system, which may in­
volve a fair amount of computation. However, if we are dealing with an o r th o n o r m a l  

basis m i ......... m„, then we can find the c, much more easily, using the formula

d  = Ui ■ x.

EXAM PLE 5 Consider the orthogonal projection T ( x ) =  projv (.v) onto a subspace V of R"- 
Describe the image and kernel of T.
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Solution
By definition of an orthogonal projection, the image of T  is the subspace V , while the 
kernel of T consists of all those vectors x  in R" such that T(x)  =  proj v (x) =  jc11 = 0 ,  
meaning that jc =  a x . In other words, the kernel consists of those vectors x in R" 
that are orthogonal to V.  This space deserves a name. ■

D e f i n i t i o n  5 .1 .7  Orthogonal com plem ent
Consider a subspace V of R". The orthogonal complement V 1 of V is the set of 
those vectors jc in R" that are orthogonal to all vectors in V :

V ± =  {jc in R": v • jc =  0, for all v in K}.

Note that V 1- is the kernel of the orthogonal projection onto V .

Take another look at Figures 3 and 4, and identify the kernel of the projection 
in each case.

In Figure 7, we sketch the orthogonal complements of a line L and of a plane
V in R \  Note that both and V 1  are subspaces of R \  Furthermore,

dim(L) -I- dimCL1 ) =  1 + 2  =  3 =  dim(R3),

and

d\m(V)  +  dim(Vx ) =  2 + 1 = 3  =  dim(R3).

We can generalize these observations.

T h e o rem  5 .1.8 Properties of the orthogonal complement
Consider a subspace V of R".

a. The orthogonal complement of V is a subspace of K".
b. The intersection of V and V 1 consists of the zero vector alone: V H V 1 = {0}.
c. dim(V) + dim( V 1 ) =  n
d. (V -V  =  V

P roof a. If T(.r ) =  projr  (.v). then V 1 =  ker(7’). a subspace of R".
b. If a vector x is in V as well as in V ±, then x is orthogonal to itself: x • x =  

||.v| |2 =  0 , so that x  must equal 0 , as claimed.
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EXA M PLE  6

Theorem 5 .1.9

P roo f

Theorem 5.1.10

c. We can apply the rank-nullity theorem to the linear transformation 
T(x) =  projv (5):

n = dim(imT) +  dim(ker T) =  dim(V) -I- dim( V1 )

d. We leave this proof as Exercise 23. ■

From Pythagoras to C au ch y
Consider a line L in IR3 and a vector x in M3. What can you say about the relationship 
between the lengths of the vectors x  and projLx?

Solution
Applying the Pythagorean theorem to the shaded right triangle in Figure 8 , we find 
that ||projt ic|| <  ||.r||. The statement is an equality if (and only if) x  is on L. ■

Figure 8 Figure 9

Does this inequality hold in higher dimensional cases? We have to examine 
whether the Pythagorean theorem holds in R".

Pythagorean theorem
Consider two vectors x  and y  in R". The equation

ii*+}u2 = ii*ii2 + iiyii2
holds if (and only if) jc and y are orthogonal. (See Figure 9.)

The verification is straightforward:

II* +  y \ \ 2 = ( X  + y )  ■ (x +  y) =  x  ■ X  + 2(x ■ y) +  y ■ y =  | | i ||2 +  2(x ■ y) +  ||y ||2 

=  ll^ll2 +  IIJll2 if (and only if) x ■ y  =  0 . ■

Now we can generalize Example 6 .

An inequality for the magnitude of projv (x)
Consider a subspace V of W 1 and a vector x  in R". Then

llprojvx|| <  \\x\\.

The statement is an equality if (and only if) jc is in V. '

P roo f We apply the Pythagorean theorem (see Figure 10):

||x ||2 =  llproj | |2 +  Hi1 1|2. 

It follows that ||projvx || <  ||jt||, as claimed.
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Theorem 5.1.1

x1 (translated)

Figure 10

For example, let V be a one-dimensional subspace of R n spanned by a (nonzero) 
vector y. We introduce the unit vector

1 -u =  —~— v
WyV

in V. (See Figure 11.)

Figure 11

We know that

projyJc =  (jc • 5)w,

for any jc in R". Theorem 5.1.10 tells us that
Step 3

11*11 >  llprojv (*)|| =  ||(* • u)u\\ \x • u\ = X  • =  ~^~ \x  • y |.
ii? ii

To justify Step 3, note that ||A:D|| =  | :̂| ||D||, for all vectors v in R" and all scalars k. 
(See Exercise 25a.) We conclude that

\ * - y \
II5II

< u  .

Multiplying both sides of this inequality by ||y ||, we find the following useful result:

I Cauchy-Schwarz inequality3
If x  and v are vectors in R", then

\ * - y \ <  ll*llll?ll-

This statement is an equality if (and only if) x  and y are parallel. ■

3Named after the French mathematician Augustin-Louis Cauchy (1789-1857) and the German 
mathematician Hermann Amandus Schwarz (1843-1921).
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D e fin it io n  5 .1 .12

EXA M PLE  7

Consider two nonzero vectors x  and y  in R 3. You may know an expression for 
the dot product x  • y  in terms of the angle 9 between the two vectors (see Figure 12):

x  - y = \\x cos 9.

in

Figure 12

This formula allows us to find the angle between two nonzero vectors x  and y

x y
R 3:

a x , y cos 9 = or 9 =  arccos
1121111511 11*1111511

In R '\  where we have no intuitive notion of an angle between two vectors, we can 
use this formula to define the angle:

Angle between two vectors
Consider two nonzero vectors jc and y in Rrt. The angle 9 between these vectors is 
defined as

x y
9 =  arccos —— — .

II* lllly II
Note that 9 is between 0 and tt, by definition of the inverse cosine function.

We have to make sure that

arccos x - y

is defined; that is,
-* -y  

11*11 llyll
is between —1 and 1, or, equivalently,

x - y
11*11 llyll

< l.

But this follows from the Cauchy-Schwarz inequality, \x • 5 1 < II* 

Find the angle between the vectors

r T
o 1

—
0

and y =
1

0 1

Solution x  y 1
9 =  arccos =  arccos

7r
*311*1111511 1 * 2

Here is an application to statistics of some concepts introduced in this sectioi



5.1 Orthogonal Projections and Orthonorm al Bases 197

Correlation (O ptional)
Consider the meat consumption (in grams per day per person) and incidence of colon 
cancer (per 100 ,000  women per year) in various industrialized countries:

Country Meat Consumption Cancer Rate

Japan 26 7.5
Finland 101 9.8
Israel 124 16.4
Great Britain 205 23.3
United States 284 34

Mean 148 18.2

Can we detect a positive or negative correlation4 between meat consumption 
and cancer rate? Does a country with high meat consumption have high cancer rates, 
and vice versa? By high, we mean “above average,” of course. A quick look at the 
data shows such a positive correlation: In Great Britain and the United States, both 
meat consumption and cancer rate are above average. In the three other countries, 
they are below average. This positive correlation becomes more apparent when we 
list the preceding data as deviations from the mean (above or below the average):

Meat Consumption Cancer Rate
Country (Deviation from Mean) (Deviation from Mean)

Japan -122 -10.7
Finland -4 7  -8 .4
Israel —24 —1.8
Great Britain 57 5.1
United States 136 15.8

-100

Japan

Perhaps even more informative is a scatter plot of the deviation data. (See 
Figure 13.)

Cancer rate 
(deviation 
from mean)

- -  10

Isra

Finland

(ireat Britain

--  -10

United States

100

Meat consumption 
(deviation from mean)

Figure 13

4We are using the term correlation in a colloquial, qualitative sense. Our goal is to quantify this term.
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A positive correlation is indicated when most of the data points (in our case, all 
of them) are located in the first and third quadrant.

To process these data numerically, it is convenient to represent the deviation for 
both characteristics (meat consumption and cancer rate) as vectors in K5:

'- 1 2 2 ' '- 1 0 .7 '
- 4 7 - 8 .4
- 2 4 v = - 1 .8

57 5.1
136 15.8

We will call these two vectors the deviation vectors of the two characteristics.
In the case of a positive correlation, most of the corresponding entries jc/ ,  yt 

of the deviation vectors have the same sign (both positive or both negative). In our 
example, this is the case for all entries. This means that the product >7 will be 
positive most of the time; hence, the sum of all these products will be positive. But 
this sum is simply the dot product of the two deviation vectors.

Still using the term correlation in a colloquial sense, we conclude the following:

Consider two characteristics of a population, with deviation vectors x and y. 
There is a positive correlation between the two characteristics if (and only if) 
3c • v > 0 .

A positive correlation between the characteristics means that the angle 0 between 
the deviation vectors is less than 90 \  (See Figure 14.)

D e fin it io n  5.1.13

Acute angle Right angle Obtuse angle

v v
(a) (b) (c)

Figure 14 (a) Positive correlation: x  • y > 0. (b) No correlation: v • v =  0. (c) Negative 
correlation: x  • y < 0.

We can use the cosine of the angle 0 between x and v as a quantitative 
for the correlation between the two characteristics.

Correlation coefficient

The correlation coefficient r between two characteristics of a population is tl 
of the angle 0 between the deviation vectors jc and v for the two characteristics:

x  • v
r =  cos(6>) =  - 3—rr
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In the case of meat consumption and cancer, we find that
4182.9

r ^  -------------------- % 0.9782.
198.53 • 21.539

The angle between the two deviation vectors is arccos(r) 0.21 (radians)
12 .

Note that the length of the deviation vectors is irrelevant for the correlation: If 
we had measured the cancer rate per 1,0 0 0 ,0 0 0  women (instead of 100 ,0 0 0 ), the 
vector v would be 10 times longer, but the correlation would be the same.

The correlation coefficient r is always between — 1 and 1; the cases when r =  1 
(representing a perfect positive correlation) and r = — 1 (perfect negative correla­
tion) are of particular interest. (See Figure 15.) In both cases, the data points (*,-, yz ) 
will be on the straight line v =  mx. (See Figure 16.)

r= I / = -1

(a) (b)

Figure 15 (a) y =  mx. for positive m. (b) y =  mx. for negative m.

Figure 16

Note that even a strong positive correlation (an r close to 1) does not necessar­
ily imply a causal relationship. Based only on the work we did above, we cannot 
conclude that high meat consumption causes colon cancer. Take a statistics course 
to learn more about these important issues!

EXERCISES 5.1
GOAL Apply the basic concepts o f geometry in Rn: 
length, angles, orthogonality. Use the idea o f an orthog­
onal projection onto a subspace. Find this projection if an 
orthonormal basis o f the subspace is given.

Find the length o f each o f the vectors v in Exercises 1 
through 3.

’ 1 2. v =
"2"
3 3. v =

~2

3
11

4
4

_5

Find the angle $ between each of the pairs o f vectors u and 
v in Exercises 4 through 6.
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4. u =

6. u =

'  i
, V =

11

"1“ 2“
5. u = 2 , 55 = 3

3 4
f ~2

- 1 , 55 = 3
2 4

- 2 5

For each pair o f vectors u, v listed in Exercises 1 through
9, determine whether the angle 0 between a and v is acute, 
obtuse, or right.

7. u —

9. u =

2 "5'
— e II

- 3 4 8. u =
~2 2"
3 ,  v = 1 00

4 5_
1“ 3"

- 1 ; 55 = 4
1 5

- 1 _3_

10. For which value(s) of the constant k are the vectors

and 55 =u =

perpendicular?

11. Consider the vectors

' f V
1 0

and 53 =

_1_ _0_

i n R n .

a. For n =  2, 3,4, find the angle 0 between w and 55. 
For n = 2 and 3, represent the vectors graphically.

b. Find the limit of 0 as n approaches infinity.

12. Give an algebraic proof for the triangle inequality

II5 + u>\\ < IlSll +  llfill.

55 +  u>||2 =  (55 +  w)  • (55 -1- u>). Then use the Cauchy-
Draw a sketch. [Hint: Expand
II55 + it’ll2 = (v + w
Schwarz inequality.]

13. Leg traction. The accompanying figure shows how a leg 
may be stretched by a pulley line for therapeutic pur­
poses. We denote by F\ the vertical force of the weight. 
The string of the pulley line has the same tension ev­
erywhere; hence, the forces Fj and F3 have the same 
magnitude as F\. Assume that the magnitude of each 
force is 10 pounds. Find the angle 0 so that the magni­
tude of the force exerted on the leg is 16 pounds. Round 
your answer to the nearest degree. (Adapted from E. 
Batschelet, Introduction to Mathematics for Life Scien­
tists, Springer, 1979.)

♦^1

14. Leonardo da Vinci and the resolution of forces. Leonardo 
(1452-1519) asked himself how the weight of a body, 
supported by two strings of different length, is appor­
tioned between the two strings.

Three forces are acting at the point D: the tensions F\ 
and F2 in the strings and the weight W. Leonardo be­
lieved that

iifhi =  m
\\Fl\\ E B m

Was he right? (Source: Les Manuscrits de Leonard de 
Vinci, published by Ravaisson-Mollien, Paris, 1890.) 
(Hint: Resolve F \ into a horizontal and a vertical com­
ponent; do the same for F2. Since the system is at rest, 
the equation F \ +  F2 +  W =  0 holds. Express the ratio*

II fil l
II ̂ 2 II

and
EA

in terms of a and ft, using trigonometric functions,; 
compare the results.)
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fl
15. Consider the vector

4

Find a basis of the subspace of R4 consisting of all vec­
tors perpendicular to 5.

16. Consider the vectors
" l / 2 " 1 / 2 ' 1 / 2 "

1 / 2 _ 1 / 2 - 1 / 2
Ml  = 1 / 2

. K 2 =
- 1 / 2

* w3 =
1 / 2

1 / 2 - 1 / 2 - 1 / 2

in R4. Can you find a vector £4 in R4 such that the vec­
tors mi, M2> W3, U4 are orthonormal? If so, how many 
such vectors are there?

17. Find a basis for W1 , where

/ ■f ■5" \
2 6
3 ’ 7

V 4 8

18. Here is an infinite-dimensional version of Euclidean
space: In the space of all infinite sequences, consider 
the subspace €2 of square-summable sequences [i.e., 
those sequences (jcj , *2 , . . . )  for which the infinite series 
x \ + x2 ~\---- converges]. For x and y in t i ,  we define

11*11 =  \ A 2 + * 2  +  '••- x - y  =  x \ y i + x 2y2 +  ----

(Why does the series x\y\  +  jC2y2 H---- converge?)
a. Check that x =  (1, 3 , .. .) is in Z2, and

find ||x ||. Recall the formula for the geometric series: 
1 + a +  a2 + a 3 -I-----=  1/ ( 1 — a), if —1 < a < 1.

b. Find the angle between (1,0,0, . . . )  and
(\ 1 1 1 ^(1, j ,  g , . . . ) .

c. Give an example of a sequence (*1, *2, . . . )  that con­
verges to 0 (i.e., limn-^oo jc„ =  0 ) but does not belong 
to £2-

d. Let L be the subspace of £2 spanned by
(1, j ,  5 , ...). Find the orthogonal projection of
(1, 0, 0, . . . )  onto L.

The Hilbert space i i  was initially used mostly in physics: 
Werner Heisenberg’s formulation of quantum mechan­
ics is in terms of i 2. Today, this space is used in many 
other applications, including economics. (See, for ex­
ample, the work of the economist Andreu Mas-Colell of 
the University of Barcelona.)

19. For a line L in R2, draw a sketch to interpret the follow­
ing transformations geometrically:
a. T(x) = x — proj^Jc
b. T(x) —x — 2projLx
c. T (5) =  2projL jc — x

20. Refer to Figure 13 of this section. The least-squares line 
for these data is the line y =  mx that fits the data best, 
in that the sum of the squares of the vertical distances 
between the line and the data points is minimal. We want 
to minimize the sum

(mx 1 -  >'1 )2 +  (mx2 -  y2)2 H-----+ (mx5 -  y5)2.

In vector notation, to minimize the sum means to find 
the scalar m such that

\\mx — 3>||2

is minimal. Arguing geometrically, explain how you can 
find m. Use the accompanying sketch, which is not drawn 
to scale.

Find m numerically, and explain the relationship be­
tween m and the correlation coefficient r. You may find 
the following information helpful:

x - y  =  4182.9, ||i|| % 198.53, \\y\\ ^  21.539.

To check whether your solution m is reasonable, draw 
the line y =  mx in Figure 13. (A more thorough dis­
cussion of least-squares approximations will follow in 
Section 5.4.)

21. Find scalars a , b, c, d, e, / ,  g such that the vectors

a b c
d , 1 , e

J  _ J / 2.
are orthonormal.

22. Consider a basis , S2, . . . ,  vm of a subspace V of Rw.
Show that a vector jc in R'7 is orthogonal to V if (and 
only if) jc is orthogonal to all the vectors 5 |....... vm.

23. Prove Theorem 5.1.8d. (V-*-)-1 =  V for any subspace 
V of R". Hint: Show that V c  (y-1)-1-, by the defini­
tion of V1 ; then show that dim(V) =  dim(V1 )-L, by 
Theorem 5.1.8c.

24. Complete the proof of Theorem 5.1.4: Orthogonal pro­
jections are linear transformations.
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25. a. Consider a vector v in R n, and a scalar k. Show that

11*511 =  I*INI.

b. Show that if v is a nonzero vector in R'1, then 
1 -

u  =  - z r - v  is a unit vector.
IM

26. Find the orthogonal projection of 

space of R3 spanned by

and

onto the sub-

3
- 6

2

27. Find the orthogonal projection of 9e\ onto the subspace 
of R4 spanned by

and

28. Find the orthogonal projection of

Y
0
0

_0_

onto the subspace of R4 spanned by

1 1 1
1 1 - 1
1 ’ - 1 ’ - 1
1 - 1 1

29. Consider the orthonormal vectors u\, U2, £3, W4, U5 in 
R 10. Find the length of the vector

x  =  7 2 1 — 3m2 +  2i/3 +  M4 — i/5.

33. Among all the vectors in R" whose components add up 
to 1, find the vector of minimal length. In the case n =  2, 
explain your solution geometrically.

34. Among all the unit vectors in R ", find the one for which 
the sum of the components is maximal. In the case n =  2, 
explain your answer geometrically, in terms of the unit 
circle and the level curves of the function x\ +  *2.

35. Among all the unit vectors u = in R ,f in d  the one

for which the sum x 4- 2 y +  3z is minimal.

36. There are three exams in your linear algebra class, and 
you theorize that your score in each exam (out of 100) 
will be numerically equal to the number of hours you 
study for that exam. The three exams count 20%, 30%, 
and 50%, respectively, toward the final grade. If your 
(modest) goal is to score 76% in the course, how many 
hours a , /?, and c should you study for each of the three 
exams to minimize quantity a2+ b2 +  r 2? This quadratic 
model reflects the fact that it may be four times as painful 
to study for 10 hours than for just 5 hours.

37. Consider a plane V in R 3 with orthonormal basis u 1, ui . 
Let x be a vector in R3. Find a formula for the reflection 
R ( x ) o i x  about the plane V.

38. Consider three unit vectors v\,i>2, and 1)3 in R'7. We are 
told that v\ - V2 = v\ • V3 = 1/2. What are the possi^ 
ble values of v2 • ?3? What could the angle between the 
vectors V2 and v$ be? Give examples; draw sketches for 
the cases n = 2 and n =  3.

39. Can you find a line L in R'7 and a vector jc in R n such 
that

x  • proj^j?
is negative? Explain, arguing algebraically.

In Exercises 40 through 46, consider vectors v\, V2, v$ in
R4; we are told that v; • vj is the entry aij of matrix A

30. Consider a subspace V of Rn and a vector x in R'7. Let " 3 5 11
y =  proj y x . What is the relationship between the fol­ A = 5 9 20
lowing quantities? 11 20 49

11 r, 11 2 and y • x

31. Consider the orthonormal vectors u 1, U2........um in R ",
and an arbitrary vector jc in R ". What is the relationship 
between the following two quantities ?

p  =  (wi - x )2 + (u2 -x)2 -\-----+ (u„ •jc)2 and ||j?||2

When are the two quantities equal?

32. Consider two vectors and x>2 in R ". Form the matrix

G = v\ • vi
v2 • 51

V] • V2 

v2 • V2

For which choices of v\ and V2 is the matrix G invert­
ible?

40. Find ||52|l-

41. Find the angle enclosed by vectors V2 and U3.

42. Find ||5) +  52II-

43. Find proj^ (Dj), expressed as a scalar multiple of V2-

44. Find a nonzero vector v in span(02, ^3) such that v i! 
orthogonal to D3. Express v as a linear combination 0
i)2 and V3.

45. Find projv (i’i ), where V = span(u2< )■ Express you 
answer as a linear combination of V2 and ^3.

46. Find projv/(t,3), where V = span(5|, V2). Express you 
answer as a linear combination of v\ and V2.
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Gram-Schmidt Process and QR Factorization

One of the main themes of this chapter is the study of the orthogonal projection onto 
a subspace V of R n. In Theorem 5.1.5, we gave a formula for this projection,

projv ( i )  =  (2 ! • x)u\  + ----- b (um •x) u m,

where 2 1, . . . ,  2m is an orthonormal basis of V.  Now we will show how to construct 
such an orthonormal basis. We will present an algorithm that allows us to convert 
any basis 5 i , . . . ,  vm of a subspace V of R" into an orthonormal basis u \ , . . . ,  um 
of V.

Let us first think about low-dimensional cases. If V is a line with basis we
can find an orthonormal basis u\ simply by dividing 5i by its length:

1 .

M1 =  v \ •

When V is a plane with basis v \ y V2, we first construct

1 _U\ =  —— V\
Iklll

as before (see Figure 1).

Figure I

Now comes the crucial step: We have to find a vector in V orthogonal to u\.  
(Initially, we will not insist that this vector be a unit vector.) Let’s resolve the vector
vi into its components parallel and perpendicular to the line L spanned by 2 1:

v2 =  Cl +  V21 .

See Figure 2. Then the vector

v2L = v2 — vl = v2 — projL(C2) =  u2 -  (2 1 • V2)u\ 

is orthogonal to 2 1.

v v

Figure 2
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EXAM PLE I

The last step is straightforward: We divide the vector v21  by its length to get the 
second vector u2 of an orthonormal basis. (See Figure 3.)

1u2 =  ■ v2
II ”2 II

Figure 3

a. Find an orthonormal basis u i, u 2 of the subspace

V =  span

T T \
1 9
1 > 9

.1. .1. /

of R4, with basis 5i =

T T
1 9
1 , v2 =

9
.1. .1.

b. Find the change of basis matrix R from the basis 33 =  (v \ , v2) to the basis 
21 =  (u \ , u2) you constructed in part a.

a. Following the three steps illustrated in Figures 1, 2, and 3, we will compute
Solution

Fc
first wi, then t ^ ,  and finally u2.

1 _ 1
u i =

1/2
1/2
1/2

H/2J

V 2 1  =  V 2 —  v l  =  V 2 —  ( U \  * V 2 ) U \

r rl/2i ■-4 '
9

-  10
1/2 4

9 1/2 4
.1. Ll/2j .-4

“2 =  — r  
11̂ 2 I!

We have found an orthonormal basis 91 of V :

u i =

4‘ --1/2-
1 4 1/2
8 4 1/2

.-4. L-1/2J

r i / 2 i r - ,/2i
1 /2 1 /2

1 /2
,  u 2 =

1 /2

L1/2J L - 1/2J
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b. Recall that the columns of the change of basis matrix R from 23 to 91 are the 
coordinate vectors of vi and V2 with respect to basis 91 (see Definition 4.3.3):

R = [ 5 l ] a  [ H

A straightforward computation shows that

[3 |]a =  0 and [«2] a = so that R =
10

8

(Later in this section we will develop more efficient methods for finding the 
entries of R.)

To express the relationship between the bases 91 and 23 in matrix form, 
we can use Theorem 4.3.4 and write

2 10 
0 8

'1 r [ 1/2 - 1/21

R , or,
1 9 1/2 1/2

Vl v2 Ml «2 1 9 1/2 1/2
.1 1 . Ll/2 - 1/2  J

M Q

In this context, it is customary to denote the matrices on the right-hand side 
by Q and R. Note that we have written the 4 x 2 matrix M  with columns 
v\ and V2 as the product of the 4 x 2 matrix Q with orthonormal columns 
and the upper triangular 2 x 2  matrix R with positive entries on the diagonal. 
This is referred to as the QR factorization of matrix M. Matrix Q stores the 
orthonormal basis 2 i, 2 2 we constructed, and matrix R gives the relationship 
between the “old” basis Sj, S2, and the “new” basis 2 \ , 22 of V. ■

Now that we know how to find an orthonormal basis of a plane, how would 
we proceed in the case of a three-dimensional subspace V of R n with basis Si, S2, 
?3? We can first find an orthonormal basis u\, 22 of the plane E =  span(5i, V2), as 
illustrated in Example 1. Next we resolve the vector ?3 into its components parallel 
and perpendicular to the plane E:

v3 =

so that

V31 = -  Sl| =  v3 -  projE(53) =  S3 -  (Si • S3)mj -  (u2 • S3)22.

Finally, we let

1 _ 1
«3 =  "  1 -V3

llvVll
See Figure 4.

Figure 4
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Theorem 5.2.1

Generalizing this method, we can construct an orthonormal basis of any sub­
space V of R". Unfortunately, the terminology gets a bit heavy in the general case. 
Conceptually, the method is pretty straightforward, however: We keep computing 
perpendicular components of vectors, using the formula for projection, and we keep 
dividing vectors by their length to generate unit vectors.

The Gram -Schm idt process5

Consider a basis 5 i , . . . ,  vm of a subspace V of W 1. For j  =  2 , . . . ,  m, we resolve the 
vector vj into its components parallel and perpendicular to the span of the preceding 
vectors, 5 i , . . . ,  Vj-\\

vj =  +  VjJ_, with respect to span(5i , . . . ,  Vj - 1).

Then

U) =
luil

; V \ ,  u 2 =
ii^ ii

v2 Vi1 ,

is an orthonormal basis of V.  By Theorem 5.1.7 we have

V j 1  =  V j  -  V j  =  Vj  -  ( u  I • V j ) u  1 -------------- ( m 1 • V j ) U j - i .

,r  -L

If you are puzzled by these formulas, go back to the cases where V is a two- or 
three-dimensional space; take another good look at Figures 1 through 4.

T he Q R  Factorization
The Gram-Schmidt process represents a change of basis from the “old” basis 93 =  
(v \ , . . . ,  vm) to a “new”, orthonormal basis 21 =  (wj, . . . ,  um) of V\  it is most 
succinctly described in terms of the change of basis matrix R from 23 to 21, as 
discussed in Example 1. Using Theorem 4.3.4, we can write

■ - - ■

5i Vm = Ml Um
_ _ _ .

M

Again, it is customary to denote the matrices on the right-hand side by Q and 
R ; the preceding equation is called the QR factorization of M .

We can represent the relationship among the matrices A/, Q , and R in a com­
mutative diagram, where jc is a vector in V.

What do the entries of the change of basis matrix R look like? We know that the 
entries in the j  th column of R are the coordinates of Vj with respect to the basis

5Named after the Danish actuary Jorgen Gram (1850-1916) and the German mathematician Erhardt 
Schmidt (1876-1959).
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91 =  ( 2 i , . . . ,  um). Using the equations in Theorem 5.2.1, we can write

Vj =  5j  +  V jL

r \j r'j ri - \ - j

=  (3 1 • Vj)u\  H------- h (3,- • vj )ui  + -----h (uj - i  • V j ) u j - 1 +

It follows that rjj =  5/ • if i < 7 ; r,y =  v j 1 |; and r /y =  0 if i > j .  The last

equation implies that R is upper triangular. (The first diagonal entry is r\\ =  ||5| ||, 
since v\ =  ||5 i||5 i.)

Theorem 5.2.2 QR factorization
Consider an n x  m matrix M  with linearly independent columns v \ , . . . ,  vm. Then 
there exists an n x m matrix Q whose columns u \ , . . . ,  um are orthonormal and an 
upper triangular matrix R with positive diagonal entries such that

M  = QR.

This representation is unique. Furthermore, rn  
2 , . . . ,  m), and =  5/ • Vj (for i < j).

= llvill, rjj = -  -L (for j  =

Take another look at Example 1, where L = V\ =  span(5j).
The verification of the uniqueness of the QR  factorization is left as Exer­

cise 5.3.51. To find the QR  factorization of a matrix M , we perform the Gram- 
Schmidt process on the columns of M, constructing R and Q column by column. 
No extra computations are required: All the information necessary to build R and Q 
is provided by the Gram-Schmidt process. QR  factorization is an effective way to 
organize and record the work performed in the Gram-Schmidt process; it is useful 
for many computational and theoretical purposes.

EXAM PLE 2 Find the QR  factorization of the matrix M =
2  2 '

1 7
- 2  - 8

Solution
Here

■ 2 ’ '  2 "
VI = 1 and V2 = 7

- 2 . - 8 .

As in Example 1, the QR  factorization of M  will have the form
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Theorem 5.2.3

We will compute the entries of R and the columns of Q step by step.

n i  =  II Sill =  3, u x =  —  v\ = \  
r ii 3

2 '
1

- 2

r  12 =  Ml ■ V2 =  -

Now

' r '  2 ' “-4 "
1

. - 2 .
7

. - 8 .
=  9, V2 = 1)2 — r\2U\ — 4

2 _

rn  = V21 =  y/36 =  6 , U2 — — ^2 ~̂ =  ~ 
r2 2 3

- 2 '
2

- 1

2 2 '

1 7
- 2  - 8

= M = QR = U i M2 m  n 2 
0  r22

‘ 2 - 2 ' 

1 2

-2 -1

3 9 
0 6

Draw pictures analogous to Figures 1 through 3 to illustrate these computations! ■ 

Let us outline the algorithm we used in Example 2.

QR factorization
Consider an n x m matrix M  with linearly independent columns v \ , . . . ,  vm. Then the
columns u \____ um of Q and the entries rxj of R can be computed in the following
order:

First column of R , first column of Q\ 
second column of R , second column of Q\ 
third column of R , third column of Q\ 
and so on.

More specifically,

r\\ =
1 _

u i =  — v\

n  2 =  U \ - V 2 , V2 = V 2 — r \ 2 U \ ,  T22 —

ri3 =  Mi-U3, r23 =  M2 * 1̂ 3, V3

■ _L
3̂3 — V3

n  1
- 1r22 = V2

- 1
1̂3

=  1
1 -  _L

3 03
Vl

, U 2 =  ----- V2
r  22

r , 3Mi

and so on.

For matrices M  with more than three columns, the computation of the QR 
factorization is tedious, and may best be left to a machine (unless M  is of a particularly 
simple form).
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EXERCISES 5.2
GOAL Perform the Gram-Schmidt process, and thus 
find the QR factorization o f a matrix.

Using paper and pencil, perform the Gram-Schmidt pro­
cess on the sequences o f vectors given in Exercises 1 
through 14.

1.

3.

2
1

- 2

4'
0
3

25
0

-25

2 .

4.

2
- 6

3

25
0

-25

0
- 2

0

’2 Y 2 3 5
5. 2 y 1 6 . 0 , 4 , 6

1 5 0 0 7

7.
- 2 18

1 , 0
2 0

8 .

9.

1
9

-5
3

10.

3
6
7

-2

'6 '
4
6
4

11.

13.

4 " 5 "2" " 4"
0 2> 12. 3 4
0 ’ 14 0 * 2

_3_ 10 _6_ 13

1 1 0 1 0 1
1 0 2 14. 7 7 8
1 ’ 0 ’ 1 1 ’ 2 1
1 1 - 1 7 7 6

Using paper and pencil, find the QR factorizations o f the 
matrices in Exercises 15 through 28. (Compare with Exer­
cises 1 through 14.)

2" "6 2
15. 1 16. 3 - 6

- 2 m 2 3

'4 25“ "4 25 o'
17. 0 0 18. 0 0 - 2

_3 25 _ _3 -25 0

2 f "2 3 5“
19. 2 1 20 . 0 4 6

1 5 0 0 7

" 2 - 2 18'
2 1 . 2 1 0

1 2 0

23.

25.

27.

1
9

-5
3

4 5
0 2
0 14
3 1 0 _

1 1 o'
1 0 2
1 0 1
1 1 - 1

22.

24.

26.

28.

3
6
7

- 2

6 '
4
6
4

2 4
3 4
0 2
6 !3_

1 0 1
7 7 8
1 2 I
7 7 6

29. Perform the Gram-Schmidt process on the following 
basis of M2:

'-3" " f
4 . V2 = 7

v\ =

Illustrate your work with sketches, as in Figures 1 
through 3 of this section.

30. Consider two linearly independent vectors v\ =

and vi = in IR2. Draw sketches (as in Figures 1

a ~ h~ ' d~
0 ci II c i ?3 = e

_0 0_

through 3 of this section) to illustrate the Gram-Schmidt 
process for uj, v2. You need not perform the process al­
gebraically.

31. Perform the Gram-Schmidt process on the following 
basis ofR 3:

v\ =

Here, a , c, and /  are positive constants, and the other 
constants are arbitrary. Illustrate your work with a 
sketch, as in Figure 4 of this section.

32. Find an orthonormal basis of the plane

*1 +  *2 +  *3 =  0 -
33. Find an orthonormal basis of the kernel of the matrix

. fl 1 1 1  b
34. Find an orthonormal basis of the kernel of the matrix 

1 1 1 1 '
1 2  3 4
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35. Find an orthonormal basis of the image of the matrix 

'l 2 f

36. Consider the matrix 
_1 1
1 - 1  
1 " I
1 1

1
- 2

1
- 1

1
- 1

3
- 4

0

Find the QR factorization of M.

37. Consider the matrix
“l l l l " "3 4'

1 1 - 1 - 1  1 0 5
2 1 - 1  1 - 1 0 0

1 1 - 1 - 1

00
1

Find the QR factorization of M.

38. Find the QR factorization of 

"0 -3

A = 0
0
0

39. Find an orthonormal basis u \ , u2, m3 of R3 such that 

span(Mi) =  span

and

span(5j, M2) =  span
1
1

- 1

40. Consider an invertible n x n  matrix A whose columns 
are orthogonal, but not necessarily orthonormal. What 
does the QR factorization of A look like?

41. Consider an invertible upper triangular n x n  matrix A. 
What does the QR factorization of A look like?

42. The two column vectors v\ and v2 of a 2 x 2 matrix 4  
are shown in the accompanying figure. Let A =  QR 
the QR factorization of A. Represent the diagonal en­
tries r\ 1 and r22 of R as lengths in the figure. Interpret 
the product r\ ] r22 as an area.

43. Consider a block matrix

A = [ A i  A2]

with linearly independent columns. (A \ is an n x m\ 
matrix, and A2 is n x m2.) Suppose you know the QR 
factorization of A. Explain how this allows you to find 
the QR factorization of A \.

44. Consider an n x m matrix A with rank(y4) < m. Is it 
always possible to write

A =  QR ,

where Q is an n x m matrix with orthonormal column  ̂
and R is upper triangular? Explain.

45. Consider an n x m matrix A with rank (A) =  m. Is it 
always possible to write A as

A = Q L ,

where Q is an n x m matrix with orthonormal columnsj 
and L  is a lower triangular m x m  matrix with positive 
diagonal entries? Explain.

Orthogonal Transformations and Orthogonal Matrices

In geometry, we are particularly interested in those linear transformations that pre­
serve the length of vectors.

D e fin it io n  5.3.1 Orthogonal transformations and orthogonal matrices

A linear transformation T  from R n to R '1 is called orthogonal if it preserves the 
length of vectors:

|| r t f )  || =  ||3f II, for all jc in R ” .
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matrix.
If T(x)  = A x  is an orthogonal transformation, we say that A is an orthogonal 

6

EXAM PLE I The rotation

T(x)  =

is an orthogonal transformation from R 2 to R 2, and

A =

is an orthogonal matrix, for all angles 9.

cos 9 — sin 9
sin 9 cos 9

cos 9 — sin 9
sin 0 cos0

EXAM PLE 2 Consider a subspace V of R*. For a vector jc in R", the vector refy(jc) =  jc11 -  jc1  is 
called the reflection of x  about V.  (Compare this with Definition 2.2.2; see Figure 1). 
Show that reflections are orthogonal transformations.

Solution
By the Pythagorean theorem, we have

||re fv (jc ) ||2 =  jc11 +  —jcx =  jc11 +  x 1  =  ||jc||2.

As the name suggests, orthogonal transformations preserve right angles. In fact, 
orthogonal transformations preserve all angles. (See Exercise 29.)

Theorem 5.3,2 Orthogonal transformations preserve orthogonality
Consider an orthogonal transformation T  from R" to R". If the vectors 5 and w in 
R" are orthogonal, then so are T (5) and T (u;).

P roof By the theorem of Pythagoras, we have to show that

||T(t5) +  HuOH2 =  ||7’(5)||2 +  | |r ( u 0 | |2.

6A list of alternative characterizations of an orthogonal matrix will be presented in Summary 5.3.8.
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Theorem 5.3.3

Let’s see:

\\T(v) +  T ( w ) II2 =  lire? +  w ) | | 2 (T  is linear)

=  ||5 +  w\\2 (T  is orthogonal)
=  || 5 1|2 +  ||u>||2 (C and w are orthogonal)
=  | |r ( S ) | | 2 +  | | r (u >)||2 (T is orthogonal).

Theorem 5.3.2 is perhaps better explained with a sketch. (See Figure 2.)

The two shaded triangles are congruent, because corresponding sides are 
same length (since T  preserves length). Since D\ is a right triangle, so is D2. 

Here is an alternative characterization of orthogonal transformations:

Orthogonal transformations and orthonormal bases

a. A linear transformation T  from R n to R" is orthogonal if (and only if) 
vectors T (e \ ), T(?2) , . • •, T(en) form an orthonormal basis of R".

b. An n x n  matrix A is orthogonal if (and only if) its columns form an 
thonormal basis of RM.

Figure 3 illustrates part (a) for a linear transformation from R 2 to R 2.

Figure 3



5.3 Orthogonal Transformations and Orthogonal Matrices 2 13

P roof We prove part (a); part (b) then follows from Theorem 2.1.2. If T  is an orthogonal 
transformation, then, by definition, the T (?/) are unit vectors, and, by Theorem 5.3.2, 
they are orthogonal. Conversely, suppose the T (2, ) form an orthonormal basis. Con­
sider a vector x = x{e\ +  x 2e2 +  • • • +  xnen in R n. Then

= \\xiT(ei)\\2 + \\x2T(e2)\\2 + +  ||x„ T (?„)|| (by Pythagoras)
=  x \  +  x \  +  
=  llJcll2.

+  x „

Warning: A matrix with orthogonal columns need not be an orthogonal matrix.
[4 -3 1  
3 4 ‘

As an example, consider the matrix A =

EXAM PLE 3 Show that the matrix A is orthogonal:

'1 - 1 - 1 - 1
1 1 - 1 1 1

2 1 1 - 1 1

1 1 1 - 1

Solution
Check that the columns of A form an orthonormal basis of R4. ■

Here are some algebraic properties of orthogonal matrices.

Theorem 5.3.4 Products and inverses of orthogonal matrices
a. The product A B of two orthogonal n x n  matrices A and B is orthogonal.
b. The inverse A ~ x of an orthogonal n x n  matrix A is orthogonal.

P roof In part (a), the linear transformation TO?) =  A B x  preserves length, because 
| | r ( jc) | |  =  | | A ( f l j c ) | |  =  | | f l i c | |  =  | |Jc| | .  In part (b), the linear transformation 
T(x)  = A ~ ]x  preserves length, because \ \A~lx\\ =  ||A(A- , 3c)|| =  ||jc||. Figure 4 
illustrates property (a). ■

Figure 4
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EXA M PLE  4

D e fin it io n  5.3.5

EXA M PLE  5 

EXA M PLE  6

T he T ranspose  o f  a Matrix 
Consider the orthogonal matrix

^  =  7

6

2

- 3

Form another 3 x 3  matrix B whose iyth entry is the j i th entry of A:

[2 3 61
. - I

7
6 2 - 3
3 - 6  2

Note that the rows of B correspond to the columns of A.  
Compute BA,  and explain the result.

Solution
'2 3 6' '2 6 3' '49 0 0‘

BA = ± 6 2 - 3 3 2 - 6 1
— 49 0 49 0

3 - 6 2. 6 - 3 2. .  0 0 49.
= h

This result is no coincidence: The i /th entry of BA  is the dot product of the ith row 
of B and the 7 th column of A. By definition of B,  this is just the dot product of the 
ith column of A and the 7 th column of A. Since A is orthogonal, this product is 1 if 
/' =  j  and 0 otherwise. ■

Before we can generalize the findings of Example 4, we introduce some new 
terminology.

The transpose of a matrix; symmetric and skew-symmetric matrices
Consider an m x  n matrix A.

The transpose A 1 of A is the n x m matrix whose i7 th entry is the j i th entry 
of A : The roles of rows and columns are reversed.

We say that a square matrix A is symmetric if AT = A, and A is called skew- 
symmetric if A t =  — A.

If A =
1 2 3 
9 7 5

, then A t =
1 9
2 7
3 5

The symmetric 2 x 2  matrices are those of the form A =
a b 
b c

, for example,

A =
1 2
2 3

. The symmetric 2 x 2  matrices form a three-dimensional subspace of 

M2x2, with basis

The skew-symmetric 2 x 2  matrices are those of the form A =

1 O' 0 r
0 0 »

1 0 ’
0  0  

0  1
0 b 

- b  0

for example, A =

0  1

- 1  0

0  2

- 2  0
. These form a one-dimensional space with basisis
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Theorem 5,3.6

Theorem 5.3.7

P roo f

Note that the transpose of a (column) vector v is a row vector: If

then v 7 =  [ l  2 3] .v =

The transpose gives us a convenient way to express the dot product of two (column) 
vectors as a matrix product.

If v and w are two (column) vectors in R", then

v ■ w = vTiu. 
t  t

Dot Matrix _
product product

Here we are identifying the 1 x 1 matrix vTw with its sole entry, the scalar v • w. 
Purists may prefer to write vTw =  [ v • w ].

For example,

=  2 .

Now we can succinctly state the observation made in Example 4.

Consider an n x n  matrix A. The matrix A is orthogonal if (and only if) A 7 A = In 
or, equivalently, if A -1 =  A T.

To justify this fact, write A in terms of its columns:

'1‘ " r ' r
2 -l =[12 3] -l
.3. i. i.

A = vi v2 

I I

Then

A 7 A =

i1

f— 
i 

1i __________

1 1 1
" 5 i •• v j V\  ■- V2

1---------------

T

-  -
1 1 1

v 2 ■- V\ v 2 ■■ Vi V2 • Vn
V\ v 2 Vn ---

11

T=>1
__________

1

_ 1 1 1 _ . Vn • V\ Vn • V2 V n ' V n .

By Theorem 5.3.3b this product is /„ if (and only if) A is orthogonal.

Later in this text, we will frequently work with matrices of the form A 7 A. It 
is helpful to think of A 7 A as a table displaying the dot products 5, • vj among the 
columns of A, as shown above.

We summarize the various characterizations we have found of orthogonal 
matrices.
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SUMMARY 5.3.8

Theorem 5.3.9

P roof

' Orthogonal matrices
Consider an n x n  matrix A. Then the following statements are equivalent:

i. A  is an orthogonal matrix.
ii. The transformation L (x)  =  A x  preserves length, that is, || AJc|| =  ||jt|| 

for all jc in Rn.
I iii. The columns of A form an orthonormal basis of Rn.

iv. A t A = In.
v. A-1  =  A t .

Here are some algebraic properties of transposes:

Properties of the transpose
a. If A is an n x  p  matrix and B a p  x  m matrix, then

( A B ) t = b t a t .

Note the order of the factors.
b. If an n x  n matrix A is invertible, then so is Ar , and

(ATr ] = ( A - l f .

c. For any matrix A,

rank(A) =  rank(Ar ).

a. Compare entries:

i j  th entry of (A B ) T = j i  th entry of AB
=  (yth row of A) • (ith column of B)

i j th entry of B J A 7 =  (ith row of B 7) • ( j th column of A 7)
=  (ith column of B) • ( j th row of A).

b. We know that

Transposing both sides and using part (a), we find that 

(.A A ~ ' ) t = ( A~l)T a t =  /„.

By Theorem 2.4.8, it follows that

( A - ' ) r  =  ( A 7' ) - 1.

c. Consider the row space of A (i.e., the span of the rows of A). It is not hard 
to show that the dimension of this space is rank(A) (see Exercises 69-72 in 
Section 3.3):

rank(A7) =  dimension of the span of the columns of A 7 
=  dimension of the span of the rows of A 
=  rank(A). g
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Theorem 5.3.10

EXAM PLE 7

T h e M atrix o f  an O rthogonal Projection
The transpose allows us to write a formula for the matrix of an orthogonal projection. 
Consider first the orthogonal projection

pro jj*  =  (5 | * )hi

onto a line L  in R", where u\ is a unit vector in L.  If we view the vector u\  as an 
n x  1 matrix and the scalar u i x  as a 1 x 1 matrix, we can write

projL* =  M|(«i -x)  
= u \ u [ x  
= Mx,

where M  =  u\u[ .  Note that u\ is an n x  1 matrix and is 1 x n, so that M  is 
n x n, as expected.

More generally, consider the projection

projvjc = (u i ■ x)i<i H------- h (um • x )u m

onto a subspace V of K" with orthonormal basis m m„, . We can write

projv* =  u \u \x  H------- \-umul,x

=  (u \u \  H-----+  umu Tm)x

x.

We have shown the following result:

The matrix of an orthogonal projection
Consider a subspace V  of M" with orthonormal basis u \ , «2, • • •. um. The matrix of 
the orthogonal projection onto V is

'  1 1 ■

1 -•H 1

— U1 • •• Mm
.  1 1 .

-*T

rj j j
Q Q t , where Q =  u \  u 2 • • •  «m

. 1 1  I

Pay attention to the order of the factors ( Q  Q T  as opposed to Q 7  Q ) .  I

Find the matrix of the orthogonal projection onto the subspace of R4 spanned by

1

U l ~  2

Solution
Note that the vectors ii \ and u2 are orthonormal. Therefore, the matrix is

■ r
1 1 - l
1 * M2 =  2 - l

.1. l.

’i r

oo

l l - l i l i r l 0  1 1 0

4 l - l l - l  - l  l ”  2 0  1 1 0
,i l .

OO
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EXERCISES 5.3
GOAL Use the various characterizations o f orthogonal 
transformations and orthogonal matrices. Find the ma­
trix o f an orthogonal projection. Use the properties o f the 
transpose.

Which o f the matrices in Exercises 1 through 4 orthogonal?

1. 0.6
0.8

0.8
0.6 2. - 0.8

0.6
0.6
0.8

"2 - 2  f "2 6 -3"
1 2 2 4 -7 6 - 3  2
2 1 - 2 3 2 6

3 -3

I f  the n x n matrices A and B are orthogonal, which o f 
the matrices in Exercises 5 through 11 must be orthogonal 
as well?

5. 3A 

9.

6 . - B  

10. B ' l AB

7. AB 

11. A t

8 . A + B

I f  the n x n  matrices A and B are symmetric and B is in­
vertible, which o f the matrices in Exercises 13 through 20 
must be symmetric as well?

14. - B 15. AB 

18. 4 10

20. A B2A

16. A + B13. 3A 

17. B~]

19. 21 n +  3A -  4A2
I f  A and B are arbitrary n x n  matrices, which o f the ma­
trices in Exercises 21 through 26 must be symmetric?

21. A T A 22. B B r  23. A -  A 7

24. A 7 BA 25. A 7 B7 BA 26. B(A + A 7 )B7

27. Consider an n x m matrix A , a vector v in Rm, and a
vector w in R ". Show that

(AC) ■ w — v ■ (Ar w).

28. Consider an orthogonal transformation L from R" to 
Rn. Show that L preserves the dot product:

v ■ w = L(v) • L(w), 

for all 5 and w in R n.

29. Show that an orthogonal transformation L from R n to 
Rw preserves angles: The angle between two nonzero 
vectors v and w in R fl equals the angle between L(v) 
and L(w).  Conversely, is any linear transformation that 
preserves angles orthogonal?

30. Consider a linear transformation L from IR'” to IR" that 
preserves length. What can you say about the kernel of 
L? What is the dimension of the image? What can you 
say about the relationship between n and m l  If A is the 
matrix of L, what can you say about the columns of A? 
What is A T A ? What about A A T1 Illustrate your answers 
with an example where m =  2 and n =  3.

31. Are the rows of an orthogonal matrix A necessarily 
orthonormal?

32. a. Consider an n x m matrix A such that A T A =  /m.
Is it necessarily true that A A T =  In‘? Explain, 

b. Consider an n x n  matrix A such that A T A = /„. Is 
it necessarily true that A AT =  /„? Explain.

33. Find all orthogonal 2 x 2  matrices.

34. Find all orthogonal 3 x 3  matrices of the form

a b 0
c d 1

* /  o

35. Find an orthogonal transformation T from IR3 to IR3 such 
that

’2/3“ "o"
T 2/3 = 0

1/3 1

36. Find an orthogonal matrix of the form

2/3 1/V2 a
2/3 -1 /V 2  b
1/3 0 c

37. Is there an orthogonal transformation T from IR3 to I 
such that

~2 "3“ "-3" 2"
T 3 = 0 and T 2 = -3

0 2 0 0

38. a. Give an example of a (nonzero) skew-symmetric
3 x 3  matrix A, and compute A2.

b. If an n x n matrix A is skew-symmetric, is matrix 
A2 necessarily skew-symmetric as well? Or is A‘ 
necessarily symmetric?

39. Consider a line L in R '\ spanned by a unit vector

wi
M2

Un

Consider the matrix A of the orthogonal projection onto 
L. Describe the i j  th entry of A, in terms of the compo 
nents w, of w.
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D# Consider the subspace W  of IR4 spanned by the vectors

vi = and i>2 =

1
9

-5
3

Find the matrix of the orthogonal projection onto W.

41. Find the matrix A of the orthogonal projection onto the 
line in Rn spanned by the vector

all n components are 1.

42. Let A be the matrix of an orthogonal projection. Find 
A2 in two ways:
a. Geometrically. (Consider what happens when you 

apply an orthogonal projection twice.)
b. By computation, using the formula given in Theo­

rem 5.3.10.

43. Consider a unit vector u in R3. We define the matrices

A =  2uut — 1$ and B =  — 2 uuT.

Describe the linear transformations defined by these ma­
trices geometrically.

44. Consider an n x m  matrix A. Find

dim(im(A)) + dim(ker(Ar )), 

in terms of m and n.

45. For which n x m  matrices A does the equation

dim(ker(A)) =  dim(ker(A7 )) 

hold? Explain.

46. Consider a QR factorization

M = QR.

Show that

R = Q t M.

47. If A = QR  is a QR factorization, what is the relation­
ship between A TA and RTR?

48. Consider an invertible n x n  matrix A. Can you write A 
as A = LQ,  where L is a lower triangular matrix and 
Q is orthogonal? Hint: Consider the QR  factorization 
of A t .

49. Consider an invertible n x n  matrix A. Can you write 
A =  RQ,  where R is an upper triangular matrix and Q 
is orthogonal?

Find all n x n matrices that are both orthogonal and 
upper triangular, with positive diagonal entries.

b. Show that the QR factorization of an invertible n x n  
matrix is unique. Hint: If A =  Q\R\  = Q2B2, then 
the matrix Q^ 1Q 1 =  R iR \ 1 is both orthogonal and 
upper triangular, with positive diagonal entries.

51. a. Consider the matrix product Q\ =  Q2S , where
both Q\ and Q2 are n x m matrices with orthonor­
mal columns. Show that S is an orthogonal matrix. 
Hint: Compute Q \Q \ =  (Q2S)T Q2S. Note that 
Q \ Q \  =  Q l Q i  =  Im-

b. Show that the QR factorization of an n x m ma­
trix M is unique. Hint: If M = Q\ R\ =  <22̂ 2* then 
Q\ =  Q2R2R[[- N ow  use part (a) and Exercise 50a.

52. Find a basis of the space V of all symmetric 3 x 3  ma­
trices, and thus determine the dimension of V.

53. Find a basis of the space V of all skew-symmetric 3 x 3  
matrices, and thus determine the dimension of V.

54. Find the dimension of the space of all skew-symmetric 
n x n  matrices.

55. Find the dimension of the space of all symmetric n x n  
matrices.

56. Is the transformation L(A) = Ar from R2x3 to R3x2 
linear? Is L an isomorphism?

57. Is the transformation L(A) = A T from R mx" to Rnxm 
linear? Is L an isomorphism?

58. Find image and kernel of the linear transformation 
L(A) =  5 (A 4- At ) from Rnxn to R nxn. Hint: Think 
about symmetric and skew-symmetric matrices.

59. Find the image and kernel of the linear transformation 
L(A) = {{A -  A t ) from R"x" to W xn. Hint: Think 
about symmetric and skew-symmetric matrices.

60. Find the matrix of the linear transformation L(A) = AT 
from R 2x2 to R 2x2 with respect to the basis

1 0

00

0 1
0 0 0 1 1 0 ’

0 1
- 1  0

61. Find the matrix of the linear transformation L(A) = 
A — A t from R2x2 to R2x2 with respect to the basis

1 0 0 0 0 1

0 0 1

1 0 1 * 1 0
0 1

- 1  0

62. Consider the matrix

A =
1 1 - 1
3 2 - 5
2 2 0

with LD£/-factorization

00 00

"l 1 - l "
A = 3 1 0 0 - 1 0 0 1 2

1 to 0 1 0 0 2

—
1

00
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Find the LDU-factorization of AT. (See Exercise 
2.4.90d.)

63. Consider a symmetric invertible n x n  matrix A which 
admits an LDC/-factorization A =  LDU. (See Exer­
cises 90, 93, and 94 of Section 2.4.) Recall that this 
factorization is unique. (See Exercise 2.4.94.) Show 
that U =  L 1 . (This is sometimes called the LDLT- 
factorization of a symmetric matrix A.)

64. This exercise shows one way to define the quaternions, 
discovered in 1843 by the Irish mathematician Sir W. R. 
Hamilton (1805-1865). Consider the set H of all 4 x 4 
matrices M of the form

M =

p - q
Q P 
r —s 
s r

—r
s
P

-q

—S
—r 

<7 
P

where p< q % r, s are arbitrary real numbers. We can write 
M more succinctly in partitioned form as

*T-
M = A - B  

B A t

where A and B are rotation-scaling matrices.
a. Show that H is closed under addition: If M and N  

are in //, then so is M -f N.
b. Show that H is closed under scalar multiplication: If 

M is in H and k is an arbitrary scalar, then kM  is 
in H.

c. Parts (a) and (b) show that H is a subspace of the 
linear space R4x4. Find a basis of //, and thus deter­
mine the dimension of H.

d. Show that H is closed under multiplication: If M and 
N are in //, then so is MN.

e. Show that if M is in //, then so is M T.
f. For a matrix M in //, compute M J M.
g. Which matrices M in H are invertible? If a matrix M 

in H is invertible, is M ~ ] necessarily in H as well?
h. If M and N are in // , does the equation MN  =  NM  

always hold?

65. Find all orthogonal 2 x 2  matrices A such that all the
entries of 10/4 are integers and such that both entries in
the first column are positive.

66 . Find an orthogonal 2 x 2  matrices A such that all the 
entries of 100A are integers while all the entries of 10/4 
fail to be integers.

67. Consider a subspace V of IR'1 with a basis Ci....... vm\
suppose we wish to find a formula for the orthogonal 
projection onto V. Using the methods we have devel­
oped thus far, we can proceed in two steps: We use 
the Gram-Schmidt process to construct an orthonormal 
basis u i , . . . ,  um of Vy and then we use Theorem 5.3.10: 
The matrix of the orthogonal projection is QQT\ 
where

W| Mm

In this exercise we will see how we can write the matrix
of the projection directly in terms of the basis Dj....... vm
and the matrix

A =

(This issue will be discussed more thoroughly in Sec­
tion 5.4; see Theorem 5.4.7.)

Since projyJ is in V, we can write

projyi =  c\v\  +  • • • + c wCm

for some scalars c j........cm yet to be determined. Now
x -  projy (.t) =  x — ci D |-------- cmvm is orthogonal to
V% meaning that 55/ • (jc -  c\v\ -  • • • -  cmv,„) =  0 for 
/ =  1........m.
a. Use the equation u, ■ (x — c\ C| — - -  cm vm) =  0

. Cl
to show that A T Ac =  AT:c, where c =

b. Conclude that c = (ATA) 1ATx and projyjc =  
Ac =  A(At A)~^A1x.

68 . The formula A(A7 A)~l At for the matrix of an or­
thogonal projection is derived in Exercise 67. Now con­
sider the QR factorization of A, and express the matrix 
A{ATA ) - ' A T in terms of Q.

m  Least Squares and Data Fitting

In this section, we will present an important application of the ideas introduced in 
this chapter. First, we take another look at orthogonal complements and orthogona 
projections.
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Theorem 5.4.1

Theorem 5.4.2

A nother C haracterization  o f  O rthogonal C o m  

Consider a subspace V =  image (A)  of R", where A =

e lem ents  

vi v2

V L =  {3c in R": v ■ x  =  0, for all v in V}
=  (J in R": C, • x =  0, for / =  1, . . . ,  m)  
=  (jf in R" : v f x  =  0, for i = 1........ rn}.

In other words, V x =  (iinA)^ is the kernel of the matrix

-  v -

-  v i -

— v' —

For any matrix A,

(imA ) -1 =  ker(Ar ).

Here is a very simple example: Consider the line

i 1
V =  im '

Then

Vx =  ker [1 2 3]

is the plane with equation jci +  2x2 + 3xj =  0. (See Figure 1.)

V1 = ker[ 1 2 3] 
the plane + l x 2 + = 0

. Then

1
V7 = im 2

_3_

V
the line spanned by 2

3

Figure I

The following somewhat technical result will be useful later:

a. If A is an n x m matrix, then

ker(A) =  kcT(AT A).

b. If A is an n x m matrix with ker(A) =  {0}, then A 7 A is invertible.

P roo f a. Clearly, the kernel of A is contained in the kernel of A 7 A. Conversely, con­
sider a vector x  in the kernel of A 7A,  so that A 7 Ax  =  0. Then Ax  is in the
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Theorem 5.4.3

D e f i n i t i o n  5 .4 .4

image of A and in the kernel of A 7. Since ker(Ar ) is the orthogonal com­
plement of im(A) by Theorem 5.4.1, the vector Ajc is 0 by Theorem 5.1.8b, 
that is, jc is in the kernel of A.

b. Note that A 7 A is an m x  m matrix. By part (a), ker(Ar A) =  {0}, and the 
square matrix A 7 A is therefore invertible. (See Theorem 3.3.10.) ■

An Alternative Characterization of Orthogonal Projections
Consider a vector jc in R n and a subspace V of R". Then the orthogonal projection 
projyjc is the vector in V closest to jc, in that

||*-proj^H  < II* -  5||, 

for all v in V different from projvjc. ■

To justify this fact, apply the Pythagorean theorem to the shaded right triangle 
in Figure 2.

Least-Squares Approximations
Consider an inconsistent linear system Ajc =  b. The fact that this system is incon­
sistent means that the vector b is not in the image of A. (See Figure 3.)

Although this system cannot be solved, we might be interested in finding a good 
approximate solution. We can try to find a vector 3c* such that Ajc* is “as close as 
possible” to b . In other words, we try to minimize the error ||b — Ax\\.

Least-squares solution 
Consider a linear system

Ajc =  b,

where A is an n x m matrix. A vector jc* in Rm is called a least-squares solution of 
this system if ||b — Ajc*|| < \\b — Ax \\ for all 3c in
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Theorem 5.4.5

See Figure 4.

The term least-squares solution reflects the fact that we are minimizing the sum 
of the squares of the components of the vector b — Ax.

If the system Ax = b happens to be consistent, then the least-squares solutions 
are its exact solutions: The error \\b — Ax\\ is zero.

How can we find the least-squares solutions of a linear system A x = b l  Consider 
the following string of equivalent statements:

The vector Jc* is a least-squares solution 
of the system A x = b.

|  Def. 5.4.4

\ \ b -  Ax* || <  ||f e -  A x || for all ;? in Rm.

J  Theorem 5.4.3

Ajc* =  projv b, where V =  im(A)

Theorems 5.1.4 and 5.4.1 

b — Ajc* is in V L — (imA) 1  =  ker(Ar )

i
A T(b -  Ax*) =  0 

1
A 7 Ax* = A Tb 

Take another look at Figures 2 and 4.

The normal equation
The least-squares solutions of the system

Ax = b

are the exact solutions of the (consistent) system

A 7 Ax  =  A Tb.

The system A 7 A x  =  A Tb is called the normal equation of A x = b. ■

The case when ker(A) =  {0} is of particular importance. Then, the matrix 
A 7 A is invertible (by Theorem 5.4.2b), and we can give a closed formula for the 
least-squares solution.
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Theorem 5.4.6

EXA M PLE  I

If ker(A) =  {0}, then the linear system

Ax = b

has the unique least-squares solution

x* =  (A 7 A) -1 A Tb.

From a computational point of view, it may be more efficient to solve the nor­
mal equation A 7Ax = A Jb by Gauss-Jordan elimination, rather than by using 
Theorem 5.4.6.

Use Theorem 5.4.6 to find the least-squares solution Jc* of the system

'1  1 " 'O '
where A = 1 2 and b = 0

.1 3. 6

What is the geometric relationship between Ax* and b l

Solution
We compute

X *  =  (A TA ) - xA Tb =

Recall that AJc* is the orthogonal projection of b onto the image of A. Check that

b -  Ax* =

is indeed perpendicular to the two column vectors of A. (See Figure 5.)

- 4 '
and Ax* =

- 1'
2

3
5.

If Jc* is a least-squares solution of the system A Jc =  b , then AJc* is the orthogonal 
projection of b onto im(A). We can use this fact to find a new formula for orthogonal 
projections. (Compare this with Theorem 5.1.5 and 5.3.10.) Consider a subspace V 
of R" and a vector b in R" . Choose a basis 51, . . . ,  vm of V, and form the matrix 
A =  [ Dj . . .  vm ]. Note that ker(A) =  {0}, since the columns of A are linearly 
independent. The least-squares solution ofthe system A Jc =  b isJc* =  ( A7 A) -1  Ajft. 
Thus, the orthogonal projection of b onto V is projv b =  AJc* =  A ( A 7A)~[A 7b.
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Theorem 5.4.7

EXA M PLE  2

EXA M PLE  3

The matrix of an orthogonal projection
Consider a subspace V of K" with basis V],V2, . . . , v m. Let

A = i>i v2

Then the matrix of the orthogonal projection onto V is

A { A TA ) ~ XA T.

We are not required to find an orthonormal basis of V here. If the vectors
v i , . . . ,  vm happen to be orthonormal, then A 7 A =  and the formula simplifies to 
A A t . (See Theorem 5.3.10.)

Find the matrix of the orthogonal projection onto the subspace of R 4 spanned by the 
vectors

Solution
Let

and compute

T T
1

and
2

1 3
. 1. .4

A =

n  1 ' 
1 2

1 3
1 4

7 4 1
4 3 2
1 2 3

- 2  1 4

- 2 '

1

4
7

Data Fitting
Scientists are often interested in fitting a function of a certain type to data they have 
gathered. The functions considered could be linear, polynomial, rational, trigono­
metric, or exponential. The equations we have to solve as we fit data are frequently 
linear. (See Exercises 29 through 36 of Section 1.1, and Exercises 30 through 33 of 
Section 1.2.)

Find a cubic polynomial whose graph passes through the points (1,3), (—1, 13), 
(2 , 1), ( - 2 ,  33).

Solution
We are looking for a function

f { t ) = C o +  C \ t  -h C'212 +  C3 / 3
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E X A M P L E  4

such that / ( l )  =  3, / ( - l )  =  13, / (2 )  =  1, / ( - 2 )  =  33; that is, we have to solve 
the linear system

c0 +  Cj +  Q +  c 3 — 3
Co — C| +  C’2 — C3 =  13
co +  2c i 4- 4 c 2 + 8 C3 =  1
co -  2c i  +  4c*2 -  8C3 =  33

This linear system has the unique solution

’co" ' 5‘
C1 - 4
t'2 3

-t'3. . - 1.

Thus, the cubic polynomial whose graph passes through the four given data points 
is / ( / )  =  5 — 4r +  312 -  r \  as shown in Figure 6 . ■

Frequently, a data-fitting problem leads to a linear system with more equations 
than variables. (This happens when the number of data points exceeds the number 
of parameters in the function we seek.) Such a system is usually inconsistent, and 
we will look for the least-squares solution(s).

Fit a quadratic function to the four data points (ai .bi )  = (— 1, 8 ), (ai .bi )  =  (0, 8), 
(fl3, bi) =  (1,4),  and (0 4 , ^4) =  (2 , 16).

Solution

We are looking for a function / ( / )  =  c*o +  c\t +  c2t 2 such that

f ( a  1) = b 1 co - Cl +  t'2 — 8
f ( a  2) =  ^2 or co = 8

/ t o ) = b 3 co + Cl +  C2 = 4
f ( a A) = b4 C0 + 2c, + 4c-2 = 16

’co"
or A C|

S i .

where
’ 1 - 1 r ' 8 '

1 0 0
and b =

8

1 1 1 4
.1 2 4 . .16

A =

We have four equations, corresponding to the four data points, but only three un­
knowns, the three coefficients of a quadratic polynomial. Check that this system is 
indeed inconsistent. The least-squares solution is

co ' 5"
c* = ct =  (A TA ) - ' A r b = — 1

11 3.

The least-squares approximation is f *( t )  =  5 — t +  3f2, as shown in Figure 7.
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This quadratic function f * ( t )  fits the data points best, in that the vector

(0/, fy)

n o
(a,./*(<*,))

Figure 8

is as close as possible to

This means that

Ac* =

h =

/* (« .)

/ * ( « 3 )

bx
bi
h
b*_

fb -  Ac* ||2 =  (b\ -  / * ( a , ) ) 2 +  (b2 -  f * ( a 2))2

+  (^3 ”  f * ( a$)Y  +  (^4 — f*(OA)Y

is minimal: The sum of the squares of the vertical distances between graph and data 
points is minimal. (See Figure 8 .) ■

EXA M PLE  5 Find the linear function co + c\t  that best fits the data points (a\ , h \ ), (a2, hi),  
(fl„, bn), using least squares. Assume that a\ a2.

Solution
We attempt to solve the system

or

or

c0 +  c\a\ = b\ 
Co +  Ci«2 =  k>2

Co 4- c \ a n =  h n

"1 a \ ' ~b\~
1 a2 'co ‘ b2

.Cl .
J  a„m .bn.

co
_C|_

= b.

Note that rank(A) =  2, since a\ ■=£- a2.
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EXA M PLE  6

The least-squares solution is

=  ( AT A ) ~ l A Tb =
1 1

a\ ••• an

'1  a i ' \
— 1

.1  a„_ /

1 1
a i a„

bn

n E ,  a.
-1

' E ,  '

_E/« /  E /« ? _ E ;  a>b,

(where refers to the sum for 
i =

1
iWiCslQW•

'  Z . b i  '

« ( E i af ) -  ( E ,  «()2 -  E l  °i n E  jOibi

We have found that

Cl =

« G > ? ) - ( ! > < )

These formulas are well known to statisticians. There is no need to memorize them.

We conclude this section with an example for multivariate data fitting.

In the accompanying table, we list the scores of five students in the three exams 
given in a class.

h:
Hour Exam

in:
Midterm Exam

/ :
Final Exam

Gabriel 76 48 43
Kyle 92 92 90
Faruk 68 82 64
Yasmine 86 68 69
Alec 54 70 50

Find the function of the form /  =  Co +  c\h  +  qwi that best fits these data, usinjj 
least squares. What score /  does your formula predict for Marilyn, another student! 
whose scores in the first two exams were h =  92 and m =  72? !

Solution
We attempt to solve the system

c’o -}- 76c i -|- 48c2 =  43 
co +  92c i +  92c2 =  90 
Co +  6 8 ci 4- 82c2 =  64
Co "I- 8 6 c i -|“ 6 8 C2 =  69
co 4- 54ci 4- 70c2 =  50
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The least-squares solution is

r ^ i '- 4 2 .4  ‘
= ( A TA ) - lA Tb * 0.639

-c2. 0.799

The function which gives the best fit is approximately

/  =  -4 2 .4  +  0.639h +  0.799m.

This formula predicts the score

/  =  -4 2 .4  +  0.639 • 92 +  0.799 • 72 % 74

for Marilyn.

EXERCISES 5.4

GOAL Use the formula (im A )1- =  ker(Ar ). Apply the 
characterization o f projyit as the vector in V “closest 
to jr.” Find the least-squares solutions o f a linearjsystem 
Ax = b using the normal equation A 7 Ax  =  A Tb.

1. Consider the subspace im(A) of R2, where
'2 4*A =
3 6

Find a basis of ker(A7), and draw a sketch illustrating 
the formula

(im A)1 =  ker(/\r )

in this case.

2. Consider the subspace im(A) of M3, where

j  f  
A =  '

Find a basis of ker (A7 ), and draw a sketch illustrating 
the formula (im A)1  =  ker(Ar ) in this case.

3. Consider a subspace V of Rn. Let v \ ......vp be a ba­
sis of V and w \ , . . . ,  wq a basis of V-1. Is v \ ....... vp,
w \ , . . . ,  wq a basis of Rn? Explain.

4. Let A be an n x m matrix. Is the formula

(ker A)1 = im(A7) 

necessarily true? Explain.

5. Let V be the solution space of the linear system

x\ + X2 +  *3 +  * 4 = 0  
X) +  2x 2 +  5^3 +  4*4 =  0

Find a basis of V1 .

& If A is an n x m matrix, is the formula

im(A) = im(AAr )

necessarily true? Explain.

7. Consider a symmetric n x n  matrix A. What is the rela­
tionship between im(A) and ker(A)?

8 . Consider a linear transformation L(x) = Ax from R n 
to IRm, with ker(L) = {0}. The pseudoinverse L+ of L 
is the transformation from R m to K” given by

L + (y) =  (the least-squares solution of L(x) = y).

a. Show that the transformation is linear. Find the 
matrix A+ of in terms of the matrix A of L.

b. If L is invertible, what is the relationship between 
L+ and L-1 ?

c. What is L+ (L(i)),  fo r i  in M"?
d. What is L(L+(v)), for y in IRm?
e. Find for the linear transformation

L(x)
1 0 
0 1
0 0

1 3' 10 'and b =
2 6 20

9. Consider the linear system Ax =  b, where

a. Draw a sketch showing the following subsets of R2:

• the kernel of A, and (ker /4) 1
• the image of A 7
• the solution set S of the system Ax = b

b. What relationship do you observe between ker(A) 
and im(/\7 )? Explain.

c. What relationship do you observe between ker(A) 
and 5? Explain.

d. Find the unique vector Jco in the intersection of S and 
(ker A)-1. Show x q  on your sketch.

e. What can you say about the length of xo compared 
with the length of all other vectors in 5?
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10. Consider a consistent system A7 =  b.
a. Show that this system has a solution xq in (ker A)1 . 

[Hint: An arbitrary solution 7 of the system can be 
written as 7 = 7/, +  7o, where 7/, is in ker(A) and 7o 
is in (ker A)1 .]

b. Show that the system Ax =  b has only one solution 
in (ker A)-1. | Hint: If xo and 7j are two solutions in 
(ker A)1, think about 7 1 — .to.]

c. If .vo is the solution in (ker A) L and!x\ is another solu­
tion of the system Ax =  b, show that ||7ol| < ||7| ||. 
The vector 7q is called the minimal solution of the 
linear system Ax =  b.

11. Consider a linear transformation L(x) = Ax from Rn
to Rm, where rank(A) =  m . The pseudoinverse L4 of
L is the transformation from Rm to Rn given by

L+ ( v) =  (the minimal solution of the system L(x) =  y).

(See Exercise 10.)
a. Show that the transformation L4 is linear.
b. What is L(L+(y)),  for y in Rm?
c. What is L4 (U7)),  for 7 in Rn'?
d. Determine the image and kernel of L 4 .
e. Find L+ for the linear transformation

L(x) =
1 0 0 
0 1 0

12. Using Exercise 10 as a guide, define the term minimal 
least-squares solution of a linear system. Explain why 
the minimal least-squares solution .7* of a linear system 
A7 = b is in (ker A)1 .

13. Consider a linear transformation L(x) =  A7 from Rw 
to R m. The pseudoinverse L4 of L is the transformation 
from Rm to Rn given by

L+( v) =  (the minimal least-squares solution 
of the system L(x) =  v).

(See Exercises 8, 11, and 12 for special cases.)
a. Show that the transformation is linear.
b. What is L 4 (L(7)), for .7 in R"?

Exercise 13. Show your solutions in the figure, and ex­
plain how you found them.

15. Consider an m x n matrix A with ker(A) =  {0}. Show 
that there exists an n x m matrix B such that BA =  /„. 
(Hint: AT A is invertible.)

16. Use the formula (im A)1  =  ker( AT ) to prove the equa­
tion

rank(A) =  rank(Ar ).

17. Does the equation

rank(A) = rank(Ar A) 

hold for all /? x m matrices A? Explain.

18. Does the equation

rank(A^A) =  rank(AA^)

hold for all n x m matrices A? Explain. Hint: Exer­
cise 17 is useful.

19. Find the least-squares solution 5* of the system

' l 0 " “l"
where A = 0 1 and b = 1

0 0 1

Use paper and pencil. Draw a sketch showing the vec­
tor b, the image of A, the vector A.7*, and the vector 
b -  A7*.

20. By using paper and pencil, find the least-squares solution 
.7* of the system

c. What is /.(L 4 (y)), for y in Rm? "l f ~3*
d. Determine the image and kernel of L4  (in terms of A 7 =  b. where A = 1 0 and b = 3

im(A7 ) and ker(A7 )). 0 1 3
e. Find L4 for the linear transformation

U r)  =
2 0 0 

0 0 0

14. In the accompanying figure, we show the kernel and the 
image of a linear transformation L from R2 to IR2, to­
gether with some vectors ? |, w |, u’2. u’3. We are told 
that L{v\) =  w\. For / =  1,2,3, find the vectors 
L+iwj), where L4  is the pseudoinverse of L defined in

Verify that the vector b — Ax* is perpendicular to the 
image of A.

21. Find the least-squares solution 7* of the system

Ax = /?, where A =
'6 9" ’ 0“
3 8 and b = 49
2 10 0

Determine the error \\b — A7*
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22. Find the least-squares solution x* of the system 29. Find the least-squares solution of the system

~3 2 ~5" r 1Ax = b. where A = 5 3 and b = 9

i o 
S_

-
G

4 5 2 Ax = b, where A =
1

° 
k

Determine the error \\b — A.v*||. 1
23. Find the least-squares solution .v* of the system b = 10"10

10“ 10

and

"l f r
where A = 2 8 and b = _2

1 5 3

Explain.

24. Find the least-squares solution x * of the system

Y ~3"
where A = 2 and b — 2

3 7

Draw a sketch showing the vector b, the image of A, the 
vector A x*, and the vector b — Ax*.

25. Find the least-squares solutions x* of the system 
Ax =  b, where

A = 1 3
2 6

and b =

Use only paper and pencil. Draw a sketch.

26. Find the least-squares solutions x* of the system 
Ax = /;, where

‘ l 2 3‘ Y
A = 4 5 6 and b = 0

7 8 9 0

27. Consider an inconsistent linear system Ax =  b. where 
A is a 3 x 2 matrix. We are told that the least-squares so-

r 71
lution of this system is .v* =  . Consider an orthog­

onal 3 x 3  matrix S. Find the least-squares solution(s) 
of the system SAx = Sb.

28. Consider an orthonormal basis U\,U2....... un in IR".
Find the least-squares solution(s) of the system

where

A = U\ u 2

I I
Mil-I

I

Describe and explain the difficulties you may encounter 
if you use technology. Then find the solution using paper 
and pencil.

30. Fit a linear function of the form / ( / )  =  cq 4  c\t to the 
data points (0, 0), (0, 1), (1, 1), using least squares. Use 
only paper and pencil. Sketch your solution, and explain 
why it makes sense.

31. Fit a linear function of the form f i t ) =  co 4- c\t to 
the data points (0, 3), (1, 3), (1,6), using least squares. 
Sketch the solution.

32. Fit a quadratic polynomial to the data points (0.27), 
(1,0), (2,0), (3.0), using least squares. Sketch the 
solution.

33. Find the trigonometric function of the form f i t )  = 
co 4  c | sin(/) 4  qcosU) that best fits the data points 
(0. 0), (1, 1), (2.2), (3,3), using least squares. Sketch 
the solution together with the function git) = t.

34. Find the function of the form

/( / )  =  co 4 c\ sin(M 4C2C0S(/) 4 o  sin(2r) 4<’4Cos(2r)

that best fits the data points (0,0), (0.5, 0.5), (1, 1), 
(1.5, 1.5), (2, 2), (2.5. 2.5), (3, 3), using least squares. 
Sketch the solution, together with the function git) = t.

35. Suppose you wish to fit a function of the form 

f i t )  = c 4  p sin(/) + q cosit)

to a given continuous function #(/) on the closed inter­
val from 0 to 2tt. One approach is to choose n equally 
spaced points </, between 0 and 2n  [«/ =  i ■ i2n/n ), for 
/ =  1....... say]. We can fit a function

fnit) = Cn 4  Pn sin(/) 4  qn cosit)

to the data points («,•.£(<!/)), for / =  1....... n. Now
examine what happens to the coefficients c„, pn. qn of 
f nit) as n approaches infinity:
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• 2n

To find f n (t ), we make an attempt to solve the equations 

fn(oi) = gfai). for i = 1....... n.

or
c„ +  pn sin(ai) +  qn cos(ai) =  g(a\) 
c„ +  pn sin(a2) +  qn cos(a2) =  g(a2)

c„ +  pn sin(a„) +  q„ cos(an) = g(a„)
or

An
Cn
Pn

Qn

=  bny

where

An  —

1 s in (a i) COS(tf ] ) g(a\)~
1 sin(fl2) COS(fl2) g(a 2)

, k  =

_1 sin(an) cos (an)_ _g(an)_

a. Find the entries of the matrix AJn An and the compo­
nents of the vector A%bn.

b. Find

limn—KXD( — A^An' )  and lim ( — ATn l \  \  n J  n-Kx> \  n J

[Hint: Interpret the entries of the matrix
(2n/n)A" An and the components of the vector
(2n / n ) ATb as Riemann sums. Then the limits are 
the corresponding Riemann integrals. Evaluate as 
many integrals as you can. Note that

lim
n—> oo

is a diagonal matrix.]
c. Find

T ^ )

lim
n-+oo

=  lim (A^An) 1 A^b„
n —► oo

= lim
n-+oc

lim
n —±oc

T '1"'1") (vA"K)

lim ( — Al'bn 
n-*oo \  n

The resulting vector 

of the desired function

gives you the coefficient

/ ( / )  =  lim f n(t).
n-*oc

Write / (/ ).  The function f i t )  is called the first 
Fourier approximation of g(t). The Fourier approx­
imation satisfies a “continuous” least-squares condi­
tion, an idea we will make more precise in the next 
section.

36. Let S(t) be the number of daylight hours on the nh day of 
the year 2008 in Rome, Italy. We are given the following 
data for S(t):

Day t S(t)

February 1 32 10
March 17 77 12
April 30 121 14
May 31 152 15

We wish to fit a trigonometric function of the form

. / 2 t t  \  ( 2 n
/ < , ) = „ + ( .  s, „ ^ — , j + c c ° s ( ^ — ,

to these data. Find the best approximation of this form, 
using least squares.

How many daylight hours does your model predict 
for the longest day of the year 2008? (The actual value 
is 15 hours, 13 minutes, 39 seconds.)

37. The accompanying table lists several commercial air­
planes, the year they were introduced, and the number 
of displays in the cockpit.

Plane Year/ Displays d

Douglas DC-3 ’35 35
Lockheed Constellation ’46 46
Boeing 707 ’59 77
Concorde ’69 133

38.

a. Fit a linear function of the form log(J) =  cq 4- c\t 
to the data points (f/, log(c//)), using least squares.

b. Use your answer in part (a) to fit an exponential func­
tion d = kaf to the data points (// ,<//).

c. The Airbus A320 was introduced in 1988. Based on 
your answer in part (b), how many displays do you 
expect in the cockpit of this plane? (There are 93 
displays in the cockpit of an Airbus A320. Explain.)

In the accompanying table, we list the height h, the gen-j 
der g , and the weight w of some young adults.
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Height h 
(in Inches above 

5 Feet)

Gender g 
(1 =  “Female” 

0 =  “Male”)
Weight w 

(in Pounds)

2 1 110
12 0 180
5 1 120

11 1 160
6 0 160

Fit a function of the form

U) =  C‘o +  C \h  + C 2 £

to these data, using least squares. Before you do the com­
putations, think about the signs of cj and c2. What signs 
would you expect if these data were representative of the 
general population? Why? What is the sign of co? What 
is the practical significance of co?

39. In the accompanying table, we list the estimated number 
g of genes and the estimated number z of cell types for 
various organisms.

Organism
Number of 
Genes, g

Number of 
Cell Types, z

Humans 600,000 250
Annelid worms 200,000 60
Jellyfish 60,000 25
Sponges 10,000 12
Yeasts 2,500 5

a. Fit a function of the form log(z) =  co +  c\ log(g) to 
the data points (log(gj), log(z,-)), using least squares.

b. Use your answer in part (a) to fit a power function 
z  =  kgn to the data points ( g j , Zi ) .

c. Using the theory of self-regulatory systems, scientists 
developed a model that predicts that z is a square-root

function of g (i.e., a =  k^/g,  for some constant k). Is 
your answer in part (b) reasonably close to this form?

40. Consider the data in the following table:

a D
Mean Distance from Period of

the Sun (in Revolution
Planet Astronomical Units) (in Earth Years)

Mercury 0.387 0.241
Earth 1 1
Jupiter 5.20 11.86
Uranus 19.18 84.0
Pluto 39.53 248.5

Use the methods discussed in Exercise 39 to fit a power 
function of the form D = kan to these data. Explain, 
in terms of Kepler’s laws of planetary motion. Explain 
why the constant k is close to 1.

41. In the accompanying table, we list the public debt D 
of the United States (in billions of dollars), in various 
years t (as of September 30).

Year 1975 1985 1995 2005
D 533 1,823 4,974 7,933

a. Letting t =  0 in 1975, fit a linear function of the form 
log(D) = co 4- c\t to the data points (//, log(D/)), 
using least squares. Use the result to fit an exponential 
function to the data points (r,, Dz ).

b. What debt does your formula in part (a) predict for 
2015?

42. If A is any matrix, show that the linear transforma­
tion L(x) =  Ax from im(Ar ) to im(A) is an isomor­
phism. This provides yet another proof of the formula 
rank(A) =  rank(A7).

Inner Product Spaces

Let’s take a look back at what we have done thus far in this text. In Chapters 1 
through 3, we studied the basic concepts of linear algebra in the concrete context of 
R n. Recall that these concepts are all defined in terms of two operations: addition and 
scalar multiplication. In Chapter 4, we saw that it can be both natural and useful to 
apply the language of linear algebra to objects other than vectors in R n, for example, 
to functions. We introduced the term linear space (or vector space) for a set that 
behaves like R n as far as addition and scalar multiplication are concerned.

In this chapter, a new operation for vectors in R n takes center stage: the dot 
product. In Sections 5.1 through 5.4, we studied concepts that are defined in terms 
of the dot product, the most important of them being the length of vectors and 
orthogonality of vectors. In this section, we will see that it can be useful to define
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Definition 5.5.1

EXA M PLE I

a product analogous to the dot product in a linear space other than R '1. These gen­
eralized dot products are called inner products.  Once we have an inner product in a 
linear space, we can define length and orthogonality in that space just as in Rw, and 
we can generalize all the key ideas and theorems of Sections 5.1 through 5.4.

Inner products and inner product spaces

An inner product  in a linear space V is a rule that assigns a real scalar (denoted by 
( f  » 8 ) ) to any pair / ,  g of elements of V, such that the following properties hold for 
all / ,  g , h in V, and all c in R:

a. ( / ,  g) =  (g, f )  (symmetry)

b. ( /  + *,«> = </,*> + <*,*>
C. (c/, g) =  c ( /,  g)
d. ( / ,  / )  > 0, for all nonzero /  in V (positive definiteness)

A linear space endowed with an inner product is called an inner product space.

Properties b and c express the fact that T ( f )  =  ( / ,  g) is a linear transformation 
from V to R, for a fixed g in V.

Compare these rules with those for the dot product in R", listed in the Appendix, 
Theorem A.5. Roughly speaking, an inner product space behaves like R" as far as 
addition, scalar multiplication, and the dot product are concerned.

Consider the linear space C[a , b] consisting of all continuous functions whose do­
main is the closed interval [a , b]y where a < b. See Figure 1.

For functions /  and g in C[a< bJ, we define

< /.* > =  I "  f U ) g ( t ) d t .
Ja

The verification of the first three axioms for an inner product is straightforward. For 
example,

( f * g ) =  [  f ( t ) g ( t ) d t =  f  g ( t ) f ( t ) d t  =  (g, / ) .
J a J a •

i
The verification of the last axiom requires a bit of calculus. We leave it as Exercise 1̂  

Recall that the Riemann integral jjf f ( t ) g ( t )  dt  is the limit of the Riemann su 
YXL i where the r* can be chosen as equally spaced points on
interval fa , b\. See Figure 2.

uni
thd
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EX A M PLE 2

EXA M PLE 3

Then

/ b m 
f ( t ) g { t ) d t  % ^ 2 f ( t k)g{tk)At  =

k=l

' H U Y ■#<M ' \
f « 2 ) g{t2)

/

At

for large m.
This approximation shows that the inner product ( / ,  g) =  f ( t ) g ( t ) d t  for 

functions is a continuous version of the dot product: The more subdivisions you 
choose, the better the dot product on the right will approximate the inner product 
</.*>. ■  

Let i i  be the space of all “square-summable” infinite sequences, that is, sequences

x =  (*o**i,*2..... xn,...)

such that o x} =  jcq +  x]  H------ converges. In this space we can define the inner
product

/=()

(Show that this series converges.) The verification of the axioms is straightforward. 
Compare this with Exercises 4.1.15 and 5.1.18. ■

The trace of a square matrix is the sum of its diagonal entries. For example,

=  1 + 4  =  5.trace
1 2 

3 4

In R "x,w, the space of all n x m matrices, we can define the inner product

(>4, B) =  trace(Ar £ ).

We will verify the first and the fourth axioms.

(A, B) =  trace(A7 B)  =  trace((Ar Z?)r ) =  trace( # 7 A)  =  (B , A)



236 C H A P T E R  5 Orthogonality and Least Squares

Definition 5.5.2

To check that (A, A) > 0 for nonzero A , write A in terms of its columns:

I I I
/I = V\ v2

{.A , A) =  trace(Ar A) =  trace

r- v[ -i
TJ-  V2 -

i1T£>1i

Vi v2
I

Vm
I J

■||v,||2 . . .
■

\
. . .  I M 2

II5JI2. /

=  trace

2 +  11̂ 2II2 H-----+  l|5m||2.

If A is nonzero, then at least one of the column vectors v< is nonzero, so that the
sum ||v 11|2 +  ||v2\\2 H------- b ||5mII2 is positive, as desired. ■

We can introduce the basic concepts of geometry for an inner product space
exactly as we did in R" for the dot product.

Norm, orthogonality

The norm (or magnitude) of an element /  of an inner product space is

ll/ll =  s / U J ) .

Two elements /  and g of an inner product space are called orthogonal (or perpen­
dicular) if

< /.* > =  o. _ _

We can define the distance between two elements of an inner product space as 
the norm of their difference:

d ist(/, g) =  11/  — g||.

Consider the space C[a , b], with the inner product defined in Example 1.
In physics, the quantity || / 1| 2 can often be interpreted as energy. For example, it 

describes the acoustic energy of a periodic sound wave /  (t) and the elastic potential 
energy of a uniform string with vertical displacement f ( x ) .  (See Figure 3.) The 
quantity | | / | | 2 may also measure thermal or electric energy.

Figure 3
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EXA M PLE  4

EXA M PLE  5

EXA M PLE  6

Theorem 5.5.3

In the inner product space C[0, 1] with {/, g) =  / 0' f ( t ) g ( t ) d t ,  find | | / | |  for 
f i t )  = t 2.

Solution

Show that / ( / )  =  sin(f) and g ( t )  =  cos( t )  are orthogonal in the inner product space 
C[0, 27T] with ( f  g) =  f 2* f ( t ) g ( t ) d t .

Solution

</.
rln

\ g)  =  /  si 
Jo

sin(f)cos(r)df = -  sin2(f)
2tt

=  o

Find the distance between f ( t )  = t and g(t) =  1 in C[0, 1]. 

Solution

^  ' ' 1

The results and procedures discussed for the dot product generalize to arbitrary 
inner product spaces. For example, the Pythagorean theorem holds; the Gram- 
Schmidt process can be used to construct an orthonormal basis of a (finite di­
mensional) inner product space; and the Cauchy-Schwarz inequality tells us that 
\(f ,  g)l 5: II/II II#IK for two elements /  and g of an inner product space.

O rthogonal Projections
In an inner product space V, consider a finite dimensional subspace W with or­
thonormal basis , . . . ,  gm. The orthogonal projection p ro j^ /  of an element /  of 
V onto W  is defined as the unique element of W such that /  — proj w f  is orthogonal 
to W.  As in the case of the dot product in Rw, the orthogonal projection is given by 
the following formula.

Orthogonal projection
If g[ ........ gm is an orthonormal basis of a subspace W of an inner product space V ,
then

projw f  =  tel- f ) g \  +  • • • +  (gm, f ) g m ,

for all /  in V. ■

(Verify this by checking that ( /  — projw/ ,  g ,) =  0 for i =  1 , . . . ,  m.)
We may think of p ro j^ /  as the element of W closest to / .  In other words, if 

we choose another element h of W, then the distance between /  and h will exceed 
the distance between /  and p ro j^ / .

As an example, consider a subspace W of C[a , b], with the inner product intro­
duced in Example 1. Then projw/  is the function g in W that is closest to / ,  in the
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(“iA )
(ah bk)

d i s t ( / ,  g )  =  11/  — g | |  =  J

is least.
The requirement that

[ \ f ( t ) - g u ) ) 2dt
Ja

be minimal is a continuous least-squares condition, as opposed to the discrete least- 
squares conditions we discussed in Section 5.4. We can use the discrete least-squares 
condition to fit a function g of a certain type to some data points (ak, bk), while the 
continuous least-squares condition can be used to fit a function g of a certain type to a 
given function / .  (Functions of a certain type are frequently polynomials of a certain 
degree or trigonometric functions of a certain form.) See Figures 4(a) and 4(b).

:~g(ak)
g(t)

Figure 4 (a) Discrete least-squares condition: Ylk=i & k — g(ctk)) is minimal, (b) Continuous least-squares condition: 
fa  ( f i t )  -  g U ) ) 2 dt  is minimal.

We can think of the continuous least-squares condition as a limiting case of a 
discrete least-squares condition by writing

/ b m 
( / ( 0  -  g ( 0 ) 2 dt  = \ i ( / ( '* )  -  g(tk) )2At .  

m ~*°° k= l

EXA M PLE  7 Find the linear function of the form g( t )  =  a + b t  that best fits the function f i t )  =  J  
over the interval from — 1 to 1, in a continuous least-squares sense.

Solution
We need to find projPi / .  We first find an orthonormal basis of P\ for the given inner 
product; then, we will use Theorem 5.5.3. In general, we have to use the Gram- 
Schmidt process to find an orthonormal basis of an inner product space. Because the 
two functions 1, t in the standard basis of P\ are orthogonal already, or



we merely need to divide each function by its norm:

IHII =  ^ j \ d t  = V 2  and ||r || = )J J \ 2dt  = ^ .

An orthonormal basis of Pi is

± 1  and

Now,

proj PJ  = +

=  ^ ( e  — e~]) +  3e~xt. (We omit the straightforward computations.) 

See Figure 5. ■
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What follows is one of the major applications of this theory.

Fourier A n a ly s is 7
In the space C [—7T, 7r], we introduce an inner product that is a slight modification 
of the definition given in Example 1:

( f g )  =  -  f f ( t ) g ( t ) d t .  
n  J-n

The factor 1 j n  is introduced to facilitate the computations. Convince yourself that 
this is indeed an inner product. (Compare with Exercise 7.)

More generally, we can consider this inner product in the space of all piecewise 
continuous functions defined in the interval [ - 7T, jt]. These are functions / ( / )  that are 
continuous except for a finite number of jump-discontinuities [i.e., points c where 
the one-sided limits lim,_*c.- / ( f )  and lim,_*c+ / ( / )  both exist, but are not equal]. 
Also, it is required that / (c) equal one of the two one-sided limits. Let us consider 
the piecewise continuous functions with / ( c )  =  limr_>r- / ( f ) .  See Figure 6 .

For a positive integer n , consider the subspace Tn of C[—n,  n]  that is defined 
as the span of the functions 1, sin(0 , cos(f), sin(2 f), cos(2 f ) , . . . ,  sin(nt),  cos(nt).

7Named after the French mathematician Jean-Baptiste-Joseph Fourier (1768-1830), who developed 
the subject in his Theorie analytique de la chaleur (1822), where he investigated the conduction of 
heat in very thin sheets of metal. Baron Fourier was also an Egyptologist and government 
administrator; he accompanied Napoleon on his expedition to Egypt in 1798.
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Theorem 5.5.4

The space Tn consists of all functions of the form

f ( t )  =  a +  b\ sin(f) +  c\ cos(r) H------- h bn sin(nf) +  c„ cos (nr),

called trigonometric polynomials of order <  n.
From calculus, you may recall the Euler identities:

/ s \n(pt )cos(mt )dt  =  0 , for integers p, m,
./-71

/ sin(pt)  sin(m/) dt  =  0 , for distinct integers p , m,
-7T

/ cos (pt)  cos (mt) dt  =  0 , for distinct integers p , m.
■n

These equations tell us that the functions 1, sin(/), cos(/)........ sin(nt),  cos(nt) are
orthogonal to one another (and therefore linearly independent).

Another of Euler’s identities tells us that

/ 7T /'IT
siti2(mt )d t  =  I cos2(mt )d t  =  n,

7T J  — 7T
for positive integers m.  This means that the functions sin(r), cos(f), . . . ,  sin(nf), 
cos (nt) all have norm 1 with respect to the given inner product. This is why we 
chose the inner product as we did, with the factor 

The norm of the function f ( t )  =  1 is

therefore,

is a function of norm 1.

* (/) =
f U )

11/(011

An orthonormal basis of T„
Let Tn be the space of all trigonometric polynomials of order < n,  with the innct 
product

Then the functions
1

— sin(/), cos(/)i sin(2 f), cos(2 f) ........ sin(nr). cos(nt)
V 2

form an orthonormal basis of T„. j
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Theorem 5.5.5

________

Figure 7

For a piecewise continuous function / ,  we can consider

fn =  proj TJ .

As discussed after Theorem 5.5.3, /„  is the trigonometric polynomial in Tn that best 
approximates / ,  in the sense that

d ist(/, /„ ) < d ist(/, g),

for all other g in T„.
We can use Theorems 5.5.3 and 5.5.4 to find a formula for /„  =  proj^ / .

Fourier coefficients
If /  is a piecewise continuous function defined on the interval [—jt, jr], then its best 
approximation /„  in T„ is

f n(t) =  proj TJ ( t )

=  ao—f  +  b\ sin(f) +  ci cos(/) H--------1- bn sin(nr) +  c„ cos(nr),
V 2

where

bk = i f V) , s i n(k t ) )  =  -  f f ( t ) s \ r \ (kt )dt ,  
n  J-„

Ck = (f ( t ) , c o s ( k t )) =  — f  f ( t ) c o s ( k t ) d t , 
n  J-n

ao =  ( fit)' 7 i )  =  72^  L f(t)dt'

The the c*, and ao are called the Fourier coefficients of the function / .  The 
function

fn(t)  =  doA=  +  b\ sin(r) +  c\ cos (r) H---------h bn sin (nt) +  cn cos (nt)
V 2

is called the nth-order Fourier approximation of / .  ■

Note that the constant term, written somewhat awkwardly, is

1 1 r

a° 7 l  = 2 ^ J - x f ( t ) d t '
which is the average value of the function /  between — n  and n.  It makes sense that 
the best way to approximate / ( / )  by a constant function is to take the average value 
of / ( / ) .

The function bk sin(kt) +  q  cos(kt) is called the kih harmonic of / (f). Using 
elementary trigonometry, we can write the harmonics alternatively as

bk sin(£r) -1- ck cos (kt) =  A* sin (k(t — 5*)),

where =  y b j  +  c\  is the amplitude of the harmonic and 5* is the phase shift.
Consider the sound generated by a vibrating string, such as in a piano or on a 

violin. Let f ( t )  be the air pressure at your eardrum as a function of time t. [The 
function f ( t )  is measured as a deviation from the normal atmospheric pressure.] In 
this case, the harmonics have a simple physical interpretation: They correspond to 
the various sinusoidal modes at which the string can vibrate. See Figure 7.
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Piano

J _____ I_____ I_____ I_____ i—

1 2 3 4 5 6

Violin

1 2 3 4 5 6

Figure 8

T ht fundamental frequency  (corresponding to the vibration shown at the bottom 
of Figure 7) gives us the first harmonic of f ( t ) ,  while the overtones (with frequencies 
that are integer multiples of the fundamental frequency) give us the other terms of the 
harmonic series. The quality of a tone is in part determined by the relative amplitudes 
of the harmonics. When you play concert A (440 Hertz) on a piano, the first harmonic 
is much more prominent than the higher ones, but the same tone played on a violin 
gives prominence to higher harmonics (especially the fifth). See Figure 8 . Similar 
considerations apply to wind instruments; they have a vibrating column of air instead 
of a vibrating string.

The human ear cannot hear tones whose frequencies exceed 20,000 Hertz. We 
pick up only finitely many harmonics of a tone. What we hear is the projection of 
f { t )  onto a certain Tn.

EXA M PLE  8 Find the Fourier coefficients for the function f ( t )  =  t on the interval —7r <  / <  n:

bk =  ( / ,  sin (kt)) _  1 f *
n J-n

sin(kt)t d t

1 f M I T  1 F  1
=  — < — -  cos (kt) t  + ~ cos (kt) dt  > (integration by parts)

Tt I  [k J I-* k J- „  J
2
k

2
k

-  cos(kt ) t  

if k is even 

if k is odd

= ( - \ ) M j . k

All Ck and ao are zero, since the integrands are odd functions.
The first few Fourier polynomials are

fx =  2sin(r),

f i  =  2 sin(f) — sin(2 f),
2

/3  =  2sin(f) -  sin(2f) +  -  sin(3/),

2 1 
/4  =  2 sin(0 — sin(2f) +  -  sin(3?) — -  sin(4f).

See Figure 9.

Figure 9
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Theorem 5.5.6

How do the errors || /  — /„  || and || /  — f „+ \|| of the nth and the (n + 1  )st Fourier 
approximation compare? We hope that f„+\ will be a better approximation than /„ , 
or at least no worse:

11/  - / , , +  ! II <  I I / - / J I -

This is indeed the case, by definition: /„ is a polynomial in Tn + 1, since T„ is contained 
in Tn+1, and

W f - f n + d  < l l / - * l l ,

for all g in Tn+\, in particular for g =  /„ . In other words, as n goes to infinity, the 
error || /  — /„  || becomes smaller and smaller (or at least not larger). Using somewhat 
advanced calculus, we can show that this error approaches zero:

Hm ||/ -  /„|| =  0.
n-^oo

What does this tell us about lim ^ o c  | | / J |?  By the theorem of Pythagoras, we 
have

11/  - f n \ \ 2 +  \ \ f n \ \ 2 =  l l / l l 2 -

As n goes to infinity, the first summand, || f  — f„ ||2, approaches 0, so that

Hm l l / J  =  ll/ll.n-+oo

We have an expansion of f n in terms of an orthonormal basis

f n =  a o -7= +  b[ sin(/) +  ci cos(f) H------- b bn sin(rcr) +  cn cos(a2/),
V 2

where the bk, the c*, and ao are the Fourier coefficients. We can express | | / J |  in 
terms of these Fourier coefficients, using the Pythagorean theorem:

)\fn f = a 2 + b2 +  c2 +  --- +  b2n + c 2n.

Combining the last two “shaded” equations, we get the following identity:

a l  +  b\ +  c]  H--------- b b\  +  c\  H-------=  11 * 1,2

The infinite series of the squares of the Fourier coefficients of a piecewise continuous 
function /  converges to | | / | | 2. ■

For the function / ( / )  studied in Example 8 , this means that

, 4  4  4  1 r  -> J 2 2
4 + Z  +  Q + - - -  +  - + - - -  =  -  /  r d t  = - 7 Z 2 ,4 9 n l 71 J - x  3

or

1  - H i
, n2 4 ' 9 +  16 +  _  6  ’

n =  l

an equation discovered by Euler.
Theorem 5.5.6 has a physical interpretation when | | / | | 2 represents energy. For 

example, if f ( x )  is the displacement of a vibrating string, then b\  +  c\  represents 
the energy of the kth harmonic, and Theorem 5.5.6 tells us that the total energy || / 1| 2 
is the sum of the energies of the harmonics.

There is an interesting application of Fourier analysis in quantum mech­
anics. In the 1920s, quantum mechanics was presented in two distinct forms:
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Werner Heisenberg’s matrix mechanics and Erwin Schrodinger’s wave mechan­
ics. Schrodinger( 1887-1961) later showed that the two theories are mathematically 
equivalent: They use isomorphic inner product spaces. Heisenberg works with the 
space i 2 introduced in Example 2, while Schrodinger works with a function spacg 
related to C[—n,  n].  The isomorphism from Schrodinger’s space to i 2 is established 
by taking Fourier coefficients. (See Exercise 13.)

EXERCISES 5.5
GOAL Use the idea o f an inner product, and apply the 
basic results derived earlier for the dot product in Rn to 
inner product spaces.

1. In C[a% b], define the product

</■*> =  [  f (t )g{t)dt .
J a

Show that this product satisfies the property

( f  f )  > 0

for all nonzero / .

2. Does the equation

</. g +  A) =  < / .g )+  </.*>
hold for all elements / ,  g, h of an inner product space? 
Explain.

3. Consider a matrix S in Rnxn. In R", define the product

(x.y) = {Sx)T Sy.

a. For matrices S is this an inner product?
b. For matrices 5 is (Jc, >•) = x  y (the dot product)?

4. In R" xm, consider the inner product

(A, B) =  trace(/\7 #) 

defined in Example 3.
a. Find a formula for this inner product in R"x 1 =K ".
b. Find a formula for this inner product in R 1 xm (i.e.. 

the space of row vectors with m components).

5. Is ((/A, B)) =  trace(^fi^) an inner product in Rwxm? 
(The notation ((A , B)) is chosen to distinguish this prod­
uct from the one considered in Example 3 and Exer­
cise 4.)

6 . a. Consider an n x m matrix P and an m x n matrix Q.
Show that

trace(PQ) =  trace(0 P). 

b. Compare the following two inner products in Rn xm: 

(A. B) = tracc(Ar B),
and

({A, B» =  traceMfl7').

(See Example 3 and Exercises 4 and 5.)

7. Consider an inner product (v,w)  in a space V, and a 
scalar k. For which choices of k is

((l>, Ui)) =  fc(v. w)

an inner product?

8. Consider an inner product ( v . w ) in a space V . Let w  be a 

fixed element of V. Is the transformation T{v) =  (v, w) 
from V to R  linear? What is its image? Give a geometric 
interpretation of its kernel.

9. Recall that a function f ( t )  from R to R is called

even if f ( —t) = / ( r ) ,  for all /,

and

odd if f ( - t )  =  -  f  (/), for all t.

Show that if / ( x ) is an odd continuous function and g(x) 
is an even continuous function, then functions f ( x )  and 
#(jc) are orthogonal in the space C [ - 1,1] with the inner 
product defined in Example 1.

10. Consider the space P2 with inner product

i r'
( f . g )  =  j  J  ( f ( t ) g ( t ) d t .

Find an orthonormal basis of the space of all functions 
in P2 that are orthogonal to / (r) =  t.

11. The angle between two nonzero elements i> and w of an 

inner product space is defined as

(f, w)
A v .  w) = arccos.............

II i'll INII

In the space C[—n, n  | with inner product

( f
I  rn

\g) = -  \
* J - ,

f ( t  )g(t)dt.

find the angle between f i t )  =  cos(/) and git)  = 
cos(/ +  6), where 0 <  & <  t z . Hint: Use the formula 
cos(/ +  <5) =  cos(/) cos(<5) — sin(/) sin(<5).

12. Find all Fourier coefficients of the absolute value func­
tion

f ( t )  =  u i

13. For a function /  in C[—n, n] (with the inner product 
defined on page 239), consider the sequence of all itf
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Fourier coefficients,

( f lQ,  b \ ,  C \ i  b2* C’2 .........b n , C n -------- )•

Is this infinite sequence in £2? If so, what is the relation­
ship between

| | / | |  (the norm in C [ - n . tt\)

and
||(«0’ b\, c \ . b2* C2, . • -)|| (the norm in 12)?

The inner product space t 2 was introduced in Example 2.

|4. Which of the following is an inner product in P2? 
Explain.
a. (/,*) = /(!)* (!)+ /(2)*(2)
b. ( ( / g» =  / ( D g(l) +  /(2 )g(2) +  /<3)g(3)

15. For which values of the constants /?, c, and d is the fol­
lowing an inner product in IR2?

=  . x i y i  +  b x \ y 2 +  c x 2 y \  +  d x 2 y 2

(Hint: Be prepared to complete a square.)

16. a. Find an orthonormal basis of the space P\ with inner 
product

(/• J?> =  [

b. Find the linear polynomial g(t) =  a +  bt that best 
approximates the function / ( / )  =  t 2 on the interval 
[0, 1] in the (continuous) least-squares sense. Draw 
a sketch.

17. Consider a linear space V . For which linear transforma- 
tions T from V i o R n is

(v, w) =  T(v) ■ T(w)  
t

Dot product

an inner product in VI

18. Consider an orthonormal basis si  ̂ of the inner product 
space V. For an element /  of V, what is the relationship 
between | | / | |  and U[/HMI (the norm in W1 defined by 
the dot product)?

19. For which 2 x 2  matrices A is

(5, w) =  v TAw

an inner product in R 2 ? Hint: Be prepared to complete 
a square.

Consider the inner product

(v, w) =  vT

in R2. (See Exercise 19.)

a. Find all vectors in IR2 that are perpendicular to 

with respect to this inner product.

b. Find an orthonormal basis of R2 with respect to this 
inner product.

21. If || 51| denotes the standard norm in IR", does the formula

(v, w) =  ||5 +  it’ll2 -  ||5||2 -  ||tli||2 

define an inner product in 1R'??

22. If f ( t )  is a continuous function, what is the relationship 
between

2
J \ f ( t ) ) 2dl  and Q f  f ( t ) d t j  ?

(Hint: Use the Cauchy-Schwarz inequality.)

23. In the space P| of the polynomials of degree < 1, we 
define the inner product

(/.*> = \  (/(0 )s(0) +  /<!)*< 1 ))•

Find an orthonormal basis for this inner product space.

24. Consider the linear space P of all polynomials, with 
inner product

r\

</.
Jo

f ( t ) g U ) d t .

For three polynomials / ,  g , and h we are given the fol­
lowing inner products:

(•) f g h

/ 4 0 8
g 0 1 3
h 8 3 50

For example, (/. f ) =  4 and (#. h) =  (/1, g) =  3.
a. Find (f . g  + h).
b. Find ||g +  h\\.
c. Find projFh, where E =  span(/, g). Express your 

solution as linear combinations of /  and g.
d. Find an orthonormal basis of span(/ ,  g. h). Express 

the functions in your basis as linear combinations of 
/ ,  g, and h.

25. Find the norm \\x || of

( t2 is defined in Example 2.)

26. Find the Fourier coefficients of the piecewise continuous 
function

/ ( ' )
■ {

- 1  if / < 0
1 if / > 0.

Sketch the graphs of the first few Fourier polynomials.
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27. Find the Fourier coefficients of the piecewise continuous 
function

r/ x fO i f / < 0
f  \ l  if r >  0.

28. Apply Theorem 5.5.6 to your answer in Exercise 26.

29. Apply Theorem 5.5.6 to your answer in Exercise 27.

30. Consider an ellipse E in R 2 centered at the origin. Show 
that there is an inner product (•, •) in K2 such that E 
consists of all vectors x  with ||jf|| =  1, where the norm 
is taken with respect to the inner product (•,•).

31. Gaussian integration. In an introductory calculus 
course, you may have seen approximation formulas for 
integrals of the forin

b n 
f ( t ) d t  % Y w i H a j ) ,  

i=i

where the a{ are equally spaced points on the interval 
(ia , b), and the Wi are certain “weights” (Riemann sums, 
trapezoidal sums, and Simpson’s rule). Gauss has shown 
that, with the same computational effort, we can get bet­
ter approximations if we drop the requirement that the 
ax be equally spaced. Next, we outline his approach. 

Consider the space Pn with the inner product

</.*> =  j  f ( t )g( t )d t .

Let /o, f \ ........fn be an orthonormal basis of this space,
with degree(fk) =  k. (To construct such a basis, ap­
ply the Gram-Schmidt process to the standard basis
1, f , . . . ,  tn.) It can be shown that /„  has n distinct
roots a i , a 2____ <*n on the interval (—1, 1). We can find
“weights” w\,u) 2 , ' . - . w n such that

l »
f ( t ) d t  = y 2 w i f ( a i)J 

1 /=i

for all polynomials of degree less than n. (See Exercise 
4.3.71.) In fact, much more is true: This formula holds 
for all polynomials / ( t) of degree less than 2n.

You are not asked to prove the foregoing assertions 
for arbitrary w, but work out the case n =2:  Find a \ , a2 
and w \ , w2, and show that the formula

J  f ( t ) d t  = w \ f ( a \ )  +  w2f ( a 2 )

holds for all cubic polynomials.

32. In the space C[— 1, 1], we introduce the inner product

{/’g) = \  / , fU)g{t )dt■
a. Find (tn, fm), where n and m are positive integers.

b. Find the norm of /( f)  =  frt, where n is a positive 
integer.

c. Applying the Gram-Schmidt process to the standard 
basis 1, f , f2, f3 of P3, construct an orthonormal basis 
go(t), • .. ,  £3(f) of P3 for the given inner product.

d. Find the polynomials , . . . ,  — ■ (Those are
goO) £3(1) 

the first few Legendre Polynomials, named after the 
great French mathematician Adrien-Marie Legen- 
dre, 1752-1833. These polynomials have a wide 
range of applications in math, physics, and engineer­
ing. Note that the Legendre polynomials are normal­
ized so that their value at 1 is 1.)

e. Find the polynomial g(t) in P3 that best approx­
imates the function f ( t )  = ------^ on the inter-

1 + f 2
val [ - 1, 1], for the inner product introduced in this 
exercise. Draw a sketch.

33. a. Let w(t ) be a positive-valued function in C[a, b]t
where b > a. Verify that the rule (/, g) =

w(t ) f ( t )g( t )dt  defines an inner product on 
C[a, b].

b. If we chose the weight function w(t) so that 
w(t)dt = 1, what is the norm of the constant 

function /( f)  =  1 in this inner product space?

34. In the space Cf—1,1], we define the inner
product (/,£> =  /_!, -  t2f ( t )g( t )d t  =
\  f l  1 Vl -  t2f ( t )g( t )dt .  See Exercise 33; here we 
let w(t) = - V l  -  f2. [This function w(t) is called 
a Wigner Semicircle Distribution, after the Hungarian 
physicist and mathematician E. P. Wigner (1902-1995), 
who won the 1963 Nobel Prize in Physics.] Since this 
is not a course in calculus, here are some inner prod­
ucts that will turn out to be useful: ( l , f 2) =  1/4, 
(f,f3) =  1/8, and <f3 , f 3) =5 /64 .
a. F ind /^ j w(t)dt.  Sketch a rough graph of the weight 

function w(t).
b. Find the norm of the constant function f ( t )  = 1.
c. Find (f2, f3); explain. More generally, find (fn, tm) 

for positive integers n and m whose sum is odd.
d. Find (f, f) and (f2, f2). Also, find the norms of the 

functions t and f2.
e. Applying the Gram-Schmidt process to the standard 

basis 1, f, f2, f3 of P3, construct an orthonormal
sis go (0 , • • • 1 £3 (0  of P3 for the given inner product. 
[The polynomials £o(f),. . . ,  £3(f) are the first few 
Chebyshev Polynomials o f the Second Kind, named 
after the Russian mathematician Pafnuty Chebyshe^ 
(1821-1894). They have a wide range of applications 
in math, physics, and engineering.]

f. Find the polynomial g(t) in P3 that best approxi­
mates the function /( f )  =  f4 on the interval [—1, 1], 
for the inner product introduced in this exercise.
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35. In this exercise, we compare the inner products and 
norms introduced in Problems 32 and 34. Let’s denote 
the two norms by | | / | | 32 and H/H34, respectively,
a. Compute ||f II32 and ||f||34. Which is larger? Explain 

the answer conceptually. Graph the weight functions

u>22(t) = k and W34U) =  £ Vl — t2 on the same 
axes. Then graph the functions u^32(0^2 and LU34 (/ )r2 
on the same axes,

b. Give an example of a continuous function f  (t) such 
that | | / | |34 > H/II32.

Chapter Five Exercises

TRUE OR FALSE?
1. If A and B are symmetric n x n  matrices, then A + B 

must be symmetric as well.

2. If matrices A and S are orthogonal, then S ~[ AS  is or­
thogonal as well.

3. All nonzero symmetric matrices are invertible.

4. If A is an n x n matrix such that A A T = then A must 
be an orthogonal matrix.

5. If u is a unit vector in R”, and L =  span(iJ), then 
proj/ (jc) =  (jc • u)x for all vectors jc in R'7.

6. If A is a symmetric matrix, then 1A must be symmetric 
as well.

7. If T is a linear transformation from R" to R" such
that T(e\), TCej)....... T(en) are all unit vectors, then
T must be an orthogonal transformation.

8. If A is an invertible matrix, then the equation (AT)~l = 
(A-1 )7 must hold.

9. If matrix A is orthogonal, then matrix A2 must be or­
thogonal as well.

10. The equation (A B) T = A r B T holds for all n x n ma­
trices A and B.

11. If matrix A is orthogonal, then A T must be orthogonal 
as well.

12. If A and B are symmetric n x n  matrices, then A B must 
be symmetric as well.

13. If matrices A and B commute, then A must commute 
with B T as well.

14. If ,4 is any matrix with ker(A) =  {0 }, then the matrix 
A A t represents the orthogonal projection onto the im­
age of A.

15. If A and B are symmetric n x n matrices, then ABBA  
must be symmetric as well.

16. If matrices A and B commute, then matrices A T and B T 
must commute as well.

17. There exists a subspace V of R5 such that dim(V) = 
dim(V-*-), where V1 denotes the orthogonal comple­
ment of V.

18.

19.

20.

Every invertible matrix A can be expressed as the prod­
uct of an orthogonal matrix and an upper triangular 
matrix.

If jc and v are two vectors in R", then the equation
II* +  >’ll2 =  ll*ll2 +  ll.vll2 must hold.

The equation det(A7 ) = det(A) holds for all 2 x 2 ma­
trices A .

21. If A and B are orthogonal 2x2 matrices, then AB = BA.

22. If A is a symmetric matrix, vector 5 is in the image of A , 
and w is in the kernel of A , then the equation 5 -5  = 0 
must hold.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The formula ker(A) = ker {A7 A) holds for all matri­
ces A.

If A 7 A =  AA T for an n x n matrix A, then A must be 
orthogonal.

The determinant of all orthogonal 2 x 2  matrices is 1.

If A is any square matrix, then matrix |(A  — A7 ) is 
skew-symmetric.

The entries of an orthogonal matrix are all less than or 
equal to 1.

Every nonzero subspace of R” has an orthonormal basis, 

is an orthogonal matrix.3 - 4
4 3

If V is a subspace of R/? and Jc is a vector in R '\ then 
vector projyx  must be orthogonal to vector Jc — proj vx.

There exist orthogonal 2 x 2  matrices A and B such that 
A -f B is orthogonal as well.

If || AJc|| < ||Jf|| for all Jc in R '\  then A must represent 
the orthogonal projection onto a subspace V of R".

If A is an invertible matrix such that A-1 =  A, then A 
must be orthogonal.

If the entries of two vectors 5 and w in R" are all positive, 
then 5 and w must enclose an acute angle.

The formula (ker# ) 1  =  im(BT) holds for all matri­
ces B.
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36. The matrix AT A is symmetric for all matrices A.

37. If matrix A is similar to B and A is orthogonal, then B 
must be orthogonal as well.

38. The formula \m(B) = im(BTB) holds for ail square 
matrices B.

39. If matrix A is symmetric and matrix S is orthogonal, 
then matrix S_l AS must be symmetric.

40. If A is a square matrix such that A T A =  AAT, then 
ker(A) =  ker(Ar ).

41. Any square matrix can be written as the sum of a sym­
metric and a skew-symmetric matrix.

42. If x \ , X2....... xn are any real numbers, then the inequal­
ity

\k= 1 /  *=l
must hold.

43. If AAt =  A2 for a 2 x 2 matrix A , then A must be 
symmetric.

44. If V is a subspace of IR" and x is a vector in IR", then 
the inequality x • (projyjc) > 0 must hold.

45. If A is an n x n matrix such that || Au\\ = 1 for all unit 
vectors 5, then A must be an orthogonal matrix.

46. If A is any symmetric 2 x 2  matrix, then there must exist 
a real number x such that matrix A — x l2 fails to be 
invertible.

47. There exists a basis of R2x2 that consists of orthogonal 
matrices.

1 248. If A = , then the matrix Q in the QR factoriza-
2 1

tion of A is a rotation matrix.

49. There exists a linear transformation L from R3x3 to 
R2*2 whose kernel is the space of all skew-symmetric 
3 x 3  matrices.

50. If a 3 x 3 matrix A represents the orthogonal projection 
onto a plane V in IR3, then there must exist an orthogonal 
3 x 3  matrix 5 such that ST AS is diagonal.
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Determinants

Introduction to Determinants

In Chapter 2 we found a criterion for the invertibility of a 2 x 2 matrix: The matrix

is invertible if (and only if)

by Theorem 2.4.9a.
You may wonder whether the concept of a determinant can be generalized to 

square matrices of arbitrary size. Can we assign a number det A to a square matrix A, 
expressed in terms of the entries of A, such that A is invertible if (and only if) 
d e tA ^ O ?

The D eterm inant o f  a 3 x 3  Matrix  
Let

(we denote the three column vectors 3, 5, and w). (See Figure 1.)
The matrix A fails to be invertible if the image of A isn’t all of R \  meaning that 

the three column vectors m, 5, and w are contained in some plane V. In this case, the 
cross product1 v x w ,  being perpendicular to V , is perpendicular to vector w, so that

If A is invertible, on the other hand, then 5 x 5  fails to be perpendicular to 5, so 
that 5 • (S x u;) #  0 .

'To review the definition of the cross product, see Definition A.9 in the Appendix.

det A = ad — be ^  0,

a\\ U\2 *13
A =  a 21 (122 023

_a$\ ay2 033
U V w

u • (v x w) =  0 .

249
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Definition 6.1.1

Theorem 6 .1.2

Thus the quantity 2 (D x u ;) has the property we expect from the determinant: 
It is nonzero if (and only if) matrix

A = U V w j

is invertible. This motivates the following definition.

Determinant of a 3 x 3 matrix, in terms of the columns

If A = v w , then

det A = u • (v x w).

A 3 x 3 matrix A is invertible if (and only if) det A ^  0.

Let’s express the determinant det A = u • (v x  w) in terms of the entries of 
matrix A :

det A = u-(v x  w)
011 a n 013 \ 01 f
021 \ 022 X a 23 = 021

031. V .032. -°33_J 031.

ai2a33 “  032023 
032013 — 012033

=  011 (022033 “  032023) +  021 (032013 — 012033) +  031 (012023 “  022013)
=  011022033 “  011032023 +  021032013 “* 021012033 +  031012023 “  031022013*

Here is a memory aid for the determinant of a 3 x 3 matrix.

Sarrus’s rule2

To find the determinant of a 3 x 3 matrix A , write the first two columns of A to the 
right of A. Then multiply the entries along the six diagonals shown below.

_  _  _

Add or subtract these diagonal products, as shown in the diagram: 

det A =  011022033 +012023031  +  013021032 “  013022031 “  011023032 — 012021033

2Stated by Pierre Fr6d6ric Samis (1798-1861) of Strasbourg, c. 1820. '
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EXAMPLE I

EXA M PLE 2

EXA M PLE 3

EXA M PLE 4

Find the determinant of

1 2 3'
A = 4 5 6

7 8 10 .

Solution
By Sarrus’s rule, det A =  1 • 5 • 10-1-2-6 -7+3-4* 8 — 3 ■ 5 • 7 — 1-6*8 —2-4-10 
Matrix A is invertible.

=  -3 .

Find the determinant of the upper triangular matrix

A =
a b c 
O d e  
0 0 /  J

Solution
We find that det A =  a d f ,  since all other terms in Sarrus’s formula are zero. The 
determinant of an upper (or lower) triangular 3 x 3  matrix is the product of the di­
agonal entries. Thus a triangular 3 x 3  matrix is invertible if (and only if) all its 
diagonal entries are nonzero. ■

For which values of the scalar X is the matrix

'X 1 1
A = X - 1  

1 X

invertible?

Solution
detA =  X3 - l + l + X - X - X  =  X3 - X  

=  A(X2 - l )  =  A ( A - l ) a  +  l).

The determinant is 0 if A =  0, A =  1, or X =  — 1. Matrix A is invertible if k  is any 
real number other than 0 , 1, and — 1. ■

For three column vectors w, 5, w in M3, what is the relationship between the deter­
minants of A = [u v u>] and B = [u w 5] ? Note that matrix B  is obtained 
by swapping the last two columns of A.

Solution

det B =  det [u w 5] =  u - ( wx v )  = - u - ( v x w )  =  —det [u v w] =  — det A.

We have used the fact that the cross product is anticommutative: w x v  — —(v x w).  
See Theorem A. 10 in the Appendix. ■

It turns out that det B =  — det A if B is obtained by swapping any two columns 
or any two rows of a 3 x 3 matrix A; we can verify this by direct computation. 
This is referred to as the alternating property of the determinant on the columns 
and on the rows. The 2 x 2  determinant is alternating on the rows and columns as 
well (verify this!), and we will see that this property generalizes to determinants of 
square matrices of any size.
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Linearity Properties o f  the D eterm inant  
EXAM PLE 5 Is the function F( A)  =  det A from the linear space R 3x 3 to R  a linear transformation?

Solution
The answer is negative. For example, F(13 +  I3) =  F(2I$) =  8 while
F ( h )  +  F ( h )  = 1  +  1 = 2 .  ■

However, the determinant does have some noteworthy linearity properties. 

EXA M PLE 6 Is the function

’* r ' 2 X] 5 '
T *2 =  det 3 x 2 6

.*3. .4 *3 7 .

from M3 to R a linear transformation? Here we are placing the input vanables 
x \ , JC2, JC3 in the second column, choosing arbitrary constants for all the other entries.

Solution  
Note that

~ X \ ' '2 X\ 5 '
T X l =  det 3 X l 6 =  (6 • 4 -  3 • 7)jr, +  (2 • 7 -  5 • 4)x2 +  (5 • 3 -  2 ■ 6)^3

.Xl . 4 xs 7.
=  3jcj — 6x 2 +  3*3 .

Therefore, T  is a linear transformation, by Definition 2.1.1, since the output is a 
linear combination of the input variables. ■

We say that the 3 x 3 determinant is linear in the second column. Likewise, the 
determinant is linear in the two other columns and in all three rows. For example, 
linearity in the third row means that

L(x)  =  det
—  V\  —

— v2 —
— x  ---

is linear on row vectors x  with three components, for any two fixed row vectors Si
and x>2.

Alternatively, we can express the linearity of L by the equations

L(x + y) =  L(x)  + L(y)  and L(kx)  =  kL(x)

or

ui — ' 5i — '' V\ — '
det — C2 — =  det —  v2 — +  det —  v2 —

* +  >’ — . ---  X ----. . —  > ’  — .

and

Ui — ‘

det —  v2 —
—  kx —

=  k det

-----------1
1 

1 
CM 

tw

1 
1-1

T he D eterm inant o f  an n x  n Matrix
We may be tempted to define the determinant of an n x n matrix by generalizi 
Sarrus’s rule. (See Theorem 6.1.2.) For a 4 x 4 matrix, a naive generalization of4
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0 1 1022033^44 + -----h 014021032043 “  014023032041

021 02^.

Sarrus's rule produces the expression

— 013022031044-

+
For example, for the invertible matrix

A =

1 0 0 01 
0 1 0  0 
0 0 0 1
0 0 1 0

the expression given by this generalization of Sarrus’s rule is 0. This shows that we 
cannot define the determinant by generalizing Sarrus’s rule in this way: recall that 
we want the determinant of an invertible matrix to be nonzero.

We have to look for a more subtle structure in the formula

det A =  011022033 +  012023031 +  013021032 ~  013fl22031 ~  011023032 “  012021033

for the determinant of a 3 x 3 matrix. Note that each of the six terms in this expression 
is a product of three factors involving exactly one entry from each row and each 
column of the matrix:

© a n <Jl3 011 © 013 a 11 012 ©
021 <*23 021 022 © © 022 023

031 <*32 © . © 032 033 031 © 033

011 <Jl2 © © 012 013 011 © 013

021 023 021 022 © © a22 023

© <*32 033 j 031 © «33_ 031 #32 ©
For lack of a better word, we call such a choice of a number in

column of a square matrix a pattern in the matrix.3 The simplest pattern is the 
diagonal pattern, where we choose all numbers a„ on the main diagonal. For you 
chess players, a pattern in an 8 x 8 matrix corresponds to placing 8 rooks on a 
chessboard so that none of them can attack another.

How many patterns are there in an n x n matrix? Let us see how we can construct 
a pattern column by column. In the first column we have n choices. For each of 
these, we then have n — 1 choices left in the second column. Therefore, we have 
n(n — 1) choices for the numbers in the first two columns. For each of these, there 
are n — 2 choices in the third column, and so on. When we come to the last column, 
we have no choice, because there is only one row left. We conclude that there are 
n(n — 1)(h — 2) • • • 3 • 2 • 1 patterns in an n x n matrix. The quantity 1 • 2 • 3 • • • 
(n — 2) • (n — 1) • n is written n \ (read “/i factorial”).

For a pattern P  in a 3 x 3 matrix we consider the product of all the entries in the 
pattern, denoted prod P. For example, for the pattern P =  (<a \2, 023, 031). we have

3This theory is usually phrased in the language of permutations. Here we attempt a less technical 
presentation, without sacrificing content.
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det A = ^ 2 ±  prod P,

where the sum is taken over all six patterns P in a 3 x 3 matrix A. Next we need to 
examine how the signs of the six summands are chosen.

It turns out that these signs are related to the alternating property of the deter­
minant we discussed after Example 4:

prod P =  a 12023031 • Then we can write

'  0 <*12 0  ‘ '  0 <*12 0 ■
det 0 0 <*23 ■*, =  — det <*31 0 0

.<*31 0 0 , J .  0 0 <*23.

=  det
a.i i 0 0
0 tf|2 0
0  0  <723.

=  031^12^23 — 012023031»

' 0 0 <*13" ’<*31 0 0 '
det 0 022 0 =  — det 0 <*22 0

.<*31 0 0  . .  0 0 <*13.

since we perform two row swaps to bring the matrix into diagonal form, while

=  —031022013 =  — 013022031*

There is an equivalent way to predict this sign without actually counting row* 
swaps. We say that two numbers in a pattern are inverted if one of them is to the! 
right and above the other. Let’s indicate the number of inversions for each of the six 
patterns in a 3 x 3 matrix.

det A =  1022033 +  012023031 +  013021032 “  013022031 ~  0| 1023032 “  012021033

0ii 0 i2 ^ r i j )

p2\J 022/ 023

031 m p  033
2 inversions

011 013

022 023

<*31 <*32 ©
1 inversion

© 012 013

021 0 ) 023

031 032 © .
no inversion

(0n) 012 013

021 022 (“2^

031 (633) 033
1 inversion

We see that the sign of prod P  in the formula det A =  +prod P depends on the 
number of inversions in P. We get the plus sign if the number of inversions is eveU 
and the minus sign if that number is odd. We can write

det A =  £ ( -  l ) (number °r inversionsP)prod P j
I

If we define the signature of a pattern P as sgn P = ( - l ) <nun,ber of inversions in />)> ^
we can write more succinctly I

i

det A =  XXs8n /J)(prod P), j

where the sum is taken over all six patterns P in the matrix A.
Alternatively, we can describe the signature in terms of row swaps: If we cal 

bring a pattern P  into diagonal form by means of p  row swaps, then sgn P  =  (— 1)  ̂
(See Theorem 6.2.3b.)
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Definition 6.1.3

EXAM PLE 7

EXAM PLE 8

Using these definitions and observations as a guide, we are now ready to define 
the determinant of an n x n matrix.

Patterns, inversions, and determinants4

A pattern in an n x n matrix A is a way to choose n entries of the matrix so that 
there is one chosen entry in each row and in each column of A.

With a pattern P we associate the product of all its entries, denoted prod P. 
Two entries in a pattern are said to be inverted if one of them is located to the 

right and above the other in the matrix.
The signature of a pattern P is defined as sgn P =  (— l)<number of inversions in p ) 
The determinant of A is defined as

det A =  £X s8n ^Hprod P),

where the sum is taken over all n ! patterns P  in the matrix A. Thus we are summing 
up the products associated with all patterns with an even number of inversions, and 
we are subtracting the products associated with the patterns with an odd number of 
inversions.

Apply Definition 6.1.3 to a 2 x 2 matrix, and verify that the result agrees with the 
formula given in Theorem 2.4.9a.

Solution

There are two patterns in the 2 x 2 matrix A =
a b 
c d

’©  b ~ 
C @

a %

No inversions One inversion 

Therefore, det A =  (—l)°ad  +  (—1 ) ]bc = ad — be.

Find det A for

0 2 0 0 0 0
0 0 0 8 0 0
0 0 0 0 0 2
3 0 0 0 0 0
0 0 0 0 5 0
0 0 ] 0 0 0

4It appears that determinants were first considered by the Japanese mathematician Seki Kowa 
(1642-1708). Seki may have known that the determinant of an n x n matrix has n\ terms and that 
rows and columns are interchangeable. (See Theorem 6.2.1.) The French mathematician 
Alexandre-Theophile Vandermonde (1735-1796) was the first to give a coherent and systematic 
exposition of the theory of determinants. Throughout the 19th century, determinants were considered 
the ultimate tool in linear algebra, used extensively by Cauchy. Jacobi, Kronecker, and others. Recently, 
determinants have gone somewhat out of fashion, and some people would like to see them eliminated 
altogether from linear algebra. (See, for example. Sheldon Axler’s article “Down with Determinants” 
in The American Mathematical Monthly. February 1995, where we read: “This paper will show how 
linear algebra can be done better without determinants." Read it and see what you think.)
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EXA M PLE  9

EXAM PLE 10

Solution
Only one pattern P  makes a nonzero contribution toward the determinant:

Thus det A =  (sgn P)(prod P)  =  (—1)72 • 8 • 2 • 3 • 5 ■ 1 =  -4 8 0 . ■

Find det A for

6 0 1 0 0
9 3 2 3 7
8 0 3 2 9
0 0 4 0 0
5 0 5 0 1

Solution
Again, let’s look for patterns with a nonzero product. We pick the entries column 
by column this time. In the second column, we must choose the second component, 
3. Then, in the fourth column, we must choose the third component, 2. Next, think 
about the last column, and so on. It turns out that there is only one pattern P  with a 
nonzero product.

'©  0 1 0 O'
9 (3) 2 3 7
8 0 3 0  9
0 0 @ 0  0
5 0 5 0 ®

1 inversion

det A =  (sgn / ’Mprod P) =  ( - 1 ) 1 6 • 3 • 2 • 4 • 1 =  -1 4 4 . ■

Find det A for

1 2 3 4 5
0 2 3 4 5
0 0 3 4 5
0 0 0 4 5
0 0 0 0 5

Solution
Note that A is an upper triangular matrix. To have a nonzero product, a pattern 
must contain the first component of the first column, then the second component of 
the second column, and so on. Thus, only the diagonal pattern P makes a nonzero
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Theorem 6 .1.«

EXAM PLE I I

contribution. We conclude that

det A =  (sgn P )(prod P) =  (—1)°1 - 2 -3  4 -5  =  5! =  120. ■

We can generalize this result:

I Determinant of a triangular matrix
The determinant of an (upper or lower) triangular matrix is the product of the diagonal 
entries of the matrix.

In particular, the determinant of a diagonal matrix is the product of its diagonal 
entries. ■

The Determinant o f a Block Matrix (optional) 
Find det M  for

M =

Solution
It is natural to partition the 4 x 4 matrix M  into four 2 x 2  blocks, one of which is 
zero:

a\\ a 12 b\\ b n
azi a22 b 2i b22
0 0 c 11 C\2
0 0 Q 1 C22.

M =

Let’s see whether we can express det in terms of det A , det B , and det C.

0  <*12 b\\ b\2 ©
a2\ <(i22) b2\ b22 «21

0 0 0  c ,2 0

0 0 C21 (C2̂ ) 0

Let’s find the patterns in M  that may have a nonzero product.

?12 011 &Y2) bn b 12

(»21J 022 2̂1 b22

c ii (c\$ 0 0 (c?i) c\2

(C2$ C22 U 0 C2| (C2;

011 fi\2) 1̂1 ^12

fejJ 022 2̂1 b22

0 0 C \ \  ( c y p

u o  0  (Qjj C*22

Thus

det M ~  011022^ 11^22 011022^12^21 “  012021^11 ̂ 22 +  012021^12^21

=  011022 (^ 11 ^22 — C [ 2 C2 \ )  — 0 |20 2 l( f |1 ^22  — ^12^21)

=  (0 H022 — 012021 ) ( f n t ‘22 “  ^ 12^21) =  (det A)(det C)

In summary,

det M  =  det
A B
0 C

=  (det A) (det C)
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Theorem 6 .1.5

P roo f

In turns out that the formula we derived in Example 11 holds for block matrices 
of any size.

Determinant of a block matrix 

A B
If M  =

0 C
size), then

Likewise,

, where A and C are square matrices (not necessarily of the same

det

det

A B
0 C

A 0 
B C

=  (det A) (det C).

=  (det A) (det C).

However, the formula 

det
A B 
C D

=  (det A)(det D) — (det 6 ) (det C)

does not always hold (see Exercise 48).

Let’s outline a proof for Theorem 6.1.5. As you follow this somewhat technical 
presentation, use Example 11 as a guide.

If Pa is a pattern in A and Pc is a pattern in C, then their concatenation, 
PM =  (PA, pc ), will be a pattern in M , with prod Pm =  (prod P/»)(prod Pc) and 
sgn Pm =  (sgn Pa ) (sgn Pc), since the number of inversions in Pm will be the sum 
of those in Pa and P c. Conversely, any pattern Pm in M  with a nonzero product 
will be of this form, Pm =  (Pa , Pc ), since the pattern entries cannot be taken from 
the zero block in matrix M. Now

(det A)(det C) =  I ^ ( s g n  P a)(prod PA) I ]T /sg n  Fc )(prod Pc )
iPa

= ^  (sSn P/0(sgn Pc)(prod Pa )(prod Pc )
(Pa . Pc )

=  Y (sgn Pm)(prod PM) =  det M
Pm

Here is another example illustrating this proof:

M  =
A B
0 C

Here, prod Pm =  2 - 4 - 7 - 1 - 5 - 4  =  (2 -4  - 7)(1 -5 -4 )  =  (prod PA)(prod Pc)- 
There is one inversion in Pa and there are two inversions in Pc, for a total of three 
inversions in Pm - Thus sgn Pm =  ( - 1 ) 3 =  (— 1)1 (— l)2 =  (sgn PA)(sgn Pc)- ®
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EXAM PLE 12 Find

Solution

det

det

0 0 0 0 0
7 0 0 0 0

6 0 0 0
5 2 1 4
4 0 2 5
3 0 3 6

'1 0 0 0 0 O'
2 7 0 0 0 0
3 8 6 0 0 0
4 9 5 2 1 4
5 8 4 0 2 5
6 7 3 0 3 6

'1 0 O' '2 1 4 '
=  det 2 7 0 det 0 2 5

.3 8 6. _0 3 6_

=  (1 • 7 -6 )(2 •2 • 6 - 2- 5 -3 )
=  42(—6) =  -2 5 2

EXERCISES 6.1

Find the determinants o f the matrices in Exercises 1 
through 10, and find out which o f these matrices are in­
vertible.

3.

5.

7.

1 2 
3 6 

3 5 
7 11

2 5 7
0 1 1 7
0 0 5

1 1 r
2 2 2
3 3 3

0 1 2
7 8 3
6 5 4

2.

4.

6.

8.

10.

2 3
4 5

1 4
2 8

"6 0 0
5 4 0

_3 2 1

"l 2 3
1 1 1

_3 2 1

"l 1 1
1 2 3
1 3 6

In Exercises 11 through 22, use the determinant to find 
out for which values o f the constant k the given matrix is 
invertible.

15.

17.

19.

21.

0 k 1
2 3 4
5 6 7

1 1 1
1 k -1
1 k2 1

1 1 k
1 k k
k k k

k 1 1
1 k 1
1 1 k

16.

18.

20.

22.

1 2 3 '
4 it 5
6

—
i 

oo

0 1 k
3 2k 5
9 7 5

1 k 1
1 k H- 1 k -f- 2
1 k + 2 2k + 4

cos k 1 — sin k
0 2 0

sin k 0 cos k

In Exercises 23 through 30, use the determinant to find 
out for which values of the constant X the matrix A — XIn 
fails to be invertible.

23.

25.

1 2 
0 4

4 2 
4 6

24.

26.

2 0 

1 0

4 2
2 7

U.

13.

k 2 
3 4

"2 0 0“ "5 7 11“

12. 1 *' 27. 5 3 0 28. 0 3 13
it 4 7 6 4 0 0 2

it 3 5“ '4 0 0“ '3 5 6" "4 2 0"
0 2 6 14. 3 k 0 29. 0 4 2 30. 4 6 0
0 0 4 2 1 0 0 2 7 5 2 3
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Find the determinants o f the matrices in Exercises 31 
through 42.

1 9

49. For two nonparallel vectors v and w in IR3, consider the 
linear transformation

31.

33.

35.

0 2
8 
9

0 0 3 
0 0 0

0 0 
0 0

37.

3
6
2
7

0
2

3 
3
0 0 
0 0

32.

34.

36.

2 5 7 11
0 3 5 13
0 0 5 11
0 0 0 7

4 5 0 0 “
3 6 0 0
2 7 1 4
1 8 2 3

T (jc) =  det v w

0 0 0 
0 0 1 
0 I 
1 0  0 0

1
0

0 0

0 0 0 
0 0 0 
5 6 7 
0 1 2
0 0 1

38.

3
4 
2

4 5
5 6 
3 4

0 0 0 6 5 
0 0 0 5 6

from R3 to R. Describe the kernel of T geometrically. 
What is the image of T?

50. If 5, D, w are three unit vectors in R3, what are the pos­
sible values of det 5 u w ?

51. Explain why any pattern P in a matrix A , other than the
diagonal pattern, contains at least one entry below the 
diagonal and at least one entry above the diagonal.

52. Consider two vectors v and w in R3. Form the matrix

4  X £> V w  •

Express det A in terms of ||5 x w\\. For which choices 
of 5 and w is A invertible?

53. Find the determinant of the (2n) x (2n) matrix

A =  f° In
[/» ° .

54. Is the determinant of the matrix

39.

0 0 0 0 f ‘0 0 3 0 0 “ 1 1000 2 3 4
0 0 2 0 0 0 0 0 0 2 5 6 7 1000 8
0 4 0 0 0 40. 0 4 0 0 0 A = 1000 9 8 7 6
0 0 0 3 0 0 0 0 1 0 5 4 3 2 1000
5 0 0 0 0 5 0 0 0 0 1 2 1000 3 4

41.

0 0 1
5 4 3
1 3 5
2 0 4

0 2 
2 1
0 7 
0 6

0 0 3 0 4

42.

0 0 2
0 0 0
0 9 7
0 0 0 0
3 4 5 8

3 I
2 2 
9 3 

5 
5

positive or negative? How can you tell? Do not use 
technology.

55. Does the following matrix have an LU factorization? 
(See Exercises 2.4.90 and 2.4.93.)

43. If A is an n x n matrix, what is the relationship between 
det A and det(-A)?

44. If A is an n x n matrix and k is an arbitrary constant, 
what is the relationship between det A and det(& A)?

45. If A is a 2 x 2 matrix, what is the relationship between 
det A and det(A^)?

46. If A is an invertible 2 x 2  matrix, what is the relationship 
between det A and det(A-1 )?

47. Find nonzero numbers a, b, c\ d , «\ / ,  g, h such that the
a b c

matrix d k e is invertible for all real numbers k,

J  * h.
or explain why no such matrix exists.

48. Find 2 x 2  matrices A, /?, C, D such that

A =
7 4 2
5 3 1
3 1 4

56. Let Mn be the n x n matrix with all 1 's along “the other 
diagonal,” and 0\s everywhere else. For example,

0 0 0 1 
0 0 1 0  
0 1 0  0 
1 0  0 0

det 7* (det A)(det D) — (det £)(det C).

a. Find det(Af„) for n — 2, 3, 4, 5, 6, 7.
b. Find a formula for det(A/„), in terms of n.

57. A square matrix is called a permutation matrix if each 
row and each column contains exactly one entry 1, with

'0  1 0 '
all other entries being 0. Examples are /„, 0 0 1

[ l  0 0_
and the matrices considered in Exercises 53 and 56. What 
are the possible values of the determinant of a permuta­
tion matrix?
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jg. a. Find a noninvertible 2 x 2  matrix whose entries are 
four distinct prime numbers, or explain why no such 
matrix exists.

b. Find a noninvertible 3 x 3  matrix whose entries are 
nine distinct prime numbers, or explain why no such 
matrix exists.

59. Consider the function F(A) = F [v w] = v - w  from
R2x2 to R, the dot product of the column vectors of A.
a. Is F linear in both columns of A? (See Example 6.)
b. Is F linear in both rows of A?
c. Is F alternating on the columns of A? (See Exam­

ple 4.)

60. Which of the following functions F of A =  a ^

linear in both columns? Which are linear in both rows?
Which are alternating on the columns?

a. F(A) =  be b. F(A) =  cd c. F(A) =  ac

are

d. F(A) =  be — ad 

61. Show that the function
a b c

F d e f
8 h j

e. F(A) = c

= bfg

is linear in all three columns and in all three rows. (See 
Example 6.) Is F alternating on the columns? (See Ex­
ample 4.)

In Exercises 62 through 64, consider a function D from 
R2x2 to R that is linear in both columns and alternating 
on the columns. (See Examples 4 and 6 and the subsequent 
discussions.) Assume that D(Ii)  =  1.

62. Show that D(A) =  0 for any 2 x 2  matrix A whose two 
columns are equal.

63. Show that D =  ad. {Hint: Write

b + o '
0 d

umn: D

and use linearity in the second col-

4- D

ab D 1 1 
0 0 + __ Use Exercise 62.'

64. Using Exercises 62 and 63 as a guide, show that D(A) =  
ad — be =  det A for all 2 x 2 matrices A .

65. Consider a function D from R3 x 3 to R that is linear in all 
three columns and alternating on the columns. Assume 
that D(Ii) =  1. Using Exercises 62 through 64 as a 
guide, show that D(A) = det A for all 3 x 3 matrices A.

66. a. Let V be the linear space of all functions F from
R2x2 to R that are linear in both columns. Find a 
basis of V, and thus determine the dimension of V. 

b. Let W be the linear space of all functions D from 
R2x2 to R that are linear in both columns and alter­
nating on the columns. Find a basis of W , and thus 
determine the dimension of W .

Properties of the Determinant

The main goal of this section is to show that a square matrix of any size is invertible 
if (and only if) its determinant is nonzero. As we work toward this goal, we will 
discuss a number of other remarkable properties of the determinant.

EXAM PLE

The D eterm inant o f  the Transpose-  
Let

A =

2
7
6
1
6

4
9
4
3
8

Express det(Ar ) in terms of det A.  You need not compute det A.

5If you skipped Chapter 5, read Definition 5.3.5.
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Theorem 6.2.1

Theorem 6.2.2

For each pattern P in A, we can consider the corresponding (transposed) pattern P T 
in A7 ; for example,

Solution

A =

'1  2 / 3 )  4 5 ' ' l  @  7 2 5
@ 7 / 8  9 8 2 / 1  6 J J )  6

7 2 , AT = d r #  5 J l  7
2 (T r ^ y 4 4 9 y  3 ( 8 )

5 6 7 (8$ 9 5 8 ( J ) " '4 9

The two patterns P and P T involve the same numbers, and they contain the same 
number of inversions, but the role of the two numbers in each inversion is reversed. 
Therefore, the two patterns make the same contributions to the respective determi­
nants (sgn P)(prod P)  =  (sgn P r )(prod P T). Since these observations apply to all 
patterns of A, we can conclude that det(Ar ) =  det A. ■

Since we have not used any special properties of the matrix A in Example 1, we 
can state more generally:

D eterm inant of the  transpose 
If A is a square matrix, then

det(A7 ) =  det A.

This symmetry property will prove very useful. Any property of the determinant 
expressed in terms of the rows holds for the columns as well, and vice versa.

Linearity  Properties o f  the D eterm inant
In Section 6.1 we observed that the 3 x 3 determinant is linear in the rows and in 
the columns; take another look at Example 6 of Section 6.1. It turns out that these 
linearity properties generalize to the determinant of n x n  matrices.

Linearity of the determinant in the rows and columns
Consider fixed row vectors Dj, . . . ,  , 3,+\ , . . . ,  vn with n components. Then the
function

T(x)  =  det

—  V\  —

— 3,_i —
— Jc —
—  3/+1 —

from R lx" to R

is a linear transformation. This property is referred to as linearity o f  the determinant^ 
in the ith row. Likewise, the determinant is linear in all the columns.

To prove Theorem 6.2.2, observe that the product prod P  associated with J 
pattern P is linear in all the rows and columns, since this product contains exa 
one factor from each row and one from each column. Thus the determinant itself* 
linear in all the rows and columns, being a linear combination of pattern products.
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We can express the linearity of the transformation T  in Theorem 6.2.2 in terms 
of the equations T(x. +  y) =  T(x)  +  T (y ) and T(kx)  =  kT(x) ,  or

and

—  S i — —  V\  — —  V\ —

det —  x + y  — =  det —  x  — + —  y —

vn — —  Vn — —  Vn —

— Ui — — 5, —

— kx — =  A: det — x  —

—  Vn — Vn —  _

det

In these equations, all rows except the ith are fixed, jc and y  are arbitrary row vectors 
with n components, and k is an arbitrary real number.

D eterm inants  and G a u ss -J o rd a n  E lim ination
Consider a 30 x 30 matrix A, a rather small matrix by the standards of contemporary 
scientific and engineering applications. Then 29 • 30! ^  7 • 1033 multiplications are 
required to compute the determinant of A by Definition 6.1.3, using patterns. If a 
super computer performs 10 trillion (1013) multiplications a second, it will take over 
a trillion years to carry out these computations; our universe might long be gone by 
then. Clearly, we have to look for more efficient ways to compute the determinant.

To use the language of computer science, is there an algorithm for the determi­
nant that runs on polynomial rather than on exponential time?

So far in this text, Gauss-Jordan elimination has served us well as a powerful 
tool for solving numerical problems in linear algebra. If we could understand what 
happens to the determinant of a matrix as we row-reduce it, we could use Gauss- 
Jordan elimination to compute determinants as well. We have to understand how the 
three elementary row operations affect the determinant:

a. Row division: dividing a row by a nonzero scalar k ,
b. Row swap: swapping two rows, and
c. Row addition: adding a multiple of a row to another row.

~a b 
c d

Let’s look at the case of a 2 x 2 matrix A = first, with det A = ad — be.

a. If B =
a / k  b / k  

c d
a b 1

, then det B =  - d -----c =  -  det A.
k k k

1
Verify that det B = -  det A if B is obtained from A by dividing the 

second row by k.

b. If B =

c. If B =

then det B =  cb — da =  — det A.

, then det B =  (a +  kc)d — (b + kd)c  =  ad  -f

c d 1 
a b

a + k c  b + k d 1 
c d  j

ked — be — kde  =  det A.  Verify that det B =  det A if B is obtained from A
by adding k times the first row to the second.

Next, we will examine the effect of the elementary row operations on the deter­
minant of square matrices of arbitrary size.
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EXA M PLE  2

EXA M PLE  3

a. Row division: If
—  V\ — —  Vi —

A = —  Vi  — and B = 11

1
1 <21
 

., 

1
1 r 

■ 1 Ci
 

. ,
a 1

i__
__

__
_

then det B =  ( \ / k )  det A, by linearity in the ith row, Theorem 6.2.2. 
b. Row swap: Refer to Example 2.

Consider the matrices

A =

Note that B is obtained from A by swapping the first two rows. Express det B in 
terms of det A.

Solution
For each pattern P in A, we can consider the corresponding pattern Pswap in B\ for 
example,

' l 2 3 4 5 ' '6 7 8 9 8 '
6 7 8 9 8 J 1 2 3 4 5
7 6 5 4 3 and B  = 7 6 5 4 3
2 1 2 3 4 2 1 2 3 4
5 6 7 8 9 5 6 7 8 9

and B =

These two patterns P  and Pswap involve the same numbers, but the number of inver­
sions in Pswap is one less than in P , since we are losing the inversion formed by the 
entries in the first two rows of A. Thus prod Pswap =  prod P , but sgn Pswap =  —sgn P, 
so that the two patterns make opposite contributions to the respective determinants. 
Since these remarks apply to all patterns in A, we can conclude that

det B = — det A .
(If P  is a pattern in A such that the entries in the first two rows do not form an inver­
sion, then an additional inversion is created in Pswap\ again, sgn Pswap =  —sgnP.)

What if B is obtained from A by swapping any two rows, rather than the first two? If 
we swap two adjacent rows, then everything works the same way as in Example 2, 
and det B = — det A. But what if B is obtained from A by swapping two arbitrary 
rows? Observe that swapping any two rows amounts to an odd number of swaps of 
adjacent rows. (See Exercise 60.) Since the determinant changes its sign with each 
swap of adjacent rows, the equation det B = — det A still holds.

If a matrix A has two equal rows, what can you say about det A?

Solution
Swap the two equal rows and call the resulting matrix B. Since we have swapped 
two equal rows, we have A = B. Now

det A =  det B = — det A ,



6.2 Properties of the Determinant 265

Theorem 6.2.3

so that

det A =  0 .

c. Row addition: Finally, what happens to the determinant if we add k times the ith 
row to the y th row?

A =

—  Vi

B =

—  Vj +  kvi —

By linearity in the j  th row, we find that

—  Vi — —  Vi —
det B =  det +  )fcdet

— Vj — —  Vi —

=  det A,

by Example 3.

Elementary row operations and determinants
a. If B is obtained from A by dividing a row of A by a scalar k , then

det =  (l/Jfc)detA.

b. If B is obtained from A by a row swap, then

det B = — det A .

We say that the determinant is alternating on the rows.
c. If B is obtained from A by adding a multiple of a row of A to another row, 

then

det B =  det A .

Analogous results hold for elementary column operations. ■

Now that we understand how elementary row operations affect determinants, 
we can analyze the relationship between the determinant of a square matrix A and 
that of rref A. Suppose that in the course of Gauss-Jordan elimination we swap rows 
s times and divide various rows by the scalars k\, k2y. . . ,  kr . Then

det(rref A) =  ( - 1 ) 5------ — —(det A),
k \k2 - ' - k r

or

det A =  (—\ y k \ k 2 • • -kr det(rref A),

by Theorem 6.2.3.
Let us examine the cases when A is invertible and when it is not.
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Theorem 6.2.4

Algorithm 6.2.5

EXA M PLE  4

If A is invertible, then rref A =  /„, so that det(rref A) =  det(/„) =  1, and 

det A =  ( - \ ) sk {k2 - - -kr 7^0.

Note that det A is not zero since all the scalars kx are nonzero.
If A is noninvertible, then the last row of rref A contains all zeros, so that 

det(rref A) =  0 (by linearity in the last row). It follows that det A =  0.
We have established the following fundamental result.

Invertibility and determinant
A square matrix A is invertible if and only if det A ^  0. ■

The foregoing discussion provides us with an efficient method for computing 
the determinant, using Gauss-Jordan elimination.

Using Gauss-Jordan elimination to compute the determinant
a. Consider an invertible n x n  matrix A. Suppose you swap rows s times 

as you compute rref A =  /„, and you divide various rows by the scalars 
k\, k2y . . . ,  kr. Then

det A =  ( - i y k \ k 2 • • ‘kr.

b. In fact, it is not always sensible to reduce A all the way to rref A. Suppose 
you can use elementary row operations to transform A into some matrix B 
whose determinant is easy to compute (B might be a triangular matrix, for 
example). Suppose you swap rows s times as you transform A into B , and 
you divide various rows by the scalars k \ , k2, . . .  , k r . Then

det A =  (—1 )sk\k2 • • • kr det B.

Find

■0 7 5 3‘
1 1 2 1
1 1 2 - 1
1 1 1 2.

Solution
We go through the elimination process, keeping a note of all the row swaps and row 
divisions we perform (if any). In view of part (b) of Algorithm 6.2.5, we realize that 
it suffices to reduce A to an upper triangular matrix: There is no need to eliminate 
entries above the diagonal, or to make the diagonal entries equal to 1.

’0 7 5 3" *] 1 I 2 r
1 1 2 1 J 0 1 5 3
1 1 2 -1 1 1 2 -1 - (I)

J 1 1 2. .1 1 1 2. —(I)

’1 1 2 V ’1 1 2 r
0 7 5 3 D 0 7 5 3
0 0 0 —2

u
0 0 -1 1

0 0 - 1 1 J 0 0 0 - 2 .
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We have performed two row swaps, so that det A = (—1 )2(det B) =  7 (— 1)(—2) =
14. We have used Theorem 6.1.4: The determinant of the triangular matrix B is the 
product of its diagonal entries. ■

D eterm inant o f  a Product
If A and B are two n x n  matrices, what is the relationship between det A,  det B, 
and det (AB)?  The answer is as simple as could be:

Theorem 6.2.6 Determinant of a product of matrices
If A and B are n x  n matrices, then

det(AB) =  (det A)(detB).

P ro o f Let’s first consider the case when A is invertible. In Exercise 34 the reader is asked 
to show that

rref [A | AB]  = [ln \ B]  .

Suppose we swap rows s times, and we divide various rows by k \ , k2, . . .  , k r as we 
perform this elimination.

Considering the left and the right halves of the matrices [A | A B ] and [ /„ | B ] 
separately, and using Algorithm 6.2.5, we conclude that

det(A) =  ( - \ ) sk xk2 ‘ --kr

and

det(AB) =  ( -  1)*M 2 • • * M det B)  =  (det A)(det B),

as claimed. If A is not invertible, then neither is AB (think about the image), so that 
(det A)(det B)  =  0(det B)  =  0 =  det(AB), as claimed. ■

EXA M PLE 5 If matrix A is similar to B, what is the relationship between det A and det B?

Solution
By Definition 3.4.5, there exists an invertible matrix 5 such that A S  = SB.  By 
Theorem 6.2.6 we have

(det A) (det 5) =  (detS)(detB).

Dividing both sides by the nonzero scalar det 5, we find that

detA =  d e t£ . g

Theorem 6.2.7 Determinants of similar matrices
If matrix A is similar to £ , then det A =  det B. ■

Conversely, if det A =  det B, are the matrices A and B necessarily similar? See 
Exercise 59.

T he D eterm inant o f  an Inverse
If A is an invertible n x n  matrix, what is the relationship between det A and det( A “ 1) ? 
By definition of an inverse, the equation ln — AA-1 holds. By taking determinants
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Theorem 6.2.8

of both sides and using Theorem 6.2.6, we find that

1 =  det(/„) =  det(AA_ l) =  det(A )det(A “ ‘),

so that

det(A-1 ) =
det A

It turns out that det(A_ l) is the reciprocal of det A.

Determinant of an inverse 
If A is an invertible matrix, then

det(A_ l) =  — —̂ =  (det A)" 
det A

Minors and Laplacc Expansion6 (Optional)
Recall the formula

det A = 011^22033 + ^ 12023*131 +  013^21^32 — a 13̂ 22̂ 31 — fll 1«23«32 — a 12021^33

for the determinant of a 3 x 3 matrix. (See Theorem 6 .1.2.) Collecting the two terms 
involving a\\ and then those involving ai\ and 031, we can write

det A =  a n  (022033 — 032023)
+ 021(032013 — 012033)

-H*3l(fll2<*23 -  022013).

(Where have we seen this formula before?)
Note that computing the determinant this way requires only 9 multiplications, 

compared with the 12 for Sarrus’s formula. Let us analyze the structure of this formula 
more closely. The terms <*22033 — 032023. 032^13 — <*12033. and 012^ 23— 022013 are the 
determinants of submatrices of A, up to the signs. The expression <122033 — 0 3 2 0 2 3  is 
the determinant of the matrix we get when we omit the first row and the first column 
of A:

.1— a n —a«-
o>i

Lon
022

032

Likewise for the other summands:

det A =  a n  det a 11 

l aw

-1--- OU---0+3-
022

032
023
<*33 J

023

^33

— ai\ det
012

-O&r-
*13

- t o

la  11 032 033 .

-f 031 det 0>i
012

022

-0 ^ -

013
023

-0£k

To state these observations more succinctly, we introduce some terminology.

6Named after the French mathematician Pierre-Simon Marquis de Laplace (1749-1827). Laplace is 
perhaps best known for his investigation into the stability of the solar system. He was also a promine*  ̂
member of the committee that aided in the organization of the metric system. J
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Defin ition  6.2.9
For an n x n  matrix A, let A,; be the matrix obtained by omitting the ith row and 
the y th column of A. The determinant of the (n — 1) x (n — 1) matrix A,7 is called 
a minor of A.

Minors

011 012 • . .  a\j  . 01 n
021 022 • • • 02, • . . a2n

0/1 0/2 aU &in

0/i 1 0/i2 .. anj . 0/in

011 012 • a u • 01 n
021 022 • a Ij • .. a2n

0|l 0/2 a - - 0/n

0/i I 0/i 2 • . .  a v • 0/i/i

We can now represent the determinant of a 3 x 3 matrix more succinctly: 

det A =  a\ \ det(A n) — 021 det(A2i) +  031 det(A3i).

This representation of the determinant is called the Laplace expansion (or 
cofactor expansion) o f  det A down the first column. Likewise, we can expand along 
the first row (since det(Ar ) =  det A):

det A = a\\ det(Ai 1) — a \2 det(Ai2) +  a\i  det(A i3)

In fact, we can expand along any row or down any column. (We can verify this directly 
or argue in terms of row or column swaps.) For example, the Laplace expansion down 
the second column is

det A =  — a \2 det(A 12) +  022 det(A22) — a^2 det(A32),

and the Laplace expansion along the third row is

det A =  #3i det(A31) — a^2 det(A32) +  #33 det(A 33).

The rule for the signs is as follows: The summand aij det(A/; ) has a negative sign if 
the sum of the two indices, 1 +  is odd. The signs follow a checkerboard pattern:

'+  -  + '
-  +  -

_+ -  +_

We can generalize the Laplace expansion to n x n  matrices.
We will focus on the expansion down the j th  column of A. The formula for 

the expansion along the ith row then follows from the fact that det A =  det(Ar ), 
Theorem 6.2.1.

Consider a pattern P in an n x n matrix A. For a fixed y, the pattern P will 
contain exactly one entry in the yth column of A. Let P/; be the pattern in A/y
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that contains the same entries as P , except for the omitted entry a,j . See the example 
below, where j  =  4 and i =  3.

5 
8
3 <— / — 3
4 
9

Aij =

7 = 4
8 inversions

‘ 1 2 3 i /6 )  5
6 ( 7 ) ^ / / 9  8

3 4
8 9

8 7 6 5 @

Pu
5 inversions

Note that prodP  =  fl/yprod(P,-y). In Exercise 68 we see that sg n P  =  
( - l ) ,+'s g n (Pij), so that (sgnP)(prod P)  =  ( - 1 ) ' +jau (sgnP/y)(prod P,s ). Verify 
this formula in the example above, where (sgnP)(prod P)  =  7! =  5,040. Now we 
can compute the determinant of A, collecting the patterns containing a\} , then those 
containing a i j , and so forth, just as we did on page 268 in the case of a 3 x 3 matrix, 
with j  =  1.

n
det A =  y^(sgnP )(p rod  P)  =  ^  (sgnP)(prod P )

1 = 1 P contains au
n

E  E  (—l ) '+>M sg n P ,,)(p ro d P ,v)
/=1 p contains au

n n
=  E  (sgn Pij) (prod P,; ) =  ^ ( - l ) ' +ya,7 det(A,v)

1=1 P contains a,, / =1

Theorem 6.2.10 Laplace expansion (or cofactor expansion)
We can compute the determinant of an n x  n matrix A by Laplace expansion down 
any column or along any row.

Expansion down the yth column:

n
det A =  ^ ( - l ) ,+yti,; det(A/y ).

/=i

Expansion along the ith row:

det A =  y ^ ( —1 det(A/j).
; = 1

Again, the signs follow a checkerboard pattern:

'  + — + —
- + - +
+ - + -

+ +
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EXAMPLE 6 Use Laplace expansion to compute det A for

A =

1 0  1 2  
9 1 3  0
9 2 2 0
5 0 0 3

Solution
Looking for rows or columns with as many zeros as possible, we choose the second 
column:

det A =  — a \2 det(A [2) +  022 det(A22) — fl32 det(A32) +  042 det (A 42)

‘ 1 () 1 2 ' '1  1) 1 2
Q 3 0 9 3 0=: 1 det mJ V/ — 2 det
9  :J 2  0 9— I 2 - 0

.5 () 0 3. .5 I) 0 3.

'1 1 2 ' '1  1 2 '
=  det 9 2 0 — 2 det 9 3 0

5 0 3 5 0 3

1 1
9 2

=  2 det ^ -f 3 det

/
Expand down 
the last 
co]umn

=  -2 0  -  21 -  2(—30 -  18) =  55.

2 2 det
9 3 
5 0

+  3 det

Computing the determinant using Laplace expansion is a bit more efficient than 
using the definition of the determinant, but a lot less efficient than Gauss-Jordan 
elimination.

T he D eterm inan t o f  a L inear  Transform ation  (O p tiona l)
(for those who have studied Chapter 4)

If T(x)  =  Ax  is a linear transformation from K" to R", then it is natural to 
define the determinant of T  as the determinant of matrix A:

det T  =  det A.

This definition makes sense in view of the fact that an n x n  matrix is essentially the 
same thing as a linear transformation from R" to R ".

If T  is a linear transformation from V  to V, where V  is a finite-dimensional 
linear space, then we can introduce coordinates to define the determinant of T.  If 93 
is a basis of V and B is the 93-matrix of T, then we define

det T =  det B.

We need to think about one issue though. If you pick another basis, 91, of V and 
consider the 91-matrix A of T,  will you end up with the same determinant; that is,will 
det A equal det B?



272 C H A P T E R  6 Determinants

Definition 6.2.1 I

EXA M PLE  7

Fortunately, there is no reason to worry. We know that matrix A is similar to 
B (by Theorem 4.3.5), so that determinants det A and detZ? are indeed equal, by 
Theorem 6.2.7.

The determinant of a linear transformation

Consider a linear transformation T  from V to V, where V is a finite-dimensional 
linear space. If 33 is a basis of V and B is the 33-matrix of T , then we define

det T = det B.

This determinant is independent of the basis 33 we choose.

Let V be the space spanned by functions cos(2x) and sin(2x). Find the determinant 
of the linear transformation D ( f )  = f '  from V to V.

Solution
The matrix B of D with respect to the basis co s(2jc), sin(2;t) is

so that
det D =  det B =  4. ■

D eterm inants: F o cu s  on H istory
Most of the results of this and the preceding section (with the notable exception 
of the product rule, Theorem 6.2.6) were known to Gottfried Wilhelm von Leibniz 
(1646-1716). In 1678, while studying the solutions of systems of three equations 
in three unknowns, he used a method that amounts to expanding the determinant of 
a 3 x 3 matrix down the third column. Later that year he attempted the same for 
4 x 4  matrices but made a sign error in his computations. In a manuscript of 1684, 
however, Leibniz states the sign rule for determinants in the correct, general form. 
His work remained unpublished and was discovered only after 1850, through careful 
examination of his manuscripts.

Meanwhile, the greatest mathematician of ancient Japan, Seki Kowa (1642- 
1708), came up with remarkably similar results, in his manuscript Kai Fukudai no 
Ho. It appears that he found the correct sign rule for determinants of 4 x 4 matrices. 
However, it is hard to assess his work, as he was an extremely secretive fellow. Florian 
Cajori, the eminent Swiss historian of mathematics, puts it this way: “Seki was a great 
teacher who attracted many gifted pupils. Like Pythagoras, he discouraged divul- 
gence of mathematical discoveries made by himself and his school. For that reason it 
is difficult to determine with certainty the exact origin and nature of some of the dis­
coveries attributed to him. He is said to have left hundreds of manuscripts; the trans­
lations of only a few of them still remain” (Cajori, A History o f Mathematics, 1919).

Apparently without detailed knowledge of Leibniz’s work, the Swiss mathe­
matician Gabriel Cramer (1704-1752) developed the general theory of determinants 
(still without the product rule, though) and published his results in the Introduction 
a l fanalyse des lignes courhes algebriques (1750). The mathematical community 
quickly discovered the power of this new technique, and during the next 100 years 
many mathematicians made important advances: Bezout, Vandermonde, Laplace, 
Binet, and Cayley, to name just a few. In 1812, Augustin Louis Cauchy (1789-1857) 
contributed the product rule. In the 1880’s, Karl Weierstrass (1817-1897) offered 
an axiomatic definition of the determinant that allows a more elegant exposition of 
the theory (see Exercise 6.2.55).
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EXERCISES 6.2
Use Gaussian elimination to find the determinant o f the 
matrices in Exercises 1 through 10.

1.
1 t
1 3
2 2

5.

1 
1 
1 
2

0 2 3
0 0 0
1 2 3
0 0 3

4
8
0

12

4
4
4
4

2.

4.

6.

0 0 0 0 1
0 0 0 1 2
0 0 1
0 1 2
1 2 3

2 3
3 4
4 5

8.

1 1 
1 2 
1 1 
1 1

1 1
2 2
3 3
4 4

1 1 1 1 5

10.

1 2 3"
1 6 8

- 2 -4 0_

1 -1 21 -2
- 1 2 1 6

2 1 14 10
- 2 6 10 33_

1 1 1 f
1 1 4 4
1 - 1 2 —2
1 - 1 8 - 8_

0 0 0 0 2'
1 0 0 0 3
0 1 0 0 4
0 0 1 0 5
0 0 0 1 6

1 1 1 1 f
1 2 3 4 5

6 10 15
10 20 35
15 35 70

Consider a 4 x 4  matrix A with rows v\, v2, K*.
#  det(A) =  8, find the determinants in Exercises 11 
through 16.

11. det

13. det

15. det

v\
V2

—9^3
V4

Vl
4- V2

1̂ +  ?2 + U3 
v \  +  X>2 4 -  V3 +  V>4

12. det

14. det

16. det

V2 +  9V4 
V3 
V4

6Sj +  2v4 
v2
V3

3u i +  V4

Find the determinants o f the linear transformations in 
Exercises 17 through 28.

^ ( / )  =  2 /  +  3 / ' from P2 to P2

^  ( / ( 0 )  =  /(3 / — 2 ) from P2 to P2

T { m )  =  / ( - / )  from P2 to P2

20. L(A) = A t fromR2* 2 to E 2x2

21 . T ( / ( / ) ) =  f ( —t) from P3 to P3

22. 7 ( /( /) )  =  / ( - r )  from to

23. L(A) =  from Rnxn to R" x'1

24. 7 (z) =  (2 -h 3/)z from C to C

25. T(M) = 2 3 
0 4 M from the space V of upper trian­

gular 2 x 2  matrices to V 

26. T(M) = 1 2 
2 3

1 2 
2 3

from the space V ofM + M

symmetric 2 x 2  matrices to V

27. T( f )  =  a f f +  b f ", where a and £ are arbitrary con­
stants, from the space V spanned by cos(jc) and sin(jt) 
to V

28. T(v) = x v from the plane V given by

xi +  2x2 +  3*3 =  0 to V

29. Let Pn be the n x n matrix whose entries are all ones, 
except for zeros directly below the main diagonal; for 
example,

P5 =

Find the determinant of Pn.

30. Consider two distinct numbers, a and b. We define the 
function

1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

f ( t )  =  det
1
b
b2

a. Show that f{ t )  is a quadratic function. What is the 
coefficient of t2l

b. Explain why f (a)  =  f (b)  =  0. Conclude that 
/ ( t ) =  k(t — a)(t — b), for some constant k. Find k , 
using your work in part (a).

c. For which values of t is the matrix invertible?

31. Vandermonde determinants (introduced by Alexandre 
Theophile Vandermonde). Consider distinct scalars a$,
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1 1 1
00 an
ao

0
a \ an

< < <

a \ , . . . ,  an. We define the (n +  1) x (n +  1) matrix

A =

Vandermonde showed that

det(A) =  JJ (a , -  a j),
‘>j

the product of all differences (at — a j), where i ex­
ceeds j .
a. Verify this formula in the case of n =  1.
b. Suppose the Vandermonde formula holds for n — 1. 

You are asked to demonstrate it for n. Consider the 
function

f ( t )  =  det

Explain why / ( / )  is a polynomial of nth degree. Find 
the coefficient k of tn using Vandermonde’s formula 
for ao....... an- \ . Explain why

f ( a  0) =  l) =  • ■ • =  f ( an- \ )  =  0.

Conclude that

/ ( / )  =  k(t -  a0)(t an- 1)

for the scalar k you found above. Substitute t = an 
to demonstrate Vandermonde’s formula.

32. Use Exercise 31 to find

det

Do not use technology.

33. For n distinct scalars a \ , a2. • •., an, find

'  1 1 1 1
a\ t

al a\ . t 2

*1 tn

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625

det

a\

i a i

a2 an
r.2

34. a. For an invertible n x n  matrix A and an arbitrary 
n x n  matrix B , show that

[Hint: The left part of rref [ A ) A B ] is rref(A) = 
In. Write rref [ A \ A B ] =  [ In | M ]; we have to 
show that M =  B. To demonstrate this, note that the 
columns of matrix

B

are in the kernel of [ A | A fi ] and therefore in the 
kernel of [ln \ M].}

b. What does the formula

rref [A | AB] =  [/„ | B] 

tell you if B = A-1 ?

35. Consider two distinct points 

Explain why the solutions

a\ and V
p 2

in the plane, 

of the equation

1 1 1
det x\ a\ b\ = 0

x2 a2 b2

form a line and why this line goes through the two points
a\ and V
.a2. p2

36. Consider three distinct points a\ b\
a2 ’ b 2 ’ c2

plane. Describe the set of all points 

equation

det

1 1 1 1
*1 a\ bx c\
x2 a2 b 2 c2

X  ]  - f  x \ a \+ a \ b ]  +  b 22 c \  +  c2

in the 

satisfying the

=  0.

rref [A | A B ] =  [/„ | B] .

37. Consider an n x n matrix A such that both A and A "1 
have integer entries. What are the possible values of 
det A?

38. If det A =  3 for some n x n  matrix, what is det(AT A)?

39. If A is an invertible matrix, what can you say about the 
sign of det(A^A)?

40. If A is an orthogonal matrix, what are the possible values 
of det A?

41. Consider a skew-symmetric n x n  matrix A, where n 
is odd. Show that A is noninvertible, by showing that 
det A =  0.

42. Consider an n x m  matrix

A =  QR,

where Q is an n x m matrix with orthonormal columns 
and R is an upper triangular m xm  matrix with positive
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diagonal entries r \ \ , . . .  , rmm. Express det(A7 A) in 
terms of the scalars r,/. What can you say about the 
sign of det(AT A)1

43. Consider two vectors v and w in W1. Form the matrix 
A = [v u>]. Express det(Ar  A) in terms of ||D||, ||u>||, 
and v • w. What can you say about the sign of the result?

44. The cross product in W1. Consider the vectors 5 ,̂ 
V3, . . . t vn in W1. The transformation

T (x) =  det
I I I

X V 2 V3

I I I

is linear. Therefore, there exists a unique vector u in R" 
such that

T(x) = x • u

for all x in W1. (Compare this with Exercise 
2.1.43c.) This vector u is called the cross product of 
v2, S3, • • •, vn> written as

U =  U2  X  U3 X  • • ■ X  Vn .

In other words, the cross product is defined by the fact 
that

x • (V2 x V3 x  • • • x vn) =  det X V2 V3 Vn

for all x  in R". Note that the cross product in Rn is de­
fined for n — 1 vectors only. (For example, you cannot 
form the cross product of just 2 vectors in R4.) Since the 
ith component of a vector w is • w, we can find the 
cross product by components as follows:

ith component of V2 x x
=  €i  • ( U 2 X  • • • X  Vn )

=  det V2 V3

X v„

Vn

a. When is V2 x V3 x • • • x vn =  0 ? Give your answer 
in terms of linear independence.

b. Find <*2 x £3 x • • • x en.
c. Show that V2 x 1)3 x • • • x vn is orthogonal to all the 

vectors 5,-, for / =  2 , . . . ,  n.
d. What is the relationship between v2 x D3 x • • • x vn 

and V3 XV2 x • • • x ? (We swap the first two factors.)
e. Express det [vi x V3 x • • • x vn V2 V3 • • • vn] in 

terms of || V2 x V3 x • • • x vn ||.
f. How do we know that the cross product of two vec­

tors in R3, as defined here, is the same as the stan­
dard cross product in R3? (See Definition A.9 of the 
Appendix.)

45. Find the derivative of the function

f {x)  = det

46. Given some numbers a, 6, c, d> e, and /  such that

1 1 2 3 4
9 0 2 3 4
9 0 0 3 4
JC 1 2 9 1
7 0 0 0 4

det
1

a. Find

b. Find

47. Is the function

= 7 and det

~a 3 d
det b 3 e

. c 3 / .

a 3 d
det b 5 e

c 7 /

= 11,

=  ad +  be

linear in the rows and columns of the matrix? 

48. Consider the linear transformation

T (x) = det x  V2 V3

I

I

from R" to R, where U2» ^3, . . . ,  55n are linearly inde­
pendent vectors in R”. Describe image and kernel of 
this transformation, and determine their dimensions.

49. Give an example of a 3 x 3 matrix A with ail nonzero 
entries such that det A =  13.

50. Find the determinant of the matrix 
1 1 1

Ain =

2 2
2 3

1 2 3

for arbitrary n. (The /7 th entry of Mn is the minimum of 
i and j.)

51. Find the determinant of the (2n) x (2n) matrix

A =

52. Consider a 2 x 2 matrix

A =

0 /„
In 0

a b 
c d
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with column vectors

a and w = b
c d

We define the linear transformation

T(x) =
det [3c w] 
det [ v x ]

from R2 to R2.
a. Find the standard matrix B of T. (Write the entries 

of B in terms of the entries a , by c\ d of A.)
b. What is the relationship between the determinants of 

A and B1
c. Show that BA is a scalar multiple of l2. What about 

AB ?
d. If A is noninvertible (but nonzero), what is the rela­

tionship between the image of A and the kernel of 
B1 What about the kernel of A and the image of B1

e. If A is invertible, what is the relationship between B 
and A ~ 1?

53. Consider an invertible 2 x 2  matrix A with integer
entries.
a. Show that if the entries of A-1 are integers, then 

det A = 1 or det A =  — 1.
b. Show the converse: If det A =  1 or det A =  — 1, then 

are integers.the entries of A 1

54. Let A and B be 2 x 2 matrices with integer entries such 
that A, A + B, A+2B,  A +  3fl, and A+4B are all invert­
ible matrices whose inverses have integer entries. Show 
that A +  5B is invertible and that its inverse has integer 
entries. This question was in the William Lowell Putnam 
Mathematical Competition in 1994. Hint: Consider the 
function f ( t )  =  (det(A + tB))2 -  1. Show that this is a 
polynomial; what can you say about its degree? Find the 
values /(0 ), / ( l ) ,  /(2 ), /(3), /(4), using Exercise 53. 
Now you can determine f ( t )  by using a familiar result: 
If a polynomial f ( t )  of degree < m has more than m 
zeros, then / ( / )  =  0 for all t.

55. For a fixed positive integer n, let D be a function which 
assigns to any n x n  matrix A a number D(A) such that
a. D is linear in the rows (see Theorem 6.2.2).
b. D(B)  =  —D(A) if B is obtained from A by a row 

swap, and
c. £>(/„) =  L
Show that D(A) =  det(A) for all n x n  matrices A. Hint: 
Consider E =  rref A. Think about the relationship be­
tween D(A) and D(E), mimicking Algorithm 6.2.5.

The point of this exercise is that det(A) can be 
characterized by the three properties a, b, and c; the 
determinant can in fact be defined in terms of these prop­
erties. Ever since this approach was first presented in the 
1880s by the German mathematician Karl Weierstrass 
(1817-1897), this definition has been generally used

in advanced linear algebra courses because it al­
lows a more elegant presentation of the theory of 
determinants.

56. Use the characterization of the determinant given in Ex­
ercise 55 to show that

det(AAf) =  (det A) (det M).

{Hint: For a fixed invertible matrix M consider the func­
tion

det(AM)
D(A) =

det M
Show that this function has the three properties a, b, and 
c listed in Exercise 55, and therefore D(A) =  det A.}

57. Consider a linear transformation T from Rm+n to Rm. 
The matrix A of T can be written in block form as 
A =  [Ai A2], where A\ is m x m and A 2 is m x n. 
Suppose that det(A1) ^  0. Show that for every vector x 
in Rn there exists a unique y in Rm such that

y
x

Show that the transformation

= 0.

from Rn to Rm is linear, and find its matrix M (in terms 
of A1 and A2). (This is the linear version of the implicit 
function theorem of multivariable calculus.)

58. Find the matrix M introduced in Exercise 57 for the 
linear transformation

T(v) =

You can either follow the approach outlined in Exer­
cise 57 or use Gaussian elimination, expressing the lead­
ing variables y \ , y2 in terms of the free variables x \ , x2, 
where

v =

Note that this procedure amounts to finding the kernel 
of 7\ in the familiar way; we just interpret the result 
somewhat differently.

59. If the equation det A =  det B holds for two n x n  
matrices A and 5, is A necessarily similar to B1

60. Consider an n x n matrix A. Show that swapping the 
ith and the yth rows of A (where i < j)  amounts to 
performing 2(j — i) — 1 swaps of adjacent rows.

61. Consider n x n  matrices A, B , C, and D, where A is 
invertible and commutes with C. Show that

A B 1 
C Ddet =  det ( A D - C B ) .
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{Hint: Consider the product

In 0
- C  A

A B 
C D

62. Consider n x n  matrices A, B ,C,  and D such that 

rank(A) =  rank

Show that

A B 
C D

=  n.

a. D =  CA 1B, and
det(A) det (B) 
det (C) det(D) 

ible. [Hint: Consider the product

b. The 2 x 2  matrix is noninvert-

In O' A B '
-C A " 1 In C D

63. Show that more than n\ = 1 - 2 - 3 ......... n multipli­
cations are required to compute the determinant of an 
n x n  matrix by Laplace expansion (for n > 2).

64. Show that fewer than e • n ! algebraic operations (addi­
tions and multiplications) are required to compute the 
determinant of an n x n matrix by Laplace expansion. 
Hint: Let Ln be the number of operations required to 
compute the determinant of a “general” n x n  matrix 
by Laplace expansion. Find a formula expressing Ln in 
terms of j . Use this formula to show, by induction, 
that

Ln 1 1
- 4  =  1 +  1 +  r r  +  XT +  • •n\ 21 3! ■ +

1 1
( n - 1)! n\

Use the Taylor series of ex , ex =  Y^n=o nT ’ t0 s^ow l^at 
the right-hand side of this equation is less than e.

65. Let Mn be the n x n matrix with 1 ’s on the main diago­
nal and directly above the main diagonal, — 1 ’s directly

Ma =

below the main diagonal, and 0’s elsewhere. For 
example,

" 1  1 0 0“ 
- 1 1 1 0  

0 - 1  1 1  
0 0 —1 1 

Letdn =  det(M„).
a. For n > 3, find a formula expressing dn in terms of 

dn-\ and J„_2.
b. Find d\, d2, ^3, ^4 , and d\Q.
c. For which positive integers n is the matrix Mn 

invertible?

66 . Let Mn be the matrix with all l ’s along the main diago­
nal, directly above the main diagonal, and directly below 
the diagonal, and 0’s everywhere else. For example,

^1 1 0  0^
1 1 1 0  
0 1 1 1
0 0 1 1

A/4 =

Let dn =  det(M„).
a. Find a formula expressing dn in terms of dn- \  and 

dn- 2, for positive integers n > 3.
b. Find d \ , d2, . . . ,  d%.
c. What is the relationship between dn and dn+3? What 

about dn and dn+6?
d. Find Jioo-

67. Consider a pattern P in an n x n matrix, and choose an 
entry a{j in this pattern. Show that the number of inver­
sions involving a\j is even if (/ +  7 ) is even and odd if 
(/ +  j)  is odd. Hint: Suppose there are k entries in the 
pattern to the left and above atj . Express the number of 
inversions involving aij in terms of k.

68 . Using the terminology introduced in the proof of The­
orem 6.2.10, show that sgnP =  ( - l ) '+7sgn(P/y). See 
Exercise 67.

Geometrical Interpretations of the Determinant; Cramer’s Rule

We now present several ways to think about the determinant in geometrical terms. 
Here is a preliminary exercise.

EXA M PLE  I What are the possible values of the determinant of an orthogonal matrix A?

Solution 
We know that

A T A =  /„
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Theorem 6.3.1

Definition 6.3.2

(by Theorem 5.3.7). Taking the determinants of both sides and using Theorems 6.2.1 
and 6 .2 .6 , we find that

det(Ar A) =  det(Ar )det A =  (det A)2 =  1.

Therefore, det A is either 1 or — 1. ■

The determinant of an orthogonal matrix is either 1 or — 1. ■

For example,

representing a rotation, and

det

det

0.6 - 0.8
.0.8 0.6

0.6 0 .8'

0.8 - 0.6

=  1,

=  - 1 ,

representing a reflection about a line.

Rotation matrices
An orthogonal n x n  matrix A with det A =  1 is called a rotation matrix, and the 
linear transformation T (jc) =  Ax  is called a rotation.

The Determinant as Area and Volume
In Theorem 2.4.10 we give a geometrical interpretation of the determinant of a 2 x 2 
matrix A, based on the formula

detA  =  det[Ci $ 2 ]  = llvill sinfllltkll,
where 6 is the oriented angle from vj to v2.

Figure la  illustrates the fact that

(det A| =  |det [C| v2]| =  ll^ill (sin<9| Ht̂ H

is the area of the parallelogram spanned by the vectors vi and V2- In Theorem 2.4.10, 
we provide a geometrical interpretation of the sign of det A as well; here we will 
focus on interpreting the absolute value.

Figure lb

Alternatively, we can write |det A| in terms of the Gram-Schmidt process, The­
orem 5.2.1. Observe that |sin0 | ||S2|| =  1|* where v2 denotes the component of
v2 perpendicular to S]. (See Figure lb.) Thus

| det A | =
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Theorem 6.3.3

More generally, consider an invertible n x n  matrix

A = V[ v 2

By Theorem 5.2.2, we can write A =  QR, where Q is an orthogonal matrix and R 
is an upper triangular matrix whose diagonal entries are

Hi =  ll^i II and rjj = | . for j > 2.

We conclude that

]det A| =  |det (?||det R\ =  ||5,|| V2

Indeed, |det Q | =  1 by Theorem 6.3.1, and the determinant of R is the product of 
its diagonal entries, by Theorem 6.1.4.

The determinant in terms of the columns
If A is an n x n matrix with columns v \ , v2, . . . ,  vn, then

| det A | =

where 5^ is the component of 5* perpendicular to span (5i , . . . ,  u*_i). (See Theo­
rem 5.2.1.) ■

- 1 r,-Lu 2 Vn

The proof of Theorem 6.3.3 in the case of a noninvertible matrix A is left as 
Exercise 8 .

As an example, consider the 3 x 3 matrix

with

A =

| det A | =

Ul V2 l>3

I I I .

-  1 II 1 -  _LIIIV3

As in Figure lb, ||5i ||||S2"|| is the area of the parallelogram defined by v\ and v2. Now 
consider the parallelepiped defined by v \ , v2, and U3 (i.e., the set of all vectors o f the 
form c\V\ + c2v2 +  C3D3, where the c, are between 0 and 1, as shown in Figure 2).

M .

Figure 2
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Theorem 6.3.4

Definition 6.3.5

Theorem 6.3.6

The volume of this parallelepiped is

Base area Height

Volume =  115,111|u2x || \\v3l \\ =  |detA |

(by Theorem 6.3.3).

Volume of a parallelepiped in R 3
Consider a 3 x 3 matrix A = [ u, v-i V3 ]. Then the volume of the parallelepiped 
defined by i5i, t)2, and V3 is | det A|. ■

For a geometrical interpretation of the sign of det A, see Exercises 19 through 21. 
Let us generalize these observations to higher dimensions.

Parallelepipeds in M"

Consider the vectors 5 |, V2, ■.., vm in R". The m -parallelepiped defined by the
vectors 3 | , . . . ,  vm is the set of all vectors in M" of the form c\t>\ +C2U2 H------ hcm5m,
where 0 < c, <  1. The m-volume V(i5i, . . . ,  vm) of this m-parallelepiped is defined 
recursively by V(i;i) =  ||i'i || and

Note that this formula for the m -volume generalizes the formula

(base)(height)

we used to compute the area of a parallelogram (i.e., a 2 -parallelepiped) and the 
volume of a 3-parallelepiped in M3. Take another look at Figures 1 and 2. 

Alternatively, we can write the formula for the m-volume as

V(Si , . . . ,  vm) =

Let A be the n x  m matrix whose columns are v i , . . .  , v m. If the columns of A 
are linearly independent, we can consider the QR  factorization A =  QR.  Then, 
A TA  =  R t Q t QR  =  R TR,  because Q T Q =  lm (since the columns of Q are 
orthonormal). Therefore,

det(ATA) =  det(RT R) =  (det R)1 =  (ru r22 • ■■rmm)1
.2

r.JL - -LV2 vm

=  (llSill -  -L ) = ( V ( 5 , , . . . , D m))2.

We can conclude

Volume of a parallelepiped in R n
Consider the vectors vi, v2. • • •, vm in R”. Then the m-volume of the m- 
parallelepiped defined by the vectors vi , . . . ,  vm is

\/d e t(A r A),

where A is the n x m  matrix with columns 3 | , x>2........ vm.
In particular, if m =  n, this volume is

| det A|.

(Compare this with Theorem 6.3.3.) ®
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We leave it to the reader to verify Theorem 6.3.6 for linearly dependent vectors 
v \ , . . . ,  vm. (See Exercise 15.)

As a simple example, consider the 2-volume (i.e., area) of the 2-parallelepiped 
(i.e., parallelogram) defined by the vectors

v\ =
'1 ' T
1 and V2 = 2

.1. .3.

in R 3. By Theorem 6.3.6, this area is

\
det

1 1 1 
1 2 3

n  1
I 2 
1 3

=  A / det
3 6 
6 14 = V6.

In this special case, we can also determine the area as the norm ||5i x v2\\ o f the 
cross product of the two vectors.

T he D eterm inant as E x pan sion  Factor
Consider a linear transformation T  from R 2 to R 2. In Chapter 5, we examined how 
a linear transformation T  affects various geometric quantities such as lengths and 
angles. For example, we observed that a rotation preserves both the length of vectors 
and the angle between vectors. Similarly, we can ask how a linear transformation T  
affects the area of a region £2 in the plane. (See Figure 3.)

Figure 3

We might be interested in finding the expansion factor, the ratio

area of T (£2) 
area of £2

The simplest example is the unit square £2 shown in Figure 4.

T(x)  = A x = a b 
c d

Figure 4

Since the area of £2 is 1 here, the expansion factor is simply the area o f the 
parallelogram T (£2), which is | det A|, by Theorem 2.4.10.
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Theorem 6.3.7

More generally, let £2 be the parallelogram defined by 5| and V2, as shown in 
Figure 5.

Let B =  [v\ v2]. Then

area of £2 =  | det £),
and

area of T(S2) = |det [ A v x AD2 ] [ =  |det(A B )| =  |d e tA ||d e t£ |,  

and the expansion factor is

area of T(Q)  | detai l  det Z?|
area of £2

=  | det A|.

It is remarkable that the linear transformation T(x)  =  Ax  expands the area of all 
parallelograms by the same factor, namely, | det A\.

Expansion factor
Consider a linear transformation T(x)  =  Ax  from R 2 to R 2. Then | det A) is the 
expansion factor

area of r(£2) 
area of £2

of T  on parallelograms £2.
Likewise, for a linear transformation T (x) =  Ax from R n to Rn, | det A \ is the 

expansion factor of T  on ^-parallelepipeds:

V ( A v .............. =  | det A \ V ( v \ , . . . ,  vn),

for all vectors d\ , . . . ,  vn in R n. ■

This interpretation allows us to think about the formulas det( A ~1) =  1 /  det A 
and det(AZ?) =  (det A)(det B)  from a geometric point of view. See Figures 6 and 7.

y = Ax

x = A ly

Figure 6
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- A B x

y = Bx
z = Av

The expansion factor | det( A 1) | is the reciprocal of the expansion factor | det A | :

I det(/4~')| =  1
det A |

The expansion factor | det(Afi)| of the composite transformation is the product 
of the expansion factors | det A \ and | det B\:

|det(A fl)| =  | det A|| det B\.

Using techniques of calculus, you can verify that | det A | gives us the expansion 
factor of the transformation T ( x ) = Ax  on any region £2 in the plane. The approach 
uses inscribed parallelograms (or even squares) to approximate the area of the region, 
as shown in Figure 8. Note that the expansion factor of T  on each of these squares 
is | det A | . Choosing smaller and smaller squares and applying calculus, you can 
conclude that the expansion factor of T  on Q itself is | det A|.

We will conclude this chapter with the discussion of a closed-forrn solution for 
the linear system A x  =  b in the case when the coefficient matrix A is invertible.

Cramer's Rule 
If a matrix

A = <*\\ 012 
<*21 a22
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EXA M PLE  2

is invertible, we can express its inverse in terms of its determinant:

1
A-1 = 022 —<2l2

—021 0\\det (A)

This formula can be used to find a closed-formula solution for a linear system

a\\X\ + a i 2*2 =  b\

<221*1 +  <*22*2 =  t>2

when the coefficient matrix is invertible. We write the system as Ax  =  b, where

A = flu a 12 
021 022

X  = b =

Then

V — x — A ~ lb — 1 022 - o ]2' V
*2m

— A, -- /I U --
det A -021 a n . p2.

1
det A

Q2lb\ — 0\2b2 
0\\b2 — 02\b\

To write this formula more succinctly, we observe that 

Q2tb\ — 0 \2b2 =  det 

o\\b2 — 02\b\ =  det

b x a 12

p2 022
an b {
021 bi_

replace the first column of A by b. 

replace the second column of A by b.

Let A-bj  be the matrix obtained by replacing the / th column of A by b:

Af,. i  —

b\ a 12

bi 02 2
a\\ b\ 
ai\ bi

The solution of the system Ax = b  can now be written as

=
det(A ^|) 

det A *2 =
det(A ^2) 

det A

Use the preceding formula to solve the system

2x\ +  3*2 =  7 
4*1 +  5*2 =  13

Solution

det

=

7 3 
13 5

det
2 3 
4 5

=  2, x 2 =
det

'2 1 
4 13.
'2 3

det
4 5

=  1

This method is not particularly helpful for solving numerically given linear 
systems; Gauss-Jordan elimination is preferable in this case. However, in many 
applications we have to deal with systems whose coefficients contain parameters. 
Often we want to know how the solution changes as we change the parameters. The 
closed-formula solution given before is well suited to deal with questions of this 
kind.
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EXAMPLE 3

EXA M PLE  4

Solve the system

(b — J)*i +  ax  2 =  0
—ax  i +  (b — 1 )X2 =  C

where a, b, C  are arbitrary positive constants.

Solution

det

=

0 a 
C b -  1 —aC

det

det

b — 1 a 
—a b — 1

b -  1 0 
—a C

*2 =
det

Consider the linear system

ax  +  by  =  1 
cjc +  d y  =  1

(b — l ) 2 +  a2

(b — 1)C 
( b - l ) 2 + a 2

where d  > b > 0 and a > c > 0.

This system always has a unique solution, since the determinant ad — be is positive
x

(note that ad  > be). Thus we can think of the solution vector

function of the vector
[yl

as a (nonlinear)

of the parameters. How does x  change as we change the parameters a and c l  More 
precisely, find dx /da  and d x /d c, and determine the signs of these quantities.

Solution

x =
det

1 b'
1 d

det
a b '
c d

d - b  
ad — be

> 0 ,
dx —d(d — b)
da (ad — be)2

< 0 ,

dx b(d  -  b)
3 c (ad — be)2

> 0

See Figure 9.

An interesting application of these simple results in biology is to the study of 
castes.7

The closed formula for solving linear systems of two equations with two un­
knowns generalizes easily to larger systems.

7See E. O. Wilson, ‘The Ergonomics of Caste in the Social Insects,” American Naturalist, 102, 923 
(1968): 41-66.
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1
V b

d

\  ^ N.
l l i i 1 1
a c a c a c

(a) (b) (c)

Figure 9 (a) Both components x and >’ of the solution are positive, (b) dx/da < 0: as a
increases, the component x of the solution decreases, (c) dx/dc > 0: as c increases, 
the component x of the solution increases.

Theorem 6.3.8 Cramer’s rule
Consider the linear system

Ax  = b ,

where A is an invertible n x n  matrix. The components jc, of the solution vector x 
are

Xi =
det(/4^,.) 

det A

where A^-  is the matrix obtained by replacing the zth column of A by b.
This result is due to the Swiss mathematician Gabriel Cramer (1704-1752). The 

rule appeared in an appendix to his 1750 book, Introduction a I'analyse des lignes 
courbes algebriques.

P roof Write A = [w\ w2 
b , then

Wi wn ]. If x  is the solution of the system Ax  =

det (Agj )  =  det ^w\ w2 • • • b • • • wn 

=  det[u>i w2 Ax wn ]

=  det [u)\ w2 ( x \ W \ + x 2W2 -\------- \-XjWj~\------- h xnwn) wn]

=  det [ \i)\ w2 • • • Xi u)i wn ]

=  xi det [w\ w2 Wj wn ]
=  xi det A.

Note that we have used the linearity of the determinant in the ith column (Theo­
rem 6.2.2).

Therefore,

X i  =
det(Ah i ) 

det A
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Theorem 6.3,9

Cramer’s rule allows us to find a closed formula for A 1, generalizing the result

a b -  _  i ' d - b '
c d det A —c a

for 2 x 2 matrices.
Consider an invertible n x n  matrix A and write

A-1 =

m ii m 12 ••• m\ j
m 21 m 22 m 2j

\.rnn\ m n2 m

M\n
m 2n

m„„

We know that A A  1 =  /„. Picking out the yth column of A \  we find that

m i /
m 2j

m nj  J

By Cramer’s rule, =  det(A^.Ti ) /  det A.

Aej,i —

a ii a 12 

a2\ a22

aj\ aj2 

&n I &n2

0
0

1

0

Q\ n

Cl2n

* jn j  th row

t
ith column

Now det(A?> () =  (—1)'+-' det(A7,) by Laplace expansion down the ith column, so 
that

l U j j  =  ( ~ 1 ) I+J
det A

We have shown the following result:

Adjoint and inverse of a matrix
Consider an invertible n x n  matrix A. The classical adjoint adj(A) is the n x  n 
matrix whose iyth entry is (—1 )l+-/ det(A;(). Then

1
A "! =

det A
adj(A).

For an invertible 2 x 2  matrix A =

adj(A) =

a b 
c d

, we find

11■XJ
I_______

, 1 
and A =  —-— —

’ d - b
—c a ad  — be —c a

(Compare this with Theorem 2.4.9.)
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EXA M PLE  5

For an invertible 3 x 3 matrix

the formula is

A~ =

a b c "
A = d * / ,

.8 h

~ek - f h ch —bk b f
f g  ~ dk ak — eg cd

id h  - eg bg - ah aedet A

We can interpret Cramer’s rule geometrically.

For the vectors w\, W2,&n&b shown in Figure 10, consider the linear system A x  =  fc, 
where A =  [w\ w2].

Using the terminology introduced in Cramer’s rule, let A^ 2 =  b j . Note 
that det(A) and det(y4^ 2) are both positive, according to Theorem 2.4.10. Cramer’s 
rule tells us that

det(Ar 2)
X2 = ---------— or det(Ar 2) =  det A.

det A
Explain this last equation geometrically, in terms of areas of parallelograms. 

Solution
We can write the system A x  =  b as jcj xb\ 4- x 2u)2 =  b. The geometrical solution is 
shown in Figure 11.

Figure 11
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Now,

det(i4g 2) =  det w \  b  =  area of the parallelogram defined by i b \  and b

=  area of the parallelogram8 defined by w\ and X2W2 
=  X2(area of the parallelogram9 defined by w\ and W2)
=  X2 det A ,

as claimed. Note that this geometrical proof mimics the algebraic proof of Cramer’s 
rule, Theorem 6.3.8. ■

The ambitious and artistically inclined reader is encouraged to draw an anal­
ogous figure illustrating Cramer’s rule for a system of three linear equations with 
three unknowns.

8The two parallelograms have the same base and the same height.
9 Again, think about base and height.

EXERCISES 6.3

GOAL Interpret the determinant as an area or volume 
and as an expansion factor,; Use Cramer’s rule.

1. Find the area of the parallelogram defined by

8
2

2. Find the area of the triangle defined by

and

■3" ’8 'and7 2_

3. Find the area of the following triangle:

Consider the area A of the triangle with vertices 

. Express A in terms of

det

b\ Cl
h .

*
f2

5. The tetrahedron defined by three vectors 5i, 52,53 in R3 
is the set of all vectors of the form c\v\ +  C2V2 +  C3U3, 
where c,- > 0 and c\ +  C2 +  C3 < 1. Explain why the 
volume of this tetrahedron is one-sixth of the volume of 
the parallelepiped defined by 5 j, 52, 53.

6 . What is the relationship between the volume of the tetra­
hedron defined by the vectors

b\ c\
^2 , b2 , Q
1 1 1

and the area of the triangle with vertices

(See Exercises 4 and 5.) Explain this relationship geo­
metrically. Hint: Consider the top face of the tetrahedron.

7. Find the area of the following region:

a\ b\ C\'
r - 5 -

a2 b2 C2 L - «
1 1 1

L_ —
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8 . Demonstrate the equation 

| det ,4| =

for
[5,

1*2 I W,n

a noninvertible n x n  matrix A 
V2 . . .  vn 1 (Theorem 6.3.3).

9. If 51 and v2 are linearly independent vectors in R2, 
what is the relationship between det [ Si D2 ] and 
det[5j 5^-], where is the component of x>2 
orthogonal to v\ ?

10. Consider an n x n  matrix A =  [5i V2 • • • 5„].
What is the relationship between the product 
||5illl|52 l |- - -115,11 and | det A|? When is | det A | =
l|Si IIIIII • • • llu*||?

11. Consider a linear transformation T(x) =  Ax from R2 
to R2. Suppose for two vectors Si and V2 in R2 we have 
T(5i) =  35 1 and 7 (52) =  452- What can you say about 
det A? Justify your answer carefully.

12. Consider those 4 x 4  matrices whose entries are all 1,
— 1, or 0. What is the maximal value of the determinant 
of a matrix of this type? Give an example of a matrix 
whose determinant has this maximal value.

13. Find the area (or 2-volume) of the parallelogram (or 2- 
parallelepiped) defined by the vectors

"1" " f
1

and
2

1 3
_1_ _4

14. Find the 3-volume of the 3-parallelepiped defined by the 
vectors

V Y f
0 1 2
0 1 ’ 3
0 1 4

15. Demonstrate Theorem 6.3.6 for linearly dependent vec­
tors S i , . . . ,  5m.

16. True or false? If Q is a parallelogram in R3 and T (jc) =  
Ax is a linear transformation from R3 to R3, then

area of T(£l) =  | det A |(area of Q).

17. (For some background on the cross product in Rw, see 
Exercise 6.2.44.) Consider three linearly independent 
vectors Si, S2 , S3 in R4.
a. What is the relationship between V(Si, S2 , S3 ) and 

V(Si, S2, S3 , Si x S2 x S3)? See Definition 6.3.5. 
Exercise 6.2.44c is helpful.

b. Express V(Si, S2 , S3 , Si x I 2 x S3 ) in terms of 
IlSi x S2 x S3 1|.

c. Use parts (a) and (b) to express V (S1, S2 , S3) in terms 
of ||Si x S2 x S3 1| . Is your result still true when the
5, are linearly dependent?

(Note the analogy to the fact that for two vectors Si and 
S2 in R3, ||5i x S2 II is the area of the parallelogram 
defined by Si and S2.)

18. If T (Jc) =  Ax is an invertible linear transformation from 
R2 to R2, then the image T(S2) of the unit circle £2 is an 
ellipse. (See Exercise 2.2.50.)

>  01a. Sketch this ellipse when A =
0 q , where p and

q are positive. What is its area?
b. For an arbitrary invertible transformation T(x) = 

Ax,  denote the lengths of the semimajor and the semi- 
minor axes of T (Q) by a and by respectively. What 
is the relationship between a , b, and det(>4)?

c. For the transformation T(x) = jc, sketch

this ellipse and determine its axes. {Hint: Consider

and T 1
-1

19. A basis Si, 52 , S3 of R3 is called positively oriented if
Si encloses an acute angle with S2 x 53. Illustrate this 
definition with a sketch. Show that the basis is positively 
oriented if (and only if) det [ Si S2 S3 ] is positive.

20. We say that a linear transformation T from R3 to R3 
preserves orientation if it transforms any positively 
oriented basis into another positively oriented basis. 
(See Exercise 19.) Explain why a linear transformation 
TO?) =  Ajc preserves orientation if (and only if) det A 
is positive.

21. Arguing geometrically, determine whether the follow­
ing orthogonal transformations from R3 to R3 preserve 
or reverse orientation. (See Exercise 20.)
a. Reflection about a plane b. Reflection about a line
c. Reflection about the origin

Use Cramer’s rule to solve the systems in Exercises 22
through 24.

22.

24.

3x -j- 7y =  1 
4 x+  Uy = 3

2x +  3y = 8  
4y +  5 z =  3 

6x +  7z =  —1

23. 5jc i  —  3jc 2  =  1 
-6jci - f  1x2  —  0
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25. Find the classical adjoint of the matrix

A =
1 0 1 
0 1 0 
2 0 1

and use the result to find A -l

26. Consider an nxn  matrix A with integer entries such that 
det A =  1. Are the entries of A ~ 1 necessarily integers? 
Explain.

27. Consider two positive numbers a and b. Solve the fol­
lowing system:

ax — by — I 
bx +  ay =  0

What are the signs of the solutions x and v? How does 
x change as b increases?

28. In an economics text, 10 we find the following system:

sY + ar  =  / c + G 
mY — hr — Ms — M \

Solve for Y and r.

29. In an economics text11 we find the following system:

- R  i *i
a 1 — a 

Ri —R2

- d  ~ a )  

-(1  - a ) 2 
- 0 - a ) 2

dx\ 0
dy\ — 0

.  dP. — R2de2

Solve for dx\,  dy \ , and dp. In your answer, you may 
refer to the determinant of the coefficient matrix as D. 
(You need not compute D.) The quantities R j, R2, and 
D are positive, and a is between zero and one. If de2 is 
positive, what can you say about the signs of dy\ and 
dp?

30, Find the classical adjoint of A =

31. Find the classical adjoint of A =

32. Find the classical adjoint of A =

1 0 0"
2 3 0
4 5 6

1 1 f
1 2 3
1 6 6

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

33. Find the classical adjoint of A =

1 0  0 0 
0 2 0 0
0 0 3 0
0 0 0 4

34. For an invertible n x n  matrix A, find the product 
A(adjA). What about (adj A)(A)?

35. For an invertible nxn  matrix A, what is the relationship 
between det(A) and det(adj A)?

36. For an invertible n x n  matrix A, what is adj (adj A)?

37. For an invertible nxn  matrix A, what is the relationship 
between adj (A) and adj(A-1 )?

38. For two invertible n x n  matrices A and B , what is the 
relationship between adj (A), adj(£), and adj (A 5)?

39. If A and B are invertible n x n  matrices, and if 
A is similar to B , is adj(A) necessarily similar to 
adj(fl)?

40. For an invertible n x n  matrix A, consider the linear 
transformation

T(x) =

det(Ajfj)
det(A* 2)

det(A* „)_

from W1 to W1.

Express the standard matrix of T in terms of adj(A).

41. Show that an n x n  matrix A has at least one nonzero 
minor if (and only if) rank(A) > n — 1.

42. Even if an n x n matrix A fails to be invertible, we can 
define the adjoint adj(A) as in Theorem 6.3.9. The i7 th 
entry of adj (A) is (—l),+; det(A7,). For which n x n  
matrices A is adj(A) =  0? Give your answer in terms of 
the rank of A. See Exercise 41.

43. Show that A (adj A ) =  0 =  (adj A) A for all noninvertible 
n x n  matrices A. See Exercise 42.

44. If A is an n x n matrix of rank n — 1, what is the rank 
of adj (A)? See Exercises 42 and 43.

45. Find all 2 x 2 matrices A such that adj (A) = AT.

46. (For those who have studied multivariable calculus.) Let 
T be an invertible linear transformation from R2 to IR2, 
represented by the matrix M.  Let Q\ be the unit square 
in R2 and Q2 its image under T. Consider a continuous 
function / (jc, v) from R2 to R, and define the function 
g(u, v) = / (T(w,  v)). What is the relationship between

Simon and Blume, Mathematics for Economists, Norton, 1994.
Simon and Blume, op. cit.
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the following two double integrals?

J J  f ( x , y ) d A  and J J  g(u, v )dA

Your answer will involve the matrix M . Hint: What hap­
pens when / ( j c ,  >’) =  L  for all jc, y l

47. Consider the quadrilateral in the accompanying figure, 
with vertices P/ =  (jc/ , >/), for i = 1, 2, 3,4. Show that 
the area of this quadrilateral is

1
-  | det

+ det

*1 x2
+ det *2 *3

y\ yi _ yi 73
*3 X4

+ det X4 X\
V3 y* y* y\

48. What is the area of the largest ellipse you can inscribe 
into a triangle with side lengths 3, 4, and 5? (Hint: The 
largest ellipse you can inscribe into an equilateral trian­
gle is a circle.)

49. What are the lengths of the semiaxes of the largest el­
lipse you can inscribe into a triangle with sides 3,4, and 
5? See Exercise 48.

Chapter Six Exercises

TRUE OR FALSE?
1. If A =  [u v w] is any 3 x 3  matrix, then det A =

U ' ( v  X w ) .

2. det(4A) =  4 det A for all 4 x 4 matrices A.

3. det(A +  B) =  det A +  det B for all 5 x 5 matrices A 
and B.

4. The equation det(—A) =  det A holds for all 6 x 6 
matrices.

5. If all the entries of a 7 x 7 matrix A are 7, then det A 
must be 77.

6. An 8 x 8 matrix fails to be invertible if (and only if) its 
determinant is nonzero.

7. If B is obtained be multiplying a column of A by 9, then 
the equation det B =  9 det A must hold.

8. det(A10) =  (det A)10 for all 10 x 10 matrices A.

9. The determinant of any diagonal n x n  matrix is the
product of its diagonal entries.

10. If matrix B is obtained by swapping two rows of an n x n 
matrix A, then the equation det B =  — det A must hold.

11. Matrix

9 100 3 7"
5 4 100 8

100 9 8 7
6 5 4 100

is invertible.

12. If A is an invertible n x n  matrix, then det(Ar ) must 
equal det(A_1).

13. If the determinant of a 4 x 4 matrix A is 4, then its rank 
must be 4.

14. There exists a nonzero 4 x 4  matrix A such that det A = 
det(4A).

15. If two n x n  matrices A and B are similar, then the 
equation det A =  det B must hold.

16. The determinant of all orthogonal matrices is 1.

17. If A is any n x n  matrix, then det(AA^) = det(A^A)-
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1& There exists an invertible matrix of the form 
]a e f

b 0 
c 0 
d 0

0 
0 
0

k2 
k 
1

tive constants k.
0 1 0  0 ”
0 0 1 0  
0 0 0 1

1 0  0 0

|9. The matrix

20. det

is invertible for all posi-

=  1.

21. There exists a 4 x 4 matrix A whose entries are all 1 or 
— 1, and such that det A = 16.

22. If the determinant of a 2 x 2 matrix A is 4, then the 
inequality ||AD|| < 4||5|| must hold for all vectors v 
inR2.

23. If A =  [2 v w ] is a 3 x 3 matrix, then the formula 
det(A) =  v • (u x w) must hold.

24. There exist invertible 2 x 2  matrices A and B such that 
det(A +  Z?) =  det A +  det B.

25. If all the entries of a square matrix are 1 or 0, then det A 
must be 1,0, or -1 .

26. If all the entries of a square matrix A are integers and 
det A =  1, then the entries of matrix A-1 must be inte­
gers as well.

27. If all the columns of a square matrix A are unit vectors, 
then the determinant of A must be less than or equal 
to 1.

28. If A is any noninvertible square matrix, then det A =  
det(rref A).

29. If the determinant of a square matrix is — 1, then A must 
be an orthogonal matrix.

30. If all the entries of an invertible matrix A are integers, 
then the entries of A - 1 must be integers as well.

31. There exist invertible 3 x 3  matrices A and S such that 
S~l AS =  2A.

32. There exist invertible 3 x 3  matrices A and S such that 
St AS = - A .

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

If A is any symmetric matrix, then det A =  1 or 
detA = -1 .

If A is any skew-symmetric 4 x 4  matrix, then 
det A =  0.

If det A =  det B for two n x n  matrices A and B , then 
A must be similar to B.

Suppose A is an n x n matrix and B is obtained from 
A by swapping two rows of A. If det B < det A, then A 
must be invertible.

If an n x n matrix A is invertible, then there must be an 
(n — 1) x (n — 1) submatrix of A (obtained by deleting 
a row and a column of A) that is invertible as well.

If all the entries of matrices A and A “ 1 are integers, then 
the equation det A =  det(A_1) must hold.

If a square matrix A is invertible, then its classical adjoint 
adj(A) is invertible as well.

There exists a 3 x 3 matrix A such that A2 = —I3.

If all the diagonal entries of an n x n matrix A are odd 
integers and all the other entries are even integers, then 
A must be an invertible matrix.

If all the diagonal entries of an n x n matrix A are even 
integers and all the other entries are odd integers, then 
A must be an invertible matrix.

For every nonzero 2 x 2  matrix A there exists a 2 x 2 
matrix B such that det(A +  B) ^  det A +  det B.

If A is a 4 x 4 matrix whose entries are all 1 or — 1, then 
det A must be divisible by 8 [i.e., det A =  Sk for some 
integer k].

If A is an invertible n x n  matrix, then A must commute 
with its adjoint, adj (A).

There exists a real number k such that the matrix

1 2 3 4
5 6 k 7
8 9 8 7
0 0 6 5

47.

is invertible.

If A and B are orthogonal n x n  matrices such that 
detA =  detB =  1, then matrices A and B must 
commute.

I



C H A P T E R

Eigenvalues and Eigenvectors

o r  Dynamical Systems and Eigenvectors: An Introductory Example

A stretch of desert in northwestern Mexico is populated mainly by two species of 
animals: coyotes and roadrunners. We wish to model the populations c(t) and r(t) 
of coyotes and roadrunners t years from now if the current populations co and ro are 
known.1,2

'The point of this lighthearted story is to present an introductory example where neither messy data 
nor a complicated scenario distracts us from the mathematical ideas we wish to develop.
2For those who don’t have the time or inclination to work through this long introductory example, we 
propose an alternative approach:

Example A: Give a geometrical interpretation of the linear transformation T'(Jc) =  Ax, where

A - l 4 3 
A ~  3 - 4

Solution: Write A =  5
0.8 0.6

0.6 - 0.8
to see that T is a refection about a line combined with a scaling

is any vectorby a factor of 5; see Definition 2.2.2. Let’s find the line L of reflection. If 5 =  

parallel to L, then

Av = 5u, or
'4 3" X ~5x

or
4x +  3>’ =  5jc

3 - 4 y 5 y . 3x — Ay =  5>’

Thus L =  span ^

In summary, T is the reflection about the line L = span

or x  =  3 y.

, combined with a scaling by a factor of 5.

Here is a follow-up question: Are there any other vectors u, besides those parallel to the line L, such 
that Av is a scalar multiple of v l  ™

Example B: Give a geometrical interpretation of the linear transformation T(x)  = Bx,  where 
4"B =

4 7

294
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For this habitat, the following equations model the transformation of this system 
from one year to the next, from time t to time (r -h 1):

c(t +  1) =  0 .8 6 c(r) +  0.08r(/)
r(t  +  1) =  —0.12c(f) +  1.14r(f) '

Why is the coefficient of c(t) in the first equation less than 1, while the coefficient 
of r(t) in the second equation exceeds 1? What is the practical significance of the 
signs of the other two coefficients, 0.08 and —0 . 12?

The two equations can be written in matrix form, as

The vector

mc(t + i y 0 .8 6 c(O +  0.08r(O ' 0 .8 6  0.08' 'c(t)
_r(t +  1) -0 .12c(f) +  1.14r(f)_ - 0 .1 2  1.14 / ( 0 _

5 ( 0  =
c(t)
r{t)

A =

is called the state vector of the system at time f, because it completely describes this 
system at time t. If we let

0 .8 6  0.08'
—0 .1 2  1.14J ’

we can write the preceding matrix equation more succinctly as

x( t  +  1) =  Ax(t) .

The transformation the system undergoes over the period of one year is linear, 
represented by the matrix A.

X ( t ) ^ x ( t + \ )

Suppose we know the initial state

5(0) =  x0 =

We wish to find x( t) ,  for an arbitrary positive integer t :

5(0) x ( l )  x(2)  5(3)

Solution: This problem is harder than Example A, since matrix B is not directly associated with any 
of the geometrical transformations we discussed in Section 2.2: Reflections, Rotations, Scalings, 
Projections, and Shears.

Using Example A as a guide, we can look for vectors v such that Bv is a scalar multiple of v:

Bv = kv, for some scalar k (lambda).

In Sections 7.2 and 7.3, we will learn how to find such vectors u. At this early stage, I will just 
pull two such vectors out of a hat and tell you that

2’ l 4 ’ l" 9
=  9 Y

4 1 2 18 2
and

1 4 
4 7

-2
1 = ( - 1)

These results allow us to interpret T as a scaling by a factor of 9 in the direction of the vector

. Draw a sketch! Imagine performingcombined with a the reflection about the line spanned by 

those transformations on a rubber sheet.

Having recognized that it can be useful to know the solutions of the equation Ax =  Xx for a 
square matrix A y the reader may now proceed to Definition 7 .1.1.
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100
300

We can find x(t) by applying the transformation t times to 3c(0):

x( t)  =  Arjc(0 ) =  Arj?o-

Although it is extremely tedious to find x(t ) with paper and pencil for large /, we 
can easily compute x(t) using technology. For example, given

xo =
100
100

we find that

5(10) =  A 10 J 0
80

170

To understand the long-term behavior of this system and how it depends on the initial 
values, we must go beyond numerical experimentation. It would be useful to have 
closed formulas for c{t) and r(t),  expressing these quantities as functions of t. We 
will first do this for certain (carefully chosen) initial state vectors.

Case 1 ■  Suppose we have co =  100 and ro =  300. Initially, there are 100 coyotes
'1001

and 300 roadrunners, so that jco =  

5(1) =  A50 =

300
. Then

0 .8 6  0.08 
-0 .1 2  1.14

100 ' 110 '
300 330

Note that each population has grown by 10%. This means that the state vector 5(1) 
is a scalar multiple of 5o (see Figure 1):

5(1) =  A50 =  1.15o •

It is now easy to compute 5(7) for arbitrary t, using linearity:

5(2) =  A 5 ( l )  =  A (l . l5o )  =  l . lA 5o  =  1.125o 
5(3) =  A5(2) =  A(1.125q) =  1.12A50 =  1.1350

x( t)  =  1. 1'jfo-

We keep multiplying the state vector by 1.1 each time we apply the transformation A. 
Recall that our goal is to find closed formulas for c(t) and r(t). We have

5 ( 0  =
c(t)
r(t) = l.i 'S o  =  1.1'

100
300

so that

c(t) =  100(1.1)' and r(f) =  300(1.l ) f. 

Both populations will grow exponentially, by 10% each year. 

Case 2 ■  Suppose we have co =  200 and ro =  100. Then

5(1) =  A50 =
' 0 .8 6 0.08' '2 0 0 ' 180'
- 0 .1 2 1.14 100 90 =  0.950.

Both populations decline by 10% in the first year and will therefore decline another 
10% each subsequent year. Thus

5(f) =  0.9 '50,
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so that

c(t) =  200(0.9)' and r(t) =  100(0.9)'.

The initial populations are mismatched: Too many coyotes are chasing too few 
roadrunners, a bad state of affairs for both species.

Case 3 ■  Suppose we have co =  ro =  1 ,000. Then 

5(1) =  A x 0 =
' 0 .8 6  0.08' 1,0 0 0 ' 940'
- 0 .1 2  1.14 1 ,0 0 0 1 ,0 2 0

Things are not working out as nicely as in the first two cases we considered: The 
state vector x  (1) fails to be a scalar multiple of the initial state xq. Just by computing 
5(2), Jc(3),. . . ,  we could not easily detect a trend that would allow us to generate 
closed formulas for c(t) and r(t).  We have to look for another approach.

The idea is to work with the two vectors

100 ' '2 0 0 '
Vl =

300
and V2 =

100

considered in the first two cases, for which A '5/ was easy to compute. Since the 
vectors v\ and V2 form a basis of K2, any vector in R 2 can be written uniquely as a 
linear combination of 5] and V2- This holds in particular for the initial state vector

1,000
1,000

of the coyote-roadrunner system:

5o =  ci Dj + c 2S 2-

A straightforward computation shows that the coordinates are cj = 2  and c2 =  4:

50 =  2v\ -f 452-

Recall that A*v\ =  ( l . l ) '5 i  and A 1 v2 =  (0 .9 ) '52. Therefore,

x( t)  =  A '5 o =  A'(25i + 4 ?2) =  2Afv\ + 4A 'v2 
=  2(1.1)'51 4- 4(0 .9)'52

=  2(1.1)'
100
300

+  4(0.9)'
200
100

Figure 2

Considering the components of this equation, we can find formulas for c(t) and r (t):

c(t) = 200(1.1)' +  800(0.9)' 
r(t)  =  600(1.1)' +  400(0.9)'.

Since the terms involving 0.9r approach zero as t increases, both populations even­
tually grow by about 10% a year, and their ratio r(t ) /c( t )  approaches 600/200 =  3.

Note that the ratio r( t) /c( t)  can be interpreted as the slope of the state vector 
5(f), as shown in Figure 2.
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Figure 3

How can we represent the preceding computations graphically?
Figure 3 shows the representation xq =  2v\ +  4v2 of 3to as the sum of a vector 

on L\ =  span(5i) and a vector on L 2 =  s p a n ^ ) -  The formula

x( t)  =  ( l .l) '2 5 i +  (0.9)'432

now tells us that the component in L  i grows by 10% each year, while the component 
in L 2 shrinks by 10%. The component (0 .9 ) f452 in L 2 approaches 0, which means 
that the tip of the state vector x( t)  approaches the line L i, so that the slope of the 
state vector will approach 3, the slope of L \ .

To show the evolution of the system more clearly, we can sketch just the end­
points of the state vectors 3t(r). Then the changing state of the system will be traced 
out as a sequence of points in the o r  plane.

It is natural to connect the dots to create the illusion of a continuous trajectory. 
(Although, of course, we do not know what really happens between times t and 
t +  1.)

Sometimes we are interested in the state of the system in the past, at times
— 1, —2 , ___Note that 3c(0) =  A x ( — 1), so that 3c(—1) =  A ~ [xq if A is invertible
(as in our example). Likewise, 3c(—/) =  (A ')_ 13co, for t =  2, 3 , ___The trajectory
(future and past) for our coyote-roadrunner system is shown in Figure 4.

To get a feeling for the long-term behavior of this system and how it depends 
on the initial state, we can draw a rough sketch that shows a number of different 
trajectories, representing the various qualitative types of behavior. Such a sketch is 
called a phase portrait of the system. In our example, a phase portrait might show 
the foregoing three cases, as well as a trajectory that starts above L j and one that 
starts below L 2. See Figure 5.

To sketch these trajectories, express the initial state vector 3co as the sum of a 
vector w\ on L\ and a vector w2 on L 2. Then see how these two vectors change over 
time. If xq = w\ + w2, then

3c(f) =  (! .!) '£ ;, +  (0.9)'S>2.
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Figure 4

We see that the two populations will prosper over the long term if the ratio ro/co 
of the initial populations exceeds 1/ 2 ; otherwise, both populations will die out.

From a mathematical point of view, it is informative to sketch a phase portrait 
of this system in the whole c-r-plane, even though the trajectories outside the first 
quadrant are meaningless in terms of our population study. (See Figure 6 .)

Eigen vec tors  and E ig en v a lu es
In the example just discussed, it turned out to be very useful to have some nonzero 
vectors v such that AS is a scalar multiple of 5, or

Av  =  kv,

for some scalar k.
Such vectors are important in many other contexts as well.
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Definition 7.1.1 Eigenvectors3 and eigenvalues

Consider an n x n  matrix A. A nonzero vector i; in R n is called an eigenvector of A 
if Av  is a scalar multiple of v, that is, if

Av  =  Xv,

for some scalar X. Note that this scalar X may be zero.
The scalar X is called the eigenvalue associated with the eigenvector v.

A nonzero vector v is an eigenvector of A if the vectors v and Au are parallel, 
as shown in Figure 7. (See Definition A.3 in the Appendix.)

Av -  v

A v  = 2v 
eigenvalue: 2

A v = v = lv  
eigenvalue: 1

A v = -v  = (-l)iJ 
eigenvalue: -1

A d  =  0 = 0v 

eigenvalue: 0

Figure 7

If 5 is an eigenvector of matrix A,  then v is an eigenvector of matrices A 
A i , . . . ,  as well, with

A 2v =  X2v, A 3 v = X3v , . . . ,  A ' v  =  X'v,

for all positive integers t.

3From German eigen: proper, characteristic.
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EXAMPLE I

EXA M PLE  2

EXA M PLE  3

Find all eigenvectors and eigenvalues of the identity matrix 

Solution
Since Inv =  v =  1 v for all v in R", all nonzero vectors in R" are eigenvectors, with 
eigenvalue 1. ■

Let T be the orthogonal projection onto a line L in R2. Describe the eigenvectors of 
T  geometrically and find all eigenvalues of T.

Solution
We find the eigenvectors by inspection: can you think of any nonzero vectors v in the 
plane such that T(v)  is a scalar multiple of 5? Clearly, any vector v on L will do [with 
T(v)  =  15], as well as any vector w perpendicular to L  [with T(w)  =  0 =  0w]. 
See Figure 8 .

The eigenvalues are 1 and 0. ■

Let T  from R 2 to R 2 be the rotation in the plane through an angle of 90° in the 
counterclockwise direction. Find all eigenvalues and eigenvectors of T.

Solution
If v is any nonzero vector in R 2, then T (v) fails to be parallel to v (it’s perpendicular). 
See Figure 9. There are no real eigenvectors and eigenvalues here.4 ■

4In Section 7.5, we will consider complex eigenvalues.
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EXA M PLE  4

Theorem 7.1.2

Solution
Recall that the linear transformation T(x)  =  Ax  preserves length: || 7"(Jc) || =: 
||Ajc|| =  ||3r||, for all vectors jc. (See Definition 5.3.1.) Consider an eigenvector 
5 of A, with eigenvalue X:

Av — Xv.

Then

||5|| =  ||AS|| =  M  =  |X|||D||, 

so that X = 1 or X =  — 1. The two possibilities are illustrated in Figure 10. ■

A v  = v = \ i  

/
(a )

Figure 10 (a) \  -  1. (b) X = - 1 .

The possible real eigenvalues of an orthogonal5 matrix are 1 and —1. ■

What are the possible real eigenvalues of an orthogonal5 matrix A?

(b)

As an example, consider the reflection about a line in R 2. (See Exercise 15.) 

D y n a m ica l  S y s t e m s  and E igenvectors
Consider a physical system whose state at any given time f is described by some
quantities JC|(f), jc2 (f)........ xn(/). [In our introductory example, there were two
such quantities, the populations c(t) and r (/).] We can represent the quantities 
x \ (f), x 2(f)...........jc„(f) by the state vector

x( t)  =

* i(/)
xi (t )

. X n U )

Suppose that the state of the system at time f -1- 1 is determined by the state at 
time f and that the transformation of the system from time f to time f +  1 is linear, 
represented by an n x n matrix A:

x(t  +  1) =  Ax(t) .

Then

x  (f) =  A'x  o.

5Example 4 and Theorem 7.1.2 are for those who have studied Chapter 5.
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Theorem 7 .1.!

Such a system is called a discrete linear dynamical system. (Discrete indicates that 
we model the change of the system from time t to time t +  1, rather than modeling 
the continuous rate of change, which is described by differential equations.)

For an initial state jco, it is often our goal to find closed formulas for x \ (/), (t),
. . . ,  xn(t) [i.e., formulas expressing *,-(/) as a function of t alone, as opposed to a 
recursive formula, for example, which would merely express x, (t +  1) in terms of 
x \ ( t ) , x 2(t )........ *n (0 1 -

I Discrete dynamical systems
Consider the dynamical system

jc(r +  1) =  Ax(t)  with .t(0 )= .vo-

Then

x(t) = A 'x0.

Suppose we can find a basis

V\yV2, - - - , Vn o f R n 

consisting of eigenvectors of A , with

Av\  =  k\V\, A v 2 = X2V2........ Avn =  k nvn.

Find the coordinates c i , c2........ cn of vector xq with respect to basis 5i, v2, - - -, vrl:

Xo =  C i3 | +  C2 V2 +  • • • +  c n v n .

Then

x( t )  =  c i^D i +  0 A.2V2 H------- \-cn\ lnvn.

We can write this equation in matrix form as

x( t)  =

=  5

_ 0
1 1 1 0 *2

5i v2 Vn
1 1 1 .

. 0 0

0 0 ■
t

0 ■*•2 0
s ~ ' x0.

. 0 0 A■n _

mc\~
C2

S n .

where 5 = V\ v2 vn

I I I

. Note that xo =  5

~ C \ ~ ~ C \ ~

C2 C2
, so that

. C n . S n .

= S ~ lxo.
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D efin itio n  7.1.4

We are left with two questions: How can we find the eigenvalues and eigenvectors 
of an n x n matrix A ? When is there a basis of W 1 consisting of eigenvectors of A1 
These issues are central to linear algebra; they will keep us busy for the rest of this 
long chapter.

Discrete trajectories and phase portraits 
Consider a discrete dynamical system

x( t  +  1) =  Ax(t)  with initial value Jc(0) =  Jco,

T r.m l
can be* i(0

*2(0
where A is a 2 x 2 matrix. In this case, the state vector x( t)  =

represented geometrically in the jti-jt2-plane.
The endpoints of state vectors Jc(0) =  3to, 3c(l) =  Axo, x(2)  =  A 2xq, . . .  form 

the (discrete) trajectory of this system, representing its evolution in the future. Some­
times we are interested in the past states x (— 1) =  A-1;to, x ( —2) = (A2)-1jto, . . .  
as well. It is suggestive to “connect the dots” to create the illusion of a continuous 
trajectory. Take another look at Figure 4.

A (discrete) phase portrait of the system x( t  +  1) =  Ax(t)  shows trajectories 
for various initial states, capturing all the qualitatively different scenarios (as in 
Figure 6).

In Figure 11, we sketch phase portraits for the case when A has two eigenvalues 
Aj > A2 > 0 with associated eigenvectors v\ and 32- We leave out the special case 
when one of the eigenvalues is 1. Start by sketching the trajectories along the lines 
L\ =  span(5|) and L2 =  span(i52). As you sketch the other trajectories

x(t)  =  C\k[v\  +  C2k'2V2,

think about the summands c\X\v\  and Note that for a large positive t the
vector x( t)  will be almost parallel to L\ ,  since k\ will be much larger than 
Likewise, for large negative t the vector x( t)  will be almost parallel to L2.

(a) (b) (c)

Figure I I (a) k\ > X2 > 1. (b) k \ > 1 > k i  > 0. (c) 1 > k\ > k j  > 0.

We conclude this section with a third (and final) version of the summing-up 
theorem. (Compare this with Summary 3.3.10.)
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SUM MARY 7 .1.5 Various characterizations of invertible m atrices

For an n x n matrix A, the following statements are equivalent.

i. A is invertible.
ii. The linear system Ax = b has a unique solution x , for all b in R".

iii. rref (A) =
iv. rank(A) =  n.
v. im(A) =  R".

vi. ker (A) =  {0}.
vii. The column vectors of A form a basis of R '1.

viii. The column vectors of A span R '1.
ix. The column vectors of A are linearly independent.
x. det(A) ^  0.

xi. 0 fails to be an eigenvalue of A.

Characterization (x) was given in Theorem 6.2.4. The equivalence of (vi) and 
(xi) follows from the definition of an eigenvalue. (Note that an eigenvector of A with 
eigenvalue 0 is a nonzero vector in ker A.)

EXERCISES 7.1
GOAL Apply the concept o f eigenvalues and eigen- 
vectors. Use eigenvectors to analyze discrete dynamical 
systems.

In Exercises I through 4, let A be an invertible n x n  ma­
trix and v an eigenvector o f A with associated eigenvalue X.

1. Is S an eigenvector of A3? If so, what is the eigenvalue?

2. Is v an eigenvector of A “ J ? If so, what is the eigenvalue?

3. Is v an eigenvector of A + 2ln? If so, what is the eigen­
value?

4. Is 53 an eigenvector of 7 A? If so, what is the eigenvalue?

5. If a vector v is an eigenvector of both A and B, is 5 
necessarily an eigenvector of A + B?

6. If a vector v is an eigenvector of both A and B y is 5 
necessarily an eigenvector of AB?

7. If v is an eigenvector of the n x n  matrix A with associ­
ated eigenvalue A, what can you say about

ker (A -  XIn)?

Is the matrix A — XIn invertible?

8. Find all 2 x 2 matrices for which e\ =  

vector with associated eigenvalue 5.

Find all 2 x 2 matrices for which e\ is an eigenvector.

is an eigen-

10. Find all 2 x 2 matrices for which 

with associated eigenvalue 5.

11. Find all 2 x 2 matrices for which 

with associated eigenvalue — 1.

'2 0

is an eigenvector

is an eigenvector

12. Consider the matrix A = 3 4 . Show that 2 and 4

are eigenvalues of A and find all corresponding eigen­
vectors.

-6
-15

6
13 and13. Show that 4 is an eigenvalue of A = 

find all corresponding eigenvectors.

14. Find all 4 x 4 matrices for which ei is an eigenvector.

Arguing geometrically; find all eigenvectors and eigenval­
ues o f the linear transformations in Exercises 15 through 
22. Find a basis consisting o f eigenvectors i f  possible.

15. Reflection about a line L in JR2

16. Rotation through an angle of 180° in R2

17. Counterclockwise rotation through an angle of 45° fol­
lowed by a scaling by 2 in IR2

18. Reflection about a plane V in R3

19. Orthogonal projection onto a line L in R3
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20. Rotation about the e?> -axis through an angle of 90°, coun­
terclockwise as viewed from the positive ?3^axis in IR3

21. Scaling by 5 in IR3

22. The shear with T(v) — v and T(w) =  v +  w for the 
vectors v and w in M2 sketched below

23. a. Consider an invertible matrix S =  [5| v2 . . .  5n]. 
Find Hint: What is S?,?

b. Consider an n x n  matrix A and an invertible n x n  
matrix S =  [ v\ v2 . . .  vn ] whose columns are 
eigenvectors of A with A 5/ =  Find S~lAS. 
Hint: Think about the product S-1 AS column by 
column.

In Exercises 24 through 29, consider a dynamical system

x(t +  1) =  Ax(t)

with two components. The accompanying sketch shows the 
initial state vector xq and two eigenvectors, v\ and v2, o f 
A (with eigenvalues k\ and k2, respectively). For the given 
values ofk\  and k2, sketch a rough trajectory. Think about 
the future and the past o f the system.

24. A, =  1.1, X2 = 0 .9

26. k\ = 1.1, k2 =  1

28. k\ = 1.2, k2 =  1.1

25. ki =  1, A.2 = 0 .9  

27. k { =  0.9, k2 =  0.8 

29. k\ =  0.9, k2 = 0 .9

In Exercises 30 through 32, consider the dynamical system

1.1 0x(t +  1) =
0 m .

Sketch a phase portrait o f this system for the given values 
ofk:

30. A. =  1.2 31. k = 1 32. A. =  0.9

33. Find a 2 x 2 matrix A such that

* 2r — 6f 
X = [2' +  6'J

is a trajectory of the dynamical system

x(t  +  1) =  A i(0 .

"3" Y

1
and

2
are eigen- 

and 10, respectively.

34. Suppose v is an eigenvector of the n x n matrix A, 
with eigenvalue 4. Explain why u is an eigenvector of 
A2 + 2A -I- 3ln. What is the associated eigenvalue?

35. Show that similar matrices have the same eigenvalues. 
(Hint: If v is an eigenvector of S 'M S , then Sv is an 
eigenvector of A.)

36. Find a 2 x 2 matrix A such that 

vectors of A, with eigenvalues 5

37. Consider the matrix

3  4

a. Use the geometric interpretation of this transforma­
tion as a reflection combined with a scaling to find 
the eigenvalues of A.

b. Find two linearly independent eigenvectors for A.

f
is an eigenvector of the matrix38. We are told that

4 1 1
-5  0 -3
- 1  -1  2

- 1
- 1

; what is the associated eigenvalue?

39. Find a basis of the linear space V of all 2 x 2 matrices 

A for which ^ is an eigenvector, and thus determine 

the dimension of V.

40. Find a basis of the linear space V of all 2 x 2 matrices A 
llfor which is an eigenvector, and thus determine

-3
the dimension of V.

41. Find a basis of the linear space V of all 2 x 2 matrices A

for which both and are eigenvectors, and thus

Y 'o'
A for which both 0 and 0

0 1

determine the dimension of V.

42. Find a basis of the linear space V of all 3 x 3 matrices

are eigenvectors, and

thus determine the dimension of V.

43. Consider the linear space V of all n x n matrices for 
which all the vectors e \ , . . . ,  en are eigenvectors. De- 
scribe the space V (the matrices in V “have a name”), 
and determine the dimension of V.

44. For m < n, find the dimension of the space of all 
n x n  matrices A for which all the vectors e\ , . .  yem 
are eigenvectors.

45. If v is any nonzero vector in IR2, what is the dimension 
of the space V of all 2 x 2 matrices for which v is an 
eigenvector?
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In all parts of this problem, let V be the linear space of 

all 2 x 2 matrices for which M is an eigenvector.

a. Find a basis of V and thus determine the dimension 
of V.

b. Consider the linear transformation T(A) = A ^

from V to R2. Find a basis of the image of T and a 
basis of the kernel of T. Determine the rank of T .

c. Consider the linear transformation L(A) = A ^

from V to R2. Find a basis of the image of L and a 
basis of the kernel of L. Determine the rank of L.

47. Consider an n x n  matrix A. A subspace V of Rn is said 
to be A-invariant if A v is in V for all 5 in V. Describe 
all the one-dimensional A-invariant subspaces of R '\ in 
terms of the eigenvectors of A.

48. a. Give an example of a 3 x 3 matrix A with as many
nonzero entries as possible such that both span(?i) 
and span(?j, e2) are A-invariant subspaces of R3 (see 
Exercise 47).

b. Consider the linear space V of all 3 x 3 matrices 
A such that both span (e\ ) and span (e\ , e2) are A- 
invariant subspaces of R3. Describe the space V (the 
matrices in V “have a name”), and determine the di­
mension of V.

49. Consider the coyotes-roadrunner system discussed in 
this section. Find closed formulas for c(t) and r(f), for 
the initial populations co =  100, ro =  800.

50. Two interacting populations of hares and foxes can be 
modeled by the recursive equations

h(t +  1) =  4h(t) - 2 / ( 0  
/ ( f +  1) =h(t)  + f (t ).

For each of the initial populations given in parts (a) 
through (c), find closed formulas for h(t) and /(r) .
a. h(0) = /(0 ) =  100
b. h(0) =  200, / ( 0) =  100 
c. h(0) =  600, /(0 ) =  500

51. Two interacting populations of coyots and roadrunners 
can be modeled by the recursive equations

c(t +  1) =  0.75r(r)
r ( f+  l) =  -1.5c(/) +  2.25r(/).

For each of the initial populations given in parts (a) 
through (c), find closed formulas for c(t) and r(t).
a. c(0) =  100, r(0) =  200
b. C(0) = r(0) = 100
c. C(0) = 500, r(0) =  700

52. Imagine that you are diabetic and have to pay close 
attention to how your body metabolizes glucose. Let 
g(t) represent the excess glucose concentration in your

blood, usually measured in milligrams of glucose per 
100 milliliters of blood. (Excess means that we measure 
how much the glucose concentration deviates from your 
fasting level, i.e., the level your system approaches after 
many hours of fasting.) A negative value of g(t) indicates 
that the glucose concentration is below fasting level at 
time t. Shortly after you eat a heavy meal, the function 
g(t) will reach a peak, and then it will slowly return to 0. 
Certain hormones help regulate glucose, especially the 
hormone insulin. Let h(t) represent the excess hormone 
concentration in your blood. Researchers have devel­
oped mathematical models for the glucose regulatory 
system. The following is one such model, in slightly 
simplified form (these formulas apply between meals; 
obviously, the system is disturbed during and right after 
a meal):

g(t +  1) =  ag(t) -  bh(t) 
h(t +  1) =  cg(t) -I- dh(t)

where time t is measured in minutes; a and d are con­
stants slightly less than 1; and b and c are small positive 
constants. For your system, the equations might be

g(t +  1) =  0.978g(r) -  0.006h(t) 
h(t + 1) =  0.004# (t) +  0.992h(t)

The term -0.006/z (t) in the first equation is negative, be­
cause insulin helps your body absorb glucose. The term 
0.004# (r) is positive, because glucose in your blood 
stimulates the cells of the pancreas to secrete insulin. 
(For a more thorough discussion of this model, read 
E. Ackerman et al., “Blood glucose regulation and dia­
betes,^ Chapter 4 in Concepts and Models of Biomathe­
matics, Marcel Dekker, 1969.)

Consider the coefficient matrix

0.978
0.004

of this dynamical system,

a. We are told that ! and

-0.006
0.992

3
- 1

are eigenvectors of

A. Find the associated eigenvalues.
b. After you have consumed a heavy meal, the concen­

trations in your blood are £o =  100 and ho =  0. Find 
closed formulas for g(t) and h(t). Sketch the trajec­
tory. Briefly describe the evolution of this system in 
practical terms.

c. For the case discussed in part (b), how long does it 
take for the glucose concentration to fall below fast­
ing level? (This quantity is useful in diagnosing dia­
betes: a period of more than four hours may indicate 
mild diabetes.)

53. Three holy men (let’s call them Abraham, Benjamin, 
and Chaim) put little stock in material things; their only 
earthly possession is a small purse with a bit of gold 
dust. Each day they get together for the following bizarre 
bonding ritual: Each of them takes his purse and gives
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his gold away to the two others, in equal parts. For ex­
ample, if Abraham has 4 ounces one day, he will give 
2 ounces each to Benjamin and Chaim.
a. If Abraham starts out with 6 ounces, Benjamin with 

1 ounce, and Chaim with 2 ounces, find formulas for 
the amounts a(t)y b(t), ana c(t) each will have after 
t distributions.

[Hint: The vectors 1 , -1  , and 0 will be

useful.}
b. Who will have the most gold after one year, that is, 

after 365 distributions?

54. Consider the growth of a lilac bush. The state of this 
lilac bush for several years (at year's end) is shown in 
the accompanying sketch. Let n(t) be the number of new 
branches (grown in the year t) and a(t) the number of 
old branches. In the sketch, the new branches are repre­
sented by shorter lines. Each old branch will grow two

Y f f
l , - l , and 0
l 0 -1

new branches in the following year. We assume that no 
branches ever die.

year 4yearO year 1 year 2 year 3

1 1 + *
n(0)=l « (1) = 0 n( 2) = 2 *i( 3) = 2
<i(0) = () «(!) = 1 «<2) = 1 a(3) = 3

a. Find the matrix A such that

b. Verify that

n( t+  1)' =  A ' n(t)
a ( t+  1) a(t)

and 2
- 1

are eigenvectors of A.

Find the associated eigenvalues, 
c. Find closed formulas for n(t) and a(t).

Finding the Eigenvalues of a Matrix

In the previous section, we used eigenvalues to analyze a dynamical system

x( t  +  1) =  Ax(t) .

Now we will see how we can actually find those eigenvalues. 
Consider an n x n  matrix A and a scalar A. By Definition 7.1.1, k is an eigenvalue 

of A if there exists a nonzero vector v in R" such that 

Av = kv,  or, Av  — Ai) =  0, or, Av  — k l nv =  0 or, (A -  k l n)v =  0. 

This means, by definition of the kernel, that

k e r ( A - k I n) ^ { 0 } .

(That is, there are other vectors in the kernel besides the zero vector.) This is the 
case if (and only if) the matrix A — k l n fails to be invertible (by Theorem 3.1.7c), 
that is, if det(A — k l n) =  0 (by Theorem 6.2.4).

Theorem 7.2.1 Eigenvalues and determinants; characteristic equation
Consider an n x n  matrix A and a scalar k. Then k is an eigenvalue6 of A if (and 
only if) 

det(A -  k l n) =  0.

This is called the characteristic equation (or the secular equation) of matrix A. B

6Alternatively, the eigenvalues are the solutions of the equation det(X/„ -  A) = 0. Our formula 
det(A -  kl„) = 0 is usually more convenient for numerical work.
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EXAM PLE I

EXAM PLE 2

Let’s write the observations we made previously as a string of equivalent 
statements.

k is an eigenvalue of A.

There exists a nonzero vector v such that 
Av  =  kv  or (A — k l n)v =  0.

$
ker (A -  A./,,) ^  {0}.

t
Matrix A — k l n fails to be invertible.

$
det(i4 -  A./„) =  0.

The idea of the characteristic equation is implicit in the work of Jean d’Alembert 
(1717-1783), in his Traite de Dynamique of 1743. Joseph Louis Lagrange (1736— 
1813) was the first to study the equation systematically (naming it equation secu- 
laire), in his works on gravitational attraction between heavenly bodies. Augustin- 
Louis Cauchy (1789-1857) wrote the equation in its modem form, involving a 
determinant. It appears that the term eigenvalue (Eigenwert in German) was first 
used by David Hilbert in 1904, based perhaps on Helmholtz’s notion of an Eigenton 
in acoustics.

Find the eigenvalues of the matrix

A =
1 2 

4 3

Solution
By Theorem 7.2.1, we have to solve the characteristic equation det(A -  XI2) =  0. 
Now

det(A -  k l 2)
1 2 

4 3
A. 0 
0  k ) -

det
1 — k  

4
2

3 - k

=  (1 -  A.) (3 — k) — 2 • 4 =  k 2 — 4k  — 5 =  (k — 5) (A +  1) =  0.

The equation det(A — k l 2) =  (A. — 5)(X +  1) =  0 holds for X| =  5 and k 2 = — 1. 
These two scalars are the eigenvalues of A.  In Section 7.3 we will find the corre­
sponding eigenvectors. ■

Find the eigenvalues of

'2 3 4'
A = 0 3 4

.0 0 4.

Solution
We have to solve the characteristic equation det(A — k l j )  =  0.

det(A — X/3) =  det
2 — k  3 4

0 3 — A. 4
0 0 4 - A.

Step 2

''= " '(2  -  A.) (3 -  A.) (4 -  k)  =  0
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Theorem 7.2.2

EXA M PLE  3

Definition 7.2.3 

Theorem 7.2.4

In Step 2 we use the fact that the determinant of a triangular matrix is the product 
of its diagonal entries (Theorem 6.1.4). The solutions of the characteristic equation 
are 2, 3, and 4; these are the eigenvalues of A. g

Eigenvalues of a triangular matrix
The eigenvalues of a triangular matrix are its diagonal entries. g

Find the characteristic equation for an arbitrary 2 x 2  matrix A =

Solution

det(A -  A/2) =  det

a b 
c d

a — A b
c d - k

=  (a — k)(d -  k) -  be = k — (a + d )k  +  {ad — be) — 0

ThisJs a quadratic equation. The constant term of det(A — k l 2) is ad  — be =  detA, 
the value of det(A — k l 2) at k  =  0. The coefficient of k  is —(a +  d )9 the opposite 
of the sum of the diagonal entries a and d  of A. Since this sum is important in many 
other contexts as well, we introduce a name for it. ■

Trace
The sum of the diagonal entries of a square matrix A is called the trace of A, denoted 
by tr A.

Let us highlight the result of Example 3.

Characteristic equation of a 2 x 2 matrix A
det(A -  k l 2) =  A2 — (tr A)k  +  det A =  0 ■

For the matrix A = , we have tr A =  1 + 3  =  4 and det A =  3 - 8  =  -5 ,1 21 
L4  3

so that the characteristic equation is

A.2 — (tr A)k  +  det A =  k2 — 4k — 5 =  0,

as we found in Example 1.
If A is a 3 x 3 matrix, what does the characteristic equation det(A — k l 3) =  0 

look like?
a\\ — k a\2 a \3

det a2\ a22 — k  a23

. <331 032 <333 — k_
= (a\ \ -  k) (a22 -  k) (a i3 -  k) +  (a polynomial of degree < 1)
=  (A2 -  (a\ \ +  a22)k  +  011*122) (033 -  A.) +  (a polynomial of degree < 1)
=  —A3 +  {a\ 1 +  a22 +  fl33)A.2 -I- (a polynomial of degree < 1)
=  —k 3 +  (tr A ) k 2 +  (a polynomial of degree < 1)
=  0 ,

a cubic equation. Again, the constant term is  det A, so  that the characteristic equation  
has the form

det(A — A/3) =  —A3 +  tr(A)A2 — cA +  det(A) =  0, for some scalar c.
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Theorem 7.2.5

Proof

It is possible to give a formula for c, in terms of the entries of A, but this formula is 
complicated, and we will not need it in this introductory text.

Based on the quadratic and the cubic case, we might conjecture that the charac­
teristic equation of any n x n  matrix A is a polynomial equation of degree n , of the 
form

det(A -  A/„) =  (— I )”k n + (—l ) " -1 (tr A )k n~l +  • • • +  det A =  0.

It makes sense to write this equation in terms of —A rather than A:

det(A - k l „ )  = ( - k ) n +  (tr A )(-A )"“ ' +  • • • +  det A =  0 .

Let us state and then prove that the characteristic equation is indeed of this form.

Characteristic polynomial
If A is an n x n matrix, then det(A — A/„) is a polynomial of degree n , of the form

(-A.)" +  (tr A)(-A.)"_l +  -- +  detA 
=  (- l)"A "  +  ( - l ) " _ , (tr AM" -1 H------- 1- det A .

This is called the characteristic polynomial of A, denoted by / 4 (A).

’a\ \ -  k a\2 0]n
a21 (I22 — k 02 n

det

On 1 a„ 2 Onn k

/ 4(A) =  det(A - k l n) =  det

The product associated with any pattern in the matrix A — AIn is a polynomial of 
degree less than or equal to n. This implies that det(A — AIn) is a polynomial of 
degree less than or equal to n.

We can be more precise: The diagonal pattern gives the product

(a,, -  A)(fl22 - * ) • • •  (a#™ -
=  ( —k ) n +  (tf 11 4* 022 +

k)
+  ann) ( ~ k ) n 1 +  (a polynomial of degree < n — 2 )

=  (—A) '1 +  (tr A ) ( - k ) n +  (a polynomial of degree < n — 2).

Any other pattern involves at least two scalars off the diagonal (see Exercise 6.1.51), 
and its product is therefore a polynomial of degree less than or equal to n — 2. This 
implies that

f A(k) = (—k)n -I- (tr A )(—A)'1-' +  (a polynomial of degree < n — 2 ).

The constant term is /^(O) =  det(A). ■

Note that Theorem 7.2.4 represents a special case of Theorem 7.2.5, when n =  2. 
What does Theorem 7.2.5 tell us about the number of eigenvalues of an n x n 

matrix A? We know from elementary algebra that a polynomial of degree n has at 
most n zeros. Therefore, an n x n  matrix has at most n eigenvalues. If n is odd, then 
/ a  (A) has at least one zero, by the intermediate value theorem (see Exercise 2.2.47c), 
since

lim / 4 (A) =  —00  and lim / 4 (A) =  0 0 .
A—>oc A.—* —00

See Figure \ .
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Figure I

EXA M PLE  4 Find all eigenvalues of

1 2 3 4 5
0 2 3 4 5
0 0 1 2 3
0 0 0 2 3
0 0 0 0 1

Solution
The characteristic polynomial is f A(X) = ( 1 — A)3(2 — A.)2, so that the eigenvalues 
are 1 and 2. Since 1 is a root of multiplicity 3 of the characteristic polynomial, we 
say that the eigenvalue 1 has algebraic multiplicity 3. Likewise, the eigenvalue 2 has 
algebraic multiplicity 2 . ■

Definition 7.2.6 Algebraic multiplicity of an eigenvalue

We say that an eigenvalue Xo of a square matrix A has algebraic multiplicity k if Xo 
is a root of multiplicity k of the characteristic polynomial f A(X), meaning that we 
can write

f A(k) = (k0 - k ) kg(k)  

for some polynomial g(A) with g(Ao) ^  0 .

In Example 4, the algebraic multiplicity of the eigenvalue Xo =  1 is k =  3, since

k
I

f A(k) = ( 1 - X ) 3 (2  - k ) 2 . 

*0

EXA M PLE  5 Find the eigenvalues of

A =
i i r
i i i

i i i

with their algebraic multiplicities.
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Theorem 7.2.7

EXA M PLE  6

Solution
We leave it to the reader to verify that

f A(k) = X2(3 -  X) =  (0 -  X)2(3 -  X).

We have two distinct eigenvalues, 0 and 3, with algebraic multiplicities 2 and 1, 
respectively. We can write, more succinctly, that the eigenvalues are 0, 0, 3. ■

Let us summarize.

Number of eigenvalues
An n x n matrix has at most n real eigenvalues, even if they are counted with their 
algebraic multiplicities.

If n is odd, then m n  x  n matrix has at least one real eigenvalue. ■

If n is even, m n  x  n matrix A need not have any real eigenvalues. Consider

A =
0  - 1  

1 0

with f A (X) =  det
—X - 1  

1 —X
=  X2 +  1. See Figure 2.

Recall that the transformation T(x) = Ax  is a counterclockwise rotation through 
an angle of 90°. Geometrically, it makes sense that A has no real eigenvalues: 
Compare with Example 7.1.3.

Describe all possible cases for the number of real eigenvalues (with their algebraic 
multiplicities) of a 3 x 3 matrix A.

Solution
The characteristic polynomial either factors completely,

/ a W  =  (X, - X ) ( X 2 - X ) ( X i - X ) ,  

or it has a quadratic factor without real zeros:

f A (X) =  (X\ — X)p(X), where p(X) ^  0 for all real X.
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In the first case, the A; could all be distinct, two of them could be equal, or they 
could all be equal. This leads to the following possibilities:

Case
No. of Distinct 

Eigenvalues
Algebraic

Multiplicities

1 3 1 each
2 2 2 and 1
3 1 3
4 1 1

Examples for each case follow: 

Case 1 ■  (see Figure 3)

A =
1 0  0  

0 2 0 
0 0 3

f A(X) =  (1 — A)(2 -  A)(3 -  A), Eigenvalues 1, 2, 3

—Case 2 ■  (see Figure 4)

A =
1 0  0  

0 1 0 
0 0 2

Case 3 ■  (see Figure 5) 

A = h .  

Case 4 ■  (see Figure 6 )

A =
1 0  0 ‘
0 0 - 1  
0  1 0

f A(X) =  (1 — A) (2 — A), Eigenvalues 1, 1, 2

f A( A) =  (1 — A)3, Eigenvalues 1 ,1 ,1

/ 4(A) =  (1 — A)(A +  1), Eigenvalue 1

You can recognize an eigenvalue Ao whose algebraic multiplicity exceeds 1 
on the graph of f A (A) by the fact that f A (Ao) =  f'A (Ao) =  0. (The derivative is 
zero, so that the tangent is horizontal.) The verification of this observation is left as 
Exercise 37. B

Figure 3 Figure 4
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EXA M PLE  7

Theorem 7.2.8

Figure 5 Figure 6

Suppose A is a 2 x 2 matrix with eigenvalues A.i and X2 (we allow X\ = X2 if X\ 
has algebraic multiplicity 2). Explore the relationship between the sum X\ +  X2, the 
product X\X2, the determinant det A, and the trace tr A. You may want to consider

r i 2'
a numerical example first, such as A =

X2 = — 1 (see Example 1). 

Solution

In the case of A =

4 3
, with eigenvalues X\ =  5 and

1 2

4 3
, we observe that det A = X\X2 = — 5 and tr A =

X\ +  X2 =  4. To see that these results hold in general, write the characteristic 
polynomial in two ways, as

f A(X) = X2 - ( t r A ) X  + detA

and as

/ a W  =  (Ai -  X)(X2 -  X) = X2 -  (Xj +  X2)X + XtX2.

Comparing coefficients, we conclude that det A = X\X2 and tr A =  X\ +  X2. ■

It turns out that the observations we made in Example 7 generalize to n x n  
matrices.

Eigenvalues, determinant, and trace
If an n x  n matrix A has the eigenvalues X \ , X2, . . . ,  Xn, listed with their algebraic 
multiplicities, then

and

det A =  X i X2 • • • Xn, the product of the eigenvalues

tr A =  X\ +  X2 H-----+  Xn, the sum of the eigenvalues.

We will prove the claim concerning the determinant and leave the case of the 
trace as Exercise 21 to the reader.

Since the characteristic polynomial factors completely in this case, we can write

f A(X) =  det(A -  Xln) =  (Xj -  X)(X2 X).
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Now

f a (0 ) =  detA =  A.iA.2 - - -

as claimed.

Note that the claims of Theorem 7.2.8 are trivial in the case of a triangular 
matrix, since the eigenvalues are the diagonal entries in this case.

Finding the E igenva lu es  o f  a Matrix in Pract ice
To find the eigenvalues of an n x n matrix A with the method developed in this section, 
we have to find the zeros of / a  (A), a polynomial of degree n. For n =  2, this is a 
trivial matter: We can either factor the polynomial by inspection or use the quadratic 
formula (this formula was known over 3500 years ago in Mesopotamia, the present- 
day Iraq). The problem of finding the zeros of a polynomial of higher degree is 
nontrivial; it has been of considerable interest throughout the history of mathematics. 
In the early 1500s, Italian mathematicians found formulas in the cases n — 3 and 
n =  4, published in the Ars Magna by Gerolamo Cardano .7 (See Exercise 50 for the 
case n =  3.) During the next 300 years, people tried hard to find a general formula 
to solve the quintic (a polynomial equation of fifth degree). In 1824, the Norwegian 
mathematician Niels Henrik Abel (1802—1829) showed that no such general solution 
is possible, putting an end to the long search. The French mathematician Evariste 
Galois (1811-1832) was the first to give a numerical example of a quintic that cannot 
be solved by radicals. (Note the short life spans of these two brilliant mathematicians. 
Abel died from tuberculosis, and Galois died in a duel.)

When finding the eigenvalues of a matrix by means of the characteristic poly­
nomial, it may be worth trying out a few small integers, such as ±1 and ±2. The 
matrices considered in introductory linear algebra texts often just happen to have 
such eigenvalues.

In light of the preceding discussion, it is usually impossible to find the exact 
eigenvalues of a matrix. To find approximations for the eigenvalues, you could graph 
the characteristic polynomial, using technology. The graph may give you an idea 
of the number of eigenvalues and their approximate values. Numerical analysts 
tell us that this is not a very efficient way to go about finding the eigenvalues of 
large matrices; other techniques are used in practice. See Exercise 7.5.33 for an 
example; another approach uses the QR factorization (Theorem 5.2.2). There is a lot 
of ongoing research in this area. A text in numerical linear algebra8 characterizes 
the eigenvalue problem as “the third major problem area in matrix computations,” 
after linear equations and least squares, dedicating some 2 0 0  pages to this topic.

7Cardano (1501-1576) was a Renaissance man with a wide range of interests. In his book Liber de 
ludo aleae he presents the first systematic computations of probabilities. Trained as a physician, he 
gave the first clinical description of typhoid fever. In his book Somniorum Synesiorum (Basel, 1562) he 
explores the meaning of dreams. He was also a leading astrologer of his day whose predictions won 
him access to some of the most powerful people in sixteenth-century Europe. Still, he is best known 
today as the most outstanding mathematician of his time and the author of the Ars Magna. In 1570, he 
was arrested on accusation of heresy; he lost his academic position and the right to publish.

To learn more about this fascinating fellow, read the award-winning biography, Cardano's 
Cosmos, by Anthony Grafton (Harvard University Press, 2000), focusing on Cardano’s work as an 
astrologer.

For an English translation of part XI of the Ars Magna (dealing with cubic equations) see 
D. J. Struik (editor), A Source Book in Mathematics 1200-1800, Princeton University Press, 1986.
8G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, 1996.
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EXERCISES 7.2
GOAL Use the characteristic polynomial f  \  (X) 
s= det (A — k l n) to find the eigenvalues o f  a matrix A, with 
tfieir algebraic multiplicities.

For each of the matrices in Exercises 1 through 13,find all 
real eigenvalues, with their algebraic multiplicities. Show 
your work. Do not use technology.

1.

3.

5.

1 2 

0 3 

5 - 4
2 -1

11 -15
6 - 7

7. h

3 2 5
9. 1 0 7

0 0 2

'5 1 -5
11. 2 1 0

_8 2 -7

"o 1 O'
13. 0 0 1

1 0 0

2.

4.

6.

8.

10.

12.

2 0 0 0 
2 1 0  0 
2 1 2  0 
2 1 2  1

0 4
-1  4

1 2 
3 4

‘- I  -1
-1 -1 

- 1  - 1

-3
0

-2

2
1
0
0

- 1
- 1
- 1

4'
0
3

- 2
- 1

0
0

0
0

- 4
-3

14. Consider a 4 x 4 matrix A = where B , C,

and D are 2 x 2 matrices. What is the relationship 
between the eigenvalues of A, B , C, and D?

15. Consider the matrix A = , where k is an arbi­

trary constant. For which values of k does A have two 
distinct real eigenvalues? When is there no real eigen­
value?

16. Consider the matrix A = where a , b, and ca b 
b c

are nonzero constants. For which values of a, b, and c
does A have two distinct eigenvalues?

17. Consider the matrix A = , where a and b area b 
b —a

arbitrary constants. Find all eigenvalues of A. Explain in 
terms of the geometric interpretation of the linear trans­
formation T(x) =  Ax.

18. Consider the matrix A = , where a and b are

arbitrary constants. Find all eigenvalues of A.

19. True or false? If the determinant of a 2 x 2 matrix A is 
negative, then A has two distinct real eigenvalues.

20. If a 2 x 2 matrix A has two distinct eigenvalues k \ and 
k 2, show that tr A =  k \  -f k 2.

21. Prove the part of Theorem 7.2.8 that concerns the trace:
If an n x n matrix A has n eigenvalues k \ .........k n,
listed with their algebraic multiplicities, then tr A
=  k \ + •  — + k„.

22. Consider an arbitrary n x n  matrix A. What is the rela­
tionship between the characteristic polynomials of A and 
At 1 What does your answer tell you about the eigen­
values of A and AT1

23. Suppose matrix A is similar to B. What is the relation­
ship between the characteristic polynomials of A and B1 
What does your answer tell you about the eigenvalues 
of A and B ?

24. Find all eigenvalues of the matrix

A = 0.5 0.25
0.5 0.75

25. Consider a 2 x 2 matrix of the form 

A = a b 
c d

where a, b, c\ d are positive numbers such that a + c =  
b + d =  1. (The matrix in Exercise 24 has this form.) 
Such a matrix is called a regular transition matrix. Ver­

ify that 'b f
and

- 1c are eigenvectors of A. What are

the associated eigenvalues? Is the absolute value of these 
eigenvalues more or less than 1 ? Sketch a phase portrait.

26. Based on your answer to Exercise 25, sketch a phase 
portrait of the dynamical system

jr(r + l) =
0.5
0.5

0.25
0.75 *(0 -

27. a. Based on your answer to Exercise 25, find closed for­
mulas for the components of the dynamical system

x(t +  1) = 0.5 0.25 
0.5 0.75 x(t).

with initial value x q  =  e \ .  Then do the same for the 
initial value x q  = e 2 . Sketch the two trajectories.
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b. Consider the matrix

A = 0.5
0.5

0.25
0.75

Using technology, compute some powers of the ma­
trix A , say, A2, A5, A10, __ What do you observe?
Explain your answer carefully.

c. If A = is an arbitrary regular transition ma­

trix, what can you say about the powers A1 as t goes 
to infinity?

28. Consider the isolated Swiss town of Andelfingen, in­
habited by 1,200 families. Each family takes a weekly 
shopping trip to the only grocery store in town, run by 
Mr. and Mrs. Wipf, until the day when a new, fancier (and 
cheaper) chain store, Migros, opens its doors. It is not 
expected that everybody will immediately run to the new 
store, but we do anticipate that 20% of those shopping at 
Wipf s each week switch to Migros the following week. 
Some people who do switch miss the personal service 
(and the gossip) and switch back: We expect that 10% 
of those shopping at Migros each week go to Wipf’s the 
following week. The state of this town (as far as grocery 
shopping is concerned) can be represented by the vector

5(0 =
w(t)
m(t)

where w(t) and m(t) are the numbers of families shop­
ping at Wipf’s and at Migros, respectively, t weeks after 
Migros opens. Suppose w(0) =  1,200 and m(0) =  0.
a. Find a 2 x 2 matrix A such that x(t +  1) =  Ax(t). 

Verify that A is a regular transition matrix. (See Ex­
ercise 25.)

b. How many families will shop at each store after t 
weeks? Give closed formulas.

c. The Wipfs expect that they must close dqwn when 
they have less than 250 customers a week. When 
does that happen?

29. Consider an n x n matrix A such that the sum of the 
entries in each row is 1. Show that the vector

1

1

in R" is an eigenvector of A. What is the corresponding 
eigenvalue?

30. a. Consider an n x n  matrix A such that the sum of the 
entries in each row is 1 and that all entries are pos­
itive. Consider an eigenvector v of A with positive 
components. Show that the associated eigenvalue is 
less than or equal to 1. (Hint: Consider the largest en­
try of 5. What can you say about the corresponding 
entry of A v?)

b. If we drop the requirement that the components of the 
eigenvector v be positive, is it still true that the asso­
ciated eigenvalue is less than or equal to 1 in absolute 
value? Justify your answer.

31. Consider a matrix A with positive entries such that the 
entries in each column add up to 1. Explain why 1 is 
an eigenvalue of A. What can you say about the other 
eigenvalues? Is

1

e =

1

necessarily an eigenvector? Hint: Consider Exercises 22,
29, and 30.

32. Consider the matrix

'0 1 0
A = 0 0 1

k 3 0

where k is an arbitrary constant. For which values of 
k does A have three distinct real eigenvalues? What 
happens in the other cases? (Hint: Graph the function 
g(X) =  X3 — 3X. Find its local maxima and minima.)

33. a. Find the characteristic polynomial of the matrix

A =
0  1 0
0  0 1
a b c

b. Can you find a 3 x 3 matrix M whose characteristic 
polynomial is

- X 3 +  17A2 - 5 A  +  7T?

34. Suppose a certain 4 x 4  matrix A has two distinct real 
eigenvalues. What could the algebraic multiplicities of 
these eigenvalues be? Give an example for each possible 
case and sketch the characteristic polynomial.

35. Give an example of a 4 x 4 matrix A without real eigen­
values.

36. For an arbitrary positive integer n, give a 2n x 2n matrix 
A without real eigenvalues.

37. Consider an eigenvalue Xo of an n x n matrix A. We are 
told that the algebraic multiplicity of Xo exceeds 1. Show 
that f'A (Xo) =  0 (i.e., the derivative of the characteristic 
polynomial of A vanishes at Xo).

38. If A is a 2 x 2 matrix with tr A =  5 and det A =  -14, 
what are the eigenvalues of A?

39. If A and B are 2 x 2 matrices, show that tr (AB) = 
tr (BA).

40. If A and B are n x n matrices, show that tr(AB) = 
lr(BA).
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41. If matrix A is similar to B , show that tr B = tr A. (Hint: 
Exercise 40 is helpful.)

42. Consider two n x n  matrices A and B such that BA = 0. 
Show that tr((A + B)2) =  tr(A2) + tr(#2). (Hint: Ex­
ercise 40 is helpful.)

43. Do there exist n x n  matrices A and B such that 
AB - B A  =  Inl  Explain. (Hint: Exercise 40 is helpful.)

44. Do there exist invertible n x n  matrices A and B such 
that AB — BA = A? Explain.

45. For which value of the constant k does the matrix

 ̂ * have 5 as an eigenvalue?A = 4 3

46. In all the parts of this problem, consider a matrix A 

a ^ with the eigenvalues X\ and X2.

a. Show that X2 +  X2 =  a2 +  d2 +  2be.
b. Show that X2 + X2 < a2 + b2 + c2 + d2.
c. For which matrices A does the equality X2 +  x\  = 

a2 +  b2 +  c2 +  d2 hold?

47. For which 2 x 2  matrices A does there exist a nonzero
'2  0 ‘matrix M such that AM =  A/D, where D = 0 3

Give your answer in terms of the eigenvalues of A.

48. For which 2 x 2  matrices A does there exist an invert-
'2  0 ‘

0 3ible matrix S such that AS = SD, where D =

Give your answer in terms of the eigenvalues of A.

49. For which 3x3 matrices A does there exist a nonzero ma
"2 0 0

trix M such that AM =  M D y where D =  0 3 0
0 0 4

Give your answer in terms of the eigenvalues of A.

50. In his groundbreaking text Ars Magna (Nuremberg, 
1545), the Italian mathematician Gerolamo Cardano ex­
plains how to solve cubic equations. In Chapter XI, he 
considers the following example:

X3 +  6x = 20 .

a. Explain why this equation has exactly one (real) solu­
tion. Here, this solution is easy to find by inspection. 
The point of the exercise is to show a systematic way 
to find it.

b. Cardano explains his method as follows (we are using 
modem notation for the variables): “1 take two cubes 
v3 and u3 whose difference shall be 20 , so that the 
product vu shall be 2 , that is, a third of the coefficient 
of the unknown x. Then, I say that v — u is the value 
of the unknown jc .” Show that if v and u are chosen 
as stated by Cardano, then x =  v — u is indeed the 
solution of the equation jc3 +  6x =  20 .

c. Solve the system

1 -  u3 =  20 
vu = 2

to find u and i>.
d. Consider the equation

x 3 +  px =  q y

where p is positive. Using your work in parts (a), (b), 
and (c) as a guide, show that the unique solution of 
this equation is

( D M ! ) '

-V-W(!)+( ?)■
This solution can also be written as

(!)2+(!)3

What can go wrong when p is negative?
e. Consider an arbitrary cubic equation

jc3 + ax2 + bx + c = 0.

Show that the substitution x = t — (a/3) allows you 
to write this equation as

t3 + p t = q .

Finding the Eigenvectors of a Matrix

Having found an eigenvalue X of an n x  n matrix A, we will now turn our attention 
to the corresponding eigenvectors. We have to find the vectors 5 in W 1 such that 

Av  =  Au, or (A — Xln)v =  0. 

In other words, we have to find the kernel of the matrix A — XIn. In this context, the 
following definition is useful.
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Definition 7.3.1

EXA M PLE  I

EXA M PLE  2

Eigenspaces
Consider an eigenvalue k  of an n x n matrix A. Then the kernel of the matrix A — k l n 
is called the eigenspace associated with A, denoted by Ex'.

E a =  ker(A — k l n) =  {5 in W  : Av =  X5}.

Note that the eigenvectors with eigenvalue k  are the nonzero vectors in the 
eigenspace Ex.

Let T(x)  = Ax  be the orthogonal projection onto a plane V in M3. Describe the 
eigenspaces E\ and Eo geometrically.

Solution
Eigenspace E\ consists of the solutions of the equation Av =  15 =  5; those are the 
vectors on plane V. Thus E\ = V.

Eigenspace Eo =  ker A consists of the solutions of the equation Av = Ov =  0; 
those are the vectors on the line V 1  perpendicular to plane V. See Figure 1. ■

Figure I

To find the eigenvectors associated with a known eigenvalue k  algebraically, we 
seek a basis of the eigenspace Ex =  ker(A — k l n), a problem we can handle. (See 
Section 3.3.)

Find the eigenvectors of the matrix A =
1 2 

4 3

Solution
In Example 1 of Section 7.2 we saw that the eigenvalues are 5 and —1. Now

F -4  21
£ 5  =  ker(A — 5 / 2) =  ker

4 - 2

Finding the kernel amounts to finding the relations between the columns. In the case 
of a 2 x 2 matrix, this can be done by inspection. Consider the Kyle numbers,

1 2

- 4  2"
4 - 2

so that

£5 =  span
T
2
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Figure 2

EXA M PLE  3

Similarly,

E -1  =  ker (A + 12) =  ker ' 2 2 ' r
4 4 =  span

- 1

We can (and should) check that the vectors we found are indeed eigenvectors of A, 
with the eigenvalues we claim:

1 2" T ' 5 ' __ c T

4 3 _2_ 1 0
— 3

2

1 2 r - 1 f

4 3 - l
—

1
= ( - - 1 )

- 1

and

Both eigenspaces are lines, as shown in Figure 2.

Geometrically, the matrix A represents a scaling by a factor of 5 along the line

spanned by vector , while the line spanned by
1

- 1
is flipped over the origin.

Find the eigenvectors of

'1 1 1

A = 0 0 1

0 0 1

Solution
The eigenvalues are 1 and 0, the diagonal entries of the upper triangular matrix A, 
with algebraic multiplicities 2 and 1, respectively. Now

1 0 0

'0 1 r r
E\ =  ker(/4 — I2) =  ker 0 - 1 i =  span 0

0 0 0 0

and
- 1 1 0

1 1 r ' - 1‘
Eq =  ker A =  ker 0 0 i =  span 1

0 0 i 0 .

Both eigenspaces are lines in the x\ -x2 plane, as shown in Figure 3.

Figure 3
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Note that Example 3 is qualitatively different from Example 1, where we studied 
the orthogonal projection onto a plane in R 3. There, too, we had two eigenvalues,
1 and 0, but one of the eigenspaces, E \ % was a plane, while both eigenspaces in 
Example 3 turn out to be lines.

To discuss these different cases, it is useful to introduce the following 
terminology.

Definition 7.3.2 Geometric multiplicity

Consider an eigenvalue X of an n x  n matrix A. The dimension of eigenspace 
=  ker(A — Xln) is called the geometric multiplicity of eigenvalue X. Thus, the 

geometric multiplicity is the nullity of matrix A -  XIn, or n — rank (A — XIfl).

Example 3 shows that the geometric multiplicity of an eigenvalue may be differ­
ent from the algebraic multiplicity (but see Theorem 7.3.7 at the end of this section). 
We have

(algebraic multiplicity of 1) =  2

but

(geometric multiplicity of 1) =  d im (£ i) =  1.

When we analyze a dynamical system

x(t  +  1) =  Ax{t),

where A is an n x n matrix, we are often interested in finding a basis of R" that 
consists of eigenvectors of A. (Recall the introductory example of Section 7.1, and 
Theorem 7.1.3.) Such a basis deserves a name.

Definition 7.3.3 Eigenbasis

Consider an n x n  matrix A. A basis of R '1 consisting of eigenvectors of A is called 
an eigenbasis for A.

Recall Examples 1 through 3.

Example 1 Revisited ■  Orthogonal projection onto a plane V in R 3. Pick a basis 
v 5i, V2 of V = E\ and a nonzero U3 in V 1 = Eo. Then the vectors v\, vi, U3 form an 

eigenbasis for the projection. See Figure 4. ■

Figure 4
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Figure 5

Theorem 7.3.4

Example 2 Revisited A =
1 2
4 3

The vectors in Es and
1

- 1
in E -1 form an eigenbasis for A. See Figure 5.

Example 3 Revisited ■  A =
_i i r
o o 1

.0  0 1.

Here we can find only two linearly independent eigenvectors, namely, one in 
each of the two one-dimensional eigenspaces, E\ and Eo. There is no eigenbasis for 
A. See Figure 6 . ■

Figure 6

When analyzing dynamical systems, as well as in many other applications of 
eigenvectors, we need to think about the following two key questions.

a. For which square matrices does there exist an eigenbasis?
b. If eigenbases exist, how can we find one?

Consider an n x n  matrix A. If the sum s of the geometric multiplicities of the 
eigenvalues is less than n (as in Example 3, where s =  2 and n =  3), then there are 
not enough linearly independent eigenvectors to form an eigenbasis. In fact, we can 
find no more than s linearly independent eigenvectors.

Conversely, suppose that the geometric multiplicities of the eigenvalues do add 
up to rt, as in Examples 1 and 2. Can we construct an eigenbasis for A by finding a 
basis of each eigenspace and concatenating9 these bases? This method does work in 
Examples 1 and 2. Next we will state and prove that this approach works in general.

Eigenbases and geometric multiplicities

a. Consider an n x  n matrix A. If we find a basis of each eigenspace of A and
concatenate all these bases, then the resulting eigenvectors v \ ........ vs will be
linearly independent. (Note that s is the sum of the geometric multiplicities 
of the eigenvalues of A.)

9The concatenation of two lists (a\ , 02.......ap) and (b\, bi........ bq) is the list (a \.a2........ap,
b\,b2.......bq).
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b. There exists an eigenbasis for an n x n  matrix A if (and only if) the geometric 
multiplicities of the eigenvalues add up to n (meaning that s = n in part a).

Proof  a. We will argue indirectly, assuming that the eigenvectors 5i, . . . ,  vs are lin­
early dependent. Let vm be the first redundant vector in this list, with
5/w =C |S |H ------ 1- cm _ 1 vm-\ .  Suppose that A 5, =  A.,- 5,. There must be at least
one nonzero coefficient c* such that A* ^  A,„, since vm cannot be expressed 
as a linear combination of vectors u, that are all in the same eigenspace E* 
Premultiplying the equation vm = rjS j +  • • • +  a 5* +  • • • +  cm_ \vm-\  by 
A -  k m In* and realizing that (A -  k , „ l n ) Vj  =  (A, —  k m ) tv, we find that

(km km)vtn = 0 
=  ( ^ i  ~  k m ) c \ V \  +  • • • +  ( A *  —  k m ) Ck  Vk H-------- - h  ( k m _ i —  k m ) c , „

V------ v-------"
7̂0

This is a nontrivial relation among vectors v \ , ___5w- i ,  contradicting our
assumption that vm is the first redundant vector in the list.

b. This claim follows directly from (a). There exists an eigenbasis if (and only 
if) s = n in part (a). ■

Here is an important special case of Theorem 7.3.4.

Theorem 7.3.5 An rt x  n matrix with n distinct eigenvalues
If an n x n  matrix A has n distinct eigenvalues, then there exists an eigenbasis for 
A. We can construct an eigenbasis by finding an eigenvector for each eigenvalue.

EXA M PLE  4 Does there exist an eigenbasis for the following matrix A?

A =

1 2  3 4 
0 2 3 4 
0 0 3 4
0 0 0 4 
0 0 0 0
0 0 0 0 0

Solution
Yes, since the 6  x 6  matrix A has 6  distinct eigenvalues, namely, the diagonal entries 
1.2, 3 ,4 . 5, 6 . ■

Let us work another example of a dynamical system.

EXA M PLE  5 Consider an Anatolian mountain farmer who raises goats. This particular breed of 
goats has a maximum life span of three years. At the end of each year /, the farmer 
conducts a census of his goats. He counts the number of young goats j ( t ) ,  bom in 
the year t ; the middle-aged goats m(t),  bom the year before; and the old ones a(t)> 
bom in the year t — 2. The state of the herd can be described by the vector

5 ( 0  =
j u r

m(t )



7.3 Finding the Eigenvectors of a Matrix 325

Suppose that for this breed and this environment the evolution of the system can be 
modeled by the equation

"0 0.95 0 .6 '
.¥(/ 4- 1) =  Ax(t) .  where A = 0 .8 0 0

0 0.5 0

For example, m (t +  1) =  0.8 j { t ), meaning that 80% of the young goats will survive 
to the next census. We leave it as an exorcise to the reader to interpret the other 3 
nonzero entries of A as reproduction and survival rates.

Suppose the initial populations are j {) =  750 and mo =  ao =  200. What will 
the populations be after t years, according to this model? What will happen in the 
long term?

We are told that the eigenvalues of A are A j =  1, A 2 =  -0 .6 , and A3 = —0.4. 

Solution
To answer these questions, we have to find an eigenbasis for A. (See Theorem 7.1.3.) 
By Theorem 7.3.5, we know that such an eigenbasis does exist, since the 3 x 3 
matrix A has three distinct eigenvalues. Let’s find an eigenvector for each of the 
eigenvalues. With a little experimentation, we can find the Kyle numbers in each 
case (or, alternatively, use rref):

5 4 1

' - 1 0.95 0 .6 ' ’5"
E\ =  ker 0 .8 - 1 0 =  span 4

0 0.5 - 1 2

'  9" ’—2"
£ —0.6 =  span -1 2 , £ - 0.4 =  span 4

10. - 5 .

"5" - 9 - ' —2'
We have constructed an eigenbasis: ?i = 4 • = - 1 2 . h  = 4

2 10 - 5 .
Next, we need to express the initial state vector

’ Jo' '750'
*0 = m 0 = 200

.  «o_ .200.

as a linear combination of the eigenvectors: a*q =  c\V\ +  c2v 2 +  c t̂v*. A somewhat 
tedious computation reveals that c\ =  100, c2 =  50, C3 =  100.

Now that we know the eigenvalues A,, the eigenvectors tv, and the coefficients
c, , we are ready to write down the solution:

x(t)  = A lx0 = c \ A ‘v\ +  q A '? :  +  c^A ' t’3 =  cjA', T’i -I- oA ^f] +  C3A3P3

’5" ' 9" ' - 2 '
100 4 +  5 0 (-0 .6 ) ' - 1 2 +  100(—0.4)' 4

2 . 10 - 5 .

The individual populations are

j ( t )  =  500 +  4 5 0 (-0 .6 )' — 200(—0.4)'. 
m(t) =  400 -  6 0 0 (-0 .6 )' + 4 0 0 (—0.4)', 
a(t)  =  200 +  500(—0.6)' -  5 0 0 (-0 .4 )'.
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In the long run, the populations approach the equilibrium values

j  =  500, m = 400, a =  200. g

Eigen values  and Similari ty
If matrix A is similar to B , what is the relationship between the eigenvalues of A
and B1 The following theorem shows that this relationship is very close indeed.

Theorem 7.3.6 The eigenvalues of similar matrices
Suppose matrix A is similar to B. Then

a. Matrices A and B have the same characteristic polynomial, that is,
/* (* ) =  /« (* ).

b. rank(A) =  rank(£) and nullity(A) =  nullity(£).
c. Matrices A and B have the same eigenvalues, with the same algebraic and

geometric multiplicities. (However, the eigenvectors need not be the same.)
d. Matrices A and B have the same determinant and the same trace: 

det A =  det B and tr A =  tr B .

Proof  a. If B = S ~ l A5, then f s (X)  =  det(£ -  A/„) =  det(S_1AS -  A/„) =  
de t(5 _1(A -  k I n)S) = (detS )-1 det(A -  A/„)det(S)
=  (de tS )-1 (detS)det(A  -  A/„) =  det (A -  A/„) =  fA(X) for all scalars A.

b. See Exercises 7 1 and 72 of Section 3.4. An alternative proof is suggested in 
Exercise 34 of this section.

c. It follows from part (a) that matrices A and B have the same eigenvalues, with 
the same algebraic multiplicities. (See Theorem 7.2.1 and Definition 7.2.6.) 
As for the geometric multiplicity, note that A — k l n is similar to B — XIn for 
all A (see Exercise 33), so that nullity(A — A/„) =  nullity(£ — A/„) for all 
eigenvalues A, by part (b). (See Definition 7.3.2.)

d. These equations follow from part (a) and Theorem 7.2.5: Trace and determi­
nant are coefficients of the characteristic polynomial, up to signs. ■

EX A M PLE 6 Is the matrix A =
'2  3

similar to B = "3 2
5 7 8 5

Solution
No, since tr A =  9 and tr B =  8. See Theorem 7.3.6d. ■

Earlier in this section we observed that the algebraic and the geometric multiplic­
ity of an eigenvalue are not necessarily the same. However, the following inequality 
always holds.

Theorem 7.3.7 Algebraic versus geometric multiplicity
If A is an eigenvalue of a square matrix A, then

(geometric multiplicity of A) < (algebraic multiplicity of A).

Proof  Suppose Ao is an eigenvalue of an n x n matrix A, with geometric multiplicity m, 
meaning that the dimension of eigenspace £ \ 0 is m.  Let 5 i, . . . ,  vm be a basis of Ex„» 
and consider an invertible rt x n  matrix S whose first m columns are 5 i , . . . ,  vm. (How 
would you find such an S?) Let B =  5 _I A5, a matrix similar to A. Now compute
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Bej . fo r i  = 1........ m, keeping in mind that Se, =  t), , and therefore S-15, = ? , :

(/'th column of B) =  Bcu =  S - I AS?( =  S _ l y4D, =  S “ '(AoVj) =  A.o(S- l i5|) =  A.o?,. 

This computation shows that the first m columns of B look like those of A.o

B =

k{) 0 0 * *
0 •̂0 0 * *

0 0 • ■ * ^0 * •'. .  * — -

0 0 • • 0 * • ■ • *

0 0 0 * *

•̂o Ar 
0

P
Q

Since B is similar to A, we have 
Step 1 Step 3

/ a W  =  f a (k )  =  det(fl -  k l n) =  (*o -  k )mf Q(k),

showing that the algebraic multiplicity of eigenvalue ko is at least m, as claimed. In 
Step 1 we use Theorem 7.3.6a, and in Step 3 we use Theorem 6.1.5. ■

EXERCISES 7.3

GOAL For a given eigenvalue, find a basis o f the asso­
ciated eigenspace. Use the geometric multiplicities o f the 
eigenvalues to determine whether there is an eigenbasis for  
a matrix.

For each o f the matrices in Exercises 1 through 18, find 
aU(real) eigenvalues. Then find a basis o f each eigenspace, 
and find an eigenbasis, if  you can. Do not use technology.

1.

5.

7.

9.

11.

13.

7 8
0 9

6 3 '

2 7

4 5'
-2 -2

‘ l 0 0
0 2 0
0 0 3

“l 0 1
0 1 0
0 0 0

’ \ 1 1
1 1 1
1 1 1

3 0 - 2
-7  0 4

4 0 -3

2. 1 1 
1 1

6.

8.

10.

12.

14.

2 3 
4 5

1 1 0
0 2 2 
0 0 3

‘ l 1 O'
0 1 0 
0 0 0

' 1 1 0  
0 1 1 
0 0 1

" 1 0  0 
- 5  0 2

0 0 1

15.

17.

' - 1 0  f '1 1 o '

- 3 0  1 1 6 . 0 - 1 - 1

- 4 0  3 2 2 0

" 0

oo

0 “ ' 0 0  0 0 "

0 1 1 I0
1 8 .

0 1 0 1

0 0  0  i0 0 0  0 0

0 0  0 1 0 0  0 1

19. Consider the matrix
L J 1 a b
0 -1" A = 0 1 c
1 2 0 0 1

where a. b, c are arbitrary constants. How does the ge­
ometric multiplicity of the eigenvalue 1 depend on the 
constants a , b, cl  When is there an eigenbasis for A!

20. Consider the matrix
1 a b

A =  0 I c
0 0 2_

where a, b .c  are arbitrary constants. How do the geo­
metric multiplicities of the eigenvalues I and 2 depend 
on the constants a, b, c? When is there an eigenbasis 
for A?

21. Find a 2 x 2 matrix A for which 
1E i =  span and E2 =  span

How many such matrices are there?
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22. Find all 2 x 2 matrices A for which

E1 = M2.

23. Find all eigenvalues and eigenvectors of A =

Is there an eigenbasis? Interpret your result geometri­
cally.

24. Find a 2 x 2 matrix A for which 

E i =  span 

is the only eigenspace.

25. What can you say about the geometric multiplicity of 
the eigenvalues of a matrix of the form

A =

~k 1 0 0 O'
0 k 1 0 0
0 0 k 0 0

0 0 0 k 1
0 0 0 . . .  0 k

where a> b, c are arbitrary constants?

26. Show that if a 6 x 6 matrix A has a negative determinant, 
then A has at least one positive eigenvalue. (Hint: Sketch 
the graph of the characteristic polynomial.)

27. Consider a 2 x 2 matrix A. Suppose that tr A =  5 and 
det A =  6. Find the eigenvalues of A.

28. Consider the matrix

Jn(k)=

(with all k's on the diagonal and l's directly above), 
where k is an arbitrary constant. Find the eigenvalue(s) 
of Jn(k), and determine their algebraic and geometric 
multiplicities.

29. Consider a diagonal n x n  matrix A withrank(A) =  r < 
n. Find the algebraic and the geometric multiplicity of 
the eigenvalue 0 of A in terms of r and n.

30. Consider an upper triangular n x n  matrix A with an #  0
for i =  1, 2 , . . . ,  m and an =  0 for / =  m +  1....... n.
Find the algebraic multiplicity of the eigenvalue 0 of A. 
Without using Theorem 7.3.7, what can you say about 
the geometric multiplicity?

31. Suppose there is an eigenbasis for a matrix A. What 
is the relationship between the algebraic and geometric 
multiplicities of its eigenvalues?

32. Consider an eigenvalue k of an n x n matrix A. We 
know that k is an eigenvalue of A T as well (since A and 
AT have the same characteristic polynomial). Compare 
the geometric multiplicities of k as an eigenvalue of A 
and A T.

33. Show that if matrix A is similar to B, then A — k ln is 
similar to B — kln, for all scalars k.

34. Suppose that B =  5 " 1A S for some n x n  matrices A , 
and S.
a. Show that if x  is in ker B , then Sx is in ker A.
b. Show that the linear transformation T(x) = Sx  from 

ker B to ker A is an isomorphism.
c. Show that nullity(A) =  nullity(tf) and rank(A)

= rank(£).

35. Is matrix ' l 2 similar to '3 o '
0 3 1 2

‘0 f similar to 'l 2
5 3 4 336. Is matrix

37. Consider a symmetric n x n  matrix A.
a. Show that if 5 and w are two vectors in R", then

Av ■ w — v ■ Aw.

b. Show that if v and w are two eigenvectors of A, with 
distinct eigenvalues, then w is orthogonal to v.

38. Consider a rotation T(x) =  Ajc in R3. (That is, A is 
an orthogonal 3 x 3  matrix with determinant 1.) Show 
that T has a nonzero fixed point [i.e., a vector v with 
T(v) =  5]. This result is known as Euler’s theorem, 
after the great Swiss mathematician Leonhard Euler 
(1707-1783). (Hint: Consider the characteristic poly­
nomial f A(k). Pay attention to the intercepts with both 
axes. Use Theorem 7.1.2.)

39. Consider a subspace V of W1 with dim(V) =  m.
a. Suppose the n x n matrix A represents the orthog­

onal projection onto V. What can you say about the 
eigenvalues of A and their algebraic and geometric 
multiplicities?

b. Suppose the n x n  matrix B represents the reflection 
about V. What can you say about the eigenvalues of 
B and their algebraic and geometric multiplicities?

40. Let jc (t) and y(t) be the annual defense budgets of two 
antagonistic nations (expressed in billions of U.S. dol­
lars). The change of these budgets is modeled by the 
equations

*(f +  1) =ax(t )  +  by(t), 
y(t +  1) =  bx(t) +  ay(t),

where a is a constant slightly less than 1, expressing the 
fact that defense budgets tend to decline when there is 
no perceived threat. The constant b is a small positive 
number. You may assume that a exceeds b.

Suppose jc(0) =  3 and >>(0) =  0.5. What will hap­
pen in the long term? There are three possible cases, 
depending on the numerical values of a and b. Sketch a 
trajectory for each case, and discuss the outcome in prac­
tical terms. Include the eigenspaces in all your sketches.
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0 1.4 1.2
0.8 0 0
0 0.4 0

41. Consider a modification of Example 5: Suppose the
transformation matrix is

A =

The initial populations are j(0) =  600, m(0) =  100, 
and a(0) =  250. Find closed formulas for j(t), m(t), 
anda(t). Describe the long-term behavior. What can you 
say about the proportion j( t)  : m(t) : a(t) in the long 
term?

42. A street magician at Montmartre begins to perform at 
11:00 P.M. on Saturday night. He starts out with no on­
lookers, but he attracts passersby at a rate of 10 per 
minute. Some get bored and wander off: Of the peo­
ple present t minutes after 11:00 P.M., 20% will have 
left a minute later (but everybody stays for at least a 
minute). Let C(t) be the size of the crowd t minutes 
after 11:00 P.M. Find a 2 x 2 matrix A such that

C (r+  1) 
1 =  A C(t)

1

Find a closed formula for C(r), and graph this function. 
What is the long-term behavior of C(t)l

43. Three friends, Alberich, Brunnhilde, and Carl, play a 
number game together: Each thinks of a (real) number 
and announces it to the others. In the first round, each 
player finds the average of the numbers chosen by the 
two others; that is his or her new score. In the second 
round, the corresponding averages of the scores in the 
first round are taken, and so on. Here is an example:

A B C

Initial choice 7 11 5
After 1st round 8 6 9
After 2nd round 7.5 8.5 7

Whoever is ahead after 1,001 rounds wins, 
a. The state of the game after t rounds can be repre­

sented as a vector:

*(0 =

a(t)
b(t)
c(t)

Alberich’s score 
Brunnhilde’s score. 
Carl’s score

b.

c.

Find the matrix A such that x(t +  1) =  Ax(t).
With the initial values mentioned earlier (ao = 7, 
bo = 11, co =  5), what is the score after 10 rounds? 
After 50 rounds? Use technology.
Now suppose that Alberich and Brunnhilde initially 
pick the numbers 1 and 2, respectively. If Carl picks 
the number co, what is the state of the game after t 
rounds? [Find closed formulas for a(t), b(t), c(t), in 
terms of coJ For which choices of co does Carl win 
the game?

44. In an unfortunate accident involving an Austrian truck, 
100 kg of a highly toxic substance are spilled into Lake 
Sils, in the Swiss Engadine Valley. The river Inn carries 
the pollutant down to Lake Silvaplana and later to Lake 
St. Moritz.

This sorry state, t weeks after the accident, can be de­
scribed by the vector

pollutant in Lake Sils \  
pollutant in Lake Silvaplana > (in kg), 
pollutant in Lake St. Moritz J

x(t) =  

Suppose that

* i(0
* 2(0
*3(0

i(f + l) =
0.7 0 0
0.1 0.6 0
0 0.2 0.8

i(0 -

a. Explain the significance of the entries of the trans­
formation matrix in practical terms.

b. Find closed formulas for the amount of pollutant in 
each of the three lakes t weeks after the accident. 
Graph the three functions against time (on the same 
axes). When does the pollution in Lake Silvaplana 
reach a maximum?

45. Consider a dynamical system

x(t) = x\(t)
* 2(0

whose transformation from time t to time t +  1 is given 
by the following equations:

x\(t +  1) =  0.1*i(f) +0.2jc2(/) +  1,
X2 (t +  1) =  0.4xi (t) + 0.3*2(O + 2-

Such a system, with constant terms in the equations, is 
not linear, but affine.
a. Find a 2 x 2 matrix A and a vector b in M2 such that

x(t +  1) =  Ax(t) -\-b.

b. Introduce a new state vector

5(0 =
* i(0
* 2(0

1

with a “dummy” 1 in the last component. Find a 3 x 3 
matrix B such that

y(t +  1) =  By(t).
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How is B related to the matrix A and the vector b in 
part (a)? Can you write B as a block matrix involving 
A and bl

c. What is the relationship between the eigenvalues of 
A and Bl  What about eigenvectors?

d. For arbitrary values of x\ (0) and *2(0), what can you 
say about the long-term behavior of x\ (t) and *2(0 ?

46. A machine contains the grid of wires shown in the ac­
companying sketch. At the seven indicated points, the 
temperature is kept fixed at the given values (in °C). 
Consider the temperatures T\ (/), 72(0, and T^(t) at the 
other three mesh points. Because of heat flow along the 
wires, the temperatures 7/ (0 changes according to the 
formula

Ti(t +  1) =  7)0) -  - L £ ( 7 ) ( / )  -  r adj(0).

where the sum is taken over the four adjacent points in 
the grid and time is measured in minutes. For example,

r2(r + 1) =  r 2(o  -  j j j ( r 2<f) -  7 i(o ) -  l ( r 2(o - 200)
1 0 '

- (?2(0-o)--i(r2(o - 73(0).
Note that each of the four terms we subtract represents 
the cooling caused by heat flowing along one of the 
wires. Let

*(0 =

Ti(t)
72(0
W )

a. Find a 3 x 3 matrix A and a vector b in R 3 such that

x(t 4- 1) =  Ax(t) 4- b.

b. Introduce the state vector

v(0 =

7 i ( 0  
7 i ( 0
73(f)

1

with a “dummy” 1 as the last component. Find a 4 x 4 
matrix B such that

}'(t 4- 1) =  By(t).

(This technique for converting an affine system into 
a linear system is introduced in Exercise 45; see also 
Exercise 42.)

c. Suppose the initial temperatures are T\ (0) = 
72(0) =  7*3(0) =  0. Using technology, find the tem­
peratures at the three points at / =  10 and t =  30. 
What long-term behavior do you expect?

d. Using technology, find numerical approximations for 
the eigenvalues of the matrix B. Find an eigenvector 
for the largest eigenvalue. Use the results to confirm 
your conjecture in part (c).

47. The color of snapdragons is determined by a pair of 
genes, which we designate by the letters A and a. The 
pair of genes is called the flower’s genotype. Genotype 
A A produces red flowers, genotype Aa pink ones, and 
genotype aa white ones. A biologist undertakes a breed­
ing program, starting with a large population of flowers 
of genotype A A. Each flower is fertilized with pollen 
from a plant of genotype Aa (taken from another popu­
lation), and one offspring is produced. Since it is a matter 
of chance which of the genes a parent passes on, we ex­
pect half of the flowers in the next generation to be red 
(genotype A A) and the other half pink (genotype Aa). 
All the flowers in this generation are now fertilized with 
pollen from plants of genotype Aa (taken from another 
population), and so on.
a. Find closed formulas for the fractions of red, pink, 

and white flowers in the fth generation. We know that 
r(0) =  1 and p(0) =  w(0) =  0, and we found that 
r(l) =  p(\)  =  j  and w(l) =  0.

b. What is the proportion r(t) : p(t) : w(t) in the long 
run?

48. Leonardo of Pisa: The rabbit problem. Leonardo of Fisa 
(c. 1170-1240), also known as Fibonacci, was the first 
outstanding European mathematician after the ancient 
Greeks. He traveled widely in the Islamic world and 
studied Arabic mathematical writing. His work is in the 
spirit of the Arabic mathematics of his day. Fibonacci 
brought the decimal-position system to Europe. In his 
book Liber abaci (1202),10 Fibonacci discusses the fol­
lowing problem:

How many pairs of rabbits can be bred from one 
pair in one year? A man has one pair of rabbits 
at a certain place entirely surrounded by a wall.
We wish to know how many pairs can be bred 
from it in one year, if the nature of these rabbits 
is such that they breed every month one other

l0For a translation into modem English, see Laurence E. 
Sigler, Fibonacci's Liber Abaci, Springer-Verlag, 2002.
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pair and begin to breed in the second month af­
ter their birth. Let the first pair breed a pair in the 
first month, then duplicate it and there will be 2 
pairs in a month. From these pairs one, namely, 
the first, breeds a pair in the second month, and 
thus there are 3 pairs in the second month. From 
these, in one month, two will become pregnant, 
so that in the third month 2 pairs of rabbits will 
be bom. Thus, there are 5 pairs in this month. 
From these, in the same month, 3 will be preg­
nant, so that in the fourth month there will be 
8 pairs. From these pairs, 5 will breed 5 other 
pairs, which, added to the 8 pairs, gives 13 pairs 
in the fifth month, from which 5 pairs (which 
were bred in that same month) will not conceive 
in that month, but the other 8 will be pregnant. 
Thus, there will be 21 pairs in the sixth month. 
When we add to these the 13 pairs that are bred 
in the seventh month, then there will be in that 
month 34 pairs [and so on, 55, 89, 144, 233, 
377,...]. Finally, there will be 377, and this 
number of pairs has been bom from the first- 
mentioned pair at the given place in one year.

Let ;'(/) be the number of juvenile pairs and a(t) 
the number of adult pairs after t months. Fibonacci starts 
his thought experiment in rabbit breeding with one adult 
pair, so 7 (0 ) =  0 and a(0) =  1. At / =  1, the adult 
pair will have bred a (juvenile) pair, so a(\) =  1 and 
;(1) =  1* At t =  2, the initial adult pair will have bred 
another (juvenile) pair, and last month’s juvenile pair 
will have grown up, so a (2) =  2 and j ( 2) =  1. 
a* Find formulas expressing a(t 4- 1) and j ( t  + 1) in 

terms of a(t) and j(t).  Find the matrix A such that

x(t +  1) =  Ax(t),

where

x(t) = a(t)
m

b. Find closed formulas for a(t) and j(t). (Note: You 
will have to deal with irrational quantities here.) 
Find the limit of the ratio a(t)/j(t)  as t approaches 
infinity. The result is known as the golden section. 
The golden section of a line segment AB is given by 
the point P such that

A B ^ A F  
A P  P B

P
i

B
_1

49. Consider an n x n  matrix A with zeros on the diago­
nal and below the diagonal, and “random” entries above 
the diagonal. What is the geometric multiplicity of the 
eigenvalue 0 likely to be?

50. a. Sketch a phase portrait for the dynamical system 
x(t +  1) =  Ax(t)* where

A = 2 1
3 2

b. ln his paper “On the Measurement of the Circle,” 
the great Greek mathematician Archimedes (c. 280- 
210 B.C.) uses the approximation

1351
—  < v/3<  
153 780

' 97 56' '1351 780"
168 97 2340 1351

to estimate cos(30°). He does not explain how he ar­
rived at these estimates. Explain how we can obtain 
these approximations from the dynamical system in 
part (a). {Hint:

A* =

c. Without using technology, explain why 

780
[Hint: Consider det(A6).]

d. Based on the data in part (b), give an underestimate of 
the form p/q  of \/3 that is better than the one given 
by Archimedes.

51. Find the characteristic polynomial of the matrix 
^  0 £|"

A = 1 0 
0 1

stants.

, where a, b, and c are arbitrary con-

'0 0 0 0 ao
1 0 0 0 ci\
0 1 0 0 (12

0 0 0 0 2
.0 0 0 1

52. Find the characteristic polynomial of the n x n  matrix

A =

Note that the zth column of A is 2/+i, for
/ =  1....... n — 1, while the last column has the arbitrary
entries oq,----an-\ .  (See Exercise 51 for the special
case n =  3.)

53. Consider a 5 x 5 matrix A and a vector P in R5. Sup­
pose the vectors P, Av, A2v are linearly independent, 
while A3P =  av -f M P + cA2v for some scalars a, b. c. 
We can take the linearly independent vectors P, Av. A2v 
and expand them to a basis 53 =  (P, Ai\ A2v. 1P4 , w$) 
of M5.
a. Consider the matrix B of the linear transformation 

T(x) =  Ax with respect to the basis s£. Write the 
entries of the first three columns of B. (Note that we 
do not know anything about the entries of the last 
two columns of B.)
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b. Explain why / 4 (A) =  fs(k)
= h(k)( —A3 + ck2 + bX + a)y for some quadratic 
polynomial h(k). Sec Exercise 51.

c. Explain why f A(A)v =  0. Here, f A(A) is the 
characteristic polynomial evaluated at A , that is, if 
/ a (A) =  cnkn +  • • ■ +  c*i A +  c*o, then
/ a (A) = cnAn 4- • • • 4- c 1A 4- col„•

54. Consider an n x n  matrix A and a vector v in Rn. Form 
the vectors 5, Av , A25, A*v, . . . ,  and let Amv be the 
first redundant vector in this list. Then the m vectors
5, Au, A2v.......Am~]v are linearly independent; note
that m < n. Since Amv is redundant, we can write 
Amv =  aov 4- a\Av  4- a2A2v 4- • • • + am-\ Am~]v
for some scalars ao....... am-  \ . Form a basis
93 = (P, AS, a 25, . . . ,  Am_1 C, _(_ 1....... wn) of IR".
a. Consider the matrix B of the linear transformation 

T(x) =  Ax with respect to the basis 93. Write B
B\\ B\2
B2\ B22

in block form, B =

m x m  matrix. Describe B\ [ column by column, pay­
ing particular attention to the mih column. What can 
you say about B2\? (Note that we do not know any­
thing about the entries of #12 and B22 )
Explain why f A(k) =  f B(k) =  / f l „ ( A ) / fl|1 (A) =

( - l ) " 7 / J v > a ) U m - f l m- | X m- ' ---------- f l |X - a o ) .
See Exercise 52.

c. Explain why f A(A)v = 0. See Exercise 53.
d. Explain why f A(A) =  0.

The equation f A(A) = 0 is referred to as the 
Cayley-Hamilton theorem: A square matrix satisfies its 
characteristic polynomial. The English mathematician 
Arthur Cayley (1821-1895) played a leading role in the 
development of the algebra of matrices, and the Irish 
mathematician Sir William Rowan Hamilton (1805- 
1865) is best remembered today for his discovery of 
the quaternions. See Exercises 5.3.64 and 7.5.37.

b.

where B\\ is an

m Diagonalization

EXA M PLE  I In Example 2 of Section 7.3, we found that vectors 5) =
1

- 1
and t’2 = form

an eigenbasis for matrix A =
1 2 
4 3

with associated eigenvalues A i =  — 1 and

A2 =  5. Find the matrix B of the linear transformation T(x)  = Ax  with respect to 
this eigenbasis $3 =  (5 |, 52)-

Solution
We are looking for the matrix B such that [7'(jc)]^ =  B [x]ŝ  for all x in R 2, by 
Definition 3.4.3. We can use a commutative diagram to find B .

X = C \ V \ +  C2V2

[*]* = B =
-1 0 

0 5

T (Jc) =  c \A v  1 4- C2AV2 
=  ciAiSj 4-C2A2U2 
=  - c \ v  1 4- 5c2V2

’A id ' - c  r
A2c2 5c2.

Note that B is a diagonal matrix. If we use the c\-c2 coordinate system defined

by the eigenbasis si3, then V is transformed into -C]'
_c2_ 5c2_

, meaning that the c\-

component is reversed and the C2-component is magnified by a factor of 5, as shown 
in Figure 1. ■

Figure I

It turns out that the matrix of a linear transformation T  with respect to an 
eigenbasis is diagonal. In light of this fact, we will often denote an eigenbasis by 2); 
the matrix of T  with respect to '2) is then denoted D.
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Theorem 7.4.1

Definition 7.4.2

Theorem 7.4.3

Theorem 7.4.4

Consider a linear transformation T ( x ) =  A x , where A is a square matrix. Suppose
2s =  (Cj, 5 , ........ vn) is an eigenbasis for 7 \ with Avj = kjVj. Then the 2)-matrix
D of T is

The matrix of a linear transformation with respect to an eigenbasis

'*1 0 0 "

D = S ~ 'A S  =
0 ^2 0

where 5 = V\ Vi Vtl

.  0 0 - -

Matrix D is diagonal, and its diagonal entries are the eigenvalues X \ , k i ........ A.,,
of T. m

Recall that the formula D = S ~ ] AS  was discussed in Theorem 3.4.4.
To justify Theorem 7.4.1, use a commutative diagram as in Example 1; we leave 

the details to the reader.
The converse of Theorem 7.4.1 holds as well: If the matrix D of a linear trans­

formation T  with respect to a basis 2) is diagonal, then 3) must be an eigenbasis for 
T  (see Exercise 53).

Theorem 7.4.1 motivates the following definition.

Diagonalizable matrices

An n x n  matrix A is called diagonalizable if A is similar to some diagonal matrix 
D, that is, if there exists an invertible n x n  matrix S such that S_l AS  is diagonal.

As we just observed, matrix is diagonal if (and only if) the column
vectors of S form an eigenbasis for A. This implies the following result.

Eigenbases and diagonalization
a. Matrix A is diagonalizable if (and only if) there exists an eigenbasis for A.
b. If an n x  n matrix A has n distinct eigenvalues, then A is diagonalizable.

■

If an n x n  matrix A has fewer than n distinct eigenvalues, then A may or may 
not be diagonalizable. Consider the diagonalizable matrix

1 0 '
0 1

and the nondiagonalizable

1 f
0 1 ‘

Asking whether a matrix A is diagonalizable amounts to asking whether there 
exists an eigenbasis for A. In the past three sections, we outlined a method for 
answering this question. Let us summarize this process.

Diagonalization
Suppose we are asked to determine whether a given n x n  matrix A is diagonalizable. 
If so, we wish to find an invertible matrix 5 such that S_l AS  is diagonal.

We can proceed as follows.

a. Find the eigenvalues of A, that is, solve the characteristic equation / 4(A)
=  det(A -  A/„) =  0 .
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EXA M PLE  2

b .  For each eigenvalue A., find a basis of the eigenspace =  ker(A -  k l n).
c. Matrix A is diagonalizable if (and only if) the dimensions of the eigenspaces

add up to n . In this case, we find an eigenbasis V\,V2, . . .  >vn by 
concatenating the bases of the eigenspaces we found in step (b). Let
S =  [5i V2 • • ■ 5/i ]• Then matrix S_ IAS =  D is diagonal, and the
zth diagonal entry of D is the eigenvalue A, associated with 5,-. ■

Diagonalize the matrix

I 1 r
A = 0 0 0

0 0 0

if you can.

Solution
We will follow the steps outlined in Theorem 7.4.4:

a. The eigenvalues of the triangular matrix A are 0 and 1, the diagonal entries; 
eigenvalue 0 has algebraic multiplicity 2. We cannot tell yet whether A is 
diagonalizable; the answer will depend on the dimension of eigenspace Eo 
(the kernel of matrix A).

'1 1 r ' - r
Eo =  ker A = ker 0 0 0 =  span 1 1

.0 0 0. 0.

’0 i r '1 '
E] =  ker (A —h ) - 0 - l 0 =  span 0

0 0 -1 0
c. Matrix A is diagonalizable, since the sum of the dimensions of the 

eigenspaces Eo and E\ is 2 +  1 =  3. We have the eigenbasis

~ r - r T
Vl = i V2 = 0 V3 = 0

0. l. 0.

$ t  t
k\ = 0  A2 =  0 X3 =  1

If we let

' ' - 1 -1 r
S  = Vl X>2 U3 — 1 0 0

0 1 0

then

0 O ' '0 0 O'
D  =  5 - 'A 5  = 0 ■̂2 0 = 0 0 0

. 0 0 ^•3. .0 0 1.

Note that you need not actually compute S_I AS.  Theorem 7.4.1 guarantees that 
S ~ lA S  is diagonal, with the eigenvalues lined up along the diagonal. To check your 
work, you may wish to verify that S_ ,A5 =  D, or, equivalently, that A S  = SD
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EXA M PLE  3

EXA M PLE  4

(this way you need not find the inverse of S):

A S  =
I 1 1
0 0 0 
0 0 0

- 1  - 1  1 
1 0 0
0 1 0

'0 0 r
= 0 0 0

.0 0 0.
■-1 - 1 r '0 0 O' ’0 0 r

S D  = 1 0 0 0 0 0 = 0 0 0
0 1 0 0 0 l 0 0 0

For which values of the constants a, b, and c is the matrix

1 a b~
0 0 cA =
0 0 1

diagonalizable?

Solution
The eigenvalues are 0, 1, 1. Theorem 7.3.7 tells us that E$ = ker A is one dimen­
sional. Now

'0 a b ' Step 3 '0 1 —c
E\ =  ker (A — / 3) =  ker 0 - 1 c =  ker 0 0 b +  ac

0 0 0 0 0 0

In Step 3 we perform some elementary row operations. Matrix A is diagonalizable if 
(and only if) the eigenspace E\ is two dimensional [so that d im (£0)+ d im (£ 'i) =  3]. 
This is the case if (and only if) b -I- ac =  0, or b =  —ac. ■

Pow e rs  o f  a Matrix

Consider the matrix A =
• 1 
2 4
i i 
2 4

, a regular transition matrix (see Exercise 7.2.25).

a. Find formulas for the entries of A',  for any positive integer t.
b. Find lim A'.t-> OO

(Hint: Diagonalize /*.)

Solution
It may be informative to compute A 1 for a few values of t first, using a calculator or 
computer. For example,

,0 ^  [0.6000003815 0.5999994278'
% [ 0.399996183 0.4000005722 ’

Further numerical experimentation suggests that

lim A'  =
/-► O O

0.6 0.6 
0.4 0.4

We cannot be certain of this result, of course, for (at least) two reasons: We can only 
check finitely many values of r, and the results the calculator produces are afflicted 
with round-off errors.
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Theorem 7.4.5

To prove our conjecture, lim A 1 =
t - > 0 c

0.6 0.6 
0.4 0.4

, we follow the hint and diago-

nalize matrix A:

• Eigenvalues: f A{X) = X2 — (trA)X +  (detA) =  X1 — |X  — £ 

=  (X — 1) ^  =  0. The eigenvalues are 1 and —

• Eigenvectors: E\ =  ker

£ _ i/4 =  ker
3 3
4 4
1 l 
2 2

1
2

3"
4 ’3"

1 3
=  span

2_
2 4 _

rspan
- 1

’l 0" '3 1
• T h u s S ~ l AS  = D = , where 5 =

0 1 4̂
|h-

1

2 - 1

To compute the powers of matrix A, we solve the equation 5 1 AS  = D for A and 
find that A =  S D S ~ ]. Now

/  t im e s

A 1 = ( S D S - ' Y  =  ( S D S - ' ) ( S D S ~ ' ) - - - ( S D S - 1) = S D ' S ~ U,

note the cancellation o f the terms of the form S-1 S. (Compare this with Example 7 
of Section 3.4.)

Matrices D'  and S ~ ] are easy to compute: To find D',  raise the diagonal entries 
of D  to the /th power. Thus, the problem of finding A'  is essentially solved.

1 1
2 - 3

D' =
1 0

( - O '
so that

A 1 = S D ' S ~1 =
1 3 1 

2 -1

3 +  21

1 0 [1 1

0 ( - * ) ' . [ 2  --3.

• i ) '  3 - 31( - 0 ' '
! ) '  2 +  3

( - O ' .

Since the term ( — approaches 0 as t goes to infinity, we have

1 '3 3 ' 0.6 0 .6 '
5 _2 2 0.4 0.4

lim A'  =
/-► O O

confirming our earlier conjecture. ®

Powers of a diagonalizable matrix
To compute the powers A' of a diagonalizable matrix A (where t is a positive integer), 
proceed as follows:

Use Theorem 7.4.4 to diagonalize A,  that is, find an invertible S and a diagonal 
D  such that AS  = D.

Then

A =  S D S ~ l and A' =  5 D 'S _ I .

To compute D',  raise the diagonal entries of D  to the /th power.
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EXAMPLE 5 Consider the dynamical system

*(/ +  !) = x( t)  with initial value xq =
100
0

Use your work in Example 4 to give closed formulas for the entries of x(t) ,  and find
lim jc(0-r-*oo

Solution
We know that

x( t)  = A*x o, where A = 

Now we can use our work in Example 4:

x( t)  = A'xo = S D ' S ~ lx 0 =

and xq =
100
0

1 3 + 2 (~J y  3 - 3 ( - 5 y r 1001*0 = 5
_2 - 2 ( - i 1  2 + 3 H ) ' .

l o  j

60 +  4 0 ( - i ) '  

40 -  4 0 ( - i ) '

and

lim x (t) =I —> oc
60
40

Note that we have seen the formula x( t)  =  SD*S {xq in Theorem 7.1.3 already, 
although it was derived in a different way. ■

T he  E igen va lu es  o f  a Linear Transformation  
(for those  w h o  have  studied Chapter  4)
In the preceding three sections, we developed the theory of eigenvalues and eigen­
vectors for n x n  matrices, or, equivalently, for linear transformations r(jc) =  Ax  
from R n to R*. These concepts can be generalized to linear transformations from V 
to V, where V is any linear space. In the case of a finite dimensional space V, we 
can generalize the idea of diagonalization as well.

Definition 7.4.6 The eigenvalues of a linear transformation

Consider a linear transformation T  from V to V, where V is a linear space. A scalar 
X is called an eigenvalue of T  if there exists a nonzero element /  of  V such that

T ( f )  = X f .

Such an /  is called an eigenfunction if V consists of functions, an eigenmatrix if V 
consists of matrices, and so on. In theoretical work, the inclusive term eigenvector 
is often used for / .

Now suppose that V is finite dimensional. Then a basis 3) of V consisting of 
eigenvectors of T  is called an eigenbasis for T. We say that transformation T is 
diagonalizable if the matrix of T  with respect to some basis is diagonal. Trans­
formation T  is diagonalizable if (and only if) there exists an eigenbasis for T  (see 
Theorem 7.4.3a).
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EXA M PLE  6

EXA M PLE  7

EXA M PLE  8

Consider the linear transformation D ( f )  =  / '  (the derivative) from C°° to C00. 
Show that all real numbers are eigenvalues of D. Hint: Apply D to exponential 
functions.

Solution
Following the hint, we observe that D(ex) =  (ex)' =  ex — \ex. This shows that ex 
is an eigenfunction of D, with associated eigenvalue 1. More generally,

D(ekx) =  (ekxY = k{ekx) (use the chain rule),

showing that ekx is an eigenfunction of D with associated eigenvalue k. Here k can 
be any real number, proving our claim. ■

Consider the linear transformation L (A) =  A T (the transpose11) from R2 x 2 to R2 x 2. 
Is transformation L diagonalizable? If so, find an eigenbasis for L. Hint: Consider 
symmetric and skew-symmetric matrices.

Solution
If A is symmetric, then L(A)  =  A T =  A =  1A, so that A is an eigenmatrix with

eigenvalue 1. The symmetric 2 x 2  matrices 

with basis

a b 
b c

form a three-dimensional space,

"1 0‘ o r oo

0 0 ’

i
o

’ 0 1
We need only one more matrix to form an eigenbasis for L , since R2x2 is four­
dimensional.

If A is skew symmetric, then L(A) — A 7 — —A — (—1)A, so that A is an 

eigenmatrix with eigenvalue —1. The skew-symmetric 2 x 2  matrices ^ a
- a  0

form a one-dimensional space, with basis
0 1

- 1  0
We have found enough eigenmatrices to form an eigenbasis for L \

1 0 ' o r oo o r
0  0 . 1 0 1

O
1

’ 1 o

Thus, L is diagonalizable.

Consider the linear transformation T ( f ( x ) )  =  f ( 2 x  — 1) from P2 to P%. Is trans­
formation T  diagonalizable? If so, find an eigenbasis 2) and the 2)-matrix D of T-

Solution
Here it would be hard to find eigenvalues and eigenfunctions “by inspection;” we 
need a systematic approach. The idea is to find the matrix A of T  with respect to 
some convenient basis 21. Then we can use Theorem 7.4.4 to determine whether A 
is diagonalizable, and, if so, to find an eigenbasis for A. Finally we can transform 
this basis back into P2 to find an eigenbasis 2) for T .

11 If you have skipped Chapter 5, read Definition 5.3.5 and Examples 5 and 6 following that definition.
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We will use a commutative diagram to find the matrix A of T  with respect to 
the standard basis 91 =  (1, x,  x 2).

T T(a +  bx + c x 1)
a + bx  +  c x 2 ----------------------- ► =  a +  b(2x — 1) +  c(2x — l ) 2

= a — b + c + (2b — 4c)x  +  Aex2

A =

a — b +  c 
2 b - A c  

Ac

The upper triangular matrix A has the three distinct eigenvalues, 1, 2, and 4, so that 
A is diagonalizable, by Theorem 7.4.3b. A straightforward computation produces 
the eigenbasis

T ' - r '  r
0 i - 2
0 0 1

for A. Transforming these vectors back into P2, we find the eigenbasis 2) for T  
consisting of

1, x — 1, x 2 — 2x +  1 =  (jc — l ) 2 .

To check our work, we can verify that these are indeed eigenfunctions of T :

7X1) =  1,
T(x  -  1) =  (2x -  1) -  1 =  2x -  2 = 2(x -  1),

T ( (x  -  l ) 2) =  ((2x -  1) -  l ) 2 =  (2x -  2)2 =  4(x -  l )2.

The -matrix of T  is
'1 0 0 ’

D = 0 2 0
0 0 4

Consider Figure 2, where

S =
1 - 1  1
0 1 -2 
0 0 1

is the change of basis matrix from 2) to 91.

[ / ] * ------------------------------------------------► [ W ] *

Figure 2
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EXA M PLE  9 Let V be the space of all infinite sequences of real numbers. We define the linear 
transformation

T(x  =  (*1,* 2 .* 3>*4 . •••)

from V to V (we omit the first term, xo)- Find all the eigenvalues and eigensequences 
of T.

Solution
Since V is infinite dimensional, we cannot use the matrix techniques of Example 8 
here. We have to go back to the definition of an eigenvalue: For a fixed scalar A, we 
are looking for the infinite sequences (jco, x \ , *2 , *3, . . . )  such that

T (*o, X\ , *2 , • • • ) =  x \ , X2, X3-----)

or

(X\ , *2, *3, ■ • • ) =  k(XQ, X1, X2, *3, • • • )

or

*1 =  Xxq, X2 = Xxi = k 2Xo, *3 =  kX2 =  X3JCo........

The solutions are the geometric sequences of the form

(*o, Ajcq, X2xq, X3xq, . . . )  =  jco( 1, A, A2, A.3, . . . ) .

Thus all real numbers A are eigenvalues of 7\ and the eigenspace Ek is one dimen­
sional for all A., with the geometric sequence (1, A, A.2, A.3, . . . )  as a basis.

For example, when A =  3, we have

7(1, 3, 9, 2 7 , 8 1 , . . . )  =  ( 3 , 9 , 2 7 , 8 1 , . . . )  =  3(1, 3, 9, 2 7 , . . . ) ,

demonstrating that (1, 3, 9, 27, 8 1 , . . . )  is an eigensequence of T  with eigenvalue 3.

EXERCISES 7.4

GOAL Use the concept o f a diagonalizable matrix. Find 
the eigenvalues of  a linear transformation.

Decide which of  the matrices A in Exercises 1 through 20 
are diagonalizable. I f  possible, find an invertible S and a 
diagonal D such that S ~ l AS  =  D. Do not use technology.

1. A =

3. A =

5. A =

2 0
0 3

1 1
2 2

1 1
0 1

7. 1 4
1 -2

9. A = 4 9
-1 -2

2. A =

4. A =

6. A =

8. A =

10. A =

2 1
0 3

1 2
3 6

2 0
-1 2

1 3'
3 1

3 4
-1 -1

' l 0 l “ '2 0 1"
11. A = 0 2 0 12. A = 0 1 0

0 0 I_ 0 0 1_

"1 1 0" ‘3 1 f
13. A = 0 2 2 14. A = 0 2 1

0 0 3 _0 0 1

"3 - 4 O' "4 0 -2
15. A = 2 - 3 0 16. A = 0 1 0

0 0 1̂ 1 0 1

"l 1 f '1 0 1“
17. A = 1 1 1 18. A = 0 1 0

i 1 1 1 0 1

"J 1 r '1 0 f
19. A = 0 1 0 20 . A = 1 1 1

0 1 0 1 0 1
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fa r which values o f constants a, b, and c are the matrices 
fa Exercises 21 through 30 diagonalizable?

21.
1
0

a
2 22. 1

0
a
b 46.

23.
1
a

f
1

24. a
b

b
c

47.
'l a b "l a b 48.

25. 0 2 c 26. 0 2 c

0 0 3_ 0 0 1 49.

'l a b "0 0 0"
50.27. 0 1 c 28. 1 0 a

0 0 1_ 0 1 0

'0 0 a '0 0 a
51.

29. 1 0 0 30. 1 0 3 52.
0 1 0 0 1 0_ 53.

For the matrices A in Exercises 31 through 34, find formu­
lasfor the entries of A 1, where t is a positive integer,: Also,

find the vector A '

31. A =

33. A =

35. Is matrix

36. Is matrix

- 1 6 ' similar to
- 2 6

' - 1 6 ' similar to
- 2 6

34. ,4 =

3
0

1
-1

-2
1

1/2  1/4
1 /2  3 /4

37. If A and B are two 2 x 2  matrices with det A =  det B 
=  tr A =  tr B =  7, is A necessarily similar to B?

38. If A and B are two 2 x 2  matrices with det A =  det B
— tr A =  tr B =  4, is A necessarily similar to B?

Find all the eigenvalues and “eigenvectors” o f the linear
transformations in Exercises 39 through 52.

39. T ( f )  =  f -  f  from C°° to C°°

40. T ( f )  = 5 / '  -  3 /  from C°° to C°°

*41. L(A) = A +  A r from R2*2 to R2*2. Is L diagonaliz­
able?

42. L(A) =  A — At  from R2*2 to R2*2. Is L diagonaliz­
able?

43. T(x  +  iy) = x — iy from C to C. Is T diagonalizable?

T(x0 , x \ , jc2 , . . . )  =  (*2, *3, . . . )  from the space V of 
infinite sequences into V. (We drop the first two terms 
of the sequence.)

45. T (jco, jci , JC2, . . . )  =  (0,  xo,  x \ , X2, . . . )  from  the space  
V o f  infinite sequences into V. (W e insert a zero at the 
beginning.)

T(xo, jci, * 2, * 3, * 4, . . . )  =  (jco, JC2, JC4, . . . )  from the 
space V  o f  infinite sequences into V. (We drop every  
other term.)

able?

able?

"0 1 0 0“ '0 1 0 0"
0 0 0 0

, B =
0 0 1 0

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

T with respect to a basis 3) is diagonal, then 2) is an 
eigenbasis for T.

54. Are the following matrices similar?

A =

(Hint: Compute A2 and B2.)

55. Find two 2 x 2  matrices A and B such that AB fails to 
be similar to BA. (Hint: It can be arranged that AB  is 
zero, but BA isn’t.)

56. Show that if A and B are two n x n  matrices, then the 
matrices AB and BA have the same characteristic poly­
nomial, and thus the same eigenvalues (matrices AB and 
BA need not be similar though; see Exercise 55). Hint:

AB O' In A ' In A '

00

B 0 0 /„ r 0 B BA

58.

57. Consider an m x n  matrix A and an n x m  matrix B. Us­
ing Exercise 56 as a guide, show that matrices A B and 
BA have the same nonzero eigenvalues, with the same 
algebraic multiplicities. What about eigenvalue 0?

Consider a nonzero 3 x 3  matrix A such that A2 =  0. 
Show that the image of A is a subspace of the kernel 
of A.
Find the dimensions of the image and kernel of A. 
Pick a nonzero vector 5i in the image of A, and write 
Vl =  A^2 for some V2 in R3. Let 1)3 be a vector in 
the kernel of A that fails to be a scalar multiple of
5i. Show that s23 =  (v\ , V2, 1)3) is a basis of R3.
Find the matrix B of the linear transformation 
T(x) = Ax with respect to basis 33.

a.

b. 
c.

d.



342 C H A P T E R  7 Eigenvalues and Eigenvectors

59. If A and B are two nonzero 3 x 3  matrices such that 
A2 = B2 =  0, is A necessarily similar to B? (Hint: 
Exercise 58 is useful.)

60. For the matrix A =
1 -2 1
2 - 4  2
3 - 6  3

, find an invertible

matrix S such that S l AS = . (Hint: Ex­

ercise 58 is useful.)

61. Consider an n x n  matrix A such that A2 = 0, with 
rank A =  r. (In Example 58 we consider the case when 
n =  3 and r =  1.) Show that A is similar to the block 
matrix

B =

J 0 
0 J

0 0

0 0

where J = 0 1 
0 0

68.

, find a basis of the linear space
1 1 1

66. If A =  0 2 1
O O  1

V of all 3 x 3 matrices S such that AS = SD, where 
1 0 O'

. Find the dimension of V .D =

67. Consider a 5 x 5 matrix A with two distinct eigenval­
ues, X\ and A.2, with geometric multiplicities 3 and 2, 
respectively. What is the dimension of the linear space 
of all 5 x 5 matrices S such that AS = SD, where D is 
the diagonal matrix with the diagonal entries A j, X\, Ai, 
^2, A2?

If A is an n x n  matrix with n distinct eigenvalues 
Ai, . . . ,  A„, what is the dimension of the linear space of 
all n x n matrices S such that AS =  SD, where D is the 
diagonal matrix with the diagonal entries X\ , . . . ,  A„? 
Use Exercises 64 and 65 as a guide.

69. We say that two n x n  matrices A and B are simultane­
ously diagonalizable if there exists an invertible n x n  
matrix S such that S ~ 1A S and S~1BS are both diagonal, 
a. Axe the matrices

Matrix B has r blocks of the form J along the di­
agonal, with all other entries being 0. (Hint: Mimic 
the approach outlined in Exercise 58. Pick a ba­
sis U| , . . . ,Cr of the image if A, write 5/ =  Aw, 
for / =  1, . . . ,  r, and expand v\ , . . . ,  vr to a basis 
v \ , . . . ,  vr> U[, . . . ,  um of the kernel of A. Show that
5i, w;j, V2, i>2........5r , wr , U].........um is a basis of IR",
and show that B is the matrix of T(x) =  Ax with respect 
to this basis.)

62. Consider the linear transformation T ( f )
= / "  + a f f +  b f  from C°° to C00, where a and b are 
arbitrary constants. What does Theorem 4.1.7 tell you 
about the eigenvalues of T? What about the dimension 
of the eigenspaces of T?

63. Consider the linear transformation T ( f ) =  / "  from 
C°° to C00. For each of the following eigenvalues, find 
a basis of the associated eigenspace. See Exercise 62.

X = 1 b. X = 0 c. A. = -1  d. A = - 4a.

64. If A = , find a basis of the linear space V1 2 
0 3

of all 2 x 2 matrices S such that AS =  SD, where 
1 O'D = 0 3 . Find the dimension of V.

65. If A = , find a basis of the linear space V

"l 0 o ' ' l 2 3'
A = 0 1 0 and B = 0 2 3

0 0 1 0 0 3

simultaneously diagonalizable? Explain.
b. Show that if A and B are simultaneously diagonal­

izable then AB = BA.
c. Give an example of two n x n  matrices such that 

AB = BA , but A and B are not simultaneously di­
agonalizable.

d. Let D be a diagonal n x n  matrix with n distinct en­
tries on the diagonal. Find all n x n matrices B that 
commute with D.

e. Show that if AB = BA and A has n distinct eigenval­
ues, then A and B are simultaneously diagonalizable. 
(Hint: Part (d) is useful.)

70. Consider a n n x n  matrix A with m distinct eigenvalues 
Ai, . . . ,  Xm. Show that matrix A is diagonalizable if (and 
only if) (A - k i I n) ( A - k 2l „ ) - - - ( A - k ml„) =  0. 
(Hint: If (A -  X, In)(A -  k2l„) •■•(A — kmIn) =  0. 
use Exercise 4.2.83 to show that the sum of the dimen­
sions of the eigenspaces is n.)

71. Use the method outlined in Exercise 70 to check whether
of all 2 x 2 matrices S such that AS =  SD, where 2 0 1

D = 5 0 
0 -1 . Find the dimension of V. the matrix A = -1

0
1 -1  
0 1

is diagonalizable.
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73. Prove the Cayley-Hamilton theorem, /aM ) =  0, for 
diagonalizable matrices A. See Exercise 7.3.54.

72. Use the method outlined in Exercise 70 to check for 
which values of the constants a , b, and c the matrix

1 a b
A =  0 0 c is diagonalizable.

0 0 1

a. Are the column vectors of the matrices y4 — ^ 1/2 and 
A — X jh  eigenvectors of A? Explain. Does this work 
for other 2 x 2  matrices? What about diagonalizable 
n x n  matrices with two distinct eigenvalues, such 
as projections or reflections? (Hint: Exercise 70 is 
helpful.)

b. Are the column vectors of

74. In both parts of this problem, consider the matrix

with eigenvalues X\ = 5 and X2 =  — 1 (see Example 1). eigenvectors of AI  Explain.

Complex Eigenvalues

Imagine that you are diabetic and have to pay close attention to how your body 
metabolizes glucose. After you eat a heavy meal, the glucose concentration will 
reach a peak, and then it will slowly return to the fasting level. Certain hormones 
help regulate the glucose metabolism, especially the hormone insulin. (Compare with 
Exercise 7.1.52.) Let g(t) be the excess glucose concentration in your blood, usually 
measured in milligrams of glucose per 100 milliliters of blood. (Excess means that 
we measure how much the glucose concentration deviates from the fasting level.) A 
negative value of g(t)  indicates that the glucose concentration is below fasting level 
at time t. Let h(t)  be the excess insulin concentration in your blood. Researchers have 
developed mathematical models for the glucose regulatory system. The following is 
one such model, in slightly simplified (linearized) form.

(These formulas apply between meals; obviously, the system is disturbed during and 
right after a meal.)

In these formulas, a , b , c, and d  are positive constants; constants a and d  will 
be less than 1. The term —bh(t)  expresses the fact that insulin helps your body 
absorb glucose, and the term cg(t) represents the fact that the glucose in your blood 
stimulates the pancreas to secrete insulin.

For your system, the equations might be

with initial values g(0) =  100 and h(0) =  0, after a heavy meal. Here, time t is 
measured in hours.

After one hour, the values will be g( 1) =  90 and h ( 1) =  10. Some of the glucose 
has been absorbed, and the excess glucose has stimulated the pancreas to produce 
10 extra units of insulin.

The rounded values of g(t)  and h(t)  in the following table give you some sense 
for the evolution of this dynamical system.

g{t +  1) =  ag(t) -  bh(t) 
h(t +  1) =  cg(t) + d h ( t )

g(t + \) = 0 . 9 g ( t ) - 0 A h ( t )  
h(t +  1) =  0Ag(t)  +  0.9 h(t),
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0 1 2 3 4 5 6 7 8 15 22 29

g(t) 100 90 77 62.1 46.3 30.6 15.7 2.3 -9.3 -2 9 1.6 9.5
hit) 0 10 18 23.9 27.7 29.6 29.7 28.3 25.7 -2 -8.3 0.3

We can “connect the dots” to sketch a rough trajectory, visualizing the long-term 
behavior. See Figure 1.

hit)

Figure I

We see that after 7 hours the excess glucose is almost gone, but now there are 
about 30 units of excess insulin in the system. Since this excess insulin helps to 
reduce glucose further, the glucose concentration will now fall below fasting level, 
reaching about —30 after 15 hours. (You will feel awfully hungry by now.) Under 
normal circumstances, you would have taken another meal in the meantime, of 
course, but let’s consider the case of (voluntary or involuntary) fasting.

We leave it to the reader to explain the concentrations after 22 and 29 hours, in 
terms of how glucose and insulin concentrations influence each other, according to 
our model. The spiraling trajectory indicates an oscillatory behavior of the system: 
Both glucose and insulin levels will swing back and forth around the fasting level, 
like a damped pendulum. Both concentrations will approach the fasting level (thus 
the name).

Another way to visualize this oscillatory behavior is to graph the functions git)  
and h(t)  against time, using the values from our table. See Figure 2.

Figure 2
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Next, we try to use the tools developed in the last four sections to analyze this 
system. We can introduce the transformation matrix

A =
0.9 -0 .4  
0.1 0.9

and the state vector

x( t)  = 8 ( 0
h(t)

Then

x( t  + 1) =  Ax( t )  and thus x( t)  = y4'x(0) =  A'
100

0

To find formulas for g( t ) and h(t),  we need to know the eigenvalues and eigen­
vectors of matrix A. The characteristic polynomial of A is

f A(k) = k 2 -  1.8A. +  0.85,

so that

•̂1,2 =
1.8 ±  V3.24 — 3.4

2 2 
Since the square of a real number cannot be negative, there are no real eigenvalues 
here. However, if we allow complex solutions, then we have the eigenvalues

A.1.2 =
1.8 ±  -s/—07l6 1 .8 ± /V 0 l6

=  0.9 ±  0.2/.
2 2

In this section, we will first review some basic facts on complex numbers. 
Then we will examine how the theory of eigenvalues and eigenvectors developed in 
Sections 7.1 through 7.4 can be adapted to the complex case. In Section 7.6 we will 
apply this work to dynamical systems. A great many dynamical systems, in physics, 
chemistry, biology, and economics, show oscillatory behavior; we will see that we 
can expect complex eigenvalues in this case.

These tools will enable you to find formulas for g(t)  and h(t).  (See Exer­
cise 7.6.32.)

C o m p l e x  Numbers:  A  B ri ef  R e v ie w
Let us review some basic facts about complex numbers. We trust that you have at 
least a fleeting acquaintance with complex numbers. Without attempting a formal 
definition, we recall that a complex number can be expressed as

z =  a +  ib,

where a and b are real numbers.12 Addition of complex numbers is defined in a 
natural way, by the rule

(a +  ib) -I- (c +  id)  =  (a +  c) +  i(b +  d ),

and multiplication is defined by the rule

((a +  ib)(c +  id)  =  (ac -  bd)  +  i(ad  -I- be);

that is, we let i • i =  — 1 and distribute.

l2The letter i for the imaginary unit was introduced by Leonhard Euler, the most prolific 
mathematician in history. For a fascinating glimpse at the history of the complex numbers see Tobias 
Dantzig, Number: The Language of Science. Macmillan. 1954. For another intriguing introduction, 
full of poetry, history, and philosophy, see Barry Mazur: Imagining Numbers (particularly the square 
root of minus fifteen), Farrar, Straus, and Giroux, 2003.
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If z = a +  ib is a complex number, we call a its real part  [denoted by Re(^)] 
and b its imaginary part  [denoted by Im(z)]. A complex number of the form ib (with 
a =  0) is called imaginary.

The set of all complex numbers is denoted by C. The real numbers, R, form a 
subset of C (namely, those complex numbers with imaginaiy part 0).

Complex numbers can be represented as vectors (or points) in the complex 
plane,13 as shown in Figure 3. This is a graphical representation of the isomorphism

=  a +  ib from R2 to C.

E X A M  PLE I Consider a nonzero complex number z. What is the geometric relationship between 
z and iz in the complex plane?

Solution

If z = a +  ib , then iz =  - b  +  ia. We obtain the vector (representing iz) by

rotating the vector (representing z) through an angle of 90° in the counterclock­

wise direction. (See Figure 4.) ■

The conjugate of a complex number z =  a -1- ib is defined by

z = a — ib.

(The sign of the imaginary part is reversed.) We say that z and z form a conjugate 
pair of complex numbers. Geometrically, the conjugate z is the reflection of z about 
the real axis, as shown in Figure 5.

Sometimes it is useful to describe a complex number in polar coordinates, as 
shown in Figure 6.

The length r of the vector is called the modulus of z, denoted by |z|. The angle 9 
is called an argument of z\ note that the argument is determined only up to a multiple 
of 2 n . (Mathematicians say “modulo 2 n .”) For example, for z = — 1, we can choose 
the argument n ,  —7r, or 37r.

13 Also called “Argand plane,” after the Swiss mathematician Jean Robert Argand (1768-1822). The 
representation of complex numbers in the plane was introduced independently by Argand, by Gauss, 
and by the Norwegian mathematician Caspar Wessel (1745-1818).
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EXA M PLE  2

EXA M PLE  3

Figure 5

Find the modulus and an argument of z = — 2 +  2/.

Solution
|z| =  \ /2 2 +  22 =  \/8 . Representing z in the complex plane, we see that is an 
argument of z- (See Figure 7.) ■

If z is a complex number with modulus r and argument 0, we can write z as 

z =  r(cos0) -|- /r(sin  0) =  r(cosO -f / sin (9), 

as shown in Figure 8.

The representation

z =  r(cos0  +  i sin0) 

is called the polar form  of the complex number z-

Consider the complex numbers z = cos a  +  / sin a  and w =  cos/9 +  i sin/3. Find 
the polar form of the product zw.

Solution
Apply the addition formulas from trigonometry (see Exercise 2.2.32):

zw =  (cos a  -f- i sina)(cos /S +  i sin /9)
=  (cos a  cos j6 — sin a  sin ^ ) -f i (sin a  cos f) +  cos a  sin £)
=  cos(a +  P) +  / sin(a +  /*).
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Figure 9

EXA M PLE  4

Theorem 7.5.1

We conclude that the modulus of zw  is 1, and a + fi is an argument of zw.  (See 
Figure 9.) ■

In general, if z =  r(coso' +  / s ina) and w =  s(cos fi + i sin fi), then

zw  =  rs(co s(a  + fi) + i sin(a +  fi)).

When we multiply two complex numbers, we multiply the moduli, and we add the 
arguments:

|zu>| =  |z|M 

arg(zio) =  arg z +  arg w  (modulo 2 n).

Describe the transformation T(z)  =  (3 +  4 i)z from C to C geometrically. 

Solution

\T(z)\ =  \3 + 4i\\z\ = 5\z\, 

arg(7’(z)) =  arg(3 +  4i) +  arg(z) =  arctan Q )  +  ar8(^) % 530 +  arg(z)

The transformation T  is a rotation combined with a scaling in the complex plane. 
(See Figure 10.)

Figure 10 Rotate through about 53° and
stretch the vector by a factor of 5.

Alternatively, we observe that the matrix of the linear transformation T with 
[3 -4 1

respect to the basis 1, i is ^ , representing a rotation combined with a scaling.

The polar form is convenient for finding powers of a complex number z: If

then

z =  r(cos#  +  i sin0),

z2 =  r 2(cos(20) +  z sin(20)),

zn =  r ” (cos(A20) +  i sin(n6)),

for any positive integer n. Each time we multiply by z, the modulus is multiplied by 
r and the argument increases by 0. The preceding formula was found by the French 
mathematician Abraham de Moivre (1667-1754). ■

De Moivre’s formula
(cos0 +  / sin G)n =  cos(n9) +  i sin(rt0) ■
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EXAMPLE 5

Theorem 7.5.2

Consider the complex number z =  0.5 +  0.8/. Represent the powers z2, z3, . . .  in 
the complex plane. What is lim z"?

n —>oc

Solution
To study the powers, write z in polar form:

z = r(cos9  +  i sin#).

Here

r =  \ /0 .5 2 +  0.82 % 0.943

and
0.8

9 =  arctan —  ^  58 .
0.5

We have

zn =  rn (cos(n6) +  i sin(rc0)).

The vector representation of is a little shorter than that of zn (by about 5.7%),
and zn* x makes an angle 9 ^  58° with zn. If we connect the tips of consecutive 
vectors, we see a trajectory that spirals in toward the origin, as shown in Figure 11. 
Note that lim zn =  0, since r =  |z| < 1. ■

n->oo

Figure 11

Perhaps the most remarkable property of the complex numbers is expressed in 
the fundamental theorem of algebra, first demonstrated by Carl Friedrich Gauss (in 
his thesis, at age 22).

Fundamental theorem of algebra
Any polynomial p(X) with complex coefficients splits, that is, it can be written as a 
product of linear factors

p(k)  = k ( k - k l) ( k - k 2) . . . ( k - k n)9

for some complex numbers k \ , k 2, • • ■, k n, and k. (The X, need not be distinct.)
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Therefore, a polynomial p(k)  of degree n has precisely n complex roots if they 
are properly counted with their multiplicities. ■

For example, the polynomial

p(X) = X2 +  1,

which does not have any real zeros, splits over C:

p(k) = (k + i ) ( k - i ) .

More generally, for a quadratic polynomial

q(k)  =  k 2 +  bk  +  c,

where b and c are real, we can find the complex roots

- b  ±  y/b2 -  Ac 
*1.2 =  --------- 2----------

and

q(k) = ( k - k ]) ( k - k 2).

Proving the fundamental theorem of algebra would lead us too far afield. Read any 
introduction to complex analysis or check Gauss’s original proof.14

C o m p l e x  E igen va lu es  and Eigen vec tors
The complex numbers share some basic algebraic properties with the real numbers.15 
Mathematicians summarize these properties by saying that both the real numbers 
R and the complex numbers C form a field. The rational numbers Q are another 
important example of a field; the integers Z on the other hand don’t form a field. 
(Which of the 10 properties listed in the footnote fail to hold in this case?)

Which of the results and techniques derived in this text thus far still apply when 
we work with complex numbers throughout, that is, when we consider complex 
scalars, vectors with complex components, and matrices with complex entries? We 
observe that everything works the same way except for those geometrical concepts 
that are defined in terms of the dot product (length, angles, orthogonality, and so 
on, discussed in Chapter 5 and Section 6.3). The dot product in Cn is defined in 
a way that we will not discuss in this introductory text. The whole body of “core 
linear algebra” can be generalized without difficulty, however: echelon form, linear

l4C. F. Gauss, Werke, III, 3-56. For an English translation see D. J. Struik (editor), A Source Book in 
Mathematics 1200-1800, Princeton University Press, 1986.
15Here is a list of these properties:

1. Addition is commutative.
2. Addition is associative.
3. There exists a unique number n such that a + n =  a, for all numbers a. This number n is denoted 

by 0.
4. For each number a there exists a unique number b such that a +  b =  0. This number b is denoted 

by —a. (Comment: This property says that we can subtract in this number system.)
5. Multiplication is commutative.
6. Multiplication is associative.
7. There is a unique number e such that ea =  a, for all numbers a. This number e is denoted by 1.
8. For each nonzero number a there exists a unique number b such that ab = 1. This number b is 

denoted by a~l . (Comment: This property says that we can divide by a nonzero number.)
9. Multiplication distributes over addition: a(b +  c) = ab + ac.

10. The numbers 0 and 1 are not equal.
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EXAMPLE 6

EXA M PLE  7

transformation, kernel, image, linear independence, basis, dimension, coordinates, 
linear spaces, determinant, eigenvalues, eigenvectors, and diagonalization.

a —b 
b a

Diagonalize the rotation-scaling matrix A =  

real numbers, and b is nonzero.

Solution
Following Theorem 7.4.4, we will find the eigenvalues of A first:

“over C.” Here, a and b are

fA & ) =  det
a — X —b 

b a — X
= (a -  k f  +  b 2 =  0

when
(a — X)1 =  —b2 or a — X =  ± i b  or X = a ±  ib. 

Now we find the eigenvectors:

Ea+ib — ker 

E(j—ib ~~ ker

- i b  - b  
b —ib

=  span

' ib - b ' —i
b ib

=  span
1

Thus,

R~
a —b 
b a

R =
a + ib 0 

0 a — ib
where R =

i —i
1 1

Let A be a real 2 x 2  matrix wit 

is similar (over R) to the matrix 

scaling.

i eigenvalues a ± i b  (where b ^  0). Show that A 

a , representing a rotation combined with a

Solution
Let v ±  iw  be eigenvectors of A with eigenvalues a ±  ib. (See Exercise 42.) By

\a + ib 0 
0 a — ib

Theorem 7.4.1, matrix A is similar to ; more precisely,

a + ib 0 
0 a — ib

v + iw v — iwwhere P =

is similar to

as well, with
a + ib 0 

0 a — ib
Thus,

=  P - ' A P ,  

. By Example 6, matrix
_

a - b
b a

a +  ib (
0 a -

=  R - l a - b
b a

R, where R =
i —i
1 1

P - ' A P  =  R ~ ]
a —b 
b a R ,
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Theorem 7.5.3

EXA M PLE  8

Theorem 7.5.4

and

a —b 
b a

= R P - {A P R _1 =  S-1 AS,

where S = P R ~ l and S ' 1 =  ( P / T 1) " 1 =  R P ~ \  
A straightforward computation shows that

5 =  PR~ '  = — 
2i

v +  i w v — i w
i r _ _

- l  /
li’ t’

note that S has real entries, as claimed. ■

Complex eigenvalues and rotation-scaling matrices
If A is a real 2 x 2  matrix with eigenvalues a ±  ib (where b ±  0), and if v + iw  is 
an eigenvector of A with eigenvalue a +  ib, then

S~1 AS =
a —b

where S = U> L>
b a

We see that matrix A is similar to a rotation-scaling matrix. Those who have stud­
ied Section 5.5 can go a step further: If we introduce the inner product (.?, y) 
=  (S~'x)  • (S_l y) in R 2 and define the length of vectors and the angle between 
vectors with respect to this inner product, then the transformation T(x)  =  Ax  is a 
rotation combined with a scaling in that inner product space. (Think about it!)

For A = 3 - 5
[\ -1  

scaling matrix.

, find an invertible 2 x 2  matrix S such that S 1 AS  is a rotation-

Solution
We will use the method outlined in Theorem 7.5.3:

2 ±  v /4 ^ 8
f A(X) =  A- -  2k +  2, so that X,<2 = ------^ -------=  1 ±  /.

Now

and

E\+j =  ker
' 2 - i  - 5 - 5

1 - 2 - i .
=  span

—2 + i

- 5  ' ' - 5 ' 'O'
—2 + i — - 2 +  / 1

Therefore,

S- I AS =
1 - 1
1 1

so that w =

where S =

v =
- 5
- 2

0  - 5

1 -2
The great advantage of complex eigenvalues is that there are so many of them. By 

the fundamental theorem of algebra, Theorem 7.5.2, the characteristic polynomial 
always splits:

f A(k) = (Xl - X ) ( k 2 - \ ) - - ' ( k n - X ) .

A complex n x n  matrix has n complex eigenvalues if they are counted with their 
algebraic multiplicities. ®
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Although a complex n x  n matrix may have fewer than n distinct complex

), this is literally a coincidence. (Some ofeigenvalues (examples are /„ or
0 0

the kj in the factorization of the characteristic polynomial / 4 (A) coincide.) “Most” 
complex n x n matrices do have n distinct eigenvalues, so that most complex n x n  
matrices are diagonalizable (by Theorem 7.4.3b). An example of a matrix that fails

[0 I
to be diagonalizable over C is

0 0
In this text, we focus on diagonalizable matrices and often dismiss others as 

rare aberrations. Some theorems will be proven in the diagonalizable case only, 
with the nondiagonalizable case being left as an exercise. Much attention is given 
to nondiagonalizable matrices in more advanced linear algebra courses.

EXA M PLE  9 Consider an ai x n  matrix A with complex eigenvalues A. 1, k2, ..., A.„, listed with their 
algebraic multiplicities. What is the relationship between the A, and the determinant 
of A ? Compare with Theorem 7.2.8.

Solution

so that

/ 4 (A) =  det(A — k l tl) =  (k 1 — A ) (^ 2  — k)  • • • (kn — k ), 
/a  (0) =  det A =  A. 1 k 2 • • • kn

detM ) =  k \ k 2 • - kn

Can you interpret this result geometrically when A is a 3 x 3 matrix with a real 
eigenbasis? (Hint: Think about the expansion factor. See Exercise 18.)

In Example 9, we found that the determinant of a matrix is the product of 
its complex eigenvalues. Likewise, the trace is the sum of the eigenvalues. The 
verification is left as Exercise 35.

Theorem  7.5.5 Trace, determinant, and eigenvalues
Consider an n x n  matrix A with complex eigenvalues k \ . k 2, 
their algebraic multiplicities. Then

tr A = k\ H- k 2 -b • • • -+* k n ,

and

det A =  k \ k 2 • • • k n .

kny listed with

Note that this result is obvious for a triangular matrix: In this case, the eigenvalues 
are the diagonal entries.

EXERCISES 7.5
COAL Use the basic properties o f complex numbers. 
Write products and powers o f complex numbers in polar 
form. Apply the fundamental theorem of algebra.

1. Write the complex number z =  3 -  3/ in polar form.

2. Find all complex numbers z such that z4 = 1. Represent 
your answers graphically in the complex plane.

3. For an arbitrary positive integer n, find all complex num­
bers c such that zn = 1 (in polar form). Represent your 
answers graphically.

4. Show that if c is a nonzero complex number, then there 
are exactly two complex numbers w such that w2 =  z. 
If z is in polar form, describe w in polar form.
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5. Show that if z is a nonzero complex number, then there 
exist exactly n complex numbers w such that wn = z. If 
z is in polar form, write w in polar form. Represent the 
vectors w in the complex plane.

6. If z is a nonzero complex number in polar form, describe 
1/z in polar form. What is the relationship between the 
complex conjugate z and 1 /z? Represent the numbers z, 
z, and 1 /z in the complex plane.

7. Describe the transformation T(z) = (I 
€  geometrically.

i)z from C to

8. Use de Moivre’s formula to express cos(30) and sin(30) 
in terms of cos 0 and sin 0.

9. Consider the complex number z =  0.8 —0.7/. Represent 
the powers z2, z3, . . .  in the complex plane and explain 
their long-term behavior.

10. Prove the fundamental theorem of algebra for cubic 
polynomials with real coefficients.

11. Express the polynomial f ( k )  =  X3 -  3k 2 + I k  -  5 as 
a product of linear factors over C.

12. Consider a polynomial f ( k )  with real coefficients. Show 
that if a complex number ko is a root of /(X), then so is 
its complex conjugate, k().

For the matrices A listed in Exercises 13 through 17, find an

invertible matrix S such that S 1 AS =  

a and b are real numbers.

- b
a , where

13.

15.

17.

0 - 4
1 0

0 1 
-5  4

14.

16.

1 -2 
1 -1

3 1 
- 2  5

5
-5

18. Consider a real 2 x 2  matrix A with two distinct 
real eigenvalues, k[ and k2. Explain the formula detA 
= k\ k2 geometrically, thinking of |det A| as an expan­
sion factor. Illustrate your explanation with a sketch. 
Is there a similar geometric interpretation for a 3 x 3 
matrix?

19. Consider a subspace V of R", with dim(V) =  m < n.
a. If the n x n matrix A represents the orthogonal pro­

jection onto V, what is tr A? What is det AI
b. If the n x n  matrix B represents the reflection about 

V, what is tr B1 What is det B1

Find all complex eigenvalues o f the matrices in Exercises 
20 through 26 (including the real onest o f course). Do not 
use technology. Show all your work.

20. 3 -5
2 -3 21. 11

6
-15
- 7

22. . ‘ 23.

24. 0 0 1 25.

1 3
- 4 10

0 1 0"
0 0 1
5 -7 3

1 -1 1 -1
1 1 1 1
0 0 1 1
0 0 1 1

0 0 1
1 0 0
0 1 0

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

26.

27. Suppose a real 3 x 3  matrix A has only two distinct 
eigenvalues. Suppose that tr A =  1 and det A =  3. Find 
the eigenvalues of A with their algebraic multiplicities.

28. Suppose a 3 x 3 matrix A has the real eigenvalue 2 and 
two complex conjugate eigenvalues. Also, suppose that 
det A =  50 and tr A =  8. Find the complex eigenvalues.

29. Consider a matrix of the form

A =

where a, /?, c, and d are positive real numbers. Suppose 
the matrix A has three distinct real eigenvalues. What can 
you say about the signs of the eigenvalues? (How many 
of them are positive, negative, zero?) Is the eigenvalue 
with the largest absolute value positive or negative?

30. A real n x n  matrix A is called a regular transition ma­
trix if all entries of A are positive, and the entries in each 
column add up to 1. (See Exercises 24 through 31 of 
Section 7.2.) An example is

0 a b
c 0 0
0 d 0

"0.4 0.3 0.1
A = 0.5 0.1 0.2

0.1 0.6 0.7

You may take the following properties of a regular tran­
sition matrix for granted (a partial proof is outlined in 
Exercise 7.2.31):
• 1 is an eigenvalue of A, with dim(Ei) =  1.
• If k is a complex eigenvalue of A other than 1, then 

|X| < 1.
a. Consider a regular n x n  transition matrix A and a 

vector x in Rn whose entries add up to 1. Show that 
the entries of Ax will also add up to 1.
Pick a regular transition matrix A, and com­
pute some powers of A (using technology)-'
A2, . . . ,  A10....... A100, . . . .  What do you observe?
Explain your observation. Here, you may assume that 
there is a complex eigenbasis for A.

b.
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31. Form a 5 x 5 matrix by writing the integers 1, 2, 3,4, 5 
into each column in any order you like. An example is

32.

A =

5 1 2  2 1
1 4 3 3 2
3 3 5 4 3
2 5 4 1 4
4 2 1 5  5

(Optional question for combinatorics aficionados: How 
many such matrices are there?) Take higher and higher 
powers of the matrix you have chosen (using technol­
ogy), and compare the columns of the matrices you get. 
What do you observe? Explain the result. (Hint: Exer­
cise 30 is helpful.)

Most long-distance telephone service in the United 
States is provided by three companies: AT&T, MCI, and 
Sprint. The three companies are in fierce competition, 
offering discounts or even cash to those who switch. If 
the figures advertised by the companies are to be be­
lieved, people are switching their long distance provider 
from one month to the next according to the following 
diagram:

SPRINT

20% / /
/ /  10% 20% 

10%

50%

MCI
20%

AT&T

For example, 20% of the people who use AT&T go to 
Sprint one month later.
a. We introduce the state vector

a(t) fraction using AT&T
x(t) = m(t) fraction using MCI

s(t) fraction using Sprint.

Find the matrix A such that x(t +  1) =  Ax(t), as­
suming that the customer base remains unchanged. 
Note that A is a regular transition matrix.

b. Which fraction of the customers will be with each 
company in the long term? Do you have to know the 
current market shares to answer this question? Use 
the power method introduced in Exercise 30.

33. The power method for finding eigenvalues. Consider Ex­
ercises 30 and 31 for some background. Using technol­
ogy, generate a random 5 x 5  matrix A with nonnegative 
entries. (Depending on the technology you are using, the 
entries could be integers between zero and nine, or num­
bers between zero and one.) Using technology, compute 
B =  A20 (or another high power of A). We wish to 
compare the columns of B. This is hard to do by inspec­
tion, particularly because the entries of B may get rather 
large.

To get a better hold on B, form the diagonal 5 x 5  
matrix D whose ith diagonal element is fcj , the ith entry 
of the first row of B. Compute C =  B D ~ l .
a. How is C obtained from B1 Give your answer in 

terms of elementary row or column operations.
b. Take a look at the columns of the matrix C you get. 

What do you observe? What does your answer tell 
you about the columns of B =  A20?

c. Explain the observations you made in part (b). You 
may assume that A has five distinct (complex) eigen­
values and that the eigenvalue with maximal modulus 
is real and positive. (We cannot explain here why this 
will usually be the case.)

d. Compute AC. What is the significance of the entries 
in the top row of this matrix in terms of the eigenval­
ues of A? What is the significance of the columns of 
C (or B) in terms of the eigenvectors of A?

34. Exercise 33 illustrates how you can use the powers of 
a matrix to find its dominant eigenvalue (i.e., the eigen­
value with maximal modulus), at least when this eigen­
value is real. But what about the other eigenvalues?
a. Consider an n x n  matrix A with n distinct complex 

eigenvalues k2, . . . ,  A.„, where k\ is real. Sup­
pose you have a good (real) approximation A. of k\ 
(good in that \k -  k\\ < |A. -  X/1, for i = 2, . . . ,  n). 
Consider the matrix A — k ln. What are its eigenval­
ues? Which has the smallest modulus? Now consider 
the matrix (A — kln)~l . What are its eigenvalues? 
Which has the largest modulus? What is the rela­
tionship between the eigenvectors of A and those of 
(A — A./n)_1? Consider higher and higher powers 
of (A — A/„)_1. How does this help you to find an 
eigenvector of A with eigenvalue and k\ itself? 
Use the results of Exercise 33.

b. As an example of part (a), consider the matrix

A =

We wish to find the eigenvectors and eigenvalues of 
A without using the corresponding commands on the 
computer (which is, after all, a “black box”). First, 
we find approximations for the eigenvalues by graph­
ing the characteristic polynomial (use technology). 
Approximate the three real eigenvalues of A to the 
nearest integer. One of the three eigenvalues of A is 
negative. Find a good approximation for this eigen­
value and a corresponding eigenvector by using the 
procedure outlined in part (a). You are not asked to 
do the same for the two other eigenvalues.

35. Demonstrate the formula

tr A =  k  j -f- k.2 + • • • +  k n,

where the A/ are the complex eigenvalues of the 
matrix A, counted with their algebraic multiplicities.

1 2 3
4 5 6
7 8 10
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36.

Hint: Consider the coefficient of kn~ 1 in (A.)
=  (k\ — k)(k2 — A.) • • • (kn — k)y and compare the result 
with Fact 7.2.5.

In 1990, the population of the African country Benin 
was about 4.6 million people. Its composition by age 
was as follows:

Age Bracket 0-15 15-30 30-45 45-60 60-75 75-90 
Percent of 46.6 25.7 14.7 8.4 3.8 0.8

Population

We represent these data in a state vector whose compo­
nents are the populations in the various age brackets, in 
millions:

i(0) =  4.6

0.466
0.257
0.147
0.084
0.038
0.008

2.14
1.18
0.68
0.39
0.17
0.04

1.1 1.6 0.6 0 0 0
0.82 0 0 0 0 0
0 0.89 0 0 0 0
0 0 0.81 0 0 0
0 0 0 0.53 0 0
0 0 0 0 0.29 0

We measure time in increments of 15 years, with t = 0 
in 1990. For example, jc(3) gives the age composition in 
the year 2035 (1990 + 3 ■ 15). If current age-dependent 
birth and death rates are extrapolated, we have the fol­
lowing model:

i ( /  +  l) =

=  Ax(t).

a. Explain the significance of all the entries in the ma­
trix A in terms of population dynamics.

b. Find the eigenvalue of A with largest modulus and an 
associated eigenvector. (Use technology.) What is the 
significance of these quantities in terms of popula­
tion dynamics? (For a summary on matrix techniques 
used in the study of age-structured populations, see 
Dmitrii O. Logofet, Matrices and Graphs: Stability 
Problems in Mathematical Ecology, Chapters 2 and
3, CRC Press, 1993.)

37. Consider the set IHI of all complex 2 x 2  matrices of the 
form

A = - z
w

where w and z are arbitrary complex numbers.
a. Show that IHI is closed under addition and multiplica­

tion. (That is, show that the sum and the product of 
two matrices in IHI are again in IHI.)

b. Which matrices in H are invertible?

C 4 =

c. If a matrix in HI is invertible, is the inverse in IHI as 
well?

d. Find two matrices A and B in M such that AB ^  BA.
IHI is an example of a skew field: It satisfies all ax­

ioms for a field, except for the commutativity of mul­
tiplication. [The skew field IHI was introduced by the 
Irish mathematician Sir William Hamilton (1805- 
1865); its elements are called the quaternions. An­
other way to define the quaternions is discussed in 
Exercise 5.3.64.]

38. Consider the matrix

' 0  0 0 1'
1 0  0 0

0 1 0  0
0 0 i 0

a. Find the powers C \ , C \ , C \ .......
b. Find all complex eigenvalues of C4, and construct a 

complex eigenbasis.
c. A 4 x 4 matrix M is called circulant if it is of the 

form

M =

Circulant matrices play an important role in statistics. 
Show that any circulant 4 x 4  matrix M can be expressed 
as a linear combination of I4, C4, C |, C\.  Use this rep­
resentation to find an eigenbasis for M . What are the 
eigenvalues (in terms of a, b, c, d)l

a d c b
b a d c
c b a d
d c b a

x(t)

39. Consider the n x  n matrix Cn which has ones directly be­
low the main diagonal and in the right upper comer, and 
zeros everywhere else. (See Exercise 38 for a discussion 
of C4.)
a. Describe the powers of Cn.
b. Find all complex eigenvalues of Cn, and construct a 

complex eigenbasis.
c. Generalize part (c) of Exercise 38.

40. Consider a cubic equation

x 3 + px  = q y

where (p /3)3 +  (q/2)2 is negative. Show that this equa­
tion has three real solutions; write the solutions in the 
form xj  =  A cos(0j) for j  =  1, 2, 3, expressing A and 
9j in terms of p and q. How many of the solutions are in 
the interval (sj—p j 3, 2s/ —p/3) l  Can there be solutions 
larger than 2s/ — p/31 (Hint: Cardano’s formula derived 
in Exercise 7.2.50 is useful.)

41. In his high school final examination (Aarau, Switzer­
land, 1896), young Albert Einstein (1879-1955) was 
given the following problem: In a triangle A B C , let P 
be the center of the inscribed circle. We are told that
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AP =  1, BP =  2 ,  and CP =  3 .  Find the radius p of 
the inscribed circle. Einstein worked through this prob­
lem as follows:

» ( ! )= < ■ ■  

n ( —̂  =

in ( I )  = 3 , .

2 p.

For every triangle the following equation holds:

!i"2(I)+si"2(f)+sin2(l)
+ 2 s‘n ( i ) s" , ( f ) s in ( i )  =  1'

In our case

Now let

14/02 +  12p 3 - 1 = 0 .

P =  - •
JC

At this point we interrupt Einstein’s work and ask you 
to finish the job. [Hint: Exercise 40 is helpful. Find the 
exact solution (in terms of trigonometric and inverse 
trigonometric functions), and give a numerical approxi­
mation as well.] (By the way, Einstein, who was allowed 
to use a logarithm table, solved the problem correctly.) 
(iSource: The Collected Papers of Albert Einstein, Vol. 1, 
Princeton University Press, 1987.)

42. Consider a complex n x m matrix A. The conjugate A is 
defined by taking the conjugate of each entry of A. For 
example, if

A = 2 +  3/ 
2/

then A = 2 - 3 /  5
-2 / 9

a. Show that if A and B are complex n x p and p x  m 
matrices, respectively, then

XB = AB.

b. Let A be a real n x n  matrix and v +  / w  an eigenvector 
of A with eigenvalue p +  iq. Show that the vector 
v — i w is an eigenvector of A with eigenvalue p — iq.

43. Consider two real n x n  matrices A and B that are “sim­
ilar over C”: That is, there is a complex invertible n x n  
matrix S such that B =  S~ l AS. Show that A and B are 
in fact “similar over R”: That is, there is a real R such that 
B =  R~l AR. (Hint: Write S =  Sj + 1S2, where S\ and 
S2 are real. Consider the function / (z) =  det(5j +z52), 
where z is a complex variable. Show that f (z )  is a 
nonzero polynomial. Conclude that there is a real num­
ber* such that /(jc) ^  0. Show that R = 5i +xS2 does 
the job.)

44. Show that every complex 2 x 2  matrix is similar to an 
upper triangular 2 x 2 matrix. Can you generalize this 
result to square matrices of larger size? (Hint: Argue by 
induction.)

For which values o f the real constant a are the matrices in
Exercises 45 through 50 diagonalizable over C?

45.

48.

50.

1 46. 0 —a 
a 0

49.
0 0 a
1 0 3
0 1 0

—a a —a
—a — 1 a +  1 —a — 1 

0 0 0

“0 0 0
47. 1 0 a

_0 1 0

0 1 0 "
0 0 1
0 1 — a a

For Exercises 51 through 55 state whether the given set is 
a field (with the customary addition and multiplication).

51. The rational numbers Q

52. The integers Z

53. The binary digits (introduced in Exercises 3.1.53 and 
3.1.54)

54. The rotation-scaling matrices of the form 

where p and q are real numbers

55. The set H considered in Exercise 5.3.64

P ~ q  
<\ P

Stability

In applications, the long-term behavior is often the most important qualitative fea­
ture of a dynamical system. We are frequently faced with the following situa­
tion: The state 0 represents an equilibrium of the system (in physics, ecology, or
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E X A M P L E  I

Definition 7.6.1

economics, for example). If the system is disturbed (moved into another state, away 
from the equilibrium 0 ) and then left to its own devices, will it always return to the 
equilibrium state 0 ?

Consider a dynamical system x( t  +  1) =  Ax(t) ,  where A is an n x n matrix. 
Suppose an initial state vector xq is given. We are told that A has n distinct complex 
eigenvalues and that the modulus of each eigenvalue is less than 1. What can you 
say about the long-term behavior of the system, that is, about lim x (/)?

Solution

For each complex eigenvalue A.,-, we can choose a complex eigenvector 5,-. Then
the Vi form a complex eigenbasis for A (by Theorem 7.3.5). We can write xo as a
complex linear combination of the 5,:

*o =  c\V\ + --- + cnvn

Then

x( t)  = A 'xo =  ciA/,5! H------- h cnk lnvn.

By Example 5 of Section 7.5,

lim =  0 , since |A., | < 1 .
/-►oo

Therefore,

lim x( t)  =  0 . ■/-►oo ■

For the discussion of the long-term behavior of a dynamical system, the follow­
ing definition is useful:

Stable equilibrium 
Consider a dynamical system

5 ( f +  1) =  Ax(t) .

We say that 0 is an (asymptotically) stable equilibrium for this system if

lim x( t)  = 0
/ —> oo

for all its trajectories. 16

Note that the zero state is stable if (and only if)

lim A' =  0
/-►oo

(meaning that all entries of A* approach zero). See Exercise 36.
Consider the examples shown in Figure 1.

16In this text, stable will always mean “asymptotically stable.’' Several other notions of stability are 
used in applied mathematics.
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Figure I (a) Asymptotically stable. Figure I (b) Not asymptotically stable.

Generalizing Example 1, we have the following result:

Theorem 7.6.2 Stability and eigenvalues

Consider a dynamical system x( t  + 1) =  Ax(t) .  The zero state is asymptotically 
stable if (and only if) the modulus of all the complex eigenvalues of A is less than 1.

Example 1 illustrates this fact only when A is diagonalizable (i.e., when there 
is a complex eigenbasis for A); recall that this is the case for most matrices A.  In 
Exercises 45 through 50 of Section 8 .1, we will discuss the nondiagonalizable case.

For an illustration of Theorem 7.6.2, see Figure 11 of Section 7.1, where we 
sketched the phase portraits of 2 x 2 matrices with two distinct positive eigenvalues.

We will now turn our attention to the phase portraits of 2 x 2 matrices with 
complex eigenvalues p ± i q  (where q ^  0 ).

E X A M P L E  2 Consider the dynamical system

x( t  +  1) = P - q  
L4 P.

x(t) ,

where p  and q are real, and q is nonzero. Examine the stability of this system. Sketch 
phase portraits. Discuss your results in terms of Theorem 7.6.2.

Solution

As in Theorem 2.2.4, we can write

> —  r cos 0 — sin 0
A P.

— f
sin# cos#

representing the transformation as a rotation through an angle 0 combined with a 
scaling by r = \J p 2 +  q 2. Then

x( t)  = P ~Q
t

— t cos(dt) — sin(0 r)

P.
Xo = r

sin(0 /) cos (dt)

representing a rotation through an angle Ot  combined with a scaling by r r. 
Figure 2 illustrates that the zero state is stable if r — y j p 2 + q 2 < 1.
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Figure 2 (a) r < 1: trajectories spiral inward, (b) r =  1: trajectories are circles.
(c) r > 1: trajectories spiral outward.

Alternatively, we can use Theorem 7.6.2 to examine the stability of the system.

From Example 6  of Section 7.5, we know that the eigenvalues of
P\

are

X\2  =  p  ±  ig, with \X\| =  IA2 I =  y j p 2 +  q 2. By Theorem 7.6.2, the zero state is 
stable if y j p 2 + q 2 < 1. ■

Let us generalize Example 2. If A is any 2 x 2  matrix with eigenvalues k \ ^  =  
p ± i q , what does the phase portrait of the dynamical system 3c(t 4-1) =  Ax(t)  look 
like? Let v +  / w be an eigenvector of A with eigenvalue p + iq. From Theorem 7.5.3,

\p  - qwe know that A is similar to the rotation-scaling matrix
<1

, with

S ~ lA S  =

1
3̂ 1 1

or A = S p - q S 1, where S =

l-----------------------------------------------

1

L<7 P. M P.

Using the terminology introduced in Example 2, we find that

x(t )  =  A* jco =  S P - q  
.9 Pi

S ljc0 =  r! S
cos (6t) 
sin (Qt)

- sin( # 0  

cos (Ot) S ~ lx0.

Theorem 7.6.3 Dynamical systems with complex eigenvalues

Consider the dynamical system x (t + 1) =  Ax(t) ,  where A is a real 2 x 2  matrix 
with eigenvalues

A.it2 = p ± i q  =  r(cos(0 ) ±  i sin(0 )), where q ^  0 .

Let v +  iw  be an eigenvector of A with eigenvalue p + iq.
Then

x( t)  = r t S
cos (Ot) — sin (Ot) 
sin(df) cos (Ot) S 1 Jcq, where S = w  v

Note that S ] x q  is the coordinate vector of x o  with respect to basis w ,  v .  

EX AM PLE 3 Consider the dynamical system

x( t  + l) =
3 - 5  
1 - 1

x  (t) with initial state 3cq =

Use Theorem 7.6.3 to find a closed formula for Jc(/)* and sketch the trajectory.
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Solution

In Example 8 of Section 7.5, we found the eigenvalues

A.,,2 =  1 =t

The polar coordinates of eigenvalue 1 + 1 are r =  V2 and 0 =  f . Furthermore, we 
found that

S = w v
0 - 5

1 -2

Since

Theorem 7.6.3 gives

m  =  (V iy  

=  (V2) '

s -1 xo =

1O c o s ( f / )  - s i n  ( f r ) T
1 - 2 sin ( f  t) cos ( | t) 0

- 5  sin ( f t) 

cos ( f  r) - 2 s in ( f r )

We leave it to the reader to work out the details of this computation.
Next, let’s think about the trajectory. We will develop the trajectory step by step:

The points

c o s ( f r )  - s i n ( f f )  

sin ( j t )  c o s ( f r )

T
0

(for t =  0 , 1 , 2 , . . . )

are located on the unit circle, as shown in Figure 3a. Note that at t =  8 the
r r

system returns to its initial position, ; the period of this system is 8 .

• In Exercise 2.2.50, we saw that an invertible linear transformation maps the 
unit circle into an ellipse. Thus, the points

0 - 5

1 - 2
cos ( fO  - s i n ( f r )

sin ( | f )  cos ( f  t) 

are located on an ellipse, as shown in Figure 3b. The two column vectors of

0 - 5 '
—

1
— w V

- 2

are shown in that figure as well. Again, the period of this system is 8 .
The exponential growth factor (\/2 ) ' will produce longer and longer vectors

X ( t ) =  (V 2 )'
0 - 5

1 - 2
c o s ( f r )  - s i n  ( | 0  

sin ( | r )  co s’( f r )

T

.0 .
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Theorem 7.6.4

- s i < i )

> ( * ')
f

_0

(a)

0 -5
1 -2

cos(jO -s in (j/)
sin(jf) cosgr) 

(b)

.v(f) = (V2 )' 0 -5
1 -2

cos(jf) -sin(^f)

cos£ /)

(c)

11
0

Figure 3

Thus, the trajectory spirals outward, as shown in Figure 3c. (We are us­
ing different scales in Figures 3a, b, and c.) Note that J ( 8 ) =  (>/2)8jc(0) 
=  165(0). ■

We can generalize our findings in Example 3.

Phase portrait of a system with complex eigenvalues

Consider a dynamical system

x(t  +  1) =  A x ( t )%

where A is a real 2 x 2  matrix with eigenvalues k \m2 = (where q ^  0). Let

r  =  |A.|| =  \k2\ =  y j p 2 + q 2.

If r =  1, then the points x{t)  are located on an ellipse; if r exceeds 1, then the 
trajectory spirals outward; and if r is less than 1, then the trajectory spirals inward, 
approaching the origin. ■

Theorem 7.6.4 provides another illustration of Theorem 7.6.2: The zero state is 
stable if (and only if) r =  \X\ \ = IA.2 I < 1.

If you have to sketch a trajectory of a system with complex eigenvalues with­
out the aid of technology, it helps to compute and plot the first few points 5 (0 ), 
x ( \ ) , x ( 2 ) ........ until you see a trend.
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EXERCISES 7.6
GOAL Use eigenvalues to determine the stability o f 
0 dynamical system. Analyze the dynamical system 
n t + 1) =  Ax(t), where A is a real 2 x 2  matrix with 
eigenvalues p ±  iq.

For the matrices A in Exercises 1 through 10, determine 
whether the zero state is a stable equilibrium o f the dynam­
ical system x(t + 1) = Ax(t).

1. A =

3, A =

5. A =

7. A =

9. A =

10. A =

0.9 0
0 0.8

0.8 0.7
-0.7 0.8

0.5 0.6
-0.3 1.4

2.4 -2 .5
1 - 0.6

0.8 0 - 0 . 6 '

0 0.7 0
0.6 0 0.8

"0.3 0.3 0.3
0.3 0.3 0.3
0.3 0.3 0.3

2. A =

4. A =

6. A =

8. A =

- i . i 0
0 0.9

-0.9 -0 .4
0.4 -0 .9

- 1 3'
- 1.2 2.6

1 - 0 .2 '
0.1 0.7

Consider the matrices A in Exercises 11 through 16. For 
which real numbers k is the zero state a stable equilibrium 
of the dynamical system x (t +  1) =  Ax(t)7

11. A =  

13. A =  

15. A =

k 0
0 0.9

0.7 k
0 -0 .9

1
0.01

12. A =  

14. A =  

16. A =

0.6 k
- k  0.6

k k 
k k

0.1 k
0.3 0.3

For the matrices A in Exercises 17 through 24, find 
real closed formulas for the trajectory x ( t  -f- J) =  Ax(t),  

r0 l 
1

where Jc(0) =

17. A =

19. A =

21. A =

23. A =

0.6 - 0.8 
0.8 0.6

2 - 3

3 2

1
- 2

-0.5
-0 .6

. Draw a rough sketch. 

18. A =

20. A =

22. A =

24. A =

- 0.8 0.6 

- 0.8 - 0.8

4 3
- 3  4

7 -15
6 -11

1.5
1.3

1
1.2

-3'
-2.6

Consider an invertible n x n  matrix A such that the 
zero state is a stable equilibrium o f the dynamical system 
x(t -J-1) =  Ax(t). What can you say about the stability o f 
the systems listed in Exercises 25 through 30?

25. x(t -I- 1) =  A- , .r(/) 26. x(t + 1) =  ATx (/)

27. x(t +  1) =  -Ax ( t )  28. x(t + 1) =  (A - 2 I n)x(t)

29. x(t +  1) =  (A 4- I„)x(t) 30. x(t + 1) =  A2x(t)

31. Let A be a real 2 x 2  matrix. Show that the zero state is a
stable equilibrium of the dynamical system x{t +  1) =  
Ax {t) if (and only if)

|tr A| — I < det A < 1.

32. Let's revisit the introductory example of Section 7.5: 
The glucose regulatory system of a certain patient can 
be modeled by the equations

g{t +  1) =  0.9£(f) -  QAh(t) 
h(t + 1) = Q.\g(t) + Q.9h(t).

Find closed formulas for g(t) and h(t), and draw the 
trajectory. Does your trajectory look like the one on 
page 344?

33. Consider a real 2 x 2  matrix A with eigenvalues p ± i q  
and corresponding eigenvectors v ±  iw.  Show that if a 
real vector io is written as xo =  c \ (v + / w)+ q  (5 — / w ), 
then C2 =c\ .

34. Consider a dynamical system x(t + 1) =  A.v(/), where 
A is a real n x n  matrix.
a. If | det A | > 1, what can you say about the stability 

of the zero state?
b. If | det A | < 1, what can you say about the stability 

of the zero state?

35. a. Consider a real n x n  matrix with n distinct real
eigenvalues k \ ....... where |X, | < I for all / =
1....... n. Let x(t) be a trajectory of the dynamical
system x(t +  1) =  Ax(t). Show that this trajectory 
is bounded; that is, there is a positive number M such 
that ||jc(OII 5  M for all positive integers t. 

b. Are all trajectories of the dynamical system

5(f +  1) =

bounded? Explain.

*(/)

36. Show that the zero state is a stable equilibrium of the 
dynamical system x(t -f 1) =  Ax(t) if (and only if)

lim A' = 0
t —► o o

(meaning that all entries of A1 approach zero).
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37. Consider the national income of a country, which con­
sists of consumption, investment, and government ex­
penditures. Here we assume the government expendi­
ture to be constant, at Go, while the national income 
Y(t), consumption C(/), and investment I (t) change 
over time. According to a simple model, we have

(0 < y  < 1), 
(of >  0)

Y(t) = C (r) +  /(r) +  G o 
C ( t + \ )  = yY(t)  
l ( t +  1) =  cr(C (f+ 1 )-C (r) )

where y is the marginal propensity to consume and a 
is the acceleration coefficient. (See Paul E. Samuelson, 
“Interactions between the Multiplier Analysis and the 
Principle of Acceleration,” Review of Economic Statis­
tics, May 1939, pp. 75-78.)
a. Find the equilibrium solution of these equations, 

when Y(t +  1) =  Y(t), C(t +  1) =  C(f), and 
l (t  + \) = I(t).

b. Let v(r), c(/), and / (r) be the deviations of Y(t)y C(/), 
and / (/), respectively, from the equilibrium state you 
found in part (a). These quantities are related by the 
equations

y(t) = c(t) + i(t) 
c{t +  1) =  yy(t) 
i(t +  1) =  a(c(t +  1) -  c(r))

(Verify this!) By substituting y(t) into the second 
equation, set up equations of the form

c(t +  1) =  pc(t) + qi(t) 
i(t +  1) =  rc(t) +  si(t)

c. When a =  5 and y =0 .2 , determine the stability of 
the zero state of this system.
When a =  1 (and y is arbitrary, 0 < y < 1), deter­
mine the stability of the zero state.
For each of the four sectors in the a - y -plane, deter­
mine the stability of the zero state.

Discuss the various cases, in practical terms.

38. Consider an affine transformation

T (3c) =  Ax +  b,

where A is an n x n matrix and b is a vector in Rn. 
(Compare this with Exercise 7.3.45.) Suppose that 1 is 
not an eigenvalue of A .
a. Find the vector v in E '7 such that T (t)) =  u; this vec­

tor is called the equilibrium state of the dynamical 
system 3c (t +  1) =  T(x(t)).

b. When is the equilibrium v in part (a) stable (meaning 
that lim 3c(t) = v for all trajectories)?/->oo

39. Consider the dynamical system

*1 (/ +  1) =  0 . l*i (f) +  0 .2*2 (t) +  1, 
jt2 ( r +  1) = 0 . 4 jc, ( / )  +  0 . 3 jc2 ( / ) + 2 .

(See Exercise 7.3.45.) Find the equilibrium state of this 
system and determine its stability. (See Exercise 38.) 
Sketch a phase portrait.

40. Consider the matrix

A =

—q —r —s 
p s —r 

- s  p q 
r - q  p

where p, q, r, s are arbitrary real numbers. (Compare 
this with Exercise 5.3.64.)
a. Compute A T A.
b. For which values of p, q, r, s is A invertible? Find 

the inverse if it exists.
c. Find the determinant of A.
d. Find the complex eigenvalues of A.
e. If x is a vector in R4, what is the relationship between 

|| jc|| and || A J? ||?
f. Consider the numbers

and

59 =  32 +  32 + 4 2 + 5 2

3 7  =  12 +  2 2 +  4 2 +  4 2 .

Express the number

2183

as the sum of the squares of four integers:

2 183 =  a2 +  b2 +  c2 +  */2.

[Hint: Part (e) is useful. Note that 2183 =  59 • 37.]
g. The French mathematician Joseph-Louis Lagrange 

(1736-1813) showed that any prime number can be 
expressed as the sum of the squares of four integers. 
Using this fact and your work in part (f) as a guide, 
show that any positive integer can be expressed in 
this way.

41. Find a 2 x 2 matrix A without real eigenvalues and a 
vector 3?o in R2 such that for all positive integers t the 
point A1 jco is located on the ellipse in the accompanying 
sketch.
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42. We quote from a text on computer graphics (M. Beeler 
et al., “HAKMEMMIT Artificial Intelligence Report 
AIM-239, 1972):

Here is an elegant way to draw almost circles on 
a point-plotting display.

CIRCLE ALGORITHM:

NEW X = OLD X - K+OLD Y;

NEW Y = OLD Y + K*NEW X.

This makes a very round ellipse centered at the 
origin with its size determined by the initial 
point. The circle algorithm was invented by mis­
take when I tried to save a register in a display 
hack!

(In the preceding formula, k is a small number.) Here, a 
dynamical system is defined in “computer lingo.” In our 
terminology, the formulas are

x(t +  1) =  x(t) -  ky(t),
y(t +  1) =  y(t) +kx( t  + 1).

a. Find the matrix of this transformation. (Note the en­
try x(t +  1) in the second formula.)

b. Explain why the trajectories are ellipses, as claimed.

Chapter Seven Exercises

x TRUE OR FALSE?
1. The algebraic multiplicity of an eigenvalue cannot ex­

ceed its geometric multiplicity.

2. If an n x  n matrix A is diagonalizable (over R), then 
there must be a basis of R" consisting of eigenvectors 
of A.

3. If the standard vectors e \ , e j ....... en are eigenvectors of
an n x n  matrix A , then A must be diagonal.

4. If v is an eigenvector of A, then 5 must be an eigenvector 
of A3 as well.

5. There exists a diagonalizable 5 x 5  matrix with only two 
distinct eigenvalues (over C).

6. There exists a real 5 x 5  matrix without any real eigen­
values.

7. If 0 is an eigenvalue of a matrix A, then det A =  0.

8. The eigenvalues of a 2 x 2 matrix A are the solutions of 
the equation k2 — (trA)A, +  (det A) =  0.

9. The eigenvalues of any triangular matrix are its diagonal 
entries.

10. The trace of any square matrix is the sum of its diagonal 
entries.

11. Any rotation-scaling matrix in R 2x2 is diagonalizable 
over C.

12. If A is a noninvertible n x n  matrix, then the geometric 
multiplicity of eigenvalue 0 is n — rank(A).

13. If matrix A is diagonalizable, then its transpose A T must 
be diagonalizable as well.

14. If A and B are two 3 x 3  matrices such that tr A = tr B 
and det A =  det B, then A and B must have the same 
eigenvalues.

15. If 1 is the only eigenvalue of an n x n matrix A, then A 
must be /„.

16. If A and B are n x n matrices, if a  is an eigenvalue of 
A, and if fi is an eigenvalue of B, then ap must be an 
eigenvalue of AB.

17. If 3 is an eigenvalue of an n x n matrix A, then 9 must 
be an eigenvalue of A2.

18. The matrix of any orthogonal projection onto a subspace 
V of R'7 is diagonalizable.

19. If matrices A and B have the same eigenvalues (over C), 
with the same algebraic multiplicities, then matrices A 
and B must have the same trace.

20. If a real matrix A has only the eigenvalues 1 and — 1, 
then A must be orthogonal.

21. If an invertible matrix A is diagonalizable, then A" 1 
must be diagonalizable as well.

22. If det(A) = det(Ar ), then matrix A must be symmetric.
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23. If matrix A —
l a b  
0 1 c  

_° 0 7 
and c must all be zero.

is diagonalizable, then a, b,

24. If two n x n  matrices A and B are diagonalizable, then 
A 4- B must be diagonalizable as well.

25. All diagonalizable matrices are invertible.

26. If vector v is an eigenvector of both A and B , then t> 
must be an eigenvector of A +  B.

27. If matrix A2 is diagonalizable, then matrix A must be 
diagonalizable as well.

28. The determinant of a matrix is the product of its eigenval­
ues (over C), counted with their algebraic multiplicities.

29. All lower triangular matrices are diagonalizable 
(over C).

30. If two n x n  matrices A and B are diagonalizable, then 
AB must be diagonalizable as well.

31. If 5, 5, w are eigenvectors of a 4 x 4 matrix A, with 
associated eigenvalues 3, 7, and 11, respectively, then 
vectors u , v , w  must be linearly independent.

32. If a 4 x 4 matrix A is diagonalizable, then the matrix 
A 4  4/4  must be diagonalizable as well.

33. If an n x n matrix A is diagonalizable, then A must have 
n distinct eigenvalues.

34. If two 3 x 3  matrices A and B both have the eigenvalues 
1, 2, and 3, then A must be similar to B.

35. If 5 is an eigenvector of A, then v must be an eigenvector 
of A T as well.

36. All invertible matrices are diagonalizable.

37. If v and w are linearly independent eigenvectors of ma­
trix A, then v 4  w must be an eigenvector of A as well.

38. If a 2 x 2 matrix R represents a reflection about a line L, 
then R must be diagonalizable.

39. If A is a 2 x 2 matrix such that tr A =  1 and det A =  —6 , 
then A must be diagonalizable.

40. If a matrix is diagonalizable, then the algebraic multi­
plicity of each of its eigenvalues X must equal the geo­
metric multiplicity of X.

41. All orthogonal matrices are diagonalizable (over R).

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

If A is an n x n matrix and X is an eigenvalue of the block 
A A' then X must be an eigenvalue ofmatrix M = 

matrix A.
0 A

If two matrices A and B have the same characteristic 
polynomials, then they must be similar.

If A is a diagonalizable 4 x 4  matrix with A4 =  0, then 
A must be the zero matrix.

If an n x n matrix A is diagonalizable (over R), then 
every vector v in R'1 can be expressed as a sum of eigen­
vectors of A.

If vector v is an eigenvector of both A and B, then v is 
an eigenvector of AB.

Similar matrices have the same characteristic 
polynomials.

If a matrix A has k distinct eigenvalues, then 
rank(A) > k.

If the rank of a square matrix A is 1, then all the nonzero 
vectors in the image of A are eigenvectors of A.

If the rank of an n x n matrix A is 1, then A must be 
diagonalizable.

If A is a 4 x 4 matrix with A4 =  0, then 0 is the only 
eigenvalue of A.

If two n x n  matrices A and B are both diagonalizable, 
then they must commute.

If v is an eigenvector of A, then v must be in the kernel 
of A or in the image of A.

All symmetric 2 x 2  matrices are diagonalizable 
(over R).

If A is a 2 x 2 matrix with eigenvalues 3 and 4 and if u 
is a unit eigenvector of A, then the length of vector Au 
cannot exceed 4.

If u is a nonzero vector in R", then u must be an eigen­
vector of matrix uuT.

If Cj, V2, . . . ,  vn is an eigenbasis for both A and B , then 
matrices A and B must commute.

If v is an eigenvector of a 2 x 2 matrix A = 

then v mi 

adj(A) =

a b 
c d

then v must be an eigenvector of its classical adjoint
” d 11as well.
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Symmetric Matrices and Quadratic Forms

Symmetric Matrices

In this chapter we will work with real numbers throughout, except for a brief 
digression into C in the discussion of Theorem 8.1.3.

Our work in the last chapter dealt with the following central question:

When is a given square matrix A diagonalizable? That is, when is there an 
eigenbasis for A?

In geometry, we prefer to work with orthonormal bases, which raises the fol­
lowing question:

For which matrices is there an orthonormal eigenbasis? Or, equivalently, for 
which matrices A is there an orthogonal matrix S  such that S ~ ]A S  = S TA S  is 
diagonal?

(Recall that S ~ [ =  S T for orthogonal matrices, by Theorem 5.3.7.) We say that 
A is orthogonally diagonalizable if there exists an orthogonal matrix S such that 
S ~ lA S  =  S TAS  is diagonal. Then, the question is

Which matrices are orthogonally diagonalizable?

Simple examples of orthogonally diagonalizable matrices are diagonal matrices 
(we can let S = In) and the matrices of orthogonal projections and reflections.

EX A M PLE I If A is orthogonally diagonalizable, what is the relationship between AT and A?

Solution

We have

S~ l A S  = D or A =  S D S ~ 1 =  S D S T,

367
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Theorem 8 .1. 1

E X A M P L E  2

for an orthogonal S and a diagonal D. Then

A t = ( S D S t )t = S D t St =  S D S t = A.  

We find that A is symmetric:

A T = A.

Surprisingly, the converse is true as well:

Spectral theorem

A matrix A is orthogonally diagonalizable (i.e., there exists an orthogonal S such 
that AS  =  S T AS is diagonal) if and only if A is symmetric (i.e., A 7 =  A). ■

We will prove this theorem later in this section, based on two preliminary results, 
Theorems 8.1.2 and 8.1.3. First, we will illustrate the spectral theorem with an 
example.

For the symmetric matrix A =  

diagonal.

4 2 
2 7

, find an orthogonal S such that S !A5 is

Solution

We will first find an eigenbasis. The eigenvalues of A are 3 and 8 , with corresponding

eigenvectors
2 T

- 1
and

_2
, respectively. (See Figure 1.)

Note that the two eigenspaces, £ 3  and E%, are perpendicular. (This is no coin­
cidence, as we will see in Theorem 8.1.2.) Therefore, we can find an orthonormal 
eigenbasis simply by dividing the given eigenvectors by their lengths:

1 ' 2 ' 1 r

1,1 "  V5
If we define the orthogonal matrix

- 1
, v2 =

= 7 ! 2

' 1 1 ' 1 ' 2 r
S = Vl 

. 1

V2 
1 . " V I - 1 2

then 5 'A 5  will be diagonal, namely, S '<45 =
3 0
0 8
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Pr oof

Theorem 8.1.2

E X A M P L E  3

The key observation we made in Example 2 generalizes as follows:

Consider a symmetric matrix A.  If D| and x>2 are eigenvectors of A  with distinct 
eigenvalues X\ and A.2, then v\ • S2 =  0 ; that is, v2 is orthogonal to v \ .

We compute the product

5; Av2

in two different ways:

v l  A v2 =  v ]  {X2V2) =  k2(v 1 • v2)

V \ A v 2 =  v J A t x>2 =  (A 5 i)r u2 =  =  k\(v \  • v2)

Comparing the results, we find

k\(V] • V2) =  k 2(V\ • 52),

or

(*i -  X2)(Si • v2) =  0.

Since the first factor in this product, k\ — X2, is nonzero, the second factor, • 52, 
must be zero, as claimed. ■

Theorem 8.1.2 tells us that the eigenspaces of a symmetric matrix are perpen­
dicular to one another. Here is another illustration of this property:

For the symmetric matrix

A =
1 1 11
1 1 1
1 1 1

■ - r ■ - r \ T
1 9 0 and £ 3  =  span 1

0 . 1. / . 1.

find an orthogonal S such that S 1 AS is diagonal. 

Solution

The eigenvalues are 0 and 3, with

Eq — span

Note that the two eigenspaces are indeed perpendicular to one another, in accordance 
with Theorem 8.1.2. (See Figure 2.)

We can construct an orthonormal eigenbasis for A by picking an orthonormal 
basis of each eigenspace (using the Gram-Schmidt process in the case of Eo). See 
Figure 3.

In Figure 3, the vectors Si, v2 form an orthonormal basis of Eo, and U3 is a 
unit vector in £ 3. Then v2, £3 is an orthonormal eigenbasis for A. We can let
S =  [v\ V2 U3 ] to diagonalize A orthogonally.

If we apply the Gram-Schmidt1 process to the vectors

' - r - r
1 , 0

0 . 1.

' Alternatively, we could find a unit vector i>i in Eq and a unit vector D3 in £ 3, and then let u2 =  1)3 xi)].
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Figure 2 The eigenspaces Eq and £3 are 
orthogonal complements.

spanning Eo, we find

vi =
y/2

- V
1

0
and 1)2 =

V 6

- 1

- 1

2

The computations are left as an exercise. For £ 3, we get

T
V3 =  1

V3

Therefore, the orthogonal matrix

' J  1 1 ' ■ - 1A / 2  - 1/ V 6 1 /V 3 ‘
5 = Si v2 v3 = 1/V 2  - 1/V 6 1/V3

. 1 1 1 . 0  2 /V 6 1/V 3.

diagonalizes the matrix A :

S ~ 'A S  =
0  0  0  

0 0 0
0 0 3

By Theorem 8 .1.2, if a symmetric matrix is diagonalizable, then it is orthogonally 
diagonalizable. We still have to show that symmetric matrices are diagonalizable in 
the first place (over R). The key point is the following observation:

Theorem 8 .1.3 A symmetric n x n  matrix A has n real eigenvalues if they are counted with their 
algebraic multiplicities.

Pro of  (This proof is for those who have studied Section 7.5.) By Theorem 7.5.4, we need 
to show that all the complex eigenvalues of matrix A are in fact real. Consider 
two complex conjugate eigenvalues p ±  iq of A  with corresponding eigenvectors
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Pr oo f
(of  Theorem 8.1.1):

v ± i w .  (Compare this with Exercise 7.5.42b.) We wish to show that these eigen­
values are real; that is, q =  0. Note first that

(v +  iw ) T(v -  iw)  =  ||5 | |2 +  IIA||2.

(Verify this.) Now we compute the product

(u +  i w )T A(v — iw)

in two different ways:

(v +  i w ) T A(v  — iw) =  (5 +  iw )T(p — iq)(v — iw)
=  ( p -  i<?)(||l!||2 +  I M 2)

(5 +  iw ) T A(v  -  iw) =  (A(v + i w ) ) T(v -  iw)  =  {p +  iq)(v  +  iw ) T(v -  iw)  

=  (p + iq)(\\v\\2 + \\w\\2).

Comparing the results, we find that p-\-iq  =  p — iq,  so that q =  0, as claimed. ■

The foregoing proof is not very enlightening. A more transparent proof would 
follow if we were to define the dot product for complex vectors, but to do so would 
lead us too far afield.

We are now ready to prove Theorem 8.1.1: Symmetric matrices are orthogonally 
diagonalizable.

Even though this is not logically necessary, let us first examine the case of a 
symmetric n x n  matrix A with n distinct real eigenvalues. For each eigenvalue, 
we can choose an eigenvector of length 1. By Theorem 8.1.2, these eigenvectors 
will form an orthonormal eigenbasis, that is, the matrix A will be orthogonally 
diagonalizable, as claimed.

This proof is somewhat technical; it may be skipped in a first reading of this text 
without harm.

We prove by induction on n that a symmetric n x n  matrix A is orthogonally 
diagonalizable.2

For a 1 x 1 matrix A,  we can let S =  [1].
Now assume that the claim is true for n — 1; we show that it holds for rt. Pick a 

real eigenvalue A. of A (this is possible by Theorem 8 .1.3), and choose an eigenvector
vi of length 1 for X. We can find an orthonormal basis 5 i, t>2, • • - , v n o f R n. (Think 
about how you could construct such a basis.) Form the orthogonal matrix

P =
I J

V\ v2
I I

Vn

and compute

P~ AP.

The first column of P ~ ] A P is Xe\. (Why?) Also note that P ~ x A P  =  P T A P  is 
symmetric: ( P TA P ) T =  P TA TP = P TA P ,  because A  is symmetric. Combining

2The principle o f mathematical induction, applied to square matrices, can be stated as follows:
To show that a claim holds for all square matrices, show that it holds for

a. 1 x 1 matrices, and
b. n x n matrices, assuming that it holds for (n — 1) x (n — 1) matrices (for all n > 2).



372 C H A P T E R  8 Symmetric Matrices and Quadratic Forms

Theorem 8 .1.4

EX A M PLE 4

these two statements, we conclude that P 1 A P has the block form

P ~ [A P  =
X 0 
0 B (I)

where fi is a symmetric (n — 1) x (n — 1) matrix. By induction hypothesis, we 
assume that B  is orthogonally diagonalizable; that is, there exists an orthogonal 
(w — 1) x {n — 1) matrix Q such that

Q ~ l BQ  = D

is a diagonal (n — 1) x (n — 1) matrix. Now introduce the orthogonal n x n  matrix

'1 0 ‘
. 0  Q_ •

R =

Then

R-
X 0 ‘ D _ 1 O' X O' 1 O' X O'

. 0 B
A =

1
TQ

)

o
i 0 B o Q. 0 D (II)

is diagonal.
Combining equations (I) and (II), we find that

R ' ' P - 1A P R  =
X 0 
0 D (HI)

is diagonal. Consider the orthogonal matrix S =  PR.  (Recall Theorem 5.3.4a: The 
product of orthogonal matrices is orthogonal.) Note that 5 _1 =  (P R ) ~ l = R ~ ] P ~ l. 
Therefore, equation (III) can be written

S ~ 'A S  =
X 0 
0 D

proving our claim.

The method outlined in the proof of Theorem 8.1.1 is not a sensible way to find 
the matrix S in a numerical example. Rather, we can proceed as in Example 3:

Orthogonal diagonalization of a symmetric matrix A

a. Find the eigenvalues of A, and find a basis of each eigenspace.
b. Using the Gram-Schmidt process, find an orthonormal basis of each 

eigenspace.
c. Form an orthonormal eigenbasis V[,V2, . . . ,  for A by concatenating the 

orthonormal bases you found in part (b), and let

S =

5 is orthogonal (by Theorem 8.1.2), and S’-1  AS will be diagonal. ■

V | V2 Vn •

We conclude this section with an example of a geometric nature:

Consider an invertible symmetric 2 x 2  matrix A. Show that the linear transformation 
T(x)  =  Ax maps the unit circle into an ellipse, and find the lengths of the semitnajor 
and the semiminor axes of this ellipse in terms of the eigenvalues of A. Compare 
this with Exercise 2.2.50.
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Solution

The spectral theorem tells us that there exists an orthonormal eigenbasis 5 |, 52 for T , 
with associated real eigenvalues k\  and A2. These eigenvalues will be nonzero, since 
A is invertible. Arrange things so that \X[ \ > |A2|. The unit circle in R 2 consists of 
all vectors of the form

v = cos(t)v\ +  sin(r)52- 

The image of the unit circle consists of the vectors

T(v)  =  cos(t)T(v\)  +  s in (r)r(u 2)
=  cos(/)Aj5i +sin(OA*252 ,

an ellipse whose semimajor axis A] 5i has the length ||A.ii)i|| =  |Aj|, while the length 
of the semiminor axis is (See Figure 4.)

Figure 4

In the example illustrated in Figure 4, the eigenvalue is positive, and A2 is 
negative. ■

EXERCISES 8 .1
GOAL Find orthonormal eigenbases for symmetric 
matrices. Apply the spectral theorem.

For each o f the matrices in Exercises 1 through 6, find an 
orthonormal eigenbasis. Do not use technology.

1.

3.

5.

1 0
0 2

6 2 

2 3

0 1 1 
1 0 1 
1 1 0

2 .

6 .

1 f
1 1

0 0 f
0 0 1
1 1 1

0 2 2
2 1 0
2 0 -1

For each of the matrices A in Exercises 7 through 11, find 
an orthogonal matrix S and a diagonal matrix D such that 
S ^ A S  =  D. Do not use technology.

1. A —

9. A =

11. A =

12. Let L from 
spanned by

'3
2

2
3 8 . A = '3

_3
3' 

—5_

' 0 0 3' 1 2 2
0 2 0 10. A = —2 4 - 4

_3 0 0 2 4 4

' l 0 f
0 1 0
1 0 1

to R* be the reflection about the line

a. Find an orthonormal eigenbasis 53 for L.
b. Find the matrix B of L with respect to 43.
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c. Find the matrix A of L with respect to the standard 
basis of R3.

13. Consider a symmetric 3 x 3  matrix A with A2 =  I3. 
Is the linear transformation T(x) =  Ax necessarily the 
reflection about a subspace of R3?

14. In Example 3 of this section, we diagonalized the matrix

1 1 f
1 1 1

15.

18.

,4 =
1 1 1

by means of an orthogonal matrix 5. Use this result to 
diagonalize the following matrices orthogonally (find S 
and D in each case):

a.
2
2
2

1
2

2
2
2

1
2
1
2

0

b.
1

-2
1

If A is invertible and orthogonally diagonalizable, is A 1 
orthogonally diagonalizable as well?

16. a. Find the eigenvalues of the matrix

4 =

"1 1 1 1"
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

with their multiplicities. Note that the algebraic 
multiplicity agrees with the geometric multiplicity. 
(Why?) (Hint: What is the kernel of AI) 

b. Find the eigenvalues of the matrix

B =

with their multiplicities. Do not use technology, 
c. Use your result in part (b) to find det(fi).

17. Use the approach of Exercise 16 to find the determinant 
of the n x n matrix B that has p 's on the diagonal and 
q 's elsewhere:

^-volume of the h-parallelepiped spanned by V[y. . . ,  vn. 
{Hint: Let A =  [Dj vn ], and think about the ma­
trix AT A and its determinant. Exercise 17 is useful.)

19. Consider a linear transformation L from Rm to Rn. Show 
that there exists an orthonormal basis 5i, U2, . . . ,  vm 
of Rm such that the vectors L(v 1), L(v2) , . . . ,  L(vm) 
are orthogonal. Note that some of the vectors L(vj) 
may be zero. (Hint: Consider an orthonormal eigenbasis 
v\ ,v 2, . . -* vm for the symmetric matrix A 7 A.)

20. Consider a linear transformation T from Rm to Rn, 
where m <n.  Show that there exist an orthonormal basis
v\ ....... vm of Rm and an orthonormal basis w\ .........wn
of R'1 such that T(vj) is a scalar multiple of £y,-, for 
/ =  1, . . . ,  m. (Hint: Exercise 19 is helpful.)

21. Consider a symmetric 3x3  matrix A with eigenvalues 1, 
2, and 3. How many different orthogonal matrices S are 
there such that S~] AS is diagonal?

22. Consider the matrix

A =

where k is a constant.
a. Find a value of k such that the matrix A is diagonal­

izable.
b. Find a value of k such that A fails to be diagonal­

izable.

23. If an n x n matrix A is both symmetric and orthogo­
nal, what can you say about the eigenvalues of A? What 
about the eigenspaces? Interpret the linear transforma­
tion T(x) =  Ax geometrically in the cases n = 2 and 
n = 3.

24. Consider the matrix

0 2 0 0
k 0 2 0
0 k 0 2
0 0 k 0

"3 1 1 1 1 “

1—0001

1 3  1 1 1 A = 0 0 1 0

1 1 3  1 1 0 1 0  0

1 1 1 3  1 1 0  0 0

1 1 1 1 3 Find an orthonormal eigenbasis for A

25. Consider the matrix

B =

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

Find an orthogonal 5 x 5  matrix S such that S 
diagonal.

- l AS is

Consider unit vectors v \ , . . . ,  vn in R" such that the 
angle between J, and Vj is 60° for all / ^  7 . Find the

26. Let Jn be the n x n matrix with all ones on the “other 
diagonal” and zeros elsewhere. (In Exercises 24 and 25, 
we studied J4 and 75, respectively.) Find the eigenvalues 
of Jn, with their multiplicities.
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Diagonalize the n x n matrix

' 1 0  0 0 1“
0 1 0 1 0 39.
0 0 1 0 0

0 1 0 1 0
40.

1 0  0 0 1_

(All ones along both diagonals,;and zeros elsewhere.)

Diagonalize the 13 x 13 matrix 41.

"0 0 0 0 1"
42.

0 0 0 0 1
0 0 0 0 1

0 0 0 

J  1 1

0 1 
1 1

43.

(All ones in the last row and the last column, and zeros
elsewhere.) 44.
Consider a symmetric matrix A. If the vector v is in the
image of A and w is in the kernel of A, is v necessarily

29.

orthogonal to w!  Justify your answer.

30. Consider an orthogonal matrix R whose first column is 
v. Form the symmetric matrix A — vvT. Find an or­
thogonal matrix 5 and a diagonal matrix D such that 
S~] AS = D . Describe S in terms of R.

31. True or false! If A is a symmetric matrix, then rank (A) =  
rank(A2).

32. Consider the n x n  matrix with all ones on the main 
diagonal and all q's elsewhere. For which values of q is 
this matrix invertible? {Hinv. Exercise 17 is helpful.)

33. For which angle(s) 0  can you find three distinct unit vec­
tors in R2 such that the angle between any two of them 
is 0 !  Draw a sketch.

34. For which angle(s) 0 can you find four distinct unit vec­
tors in R3 such that the angle between any two of them 
is 0 1  Draw a sketch.

35. Consider n +  1 distinct unit vectors in R" such that the 
angle between any two of them is 6 . Find 0 .

36. Consider a symmetric n x n  matrix A with A2 = A. 
Is the linear transformation T(x) =  Ax necessarily the 
orthogonal projection onto a subspace of W 11

37. If A is any symmetric 2 x 2  matrix with eigenvalues —2 
and 3, and u is a unit vector in R2, what are the possi­
ble values of || Au || ? Explain your answer geometrically, 
using Example 4 as a guide.

38. If A is any symmetric 2 x 2 matrix with eigenvalues 
“ 2 and 3, and u is a unit vector in R2, what are the 
possible values of the dot product u Au!  Illustrate

your answer, in terms of the unit circle and its image 
under A.

If A is any symmetric 3 x 3  matrix with eigenvalues 
—2, 3, and 4, and u is a unit vector in R3, what are the 
possible values of the dot product u Au!

If A is any symmetric 3 x 3  matrix with eigenvalues —2, 
3, and 4, and u is a unit vector in R3, what are the possi­
ble values of || Am || ? Explain your answer geometrically, 
in terms of the unit sphere and its image under A.

Show that for every symmetric n x n  matrix A there 
exists a symmetric n x n  matrix B such that fl3 =  A.

42. Find a symmetric 2 x 2  matrix B such that

43. For A =

1 12 14
5 14 33

‘ 2 11 11
= 11 2 11

11 11 2
find a nonzero vector v in ]

such that Ai) is orthogonal to v.

Consider an invertible symmetric n x n  matrix A. When 
does there exist a nonzero vector v in R " such that Au is 
orthogonal to v1 Give your answer in terms of the signs 
of the eigenvalues of A.

45. We say that an n x n  matrix A is triangulizable if A is 
similar to an upper triangular n x n  matrix B.
a. Give an example of a matrix with real entries that 

fails to be triangulizable over R.

b. Show that any n x n  matrix with complex entries is 
triangulizable over C. CHint: Give a proof by induc­
tion analogous to the proof of Theorem 8.1.1.)

46. a. Consider a complex upper triangular n x n  matrix U
with zeros on the diagonal. Show that U is nilpotent 
(i.e., that Un =  0 ). Compare with Exercises 3 . 3 .7 6  

and 3 . 3 . 7 7 .

b. Consider a complex n x n  matrix A that has zero as 
its only eigenvalue (with algebraic multiplicity n). 
Use Exercise 45 to show that A is nilpotent.

47. Let us first introduce two notations.
For a complex n x n  matrix A, let |A| be the matrix 
whose / j  th entry is \aij\.
For two real n x n  matrices A and B y we write A < B 
if ajj < bij for all entries. Show that
a. \ AB\  <  |A ||# |, for all complex n x n  matrices A 

and B y and
b. |Ar| < |A|', for all complex n x n  matrices A and 

all positive integers t.

48. Let U > 0  be a real upper triangular n x n  matrix with 
zeros on the diagonal. Show that

Un + u y  < t no„ + u  + u 2 + ■ + Un~')

for all positive integers t. See Exercises 46 and 47.
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49. Let R be a complex upper triangular n x n  matrix with 
| rn | < 1 for / =  1....... n. Show that

lim R ' = 0 ,
r ->oc

meaning that the modulus of all entries of R{ approaches 
zero. Hint: We can write \R\ < k(In +  U)% for some pos­
itive real number k < 1 and an upper triangular matrix 
U > 0 with zeros on the diagonal. Exercises 47 and 48 
are helpful.

50. a. Let A be a complex n x n  matrix such that |A.| < j 
for all eigenvalues k of A. Show that

lim A1 =  0,
f-Oc

meaning that the modulus of all entries of A1 ap­
proaches zero,

b. Prove Theorem 7.6.2.

Quadratic Forms

In this section, we will present an important application of the spectral theorem 
(Theorem 8.1.1).

In a multivariable calculus text, we find the following problem:

E X A M P L E  I Consider the function

q ( x \ , xj)  =  8*f — 4 * 1*2 +  5*f

from R 2 to R.
Determine whether q(0 ,0 ) =  0 is the global maximum, the global minimum, 

or neither.
Recall that <7 (0 , 0 ) is called the global (or absolute) minimum if <7 (0,0) 

< q(x  1, *2) for all real numbers * 1, *2 ; the global maximum is defined analogously.

Solution

There are a number of ways to do this problem, some of which you may have seen 
in a previous course. Here we present an approach based on matrix techniques. We 
will first develop some theory and then do the example.

Note that we can write

x\
x~> =  Sxt — Ax 1 *2 +  5jc2

~X\' OO 1 N) *

*2. —2*1 +  5*2
We “split” the term - 4* 1*2 
equally between the two components.

8 - 2  
- 2  5

More succinctly, we can write

q(x)  =  * • Ax,  where A =

or
q(x)  =  x T Ax.

The matrix A is symmetric by construction. By the spectral theorem (Theorem 8.1.1)* 
there exists an orthonormal eigenbasis Si, S2 for A. We find

1 2 1 T
" , =  V5 - 1 ' “2 =  V5 2

with associated eigenvalues A.i =  9 and X2 = A. (Verify this.)
If we write * =  c\ Si +  C2S2, we can express the value of the function as follows:

q(x) = x • Ax  = (c\V\ +  C2S2) • (ciAjSi +  c2X2S2) =  X\c\ + k 2c\  =  9c] +Ac\-
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D e fin it io n  8.2.1

E X A M P L E  2

(Recall that v\ • v\ =  1, v\ • 52 =  0, and 52 - 52 =  1, since D|, 52 is an orthonormal 
basis of R2.)

The formula ^(jf) =  9c2 +  4c*2 shows that q(x)  > 0 for all nonzero jc, because 
at least one of the terms 9c2 and 4c2 is positive.

Thus <y(0, 0) =  0 is the global minimum of the function.
The preceding work shows that the t*i-c2 coordinate system defined by an 

orthonormal eigenbasis for A is “well adjusted” to the function q. The formula

9 cj + 4cj

is easier to work with than the original formula

8 * 2 — 4*i* 2 +  5*2,

because no term involves c jc2:

q ( x i , jc2) =  8 * 2 — 4x\x2 4- 5 * |

=  9c2 +  4c\

The two coordinate systems are shown in Figure 1. ■

Figure I

Let us present these ideas in greater generality:

Quadratic forms
A function q(x  i , jc2........ xn) from R n to R  is called a quadratic form  if it is a linear
combination of functions of the form jc, xj  (where z a n d j  may be equal). A quadratic 
form can be written as

<7(3c) =  x  • Ax = x TAx,  

for a unique symmetric n x n  matrix A , called the matrix of q.

The uniqueness of matrix A will be shown in Exercise 52.
The set Qn of quadratic forms q (jcj , jc2, . . . ,  jc„) is a subspace of the linear space 

of all functions from to R.  In Exercise 42 you will be asked to think about the 
dimension of this space.

Consider the quadratic form

q ( x j, *2, *3) =  9jc2 +  7.r2 +  3* | -  2*i* 2 +  4 * 1*3 -  6*2*3.

Find the matrix of q.
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Theorem 8.2.2

D e fin it io n  8.2.3

E X A M P L E  3

Solution

As in Example 1, we let

an = (coefficient of jc? ) ,

=  ajj =   ̂ (coefficient of XjXj), if / ^  j .

Therefore,

' 9 - 1 2 '
A = - 1 7 - 3

2 - 3 3.

The observation we made in Example 1 can now be generalized as follows: 

Diagonalizing a quadratic form
Consider a quadratic form q(x)  =  x  • Ax,  where A is a symmetric n x n  matrix. 
Let 33 be an orthonormal eigenbasis for A, with associated eigenvalues k \ , . . . ,  A„. 
Then

q(x)  =  A. | c\ +  A2C? +  • • • +  

where the c, are the coordinates of jc with respect to S3.3 ■

Again, note that we have been able to get rid of the mixed terms: no summand 
involves (with i ±  j )  in the preceding formula. To justify the formula stated in 
Theorem 8.2.2, we can proceed as in Example 1. We leave the details as an exercise.

When we study a quadratic form q,  we are often interested in finding out whether 
q{x) > 0 for all nonzero jc (as in Example 1). In this context, it is useful to introduce 
the following terminology:

Definiteness of a quadratic form
Consider a quadratic form ^ (jc) =  jc • A x , where A is a symmetric n x n  matrix.

We say that A is positive definite if q{jc) is positive for all nonzero jc in IR", and 
we call A positive semidefinite if q ( x ) > 0 ,  for all jc in R n.

Negative definite and negative semidefinite symmetric matrices are defined 
analogously.

Finally, we call A indefinite if q takes positive as well as negative values.

Consider an n x m matrix A. Show that the function ^(jc) =  || Ajc| |2 is a quadratic 
form, find its matrix, and determine its definiteness.

Solution

We can write q(x) — (Ax)  • (Ajc) =  (Ajc)r (Ajc) =  x TA TAx  =  x  • (A 7Ax).  This 
shows that q is a quadratic form, with matrix A 7 A. This quadratic form is positive 
semidefinite, because q (jc) =  ||Ajc| |2 > 0 for all vectors jc in R m. Note that q (x) = 0  
if and only if jc is in the kernel of A. Therefore, the quadratic form is positive definite 
if and only if ker(A) =  {0 }. ®

3The basic properties of quadratic forms were first derived by the Dutchman Johan de Witt
(1625-1672) in his Elementa cun arum linearum. De Witt was one of the leading statesmen of his
time, guiding his country through two wars against England. He consolidated his nation’s commercial
and naval power. De Witt met an unfortunate end when he was literally tom to pieces by an angry tnob.
(He should have stayed with math!)
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Theorem 8,2.4

Theorem 8.2.5

By Theorem 8.2.2, the definiteness of a symmetric matrix A is easy to determine 
from its eigenvalues:

Eigenvalues and definiteness

A symmetric matrix A is positive definite if (and only if) all of its eigenvalues are 
positive. The matrix A is positive semidefinite if (and only if) all of its eigenvalues 
are positive or zero. ■

These facts follow immediately from the formula

q(x)  =  k \ c } H------- h k nc2n. (See Theorem 8.2.2.)

The determinant of a positive definite matrix is positive, since the determinant is the 
product of the eigenvalues. The converse is not true, however: Consider a symmetric 
3 x 3  matrix A with one positive and two negative eigenvalues. Then det A is 
positive, but q(x)  =  x  • Ax  is indefinite. In practice, the following criterion for 
positive definiteness is often used (a proof is outlined in Exercise 34):

Principal submatrices and definiteness

Consider a symmetric n x n  matrix A. For m =  1........ n % let A im) be the m x m
matrix obtained by omitting all rows and columns of A past the wth. These matrices 
A (m) are called the principal submatrices of A.

The matrix A is positive definite if (and only if) det(A(m)) > 0, for all
m =  1........ n. ■

Consider the matrix

A =
9 - 1  2

- 1  7 - 3
2 - 3  3

from Example 2:

det(A(l)) =  det [9] =  9 > 0

det(A<2)) =  det
9 - 1

-1  7
=  62 > 0

det(A,3>) =  det(A) =  89 > 0

We can conclude that A is positive definite.
Alternatively, we could find the eigenvalues of A and use Theorem 8.2.4. Using 

technology, we find that k\ ^  10.7, A2 ~  7.1, and A.3 ^  1.2, confirming our result.

Principal A x e s
When we study a function f ( x \ , * 2 ..........xn) from R" to R, we are often interested
in the solutions of the equations

f ( x  1,*2........ *n) =

for a fixed k in R, called the level sets of f  (level curves for n =  2, level surfaces 
for n =  3).

Here we will think about the level curves of a quadratic form q ( x \ , ,v2) of two 
variables. For simplicity, we focus on the level curve q ( x \ , *2) =  1.
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Let us first consider the case when there is no mixed term in the formula. We 
trust that you had at least a brief encounter with those level curves in a previous 
course. Let us discuss the two major cases:

Case 1: q ( x \ , x2) =  ax]  +  bx \  =  1, where b > a > 0. This curve is an ellipse, as 
shown in Figure 2. The lengths of the semimajor and the semiminor axes are 1 /y/a 
and 11 \fb,  respectively. This ellipse can be parameterized by

’*1" '1 I j a 0
Xl

= COS/ 0 + sin t
l/V b

Case 2: q ( x i , x 2) =  ax? +  bx\  =  1, where a is positive and b negative. This is au u i ■ u rhyperbola, with x \ -intercepts ^ 

of the asymptotes, in terms of a and 6 ?

, as shown in Figure 3. What are the slopes

Figure 3

Now consider the level curve

q(x) = x  • Ax  =  1,

where A is an invertible symmetric 2 x 2  matrix. By Theorem 8.2.2, we can write 
this equation as

k\C\  +  A.2C5 — 1,

where c 1, C2 are the coordinates of jc with respect to an orthonormal eigenbasis for 
A, and A.j, are the associated eigenvalues.

This curve is an ellipse if both eigenvalues are positive and a hyperbola if one 
eigenvalue is positive and one negative. (What happens when both eigenvalues are 
negative?)

E X A M P L E  4  Sketch the curve

8 jĉ  — 4*i X2 +  5jc2 =  1.

(See Example 1.)
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Definition 8.2.6

Theorem 8.2.7

Solution

In Example 1, we found that we can write this equation as

9c] + 4c\ = 1,

where c\, c2 are the coordinates of x  with respect to the orthonormal eigenbasis

i>i =
1 ' 2 1 T

7 ! - 1

IICM

2

for A = 8
- 2

- 2

5
. We sketch this ellipse in Figure 4.

The c i- and the C2-axes are called the principal axes of the quadratic form 
q ( x \ , x 2) =  8*f — 4*1 x 2 4- 5*?• Note that these are the eigenspaces of the matrix

A =
8 - 2  

- 2  5

of the quadratic form.

Principal axes

Consider a quadratic form q(x)  =  x  ■ Ax,  where A h a  symmetric n x n  matrix with 
n distinct eigenvalues. Then the eigenspaces of A are called the principal axes of q. 
(Note that these eigenspaces will be one dimensional.)

Let’s return to the case of a quadratic form of two variables. We can summarize 
our findings as follows:

Ellipses and hyperbolas
Consider the curve C in K2 defined by

q(x \ , x 2) =  ax]  +  bx\x2 + cx\  =  1.

d b !2'
Let k\ and be the eigenvalues of the matrix ^ ^ of q.

If both k\ and k 2 are positive, then C is an ellipse. If one eigenvalue is positive 
and the other is negative, then C is a hyperbola. ■
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EXERCISES 8.2
GOAL Apply the concept o f a quadratic form. Use an or­
thonormal eigenbasis for A to analyze the quadratic form 
q(x) = x  • Ax.

For each o f the quadratic forms q listed in Exercises 1 
through 3, find the matrix o f q.

1. q(x \ , x2) = 6*2 — l x \ x 2 +  8*2

2. q (x i,* 2) =  x jX2

3. q(xi, *2, *3) =  3* 2 +  4*1 +  5*3 +  6*1*3 +  7*2*3

Determine the definiteness o f the quadratic forms in 
Exercises 4 through 7.

4. q(x 1,*2) =  6*2 +  4*i*2 +  3*1

5. q(x i,*2) =  * 2 + 4* i*2 + * !

6. <7(*i,*2) =  2x\  +  6*1*2 + 4*2

7. ^(*1, *2, *3) =  3*2 +  4*1*3

8 . If A  is a symmetric matrix, what can you say about the 
definiteness of A2? When is A2 positive definite?

9. Recall that a real square matrix A is called skew sym­
metric if A t =  — A.
a. If A is skew-symmetric, is A2 skew symmetric as 

well? Or is A2 symmetric?
b. If A is skew symmetric, what can you say about 

the definiteness of A2! What about the eigenvalues 
of A2?

c. What can you say about the complex eigenvalues of 
a skew-symmetric matrix? Which skew-symmetric 
matrices are diagonalizable over R?

10. Consider a quadratic form q(x) =  * • A x  on R'1 and a 
fixed vector v in Rn. Is the transformation

L(x) =  q(x +  v) -  q(x) -  q(v)

linear? If so, what is its matrix?

11. If A is an invertible symmetric matrix, what is the rela­
tionship between the definiteness of A and A~ 1 ?

12. Show that a quadratic form q(x) = * • Ax of two vari­
ables is indefinite if (and only if) det A < 0. Here, A is 
a symmetric 2 x 2 matrix.

13. Show that the diagonal elements of a positive definite 
matrix A are positive.

14. Consider a 2 x 2 matrix A = a b 
b c

, where a and

detA are both positive. Without using Theorem 8.2.5, 
show that A is positive definite. [Hint: Show first that c 
is positive, and thus tr(A) is positive. Then think about 
the signs of the eigenvalues.]

Sketch the curves defined in Exercises 15 through 20. In 
each case, draw and label the principal axesf label the in- 
tercepts o f the curve with the principal axes, and give the 
formula o f the curve in the coordinate system defined by 
the principal axes.

15. 6*2 + 4* 1*2 +  3*1 =  1 16. * 1*2 =  1

17. 3*2 +  4*i*2 =  1 18. 9*2 — 4* 1*2 +  6*2 = 1

19. *2 + 4*1*2 +4*1 =  1 20. -3 * 2 +  6*1*2 +  5*2 = 1

21. a. Sketch the following three surfaces:

* 2 +4*2 +9*3 =  1,

X 2 +  4 * 2  -  9 * 2 =  1,

- * 2 -  4 * 2  +  9*3 =  1.

Which of these are bounded? Which are connected? 
Label the points closest to and farthest from the origin 
(if there are any),

b. Consider the surface

* 2 +  2* 2 +  3* 2 +  * 1*2 +  2* 1*3 +  3*2*3 =  1.

Which of the three surfaces in part (a) does this sur­
face qualitatively resemble most? Which points on 
this surface are closest to the origin? Give a rough 
approximation; you may use technology.

22. On the surface

—* 2 +  *2 — *3 +  10* 1*3 =  11 

find the two points closest to the origin.

23. Consider an n x n matrix M that is not symmetric, and 
define the function g(x) = x • Mx from Rn to R. Is g 
necessarily a quadratic form? If so, find the matrix of g.

24. Consider a quadratic form

q(x) =  * • Ajc,

where A is a symmetric n x n  matrix. Find q(e\ ). Give 
your answer in terms of the entries of the matrix A.

25. Consider a quadratic form

q(x) =  * • Ax,

where A is a symmetric n x n  matrix. Let v be a unit 
eigenvector of A, with associated eigenvalue k. Find 
q(v)•

26. Consider a quadratic form

q(x) =  x • A*,

where A is a symmetric n x n  matrix. True o r  false! If 
there exists a nonzero vector v in R" such that q(v) =  0, 
then A fails to be invertible.
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J 7. Consider a quadratic form q(x) = x • Ax, where A is 
a symmetric n x n  matrix with eigenvalues k\ >
> • • • > X„. Let Sn~ l be the set of all unit vectors in 

Describe the image of Sn~l under q, in terms of the 
eigenvalues of A.

jg. Show that any positive definite n x n  matrix A can be 
written as A = B B T, where B is an n x n matrix with 
orthogonal columns. (Hint: There exists an orthogonal 
matrix S such that S~] AS = ST AS = D is a diagonal 
matrix with positive diagonal entries. Then A = SDST.

i: Now write D as the square of a diagonal matrix.)

r 8 - 2

r 2 5
discussed in Exercise 28. See Example 1.

30. Show that any positive definite matrix A can be written 
as A =  B2, where B is a positive definite matrix.

29. For the matrix A = write A =  B B t

31. For the matrix A = 1 -2 
- 2  5

cussed in Exercise 30. See Example 1.

write A =  B2 as dis

32. Cholesky factorization for 2 x 2  matrices. Show that any 
positive definite 2 x 2  matrix A can be written uniquely 
as A =  LLT, where L is a lower triangular 2 x 2  matrix 
with positive entries on the diagonal. {Hint: Solve the 
equation

a b * 0 *
b C

N? 1 O JN

33. Find the Cholesky factorization (discussed in Exer­
cise 32) for

A = 8 - 2  
- 2  5

34. A Cholesky factorization of a symmetric matrix A is a 
factorization of the form A =  L L T, where L is lower 
triangular with positive diagonal entries.

Show that for a symmetric n x n  matrix A the fol­
lowing are equivalent:

(i) A is positive definite.
(ii) All principal submatrices A(m̂ of A are positive 

definite. (See Theorem 8.2.5.)
(iii) det(A(w )̂ > 0 for m =  1, . . . ,  n.
(iv) A has a Cholesky factorization A = LL J .
{Hint: Show that (i) implies (ii), (ii) implies (iii), (iii) 
implies (iv), and (iv) implies (i). The hardest step is the 
implication from (iii) to (iv): Arguing by induction on n, 
you may assume that A ^ - ^ has a Cholesky factoriza­
tion A(”-,)  =  B B t . Now show that there exist a vector 
x in Rrt-1 and a scalar t such that

A =
-^ (n -1) V ' B O' ~BT x

k x T 1 0 t

Explain why the scalar t is positive. Therefore, we have 
the Cholesky factorization

' B O ' Bt x '

1—
 

•H

1 1 OA =

This reasoning also shows that the Cholesky factoriza­
tion of A is unique. Alternatively, you can use the L D L T 
factorization of A to show that (iii) implies (iv). (See Ex­
ercise 5.3.63.)

To show that (i) implies (ii), consider a nonzero 
vector x  in and define

rx
0

v =

0

in Rn (fill in n m zeros). Then 

x TA (m)x = y TAy > 0 .}

35. Find the Cholesky factorization of the matrix

4 - 4  8“
A =  ' - 4

8
13

1
1

26

36. Consider an invertible n x n  matrix A. What is the re­
lationship between the matrix R in the QR factorization 
of A and the matrix L in the Cholesky factorization of 
A r A?

37. Consider the quadratic form

<?(•*! 1*2) =  CLx\ + b x  } X 2 +  CX2 -

We define 

<711 =
d 2q

d x 2 ’
412 =  421 =

d 2q d2q
d x \  d x 2 ' q22 d x I '

The discriminant D of q  is defined as

D =  det 4ii
421

412
422 =  411422 -  (412) .

The second derivative test tells us that if D and q\\ 
are both positive, then q(x\ , x2) has a minimum at 
(0,0). Justify this fact, using the theory developed in 
this section.

38. For which values of the constants p and q is the n x n 
matrix

B =

4
P

.4  4
positive definite? (B has p ’s on the diagonal and q's 
elsewhere.) (Hint: Exercise 8.1.17 is helpful.)

39. For which angles 0 can you find a basis of R” such that 
the angle between any two vectors in this basis is 0?
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40. Show that for every symmetric n x n  matrix A there 
exists a constant k such that matrix A +  k ln is positive 
definite.

41. Find the dimension of the space Q2 of all quadratic forms 
in two variables.

42. Find the dimension of the space Qn of all quadratic 
forms in n variables.

43. Consider the transformation T{ q( x \ , *2)) =  <7(* i,0 ) 
from 02 to P2. Is T a linear transformation? If so, find 
the image, rank, kernel, and nullity of T.

44. Consider the transformation T{ q( x \ , *2)) =  q(x 1, 1) 
from Q2 to P2. Is T a linear transformation? Is it an 
isomorphism?

45. Consider the transformation T (q (x 1, *2 , *3) )
=  q(x 1, 1, 1) from Q3 to P2. Is T a linear transforma­
tion? If so, find the image, rank, kernel, and nullity of T .

46. Consider the linear transformation T[ q(x \ , *2, * 3 ) )

= <?(*1, *2* * 1) from Q3 to Q2. Find the image, kernel, 
rank, and nullity of this transformation.

47. Consider the function T(A)(x)  =  x T Ax from R nxn to 
Q„. Show that T is a linear transformation. Find the 
image, kernel, rank, and nullity of T.

48. Consider the linear transformation T [q(x\ , *2))
=  q (*2<*l) from Q2 to Q2. Find all the eigenvalues 
and eigenfunctions of T. Is transformation T diagonal­
izable?

49. Consider the linear transformation T (q(x \ , *2))
=  q ( x \ ,  2 x 2 ) from Q2 to Q2. Find all the eigenvalues 
and eigenfunctions of 7\ Is transformation T diagonal­
izable?

50. Consider the linear transformation

T{q(x\ ,x2)) =  x \ ^ ~  
v '  d x 2 d*|

from Q2 to Q2. Find all the eigenvalues and eigenfunc­
tions of T. Is transformation T diagonalizable?

51. What are the signs of the determinants of the principal 
submatrices of a negative definite matrix? (See Theo­
rem 8.2.5.)

52. Consider a quadratic form q. If A is a symmetric ma­
trix such that q(x) =  x T Ax  for all Jc in R '\ show that 
an =  <?(?,) and aij = \  (<?(?, +  ej) -  q(ei) -  q(ej)) 
fori ^  j .

53. Consider a quadratic form q(x \ , . . . ,  *„) with sym­
metric matrix A. For two integers / and j  with
1 < 1 < j  < h, we define the function

(  "  ^ 
p ( jc, y)  =  q I 0 , . . . ,  0, 0 , . . . ,  0, y  , 0 , . . . ,  0

\  /th jth j

a. Show that p is a quadratic form, with matrix
an aij 

_aji aj j .
b. If q is positive definite, show that p is positive defi­

nite as well.
c. If q is positive semidefinite, show that p is positive 

semidefinite as well.
d. Give an example where q is indefinite, but p is pos­

itive definite.

54. If A is a positive semidefinite matrix with a\[ = 0 , what 
can you say about the other entries in the first row and 
in the first column of A? (Hint: Exercise 53 is helpful.)

55. If A is a positive definite n x n  matrix, show that the 
largest entry of A must be on the diagonal. (Hint: Use 
Exercise 53 to show that aij < an or aij < ajj for all
1 < / < j  < n).

56. If A is a real symmetric matrix, show that there exists 
an eigenvalue X of A with X > a\\. (Hint: Exercise 27 
is helpful.)

In Exercises 57 through 61, consider a quadratic form q 
on M3 with symmetric matrix A, with the given properties. 
In each case, describe the level surface q(x) =  1 geomet- 
rically.

57. q is positive definite.

58. q is positive semidefinite and rank A = 2.

59. q is positive semidefinite and rank A =  1.

60. q is indefinite and det A > 0.

61. q is indefinite and det A < 0.

62. Consider an indefinite quadratic form q on R3 with sym­
metric matrix A. If det A < 0, describe the level surface 
q(x) =  0 .

63. Consider a positive definite quadratic form q on Rn with
symmetric matrix A. We know that there exists an or­
thonormal eigenbasis Ci....... vn for A, with associated
positive eigenvalues X] . . . . ,  Xn. Now consider the or­
thogonal eigenbasis w \ , . . . ,  wny where u>, =  —̂==3/»

\Xi
Show that q(c\w\  H------ h cnwn) =  c2 H------ h cn.

64. For the quadratic form q(x),x2) =  — 4x\x2 +
5*2> find an orthogonal basis w \ ,w 2 of R2 such that 
q(c\W[ +  c2w2) =  c2 +  c\. Use your answer to sketch 
the level curve q(x) =  1. Compare with Example 4 and 
Figure 4 in this section. Exercise 63 is helpful.

65. Show that for every indefinite quadratic form q on R2 
there exists an orthogonal basis w \ , w2 of R2 such that 
q(c\ w i +  c2w2) =  c2 — c\. Hint: Modify the approach 
outlined in Exercise 63.

66 . For the quadratic form q(x \ ,x2) =  3jc2 — 10* 1*2 + 
3*2* find an orthogonal basis w \ ,w 2 of R2 such that



8.3 Singular Values 385

q(c\ib\ +  C2W2) =  c\ — c\. Use your answer to sketch 
the level curve q(x) =  1. Exercise 65 is helpful.

*7. Consider a quadratic form q on W1 with symmetric ma- 
* trix A , with rank A = r. Suppose that A has p positive 

eigenvalues, if eigenvalues are counted with their mul­
tiplicities. Show that there exists an orthogonal basis
w\, . . . , w n of W1 such that q(c\w\ H------ h cnwn) =
c2 +  • • ■ +  c2 — c2 + [ — • • • — c2. Hint: Modify the 
approach outlined in Exercises 63 and 65.

<S8. If q is a quadratic form on Rn with symmetric matrix A , 
and if L(x) =  Rx is a linear transformation from IR™ to 
Rn, show that the composite function p(x) = q (L(x))

is a quadratic form on IR"1. Express the symmetric matrix 
of p in terms of R and A.

69. If A is a positive definite n x n  matrix, and R is any real 
n x m matrix, what can you say about the definiteness 
of the matrix R7 AR!  For which matrices R is RT AR 
positive definite?

70. If A is an indefinite n x n  matrix, and R is a real n x m  
matrix of rank n, what can you say about the definiteness 
of the matrix R7 A R!

71. If A is an indefinite n x n  matrix, and R is any real n x m  
matrix, what can you say about the definiteness of the 
matrix RTAR!

Singular Values

In Exercise 47 of Section 2.2, we stated the following remarkable fact.

EX A M PLE I Show that if L(x)  =  A3r is a linear transformation from R 2 to R2, then there exist 
two orthogonal unit vectors v\ and in R 2 such that vectors L(v\ )  and L (v 2) 
are orthogonal as well (although not necessarily unit vectors). See Figure 1. (Hint: 
Consider an orthonormal eigenbasis 5i, V2 of the symmetric matrix A T A.)

Figure I

Solution

This statement is clear for some classes of transformations. For example,

• If L is an orthogonal transformation, then any two orthogonal unit vectors v\ 
and V2 will do, by Theorem 5.3.2.

• If L(x)  = Ax,  where A is symmetric, then we can choose two orthogonal unit 
eigenvectors, by the spectral theorem, Theorem 8.1.1. See also Example 4 of 
Section 8.1.

However, for an arbitrary linear transformation L, the statement isn’t that obvious; 
think about the case of a shear, for example.

In Exercise 47 of Section 2.2, we suggested a proof based on the intermediate 
value theorem for continuous functions. Here we will present a proof in the spirit of 
linear algebra that generalizes more easily to higher-dimensional spaces.

Following the hint, we first note that matrix A T A is symmetric, since ( A T A ) T =  
A t (A t )t  = A T A. The spectral theorem (Theorem 8.1.1) tells us that there exists 
an orthonormal eigenbasis 3i, V2 for A 7A, with associated eigenvalues k\ ,  A.2 . We
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can verify that vectors L{v\)  =  A v i and L(52) =  Av2 are orthogonal, as claimed: 

(i43i) • (A v2) =  ( A v i)t A v2 =  v \ A t A v2 = v](X2v2) =  k 2(vi • S2) =  0.

It is worth mentioning that v\ and V2 need not be eigenvectors of matrix A. |

Consider the linear transformation L(x)  = A x , where A =
6

- 7

a. Find an orthonormal basis 5j, V2 of M2 such that vectors L(5i) and L(52) are 
orthogonal.

b. Show that the image of the unit circle under transformation L is an ellipse. 
Find the lengths of the two semiaxes of this ellipse, in terms of the eigenvalues 
of matrix A T A.

Solution

'6  - 1 6  2 " 85 —30
2 6 - 1  6 - 3 0  40

a. Using the ideas of Example 1, we will find an orthonormal eigenbasis for 
matrix A TA :

A A =

The characteristic polynomial of A T A is

A2 -  125A +  2500 =  (A. -  100)(X -  25),

so that the eigenvalues of A T A are X1 =  100 and A2 =  25. Now we can find 
the eigenspaces of A 7 A.

and

£100 =  ker

£25 =  ker

'- 1 5 -3 0 '
- 3 0 -6 0

=  span

' 60 - 3 0 '
- 3 0 15

=  span

2

- 1

1

2

To find an orthonormal basis, v/e need to multiply these vectors by the re­
ciprocals of their lengths:

1 ' 2 1 1

u, =  v ! - 1 2

b. The unit circle consists of the vectors of the form x  =  cos(/)5i +  sin(0 ?2» 
and the image of the unit circle consists of the vectors L(x)  =  cos(r)L(i5i) +  
sin(f)L(i;2)- This image is the ellipse whose semimajor and semiminor axes 
are L(?i)  and L(v2). What are the lengths of these axes?

||£(D |)||2 =  (A5i) • (Au,) =  v [ A r Av  1 =  v f  (X|Di) =  A.j(t5i • j5j) =

Likewise,

\\L(v2)\\2 = X2.
Thus,

\\L$i)\\  = V ^ i =  \ / l 0 0 =  10 and ||Z.(u2)ll =  \ f h .  =  V25 =  5.
See Figure 2. We can compute the lengths of vectors L (vj) and L(v  2) directly, 
of course, but the way we did it before is more informative. For example,

so that

1 ' 6  2 ' ' 2 ' 1 10 '

J 5 ~ 7 6. - 1 ~ 7 5 - 2 0 .

\ \L(v{)\\ =
1 ' 10'

7! —20 = 10.
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Definition 8.3.1

Theorem 8.3.2

Theorem 8.3.3

Figure 2

Part (b) of Example 2 shows that the square roots of the eigenvalues of matrix 
A 7 A play an important role in the geometrical interpretation of the transformation 
L (x ) =  A)t. In Example 8.2.3 we have seen that the symmetric matrix A 7A is 
positive semidefinite for any n x m  matrix A , meaning that the eigenvalues of A 7 A 
are positive or zero.

Singular values
The singular values of an n x  m matrix A are the square roots of the eigenvalues 
of the symmetric m x m matrix A 7 A, listed with their algebraic multiplicities. It 
is customary to denote the singular values by o\,  02 , • . . ,  crm and to list them in 
decreasing order:

6 2 

- 7  6
considered in Example 2 areThe singular values of the matrix A =

o\ — y / r { =  10 and 02 =  \ / ^ 2  =  5, since the eigenvalues of A 7 A are k\ =  100 
and X2 =  25.

We can now generalize our work in Example 2.

The image of the unit circle

Let L(x)  =  Ax  be an invertible linear transformation from R 2 to R 2. The image 
of the unit circle under L  is an ellipse E. The lengths of the semimajor and the 
semiminor axes of E  are the singular values o\ and 02 of  A, respectively. ■

Take another look at Figure 2.
We can generalize our findings in Examples 1 and 2 to matrices of arbitrary size.

Let L(x)  =  Ax  be a linear transformation from Rm to R”. Then there exists an 
orthonormal basis 3 | , £2 , • • • * vm of R m such that

a. Vectors L(v\ ),  L(v2) , . . . ,  L(vm) are orthogonal, and
b. The lengths of vectors L( v \ ) ,  L f a ) , . . . ,  L(vm) are the singular values 

o \ , 02, . . . ,  om of matrix A.
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To construct v\, i>2, . . . ,  5m, find an orthonormal eigenbasis for matrix A 7 A. Make 
sure that the corresponding eigenvalues k \ , A2, . . . ,  k m appear in descending order:

^1 > A.2 > • • • > k m >  0 , 

so that ki =  or? for / =  1 , . . . ,  m.  ■

The proof is analogous to the special case n =  m =  2  considered in Examples 1 
and 2 :

a. L(dj) • L(vj )  =  (Avj)  • (Avj)  =  (A5,)r A5;- =  v 7A 7 Avj  =  5/* (kjVj)
=  A-y (Sf- • 5; ) =  0  when i ^  j , and

b. || £.(?,) ||2 =  (AD,) • (Au,-) =  S/A^AS,- =  v f  (XiVi) =  k , ( i ,  • 5,) =  k t =  a f ,  
so that ||L(S,)|| =  ct,-.

Consider the linear transformation

L(x)  =  Ax,  where A =
0  1 1 

1 1 0

a. Find the singular values of A.
b. Find orthonormal vectors vi, v2, V3 in R 3 such that L(i)i), L(v2), and L(vi)  

are orthogonal.
c. Sketch and describe the image of the unit sphere under the transformation L.

Solution

a. A TA =
0  1 

1 1 

1 0

0  1 1 

1 1 0

1 1 0  

1 2 1 

0  1 1

The eigenvalues of A 7 A are Ai = 3 ,  k 2 =  1, X3 =  0. The singular values of 
A are

ct 1 =  y/k] =  V3, a2 =  \ f \ 2 =  1, CT3 =  \/X 3 =  0.

b. Find an orthonormal eigenbasis i>t, v2, vj for A T A (we omit the details):

T ■ r '  r
£ 3  =  span 2 E\ =  span 0 £ 0  =  ker(Ar A) =  span - 1

1 - 1 1

T ' 1' '  r
2 • 0 • ' 3  =  * - 1

. 1. - 1 1

We compute Avj,  Al’2 , A v3 and check orthogonality:

ADj =
7 6 A*2 = 7 I

- 1

1
Av  3 =

We can also check that the length of AS, is a, :

||AS, || =  V 3 =  c t ,,  IIAD2II =  1 =  ct2, II Au3 || =  0 =  <7 3 .

c. The unit sphere in R 3 consists of all vectors of the form

x  =  ci Ci +  C2V2 +  C31J3, where c\  +  c\  +  c\  =  1.
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Theorem 8.3.4

L ( x )  =  c {L ( v i ) +  c2L ( v2),

where cj + c\ <  1. [Recall that L(vi)  =  0.]
The image is the full ellipse shaded in Figure 3. ■

The image of the unit sphere consists of the vectors

Example 3 shows that some of the singular values of a matrix may be zero. 
Suppose the singular values o \ , . . . ,  os of an rt x m matrix A are nonzero, while 
crs+i , . . . ,  om are zero. Choose vectors 5i , . . . ,  vs, vs+ \ , . . . ,  vm for A as introduced 
in Theorem 8.3.3. Note that ||A3/|| =  ax =  0 and therefore A 5/ =  0 for i =  
s +  1 , . . . ,  m.  We claim that the vectors A v \ , . . . ,  Avs form a basis of the image 
of A. Indeed, these vectors are linearly independent (because they are orthogonal 
and nonzero), and they span the image, since any vector in the image of A can be 
written as

A x  = A ( c \v i +  • • • +  csvs H-----+  cmvm)
= c\Av\  H------- l-CyA5s.

This shows that s =  dim(imA) =  rank(A).

Singular values and rank
If A is an n x m matrix of rank r, then the singular values o \ , . . . ,  crr are nonzero, 
while crr+ i , . . . ,  om are zero. ■

T h e  Singular  Value D e c o m p o s i t i o n
Just as we expressed the Gram-Schmidt process in terms of a matrix decomposition 
(the Q R -factorization), we will now express Theorem 8.3.3 in terms of a matrix 
decomposition.

Consider a linear transformation L(x) = Ax  from R m to Rn, and choose an 
orthonormal basis 5 i , . . . ,  vm of R m as in Theorem 8.3.3. Let r =  rank(A). We 
know that the vectors A v \ , . . . ,  A vr are orthogonal and nonzero, with || A5 /1| =  cr,. 
We introduce the unit vectors

1 .  1 -
u i =  — At>i,. . . ,  ur = — Ai>r .

G\ Gr
We can expand the sequence u i , . . . ,  ur to an orthonormal basis u \ , . . . ,  un of R n. 
Then we can write

Avi =  a /2 / for i =  1, . . . ,  r
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and
Avj = 0  for / =  r +  1, . . . ,  m.

We can express these equations in matrix form as follows:

1 1 1 | | | | |

V] Vr ?r+l Vm = CTlM| • • • a r ur 0  • • 0

_ 1 1 1 1 _ 1 1 1 l_
v-----------------------------------------✓

v

1 | 1 1 o\
1 1 1 1

0
Wl Ur 0 • 0 Or

_ 1 1 1 l_

i
Oo

1 1 1 11 1 1 1
0

Wl Ur Ur+\ ‘ ■ • un Or
_ 1 1 1 1 _

0 0.
V --------- -£

or, more succinctly,

,4V =  U'L.

Note that V is an orthogonal m x m  matrix, U is an orthogonal n x n  matrix, and £  
is an n x  m matrix whose first r diagonal entries are crj, . . . ,  o>, and all other entries 
are zero.

Multiplying the equation A V  = U L  with V T from the right, we find that 
A = U L V T.

Singular value decomposition (SVD)
Any n x m  matrix A can be written as

A = U T ,V t ,

where U is an orthogonal n x n  matrix; V is an orthogonal m x nt matrix; and E 
is an n x  m matrix whose first r diagonal entries are the nonzero singular values 
<j\ , . . . ,  or of A, and all other entries are zero [where r =  rank(A)].

Alternatively, this singular value decomposition can be written as

A =  <T|«|i5[ H------- 1- arurv j ,

where the «, and the 5, are the columns of U and V,  respectively. (See Exercise 29.)
■

A singular value decomposition of a 2 x 2 matrix A is presented in Figure 4.
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EXA M PLE  4

EXA M PLE  5

A = L W r

Here are two numerical examples.

Find an SVD for A =  

Solution

6  2 

- 7  6
. (Compare with Example 2.)

In Example 2, we found uj =  —=
v  5

2 

- 1

1

v "  H

and vi =  —7= 
V5

2  1

-1 2

, so that

The columns u\ and 5 2 of (/ are defined as

1 1u | =  — AV| =  —= 
o\ v 5

1 1«2 =  — AV2 =  -7= 
^2  v 5

and therefore

1

- 2

2 '
1

Finally,

You can check that

2  =

1 ' 1 2'

7 ! - 2 1

0 ‘ 10 O'
0 <72. 0 5.

A =  UT.V r

Find an SVD for A =
0  1 1 

1 1 0
. (Compare with Example 3.)
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Solution
Using our work in Example 3, we find that

' 1/V 6  1/V 2 1/V 3
2/x/6  0 - 1 /V 3
1/V 6 - 1 /V 2  1/V 3

' l / V 2  - 1 / V 2  
\ / J l  1/ V 2

V -

u  =

and

I  =

Check that A =  U T ,V T.

V3 0  0  

0  1 0

Consider a singular value decomposition

A =  U I . V T,

where

V =

1 1 1 11

V\

1

Vm and U =
1

Ml

1

Un

_ 1 1 _ _ 1 1 _

We know that

and

Avi =  0[Ui for / =  1, . . . ,  r

Avi  = 0  for i =  r -V 1 , . . . ,  m.

These equations tell us that

ker A =  span(5r+ i , . . . ,  vm)

and

im A = span(wi , . . . ,  £Jr ).

(Fill in the details.) We see that an SVD provides us with orthonormal bases for the 
kernel and image of A.

Likewise, we have

A t = V E t U t or A t U = V Z t .

Reading the last equation column by column, we find that 

A TUi =  OjVi, for i =  1, . . . ,  r,

and

A THi = 0 , for / =  r +  1, . . . ,  n.

(Observe that the roles of vectors m, and 5/ are reversed.)
As before, we have

and
im(Ar ) =  span(Si, . . . ,  vr) 

ker( A r ) =  span(3r+ i , . . . ,  un).



In Figure 5, we make an attempt to visualize these observations. We represent 
each of the kernels and images simply as a line.
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Figure 5

Note that im(A) and ker(Ar ) are orthogonal complements, as observed in The- 
orem 5.4. L

We conclude this section with a brief discussion of one of the many applications 
of the SVD— an application to data compression. We follow the exposition of Gilbert 
Strang (Linear Algebra and Its Applications, 4th ed., Brooks Cole, 2005).

Suppose a satellite transmits a picture containing 1000 x 1000 pixels. If the 
color of each pixel is digitized, this information can be represented in a 1000  x  1000 
matrix A.  How can we transmit the essential information contained in this picture 
without sending all 1,0 0 0 ,0 0 0  numbers?

Suppose we know an SVD

A  =  o\U[vl  + +  (7rUr v J .

Even if the rank r of the matrix A is large, most of the singular values will 
typically be very small (relative to a i). If we neglect those, we get a good approxi­
mation A ^  a\U\vJ  H------- 1- asusvJ ,  where s is much smaller than r. For example,
i f  we choose s =  10 , we need to transmit only the 2 0  vectors o\Tt\ , . . . ,  ct[qU[q and 
v \ , . . . ,  5io in R 1000, that is, 2 0 ,0 0 0  numbers.

EXERCISES 8.3
GOAL Find the singular values and a singular value 
decomposition o f a matrix. Interpret the singular values 
of a 2 x 2  matrix in terms o f the image o f the unit circle.

1. Find the singular values of A = 0
- 2

2. Let A be an orthogonal 2 x 2  matrix. Use the image of 
the unit circle to find the singular values of A.

3. Let A be an orthogonal n x n  matrix. Find the singular 
values of A algebraically.

~1 f
0 1

I 4. Find the singular values of A =

5. Find the singular values of A =  

your answer geometrically.

6 . Find the singular values of A =

p - q  
q P

. Explain

1 2 
2 4

. Find a unit

vector 5i such that ||A5i || =  o\. Sketch the image of 
the unit circle.

Find singular value decompositions for the matrices listed 
in Exercises 7 through 14. Work with paper and pencil. In 
each case, draw a sketch analogous to Figure 4 in the text, 
showing the effect o f the transformation on the unit circle, 
in three steps.
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10.

11.

12.

13.

15.

1 0
0 _2

6 -7
2 6

"l o '
0 2
0 0

"0 l “

1 2 
2 4

(Sec Example 4.)

I

6 3 
- 1  2

(See Example 5.)

14. 2 3 
0 2

If A is an invertible 2 x 2  matrix, what is the relationship 
between the singular values of A and A~] ? Justify your 
answer in terms of the image of the unit circle.

16. II A is an invertible n x n matrix, what is the relationship 
between the singular values of A and A~ 1 ?

17. Consider an n x m matrix A with rank(A) = m, and a 
singular value decomposition A =  UY.V1 . Show that 
the least-squares solution of a linear system Av = b can 
be written as

1 
1
I - 1  -

b • wi _
--------V\ +  ..

b ‘ Um

Om

: 2 matrix

1 1 1" "2 o 'TT

0 1
1 1 - 1 0 0
1 - 1  1 0 0

Use the result of Exercise 17 to find the least-squares 
solution of the linear system

Ax = b. where b =

Work with paper and pencil.

19. Consider an n x tn matrix A of rank r, and a singular
value decomposition A =  U E V 1. Explain how you can 
express the least-squares solutions of a system Ax = b 
as linear combinations of the columns v\ ....... vm of V.

20. a. Explain how any square matrix A can he written as

A =  QS.

where Q is orthogonal and S is symmetric positive 
semidefinite. This is called the polar decomposition 
of A. {Hint'. Write/I =  UY.VT =  U V TV L V ' .)

b. Is it possible to write A =  S\ Q\, where Q\ is or­
thogonal and 51 is symmetric positive semidefinite?

Exercise 20 for A =  

S(C) and A{C) = Q

. Draw a sketch showing

21. Find a polar decomposition A = QS as discussed in
6 2l 

-7 6
'S(C)), where C is the unit circle 

centered at the origin. Compare with Examples 2 and 4 
and with Figure 4.

22. Consider the standard matrix A representing the linear 
transformation

T(\ ) = v x x from to J

where r is a given nonzero vector in IR3. 
a. Use the geometrical interpretation of the cross prod­

uct to find an orthogonal projection T\ onto a plane, 
a scaling 72. and a rotation 7j about a line such that 
T{x) = 73 (72(7'| (.v))). for all x in !R-\ Describe 
the transformations T\ , T2 and 73 as precisely as you 
can: For T\ give the plane onto which we project, 
for 72 find the scaling factor, and for Ty give the line 
about which we rotate and the angle of rotation. All 
of these answers, except for the angle of rotation, will 
be in terms of the given vector 5. Now let Aj, A2, 
and Ay be the standard matrices of these transforma­
tions T\ . 72 and 73, respectively. (You are not asked 
to find these matrices.) Explain how you can use the 
factorization A = AyA2A \ to write a polar decom­
position A =  QS of A. Express the matrices Q and 
S in terms of A \ , A2, and Ay. See Exercise 20.
Find the AyA2A\ and QS factorizations discussed 
in part (a) in the case

“O'
2 

0

b.

23. Consider an SVD

A =  UY.V

of an n x m matrix A. Show that the columns of U form 
an orthonormal eigenbasis for A A1 . What are the as­
sociated eigenvalues? What docs your answer tell you 
about the relationship between the eigenvalues of ATA 
and A A 1 ? (Compare this with Exercise 7.4.57.)

24. If A is a symmetric n x n  matrix, what is the relationship 
between the eigenvalues of A and the singular values of
A!

25. Let A be a 2 x 2 matrix and u a unit vector in R2. Show 
that

<72 < || Am|| < o 1,

where o \ , <72 are the singular values of A. Illustrate this 
inequality with a sketch, and justify it algebraically.

26. Let A be an n x m matrix and 5 a vector in ! 
that

om II51| < Hit'll < 11| r | | ,

Show
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where o\ and am are the largest and the smallest singu­
lar values of A, respectively. (Compare this with Exer­
cise 25.)

27. Let X he a real eigenvalue of an n x n  matrix A. Show 
that

On < W < CF\.

where (j\ and an are the largest and the smallest singular 
values of A , respectively.

28. If >4 is an n x n matrix, what is the product of its sin­
gular values o \ ....... a,, ? State the product in terms of
the determinant of A. For a 2 x 2 matrix A . explain this 
result in terms of the image of the unit circle.

29. Show that an SVD

can be written as

A =  UY.V

A = o\u\v[  + + (TrUrvj.

30. Find a decomposition
_ _ t  — — T

A=cr\U\V\ + ATOM 21’2

for A = . (See Exercise 29 and Example 2.)

31. Show that any matrix of rank r can be written as the sum 
of r matrices of rank 1.

32. Consider an n x m matrix A. an orthogonal n x n ma­
trix S, and an orthogonal m x m matrix R. Compare the 
singular values of A with those of SAR.

33. If the singular values of an n x n matrix A are all 1. is 
A necessarily orthogonal?

34. For which square matrices A is there a singular value 
decomposition A = UY,VT with U = V?

35. Consider a singular value decomposition A =  (J'LV7 of
an n x m matrix A with rank(A) = m. Let ....... vm
be the columns of V and u \ ....... un the columns of
U. Without using the results of Chapter 5, compute 
{Ar A) -1 A1 Uj. Explain the result in terms of least- 
squares approximations.

36. Consider a singular value decomposition A = U Y V 1
of an n x m matrix A with rank( A) = m. Let u \ ....... un
be the columns of U . Without using the results of Chap­
ter 5, compute A{AT A )_l A 1 5/. Explain your result in 
terms of Theorem 5.4.7.

Chapter Eight Exercises

TRUE OR FALSE?
(Work with real numbers throughout.)

1. If A is an orthogonal matrix, then there must exist a sym­
metric invertible matrix S such that 5_ , /45 is diagonal.

2. The singular value of the 2 x 1 matrix is 5.

3. The function q(x\, .\2) =  3.if + 4.x*iA2 + 5*2 is a 
quadratic form.

4. The singular values of any matrix A are the eigenvalues 
of matrix AT A.

5. If matrix A is positive definite, then all the eigenvalues 
of A must be positive.

6 . The function g(.v) = x T 1 2 
2 4 jc is a quadratic form.

7. The singular values of any diagonal matrix D are the 
absolute values of the diagonal entries of D.

8 . The equation 2x2 + 5.r v + 3 v2 =  1 defines an ellipse.

9. All symmetric matrices are diagonalizable.

10. If the matrix 

be positive.

a b 
b c is positive definite, then a must

11. If the singular values of a 2 x 2 matrix A are 3 and 4. 
then there must exist a unit vector u in R2 such that 
II Aw || =  4.

12. The determinant of a negative definite 4 x 4  matrix must 
be positive.

13. If A is a symmetric matrix such that AD =  3i> and 
Aw = 4i7\ then the equation v • w = 0 must hold.

' - 2  I l “
1 - 2  I14. Matrix
I

_2
1

is negative definite.

15. All skew-symmetric matrices are diagonalizable 
(over IR).

16. If A is any matrix, then matrix AAT is diagonalizable.

17. All positive definite matrices are invertible.

3 2 1 i
is diagonalizable.18. Matrix 2 3 2

1 2 3
19. The singular values of any triangular matrix are the ab­

solute values of its diagonal entries.

20. If A is any matrix, then matrix A rA is the transpose 
of AAT.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

If v and w are linearly independent eigenvectors of a 38.
symmetric matrix A , then w must be orthogonal to 5.

For any n x m  matrix A there exists an orthogonal m x m
matrix 5 such that the columns of matrix AS are orthog- 39.
onal.

If A is a symmetric n x n  matrix such that An =  0, then 40.
A must be the zero matrix.

If q(x) is a positive definite quadratic form, then so is a b c
kq(x), for any scalar k. 41. If matrix b d e

If A is an invertible symmetric matrix, then A2 must be c e f
positive definite. exceed c ~

If the two columns v and w of a 2 x 2 matrix A are 
orthogonal, then the singular values of A must be ||5|| 
and || i»||.

If A and S are invertible n x n  matrices, then matrices 
A and ST AS must be similar.

If A is negative definite, then all the diagonal entries of 
A must be negative.

If the positive definite matrix A is similar to the symmet­
ric matrix /?, then B must be positive definite as well.

If A is a symmetric matrix, then there must exist an 
orthogonal matrix S such that SAST is diagonal.

If A and B are 2 x 2 matrices, then the singular values 
of matrices AB and BA must be the same.

If A is any orthogonal matrix, then matrix A + A 
diagonalizable (over IR).

-l

The product of two quadratic forms in 3 variables must 
be a quadratic form as well.

34. The function q(x) =  x T

35.

jc is a quadratic form.

If the determinants of all the principal submatrices of a 
symmetric 3 x 3  matrix A are negative, then A must be 
negative definite.

36. If A and B are positive definite n x n  matrices, then 
matrix A + B must be positive definite as well.

37. If A is a positive definite n x n  matrix and x is a nonzero 
vector in Rn, then the angle between jc and Ax must be 
acute.

If the 2 x 2 matrix A has the singular values 2 and 3 and 
the 2 x 2 matrix B has the singular values 4 and 5, then 
both singular values of matrix AB must be < 15.

The equation ATA =  A A T holds for all square matri­
ces A.

For every symmetric n x n matrix A there exists a con­
stant k such that A -I- kln is positive definite.

is positive definite, then a f  must

42. If A is positive definite, then all the entries of A must be 
positive or zero.

43. If A is indefinite, then 0 must be an eigenvalue of A.

44. If A is a 2 x 2 matrix with singular values 3 and 5, then 
there must exist a unit vector u in R2 such that || Au || = 4 .

45. If A is skew symmetric, then A2 must be negative 
semidefinite.

46. The product of the n singular values of an a? x  n matrix 
A must be | det A\.

47. If A = , then there exist exactly 4 orthogonal1 2

2 3i
2 x 2  matrices S such that S ~ 1 AS is diagonal.

48. The sum of two quadratic forms in 3 variables must be 
a quadratic form as well.

49. The eigenvalues of a symmetric matrix A must be equal 
to the singular values of A.

50. Similar matrices must have the same singular values.

51. If A is a symmetric 2 x 2  matrix with eigenvalues 1 and 
2, then the angle between jc and Ax must be less than 
7t/6, for all nonzero vectors jc in R~.

52. If both singular values of a 2 x 2 matrix A are less than 
5, then all the entries of A must be less than 5.

53. If A is a positive definite matrix, then the largest entry 
of A must be on the diagonal.

54. If A and B are real symmetric matrices such that A3 =
\  then A must be equal to B.



C H A P T E R

Linear Differential Equations

An Introduction to Continuous Dynamical Systems

There are two fundamentally different ways to model the evolution of a dynamical 
system over time: the discrete approach and the continuous approach. As a simple 
example, consider a dynamical system with only one component.

EXAM  PLE I You want to open a savings account and you shop around for the best available interest
rate. You learn that DiscreetBank pays 7%, compounded annually. Its competitor, the 
Bank o f  Continuity, offers 6% annual interest, compounded continuously. Everything 
else being equal, where should you open the account?

Solution
Let us examine what will happen to your investment at the two banks. At Discreet­
Bank, the balance grows by 7% each year if no deposits or withdrawals are made.

This equation describes a discrete linear dynamical system with one component. 
The balance after t years is

The balance grows exponentially with time.
At the Bank of Continuity, by definition of continuous compounding, the balance 

x( t)  grows at an instantaneous rate of 6 % of the current balance:

new
balance

old
balance 4- interest

4 I
*(f +  l ) =  x(t)  
x( t  +  1) =

I
+  0 .07jc(/)

1.07jc(D

x ( t )  =  ( I . O I Y x q .

—  =  6% of balance x ( t ), 
d t

397



398 C H A P T E R  9 Linear Differential Equations

Theorem 9 .1. 1

or

d4 = 0 M x .
dt

Here, we use a differential equation to model a continuous linear dynamical sys­
tem with one component. We will solve the differential equation in two ways, by 
separating variables and by making an educated guess.

Let us try to guess the solution. We think about an easier problem first. Do we 
know a function x ( t ) that is its own derivative: d x / d t  =  x ? You may recall from 
calculus that x( t)  = el is such a function. [Some people define x( t)  =  ex in terms 
of this property.] More generally, the function x( t)  = Cer is its own derivative, for 
any constant C. How can we modify x( t)  = Ce ' to get a function whose derivative 
is 0.06 times itself? By the chain rule, x( t)  = Ce006t will do:

—  =  — (Ce0M‘) =  0.06Ceoo6f =  0.06* (r). 
dt  dt

Note that Jt(0) =  Ce° = C; that is, C is the initial value, Jto. We conclude that the 
balance after t years is

x (t) =  e006V

Again, the balance x( t)  grows exponentially.
Alternatively, we can solve the differential equation d x / d t  = 0.06x by sepa­

rating variables. Write

dx
—  =  0.06 dt
x

and integrate both sides to get

In x =  0.06f -I- k ,

for some constant k. Exponentiating gives
x — _  £0.06t+k _  ^0.06/^

where C =  ek.
Which bank offers the better deal? We have to compare the exponential functions 

(1.07)' and e0 06t. Using a calculator (or a Taylor series), we compute

e006t = (e0 06)' % (1.0618)'

to see that DiscreetBank offers the better deal. The extra interest from continuous 
compounding does not make up for the one-point difference in the nominal interest 
rate. •

We can generalize.

Exponential growth and decay
Consider the linear differential equation

dt
with initial value xo (k is an arbitrary constant). The solution is

x( t)  =  ekt X q .

The quantity jc will grow or decay exponentially (depending on the sign of k). See 
Figure 1. ®
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X

x

Figure I (a) jc (r) =  ekt with positive k. Exponential growth, (b) x { t ) =  ekt with negative k. Exponential decay.

Now consider a dynamical system with state vector jc(r) and components x\ ( /),  
. . . ,  x„(t). In Chapter 7, we use the discrete approach to model this dynamical 
system: we take a snapshot of the system at times t =  1, 2 , 3 , . . . ,  and we describe 
the transformation the system undergoes between these snapshots. If x ( t+ 1) depends 
linearly on x  (f), we can write

x( t  +  1) =  A 5(0 ,

or

x( t)  =  A 'xo,

for some n x n  matrix A.
In the continuous approach, we model the gradual change the system undergoes 

as time goes by. Mathematically speaking, we model the (instantaneous) rates o f  
change of the components of the state vector jc(f), or their derivatives

dx\ d x 2 d xn
H i "  ~ d i ’ ~dTm

If these rates depend linearly on x \ , *2 , . . .  , x n, then we can write 

dx\
—  =  a n x  1 +  a[2x 2 +  ■ ■ ■ +  a Xnx n 
at

d x 2
—  = a2\X\ +  a22x 2 +  • • ■ +  a2nx n 
at

dxn
dt

— Qn\X\ ~h ar12X2 ~h • • • ~h annxn

or, in matrix form,

dx
~di

=  Ajc,

where

A =

a 11 012 a\n
a2\ a22 * * * Cl2n

_an1 an2 ••• ann
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Theorem 9 .1.2

The derivative of the parameterized curve x( t)  is defined componentwise:

dx\
~dt
dxi

dx
—  =  dt 
dt

d xn
L ~dt J

We summarize these observations:

Linear dynamical systems: discrete versus continuous
A linear dynamical system can be modeled by

x(t  +  1) =  Bx(t)  (discrete model),

or
dx

=  Ax  (continuous model).
dt

A and B are n x n matrices, where n is the number of components of the system.

We will first think about the equation

dx
. = Ax  

dt
from a graphical point of view when A is a 2 x 2 matrix. We are looking for the 
parameterized curve

M o l
-*2 ( 0

that represents the evolution of the system from a given initial value x^. Each point 
on the curve x(t)  will represent the state of the system at a certain moment in time, 
as shown in Figure 2.

Figure 3

It is natural to think of the trajectory x( t)  in Figure 2 as the path of a moving 
particle in the jci-jt2-plane. As you may have seen in a previous course, the velocity 
vector d x / d t  of this moving particle is tangent to the trajectory at each point. 1 See 
Figure 3.

1 It is sensible to attach the velocity vector d x /d t at the endpoint of the state vector *(/), indicating the 
path the particle would take if it were to maintain its direction at time r.
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In other words, to solve the system

for a given initial state io, we have to find the trajectory in the jci-*2-plane that 
starts at j?o and whose velocity vector at each point .v is the vector Ajc. The existence 
and uniqueness of such a trajectory seems intuitively obvious. Our intuition can 
be misleading in such matters, however, and it is comforting to know that we can 
establish the existence and uniqueness of the trajectory later. See Theorems 9.1.3 
and 9.2.3 and Exercise 9.3.48.

We can represent Ax  graphically as a vector field in the jCj-jC2-plane: At the 
endpoint of each vector jc, we attach the vector Ajc. To get a clearer picture, we often 
sketch merely a direction field for Ajc, which means that we will not necessarily 
sketch the vectors Ajc to scale. (We care only about their direction.)

To find the trajectory jc(f), we follow the vector field (or direction field); that is, 
we follow the arrows of the field, starting at the point representing the initial state 
xQ. The trajectories are also called the flow lines of the vector field Ajc.

To put it differently, imagine a traffic officer standing at each point of the plane, 
showing us in which direction to go and how fast to move (in other words, defining 
our velocity). As we follow these directions, we trace out a trajectory.

EXAM PLE 2 Consider the linear system d x / d t  =  Ajc, where A =  

a direction field for A3c. Draw rough trajectories for t

. In Figure 4, we sketch

le three given initial values.

Solution
Sketch the flow lines for the three given points by following the arrows, as shown in 
Figure 5.

This picture does not tell the whole story about a trajectory jc(/). We don’t know 
the position x( t)  of the moving particle at a specific time t. In other words, we know 
roughly which curve the particle follows, but we don’t know how fast it moves along 
that curve. ■

x2 -y2
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As we look at Figure 5, our eye’s attention is drawn to two special lines, along 
which the vectors Ax  point either radially away from the origin or directly toward 
the origin. In either case, the vector Ax  is parallel to x:

Ax  =  kx,

for some scalar X. This means that the nonzero vectors along these two special lines 
are just the eigenvectors of A , and the special lines themselves are the eigenspaces. 
See Figure 6 .

Figure 6 (a) A x  =  \ x ,  for a positive k. (b) A x  =  Xx, for a 
negative a.

In Examples 7.2.1 and 7.3.2 we have seen that the eigenvalues of A =

are 5 and — 1, with corresponding eigenvectors and  ̂ . These results agree

with our graphical work in Figures 4 and 5. See Figure 7.
As in the case of a discrete dynamical system, we can sketch a phase portrait for 

the system d x / d t  =  A x  that shows some representative trajectories. See Figure 8 .
In summary, if the initial state vector io  is an eigenvector, then the trajectory 

moves along the corresponding eigenspace, away from the origin if the eigenvalue 
is positive and toward the origin if the eigenvalue is negative. If the eigenvalue is 
zero, then Jco is an equilibrium solution: x( t)  =  xo, for all times t.

How can we solve the system d x / d t  =  Ax  analytically? We start with a simple 
case.

A?
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EXAMPLE 3

EXA M PLE  4

dx
I t

2 0  

0 3

Find all solutions of the system

Solution
The two differential equations

dx]
i r  = 2x '

dx  2
—  =  3*2 
dt

are unrelated, or uncoupled; we can solve them separately, using Theorem 9.1.1:

x i(/) =  e2lx\(0),  

x 2(t) =  e3'* 2 (0 ).

Thus,

x( t)  =
e2,x m
e* x2(0)

Both components of Jc(/) grow exponentially, and the second one will grow faster 
than the first. In particular, if one of the components is initially 0 , it remains 0  for 
all future times. In Figure 9, we sketch a rough phase portrait for this system. ■

Now let’s do a slightly harder example:

Find all solutions of the system 

dx
—  =  Ax,  where A =  
dt

1 2 

-1 4

Solution
We have seen that the eigenvalues and eigenvectors of A tell us a lot about the 
behavior of the solutions of the system d x / d t  =  Ax.  The eigenvalues of A are
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A. i = 2  and X2 =  3 with corresponding eigenvectors v\ =

This means that 5 M S  =  B,  where 5 =

considered in Example 3.
We can write the system

2 1 

1 1
and B =

2 0 
0 3

and v2 =  *
u

, the matrix

as

or

dt

=  S B S - ' i ,
dt

= B S - '  x ,
dt
dx

or (see Exercise 51)

(S- I jc) =  B(S~'x) .- 1-
dt

Let us introduce the notation c(t) = S 15(/); note that c(t) is the coordinate vector 
of x( t)  with respect to the eigenbasis v \ , v 2. Then the system takes the form

*L
~dt

= Be,

which is just the equation we solved in Example 3. We found that the solutions are 
of the form

c(t) =
e2tc\ 
e3t c2

where c\ and c2 are arbitrary constants. Therefore, the solutions of the original 
system

f  = Ax  
dt

are

'2 r e2,C\ 21 ’2" , 3f 1
i i _e3>c2

=  c\e
1

+  C2e
1

x( t)  = Sc(t)  =

We can write this formula in more general terms as

x  (t) =  Ciex,tV] +  C2ek2'i>2- 

Note that c\ and C2 are the coordinates of Jc(0) with respect to the basis ?i, V2, since

*(0) =  CiV| +  C2V2-

It is informative to consider a few special trajectories: If c\ =  1 and C2 =  0, the 
trajectory

x(t) = e,21 2

1
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Theorem 9 .1 •!

moves along the eigenspace £ 2  spanned by 

and C2 =  1, we have the trajectory

x( t)  =  e3t

moving along the eigenspace £ 3.

If C2 7̂  0, then the entries of C2e3t

, as expected. Likewise, if q  = 0

will become much larger (in absolute

value) than the entries of c\ e2t as t goes to infinity. The dominant term C2e3t

associated with the larger eigenvalue, determines the behavior of the system in the 
distant future. The state vector x( t)  is almost parallel to £ 3  for large t. For large 
negative f, on the other hand, the state vector is very small and almost parallel to £ 2 . 

In Figure 10, we sketch a rough phase portrait for the system d x / d t  =  Ax.

*2

This is a linear distortion of the phase portrait we sketched in Figure 9. More 
"2 11

transforms the phase portraits in Figure 9 into theprecisely, the matrix S =
1 1

phase portrait sketched in Figure 10 (transforming e\ into the eigenvector and

ei into )•

Our work in Examples 3 and 4 generalizes readily to any n x n  matrix A that is 
diagonalizable over IR (i.e., for which there is an eigenbasis in '

Continuous dynamical systems
Consider the system d x / d t  = Ax.  Suppose there is a real eigenbasis Si , . . . ,  vn for 
A, with associated eigenvalues k  \ , . . . ,  Xn. Then the general solution of the system is

x( t )  =  C[ek]tv\ + + cnex"'v„.

The scalars c i , c 2 , are the coordinates of jco with respect to the basis
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EXA M PLE  5

We can write the preceding equation in matrix form as

* ( 0  =

=  S

i>i v2

I I

o
0  e*2'

0  0

r ^ , ;  o 

0  ek2’

0  0

0
0

_c-r
C2

.Cn.

where S = V\  v2 Vn

We can think of the general solution as a linear combination of the solutions 
ekitvi associated with the eigenvectors 5/. Note the analogy between this solution 
and the general solution of the discrete dynamical system x ( t  +  1) =  A x ( t ),

x( t )  = C\k \v{ + • • • + Cnkfi,,.

See Theorem 7.1.3.
The terms k\ are replaced by ek,t. We have already observed this fact in a 

dynamical system with only one component. (See Example 1.)
We can state Theorem 9.1.3 in the language of linear spaces. The solutions of 

the system d x / d t  = Ax  form a subspace of the space F(R,  R '7) of all functions 
from R to R". (See Exercises 22 and 23.) This space is fl-dimensional, with basis 
eMtv\, eA2tV2i . . . ,  ek,,tvn.

Consider a system d x / d t  =  Ax,  where A is diagonalizable over R. When is the zero 
state a stable equilibrium solution? Give your answer in terms of the eigenvalues 
of A.

Solution

Note that lim ekt =  0 if (and only if) k is negative. Therefore, we observe stability
t —► oo

if (and only if) all eigenvalues of A are negative. ■

Consider an invertible 2 x 2  matrix A with two distinct eigenvalues A.i > k 2- 
Then the phase portrait of d x / d t  =  Ax  looks qualitatively like one of the three 
sketches in Figure 11. We observe stability only in Figure 1 lc.

Consider a trajectory that does not run along one of the eigenspaces. In all three 
cases, the state vector x( t )  is almost parallel to the dominant eigenspace for 
large t. For large negative t, on the other hand, the state vector is almost parallel to 
E \ 2. Compare with Figure 7.1.11.
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(a) (b)

Figure 11 (a) A-i > kj > 0. (b) X| > 0 > X2. (c) 0 > Xi > X2.

(c)

EXERCISES 9.1
GOAL Use the concept o f  a continuous dynamical sys­
tem. Solve the differential equation d x / dt = kx. Solve the 
system dx/dt  =  Ax when A is diagonalizable over R, and 
sketch the phase portrait for  2 x 2  matrices A.

Solve the initial value problems posed in Exercises 1 
through 5. Graph the solution.

1. —  =  5x  with jc(0) =  7 
d t
d x

2. —  =  —0.71 jc with jc(0) =  - e  
dt
d P

3. —  = 0.03 P  with P( 0)  = 7 
d t
d y

4. —  =  0.81 with v(0) =  —0.8 
d t

5. ^  =  0.8y with v(0) =  -0 .8  
dt

Solve the nonlinear differential equations in Exercises 6 
through 11 using the method of  separation of  vari­
ables: Write the differential equation dx /d t  =  / ( jc) as 
d x / f { x )  = dt and integrate both sides.

6. £  =  ! . , « »  = I 
d t x
d x  t

7. —  =  jc , jc(0) =  1. Describe the behavior of your
■solution as t increases.

8. ^  =  y fx , jc(0) =  4 
d t

9. ^  =  xk (with k ^  1), jc(0) =  1 
dt
dx  1

10- =  — 7 T ’*(°) =  °dt  cos(jc)

11. ^  =  1 4 - x 2, jc(0) =  0 
dt

12. Find a differential equation of the form dx /d t  = kx  for 
which jc(r) =  3' is a solution.

13. In 1778, a wealthy Pennsylvanian merchant named 
Jacob DeHaven lent $450,000 to the Continental 
Congress to support the troops at Valley Forge. The 
loan was never repaid. Mr. DeHaven’s descendants have 
taken the U.S. government to court to collect what they 
believe they are owed. The going interest rate at the time 
was 6%. How much were the DeHavens owed in 1990
a. if interest is compounded yearly?
b. if interest is compounded continuously?
(Source: Adapted from The New York Times, May 27, 
1990.)

14. The carbon in living matter contains a minute proportion 
of the radioactive isotope C-14. This radiocarbon arises 
from cosmic-ray bombardment in the upper atmosphere 
and enters living systems by exchange processes. Af­
ter the death of an organism, exchange stops, and the 
carbon decays. Therefore, carbon dating enables us to 
calculate the time at which an organism died. Let jc (/) be 
the proportion of the original C-14 still present t years 
after death. By definition, jc(0) =  1 =  100%. We are 
told that x(t) satisfies the differential equation

dx
~di

1

8270
x.

a. Find a formula for x(t).  Determine the half-life of 
C-14 (that is, the time it takes for half of the C-14 to 
decay).

b. The Iceman. In 1991, the body of a man was found in 
melting snow in the Alps of Northern Italy. A well- 
known historian in Innsbruck, Austria, determined 
that the man had lived in the Bronze Age, which 
started about 2000 B.C. in that region. Examination 
of tissue samples performed independently at Zurich
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and Oxford revealed that 47% of the C-14 present 
in the body at the time of his death had decayed. 
When did this man die? Is the result of the carbon 
dating compatible with the estimate of the Austrian 
historian?

15. Justify the “Rule of 69”: If a quantity grows at a constant 
instantaneous rate of k%, then its doubling time is about 
69/k. Example: In 2008 the population of Madagascar 
was about 20 million, growing at an annual rate of about 
3%, with a doubling time of about 69/3 =  23 years.

Consider the system

dx
~di

Xx 0 
0 X2

For the values o fk \  and X2 given in Exercises 16 through 
19, sketch the trajectories for all nine initial values shown 
in the following figure. For each o f the points, trace out 
both the future and the past o f the system.

x 2

• ' 1 •

1

• •

1, A. 2 =  -1 17. k\ = 1, *2

1 ro II 1 K> 19. Xi = 0 , k2

20. Consider the system dx/dt  =  Ax with A =  ^ ^

Sketch a direction field for Ax. Based on your sketch, de 
scribe the trajectories geometrically. From your sketch,

can you guess a formula for the solution with 5o = ^

Verify your guess by substituting into the equations.

0 121. Consider the system dx/dt  = Ax with A =
0 0

Sketch a direction field of Ax. Based on your sketc 
describe the trajectories geometrically. Can you find the 
solutions analytically?

22. Consider a linear system dx/dt  =  Ax of arbitrary size. 
Suppose x \ (t ) and *2 (0  are solutions of the system. Is 
the sum x(t) = x\ (t) +  x2(t) a solution as well? How 
do you know?

23. Consider a linear system dx/dt  =  Ax of arbitrary size. 
Suppose x\(t) is a solution of the system and k is an

arbitrary constant. Is 5(r) =  kx 1 (t) a solution as well? 
How do you know?

24. Let A be an n x n  matrix and k a scalar. Consider the 
following two systems:

dt

dc
dt

=  (A + k ln)c.

(I)

(U)

Show that if 5(f) is a solution of system (I), then 
c(t) = ektx(t) is a solution of system (II).

25. Let A be an n x n matrix and k a scalar. Consider the 
following two systems:

f = A5 - dt

dc
— =  kAc. 
dt

(I)

(II)

Show that if 5(f) is a solution of system (I), then 
c(t) =  x(kt) is a solution of system (II). Compare the 
vector fields of the two systems.

In Exercises 26 through 32, solve the system with the given 
initial value.

26. £  =
dt

27. dl  =
dt

28- ~T =dt

dx
29‘ T" =dt

dx 
30. —  =

dt

M. f =dt

1 2
3 0

- 4  3
2 -3

4 3

2
4

2
4

1
3
2

x with jf(0 ) =  

x with i ( 0 ) =  

x with 5(0) =  

x with 5(0) =

x with 5(0) = 2
- 1

5 with 5(0) =
1

- 2
1

Sketch rough phase portraits for the dynamical systems 
given in Exercises 32 through 39.

dx _1 2
~dt = 3 0

5

dx '4 3"
~dt = 4 8

5

_  dx
" •  T , ~  

35. ^  =dt

- 4  3
2 -3

1 2
2 4

36. x(t + 1) =

37. 5 ( f+  1) =

0.9 0.2 
0.2 1.2

1 0.3
-0 .2  1.7

5(f)

x(t)



9.1 An Introduction to Continuous Dynamical Systems 409

38. 5(f +  1) =

39. 5(f +  1) =

1.1
-0.4

0.2
0.5

0.8 -0 .4
0.3 1.6

5(f)

5(f)

40. Find a 2 x 2 matrix A such that the system dx/dt  =  Ax 
has

5(f) =

as one of its solutions.

2e2' + 3e3' 
3e21 +  4e3'

41. Consider a noninvertible 2x2  matrix A with two distinct 
eigenvalues. (Note that one of the eigenvalues must be
0.) Choose two eigenvectors ui and V2 with eigenvalues 
k\ =  0 and A.2 as shown in the accompanying figure. 
Suppose A-2 is negative. Sketch a phase portrait for the 
system dx/dt = Ax> clearly indicating the shape and 
long-term behavior of the trajectories.

x 2

*1

42. Consider the interaction of two species of animals in a 
habitat. We are told that the change of the populations 
j t ( f )  and y(t) can be modeled by the equations

—  =  1.4* — 1.2 y 
dt
dy
dt

=  0 .8* -  \Ay

where time f  is measured in years.
a. What kind of interaction do we observe (symbiosis, 

competition, or predator-prey)?
b. Sketch a phase portrait for this system. From the na­

ture of the problem, we are interested only in the first 
quadrant.

c. What will happen in the long term? Does the outcome 
depend on the initial populations? If so, how?

43. Answer the questions posed in Exercise 42 for the fol­
lowing system:

dx c

£ = - 2 , + 4 ,at

44. Answer the questions posed in Exercise 42 for the fol­
lowing system:

dx
3 7 =  x + i y

dy .  
d i = l x -  r

45. Two herds of vicious animals are fighting each other 
to the death. During the fight, the populations J t ( f )  and 
y(t) of the two species can be modeled by the following 
system:.2

—  =  - 4  y
dx
~dt
dy_
dt

a. What is the significance of the constants —4 and
— 1 in these equations? Which species has the more 
vicious (or more efficient) fighters?

b. Sketch a phase portrait for this system.
c. Who wins the fight (in the sense that some individ­

uals of that species are left while the other herd is 
eradicated)? How does your answer depend on the 
initial populations?

46. Repeat Exercise 45 for the system 
dx
- J i =  ~ py
dy
dI  = ~ qX

where p and q are two positive constants.3

47. The interaction of two populations of animals is modeled 
by the differential equations

dx
- x -t- ky

dt
dy_
dt

=  kx — Ay

for some positive constant k.
a. What kind of interaction do we observe? What is the 

practical significance of the constant k?
b. Find the eigenvalues of the coefficient matrix of the 

system. What can you say about the signs of these 
eigenvalues? How does your answer depend on the 
value of the constant k ?

c. For each case you discussed in part (b), sketch a rough 
phase portrait. What does each phase portrait tell you 
about the future of the two populations?

This is the simplest in a series of combat models developed 
by F. W. Lanchester during World War I (F. W. Lanchester, 
Aircraft in Warfare, the Dawn o f the Fourth Arm, Tiptree, 
Constable and Co., Ltd., 1916).
3The result is known as Lanchester’s square law.
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48. Repeat Exercise 47 for the system 
dx
—  = — x + ky 
dt

- r  = x — 4y

where k is a positive constant.

49. Here is a continuous model of a person’s glucose regu­
latory system. (Compare this with Exercise 7.1.52.) Let 
g(t) and h(t) be the excess glucose and insulin concen­
trations in a person’s blood. We are told that

g =  - g - 0 . 2 h

dh
—  =  0 .6g -  0 .2/z 
dt

where time t is measured in hours. After a heavy holi­
day dinner, we measure g(0) =  30 and h(0) =  0. Find 
closed formulas for g(t) and h(t). Sketch the trajectory.

50. Consider a linear system dx/dt  =  Ax, where A i sa2x2 
matrix that is diagonalizable over R. When is the zero 
state a stable equilibrium solution? Give your answer in 
terms of the determinant and the trace of A.

51. Let x (t) be a differentiable curve in ! 
matrix. Show that

d dx
j ^ sx) = s ^

52. Find all solutions of the system

and S an n x n

dx
~dt

Xy

where k is an arbitrary constant. Hint: Exercises 21 and 
24 are helpful. Sketch a phase portrait. For which choices 
of X is the zero state a stable equilibrium solution?

53. Solve the initial value problem 

dx __ p —q
dt ~  q p

x with x q  =

Sketch the trajectory for the cases when p is positive, 
negative, or 0. In which cases does the trajectory ap­
proach the origin? (Hint: Exercises 20, 24, and 25 are 
helpful.)

54. Consider a door that opens to only one side (as most 
doors do). A spring mechanism closes the door automat­
ically. The state of the door at a given time t (measured 
in seconds) is determined by the angular displacement 
0(t) (measured in radians) and the angular velocity 
(o(t) = dO/dt. Note that 0 is always positive or zero 
(since the door opens to only one side), but co can be 
positive or negative (depending on whether the door is 
opening or closing).

When the door is moving freely (nobody is pushing or 
pulling), its movement is subject to the following differ­
ential equations:

d0
—  =  a) (the definition of co)
dt
da>
—  = -  20 -  3co 
dt

(—20 reflects the force of the 
spring, and —3co models friction).

a. Sketch a phase portrait for this system.
b. Discuss the movement of the door represented by the 

qualitatively different trajectories. For which initial 
states does the door slam (i.e., reach 0 = 0 with 
velocity co < 0)?

55. Answer the questions posed in Exercise 54 for the 
system

dO _  
dt ~

O)

d(L>
Tt  = - Pe - q a >

where p and q are positive, and q2 > 4 /7.

The Complex Case: Euler’s Formula

Consider a linear system

f  =  A*'  dt

where the n x n matrix A is diagonalizable over C: There exists a complex eigenbasis 
v \ , . . . ,  vn for A, with associated complex eigenvalues X \ , . . . ,  Xn. You may wonder 
whether the formula

x( t)  = c \ekltV[ H------- t-cneXntvn
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(with complex a )  produces the general complex solution of the system, just as in 
the real case (Theorem 9.1.3).

Before we can make sense out of the formula above, we have to think about the 
idea of a complex-valued function and in particular about the exponential function 
ekt for complex X.

C o m p lex - V a lu e d  Funct ions
A complex-valued function z = f ( t )  is a function from R to C (with domain R 
and target space C): The input t is real, and the output z is complex. Here are two 
examples:

For each f, the output z can be represented as a point in the complex plane. As 
we let f vary, we trace out a trajectory in the complex plane. In Figure 1, we sketch 
the trajectories of the two complex-valued functions just defined.

Figure I (a) The trajectory of z =  t + i t 2. (b) The trajectory of z =  cos t 4- i sin t.

We can write a complex-valued function z(f) in terms of its real and imaginary 
parts:

(Consider the two preceding examples.) If x (t) and y(t)  are differentiable real-valued 
functions, then the derivative of the complex-valued function z(t) is defined by

z = t + i t 2, 
z =  cosf +  i sinf.

t = - 1 
z = -1  +

/ = 7112
z - i

t = 0 
z = 0

r = 0
z = 1

t = 3tt/2 
z = - /

(b)

z(t) =  x( t)  +  iy(t).

dz  dx  .dy  
dt ~  d t  +  * d t '

For example, if

z(f) =  t +  i t 2,

then

If

z(t)  = cos t +  i sinf,

then
dz
—  =  — sin f +  / cosf. 
dt



412 C H A P T E R  9 Linear Differential Equations

D e fin it io n  9.2.1

Please verify that the basic rules of differential calculus (the sum, product, 
and quotient rules) apply to complex-valued functions. The chain rule holds in the 
following form: If z =  / ( 0  is a differentiable complex-valued function and t = g(s) 
is a differentiable function from R to K, then

dz dz  dt
ds dt ds

The derivative d z / d t  of a complex-valued function z(t),  for a given f, can be visu­
alized as a tangent vector to the trajectory at z(t),  as shown in Figure 2.

Figure 2

Next let’s think about the complex-valued exponential function z = ekt, where 
k  is complex and t real. How should the function z =  eKt be defined? We can get 
some inspiration from the real case: The exponential function x  = ekt (for real k) 
is the unique function such that d x / d t  = kx  and j c ( 0 )  =  1. (Compare this with 
Theorem 9.1.1.)

We can use this fundamental property of real exponential functions to define the 
complex exponential functions:

Complex exponential functions

If A is a complex number, then z = ekt is the unique complex-valued function such 
that

dz
—  =  kz  and z( 0 ) =  1 . 
dt

(The existence of such a function, for any k, will be established later; the proof 
of uniqueness is left as Exercise 38.)

It follows that the unique complex-valued function z(t) with

dz
—  = kz  and z(0 ) =  zo 
dt

is

z(t) = ex,zo.

for an arbitrary complex initial value zo-
Let us first consider the simplest case, z = elt, where k =  i . We are looking for 

a complex-valued function z(t)  such that d z / d t  = iz and z(0 ) =  1.
From a graphical point of view, we are looking for the trajectory z(t) in the com­

plex plane that starts at z =  1 and whose tangent vector d z / d t  = iz  is perpendicular 
to z at each point. (See Example 1 of Section 7.5.) In other words, we are looking 
for the flow line of the vector field in Figure 3 starting at z =  1.

The unit circle, with parameterization z(0  =  cos t + i sin r, satisfies

dz  . .
—  =  — sinr +  / cosr =  iz{t),  
dt

and z(0) =  1. See Figure 4 .
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Figure 3

We have shown the following fundamental result:

T h e o rem  9 .2 .2  Euler’s formula
elt =  cosr +  i sinr ■

The case t =  n  leads to the intriguing formula e,n =  — 1; this has been called 
the most beautiful formula in all of mathematics.4

Euler’s formula can be used to write the polar form of a complex number more 
succinctly:

z =  r(co s0 +  i sin0) = re l°

Now consider z =  ekt, where k  is an arbitrary complex number, k = p  +  iq. 

By manipulating exponentials as if they were real, we find that

eXt =  e {p+iq)t =  epteiqt =  ept (cos(qt) +  / sm(qt)).

We can validate this result by checking that the complex-valued function

z(t) = ept (cos(qt) +  i sin(^r))

does indeed satisfy the definition of ek\  namely, dz/dt =  kz  and z(0 ) =  1 :

^  =  p e pt (cos (qt) +  i sin(gr)) +  ept (— q sin (qt) +  iq  cos(^r))

=  (p  +  iq )e pt (cos(qt) +  i sin(^r)) =  kz.

E X A M P L E  I Sketch the trajectory of the complex-valued function z(t) =  e(0 1̂+,u in the complex
plane.

Figure 5 Euler’s 
likeness and his 

celebrated formula 
are shown on a 
Swiss postage 

stamp.

Solution
z(t) =  e0 ,,e 'r =  e0 ,' ( c o s t  +  i sin/)

4Benjamin Peirce (1809-1880), a Harvard mathematician, after observing that etn =  — 1, used to 
turn to his students and say, “Gentlemen, that is surely true, it is absolutely paradoxical, we cannot 
understand it, and we don’t know what it means, but we have proved it, and therefore we know it must 
be the truth.” Do you not now think that we understand not only that the formula is true but also what 
it means?
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EXA M PLE  2

Theorem 9.2.3

The trajectory spirals outward as shown in Figure 6 , since the function eo u grows 
exponentially. ■

For which complex numbers k  is lim eAl =  0?
/ —► OO

Solution 
Recall that

ekt = e(p+iq)t = ept(cos(qt) +  i sin(gr)),

so that \ekt\ =  ept. This quantity approaches zero if (and only if) p  is negative (i.e., 
if ept decays exponentially).

We summarize: lim ekt =  0 if (and only if) the real part of k  is negative. ■

We are now ready to tackle the problem posed at the beginning of this section: 
Consider a system dx  /d t  =  Ax ,  where the n x n matrix A has a complex eigenbasis 
3 ] , . . . ,  v„, with eigenvalues k \ , . . . ,  k n. Find all complex solutions x ( t ) of this 
system. By a complex solution we mean a function from R  to C" (that is, t is real 
and x  is in C"). In other words, the component functions x \ ( t ) , . . . ,  xn(t) o fx ( t )  are 
complex-valued functions.

As you review our work in the last section, you will find that the approach we 
took to the real case applies to the complex case as well, without modifications:

Continuous dynamical systems with complex eigenvalues
Consider a linear system

Suppose there exists a complex eigenbasis , . . . ,  vn for A,  with associated complex 
eigenvalues k \ , . . . ,  k n. Then the general complex solution of the system is

x( t)  = c xekxtv\ H------- b cnekntvn,

where the c, are arbitrary complex numbers.
We can write this solution in matrix form, as in Theorem 9.1.3.
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Theorem 9.2.4

EXA M PLE  3

Theorem 9.2.5

We can check that the given curve x( t)  satisfies the equation d x / d t  =  Ax:  We 
have

dx  ,
—  = cik ie  1 vi + ----- 1- c„X„e " vn

(by Definition 9.2.1), and

Ax  =  C\ex''X\V\ H--------h cneK,k nvn,

because the 5, are eigenvectors. The two answers match.
When is the zero state a stable equilibrium solution for the system d x / d t  = Ax?  

Considering Example 3 and the form of the solution given in Theorem 9.2.3, we 
can conclude that this is the case if (and only if) the real parts of all eigenvalues are 
negative (at least when A  is diagonalizable over C). The nondiagonalizable case is 
left as Exercise 9.3.48.

Stability of a continuous dynamical system
For a system

dt
the zero state is an asymptotically stable equilibrium solution if (and only if) the real 
parts of all eigenvalues of A are negative. ■

Consider the system d x / d t  =  A x , where A is a (real) 2 x 2  matrix. When is the 
zero state a stable equilibrium solution for this system? Give your answer in terms 
of the trace and the determinant of A.

Solution
We observe stability either if A has two negative eigenvalues or if A has two conjugate 
eigenvalues p ± i q , where p  is negative. In both cases, tr A is negative and det A is 
positive. Check that in all other cases tr A > 0 or det A <  0. ■

Determinant, trace, and stability
Consider the system

where A is a real 2 x 2  matrix. Then the zero state is an asymptotically stable 
equilibrium solution if (and only if) tr A < 0  and det A >  0. ■

As a special case of Theorem 9.2.3, let’s consider the system

dx
dt

= Ax,

where A is a real 2 x 2  matrix with eigenvalues A 1,2 =  p ± i q  (where q ^  0) and 
corresponding eigenvectors v \ f2 = v ±  iw.

Theorems 9.1.3 and 9.2.3 tell us that

x( t)  = P 

= eptP

r ek\t 

0
P - %  = P

e(p+iq)t 0  '
0 e(p~iq)t ^

cos (qt)  +  i sin(<7f) 0

0  cos (qt) — i sin(<7/)

P ~ 'x  o

P ~ 'x o,
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Theorem 9.2.6

EXA M PLE  4

where P = [v + iw v — i w ]. Note that we have used Euler’s formula (Theo­
rem 9.2.2).

We can write this formula in terms of real quantities. By Example 6  of Sec­
tion 7.5,

cos (qt) +  / sin(<?/) 0

0  cos(</0  — / sin(^/)
=  R

cos (qt) — sin(^r) 
sin(<7r) cos (qt) R,

where

Thus,

R =
i —t
1 1

x( t)  = epl P R ~ l 

=  eptS

cos (qt) —sin (qt) 
sin(<y/) cos (qt)

cos (qt) - s i n  (qt)'  
sin(<7r) cos (qt)

R P - ' t o

S '.to.

where

and

S = P R ~ l =
2 i

v + iw  v — iw
1 i 
1 i

w v

S ~ l = ( P R - ])~l = R P ~ l .

Recall that we have performed the same computations in Example 7 of Section 7.5.

Continuous dynamical systems with eigenvalues p ±  iq

Consider the linear system

f =  Ax,  
dt

where A is a real 2 x 2 matrix with complex eigenvalues p  ±  iq (and q ^  0 ). 
Consider an eigenvector v + iw  with eigenvalue p + iq. Then

x( t)  =  ept S S ~ 'x  o,
cos (qt) — sin(^r)' 
sin(^r) cos(qt)

where 5 =  [ w v ]. Recall that 5 " 1 jco is the coordinate vector of xq with respect to 
basis w , v.

The trajectories are either ellipses (linearly distorted circles), if p  =  0, or spirals, 
spiraling outward if p is positive and inward if p  is negative. In the case of an ellipse, 
the trajectories have a period of 2n/q .  ■

Note the analogy between Theorem 9.2.6 and the formula

cos (Ot) — sin(0r)"x( t)  =  r* S S '*()sin(0 /) cos (dt)

in the case of the discrete system x( t  +  1) =  Ax(t)  (Theorem 7.6.3).

Solve the system

dx
I t

3 - 2  
5 - 3

x  with Jc0 =
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Solution
The eigenvalues are A12 =  so that p  =  0 and q =  1. This tells us that 
the trajectory is an ellipse. To determine the direction of the trajectory (clockwise 
or counterclockwise) and its rough shape, we can draw the direction field Ax  for a 
few simple points x , say, x = ±e\  and x =  ± ? 2* and sketch the flow line starting at

. See Figure 7.

Now let us find a formula for the trajectory.

Ei =  ker
'3 -  i - 2  ' ' - 2  ‘

5 - 3 - i
=  span

J  ~

' - 2  ‘ ' - 2 '
+/'

O'
—

1/ — 3 - 3

Therefore,

x(t )  = eplS
cos (qt) — sin(^r) 
s\n(qt) cos(qt)

0 —2" cost — sin /' 1
xa = 1 —3 sin/ cos t 0

—2sinr ‘O' +  sin/
—2"

cost  — 3 sin/
=  cost

1 - 3

You can check that

dx  _ ^
—  =  Ax  and jc(0) =  
dt

The trajectory is the ellipse shown in Figure 8 .

Figure 8

Consider a 2 x 2 matrix A.  The various scenarios for the system d x / d t  = Ax  
can be conveniently represented in the tr A-det A plane, where a 2 x 2 matrix A is 
represented by the point (tr A, det A).  Recall that the characteristic polynomial is

A — (tr A)k  +  detA

and the eigenvalues are

Aj 2 =  -  (tr A ±  >/(trA)2 — 4detA^  .
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Therefore, the eigenvalues of A are real if (and only if) the point (trA, detA) is 
located below or on the parabola

in the tr A-det A plane. See Figure 9.

Figure 9

Note that there are five major cases, corresponding to the regions in Figure 9, 
and some exceptional cases, corresponding to the dividing lines.

What does the phase portrait look like when det A =  0 and tr A ^  0?
In Figure 10 we take another look at the five major types of phase portraits. Both 

in the discrete and in the continuous case, we sketch the phase portraits produced 
by various eigenvalues. We include the case of an ellipse, since it is important in 
applications.

EXERCISES 9.2
GOAL Use the definition o f the complex-valued expo­
nential function z =  ekt. Solve the system

dx—  =  Ax  
dt

fo ra  2 x 2  matrix A with complex eigenvalues p  ±  iq.

1. Find e2ni.

2. Find<?(1/2)7r/.

3. Write z =  -1  + i in polar form as z = re,e.

4. Sketch the trajectory of the complex-valued function

z =  e3//.

What is the period?

5. Sketch the trajectory of the complex-valued function

z =  ,(-0.1-2/), ^

6. Find all complex solutions of the system

dx
I t

3 - 2
5 -3

in the form given in Theorem 9.2.3. What solution do 
you get if you let c\ =  c2 =  1?

7. Determine the stability of the system

dx_
dt

8. Consider a system

-1 2
3 - 4

dx a -—  = A x ,dt

x.

where A is a symmetric matrix. When is the zero state a 
stable equilibrium solution? Give your answer in terms 
of the definiteness of the matrix A.
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Discrete Continuous Phase Portrait

9. Consider a system

A] > A.2 > 1

Ai > 1 > > 0

1 > k\  > k 2 > 0

A|,2 =  p ± i q  
p 2 + q 2 > 1

A. | .2 = p ± i q  
p 2 + q 2 < 1

A.1,2 =  p ± i q  
p 2 + q 2 =  1

k\ > k 2 > 0

k\  > 0  > k 2

0  > k\ > k 2

k \,2 = P ± i q  
p  > 0

A.1.2 =  p ± i q  
p < 0

dx
—  =  Ax. 
dt

Figure 10 The major types of phase portraits.

10. Consider a quadratic form q(x) =  x  • Ax of two vari­
ables, jc i and *2- Consider the system of differential 
equations

where A is a 2 x 2 matrix with tr A < 0. We are told 
that A has no real eigenvalues. What can you say about 
the stability of the system?

dx\
-  ^5-

~dt~ 9*1
dx 2

-  L
I x dx2
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or, more succinctly, 16. Consider the system

dx—  =  grad q.

a. Show that the system dx/dt  =  grad q is linear by 
finding a matrix B (in terms of the symmetric matrix 
A) such that grad q = Bx.

b. When q is negative definite, draw a sketch showing 
possible level curves of q. On the same sketch, draw 
a few trajectories of the system dx/dt  =  grad q. 
What does your sketch suggest about the stability of 
the system dx/dt  =  grad q!

c. Do the same as in part (b) for an indefinite quadratic 
form.

d. Explain the relationship between the definiteness of 
the form q and the stability of the system dx/dt  
= grad q.

11. Do parts (a) and (d) of Exercise 10 for a quadratic form
of n variables.

12. Determine the stability of the system

dx
~dt

0 1 0
0 0 1

-1 -1 -2

13. If the system dx/dt  =  Ax is stable, is dx/dt  =  A 
stable as well? How can you tell?

14. Negative Feedback Loops. Suppose some quantities 
-*1 (0 , x2(t), . .. ,* „ ( /)  can be modeled by differential 
equations of the form

dx i
■* = - * 1' 1

bxn

dx2
~dt

dxn
dt

= X\ -  k2X2

x n — 1 ~ ' k n Xn

where b is positive and the kt are positive. (The matrix 
of this system has negative numbers on the diagonal, 1 ’s 
directly below the diagonal, and a negative number in the
top right comer.) We say that the quantities x \ ....... xn
describe a (linear) negative feedback loop.
a. Describe the significance of the entries in this system, 

in practical terms.
b. Is a negative feedback loop with two components 

(n =  2) necessarily stable?
c. Is a negative feedback loop with three components 

necessarily stable?

15. Consider a noninvertible 2 x 2  matrix A with a posi­
tive trace. What does the phase portrait of the system 
dx/dt  =  Ax look like?

dx
dt

0 1
a  b

where a and b are arbitrary constants. For which values 
of a and b is the zero state a stable equilibrium solution?

17. Consider the system

dx
~dt

- 1  k 
k - 1

where k is an arbitrary constant. For which values of k 
is the zero state a stable equilibrium solution?

18. Consider a diagonalizable 3 x 3  matrix A such that the 
zero state is a stable equilibrium solution of the system 
dx/dt  = Ax.  What can you say about the determinant 
and the trace of A?

19. True or False ? If the trace and the determinant of a 3 x 3 
matrix A are both negative, then the origin is a stable 
equilibrium solution of the system dx/dt  =  Ax.  Justify 
your answer.

20. Consider a 2 x 2 matrix A with eigenvalues ±7xi. Let 
v +  iw be an eigenvector of A with eigenvalue ixi. Solve 
the initial value problem

dx _ t
—  =  Ax , with jco =  w.
dt

Draw the solution in the accompanying figure. Mark the 
vectors Jc(0 ), i(^ ) , 5(1), and x{2).

21. Ngozi opens a bank account w i t h  an initial balance of
1,000 Nigerian naira. Let b(t) be the balance in the ac­
count at time r; we are told that /?(0) =  1,000. The bank 
is paying interest at a continuous rate of 5% per year. 
Ngozi makes deposits into the account at a continuous 
rate of s (t) (measured in naira per year). We are told that 
5 (0 ) =  1,000 and that s(t) is increasing at a c o n t i n u o u s  

rate of 7% per year. (Ngozi can save more as her income 
goes up over time.)
a. Set up a linear system of the form

db
dt
ds
dt

= !b + I s  

= !b + I s

(Time is measured in years.) 
b. Find b(t) and s(t).
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ftfr each o f the linear systems in Exercises 22 through 26, 
find the matching phase portrait below.

3 O'
22. x(t +  1) =

23. x(t +  1) =

-2 .5  0.5

-1 .5  -T  
2 0.5

x(t)

X(t)

» - T  =dt

25. f  =dt

26. f  =
dt

3 0
-2.5 0.5

-1.5 - T  
2 0.5

- 2  Ol .
3 1 x
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Find all real solutions o f the systems in Exercises 27 
through 30.

27. "  =
dt

-3
0

29.
dx
~dt

2 4 
- 4  2

dx 
28. —  =

dt

30. £  =
dt

0 4 
- 9  0

-11
- 6

15
7

Solve the systems in Exercises 31 through 34. Give the 
solution in real form. Sketch the solution.

3hf =di

dx
32. —  =

dt

33. ^  .
dt

34. — =
dt

-1
2

0
- 4

-1
-2

7
-4

-2
-1

1
0

jc with Jc(0) =

x with jc(0 ) =

1

10
-5

Jc with jc(0 ) =

x with .r (0 ) =

35. Prove the product rule for derivatives of complex-valued 
functions.

36. Consider the following mass-spring system:

Equilibrium

^ ^ ^ ^ ^ ^ —

Let .r(r) be the deviation of the block from the 
equilibrium position at time t. Consider the velocity 
v(t) =  dx/dt  of the block. There are two forces act­
ing on the mass: The spring force Fv, which is assumed 
to be proportional to the displacement x , and the force 
Ff  of friction, which is assumed to be proportional to 
the velocity,

Fs = — px and Ff  =  —qv,

where p > 0 and q > 0 . (q is 0 if the oscillation is fric- 
tionless.) Therefore, the total force acting on the mass 
is

F =  Fs +  Ff  =  - p x  -  q v.

By Newton’s second law of motion, we have

r  dvF = ma =  m — ,
dt

where a represents acceleration and m the mass of the 
block. Combining the last two equations, we find that

dv

or

m —  =  — px — qv, 
dt

dv p q 
~dt =  ~ m X ~ m V'

Let h =  p/m and c =  q/m  for simplicity. Then the 
dynamics of this mass-spring system are described by 
the system

dx
dt

dV A— = —bx — c v 
dt

(b > 0 , c > 0 ).

Sketch a phase portrait for this system in each of the 
following cases, and describe briefly the significance of 
your trajectories in terms of the movement of the block. 
Comment on the stability in each case.
a. c =  0 (frictionless). Find the period.
b. c2 < 4b (underdamped).
c. c2 > 4b (overdamped).

37. a. For a differentiable complex-valued function z(t)y
find the derivative of

1

zU)'
b. Prove the quotient rule for derivatives of complex­

valued functions.
In both parts of this exercise, you may use the prod­

uct rule. (See Exercise 35.)

38. Let z\(t) and zi(t) be two complex-valued solutions of 
the initial value problem

dz
—  =  kz, dt with z(0 ) =  l.

where A. is a complex number. Suppose that Z2(t) ^  0 
for all /.
a. Using the quotient rule (Exercise 37), show that the 

derivative of
z\(t)
zi(t)

is zero. Conclude that zi(t) = Z2(t) for all /.
b. Show that the initial value problem

— - X -
at -

with (̂O) = 1,

has a unique complex-valued solution z(t). Hint: One 
solution is given in the text.

39. Solve the system

dx
~dt

Compare this with Exercise 9.1.24. When is the zero 
state a stable equilibrium solution?

40. An eccentric mathematician is able to gain autocratic 
power in a small Alpine country. In her first decree, she 
announces the introduction of a new currency, the Euler, 
which is measured in complex units. Banks are ordered 
to pay only imaginary interest on deposits.
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a. If you invest 1,000 Euler at 5i% interest, com­
pounded annually, how much money do you have 
after 1 year, after 2 years, after t years? Describe 
the effect of compounding in this case. Sketch a tra­
jectory showing the evolution of the balance in the 
complex plane.

b. Do part (a) in the case when the 5/% interest is com­
pounded continuously.

c. Suppose people’s social standing is determined by 
the modulus of the balance of their bank account. 
Under these circumstances, would you choose an ac­
count with annual compounding or with continuous 
compounding of interest?

(Source: This problem is based on an idea of Professor 
D. Mumford, Brown University.)

Linear Differential Operators and Linear Differential Equations

In this final section, we will study an important class of linear transformations from 
C x  to C°°. Here, C°° denotes the linear space of complex-valued smooth functions 
(i.e., functions from R  to C), which we consider as a linear space over C. 

D e fin it io n  9.3.1 Linear differential operators and linear differential equations 

A transformation T  from C°° to C°° of the form

T ( f )  =  / (n) +  a„_, f in~ ]) +  • • • +  a \ f  +  a0f

is called an wth-order linear differential operator , 5  6 Here f [k 1 denotes the fcth deriva- 
tive of function / ,  and the coefficients are complex scalars. 

If T  is an nth-order linear differential operator and g is a smooth function, then 
the equation

T ( f )  = g or / <n) +  a „ - \ f {n~X) + ■ • • + a \ f '  + a ^ f  =  g

is called an Hth-order linear differential equation (DE). The DE is called homoge­
neous if g =  0  and inhomogeneous otherwise. 

Verify that a linear differential operator is indeed a linear transformation. 
Examples of linear differential operators are 

D ( f )  = / ' ,  
T ( f )  = / " - 5 / '  +  6 / ,  and 
L ( / )  =  r - 6 / "  +  5 / ,  

of first, second, and third order, respectively. 
Examples of linear DEs are 

/ "  — / '  — 6 /  = 0  (second order, homogeneous) 

and 

/ ' ( / )  — 5 / ( 0  =  sinr (first order, inhomogeneous). 

Note that solving a homogeneous DE T ( / )  =  0 amounts to finding the kernel of T . 
We will first think about the relationship between the solutions of the DEs 

T ( / )  =  0  and T ( / )  =  g.

5More precisely, this is a linear differential operator with constant coefficients. More advanced texts 
consider the case when the a* are functions.
6The term operator is often used for a transformation whose domain and target space consist of 
functions.
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E X A M P L E  I

More generally, consider a linear transformation T  from V to W , where V and 
W  are arbitrary linear spaces. What is the relationship between the kernel of T  and 
the solutions /  of the equation T  ( / )  =  g , provided that this equation has solutions 
at all? (Compare this with Exercise 1.3.48.)

Here is a simple example:

Consider the linear transformation T(x)  =

T(x)  =

'1 2 3 
2 4 6

the relationship between the kernel of T  and the so 

121 ’ algebraically and geometrically.

x  from R 3 to R 2. Describe 

utions of the linear system

Solution
We find that the kernel of T  consists of all vectors of the form

'  — 2X2 -  3*3' ' - 2 ' ' - 3 '

X2 =  X2 1 +  *3 0
0. 1.

with basis

' - 2 ' ' - 3 '
1 0

0 . 1.

The solution set of the system T(x)  =
' 6 " 
12

consists of all vectors of the form

"6 — 2x2 ~  3*3 ' - 2 ' ' - 3 ' ’6 ‘

*2 =  X2 1 +  *3 0 + 0

*3 0. 1. .0.

A vector in the kernel of T A particular solution 
of the system

r (J )= L 61

The kernel of T  and the solution set of T(x)  =  

in R 3, as shown in Figure 1.

form two parallel planes

Figure I
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Theorem 9.3.2

Theorem 9.3.3

Theorem 9.3.4

EXA M PLE  2

These observations generalize as follows:

Consider a linear transformation T  from V to W,  where V and W are arbitrary 
linear spaces. Suppose we have a basis f \ , f 2, of the kernel of T.  Consider
an equation T ( f )  =  g with a particular solution f p. Then the solutions /  of the 
equation T ( f )  =  g are of the form

/  =  c i f i  + c2f i  H------- 1- cnf„ +  f p,

where the c, are arbitrary constants. ■

Note that T ( f )  = T ( c \ f \  H------- h cnf n) +  T ( f p) =  0  +  g =  g, so that /  is
indeed a solution. Verify that all solutions are of this form.

What is the significance of Theorem 9.3.2 for linear differential equations? At 
the end of this section, we will demonstrate the following fundamental result:

The kernel of an nth-order linear differential operator is n -dimensional. ■

Theorem 9.3.2 now provides us with the following strategy for solving linear 
differential equations:

Strategy for solving linear differential equations
To solve an rtth-order linear DE

T  ( / )  =  g,

we have to find

a. a basis / i , . . . , / „ o f  ke r(r), and
b. a particular solution f p of the DE T ( / )  =  g.

Then the solutions /  are of the form

f  = C\f\  + • • • + Cnf n + fp,

where the cz are arbitrary constants. ■

Find all solutions of the DE

f \ t )  + f ( t )  = et .

We are told that f p(t) =  is a particular solution (verify this).

Solution
Consider the linear differential operator T ( / )  =  / "  +  / .  A basis of the kernel of T  
is f i ( t )  = cos t and f 2{t) =  sinf (compare with Example 1 of Section 4.1). 

Therefore, the solutions /  of the DE / "  -f- /  =  el are of the form

/ ( r )  =  ci cos t + c2 sinf +  -e*,

where c { and c2 are arbitrary constants. ■

We now present an approach that allows us to find solutions to homogeneous 
linear DEs more systematically.
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Definition 9.3.5

EXAM PLE 3

Definition 9.3.6

Theorem 9.3.7

EXA M PLE  4

T h e  Hi j i cn fu nc t ion  A p p r o a c h  lo S o lv i n g  L i n e a r  Dlls  

Eigenfunctions

Consider a linear differential operator T  from C°° to C°°. A smooth function /  js 
called an eigenfunction of T  if T ( / )  =  k f  for some complex scalar k\ this scalar k 
is called the eigenvalue associated with the eigenfunction / .

Find all eigenfunctions and eigenvalues of the operator D ( f )  =  / ' .

Solution
We have to solve the differential equation

D ( f )  = k f  or f '  = k f

For a given A, the solutions are all exponential functions of the form f ( t )  = CeXf. 
This means that all complex numbers are eigenvalues of D,  and the eigenspace 
associated with the eigenvalue k is one dimensional, spanned by eAt. (Compare this 
with Definition 9.2.1.) ■

It follows that the exponential functions are eigenfunctions for all linear differ­
ential operators: If

T(J)  =  / ,") +  a„_, 11 + . . . + « , / '  + oof.

then

T(ex‘) =  (A" + a , l_,A" -1 +  • • • +  a\X +  aa)ekf.

This observation motivates the following definition:

Characteristic polynomial 
Consider the linear differential operator

T ( f )  = f [n) +  fl„-i / (',_l) +  • • • + * , / '  +  £*>/.

The characteristic polynomial of T is defined as

Pr(k)  = k n +  tf„_| A,,_1 +  • • • +  a\k  +  ao.

If T is a linear differential operator, then ekt is an eigenfunction of 7 \ with associated 
eigenvalue p r ( k ), for all k\

7 V ')  =  p T(X)ex'.

In particular, if pj (X)  =  0, then eXt is in the kernel of T.  ■

Find all exponential functions eXt in the kernel of the linear differential operator

T ( f )  =  / "  +  / '  -  6 / .

Solution
The characteristic polynomial is pr(X)  =  X2 -I- X — 6  =  (A. +  3)(A — 2), with roots
2 and —3. Therefore, the functions e2t and e-3' are in the kernel of T . We can check 
this:

T(e2') =  4e2' + 2e2' -  be2' =  0,
T(e~3r) =  9e~3t -  3e~3' -  6e~3’ =  0. ■
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Theorem 9.3.8

EXA M PLE  5

EXA M PLE  6

Since most polynomials of degree n have n distinct complex roots, we can find n
distinct exponential functions eK{t........ e ' nt in the kernel of most rtth-order linear
differential operators. Note that these functions are linearly independent. (They are 
eigenfunctions of D with distinct eigenvalues; the proof of Theorem 7.3.4 applies.) 

Now we can use Theorem 9.3.3,

The kernel of a linear differential operator
Consider an /ith-order linear differential operator T whose characteristic polynomial 
Pt (k) has n distinct roots k \ ........ k fl. Then the exponential functions

form a basis of the kernel of T ; that is, they form a basis of the solution space of the 
homogeneous DE

T ( f ) =  0. ■

See Exercise 38 for the case of an /?th-order linear differential operator whose 
characteristic polynomial has fewer than n distinct roots.

Find all solutions /  of the differential equation

r  +  2 / ' - 3 /  =  0 .

Solution
The characteristic polynomial of the operator T ( f )  = f "  +  2 / '  -  3 /  is p, (k)  
= k 2 +  2k -  3 =  (k 4 - 3 )(k -  1), with roots 1 and - 3 .  The exponential functions
el and e~M form a basis of the solution space; that is, the solutions are of the form

/ ( / )  =  < V + Q < '~ 3'.  ■

Find all solutions /  of the differential equation

/ " - 6 / ' + 1 3 /  =  0.

Solution
The characteristic polynomial is p T (k) = k 2 — 6k +  13, with complex roots 3 ±  2i . 
The exponential functions

e(3+2iu _  e31 (cos(2 /) -|- i sin(2 /))

and

eO-int =  e3 '(cos(21) — i sin(2 /))

form a basis of the solution space. We may wish to find a basis of the solution space 
consisting of real-valued functions. The following observation is helpful: If / ( / )  
=  g ( t ) +  / h (/) is a solution of the DE T ( f )  =  0, then T ( / )  =  T(g)  +  iT(h)  =  0, 
so that g and h are solutions as well. We can apply this remark to the real and the 
imaginary parts of the solution e(3+2l)t\ The functions

e3t cos(2 1) and e3t sin(2 r)

are a basis of the solution space (they are clearly linearly independent), and the 
general solution is

f ( t )  =  c \e3t cos(2 1) -I- C2^3/ sin(2 /) =  e3t (c\ cos(2 1) 4- ci sin(2 r)). ■
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Theorem 9.3.9 Consider a differential equation

T ( f )  = f "  + a f '  + b f  =  0 ,

where the coefficients a and b are real. Suppose the zeros of p r (k) are p ± i q , with 
q ±  0. Then the solutions of the given DE are

f ( t )  = ept (c\ cos (qt) +  c2 sin(^r)),

where c\ and c2 are arbitrary constants.
The special case when a =  0  and b > 0  is important in many applications. Then 

p  =  0 and q = >fb, so that the solutions of the DE

f "  + b f  =  0

are

/ (t) = c\ cos( \ fbt)  +  c2 sin(Vbt) .  B

Note that the function

f ( t )  = ept(c\ cos(< /0  +  t’2 sin(<7/))

is the product of an exponential and a sinusoidal function. The case when p is 
negative comes up frequently in physics, when we model a damped oscillator. See 
Figure 2.

What about nonhomogeneous differential equations? Let us discuss an example 
that is particularly important in applications.

EXA M PLE  7 Consider the differential equation

/ " ( 0 +  / ' ( 0 - 6 / ( 0  =  8cos(2/).

a. Let V be the linear space consisting of all functions of the form 
c\ cos(2f) +  c2 sin(2r). Show that the linear differential operator 
T ( / )  =  / "  +  / '  — 6 /  defines an isomorphism from V to V.

b. Part (a) implies that the DE T ( f )  =  8 cos(2/) has a unique particular solution 
f p (t) in V. Find this solution.

c. Find all solutions of the DE T ( / )  =  8 cos(2f).
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Solution
a. Consider the matrix A of T with respect to the basis cos(2/), sin(2f). A 

straightforward computation shows that

. r—10 2
-2  -10  '

representing a rotation combined with a scaling. Since A is invertible, T 
defines an isomorphism from V to V.

le basis cos(2/), sin(2r), the DE 

, with the solution

b. If we work in coordinates with respect to t
T8

T ( / )  =  8cos(2/) takes the form Ax  =

8 1 - 1 0  — 2 " 8 —10/13'
0 “  104 2 —10 0 2/13

Theorem 9.3.10

x = A ~ {

The particular solution in V is
10 2 . 

f P(t) =  cos(2 / ) +  —  sin(2 /).

A more straightforward way to find f p(t) is to set 
f p(t) := f >cos(2 r) +  (?sin(2 r) and substitute this trial solution into the 
DE to determine P and Q. This approach is referred to as the method o f 
undetennined coefficients.

c. In Example 4, we have seen that the functions f \ ( t )  = e2t and f 2(t) =  e~M 
form a basis of the kernel of T.  By Theorem 9.3.4, the solutions of the DE 
are of the form

f ( t )  = c l M t )  + c2f 2(t) + f P(t)
10 2

=  c \e2t +  c2e~yt -  — cos(2 /) +  — sin(2 r). ■

Let us summarize the methods developed in Example 7:

Consider the linear differential equation

f ( t )  +  a f \ t )  + b f ( t )  = C c o sM ),

where a, fe, C, and co are real numbers. Suppose that a ^  0 or b ^  cd2. This DE has 
a particular solution of the form

f p(t) = P cos (cot) +  Q sin(oot).

Now use Theorems 9.3.4 and 9.3.8 to find all solutions /  of the DE. ■

What goes wrong when a =  0 and b = o r !

T he  O p era to r  A p p ro a c h  to So lv ing  L inear  DH.s
We will now present an alternative, deeper approach to DEs, which allows us to solve 
any linear DE (at least if we can find the zeros of the characteristic polynomial). 
This approach will lead us to a better understanding of the kernel and image of a 
linear differential operator; in particular, it will enable us to prove Theorem 9.3.3.

Let us first introduce a more succinct notation for linear differential operators. 
Recall the notation D f  = f '  for the derivative operator. We let

D m =  D  o D o • • • o D;
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Theorem 9.3.11

EXAM PLE 8

Theorem 9.3.12

that is,

Dm f  =

Then the operator

T ( f )  = f {n) +  an- i / (n-l> +  • • • +  a xf  +  aQf

can be written more succinctly as

T  =  D n +  an- \ D n 1 +  • • • +  ci\ D +

the characteristic polynomial p T(k) “evaluated at D 
For example, the operator

T ( f )  =  f "  +  / '  -  6 /

can be written as

T =  D2 +  D -  6.

Treating T  formally as a polynomial in D, we can write

T  =  (D +  3) o (D — 2).

We can verify that this formula gives us a decomposition of the operator T :

((£>+3)o(D  —2 ) ) /  =  ( D + 3 ) ( f '  — 2 f )  =  f " - 2 f + 3 f - 6 f  =  (D 2+ D - 6) f .

This works because D is linear: We have D ( / '  — I f )  =  / "  — 2 / ' .
The fundamental theorem of algebra (Theorem 7.5.2) now tells us the following:

An nth-order linear differential operator T  can be expressed as the composite of 
n first-order linear differential operators:

T  =  Dn +  an- \ D n 1 +  • • • +  o,\D +  ao 
= ( D - k l) ( D - k 2) . . . ( D - k n),

where the A, are complex numbers. ■

We can therefore hope to understand all linear differential operators by studying 
first-order operators.

Find the kernel of the operator T  =  D — a, where a is a complex number. Do not 
use Theorem 9.3.3.

Solution
We have to solve the homogeneous differential equation T ( f )  =  0 or 
f ' ( t )  — a f ( t )  =  0 or f ' ( t )  =  af ( t ) .  By definition of an exponential function, 
the solutions are the functions of the form / ( / )  =  Ceat, where C is an arbitrary 
constant. (See Definition 9.2.1.) ■

The kernel of the operator

T = D — a

is one dimensional, spanned by

f ( t )  = eat.



9.3 Linear Differential Operators and Linear Differential Equations 431

Theorem 9.3.13

EXA M PLE  9

Next we think about the nonhomogeneous equation

( D - a ) f  = g,

or

f ' ( t ) - a f ( t )  = g( t )y

where g(t)  is a smooth function. It will turn out to be useful to multiply both sides 
of this equation with the function e~at:

e - atf ( t ) - a e - atf ( t )  = e - atg(t).

We recognize the left-hand side of this equation as the derivative of the function 
e~at f ( t ) ,  so that we can write

( e -a,f ( t ) ) '  =  e~a,g(t).

Integrating, we get

e~a,f ( t )  = J  e~a,g( t )d t

and

f ( t )  =  eal J e ~ a,g( t )dt ,

where f e ~ a,g ( t )d t  denotes the indefinite integral, that is, the family o f all 
antiderivatives of the functions e~a,g(t),  involving a parameter C.

First-order linear differential equations 
Consider the differential equation

f { t )  — a f ( t )  =  g(t),

where g(t)  is a smooth function and a a constant.
Then

f ( t )  =  ea , J e ~ a,g( t )dt .  ■

Theorem 9.3.13 shows that the differential equation (D —a ) f  =  g has solutions 
/ ,  for any smooth function g\ this means that

im(£> -  a) =  C°°.

Find the solutions /  of the DE

f '  — a f  =  ceal,

where c is an arbitrary constant.

Solution
Using Theorem 9.3.13 we find that

m  =  J e - - « " < ! , = ' “• J e d ,  = « « («  +  C),

where C is another arbitrary constant. ■
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Theorem 9.3.14

EXA M PLE  10

T =  Dn +  a n _ 1 D n 1 +  • • • 4- a \  D 4- tfo,

=  (D — k \ ) ( D — k 2) • • • (D — k n- \ ) ( D  — k„).

We can break this DE down into n first-order DEs:
D —Xn D —k n | D —/.2 D — a i

We can successively solve the first-order DEs:

(D -  A |) /i =  g.
(D -  k 2) f 2 =  f\*

(D — kn- \ ) f n-\  =  f„~ 2,

( D - k n ) f  = fn-\ -

In particular, the DE T ( / )  =  g does have solutions / .

The image of a linear differential operator
The image of all linear differential operators (from to C ^ )  is C ^ ; that is, any 
linear DE T ( f )  = g has solutions / .  ■

Find all solutions of the DE

T ( f )  = f " - 2 f '  + f  = 0.

Note that p T(k) = k 2 -  2k +  1 = (k -  l )2 has only one root, 1, so that we cannot 
use Theorem 9.3.8.

Solution
We break the DE down into two first-order DEs, as discussed earlier:

/  ^ 0

TheDE ( D -  \ ) f \  =  0 has the general solution f \ ( t )  = c\el , whereci is an arbitrary 
constant.

Then the DE (D —1 ) /  =  f \  = c \e! has the general solution f ( t )  = e1 (c\t-\-c2), 
where c2 is another arbitrary constant. (See Example 9.)

The functions el and te l form a basis of the solution space (i.e., of the kernel of 
T). Note that the kernel is two dimensional, since we pick up an arbitrary constant 
each time we solve a first-order DE. ■

Now we can explain why the kernel of an nth-order linear differential operator 
T  is M-dimensional. Roughly speaking, this is true because the general solution of 
the DE T ( f )  = 0 contains n arbitrary constants. (We pick up one each time we 
solve a first-order linear DE.)

Here is a formal proof of Theorem 9.3.3. We will argue by induction on n. 
Theorem 9.3.12 takes care of the case n — 1. By Theorem 9.3.11, we can write an 
Hth-order linear differential operator T as T  =  (D — k) o L,  where L is of order 
n — 1. Arguing by induction, we assume that the kernel of L is (n — 1)-dimensional. 
Since dim( ker(D — k)) = \ and imL =  C°°, by Theorem 9.3.14, we can conclude 
that dim(ker T)  =  dim( ker(D — A)) +  dim(ker L) =  by Exercise 4.2.84.

Now consider an nth-order DE T ( / )  =  #, where

Let's summarize the main techniques we discussed in this section.
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SUM M ARY 9 .3 .1 5 S tr a te g y  fo r l in e a r  d iffe ren tia l e q u a tio n s

Suppose you have to solve an Hth-order linear differential equation T i f )  =  g.

Step I Find n linearly independent solutions of the DE T( f )  =  0.
• Write the characteristic polynomial pr i k )  of T  [replacing f {k) by a*].
• Find the solutions k \ . k 2........ k„ of the equation p r i k )  =  0.
• If A is a solution of the equation^/(A ) =  0, then ekt is a solution o i ' T ( f )  =  0.
• If k is a solution of pr ( k )  =  0 with multiplicity m, then eAt, teK\  t 2e/ l , ___

fm- \ eAt are so|utions of the DE T ( f )  =  0. (See Exercise 38.)
• If p ± i q  are complex solutions of pr(k)  =  0, ihenepl cos iqt) andept sin (qt) 

are real solutions of the DE T i f )  =  0.

Step 2 If the DE is inhomogeneous (i.e., if g ^  0), find one particular solution 
/,, of the DE T ( f )  = g.

• If g is of the form g(t) = A cos(a>f) +  fi sin(a;/), look for a particular solution 
of the same form, f p(t) =  P cos (cot) -I- Q sin (cot).

• If g is constant, look for a constant particular solution / ,,( /)  =  c .7

• If the DE is of first order, of the form f ' ( t )  — a f ( t )  = g ( t ), use the formula 
f ( t )  =  eat /  e~atg( t )dt .

• If none of the preceding techniques applies, write T  =  (D — k\ )  
(D — k 2) • • • (D — k n), and solve the corresponding first-order DEs.

Step 3 The solutions of the DE T ( / )  =  g are of the form

f ( t ) =  C \  f \  ( t ) +  c i f i i t  ) +  • • • +  c n f n ( t ) - f  j  p ( t ) .

where f \ % f \ ........../„  are the solutions from Step 1 and f p  is the solution from
Step 2.

Take another look at Examples 2, 5, 6 , 7, 9, and 10.

EXA M PLE I I Find all solutions of the DE

f " ( t )  +  / " ( f )  -  / '( / )  -  f i t )  = 10 .

Solution
We will follow the approach just outlined.

Step I

• p T(k) =  A3 +  k 2 -  k -  1

• We recognize k =  1 as a root, and we can use long division to factor:

p j ( k )  — k 3 -f- k~ — k — 1 — (A. — 1)(A*’ -1- 2 k ~b 1) =  (A — l)(A-h I)*-.

• Since k =  1 is a solution of the equation pr (k )  =  0, we let f \ ( t )  = er.
• Since k = — 1 is a solution of pr(k )  =  0 with multiplicity 2, we let />(/)

=  e~l and / 3(f) =  te~l .

7More generally, it is often helpful to look for a particular solution of the same form as gU ). for 
example, a polynomial of a certain degree, or an exponential function Cekl. This technique is explored 
more fully in a course on differential equations.
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Step 2 Since g(t)  =  10 is a constant, we look for a constant solution, f p (t) =  c. 
Plugging into the DE, we find that c = - 10. Thus we can let f p{t) =  -1 0 .
Step 3 The solutions can be written in the form

/ ( / )  =  +  c2e ' +  cyte

where c \ , t’2, and are arbitrary constants.

10,

EXERCISES 9.3
GOAL Solve linear differential equations.

Find all real solutions o f the differential equations in 
Exercises 1 through 22.

1. f ' ( t )  -  5f i t )  =  0

2. ^ + 3 *  =  7 
dt

3. f i t ) + 2f i t )  = e 3t 
dx

4. —---- 2.t = cos(30dt
5. f ( t ) - f ( t )  = t

6. f ' U ) - 2f ( t ) = e 2'

7. / " ( 0  +  / '( 0  -  12/(/) =  0

d2x dx
8. —T  + 3— -  10jc = 0

dt 2 dt
9. / " ( O  — 9 / (0  = 0

10. / " ( 0  + / ( 0  = 0

d 2 x dx 
11* j — 2—- -f- 2x ~  0 

dt2 dt
12. / " ( 0 - 4 / ' ( 0 +  13/(0  =  0

13. f " ( t ) +  2f ' ( t ) + f ( t ) =  0

14. /" ( /)  + 3 / '( /)  =  0

15. /" ( /)  =  0

16. f "( t )  + 4 / '( / )  +  13/( f )  =  cos(0

17. /" ( /)  + 2 / '(0  + /( / )  =  sin(0

18. f "( t )  +  3 / '( 0  +  2 /( /)  =  c o s ( f ) 

d2.x
19. —T + 2.v =  cos(/) 

dt~
20. / " '( O - 3 / " ( / )  +  2 /'(O  =  0

21. /" '(O  + 2/"(f) -  / '( / )  -  2 / (r) =  0

22. /" '( /)  -  f ' ( t )  -  4 / '( 0  +  4 / ( 0  = 0

So/ve the initial value problems in Exercises 23 through 29.

23. f ' ( t )  -  5 / (0  =  0. /<0) =  3

24. ^  + 3.v =  7. a-(0) =  0 
dt

25. / '( / )  +  2 /(0  =  0. / ( I )  =  1

26. / " ( / )  -  9 /(0  =  0. /(0 ) =  0. / '(0 )  =  1

27. / " ( / ) + 9 / ( 0  =  0 . / ( 0 ) = 0 . / ( § )  =  1

28. / " ( / )  +  / '( / )  -  12 /(/) =  0. /(()) =  / '(0 ) =  0

29. / " ( / )  + 4 / ( 0  =  sin(f), / (0) =  /'(()) =  0

30. The temperature of a hot cup of coffee can be modeled 
by the DE

T'(t) =  —k(T(t)  — A).

a. What is the significance of the constants k and AI
b. Solve the DE for T( t ), in terms of k , Ay and the initial 

temperature 7o.

31. The speed v(t) of a falling object can sometimes be 
modeled by

dv
m —  = mg 

dt
kv,

dv k
—  + - v = g .  
dt m

where m is the mass of the body, g the gravitational ac­
celeration, and k a constant related to the air resistance. 
Solve this DE when u(0) =  0. Describe the long term 
behavior of v(t). Sketch a graph.

32. Consider the balance B{t) of a bank account, with ini­
tial balance B(0) =  Bq. We are withdrawing money at 
a continuous rate r (in Euro/year). The interest rate is 
k (%/year), compounded continuously. Set up a differ­
ential equation for B(t), and solve it in terms of Bo, r, 
and k. What will happen in the long run? Describe all 
possible scenarios. Sketch a graph for B(t) in each case.

33. Consider a pendulum of length L. Let x(t) be the angle 
the pendulum makes with the vertical (measured in radi­
ans). For small angles, the motion is well approximated 
by the DE

d2x
7 ?

= _g_ 
L X’

where g is the acceleration due to gravity (g % 9.81 m/ 
sec2). How long does the pendulum have to be so that it 
swings from one extreme position to the other in exactly 
one second?
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Note: .r(r) is negative 
when the pendulum is 
on the left.

The two extreme positions 
of the pendulum.

Historical note: The result of this exercise was consid­
ered as a possible definition of the meter. The French 
committee reforming the measures in the 1790s finally 
adopted another definition: A meter was set to be the 
10,000,000th part of the distance from the North Pole to 
the Equator, measured along the meridian through Paris. 
(In 1983 a new definition of the meter was adopted, based 
on the speed of light.)

34. Consider a wooden block in the shape of a cube whose 
edges are 10 cm long. The density of the wood is
0.8 g/cm3. The block is submersed in water; a guid­
ing mechanism guarantees that the top and the bottom 
surfaces of the block are parallel to the surface of the 
water at all times. Let jc(/) be the depth of the block in 
the water at time t. Assume that jc is between 0 and 10 
at all times.

4 ' ) \

a. Two forces are acting on the block: its weight and the 
buoyancy (the weight of the displaced water). Recall 
that the density of water is 1 g/cm3. Find formulas 
for these two forces.

b. Set up a differential equation for x (/). Find the solu­
tion, assuming that the block is initially completely 
submersed ( j c ( 0 )  =  1 0 )  and at rest.

c. How does the period of the oscillation change if you 
change the dimensions of the block? (Consider a 
larger or smaller cube.) What if the wood has a dif­
ferent density or if the initial state is different? What 
if you conduct the experiment on the moon?

35. The displacement x it) of a certain oscillator can be mod­
eled by the DE

d2x dx
—j  + 3—  + 2x =  0. 
dt2 dt

a. Find all solutions of this DE.
b. Find the solution with initial values .r(0) =  1,

,x'(0) = 0. Graph the solution.
c. Find the solution with initial values j c ( 0 )  =  1,

*'(0) =  —3. Graph the solution.
d. Describe the qualitative difference of the solutions 

in parts (b) and parts (c), in terms of the motion of

the oscillator. How many times will the oscillator go 
through the equilibrium state jc =  0 in each case?

36. The displacement jc (t) of a certain oscillator can be mod­
eled by the DE

d2x dx
- y  +  2 —  +  1 0 1 j c = 0 .  
dt2 dt

Find all solutions of this DE, and graph a typical solu­
tion. How many times will the oscillator go through the 
equilibrium state jc =  0?

37. The displacement jc (/) of a certain oscillator can be mod­
eled by the DE

drx dx
- y  +  6—  + 9x =  0. 
dt2 dt

Find the solution jc(f) for the initial values j c ( 0 )  = 0 ,  

j c ' ( 0 )  = 1. Sketch the graph of the solution. How many 
times will the oscillator go through the equilibrium state 
x =  0 in this case?

38. a. If p(t) is a polynomial and k a scalar, show that

(D -  X)(p(t)eu ) = p(r)ex'.

b. If p(t) is a polynomial of degree less than m. what 
is

(D -  k)m (p(t)ek')?

c. Find a basis of the kernel of the linear differential 
operator {D -  k)m.

d. If X i ....... kr are distinct scalars and m \ .........mr are
positive integers, find a basis of the kernel of the 
linear differential operator

(O — X, )m 1 . . . ( / )  — kr )mr.

39. Find all solutions of the linear DE

f i t )  + 3 /"(r) +  3 / '( /)  + f i t )  = 0.

(Hint: Use Exercise 38.).

40. Find all solutions of the linear DE
</3jc d2 x dx

+ 7 - '  =  ° '
{Hint: Use Exercise 38.)

41. If T is an mh-order linear differential operator and k is 
an arbitrary scalar, is k necessarily an eigenvalue of T? 
If so, what is the dimension of the eigenspace associated 
with X ?

42. Let be the space of all real-valued smooth functions.
a. Consider the linear differential operator T = D2 

from C00 to C™. Find all (real) eigenvalues of T. 
For each eigenvalue, find a basis of the associated 
eigenspace.

b. Let V be the subspace of C^  consisting of 
all periodic functions f i t )  with period one [i.e.,
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/ ( r  +  1) =  /( /) ,  for all/]. Consider the linear differ­
ential operator L =  D2 from V to V. Find all (real) 
eigenvalues and eigenfunctions of L.

43. The displacement of a certain forced oscillator can be 
modeled by the DE

d2x ^dx
4- 5—  4  6x =  cos(/). 

dt2 dt
a. Find all solutions of this DE.
b. Describe the long-term behavior of this oscillator.

44. The displacement of a certain forced oscillator can be 
modeled by the DE

d2x d)c
—y  4  4—  +  5x =  cos(3/). 
dtz dt

a. Find all solutions of this DE.
b. Describe the long-term behavior of this oscillator.

45. Use Theorem 9.3.13 to solve the initial value problem

dx
dt

J, with Jc(0 ) = I
-1

[Hint: Find first *2(0 ai d̂ then *i(f).]

46. Use Theorem 9.3.13 to solve the initial value problem

dx
I t

[Hint: Find first JC3(/), then x2(t), and finally JC](f).]

"2 3 f 2
0 1 2 , with 5(0) = 1
0 0 1 - 1

47. Consider the initial value problem
dx _
—  = Ax,  with jc(0) =  xo, 
dt

where A is an upper triangular n x n  matrix with m dis­
tinct diagonal entries k \ ........km. See the examples in
Exercises 45 and 46.
a. Show that this problem has a unique solution x(t)% 

whose components x / (t) are of the form

Xi(t) =  p](t)eXl' H-------- 1- Pm(t)eKm',

for some polynomials pj(t).  Hint: Find first xn(t), 
then x„-\ (/), and so on.

b. Show that the zero state is a stable equilibrium solu­
tion of this system if (and only if) the real part of all 
the Xj is negative.

48. Consider an n x n matrix A with m distinct eigenvalues 
•̂1 * • • •»km.

a. Show that the initial value problem

=  Ax,  with x(0) = x q ,
dt

has a unique solution Jc(r).
b. Show that the zero state is a stable equilibrium solu­

tion of the system

dt
if and only if the real part of all the X, is negative. 
(Hint: Exercise 47 and Exercise 8 .1.45 are helpful.)
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Vectors

H

ere we will provide a concise summary of basic facts on vectors. In 
Section 1.2, vectors are defined as matrices with only one column: 

v\

V =
v2

. The scalars i>, are called the components of the vector. The set

of all vectors with n components is denoted by IT .
You may be accustomed to a different notation for vectors. Writing the compo­

nents in a column is the most convenient notation for linear algebra.

D e fin it io n  A . I Vector addition and scalar multiplication

a. The sum of two vectors v and w in R n is defined “componentwise” :

V\ W l +  U)\

Vj W 2 V2 +  W j
V +  w  = +

Vn _ W n . _Vn +  U)nm

b. Scalar multiplication The product of a scalar k and a vector v is defined 
componentwise as well:

mv\~ ~kv\ "
v2 kV2

. vnm .kvn_

1 In vector and matrix algebra, the term “scalar” is synonymous with (real) number.

437
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EXAM PLE I

EXAM PLE 2

Theorem A.2

T ' 4" '5 ‘
2 2 4
3 +

0 — 3
4 -1 3

• r ’ 3*
2 6
0 0

.-1. .-3.

The negative or opposite of a vector 5 in R" is defined as

- 5  = ( - 1 ) 5 .

The difference 5 — w of two vectors 5 and w in R" is defined componentwise. 
Alternatively, we can express the difference of two vectors as

5 — w = v (—w).

The vector in R ” that consists of n zeros is called the zero vector in R":

'01

0 =
0

0

Rules of vector algebra
The following formulas hold for all vectors 5, 5, w in R" and for all scalars c and k :

1. (5 +  5) +  w =  u + (5 +  w): Addition is associative.
2. v + iv = w + v: Addition is commutative.
3. 5 +  0 =  5
4. For each 5 in R", there exists a unique x  in R n such that 5 +  x =  0, namely, 

x =  —5.
5. k(v  +  w) = kv  +  kw
6. (c +  k)v = cv + kv
7. c(kv) = {ck)v
8 . 15 =  5 ■

These rules follow from the corresponding rules for scalars (commutativity, 
associativity, distributivity); for example:

v + w =

~V\ ~ ~ W\ ~ " i ) |  +  W l ' ' w \  +  Vi  '

V2 W 2 l>2 +  W 2 W 2  +  V2

+ —

. V n . W n . . V „  +  W„ _ . w „  +  Vn .

~W\  ' mv \ "

W 2 V2

= :
+ =  W  +  V

. W n . _ Vn .
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^^Geometrical Representation of Vectors

The standard representation of a vector

Vx  =

in the Cartesian coordinate plane is as an arrow (a directed line segment) connecting 
the origin to the point (x \ , *2), as shown in Figure 1.

Occasionally, it is helpful to translate (or shift) the vector in the plane (preserving 
its direction and length), so that it will connect some point (0 1 , ^ 2) to the point 
(a 1 +  jci , a2 +  * 2). See Figure 2.

In this text, we consider the standard representation of vectors, unless we ex­
plicitly state that the vector has been translated.

A vector in R 2 (in standard representation) is uniquely determined by its end­
point. Conversely, with each point in the plane we can associate its position vector, 
which connects the origin to the given point. See Figure 3.

Figure 3 The components o f a vector in standard representation are the 
coordinates of its endpoint.

We need not clearly distinguish between a vector and its endpoint; we can 
identify them as long as we consistently use the standard representation of vectors.

For example, we will talk about “the vectors on a line L” when we really mean 
the vectors whose endpoints are on the line L (in standard representation). Likewise, 
we can talk about “the vectors in a region /?” in the plane. See Figure 4.

Adding vectors in R 2 can be represented by means of a parallelogram, as shown 
in Figure 5.
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Figure 4 (a) 3c is a vector on the line L. (b) x  is a vector in the region R.

If A: is a positive scalar, then kv  is obtained by stretching the vector v by a factor 
of k , leaving its direction unchanged. If k is negative, then the direction is reversed. 
See Figure 6 .

Definition A. 3 We say that two vectors v and w in R" are parallel if one of them is a scalar multiple
of the other.

EXAM PLE 3 The vectors

■ r '  3'
3

and
9

2 6
_ - 2 . - 6 .

are parallel, since

' 3' • r
9

=  3
3

6 2

. - 6 . - 2 .

EXA M PLE  4 The vectors

T 'O'
2

and
0

3 0
.4 0.
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are parallel, since

■O' T
0 2
0

=  0
3

0. 4.

Let us briefly review Cartesian coordinates in space: If we choose an origin 0 
and three mutually perpendicular coordinate axes through 0 , we can describe any 
point in space by a triple of numbers, ( x \ , x 2, xi ) .  See Figure 7.

The standard representation of the vector

x =
x\
*2

L*3.

is the arrow connecting the origin to the point (jci , x2, *3), as shown in Figure 8 .

*3 *3

■ *2

Figure 7 Figure 8

Dot Product, Length, Orthogonality

D e fin it io n  A .4  Consider two vectors v and w with components u j, v2, . . .  , v n and w \ , w2, . . . ,  wn, 
respectively. Here v and w may be column or row vectors, and they need not be of 
the same type (these conventions are convenient in linear algebra). The dot product 
of 5 and w is defined as

v  • w  =  v \ W \  +  v 2 w 2  H---------- h v n w n .

We can interpret the dot product geometrically: If v and w are two nonzero vectors 
in R”, then

v • w =  ||5|| cos0 1|u;||, 

where 9 is the angle enclosed by vectors v and w. (See Definition 5.1.12.)

Note that the dot product of two vectors is a scalar.
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T ' 3 '
EXA M PLE  5 2 -1

.1. .-1.

EXAM PLE 6 [l 2 3

=  1 - 3 +  2 ' ( —!) +  ! * (—1) =  0

3
1
0

- 1

=  3 +  2 +  0 — 4 = 1

Theorem A.5 Rules for dot products
The following equations hold for all column or row vectors u , v y w  with n  compo­
nents, and for all scalars k :

1. v • w =  w • v
2. (u + v ) - w  = u-  w + v-  w
3. ( k v )  • w  = k ( v  • w )

4. i; • v > 0 for all nonzero u ■

The verification of these rules is straightforward. Let us justify rule (d): since v
is nonzero, at least one of the components v,- is nonzero, so that v f  is positive. Then

V • V =  vf +  v \  -]----------- h v f  H----------------h v f

is positive as well.
Let us think about the l e n g t h  of a vector. The length of a vector

Figure 9

x  =

in R 2 is by the Pythagorean theorem. See Figure 9.
This length is often denoted by ||jc||. Note that we have

X  x  =
~Xl

* 2 . mx 2_
= x \  + x \  =  ||3f ||2;

therefore,

nxn =  s f n .

Verify that this formula holds for vectors x in R 3 as well.
We can use this formula to define the length of a vector in R":

Definition A.6 The length (or norm) ||3c|| of a vector x  in R" is

115 =  V* • x  =  \Jx]  H------- \ -x2.

EXAM PLE 7 Find ||x|| for

x  =

71
1
7

L - l

Solution

||3c|| =  =  V49 +  1 +  49 +  1 =  10



Defin ition  A.7

D e fin it io n  A .8

j^ fc r o s s  Product

D e fin it io n  A .9

A vector u in Rn is called a unit vector if \\u || =  1; that is, the length of the vector 
5 is 1.

Consider two perpendicular vectors x  and y  in R2, as shown in Figure 10.
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0

Figure 10

By the theorem of Pythagoras,

\\x +  y \\2 =  \\x \\2 + \\y\\2,

or

( *  +  y )  * ( x  +  y )  =  x  • X  +  y  • y .

By Theorem A.5,

x  • x  + 2 (x - y) + y - y = x - x  + y - y,

or

x - y  = 0 .

You can read these equations backward to show that x  • y =  0 if and only if jc and 
y  are perpendicular. This reasoning applies to vectors in R 3 as well.

We can use this characterization to define perpendicular vectors in Rn:

Two vectors v and w in R n are called perpendicular (or orthogonal) if v • w =  0.

Here we present the cross product for vectors in R 3 only; for a generalization to R", 
see Exercises 6.2.44 and 6.3.17.

In Chapter 6, we discuss the cross product in the context of linear algebra.

C ro ss  product in K 3

The cross product v x  w o f two vectors v and w in R 3 is the vector in R 3 with the 
following three properties:

• v x  w is orthogonal to both v and w.
• ||v x  w || =  ||i;|| sin 0 1|w ||, where 6 is the angle between v and w, with

0 <  0  <  n .  This means that the magnitude of the vector v  x w  is the 
area of the parallelogram spanned by v and w , as illustrated in Figure 1 la.
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Theorem A. 10

V

I'Xll)

(a) (b)

Figure II (a) \\v x  tZ>|| is the shaded area, (b) A right-handed system.

• The direction of v x w follows the right-hand rule, as illustrated in Figure 1 lb.

Properties of the cross product
The following equations hold for all vectors u, v , w in R 3 and for all scalars k.

a. w x v =  — (v x  w): The cross product is anticommutative.
b . (kv) x  w =  k(v x  w) =  v  x  (kw)
c. v x ( u  + w) = v x u  + v x w
d. v x  w =  0 if (and only if) v is parallel to w
e. u x u  =  0
f. e\ x  ?2 =  x ^3 =  e\, ey x  e\ =  e2

(and e2 x e\ =  —£3, 23 x e2 =  —?i, 2 j x ?3 =  —̂ )

Note that the cross product fails to be associative: u x (v x  w) ^  (u x  v) x  w, in 
general. For example, (e\ x e \ ) x e 2 = 0 but e\ x (?i x e2) =  —22-

Properties (b) and (c) stated in Theorem A. 10 imply that the function T(x)  =  
v x jc is a linear transformation from R 3 to R 3, for any fixed vector v in R 3.

The following diagram can serve as a memory aid for property ( / ) :

h

e\ e2

We can use the properties stated in Theorem A. 10 to express the cross products in 
components.

mv \ m
v2 X w2

_ ^ 3.

=  (v\e\  +  v2e2 4- 1*3*3) x  (w\e\  +  w2e2 +  w^e?)

(v2W3 -  V3W2)e\ +  (v3w i -  v\wi )e2 + ( v \w2 -  v2w \ ) h  
v2wz — VyW2 
V3 W \  —  V \ W $

_ V \ W 2 —  V2 W \  m
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Theorem A. 11 The cross product in components

V\ W 1 V2 W i -  V 3 W 2 ~

v 2 X W 2 = V3 W] — V \ W 3

_U3_ _ v \ w 2 —  V2 U) \ _

EXAM PLE 8
3 - 7 - 4 - 6 "
4 -5  - 2 - 7  
2 • 6 — 3 • 5

3"
6

- 3



Answers to Odd-Numbered Exercises

C H A P T E R  I

1.1 Answers to more theoretical questions are omitted.
1. ( j t , . y )  =  ( - l , l )

3. No solutions 
5. (jc,y) =  (0,0)
7. No solutions
9. ( j c , v, z) =  (/, j  — 2r, t), where t is arbitrary 

11. ( j c , y) =  (4, 1) 13. No solutions
15. ( x , y 9z) = (0,0,0)
17. ( j c , >’) =  ( - 5 a +  22?, 3a -  b)
19. a. Products are competing.

b. P\ =  26, P2 =  46 
21. a =  400, b =  300 
23. a. (*, y) = (/, 2/);

b. (jc,>0 =  (r,-3 f);
c. (*,?) =  (0,0)

25. a. If it =  7
b. If k = 7, there are infinitely many solutions.
c. If k = 7, the solutions are ( j c , y, z )  =

(1 - f ,2 f  ~ 3 ,f) .
27. 7 children (3 boys and 4 girls)

29. /( f )  =  1 -  5f +  3f2 31. / ( f ) = 2 f 2 - 3 f + 4
33. / ( f ) =  at2 + (1 — 4a)t + 3a, for arbitrary a 
35. /( f )  =  2e3' -  e2'

and (0,1). The intercepts of the line x + = t
are (/, 0) and (0, 2). The lines intersect if t ^  2.

t I t - 2
b. x = -------- ,  v =  ----- —

t - 2  t -  2
43. There are many correct answers. Example:

x  - 5 z =  - 4
y - 3 z = - 2

47. Twenty $1 bills, eight $5 bills, and four $10 bills. 
1.2 Answers to more theoretical questions are omitted.

jc"

y1.
10/+ 13 
- 8/  - 8  

t

3.

5.

4 — 2s 
s 
t

31

X\ - t
x2 t
*3 - t

t

x\

XI
1 . *3 =

X4
_*5_ _

*1 ’ t
X2

9. X3 _
X4 t
X5
*6. _
Xi

11. X2 _ 3
X3
*4.

13. No solutions
X 4"

15. y = 2
_z_ 1
r - r

-t +5 +  1 
25 +  2 
s 
t

- 2 1 
+ 4 
t

-2

17.

x \ '-8221/4340"
X2 8591/8680
X3 = 4695/434
X4 -459/434
X5 699/434

37. —2 0  — 2jc -  4 y  + jc2 + y2 =  0 , the circle centered "O' Y

at (1, 2 ) with radius 5 19. 0 and 0
39. If a - 2 b +  c =  0 0 0

4 1 . a. The intercepts of the line jc +  y =  1 are (1 , 0) 0_ 0_
21. 4 types

25. Yes; perform the operations backwards.

27. No; you cannot make the last column zero by ele­
mentary row operations.

29. a = 2,b = c = d = \

3 1 . / ( f )  =  1 -  5 f +  4 f 2 +  3 f3 -  2 f4

3 3 . / ( f )  =  —5 +  13f — 1 0 f2 +  3 f 3

3 5 .

~t  
61 

- 9 1 
4t

, where / is arbitrary.

’*1 '500'
37. X2 = 300

- _x 3_ 400

39. a. Neither the manufacturing nor the energy sector 
makes demands on agriculture, 

b. jci ^  18.67, JC2 ^  22.60, JC3 % 3.63

446
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0.18. The longest day43. a «  12.17, b % -1.15, c 
is about 13.3 hours.

45. a. If /: is neither 1 nor 2.
b. I fk = 1 c. If £ =  2.

47. a. x j =  3*3 -  2*4 , *2 =  2*3 — *4, for arbitrary *3 
and *4.

b. Yes, Jti =  1, x2 =  5, *3 =  9, *4 =  13.

49. C =  25

51. xy =  0 , the union of the two coordinate axes

53. a(xy — y) +  b(y2 — y) =  0, where a ^  0 or b ±  0

55. a(x2 -  x) +  b(y2 -  y) =  0, where a ±  0 or b ^  0

57. 25 -  IOjc -  10y +  x 2 +  y2 =  0, the circle of radius 
5 centered at (5, 5)

59. No solutions
61. Statistics: $86 ; Set Theory: $92; Psychology: $55.
63. Beginning: 120 liberal, 140 conservative.

End: 140 liberal, 120 conservative.

65. Cow: 34/21 liang; sheep: 20/21 liang.

67. Swallow: 24/19 liang; sparrow: 32/19 liang.

69. A: 265; B: 191; C: 148; D: 129; E: 76.

71. Gaussian elimination shows that
Pigeons =  -250 +  |  (Swans) +  20(Peacocks) and
Sarasas =  350 — (Swans) — 21 (Peacocks)

One solution (the one given by Mahavira) is: 15 pi­
geons, 28 sarasabirds, 45 swans, and 12 peacocks 
(spending 9, 20, 35, and 36 panas, respectively).

73. 53 sheep, 42 goats, and 5 hogs.

75.

41. m\  =

Full Half Empty

1 st Son P 10- 2 p P
2nd Son q 1 0 - 2  q q
3rd Son 1 0 -  p - q 2p +  2q — 10 0 1 3̂ 1

Here, p and q are integers between 0 and 5 such that 
p + q > 5.

1.3 Answers to more theoretical questions are omitted.
1. a. No solutions b. One solution

c. Infinitely many solutions

3. Rank is 1
\ 2* ' 7"

a. x 3 1 — 11
b. x =  3, y =  2 

7. One solution

9,
'1 2 3" X " f
4 5 6 y = 4
7 8 9 9

11. Undefined

29 
6513. 15. 70

17. Undefined

21.

19.

“158“ "1 0 0 “
70 23. 0 1 0
81 0 0 1

123 0 0 0

25. The system Ax =  c has infinitely many solutions or 
none.
’ 1 0 0 0 “ "2

5 0 0"

27. 0 1 0 0 29. 0 0 0
0 0 1 0 0 0 1A
0 0 0 1 L y m

31.
2
3
0 -

, for example

33. Ax =  x

35. Ae\ is the ith column of A.
" 2 - 2 1~

37. Jc =  t 
1

, where t is arbitrary

39.
0
0
1

43. No solutions41. One solution

4 7 . a. x =  0 is a solution.
b. By part (a) and Theorem 1.3.3
c. A(x\  + * 2) =  Ax\ A x 2 = 0  +  0 =  6
d. A(kx) =  k(Ax)  =  kO =  0

49. a. Infinitely many solutions or none
b. One solution or none
c. No solutions
d. Infinitely many solutions

51. If m = r and s =  p 

53. Yes
"7“ Y "4 '

55. Yes; 8 = - 1 2 + 2 5
9 3 6

57.
7 3 4

11 — 9 +
2

59. c =  9, d = 11

61. For c =  2 and for c =  3
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63. Line through the end point of v in the direction of iv

65. Parallelogram with its vertices at the origin and at 
the endpoints of vectors 5, w , and v + w

67. Triangle with its vertices at the origin and at the end­
points of vectors v and w

fig   ̂b+c—a c - b + a  b —c + a ^

5. A =

C H A P T E R  2
2.1 Answers to more theoretical questions are omitted.

1. Not linear 3. Not linear
7 6 —13

11 9 17
7. T is linear; A =  [5| v2 vm ]

9. Not invertible
3 -2 /3 '

-1 1/3 '
15. A is invertible if a ^  0 or b ^  0. In this case,

11. The inverse is

A~ l =
1

a2 + b2
a

- b
17. Reflection about the origin; this transformation is its 

own inverse.
19. Orthogonal projection onto the e\ axis; not 

invertible.
21. Rotation through an angle of 90° in the clockwise 

direction; invertible.
23. Clockwise rotation through an angle of 90°, followed 

by a scaling by a factor of 2; invertible.

25. Scaling by a factor of 2

27. Reflection about the e\ axis

29. Reflection about the origin

31. Reflection about the e2 axis, represented by the 
'-1  01matrix 0 1

l " I  
l l

35. 1 2 
2 1

37. T(jc) =  T(v)  + k ( T( w)  — T(v))  is on the line 
segment.

41. y = c\x\ + c2x 2\ the graph is a plane through the 
origin in R3.

43. a. T is linear, represented by the matrix 
[2 3 4],

45. Yes; use Theorem 2.1.3.

47. Write w =  ci Ci +  c2v2; then 
T(w)  = ciT(vi )  + c2T( v2)

49. a. 37 SFr2 coins, and 14 SFr5 coins.
'2 5'

b. A  = 1 1

c. Yes. A 1 =

51.

b. Yes.

160
9

1

53. A =

1
8/5
170
4/5

32 
1

5/8
1

425/4
1/2

F =  fC  +  32

1/170 5/4
4/425 2

1 425/2
2/425 1

2.2 Answers to more theoretical questions are omitted. 

1. The image consists of the vectors 3 and '2
1 4

3. The parallelogram in IR3 defined by the vectors T (e\) 
and T(e2)

5. About 2.5 radians

9. A vertical shear

11. 7 24
24 -7

7.

13. 2u] -  1
2ii]U2

2u\u2 
2 u2 —  1

15. a n  = 2u j  — 1, and a j j  = 2 u xu j  when / ^  j  

17. If b ±  0, then let 0 =

19.

b - b  '
1 — a and w =

1 + a m

23.

25.

for example.
"1 0 0“ "0 -1 0“
0 1 0 21. 1 0 0

_0 0 0 0 0 1

"l 0 o '
0 0 1
0 1 0

"l - k  
0 1 ; you shear back.

27. A is a reflection; B is a scaling; C is a projection; D 
is a rotation; £ is a shear.

"-2  0 0“
31. A = 1

0
0 0 
0 0

33. Use a parallelogram.

37. a. 1
c. - 2  < tr(A) < 2

39. a. Projection with scaling
b. Shear with scaling
c. Reflection with scaling. 

41. refgjc =  — refpx

35. Yes 

b. 0 
d. 2
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43. , a clockwise rotation through the
cos 0 sin#

— sin# cosf? 
angle 6 .

45. A-1 = A. The inverse of a reflection is the reflection 
itself.

47. Write T(x) =  a \  x. Express f ( t )  in terms of 
c  a

a , b, c, d.
49. The image is an ellipse with semimajor axes ±5?j 

and semiminor axes ±2^2- 
51. The curve C is the image of the unit circle under the 

transformation with matrix [w\ 102]-

2.3 Answers to more theoretical questions are omitted.
4 6

1.

5.

9.

15.

3 4

a b 
c d 
0 0
0 O' 
0 0 

1 
2

3. Undefined

-1  1
5 3

- 6  - 2

0
4

- 4

11. 110] 13. f/i]

19 16

17. All matrices of the form

19. All matrices of the form

21. All matrices of the form

23. All matrices of the form

25. All matrices of the form

a b 
- b  a

b
a — b

¥
a 0 b
0 c 0
d 0 e

29. a. The matrices Da Dp and Dp Da both represent 
the counterclockwise rotation through the angle 
a +  p.

31. (zth row of AB)  =  (/th row of A)B 
33. An =  I2 for even n and An = —I2 for odd n. A 

represents the rotation through n .
35. An =  I2 for even n and An = A for odd n. A repre­

sents the reflection about the line spanned by j

39. An represents the rotation through rnt/4 in the clock­
wise direction, so that A8 =  I2. Now A1001 =  
(A8) I25A =  A.

41. An =  /2 for even n and An = A for odd n. A repre­
sents the reflection about a line.

43. A =  — /2, for example, or any matrix representing a 
reflection about a line.

45. The matrix representing the rotation through 27T/3, 

cos(27t/ 3) — sin(27r/3) _
sin(27r/3) cos(27t/3 )

for example, A =

-1  -y /3
73 —1

47. Any projection or reflection matrix with nonzero
0.6 0 .8'entries will do, for example, A =

49. AF  = 1 0 
0 -1 , FA = -1

0

0.8 - 0.6

We compose a

. Note that F repre-

' - 2s - 2  / '55. X = s t

rotation with a reflection to obtain a reflection.

51. FJ = JF  = “ J ” j

sents the rotation through n/2  while J represents the
rotation through n /4 combined with a scaling by y/l. 
The products FJ and J F both represent the rotation 
through 37t/4 combined with a scaling by \ f l .

53. CD = ® and DC = ^ . We com-

pose two reflections to obtain a rotation.

where s and t are arbitrary

constants
‘-5 2II

3 -  1

59. No such matrix X exists.
1 5 —2 4“ t

61. X = -2 s  1 — 2t
s t

constants 
63. No such matrix X exists.

, where s and t are arbitrary

b. DaDp = DpDa '0  f "
_ cos(a 4- p) — sin(cr +  P) 65. X = 0 0sin(or +  fi) cos(a +  fi)

, where t is an arbitrary constant

67. ( A - I 2)2 =  0, since 2Ax is a diagonal of the parallel­
ogram spanned by jc and A 2jc, so that 2 Ax = x + A 2x 
or (A2 — 2A +  I2)x =  0, for all x

69. There is one and only one such X.

2.4 Answers to more theoretical questions are omitted.

1 0 " 8 -3" r - 2  ' i37. A" =
- n  1

. A represents a vertical shear. 1. -5  2 3.
J o .
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5. Not invertible 7. Not invertible
1 0 - 1

9. Not invertible 11. 0 1 0
0 0 1

13.

15.

17.
19.

21.
25.
29.
31.
33.
35.

1 0 0 0
- 2 1 0 0

1 - 2 1 0
0 1 - 2 1

- 6 9 -5 1
9 - 1 -5 2

-5 -5 9 -3
1 2 -3 1

Not invertible
X\ = 3yi -  2.5y2 +  0-5y3
X2 =  — 3>’1 +  4>-2 -  W

*3 =  y i  -  1.5y 2 +  0 .5>>3
Not invertible 23. Invertible
Invertible 27. Not invertible
For all k except k =  1 and k = 2
It’s never invertible.
If a2 +  b2 =  1
a. Invertible if a, d , /  are all nonzero
b. Invertible if all diagonal entries are nonzero
c. Yes; use Theorem 2.4.5.
d. Invertible if all diagonal entries are nonzero

37.

39.

41.

43.
45.

47.

51.

1 -1

53.

M is invertible; if miy =  k (where / ^  j), then the
17th entry of A/-1 is — k\ all other entries are the
same.
The transformations in parts (a), (c), (d) are invert­
ible, while the projection in part (b) is not.

Yes; x =  B~l (A~]y)
a. 33 =  27 b. n3

1c. -p- =  64 (seconds)

/ ( j c )  =  x 2 is not invertible, but the equation / ( jc )  =

0  has the unique solution jc =  0 .
a. Since rank(A) < «, all the entries in the last row 

of E will be zero. We can let c =  en; the sys­
tem Ex =  en will be inconsistent. Reversing the 
row reduction from A to £ , we can transform 
the system Ex  =  en into an inconsistent system 
Ax = b.

b. We have rank(A) < m < n. Now use part a.

a. k\ =  2 , X2 =  6.

b. We chose k =  2. A —kI2 = ' l  f ’-I"
3 3 , x — 1

c. Check that x  =  2x.

55. det A =

1/2 0 

0 1/2

57. detA =

• , 0sin(7r/2) 2

, a scaling by 1 / 2

s in ( -7 r /2 )

=  4, and A 1 =

cos Of 
sin a

— 1, and A-1 =  A, a reflection

sin a  

— cos a

59. detA =  

A "1 = 

61. detA =

0.6 
0.8

0.6 0.8
0.8 0.6

sin(7r/2)
-0 .8

0.6 =  1, and

, a rotation

1
-1 sin(7r/2) =  2, and A-1 =

1 -1
1 1 , a rotation through tt/4 combined with

a scaling by V 2/2 

-363. detA =

- - 5
scaling by 1/5 

65. detA =

4
-3 4 

4 3

sin(-7r/2) = —25, and

, a reflection combined with a

1 0 
- 1 1

67. False

73. True

77. A =  BS~

sin(7r/4) 

a vertical shear

=  1, and A 1 =

69. False 71. True

75. True

79. A =  - 9
-2

3
16

81.

0 0 1
matrix of T : -1  0 0

0 - 1 0
0 1 0"

matrix of L : 1 0 0
0 0 1_

83. Yes; yes; each elementary row operation can be “un­
done” by an elementary row operation.

85. a. Use Exercise 84; let S = E\ E2 • • • Ep 

b. S =

87.

where k is nonzero and c is arbitrary. Cases 3 and 4 
represent shears, and case 5 is a reflection.

89. Yes; use Theorem 2.3.4.

1 O' \ l2 0] ■ \  o'
- 4  1 0 1 - 2  1

k 0 1 0 1 c l 0 0  l
0 1 ’ 0  k ’ 0  1 1 c  l ’ ! 0
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91. a. y  =

93. a. Write A =

v J u(m)

" - 3" 1"
5 II 

t *-D -1
2 2
0 0

A im) A2 
A3 A4

u 2

, L =

0 I/4 
c. Solve the equation

A =

L(m) 0 
Z.3 Z-4

. Use Theorem 2.3.9.

T

Lf 0‘ mW y

1— Si JC t 0 1

for j c , y, and t.

95. A is invertible if both A \ 1 and A22 are invertible. In 
this case,

A = r^ n
0 A

97. rank(A) =  rank( A 11) +  rank(A23) 

99. Only A = In

101. 0;th entry of AB) =  Ylk=l aikh j <
5 E t= l  bkj z  sr

107. g( f (x) )  = j c , forall x.
*/ \ (x  if jt is

/ ( *W ) = V  + 1 if a: is
even
odd

The functions /  and g are not invertible. 

C H A P T E R  3

3.1 Answers to more theoretical questions are omitted.
1. ker(A) =  {0} 

f
5. -2

1

3. e\ye2

7. ker(A) =  {0}

9. ker(A) =  {0} 11.

- 2
3
1
0

13.

15.

2“ "-3“ 0“
1 0 0
0 -2 0
0 * -1 0
0 1 0
0 0 1

r Y
1 * _2_ 17. All of R2

19. The line spanned by
1

- 2

21. All of R3

23. kernel is {0}, image is all of R2

25. Same as Exercise 23 

27. f ( x ) = x i - x

29. f

(compare with spherical coordinates) 

" -2  - 3 '

11_______________________________________________________

sin 0 cos 0
= sin <p sin 9

L J cos 0

31. A =

33. T =  jc +  2y +  3z

35. ker(T) is the plane with normal vector 5; 
im(T) =  R.

37. im(A) =  span(?i, £2); ker(A) =  span(?0; 
im(A2) =  span(^i); ker(A2) =  span(?i, ?^);
A3 =  0 so ker(A3) =  R3 and im(A3) =  {0}

39. a. ker(£) is contained in ker( A B), but they need not 
be equal.

b. im( A B) is contained in im(A), but they need not 
be equal.

[31
41. a. im(A) is the line spanned by A , and ker(A) is

-4
3the perpendicular line, spanned by

b. A2 =  A; if v is in im(A), then Av =  v.
c. Orthogonal projection onto the line spanned by 

r3"
4

43. Suppose A is an n x m matrix of rank r. Let B be the 
matrix you get when you omit the first r rows and 
the first m columns of rref [ A j /„ ] . (What can you 
do when r =  n?)

45. There are m -  r nonleading variables, which can be 
chosen freely. The general vector in the kernel can 
be written as a linear combination of m — r vectors, 
with the nonleading variables as coefficients.

47. im(T) =  L2 and ker(T) =  L\

51. ker(AB) =  {0}

53. a.

1" Y
0 1
1 0
0 0
0 0
1 0
0 1

ker(H) =  span(vi, v2l v$y V4), by part (a), 
and im(Af) =  span(?i, ?2, ?4), by Theo­
rem 3.1.3. Thus ker(//) =  im(A/). H(Mx)  =  0, 
since Mx  is in im(M) =  ker(H).
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3.2 Answers to more theoretical questions are omitted.
1. Not a subspace 
7. Yes

11. Independent 
15. Dependent

19.

3. W is a subspace. 
9. Dependent 

13. Dependent 
17. Independent

Y ■3 '
0 and 4
0 5
0 0

are redundant.

21. vj =  t*i, or, C| -  v2 = 0, so that 

kernel.
T23. Ci =  0, so that is in the kernel.

25. C3 =  Ci, or, Ci — vi = 0, so that

kernel.

1
-1

1
0

-1
is in the

27.

31.

35

Y Y
1 , 2
1 _3_

Y '5"
2 6
3 7
5 8

29.

33.

1 0 0
0 1 0
0 0 * 1
0 0 0

Suppose there is a non-trivial relation c\ C| -1----- h
Ciii H---- + cm vm = 0 ,  with Cj ^  0. We can solve
this equation for C, and thus express C, as a linear 
combination of the other vectors in the list.

Conversely, if £?,- is a linear combination of the 
other vectors, C/ =  • • •, then we can substract C, from 
both sides of the equation to obtain a non-trivial re­
lation (the coefficient of 5, will be -  I).

37. The vectors T’(Ci)....... T(vm) are not necessarily
independent.

39. The vectors Ci, . . . ,  vm, C are linearly independent.
41. The columns of B are linearly independent, while 

the columns of A are dependent.
43. The vectors are linearly independent.

b. From part (a) we know that the vectors 
Cl....... vp, W), . . . ,  wq are linearly indepen­
dent. Consider a vector* in V +  W. By definition 
of V +  W we can write jc = C -1- w for a C in V 
and a w in W. The C is a linear combination of the 
Vi, and w is a linear combination of the Wj . This
shows that the vectors C j , . .  
span V + W.

, Vp, U)\, wa

-2 -3 - 4 -5
1 0 0 0

55. 0 , 1 , 0 , 0
in the 0 0 1 0

0 0 0 1

49. L =  im

+ cpVp+d\w\  +51. a. Consider a relation c| Cj-h •
• • • + dqwq = 0 .  Then cjCi +  •
-d j£C i-------- dq Wq
both in V and in W. The claim follows.

• +  CpVp =
dq Wq is 0 , because this vector is

57. For j  = 1,3,6, and 7, corresponding to the columns 
that do not contain leading 1 ’s.

3.3 Answers to more theoretical questions are omitted.
Y

I. V2 = 3Cj; basis of image: 

basis of kernel: -3
1

3. No redundant vectors; basis of image: 

basis of kernel: 0

Y '2
3 * 4

5. C3 =  3C|; basis of image: 

basis of kernel:

7. C2 =  2C|: basis of image: 

basis of kernel:

Y ' - 2
2 4

Y 3
1 ’ 4

-2
1
0

9. C2 =  2 C1; basis of image:
Y Y
1 , 2
1 3

basis of kernel:
-2

1
0

" 1 0  0" L J

0 1 0 Y 0
45. Yes 47. 0 0 1 11. C3 =  C1; basis of image: 0 1

0 0 0 0 1
J " - l “Y

= ker 1 0 - 1 basis of kernel: 0
1

0 1 -1 1
1

13. C2 =  2 Cj, C3 = 3Cj; basis of image: [l];
~-2 "-3 “

basis of kernel: 1 0
0 1
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basis of kernel:

15. 03 =  2v\  +  202,

basis of image:

0 
0 
0 
1

1 7 .  v \  =  0 ,  £>3 =  2 l > 2 , 0 5  =  3 0 2  +  4 0 4 ;

' l '

0;
"0“
1
0
1

basis of image:

basis of kernel:

-2
-2

1 *

0

05

*
o'
1

0
- 2

1
0
0

0
-3

0
- 4

1

1 9 .  C 3 =  5 0 i  +  4 0 2 ,  0 4  =  3 0 i  +  2 ^ 2 ;

basis of image:

basis of kernel:

1
0
0
0

-5
- 4

1
0
0

-3
- 2

0
1
0

21. rref(A) =

basis of image:

1 0 —3
0 1 4
0 0 0

r
4
7

basis of kernel:

23. rref(A) =

basis of image:

basis of kernel:

3
- 4

1

1 0 2 4
0 1 —3 -1
0 0 0 0
0 0 0 0

" f 0“
0 1
3 ’ 4
0 -1

- 2
3
\
0

‘- 4 “
1

*
1
0
1

25. rref(A) =

basis of image:

basis of kernel:

1 :2 0 5 o'
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

1 3 1
3 9 3ge: 1 ’ 4 2
2 9 2
-2

1
0
0
0

-5
0
1
1
0

29.
- 3

2
0

' - f
0
2

1 -2 - 4
1 0 0
0 1 0
0 0 1

27. They do.

31. A =

33. The dimension of a hyperplane in Kn is n — I. 

35. The dimension is n — 1.
" 1 0  0 0 0"
0 1 0  0 0
0 0 0 0 0
0 0 0 0 0

37. A =

39. ker(C) is at least 1-dimensional, and ker(C) is con­
tained in ker(A).

41. To fit a conic through a given point Pj(xj , v/)* we 
need to solve the equation c\ +  C2*j + C3\j  4- 
C4xj  +  csxjyj  +  C6.vj =  0, a homogeneous
linear equation in the six unknowns c\ ....... c6.
Thus, fitting a conic to four given points 
Pi (jci , vi)__ _ P4(x 4 , V4) amounts to solving a sys­
tem of four homogeneous linear equations with six 
unknowns. This in turn amounts to finding the ker­
nel of a 4 x 6 matrix A. This kernel is at least two- 
dimensional. Since every one-dimensional subspace 
of ker A defines a unique conic (see Exercise 40), 
there will be infinitely many such conics.

43. Building on our work in Exercise 41, we observe that 
fitting a conic through 6 points amounts to finding the 
kernel of a 6 x 6 matrix A . There will be no such conic 
if ker A =  {0}, one conic if dim ker A =  1, and in­
finitely many conics if dim ker A > 1. To give an ex­
ample for each case, recall Exercise 1.2.51, where we 
showed that the unique conic xy  =  0 runs through 
the points (0,0), (1,0), (2,0), (0, 1), (0, 2). Thus, 
there is no conic through the points (0,0), (1,0), 
(2,0), (0. 1), (0, 2), (1, 1), whereas the only conic
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through (0,0), (1,0), (2, 0), (0, 1), (0, 2), (0, 3) is 
xy =  0. There are infinitely many conics through 
(0, 0), (1,0), (2,0), (3,0), (4,0), (5,0).

45. x 2y — xy2 =  xy(x — y) =  0

47. No such cubic exists, since the unique cubic through 
the first 9 points does not pass through (2, 1). See 
Exercise 45.

49. a(xy2 — xy) +  b(x2y — xy) =  axy(y — 1)
+  bxy (x — 1) =  0, where a ^  0 or b ^  0

51. 2y -  3y 2 + y 3 =  y(,y -  1)(>- -  2) =  0

53. 2x — 2y — 3x2 +  3y 2 + x 3 -  y3 =  0, or, 
x(x -  l)(x -  2) =  y(y -  l)(y -  2)

55. See Exercises 41 and 54. Since the kernel of the 8 x 10 
matrix A is at least two-dimensional, and, because 
every one-dimensional subspace of ker A defines a 
unique cubic (compare with Exercise 40), there will 
be infinitely many such cubics.

57. There may be no such cubic [as in Exercise 47], ex­
actly one [take the 9 points in Exercise 45 and add 
( — 1, — 1)], or infinitely many [as in Exercise 49].

61. A basis of V is also a basis of W, by Theorem 3.3.4c.

63. dim(V +  W) = dim(V) +  dim(W), by Exer­
cise 3.2.51.

65. The first p columns of rref (A) contain leading l ’s 
because the 5,- are linearly independent. Now apply 
Theorem 3.3.5.

69. [0 1 0 2 0], [0 0 1 3 0],
[0 0 0 0 l]

71. a. A and E have the same row space, since ele­
mentary row operations leave the row space un­
changed.

b. rank(A) =  dim(rowspace(A)), by part (a) and 
Exercise 70.

75. Suppose rank(A) =  rt. The submatrix of A consist­
ing of the n pivot columns of A is invertible, since
the pivot columns are linearly independent.

Conversely, if A has an invertible n x n  subma­
trix, then the columns of that submatrix span Rn, so 
im(A) =  Rn and rank(A) =  n.

11. Let m be the smallest number such that Am =  0. By 
Exercise 76 there are m linearly independent vectors 
in Rn\ therefore, m < n, and A" =  AmAn~m =  0.

81. a. 3, 4, or 5 b. 0, 1, or 2
83. a. rank(Afl) < rank(A) b. rank(AB) < rank(Z?)

9. x isn’t in V.

3.4 Answers to more theoretical questions are omitted. 
'2 
3

- 4
3 7* [*]«  ”

13. [x]^ — 

17. [x]* =

1
-1

0

f
1

-1

21. B =

25. B =

29. B =

33. B =

1 0 
0 0

-1  -1  
4 6 

'0  0 0
0 1 0
0 0 2

'0  0 0
0 1 0
0 0 0

11. [jjsfl —

15. [*]* =

19. B =

23. B =

21. B =

31. B =

35. B =

8
-12

5

1/2
i/2

1 O'
0 -1

'2 O'
0 -1

"9 0 o '
0 0 0
0 0 0

0 0 1
0 0 0

-1 0 0

1 0 0
- 2 1 0

0 0 1

37.

39.

41.

, for example

1 -2 -3
2 1 * 0
3 0 1

3 -1 0
1 , 3 -2
2 0 1

, for example

, for example

4
-3

2
45. If v is any vector in the plane that is not parallel 

3<to *, then u, A (Jc — 2v) is a basis with the desired

property. For example, 0 =

'3 ' 1
’ 3

" -4 '
2 - 4
0 -1

47. A = d c 
b a 49. -1

-1

gives the basis

3- [
0 40' _  1 -1  2

X\% ~ 1 53. x = 58 55‘ 2 1 °.
57. Consider a basis with two vectors parallel to the 

plane, and one vector perpendicular.
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59. Yes 

61.

63. Yes

-9" 'o'
6 1

, for example

67. B = be — ad 
a + d

73,

b. Since we have the p linearly independent vec­
tors 50 i, Sv2 , . . . ,  Svp in ker(A), we know that 
dim(kerfi) =  p < dim(kerA), by Theo­
rem 3.3.4a. Reversing the roles of A and B, 
we find that dim(kerA) < dim(kerB). Thus, 
nullity(A) =  dim(kerA) =  dim(kerfl) =  
nullity(fl).

0.36 0.48 0.8
0.48 0.64 -0 .6  

- 0.8 0.6 0

75. 0 -1
1 0 77. by = an+i-i'n+ \-j

C H A P T E R  4

4.1 Answers to more theoretical questions are omitted.
1. Not a subspace
3. Subspace with basis 1 — f, 2 — f2 
5. Subspace with basis t 7. Subspace 
9. Not a subspace 11. Not a subspace

13. Not a subspace 15. Subspace
17. Matrices with one entry equal to 1 and all other en­

tries equal to 0. The dimension is mn.
1 i 0 0
0 ’ 0 ’ 1 * i , so that the dimension

1 0 
0 0

0 0 
0 1

19. A basis is 

is 4.

21. A basis is 

is 2.

23. A basis is

dimension is 3.

25. A basis is 1 — t, 1 — t2, so that the dimension is 2.

' l  o '

oo oo

0 0 ’ 1 0 ’ 0 1

, so that the dimension

so that the

27. A basis is 

is 2.

29. A basis is 

sion is 2.

31. A basis is 

is 2.

1 o'

oo

0 0 * 0 1

'-1 f 0
0 0 * -1

1 o ' 0 - 1 “
1 ° . ’ 0 1

, so that the dimension

, so that the dimen-

, so that the dimension

33. Only the zero matrix has this property, so that the 
basis is 0 , and the dimension is 0.

35. A basis is
“l 0 0" “0 0 0“
0 0 0 , 0 1 0
0 0 0 0 0 0

1 2
"0 0 0

69. If 5 = , then S 1 AS = 3 0 0 0 0
2 1 0 -1 0 0 1

71. a. If Bx = S ]ASx = 0 , then A(Sx) = 0.
37. 3, 5, or 9 

41. 0,3, 6, or 9

, and the dimension is 3.

n (n + l)
39. £ >  =

*=1

43. 2 45. dim(V) =  3

47. Yes and yes 49. Yes

51. f ( x )  = ae3x +  be4x

4.2 Answers to more theoretical questions are omitted.
1. Nonlinear
3. Linear, not an isomorphism 

5. Nonlinear 7. Isomorphism
9. Isomorphism 11. Isomorphism

13. Linear, not an isomorphism 
15. Isomorphism 
17. Linear, not an isomorphism 

19. Isomorphism 21. Isomorphism
23. Linear, not an isomorphism 
25. Linear, not an isomorphism 
27. Isomorphism 
29. Linear, not an isomorphism 
31. Linear, not an isomorphism 
33. Linear, not an isomorphism 
35. Linear, not an isomorphism 
37. Linear, not an isomorphism 
39. Linear, not an isomorphism 
41. Nonlinear 43. Isomorphism
45. Linear, not an isomorphism 
47. Linear, not an isomorphism 
49. Linear, not an isomorphism

51. ker(T) consists of all matrices of the form

so that the nullity is 2.
53. The image consists of all linear functions, of the form 

mt +  b, so that the rank is 2. The kernel consists of 
the constant functions, so that the nullity is 1.

55. The image consists of all infinite sequences, and 
the kernel consists of all sequences of the form 
(0, *i,0, jc3,0, *5,...).

57. The kernel consists of all functions of the form 
ae2t +  be3t, so that the nullity is 2.



456 A N S W E R S  T O  O D D -N U M B E R E D  E X E R C IS E S

59. The kernel has the basis t — 7, (r — 7)2, so that the 
nullity is 2. The image is all of R, so that the rank 
is 1.

61. The kernel consists of the zero function alone, and 
the image consists of all polynomials g(t) whose 
constant term is zero [that is, g(0) =  0].

63. Impossible, since dim(P3) ^  dim(TR3).
65. b. ker(T) consists of the zero matrix alone, 

d. This dimension is mn.
67. For all k except k =  2 and k =  4.
69. No; if B = S~[ ASy then T(5) =  0.
71. Yes, there is exactly one such polynomial.
73. Yes 77. Yes, and yes.
79. Surprisingly, yes.
83. The transformation T induces a transformation t  

from ker(L o T) to ker L, with ker T =  ker T. 
Applying the rank-nullity theorem as stated in Ex­
ercise 82 to 7\ we find that dim ker(L o T) = 
dim k e rf  +  dim \ m t  < dim ker T +  dim ker L, 
since im f is a subspace of the kernel of L.

4.3 Answers to more theoretical questions are omitted.

1. Yes 3. Yes

1 0 0“ "0 0 0 ‘
5. 0 1 2 7. 0 0 4

0 0 3_ _0 0 0

' l 0 0" "l 0 0“
9. 0 2 0 11. 0 1 0

0 0 1 0 0 3

13.

17.

1 0  1 0  
0 1 0  1 
2 0 2 0 
0 2 0 2

o - r

' - 3 1
21. 0 ■3

0 0

'l 0 0“
25. 0 -1 0

0 0 1

'2 2 8 /3 ’
29. 0 0 0

0 0 01

"l 0 o '
33. 0 1 0

0 0 0

15.

19.

23.

27.

31.

35.

1 0 
0 -1

p - q
Q p

"l 3 9"
0 0 0

_0 0 0_

"l -1 1“
0 2 -4

_0 0 4

“o 1 o '
0 0 2

_0 0 0

0 0 1 o'
-1 0 0 1

0 0 0 0
0 0 -1 0

'- 2 0 0 o' "-1 0 1 o'
0 2 0 0 39. 0 1 0 1
0 0 0 0 1 0 -1 0
0 0 0 0 0 1 0 1

37.

1 0 0 
0 I 1 
0 0 1

c. S~[ =

43. a. 5 =

1 0 0
0 1 -1
0 0 1

1 0 0^
-1  1

0 1

c. S ~l =
1 0 
0 0 
1 1

0
1

-1

45. a. 5 =

47. a. 5 =

c. 5 " ‘ =

1 -1

1 -1  
0 1
0 0

1 1
0 1

„ 1 1 1 fc. 5 =  -
2 1 -1

1
- 2  

1
1
2

0 0 1

49.

53.

57.

2 2 
- 2  2
cos(0) — sin(0) 
sin(0) cos(0)

51.

55.

-1
0

2/9 —14/9
-1 /9  7/9

-1  3
- i  0

59. T (/(f) )  =  t • f ( t )  from P to P, for example.

61. a. 5 =

63. a. b\ =

b. 5 =

65. a. P2 =

-3
4

~2 "o'
0 , b2 = 2
1 3

b- 5-1 = h

, for example.

-3  4 
4 3

'-1  - f c 5 - i -  1 '- 3  - f
1 3

c. 5 - - 1 1_
a2 -I- be b(a -I- d) 
c(a +d)  be + d2

be — ad 
a + d

and

b. B = T is an isomorphism if B0 be — ad
1 a +  d 

is invertible.
c. In this case, im(T) is spanned by P and ker(r)

d - bis spanned by (a +  d)J2 — P = —c
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67. a.

0 0 0 2
0 0 - 2 0
0 0 0 0
0 0 0 0

b. f i t )  =  sin(r)

C H A P T E R  5

5.1 Answers to more theoretical questions are omitted.

1. 7170

< (  20 \  5. arccos -
V\/406 /

7. obtuse

3. >/54 

0.12 (radians) 

9. acute

11. arccos f -\= j —> ^  (as n oo) 
\ V V  2

13. 2arccos(0.8) % 74°

15.

17.

"-2"
1

3"
0

i
o

1i

0 y 1 1 0
0 0 1

1" 2
- 2 - 3

1 0
0 1

19. a. Orthogonal projection onto Lx
b. Reflection about Lx
c. Reflection about L

21. For example: b = ^ d  =  e =  g = 0 ,  a =  ^,

>/3 ,  sfi>
C 2 ’ 2

25. a. ||/:0|| =  \/(&0) • (A:iJ) =  \Jk2iv • 0) =
y/k^y/v • v =  |&| ||0||

27.

b. By part (a),

8
0
2

-2

i i ? r

29. By Pythagoras, ||jc|| =  V49 +  9 +  4 + 1 4 -1  =  8.

31. p < \\x\\2. Equality holds if (and only if) if is a 
linear combination of the vectors 5/.

33. The vector whose n components are all 1 jn
Y

35. -
1

\/ l4

37. Rix) =  2(«i • x)u\ +  2(u2 • Jc)«2 — x
39. No; if u is a unit vector in L, then jc • proj^Jc =  

jc • ( u  • jc)m =  (w • x ) 2 >  0 .

41. arccos(20/21) 

43. 102

; 0.31 radians 
25-45. |y02 — ^ 0 3

5.2 Answers to more theoretical questions are omitted.

1.
2/3
1/3

-2 /3

2/3
2/3
1/3

4/5" 3/5'
3. 0 , 0

3/5 -4 /5

’ Vl8

-1
-1

4

7.

9.

11.

13.

15.

17.

19.

2/3" '- 2 /3 '
2/3 , 1/3 ,

1/3 2/3

1/3
-2 /3

2/3

1/2
1/2
1/2
.1/2

4/5'
0
0

3/5

— 1/10 
7/10 

-7 /1 0  
1/10

-3 /15 '
2/15

14/15
4/15

' 1/ 2' '  1/ 2 ' 1/ 2 '

1/2 - 1/2 1/2
1/2 ’ - 1/2 - 1/2
1/2 1/2 - 1/2

2/3
1/3

-2 /3
[3]

4/5
0

3/5 
0

3/5 -4 /5

2/3 -1/V T8“
2/3 -1/VT8 
1/3 4/718.

'5 5
0 35

2L 3

23.

25.

2 - 2  1
2 1 - 2
1 2 2

1/2 —1/10 
1/2 7/10
1/2 -7 /1 0
1/2  1/10

'4/5 -3/15*
0 2/15
0 14/15

3/5 4/15

12

3 3
0 vTs

'3 0
0 3 -12
0 0 6

2 4
0 10

5 10
0 15
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27’ 2

29.

1 1 1
1 -1  1
1 -1  -1
1 1 -1

2 1 
0 1 
0 0

1
- 2

1

'- 3 /5 ' '4/5'
.  4/ 5. 3/5 31. h

35.

39.

r
1 0 1

T i 0 ' 7 2
- 1

"1/3“ 2/3"
2 /3 5 1/3

_2/3 - 2/ 3.

1
" f

1

7 u
I
3 ’ 7 !

0
1

-1
0

37‘ 2

1
-1
-1

1

i 5"
- 4

’ x/42 1_
41. Q is diagonal with qn =  1 if an > 0 and qn =  —1 

if an < 0. You can get R from A by multiplying the 
zth row of A with —1 whenever an is negative.

43. Write the QR factorization of A in partitioned form
R] n2

0 R4
Then A\ =  Q\R\  is the QR factorization of Ai. 

45. Yes

as A =  [Ax A2] =  [C i Q2]

5.3 Answers to more theoretical questions are omitted.
1. Not orthogonal 3. Orthogonal
5. Not orthogonal 7. Orthogonal
9. Orthogonal 11. Orthogonal

13. Symmetric
15. Not necessarily symmetric
17. Symmetric 19. Symmetric
21. Symmetric
23. Not necessarily symmetric 
25. Symmetric
27. (A0) • w =  (Av)Tw =  vt At w =  v • (A Tw).

L(v) • L(w)
29. /(L (0 ), L(w)) = arccos

0 • U)
arccos

V w

||L(0)||||L(w)|| 

=  Z(5, u>). [The equation

L(0) • L(w) =  0 • w is shown in Exercise 28.]
31. Yes, since A A T =  Jn.
33. The first column is a unit vector; we can write it

cos(0 )as i>i =
sin(0 )

for some 0. The second col­

umn is a unit vector orthogonal to 0 j ; there are

two choices: - sin(0 ) 
cos(0 )

and sin(0 ) 
— cos(0 )

. Solution:

cos(0 ) — sin(0 ) 
sin(0 ) cos(0 ) 

arbitrary 0 .

and cos(0 )
sin(0 )

sin(0 ) 
— cos(0 ) for

35. For example, T(x) = -

37. No, by Theorem 5.3.2. 
39. (/7 th entry of A) =  U{Uj

41

1
—2

2

- 2
1

1
All entries of A are - .

n
43. A represents the reflection about the line spanned by 

u (compare with Example 2), and B represents the 
reflection about the plane with normal vector 5.

45. dim(ker(A)) =  m -  rank(A) (by Theorem 3.3.7) 
and dim(ker(A3n)) =  n — rank(A7) =  n — rank(A) 
(by Theorem 5.3.9c). Therefore, the dimensions of 
the two kernels are equal if (and only if) m = ny that 
is, if A is a square matrix.

47. A7 A =  (QR)T QR =  R t Qt QR =  R TR

49. By Exercise 5.2.45, we can write A T = QL where 
Q is orthogonal and L is lower triangular. Then 
A =  (QL)t  =  Lt Qt  does the job.

51. a. Im = Q \Q \  =  STQ l Q 2S =  STS, so that S is 
orthogonal.

b. R2R^ 1 is both orthogonal [by part (a)] and up­
per triangular, with positive diagonal entries. By 
Exercise 50a, we have R2R \  =  Im so that 
R2 = R} and Qi = Q2l as claimed.

0 1 0“ 0 0 f "0 0 o"
53. - 1 0 0 , 0 0 0 * 0 0 1

0 0 0 - 1 0 0 0 - 1 0

55.

dimension 3 
n(n +  1) 57. Yes, and yes

59. The kernel consists of the symmetric n x n  matri­
ces, and the image consists of the skew-symmetric 
matrices.

61.

63. If A =  LDU , then AT =  UTDL T is the LDU 
factorization of AT. Since A =  AT the two factor­
izations are identical, so that U =  L T, as claimed.

65. 0.8 - 0 .6' 0.6 0 .8'

0.6 0.8 * 0.8 - 0.6
0.6 - 0.8 
0.8 0.6
0.8 0.6
0.6 - 0.8

5.4 Answers to more theoretical questions are omitted.

and

1. im(A) =  span and ker(Ar ) =  span
- 3

2
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5. V1- =  (ker(A))1 =  im(Ar ), where
~1 1 1 r

1 2  5 4

3. The vectors form a basis of Rn.

A =

Basis of V1 :

7. im(A) =  (ker(A))

T V
l 2
l ’ 5
l 4

9. HJcoll < ||*|| for all other vectors Jc in S.
1L b. L(L+(y ) )= y

c. L+ (L(jc)) =  projv*, where V =  (ker(A))1 =  
im(Ar )

d. im(L+) =  im(Ar ) and ker(L+) =  {0}
1 O'

ye. L+(y) = 0 1 
0 0

13. b. L+ (L(jc)) =  projv*, where V =  (kerCA))-1" =  
im(Ar )

c. L(L+(J)) =  projwJ» where W — im(A) =  
(ker(A7’))"L

d. im(L+) =  im(Ar ) and ker(L+) =  ker(A^)

e. L+(y) =
I 0 
0 0
0 0

15. Let B = (ATA)~l A T.
17. Yes; note that ker(A) =  ker(A7 A), 

f
19.

21. x* = 

23.

Hb -  Ax* || =  42

25.

0 
0
1 - 3 1 

t , for arbitrary t

27.

31. 3 + 1 .5 f

29. x* =  x\  ^  \

33. approximately 1.5 +  0.1 sin(/) — 1.41 cos(f)
co +  35cj =  log(35)

37. a. Try to solve the system co + 46c i =  log(46) 
c0 +  59ci =  log(77) 
cq 4- 69c | =  log(133)

co 0.915*

-c*. 0.017
UseLeast-squares solution

approximation log(d) =  0.915 -1- 0.017r.
b. Exponentiate the equation in part (a): d =

10'ogJ =  ioa915+0017' % 8.221 • 10ool7/ ^  
8.221 • 1.04/

c. Predicts 259 displays for the A320; there are 
much fewer since the A320 is highly comput­
erized.

39. a. Try to solve the system
c0 +  log(600,000)ci =  log(250) 
co +  log(200,000)ci =  l°g(60) 
c0 +  log(60,000)d =  log(25) . 
c0 +  log(10,000)ci =  log(12) 
c0 +  log(2,500)ci =  log(5)

5.5 Answers to more theoretical questions are omitted.
3. a. If S is invertible.

b. If S is orthogonal.
5. Yes. 7. For positive k.
9. True. 11. The angle is <5.

13. The two norms are equal, by Theorem 5.5.6.

15. l f b  = candb2 <d.

17. Ifker(T) =  {0}.

19. The matrices A = 

and b2 < ad.

21. Yes, (0, w) =  2(0 • w).

23. 1, 2f -  1.

such that b =  c, a > 0,

25.
, 1 1 n

4 +  9 +  v r

27. ao =  —t=. c* =  0 for all Jc.
v 2
r 2, I -— if A: is odd 

bk =  < kn
I 0 if A: is even.

29.
k o d d * 2  8

33. b. Il/H2 =  ( / , />  =  = 1, so that
ll/ll =  1

35. a. ||r||32 t2dt = -  and 11/1134 =

t2 t2dt = \ = LTC
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b. For f ( t )  =  V l -  t2 we have H/H32 =  ^ ^ a n d

11/11)4=^1

C H A P T E R  6

6.1 Answers to more theoretical questions are omitted.
1. 0 
7. 0

13. k ^ O

3. - 2
9. -3 6  

15. k ^  1/2

5. 110
11. k ^  3/2

17. If A: is neither 1 nor —1.
19. If k is neither 0 nor 1.
21. If A: is neither 1 nor -2 .
23. If k is 1 or 4. 25. If k is 2 or 8.
27. If A is 2, 3, or 4. 29. If k is 3 or 8.
31. 24 33. 99 35. 18

37. 55 39. 120 41. 24
43. det(-i4) =  (-1)" det(A)

45. They are the same.

49. The kernel is the plane span(u, w) and the image 
is R.

51. Let at i be the first diagonal entry that does not belong 
to the pattern. The pattern must contain a number in 
the /th row to the right of an as well as a number in 
the ith column below an .

53. Only one pattern has a nonzero product, and that 
product is 1. Since there are n2 inversions in that 
pattern, we have det A =  (— 1 )n = (— 1 )n.

55. Yes, since the determinants of all principal subma­
trices are nonzero. See Exercise 2.4.93.

57. Only one pattern has a nonzero product, and that 
product is 1. Thus det A = 1 or det A = — 1.

59. a. Yes b. No c. No

0
I
0

=  0.

6.2 Answers to more theoretical questions are omitted.
1. 6 3. -2 4  5. -24
7. 1 9. 24 11. -72

13. 8 15. 8 17. 8
19. -1  21. 1
23. (— 1)/2 1 $  efther n or (n -  1) is di­

visible by 4, and —1 otherwise.
25. 16 27. a2 + b 2

31. a. det =  a\ -  ao

29. det(/>i) =  1 and det^,,) =  det(Pn_i), by expan­
sion down the first column, so det(Pn) =  1 for all n.

1 1 '
ao a\

b. Use Laplace Expansion down the last column 
to see that f ( t )  is a polynomial of degree < n. 
The coefficient k of tn is (at — aj). Now

rt-i>i>j
det(A) =  f(a„) = k(a„-ao)(an - a \ ) . . .  (an -  
a„_i) =  J} (a, — aj),  as claimed.

n>i >j
n

33. n « / - I I  ~ aJ) (use finearity *n the columns and
i=\ i> j
Exercise 31)

35. =  and =  . are solutions. The
*2] [a2\ [*2j I 2

equation is of the form px\ +  qx2 +  b = 0, that is, 
it defines a line.

37. ±1

39. det(ATA) = (det(A))2 > 0

41. det(A) =  det(Ar ) =  det( - A)  = (—1)" det(A) = 
-det(A), so det(A) =  0

43. At A = \\v\\2 v- iv  
* -

sodet(AyA) =  || v — (v-w)2 > 0, by the
Cauchy-Schwarz inequality. Equality holds only if v 
and w are parallel.

45. Expand down the first column: f ( x)  =
—jcdet(A4 i) +  constant, so / ' ( j c )  =  -det(A4i) = 
-24.

47. T is linear in the rows and columns.

"l 1 f
49. A =  1 2  2

1 1 14
triangular matrix with determinant 13, such as

, for example. Start with a

"0 1 0" "l 1 1"
61. Fails to be alternating, since F 0 0 1 =  1 but 0 1 1

1 0 0 0 0 13
, and add the first row to the second

and to the third to make all entries nonzero.

51. det(A) =  (—1)”

53. a. Note that det(A) det(A_1) =  1, and both factors 
are integers.

b. Use the formula for the inverse of a 2 x 2 matrix 
(Theorem 2.4.9b).

59. No

61. Take the determinant of both sides of
' In 0“ A B' A B
- C  A C D 0 A D - C B

and divide by det(A).
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., vm are lin- 
, vm) = 0 and

65. a. dn =  dn-\  +  dn- 2, a Fibonacci sequence
b. d\ =  1, d2 = 2, =  3, d4 = 5 , . . . ,  dio = 89
c. Invertible for all positive integers n.

6.3 Answers to more theoretical questions are omitted.
1. 50 3. 13 7. 110

11. |det(A)| =  12, the expansion factor of T on the 
parallelogram defined by 0 i and v2-

13. V20
15. We need to show that if 0i, 

early dependent, then (a) V(0 i , .
(b) det(Ar A) =  0 .
a. One of the ?,• is redundant, so that vj- =  0 and 

V (0i,. . . ,  vm) =  0, by Definition 6.3.5.
b. ker(A) ^  {0} and ker(A) c  ker(Ar A), so that 

ker(ATA) ^  {0}. Thus A 7  A fails to be invert­
ible.

17. a. V(tJi, 02, 03, x v2 X  U3)
=  V(0 i, 02, 03) ||0 1 x 02 x 031| because 0 i x 
02 x 03 is orthogonal to 0 i , 02 , and 03.

b. V(0i, 02, 03 , 0i x 02 x 03)
=  |det [ 0 i x 02 x 03 0 i 02 03 ] |
=  ||0 i x 02 x 031|2, by definition of the cross 
product.

c. V(01, 02, 03) =  II01 X  02 X  031|, by parts (a) 
and (b).

19. det [0i 02 03 ] =  01 • (02 x 03) is positive if
(and only if) 0i and 02 x 03 enclose an acute angle.

21. a. reverses b. preserves 
'l - 3 '
0 7

c. reverses

det
23. jci =

det

det

5 -3
- 6  7

5 1
- 6  0

det

25. adj (A) =

A~] =

5 -3
- 6  7

7
17’

6_
77

1 0 -1
0 - 1  0 

- 2  0 1
1

det(/4)

-1  0 1
0 1 0
2 0 - 1

adj(A) =  —adj (A)

27. * =
- b
+  b2

<  0 ;  jc decreases
a2 -I- b2 

as b increases.
29. dx\ =  - D - 1/?2( 1 -  * i)(l - a ) 2de2,

dy\ =  D_ l( 1 -  a)R2(R\(i  - a )  + a)de2 > 0, 
dp =  D~{R\R2de2 > 0.

31.
- 6
-3

4

1
-2

1
33.

24 0 0 0
0 12 0 0
0 0 8 0
0 0 0 6

35. det(adjA) =  (detA)"-1

37. adj(A-1 ) =  (adjA)"1 =  (det A)-1 A

39. Yes. Use Exercises 38: If AS = SB , then 
(adj 5) (adj A) =  (adj£)(adjS)

43. A(adjA) = (adjA)A =  (det A)In =  0

- b45.

C H A P T E R  7
7.1 Answers to more theoretical questions are omitted.

1. Yes; the eigenvalue is A3

3. Yes; the eigenvalue is X +  2

5. Yes

7. ker(A -  XIn) #  {0} because (A -  Xln)v =  0. The 
matrix A — XIn fails to be invertible.

r _ -2-2a 'a b 11. a —3—
0 d

= ¥ = .
9.

13. All vectors of the form , where t ^  0 (solve the

linear system Ajc =  4jc).

15. The nonzero vectors in L are the eigenvectors with 
eigenvalue 1, and the nonzero vectors in L1  have 
eigenvalue — 1. Construct a basis of eigenvectors by 
picking one of each.

17. No eigenvectors and eigenvalues (compare with Ex­
ample 3).

19. The nonzero vectors in L are the eigenvectors with 
eigenvalue 1, and the nonzero vectors in the plane 
L -1 have eigenvalue 0. Construct a basis of eigen­
vectors by picking one nonzero vector in L and two 
linearly independent vectors in / A  (Compare with 
Example 2.)

21. All nonzero vectors in IR3 are eigenvectors with 
eigenvalue 5. Any basis of K3 is a basis of eigen­
vectors.

23. a. S-1 0; =  2/ because 5?,- =  0/

b. S~{AS = S~]A [ 0 i . . .  v„\ =
S * [A.1 v \ . . .  XnvnJ =  [A.i î . . .  XnenJ =

X] 0 1

0 v
onal entries X\ , . . . ,  Xn.

, the diagonal matrix with diag-
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29.

31.

33. x(t) =  2' 4- 6'
-1

1

trix A with eigenvectors

We need a ma-

with as­r
1 * 1

sociated eigenvalues 2 and 6, respectively. Let

and solve for A. We find

35. If k is an eigenvalue of 5 1A5, with corresponding 
eigenvector 0, then

_i - r 2 —6
1 1 2 6

4 —2
- 2 4

so
5 1A50 =  kv,

A50 =  5X0 =  kSv,

37. a. A represents a reflection about a line followed 
by a scaling by a factor of V32 +  42 = 5. The 
eigenvalues are therefore 5 and —5.

b. Solving the linear systems Ax =  5x and Ax =

—5x we find the basis

39. V consists of all lower triangular 2 x 2  matrices, and 
dim(V) =  3.

~2 ■-T
1 2

41. A basis is 2 ■-1 f
2 - 1 ’ CN1 , and dim(V) =  2.

43. V consists of all diagonal matrices, so that 
dim(V) =  n.

45. dim(V) =  3.
47. The subspaces spanned by an eigenvector.
49. c(t) =  300(1.1)' -  200(0.9)' 

r(t) =  900(1.1/ -  100(0.9)'
51. a. c(t) =  100(1.5)', r(r) =  200(1.5)'

b. c{t) =  100(0.75)', r(t) =  100(0.75)'
c. c(t) = 300(0.75)' +200(1.5)', 

r(/) =  300(0.75)' +400(1.5)'

53.
'a( t  +  1)' 1 '0  1 r
b(t + 1) 1 0 1 b(t)
c(t +  1)

L
1 1 0 c(t)

The three

given vectors are eigenvectors of A, with eigenval­
ues 1, — 5 , — 5 , respectively.
a. a(t) =  3 +  3 ( - £ ) ',  b(t) =  3 - 2  ( - $ ) ',

c(r) =  3 -  ( - 3 ) f
b. Benjamin will have the most.

7.2 Answers to more theoretical questions are omitted.
1. 1,3 3. 1,3 5. None
7. 1, 1, 1 9. 1,2,2

11. -1  13. 1
15. Eigenvalues k 1,2 =  1 ±  \fk. Two distinct real eigen­

values if k is positive; none, if k is negative.
11. A represents a reflection followed by a scaling, with 

a scaling factor of \lo 1 +  b2. The eigenvalues are 
+  b 2 .

19. True [the discriminant tr(A)2 -  4 det(A) is positive]
21. Write /a(X) =  — k) • • ■ (kn — k) to show that

the coefficient of (-A)"-1 is k\ H------ h kn. But that
coefficient is tr(A), by Theorem 7.2.5.

23. A and B have the same characteristic polynomial 
and the same eigenvalues, with the same algebraic 
multiplicities.

ii r r
. Noteand k is an eigenvalue of A (50 is an eigenvector). 25. A b _ b and A f =  (a -  b) \

Likewise, if w is an eigenvector of A, then S~*w is c c -1 -1
an eigenvector of 5 1 AS  with the same eigenvalue. that |a — b <: 1. Phase portrait when a > b:
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x(t) = -
1

-1 for xo =  e2

b. A1 =  \A*ei A'e2 ] approaches 

part (a).

c. Ar
1

H e
29. A? = 2, so that e is an eigenvector with associated 

eigenvalue 1.

31. A and A r  have the same eigenvalues, by Exercise 22. 
Since the row sums of AT are 1, we can use the re­
sults of Exercises 29 and 30: 1 is an eigenvalue of A; 
if X is an eigenvalue of A, then |X| < \ .e  need not

r 0.9 0.9be an eigenvector of A; consider A =
0.1 0.1

33. a. f A(k) = - ) ,3 +c),2 + b \ + a

h  M =

35. A =

0
0

71

-1
0
0
0

1
0

-5

0
0
0
1

0
1

17
o'
0

-1
0

37. We can write /a(A.) =  (X -  Xo)2g(X). By the prod- 
uct rule, f'A{X) =  2(X -  X0)g(X) +  (X -  X0)2g\X),  
so that f'A(ko) = 0 .

39. It’s a straightforward computation.

41. tr(S-1 (AS)) =  tr((A5)5-1 ) =  tr(A)

43. No, since tr(A# -  BA)  =  0 and tr(/„) =  n

45. For A: =  3

47. If we write M = [v u>], then it is required that 
Av = 2v and Aw = 3w. Thus a nonzero M with the 
given property exists if 2 or 3 is an eigenvalue of A.

49. If 2, 3, or 4 is an eigenvalue of A.

7.3 Answers to more theoretical questions are omitted, 
' l j  
0

’4
’ 1

3 Y
2 * l

, with eigenvalues 7, 9.

, with eigenvalues 4, 9.

1. Eigenbasis:

3. Eigenbasis:

5. No real eigenvalues.

7. Eigenbasis: e \ , e2, ?3, with eigenvalues 1, 2, 3.

9. Eigenbasis:

1, 1,0.

l 0 -1
0 1 0
0 0 1

1 1 1
11. Eigenbasis: 1 , -1 > 0

1 0 -1
3, 0, 0.

0 1 1
13. Eigenbasis: 1 , -3 , -1

0 1 2

with eigenvalues

, with eigenvalues

with eigenvalues

"o" f
1 -1
0 2_

, with eigenvalues 0, 1.

0, 1, - 1.

15. Eigenvectors:

No eigenbasis.

17. Eigenbasis: e2,
1,0, 0.

19. The geometric multiplicity of the eigenvalue 1 is 1 
if a ^  0 and c ^ 0 ; 3 i f a  = b = c = 0\ and 2 
otherwise. Therefore, there is an eigenbasis only if 
A =  /3.

21. We want A

that is, A

Y Y ~2 ~2 '4'
— and A =  2 —

2_ 2 _3_ 3 6
1 2 ' l 4
2 3 2 6 The unique solution

is A = 5 -2
6 - 2

23. The only eigenvalue of A is 1, with £1 =  span(?i). 
There is no eigenbasis. A represents a horizontal 
shear.

25. The geometric multiplicity is always 1.

27. f A(k) = X 2 - 5 X + 6  = ( X -  2)(X -  3), so that the 
eigenvalues are 2, 3.

29. Both multiplicities are n — r.

31. They are the same.
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33. If B =  S~'/4S, then B -  Xl„ = S~l (A -  XIn)S.

35. No (consider the eigenvalues).

37. a. Av • w — (Av)Tw =  vTATw =  vT Aw =  
v • Aw

b. Suppose Av =  kvandAw = f iw.ThenAvw = 
k(v • w) and v • Aw =  fj.(v • w). By part (a), 
k(v • w) =  fi(v ■ w), so that (k — }i)(v • u>) =  0. 
Since k ^  M it follows that 0 • 0) =  0, as 
claimed.

39. a. E\ = V and E q =  V1*, so that the geometric 
multiplicity of 1 is m and that of 0 is n — m. The 
algebraic multiplicities are the same (see Exer­
cise 31).

b. E\ =  V and £_ \ =  V1 , so that the multiplicity
of 1 is m and that of --1 is n --  m.

9 2 1
41. Eigenbasis for A: 6 , - 2 , - 2

2 1 2
, with eigen­

values 1.2, —0.8, —0.4; j?o =  50v\ + 5002 +  5003.

j ( 0  =  450(1.2)' +  l00(-0.8)' +  50(-0.4)f 
m(t) =  300(1.2)' -  100(—0.8)' -  100(-0.4)' 
a(t) = 100(1.2)' + 50 (-0 .8 )' +  100(-0.4)'

The populations approach the proportion 9:6:2.

"0 1 r
43. a. A =  \  

2
1 0 1 
1 1 0

c . S(l) =  ( i  +  | ) +
0
1

-1

£0
3

-1
-1

2
Carl wins if he chooses cq < 1.

45. a. A =

b. B =

0.1 0.2 

0.4 0.3

A b 
0 1

,b =

c. The eigenvalues of A are 0.5 and —0.1, those of 
B are 0.5, —0.1, 1. If 0 is an eigenvector of A,

then

(h  -  A) 
1

is an eigenvector of B. Furthermore,

rb is an eigenvector of B
2"

= 4
1

with eigenvalue 1. 

d. Will approach (I2 — A)~lb =  

value.

, for any initial

47. L et*(/) =
r(t)
pit)
w(t)

. Then x(t +  1) =  Ax(t) where

A =

1
- 2

1

0 i

i  0 " f f
1 1
1 2 . Eigenbasis for A: 2 1 0
1 1 1 -1
4 2 .

, with eigenvalues 1, A, 0.

xo = e { =
1

+ 2

1
0

-1

r+i

1

1
0

-1
for t > 0.

The proportion in the long run is 1:2:1.

49. 1 [rref(A) is likely to be the matrix with all l ’s di­
rectly above the main diagonal and 0’s everywhere 
else]

51. fA(k) = - k 3 +  ck2 +  bk +  a

53. a. B =

0 0 a * *
1 0 b * *
0 1 c * *
0 0 0 w X

0 0 0 y z

Bx
0

B2
B3

b. Note that A is similar to B. Thus
fA(k) = f B(k) = f B3{k) fBl{k)
=  h(k)(—k3 +  ck2 + bk + a), where 
h(k) =  /fi3(X). (See Exercise 51.)

c. / a(A)5 =  /i(A)(—A3 +  cA2 -h bA + als)v =  
h(A) (—A30 -I- cA20 -f bAv +  av) = 0

7.4 Answers to more theoretical questions are omitted. 
1. S = I2, D = A

3. 5 =
1 1

-1  2
, D = , for example. If you

found a different solution, check that AS  =  SD.  

5. Not diagonalizable

7. 5 =

9. Not diagonalizable 11. Not diagonalizable

■4 f
> 0  =

2 0‘
1 - 1 0 -3

_1 1 1" ‘ l 0 o '
13. S = 0 1 2 , D  = 0 2 0

0 0 1 _0 0 3

"2 0 r "l 0 0"
15. S = 1 0 1 ,  D = 0 1 0

0 1 0 0 0 1
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-1
1
0

-1
0
1

, D  =

19. Not diagonalizable; eigenvalue 1 has algebraic mul­
tiplicity 2 , but geometric multiplicity 1.

21. Diagonalizable for all a
23. Diagonalizable for positive a
25. Diagonalizable for all a , b, and c.
27. Diagonalizable only if a = b =  c =  0
29. Never diagonalizable

31. A' =
1 5' +  2 ( - l ) ' 

2(5') — 2(— 1 )r
5 ' - ( - l ) '  

2(5') +  (—D'

33. A' = l l- [A 
‘-1  
—2

values 3 and 2.

35. Yes, since is diagonalizable, with eigen-

37. Yes. Both matrices have the characteristic polyno­
mial k2 — Ik  +  7, so that they both have the eigen- 

7 +  >J2\
values k[ 2 =  ---------- • Thus, A and B are both

similar to 

to B.

kx
0 , and therefore, A is similar

39. All real numbers k are eigenvalues, with corre­
sponding eigenfunctions .

41. The symmetric matrices are eigenmatrices with 
eigenvalue 2 , and the skew-symmetric matrices 
have eigenvalue 0. Yes, L is diagonalizable, since 
the sum of the dimensions of the eigenspaces is 4.

43. 1 and i are “eigenvectors” with eigenvalues 1 and 
— 1, respectively. Yes, T is diagonalizable; 1, i is 
an eigenbasis.

45. No eigensequences

47. Nonzero polynomials of the form a+ cx2 are eigen­
functions with eigenvalue 1, and bx (with b ^  0) 
has eigenvalue —1. Yes, T is diagonalizable, with 
eigenbasis 1, j c , x 2.

49. 1, 2x — 1, and ( 2 jc — l )2 are eigenfunctions with 
eigenvalues 1,3, and 9, respectively. These func­
tions form an eigenbasis, so that T is indeed diag- 
onalizable.

51. The only eigenfunctions are the nonzero constant 
functions, with eigenvalue 0 .

55. A = 0 l ‘

00

0 0
, B =

-----------1

0
1

, for example.

59. Exercise 58 implies that A and B are both similar to
"o i (T

the matrix , so that A is similar to B.

1 o ' 0 f
2 0 ’ 0 -165. A basis of Vis ^ q ’ 0 -1  ’ and

dim(V) =  2.

67. The dimension is 32 +  22 =  13.

71. The eigenvalues are 1 and 2, and
(A — / 3HA — 2 / 3) =  0. Thus A is diagonalizable.

73. If k \ , . . . , k m are the distinct eigenvalues of
A, then f A(k) =  (* - * ! ) ■ . . ( *  -  km)h(k)
for some polynomial h(k), so that f \ ( A )  =  
( A - k i l n) - • ■ ( A - k mIn)h(A)  =  0, by Exer-

0
cise 70.

7.5 Answers to more theoretical questions are omitted.

3 . c o s ( ^ ) + / si n ( ^ ) , f o r t  =  0 ....... . - 1

5. If z =  r  (cos(</>) +  i sin(0)), then

«r  (  (4> + 2 n k \  . . (<j> + 2 n k \ \
" = ^  r *  { — — ) + 1 “  { — — ) )  •
for =  0 , — 1.

7. Clockwise rotation through an angle of j  followed 
by a scaling by a factor of y[2.

9. Spirals outward since \z\ > 1.

11. /(X) =  ( k -  l ) ( k -  1 - 2 i ) ( k  -  1 + 2 /)

r2 O'13. S =

15. 5 =

0 1

17. 5 =

, for example 

, for example 

, for example2 0 
—! 2

19. a. tr(A) =  m, det(A) =  0
b. tr(fl) — 2m — n, det(B) =  (—\)n~m (compare 

with Exercise 7.3.39)

23. 2 2 

27. —1, —1, 3

21. 2 +  3/

25. ± l , ± i
29. tr(A) =  k\ +  A.2 +  X3 =  0 and det(A) =  X1X2X3 =  

bed > 0. Therefore, there are one positive and two 
negative eigenvalues; the positive one is largest in 
absolute value.

31. -fi A is a regular transition matrix (compare with 
Exercise 30), so that lim (-rA )' exists and has

t —►oo
identical columns (see Exercise 30). Therefore, the 
columns of A' are nearly identical for large t.

33. c. Hint: Let k \ , k2, • . . ,  X5 be the eigenvalues, with 
k\ > )Ay I, for j  =  2 , . . . ,  5. Let 01, v2, .. •, £5
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be corresponding eigenvectors. Write = 
c\v\ + • • ■ + C5C5. Then /th column of A1 =
Alej =  c\k\ i»i H------ h C5A.5U5 is nearly parallel
to i» j for large t .

45. If a is nonzero.

47. If a is nonzero.

49. If a is neither 1 nor 2.

51. Q is a field.

53. The binary digits form a field.

55. H is not a field (multiplication is noncommutative).

7.6 Answers to more theoretical questions are omitted.

39.

1. Stable 
5. Not stable 
9. Not stable 

13. For all k

3. Not stable 
7. Not stable 

11. For \k\ < 1 
15. Never stable

— sin {<pt) 
cos ((pt)

— sin ((pt)
COS ((pt)

17. x(t) =  

circle.

19. .?(/) =  v/13' 

spirals outward.

21 . x(t) =  T H '

arctan ( ^); spirals outward.

23. x(t) = ( \ y

where (p =  arctan ( ^); a 

where (p =  arctan ( 3 );

5sin(0r) 
cos ((pt) + 3 sin ((pt)

where (p =

where (p =5 sin ((pt) 
cos ((pt) +  3 sin ((pt) 

arctan ( 5 ); spirals inward.

25. Not stable 27. Stable
29. May or may not be stable; consider A =  ± 3/2

33. The matrix represents a rotation followed by a scal­
ing with a scaling factor of 70.992 +  0 .01  ̂ < 1. 
Trajectory spirals inward.

35. a. Choose an eigenbasis Ci........vn and write
x 0 =  c\v\ + • • •  +  <:„?„.

Then
X(t) =  Ci A/| i»i H-------b Cnk^Vn

and
\\x(t)\\ < IciMliJill H------ h |cn|||iJM|| =  A#

(use the triangle inequality \\u +  w\\
< ||w|| 4- \\u>\\* and observe that |A[| < 1)

1 f t 0 t
0 1 1 1b. The trajectory x(t) =

is not bounded. This does not contradict part 
(a), since there is no eigenbasis for the matrix

1 f
0 1

is a stable equilibrium.

C H A P T E R  8

S. 1 Answers to more theoretical questions are omitted. 

1.

3. - f =

Y o'
0 * 1
1 '2 1 ' - f

7 1 1 ' V 5 2

5.

7.

1
7 !

- 1  
1
0 

1

s

’ V5

' - f
-1

2

11 Y
1

’ x/3 1
r

, D = 5 0
- 0 1

9 . s =
"l/v/2 - 1 /7 2  0“ ■3 0 O'

0 0 1 , O = 0 -3 0
l/v/2 1/72 0_ 0 0 2

11. Same S as in 9, D =
2 0 0 
0 0 0 
0 0 1  

13. Yes (reflection about E 1)
15. Yes (can use the same orthonormal eigenbasis)
17. Let A be the n x n  matrix whose entries are all 1. The 

eigenvalues of A are 0 (with multiplicity n — 1) and n. 
Now B =  qA + ( p - q ) I tu so that the eigenvalues of 
B are p — q (with multiplicity n — 1) and qn + p — q. 
Therefore, det(B) =  (p -  q)n~ l (qn 4  p -  q).

21. 48 =  6 • 4 • 2 (note that A has 6 unit eigenvectors)
23. The only possible eigenvalues are 1 and — 1 (because 

A is orthogonal), and the eigenspaces E 1 and E- 1 are 
orthogonal complements (because A is symmetric). 
A represents the reflection about a subspace of Rn.

25. S = - =
V2

27. If n is even, we have the eigenbasis e\ — en,
e i  ~  -----enj 2 -  ?„ /2 + i, ?i +  en, e2 4 ? « - i ,
___ en/2 4- ?rt/2+i» with associated eigenvalues 0
(n/2 times) and 2 (n/2 times).

29. Yes 31. True 33.
35. 0 = arccos(—£). Hint: If ifo,. . . ,  are such vec­

tors, let A =  [ £0 • • • Vn ] • Then the noninvert­
ible matrix A 7 A has l ’s on the diagonal and cos(0) 
everywhere else. Now use Exercise 17.

37. In Example 4 we see that the image of the unit circle 
will be an ellipse with semimajor axis 3 and semi- 
minor axis 2. Thus 2 < ||i4w|| < 3.

1 1 0 0 0

0 0 1 1 0

0 0 0 0 7 2

0 0 1 - 1 0

1 - 1 0 0 0

e = ] n  = 12 0°.
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39. Let v\, i>2< V3 be an orthonormal eigenbasis with 
associated eigenvalues —2, 3, and 4, respectively. 
Consider a unit vector u =  CjUi +  C2V2 +  C3S3. 
Then Au =  — 2c\v\ + 3q^2 + 4C3S3 and u • Au =  
—2c\ -h3c*2 -f4 c 2 <  4 c2 +  4r2 +  4c2 =  4. Likewise,
u-Au = - 2  c\ + 3c*2 +  4c*3 > -2 c 2 -  2c\ -  2c\ = 
—2. Thus —2 < u A u < 4 .

41. There exist an orthogonal S and a diagonal D such 
that A =  SDS-1 . Taking cube roots of the diago­
nal entries of D, we can write D = D^ for some 
diagonal Do. Now A =  SDS~] =  SD^S~] — 
(SD()S~[)3 = B \  where B =  SDoS~l .

43. Consider the eigenvectors ?i =

1
- I

0
, with eigenvalues 24 and -9 , respectively.

There must exist a nonzero solution of the form 
v = av\ +bv2. Now v-Av = (av\ +bv2) (24av\ — 
9bv2) = 72a2- \8 b 2 = 0 when/? =  ±2a. Let a =  1

3
and b = 2 to find the solution iJ =

47. a. ijth entry of {AB\ =  dikbkj

<  E L ,  \aik\\bkj\
=  ijth  entry of |M||fl| 

b. By induction on f, using part (a): |A'| =  
\A' - 'A\  < |A '-‘ ||A| < lAI'-’lAI =  \A\‘

49. Let X be the maximum of all |r//1, for / =  1....... n.
Note that X < 1. Then \R\ < X(/„ + U), where U 
is upper triangular with un =  0 and Uij =  |r,y |/X if 
j  > /. Note that Un =  0 (see Exercise 46a). Now 
\R'\ < |/?|' <k ' Un + U y  < k‘tnUn +  */ +  ■■■ +
(yn_1). From calculus we know that lim X'r" =  0.t->oc

8.2 Answers to more theoretical questions are omitted.

m
 

00 
rn 1 "3 0 3'

6
-3.5

3. 0
3

4
3.5

3.5
5

5. Indefinite 7. Indefinite

9. a. A2 is symmetric
b. A2 = —A T A is negative semidefinite, so that its 

eigenvalues are <0 .
c. The eigenvalues of A are imaginary (that is, of 

the form bi, for a real b). The zero matrix is the 
only skew-symmetric matrix that is diagonaliz­
able over R.

11. The same (the eigenvalues of A and A " 1 have the 
same signs).

13. an = q(ei) > 0.

15. Ellipse; principal axes spanned by 

equation 7c 2 +  2c\ —  1

17. Hyperbola; principal axes spanned by

'2 ' - f
1

and
2

and

-1
2 equation 4c\ -  c2 =  1.

2
-1 and19. A pair of lines; principal axes spanned by

n  • c 2 12 ; equation 5c\ — 1.

Note that we can write jc2 + 4* 1*2 -f- 4x\
=  (.*1 -I- 2* 2)2 =  K so that x\  +  2x2 =  ±  1

21. a. The first is an ellipsoid, the second a hyperboloid 
of one sheet, and the third a hyperboloid of two 
sheets (see any text in multivariable calculus). 
Only the ellipsoid is bounded, and the first two 
surfaces are connected, 

b. The matrix A of this quadratic form has positive 
eigenvalues X| % 0.56, X2 & 4.44, and X3 =  1, 
with corresponding unit eigenvectors

1 0.86" "0.31"
1_ Di % 0.19 v2 ~ 0.54

.J -0 .4 7 0.78

V3
0.41

-0.82
0.41

Since all eigenvalues are positive, the surface is 
an ellipsoid. The points farthest from the origin 
are

1.15“
0.26

1
± VxT1' 1

and those closest are

± y f c V 2 '

23. Yes: A =  \ ( M + M T)

25. q(v) =  v • Xv =  X.

27. The closed interval [X„, X \ ]

-0.63

"0.15' 
0.26 
0.37

29. B =
_1_ 
7 !

33. L =
\f2

6
-3

4
-1

3 J. B = - 14
- 2

35. L =

39. For 0 < 0 < arccos 

41. 3
(-^t)

2
- 2

4

- 2
11

0 O'
3 0
3 1
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43. im(T) =  span(*2), rank(T) =  1,
ker(r) =  span(jcijt2, x 2), nullity(T) =  2

45. im(7) =  P2, rank(D =  3,
ker(T) =  span(*| 
nullity (T) =  3

* £ , * 1*3 -  * 1* 2 . * 2*3 x 2),

47. The determinant of the wth principal submatrix is 
positive if m is even, and negative if m is odd.

aU = m a n  -  afj > 0 , so55. Note that det

that an > aij or a

57. q(x) =  X\c\ +  A2C2 4  A3C3 =  1, with positive A.,-, 
defines an ellipsoid.

59. q (*) =  k 1 c2 = 1, with positive k \ , defines a pair of

parallel planes, c\ =  ± —= .
V A-i

6 L q(x) = k\c2 4  A.2C2 4  A.3C3 =  1, with k\ > 0, 
A.2 > 0, A.3 < 0 defines a hyperboloid of one sheet.

63. q(cxw 1 H-----4  cnwn) =  (c\w\ H------+  cnwn) •
(ci A.1 w>i 4  ••• + c nknwn) =  A! ||u>i ||2 4  ••• 4

c2kn\\wn\\2 =  cf +  • • • + C2 since ||w) / ||2 =  —, by
construction.

65. Adapt the method outlined in Exercise 63. Consider 
an orthonormal eigenbasis v\, v2 for A with associ­
ated eigenvalues k\ > 0 and A.2 < 0. Now let w\ =  
C t / V H a n d ^  =  V2/V-A.2, so that \[w \ \\2 = \ /k\  
and \\w2\\2 =  —\ / k 2. Then q(c\W\ 4  c2w2) =  
(,c\xb\ +C2W2) • (Aici ui 1+X2C2W2) =  A-icf ||it>i ||2+  
X2cl\\m\\2 =C2\ - Cr

67. Adapt the method outlined in Exercises 63 
and 65. Consider an orthonormal eigenbasis 
V[ , . . . ,  vp, . . . ,  vr , . . . ,  vn for A such that the asso­
ciated eigenvalues kj  are positive for j  =  1, . . . ,  p,  
negative for j  = p 4  1, . . . ,  r, and zero for j  =  
r 4  1, • • • ♦ n. Let wj = Vj /yj \kj  | for j  =  1, . . . ,  r 
and \bj =  Vj for j  =  r 4  1, . . . ,  n.

69. Note that x T RT A Rx =  (Rx)T A(Rx)  > 0 for all x 
in Rm. Thus R T AR is positive semidefinite.^/?^ A/? 
is positive definite if (and only if) ker R = {0}.

71. Anything can happen: The matrix RTAR  may be 
positive definite, positive semidefinite, negative def­
inite, negative semidefinite, or indefinite.

8.3 Answers to more theoretical questions are omitted.
1. o\ =  2, o2 =  1

3. All singular values are 1 (since A 7 A =  /„)

5. o\ =  o2 =  \ / p 2 + q 2

7. o r ‘2 O'

o

- 1  0 0 1 ! 0

1 1 - 2 '5 O' 1 1 2 '
7 ! 2 1 0 0 V s - 2  1

' 1 0 “ 2  0 "

0  r

1 0
0  0 0  1

1 0  l .
0  0

\ 3 V 5 0 1 2  1 "

0  V 5
.  7 ! 1 2 .

11.

13. l2

15. Singular values of A 1 are the reciprocals of those 
of A.

9 - 2
2 621 .

0.8 0.6] [ 9
-0 .6  0.8J [—2

23. A A J1 ^ , = / ^ f o r i - ' ........'
\ 0  for i =  r 4  1 , • . . ,  n

The nonzero eigenvalues of A 7 A and A A7 are the 
same.

25. Choose vectors 51 and v2 as in Theorem 8.3.3. Write

U = C \ V [  4C2?2-
Note that

iimi2 _  J.

Now

so that

— cf 4  c*2 — 1 •

Au =  c\Av[ 4  c2Av2,

\\AS\\2 = c^WAviW2 + 4 }\Av2\\2
9 7  o o  =  cfcrf +

< (C| +  cl)(T2

= °l
We conclude that || Au\\ < o \ . The proof of 
<72 < || A m || is analogous.

27. Apply Exercise 26 to a unit eigenvector t; with asso­
ciated eigenvalue A..

0 f  
2 0

33. No; consider A =

1 _
— vi

35. (A1 A ) '1 A 1 Si = {
0

C H A P T E R  9

9.1 Answers to more theoretical questions are omitted. 
1. x ( t)= 7 e 5’ 3. P(t) =  7e0 03f
5. y(t) =  -0.8e°-8'
7 . x(t) =  -j4 -p, has a vertical asymptote at t = 1.

9. x(r) =  ((1 -Jfc)f +  l ) 1/(1-t)
11. *(/) =  tan(f)
13. a. about 104 billion dollars

b. about 150 billion dollars
15. The solution of the equation ek7^lG0 = 2 is 

1001n(2) ^  69
k ^  k
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27. *(r) =  0.2e~6'

xo 23. x(t) is a solution. 

+  OAe3
- 2

= 2 2 ' +  e5' ■f
-1 2

31. x(t) = e*
1

- 2
1

37. Ei.i =  span and £ i .6 =  span . Looks

roughly like the phase portrait in Figure 10.

39. E\ =  span 2
-1 and £ 1.4 =  span 2

- 3
. Looks

roughly like the phase portrait in Exercise 35.

b. y

y (0)
c. Species 1 “wins” i f -----  < 2.

*(0)

1
2

47. a. Symbiosis
b. The eigenvalues are 5 (—5 ±  >/9 +  4k2). There 

are two negative eigenvalues if k < 2 ; if k > 2 
there is a negative and a positive eigenvalue.

49. g{t) = 45<T° 8' -  15e~0 4' and 
h(t) =  -45e-0-8' +  45<?~0-4'

53. x( t ) =  ept > a spiral if p ^  0 and a circle

if p =  0. Approaches the origin if p is negative.
55. Eigenvalues X12 =  j (—q ±  y/q2 — 4^); both 

eigenvalues are negative
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9.2 Answers to more theoretical questions are omitted.
1 .1  3. V2ei7ti^
5. e~0 l , (cos(2f) — / sin(2/)); spirals inward, in the 

clockwise direction
7. Not stable 9. Stable

11. a. B = 2A
d. The zero state is a stable equilibrium of the sys- 

dx
tern — = grad(^) if (and only if) q is negative 

dt
definite (then, the eigenvalues of A and B are all 
negative).

13. The eigenvalues of A-1 are the reciprocals of the 
eigenvalues of A \ the real parts have the same sign.

19. False; consider A with eigenvalues 1, 2, -4 .

s
21. a.

dh
— = 0.5b 4  
dt
ds_
I t

0.07 j

b. b(t) =  50,000<>0 07' -  49,OOOe05' 
s(t) = 1,000<?(U,7f

27. x(t) = a
b , where a, b are

cos(3r) — sin(3r) 
sin(3r) cos(3r) 

arbitrary constants
29. Eigenvalue 2 +  4i with corresponding eigenvector 

J . Use Theorem 9.2.6, with p =  2, q =  4, 

O'w =
’ i "i
0

11is

-1

x(t) =  e 1 O' cos(4/) -  sin(4/)
0 -1 sin(4/) cos(4r)

31. Eigenvalue — 1 + 2 / with corresponding eigenvec­

tor .x(t) -  e-
cos(2 /) -sin(2/)
sin(2/) cos(21)

1
-1

Spirals inward, in the

tor

cos(2r) 4  sin(2r)
6 sin(2r) -  cos(2f) 
counterclockwise direction.

33. Eigenvalue / with corresponding eigenvec- 
1

1 4 /  
sin(r) 

sin(r) 4  cos(f) 
tation.

“0 1 0
0 0 1
0 0 0

0 r cos(r)
1 1 sin(r)x(t) =

. An ellipse with clockwise orien-

dc
39. The system — = 

dt
c has the solutions

c(r) =
k\ 4  kjt  4  k^t2/2 

k2 4  k$t 
h

where k\, k2, k$ are arbitrary constants. The solu­
tions of the given system are x(t) = ektc{t), by Ex­
ercise 9.1.24. The zero state is a stable equilibrium 
solution if (and only if) the real part of X is negative.

9.3 Answers to more theoretical questions are omitted.
1. Ce5t
3. 4  Ce~2t (use Theorem 9.3.13)

5. -1  -  / 4 C e f 7. c\e~4t 4  c2e3t

9. c\e3t + c2e~3t
11. el (cj cos(/) 4  c2 sin(/))
13. e~l (ci 4  c2t) (compare with Example 10).
15. c i 4  c2t
17. e_r(ci 4  c2t) — \  cos(f)
19. cos(/) 4  c\ cos(\/2/) 4  c2 sin(>/2/)

21. c\e{ +c2e~* 4 c3^“2/ 23. 3e5t

25. e~2t+2 27. — sin(3/)

29.  ̂sin(/) -   ̂sin(2/)

31. v ( t ) = ^ r ( \ - e ~ k,lm) 
mg

lim i;(/) =  —-  =  terminal velocity./-►oc k
35. a. c\e~' 4  c2e~lx

b. 2e~' -  e~2t
c. —e~' +  2e~2'
d. In part (c) the oscillator goes through the equi­

librium state once; in part (b) it never reaches it.

37. x(t) = te~3t 39. e~t (c\ 4  c2t 4  c$t2)
41. A. is an eigenvalue with dim(E^) =  n, because Ex 

is the kernel of the wth-order linear differential op­
erator T(x) — Xx.

43. cos(r) 4  sin(r) 4  c\e~2t 4  c2e~3t
1 — 2r 1

-1
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