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Dedicated to 100 Years of Lars Ahlfors



Preface

The purpose of this book is to present modern developments and applications of
the techniques of modulus or extremal length of path families in the study of map-
pings in R

n, n ≥ 2, and in metric spaces. The modulus method was initiated by
Lars Ahlfors and Arne Beurling to study conformal mappings. Later this method
was extended and enhanced by several other authors. The techniques are geomet-
ric and have turned out to be an indispensable tool in the study of quasiconformal
and quasiregular mappings as well as their generalizations. The book is based on
rather recent research papers and extends the modulus method beyond the classical
applications of the modulus techniques presented in many monographs.

Helsinki O. Martio
Donetsk V. Ryazanov
Haifa U. Srebro
Holon E. Yakubov

2007
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Chapter 1
Introduction and Notation

Mapping theory started in the 18th century. Beltrami, Caratheodory, Christoffel,
Gauss, Hilbert, Liouville, Poincaré, Riemann, Schwarz, and so on all left their marks
in this theory. Conformal mappings and their applications to potential theory, math-
ematical physics, Riemann surfaces, and technology played a key role in this devel-
opment.

During the late 1920s and early 1930s, Grötzsch, Lavrentiev, and Morrey in-
troduced a more general and less rigid class of mappings that were later named
quasiconformal. Very soon quasiconformal mappings were applied to classical prob-
lems like the covering of Riemann surfaces (Ahlfors), the moduli problem of Rie-
mann surfaces (Teichmüller), and the classification problem for simply connected
Riemann surfaces (Volkovyski). Quasiconformal mappings were later defined in
higher dimensions (Lavrentiev, Gehring, Väisälä) and were further extended to
quasiregular mappings (Reshetnyak, Martio, Rickman, and Väisälä). The quasireg-
ular mappings need not be injective and in many aspects are similar to analytic func-
tions. The monographs [1,22,36,110,176,187,190,256,260,315,316,327–329] give
a comprehensive account of the aforementioned theory and its more recent achieve-
ments.

Recently generalizations of quasiconformal mappings, mappings of finite distor-
tion, have been studied intensively; see, e.g., the papers [19,45,46,54,79,111,115–
117, 124, 132, 133, 145, 147–149, 153–156, 195, 196, 231–233, 237, 248–251] and
the monograph [134]. Quasisymmetry has a natural interpretation in metric spaces
and quasiconformality from a more analytic point of view has also been studied in
these spaces; see, e.g., [21, 33, 107, 112, 201, 312]. These theories can be applied to
mappings in the Carnot and Heisenberg groups; see, e.g., [108, 109, 166, 167, 197,
199, 221, 238, 314, 324–326].

The method of the modulus of a path family, or equivalently the method of ex-
tremal length, which was initiated by Ahlfors and Beurling in [5] for the study of
conformal mapping, is one of the main tools in the theory of quasiconformal and
quasiregular mappings. The conformal modulus can be used to define quasiconfor-
mal mappings in the plane and in space. It has also been employed in metric measure

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 1, c© Springer Science+Business Media, LLC 2009



2 1 Introduction and Notation

spaces, now called Loewner spaces; see [107] and [112]. However, it has not been
used very much to study mappings of finite distortion and related mappings. The
reason is that extremal metrics are more difficult to find and the estimates for the
modulus of a path family become more complicated than in the quasiconformal
case. In spite of these drawbacks, the modulus method has certain advantages since
it is naturally connected to the metric and geometric behavior of the mapping.

In this monograph the modulus method is applied to the generalizations of quasi-
conformal mappings. The main goal is to study the classes of mappings with distor-
tion of moduli dominated by a given measurable function Q. Functions Q like BMO
(bounded mean oscillation), FMO (finite mean oscillation), L1

loc, etc. are included
and the principal tool is the modulus method. We concentrate on basic properties
like differentiability, boundary behavior, removability of singularities, normal fam-
ilies, convergence, mapping problems, and distortion estimates.

We now recall the definition of the (conformal) modulus of a path family in R
n,

n ≥ 2, and some of the basic inequalities. Let Γ be a path family in R
n, n ≥ 2. A

Borel function ρ : R
n → [0,∞] is called admissible for Γ , abbr. ρ ∈ admΓ , if

∫

γ

ρ ds ≥ 1 (1.1)

for each γ ∈ Γ . Recall also that the (conformal) modulus of Γ is the quantity

M(Γ ) = inf
ρ∈adm Γ

∫

Rn

ρn(x) dm(x), (1.2)

where dm(x) corresponds to the Lebesque measure in R
n.

By the classical geometric definition of Väisälä (see, e.g., 13.1 in [316]), a ho-
meomorphism f between domains D and D′ in R

n, n ≥ 2, is K-quasiconformal,
abbr. K-qc mapping, if

M(Γ )/K ≤ M( fΓ ) ≤ K M(Γ ) (1.3)

for every path family Γ in D. A homeomorphism f : D → D′ is called quasiconfor-
mal, abbr. qc, if f is K-quasiconformal for some K ∈ [1,∞), i.e., if the distortion of
the moduli of path families under the mapping f is bounded.

By Theorem 34.3 in [316], a homeomorphism f : D → D′ is quasiconformal if
and only if

M( fΓ ) ≤ K M(Γ ) (1.4)

for some K ∈ [1,∞) and for every path family Γ in D. In other words, it is sufficient
to verify that

sup
M( fΓ )
M(Γ )

< ∞, (1.5)
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where the supremum is taken over all path families Γ in D for which M(Γ ) and
M( fΓ ) are not simultaneously 0 or ∞. Then it is also

sup
M(Γ )

M( fΓ )
< ∞. (1.6)

Gehring was the first to note that the suprema in (1.5) and (1.6) remain the same
if we restrict ourselves to families of paths connecting the boundary components of
rings in D; see [73] or Theorem 36.1 in [316]. Thus, the geometric definition of a
K-quasiconformal mapping by Väisälä is equivalent to Gehring’s ring definition.

Moreover, condition (1.6) has been shown to be equivalent to the statement that
f is ACL (absolutely continuous on lines), a.e. differentiable, and

ess sup
‖ f ′(x)‖n

J(x, f )
< ∞, (1.7)

where ‖ f ′(x)‖ denotes the matrix norm of the Jacobian matrix f ′(x) of the mapping
f , i.e., max{| f ′(x)h| : h ∈ R

n, |h| = 1}, and J(x, f ) its determinant at a point x ∈ D
[here the ratio is equal to 1 if f ′(x) = 0]. Furthermore, it turns out that the suprema
in (1.6) and (1.7) coincide; see Theorem 32.3 in [316]. The given three properties
of f form the analytic definition for a quasiconformal mapping that is equivalent to
the above geometric definition; see Theorem 34.6 in [316].

In the light of the interconnection between conditions (1.3) and (1.4), the follow-
ing concept is a natural extension of the geometric definition of quasiconformality;
see, e.g., [204–209]. Let D be a domain in R

n, n ≥ 2, and let Q : D → [1,∞] be a
measurable function. We say that a homeomorphism f : D → Rn = R

n⋃{∞} is a
Q-homeomorphism if

M( fΓ ) ≤
∫

D

Q(x) ·ρn(x) dm(x) (1.8)
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for every familyΓ of paths in D and every admissible function ρ forΓ . This concept
is related in a natural way to the theory of the so-called moduli with weights; see,
e.g., [7, 8, 228, 229, 306].

Note that the estimate of type (1.8) was first established in the classical quasi-
conformal theory. Namely, in [190], p. 221, for quasiconformal mappings in the
complex plane, the authors show that

M( fΓ ) ≤
∫

C

K(z) ·ρ2(z) dxdy, (1.9)

where

K(z) =
| fz|+ | fz|
| fz|− | fz|

(1.10)

is a (local) maximal dilatation of the mapping f at a point z. We later used inequality
(1.9) in the study of the so-called BMO-quasiconformal mappings in the plane when

K(z) ≤ Q(z) ∈ BMO; (1.11)

see, e.g., [271–274]. Next, Lemma 2.1 in [26] shows that for quasiconformal map-
pings in space, n ≥ 2,

M( fΓ ) ≤
∫

D

KI(x, f )ρn(x) dm(x), (1.12)

where KI stands for the inner dilatation of f at x; see (1.16) ahead. Finally, we have
come to the above general conception of a Q-homeomorphism.

An introduction to the main techniques in the geometric theory of quasiconformal
mappings can be found in Chapters 2 and 3.

Chapter 4 is devoted to the basic theory of space Q-homeomorphisms f for Q ∈
L1

loc. Differentiability a.e., absolute continuity on lines, estimates from below for
distortion, removability of isolated singularities, extension to the boundary of the
inverse mappings, and other properties are considered.

Chapter 5 includes estimates of distortion, removability of isolated singularities,
theorems on continuous and homeomorphic extension to regular boundaries, and
other results on Q-homeomorphisms for Q in the BMO class, where BMO refers
to functions with bounded mean oscillation introduced by John–Nirenberg. Results
on Q-homeomorphisms for Q in the FMO class (finite mean oscillation) and in
more general classes are given in Chapter 6. Analogies of the Painleve theorem
on removability of singularities of length zero and applications of the theory of Q-
homeomorphisms to mappings in the Sobolev class W 1,n

loc are presented.

Extensions of the quasiconformal theory to ring and lower Q-homeomorphisms
and their applications to mappings with finite length and area distortion are found
in Chapters 7–10. Existence theorems of ring Q-homeomorphisms in the plane case
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are given in Chapter 11. Some results on mappings quasiconformal in the mean
related to the modulus techniques are contained in Chapter 12. Chapter 13 contains
the theory of Q-homeomorphisms in general metric spaces with measures.

The Appendix at the end of the book includes the basic facts in the theory of
moduli themselves.

Throughout this book, R
n denotes the n-dimensional Euclidean space, where

we use the Euclidean norm |x|=
√

x2
1 + . . .+ x2

n for points x = (x1, . . . ,xn). Bn(x,r)
denotes the open ball in R

n with center x ∈ R
n and radius r ∈ (0,∞), i.e., Bn(x,r) =

{y ∈ R
n : |x− y| < r} and Sn−1(x,r) is its boundary sphere, i.e., Sn−1(x,r) = {y ∈

R
n : |x− y| = r}. We also let Bn(r) = Bn(0,r), B

n = Bn(1), and S
n−1 = ∂B

n.

In what follows, Rn = R
n⋃{∞} is the one-point compactification of R

n, i.e.,
Rn is a space obtained from R

n by joining only one “ideal” element ∞, which is
called infinity and whose neighborhood base is formed by sets containing the com-
plements of balls in R

n together with ∞. We use in Rn = R
n⋃{∞} the spherical

(chordal) metric h(x,y) = |π(x)−π(y)|, where π is the stereographic projection of
Rn onto the sphere Sn( 1

2 en+1,
1
2 ) in R

n+1:

h(x,y) =
|x− y|√

1+ |x|2
√

1+ |y|2
, x �= ∞ �= y, (1.13)

h(x,∞) =
1√

1+ |x|2
.

Thus, by definition, h(x,y) ≤ 1 for all x and y ∈ Rn. Note that h(x,y) ≤ |x− y| for
all x,y ∈ R

n and h(x,y) ≥ |x− y|/2 for all x and y ∈ B
n. The spherical (chordal)

diameter of a set E ⊂ Rn is

h(E) = sup
x,y∈E

h(x,y). (1.14)

Given a mapping f : D → R
n with partial derivatives a.e., f ′(x) denotes the Ja-

cobian matrix of f at x ∈ D if it exists, J(x) = J(x, f ) = det f ′(x) is the Jacobian
of f at x, and | f ′(x)| is the operator norm of f ′(x), i.e., | f ′(x)| = max{| f ′(x)h| :
h ∈ R

n, |h| = 1}. We also let l( f ′(x)) = min{| f ′(x)h| : h ∈ R
n, |h| = 1}. The outer

dilatation of f at x is defined by

KO(x) = KO(x, f ) =

⎧⎪⎨
⎪⎩

| f ′(x)|n
|J(x, f )| if J(x, f ) �= 0,

1 if f ′(x) = 0,
∞ otherwise,

(1.15)

the inner dilatation of f at x by
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KI(x) = KI(x, f ) =

⎧⎪⎨
⎪⎩

|J(x, f )|
l( f ′(x))n if J(x, f ) �= 0,

1 if f ′(x) = 0,
∞ otherwise,

(1.16)

and the maximal dilatation, or in short the dilatation, of f at x by

K(x) = K(x, f ) = max(KO(x),KI(x)). (1.17)

Note that KI(x) ≤ KO(x)n−1 and KO(x) ≤ KI(x)n−1; see, e.g., Section 1.2.1 in
[256], and, in particular, KO(x),KI(x), and K(x) are simultaneously finite or infi-
nite. K(x, f ) < ∞ a.e. is equivalent to the condition that a.e. either det f ′(x) > 0 or
f ′(x) = 0.

Recall that a (continuous) mapping f : D → R
n is absolutely continuous on

lines, abbr. f ∈ ACL, if, for every closed parallelepiped P in D whose sides are
perpendicular to the coordinate axes, each coordinate function of f |P is absolutely
continuous on almost every line segment in P that is parallel to the coordinate axes.
Note that, if f ∈ ACL, then f has the first partial derivatives a.e.

In particular, f is ACL if f ∈W 1,1
loc . In general, mappings in the Sobolev classes

W1,p
loc , p∈ [1,∞), with generalized first partial derivatives in Lp

loc can be characterized
as mappings in ACLp

loc, i.e. mappings in ACL whose usual first partial derivatives
are locally integrable in the degree p; see, e.g., [215], p. 8.

Later on, for given sets A,B, and C in R
n, Δ(A,B,C) denotes a collection of all

paths γ : [0,1] → R
n joining A and B in C, i.e., γ(0) ∈ A, γ(1) ∈ B, and γ(t) ∈C for

all t ∈ (0,1). Moreover, we use the abbreviation Δ(A,B) for the case C = R
n.



Chapter 2
Moduli and Capacity

2.1 Introduction

In this chapter, we mainly follow the notes [201]; cf. also [107, 110, 112]. These
notes are intended to be an introduction to the basic techniques in the geometric the-
ory of quasiconformal maps. The main emphasis is on the concept of the p-modulus
of a family of paths. The purpose is to relate this concept to other definitions of qua-
siconformality. An excellent account can be found in [316]. However, we have tried
to develop the tools of quasiconformal theory beyond the usual Euclidean space
R

n. Such a development is rather recent. Quasisymmetric maps were considered by
Tukia and Väisälä [311] in metric spaces and quasiconformality was characterized
in local terms by Heinonen and Koskela [112]. The definitions of quasiconformal-
ity and the treatment of their equivalence in R

n very much follow the presentation
in [316]. The concept of quasisymmetry is more thoroughly treated in [107]. The
treatment of linear dilatation offers novel features. We hope that graduate students
will find these tools applicable in new situations; see, e.g., Chapter 13.

The theory of quasiconformal maps essentially belongs to real analysis. This is
very evident in Chapters 2 and 5–8, although no hard real analysis is needed.

The reference list is relatively short here. Further references can be found in the
books [107] and [110] and in the paper [112].

2.2 Moduli in Metric Spaces

The length-area method was first used in the theory of conformal mappings. The
name “extremal length” was used by Ahlfors and Beurling; see [5]. The name “mod-
ulus” or “p-modulus” is now widely used. The general theory for the p-modulus and
the connections to function spaces was developed by Fuglede [64]. There is a similar
theory of capacities of condensers.

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 2, c© Springer Science+Business Media, LLC 2009
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Paths and line integrals. Let (X ,d) be a metric space. A path γ in X is a continuous
map γ : [a,b] → X . Sometimes we also consider “paths” γ that are defined on open
intervals (a,b) of R. The theory for these is similar.

The length of a path γ : [a,b] → X is

l(γ) = sup
n

∑
i=1

d(γ(ti),γ(ti+1)),

where the supremum is over all sequences a = t1 ≤ t2 ≤ ·· · ≤ tn ≤ tn+1 = b. If
the interval is not closed, then we define the length of γ to be the supremum of the
lengths of all closed subcurves of γ . A curve γ is rectifiable if its length is finite, and
a path γ is locally rectifiable if all of its closed subcurves are rectifiable. However,
usually we assume that all paths are closed and nondegenerate, i.e., γ([a,b]) is not a
point, unless otherwise stated.

Two important concepts are associated with a rectifiable path γ : [a,b] → X : the
length function Sγ : [a,b] → R and parameterization by arc length. The length
function is defined as

Sγ(t) = l(γ|[a, t]), a ≤ t ≤ b ,

and the path γ̃ : [0, l(γ)] → X is the unique 1-Lipschitz continuous map such that

γ = γ̃ ◦Sγ .

In particular, l(γ̃|[0, t]) = t, 0 ≤ t ≤ l(γ), and γ is obtained from γ̃ by an increasing
change of parameter. The path γ̃ is called the parameterization of γ by arc length.
For the construction of γ̃ , see [316].

If γ : [a,b] → X is a path, then the set

|γ| = {γ(t) : t ∈ [a,b]}

is called a locus of the path. Often we shall not distinguish between a path and its
locus, although this is dangerous in many occasions.

We recall that a set J ⊂ X is a (closed) arc if it is homeomorphic to some interval
[a,b]. For an arc J, the length (possibly infinite) is well defined: it is independent
of the parameterization of J. In the theory of quasiconformal maps, mostly arcs or
Jordan curves (homeomorphic images of the unit circle) are used, but paths are
important in the theory of nonhomeomorphic quasiconformal maps (quasiregular
maps) since the image of an arc need not be an arc; see, e.g., [210, 256, 260, 328].

Given a rectifiable curve γ in X , the line integral over γ of a Borel function
ρ : X → [0,∞] is

∫

γ

ρ ds =

l(γ)∫

0

ρ(γ̃(t)) dt .

Sometimes we write this as
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∫

γ

ρ |dx| .

If γ is only locally rectifiable, then we set
∫

γ

ρ ds = sup
∫

γ ′

ρ ds,

where the supremum is taken over all rectifiable subcurves γ ′ : [a′,b′] → X of γ . If
X = R

n and a path γ : [a,b] → X has an absolutely continuous representation (this
means that each coordinate function γi : [a,b] → R, i = 1, . . . ,n, of γ is absolutely
continuous), then the line integral over γ is

b∫

a

ρ(γ(t)) |γ ′(t)| dt,

where γ ′(t) = (γ ′1(t), . . . ,γ ′n(t)) and γ(t) = (γ1(t), . . . ,γn(t)).

Let μ be a Borel regular measure in a metric space (X ,d). Borel regularity
means that open sets of X are μ-measurable and every μ-measurable set is contained
in a Borel set of equal measure. For a given curve family Γ in X and a real number
p ≥ 1, we define the p-modulus of Γ by

Mp(Γ ) = inf
∫

X

ρ p dμ , (2.1)

where the infimum is taken over all nonnegative Borel functions ρ : X → [0,∞]
satisfying ∫

γ

ρ ds ≥ 1

for all (locally) rectifiable curves γ ∈ Γ . Functions ρ that satisfy the latter condition
are called admissible functions, or metrics, for the family Γ .

If X is the Euclidean n-space R
n equipped with the usual distance, then the mea-

sure μ will be the Lebesgue measure m in most cases.
By definition, the modulus of all curves in X that are not rectifiable is zero. If Γ

contains a constant curve and the measure μ satisfies μ({x}) = 0 for all x ∈ X , then
there are no admissible functions and the modulus is infinite. Further, the following
properties are easily verified:

Mp( /0) = 0, (2.2)

Mp(Γ1) ≤ Mp(Γ2) (2.3)

if Γ1 ⊂ Γ2, and
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Mp

(
∞⋃

i=1

Γi

)
≤

∞

∑
i=1

Mp(Γi). (2.4)

Moreover,
Mp(Γ ) ≤ Mp(Γ0) (2.5)

if Γ is minorized by Γ0, i.e., each path γ ∈ Γ has a subpath γ0 ∈ Γ0.
Only (2.4) requires a proof. For (2.4), we may assume that every Mp(Γi) < ∞.

For ε > 0, pick an admissible ρi for Γi such that
∫

X

ρ p
i dμ < Mp(Γi)+ ε/2i.

Then the function ρ = (∑ρ p
i )1/p is admissible for Γ = ∪ Γi since ρ ≥ ρi for all

i = 1,2, . . . . Thus,

Mp(Γ ) ≤
∫

X

ρ p dμ =
∞

∑
i=1

∫

X

ρ p
i dμ < ε +

∞

∑
i=1

Mp(Γi).

Letting ε → 0 yields (2.4).

Conditions (2.2)–(2.4) mean that Mp is an outer measure on the set of curves in
X .

Remark 2.1. Observe that ρ needs to be a Borel function [i.e. ρ−1((a,∞]) is a Borel
set in X for each a ∈R] since otherwise the above line integrals can be undefined. In
general, measurable admissible functions provide too restrictive a class. However,
if ρ ≥ 0 is μ-measurable, then there exists a Borel function ρ∗ such that ρ∗ ≥ ρ
in X and ρ∗ = ρ a.e. with respect to the measure μ . This makes it possible to use
μ-measurable functions as admissible functions on many occasions.

In general, it is difficult to compute Mp(Γ ) for a given curve family Γ . For ex-
ample, let us compute the p-modulus of a curve family Γ that joins the bases of a
cylinder in R

n. In R
n we use the Lebesgue measure μ = m. Let E be a Borel set in

R
n−1 and let h > 0. Set

G = {x ∈ R
n | (x1, . . . ,xn−1) ∈ E and 0 < xn < h}.

Then G is a cylinder with bases E and F = E +hen and height h. Let Γ be the family
of all paths γ : [a,b] → R

n such that γ(t) ∈ G, t ∈ (a,b), γ(a) ∈ E, and γ(b) ∈ F .

We first make a simple observation:

Lemma 2.1. Suppose that the curves γ of a family Γ lie in a Borel set A ⊂ X and
that l(γ) ≥ r > 0 for each γ ∈ Γ . Then

Mp(Γ ) ≤ μ(A)
rp .
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Proof. Set ρ(x) = 1/r for x ∈ A and ρ(x) = 0, x ∈ X \A. Then ρ is admissible for
Γ and the inequality follows.

Now, we show that in the cylinder

Mp(Γ ) =
mn−1(E)

hp−1 =
m(G)

hp , (2.6)

where mn−1 is the Lebesgue measure in R
n−1.

Since l(γ) ≥ h for every γ ∈ Γ , Lemma 2.1 implies that Mp(Γ ) ≤ m(G)/hp. Let
ρ be an arbitrary admissible function for Γ . For each y ∈ E, let γy : [0,h] → R

n be
the vertical segment γy(t) = y + ten. Then γy ∈ Γ . Assuming that p > 1, we obtain
by Hölder’s inequality

1 ≤

⎛
⎝∫

γy

ρ ds

⎞
⎠

p

≤ hp−1

h∫

0

ρ(y+ ten)p dt .

Integration over y ∈ E yields by Fubini’s theorem

mn−1(E) ≤ hp−1
∫

E

dmn−1

h∫

0

ρ(y+ ten)pdt = hp−1
∫

G

ρ pdm ≤ hp−1
∫
ρ pdm .

Since this holds for every admissible ρ, we obtain Mp(Γ ) ≥ mn−1(E)/hp−1. The
proof for (2.6) in the case p = 1 is even simpler. 
�

In general, it is a relatively easy task to obtain upper bounds for Mp(Γ ); here
one admissible ρ suffices. Obtaining nontrivial lower bounds is usually much more
difficult.

2.3 Conformal Modulus

For quasiconformal maps, the most important modulus is the n-modulus Mn(Γ ) in
R

n, which is a conformal invariant and can also be used on Riemannian n-manifolds.
A diffeomorphism f : Ω → Ω ′ between two domains in R

n is conformal if at
every point x its derivative f ′(x) is an orthogonal map, i.e., a homothety. This means
that

〈 f ′(x)h, f ′(x)k〉 = λ (x)〈h,k〉 (2.7)

at each point of x ∈ Ω for every h and k ∈ R
n, where λ (x) > 0 is a continuous

function on Ω . Here 〈h,k〉 denotes the inner product of vectors h and k in R
n. For

maps f : Mn → Nn between two n-dimensional Riemannian manifolds Mn and Nn,
(2.7) takes the form
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〈D f (x)X ,D f (x)Y 〉 f (x) = λ (x)〈X ,Y 〉x (2.8)

at each point x ∈ M for all tangent vectors X and Y in TxM. Conditions (2.7) and
(2.8) mean that the angles are preserved on the infinitesimal level.

The conformality of f can also be expressed in the form

‖ f ′(x)‖n = |J(x, f )|, x ∈Ω . (2.9)

Here
‖ f ′(x)‖ = sup

|h|=1
| f ′(x)h|

is the sup-norm of the linear map f ′(x) : R
n → R

n and J(x, f ) = det f ′(x) is the
Jacobian determinant of the n×n matrix of f ′(x). Indeed, the linear map f ′(x) maps
the unit ball B(0,1) of R

n onto an ellipsoid with semi-axis 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn

and ‖ f ′(x)‖= λn and |J(x, f )|= λ1 · . . . ·λn. Condition (2.7) gives λ1 = λ2 = . . . = λn

(an orthogonal linear map maps balls into balls). Since the correspondence x �→
J(x, f ) is continuous and does not vanish, it cannot change sign inΩ . In the theory of
conformal maps, only sense-preserving mappings, i.e., J(x, f ) > 0 a.e., are usually
considered. Then (2.9) can be written without absolute signs. Note that another way
to express (2.9) is ‖ f ′(x)‖|h| = | f ′(x)h| for all h ∈ R

n.
For n = 2, (2.7) or (2.9) leads to the usual definition of a conformal map: A

diffeomorphism f : D → D′ between two plane domains D and D′ is conformal if f
has a “conformal” derivative at every point x ∈ D, i.e., f ′(x) is a sense-preserving
homothety of the complex plane.

Theorem 2.1. If f : Ω →Ω ′ is conformal, then

Mn(Γ ) = Mn( fΓ )

for each curve family Γ ⊂Ω (for the measure μ , the Lebesgue measure is used).

Proof. If ρ is an admissible function for fΓ , then it is easily seen (this computation
is done in the proof of Theorem 2.12 ahead) that

∫

γ

ρ( f (x)) ‖ f ′(x)‖ |dx| ≥
∫

f◦γ

ρ ds ≥ 1

for all γ ∈ Γ , so that ρ( f (x)) ‖ f ′(x)‖ is admissible for Γ . Thus,

Mn(Γ ) ≤
∫

Ω

ρn( f (x)) ‖ f ′(x)‖n dx. (2.10)

Using the change of variables in the right-hand side of (2.10) and the conformal-
ity condition (2.9), we transform the integral into
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∫

Ω ′

ρ(y)n dy.

This shows that Mn(Γ ) ≤ Mn( fΓ ), and the rest follows by symmetry. 
�

Remark 2.2. The n-modulus is often called the conformal modulus. In the literature
the extremal length defined as 1/Mn(Γ ) is also used.

Remark 2.3. In the plane the 2-modulus is a frequently used powerful tool in the
study of conformal maps. In particular, it can be used to prove results like “a confor-
mal map f : B(0,1)→ R

2 has radial limits on ∂B(0,1) except on a set of 2-capacity
zero.”

2.4 Geometric Definition for Quasiconformality

There are many equivalent ways to define quasiconformal maps. The one given in
(1.3) is the strongest in the sense that many properties of quasiconformal maps can
be derived rather directly from the definition and that it is impractical to check the
quasiconformality of a given map by using (1.3). In particular, it follows from (1.3)
that f−1 : Ω ′ →Ω is K-quasiconformal as well.

We shall discuss other definitions later, also those that generalize the notion of
quasiconformality to spaces where modulus is not available. In particular, it would
be useful to have a definition for quasiconformality that has a purely local character
as in the case of conformal maps. Indeed, such definitions exist and are usually
based on (2.9). There are also slightly different definitions based on metric concepts
that will be discussed in Sections 2.8 and 2.10.

For a diffeomorphism f : Ω →Ω ′, when both f and f−1 belong to C1, condition
(2.9) can easily be relaxed, which also leads to a definition for quasiconformality.
Set

K0( f ′(x)) = ‖ f ′(x)‖n/|J(x, f )|, KI( f ′(x)) = |J(x, f )|/l( f ′(x))n,

where l( f ′(x)) = inf{| f ′(x)h| : |h| = 1} = λ1 is the so-called minimal stretching of
f ′(x). Note that

K0( f ′(x)) = λ2/λ1 = KI( f ′(x))

for n = 2, but these numbers are, in general, different for n ≥ 3. Set

K( f ) = max

(
sup
x∈Ω

K0( f ′(x)), sup
x∈Ω

KI( f ′(x))
)

.

The number K( f ) ∈ [1,∞] is called the maximal dilatation of the diffeomorphism
f .
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The same reasoning as in the proof of Theorem 2.1 yields the following result.

Theorem 2.2. Suppose that f : Ω → Ω ′ is a diffeomorphism with K( f ) < ∞. Then
f satisfies (1.3) with K = K( f ), i.e., f is K( f )-quasiconformal.

Example 1. Let f : R
2 → R

2, f (x) = (x1,Kx2), x = (x1,x2), K ≥ 1. Then f is a
linear map and K( f ) = K. In general, every nondegenerate linear map f : R

n → R
n

is quasiconformal.

Remark 2.4. The converse of Theorem 2.2 is also true: If a diffeomorphism f sat-
isfies (1.3), then the maximal dilatation K( f ) of f satisfies K( f ) ≤ K. The class of
C1-qc maps is not closed under locally uniform convergence. Hence, it is natural
to study more general classes that also include nondiffeomorphic quasiconformal
mappings.

2.5 Modulus Estimates

As we noted above, the p-modulus of a path family is difficult to compute exactly
in most cases. However, in some cases the calculations are possible.

Lemma 2.2. Let B(x0,r) be the open ball centered at x0 ∈ R
n and radius r > 0. Let

Γ be the family of all paths γ : [a,b] → A, where A is the open annulus

A = B(x0,R)\B(x0,r), R > r,

with γ(a) ∈ ∂B(x0,r), γ(b) ∈ ∂B(x0,R). Then

Mn(Γ ) = ωn−1

(
log

R
r

)1−n

,

where ωn−1 is the area of the unit sphere ∂B(0,1) in Rn.

Proof. The function

ρ(x) =
(

log
R
r

)−1

|x0 − x|−1

restricted to A is admissible for Γ and, thus,

Mn(Γ ) ≤
∫

A

ρn(x) dx =
(

log
R
r

)−n ∫

Sn−1

R∫

r

t−1dtdω = ωn−1

(
log

R
r

)1−n

.

On the other hand, if ρ is an arbitrary admissible function for Γ in A, then for
each point ω on the unit sphere Sn−1, we have
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1 ≤
R∫

r

ρ(x0 + tω)dt ≤

⎛
⎝

R∫

r

ρ(x0 + tω)ntn−1dt

⎞
⎠

1/n⎛
⎝

R∫

r

t−1dt

⎞
⎠

(n−1)/n

.

Hence, ∫

A

ρn(x)dx ≥ ωn−1

(
log

R
r

)1−n

.

This completes the proof. 
�

Remark 2.5. The p-modulus of the path family joining the boundary components of
an annulus can be computed exactly for any p ≥ 1, i.e.,

Mp(Γ ) = ωn−1

(
|n− p|
p−1

)p−1 ∣∣∣R p−n
p−1 − r

p−n
p−1

∣∣∣1−p

if p �= n, p > 1. In the case p = 1, we have

M1(Γ ) = ωn−1rn−1,

i.e., M1(Γ ) is the area of the inner sphere. The computation is similar to the proof
of Lemma 2.2; it is only necessary to guess the right admissible function; see [110].

Remark 2.6. The paths γ in Lemma 2.2 need not lie in A. One can as well assume
that γ : [a,b] → R

n and the result is the same; see (2.3) and (2.5). Also, it is not
necessary to consider all paths that join the boundary components of A: The radial
rays emanating from x0 and restricted to A are enough.

Corollary 2.1. Let Γ be a family of (nonconstant) paths γ in R
n such that each γ

meets a fixed point x0 ∈ R
n. Then Mn(Γ ) = 0.

Proof. Fix r > 0 and consider the annulus

Ai = B(x0,r)\B(x0,r/i), i = 2,3, . . . .

Let Γi(r) be the family paths γ in Γ that have a subpath whose endpoints lie in dif-
ferent boundary components of Ai. Then by (2.5) and Lemma 2.2 (see also Remark
2.6),

Mn(Γi(r)) ≤ ωn−1(log i)1−n → 0 as i → ∞.

If Γ (r) is the family of all paths γ ∈ Γ that meet ∂B(x0,r), then

0 ≤ Mn(Γ (r)) ≤ Mn(Γi(r)), i = 1,2, . . . ,

and hence Mn(Γ (r)) = 0. The claim now follows from (2.4) because

Mn(Γ ) ≤ Mn

(
∞⋃

j=1

Γ (1/ j)

)
≤

∞

∑
j=1

Mn(Γ (1/ j)) = 0.
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�

Remark 2.7. Corollary 2.1 remains true for 1 ≤ p ≤ n but is false for p > n.

Example. Consider the radial mapping f : R
n → R

n, f (x) = |x|α−1x, where 0 <
α ≤ 1. Then f is a homeomorphism of R

n and a diffeomorphism of R
n \ {0} onto

itself. Although f is not C1 for α < 1 ( f is α-Hölder only), f−1 is in C1(Rn). Let
x �= 0. Then it is easy to see that f ′(x) maps B(0,1) onto an ellipsoid with semi-
axes 1/α and α1−n and we obtain from Theorem 2.2 that the mapping f |Rn \ {0}
is α1−n-quasiconformal. Now the mapping f is α1−n-quasiconformal because by
Corollary 2.1 the n-modulus of any path family passing through 0 is zero and, thus,
f satisfies (1.3 ).

The most important modulus estimate in the theory of quasiconformal maps is
the so-called Loewner estimate. We transfer it here in a general context of metric
spaces.

Let (X ,d) be a metric space with a Borel measure as before. For each real number
n > 1, we define the Loewner function Φn : (0,∞) → [0,∞) of X as

Φn(t) = ΦX ,n(t) = inf {Mn(Γ (E,F ;X)) : Δ(E,F) ≤ t},

where E and F are disjoint nondegenerate continua in X with

Δ(E,F) =
dist(E,F)

min{diam E,diam F}

and Γ (E,F ;X) is the family of all paths that join E to F in X . The number Δ(E,F)
measures the relative position of E and F in X .

If one cannot find two disjoint continua in X , it is understood that ΦX ,n(t) ≡ 0.
Recall that a continuum is a compact connected set, and a continuum is nondege-
nerate if it is not a point and not empty; we shall assume that all continua are
nondegenerate.

By definition, the function Φn is decreasing.

A pathwise connected metric measure space (X ,μ) is said to be a Loewner space
of exponent n , or an n-Loewner space, if the Loewner function ΦX ,n(t) is positive
for all t > 0.

Note that the positivity of the Loewner function alone does not imply that the
space X in question is pathwise connected; for instance, X can be a disjoint union
of a Loewner space and a point.

In a Loewner space one finds a lot of rectifiable paths joining two disjoint con-
tinua, and the plenitude of paths is quantified by the function Φn. In particular, a
space without rectifiable paths, such as (Rn, |x− y|1/2), cannot be a Loewner space.
Also, notice the scale invariance of the condition.

The use of the exponent n in the definition is based on the result of Loewner
[192].
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Theorem 2.3. R
n is an n-Loewner space.

We shall come to the proof of this result in Chapter 10.

Remark 2.8. In R
n the function Φn has the following asymptotics:

Φn(t) ≈ (log t)1−n, t → ∞,

Φn(t) ≈ log(1/t), t → 0.

The constants involved in these estimates depend only on n. For n = 2, the function
Φ2 has a representation in the form of an elliptic integral; see [190].

2.6 Upper Gradients and ACCp Functions

One of the most important properties of a C1-function u defined in a domain Ω of
R

n is that it can be recovered from its derivative. More precisely,

u(x)−u(y) =
∫

γ

∇u ·ds =

l(γ)∫

0

〈∇u(γ̃(s)), γ̃ ′(s)〉 ds, (2.11)

where γ is any rectifiable path in Ω with endpoints x and y and γ̃ is the representation
of γ by arc length. Now (2.11) leads to

|u(x)−u(y)| ≤
∫

γ

|∇u| ds. (2.12)

As we will soon see, inequality (2.12) is almost as useful as equality (2.11).
We first extend (2.12) to a metric space. Let (X ,d) be a metric space and u : X →

R. A Borel function ρ : X → [0,∞] is said to be an upper gradient of u if

|u(x)−u(y)| ≤
∫

γ

ρ ds (2.13)

for each rectifiable path γ joining x and y in X .
Every function has an upper gradient, namely ρ ≡ ∞, and upper gradients are

seldom unique. Note that ρ = ∞ could be the only upper gradient in the case! The
constant function ρ ≡ L is an upper gradient of every L-Lipschitz fucntion, but this
is rarely the best choice. A constant function has an upper gradient ρ ≡ 0.

If X contains no nontrivial rectifiable paths, then ρ ≡ 0 is an upper gradient of
any function. It follows that upper gradients are potentially useful objects only if the
underlying space has plenty of rectifiable curves.
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It is well known that, for a function u : [a,b] → R, a necessary and sufficient
condition for

u(x) = u(a)+
x∫

a

u′(t)dt, x ∈ [a,b], (2.14)

is that u is absolutely continuous. Unlike conformal maps, quasiconformal maps can
be rather irregular. For this purpose an absolute continuity property in R

n is needed.
This idea goes back to Tonelli [absolute continuity in the sense of Tonelli (ACT),
nowadays absolute continuity on lines], and the idea from a different point of view
was developed by Sobolev. In general, absolute continuity in R

n for n ≥ 2 is much
more problematic than in intervals [a,b]⊂R. Here we develop the theory in a metric
space X ; for X = R

n, this leads to the aforementioned theories.
Let γ be a path in a metric space X and let l(γ) denote the length of γ . A function

u is said to be ACCp or absolutely continuous on p-almost every curve if u ◦ γ is
absolutely continuous on [0, l(γ)] for p-almost every rectifiable arc-length parame-
terized path γ in X .

Next assume that μ is a Borel regular measure in X . The following definition is
due to [38] and [291] and is a weakening of the concept of upper gradient.

Let u be an arbitrary real-valued function on X , and let ρ be a nonnegative Borel
function on X . If there exists a family Γ ⊂ Γrect such that Mp(Γ ) = 0 and inequality
(2.13) is true for all paths γ inΓrect\Γ , then ρ is said to be a p-weak upper gradient
of u. If inequality (2.13) holds for p-modulus almost all paths in a set A ⊂ X , then
ρ is said to be a p-weak upper gradient of u on A. As the exponent p is usually
fixed, in both cases ρ is simply called a weak upper gradient of u. Here Γrect denotes
the family of all rectifiable paths γ : [a,b] → X .

While the notion of upper gradients does not involve measures or the notion of
p-modulus (and hence is independent of the index p), the notion of p-weak upper
gradient is strongly dependent on the measure and concept of p-modulus.

Let Ñ1,p(X) = Ñ1,p(X ,d,μ) be the set of all functions u : X → R that belong to
Lp(X), p ≥ 1, and have a p-weak upper gradient ρ ∈ Lp(X).

Note that Ñ1,p is also a vector space since if α,β are real numbers and u1,u2 ∈
Ñ1,p with respective weak upper gradients ρ1,ρ2, then |α|ρ1 + |β |ρ2 is a weak upper
gradient of αu1 +βu2. Given a function u in Ñ1,p, let

‖u‖Ñ1,p = ‖u‖Lp + inf
ρ
‖ρ‖Lp ,

where the infimum is taken over all p-integrable weak upper gradients ρ of u.
It is easy to see that ‖ · ‖Ñ1,p satisfies the triangle inequality:

‖u+ v‖Ñ1,p ≤ ‖u‖Ñ1,p +‖v‖Ñ1,p .

Given functions u,v in Ñ1,p, let u ≈ v if ‖u− v‖Ñ1,p = 0. It can easily be seen
that ≈ is an equivalence relation, partitioning Ñ1,p into equivalence classes. This
collection of equivalence classes under the norm of Ñ1,p is a normed vector space.
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The Newtonian space corresponding to the index p, 1 ≤ p < ∞,
denoted N1,p(X), is defined to be the normed space Ñ1,p(X ,d,μ)/≈, with the norm
‖u‖N1,p := ‖u‖Ñ1,p .

If u,v are functions in Ñ1,p, then the functions min{u,v}, max{u,v}, and |u| are
also in Ñ1,p. This follows from the corresponding properties of absolutely contin-
uous functions. Thus, N1,p(X) also enjoys a lattice property. Also, if λ ≥ 0, then
min{u,λ} is in Ñ1,p, and if λ ≤ 0, then max{u,λ} is also in Ñ1,p.

The following lemma clarifies the connection between ACCp-functions and func-
tions in Ñ1,p.

Lemma 2.3. If u is a function in Ñ1,p, then u is ACCp.

Proof. By the definition of Ñ1,p, u has a p-integrable weak upper gradient ρ . Let Γ
be the collection of all paths in Γrect for which inequality (2.13) does not hold. Then,
by the definition of weak upper gradients, Mp(Γ ) = 0. Let Γ1 be the collection of all
paths in Γrect that have some subpath belonging to Γ . Then,

Mp(Γ1) ≤ Mp(Γ ) = 0.

Let Γ2 be the collection of all paths γ in Γrect such that
∫
γ ρds = ∞. As ρ is p-

integrable, Mp(Γ2) is zero. Hence, Mp(Γ1 ∪Γ2) is zero. If γ is a path in Γrect that is
not in Γ1 ∪Γ2, then γ has no subpath in Γ1, and hence for all x,y in |γ|,

|u(x)−u(y)| ≤
∫

γxy

ρds < ∞.

Hence, if (ai,bi), i = 1,2, . . . ,m, are disjoint intervals in [0, l(γ)], then

∑
i
|u(γ(bi))−u(γ(ai))| ≤

∫

∪(ai,bi)

ρ(γ(s))ds,

and this clearly shows that u ◦ γ is absolutely continuous on [0, l(γ)], as required.
Thus, u is absolutely continuous on each path γ in Γrect \ (Γ1 ∪Γ2). 
�

Note that the above lemma remains valid if the function u is required only to have
a p-integrable upper gradient, without itself being p-integrable.

By Lemma 2.3, the space Ñ1,p consists of ACCp-functions u such that u ∈ Lp(X)
and u has a p-weak upper gradient ρ ∈ Lp(X).

Next we prove a couple of lemmas that provide some further information on
pointwise behavior of functions in Ñ1,p.

Lemma 2.4. Suppose u is a function in Ñ1,p such that ‖u‖Lp = 0. Then the family

Γ = {γ ∈ Γrect : u(x) �= 0 for some x ∈ |γ|}

has zero p-modulus.
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Proof. Since ‖u‖Lp = 0, the set E = {x ∈ X : u(x) �= 0} has measure zero. Given
C ⊂ X , set

ΓC = {γ ∈ Γrect : |γ|∩C �= /0}
and

Γ+
C = {γ ∈ ΓC : γ meets C in a set of positive length}.

With this notation,
Γ = Γ+

E ∪ (ΓE \Γ+
E ).

The subfamily Γ+
E can be disregarded since

Mp(Γ+
E ) ≤ ‖∞ ·χE‖Lp = 0.

Note that the set E need not be a Borel set, but it can be replaced by a Borel set
E∗ including E such that μ(E∗ \E) = 0 and hence the function χE can be replaced
by χE∗ , which is a Borel function. Thus, ∞ ·χE∗ is an admissible function for Γ+

E .

The paths γ in ΓE \Γ+
E intersect E only on a set of linear measure zero, and hence

with respect to linear measure almost everywhere on γ the function u takes on the
value of zero. By the fact that γ also intersects E, u is not absolutely continuous on
γ since u is not even continuous on γ . By Lemma 2.3,

Mp(ΓE \Γ+
E ) = 0,

yielding Mp(Γ ) = 0. 
�

This lemma indicates that functions in Ñ1,p are well defined outside a small set.
For example, not all sets E of zero measure in R

n have the property that the p-
modulus of the family ΓE is zero; hence, unlike Lp-functions, Newtonian functions
on R

n cannot be arbitrarily changed on sets of measure zero. The above lemma
yields the following:

Corollary 2.2. If u1,u2 are two functions in Ñ1,p(X) such that ‖u1−u2‖Lp = 0, then
u1 and u2 belong to the same equivalence class in N1,p(X).

We shall not prove the following result of N. Shanmugalingam [291]; in fact, we
do not need this result; see also [38] for a slightly different approach.

Theorem 2.4. The space N1,p(X) with the norm ‖ ‖N1,p is a Banach space.

The concepts of capacity and modulus are interlocked in some situations. Let
E,F ⊂ X . We define the p-capacity of a condenser (E,F) = (E,F ;X) as follows:

capp(E,F) = inf
∫

X

ρ p dμ , (2.15)

where the infimum is taken over all upper gradients of all real-valued functions u on
X such that u|E ≤ 0 and u|F ≥ 1. Notice that no regularity assumption is made on
u.
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Next let (E,F) also stand for the family of paths γ that join E and F in X .

Theorem 2.5. capp(E,F) = Mp(E,F).

Proof. If u is a function on X with u|E ≤ 0 and u|F ≥ 1, and if ρ is any upper
gradient of u, then

1 ≤ |u(x)−u(y)| ≤
∫

γ

ρ ds

for any rectifiable path γ joining a point x ∈ E and a point y ∈ F . Therefore,

Mp(E,F) ≤ capp(E,F).

On the other hand, if ρ is an admissible function for the family (E,F), then define

u(x) = inf
∫

γx

ρ ds,

where the infimum is taken over all paths γx joining E to the point x in X . Then
u|E = 0, u|F ≥ 1, and ρ is an upper gradient of u. Indeed, let x0,y0 ∈ X and let γ0

be a path joining x0 to y0. Assuming u(y0) ≥ u(x0), we have

|u(y0)−u(x0)| = u(y0)−u(x0) = inf
∫

γy0

ρ ds− inf
∫

γx0

ρ ds

≤ inf
∫

γx0

ρ ds+
∫

γ0

ρ ds− inf
∫

γx0

ρ ds =
∫

γ0

ρds

because the path γx0 + γ0 for each path γx0 joins E to y0. The case u(y0) < u(x0)
follows by symmetry. This implies that capp(E,F) ≤ Mp(E,F) and the theorem
follows. 
�

Remark 2.9. If X = R
n, then it is easy to see that the function u in the definition of

the p-capacity can be assumed to be measurable provided that E and F are com-
pact and disjoint (note that an upper gradient is a Borel function). Since u can be
truncated so that u(x) ∈ [0,1], we may assume that u is locally integrable in this
case. With some extra work the function u can be made continuous, or even locally
Lipschitz; see [107, 291].

2.7 ACCp Functions in R
n and Capacity

It turns out that in R
n a much weaker condition implies the ACCp condition. Such a

condition is provided by the class of ACL or ACLp (ACL = absolutely continuous
on lines) functions.
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Denote R
n−1
i = {x ∈ R

n|xi = 0}. Furthermore, let Pi be the orthogonal projection
of R

n onto R
n−1. Explicitly, Pix = x− xiei.

Let Q = {x ∈ R
n|ai ≤ xi ≤ bi} be a closed n-interval. A mapping f : Q → R is

said to be ACL (absolutely continuous on lines) if f is absolutely continuous on
almost every line segment in Q, parallel to the coordinate axes. More precisely, if
Ei is the set of all x ∈ PiQ such that the mapping t → f (x + tei) is not absolutely
continuous on [ai,b1], then mn−1(Ei) = 0 for 1 ≤ i ≤ n.

If U is an open set in R
n, a mapping f : U → R is called ACL if f |Q is ACL for

every closed n-interval Q ⊂U .
If D and D′ are domains in R

n, a homeomorphism f : D → D′ is called ACL if
each coordinate function fi of f = ( f1, . . . , fn) is ACL.

An ACL mapping f : U → R (or [−∞,∞]) is said to be ACLp, p ≥ 1, if f is
locally Lp-integrable in U and if the partial derivatives ∂i f (which exist a.e. and are
measurable) of f are locally Lp-integrable as well.

A homeomorphism f : D→D′ is ACLp if each coordinate function of f is ACLp.
Observe the following differences in the definitions of ACLp and ACCp func-

tions: In the space N1,p the functions u and their p-weak upper gradients belong to
Lp(X). For the ACLp functions in an open set U ⊂ R

n, this is required only locally.

Smoothing of functions. Here we have collected some (standard) approximation
results; see [110, 316, 339].

Theorem 2.6. Suppose that f : U → R, U ⊂ R
n open, is ACLp. Then there is a

sequence of functions f j ∈C1(U) such that for each compact subset F ⊂U, f j → f
in Lp(F) and ∂i f j → ∂i f in Lp(F) for each i = 1,2, . . . ,n.

Remark 2.10. The proof of Theorem 2.6 is based on the standard convolution ap-
proximation of f . If f ,∂i f ∈ Lp(U) and the approximation is needed in Lp(U), then
the proof is much more difficult.

Remark 2.11. If f ∈ C(U) [then f ∈ Lp(F) for each compact set F ⊂ U and each
p ≥ 1], then f j can be chosen so that f j → f uniformly on each compact subset of
U .

Our aim now is to show that an ACLp function is actually absolutely continuous
on a p-a.e. path. This is a theorem of Fuglede [64]. We start with a lemma that we
formulate in a general metric space X .

Lemma 2.5. Suppose that E is a Borel set in X and that fk : E → [−∞,∞] is a
sequence of Borel functions that converge to a Borel function f : E → [−∞,∞] in
Lp(E). Then there is a subsequence fk1 , fk2 , . . . such that

∫

γ

| fk j − f |ds → 0 (2.16)

for all rectifiable paths γ in E, except possibly for a family Γ such that Mp(Γ ) = 0.
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Proof. Choose a subsequence ( fk j) such that

∫

E

| fk j − f |pdm < 2− j(p+1).

Set g j = | fk j − f |, and let Γ be the family of all rectifiable paths γ such that γ ⊂ E
and

∫
γ g jds � 0. We show that Mp(Γ ) = 0.

Let Γj be the family of all rectifiable paths γ in E such that
∫
γ g jds > 2− j. Then

2 jg j is admissible for Γj if we define g j(x) = 0 for x /∈ E. Thus,

Mp(Γj) ≤ 2p j
∫

E

gp
j dm < 2− j.

On the other hand, Γ ⊂⋃∞
j=iΓj for every i = 1,2, . . . . Hence,

Mp(Γ ) ≤
∞

∑
j=i

Mp(Γj) <
∞

∑
j=i

2− j = 2−i+1

for every i = 1,2, . . . . Consequently, Mp(Γ ) = 0. 
�

Remark 2.12. Lemma 2.5 has an important consequence: If ρi is a Cauchy sequence
of nonnegative Borel functions in Lp coverging to a Borel function ρ in Lp, then
there is a subsequence ρik such that for p almost every path γ in Γrect,

lim
k→∞

∫

γ

ρik ds =
∫

γ

ρds < ∞.

We formulate the Fuglede theorem for continuous functions only (quasiconfor-
mal mappings are continuous). However, it holds for general ACLp functions.

Theorem 2.7. (Fuglede’s theorem). Suppose that U is an open set in R
n and that

f : U → R is continuous and ACLp. Let Γ be the family of all rectifiable paths in U
on which f is not absolutely continuous. Then Mp(Γ ) = 0.

Proof. We express U as the union of an expanding sequence of open sets Uj such
that each U j is a compact subset of U . Let Γj be the family of all paths γ ∈ Γ such
that γ ⊂Uj. Then Γ ⊂ ∪ Γj, whence

Mp(Γ ) ≤
∞

∑
j=1

Mp(Γj).

It thus suffices to prove that Mp(Γj) = 0 for an arbitrary fixed j.
By Theorem 2.6, there is a sequence of C1-functions fk : U →R such that fk → f

in Lp(U j) and such that ∂i fk → ∂i f in Lp(U j), 1 ≤ i ≤ n. Passing to a subsequence,
we may assume, by Lemma 2.5 and by the fact that partial derivatives of a continu-
ous function are Borel functions, that
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∫

γ

|∂i fk −∂i f | ds → 0

for all 1 ≤ i ≤ n and for all rectifiable paths γ in Uj except for a family Γ0 with
Mp(Γ0) = 0. We show that Γj ⊂ Γ0, which will prove that Mp(Γj) = 0.

Suppose that γ ∈ Γj \Γ0. Let β : [0,c] → Uj be the parameterization of γ by arc
length. We write

β (t) =
n

∑
i=1

βi(t)ei.

Since fk ◦β is absolutely continuous, we have for every 0 ≤ t ≤ c,

fk(β (t))− fk(β (0)) =
t∫

0

( fk ◦β )′(u) du (2.17)

=
t∫

0

n

∑
i=1

∂i fk(β (u)) β ′
i (u) du.

Here |β ′
i (u)| ≤ |β ′(u)| = 1 for almost every u ∈ [0,c]. As k → ∞, the left-hand side

of (2.17) tends to f (β (t))− f (β (0)); see Remark 2.11. On the other hand,
∣∣∣∣∣∣

t∫

0

n

∑
i=1

∂i fk(β (u)) β ′
i (u) du−

t∫

0

n

∑
i=1

∂i f (β (u)) β ′
i (u)du

∣∣∣∣∣∣

≤
n

∑
i=1

t∫

0

|∂i fk(β (u))−∂i f (β (u))| |β ′
i (u)| du

≤
n

∑
i=1

∫

γ

|∂i fk −∂i f | ds → 0.

Hence, (2.17) yields

f (β (t))− f (β (0)) =
t∫

0

n

∑
i=1

∂i f (β (u)) β ′
i (u) du. (2.18)

As an integral, f ◦β is absolutely continuous. In other words, f is absolutely con-
tinuous on γ . Since γ ∈ Γj ⊂ Γ , this is a contradiction. 
�

Remark 2.13. By Theorem 2.7, every continuous ACLp function is ACCp in U if
∇u ∈ Lp(U). Note that from (2.18) it follows that ρ = |∇u| is a p-weak upper gradi-
ent of u. If u is not continuous (only ACLp), the function ρ can be taken as a Borel
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function since for each measurable function v : U → [0,∞], there is a Borel function
ρ : U → [0,∞] such that ρ ≥ v and ρ = v a.e.

2.8 Linear Dilatation

Let (X ,d) be a metric space. For x ∈ X and r > 0, let B(x,r) be the open ball {y ∈
X : d(y,x) < r} centered at x and radius r. Let (Y,d′) be another metric space and
f : X → Y a map. For x ∈ X and r > 0, we set

L(x, f ,r) = sup {d′( f (y), f (x)) : y ∈ B(x,r)}

and
l(x, f ,r) = inf {d′(y, f (x)) : y ∈ Y \B(x,r)}

and H(x, f ,r) = L(x, f ,r)/l(x, f ,r). Note that when L(x, f ,r) = 0 = l(x, f ,r), we
put H(x, f ,r) = ∞; we also interpret inf /0 = 0. The linear dilatation of f at x is
defined as

H(x, f ) = limsup
r→0

H(x, f ,r).

It has turned out that H(x, f ) is difficult with maps f between two metric spaces:
The concept should be replaced by a more global concept called quasisymmetry.
This will be studied in Chapter 10. However, the linear dilatation is one of the basic
concepts for homeomorphisms between two domains in R

n: A homeomorphism
f : D → R

n for a domain D ⊂ R
n is quasiconformal if and only if H(x, f ) ≤C < ∞

at every point x ∈ D. This chapter is devoted to the study of the implications of
various boundedness conditions on H(x, f ).

Let D be a domain in R
n, n ≥ 1, and f : D →R

n a homeomorphism (embedding).
For x ∈ D and 0 < r < d(x,∂D), we have

L(x, f ,r) = sup {| f (y)− f (x)| : y ∈ ∂B(x,r)}

and
l(x, f ,r) = inf{| f (y)− f (x)| : u ∈ ∂B(x,r)}.

Now at every point x ∈ D, H(x, f ) ∈ [1,∞] and if f is differentiable at x, then
H(x, f ) = ‖ f ′(x)‖/l( f ′(x)) = λn/λ1 provided that l( f ′(x)) > 0. Here λ1 = l( f (x)) =
inf|h|=1 | f ′(x)h| is the “minimal stretching” of the linear map f ′(x); see Section 2.2.

Mappings with H(x, f )<∞ a.e. If a homeomorphism f : D→R
n satisfies H(x, f )<

∞ a.e. in D or even ess sup H(x, f ) < ∞, then f need not be ACL. An exam-
ple is constructed from the Cantor staircase function g : [0,1] → [0,1], i.e., g is
a continually increasing function onto [0,1] with the property g′(x) = 0 for a.e.
x ∈ [0,1]. Let g(x) = 0, x ≤ 0, and g(x) = 1, x ≥ 1. Now f : R

2 → R
2 defined as

f (x,y) = (g(x)+x,y) is a homeomorphism with H(x, f ) = 1 a.e., but f is not ACL.
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Note that the mapping f is not quasiconformal in the sense of the definition in
Chapter 3. To see this, let Γ = {{x}× [0,1] : x ∈C}, where C ⊂ [0,1] is the Cantor
1/3-set. Now M2(Γ ) = 0 since the function ρ(x) = ∞, x ∈ C × [0,1], ρ(x) = 0
otherwise, is admissible for Γ , but

∫

R2

ρ2 dx = 0

because m(C× [0,1]) = 0. On the other hand, g maps the set C onto a set of positive
linear measure; in fact, m1(gC) = 1, and the same is true for the map x �→ g(x)+ x.
Thus,

fΓ = {{y}× [0,1] : y ∈ A}
and A is a Borel set with m1(A) > 0. By the example in Section 2.1, M2( fΓ ) > 0,
which contradicts (1.3).

The case n = 1 is of special interest. An increasing homeomorphism f : R → R

is called K-quasisymmetric if it satisfies

1
K

≤ f (x+ t)− f (x)
f (x)− f (x− t)

≤ K (2.19)

for all x∈R and t > 0. If f is K-quasisymmetric, then H(x, f )≤K for all x∈R. Now
Ahlfors and Beurling [5] constructed for each K > 1 a K-quasisymmetric mapping
f that is not absolutely continuous. For more striking examples of such mappings;
see [309]. Hence, no boundedness condition on H(x, f ), except H(x, f )≡ 1, implies
the absolute continuity for quasisymmetric maps.

Remark 2.14. Quasisymmetric maps on the line form an important class of map-
pings. If f : R

2 → R
2 is quasiconformal and maps the real axis R onto itself (and is

increasing there), then f |R is quasisymmetric. Conversely, every K-quasisymmetric
map f : R → R can be extended to a K2-quasiconformal map f ∗ : R

2 → R
2; see [1].

Although a homeomorphism f with H(x, f ) < ∞ a.e. can be irregular, it still has
some nice properties.

Theorem 2.8. Suppose that a homeomorphism f : D→R
n satisfies H(x, f ) <∞ a.e.

in D. Then f is a.e. differentiable.

Proof. Fix an open set G ⊂⊂ D and let Φ(E) = | f (E)| for each Borel set E ⊂ G.
Here, and in the following, |A| means the Lebesgue measure of a set A ⊂ R

n. Then
Φ is a finite Borel measure on G and hence has a finite derivative

Φ ′(x) = lim
r→0

Φ(B(x,r))
|B(x,r)|

at a.e. x ∈ G.
Now at almost every point x of G, Φ ′(x) exists and H(x, f ) <∞. Fix such a point

x. Let y ∈ G with 0 < |x− y| < d(x,∂G). Now
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(
| f (y)− f (x)|

|y− x|

)n

≤
(

L(x, f , |y− x|)
l(x, f , |y− x|)

)n( l(x, f , |x− y|)
|y− x|

)n

≤ H(x, f , |y− x|)nΦ(B(x, |y− x|)/|B(x, |y− x|)|.

Letting y → x, we see that

limsup
y→x

| f (y)− f (x)|
|y− x| ≤ H(x, f ) Φ ′(x)1/n < ∞.

By the Rademacher–Stepanov theorem (see, e.g., [316]), the mapping f is a.e.
differentiable in G and the theorem follows. 
�

Theorem 2.9. Suppose that H(x, f ) ∈ Ls
loc(D), s ∈ [1,∞], for a homeomorphism f :

D → R
n. Then f ′ ∈ Lp

loc(D) with p = sn/(n−1+ s) and p = n if s = ∞.

Proof. We may assume that f is sense-preserving. Since H(x, f ) < ∞ a.e. in D,
Theorem 2.8 implies that f ′(x) exists a.e. If f is differentiable at x and H(x, f ) <∞,
then an elementary argument shows that

‖ f ′(x)‖n ≤ H(x, f )n−1J(x, f ), (2.20)

where J(x, f ) is the Jacobian of f , i.e., the determinant of f ′(x); see Section 2.2.
Fix an open set G ⊂⊂ D. For s < ∞, (2.20) and the Hölder inequality imply
∫

G

‖ f ′(x)‖pdx ≤
∫

G

H(x, f )p(n−1)/nJ(x, f )p/ndx

≤

⎡
⎣∫

G

H(x, f )p(n−1)/(n−p)dx

⎤
⎦

(n−p)/n⎡
⎣∫

G

J(x, f )dx

⎤
⎦

p/n

≤

⎡
⎣∫

G

H(x, f )sdx

⎤
⎦

(n−p)/n

| f (G)|p/n < ∞,

as required. For s = ∞, the proof is similar. Note that the inequality
∫

G

J(x, f )dx ≤ | f (G)|

always holds for an a.e. differentiable homeomorphism; see, e.g., [246]. 
�

Linear dilatation and ACL. Here we prove a recent result in [146]; the result is an
extension of an earlier result due to Gehring [65].

Theorem 2.10. Suppose that a homeomorphism f : D → R
n of a domain D ⊂ R

n

into R
n and s ∈ (1,∞] satisfy the conditions:
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(a) s > n/(n−1);
(b) H(x, f ) < ∞ for each x ∈ D;
(c) H(x, f ) ∈ Ls

loc(D).
Then f is ACL.

Remark 2.15. In (b) it suffices to assume that H(x, f ) < ∞ for each x ∈ D\S, where
S has σ -finite (n−1)-dimensional Hausdorff measure. Note that condition (a) rules
out the case n = 1.

Proof. Pick a closed cube Q ⊂⊂ D whose sides are parallel to the coordinate axes
and write Q′ = (1/2)Q for the cube with the same center as Q and side length half
of that of Q. In order to show that f is ACL, it suffices to show that f is abso-
lutely continuous on almost every line segment of Q′ parallel to the coordinate axes.
Renormalizing, we may assume that Q = [−2,2]n and by symmetry it is sufficient to
consider segments parallel to the xn-axis. Let P : R

n → R
n−1 denote the projection

P(x) = x−xn ·en and for y ∈ P(Q) ⊂ R
n−1 write I = I(y) = Q′ ∩P−1(y) for the line

segment parallel to the xn-axis in Q′.
Next, for a Borel set E ⊂ P(Q), one gets

Φ(E) = | f (Q∩P−1(E))| ≤ | f (Q)| < ∞.

Then Φ is a finite Borel measure in P(Q) and hence has a finite derivative Φ ′(y)
for almost all y ∈ P(Q′). We choose y ∈ P(Q′) such that (1) Φ ′(y) exists and (2)
H(x, f ) ∈ Ls(I(y)). The last assertion follows from the Fubini theorem. It suffices to
show that f is absolutely continuous on I(y).

To this end, let F ⊂ I(y) be a compact set. For each k = 0,1, . . . , set

Fk = {x ∈ F : 2k ≤ H(x, f ) < 2k+1}.

Then Fk is a Borel set and F = ∪ Fk. Note also that H(x, f ) ≥ 1 for every x. We first
derive the following estimate

H 1( f Fk) ≤ c2kH 1(Fk)(n−1)/n, (2.21)

where c = (22n+1Φ ′(y))1/n. Here H 1 stands for the 1-dimensional Hausdorff mea-
sure, i.e., H 1(S) is the length of the set S in R

n.
For (2.21), fix k and, for each j = 1,2, . . . , consider the set

Fk, j = {x ∈ Fk : L(x, f ,r)n ≤ 2n(k+1)| f B(x,r)|/Ωn for 0 < r < 1/ j},

where Ωn = |B(0,1)|. The sets Fk, j are Borel sets and Fk, j ⊂ Fk, j+1 with

Fk =
∞⋃

j=1

Fk, j. (2.22)

To see (2.22), let x ∈ Fk. Then H(x, f ) < 2k+1 and, hence, there is a j such that
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L(x, f ,r)/l(x, f ,r) < 2k+1

for all 0 < r < 1/ j and we obtain

L(x, f ,r)n < 2n(k+1)l(x, f ,r)n ≤ 2n(k+1)| f B(x,r)|/Ωn.

This shows that x ∈ Fk, j and (2.22) follows.
By the monotonicity and (2.22), it suffices to prove (2.21) for Fk, j instead of

Fk. Fix j and let F ′ be an arbitrary compact subset of Fk, j. Let ε > 0 and t > 0.
The continuity of the mapping (x,r) �→ L(x, f ,r) gives δ , 0 < δ < 1/ j, such that
L(x, f ,r) < t/2 for 0 < r < δ and for all x ∈ F ′.

Next we use a Besicovitch-type covering lemma in R: If C ⊂ R is a compact set
and ε,δ > 0, then there are 0 < r < δ and points xi ∈C, i = 1, . . . , l, such that

∪ (xi − r,xi + r) ⊃C, lr ≤ H 1(C)+ ε,

and each x ∈ R belongs to at most two different intervals (xi − r,xi + r). This gives
a covering F ′ by a finite number of balls Bi = B(xi,r), 0 < r < δ , i = 1, . . . , l,
where (i) xi ∈ F ′, i = 1, . . . , l, (ii) each point of R

n lies in at most two Bi, and (iii)
lr ≤ H 1(F ′)+ ε . Note that the renormalizing condition gives

Bi ⊂ Q∩P−1(B), (2.23)

where B = Bn−1(y,r).
The sets f (Bi) cover f (F ′) and

diam( f Bi) ≤ 2L(xi, f ,r) < t.

Hence,

H 1
t ( f F ′) ≤

l

∑
i=1

diam( f Bi),

where
H 1

t (A) = inf
{
∑diam(Ai) : ∪ Ai ⊃ A, diam(Ai) < t

}
,

and the Hölder inequality together with the definition of Fk, j yields

H 1
t ( f F ′)n ≤

(
l

∑
i=1

diam( f Bi)

)n

≤ ln−1
l

∑
i=1

diam( f Bi)n (2.24)

≤ ln−12n
l

∑
i=1

L(xi, f ,r)n ≤ ln−12n2n(k+1)

Ωn

l

∑
i=1

| f Bi| .

Since f is a homeomorphism, we obtain from (ii) and (2.23) that

l

∑
i=1

| f Bi| ≤ 2

∣∣∣∣∣
l⋃

i=1

f Bi

∣∣∣∣∣ ≤ 2Φ(B).
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Thus, (2.24) and (iii) yield

H 1
t ( f F ′)n ≤ 2n(k+2)+1(H 1(F ′)+ ε)n−1Φ(B)/mn−1(B)

≤ 2n(k+2)+1(H 1(Fk, j)+ ε)n−1Φ(B)/mn−1(B).

Since H 1
t ( f F ′) → H 1( f F ′) as t → 0, letting first r → 0, then ε → 0, and finally

t → 0, we obtain

H 1( f F ′)n ≤ 2n(k+2)+1H 1(Fk, j)n−1Φ ′(y). (2.25)

Now F ′ is an arbitrary compact subset of Fk, j. Hence, (2.25) holds for Fk, j on the
left-hand side of (2.25). This leads to estimate (2.21).

Since f F = ∪ f Fk, (2.21) implies

H 1( f F) ≤∑H 1( f Fk) ≤ c∑2kH 1(Fk)(n−1)/n. (2.26)

The sets Fk, k = 1, . . . , are disjoint and hence the integral estimate

∞

∑
k=0

2ksH 1(Fk) ≤
∫

F

H(x, t)sdxn (2.27)

is elementary. By (2.26), (2.27), and the Hölder inequality, we obtain

H 1( f F) ≤ c1

(
∞

∑
k=0

2ksH 1(Fk)

)(n−1)/n( ∞

∑
k=0

2k(n−s(n−1))

)1/n

(2.28)

≤ c2

⎛
⎝∫

F

H(x, f )sdxn

⎞
⎠

(n−1)/n

,

where c2 depends only on n,s, and Φ ′(y). Note that the series

∞

∑
k=0

2k(n−s(n−1))

converges because s > n/(n−1) and hence n−s(n−1) < 0. Inequality (2.28) shows
that f is absolutely continuous on I(y), as required. 
�

Corollary 2.3. Under the conditions of Theorem 2.10, f is a.e. differentiable and
f ′ ∈ Lp

loc(D), p = sn/(n−1+ s). In particular, f is ACLp.

Corollary 2.4. Suppose that f : D → R
n is a homeomorphism such that H(x, f ) ≤

c < ∞ at every point x ∈ D. Then f is differentiable a.e. and ACLn.

Remark 2.16. Let f : D → R
n be as in Corollary 2.4. Then f is not only ACLn but

ACLp for some p = p(n,c) > n. This is the well-known result due to Bojarski [27]
for n = 2 and Gehring [110] for n ≥ 3. This follows from the fact that the condition
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H(x, f ) ≤ c implies the quasiconformality of f (see Theorems 2.11 and 2.12), and
the result is called the higher integrability of the derivative of a quasiconformal
map. Many important properties (smoothness, change of Hausdorff measure under
quasiconformal maps) can be derived from this result. The value p(n,c) is known
for n = 2 [16], but unknown for n ≥ 3.

2.9 Analytic Definition for Quasiconformality

In this chapter we shall study still another definition, the so-called analytic definition
for quasiconformality. According to this definition, a homeomorphism (embedding)
f : D → R

n for a domain D in R
n is quasiconformal if f is ACLn and there is

K ∈ [1,∞) such that
‖ f ′(x)‖n ≤ KJ(x, f ) a.e. (2.29)

It does not follow directly from this definition that f is a.e. differentiable. However,
since f is ACLn, the partial derivatives of the coordinate functions of f exist a.e.
and hence the Jacobian matrix (the formal derivative of f at x)

f ′(x) =

⎛
⎜⎝
∂1 f1(x) . . . ∂n f1(x)

...
...

∂1 fn(x) . . . ∂n fn(x)

⎞
⎟⎠

exists a.e. Here ‖ f ′(x)‖ stands for the supremum norm of the linear map f ′(x) :
R

n → R
n and J(x, f ) = det f ′(x). It will turn out that a quasiconformal mapping f

is a.e. differentiable. Sometimes (2.29) is written as ‖ f ′(x)‖n ≤ K|J(x, f )|. This also
includes sense-reversing maps. Definitions (2.7) and (1.3) include sense-reversing
conformal and quasiconformal mappings, respectively.

Remark 2.17. If f : D → R
n is continuous, ACLn, and satisfies (2.29), then f is

called quasiregular (or of bounded distortion). Note that then absolute values are
not allowed on the right-hand side of (2.29). If n = 2 and K = 1, this definition leads
to one of the most general definitions of analytic functions.

Next we show that the uniform boundedness of the linear dilatation leads to
(2.29).

Theorem 2.11. Suppose that f : D → R
n is a homeomorphism such that

(a) H(x, f ) ≤ c for all x ∈ D,
(b) H(x, f ) ≤ c0 for a.e. x ∈ D,
(c) f is sense-preserving.
Then f is ACLn and satisfies (2.29) with K = cn−1

0 , i.e., f is quasiconformal accord-
ing to the analytic definition.

Remark 2.18. The property that a mapping f : D → R
n is sense-preserving can be

defined for every continuous mapping f with the aid of the topological degree; cf.
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[246]. However, since a map f satisfying (b) is differentiable a.e., property (c) can
be defined as det f ′(x) = J(x, f ) ≥ 0 a.e.

Proof for Theorem 2.11. By Corollary 2.4, f is a.e. differentiable and ACLn.
Condition (c) implies J(x, f )≥ 0 a.e. It remains to show (2.29). If f is differentiable
at x and J(x, f ) = 0, then ‖ f ′(x)‖ = 0 because H(x, f ) ≤ c. Hence, (2.29) holds.
If J(x, f ) > 0, then at such points x, H(x, f ) = λn/λ1, where ‖ f ′(x)‖ = λn and
l( f ′(x)) = λ1; see Sections 2.2 and 2.7. This means that a.e. such a point x satisfies

‖ f ′(x)‖n = λ n
n ≤ λnλ n−1

1 cn−1
0 ≤ λ1λ2 · · ·λncn−1

0 = cn−1
0 J(x, f ).

Hence, (2.29) holds with K = cn−1
0 , as required. 
�

Remark 2.19. Note that the values of c0 and K do not quite fit, except for n = 2 when
c0 = K in Theorem 2.11. The smallest K for which (2.29) holds is called the outer
dilatation of f and denoted K0( f ). The inner dilatation KI( f ) of f is defined as
the smallest K for which

J(x, f ) ≤ Kl( f ′(x))n (2.30)

holds a.e. in D. Note that if (2.29) holds for K0( f ), then (2.30) holds for K =
K0( f )n−1 because

J(x, f ) = λ1λ2 . . .λn ≤ λ1λ n−1
n

= λ1‖ f ′(x)‖n−1 ≤ λ1K0( f )(n−1)/nJ(x, f )(n−1)/n,

and hence,
J(x, f ) ≤ K0( f )n−1λ n

1 = K0( f )n−1l( f ′(x))n.

This computation applies to the case J(x, f ) = 0 as well.
It is also true that if (2.30) holds, then K0( f ) ≤ KI( f )n−1. The number K( f ) =

max (K0( f ),KI( f )) is called the maximal dilatation of f .
These concepts also have an interpretation in the geometric definition of quasi-

conformality given in Chapter 1. Then (1.3) takes the form

Mn(Γ )/K0( f ) ≤ Mn( fΓ ) ≤ KI( f )Mn(Γ )

for each path family Γ in D.
Note that for n = 2, K( f ) = K0( f ) = KI( f ). For n = 1, these dilatations do not

make much sense, since if f : (a,b) → R is differentiable at x, then ‖ f ′(x)‖ =
|J(x, f )| = λ1 = λn and H(x, f ) = 1 provided that f ′(x) �= 0.

Next we show that the analytic definition implies the modulus definition, or at
least another half of it.

Theorem 2.12. Suppose that f : D → D′ is a homeomorphism where D and D′ are
domains in R

n. If f is ACLn in D and satisfies (2.29), then

Mn(Γ ) ≤ KMn( fΓ ) (2.31)



2.9 Analytic Definition for Quasiconformality 33

for each family Γ of paths in D.

The proof requires a couple of results from real analysis whose proofs we omit;
see [316] and [246]:

Lemma 2.6. If f : D → R
n is an ACLp homeomorphism, p > n− 1, then f is a.e.

differentiable (in fact, it suffices that f is an open map).

Lemma 2.7. Suppose that f : D → D′ is an a.e. differentiable homeomorphism and
u ≥ 0 is a measurable function in D′. Then

∫

D

u( f (x)) |J(x, f )| dx ≤
∫

D′

u dy. (2.32)

Remark 2.20. To obtain equality in (2.32), one has to assume that f is ACLn. For a
more detailed discussion; see [193].

Proof of Theorem 2.12. In order to prove (2.31), fix a family Γ of paths in D.
Since f is ACLn, the Fuglede theorem implies that f (the coordinate functions of
f ) is absolutely continuous on a path family Γ0 of n-almost all paths in Γ . Then
Mn(Γ0) = Mn(Γ ). We need to show that

Mn(Γ0) ≤ KMn( fΓ ).

To this end, let ρ ′ be an admissible function for fΓ . Write

ρ(x) =
{ρ ′( f (x))L(x, f ), x ∈ D,

0, x �∈ D,

where

L(x, f ) = limsup
y→x

| f (y)− f (x)|
|y− x| .

Now ρ is admissible for Γ0 (note that ρ is a Borel function). To see this, let γ ∈ Γ0

be parameterized by arc length γ : [0, l(γ)] → D. Since f is absolutely continuous
on γ , we have (see Section 2.2)

∫

f◦γ

ρ ′ ds =

l(γ)∫

0

ρ ′( f (γ(t))) |( f ◦ γ)′(t)| dt. (2.33)

If ( f ◦γ)′(t) and γ ′(t) exist (and a.e. t ∈ [0, l(γ)] is such), then assuming γ(t +Δ t) �=
γ(t), we see that

|( f ◦ γ)′(t)| = lim
Δ t→0

∣∣∣∣ f ◦ γ(t +Δ t)− f ◦ γ(t)
Δ t

∣∣∣∣
≤ limsup

Δ t→0

| f ◦ γ(t +Δ t)− f ◦ γ(t)|
|γ(t +Δ t)− γ(t)|

|γ(t +Δ t)− γ(t)|
Δ t

≤ L(γ(t), f )|γ ′(t)| = L(γ(t), f )
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because |γ ′(t)|= 1 a.e. If γ(t +Δ t) = γ(t), then the above inequality is clear. Hence,
(2.33) yields

1 ≤
∫

f◦γ

ρ ′ ds ≤
l(γ)∫

0

ρ ′( f (γ(t))) L(γ(t), f ) dt =
∫

γ

ρ ds,

as required.
The rest of the proof now easily follows from Lemmas 2.6 and 2.7. Indeed, since

ρ is admissible for Γ0, we have

Mn(Γ0) ≤
∫

D

ρndx =
∫

D

ρ ′( f (x))nL(x, f )ndx =
∫

D

ρ ′( f (x))n‖ f ′(x)‖ndt

≤ K
∫

D

ρ ′( f (x))n|J(x, f )| dx ≤ K
∫

D′

ρ ′n dy,

where we have used (2.29) as well. Since ρ ′ was an arbitrary admissible function
for fΓ , this shows that

Mn(Γ ) = Mn(Γ0) ≤ KMn( fΓ ),

as required. 
�

Remark 2.21. In order to prove the upper bound

Mn( fΓ ) ≤ KMn(Γ )

for each family Γ of paths in D, an obvious approach is to show that the inverse
map f−1 : D′ → D is quasiconformal in the sense of the analytic definition as well.
This requires some work. The main steps are: If f is quasiconformal, then (a) f
satisfies the Lusin condition (N) (maps sets of measure zero into sets of measure
zero (see [193, 316])) and (b) J(x, f ) > 0 a.e. (see [316]).

2.10 R
n as a Loewner Space

In this section we indicate how the Loewner lower bound for the n-modulus is ob-
tained in R

n, n ≥ 2. Loewner was the first to observe that the 3-modulus of a family
of paths joining two non-degenerate continua in R

3 is positive; see [192]. We then
derive an upper bound for the linear dilatation H(x, f ) of a quasiconformal map
f : D → D′ between domains D and D′ in R

n.

Real analysis: Maximal function and the Riesz potential. Let f : R
n → [0,∞] be

a measurable function. If A ⊂ R
n is measurable, then
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IA( f )(x) =
∫

A

f (y)
|x− y|n−1 dy, x ∈ R

n,

is called the Riesz potential of f . For R > 0, the function

MR( f )(x) = sup
0<r<R

⎛
⎜⎝1

r

∫

B(x,r)

f (y)ndy

⎞
⎟⎠

1/n

, x ∈ R
n,

is called the (restricted) maximal function of f .

Remark 2.22. The classical Hardy–Littlewood maximal function M( f ) of f is de-
fined as

M( f )(x) = sup
r>0

(
−
∫

B(x,r)
f (y) dy

)
.

Here

−
∫

B(x,r)
f (y) dy =

1
m(B(x,r)

∫

B(x,r)

f (y) dy = fB

stands for the mean value f in B. Note that this is different from M∞( f ). The special
form of MR( f ) is needed to study the conformally invariant case.

In the following results and proofs, C stands for a constant that depends only on
n. We start with a simple “mean value” estimate.

Lemma 2.8. Suppose that u is a locally integrable function with an upper gradient
ρ in the ball B0 = B(x0,r0). Then for all x,y ∈ B(x0,r0/4),

|u(x)−u(y)| ≤C(IB0(ρ)(x)+ IB0(ρ)(y)). (2.34)

Proof. For the inequality (2.34), we first show that if B = B(z,r) ⊂ B0 is any ball,
then

|u(x)−uB| ≤CIB(ρ)(x) (2.35)

for all x ∈ B. Here uB is the mean value of u in B.
Keep x ∈ B fixed and let y ∈ B. Since ρ is an upper gradient of u,

|u(x)−u(y)| ≤
|x−y|∫

0

ρ(x+ rω) dr,

where ω = (y− x)/|y− x| is a unit vector in R
n. Integrating over B with respect to

y, we arrive at

m(B) |u(x)−uB| ≤
∫

B

|x−y|∫

0

ρ(x+ rω) drdy



36 2 Moduli and Capacity

[for the proof, assume that either u(x) ≥ uB or u(x) < uB]. Performing a change of
variables, we obtain

|u(x)−uB| ≤C
∫

B

ρ(y)
|x− y|n−1 dy

and (2.35) follows.
We can now finish the proof of the lemma. If x,y ∈ B(x0,r0/4), then Bx =

B(x,2|x− y|) lies in B0. By (2.35) we obtain

|u(x)−u(y)| ≤ |u(x)−uBx |+ |u(y)−uBx |
≤ C(IBx(ρ)(x)+ IBx(ρ)(y)) ≤C(IB0(ρ)(x)+ IB0(ρ)(y)),

as required. 
�

Remark 2.23. Inequality (2.35) is almost the same as the equality

u(x) =
1

ωn−1

∫

Rn

〈∇u(y),(x− y)〉
|x− y|n dy, x ∈ R

n, (2.36)

which holds for all functions u ∈ C1
0(Rn) (compactly supported C1-functions). In

fact, (2.35) follows from (2.34) for these functions.

Remark 2.24. Inequalities like (2.34) are important in the theory of Newtonian
spaces or more general function spaces on metric spaces. For example, if a func-
tion u belongs to the Newtonian space N1,p(Rn), p > 1, and if ρ is a p-weak upper
gradient of u, then u satisfies

|u(x)−u(y)| ≤C|x− y|(M(ρ)(x)+M(ρ)(y)) (2.37)

for a.e. x,y ∈ R
n. Here M(ρ) is the Hardy–Littlewood maximal function of ρ . Con-

versely, if u ∈ Lp(Rn) satisfies

|u(x)−u(y)| ≤ |x− y|(g(x)+g(y)) (2.38)

a.e. in R
n with some g ∈ Lp(Rn), g ≥ 0, then there is ũ ∈ Ñ1,p(Rn) such that ũ = u

a.e. and Cg can (essentially) be used as a p-weak upper gradient of ũ. See [101,103,
107, 291] for more details.

Lemma 2.9. For 0 < r ≤ R and x ∈ R
n,

IB(x,r)( f )(x) ≤Cr1/nMR( f )(x).

Proof. Set
A j = B(x,2− jr)\B(x,2− j−1r), j = 0,1, . . . .

Now
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IB(x,r)( f )(x) = ∑
j

∫

A j

f (y)
|x− y|n−1 dy ≤C∑

j
(2− jr)1−n

∫

B(x,2− jr)

f (y) dy

≤ C∑
j

2− jr

⎛
⎜⎝ 1

m(B(x,2− jr))

∫

B(x,2− jr)

f (y) dy

⎞
⎟⎠

≤ C∑
j

2− jr

⎛
⎜⎝ 1

m(B(x,2− jr))

∫

B(x,2− jr)

f (y)n dy

⎞
⎟⎠

1/n

≤ Cr1/n∑
j

2− j/n

⎛
⎜⎝ 1

2− jr

∫

B(x,2− jr)

f (y)n dy

⎞
⎟⎠

1/n

≤Cr1/nMR( f )(x),

as required. Here the Hölder inequality was also used. 
�

The Loewner property. Next we prove the Loewner property for R
n, n ≥ 2. In fact,

we will show that each ball in R
n is a Loewner space. This, however, will follow

from the corresponding property of R
n. Let E and F be two nondegenerate continua

in R
n. Recall that Δ(E,F) = dist(E,F)/min(diam E,diam F) denotes the relative

distance between E and F in R
n.

Theorem 2.13. If Δ(E,F) ≤ t, then

Mn(Γ ) ≥C/t, (2.39)

where Γ is the family of paths joining E and F in R
n.

Proof. Write d = diam E. We may assume that

d ≤ diam F <
1
4

dist(E,F)

(note that the n-modulus decreases if we make E and F smaller). Choose x0 ∈ E and
y0 ∈ F such that

|x0 − y0| = dist(E,F).

Then E,F ⊂ B0 = B(x0,8 dist(E,F)) and next we shall make use of Theorem 2.5
and Remark 2.9.

Let u be a locally integrable function in R
n with u|E ≤ 0 and u|F ≥ 1. Let ρ be

an upper gradient of u. Observe that for all x ∈ E and y ∈ F,

1 ≤ |u(x)−u(y)| ≤C(IB0(ρ)(x)+ IB0(ρ)(y))

by Lemma 2.8. Now either E or F belongs to the set
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S = {z ∈ R
n : Mr0(ρ)(z) > C dist(E,F)−1/n},

where r0 = 8 dist(E,F). Here we have used Lemma 2.9. Suppose that, for exam-
ple, E ⊂ S. We use a standard Besicovitch-type covering argument [107, 110]: If
{B(xi,ri)} = F is any family of balls in R

n such that ri ≤ c < ∞ for some c, then
there is a countable (possibly finite) subfamily of disjoint balls B(xi,ri), i = 1,2, . . . ,
such that ⋃

B∈F

B ⊂
⋃

i

B(xi,5ri).

By the definition of Mr0(ρ) and the covering theorem, the set E can be covered with
balls B(xi,5ri), i = 1,2, . . . , such that the balls B(xi,ri) are disjoint and

ri ≤Cd0

∫

B(xi,ri)

ρndz,

where d0 = dist(E,F). Since E is covered with the balls B(xi,5ri), we obtain

diam E ≤ 10∑
i

ri ≤Cd0∑
i

∫

B(xi,ri)

ρndz

= Cd0

∫

∪ B(xi,ri)

ρndz ≤Cd0

∫

B0

ρndz.

This yields

1/t ≤ min(diam E,diam F/d0)

= diam E/d0 ≤C
∫

B0

ρndz ≤C
∫

Rn

ρndz.

Taking the infimum over u and ρ, we obtain

C/t ≤ capn(E,F) = Mn(Γ ),

as required. 
�

Corollary 2.5. Inequality (2.39) holds whenever the continua E and F lie in a ball
B(x0,r0) ⊂ R

n and Γ is the family of paths that join E and F in B(x0,r0).

Proof. Let T : R
n \{x0}→ R

n \{x0} be the reflection in the sphere ∂B(x0,r0), i.e.,
T (x) = x0 +(x−x0)/|x−x0|2. Then T is conformal and T = T−1. If ρ is admissible
for Γ , then the function

ρ̃(x) =
{ρ(x), x ∈ B(x0,r0),

ρ(T (x))‖T ′(x)‖, x ∈ R
n \B(x0,r0)
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is admissible for the family Γ̃ of paths that join E to F in R
n (note also that the

n-modulus of the paths passing through x0 is zero). Hence,
∫

Rn

ρ̃ndy =
∫

B(x0,r0)

ρndy+
∫

Rn\B(x0,r0)

ρ(T (x))n‖T ′(x)‖ndx

=
∫

B(x0,r0)

ρndy+
∫

Rn\B(x0,r0)

ρ(T (x))n|J(x,T )| dx

=
∫

B(x0,r0)

ρndy+
∫

B(x0,r0)

ρndy2
∫

B(x0,r0)

ρndy,

where we have used the analytic definition

‖T ′(x)‖n = |J(x,T )|

for the conformal map T . From (2.39) it thus follows that

C/t ≤ Mn(Γ̃ ) ≤ 2Mn(Γ ),

as required. 
�

Remark 2.25. Those metric spaces that satisfy the Loewner condition have been
studied in [107]; see also [112].

Linear dilatation. Here we show that the linear dilatation of a quasiconformal map
f : D → D′ for domains D,D′ ⊂R

n is uniformly bounded. The global version of this
result is studied in Section 2.11.

Theorem 2.14. Suppose that f : D → D′ is a K-quasiconformal map [see (1.3)].
Then for all x ∈ D,

H(x, f ) ≤C(n,K) < ∞. (2.40)

Proof. Let x ∈ D and choose r0 > 0 such that B(x,4r0)⊂ D. Let 0 < r < r0. Choose
y,y′ ∈ ∂B(x,r) such that

L = L(x, f ,r) = | f (y′)− f (x)|, l = l(x, f ,r) = | f (y)− f (x)|

and let L′′ be the line segment [ f (x), f (y)] and L′ the half-open line segment in D′

that is the continuation of the line segment [ f (x), f (y′)] outside B( f (x),L). Let Γ ′

be the family of all paths that join L′′ to L′ in D′. We may assume L > l; then

Mn(Γ ′) ≤ ωn−1(log(L/l))1−n;

see (2.5) and Lemma 2.2.
Next, let E = f−1(L′′) and let F ′ be the connected part of f−1(L′) that joins

∂B(x,r) to ∂B(x,2r0) in B(x0,4r0). Since

Δ(E,F ′) = min(diam E, diam F ′)/dist (E,F ′) ≥ r/r = 1,
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we obtain from Corollary 2.5 that

Mn( f−1Γ ′) ≥ Mn(Γ ) ≥C = C(n) > 0,

where Γ is the family of all paths joining E to F ′ in B(x,4r0). By the quasiconfor-
mality of f ,

C ≤ Mn( f−1Γ ′) ≤ KMn(Γ ′) ≤ ωn−1(log(L/l))1−n,

and hence
L(x, f ,r)/l(x, f ,r) = L/l ≤C = C(n,K) .

Letting r → 0, we see that H(x, f ) ≤C(n,K), as required. 
�

Remark 2.26. For n = 2, C(2,K) is known; see [190]. The value C(n,K), n ≥ 3,
was found very recently; see [285].

2.11 Quasisymmetry

In Section 2.9 we showed that the uniform bound for the linear dilatation of a home-
omorphism f : D → D′ between domains in the Euclidean n-space R

n implies qua-
siconformality [or at least the other half of the modulus definition (1.3)]. In Section
2.10 we proved that R

n, and every ball B(x,r) ⊂ R
n, is a Loewner space, which

implies that every quasiconformal map f : D → D′ in the sense of definition (1.3)
satisfies H(x, f ) ≤ C(n,K) < ∞ at each point x ∈ D. Now it turns out that a more
global version than H(x, f ) ≤ C < ∞ is true for quasiconformal maps f . This is
called quasisymmetry. It can be expressed in the general context of metric spaces.

Let X and Y be metric spaces. We use a simplified notation d(x,y) = |x−y|, resp.
d′(x,y) = |x−y|, for points x,y ∈ X , resp. x,y ∈Y , although the difference x−y has
no meaning.

A mapping f : X → Y is called an embedding if f defines a homeomorphism
of X onto f (X). An embedding f : X → Y is called quasisymmetric if there is a
homeomorphism η : [0,∞) → [0,∞) such that

|x−a| ≤ t|x−b| ⇒ | f (x)− f (a)| ≤ η(t)| f (x)− f (b)| (2.41)

for all triples a,b,x of points in X , and for all t > 0. Thus, f is quasisymmetric if it
distorts relative distances by a bounded amount. We also say that f is η-quasisym-
metric if the function η needs to be mentioned. Note that a homeomorphism η :
[0,∞) → [0,∞) is nothing but a continuous strictly increasing function η on [0,∞)
such that η(0) = 0 and

lim
t→∞

η(t) = ∞ .

Observe that the inverse function η−1 of η is similar to η .
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An embedding f : X → Y is said to be bi-Lipschitz if both f and f−1 are Lips-
chitz. The term L-bi-Lipschitz means that for all x,y ∈ X ,

|x− y|/L ≤ | f (x)− f (y)| ≤ L|x− y| .

Notice the difference between quasisymmetric maps and bi-Lipschitz maps: The
latter distort absolute distances by a bounded amount, which is a much stronger
condition. It is easy to see that an L-bi-Lipschitz embedding is η-quasisymmetric
with η(t) = L2t.

Examples. (a) The map x �→ λx, λ �= 0, in R
n is η-quasisymmetric with η(t) = t.

The same is true for every conformal map f : R
n → R

n, n ≥ 2. Note that x �→ λx is
not L-bi-Lipschitz with a constant L independent of λ .

(b) The map f : [0,∞) → [0,∞), f (x) = x2, is η-quasisymmetric, η(t) = t2 +2t.
Note that f is not bi-Lipschitz.

(c) The map f : R → R, f (x) = x3, is quasisymmetric. In fact, every map f (x) =
|x|α−1x, f (0) = 0, α > 0, is quasisymmetric in R.

There is a weaker condition than the η-quasisymmetry. We call an embedding
f : X → Y weakly (H)-quasisymmetric if there is a constant H ≥ 1 so that

|x−a| ≤ |x−b| implies | f (x)− f (a)| ≤ H| f (x)− f (b)| (2.42)

for all triples a,b,x of points in X .
Weakly quasisymmetric maps need not be quasisymmetric. This only takes place

in badly disconnected spaces. Let X = N×{0,−1/4} ⊂ R
2 and let f : X → R

2 be
the embedding defined by f (n,0) = (n,0), and f (n,−1/4) = (n,−1/4n). Then f is
weakly quasisymmetric but not quasisymmetric. Clearly, if f is η-quasisymmetric,
then f is weakly η(1)-quasisymmetric.

As mentioned in the beginning, quasisymmetry provides a global version for
linear dilatation. In particular, weakly quasisymmetric maps between Euclidean do-
mains are quasiconformal.

Lemma 2.10. Suppose that D ⊂ R
n is a domain and f : D → R

n weakly H-quasi-
symmetric. Then the inequality

H(x, f ) ≤ H

holds at each point x ∈ D.

Proof. Fix x ∈ D and let 0 < r < d(x,∂D). Pick a ∈ ∂B(x,r) such that

| f (x)− f (a)| = sup {| f (x)− f (y)| : y ∈ ∂B(x,r)} = L(x, f ,r)

and b ∈ ∂B(x,r) such that

| f (x)− f (b)| = inf {| f (x)− f (y)| : y ∈ ∂B(x,r)} = l(x, f ,r).
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Now,
L(x, f ,r) = | f (x)− f (a)| ≤ H| f (x)− f (b)| = Hl(x, f ,r)

since |x−a| = |x−b|, showing that

limsup
r→0

L(x, f ,r)/l(x, f ,r) ≤ H,

as required.

�

Properties of quasisymmetric maps. Here we list some basic properties of qua-
sisymmetric maps. Most of these properties are easy to prove.
(a) If f : X → Y is η-quasisymmetric, then f−1 : f (X) → X is η ′-quasisymmetric
when η(t) = 1/η−1(t−1) for t > 0. Moreover, if f : X →Y and g : Y → Z are η f - and
ηg-quasisymmetric, respectively, then g◦ f : X → Z is (ηg ◦η f )-quasisymmetric.
(b) The restriction to a subset of a quasisymmetric map is quasisymmetric with the
same η .
(c) Quasisymmetric maps take Cauchy sequences to Cauchy sequences. In particu-
lar, every quasisymmetric image of a complete space is complete.
(d) Quasisymmetric embeddings map bounded spaces to bounded spaces. More
quantitatively, if f : X → Y is η-quasisymmetric and if A ⊂ B ⊂ X are such that
0 < diam A ≤ diam B < ∞, then diam f (B) is finite and

(
2η
(

diam B
diam A

))−1

≤ diam f (A)
diam f (B)

≤ η
(

2 diam A
diam B

)
. (2.43)

Doubling spaces. Quasisymmetry is intimately connected to a property of a metric
space called a doubling property.

A metric space is called doubling if there is a constant C1 ≥ 1 so that every set of
diameter d in the space can be covered by at most C1 sets of diameter at most d/2.
It is clear that subsets of doubling spaces are doubling.

Equivalent definitions for doubling spaces are often used. For instance, in the
definition one may replace sets by balls. Moreover, doubling spaces have the fol-
lowing stronger covering property: There is a function C1 : (0,1/2] → (0,∞) such
that every set of diameter d can be covered by at most C1(ε) sets of diameter at most
εd. The function C1, called a covering function of X , can be chosen to be in the
form

C1(ε) = Cε−β (2.44)

for some C ≥ 1 and β > 0.
Given a doubling metric space X , the infimum of all numbers β > 0 such that a

covering function of the form (2.44) can be found is called the Assouad dimension
of X .

Doubling spaces are precisely the spaces of finite Assouad dimension.
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It is easy to see that R
n is doubling with a constant depending only on n, and

in fact the Assouad dimension of R
n is n. Thus, every subset of Euclidean space is

doubling.

Lemma 2.11. A quasisymmetric image of a doubling space is doubling.

Proof. Let f : X →Y be an η-quasisymmetric homeomorphism. It suffices to show
that every ball B of diameter d in Y can be covered by at most some fixed number
C2 of sets of diameter at most d/4. Let B = B(y,R) and let

L = sup
z∈B

| f−1(y)− f−1(z)|.

Then we can cover f−1(B) by at most C1(ε) sets of diameter at most ε2L for any
ε ≤ 1/2, where C1 is a covering function of X . Let A1, . . . ,Ap be such sets, so that
p = p(ε) ≤ C1(ε). We may clearly assume that Ai ⊂ f−1(B) for all i = 1, . . . , p.
Thus, f (A1), . . . , f (Ap) cover B and are contained in B, so that by (d) in (2.43), their
diameters satisfy

diam f (Ai) ≤ diamBη
(

2diam Ai

diam f−1(B)

)
≤ dη

(
4εL

L

)
≤ dη(4ε) .

The lemma now follows upon choosing ε = ε(η) > 0 so small that η(4ε) ≤ 1/4.

�

The next theorem gives a sufficient condition for the equivalence of weak qua-
sisymmetry and quasisymmetry. We omit the proof, which is somewhat tedious and
uses a covering of a path from x to a together with a packing argument; see [311].

Theorem 2.15. A weakly quasisymmetric embedding of a path-connected doubling
space into a doubling space is quasisymmetric.

Corollary 2.6. A weakly quasisymmetric embedding of a path-connected subset of
Euclidean space into another Euclidean space is quasisymmetric. In particular, a
weakly quasisymmetric embedding of R

p into R
n, 1 ≤ p ≤ n, is quasisymmetric.

Quasisymmetry in Euclidean domains. We have three equivalent definitions for
the quasiconformality of a homeomorphism f : D → D′ between domains D and D′

in R
n: is the modulus definition

Mn(Γ )/K ≤ Mn( fΓ ) ≤ KMn(Γ ) (2.45)

for each path family Γ in D; the boundedness of the linear dilatation

H(x, f ) ≤ c (2.46)

at every point x ∈ D; and the analytic definition: f is ACLn and
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‖ f ′(x)‖n ≤ K|J(x, f )| (2.47)

a.e. in D. Lemma 2.10 showed that if f : D → D′ is quasisymmetric, then (2.46)
holds and f is thus quasiconformal. There is also a converse statement, but, unfor-
tunately, a K-quasiconformal map f : D → D′ need not be η-quasisymmetric for
any η . The reason for this is that quasisymmetry is a global condition (consider a
Riemann mapping function of a disk onto a disk with a slit). However, there is a
semiglobal version of this.

Theorem 2.16. A homeomorphism f : D → D′ between domains in R
n, n ≥ 2, is

K-quasiconformal if and only if there is η such that f is η-quasisymmetric in each
ball B(x,1/2 dist(x,∂D)) with x ∈ D. The function η depends only on n and K.

Remark 2.27. The local quasisymmetry property in Theorem 2.16 for quasiconfor-
mal maps can be regarded as the quasiconformal version of the Koebe distortion the-
orem: If f : B(0,1)→R

2 is a conformal map normalized by the condition f ′(0) = 1,
then

(1− r)/(1+ r)3 ≤ | f ′(z)| ≤ (1+ r)/(1− r)3

for |z|= r < 1; see [52], p. 32. The local quasisymmetry of a conformal map follows
from this inequality by integration of f ′ along line segments.

Proof for Theorem 2.16. As noted earlier the boundedness of the linear dilatation,
i.e., (2.46), already follows from the weak quasisymmetry, and so it remains to prove
the converse.

For the converse, let B = B(x,r) for some x ∈ D, where r = dist(x,∂D)/2. By
Corollary 2.6, it suffices to show that f is weakly quasisymmetric in B.

Pick three distinct points a,b, and c in B with |a−b| ≤ |a− c|. We need to show
that

| f (a)− f (b)| ≤ H| f (a)− f (c)| (2.48)

for some H = H(n,K) < ∞.
Write r = |a−b| and R = |a− c|. We first show that

L(a, f ,R) ≤ H l(a, f ,R), (2.49)

where H depends only on n and K. Choose y,y′ ∈ ∂B(a,R) such that

L(a, f ,R) = | f (a)− f (y)| , l(a, f ,R) = | f (a)− f (y′)|.

Let γ be the continuation of the ray from f (a) to f (y) in D′ \ f (B(a,R)) and let γ ′ be
the ray [ f (a), f (y′)]. Then γ ′ ⊂ f (B(a,R)) ⊂ D′. Set γ1 = f−1(γ) and γ ′1 = f−1(γ ′).
Then γ1 joins y to ∂D in D \B(a,R) and γ ′1 ⊂ B(a,R) joins a to y′. Let γ̃1 be the
component of γ1 that contains y and a point in ∂B(a,3R/2) and lies in B(a,3R/2).
Note that B(a,3R/2) ⊂ D. Then Δ(γ̃1,γ ′1) ≥ 1/2 and since balls in R

n are Loewner
spaces by Corollary 2.5, we obtain

M(Γ ) ≥ H ′ > 0,
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where Γ is the family of paths that join γ̃1 to γ ′1 in B(a,3R/2) and H ′ < ∞ depends
only on n.

Since f is K-quasiconformal,

Mn( fΓ ) ≥ 1
K

M(Γ ) ≥ H ′

K
. (2.50)

Now, each path in fΓ has a subpath that joins B( f (a), l(a, f ,R)) and
B( f (a),L(a, f ,R)). Hence,

Mn( fΓ ) ≤ ωn−1

ln
(

L(a, f ,R)
l(a, f ,R)

)1−n ,

which together with (2.50), yields (2.49), as required.

To complete the proof, note that L(a, f ,r) ≤ L(a, f ,R); hence, (2.49) implies

| f (a)− f (b)| ≤ L(a, f ,r) ≤ L(a, f ,R) ≤ H | f (a)− f (c)| ≤ H | f (a)− f (c)|,

which is the required inequality (2.48). 
�

Although every Möbius map of the unit ball B(0,1) onto itself is quasisymmetric,
the family of all such maps is not η-quasisymmetric (or weakly H-quasisymmet-
ric) for a fixed η (or for some H < ∞). As stated before, a conformal mapping
f : B(0,1)→R

2 need not be quasisymmetric; in this case f (B(0,1)) is complicated.
There is an interesting condition for a quasiconformal map f : D → D′ which makes
f quasisymmetric.

A domain D in R
n is C-uniform for some constant C ≥ 1 if every pair of points

x,y ∈ D can be joined by a path γ ⊂ D such that l(γ) ≤C|x− y| and for each z ∈ γ

dist(z,D) ≥ min{|x− z|, |y− z|}/C .

Uniform domains have turned out to be useful in many problems in analysis; see
[81, 106, 142, 212].

The following theorem holds (for a more general version, see the next chapter):

Theorem 2.17. A quasiconformal map f : D → D′ between bounded uniform do-
mains D and D′ in R

n is quasisymmetric.

Note that the slit domain B(0,1)\{te1 : 0 ≤ t < 1} in the plane is not uniform; it
is uniform in R

n, n ≥ 3.
We omit the proof for Theorem 2.17. The proof is not difficult once it has been

shown that a uniform domain is a Loewner space; this follows from a theorem of
Jones [142] (see also [103]) stating that if u ∈ N1,n(D) in a uniform domain D, then
there is ũ ∈ N

1,n(Rn) such that

‖ũ‖N1,n(Rn) ≤C‖u‖N1,n(D),
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where C < ∞ is independent of u.
In the plane a simply connected domain D �= R

2 is uniform iff it is a quasidisk.
This means that D = f (B) for some quasiconformal map f : R

2 → R
2 and for some

disk B = B(x0,r). See [212] for this result. This is not true in R
n, n ≥ 3, although a

quasiball in R
n is a uniform domain.

A more detailed discussion of various types of domains and their interconnec-
tions can be found in the next chapter.



Chapter 3
Moduli and Domains

3.1 Introduction

Suppose that f is a quasiconformal mapping of a domain D ⊂ R
n onto D′. In this

chapter we are interested in the conditions that guarantee an extension of f to ∂D or
to R

n. We consider quasiextremal distance (QED) domains and uniform domains.
Our main source is [82].

A domain D in R2 is said to be a K-quasidisk if it is the image of an open disk or
half-plane under a K-quasiconformal self-mapping of R2. The following two basic
properties of quasidisks will be used to define two classes of domains in R

n.

Extremal distance property. If D is a quasidisk and F1 and F2 are disjoint continua
in D, then

mod Γ ≤ M mod ΓD,

where Γ and ΓD are the families of paths that join F1 and F2 in R2 and D, respec-
tively, and where M is a constant that depends only on D.

Extension property. If D is a quasidisk and f is a quasiconformal mapping of D
onto a domain D′ in R2, then f has a quasiconformal extension to R2 if and only if
D′ is a quasidisk.

The first property is a consequence of a simple reflection principle for the moduli
of path families; see Remark 3.4. The second property follows from the work of
Ahlfors and Beurling [5].

For a domain in R2, it turns out that these properties are related in the following
sense. If D has the extremal distance property, then D and D′ have the extension
property if and only if D′ has the extremal distance property. This is Corollary 3.4.

Section 3.2 is devoted to the study of quasiextremal distance (QED) exceptional
sets and Section 3.3 to the study of QED domains. In Section 3.5 we derive several
geometric properties of domains D in R

n that have the extremal distance property. It

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 3, c© Springer Science+Business Media, LLC 2009
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turns out that a simply connected plane domain of the hyperbolic type is QED if and
only if it is a quasidisk. We then obtain in Section 3.5 a number of extension the-
orems for QED domains, including several generalizations of the above-mentioned
result of Ahlfors and Beurling.

3.2 QED Exceptional Sets

A closed set E in Rn is said to be an M-quasiextremal distance or M-QED excep-
tional set, 1 ≤ M < ∞, if, for each pair of disjoint continua F1,F2 ⊂ Rn \E,

mod Γ ≤ M mod ΓE , (3.1)

whereΓ andΓE are families of paths joining F1 and F2 in Rn and Rn\E, respectively,
and mod is the n-modulus. The class of QED exceptional sets contains the class of
NED or null-sets for extremal distances; these are the sets E in Rn for which (3.1)
holds with M = 1 for all choices of F1,F2. See [5, 15, 317] and Remark 3.1. The
class QED exceptional sets were introduced in [82], and we follow the presentation
there.

The conformal or n-capacity can also be used to characterize QED exceptional
sets. Let D be an open set in Rn and C1,C2 compact disjoint sets in D. Set

cap(C1,C2;D) = inf
u∈W

∫

D∩Rn

|∇u|ndm, (3.2)

where W = W (C1,C2;D) is the family of all functions u that are continuous and
ACL in D with u(x) ≤ 0 for x ∈C1 and u(x) ≥ 1 for x ∈C2. Since a point has zero
n-capacity, the point ∞ can be deleted in the definition for W and thus W in (3.2) can
be replaced by the family W̃ of functions u that are continuous and ACL in D∩R

n

and satisfy u(x)≤ 0 for x ∈C1∩R
n and u(x)≥ 1 for x ∈C2∩R

n. The classes W and
W̃ differ only if ∞ ∈ D. It is well-known (see [122]) that cap (C1,C2;D) = modΓ ,
where Γ is the family of paths joining C1 and C2 in D. Hence (3.1) can be written as

cap(F1,F2;Rn) ≤ M cap(F1,F2;Rn \E) . (3.3)

Remark 3.1. If E is an M-QED exceptional set in Rn with m(E) = 0, then E is NED.
This follows from arguments in [15] although it is not explicitly mentioned there.
To see this, let E be an M-QED exceptional set in Rn with m(E) = 0 and let F1,F2

be two continua in Rn \E. Then, for each u ∈ W (F1,F2;Rn \E), it follows from
Lemmas 3 and 4 and the considerations on pp. 1220–1221 in [15] that there is a
function u∗ ∈W (F1,F2;Rn) with

∫

Rn

|∇u∗|ndm =
∫

Rn\E

|∇u∗|ndm ≤
∫

Rn\E

|∇u|ndm.
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Hence, (3.3) holds with M = 1, and thus E is NED. This observation together with
Corollary 3.1 below yields the following:

For M-QED exceptional sets E in Rn, the following conditions are equivalent:
(i) m(E) = 0.
(ii) intE = /0.
(iii) E is NED.

We shall derive some properties of QED exceptional sets. The first one is an im-
mediate consequence of the quasi-invariance of the modulus under quasiconformal
mappings; see [316].

Lemma 3.1. Suppose that E is an M-QED exceptional set and that f : Rn → Rn is
a quasiconformal mapping. Then f (E) is an M′-QED exceptional set, where

M′ = KI( f )KO( f )M.

Here KI( f ) and KO( f ) denote the inner and outer dilatations of f , respectively.

We shall need the following estimate to establish several metric properties of
QED sets.

Lemma 3.2. Suppose that F1 and F2 are disjoint continua in Rn and that

min
j=1,2

diam Fj ≥ a dist(F1,F2),

where a is a positive constant. If Γ is the family of paths that join F1 and F2 in Rn,
then

mod Γ ≥ c > 0,

where c is a constant that depends only on n and a, respectively.

Proof. Choose x1 ∈ F1 and x2 ∈ F2 so that

|x1 − x2| = dist(F1,F2).

By the hypothesis, we can choose points y j ∈ Fj, j = 1,2, such that

|y j − x j| ≥
1
2

diam Fj ≥
a
2
|x1 − x2|.

By relabeling we may also assume that |y1 − x1| ≤ |y2 − x2| if necessary.
Let f : Rn → Rn be a Möbius transformation with f (y2) = ∞. Then

| f (x2)− f (x1)|
| f (y1)− f (x1)|

=
|x2 − x1|
|y1 − x1|

|y1 − y2|
|x2 − y2|

≤ 2
a
|y1 − y2|
|x2 − y2|

≤ 2
a
|x2 − y2|+ |x1 − x2|+ |y1 − x1|

|x2 − y2|

≤ 2
a

(
1+

2
a

+1

)
=

4(a+1)
a2 = b > 0.
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Hence, by Theorem 11.9 [317] (see also Theorem 4 in [66])

mod Γ = mod f (Γ ) ≥ ϕn(b) = c > 0,

where ϕn : (0,∞) → (0,∞) is a decreasing function depending only on n. 
�

A set A ⊂ Rn is said to be a-quasiconvex, 1 ≤ a < ∞, if each pair of points
x1,x2 ∈ A \ {∞} can be joined in A by a rectifiable path γ whose length does not
exceed a|x1 − x2|. If A ⊂ R

n, then A is 1-quasiconvex if and only if A is convex in
the usual sense.

Lemma 3.3. Suppose that E is an M-QED exceptional set in Rn. Then D = Rn \E
is a domain that is a-quasiconvex with

a ≤ exp(bM1/(n−1)),

where b depends only on n.

Proof. Since E is closed, D is open. Suppose that D is not connected. Let D1,D2

be two disjoint components of D. Choose non-degenerate continua Fj ⊂ D j, j =
1,2, and let Γ and ΓE denote the families of paths joining F1 and F2 in Rn and D,
respectively. Lemma 3.2 implies that mod Γ > 0. On the other hand ΓE = /0 and
hence mod ΓE = 0. These two conclusions contradict (3.1), and D must thus be
connected.

We show next that D is a-quasiconvex. Fix x1,x2 ∈ D\{∞} and let r = |x1 − x2|.
Since D \ {∞} is a domain, there is a path α joining x1 to x2 in D \ {∞}. Let Fj

denote the component of α ∩Bn(x j,r/4) that contains x j, j = 1,2, and let Γ and ΓE

denote the families of paths joining F1 and F2 in Rn and D, respectively. Then

min
j=1,2

diam Fj ≥ r/4 ≥ dist(F1,F2)/4,

and Lemma 3.2 yields
mod Γ ≥ c0 > 0,

where c0 depends only on n. Since E is an M-QED exceptional set,

mod ΓE ≥ 1
M

mod Γ ≥ c0

M
. (3.4)

Let Γ1 consist of those paths in ΓE that lie in B
n(x2,s),

s =
r
4

exp

((
c0

2Mωn−1

)1/(1−n)
)

= rc1,

and let Γ2 = ΓE \Γ1. Suppose that each path γ in ΓE has length l(γ) ≥ L > 0. Then

mod Γ1 ≤
Ωnsn

Ln =
Ωnrncn

1

Ln ,
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where Ωn is the n-measure of B
n. On the other hand, each γ ∈ Γ2 meets Sn−1(x2,s)

and, hence,

mod Γ2 ≤ ωn−1

(
log

4s
r

)1−n

=
c0

2M
.

These inequalities yield

mod ΓE ≤ mod Γ1 + mod Γ2 ≤
Ωnrncn

1

Ln +
c0

2M
,

and, thus, by (3.4),

L ≤ rc1

(
2MΩn

c0

)1/n

< r exp(cM1/(n−1)),

where
c = 2 (2ωn−1/c0)1/(n−1)

depends only on n. Set c2 = exp(cM1/(n−1)). Then there is a rectifiable path γ0 ∈ ΓE

with
l(γ0) ≤ rc2 = c2|x1 − x2|

and with endpoints y1,y2 ∈ α such that

|x j − y j| ≤ |x1 − x2|/4

for j = 1,2.
Next, set r1 = |x1 − y1| and let F1 and F2 denote the two components of α ∩

Bn(x1,r1/4) and γ0 ∩Bn(y1,r1/4) that contain x1 and y1, respectively. Then

min
j=1,2

diam Fj ≥ r1

4
≥ dist(F1,F2)

4
;

arguing as above, we obtain a path γ1 in D such that

l(γ1) ≤ c2|x1 − y1| ≤ c2
|x1 − x2|

4

and such that γ1 joins γ0 to a point z1 ∈ α with

|x1 − z1| ≤ 1
42 |x1 − x2| .

Clearly, the paths γ0 and γ1 contain a rectifiable subpath joining z1 to y2. Now a
continuation of this process and a similar construction starting from y2 toward x2

lead to two sequences of paths γ1,γ2, . . . and γ1,γ2, . . . whose union together with γ0

contains a rectifiable path γ in D from x1 to x2 with

l(γ) ≤ l(γ0)+
∞

∑
i=1

l(γi)+
∞

∑
i=1

l(γ i)
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≤ c2

(
|x1 − x2| +

∞

∑
i=1

|x1 − x2|
4i +

∞

∑
i=1

|x1 − x2|
4i

)

=
5
3

c2|x1 − x2| .

Thus, D is a-quasiconvex with

a =
5
3

c2 ≤ exp((c+1)M1/(n−1)),

as desired. 
�

Remark 3.2. Lemma 3.3 is an extension of the following result due to Ahlfors and
Beurling; see Theorem 10 in [5]. If E is an NED set in R2, then D = R2 \ E is
a-quasiconvex for each a > 1.

3.3 QED Domains and Their Properties

If E is an M-QED exceptional set, then by Lemma 3.3, D = Rn \E is a domain; we
call any such domain an M-quasiextremal distance or M-QED domain. A domain
D = Rn \E is called a quasiextremal distance (QED) domain if it is M-QED for
some M ∈ [1,∞). These domains were introduced in [82].

A set A in Rn is c-locally connected (cf. [67]), if, for each x0 ∈ R
n and r > 0,

(i) points in A∩Bn(x0,r) can be joined in A∩Bn(x0,cr),

(ii) points in A\B
n(x0,r) can be joined in A\B

n(x0,r/c).

The set A is linearly locally connected if it is c-locally connected for some c.

Remark 3.3. When A is open, it is easy to see that condition (i) holds for a given x0 ∈
R

n and r > 0 if and only if (i)′ points in A∩B
n(x0,r) can be joined in A∩B

n(x0,cr),
and similarly for condition (ii). Moreover, if condition (i) holds for A and its image
under each Möbius transformation f : Rn → Rn, then condition (ii) holds. To see
this, let x1,x2 ∈ A\B

n(x0,r) and let

f (x) = r2 x− x0

|x− x0|
+ x0 .

Then f (x1), f (x2) ∈ f (A)∩Bn(x0,r) and, by hypothesis, these points can be joined
by a path γ in f (A)∩Bn(x0,cr). Hence, f−1(γ) joins x1,x2 in A\B

n(x0,r/c).
Finally, it is not difficult to show that the property of being linearly locally con-

nected is invariant under quasiconformal self-mappings of Rn. In particular, if A is
c-locally connected and f : Rn → Rn is K-quasiconformal, then f (A) is c′-locally
connected, where c′ depends only on n,c, and K; see Theorem 5.6 in [331].
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Lemma 3.4. Suppose that D is an M-QED domain. Then D is c-locally connected
with

c ≤ 1+ exp(bM1/(n−1)),

where b is the constant of Lemma 3.3.

Proof. Fix x0 ∈ R
n and r > 0. By Lemma 3.3, D is a-quasiconvex with

a ≤ exp(bM1/(n−1)) .

Hence, each pair of points x1,x2 ∈D∩Bn(x0,r) can be joined in D∩Bn(x0,s), where

s ≤ r +a|x1 − x2|/2 ≤ r +ar = (1+a)r .

Since
1+a ≤ 1+ exp (bM1/(n−1)),

the points x1,x2 can be joined in D∩Bn(x0,cr) and c has the desired upper bound.
Next, if D′ is the image of D under a Möbius transformation of Rn, then D′ is

M-QED by Lemma 3.1 and points in D′ ∩Bn(x0,r) can be joined in D′ ∩Bn(x0,cr)
by what was proved above. Thus, D is c-locally connected by Remark 3.3. 
�

Remark 3.4. Suppose that D is a ball or a half-space, that F1,F2 are disjoint continua
in D, and that Γ and ΓD are the families of paths joining F1 and F2 in Rn and D,
respectively. Let Γ ∗ denote the family of paths joining F∗

1 and F∗
2 in Rn, where

F∗
j = Fj ∪ϕ(Fj) and ϕ denotes reflection with respect to ∂D. Then a reflection of

admissible functions for ΓD shows that

modΓ ∗ = 2 mod ΓD

and since
modΓ ≤ modΓ ∗,

we see that D is a 2-QED domain. It is easy to see that the constant 2 is the best
possible choice.

Next, if
0 < λ1 ≤ λ2 ≤ . . . ≤ λn

and D is the image of the exterior of a ball under the affine mapping

f (x1, . . . ,xn) = (λ1x1, . . . ,λnxn) ,

then Lemma 3.1 implies that D is M-QED where

M = 2(λn/λ1)n .

If, in particular, λ1 = 1 and λ2 = . . . = λn = t > 1, then D is a-quasiconvex only if

a > t = (M/2)1/n.
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This observation yields lower bounds for the constants a and c in Lemmas 3.3 and
3.4.

Lemmas 3.3 and 3.4 give quantitative information about the connectivity of a
QED domain. The following result yields a measure density condition for this class
of domains.

Lemma 3.5. Suppose that D is an M-QED domain in Rn. Then, for each x0 ∈D∩R
n

and 0 < r ≤ diamD,
m(D∩B

n(x0,r))
m(Bn(x0,r))

≥ c
M

, (3.5)

where c > 0 depends only on n.

Proof. Fix x0 ∈ D∩R
n. Since r ≤ diam D, we can choose x3 ∈ D so that |x3−x0|=

r/2. Set s = r/10, choose x1,x2 ∈ D such that |x0 − x1| < s, |x2 − x3| < s, and let
α be a path joining x1 and x2 in D. Let F1 be the x1-component of α ∩Bn(x0,2s)
and F2 the x2-component of α \Bn(x0,3s). Next, denote by Γ and ΓD the families
of paths that join F1 and F2 in Rn and in D, respectively. Set

ρ(x) =
{

1
s in D∩B

n(x0,r),
0 elsewhere.

Since each γ ∈ ΓD contains a subpath β that joins Sn−1(x0,2s) and Sn−1(x0,3s) in
D, ∫

γ

ρ ds ≥
∫

β

ρ ds =
1
s

l(β ) ≥ 1,

ρ is admissible for ΓD, and

mod ΓD ≤
∫

Rn

ρndm =
1
sn

∫

D∩Bn(x0,r)

dm

= 10nΩn
m(D∩B

n(x0,r))
m(Bn(x0,r))

,

where Ωn is the volume of the unit ball in R
n. Next,

min
j=1,2

diamFj ≥ s ≥ 1
4

dist(F1,F2),

and, thus, Lemma 3.2 implies that

modΓ ≥ c0 > 0,

where c0 depends only on n. Since D is M-QED, we obtain
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m(D∩B
n(x0,r))

m(Bn(x0,r))
≥ c

M
,

where c = c0/(10nΩn). 
�

Remark 3.5. Suppose that t > 1 and that D is the image of the unit ball B
n(0,1)

under the map
f (x1, . . . ,xn−1,xn) = (x1, . . . ,xn−1, txn) .

Then as in Remark 3.4, D is M-QED, where M = 2tn, while

m(D∩B
n(0, t))

m(Bn(0, t))
=

1
tn−1 =

(
2
M

)(n−1)/n

.

Hence, the exponent of M in (3.5) is asymptotically sharp for large n.

Corollary 3.1. The boundary ∂D of a QED domain D in R
n has n-dimensional

measure zero.

Proof. If the measure of ∂D is positive, then ∂D\{∞} contains a point x0 of density.
However, by Lemma 3.5, the point x0 cannot be a point of density for E = Rn \D
and hence not for ∂D. 
�

3.4 Uniform and Quasicircle Domains

Recall that a domain D in R
n is said to be uniform if there exist constants a,b such

that each x1,x2 ∈ D can be joined by a rectifiable path γ in D with

l(γ) ≤ a |x1 − x2| (3.6)

min(s, l(γ)− s) ≤ bdist(γ(s), ∂D).

Here γ is parameterized by arc length s. The uniform domains have been introduced
in [212] and their various characterizations can be found in [70, 202, 226, 318–320,
328]. The next lemma is essentially due to P. Jones [142].

Lemma 3.6. A uniform domain D is an M-QED domain where the constant M de-
pends only on n and D.

Proof. Let F1 and F2 be two disjoint continua in D. Let ε > 0 and choose u ∈
W (F1,F2;D) such that

∫
D
|∇u|ndm ≤ cap(F1,F2;D)+ ε/2 .
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Then, for small t > 0, the function v = (1+ t)(1− t)−1(u− t) satisfies the inequality
∫

D
|∇v|ndm ≤ cap(F1,F2;D)+ ε

and v(x)≤−t for x∈F1, v(x)≥ 1+t for x∈F2. Uniform domains enjoy the Sobolev
extension property by Theorem 2 in [142]; hence, there exists an ACL-function
v∗ : R

n → R
n such that v∗ = v in D and

M
∫

D
|∇v|ndm ≥

∫
Rn

|∇v∗|ndm,

where M depends only on n and the constants for D. Choose a smooth convolution
approximation ϕ of v∗ with ϕ ≤ 0 on F1, ϕ ≥ 1 on F2, and

∫
Rn

|∇v∗|ndm ≥
∫

Rn
|∇ϕ|ndm− ε .

Then ϕ ∈ W̃ (F1,F2;Rn) and the last three inequalities yield

cap(F1,F2;Rn)) ≤
∫

Rn
|∇ϕ|ndm ≤ M cap(F1,F2;D)+ ε(M +1).

Letting ε → 0, we obtain the desired result. 
�

Although the classes of QED, linearly locally connected, and uniform domains
do not coincide, it is possible to obtain more precise relations between them when
n = 2. In particular, we shall show that for finitely connected plane domains, these
classes are the same.

We say that D ⊂ Rn is a K-quasiball if D is the image of an open ball or
half-space under a K-quasiconformal self-mapping of Rn and that S ⊂ Rn is a K-
quasisphere if it is a boundary of a K-quasiball. Next, a domain D ⊂ Rn is said
to be a K-quasisphere domain if each component of ∂D is either a point or a K-
quasisphere. We use the more standard terms “quasidisk” and “quasicircle” when
n = 2.

We shall show that every quasisphere domain is linearly locally connected and
that this property characterizes this class of domains when n = 2. We require first
the following result.

Lemma 3.7. If G1, . . . Gk are pairwise disjoint K-quasiballs that all meet Sn−1(x0,r1)
and Sn−1(x0,r2), then

k ≤ a

(
r2 + r1

|r2 − r1|

)n−1

,

where a depends only on n and K.

Proof. The proof employs a standard packing argument. We may assume r2 > r1.
Set t = |r2 − r1|/2. For each i = 1, . . . ,k, choose xi ∈ Gi such that
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|xi − x0| =
r1 + r2

2
.

By Lemma 3.1 (see also Remark 3.4), each Gi is an M-QED domain, where M
depends only on K. For i = 1, . . . ,k, Lemma 3.5 yields

m(Gi ∩B
n(xi, t)) ≥

c
M

m(Bn(xi, t)) =
cΩntn

M
,

where c > 0 depends only on n. Since the quasiballs Gi are disjoint,

Ωn(rn
2 − rn

1) = m(Bn(x0,r2)\Bn(x0,r1))

≥
k

∑
i=1

m(Gi ∩B
n(xi, t)) ≥

cΩnktn

M
=

cΩnk(r2 − r1)n

M2n .

Thus,

k ≤ a
rn

2 − rn
1

(r2 − r1)n = a
1− sn

(1− s)n ,

where s = r1/r2 < 1 and a = M2n/c depends only on n and K. The elementary
inequality

1− sn ≤ (1− s)(1+ s)n−1

follows easily by induction and, hence,

k ≤ a

(
r2 + r1

|r2 − r1|

)n−1

,

as desired. 
�

Lemma 3.8. If D is a K-quasisphere domain , then D is c-locally connected, where
c depends only on n and K.

Proof. Let C0 be a nondegenerate component of ∂D and let D0 denote the compo-
nent of Rn \C0 that contains D. Then D0 is a K-quasiball and hence c = c(n,K)-
locally connected by, for example, Remark 3.4 and Lemmas 3.1 and 3.4.

Fix x0 ∈ R
n, r > 0, and d > c. We shall show that D is d-locally connected.

Since each image of D under a Möbius transformation is again a K-quasisphere
domain, it suffices by the remarks in Section 3.3 to show that each pair of points
x1,x2 ∈ D∩B

n(x0,r) can be joined in D∩B
n(x0,r). Suppose that this is not true for

a given pair x1,x2. Then these points are separated by

F = ∂D∪Sn−1(x0,dr) .

By Theorem Y.14.3 in [227], there is a component E of F that does this.
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Now observe that E meets Sn−1(x0,dr) since otherwise E ⊂ ∂D and hence could
not separate x1 and x2. Let

E0 = Sn−1(x0,dr)∪
(⋃

α
Cα

)
,

where {Cα} is the collection of all components of ∂D that meet Sn−1(x0,dr). Then
E0 is a connected subset of F ,

E ∩E0 ⊃ E ∩Sn−1(x0,dr) �= /0,

and hence E0 ⊂ E. Suppose that there exists a point y ∈ ∂D \E0. Then y lies in a
component C of ∂D with

C∩Sn−1(x0,dr) = /0 .

Choose ε > 0 so that
ε < q(C,Sn−1(x0,dr)),

where q is the chordal metric in Rn. Then, by Corollary 1 in [227], p. 83, there is a
set H ⊂ ∂D such that H is both open and closed in ∂D with

C ⊂ H ⊂ {x : q(x,C) < ε} .

Thus,
H ∩Sn−1(x0,dr) = /0

and H is closed in F . On the other hand,

F \H = Sn−1(x0,dr)∪ (∂D\H)

is also closed in F . Hence, y does not belong to the same component of F as
Sn−1(x0,dr), i.e., y /∈ E. It follows that E = E0 or

E = Sn−1(x0,dr) ∪
(⋃

α
Cα

)
.

For each non-degenerate component Cα , let Dα and Gα denote the components
of Rn \Cα labeled so that D ⊂ Dα . Then the sets Gα are pairwise disjoint K-
quasiballs and hence, by Lemma 3.7, at most k of the Cα meet Sn−1(x0,cr), where

k ≤ a

(
d + c
d − c

)n−1

, a = a(n,K) .

By relabeling we may assume that these are the components C1, . . . ,Ck. Then, for
i = 1, . . . ,k, x1 and x2 lie in Di ∩B

n(x0,r) and hence x1 and x2 can be joined in
Di ∩B

n(x0,cr). This says that x1 and x2 are not separated by
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Fi = Sn−1(x0,cr)∪Ci.

For j = 1, . . . ,k, let

E j =
j

∑
i=1

Fj

and suppose that x1,x2 are not separated by E j for some j < k. Then, since

E j ∩Fj+1 = Sn−1(x0,cr) ,

we can apply Theorem II.5.18 in [335] to conclude that x1,x2 are not separated by
E j+1 and hence not by

Ek = Sn−1(x0,cr) ∪
(

k⋃
i=1

Ci

)
.

In particular, there is an arc γ that joins x1 and x2 in B
n(x0,cr) and does not meet

any Ci, i = 1, . . . ,k. Choose Cα with α /∈ {1, ...,k}. Then Cα meets Sn−1(x0,dr) and
not Sn−1(x0,cr). Hence, Cα ∩ γ = /0 and we conclude that

E ∩ γ = (Sn−1(x0,dr) ∩ γ)∪
(⋃

α
Cα ∩ γ

)
= /0 .

This means that E does not separate x1 and x2 and the proof is complete. 
�

Lemma 3.9. Suppose that D is b-locally connected and that ∂D is connected and
contains at least two points. Then ∂D is a K-quasiconformal circle, where K de-
pends only on b.

Proof. Suppose that p is a point in D. With each neighborhood U of p we as-
sociate a second neighborhood V as follows. If p = z0 ∈ C, choose r ∈ (0,∞)
so that B(z0,br) ⊂ U and let V = B(z0,r); if p = ∞, choose r ∈ (0,∞) so that
C(B(0,r/b)) ⊂ U and let V = C(B(0,r)). In each case, the fact that D is b-locally
connected implies that points are in D∩U. Thus, D is uniformly locally connected
and ∂D is a Jordan path γ by Theorem VI.16.2 in [227].

We show next that for any pair of finite points z1,z2 ∈ γ,

min(diam (γ1),diam (γ2)) ≤ b2|z1 − z2|, (3.7)

where γ1, γ2 denote the components of γ \ {z1,z2}. By a theorem of Ahlfors, in-
equality (3.7) will then imply that γ is a K-quasiconformal circle, where K depends
only on b, thus completing the proof; see, for example, Theorem II.8.6 in [190].

To this end, fix z1,z2 ∈ γ, set

z0 =
1
2
(z1 + z2), r =

1
2
|z1 − z2|,
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and suppose that (3.7) does not hold. Then there exist t ∈ (r,∞) and finite points
w1,w2 such that

wi ∈ γi \B(z0,b
2t) (3.8)

for i = 1,2. Choose s ∈ (r, t). Since z1,z2 ∈ γ ∩B(z0,s), we can find for i = 1,2 an
endcut αi of D joining zi to z′i ∈ D in B(z0,s). Next, since D is b-locally connected,
we can find an arc α3 joining z′1 to z′2 in D∩B(z0,bs). Then α1 ∪α2 ∪α3 contains a
crosscut α of D from z1 to z2 with

α ⊂ B(z0,bs). (3.9)

By virtue of (3.8), the same argument can be applied to obtain a crosscut β of D
from w1 to w2 with

β ⊂ C(B(z0,bt)). (3.10)

But (3.9) and (3.10) imply that α ∩ β = /0, contradicting the fact that z1 and z2

separate w1 and w2 in γ. Thus, (3.7) holds and the proof of Lemma 3.9 is complete.

�

Lemma 3.10. Suppose that D is b-locally connected. Then each component of ∂D
is either a point or a K-quasiconformal circle where K depends only on b.

Proof. Let B0 be a component of ∂D, let C0 denote the component of C(D) that
contains B0, and let D0 = C(C0). Then D0 is a domain with ∂D0 = B0; see, e.g.,
the proof of Theorem VI.16.3 in [227]. To complete the proof, we need only show
that D0 is b-locally connected, for then, by Lemma 3.9, ∂D0 will be a point or a
K-quasiconformal circle where K = K(b).

Fix z0 ∈ C and r ∈ (0,∞). Given z1,z2 ∈ D0 ∩B(z0,r), we must find an arc γ
joining these points in D0 ∩B(z0,br). For this let α be any arc joining z1 and z2 in
B(z0,r). If α ⊂ D0, we may take γ = α . Suppose that α �⊂ D0 and for i = 1,2, let αi

denote the component of α ∩D0 that contains zi. Then for each i there exists a point
wi such that

wi ∈ αi ∩D. (3.11)

If zi ∈ D, we may take wi = zi; otherwise, zi ∈ Ci, a component of C(D) different
from C0, and the fact that

α i ∩C0 �= /0, αi ∩Ci �= /0

imply that αi must meet D and hence contain a point wi satisfying (3.11). Since D
is b-locally connected and since

w1,w2 ∈ α ∩D ⊂ D∩B(z0,r),

we can join w1 and w2 by an arc β in D∩B(z0,br). Then α1 ∪β ∪α2 will contain
an arc γ joining z1 and z2 in D0 ∩B(z0,br).
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Next, the same argument shows that each pair of points in D0 \B(z0,r) can be
joined in D0\B(z0,r/b). Hence, D0 is b-locally connected and the proof is complete.


�

Theorem 3.1. A domain D in R2 is a quasicircle domain if and only if it is linearly
locally connected.

Proof. Suppose that D is a domain in R2. If D is linearly locally connected, then, by
Lemma 3.10, D is a quasicircle domain. The converse follows from Lemma 3.8. 
�

Theorem 3.2. If D is a finitely connected domain in R2, then the following condi-
tions are equivalent.

(i) D is a QED domain.

(ii) D is linearly locally connected.

(iii) D is a quasicircle domain.

(iv) D is uniform.

Proof. That (i) implies (ii) follows from Lemma 3.4; that (ii) implies (iii) is a con-
sequence of Theorem 3.1. By Theorem 5 in [234] and Theorem 5 in [83], a finitely
connected quasicircle domain is uniform. Finally, (iv) implies (i) by Lemma 3.6.


�

Remark 3.6. Suppose that D �= R
2 is a simply connected domain in R

2. Then Theo-
rem 3.2 implies the well-known equivalence of the following conditions.

(i) D is a QED domain.

(ii) D is linearly locally connected.

(iii) D is a quasidisk.

(iv) D is uniform.

The equivalence of (i) and (iii) was first proved by V. Gol’dstein and S. Vodop’janov
in [93]. For the equivalence of (iii) and (iv), see Corollary 2.33 in [212], while the
equivalence of (ii) and (iii) follows from Lemmas 4 and 5 in [68]; cf. also [70].

Remark 3.7. Finally, for a domain D ⊂ Rn, n ≥ 2, we have the following relations
between the classes of domains considered above.

(i) If D is uniform, then D is QED.

(ii) If D is QED, then D is linearly locally connected.

(iii) If D is a quasisphere domain, then D is linearly locally connected.

(iv) There exists a QED domain D that is not uniform.

(v) There exists a quasisphere domain D that is not QED, and hence not uniform.
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(vi) For n > 2, there exists a domain D that is uniform, and hence QED and linearly
locally connected, but not a quasisphere domain.

The first three conclusions follow from Lemmas 3.6, 3.4, and 3.8, respectively.
For (iv), let E be the set in R

n whose points have integer coordinates. Then E is
NED set because E is countable and hence the family of all paths meeting E has zero
modulus. Thus, D = R

n \E is a QED domain, but D cannot be uniform because the
second condition in (3.6) fails. For (v), choose a closed, totally disconnected set in
R

n with m(E) > 0. Then D = R
n \E is a 1-quasisphere domain with ∂D = E∪{∞},

and hence D is not QED by Corollary 3.1. Finally, when n > 2, then D = R
n \R

1 is
a uniform domain while R

1 ∪{∞} is neither a point nor a quasisphere.

3.5 Extension of Quasiconformal and Quasi-Isometric Maps

We shall show in this chapter that a quasiconformal mapping between QED domains
in Rn has a homeomorphic extension to the closures of the domains when n ≥ 2 and
a quasiconformal extension to Rn when n = 2. These results first appeared in [82]
as a result of extensive studies of the corresponding extension problems in uniform
domains. Chapter 2 then yields several extension theorems for quasiconformal map-
pings on various subclasses of QED domains. We also prove corresponding results
for injective local quasi-isometries.

We begin with the following result.

Theorem 3.3. Suppose that D and D′ are domains in Rn, that D is M-QED and that
D′ is c′-locally connected. If f is a K-quasiconformal mapping of D onto D′, then f
has a homeomorphic extension to D̄. Moreover, if x1,x2,x3,x4 are distinct points in
D̄ with

|x1 − x2|
|x3 − x2|

|x3 − x4|
|x1 − x4|

≤ a,

then
| f (x1)− f (x2)|
| f (x3)− f (x2)|

| f (x3)− f (x4)|
| f (x1)− f (x4)|

≤ b, (3.12)

where b is a constant that depends only on n,K,M,c′, and a.

Proof. We begin by deriving (3.12) whenever x1,x2,x3,x4 ∈ D. By composing f
with a pair of Möbius transformations and appealing to Lemma 3.1 and Remark
3.3, we see that it is sufficient to consider the case where x4 = ∞ and f (x4) = ∞;
then we must show that

|x1 − x2|
|x3 − x2|

≤ a ⇒ |y1 − y2|
|y3 − y2|

≤ b, (3.13)

where y j = f (x j), j = 1,2,3,4.
First we choose t so that
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|y1 − y2| = c′2t|y3 − y2| = c′2tr

and we suppose that t > 1. Because D′ is c′-locally connected, there exist continua
F ′

1 and F ′
2, which join y2 to y3 in D′ ∩Bn(y2,c′r) and y1 to y4 =∞ in D′ \B

n(y2,c′tr),
respectively. Set Fj = f−1(F ′

j ) and let Γ and ΓD denote the families of paths joining

F1 and F2 in Rn and D, respectively. If γ ∈ ΓD, then f (γ) joins Sn−1(y2,c′r) to
Sn−1(y2,c′tr) and, thus,

mod ΓD ≤ K mod f (ΓD) ≤ K ωn−1 (log t)1−n.

Next,

min
j=1,2

diam Fj ≥ |x3 − x2| ≥ 1
a
|x1 − x2| ≥ 1

a
dist(F1,F2),

and by Lemma 3.2,
mod Γ ≥ c,

where c > 0 depends only on n and a. Since D is an M-QED domain, these inequal-
ities yield

c ≤ mod Γ ≤ M mod ΓD ≤ MKωn−1 (log t)1−n

or

t ≤ exp

((
MKωn−1

c

)1/(n−1)
)

.

Now this inequality holds trivially whenever t ≤ 1. Hence, we obtain (3.13) with

b = c′2 exp

((
MKωn−1

c

)1/(n−1)
)

.

Next, we show that f has a homeomorphic extension to D. Again, it suffices to
consider the case where ∞∈D and f (∞) =∞. Fix x0 ∈ ∂D and choose points x j ∈D
so that x j → x0 and f (x j) → y0 as j → ∞. Then y0 ∈ ∂D′ ⊂ R

n. Given ε > 0, fix k
such that

| f (xk)− y0| ≤ ε.

Suppose that x ∈ D and

|x− x0| ≤
1
3
|xk − x0| = δ .

For large j, |x j − x0| ≤ δ and

|x− x j| ≤ |x− x0|+ |x j − x0| ≤ 3δ −|x j − x0| (3.14)

= |xk − x0|− |x j − x0| ≤ |xk − x j|

and, applying (3.12) with x1 = x,x2 = x j, x3 = xk, and x4 = ∞, we conclude that

| f (x)− f (x j)| ≤ b| f (xk)− f (x j)|,
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where b = b(n,K,M,c′). Letting j → ∞, we obtain

| f (x)− y0| ≤ b| f (xk)− y0| ≤ bε,

which shows that f (x)→ y0 as x→ x0 in D. Thus, f has a continuous extension to D,
which we again denote by f . By continuity, (3.12) holds whenever x1,x2,x3,x4 ∈ D,
where b is the original constant corresponding to a+1, and this, in turn, implies that
f is injective in D and hence a homeomorphism. 
�

Theorem 3.3, Lemma 3.4, and Lemma 3.6 imply the following results.

Corollary 3.2. If D and D′ are QED domains in Rn, then each quasiconformal map-
ping of D onto D′ has a homeomorphic extension to D.

Corollary 3.3. If D and D′ are uniform domains in Rn, then each quasiconformal
mapping of D onto D′ has a homeomorphic extension to D.

Remark 3.8. In the case of bounded uniform domains, Corollary 3.3 also follows
from Corollary 3.30 in [70] since then both f and f−1 belong to some Lipschitz
class Lipα , α > 0.

Remark 3.9. In the plane, Theorem 3.3 can be considerably sharpened. We first re-
quire the following results on quasidisks.

Lemma 3.11. Suppose that G is a K-quasidisk in R
2, that z0 ∈ R

2 \G, and that α
is a component of G∩S1(z0,r). Then

diam α ≤ c |z1 − z2|,

where z1,z2 are the endpoints of α and c depends only on K.

Proof. Let θ be the angle subtended by α at z0. If 0 < θ ≤ π, then

diam α = |z1 − z2| .

If θ > π, then consider the ray from z0 through the point 2z0 − z1 on the opposite
side of z1 in S1(z0,r). Since G lies in R

2, this ray meets each of the components γ1

and γ2 of ∂G\{z1,z2}; thus,

diam γ j ≥ |z1 − z0| = r

for j = 1,2. On the other hand, since ∂G is a K-quasicircle,

min
j=1,2

diam γ j ≤ a |z1 − z2|,

where a = a(K), and hence

diam α ≤ 2r ≤ 2a|z1 − z2|.


�
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Lemma 3.12. If G j is an infinite sequence of pairwise disjoint K-quasidisks, then

lim
j→∞

q(G j) = 0,

where q(G j) is the chordal diameter of G j.

Proof. The proof follows from the fact that a quasidisk cannot be very thin. Indeed,
if the lemma does not hold, then after passing to a subsequence if necessary, choose
z j,w j ∈ G j such that z j → z0 �= ∞ and w j → w0 �= z0. Fix 0 < r1 < r2 < |z0 −w0|.
Then there exists j0 such that |z j − z0| < r1 and |w j − z0| > r2 for j ≥ j0. This
says that infinitely many G j meet both S1(z0,r1) and S1(z0,r2), contradicting the
conclusion of Lemma 3.7. 
�

Theorem 3.4. Suppose that D and D′ are domains in R2, that D is M-QED, and that
D′ is c′-locally connected. If f is a K-quasiconformal mapping of D onto D′, then f
has a K∗-quasiconformal extension to R2, where K∗ depends only on the constants
K,M, and c′.

Proof. By Theorem 3.3, f has a homeomorphic extension, denoted again by f ,
which maps D onto D′. Next, by Lemma 3.4, D is c-locally connected, where
c = c(M), and it follows from Theorem 3.1 that D and D′ are K1-quasicircle do-
mains, where K1 depends only on M and c′.

Let C be a quasicircle component of ∂D. Then C′ = f (C) is also a quasicircle
and there exist K1-quasiconformal mappings g and g′ of R2 onto itself such that
g(C) = R1,g′(C′) = R1, and g′ ◦ f ◦ g−1(∞) = ∞. Moreover, we may assume that
g maps the component G of R2 \ D bounded by C onto the lower half-plane H
and that g′ does the same for the corresponding component G′ of R2 \D′. Then
h = g′ ◦ f ◦g−1 is a homeomorphism that maps g(D) onto g′(D′) and R

1 onto R
1 and

is K2-quasiconformal in g(D),K2 = KK2
1 . Now g(D) is M1-QED with M1 = K2

1 M
and by Remark 3.3, g′(D′) is c′1-locally connected, where c′1 depends only on c′ and
K1. Choose x ∈ R

1, t > 0, and let

x1 = x+ t, x2 = x, x3 = x− t, x4 = ∞.

Then, by Theorem 3.3 applied to h,

h(x+ t)−h(x)
h(x)−h(x− t)

≤ b,

where b depends only on K1,M1, and c′1. By interchanging the roles of x1 and x3

above, we conclude that h | R
1 is b-quasisymmetric and hence, by a theorem of

Ahlfors and Beurling in [6], there exists a homeomorphism h∗ : H → H that agrees
with h on ∂H and is K3-quasiconformal in H,K3 = K3(b).

Mapping back, we obtain a homeomorphism fG of D∪G onto D′ ∪G′ that ex-
tends f and that is K∗-quasiconformal in D and in G, where K∗ depends only on
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K,M, and c′. Define f ∗ : R2 → R2 as f ∗(z) = f (z) when z ∈ D and f ∗(z) = fG(z)
when z belongs to a quasidisk component of G of R2 \D. Next we show that f ∗ is a
homeomorphism. Since f ∗ is injective, it suffices to show that f ∗ is continuous, and
this clearly follows if we establish the continuity of f ∗ at z0 ∈ ∂D.

Let z j → z0 and suppose that f ∗(z j) → w0. We want to show that w0 = f ∗(z0). If
infinitely many z j belong either to D or to a single component G of R2 \D, then this
follows from the fact that f is continuous in D and fG in G, respectively. Suppose
that the points z j lie in infinitely many distinct components G j of R2 \D. Passing to
a subsequence, if necessary, we may assume that z j ∈ G j, where the G j are pairwise
disjoint. For each j choose w j ∈ ∂G j ⊂ ∂D. Since the K1-quasidisks G j are pair-
wise disjoint, Lemma 3.12 implies that q(G j) → 0 as j → ∞. Thus, w j → z0, and,
hence, f ∗(w j)→ f ∗(z0) by the continuity of f in D. Next, because the K1-quasidisks
f ∗(G j) are pairwise disjoint, the same reasoning shows that f ∗(z j) approaches the
same limit as f (w j). Thus, w0 = f (z0).

It remains to show that f ∗ is K∗-quasiconformal in R2. Suppose first that ∞ ∈
D and f ∗(∞) = ∞. By Corollary 3.1, ∂D has zero planar measure. Hence, by a
well-known characterization for quasiconformality, it suffices to show that there is
a constant c such that

L(z0,r) ≤ cl(z0,r) (3.15)

for all z0 ∈ ∂D\{∞} and 0 < r < ∞, where

L(z0,r) = max
|z−z0|=r

| f ∗(z)− f ∗(z0)|,

l(z0,r) = min
|z−z0|=r

| f ∗(z)− f ∗(z0)|.

By making a pair of change of variables in the image and preimage of f , we may
assume that z0 = 0 and f ∗(z0) = 0.

Suppose first that z1,z2 ∈ D with |z1| = |z2| = r. Then, by (3.12),

|w2| ≤ b1|w1|, (3.16)

where w j = f ∗(z j) for j = 1,2 and b1 = b1(K,M,c′).

Suppose next that z3 ∈ R
2 \ D with |z3| = r. Then z3 ∈ G, where G is a K1-

quasidisk in R
2 with 0 /∈ G; let z1,z2 denote the endpoints of the component α of

G∩S1(0,r) that contains z3, labeled so that |w1| ≤ |w2|. Here again, w j = f ∗(z j) for
j = 1,2,3. We shall show that

1
b2

|w1| ≤ |w3| ≤ b2 |w2|, (3.17)

where b2 depends only on K,M, and c′.

Choose z4 ∈ ∂G ⊂ D so that |w4|= |w3|, and suppose first that |z3 − z4| ≤ 1
3 |z1 −

z4|. Then
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|z4| ≤ 1
3
|z1 − z4|+ |z3| ≤

4
3
|z3|+

1
3
|z4|,

|z4| ≥ |z3|−
1
3
|z1 − z4| ≥

2
3
|z1|−

1
3
|z4|.

Hence,
1
2
|z1| ≤ |z4| ≤ 2|z2|,

and Theorem 3.3 applied to f ∗ | D yields

1
b3

|w1| ≤ |w3| = |w4| ≤ b3 |w2|,

where b3 = b3(K,M,c′). Suppose next that |z3 − z4| > 1
3 |z1 − z4|. Then, by Lemma

3.11,
|z1 − z4|
|z3 − z4|

|z3 − z2|
|z1 − z2|

≤ 3
diam α
|z1 − z2|

≤ 3c,

where c = c(K1). Since G and G′ = f ∗G are K1-quasidisks and hence 2K2
1 -QED

domains, we can apply Theorem 3.3 to f ∗ | G with a = 3c to obtain

|w1 −w4|
|w3 −w4|

|w3 −w2|
|w1 −w2|

≤ b4, (3.18)

where b4 = b4(K,M,c′). If |w4| ≥ 2|w1|, then

|w3 −w4| ≤ 2|w4| ≤ 4|w1 −w4|,

and from (3.18) we obtain

|w3| ≤ 4b4|w1 −w2|+ |w2| ≤ 4b4(|w1|+ |w2|)+ |w2|
≤ (8b4 +1)|w2|,

where the inequality |w1| ≤ |w2| has also been used. Similarly, if |w3| ≤ |w1|/2 and
hence |w3| ≤ |w2|/2, then

|w1 −w2| ≤ 2|w2| ≤ 4|w3 −w2|

and
|w1| ≤ 4b4|w3 −w4|+ |w4| ≤ (8b4 +1)|w3|,

where (3.18) and the equality |w3| = |w4| have been used. Thus, we obtain (3.17)
with

b2 = max(b3,2, 8b4 +1).

Finally, (3.16) and (3.17) imply (3.15) with c = b1b2
2 and z0 = 0, completing the

proof for the case where ∞∈ D and f (∞) =∞. The general case can then be reduced
to the special case by composing f with two auxiliary Möbius transformations. 
�
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The first corollary below follows from Theorem 3.4 and Lemmas 3.1 and 3.4.
The second corollary is due to the first and to Remark 3.6. The second corollary was
proved in [212] (see also [83]), and the first corollary appeared in [82].

Corollary 3.4. If D is a QED domain in R2 and f is a quasiconformal mapping of
D onto D′, then f has a quasiconformal extension to R2 if and only if D′ is QED.

Corollary 3.5. If D is a uniform domain in R
2 and f is a quasiconformal mapping

of D onto a domain D′ in R
2, then f has a quasiconformal extension to R2 if and

only if D′ is uniform.

For finitely connected domains D in R2, we obtain the following statement.

Corollary 3.6. Suppose that D is a linearly locally and finitely connected domain
in R2. If f is a quasiconformal mapping of D onto a domain D′, then f has a
quasiconformal extension to R2 if and only if D′ is linearly locally connected.

Proof. If D = R2, then there is nothing to prove and in the case D �= R2 we can
compose f with two auxiliary Möbius transformations and hence assume D,D′ ⊂
R

2. Now Corollary 3.4 or Corollary 3.5 together with Theorem 3.2 yields the result.

�

Remark 3.10. (a) Since a quasidisk D ⊂ R
2 is uniform, linearly locally connected,

and QED, all three corollaries are generalizations of the known Beurling–Ahlfors
extension theorem; see [5].

(b) Corollaries 3.4 and 3.5 do not hold for n ≥ 3. A counterexample is provided by
a quasiconformal mapping of a smooth knotted torus onto one that is not knotted.

(c) If D is a QED domain in Rn, n ≥ 2, with D = Rn, then E = Rn \D is NED; see
Remark 3.1. In this case it follows from results of Ahlfors and Beurling [5] when
n = 2 and Aseev and Sychev [15] when n ≥ 3 that every K-quasiconformal mapping
of D into Rn has a K-quasiconformal extension to Rn.

(d) We give an example in Chapter 7 to show that Corollary 3.6 does not hold when
D is infinitely connected.

Remark 3.11. Theorem 3.4 can be used to interpret the geometric structure of QED
and uniform domains in R2.

Suppose that D and D′ are domains in R2. If there exists a quasiconformal map-
ping of R2 that carries D onto D′, then D is QED if and only if D′ is so. This
statement is false if we know only that there exists a quasiconformal mapping of D
that carries D onto D′; for an example, let D be the upper half-plane and f (z) = z2.
On the other hand, if we know that D and D′ are linearly locally connected and that
there exists a quasiconformal mapping of D that carries D onto D′, then Theorem
3.4 implies that D is QED if and only if D′ is. Thus, the collection of QED domains
is invariant under quasiconformal mappings in the class of plane domains that are
linearly locally connected, i.e., in the class of quasicircle domains.
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Alternatively, we may think of a domain D ⊂ R2 as being determined by the
shape of its boundary components and by their relative position and size as mea-
sured by its conformal moduli. Then Theorem 3.4 implies that D is QED if and
only if D is a quasicircle domain whose conformal geometry is quasiconformally
equivalent to that of another QED domain. In particular, it is natural to ask for ge-
ometric conditions on the boundary components of a quasicircle domain D that are
necessary and sufficient to guarantee that D is QED.

Obviously, the same remarks and questions hold for uniform domains in R2.

3.6 Extension of Local Quasi-Isometries

Suppose that f is a mapping of E ⊂ Rn into Rn. We say that f is an L-quasi-
isometry in E if

1
L
|x1 − x2| ≤ | f (x1)− f (x2)| ≤ L |x1 − x2|

for each pair of points x1,x2 ∈ E \ {∞} and if f (∞) = ∞ whenever ∞ ∈ E. We say
that f is a local L-quasi-isometry in E if, for each L′ > L, every x ∈ E has a neigh-
borhood U such that f is an L′-quasi-isometry in E ∩U.

The next theorem is a counterpart of Theorem 3.3 for injective local quasi-
isometries.

Theorem 3.5. If f is an injective local L-quasi-isometry of a quasiconvex domain
D ⊂ Rn into a domain D′ ⊂ Rn, then f extends to a quasi-isometry f ∗ of D onto
D′ if and only if D′ is a quasiconvex. In this case f ∗ is an L∗-quasi-isometry with
L∗ = max(a,a′), where a and a′ are the constants for D and D′.

Proof. Suppose first that f extends to an L∗-quasi-isometry f ∗ of D onto D′. Let
y1,y2 ∈ D′ \{∞}. Since D is an a-quasiconvex domain, there is a path γ in D joining
f−1(y1) to f−1(y2) with

l(γ) ≤ a | f−1(y1)− f−1(y2)|.

Now, f (γ) joins y1 to y2 in D′ and

l( f (γ)) ≤ L∗ l(γ) ≤ L∗a | f−1(y1)− f−1(y2)| ≤ L∗2a |y1 − y2|.

Thus, D′ is a′-quasiconvex with a′ = L∗2a.

Next, suppose that D′ is a′-quasiconvex and that f is an injective local L-quasi-
isometry of an a-quasiconvex domain D onto D′. Fix x1,x2 ∈ D′ \ {∞}. There is a
rectifiable path γ joining x1 and x2 in D with
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l(γ) ≤ a |x1 − x2|.

Thus,
| f (x1)− f (x2)| ≤ l( f (γ)) ≤ L l(γ) ≤ La |x1 − x2|.

Since f is injective, f−1 is a local L-quasi-isometry in D′ and arguing as above
yields

|x1 − x2| ≤ La′ | f (x1)− f (x2)|.
Hence, f is an L∗-quasi-isometry in D, where L∗ = L max(a,a′), and we can extend
f to D by continuity. 
�

Remark 3.12. Theorem 3.5 together with Section 3.2 yields several extension results
for injective local quasi-isometries. For example, if f is an injective local quasi–
isometry of a uniform domain D ⊂ R

n onto a domain D′ ⊂ R
n, then f extends to a

quasi-isometry of D onto D′ if and only if D′ is uniform. If D and D′ are uniform,
then the extension follows from Theorem 3.5 and from the fact that uniform domains
are quasiconvex; cf. (3.6). On the other hand, it is easy to see that the image of a
uniform domain D under a quasi-isometry f : D → R

n is again a uniform domain.

We conclude this chapter with the following analogue of Theorem 3.4 for injec-
tive local quasi-isometries.

Theorem 3.6. Suppose that D and D′ are domains in R2, that D is M-QED, and
that D′ is c′-locally connected. If f is an injective local L-quasi-isometry of D onto
D′ and, in the case ∞ /∈ D, the unbounded complementary components of D and D′

correspond under f , then f has an L∗-quasi-isometric extension to R2, where L∗

depends only on the constants L,M, and c′.

The formulation of this result requires a word of explanation. If f is an injective
local quasi-isometry, then f defines a homeomorphism of D onto D′. In this case,
for each component E of R2 \D there exists a unique component E ′ of R2 \D′ such
that f (x) → E ′ if and only if x → E in D. The second hypothesis on f in Theorem
3.6 requires that ∞ ∈ E ′ whenever ∞ ∈ E. This condition is clearly necessary for f
to have a quasi-isometric extension to R2.

Proof for Theorem 3.6. The hypotheses imply that f is a K-quasiconformal
mapping of D onto D′, where K = L2. Hence, by Theorem 3.4, f has a K∗-
quasiconformal extension to R2, where K∗ depends only on L,M, and c′; hence,
D′ is M′-QED, where M′ = K∗2M. By Lemma 3.3, D and D′ are a-quasiconvex and
a depends only on M and M′. Theorem 3.5 implies that f has an extension, denoted
again by f , as an L′-quasiisometry of D onto D′, where L′ depends only on L and a
and, thus, only on L,M, and c′.

Next, let C be a nondegenerate component of ∂D. Then, cf. the proof of Theorem
3.4, the boundary component C is a K-quasicircle, where K depends only on M. Let
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C′ be the boundary component of D′ that corresponds to C under f . Again C′ is a
K′-quasicircle and K′ depends only on c′. Let G and G′ denote the components of
R2 \D and R2 \D′ bounded by C and C′, respectively. Then G ⊂ R

2 if and only if
G′ ⊂ R

2, and we can apply Theorem 7 in [69] to get L∗-quasi-isometry of G onto
G′, which agrees with f on C. Moreover, L∗ depends only on L′,K, and K′ and thus
only on L,M, and c′.

Proceeding in this way, we obtain an injective mapping f : R2 → R2 that extends
f , maps ∞ onto ∞, and satisfies the inequality

|z1 − z2|/L∗ ≤ | f ∗(z1)− f ∗(z2)| ≤ L∗|z1 − z2| (3.19)

whenever z1 and z2 are finite points in the closure of the same component of R2\∂D.
A trivial argument then yields (3.19) for all z1,z2 ∈ R

2 and, thus, completes the
proof. 
�

Finally, the following consequences of Theorem 3.6 extend Corollary 1 in [69]
in precisely the same way that Corollaries 3.4 and 3.5 extend the aforementioned
theorem of Ahlfors and Beurling.

Corollary 3.7. If D is a QED domain in R2 and f is an injective local quasi-
isometry of D onto D′, then f has a quasi-isometric extension to R2 if and only if
D′ is QED and the unbounded complementary components of D and D′ correspond
under f .

Corollary 3.8. If D is a uniform domain in R
2 and f is an injective local quasi-

isometry of D onto D′, then f has a quasi-isometric extension to R2 if and only if D′

is uniform and the unbounded complementary components of D and D′ correspond
under f .

3.7 Quasicircle Domains and Conformal Mappings

Here we give two infinitely connected domains D,D′ in R
2 and a conformal map-

ping f of D onto D′ that has no quasiconformal extension to R
2. This example

(see [82]) shows that the hypothesis that D be finitely connected is essential in
Corollary 3.6. The example is closely connected to the fact that zero-dimensional
sets are not invariant under conformal mapping, i.e., if D = R

2 \E → R
2 is confor-

mal and E is a totally disconnected closed set in R
2, then R

2 \ f (R2 \E) need not
be totally disconnected; see [5].

Theorem 3.7. There exist a compact, totally disconnected set E in R
2 and a con-

formal mapping f of D = R2 \ E onto D′ = B
2 \ F, where F is a closed, totally

disconnected subset of B
2.
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Since D and D′ are 1-quasicircle domains, this theorem yields the desired exam-
ple. The proof of Theorem 3.7 is based on the following results due to Grötzsch (see
also [144]) and to Ahlfors and Beurling Theorem 16 in [5], respectively.

Lemma 3.13. Suppose G is a domain in R2 and that z0 ∈ ∂G \ {∞}. Then the fol-
lowing conditions are equivalent.

(i) limz→z0 f (z) exists for all conformal mappings f of G into R2.

(ii) For each r > 0, modΓ = ∞, where Γ is the family of all closed paths γ in
G∩B(z0,r) that have nonzero winding number about z0.

Lemma 3.14. There exists a compact, totally disconnected set F in R
2 such that

m(F) > 0 and such that limz→z0 f (z) exists for each z0 ∈ F and each conformal

mapping f of R2 \F into R2.

We require the following easy consequence of the above two results.

Corollary 3.9. Suppose that G is a domain in R
2 with m(G) < ∞ and 0 < ε < 1.

Then there exists a compact set E in G such that m(G \E) < εm(G) and such that
limz→z0 f (z) exists for each z0 ∈ E and each conformal mapping f of G\E into R

2.

Proof. Let F be the set described in Lemma 3.14. Since m(F) > 0,F has a point of
density and we can pick an open disk B0 and a compact set E0 ⊂ F ∩B0 such that

m(B0 \E0) <
ε
2

m(B0). (3.20)

Then, from Lemmas 3.13 and 3.14, we see that lim z → z0 f (z) exists for each z0 ∈
E0 and each conformal mapping f of B0 \E0 into R2.

Because m(G) < ∞, we can choose disjoint open disks B j in G, j = 1,2, . . . ,n,
such that

m

(
G\

n⋃
j=1

B j

)
<

ε
2

m(G). (3.21)

Let E j denote the image of E0 under the similarity mapping that carries B0 onto B j.
Then

E =
n⋃

j=1

E j

is a compact subset of G,

m(G\E) = m

(
G\

n⋃
j=1

B j

)
+

n

∑
j=1

m(B j \E j) < ε m(G)

by (3.20) and (3.21), and limz→z0 f (z) exists for each z0 ∈ E and each conformal
mapping f of G\E into R2. 
�
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Proof of Theorem 3.7. For j = 1,2, . . . , let G j = {z : 2−( j+1) < |z| < 2− j} and
let E j denote the compact subset of G j given in Corollary 3.9 corresponding to
ε = 2−3 j. Next, let D = R2 \E, where

E =
∞⋃

j=1

E j ∪{0},

let Γ denote the family of closed paths in D∩B2 that have nonzero winding number
about 0, and set

ρ(z) =
{ 1

2π|z| if z ∈ D∩B2,

0 otherwise.

Then ∫

γ

ρ ds ≥ 1
2π

∣∣∣∣∣∣
∫

γ

dz
z

∣∣∣∣∣∣ = |n(γ,0)| ≥ 1

for each rectifiable path γ in Γ and

mod Γ ≤
∫

R2

ρ2 dm = (2π)−2
∞

∑
j=1

∫

G j\E j

dm

|z|2

≤ (2π)−2
∞

∑
j=1

22( j+1)m(G j \E j) < ∞.

Hence, by Lemma 3.13, there exists a conformal mapping g of D into R
2

such that
limz→0 g(z) does not exist; since D is locally connected at 0, this implies that the
cluster set C(g,0) of g at 0 is a nongenerate continuum. Next, by Corollary 3.9,
limz→z0 g(z) does exist for each z0 ∈ E \ {0}, and hence g has a homeomorphic

extension to R
2 \ {0}. Thus, G = g(R2 \ {0}) is a simply connected subdomain of

R
2 \C(g,0) and the Riemann mapping theorem yields a conformal mapping h of

G onto B2. The conclusion of Theorem 3.7 then follows with f = h ◦ g and F =
f (E \{0}). 
�

3.8 On Weakly Flat and Strongly Accessible Boundaries

We complete this chapter with a new class of domains in R
n, n ≥ 2, which are wider

than the class of QED domains described earlier. The significance of such a type
of domain is that conformal and quasiconformal mappings as well as many of the
generalizations between them admit homeomorphic extensions to their boundary.

The notions of strong accessibility and weak flatness at boundary points of a
domain in R

n defined below are localizations and generalizations of the correspon-
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ding notions introduced in [208,209]; cf. with the properties P1 and P2 by Väisälä in
[316] and also with the quasiconformal accessibility and the quasiconformal flatness
by Näkki in [224]. Lemma 3.15 establishes the relation of weak flatness formulated
in terms of moduli of path families with the general topological notion of local
connectedness on the boundary; see [163].

D

дDдD

U

V

x0

X

Figure 2

Recall that a domain D ⊂ R
n, n ≥ 2, is said to be locally connected at a point

x0 ∈ ∂D if, for every neighborhood U of the point x0, there is a neighborhood V ⊆U
of x0 such that V ∩D is connected [in other words, for every ball B0 = B(x0,r0), there
is a component of connectivity of B0 ∩D that includes B∩D, where B = B(x0,r)
for some r ∈ (0,r0)]. Note that every Jordan domain D in R

n is locally connected at
each point of ∂D; see, e.g., [335], p. 66.

We say that ∂D is weakly flat at a point x0 ∈ ∂D if, for every neighborhood U
of the point x0 and every number P > 0, there is a neighborhood V ⊂U of x0 such
that

M(Δ(E,F;D)) ≥ P (3.22)

for all continua E and F in D intersecting ∂U and ∂V . Here and later on, Δ(E,F;D)
denotes the family of all paths γ : [a,b]→Rn connecting E and F in D, i.e., γ(a)∈E,
γ(b)∈ F , and γ(t)∈ D for all t ∈ (a,b). We say that the boundary ∂D is weakly flat
if it is weakly flat at every point in ∂D.

We also say that a point x0 ∈ ∂D is strongly accessible if, for every neighborhood
U of the point x0, there exist a compactum E, a neighborhood V ⊂ U of x0, and a
number δ > 0 such that

M(Δ(E,F;D)) ≥ δ (3.23)

for all continua F in D intersecting ∂U and ∂V . We say that the boundary ∂D is
strongly accessible if every point x0 ∈ ∂D is strongly accessible.
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Remark 3.13. Here, in the definitions of strongly accessible and weakly flat boun-
daries, one can take as neighborhoods U and V of a point x0 only balls (closed or
open) centered at x0 or only neighborhoods of x0 in another fundamental system of
its neighborhoods. These conceptions can also be extended in a natural way to the
case of Rn, n ≥ 2, and x0 = ∞. Then we must use the corresponding neighborhoods
of ∞.

Proposition 3.1. If a domain D in R
n, n ≥ 2, is weakly flat at a point x0 ∈ ∂D, then

the point x0 is strongly accessible from D.

Proof. Indeed, let U = B(x0,r0) where 0 < r0 < d0 = supx∈D |x−x0| and P0 ∈ (0,∞).
Then, by the condition of weak flatness, there is r ∈ (0,r0) such that

M(Δ(E,F;D)) ≥ P0 (3.24)

for all continua E and F in D intersecting ∂B(x0,r0) and ∂B(x0,r). Choose an ar-
bitrary path connecting ∂B(x0,r0) and ∂B(x0,r) in D as a compactum E. Then,
for every continuum F in D intersecting ∂B(x0,r0) and ∂B(x0,r), inequality (3.24)
holds. 
�

Corollary 3.10. Weakly flat boundaries of domains in R
n, n ≥ 2, are strongly ac-

cessible.

Lemma 3.15. If a domain D in R
n, n ≥ 2, is weakly flat at a point x0 ∈ ∂D, then D

is locally connected at x0.

Proof. Indeed, let us assume that the domain D is not locally connected at the point
x0. Then there is a positive number r0 < d0 = supx∈D |x− x0| such that, for every
neighborhood V ⊆U := B(x0,r0) of x0, one of the following two conditions holds:

(1) V ∩D has at least two connected components K1 and K2 with x0 ∈ K1 ∩K2;
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(2) V ∩D has a sequence of connected components K1, K2, . . ., Km, . . . such that
xm → x0 as m →∞ for some xm ∈ Km. Note that Km ∩∂V �= ∅ for all m = 1,2, . . . in
view of the connectivity of D.

In particular, this is true for the neighborhood V = U = B(x0,r0). Let r∗ be an
arbitrary number in the interval (0,r0). Then, for all i �= j,

M(Δ(K∗
i ,K∗

j ;D)) ≤ M0 :=
|D∩B(x0,r0)|
[2(r0 − r∗)]n

< ∞, (3.25)

where K∗
i = Ki ∩B(x0,r∗) and K∗

j = Kj ∩B(x0,r∗). Note that the following function
is admissible for the path family Γi j = Δ(K∗

i ,K∗
j ;D):

ρ(x) =
{ 1

2(r0−r∗)
for x ∈ B0 \B∗ ,

0 for x ∈ R
n \ (B0 \B∗) ,

where B0 = B(x0,r0) and B∗ = B(x0,r∗) because Ki and Kj as components of con-
nectivity for D ∩ B0 cannot be connected by a path in B0 and hence every path
connecting K∗

i and K∗
j must go through the ring B0 \B∗ at least twice.

However, in view of (1) and (2), we obtain a contradiction between (3.25) and
the weak flatness of ∂D at x0. Indeed, by the condition, there is r ∈ (0,r∗) such that

M(Δ(E,F;D)) ≥ 2M0 (3.26)

for all continua E and F in D intersecting the spheres |x− x0| = r∗ and |x− x0| = r.
By (1) and (2) there is a pair of components Ki0 and Kj0 of D∩B0 that intersect both
spheres. Let us choose points x0 ∈ Ki0 ∩B and y0 ∈ Kj0 ∩B, where B = B(x0,r), and
connect them by a path C in D. Let C1 and C2 be the components of C ∩K∗

i0
and

C∩K∗
j0

including the points x0 and y0, respectively. Then, by (3.25),

M(Δ(C1,C2;D)) ≤ M0

and, by (3.26),
M(Δ(C1,C2;D)) ≥ 2M0.

The contradiction disproves the assumption that D is not locally connected at x0.

�

Corollary 3.11. A domain D in R
n, n ≥ 2, with a weakly flat boundary is locally

connected at every boundary point.

Remark 3.14. As is well known (see, e.g., 10.12 in [316]),

M(Δ(E,F;Rn)) ≥ cn log
R
r

(3.27)

for all sets E and F in R
n, n ≥ 2, intersecting all the spheres S(x0,ρ), ρ ∈ (r,R).

Hence, it follows directly from the definitions that a QED domain has a weakly flat
boundary.
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Corollary 3.12. Every QED domain D in R
n, n ≥ 2, is locally connected at each

boundary point and ∂D is strongly accessible.

By Theorem 3.2, the QED domains coincide with the uniform domains in the
class of finitely connected plane domains. The following example shows that, even
among simply connected plane domains, the class of domains with weakly flat
boundaries is wider than the class of QED domains.The example is based on Lemma
3.5, which says that a QED domain has the measure density property at every bound-
ary point. Furthermore, the example shows that the weaker property on doubling
measure is, generally speaking, not valid for domains with weakly flat boundaries.

Example. Consider a simply connected plane domain D of the form

D =
∞⋃

k=1

Rk,

where
Rk = { (x,y) ∈ R

2 : 0 < x < wk, 0 < y < hk}

is a sequence of rectangles with quickly decreasing widths wk = 2−α2k → 0 as k →
∞, where α > 1/(log2) > 1, and monotonically increasing heights hk = 2−1 + . . .+
2−k → 1 as k → ∞.

y

x

h

h

h

w w w0

1

2

3

123

1

Figure 4

It is easy to see that D has a weakly flat boundary. This fact is not obvious only
for its boundary point z0 = (0,1). According to Remark 3.13, take as a fundamental
system of neighborhoods of the point z0 the rectangles centered at z0:

Pk = { (x,y) ∈ R
2 : |x| < wk, |y−1| ≤ 1−hk−1 = 2−(k−1) },

k = 1,2, . . . . Note that

Pk ∩D =
∞⋃

l=k

Sl
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for all k > 1, where

Sl = {(x,y) ∈ R
2 : 0 < x < wl , hl−1 ≤ y < hl}.

Let E and F be an arbitrary pair of continua in D intersecting ∂Sl , i.e., intersecting
the horizontal lines y = hl−1 and y = hl . Denote by S0

l the interiority of Sl . Then
Δ(E,F,S0

l )⊂ Δ(E,F,D) and Δ(E,F,S0
l ) minorizes the family Γl of all paths joining

the vertical sides of S0
l in S0

l . Hence (see, e.g., Proposition A.1),

M(Δ(E,F,D)) ≥ 2−l/wl ≥ 2(α−1)l → ∞

as l → ∞. Thus, the domain D really has a weakly flat boundary.

Now, set rk = 1−hk−1 = 2−k(1+2−1 + . . .) = 2−(k−1) and Bk = B(z0,rk). Then

lim
k→∞

|D∩Pk|
|D∩Bk|

= 1

because wk/rk ≤ 2−(α−1)k → 0. However,

|D∩Pk| =
∞

∑
l=k

|Sl | =
∞

∑
l=k

wl · (hl −hl−1) =
∞

∑
l=k

wl 2−l ,

and hence

|D∩Pk|
|D∩Pk+1|

=

∞
∑

l=k
wl2−l

∞
∑

l=k+1
wl2−l

=
wk2−k +

∞
∑

l=k+1
wl2−l

∞
∑

l=k+1
wl2−l

= 1 +
1

∞
∑

m=1

wk+m
wk

2−m
≥ 1 +

1
wk+1

wk

= 1 +
wk

wk+1
= 1 + 2α2k → ∞.

Consequently,

lim
k→∞

|D∩Bk|
|D∩Bk+1|

= ∞.

Thus, the domain D does not have the doubling measure property at the point z0 ∈
∂D, and then, by Lemma 3.5, D is not a QED domain.

Finally, we would also like to compare our notions of weak flatness and strong
accessibility with other close notions.

First, we recall the corresponding notions in [209], p. 60. There the weak flatness
of ∂D means that the condition

M(Δ(E,F;D)) = ∞ (3.28)



3.8 On Weakly Flat and Strongly Accessible Boundaries 79

holds for all nondegenerate continua E and F in D with E ∩F �= ∅. Note that (3.28)
always holds if E∩F∩D �= ∅ because of (3.27). It is clear that (3.28) implies (3.22).

The strong accessibility of ∂D in [209] means that

M(Δ(E,F ;D)) > 0 (3.29)

for all nondegenerate continua E and F in D. Note that (3.29) always holds for
continua E and F in D, see Theorem 5.2 in [225].

The property P1 in [316], p. 54, and the quasiconformal flatness of D at a point
x0 ∈ ∂D by Näkki in [224], p. 12, mean that

M(Δ(E,F;D)) = ∞ (3.30)

for all connected sets E and F in D with x0 ∈ E∩F . It easy to see that (3.30) implies
(3.22) for connected sets in D but not only for continua.

The property P2 by Väisälä (or quasiconformal accessibility by Näkki) of D at
x0 ∈ ∂D means that, for every neighborhood U of x0, there are a compactum (con-
tinuum) E ⊂ D and a number δ > 0 such that

M(Δ(E,F ;D)) ≥ δ (3.31)

for all connected sets F in D with x0 ∈ F and F ∩∂U �= ∅. It is easy also to see that
(3.31) implies (3.23) not only for continua but also for connected sets.

We show later that all theorems on a homeomorphic extension to the boundary
of quasiconformal mappings and their generalizations are valid under the condition
of weak flatness of boundaries (3.22). The condition of strong accessibility (3.23)
plays a similar role for a continuous extension of the mappings to the boundary.



Chapter 4
Q-Homeomorphisms with Q ∈ L1

loc

Various modulus inequalities play a great role in the theory of quasiconformal
mappings and their generalizations. Along these lines, we introduced and studied
the concept of Q-homeomorphisms. In this class we study differentiability, ab-
solute continuity, distortion theorems, boundary behavior, removability, and map-
ping problems. Our proofs are based on extremal length methods. In this chap-
ter we give some results for Q-homeomorphisms with locally integrable Q; see,
e.g., [204, 205, 207–209, 282].

4.1 Introduction

Let D be a domain in R
n, n ≥ 2, and let Q : D → [1,∞] be a measurable function.

Recall that a homeomorphism f : D →Rn = R
n⋃{∞} is said to be a Q-homeomor-

phism if

M( fΓ ) ≤
∫

D

Q(x) ·ρn(x) dm(x) (4.1)

for every family Γ of paths in D and every admissible function ρ for Γ .
The subject of Q-homeomorphisms is interesting on its own right and has appli-

cations to many classes of mappings that we also investigate ahead. In particular, the
theory of Q-homeomorphisms can be applied to mappings in local Sobolev classes
(see, e.g., Sections 6.3 and 6.10) to the mappings with finite length distortion (see
Sections 8.6 and 8.7) and to the finitely bi-Lipschitz mappings; see Section 10.6.

The main goal of the theory of Q-homeomorphisms is to clear up various inter-
connections between properties of the majorant Q(x) and the corresponding proper-
ties of the mappings themselves. In this chapter we first study various properties of
Q-homeomorphisms for Q∈ L1

loc. Examples of Q(x)-homeomorphisms are provided
by a class of homeomorphisms f ∈ W1,n

loc having either the locally integrable inner
dilatation KI(x, f ) or the outer dilatation KO(x, f ) ∈ Ln−1

loc (D); see Theorem 4.1. The
base for it is the following statement.

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 4, c© Springer Science+Business Media, LLC 2009



82 4 Q-Homeomorphisms with Q ∈ L1
loc

Proposition 4.1. Let f : D →R
n be a sense-preserving homeomorphism in the class

W 1,n
loc . Then

(i) f is differentiable a.e.,
(ii) f satisfies Lusin’s property (N),
(iii) Jf (x) ≥ 0 a.e.

If, in addition, f−1 ∈W 1,n
loc , in particular, if either KI(x, f )∈ L1

loc or KO(x, f )∈ Ln−1
loc ,

then

(iv) f−1 is differentiable a.e.,
(v) f−1 has the property (N),
(vi) Jf (x) > 0 a.e.

Proof. (i) and (ii) follow from the corresponding results for W 1,n
loc homeomorphisms

by Reshetnyak; see [257] and [258]. In view of (i) and the fact that f is sense-
preserving, (iii) follows by Rado–Reichelderfer [246], p. 333. Finally, if either
KI(x, f ) ∈ L1

loc or KO(x, f ) ∈ Ln−1
loc (D), then f−1 ∈W1,n

loc( f (D)) by Corollary2.3 in
[154] and Theorem 6.1 in [111], correspondingly, and thus (iv)–(vi) follow. 
�

Remark 4.1. Note that by [246] every homeomorphism in R
n is either sense-pre-

serving or sense-reversing. Moreover, the latter can be obtained from the former by
reflections with respect to hyperplanes and conversely. Thus, Proposition 4.1 is also
applicable to the latter but with the opposite sign of the Jacobian.

4.2 Examples of Q-homeomorphisms

The next theorem provides examples of Q-homeomorphisms; cf. Theorem 6.1,
Corollaries 6.4 and 6.5.

Theorem 4.1. Let f : D → R
n be a homeomorphism in the class W 1,n

loc with f−1 ∈
W 1,n

loc , in particular, with either KI(x, f ) ∈ L1
loc or KO(x, f ) ∈ Ln−1

loc . Then, for every
family Γ of paths in D and every ρ ∈ adm Γ ,

M( fΓ ) ≤
∫

D

KI(x, f ) ρn(x) dm(x), (4.2)

i.e., f is a Q-homeomorphism with Q(x) = KI(x, f ).

Proof. Since either KI(x, f ) ∈ L1
loc or KO(x, f ) ∈ Ln−1

loc , we may apply Proposition

4.1. Thus, f−1 ∈ W1,n
loc( f (D)), and hence f−1 ∈ ACLn

loc( f (D)); see, e.g., [215], p.
8. Therefore, by Fuglede’s theorem (see [64] and [316], p. 95), if Γ̃ is the family of
all paths γ ∈ fΓ for which f−1 is absolutely continuous on all closed subpaths of
γ, then M( fΓ ) = M(Γ̃ ). Also, by Proposition 4.1, f−1 is differentiable a.e. Hence,
as in the qc case (see [316], p.110), given a function ρ ∈ admΓ , we let ρ̃(y) =
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ρ( f−1(y))|( f−1)′(y)| for y ∈ f (D) and ρ̃(y) = 0 otherwise. Then we obtain, that for
γ̃ ∈ Γ̃ , ∫

γ̃

ρ̃ ds ≥
∫

f−1◦γ̃

ρ ds ≥ 1,

and consequently ρ̃ ∈ admΓ̃ .
By Proposition 4.1 and Remark 4.1, both f and f−1 are differentiable a.e. and

have the (N)-property and J(x, f ) > 0 a.e., and we may apply the integral transfor-
mation formula to obtain

M( fΓ ) = M(Γ̃ ) ≤
∫

f (D)

ρ̃ndm(y)

=
∫

f (D)

ρ( f−1(y))n|( f−1)′(y))|ndm(y) =
∫

f (D)

ρ( f−1(y))n

l( f ′( f−1(y))n dm(y)

=
∫

f (D)

ρ( f−1(y))nKI( f−1(y), f )J(y, f−1)dm(y) ≤
∫

D

KI(x, f )ρ(x)ndm(x).

The proof follows. 
�

4.3 Differentiability and KO(x, f ) ≤Cn Qn−1(x) a.e.

Theorem 4.2. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a Q-

homeomorphism with Q ∈ L1
loc. Then f is differentiable a.e. in D.

Let us consider the set function Φ(B) = m( f (B)) defined over the algebra of all
the Borel sets B in D. Recall that by the Lebesgue theorem on the differentiability
of nonnegative, subadditive locally finite set functions (see, e.g., III.2.4 in [246] or
23.5 in [316]), there exists a finite limit for a.e. x ∈ D

ϕ(x) = lim
ε→0

Φ(B(x,ε))
Ωnεn , (4.3)

where B(x,ε) is a ball in R
n centered at x ∈ D with radius ε > 0. The quantity ϕ(x)

is called the volume derivative of f at x.

Given x and y ∈ D, we set

L(x, f ) = limsup
y→x

| f (y)− f (x)|
|y− x| . (4.4)

By the Rademacher–Stepanov theorem (see, e.g., [281], p. 311), the proof of Theo-
rem 4.2 is reduced to the following lemma.
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Lemma 4.1. Let D and D′ be domains in R
n, n ≥ 2, and f : D → D′ be a Q-

homeomorphism with Q ∈ L1
loc. Then a.e.

L(x, f ) ≤ γn ϕ
1
n (x) Q

n−1
n (x), (4.5)

where the constant γn depends only on n.

Proof. Consider the spherical ring Rε(x) = {y : ε < |x − y| < 2ε}, x ∈ G, with

ε > 0 such that Rε(x) ⊂ D. Since
(

f B(y,2ε) , f B(y,ε)
)

are ringlike condensers in

D′, according to [71] (cf. also [122] and [293]; see Section A.1),

cap( f B(x,2ε), f B(x,ε)) = M(�(∂ f B(x,2ε),∂ f B(x,ε); f Rε(x)))

and, in view of the homeomorphism of f ,

�(∂ f B(x,2ε) ,∂ f B(x,ε) ; f Rε(x)) = f (�(∂B(x,2ε),∂B(x,ε);Rε(x))) .

Thus, since f is a Q-homeomorphism, we obtain

cap( f B(x,2ε), f B(x,ε)) ≤
∫

G

Q(x) ·ρn(x) dm(x)

for every admissible function ρ of �(∂B(x,2ε),∂B(x,ε);Kε(x)). The function

ρ(x) =
{

1
ε if x ∈ Rε(x),
0 if x ∈ G\Rε(x),

is admissible and, thus,

cap( f B(x,2ε), f B(x,ε)) ≤ 2nΩn

m(B(x,2ε))

∫

B(x,2ε)

Q(y)dm(y). (4.6)

On the other hand, by Lemma 5.9 in [210] (see Section A.2), we have

cap ( f B(x,2ε), f B(x,ε)) ≥
(

Cn
dn( f B(x,ε))
m( f B(x,2ε))

) 1
n−1

, (4.7)

where Cn is a constant depending only on n, and d(A) and m(A) denote the diameter
and Lebesgue measure of a set A in R

n, respectively.

Combining (4.6) and (4.7), we obtain

d( f B(x,ε))
ε

≤ γn

(
m( f B(x,2ε))
m(B(x,2ε))

)1/n

⎛
⎜⎝ 1

m(B(x,2ε))

∫

B(x,2ε)

Q(y)dm(y)

⎞
⎟⎠

(n−1)/n

,

and hence a.e.
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L(x, f ) ≤ limsup
ε→0

d( f B(x,ε))
ε

≤ γnϕ1/n(x)Q(n−1)/n(x).


�

Corollary 4.1. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a

Q-homeomorphism with Q ∈ L1
loc. Then f has locally integrable partial derivatives.

Proof. For L(x, f ) given by (4.4) and a compact set V ⊂ G, we have by (4.5)
∫

V

L(x, f ) dm(x) ≤ γn

∫

V

ϕ1/n(x)Q(n−1)/n(x) dm(x)

and, applying the Hölder inequality (see e.g. (17.3) in [20]) with p = n and q =
n/(n−1), we obtain

∫

V

ϕ1/n(x)Q(n−1)/n(x) dm(x) ≤

⎛
⎝∫

V

ϕ(x) dx

⎞
⎠

1/n⎛
⎝∫

V

Q(x) dm(x)

⎞
⎠

(n−1)/n

.

Finally, in view of Q ∈ L1
loc, by the Lebesgue theorem, we see that

∫

V

L(x, f ) dx ≤ γn (m fV )1/n

⎛
⎝∫

V

Q(x) dm(x)

⎞
⎠

(n−1)/n

< ∞.


�

Corollary 4.2. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a

Q-homeomorphism with Q ∈ L1
loc. Then a.e.

KO(x, f ) ≤ Cn Qn−1(x), (4.8)

where the constant Cn depends only on n.

Remark 4.2. Note also that f−1 has Lusin’s (N)-property and J(x, f ) �= 0 a.e. for
every Q-homeomorphism f with Q ∈ L1

loc. Indeed, by Corollary 4.2,

∫

C

Kn′−1
0 (x, f ) dm(x) ≤ γn

∫

C

Q(n′−1)(n−1)(x, f ) dm(x) = γn

∫

C

Q(x, f ) dm(x) < ∞

(4.9)
for each compact set C in D where 1/n+1/n′ = 1 and γn depends only on n. Thus,
|E| = 0 whenever | f E| = 0 by Corollary 4.3 and [152]. By [244] the latter is equiv-
alent to the condition J(x, f ) �= 0 a.e.
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4.4 Absolute Continuity on Lines and W 1,1
loc

Theorem 4.3. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a Q-

homeomorphism with Q ∈ L1
loc. Then f ∈ ACL.

Proof. Let I = {x ∈ R
n : ai < xi < bi, i = 1, . . . ,n} be an n-dimensional interval in

R
n such that I ⊂ D. Then I = I0 × J, where I0 is an (n− 1)-dimensional interval

in R
n−1 and J is an open segment of the axis xn, J = (an,bn). Next we identify

R
n−1 ×R with R

n. We prove that for almost every segment Jz = {z}×J , z ∈ I0, the
mapping f |Jz is absolutely continuous.

Consider the set function Φ(B) = m( f (B× J)) defined over the algebra of all
the Borel sets B in I0. Note that by the Lebesgue theorem on differentiability for
nonnegative, subadditive locally finite set functions (see, e.g., III.2.4 in [246]), there
is a finite limit for a.e. z ∈ I0

ϕ(z) = lim
r→0

Φ (B(z,r))
Ωn−1rn−1 , (4.10)

where B(z,r) is a ball in I0 ⊂ R
n−1 centered at z ∈ I0 of the radius r > 0.

Let Δi, i = 1,2, . . . , be some enumeration S of all intervals in J such that Δi ⊂ J
and the ends of Δi are rational numbers. Set

ϕi(z) :=
∫

Δi

Q(z,xn)dxn.

Then by the Fubini theorem (see, e.g., III. 8.1 in [281]), the functions ϕi(z) are
a.e. finite and integrable in z ∈ I0. In addition, by the Lebesgue theorem on the
differentiability of the indefinite integral, there is a.e. a finite limit

lim
r→0

Φi(B(z,r))
Ωn−1rn−1 = ϕi(z), (4.11)

where Φi for a fixed i = 1,2, . . . is the set function

Φi(B) =
∫

B

ϕi(ζ )dm(ζ )

given over the algebra of all the Borel sets B in I0.

Let us show that the mapping f is absolutely continuous on each segment Jz,z ∈
I0, where the finite limits (4.10) and (4.11) exist. Fix one such point z. We have
to prove that the sum of diameters of the images of an arbitrary finite collection
of mutually disjoint segments in Jz = {z}× J tends to zero together with the total
length of the segments. In view of the continuity of the mapping f , it suffices to
verify this fact only for mutually disjoint segments with rational ends in Jz. So, let
Δ ∗

i = {z}×Δi ⊂ Jz, where Δi ∈ S, i = 1, . . . ,k under the corresponding renumbering
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of S, are mutually disjoint intervals. Without loss of generality, we may assume that
Δi , i = 1, . . . ,k, are also mutually disjoint.

Let δ > 0 be an arbitrary rational number that is less than half of the minimum
of the distances between Δ ∗

i , i = 1, . . . ,k, and also less than their distances to the
endpoints of the interval Jz. Let Δ ∗

i = {z}× [αi,βi] and Ai = Ai(r) = B(z,r)× (αi −
δ ,βi +δ ), i = 1, . . . ,k, where B(z,r) is an open ball in I0 ⊂ R

n−1 centered at point
z of the radius r > 0. For small r > 0, (Ai,Δ ∗

i ), i = 1, . . . ,k, are ringlike condensers
in I , hence ( f Ai, fΔ ∗

i ), i = 1, . . . ,k, are also ringlike condensers in D′.

According to [71] (cf. also [122] and [293]; see Section A.1),

cap( f Ai, fΔ ∗
i ) = M (�(∂ f Ai, fΔ ∗

i ; f Ai))

and, in view of the homeomorphism of f ,

�(∂ f Ai, fΔ ∗
i ; f Ai) = f (�(∂Ai,Δ ∗

i ;Ai)) .

Thus, since f is a Q-homeomorphism, we obtain

cap( f Ai, fΔ ∗
i ) ≤

∫

D

Q(x) ·ρn(x) dm(x)

for every function ρ ∈ adm�(∂Ai,Δ ∗
i ;Ai). In particular, the function

ρ(x) =
{

1
r , x ∈ Ai,
0, x ∈ R

n \Ai

is admissible under r < δ and, thus,

cap( f Ai, fΔ ∗
i ) ≤ 1

rn

∫

Ai

Q(x)dm(x) . (4.12)

On the other hand, by Lemma 5.9 in [210] (see Section A.2),

cap( f Ai, fΔ ∗
i ) ≥

(
Cn

dn
i

mi

) 1
n−1

, (4.13)

where di is a diameter of the set fΔ ∗
i , mi is a volume of the set f Ai, and Cn is a

constant depending only on n.

Combining (4.12) and (4.13), we have the inequalities

(
dn

i

mi

) 1
n−1

≤ cn

rn

∫

Ai

Q(x) dm(x) , i = 1, . . . ,k (4.14)

where the constant cn depends only on n.
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By the discrete Hölder inequality (see, e.g., (17.3) in [20] with p = n/(n−1) and

q = n, xk = dk/m1/n
k and yk = m1/n

k ), we obtain

k

∑
i=1

di ≤
(

k

∑
i=1

(
dn

i

mi

) 1
n−1
) n−1

n
(

k

∑
i=1

mi

) 1
n

, (4.15)

i.e., (
k

∑
i=1

di

)n

≤
(

k

∑
i=1

(
dn

i

mi

) 1
n−1
)n−1

Φ(B(z,r)) , (4.16)

and in view of (4.14),

(
k

∑
i=1

di

)n

≤ γn
Φ(B(z,r))
Ωn−1rn−1

⎛
⎜⎝

k

∑
i=1

∫
Ai

Q(x)dm(x)

Ωn−1rn−1

⎞
⎟⎠

n−1

, (4.17)

where γn depends only on n. First letting r → 0 and then δ → 0, we get by
Lebesgue’s theorem that

(
k

∑
i=1

di

)n

≤ γnϕ(z)

(
k

∑
i=1

ϕi(z)

)n−1

. (4.18)

Finally, in view of (4.18), the absolute continuity of the indefinite integral of Q
over the segment Jz implies the absolute continuity of the mapping f over the same
segment. Hence, f ∈ ACL. 
�

Corollary 4.3. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a

Q-homeomorphism with Q ∈ L1
loc. Then f belongs to W 1,1

loc .

The conclusion follows by Theorem 4.3 and Corollary 4.1; see also [215].

Remark 4.3. By the way, from the proof of Theorem 4.3, the estimate of the variation
of the mapping f on the segment Iz and the length of the path f Iz follow:

l( f Iz) ≤ γ∗n ϕ
1
n (z)

⎛
⎝

bn∫

an

Q(z,xn) dxn

⎞
⎠

n−1
n

, (4.19)

where the constant γ∗n depends only on n and the function ϕ(z) is defined by (4.10).
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4.5 Lower Estimate of Distortion

Theorem 4.4. Let f : B
n → Rn be a Q-homeomorphism with Q ∈ L1(Bn), f (0) = 0,

h(Rn \ f (Bn)) ≥ δ > 0, and h( f (x0), f (0)) ≥ δ for some x0 ∈ B
n. Then, for all

|x| < r = min(|x0|/2,1−|x0|),

| f (x)| ≥ ψ(|x|), (4.20)

where ψ(t) is a strictly increasing function with ψ(0) = 0 that depends only on the
L1-norm of Q in B

n, n, and δ .

Proof. Given y0 with |y0|< r, choose a continuum E1 that contains the points 0 and
x0 and a continuum E2 that contains the points y0 and ∂B

n, so that dist(E1,E2 ∪
∂B

n) = |y0|. More precisely, denote by L the straight line generated by the pair of
points 0 and x0 and by P the plane defined by the triple of the points 0, x0, and
y0 (if y0 ∈ L, then P is an arbitrary plane passing through L). Let C be the circle
under the intersection of P and the sphere Sn−1(y0, |y0|) ⊂ Bn(|x0|). Let t0 be the
tangency point to C of the ray starting from x0 that is opposite to y0 with respect to
L (an arbitrary one of the two possible if y0 ∈ L). Then E1 = [x0, t0]∪ γ(0, t0), where
γ(0, t0) is the shortest arc of C joining 0 and t0, and E2 = [y0, i0]∪ Sn−1, where
Sn−1 = ∂B

n is the unit sphere and i0 is the point (opposite to t0 with respect to L)
of the intersection of Sn−1 with the straight line in P, that is perpendicular to L and
passes through y0.

Let Γ denote the family of paths that join E1 and E2. Then

ρ(x) = |y0|−1 χBn(x) ∈ adm Γ ,

and hence,

M( fΓ ) ≤
∫
ρn(x)Q(x) dm(x) (4.21)

≤ |y0|−n
∫

Bn

Q(x) dm(x) =
||Q||1
|y0|n

.

The ring domain A′ = f (Bn\(E1∪E2)) separates the continua E ′
1 = f (E1) and E ′

2 =
Rn\ f (Bn\E2), and since

h(E ′
1) ≥ h( f (x0), f (0)) ≥ δ , h(E ′

2) ≥ h(Rn\ f (Bn)) ≥ δ

and
h(E ′

1,E
′
2) ≤ h( f (y0), f (0),

it follows that
M( f (Γ )) ≥ λ (h( f (y0), f (0))), (4.22)

where λ (t) = λn(δ , t) is a strictly decreasing positive function with λ (t) → ∞ as
t → 0 (see 12.7 in [316]). Hence, by (4.21) and (4.22),



90 4 Q-Homeomorphisms with Q ∈ L1
loc

| f (y0)| > h( f (y0), f (0)) ≥ ψ(|y0|),

where ψ(t) = λ−1
(
||Q||1

tn

)
has the required properties. 
�

4.6 Removal of Singularities

Theorem 4.5. Let f : B
n \{0}→ R

n be a Q-homeomorphism. If

limsup
r→0

1
|Bn(r)|

∫

Bn(r)

Q(x)dm(x) < ∞, (4.23)

then f has an extension to B
n that is a Q-homeomorphism.

Proof. As the modulus of a family of paths that pass through the origin vanishes,
it suffices to show that f has a continuous extension to B

n. Suppose that this is not
the case. Since f is a homeomorphism, Rn \ f (Bn \{0}) consists of two connected
compact sets F1 and F2 in Rn, where F1 contains the cluster set E =C(0, f ) of f at 0.
Here F1 is a nondegenerate continuum. Using an arbitrary Möbius transformation,
we may assume that F1 ⊂ R

n. U = F1 ∪ f (Bn \{0}) is a neighborhood of E. Thus,
there exists δ > 0 such that all balls Bz = Bn(z,δ ),z ∈ F1, are contained in U . Let
V = ∪Bz.

Now, choose a point y∈F1 such that dist(y,∂V ) = δ , and a point z∈By\F1. Next,
choose a path β : [0,1]→ By with β (0) = y,β (1) = z and β (t)∈ By \F1 for t ∈ (0,1].
Let α = f−1 ◦β . For r ∈ (0, | f−1(z)|), let αr denote the connected component of the
path α(I)\Bn(r), I = [0,1], that contains the point f−1(z) = α(1), and let Γr denote
the family of all paths joining αr and the point 0 in B

n \ {0}. Then the function
ρ(x) = 1/r if x ∈ Bn(r)\{0} and ρ = 0 otherwise is in adm Γr, and by (4.23),

limsup
r→0

∫

Bn(r)\{0}

Q(x) ρn(x) dm(x) (4.24)

= Ωn limsup
r→0

1
|Bn(r)|

∫

Bn(r)\{0}

Q(x) dm(x) < ∞.

On the other hand, if Γ ′
r denotes the family of all paths joining two continua f (αr)

and E in By \E, then Γ ′
r ⊂ f (Γr), and thus

M(Γ ′
r ) ≤ M( fΓr). (4.25)

Evidently, dist( f (αr),E) → 0, and the diameter of f (αr) increases as r → 0. As
both f (αr) and E are subsets of a ball, M( fΓr) → ∞ as r → 0. This, together with
(4.24) and (4.25), contradicts the modulus inequality (4.1). 
�
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4.7 Boundary Behavior

Theorem 4.6. Let D and D′ be domains in R
n, n ≥ 2, and let f be a Q-homeomor-

phism of D onto D′ with Q ∈ L1(D). If D is locally connected at ∂D and ∂D′ is
weakly flat, then f−1 has a continuous extension to D′.

It is necessary to stress here that the extension problem for the direct mappings f
has a more complicated nature; see Chapter 5 and 6 and, especially, the example in
Proposition 6.3. The proof of this theorem is reduced to the following lemma.

Lemma 4.2. Let D and D′ be domains in R
n and let f a Q-homeomorphism of D

onto D′ with Q ∈ L1(D). If D is locally connected at ∂D and ∂D′ is weakly flat, then
C(x1, f )∩C(x2, f ) = /0 for every two distinct points x1 and x2 in ∂D.

Proof. Without loss of generality, we may assume that the domain D is bounded.
For i = 1,2, let Ei denote the cluster sets C(xi, f ) and suppose that E1 ∩E2 �= /0.

Write d = |x1 −x2|. Since D is locally connected in ∂D, there are neighborhoods
Ui of xi such that Wi = D∩Ui are connected and Ui ⊂ Bn(xi,d/3), i = 1,2. Then
the function ρ(x) = 3/d if x ∈ D∩Bn((x1 + x2)/2,d) and ρ(x) = 0 elsewhere is
admissible for the family Γ = Γ (W1,W2;D). Thus,

M( fΓ ) ≤
∫

D

Q(x)ρn(x) dm(x) ≤ 3n

dn

∫

D

Q(x) dm(x) < ∞. (4.26)

The last estimate contradicts, however, the weak flatness condition of ∂D′ if there
is a point y0 ∈ E1 ∩E2. Indeed, then y0 ∈ fW1 ∩ fW2 and, in the domains W ∗

1 =
fW1 and W ∗

2 = fW2, there exist paths intersecting arbitrary small prescribed spheres
|y− y0| = r0 and |y− y0| = r∗. Thus, the assumption that E1 ∩E2 �= /0 was not true.


�

In particular, by Theorem 4.6, we obtain the following important conclusion.

Theorem 4.7. Let D and D′ be domains in R
n, n ≥ 2. If D′ is locally connected at

∂D′ and ∂D is weakly flat, then any quasiconformal mapping f : D → D′ admits a
continuous extension to the boundary f : D → D′.

Combining Theorem 4.7 with Lemma 3.15, we come to the following statement.

Corollary 4.4. If D and D′ are domains with weakly flat boundaries, then any qua-
siconformal mapping f : D → D′ admits a homeomorphic extension f : D → D′.

Note that these results on the extension to weakly flat boundaries are new even for
the class of conformal mappings in the plane. Here we do not assume that domains
are simply connected.



92 4 Q-Homeomorphisms with Q ∈ L1
loc

4.8 Mapping Problems

We may consider the following two questions.

(a) Are there any proper subsets of R
n that can be mapped under a Q-homeomor-

phism with Q ∈ L1
loc onto R

n ?

(b) Are there any nondegenerate continua E in B
n such that B

n \E can be mapped
under a Q-homeomorphism with Q ∈ L1

loc onto B
n \{0}?

Here we give partial answers to these questions; see also the next chapter.

Theorem 4.8. Let D be a domain in R
n,D �= R

n, n ≥ 2, and f : D → R
n a Q-

homeomorphism. If there exist a point b ∈ ∂D and a neighborhood U of b such
that Q|D∩U ∈ L1, then f (D) �= R

n.

Proof. The statement is trivial if D is not a topological ball. Suppose that D is a
topological ball. By the Möbius invariance, we may assume that b = 0 and ∞ ∈ ∂D.
Let r > 0 be such that Bn(r) ⊂ U . Then Q is integrable in Bn(r)∩D. Choose two
arcs E and F in Bn(r/2)∩D each having exactly one endpoint in ∂D such that
0 < dist(E,F) < r/2. Such arcs exist. Indeed, since ∂D is connected and 0 and ∞
belong to ∂D, the sphere ∂Bn(r/2) meets ∂D and contains a point x0 that belongs to
D. Then one can take E as a maximal line segment in (0,x0]∩D with one endpoint
at x0 and the other one in ∂D, and F as a circular arc in the maximal spherical cap
in ∂Bn(r/2)∩D that is centered at x0, so that F has one end-point in ∂D and the
other one in D.

Now, let Γ denote the family of all paths that join E and F in D. Then ρ(x) =
dist(E,F)−1 if x ∈ Bn(r)∩D and ρ(x) = 0 otherwise is admissible for Γ . Then, by
(4.1),

M( fΓ ) ≤
∫

D

Qρn dm ≤ 1
dist(E,F)n

∫

Bn(r)∩D

Q dm < ∞. (4.27)

On the other hand, if f (D) = R
n, then f (E) and f (F) meet at ∞ and fΓ is the family

of paths joining f (E) and f (F) in R
n. Thus, M( fΓ ) = ∞. The contradiction shows

that f (D) �= R
n. 
�

By the techniques used in the proof of Theorem 4.8, one can establish the fol-
lowing.

Theorem 4.9. Let E be a nondegenerate continuum in B
n, D = B

n \E, and f : D →
R

n a Q-homeomorphism. If there exist a point x0 ∈ ∂D∩B
n and a neighborhood U

of x0 such that Q|D∩U ∈ L1, then f (D) is not a punctured topological ball.

Corollary 4.5. Let E be a nondegenerate continuum in B
n and Q∈ L1(Bn\E). Then

there exists no Q-homeomorphism of B
n \E onto B

n \{0}.



Chapter 5
Q-homeomorphisms with Q in BMO

Spatial BMO-quasiconformal mappings satisfy a special modulus inequality that
was used in the previous chapter to define the class of Q-homeomorphisms. In this
chapter we study distortion theorems, boundary behavior, removability, and map-
ping problems for Q-homeomorphisms with Q ∈ BMO; see [204–209].

5.1 Introduction

Given a function Q : D → [1,∞], we say that a sense-preserving homeomorphism
f : D → R

n is Q(x)-quasiconformal, abbr. Q(x)-qc, if f ∈W1,n
loc(D) and

K(x, f ) ≤ Q(x) a.e. (5.1)

We say that f : D → R
n is BMO-quasiconformal, abbr. BMO-qc, if f is Q(x)-qc

for some BMO function Q : D → [1,∞]. Here BMO stands for the function space by
John and Nirenberg [140]; see also [255] and Section B.

By Corollary B.1 and Theorem 4.1, we have the following conclusion.

Corollary 5.1. Every BMO-qc mapping is a Q-homeomorphism with some Q ∈
BMO.

Since L∞(D) ⊂ BMO, the class of BMO-qc mapings obviously contains all qc
mappings. We show that many properties of qc mappings hold for BMO-qc map-
pins. Note that Q-homeomorphisms, Q(x)-qc and BMO-qc mappings are Möbius
invariants, and hence the concepts are extended to mappings f : D→Rn = R

n∪{∞}
as in the standard qc theory.

The study of related maps for n = 2 was started by David [48] and Tukia [310].
Recently, Astala, Iwaniec, Koskela, and Martin considered mappings with dilatation
controlled by BMO functions for n ≥ 3; see, e.g., [19]. It is necessary to note the
activity of the related investigations of mappings of finite distortion; see, e.g., [131,

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 5, c© Springer Science+Business Media, LLC 2009
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132, 134, 147, 148, 153, 156, 195, 196]. This chapter is a continuation of our study
of BMO–qc mappings in the plane [271–274] (see also [9, 284, 298]) and a similar
geometric approach is used throughout.

The following lemma provides the standard lower bound for the modulus of all
paths joining two continua in R

n; see [71] or Corollary 7.37 in [328] or Section A.1.
The lemma involves the constant λn, which depends only on n and appears in the
asymptotic estimates of the modulus of the Teichmüller ring Rn(t) = R

n \ ([−1,0]∪
[t,∞]), t > 0.

Lemma 5.1. Let E and F be two continua in Rn, n ≥ 2, with h(E) ≥ δ1 > 0 and
h(F) ≥ δ2 > 0, and let Γ be the family of paths joining E and F. Then

M(Γ ) ≥ ωn−1

(log 2λn
δ1δ2

)n−1
, (5.2)

where ωn−1 is the (n−1)-measure of the unit sphere Sn−1 in R
n.

5.2 Main Lemma on BMO

Lemma 5.2. Let Q be a positive BMO function in B
n,n ≥ 3, and let A(t) = {x ∈

R
n : t < |x| < e−1}. Then, for all t ∈ (0,e−2),

∫

A(t)

Q(x)dm(x)
(|x| log 1/|x|)n ≤ c, (5.3)

where c = c1||Q||∗+c2Q1, and c1 and c2 are positive constants that depend only on
n. Here ||Q||∗ is the BMO norm of Q and Q1 is the average of Q over Bn(1/e).

Proof. Fix t ∈ (0,e−2) and set

η(t) =
∫

A(t)

Q(x)dm(x)
(|x| log 1/|x|)n . (5.4)

For k = 1,2, . . . , write tk = e−k, Ak = {x ∈ R
n : tk+1 < |x| < tk},Bk = Bn(tk), and

let Qk be the mean value of Q(x) in Bk. Choose an integer N such that tN+1 ≤ t < tN .
Then A(t) ⊂ A(tN+1) = ∪N+1

k=1 Ak and

η(t) ≤
∫

A(tN+1)

Q(x)
|x|n logn 1/|x|dm(x) = S1 +S2, (5.5)

where

S1 =
N+1

∑
k=1

∫

Ak

Q(x)−Qk

|x|n logn 1/|x|dm(x) (5.6)
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and

S2 =
N+1

∑
k=1

Qk

∫

Ak

dm(x)
|x|n logn 1/|x| . (5.7)

Since Ak ⊂ Bk, and for x ∈ Ak, |x|−n ≤Ωnen/|Bk|, where Ωn = |Bn|, and since
log1/|x| > k, it follows that

|S1| ≤Ωn

N+1

∑
k=1

1
kn

en

|Bk|

∫

Bk

|Q(x)−Qk|dx ≤Ωnen||Q||∗
N+1

∑
k=1

1
kn

and, thus,
|S1| ≤ 2Ωnen||Q||∗ (5.8)

because, for p ≥ 2,
∞

∑
k=1

1
kp < 2. (5.9)

To estimate S2, we first obtain from the triangle inequality

Qk = |Qk| ≤
k

∑
l=2

|Ql −Ql−1|+Q1. (5.10)

Next we show that, for l ≥ 2,

|Ql −Ql−1| ≤ en||Q||∗. (5.11)

Indeed,

|Ql −Ql−1| =
1
|Bl |

∣∣∣∣∣∣
∫

Bl

(Q(x)−Ql−1)dm(x)

∣∣∣∣∣∣
≤ en

|Bl−1|

∫

Bl−1

|Q(x)−Ql−1|dm(x) ≤ en||Q||∗.

Thus, by (5.10) and (5.11),

Qk ≤ Q1 +
k

∑
l=2

en||Q||∗ ≤ Q1 + ken||Q||∗, (5.12)

and, since ∫

Ak

dm(x)
|x|n logn 1/|x| ≤

1
kn

∫

Ak

dm(x)
|x|n = ωn−1

1
kn , (5.13)

where ωn−1 is the (n−1)-measure of Sn−1, it follows that
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S2 ≤ ωn−1

N+1

∑
k=1

Qk

kn ≤ ωn−1Q1

N+1

∑
k=1

1
kn +ωn−1en||Q||∗

N+1

∑
k=1

1

k(n−1) .

Thus, for n ≥ 3, we have by (5.9) that

S2 ≤ 2ωn−1Q1 +2ωn−1en||Q||∗. (5.14)

Finally, from (5.8) and (5.14), we obtain (5.3), where c = c1Q1 +c2||Q||∗, and c1

and c2 are constants that depend only on n. 
�

Remark 5.1. It is easy to follow by the above proof that in the case n = 2,

∫

A(t)

ϕ(x)dm(x)(
|x| log 1

|x|

)2 = O

(
log log

1
t

)
(5.15)

as t →∞. For n ≥ 2, 0 < t < e−2, and A(t) as in Lemma 5.2, let Γt denote the family
of all paths joining the spheres |x| = t and |x| = e−1 in A(t). Then the function ρ
given by

ρ(x) =
1

(log log1/t)|x| log1/|x| (5.16)

for x ∈ A(t) and ρ(x) = 0 otherwise belongs to adm Γt .

5.3 Upper Estimate of Distortion

Theorem 5.1. Let f : B
n → Rn be a Q-homeomorphism with Q ∈ BMO(Bn). If

h(Rn \ f (Bn(1/e))) ≥ δ > 0, then for all |x| < e−2,

h( f (x), f (0)) ≤ C
(log1/|x|)α , (5.17)

where C and α are positive constants that depend only on n,δ , the BMO norm ||Q||∗
of Q, and the average Q1 of Q over the ball |x| < 1/e.

Proof. Fix t ∈ (0,e−2). Let A(t),Γt , and ρ be as in Remark 5.1 and let δt =
h( f (Bn(t))). Then, by Remark 5.1, ρ ∈ adm Γt , and

M( fΓt) ≤
∫

Rn

Qρndm. (5.18)

In view of (5.3) (see also Remark 5.1),
∫

Rn

Qρndm =
∫

A(t)

Qρndm ≤ c
(log log1/t)n−1 , (5.19)
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where c is the constant from Lemma 5.2. On the other hand, Lemma 5.1 applied to
M( fΓt) with E = f (Bn(t)) and F = Rn \ f (Bn(1/e)) yields

M( fΓt) ≥
ωn−1

(log 2λn
δδt

)n−1
, (5.20)

and the result follows by (5.18)–(5.20) and from the fact that h( f (x), f (0)) ≤ δt for
|x| = t. 
�

Corollary 5.2. Let F be a family of Q-homeomorphisms f : D → R
n, with Q ∈

BMO(D), and let δ > 0. If every f ∈ F omits two points a f and b f in R
n with

h(a f ,b f ) ≥ δ , then F is equicontinuous.

5.4 Removal of Isolated Singularities

Theorem 5.2. Let f : B
n \{0} → R

n be a Q-homeomorphism with Q ∈ BMO(Bn \
{0}). Then f has a Q(x)-homeomorphic extension to B

n.

Proof. Fix t ∈ (0,e−2) and let A(t),Γt , and ρ be as in Remark 5.1. Then, by Lemma
5.1,

ωn−1

(log 2λn
δδt

)n−1
≤ M( fΓt) ≤

∫

A(t)

Qρndm, (5.21)

where δ = h( f (∂Bn(e−1))) and δt = h( f (∂Bn(t))). Since isolated singularities are
removable for BMO functions (see [255]), we may assume that Q is defined in B

n

and that Q ∈ BMO(Bn). Thus, by Lemma 5.2 and Remark 5.1,
∫

A(t)

Q(x)ρndm ≤ c
(log log1/t)n−1 . (5.22)

Since here c depends only on n, ||Q||∗, and Q1 = QBn(1/e), we obtain by (5.21)–
(5.22) that δt → 0 as t → 0, and hence that lim

x→0
f (x) exists. 
�

Corollary 5.3. If f : R
n → R

n is a BMO-qc mapping, then f has a homeomorphic
extension to Rn and, in particular, f (Rn) = R

n.

5.5 On Boundary Correspondence

Lemma 5.3. Let D and D′ be domains in R
n, n ≥ 2, and let f : D → D′ be a Q-

homeomorphism with Q ∈ BMO(D). If D is locally connected at ∂D and ∂D′ is
strongly accessible, then f has a continuous extension f̃ : D → D

′
.
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Proof. Let x0 ∈ ∂D. As BMO functions and Q-homeomorphisms are Möbius in-
variant, we may assume that x0 = 0. We will show that the cluster set E = C(0, f )
of f at 0 is a point that will prove that f (x) has a limit at 0. We may also assume
that 0 ∈ E. Note that E �= ∅ in view of the compactness of Rn.

Now, let us assume that there is one more point y∗ ∈ E. Set U = B(r0) = B(0,r0),
where 0 < r0 < |y∗|.

By the local connectivity of D at ∂D, there is a sequence of neighborhoods Vm of
0 with connected Dm = D∩Vm and δ (Vm) → 0 as m → ∞. Choose in the domains
D′

m = f Dm points ym and y∗m with |ym| < r0 and |y∗m| > r0, ym → 0 and y∗m → y∗ as
m →∞. Let Cm be paths connecting ym and y∗m in D′

m. Note that by the construction,
∂U ∩Cm �= ∅.

By the condition of the strong accessibility of ∂D′, there are compactum C in D′

and a number δ > 0 such that

M(Δ(C,Cm;D′)) ≥ δ

for large m. Note that K = f−1C is a compactum in D and hence ε0 = dist(0,K) > 0.
Set δ0 = min{ε0,1/e}.

Let Γt be the family of all paths joining K with the ball B(t) in D. As in Lemma
5.2, we let A(t) denote the spherical ring t < |x|< δ0. Then the function ρ(x) defined
in (5.16) is admissible for Γt , and hence

M( fΓt) ≤
∫

D

Q(x)ρn(x)dm(x). (5.23)

For Q ∈ BMO(D), by Lemma 5.2 and Remark 5.1,
∫

D

Q(x)ρn(x)dm(x) =
∫

A(t)

Q(x)ρn(x)dm(x) → 0 (5.24)

as t → 0. On the other hand, for every fixed t ∈ (0,δ0), Dm ⊂B(t), hence Cm ⊂ f B(t)
for large m, and thus

M( fΓt) ≥ M(Δ(C,Cm;D′)) ≥ δ . (5.25)

The obtained contradiction disproves the assumption that E contains more than
one point. 
�

Combining Lemma 5.3 and Theorem 4.6, we obtain the following.

Corollary 5.4. Let f : D → D′ ⊂ R
n be a Q-homeomorphism onto D′ with Q ∈

BMO(D). If D locally connected at ∂D and ∂D′ is weakly flat, then f has a homeo-
morphic extension f̃ : D → D′.

By Lemma 3.15, we also obtain the following corollary.
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Corollary 5.5. Let f : D → D′ ⊂ R
n be a Q-homeomorphism onto D′ with Q ∈

BMO(D). If ∂D and ∂D′ are weakly flat, then f has a homeomorphic extension
f̃ : D → D′.

These and the next theorems extend the known Gehring–Martio results (see
[81], p. 196, and [214], p. 36) from qc mappings to Q-homeomorphisms with
Q ∈ BMO(D) and to BMO-qc mappings, respectively.

Theorem 5.3. Let f : D → D′ be a Q-homeomorphism between QED domains D
and D′ with Q ∈ BMO(D). Then f has a homeomorphic extension f̃ : D → D′.

Theorem 5.4. Let f : D → D′ be a BMO-qc mapping between uniform domains D
and D′. Then f has a homeomorphic extension f̃ : D → D′.

Corollary 5.6. Let f : D → D′ be a BMO-qc mapping between bounded convex
domains D and D′. Then f has a homeomorphic extension f̃ : D → D′.

Corollary 5.7. If D is a domain in R
n that is locally connected at ∂D and D is not

a Jordan domain, then D cannot be mapped onto B
n by a Q-homeomorphism with

Q ∈ BMO(D).

Corollary 5.8. If a domain D in R
n is uniform but not Jordan, then there is no

BMO-qc mapping of D onto B
n.

In Section 5.7, for every n ≥ 3, we give an example of a uniform domain that is
not Jordan although it is a topological ball inside B

n.

5.6 Mapping Problems

In Section 5.4 we showed that there are no BMO-qc mappings of R
n onto a proper

subset of R
n, nor BMO-qc mappings of a punctured ball onto a domain that has two

nondegenerate boundary components. We may consider the following two ques-
tions.

(a) Are there any proper subsets of R
n that can be mapped BMO-quasiconformally

onto R
n?

(b) Are there any nondegenerate continua E in B
n such that B

n \E can be mapped
BMO-quasiconformally onto B

n \{0}?

In [273] we showed that the answer to these questions is negative if n = 2. The
proofs were based on the Riemann mapping theorem and on the existence of a
homeomorphic solution to the Beltrami equation

wz = μ(z)wz
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for measurable functions μ with ||μ ||∞ ≤ 1 that satisfy (1 + |μ(z)|)/(1−|μ(z)|) ≤
Q(z) a.e. for some BMO function Q. One may modify questions (a) and (b), sub-
stituting the word “BMO-quasiconformally” for “by a Q-homeomorphism.” Ahead,
we provide a negative answer to questions (a) and (b) in some special cases when
n > 2.

We say that a proper subdomain D of R
n is an L1-BMO domain if u ∈ L1(D)

whenever u ∈ BMO(D). Evidently, D is an L1-BMO domain if D is a bounded
uniform domain. By [299], pp. 106–107, cf. [94], p. 69, D is an L1-BMO domain if
and only if kD(·,x0) ∈ L1(D) where kD is the quasihyperbolic metric on D,

kD(x,x0) = inf
γ

∫

γ

ds
d(y,∂D)

, (5.26)

where ds denotes the Euclidean length element, d(y,∂D) denotes the Euclidean
distance from y ∈ D to ∂D, and the infimum is taken over all rectifiable paths γ ∈ D
joining x to x0. L1-BMO domains are not invariant under quasiconformal mappings
of R

n, but they are invariant under quasi-isometries; see [299], pp. 119 and 112.

In particular, every John domain is an L1-BMO domain; see Theorem 3.14 in
[299], p. 115. A domain D ⊂ R

n is called a John domain if there exist 0 < α ≤
β < ∞ and a point x0 ∈ D such that, for every x ∈ D, there is a rectifiable path
γ : [0, l] → D parameterized by arc length such that γ(0) = x, γ(l) = x0, l ≤ β , and

d(γ(t),∂D) ≥ α
l
· t (5.27)

for all t ∈ [0, l]. A John domain need not be uniform, but a bounded uniform domain
is a John domain; see [212], p. 387. Note also that John domains are invariant under
qc mappings of R

n; see [212], p. 388. A convex domain D is a John domain if and
only if D is bounded. For various characterizations of John domains, see [106, 212,
226].

More generally, the Hölder domains are also L1-BMO domains. A domain D ⊂
R

n is said to be a Hölder domain if there exist x0 ∈ D, δ ≥ 1, and C > 0 such that

kD(x,x0) ≤C +δ · log
d(x0,∂D)
d(x,∂D)

(5.28)

for all x∈D. It is known that D is a Hölder domain if and only if the quasihyperbolic
metric kD(x,x0) is exponentially integrable in D; see [295]. Thus, a Hölder domain
is also an L1-BMO domain.

As a consequence of Theorem 4.8, we have the following corollaries, which say
that a proper subdomain D of R

n having a nice boundary at least at one point of ∂D
cannot be mapped BMO-quasiconformally onto R

n.
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Corollary 5.9. Let D be a domain in R
n,D �= R

n, n ≥ 2, and let f : D → R
n be a

Q-homeomorphism with Q ∈ BMO(D). If there exist a point b ∈ ∂D and a neigh-
borhood U of b such that D∩U is an L1-BMO domain or, in particular, ∂ (D∩U)
is a quasisphere, then f (D) �= R

n.

Remark 5.2. In particular, Theorem 4.8 implies that if a BMO-qc mapping f of D is
onto R

n, then either D = R
n or the domain D cannot be (even locally at a boundary

point) convex, uniform, John, or Hölder.

By Theorem 4.9, we are able to give partial answers to (b).

Corollary 5.10. Let E be a nondegenerate continuum in B
n and D = B

n \E. If there
exist a point x0 ∈ ∂D∩B

n and a neighborhood U of x0 such that U \E is an L1-
BMO domain or, in particular, ∂ (U \E) is a quasisphere, then D cannot be mapped
BMO-quasiconformally onto B

n \{0}.

Remark 5.3. As we mentioned above, the condition Q|D∩U ∈ L1 for Q ∈ BMO(D)
in Theorems 4.8 and 4.9 has the explicit characterization in terms of integrability
of the quasihyperbolic metric kD∩U . In particular, there exist examples in which
kD∩U ∈ L1 under |∂D ∩U | > 0 (see [299]), although the latter is impossible for
convex, uniform, QED, as well as John domains; see [202], p. 204, [81], p. 189,
and [214], p. 33.

5.7 Some Examples

We say that a domain D in R
n, n ≥ 2, is a quasiball, respectively, BMO-quasiball,

if there exists a homeomorphism of D onto B
n that is qc, respectively, BMO-qc . We

say that a set S in Rn is a quasisphere, respectively, BMO-quasisphere, if there
exists a qc mapping, respectively, BMO-qc mapping, f of Rn onto itself such that
f (S) = ∂B

n.

The following example shows that there is a BMO-quasicircle γ that is not a
quasicircle.

Example 1. Consider the path γ = γ1∪γ2∪γ3, where γ1 = [0,∞], γ2 = [−∞,−1/e],
and

γ3 = {teiπ/ log1/t : 0 < t < 1/e}.
Clearly, γ does not satisfy Ahlfors’s three-points condition, and hence it is not a
quasicircle. However, γ is a BMO-quasicircle. Indeed, the map f : C → C, which is
identity in C\B

2 and is given for |z| < 1 by

f (reiθ ) =

{
r exp i(θ log1/r) if 0 ≤ θ ≤ π

log1/r ,

r exp iπ(1+ 1−θ/π log1/r
1−2log1/r ) if π

log1/r ≤ θ < 2π,
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is Q(z)-qc with Q(reiθ ) = max(1, log1/r), which is BMO-qc in C and maps γ onto
R.

Note that R
n is a topological ball that cannot be mapped by a BMO-qc mapping

onto B
n; see Corollary 5.3. In view of Corollary 5.8, the following example shows

that, for every n ≥ 3, there exists a proper subdomain of B
n that is a topological ball

but not a BMO-quasiball.

Example 2. Let B = B
n \Cn(ε), where Cn(ε) is a cone with its vertex v at the

point of Sn−1 = ∂B
n in the hyperplane xn = 1 and with the disk Bn−1(ε), 0 < ε < 1,

in the hyperplane xn = 0 as its base. For n ≥ 3, the domain B is uniform. Evidently,
B is a topological ball. However, the boundary of B is not homeomorphic to the
sphere Sn−1, because the point v splits ∂B into two components.



Chapter 6
More General Q-Homeomorphisms

In this chapter we continue the development of the theory of Q-homeomorphisms.
More advanced results on Q-homeomorphisms for the case of Q ∈ FMO and more
general situations are proved here. For this goal, we develop a general method of
singular functional parameters; see [127, 128].

6.1 Introduction

Our study concerns isolated boundary points, thin parts of the boundary in terms of
Hausdorff measures, and domains with regular boundaries such as the quasiextremal
distance domains of Gehring–Martio, uniform, convex, smooth, etc. Our results
on continuous and homeomorphic extensions of Q-homeomorphisms to boundary
points are formulated in terms of various conditions on the majorant Q(x), e.g., if
Q(x) has finite mean oscillation at the corresponding points.

In particular, we show that an isolated singularity is removable for Q-homeo-
morphisms provided that Q(x) has finite mean oscillation at this point. An analogue
of the well-known Painleve theorem for analytic functions also follows if Q(x) has
finite mean oscillation at each point of a singular set of the length zero. The well-
known Gehring–Martio theorem on the homeomorphic extension to the boundary of
quasiconformal mappings is also generalized to Q-homeomorphisms with Q∈FMO.
The results are applied to certain classes of Sobolev homeomorphisms.

Let D be a domain in R
n, n ≥ 1. Following [127], we say that a function ϕ : D →

R has finite mean oscillation at a point x0 ∈ D if

lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)−ϕε | dm(x) < ∞, (6.1)

where

ϕε = −
∫

D(x0,ε)
ϕ(x) dm(x) =

1
|D(x0,ε)|

∫

D(x0,ε)

ϕ(x) dm(x) (6.2)

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 6, c© Springer Science+Business Media, LLC 2009
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is the mean value of the function ϕ(x) over D(x0,ε) = D
⋂

B(x0,ε), ε > 0. Here

B(x0,ε) = {x ∈ R
n : |x− x0| < ε}, (6.3)

and condition (6.1) includes the assumption that ϕ is integrable in D(x0,ε) for small
ε . In particular, if x0 ∈ ∂D, then it is assumed nothing on the boundary in the defi-
nition.

дDдD

�

�

x0

D( , )D( , )x0

D

R
n

Figure 5

Note that under (6.1) it is possible that ϕε → ∞ as ε → 0. In Section 6.2 we
construct a nonnegative function ϕ : B

n → R, n ≥ 3, that has finite mean oscillation
at 0 but is not of BMO in each neighborhood of 0.

6.2 Lemma on Finite Mean Oscillation

Proposition 6.1. If, for some collection of numbers ϕε ∈ R, ε ∈ (0,ε0],

lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)−ϕε | dm(x) < ∞, (6.4)

then ϕ has finite mean oscillation at x0.

Indeed, by the triangle inequality,

−
∫

D(x0,ε)
|ϕ(x)−ϕε | dm(x)

≤ −
∫

D(x0,ε)
|ϕ(x)−ϕε | dm(x) + |ϕε −ϕε | ≤ 2 ·−

∫
D(x0,ε)

|ϕ(x)−ϕε | dm(x).

Corollary 6.1. If, for a point x0 ∈ D,
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lim
ε→0

−
∫

D(x0,ε)
|ϕ(x)| dm(x) < ∞, (6.5)

then ϕ has finite mean oscillation at x0.

A point x0 ∈ D is called a Lebesgue point of a function ϕ : D → R if ϕ is
integrable in a neighborhood of x0 and

lim
ε→0

−
∫

B(x0,ε)
|ϕ(x)−ϕ(x0)| dm(x) = 0. (6.6)

It is well known that, for every function ϕ ∈ L1(D), almost all points D are its
Lebesgue points; see, e.g., [281].

Corollary 6.2. Every function ϕ : D → R that is locally integrable has finite mean
oscillation at almost every point in D.

We say that a domain D ⊂ R
n, n ≥ 2, satisfies the condition of doubling

(Lebesgue) measure at a point x0 ∈ ∂D if

|B(x0,2ε)∩D| ≤ c · |B(x0,ε)∩D| (6.7)

for some c > 0 and for all small enough ε > 0; cf. [107] and [110]. Note that the
condition of doubling measure holds, in particular, at all boundary points of bounded
convex domains and bounded domains with smooth boundaries in R

n.

For inner points, a version of the next lemma was first proved for the BMO class
in the planar case in [273,274] (cf. Corollary 6.3 ahead) and then in the spatial case
in [208, 209].

Lemma 6.1. Let a domain D ⊂R
n, n ≥ 3, satisfy the condition of doubling measure

at 0 ∈ ∂D. If a nonnegative function ϕ : D →R has finite mean oscillation at 0, then

∫

|x|<ε0

ϕ(x)dm(x)
|x log |x||n < ∞, (6.8)

i.e., the singular integral is convergent for some ε0 > 0.

Proof. Take ε0 ∈ (0,2−1) such that ϕ is integrable over D1 = D
⋂

B, where B =
B(0,ε0), and

δ = sup
r∈(0,ε0)

−
∫

D(r)
|ϕ(x)−ϕr| dm(x) < ∞,

where D(r) = D
⋂

B(r), B(r) = B(0,r) = {x ∈ R
n : |x| < r}. Further, let ε <

2−1ε0, εk = 2−k2−1ε0, Ak = {x ∈ R
n : εk+1 ≤ |x| < εk}, Bk = B(εk), and let

ϕk be the mean value of ϕ(x) over Dk = D
⋂

Bk, k = 1,2 . . . . Take a natural num-
ber N such that ε ∈ [εN+1,εN) and denote α(t) = (t log2 1/t)−n, 0 < t < 1. Then
D
⋂

A(ε,ε0) ⊂ Δ(ε) =
⋃N

k=1Δk where Δk = D
⋂

Ak, and
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η(ε) =
∫

Δ(ε)

ϕ(x) α(|x|) dm(x) ≤ |S1| + S2,

where

S1(ε) =
N

∑
k=1

∫

Δk

(ϕ(x)−ϕk) α(|x|) dm(x),

S2(ε) =
N

∑
k=1

ϕk

∫

Δk

α(|x|) dm(x).

Since Δk ⊂ Dk ⊂ Bk, |x|−n ≤ Ωn2n/|Dk| for x ∈ Δk, where Ωn is the volume of
the unit ball in R

n, and log2(1/|x|) > k in Δk, then

|S1| ≤ δΩnen
N

∑
k=1

1
kn < δΩn2n+1

because
∞

∑
k=2

1
kn <

∞∫

1

dt
tn =

1
n−1

≤ 1.

Now, ∫

Δk

α(|x|) dm(x) ≤ 1
kn

∫

Ak

dm(x)
|x|n ≤ ωn−1

kn ,

where ωn−1 is the (n−1)-dimensional area of the unit sphere in R
n. Moreover,

|ϕk −ϕk−1| =
1

|Dk|

∣∣∣∣∣∣
∫

Dk

(ϕ(x)−ϕk−1) dm(x)

∣∣∣∣∣∣
≤ c

|Dk−1|

∫

Dk−1

|(ϕ(x)−ϕk−1)| dm(x) ≤ δc,

where c is the constant from the condition of doubling measure, and by the triangle
inequality,

ϕk = |ϕk| ≤ ϕ1 +
k

∑
l=1

|ϕl −ϕl−1| ≤ ϕ1 + kδc.

Hence,

S2 = |S2| ≤ ωn−1

N

∑
k=1

ϕk

kn ≤ 2ϕ1ωn−1 + δωn−1c
N

∑
k=1

1

k(n−1)

and with the estimate
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∞

∑
k=2

1

k(n−1) <

∞∫

1

dt
tn−1 =

1
n−2

≤ 1

for n ≥ 3, the proof of Lemma 6.1 is complete. 
�

Since
N

∑
k=2

1
k

<

N∫

1

dt
t

= log N < log2 N

and, for ε0 ∈ (0,2−1) and ε < εN ,

N < N + log2

(
1

2ε0

)
= log2

(
1
εN

)
< log2

(
1
ε

)
,

then, for n ≥ 2,

N

∑
k=1

1

k(n−1) ≤
N

∑
k=1

1
k

< 1 + log2 log2

(
1
ε

)
,

and we have the following consequence of the proof.

Corollary 6.3. Under the conditions of Lemma 6.1, for n ≥ 2,

∫

D
⋂

A(ε ,ε0)

ϕ(x)dm(x)(
|x| log 1

|x|

)n = O

(
log log

1
ε

)
(6.9)

for some ε0 > 0 as ε → 0, where

A(ε,ε0) = {x ∈ R
n : ε < |x| < ε0 < 1}. (6.10)

Examples. By the John–Nirenberg lemma, the function ϕ(x) = log(1/|x|) be-
longs to BMO in the unit ball B

n (see, e.g., [255], p. 5), but ϕε → ∞ as ε → 0.
Thus, condition (6.5) is only sufficient but not necessary for a function ϕ to have
finite mean oscillation at x0. The example also shows that condition (6.8) cannot be
extended to n = 2.

Note that any power of log(1/|x|) is integrable in the unit ball. However, for
n ≥ 3, the function

ϕ(x) =
[

log
1
|x|

]n−1

(6.11)

does not have finite mean oscillation at x = 0 because it does not satisfy the neces-
sary condition (6.8). Simultaneously, function (6.11) satisfies (6.9) for every n ≥ 2.
Hence, condition (6.9) is necessary but not sufficient for ϕ to have finite mean os-
cillation at 0.

Now, take an arbitrary sequence of disjoint balls Bk = B(xk,rk)⊂B
n, k = 1,2, . . . ,

such that xk → 0 and rk → 0 as k → ∞, and set



108 6 More General Q-Homeomorphisms

ϕ∗(x) = ckϕ
(

x− xk

rk

)
, x ∈ Bk, (6.12)

and ϕ∗(x) = 0 outside ∪Bk, where the ck are chosen in such a way that

lim
ε→0

−
∫

B(0,ε)
ϕ∗(x) dm(x) < ∞. (6.13)

Then ϕ∗ has finite mean oscillation at 0 by Corollary 6.1. By the construction, ϕ∗

does not have finite mean oscillation at every point xk. Hence, ϕ∗ is not of BMO in
any neighborhood of 0.

6.3 On Super Q-Homeomorphisms

In this section we start to study super Q-homeomorphisms , i.e., such Q-homeo-
morphisms f : D → R

n, n ≥ 2, that inequality (1.8) holds not only for all families
Γ of continuous paths γ : (0,1) → D but also for dashed lines γ : Δ → D, i.e.,
continuous mappings γ of open subsets Δ of the real axis R into D. Recall that
every open set Δ in R consists of a countable collection of mutually disjoint intervals
Δi ⊂ R, i = 1,2, . . . . This fact gives reasons for the term “dashed line.”

We say that a family Γ of dashed lines is minorized by another such family Γ ∗,
abbr. Γ ≥ Γ ∗, if, for every line γ ∈ Γ ,γ : Δ → R

n, there is a line γ∗ ∈ Γ ∗,γ∗ : Δ ∗ →
R

n, that is a restriction of γ , i.e., Δ ∗ ⊂ Δ and γ∗ = γ|Δ∗ . Later on, the following
property is useful; see Theorem 1(c) in [64], p. 178.

Proposition 6.2. Let Γ and Γ ∗ be families of dashed lines. If Γ ≥Γ ∗, then M(Γ )≤
M(Γ ∗).

We say that a property P holds for almost every (a.e.) dashed line γ in a family
Γ if the subfamily of all lines in Γ for which P fails has modulus zero. In particular,
almost every dashed line in R

n is rectifiable; see, e.g., Theorem 2 in [64]. All defini-
tions of the modulus, rectifiability, and so on for dashed lines are perfectly similar to
the corresponding notions for paths and hence are omitted. Many results for dashed
lines are also similar, and it is not necessary for our goals to formulate all of them
explicitly here. For the advanced theory of more general systems of measures in
metric space, see [64].

Theorem 6.1. Let f : D → R
n be a homeomorphism in the class W 1,n

loc with f−1 ∈
W 1,n

loc . Then f is a super Q-homeomorphism with Q(x) = KI(x, f ).

Proof. First, f−1 ∈ ACLn
loc; see, e.g., [215], p. 8. Hence, by the Fuglede theorem,

the modulus of all locally rectifiable paths in f (D) with at least one closed sub-
path where f−1 is not absolutely continuous has modulus zero; see [64] and [316].
This family of paths minorizes the corresponding family of dashed lines; thus, by
Proposition 6.2, the latter family also has modulus zero.
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Let Γ be an arbitrary family of dashed lines in D. Let us denote by Γ ∗ the family
of all dashed lines γ∗ ∈ fΓ for which f−1 is absolutely continuous on every closed
subpath of γ∗. Then M( fΓ ) = M(Γ ∗).

For ρ ∈ adm Γ , set ρ∗(y) = ρ( f−1(y)) · |( f−1)′(y)| if f−1(y) is differentiable and
ρ∗(y) = ∞ otherwise at y ∈ f (D) and ρ∗(y) = 0 outside f (D). Then

∫

γ∗
ρ∗ds∗ ≥

∫

f−1◦γ∗
ρ ds ≥ 1 (6.14)

for all γ∗ ∈ Γ ∗, i.e., ρ∗ ∈ adm Γ ∗.
By Proposition 4.1 and Remark 4.1, f−1 has the (N)-property and is differen-

tiable with J(y, f−1) �= 0 a.e. Hence, using a change of variables (see, e.g., Theorem
6.4 in [222], cf. also Corollary 8.1 and Proposition 8.3 ahead), we have

M( fΓ ) = M(Γ ∗) ≤
∫

f (D)

ρ∗(y)ndm(y)

=
∫

f (D)

ρ( f−1(y))n KO(y, f−1)J(y, f−1)dm(y)

=
∫

D

ρ(x)n KI(x, f )dm(x),

i.e., f is a super Q-homeomorphism with Q(x) = KI(x, f ). 
�

It is known that homeomorphisms of the class W 1,n
loc with KI ∈ L1

loc have the in-
verse f−1 in the same class; see Corollary 2.3 in [154]. Thus, we have the next
assertion.

Corollary 6.4. Let f : D→R
n be a homeomorphism in the class W 1,n

loc with KI ∈ L1
loc.

Then f is a super Q-homeomorphism with Q(x) = KI(x, f ).

Since KI(x, f ) ≤ Kn−1
O (x, f ), we also have the following statement.

Corollary 6.5. Under the conditions of Theorem 6.1, f is a super Q-homeomorphism
with Q(x) = Kn−1

O (x, f ).

Theorem 6.1 shows that super Q-homeomorphisms form a wide subclass of Q-
homeomorphisms including many mappings with finite distortion.

6.4 Removal of Isolated Singularities

It is well known that isolated singularities are removable for conformal as well as
quasiconformal mappings. The following statement shows that any power of in-
tegrability of Q(x) cannot guarantee the removability of isolated singularities of
Q-homeomorphisms. This is a new phenomenon.
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Proposition 6.3. For any p ∈ [1,∞), there is a super Q-homeomorphism
f : B

n\{0} → R
n, n ≥ 2, with Q ∈ Lp(Bn) that has no continuous extension to B

n.
Moreover, a Q(x)-qc mapping can be chosen as f .

Here B
n = {x ∈ R

n : |x| < 1} denotes the unit ball in R
n.

Proof. The desired homeomorphism f can be given in the explicit form

y = f (x) =
x
|x| (1+ |x|α),

where α ∈ (0,n/p(n− 1)). Note that f maps the punctured unit ball B
n\{0} onto

the spherical ring 1 < |y| < 2 in R
n and f has no continuous extension onto B

n.

1 f

�

1

2

Figure 6

On the sphere |x| = r, the tangent and radial distortions are

δτ =
|y|
|x| =

1+ rα

r
, δr =

∂ |y|
∂ |x| = αrα−1,

respectively. Without loss of generality, we may assume that p is great enough so
that α < 1. Thus, δτ ≥ δr and, consequently,

KO =
δ n
τ

δ n−1
τ δr

=
δτ
δr

, KI =
δ n−1
τ δr

δ n
r

=
(
δτ
δr

)n−1

(see, e.g., Section 1.2.1 in [256]), and hence the maximal dilatation is

Q(x) = KI(x, f ) =
(

1+ rα

αrα

)n−1

≤ C

rα(n−1) , |x| = r,

where C = (2/α)n−1. Note that Q ∈ Lp(Bn\{0}) because α(n− 1)p < n by the
choice of α . It remains to note that f ∈C1 ⊂W 1,n

loc in B
n\{0}, and hence f is a super

Q-homeomorphism; see Theorem 6.1. 
�



6.4 Removal of Isolated Singularities 111

However, as the next lemma shows, it is sufficient for the removability of isolated
singularities of Q-homeomorphisms to require that Q(x) be integrable with suitable
weights.

Lemma 6.2. Let f : B
n\{0}→ R

n, n ≥ 2, be a Q-homeomorphism. If
∫

ε<|x|<1

Q(x) ·ψn(|x|) dm(x) = o(I(ε)n) (6.15)

as ε → 0, where ψ(t) is a nonnegative measurable function on (0,∞) such that

0 < I(ε):=
1∫

ε

ψ(t) dt < ∞, ε ∈ (0,1) , (6.16)

then f has a continuous extension to B
n that is a Q-homeomorphism.

Note the conditions (6.15) and (6.16) imply that I(ε)→∞ as ε → 0. This follows
immediately from arguments by contradiction.

Remark 6.1. Note also that (6.15) holds, in particular, if
∫

Bn

Q(x) ·ψn(|x|) dm(x) < ∞ (6.17)

and I(ε) → ∞ as ε → 0. In other words, for the removability of a singularity at
x = 0, it is sufficient that integral (6.17) converges for some nonnegative function
ψ(t) that is locally integrable over (0,1) but has a nonintegrable singularity at 0.
The functions Q(x) = logλ (e/|x|), λ ∈ (0,1), x∈B

n, n≥ 2, and ψ = 1/(t log(e/t)),
t ∈ (0,1), show that condition (6.17) is compatible with the condition I(ε) → ∞ as
ε → 0. By Lemma 6.1, condition (6.17) holds with the given ψ for every function
Q(x) ≥ 1 in L1(Bn) having finite mean oscillation at 0 if n ≥ 3.

Proof. Since the modulus of a family of paths passing through a fixed point equals
0, it is sufficient to show that f (x) has a limit as x → 0.

Let Γε be a family of all paths joining the spheres Sε = {x ∈ R
n : |x| = ε} and

S0 = {x ∈ R
n : |x| = 1} in the ring Aε = {x ∈ R

n : ε < |x| < 1}. Also let ψ∗ be
a Borel function such that ψ∗(t) = ψ(t) for a.e. t ∈ (0,∞). Such a function ψ∗

exists by Lusin’s theorem; see, e.g., Section 2.3.5 in [55] and [284], p. 69. Then the
function

ρε(x) =
{
ψ∗(|x|)/I(ε) if x ∈ Aε ,
0 if x ∈ R

n\Aε

is admissible for Γε and, hence,

M( fΓε) ≤
∫

0<|x|<1

Q(x) ·ρεn(|x|) dm(x) ,
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i.e., M( fΓε) → 0 as ε → 0 in view of (6.15).
By the Jordan–Brouwer theorem, the images of the above spheres f St , t ∈ (0,1),

split the space R
n into two components and, thus, R

n\ f Aε consists of exactly two
components; see, e.g., [50], p. 358, [123], p. 363, and [335], p. 63. Denote by Γ ∗

ε
the family of all paths in R

n joining the images of the spheres f Sε and f S0. Then

M(Γ ∗
ε ) = M( fΓε)

because fΓε ⊂Γ ∗
ε . Hence, M( fΓε)≤ M(Γ ∗

ε ), and, on the other hand, fΓε <Γ ∗
ε (i.e.,

every path in Γ ∗
ε contains a subpath in fΓε as f Aε separates the two components

of R
n \ f Aε ), and consequently, M( fΓε) ≥ M(Γ ∗

ε ); see, e.g., either Theorem 1(c)
in [64] or 6.4 in [316].

By Gehring’s lemma in [71] (see also (7.19), Lemma 7.22 and Corollary 7.37
in [328], and Section, A.1), we have

M(Γ ∗
ε ) ≥ an

/(
log

bn

δ0δε

)n−1

.

Here, the constants an and bn depend only on n. The numbers δ0 and δε denote the
spherical (chordal) diameter of f S0 and f Sε , respectively. Thus, δε → 0 and f Sε are
contracted to a point as ε → 0. 
�

In particular, choosing in Lemma 6.2 ψ(t) = 1/(t log1/t), we obtain by Corol-
lary 6.3 the following theorem.

Theorem 6.2. Let f : D\{x0}→R
n, n ≥ 2, be a Q-homeomorphism where Q(x) has

finite mean oscillation at a point x0 ∈ D. Then f has a Q-homeomorphic extension
to D.

In other words, an isolated singularity of a Q-homeomorphism is removable if
Q(x) has finite mean oscillation at the point. In particular, this is the case if Q(x) is
continuous at x0. As consequences of Theorem 6.2, Proposition 6.1, and Corollary
6.1, we also obtain the following statements.

Corollary 6.6. A Lebesgue point of Q is a removable isolated singularity for Q-
homeomorphisms.

Corollary 6.7. If f : B
n\{0}→ R

n, n ≥ 2, is a Q-homeomorphism with

lim
ε→0

−
∫

B(ε)
Q(x) dm(x) < ∞, (6.18)

then f has a Q-homeomorphic extension to B
n.

Similarly, choosing in Lemma 6.2 the function ψ(t) = 1/t as a weight, we come
to the following more general statement.
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Theorem 6.3. Let f : B
n\{0}→ R

n, n ≥ 2, be a Q-homeomorphism. If

∫

ε<|x|<1

Q(x)
dm(x)
|x|n = o

([
log

1
ε

]n)
(6.19)

as ε → 0, then f has a Q-homeomorphic extension to B
n.

Corollary 6.8. Condition (6.19) and the assertion of Theorem 6.3 hold if

Q(x) = o

([
log

1
|x|

]n−1
)

(6.20)

as x → 0. The same holds if

q(r) = o

([
log

1
r

]n−1
)

(6.21)

as r → 0, where q(r) is the mean value of the function Q(x) over the sphere |x| = r.

Remark 6.2. Choosing in Lemma 6.2 the function ψ(t) = 1/(t log1/t) instead of
ψ(t) = 1/t, we are able to replace (6.19) by

∫

ε<|x|<1

Q(x)dm(x)(
|x| log 1

|x|

)n = o

([
log log

1
ε

]n)
, (6.22)

and (6.21) by

q(r) = o

([
log

1
r

log log
1
r

]n−1
)

. (6.23)

Thus, it is sufficient to require that

q(r) = O

([
log

1
r

]n−1
)

. (6.24)

In general, we could give here the whole scale of the corresponding conditions
in logarithms using functions ψ(t) of the form 1/(t log · · · log1/t). However, we
prefer to give conditions of other types that are often met in the mapping theory
(see, e.g., [189] and [220]) and that can be obtained directly from Lemma 6.2.

Theorem 6.4. Let f : B
n\{0} → R

n, n ≥ 2, be a Q-homeomorphism and, for some
β ≥ 1/(n−1), let

ε0∫

0

dr

rqβ (r)
= ∞, (6.25)

where q(r) is the mean integral value of the function Q(x) over the sphere |x| = r.
Then f has a Q-homeomorphic extension to B

n.
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Proof. Indeed, for the function

ψ(t) =
{

1/[tqβ (t)], t ∈ (0,ε0),
0, t ∈ (ε0,1),

(6.26)

we have

∫

ε<|x|<1

Q(x) ·ψn(|x|)dm(x) = ωn−1

ε0∫

ε

dr

rqβn−1(r)
≤ ωn−1

ε0∫

ε

dr

rqβ (r)
, (6.27)

where ωn−1 is the (n− 1)-dimensional area of the unit sphere |x| = 1 in R
n. Thus,

the assertion follows immediately from Lemma 6.2 by condition (6.25). 
�

Corollary 6.9. Every Q-homeomorphism f : B
n\{0}→ R

n, n ≥ 2, with

ε0∫

0

dr
rq(r)

= ∞ (6.28)

can be extended to a Q-homeomorphism of B
n into Rn.

Corollary 6.10. If, for some β ≥ 1/(n−1) and α ≥ 1,

ε0∫

0

dr

rqβα(r)
= ∞, (6.29)

where

qα(r) =
(
−
∫
|x|=r

Qα(x)
) 1

α
, (6.30)

then every Q-homeomorphism f : B
n\{0}→ R

n allows extension to B
n.

Indeed, by the Jensen inequality, qα(r) ≥ q1(r) = q(r) (see, e.g., [339], p. 20),
and thus condition (6.29) implies condition (6.25).

In summary, Lemma 6.2 is a rich source of various conditions for the removabil-
ity of isolated singularities of Q-homeomorphisms.

6.5 Topological Lemmas

In this section we prove lemmas that will replace the Jordan–Brouwer theorem in
the cases to be considered. Instead of an isolated singular point, a singular set that
is infinite and even uncountable (of the continuum cardinality) will be examined.

Recall that by the well known Alexandroff–Borsuk theorem (see, e.g., [50], p.
357, [126], p. 100, [11], and [29]), a compact set K ⊂ R

n, n ≥ 2, disconnects R
n if



6.5 Topological Lemmas 115

and only if there is a continuous mapping f : K → Sn−1 = {x ∈ R
n : |x| = 1} that is

not homotopic to a constant mapping. Conversely, the statement that a compactum K
does not disconnect R

n is equivalent to the statement that each continuous mapping
f : K → Sn−1 is homotopic to a constant mapping. Thus, we obtain the following
simple corollary of the Alexandroff–Borsuk theorem.

Proposition 6.4. Let K1 and K2 be disjoint compact sets in Rn, n ≥ 2, each of which
does not separate Rn. Then the compactum K = K1

⋃
K2 does not separate Rn.

On this basis we prove the following statement.

Lemma 6.3. Let D be a domain in Rn, n≥ 2. Then the boundary of every component
of its complement Rn\D is a component of ∂D.

Proof. Let us assume that the conclusion of Lemma 6.3 is not true, i.e., there is a
domain D in Rn, n ≥ 2, such that the boundary of a component C0 of Rn\D does not
coincide with a component of ∂D.

As known, ∂C0 ⊂ ∂D; see, e.g., [50], p. 356. Moreover, if a component of K
of the boundary ∂D has a nonempty intersection with ∂C0, then K ⊂ ∂C0. Thus,
the negation of the statement of Lemma 6.3 is equivalent to the property of ∂C0 to
consist of more than one component of ∂D, i.e., to the statement that ∂C0 is not a
connected set.

Every component of Rn\D is a compact set. Hence, joining to the domain D,
if it is necessary, all components of its complement Rn\D except C0, we may by
the Alexandroff–Borsuk theorem consider without loss of generality that Rn\D has
only one component C0 and that Rn\C0 = D is a domain.

By the above assumption, ∂C0 can be split into two disjoint compact sets S1 and
S2. Let Ω1 be a component of the complement Rn\S1 including the domain D. Then
the compactum K1 = Rn\Ω1 includes S1 and does not separate Rn. Moreover, by
the construction, K1 ⊂ C0 and S2 ⊂ Ω1 [the latter because every neighborhood of
each point in S2 ⊂ ∂C0 must involve points of D ⊂ Ω1, but the spherical distance
h(S2,∂Ω1) ≥ h(S2,S1) > 0 since ∂Ω1 ⊂ S1; see [50], p. 356]. The sets Ω2 and K2

are defined in a similar way through S2.
Note that K1

⋂
K2 = /0. Indeed,

∂K1 = ∂Ω1 ⊂ S1 ⊂Ω2 = Rn\K2

and
∂K2 = ∂Ω2 ⊂ S2 ⊂Ω1 = Rn\K1.

Hence, ∂K1
⋂

K2 = /0 and ∂K2
⋂

K1 = /0. Thus, if

K1
⋂

K2 �= /0, (6.31)

then
IntK1

⋂
IntK2 �= /0,

i.e., there exist components Ω (1) �= Ω1, Ω (1) ⊂ IntK1 and Ω (2) �= Ω2, Ω (2) ⊂
IntK2 of the complements Rn\S1 and Rn\S2, respectively, such that Ω (1)⋂Ω (2)
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�= /0. If Ω (1) = Ω (2), then ∂Ω (1) = ∂Ω (2) ⊂ S1
⋂

S2 = /0, i.e., ∂Ω (1) = ∂Ω (2) = /0
and Ω (1) = Ω (2) = Rn (because Rn is a connected space), which is impossible by
the construction. For the definiteness, let Ω (1)\Ω (2) �= /0. Then ∂Ω (2)⋂Ω (1) �= /0
because /0 �= Ω (1)⋂Ω (2) ⊂ Ω (1) and Ω (1) is connected. However, ∂Ω (2) ⊂ S2 and
Ω (1) ⊂ K1. Consequently, assumption (6.31) contradicts the inclusion S2 ⊂ Ω1 =
Rn\K1.

Then, by Proposition 6.4, the compactum K = K1
⋃

K2 ⊂ C0 does not separate
Rn, i.e., Ω = Rn\K = Ω1

⋂
Ω2 is a domain in Rn.

Further, since ∂C0 = S1
⋃

S2 ⊂K1
⋃

K2 = K and K1
⋂

K2 = /0 and C0 is connected,
then Ω0 = Ω

⋂
IntC0 �= /0 (if IntC0 ⊂ K, then C0 = K = K1

⋃
K2). However, by

the construction, D ⊂ Ω , D
⋃

C0 = Rn, D
⋂

C0 = /0, and Ω = D
⋃
Ω0. The latter

contradicts the connectivity of Ω . Thus, the assumption that ∂C0 is not connected is
really not true and we come to the assertion of the lemma. 
�

Corollary 6.11. The interior IntC∗ of every component C∗ of the complement Rn\D
is separated from Rn\C∗ by a single component K∗ of ∂D, i.e., any path joining
x ∈ IntC∗ and y ∈ Rn\C∗ in Rn intersects K∗.

Indeed, by Lemma 6.3, the boundary of C∗ consists of one component K∗ of ∂D.
If some path γ : (0,1) → Rn joining x ∈ IntC∗ and y ∈ Rn\C∗ does not intersect
∂D, then (0,1) is split into the two disjoint open sets γ−1(IntC∗) and γ−1(Rn\C∗),
which contradicts the connectivity of the interval (0,1).

Lemma 6.4. Let D be a domain in Rn, n ≥ 2, and let C∗ be a component of its
complement Rn\D. Then, for every ε > 0, there is a neighborhood Nε of C∗ such
that Dε = D

⋂
Nε ⊂Cε is a domain where

Cε = {x ∈ Rn : h(x,C∗) < ε} (6.32)

is the ε-neighborhood of C∗ with respect to the spherical (chordal) metric h in Rn.

Proof. Denote by Sε the union of all components of the compact C = Rn\D that
intersects the compact Rn\Cε . Note that the set Sε is closed and hence compact in
Rn.

Indeed, let us assume that Sε is not closed, i.e., there exist a point x0 ∈ Rn\Sε
and a sequence xl ∈ Sl such that xl → x0 as l →∞. Let Cl ⊂ Sε be the corresponding
sequence of the components of C containing xl . Then

C0 = lim
l→∞

Cl = {y ∈ Rn : y = lim
l→∞

yl , yl ∈Cl , l = 1,2, . . .} (6.33)

is a connected (closed) subset of C (see, e.g., (9.12) in [334], p. 15), which contains
x0 and intersects Rn\Cε . The contradiction disproves the above assumption.

Now, let Nε be a component of Rn\Sε containing C∗. Then, by the construction,
every component of C is completely contained either in the domain Nε or in its
complement. Note also that the open set Dε = D

⋂
Nε is not empty. It remains to

show that Dε is connected.
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Let us assume that Dε is not connected. Then there is a component D0 ⊂ Dε
such that Dε\D0 �= /0 and, by Corollary 6.11, there is one component K0 of ∂D0

that separates D0 from another component D∗ of Dε\D0. By the construction, K0 is
contained in one component K∗ of the boundary of either D or Nε .

If K∗ ⊂ ∂D, then points x ∈ D0 and y ∈ D∗ can be joined by a path γ in D. On
the other hand, by Corollary 6.11, γ must intersect K0, which is impossible because
K0 ⊂C = Rn\D. Similarly, if K∗ ⊂ ∂Nε , then points x∈D0 and y∈D∗ can be joined
by a path γ in Nε . Again by Corollary 6.11, γ must intersect K0, which contradicts
the inclusion K0 ⊂ Rn\Nε . 
�
Lemma 6.5. Let D be domain in Rn, n ≥ 2, and let f : D → Rn be a homeomor-
phism. Then D′ = f (D) is a domain and there is a natural one-to-one correspon-
dence between components K and K′ of the boundaries ∂D and ∂D′ such that
C( f ,K) = K′ and C( f−1,K′) = K.

Here we use the notation of the cluster set of the mapping f for E ⊂ ∂D:

C( f ,E) = {y ∈ Rn : y = lim
l→∞

f (xl), xl → x ∈ E}. (6.34)

Proof. D′ = f (D) is a domain by the well known Brouwer theorem; see, e.g., [50],
p. 358.

Further, for every set E ⊂ ∂D, C( f ,E) ⊂ ∂D′, and, similarly, for every set E ′ ⊂
∂D′, C( f−1,E ′) ⊂ ∂D.

Indeed, by the definition, C( f ,E) ⊂ D′. Let us assume that there is a point y0 ∈
C( f ,E)

⋂
D′. Set x0 = f−1(y0). Then x0 ∈D and hence δ0 = dist(x0,∂D)/2 > 0. Let

xk ∈ D be such that f (xk) → y0 and dist(xk,E) → 0 as k → ∞. Then xk ∈B(x0,δ0)
for great enough k and, simultaneously, xk = f−1( f (xk)) → f−1(y0) = x0 as k → ∞
by the continuity of f−1. The contradiction disproves the assumption.

Let K be a component of the boundary of D. It is clear that K is a closed subset
of ∂D that is a compact set in Rn and, hence, that K is a continuum. Further, let

δε = {x ∈ D : h(x,K) < ε},

where h is a spherical (chordal) distance in Rn. Then

C( f ,K) =
⋂
ε>0

f (δε).

Denote by D′
ε a component of f (δε) including C( f ,K). The existence of such

a component follows from Lemma 6.4. The sets D′
ε form a decreasing family of

continua and
C( f ,K) =

⋂
ε>0

D′
ε .

Thus, C( f ,K) is a continuum; see, e.g., (9.4) in [334], p. 15. 
�

Denote by K′ the component of ∂D′ including C( f ,K). Then, arguing as above,
we obtain that C( f−1,K′) is a continuum, which, by the construction, includes K
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and hence K = C( f−1,K′). In view of the symmetry of the conditions of the lemma
with respect to f and f−1, it is also K′ = C( f ,K).

Corollary 6.12. Let f : D \X → D′ be a homeomorphism where X is a closed, to-
tally disconnected subset of D. If f has a continuous extension f to D, then f is a
homeomorphism of D onto f (D).

Here the set X ⊂ R
n is called totally disconnected if every (connected) compo-

nent of X consists of one point. Closed subsets X of R
n are locally compact spaces

and hence, for such X , total disconnectness is equivalent to the condition dim X = 0;
see [126], p. 22.

Remark 6.3. In view of the well-known Menger–Urysohn theorem, if D is a domain
in R

n, n ≥ 2, and a point x0 ∈ ∂D has a neighborhood U where the dimension of
∂D is less than n− 1, then D is locally connected at x0, i.e., there exists arbitrarily
small neighborhoods Vε , diamVε < ε, of x0 such that the set Dε = Vε

⋂
D = Vε\∂D

is connected; see, e.g., [126], p. 48. In this case, the cluster set

C( f ,x0) =
⋂
ε>0

Cε , Cε = f (Dε) ,

is a continuum for every continuous mapping f : D → R
n by (9.4) in [334], p. 15.

6.6 On Singular Sets of Length Zero

In this section we consider the problem of removability of singularities for super Q-
homeomorphisms. A set X in R

n is called a set of length zero if X can be covered
by a sequence of balls in R

n with an arbitrary small sum of diameters. As known,
such sets have the (Lebesgue) measure zero,

dim X = 0, (6.35)

and hence they are totally disconnected; see, e.g., [126], pp. 22 and 104. A classical
example of such sets is the set C of the Cantor type obtained by deleting a sequence
of open sets, known as middle halfs, from a closed unit interval. Note that C is
perfect, i.e., it is closed and without isolated points. Hence, by the well-known
theorem of W. H. Young, each neighborhood of a point in C contains a subset of C
of the continuum cardinality; see [337].

By the theorem of Menger and Urysohn, condition (6.35) guarantees that X does
not disconnect a domain D in R

n, n ≥ 2, and, thus, if X is closed in D, then D∗ =
D\X is also a domain.

Lemma 6.6. Let D be a domain in R
n, n ≥ 2, let X be a closed subset of D of length

zero, and let f : D\X → R
n be a super Q-homeomorphism. If, for x0 ∈ X,
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∫

ε<|x|<δ (x0)

Q(x0 + x) ·ψn
x0,ε(|x|) dm(x) = o(I(x0,ε)n) (6.36)

as ε → 0, where 0 < δ (x0) < dist(x0,∂D) and ψx0,ε(t), ε ∈ (0,δ (x0)), is a family
of nonnegative measurable (by Lebesgue) functions on (0,∞) such that

0 < I(x0,ε) =

δ (x0)∫

ε

ψx0,ε(t) dt < ∞, (6.37)

then f has a continuous extension to x0.

Proof. Let Γε be the family of all open arcs (injective paths) joining
B0 = Rn\B(x0,ε0) and Bε = B(x0,ε) in the ring Aε = {x ∈ R

n : ε < |x− x0| < ε0},
where ε0 = δ (x0), and let Γ ◦

ε be the family of the corresponding dashed lines in
Aε\X obtained from the arcs of Γε by the rejection of all the points in X . Let ψ∗

x0,ε
be Borel functions such that ψ∗

x0,ε(t) = ψx0,ε(t) for a.e. t ∈ (0,∞); see Section 2.3.5
in [55] and [284], p. 69. Then the function

ρε(x) =
{
ψ∗

x0,ε(|x− x0|)/I(x0,ε) if x ∈ Aε \X ,
0 if x ∈ R

n\(Aε \X)
(6.38)

is admissible for Γ ◦
ε because X is of length zero (see, e.g., Remark 30.11 in [316]),

and, hence,

M( fΓ ◦
ε ) ≤

∫

D\X

Q(x) ·ρn
ε (|x|) dm(x). (6.39)

Consequently,
lim
ε→0

M( fΓ ◦
ε ) = 0 (6.40)

by condition (6.36).
Denote by Γ ∗

ε the family of all open arcs in Rn joining the continua f (B0) and
f (Bε). Then, as is clear from Corollary 6.11,

fΓ ◦
ε ≤ Γ ∗

ε (6.41)

and, consequently,
M( fΓ ◦

ε ) ≥ M(Γ ∗
ε ); (6.42)

see Proposition 6.2.
Recall also that

M(Γ ∗
ε ) = M(Γ ′

ε ), (6.43)

where Γ ′
ε is the family of all paths joining f (Bε) and f (B0) in Rn; see, e.g., Remark

7.11 in [316]. On the other hand, by the Gehring lemma (see [71]; see also (7.19),
Lemma 7.22, and Corollary 7.37 in [328] and Section A.1),
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M(Γ ′
ε ) ≥ an

/(
log

bn

δ0δε

)n−1

, (6.44)

where an and bn are constants depending only on n, and δε and δ0 are the diameters
of f (Bε) and f (B0) in the spherical (chordal) metric in Rn.

Finally, relations (6.40)-(6.44) imply that δε → 0, i.e., f (Bε) is contracted to a
point and, thus, the assertion of the lemma follows. 
�

Choosing in Lemma 6.6 ψ(t) = 1/(t log1/t), we obtain by Corollaries 6.3 and
6.12 the following result.

Theorem 6.5. Let D be a domain in R
n, n ≥ 2, let X be a closed subset of D of

length zero, and let f : D\X → R
n be a super Q-homeomorphism. If the function

Q(x) has finite mean oscillation at every point x0 ∈ X, then f has a homeomorphic
extension to D.

Corollary 6.13. In particular, if the function Q(x) is integrable in a neighborhood
of every point x0 ∈ X and has a finite limit in the mean as x → x0, then there is a
limit f (x) as x → x0 for every x0 ∈ X.

By Corollary 6.1, we also come to the following two consequences of Theorem
6.5.

Corollary 6.14. Let X be a closed subset of length zero in D and let

lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) < ∞ (6.45)

for every x0 ∈ X. Then every super Q-homeomorphism f : D\X → R
n has a homeo-

morphic extension to D.

Corollary 6.15. Let X be a closed subset of length zero in D and let Q(x) be inte-
grable in a neighborhood of X, where every point of X is a Lebesgue point of Q(x).
Then every super Q-homeomorphism f : D\X → R

n has a homeomorphic extension
to D.

Choosing in Lemma 6.6 ψ(t) = 1/t, we obtain the next theorem.

Theorem 6.6. Let D be a domain in R
n, n ≥ 2, let X be a closed subset of D of

length zero, and for every x0 ∈ X, let

∫

ε<|x|<δ (x0)

Q(x0 + x)
dm(x)
|x|n = o

([
log

1
ε

]n)
(6.46)

as ε → 0, where 0 < δ (x0) < dist(x0,∂D). Then every super Q-homeomorphism
f : D\X → R

n has a homeomorphic extension to D.
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Corollary 6.16. In particular, if the singular integral

∫

U

Q(y)−Q(x)
|y− x|n dm(y) (6.47)

is convergent for every x ∈ X over a neighborhood U of the set X of length zero,
then f has a homeomorphic extension to D.

Remark 6.4. Conditions of the type (6.20)–(6.29) can also be used with singularities
of length zero. As is clear from the well-known example of the conformal mapping
f of the complement of a segment onto the complement of the unit disk in C, the
condition of length zero for singular sets is essential and the results cannot be ex-
tended (without additional geometric conditions) to singular sets of a finite positive
length even under the best possible maximal dilatation K(x, f ) ≡ 1.

In this context, note the interesting work [219], which proved the removabili-
ty, for bounded quasiconformal mappings in domains of R

n, of closed sets whose
projections into all coordinate hyperplanes have (n− 1)-dimensional measure zero
and which can be of positive length. However, this is possible only because of the
additional geometric condition on zero projections.

The above results on the homeomorphic continuability of super Q-homeomor-
phisms can be extended to Q-homeomorphisms and to singular sets X of positive
length only under additional conditions on the size of the cluster sets f (X); see
Sections 6.9.

6.7 Main Lemma on Extension to Boundary

Lemma 6.7. Let f : D→R
n, n≥ 2, be a Q-homeomorphism and let the domain D be

locally connected at x0 ∈ ∂D and the domain D′ = f (D) have a strongly accessible
boundary. If ∫

Dx0,ε

Q(x) ·ψn
x0,ε(|x− x0|)dm(x) = o(In

x0
(ε)) (6.48)

as ε → 0, where Dx0,ε = {x ∈ D : ε < |x− x0| < ε0}, ε0 < δ (x0) = supx∈D |x− x0|,
and ψx0,ε(t) are nonnegative measurable (by Lebesgue) functions on (0,∞) such
that

0 < Ix0(ε) =
ε0∫

ε

ψx0,ε(t)dt < ∞, ε ∈ (0,ε0) , (6.49)

then f can be extended to x0 by continuity in Rn.

Proof. We must show that the cluster set

E = C(x0, f ) = {y ∈ Rn : y = lim
k→∞

f (xk),xk → x0,xk ∈ D}
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D

�,0xD
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� 0x

R
n

Figure 7

is a singleton. Note that E is not empty, because of the compactness of Rn. Let us
assume that E is not degenerate, i.e., there are at least two points y0 and y∗ ∈ E. Set
U = B(x0,r0), where 0 < r0 < |y0 − y∗|.

In view of the connectedness of the D at x0, there is a sequence of neighborhoods
Vm of x0 such that Dm = D∩Vm are domains with δ (Vm) → 0 as m →∞. Then there
exist points ym and y∗m ∈ D′

m = f Dm close enough to y0 and y∗, respectively, for
which |y0 −ym| < r0 and |y0 −y∗m| > r0, ym → y0 and y∗m → y∗ as m → ∞. Let Cm be
paths joining ym and y∗m in D′

m. Note that by the construction, Cm ∩∂B(x0,r0) �= ∅.
By the condition of strong accessibility of ∂D′, there are a compactum C in D′

and a number δ > 0 such that

M(Δ(C,Cm;D′)) ≥ δ

for large m because dist(y0,Cm)→ 0 as m→∞. Note that K = f−1C is a compactum
in D as a continuous image of the compactum C. Thus, ε0 = dist(0,K) > 0.

LetΓε be the family of all paths joining K with the ball B(ε) = {x∈R
n : |x−x0|<

ε} in D. Let ψ∗
x0,ε be a Borel function such that ψ∗

x0,ε(t) =ψx0,ε(t) for a.e. t ∈ (ε,∞).
Such functions ψ∗

x0,ε exist by the Lusin theorem; see, e.g., Section 2.3.5 in [55]
and [284], p. 69. Then the function

ρε(x) =
{
ψ∗

x0,ε(|x− x0|)/Ix0(ε) if x ∈ Dx0,ε ,
0 if x ∈ R

n\Dx0,ε

is admissible for Γε and, hence,

M( fΓε) ≤
∫

D

Q(x) ·ρεn(x) dm(x),

i.e., M( fΓε) → 0 as ε → 0 in view of (6.48).
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On the other hand, for every fixed ε ∈ (0,ε0), Dm ⊂ Bε for large m. Hence,
Cm ⊂ f Bε for such m and, thus, M( fΓε) ≥ M(Δ(C,Cm;D′) ≥ δ .

The contradiction disproves the above assumption that E is not degenerate. 
�

Corollary 6.17. If, in addition, D is locally connected at ∂D and condition (6.48)
holds at every point x0 ∈ ∂D, Q ∈ L1(D), and ∂D′ is weakly flat, then f is extended
to a homeomorphism f : D → D′.

The latter is a direct consequence of Lemmas 4.2 and 6.7.

Remark 6.5. Furthermore, by the same arguments, the assertion of Corollary 6.17 is
valid if, instead of the condition Q ∈ L1(D), the condition Q ∈ L1(D∩U) holds for
some neighborhood U of ∂D.

6.8 Consequences for Quasiextremal Distance Domains

By Section 3.8, Lemmas 4.2 and 6.7, Corollary 6.17, and Remark 6.5, we obtain the
following theorems.

Lemma 6.8. Let f be a Q-homeomorphism between QED domains D and D′ in R
n,

n ≥ 2. If condition (6.48) holds at a point x0 ∈ ∂D, then there is a limit of f (x) as
x → x0 in Rn.

Corollary 6.18. If, under the conditions of Lemma 6.8, in addition Q ∈ L1(D∩U),
where U is a neighborhood of ∂D and (6.48) holds at every point x0 ∈ ∂D, then f
admits a homeomorphic extension f : D → D′.

In particular, taking in (6.48) ψ(t) = 1/t, we have as a consequence of Lemma
6.8 the following theorem; cf. Remark 6.2.

Theorem 6.7. Let f be a Q-homeomorphism between QED domains D and D′ in
R

n, n ≥ 2. If, at every point x ∈ ∂D,

q(r) = O

([
log

1
r

]n−1
)

(6.50)

as r → 0, where q(r) is the mean value of Q(y) over the intersection of the sphere
|y− x| = r with the domain D, then f extends to a homeomorphism f : D → D′.

Corollary 6.19. In particular, the assertion holds if, for every x ∈ ∂D,

Q(y) = O

([
log

1
|y− x|

]n−1
)

(6.51)

as y → x.
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Similarly, choosing in (6.48) ψ(t) = 1/tqβ (t), we have the next consequence of
Lemma 6.8; cf. the calculations under the proof of Theorem 6.4.

Corollary 6.20. The assertion of Theorem 6.7 remains valid if condition (6.50) is
replaced by

ε0∫

0

dr

rqβ (r)
= ∞ (6.52)

for some β ≥ 1/(n−1), in particular, by

ε0∫

0

dr
rq(r)

= ∞. (6.53)

Corollary 6.21. The assertion is valid if, for some β ≥ 1/(n− 1) and α ≥ 1, at
every point x ∈ ∂D, we have

ε0∫

0

dr

rqβα(r)
= ∞, (6.54)

where

qα(r) = qα(x,r) =
(
−
∫

S(r)
Qα(y)

) 1
α

, (6.55)

S(r) = SD(x,r) = {y ∈ D : |y− x| = r}. (6.56)

Indeed, by the Jensen inequality, qα(r) ≥ q1(r) = q(r) (see, e.g., [339], p. 20)
and, thus, (6.54) implies (6.52).

Remark 6.6. Theorem 6.7 and its corollaries are valid if we take as q(r) and qα(r)
the means of Q(y) over the whole spheres |y− x| = r formally extending Q(y) by
zero outside the domain D.

Bounded domains with smooth boundaries and bounded convex domains in R
n,

n ≥ 2, satisfy the condition of doubling measure (6.7) at every boundary point and
hence, choosing in (6.48) ψ(t) = 1/(log1/t), we obtain by Lemma 6.8 and Corol-
lary 6.3 the following theorem.

Theorem 6.8. Let f be a Q-homeomorphism between bounded domains D and D′

in R
n, n ≥ 2, with smooth boundaries. If Q(x) ∈ L1(D) has finite mean oscillation

at every point x0 ∈ ∂D, then f has a homeomorphic extension to the closure of D in
Rn.

Theorem 6.9. Let f be a Q-homeomorphism between bounded convex domains D
and D′ in R

n, n ≥ 2. If Q(x) ∈ L1(D) has finite mean oscillation at every point
x0 ∈ ∂D, then f has a homeomorphic extension f : D → D′.

Corollary 6.22. If f is a Q-homeomorphism of the unit ball B
n, n ≥ 2, onto itself,

where Q ∈ L1(Bn) has finite mean oscillation at every point x0 ∈ ∂B
n, then f admits

a homeomorphic extension f : Bn → Bn.
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6.9 On Singular Null Sets for Extremal Distances

Recall that a closed set X ⊂ R
n, n ≥ 2, is called a null set for extremal distances,

abbr. an NED set, if

M(Δ(E,F;Rn)) = M(Δ(E,F;Rn\X)) (6.57)

for every pair of disjoint continua E and F ⊂ R
n\X .

Remark 6.7. It is known that if X ⊂ R
n is an NED set, then

|X | = 0 (6.58)

and X does not locally disconnect R
n, i.e., see [126],

dim X ≤ n−2. (6.59)

Conversely, if X ⊂ R
n is closed and

Λn−1(X) = 0, (6.60)

then X is an NED set; see [317].

Here Λn−1(X) denotes the (n−1)-dimensional Hausdorff measure of a subset X
in R

n. We also denote by f (X) the cluster set of a mapping f : D → Rn for a set
X ⊂ D,

C(X , f ) := {y ∈ Rn : y = lim
k→∞

f (xk), xk → x0 ∈ X } . (6.61)

Note that the complements of NED sets in R
n are a very particular case of QED

domains considered in the previous section. Thus, arguing locally, we obtain as in
Section 6.8 by Lemmas 4.2 and 6.7, Corollary 6.17, and Remark 6.5, the following
statement.

Lemma 6.9. Let f be a Q-homeomorphism of D\X into Rn, n ≥ 2, and let X ⊂ D.
Suppose that X and C(X , f ) are NED sets and Q is integrable in a neighborhood of
the set X. If condition (6.48) holds at every point x0 ∈X, then f has a homeomorphic
extension to D in Rn.

By Corollaries 6.1 and 6.3, choosing ψ(t) = 1/(t log1/t) in (6.48), we have as a
consequence of Lemma 6.9 the following theorem.

Theorem 6.10. If Q ∈ L1
loc(D) has finite mean oscillation at each point of an NED

set X ⊂D, then every Q-homeomorphism f of D\X into Rn with an NED set C(X , f )
has a homeomorphic extension to D in Rn.

In view of Remark 6.7, we obtain the following consequence of Theorem 6.10.

Corollary 6.23. In particular, the assertion of Theorem 6.10 holds if X is a closed
subset of D with
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Λn−1(X) =Λn−1(C(X , f )) = 0 (6.62)

and Q ∈ L1
loc(D) has finite mean oscillation at every point x ∈ X.

In particular, by Corollary 6.1, we come to the next consequence.

Corollary 6.24. If all points of a closed set X ⊂ D with condition (6.62) are
Lebesgue points for the function Q ∈ L1

loc(D), then the Q-homeomorphism f of D\X
into Rn admits a homeomorphic extension to D in Rn.

By Lemma 6.9 under ψ(t) = 1/t, we also have the next statement.

Corollary 6.25. If the singular integral

∫

U

Q(y)−Q(x)
|y− x|n dm(y) (6.63)

is convergent for every x of a closed set X ⊂ D over a neighborhood U of the set
X, then under condition (6.62), every Q-homeomorphism f of D\X into Rn has
homeomorphic extension to D in Rn.

Remark 6.8. In the same way, by Lemma 6.9, analogies of all other theorems in Sec-
tions 6.4 and 6.8 can be obtained, too. In particular, if at least one of the conditions
(6.50), (6.51), (6.52), (6.53), and (6.54) holds at every point x of a closed set X ⊂ D,
then under condition (6.62), every Q-homeomorphism f of D\X into Rn admits a
homeomorphic extension to D in Rn.

Using the known term from the theory of analytic functions, we say that the given
types of singularities at X of a Q-homeomorphism f of D\X into Rn are unessential,
i.e., f is extended to X by continuity to a homeomorphism of D into Rn.

6.10 Applications to Mappings in Sobolev Classes

The results of this chapter are applicable, in particular, to BMO-quasiconformal
mappings and homeomorphisms of finite length distortion and finite area distor-
tion; see Chapters 4, 8, and 10. They have also a number of consequences for other
classes of mappings with finite distortion. Let us give some of these applications
explicitly. They are based on Corollary 6.4 to Theorem 6.1 and the corresponding
results in Sections 6.4 and 6.6–6.9 of this chapter. Recall that singular sets of (n−1)-
dimensional Hausdorff measure zero are removable for the Sobolev class W 1,n; see,
e.g., [216], p. 16.

Let us begin with isolated singularities of homeomorphisms in the local Sobolev
class W 1,n

loc . Directly by Corollary 6.4 and Theorem 6.2, we have the following theo-
rem.
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Theorem 6.11. Let f be a homeomorphism of D\{x0} into Rn, n ≥ 2, of the class
W 1,n

loc and let its inner dilatation KI(x, f ) be majorized by a function Q(x) with finite
mean oscillation at x0 ∈ D. Then f is extended to a Q-homeomorphism of D into
Rn.

By Proposition 6.1 and Corollary 6.1, respectively, we obtain the following two
consequences of Theorem 6.11.

Corollary 6.26. In particular, the assertion holds if x0 is a Lebesgue point either of
KI or of a majorant of KI in a neighborhood of x0.

Corollary 6.27. If f is a homeomorphism of B
n\{0} into Rn, n ≥ 2, of the class

W 1,n
loc with

lim
ε→0

−
∫

B(ε)
KI(x, f ) dm(x) < ∞, (6.64)

then f is extended to a Q-homeomorphism of B
n into Rn.

Analogies of the known Painleve theorem also take place for such classes; cf.
[24]. The following theorem is a direct consequence of Corollary 6.4 and Theorem
6.5.

Theorem 6.12. Let D be a domain in R
n, n ≥ 2, let X be a closed subset of D of

length zero, and let f be a homeomorphism of D\X into Rn of the class W 1,n
loc . If

KI(x, f ) ≤ Q(x) and the majorant Q(x) has finite mean oscillation at every point
x0 ∈ X, then f is extended to a homeomorphism of D into Rn.

The following two corollaries of Theorem 6.12 follow by Proposition 6.1 and
Corollary 6.1, respectively.

Corollary 6.28. Let X be a closed subset of length zero in D and let f be a homeo-
morphism of D\X into Rn, n ≥ 2, of the class W 1,n

loc such that every point of X is a
Lebesgue point for KI(x, f ). Then f is extended to a homeomorphism of D into Rn.

Corollary 6.29. Let X be a closed subset of length zero in D and let

lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) < ∞ (6.65)

for every x0 ∈ X. Then every homeomorphism f of D\X into Rn of the class W 1,n
loc

with KI(x, f ) ≤ Q(x) a.e. is extended to a homeomorphism of D into Rn.

For a singular set X with positive length, it is necessary to request additional
conditions on its cluster set C(X , f ) under the mapping f ; see (6.61). The following
theorem is obtained directly by Corollaries 6.4 and 6.23.

Theorem 6.13. Let D be a domain in R
n, n ≥ 2, let f be a homeomorphism of D\X

into Rn, n ≥ 2, in the class W 1,n
loc , and let X be a closed subset of D such that
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Λn−1(X) =Λn−1(C(X , f )) = 0. (6.66)

If KI(x, f ) ≤ Q(x) and the majorant Q ∈ L1
loc has finite mean oscillation at every

point x0 ∈ X , then f can be extended to a homeomorphism of D into Rn.

By Proposition 6.1 and Corollary 6.1, we also have the following two corollaries
of Theorem 6.13.

Corollary 6.30. If all points of a closed set X ⊂ D with condition (6.66) are
Lebesgue points for KI(x, f ) ∈ L1

loc(D), then the homeomorphism f of D\X into

Rn of the class W 1,n
loc (D\X) admits a homeomorphic extension to D in Rn.

Corollary 6.31. If a closed set X ⊂ D with condition (6.66) also satisfies the condi-
tion

lim
ε→0

−
∫

B(x0,ε)
KI(x, f ) dm(x) < ∞ (6.67)

for every x0 ∈ X, then the homeomorphism f ∈ W 1,n
loc (D\X) has a homeomorphic

extension to D in Rn.

Finally, the homeomorphic extension of homeomorphisms f ∈ W 1,n
loc to hard

boundaries is also possible under the corresponding conditions on KI(x, f ) at the
boundary points but with suitable geometric conditions on the boundaries. We re-
strict ourselves to the simplest cases; cf. Section 6.8. Namely, bounded domains with
smooth boundaries and bounded convex domains satisfy the condition of doubling
measure (6.7) at all boundary points. Hence, combining Lemma 6.1 and Corollary
6.17 with Theorems 6.8 and 6.9, respectively, we obtain the following two theorems.

Theorem 6.14. Let f ∈ W 1,n
loc (D) be a homeomorphism between bounded domains

D and D′ in R
n, n ≥ 2, with smooth boundaries. If KI(x, f ) ≤ Q(x), where Q(x) ∈

L1(D) has finite mean oscillation at every point x0 ∈ ∂D, then f has a homeomor-
phic extension to the closure of D onto the closure of D′.

Theorem 6.15. Let f ∈ W 1,n
loc (D) be a homeomorphism between bounded convex

domains D and D′ in R
n, n ≥ 2. If KI(x, f ) ≤ Q(x), where Q(x) ∈ L1(D) has finite

mean oscillation at every point x0 ∈ ∂D, then f has a homeomorphic extension
f : D → D′.

Corollary 6.32. If f ∈ W 1,n
loc (Bn) is a homeomorphism of the unit ball B

n, n ≥ 2,
onto itself such that KI(x, f ) ≤ Q(x), where Q ∈ L1(Bn) has finite mean oscillation
at every point x0 ∈ ∂B

n, then f admits a homeomorphic extension f : Bn → Bn.

In particular, by Corollary 6.1, we come to the following statement.

Corollary 6.33. If a homeomorphism f ∈W 1,n(Bn) of the unit ball B
n, n ≥ 2, onto

itself, f (0) = 0, satisfies the condition

lim
ε→0

−
∫

B∗(x0,ε)
KI(x, f ) dm(x) < ∞ , ∀x0 ∈ ∂B

n, (6.68)
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where B∗(x0,ε) = B(x0,ε)∩B
n, then its extension by reflection through ∂B

n is a
homeomorphism of R

n of the class f ∈W 1,n
loc (Rn).

Remark 6.9. Of course, the list of consequences could be continued. By Theorem
6.1 and Corollary 6.4, all of the above results for Q-homeomorphisms in Sections
6.4 and 6.6-6.9 hold for homeomorphisms f in the Sobolev class W 1,n

loc such that

f−1 ∈W 1,n
loc and, in particular, for f ∈W 1,n

loc with KI ∈ L1
loc if

KI(x, f ) ≤ Q(x). (6.69)



Chapter 7
Ring Q-Homeomorphisms

In this chapter we develop the theory of normal families of ring Q-homeomorphisms
including Q-homeomorphisms that was first started in the plane (see [275,277,280])
and then in space (see [267–270]). As is well known, normal families take an im-
portant role in the research of the local and boundary behavior of mappings as well
as the problem of existence of solutions for various differential equation; see, e.g.,
Chapter 11. Their investigation is closely related with equicontinuous families and,
thus, with estimations of the distortion in the corresponding classes of mappings.

7.1 Introduction

Given a domain D and two sets E and F in Rn, n ≥ 2, Δ(E,F,D) denotes the family
of all paths γ : [a,b] → Rn that join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F, and
γ(t) ∈ D for a < t < b. We set Δ(E,F) = Δ(E,F,Rn) if D = Rn. A ring domain, or
shortly a ring in Rn, is a doubly connected domain R in Rn. Let R be a ring in Rn.
If C1 and C2 are the connected components of Rn \R, we write R = R(C1,C2). The
(conformal) capacity of R can be defined by the equality

cap R(C1,C2) = M(Δ(C1,C2,R)); (7.1)

see, e.g., [122] and Section A.3. Note that

M(Δ(C1,C2,R)) = M(Δ(C1,C2)); (7.2)

see, e.g., Theorem 11.3 in [316].

Motivated by the ring definition of quasiconformality in [66], we introduce the
following notion that in a natural way localizes and generalizes the notion of a Q-
homeomorphism. Let D be a domain in R

n, n ≥ 2, and Q : D → [0,∞] a measurable
function. Set

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 7, c© Springer Science+Business Media, LLC 2009
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A(r1,r2,x0) = {x ∈ R
n : r1 < |x− x0| < r2}, (7.3)

S(x0,ri) = {x ∈ R
n : |x− x0| = ri}, i = 1,2. (7.4)

Given domains D in R
n and D′ in Rn, n ≥ 2, we say that a homeomorphism

f : D → D′ is a ring Q-homeomorphism at a point x0 ∈ D if

M(Δ( f S1, f S2, f D)) ≤
∫

A

Q(x) ·ηn(|x− x0|) dm(x) (7.5)

for every ring A = A(r1,r2,x0), 0 < r1 < r2 < d0 = dist(x0,∂D), and for every mea-
surable function η : (r1,r2) → [0,∞] such that

r2∫

r1

η(r) dr = 1. (7.6)

Note that every Q-homeomorphism f : D → D′ is a ring Q-homeomorphism at
every point x0 ∈ D, but the inverse conclusion, generally speaking, is not true.

7.2 On Normal Families of Maps in Metric Spaces

First give some general facts on normal families of mappings in metric spaces. Let
(X ,d) and (X

′
,d

′
) be metric spaces with distances d and d

′
, respectively. A family

F of continuous mappings f : X → X
′

is said to be normal if every sequence of
mappings fm ∈ F has subsequence fmk converging uniformly on each compact set
C ⊂ X to a continuous mapping. Normality is closely related to the following. A
family F of mappings f : X → X

′
is said to be equicontinuous at a point x0 ∈ X if,

for every ε > 0, there is δ > 0 such that d
′
( f (x), f (x0)) < ε for all f ∈ F and x ∈ X

with d(x,x0) < δ . The family F is equicontinuous if F is equicontinuous at every
point x0 ∈ X .

Proposition 7.1. Let (X ,d) and (X
′
,d

′
) be arbitrary metric spaces and let F be a

normal family of mappings f : X → X
′
. Then F is equicontinuous.

Proof. Indeed let us assume that there exist x0 ∈ X , ε0 > 0 and sequences of map-
pings fm ∈ F and points xm ∈ X such that xm → x0 and d

′
( fm(xm), fm(x0)) ≥ ε0.

Without loss of generality, we may consider that fm → f uniformly on each com-
pact set C ⊂ X , where f is a continuous mapping. However,

⋃{xm} is a compact set.
Hence, d

′
( fm(x0), f (x0)) < ε0/3 and d

′
( fm(xm), f (xm)) < ε0/3 for all great enough

m. Moreover, d
′
( f (xm), f (x0)) < ε0/3 by the continuity of the mapping f and, con-

sequently, d
′
( fm(xm), fm(x0)) ≤ ε0 by the triangle inequality. The latter contradicts

the above assumption. 
�
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A family F of mappings f : X → X
′

is said to be uniformly equicontinuous on
a set E ⊂ X if, for every ε > 0, there is δ > 0 such that d

′
( f (x), f (x

′
)) < ε for all

f ∈ F and for all x and x
′ ∈ E with d(x,x

′
) < δ .

Lemma 7.1. Let (X ,d) and (X
′
,d

′
) be metric spaces and let F be a family of

equicontinuous mappings f : X → X
′
. Then F is uniformly equicontinuous on ev-

ery compact set C ⊂ X.

Corollary 7.1. Normal families of mappings between metric spaces are uniformly
equicontinuous on compacts.

Proof of Lemma 7.1. Let us assume that there exist a compact set C ∈ X , a
number ε0 > 0, and sequences of mappings fm ∈ F and of points xm,x

′
m ∈ C such

that d(xm,x
′
m) → 0 as m → ∞ and d

′
( fm(xm), fm(x

′
m)) ≥ ε0. Without loss of gener-

ality, we may assume that xm → x0 and x
′
m → x0 ∈ C because C is compact. Then

d
′
( fm(xm), fm(x0)) < ε0/2 and d

′
( fm(x0), fm(x

′
m)) < ε0/2 for great enough m, which

contradicts the above assumption. 
�
The function

ωE(t) = ωF
E (t) = sup d

′
( f (x), f (z)), (7.7)

where the supremum is taken over all x,z ∈ E such that d(x,z) ≤ t and f ∈ F, is
called the modulus of continuity of the family F on the set E.

Similarly, the function

ωx0(t) = ωF
x0

(t) = sup d
′
( f (x0), f (x)), (7.8)

where the supremum is taken over all x ∈ X and f ∈ F such that d(x,x0) ≤ t, is
called the modulus of continuity of F at the point x0 ∈ X .

Note that, by definition, ωE and ωx0 are nonnegative, nondecreasing, and contin-
uous from the right. Note also that ωx0(t)→ 0 as t → 0 for every x0 ∈ X if the family
F is equicontinuous. Moreover, the following statement follows from Lemma 7.1.

Corollary 7.2. If a family F of mappings f : X → X
′

is equicontinuous, then
ωC(t) → 0 as t → 0 for every compact set C ⊂ X.

The next statement is also obvious.

Proposition 7.2. Let (X ,d) and (X
′
,d

′
) be metric spaces and let F be a closure of

a family F of mappings f : X → X
′

with respect to the pointwise convergence in X.
Then the moduli of continuity (7.7) and (7.8) of F and F coincide.

Corollary 7.3. If a sequence of mappings fm : X → X
′
, m = 1,2 . . . is equicontinu-

ous and fm(x) → f (x) as m → ∞ for every x ∈ X, then the limit function f : X → X
′

is continuous.

A sequence of mappings fm : X → X
′
, m = 1,2 . . . , is called continuously con-

vergent to f : X → X
′
, if fm(xm) → f (x0) as m → ∞ for every convergent sequence

of points xm → x0 in X .
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Remark 7.1. The uniform convergence of continuous mappings on compact sets al-
ways implies the continuous convergence because ∪∞

m=0{xm} is a compact set as
xm → x0 and because, by the triangle inequality,

d
′
( fm(xm), f (x0)) ≤ d

′
( fm(xm), f (xm))+d

′
( f (xm), f (x0)). (7.9)

If the second space X
′
has a countable basis at each point, say if X

′
is separable, then

the convergences are equivalent; see, e.g., [50], p. 268. It is also obvious that the
continuous convergence implies pointwise convergence. The converse conclusion
is, generally speaking, not true, as shown by the example fm(x) = xm, x ∈ [0,1]:
fm(x) → 0 for x < 1 and fk(1) → 1, but fm(xm) ≡ 1/2 for xm = 2−1/m → 1 as
m → ∞.

The following theorem shows that all three convergences are equivalent for
equicontinuous families of mappings in arbitrary metric spaces.

Theorem 7.1. Let (X ,d) and (X
′
,d

′
) be metric spaces and let F be an equicontinu-

ous family of mappings f : X → X
′
. Then the following statements are equivalent

for all sequences fm ∈ F:

(1) fm converges uniformly on every compact set;

(2) fm converges continuously;

(3) fm converges at every point x ∈ X.

Corollary 7.4. The closures F of equicontinuous families F with respect to the
pointwise convergence and the uniform convergence on compact sets coincide in
arbitrary metric spaces.

Proof of Theorem 7.1. The implications (1) ⇒ (2) ⇒ (3) are obvious; see Re-
mark 7.1. Thus, it remains to prove the implication (3) ⇒ (1). Indeed, let us as-
sume there is a sequence fm ∈ F such that fm(x) → f (x) as m → ∞ for every x ∈ X
and, simultaneously, for a compact set C ⊂ X , there is a number ε0 > 0 such that
d
′
( fm(xm), f (xm))≥ ε0 for some sequence of points xm ∈C. Without loss of general-

ity, we may consider that xm → x0 ∈C as m→∞. However, by the triangle inequality,
d
′
( fm(xm), f (xm)) ≤ d

′
( fm(xm), fm(x0))+ d

′
( fm(x0), f (x0))+ d

′
( f (x0), f (xm)) and

by Corollaries 7.2 and 7.3, we come to the contradiction with the above assumption.

�

Lemma 7.2. Let (X ,d) be a metric space, let a set E ⊂ X be dense everywhere
in X, and let (X

′
,d

′
) be a complete metric space. If an equicontinuous sequence

of mappings fm : X → X
′

is pointwise convergent on the set E, then fm converges
uniformly on every compact set C ⊂ X.

Proof. In view of Theorem 7.1, it is sufficient to prove that the pointwise conver-
gence of fm on E implies the pointwise convergence of fm on X . Indeed, for every
x0 ∈ X\E, there is a sequence xk ∈ E such that xk → x0 as k → ∞ because E is
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dense in X . By the equicontinuity of fm, for every ε > 0, there is K = K(ε) such that
d
′
( fm(xk), fm(x0)) < ε/3 for all k ≥K and all m = 1,2, . . . . Let us fix k0 ≥K. By the

Cauchy criterion, we have d
′
( fn(xk0), fm(xk0)) < ε/3 for all n and m≥N = N(ε,k0).

Finally, by the triangle inequality,

d
′
( fn(x0), fm(x0)) ≤ d

′
( fn(x0), fn(xk0)) + d

′
( fn(xk0), fm(xk0))

+d
′
( fm(xk0), fm(x0)) < ε

for all n and m≥N, i.e., the sequence fm(x0) is fundamental and hence is convergent
by the completeness of the space X

′
. 
�

As is well known, every compact metric space is complete; see, e.g., Theorem 3
in Section 33, II, [185]. Thus, using the diagonal process, we obtain the following
consequence of Proposition 7.1 and Lemma 7.2.

Corollary 7.5. If (X ,d) is a separable metric space and (X
′
,d

′
) is a compact met-

ric space, then a family F of mappings f : X → X
′

is normal if and only if F is
equicontinuous.

7.3 Characterization of Ring Q-Homeomorphisms

Here we use the standard conventions a/∞ = 0 for a �= ∞ and a/0 = ∞ if a > 0 and
0 ·∞ = 0; see, e.g., [281], p. 6.

Lemma 7.3. Let D be a domain in R
n, n ≥ 2, Q : D → [0,∞] a measurable function,

and qx0(r) the mean of Q(x) over the sphere |x− x0| = r. Set

I = I(r1,r2) =
r2∫

r1

dr

rq
1

n−1
x0 (r)

(7.10)

and S j = {x ∈ R
n : |x− x0| = r j}, j = 1,2, where x0 ∈ D and 0 < r1 < r2 < d0 =

dist(x0,∂D). Then

M(Δ( f S1, f S2, f D)) ≤ ωn−1

In−1 (7.11)

whenever f : D → R
n is a ring Q-homeomorphism, where ωn−1 is the area of the

unit sphere in R
n.

Proof. With no loss of generality, we may assume that I �= 0 because otherwise
(7.11) is trivial, and that I �= ∞ because otherwise we can replace Q(z) by Q(z)+δ
with arbitrarily small δ > 0 and then take the limit as δ → 0 in (7.11). The condition
I �= ∞ implies, in particular, that q(r) �= 0 a.e. in (r1,r2). Set

ψ(t) =

{
1/[tq

1
n−1
x0 (t)], t ∈ (r1,r2),

0, otherwise.
(7.12)
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Then ∫

A

Q(x) ·ψn(|x− x0|) dm(x) = ωn−1I, (7.13)

where
A = A(r1,r2,x0) = {x ∈ R

n : r1 < |x− x0| < r2}. (7.14)

Let Γ be a family of all paths joining the spheres S1 and S2 in A. Also let ψ∗

be a Borel function such that ψ∗(t) = ψ(t) for a.e. t ∈ [0,∞]. Such a function ψ∗

exists by the Lusin theorem; see, e.g., Section 2.3.5 in [64] and [281], p. 69. Then
the function

ρ(x) = ψ∗(|x− x0|)/I

is admissible for Γ and, since f is a ring Q-homeomorphism, we get by (7.13) that

M( fΓ ) ≤
∫

A

Q(x) ·ρn(x) dm(x) =
ωn−1

In−1 .


�

The following lemma shows that the estimate (7.11) cannot be improved for ring
Q-homeomorphisms.

Lemma 7.4. Fix x0 ∈ R
n, 0 < r1 < r2 < r0, A = {x ∈ R

n : r1 < |x− x0| < r2}, B =
B(x0,r0) = {x ∈R

n : |x−x0|< r0}, and suppose that Q : D → [0,∞] is a measurable
function. Set

η0(r) =
1

Irq
1

n−1
x0 (r)

, (7.15)

where q(r) is the mean of Q(x) over the sphere |x− x0| = r and I is as in Lemma
7.3. Then

ωn−1

In−1 =
∫

A

Q(x) ·ηn
0 (|x− x0|) dm(x) ≤

∫

A

Q(x) ·ηn(|x− x0|) dm(x) (7.16)

whenever η : (r1,r2) → [0,∞] is such that

r2∫

r1

η(r) dr = 1. (7.17)

Proof. If I = ∞, then the left-hand side in (7.16) is equal to zero and the inequality
is obvious. If I = 0, then qx0(r) = ∞ for a.e. r ∈ (r1,r2) and both sides in (7.16) are
equal to ∞. Hence, we may assume below that 0 < I < ∞.

Now, by (7.10) and (7.17), qx0(r) �= 0 and η(r) �= ∞ a.e. in (r1,r2). Set α(r) =

rq
1

n−1
x0 (r)η(r) and w(r) = 1/rq

1
n−1
x0 (r). Then, by the standard conventions, η(r) =

α(r)w(r) a.e. in (r1,r2) and
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C:=
∫

A

Q(x) ·ηn(|x− x0|) dm(x) = ωn−1

r2∫

r1

αn(r) ·w(r) dr. (7.18)

By Jensen’s inequality with weights (see, e.g., Theorem 2.6.2 in [252]), applied
to the convex function ϕ(t) = tn in the interval Ω = (r1,r2) with the probability
measure

ν(E) =
1
I

∫

E

w(r) dr, (7.19)

we obtain (
−
∫
αn(r)w(r) dr

)1/n

≥ −
∫
α(r)w(r) dr =

1
I
, (7.20)

where we also used the fact that η(r) = α(r)w(r) satisfies (7.17). Thus,

C ≥ ωn−1

In−1 , (7.21)

and the proof is complete. 
�

Theorem 7.2. Let D be a domain in R
n, n ≥ 2, and Q : D → [0,∞] a measurable

function. A homeomorphism f : D → R
n is a ring Q-homeomorphism at a point x0

if and only if, for every 0 < r1 < r2 < d0 = dist(x0,∂D),

M(Δ( fC1, fC2, f D)) ≤ ωn−1

In−1 , (7.22)

where ωn−1 is the area of the unit sphere in R
n, qx0(r) is the mean value of Q(x)

over the sphere |x− x0| = r, S j = {x ∈ R
n : |x− x0| = r j}, j = 1,2, and

I = I(r1,r2) =
r2∫

r1

dr

rq
1

n−1
x0 (r)

Moreover, the infimum from the right-hand side in (7.5) holds for the function

η0(r) =
1

Irq
1

n−1
x0 (r)

. (7.23)

7.4 Estimates of Distortion

Lemma 7.5. Let D be a domain in R
n, n ≥ 2, let x0 be a point in D, let r0 <

dist(x0,∂D), and let D′ be a domain in Rn with h(Rn \ D′) ≥ Δ > 0. Then, for
every homeomorphism f : D → D′ and z ∈ B(x0,r0),
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h( f (z), f (x0)) ≤
αn

Δ
· exp

(
−
{

ωn−1

M(Δ( f S, f S0, f D))

} 1
n−1
)

, (7.24)

where S0 = {x ∈ R
n : |x− x0| = r0} and S = {x ∈ R

n : |x− x0| = |z− x0|}, ωn−1 is
the area of the unit sphere in R

n, and αn depends only on n.

Proof. Let E denote the component of Rn \ f A containing f (x0) and F the com-
ponent containing ∞, where A = {x ∈ R

n : |z− x0| < |x− x0| < r0}. By the known
Gehring lemma,

cap R(E,F) ≥ cap RT

(
1

h(E)h(F)

)
, (7.25)

where h(E) and h(F) denote the spherical diameters of the continua E and F, re-
spectively, and RT (t) is the Teichmüller ring

RT (t) = R
n \ ([−1,0]∪ [t,∞]) , t > 0; (7.26)

see, e.g., Corollary 7.37 in [328] or [71], Section A.1. It is also known that

cap RT (t) =
ωn−1

(logΦ(t))n−1 , (7.27)

where the function Φ admits the good estimates:

t +1 ≤Φ(t) ≤ λ 2
n · (t +1) < 2λ 2

n · t, t > 1 ; (7.28)

see, e.g., [71], pp. 225–226, (7.19) and Lemma (7.22) in [328], and Section A.1.
Hence, inequality (7.25) implies that

cap R(E,F) ≥ ωn−1(
log 2λ 2

n
h(E)h(F)

)n−1 . (7.29)

Thus,

h(E) ≤ 2λ 2
n

h(F)
exp

(
−
{

ωn−1

cap R(E,F)

} 1
n−1
)

, (7.30)

which implies the desired statement. 
�

Now, combining Lemmas 7.3, 7.4, and 7.5, we have the following lemma.

Lemma 7.6. Let D be a domain in R
n, n ≥ 2, let D′ be a domain in Rn with h(Rn \

D′) ≥ Δ > 0, and let f : D → D′ be a ring Q-homeomorphism at a point x0 ∈ D. If,
for 0 < ε0 < dist(x0,∂D),

∫

ε<|x−x0| < ε0

Q(x) ·ψn
ε (|x− x0|) dm(x) ≤ c · I p(ε) , ε ∈ (0,ε0), (7.31)
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where p ≤ n and ψε(t) is nonnegative on (0,∞) such that

0 < I(ε) =
ε0∫

ε

ψε(t) dt < ∞, ε ∈ (0,ε0), (7.32)

then
h( f (x), f (x0)) ≤ αn

Δ
exp{−βnIγn,p(|x− x0|)} (7.33)

for all x ∈ B(x0,ε0), where αn depends only on n,

βn =
(ωn−1

c

) 1
n−1

, γn,p = 1− p−1
n−1

. (7.34)

Corollary 7.6. Under the conditions of Lemma 7.6 and for p = 1,

h( f (x), f (x0)) ≤ αn

Δ
exp{−βnI(|x− x0|)}. (7.35)

By Lemmas 7.3 and 7.5, we obtain the following estimate.

Theorem 7.3. Let D be a domain in R
n, n ≥ 2, let D′ be a domain in Rn with

h(Rn \D′) ≥ Δ > 0, and let f : D → D′ be a ring Q-homeomorphism at a point
x0 ∈ D. Then

h( f (x), f (x0)) ≤ αn

Δ
exp

⎧⎪⎨
⎪⎩−

ε(x0)∫

|x−x0|

dr

rq
1

n−1
x0 (r)

⎫⎪⎬
⎪⎭ (7.36)

for x ∈ B(x0,ε(x0)), where ε(x0) < dist(x0,∂D), αn depends only on n, and qx0(r)
is the mean integral value of Q(x) over the sphere |x− x0| = r.

Remark 7.2. Of course, the mean value qx0(r) of Q(x) over some spheres |x−x0|= r
can be infinite. However, qx0(r) is measurable in the parameter r because Q(x) is
measurable in x, say by the Fubini theorem. Moreover, at every point x �= x0,

ε(x0)∫

|x−x0|

dr

rq
1

n−1
x0 (r)

< ∞ (7.37)

for any ring Q-homeomorphism because in the contrary case we would have from
(7.36) that f (x) = f (x0). The integral in (7.37) can be 0 if qx0(r) = ∞ a.e., but then
inequality (7.36) is obvious because αn ≥ 32 and Δ as well as h( f (x), f (x0)) are
less than or equal to 1.

Note also that if Q(x)≥ 1 or at least qx0(r)≥ 1 a.e., then one may use any degree
β ≥ 1/(n− 1) and, in particular, β = 1 instead of 1/(n− 1), in inequalities (7.36)
and (7.37). Indeed, for the function
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ψ(t) =

{
1

tqβx0 (t)
, t ∈ (0,ε0),

0, t ∈ [ε0,∞),
(7.38)

we have

∫

ε<|x−x0| < ε0

Q(x) ·ψn(|x− x0|) dm(x) = ωn−1

ε0∫

ε

dr

rqβn−1
x0 (r)

≤ ωn−1

ε0∫

ε

dr

rqβ (r)
,

(7.39)
and, thus, the conclusion follows immediately from Corollary 7.6.

Corollary 7.7. If

qx0(r) ≤
[

log
1
r

]n−1

(7.40)

for r < ε(x0) < dist(x0,∂D), then

h( f (x), f (x0)) ≤
αn

Δ
log 1

ε0

log 1
|x−x0|

(7.41)

for all x ∈ B(x0,ε(x0)).

Corollary 7.8. If

Q(x) ≤
[

log
1

|x− x0|

]n−1

, x ∈ B(x0,ε(x0)), (7.42)

then (7.41) holds in the ball B(x0,ε(x0)).

Remark 7.3. If, instead of (7.40) and (7.42), we have the conditions

qx0(r) ≤ c ·
[

log
1
r

]n−1

(7.43)

and, correspondingly,

Q(x) ≤ c ·
[

log
1

|x− x0|

]n−1

, (7.44)

then

h( f (x), f (x0)) ≤ αn

Δ

[
log 1

ε0

log 1
|x−x0|

]1/c1/(n−1)

. (7.45)

Choosing in Lemma 7.6 ψ(t) = 1/t and p = 1, we also have the following con-
clusion.

Corollary 7.9. Let f : B
n → B

n be a ring Q-homeomorphism such that f (0) = 0
and
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∫

ε<|x|<1

Q(x)
dm(x)
|x|n ≤ c log

1
ε
, ε ∈ (0,1). (7.46)

Then
| f (x)| ≤ 2αn · |x|βn , (7.47)

where αn depends only on n and βn is defined by (7.34).

Finally, by Lemma 7.6 and Corollary 6.3, we obtain the following estimate.

Theorem 7.4. Let D be a domain in R
n, n ≥ 2, let D′ be a domain in Rn with

h(Rn \D′) ≥ Δ > 0, and let f : D → D′ be a ring Q-homeomorphism at a point
x0 ∈ D. If Q(x) has finite mean oscillation at the point x0 ∈ D, then

h( f (x), f (x0)) ≤
αn

Δ

{
log 1

ε0

log 1
|x−x0|

}β0

(7.48)

for some ε0 < dist(x0,∂D) and every x ∈ B(x0,ε0), where αn depends only on n and
β0 > 0 depends only on the function Q.

7.5 On Normal Families of Ring Q-Homeomorphisms

Given a domain D in R
n, n ≥ 2, and a measurable function Q : D → [0,∞], let

RQ,Δ (D) be the class of all ring Q-homeomorphisms f in D with h(Rn \ f D)≥ Δ >
0. The above results now yield the following:

Theorem 7.5. If Q ∈ FMO, then RQ,Δ (D) is a normal family.

Corollary 7.10. The class RQ,Δ (D) is normal if

lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) < ∞ ∀ x0 ∈ D. (7.49)

Corollary 7.11. The class RQ,Δ (D) is normal if every x0 ∈ D is a Lebesgue point of
Q(x).

Theorem 7.6. Let Δ > 0 and let Q : D → [0,∞] be a measurable function such that

ε(x0)∫

0

dr

rq
1

n−1
x0 (r)

= ∞ (7.50)

holds at every point x0 ∈ D, where ε(x0) = dist(x0,∂D) and qx0(r) denotes the mean
integral value of Q(x) over the sphere |x−x0|= r. Then RQ,Δ forms a normal family.

Corollary 7.12. The class RQ,Δ (D) is normal if Q(x) has singularities of the loga-
rithmic type of order not greater than n−1 at every point x ∈ D.
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Remark 7.4. In view of Remark 7.2, if Q(x) ≥ 1 a.e. in D, then one may use any
degree β ≥ 1/(n−1), say β = 1, instead of 1/(n−1) in condition (7.50).

Note that all the above results hold for homeomorphisms f of the Sobolev class
W 1,n

loc with f−1 ∈W 1,n
loc under the condition that

KI(x, f ) ≤ Q(x) a.e., (7.51)

where KI is the inner dilatation of the mapping f ; see, e.g., Theorem 6.1. In par-
ticular, this is valid for homeomorphisms f ∈ W 1,n

loc with KI ∈ L1
loc; see Corollary

6.4.

POSTSCRIPT. As in the case of Q-quasiconformal mappings (cf. Theorem II.5.1
in [190]), a family R of ring Q-homeomorphisms f : D → Rn in a domain D ⊂ R

n,
n ≥ 2, is normal under every condition given above for Q if there is a number Δ > 0
such that one of the following conditions holds:

(1) Every mapping f ∈ R omits two values whose spherical distance is greater than
Δ .

(2) Every mapping f ∈ R omits one value w0 and h(w(xi),w0) > Δ , i = 1,2, at two
fixed points x1 and x2 ∈ D.

(3) At three fixed points x1,x2, and x3 ∈ D, h(w(xi),w(x j)) > Δ , i �= j, i, j = 1,2,3.

In particular, R is normal if all mappings f ∈ R omit two fixed values in Rn.

7.6 On Strong Ring Q-Homeomorphisms

Given domains D and D′ in Rn, n ≥ 2, a measurable function Q : D → [0,∞], we say
that a homeomorphism f : D → D′ is a strong ring Q-homeomorphism if

M (Δ ( fC1, fC2, f D)) ≤
∫

D

Q(x) ρn(x) dm(x) (7.52)

for two arbitrary continua C1, C2 in D and ρ ∈ admΔ (C1 , C2,D) .

Lemma 7.7. Let f be a strong ring Q-homeomorphism of B
n into Rn with Q ∈

L1 (Bn), f (0) = 0, h
(
Rn \ f Bn

)
≥ δ > 0, and h( f (z0),0) ≥ δ for some z0 ∈ B

n.
Then

h( f (x), f (0)) ≥ ψ (|x|) (7.53)

for all |x|< r = min(|z0|/2,1−|z0|) , where ψ(t) : [0,∞)→ [0,∞) is a continuously
increasing function with ψ(0) = 0 depending only on n, δ , and ‖Q‖1.

The proof of Lemma 7.7 is completely similar to the proof of Theorem 4.4 and
hence is omitted.
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Corollary 7.13. In particular, (7.53) implies that

| f (x)| ≥ ψ (|x|) . (7.54)

The following statement is a generalization of the well-known theorem by Weier-
strass on the locally uniform convergence of analytic functions.

Theorem 7.7. Let D be a domain in R
n, n ≥ 2, and fm a sequence of strong ring

Q-homeomorphisms of D into Rn with Q ∈ L1
loc converging locally uniformly to a

mapping f : D →Rn. Then f is either a strong ring Q-homeomorphism or f ≡ const
in D.

Proof. As a locally uniform limit of continuous mappings, f is continuous. Let
f �≡ const.

Let us first show that f is a discrete mapping. Indeed, if f is not discrete, then
there are a point x0 ∈ D and a sequence xk ∈ D, xk �= x0, with f (xk) = f (x0), k =
1,2, . . . , such that xk → x0 as k → ∞. Note that the set E0 = {x ∈ D : f (x) = f (x0)}
is closed in D because f is continuous. Note also that E0 does not coincide with D
because f �≡ const. Thus, we can replace x0 by a boundary nonisolated point of the
set E0.

Without loss of generality, we may assume that x0 = 0, fm(0) = f (0) = 0, Bn ⊂D
and there is, at least, one point z0 ∈ B

n where f (z0) �= 0. By the continuity of the
chordal metric,

h( fm (z0) ,0) ≥ δ0/2 ∀ m ≥ M0,

where δ0 = h( f (z0),0) > 0. Since Bn is a compactum in D and fm → f uniformly
in Bn,

h
(
Rn\ fm

(
Bn
))

≥ δ∗/2 ∀ m ≥ M∗,

where δ∗ = h
(
Rn\ f

(
Bn
))

. Setting δ = min{δ0/2, δ∗/2} and M = max{M0,M∗},
we have by Lemma 7.7 that

| fm(x)| ≥ ψ(|x|) ∀ m ≥ M

for all x ∈ B(0,r) and r = min{|z0|/2,1−|z0|}, where ψ is an increasing function
with ψ(0) = 0 depending only on ‖Q‖1, n, and δ . Thus,

| f (x)| ≥ ψ(|x|) ∀ x ∈ B(0,r) . (7.55)

Then, in particular,

0 = | f (xk)| ≥ ψ(|xk|) ∀ k ≥ k0,

and, consequently, ψ(rk) = 0 for rk = |xk| �= 0, k ≥ k0. This contradiction shows that
f is discrete.

Now, let us show that f is injective in D. Indeed, assume that there exist x1,x2 ∈
D, x1 �= x2, with f (x1) = f (x2). Let x2 �∈ B(x1, t) ⊂ D for all t ∈ (0, t0]. Then every
fm(∂B(x1, t)), t ∈ (0, t0], separates fm(x1) from fm(x2) and, consequently,
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h( fm(x1), fm(∂B(x1, t)) < h( fm(x1), fm(x2)) .

Hence,
h( f (x1), f (∂B(x1, t)) ≤ h( f (x1), f (x2)) . (7.56)

Since f (x1) = f (x2), it follows from (7.56) that, for every t ∈ (0, t0], there is a
point xt ∈ ∂B(x1, t) such that f (xt) = f (x1). The latter contradicts the discreteness
of the mapping f . The continuity of the inverse mapping f−1 also follows from
(7.55). Thus, f is a homeomorphism.

Finally, condition (7.52) follows by Theorem A.12; see [71]. The proof is com-
plete. 
�



Chapter 8
Mappings with Finite Length Distortion (FLD)

In this chapter we investigate mappings with finite length distortion, which are a
natural extension of quasiregular mappings and mappings with bounded length dis-
tortion; see [207, 287, 288]; cf. also [210, 213, 256].

8.1 Introduction

For x ∈ E ⊂ R
n and a mapping ϕ : E → R

n, we set

L(x,ϕ) = limsup
y→x,y∈E

|ϕ(y)−ϕ(x)|
|y− x| (8.1)

and

l(x,ϕ) = liminf
y→x,y∈E

|ϕ(y)−ϕ(x)|
|y− x| . (8.2)

We assume here that D is a domain in R
n, n ≥ 2, and that all mappings f : D → R

n

are continuous.

We say that a mapping f : D→R
n is of finite metric distortion, abbr. f ∈ FMD,

if f has the Lusin (N)-property and

0 < l(x, f ) ≤ L(x, f ) < ∞ a.e. (8.3)

Recall that a mapping f : X → Y between measurable spaces (X ,Σ ,μ) and
(X ′,Σ ′,μ ′) is said to have the (N)-property if μ ′( f (S)) = 0 whenever μ(S) = 0.
Similarly, f has the (N−1)-property if μ(S) = 0 whenever μ ′( f (S)) = 0.

A path γ in R
n is a continuous mapping γ : Δ → R

n, where Δ is an interval in R.
Its locus γ(Δ) is denoted by |γ|. It is said that a property P holds for almost every
(a.e.) path γ in a family Γ if the subfamily of all paths in Γ for which P fails has
modulus zero.

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 8, c© Springer Science+Business Media, LLC 2009
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If γ : Δ → R
n is a locally rectifiable path, then there is the unique increasing

length function lγ of Δ onto a length interval Δγ ⊂R with a prescribed normalization
lγ(t0) = 0 ∈ Δγ , t0 ∈ Δ , such that lγ(t) is equal to the length of the subpath γ|[t0,t] of
γ if t > t0, t ∈ Δ , and lγ(t) is equal to −l(γ|[t,t0]) if t < t0, t ∈ Δ . Let g : |γ| → R

n be
a continuous mapping, and suppose that the path γ̃ = g◦ γ is also locally rectifiable.
Then there is a unique increasing function Lγ ,g : Δγ → Δγ̃ such that

Lγ ,g(lγ(t)) = lγ̃(t) for all t ∈ Δ . (8.4)

We say that a mapping f : D → R
n has the (L)-property if the following two

conditions hold:

(L1) for a.e. path γ in D, γ̃ = f ◦ γ is locally rectifiable, and the function Lγ , f has
the (N)-property;

(L2) for a.e. path γ̃ in f (D), each lifting γ of γ̃ is locally rectifiable, and the
function Lγ , f has the (N−1)-property.

A path γ in D is a lifting of a path γ̃ in R
n under f : D → R

n if γ̃ = f ◦ γ. Note
that condition (L2) applies only to paths γ̃ that have the lifting.

We say that a mapping f : D → R
n is of finite length distortion, abbr. f ∈ FLD,

if f is of FMD and has the (L)-property.

The class of all FLD mappings includes all nonconstant quasiregular mappings
and, in turn, every FLD mapping f belongs to the following class for some Q that is
determined by f ; see Theorem 8.2 and Corollary 8.7.

Let Q(x,y) = (Q1(x),Q2(y)) be a pair of measurable functions Q1 : D → [1,∞]
and Q2 : D′ → [1,∞]. We say that f : D → R

n, n ≥ 2, f (D) = D′, is a Q-mapping if

M( fΓ ) ≤
∫

D

Q1(x)ρn(x)dm(x) (8.5)

and
M(Γ ) ≤

∫

D′

Q2(y)ρn
∗ (y)dm(y) (8.6)

for every family Γ of paths in D and all ρ ∈ admΓ and ρ∗ ∈ adm fΓ .

If, in addition, f is discrete and open, we say that f is a Q-covering. The more
restrictive notion of a Q-homeomorphism, when f is a homeomorphism and Q2 ≡∞,
has been introduced in [204, 205]; see Chapters 4–6.

Recall that a mapping f : D → R
n is open if the image of every open subset of

D under f is an open set in R
n. A mapping f : D → R

n is discrete if the preimage
f−1(y) of every point y ∈ R

n consists of isolated points. B f denotes the branch
set of a mapping f , i.e., a set of all points x ∈ D at which f fails to be a local
homeomorphism.
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8.2 Moduli of Cuttings and Extensive Moduli

We adopt the following conventions. Given a set E ∈ R
n and a path γ : Δ → R

n, we
identify γ ∩E with γ(Δ)∩E. If γ is locally rectifiable, we set

l(γ ∩E) = |Eγ |, (8.7)

where
Eγ = lγ(γ−1(E)). (8.8)

Here |A| means the length (Lebesgue) measure of a set A ⊂ R and lγ : Δ → Δγ is as
in Section 8.1. In general, for sets A in R

n, |A| will denote the n-Lebesgue measure
of A. Note that

Eγ = γ−1
0 (E), (8.9)

where γ0 : Δγ → R
n is the natural parameterization of γ, and that

l(γ ∩E) =
∫

Δ

χE(γ(t))|dx| =
∫

Δγ

χEg(s)ds. (8.10)

We say that γ ∩E is measurable on γ if Eγ is measurable in Δγ .

Remark 8.1. The definition of the modulus immediately implies that

(1) a.e. path in R
n is rectifiable,

(2) given a Borel set B in R
n of measure zero,

l (γ ∩B) = 0 (8.11)

for a.e. rectifiable path γ in R
n,

(3) for every Lebesgue measurable set E in R
n, there exist Borel sets B∗ and B∗ in R

n

such that B∗ ⊂ E ⊂ B∗ and |B∗ \B∗| = 0. Thus, by (2), Eγ and χEγ are a measurable
set and function, respectively, in the length interval Δγ for a.e. γ in R

n.

The following lemma extends Theorem 33.1 in [316] from Borel sets to arbitrary
sets (cf. also Theorem 3 in [64]) and is based on (3).

Lemma 8.1. Let E be a set in a domain D ⊂R
n, n ≥ 2. Then E is measurable if and

only if γ ∩E is measurable for a.e. path γ in D. Moreover, |E| = 0 if and only if

l (γ ∩E) = 0 (8.12)

for a.e. path γ in D.

Proof. Suppose first that E is measurable. Then by (3) in Remark 8.1, γ ∩ E is
measurable for a.e. path γ in D.

For the other direction, let C be a closed cube in D with edges parallel to the
coordinate axes. By that assumption, γ ∩E is measurable for a.e. line segments γ
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joining opposite faces of C and parallel to the edges. Thus, by the Fubini theorem,
E is measurable.

Next, suppose that |E| = 0. Then there is a Borel set B such that |B| = 0 and
E ⊂ B. By Remark 8.1, (8.11) and hence (8.12) hold for a.e. path γ in D.

The sufficiency of (8.12) follows from the corresponding result for Borel sets in
Theorem 33.1 in [316] by virtue of (3) in Remark 8.1. This completes the proof. 
�

Proposition 8.1. Let ϕ : R
n → R be a (Lebesgue) measurable function. Then ϕ is a

measurable function on a.e. rectifiable path in R
n with respect to the length measure.

Proof. Indeed, for every measurable function ϕ : R
n → R, in view of the Lusin

theorem and the regularity of the Lebesgue measure (see, e.g., Section 2.3.5 in [55]
and [281], p. 69), there is a Borel function ϕ0 : R

n → R such that ϕ ≡ ϕ0 outside
a Borel set B with |B| = 0 and ϕ0 ≡ 0 on B. Thus, the statement follows by (2) in
Remark 8.1. 
�

Given a Lebesgue measurable function ρ : R
n → [0,∞], there is a Borel function

ρ∗ : R
n → [0,∞] such that ρ∗ = ρ a.e. in R

n; see, e.g, Section 2.3.5 in [55] and [281],
p. 69. This suggests an alternative definition of the modulus. A Lebesgue measurable
function ρ : R

n → [0,∞] is extensively admissible for a path family Γ in R
n, abbr.

ρ ∈ ext adm Γ , if ∫

γ

ρ(x)|dx| ≥ 1 (8.13)

for a.e. γ ∈Γ . Note that (8.13) includes the assumption that the function s �→ ρ(γ(s))
is measurable in the interval [0, l(γ)]; the path is parameterized by arc length. The
extensive modulus M(Γ ) of Γ is defined as

M(Γ ) = inf
∫

Rn

ρn(x) dm(x), (8.14)

where the infimum is taken over all ρ ∈ ext admΓ .

Proposition 8.2. For every family Γ of paths in R
n,

M(Γ ) = M(Γ ). (8.15)

Proof. Indeed, M(Γ ) ≤ M(Γ ) because adm Γ ⊂ ext adm Γ . Let M(Γ ) be realized
by a sequence ρm ∈ ext adm Γ , m = 1,2, . . . , i.e.,

M(Γ ) = lim
m→∞

∫

Rn

ρn
m(x) dm(x).

Then there is a sequence of Borel functions ϕm : R
n → [0,∞] such that ϕm = ρm

a.e. in R
n. By Lemma 8.1, ϕm ∈ adm Γ \Γm, where M(Γm) = 0. Since {ϕm}∞m=1 ⊂

adm Γ0, where Γ0 = Γ \Γ∗, Γ∗ = ∪Γm, we obtain M(Γ ) ≥ M(Γ0). Note also that
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M(Γ∗) = 0 by the subadditivity of the modulus. Consequently, by monotonicity and
subadditivity,

M(Γ0) ≤ M(Γ ) ≤ M(Γ0) + M(Γ∗) = M(Γ0),

i.e., M(Γ0) = M(Γ ) and, thus, M(Γ ) ≥ M(Γ ). The proof is complete. 
�

8.3 FMD Mappings

A map ϕ : X → Y between metric spaces X and Y is said to be Lipschitz provided

dist(ϕ(x1),ϕ(x2)) ≤ M ·dist(x1,x2) (8.16)

for some M < ∞ and for all x1 and x2 ∈ X . The map ϕ is called bi-Lipschitz if, in
addition,

M∗dist(x1,x2) ≤ dist(ϕ(x1),ϕ(x2)) (8.17)

for some M∗ > 0 and for all x1 and x2 ∈ X . Later on X and Y will be subsets of R
n

with the Euclidean distance.

Lemma 8.2. Let E ⊂ R
n be a measurable set and let a mapping ϕ : E → R

n satisfy
the condition L(x,ϕ) < ∞ a.e. Then there is a countable collection of compact sets
Ck ⊂ E such that ∣∣∣∣∣E \

∞⋃
k=1

Ck

∣∣∣∣∣= 0 (8.18)

and ϕ|Ck is Lipschitzian for every k = 1,2, . . . .

Proof. Since L(x,ϕ) <∞ a.e., we have by Section 3.1.8 in [55] that there is a count-
able collection of measurable sets Ci ⊂ E such that |E \B| = 0, B = ∪∞

i=1Ci, and
ϕ|Ci is Lipschitzian for every i = 1,2, . . . . By regularity of the Lebesgue measure,
we have that, for every i = 1,2, . . . , there is a countable collection of closed sets
Ci j ⊂Ci such that |Ci \∪∞

j=1Ci j| = 0. Moreover, for every fixed i, j, l = 1,2, . . . , the

set Ci jl = Ci j ∩Bn(l) is compact and Ci j = ∪∞
l=1Ci jl . Thus, the countable collection

of the sets Ci jl , i, j, l = 1,2, . . . , is a desired collection. 
�

For f : D → R
n and E ⊂ D, we use the multiplicity functions

N(y, f ,E) = card{x ∈ E : f (x) = y}, (8.19)

N( f ,E) = sup
y∈Rn

N(y, f ,E). (8.20)

Proposition 8.3. Let f : D → R
n be an FMD mapping. Then
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(i) f is differentiable a.e. and

J(x, f ) �= 0 a.e., (8.21)

(ii) f has the (N−1)-property,

(iii) the change-of-variables formula
∫

E

g( f (x))|J(x, f )|dm(x) =
∫

Rn

g(y)N(y, f ,E)dm(y) (8.22)

holds for every measurable function g : R
n → [0,∞) and every measurable set E ⊂

D.

Proof. (i) f is differentiable a.e. by Rademacher–Stepanoff’s theorem because
L(x, f ) < ∞ a.e.; see, e.g., Section 3.1.9 in [55]. Since l(x, f ) > 0 a.e., we have

l( f ′(x)) > 0 a.e., (8.23)

where, for a given linear mapping T : R
n → R

n, l(T ) denotes the minimum of the
modulus |T z| over all unit vectors z ∈ R

n. Hence, (8.21) follows from (8.23).

(ii) By the Ponomarev result for a.e. differentiable mappings f , the condition (8.21)
is equivalent to the (N−1)-property; see Theorem 1 in [244], p. 412.

(iii) By Lemma 8.2, f |Ck , k = 1,2, . . . , is Lipschitzian, where we may assume that
the Ck are mutually disjoint bounded Borel sets. Every f |Ck can be extended to a
Lipschitz map of R

n by applying to each component of the mapping f Theorem 1
in [218]. Thus, (8.22) follows from Section 3.2.5 in [55] by the countable additivity
of the integral, (8.18), the (N)-property, and (ii). 
�

Note that here we show a preference the application of McShane’s theorem in-
stead of Kirszbraun’s theorem in [150] (see also Section 2.10.43 in [55]), because
the proof of the latter is based on the axiom of choice.

Remark 8.2. As is clear from the proof, the differentiability of f a.e. is equivalent to
the condition

L(x, f ) < ∞ a.e. (8.24)

If f is differentiable a.e., then the conditions

l(x, f ) > 0 a.e., (8.25)

(8.21), (8.23), and the (N−1)-property are all equivalent.

Corollary 8.1. A mapping f : D → R
n is of finite metric distortion if and only if f

is differentiable a.e. and has the (N)- and (N−1)-properties.
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Corollary 8.2. Compositions of FMD mappings are FMD mappings. In particular,
the FMD mappings remain FMD mappings under compositions with nonconstant
quasiregular mappings. The inverse mapping f−1 of an FMD homeomorphism f is
an FMD homeomorphism.

Denote by J(D) the collection of all subdomains G of D such that G ⊂ D is
compact. Given a mapping f : D →R

n, G ∈ J(D) and y ∈R
n \ f (∂G), let μ(y, f ,G)

be the topological index of the triple (y, f ,G); see, e.g., [246], [256] and [62]. A
mapping f : D → R

n is said to be sense-preserving (sense-reversing) if μ(y, f ,G) >
0 (μ(y, f ,G) < 0) for all such triples (y, f ,G) with y ∈ f (G) \ f (∂G). It is well
known that if f is one-to-one, then f is either sense-preserving or sense-reversing
and, moreover, μ(y, f ,G) ≡ 1 or μ(y, f ,G) ≡ −1, respectively, for all y ∈ f G; see,
e.g., [246], pp. 133–134.

Note that the topological dimension of the branch set B f for a discrete and open
mapping f is not more than n− 2 by the Chernavskii theorem; see [39] and [40].
Hence, B f does not separate D by the Menger–Urysohn theorem; see, e.g., [126],
p. 48. Thus, every discrete and open mapping is either sense-preserving or sense-
reversing; cf. also Theorem 9 in [308], p. 336. By Lemma 2.14 in [210], every
discrete, open, and sense-preserving mapping f satisfies J(x, f ) = 0 whenever x ∈
B f is a point of differentiability of f .Hence, we have the following consequence of
(i) in Proposition 8.3.

Proposition 8.4. For every discrete open FMD mapping f : D → R
n,

|B f | = | f (B f )| = | f−1( f (B f ))| = 0. (8.26)

Recall that a mapping f is light if f−1(y) is totally disconnected for every y∈R
n,

i.e., if every component of the preimage f−1(y) consists of a single point. It is well
known that every light sense-preserving mapping is open and discrete; see [308], p.
333. Consequently, we have the following corollary; see [246], p. 333.

Corollary 8.3. If an FMD mapping f : D → R
n is light and sense-preserving, then

J(x, f ) > 0 a.e. (8.27)

Lemma 8.3. Let f : D → R
n be an FMD mapping. Then there is a countable col-

lection of compact sets C∗
k ⊂ D such that |B| = 0, where B = D\∪∞

k=1C∗
k , and f |C∗

k
is one-to-one and bi-Lipschitz for every k = 1,2, . . . ; moreover, f is differentiable at
all points C∗

k with J(x, f ) �= 0.

Proof. First, let Ck be as in Lemma 8.2. By Proposition 8.3(i) and the regularity of
Lebesgue’s measure (see, e.g., III(6.6)(i) in [281], p. 69), we can always replace Ck

by compact sets where f is differentiable, J(x, f ) �= 0, and l(x, f ) > 0; see Remark
8.2. Then every Ck is the union of a countable collection of Borel sets where f is one-
to-one; see [53], p. 94. Hence, there is a countable collection of Borel sets C′

k such
that f |C′

k
is one-to-one and Lipschitzian for every k = 1,2, . . . and |D\∪∞

k=1C′
k| = 0.

By the regularity of Lebesgue’s measure, we may assume that the C′
k are compact
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sets. Finally, since l(x, f ) > 0 on C′
k and hence L(y, f−1

k ) < ∞ on f (C′
k), we are able

to apply Lemma 8.2 to f−1
k , where fk = f |C′

k
, to derive the bi-Lipschitz property of

f |C∗
k
, see also Proposition 8.3(ii). 
�

8.4 FLD Mappings

Recall that f : D → R
n is of FLD if it is of FMD and has the (L)-property. We begin

with the latter property. In the final section, we will give examples showing that
the (L)-property does not imply openness and discreteness. Later on, we will often
apply the following simple remark. We recall that if a family of paths contains a
degenerate path, then its modulus is infinite.

Remark 8.3. (a) If f : D → R
n satisfies the (L2)-condition, then f−1(y) cannot con-

tain a nondegenerate path. We call a mapping with the latter property weakly light.
(b) If f is weakly light, then the correspondence Lγ , f : Δγ → Δγ̃ between the natural
parameters of locally rectifiable paths γ and γ̃ = f ◦ γ is a homeomorphism and L−1

γ , f
is well defined.

In view of Remark 8.3, the (L1)-property implies absolute continuity on paths,
abbr. ACP, i.e., Lγ , f is absolutely continuous on closed subintervals of Δγ for a.e.
path γ in D; see, e.g., Section 2.10.13 in [55]. In particular, the (L)-property implies
absolute continuity on lines because the following obvious inclusion holds:

ACP ⊂ ACL . (8.28)

Now, let a mapping f : D → R
n be weakly light. Then the following notion is

well defined in view of Remark 8.3. We say that f is absolute continuous on paths
in the inverse direction, abbr. ACP−1, if L−1

γ , f is absolutely continuous on closed
subintervals of Δγ̃ for a.e. path γ̃ in f (D) and for each lifting γ of γ̃. By Section
2.10.13 in [55], the (L2)-condition implies ACP−1.

Proposition 8.5. A mapping f : D → R
n has the (L)-property if and only if f is

weakly light and
f ∈ ACP ∩ ACP−1. (8.29)

Here f ∈ ACLp means that the mapping f : D→R
n is ACL and its partial deriva-

tives belong to Lp(D), p ≥ 1.

Remark 8.4. It is known that

(1) if f ∈ ACLn, then f ∈ ACP; see Theorem 3 in [64] and Theorem 28.2 in [316];

(2) if f ∈ ACLp, p > n− 1, is an open mapping, then f is differentiable a.e. in D;
see Lemma 3 in [322];

(3) if f ∈W 1,n is open, then f has the (N)-property; see [193];
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(4) for every n ≥ 2, there is a function f ∈ ACLn that is nowhere differentiable;
see [286], p. 371;

(5) there is a homeomorphism f ∈ W 1,p for all p < n that does not possess the
(N)-property; see [243], p. 140.

Combining (1)–(3) with Proposition 8.5 and Corollary 8.1, we have the following
statement.

Theorem 8.1. Let f : D→R
n be a homeomorphism such that f ∈ACLn

loc and f−1 ∈
ACLn

loc. Then f is of finite length distortion.

Similarly, by Lemma 6 in [242] on the ACP−1 property of quasiregular map-
pings, we come to the following corollary.

Theorem 8.2. Every nonconstant quasiregular mapping is a mapping of finite length
distortion.

A mapping f : D → R
n is said to be of finite distortion if f ∈W 1,n

loc and

| f ′(x)|n ≤ K(x) · J(x, f ) a.e. (8.30)

for some finite-valued function K(x) : D → [1,∞); see, e.g., [79, 111, 137]; cf. also
[134]. As is well known by [195] and [196], a mapping f of finite distortion is
discrete and open if K ∈ Lp

loc, p > n−1. By [111], if f is a homeomorphism of finite
distortion with K ∈ Ln−1, then f−1 ∈W 1,n.

Corollary 8.4. Every homeomorphism of finite distortion with K ∈ Ln−1
loc is a map-

ping of finite length distortion.

Remark 8.5. Applying the arguments in the proof of Lemma 6 in [242], one can
show that a discrete open mapping f : D → R

n of finite distortion with K ∈ Ln−1
loc

is of FLD provided that | f B f | = 0. In the literature the condition f ∈ W 1,n
loc in the

definition of the mappings of finite distortion is sometimes replaced by the weaker
condition f ∈W 1,1

loc ; see, e.g., [147, 148, 154].

It is known that homeomorphisms of the class W 1,n
loc with KI ∈ L1

loc have the in-
verse f−1 in the same class; see Corollary 2.3 in [154]. Thus, we have the following
consequence from Theorem 8.1.

Corollary 8.5. Every homeomorphism f : D → R
n of finite distortion with KI ∈ L1

loc
is of finite length distortion.

Lemma 8.4. Let a mapping f : D → R
n be of finite length distortion. If y �→

N(y, f ,C) is integrable in R
n for every compact set C in D and if

KO(x, f ) ∈ Lq
loc, q ≥ 1/(n−1), (8.31)

then f ∈W 1,s
loc where s = nq/(1+q).
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Note that s ≥ 1 under q ≥ 1/(n−1).

Proof. Since f satisfies the (L1)-property, f is ACL and it suffices to establish the
local Ls-inequality of the partial derivatives ∂i f , i = 1,2, . . . ,n. For this let C be a
compact set in D. From (8.22) with g ≡ 1 and the Hölder inequality, we obtain

‖∂i f‖s ≤ ‖K1/n
O (x, f )‖p · ‖J1/n(x, f )‖n (8.32)

≤ ‖KO(x, f )‖1/n
q ·

⎛
⎝∫

Rn

N(y, f ,C)dm(y)

⎞
⎠

1/n

,

where 1/s = 1/n+1/p and p = qn. 
�

In view of (iii) in Proposition 8.3, the Jacobian J(x, f ) of an FMD mapping f is
locally integrable in D if and only if the multiplicity function N(y, f ,C) is integrable
for every compact set C in D. Thus, by Theorem 1.3 in [147], p. 137 (see also
Lemma 3.1 in [148], p. 174), and Corollary 8.1 we obtain the following.

Corollary 8.6. If f is a sense-preserving FLD mapping with N(y, f ,C)∈ L1(Rn) for
every compact set C ⊂ D and KO(x, f ) ∈ BMOloc, then f is discrete and open.

A discrete open mapping f : D → R
n has the bounded multiplicity N(y, f ,C) for

every compact set C ⊂ D and N(y, f ,C) is integrable over R
n because f (C) is also

compact.

Theorem 8.3. Let a mapping f : D→R
n be of finite length distortion. If f is discrete

and open and
KO(x, f ) ≤ K < ∞ a.e., (8.33)

then f is a quasiregular mapping. For n ≥ 3 and K = 1, the mapping f is a Möbius
transformation.

8.5 Uniqueness Theorem

We use Theorem 8.3 to establish uniqueness results for FLD mappings with pre-
scribed characteristics. We employ the normalized Jacobian matrix

Mf (x) = f ′(x)/|J(x, f )|1/n (8.34)

and the symmetrized normalized Jacobian matrix

G f (x) = M∗
f (x)Mf (x), (8.35)

where M∗
f (x) denotes the transpose of Mf (x). Note that Mf (x) of f is defined by

(8.34) a.e. for a mapping f of FMD. We set Mf (x) = I = identity at the rest of
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the points in D. We call Mf (x) and G f (x) the matrix dilatation and the dilatation
tensor of the mapping f at x, respectively; see [2, 3]. It is clear that |det Mf (x) | =
1 = det G f (x) and that KO (x, f ) = ‖Mf (x)‖n a.e.

If an FMD mapping f is sense-preserving, then Mf (x) is a unimodular matrix,
i.e., det Mf (x) = 1 for all x ∈ D. Moreover, if f and g are FMD mappings and f ◦g
is well defined, then, in view of Corollary 8.1, the composition rule

Mf◦g(x) = Mf (g(x))Mg(x) (8.36)

holds a.e. The dilatation tensor G f (x) of the mapping f at x is symmetric, positive
definite, and unimodular.

The special linear group SL(n) is the multiplicative group of all n×n matrices M
over R with detM = 1. The collection of all the symmetric positive definite matrices
of SL(n) is denoted by S(n). Note that S(n),n ≥ 2, is not a group, because the
product of symmetric matrices need not be symmetric; see, e.g., [23], p. 24. For a
matrix M ∈ SL(n), set

G = M∗M ∈ S(n), (8.37)

where M∗ is the transpose of M. The matrix G is called the symmetrization of M.
The following statement follows immediately from the definition of the symmetriza-
tion.

Proposition 8.6. Let M1 and M2 ∈ SL(n), n ≥ 2, and let G1 and G2 be the symmet-
rization of M1 and M2, respectively. Then G1 = G2 if and only if M2 = UM1, where
U ∈ SL(n) with the unit norm |U | = 1.

In other words, the symmetrization G determines the corresponding M from
(8.37) up to left rotations. Below O+(n) denotes just the group of n× n orthogo-
nal matrices U , defined by U∗U = I = UU∗, with determinant 1.

Lemma 8.5. Let f , g : D → R
n, n ≥ 3, be sense-preserving homeomorphisms of

finite length distortion. If
G f (x) = Gg(x) a.e., (8.38)

then
f = h◦g, (8.39)

where h is a Möbius transformation of Rn.

Proof. Indeed, h = f ◦g−1 is an FLD homeomorphism. By Proposition 8.6, Mf (x) =
U(x)Mg(x) with U(x)∈O+(n) a.e. Hence, by the chain rule (8.36) and the (N)- and
(N−1)-properties, we have

Mh(x) = U(g−1(y)) ∈ O+(n) a.e., (8.40)

i.e., Kh(y) = 1 a.e. By Theorem 8.3, h is a Möbius transformation. 
�

Note that, for n = 2, Lemma 8.5 is valid with a conformal mapping h.
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Theorem 8.4. Suppose that discrete and open mappings f , g : D→R
n, n≥ 3, are of

finite length distortion. If f and g have a.e. equal dilatation tensors, then f = h◦g,
where h is a Möbius transformation of Rn.

Proof. By the Chernavskii theorem, dim(B f ∪Bg) ≤ n− 2 (see [39, 40]), and then
Ω = D \ (B f ∪Bg) is a domain by the Menger–Urysohn theorem; see, e.g., [126],
p. 48. Arguing locally in Ω , we obtain from Lemma 8.5 that f |Ω = h◦g|Ω , where
h is a Möbius transformation of Rn; by continuity, this holds in D because Ω is
everywhere dense in D. 
�

8.6 FLD and Q-Mappings

The following theorem extends the so-called K0-inequality in the theory of quasi-
regular mappings to FLD mappings; cf. [210], p. 16, [260], p. 31, [328], p. 130,
and [154].

Theorem 8.5. Let a mapping f : D →R
n be of finite length distortion and let E ⊂ D

be a measurable set. Then

M(Γ ) ≤
∫

f (E)

KI(y, f−1,E) ·ρn
∗ (y) dm(y) (8.41)

for every path family Γ in E and ρ∗ ∈ adm fΓ , where

KI(y, f−1,E) = ∑
x∈E∩ f−1(y)

KO(x, f ). (8.42)

In particular, for E = D, we have

KI(y, f−1,D) = KI(y, f−1) = ∑
x∈ f−1(y)

KO(x, f ). (8.43)

Proof. In view of the regularity of the Lebesgue measure, we may assume that f (E)
is Borel and that ρ∗ ≡ 0 outside f (E); see, e.g., III(6.6)(i) in [281], p. 69 and Lemma
8.1. Let B and C∗

k , k = 1,2, . . . , be as in Lemma 8.3. Setting by induction B0 = B,
B1 = C∗

1 , B2 = C∗
2 \B1, and

Bk = C∗
k \

k−1⋃
l=1

Bl , (8.44)

we obtain the countable covering of D consisting of mutually disjoint Borel sets
Bk,k = 0,1,2, . . . , with |B0| = 0. Then, by Remark 8.1, l (γ ∩B0) = 0 for a.e. γ ∈ Γ
and hence by the (L1)-property l ( f ◦ γ ∩ f (B0)) = 0 also for a.e. γ ∈ Γ .

Given ρ∗ ∈ adm fΓ , set
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ρ(x) =
{
ρ∗( f (x))| f ′(x)|, for x ∈ D\B0,
0, otherwise.

(8.45)

Arguing piecewise on Bk, we have by Section 3.2.5 for m = 1 in [55] and the addi-
tivity of integrals, that ∫

γ

ρds ≥
∫

f◦γ

ρ∗ds ≥ 1 (8.46)

for a.e. γ ∈Γ , i.e., ρ ∈ adm Γ \Γ0, where M(Γ0) = 0. Therefore, by the subadditivity
of the modulus,

M(Γ ) ≤
∫

D

ρn(x)dm(x). (8.47)

Note that ρ = Σ∞
k=1ρk, where ρk = ρ · χBk have mutually disjoint supports. By

Section 3.2.5 for m = n in [55], we obtain
∫

f (Bk∩E)

KO( f−1
k (y), f ) ·ρn

∗ (y) dm(y) =
∫

D

ρn
k (x) dm(x), (8.48)

where every fk = f |Bk , k = 1,2, . . . , is injective by the construction.

Finally, by the Lebesgue positive convergence theorem (see, e.g., [281], p. 27),
we conclude from (8.47) and (8.48) that

∫

f (E)

KI(y, f−1,E) ·ρn
∗ (y) dm(y) =

∫

D

∞

∑
k=1

ρn
k (x) dm(x) ≥ M(Γ ).


�

The next inequality is a generalized form of the KI-inequality and is also known
as Poletskii’s inequality; cf. [242], [260], pp. 49–51, and [328], p. 131.

Theorem 8.6. Let f : D → R
n be an FLD mapping. Then

M( fΓ ) ≤
∫

D

KI(x, f ) ·ρn(x) dm(x) (8.49)

for every path family Γ in D and ρ ∈ admΓ .

Proof. Let Bk, k = 0,1,2, . . . , be Borel sets as given as by (8.44). By the construction
and (N)-property, | f (B0)|= 0. Thus, by Lemma 8.1, l (γ̃∩ f (B0))= 0 for a.e. γ̃ ∈ fΓ
and hence by the (L2)-property, l (γ ∩B0) = 0 also for a.e. γ̃ ∈ fΓ , γ̃ = f ◦ γ.

Let ρ ∈ adm Γ . Set

ρ̃(y) = sup
x∈ f−1(y)∩D\B0

ρ∗(x), (8.50)
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where

ρ∗(x) =
{
ρ(x)/l( f ′(x)) for x ∈ D\B0,
0 otherwise.

(8.51)

Note that ρ̃ = supρk, where

ρk(y) =
{
ρ∗( f−1

k (y)) for y ∈ f (Bk),
0 otherwise,

(8.52)

and every f (Bk) is Borel and fk = f |Bk , k = 1,2, . . . , is injective. Thus, the function
ρ̃ is Borel; see, e.g., Theorem I(8.5) in [281], p. 15.

Arguing piecewise on Bk, we obtain by Section 3.2.5 for m = 1 in [55] and the
additivity of integrals, that ∫

γ̃

ρ̃ds ≥
∫

γ

ρds ≥ 1 (8.53)

for a.e. γ̃ = f ◦ γ ∈ fΓ and, thus, ρ̃ ∈ adm fΓ \Γ0, where M(Γ0) = 0. Hence,

M( fΓ ) ≤
∫

f (D)

ρ̃n(y)dm(y). (8.54)

Moreover, by Section 3.2.5 for m = n in [55], we have
∫

Bk

KI(x, f ) ·ρn(x) dm(x) =
∫

f (D)

ρn
k (y) dm(y). (8.55)

Finally, by Lebesgue’s theorem, we obtain from (8.52) and (8.55) the desired
inequality:

∫

D

KI(x, f ) ·ρn(x) dm(x) =
∞

∑
k=1

∫

f (D)

ρn
k (y) dm(y)

=
∫

f (D)

∞

∑
k=1

ρn
k (y) dm(y) ≥ M( fΓ ).


�

Remark 8.6. If KI( f ) = ess sup KI(x, f ) <∞, then (8.49) yields the standard Polet-
skii inequality:

M( fΓ ) ≤ KI( f ) ·M(Γ ) (8.56)

for every path family in D. If KO( f ) = ess sup KO(x, f ) < ∞ and E is a Borel set
with N( f ,E) < ∞, then we have from (8.41) the usual form of the KO-inequality:

M(Γ ) ≤ N( f ,E) ·KO( f ) ·M( fΓ ) (8.57)

for every path family in E.
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Finally, combining Theorems 8.5 and 8.6, we obtain the following:

Corollary 8.7. Every FLD mapping f is a Q-mapping with

Q(x,y) = (KI(x, f ),KI(y, f−1)), (8.58)

where KI(y, f−1) is defined in (8.43).

8.7 On FLD Homeomorphisms

By Corollary 8.7, every FLD homeomorphism f is a Q(x)-homeomorphism with
Q(x) = KI(x, f ). Furthermore, it is easy to show similarly to the proofs of Theorems
6.1 and 8.6 the following statement. A strict proof of a more general statement,
Lemma 10.2, can be found in Chapter 10 on mappings with finite area distortion
because surfaces are not assumed to be connected there. Note that the family of all
dashed lines is “minorized” by the family of all paths and, thus, the (L)-property
also holds for the dashed lines and not only for the family of paths in the class of
FLD mappings.

Theorem 8.7. Every FLD homeomorphism f : D → R
n is a super Q-homeomor-

phism with
Q(x) = KI(x, f ). (8.59)

Thus, the whole theory developed in Chapters 4–7 can be applied to FLD home-
omorphisms. Let us give formulations of some corollaries in the explicit form. We
begin with the removability of isolated singularities.

Theorem 8.8. Let f : B
n \{0}→ R

n be an FLD homeomorphism with

KI(x, f ) ≤ Q(x), (8.60)

where the majorant Q has finite mean oscillation at 0. Then f has an FLD homeo-
morphic extension to B

n.

Theorem 8.9. Let f : B
n \{0}→ R

n be an FLD homeomorphism. If

limsup
r→0

−
∫

Bn(r)
KI(x, f ) dm(x) < ∞, (8.61)

then f has an extension to B
n that is an FLD homeomorphism.

Corollary 8.8. Isolated points are removable for FLD homeomorphisms with
KI(x, f ) ≤ Q(x) ∈ BMO and, in particular, if f : R

n → R
n, then f has a homeo-

morphic extension to Rn and f (Rn) = R
n.

Similarly, we have the following statement.
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Theorem 8.10. Let f : B
n\{0}→ R

n, n ≥ 2, be an FLD homeomorphism. If

∫

ε<|x|<1

KI(x, f )
dm(x)
|x|n = o

([
log

1
ε

]n)
(8.62)

as ε → 0, then f has an FLD homeomorphic extension to B
n.

Corollary 8.9. Condition (8.62) and the assertion of Theorem 8.10 hold if

KI(x, f ) = o

([
log

1
|x|

]n−1
)

(8.63)

as x → 0. The same holds if

k(r) = o

([
log

1
r

]n−1
)

(8.64)

as r → 0, where k(r) is the mean value of the function KI(x, f ) over the sphere
|x| = r.

Remark 8.7. We may replace (8.62) by

∫

ε<|x|<1

KI(x, f )dm(x)(
|x| log 1

|x|

)n = o

([
log log

1
ε

]n)
(8.65)

and (8.64) by

k(r) = o

([
log

1
r

log log
1
r

]n−1
)

. (8.66)

Thus, it is sufficient to require that

k(r) = O

([
log

1
r

]n−1
)

. (8.67)

In general, we are able to formulate the whole scale of the corresponding con-
ditions using functions of the form log · · · log1/t. However, we prefer to give other
interesting conditions here that are met in the mapping theory.

Theorem 8.11. Let f : B
n\{0} → R

n, n ≥ 2, be an FLD homeomorphism and for
some β ≥ 1/(n−1), let

ε0∫

0

dr

rkβ (r)
= ∞, (8.68)

where k(r) is the mean integral value of the function KI(x, f ) over the sphere |x|= r.
Then f has an FLD homeomorphic extension to B

n.



8.7 On FLD Homeomorphisms 161

Corollary 8.10. Every FLD homeomorphism f : B
n\{0}→ R

n, n ≥ 2, with

ε0∫

0

dr
rk(r)

= ∞ (8.69)

can be extended to an FLD homeomorphism of B
n into Rn.

The removability theorems for inverse mappings of FLD homeomorphisms can
be formulated under much weaker conditions.

Proposition 8.7. Let E be a nondegenerate continuum in B
n. Then there exists no

FLD homeomorphism of B
n \E onto B

n \{0} with

KI(x, f ) ∈ L1(Bn \E). (8.70)

Analogies of the known Painleve theorem also take place for FLD homeomor-
phisms.

Theorem 8.12. Let D be a domain in R
n, n ≥ 2, let X be a closed subset of D of

length zero, and let f : D\X → R
n be an FLD homeomorphism. If KI(x, f ) ≤ Q(x)

and the majorant Q(x) has finite mean oscillation at every point x0 ∈ X, then f has
an FLD homeomorphic extension to D.

Corollary 8.11. Let X be a closed subset of length zero in D and let f : D\X → R
n

be an FLD homeomorphism such that every point of X is a Lebesgue point for
KI(x, f ). Then f has an FLD homeomorphic extension to D.

Corollary 8.12. Let X be a closed subset of length zero in D and let

lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) < ∞ (8.71)

for every x0 ∈ X. Then every FLD homeomorphism f : D\X → R
n with KI(x, f ) ≤

Q(x) a.e. extends to an FLD homeomorphism of D into Rn.

For a singular set X with positive length, it is necessary to request additional
conditions on its cluster set f (X) = C(X , f ) under the mapping f .

Theorem 8.13. Let D be a domain in R
n, n ≥ 2, let f : D\X → R

n be an FLD
homeomorphism, and let X be a closed subset of D such that

Λn−1(X) =Λn−1( f (X)) = 0 . (8.72)

If KI(x, f ) ≤ Q(x) and the majorant Q(x) ∈ L1
loc(D) has finite mean oscillation at

every point x0 ∈ X , then f has an FLD homeomorphic extension to D.

Corollary 8.13. If all points of a closed set X ⊂ D with condition (8.72) are
Lebesgue points for KI(x, f ) ∈ L1

loc(D), then the FLD homeomorphism f : D\X →
R

n admits an FLD homeomorphic extension to D.
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Corollary 8.14. If a closed set X ⊂ D with condition (8.72) satisfies the condition

lim
ε→0

−
∫

B(x0,ε)
KI(x, f ) dm(x) < ∞ (8.73)

for every x0 ∈ X, then the FLD homeomorphism f : D\X → R
n has an FLD

homeomorphic extension to D.

Moreover, the homeomorphic extension of FLD homeomorphisms to hard boun-
daries is also possible under the corresponding conditions on KI(x, f ) at the bound-
ary points but with suitable geometric conditions on the boundaries. The next the-
orem extends the Gehring–Martio results in [81], p. 196, on the boundary cor-
respondence from quasiconformal mappings to FLD homeomorphisms; cf. Corol-
laries 3.2 and 3.3.

Theorem 8.14. Let f : D → D′ be an FLD homeomorphism between QED, in par-
ticular, uniform domains D and D′ with

KI(x, f ) ≤ Q(x), (8.74)

where Q has finite mean oscillation at every boundary point. Then f has a homeo-
morphic extension f̃ : D → D′.

Corollary 8.15. If a domain D in R
n is uniform but not a Jordan domain, then there

is no FLD homeomorphism of D onto B
n with KI(x, f ) ≤ Q(x) ∈ BMO(D).

We restrict ourselves ahead to the simplest cases, namely, to bounded domains
with smooth boundaries and bounded convex domains.

Theorem 8.15. Let f be an FLD homeomorphism between bounded domains D and
D′ in R

n, n ≥ 2, with smooth boundaries. If KI(x, f ) ≤ Q(x), where Q(x) ∈ L1(D)
has finite mean oscillation at every point x0 ∈ ∂D, then f has a homeomorphic
extension to the closure of D.

Theorem 8.16. Let f be an FLD homeomorphism between bounded convex do-
mains D and D′ in R

n, n ≥ 2. If KI(x, f ) ≤ Q(x), where Q(x) ∈ L1(D) has finite
mean oscillation at every point x0 ∈ ∂D, then f has a homeomorphic extension
f : D → D′.

Corollary 8.16. If f is an FLD homeomorphism of the unit ball B
n,n ≥ 2, onto

itself such that KI(x, f ) ≤ Q(x), where Q ∈ L1(Bn) has finite mean oscillation at
every point x0 ∈ ∂B

n, then f admits an FLD homeomorphic extension f : Bn → Bn.

In particular, we have the following statement.

Corollary 8.17. If an FLD homeomorphism f of the unit ball B
n, n ≥ 2, onto itself,

f (0) = 0, satisfies the condition

lim
ε→0

−
∫

B∗(x0,ε)
KI(x, f ) dm(x) < ∞ ∀x0 ∈ ∂B

n, (8.75)
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where B∗(x0,ε) = B(x0,ε)∩B
n, then its extension by reflection in ∂B

n is an FLD
homeomorphism of R

n.

In the following two theorems we state some mapping properties of FLD homeo-
morphisms.

Theorem 8.17. Let D be a domain in R
n,D �= R

n, and let f : D → R
n be an FLD

homeomorphism. If there exist a point b ∈ ∂D and a neighborhood U of b such that
KI(x, f )|D∩U ∈ L1, then f (D) �= R

n.

Theorem 8.18. Let E be a nondegenerate continuum in B
n, D = B

n \ E, and let
f : D → R

n be an FLD homeomorphism. If there exist a point x0 ∈ ∂D∩B
n and

a neighborhood U of x0 such that KI(x, f )|D∩U ∈ L1, then f (D) is not a punctured
topological ball.

Moreover, we have the following estimations of distortions under FLD homeo-
morphisms.

Theorem 8.19. Let f : B
n →Rn be an FLD homeomorphism with KI(x, f )∈L1(Bn),

f (0) = 0, h(Rn \ f (Bn)) ≥ δ > 0, and, for some x0 ∈ B
n, h( f (x0), f (0)) ≥ δ . Then

| f (x)| ≥ ψ(|x|) (8.76)

for all |x| < r = min(|x0|/2,1− |x0|), where ψ(t) is a strictly increasing function
with ψ(0) = 0 that depends only on the L1-norm of KI in B

n, n, and δ .

Similar upper estimates are possible in terms of KI(y, f−1). However, the esti-
mates in terms of KI(x, f ) are more interesting.

Theorem 8.20. Let f : D → Rn, n ≥ 2, be an FLD homeomorphism such that D
′
=

f (D) omits at least two points v and w ∈ Rn with h(v,w) ≥ δ > 0. Then, for every
x0 ∈ D and x ∈ B(x0,ε(x0)), ε(x0) ≤ dist(x0,∂D),

h( f (x), f (x0)) ≤
αn

δ
exp

⎧⎪⎨
⎪⎩−

ε(x0)∫

|x−x0|

dr

rk
1

n−1
x0 (r)

⎫⎪⎬
⎪⎭ , (8.77)

where αn depends only on n and kx0(r) is the mean integral value of KI(x, f ) over
the sphere |x− x0| = r.

Theorem 8.21. Let f : D → Rn, n ≥ 2, be an FLD homeomorphism such that D
′
=

f (D) omits at least two points v and w∈Rn with h(v,w)≥ δ > 0. If KI(x, f )≤Q(x),
where Q has finite mean oscillation at a point x0 ∈ D, then

h( f (x), f (x0)) ≤
αn

δ

{
log 1

ε0

log 1
|x−x0|

}β0

(8.78)

for x ∈ B(x0,ε0) where αn depends only on n, ε0 < dist(x0,∂D), and β0 > 0 depends
only on the function Q.
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Let D be a domain in R
n and let Q : D → [1,∞] be a measurable function. Let

FQ,Δ (D) be the class of all FLD homeomorphisms f : D → Rn, n ≥ 2, such that
KI(x, f ) ≤ Q(x) and h(Rn\ f (D)) ≥ Δ > 0.

Theorem 8.22. If Q ∈ FMO, then FQ,Δ (D) is a normal family.

Corollary 8.18. The class FQ,Δ (D) is normal if, for every x0 ∈ D,

lim
ε→0

−
∫

B(x0,ε)
Q(x) dm(x) < ∞. (8.79)

Corollary 8.19. The class FQ,Δ (D) is normal if every x0 ∈ D is a Lebesgue point of
Q(x).

Theorem 8.23. Let Δ > 0 and let Q : D → [1,∞] be a measurable function such that

ε(x0)∫

0

dr

rq
1

n−1
x0 (r)

= ∞ (8.80)

holds at every point x0 ∈D, where ε(x0) = dist(x0,∂D) and qx0(r) denotes the mean
integral value of Q(x) over the sphere |x−x0|= r. Then FQ,Δ forms a normal family.

Corollary 8.20. The class FQ,Δ (D) is normal if Q(x) has singularities only of the
logarithmic type of order not greater than n−1 at every point x ∈ D.

8.8 On Semicontinuity of Outer Dilatations

Recall that by Corollary 8.7, every FLD homeomorphism f is a Q(x)-homeomor-
phism with Q(x) = KI(x, f ) and hence is a strong ring Q(x)-homeomorphism with
the same Q(x). Thus, the following statement follows immediately from Theorem
7.5.

Theorem 8.24. Let D be a domain in R
n, n ≥ 2, and fm : D → R

n a sequence
of homeomorphisms with finite length distortion converging locally uniformly to
a mapping f . If

KI(x, fm) ≤ Q(x) ∈ L1
loc , (8.81)

then f is either a homeomorphism or f ≡ const in D.

Since KI(x,g) ≤ Kn−1
O (x,g), for the conclusion of Theorem 8.24, it is sufficient

to suppose that KO(x, fm) ≤ K(x) ∈ Ln−1
loc instead of (8.81). Set

PO (x, f ) = (KO (x , f ))
1

n−1 . (8.82)
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Lemma 8.6. Let D be a domain in R
n, n ≥ 2, and f j : D → R

n, j = 1,2, . . . , a
sequence of FLD homeomorphisms in D converging locally uniformly to a mapping
f : D → R

n. Then at each point x0 of differentiability of the mapping f ,

PO(x0, f ) ≤ liminf
h→0

liminf
j→∞

1
hn

∫

C(x0,h)

PO(y, f j) dy, (8.83)

where C(x0,h) denotes the cube in R
n centered at x0 whose edges are oriented along

the principal axes of quadratic form ( f ′(x0)z, f ′(x0)z) and have length h.

The proof of Lemma 8.6 is similar to the proof of Lemma 4.7 for mappings with
bounded distortion in [97].

Proof for Lemma 8.6. We may assume that x = 0, f (0) = 0, and f j(0) = 0, j =
1,2, . . . . Let e1, . . . ,en be an orthonormal basis in R

n formed by the eigenvectors of
f ′(0)∗ f ′(0). Now f ′(0)Bn is an ellipsoid whose semiaxes λ1 ≤ λ2 ≤ . . . ≤ λn are
the positive square roots of the corresponding eigenvalues of f ′(0)∗ f ′(0). We also
abbreviate C(h) = C(0;h). For ε > 0, we can choose δ = δ (ε) > 0 such that for
h ∈ (0,δ ) and all y ∈C(h),

| f (y)− f ′(0)y| < hε

since f is differentiable at 0. Since f j → f locally uniformly, we have, for all y ∈
C(h),

| f j(y)− f ′(0)y| < hε (8.84)

for j > j0. The set f ′(0)C(h) is the rectangular parallelopiped

(−λ1h/2,λ1h/2)×·· ·× (−λnh/2,λnh/2),

where the edges are directed along the basis vectors ẽ1, . . . , ẽn, of R
n :

ẽi =
f ′(0)ei

| f ′(0)ei|
, i = 1,2, . . . ,n,

that are orthogonal in view of the choice of the e1, . . . ,en. Inequality (8.84) yields
that the points f j(y), y ∈C(h), all lie in the parallelopiped

(
−
(
λ1

2
+ ε
)

h,

(
λ1

2
+ ε
)

h

)
×·· ·×

(
−
(
λn

2
+ ε
)

h,

(
λn

2
+ ε
)

h

)
.

Here R
n is again equipped with the basis ẽ1, . . . , ẽn. Thus,

mes( f j(C(h))) ≤ hn(λ1 +2ε)(λ2 +2ε) · · ·(λn +2ε). (8.85)

Further, by the Lebesgue theorem for locally finite measures (see [281], pp. 115
and 119), we obtain from (8.85) the inequality
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∫

C(h)

|J(y, f j)| dy ≤ mes( f j(C(h))) ≤ hn[|J(0, f )|+�(ε)], (8.86)

where �(ε) → 0 as ε → 0 because J(0, f ) = λ1λ2 · . . . ·λn.

Next consider the (n−1)-dimensional cube C∗(h) with center at x = 0 and edges
(of length h) oriented along e1, . . . ,en−1. Consider a segment l(z), z ∈ C∗(h), per-
pendicular to C∗(h) inside C(h) and write l j(z) for the length of the path f j(l(z)).
Since f is ACP, we have

l j(z) =

h/2∫

−h/2

| f ′j(z,yn)en| dyn (8.87)

for almost every z ∈ C∗(h) with respect to the (n− 1)-dimensional Lebesgue mea-
sure. On the other hand, (8.84) implies

l j(z) ≥ (| f ′(0)en|−2ε)h = (λn −2ε)h.

Hence, (8.87) yields

h/2∫

−h/2

| f ′j(z,yn)en| dyn ≥ h(λn −2ε)

for a.e. z ∈C∗(h). Integrating over C∗(h) and using the Fubini theorem, we obtain
∫

C(h)

| f ′j(y)en| dy ≥ hn(λn −2ε). (8.88)

Next, the Hölder inequality gives
∫

C(h)

| f ′j(y)en| dy ≤
∫

C(h)

‖ f ′j(y)‖ dy (8.89)

≤
∫

C(h)

K1/n(y, f j)|J(y, f j)|1/n dy

≤

⎛
⎜⎝
∫

C(h)

K
1

n−1 (y, f j) dy

⎞
⎟⎠

n−1
n
⎛
⎜⎝
∫

C(h)

|J(y, f j)|dy

⎞
⎟⎠

1
n

.

Here the equality ‖ f ′j(y)‖n = K(y, f j)|J(y, f j)| a.e. has also been used. Now (8.89)
together with (8.86) and (8.88) yields
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(
(λn −2ε)n

|J(0, f )|+�(ε)

) 1
n−1

≤ 1
hn

∫

C(h)

K
1

n−1 (y, f j)dy.

Letting first j → ∞ and then h → 0 and finally ε → 0, we complete the proof. 
�

Applying the Jensen inequality to (8.83), we obtain the following conclusion.

Corollary 8.21. Under the hypothesis and terms of Lemma 8.6,

Φ (PO (x0, f )) ≤ liminf
h→0

liminf
j→∞

1
hn

∫

C(x0,h)

Φ (PO (y, f j)) dy (8.90)

for every increasing convex function Φ(t) : [1,+∞] → [0,+∞].

In particular, for Φ(t) = tn−1, we have the next conclusion.

Corollary 8.22. Under the assumptions of Lemma 8.6,

KO(x0, f ) ≤ liminf
h→0

liminf
j→∞

1
hn

∫

C(x0,h)

KO(y, f j) dy . (8.91)

Theorem 8.25. Let D be a domain in R
n, n ≥ 2, and fm : D → R

n a sequence of
FLD homeomorphisms converging locally uniformly to an FLD homeomorphism f .
If

KO (x, fm) ≤ K (x) ∈ L1
loc m = 1,2,3, . . . , (8.92)

then
KO (x, f ) ≤ limsup

j→∞
KO (x, f j) a.e. (8.93)

Proof. Applying Corollary 8.22 and the theorem on term-by-term integration, we
have

KO (x, f ) ≤ liminf
h→0

1
hn

∫

C(x,h)

limsup
j→∞

KO(y, f j) dy. (8.94)

Now, by the theorem on the differentiability of the indefinite Lebesgue integral and
(8.92), we obtain a.e. the equality

lim
h→0

1
hn

∫

C(x,h)

limsup
j→∞

KO (y, f j) dy = limsup
j→∞

KO (x, f j) . (8.95)

Combining (8.94) and (8.95), we come to (8.93). 
�

Theorem 8.26. Let D be a domain in R
n, n ≥ 2, and f j : D → R

n, j = 1,2, . . . , a
sequence of FLD homeomorphisms converging locally uniformly to an FLD homeo-
morphism f . Suppose that Φ : [1,+∞] → [0,∞] is a convex increasing function and
a.e.
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PO(x, f j) ≤ K(x), (8.96)

where
Φ (K(x)) ∈ L1

loc. (8.97)

Then ∫

E

Φ (PO (x, f )) dx ≤ liminf
j→∞

∫

E

Φ (PO (x, f j)) dx (8.98)

for every measurable set E ⊂ D with mes E < ∞.

Proof. By Corollary 8.21 and (8.96), we getΦ (PO (x, f ))≤Φ (K (x)) a.e. and hence
Φ (PO (x, f )) ∈ L1

loc (D) by (8.97). Consequently, by the theorem of the differentia-
bility of an indefinite integral a.e.,

lim
h→0

1
hn

∫

C(x,h)

Φ (PO(y, f ))dy = Φ (PO(x, f )) . (8.99)

Let E0 be the set of all x ∈ D, where either f is not differentiable or (8.99) does
not hold. Note that mes E0 = 0. By Corollary 8.21,

Φ (PO(x, f )) ≤ liminf
h→0

liminf
j→∞

1
hn

∫

C(x,h)

Φ (PO(y, f j)) dy ∀ x ∈ D\E0 .

Hence, we have ∀ ε > 0 : ∃ δ = δ (x,ε) : ∀ h < δ :

hnΦ (PO(x, f )) < liminf
j→∞

∫

C(x,h)

Φ (PO(y, f j)) dy + εhn , (8.100)

and by (8.99),
∫

C(x,h)

Φ (PO(y, f )) dy < liminf
j→∞

∫

C(x,h)

Φ (PO(y, f j)) dy + εhn (8.101)

for h < δ = δ (x,ε) .

Let Ω ⊂ D be an open set. The system of cubes C(x,h), x ∈ Ω\E0 , forms the
Vitali covering of the set Ω\E0 . Thus, by the Vitali theorem (see IV(3.1) in [281] ),
there is a sequence of mutually disjoint cubes Cm = C(xm,hm) ⊆Ω such that

mes
(
Ω\
⋃

Cm

)
= 0 .

Thus, by (8.101), we obtain
∫

Ω

Φ (PO(y, f )) dy ≤ liminf
j→∞

∫

Ω

Φ (PO(y, f j)) dy + εmes Ω , (8.102)



8.9 On Convergence of Matrix Dilatations 169

and, since ε > 0 is arbitrary, (8.98) has been proved for an arbitrary open set Ω ⊂ D
with mes Ω < ∞ .

Now, let E be a measurable set in D with mes E < ∞ . Then, for every ε > 0,
there is an open set Ω =Ωε ⊇ E with mes (Ωε\E) < ε; see III(6.6) in [281]. From
inequality (8.98) for open Ω , we have

∫

E

Φ (PO(y, f )) dy ≤ liminf
j→∞

∫

E

Φ (PO(y, f j)) dy +
∫

Ωε\E

Φ (K(y)) dy .

Finally, in view of (8.97), we obtain (8.98) by the absolute continuity of integrals.

�

8.9 On Convergence of Matrix Dilatations

Theorem 8.27. Let f , f j : D → R
n be FLD homeomorphisms such that f j → f as

j →∞ locally uniformly in D, M, Mj their matrix dilatations and let a.e. K (x, f j)≤
K (x) ∈ L1

loc . Suppose that

Uj(x)Mj(x) → M0(x) a.e. (8.103)

as j → ∞ for some sequence of orthogonal matrices Uj(x). Then

M (x) = U (x)M0 (x) a.e. (8.104)

for some orthogonal matrix U(x) .

Proof. Let Am : R
n → R

n be some enumeration of all matrices with rational ele-
ments that satisfy the condition det Am = 1 . Note that each matrix Am defines a
quasiconformal linear mapping x → Amx, where x ∈ R

n is interpreted as a vector-
column. Let N and Nj be matrix dilatations of the mappings f ◦A−1

m and f j ◦A−1
m ,

respectively. Then, by the composition rule [see (8.36)],

N (y) = M
(
A−1

m y
)

A−1
m , Nj (y) = Mj

(
A−1

m y
)

A−1
m . (8.105)

Note that the mappings f ◦A−1
m and f j ◦A−1

m are also FLD homeomorphisms such
that f j ◦A−1

m → f ◦A−1
m locally uniformly as j → ∞ and

KO
(
y, f j ◦A−1

m

)
≤ KO

(
A−1

m y, f j
)

KO
(
A−1

m

)
≤ K

(
A−1

m y
)
· cn

m ∈ L1
loc ,

where cm = ‖A−1
m ‖ is the matrix norm of A−1

m ; see (2.11), Chapter I in [256]. Thus,
for each fixed m ∈ N, the mappings f ◦A−1

m and f j ◦A−1
m satisfy the conditions of

Theorem 8.25. By Theorem 8.25, for each fixed m = 1,2, . . . ,
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‖M
(
A−1

m y
)

A−1
m ‖ ≤ limsup

j→∞
‖Mj

(
A−1

m y
)

A−1
m ‖ a.e. (8.106)

because KO (x, f ) = ‖Mf (x)‖n. Consequently, we also have for each fixed m =
1,2, . . . ,

‖M (x)A−1
m ‖ ≤ limsup

j→∞
‖Mj (x)A−1

m ‖ a.e. (8.107)

Since the collection of the matrices Am is countable, (8.107) holds for a.e. x ∈ D just
for all m = 1,2, . . . . Note that the set of the matrices {Am}∞m=1 is dense in the space
of all matrices with detA = 1 and it follows from (8.103) that detM0 (x) = 1 a.e.
Thus, we have from (8.107) that

‖M (x)M−1
0 (x)‖ ≤ limsup

j→∞
‖Mj (x)M−1

0 (x)‖ a.e. (8.108)

Since the Uj are orthogonal matrices and Uj (x)Mj (x) → M0 (x) a.e., we have from
(8.108) that

‖M (x)M−1
0 (x)‖ ≤ 1 a.e. (8.109)

On the other hand (see, e.g., (2.6), Chapter I, in [256]),

‖M (x)M−1
0 (x)‖ ≥ 1. (8.110)

Thus,
‖M (x)M−1

0 (x)‖ = 1 a.e. (8.111)

Finally, from (8.111), taking into account that detM (x)M−1
0 (x) = 1 a.e., we

have that M (x)M−1
0 (x) is an orthogonal matrix U(x), i.e., M (x) = U (x) M0 (x)

a.e. The proof is complete. 
�

In what follows, for an arbitrary matrix M, denote

G = M∗M, (8.112)

where M∗ is the transpose of M. First, though, we observe the following algebraic
fact.

Proposition 8.8. Let M1 and M2 be real nonsingular square matrices. Then

G2 = G1 (8.113)

if and only if
M2 = UM1, (8.114)

where U ∈ O(n).

Here we write U ∈ O(n) if a matrix U is orthogonal, i.e.,

U∗U = I = UU∗.
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Geometrically, (8.114) means that G determines M from (8.112) up to left rota-
tions. Indeed, (8.114) implies

G2 = M∗
2 M2 = M∗

1U∗UM1 = M∗
1 M1 = G1.

Conversely, let (8.113) take place. Then, for M = M1M−1
2 , we have

G = M∗M = (M∗
2)−1M∗

1 M1M−1
2 = (M∗

2)−1G1M−1
2

= (M∗
2)−1G2M−1

2 = (M∗
2)−1M∗

2 M2M−1
2 = I,

i.e., M is an orthogonal matrix.

Further, applying the well-known diagonalization theorem for the symmetric ma-
trices and the continuous dependence of the roots for the characteristic polynomial,
we have the following conclusion, which was first proved as Lemma 3.18 in [97].

Lemma 8.7. Let Mj, j = 0,1,2, . . . , be real nonsingular square matrices. Then

lim
j→∞

G j = G0 (8.115)

is equivalent to
lim
j→∞

UjMj = M0 (8.116)

for some orthogonal matrices Uj.

Here the convergence of matrices is understood in the element-wise sense.

Proof. Indeed, (8.116) obviously implies (8.115) because

G j = M∗
j Mj = M∗

j U
∗
j UjMj = (UjMj)∗(UjMj).

Conversely, let (8.115) take place. Then for Nj = MjM
−1
0 , we have

D j = N∗
j Nj = (M∗

0)−1M∗
j MjM

−1
0 = (M∗

0)−1G jM
−1
0 → (M∗

0)−1G0M−1
0 = I

as j → ∞ element-wise.

It is well known from algebra (see, e. g., [23], p. 54) that

D j = V ∗
j Λ 2

j Vj,

where Vj ∈ O(n), j = 0,1,2, . . . , and the Λ 2
j are diagonal matrices with eigenvalues

of D j on their diagonals. By Proposition 8.8,

Nj = WjΛ jVj,

where Wj ∈ O(n), j = 1,2, . . . .
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Further, the eigenvalues of D j are roots of the so-called characteristic equations
for D j where the coefficients are continuous functions of the elements of D j; see,
e.g., [23], p. 34. Next, in view of the continuous dependence of roots of polynomials
from their coefficients (see, e.g., [125], p. 634, and [235]), we obtain Λ j → I as
j → ∞.

Now, set
Uj = Vj

∗Wj
∗ ∈ O(n). (8.117)

Then the maximal element of the matrix

Δ j = UjNj − I = V ∗
j ( Λ j − I)Vj

does not exceed the maximal element of the matrix (Λ j − I), because Vj ∈ O(n).
Thus, we obtain (8.116) with Uj given by (8.117). 
�

From Lemma 8.7 we arrive at the following consequence of Theorem 8.27, which
was first established for quasiregular mappings in [129]; cf. [97].

Corollary 8.23. Let f , f j : D → R
n be FLD homeomorphisms such that f j → f

locally uniformly as j → ∞ . Let G and G j be the dilatation tensors of f and f j,
respectively, and let KO (x, f j) ≤ K (x) ∈ L1

loc a.e. If

G j(x) → G0(x) a.e. (8.118)

as j → ∞ , then
G(x) = G0 (x) a.e. (8.119)

8.10 Examples and Subclasses

It is easy to give examples of FLD mappings that are not discrete, open, or sense-
preserving; see, e.g., [296] and [217]. Consider one more interesting mapping below.

Example. Let C be a Cantor set in [0,1]. Then (0,1)\C = ∪I j, where the intervals
I j are open and disjoint. Define f : (0,1) → R as f (x) = 0 for x ∈C and

f (x) =
|b j −a j|

2
−
∣∣∣∣x− b j +a j

2

∣∣∣∣ (8.120)

for x ∈ I j = (a j,b j), j = 1,2, . . . , f (x) = x for x ≤ 0, and f (x) = x− 1 for x ≥ 1.
Then f is an FLD mapping provided that |C| = 0. In this case the mapping f is
length-preserving:

l( f ◦ γ) = l(γ) for every γ. (8.121)

Moreover,
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l(x, f ) = L(x, f ) = 1 a.e. (8.122)

For |C| > 0, f is not an FLD mapping because l(x, f ) = 0 for all x ∈C.
The mapping f : R → R has the natural extension f ∗ to R

n, n ≥ 2,

f ∗(z,x) = (z, f (x)), z ∈ R
n−1, x ∈ R, (8.123)

with similar properties. Note that f as well as f ∗ are neither discrete nor open as
well as sense-preserving.

General considerations for length-preserving mappings in metric spaces can be
found in [35]. However, the main results there deal with locally injective mappings.

Proposition 8.9. Let f : D → R
n be a mapping satisfying the condition

L−1 · l (γ) ≤ l ( f ◦ γ) ≤ L · l (γ) (8.124)

for some L ≥ 1 and for every path γ in D and let

l(x, f ) > 0 a.e. (8.125)

Then f is of finite length distortion.

Proof. Indeed, (8.121) implies the (L)-property and the inequality

L(x, f ) ≤ L < ∞ for all x ∈ D. (8.126)

Since f is L-Lipschitz, f clearly satisfies the (N)-property. 
�

Remark 8.8. Note that condition (8.121) implies that f is weakly light. If f is light,

L(x, f ) < ∞ for all x ∈ D (8.127)

and J(x, f ) ≥ 0 a.e. in D or J(x, f ) ≤ 0 a.e. in D, then, by Theorem 8 in [44], f is
open. However, the above example shows that, in general, the mappings in Proposi-
tion 8.9 need not be discrete, open, as well as sense-preserving; hence, they are not
of bounded length distortion in the sense of Martio–Väisälä [213].

As is clear from Remark 8.4, points (1) and (4), and the Rademacher–Stepanoff
theorem, the (L)-property does not imply that L(x, f ) < ∞ a.e. in R

n,n ≥ 2. On the
other hand, it is easy to give examples of FMD mappings R

n,n ≥ 2, without the
(L)-property; see, e.g., [65] and [190].



Chapter 9
Lower Q-Homeomorphisms

So far the upper estimates of moduli have played a major role in the theory of quasi-
conformal mappings and their generalizations. In the present chapter, we elucidate
possibilities of lower estimates of moduli for families of (n− 1)-dimensional sur-
faces under mappings with finite distortion; see [161–164]. In particular, this makes
it possible for us to investigate the boundary behavior of homeomorphisms with
finite area distortion in the next chapter.

9.1 Introduction

The following concept is motivated by Gehring’s ring definition of quasiconformal-
ity in [73].

Given domains D and D′ in Rn = R
n∪{∞}, n≥ 2, x0 ∈D\{∞}, and a measurable

function Q : D → (0,∞), we say that a homeomorphism f : D → D′ is a lower Q-
homeomorphism at the point x0 if

M( fΣε) ≥ inf
ρ∈extadmΣε

∫

D∩Rε

ρn(x)
Q(x)

dm(x) (9.1)

for every ring

Rε = {x ∈ R
n : ε < |x− x0| < ε0} , ε ∈ (0,ε0) , ε0 ∈ (0,d0) ,

where
d0 = sup

x∈D
|x− x0| , (9.2)

and Σε denotes the family of all intersections of the spheres

S(r) = S(x0,r) = {x ∈ R
n : |x− x0| = r} , r ∈ (ε,ε0) ,

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 9, c© Springer Science+Business Media, LLC 2009
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with D. As usual, the notion can be extended to the case x0 = ∞ ∈ D by applying
the inversion T with respect to the unit sphere in Rn, T (x) = x/|x|2, T (∞) = 0,
T (0) = ∞. Namely, a homeomorphism f : D → D′ is a lower Q-homeomorphism
at ∞ ∈ D if F = f ◦T is a lower Q∗-homeomorphism with Q∗ = Q◦T at 0.

We also say that a homeomorphism f : D → Rn is a lower Q-homeomorphism
in D if f is a lower Q-homeomorphism at every point x0 ∈ D.

We show here that condition (9.1) is equivalent to the inequality

M( fΣε) ≥
ε0∫

ε

dr
||Q||n−1(r)

, (9.3)

where

||Q||n−1(r) =

⎛
⎜⎝

∫

D(x0,r)

Qn−1(x) dA

⎞
⎟⎠

1
n−1

, (9.4)

dA corresponds to the area on the surface D(x0,r) = D
⋂

S(x0,r). Note that the
infimum from the right-hand side in (9.1) is attained for the function

ρ0(x) =
Q(x)

||Q||n−1(|x|)
. (9.5)

Later we often assume that Q ≡ 0 outside D and take the integrals in (9.4) over the
whole spheres S(x0,r).

This allows us to find the corresponding estimates of distortion for distance under
lower Q-homeomorphisms and to investigate the removability of isolated singulari-
ties and the boundary behavior of such mappings.

Let Σ ∗
ε be the family of all (n− 1)-dimensional surfaces in D that separate the

spheres |x−x0|= ε and |x−x0|= ε0 in D. Note that (9.3) implies the corresponding
lower estimate for Σ ∗

ε because Σε ⊂ Σ ∗
ε and, hence, adm fΣ ∗

ε ⊂ adm fΣε . However,
inequality (9.3) for Σ ∗

ε is not precise. The same is true for Σ ∗∗
ε consisting of all

closed sets C in D that separate the given spheres in D. Indeed, Σε ⊆ Σ ∗∗
ε and hence

adm fΣ ∗∗
ε ⊂ adm fΣε ; cf. [340]. Thus, M( fΣε) is majorized by M( fΣ ∗

ε ) as well as
by M( fΣ ∗∗

ε ). However, estimate (9.3) is not precise for such families of surfaces.
Simultaneously, condition (9.1) gives the widest class of mappings satisfying (9.3)
and hence to which the whole upcoming theory is applicable.

9.2 On Moduli of Families of Surfaces

In this section Hk, k = 1, . . . ,n−1 denotes the k-dimensional Hausdorff measure
in R

n, n ≥ 2. More precisely, if A is a set in R
n, then
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Hk(A) = sup
ε>0

Hk
ε (A) , (9.6)

Hk
ε (A) = Ωk inf

∞

∑
i=1

(
δi

2

)k

, (9.7)

where the infimum is taken over all countable collections of numbers δi ∈ (0,ε)
such that some sets Ai in R

n with diameters δi cover A. Here Ωk denotes the volume
of the unit ball in R

k. Hk is an outer measure in the sense of Caratheodory, i.e.,

(1) Hk(X) ≤ Hk(Y ) whenever X ⊆ Y ,

(2) Hk(ΣXi) ≤ ΣHk(Xi) for each sequence Xi of sets,

(3) Hk(X ∪Y ) = Hk(X)+Hk(Y ) whenever dist(X ,Y ) > 0.

A set E ⊂ R
n is called measurable with respect to Hk if Hk(X) = Hk(X ∩E)+

Hk(X \E) for every set X ⊂ R
n. It is well known that every Borel set is measurable

with respect to any outer measure in the sense of Caratheodory; see, e.g., [281], p.
52. Moreover, Hk is Borel regular, i.e., for every set X ⊂ R

n, there is a Borel set
B ⊂ R

n such that X ⊂ B and Hk(X) = Hk(B); see, e.g., [281], p. 53, and Section
2.10.1 in [55]. The latter implies that for every measurable set E ⊂ R

n, there exist
Borel sets B∗ and B∗ ⊂ R

n such that B∗ ⊂ E ⊂ B∗ and Hk(B∗ \B∗) = 0; see, e.g.,
Section 2.2.3 in [55]. In particular, Hk(B∗) = Hk(E) = Hk(B∗).

Let ω be an open set in Rk, k = 1, . . . ,n−1. A (continuous) mapping S :ω →R
n

is called a k-dimensional surface S in R
n. Sometimes we call the image S(ω) ⊆ R

n

the surface S, too. The number of preimages

N(S,y) = card S−1(y) = card{x ∈ ω : S(x) = y} (9.8)

is said to be a multiplicity function of the surface S at a point y ∈ R
n. In other

words, N(S,y) denotes the multiplicity of covering of the point y by the surface S. It
is known that the multiplicity function is lower semi continuous, i.e.,

N(S,y) ≥ liminf
m→∞

N(S,ym)

for every sequence ym ∈R
n, m = 1,2, . . . , such that ym → y∈R

n as m→∞; see, e.g.,
[246], p. 160. Thus, the function N(S,y) is Borel measurable and hence measurable
with respect to every Hausdorff measure Hk; see, e.g., [281], p. 52.

k-dimensional Hausdorff area in R
n (or simply area) associated with a surface

S : ω → R
n is given by

AS(B) = A k
S (B) :=

∫

B

N(S,y) dHky (9.9)

for every Borel set B⊆R
n and, more generally, for an arbitrary set that is measurable

with respect to Hk in R
n. The surface S is rectifiable if AS(Rn) < ∞.
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If ρ : R
n → [0,∞] is a Borel function, then its integral over S is defined by the

equality ∫

S

ρ dA :=
∫

Rn

ρ(y)N(S,y) dHky. (9.10)

Given a family Γ of k-dimensional surfaces S, a Borel function ρ : R
n → [0,∞] is

called admissible for Γ , abbr. ρ ∈ admΓ , if
∫

S

ρk dA ≥ 1 (9.11)

for every S ∈ Γ . Given p ∈ (0,∞), the p-modulus of Γ is the quantity

Mp(Γ ) = inf
ρ∈admΓ

∫

Rn

ρ p(x) dm(x). (9.12)

We also set
M(Γ ) = Mn(Γ ) (9.13)

and call the quantity M(Γ ) the modulus of the family Γ . The modulus is itself an
outer measure on the collection of all families Γ of k-dimensional surfaces.

We say that Γ2 is minorized by Γ1 and write Γ2 >Γ1 if every S ⊂Γ2 has a subsur-
face that belongs toΓ1. It is known that Mp(Γ1)≥Mp(Γ2); see [64], pp. 176–178. We
also say that a property P holds for p-a.e. (almost every) k-dimensional surface S in
a family Γ if a subfamily of all surfaces of Γ , for which P fails, has the p-modulus
zero. If 0 < q < p, then P also holds for q-a.e. S; see Theorem 3 in [64]. In the case
p = n, we write simply a.e.

Remark 9.1. The definition of the modulus immediately implies that, for every p ∈
(0,∞) and k = 1, . . . ,n−1

(1) p-a.e. k-dimensional surface in R
n is rectifiable,

(2) given a Borel set B in R
n of (Lebesgue) measure zero,

AS(B) = 0 (9.14)

for p-a.e. k-dimensional surface S in R
n.

Lemma 9.1. Let k = 1, . . . ,n−1, p ∈ [k,∞), and let C be an open cube in R
n, n ≥ 2,

whose edges are parallel to coordinate axes. If a property P holds for p-a.e. k-
dimensional surface S in C, then P also holds for a.e. k-dimensional plane in C that
is parallel to a k-dimensional coordinate plane H.

The latter a.e. is related to the Lebesgue measure in the corresponding (n− k)-
dimensional coordinate plane H⊥ that is perpendicular to H.
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Proof. Let us assume that the conclusion is not true. Then, by the regularity of the
Lebesgue measure mn−k in H⊥, there is a Borel set B such that mn−k(B) > 0 and
P fails for a.e. k-dimensional plane S in C that is parallel to H and intersects B. If
a Borel function ρ : R

n → [0,∞] is admissible for the given family Γ of surfaces S
such that ρ ≡ 0 outside C0 ×B, where C0 is the projection of C on H, then, by the
Hölder inequality,

∫

C0×B

ρk(x) dm(x) ≤

⎛
⎝ ∫

C0×B

ρ p(x) dm(x)

⎞
⎠

k
p
⎛
⎝ ∫

C0×B

dm(x)

⎞
⎠

p−k
p

and, hence, by the Fubini theorem,

∫

Rn

ρ p(x) dm(x) ≥

( ∫
C0×B

ρk(x) dm(x)

) p
k

( ∫
C0×B

dm(x)

) p−k
k

≥ (mn−k(B))
p
k

(hk ·mn−k(B))
p−k

k

,

i.e.,

Mp(Γ ) ≥ mn−k(B)
hp−k ,

where h is the length of the edge of cube C. Thus, Mp(Γ ) > 0, which contradicts the
lemma’s hypothesis. 
�

The following statement is an analogue of the Fubini theorem; cf., e.g., [281],
p. 77. It extends Theorem 33.1 in [316]; cf. also Theorem 3 in [64], Lemma 2.13
in [207], and Lemma 8.1 here.

Theorem 9.1. Let k = 1, . . . ,n− 1, p ∈ [k,∞), and let E be a subset in an open
set Ω ⊂ R

n, n ≥ 2. Then E is measurable by Lebesgue in R
n if and only if E is

measurable with respect to area on p-a.e. k-dimensional surface S in Ω . Moreover,
|E| = 0 if and only if

AS(E) = 0 (9.15)

on p-a.e. k-dimensional surface S in Ω .

Proof. By the Lindelöf property in R
n and the minorant property of Mp, we may

assume without loss of generality that Ω is an open cube C in R
n whose edges are

parallel to the coordinate axes.
Suppose first that E is Lebesgue measurable in R

n. Then, by the regularity of the
Lebesgue measure, there exist Borel sets B∗ and B∗ in R

n such that B∗ ⊂ E ⊂ B∗ and
|B∗\B∗|= 0. Thus, by (2) in Remark 9.1, AS(B∗\B∗) = 0 and hence E is measurable
by area on p-a.e. k-dimensional surface S in C. Conversely, if the latter is true,
then E is measurable by area on a.e. k-dimensional plane H in C that is parallel to
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a k-dimensional coordinate plane; see Lemma 9.1. Thus, E is measurable by the
Fubini theorem.

Now, suppose that |E| = 0. Then there is a Borel set B such that |B| = 0 and
E ⊂B. Then, by (2) in Remark 9.1, the relation (9.15) holds for p-a.e. k-dimensional
surface S in C. Conversely, if the latter is true, then, in particular, AS(E) = 0 on a.e.
k-dimensional plane H in C, which is parallel to a k-dimensional coordinate plane;
see Lemma 9.1. Thus, |E| = 0, again by the Fubini theorem. 
�

Remark 9.2. Say by the Lusin theorem (see, e.g., Section 2.3.5 in [55]), for every
measurable function ρ : R

n → [0,∞], there is a Borel function ρ∗ : R
n → [0,∞]

such that ρ∗ = ρ a.e. in R
n. Thus, by Theorem 9.1, ρ is measurable on p-a.e. k-

dimensional surface S in R
n for every p ∈ (0,∞) and k = 1, . . . ,n−1.

We say that a Lebesgue measurable function ρ : R
n → [0,∞] is p-extensively

admissible for a family Γ of k-dimensional surfaces S in R
n, abbr. ρ ∈ extp admΓ ,

if ∫

S

ρk dA ≥ 1 (9.16)

for p-a.e. S ∈ Γ . The p-extensive modulus Mp(Γ ) of Γ is the quantity

Mp(Γ ) = inf
∫

Rn

ρ p(x) dm(x), (9.17)

where the infimum is taken over all ρ ∈ extp admΓ . In the case p = n, we use the
notations M(Γ ) and ρ ∈ extadmΓ , respectively. For every p∈ (0,∞), k = 1, . . . ,n−
1, and every family Γ of k-dimensional surfaces in R

n,

Mp(Γ ) = Mp(Γ ) . (9.18)

9.3 Characterization of Lower Q-Homeomorphisms

We start first from the following general statement.

Lemma 9.2. Let (X ,μ) be a measure space with finite measure μ , p ∈ (1,∞), and
let ϕ : X → (0,∞) be a measurable function. Set

I(ϕ, p) = inf
α

∫

X

ϕ α p dμ , (9.19)

where the infimum is taken over all measurable functions α : X → [0,∞] such that
∫

X

α dμ = 1 . (9.20)
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Then

I(ϕ, p) =

⎡
⎣∫

X

ϕ−λ dμ

⎤
⎦
− 1

λ

, (9.21)

where

λ =
q
p

,
1
p

+
1
q

= 1 , (9.22)

i.e., λ = 1/(p−1) ∈ (0,∞). Moreover, the infimum in (9.19) is attained only under
the function

α0 = C ·ϕ−λ , (9.23)

where

C =

⎛
⎝∫

X

ϕ−λ dμ

⎞
⎠

−1

. (9.24)

Proof. First let
∫
ϕ−λ dμ < ∞. Then, by the Hölder inequality,

1 =
∫

X

α dμ =
∫

X

(ϕ− q
p )

1
q [ϕ α p]

1
p dμ ≤

⎡
⎣∫

X

ϕ− q
p dμ

⎤
⎦

1
q

·

⎡
⎣∫

X

ϕ α p dμ

⎤
⎦

1
p

and the equality holds if and only if

c ·ϕ− q
p = ϕ ·α p a.e.;

see, e.g., [105] or [261]. C = c1/p in (9.24), i.e.,

C =

⎛
⎝∫

X

ϕ− 1
p−1 dμ

⎞
⎠

−1

and

α0(x) =

⎛
⎝∫

X

ϕ− 1
p−1 dμ

⎞
⎠

−1

·ϕ− 1
p−1 (x) .

In the case
∫
ϕ−λ dμ = ∞, the above arguments are applicable to the function

ϕε(x) =
{
ϕ(x) if ϕ(x) > ε ,
1 if ϕ(x) ≤ ε

with arbitrary small ε > 0. Note that I(ϕ, p) ≤ I(ϕε , p) → 0 as ε → 0 in the given
case. 
�

Theorem 9.2. Let D and D′ be domains in Rn, n ≥ 2, let x0 ∈ D \ {∞}, and let
Q : D → (0,∞) be a measurable function. A homeomorphism f : D → D′ is a lower
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Q-homeomorphism at x0 if and only if

M( fΣε) ≥
ε0∫

ε

dr
||Q||n−1(r)

∀ ε ∈ (0,ε0) , ε0 ∈ (0,d0), (9.25)

where
d0 = sup

x∈D
|x− x0|, (9.26)

Σε denotes the family of all the intersections of the spheres S(r) = {x ∈ R
n : |x−

x0| = r}, r ∈ (ε,ε0), with D, and

||Q||n−1(r) =

⎛
⎜⎝

∫

D(x0,r)

Qn−1(x) dA

⎞
⎟⎠

1
n−1

(9.27)

is the Ln−1-norm of Q over D(x0,r) = {x ∈ D : |x− x0| = r} = D∩ S(x0,r). The
infimum of the expression from the right-hand side in (9.1) is attained only for the
function

ρ0(x) =
Q(x)

||Q||n−1(|x|)
.

Proof. For every ρ ∈ extadmΣε ,

Aρ(r) =
∫

D(x0,r)

ρn−1(x) dA �= 0 a.e.

is a measurable function in the parameter r, say by the Fubini theorem. Thus, we
may required the equality Aρ(r) ≡ 1 a.e. instead of (9.16) and

inf
ρ∈extadmΣε

∫

D∩Rε

ρn(x)
Q(x)

dm(x) =
ε0∫

ε

⎛
⎜⎝ inf

α∈I(r)

∫

D(x0,r)

α p(x)
Q(x)

dA

⎞
⎟⎠dr,

where p = n/(n−1) > 1 and I(r) denotes the set of all measurable functions α on
the surface D(x0,r) = S(x0,r)∩D such that

∫

D(x0,r)

α(x) dA = 1.

Hence, Theorem 9.2 follows by Lemma 9.2 with X = D(x0,r), the (n − 1)-
dimensional area as a measure μ on D(x0,r), ϕ = 1

Q |D(x0,r), and p = n/(n−1) > 1.

�

Corollary 9.1. Let D and D′ be domains in Rn, n ≥ 2, x0 ∈ D\{∞}, Q : D → (0,∞)
a measurable function, and f : D → D′ a lower Q-homeomorphism at x0. Then
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M( fΣε) ≥ ω
1

1−n
n−1

ε0∫

ε

dr
r ·qn−1(r)

∀ ε ∈ (0,ε0), ε0 ∈ (0,d0), (9.28)

where

d0 = sup
x∈D

|x− x0|, (9.29)

qn−1(r) =
(
−
∫

S(x0,r)
qn−1(x) dA

)1/(n−1)

, (9.30)

q(x) =
{

Q(x) x ∈ D,
0 x ∈ R

n \D.
(9.31)

9.4 Estimates of Distortion

Lemma 9.3. Let D and D′ be domains in Rn, n ≥ 2, f : D → D′ a lower Q-
homeomorphism at x0 ∈ D\{∞}, and 0 < ε < ε0 < dist(x0,∂D). Then

h( f Sε) ≤ αn

h( f Sε0)
· exp

⎛
⎝−

ε0∫

ε

dr
r qn−1(r)

⎞
⎠ , (9.32)

where αn = 2λ 2
n with λn ∈ [4,2en−1), λ2 = 4, and λ 1/n

n → e as n → ∞,

qn−1(r) =
(
−
∫
|x−x0|=r

Qn−1(x) dA

) 1
n−1

, (9.33)

and Sε and Sε0 denote the spheres in R
n centered at x0 with radii ε and ε0, respec-

tively.

Proof. Set E = f Sε and F = f Sε0 . By the Gehring lemma,

capR(E,F) ≥ capRT

(
1

h(E)h(F)

)
, (9.34)

where h(E) and h(F) denote the spherical diameters of E and F , respectively, and
RT (s) is the Teichmüller ring

RT (s) = R
n \ ([−1,0]∪ [s,∞]), s > 1; (9.35)

see, e.g., [71] or Corollary 7.37 in [328], Section A.1. We know that

capRT (s) =
ωn−1

(logΨ(s))n−1 , (9.36)
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where the functionΨ admits the estimates

s+1 ≤ Ψ(s) ≤ λ 2
n · (s+1) < 2λ 2

n · s, s > 1; (9.37)

see, e.g., [71], pp. 225–226, and (7.19) and Lemma 7.22 in [328], Section A.1.
Hence, inequality (9.34) implies that

capR(E,F) ≥ ωn−1(
log 2λ 2

n
h(E)h(F)

)n−1 . (9.38)

Denote by Σε the family of all surfaces D(r) = {x ∈ D : |x−x0|= r}, r ∈ (ε,ε0).
By Theorem 3.13 in [340] and (9.28), we have

capR(E,F) ≤ 1
Mn−1( fΣε)

≤ ωn−1(ε0∫
ε

dr
r·qn−1(r)

)n−1 (9.39)

because fΣε ⊂Σ( f Sε , f Sε0), where Σ( f Sε , f Sε0) consists of all (n−1)-dimensional
surfaces in f D that separate f Sε and f Sε0 .

Finally, combining (9.38) and (9.39), we obtain (9.32). 
�

9.5 Removal of Isolated Singularities

By Theorem 9.2, similarly to the proof of Lemma 9.3, we obtain the following
statement.

Theorem 9.3. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, Q : D → (0,∞) a measurable

function, and f a lower Q-homeomorphism at x0 of D\{x0} into Rn. Suppose that

ε0∫

0

dr
r ·qn−1(r)

= ∞, (9.40)

where ε0 < dist(x0,∂D), and

qn−1(r) =
(
−
∫
|x−x0|=r

Qn−1(x) dA

) 1
n−1

. (9.41)

Then f has a continuous extension to D in Rn.

Corollary 9.2. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, and f a lower Q-

homeomorphism at x0 of D\{x0} into Rn. If

−
∫
|x−x0|=r

Qn−1(x) dA = O

(
logn−1 1

r

)
(9.42)
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as r → 0, then f has a continuous extension to D in Rn.

Corollary 9.3. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, and f a lower Q-

homeomorphism at x0 of D\{x0} into Rn. If

−
∫
|x−x0|=r

Qn−1(x) dA = O

([
log

1
r
· log log

1
r
· . . . · log . . . log

1
r

]n−1
)

(9.43)

as r → 0, then f has a continuous extension to D in Rn.

9.6 On Continuous Extension to Boundary Points

Lemma 9.4. Let D and D′ be domains in R
n, n ≥ 2, x0 ∈ ∂D, let Q : D → (0,∞)

a measurable function, and f : D → D′ a lower Q-homeomorphism at x0. Suppose
that the domain D is locally connected at x0 and ∂D′ is strongly accessible at least
at one point of the cluster set

L = C(x0, f ) = {y ∈ Rn : y = lim
k→∞

f (xk),xk → x0 }. (9.44)

If
ε0∫

0

dr
||Q||n−1(r)

= ∞, (9.45)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| (9.46)

and

||Q||n−1(r) =

⎛
⎜⎝

∫

D∩S(x0,r)

Qn−1(x)dA

⎞
⎟⎠

1
n−1

, (9.47)

then f extends by continuity to x0 in Rn.

Proof. Note that L �= ∅, in view of the compactness of the extended space Rn. By
the condition, ∂D′ is strongly accessible at a point y0 ∈ L. Let us assume that there
is one more point z0 ∈ L and set U = B(x0,r0), where 0 < r0 < |y0 − z0|.

In view of the local connectedness of D at x0, there is a sequence of neighbor-
hoods Vk of x0 with connected Dk = D∩Vk and δ (Vk) → 0 as k → ∞. Choose in the
domains D′

k = f Dk points yk and zk with |y0 − yk| < r0 and |y0 − zk| > r0, yk → y0

and zk → z0 as k → ∞. Let Ck be paths connecting yk and zk in D′
k. Note that by the

construction, ∂U ∩Ck �= ∅.
By the condition of strong accessibility, the point y0 from D′, there are a com-

pactum E ⊆ D′ and a number δ > 0 such that
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M(Δ(E,Ck;D′)) ≥ δ

for large k. Without loss of generality, we may assume that the last condition holds
for all k = 1,2, . . . . Note that C = f−1E is a compactum in D′ and hence ε0 =
dist(x0,C) > 0.

Let Γε be a family of all paths connecting the spheres Sε = {x ∈R
n : |x−x0|= ε}

and S0 = {x ∈R
n : |x−x0|= ε0} in D. Note that Ck ⊂ f Bε for every fixed ε ∈ (0,ε0)

for large k, where Bε = B(x0,ε). Thus, M( fΓε) ≥ δ for all ε ∈ (0,ε0).
By [122], [293], and [340] (see Section A.3, A.4, and A.6),

M( fΓε) ≤ 1
Mn−1( fΣε)

,

where Σε is the family of all surfaces D(r) = {x ∈ D : |x− x0| = r}, r ∈ (ε,ε0).
Thus, M( fΓε) → 0 as ε → 0 by Theorem 9.2 in view of (9.45). The contradiction
disproves the above assumption. 
�

9.7 On One Corollary for QED Domains

By Section 3.8, we obtain the following consequence of Lemma 9.4.

Theorem 9.4. Let D and D′ be QED domains in R
n, n ≥ 2, x0 ∈ ∂D, Q : D → (0,∞)

a measurable function, and f : D → D′ a lower Q-homeomorphism at x0. If

ε0∫

0

dr
||Q||n−1(r)

= ∞, (9.48)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| (9.49)

and

||Q||n−1(r) =

⎛
⎜⎝

∫

D∩S(x0,r)

Qn−1(x)dA

⎞
⎟⎠

1
n−1

, (9.50)

then f extends by continuity to x0 in Rn.

9.8 On Singular Null Sets for Extremal Distances

In this section C(X , f ) denotes the cluster set of the mapping f : D → Rn for a set
X ⊂ D, i.e.,
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C(X , f ) = {y ∈ Rn : y = lim
k→∞

f (xk), xk → x ∈ X}.

Note that the complements of NED sets in R
n give very particular cases of QED

domains considered in the previous section. Thus, arguing locally, by Theorem 9.4,
we obtain the following statement.

Theorem 9.5. Let D be a domain in R
n, n ≥ 2, X ⊂ D, and f a lower Q-homeomor-

phism at x0 ∈ X of D\X into Rn. Suppose that X and C(X , f ) are NED sets. If

ε0∫

0

dr
||Q||n−1(r)

= ∞, (9.51)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| (9.52)

and

||Q||n−1(r) =

⎛
⎜⎝

∫

D∩S(x0,r)

Qn−1(x) dA

⎞
⎟⎠

1
n−1

, (9.53)

then f can be extended by continuity to x0 in Rn.

9.9 Lemma on Cluster Sets

Lemma 9.5. Let D and D′ be domains in R
n, n ≥ 2, z1 and z2 distinct points in ∂D,

z1 �= ∞, and f a lower Q-homeomorphism at z1 of D onto D′, and let the function Q
be integrable with degree n−1 on the surfaces

D(r) = {x ∈ D : |x− z1| = r} = D∩S(z1,r)

for some set E of numbers r < |z1 − z2| of a positive linear measure. If D is locally
connected at z1 and z2 and ∂D′ is weakly flat, then

C(z1, f )∩C(z2, f ) = ∅. (9.54)

Proof. Without loss of generality, we may assume that the domain D is bounded.
Let d = |z1 − z2|. Choose ε0 ∈ (0,d) such that

E0 = {r ∈ E : r ∈ (ε,ε0)}

has a positive measure. The choice is possible because of the countable subadditivity
of the linear measure and because of the exhaustion
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E =
∞⋃

m=1

Em,

where
Em = {r ∈ E : r ∈ (1/m,d −1/m)}.

Note that each of the spheres S(z1,r), r ∈ E0, separates the points z1 and z2 in R
n

and D(r), r ∈ E0, in D. Thus, by Theorem 9.2, we have

M( fΣε) > 0, (9.55)

where Σε denotes the family of all intersections of the spheres

S(r) = S(z1,r) = {x ∈ R
n : |x− z1| = r}, r ∈ (ε,ε0),

with D.
For i = 1,2, let Ci be the cluster set C(zi, f ) and suppose that C1 ∩C2 �= ∅. Since

D is locally connected at z1 and z2, there exist neighborhoods Ui of zi such that
Wi = D∩Ui, i = 1,2 are connected and U1 ⊂ Bn(z1,ε) and U2 ⊂ R

n \Bn(z1,ε0).
Set Γ = Δ(W1,W2;D). By [122], [293], [340] (see Sections A.3, A.4, and A.6),

and (9.55),

M( fΓ ) ≤ 1
Mn−1( fΣε)

< ∞. (9.56)

Let y0 ∈C1 ∩C2. Without loss of generality, we may assume that y0 �=∞ because
in the contrary case one can use an additional Möbius transformation. Choose r0 > 0
such that S(y0,r0)∩ fW1 �= ∅ and S(y0,r0)∩ fW2 �= ∅.

By the condition, ∂D′ is weakly flat and hence, given a finite number M0 >
M( fΓ ), there is r∗ ∈ (0,r0) such that

M(Δ(E,F;D′)) ≥ M0

for all continua E and F in D′ intersecting the spheres S(y0,r0) and S(y0,r∗). How-
ever, these spheres can be connected by paths P1 and P2 in domains fW1 and fW2,
respectively, and for these paths

M0 ≤ M(Δ(P1,P2;D′)) ≤ M( fΓ ).

The contradiction disproves the earlier assumption that C1 ∩C2 �= ∅. The proof
is complete. 
�

As an immediate consequence of Lemma 9.5, we have the following statement.

Theorem 9.6. Let D and D′ be domains in R
n, n≥ 2, D locally connected on ∂D and

∂D′ weakly flat. If f is a lower Q-homeomorphism of D onto D′ with Q ∈ Ln−1(D),
then f−1 has a continuous extension to D′ in Rn.

Proof. By the Fubini theorem, the set
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E = {r ∈ (0,d) : Q|D(r) ∈ Ln−1(D(r))}

has a positive linear measure because Q ∈ Ln−1(D). 
�

Remark 9.3. It is sufficient to request in Theorem 9.6 that Q be integrable with de-
gree n−1 in a neighborhood of ∂D only.

Lemma 9.6. Let D and D′ be domains in Rn, n ≥ 2, Q : D → (0,∞) a measurable
function, and f : D → D′ a lower Q-homeomorphism at x0 ∈ D\{∞}. Then

ε0∫

ε

dr
||Q||n−1(r)

< ∞ ∀ ε ∈ (0,ε0), ε0 ∈ (0,d0), (9.57)

where
d0 = sup

x∈D
|x− x0| (9.58)

and

||Q||n−1(r) =

⎛
⎜⎝

∫

D(x0,r)

Qn−1(x)dA

⎞
⎟⎠

1
n−1

(9.59)

is the Ln−1-norm of Q over D(r) = {x ∈ D : |x− x0| = r} = D∩S(x0,r).

Proof. Let x1 ∈ D(ε) and x2 ∈ D(ε0). Denote by C1 and C2 the continua f (D(ε)∩
B(x1,r1)) and f (D(ε0)∩B(x2,r2)), respectively, where r1 < dist(x1,∂D) and r2 <
dist(x2,∂D) and, moreover, r1 and r2 < |x1 − x2|/2. Then, by [122] and [340] (see
Sections A.3 and A.6),

M(Δ(C1,C2; f D)) ≤ 1
Mn−1( fΣε)

,

where Σε = {D(r)}r∈(ε ,ε0) and by Theorem 5.2 in [225], p. 234, M(Δ(C1,C2; f D))>
0 because C1 and C2 are nondegenerate mutually disjoint continua in the domain
D′ = f D. Consequently, M( fΣε) < ∞ and, thus, the conclusion of the lemma fol-
lows by Theorem 9.2. 
�

Corollary 9.4. If f : D → R
n is a lower Q-homeomorphism at x0 ∈ D with

δ0∫

0

dr
||Q||n−1(r)

= ∞ (9.60)

for some δ0 ∈ (0,d0), then

δ∫

0

dr
||Q||n−1(r)

= ∞ (9.61)
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for all δ ∈ (0,d0).

Combining Lemmas 9.5 and 9.6, we immediately have the following statement.

Theorem 9.7. Let D and D′ be domains in R
n, n ≥ 2, D locally connected on ∂D

and ∂D′ weakly flat, Q : D → (0,∞) a measurable function such that the condition

δ (x0)∫

0

dr
||Q||n−1(x0,r)

= ∞ (9.62)

hold for all x0 ∈ ∂D with some δ (x0) ∈ (0,d(x0)), where

d(x0) = sup
x∈D

|x− x0|, (9.63)

and

||Q||n−1(x0,r) =

⎛
⎜⎝

∫

D(x0,r)

Qn−1(x) dA

⎞
⎟⎠

1
n−1

(9.64)

is the Ln−1-norm of Q over D(x0,r) = {x ∈ D : |x − x0| = r} = D ∩ S(x0,r).
Then there is a continuous extension of f−1 to D′ in Rn for every lower Q-
homeomorphism f of D onto D′.

9.10 On Homeomorphic Extensions to Boundaries

Combining the above results, we obtain the following statements.

Theorem 9.8. Let D and D′ be bounded domains in R
n, n ≥ 2, Q : D → (0,∞) a

measurable function, and f : D → D′ a lower Q-homeomorphism in D. Suppose
that the domain D is locally connected on ∂D and that the domain D′ has a weakly
flat boundary. If, at every point x0 ∈ ∂D,

δ (x0)∫

0

dr
||Q||n−1(x0,r)

= ∞ (9.65)

for some δ (x0) ∈ (0,d(x0)) where

d(x0) = sup
x∈D

|x− x0| (9.66)

and
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||Q||n−1(x0,r) =

⎛
⎜⎝

∫

D∩S(x0,r)

Qn−1(x) dA

⎞
⎟⎠

1
n−1

, (9.67)

then f has a homeomorphic extension to D.

The following theorem is a far-reaching generalization of the known Gehring–
Martio result (see [81], p. 196) from quasiconformal mappings to lower Q-homeo-
morphisms; cf. Corollaries 3.2 and 3.3.

Theorem 9.9. Let D and D′ be bounded QED domains in R
n, n ≥ 2, Q : D → (0,∞)

a measurable function, and f : D→D′ a lower Q-homeomorphism in D. If condition
(9.65) holds at every point x0 ∈ ∂D, then f has a homeomorphic extension to D.

Theorem 9.10. Let D be a bounded domain in R
n, n ≥ 2, Q : D → (0,∞) a measur-

able function, X ⊂D, and f a lower Q-homeomorphism of D\{X} into Rn. Suppose
that X and C(X , f ) are NED sets. If condition (9.65) holds at every point x0 ∈ X for
δ (x0) < dist(x0,∂D), where

||Q||n−1(x0,r) =

⎛
⎜⎝

∫

|x−x0|=r

Qn−1(x) dA

⎞
⎟⎠

1
n−1

, (9.68)

then f has a homeomorphic extension to D.

Remark 9.4. In particular, the conclusion of Theorem 9.10 is valid if X is a closed
set with

Hn−1(X) = 0 = Hn−1(C(X , f )). (9.69)



Chapter 10
Mappings with Finite Area Distortion

We show that mappings in R
n with finite area distortion (FAD) in all dimensions

k = 1, . . . ,n − 1 satisfy certain modulus inequalities in terms of their inner and
outer dilatations and, in particular, we prove generalizations of the well-known
Poletskii inequality for quasiregular mappings; see [159], [160]. Moreover, we
show that homeomorphisms f with finite area distortion of dimension n − 1 are
lower Q-homeomorphisms with Q(x) = KO(x, f ), and on this basis we study their
boundary behavior. The developed theory is applicable, for example, to the class of
finitely bi-Lipschitz mappings, which is a natural generalization of the well-known
classes of bi-Lipschitz mappings as well as isometries and quasi-isometries in R

n;
see [157, 158]. The mappings with finite area distortion extend the mappings with
finite length distortion; see [207] and Chapter 8 in this volume.

10.1 Introduction

Here we assume that Ω is an open set in R
n, n≥ 2, and that all mappings f :Ω →R

n

are continuous.
Given a mapping ϕ : E → R

n and a point x ∈ E ⊆ R
n, recall that

L(x,ϕ) = limsup
y→x y∈E

|ϕ(y)−ϕ(x)|
|y− x| (10.1)

and

l(x,ϕ) = liminf
y→x y∈E

|ϕ(y)−ϕ(x)|
|y− x| , (10.2)

and a mapping f : Ω → R
n is said to be of finite metric distortion, abbr. f ∈FMD,

if f has the (N)-property and

0 < l(x, f ) ≤ L(x, f ) < ∞ a.e.; (10.3)

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 10, c© Springer Science+Business Media, LLC 2009
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see [207]. By Corollary 8.1, a mapping f : Ω → R
n is of FMD if and only if f is

differentiable a.e. and has the (N)- and (N−1)-properties.

We say that a mapping f : Ω → R
n has the (Ak)-property if the following two

conditions hold:
(A(1)

k ) : for a.e. k-dimensional surface S in Ω , the restriction f |S has the (N)-proper-
ty with respect to area;

(A(2)
k ) : for a.e. k-dimensional surface S∗ in Ω∗ = f (Ω), the restriction f |S has the

(N−1)-property for each lifting S of S∗ with respect to area.

Here a surface S in Ω is a lifting of a surface S∗ in R
n under a mapping

f : Ω → R
n if S∗ = f ◦ S. We also say that a mapping f : Ω → R

n is of finite
area distortion in dimension k = 1, . . . ,n− 1, abbr. f ∈ FADk, if f ∈FMD and
has the (Ak)-property. Note that analogues of (Ak)-properties and the classes FADk

were first formulated in the [207] for k = 1; see Chapter 8, which discusses the

connectivity and local rectifiability of S∗ and S in the (A(1)
k )- and (A(2)

k )-properties,
respectively. Finally, we say that a mapping f : Ω → R

n is of finite area distortion,
abbr. f ∈FAD, if f ∈ FADk for every k = 1, . . . ,n−1.

As in Chapter 8, given a pair Q(x,y) = (Q1(x),Q2(y)) of measurable functions
Q1 : Ω → [1,∞] and Q2 : Ω∗ → [1,∞] and k = 1, . . . ,n− 1, we say that a mapping
f : Ω → R

n, f (Ω) = Ω∗, is a hyper Q-mapping in dimension k = 1, . . . ,n−1 if

M( fΓ ) ≤
∫

Ω

Q1(x) ·ρn(x) dm(x) (10.4)

and
M(Γ ) ≤

∫

Ω∗

Q2(y) ·ρn
∗ (y) dm(y) (10.5)

for every family Γ of k-dimensional surfaces S in Ω and all ρ ∈ admΓ and ρ∗ ∈
adm fΓ . We also say that a mapping f : Ω → R

n is a hyper Q-mapping if f is a
hyper Q-mapping in all dimensions k = 1, . . . ,n−1.

We show that every mapping f with finite area distortion is a hyper Q-mapping
with

Q(x,y) =

⎛
⎝KI(x, f ), ∑

z∈ f−1(y)

KO(z, f )

⎞
⎠ . (10.6)

10.2 Upper Estimates of Moduli

The following lemma makes it possible to extend the so-called K0-inequality from
the theory of quasiregular mappings to FAD mappings; see, e.g., [210], p. 16, [260],
p. 31, [328], p. 130; cf. also [207] and Section 8.6.
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Lemma 10.1. Let a mapping f : Ω → R
n be of finite metric distortion with the

(A(1)
k )-property for some k = 1, . . . ,n−1 and let a set E ⊂Ω be Borel. Then

M(Γ ) ≤
∫

f (E)

KI(y, f−1,E) ·ρn
∗ (y) dm(y) (10.7)

for every family Γ of k-dimensional surfaces S in E and ρ∗ ∈ adm fΓ , where

KI(y, f−1,E) = ∑
x∈E∩ f−1(y)

KO(x, f ). (10.8)

In particular, here we have in the case E = Ω

KI(y, f−1,Ω) = KI(y, f−1) := ∑
x∈ f−1(y)

KO(x, f ). (10.9)

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential f ′(x)
and J(x, f ) = det f ′(x) �= 0. Then B0 = Ω \B has the Lebesgue measure zero in R

n

because f ∈FMD. It is known that B is the union of a countable collection of Borel
sets Bl , l = 1,2, . . ., such that fl = f |Bl is a bi-Lipschitz homeomorphism; see, e.g.,
point 3.2.2 in [55]. For example, setting B∗

1 = B1, B∗
2 = B2 \B1, and

B∗
l = Bl \

l−1⋃
m=1

Bm,

we may assume that the Bl are no-empty and mutually disjoint. Note that by (2) in

Remark 9.1, AS(B0) = 0 for a.e. k-dimensional surface S in Ω and by the (A(1)
k )-

property AS∗( f (B0)) = 0, where S∗ = f ◦ S also for a.e. k-dimensional surface S.

Given ρ∗ ∈ adm fΓ , set

ρ(x) =
{
ρ∗( f (x))|| f ′(x)|| , for x ∈Ω \B0,

0 , otherwise.
(10.10)

We may assume without loss of generality that ρ∗ ≡ 0 outside f (E). Arguing piece-
wise on Bl , we have by point 3.2.20 and 1.7.6 in [55] and Theorem 9.1 (see also
Remark 9.2) ∫

S

ρk dA ≥
∫

S∗

ρk
∗ dA ≥ 1 (10.11)

for a.e. S ∈ Γ , i.e., ρ ∈ extadmΓ . Hence, by (9.18),

M(Γ ) ≤
∫

Ω

ρn(x) dm(x). (10.12)
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Now, by a change of variables [see, e.g., Proposition 8.3(iii)], we obtain
∫

f (Bl∩E)

KO( f−1
l (y), f ) ·ρn

∗ (y) dm(y) =
∫

Ω

ρn
l (x) dm(x), (10.13)

where ρl = ρ ·χBl and every fl = f |Bl , l = 1,2, . . ., is injective by the construction.

Thus, by the Lebesgue monotone convergence theorem (see, e.g., [281], p. 27),

∫

f (E)

KI(y, f−1,E) ·ρn
∗ (y) dm(y) =

∫

Ω

∞

∑
l=1

ρn
l (x) dm(x) ≥ M(Γ ).


�

The next inequality is a generalized form of the KI-inequality, also known as
Poletskii’s inequality; see [242], [260], pp. 49–51, and [328], p. 131; cf. also Section
8.6.

Lemma 10.2. Let f : Ω → R
n be an FMD mapping with the (A(2)

k )-property for
some k = 1, . . . ,n−1. Then

M( fΓ ) ≤
∫

Ω

KI(x, f ) ·ρn(x) dm(x) (10.14)

for every family Γ of k-dimensional surface S in Ω and ρ ∈ admΓ .

Proof. Let Bl , l = 0,1,2, . . . , be given as in the proof of Lemma 10.1. By the con-
struction and the (N)-property, | f (B0)|= 0. Thus, by Theorem 9.1, AS∗( f (B0)) = 0

for a.e. S∗ ∈ fΓ and, hence, by the (A(2)
k )-property, AS(B0) = 0 for a.e. S∗ ∈ fΓ ,

where S is an arbitrary lifting of S∗ under the mapping f , i.e., S∗ = f ◦S.

Let ρ ∈ admΓ and let

ρ̃(y) = sup
x∈ f−1(y)∩Ω\B0

ρ∗(x), (10.15)

where

ρ∗(x) =
{
ρ(x)/l( f ′(x)), for x ∈Ω \B0,
0, otherwise.

(10.16)

Note that ρ̃ = supρl , where

ρl(y) =
{
ρ∗( f−1

l (y)), for y ∈ f (Bl),
0, otherwise,

(10.17)

and every fl = f |Bl , l = 1,2, . . . , is injective. Thus, the function ρ̃ is Borel; see,
e.g., [281], p. 15.

Arguing as in the proof of (10.11), we obtain
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∫

S∗

ρ̃ k dA ≥
∫

S

ρk dA ≥ 1 (10.18)

for a.e. S∗ = f ◦S ∈ fΓ and, thus, ρ̃ ∈ extadm fΓ . Hence, (9.18) yields

M( fΓ ) ≤
∫

f (Ω)

ρ̃ n(y) dm(y). (10.19)

Further, by a change of variables, we have
∫

Bl

KI(x, f ) ·ρn(x) dm(x) =
∫

f (Ω)

ρl(y) dm(y). (10.20)

Finally, by Lebesgue’s theorem, we obtain the desired inequality:

∫

Ω

KI(x, f ) ·ρn(x) dm(x) =
∞

∑
l=1

∫

f (Ω)

ρl(y) dm(y)

=
∫

f (Ω)

∞

∑
l=1

ρl(y) dm(y) ≥ M( fΓ ).


�

Combining Lemmas 10.1 and 10.2, we come to the main result of this section.

Theorem 10.1. Let a mapping f : Ω → R
n belong to class FADk for some k =

1, . . . ,n−1. Then f is a hyper Q-mapping in dimension k with

Q(x,y) = (KI(x, f ),KI(y, f−1)). (10.21)

Corollary 10.1. Every FAD mapping f is a hyper Q-mapping with Q given by
(10.21).

Remark 10.1. If KI( f ) = ess sup KI(x, f ) < ∞, then (10.14) for k = 1 yields the Po-
letskii inequality:

M( fΓ ) ≤ KI( f )M(Γ ) (10.22)

for every path family in Ω . If KO( f ) = ess sup KO(x, f ) < ∞ and E is a Borel set
with N( f ,E) < ∞, then we have from (10.7) the usual form of the KO-inequality:

M(Γ ) ≤ N( f ,E)KO( f )M( fΓ ) (10.23)

for every path family in E.
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10.3 On Lower Estimates of Moduli

Lemma 10.3. Let Ω be an open set in R
n, n ≥ 2, and f : Ω → R

n an FMD homeo-

morphism with the (A(1)
k )-property for some k = 1, . . . ,n−1. Then

M( fΓ ) ≥ inf
ρ∈extadmΓ

∫

Ω

ρn(x)
KO(x, f )

dm(x) (10.24)

for every family Γ of k-dimensional surfaces S in Ω .

Proof. Let B be a (Borel) set of all points x in Ω where f has a differential f ′(x)
and J(x, f ) = det f ′(x) �= 0. As we know, B is the union of a countable collection of
Borel sets Bl , l = 1,2, . . . , such that fl = f |Bl is bi-Lipschitz; see, e.g., point 3.2.2
in [55]. Without loss of generality, we may assume that the Bl are mutually disjoint.
Note that B0 = Ω \B and f (B0) have Lebesgue measure zero in R

n for f ∈FMD;
see Corollary 8.1. Thus, by Theorem 9.1, AS(B0) = 0 for a.e. S ∈ Γ and hence by

(A(1)
k )-property, AS∗( f (B0)) = 0 for a.e. S ∈ Γ , where S∗ = f ◦S.
Let ρ∗ ∈ adm fΓ , ρ∗ ≡ 0 outside f (Ω), and set ρ ≡ 0 outside Ω and

ρ(x) = ρ∗( f (x)) || f ′(x)||, a.e. x ∈Ω

Arguing piecewise on Bl , we have by points 3.2.20 and 1.7.6 in [55] that
∫

S

ρk dA ≥
∫

S∗

ρk
∗ dA ≥ 1

for a.e. S ∈ Γ and, thus, ρ ∈ extadmΓ .
By a change of variables for the class FMD (see Proposition 8.3),

∫

Ω

ρn(x)
KO(x, f )

dm(x) =
∫

f (Ω)

ρn
∗ (y) dm(y),

and (10.24) follows. 
�

Combining Lemmas 10.2 and 10.3, we have the following statement.

Theorem 10.2. Let Ω be an open set in R
n, n ≥ 2, and let a homeomorphism f :

Ω → R
n belong to FADk for some k = 1, . . . ,n− 1. Then, for every family Γ of

k-dimensional surfaces S in Ω , f satisfies the double inequality

inf
∫

Ω

ρn(x)
KO(x, f )

dm(x) ≤ M( fΓ ) ≤ inf
∫

Ω

KI(x, f )ρn(x) dm(x),

where the infimums are taken over all ρ ∈ extadm Γ and ρ ∈ adm Γ , respectively.
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Corollary 10.2. Every homeomorphism f : Ω → R
n of class FADn−1 is a lower

Q-homeomorphism with
Q(x) = KO(x, f ). (10.25)

10.4 Removal of isolated singularities

By Corollary 10.2 and Section 9.5, we have the following conclusions.

Theorem 10.3. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, and f : D \ {x0} → R

n a
homeomorphism of class FADn−1. Suppose that

ε0∫

0

dr
r · kn−1(r)

= ∞, (10.26)

where ε0 < dist(x0,∂D) and

kn−1(r) =
(
−
∫
|x−x0|=r

Kn−1
O (x, f )) dA

) 1
n−1

. (10.27)

Then f has a homeomorphic extension to D of class FADn−1.

Corollary 10.3. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, and f : D\{x0} → R

n a
homeomorphism of class FADn−1. If

−
∫
|x−x0|=r

Kn−1
O (x, f ) dA = O

(
logn−1 1

r

)
(10.28)

as r → 0, then f has a homeomorphic extension to D of class FADn−1.

Corollary 10.4. Let D be a domain in R
n, n ≥ 2, x0 ∈ D, and f : D\{x0} → R

n a
homeomorphism of class FADn−1. If

−
∫
|x−x0|=r

Kn−1
O (x, f ) dA = O

([
log

1
r
· log log

1
r
· . . . · log · . . . · log

1
r

]n−1
)

(10.29)
as r → 0 then f has a homeomorphic extension to D of class FADn−1.

Remark 10.2. In particular, (10.28) holds if

KO(x, f ) = O

(
log

1
|x− x0|

)
(10.30)

as x → x0. Note that the continuous extension of f in Theorem 10.3 and Corollaries
10.3 and 10.4 is a homeomorphism by Corollary 6.12.
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10.5 Extension to Boundaries

On the basis of Corollary 10.2 and Sections 9.6–9.10, here we review of results on
the boundary behavior of mappings with finite area distortion.

Lemma 10.4. Let D be a domain in R
n, n ≥ 2, x0 ∈ ∂D, and f : D → R

n a home-
omorphism of class FADn−1. Suppose that the domain D is locally connected at x0

and the domain D′ = f (D) has a strongly accessible boundary. If

ε0∫

0

dr
||KO||n−1(r)

= ∞, (10.31)

where
0 < ε0 < d0 = sup

x∈D
|x− x0| (10.32)

and

||KO||n−1(r) =

⎛
⎜⎝

∫

D∩S(x0,r)

Kn−1
O (x, f )(x)dA

⎞
⎟⎠

1
n−1

, (10.33)

then f extends by continuity to x0.

Theorem 10.4. Let D be a domain in R
n, n ≥ 2, x0 ∈ ∂D, and f : D → R

n a home-
omorphism of class FADn−1. Suppose that D and D′ = f (D) are QED domains. If
condition (10.31) holds, then f extends by continuity to x0.

The complements of NED sets in R
n give a very particular case of QED domains.

Hence, arguing locally, we obtain by Theorem 10.4 the following statement.

Theorem 10.5. Let D be a domain in R
n, n≥ 2, X ⊂D, and f : D\X →Rn a homeo-

morphism of class FADn−1. Suppose that X and C(X , f ) are NED sets. If condition
(10.31) holds, then f extends by continuity to x0.

Lemma 10.5. Let D and D′ be domains in R
n, n ≥ 2, z1 and z2 distinct points in ∂D,

z1 �=∞, f a homeomorphism of class FADn−1 of D onto D′, and KO(x, f ) integrable
with degree n−1 on the surfaces

D(r) = {x ∈ D : |x− z1| = r} = D∩S(z1,r)

for some set E of numbers r < |z1 − z2| of a positive linear measure. If D is locally
connected at z1 and z2 and ∂D′ is weakly flat, then

C(z1, f )∩C(z2, f ) = ∅ . (10.34)

As usual, here C(zi, f ) denotes the cluster sets at the points zi, i = 1,2.
As an immediate consequence of Lemma 10.5, we have the following statement.
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Theorem 10.6. Let D and D′ be domains in R
n, n ≥ 2, D locally connected on ∂D

and ∂D′ weakly flat. If f is a homeomorphism of class FADn−1 of D onto D′ with
KO ∈ Ln−1(D), then f−1 has a continuous extension to D′.

Remark 10.3. It is sufficient to request in Theorem 10.6 that KO(x, f ) be integrable
with degree n−1 in a neighborhood of ∂D only.

Theorem 10.7. Let D and D′ be domains in R
n, n ≥ 2, D locally connected on ∂D

and ∂D′ weakly flat, and f a homeomorphism of D onto D′ of class FADn−1. If
condition (10.31) holds, then there is a continuous extension f−1 to D′.

Combining the above results, we obtain the following statements.

Theorem 10.8. Let D be a domain in R
n, n ≥ 2, and f : D → R

n a homeomorphism
of class FADn−1. Suppose that the domain D is locally connected on ∂D and that the
domain D′ = f (D) has a weakly flat boundary. If condition (10.31) holds at every
point x0 ∈ ∂D, then f has a homeomorphic extension to f : D → D′.

The next theorem extends the Gehring–Martio results in [81], p. 196, on the
boundary correspondence from quasiconformal mappings to homeomorphisms with
finite area distortion; cf. Corollaries 3.2 and 3.3.

Theorem 10.9. Let D be a domain in R
n, n ≥ 2, and f : D → R

n a homeomorphism
of class FADn−1. Suppose that D and D′ = f (D) are QED domains. If condition
(10.31) holds at every point x0 ∈ ∂D, then f has a homeomorphic extension to D.

Theorem 10.10. Let D be a domain in R
n, n ≥ 2, X ⊂ D, and f : D\X → Rn, a

homeomorphism of class FADn−1. Suppose that X and C(X , f ) are NED sets. If
condition (10.31) holds at every point x0 ∈ X , then f has a homeomorphic extension
to D in class FADn−1.

Corollary 10.5. Let D be a domain in R
n, n ≥ 2, and f : D →R

n a homeomorphism
of class FADn−1. Suppose that the domain D is locally connected on ∂D and that
the domain D′ = f (D) has a weakly flat boundary. If, at every point x0 ∈ ∂D,

KO(x, f ) = O

(
log

1
|x− x0|

)
(10.35)

as x → x0, then f has a homeomorphic extension to D.

Corollary 10.6. Let D be a domain in R
n, n ≥ 2, and f : D →R

n a homeomorphism
of class FADn−1. Suppose that D and D′ = f (D) are QED domains. If condition
(10.35) holds at every point x0 ∈ ∂D, then f has a homeomorphic extension to D.

Corollary 10.7. Let D be a domain in R
n, n ≥ 2, and f : D\X → Rn a homeomor-

phism of class FADn−1. Suppose that X and C(X , f ) are NED sets. If condition
(10.35) holds at every point x0 ∈ X, then f has a homeomorphic extension to D that
belongs to class FADn−1.
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Remark 10.4. In particular, the conclusion of Theorem 10.10 and Corollary 10.7 is
valid if X is a closed set with

Hn−1(X) = 0 = Hn−1(C(X , f )). (10.36)

10.6 Finitely Bi-Lipschitz Mappings

Recall that, given a set A ⊆ R
n, n ≥ 1, a mapping f : A → R

n is called Lipschitz if
there is number L > 0 such that the inequality

| f (x)− f (y)| ≤ L |x− y| (10.37)

holds for all x and y in A.
Given an open set Ω ⊆ R

n, we say that a mapping f : Ω → R
n is finitely Lips-

chitz if L(x, f ) < ∞ holds for all x ∈Ω and is finitely bi-Lipschitz if

0 < l(x, f ) ≤ L(x, f ) < ∞ (10.38)

holds for all x ∈Ω ; see (10.1) and (10.2) for the definitions of l and L.

Lemma 10.6. Let f : Ω → R
n be a finitely Lipschitz mapping, and let k = 1, . . . ,n.

Then Hk( f (E)) = 0 whenever E ⊂Ω with Hk(E) = 0.

Proof. First we prove the statement for Lipschitz mappings f : A → R
n given on

arbitrary sets A ⊂ R
n, i.e., when there is L > 0 such that

| f (x)− f (y)| ≤ L |x− y|, ∀ x,y ∈ A.

By Kirszbraun’s theorem, such an f can be extended to a Lipschitz mapping on R
n

with the same L; see either [150] or point 2.10.43 in [55].
Let E ⊆ A and Hk(E) = 0. Then, for any ε > 0, there is a countable collection of

balls Bl = B(xl ,rl) with centers xl and radii rl covering E such that

∑
l

Vkrk
l < ε,

where Vk is the volume of the unit ball in R
k.

Note that C∗
l ⊂ B∗

l for all l and f (E) ⊂ ⋃l C
∗
l ⊂ ⋃l B∗

l , where C∗
l = f (Bl) and

B∗
l = B( f (xl),Lrl). Hence,

Hk( f (E)) ≤∑
l

Vk(Lrl)k = Lk∑
l

Vkrk
l < Lkε.

Thus, Hk( f (E)) = 0 because ε > 0 is arbitrary.
Now, let f :Ω →R

n be finitely Lipschitz. Denote by Ai the set of all points x∈Ω
such that
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| f (x+h)− f (x)| ≤ i |h|
whenever |h| < 1/i and x+h ∈Ω . Note that Ai ⊂ Ai+1 and Ω =

⋃
i Ai.

Let E ⊂ Ω such that Hk(E) = 0, and let Ei = E ∩ Ai. Then Hk(Ei) = 0 and
hence Hk( f (Ei)) = 0 by the above arguments for Lipschitz mappings. Thus, by the
countable subadditivity of the Hausdorff measure,

Hk( f (E)) ≤∑
i

Hk( f (Ei)) = 0 .


�

Note that if a mapping f : Ω → R
n is a homeomorphism, then it has the inverse

mapping f−1, for which l(x, f−1) = 1/L(x, f ) and L(x, f−1) = 1/l(x, f ). Applying
Lemma 10.6 to the mapping f−1, we obtain the following statement.

Lemma 10.7. Let f : Ω → R
n be a homeomorphism such that l(x, f ) > 0 for all

x ∈Ω , and let k = 1, . . . ,n. Then Hk(E) = 0 whenever E ⊂Ω with Hk( f (E)) = 0.

Combining Lemmas 10.6 and 10.7, by the Rademacher-Stepanoff theorem (see,
e.g., point 3.1.9 in [55]) and the definition of FAD, we obtain the next statement.

Theorem 10.11. Every finitely bi-Lipschitz homeomorphism is a mapping with finite
area distortion.

Recall that a mapping f : Ω → R
n is called open if the image of each open set

in Ω is an open set in R
n. A mapping f : Ω → R

n is called discrete if the preimage
f−1(y) of each point y ∈ R

n consists of isolated points. In these terms we are able
to formulate the following generalization of Lemma 10.7.

Lemma 10.8. Let f : Ω → R
n be a discrete open mapping such that l(x, f ) > 0 for

all x∈Ω , and let k = 1, . . . ,n. Then Hk(E) = 0 whenever E ⊂Ω with Hk( f (E)) = 0.

Proof. Indeed, since f is a discrete open mapping by Arkhangel’skii’s theorem,
Ω =

⋃
i Xi, where the Xi are closed subsets of Ω such that the mappings fi = f |Xi

are homeomorphisms; see Theorem 3.7 in [12], p. 218. Without loss of generality,
we may also assume that the Xi are compact. Note that by the conditions of the
lemma mappings, gi = f−1

i : Yi → Xi are finitely Lipschitz. Thus, applying Lemma
10.6 to gi, we come to the conclusion of Lemma 10.8 by the countable subadditivity
of the Hausdorff measure Hk. 
�

Combining Lemmas 10.6 and 10.8, we obtain the following result.

Theorem 10.12. Every finitely bi-Lipschitz discrete open mapping is a mapping
with finite area distortion.

Theorem 10.13. Let f : Ω → R
n be a finitely bi-Lipschitz discrete open mapping.

Then f is a hyper Q-mapping with

Q(x,y) = (KI(x, f ),KI(y, f−1)), (10.39)
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where
KI(y, f−1) = ∑

z∈ f−1(y)

KO(z, f ). (10.40)

Corollary 10.8. Every finitely bi-Lipschitz homeomorphism f : Ω → R
n is a hyper

Q-mapping with
Q(x,y) = (KI(x, f ),KO( f−1(y), f )). (10.41)

Corollary 10.9. Every finitely bi-Lipschitz homeomorphism f : Ω → R
n is a Q-

homeomorphism with
Q(x) = KI(x, f ). (10.42)

Finally, by Theorem 10.2, we obtain the following important conclusion.

Corollary 10.10. Every finitely bi-Lipschitz homeomorphism f :Ω →R
n is a lower

Q-homeomorphism with
Q(x) = KO(x, f ). (10.43)

Thus, the whole theory of lower Q-homeomorphisms developed above is appli-
cable to the finitely bi-Lipschitz mappings with Q(x) = KO(x, f ). The same is true
with respect to the theories of Q-homeomorphisms with Q(x) = KI(x, f ) and FLD
mappings; see, e.g., [127, 128, 204–209], and Chapters 4-6 and 8 in this volume.

Remark 10.5. By Theorem 8.1, every homeomorphism f in R
n, n ≥ 2, of the

Sobolev class W 1,n
loc with f−1 ∈ W 1,n

loc is of FLD (finite length distortion) and hence
by Theorem 8.7; cf. also Theorem 6.1, is a super Q-homeomorphism with Q(x) =
KI(x, f ). In this connection, we had the conjecture that such homeomorphisms are
also of FADn−1, finite area distortion in dimension n−1, and hence by Lemma 10.3,
they are lower Q-homeomorphisms with Q(x) = KO(x, f ).

Sergei Vodopyanov pointed to the fact that (similarly to Lemma 4.1 in the recent
preprint [47] published at December 2007) it is easy proved that homeomorphisms
of the class W 1,n−1

loc have the (N)-property with respect to area on a.e. spheres cen-
tered at a boundary point and, thus, (10.24) can be proved for them similarly to
Lemma 10.3. Consequently, homeomorphisms f of the class W 1,n

loc with f−1 ∈W 1,n
loc

are lower Q-homeomorphisms with Q(x) = KO(x, f ). Furthermore, Sergei Vodopy-
anov with his student are preparing a preprint where they have proved that homeo-
morphisms f ∈W 1,n−1

loc have the (N)-property on a.e. hyperplane and they are going
to prove that the latter is valid on a.e. hypersurface.

Thus, our conjecture is verified and the theories of lower Q-homeomorphisms as
well as of finite area distortion are applicable to homeomorphisms f ∈ W 1,n

loc with
KI(x, f ) ∈ L1

loc and, in particular, with KO(x, f ) ∈ Ln−1
loc ; cf. Corollaries 6.4 and 6.5.



Chapter 11
On Ring Solutions of the Beltrami Equation

In this chapter we prove uniqueness and existence theorems for ring Q-homeomor-
phisms in the plane, extending earlier results on the existence and uniqueness of
ACL solutions for the Beltrami equation. One of the conditions for uniqueness and
existence is expressed in terms of the finite mean oscillation of majorants for the
tangential dilatation. We also prove a generalization of the Lehto existence theorem.

The existence problem for degenerate Beltrami equations has been studied exten-
sively; see, e.g., [31, 32, 48, 98, 134, 169, 189, 203, 220, 241, 271–280, 310]. A more
detailed discussion of these results can be found in the survey [297]. Some of those
and many other results can be derived from the generalization of the Lehto existence
theorem (Theorem 11.10 here), first obtained in [277].

11.1 Introduction

Let D be a domain in the complex plane C, i.e., an open and connected subset of
C, and let μ : D → C be a measurable function with |μ(z)| < 1 a.e. The Beltrami
equation is of the form

fz = μ(z) · fz, (11.1)

where fz = ∂ f = ( fx + i fy)/2, fz = ∂ f = ( fx − i fy)/2, z = x + iy, and fx and fy

are partial derivatives of f in x and y, correspondingly. The function μ is called the
complex coefficient and

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| (11.2)

the maximal dilatation or, in short the dilatation, of Eq. (11.1). If

ess supKμ(z) = ∞,

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 11, c© Springer Science+Business Media, LLC 2009
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then the Beltrami equation (11.1) is said to be degenerate. As we know, the Beltrami
equation plays an important role in mapping theory. The main goal of this chapter
is to present general principles that allow us to obtain a variety of conditions for the
existence of homeomorphic ACL solutions in the degenerate case. Our existence
theorems are proved by an approximation method.

Given a point z0 in D, the tangential dilatation and the radial dilatation of
(11.1) with respect to z0 are respectively defined by

KT
μ (z,z0) =

∣∣∣1− z−z0
z−z0

μ(z)
∣∣∣2

1−|μ(z)|2 (11.3)

and

Kr
μ(z,z0) =

1−|μ(z)|2∣∣∣1+ z−z0
z−z0

μ(z)
∣∣∣2

; (11.4)

cf. [98, 189, 253]. Reasons for the names will be given in Section 11.3.

Note that if f ∈ ACL, then f has partial derivatives fx and fy a.e. and, thus, by
the well-known Gehring–Lehto theorem, every ACL homeomorphism f : D → C is
differentiable a.e.; see [80] or [190], p. 128. For a sense-preserving ACL homeomor-
phism f : D → C, the Jacobian Jf (z) = | fz|2 −| fz|2 is nonnegative a.e.; see [190], p.
10. In this case, the complex dilatation μ f of f is the ratio μ(z) = fz/ fz if fz �= 0
and μ(z) = 0 otherwise, and the dilatation Kf (z) of f at z is Kμ(z); see (11.2). Note
that |μ(z)| ≤ 1 a.e. and Kμ(z) ≥ 1 a.e.

Given a measurable function K : D → [1,∞], we say (cf. [1]) that a sense-
preserving ACL homeomorphism f : D → C is K(z)-quasiconformal, abbr. K(z)-
qc, if

Kf (z) ≤ K(z) a.e. (11.5)

An ACL homeomorphism f : D → C is called a ring solution of the Beltrami
equation (11.1) with complex coefficient μ if f satisfies (11.1) a.e., f−1 ∈W 1,2

loc and
f is a ring Q-homeomorphism at every point z0 ∈ D with Qz0(z) = KT

μ (z,z0); see
Section 6.1; cf. Section 10.3. We show that ring solutions exist for wide classes of
the degenerate Beltrami equations.

The condition f−1 ∈ W 1,2
loc in the definition of a ring solution implies that a.e.

point z is a regular point for the mapping f , i.e., f is differentiable at z and Jf (z) �=
0. Note that the condition Kμ ∈ L1

loc is necessary for a homeomorphic ACL solution

f of (11.1) to have the property g = f−1 ∈W 1,2
loc because this property implies that

∫

C

Kμ(z) dxdy ≤ 4
∫

C

dxdy
1−|μ(z)|2

= 4
∫

f (C)

∫
Jg(w) dudv

1−|μ(g(w))|2 = 4
∫

f (C)

|∂g|2 dudv < ∞
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for every compact set C ⊂ D.

Note that every homeomorphic ACL solution f of the Beltrami equation with
Kμ ∈ L1

loc belongs to the class W 1,1
loc , as in all of our theorems. Note also that if, in

addition, Kμ ∈ Lp
loc, p ∈ [1,∞], then f ∈W 1,s

loc , where s = 2p/(1+ p)∈ [1,2]. Indeed,

|∂ f |+ |∂ f | = K1/2
μ (z) · J1/2

f (z),

and by Hölder’s inequality, on every compact set C ⊂ D,

||∂ f ||s ≤ ||∂ f ||s ≤ ||K1/2
μ ||p · ||J1/2

f ||2
= ||Kμ ||1/2

q · ||Jf ||1/2
1 ≤ ||Kμ ||1/2

q ·A( f (C))1/2

(see, e.g., [190], p. 131), where A( f (C)) is the area of the set f (C) and 1/p+1/2 =
1/s and q = p/2. Hence, f ∈W 1,s

loc ; see, e.g., [215], p. 8.

In the classical case when ‖μ‖∞ < 1, equivalently, when Kμ ∈ L∞, every ACL

homeomorphic solution f of the Beltrami equation (11.1) is in the class W 1,2
loc to-

gether with its inverse mapping f−1, and hence f is a ring solution of (11.1) by
Theorem 11.1. In the case ‖μ‖∞ = 1 with Kμ ≤ Q ∈ BMO, again f−1 ∈W 1,2

loc and f

belongs to W 1,s
loc for all 1 ≤ s < 2 but not necessarily to W 1,2

loc ; see examples in [274].
However, there is a variety of degenerate Beltrami equations for which ring solu-
tions exist, as shown ahead.

11.2 Finite Mean Oscillation

Let D be a domain in the complex plane C. Recall that a function ϕ : D → R has
finite mean oscillation at a point z0 ∈ D if

dϕ(z0) = lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)−ϕε(z0)| dxdy < ∞, (11.6)

where
ϕε(z0) = −

∫
D(z0,ε)

ϕ(z) dxdy < ∞ (11.7)

is the mean value of the function ϕ(z) over the disk D(z0,ε). We call dϕ(z0) the
dispersion of the function ϕ at point z0. We say that a function ϕ : D → R is of
finite mean oscillation in D, abbr. ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ has a
finite dispersion at every point z ∈ D.

Remark 11.1. Note that if a function ϕ : D → R is integrable over D(z0,ε0) ⊂ D,
then

−
∫

D(z0,ε)
|ϕ(z)−ϕε(z0)| dxdy ≤ 2 ·ϕε(z0) (11.8)
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and the right-hand side in (11.8) is continuous of ε ∈ (0,ε0] by the absolute conti-
nuity of the integral. Thus, for every δ0 ∈ (0,ε0),

sup
ε∈[δ0,ε0]

−
∫

D(z0,ε)
|ϕ(z)−ϕε(z0)| dxdy < ∞. (11.9)

If (11.6) holds, then

sup
ε∈(0,ε0]

−
∫

D(z0,ε)
|ϕ(z)−ϕε(z0)| dxdy < ∞. (11.10)

The value in (11.10) is called the maximal dispersion of the function ϕ in the
disk D(z0,ε0).

Proposition 11.1. If, for some collection of numbers ϕε ∈ R, ε ∈ (0,ε0],

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)−ϕε | dxdy < ∞ , (11.11)

then ϕ has finite mean oscillation at z0.

Proof. Indeed, by the triangle inequality,

−
∫

D(z0,ε)
|ϕ(z)−ϕε(z0)| dxdy

≤ −
∫

D(z0,ε)
|ϕ(z)−ϕε | dxdy + |ϕε −ϕε(z0)|

≤ 2 ·−
∫

D(z0,ε)
|ϕ(z)−ϕε | dxdy .


�

Corollary 11.1. If, for a point z0 ∈ D,

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)| dxdy < ∞, (11.12)

then ϕ has finite mean oscillation at z0.

Remark 11.2. Clearly BMO ⊂ FMO. The example given at the end of this chapter
shows that the inclusion is proper. Note that the function ϕ(z) = log1/|z| belongs
to BMO in the unit disk D (see, e.g., [255], p. 5) and hence also to FMO. How-
ever, ϕε(0) → ∞ as ε → 0, showing that condition (11.12) is only sufficient but not
necessary for a function ϕ to be of finite mean oscillation at z0.

A point z0 ∈ D is called a Lebesgue point of a function ϕ : D → R if ϕ is
integrable in a neighborhood of z0 and

lim
ε→0

−
∫

D(z0,ε)
|ϕ(z)−ϕ(z0)| dxdy = 0. (11.13)
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It is known that, for every function ϕ ∈ L1(D), almost every point in D is a Lebesgue
point.

Corollary 11.2. Every function ϕ : D → R, that is locally integrable has a finite
mean oscillation at almost every point in D.

Ahead we use the notations D(r) = D(0,r) = {z ∈ C : |z| < r} and

A(ε,ε0) = {z ∈ C : ε < |z| < ε0} . (11.14)

Lemma 11.1. Let D ⊂ C be a domain such that D(1/2) ⊂ D, and let ϕ : D → R be
a nonnegative function. If ϕ is integrable in D(1/2) and of FMO at 0, then

∫

A(ε ,1/2)

ϕ(z)dxdy(
|z| log2

1
|z|

)2 ≤ C · log2 log2
1
ε

(11.15)

for ε ∈ (0,1/4), where

C = 4π [ϕ0 +6d0], (11.16)

ϕ0 is the mean value of ϕ over the disk D(1/2), and d0 is the maximal dispersion of
ϕ in D(1/2).

Versions of this lemma were first established for BMO functions and n = 2 in
[271] and [273] and then for FMO functions in [127] and [276]. An n-dimensional
version of the lemma for BMO functions was established in [205].

Proof. Let 0 < ε < 1/4, εk = 2−k, Ak = {z∈D : εk+1 ≤ |z|< εk}, Dk = D(εk), and
ϕk the mean value of ϕ(z) over Dk, k = 1,2 . . . . Choose a natural number N such
that ε ∈ [εN+1,εN) and α(t) = (t log1/t)−2. Then A(ε,2−1) ⊂ A(ε) = ∪N

k=1Akand

η(ε) =
∫

A(ε)

ϕ(z)α(|z|) dxdy ≤ |S1|+S2,

where

S1(ε) =
N

∑
k=1

∫

Ak

(ϕ(z)−ϕk)α(|z|) dxdy,

S2(ε) =
N

∑
k=1

ϕk

∫

Ak

α(|z|) dxdy.

Since Ak ⊂ Dk, |z|−2 ≤ 4π/|Dk| for z ∈ Ak and log1/|z| > k in Ak, we obtain

|S1| ≤ 4πd0

N

∑
k=1

1
k2 < 8πd0
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because
∞

∑
k=2

1
k2 <

∞∫

1

dt
t2 = 1.

Now, ∫

Ak

α(|z|) dxdy ≤ 1
k2

∫

Ak

dxdy
|z|2 =

2π
k2 .

Moreover,

|ϕk −ϕk−1| =
1

|Dk|

∣∣∣∣∣∣
∫

Dk

(ϕ(z)−ϕk−1) dxdy

∣∣∣∣∣∣
≤ 4

|Dk−1|

∫

Dk−1

|ϕ(z)−ϕk−1| dxdy ≤ 4d0

and by the triangle inequality, for k ≥ 2,

ϕk = |ϕk| ≤ ϕ1 +
k

∑
l=2

|ϕl −ϕl−1| ≤ ϕ1 +4kd0 = ϕ0 +4kd0 .

Hence,

S2 = |S2| ≤ 2π
N

∑
k=1

ϕk

k2 ≤ 4πϕ0 +8πd0

N

∑
k=1

1
k

.

But
N

∑
k=2

1
k

<

N∫

1

dt
t

= log N < log2 N

and, for ε < εN ,

N = log2
1
εN

< log2
1
ε
.

Consequently,
N

∑
k=1

1
k

< 1+ log2 log2
1
ε
,

and, thus, for ε ∈ (0,1/4),

η(ε) ≤ 4π

(
2d0 +

4d0 +ϕ0

log2 log2
1
ε

)
· log2 log2

1
ε

≤ C · log2 log2
1
ε
,

as required. 
�

We complete this section by constructing a function ϕ : C → R that belongs to
FMO but not to Lp

loc for any p > 1 and hence does not belong to BMOloc.
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Example. Fix p > 1. For k = 1,2, . . . , set zk = 2−k, rk = 2−pk2
, and Dk =

D(zk,rk). Define ϕ(z) = Σ∞
k=2ϕk(z), where ϕk(z) = 22k2

if z ∈ Dk and 0 otherwise.
Then ϕ is locally bounded in C \ {0} and hence belongs to BMOloc(C \ {0}) and
therefore to FMO(C\{0}). To show that ϕ is of FMO at z = 0, calculate

∫

Dk

ϕk(z) dxdy = π2−2(p−1)k2
(11.17)

and, thus,

lim
ε→0

−
∫

D(ε)
ϕ(z) dxdy < ∞. (11.18)

Indeed, setting

K = K(ε) =
[

log2
1
ε

]
≤ log2

1
ε
, (11.19)

where [A] is the integral part of a number A, we have

J = −
∫

D(ε)
ϕ(z) dxdy ≤

∞

∑
k=K

2−2(p−1)k2
/2−2(K+1). (11.20)

If (p−1)K > 1, i.e., K > 1/(p−1), then

∞

∑
k=K

2−2(p−1)k2 ≤
∞

∑
k=K

2−2k = 2−2K
∞

∑
k=0

(
1
4

)k

=
4
3
·2−2K , (11.21)

and hence J ≤ 16/3. Corollary 11.1 yields ϕ ∈ FMO.
Finally, note that ∫

Dk

ϕ p
k (z) dxdy = π, (11.22)

and hence ϕ /∈ Lp(U) in any neighborhood U of 0.

11.3 Ring Q-Homeomorphisms in the Plane

We first recall the definition of a ring Q-homeomorphism adopted to the plane C.

Given a domain D and two sets E and F in C, Δ(E,F,D) denotes the family of
all paths γ : [a,b] → C that join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F, and γ(t) ∈ D
for a < t < b. We set Δ(E,F) = Δ(E,F,C) if D = C. A ring domain, or shortly a
ring, in C is a doubly connected domain R in C. Let R be a ring in C. If C1 and C2

are the components of C \R, we write R = R(C1,C2). The 2-capacity [see (2.15)]
and the modulus of the path family Γ (C1,C2,R) coincide,

cap R(C1,C2) = M(Δ(C1,C2,R)); (11.23)
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see, e.g., [74, 77] and [71], Appendix A.1. Note also that

M(Δ(C1,C2,R)) = M(Δ(C1,C2)); (11.24)

see, e.g., Theorem 11.3 in [316].

Let D be a domain in C, z0 ∈ D, r0 ≤ dist(z0,∂D), and Q : D(z0,r0) → [0,∞] a
measurable function in the disk

D(z0,r0) = {z ∈ C : |z− z0| < r0}. (11.25)

Set

A(r1,r2,z0) = {z ∈ C : r1 < |z− z0| < r2}, (11.26)

Ci : = C(z0,ri) = {z ∈ C : |z− z0| = ri}, i = 1,2. (11.27)

We say that a homeomorphism f : D →C is a ring Q-homeomorphism at the point
z0 if

M(Δ( fC1, fC2, f D)) ≤
∫

A

Q(z) ·η2(|z− z0|) dxdy (11.28)

for every annulus A = A(r1,r2,z0), 0 < r1 < r2 < r0, and for every measurable func-
tion η : (r1,r2) → [0,∞] such that

r2∫

r1

η(r) dr = 1. (11.29)

In this section we find conditions on f under which f is a ring Q-homeomorphism.

Now, let z be a regular point for a mapping f : D → C. Here we consider f ′(z) as
a linear map of R

2. Given ω ∈ C, |ω| = 1, the derivative in the direction ω of the
mapping f at the point z is

∂ω f (z) = lim
t→+0

f (z+ t ·ω)− f (z)
t

= f ′(z) ω. (11.30)

The radial direction at a point z ∈ D with respect to the center z0 ∈ C, z0 �= z, is

ω0 = ω0(z,z0) =
z− z0

|z− z0|
. (11.31)

The radial dilatation of f at z with respect to z0 is defined by

Kr(z,z0, f ) =
|Jf (z)|

|∂ z0
r f (z)|2 (11.32)

and the tangential dilatation by
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KT (z,z0, f ) =
|∂ z0

T f (z)|2
|Jf (z)|

, (11.33)

where ∂ z0
r f (z) is the derivative of f at z in direction ω0 and ∂ z0

T f (z) in τ = iω0, that
is,

∂ z0
r f (z) = f ′(z) ω0 , ∂ z0

T f (z) = f ′(z) iω0 ,

respectively.

Note that if z is a regular point of f and |μ(z)| < 1, μ(z) = fz/ fz, then

Kr(z,z0, f ) = Kr
μ(z,z0) (11.34)

and
KT (z,z0, f ) = KT

μ (z,z0), (11.35)

where Kr
μ(z,z0) and KT

μ (z,z0) are defined by (11.4) and (11.3), respectively. Indeed,
equalities (11.34) and (11.35) follow directly from the computations

∂r f =
∂ f
∂ z

· ∂ z
∂ r

+
∂ f
∂ z

· ∂ z
∂ r

(11.36)

=
z− z0

|z− z0|
· fz +

z− z0

|z− z0|
· fz ,

where r = |z− z0|, and

∂T f =
1
r

(
∂ f
∂ z

· ∂ z
∂ϑ

+
∂ f
∂ z

· ∂ z
∂ϑ

)
(11.37)

= i ·
(

z− z0

|z− z0|
· fz −

z− z0

|z− z0|
· fz

)
,

where ϑ = arg(z− z0) because Jf (z) = | fz|2 −| fz|2.

The big radial dilatation of f at z with respect to z0 is defined by

KR(z,z0, f ) =
|Jf (z)|

|∂ z0
R f (z)|2 , (11.38)

where

|∂ z0
R f (z)| = min

ω∈C,|ω|=1

|∂ω f (z)|
|Reωω0|

. (11.39)

Here Reωω0 is the scalar product of vectors ω and ω0. In other words, Reωω0 is
the projection of the vector ω onto the radial direction ω0. Obviously, there is a unit
vector ω∗ such that

|∂ z0
R f (z)| =

|∂ω∗ f (z)|
|Reω∗ω0|

. (11.40)

Clearly
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|∂ z0
r f (z)| ≥ |∂ z0

R f (z)| ≥ min
ω∈C,|ω|=1

|∂ω f (z)| (11.41)

and, hence,
Kr(z,z0, f ) ≤ KR(z,z0, f ) ≤ Kμ(z); (11.42)

the equalities hold in (11.42) if and only if the minimum in the right-hand side of
(11.41) is realized at the radial direction ω = ω0.

Note that ∂ z0
r f (z) �= 0, |∂ z0

R f (z)| �= 0, and ∂ z0
T f (z) �= 0 at every regular point z �= z0

of f ; see, e.g., Section 1.2.1 in [256]. In view of (11.33), (11.35), and (11.3), the
following lemma shows that the big radial dilatation coincides with the tangential
dilatation at every regular point.

Lemma 11.2. Let z∈D be a regular point of a mapping f : D→C with the complex
dilatation μ(z) = fz/ fz such that |μ(z)| < 1. Then

KR(z,z0, f ) =

∣∣∣1− z−z0
z−z0

μ(z)
∣∣∣2

1−|μ(z)|2 . (11.43)

Proof. The derivative of f at the regular point z in a direction ω = eiα is ∂ω f (z) =
fz + fz · e−2iα , in complex notation; see, e.g., [190], pp. 17 and 182. Consequently,

X : =
|∂ z0

R f (z)|2
| fz|2

= min
α∈[0,2π]

|μ(z)+ e2iα |2
cos2(α−ϑ)

= min
β∈[0,2π]

|ν− e2iβ |2
sin2β

= min
β∈[0,2π]

1+ |ν |2 −2|ν |cos(κ−2β )
sin2β

= min
t∈[−1,1]

1+ |ν |2 −2|ν | · [(1−2t2)cos κ±2t(1− t2)1/2 sin κ]
t2 ,

where t = sin β , β =α+ π
2 −ϑ , ν = μ(z)e−2iϑ , and κ = argν = argμ−2ϑ . Hence,

X = minτ∈[1,∞] ϕ±(τ), where

ϕ±(τ) = b + a τ ± c (τ−1)1/2 , τ =
1

sin2β
,

a = 1 + |ν |2 −2|ν | cosκ , b = 4 |ν |cosκ , c = 4 |ν |sinκ .

Since ϕ ′
±(τ) = a± (τ − 1)−1/2c/2, the minimum is obtained for τ = 1 + c2/4a2.

Now (τ−1)1/2 = ∓c/2a, and thus,

X = b+
(

a+
1
4

c2

a

)
− 1

2
c2

a
=

(1−|ν |2)2

1+ |ν |2 −2|ν |cosκ
.

This yields (11.43), as required. 
�
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Prototypes of the following theorem can be found in [253], [189], and [98]. These
results use |μ | and arg μ in modulus estimates.

Theorem 11.1. Let f : D → C be a sense-preserving homeomorphism of class W 1,2
loc

such that f−1 ∈ W 1,2
loc . Then, at every point z0 ∈ D, the mapping f is a ring Q-

homeomorphism with Q(z) = KT
μ (z,z0), where μ(z) = μ f (z).

Proof. Fix z0 ∈ D, let r1 and r2 be such that 0 < r1 < r2 < r0 ≤ dist(z0,∂D), and let
C1 = {z∈C : |z−z0|= r1} and C2 = {z∈C : |z−z0|= r2}. SetΓ =Δ(C1,C2,D) and
denote by Γ∗ the family of all rectifiable paths γ∗ ∈ fΓ such that f−1 is absolutely
continuous on every closed subpath of γ∗. Then M( fΓ ) = M(Γ∗) by the Fuglede
theorem (see [64] and [316]), because f−1 ∈ ACL2; see, e.g., [215], p. 8.

Fix γ∗ ∈Γ∗. Set γ = f−1◦γ∗ and denote by s and s∗ the natural (length) parameters
of γ and γ∗, respectively. Note that the correspondence s∗(s) between the natural
parameters of γ∗ and γ is a strictly monotone function and we may assume that s∗(s)
is increasing. For γ∗ ∈ Γ∗, the inverse function s(s∗) has the (N)-property and s∗(s)
is differentiable a.e. as a monotone function. Thus, ds∗/ds �= 0 a.e. on γ by [244].
Let s be such that z = γ(s) is a regular point for f and suppose that γ is differentiable
at s with ds∗/ds �= 0. Set r = |z− z0| and let ω be a unit tangential vector to the path
γ at the point z = γ(s). Then

∣∣∣∣ dr
ds∗

∣∣∣∣ =
dr
ds
ds∗
ds

=
|Reωω0|
|∂ω f (z)| ≤

1
|∂ z0

R f (z)| , (11.44)

where |∂ z0
R f (z)| is defined by (11.39).

Now, let η : (r1,r2) → [0,∞] be a measurable function such that

r2∫

r1

η(r) dr = 1. (11.45)

By the Lusin theorem, there is a Borel function η∗ : (r1,r2) → [0,∞] such that
η∗(r) = η(r) a.e.; see, e.g., Section 2.3.5 in [55] and [281], p. 69. Set

ρ(z) = η∗(|z− z0|)

in the annulus A = {z ∈ C : r1 < |z− z0| < r2} and ρ(z) = 0 outside A. Also set

ρ∗(w) = {ρ/|∂ z0
R f |} ◦ f−1(w)

if z = f−1(w) is a regular point of f , ρ∗(w) = ∞ at the rest points of f (D), and
ρ∗(w) = 0 outside f (D). Then, by (11.44) and (11.45), for γ∗ ∈ Γ∗,

∫

γ∗

ρ∗ds∗ ≥
∫

γ∗

η(r)
∣∣∣∣ dr
ds∗

∣∣∣∣ ds∗ ≥
∫

γ∗

η(r)
dr
ds∗

ds∗ =
r2∫

r1

η(r) dr = 1
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because the function z = γ(s(s∗)) is absolutely continuous and hence so is r = |z−z0|
as a function of the parameter s∗. Consequently, ρ∗ is admissible for all γ∗ ∈ Γ∗.

By Proposition 4.1, f and f−1 are regular a.e. and have the (N)-property . Thus,
by a change of variables (see, e.g., Theorem 8.1 and Proposition 8.3), we have in
view of Lemma 11.2 that

M( fΓ ) ≤
∫

f (A)

ρ∗(w)2dudv =
∫

A

ρ(z)2 KT
μ (z,z0)dxdy

=
∫

A

KT
μ (z,z0) ·η2(|z− z0|) dxdy,

i.e., f is a ring Q-homeomorphism with Q(z) = KT
μ (z,z0). 
�

If f is a plane W 1,2
loc homeomorphism with a locally integrable Kf (z), then f−1 ∈

W 1,2
loc ; see, e.g., [111]. Hence, we obtain the following consequences of Theorem

11.1.

Corollary 11.3. Let f : D →C be a sense-preserving homeomorphism of class W 1,2
loc

and suppose that Kf (z) is integrable in a disk D(z0,r0)⊂D for some z0 ∈D and r0 >
0. Then f is a ring Q-homeomorphism at the point z0 ∈ D with Q(z) = KT

μ (z,z0),
where μ(z) = μ f (z).

Corollary 11.4. Let f : D →C be a sense-preserving homeomorphism of class W 1,2
loc

with Kμ ∈ L1
loc. Then f is a ring Q-homeomorphism at every point z0 ∈ D with

Q(z) = Kμ(z), where μ(z) = μ f (z).

We close this section with a convergence theorem that plays an important role in
our scheme for deriving the existence theorems of the Beltrami equation.

Theorem 11.2. Let fn : D → C, n = 1,2, . . . be a sequence of ring Q-homeomor-
phisms at a point z0 ∈ D. If the fn converge locally uniformly to a homeomorphism
f : D → C, then f is also a ring Q-homeomorphism at the point z0.

Indeed, the proof follows by Theorem A.12 from the uniform convergence of the
corresponding rings.

11.4 Distortion Estimates

In this section we use again, cf. Section 7.3, the standard conventions a/∞ = 0 for
a �= ∞ and a/0 = ∞ if a > 0 and 0 ·∞ = 0; see, e.g., [280], p. 6.

For points z,ζ ∈ C, the spherical (chordal) distance s(z,ζ ) between z and ζ is
given by
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s(z,ζ ) =
|z−ζ |

(1+ |z|2) 1
2 (1+ |ζ |2) 1

2

if z �= ∞ �= ζ , (11.46)

s(z,∞) =
1

(1+ |z|2) 1
2

if z �= ∞.

Given a set E ⊂ C, δ (E) denotes the spherical diameter of E, i.e.,

δ (E) = sup
z1,z2∈E

s(z1,z2). (11.47)

Lemma 11.3. Let f : D → C be a homeomorphism with δ (C\ f (D)) ≥ Δ > 0 and
let z0 be a point in D, ζ ∈ D(z0,r0), r0 < dist(z0,∂D), C0 = {z ∈ C : |z− z0| = r0},
and C = {z ∈ C : |z− z0| = |ζ − z0|}. Then

s( f (ζ ), f (z0)) ≤ 32
Δ

· exp

(
− 2π

M(Δ( fC, fC0, f D))

)
. (11.48)

Proof. Let E denote the component of C\ f A containing f (z0) and F the component
containing ∞, where A = {z ∈ C : |ζ − z0| < |z− z0| < r0}. By the known Gehring
lemma,

cap R(E,F) ≥ cap RT

(
1

δ (E)δ (F)

)
, (11.49)

where δ (E) and δ (F) denote the spherical diameters of the continua E and F, re-
spectively, and RT (t) is the Teichmüller ring

RT (t) = C\ ([−1,0]∪ [t,∞]), t > 1; (11.50)

see, e.g., Corollary 7.37 in [328] or [71]. We also know, that

cap RT (t) =
2π

logΦ(t)
, (11.51)

where the function Φ admits the good estimates

t +1 ≤Φ(t) ≤ 16 · (t +1) < 32 · t, t > 1, (11.52)

see, e.g., either (7.19) and Lemma 7.22 in [328] or [71], pp. 225–226, Section A.1.
Hence, inequality (11.49) implies that

cap R(E,F) ≥ 2π
log 32

δ (E)δ (F)

. (11.53)

Thus,

δ (E) ≤ 32
δ (F)

exp

(
− 2π

cap R(E,F)

)
, (11.54)

which implies the desired statement. 
�
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Lemma 11.4. Let f : D → C be a ring Q-homeomorphism at a point z0 ∈ D with
Q : D(z0,r0) → [0,∞], r0 ≤ dist(z0,∂D). Suppose that ψε : [0,∞] → [0,∞], 0 < ε <
ε0 < r0, is a one-parameter family of measurable functions such that

0 < I(ε) =
ε0∫

ε

ψε(t) dt < ∞, ε ∈ (0,ε0). (11.55)

Set C = {z ∈ C : |z− z0| = ε}, C0 = {z ∈ C : |z− z0| = ε0}, and

A(ε) = A(ε,ε0,z0) = {z ∈ C : ε < |z− z0| < ε0}. (11.56)

Then
M(Δ( fC, fC0, f D)) ≤ ω(ε), (11.57)

where

ω(ε) =
1

I2(ε)

∫

A(ε)

Q(z) ·ψ2
ε (|z− z0|) dxdy. (11.58)

Proof. Formula (11.57) follows from the definition (11.28) of a ring homeomor-
phism if we set η(r) = ψε(r)/I(ε), r ∈ (ε,ε0). 
�

Using Lemma 11.4, we now desire a sharp capacity estimate for ring Q-homeo-
morphisms f : D→C at a point z0 ∈D. This estimate depends only on Q and implies
as a special case an inequality of Reich and Walczak in [253], which several authors
have applied.

Lemma 11.5. Let D be a domain in C, z0 a point in D, r0 ≤ dist(z0,∂D), Q :
D(z0,r0) → [0,∞] a measurable function, and q(r) the mean of Q(z) over the circle
|z− z0| = r, r,r0. For 0 < r1 < r2 < r0, set

I = I(r1,r2) =
r2∫

r1

dr
rq(r)

(11.59)

and Cj = {z ∈ C : |z− z0| = r j}, j = 1,2. Then

M(Δ( fC1, fC2, f D)) ≤ 2π
I

(11.60)

whenever f : D → C is a ring Q-homeomorphism at z0.

Proof. With no loss of generality, we may assume that I �= 0 because otherwise
(11.60) is trivial and that I �= ∞ because otherwise we can replace Q(z) by Q(z)+δ
with arbitrarily small δ > 0 and then pass to the limit as δ → 0 in (11.60). The
condition I �= ∞ implies, in particular, that q(r) �= 0 a.e. in (r1,r2).

If I �= 0 or ∞, we can choose in Lemma 11.4



11.4 Distortion Estimates 219

ψε(t) ≡ ψ(t) :=
{

1/[tq(t)] , t ∈ (0,ε0),
0 , otherwise,

(11.61)

with ε = r1 and ε0 = r2, and since
∫

A

Q(z) ·ψ2(|z− z0|) dxdy = 2πI, (11.62)

where
A = A(r1,r2,z0) = {z ∈ C : r1 < |z− z0| < r2}, (11.63)

we obtain (11.60). 
�

Corollary 11.5. For every ring Q-homeomorphism f : D → C at z0 ∈ D and 0 <
r1 < r2 < r0,

r2∫

r1

dr
rq(r)

< ∞, (11.64)

where q(r) is the mean of Q(z) over the circle |z− z0| = r.

Indeed, by (11.53) with E = fC1, F = fC2, C1 = {z ∈ C : |z− z0| = r1}, and
C2 = {z ∈ C : |z− z0| = r2}

M(Δ( fC1, fC2, f D)) ≥ 2π
log 32

δ ( fC1)δ ( fC2)

. (11.65)

The right-hand side in (11.65) should be positive because f is injective. Thus, Corol-
lary 11.5 follows from (11.60) in Lemma 11.5.

Corollary 11.6. Let f : D → C be a W 1,2
loc homeomorphism in a domain D ⊂ C such

that

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| ∈ L1

loc(D), (11.66)

where μ(z) = μ f (z). Set

qT
z0

(r) =
1

2π

2π∫

0

|1− e−2iϑ μ(z0 + reiϑ )|2
1−|μ(z0 + reiϑ )|2 dϑ . (11.67)

Then
r2∫

r1

dr
rqT

z0
(r)

< ∞ (11.68)

for every z0 ∈ D and 0 < r1 < r2 < d0, where d0 = dist(z0,∂D).

Corollary 11.6 follows from Corollaries 11.5 and 11.3 and from the definition of
the tangential dilatation KT

μ (z,z0); see (11.3).
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Corollary 11.7. Let f : D → C be a W 1,2
loc homeomorphism with Kμ(z) ∈ L1

loc, where
μ(z) = μ f (z). Then

M(Δ( fC1, fC2, f D)) ≤

⎡
⎢⎢⎢⎣

r2∫

r1

dr

r
2π∫
0

|1−e−2iϑ μ(z0+reiϑ )|2
1−|μ(z0+reiϑ )|2 dϑ

⎤
⎥⎥⎥⎦

−1

. (11.69)

Indeed, by Corollary 11.3, f is a ring Q-homeomorphism at z0 with Q(z) =
KT
μ (z,z0). The tangential dilatation KT

μ (z,z0) is given by (11.3), and (11.69) thus
follows from Lemma 11.5.

Remark 11.3. The inequality (11.69) was first derived by Reich and Walczak [253]
for quasiconformal mappings and then by Lehto [189] for certain μ-homeomor-
phisms. Later it was applied by Brakalova and Jenkins [31] and Gutlyanskiĭ, Martio,
Sugawa, and Vuorinen [98] to the study of degenerate Beltrami equations.

The following lemma shows that the estimate (11.60), which implies (11.69),
cannot be improved in the class of all ring Q-homeomorphisms. Note that the addi-
tional condition (11.70), which appears in the following lemma, holds automatically
for every ring Q-homeomorphism by Corollary 11.5.

Lemma 11.6. Fix 0 < r1 < r2 < r0, let A = {z ∈C : r1 < |z−z0|< r2}, and suppose
that Q : D(z0,r0) → [0,∞] is a measurable function such that

c0 =
r2∫

r1

dr
rq(r)

< ∞, (11.70)

where q(r) is the mean of Q(z) over the circle |z− z0| = r, and set

η0(r) =
1

c0rq(r)
. (11.71)

Then

2π
c0

=
∫

A

Q(z) ·η2
0 (|z− z0|) dxdy (11.72)

≤
∫

A

Q(z) ·η2(|z− z0|) dxdy

for every function η : (r1,r2) → [0,∞] such that

r2∫

r1

η(r) dr = 1. (11.73)
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Proof. If c0 = 0, then q(r) = ∞ for a.e. r ∈ (r1,r2) and both sides in (11.72) are
equal to ∞. Hence, we may assume below that 0 < c0 < ∞.

Now, by (11.70) and (11.73), q(r) �= 0 and η(r) �= ∞ a.e. in (r1,r2). Set α(r) =
rq(r)η(r) and w(r) = 1/rq(r). Then, by the standard conventions, η(r) = α(r)w(r)
a.e. in (r1,r2) and

C :=
∫

A

Q(z) ·η2(|z− z0|) dxdy = 2π
r2∫

r1

α2(r) ·w(r) dr. (11.74)

By Jensen’s inequality with weights (see, e.g., Theorem 2.6.2 in [252]) applied
to the convex function ϕ(t) = t2 in the interval Ω = (r1,r2) with the probability
measure

ν(E) =
1
c0

∫

E

w(r) dr, (11.75)

we obtain (
−
∫
α2(r)w(r) dr

)1/2

≥ −
∫
α(r)w(r) dr =

1
c0

, (11.76)

where we also used the fact that η(r) = α(r)w(r) satisfies (11.73). Thus,

C ≥ 2π
c0

, (11.77)

and the proof is complete. 
�

Given a number Δ ∈ (0,1), a domain D ⊂ C, a point z0 ∈ D, a number r0 ≤
dist(z0,∂D), and a measurable function Q : D(z0,r0) → [0,∞], let R�

Q
denote the

class of all ring Q-homeomorphisms f : D → C at z0 such that

δ (C\ f (D)) ≥ Δ . (11.78)

Next, we introduce the classes B�
Q

and F�
Q

of qc mappings. Let B�
Q

denote the
class of all quasiconformal mappings f : D → C satisfying (11.78) such that

KT
μ (z,z0) =

∣∣∣1− z−z0
z−z0

μ(z)
∣∣∣2

1−|μ(z)|2 ≤ Q(z) a.e. in D(z0,r0), (11.79)

where μ = μ f . Similarly, let F�
Q

denote the class of all quasiconformal mappings
f : D → C satisfying (11.78) such that

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| ≤ Q(z) a.e. in D(z0,r0). (11.80)
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Remark 11.4. By Corollary 11.3, the relations (11.42) and (11.35) give the inclu-
sions

F�
Q ⊂ B�

Q ⊂ R�
Q . (11.81)

Combining Lemmas 11.4 and 11.3, we obtain the following distortion estimates
in the class R�

Q
.

Corollary 11.8. Let f ∈ R�
Q

, and let ω(ε) be as in Lemma 11.4. Then

s( f (ζ ), f (z0)) ≤ 32
Δ

· exp

(
− 2π
ω(|ζ − z0|)

)
(11.82)

for all ζ ∈ D(z0,ε0).

Theorem 11.3. Let f ∈ R�
Q

, and let ψ : [0,∞] → [0,∞] be a measurable function
such that

0 <

ε0∫

ε

ψ(t) dt < ∞ , ε ∈ (0,ε0). (11.83)

Suppose that

∫

ε<|z−z0|<ε0

Q(z) ·ψ2(|z− z0|) dxdy ≤ C ·
ε0∫

ε

ψ(t) dt (11.84)

for all ε ∈ (0,ε0). Then

s( f (ζ ), f (z0)) ≤ 32
Δ

· exp

⎛
⎜⎝−2π

C
·

ε0∫

|ζ−z0|

ψ(t) dt

⎞
⎟⎠ (11.85)

whenever ζ ∈ D(z0,ε0).

Choosing in Theorem 11.3 the function ψ(t) as in (11.61), we obtain the follow-
ing distortion theorem for ring Q-homeomorphisms.

Theorem 11.4. Let D be a domain in C, z0 a point in D, r0 ≤ dist(z0,∂D), Q :
D(z0,r0) → [0,∞] a measurable function, and f ∈ RΔ

Q. Then

s( f (ζ ), f (z0)) ≤ 32
Δ

· exp

⎛
⎜⎝−

r0∫

|ζ−z0|

dr
rq(r)

⎞
⎟⎠ (11.86)

for all ζ ∈ D(z0,r0), where q(r) is the mean of Q(z) over the circle |z− z0| = r.

In the following theorem the estimate of distortion is expressed in terms of max-
imal dispersion; see (11.10).
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Theorem 11.5. Let f ∈ RΔ
Q for Δ > 0 and Q with finite mean oscillation at z0 ∈ D.

If Q is integrable over a disk D(z0,ε0) ⊂ D, then

s( f (ζ ), f (z0)) ≤ 32
Δ

·
(

log
2ε0

|ζ − z0|

)−β0

(11.87)

for every point ζ ∈ D(z0,ε0/2), where

β0 =
1
2

[q0 +6d0]−1 , (11.88)

q0 is the mean, and d0 is the maximal dispersion of Q(z) in D(z0,ε0).

Proof. The mean and the dispersion of a function over disks are invariant under
linear transformations w = (z− z0)/2ε0. Hence, (11.87) follows by Theorem 11.3
and Lemma 11.1. 
�

Another consequence of Lemma 11.4 (see Corollary 11.8) can be formulated in
terms of the logarithmic mean of Q over an annulus A(ε) = A(ε,ε0,z0) = {z ∈ C :
ε < |z− z0| < ε0}, which is defined by

MQ
log(ε) = −

ε0∫

ε

q(t) d log t :=
1

logε0/ε

ε0∫

ε

q(t)
dt
t

, (11.89)

where q(t) denotes the mean value of Q over the circle |z− z0| = t. Choosing in
expression (11.58) ψε(t) = 1/t for 0 < ε < ε0, and setting ε = |ζ − z0|, we have the
following statement.

Corollary 11.9. Let Q : D(z0,r0)→ [0,∞], r0 ≤ dist(z0,∂D), be a measurable func-
tion, ε0 ∈ (0,r0), and Δ > 0. If f ∈ RΔ

Q, then

s( f (ζ ), f (z0)) ≤ 32
Δ

(
|ζ − z0|
ε0

)1/MQ
log(|ζ−z0|)

(11.90)

for all ζ ∈ D(z0,ε0).

Note that for Q ≡ K ∈ [1,∞), (11.90) reduces to the well-known distortion esti-
mate for qc mappings

s( f (ζ ), f (z0)) ≤ C ·
(
|ζ − z0|
ε0

)1/K

. (11.91)

The corollaries and theorems presented here show that Lemmas 11.3 and 11.4 are
useful tools in deriving various distortion estimates for ring Q-homeomorphisms.
These, in turn, are instrumental in the study of properties of ring Q-homeomor-
phisms and, in particular, of ring solutions of the Beltrami equation (11.1), where
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Q(z) can be either the maximal dilatation Kμ(z) or the tangential dilatation KT
μ (z,z0),

which are defined in (11.2) and (11.3), respectively.

11.5 General Existence Lemma and Its Corollaries

The following lemma and corollary serve as the main tool in obtaining many criteria
for the existence of ring solutions for the Beltrami equation. Theorem 11.6 estab-
lishes the existence of a ring solution when, at every point z0 ∈ D, the tangential
dilatation KT

μ (z,z0) is assumed to be dominated by a function of finite mean oscil-
lation at z0 in the variable z. Theorem 11.7 formulates the condition for existence
in terms of the mean of the tangential dilatation over infinitesimal disks. Since the
maximal dilatation dominates the tangential dilatation, these two results obviously
imply similar existence theorems in terms of conditions on the maximal dilatation,
Theorem 11.8, and Corollary 11.11. The criterion for the existence in Theorem 11.9
is formulated in terms of the logarithmic mean. The section is completed by a gen-
eralization of the Lehto theorem, Theorem 11.10, and its corollaries.

Lemma 11.7. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that for every z0 ∈ D, there exist ε0 ≤ dist(z0,∂D) and a family
of measurable functions ψz0,ε : (0,∞) → (0,∞), ε ∈ (0,ε0), such that

0 < Iz0(ε) :=
ε0∫

ε

ψz0,ε(t) dt < ∞, (11.92)

and ∫

ε<|z−z0|<ε0

KT
μ (z,z0) ·ψ2

z0,ε(|z− z0|) dxdy = o(I2
z0

(ε)) (11.93)

as ε → 0. Then the Beltrami equation (11.1) has a ring solution fμ .

Proof. Fix z1 and z2 in D. For n ∈ N, define μn : D → C as μn(z) = μ(z) if
|μ(z)| ≤ 1− 1/n and 0 otherwise. Let fn : D → C be a homeomorphic ACL so-
lution of (11.1), with μn instead of μ , that fixes z1 and z2. Such an fn exists by the
well-known existence theorem in the nondegenerate case (see, e.g., [1,26,190]). By
Theorem 11.1 and Corollary 11.8, in view of (11.93), the sequence fn is equicon-
tinuous. Hence, by the Arzela–Ascoli theorem (see, e.g., [50], p. 267, and [51], p.
382), it has a subsequence, denoted again by fn, that converges locally uniformly
to some nonconstant mapping f in D. Then, by Theorem 3.1 and Corollary 5.12 on
a converquece in [274], f is K(z)-qc with K(z) = Kμ(z) and f satisfies (11.1) a.e.
Thus, f is a homeomorphic ACL solution of (11.1). Moreover, by Theorems 11.1
and 11.2, f is a ring Q-homeomorphism [see (11.28)] with Q(z) = KT

μ (z,z0) at every
point z0 ∈ D.

Since the locally uniform convergence fn → f of the sequence fn is equivalent
to the continuous convergence, i.e., fn(zn) → f (z0) if zn → z0 (see [Du], p. 268)
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and since f is injective, it follows that gn = f−1
n → f−1 = g continuously and hence

locally uniformly. By a change of variables, which is permitted because fn and gn

are in W 1,2
loc , we obtain, that for large n,

∫

B

|∂gn|2dudv =
∫

gn(B)

dxdy
1−|μn(z)|2

≤
∫

B∗

Q(z)dxdy < ∞, (11.94)

where B∗ and B are relatively compact domains in D and in f (D), respectively, with
g(B̄) ⊂ B∗. Now (11.94) implies that the sequence gn is bounded in W1,2(B), and
hence f−1 ∈ W1,2

loc( f (D)); see, e.g., [256], p. 319. 
�

Remark 11.5. If fμ is as in Lemma 11.7, then f−1
μ is locally absolutely continuous

and preserves nulls sets, and fμ is regular a.e., i.e., differentiable with Jfμ (z) > 0 a.e.

Indeed, the assertion about f−1
μ follows from the fact that f−1

μ ∈ W1,2
loc; see [190], pp.

131 and 150. An ACL mapping fμ has a.e. partial derivatives and hence by [80] has
a total differential a.e. Let E denote the set of points of D where fμ is differentiable
and Jfμ (z) = 0, and suppose that |E| > 0. Then | fμ(E)| > 0, since E = f−1

μ ( fμ(E))
and f−1

μ preserves null sets. Clearly, f−1
μ is not differentiable at any point of fμ(E),

contradicting the fact that f−1
μ is differentiable a.e.

Corollary 11.10. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e.,
Kμ ∈ L1

loc, and let ψ : (0,∞) → (0,∞) be a measurable function such that for all
0 < t1 < t2 < ∞,

0 <

t2∫

t1

ψ(t) dt < ∞,

t2∫

0

ψ(t) dt = ∞. (11.95)

Suppose that for every z0 ∈ D, there is ε0 < dist(z0,∂D) such that

∫

ε<|z−z0|<ε0

Kμ(z) ·ψ2(|z− z0|) dxdy ≤ O

⎛
⎝

ε0∫

ε

ψ(t) dt

⎞
⎠ (11.96)

as ε → 0. Then (11.1) has a ring solution.

If we choose

ψz0,ε(t) =
1

t log 1
t

, (11.97)

then Lemma 11.7 yields the following theorem; see also Lemma 11.1.

Theorem 11.6. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0 such that

KT
μ (z,z0) ≤ Qz0(z) a.e. (11.98)
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for some function Qz0(z) of finite mean oscillation at the point z0 in the variable z.
Then the Beltrami equation (11.1) has a ring solution.

The following theorem is a consequence of Theorem 11.6 and Corollary 11.1.

Theorem 11.7. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that at every z0 ∈ D,

lim
ε→0

−
∫

D(z0,ε)

∣∣∣1− z−z0
z−z0

μ(z)
∣∣∣2

1−|μ(z)|2 dxdy < ∞ . (11.99)

Then the Beltrami equation (11.1) has a ring solution fμ .

The following theorem is an important particular case of Theorem 11.6.

Theorem 11.8. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. such
that

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| ≤ Q(z) ∈ FMO. (11.100)

Then the Beltrami equation (11.1) has a ring solution.

Since every ring solution is an ACL homeomorphic solution and every BMO
function is in FMO, the theorem generalizes and strengthens earlier results in [271,
274] about the existence of ACL homeomorphic solutions of the Beltrami equation
when the conditions involve majorants of bounded mean oscillation.

Corollary 11.11. If

lim
ε→0

−
∫

D(z0,ε)

1+ |μ(z)|
1−|μ(z)| dxdy < ∞ (11.101)

at every z0 ∈ D, then (11.1) has a ring solution.

Applying Lemma 11.7 with ψ(t) = 1/t, we also have the following statement,
which is formulated in terms of the logarithmic mean [see (11.89)] of KT

μ (z,z0) over
the annuli A(ε) = {z ∈ C : ε < |z− z0| < ε0} for a fixed ε0 = δ (z0) ≤ dist(z0,∂D).

Theorem 11.9. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. If at every point z0 ∈ D, the logarithmic mean of KT
μ over A(ε) does not

converge to ∞ as ε → 0, i.e.,

liminf
ε→0

M
KT
μ

log (ε) < ∞, (11.102)

then the Beltrami equation (11.1) has a ring solution.

Corollary 11.12. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Denote by qT
z0

(t) the mean of KT
μ (z,z0) over the circle C = {z ∈ C :

|z− z0| = t}. If
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δ (z0)∫

0

qT
z0

(t)
dt
t

< ∞ (11.103)

at every point z0 ∈ D for some δ (z0) > 0, then (11.1) has a ring solution.

Lehto considers in [189] degenerate Beltrami equations in the special case where
the singular set Sμ

Sμ = {z ∈ C : lim
ε→0

‖Kμ‖L∞(D(z,ε)) = ∞} (11.104)

of the complex coefficient μ in (11.1) is of measure zero, and he shows that if, for
every z0 ∈ C and every r1 and r2 ∈ (0,∞), the integral

r2∫

r1

dr
r(1+qT

z0
(r))

, r2 > r1, (11.105)

is positive and tends to ∞ as either r1 → 0 or r2 → ∞, where

qT
z0

(r) =
1

2π

2π∫

0

|1− e−2iϑ μ(z0 + reiϑ )|2
1−|μ(z0 + reiϑ )|2 dϑ , (11.106)

then there exists a homeomorphism f : C → C that is ACL in C \ Sμ and satisfies
(11.1) a.e. Note that the integrand in (11.67) is the tangential dilatation KT

μ (z,z0);
see (11.3).

We now present an extension of Lehto’s existence theorem that enables us to
derive many other existence theorems, as shown in [277]. In this extension we prove
the existence of a ring solution in a domain D ⊂ C, which, by definition, is ACL in
D and not only in D\Sμ . Note that, in the following theorem, the situation Sμ = D
is possible. Note also that condition (11.48) in the following theorem is weaker than
the condition in Lehto’s existence theorem.

Theorem 11.10. Let D be a domain in C and let μ : D→C be a measurable function
with |μ(z)| < 1 a.e. and Kμ ∈ L1

loc. Suppose that at every point z0 ∈ D

δ (z0)∫

0

dr
rqT

z0
(r)

= ∞, (11.107)

where δ (z0) < dist(z0,∂D) and qT
z0

(r) is the mean of KT
μ (z,z0) over |z− z0| = r.

Then the Beltrami equation (11.1) has a ring solution.

Proof. Theorem 11.10 follows from Lemma 11.7 by specially choosing the func-
tional parameter
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ψz0,ε(t) ≡ ψz0(t) :=
{

1/[tqT
z0

(t)], t ∈ (0,ε0),
0 , otherwise,

(11.108)

where ε0 = δ (z0). 
�

Corollary 11.13. If Kμ ∈ L1
loc and at every point z0 ∈ D

qT
z0

(r) = O

(
log

1
r

)
as r → 0, (11.109)

then (11.1) has a ring solution.

Since KT
μ (z,z0) ≤ Kμ(z), we obtain as a consequence of Theorem 11.10 the fol-

lowing result which is due to Miklyukov and Suvorov [220] for the case Kμ ∈ Lp
loc,

p > 1.

Corollary 11.14. If Kμ ∈ Lp
loc for p ≥ 1 and (11.107) holds for Kμ(z) instead of

KT
μ (z,z0) for every point z0 ∈ D, then (11.1) has a W 1,s

loc homeomorphic solution
with s = 2p/(p+1).

11.6 Representation, Factorization and Uniqueness Theorems

In Section 11.5 we established a series of theorems on the existence of ring solu-
tions fμ for the Beltrami equation (11.1) for a variety of different conditions on the
complex coefficient μ . We now show that, in each of these cases, fμ generates all

W 1,2
loc solutions by composition with analytic functions.

Lemma 11.8. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that for every z0 ∈ D there exist ε0 = δ (z0) ≤ dist(z0,∂D) and
a family of measurable functions ψz0,ε : (0,∞) → (0,∞), ε ∈ (0,ε0), such that

0 < Iz0(ε) :=
ε0∫

ε

ψz0,ε(t) dt < ∞ , ε ∈ (0,ε0), (11.110)

and ∫

ε<|z−z0|<ε0

KT
μ (z,z0) ·ψ2

z0,ε(|z− z0|) dxdy = o(I2
z0

(ε)) (11.111)

as ε → 0 and let fμ be a ring solution of (11.1). Then every W1,2
loc solution g of (11.1)

has the representation
g = h◦ fμ (11.112)

for some holomorphic function h in fμ(D).
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Proof. Let ϕ = f−1
μ and h = g◦ϕ . Since g ∈ W1,2

loc and ϕ ∈ W1,2
loc it follows that h ∈

W1,1
loc( f (D)); see, e.g., [190], p. 151. Thus, by Weyl’s lemma; see, e.g., [1], p. 33,

it suffices to show that ∂h = 0 a.e. in fμ(D). Let E denote the set of points z in D
where either fμ or g does not satisfy (11.1) or Jfμ = 0. A direct computation (cf. [1],

p. 9) shows that ∂h = 0 in fμ(D)\ fμ(E). Moreover, ϕ ∈ W1,2
loc admits the change of

variables (see, e.g., [190], pp. 121, 128-130 and 150)

∫

fμ (E)

∫
|∂ϕ|2 dudv =

∫

fμ (E)

∫
Jϕ(w)

dudv
1−|μ(ϕ(w))|2 =

∫

E

∫
dxdy

1−|μ(z)|2 = 0,

which implies that |∂ϕ| = 0 a.e. on fμ(E), and since a.e. |∂ϕ| ≤ |∂ϕ| and

∂h = ∂ϕ ·∂g◦ϕ +∂ϕ ·∂g◦ϕ,

it follows that |∂h| = 0 a.e. on fμ(E), and thus ∂h = 0 a.e. in fμ(D). Consequently,
h is holomorphic in fμ(D) and (11.112) holds. 
�

Iwaniec and Sverak [137] showed that if Kμ ∈ L1
loc, then every W1,2

loc solution
g of (11.1) has the representation g = h ◦ f for some holomorphic function h and
some homeomorphism f . The conditions in Lemma 11.8 are more restrictive, but
the representation (11.112) is more specific and the proof is simpler.

Remark 11.6. Since all theorems on the existence of a ring solution fμ in Section
11.5 are based on Lemma 11.7, where the conditions are as in Lemma 11.8, every
W1,2

loc solution g of the Beltrami equation (11.1) in each of these theorems has the
representation (11.112).

It is not clear, even if μ satisfies the conditions of Lemma 11.8, whether an ACL
homeomorphic solution of (11.1) is unique up to a composition with a conformal
mapping, namely whether, for any two ACL homeomorphic solutions f1 and f2 of
(11.1), f2 ◦ f−1

1 is conformal. By (11.112) in Lemma 11.8, the answer is affirmative
if f1 and f2 are in W 1,2

loc and μ is as in Lemma 11.8; see Corollary 11.15. Another type
of condition for the uniqueness of a homeomorphic ACL solution can be obtained
by imposing some conditions on the ”size” of the singular set of μ . This will be
done in Lemma 11.9 and Theorem 11.11.

Corollary 11.15. Suppose that μ satisfies the conditions of one of the existence the-
orems in Section 11.5. If f1 and f2 are homeomorphic W 1,2

loc solutions of (11.1), then
f2 ◦ f−1

1 is conformal.

Iwaniec and Martin have constructed ACL solutions for the Beltrami equation
that are not in W1,2

loc and not open and discrete and, thus, are not generated by a home-
omorphic solution in the sense of (11.112); see, e.g., [134]. However, for discrete
open solutions, it is easy to obtain the following proposition by Stoilow’s theorem.
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Proposition 11.2. Let μ : D →C be a measurable function with |μ(z)|< 1 a.e. such
that

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| ∈ L1

loc . (11.113)

Then every (continuous) discrete and open ACL solution g of the Beltrami equation
(11.1) has the representation g = h ◦ f , where f is a homeomorphic W 1,1

loc solution
of (11.1) and h is a holomorphic function in f (D).

Remark 11.7. As a consequence of the proposition, we obtain that if Kμ ∈ L1
loc, then

the Beltrami equation (11.1) either has a homeomorphic W 1,1
loc solution or has no

continuous, discrete, and open ACL solution. Note that for every p∈ [1,∞), there are
examples of measurable functions μ : C → C such that |μ(z)| < 1 a.e. and Kμ(z) ∈
Lp

loc and for which the Beltrami equation (11.1) has no homeomorphic ACL solution;
see, e.g., Proposition 6.3 in [274].

Let (X ,d) be a metric space and let H = {hx(r)}x∈X be a family of functions
hx : (0,ρx) → (0,∞), ρx > 0, such that hx(r) → 0 as r → 0. Let

LρH(X) = inf Σ hxk(rk), (11.114)

where the infimum is taken over all finite collections of xk ∈ X and rk ∈ (0,ρ) such
that the balls

B(xk,rk) = {x ∈ X : d(x,xk) < rk} (11.115)

cover X . The limit
LH(X) := lim

ρ→0
LρH(X) (11.116)

exists. We call LH(X) the H-length of X . In the particular case where hx(r) = r for
all x ∈ X and r > 0, the H-length is the usual (Hausdorff) length of X .

Obviously, singular set Sμ of μ is closed relative to the domain D.

Lemma 11.9. Let μ be as in Lemma 11.8 and let fμ be a ring solution of (11.1).
Suppose that the singular set Sμ is of H-length zero for H = {hz0(r)}z0∈Sμ with

hz0(r) = exp

(
− 2π
ωz0(r)

)
, z0 ∈ Sμ , r ∈ (0,δ (z0)), (11.117)

and

ωz0(ε) =
1

I2
z0

(ε)

∫

A(ε)

KT
μ (z,z0) ·ψ2

z0,ε(|z− z0|) dxdy. (11.118)

Then every homeomorphic ACL solution f of (11.1) has the representation f =
h◦ fμ for some conformal mapping h in fμ(D).

Proof. If LH(Sμ) = 0, then S′μ = fμ(Sμ) is of length zero by Lemma 11.4. Conse-
quently, S′μ does not locally disconnect f (D) (see, e.g., [317]) and hence G = D\Sμ
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is a domain. The homeomorphisms f and fμ are locally quasiconformal in the do-
main G and hence h = f ◦ f−1

μ is conformal in the domain fμ(D) \ S′μ . Since S′μ is
of length zero, it is removable for h, i.e., h can be extended to a conformal mapping
in fμ(D) by the Painleve theorem; see, e.g., [24]. 
�

Theorem 11.11. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0 and a measur-
able function Qz0(z) : Uz0 → [0,∞] such that

KT
μ (z,z0) ≤ Qz0(z) a.e. in Uz0 (11.119)

and that, for some δ (z0) > 0,

δ (z0)∫

0

dt
tqz0(t)

= ∞, (11.120)

where qz0(t) is the mean of Qz0(z) over the circle |z− z0| = t. Let fμ be a ring
solution of (11.1).

If the singular set Sμ has H-length zero for H = {hz0(r)}z0∈Sμ , where

hz0(r) = exp

⎛
⎝−

δ (z0)∫

r

dt
tqz0(t)

⎞
⎠ , z0 ∈ Sμ , r ∈ (0,δ (z0)), (11.121)

then every homeomorphic ACL solution f of (11.1) has the representation f = h◦ fμ
for some conformal mapping h in fμ(D).

Proof. Theorem 11.11 follows from Lemma 11.9 with

ψz0,ε(t) ≡ ψz0(t) :=
{

1/[tqz0(t)] , t ∈ (0,ε0) ,
0 , otherwise,

(11.122)

where ε0 = δ (z0) because

∫

ε<|z−z0|<ε0

Q(z) ·ψ2
z0

(|z− z0|) dxdy = 2π
ε0∫

ε

ψz0(t) dt. (11.123)


�

Corollary 11.16. Let μ : D → C be a measurable function with |μ(z)| < 1 a.e. and
Kμ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood Uz0 , where (11.119)
holds with a function Qz0(z) of finite mean oscillation at z0 in the variable z. Suppose
also that the singular set of Sμ is of H-length zero for H = {hz0(r)}z0∈Sμ ,

hz0(r) =
(

log
δ (z0)

r

)−β (z0)

, z0 ∈ Sμ , r ∈ (0,δ (z0)), (11.124)
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where δ (z0) < dist (z0,∂D), and 2β (z0) = (q(z0) + 6d(z0))−1, q(z0) is the mean
value of Qz0(z) over D(z0,δ (z0)/2), and d(z0) is the maximal dispersion of Qz0(z)
in D(z0,δ (z0)/2). Let fμ be a ring solution of (11.1).

Then every homeomorphic ACL solution f of (11.1) has the representation f =
h◦ fμ for some conformal mapping h in fμ(D).

Corollary 11.16 follows immediately from Lemmas 11.9 and 11.1.

Remark 11.8. In view of Remark 11.1, if the condition

Q∗(z0) := lim
ε→0

−
∫

D(z0,ε)
Qz0(z) dxdy < ∞ (11.125)

holds for all z0 ∈D, then one may take β (z) = γ/Q∗(z) in (11.124) for any γ < 1/26.

Lemma 11.9 makes it possible to formulate the corresponding uniqueness theo-
rem in the spirit of Theorem 11.11 for every existence theorem in Section 11.5.

11.7 Examples

By (11.42), we have
Kr(z,z0, f ) ≤ KR(z,z0, f ). (11.126)

By (11.34) and (11.35) we have

Kr
μ(z,z0) ≤ KT

μ (z,z0). (11.127)

One may ask whether KR(z,z0, f ) in Theorem 11.1 can be replaced by Kr(z,z0, f )
and whether KT

μ (z,z0) can be replaced by Kr
μ(z,z0) in the criteria for the existence

problems for the Beltrami equation (11.1).

Every qc mapping f : D → C is a ring Q-homeomorphism at each point z0 ∈
D with Q(z) = KR(z,z0, f ), z ∈ D(z0,dist(z0,∂D)). The following example shows
that there are qc mappings f that are not ring Q-homeomorphisms with Q(z) =
Kr(z,z0, f ).

Example 1. Consider the quasiconformal automorphism f : D → D of the unit disk
D = {z ∈ C : |z| < 1}, which, in the polar coordinates, has the form

f (reiϑ ) = exp

⎛
⎝iϑ −

1∫

r

1+ ik
1− ik

dt
t

⎞
⎠ , z = reiϑ , k ∈ (0,1); (11.128)

see, e.g., [99]. Then by applying the formula

μ(reiϑ ) =
fz

fz
= e2iϑ r fr + i fϑ

r fr − i fϑ
, (11.129)
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one obtains by straightforward calculations

μ(reiϑ ) = ike2iϑ . (11.130)

By (11.128) we have

| f (reiϑ )| = exp

⎛
⎝−Re

1∫

r

1+ ik
1− ik

dt
t

⎞
⎠ = r

1−k2

1+k2 . (11.131)

On the other hand, the big radial dilatation at z with respect to the center z0 = 0 is
the constant

K0 := KT
μ (z,z0, f ) =

|1+ ik|2
1− k2 =

1+ k2

1− k2 ; (11.132)

hence, in view of (11.131),

| f (reiϑ )| = r
1

K0 . (11.133)

The example shows that, in general, quasiconformal mappings are not ring Q-
homeomorphisms with the radial dilatation as Q, i.e.,

Q(z) := Kr(z,z0, f ) =
1−|μ(z)|2∣∣1+ z

zμ(z)
∣∣2 (11.134)

at z0 = 0.
Indeed, let us assume that the given f is a ring Q-homeomorphism with Q = Kr.

Then, by Theorem 11.4, we must have the estimate

| f (z)|
(1+ | f (z)|2)1/2

≤ 32 · exp

⎛
⎜⎝−

1∫

|z|

dr
rq(r)

⎞
⎟⎠ , (11.135)

and hence

| f (z)| ≤ 64 · exp

⎛
⎜⎝−

1∫

|z|

dr
rq(r)

⎞
⎟⎠ , (11.136)

where q(r) is the mean of Q(z) over the circle |z| = r.
However, in the case of (11.130) and (11.134), we obtain

Q(z) =
1− k2

1+ k2 =
1

K0
(11.137)

and, thus, (11.136) would imply

| f (reiϑ )| ≤ 64 · rK0 , (11.138)

contradicting (11.133) because K0 > 1.
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The next example shows that the existence criteria for the Beltrami equation
cannot be formulated in terms of majorants for the radial dilatation Kr

μ(z,z0) instead
of the tangential dilatation KT

μ (z,z0).

Example 2. Consider the complex coefficient μ given in polar coordinates in unit
disk D:

μ(reiϑ ) = e2iϑ M(r)−1
M(r)+1

, (11.139)

where
M(r) = r1/2 + i. (11.140)

By straightforward computations with (11.129), it easy to verify that the smooth
mapping

f (reiϑ ) = exp

⎛
⎝iϑ −

1∫

r

M(t)
dt
t

⎞
⎠= e−2(1−r1/2)+i(ϑ+logr) (11.141)

satisfies the Beltrami equation in D \ {0} with the given μ ; see, e.g., Proposition
6.4 in [274]. Note that the homeomorphism f maps the punctured unit disk onto the
annulus A = {z ∈ C : e−2 < |z| < 1} and, thus, f cannot be extended by continuity
to the origin.

Let us assume that there is a homeomorphic ACL solution g of the Beltrami equa-
tion with the given μ in the whole disk D. Then, by the Riemann theorem, we may
in addition assume that g(D) = D and g(0) = 0. However, both homeomorphisms f
and g are locally quasiconformal in D\{0} and hence by the uniqueness theorem for
quasiconformal mappings, f = h◦g, where h is a conformal mapping of D\{0}. As
we know, isolated singularities are removable for conformal mappings, and hence f
can be extended by continuity to the origin. The contradiction disproves the above
assumption.

On the other hand, we have

Kr
μ(z,0) =

1−|μ(z)|2∣∣1+ z
zμ(z)

∣∣2 =
r1/2

1+ r
(11.142)

and, consequently,

Kr
μ(z,0) ≤ Q(z) ≡ 1

2
, |z| < 1. (11.143)

Simultaneously, Kr
μ(z,z0) ≤ Kμ(z) for all z and z0 in D, and

Kμ(z) =
1+ |μ(z)|
1−|μ(z)| = 2r−1/2 (11.144)

is integrable in the unit disk and locally bounded in the punctured unit disk.
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Thus, even under a constant majorant for the radial dilatation Kr
μ(z,0), it is im-

possible to guarantee the existence of a homeomorphic ACL solution for the Bel-
trami equation (11.1). Thus, the tangent dilatation is more useful in this respect.



Chapter 12
Homeomorphisms with Finite Mean Dilatations

In this chapter we describe the topological mappings with finite integral character-
istics following in the main the paper [88], see also [86, 87, 89, 170]. We extend
here the method of extremal lengths (moduli) to this great class of mappings and es-
tablish various differential and geometric properties of these mappings. Classes of
mappings with integral constraints for dilatations are more preferable than classes
with measure constraints because these latter are not closed; see, e.g., [245].

The study of the classes of the so-called mappings quasiconformal in the mean
was started by Ahlfors and has a rich history, see e.g. [4, 22, 25, 90, 169, 170, 172–
174,177–184,239–241,262–264,301,302,313,343,344]. These classes are closely
connected to the mappings with the bounded Dirichlet integral; see, e.g., [191, 303,
304]. The chapter is devoted to aspects of the theory of mappings with finite integral
dilatations related to the moduli method.

12.1 Introduction

In geometric function theory, the quasiconformal homeomorphisms form a natural
intermediate class of mappings between the classes of bi-Lipschitz mappings and
general homeomorphisms. Under K-quasiconformal mapping, the n-module of any
path family can change by a factor of at most K. All properties of quasiconformal
mappings can be obtained from this inequality.

In this chapter we consider the homeomorphisms whose dilatations are bounded
in a certain integral sense. The resulting notion generalizes quasiconformal map-
pings, mappings quasiconformal in the mean, etc. The main approach for investi-
gation relies on the method of p-moduli of path families and surface families and
involves more general inequalities than quasi-invariance.

Let A : R
n → R

n be a linear bijection. The numbers

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 12, c© Springer Science+Business Media, LLC 2009
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KI(A) =
|detA|
ln(A)

, KO(A) =
Ln(A)
|detA| , H(A) =

L(A)
l(A)

are called the inner, outer, and linear dilatations of A, respectively. Here

l(A) = min
|h|=1

|Ah|, L(A) = max
|h|=1

|Ah|

and detA is the determinant of A; see e.g., [316].
Obviously, all three dilatations are not less than 1. They have the following ge-

ometric interpretation. The image of the unit ball Bn under A is an ellipsoid E(A).
Let BI(A) and BO(A) be the inscribed and circumscribed balls of E(A), respectively.
Then

KI(A) =
mE(A)
mBI(A)

, KO(A) =
mBO(A)
mE(A)

,

and H(A) is the ratio of the greatest and the smallest semiaxes of E(A). Here mD =
mnD denotes the n-dimensional Lebesgue measure of a set D.

Let λ1 ≤ λ2 ≤ . . . ≤ λn be the semiaxes of E(A). Then

L(A) = λn, l(A) = λ1, |detA| = λ1 · . . . ·λn,

and we can also write

KI(A) =
λ2 · . . . ·λn

λ n−1
1

, KO(A) =
λ n−1

n

λ1 · . . . ·λn−1
, H(A) =

λn

λ1
.

If n = 2, then KI(A) = KO(A) = H(A). In the general case, we have the relations

H(A) ≤ min(KI(A),KO(A)) ≤ Hn/2(A)
≤ max(KI(A),KO(A)) ≤ Hn−1(A).

(12.1)

Let G and G∗ be two bounded domains in R
n, n ≥ 2, and let a mapping f : G →

G∗ be differentiable at a point x ∈ G. This means that there exists a linear mapping
f ′(x) : R

n → R
n such that

f (x+h) = f (x)+ f ′(x)h+ω(x,h)|h|,

where ω(x,h) → 0 as h → 0.
We denote

KI(x, f ) = KI( f ′(x)), KO(x, f ) = KO( f ′(x)),

and

L(x, f ) = L( f ′(x)), l(x, f ) = l( f ′(x)), J(x, f ) = J( f ′(x)).

Proposition 12.1. Let f : G → G∗ be a K-quasiconformal homeomorphism. Then

(i) f is ACL,
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(ii) f ∈W 1,n
loc (G),

(iii) for almost every x ∈ G,

KI(x, f ) ≤ K, KO(x, f ) ≤ K.

Gehring [75] proved that f ∈ W 1,p
loc (G) with some p ∈ [n,n + c), where c ≤

n/(q1/(n−1)−1). In the planar case, this fact was first discovered by Bojarski [27].

12.2 Mean Inner and Outer Dilatations

Define for the linear bijections A : R
n → R

n the quantities

HI,α(A) =
|J(A)|
lα(A)

, HO,α(A) =
Lα(A)
|J(A)| ,

assuming α ≥ 1.
Now consider the homeomorphisms f : G → R

n, which are differentiable a.e. in
a given domain G ⊂ R

n, and let α,β be two real numbers such that 1 ≤ α < β <∞.
Put

HI,α(x, f ) = HI,α( f ′(x)), HO,β (x, f ) = HO,β ( f ′(x)),

and define the integrals

HIα,β ( f ) =
∫

G

H
β

β−α
I,α (x, f ) dx , HOα,β ( f ) =

∫

G

H
α

β−α
O,β (x, f ) dx. (12.2)

We call these integrals the inner and outer mean dilatations of the mapping f
in G, respectively.

These characteristics were first introduced in [180]; see also [86] and [314].

Now consider the quadruples of the fixed real numbers α,β ,γ,δ such that 1 ≤
α < β < ∞, 1 ≤ γ < δ < ∞.

For two given domains G and G∗ in R
n, we define the class B(G,G∗) whose

elements are the homeomorphic mappings f : G → G∗ that satisfy

(i) f and f−1 are ACL-homeomorphisms,

(ii) f and f−1 are differentiable with the Jacobians J(x, f ) �= 0 and J(y, f−1) �= 0
a.e. in G and G∗, respectively,

(iii) the inner and outer mean dilatations HIα,β ( f ) and HOγ ,δ ( f ) are finite.

We call B(G,G∗) the class of mappings with finite mean dilatations. The fol-
lowing theorem describes some basic differential properties of mappings in the class
B(G,G∗).
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Theorem 12.1. Suppose that α,β ,γ,δ are fixed real numbers such that n − 1 ≤
α < β < ∞, n − 1 ≤ γ < δ < ∞. Then the mappings of B(G,G∗) belong to the
Sobolev class W 1,p

loc (G), while f−1 ∈ W 1,q
loc (G∗), with p = max

(
γ,β/(β − n + 1)

)
and q = max

(
α,δ/(δ −n+1)

)
.

Proof. The assumption of the theorem implies that both mappings f and f−1 satisfy
the (N)-property in the domains G and G∗, respectively. This property allows us to
apply the standard rule for a change of variables under integration. Then the Hölder
inequality and condition (iii) yield

∫

G

Lγ(x, f )dx =
∫

G

[(
Lδ (x, f )
|J(x, f )|

) γ
δ−γ
] δ−γ

δ
|J(x, f )|

γ
δ dx

≤ HO
δ−γ
δ

γ ,δ ( f )
(
mG∗) γδ < ∞,

∫

G

L
β

β−n+1 (x, f )dx ≤
∫

G

(
|J(x, f )|

ln−1(x, f )

) β
β−n+1

dx = HIn−1,β ( f )

≤ HI
(α−n+1)β
α(β−n+1)
α,β ( f )

(
mG∗) (β−α)(n−1)

α(β−n+1) < ∞.

Conditions (i)–(iii) state that the mappings f ∈ B(G,G∗) satisfy

HIα,β ( f−1) = HOα,β ( f ), HOα,β ( f−1) = HIα,β ( f ).

This means that if f is a mapping from the class B(G,G∗) = B(G,G∗,α,β ,γ,δ ),
then the inverse mapping f−1 ∈ B(G∗,G,γ,δ ,α,β ). This completes the proof of
the theorem. 
�

The relations (12.1) show that in the classical case of quasiconformal mappings,
their dilatations are simultaneously either finite or infinite. However, this is not true
for the mean dilatations. The following example shows that each of the mean dilata-
tions HIα,β ( f ) and Hγ ,δ ( f ) can be unbounded, independently of restrictions on any
other dilatation.

Example. Let

G = {x = (x1, . . . ,xn) : 0 < xk < 1,k = 1, . . . ,n}

and

g(x) =
(

x1, . . . ,xn−1,
x1−c

n

1− c

)
, 0 < c < 1.

Then the image g(G) is the domain

G∗ = {y = (y1, . . . ,yn) : 0 < yk < 1,k = 1, . . . ,n−1,0 < yn < 1/(1− c)}.

It is easily to verify that g is differentiable in G and
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l(x,g) = 1, L(x,g) = J(x,g) = x−c
n > 1.

Thus,

HI,α(x,g) =
J(x,g)
lα(x,g)

= x−c
n , HO,δ (x,g) =

Lδ (x,g)
J(x,g)

= x−c(δ−1)
n ,

HIα,β (g) =
∫

G

H
β

β−α
I,α (x,g)dx =

1∫

0

x
− cβ

β−α
n dxn,

HOγ ,δ (g) =
∫

G

H
γ

δ−γ
O,δ (x,g)dx =

1∫

0

x
− c(δ−1)γ

δ−γ
n dxn.

One concludes from this that

HIα,β (g) < ∞⇐⇒ 0 < c < 1−α/β ,

HIα,β (g) = ∞⇐⇒ 1−α/β ≤ c < 1,

HOγ ,δ (g) < ∞⇐⇒ 0 < c < 1− (γ−1)δ/(δ −1)γ,

HOγ ,δ (g) = ∞⇐⇒ 1− (γ−1)δ/(δ −1)γ ≤ c < 1.

The above example also shows that the class B(G,G∗) is much wider than the
class of quasiconformal mappings. For example, the mapping g belongs to B(G,G∗)
if

c ≤ min{1−α/β ,1− (γ−1)δ/(δ −1)γ},
but g is not quasiconformal for any c.

We shall now use the notation for the classes B(G,G∗) = B(G,G∗,α,β ,γ,δ ) and
study how these classes depend on a variety of parameters α,β ,γ,δ . The following
theorem provides the monotonicity.

Theorem 12.2. Let α,β ,γ,δ ,r,s, t,u be fixed real numbers such that 1 ≤ r < α <
β < s < ∞ and 1 ≤ t < γ < δ < u < ∞. Then

(a) B(G,G∗,α,β ,γ,δ ) ⊂ B(G,G∗,r,β ,γ,δ ),

(b) B(G,G∗,α,β ,γ,δ ) ⊂ B(G,G∗,α,s,γ,δ ),

(c) B(G,G∗,α,β ,γ,δ ) ⊂ B(G,G∗,α,β , t,δ ),

(d) B(G,G∗,α,β ,γ,δ ) ⊂ B(G,G∗,α,β ,γ,u).

Proof. Applying Hölder’s inequality to the inner mean dilatation HIr,β ( f ), one ob-
tains

HIr,β ( f ) =
∫

G

H
β

β−r
I,r (x, f )dx =

∫

G

(
|J(x, f )|
lr(x, f )

) β
β−r

dx
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≤
(∫

G

(
|J(x, f )|
lα(x, f )

) β
β−α

dx

) r(β−α)
α(β−r)

(∫
G

|J(x, f )|dx

) β (α−r)
α(β−r)

= HI
r(β−α)
α(β−r)
α,β ( f )

(
mG∗) β (α−r)

α(β−r) .

This implies the first statement of the theorem.
The same argument works for the second part of Theorem 12.2. Indeed,

HIα,s( f ) =
∫

G

H
s

s−α
I,α (x, f )dx =

∫

G

(
|J(x, f )|
lα(x, f )

) s
s−α

dx

≤
(∫

G

(
|J(x, f )|
lα(x, f )

) β
β−α

dx

) s(β−α)
β (s−α)

(∫
G

dx

) α(s−β )
β (s−α)

= HI
s(β−α)
β (s−α)
α,β ( f )

(
mG
) α(s−β )
β (s−α) .

The similar assertions also hold for the outer mean dilatation. 
�
Note that for α,β ,γ,δ ≤ n, the widest class B(G,G∗,α,β ,γ,δ ) consists of map-

pings that are (p,q)-quasiconformal in the mean. This class will be considered in
Section 12.6.

12.3 On Distortion of p-Moduli

Let Sk be a family of k-dimensional surfaces S in R
n, 1 ≤ k ≤ n−1, which are the

continuous images of a closed domain Ds ⊂ R
k. Recall that the p-modulus of Sk is

defined as
Mp(Sk) = inf

∫

Rn

ρ p dx, p ≥ k,

where the infinum is taken over all Borel measurable functions ρ ≥ 0 with
∫

S

ρk dσk ≥ 1

for every S ∈ Sk. We call such functions ρ admissible for the family Sk.

The following proposition characterizes quasiconformality in terms of the p-
moduli of k-dimensional surfaces; see [290].

Proposition 12.2. A homeomorphism f of a domain G ⊆ Rn is K-quasiconformal,
1 ≤ K <∞, if, for each family Sk of k-dimensional surfaces in G, 1 ≤ k ≤ n−1, the
double inequality
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K
k−n
n−1 Mn(Sk) ≤ Mn( f (Sk)) ≤ K

n−k
n−1 Mn(Sk) (12.3)

holds.

For the mappings of our classes B(G,G∗), the double inequality (12.3) is ex-
tended as follows.

Theorem 12.3. Let f : G → G∗ be a homeomorphism satisfying

(i) f and f−1 are ACL,

(ii) f and f−1 are differentiable a.e. in G and G∗, respectively,

(iii) the Jacobians J(x, f ) and J(y, f−1) do not vanish a.e. in G and G∗, respectively.

Then, for every quadruple of fixed values α,β ,γ,δ such that k ≤α < β <∞, k ≤
γ < δ < ∞ and for any ring domain D ⊂ G, the inequalities

Mβ
α (S ∗

k ) ≤ HIβ−αα,β ( f )Mα
β (Sk) (12.4)

and
Mδ
γ (Sk) ≤ HOδ−γ

γ ,δ ( f )Mγ
δ (S

∗
k ) (12.5)

hold; here S ∗
k = f (Sk).

Proof. Let Sk be a family of k-surfaces in G, and let ρ be an admissible function
for Sk. Denote by μk(x, f ) the minimal distortion of k-dimensional measures at x
under f , i.e.,

μk(x, f ) = λ1 ·λ2 · . . . ·λk.

Note that μk(x, f ) ≥ lk(x, f ) for a.e. x ∈ G. Define in D∗ = f (D) the function

ρ∗(y) =
ρ(x)[

μk(x, f )
]1/k

,

where x = f−1(y). It is easy to check that ρ∗(y) is an admissible function for S ∗
k .

Since dσ∗
k ≥ μk(x, f )dσk, we have

∫

S ∗

ρ∗k
(y)dσ∗

k ≥
∫

S

ρk(x)dσk ≥ 1

for every surface S ∗ ∈ S ∗
k .

We conclude from (i)–(iii) that f and f−1 satisfy the (N)-property in G and G∗,
respectively, and

HI,α(x, f ) = HO,α(y, f−1)
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for a.e. x ∈ G and y ∈ G∗. Applying Hölder’s inequality and the properties of f and
f−1, we obtain

∫

D∗

ρ∗α (y)dy =
∫

D

ρα(x)[
μk(x, f )

]α/k
|J(x, f )|dx ≤

∫

D

ρα(x)
|J(x, f )|
lα(x, f )

dx

≤
(∫

D

ρβ (x)dx

)α/β(∫
D

H
β

β−α
I,α (x, f )dx

)(β−α)/β
.

Taking the infima over all such ρ(x) yields (12.4). Interchanging f : G → G∗ and
f−1 : G∗ → G in (12.4), we obtain inequality (12.5). 
�

12.4 Moduli of Surface Families Dominated by Set Functions

Recall that a ring domain D ⊂ R
n is a bounded domain whose complement con-

sists of two components C0 and C1. Setting F0 = ∂C0 and F1 = ∂C1, we obtain two
boundary components of D. One of C0 and C1 contains the point of infinity; for
definiteness, let us assume that ∞ ∈C1.

We say that a path γ joins the boundary components in D if γ lies in D except
for its endpoints, one of which is contained in F0 and the second in F1. We say that
a compact set Σ separates the boundary components of D if Σ ⊂ D and if C0 and
C1 are located in the different components of R̂ \Σ . Denote by ΓD the family of
all locally rectifiable paths γ ⊂ D that join the boundary components of D and by
ΣD the family of all compact piecewise smooth (n−1)-dimensional surfaces Σ that
separate the boundary components of D.

For each quantity V associated with D such as a subset of D or a family of sets
contained in D, we denote its image under f by V ∗.

We now introduce new classes of homeomorphisms that depend on the numerical
parameters α,β ,γ,δ and on certain set functions.

Let Φ be a finite nonnegative function in a domain G ⊆ R
n defined for all open

subsets E of G and such that

m

∑
k=1

Φ(Ek) ≤ Φ(E)

for any finite collection {Ek}m
k=1 of open mutually disjoint sets Ek ⊂ E. We denote

the class of all such set functions Φ by F .
We fix the numbers α,β ,γ,δ satisfying

n−1 ≤ α < β < ∞, n−1 ≤ γ < δ < ∞,

and assume that there exists a nonempty family of homeomorphisms f : G → G∗

such that there exist two set functions Φ ,Ψ ∈ F not depending on f such that for
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each ring domain D ⊂ G, the inequalities

Mβ
α (Σ ∗

D) ≤Φβ−α(D)Mα
β (ΣD) (12.6)

and
Mδ
γ (ΣD) ≤Ψδ−γ(D)Mγ

δ (Σ
∗
D) (12.7)

hold. The class of such homeomorphisms will be denoted by MS (G,G∗) (in fact,
it also depends on α,β ,γ,δ ).

We shall need the following theorem from [87].

Theorem 12.4. Let

n−1 < α < β < ∞ and n−1 < γ < δ < ∞.

Then every mapping f ∈ MS (G,G∗) has the following properties:

(a) f is ACL in G;

(b) f−1 is ACL in G∗;

(c) f ∈W 1,a
loc (G), a = β/(β −n+1);

(d) f−1 ∈W 1,b
loc (G∗), b = δ/(δ −n+1).

It is not hard to see that if β ≤ n, then β/(β −n+1) ≥ n and if β ≥ n, then
β/(β −n+1) ≤ n.

Now we introduce the mapping class MJ (G,G∗) related to α-moduli of the
families of joining paths. Fix the numbers p,q,s, t, which satisfy

1 ≤ p < q < ∞, 1 ≤ s < t < ∞.

Suppose that there exists a (nonempty) family of homeomorphisms f : G → G∗

such that for every ring domain D ⊂ G,

Mt
s(Γ ∗

D ) ≤Θ t−s(D)Ms
t (ΓD) (12.8)

and
Mq

p(ΓD) ≤Π q−p(D)Mp
q (Γ ∗

D ), (12.9)

where Θ and Π are two given set functions in F not depending on f .

Properties of the mappings satisfying inequalities (12.8) and (12.9) in the equiva-
lent terms of p-capacity were investigated for n−1 < s < t ≤ n and n−1 < p < q≤ n
in [178] and for wider bounds n−1 < s < t < ∞ and n−1 < p < q < ∞ in [314].

It was proved in [178] that f and f−1 are ACL and belong to W 1,t/(t−n+1)
loc and

W 1,q/(q−n+1)
loc , respectively. In [314], inequality (12.9) was extended to the mappings

of Carnot groups. Using this inequality, the authors have established various prop-
erties of such mappings; for example, if a given mapping belongs to W 1,p

loc , then the
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inverse mapping belongs to W 1,q/(q−n+1)
loc . The case t = q = n has been explicitly

studied in [170].

For the equality of the p-capacity of rings and the p-moduli of families of joining
paths for their boundary components, we refer to [122]; see Section A.3. Other
relations between the p-capacities and the α-moduli of families of separating sets
have been obtained by Ziemer [340]; see Section A.6. Ziemer applied the condition

∫

S

ρ dσn−1 ≥ 1

for admissibility of ρ and, in particular, established that

Mp(ΓD) = M1−p
p

p−1
(ΣD).

Note that in our notations the latter means

Mp(ΓD) = M1−p
p(n−1)

p−1

(ΣD).

The following relations are crucial:

1 < p < n ⇐⇒ n <
p(n−1)

p−1
< ∞,

p = n ⇐⇒ p(n−1)
p−1

= n,

n < p < ∞ ⇐⇒ 1 <
p(n−1)

p−1
< n.

Now put

α =
q(n−1)

q−1
, β =

p(n−1)
p−1

, γ =
t(n−1)

t −1
, δ =

s(n−1)
s−1

.

It is easy to verify that if Π(D) = Φ(D), then inequalities (12.6) and (12.9) are
equivalent. The same is true for (12.7) and (12.8) when Θ(D) =Ψ(D).

The conclusions of this section result in the following theorem.

Theorem 12.5. Let

n−1 < α < β ≤ n and n−1 < γ < δ ≤ n

or

n ≤ α < β <
(n−1)2

n−2
and n ≤ γ < δ <

(n−1)2

n−2
.

Then every mapping f ∈ MS (G) admits the following properties:
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(a′) f is ACL in G;

(b′) f−1 is ACL in G∗;

(c′) f ∈W 1,a
loc (G) with a = max(γ,β/(β −n+1));

(d′) f−1 ∈W 1,b
loc (G∗) with b = max(α,δ/(δ −n+1)).

Note that each of inequalities (12.6) and (12.7) separately provides properties
(a′) and (b′). Properties (c′) and (d′) yield that both mappings f and f−1 have the
(N)-property; cf. [174].

12.5 Alternate Characterizations of Classical Mappings

Specifying the set functions Φ and Ψ , we obtain a new characterization of quasi-
conformality and of quasi-isometry.

Theorem 12.6. A homeomorphism f : G → G∗ is K-quasiconformal if and only if
there exists a constant K, 1 ≤ K < ∞, such that for any ring domain D ⊂ G, the
inequalities

Mn
p(Σ ∗

D) ≤ K
p

n−1
(
mD∗)n−p

Mp
n (ΣD) (12.10)

and
Mn

q(ΣD) ≤ K
q

n−1
(
mD
)n−q

Mq
n(Σ ∗

D) (12.11)

hold for n−1 < p < q ≤ n or the inequalities

Mp
n (Σ ∗

D) ≤ K
p

n−1
(
mD
)p−n

Mn
p(ΣD) (12.12)

and
Mq

n(ΣD) ≤ K
q

n−1
(
mD∗)q−n

Mn
q(Σ ∗

D) (12.13)

hold for n ≤ p < q < (n−1)2/(n−2).

Sketch of the proof. The relations (12.12) and (12.13) follow in fact from the results
of [179]. Thus, it remains only to verify inequalities (12.10) and (12.11). The ne-
cessity of these inequalities follows from (12.3) by applying Hölder’s inequality to
(n−1)-dimensional surfaces.

The proof of sufficiency will be accomplished in three stages. It follows the lines
of [210] and [170].

First we prove that f is ACL. Let Θ(V ) = mV , and let Q be an n-dimensional
interval in G. Then the set function Θ belongs to the class F . Write Q = Q0 × J,
where Q0 is an (n− 1)-dimensional interval in R

n−1 and J is an open segment of
the axis xn.

Following the notations in [246], we write Θ(T,Q) = Θ(T × J). The function
Θ(T,Q) also belongs to the class F for the Borel sets T ⊂ Q0.
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Fix z ∈ Q0 so that Θ ′(z,Q) < ∞, and let Δ1, . . . ,Δk be the disjoint closed subin-
tervals of the segment Jz = {z}× J. Put C0,i = Δi + rB

n
and Ai = Δi + 2rBn, where

B
n

is the closure of Bn = Bn(x,r). The positive number r is chosen such that the
domains Di = Ai \Co,i are disjoint and Di ⊂ Q. Using the estimates of p-moduli of
ΣD, one obtains

k

∑
i=1

d(A∗
i ) ≤C1

(
Θ ′(z,Q)

) 1
n
( k

∑
i=1

m1Δi

) n−1
n

,

where the constant C1 depends only on p,n, and K. Thus, f is ACL.
In the second step, we show that a given homeomorphism f belongs to W 1,n

loc . For
x̃,x ∈ G, x̃ �= x, define

k(x) = limsup
x̃→x

| f (x̃)− f (x)|
|x̃− x| .

Consider for a point x ∈ D the spherical ring Dr(x) = {y : r < |x−y|< 2r} choosing
r > 0 such that Dr(x) ⊂ G. It follows from the estimate

k(x) ≤ limsup
r→0

d(A∗
r )

r
≤C2

(
Θ ′(x)

) 1
n

that k(x) <∞ a.e. in G. Here C2 depends only on n and K. Now applying Stepanov’s
theorem [300], one concludes that f is differentiable a.e. in G. Moreover, for each
Borel set V ⊂ G, we have

∫

V

kn(x)dx ≤C2

∫

V

Θ ′(x)dx ≤C2mV < ∞.

Finally, from (12.10) and (12.11), we obtain

KO(x, f ) ≤ K, KI(x, f ) ≤ K,

respectively. This completes the proof of Theorem 12.6. 
�

Replacing (12.10)–(12.11) and (12.12)–(12.13) by suitable inequalities for α-
moduli with α �= n given below, one obtains quasi-isometry for the mapping.

Recall that a homeomorphism f : G → G∗ is called quasi-isometric if, for any
x, z ∈ G and y, t ∈ G∗, the inequalities

limsup
z→x

| f (x)− f (z)|
|x− z| ≤ M, limsup

t→y

| f−1(y)− f−1(t)|
|y− t| ≤ M,

hold with a constant M depending only on G and G∗.

Theorem 12.7. Let f : G → G∗ be a homeomorphism. Then the following condi-
tions are equivalent:
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10. f is quasi-isometric;

20. for fixed real numbers α,β ,γ,δ such that

n−1 < α < β < n and n−1 < γ < δ < n

or

n < α < β < (n−1)2/(n−2) and n < γ < δ < (n−1)2/(n−2),

there exists a constant K such that for any ring domain D ⊂ G, the inequalities

Mβ
α (Σ ∗

D) ≤ Kβ (mD
)β−α

Mα
β (ΣD)

and
Mδ
γ (ΣD) ≤ Kδ (mD∗)δ−γMγ

δ (Σ
∗
D)

hold.

The quasi-invariance of p-moduli of path or surface families is a characteristic
property of quasi-isometry; see, e.g., [91]. This quasi-invariance is also represented
by a double inequality. The implication 10 ⇒ 20 follows from this inequality by
applying Hölder’s inequality. The inverse implication 20 ⇒ 10 is proved through
estimates in [76].

12.6 Mappings (α,β )-Quasiconformal in the Mean

In this section we mention the results established in [170].

Here a condenser in R
n is a triple of sets A = (F0,F1;G), where G is a domain

in R
n and F0 and F1 ⊂ G are nonempty sets being closed with respect to G. Given

β ∈ [1,n], β -capacity capβ (F0,F1;G) of the condenser A = (F0,F1;G) is ∞ if F1 ∩
F2 �= ∅ and

capβ (F0,F1;G) = inf
∫

G

|∇ϕ(x)|βdx (12.14)

if F1∩F2 = ∅, where the infimum is taken over all functions ϕ : G →R
1 of the class

ACL in G such that ϕ(x) ≤ 0 for x ∈ F0 and ϕ(x) ≥ 1 for x ∈ F1.
Let D and Δ be domains in R

n, n ≥ 2. A homeomorphism f : D → Δ belongs
to the class Qp(D) [qp(D)], 1/(n− 1) ≤ p ≤ ∞, if there is a nonnegative subaddi-
tive bounded (absolutely continuous) function Φp of Borel sets in D such that the
inequality

cap pn
p+1

( f (F0), f (F1); f (G)) ≤ [Φp(G\ (F0 ∪F1))]
1

p+1 cap
p

p+1
n (F0,F1;G)

holds for each condenser (F0,F1;G) in D.
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The (N)-property by Lusin was established for homeomorphisms of the class
qp(D) for all 1/(n−1) ≤ p ≤ ∞ [it was also shown, for 1/(n−1) ≤ p ≤ n−1, that
mappings of the class qp(D) are not, generally speaking, ACLn homeomorphisms].
Moreover, the following estimate for distortion of the Euclidean distance has been
obtained.

Theorem 12.8. Let f be a homeomorphism of the class Qp(D) with p > n−1 and
let F ⊂ D be a compact set. Then

| f (a)− f (b)| ≤C ln−
p(n−1)

n
1

|a−b| (12.15)

for each pair of points a, b ∈ F such that |a−b|< δ ≤ min{1,d4(F,∂D)}, where C
depends only on p, n, and Φp(D). Here d(F,∂D) is the Euclidean distance between
F and ∂D.

Moreover, estimate (12.15) is precise by the order in the class of Qp(D).

Let D and Δ be domains in R
n. We say that a homeomorphism f : D → Δ is

(α,β )-quasiconformal in the mean if f and f−1 are ACL, differentiable a.e., and
∫

D

Kβ
O(x, f ) dx < ∞ (12.16)

and ∫

D

Kα
I (x, f ) |J(x, f )| dx < ∞. (12.17)

The main results are the following two theorems.

Theorem 12.9. Let f : D → Δ be a homeomorphism and α > n−1, β > n−1. Then
the following statements are equivalent:

1. a mapping f : D → Δ is (α,β )-quasiconformal in the mean;

2. f ∈ Qα(D) and f−1 ∈ Qβ (Δ);

3. f ∈ qα(D) and f−1 ∈ qβ (Δ).

Theorem 12.10. Let f : D → Δ be a homeomorphism and let 1/(n−1)≤ α ≤ n−1
and 1/(n−1) ≤ β ≤ n−1. Then the following statements are equivalent:

1. a mapping f : D → Δ is (α,β )-quasiconformal in the mean;

2. f ∈ qα(D) and f−1 ∈ qβ (Δ) are ACL and differentiable a.e.

Note also that Kruglikov and Paikov have obtained a series of results on the
boundary correspondence under mappings (α,β )-quasiconformal in the mean, in
terms of the so-called prime ends; see, e.g., [172]. However, the latter is outside the
framework of this book.
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12.7 Coefficients of Quasiconformality of Ring Domains

In this section we determine the mean dilatations of domains in R
n and establish the

extremal mappings, which minimize the inner and outer mean dilatations for some
ring domains; see [89].

Let G and G∗ be two homeomorphic bounded domains in R
n, n ≥ 2. Recall that

the inner and outer coefficients of quasiconformality of G with respect to G∗,
KI(G,G∗) and KO(G,G∗), are the infima of the inner and outer dilatations KI( f )
and KO( f ) of homeomorphisms f : G → G∗, respectively; see, e.g., [316]. These
coefficients are known only for several simple domains in R

n, n ≥ 3; see [85].

A mapping f0 : G → G∗ is called extremal for KI(G,G∗) or KO(G,G∗) if
KI( f0) = KI(G,G∗) or KO( f0) = KO(G,G∗), respectively.

First, we introduce the more general quantities called the mean coefficients
of quasiconformality for ring domains, and apply the method of p-moduli of k-
dimensional surfaces for solving the corresponding extremal problems. This allows
us to calculate the mean coefficients for spherical rings in R

n.

Consider the ring domains D and D∗ in R
n and homeomorphisms f from D onto

D∗. For the fixed real numbers α,β ,γ,δ such that

k ≤ α < β < ∞ and k ≤ γ < δ < ∞,

and for a mapping f : D → D∗, we define the inner and outer mean dilatations
Iα,β ( f ) and Oγ ,δ ( f ) by

Iα,β ( f ) =
(

sup
Mβ
α (S ∗

k )
Mα
β (Sk)

) 1
β−α

, Oγ ,δ ( f ) =
(

sup
Mδ
γ (Sk)

Mγ
δ (S

∗
k )

) 1
δ−γ

, (12.18)

where the suprema are taken over all families Sk of k-dimensional surfaces in D
such that the numerator and denominator in each above fraction cannot be equal to
0 or ∞ simultaneously. Here S ∗

k = f (Sk). Obviously,

Iα,β ( f−1) = Oα,β ( f ), Oα,β ( f−1) = Iα,β ( f ). (12.19)

Theorem 12.3 gives the next relationship between the integral and the mean di-
latations

Iα,β ( f ) ≤ HIα,β ( f ), Oγ ,δ ( f ) ≤ HOγ ,δ ( f ). (12.20)

Let us also introduce the quantities

Iα,β (D,D∗) = inf
f

Iα,β ( f ), Oγ ,δ (D,D∗) = inf
f

Oγ ,δ ( f ),

where the infima are taken over all mappings of the class B(D,D∗). We call these
quantities the inner and outer mean coefficients of the ring domains D and D∗.
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The mappings minimizing the mean coefficients are called extremal for the corre-
sponding mean coefficients.

As in the case of KI(D,D∗) and KO(D,D∗), determining the mean characteristics
Iα,β (D,D∗) and Oγ ,δ (D,D∗) for the ring domains D and D∗ is very complicated;
cf. [85]. To obtain upper bounds for given ring domains D and D∗, it suffices to
construct a suitable homeomorphism f of D onto D∗ and calculate the dilatations
of f by (12.2). Obtaining the lower bounds is much more difficult since it requires
finding lower bounds for various dilatations of all homeomorphisms in the class
B(D,D∗). We accomplish this by estimating the distortion of certain families of k-
dimensional surfaces under a fixed homeomorphism f and then finding suprema in
(12.18).

We are concerned with the extremal mappings, which minimize HIα,β ( f ) and
HOγ ,δ ( f ) on the class B(D,D∗) for the spherical rings. Denote by

D(r0) = {x ∈ R
n : 0 < r0 < |x| < 1}

and
D(ρ0) = {y ∈ R

n : 0 < ρ0 < |y| < 1}
the spherical rings. Let us calculate the mean coefficients Iα,β (D(r0),D(ρ0)) and
Oγ ,δ (D(r0),D(ρ0)) for the case 0 < ρ0 ≤ r0 < 1.

For n−1 < α < β < ∞, we obtain, by (12.18),

Iα,β (D(r0),D(ρ0)) ≥
(

Mβ
α (Σ ∗

D)
Mα
β (ΣD)

) 1
β−α

.

Substituting the explicit expressions of Mα(Σ ∗
D) and Mβ (ΣD) given, for example,

in [76] (with α �= n and β �= n), we get

Iα,β (D(r0),D(ρ0)) ≥ ωn−1

(
1−ρn−α

0

n−α

) β
β−α
(

n−β
1− rn−β

0

) α
β−α

,

where ωn−1 denotes the (n− 1)-dimensional Lebesgue measure of the unit sphere
in R

n.

Further, consider two spherical systems of coordinates (r,ϕi) and (ρ,ψi), i =
1,n−1, on D(r0) and D(ρ0), respectively. It is easy to see that the mapping

f1 =
(
ρ =

[
1+

ρn−α
0 −1

rn−β
0 −1

(rn−β −1)
] 1

n−α
,ψi = ϕi,0 ≤ ϕi < 2π,r0 < r < 1

)

carries out D(r0) onto D(ρ0). From (12.2) we calculate

HIα,β ( f1) = ωn−1

(
1−ρn−α

0

n−α

) β
β−α
(

n−β
1− rn−β

0

) α
β−α

.
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Thus, the mapping f1 : D(r0) → D(ρ0) is extremal for the inner mean coefficient
Iα,β (D(r0),D(ρ0)), and

Iα,β (D(r0),D(ρ0)) = ωn−1

(
1−ρn−α

0

n−α

) β
β−α
(

n−β
1− rn−β

0

) α
β−α

.

In the cases α = n and β = n, the corresponding inner mean characteristics are
of the form

In,β (D(r0),D(ρ0)) = ωn−1

(
ln

1
ρ 0

) β
β−n
(

n−β
1− rn−β

0

) n
β−n

and

Iα,n(D(r0),D(ρ0)) = ωn−1

(
1−ρn−α

0

n−α

) n
n−α
(

ln
1
r0

)− α
n−α

.

In the same way, we obtain from (12.18) the following estimate for 1 < γ < δ <
∞:

Oγ ,δ (D(r0),D(ρ0)) ≥
(

Mδ
γ (ΓD)

Mγ
δ (Γ

∗
D )

) 1
δ−γ

. (12.21)

Substituting into the right-hand side of (12.20) the well-known expressions of
Mγ(ΓD) and Mδ (Γ ∗

D ) (see [91]), when γ �= n and δ �= n, we have

Oγ ,δ (D(r0),D(ρ0)) ≥ ωn−1

(
n− γ
γ−1

) (γ−1)δ
δ−γ

(
δ −1
n−δ

) (δ−1)γ
δ−γ

(
r
γ−n
γ−1
0 −1

) (1−γ)δ
δ−γ

(
ρ

δ−n
δ−1

0 −1

) (1−δ )γ
δ−γ

.

The mapping

f2 =
(
ρ =

[
1+

ρ
δ−n
δ−1

0 −1

r
γ−n
γ−1
0 −1

(r
γ−n
γ−1 −1)

] δ−1
δ−n

,ψi = ϕi,0 ≤ ϕi < 2π,r0 < r < 1

)

also carries D(r0) onto D(ρ0). By (12.2),

HOγ ,δ ( f2) = ωn−1

(
n− γ
γ−1

) (γ−1)δ
δ−γ

(
δ −1
n−δ

) (δ−1)γ
δ−γ

(
r
γ−n
γ−1
0 −1

) (1−γ)δ
δ−γ

(
ρ

δ−n
δ−1

0 −1

) (1−δ )γ
δ−γ

.

This yields that the mapping f2 : D(r0) → D(ρ0) is extremal for the coefficient
Oγ ,δ (D(r0),D(ρ0)) and
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Oγ ,δ (D(r0),D(ρ0)) = ωn−1

(
n− γ
γ−1

) (γ−1)δ
δ−γ

(
δ −1
n−δ

) (δ−1)γ
δ−γ

(
r
γ−n
γ−1
0 −1

) (1−γ)δ
δ−γ

(
ρ

δ−n
δ−1

0 −1

) (1−δ )γ
δ−γ

.

In the case γ = n, the outer mean characteristic is

On,δ (D(r0),D(ρ0)) = ωn−1

(
δ −1
n−δ

) (δ−1)γ
δ−γ

(
ln

1
r0

) (1−n)δ
δ−n

(
ρ

δ−n
δ−1

0 −1

) (δ−1)n
δ−n

.

The case δ = n was studied in [90].

It follows from (12.19) that, in the case 0 < r0 ≤ ρ0 < 1, the mapping f−1
2 is

extremal for the inner mean coefficient. Then the mapping f−1
1 is extremal for the

outer mean coefficient.

Now put

IM∗
α,β (D,D∗) =

(
Iα,β (D,D∗)

mD∗

) β−α
α

, IMα,β (D,D∗) =
(

Iα,β (D,D∗)
mD

) β−α
β

,

OMα,β (D,D∗) =
(

Oα,β (D,D∗)
mD

) β−α
α

, OM∗
α,β (D,D∗) =

(
Oα,β (D,D∗)

mD∗

) β−α
β

.

Theorem 12.11. (a) If s,α,β are real numbers such that 1 < s < α < β < ∞, then

IM∗
s,β (D,D∗) ≤ IM∗

α,β (D,D∗)

and
OMs,β (D,D∗) ≤ OMα,β (D,D∗) .

(b) If α,β , t are real numbers such that 1 < α < β < t < ∞, then

IMα,t(D,D∗) ≤ IMα,β (D,D∗)

and
OM∗

α,t(D,D∗) ≤ OM∗
α,β (D,D∗) .

Proof. We will prove only the first inequalities in each part of the theorem. Applying
Hölder’s inequality to IM∗

s,β (D,D∗), we have

IM∗
s,β (D,D∗) = inf

1
(
mD∗) β−s

s

(
sup

Mβ
s (S ∗

k )
Ms
β (Sk)

) 1
s
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≤ inf
1

(
mD∗) β−s

s

(
sup

(
mD∗) (α−s)β

α M
sβ
α
α (S ∗

k )
Ms
β (Sk)

) 1
s

= inf
1

(
mD∗) β−αα

(
sup

Mβ
α (S ∗

k )
Mα
β (Sk)

) 1
α

= IM∗
α,β (D,D∗).

Similarly, for part (b),

IMα,t(D,D∗) = inf
1(

mD
) t−α

t

(
sup

Mt
α(S ∗

k )
Mα

t (Sk)

) 1
t

≤ inf
1(

mD
) t−α

t

(
sup

(
mD
) (t−β )α

β Mt
α(S ∗

k )

M
αt
β
β (Sk)

) 1
t

= inf
1

(
mD
) β−α

α

(
sup

Mβ
α (S ∗

k )
Mα
β (Sk)

) 1
β

= IMα,β (D,D∗),

which yields the desired relations. 
�

In particular, we also obtain equalities that provide a new approach to calculating
the coefficients of quasiconformality KI(D(r0),D(ρ0)) and KO(D(r0),D(ρ0)); cf.
[316]. For example, if 0 < ρ0 < r0 < 1, then

KI(D(r0),D(ρ0)) = lim
α→n

IM∗
α,n(D(r0),D(ρ0))

= lim
β→n

IMn,β (D(r0),D(ρ0)) =
ln 1

ρ0

ln 1
r0

,

KO(D(r0),D(ρ0)) = lim
α→n

OMα,n(D(r0),D(ρ0))

= lim
β→n

OM∗
n,β (D(r0),D(ρ0)) =

(
ln 1

ρ0

ln 1
r0

)n−1

.



Chapter 13
On Mapping Theory in Metric Spaces

In this chapter we investigate the problem of extending the boundary and removabil-
ity of singularities of quasiconformal mappings and their generalizations in arbitrary
metric spaces with measures; see [266]. The results can be applied, in particular, to
Riemannian manifolds, the Loewner spaces, and the groups by Carnot and Heisen-
berg.

Here we study properties of weakly flat spaces which are a far-reaching generali-
zation of the recently introduced Loewner spaces (see, e.g., [21, 33, 107, 112, 312]),
including, in particular, the well-known groups by Carnot and Heisenberg; see, e.g.,
[108, 109, 166, 167, 197, 199, 221, 238, 314] and [324–326]. On this basis, we create
the theory of the boundary behavior and removable singularities for quasiconformal
mappings and their generalizations, which can be applied to any of the mentioned
classes of spaces. In particular, we prove a generalization and strengthening of the
known Gehring–Martio theorem on homeomorphic extension to the boundary of
quasiconformal mappings between quasiextremal distance domains in R

n, n ≥ 2;
see [81]. The modulus techniques for metric spaces are developed, for instance,
in [64, 107, 112, 201].

13.1 Introduction

Given a set S in (X ,d) and α ∈ [0,∞), Hα denotes the α-dimensional Hausdorff
measure of S in (X ,d), i.e.,

Hα(S) = sup
ε>0

Hα
ε (S) , (13.1)

Hα
ε (S) = inf

∞

∑
i=1

δαi , (13.2)

where the infimum is taken over all countable collections of numbers δi ∈ (0,ε) such
that some sets Si in (X ,d) with diameters δi cover S. Note that Hα is nonincreasing

O. Martio et al., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-85588-2 13, c© Springer Science+Business Media, LLC 2009



258 13 On Mapping Theory in Metric Spaces

in the parameter α. The Hausdorff dimension of S is the only number α ∈ [0,∞]
such that Hα ′

(S) = 0 for all α ′ > α and Hα ′′
(S) = ∞ for all α ′′ < α.

Recall, for a given continuous path γ : [a,b]→ X in a metric space (X ,d), that its
length is the supremum of the sums

k

∑
i=1

d(γ(ti),γ(ti−1))

over all partitions a = t0 ≤ t1 ≤ . . .≤ tk = b of the interval [a,b]. The path γ is called
rectifiable if its length is finite.

In what follows, (X ,d,μ) denotes a space X with a metric d and a locally finite
Borel measure μ . Given a family of paths Γ in X , a Borel function ρ : X → [0,∞] is
called admissible for Γ , abbr. ρ ∈ adm Γ , if

∫

γ

ρ ds ≥ 1 (13.3)

for all γ ∈ Γ .

An open set in X whose points can all be connected pairwise by continuous paths
is called a domain in X . Let G and G′ be domains with finite Hausdorff dimensions
α and α ′ ≥ 1 in spaces (X ,d,μ) and (X ′,d′,μ ′), and let Q : G → [0,∞] be a measur-
able function. We say that a homeomorphism f : G → G′ is a Q-homeomorphism
if

M( fΓ ) ≤
∫

G

Q(x) ·ρα(x) dμ(x) (13.4)

for every family Γ of paths in G and every admissible function ρ for Γ .

The modulus of the path family Γ in G is given by the equality

M(Γ ) = inf
ρ∈admΓ

∫

G

ρα(x) dμ(x). (13.5)

In the case of the path family Γ ′ = fΓ , we take the Hausdorff dimension α ′ of the
domain G′.

A space (X ,d,μ) is called (Ahlfors) α-regular if there is a constant C ≥ 1 such
that

C−1rα ≤ μ(Br) ≤Crα (13.6)

for all balls Br in X with the radius r < diamX . As we know, α-regular spaces
have Hausdorff dimension α; see, e.g., [106], p. 61. We say that a space (X ,d,μ) is
(Ahlfors) regular if it is (Ahlfors) α-regular for some α ∈ (1,∞).

We will say that a space (X ,d,μ) is upper α-regular at a point x0 ∈ X if there
is a constant C > 0 such that
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μ(B(x0,r)) ≤Crα (13.7)

for the balls B(x0,r) centered at x0 ∈ X with all radii r < r0 for some r0 > 0. We will
also say that a space (X ,d,μ) is upper α-regular if condition (13.7) holds at every
point x0 ∈ X .

13.2 Connectedness in Topological Spaces

Let us give definitions of some topological notions and related remarks of a general
character that will be useful in what follows. Let T be an arbitrary topological space.
A path in T is a continuous mapping γ : [a,b] → T. Later on, |γ| denotes the locus
γ([a,b]). If A,B, and C are sets in T, then Δ(A,B,C) denotes a collection of all paths
γ joining A and B in C, i.e., γ(a) ∈ A, γ(b) ∈ B and γ(t) ∈C, t ∈ (a,b).

Recall that a topological space is a connected space if it is impossible to split
it into two nonempty open sets. Compact connected spaces are called continua. A
topological space T is said to be path-connected if any two points x1 and x2 in T
can be joined by a path γ : [0,1]→ T, γ(0) = x1, and γ(1) = x2. A domain in T is an
open path-connected set in T. We say that a metric space T is a rectifiable if any two
points x1 and x2 in T can be joined by a rectifiable path. In particular, we say that a
domain G in T is a rectifiable domain if G with the induced topology is a rectifiable
space. A domain G in a topological space T is called locally connected at a point
x0 ∈ ∂G if, for every neighborhood U of the point x0, there is a neighborhood V ⊆U
such that V ∩G is connected; see [186], p. 232. Similarly, we say that a domain G is
locally path connected (rectifiable) at a point x0 ∈ ∂G if, for every neighborhood
U of the point x0, there is a neighborhood V ⊆U such that V ∩G is path connected
(rectifiable).

Proposition 13.1. Let T be a topological (metric) space with a base of topology B
consisting of path-connected (rectifiable) sets. Then an arbitrary open set Ω in T is
connected if and only if Ω is path connected (rectifiable).

Corollary 13.1. An open set Ω in R
n , n ≥ 2 , or in any manifold is connected if and

only if Ω is path connected (rectifiable).

Remark 13.1. Thus, if a domain G in R
n , n ≥ 2 , is locally connected at a point

x0 ∈ ∂G, then it is also path connected at x0. The same is true for manifolds. As
we will show later on, the connectedness and path connectedness are equivalent
for open sets in a wide class of the so-called weakly flat spaces, which include the
known spaces by Loewner and, in particular, the well-known groups by Carnot and
Heisenberg.

Proof of Proposition 13.1. First let Ω be path connected. If Ω is simultaneously
not connected, then Ω = Ω1 ∪Ω2, where Ω1 and Ω2 are open, nonempty, disjoint
sets in T. Take x1 ∈ Ω1 and x2 ∈ Ω2 and connect them with a path γ : [0,1] →
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Ω ,γ(0) = x1, and γ(1) = x2. Then the setsω1 = γ−1Ω1 andω2 = γ−1Ω2 are disjoint,
nonempty, and open in [0,1] by the continuity of γ . However, the last contradicts the
connectedness of the segment [0,1].

Now, let Ω be connected. Take an arbitrary point x0 ∈ Ω and denote by Ω0 the
set of all points x∗ in Ω that can be connected with x0 through a finite chain of sets
Bk ⊂ Ω in the base B, k = 1, . . . ,m, such that x0 ∈ B1 ,x∗ ∈ Bm, and Bk ∩Bk+1 �=
/0 ,k = 1, . . . ,m−1.

Note, first, that the set Ω0 is open. Indeed, if a point y0 ∈ Ω0, then there is its
neighborhood B0 ⊆ Ω in the base B and all points of this neighborhood belong to
Ω0 . Second, the set Ω0 is closed in Ω .

Indeed, assume that ∂Ω0 ∩Ω �= /0. Then, for every point z0 ∈ ∂Ω0 ∩Ω , there is
a neighborhood B0 ⊆ Ω in the base B, and in this neighborhood there is a point
x∗ ∈Ω0 because z0 ∈ ∂Ω0. Thus, z0 ∈Ω0 by the definition of the set Ω0. However,
Ω0 is open and hence Ω0∩∂Ω0 = /0. The obtained contradiction disproves the above
assumption.

Thus, Ω0 is simultaneously open and closed in Ω and, consequently, being
nonempty, it coincides with the set Ω in view of its connectivity. But, by the con-
struction, Ω0 is obviously path connected.

Finally, if the space T has a base of topology B consisting of rectifiable domains,
then, covering any path γ in T by elements of this base, we are able to choose its
finite subcovering leading to the construction of the corresponding rectifiable path.


�

Proposition 13.2. If a domain G in a metric space (X ,d) is locally path connected
(rectifiable) at a point x0 ∈ ∂G, then x0 is accessible from G through a (locally
rectifiable) path γ : [0,1) → X , γ([0,1)) ⊂ G, limt→1 γ(t) = x0.

Proof. Choose a decreasing sequence of neighborhoods Vm of the point x0 where
Wm = Vm ∩G are path connected (rectifiable) and Wm ⊂ B(x0,2−m) and also a se-
quence of the points xm ∈ Wm, m = 1,2, . . . , and connect the points xm and xm+1

pairwise with (rectifiable) paths γm in Wm. Uniting the paths γm, m = 1,2, . . . , and
joining x0 in the end, we obtain the desired (locally rectifiable) path to the point x0

from G. 
�

A family of paths Γ1 in T is said to be minorized by a family of paths Γ2 in T ,
abbr. Γ1 > Γ2, if, for every path γ1 ∈ Γ1, there is a path γ2 ∈ Γ2 such that γ2 is a
restriction of γ1.

Proposition 13.3. Let Ω be an open set in a topological space T. Then

Δ(Ω ,T \Ω ,T ) > Δ(Ω ,∂Ω ,Ω) .

Proof. Indeed, for an arbitrary path γ : [a,b] → T with γ(a) ∈Ω and γ(b) ∈ T \Ω ,
by the continuity of γ , the preimage ω = γ−1(Ω) is an open set in [a,b] including
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the point a. Similarly, the preimage ω = γ−1(T \Ω) is also open in [a,b]. Thus,
in view of the connectivity of the segment [a,b], there is c ∈ γ−1(∂Ω) such that
γ([a,c)) ⊂Ω . 
�

Proposition 13.4. Let γ be a rectifiable path in a metric space (X ,d) connecting
points x1 ∈ B(x0,r1) and x2 ∈ X \ B(x0,r2), where 0 < r1 < r2 < ∞, and let ρ :
[0,∞] → [0,∞] be a Borel function. Then

∫

γ

ρ(d(x,x0))ds ≥
r2∫

r1

ρ(r)dr.

Proof. Indeed, by the definition of the length of a path in a metric space γ : [a,b] →
X , the length of a segment of the path

s(t1, t2) ≥ d(γ(t1),γ(t2)) .

Moreover, by the triangle inequality,

d(x0,γ(t2)) ≤ d(x0,γ(t1))+d(γ(t1),γ(t2))

and
d(x0,γ(t1)) ≤ d(x0,γ(t2))+d(γ(t1),γ(t2)) ;

thus,
d(γ(t1),γ(t2)) ≥ |d(x0,γ(t2))−d(x0,γ(t1))| .

Consequently,
ds ≥ |dr| ,

where r = d(x,x0), x = x(s). Finally, by the Darboux property of connected sets,
the continuous function d(x,x0) takes all intermediate values on γ; see, e.g., [186].
Hence, the multiplicity of any value r in the interval (r1,r2) of the path is not less
than 1 and the desired inequality follows. 
�

Proposition 13.5. If Ω and Ω ′ are open sets in metric spaces (X ,d) and (X ′,d′),
respectively, and f : Ω →Ω ′ is a homeomorphism, then the cluster set of f at every
point x0 ∈ ∂Ω ,

C(x0, f ) := { x′ ∈ X ′ : x′ = lim
n→∞

f (xn), xn → x0, xn ∈Ω } ,

belongs to the boundary of the set Ω ′.

Proof. Indeed, assume that some point y0 ∈C(x0, f ) is inside the domain Ω ′. Then,
by the definition of the cluster set, there is a sequence xn → x0 as n → ∞ such that
yn = f (xn) → y0. In view of the continuity of the inverse mapping g = f−1, we
have xn = g(yn) → g(y0) = x∗ ∈ Ω . However, the convergent sequence xn cannot
have two limits x0 ∈ ∂Ω and x∗ ∈ Ω in view of the triangle inequality d(x∗,x0) ≤
d(x∗,xn)+d(xn,x0). 
�
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13.3 On Weakly Flat and Strongly Accessible Boundaries

In this section G is a domain of a finite Hausdorff dimension α ≥ 1 in a space
(X ,d,μ) with a metric d and a locally finite Borel measure μ .

We say that the boundary of G is weakly flat at a point x0 ∈ ∂G if, for every
number P > 0 and every neighborhood U of the point x0, there is a neighborhood
V ⊂U such that

M(Δ(E,F;G)) ≥ P (13.8)

for all continua E and F in G intersecting ∂U and ∂V.
We also say that the boundary of the domain G is strongly accessible at a point

x0 ∈ ∂G, if, for every neighborhood U of the point x0, there are a compact set E ⊂G,
a neighborhood V ⊂U of the point x0, and a number δ > 0 such that

M(Δ(E,F ;G)) ≥ δ

for every continuum F in G intersecting ∂U and ∂V.
Finally, we say that the boundary ∂G is weakly flat and strongly accessible if

the corresponding properties hold at every point of the boundary.

Remark 13.2. In the definitions of the weakly flat and strongly accessible bound-
aries, we can restrict ourselves by a base of neighborhoods of a point x0 and, in
particular, we can take as the neighborhoods U and V of the point x0 only small
enough balls (open or closed) centered at the point x0. Moreover, here we may re-
strict ourselves only by continua E and F in U .

Proposition 13.6. If the boundary ∂G is weakly flat at a point x0 ∈ ∂G, then ∂G is
strongly accessible at the point x0.

Proof. Let P ∈ (0,∞) and U = B(x0,r0), where 0 < r0 < d0 = supx∈G d(x,x0). Then,
by the condition, there is r ∈ (0,r0) such that inequality (13.8) holds for all continua
E and F intersecting ∂B(x0,r0) and ∂B(x0,r). By the path connectedness of G, there
exist points y1 ∈ G∩ ∂B(x0,r0) and y2 ∈ G∩ ∂B(x0,r). Choose as a compactum E
an arbitrary path connecting the points y1 and y2 in G.

Then, for every continuum F in G intersecting ∂U and ∂V where V = B(x0,r),
inequality (13.8) holds. 
�

Lemma 13.1. Let G be a (rectifiable) domain in (X ,d,μ). If ∂G is weakly flat at a
point x0 ∈ ∂G, then G is locally path connected (rectifiable) at x0.

Proof. Let us assume that the domain G is not locally (rectifiable) path connected
at the point x0. Then there are r0 ∈ (0,d0), d0 = supx∈G d(x,x0) such that μ0 :=
μ(G∩B(x0,r0)) < ∞, and, for every neighborhood V ⊆U := B(x0,r0) of the point
x0, at least one of the following conditions holds:

1. V ∩G has at least two (rectifiable) path-connected components K1 and K2 such
that x0 ∈ K1 ∩K2;
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2. V ∩G has infinitely many (rectifiable) path-connected components K1, . . . ,Km, . . .,
such that x0 = limm→∞ xm for some xm ∈ Km and x0 /∈ Km for all m = 1,2, . . .. Note
that Km ∩ ∂V �= /0 for all m = 1,2, . . . in view of the path connectedness of G; see
Proposition 13.3.

In particular, either point 1 or 2 holds for the neighborhood V = U = B(x0,r0).
Let r∗ ∈ (0,r0). Then

M(Δ(K∗
i ,K∗

j ;G)) ≤ M0 :=
μ0

[2(r0 − r∗)]
α < ∞ ,

where K∗
i = Ki ∩B(x0,r∗) and K∗

j = Kj ∩B(x0,r∗) for all i �= j. Indeed, one of the
admissible functions for the family Γi j of all rectifiable paths in Δ(K∗

i ,K∗
j ;G) is

ρ(x) =
{ 1

2(r0−r∗)
if x ∈ B0 \B∗,

0 if x ∈ X \ (B0 \B∗),

where B0 = B(x0,r0) and B∗ = B(x0,r∗) because the components Ki and Kj cannot
be connected by a (rectifiable) path in V = B(x0,r0) and every (rectifiable) path
connecting K∗

i and K∗
j in G at least twice intersects the ring B0 \B∗; see Proposition

13.4.
In view point 1 and 2, the above modulus estimate contradicts the condition of

the weak flatness at the point x0. Really, by the condition, for instance, there is
r ∈ (0,r∗) such that

M(Δ(K∗
i0 ,K

∗
j0 ;G)) ≥ M0 +1

for every large enough pair i0 and j0, i0 �= j0, because in the corresponding K∗
i0

and
K∗

j0
with d(x0,xi0) and d(x0,x j0) < r, there exist paths intersecting ∂B(x0,r∗) and

∂B(x0,r); see Proposition 13.3.
Thus, the above assumption on the absence of the (rectifiable) path connectedness

of G at the point x0 was not true. 
�
Corollary 13.2. A (rectifiable) domain with a weakly flat boundary is locally (recti-
fiable) path connected at every point of its boundary.

13.4 On Finite Mean Oscillation With Respect to Measure

Let G be a domain in a space (X ,d,μ). Similarly to [127] (cf. also [110]), we say
that a function ϕ : G → R has finite mean oscillation at a point x0 ∈ G, abbr.
ϕ ∈ FMO(x0), if

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x)−ϕε | dμ(x) < ∞ , (13.9)

where

ϕε = −
∫

G(x0,ε)
ϕ(x) dμ(x) =

1
μ(G(x0,ε))

∫

G(x0,ε)

ϕ(x) dμ(x)
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is the mean value of the function ϕ(x) over the set

G(x0,ε) = {x ∈ G : d(x,x0) < ε}

with respect to the measure μ . Here condition (13.9) includes the assumption that ϕ
is integrable with respect to the measure μ over the set G(x0,ε) for some ε > 0.

Proposition 13.7. If, for some numbers ϕε ∈ R, ε ∈ (0,ε0],

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x)−ϕε | dμ(x) < ∞ , (13.10)

then ϕ ∈ FMO(x0).

Proof. Indeed, by the triangle inequality,

−
∫

G(x0,ε)
|ϕ(x)−ϕε | dμ(x) ≤ −

∫
G(x0,ε)

|ϕ(x)−ϕε | dμ(x)+ |ϕε −ϕε |

≤ 2 ·−
∫

G(x0,ε)
|ϕ(x)−ϕε | dμ(x) .


�

Corollary 13.3. In particular, if

lim
ε→0

−
∫

G(x0,ε)
|ϕ(x)| dμ(x) < ∞ , (13.11)

then ϕ ∈ FMO(x0).

Variants of the following lemma were first proved for the BMO functions and
inner points of a domain G in R

n under n = 2 and n ≥ 3, respectively, in [271]–
[275] and [204]– [209], and then for boundary points of G in R

n, n ≥ 2, with the
condition on doubling of a measure and for the FMO functions in [127] and [276]–
[280].

Lemma 13.2. Let G be a domain in a space (X ,d,μ) that is upper α-regular with
α ≥ 2 at a point x0 ∈ G and

μ(G∩B(x0,2r)) ≤ γ · logα−2 1
r
·μ(G∩B(x0,r)) (13.12)

for all r ∈ (0,r0). Then, for every nonnegative function ϕ : G → R of the class
FMO(x0), ∫

G∩A(ε ,ε0)

ϕ(x)dμ(x)(
d(x,x0) log 1

d(x,x0)

)α = O

(
log log

1
ε

)
(13.13)

as ε → 0 and some ε0 ∈ (0,δ0), where δ0 = min(e−e,d0), d0 = supx∈G d(x,x0),

A(ε,ε0) = {x ∈ X : ε < d(x,x0) < ε0}.
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Proof. Choose ε0 ∈ (0,δ0) such that the function ϕ is integrable in G0 = G∩B0

with respect to the measure μ , where B0 = B(x0,ε0),

δ = sup
r∈(0,ε0)

−
∫

G(r)
|ϕ(x)−ϕr| dμ(x) < ∞ ,

G(r) = G ∩ B(r), and B(r) = B(x0,r) = {x ∈ X : d(x,x0) < r}. Further, let ε <
2−1ε0, εk = 2−kε0, Ak = {x ∈ X : εk+1 ≤ d(x,x0) < εk}, Bk = B(εk), and let ϕk

be the mean value of the function ϕ(x) in Gk = G∩Bk,k = 0,1,2 . . ., with respect
to the measure μ . Choose a natural number N such that ε ∈ [εN+1,εN) and denote
κ(t) = (t log2 1/t)−α . Then G∩A(ε,ε0)⊂ Δ(ε) :=

⋃N
k=0Δk, where Δk = G∩Ak and

η(ε) =
∫

Δ(ε)

ϕ(x) κ(d(x,x0)) dμ(x) ≤ |S1| + S2,

S1(ε) =
N

∑
k=1

∫

Δk

(ϕ(x)−ϕk) κ(d(x,x0)) dμ(x),

S2(ε) =
N

∑
k=1

ϕk

∫

Δk

κ(d(x,x0)) dμ(x).

Since Gk ⊂ G(2d(x,x0)) for x ∈ Δk, then, by condition (13.7), μ(Gk) ≤
μ(G(2d(x,x0))) ≤C ·2α ·d(x,x0)α , i.e. 1/d(x,x0)α ≤C ·2α(1/μ(Gk)).

Moreover, kα ≤ (log2(1/d(x,x0))α for x ∈ Δk and, thus,

|S1| ≤ δC ·2α
N

∑
k=1

1
kα

≤ 2δC ·2α

because under α ≥ 2,

∞

∑
k=2

1
kα

<
∫ ∞

1

dt
tα

=
1

α−1
≤ 1.

Further,

∫

Δk

κ(d(x,x0)) dμ(x) ≤ 1
kα

∫

Ak

dμ(x)
d(x,x0)α

≤ C ·2α
kα

· μ(Gk)−μ(Gk+1)
μ(Gk)

≤ C2α

kα
.

Moreover, by condition (13.12),

μ(Gk−1) = μ(B(2εk)∩G)) ≤ γ · logα−2
2

1
εk

·μ(Gk)
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and, hence,

|ϕk −ϕk−1| =
1

μ(Gk)

∣∣∣∣∣∣
∫

Gk

(ϕ(x)−ϕk−1) dμ(x)

∣∣∣∣∣∣

≤
γ · logα−2

2
1
εk

μ(Gk−1)

∫

Gk−1

|(ϕ(x)−ϕk−1)| dμ(x) ≤ δ · γ · logα−2
2

1
εk

and, by decreasing εk,

ϕk = |ϕk| ≤ ϕ1 +
k

∑
l=1

|ϕl −ϕl−1| ≤ ϕ1 + kδγ · logα−2
2

1
εk

.

Consequently, because under α ≥ 2

∞

∑
k=1

1
kα

≤ 1+
∞∫

1

dt
tα

= 1+
1

α−1
≤ 2 ,

we have the following estimates:

S2 = |S2| ≤ C2α
N

∑
k=1

ϕk

kα
≤ C2α

N

∑
k=1

ϕ1 + kδγ · logα−2
2

1
εk

kα

≤ C2α
(

2ϕ1 +δγ
N

∑
k=1

(k + log2 ε−1
0 )α−2

kα−1

)

= C2α
(

2ϕ1 +δγ
N

∑
k=1

1
k

(k + log2 ε−1
0 )α−2

kα−2

)

≤ C2α
(

2ϕ1 +δγ(1+ log2 ε
−1
0 )α−2

N

∑
k=1

1
k

)

and

η(ε) ≤ 2α+1C(δ +ϕ1)+2αCδγ(1+ log2 ε
−1
0 )α−2

N

∑
k=1

1
k

.

Since
N

∑
k=2

1
k

<

N∫

1

dt
t

= logN < log2 N

and, for ε0 ∈ (0,2−1) and ε < εN ,

N < N + log2

(
1
ε0

)
= log2

(
1
εN

)
< log2

(
1
ε

)
,
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then under ε0 ∈ (0,δ0), δ0 = min(e−e,d0), and ε → 0,

η(ε) ≤ 2α+1C(δ +ϕ1)+2αCδγ(1+ log2 ε
−1
0 )α−2

(
1+ log2 log2

1
ε

)

= O

(
log log

1
ε

)
.


�

Remark 13.3. Note that condition (13.12) is weaker than the condition on doubling
of a measure,

μ(G∩B(x0,2r)) ≤ γ ·μ(G∩B(x0,r)) ∀r ∈ (0,r0) (13.14)

applied before it in the context of R
n,n ≥ 2 , in [127]. Note also that condition

(13.14) automatically holds in the inner points of the domain G if X is Ahlfors
regular.

13.5 On Continuous Extension to Boundaries

In what follows, (X ,d,μ) and (X ′,d′,μ ′) are spaces with metrics d and d′ and lo-
cally finite Borel measures μ and μ ′, and G and G′ domains with finite Hausdorff
dimensions α and α ′ ≥ 1 in (X ,d) and (X ′,d′), respectively.

Lemma 13.3. Let a domain G be locally path connected at a point x0 ∈ ∂G, let G′

be compact, and let f : G → G′ be a Q-homeomorphism such that ∂G′ is strongly
accessible at least at one point of the cluster set

C(x0, f ) = {y ∈ X ′ : y = lim
k→∞

f (xk), xk → x0, xk ∈ G} , (13.15)

Q : G → [0,∞] is a measurable function satisfying the condition
∫

G(x0,ε ,ε0)

Q(x) ·ψα
x0,ε(d(x,x0))dμ(x) = o(Iαx0

(ε)) (13.16)

as ε → 0, where

G(x0,ε,ε0) = {x ∈ G : ε < d(x,x0) < ε(x0)},

ε(x0) ∈ (0,d(x0)), d(x0) = supx∈G d(x,x0), and ψx0,ε(t) is a family of nonnegative
measurable (by Lebesgue) functions on (0,∞) such that

0 < Ix0(ε) =
ε0∫

ε

ψx0,ε(t)dt < ∞ ∀ ε ∈ (0,ε0) . (13.17)
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Then f can be extended to the point x0 by continuity in (X ′,d′).

Proof. Let us show that the cluster set E = C(x0, f ) is a singleton. Note that E �= /0
in view of the compactness of G′; see, e.g., Remark 3 of Chapter 41 in [186]. By the
condition of the lemma, ∂G′ is strongly accessible at a point y0 ∈ E. Assume that
there is one more point y∗ ∈ E. Let U = B(y0,r0), where 0 < r0 < d(y0,y∗).

In view of the local path connectedness of the domain G at the point x0, there is
a sequence of neighborhoods Vm of the point x0 such that Gm = G∩Vm are domains
and d(Vm) → 0 as m → ∞. Then there exist points ym and y∗m ∈ Fm that are close
enough to y0 and y∗, respectively, for which d′(y0,ym) < r0 and d′(y0,y∗m) > r0 and
that can be joined by paths Cm in the domains Fm = f Gm. By the construction,

Cm ∩∂B(y0,r0) �= /0

in view of the connectedness of Cm.
By the condition of the strong accessibility, there are a compact set C ⊂ G′ and a

number δ > 0 such that
M(Δ(C,Cm;G′)) ≥ δ

for large m because dist(y0,Cm) → 0 as m → ∞. Note that K = f−1(C) is compact
as a continuous image of a compact set. Thus, ε0 = dist(x0,K) > 0.

Let Γε be the family of all paths in G connecting the ball Bε = {x ∈ X : d(x,x0) <
ε}, ε ∈ (0,ε0), with the compactum K. Let ψ∗

x0,ε be a Borel function such that
ψ∗

x0,ε(t) = ψx0,ε(t) for a.e. t ∈ (0,∞) that exists by the Lusin theorem; see, e.g.,
point 2.3.5 in [55].

Then the function

ρε(x) =
{
ψ∗

x0,ε(d(x,x0))/Ix0(ε), x ∈ G(x0,ε),
0, x ∈ X\G(x0,ε)

is admissible for Γε by Proposition 13.4 and, consequently,

M( fΓε) ≤
∫

G

Q(x) ·ραε (x) dμ(x).

Hence, M( fΓε) → 0 as ε → 0 in view of (13.16).
On the other hand, for any ε ∈ (0,ε0), Gm ⊂ Bε for large m, hence Cm ⊂ f Bε for

such m, and, thus,
M( fΓε) ≥ M(Δ(C,Cm;G′)) .

The obtained contradiction disproves the above assumption that the cluster set E is
not degenerated to a point. 
�

Corollary 13.4. In particular, if

lim
ε→0

∫

ε<d(x,x0)<ε0

Q(x) ·ψα(d(x,x0))dμ(x) < ∞ , (13.18)
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where ψ(t) is a measurable function on (0,∞) such that

0 < I(ε,ε0) :=
ε0∫

ε

ψ(t)dt < ∞ ∀ ε ∈ (0, ε0)

and I(ε,ε0)→∞ as ε → 0, then any Q-homeomorphism f : G → G′ can be extended
to the point x0 by continuity in (X ′,d′).

Here, we assume that the function Q is extended by zero outside G.

Remark 13.4. In other words, it suffices for the singular integral (13.18) to be con-
vergent in the sense of the principal value at the point x0 at least for one kernel ψ
with a nonintegrable singularity at zero. Furthermore, as the lemma shows, it is even
sufficient for the given integral to be divergent but with the controlled speed

∫

ε<d(x,x0)<ε0

Q(x) ·ψα(d(x,x0))dμ(x) = o(Iα(ε,ε0)). (13.19)

Choosing in Lemma 13.3 ψ(t) ≡ 1/t, we obtain the following theorem.

Theorem 13.1. Let G be locally path connected at a point x0 ∈ ∂G, G′ compact,
and ∂G′ strongly accessible. If a measurable function Q : G → [0,∞] satisfies the
condition ∫

G(x0,ε ,ε0)

Q(x)dμ(x)
d(x,x0)α

= o

([
log

1
ε

]α)
(13.20)

as ε → 0, where G(x0,ε,ε0) = {x ∈ G : ε < d(x,x0) < ε0} for ε0 < d(x0) =
supx∈G d(x,x0), then any Q-homeomorphism f : G → G′ can be extended to x0 by
continuity in (X ′,d′).

Corollary 13.5. In particular, the conclusion of Theorem 13.1 is valid if the singular
integral ∫

Q(x)dμ(x)
d(x,x0)α

(13.21)

is convergent at the point x0 in the sense of the principal value.

Here, as in Corollary 13.4, we assume that Q is extended by zero outside G.

Combining Lemmas 13.2 and 13.3, choosing ψε(t) ≡ t log(1/t), t ∈ (0,δ0), we
obtain the following theorem.

Theorem 13.2. Let X be upper α-regular with α ≥ 2 at a point x0 ∈ ∂G, where G
is locally path connected and satisfies condition (13.12), and let G′ be compact and
∂G′ strongly accessible. If Q ∈ FMO(x0), then any Q-homeomorphism f : G → G′

can be extended to the point x0 by continuity in (X ′,d′).
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Finally, combining Theorem 13.2 and Corollary 13.3, we obtain the following
statement.

Corollary 13.6. In particular, if

lim
ε→0

−
∫

G(x0,ε)
Q(x) dμ(x) < ∞ , (13.22)

where G(x0,ε) = {x ∈ G : d(x,x0) < ε}, then any Q-homeomorphism f : G → G′

can be extended to the point x0 by continuity in (X ′,d′).

13.6 On Extending Inverse Mappings to Boundaries

As before, C(x0, f ) denotes have the cluster set of the mapping f at a point x0 ∈ ∂G;
see (13.15).

Lemma 13.4. Let f : G → G′ be a Q-homeomorphism with Q ∈ L1
μ(G). If the do-

main G is locally path connected at points x1 and x2 ∈ ∂G, x1 �= x2, and G′ has a
weakly flat boundary, then C(x1, f )∩ C(x2, f ) = /0.

Proof. Set Ei = C(xi, f ), i = 1,2, and δ = d(x1,x2). Let us assume that E1∩E2 �= /0.

Since the domain G is locally path connected at the points x1 and x2, there exist
neighborhoods U1 and U2 of the points x1 and x2, respectively, such that W1 = G∩U1

and W2 = G∩U2 are domains and U1 ⊂ B1 = B(x1,δ/3) and U2 ⊂ B2 = B(x2,δ/3).
Then, by the triangle inequality, dist(W1,W2) ≥ δ/3 and the function

ρ(x) =
{

3
δ if x ∈ G,
0 if x ∈ X \G
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is admissible for the path family Γ = Δ(W1,W2;G). Thus,

M( fΓ ) ≤
∫

X

Q(x)ρα(x)dμ(x) ≤ 3α

δα
∫

G

Q(x)dμ(x) < ∞

because Q ∈ L1
μ(G).

The last estimate contradicts, however, the condition of the weak flatness (13.8) if
there is a point y0 ∈ E1∩E2 . Indeed, then y0 ∈ fW1∩ fW2 and in the domains W ∗

1 =
fW1 and W ∗

2 = fW2 there exist paths intersecting any prescribed spheres ∂B(y0,r0)
and ∂B(y0,r∗) with small enough radii r0 and r∗ ; see Proposition 13.3. Hence, the
assumption that E1 ∩E2 �= /0 was not true. 
�

By Lemma 13.4, we obtain, in particular, the following conclusion.

Theorem 13.3. Let G be locally path connected at all its boundary points and G
compact, G′ with a weakly flat boundary, and let f : G→G′ be a Q-homeomorphism
with Q ∈ L1

μ(G). Then the inverse homeomorphism g = f−1 : G′ → G admits a

continuous extension g : G′ → G.

Remark 13.5. In fact, as is clear from the above proof (see also Proposition 13.5), it
is sufficient in Lemma 13.4 and Theorem 13.3 as well as in all successive theorems
to request instead of the condition Q ∈ L1

μ(G) the integrability of Q in a neighbor-
hood of ∂G assuming Q to be extended by zero outside G.

13.7 On Homeomorphic Extension to Boundaries

Combining the results of the previous sections, we obtain the following theorems.

Lemma 13.5. Let G be locally path connected at its boundary, let G′ have a weakly
flat boundary, and G, G′ be compact. If a function Q : G → [0, ∞] of the class L1

μ(G)
satisfies condition (13.16) at every point x0 ∈ ∂G, then any Q-homeomorphism f :
G → G′ is extended to a homeomorphism f : G → G′.

Theorem 13.4. Let G and G′ have weakly flat boundaries, let G and G′ be compact,
and let Q : G → [0, ∞] be a function of the class L1

μ(G) with

∫

G(x0,ε ,ε0)

Q(x)dμ(x)
d(x,x0)α

= o

([
log

1
ε

]α)
(13.23)

at every point x0 ∈ ∂G, where G(x0,ε,ε0) = {x ∈ G : ε < d(x,x0) < ε0}, ε0 =
ε(x0) < d(x0) = supx∈G d(x,x0) . Then any Q-homeomorphism f : G → G′ admits
an extension to a homeomorphism f : G → G′.
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Corollary 13.7. In particular, the conclusion of Theorem 13.4 holds if the singular
integral ∫

Q(x)dμ(x)
d(x,x0)α

(13.24)

is convergent in the sense of the principal value at all boundary points.

As before, we assumed here that Q has been extended by zero outside G.

Theorem 13.5. Let G be a domain in an upper α-regular space (X ,d,μ), α ≥ 2,
that is locally path connected and satisfies condition (13.12) at all boundary points,
let G′ be a domain with a weakly flat boundary in a space (X ′,d′,μ ′), and let G
and G′ be compact. If a function Q : G → [0,∞] has finite mean oscillation at all
boundary points, then any Q-homeomorphism f : G → G′ can be extended to a
homeomorphism f : G → G′.

Corollary 13.8. In particular, the conclusion of Theorem 13.5 holds if

lim
ε→0

−
∫

G(x0,ε)
Q(x) dμ(x) < ∞ (13.25)

at all points x0 ∈ ∂G, where G(x0,ε) = {x ∈ G : d(x,x0) < ε}.

Remark 13.6. If conditions of the type (13.16), (13.23), (13.24), (13.25) or finiteness
of the mean oscillation hold only on a closed set E ⊂ ∂G, Q, extended by zero
outside the domain G, is integrable in a neighborhood of E, G and G′ are compact,
G is locally connected at every point of E, and ∂G′ is weakly flat at all points of the
cluster set

E ′ = C(E, f ) = {x′ ∈ X ′ : x′ = lim
k→∞

f (xk), xk ∈ G, xk → x0 ∈ E} ,

then the Q-homeomorphism f : G → G′ admits a homeomorphic extension f : G∪
E → G′ ∪E ′.

13.8 On Moduli of Families of Paths Passing Through Point

In this section we establish conditions on a measure μ under which the modulus of
a family of all paths in a space (X ,d,μ) passing through a fixed point is zero.

Lemma 13.6. Let the condition

∫

A(x0,r,R0)

ψα(d(x,x0)) dμ(x) = o

⎛
⎝
⎡
⎣

R0∫

r

ψ(t) dt

⎤
⎦
α⎞
⎠ (13.26)

hold as r → 0, where
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A(x0,r,R0) = {x ∈ X : r < d(x,x0) < R0}, R0 ∈ (0,∞),

and let ψ(t) be a nonnegative function on (0,∞) such that

0 <

R0∫

r

ψ(t) dt < ∞ ∀r ∈ (0,R0) .

Then the family of all paths in X passing through the point x0 has modulus zero.

� ��� �	
 00 : x
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Remark 13.7. Condition (13.26) implies that under r → 0,

∫

A(x0,r,r0)

ψα(d(x,x0)) dμ(x) = o

⎛
⎝
⎡
⎣

r0∫

r

ψ(t) dt

⎤
⎦
α⎞
⎠ (13.27)

for all r0 ∈ (0,R0).

Proof of Lemma 13.6. Let Γ be the family of all paths in X passing through
the point x0. Then all paths in X passing through the point x0. Then Γ =

⋃∞
k=1Γk,

where the Γk are the families of all paths in X passing through x0 and intersecting the
spheres Sk = S(x0,rk) for some sequence such that rk ∈ (0,R0) ,rk → 0, as k → ∞.

However, M(Γk) = 0. Indeed, the function

ρ(x) =

⎧⎨
⎩
ψ(d(x,x0))

(rk∫
r
ψ(t) dt

)−1

if x ∈ Ak(r),

0 if x ∈ X\Ak(r),



274 13 On Mapping Theory in Metric Spaces

where Ak(r) = A(x0,r,rk), is admissible for the family Γk(r) of all paths intersecting
the spheres Sk and S(x0,r), r ∈ (0,rk); see Proposition 13.4. Since Γk > Γk(r), then

M(Γk) ≤ M(Γk(r)) ≤

⎛
⎝

rk∫

r

ψ(t) dt

⎞
⎠

−α ∫

Ak(r)

ψα(d(x,x0)) dμ(x)

and by condition (13.26) [cf. also (13.27)], it follows that M(Γk) = 0 because r ∈
(0,rk) is arbitrary.

Finally, from the subadditivity of the modulus, it follows that

M(Γ ) ≤
∞

∑
k=1

M(Γk) = 0.


�

Theorem 13.6. For some R0 ∈ (0,∞), under r → 0, let

∫

A(x0,r,R0)

dμ(x)
dα(x,x0)

= o

([
log

R0

r

]α)
. (13.28)

Then the family of all paths in X passing through point x0 has the modulus zero.

Remark 13.8. For X = R
n, n ≥ 2 , and R0 ∈ (0,∞),

∫

A(x0,r,R0)

dm(x)
|x− x0|n

= ωn−1 log

(
R0

r

)
= o

([
log

R0

r

]n)
, (13.29)

where m denotes the Lebesgue measure and ωn−1 the area of the unit sphere in R
n.

For spaces (X ,d,μ) that are upper α-regular at the point x0 with α > 1,

∫

r<d(x0,x)<R0

dμ(x)
d(x,x0)α

= O

(
log

R0

r

)
(13.30)

(see [107], cf. 54), and, thus, condition (13.28) also automatically holds in such
spaces.

13.9 On Weakly Flat Spaces

Recall that a topological space T is said to be locally (path) connected at a point
x0 ∈ T if, for every neighborhood U of the point x0, there is a neighborhood V ⊆U
of the point x0 that is (path) connected; see [186], p. 232. We say that a space T is
(path) connected at a point x0 if, for every neighborhood U of the point x0, there
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is a neighborhood V ⊆ U of the point x0 such that V \ {x0} is (path) connected.
Note that (path) connectedness of a space T at a point x0 implies its local (path)
connectedness at the point x0. The inverse conclusion is, generally speaking, not
true.

Here (X ,d,μ) is a space with metric d and locally finite Borel measure μ and
with a finite Hausdorff dimension α ≥ 1.

We say that the path-connected space (X ,d,μ) is weakly flat at a point x0 ∈ X
if, for every neighborhood U of the point x0 and every number P > 0, there is a
neighborhood V ⊆U of x0 such that

M(Δ(E,F;X)) ≥ P (13.31)

for any continua E and F in X intersecting ∂V and ∂U .

0x

F

E

V

U

X
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We also say that the path-connected space (X ,d,μ) is strongly connected at a
point x0 ∈ X if, for every neighborhood U of the point x0, there are a neighborhood
V ⊆U of x0 , a compact set E in X , and a number δ > 0 such that

M(Δ(E,F;X)) ≥ δ

for any continua F in X intersecting ∂V and ∂U .

Finally, we say that a space (X ,d,μ) is weakly flat (strongly connected) if it is
weakly flat (strongly connected) at every point.

Remark 13.9. In the definitions of weakly flat and strongly connected spaces, we
may restrict ourselves by a base of neighborhoods of a point x0 and, in particular,
take as U and V only enough small balls (open or closed) centered at the point x0.
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Moreover, here we may restrict ourselves only by continua E and F in U . It is also
obvious that every domain in a weakly flat space is a weakly flat space.

The following statement is not so important and is proved similarly to Proposition
13.6; hence, we omit its proof here.

Proposition 13.8. If a space (X ,d,μ) is weakly flat at a point x0 ∈ X, then X is
strongly connected at the point x0.

In what follows, the following statement is much more important.

Lemma 13.7. If a space (X ,d,μ) is weakly flat at a point x0 ∈ X, then (X ,d,μ) is
locally path connected at the point x0.

Proof. Let us assume that the space X is not locally path connected at the point x0.
Then there are r0 ∈ (0,d0), d0 = supx∈X d(x,x0), such that μ0 := μ(B(x0,r0)) < ∞
and every neighborhood V ⊆ U := B(x0,r0) of the point x0 has a path-connected
component K0 including x0 and path-connected components K1, . . . ,Km, . . . that are
different from K0 such that x0 = limm→∞ xm for some xm ∈ Km. Note that Km∩∂V �=
/0 for all m = 1,2, . . . in view of the path connectedness of X ; see Proposition 13.3.

In particular, this is true for the neighborhood V =U = B(x0,r0). Let r∗ ∈ (0,r0).
Then, for all i = 1,2, . . .,

M(Δ(K∗
i ,K∗

0 ;G)) ≤ M0 :=
μ0

[2(r0 − r∗)]
α < ∞ ,

where K∗
i = Ki ∩B(x0,r∗) and K∗

0 = K0 ∩B(x0,r∗). Indeed, one of the admissible
functions for the family Γi of all rectifiable curves in Δ(K∗

i ,K∗
0 ;G) is

ρ(x) =
{ 1

2(r0−r∗)
, x ∈ B0 \B∗,

0, x ∈ X \ (B0 \B∗),

where B0 = B(x0,r0) and B∗ = B(x0,r∗), because the components Ki and K0 cannot
be connected by a path in V = B(x0,r0) and every path connecting K∗

i and K∗
0 at

least twice intersects the ring B0 \B∗,; see Proposition 13.4.
However, the above modulus estimate contradicts the condition of the weak flat-

ness at the point x0. Really, by this condition, for instance, there is r ∈ (0,r∗) such
that

M(Δ(K∗
i0 ,K

∗
0 ;G)) ≥ M0 +1

for every large enough i0 = 1,2, . . . because in the corresponding K∗
i0

with d(xo,xi0)<
r and K∗

0 there exist paths intersecting ∂B(x0,r∗) and ∂B(x0,r); see Proposition 13.3.
Thus, the above assumption on the absence of the path connectedness of the

space X at the point x0 was not true. 
�

Combining Lemma 13.7 and Proposition 13.1, we obtain the following conclu-
sion.



13.10 On Quasiextremal Distance Domains 277

Corollary 13.9. An open set Ω in a weakly flat space (X ,d,μ) is path connected if
and only if it is connected.

Corollary 13.10. A domain G in a weakly flat space (X ,d,μ) is locally path con-
nected at a point x0 ∈ ∂G if and only if G is locally connected at the point x0.

Combining Lemmas 13.6 and 13.7, we obtain the following result.

Theorem 13.7. If a space (X ,d,μ) is weakly flat at a point x0 ∈ X and condition
(13.26), in particular, (13.28), holds, then (X ,d,μ) is path connected at the point
x0.

By Remark 13.8, we come to the following conclusion.

Corollary 13.11. If a space X is weakly flat and upper α-regular at a point x0 ∈ X
with α > 1, then X is path connected at the point x0.

Remark 13.10. R
n, n ≥ 2 , is a weakly flat space because

M(Δ(E,F;Rn)) ≥ cn log
R
r

(13.32)

for all continua E and F intersecting the boundaries of the balls B
n(R) and B

n(r);
see, e.g., the subsection 10.12 in [316].

13.10 On Quasiextremal Distance Domains

Similarly to [81], we say that a domain G in (X ,d,μ) is a quasiextremal distance
domain, abbr. a QED domain, if

M(Δ(E,F;X)) ≤ K M(Δ(E,F;G)) (13.33)

for a finite number K ≥ 1 and all continua E and F in G.
As is easy to see from the definitions, a QED domain G in a weakly flat space

has a weakly flat boundary and, as a consequence, ∂G is strongly accessible and,
moreover, G is locally path connected at all points of the boundary. Thus, all the
above results on the extension of Q-homeomorphisms to the boundary hold for QED
domains in weakly flat spaces. Let us review these results.

Lemma 13.8. Let f be a Q-homeomorphism between QED domains G and G′ in
weakly flat spaces X and X ′, respectively, G′ compact and at a point x0 ∈ ∂G, let

∫

A(x0,ε ,ε0)

Q(x)ψα(d(x,x0)) dμ(x) = o

⎛
⎝
⎡
⎣

ε0∫

ε

ψ(t) dt

⎤
⎦
α⎞
⎠ (13.34)

as ε → 0, where
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A(x0,ε,ε0) = {x ∈ G : ε < d(x,x0) < ε0} ,

and ψ(t) is a nonnegative function on (0,∞) such that

0 <

ε0∫

ε

ψ(t) dt < ∞ ∀ε ∈ (0,ε0) .

Then there is a limit of f (x) as x → x0.

Corollary 13.12. In particular, the limit of f (x) as x → x0 exists if
∫

A(x0,ε ,ε0)

Q(x)ψα(d(x,x0)) dμ(x) < ∞ (13.35)

and

lim
ε→0

ε0∫

ε

ψ(t) dt = ∞ . (13.36)

Theorem 13.8. Let f be a Q-homeomorphism between QED domains G and G′

in weakly flat spaces X and X ′, respectively, and let G′ be compact. If, at a point
x0 ∈ ∂G, ∫

A(x0,ε ,ε0)

Q(x)dμ(x)
d(x,x0)α

= o

([
log

ε0

ε

]α)
, (13.37)

then f admits a continuous extension to the point x0.

Corollary 13.13. In particular, the conclusion of Theorem 13.8 holds if the singular
integral
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∫
Q(x)dμ(x)
d(x,x0)α

(13.38)

is convergent at x0 in the sense of the principal value.

Here we assume that Q is extended by zero outside the domain G.

Lemma 13.9. Let f be a Q-homeomorphism between QED domains G and G′ in
weakly flat spaces X and X ′, respectively, and let G be compact. If Q ∈ L1

μ(G), then

the inverse homeomorphism g = f−1 admits a continuous extension g : G′ → G.

Theorem 13.9. Let f be a Q-homeomorphism between QED domains G and G′ in
weakly flat spaces X and X ′ and let G and G′ be compact. If Q ∈ L1

μ(G) satisfies
either (13.37) or (13.38) at every point x0 ∈ ∂G, then f admits a homeomorphic
extension f : G → G′.

Theorem 13.10. Let f be a Q-homeomorphism between QED domains G and G′

in weakly flat spaces X and X ′, respectively, and let G and G′ be compact. If the
function Q : X → [0,∞] has finite mean oscillation at a point x0 ∈ ∂G,

μ(B(x0,2r)) ≤ γ · logα−2 1
r
·μ(B(x0,r)) ∀r ∈ (0,r0) , (13.39)

and (X ,d,μ) is upper α-regular with α ≥ 2 at x0, then f admits a continuous ex-
tension to the point x0. If the last two conditions hold at every point of ∂G, then f
admits a homeomorphic extension to the boundary.

Remark 13.11. In the case of Ahlfors regular spaces, even the condition on doubling
measure holds, which is stronger than condition (13.39); see Remark 13.3. In view
of the compactness of G, Q is integrable in a neighborhood of ∂G that follows from
the condition of finite mean oscillation at all points of ∂G; see Remark 13.5. If Q is
given only in a domain G, then it can be extended by zero outside G. In particular,
to have Q ∈ FMO(x0) for x0 ∈ ∂G, it suffices to have the condition

lim
ε→0

−
∫

B(x0,ε)
Q(x) dμ(x) < ∞ . (13.40)

By [81], the QED domains coincide in the class of finitely connected plane do-
mains with the so-called uniform domains introduced in [212]. The example in Sec-
tion 3.8 shows that, even among simply connected plane domains, the class of do-
mains with weakly flat boundaries is wider than the class of QED domains. The
example is based on the fact that QED domains satisfy the condition on doubling
measure (13.14) at every boundary point; see Lemma 2.13 in [81]. The example just
shows that the property on doubling measure is, generally speaking, not valid for
domains with weakly flat boundaries.
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13.11 On Null Sets for Extremal Distance

We say that a closed set A in a space (X ,d,μ) is a null set for extremal distance,
abbr. NED set, if

M(Δ(E,F;D)) = M(Δ(E,F;D\A)) (13.41)

for any domain D in X and any continua E and F in D.

N E E

F F
G G

( , ; \ )E F G N ( , ; )E F G

Figure 12

As in R
n,n ≥ 2, an NED set A in a weakly flat space X cannot have inner points

and, moreover, they do not split the space X even locally, i.e., G \A has only one
component of the path connectedness for any domain G in X . Thus, the complement
of an NED set A in such an X is a very partial case of QED domains. Hence, NED
sets in weakly flat spaces play the same role in the problems of removability of
singular sets under quasiconformal mappings and their generalizations as in R

n,
n ≥ 2.

Proposition 13.9. Let A be an NED set in a weakly flat space (X ,d,μ) that is not a
singleton. Then
1. A has no inner point,
2. G\A is a domain for every domain G in X.

Proof. (1) Let us assume that there is a point x0 ∈ A such that B(x0,r0) ⊆ A for
some r0 > 0. Let x∗ ∈ X , x∗ �= x0, and γ be a path joining x0 and x∗ in X , γ : [0,1] →
X , γ(0) = x0 and γ(1) = x∗. For small enough t, the continuum Ct = γ([0, t]) is in
the ball B(x0,r0) and, consequently, γ([0, t])∩(X \A) = /0. Moreover, by Proposition
13.3, one can choose t = t0 such that Ct0 \{x0} �= /0 . Hence, setting E = F = Ct0 , we
have M(Δ(E,F,X)) = ∞ because the space X is weakly flat and, on the other hand,
M(Δ(E,F;X \A)) = 0. The obtained contradiction disproves the above assumption.
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(2) Denote by Ω∗ one of the (path-) connected components of the open set G\A;
see Corollary 13.9. Let us assume that there is one more connected component of
G \A. Then Ω = G \Ω∗ �= /0 and, considering G as a topological space T , and Ω
as its (open) set, by Proposition 13.3 we have that there is a path γ0 : [0,1] → G
such that γ0([0,1)) ⊆ Ω and x0 := γ0(1) ∈ ∂Ω ∩ ∂Ω∗ ∩G. Note that the mutually
complementany sets Ω and Ω∗ in the space G have a common boundary and ∂Ω∗ ⊂
∂Ω∗. Let x∗ ∈Ω∗ and xn ∈Ω∗, n = 1,2, . . . ,xn → x0 and γn be paths joining x∗ and
xn in Ω∗. Then M(Δ(|γ0|, |γn|;G)) → ∞ as n → ∞ because of the weak flatness of G
by Remark 13.9, but Δ(|γ0|, |γn|;G\A)) = /0 and, hence, M(Δ(|γ0|, |γn|;G\A)) = 0.

The obtained contradiction disproves the above assumption that G \A has more
than one connected component. 
�

Lemma 13.10. Let X and X ′ be compact weakly flat spaces, let G be a domain in
X, let A ⊂ G be an NED set in X, and let f be a homeomorphism of D = G\A into
X ′. If the cluster set

A′ = C(A, f ) = { x′ ∈ X ′ : x′ = lim
k→∞

f (xk), xk ∈ D, lim
k→∞

xk ∈ A }

is an NED set in X ′ and D′ = f (D), then G′ = D′ ∪A′ is a domain in X ′. Moreover,
there exist domains G∗ in X with the properties A ⊂ G∗, G∗ ⊂ G, and A′ ∩A∗ = ∅,
where A∗ = C(∂G∗, f ).

Proof. First note that the NED set A is compact as a closed set in a compact space
X and, hence, ε0 = dist(A,∂G) > 0. Thus, A belongs to the open set

Ω = {x ∈ X : dist(x,A) < ε}

for any (fixed) ε ∈ (0,ε0) that itself is in G. Since A is compact, A is contained in a
finite number of the connected components Ω1, . . . ,Ωm of Ω . Let x0 be an arbitrary
point of the domain G and let xk ∈ Ωk, k = 1, . . . ,m. Then there exist paths γk :

[0,1]→ G with γk(0) = x0 and γk(1) = xk, k = 1, . . . ,m. Note that the set C =
m⋃

k=1
|γk|

is compact and, hence, δ0 = dist(C,∂G) > 0.
Consider the open sets

Gδ = {x ∈ G : dist(x,∂G) > δ} .

By the triangle inequality, the set

C0 = C
⋃( m⋃

k=1

Ωk

)

is contained in Gδ for any δ ∈ (0,d0), where d0 = min(ε0 −ε,δ0). Furthermore, C0

is contained in only one of the connected components G∗
δ of the set Gδ because the

set C0 is connected.
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By the construction, G∗
δ ⊂ G, G∗

δ are domains in X and, consequently, they are
weakly flat spaces. By Proposition 13.9, the sets Dδ = G∗

δ \ A are domains with
weakly flat boundaries A in the spaces G∗

δ , δ ∈ (0,d0).
Let fδ = f |Dδ and gδ = ( fδ )−1 : D′

δ → Dδ , where D′
δ = fδ (Dδ ). Then, as it

follows by Proposition 13.5, we have the symmetry

A = C(A′,gδ ), A′ = C(A, fδ ) ∀δ ∈ (0,d0) .

Note that ∂G∗
δ , δ ∈ (0,d0), are compact subsets of the domain D and, conse-

quently, f∂G∗
δ are compact subsets of the domain D′ = f (D), which, by Propo-

sition 13.5, do not intersect A′. Thus, dδ = dist(A′, f∂G∗
δ ) > 0 for all δ ∈ (0,d0).

By Lemma 13.7, the space X ′ is locally path connected and hence, for every point
x0 ∈ A′, there is a domain U ⊂ B(x0,dδ ) that is a neighborhood of x0 and, by Propo-
sition 13.9, V =U \A′ is also a domain that is a subdomain of D′ by the construction.
Thus, G′ = D′ ∪A′ is a domain in X ′. 
�

Finally, by Proposition 13.9 and Lemma 13.10, we obtain the following conse-
quences for NED sets; see also Remarks 13.5 and 13.6.

Lemma 13.11. Let X and X ′ be compact weakly flat spaces, G a domain in X, A⊂G
an NED set in X, and f a Q-homeomorphism of D = G \A into X ′ such that the
cluster set C(A, f ) is an NED set in X ′. If, at a point x0 ∈ A, condition (13.34) holds,
then f admits a continuous extension to the point x0.

Remark 13.12. In particular, f admits an extension to x0 ∈ A by continuity if at
least one of the conditions (13.35)–(13.36), (13.37), (13.38), or (13.39) with Q ∈
FMO(x0), (13.40) holds at the point.

Theorem 13.11. Let X and X ′ be compact weakly flat spaces, G a domain in X, A an
NED set in G, and f a Q-homeomorphism of D = G\A into X ′ such that the cluster
set A′ =C(A, f ) is an NED set in X ′. If Q∈ L1

μ(G), then the inverse homeomorphism
g = f−1 : D′ → D, D′ = f (D), admits a continuous extension g : G′ → G, where
G′ = D′ ∪A′.

Remark 13.13. Thus, if Q ∈ L1
μ(D) satisfies at least one of the conditions (13.35)–

(13.39) with Q ∈ FMO(x0), (13.40) at every point x0 ∈ A, then any Q-homeomor-
phism f of the domain D = G\A into X ′ with NED sets A and A′ = C(A, f ) admits
a homeomorphic extension f : G → G′, where G′ = D′ ∪A′, D′ = f (D).

Theorem 13.12. Let X and X ′ be compact weakly flat spaces, G a domain in X,
A ⊂ G an NED set in X, and f be a Q-homeomorphism of D = G\A into X ′ with an
NED set A′ := C(A, f ). If Q has finite mean oscillation and X is upper α–regular
with α ≥ 2 at every point x0 ∈ A, then f admits a homeomorphic extension f :G →
G′, where G′ = D′ ∪A′ and D′ = f (D).
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13.12 On Continuous Extension to Isolated Singular Points

As before, here (X ,d,μ) and (X ′,d′,μ ′) are spaces with metrics d and d′ and locally
finite Borel measures μ and μ ′ , and G and G′ are domains in X and X ′ with finite
Hausdorff dimensions α and α ′ ≥ 1, respectively.

Lemma 13.12. Let a space X be path connected at a point x0 ∈G that has a compact
neighborhood, let X ′ be a compact weakly flat space, and let f : G \ {x0} → G′ be
a Q-homeomorphism, where Q : G → [0,∞] is a measurable function satisfying the
condition ∫

ε<d(x0,x)<ε0

Q(x) ·ψα
x0,ε(d(x,x0))dμ(x) = o(Iαx0

(ε)) (13.42)

as ε→ 0, where ε0 < dist(x0,∂G) and ψx0,ε(t) is a family of nonnegative (Lebesgue)
measurable functions on (0,∞) such that

0 < Ix0(ε) =
ε0∫

ε

ψx0,ε(t)dt < ∞ , ε ∈ (0,ε0) . (13.43)

Then f can be extended to the point x0 by continuity in X ′.

Proof. Let us show that the cluster set E = C(x0, f ) is a singleton. The set E is con-
tained in ∂G′ by Proposition 13.5. Moreover, E is a continuum because the domain
G is connected at the point x0. Indeed,

E = limsup
m→∞

f (Gm) =
∞⋂

m=1

f (Gm) ,

where Gm = G ∩Um is a decreasing sequence of domains with neighborhoods
Um of the point x0 and d(Gm) → 0 as m → ∞. Note that liminfm→∞ f (Gm) =
liminfm→∞ f (Gm) �= /0 in view of the compactness of X ′; see, e.g., Remark 3, Sec-
tion 41 in [186]. Consequently, E �= /0 is connected; see, e.g., I(9.12) in [334], p. 15.
Moreover, E is closed by the construction and hence is compact as a closed subspace
of the compact space X ′; see, e.g., Theorem 2, IV, Section 41 in [30].

In view of the connectedness of G at the point x0, there is a connected compo-
nent G∗ of the set G\{x0}∩B(x0,r0), 0 < r0 < dist(x0,∂G), containing G\{x0}∩
B(x0,r∗) for some r∗ ∈ (0,r0). If ∂G = /0, then here we set dist(x0,∂G) = ∞. Since
x0 has a compact neighborhood, one may suppose that B(x0,r0) is compact.

Consider G′
∗ = f G∗. Let us show that the cluster set E = C(x0, f ) is an isolated

connected component of ∂G′
∗. Indeed, K = ∂G∗ \ {x0} is a compact set as a closed

subset of the compact set B(x0,r0) and, consequently, K∗ = f K ⊂ G′ is compact.
On the other hand, the compact set E is contained in ∂G′, i.e., E ∩K∗ = /0. Thus,
dist(E,K∗) > 0. Finally, if y0 ∈ ∂G′

∗, then, by Proposition 13.5, C(y0,g) ⊂ ∂G∗ =
K ∪{x0}, where g = f−1|G′∗ and, consequently, either y0 ∈ E or y0 ∈ K∗.
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Let z0 ∈ G′
∗. Then, by Proposition 13.2, there is a path γ0 : [a,b) → G∗ from

γ0(a) = f−1(z0) to x0 = limt→b γ0(t) in G∗. Setting γ ′0 = f γ0 : [a,b) → G′
∗, we have

dist(γ ′0(t),E)→ 0 as t → b by the definition of E = C(x0, f ) in view of the compact-
ness of the space X ′. Set C∗ = γ ′0([a,b)) and

Γ = Δ(C∗,E,X ′) .

Consider also the families of paths

Γ0 = Δ(C∗,E,G′
∗)

and
Γ∗ = {γ ∈ Γ : |γ|∩R �= /0} ,

where
R = X ′ \ {G′

∗ ∪E} .

First, note that M(Γ0) = M(Γ̃ ), where Γ̃ =Γ \Γ∗. Indeed, on the one hand,Γ0 ⊂ Γ̃
and hence M(Γ0)≤ M(Γ̃ ). On the other hand, Γ0 < Γ̃ by Proposition 13.3 and hence
M(Γ0) ≥ M(Γ̃ ); see, e.g., Theorem 1 in [64], Section, A.5. Second, note that

M(Γ∗) ≤ M∗ :=
μ(X ′)

(2dist(C∗ ∪E, ∂G′∗ \E))α ′ < ∞

because C∗ ∪E and ∂G′
∗ \E are nonintersecting compact sets and μ ′(X ′) < ∞ in

view of the compactness of X ′ and the local finiteness of the measure μ ′.

Let us assume that the continuum E is not degenerate. Let y0 ∈ E be a limit point
of γ ′0(t) as t → b and y∗ ∈ E ,y∗ �= y0. By the Darboux property of connected sets,
∂B(y0,r) intersecs C∗ and E for all r ∈ (0,r0), where

r0 = min{d′(y0,γ0(a)),d′(y0,y∗)}.

Consider continua C(t) = γ0([a, t]), t ∈ [a,b). Note that dist(C(t),E) → 0 as t → b
by the construction. Thus,

M(Δ(C(t),E,X ′)) → ∞

as t → b because the space X ′ is weakly flat. Consequently, there is t0 ∈ [a,b) such
that

M0 := M(Δ(C(t0),E,X ′)) > M∗ .

Recall that Γ = Γ̃ ∪Γ∗. We obtain by the monotonicity and subadditivity of the
modulus

M∗ < M0 ≤ M(Γ ) ≤ M(Γ̃ )+M(Γ∗) = M(Γ0)+M(Γ∗) ≤ M(Γ0)+M∗ .

Consequently,
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M(Γ0) > 0 .

However,

Γ0 =
∞⋃

n=1

Γn,

where Γn = Δ(C(tn),E,G′
∗), tn → b as n → ∞, and by subadditivity of the modulus

M(Γ0) ≤
∞

∑
n=1

M(Γn) .

Thus, there is a continuum C = C(tn) such that

M(Δ(C,E,G′
∗)) > 0 .

Note that C0 = f−1(C) is a compact set as a continuous image of a compact set.
Thus, ε0 = dist(x0,C0) > 0. Let

Γε = Δ(C0,B(x0,ε),G∗), ε ∈ (0,ε0) ,

and let ψ∗
x0,ε be a Borel function such that ψ∗

x0,ε(t) = ψx0,ε(t) for a.e. t ∈ (0,∞) ,
which there is in view of the Lusin theorem; see, e.g., Section 2.3.5 in [55].

Then, by Proposition 13.4, the function

ρε(x) =
{
ψ∗

x0,ε(d(x,x0))/I(ε,ε0), x ∈ A(x0,ε,ε0),
0, x ∈ X\A(x0,ε,ε0),

where
A(x0,ε,ε0) = {x ∈ X : ε < d(x,x0) < ε0} ,

is admissible for Γε and, consequently,

M( fΓε) ≤
∫

G

Q(x) ·ραε (x) dμ(x),

i.e., M( fΓε) → 0 as ε → 0 in view of (13.42).

On the other hand,

M( fΓε) ≥ M(Δ(C,E,G′
∗)) > 0

because
Δ(C0,{x0},G∗) > Γε

and
f−1Δ(C,E,G′

∗) ⊆ Δ(C0,{x0},G∗)
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for any ε ∈ (0,ε0) by Proposition 13.5 applied to the homeomorphism f−1 and
g = f−1|G′∗ , and x′0 ∈ E, x′0 = γ(b), γ ∈ Δ(C,E,G′

∗). The obtained contradiction
disproves the assumption that E is not degenerate. 
�

Corollary 13.14. In particular, if

lim
ε→0

∫

ε<d(x,x0)<ε0

Q(x) ·ψα(d(x,x0))dμ(x) < ∞ , (13.44)

where ψ(t) is a nonnegative measurable function on (0,∞) such that

0 < I(ε,ε0) :=
ε0∫

ε

ψ(t)dt < ∞, ∀ ε ∈ (0, ε0) ,

and I(ε,ε0) → ∞ as ε → 0, then any Q-homeomorphism f : G\{x0} → G′ ⊂ X ′ is
extended to the point x0 by continuity in X ′.

Remark 13.14. In other words, it suffices for the singular integral (13.44) to be con-
vergent in the sense of the principal value at the point x0 at least for one kernel ψ
with a non-integrable singularity at zero. Furthermore, as Lemma 13.12 shows, it
suffices for the given integral even to be divergent but with controlled speed:

∫

ε<d(x,x0)<ε0

Q(x) ·ψα(d(x,x0))dμ(x) = o(Iα(ε,ε0)). (13.45)

Choosing in Lemma 13.12 ψ(t) ≡ 1/t, we obtain the following theorem.

Theorem 13.13. Let X and X ′ compact spaces, X path connected at a point x0 ∈ G,
and X ′ weakly flat. If a measurable function Q : G → [0,∞] satisfies the condition

∫

ε<d(x,x0)<ε0

Q(x)dμ(x)
d(x,x0)α

= o

([
log

1
ε

]α)
(13.46)

as ε → 0, where ε0 < dist(x0,∂G) , then any Q-homeomorphism f : G\{x0} → G′

is extended by continuity to the point x0.

Corollary 13.15. In particular, the conclusion of Theorem 13.13 holds if the singu-
lar integral ∫

Q(x)dμ(x)
d(x,x0)α

(13.47)

is convergent in a neighborhood of the point in the sense of the principal value.

Combining Lemmas 13.2 and 13.12, and choosing ψε(t)≡ t log(1/t), t ∈ (0,δ0),
in the latter, we obtain the following theorem.
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Theorem 13.14. Let X and X ′ compact weakly flat spaces, G a domain in X that is
upper α-regular with α ≥ 2 and path connected at a point x0 ∈ G, and

μ(B(x0,2r)) ≤ γ · logα−2 1
r
·μ(B(x0,r)) (13.48)

for all r ∈ (0,r0). If Q ∈ FMO(x0), then any Q-homeomorphism f of the domain
G\{x0} into X ′ is extended by continuity to the point x0.

Combining Corollary 13.3 and Theorem 13.14, we obtain the following state-
ment.

Corollary 13.16. In particular, if

lim
ε→0

−
∫

B(x0,ε)
Q(x) dμ(x) < ∞ , (13.49)

then any Q-homeomorphism f : G\{x0}→ G′ ⊂ X ′ is extended by continuity to the
point x0.

The following simple example shows that the above extension f of f to x0 may
be not a homeomorphism.

Example. Let G = X , where X is a space that coincides with a closed equilateral
triangle T on one of the coordinate planes in R

3 minus one of its vertices v. It is
clear that X is not compact, although it is locally compact. Let us roll up the triangle
T without any distortion in such a way that the vertex v will touch the center c of its
opposite side. The obtained space X ′ is compact. Let x0 = c. The above (rolling up)
mapping f : X \{x0} → X ′ \ {x0} is conformal if we take in X the usual Euclidean
distance as the metric d and the usual area as the Borel measure μ and in X ′ set
d′ to be geodesic (thus, the path length is invariant under f ) and μ ′(B′ \ {x0}) =
μ( f−1(B′ \ {x0})) for every Borel set in X ′ and μ ′({x0}) = μ({x0}) = 0. By the
construction, the mapping f can continuously be extended to x0 and the extension
f is injective, of course, but not a homeomorphism (the inverse mapping of f is not
continuous).

Remark 13.15. By Proposition 13.5, the extension of f at the point x0 is an injective
mapping and, thus, a homeomorphism on any subdomain G∗ ⊂⊂ G, i.e., if G∗ is
compact in G. The latter is, generally speaking, not true for the domain G, itself as
the above example shows. However, this is true if, for instance, G = X is compact;
see, e.g., [186].

Moreover, if the family of all paths in X ′ (or only in G∗) passing through the
point y0 = f (x0) has modulus zero (see Section 13.8), then the restriction of the
mapping g = f |G∗ will be a Q-homeomorphism. For the Ahlfors regular spaces,
this always holds; see Lemma 7.18 in [106]. Thus, an isolated singular point of
a Q-homeomorphism in regular weakly flat spaces is locally removable under the
conditions on Q enumerated above.
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13.13 On Conformal and Quasiconformal Mappings

Finally, let us review some results for conformal and quasiconformal mappings
which are direct consequences of the theory of Q-homeomorphisms in metric spaces
with the measures developed above. Namely, as before, let (X ,d,μ) and (X ′,d′,μ ′)
be spaces with metrics d and d′ and locally finite Borel measures μ and μ ′ , and
with finite Hausdorff dimensions α and α ′ ≥ 1, respectively.

Similarly to the geometric definition by Väisäla in R
n, n ≥ 2 (cf. Chapter 1),

given domains G and G′ in (X ,d,μ) and (X ′,d′,μ ′), respectively, we say that a
homeomorphism f : G → G′ is called K-quasiconformal, K ∈ [1,∞], if

K−1M(Γ ) ≤ M( fΓ ) ≤ KM(Γ ) (13.50)

for every family Γ of paths in G. We say also that a homeomorphism f : G → G′ is
quasiconformal if f is K-quasiconformal for some K ∈ [1,∞), i.e., if the distortion
of moduli of path families under the mapping f is bounded. In particular, we say
that a homeomorphism f : G → G′ is conformal if

M( fΓ ) = M(Γ ) (13.51)

for any path families in G.

By Theorem 13.3, we obtain the following important conclusion.

Theorem 13.15. Let G have a weakly flat boundary, let G′ be locally path connected
at all its boundary points, and let G′ be compact. Then any quasiconformal mapping
f : G → G′ admits a continuous extension to the boundary f : G → G′.

Combining Theorem 13.15 with Lemma 13.1, we come to the following state-
ment.

Corollary 13.17. If G and G′ are domains with weakly flat boundaries and compact
closures G and G′, then any quasiconformal mapping f : G → G′ admits a homeo-
morphic extension f : G → G′.

Remark 13.16. In particular, the last conclusion holds for quasiconformal mappings
between QED domains with compact closures in weakly flat spaces. Note that the
closures of the domains are always compact in compact spaces. Recall also that
locally compact spaces always admit the so-called one-point compactification; see,
e.g., Section I.9.8. [30].

On the basic of Lemmas 13.1 and 13.10 and Theorem 13.15, we obtain the fol-
lowing theorem.

Theorem 13.16. Let X and X ′ be compact weakly flat spaces, G a domain in X,
A ⊂ G an NED set and f a quasiconformal mapping of the domain D = G\A into
X ′. If the cluster set A′ =C(A, f ) is also an NED set, then f admits a quasiconformal
extension to G.
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By results in the previous section, single out also the following consequences on
removability of isolated singularities.

Lemma 13.13. Let X be path connected at a point x0 ∈ G with a c compact neigh-
borhood, X ′ a compact weakly flat space, and f : G\{x0} → G′ a quasiconformal
mapping. If μ satisfies the condition

∫

ε<d(x0,x)<ε0

ψα(d(x,x0))dμ(x) = o(Iα(ε,ε0)) (13.52)

as ε → 0, where ε0 < dist(x0,∂G), and ψ(t) is a nonnegative (Lebesgue) measur-
able function on (0,∞) such that

0 < I(ε,ε0) =
ε0∫

ε

ψ(t)dt < ∞ ∀ ε ∈ (0,ε0) ,

then the mapping f is extended by continuity to the point x0.

Theorem 13.17. Let X be path connected at a point x0 ∈ G with a c compact neigh-
borhood, X ′ a compact weakly flat space, and f : G\{x0} → G′ a quasiconformal
mapping. If μ satisfies the condition

∫

ε<d(x,x0)<ε0

dμ(x)
d(x,x0)α

= o

([
log

1
ε

]α)
(13.53)

as ε → 0, where ε0 < dist(x0,∂G), then the mapping f is extended by continuity to
the point x0.

Finally, in view of Remarks 13.3 and 13.8, we have the following important
conclusion from Theorem 13.17.

Corollary 13.18. Let X and X ′ be Ahlfors regular compact weakly flat spaces. Then
any quasiconformal mapping X \{x0} into X ′ is extended to a quasiconformal map-
ping of X into X ′.

Corollary 13.19. Isolated singularities of quasiconformal mappings are locally re-
movable in Ahlfors regular weakly flat spaces X and X ′ if, in addition, X is locally
compact and X ′ is compact.

Thus, the results of this umlaut chapter extend (and strengthen) the known the-
orems by F. Gehring, O. Martio, P. Näkki, U. Srebro, J. Väisäla, M. Vuorinen and
others on quasiconformal mappings in R

n,n ≥ 2, to Q-homeomorphisms in metric
spaces; cf. e.g. [81, 127, 128, 163, 204–209, 214, 224, 316, 329].



Appendix A
Moduli Theory

Here we have collected a series of classical results that not only have a great his-
torical significance but also remain useful working tools in modern mapping theory,
especially, in the framework of our book; see [64, 71, 122, 210, 293, 340]. This ap-
pendix can be considered together with Chapters 2 and 3 as a handbook in the theory
of moduli. We attempted to keep author’s styles of the given papers.

A.1 On Some Results by Gehring

After the well-known paper [5] by Ahlfors and Beurling, applications of the theory
of moduli in the quasiconformal mapping theory began essentially with a theorem
proved by Gehring in [77] that the conformal capacity of a space ring R is directly
related to the modulus of a family of paths that join the boundary components of R.
In this section we follow in the main [71].

Given a family Γ of nonconstant paths γ in Rn, we let adm Γ denote the family
of Borel measurable functions ρ : R

n → [0,∞] such that
∫

γ

ρ ds ≥ 1

for all locally rectifiable γ ∈ Γ . We call

M(Γ ) = inf
ρ∈adm Γ

∫

Rn

ρn dm

and
λ (Γ ) = M(Γ )

1
1−n

the modulus and extremal length of Γ , respectively.
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The concept of extremal length first appeared in the article by Ahlfors and Beurl-
ing [5] containing applications to the theory of analytic functions of a complex
variable. Later contributions to the theory of extremal length were made by Jenk-
ins [139], Hersch [120, 121], and others. For our purpose it is preferable to operate
with the modulus rather than the extremal length.

When Γ is a family of arcs, we may think of M(Γ ) as the conductance and λ (Γ )
as the resistance of a system of homogeneous wires. M(Γ ) is big when the wires are
plentiful or short, small when the wires are few or long.

Theorem A.1. M(Γ ) is an outer measure on the collections of path families Γ in
Rn. That is,

(a) M( /0) = 0,

(b) M(Γ1) ≤ M(Γ2) when Γ1 ⊂ Γ2,

(c) M(
⋃

jΓj) ≤ ∑ j M(Γj).

Proof for (c). We may assume M(Γj) < ∞ for all j. Then, given ε > 0, we can
choose for each j a ρ j ∈ adm Γj such that

∫

Rn

ρn
j dm ≤ M(Γj)+2− jε.

Now set
ρ = sup

j
ρ j

and
Γ =

⋃
j

Γj.

Then ρ : R
n → [0,∞] is Borel measurable. Moreover, if γ ∈ Γ is locally rectifiable,

then γ ∈ Γj for some j, ∫

γ

ρ ds ≥
∫

γ

ρ j ds ≥ 1,

and hence ρ ∈ adm Γ . Thus,

M(Γ ) ≤
∫

Rn

ρn dm ≤
∫

Rn

∑
j
ρn

j dm ≤ ∑
j

M(Γj)+ ε.


�
Remark A.1. If we apply the Caratheodory criterion to the outer measure M to define
the notion of a measurable path family, then we can show the following:

(a) Γ is measurable if M(Γ ) = 0;

(b) Γ is not measurable if 0 < M(Γ ) < ∞;

(c) Γ may or may not be measurable if M(Γ ) = ∞.
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Theorem A.2. If each path γ1 of a family Γ1 contains a subpath γ2 of a family
Γ2, then M(Γ1) ≤ M(Γ2).

Proof. Choose ρ ∈ adm Γ2 and suppose γ1 ∈ Γ1 is locally rectifiable. Then
∫

γ1

ρ ds ≥
∫

γ2

ρ ds,

where γ2 is the subpath in Γ2, and ρ ∈ adm Γ1. Thus,

M(Γ1) ≤
∫

Rn

ρn dm

and taking the infimum over all such ρ yields

M(Γ1) ≤ M(Γ2).


�

Theorem A.3. M(Γ ) is additive on path families in disjoint Borel sets. That is, if
the E j are disjoint Borel sets and the paths of Γj lie in E j, then

M

(⋃
j

Γj

)
= ∑

j
M(Γj).

Proposition A.1. If Γ is the family of paths γ joining two parallel faces with dis-
tance h of a rectangular parallelepiped of the (n− 1)-dimensional area A in R

n,
n ≥ 2, then

M(Γ ) =
A

hn−1 .

Proof. Choose ρ ∈ adm Γ and let γy be the vertical segment from y in the base E.
Then γy ∈ Γ and

1 ≤

⎛
⎝∫

γ

ρ ds

⎞
⎠

n

≤ hn−1
∫

γy

ρn ds.

This holds for all such y and, hence,

∫

Rn

ρn dmn ≥
∫

E

⎛
⎝∫

γy

ρn ds

⎞
⎠ dmn−1 ≥ A

hn−1 .

Since ρ is arbitrary,

M(Γ ) ≥ A
hn−1 .

Next set ρ = 1/h inside the parallelepiped and ρ = 0 otherwise. Then ρ ∈ adm Γ
and
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M(Γ ) ≤
∫

Rn

ρn dm =
A

hn−1 .


�

Theorem A.4. If all the paths in a path family Γ pass through a fixed point x0, then
M(Γ ) = 0.

Proof. Suppose first that x0 �=∞ and for each j let Γj denote the subfamily of γ ∈ Γ
that intersects x0 and S(x0,1/ j). Then each γ ∈Γj contains a subpath γ ′ in the family
of all paths joining x0 to S(x0,1/ j) in B(x0,1/ j). Hence, M(Γj) = 0 by Lemma 2.2.
Since Γ =

⋃
jΓj,

M(Γ ) ≤ ∑
j

M(Γj) = 0.

When x0 = ∞, we argue as above with S(x0,1/ j) replaced by S(0, j). 
�

Theorem A.5. If f : Rn → Rn is a Möbius transformation, then

M( fΓ ) = M(Γ )

for all path families Γ in Rn.

Proof. Choose ρ ′ ∈ adm fΓ , set

ρ(x) = ρ ′ ◦ f (x)| f ′(x)|

for x ∈R
n \{ f−1(∞)}, and let Γ0 be the family of γ ∈Γ that passes through f−1(∞).

Then
M(Γ ) = M(Γ \Γ0), ρ ∈ adm(Γ \Γ0)

and hence
M(Γ ) ≤

∫

Rn

ρn dm =
∫

Rn

(ρ ′ ◦ f )n| f ′|n dm

=
∫

Rn

(ρ ′ ◦ f )nJ( f ) dm =
∫

Rn

(ρ ′)n dm.

Taking the infimum over every such ρ ′ gives M(Γ ) ≤ M( fΓ ). The result follows
by repeating the preceding argument with f replaced by f−1. 
�

Theorem A.6. If f j, f : Rn → [0,∞] are Borel measurable and f j → f in Ln(Rn),
then there exist a subsequence { jk} and a path family Γ0 with M(Γ0) = 0 such that

lim
k→∞

∫

γ

| f jk − f | ds = 0

for all locally rectifiable paths γ , γ /∈ Γ0.
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Proof. Choose a subsequence { jk} so that
∫

Rn

gn
k dm < 2−(n+1)k, gk = | f jk − f |

and let Γ0 be the family of all locally rectifiable γ in Rn such that

lim
k→∞

sup
∫

γ

gk ds > 0.

We want to show that M(Γ0) = 0.
Let Γk be the family of all locally rectifiable paths in R

n for which
∫

γ

gk ds ≥ 2−k.

Then ρ = 2kgk ∈ adm Γk and

M(Γk) ≤
∫

Rn

ρn dm ≤ 2nk
∫

Rn

gn
k dm < 2−k.

Now γ ∈ Γ0 implies γ ∈ Γk for infinitely many k. Thus, for each l,

Γ0 ⊂
∞⋃

k=l

Γk, M(Γ0) ≤
∞

∑
k=l

M(Γk) < 2−l+1

and hence M(Γ0) = 0. 
�

Theorem A.7. If {Γj} is an increasing sequence of path families, then

M

(⋃
j

Γj

)
= lim

j→∞
M(Γj).

Idea of proof. Let Γ =
⋃

jΓj. Then by the monotonicity of the modulus,

M(Γ ) ≥ lim
j→∞

M(Γj).

For the reverse inequality, we may assume that the limit is finite. Then since L(Rn)
is uniformly convex, we can choose ρ j ∈ adm Γj so that ρ j → ρ in Ln(Rn) and so
that ∫

Rn

ρn dm = lim
j→∞

∫

Rn

ρn
j dm = lim

j→∞
M(Γj).

By Theorem A.6, there exist a subsequence { jk} and a family Γ0 with M(Γ0) = 0
such that
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∫

γ

ρ ds = lim
k→∞

∫

γ

ρ jk ds

for all locally rectifiable γ ∈ Γ \Γ0. Since each such γ lies in Γjk for large k,

∫

γ

ρ ds ≥ 1.

Thus, ρ ∈ adm(Γ \Γ0), and we conclude that

M(Γ ) = M(Γ \Γ0) ≤
∫

Rn

ρn dm = lim
j→∞

M(Γj).


�

Remark A.2. Since the Γj are increasing in Theorem A.7,

Γ =
⋃

j

Γj = lim
j→∞

Γj

in the set-theoretic sense and so we see that the conclusion of Theorem A.7 is a con-
tinuity property for the modulus. Unfortunately, no such result holds for decreasing
families Γj with

Γ =
⋂

j

Γj = lim
j→∞

Γj.

A condenser is a domain R ⊂ Rn whose complement is the union of two distin-
guished disjoint compact sets C0 and C1. For convenience, we write

R = R(C0,C1).

A ring is a condenser R = R(C0,C1), where C0 and C1 are continua. We call C0 and
C1 the complementary components of R.

Given a condenser R = R(C0,C1) with R ⊂ R
n, we let adm R denote the class of

functions u : Rn → R
1 with the following properties:

1. u is continuous in Rn;

2. u has distribution derivatives in R;

3. u = 0 on C0 and u = 1 on C1.

Note that

u(x) = min

(
1,

h(x,C0)
h(C1,C0)

)
∈ adm R

and hence adm R �= /0. We call

cap R = inf
u∈adm R

∫

R

|∇u|n dm,



A.1 On Some Results by Gehring 297

mod R =
(
ωn−1

cap R

) 1
n−1

the conformal capacity and modulus of R, respectively.
Example. If R is the ring in Rn bounded by concentric spheres of radii a and

b, 0 ≤ a < b ≤ +∞, then

cap R = ωn−1

(
log

b
a

)1−n

mod R = log
b
a
.

Remark A.3. If f : Rn → Rn is a Möbius transformation, then cap f R = cap R for
all condensers R with R, f R ⊂ R

n. Hence, we can use this fact to define cap R for all
condensers in Rn that contain ∞ as an interior point.

Given E, F , G ⊂ Rn, we let Δ(E,F;G) denote the family of all paths γ with

1. one endpoint in E and the other in F ,

2. interior in G.

Theorem A.8. If R = R(C0,C1) is a ring and Γ = Δ(C0,C1;R), then cap R = M(Γ ).

Outline of proof. By performing a preliminary Möbius transformation, we may
assume that ∞ ∈C1. Choose a locally Lipschitzian function u ∈ adm R and set

ρ(x) =
{
|∇u(x)| if x ∈ R,
0 if x ∈C0 ∪C1.

If γ : [a,b] → Rn is a locally rectifiable path in Γ , then

∫

γ

ρ ds ≥

∣∣∣∣∣∣
∫

γ

∇u ds

∣∣∣∣∣∣ = |u(γ(b))−u(γ(a))| ≥ 1.

Hence, ρ ∈ adm Γ and

M(Γ ) ≤
∫

R

|∇u|n dm.

By a smoothing argument, we can show that taking the infimum of the right-hand
side over all such u gives cap R. Thus,

M(Γ ) ≤ cap R.

Conversely, choose a bounded continuous ρ ∈ adm Γ and set

u(x) = min

⎛
⎝1, inf

γ

∫

γ

ρ ds

⎞
⎠
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for x ∈ R, where the infimum is taken over all locally rectifiable γ joining C0 to x in
R. Then u has distribution derivatives and

lim
x→C0

u(x) = 0

and
lim

x→C1
u(x) = 1.

Hence, we can extend u to Rn so that u ∈ adm R. Then, since |∇u| = ρ in R,

cap R ≤
∫

R

ρn dm ≤
∫

Rn

ρn dm.

Another smoothing argument shows the infimum over such ρ gives M(Γ ). Thus,
cap R ≤ M(Γ ). 
�

Given a ray L from x0 to ∞ and a compact set E ⊂ Rn, we define the spherical
symmetrization of E in L as the set E∗ satisfying the following conditions:

1. x0 ∈ E∗ iff x0 ∈ E;

2. ∞ ∈ E∗ iff ∞ ∈ E;

3. for r ∈ (0,∞), E∗ ∩S(x0,r) �= /0 iff E ∩S(x0,r) �= /0, in which case E∗ ∩S(x0,r) is
a closed spherical cap centered on L with the same mn−1 measure E ∩S(x0,r).

We see that E∗ is compact and that E∗ is connected if E is also.

Theorem A.9. If E∗ is the spherical symmetrization of E in a ray L, then

(a) mn(E∗) = mn(E),

(b) mn−1(∂E∗) = mn−1(∂E).

Outline of proof. To prove (a), we apply Fubini’s theorem and obtain

mn(E∗) =
∫ ∞

0
mn−1(E∗ ∩S(x0,r))dr =

∫ ∞

0
mn−1(E ∩S(x0,r)) dr = mn(E).

For (b), assume first that E is a polyhedron. Then, for r ∈ (0,∞), the Brunn–
Minkowski inequality implies that

E∗(r) = {x : dist(x,E∗) ≤ r} ⊂ {x : dist(x,E) ≤ r}∗ = E(r)∗

and hence that

mn−1(∂E∗) ≤ lim
r→0

sup
mn(E∗(r))−mn(E∗)

2r

≤ lim
r→0

sup
mn(E(r))−mn(E)

2r
= mn−1(∂E).

The general result follows by a limiting argument. 
�
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Theorem A.10. If R = R(C0,C1) is a condenser and C∗
0 and C∗

1 are the spherical
symmetrizations of C0 and C1 in opposite rays L0 and L1, then R∗ = R(C∗

0 ,C∗
1) is a

condenser with
cap R∗ = cap R.

Idea of proof. Choose a locally Lipschitzian u ∈ adm R and define u∗ so that
{x : u∗(x) ≤ t} = {x : u(x) ≤ t}∗. Then u∗ ∈ adm R∗ and Theorem A.19 allows one
to show that

cap R∗ ≤
∫

Rn

|∇u∗|n dm ≤
∫

Rn

|∇u|n dm.

Taking the infimum over all such u yields the result. 
�
Let e1,e2, . . . ,en denote the basic vectors in R

n. For t ∈ (0,∞), let RT (t) denote
the ring domain in R

n whose complement consists of the ray from te1 to ∞ and
the segment from −e1 to 0. RT (t) is called the Teichmüller ring. The following
properties for its modulus can be established:

1. mod RT (t)− log(t +1) is nondecreasing in (0,∞);

2. limt→0 mod RT (t) = 0;

3. limt→∞(mod RT (t)− log(t +1)) = logλn < ∞;

4. λ2 = 16 and limn→∞λ
1/n
n = e2.

Thus,

5. mod RT (t) is strictly increasing in (0,∞),

6. log(t +1) ≤ mod RT (t) ≤ logλn(t +1).

Theorem A.11. If R = R(C0,C1) is a ring with a, b ∈C0 and c, ∞ ∈C1, then

mod R ≤ mod RT

(
|c−a|
|b−a|

)
.

Proof. By performing a preliminary similarity mapping, we may assume that a =
0, b = −e1. Then the spherical symmetrizations C∗

0 , C∗
1 of C0, C1 in the nega-

tive and positive halves of the x1-axis contain the complementary components of
RT (|c−a|/|b−a|). Thus,

cap RT (|c−a|/|b−a|) ≤ cap R∗ ≤ cap R,

as desired. 
�

Corollary A.1. If R = R(C0,C1) is a ring with a, b ∈C0 and c, d ∈C1, then

mod R ≤ mod RT

(
h(a,c)h(b,d)
h(a,b)h(c,d)

)
.
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Proof. By performing a preliminary chordal isometry, we may assume that d = ∞.
Then

|c−a|
|b−a| =

h(a,c)
√
|c|2 +1

h(a,b)
√
|b|2 +1

=
h(a,c)h(b,d)
h(a,b)h(c,d)

,

and we can apply Theorem A.11. 
�
Corollary A.2. If R = R(C0,C1) is a ring, then

(a) mod R ≤ mod RT

(
1

h(C0)h(C1)

)
,

(b) mod R ≤ mod RT

(
4h(C0,C1)
h(C0)h(C1)

)
.

Proof. For (a), choose a, b ∈C0 and c, d ∈C1 so that

h(a,b) = h(C0),

h(c,d) = h(C1).

Then
h(a,c)h(b,d)
h(a,b)h(c,d)

≤ 1
h(C0)h(C1)

and we can apply Corollary A.1. For (b), choose a ∈C0 and c ∈C1 so that

h(a,c) = h(C0,C1).

Next pick b ∈C0 and d ∈C1 so that

h(a,b) ≥ 1
2

h(C0), h(c,d) ≥ 1
2

h(C1).

Then
h(a,c)h(b,d)
h(a,b)h(c,d)

≤ 4
h(C0)h(C1)

and we again apply Corollary A.1. 
�
We say that a sequence of sets E j converges uniformly to a set E if, for each

ε > 0, there exists a j0 such that

sup
x∈E j

h(x,E) < ε, sup
x∈E

h(x,E j) < ε

for j ≥ j0.

Theorem A.12. If the complementary components of a sequence of rings R j con-
verge uniformly to the corresponding complementary components of a ring R, then

cap R = lim
j→∞

cap R j.

Readers who wish to dispute this result should consult [78, 230] and [307].
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A.2 The Inequalities by Martio–Rickman–Väisälä

In this section, following [210], we generalize the concept of a ring domain and give
lower and upper estimates of its capacity.

Here a condenser is a pair E = (A,C) where A ⊂ R
n is open and C is a non-

empty compact set contained in A. E is a ringlike condenser if B = A\C is a ring,
i.e., if B is a domain whose complement Rn \B has exactly two components where
Rn = R

n ∪{∞} is the one-point compactification of R
n. E is a bounded condenser

if A is bounded. A condenser E = (A,C) is said to be in a domain G if A ⊂ G.

The following lemma is immediate.

Lemma A.1. If f : G → R
n is open and E = (A,C) is a condenser in G, then

( f A, fC) is a condenser in f G.

In the above situation we denote f E = ( f A, fC).

Let E = (A,C) be a condenser. We set

capE = cap(A,C) = inf
u∈W0(E)

∫

A

|∇u|n dm

and call it the capacity of the condenser E . The set W0(E) = W0(A,C) is the family
of nonnegative functions u : A → R1 such that (1) u ∈C0(A) (2) u(x) ≥ 1 for x ∈C,
and (3) u is ACL. In the above formula

|∇u| =
(

n

∑
i=1

(∂iu)2

)1/2

.

We mention some properties of the capacity of a condenser.

Lemma A.2. If E = (A,C) is a condenser, then

capE = inf
u∈W∞

0 (E)

∫

A

|∇u|n dm,

where W∞
0 (E) = W∞

0 (A,C) = W0(E)∩ C∞
0 (A).

Proof. Obviously,

capE ≤ inf
u∈W∞

0 (E)

∫

A

|∇u|n dm.

The converse inequality is proved by a standard approximating argument. The con-
struction involves first multiplying u ∈ W0(E) by 1 + ε , ε > 0, so that the result-
ing function is ≥ (1 + ε) on C and then forming a smooth integral average; cf.,
e.g., [316], Section 27. The details may be omitted. 
�
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Remark A.4. If E = (A,C) is a ringlike condenser, then capE = cap(A\C) in the
sense of Gehring [66], p. 500. This is a direct consequence of n-dimensional ver-
sions of [66], Lemma 1, p. 501, and [66], Remark, p. 502.

Lemma A.3. If E = (A,C) is a condenser, then

capE = inf cap (U,C) ,

where the infimum is taken over all open sets U such that U is compact in A and
C ⊂U.

Proof. Obviously, capE ≤ cap(U,C) for all sets U of the above type; hence,

capE ≤ inf cap(U, C) .

Let ε > 0. Then there exists a function u ∈W0(E) such that

capE >
∫

A

|∇u|n dm− ε.

Since sptu is compact in A, there exists an open set U such that sptu ⊂U and U is
compact in A. Then u ∈W0 (U,C) and we obtain

cap (U,C) ≤
∫

A

|∇u|n dm < cap(A,C)+ ε.

The lemma follows. 
�

Lemma A.4. The inequality

capE ≤ m(A)
d (C,∂A)n

holds for the capacity of a bounded condenser E = (A,C).

Proof. Let 0 < ε < d(C,∂A)n. There exists an open set U such that C ⊂ U ⊂ U ⊂
A and d(C,∂A)n ≤ d(C,∂U)n + ε . If we define u(x) = d(x,CU)/d(C,∂U), then
|u(x)− u(y)| ≤ |x − y|/d(C,∂U) for all x, y ∈ R

n. Thus, u ∈ W0(E) and |∇u| ≤
1/d(C,∂U) a.e., which implies

capE ≤
∫

A

d (C,∂U)−n dm =
m(A)

d (C,∂U)n ≤ m(A)
d (C,∂A)n − ε

.

Letting ε → 0 gives the desired result. 
�

Lemma A.5. Suppose that E = (A,C) is a condenser such that C is connected. Then

(capE)n−1 ≥ bn
d(C)n

m(A)
,
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where bn is a positive constant that depends only on n.

Proof. By Lemma A.3 we may suppose that A is bounded. We may also assume
that d(C) = r > 0 and that C contains the origin and the point ren. Let u ∈W∞

0 (E).
For 0 < t < r, we let T (t) denote the hyperplane xn = t. Using the method of [322],
p. 9, we estimate the integral

∫

T (t)

|∇u|n dmn−1.

Fix z ∈ C ∩ T (t). For y ∈ S
n−2, let R(y) be the supremum of all t0 > 0 such that

z+ ty ∈ A for 0 ≤ t < t0. Then

R(y)∫

0

|∇u(z+ ty)|dt ≥ u(z)−u(z+R(y)y) ≥ 1

for all y ∈ S
n−2. By Hölder’s inequality, this implies

1 ≤ (n−1)n−1R(y)

R(y)∫

0

|∇u(z+ ty)|n tn−2 dt.

Integrating over y ∈ S
n−2 yields

(n−1)1−n
∫

Sn−2

R−1 dmn−2 ≤
∫

Sn−2

dmn−2(y)

R(y)∫

0

|∇u(z+ ty)|n tn−2 dt (A.1)

≤
∫

T (t)

|∇u|n dmn−1.

On the other hand, we obtain by Hölder’s inequality

ωn
n−2 =

⎛
⎝ ∫

Sn−2

dmn−2

⎞
⎠

n

≤
∫

Sn−2

Rn−1 dmn−2

⎛
⎝ ∫

Sn−2

R−1 dmn−2

⎞
⎠

n−1

≤ (n−1)mn−1 (A∩T (t))

⎛
⎝ ∫

Sn−2

R−1 dmn−2

⎞
⎠

n−1

. (A.2)

Setting f (t) = mn−1 (A∩T (t)), we obtain from (A.1) and (A.2)
∫

T (t)

|∇u|n dmn−1 ≥ (n−1)1−n−1/(n−1)ωn/(n−1)
n−2 f (t)1/(1−n).
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Integrating over 0 < t < r, we obtain

∫

A

|∇u|n dm ≥ (n−1)1−n−1/(n−1)ωn/(n−1)
n−2

r∫

0

f (t)1/(1−n) dt. (A.3)

Hölder’s inequality gives

rn =

⎛
⎝

r∫

0

dt

⎞
⎠

n

≤

⎛
⎝

r∫

0

f (t)dt

⎞
⎠
⎛
⎝

r∫

0

f (t)1/(1−n) dt

⎞
⎠

n−1

≤ m(A)

⎛
⎝

r∫

0

f (t)1/(1−n) dt

⎞
⎠

n−1

.

By (A.3), this implies

⎛
⎝∫

A

|∇u|n dm

⎞
⎠

n−1

≥ (n−1)−2+2n−n2
ωn

n−2
rn

m(A)
.

Since this holds for every u ∈W∞
0 (E), the lemma follows. 
�

A.3 The Hesse Equality

Let G be a domain in the compactified Euclidean n-space Rn = R
n ∪{∞}, E and F

disjoint, nonempty, compact sets in the closure of G. We associate two numbers with
this geometric configuration as follows. Let Mp(E,F,G) be the p-modulus (recip-
rocal of the p-extremal length) of the family of paths connecting E and F in G. Let
capp(E,F,G) be the p-capacity of E and F relative to G, defined as the infimum of
the numbers

∫
G |∇u(x)|p dm(x) over all ACL functions u in G with boundary values

0 and 1 on E and F , respectively. Hesse has shown that capp(E,F,G) = Mp(E,F,G)
whenever E and F do not intersect ∂G, which is the main goal of this section;
see [122]. Hesse generalized Ziemer’s result in [338], where he assumed that either
E or F contains the complement of an open n-ball. He also obtained a continuity
theorem for the p-modulus (Theorem A.16) and a theorem on the kinds of densities
that can be used in computing the p-modulus (Theorem A.14).

For n ≥ 2, Rn denotes the one-point compactification of the Euclidean n-space
R

n: Rn = R
n ∪{∞}. All topological considerations here refer to the metric space

(Rn,q), where q is the chordal metric on Rn defined by stereographic projection. If
A ⊂Rn, then A and ∂A denote the closure and boundary of A, respectively. If b ∈Rn

and B ⊂ Rn, then q(b,B) denotes the chordal distance of b from B. For x ∈ R
n, |x|

denotes the usual Euclidean norm of x. Bn(x,r) denotes the open n-ball with center
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x and radius r. Set also B
n = Bn(0,1). For x ∈ R

n and A ⊂ R
n, d(x,A) denotes the

Euclidean distance of x from A. Lebesgue n-measure on R
n is denoted by mn or by

m if there is no chance for confusion. We let Ωn = mn(Bn).

Let Γ be a collection of paths in Rn. We let admΓ denote the set of Borel func-
tions ρ : R

n → [0,∞] satisfying the condition
∫
γ ρ ds ≥ 1 for every locally rectifiable

γ ∈ Γ . admΓ is called the set of admissible functions for Γ . For p ∈ (1,∞), the
p-modulus of Γ is defined as

Mp(Γ ) = inf
∫

Rn

ρ p dm,

where the infimum is taken over all ρ ∈ admΓ . For the basic facts about the p-
modulus, see [316], Chapter 1. The p-extremal length of Γ is defined as the recip-
rocal of the p-modulus of Γ .

Now, let G be a domain in Rn and let E and F be compact, disjoint, nonempty
sets in G. Let Γ (E,F,G) denote the set of all paths connecting E and F in G. More
precisely, if γ ∈ Γ (E,F,G), then γ : I → G is a continuous mapping, where I is an
open interval and γ(I)∩E and γ(I)∩F are both nonempty. We write Mp(E,F,G) for
the p-modulus of Γ (E,F,G). Let A (E,F,G) denote the set of real-valued functions
u such that (1) u is continuous on E ∪F ∪G, (2) u(x) = 0 if x ∈ E and u(x) = 1 if
x ∈ F , and (3) u restricted to G\{∞} is ACL. For the definition and basic facts about
ACL functions; see [316], Chapter 3. Given p ∈ (1,∞), the p-capacity of E and F
relative to G capp(E,F,G) is defined by

capp(E,F,G) = inf
∫

G

|∇u|p dm,

where the infimum is taken over all u ∈ A (E,F,G).
The p-capacity has the following continuity property.

Theorem A.13. Let E1 ⊃ E2 ⊃ . . . and F1 ⊃ F2 ⊃ . . . be disjoint sequences of
nonempty compact sets in the closure of a domain G. Let E =

⋂∞
i=1 Ei, F =

⋂∞
i=1 Fi.

Then
lim
i→∞

capp(Ei,Fi,G) = capp(E,F,G).

Proof. Since A (Ei,Fi,G)⊂A (Ei+1,Fi+1,G)⊂A (E,F,G) for all i, it follows that
capp(Ei,Fi,G) is monotone decreasing in i and, therefore, that

lim
i→∞

capp(Ei,Fi,G) ≥ capp(E,F,G).

For the reverse inequality, choose u ∈ A (E,F,G) and ε ∈ (0,1/2). Define f :
(−∞,+∞) → [0,1] by
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f (x) =

⎧⎨
⎩

0 if x ≤ ε,
(1−2ε)−1(x−1+ ε)+1 if ε < x < 1− ε,
1 if x ≥ 1− ε.

Let u′ = f ◦u. Since f is Lipschitz continuous on (−∞,+∞) with Lipschitz constant
(1−2ε)−1, it follows that u′ is ACL on G\{∞} and |∇u′| ≤ (1−2ε)−1|∇u| a.e. in
G.

Let A and B be open sets in Rn such that {x ∈ E ∪F ∪G : u(x) < ε} = (E ∪
F ∪G)∩A and {x ∈ E ∪F ∪G : u(x) > 1− ε} = (E ∪F ∪G)∩B. For large i, we
have Ei ⊂ A and Fi ⊂ B and, for such i, we can extend u′ continuously to Ei ∪Fi ∪G
by setting u′ = 0 on ∂G∩ (Ei \ E) and u′ = 1 on ∂G∩ (Fi \ F). Therefore, u′ ∈
A (Ei,Fi,G) for large i. This implies that for large i we have

capp(Ei,Fi,G) ≤
∫

G

|∇u′|p dm ≤ 1
(1−2ε)p

∫

G

|∇u|p dm.

Hence,

lim
i→∞

capp(Ei,Fi,G) ≤ 1
(1−2ε)p

∫

G

|∇u|p dm.

Since u ∈ A (E,F,G) and ε ∈ (0,1/2) are arbitrary, we get the reverse inequality,
as desired. 
�

Let Γ be a collection of paths in Rn. Let B ⊂ admΓ . We say that B is p-
complete if

Mp(Γ ) = inf
∫

Rn

ρ p dm,

where the infimum is taken over all ρ ∈ B.
Let B ⊂ admΓ be the collection of ρ ∈ admΓ such that ρ is lower semicon-

tinuous. It follows from the Vitali–Caratheodory theorem (see, e.g., Theorem 2.24
in [261]) that B is p-complete for all p ∈ (1,∞).

Lemma A.6. Let ϕ : R
n → [0,∞] be a Borel function in ϕ ∈ Lp(Rn), p ∈ (1,∞),

and let r : R
n → [0,∞] satisfy |r(x2)− r(x1)| ≤ |x2 − x1| for all x1, x2 ∈ R

n. Define
Tϕ,r : R

n → [0,∞] by

Tϕ,r(x) =
1
Ωn

∫

Bn(1)

ϕ(x+ r(x)y) dm(y).

Then Tϕ,r has the following properties.

(1) If r(x0) > 0, then

Tϕ,r(x0) =
1

Ωnr(x0)n

∫

Bn(x0,r(x0))

ϕ(y) dm(y) < ∞.
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(2) If ϕ is lower semicontinuous, then so is Tϕ,r.

(3) If r(x0) > 0, then Tϕ,r is continuous at x0.

(4) If ϕ is finite and continuous on a domain G in R
n and 0 ≤ r(x) < d(x,Rn \G),

then Tϕ,r is finite and continuous on G.

(5) |Tϕ,r(x)r(x)n/p| ≤ C for some constant C ∈ [0,∞) and all x ∈ R
n. The constant

C depends on ϕ .

(6) Let k = sup |r(x2)− r(x1)||x2 − x1|−1, where the supremum is taken over all x1,
x2 ∈ R

n, x1 �= x2. Then ‖Tϕ,r‖p ≤ (1−k)−n/p‖ϕ‖p, where ‖ ‖p is the usual Lp(Rn)-
norm and the right-hand side of the inequality is infinite in case k = 1.

Proof. Statement (1) follows from the change of variables y′ = x0 + r(x0)y and the
Hölder inequality. To prove (2), let x0 be an arbitrary point in R

n and {x j}∞j=1 a
sequence of points in R

n tending to x0. Fatou’s lemma and the lower semicontinuity
of ϕ imply

liminf
j→∞

Tϕ,r(x j) = liminf
j→∞

1
Ωn

∫

Bn(1)

ϕ(x j + r(x j)y) dm(y)

≥ 1
Ωn

∫

Bn(1)

liminf
j→∞

ϕ(x j + r(x j)y) dm(y)

≥ 1
Ωn

∫

Bn(1)

ϕ(x0 + r(x0)y) dm(y) = Tϕ,r(x0).

This shows that Tϕ,r is lower semicontinuous.
To prove (3), we observe that since r is continuous, r(x) > 0 for all x in some

neighborhood of x0 and, therefore, by (1),

Tϕ,r(x) =
1

Ωnr(x)n

∫

Bn(x,r(x))

ϕ(y) dm(y)

for all x in some neighborhood of x0. The right-hand side of the above formula is
continuous in x and, therefore, Tϕ,r is continuous at x0.

Now, we proceed to prove (4). We observe that if x ∈ G, then x + r(x)y ∈ G for
any y ∈ R

n with |y| ≤ 1. Fix x0 ∈ G and let B be a closed ball with center x0 and
lying in G. Then B′ = {x′ : x′ = x + r(x)y, x ∈ B, |y| ≤ 1} is a compact subset of
G. Since ϕ is uniformly continuous on B′, given ε > 0, there exists a δ0 such that
|ϕ(x′2)−ϕ(x′1)|< ε if x′1,x

′
2 ∈ B′ and |x′2−x′1|< δ . Let x1 ∈ B with |x1−x0|< δ/2.

Then |(x1 + r(x1)y)− (x0 + r(x0)y)| < δ for any |y| ≤ 1. Hence,

|Tϕ,r(x1)−Tϕ,r(x0) ≤
1
Ωn

∫

Bn(1)

|ϕ(x1 + r(x1)y)−ϕ(x0 + r(x0)y)| dm(y) < ε.
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Hence, Tϕ,r is continuous on G.
Next, to prove (5), we need only consider x ∈ R

n such that r(x) > 0. For such x,
we have

Tϕ,r(x) =
1

Ωnr(x)n

∫

Bn(x,r(x))

ϕ(y) dm(y).

Applying Hölder’s inequality with exponents p and p/(p−1), we get

Tϕ,r(x) ≤ 1
Ωnr(x)n

⎡
⎢⎣

∫

Bn(x,r(x))

ϕ p(y) dm(y)

⎤
⎥⎦

1/p

[Ωnr(x)n](n−p)/p.

Hence,

Tϕ,r(x)r(x)n/p ≤ C = Ω−1/p
n

⎡
⎣∫

Rn

ϕ p dm

⎤
⎦

1/p

< ∞,

as desired.
Finally, we proceed to prove (6):

‖Tϕ,r‖p
p =

∫

Rn

T p
ϕ,r(x) dm(x) =

∫

Rn

⎡
⎣ 1
Ωn

∫

Bn

ϕ(x+ r(x)y) dm(y)

⎤
⎦

p

dm(x).

After applying Hölder’s inequality to the inner integral and simplifying, we get

‖Tϕ,r‖p
p ≤ 1

Ωn

∫

Rn

∫

Bn

ϕ p(x+ r(x)y) dm(y) dm(x).

Interchanging the order of integration gives

‖Tϕ,r‖p
p ≤ 1

Ωn

∫

Bn

∫

Rn

ϕ p(x+ r(x)y) dm(x) dm(y). (A.4)

Define, for y ∈ B
n, θy : R

n → R
n by θy(x) = x + r(x)y. It easily follows that θy

is injective and, hence, by a theorem in topology, θy(Rn) is a domain. Since θy is
Lipschitz continuous, it follows by Theorem 1 and Corollary 2 in [323] that the
change-of-variables formula for multiple integrals holds with θy as the mapping
function. Therefore,

∫

θy(Rn)

ϕ p(x) dm(x) =
∫

Rn

ϕ p ◦θy(x) μ ′
y(x) dm(x), (A.5)

where μ ′
y is the volume derivative of the homeomorphism θy; see Definition 24.1

in [316]. Since
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μ ′
y(x) = lim

r→0

m(θy(Bn(x,r)))
Ωnrn

a.e. x, the estimates

m(θy(Bn(x,r))) ≥ Ωn{ inf
|x′−x|=r

|θy(x′)−θy(x)|}n

and
|θy(x′)−θy(x)| ≥ (1− k) |x′ − x|

yield μ ′
y(x) ≥ (1− k)n a.e. x in R

n. This result and (A.4) and (A.5) give

‖Tϕ,r‖p
p ≤ 1

Ωn(1− k)n

∫

Bn

∫

Rn

ϕ p(x) dm(x) dm(y) = (1− k)−n‖ϕ‖p
p,

as desired. 
�

For the remainder of this section, G will denote a domain in Rn, and E and F
will be compact, disjoint, nonempty sets in G. We write Γ = Γ (E,F,G). We let
d : R

n → [0,∞) be the function defined by d(x) = d(x,((Rn \G)∪E∪F)\{∞}) and
let l.s.c.(Rn) be the extended real-valued, lower semicontinuos functions defined on
R

n.

Lemma A.7. Let A ⊂ adm Γ satisfying (1) ρ ∈ l.s.c.(Rn)∩Lp(Rn), (2) ρ is con-
tinuous on G \ (E ∪F ∪{∞}), and (3) ρ(x) · d(x)n/p is bounded above for x ∈ R

n.
Then A is a p-complete family.

Proof. It suffices to prove that M = inf
∫
Rn ρn(x) dm(x) ≤ Mp(Γ ), where the

infimum is taken over all ρ ∈ A . Choose ρ ∈ admΓ ∩ Lp(Rn)∩ 1.s.c.(Rn). Let
ε ∈ (0,1) and let g = Tρ,εd . Suppose γ ∈ Γ is locally rectifiable. We may assume,
by parameterizing γ, that γ : (a,b) → G, where a, b ∈ [−∞,+∞], and that the length
of γ|[t1, t2] is t2 − t1 for all t1, t2 ∈ (a,b). Note that γ restricted to closed subintervals
of (a,b) is absolutely continuous.

Let γy : (a,b) → G, y ∈ B
n, be the path defined by γy(t) = γ(t) + εd(γ(t))y.

Choose e ∈ γ(a,b)∩E. Let t j ∈ (a,b), j = 1,2, . . . , be such that γ(t j)→ e as j →∞.
If e �= ∞, then, clearly, γy(t j) → e as j → ∞. If e = ∞, then, for fixed t ′ ∈ (a,b), the
triangle inequality and the fact that d is Lipschitz continuous with Lipschitz con-
stant 1 imply |γy(t j)− γy(t ′)| ≥ (1− ε)|γ(t j)− γ(t ′)| and, therefore, γy(t j) → ∞ = e
as j → ∞. Hence, γy(a,b)∩E �= 0. Similarly, γy(a,b)∩F �= 0. Therefore, γy ∈ Γ .
Also, γy restricted to closed subintervals of (a,b) is absolutely continuous. An easy
estimate shows that |γ ′y(t)| ≤ 1+ ε a.e. on (a,b).

We have

∫

γ

g ds =
b∫

a

g(γ(t)) dt =
1
Ωn

b∫

a

∫

Bn

ρ(γ(t)+ εd(γ(t))y) dm(y) dt
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=
1
Ωn

∫

Bn

b∫

a

ρ(γy(t))|γ ′y(t)||γ ′y(t)|−1 dt dm(y)

≥ 1
(1+ ε)Ωn

∫

Bn

∫

γy

ρ ds dm(y) ≥ 1
1+ ε

.

This result and Lemma A.6 show that (1+ ε)g ∈ A ⊂ admΓ . Hence,

M ≤ (1+ ε)p‖g‖p
p = (1+ ε)p‖Tρ,εd‖p

p.

From Lemma A.6 (6), we get

M ≤ (1+ ε)p

(1− ε)n

∫

Rn

ρ p(x) dm(x).

Since ε ∈ (0,1) and ρ ∈ admΓ ∩ Lp(Rn)∩ 1.s.c.(Rn) are arbitrary, we get M ≤
Mp(Γ ), as desired. 
�

For r ∈ (0,1), we define E(r) = {x ∈ Rn : q(x,E) ≤ r} and F(r) = {x ∈ Rn :
q(x,F) ≤ r}. Let ρ : R

n → [0,∞] be a Borel function. We define L(ρ,r) as the
infimum of the integrals

∫
γ ρ ds, where γ is a locally rectifiable path in G connecting

E(r) and F(r). Since L(ρ,r) is non-decreasing for decreasing r, we can define

L(ρ) = lim
r→0

L(ρ,r).

Remark A.5. We observe that L(ρ)≥ 1 if and only if for every ε ∈ (0,1) there exists
a δ ∈ (0,1) such that

∫
γ ρ ds ≥ 1 − ε for every locally rectifiable path γ in G

connecting E(r) and F(r) with r ≤ δ .

Lemma A.8. Suppose there exists a p-complete family B0 ⊂ admΓ such that
L(ρ)≥ 1 for every ρ ∈B0. Then the family B ⊂ admΓ consisting of all ρ ∈ admΓ
such that (1) ρ ∈ 1.s.c.(Rn)∩ Lp(Rn) and (2) ρ is continuous on G \ {∞} is p-
complete.

Proof. Let B1 be the set of ρ ∈ admΓ such that ρ ∈ 1.s.c.(Rn)∩Lp(Rn) and L(ρ)≥
1. It follows from the Vitali–Caratheodory theorem that B1 is p-complete; see, e.g.,
Theorem 2.24 in [261].

Let ρ ∈B1 and ε ∈ (0,1). Let δ be as in Remark A.5 and choose δ ′ ∈ (0,1) such
that if x ∈ E \ {∞} [resp., F \ {∞}] and y ∈ R

n, |x− y| < δ ′, then y ∈ E(δ ) [resp.,
F(δ )]. Let r : R

n → [0,1] be defined by r(x) = εδ ′ min(1,d(x,Rn\G)). Let g = Tρ,r.
Suppose γ ∈ Γ is locally rectifiable and assume that γ : (a,b) → G is parameterized
as in the proof of Lemma A.7. Let γy : (a,b) → G, y ∈ B

n, be the path defined by
γy(t) = γ(t)+ r(γ(t))y. It follows, using the same method as in the proof of Lemma
A.7, that γy connects E(δ ) and F(δ ). A computation similar to the one in the proof
of Lemma A.7 yields
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∫

γ

g ds ≥ 1
(1+ ε)Ωn

∫

Bn

∫

γy

ρ ds dm(y) ≥ 1− ε
1+ ε

.

The above and Lemma A.6 show that (1 + ε)(1 − ε)−1g ∈ B. Let
M = inf

∫
Rn ρ p(x) dm(x), where the infimum is taken over all ρ ∈ B. Then, by

Lemma A.6,

M ≤ (1+ ε)p

(1− ε)p ‖g‖p
p =

(1+ ε)p

(1− ε)p ‖Tρ,r‖p
p ≤ (1+ ε)p

(1− ε)p(1− ε)n ‖ρ ‖
p
p.

Since ρ ∈ B1 and ε ∈ (0,1) are arbitrary and B1 is p-complete, it follows from
the above that M ≤ Mp(Γ ). This completes the proof since the reverse inequality is
trivial. 
�
Lemma A.9. Suppose (E ∪F)∩ ∂G = /0. Let ρ : R

n → [0,∞] be a Borel function
and let ρ|G \ (E ∪F ∪{∞}) be finite-valued and continuous. Let ε ∈ (0,∞). Then
there exists a locally rectifiable path γ ∈ Γ such that

∫

γ

ρ ds ≤ L(ρ)+ ε.

Proof. We may assume that L(ρ) < ∞. Let {εk}∞k=1 be a sequence of positive num-
bers such that ∑∞

k=1 εk < ε/8. Let {rk}∞k=1 be a strictly monotone decreasing se-
quence of positive numbers such that (1) limk→∞ rk = 0 and (2) E(rk)∩F(rk) =
/0. E(rk), F(rk) ⊂ G, and ∞ /∈ ∂E(rk), ∂F(rk) for k = 1,2, . . .. It follows that
∂E(rk)∩E = /0, ∂F(rk)∩F = /0 for k = 1,2, . . .. Let Γk be the paths in G connecting
E(rk) and F(rk), k = 1,2, . . .. Choose γk ∈ Γk such that γk is locally rectifiable and

∫

γk

ρ ds ≤ L(ρ,rk)+ ε/2 ≤ L(ρ)+
ε
2
. (A.6)

Let xk j [resp., yk j], defined for j < k, be the last [resp., first] point of γk in E(r j)
[resp., F(r j)]. We have xk j ∈ ∂E(r j) and yk j ∈ ∂F(r j). By considering successive
subsequences and then a diagonal sequence and then relabeling the sequences, we
may assume that xk j → x j ∈ ∂E(r j) and yk j → y j ∈ ∂F(r j) as k → ∞. Let Vj ⊂
G \ (E ∪F ∪{∞}) [resp., Wj ⊂ G \ (E ∪F ∪{∞})] be an open Euclidean ball with
the center x j [resp., y j] such that

∫
ρ ds < ε j, where the integral is taken over

any line segment lying in Vj [resp., Wj], j = 1,2, . . .. This can be done since ρ is
continuous on G\ (E ∪F ∪{∞}) and, hence, locally bounded there.

LetΨj [resp., Φ j] be the set of rectifiable paths α : [a,b]→ G such that α(a)∈Vj

[resp., α(a) ∈ Wj] and α(b) ∈ Vj−1 [resp., α(b) ∈ Wj−1], j = 2,3, . . .. Let Λ be
the set of rectifiable paths α : [a,b] → G such that α(a) ∈ V1 and α(b) ∈ W1. For
any positive integer k, there exists a path in the sequence {γi}∞i=1, say γi(k), such
that xi(k), j ∈ Vj and yi(k), j ∈Wj for j = 1,2 . . . ,k. This implies that γi(k) has distinct
subpaths in Ψ2,Ψ3, . . . ,Ψk, Φ2,Φ3, . . . ,Φk, Λ . Hence, for every positive integer k,
we have, using Eq. (A.6),
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inf
γ∈Λ

∫

γ

ρ ds+
k

∑
j=2

inf
γ∈Ψj

∫

γ

ρ ds+
k

∑
j=2

inf
γ∈Φ j

∫

γ

ρ ds ≤
∫

γi(k)

ρ ds ≤ L(ρ)+
ε
2
.

Since k is arbitrary, we get

inf
γ∈Λ

∫

γ

ρ ds+
k

∑
j=2

inf
γ∈Ψj

∫

γ

ρ ds+
k

∑
j=2

inf
γ∈Φ j

∫

γ

ρ ds (A.7)

≤ L(ρ,rk) +
ε
2
.

Choose θ ∈Λ such that
∫

θ

ρ ds < inf
γ∈Λ

∫

γ

ρ ds+ ε1. (A.8)

Choose τ j ∈Ψj, σ j ∈Φ j, j = 2,3, . . . , such that

∫

τ j

ρ ds < inf
γ∈Ψj

∫

γ

ρ ds+ ε j (A.9)

and ∫

σ j

ρ ds < inf
γ∈Φ j

∫

γ

ρ ds+ ε j. (A.10)

Let α j [resp., β j] be the line segment in Vj [resp., Wj] connecting the endpoints of
τ j and τ j+1 [resp., σ j and σ j+1], j = 2,3, . . . . Let α1 [resp., β1] be the line segment
in V1 [resp., W1] connecting the endpoints of τ2 and θ [resp., σ2 and θ ]. We have

∫

α j

ρ ds < ε j,
∫

β j

ρ ds < ε j, j = 1,2, . . . . (A.11)

Let γ ∈ Γ be the locally rectifiable path γ = . . .τ3α2τ2α1θβ1σ2β2σ3 . . . . Finally, by
Eqs. (A.7)–(A.11),

∫

γ

ρ ds =
∞

∑
j=1

∫

α j

ρ ds +
∞

∑
j=1

∫

β j

ρ ds +
∫

θ

ρ ds +
∞

∑
j=2

∫

τ j

ρ ds +
∞

∑
j=2

∫

σ j

ρ ds

≤
∞

∑
j=1

ε j +
∞

∑
j=1

ε j +
∞

∑
j=2

ε j +
∞

∑
j=2

ε j + L(ρ) + ε,

as desired. 
�
Lemma A.10. Suppose (E ∪F)∩∂G = /0. Let B ⊂ admΓ be the set of ρ ∈ admΓ
such that (1) ρ ∈ 1.s.c.(Rn)∩Lp(Rn) and (2) ρ is continuous on G\{∞}. Then B
is p-complete.
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Proof. Lemma A.9 shows that L(ρ) ≥ 1 for every ρ in the p-complete family A
defined in Lemma A.7. Hence, this family A satisfies the hypotheses of Lemma
A.8. Therefore, B is p-complete. 
�
Theorem A.14. Suppose (E∪F)∩∂G = /0. Let B ⊂ admΓ be the set of ρ ∈ admΓ
such that (1) ρ ∈ 1.s.c.(Rn)∩ Lp(Rn) and (2) ρ is continuous on G \ {∞}, (3)
ρ(x) · d(x)n/p is bounded above for x ∈ R

n, and (4) L(ρ) ≥ 1. Then B is a p-
complete family.

Proof. Choose ρ in the p-complete family B of Lemma A.10 and let ε ∈ (0,1). Let
g = Tρ,εd . It follows exactly as in the proof of Lemma A.7 that

∫
γ g ds ≥ (1+ ε)−1

for every locally rectifiable path γ ∈ Γ . An application of Lemmas A.6 and A.9
shows that (1+ ε)g ∈ B. Let M = inf

∫
Rn ρ p(x) dm(x), where the infimum is taken

over all ρ ∈ B. We have, by Lemma A.6,

M ≤ (1+ ε)p ‖g‖p
p ≤ (1+ ε)p

(1− ε)n ‖ρ‖p
p =

(1+ ε)p

(1− ε)n

∫

Rn

ρ p(x) dm(x).

Since ρ ∈ B and ε ∈ (0,1) are arbitrary and B is p-complete, it follows that M ≤
Mp(Γ ). Since the reverse inequality is trivial, the proof is complete. 
�

Let γ : [a,b] → R
n be a rectifiable path in R

n, γ0 : [0,L] → R
n the arc length pa-

rameterization of γ, and f an ACL function defined in a neighborhood of γ([a,b]) =
γ0([0,L]). We say f is absolutely continuous on the path γ if

t∫

0

∇ f · dγ0

dt
dt = f ◦ γ0(t)− f ◦ γ0(0)

for all t ∈ [0,L]. The integrand is the inner product of dγ0/dt and ∇ f = the gradient
of f . We use the convention that ∂ f /∂xi = 0 at points x where ∂ f /∂xi is not defined.
The above definition differs slightly from Definition 5.2 in [316] in that we require
a little more than the absolute continuity of f ◦ γ0.

Lemma A.11. Mp(Γ ) ≤ capp(E,F,G).

Proof. Prove u ∈ A (E,F,G)∩Lp(G). Let Γ0 be the locally rectifiable paths γ ∈ Γ
for which u is absolutely continuous on every rectifiable subpath of γ. Define ρ :
R

n → [0,∞] by

ρ(x) =
{
|∇u(x)| if x ∈ G\ {∞},
0 if x ∈ R

n \G.

Suppose γ ∈ Γ0 and γ : (a,b) → G is parameterized as in the proof of Lemma A.7.
If a < t1 < t2 < b, then

∫

γ

ρ ds =
b∫

a

ρ ◦ γ(t) dt ≥
t2∫

t1

|∇u(γ(t))| dt ≥

∣∣∣∣∣∣
t2∫

t1

∇u(γ(t)) · dγ
dt

dt

∣∣∣∣∣∣
= |u◦ γ(t2)−u◦ γ(t1)|.
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Since t1 and t2 are arbitrary, the above implies
∫
γ ρ ds ≥ 1. Hence, ρ ∈ admΓ0.

Therefore,

Mp(Γ0) ≤
∫

Rn

ρ p(x) dm(x) =
∫

G

|∇u(x)|p dm(x).

By a theorem of Fuglede (see Theorem 28.2 in [316]), we have Mp(Γ ) = Mp(Γ0).
Therefore,

Mp(Γ ) ≤
∫

G

|∇u(x)|p dm(x).

Since u ∈ A (E,F,G)∩Lp(G) is arbitrary, we get the desired result. 
�

Lemma A.12. Let U be a domain in R
n, let g : U → [0,∞) be continuous, and sup-

pose that K is a nonempty, bounded, compact set with K ⊂U. Define f : U → [0,∞)
by f (x) = inf

∫
β g ds, where the infimum is taken over all rectifiable paths β : [a,b]→

U with β (a) ∈ K and β (b) = x. Then, (1) if the closed line segment [x1,x2] lies in
U, then

| f (x2)− f (x1)| ≤ max
x∈[x1,x2]

g(x)|x2 − x1| (A.12)

and (2) if f : U → [0,∞) satisfies (A.12), then f is differentiable a.e. in U and
|∇ f (x)| ≤ g(x) a.e. in U.

Proof. Let β be a rectifiable path connecting K and x1. Then

f (x2) ≤
∫

β

g ds +
∫

[x1,x2]

g ds ≤
∫

β

g ds + max
x∈[x1,x2]

g(x)|x2 − x1|.

Since β is arbitrary, we get

f (x2) ≤ f (x1) + max
x∈[x1,x2]

g(x)|x2 − x1|.

In a similar way, we get

f (x1) ≤ f (x2) + max
x∈[x1,x2]

g(x)|x2 − x1|.

This proves Eq. (A.12).
If f satisfies Eq. (A.12), then f is locally Lipschitz continuous in U and,

therefore, by the theorem of Rademacher and Stepanov [316], f is differentiable
a.e. in U. Suppose now that x0 ∈ U is a point of differentiability of f . Then
f (x0 +h)− f (x0) =∇ f (x0) ·h+ |h|ε(h) where h∈R

n and limε(h) = 0 as h→ 0. For
small t ∈ (0,1), let h = t∇ f (x0)/|∇ f (x0)|. Substituting in the above formula gives
||∇ f (x0)|+ε(h)| ≤ maxx∈[x0,x0+h] g(x). If we let t → 0, we get |∇ f (x0)| ≤ g(x0), as
desired. 
�

Theorem A.15. Suppose (E ∩F)∩∂G = /0. Then Mp(Γ ) = capp(E,F,G).
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Proof. It suffices, by Lemma A.11, to prove

capp(E,F,G) ≤ Mp(Γ ). (A.13)

We assume, without any loss of generality, that E is bounded and we let B ⊂ admΓ
be as in Theorem A.14. The proof is divided into four cases.

Case 1. Suppose ∞ /∈ G. Let ρ ∈ B and define u : G → [0,∞) by u(x) =
min(1, inf

∫
β ρ ds), where the infimum is taken over all rectifiable paths β in G con-

necting E and x. It follows, using Lemma A.11, that u ∈A (E,F,G) and |∇u| ≤ rho
a.e. in G. Therefore,

capp(E,F,G) ≤
∫

G

|∇u|p dm ≤
∫

Rn

ρ p ds.

Since ρ ∈ B is arbitrary and B is p-complete, we get Eq. (A.13).
Case 2. Suppose ∞ ∈ G and ∞ ∈ F. Choose ρ ∈ B and ε ∈ (0,1). Since

L(ρ) ≥ 1, we can choose a small r ∈ (0,1) so
∫
γ ρ ds ≥ 1− ε for every locally

rectifiable path γ in G connecting E(r) and F(r). Define u : G \ {∞} → [0,∞) by
u(x) = min(1,(1− ε)−1 inf

∫
β ρ ds), where the infimum is taken over all rectifiable

paths β in G connecting E(r) and x. Since u is identically 1 in a deleted neighbor-
hood of ∞, we see that u extends continuously to all of G. It follows, using Lemma
A.12, that u ∈ A (E,F,G) and |∇u| ≤ (1− ε)−1ρ a.e. in G. Therefore,

capp(E,F,G) ≤
∫

G

|∇u|p dm ≤ (1− ε)−p
∫

Rn

ρ p dm.

Since ρ ∈ B and ε ∈ (0,1) are arbitrary and B is p-complete, we get Eq. (A.13).
Case 3. Suppose ∞∈ G, ∞ /∈ F, and 1 < p < n. Choose ρ ∈B. Since ((Rn \G)∪

E ∪F)\{∞} lies inside some ball, it follows that |x| ≤ constant ·d(x) for large |x|.
Therefore,

ρ(x) ≤ C|x|−n/p (A.14)

for some constant C ∈ (0,∞) and all large |x|, say |x| > r0. Define v : G \ {∞} →
[0,∞) by v(x) = inf

∫
β ρ ds, where the infimum is taken over all rectifiable paths β

connecting E and x. We proceed to show that v(∞) can be defined continuously. Set
v(∞) = inf

∫
β ρ ds, where the infimum is taken over all continuous β such that β :

[a,b]→G with β (a)∈E, β (b) =∞ and β |[a, t] is rectifiable for all t ∈ [a,b). Choose
any x0 ∈ R

n so that the path [x0,∞] lies in G, where [x0,∞](t) = tx0, t ∈ (1,∞). Let
γ be any rectifiable path in G connecting E and x0. Let β the path obtained by
connecting the paths γ and (x0,∞). Then

v(∞) ≤
∫

β

ρ ds =
∫

γ

ρ ds +
∫

[x0,∞]

ρ ds.
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Clearly,
∫
γ ρ ds is finite and

∫
[x0,∞]ρ ds is finite by the estimate (A.14) and the fact

that 1 < n/p. Hence, v(∞) is finite. Choose r ∈ (r0,∞) large enough so that the
complement in Rn of Bn(0,r) lies in G and E ⊂ Bn(0,r). Let x0 ∈ G \ {∞} and
|x0| > r.

Suppose β is a rectifiable path in G connecting E and x0. We have

v(∞) ≤
∫

β

ρ ds +
∫

[x0,∞]

ρ ds ≤
∫

β

ρ ds + C

∞∫

r

t−n/p dt.

Since the above is true for all such β , we get

v(∞)− v(x0) ≤ c

∞∫

r

t−n/p dt. (A.15)

Suppose now that β is a path connecting E and ∞ and is of the type used in defining
v(∞). Let τ be a path that is part of a great circle on the sphere {x ∈ R

n : |x| = |x0|}
and that connects x0 and y0 at some point on the path β . Let β1 be a subpath of β
connecting E and y0. We have

v(x0) ≤
∫

β1

ρ ds +
∫

τ

ρ ds ≤
∫

β

ρ ds +
∫

τ

ρ ds.

Also, ∫

τ

ρ ds ≤ C

|x0|n/p
· length(τ) ≤ 2πC|x0|1−n/p.

Hence,

v(x0) ≤
∫

β

ρ ds + 2πC|x0|1−n/p ≤
∫

β

ρ ds + 2πCr1−n/p.

Since the above is true for all β connecting E and ∞, we have

v(x0)− v(∞) ≤ 2πCr1−n/p. (A.16)

Relations (A.16) show that v is continuous at ∞.
Define u : G → [0,∞) by u(x) = min(1,v(x)). Then it follows, using Lemma

A.12, that u ∈ A (E,F,G) and |∇u| ≤ ρ a.e. in G. Therefore,

capp(E,F,G) ≤
∫

G

|∇u|p dm ≤
∫

Rn

ρ p dm.

Since ρ ∈ B is arbitrary and B is p-complete, we get Eq. (A.13).
Case 4. Suppose ∞ ∈ G, ∞ /∈ F, and p ≥ n. Define θ : R

n → [0,1] by
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θ(x) =
{

1/e if |x| ≤ e,
1/(|x| log |x|) if |x| > e.

It is straightforward to verify that θ ∈ Lp(Rn) and
∫ ∞

0 θ(|x|) d|x| = ∞. Choose
ρ ∈ B and ε ∈ (0,1). Let ρ ′ = ρ + εθ . Define u : G \ {∞} → [0,∞) by u(x) =
min(1, inf

∫
β ρ ′ ds), where the infimum is taken over all rectifiable β in G connecting

E and x. Choose r ∈ (0,∞) so that E ⊂ Bn(0,r). If |x0| > r and β connects E and
x0, then

∫

β

ρ ′ ds ≥ ε
∫

β

θ ds ≥ ε
|x|∫

r

θ(|x|) d|x|.

It follows that if |x0| is large, then
∫
β ρ ′ ds ≥ 1. Therefore, u extends continuously

to u : G → [0,∞). Using Lemma A.12, we get u ∈ A (E,F,G) and |∇u| ≤ ρ ′ a.e. in
G. Hence,

capp(E,F,G) ≤
∫

G

|∇u|p dm ≤
∫

Rn

(ρ + εθ)p dm.

Since ρ ∈ B and ε ∈ (0,1) are arbitrary and B is p-complete, we get Eq. (A.13).

�

We use the previous theorem to prove a continuity theorem for the modulus.

Theorem A.16. Suppose E1 ⊃ E2 ⊃ . . . and F1 ⊃ F2 ⊃ . . . are disjoint sequences of
nonempty compact sets in a domain G. Then

lim
i→∞

Mp(Ei,Fi,G) = Mp

(
∞⋂

i=1

Ei,
∞⋂

i=1

Fi,G

)
.

Proof. The theorem follows immediately from Theorems A.15 and A.13. 
�

The reader may wish to compare the proof of Eq. (A.13) with Ziemer’s proof
in [338]. Ziemer defines a function u derived from a density ρ in a way that is
similar to the one in this section. Ziemer’s technique will not work for the situation
considered in this section since the “limiting path” of Lemma 3.3 in [338] need not
necessarily lie in G. The present proof “works” because there is a p-complete family
of densities ρ with L(ρ) ≥ 1.

A.4 The Shlyk Equality

This section extends the result from Section A.3 to arbitrary condensers in the clo-
sure of a domain in R

n, n ≥ 2; see [293], cf. with arguments in Chapter 2 and in the
papers [10, 37, 198].

Let us introduce some notations: Rn = R
n ∪{∞} is the one-point compactifica-

tion of the Euclidean space R
n, n ≥ 2; G ⊂ R

n is an open set in the topology of the
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space Rn; F0 and F1 are nonempty, disjoint, closed sets in G; mp (F0,F1,G) is the
p-modulus of the family Δ(F0,F1,G) of all rectifiable paths connecting F0 and F1 in
G; see [122] and [305]; here

mp (F0,F1,G) = inf
∫

G

ρ p dx,

where the infimum is taken over the class admΔ(F0,F1,G) of all Borel functions
ρ : G → [0,∞] satisfying the condition

∫

γ

ρ ds ≥ 1

for every γ ∈Δ (F0,F1,G) ; Cp (F0,F1,G) is the p-capacity of the condenser (F0,F1,G) ,
i.e.,

Cp (F0,F1,G) = inf
∫

G

|∇u|p dx,

where the infimum is taken over the class of all functions u ∈ C∞ (G)∩L1
p(G) (see

[215]), which are equal to 1 and 0 on neighborhoods of the F1 and F1, respectively;
d(·, ·) is the Euclidean distance; Ln is the n-dimensional Lebesgue measure in R

n.

Hesse has shown in [122] that mp (F0,F1,G) = Cp (F0,F1,G) , where F0 and F1

are compact subsets of G, G is a domain, and the monotonicity of mp (F0,F1,G)
is obtained as a consequence of this fact. Note that the connectivity of G in the
Hesse proof is not an essential restriction. Later on, M. Ohtsuka in [228] raised the
question of the monotonicity of mp (F0,F1,G) for arbitrary condensers (F0,F1,G) .

The equality mp (F0,F1,G) = Cp (F0,F1,G) for arbitrary condensers is proved in
Theorem A.17 and answers the Ohtsuka question; see Corollary A.4.

Theorem A.17. The equality mp (F0,F1,G) = Cp (F0,F1,G) holds for p > 1.

Proof. The inequality mp (F0,F1,G) ≤ Cp (F0,F1,G) < ∞ is known; see [122]. We
need to show that mp (F0,F1,G) ≥Cp (F0,F1,G) . Since

mp (F0,F1,G) = mp(∂F0,∂F1,G\ (F0 ∪F1))

and
Cp (F0,F1,G) = Cp (∂F0,∂F1,G\ (F0 ∪F1)) ,

in what follows we assume that F0, F1 ⊂ ∂G. Consider the case when G is a bounded
open set and, consequently, F0 and F1 are compact sets in R

n. Then, given ε ∈ (0,1),
there is the cut-off function ρ1 ∈ admΔ (F0,F1,G) such that

∣∣∣∣∣∣ mp (F0,F1,G)−
∫

G

ρ p
1 dx

∣∣∣∣∣∣ <
ε
4
.
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Corresponding to [122] is a function ρ2 ∈ admΔ (F0,F1,G) that is continuous and
satisfies the condition ∣∣∣∣∣∣

∫

G

ρ p
2 dx−

∫

G

ρ p
1 dx

∣∣∣∣∣∣ <
ε
4
.

Select m ∈ N such that, for

ρ3 = max{ρ2,1/m}, (A.17)

the inequality ∣∣∣∣∣∣
∫

G

ρ p
2 dx−

∫

G

ρ p
3 dx

∣∣∣∣∣∣ <
ε
4

holds. The function ρ3 is continuous in G and belongs to the class admΔ (F0,F,G) .

In view of the inequality d(F0,F1) > 0, there is a compact set ω such that Rn \
ω = A0 ∪B0, where A0 and B0 are open disjoint sets and F0 ⊂ A0 and F1 ⊂ B0;
see [292]. Using a covering of ω by balls, we may assume that ω is of the Ln-mea-
sure zero.

Similarly, let us construct open sets Ak and Bk, k = 1,2, . . . , such that A0 � Ak �
Ak+1, B0 � Bk � Bk+1; Ln (∂Ak ∪∂Bk) = 0,

⋂∞
k=1 Ak = F0,

⋂∞
k=1 Bk = F1. Set β1 =

d (∂A1,ω) , η1 = d (∂B1,ω) , βk = d (∂Ak−1,∂Ak) , and ηk = d (∂Bk−1,∂Bk) for
k ≥ 2. It is clear that βk > 0 and ηk > 0 as k = 1,2, . . . . Let us give a decreasing
sequence εk ∈ (0,1) such that

∞

∑
k=1

2p+1εk <
ε
4
, m · εk < min(βk,ηk) . (A.18)

Let us enclose ∂G\ (F0 ∪F1) �= /0 into the union U of a sequence (possibly, finite)
of open balls such that the set R

n \ (Ak ∪Bk) intersects at most a finite number
of its elements and U ∩ (F0 ∪F1) = /0,

∫
Vk∩Wk

ρ p
3 dx < ε p+1

k , where Vk = (U ∩G)∩(
Ak−1 \Ak

)
and Wk = (U ∩G)∩

(
Bk−1 \Bk

)
, k = 1,2, . . . .

If ∂G\ (F0 ∪F1) = /0, we set U = 0. Then, under U �= /0 and ∂G∩Ak−1 \Ak �= /0,

we have d
(
∂G∩Ak−1 \Ak,∂U

)
> 0. Similarly, under U �= /0 and ∂G∩Bk−1 \Bk �=

/0, we have d
(
∂G∩Bk−1 \Bk,∂U

)
> 0. Thus, if

ρ4 =

⎧⎨
⎩
ρ3/ε2k+1, x ∈V2k+1 ∪W2k+1, k = 1,2, . . . ,
ρ3/ε2k, x ∈V2k ∪W2k, k = 1,2, . . . ,
0, x ∈ G\U,

then ρ5 = ρ3 +ρ4 ∈ admΔ (F0,F1,G) and |ρ p
5 −mp (F0,F1,G) |< ε. Set F0, j = ∂A j∩

G, F1, j = ∂B j∩G and G j = G\A j ∪B j, j = 1,2, . . . . Then
∫
γ ρ5 ds > 1−ε for j = j0

and all γ ∈ Γj = Δ
(
F0, j,F1, j,G j

)
.
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We may assume that the family Δ (F0,F1,G) is not empty, because otherwise it
is obvious that mp(F0,F1,G) = 0 = Cp(F0,F1,G). This implies the condition Γj �= /0,
j ≥ 1.

Indeed, let us assume the contrary. Without loss of generality, we may consider
that, for every j ∈ N, there is a path γ j ∈ Γj such that

∫

γ j

ρ5 ds ≥ 1− ε. (A.19)

Since ρ5 ≥ 1/m in G, in view of Eq. (A.19), the length s(γ j) of the path γ j is
at most m(1− ε) . Hence, γ j = γ j ∪

{
a j,b j

}
, where a j ∈ F0, j, b j ∈ F1, j. By the

Mazurkiewicz–Yanishevski theorem (see [186], p. 200), the continuum γ j contains
a continuum λ joining the points a j and b j and which is irreducible between them.
It is clear that λ is a continuum of a finite one-dimensional Hausdorff measure
and, consequently, is a rectifiable path; see [138], p. 180. In view of the Hahn–
Mazurkiewicz–Sierpinski theorem [186], λ is a locally connected continuum. Ap-
plying Moore’s theorem, (see [186], p. 262), we conclude that λ \

{
a j,b j

}
is a

simple rectifiable path from Γj and
∫
λ ρ5 ds ≤ 1− ε. Therefore, we further assume

that γ j is a simple path.
Let f j : (0,s j) → γ j be a natural parameterization of the same path γ j, where

s j = s(γ j). Then | f j (s′)− f j (s′′) | ≤ |s′ − s′′| for all s′,s′′ ∈ (0,s j), j ∈ N, and
| f ′j(s)| = 1 a.e. in (0,s j) with respect to the measure L1. Without loss of gener-
ality, we may consider that s j → s0 < ∞ as j → ∞ and, by the Ascoli theorem, f j

converges uniformly to a function f on compact subsets of (0,s0), satisfying the
Lipschitz condition with the constant 1. By construction, γ = f ((0,s0)) joins com-
pact sets F0 and F1 and is contained in G. Moreover, | f ′(s)| ≤ 1 a.e. on (0,s0). Let
τ = (γ \U)∩G. Since ρ3 is continuous in G and ρ3 = ρ5 in G\U, we have

1− ε ≥ lim
j→∞

∫

e

ρ3 ( f j(s)) ds =
∫

e

ρ3 ( f (s)) ds =
∫

e

ρ5 ( f (s)) ds

for every compactum τ ′ ⊂ τ, where e = f−1 (τ ′) ⊂ (0,s0). Hence,
∫

τ

ρ5 ds ≤ 1− ε. (A.20)

In particular, if U = /0, then τ ⊃ γ̃ ∈ Δ (F0,F1,G) and
∫
γ̃ ρ5 ds ≥ 1, which, in view of

Eq. (A.20), contradicts the above assumption. Hence, later on, we may consider U �=
/0. Let V1 �= /0. Set τ1(V ) =

(
γ ∩V1

)
∩
(
U ∩G

)
. Since γ joins F0 and F1, one of the

connected components of γ∩
(
A0 \A1

)
joins the compact sets ∂A0 and ∂A1. Denote

this component by κ. Then κ \τ1 (V ) �= /0. Indeed, let us assume that κ \τ1 (V ) = /0
and let (α,β )⊂ (0,s0) be one of those intervals for which f ((α,β )) = κ. Choosing
δ in (0,(β −α)/2) , for large j, we obtain

κ j = f j ([α +δ ,β −δ ]) ⊂ V1 ∩ (U ∩G) .
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Since 1 − ε ≥
∫
γ j
ρ5 ds ≥

∫
κ j
ρ5 ds, we have

∫
κ j
ρ4 ds < 1 and, consequently,∫

κ j
ρ3 ds < ε1. Hence, s(κ j) < m ·ε1. Passing here to the limit as j →∞ and δ → 0,

we have β1 = d (∂A0,∂A1)≤ s(κ) < m ·ε1, which contradicts the choice of εk in Eq.
(A.18) under k = 1. Consequently, κ \ τ1 (V ) �= /0. A similar property can be estab-
lished for γ∩

(
B0 \B1

)
, γ∩

(
A1 \A2

)
, γ∩

(
B1 \B2

)
, . . . . Then each connected com-

ponent of τ1(V ) belongs in an open arc included in
(
G∩U

)
∩V1 ∪W1 ∪V2 and either

the endpoints of these arcs simultaneously lie in one of the sets (∂U ∩G∩∂V1) ,
(∂U ∩G∩∂W1) , (∂U ∩G∩∂V2) , or one of endpoints belongs to (∂U ∩G∩∂V1)
and the other one to one of the sets (∂U ∩G∩∂W1) , (∂U ∩G∩∂V2) . Let us
enumerate these arcs as a (possibly finite) sequence τ1,l(V ), l = 1,2, . . . , and set
τ̂1(V ) =

⋃
l τ1,l . Let us parameterize gl : q1,l → τ1,l of the arc τ1,l(V ) by restricting

f to the corresponding interval q1,l ⊂ (0,s0) . Since ρ5 is a bounded function, in a
small neighborhood of the compact (∂V1

⋃
∂W1

⋃
∂V2)∩ (∂U ∩G) , the mappings

f j, f are Lipschitzian, f j → f on q1,l as j → ∞, and we can find numbers n1 and n2

and segments [cl ,dl ] ⊂ q1,l , l = 1,n1, such that

1. if σl = fn2 ([cl ,dl ]) , then
⋃n1

l=1σl ⊂V1 ∪W1 ∪V2 ∩ (U ∩G) ,

2. the set e = f
(⋃

l≥n1
q1,l
)

lies in a small neighborhood of the compactum

(∂V1 ∪∂W1 ∪∂V2)∩ (∂U ∩G)

and ∫

e

ρ5 ds < ε1, (A.21)

3. if we join the point fn2(cl) by a line segment with the ”left” endpoint of the arc
f
(
q1,l
)
, the point fn2(dl) by a line segment e2,l with the ”right” endpoint of the arc

f
(
q1,l
)
, e1,l ∪ e2, l ⊂ G, l = 1,n1, then

n1

∑
l=1

⎛
⎝

n1∫

e1,l

ρ5 ds+
n1∫

e2,l

ρ5 ds

⎞
⎠< ε1. (A.22)

Note that
n1

∑
l=1

∫

σl

ρ4 ds ≤
∫

γn2

ρ5 ds ≤ 1− ε.

Hence,

n1

∑
l=1

∫

σl

ρ3ds =
n1

∑
l=1

⎛
⎜⎝

∫

σl∩V1∪W1

ρ3ds+
∫

σl∩V2

ρ3ds

⎞
⎟⎠< ε1 + ε2. (A.23)

Replacing the arcs τ1,l in τ̂1(V ) by arcs σl and by the line segments e1,l ,e2,l . . .,
l = 1,n1, we obtain instead of τ̂1(V ) a set τ̃1(V ) ⊂ G such that, in view of Eqs.
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(A.21)–(A.23), ∫

τ̃1(V )

ρ3 ds < 3ε1 + ε2.

In the case V1 = /0, we set τ̃1(V ) = /0.
Similarly, taking the sets W1,V2,W2, . . . instead of V1, we construct, for τ1(W ) =(

γ ∩W1
)
∩
(
U ∩G

)
, τ2(V ) =

(
γ ∩V2

)
∩
(
U ∩G

)
, τ2(W ) =

(
γ ∩W2

)
∩
(
U ∩G

)
, . . . ,

the corresponding sets τ̃1(W ), τ̃2(V ), τ̃2(W ), . . . in G such that
∫

τ̃1(W )

ρ3 ds < 3ε1 + ε2,
∫

τ̃2(V )

ρ3 ds < 3ε2 + ε1 + ε3,

∫

τ̃1(W )

ρ3 ds < 3ε2 + ε1 + ε3, . . . . (A.24)

Combining Eqs. (A.21)–(A.24), we come to the estimate

∑
k≥1

∫

τ̃k(V )∪τ̃k(W )

ρ3 ds <
5
8
ε.

Since γ̃ = τ ∪
(⋂

k≥1 (τ̃k(V ))∪ (τ̃k(W ))
)
∈ Δ (F0,F1,G) , we have

∫
γ̃ ρ3 ds ≥ 1 and

1− (5/8)ε <
∫
τ ρ5 ds, which contradicts Eq. (A.20). Consequently, there is a j0

such that under j ≥ j0, ∫

γ

ρ5 ds > 1− ε

for all γ ∈ Γj. Hence, the function

ρ6 =
{
ρ5/(1− ε) , x ∈ G j,
0, x /∈ G j,

belongs to admΔ (F0,F1,G j ∪A j ∪B j), j ≥ j0. Using this and the equality
mp (F0,F1,G j ∪A j ∪B j) = Cp (F0,F1,G j ∪A j ∪B j) from [122], we obtain the fol-
lowing relations:

∫

G

ρ p
6 dx = mp (F0,F1,G)+o(1) ≥ mp (F0,F1,G j ∪A j ∪B j)

= Cp (F0,F1,G j ∪A j ∪B j) ≥Cp(F0,F1,G),

where o(1) → 0 as ε → 0 and j ≥ j0. Passing to the limit as ε → 0, we get the
conclusion of the theorem: mp (F0,F1,G) = Cp (F0,F1,G) .

Note that the equality

mp (F0,F1,G j ∪A j ∪B j) = Cp(F0,F1,G j ∪A j ∪B j)
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can be established by repeating the previous arguments (replacing G by G∪A j ∪B j)
and constructing by the function ρ6 an admissible function u in the capacity problem
Cp (F0,F1,G∪A j ∪B j) such that

∫
G∪A j∪B j

|∇u|p ≤
∫

Gρ
p
6 dx; see, e.g., [122] and

[305].
Now, let G be unbounded and open. Then we need the next modifications in

the previous proof. Instead of ρ3 = max{ρ2,1/m} in Eq. (A.17), we set ρ3 =
max{ρ2,g}, where g is a positive continuous function on R

n such that
∫
Rn gp dx <

ε/4. We correspondingly request for εk in Eq. (A.18) the following conditions:

εk < min
Vk∪Wk

g(x)min(βk,ηk) [where min
Vk∪Wk

g(x) def= ∞ for V k ∪W k = /0],

if ∞ ∈ F0 ∪F1, k = 1,2, . . . , and ∞ ∈
(
A0 \A1

)
∪
(
B0 \B1

)
,

εk < min
Vk∪Wk

g(x) min(βk,ηk) [where min
Vk∪Wk

g(x) def= ∞ for V k ∪W k = /0]

if ∞ /∈ F0 ∪F1, k = 2,3, . . . . Moreover, if ∞ /∈ F0 ∪F1, it is necessary to add to the
set U the exterior of a closed ball centered at 0 with a large radius. Finally, in the
definition of limit path γ, instead of ρ5 ≥ 1/m, it is necessary to use the estimate
ρ5 ≥ minK > 0, where K is an arbitrary given compactum in R

n. Using the Cantor
diagonal process makes it possible to find subsequence

{
f jk

}
converging locally

uniformly to f . The function f determines either a bounded rectifiable path γ, join-
ing F0 and F1 or a path γ joining F0 and ∞ ∈ F1 or a path γ joining ∞ and F0 and
F1. Moreover, γ ⊂ G, f jk → f on every compactum e ⊂ f−1 (γ \{∞}) , and f j, f are
Lipschitzian functions on e with the constant 1.

Similar to the above scheme, replacing γ by the corresponding γ̃, we obtain the
desired conclusion for unbounded G. The proof is complete. 
�

Corollary A.3. Let E be an NCp-set in G; see [92]. Then

mp (F0,F1,G) = mp (F0,F1,G\E)

for p ∈ (1,∞).

Proof. The statement follows from the equality Cp (F0,F1,G) = Cp (F0,F1,G\E) .

�

Corollary A.4. Let F0,1 ⊃ F0,2 ⊃ . . . and F1,1 ⊃ F1,2 ⊃ . . . be disjoint sequences
of nonempty closed sets in G and

⋂∞
j=1 Fi, j = Fi, i = 0,1. Then mp(F0,F1,G) =

lim j→∞mp(F0, j,F1, j,G) for p ∈ (1,∞).

Proof. The last relation follows from the similar equality for the p-capacity:
Cp(F0,F1,G) = lim j→∞Cp(F0, j,F1, j,G); see [122], Section A.3. 
�
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A.5 The Moduli by Fuglede

Fuglede [64] considered measures in a fixed abstract set X . “A measure in X” means
a countably additive σ -finite set function with nonnegative values (the value +∞
being admitted) defined on a σ -field of subsets of X . The completion of a measure
μ is denoted μ̄ . The domain of μ̄ consists of all sets E ⊂ X such that A ⊂ E ⊂ B for
suitable A and B from the domain of μ with μ(B\A) = 0; then μ̄ = μ(A) = μ(B).

One such measure in X will be kept fixed throughout the present section. This
basic measure will be denoted by m and its domain of definition by M . It is assumed
that X ∈ M . By the applications described in the other chapters, X will be the
Euclidean n-dimensional space R

n, M the system of Borel subsets of R
n, m the n-

dimensional Borel measure, and hence m the n-dimensional Lebesgue measure. We
shall now consider other measures, or rather systems ( = sets) of other measures,
in relation to this fixed measure m. We denote by M the system of all measures
μ in X whose domains contain the domain M of m. Given system E of measures
μ ∈ M, a nonnegative m-measurable function ρ defined in X is called admissible
for E, written ρ ∈ adm E, if ∫

X

ρ dμ ≥ 1

for every μ ∈ E. The modulus Mp, 0 < p < ∞, is now defined as follows:

Mp(E) = inf
ρ∈adm E

∫

X

ρ p dm,

interpreted as +∞ if adm E = /0 (it is possible only if E contains the measure μ ≡
0). As a partial motivation for this definition, we may mention that the measure
m(E) of an arbitrary set E ∈ M equals the minimum of

∫
X ρ(x)p dm(x) when f

ranges over all nonnegative m-measurable functions such that ρ(x) ≥ 1 everywhere
in E. A minimizing function f is the characteristic function χE for E. This analogy
expresses, by the way, an actual connection between the measure m and the module
Mp in the special case where the system E consists of “Dirac measures.” [With
any x ∈ X is associated the Dirac measure χx defined by χx(A) = χA(x) = 1 or 0
depending on whether or not A contains x]. If E denotes a system of such measures
χx, obtained by taking for x the points of some given set E ∈M, then it follows easily
that Mp(E) = m(E). Returning to general systems of measures, we shall establish a
few simple properties of Mp.

Theorem A.18. The module Mp is monotone and countably subadditive:

(a) Mp(E) ≤ Mp(E′) if E ⊂ E′;

(b) Mp(E) ≤ ∑i Mp(Ei) if E =
⋃

i Ei.

Proof. The monotonicity of Mp follows at once from the fact that ρ∧E′ implies ρ∧
E if E ⊂ E′. The subadditivity may be proved as follows. If ρ(x) = supiρi(x), where
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each ρi is a nonnegative m-measurable function defined in X , then ρ is likewise such
a function, and ∫

X

ρ p dm ≤ ∑
i

∫

X

ρ p
i dm.

To see this, we define, for an arbitrary index n,

gn(x) = max{ρ1(x), ...,ρn(x)},
Xi = {x ∈ X : ρi(x) = gn(x)}.

Then gn is m-measurable, Xi ∈ M , and X =
⋃n

i=1 Xi. Hence,

∫

X

gp
n dm ≤

n

∑
i=1

∫

Xi

gp
n dm =

n

∑
i=1

∫

Xi

ρ p
i dm ≤

∞

∑
i=1

∫

X

ρ p
i dm.

The desired inequality now follows for n → ∞ since gn(x) → f (x) monotonically,
and hence

∫
X gp

n dm →
∫

X ρ p dm. Next, let ρi ∈ adm Ei and
∫

X

ρ p
i dm ≤ Mp(Ei)+

ε
2i .

Then ρ ∈ adm E, and

Mp(E) ≤
∫

X

ρ p dm ≤
∞

∑
i=1

∫

X

ρ p
i dm ≤

∞

∑
i=1

Mp(Ei)+ ε.


�

Remark A.6. If, in particular, the systems Ei are “separate” in the sense that there
exist mutually disjoint sets Si ∈ M such that μ(X \ Si) = 0 when μ ∈ Ei, then the
sign of equality holds in Theorem A.18(b). In fact, if ρ ∈ adm E, and hence ρ
is admissible for each Ei, and if we define functions ρi by ρi(x) = ρ(x) or = 0
dependins on whether x ∈ Si or x /∈ Si, then ρi ∈ adm Ei. Hence,

∫

Si

ρ p dm =
∫

X

ρ p
i dm ≥ Mp(Ei)

and, consequently,
∫

X

ρ p dm ≥ ∑
i

∫

Si

ρ p dm ≥ ∑
i

Mp(Ei),

which implies
Mp(E) ≥ ∑

i
Mp(Ei).
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The concept of the extremal length, λp = 1/ Mp, was introduced by A. Beurling.
We shall say that a system E of measures μ ∈ M is minorized by a system E′ of
such measures if there corresponds to any μ ∈E a measure μ ′ ∈E′ such that μ ≥ μ ′,
i.e., μ(A) ≥ μ ′(A) for every point set A ∈ M .

Theorem A.19. (c) If E is minorized by E′, then λp(E) ≥ λ (E′).

(d) If the systems E1,E2, . . . are separate, and if each Ei is minorized by a system
E, then

λp(E)−1 ≥ ∑
i
λp(Ei)−1,

i.e.,
Mp(E) ≥ ∑

i
Mp(Ei).

(e) If p > 1, the systems E1,E2, . . . are separate, and a system E is minorized by
each Ei, then

λp(E)
1

p−1 ≥ ∑
i
λp(Ei)

1
p−1 .

Proof. Statement (c) is easily verified. Statement (d) contains the above remark as
a special case and is proved exactly like it. In particular, the sign of equality holds if
E =

⋃
i Ei, where the Ei are separate (but otherwise arbitrary) systems. By the proof

of (e), it is convenient to express the definition of the “extremal length” λp in the
following form:

λp(E) = sup
ρ

Lρ(E)p, ρ ≥ 0, ρ ∈ Lp(m),
∫
ρ pdm = 1,

where
Lρ(E) = inf

μ∈E

∫
ρ dμ .

If λp(Ei) = 0 for some i, the corresponding term may be neglected. If λp(Ei) =
+∞ for some i, it follows from (c) that λp(E) = +∞. Thus, we may assume that
0 < λp(Ei) < +∞ for every i and also that 0 < λp(E) < +∞. To any given number
εi > 0 corresponds a function ρi ≥ 0,ρi ∈ Lp(m), such that

∫
ρ p

i dm = 1

and
Lρi > λp(Ei)1/p − εi.

Choosing disjoint sets Si so that μ(X \Si) = 0 when μ ∈ Ei, we may assume, more-
over, that ρi = 0 in X \ Si. Define ρ(x) = ∑i tiρi(x), where ti ≥ 0, and ∑i t

p
i = 1. It

follows that ∫
ρ p dm = ∑

i
t p
i

∫
ρ p

i dm = ∑
i

t p
i = 1.

Hence,
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λp(E) ≥ Lρ(E)p.

Let μ ∈ E. By assumption, there are measures μi ∈ Ei such that μ ≥ μi. Conse-
quently,

∫
ρ f dμ = ∑

i
ti

∫
ρi dμ ≥ ∑

i
ti

∫
ρi dμi

≥ ∑
i

tiLρi(Ei) ≥ ∑
i

tiλp(Ei)1/p −∑
i

tiεi.

It follows that
Lρ(E) ≥ ∑

i
tiλp(Ei)1/p −∑

i
tiεi

and, hence, that

λp(E) ≥
(
∑

i
λp(Ei)1/p

)p

.

In Hölder,s inequality,

(
∑

i
tiλp(Ei)1/p

)p

≤ ∑
i

t p
i

(
∑

i
λp(Ei)1/(p−1)

)p−1

,

the sign of equality holds if, and only if, the numbers t p
i are proportional to the

numbers λp(Ei)1/(p−1). This optimal choice of the multipliers ti leads to the desired
inequality.

The sign of equality holds in (e) if, in particular, E = ∑i Ei, where the Ei are
separate (but otherwise arbitrary) systems. In fact,

Lρ(E) ≤ ∑
i

Lρ(Ei)

for arbitrary ρ ≥ 0, ρ ∈ Lp(m), since μi ∈ Ei implies ∑i μi ∈ E. Defining ti =
{
∫

Si
ρ p dm}1/p, and ρi(x) = t−1

i ρ(x) or = 0 depending on whether or not x to be-
longs Si, we have ρ ≥ ∑i tiρi, and

∫
ρ p dm ≥ ∑

i
t p
i . (A.25)

On the other hand, Lρ(Ei) = tiLρi(Ei), and hence

Lρ(E) ≤ ∑
i

Lρ(Ei) = ∑
i

tiLρi(Ei) ≤ ∑
i

tiλp(Ei)1/p.

Applying Hölder’s inequality as above, we obtain

Lρ(E)p ≤ ∑
i

t p
i

(
∑

i
λp(Ei)1/(p−1)

)p−1

. (A.26)
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Combining Eqs. (A.25) and (A.26), we arrive at the desired inequality:

λp(E) ≤
(
∑

i
λp(Ei)1/(p−1)

)p−1

.


�

A system E ⊂ M will be called exceptional of order p, abbr. p-exc, if Mp(E) =
0.

The well-known fact concerning point sets E ⊂ X that m̄(E) = 0 if, and only if,
there exists a function ρ ∈ Lp(m), ρ ≥ 0, such that ρ(x) = +∞ for every x ∈ E (the
value of p > 0 being irrelevant) may be generalized as follows:

Theorem A.20. A system E ⊂ M is p-exc if, and only if, there exists a function
ρ ∈ Lp(m), ρ ≥ 0, such that

∫

X

ρ dμ = +∞ ∀μ ∈ E.

Proof. If ρ has these properties, then n−1ρ ∈ adm E for every n = 1,2, . . . ; and∫
(n−1ρ)p dm = n−p ∫ ρ p dm → 0 as n → ∞; hence, Mp(E) = 0. Conversely, let

Mp(E) = 0 and choose a sequence of functions ρn ∈ adm E so that
∫
ρ p

n dm < 4−n.
Writing

ρ(x) =
{
∑
n

2nρn(x)p
}1/p

,

we infer that ∫
ρ p dm =∑

n
2n
∫
ρ p

n dm < ∞;

on the other hand, ∫
ρ dμ ≥

∫
2n/pρn dμ ≥ 2n/p

for every μ ∈ E and every n = 1,2, . . . , and hence
∫
ρ dμ = +∞. 
�

A proposition concerning measures μ , which belong to some specified system
E ⊂ M, is said to hold for almost every μ ∈ E of order p, abbr. p-a.e. μ ∈ E, if the
system of all measures μ ∈ E for which the proposition fails to hold is exceptional
of order p. This amounts to the existence of a function ρ ∈ Lp(m), ρ ≥ 0, such that
the proposition holds for every μ ∈ E for which

∫
ρ dμ < ∞.

Theorem A.21. (a) Any subsystem of a p-exc system is p-exc.

(b) The union of a finite or denumerable family of p-exc systems is p-exc .

(c) If p > q, then every p-exc system of finite measures is q-exc .

(d) If E ⊂ X and m̄(E) = 0, then μ̄(E) = 0 for p-a.e. μ ∈ M.

(e) If ρ ∈ Lp(m̄), then ρ ∈ L1(μ̄) for p-a.e. μ ∈ M.
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( f ) If a sequence of functions ρi ∈ Lp(m̄) converges in the mean of order p with
respect to m̄ to some function ρ , i.e.,

lim
i→∞

∫

X

|ρi −ρ|p dm̄ = 0,

then there is a subsequence of indices iν tending to ∞ with the property that, for
p-a.e. μ ∈ M, ρiν converges to ρ in the mean of order 1 with respect to μ̄:

lim
ν→∞

∫

X

|ρiν −ρ| dμ̄ = 0,

for p-a.e. μ ∈ M. Statements (d),(e), and ( f ) remain valid if m̄ and μ̄ are replaced
by m and μ , respectively.

Proof. Statements (a) and (b) are contained in Theorem A.18. To prove (c), let E
denote a p-exc system of finite measures μ ∈ M, and let ρ ∈ Lp(m), ρ ≥ 0, be
chosen so that

∫
ρdμ = +∞ for every μ ∈E. Now, ρ p/q ∈ Lq(m), and an application

of Hölder’s inequality shows that
∫
ρ p/qdμ = +∞ when μ ∈ E since μ(X) <∞ and

p/q > 1. In fact,

+∞ =
∫
ρ dμ ≤

(∫
ρ p/q dμ

)q/p

μ(X)1−q/p.

As to statements (d), (e), and (f), we begin by proving the corresponding statements
in which m̄ and μ̄ are replaced by m and μ , respectively. The statement correspond-
ing to (e) is then contained in Theorem A.20, while (d) may be proved as follows.
Let E ∈ M , m(E) = 0, and ρ(x) = +∞ for x ∈ E, ρ(x) = 0 for x /∈ E. Then ρ
belongs to Lp(m) and

∫
ρ dμ = (+∞) ·μ(E) = +∞

for every μ such that μ(E) > 0.
As to (f), we choose an increasing sequence of integers iν so that

∫

X

|ρiν (x)−ρ(x)|p dm(x) < 2−pν−ν ,

and we write gν(x) = |ρiν (x)−ρ(x)|. Introducing the systems

Aν = {μ ∈ M :
∫

gν dμ > 2−ν},

Bn =
⋃
ν>n

Aν ,

and
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E =
⋂
n

Bn,

we have 2νgν ∈ adm Aν and hence

Mp(Aν) ≤
∫

(2νgν)p dm = 2pν
∫

gp
ν dm < 2−ν .

This implies, in view of Theorem A.18, that

Mp(E) ≤ Mp(Bn) ≤ ∑
ν>n

Mp(Aν) < 2−n.

Consequently, Mp(E) = 0. To every μ ∈ M \E corresponds an index n such that
μ /∈Bn, i.e.,

∫
|ρiν −ρ| dμ =

∫
gν dμ ≤ 2−ν for every ν > n. Hence, limν→∞

∫
|ρiν −

ρ| dμ = 0.
It remains to reduce the original statements (d), (e), and (f) to the above cor-

responding statements in which m̄ and μ̄ were replaced by m and μ , respectively.
As to (d), let E ⊂ X and assume that m̄(E) = 0. There exists a set E∗ ∈ M such
that m(E∗) = 0 and E∗ ⊃ E. The system of all measures μ such that μ̄(E) > 0 is,
therefore, contained in the p-exc system of all measures μ such that μ(E∗) > 0. As
to (e), the function ρ may be replaced by an equivalent m-measurable function ρ∗.
Applying (d) to the set E = {x : ρ(x) �= ρ∗(x)}, we infer that μ̄ = 0 for p-a.e. μ , in
particular, ∫

|ρ| dμ̄ =
∫

|ρ∗| dμ̄ =
∫

|ρ∗| dμ < ∞

for p-a.e. μ . Statement (f) may be treated in a similar manner, and the proof is
complete. 
�

Remark A.7. Simple examples show that the infimum in the definition of Mp(E) is
not necessarily attained by any function ρ ∈ adm E. However, the following theorem
exists for any order p > 1 and any system E of measures μ �= 0, μ ∈M : There exists
a function ρ ≥ 0 such that

∫
X ρ pdm = Mp(E) and

∫
X ρ dμ ≥ 1 for p-a.e. μ ∈ E.

[The former property of ρ obviously depends only on the m-equivalence class of ρ,
and so does the latter by virtue of Theorem A.21 (d).]

The existence of ρ is clear if Mp(E) = +∞; and if Mp(E) < +∞, it is a conse-
quence of the well-known facts that the Banach space Lp(m) is uniformly convex
when p > 1 and that any convex, closed, and nonempty subset of a uniformly convex
Banach space contains a unique vector with minimal norm (cf., e.g., [223], p. 7). For
any system E of measures μ �= 0, μ ∈ M, the set of all functions ρ ∈ Lp(m), ρ ≥ 0,
such that

∫
X ρ dμ ≥ 1 for p-a.e. μ ∈ E, is convex and nonempty, and it is closed in

Lp(m) by virtue of Theorem A.21(f). From the uniqueness of the minimal vector, it
follows that the minimal function ρ is uniquely determined up to a set of measure
m = 0. Simple examples show that the restriction p > 1 is essential for the existence
as well as the uniqueness of ρ.
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A.6 The Ziemer Equality

Gehring in [77] showed that the conformal capacity is related to the modulus of a
family of surfaces that separate the boundary components of R. Gehring assumes
that the separating surfaces are sufficiently smooth; Krivov [168] establishes a sim-
ilar result under the assumption that the extremal metric is well behaved. Under
similar assumptions, other authors have dealt with the modulus of separating sur-
faces; cf. [64, 121, 290].

The purpose of this section is to eliminate the need for these assumptions; see
[340]. Thus, we consider the case of two disjoint compact sets C0,C1 contained
in the closure of bounded, open, connected set G. It is proved that the conformal
capacity C of C0,C1, relative to G, is related to the n/(n− 1)-dimensional module
M of all closed sets that separate C0 from C1 in the closure of G by

C− 1
n−1 = M. (A.27)

This is accomplished by using a technique of Gehring’s Lemma 3 in [66], which
eliminates all assumptions concerning the behavior of the extremal metric. Then, a
surface-theoretic approximation theorem, first developed in [60] (8.23), permits the
consideration of arbitrary closed separating sets.

Below En is Euclidean n-space and Ln n-dimensional Lebesgue measure. Haus-
dorff k-dimensional measure in En is denoted by Hk (see, e.g., [57]), and in this
section, only H1 and Hn−1 are used. If A ⊂ En, then ∂A means the boundary of A
and for x ∈ En, dist(x,A) is the distance from x to A. More generally, dist(A,B)
denotes the distance between the sets A and B, B(x,r) stands for the open n-ball of
radius r and centered at x. If A is an Ln-measurable subset of En, then Lp(A) denotes
those functions f for which | f |p is Ln-integrable over A and ‖ f‖p is its Lp-norm.

A real-valued function u defined on an open set U ⊂ En is said to be absolutely
continuous in the sense of Tonelli ACT on U if it is ACT on every interval I ⊂U ;
cf. [281], p. 169. Thus, the gradient of u,∇u, exists at Ln-almost every point in U.
The following co-area formula, which was proved in [342], will be used frequently
throughout this section.

Theorem A.22. If A is an Ln-measurable subset of U and u is ACT on U, then

∫

A

|∇u(x)| dLn(x) =
+∞∫

−∞

Hn−1(u−1(s)∩A) dL1(x). (A.28)

Therefore,

∫

U

f (x)|∇u(x)| dLn(x) =
+∞∫

−∞

∫

u−1(s)

f (x) dHn−1(x) dL1(s) (A.29)

whenever f ∈ L1(U).
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The following will be standard notation throughout. G is an open, bounded, con-
nected set in En and C0,C1 are disjoint compact sets in the closure of G. We will let
R = G\ (C0 ∪C1) and R∗ = R∪C0 ∪C1. The conformal capacity of C0,C1 relative
to the closure of G is defined as

C[G,C0,C1] = inf
∫

R

|∇u|n dLn, (A.30)

where the infimum is taken over all functions u that are continuous on R∗, are ACT
on R, and assume boundary values 1 on C1 and 0 on C0. Such functions are called
admissible for C[G,C0,C1]. Sometimes we will write C for C[G,C0,C1].

If C0 ∪C1 ⊂ G and if C0 ∪C1 consists of only a finite number of nondegenerate
components, then the arguments of [73] can be applied with only slight modifica-
tions to prove that the infimum in Eq. (A.30) is attained by a unique admissible
function u that is ACT in G. By using the methods of Chapter III in [64], one can
prove the existence of an extremal for more general situations. This extremal func-
tion u satisfies the variational condition

∫

R

|∇u|n−2∇u∇w dLn = 0 (A.31)

for any function w that is ACT on G, assumes boundary value 0 on C0 ∪C1, and for
which |∇w| ∈ Ln(R).

The following notion, which was first introduced in [56], p. 48 , is used later on.
An Ln-measurable set E ⊂ En has the unit vector n(x) as exterior normal to E at x
if, letting

B(x,r) = {y : |y− x| < r},
B+(x,r) = B(x,r)∩{y : (y− x)n(x) ≥ 0},
B−(x,r) = B(x,r)∩{y : (y− x)n(x) ≤ 0},

α = Ln[B(x,1)],

we have
2 lim

r→0
Ln[B−(x,r)∩E]/αrn = 1 (A.32)

and
2 lim

r→0
Ln[B+(x,r)∩E]/αrn = 0. (A.33)

The set of points x for which n(x) exists is called the reduced boundary of E and
denoted by β (E). Obviously, β (E) ⊂ ∂E. The importance of the exterior normal is
seen in the following general version of the Gauss–Green theorem [49, 58].

Theorem A.23. If E is a bounded Ln-measurable set with Hn−1[β (E)] < ∞, then
∫

E

div f (x) dLn(x) =
∫

β (E)

f (x) ·n(x) dHn−1(x) (A.34)
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whenever f : En → En is continuously differentiable.

This theorem enables us to regard a bounded, open set U ⊂ En with

Hn−1(∂U) < ∞ (A.35)

as an integral current mod 2 (or integral class), i.e., integral current T with coeffi-
cients in the group of integers mod 2; see [341] or [63]. Thus, if ϕ is a differential
n-form of class C∞, then

T (ϕ) =
∫

U

ϕ dLn. (A.36)

The boundary of T, ∂T , is defined as ∂T (ω) = T (dω) whenever ω is an n− 1
form and dω is its exterior derivative. Now β (U) is a Hausdorff (n−1)-rectifiable
set and, therefore, Theorem A.23 allows us to identify β (U) with ∂T ; see [341].
Thus, the support of ∂T is the closure of β (U), cl β (U) ⊂ ∂U , the mass of T is
M(T ) = Ln(U), and M(∂T ) = Hn−1[β (U)]; see [341].

In view of this identification, the following theorem is an immediate consequence
of (6.2) in [341] although the original version was given by (8.23) in [60]. An open
set is called a convex cell if it can be expressed as the finite intersection of open
half-spaces and an n-dimensional polyhedral set is the union of a finite number of
convex cells.

Theorem A.24. If U ⊂ En is a bounded, open set with Hn−1(∂U) < ∞, then there
is a sequence of n-dimensional polyhedral sets Pi such that

(i) Pi ⊂ {x : δ (x,U) < i−1},

(ii) Ln(Pi) → Ln(U) as i → ∞,

(iii) Hn−1(∂Pi) → Hn−1[β (U)] as i → ∞.

Remark A.8. Moreover, by employing an argument similar to that of (5.6) and (5.7)
in [63], it can be arranged that

(iv) ∂Pi ⊂ {x : δ [x,βU ] < i−1}.

Of course, one could apply (5.6) and p. 170 in [63] directly after verifying that
the boundary of U in Fleming’s sense is β (U). Finally, defining the measure μi as
the restriction of Hn−1 to ∂Pi and μ as the restriction of Hn−1 to β (U), (iii) above
and (5.7) in [341] or (4.2) in [63] imply that

(v) μi → μ weakly as i → ∞, i.e.,
∫

f dμi →
∫

f dμ (A.37)

for every continuous f .

Instead of dealing with extremal length, we prefer to work with the module as
developed in [64]; see the previous section.
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Let M be the class of all Borel measures on En. With an arbitrary system E ⊂ M
of measures is associated a class of nonnegative Borel functions f subject to the
condition ∫

En

ρ dμ ≥ 1 ∀ μ ∈ E. (A.38)

We will write ρ ∈ adm μ if Eq. (A.38) is satisfied for every μ ∈E. For 0 < p <∞,
the module of E, Mp(E), is defined as

Mp(E) = inf
ρ∈adm μ

∫

En

ρ p dLn. (A.39)

A statement concerning measures μ ∈ M is said to hold for p-a.e. μ if the statement
fails to hold for only a set of measures E0 with Mp(E0) = 0.

For the applications in this section, the measures μ are complete (in fact, they are
the restrictions of Hausdorff measure to compact sets) and for such measures, we
have the following.

Theorem A.25. If p≥ 2, E1 ⊂E2 ⊂ . . . are sets of complete measures, and E =∪Ei,
then

Mp(E) = lim
t→∞

Mp(Ei). (A.40)

Proof. In view of (i) above, observe that the limit exists and is dominated by Mp(E).
Therefore, only the case where the limit is finite needs to be considered.

For each i, let ρi be the Borel function associated with Ei as in (vii) above. Clark-
son’s inequality [43] states, for any i and j, that

∫

En

∣∣∣∣ρi +ρ j

2

∣∣∣∣
p

dLn +
∫

En

∣∣∣∣ρi −ρ j

2

∣∣∣∣
p

dLn ≤ 2−1
∫

En

|ρi|p dLn +2−1
∫

En

|ρ j|p dLn.

(A.41)
If i > j, then 2−1(ρi +ρ j) ∈ adm μ for Mp-a.e. μ ∈ E j. Therefore, because of Eq.
(A.41), ∫

En

∣∣∣∣ρi −ρ j

2

∣∣∣∣
p

dLn ≤ 2−1Mp(Ei)−2−1Mp(E j). (A.42)

The right side of Eq. (A.42) tends to zero as i, j → ∞ with i > j and, therefore,
there is a nonnegative function ρ such that ‖ρi − ρ‖p → 0. Thus, from the above
properties of module [especially (f) in Theorem A.21], we have that ρ ∈ adm μ for
Mp-a.e. μ ∈ E. This implies that

Mp(E) ≤
∫

En

ρ p dLn = lim
t→∞

Mp(Ei),

which is all that is required to prove. 
�

Below we establish the relationship between conformal capacity and arbitrary
closed separating sets G, R∗, R, C1 and C0.
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We say that a set σ ⊂ En separates C0 from C1 in R∗ if σ ∩R is closed in R and
if there are disjoint sets A and B that are open in R∗ \σ such that R∗ \σ = A∪B,
C0 ⊂ A, and C1 ⊂ B. Let Σ denote the class of all sets that separate C0 from C1 in
R∗. With every σ ∈ Σ , associate a complete measure μ in the following way: For
every Hn−1-measurable set A ⊂ En, define

μ(A) = Hn−1(A∩σ ∩R). (A.43)

From the properties of Hausdorff measure, it is clear that the Borel sets in En are
μ-measurable and, therefore, the module of Σ can be as defined as in Eq. (A.39).
Thus, for n′ = n/(n−1),

Mn′(Σ) = inf
ρ∈adm Σ

∫

En

ρn′ dLn, (A.44)

where ρ ∈ adm Σ means that ρ is a nonnegative Borel function on En such that
∫

σ∩R

ρ dHn−1 ≥ 1 ∀ σ ∈ Σ . (A.45)

Remark A.9. As for (2.3) in [322], one can show that if Σ ′ denotes those σ ∈ Σ for
which Hn−1(σ ∩R) = ∞, then Mn′(Σ ′) = 0.

Lemma A.13. Let u be an admissible function for C[G,C0,C1] and let S ⊂ [0,1] be
an L1-measurable set. If Σ(S) = {u−1(s) : s∈ S} and Mn′ [Σ(S)] = 0, then L1(S) = 0.

Proof. Since Mn′ [Σ(S)] = 0, Theorem A.20 provides a nonnegative Borel function
ρ ∈ Ln′ such that ∫

u−1(s)∩R

ρ dHn−1 = ∞

for every s ∈ S.
However, Hölder’s inequality and the co-area formula (A.29) imply that

∞ >
∫

R

ρ|∇u| dLn ≥
1∫

0

∫

u−1(s)∩R

ρ(x) dHn−1(x) dL1(s)

and, therefore, L1(S) = 0. 
�

Theorem A.26. Mn′(Σ) ≥ C[G,C0,C1]−1/n−1.

Proof. Choose ε > 0 and let ρ be any function for which ρ ∈ adm Σ . Let u be an
admissible function for C = C[G,C0,C1] such that

∫

R

|∇u|n dLn < C + ε.
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R∗ is connected since G is, and it is therefore clear that u−1(s) ∈ Σ for all 0 < s < 1.
Hence, by Hölder’s inequality and Theorem A.18, we have

⎛
⎝∫

En

ρn′ dLn

⎞
⎠

1/n′

(C + ε)1/n ≥

⎛
⎝∫

En

ρn′ dLn

⎞
⎠

1/n′⎛
⎝∫

R

|∇u|n dLn

⎞
⎠

1/n

≥
∫

R

ρ|∇u| dLn ≥
1∫

0

∫

u−1(s)

ρ(x) dHn−1(x) dL1(s) ≥ 1.

Since ε is arbitrary, ∫

R

ρn′ dLn ≥ C−1/(n−1),

which is also true for the infimum over all ρ ∈ adm Σ , and thus the result follows.

�

The opposite inequality will be established by a sequence of approximations.
We will begin by first assuming that C0 ∪C1 consists only of a finite number of
nondegenerate continua and that C0 ∪C1 ⊂ G. We will also assume initially that
Hn−1(∂G) < ∞.

Let V be an open connected set such that G ⊃ cl V ⊃ V ⊃ C0 ∪C1 and let v
be the extremal function for C = C[G,C0,C1]; see Eq. (A.30). Since v satisfies the
variational condition (A.31), the proof of the following lemma is very similar to that
of Lemma 3 in [77] and will not be given here. It is possible to obtain a stronger
result, but the following is sufficient for our purposes.

Lemma A.14. Let π be the boundary of an n-dimensional polyhedral set P (P not
necessarily contained in V ) such that C0 ⊂ P and C1 ⊂ En \ cl P. Then π separates
C0 from C1 in V and

∫

π(b)

|∇v|n−1 dLn ≥ 2bC[V,C0,C1]

whenever 0 < b < dist(π,C0 ∪C1) and where π(b) = {x : dist(x,π) < b}.

Remark A.10. In Lemmas A.15 and A.16, the integral average ρr of |∇v|n−1 will be
used. Thus, defining ∇v = 0 on the complement of V, for each r > 0, we have

ρr(x) = α(r)−1
∫

B(x,r)

|∇v(y)|n−1 dLn(y),

where α(r) = Ln[B(x,r)]. It is well known that ρr is continuous and that

ρr → |∇v|n−1 Ln-a.e.
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as r → 0.
Also, by a result of K. T. Smith [294] and Lebesgue’s dominated convergence

theorem, ‖ρr‖n′ → ‖|∇v|n−1‖n′ as r → 0 and, consequently, ‖ρr −|∇v|n−1‖n′ → 0.

Lemma A.15. With π as in Lemma A.14,
∫

π

ρr dHn−1 ≥ C[V,C0,C1]

whenever r < dist(π,C0 ∪C1).

Proof. Choose b > 0, r > 0 so that b+ r < dist(π,C0 ∪C1). If πy denotes the trans-
lation of π through the vector y, then Fubini’s theorem and Lemma A.14 imply
∫

π(b)

ρr(x) dLn(x) (A.46)

= α(r)−1
∫

B(0,r)

∫

π(b)

|∇v(x+ y)|n−1 dLn(x) dLn(y)

= α(r)−1
∫

B(0,r)

∫

πy(b)

|∇v(x)|n−1 dLn(x) dLn(y) ≥ 2bC[V,C0,C1]

since πy satisfies the condition of Lemma A.14. In addition to this, if d(x) =
dist(x,π), then |∇d| = 1 Ln-a.e. on En \ π (3) of 4.8 in [59]; therefore, Theorem
A.18 gives

∫

π(b)

ρr(x) dLn(x) =
b∫

0

∫

d−1(s)

ρr(x) dHn−1 dL1(s). (A.47)

Let F(s) denote the inner integral on the right. Since ρr is continuous on En and π
is the boundary of a polyhedral set, it is clear that

lim
s→0

F(s) = 2
∫

π

ρr dHn−1.

Hence, from Eqs. (A.46) and (A.47) we have

C[V,C0,C1] ≤ lim
b→0

(2b)−1

b∫

0

F(s) dL1(s) =
∫

π

ρr dHn−1.


�

Lemma A.16. If Σ is the class of sets that separate C0 from C1 in G, then
∫

σ∩R

|∇v|n−1 dHn−1 ≥ C[V,C0,C1]
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for Mn-a.e. σ ∈ Σ .

Proof. Select σ ∈ Σ and let U be that part of a partition of G \σ that contains C0.
Since Hn−1(∂G) < ∞ by assumption, by appealing to Remark A.9, we can take
Hn−1(∂U) < ∞. Recall that G ⊃ cl V and that ∇v = 0 on the complement of V.
Hence, we can choose r0 so small that the support of ρr0 is contained in G (and
therefore for all r ≤ r0) and r0 ≤ dist(∂U,C0,C1).

By applying Theorem A.11 to the set U, we obtain a sequence of n-dimensional
polyhedral sets Pi. Let πi = ∂Pi. From properties (i), (ii), and (iv) of Theorem A.11,
it is clear that eventually C0 ⊂ Pi and C1 ⊂ En \(clPi). Thus, Lemma A.15 applies to
πi for all large i. Now, β (U)⊂ ∂U ⊂ ∂G∪σ and since the support of ρr is contained
in G for all r ≤ r0, it is clear that

∫

σ

ρr dHn−1 ≥
∫

β (U)

ρr dHn−1 ∀ r ≤ r0. (A.48)

Since ρr is continuous, (v) of Theorem A.11 and Lemma A.15 imply
∫

β (U)

ρr dHn−1 = lim
i→∞

∫

πi

ρr dHn−1 ≥ C[V,C0,C1] ∀ r ≤ r0.

Thus, from Eq. (A.48) we have
∫

σ

ρr dHn−1 ≥ C[V,C0,C1] ∀ r ≤ r0. (A.49)

In light of the fact that ‖ρr −|∇v|n−1‖n′ → 0 as r → 0 (see Remark A.10), the result
follows from Theorem A.21(e) and (f) and (A.49). 
�

Lemma A.17. Let C0 ∪C1 consist only of a finite number of nondegenerate con-
tinua, let C0 ∪C1 ⊂ G and Hn−1(∂G < ∞), and let u be the extremal function for
C[G,C0,C1]. Then for Mn′-a.e. σ ∈ Σ ,

∫

σ∩R

|∇u|n−1 dHn−1 ≥ C[G,C0,C1] = C.

Proof. Let Vi be a sequence of open connected sets such that

G ⊃Vi+1 ⊃Vi+1 ⊃ cl Vi ⊃Vi ⊃C0 ∪C1

and G = ∪Vi. Let vi be the extremal function for C[Vi,C0,C1] = Ci.
We will first show that Ci → C as i → ∞. Recall that C < ∞. If i > j, then the

restriction of vi to Vj is an admissible function for Vj and, thus, so is 2−1(v1 + v2).
As in the proof of Theorem A.25, an application of Clarkson’s inequality [43] gives
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∫

R

∣∣∣∣∇vi −∇v j

2

∣∣∣∣ dLn ≤ 1
2

Ci −
1
2

Cj ∀ i > j. (A.50)

Since Ci is a monotonically increasing sequence bounded above by C, Eq. (A.50)
implies the existence of a vector-valued function ρ such that

∫

R

|∇vi −ρ|n dLn → 0 (A.51)

as i → ∞.
In fact, since C0 ∪C1 consists only of a finite number of nondegenerate continua,

an argument similar to that of [73], p. 362, shows that there is an admissible function
u′ such that ∇u′ = ρ Ln-a.e. on R. Thus, Eq. (A.51) shows that

lim
i→∞

Ci = C. (A.52)

This also implies that u′ is the extremal function for C, i.e., u′ = u.
Since ‖|∇vi|−|∇u|‖n → 0 as i →∞, there is a subsequence of |∇vi| that will still

be denoted by |∇vi| such that |∇vi| → |∇u| Ln-a.e. and therefore that |∇vi|n−1 →
|∇u|n−1 Ln-a.e. on R. This fact, along with

‖|∇vi|n−1‖n′ → ‖|∇u|n−1‖n′ ,

leads to
‖|∇vi|n−1 −|∇u|n−1‖n′ → 0

as i → ∞. Thus, by Theorem A.21(e), we have for another subsequence

lim
i→∞

∫

σ∩R

|∇vi|n−1 dHn−1 =
∫

σ∩R

|∇u|n−1 dHn−1 (A.53)

for Mn′ -a.e. σ ∈ Σ .
Lemma A.16 states that for each i,

∫

σ∩R

|∇vi|n−1 dHn−1 ≥ C1

for Mn′ -a.e. σ ∈ Σ , and, therefore, the result follows from Eqs. (A.52) and (A.53),
and Theorem A.18(b). 
�

Theorem A.27. If G is a bounded, open, connected set, C0 ∪C1 consists only of a
finite number of nondegenerate continua, and C0 ∪C1 ⊂ G, then

Mn′ = C[G,C0,C1]−1/n−1.

Proof. If it were the case that Hn−1(∂G) < ∞, then the result would follow imme-
diately from Theorem A.26 and Lemma A.17: If we let ρ = C−1|∇u|n−1, where u
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is the extremal for C, then by Lemma A.17, there is Σ0 ⊂ Σ such that ρ ∈ adm Σ0

and Mn′(Σ0) = Mn′(Σ). Hence, by Theorem A.26,

C−1/n−1 ≤ Mn′(Σ) ≤
∫

R

ρn′ dLn = C−1/(n−1).

In order to eliminate the assumption Hn−1(∂G) < ∞, select a sequence of open,
connected sets V1 ⊂V2 ⊂ . . . such that C0 ∪C1 ⊂V1, Hn−1(∂G) <∞, and G = ∪ Vi.
As in the proof of Lemma A.17, let vi be the extremal for C[Vi,C0,C1] = Ci and
again we have

Ci →C, ‖|∇vi|n−1 −|∇u|n−1‖n′ → 0 (A.54)

as i → ∞. Thus, for a subsequence,

lim
i→∞

∫

σ∩R

|∇vi|n−1 dHn−1 =
∫

σ∩R

|∇u|n−1 dHn−1 (A.55)

for Mn′ -a.e. σ ∈ Σ .
For each i, every σ ∈ Σ separates C0 from C1 in Vi, and, thus, applying Lemma

A.17 with Vi replacing G, we have
∫

σ∩R

|∇vi|n−1 dHn−1 ≥
∫

σ∩vi

|∇vi|n−1 dHn−1 ≥ Ci

for Mn′ -a.e. σ ∈ Σ . (Observe that Lemma A.17, with Vi replacing G, applies only to
Σi, which are those sets that separate C0 from C1 in Vi. However, a class in Σ that is
Mn′-zero relative to Σi is Mn′-zero relative to Σ .) Hence, in view of Eqs. (A.54) and
(A.55), ∫

σ∩R

|∇u|n−1 dHn−1 ≥ C (A.56)

for Mn′-a.e. σ ∈ Σ , which, as we have seen from the above, is sufficient to establish
the theorem. 
�

Corollary A.5. With the hypotheses of Theorem A.27, and if u is the extremal for
C[G,C0,C1], then

(i) 0 ≤ u(x) ≤ 1 for all x ∈ G,

(ii)
∫
σ∩R |∇u|n−1 dHn−1 ≥ C[G,C0,C1] for Mn′-a.e. σ ∈ Σ ,

(iii)
∫

u−1(s) |∇u|n−1 dHn−1 = C[G,C0,C1] for L1-a.e. s ∈ [0,1].

Proof. By truncating u at levels 1 and 0 if necessary, a new admissible function
would be formed whose gradient would be bounded above by the gradient of u.
However, the extremal is unique and, thus, (i) follows. (ii) is just a restatement of
Eq. (A.56).

In order to prove (iii), let
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F(s) =
∫

u−1(s)

|∇u|n−1 dHn−1

for L1-a.e. s, and observe that since G is connected, u−1(s) ∈ Σ whenever 0 < s <
1. Thus, (ii) above and Lemma A.13 imply that F(s) ≥ C for L1-a.e. s ∈ [0,1].
However, (i) and an application of Lemma A.18 give

C =
∫

R

|∇u|n dLn =
1∫

0

F(s) dL1(s),

which implies that F(s) = C for L1-a.e. s ∈ [0,1]. 
�

Remark A.11. The following observation has some interest in view of Theorem 2
of [73]: In addition to the hypotheses of Theorem A.5, assume that Hn−1(C0) = 0.
Then there is a point x0 ∈C0 such that

limsup
x→x0

|∇u(x)| = ∞.

If this were not the case, then, since C0 is compact, there would be a constant
K > 0 and an open set U such that G\C1 ⊃ cl U ⊃U ⊃C0 and |∇u|n−1 < K Ln-a.e.
on U. Choose ε > 0. Since Hn−1(C0) = 0, C0 can be covered by a countable number
of open n-balls Bi such that

∪Bi ⊂U (A.57)

and

∑Hn−1(∂Bi) < εK−1. (A.58)

Since C0 is compact, a finite number of the Bi will cover C0, say B1,B2, . . . ,Bk.
According to Theorem A.20, there is a nonnegative Borel function ρ ∈ Ln′(R) such
that (ii) of Corollary A.5 fails to hold for only those σ ∈ Σ for which

∫

σ∩R

ρ dHn−1 = ∞.

By employing Theorem A.18, we can replace each n-ball Bi, i = 1,2, . . . ,k, by a
slightly larger one B′

i such that
∫

S′i

ρ dHn−1 < ∞,

where S′i = ∂B′
i, |∇u|n−1 < K Hn−1-a.e. on S′i, and Eq. (A.57) still holds. Now let

σ = ∂ (∪B′
i). Then σ ∈ Σ and (ii) of Corollary A.5 imply that C[G,C0,C1] < ε,

which means that it is zero since ε is arbitrary. This would mean that ∇u = 0 Ln-a.e.
on G. That is, since G is connected and u is ACT on G, u would be constant, a
contradiction. 
�
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In the following theorem, we will consider the general case of two disjoint com-
pact sets C0 and C1 that are contained in the closure of an open, bounded, connected
set G.

Theorem A.28. Mn′(Σ) = C[G,C0,C1]−1/(n−1).

Proof. In view of Theorem A.26, we may assume that C = C[G,C0,C1] �= 0. For
each positive integer i, let

K0(i) = cl {x : dist(x,C0) < (2i)−1}

and
H0(i) = {x : dist(x,C0) < i−1}.

Define K1(i) and H1(i) similarly and let Gi = G∪H0(i)∪H1(i). Since G is con-
nected, it is clear that Gi is open and connected, and notice that K0(i)∪K1(i) con-
sists only of a finite number of nondegenerate continua. We will consider only those
i for which K0(i) and K1(i) are disjoint. Thus, let vi be the extremal function for
Ci = C[Gi,K0(i),K1(i)] and observe that if i > j, then the restriction of vi to Gi is an
admissible function for Ci. Finally, let Σi be those sets σ that separate K0(i) from
K1(i) in Gi and subject to the condition that σ ∩ [H0(i)∪H1(i)] = 0. The purpose for
this requirement is that now an Mn′-null class in Σi is also Mn′-null in Σ . It is clear
that Σ1 ⊂ Σ2 ⊂ . . . , Σi ⊂ Σ for all i, and

∞⋃
i=1

Σi = Σ . (A.59)

Since Ci is a monotonically decreasing sequence bounded below by C, we can
employ again part of the argument of Theorem A.17 to find a vector-valued function
ρ such that

lim
i→∞

∫

En

|∇vi −ρ|n dLn = 0

and, therefore, for a subsequence,

lim
i→∞

‖|∇vi|n−1 −|ρ|n−1‖n′ = 0. (A.60)

Hence, if L = limi→∞Ci, gi = C−1
i |∇vi|n−1, and g = L−1| f |n−1, then Theorem

A.21(f) provides another subsequence such that

lim
i→∞

∫

σ∩R

gi dHn−1 =
∫

σ∩R

g dHn−1 (A.61)

for Mn′ -a.e. σ ∈ Σ .
Now, by employing Corollary A.5 with G, C0, C1 replaced by Gi, K0(i), K1(i),

respectively, we have for each i,
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∫

σ∩R

gi dHn−1 ≥ 1 (A.62)

for Mn′-a.e. σ ∈ Σi. Therefore, by the Fuglede theorem, Eqs. (A.59) and (A.61)
imply that ∫

σ∩R

g dHn−1 ≥ 1 (A.63)

for Mn′-a.e. σ ∈ Σ . Since vi is the extremal for Ci, (ii) of Corollary A.5 and Theorem
A.26 show that, for each i,

∫

En

(gi)n′ dLn = C−1/(n−1)
i .

Thus, with Eqs. (A.60), (A.62), and (A.63), we have

C−1/n−1 ≥ lim
i→∞

C−1/n−1
i = lim

i→∞

∫

En

(gi)n′ dLn =
∫

En

gn′ dLn ≥ M(Σ).

Theorem A.26 gives the opposite inequality and, thus, the proof is complete. 
�

We will conclude with a result concerning null sets for conformal capacity.

Theorem A.29. Suppose C0 and C1 are disjoint compact sets in the closure of G. If
E ⊂ G\ (C0 ∪C1) is a compact set with Hn−1(E) = 0, then

C[G,C0,C1] = C[G\E,C0,C1].

Proof. The topological dimension of E is no more than n− 2 since Hn−1(E) = 0
and, therefore, G \ E is connected. Thus, the right-hand side of the equality has
meaning. Clearly,

C[G,C0,C1] ≥ C[G\E,C0,C1]. (A.64)

The opposite inequality will be established by considering separating sets. Let Σ ∗

be those sets that separate C0 from C1 in

[(G\E)\ (C0 ∪C1)]∪ [C0 ∪C1]

and let Σ be those that separate C0 from C1 in R∗. In light of Eq. (A.64) and Theorem
A.28, it is sufficient to prove that

Mn′(Σ) ≥ Mn′(Σ ∗). (A.65)

To this end, let ρ be a function for which ρ ∈ adm Σ . In order to establish Eq. (A.65),
we need only show that ρ ∈ admΣ ∗. Choose σ∗ ∈ Σ ∗ and notice that σ∗ ∪E ∈ Σ .
Thus, ∫

σ∪E

ρ dHn−1 ≥ 1
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and since Hn−1(E) = 0, ∫

σ∗

ρ dHn−1 ≥ 1.

This shows that ρ ∈ adm Σ ∗ and, consequently, proves the theorem. 
�

When G is compactified in En, Bagby showed that C[G,C0,C1] = Mn(Γ ), where
Γ is the family of all arcs that meet both C0 and C1 (Ph.D. thesis, Harvard univ.
1966). By using Theorem A.28, [64], and [332], one can show that this result is
valid when G is an open, bounded, connected set and C0 ∪C1 ⊂ G. [Moreover,
if C0 ∪C1 ⊂ cl G, the result is also valid if certain conditions are imposed on the
tangential behavior of (∂G)∩ (C0 ∪C1).] Thus, if Γ ∗ is the family of arcs that join
C0 to C1 in G\E, then Theorem A.29 implies

Mn(Γ ∗) = Mn(Γ ).

This result was obtained by Väisälä [317] in the case where C0 and C1 are nonde-
generate continua.



Appendix B
BMO Functions by John–Nirenberg

A real-valued function u in a domain D in R
n is said to be of bounded mean oscil-

lation in D, u ∈ BMO(D), if u ∈ L1
loc(D) and

‖u‖∗ := sup
B

1
|B|

∫

B

|u(x)−uB| dm(x) < ∞, (B.1)

where the supremum is taken over all balls B in D,

uB =
1
|B|

∫

B

u(x) dm(x),

and m denotes the Lebesgue measure in R
n. We say that u ∈ BMOloc(D) if u ∈

BMO(U) for every relatively compact subdomain U of D. We will write BMO or
BMOloc if it is clear from the context what D is.

If u ∈ BMO and c is a constant, then u + c ∈ BMO and ‖u‖∗ = ‖u + c‖∗. Thus,
the space of BMO functions modulo constants with the norm given by Eq. (B.1)
is a Banach space. Obviously, L∞ ⊂ BMO. Fefferman and Stein [61] showed that
BMO can be characterized as the dual space of the Hardy space H1. BMO has
become an important concept in harmonic analysis, partial differential equations,
and related areas. John and Nirenberg have established the following fundamental
lemma, which plays an important role in the theory of BMO-qc mappings; see [140],
cf. also [110].

Lemma B.1. If u is a nonconstant function in BMO(D), then

|{x ∈ B : |u(x)−uB| > t}| ≤ ae
− b

‖u‖∗ ·t · |B| (B.2)

for every ball B in D and all t > 0, where a and b are absolute positive constants
that do not depend on B and u. Conversely, if u ∈ L1

loc, and if for every ball B in D
and for all t > 0,

|{x ∈ B : |u(x)−uB| > t}| < ae−bt |B| (B.3)
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for some positive constants a and b, then u ∈ BMO(D).

We need the following lemma, which follows from Lemma B.1.

Lemma B.2. If u is a nonconstant function in BMO(D), then

|{x ∈ B : |u(x)| > τ}| ≤ Ae−βτ · |B| (B.4)

for every ball B in D and all τ > |uB|, where

β = b/‖u‖∗ , A = aeb|uB|/‖u‖∗ , (B.5)

and the constants a and b are as in Lemma B.1.

Proof. For t > 0, let τ = t + |uB|, D1 = {x ∈ B : |u(x)| > τ}, and D2 = {x ∈ B :
|u(x)−uB|> t}. Then, by the triangle inequality, D1 ⊂ D2 and, hence, by Eq. (B.2),

|D1| ≤ |D2| ≤ aeb|uB|/‖u‖∗ · e−τb/‖u‖∗ · |B|,

which implies Eq. (B.4) with A and β as in Eq. (B.5). 
�

Corollary B.1. BMO ⊂ Lp
loc for all p ∈ [1,∞).

Indeed, for u ∈BMO, u �= const, by Lemma B.2,

∫

B

|u(x)|p dx ≤ |B| {|uB|p +A

∞∫

|uB|

t pe−β t dt} < ∞.

We need also several facts about BMO functions given in the extended space
Rn = R

n ∪{∞} and their relations to BMO functions on R
n.

Let Sn be the unit sphere in R
n+1,

Sn = {x ∈ R
n+1 : |x| = 1}.

The space R
n may be identified with the hyperplane xn+1 = 0 in R

n+1. This is done
with the aid of the stereographic projection P of Sn onto Rn, which is given by

y = P(x) =
(x1, . . . ,xn)

1− xn+1

for x = (x1, . . . ,xn,xn+1) ∈ Sn \ (0, . . . ,0,1). The point (0, . . . ,0,1) ∈ R
n+1 corre-

sponds to ∞ ∈ Rn. Note that the element of the spherical area

dσ =
(

2
1+ |y|2

)n

dm(y)

is invariant with respect to the rotations of the sphere Sn.
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A real-valued measurable function u in a domain D⊂Rn is said to be in BMO(D)
if u is locally integrable with respect to the spherical area and

‖u‖∗σ = sup
B

1
σ(B)

∫

B

|u−uB| dσ < ∞, (B.6)

where the supremum is taken over all spherical balls B in D and

uB =
1

σ(B)

∫

B

u dσ . (B.7)

The first of the following two lemmas enables us to decide whether a function
u in a domain D ⊂ Rn belongs to BMO(D) (in the spherical sense) by considering
the restriction u0 of u to D0 = D \ {∞}; see [255], p. 7. The second lemma is a
consequence of Lemma B.2.

Lemma B.3. u ∈ BMO(D) iff u0 ∈ BMO(D0). Furthermore,

c−1‖u0‖∗ ≤ ‖u‖∗σ ≤ c‖u0‖∗ , (B.8)

where c is an absolute constant.

Lemma B.4. If either u ∈ BMO(D) or u0 ∈ BMO(D0), then, for τ > γ,

σ{x ∈ B : |u(x)| > τ} ≤ αe−βτ (B.9)

for every spherical ball B in D, where the constants α, β , and γ depend on B as well
as on the function u.

Proof. If B∈R
n, then we have Eq. (B.4) by Lemma B.2, and, since σ(E)≤ 4|E| for

every measurable set E ⊂ C, Eq. (B.9) follows. If ∞ ∈ B, then for a suitable rotation
R of Sn, ∞ is exterior to B′,B′ = R(B), and the assertion follows by Lemma B.3 and
the validity of Eq. (B.9) with B′ and û = u ◦R−1 instead of B and u. Now, in view
of the invariance of the spherical area with respect to rotations, by Lemmas B.2 and
B.3, we have Eq. (B.9). 
�

The following lemma holds for BMO functions and cannot be extended to
BMOloc functions; see, e.g., [255], p. 5.

Proposition B.1. Let E be a discrete set in a domain D, D ⊂ R
n, and let u be a

function in BMO(D\E). Then any extension û of u to D is in BMO(D) and ‖u‖∗ =
‖û‖∗.

The following lemma is a special case of a theorem by Reimann on the characte-
rization of qc maps in R

n, n ≥ 2, in terms of the induced isomorphism on BMO;
see [254], p. 266.
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Proposition B.2. If f is a K-qc map of a domain D in R
n onto a domain D′ and

u ∈ BMO(D′), then v = u◦ f belongs to BMO(D) and

‖v‖∗ ≤ c‖u‖∗ ,

where c is a constant that depends only on K.

We say that a Jordan surface E in Rn is a K-quasisphere if E = f (Sn−1) for some
K-qc map f : Rn → Rn. The next statement is due to Jones; see [143].

Proposition B.3. Let D be a Jordan domain such that ∂D is a K-quasisphere, and
let u be a function in BMO(D). Then u has an extension û to R

n that belongs to
BMO(Rn) and

‖û‖∗ ≤ c‖u‖∗ ,

where c depends only on K.

The following proposition (see, e.g., [255], p. 8), which concerns a symmetric
extension of BMO functions, will be needed in studying the reflection principle and
boundary behavior of BMO-qc. It should be noted that this proposition cannot be
extended to BMOloc functions.

Proposition B.4. If u belongs to the class BMO in the unit ball B
n and û is an

extension of u to R
n that satisfies the symmetry condition

û(t) =
{

u(x) if x ∈ B
n,

u(x/|x|2) if x ∈ R
n\B

n,

then û ∈ BMO(Rn) and ‖u‖∗ = ‖û‖∗.

Remark B.1. Given a domain D,D ⊂R
n, there is a nonnegative real-valued function

u in D such that u(x) ≤ Q(x) a.e. for some Q(x) in BMO(D) and u /∈ BMO(D). For
D = R

2, one can take, for instance, Q(x,y) = 1+ | log |y||,(x,y) ∈ R
2, and u(x,y) =

Q(x,y) if y > 0 and u(x,y) = 1 if y ≤ 0.
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248 (1932).

30. Bourbaki N.: Functions of a real variable. Nauka, Moscow (1965) [in Russian].
31. Brakalova M.A., Jenkins J.A.: On solutions of the Beltrami equation. J. Anal. Math. 76,

67–92 (1998).
32. Brakalova M.A., Jenkins J.A.: On solutions of the Beltrami equation. II. Publ. Inst. Math.

(Beograd) (N.S.) 75(89), 3–8 (2004).
33. Brania A., Yang S.: Domains with controlled modulus and quasiconformal mappings. Non-

linear Stud. 9(1), 57–73 (2002).
34. Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries.

Selecta Math. (N.S.) 1(2), 197–263 (1995).
35. Busemann H.: Length-preserving mappings. Pacific J. Math. 14, 457–477 (1964).
36. Caraman P. n-dimensional quasiconformal mappings, Haessner Publishing, Newfoundland,

NJ (1974).
37. Caraman P.: Relations between p-capacity and p-module, I, II. Rev. Roumaine Math. Pures

Appl. 39(6), 509–553, 555–577 (1994).
38. Cheeger J.: Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal.,

428–517 (1999).
39. Chernavskii A.V.: Finite-to-one mappings of manifolds. Transl. Amer. Math. Soc. (2)100,

253–267 (1964) [translated from Russian: Mat. Sb. 65(107), 357–369 (1964)].
40. Chernavskii A.V.: Addendum to the paper “Finite-to-one mappings of manifolds.” Transl.

Amer. Math. Soc. (2) 100, 269–270 (1964) [translated from Russian: Mat. Sb. 66(108), 471–
472 (1965)].

41. Chiarenza F., Frasca M., Longo P.: W 2,p-solvability of the Dirichlet problem for nondiver-
gence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336(2), 841–853
(1993).

42. Cianchi A., Pick L.: Sobolev embeddings into BMO, VMO, and L∞. Ark. Mat. 36(2), 317–
340 (1998).

43. Clarkson J.A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40, 396–414 (1936).
44. Cristea M.: A generalization of Sard’s theorem and a Jacobian condition for interiority.

Demonstratio Math. 21(2), 399–405 (1988).
45. Cristea M.: Open discrete open mappings having local ACLn inverses. Preprint, Inst. Math.,

Romanian Acad. 6 (2008).
46. Cristea M.: Local homeomorphisms having local ACLn inverses. Complex Var. Elliptic Equ.

53(1), 77–99 (2008).
47. Csörnyei M., Hencl S., Maly J.: Homeomorphisms in the Sobolev space W 1,n−1. Charles

Univ. in Prague, Prerpint MATH–KMA 252, 15 pp. (2007).
48. David G.: Solutions de l’equation de Beltrami avec ‖μ‖∞ = 1. Ann. Acad. Sci. Fenn. Ser.

A1. Math. 13, 25–70 (1988).
49. DeGiorgi E.: Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio ad r

dimensioni. Ricerche Mat. 4, 95–113 (1955) [in Italian].



References 353

50. Dugundji J.: Topology. Allyn and Bacon, Boston (1966).
51. Dunford N., Schwartz J.T.: Linear Operators, Part I: General Theory. Interscience Publish-

ers, New York (1957).
52. Duren P.L.: Univalent Functions. Springer-Verlag, Berlin (1983).
53. Evans L.C., Gapiery R.F.: Measure Theory and Fine Properties of Functions. CRC Press,

Boca Raton, FL (1992).
54. Faraco D., Koskela P., Zhong X.: Mappings of finite distortion: The degree of regularity.

Adv. Math. 190(2), 300–318 (2005).
55. Federer H.: Geometric Measure Theory. Springer-Verlag, Berlin (1969).
56. Federer F.: The Gauss–Green theorem. Trans. Amer. Math. Soc. 58, 44–76 (1945).
57. Federer F.: The (ϕ,K) rectifiable subsets of n space. Trans. Amer. Math. Soc. 62, 114–192

(1947).
58. Federer F.: A note on the Gauss–Green theorem. Proc. Amer. Math. Soc. 9, 447–451 (1958).
59. Federer F.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959).
60. Federer F., Fleming W.H.: Normal and integral currents. Ann. Math. 72, 458–520 (1960).
61. Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972).
62. Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Clarendon Press,

Oxford (1995).
63. Fleming W.H.: Flat chains over a finite coefficient group. Trans. Amer. Math. Soc. 121,

160–186 (1966).
64. Fuglede B.: Extremal length and functional completion. Acta Math. 98, 171–219 (1957).
65. Gehring F.W.: The definitions and exceptional sets for quasiconformal mappings. Ann.

Acad. Sci. Fenn. Math. Ser. A1 281, 1–38 (1960).
66. Gehring F.W.: Symmetrization of rings in space. Trans. Amer. Math. Soc. 101, 499–519

(1961).
67. Gehring F.W.: Extension of quasiconformal mappings in three space. J. Anal. Math. 14,

171–182 (1965).
68. Gehring F.W.: Univalent functions and the Schwarzian derivative. Comment. Math. Helv.

52, 561–572 (1977).
69. Gehring F.W.: Injectivity of local quasi-isometries. Comment. Math. Helv. 57, 202–220

(1982).
70. Gehring F.W.: Characteristic Properties of Quasidisk. Les Presses de l’Université de
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exceptional system of measures of order p,

p-exc, 328
extensive modulus, 148
extensively admissible function, 148
exterior normal, 332
extremal, 252
extremal length, 13, 291

finite area distortion in a dimension k, FADk,
194

finite area distortion, FAD, 194
finite length distortion, FLD, 146
finite mean oscillation at a point, 103, 207, 263
finite mean oscillation in a domain, FMO, 207
finite metric distortion, FMD, 145, 193
finitely bi-Lipschitz mapping, 202
finitely Lipschitz mapping, 202
Fuglede’s theorem, 23

H-length, 230
Hardy–Littlewood maximal function, M( f ), 35
Hausdorff dimension, 258
Hausdorff measure, 257
Holder domain, 100

homothety, 11
hyper Q-mapping, 194

infinity, 5
inner, 251
inner coefficient of quasiconformality, 251
inner dilatation KI( f ), 32
inner dilatation KI(x, f ), 5
inner mean dilatations, 239, 251
integral over surface, 178

John domain, 100
Jordan curves, 8

L1-BMO domain, 100
Lebesgue point, 105, 208
length function, 8
length of a curve, path, 258
lifting of a path, 146
lifting of a surface, 194
light mapping, 151
linear dilatation, H(x, f ), 25
linearly locally connected set, 52
Lipschitz mapping, 149, 202
local L-quasi-isometry, 69
locally (path) connected space at a point, 274
locally connected domain at a boundary point,

74, 259
locally path-connected (rectifiable) domain at

a boundary point, 259
locally rectifiable curve, path, 8
locus of a path, 8
Loewner function, 16
Loewner property, 37
Loewner space of exponent n, 16
logarithmic mean, 223
lower Q-homeomorphism at ∞, 176
lower Q-homeomorphism at a point, 175
lower Q-homeomorphism in a domain, 176

mapping with finite distortion, 153
mappings with finite mean dilatations,

B(G,G∗), 239
matrix dilatation Mf (x), 155
maximal dilatation K( f ), 13, 32
maximal dilatation K(x, f ), 6
maximal dilatation Kμ (z), 205
maximal dispersion, 208
maximal function, 35
measurable set with respect to Hk, 177
minorized family, 10, 108, 178, 260, 326
module of E, Mp(E), 334
modulus (conformal), 2, 13, 291
modulus of a family, 178, 258
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modulus of a ring, 297
modulus of continuity at a point, 133
modulus of continuity on a set, 133
multiplicity function, N(S,y), 177
multiplicity functions, N(y, f ,E), N( f ,E), 149

NED sets, 48, 125, 280
Newtonian space, 19
nondegenerate continuum, 16
normal family, 132
null set for extremal distances, 48, 125, 280

one-point compactification, 5
open ball, 5
open mapping, 146
outer coefficients of quasiconformality, 251
outer dilatation KO( f ), 32
outer dilatation KO(x, f ), 5
outer mean coefficient, 251
outer mean dilatations, 239, 251
outer measure in the sense of Caratheodory,

177

parameterization by arc length, 8
path, 8
path in a topological space, 259
path-connected space, 259
perfect set, 118

qc mapping, 2
QED exceptional set, 48
quasi-isometric map, 248
quasiball, 101
quasiconformal in the mean, 250
quasiconformal mapping, 2, 288
quasiconvex set, 50
quasiextremal distance (QED) domain, 52, 277
quasihyperbolic metric, 100
quasisymmetry, 40

radial dilatation Kr(z,z0, f ), 212
radial dilatation Kr

μ (z,z0), 206
radial direction, 212
rectifiable curve, path, 8, 258
rectifiable domain, 259
rectifiable space, 259
rectifiable surface, 177

reduced boundary, 332
regular point of a mapping, 206
Riesz potential, 35
ring Q-homeomorphism, 132, 212
ring domain (ring), 131, 211, 296
ring solution, 206
ringlike condenser, 301

sense-preserving mappings, 12
set of length zero, 118
singular sets of Beltrami equations, 227
special linear group, SL(n), 155
spherical (chordal) diameter, 5, 217
spherical (chordal) distance, 216
spherical (chordal) metric, 5
spherical symmetrization, 298
strong ring Q-homeomorphism, 142
strongly accessible boundary, 74, 262
strongly accessible point, 74
strongly connected space, 275
strongly connected space at a point, 275
super Q-homeomorphisms, 108
symmetrization of a matrix, 155

tangential dilatation KT (z,z0, f ), 212
tangential dilatation KT

μ (z,z0), 206
Teichmüller ring RT (t), 299
topological index, 151
totally disconnected set, 118

unessential singularities, 126
unimodular matrix, 155
uniform convergence of sets, 300
uniform domain, 45
uniform equicontinuity on a set, 133
upper α-regular space, 259
upper gradient, 17

volume derivative, 83

weak (H)-quasisymmetry, 41
weak upper gradient, 18
weakly flat boundary, 74, 262
weakly flat space, 275
weakly flat space at a point, 275
weakly light mapping, 152
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