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1.3 Compactness 418
1.4 Global attractors 418
1.5

419
1.6 Local invariant manifolds for nonlinear RFDEs 423
1.7 Floquet multipliers of periodic orbits 425
1.8 Differential equations with state-dependent delays 435

problem
The fundamental solution and the nonhomogeneous

decomposition
Linear autonomous equations and spectral



x DELAY DIFFERENTIAL EQUATIONS

2.2 Positive feedback 439
3 Chaotic motion 451
4 Stable periodic orbits 456
5 State-dependent delays 468

2
436

2.1 Negative feedback 437

Monotone feedback:
attractors

The structure of invariant sets and

11
Delay Differential Equations in Single Species Dynamics 477
S. Ruan

1 Introduction 477
2 Hutchinson’s Equation 478

2.1 Stability and Bifurcation 479
2.2 Wright Conjecture 481
2.3 Instantaneous Dominance 483

3 Recruitment Models 484
3.1 Nicholson’s Blowflies Model 484
3.2 Houseflies Model 486
3.3 Recruitment Models 487

4 The Allee Effect 488
5 Food-Limited Models 489
6 Regulation of Haematopoiesis 491

6.1 Mackey-Glass Models 491
6.2 Wazewska-Czyzewska and Lasota Model 493

7 A Vector Disease Model 493
8 Multiple Delays 495
9 Volterra Integrodifferential Equations 496

9.1 Weak Kernel 498
9.2 Strong Kernel 500
9.3 General Kernel 502
9.4 Remarks 504

10 Periodicity 505
10.1 Periodic Delay Models 505
10.2 Integrodifferential Equations 507

11 State-Dependent Delays 511
12 Diffusive Models with Delay 514

12.1 Fisher Equation 514
12.2 Diffusive Equations with Delay 515

12
Well-Posedness, Regularity and Asymptotic Behaviour of Re-

tarded Differential Equations by Extrapolation Theory
519

L. Maniar
1 Introduction 519
2 Preliminaries 521
3 Homogeneous Retarded Differential Equations 525



Contents xi

Index

13
Time Delays in Epidemic Models: Modeling and Numerical Considerations 539
J. Arino and P. van den Driessche

1 Introduction 539
2 Origin of time delays in epidemic models 540

2.1 Sojourn times and survival functions 540
2.2 Sojourn times in an SIS disease transmission model 541

3 A model that includes a vaccinated state 544
4 Reduction of the system by using specific P (t) functions 548

4.1 Case reducing to an ODE system 548
4.2 Case reducing to a delay integro-differential system 549

5 Numerical considerations 550
5.1 Visualising and locating the bifurcation 550
5.2 Numerical bifurcation analysis and integration 551

6 A few words of warning 552
Appendix 555
1 Program listings 555

1.1 MatLab code 556
1.2 XPPAUT code 557

2 Delay differential equations packages 557
2.1 Numerical integration 557
2.2 Bifurcation analysis 558

References 559

579



List of Figures

xiii

10.1 413
10.2 413
10.3 417
10.4 417
10.5 420
10.6 422
10.7 423
10.8 424
10.9 425
10.10 427
10.11 428
10.12 430
10.13 431
10.14 432
10.15 432
10.16 434
10.17 438
10.18 439
10.19 441
10.20 442
10.21 443
10.22 445
10.23 446
10.24 447
10.25 447
10.26 449
10.27 450
10.28 451
10.29 453



xiv DELAY DIFFERENTIAL EQUATIONS

10.30 453

10.31 454

10.32 457

10.33 459

10.34 459

10.35 463

10.36 464

10.37 465

10.38 466

11.1 The bifurcation diagram for equation (2.1). 481

11.2 The periodic solution of the Hutchinson’s equation
(2.1). 481

11.3 Numerical simulations for the Hutchinson’s equa-
tion (2.1). Here r = 0.15, K = 1.00. (i) When τ = 8,
the steady state x∗ = 1 is stable; (ii) When τ = 11,
a periodic solution bifurcated from x∗ = 1. 482

11.4 Oscillations in the Nicholson’s blowflies equation (3.1).
Here P = 8, x0 = 4, δ = 0.175, and τ = 15. 486

11.5 Aperiodic oscillations in the Nicholson’s blowflies
equation (3.1). Here P = 8, x0 = 4, δ = 0.475, and
τ = 15. 486

11.6 Numerical simulations in the houseflies model (3.2).
Here the parameter values b = 1.81, k = 0.5107, d =
0.147, z = 0.000226, τ = 5 were reported in Taylor
and Sokal (1976). 487

11.7 The steady state of the delay model (4.1) is attrac-
tive. Here a = 1, b = 1, c = 0.5, τ = 0.2. 489

11.8 The steady state of the delay food-limited model
(5.3) is stable for small delay (τ = 8) and unstable
for large delay (τ = 12.8). Here r = 0.15, K =
1.00, c = 1. 491

11.9 Oscillations in the Mackey-Glass model (6.1). Here
λ = 0.2, a = 01, g = 0.1, m = 10 and τ = 6. 492

11.10 Aperiodic behavior of the solutions of the Mackey-
Glass model (6.1). Here λ = 0.2, a = 01, g = 0.1, m =
10 and τ = 20. 492



List of Figures xv

11.11 Numerical simulations for the vector disease equa-
tion (7.1). When a = 5.8, b = 4.8(a > b), the zero
steady state u = 0 is asymptotically stable; When
a = 3.8, b = 4.8(a < b), the positive steady state u∗

is asymptotically stable for all delay values; here for
both cases τ = 5. 494

11.12 For the two delay logistic model (8.1), choose r =
0.15, a1 = 0.25, a2 = 0.75. (a) The steady state (a)
is stable when τ1 = 15 and τ2 = 5 and (b) becomes
unstable when τ1 = 15 and τ2 = 10, a Hopf bifurca-
tion occurs. 496

11.13 (a) Weak delay kernel and (b) strong delay kernel. 498
11.14 The steady state of the integrodifferential equation

(9.1) is globally stable. Here r = 0.15, K = 1.00. 500
11.15 The steady state x∗ = K of the integrodifferential

equation (9.10) losses stability and a Hopf bifurca-
tion occurs when α changes from 0.65 to 0.065. Here
r = 0.15, K = 1.00. 502

11.16 Numerical simulations for the state-dependent delay
model (11.3) with r = 0.15, K = 1.00 and τ(x) =
a + bx2. (i) a = 5, b = 1.1; and (ii) a = 9.1541, b = 1.1. 512

11.17 The traveling front profiles for the Fisher equation
(12.1). Here D = r = K = 1, c = 2.4 − 3.0 515

13.1 The transfer diagram for the SIS model. 542
13.2 The transfer diagram for the SIV model. 545
13.3 Possible bifurcation scenarios. 551
13.4 Bifurcation diagram and some solutions of (4.3). (a)

and (b): Backward bifurcation case, parameters as
in the text. (c) and (d): Forward bifurcation case,
parameters as in the text except that σ = 0.3. 553

13.5 Value of I∗ as a function of ω by solving H(I, ω) = 0,
parameters as in text. 554

13.6 Plot of the solution of (6.2), with parameters as in
the text, using dde23. 555



Preface

This book groups material that was used for the Marrakech 2002
School on Delay Differential Equations and Applications. The school
was held from September 9-21 2002 at the Semlalia College of Sciences
of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and
15 instructors originating from 21 countries attended the school. Finan-
cial limitations only allowed support for part of the people from Africa
and Asia who had expressed their interest in the school and had hoped to
come. The school was supported by financements from NATO-ASI (Nato
advanced School), the International Centre of Pure and Applied Mathe-
matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity
of the school consisted in courses, plenary lectures (3) and communica-
tions (9), from Monday through Friday, 8.30 am to 6.30 pm. Courses
were divided into units of 45mn duration, taught by block of two units,
with a short 5mn break between two units within a block, and a 25mn
break between two blocks. The school was intended for mathematicians
willing to acquire some familiarity with delay differential equations or
enhance their knowledge on this subject. The aim was indeed to extend
the basic set of knowledge, including ordinary differential equations and
semilinear evolution equations, such as for example the diffusion-reaction
equations arising in morphogenesis or the Belouzov-Zhabotinsky chem-
ical reaction, and the classic approach for the resolution of these equa-
tions by perturbation, to equations having in addition terms involving
past values of the solution. In order to achieve this goal, a training
programme was devised that may be summarized by the following three
keywords: the Cauchy problem, the variation of constants formula, local
study of equilibria. This defines the general method for the resolution of
semilinear evolution equations, such as the diffusion-reaction equation,
adapted to delay differential equations. The delay introduces specific
differences and difficulties which are taken into account in the progres-
sion of the course, the first week having been devoted to “ordinary”
delay differential equations, such equations where the only independent
variable is the time variable; in addition, only the finite dimension was

xvii
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considered. During the second week, attention was focused on “ordi-
nary” delay differential equations in infinite dimensional vector spaces,
as well as on partial differential equations with delay. Aside the training
on the basic theory of delay differential equations, the course by John
Mallet-Paret during the first week discussed very recent results moti-
vated by the problem of determining wave fronts in lattice differential
equations. The problem gives rise to a differential equation with de-
viated arguments (both retarded and advanced), which represents an
entirely new line of research. Also, during the second week, Hans-Otto
Walther presented results regarding existence and description of the at-
tractor of a scalar delay differential equation. Three plenary conferences
usefully extended the contents of the first week courses. The main part
of the courses given in the school are reproduced as lectures notes in
this book. A quick description of the contents the book is given in the
general introduction.

As many events of this nature at that time, this school was under
the scientific supervision of Ovide Arino. He wanted this book to be
published, and did a lot to that effect. He unfortunately passed away
on September 29, 2003. This book is dedicated to him.

J. Arino and M.L. Hbid



This book is dedicated
to the memory of

Professor Ovide Arino
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Introduction

M. L. Hbid

This book is devoted to the theory of delay equations and applica-
tions. It consists of four parts, preceded by an overview by Professor
J.K. Hale. The first part concerns some general results on the quanti-
tative aspects of non-linear delay differential equations, by Professor E.
Ait Dads, and a linear theory of delay differential equations (DDE) by
Professor F. Kappel. The second part deals with some qualitative the-
ory of DDE : normal forms, centre manifold and Hopf bifurcation theory
in finite dimension. This part groups the contributions of Professor T.
Faria, Doctor M. Ait Babram and Professor M.L. Hbid. The third part
corresponds to the contributions of Professors O. Arino, E. Sanchez,
T. Faria, M. Adimy and K. Ezzinbi. It is devoted to discussions on
quantitative and qualitative aspects of functionnal differential equations
(FDE) in infinite dimension. The last part contains the contributions of
Professors H.O. Walther, S. Ruan, L. Maniar and J. Arino.

Ait Dads’s contribution deals with a direct method to provide an
existence result; he then derives a number of typical properties of DDE
and their solutions. An example of such exotic properties, discussed
in Ait Dads’s lectures, is the fact that, contrary to the flow associated
with a smooth ordinary differential system of equations, which is a local
diffeomorphism for all times, the semiflow associated with a DDE does
not extend backward in time, degenerates in finite time and can even
vanish in finite time. Many such properties are not yet understood and
would certainly deserve to be thoroughly investigated. The results and
conjectures presented by Ait Dads are classical and are for most of them
taken from a recent monograph by J. Hale and S. Verduyn Lunel on
the subject. Their inclusion in the initiation to DDE proposed by Ait
Dads is mainly intended to allow readers to get some familiarity with
the subject and open their horizons and possibly entice their appetite
for exploring new avenues.

xxiii
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In his lecture notes, Franz Kappel presents the construction of the ele-
mentary solution of a linear DDE using the Laplace transform. Even if it
is possible to proceed by direct methods, the Laplace transform provides
an explicit expression of the elementary solution, useful in the study of
spectral properties of DDEs. Kappel also dealt with a fundamental is-
sue of the linear theory of delay differential equations, namely, that of
completeness, that is to say, when is the vector space spanned by the
eigenvectors total (dense in the state space)? This issue is tightly con-
nected with another delicate and still open one, the existence of “small”
solutions (solutions which approach zero at infinity faster than any expo-
nential). This course extends the one that Prof. Kappel taught during
the first school on delay differential equations held at the University of
Marrakech in 1995. The very complete and elaborate lecture notes he
provided for the course are in fact an extension of the ones written on
the occasion of the first school. A first application of the linear and
the semi linear theory presented by Ait Dads and Kappel is the study
of bifurcation of equilibria in nonlinear delay differential equations de-
pendent on one or several parameters. The typical framework here is
a DDE defined in an open subset of the state space, rather a family
of such equations dependent upon one parameter, which possesses for
each value of the parameter a known equilibrium (the so-called “trivial
equilibrium”): one studies the stability of the equilibrium and the pos-
sible changes in the linear stability status and how these changes reflect
in the local dynamics of the nonlinear equation. Changes are expected
near values of the parameter for which the equilibrium is a center. The
delay introduces its own problems in that case, and these problems have
given rise to a variety of approaches, dependent on the nature of the
delay and, more recently, on the dimension of the underlying space of
trajectories.

The part undertaken jointly by M.L. Hbid and M. Ait Babram deals
with a panorama of the best known methods, then concentrates on a
method elaborated within the dynamical systems group at the Cadi
Ayyad University, that is, the direct Lyapunov method. This method
consists in looking for a Lyapunov function associated with the ordinary
differential equation obtained by restricting the DDE to a center mani-
fold. The Lyapunov function is determined recursively in the form of a
Taylor expansion. The same issue, in the context of partial differential
equations with delay, was dealt with by T. Faria in her lecture notes.
The method presented by Faria is an extension to this infinite dimen-
sional frame of the well-known method of normal forms. The method
was presented both in the case of a delay differential equation and also
in the case when the equation is the sum of a delay differential equation
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and a diffusion operator. Both Prof. Faria and Dr. Ait Babram discuss
the Bogdanov-Takens and the Hopf bifurcation singularities as exam-
ples, and give a generic scheme to approximate the center manifolds in
both cases of singularies (Hopf, Bogdanov-Takens, Hopf-Hopf, ..).

The lecture notes written by Professor Hans-Otto Walther are com-
posed of two independent parts: the first part deals with the geometry
of the attractor of the dynamical system defined by a scalar delay differ-
ential equation with monotone feedback. Both a negative and a positive
feedback were envisaged by Walther and his coworkers. In collaboration
with Dr. Tibor Krisztin, from the University of Szeged, Hungary, and
Professor Jianhong Wu, Fields Institute, Toronto, Canada, very detailed
global results on the geometric nature of the attractor and the flow along
the attractor were found. These results have been obtained within the
past ten years or so and are presented in a number of articles and mono-
graphs, the last one being more than 200 pages long. The course could
only give a general idea of the general procedure that was followed in
proving those results and was mainly intended to elicit the interest of
participants. The second part of Walther’s lecture notes is devoted to a
presentation of very recent results obtained by Walther in the study of
state-dependent delay differential equations.

The lectures notes by Professors O. Arino, K. Ezzinbi and M. Adimy,
and L. Maniar present approaches along the line of the semigroup theory.
These lectures prolong in the framework of infinite dimension the pre-
sentations made during the first part by Ait Dads and Kappel in the case
of finite dimensions. Altogether, they constitute a state of the art of the
treatment of the Cauchy problem in the frame of linear functional dif-
ferential equations. The equations under investigation range from delay
differential equations defined by a bounded “delay” operator to equa-
tions in which the “delay” operator has a domain which is only part of
a larger space (it may be for example the sum of the Laplace operator
and a bounded operator), to neutral type equations in which the delay
appears also in the time derivative, to infinite delay, both in the au-
tonomous and the non autonomous cases. The methods presented range
from the classical theory of strongly continuous semigroups to extrap-
olation theory, also including the theory of integrated semigroups and
the theory of perturbation by duality. Adimy and Ezzinbi dealt with a
general neutral equation perturbed by the Laplace operator. Arino pre-
sented a theory, elaborated in collaboration with Professor Eva Sanchez,
which extends to infinite dimensions the classical linear theory, as it is
treated in the monograph by Hale and Lunel.

In his lecture notes, S. Ruan provides a thorough review of models
involving delays in ecology, pointing out the significance of the delay.
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Most of his concern is about stability, stability loss and the corresponding
changes in the dynamical features of the problem. The methods used by
Ruan are those developed by Faria and Magalhaes in a series of papers,
which have been extensively described by Faria in her lectures. Dr. J.
Arino discusses the issue of delay in models of epidemics.

Various aspects of the theory of delay differential equations are pre-
sented in this book, including the Cauchy problem, the linear theory in
finite and in infinite dimensions, semilinear equations. Various types of
functional differential equations are considered in addition to the usual
DDE: neutral delay equations, equations with delay dependent upon the
starter, DDE with infinite delay, stochastic DDE, etc. The methods of
resolution covered most of the currently known ones, starting from the
direct method, the semigroup approach, as well as the integrated semi-
group or the so-called sun-star approach. The lecture notes touched a
variety of issues, including the geometry of the attractor, the Hopf and
Bogdanov-Takens singularities. All this however is just a small portion
of the theory of DDE. We might name many subjects which haven’t
been or have just been briefly mentioned in lectures notes: the second
Lyapunov method for the study of stability, the Lyapunov-Razumikin
method briefly alluded to in the introductory lectures by Hale, the theory
of monotone (with respect to an order relation) semi flows for DDE which
plays an important role in applications to ecology (cooperative systems)
was considered only in the scalar case (the equation with positive feed-
back in Walther’s course). The prolific theory of oscillations for DDE
was not even mentioned, nor the DDE with impulses which are an im-
portant example in applications. The Morse decomposition, just briefly
reviewed the “structural stability” approach, of fundamental importance
in applications where it notably justifies robustness of model represen-
tations, a breakthrough accomplished during the 1985-1995 decade by
Mallet-Paret and coworkers is just mentioned in Walther’s course. Delay
differential equations have become a domain too wide for being covered
in just one book.



Chapter 1

HISTORY OF DELAY EQUATIONS

J.K. Hale
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Atlanta, USA
hale@math.gatech.edu

Delay differential equations, differential integral equations and func-
tional differential equations have been studied for at least 200 years (see
E. Schmitt (1911) for references and some properties of linear equa-
tions). Some of the early work originated from problems in geometry
and number theory.

At the international conference of mathematicians, Picard (1908) made
the following statement in which he emphasized the importance of the
consideration of hereditary effects in the modeling of physical systems:

Les équations différentielles de la mécanique classique sont telles qu’il
en résulte que le mouvement est déterminé par la simple connaissance
des positions et des vitesses, c’est-à-dire par l’état à un instant donné et
à l’instant infiniment voison.

Les états antérieurs n’y intervenant pas, l’hérédité y est un vain mot.
L’application de ces équations où le passé ne se distingue pas de l’avenir,
où les mouvements sont de nature réversible, sont donc inapplicables aux
êtres vivants.

Nous pouvons réver d’équations fonctionnelles plus compliquées que
les équations classiques parce qu’elles renfermeront en outre des intégrales
prises entre un temps passé très éloigné et le temps actuel, qui ap-
porteront la part de l’hérédité.

Volterra (1909), (1928) discussed the integrodifferential equations that
model viscoelasticity. In (1931), he wrote a fundamental book on the
role of hereditary effects on models for the interaction of species.

The subject gained much momentum (especially in the Soviet Union)
after 1940 due to the consideration of meaningful models of engineering
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2 DELAY DIFFERENTIAL EQUATIONS

systems and control. It is probably true that most engineers were well
aware of the fact that hereditary effects occur in physical systems, but
this effect was often ignored because there was insufficient theory to
discuss such models in detail.

During the last 50 years, the theory of functional differential equations
has been developed extensively and has become part of the vocabulary
of researchers dealing with specific applications such as viscoelasticity,
mechanics, nuclear reactors, distributed networks, heat flow, neural net-
works, combustion, interaction of species, microbiology, learning models,
epidemiology, physiology,as well as many others (see Kolmanovski and
Myshkis (1999)).

Stochastic effects are also being considered but the theory is not as
well developed.

During the 1950’s, there was considerable activity in the subject which
led to important publications by Myshkis (1951), Krasovskii (1959), Bell-
man and Cooke (1963), Halanay (1966). These books give a clear picture
of the subject up to the early 1960’s.

Most research on functional differential equations (FDE) dealt primar-
ily with linear equations and the preservation of stability (or instability)
of equilibria under small nonlinear perturbations when the lineariza-
tion was stable (or unstable). For the linear equations with constant
coefficients, it was natural to use the Laplace transform. This led to ex-
pansions of solutions in terms of the eigenfunctions and the convergence
properties of these expansions.

For the stability of equilibria, it was important to understand the
extent to which one could apply the second method of Lyapunov (1891).
The genesis of the modern theory evolved from the consideration of the
latter problem.

In these lectures, I describe a few problems for which the method of
solution, in my opinion, played a very important role in the modern
analytic and geometric theory of FDE. At the present time, much of the
subject can be considered as well developed as the corresponding one for
ordinary differential equations (ODE). Naturally, the topics chosen are
subjective and another person might have chosen completely different
ones.

It took considerable time to take an idea from ODE and to find the
appropriate way to express this idea in FDE. With our present knowl-
edge of FDE, it is difficult not to wonder why most of the early papers
making connections between these two subjects were not written long
ago. However, the mode of thought on FDE at the time was contrary to
the new approach and sometimes not easily accepted. A new approach
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was necessary to obtain results which were difficult if not impossible to
obtain in the classical way.

We begin the discussion with retarded functional differential equations
(RFDE) with continuous initial data. If r ≥ 0 is a given constant, let
C = C([−r, 0], Rn) and, if x : [−r, α) → R

n, α > 0, let xt ∈ C, t ∈ [0, α),
be defined by xt(θ) = x(t + θ), θ ∈ [−r, 0]. If f : C → R

n is a given
function, a retarded FDE (RFDE) is defined by the relation

x′(t) = f(xt) (0.1)

If ϕ ∈ C is given, then a solution x(t, ϕ) of (0.1) with initial value ϕ
at t = 0 is a continuous function defined on an interval [−r, α), α > 0,
such that x0(θ) = x(θ, ϕ) = ϕ(θ) for θ ∈ [−r, 0], x(t, ϕ) has a continuous
derivative on (0, α), a right hand derivative at t = 0 and satisfies (0.1)
for t ∈ [0, α).

We remark that the notation in (0.1) is the modern one and essentially
due to Krasovskii (1956), where in (0.1), he would have written f(x(t +
θ)) with the understanding that he meant a functional. The notation
above was introduced by Hale (1963).

Results concerning existence, uniqueness and continuation of solu-
tions, as well as the dependence on parameters, are essentially the same
as for ODE with a few additional technicalites due to the infinite dimen-
sional character of the problem. If f is continuous and takes bounded
sets into bounded sets, then there is a solution x(t, ϕ) through ϕ which
exists on a maximal interval [−r, αϕ).

Furthermore, if αϕ < ∞, then the solution becomes unbounded as
t → α−

ϕ . If f is Ck, then x(t, .) is Ck+1 and x(., ϕ) is Ck in ϕ in ([0, αϕ).

1. Stability of equilibria and Lyapunov functions
One of the first problems that occurs in differential equations is to

obtain conditions for stability of equilibria. Following Lyapunov, it is
reasonable to make the following definition.

Definition 1 Suppose that 0 is an equilibrium point of (0.1); that is, a
zero of f . The point 0 is said to be stable if, for any ε > 0, there is a
δ > 0 such that for any ϕ ∈ C with |ϕ| < δ, we have |x(t, ϕ)| < ε for
t ≥ −r. The point 0 is asymptotically stable if it is stable and there is
b > 0 such that |ϕ| < b implies that |x(t, ϕ)| → 0 as t → ∞. The point 0
is said to be a local attractor if there is a neighborhood U of 0 such that

lim
t→∞

dist(x(t, U), 0) = 0

that is, 0 attracts elements in U uniformly.
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In this definition, notice that the closeness of initial data is taken in C
whereas the closeness of solutions is in R

n. This is no restriction since,
if 0 is stable (resp., asymptotically stable), then |xt(., ϕ)| < ε for t ≥ 0
(resp. |xt(., ϕ)| → 0 as t → ∞).

As a consequence of the smoothing properties of solutions of (0.1),
one can

use essentially the same proof as for ODE to obtain the following
important result.

Proposition 1 An equilibrium point of (0.1) is asymptotically stable if
and only if it is a local attractor.

For linear retarded equations; that is, f : C → R
n a continuous linear

functional, there is a solution of the form exp (λt) c for some nonzero
n-vector c if and only if λ satisfies the characteristic equation

detD(λ) = 0, ∆(λ) = λI − f(exp−λ.)I). (1.2)

The numbers λ are called the eigenvalues of the linear equation. Equa-
tion (1.2) may have infinitely many solutions, but there can be only a
finite number in any vertical strip in the complex plane. This is a con-
sequence of the analyticity of (1.2) in λ and the fact that Reλ → −∞ if
|λ| → ∞.

The eigenvalues play an important role in stability of linear systems.
If there is an eigenvalue with positive real part, then the origin is un-
stable. For asymptotic stability, it is necessary and sufficient to have
each λ with real part < 0. The verification of this property in a par-
ticular example is far from trivial and much research in the 1940’s and
1950’s was devoted to giving various methods for determining when the
λ satisfying (1.2) have real parts < 0 (see Bellman and Cooke (1963) for
detailed references).

If the RFDE is nonlinear, if 0 is an equilibrium with all eigenvalues
with negative real parts (resp.an eigenvalue with a positive real part),
then classical approaches using a variation of constants formula and
Gronwall type inequalities can be used to show that 0 is asymptotically
stable (resp. unstable) for the nonlinear equation (see Bellman and
Cooke (1963)).

If the RFDE is nonlinear and 0 is an equilibrium and the zero solution
of the linear variational equation is not asymptotically stable and there
is no eigenvalue with positive real part, then classical methods give no
information. In this case, it is quite natural to attempt to adapt the well
known methods of Lyapunov to RFDE.

Two independent approaches to this problem were given in the early
1950’s by Razumikhin (1956) and Krasovskii (1956).
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The approach of Razumikhin (1956) was to use Lyapunov functions on
R

n. Let us indicate a few details. If V : R
n → R is a given continuously

differentiable function and x(t, ϕ) is a solution of (0.1), we can define
V (x(t, ϕ)) and compute the derivative along the solution evaluated at
ϕ(0) as

.
V (ϕ(0)) =

∂V (ϕ(0))
∂x

f(ϕ) ≡ G(ϕ). (1.3)

If the RFDE is not an ODE, then the function
.
V (ϕ(0)) is not a function

from R
n to R, but is a function from C to R. As a consequence, we

cannot expect that the derivative in (1.3) is negative for all small initial
data ϕ.

To use such a method, one must consider a restricted set of initial
data which is relevant for the consideration of stability.

To illustrate how such conditions arise in a natural way, consider the
example

x′(t) = −ax(t)− bx(t− r) (1.4)

where a > 0 and b are constants. If we chose V (x) = x2/2, then V is
positive definite from R to R and

V ′
1.4(x(t, ϕ)) = −ax2(t)− bx(t)x(t− r) (1.5)

If we knew that the right hand side of (1.5) were≤ 0, then we would know
that the zero solution of (1.4) is stable. Of course, this can never be true
for all functions in C in a neighborhood of zero. On the other hand, if 0
is not stable, then there is an ε > 0 such that, for any 0 < δ < ε, there
is a function ϕ with norm < δ and a time t1 > 0 such that |x(t1, ϕ)| = ε
and |x(t+ θ, ϕ)| < ε for all θ ∈ [−r, 0). As a consequence of this remark,
it is only necessary to find conditions on b for which the right hand side
of (1.4) is ≤ 0 for those functions with the property that |ϕ|≤|ϕ(0)|. It
is clear that this can be done if |b|≤a. Therefore, 0 is stable if |b|≤a,
a > 0. The origin is not asymptotically stable if a + b = 0 since 0
is an eigenvalue. We remark that this region in (a, b)-space coincides
with the region for which the origin of (1.4) is stable independent of the
delay. We have seen that it belongs to this region, but to show that it
coincides with this region requires more effort (see, for example, Bellman
and Cooke (1963) or Hale and Lunel (1993)).

In this example, it is possible to show that all eigenvalues have neg-
ative real parts if |b| < a, a > 0. Is it possible to use the Lyapunov
function V (x) = x2/2 to prove this? For asymptotic stability, we must
show that

.
V (ϕ(0)) < 0 for a class of functions which at least includes

functions with the property that |ϕ| > |ϕ(0)|. It can be shown that it is
sufficient to have the class satisfy |ϕ|≤p|ϕ(0)| for some constant p > 1.
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Razumikhin (1956) gave general results in the spirit of the above ex-
ample to obtain sufficient conditions for stability and asymptotic stabil-
ity using functions on R

n.

Theorem 1 (Razumikhin) Suppose that u, v, w:[0,∞)→ [0,∞) are con-
tinuous nondecreasing functions, u(s), v(s) positive for s > 0, u(0) =
v(0) = 0, v strictly increasing. If there is a continuous function V :Rn →
R such that u(|x|)≤V (x)≤v(|x|), x ∈ R

n, and
.
V (ϕ(0))≤ w(|ϕ(0)|), if

V (ϕ(θ))≤V (ϕ(0)), θ ∈ [−r, 0], then the point 0 is stable.
In addition, if there is a continuous nondecreasing function p(s) > s for
s > 0 such that

.
V (ϕ(0))≤w(|ϕ(0)|) if V (ϕ(θ))≤p(V (ϕ(0))), θ ∈ [−r, 0],

then 0 is asymptotically stable.

At about the same time as Razumikhin, Krasovskii (1956) was also
discussing stability of equilibria and wanted to make sure that all of
the results for ODE using Lyapunov functions could be carried over to
RFDE. The idea now seems quite simple, but, at the time, it was not
the way in which FDE were being discussed.

The state space for FDE should be the space Csince this is the amount
of information that is needed to determine a solution of the equation.
This is the observation made by Krasovskii (1956). He was then able to
extend the complete theory of Lyapunov by using functionals V : C →
R. We state a result on stability.

Theorem 2 . (Krasovskii) Suppose that u, v, w : [0,∞) → [0,∞) are
continuous nonnegative nondecreasing functions, u(s), v(s) positive for
s > 0, u(0) = v(0) = 0. If there is a continuous function V : C → R

such that
u(|ϕ(0)|)≤V (ϕ)≤v(|ϕ|), ϕ ∈ C,

.
V (ϕ) = lim sup

t→0

1
t
[V (xt(., ϕ))− V (ϕ)]≤− w(|ϕ(0)|)

then 0 is stable. If, in addition, w(s) > 0 for s > 0, then 0 is asymptot-
ically stable.

Let us apply the Theorem of Krasovskii to the example (1.4) with

V (ϕ) =
1
2
ϕ2(0) + µ

∫ 0

−r
ϕ2(θ)dθ,

where µ is a positive constant. A simple computation shows that
.
V (ϕ) = −(a− µ)ϕ2(0)− bϕ(0)ϕ(−r)− µϕ2(−r).
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The right hand side of this equation is a quadratic form in (ϕ(0), ϕ(−r)).
If we find the region in parameter space for which this quadratic form
is nonnegative, then the origin is stable. If it positive definite, then it is
asymptotically stable. The condition for nonnegativeness is a ≥ µ > 0,
4(a − µ)µ ≥ b2 and positive definiteness if the inequalities are replaced
by strict inequalities. To obtain the largest region in the (a, b) space
for which these relations are satisfied, we should choose µ = a/2, which
gives the region of stability as a ≥ |b| and asymptotic stability as a > |b|,
which is the same result as before using Razumikhin functions.

For more details, generalizations and examples, see Hale and Lunel
(1993), Kolmanovski and Myshkis (1999).

2. Invariant Sets, Omega-limits and Lyapunov
functionals.

The suggestion made by Krasovskii that one should exploit the fact
that the natural state space for RFDE should be C opened up the pos-
sibility of obtaining a theory of RFDE which would be as general as
that available for ODE. Following this idea, Shimanov (1959) gave some
interesting results on stability when the linearization has a zero eigen-
value. This could not have been done without working in the phase
space C and exploiting some properties of linear systems which will be
mentioned later.

I personally had been thinking about delay equations in the 1950’s
and reading the RAND report of Bellman and Danskin (1954). The
methods there did not seem to be appropriate for a general development
of the subject. In 1959, it was a revelation when Lefschetz gave me
a copy of Krasovskii’s book (in Russian). I began to work very hard
to try to obtain interesting results for RFDE on concepts which were
well known to be important for ODE. My first works were devoted to
understanding the neighborhood of an equilibrium point (stable and
unstable manifolds) and to defining invariant sets in a way that could
be useful for applications.

In the present section, it is best to describe invariance since the first
important application was related to stability. For simplicity, let us
suppose that, for every ϕ ∈ C, the solution x(t, ϕ) through ϕ ∈ C at
t = 0 is defined for all t ≥ 0. If we define the family of transformations
T (t) : C → C by the relation T (t)ϕ = xt(., ϕ), t ≥ 0, then {T (t), t ≥ 0}
is a semigroup on C; that is

T (0) = I, T (t + τ) = T (t)T (τ), t, τ ≥ 0.
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The smoothness of T (t)ϕ in ϕ is the same as the smoothness of f and,
for t ≥ r, T (t) is a completely continuous operator since, for each ϕ, the
solution x(t, ϕ) is differentiable for t ≥ r.

Definition 2 :The positive orbit γ+(ϕ) through ϕ is the set {T (t)ϕ, t ≥
0}.
A set A ⊂ C is an invariant set for T (t), t ≥ 0, if T (t)A = A, t ≥ 0.
The ω−limit set of ϕ ∈ C, denoted by ω(ϕ), is

ω(ϕ) = ∩
τ≥0

Cl(γ+(T (τ)ϕ)).

The ω−limit set of a subset B in C, denoted by ω(B), is

ω(B) = ∩
τ≥0

Clγ+(T (τ)B)).

Note that a function ψ ∈ ω(ϕ) if and only if there is a sequence tn →
∞ as n → ∞ such that T (tn)ϕ → ψ as n → ∞. A function ψ ∈ ω(B) if
and only if there exist sequences {ϕn, n = 1, 2, ...} ⊂ B and tn → ∞ as
n → ∞ such that T (tn)ϕn → ψ as n → ∞. We remark that ω(B) may
not be equal to ∪

ϕ∈B
ω(ϕ). This is easily seen from the ODE x′ = x− x3,

x ∈ R.
If A is invariant, then, for any ϕ ∈ A, there is a preimage and, thus,

it is possible to define negative orbits through ϕ. This is not possible for
all ϕ ∈ C since a solution of (0.1) becomes continuously differentiable
for t ≥ r. Also, there may not be a unique negative orbit through ϕ ∈
A.

A set A in C attracts a set B in C if dist(T (t)B, A) → 0 as t →∞.
The following result is consequence of the fact that T (r) is completely

continuous.

Theorem 3 : If B ⊂ C is such that γ+(B) is bounded, then ω(B) is a
indexxcompact invariant set which attracts B under the flow defined by
(0.1) and is connected if B is connected.

The following result is a natural generalization of the classical LaSalle
invariance principle for ODE.

Theorem 4 : (Hale, 1963) Let V be a continuous scalar function on
C with

.
V (ϕ)≤0 for all ϕ ∈ C. If Ua = {ϕ ∈ C : V (ϕ)≤a}, Wa = {ϕ ∈

Ua :
.
V (ϕ) = 0} and M is the maximal invariant set in Wa, then, for

any ϕ ∈ Ua for which γ+(ϕ) is bounded, we have ω(ϕ) ⊂M .

If Ua is a bounded set, then M = ω(Ua) is compact invariant and
attracts Ua under the flow defined by (0.1). If Ua is connected, so is M .
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To the author’s knowledge, these concepts for RFDE were frist intro-
duced in Hale (1963) and were used to give a simple proof of convergence
for the Levin-Nohel equation

x′(t) = −1
r

∫ 0

−r
a(−θ)g(x(t + θ))dθ (2.6)

where the zeros of g are isolated and

G(x) =
∫ x

0
g(s)ds →∞ as |x| → ∞

a(r) = 0,a ≥ 0,
.
a≤ 0,

..
a ≥ 0.

Theorem 5 :. (Levin-Nohel) 1). If a is not a linear function, then, for
any ϕ ∈ C, ω(ϕ) is a zero of g.
2). If a is a linear function, then, for any ϕ ∈ C, ω(ϕ) is an r-peroidic
orbit in C defined by an r-periodic solution of the ODE

y′′ + g(y) = 0.

We outline the proof of Hale (1963) which is independent of the one
given by Levin and Nohel. However, we will use their clever choice of a
Lyapunov function. If

V (ϕ) = G(ϕ(0))− 1
2

∫ 0

−r
a′(−θ)

[∫ 0

θ
g(ϕ(s))ds

]2
dθ,

then the derivative of V along the solutions of ( 2.6) is given by

.
V (ϕ) =

1
2
a′(r)[

∫ 0

−r
g(ϕ(s))ds]2 − 1

2

∫ 0

−r
a′′(−θ)

∫ 0

θ
g(ϕ(s))ds]2dθ.

The hypotheses imply that
.
V (ϕ)≤0 and γ+(ϕ) is bounded for each ϕ ∈

C.

To apply the above theorem, we need to investigate the set where
.
V = 0. To do this, we observe that any solution of (2.6) also must
satisfy the equation

x′′(t) + a′(0)g(x(t)) = −a′(r)
∫ 0

−r
g(ϕ(s))ds +

∫ 0

−r
a′′(−θ)

[∫ 0

θ
g(ϕ(s))ds

]
dθ.

With this relation and the fact that
.
V (ϕ)≤0, we see that the largest

invariant set in the set where
.
V = 0 coincides with those bounded solu-

tions of the equation
y′′ + g(y) = 0.
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which satisfy the property that

∫ 0
−r g(y(t + θ))dθ = 0, t ∈ R, if a′(r) 
= 0,∫ 0
−s g(y(t + θ))dθ = 0, t ∈ R, if a′′(s) 
= 0

(2.7)

If a is not a linear function, then there is an s0 such that a′′(s0) 
= 0 and
there is an interval Is0 of s0 such that a′′(s) 
= 0 for s ∈ Is0 .

Integrating the second order ODE from −s to 0 and using (2.7), we
observe that y is periodic of period s for every s ∈ .Is0 . Thus, y is a
constant and ω(ϕ) belongs to the set of zeros of g. Since the zeros of g
are isolated and ω(ϕ) is connected, we have the conclusion in part 1 of
the theorem.

If a is a linear function, then we must be concerned with the solutions
of the ODE for which

∫ 0
−r g(y(t+θ))dθ = 0. As before, this implies that y′

is periodic of period r and there is a constant k such that y(t) = kt+(a
periodic function of period r). Boundedness of y implies that y(t) is
r-periodic. This shows that ω(ϕ) belongs to the set of periodic orbits
generated by r-periodic solutions of the ODE. To prove that the ω−limit
set is a single periodic orbit requires an argument using techniques in
ODE which we omit.

3. Delays may cause instability.
In his study of the control of the motion of a ship with movable bal-

last, Minorsky (1941) (see also Minorsky (1962)) made a realistic math-
ematical model which contained a delay (representing the time for the
readjustment of the ballast) and observed that the motion was oscilla-
tory if the delay was too large. An equation was also encountered in
prime number theory by Wright (1955) which had the same property.

It was many years later that S. Jones (1962) gave a procedure for de-
termining the existence of a periodic solution of delay differential equa-
tions which has become a standard tool in this area. I describe this for
the equation of Wright

x′(t) = −αx(t− 1)(1 + x(t)), (3.8)

where α > 0 is a constant.
The equation (3.8) has two equilibria x = 0 and x = −1. The set

C−1 = {ϕ ∈ C : ϕ(0) = −1} is the translation of a codimension one sub-
space of C and is invariant under the flow defined by (3.8). Furthermore,
any solution with initial data in C−1 is equal to the constant function
−1 for t ≥ 1. The linear variational equation about x = −1 has only the
eigenvalue α > 0 and is, therefore, unstable.
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The set C−1 serves as a natural barrier for the solutions of (3.8). In
fact, if a solution has initial data ϕ for which ϕ(0) 
= −1, then the
solution x(t) 
= −1 for all t ≥ 0 for which it is defined. In fact, if x(t) is
a solution of (3.8) through a point ϕ ∈ C with ϕ(0) 
= −1, then, for any
t0 for which x(t0) 
= −1 and any t ≥ t0,

1 + x(t) = [1 + x(t0)] exp(−α

∫ t−1

t0−1
x(s)ds} (3.9)

This proves the assertion.
The sets C− = {ϕ ∈ C : ϕ(0) < −1} and C+ = {ϕ ∈ C : ϕ(0) > −1}

are positively invariant under the flow defined by (3.18). If ϕ ∈ C−, it
is not difficult to show that x(t, ϕ)→ −∞ as t → ∞.

As a consequence of these remarks, we discuss this equation in the
subset C+ of C.

If ϕ ∈ C+, then (3.9) shows that a solution x(t) cannot become un-
bounded on a finite interval, each solution exists for all t ≥ 0 and (3.8)
defines a semigroup Tα(t) : C+ → C+, t ≥ 0, where Tα(t)ϕ = xt(., ϕ). It
also is clear that Tα(t) is a bounded map for each t ≥ 0.

It is possible to show that, for each ϕ ∈ C+, there is a t0(ϕ, α) such
that |Tα(t)ϕ|≤ expα−1 for t ≥ t0(ϕ, α). As a consequence of some later
remarks, this implies the existence of the compact global attractor A of
(3.8); that is, A is compact, invariant and attracts bounded sets of C.

Wright (1955) proved that every solution approaches zero as t → ∞
if 0 < α < exp(−1) and this implies that {0} is the compact global
attractor for (3.8). Yorke (1970) extended this result (even for more
general equations) to the interval 0 < α < 3/2.

The eigenvalues of the linearization about zero of (3.8) are the solu-
tions of the equation, λ + α exp(−λ) = 0. The eigenvalues have negative
real parts for 0 < α <

π

2
, a pair of purely imaginary eigenvalues for

α =
π

2
with the remaining ones having negative real parts and, For

α >
π

2
, there is a unique pair of eigenvalues with maximal real part > 0.

It is reasonable to conjecture that A = {0} for 0 < α <
π

2
, but this has

not been proved. On the other hand, there is the following interesting
result.

Theorem 6 : (Jones (1962)) If α >
π

2
, equation ( 3.8) has a periodic

solution oscillating about 0 and with the property that the distance be-
tween zeros is greater than the delay.

We indicate the ideas in the original proof of Jones (1962). Numerical
computations suggested that there should be such a solution with simple



12 DELAY DIFFERENTIAL EQUATIONS

zeros and the distance from a zero to the next maximum (or minimum) is
≥ the delay. Let K ⊂ C be defined as K = Cl{nondecreasing functions
ϕ ∈ C: ϕ(−1) = 0, ϕ(θ) > 0, θ ∈ ( −1, 0]}

Tα(t1)ϕ ∈ K. This defines a Poincaré map Pα:ϕ ∈ K maps to
Tα(t1)ϕ ∈ K if we define Pα0 = 0.

One can show that this map is completely continuous.
A nontrivial fixed point of Pα yields a periodic solution of (3.18) with

the properties stated in the above theorem. The main difficulty in the
proof of the theorem is that 0 ∈ K is a fixed point of Pα and one wants
a nontrivial fixed point. The point 0 ∈ K is unstable and Jones was able
to use this to show eventually that he could obtain the desired fixed
point from Schauder’s fixed point theorem.

Many refinements have been made of this method using interesting
ejective fixed point theorems (which were discovered because of this
problem) (see Browder (1965), Nussbaum (1974)). In the above problem,
the point 0 is ejective. Grafton (1969) showed that the use of unstable
manifold theory could be of assistance in the verification of ejectivity.
See, for example, Hale and Lunel (1993), Diekmann, van Giles, Lunel
and Walther (1991).

4. Linear autonomous equations and
perturbations.

Prior to Krasovskii, and even after, most researchers discussed linear
autonomous equations and perturbations of such equations by consider-
ing properties of the solution x(t, ϕ) in R

n. Such an approach limits the
extent to which one can obtain many of the interesting properties that
are similar to the ones for ODE.

In the approach of Krasovskii, a linear autonomous equation generates
a C0-semigroup on C which is compact for t ≥ r. Therefore, the spec-
trum is only point spectrum plus possibly 0. The infinitesimal generator
has compact resolvent with only point spectrum. The point spectrum
of the generator determines the point spectrum of the semigroup by ex-
ponentiation. This suggests a decomposition theory into invariant sub-
spaces similar to ones used for ODE. Shimanov (1959) exploited this fact
to discuss the stability of an equilibrium point for a nonlinear equation
for which the linear variational equation had a simple zero eigenvalue
and the remaining ones had negative real parts. The complete theory of
the linear case was developed by Hale (1963) (see also Shimanov (1965)).

Since linear equations are to be discussed in detail in this summer
workshop, we are content to give only an indication of the results with
a few applications.



History Of Delay Equations 13

Consider the equation
x′(t) = Lxt, (4.10)

where L : C → R
n is a bounded linear operator. Equation (4.10) gener-

ates a C0-semigroup TL(t), t ≥ 0, on C which is completely continuous
for t ≥ r. Therefore, the spectrum σ(TL(t)) consists only of point spec-
trum σp(TL(t)) plus possible zero.

The infinitesimal generator AL is easily shown to be given by

D(AL) = {ϕ ∈ C1([−r, 0], Rn) : ϕ′(0) = Lϕ}, ALϕ = ϕ′ (4.11)

The operator AL has compact resolvent and the spectrum is given

σ(AL) = {λ : �(λ) = 0}, �(λ) = λI − L exp(λ.)I}. (4.12)

In any vertical strip in the complex plane, there are only a finite num-
ber of elements of σ(AL). If λ ∈ σ(AL), then the generalized eigenspace
Mλof λ is finite dimensional, say of dimension dλ. If φλ = (ϕ1, ......., ϕdλ

)
is a basis for Mλ, then there is a dλ× dλ matrix Bλ such that

ALφ = φBλ, [φ] = Mλ,

where [φ] denotes span.
From the definition of AL, it is easily shown that Mλ is invariant

under TL(t) and
TL(t)φ = φ exp (Bλt) , t ∈ R.

There is a complementary subspace M⊥
λ ⊂ C of Mλ such that

C = Mλ ⊕M⊥
λ , TL(t)M⊥

λ ⊂ M⊥
λ , t ≥ 0, (4.13)

Of course, such a decompostion can be applied to any finite set of ele-
ments of σ(AL).

In applications of this decompostion theory, it is necessary to have a
specific computational method to construct the complementary suspace.
This was done in detail by using an equation which is the ‘adjoint’ of
(4.10) (see, for example, Hale (1963), Shimanov (1965), Hale (1977),
Hale and Lunel (1993), Diekmann, van Giles, Lunel and Walther (1991)).

Consider now a perturbed linear system

x′(t) = Lxt + f(t), (4.14)

where f : R → R
n is a continuous function. In ODE, the variation

of constants formula plays a very important role in understanding the
effects of f on the dynamics. For RFDE, a variation of constants formula
is implicitly stated in Bellman and Cooke (1963), Halanay (1965). It is
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not difficult to show that there is a solution X(t) = X(t, X0) of (4.10)
through the n× n discontinuous matrix function X0 defined by

X0(θ) = 0, θ ∈ [−r, 0) ,X0(0) = I, θ = 0. (4.15)

With this function X(t) and defining Xt = T (t)X0, it can be shown that
the solution x(t) = x(t, ϕ) of (4.14) through ϕ is given by

xt = T (t)ϕ +
∫ t

0
T (t− s)X0f(s)ds, t ≥ 0. (4.16)

The equation (4.16) is not a Banach integral. For each θ ∈ [−r, 0], the
equation (4.16) is to be interpreted as an integral equation in R

n.
The equation (4.16), interpreted in the above way, was used in the

development of many of the first fundamental results in RFDE (see, for
example, Hale (1977)). The Banach space version of the variation of
constants formula makes use of sun-reflexive spaces and there also is a
theory based on integrated semigroups (see Diekmann, van Giles, Lunel
and Walther (1991) for a discussion and references).

With (4.16) and the above decomposition theory, it is possible to make
a decomposition in the variation of constants formula. We outline the
procedure and the reader may consult Hale (1963), (1977) or Hale and
Lunel (1993) for details.

Let x(t) = x(t, ϕ) be a solution of (4.14) with initial value ϕ at t = 0,
choose an element λ ∈ σ(AL) and make the decomposition as in (4.13),
letting

ϕ = ϕλ + ϕ⊥
λ X0 = X0,λ + X⊥

0,λ, xt = xt,λ + x⊥
t,λ (4.17)

The decomposition on X0 needs to be and can be justified.
If we apply this decomposition to (4.16), we obtain the equations

xt,λ = TL(t)ϕλ +
∫ t

0
T (t− s)X0,λf(s)ds

x⊥
t,λ = TL(t)ϕ⊥

λ +
∫ t

0
T (t− s)X⊥

0,λf(s)ds (4.18)

If we use the fact that Tλ(t)φλ = φ exp(Bλt) and let xt,λ = φy(t), and,
for simplicity in notation, x⊥

t,λ = zt, then we have

y(t) = exp(Bλt)a +
∫ t

0
expBλ(t− s)Kf(s)ds

zt = TL(t)z0 +
∫ t

0
T (t− s)X⊥

0,λf(s)ds (4.19)
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where a = y(0) and X0,λ = φK with K being a dλ × dλ matrix. The
first equation in (4.19) is equivalent to an ODE

y′ = Bλy + Kf(t) (4.20)

with y(0) = a.
At the time that this decomposition in C was given for the nonho-

mogeneous equation, it was not readily accepted by many people that
were working on RFDE. The main reason was that we now have the so-
lution expressed as two variable functions φy(t) and zt of t and, if f 
= 0,
then neither of these functions can be represented by functions of t + θ,
θ ∈ [−r, 0]. Therefore, neither function can satisfy an RFDE. Their sum
yields a function xt which does satisfy this property.

In spite of the apparent discrepancy, it is precisely this type of de-
composition that permits us to obtain qualitative results similar to the
ones in ODE. The first such result was given by Hale and Perello (1964)
when they defined the stable and unstable sets for an equilibrium point
and proved the existence and regularity of the local stable and unstable
manifolds of an equilibrium for which no eigenvalues lie on the imagi-
nary axis; that is, they proved that the saddle point property was valid
for hyperbolic equilibria. The proof involved using Lyapunov type inte-
grals to obtain each of these manifolds as graphs in C (see, for example,
Hale (1977), Hale and Lunel (1993) or Diekmann, van Giles, Lunel and
Walther (1991)). We now know that further extensions give a more com-
plete description of the neighborhood of an equilibrium including center
manifolds, foliations, etc.

Another situation that was of considerable interest in the late 1950’s
and 1960’s was the consideration of perturbed systems of the form

x′(t) = Lxt + M(t, xt), (4.21)

where, for example, M(t, ϕ) is continuous and linear in ϕ and there is a
function a(t) such that

|M(t, ϕ)|≤a(t)|ϕ|, t ≥ 0, (4.22)

and the function ais small in some sense. The problem is to determine
conditions on ato ensure that the behavior of solutions of (4.21) are
similar to the solutions of (4.10).

For example, Bellman and Cooke (1959) considered the following
problem. Suppose that xis a scalar, λ is an eigenvalue of (4.10)and there
are no other eigenvalues with the same real parts. Determine conditions
on aso that there is a solution of (4.21) which asymptotically as t → ∞
behaves as the solution exp λt of (4.10). Their approach was to replace
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a solution x(t) of (4.14) by a function w(t) ∈ R
n by the transformation

x(t) = (expλt) w(t) in R
n. In this case, the function w(t) will satisfy a

RFDE and the problem is to show that w(t) → 0 as t → ∞. In the case
where a(t) → 0 as t → ∞ and

∫∞
0 |a(t)|dt may be ∞, it was necessary

to impose several additional conditions on a to ensure that w(t) → 0 as
t → ∞. Some of these conditions seemed to be artificial and were not
needed for ODE.

Another way to solve this type of problem is to make the transforma-
tion in C given by xt = exp(λt)zt and determine conditions on zt so that
zt → 0 in C as t → ∞. In this case, the function zt does not satisfy an
RFDE. On the other hand, some of the unnatural conditions imposed
by Bellman an Cooke (1959) were shown to be unnecessary (see Hale
(1966)).

5. Neutral Functional Differential Equations
Neutral functional differential equations have the form

x′(t) = f(xt, x
′
t); (5.23)

that is, x′(t) depends not only upon the past history of x but also on
the past history of x′. Let X, Y be Banach spaces of functions mapping
the interval [−r, 0] into R

n. We say that x(t, ϕ, ψ) is a solution of (5.23)
through (ϕ, ψ) ∈ X × Y , if x(t, ϕ, ψ) is defined on an interval [−r, α),
α > 0, x0(., ϕ, ψ) = ϕ, x′

0(., ϕ, ψ) = ψ and satisfies (5.23) in a sense
consistent with the definitions of the spaces X and Y .

For example, if X = C([−r, 0], Rn), Y = L([−r, 0], Rn), then the
solution should be continuous with an integrable derivative and satisfy
(5.23) almost everywhere.

The proper function spaces depend upon the class of functions f that
are being considered. For a general discussion of this point, see Kol-
manovskii and Myskis (1999).

From my personal point of view, it is important to isolate classes
of neutral equations for which it is possible to obtain a theory which
is as complete as the one for the RFDE considered above. Hale and
Meyer (1967) introduced such a general class of neutral equations which
were motivated by transport problems (for example, lossless transmis-
sion lines with nonlinear boundary conditions) and could be considered
as a natural generalization of RFDE in the space C. We describe the
class and state a few of the important results. The detailed study of
this class of equations required several new concepts and methods which
have been used in the study of other evolutionary equations (with or
without hereditary effects); for example, damped hyperbolic partial dif-
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ferential equations and other partial differential equations of engineering
and physics.

Suppose that D, f : C → R
n are continuous and D is linear and

atomic at 0; that is,

Dϕ = ϕ(0)−
∫ 0

−r
[dµ(θ)]ϕ(θ)

and the measure µ has zero atom at 0. The equation

d

dt
Dxt = f(xt) (5.24)

is called a neutral FDE (NFDE). If Dϕ = ϕ(0), we have RFDE.
For any ϕ ∈ C, a function x(t, ϕ) is said to be a solution of (5.24)

through ϕ at t = 0 if it is defined and continuous on an interval [−r, α),
α > 0, x0(., ϕ) = ϕ, the function Dxt(., ϕ) is continuously differentiable
on (0, α) with a right hand derivative at t = 0 and satisfies (5.24) on
[0, α].

It is important to note that the function D(xt(., ϕ)) is required to be
differentiable and not the function x(t, ϕ).

Except for a few technical considerations, the basic theory of exis-
tence, uniqueness, continuation, continuous dependence on parameters,
etc. are essentially the same as for RFDE.

As before, if we let TD,f (t)ϕ = xt(., ϕ) and suppose that all solutions
are defined for all t ≥ 0, then TD,f (t), t ≥ 0, is a semigroup on C with
TD,f (t)ϕ a Ck-function in ϕ if f is a Ck-function.

It is easily shown that the infinitesimal generator AD,f of T (t) is given
by

D(AD,f ) = {ϕ ∈ C1([−r, 0], Rn) : D(ϕ′) = f(ϕ), AD,fϕ = ϕ′. (5.25)

Hale and Meyer (1967) considered (5.24) when the function f was lin-
ear and were interested in the determination of conditions for stability
of the origin with these conditions being based upon properties of the
generator AD,f . It was shown that, if the spectrum of AD,f was uni-
formly bounded away from the imaginary axis and in the left half of the
complex plane, then one could obtain uniform exponential decay rate for
solutions provided that the initial data belonged to the domain of AD,f .
Of course, this should not be the best result and one should get these
uniform decay rates for any initial data in C. This was proved by Cruz
and Hale (1971), Corollary 4.1, and a more refined result was given by
Henry (1974).

Due to the fact that the solutions of a RFDE are differentiable for
t ≥ r, the corresponding semigroup is completely continuous for t ≥ r.
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Such a nice property cannot hold for a general NFDE since the solutions
have the same smoothness as the initial data. On the other hand, there is
a representation of the semigroup for a NFDE as a completely continuous
perturbation of the semigroup generated by a difference equation related
to the operator D.

To describe this in detail, suppose that

Dϕ = D0ϕ +
∫ 0

−r
B(θ)ϕ(θ)dθ, D0ϕ =

∞∑
k=0

Bkϕ(−ρk)ϕ(−rk) (5.26)

where B(θ) is a continuous n×n matrix, Bk, k = 0, 1, 2,...... is an n×n
constant matrix, r0 = 0, 0 < rk≤r, k = 1, 2, ......

Let CD0be the linear subspace of C defined by

CD0 = {ϕ ∈ C : D0ϕ = 0}

and let TD0(t), t ≥ 0, be the semigroup on CD0 defined by TD0(t) =
yt(., ϕ), where y(t, ϕ) is the solution of the difference equation

D0yt = 0, y0 = ϕ ∈ CD0 . (5.27)

Theorem 7 : (Representation of solution operator}) There are a
bounded linear operator ψ:C → CD0 and a completely continuous op-
erator UD,f (t) : C → C, t ≥ 0, such that

TD,f (t) = TD0(t)ψ + UD,f (t), t ≥ 0. (5.28)

Using results in Cruz and Hale (1971), the representation theorem
was proved in Hale (1970) for the situation where Dis an exponentially
stable operator. The proof in that paper clearly shows that it is only
required that D0 is an exponentially stable operator. Henry (1974) also
gave such a representation of the semigroup for (5.24).

In the statement of the above theorem, there is the mysterious linear
operator ψ : C → CD0 . Let us indicate how it is constructed. For RFDE,
D0ϕ = ϕ(0) and ψϕ = ϕ−ϕ(0), which is just a translation of the initial
function in order to have ψϕ ∈ CD0 . For general D0, one first chooses
a matrix function φ = (ϕ1, ......, ϕn), ϕj ∈ C, j ≥ 1, so that D0(φ) = I,
the identity and then set ψ = I − φD0.

The representation (5.28) shows that the essential spectrum
σess(TD,f (t)) of the operator TD,f (t) on C coincides with the essential
spectrum σess(TD0(t)) of TD0(t) on CD0 . It can be shown (see Henry
(1987)) that the spectrum σ(TD0(t)) of TD0(t) coincides with its essen-



History Of Delay Equations 19

tial spectrum and that

σess(TD0(t))=Cl

{
exp(λt) : det∆D0(λ)=0; ∆D0(λ)=

∞∑
k=1

Bk exp(λrk)

}

(5.29)
We say that the operator D0 is exponentially stable if σ(TD0(t)) for t > 0
is inside the unit circle with center zero in the complex plane. In this
case, there are constants KD0 ≥ 1, αD0 > 0 such that

|TD0(t)ϕ| ≤ KD0 exp−αD0t , t ≥ 0, ϕ ∈ CD0 . (5.30)

As a consequence, there is a constant K1 such that

|TD0(t)ψϕ| ≤ KD0K1 exp−αD0t, t ≥ 0, ϕ ∈ C. (5.31)

We remark that, if D0 is exponentially stable, it is possible to find an
equivalent norm in C such that KD0K1 = 1; that is, TD0(t)ψ is a strict
contraction for each t > 0. In this norm, relation (5.28) implies that
TD,f (t) is the sum of a strict contraction and a completely continuous
operator for each t > 0.

For the RFDE, Dϕ = D0ϕ = ϕ(0) and D0 is exponential stable since
the solutions of the difference equation x(t) = 0 on {ϕ ∈ C : ϕ(0) = 0} is
identically zero for t ≥ r and has the spectrum of the semigroup consist-
ing only of the point 0. This fact implies that the semigroup is compact
for t ≥ r as we have noted before. The representation (5.28) says more
since it gives properties of the semigroup on the interval [0, r] as the
sum of an exponentially decaying semigroup and a completely continu-
ous semigroup. We make an application of this later when we discuss
periodic solutions of time varying systems with periodic dependence on
time.

If D0ϕ = ϕ(0) − aϕ(−r), then D0 is exponentially stable if and only
if |a| < 1 and ress(TD0(t)) = |a|t.

Stability of an equilibrium point of a NFDE is defined in the same
way as for RFDE. We remark that, for general NFDE, an equilibrium
point being asymptotically stable does not imply that the equilibrium
point is a local attractor. In fact, it is possible to have a linear system

d

dt
Dxt = Lxt

for which every solution approaches zero as t → ∞, 0 is stable and is
not a local attractor. In this case, the essential spectral radius of the
semigroup (and therefore of TD0(t)) must be equal to one for all t ≥ 0.
In fact, if there is a t1 > 0 such that it is less that one, then the above
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representation formula implies that, if the solutions approach zero as
t →∞, then the spectrum of the semigroup for t > 0 must be inside the
unit circle and 0 would be a local attractor.

The example

d

dt
[x(t)− ax(t− 1)] = −cx(t)

with |a| = 1 and c > 0 has the property just stated. It is an interesting
exercise to verify this fact.

Much of the theory for RFDE has been carried over to NFDE if the
operator D0 is exponentially stable. However, there are many aspects
that have not yet been explored (see Hale and Lunel (1993), Hale, Ma-
galhaes and Oliva (2002)).

6. Periodically forced systems and discrete
dynamical systems.

If X is a Banach space and T : X → X is a continuous map, we obtain
a discrete dynamical system by considering the iterates Tn, n ≥ 0, of the
map. Positive orbits, ω−limit sets, invariance, etc. are defined the same
way as for continuous semigroups.

In the context of the present lectures, we can obtain a discrete dy-
namical system in the following way. If the RFDE or NFDE is nonau-
tonomous with the time dependence being τ -periodic, we can define the
Poincaré map π : C → C which takes the initial data ϕ ∈ C to the solu-
tion xt(., ϕ) at time τ . The map π defines a discrete dynamical system.
Fixed points of π correspond to periodic solutions of the equation with
the same period as the forcing.

In his study of the periodically forced van der Pol equation, Levinson
(1944) attempted to determine the existence of a periodic solution of
the same period as the forcing. To do this, he introduced the concept of
point dissipativeness described below and was able to use the Brouwer
fixed point theorem to prove that some iterate of the Poincaré map had
a fixed point, but he could not prove that the map itsef had a fixed
point.

Massera (1950) gave an example of a 2-dimensional ODE with τ -
periodic coefficients which had a 2τ -periodic solution, but did not have
a τ -periodic solution. In addition, all solutions were bounded.

This shows that dissipation is necessary if the differential system of
Levinson is to have a τ -periodic solution. There was a successful solution
to this problem which we describe in the next section.
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7. Dissipation, maximal compact invariant sets
and attractors.

We have seen above that dissipation can perhaps be beneficial. In
many important applications, there is dissipation which forces solutions
with large initial data away from infinity; that is, ‘infinity is unstable.’
It is important to understand the implications of such a concept for both
autonomous and nonautonomous problems.

In this section, we introduce the new concepts that are needed for
continuous dynamical systems defined by a C0-semigroup T (t), t ≥ 0,
as well as discrete dynamical systems {Tn, n = 0, 1, 2, ........} defined by
a map T on a Banach space X. To write things in a unified way, we let
+ denote either the interval (−∞,∞) or the set Z = {0,±1,±2, .....},
+(resp.−) the nonnegative (resp. nonpositive) subsets of . We
can now write the continuous and discrete dynamical systems with the
notation T (t), t ∈ +.

Definition 3 : (Dissipativeness). The semigroup T (t), t ∈ + is said
to be point dissipative (resp. compact dissipative) (resp. bounded dis-
sipative) if there is a bounded set B in X such that, for any ϕ ∈ X
(resp. compact set K in X) (resp. bounded set U in X), there is a
t0 = t0(B, ϕ) ∈ +(resp. t0 = t0(B, K)) (resp. t0 = t0(B, U)) such that
T (t)ϕ ∈ B (resp. T(t)K ⊂ B) (resp. T (t)U ⊂ B) for t ≥ t0, t ∈ +.

As remarked earlier, point dissipativeness was introduced by Levin-
son (1944). In finite dimensional space, all of the above concepts of
dissipativeness are the same.

Definition 4 : Maximal compact invariant set A set A ⊂ X is said to
be the maximal compact invariant set for the dynamical system T (t), t ∈
G+, if it is compact invariant and maximal with respect to this property.

Definition 5 : Compact global attractor A set A ⊂ X is said to be the
compact global attractor if it is compact invariant and for any bounded
set B ⊂ X, we have

lim
t∈G+,t→∞

dist(T (t)B, A) = 0.

For ODE in R
n, Pliss (1966) proved that point dissipativeness im-

plied the existence of a compact global attractor. Using this fact and an
asymptotic fixed point theorem of Browder (1959) for completely con-
tinuous maps, he was able to prove that a dissipaative nonautonomous
ODE which is τ -periodic in thas a τ -periodic solution; thus, answer-
ing in the affirmative the problem of Levinson (1944). For RFDE with
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the period τ greater than the delay, Jones (1965) and Yoshizawa (1966)
used the same asymptotic fixed point theorem to prove the existence
of a τ -periodic solution. Recall that τ greater than the delay makes
the Poincaré map completely continuous. In the interval [0, r], it is not
completely continuous, but we have seen above that it is the sum of
a contraction and a completely continuous operator. We give an ab-
stract fixed point theorem later which will allow us to conclude that
the Poincaré map has a fixed point and, therefore, there is a τ -periodic
solution, which generalizes the result of Pliss (1966) to RFDE.

In a fundamental paper, Billoti and LaSalle (1971) proved the exis-
tence of a compact 2global attractor if T (t), t ∈ + is point dissipative
and there is a t1 ∈  for which T (t1) is completely continuous. In the
discrete case, this implied that there is a periodic point of period t1.

Hale, LaSalle and Slemrod (1973) extended these results to the class
of asymptotically smooth dynamical systems defined below. This class of
dynamical systems includes NFDE with an exponentially stable D0 op-
erator as well as many other dynamical systems, including those defined
by many dissipative partial differential equations.

Definition 6 : (Asymptotically smooth) A dynamical system T (t), t ∈
+, on a Banach space X is said to be asymptotically smooth if, for any
bounded set B in X for which T (t)B ⊂ B for t ∈ +, there is a compact
set J in X such that

lim
t∈G+,t→∞

dist(T (t)B, J) = 0.

This definition stated in a different but equivalent way is due to Hale,
LaSalle and Slemrod (1973). It is very important to note that a dynam-
ical system can be asymptotically smooth and there can be a bounded
set for which the positive orbit is unbounded; for example, the dynam-
ical system defined by the ODE x′ = x. The definition contains the
conditional expression ‘if T (t)B ⊂ B, t ∈ +.’

Proposition 2 :. If T (t), t ∈ +, is asymptotically smooth and B is
a bounded set for which there is a t1 ∈ + such that γ+(T (t1)B) is
bounded, then ω(B) is a compact invariant set. It is connected for con-
tinuous dynamical systems if B is connected.

It is obvious that, if there is a t1 ∈ +, t1 > 0 such that T (t1) is
completely continuous, then T (t), t ∈ +, is asymptotically smooth. it
also is not difficult to prove that, if T (t) = S(t) + U(t) where U(t) is
completely continuous for all t ∈ +, and S(t) is a linear semigroup with
spectral radius α(t) → 0 as t →∞, then T (t), t ∈ +, is asymptotically
smooth.
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In particular, the semigroup associated with RFDE and NFDE with
D0 exponentially stable are asymptotically smooth. For similar equa-
tions with τ -periodicity in time, the Poincaré map is asymptotically
smooth.

The following result is essentially due to Hale, LaSalle and Slemrod
(1973) with some minor refinements in its statement.

Theorem 8 : For the dynamical system T (t), t ∈ +, if there is a
nonempty compact set K that attracts compact sets of X and A =
∩

t∈�+
T (t)K, then A is independent of K and

i) A is the maximal, compact, invariant set,
ii) A is connected if X is a Banach space.
iii) A is stable and attracts compact sets of X.
iv) For any compact set K, there is a neighborhood UK of K and a
t0 = t0(K) such that γ+(T (t0)UK)is bounded.
If, in addition, the dynamical system is asymptotically smooth, then
v) A is also a local attractor.
vi) If C is any subset of X for which there is a t0 = t0(C) such that
γ+(T (t0)C) is bounded, then A attracts C.
vii) In particular, if, for any bounded set B in X, there is a t0 = t0(B)
such that γ+(T (t0)B) is bounded, then A is the compact global attractor.

We also can state the following result.

Theorem 9 : A dynamical system T (t), t ∈ +, on X has a compact
global attractor if and only if
i) T (t), t ∈ +, is asymptotically smooth.
ii) T (t), t ∈ +, is point dissipative.
iii) For any bounded set B in X, there is an t0 = t0(B) such that
γ+(T (t0)B) is bounded.

The sufficiency is proved in the following way. From (i) and (iii),
ω(B) is a compact invariant set which attracts B for any bounded set
B. Since (ii) is satisfied, it follows that the compact invariant set which
is the ω−limit set of the bounded set in the definition of point dissipative
attracts each compact set of X. Theorem 16 implies the existence of the
compact global attractor. Conversely, if the compact global attractor
exists, then we must have (ii) and (iii) satisfied. Furthermore, if B
is a bounded set such that T (t)B ⊂ B, t ∈ G+, then ω(B) must be
compact and attract B, which implies that the dynamical system is
asymptotically smooth.

Cholewa and Hale (2000) have shown that there is an asymptotically
smooth dynamical system and a bounded set B for which ω(B) is com-
pact and invariant and yet γ+(B) is unbounded.
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This shows that (iii) in Theorem 17 cannot be replaced by γ+(B)
bounded for each bounded set B.

If the compact global attractor exists, then the most interesting part
of the flow defined by the dynamical system occurs on the attractor even
though the transient behavior to a neighborhood of the attractor can be
very important in a specific application. There are examples of FDE for
which the flow on the attractor can be very complicated and the attractor
itself is not a manifold. In spite of this, we have the following surprising
result of Malné (1981) (for the first part for finite Hausdorff dimension
and X a Hilbert space, the result is due to Mallet-Paret (1976)) (for a
complete proof, see Hale, Magalhaes and Oliva (2002)).

Theorem 10 : Suppose that the dynamical system T (t), t ≥ Ģ, on a
Banach space X has a compact invariant set A and has the property that
the derivative of T (t)ϕ with respect to ϕ is the sum of a contraction and
a completely continuous operator for each t > 0 and ϕ ∈ A. Then
(1) The attractor A has finite capacity c(A).
(2) If S is a linear subspace of X with dimension ≥ 2c(A)+1, then there
is a residual set of the set of all continuous projections on Son which the
projection of the flow onto S is one-to-one.

The first part of the theorem implies that the Hausdorff dimension of
A is finite dimension and the second part says that A generically can
be embedded into finite dimensional subspaces of X if the dimension is
sufficiently large.

We remark that, if the dynamical system has a maximal compact
invariant set (in particular, if there is the compact global attractor),
then the above properties hold for this set.

8. Stationary points of dissipative flows
As we have remarked earlier, it was of interest to determine the ex-

istence of fixed points for the Poincaré map associated with nonau-
tonomous FDE with τ -periodic dependence on t. As a consequence,
of some results which will be stated below, we can state the following
result (see Hale and Lopes (1973)).

Theorem 11 : 1) If an autonomous RFDE or NFDE with D0 expo-
nentially stable is point dissipative, then there is an equilibrium point.
2) If a nonautonomous RFDE or NFDE with periodic coefficients and
D0 exponentially stable is point dissipative, then there is a fixed point of
the Poincaré map.

There is an example of Jones and Yorke (1969) in R
3 of an ODE for

which all solutions are bounded and yet there is no equilibrium point.
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This says that some type of dissipation is necessary to obtain the con-
clusion in (0.1). Notice that part (2) has no restriction on the delay as in
the results mentioned previously of Jones (1965) and Yoshizawa (1966).

We now describe the asymptotic fixed point theorem that is used to
prove the above result. We remark that the motivation for this fixed
point theorem came form the above problem.

Suppose that X is a Banach space. The Kuratowski measure α(B) of
noncompactness of a bounded set B in X is defined by

α(B) = inf{d : B has a finite cover of diameter < d}.

A map T : X → X is said to be an α-contraction if there is a constant
k ∈ [0, 1) such that, for any bounded set B in X, we have α(TB)≤kα(B).

The following result was discovered independently and with different
proofs by Nussbaum (1972), Hale and Lopes (1973).

Theorem 12 : If X is a Banach space and T : X → X is an α-
contraction which is compact dissipative, then there is a fixed point of
T .

We need a few remarks to see why Theorem 19 is a consequence of
Theorem 20. In Theorem 19, it is assumed only that the Poincaré is
point dissiaptive and in Theorem 20, compact dissipative is assumed.
We have remarked earlier that point dissipative for RFDE implies the
existence of the commpact global attractor and, therefore, the system
must be compact dissipative. For NFDE with an exponentially stable D0

operator, Massatt (1983) proved that point dissipativeness is equivalent
to compact dissipativeness. The proof is nontrivial and uses dissipative-
ness in two spaces.

It is not known if point dissipative is equivalent to compact dissipative
for α-contractiing maps.

Final Remarks We have only touched upon a few of the topics in
FDE due to limited space. However, the results presented set the stage
for much research in the last 35 years - especially, the development of
the qualitative theory, stability of the flow on the attractor with respect
to the vector field as well as detailed investigation of the flow on the
attractor for specific types of equations that occur frequently in the
applications.

We can only refer to the reader to the books of Diekmann, van Gils,
Lunel and Walther (1991), Hale and Lunel (1993), Kolmanovski and
Myshkis (1999), Hale, Magalhaes and Oliva (2002) for FDE on R

n, Wu
(1996) for partial differential equations with delay, Hino, Murakami and
Naito (1991), Hino, Naito, Minh and Shin (2002) for RFDE with infinite
delay and the lectures on abstract evolutionary functional differential
equations at this workshop.
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It is clear that the subject is alive and is a good area of research both
in theory and applications.
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1. Introduction
In applications, the future behavior of many phenomena are assumed

to be described by the solutions of an ordinary differential equation.
Implicit in this assumption is that the future behavior is uniquely de-
termined by the present and independent of the past. In differential
difference equations, or more generally functional differential equations,
the past exerts its influence in a significant manner upon the future.
Many models are better represented by functional differential equations,
than by ordinary differential equations.

Example 1 A retarded functional differential equation. Imagine a bio-
logical population composed of adult and juvenile individuals. Let N(t)
denote the density of adults at time t. Assume that the length of the
juvenile period is exactly h units of time for each individual. Assume
that adults produce offspring at a per capita rate α and that their proba-
bility per unit of time of dying is µ. Assume that a newborn survives the
juvenile period with probability ρ and put t = αρ. Then the dynamics of
N can be described by the differential equation

dN

dt
(t) = −µN(t) + rN(t− h) (1.1)

which involves a nonlocal term, rN(t−h) meaning that newborns become
adults with some delay. So the time variation of the population density
N involves the current as well as the past values of N . Such equations
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are called Retarded Functional Differential Equations (RFDE) or, alter-
natively, Delay Equations.
Equation ( 1.1) describes the changes in N . To determine a solution
past time t = 0, we need to prescribe the value of N at time −h, and we
can see that it is not enough to give the value at the point −h, since the
following example agree that this condition is not enough to determine
completely the solution.

Example 2 The solutions t → sin

[
π

2

(
t +

1

2

)]
and t → cos

[
π

2

(
t +

1

2

)]
of the

equation
dx

dt
= −π

2
x(t− 1) (1.2)

coincide at t = 0.
In fact, all over the interval [0, h] we have the same problem: in order

to integrate the equation past some time t ∈ [0, h], we need to prescribe
the value N(t − h). So we have to prescribe a function on an interval
of length h. The most convenient (though not the most natural from
a biological point of view) manner to do this is to prescribe N on the
interval [−h, 0] and then to use ( 1.1) for t ≥ 0. So we supplement ( 1.1)
by

N(θ) = ϕ(θ) for − h ≤ θ ≤ 0

where ϕ is a given function. Explicitly, we then have for t ∈ [0, h]

N(t) = ϕ(0) exp(−µt) + r

∫ t

0
exp(−µ(t− τ))ϕ(τ − h)dτ.

Using this expression we can give an expression for N on the interval
[h, 2h], etc.

Thus the method of steps and elementary theory of ordinary differ-
ential equations provide us with a very simple existence and uniqueness
proof in this example.

Remarks 1) For any continuous function ϕ defined on [−h, 0], there
is a unique solution x of (1.2) on [−h,∞], denoted x(ϕ).
2) The solution x(ϕ) has a continuous time derivative for t > 0, but not
at t = 0 unless ϕ(θ) has a left hand derivative at θ = 0 and

dϕ

dt
(0) = −µϕ(0) + rϕ(−h).

The solution x(ϕ) is smoother than the initial data.
3) For a given ϕ on [−h, 0], the solution x(ϕ)(t) of (1.2) need not be
defined for t ≤ −h. In fact, if x(ϕ)(t) is defined for t ≤ −h, say x(ϕ)(t)
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is defined for t ≥ −h− ε, ε > 0, then ϕ(θ) must have a continuous first
derivative for θ ∈ ]−ε, 0[.

A more general form of a delay differential equation is as follows:

dx

dt
= F (t, x(t), x(t− r)).

2. A general initial value problem
Given r > 0, denote C ([a, b] , Rn), the Banach space of continuous

functions mapping the interval [a, b] into R
n with the topology of uniform

convergence. If [a, b] = [−r, 0], we let C = C ([−r, 0] , Rn) and designate
the norm of an element ϕ in C by |ϕ| = sup

−r≤θ≤0
|ϕ(θ)|. Let σ ∈ R,

A > 0 and x ∈ C ([σ − r, σ + A] , Rn), then for any t ∈ [σ, σ + A], we let
xt ∈ C, be defined by

xt(θ) = x(t + θ), for − r ≤ θ ≤ 0.

Let f : R×C → R
n be a given function. A functional differential equation

is given by the following relation
{

dx

dt
(t) = f(t, xt). for t ≥ σ

and xσ = ϕ.
(2.3)

Definition 7 x is said to be a solution of ( 2.3) if there are σ ∈ R,
A > 0 such that x ∈ C ([σ − r, σ + A] , Rn) and x satisfies ( 2.3) for
t ∈ [σ, σ + A] . In such a case we say that x is a solution of ( 2.3) on
[σ − r, σ + A] for a given σ ∈ R and a given ϕ ∈ C we say that x =
x(σ, ϕ), is a solution of ( 2.3) with initial value at σ or simply a solution
of ( 2.3) through (σ, ϕ) if there is an A > 0 such that x(σ, ϕ) is a solution
of ( 2.3) on [σ − r, σ + A] and xσ(σ, ϕ) = ϕ.

Equation (2.3) is a very general type of equation and includes diff-
erential-difference equations of the type

dx

dt
(t) = f(t, x(t), x(t− r(t))) for 0 ≤ r(t) ≤ r

as well as
dx

dt
(t) =

∫ 0

−r
g(t, θ, x(t + θ))dθ.

If
f(t, ϕ) = L(t, ϕ) + h(t),



34 DELAY DIFFERENTIAL EQUATIONS

in which L is linear in ϕ and (t, ϕ) → L(t, ϕ), we say that the equation
is a linear delay differential equation, it is called homogeneous if h ≡ 0.
If f(t, ϕ) = g(ϕ), equation (2.3) is an autonomous one.

Lemma 1 [12] Let σ ∈ R and ϕ ∈ C be given and f be continuous on
the product R × C. Then, finding a solution of equation ( 2.3) through
(σ, ϕ) is equivalent to solving:

x(t) = ϕ(0) +
∫ t

σ
f(s, xs)ds t ≥ σ and xσ = ϕ.

2.1 Existence
Lemma 2 [12] If x ∈ C ([σ − r, σ + α] , Rn), then, xt is a continuous
function of t for t ∈ [σ, σ + α] .

Proof. Since x is continuous on [σ − r, σ + α], it is uniformly contin-
uous and thus ∀ε > 0, ∃δ > 0, such that |x(t)− x(s)| < ε if |t− s| < δ.
Consequently for t, s in [σ, σ + α], |t− s| < δ, we have |x(t + θ)−
x(s + θ)| < ε, ∀θ ∈ [−r, 0].

Theorem 1 [12] Let D be an open subset of R × C and f :D → R
n be

continuous. For any (σ, ϕ) ∈ D, there exists a solution of equation ( 2.3)
through (σ, ϕ).

Proposition 3 If f is at most affine i.e. |f(t, φ| ≤ a |φ|+b with a, b > 0,
then there exists a global solution i.e. ∀ϕ, the solution x(σ, ϕ) is defined
on [α,∞[ .

Proof. Let ϕ ∈ C, and assume that the solution is defined only on
[α, β[. By integrating the equation (2.3), one has

x(t) = ϕ(0) +
∫ t

0
f(s, xs)ds

which gives

|x(t, ϕ)| = |ϕ|+
∫ t

σ
(a |xs|+ b)ds

and

|xt(., ϕ)| = |ϕ|+ a

∫ t

σ
|xs| ds + bβ.

By the Gronwall lemma

|xt(., ϕ)| = (|ϕ|+ bβ) exp aβ <∞..
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On the other hand

sup
t∈[0,β[

∣∣∣∣dx

dt
(t)
∣∣∣∣ <∞,

and gives that the solution is uniformly continuous on [0, β[ and this
implies that lim

t→β
|xt(., ϕ)| exists and is finite, note it xβ .

Let us consider the following delay differential equation
{

dy

dt
= f(t, yt) for t ≥ β

yβ = xβ ∈ C

this last equation has at least one solution on [β, β + ε] for some ε > 0,
and equation (2.3) has at least one solution defined on [0, β + ε] , which
contradicts the maximality of the solution.

Corollary 2 If f is lipschitzian with respect to the second variable, then
it satisfies the property in the proposition below.

2.2 Uniqueness
Theorem 3 [12] Let D be an open subset of R × C and suppose that
f : D → R

n be continuous and f(t, ϕ) be lipschitzian with respect to ϕ
in every compact subset of D. If (σ, ϕ) ∈ D, then equation ( 2.3) has a
unique solution passing through (σ, ϕ).

Proof. Consider Iα, Bβ as defined in the proof of theorem . and
suppose x and y be two solutions of (2.3) on [σ − r, σ + α] with xσ =
ϕ = yσ. Then

x(t)− y(t) =
∫ t
σ(f(s, xs)− f(s, ys))ds. t ≥ σ

xσ − yσ = 0

Let k be the Lipschitz constant of f(t, ϕ) in a compact subset containing
the trajectories (t, xt) and (t, yt), t ∈ Iα. Choose α such that kα < 1.
Then, for t ∈ Iα one has:

|x(t)− y(t)| ≤
∫ t

σ
k |xs − ys| ds ≤ kα sup

σ≤s≤t
|xs − ys| .

And this implies that x(t) = y(t) for t ∈ Iα.
The uniqueness may not hold if the function is not locally lipschitzian.

For this, let us consider the following counterexamples:
1) There may be two distinct solutions of (2.3) defined on (−∞,∞)

and they coincide on (0,∞) . The following example was given by A.
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Hausrath. Let r = 1, f(s) = 0, 0 ≤ s ≤ 1, f(s) = −3 ( 3
√

s− 1)2 , s > 1,
and consider the equation

dx

dt
(t) = f (|xt|) .

The function x ≡ 0 is a solution of this equation on (−∞,∞) . Also, the
function x(t) = −t3, t < 0, and x(t) =≡ 0, t ≥ 0, dx

dt (t) = −3t2. In fact,
since x ≤ 1 for t ≥ −1, it is clear that x satisfies the equation for t ≥ 0.
Since x is monotone decreasing for t ≤ 0, |xt| = x(t−1) = −(t−1)3 and
dx

dt
(t) = −3t2 It is easy to verify that

−3t2 = f((t− 1)3)

for t < 0.
2)

d

dt
x(t) = x(t− σ(x(t))) (2.4)

where σ : R → [0, 1] is smooth, σ′(0) 
= 0 and σ(0) = 1.
Note that the right hand side of (2.4) can be written as G(ϕ) =

ϕ(−σ(ϕ(0)) for ϕ ∈ C([−1, 0] , R) and G is not locally lipschitz in a
neighborhood of zero . In fact assume that there exist positive constants
k and ρ such that

|G(ϕ1)−G(ϕ2)| ≤ k |ϕ1 − ϕ2| for |ϕ1| , |ϕ2| < ρ

Let ϕ(θ) = ε(−1+
√

1 + θ), for θ ∈ [−1, 0] , where ε is a positive constant
such that |ϕ| < ρ . Let x ∈ [−1, 0] such that |ϕ|+ |x| < ρ, then

|G(ϕ + x)−G(ϕ)| ≤ k |x|

which implies

∣∣∣ε√1− σ(x) + x
∣∣∣ ≤ k |x| and

∣∣∣∣∣
ε(σ(x)− 1)
x
√

1− σ(x)

∣∣∣∣∣ ≤ (1 + k).

Letting x approaches zero, we obtain a contradiction. Therefore the
right hand side of equation (2.4) is not locally lipschitz near zero. The
uniqueness has been proved for lipschitzian initial data ϕ, see [26] How-
ever , the standard argument for uniqueness can not be applied in this
example.

The equation
d

dt
x(t) = x(t− x(t))
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arises in models of crystal growth, and in fact the related equation

d

dt
x(t) = −ax(t− σ(x(t)))

was studied theoretically by Cooke.

d

dt
x(t) = −a(t)x(t)−λb(t)f(x(t−σ(x(t)))) where λ is a positive parameter

has been proposed as models for a variety of physiological processes and
conditions including production of blood cells, respiration, and cardiac
arrhythmias.

3) The following counter example explains more the situation
{

d
dtx(t) = x

x(θ) =
√
|θ|+ 1

(2.5)

Then equation (2.5) has two solutions namely

x1(t) = t +
t2

4
and x2(t) = t, for t ∈ [0, 1] .

In fact one has t− x1(t) = − t2

4
. and t− x2(t) = 0, it follows that

x′
1(t) = 1 + t

2 = ϕ(t− x1(t)) and
x′

2(t) = 1 = ϕ(t− x2(t)) for t ∈ [0, 1] .

2.3 Continuation of solutions
Definition 8 Suppose f in equation ( 2.3) is continuous. If x is a so-
lution of equation ( 2.3) on an interval [σ, a] , a > σ, we say x̂ is a
continuation of x if there is a b > a such that x̂ is defined on [σ − r, b] ,
coincides with x on [σ − r, a] , and satisfies Equation ( 2.3) on [σ, b] . A
solution x is noncontinuable if no such continuation exists; that is the
interval [σ, a] is the maximal interval of existence of the solution x.

Theorem 4 Furthermore on the hypotheses of the precedent theorem,
if f is a bounded function, then equation ( 2.3) has a maximal solution
defined on [−r, β[ with

if β <∞ =⇒ lim
t→β

|xt(., ϕ)| = ∞.
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Proof. By steps, we can integrate the equation (2.3), let [−r, β[ , be
the maximal interval on which x(., ϕ) is defined. Assume that
lim
t→β

|xt(., ϕ)| < ∞ then there exists N such that . |xt(., ϕ)| ≤ N, ∀t ∈

[0, β[ , with
dx

dt
= f(t, xt) and from the boundedness of f , we have

sup
t∈[0,β[

∣∣∣∣dx

dt
(t)
∣∣∣∣ <∞,

then x is uniformly continuous on [0, β[ . So, lim
t→β

|xt(., ϕ)| exists, which

we denote by xβ. Let ψ ∈ C( [−r, β[ , Rn) defined by ψ = xβ, under the
existence theorem, there exists ε > 0 such that the equation{

dy

dt
= f(t, yt) for t ≥ β

yβ = xβ ∈ C

has at least one solution on [β, β + ε] , the recollement of x and y gives
a solution defined on [α, β + ε] , which contradicts the maximality of x.

Theorem 5 [12]Suppose Ω be an open set in R × C, f : Ω → R
n be

globally lipschitz and completely continuous: that is, f is continuous
and takes closed bounded sets of Ω into bounded sets of R

n, and x is
a noncontinuable solution of equation ( 2.3) on [σ − r, b] . Then, for any
closed bounded set U in R×C, U in Ω, there is a tU such that (t, xt) /∈ U
for tU ≤ t < b.

We now consider the existence of solutions of (2.3) for all t ≥ −r. The
following lemma is needed before we proceed in that direction.

2.4 Dependence on initial values and parameters
Theorem 6 Let D be an open subset of R×C and suppose that f : D →
R

n be continuous and f(t, ϕ) be lipschitzian with respect to ϕ in every
compact subset of D. If (σ, ϕ) ∈ D, then, the application ϕ → xt(., ϕ) is
continuous lipschitz.

Proof. From the corollary 2 and the fact that f is lipschitzian with
respect to the second variable

|f(t, ϕ| ≤ k |ϕ|+ |f(t, 0).|
Let ϕ1, ϕ2 ∈ C, and x(.,ϕ1), x(.,ϕ2) the associated solutions, one has

x(t, ϕ1)− x(t, ϕ2) = ϕ1(0)− ϕ2(0)+∫ t
0 (f(s, x(s, ϕ1)− f(s, x(s, ϕ2))ds.
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|x(t, ϕ1)− x(t, ϕ2)| = |ϕ1 − ϕ2|+
k
∫ t
0 |x(s, ϕ1)− x(s, ϕ2))| ds.

By the Gronwall’s lemma, one has

|x(t, ϕ1)− x(t, ϕ2)| ≤ |ϕ1 − ϕ2| exp (kt)

We shall first prove the following lemma, which will be used subse-
quently.

Lemma 3 [22] Let f ∈ C (J × Cρ, R
n). For t ∈ J and φ ∈ Cρ, we put

G(t, r) = max
‖φ‖≤r

‖f(t, φ)‖ .

Suppose that r∗(t, t0, 0) is the maximal solution of

du

dt
= G(t, u(t))

through (t0, 0).Then, if x(t, t0, φ0) is any solution of

dx

dt
(t) = f(t, xt)

with φ0 as an initial value at t = t0. Then, we have :

‖xt(t0, φ0)− φ0‖ ≤ r∗(t, t0, 0)

on the common interval of existence of x(t, t0, φ0) and r∗(t, t0, 0).

Theorem 7 [22] Let f ∈ C (J × Cρ, R
n) and for t ∈ J, ϕ, φ ∈ C1

‖f(t, ϕ)− f(t, φ)‖ ≤ g(t, ‖ϕ− φ‖)

where g ∈ C (J × [0, 2ρ] , R+). Assume that u(t) ≡ 0 is the only solution
of the scalar equation

du

dt
= g(t, u(t))

through (t0, 0). Suppose finally that the solutions u(t, t0, u0) through
every point (t0, u0) exist for t ≥ t0 and are continuous with respect to
the initial values (t0, u0). Then, the solutions x(t0, φ0) of equation ( 2.3)
are unique and continuous with respect to the initial values (t0, φ0).

Using the arguments of the precedent theorems, we can prove the
following theorem on dependence on parameters. We merely state.
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Theorem 8 [22]Let f ∈ C (J × Cρ × R
m, Rn) and, for µ = µ0 let

x0(t) = x0(t0, φ0, µ0)(t) be a solution of

dx

dt
(t) = f(t, xt, µ0),

with an initial function φ0 at t0 existing for t ≥ t0 . Assume that

lim
µ→µ0

f(t, φ, µ) = f(t, φ, µ0) uniformly in (t,φ),

and for t ∈ J, ϕ, φ ∈ C, µ ∈ R
m

‖f(t, ϕ, µ)− f(t, φ, µ)‖ ≤ k ‖ϕ− φ‖ ,

Then, ∀ ε > 0, ∃δ > 0 such that for every µ satisfying |µ− µ0| < δ (ε),
the differential equation

dx

dt
(t) = f(t, xt, µ)

admits a unique solution x(t) = x(t0, φ0, µ)(t) defined on some interval
[t0, t0 + a] such that ‖x(t)− x0(t)‖ < ε for t ∈ [t0, t0 + a].

2.5 Differentiability of solutions
In precedent section sufficient conditions were given to ensure that

the solution x(σ, ϕ, f) on a (2.3) depends continuously on (σ, ϕ, f). In
this section some results are given on the differentiability with respect
to (σ, ϕ, f).

If Ω is an open set in R×C, let Cp(Ω, Rn), p ≥ 0 designate the space
of functions taking Ω into R

n that have bounded continuous derivatives
up through order p with respect to ϕ in Ω.

Theorem 9 [12]If f ∈ Cp(Ω, Rn), p ≥ 1, then the solution x(σ, ϕ, f) of
the ( 2.3) through (σ, ϕ) is unique and continuously differentiable with
respect to (ϕ, f) for t in any compact set in the domain of definition of
x(σ, ϕ, f). Furthermore, for each t ≥ σ, the derivative of x with respect to
ϕ, Dϕx(σ, ϕ, f)(t) is a linear operator from C to R

n, Dϕx(σ, ϕ, f)(σ) =
I, the identity, and Dϕx(σ, ϕ, f)ψ(t) for each ψ in C satisfies the linear
variational equation

y′(t) = Dϕf(t, xt(σ, ϕ, f)yt. (2.6)

Also, for each t ≥ σ, Dfx(σ, ϕ, f)(t) is a linear operator from Cp(Ω, Rn)
into R

n, Dfx(σ, ϕ, f)(σ) = 0, and Dfx(σ, ϕ, f)g(t) for each g in Cp

(Ω, Rn) satisfies the nonhomogeneous variation equation

z′(t) = Dϕf(t, xt(σ, ϕ, f)zt + g(t, xt(σ, ϕ, f)). (2.7)
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1. Basic Theory

1.1 Preliminaries
Throughout these notes r is a fixed constant, 0 ≤ r < ∞. We denote

by C the Banach space of continuous functions [−r, 0] → C
n with norm

‖φ‖ = sup−r≤θ≤0 |φ(θ)|, where | · | is any vector norm in C
n. If x :

[−r, α) → C
n, α > 0, is a continuous function, then xt ∈ C, 0 ≤ t < α,

is defined by
xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

Let L be a bounded linear functional C → C
n and choose φ ∈ C. Then

we shall consider the following Cauchy problem:

ẋ(t) = L(xt), t ≥ 0, (1.1)
x0 = φ. (1.2)

A solution of problem (1.1), (1.2) on [0,∞) will be denoted by x(t) =
x(t; φ) and is a continuous function [−r,∞) → C

n such that

x(t) = φ(0) +
∫ t

0
L(xτ ) dτ, t ≥ 0,

x(t) = φ(t), −r ≤ t ≤ 0.

Since t → xt is a continuous mapping [0,∞) → C, the function t →
L(xt) is continuous for t ≥ 0, which implies that x(t) is continuously
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differentiable for t ≥ 0 and equation (1.1) is satisfied on [0,∞) (at t = 0
the derivative is understood to be the right-hand derivative, of course).
Since equation (1.1) is autonomous, it is clear that taking t = 0 as initial
time is no restriction of generality.

In addition to problem (1.1), (1.2) we also shall consider the nonho-
mogeneous problem

ẋ(t) = L(xt) + f(t), t ≥ 0, (1.3)
x0 = φ ∈ C, (1.4)

where f is a locally integrable function [0,∞) → C
n. A solution x(t) =

x(t; φ, f) of (1.3), (1.4) on [0,∞) is a continuous function [−r,∞) → C
n

such that

x(t) = φ(0) +
∫ t

0
L(xτ ) dτ +

∫ t

0
f(τ) dτ, t ≥ 0,

x(t) = φ(t), −r ≤ t ≤ 0.

(1.5)

It is clear that x(t; φ, f) is absolutely continuous on bounded subintervals
of [0,∞) and that (1.3) is satisfied almost everywhere on [0,∞).

By the Riesz representation theorem (cf. [31], for instance) there exists
a matrix η = (ηij)i,j=1,...,n of bounded variation on [−r, 0] such that

L(φ) = col
( n∑

j=1

∫ 0

−r
φj(θ) dη1j(θ), . . . ,

n∑
j=1

∫ 0

−r
φj(θ) dηnj(θ)

)

=:
∫ 0

−r
[dη(θ)] φ(θ), φ ∈ C.

(1.6)

The norm of L will be denoted by �, i.e.,

� = sup{|L(φ)| | ‖φ‖ = 1}.

Moreover, if Φ = (φ1, . . . , φn) is an n × n-matrix with columns φj ∈
C, then L(Φ) :=

(
L(φ1), . . . , L(φn)

)
. It will be useful to extend the

definition of η to all of R and, in addition, to assume that the extension
is normalized in the following sense:

η(θ) = 0 for θ ≥ 0,
η(θ) = η(−r) for θ ≤ −r,
η is left-hand continuous on (−r, 0).

(1.7)

From the theory of functions of bounded variation it is well known
(cf. for instance [15]) that η can be represented as

η = η1 + η2 + η3,
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where η1 is a saltus function of bounded variation with at most countably
many jumps on [−r, 0], η2 is an absolutely continuous function on [−r, 0]
and η3 is either zero or a singular function of bounded variation on
[−r, 0], i.e., η3 is non constant, continuous and has derivative η̇3 = 0
almost everywhere on [−r, 0]. In view of (1.7) we can assume η1(0) =
η2(0) = η3(0) = 0.

Consider η1 = (η1
ij) �≡ 0 and let −r1,−r2, . . . be an enumeration

of those points in [−r, 0] where at least one η1
ij has a jump. Define

Ak = (ak
ij)i,j=1,...,n, where ak

ij = η1
ij(−rk + 0) − η1

ij(−rk − 0). Then

∫ 0

−r
[dη1(θ)] φ(θ) =

∞∑
k=1

Akφ(−rk), φ ∈ C.

η1 being a function of bounded variation is equivalent to

∞∑
k=1

|Ak| < ∞,

where | · | can be any matrix norm.
For η2 we define A(θ) by

η2(θ) =
∫ θ

0
A(θ) dθ, −r ≤ θ ≤ 0.

Then ∫ 0

−r
[dη2(θ)] φ(θ) =

∫ 0

−r
A(θ)φ(θ) dθ, φ ∈ C.

Since the functions η2
ij are of bounded variation, we have

∫ 0
−r|A(θ)| dθ <

∞.
If η3 �≡ 0, then

∫ 0
−r[dη3(θ)] φ(θ) cannot be transformed to a Lebesgue

integral or to a series. For a concrete example see [15, p. 457]. For most
situations it is sufficient to consider the special case where η3 ≡ 0 and
η1 has only a finite number of jumps,

L(φ) =
m∑

k=0

Akφ(−rk) +
∫ 0

−r
A(θ)φ(θ) dθ, φ ∈ C,

where 0 = r0 < r1 < · · · < rm = r, the Ak’s are constant n× n-matrices
and θ → A(θ) is integrable in [−r, 0]. The corresponding matrix valued
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function η1 is given by

η1(θ) =




0 for θ ≥ 0,
−A0 for −r1 < θ < 0,
−(A0 + A1) for −r2 < θ ≤ −r1,

...
−
∑m−1

k=0 Ak for −rm < θ ≤ −rm−1,
−
∑m

k=0 Ak for θ ≤ −rm.

1.2 Existence and uniqueness of solutions
In this section we consider existence and uniqueness of solutions for

the problems (1.1), (1.2) and (1.3), (1.4). We first prove some estimates
which will be useful later.

Lemma 1.1 Let x(t) = x(t; φ, f) be a solution of (1.3), (1.4) on [0,∞).
Then we have the estimate

‖xt(φ, f)‖ ≤
(
‖φ‖ +

∫ t

0
|f(τ)| dτ

)
e�t, t ≥ 0, (1.8)

and consequently

|L(xt(φ, f)| ≤ �
(
‖φ‖ +

∫ t

0
|f(τ)| dτ

)
e�t, t ≥ 0. (1.9)

Proof. For t ≥ 0 and −r ≤ θ ≤ 0 we immediately get from (1.5) the
estimates

|x(t + θ)| ≤ |φ(0)| + �

∫ t+θ

0
‖xτ‖ dτ +

∫ t+θ

0
|f(τ)| dτ

≤ ‖φ‖ + �

∫ t

0
‖xτ‖ dτ +

∫ t

0
|f(τ)| dτ, t + θ ≥ 0,

and
|x(t + θ)| = |φ(t + θ)| ≤ ‖φ‖, t + θ ≤ 0.

Therefore we have

‖xt‖ ≤ ‖φ‖ +
∫ t

0
|f(τ)| dτ + �

∫ t

0
‖xτ‖ dτ, t ≥ 0.

The estimate (1.8) now follows from Gronwall’s inequality.
Uniqueness of solutions is an immediate consequence of Lemma 1.1.
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Proposition 1.2 For any φ ∈ C and any f ∈ L1
loc(0,∞; Cn) there exists

exactly one solution of problem (1.3), (1.4) on [0,∞).

Proof. A continuous function [−r,∞) → C
n is a solution of (1.3), (1.4)

if and only if the restriction of x to any interval [0, T ], T > 0, is a fixed
point of the operator TT defined by

(
TT y

)
(t) = φ(0) +

∫ t

0
L(ỹτ ) dτ +

∫ t

0
f(τ) dτ, 0 ≤ t ≤ T,

in the Banach space C0(0, T ; Cn) of all continuous functions y : [0, T ] →
C

n with y(0) = φ(0) supplied with the sup-norm. For y ∈ C0(0, T ; Cn),
the function ỹ is defined by ỹ(t) = φ(t) for −r ≤ t ≤ 0 and ỹ(t) = y(t)
for 0 < t ≤ T . We choose a negative constant γ < −� and supply
C0(0, T ; Cn) with the equivalent norm

‖y‖γ = sup
0≤t≤T

|y(t)|eγt, y ∈ C0(0, T ; Cn).

It is clear that TT C0(0, T ; Cn) ⊂ C0(0, T ; Cn). For y, z ∈ C0(0, T ; Cn)
we get ∣∣(TT y

)
(t) −

(
TT z

)
(t)
∣∣ ≤ �

∫ t

0
‖ỹτ − z̃τ‖ dτ.

Since ỹ(t) − z̃(t) = 0 for −r ≤ t ≤ 0 and γ < 0, we have

‖ỹτ − z̃τ‖ = sup
−r≤θ≤0

|ỹ(τ + θ) − z̃(τ + θ)|eγ(τ+θ)e−γ(τ+θ)

≤ e−γτ sup
0≤t≤T

|y(t) − z(t)|eγt = e−γt‖y − z‖γ .

This implies
∣∣(TT y

)
(t) −

(
TT z

)
(t)
∣∣ ≤ �‖y − z‖γ

∫ t

0
e−γτdτ < − �

γ
‖y − z‖γe−γt

for 0 ≤ t ≤ T , which proves

‖TT y − TT z‖γ < − �

γ
‖y − z‖γ .

By choice of γ we have 0 < −�/γ < 1, i.e., TT is a contraction on
C0(0, T ; Cn). Let y(·, T ) be the unique fixed point of TT on C0(0, T ; Cn).
It is clear that there exists exactly one function x : [−r,∞) → C

n such
that x(t) = φ(t) for −r ≤ t ≤ 0 and x(t) = y(t, T ) for 0 ≤ t ≤ T and
any T > 0.

Proposition 1.3 For any T > 0 the mapping σ : C × L1(0, T ; Cn) →
C(0, T ; C) defined by σ(φ, f)(t) = xt(φ, f), 0 ≤ t ≤ T , is bounded and
linear.

Proof. Boundedness of σ is an obvious consequence of (1.8).
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1.3 The Laplace-transform of solutions. The
fundamental matrix

Throughout this section we consider the homogenous problem (1.1),
(1.2). In this case inequality (1.8) implies

|x(t; φ)| ≤ ‖φ‖e�t, t ≥ 0,

for any solution of (1.1), (1.2). Therefore the Laplace-transform

x̂(λ) = x̂(λ; φ) =
∫ ∞

0
e−λtx(t; φ) dt

exists at least for Re λ > �, the integral converging absolutely in this
half plane. Similarly inequality (1.9) together with equation (1.1) shows
that also ẋ(t) has a Laplace-transform at least in Re λ > � given by
λx̂(λ) − φ(0)1. Taking Laplace-transforms on both sides of equation
(1.1) we get for Re λ > �

λx̂(λ) − φ(0) =
∫ ∞

0
e−λt

∫ 0

−r
[dη(θ)] x(t + θ) dt

=
∫ 0

−r
[dη(θ)]

∫ ∞

0
e−λtx(t + θ) dt

=
∫ 0

−r
[dη(θ)]

∫ 0

θ
eλ(θ−τ)φ(τ) dτ +

∫ 0

−r
eλθdη(θ) · x̂(λ).

Interchanging Stieltjes integration with improper Riemann integration
is justified by Fubini’s theorem. Thus we have

∆(λ)x̂(λ) = p(λ; φ), Re λ > �,

where, for λ ∈ C, we define

∆(λ) = λI −
∫ 0

−r
eλθdη(θ)

and

p(λ; φ) = φ(0) +
∫ 0

−r
[dη(θ)]

∫ 0

θ
eλ(θ−τ)φ(τ) dτ, φ ∈ C.

In order to save space we introduce the following notation. For j =
0, 1, . . . and λ ∈ C the function ej(λ) ∈ C is defined by

ej(λ)(θ) =
θj

j!
eλθ, −r ≤ θ ≤ 0. (1.10)

1In fact, the existence of a Laplace-transform for ẋ(t) implies the same for x(t) (see Theo-
rem A.3)
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Furthermore, for functions f, g ∈ L1(−r, 0; C) the convolution h = f ∗ g
on [−r, 0] is defined by

h(θ) =
∫ θ

0
f(θ − τ)g(τ) dτ, −r ≤ θ ≤ 0.

With these notations p(λ; φ) can be written as

p(λ; φ) = φ(0) −
∫ 0

−r
[dη(θ)]

(
e0(λ) ∗ φ

)
(θ)

= φ(0) − L(e0(λ) ∗ φ), φ ∈ C, λ ∈ C.

For λ �= 0 we may write

∆(λ) = λ
(
I − 1

λ

∫ 0

−r
eλθdη(θ)

)
.

Since
∣∣∣
∫ 0

−r
eλθdηij(θ)

∣∣∣ ≤
{

var[−r,0]ηij for Re λ ≥ 0,
e−r Re λvar[−r,0]ηij for Re λ < 0,

(1.11)

there exists a constant K > 0 such that for any α > 0
∣∣∣ 1
λ

∫ 0

−r
eλθdη(θ)

∣∣∣ ≤ K

|λ| ≤
K

α
for Re λ ≥ α. (1.12)

This means that, for Re λ > K, the matrix ∆−1(λ) is given by

∆−1(λ) =
1
λ

∞∑
j=0

( 1
λ

∫ 0

−r
eλθdη(θ)

)j
, (1.13)

the series converging absolutely. Moreover, for any ε > 0 the series is
uniformly convergent for Reλ ≥ K + ε. We summarize our results in

Theorem 1.4 a) The Laplace-integral for x(t) = x(t;φ), φ ∈ C, is
absolutely convergent at least for Re λ > �.

b) The Laplace-transform x̂(λ) = x̂(λ; φ) of x(t; φ) exists at least in the
set {λ ∈ C | det∆(λ) �= 0} and, on this set, is given by

x̂(λ) = ∆−1(λ)p(λ; φ),

where, for λ ∈ C,

∆(λ) = λI − L(eλ·I) = λI −
∫ 0

−r
eλθdη(θ),

p(λ; φ) = φ(0) − L(e0(λ) ∗ φ) = φ(0) +
∫ 0

−r
[dη(θ)]

∫ 0

θ
eλ(θ−τ)φ(τ) dτ.
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Moreover, there exists a constant K > 0 such that

∆−1(λ) =
1
λ

∞∑
j=0

( 1
λ

∫ 0

−r
eλθdη(θ)

)j
for Re λ > K,

the series being uniformly and absolutely convergent in each half plane
Re λ ≥ K + ε, ε > 0.

Note that the elements of ∆(λ) and therefore also det ∆(λ) are entire
functions. The same is true for p(λ; φ). Therefore the zeros of det∆(λ)
are isolated on C and consequently the elements of ∆−1(λ) only can
have poles in C. The Laplace-transform x̂(λ) therefore is a meromorphic
function in C.

Theorem 1.5 ∆−1(λ) is the Laplace-transform for a function Y (t),
which is locally absolutely continuous on [0,∞). The Laplace-integral
for Y (t) is absolutely convergent in some half plane Re λ > β. More-
over, Y (t) can be represented as

Y (t) = I +
∫ t

0
H(τ) dτ, t ≥ 0,

where H(t) =
∑∞

j=1 hj(t) and 2

hj(t) = (−1)jη(−t) ∗ · · · ∗︸ ︷︷ ︸
j-times

η(−t), j = 1, 2, . . . .

The series for H(t) is uniformly and absolutely convergent on bounded
t-intervals, so that

∫ t

0
H(τ) dτ =

∞∑
j=1

∫ t

0
hj(τ) dτ, t ≥ 0.

The proof of this theorem is based on the following lemma:

Lemma 1.6 The function

ĥ(λ) =
1
λ

∫ 0

−r
eλθdη(θ), λ �= 0,

is the Laplace-transform of h1(t) = −η(−t), t ≥ 0, the Laplace-integral
converging absolutely for Re λ > 0. Consequently,

(
ĥ(λ)

)j, j = 1, 2, . . . ,

2“ ∗ ” here denotes the convolution of functions defined on [0,∞)
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is the Laplace-transform of the j-times iterated convolution hj(t) of h1(t).
Also the Laplace-integrals for hj(t), j = 1, 2, . . . , are absolutely conver-
gent for Re λ > 0.

Proof. Integration by parts together with η(0) = 0 gives

1
λ

∫ 0

−r
eλθdη(θ) = − 1

λ
e−λrη(−r) −

∫ 0

−r
η(θ)eλθdθ

= − 1
λ

e−λrη(−r) −
∫ r

0
η(−θ)e−λθdθ = −

∫ ∞

0
η(−θ)e−λθdθ,

which proves the result for ĥ. Absolute convergence of the Laplace-
integral for Reλ > 0 is clear because η(−θ) = η(−r) for θ ≥ r. The
rest of the proof follows from standard results on Laplace-transforms of
convolutions (cf. Theorem A.7).
Proof of Theorem 1.5. In order to show that ∆−1(λ) is a Laplace-
transform we apply Theorem A.9 to

Ĥ(λ) =
∞∑

j=1

ĥ(λ)j .

By Lemma 1.6 each of the functions ĥ(λ)j is a Laplace-transform with
the Laplace-integral converging absolutely in Reλ > 0. Thus condition
(i) of Theorem A.9 is satisfied for any α0 > 0. It remains to prove that

∞∑
j=1

∫ ∞

0
e−α0t|hj(t)| dt (1.14)

is convergent for an α0 > 0. We claim that for any α > 0

∫ ∞

0
e−αt|hj(t)| dt ≤

(∫ ∞

0
e−αt|h1(t)| dt

)j
. (1.15)
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This is proved by induction. Assume that (1.15) is true for j − 1. Then
we get
∫ ∞

0
e−αt|hj(t)| dt =

∫ ∞

0
e−αt

∣∣∣
∫ t

0
h1(t − τ)hj−1(τ) dτ

∣∣ dt

≤
∫ ∞

0
e−αt

∫ t

0
|h1(t − τ)| |hj−1(τ)| dτ dt

=
∫ ∞

0

∫ ∞

τ
e−α(t−τ)|h1(t − τ)|e−ατ |hj−1(τ)| dt dτ

=
∫ ∞

0
e−ατ |hj−1| dτ

∫ ∞

0
e−ατ |h1(τ)| dτ

≤
(∫ ∞

0
e−ατ |h1(τ)| dτ

)j
.

Interchanging the order of integration is justified by Fubini’s theorem,
because |h1| ∗ |hj−1| = O(tj−1) as t → ∞, which in turn is a con-
sequence from the fact that |h1(τ)| is constant for τ ≥ r. Setting
β = sup0≤t<∞ |h1(t)| we get

∫ ∞

0
e−αt|h1(t)| dt ≤ β

α
.

Therefore, we have convergence of the series (1.14) if we choose α0 > β.
Theorem A.9 implies that Ĥ(λ) is the Laplace-transform of

H(t) =
∞∑

j=1

hj(t), t ≥ 0,

the series being absolutely convergent. Moreover, the Laplace-integral
for H(t) is absolutely convergent for Reλ > β (note that α0 could be
arbitrarily > β). Since η(−t) is bounded on t ≥ 0, say |η(−t)| ≤ a, we
get |hj+1(t)| ≤ a(at)j/j!, j = 0, 1, . . . . This proves uniform convergence
of
∑∞

j=1 hj(t) on bounded intervals. To finish the proof we have to
observe that

∆−1(λ) =
1
λ

I +
1
λ

Ĥ(λ),

which implies that ∆−1(λ) is the Laplace-transform of

Y (t) = I +
∫ t

0
H(τ) dτ, t ≥ 0. (1.16)

This also shows that Y (t) is locally absolutely continuous on [0,∞).
Convergence of the Laplace-integral for H(t) in Re λ > β implies that
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∫ t
0H(τ) dτ = o(eαt) as t → ∞ for any α > β (Theorem A.2) and therefore

we have absolute convergence of the Laplace-integral of Y (t) in Re λ > β.

The precise abscissa of absolute convergence for the Laplace-integral
of Y (t) will be determined later (see Theorem 1.21 and Definition 1.19).
We next relate Y (t) to equation (1.1).

Theorem 1.7 a) Y (t) is the unique solution of

Y (t) = I −
∫ t

0
Y (t − τ)η(−τ) dτ, t ≥ 0,

Y (t) = 0 for t < 0.
(1.17)

b) L(Yt) =
∫ 0
−r[dη(θ)]Y (t + θ) is defined on [0,∞) with the exception of

a countable subset of [0, r] and Y (t) is the unique solution of

Ẏ (t) = L(Yt) a.e. for t ≥ 0,
Y (0) = I and Y (t) = 0 for −r ≤ t < 0.

(1.18)

Since the columns of Yt are in C for t ≥ r, the function Y (t) is con-
tinuously differentiable for t ≥ r and equation (1.18) holds everywhere
on [r,∞).
Proof of Theorem 1.7. a) From the identity

I = ∆−1(λ)∆(λ) = ∆−1(λ) − ∆−1(λ)ĥ(λ) (1.19)

we get using Lemma 1.6 and Theorem 1.5

I = Y (t) +
∫ t

0
Y (t − τ)η(−τ) dτ, t ≥ 0,

which is (1.17). If Yi(t), i = 1, 2, are two solutions of (1.17), then

|Y1(t) − Y2(t)| ≤ sup
−r≤θ≤0

|η(θ)|
∫ t

0
|Y1(τ) − Y2(τ)| dτ, t ≥ 0,

which by Gronwall’s inequality implies Y1(t) ≡ Y2(t).

Since Ẏ (t) = H(t) a.e. on t ≥ 0, the Laplace-transform of Ẏ (t) exists
and is given by λ∆−1(λ) − I. From the identity

λ∆−1(λ) − I =
∞∑

j=1

ĥ(λ)j = ĥ(λ)
(
λ∆−1(λ) − I

)
+ ĥ(λ) (1.20)
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we get

Ẏ (t) = −
∫ t

0
η(τ − t)Ẏ (τ) dτ − η(−t) a.e. on t ≥ 0.

Integration by parts gives
∫ t

0
η(τ − t)Ẏ (τ) dτ =

∫ t

0
η(τ − t)dY (τ)

= η(0)Y (t) − η(−t)Y (0) −
∫ t

0
[dητ (τ − t)]Y (τ)

= −η(−t) −
∫ 0

−t
[dη(θ)]Y (t + θ).

Therefore

Ẏ (t) =
∫ 0

−t
[dη(θ)]Y (t + θ) =

0∫

max(−t,−r)

[dη(θ)]Y (t + θ) a.e. on t ≥ 0.

(1.21)
If −t is in [−r, 0] and η is continuous at −t, then

∫ 0

−t
[dη(θ)]Y (t + θ) =

∫ 0

−r
[dη(θ)]Y (t + θ).

Since η is discontinuous on an at most countable set, we get the assertion
concerning L(Yt) and equation (1.21) implies (1.18).

If Yi(t), i = 1, 2, are two solutions of (1.18), then the columns of
Y1(t)−Y2(t) are solutions of the homogeneous equation (1.1) with φ = 0.
Consequently we have Y1(t) ≡ Y2(t).

Remarks. 1. Since instead of (1.19) and (1.20) we can also use the
identities

1
λ

I = ∆−1(λ) − ĥ(λ)∆−1(λ)

and
λ∆−1(λ) − I =

(
λ∆−1(λ) − I

)
ĥ(λ) + ĥ(λ),

we see that Y (t) is also the unique solution of

Y (t) = I −
∫ t

0
η(−τ)Y (t − τ) dτ, t ≥ 0,

Y (t) = 0, t < 0,

(1.22)
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and

Ẏ (t) =
∫ 0

−r
Y (t + θ)dη(θ) a.e. on t ≥ 0,

Y (0) = I and Y (t) = 0 on t < 0.
(1.23)

2. Instead of applying Theorem A.9 to Ĥ(λ) we could also proceed as
follows. We write

Ĥ(λ) =
1
λ

∫ 0

−r
eλθdη(θ) +

∞∑
j=2

ĥ(λ)j .

The first term is a Laplace-transform by Lemma 1.6, the Laplace-integral
converging absolutely for Reλ > 0. Using (1.12) we get, for any α > 0,
the estimate

∞∑
j=2

|ĥ(λ)|j ≤
∞∑

j=2

(K

|λ|
)j

=
K2

|λ|(|λ| − K)

for Re λ ≥ α and |λ| > K. This proves that the assumptions of The-
orem A.8 are satisfied. Therefore Ĥ(λ) is a Laplace-transform of some
function H(t). As before we get (1.16). We decided to use Theorem A.9
for the proof of Theorem 1.5, because this in addition provided us an
explicit representation of Y (t) in terms of the matrix η.

3. For the proof of Theorem 1.5, b) one could also use Theorem A.6 on
convolutions and just differentiate equation (1.17). This gives

0 = Ẏ (t) +
∫ t

0
Ẏ (t − τ)η(−τ) dτ + η(−t)

= Ẏ (t) +
∫ 0

−t
[dY (t + τ)]η(τ) + η(−t)

= Ẏ (t) −
∫ 0

−t
Y (t + τ) dη(τ) = Ẏ (t) −

∫ 0

−r
Yt(θ) dη(θ)

a.e. on t ≥ 0, which is equation (1.23). If we start with (1.22) we get
(1.18).

In analogy to the theory of ordinary differential equations we intro-
duce the following notions:

Definition 1.8 The matrix ∆(λ) and the function det ∆(λ) are called
the characteristic matrix and the characteristic function of equa-
tion (1.1), respectively. Y (t) is called the fundamental matrix of
(1.1).
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1.4 Smooth initial functions
In case of an ordinary linear autonomous differential equation the

derivatives of solutions are again solutions of the equation. This is in
general not true in case of functional differential equations. A solution
of (1.1) is continuously differentiable on [0,∞), but not necessarily dif-
ferentiable at 0, even if the initial function is continously differentiable
on [−r, 0].

Theorem 1.9 Let x(t; φ) be a solution of equation (1.1). Then x(t; φ)
has a continuous derivative on [−r,∞) if and only if

(i) φ ∈ C1([−r, 0], Cn),

(ii) φ̇(0) = L(φ).

Moreover, if conditions (i) and (ii) hold, then

ẋ(t; φ) = x(t; φ̇), t ≥ −r. (1.24)

Proof. Suppose that (i) is true. Then integration by parts gives

p(λ; φ) = φ(0) +
1
λ

∫ 0

−r

[
dη(θ)

] ∫ 0

θ
eλ(θ−u)φ̇(u) du

− 1
λ

(∫ 0

−r
eλθdη(θ)

)
φ(0) +

1
λ

∫ 0

−r

[
dη(θ)

]
φ(θ)

=
1
λ

(
∆(λ)φ(0) + L(φ) +

∫ 0

−r

[
dη(θ)

] ∫ 0

θ
eλ(θ−u)φ̇(u) du.

(1.25)

If in addition (ii) is true, then

p(λ; φ) =
1
λ

(
∆(λ)φ(0) + p(λ; φ̇)

)
.

This shows
λx̂(λ) − φ(0) = ∆−1(λ)p(λ; φ̇), (1.26)

where x̂(λ) = ∆−1(λ)p(λ; φ) as before denotes the Laplace-transform of
x(t; φ). Relation (1.26) and Theorem 1.4, b), show that λx̂(λ) − φ(0) is
the Laplace-transform of y(t) = x(t; φ̇) which is exponentially bounded
and continuous on (0,∞). Therefore we have

λ

∫ ∞

0
e−λtx(t; φ) dt − φ(0) = λx∗(λ) − φ(0)

=
∫ ∞

0
e−λty(t) dt = λ

∫ ∞

0
e−λt

(∫ t

0
y(τ) dτ

)
dt
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for Re λ sufficiently large, which implies (note that x(t; φ) is continuous)

x(t; φ) − φ(0) =
∫ t

0
y(τ) dτ, t ≥ 0.

This shows that x(t; φ) has a continuous derivative on [0,∞). On the
other hand relation (1.26) shows that

y(t) = x(t; φ̇) a.e. on [0,∞).

Since solutions of equation (1.8) are continuous on [−r,∞), this proves
that x(t; φ) has a continuous derivative on [−r,∞) and

ẋ(t; φ) = x(t; φ̇), t ≥ −r.

Now suppose that ẋ(t; φ) exists on [−r,∞) and is continuous. This
implies φ ∈ C1([−r, 0], Rn), of course. By continuity of ẋ(t; φ) at t = 0
we get φ̇(0) = ẋ(0−; φ) = ẋ(0+;φ) = L(φ).

Remarks. 1. Conditions (i) and (ii) characterize the domain of the
infinitesimal generator A corresponding to the solution semigroup T (t),
t ≥ 0, associated with equation (1.1) (see Theorem 1.23).
2. Since Aφ = φ̇ for φ ∈ domA, relation (1.24) means

AT (t)φ = T (t)Aφ, t ≥ 0, φ ∈ domA,

which is well known for C0-semigroups.

1.5 The variation of constants formula
In this section we prove a representation formula for x(t; φ) resp.

x(t; φ, f) in terms of the fundamental matrix and the data η, φ and
f .

Lemma 1.10 The function

ĝ(λ) = −
∫ 0

−r
[dη(θ)]

(
e0(λ) ∗ φ

)
(θ), λ ∈ C,

is the Laplace-transform of the function

g(t) =



∫ −t

−r
[dη(θ)]φ(t + θ) for 0 ≤ t ≤ r,

0 for t > r.

If we extend the definition of φ by φ(t) = 0 for t > 0, then

g(t) = L(φt) =
∫ 0

−r
[dη(θ)]φ(t + θ) (1.27)
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for all t ≥ 0 with the exception of an at most countable subset of [0, r]
(in fact the subset where η(−θ) is discontinuous).

Proof. The representation (1.27) of g follows from the fact that, for
φ(0) �= 0 and 0 ≤ t ≤ r,

∫ −t

−r
[dη(θ)]φ(t + θ) =

∫ 0

−r
[dη(θ)]φ(t + θ)

provided η is continuous at −t. If φ(0) = 0, then (1.27) holds for all
t ≥ 0.

Using Fubini’s theorem we get

−
∫ 0

−r
[dη(θ)]

(
e0(λ) ∗ φ

)
(θ) =

∫ 0

−r
[dη(θ)]

∫ −θ

0
e−λτφ(τ + θ) dτ

=
∫ r

0
e−λτ

∫ −τ

−r
[dη(θ)]φ(τ + θ) dτ =

∫ ∞

0
e−λτg(τ) dτ.

Theorem 1.11 (Variation of Constants Formula) The solution of
problem (1.1), (1.2) is given by

x(t; φ) = Y (t)φ(0) +
∫ t

0
Y (t − τ)L(φτ ) dτ, t ≥ 0, (1.28)

where L(φτ ) is defined in Lemma 1.10. The upper limit of the integral
can be replaced by min(t, r).

Proof. The Laplace-transform of x(t; φ) is given by

x̂(λ) = ∆−1(λ)p(λ; φ) = ∆−1(λ)φ(0) − ∆−1(λ)
∫ 0

−r
[dη(θ)]

(
e0(λ) ∗ φ

)
(θ).

From this (1.28) follows by using Lemma 1.10. For the application of the
convolution theorem (Theorem A.7) we have to note that the Laplace-
integrals of Y (t) and L(φt) are absolutely convergent in some right half
plane.

For fixed t ≥ 0, φ →
∫ t
0Y (t − τ)L(φτ ) dτ defines a bounded linear

functional C → C
n, which according to Riesz’ theorem must have a

representation
∫ 0
−r[dθΦ(θ, t)]φ(θ), where Φ(θ, t), for fixed t ≥ 0, is a

function of bounded variation in θ.

Proposition 1.12 For any φ ∈ C we have
∫ t

0
Y (t − τ)L(φτ ) dτ =

∫ 0

−r
[dθΦ(θ, t)]φ(θ),
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where

Φ(θ, t) =
∫ t

0
Y (t − σ)η(θ − σ) dσ, −r ≤ θ ≤ 0, t ≥ 0.

Proof. In order to get the explicit expression for Φ(θ, t) we apply the
non-symmetric Fubini theorem by Cameron and Martin ([6], see also
Theorem C.1) to the integral

∫ t

0
Y (t − τ)L(φτ ) dτ =

t∫

max(0,t−r)

0∫

t−r−σ

[dτη(σ − t + τ)]φ(τ) dσ.

We define the functions

k(σ) =




∫ σ
0 Y (τ) dτ for max(0, t − r) ≤ σ ≤ t,

k(t) for σ ≥ t,
k(max(0, t − r)) for σ ≤ max(0, t − r),

s(τ) =




φ(τ) for −r ≤ τ ≤ 0,
0 for τ > 0,

φ(−r) for τ ≤ −r,

p(σ, τ) = η(σ − t + τ) for σ, τ ∈ R.

We also change, for this proof the definition of η at points of discontinuity
in [−r, 0) such that η is right-hand continuous on R. Then we have∫ t

0
Y (t − τ)L(φτ ) dτ =

∫ ∞

−∞

[∫ ∞

−∞
s(τ)dτp(σ, τ)

]
dk(σ).

It is clear that the function s(τ) is Borel-measurable on R, k is of
bounded variation on bounded intervals and τ → p(σ, τ) is of bounded
variation on bounded intervals for all σ ∈ R. Borel-measurability of p on
R

2 follows from Borel-measurability of the mappings (σ, τ) → σ + τ − t
on R

2 and η on R. In order to verify condition (i) of Theorem C.1 we
have to investigate

V (σ, τ) =
∫ τ

0

∣∣dνp(σ, ν)
∣∣ =

∫ σ−t+τ

σ−t
|dη(θ)| = var[σ−t,σ−t+τ ]η for τ ≥ 0,

V (σ, τ) = −
∫ τ

0

∣∣dνp(σ, ν)
∣∣ = −var[σ−t+τ,σ−t]η for τ < 0.

By definition of k we get

∫ ∞

−∞
V (σ, τ)|dk(σ)| =

t∫

max(0,t−r)

V (σ, τ)|Y (σ)| dσ < ∞, t ∈ R.
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This shows that condition (i) of Theorem C.1 holds. We also have∫ ∞

−∞
|s(τ)| |dτp(σ, τ)| ≤ ‖φ‖var[−r,0]η, σ ∈ R,

and∫ ∞

−∞

∫ ∞

−∞
|s(τ)| |dτp(σ, τ)| |dk(σ)|

≤ ‖φ‖var[−r,0]η

t∫

max(0,t−r)

|Y (τ)| dτ < ∞,

i.e., also condition (ii) of Theorem C.1 is satisfied. Therefore we get∫ t

0
Y (t − τ)L(φτ ) dτ =

∫ ∞

−∞

[
dτ

∫ ∞

−∞
[dk(σ)]p(σ, τ)

]
s(τ)

=
∫ 0

−r

[
dτ

t∫

max(0,t−r)

Y (σ)η(σ − t + τ) dσ
]
φ(τ).

This proves

Φ(θ, t) =

t∫

max(0,t−r)

Y (σ)η(σ − t + θ) dσ =

min(t,r)∫

0

Y (t − σ)η(θ − σ) dσ

for −r ≤ θ ≤ 0 and t ≥ 0. The upper limit min(t, r) in the second inte-
gral can be replaced by t. One easily checks that the resulting function
Φ(θ, t) would differ only by a constant, which does not matter.

We next turn to the nonhomogeneous problem (1.3), (1.4). If is suffi-
cient to consider the case φ = 0 only. For any t1 > 0 we define

f(t; t1) =

{
f(t) for 0 ≤ t ≤ t1,
0 for t > t1.

Instead of equation (1.3) we consider for the moment

ẋ(t) = L(xt) + f(t; t1), t ≥ 0. (1.29)

The estimates (1.8) and (1.9) imply

|x(t; 0, f(·; t1))| ≤
∫ t1

0
|f(τ)| dτ e�t, t ≥ 0,

|ẋ(t; 0, f(·; t1))| ≤ �

∫ t1

0
|f(τ)| dτ e�t, t ≥ 0.
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Therefore the Laplace-transforms of x(t) = x(t; 0, f(·, t1)) and ẋ(t) ex-
ist, the Laplace-integrals converging absolutely for Reλ > �. Taking
Laplace-transforms on both sides of equation (1.29) we get

x̂(λ) = ∆−1(λ)f̂(λ; t1), (1.30)

where f̂(λ; t1) =
∫ t1
0 e−λtf(t) dt. This implies

x(t) =
∫ t

0
Y (t − τ)f(τ ; t1) dτ, t ≥ 0.

Since x(t; 0, f(·, t1)) = x(t; 0, f) for 0 ≤ t ≤ t1 and t1 > 0 was arbitrary,
we have proved the following theorem:

Theorem 1.13 For any φ ∈ C and f ∈ L1
loc(0,∞; Cn), the solution of

problem (1.3), (1.4) is given by

x(t; φ, f) = x(t; φ) +
∫ t

0
Y (t − τ)f(τ) dτ, t ≥ 0. (1.31)

Remark. Theorem 1.7, b) implies that, for any a ∈ C
n, the function

x(t; a) = Y (t)a, t ≥ −r, is the unique solution of

ẋ(t) = L(xt) a.e. on t ≥ 0,
x(0) = a and x(t) = 0 for −r ≤ t < 0.

(1.32)

Therefore formula (1.28) can be viewed as the variation of constants
formula for the nonhomogeneous problem

ẋ(t) = L(xt) + f(t) a.e. on t ≥ 0,
x(0) = a and x(t) = 0 for −r ≤ t < 0,

(1.33)

where a = φ(0) and f(t) = L(φt), t ≥ 0.
Formula (1.28) also shows that the solution x(t; φ) is the sum of two

functions. One is the solution of (1.32) with a = φ(0) and therefore is
influenced only by φ(0), the other is the solution of (1.33) with a = 0
and f(t) = L(φt) and depends only on the past history φ |[−r,0).

1.6 The Spectrum
As we have seen in Section 1.3 the Laplace-integral for any solution

x(t) = x(t; φ) of (1.1), (1.2) is absolutely convergent for Reλ > � (see
Proposition 1.4). Therefore the complex inversion formula (cf. Theo-
rem A.10) is applicable for any γ > � and gives

x(t; φ) =
∫

(γ)

eλt∆−1(λ)p(λ; φ) dλ, t > 0. (1.34)
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For t = 0 the integral gives
1
2
φ(0) and zero for t < 0. Here and in the

following we use the notation∫

(γ)

f(λ) dλ =
1

2πi
lim

T→∞

∫ T

−T
f(γ + iτ) dτ.

We shall show in the next section that instead of taking γ > � in (1.34)
we can choose any γ > sup{Re λ | ∆−1(λ)p(λ; φ) has a pole at λ}. Since
the poles of ∆−1(λ)p(λ; φ) occur under the zeros of det ∆(λ), we shall
investigate first the location of these zeros.

Definition 1.14 The set σ(L) = {λ ∈ C | det ∆(λ) = 0} is called the
spectrum of equation (1.1) and ρ(L) = C \ σ(L) is the resolvent set
of equation (1.1).

We first state some basic facts about σ(L):

Proposition 1.15 a) σ(L) is non-empty and all points of σ(L) are iso-
lated in C. If σ(L) is finite, then det∆(λ) is a polynomial in λ of degree
n.

b) If λ0 ∈ σ(L)is a zero of det ∆(λ) with multiplicity k0, then λ0 is pole
of some order κ0 for ∆−1(λ) (i.e., λ0 is pole of at least one element of
∆−1(λ) and κ0 is the maximal order occuring). Moreover, we have

0 < κ0 ≤ k0.

c) There exists a constant ρ > 0 such that (see the shaded areas in
Figure 1)

σ(L) ⊂ {λ | Re λ ≥ 0 and |λ| ≤ ρ} ∪ {λ | Re λ < 0 and |λ|ern Re λ ≤ ρ}.
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Proof. a) Since det∆(λ) is an entire function, the elements of σ(L)
are isolated points and zeros of finite multiplicity. Let λ0 ∈ σ(L) be

a zero of multiplicity k0. From ∆−1(λ) =
1

det∆(λ)
adj∆(λ) it is clear

that λ0 is a pole of order κ0 ≤ k0, because the elements of adj∆(λ) are
entire functions. We have to prove that λ0 is indeed a pole for ∆−1(λ).
Suppose that ∆−1(λ) is holomorphic at λ0. Then this is also true for
det ∆−1(λ) and det ∆(λ) det ∆−1(λ). This leads to the contradiction
0 = det ∆(λ0) det ∆−1(λ0) = limλ→λ0 det ∆(λ) det ∆−1(λ) = 1.

b) We may write

det ∆(λ) = λn + αn−1(λ)λn−1 + · · · + α1(λ)λ + α0(λ), (1.35)

where each αk(λ) is a finite sum of products of at most n of the functions∫ 0
−re

λθdηij(θ), i, j = 1, . . . , n. The estimate (1.11) therefore implies that
there exists a constant δ > 0 such that

|αk(λ)| ≤
{

δ for Re λ ≥ 0,
e−rn Re λδ for Re λ < 0,

(1.36)

k = 0, . . . , n − 1. Therefore we have the estimates

|det∆(λ)| ≥ |λ|n
(
1 − δ

n∑
k=1

|λ|−k
)

for Re λ ≥ 0

and

|det∆(λ)| ≥ |λ|n
(
1 − δ

n∑
k=1

e−rn Re λ|λ|−k
)

≥ |λ|n
(
1 − δ

n∑
k=1

(
ern Re λ|λ|

)−k) for Re λ < 0.

Note that e−n Re λ > 1 for Reλ < 0. If |λ| > ρ for Re λ ≥ 0 and
|λ|ern Re λ > ρ for Re λ < 0 with ρ > 0 satisfying

∑n
k=1 ρ−k = 1/δ, then

|det∆(λ)| > 0. If we set λ = µ + iν, µ, ν real, then we have

ν = ±ρe−rnµ
(
1 − µ2

ρ2
e2rnµ

)1/2
, µ < 0,

for |λ|ern Re λ = ρ. In Figure 1 we show this curve for ρ = 1 and r = .5
resp. r = .35. We also see that ν behaves like ±ρe−rnµ as µ → −∞.
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c) It remains to prove the result for finite σ(L). Suppose that σ(L) is
empty or finite. Using (1.36) and the representation (1.35) for det∆(λ)
we get

|det ∆(λ)| ≤
(
|λ|n + · · · + |λ| + 1

)
ern|λ|

for λ ∈ C, which shows that det∆(λ) is a function of exponential type
(see Definition B.1). Therefore the assumption on σ(L) implies (cf.
Theorem B.7)

det ∆(λ) = p(λ)eαλ,

where p(λ) is a polynomial of degree ≥ 0 and α ∈ C. Taking absolute
values we get

eRe(αλ) =
|det∆(λ)|

|p(λ)| , λ /∈ σ(L).

This together with (1.36) implies

(
|λ|n−δ

n−1∑
j=0

|λ|j
)
|p(λ)|−1 ≤ eRe(αλ) ≤

(
|λ|n+δ

n−1∑
j=0

|λ|j
)
|p(λ)|−1 (1.37)

for Re λ ≥ 0 and |λ| sufficiently large. With σ = arg α we choose λk =
keiζk where ζk = −σ + π/2 or ζk = −σ − π/2 such that Re(αλk) = 0
and Reλk ≥ 0. For k → ∞ we see that (1.37) is only possible if p(λ)
is a polynomial of degree n. Therefore σ(L) is not empty. Suppose α is
not real. Then (1.37), for λ = iω, ω real, gives

e−ω Im α ≤
(
|ω|n + δ

n−1∑
j=0

|ω|j
) 1
|p(iω)| .

The right-hand side of this inequality is bounded for |ω| ≥ n0, n0 suffi-
ciently large, whereas the left-hand side is not. Thus α has to be real.
But (1.37) implies that

lim
ρ→∞

eαρ =
1

|pn|
,

where pn �= 0 is the coefficient of λn in p(λ). Thus we have α = 0 and
pn = 1.

Define the matrix η0 = (η0
ij) by η0(θ) = η(θ) for θ < 0 and by η0(0) =

η(0−). We set A0 = −η(0−). Then
∫ 0

−r
eλθdη(θ) = A0 +

∫ 0

−r
eλθdη0(θ).

In view of Proposition 1.15, a), the question arises if det ∆(λ) = det(λI−
A0) provided σ(L) is finite. We can prove this under an additional
assumption on η:
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Proposition 1.16 Assume that there exists a δ > 0 such that η0(θ) =
η0(−δ) for θ ∈ [−δ, 0]. If σ(L) is finite, then

det ∆(λ) = det(λI − A0).

Proof. The coefficients αj(λ) in (1.35) can be written as

αj(λ) = aj + βj(λ), j = 0, . . . , n − 1, (1.38)

where the aj are the coefficients of det(λI −A0) and the βj(λ) are finite
sums of finite products involving elements of A0 and of

∫ 0
−re

λθdη0(θ).
In each product at least one factor is of the form

∫ 0
−re

λθdη0
ij(θ). The

assumption on η0 implies
∣∣∣
∫ 0

−r
eρθdη0

ij(θ)
∣∣∣ ≤ e−ρδvar[−r,0]η

0
ij , i, j = 1, . . . , n, ρ > 0. (1.39)

From

q(λ) = βn−1(λ)λn−1 + · · · + β1(λ)λ + β0(λ) = det ∆(λ) − det(λI − A0)

we see that q(λ) is a polynomial of degree ≤ n − 1. On the other hand
the estimate (1.39) implies that, for a constant K > 0,

|q(ρ)| ≤ Ke−ρδρn−1 for ρ ≥ 1.

This implies that q(λ) is the zero polynomial.
An immediate and important consequence of Proposition 1.15, c),

and the fact that σ(L) cannot have an accumulation point in C is the
following result:

Corollary 1.17 For any α ∈ R the set

σ(L) ∩ {λ ∈ C | Re λ ≥ α}

is finite.

We shall need the following estimates:

Lemma 1.18 Let α ∈ R be given. Then the following is true:

a) There exist positive constants K = K(α) and β = β(α) such that

|∆−1(λ)| ≤ K

|λ| for |λ| ≥ β and Re λ ≥ α.

b) There exists a positive constant M = M(α) such that

|p(λ; φ)| ≤ M‖φ‖ for Re λ ≥ α and φ ∈ C.



64 DELAY DIFFERENTIAL EQUATIONS

Consequently, φ → x̂(λ; φ) = ∆−1(λ)p(λ; φ) defines a bounded linear
functional C → C

n for all λ �∈ σ(L).

Proof. a) The estimate (1.36) shows that for some constant σ0 =
σ0(α) > 0 we have |αk(λ)| ≤ σ0 for Re λ ≥ α and k = 0, . . . , n−1. Then

|det∆(λ)| ≥ |λ|n
(
1 − σ0

n∑
k=1

|λ|−k
)

for Re λ ≥ α.

Therefore there is a constant β = β(σ0) such that

|det∆(λ)| ≥ 1
2
|λ|n for Re λ ≥ α and |λ| ≥ β.

From (1.11) we infer that there exists a constant K = K(α) such that

|adj∆(λ)| ≤ K

2
|λ|n−1 for Re λ ≥ α and |λ| ≥ β.

Therefore we have

|∆−1(λ)| ≤ K

|λ| for Re λ ≥ α and |λ| ≥ β.

b) Indeed,
|p(λ; φ)| ≤ ‖φ‖ + �‖e0(λ) ∗ φ‖

for all λ ∈ C and φ ∈ C. Furthermore,

∣∣(e0(λ) ∗ φ
)
(θ)
∣∣ ≤ ‖φ‖

∫ 0

θ
eα(θ−τ)dτ ≤

{
min(r, 1/α)‖φ‖ for α ≥ 0,
re|α|r‖φ‖ for α < 0,

for Re λ ≥ α (note that θ − τ ≤ 0). This proves that, for Reλ ≥ α,

|p(λ; φ)| ≤
{(

1 + � min(r, 1/α)
)
‖φ‖ for α ≥ 0,(

1 + �re|α|r
)
‖φ‖ for α < 0.

(1.40)

Definition 1.19 The number ωL = sup{Re λ | λ ∈ σ(L)} is called the
exponential type of equation (1.1). For any φ ∈ C, the number

ωL,φ = sup{Re λ | λ is a pole of ∆−1(λ)p(λ; φ)}

is called the exponential type of the solution x(t; φ) of (1.1), (1.2).

The names for ωL and ωL,φ will be justified later (see Corollary 1.22).
It is clear that ωL,φ ≤ ωL for all φ ∈ C.
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Proposition 1.20 a) For any γ > ωL,

Y (t) =
∫

(γ)

eλt∆−1(λ) dλ for t > 0. (1.41)

b) For any γ > ωL,φ,

x(t; φ) =
∫

(γ)

eλt∆−1(λ)p(λ; φ) dλ for t > 0. (1.42)

Proof. We only prove part b). According to the definition of ωL,φ we
have for all T > 0 ∫

Γ

eλt∆−1(λ)p(λ; φ) dλ = 0, (1.43)

where Γ is the closed contour depicted in Figure 2.

Of course, we have ωL,φ < γ ≤ γ0 and � < γ0. By Lemma 1.18 there
exist positive constants K̃ and ρ̃ such that

∣∣eλt∆−1(λ)p(λ; φ)
∣∣ ≤ K̃

|λ|

for γ ≤ Re λ ≤ γ0 and | Im λ| ≥ ρ̃. This shows

lim
T→∞

∫

Γi

eλt∆−1(λ)p(λ; φ) dλ = 0, i = 1, 2, (1.44)
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where Γ1 and Γ2 are the horizontal parts of Γ (see Figure 2). By choice of
γ0, the Laplace-integral for x(t; φ) is absolutely convergent for Reλ ≥ γ0

and therefore (cf. Theorem A.10)

x(t; φ) =
∫

(γ0)

eλt∆−1(λ)p(λ; φ) dλ, t > 0.

By (1.43) and (1.44) also
∫
(γ) eλt∆−1(λ)p(λ; φ) dλ exists and equals x(t; φ)

for t > 0. This proves (1.42).
In the proof concerning Y (t) we have to choose γ0 > β, where β is

the number appearing in Theorem 1.5.
We now are able to prove that the numbers ωL and ωL,φ determine

the exponential growth of Y (t) and x(t;φ), respectively.

Theorem 1.21 a) The number ωL is the smallest number such that for
any ε > 0 there exists a constant K = K(ε) ≥ 1 such that

|Y (t)| ≤ Ke(ωL+ε)t for t ≥ 0. (1.45)

b) The number ωL,φ is the smallest number such that for any ε > 0
there exists a constant K̃ = K̃(ε) ≥ 1 such that for any ψ ∈ C with
ωL,ψ ≤ ωL,φ

|x(t; ψ)| ≤ K̃‖ψ‖e(ωL,φ+ε)t for t ≥ 0. (1.46)

There always exists a φ ∈ C such that ωL,φ = ωL.

Proof. Again we just prove b). We show first that ωL,φ cannot be
replaced by a smaller number. Indeed, assume that (1.46) is true for
a γ < ωL,φ. Then, for ε = (ωL,φ − γ)/2 we have γ + ε < ωL,φ and
|x(t; φ)| ≤ K̃(ε)‖φ‖e(γ+ε)t, t ≥ 0, which implies that the Laplace-integral
for x(t; φ) converges absolutely for Re λ > γ, a contradiction to the
definition of ωL,φ.

We now choose a ψ ∈ C with ωL,ψ ≤ ωL,φ. For ε > 0 we set ωL,φ+ε = γ
and get from (1.42)

x(t; ψ) =
∫

(γ)

eλt∆−1(λ)p(λ; ψ) dλ, t > 0.

According to the identity

∆−1(λ)p(λ; ψ) =
(
∆−1(λ)−(λ−ωL,φ)−1I

)
p(λ; ψ)+(λ−ωL,φ)−1p(λ; ψ)

= (λ − ωL,φ)−1∆−1(λ)
(
−ωL,φI +

∫ 0

−r
eλθdη(θ)

)
p(λ; ψ)

+ (λ − ωL,φ)−1p(λ; ψ)
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we have to estimate

I1 =
∫

(γ)

eλt(λ − ωL,φ)−1∆−1(λ)
(
−ωL,φI +

∫ 0

−r
eλθdη(θ)

)
p(λ; ψ) dλ

and

I2 =
∫

(γ)

eλt(λ − ωL,φ)−1p(λ; ψ) dλ.

By Lemma 1.18 and (1.11) there exist positive constants K = K(γ),
M = M(γ), N = N(γ) and β such that for λ = γ + iτ

∣∣eλt(λ − ωL,φ)−1∆−1(λ)
(
−ωL,φI +

∫ 0

−r
eλθdη(θ)

)
p(λ; ψ)

∣∣

≤ eγt 1
|τ |

K

|τ |
(
|ωL,φ| + N

)
M‖ψ‖ =

K̃

τ2
‖ψ‖eγt, |τ | ≥ β.

This implies that
|I1| ≤ κ1‖ψ‖ eγt, t > 0, (1.47)

where κ1 = κ1(γ) is some positive constant. With respect to I2 we ob-
serve that (λ − ωL,φ)−1ψ(0) is the Laplace-transform of eωL,φtψ(0) and
−(λ − ωL,φ)−1L(e0(λ) ∗ ψ) is the Laplace-transform of the convolution
eωL,φt∗L(ψt) (see Lemma 1.10). All Laplace-integrals are converging ab-
solutely for Reλ > ωL,φ. For eωL,φt this is trivial and for the convolution
it is valid because it is true for both factors. Therefore we have

I2 = ψ(0)eωL,φt +
∫ t

0
eωL,φ(t−τ)L(ψτ ) dτ, t ≥ 0.

For the integral we get (note that L(ψτ ) = 0 for τ > r)

∣∣∣
∫ t

0
eωL,φ(t−τ)L(ψτ ) dτ

∣∣∣ ≤
min(t,r)∫

0

eωL,φ(t−τ)|L(ψτ )| dτ

≤ eωL,φt

∫ r

0
|L(ψτ )| dτ ≤ κ2e

ωL,φt‖ψ‖,

where κ2 is a positive constant which does not depend on ψ. Therefore
we get

|I2| ≤ eωL,φt‖ψ‖(1 + κ2) for t ≥ 0. (1.48)

Since x(t; ψ) = I1 + I2, the desired result follows from (1.47) and (1.48).
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An easy calculation shows that x(t) = eλ0tb is a nontrivial solution of
equation (1.1) if and only if det ∆(λ0) = 0 and b is a nonzero solution of
∆(λ0)b = 0. Therefore, for any λ0 ∈ σ(L), we have at least one solution
whose exponential type is Reλ0 (note that L(eλ0t) = (λ − λ0)−1).

Corollary 1.22 We have

lim sup
t→∞

1
t

ln |Y (t)| = ωL

and, for any φ ∈ C,

lim sup
t→∞

1
t

ln |x(t; φ)| = ωL,φ.

The proof of this corollary is an immediate consequence of Theorem 1.21.

1.7 The solution semigroup
For any t ≥ 0 we define the operator T (t) : C → C by

T (t)φ = xt(φ), φ ∈ C.

From Proposition 1.3 (for f ≡ 0) we see that T (t) is a bounded linear
operator. Since xt+s(φ) = xt(xs(φ)) for t, s ≥ 0, we also have

T (t + s) = T (t)T (s), t, s ≥ 0,

i.e., the family T =
(
T (t)

)
t≥0

is a semigroup. Since x(t; φ) is uniformly
continuous on intervals [−r, T ], T ≥ −r, it is clear that

‖xt(φ) − φ‖ = sup
−r≤θ≤0

|x(t + θ; φ) − φ(θ)| → 0 as t ↓ 0,

which proves that S is a C0-semigroup.

Theorem 1.23 a) The infinitesimal generator A of S is given by

domA = {φ ∈ C1(−r, 0; Cn) | φ′(0) = L(φ)},
Aφ = φ′, φ ∈ domA.

(1.49)

b) The spectrum σ(A) of A is all point spectrum and is given by

σ(A) = σ(L) = {λ ∈ C | det ∆(λ) = 0}.

c) The resolvent operator of A is given by

ψλ = (λI −A)−1φ, φ ∈ C,
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where

ψλ(θ) = ψλ(0)eλθ +
∫ 0

θ
eλ(θ−s)φ(s) ds,

ψλ(0) = ∆(λ)−1p(λ; φ) = x̂(λ; φ).

Proof. We first compute the resolvent operator for the operator defined
by (1.49). The equation (λI − A)ψλ = φ, φ ∈ C, ψλ ∈ domA, implies
ψ′

λ(θ) = λψλ(θ) − φ(θ), −r ≤ θ ≤ 0, and

ψλ(θ) = ψλ(0)eλθ +
∫ 0

θ
eλ(θ−s)φ(s) ds, −r ≤ θ ≤ 0.

The function ψλ is in C1(−r, 0; Cn). We have to choose ψλ(0) such that
ψλ ∈ domA, i.e.,

λψλ(0) − φ(0) = L(ψλ) = L(eλ·I)ψλ(0) + L
(∫ 0

·
eλ(·−s)φ(s) ds

)

or, equivalently,

∆(λ)ψλ(0) = φ(0) + L
(∫ 0

·
eλ(·−s)φ(s) ds

)
= p(λ; φ).

This equation can be solved for ψλ(0) if and only if det ∆(λ) �= 0. In
this case we have

ψλ(0) = ∆(λ)−1p(λ; φ) = x̂(λ; φ).

From Lemma 1.18, b) we see that φ → ψλ(0) defines a bounded linear
functional C → C

n. This implies that φ → ψλ is a bounded linear
operator C → C. Therefore we have shown that λ ∈ σ(A) if and only if
det ∆(λ) = 0. Moreover, λ ∈ σ(A) implies that λI − A is not injective
((λI−A)ψ = 0, ψ ∈ domA, is equivalent to ψ(θ) = ψ(0)eλθ, −r ≤ θ ≤ 0,
and ∆(λ)ψ(0) = 0). Thus parts b) and c) are proved.

It remains to prove that A is the infinitesimal generator of T . For
the moment let B denote the infinitesimal generator of T . Then we have
(see for instance [28])

(λI − B)−1φ =
∫ ∞

0
e−λtT (t)φdt, φ ∈ C, Re λ > ωL,
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where the integral is understood as an improper Riemann integral. On
the other hand a simple integration using also part c) shows that
(∫ ∞

0
e−λtT (t)φdt

)
(θ) =

(∫ ∞

0
e−λtxt(φ) dt

)
(θ) =

∫ ∞

0
e−λtx(t + θ; φ) dt

=
∫ 0

θ
eλ(θ−s)φ(s) ds + eλθ

∫ ∞

0
eλtx(t; φ) dt

= x̂(λ; φ)eλθ +
∫ 0

θ
eλ(θ−s)φ(s) ds

=
(
(λI −A)−1φ

)
(θ), −r ≤ θ ≤ 0, Re λ > ωL.

This proves (λI −A)−1 = (λI − B)−1, Re λ > ωL, i.e., A = B.
For the proof of A = B we have also used the following lemma:

Lemma 1.24 For any θ ∈ [−r, 0] we have
(∫ ∞

0
e−λtxt(φ) dt

)
(θ) =

∫ ∞

0
e−λtx(t + θ; φ) dt, Re λ > ωL.

Proof. Let m be a bounded linear functional on C which is represented
by the vector µ of bounded variation on [−r, 0],

m(φ) =
∫ 0

−r
φ(θ)dµ(θ), φ ∈ C.

Then we have

m
(∫ ∞

0
e−λtxt(φ) dt

)
=
∫ ∞

0
m
(
e−λtxt(φ)

)
dt

=
∫ ∞

0

∫ 0

−r
x(t + θ; φ) dµ(θ) dt.

It is not difficult to prove that θ →
∫∞
0 e−λtx(t + θ; φ) dt, −r ≤ θ ≤ 0, is

a function in C. Using Fubini’s theorem we get

m
(∫ ∞

0
e−λtx(t + θ; φ) dt

)
=
∫ 0

−r

∫ ∞

0
e−λtx(t + θ; φ) dt dµ(θ)

=
∫ ∞

0

∫ 0

−r
e−λtx(t + θ; φ) dµ(θ) dt.

Thus we have shown that

m
(∫ ∞

0
e−λtxt(φ) dt

)
= m

(∫ ∞

0
e−λtx(t + ·; φ) dt

)

for all bounded linear functionals m on C, which proves the result.
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2. Eigenspaces

2.1 Generalized eigenspaces
Consider equation (1.1) with

L(φ) =
∫ 0

−r
[dη(θ)]φ(θ), φ ∈ C.

A function x(t) = eλ0tb0, λ0 ∈ C, b0 ∈ C
n, is a solution of (1.1) if and

only if
det ∆(λ0) = 0 and ∆(λ0)b0 = 0.

Similarly a function x(t) = eλ0t
(
b0 + tb1

)
, λ0 ∈ C, b0, b1 ∈ C

n, is a
solution of (1.1) if and only if

t∆(λ0)b1 +
(
I −

∫ 0

−r
θeλ0θdη(θ)

)
b1 + ∆(λ0)b0 ≡ 0,

which in turn is equivalent to

∆(λ0)b1 = 0,

∆(λ0)b0 + ∆′(λ0)b1 = 0

(observe that ∆′(λ0) = I −
∫ 0
−rθe

λ0θdη(θ)). In general we have:

Proposition 2.1 Let λ0 ∈ C and bj ∈ C
n, j = 0, . . . , k, be given. The

function

x(t) = eλ0t
k∑

j=0

tj

j!
bj �≡ 0 (2.1)

is a solution of (1.1) on R if and only if

(i) λ0 ∈ σ(L),

(ii) ∆̃k+1(λ0)b̃k+1 = 0, b̃k+1 �= 0,

where

∆̃k+1(λ0) =




∆(λ0) 1
1!∆

′(λ0) · · · · · · 1
k!∆

(k)(λ0)

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

1!∆
′(λ0)

0 · · · · · · 0 ∆(λ0)




∈ C
n(k+1)×n(k+1),

b̃k+1 = col (b0, . . . , bk) ∈ C
n(k+1).
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Definition 2.2 Let λ0 ∈ σ(L) be given. The subspace

Pλ0 =
{
φ ∈ C |∃k ≥ 0 : φ(θ) = eλ0θ

k∑
j=0

θj

j!
bj , −r ≤ θ ≤ 0,

where ∆̃k+1(λ0)b̃k+1 = 0
}

is called the generalized eigenspace of (1.1) corresponding to λ0. A
function x(t) given by (2.1) with b̃k satisfying (ii) of Proposition 2.1 is
called a generalized eigenfunction of equation (1.1) corresponding to
λ0.

For λ0 ∈ σ(L) let k0 be the multiplicity of λ0 as a root of det∆(λ)
and κ0 be the order of λ0 as a pole of ∆−1(λ). We know already that

0 < κ0 ≤ k0.

We first show that in the definition of Pλ0 we can set k = κ0 − 1.3

Proposition 2.3 Let λ0 ∈ σ(L) be given.

a) The generalized eigenspace of (1.1) corresponding to λ0 is given by

Pλ0 =
{
φ ∈ C |φ(θ) = eλ0θ

κ0−1∑
j=0

θj

j!
bj , −r ≤ θ ≤ 0,

where ∆̃κ0(λ0)b̃κ0 = 0
}
.

(2.2)

b) dim Pλ0 = nκ0 − rank ∆̃κ0(λ0).

Proof. a) Assume that, for a φ ∈ Pλ0 , we have k ≥ κ0, i.e.,

φ(θ) = eλ0θ
k∑

j=0

θj

j!
bj , ∆̃k+1(λ0)b̃k+1 = 0.

The solution x(t; φ) is given by

x(t; φ) = eλ0t
k∑

j=0

tj

j!
bj .

The Laplace-transform of x(t; φ) is

x̂(λ; φ) =
k∑

j=0

1
(λ − λ0)j+1

bj .

3Below we shall prove that κ0 cannot be replaced by a smaller number (see Corollary 2.9).
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Since λ0 can be a pole of x̂(λ; φ) of order at most κ0 (observe that
x̂(λ; φ) = ∆−1(λ)p(λ; φ)), we must have

bκ0 = bκ0+1 = · · · = bk = 0,

i.e., b̃k = col(b0, . . . , bκ0−1, 0, . . . , 0). From ∆̃k+1(λ0)b̃k+1 = 0 we imme-
diately get

∆̃κ0(λ0)b̃κ0 = 0.

If φ ∈ Pλ0 is defined with k < κ0 − 1, we define bk+1 = bk+2 = · · · =
bκ0−1 = 0. From ∆̃k+1(λ0)b̃k+1 = 0 we get that also

∆̃κ0(λ0)b̃κ0 = 0.

b) Let φi(θ) = eλ0θ
∑κ0−1

j=0
θj

j! b
(i)
j , i = 1, . . . , m, be elements in Pλ0 and

choose α1, . . . . . . , αm ∈ C. The equation
∑m

i=1 αiφi = 0 is equivalent to

κ0−1∑
j=0

θj

j!

m∑
i=1

αib
(i)
j ≡ 0,

which by linear independence of the functions 1, θ, θ2/2!, . . .
. . . , θκ0−1/(κ0 − 1)! is in turn equivalent to

m∑
i=1

αib
(i)
j = 0 for j = 0, . . . , κ0 − 1.

The last equations are equivalent to

m∑
i=1

αib̃
(i)
κ0

= 0.

This proves that the elements φ1, . . . , φm ∈ Pλ0 are linearly indepen-
dent if and only if the vectors b̃

(1)
κ0 , . . . , b̃

(m)
κ0 ∈ ker ∆̃κ0(λ0) are linearly

independent. The result on dimPλ0 follows immediately.
In order to determine rank ∆̃κ0(λ0) we have to use an elementary

divisor theory for holomorphic matrices. We start with a fundamental
theorem.

Theorem 2.4 Let K(λ) be an n × n-matrix which is holomorphic in a
neighborhood V of zero. If det K(λ) �≡ 0 in V , then there exist integers
�, dρ, mρ, ρ = 1, . . . , �, with

0 ≤ d1 < · · · < d� and mρ > 0, ρ = 1, . . . , �,
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n × n-matrices F (λ), G(λ) and a neighborhood U of zero such that

(i) M(λ) = F (λ)K(λ)G(λ) = diag
(
λd1M1(λ), . . . , λd�M�(λ)

)
in U ,

(ii) F (λ), G(λ) are holomorphic in U and det F (λ) ≡ det G(λ) ≡ 1 in
U ,

(iii) Mρ(λ), ρ = 1, . . . , �, is an mρ × mρ-matrix, which is holomorphic
in U with det Mρ(λ) �= 0 in U ,

(iv) the numbers �, mρ, dρ are uniquely determined by properties (i) –
(iii).

Proof. The power series expansion of K(λ) around 0 has the following
form:

K(λ) = λn1H(λ), H0 �= 0, n1 ≥ 0,

where H(λ) =
∑∞

j=0 λjHj .

Case 1.
Assume that det H0 �= 0. In this case we have F (λ) ≡ G(λ) ≡ I, � = 1,
d1 = n1, m1 = n, because

K(λ) = λn1H(λ)

satisfies already (i)–(iii).

Case 2.
Assume that det H0 = 0. Let m1 = rank H0. From H0 �= 0 and detH0 =
0 we see that

0 < m1 < n.

Let X, Y be n × n-matrices with det X = det Y = 1 such that

XH0Y =
(

H00 0
0 0

)
,

where H00 is an m1 × m1-matrix with detH00 �= 0. Observing H(λ) =
H0 + λ

∑∞
j=1 λj−1Hj we get

XH(λ)Y =
(

H00 0
0 0

)
+ λ

(
H11(λ) H12(λ)
H21(λ) H22(λ)

)
,

where the Hij(λ) are matrices which are holomorphic in V . We set

M1(λ) = H00 + λH11(λ).
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From det H00 �= 0 we conclude that det M1(λ) �= 0 in a neighborhood Ũ
of 0. Therefore M1(λ)−1 exists in Ũ and is holomorphic there. From the
equation
(

I 0
−λH21M

−1
1 I

)(
M1 λH12

λH21 λH22

)(
I −λM−1

1 H12

0 I

)
=
(

M1 0
0 λK2

)
,

where K2(λ) = H22(λ) − λH21(λ)M1(λ)−1H12(λ), we see that

F1(λ)K(λ)G1(λ) =
(

λn1M1(λ) 0
0 λn1+1K2(λ)

)
,

where det F1(λ) ≡ det G1(λ) ≡ 1 in Ũ . The matrix K2(λ) is holomorphic
in Ũ and has a power series expansion

K2(λ) = λn2

∞∑
j=0

λjH
(2)
j with H

(2)
0 �= 0.

If det H
(2)
0 �= 0, then we have

d1 = n1, d2 = n1 + n2 + 1 > d1, m2 = n − m1, � = 2

and M2(λ) = K2(λ).
If detH

(2)
0 = 0, we set m2 = rankH

(2)
0 and proceed as above in Case 2.

In a finite number of steps we arrive at M(λ) as given in the theorem.
It remains to prove (iv). In order to do this we have to introduce the

notion of determinantal divisors for a holomorphic matrix.
For an n×n-matrix N(λ) which is holomorphic in a neighborhood U

of zero we introduce the numbers βν(N), ν = 1, . . . , n, as follows:

(i) Any ν × ν-minor of N(λ) has the form

λβν(N)q(λ), λ ∈ U,

where q(λ) is holomorphic in U .

(ii) There exists at least one ν × ν-minor of N(λ) such that q(0) �= 0.

Since a (ν + 1) × (ν + 1)-minor is a linear combination of ν × ν-minors
(Laplace expansion theorem for determinants), we have

βν+1(N) ≥ βν(N), ν = 1, . . . , n − 1.

The following lemma shows that equivalence transformations of the
form appearing in Theorem 2.4 leave the numbers βν invariant.
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Lemma 2.5 Let K(λ) be an n×n-matrix being holomorphic in a neigh-
borhood U of 0. Let M(λ) = F (λ)K(λ)G(λ), λ ∈ U , where F (λ) and
G(λ) satisfy (ii) of Theorem 2.4. Then we have

βν(M) = βν(K), ν = 1, . . . , n.

Proof. If K
(

j1,...,jν

k1,...,kν

)
denotes the ν×ν-minor containing the elements in

rows j1, . . . , jν and columns k1, . . . , kν of K(λ), then the Binét-Cauchy
formula gives (see for instance [8])

M
(

j1,...,jν

k1,...,kν

)
=

∑
1≤α1<···<αν≤n
1≤σ1<···<σν≤n

F
(

j1,...,jν

α1,...,αν

)
K
(
α1,...,αν

σ1,...,σν

)
G
(
σ1,...,σν

k1,...,kν

)
.

This shows that
M
(

j1,...,jν

k1,...,kν

)
= λβν(K)p(λ),

where p(λ) is holomorphic at zero. Consequently we have

βν(M) ≥ βν(K).

Starting from K(λ) = F (λ)−1M(λ)G(λ)−1 we get

βν(K) ≥ βν(M).

Proof for (iv) of Theorem 2.4. From Lemma 2.5 we conclude that

βν := βν(K) = βν(M), ν = 1, . . . , n.

Using the special form of M(λ),

M(λ) =




λd1M1(λ)
λd2M2(λ) 0

0
. . .

λd�M�(λ)


 ,

we see that (observe det Mj(0) �= 0, j = 1, . . . , �)

β1 = d1, β2 = 2d1, . . . , βm1 = m1d1,

βm1+1 = m1d1 + d2, . . . , bm1+m2 = m1d1 + m2d2,

...

βm�−1+1 =
�−1∑
ρ=1

mρdρ + d�, . . . , βn−1 =
�−1∑
ρ=1

mρdρ + (m� − 1)d�, βn

=
�∑

ρ=1

mρdρ.
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From this we also see that (using d1 < d2 < · · · < d�)

βk+1 − βk ≥ βk − βk−1, k = 1, . . . , n − 1,

where the “>”-sign is valid exactly for

k = m1, m2, . . . , m�−1.

From this it is clear that the numbers mρ, dρ are uniquely determined
by the numbers β1, . . . , βn. Indeed, we have to proceed as follows:

Step 1.
Given β1, . . . , βn, compute the sequence

β2 − β1 ≤ β3 − β2 ≤ · · · ≤ βn − βn−1.

The numbers m1, . . . , m�−1 are those indices, where a strict inequality
occurs in this sequence,

βmρ+1 − βmρ > βmρ − βmρ−1, ρ = 1, . . . , � − 1

(the number of strict inequalities in the above sequence is � − 1). The
number m� is given by n −

∑�−1
ρ=1 mρ.

Step 2.
The numbers dρ are given by (m0 := 0)

dρ = βk − βk−1, k = mρ−1 + 1, . . . , mρ, ρ = 1, . . . , � − 1,

d� = βk − βk−1, k = m�−1 + 1, . . . , n.

Since the numbers �, dρ, mρ, ρ = 1, . . . , �, are uniquely determined
by β1, . . . , βn, which in turn are uniquely determined by the equivalence
class of K(λ) (with respect to equivalence transforms satisfying (ii) of
Theorem 2.4), we have proved (iv).

Remark. The polynomials δν(λ) := λβν , ν = 1, . . . , n, are called the
determinantal divisors of K(λ) at λ = 0, whereas the polynomials

ε1(λ) ≡ 1, εν(λ) = λβν−βν−1 , ν = 2, . . . , n,

are the elementary divisors of K(λ) at λ = 0. From the relations
between the numbers βν we conclude that

δν | δν+1 and εν | εν+1, ν = 1, . . . , n − 1.

The following lemma relates the matrices

B̃k(λ0) =




B−µ B−µ+1 · · · B−µ+k−1

0
. . . . . .

...
...

. . . . . . B−µ+1

0 · · · 0 B−µ


 ∈ C

nk×nk, (2.3)
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k = 1, 2, . . . , and the Laurent series of the matrix B(λ) around λ0,

B(λ) =
∞∑

j=−µ

(λ − λ0)jBj .

Lemma 2.6 Let F (λ), G(λ) and H(λ) be n × n-matrices with Laurent
series

F (λ) =
∞∑

j=−µ

(λ − λ0)jFj , G(λ) =
∞∑

j=−ν

(λ − λ0)jGj

H(λ) =
∞∑

j=−µ−ν

(λ − λ0)jHj

around λ = λ0. Then the following two statements are equivalent:

(i) H(λ) = F (λ)G(λ) in a neighborhood U of λ0.

(ii) H̃k(λ0) = F̃k(λ0)G̃k(λ0) for all k = 1, 2, . . . .

Proof. The proof is obvious if we compute the Laurent series expansions
on both sides of H(λ) = F (λ)G(λ) around λ0. One also has to observe
that the coefficient matrix of λ−µ+j−1 is the block appearing in the j-th
diagonal of F̃k(λ0) etc.

For the proof of Theorem 2.4 we only need Lemma 2.6 for µ = ν = 0.
Note that in this case

det F̃k(λ0) =
(
det F (λ0)

)k etc.

The general form of Lemma 2.6 will be needed below.
We now compute rank B̃k(λ0) in several steps. Let M(λ) be the matrix

obtained from B(λ) according to Theorem 2.4 (with λ replaced by λ−λ0

of course). Then according to Lemma 2.6 we have

rank B̃k(λ0) = rank M̃k(λ0), k = 1, 2, . . . ,

where

M̃k(λ0) =




M(λ0) 1
1!M

′(λ0) · · · · · · 1
(k−1)!M

(k−1)(λ0)

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

1!M
′(λ0)

0 · · · · · · 0 M(λ0)




∈ C
nk×nk.
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If we introduce the matrices

Rk =




0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0




∈ C
k×k for k = 2, 3, . . . ,

and R1 = (1), then we have

M̃k(λ0) =
k−1∑
j=0

Rj
k ⊗ 1

j!
M (j)(λ0), k = 1, 2, . . . ,

where the Kronecker product of two matrices X = (xij), Y is defined by

X ⊗ Y =
(
xijY

)
.

Lemma 2.7

rank M̃k(λ0) = rank
(k−1∑

j=0

1
j!

M (j)(λ0) ⊗ Rj
k

)
, k = 1, 2, . . . .

Proof. For any positive integers k, n there exists an nk×nk permutation
matrix P such that for any matrices S ∈ C

n×n and T ∈ C
k×k we have

(see for instance [9, p. 118])

P−1(S ⊗ T )P = T ⊗ S.

Since det P �= 0, the result is established.
In order to compute rank

(∑k−1
j=0

1
j!M

(j)(λ0)⊗Rj
k

)
it is useful to intro-

duce the nk × nk-matrix

M(λ0I + Rk) =
(
mij(λ0I + Rk)

)
i,j=1,...,n

,

where M(λ) = (mij(λ))i,j=1,...,n and mij(λ0I + Rk) is defined by the
power series expansion of mij(λ) around λ0, mij(λ) =

∑∞
µ=0 α

(ij)
µ (λ −

λ0)µ. That means (observe that Rµ
k = 0 for µ ≥ k)

mij(λ0I + Rk) =
k−1∑
µ=0

α(ij)
µ Rµ

k , i, j = 1, . . . , n.

Since we have α
(ij)
µ = 1

µ!m
(µ)
ij (λ0), we get

M(λ0I + Rk) =
k−1∑
j=0

1
j!

M (j)(λ0) ⊗ Rj
k.
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Observing the special form of M(λ) we get

M(λ0I + Rk) = diag
(
(Im1 ⊗ Rd1

k )M1(λ0I + Rk), . . .

. . . (Im�
⊗ Rd�

k )M�(λ0I + Rk)
)
.

From

rankMρ(λ0I + Rk) = rank
(k−1∑

j=0

Rj
k ⊗ 1

j!
M (j)

ρ (λ0)
)

= rank




Mρ(λ0) ∗ · · · ∗
0

. . . . . .
...

...
. . . . . . ∗

0 · · · 0 Mρ(λ0)




= k rankMρ(λ0) = kmρ

we see that

rank(Imρ ⊗ R
dρ

k )Mρ(λ0I + Rk) = rank(Imρ ⊗ R
dρ

k ).

Thus we have

rankM(λ0I + Rk) =
�∑

ρ=1

rank(Imρ ⊗ R
dρ

k ) =
�∑

ρ=1

mρ rankR
dρ

k .

Obviously we have

rankR
dρ

k =

{
0 for dρ ≥ k,
k − dρ for dρ = 1, 2, . . . , k − 1.

If d1 > 0, then

rankM(λ0I + Rk) = 0 for k = 1, 2 . . . , d1.

For k > d1 define q = max{ρ ∈ N | dρ < k}. Then we have

rankM(λ0I + Rk) =
q∑

ρ=1

mρ(k − dρ).

Thus we have proved the following theorem.

Theorem 2.8 Let B(λ) be an n×n-matrix which is holomorphic at λ0

and let �, dρ, mρ, ρ = 1, . . . , �, be the numbers uniquely determined by
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B(λ) according to Theorem 2.4. Denote by k0 the multiplicity of λ0 as
a root of det B(λ) and by κ0 the order of λ0 as a pole of B(λ)−1. Then
we have

rank B̃k(λ0) =




0 for k = 1, . . . , d1 (if d1 > 0),∑q
ρ=1 mρ(k − dρ) for k = dq + 1, . . . , dq+1,

q = 1, . . . , � − 1,
nk − k0 for k ≥ d�.

Moreover, we have κ0 = d�.

Concerning the result for k ≥ d� we have to note that

�∑
ρ=1

mρ = n and
�∑

ρ=1

mρdρ = k0.

The latter equation follows from the special form of M(λ). Furthermore,
from

M(λ)−1 = G(λ)−1B(λ)−1F (λ)−1

and the fact that G(λ)−1, F (λ)−1 are holomorphic at λ0 we see that
κ0 = d�.

Corollary 2.9 We have

dim ker ∆̃k(λ0) =




nk for k = 1, . . . , d1,
(if d1 > 0),

k
∑�

ρ=q+1 mρ +
∑q

ρ=1 mρdρ for k = dq + 1, . . . , dq+1,
q = 1, . . . , � − 1,

k0 for k = κ0, κ0 + 1, . . . .

In particular we have
dim Pλ0 = k0.

Furthermore, κ0 in the representation (2.2) of Pλ0 cannot be replaced by
a smaller number.

Proof. The proof is obvious. We only have to observe that

nk −
q∑

ρ=1

mρ(k − dρ) = k
�∑

ρ=1

mρ −
q∑

ρ=1

mρ(k − dρ)

= k
�∑

ρ=q+1

mρ +
q∑

ρ=1

mρdρ.
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For k = κ0−1 = d�−1 we get dim ker ∆̃k(λ0) = (d�−1)m�+
∑�−1

ρ=1 mρdρ =
k0 − m� < k0, which proves the claim on κ0.

Remarks. 1. That dimPλ0 = k0 was first proved in [24]. The presen-
tation given here is based on [20]. For the elementary divisor theory for
holomorphic matrices see [14].
2. The results presented above are true whenever Proposition 2.1 is true
and λ0 is a zero of finite multiplicity of det ∆(λ).

The results of this section can also be interpreted for the solution
semigroup T and its infinitesimal generator A.

Theorem 2.10 Let ψ ∈ C and λ0 ∈ σ(A) be given.
a) The following statements are equivalent:

(i) ψ ∈ range(A− λ0I)k.

(ii) The equation

∆̃k(λ0)b̃k = −p̃k(λ0; ψ) = − col
(
pk−1(λ0; ψ), . . . , p0(λ0; ψ)

)
(2.4)

has a solution b̃k, where

pj(λ0; ψ) =
1
j!

dj

dλj
p(λ; ψ) |λ=λ0 .

(iii) There exist vectors b0, . . . , bk−1 ∈ C
n such that the function

φ =
k−1∑
j=0

ej(λ0)bj + ek−1(λ0) ∗ ψ (2.5)

is in domAk (for the definition of ej see (1.10)).

b) If ψ ∈ range(A − λ0I)k, then ψ = (A − λ0I)kφ for any φ which is
given by (2.5), where b̃k = col(b0, . . . , bk−1) is a solution of (2.4).

Proof. An easy calculation shows that for φ given by (2.5) we have

φ̇ − λ0φ =
k−2∑
j=0

ej(λ0)bj+1 + ek−2(λ0) ∗ ψ (2.6)
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and

L(φ) = −
k−1∑
j=0

1
j!

∆(j)(λ0)bj + λ0b0 + b1 − pk−1(λ0; ψ).

Here we have used

∫ 0

−r
θjeλ0θdη(θ) =




λ0I − ∆(λ0) for j = 0,
I − ∆′(λ0) for j = 1,
−∆(j)(λ0) for j = 2, 3, . . . ,

and

pk−1(λ0; ψ) = −
∫ 0

−r
[dη(θ)]

(
ek−1(λ0) ∗ ψ

)
(θ).

From (2.6) we get φ̇(0) = λ0b0 + b1. Therefore we have φ ∈ domA if
and only if

k−1∑
j=0

1
j!

∆(j)(λ0)bj = −pk−1(λ0; ψ). (2.7)

In this case equation (2.6) just means

(A− λ0I)φ =
k−2∑
j=0

ej(λ0)bj+1 + ek−2(λ0) ∗ ψ.

Analogously we see that (A− λ0I)φ ∈ domA if and only if

k−2∑
j=0

1
j!

∆(j)(λ0)bj+1 = −pk−2(λ0; ψ). (2.8)

Therefore φ is in domA2 if and only if (2.7) and (2.8) are satisfied. In
k − 1 steps we obtain that φ is in domAk−1 if and only if

k−1−i∑
j=0

1
j!

∆(j)(λ0)bj+i = −pk−1−i(λ0; ψ), i = 0, . . . , k − 2. (2.9)

Moreover, we have

χ := (A− λ0I)k−1φ = e0(λ0)bk−1 + e0(λ0) ∗ ψ.

For χ we get χ̇ = λ0χ+ψ, χ̇(0) = λ0bk−1+ψ(0) and L(χ) = −∆(λ0)bk−1+
λ0bk−1 − p0(λ0; ψ) + ψ(0). Therefore χ is in domA if and only if
∆(λ0)bk−1 = −p0(λ0; ψ). This proves φ ∈ domAk if and only if (2.9)
holds also for i = k−1, i.e., if and only if (2.4) is satisfied. Moreover, we
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have (A− λ0I)χ = (A− λ0I)kφ in this case. Thus we have established
that (iii) is equivalent to (ii) and that (iii) implies (i).

Assume that ψ ∈ range(A − λ0I)k, i.e., ψ = (A − λ0I)kφ for some
φ ∈ domAk. Then φ is solution of the differential equation

( d

dθ
− λ0

)k
φ = ψ.

This implies that φ is given by (2.5). Since φ ∈ domAk, the vector b̃k

solves (2.4). This proves that (i) implies (iii).

Corollary 2.11 Let φ ∈ C and λ0 ∈ σ(A) be given. Then we have

φ ∈ ker(A− λ0I)k

if and only if

φ =
k−1∑
j=0

ej(λ0)bj with ∆̃k(λ0)b̃k = 0.

Proof. The result follows immediately from Theorem 2.10, b), for ψ =
0.

The proof of Proposition 2.3, b), for general k, shows that dim ker(A−
λ0I)k = dim ker ∆̃k(λ0). Therefore Corollary 2.9 gives also the dimen-
sion of ker(A− λ0I)k, k = 1, 2, . . . . From Proposition 2.3 we see that

Pλ0 = ker(A− λ0I)k, k = κ0, κ0 + 1, . . . . (2.10)

We call a subspace Z of Pλ0 cyclic with respect to A, if there exists
a basis φ0, . . . , φk−1 of Z (k = dim Z) such that

Aφ0 = λ0φ0,

Aφj = λ0φj + φj−1, j = 1, . . . , k − 1.

From the results given above it is possible to determine the decomposi-
tion of Pλ0 into a direct sum of subspaces cyclic with respect to A.

Theorem 2.12 Let λ0 ∈ σ(L) and let �, dρ and mρ, ρ = 1, . . . , �, be the
numbers associated with ∆(λ) at λ0 according to Theorem 2.4. Then

Pλ0 =
�⊕

ρ=1

mρ⊕
j=1

Zρ,j ,

where Zρ,j, j = 1, . . . , mρ, is a subspace cyclic with respect to A with
dimZρ,j = dρ.



Autonomous Functional Differential Equations 85

Proof. Since dim ker(A− λ0I)d� − dim ker(A− λ0I)d�−1 = m�, we can
choose m� elements ψj,� ∈ ker(A − λ0I)d� , j = 1, . . . , m�, such that∑m�

j=1 αjψj,� ∈ ker(A− λ0I)d�−1 implies α1 = · · · = αm�
= 0. We put

φ
(�)
j,i = (A− λ0I)d�−1−iψj,�, i = 0, . . . , d� − 1, j = 1, . . . , m�.

For each j = 1, . . . , m�, the subspace

Z�,j = span
(
φ

(�)
j,0, . . . , φ

(�)
j,d�−1

)
is cyclic. This follows from

(A− λ0I)φ(�)
j,0 = (A− λ0I)d�ψj,� = 0,

(A− λ0I)φ(�)
j,i = (A− λ0I)d�−iψj,� = φ

(�)
j,i−1, i = 1, . . . , d� − 1.

By definition of the φ
(�)
j,i ’s we see that φ

(�)
j,i ∈ ker(A − λ0I)i+1, j =

1, . . . , m�. Furthermore,
∑m�

j=1 αiφ
(�)
j,i ∈ ker(A−λ0I)i implies α1 = · · · =

αm�
= 0, i = 0, . . . , d� − 1. Indeed, from 0 =

∑m�
j=1 αj(A − λ0I)iφ

(�)
j,i =∑m�

j=1 αj(A − λ0I)d�−1ψj,i we see that
∑m�

j=1 αjψj,i ∈ ker(A − λ0I)d�−1,
which by choice of the ψj,i’s implies α1 = · · · = αm�

= 0.
In the next step we observe

dim ker(A− λ0I)d�−1 − dim ker(A− λ0I)d�−1−1 = m� + m�−1

and choose m�−1 elements ψj,�−1 ∈ ker(A − λ0I)d�−1 , j = 1, . . . , m�−1,
such that

m�∑
j=1

αj(A− λ0I)d�−d�−1ψj,� +
m�−1∑
j=1

βjψj,�−1 ∈ ker(A− λ0I)d�−1−1

implies α1 = · · · = αm�
= β1 = · · · = βm�−1

= 0. We set

φ
(�−1)
j,i = (A−λ0I)d�−1−1−iψj,�−1, i = 0, . . . , d�−1 − 1, j = 1, . . . , m�−1.

As in the first step we see that the spaces

Z�−1,j = span
(
φ

(�−1)
j,0 , . . . , φ

(�−1)
j,d�−1−1

)
, j = 1, . . . , m�−1,

are cyclic. Furthermore, we have φ
(�−1)
j,i ∈ ker(A − λ0I)i+1 for j =

1, . . . , m�−1, i = 0, . . . , d�−1 − 1 and

m�∑
j=1

αjφ
(�)
j,i +

m�−1∑
j=1

βjφ
(�−1)
j,i ∈ ker(A− λ0I)i
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implies α1 = · · · = αm�
= β1 = · · · = βm�−1

= 0. This follows from

0 =
m�∑
j=1

αj(A− λ0I)iφ
(�)
j,i +

m�−1∑
j=1

βj(A− λ0I)iφ
(�−1)
j,i

=
m�∑
j=1

αj(A− λ0I)d�−1ψj,� +
m�−1∑
j=1

βj(A− λ0I)d�−1−1ψj,�−1,

which means
m�∑
j=1

αj(A− λ0I)d�−d�−1ψj,� +
m�−1∑
j=1

βjψj,�−1 ∈ ker(A− λ0I)d�−1−1.

In a finite number of steps we obtain the cyclic subspaces

Zρ,j = span
(
φ

(ρ)
j,0 , . . . , φ

(ρ)
j,dρ−1

)
, ρ = 1, . . . , �, j = 1, . . . , mρ.

The
∑�

ρ=1 mρdρ = k0 = dimPλ0 elements

φ
(�)
j,i , j = 1, . . . , m�, i = 0, . . . , d� − 1,

φ
(�−1)
j,i , j = 1, . . . , m�−1, i = 0, . . . , d�−1 − 1,

...

φ
(1)
j,i , j = 1, . . . , m1, i = 0, . . . , d1 − 1,

are linearly independent. This can be seen as follows. Assume that

�∑
ρ=1

mρ∑
j=1

dρ−1∑
i=0

α
(ρ)
j,i φ

(ρ)
j,i = 0. (2.11)

This implies
∑m�

j=1 α
(�)
j,d�−1φ

(�)
j,d�−1 ∈ ker(A− λ0I)d�−1 and thus α

(�)
j,d�−1 =

0, j = 1, . . . , m�. Then (2.11) implies

m�∑
j=1

α
(�)
j,d�−2φ

(�)
j,d�−2 ∈ ker(A− λ0I)d�−2

or (observe φ
(�)
j,d�−2 = (A− λ0I)ψj,�)

m�∑
j=1

α
(�)
j,d�−2ψj,� ∈ ker(A− λ0I)d�−1.
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Consequently we have α
(�)
j,d�−2 = 0, j = 1, . . . , m�. Analogously we see

that α
(�)
j,i = 0, j = 1, . . . , m�, i = d�−1, . . . , d� − 3. Then (2.11) implies

that
m�∑
j=1

α
(�)
j,d�−1−1φ

(�)
j,d�−1−1 +

m�−1∑
j=1

α
(�−1)
j,d�−1−1φ

(�−1)
j,d�−1−1

=
m�∑
j=1

α
(�)
j,d�−1−1(A− λ0I)d�−d�−1ψj,�

+
m�−1∑
j=1

α
(�−1)
j,d�−1−1ψj,�−1 ∈ ker(A− λ0I)d�−1−1

and consequently α
(�)
j,d�−1−1 = 0, j = 1, . . . , m�, and α

(�−1)
j,d�−1−1 = 0, j =

1, . . . , m�−1.
Continuing in this way we see that α

(ρ)
j,i = 0 for ρ = 1, . . . , �, j =

1, . . . , mρ, i = 0, . . . , dρ − 1, which proves that the elements φ
(ρ)
j,i , ρ =

1, . . . , �, j = 1, . . . , mρ, i = 0, . . . , dρ − 1, are a basis for Pλ0 . It also
proves that dimZρ,j = dρ.

Of special interest are the extreme cases, i.e., all cyclic subspaces of
Pλ0 are of dimension one resp. Pλ0 itself is cyclic.

Proposition 2.13 Let k0 be the multiplicity of λ0 as a root of det∆(λ).

a) The following statements are equivalent:

(1) All subspaces cyclic with respect to A of Pλ0 are one-dimensional.

(2) One of the following two conditions is satisfied:

(i) k0 < n and rank∆′(λ0) = n − k0.

(ii) k0 = n, ∆(λ0) = 0 and rank ∆′(λ0) = n.

(3) κ0 = 1 (κ0 is the order of the pole of ∆−1(λ) at λ0).

b) The following statements are equivalent:

(1) Pλ0 is cyclic with respect to A.

(2) We have

rank ∆(λ0) = n − 1. (2.12)

(3) κ0 = k0.
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Proof. a) All cyclic subspaces to be of dimension 1 is equivalent to
dρ ≤ 1 for all ρ = 1, . . . , �. In view of 0 ≤ d1 < d2 < · · · < d� this is
equivalent to either

(i′) � = 2 and d1 = 0, d2 = 1,

or

(ii′) � = 1 and d1 = 1.

In case of (i′) the matrix M(λ) in Theorem 2.4 is given by M(λ) =
diag

(
M1(λ), (λ−λ0)M2(λ)

)
. From m1d1 +m2d2 = k0 and m1 +m2 = n

we immediately get m2 = k0 and m1 = n − k0. Therefore condition (i′)
implies condition (i), because k0 < n and rank ∆(λ0) = rankM(λ0) =
m1 = n − k0 in this case.

If on the other hand (i) is true, then the numbers βk defined in the
proof of Theorem 2.4 are given by

β1 = · · · = βk0 = 0, βk0+1 ≥ 1 and βn = k0.

This shows m1 = k0 and d1 = 0. Since βm1 < · · · < βn (observe
0 ≤ d1 < d2 · · · < d�), we must have

βn−k0+i = i, i = 1, . . . , n.

This implies � = 2, m2 = n − k0 and d2 = 1, i.e., (i′) holds.
In case of (ii′) the matrix M(λ) is given by M(λ) = (λ − λ0)M1(λ)

which shows that k0 = n, M(λ0) = 0 and rankM1(λ0) = n. From
M(λ0) = F (λ0)∆(λ0)G(λ0) we get that also ∆(λ0) = 0. But then we
have ∆(λ) = (λ− λ0)∆1(λ). Observing ∆1(λ0) = ∆′(λ0) and M1(λ0) =
F (λ0)∆′(λ0)G(λ0) we see that rank ∆′(λ0) = n. Thus we have shown
that (ii′) implies (ii).

If on the other hand (ii) is true, then βn = n because of rank ∆′(λ0) =
n and d1 > 0 because of ∆(λ0) = 0. In this case we have β1 < · · · < βn,
which together with βn = n implies

βi = i, i = 1, . . . , n.

This shows � = 1 and d1 = 1, i.e., (ii′) holds.
Since κ0 = d� (see Theorem 2.8), conditions (i′) or (ii′) imply κ0 = 1.

If on the other hand κ0 = 1, then d� = 1, which implies either � = 1,
d1 = 1, i.e., (ii′), or � = 2, d1 = 0 and d2 = 1, i.e., (i′).

b) Pλ0 is cyclic if and only if

m� = 1 and d� = k0 (= dim Pλ0). (2.13)
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This implies
∑�−1

ρ=1 mρdρ = 0 which is equivalent to either � = 1 or � = 2
and d1 = 0. In the first case we have n = m1 = 1, i.e., ∆(λ) is scalar
with ∆(λ0) = 0. In the second case we get m1 = n − m2 = n − 1. In
both cases we have rank M(λ0) = rank ∆(λ0) = n − 1.

Suppose conversely that rank ∆(λ0) = n − 1. For n = 1 this means
β1 = βn > 0 and consequently � = 1, m1 = 1 and d1 = k0 (observe
k0 = m1d1 in this case). For n > 1 we get

β1 = · · · = βn−1 = 0 and βn = k0.

This implies � = 2, m1 = n − 1, d1 = 0, m2 = 1 and d2 = k0.
If (2.13) holds, then κ0 = d� = k0. If conversely κ0 = k0, then d� = k0.

This and
∑�

ρ=1 mρdρ = k0 imply m� = 1, i.e., (2.13) holds.
As a special case we want to consider an n-th order equation

y(n)(t) =
n−1∑
j=0

∫ 0

−r
y(j)(t + θ) dηj+1(θ), t ≥ 0. (2.14)

Such an equation can always be written as a system. We just define

x(t) = col
(
y(t), ẏ(t), . . . , y(n−1)(t)

)
, t ≥ −r,

and the matrix η(θ) by

η(θ) =




0 η12(θ) 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 ηn−1,n(θ)
η1(θ) · · · · · · · · · ηn(θ)




,

where ηj,j+1(θ) = 0 for θ < 0 and = 1 for θ ≥ 0, j = 1, . . . , n − 1.
If x(t) is a solution of system (1.1) with η(θ) as given above such that
φ = col(φ1, . . . , φn) satisfies φi+1 = φ̇i, i = 1, . . . , n − 1, then the first
coordinate y(t) = x1(t) is a solution of equation (2.14) with initial data
y(θ) = φ1(θ), . . . , y(n−1)(θ) = φn(θ), −r ≤ θ ≤ 0, and vice versa.

From

∆(λ) =




λ −1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 λ −1

−c0(λ) · · · · · · · · · −cn−1(λ)




,
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where

cj(λ) =
∫ 0

−r
eλθdηj+1(θ), j = 0, . . . , n − 1,

one sees immediately that

det ∆(λ) = λn −
n−1∑
j=0

λjcj(λ). (2.15)

Proposition 2.14 If λ0 is a root of multiplicity k0 of det ∆(λ) as given
in (2.15) then equation (2.14) has at least one solution

y(t) = p(t)eλ0t, t ∈ R,

where p(t) is a polynomial of degree k0 − 1.

Proof. Obviously we have rank ∆(λ0) = n − 1 for any zero λ0 of
det∆(λ0). According to Proposition 2.13, b) we have κ0 = k0. Therefore
the equation ∆̃k0(λ0)b̃k0 = 0 has a solution b̃k0 = col(b0, . . . , bk0−1) with
bk0−1 �= 0. Indeed, if bk0−1 = 0 for all solutions of this equation, then
all solutions of this equation satisfy ∆̃k(λ0)b̃k = 0 for some k < k0, i.e.,
Pλ0 = ker(A − λ0I)k for some k < k0 = κ0, a contradiction to (2.10).
The vector bk0−1 �= 0 satisfies ∆(λ0)bk0−1 = 0. The special form of
the matrix ∆(λ0) implies that the first component of bk0−1 is nonzero
(otherwise we would have bk0−1 = 0). Thus we have shown that the first
component x1(t) of x(t) = eλ0t

∑k0−1
j=0

tj

j! bj is of the form

x1(t) = eλ0t
(
γ

tk0−1

(k0 − 1)!
+ q(t)

)
, t ≥ 0,

where γ �= 0 and q(t) is a polynomial of degree ≤ k0 − 2. Since y(t) =
x1(t) solves (2.14), the proof is finished.

2.2 Projections onto eigenspaces
In this sections we shall define continuous projections πλ0 : C → Pλ0 ,

λ0 ∈ σ(L), such that C = range πλ0 ⊕ ker πλ0 is a decomposition of C,
where the subspaces are invariant with respect to equation (1.1) (resp.
the solution semigroup T ). The following result will give the motivation
for the definition of πλ0 .

Proposition 2.15 Let λ0 ∈ σ(L) be given and assume that the function
g(λ) is holomorphic at λ0. Then the function

x(t) = Res
λ=λ0

eλt∆−1(λ)g(λ), t ≥ −r,



Autonomous Functional Differential Equations 91

is an generalized eigenfunction of (1.1) corresponding to λ0 and the
function

θ → Res
λ=λ0

eλθ∆−1(λ)g(λ), −r ≤ θ ≤ 0,

is in Pλ0.

Proof. As usual let κ0 denote the order of the pole of ∆−1(λ) at λ0.
Then the function eλt∆−1(λ)g(λ) has at most a pole of order ≤ κ0 at
λ0. From the expansions

∆−1(λ) =
∞∑

j=−κ0

(λ − λ0)jDj and g(λ) =
∞∑

j=0

(λ − λ0)jgj

we get

Res
λ=λ0

eλt∆−1(λ)g(λ) = eλ0t
κ0−1∑
j=0

tj

j!
cj , t ≥ −r,

where

cj = D−j−1g0 + · · · + D−κ0gκ0−j−1, j = 0, . . . , κ0 − 1.

This can be written as
c̃κ0 = D̃κ0 g̃κ0 , (2.16)

where c̃κ0 = col(c0, . . . , cκ0−1) ∈ C
nκ0 , g̃κ0 = col(gκ0−1, . . . , g0) ∈ C

nκ0

and

D̃κ0 =




D−κ0 D−κ0+1 · · · D1

0
. . . . . .

...
...

. . . . . . D−κ0+1

0 · · · 0 D−κ0


 ∈ C

nκ0×nκ0 . (2.17)

Since we have ∆(λ)∆−1(λ) ≡ I in a neighborhood of λ0, we get from
Lemma 2.6 (observe that the matrices appearing in the main and the
upper diagonals of ∆̃κ0D̃κ0 are the coefficient matrices of λ−κ0 , . . . , λ−1

in the series expansion ∆(λ)∆−1(λ) ≡ I around λ0 which are all zero,
of course)

∆̃κ0D̃κ0 = 0. (2.18)

This together with (2.16) implies

∆̃κ0 c̃κ0 = 0,

which in view of Proposition 2.1 proves the result.
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If we take g(λ) = p(λ; φ), then ∆−1(λ)p(λ; φ) is the Laplace-transform
of x(t; φ) (see Theorem 1.4, b)). We define πλ0 : C → Pλ0 by

πλ0φ = Res
λ=λ0

e0(λ)∆−1(λ)p(λ; φ), φ ∈ C.

This can also be written as

πλ0φ =
1

2πi

∫
Γ
e0(λ)∆−1(λ)p(λ; φ) dλ, (2.19)

where Γ is any positively oriented circle around λ0 such that there is no
other element of σ(L) on Γ or in its interior.

Lemma 2.16 Let λ0 ∈ σ(L) and φ ∈ C be given. Then we have
(
πλ0xt(φ)

)
(θ) = Res

λ=λ0

eλ(t+θ)∆−1(λ)p(λ; φ), −r ≤ θ ≤ 0, t ≥ 0.

Proof. Fix t ≥ 0 and define y(s) = x(s;xt(φ)) = x(t + s; φ), s ≥ 0.
According to the definition of πλ0 we have

(
πλ0xt(φ)

)
(θ) = Res

λ=λ0

eλθ∆−1(λ)p(λ; xt(φ)), −r ≤ θ ≤ 0.

A short calculation yields

ŷ(λ) = ∆−1(λ)p(λ; xt(φ)) =
∫ ∞

0
e−λτx(t + τ ; φ) dτ

= eλtx̂(λ; φ) − eλt

∫ t

0
e−λτx(τ ; φ) dτ.

The second term on the right-hand side of this equation is an entire
function. Therefore we have (observe that x̂(t; φ) = ∆−1(λ)p(λ; φ))

Res
λ=λ0

eλθ∆−1(λ)p(λ; xt(φ)) = Res
λ=λ0

eλ(t+θ)∆−1(λ)p(λ; φ), −r ≤ θ ≤ 0.

For λ0 ∈ σ(L), define the subspace Qλ0 by

Qλ0 = kerπλ0 .

Theorem 2.17 Let λ0 ∈ σ(L) be given.

a) πλ0 is a continuous projection C → Pλ0, i.e., π2
λ0

= πλ0 and range πλ0 =
Pλ0.

b) The subspace Pλ0 is invariant with respect to the solution semigroup
T in the sense that for any φ ∈ Pλ0 the solution x(t; φ) can be extended
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to (−∞,∞) and xt(φ) ∈ Pλ0 for t ∈ R. The subspace Qλ0 is positively
invariant with respect to T . Moreover, we have

C = Pλ0 ⊕ Qλ0 . (2.20)

c) The subspace Qλ0 is characterized as

Qλ0 = {φ ∈ C | x̂(λ) = ∆−1(λ)p(λ; φ) is holomorphic at λ0}.

d) We have

Qλ0 = range(A− λ0I)k for k = κ0, κ0 + 1, . . . ,

and range(A− λ0I)k
� Qλ0 for k = 0, . . . , κ0 − 1.

Proof. a) It is obvious that πλ0 is linear. In order to prove boundedness
we fix Γ in (2.19). By continuity of ∆−1(λ) on Γ there exists a constant
K > 0 such that

‖e0(λ)∆−1(λ)‖ ≤ K for λ ∈ Γ.

From Lemma 1.18, b), we get, for a constant M > 0,

|p(λ; φ)| ≤ M‖φ‖ for λ ∈ Γ.

Therefore we have (ρ = radius of Γ)

‖πλ0φ‖ ≤ 2πρKM‖φ‖, φ ∈ C.

In order to prove rangeπλ0 = Pλ0 we choose a φ ∈ Pλ0 . φ is given as
φ =

∑κ0−1
j=0 ej(λ0)bj . Then

x̂(λ; φ) =
κ0−1∑
j=0

(λ − λ0)−j−1bj ,

which gives

πλ0φ = Res
λ−λ0

e0(λ)
κ0−1∑
j=0

(λ − λ0)−j−1bj =
κ0−1∑
j=0

ej(λ0)bj = φ.

This proves range πλ0 = Pλ0 and π2
λ0

= πλ0 .
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b) For φ ∈ Pλ0 , φ =
∑κ0−1

j=0 ej(λ0)bj with ∆̃κ0(λ0)b̃κ0 = 0, the solution
exists on R. Together with its Laplace-transform it is given by

x(t; φ) = eλ0t
κ0−1∑
j=0

tj

j!
bj , t ∈ R,

x̂(λ; φ) =
κ0−1∑
j=0

(λ − λ0)−j−1bj , λ �= λ0.

By Lemma 2.16 we have

(
πλ0xt(φ)

)
(θ) = Res

λ=λ0

eλ(t+θ)x̂(λ; φ) = eλ0(t+θ)
κ0−1∑
j=0

(t + θ)j

j!
bj

= x(t + θ; φ) = xt(φ)(θ), −r ≤ θ ≤ 0, t ≥ 0.

This equation is also true for t < 0. Fix t < 0 and define y(s) =
x(t + s; φ) = x(s;xt(φ)), s ≥ 0. The Laplace-transform ŷ(λ) of y(s) is
given by

ŷ(λ) =
∫ ∞

0
e−λsx(t + s; φ) ds = eλt

∫ 0

t
e−λτx(τ ; φ) dτ + eλtx̂(λ; φ).

Since the first term on the right-hand side is entire, we get

Res
λ=λ0

eλθ∆−1(λ)p(λ; xt(φ)) = Res
λ=λ0

eλ(t+θ)∆−1p(λ; φ), −r ≤ θ ≤ 0.

Using this we get as in the case t ≥ 0 that πλ0xt(φ) = xt(φ).
In order to prove positive invariance of Qλ0 we use c), which is proved

below. Since x̂(λ; φ) = ∆−1(λ)p(λ; φ) for φ ∈ Qλ0 is holomorphic at λ0,
we get

Res
λ=λ0

eλ(t+θ)∆−1(λ)p(λ; φ) = 0 for all t ≥ 0 and −r ≤ θ ≤ 0.

This implies πλ0xt(φ) = 0 for all t ≥ 0, i.e., xt(φ) ∈ Qλ0 , t ≥ 0.
The representation (2.20) follows from C = range πλ0 ⊕range(I−πλ0).

c) If ∆−1(λ)p(λ; φ) is holomorphic at λ0, then obviously πλ0φ = 0, i.e.,
φ ∈ Qλ0 . Assume now that ∆−1(λ)p(λ; φ) has a pole of order κ, 0 <
κ ≤ κ0, at λ0. Then the Laurent series of ∆−1(λ)p(λ; φ) is of the form

(λ − λ0)−κq−κ + (λ − λ0)−κ+1q−κ+1 + · · ·

with q−κ �= 0. This implies

πλ0φ = Res
λ=λ0

e0(λ)∆−1(λ)p(λ; φ) = eκ−1(λ0)q−κ + · · · + e0(λ0)q−1 �≡ 0,



Autonomous Functional Differential Equations 95

i.e., φ /∈ Qλ0 .
d) Let ψ = (A− λ0I)kφ for some φ ∈ domAk, i.e.,

ψ =
k∑

j=0

(
k

j

)
(−1)k−jλk−j

0 φ(j). (2.21)

It is easy to see that φ ∈ domA implies that x(t; φ) is continuously
differentiable on [−r,∞) and ẋ(t; φ) = x(t; φ̇). By induction we see that
φ ∈ domAk implies that x(t; φ) is k-times continuously differentiable on
[−r,∞) and x(k)(t; φ) = x(t; φ(k)). Taking Laplace-transforms we get
(observe Theorem A.3)

x̂(λ; φ(k)) = ∆−1(λ)p(λ; φ(k)) = λk∆−1(λ)p(λ; φ) −
k−1∑
i=0

λiφ(k−1−i)(0).

This and (2.21) imply

∆−1(λ)p(λ; ψ) =
k∑

j=0

(
k

j

)
(−1)k−jλk−j

0 ∆−1(λ)p(λ; φ(j))

=
( k∑

j=0

(
k

j

)
(−1)k−jλk−j

0 λj
)
∆−1(λ)p(λ; φ) + hk(λ; φ)

= (λ − λ0)k∆−1(λ)p(λ; φ) + hk(λ; φ),

where hk(λ; φ) is holomorphic at λ0. If k ≥ κ0 we see that ∆−1(λ)p(λ; ψ)
is holomorphic at λ0, i.e., ψ ∈ Qλ0 by part c).

If ψ ∈ Qλ0 , then q(λ) = ∆−1(λ)p(λ; ψ) is holomorphic at λ0. There-
fore we have p(λ; ψ) = ∆(λ)q(λ) in a neighborhood of λ0 or, equivalently,

i∑
j=0

1
j!

∆(j)(λ0)qi−j = pi(λ0; ψ), i = 0, 1, . . . ,

where q(λ) =
∑∞

i=0(λ − λ0)iqi. This shows that equation (2.4) has the
solution b̃k = − col(qk−1, . . . , q0) for any k = 1, 2, . . . . By Theorem 2.10
this implies ψ ∈

⋂∞
k=1 range(A−λ0I)k. This finishes the proof of Qλ0 =

range(A− λ0I)k, k = κ0, κ0 + 1, . . . .
Suppose that range(A− λ0I)k = Qλ0 for a k < κ0. Take φ ∈ ker(A−

λ0I)κ0 such that ψ = (A − λ0I)kφ �= 0. Note that ker(A − λ0I)k
�

ker(A− λ0I)κ0 for k = 0, . . . , κ0 − 1. Then ψ ∈ range(A− λ0I)k = Qλ0

and ψ ∈ ker(A−λ0I)κ0−k ⊂ Pλ0 which by C = Pλ0 ⊕Qλ0 implies ψ = 0,
a contradiction.
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For the nonhomogeneous equation we have:

Proposition 2.18 Let x(t) = x(t; 0, f), t ≥ 0, be the solution of (1.3),
(1.4) with φ ≡ 0 and f ∈ L1

loc(0,∞; Cn). Then we have
(
πλ0xt(0, f)

)
(θ) = Res

λ=λ0

eλ(t+θ)∆−1(λ)f̂(λ; t) (2.22)

for −r ≤ θ ≤ 0, t ≥ 0, where

f̂(λ; t) =
∫ t

0
e−λτ)f(τ) dτ, t ≥ 0.

Proof. We fix t1 > 0 and define f(t; t1) = f(t) for 0 ≤ t ≤ t1 and = 0
for t > t1. Since y(t) = x(t + t1; 0, f(·; t1)), t ≥ 0, is the solution of the
homogeneous problem (1.1), (1.2) with φ = xt1(0, f), the definition of
πλ0 implies

πλ0xt1(0, f) = Res
λ=λ0

e0(λ)ŷ(λ),

where the Laplace-transform ŷ(λ) is given by

ŷ(λ) =
∫ ∞

0
e−λty(t) dt

= eλt1

∫ ∞

0
e−λtx(t; 0, f(·; t1)) dt − eλt1

∫ t1

0
e−λtx(t; 0, f(·; t1)) dt

= eλt1∆−1(λ)f̂(λ; t1) − eλt1

∫ t1

0
e−λtx(t; 0, f(·; t1)) dt,

where we have used (1.30). The result now follows, because the second
term on the right-hand side is holomorphic at zero.

If, for the matrices Dj , j = −κ0, . . . ,−1, we define

D(t) = eλ0t
κ0−1∑
j=0

tj

j!
D−j−1, t ∈ R, (2.23)

then (2.18) implies that the columns of D(t) are generalized eigenfunc-
tions of equation (1.1) and correspondingly the columns of Dt are in Pλ0 .
Furthermore, we have

Dt(θ) = Res
λ=λ0

eλ(t+θ)∆−1(λ), −r ≤ θ ≤ 0, t ≥ 0. (2.24)

Since ∆−1(λ) is the Laplace-transform of the fundamental matrix Y (t),
Dt can be considered as the projection of Yt into Pλ0 ,

πλ0Yt = Dt, t ≥ 0.
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Note however, that the columns of Yt are not in C for 0 ≤ t < r. We set
f̃κ0(t) = col(fκ0−1(t), . . . , f0(t)), where

fj(t) =
1
j!

dj

dλj
f̂(λ; t) |λ=λ0=

(−1)j

j!

∫ t

0
τ je−λ0τf(τ) dτ, j = 0, . . . , κ0−1,

and
g̃κ0(t) = col(g0(t), . . . , gκ0−1(t)) = D̃κ0 f̃κ0(t). (2.25)

With these notations we get

(
πλ0xt(0, f)

)
(θ) = eλ0(t+θ)

κ0−1∑
j=0

(t + θ)j

j!
gj(t).

Equation (2.25) implies

gj(t) =
κ0−1∑
k=j

D−k−1fk−j(t)

=
∫ t

0
eλ0t

(κ0−1∑
k=j

D−k−1
(−τ)k−j

(k − j)!

)
f(τ) dτ, j = 0, . . . , κ0 − 1, t ≥ 0.

With these expressions we get for πλ0xt(0, f)

(
πλ0xt(0, f)

)
(θ) =

∫ t

0
eλ0(t+θ−τ)

(κ0−1∑
j=0

κ0−1∑
k=j

D−k−1
(−τ)k−j(t + θ)j

(k − j)!j!

)
f(τ) dτ

=
∫ t

0
eλ0(t+θ−τ)

(κ0−1∑
k=0

1
k!

D−k−1

k∑
j=0

k!
(k − j)!j!

(t + θ)j(−τ)k−j
)
f(τ)dτ

=
∫ t

0
eλ0(t+θ−τ)

(κ0−1∑
k=0

(t − τ + θ)k

k!
D−k−1

)
f(τ) dτ

=
∫ t

0
Dt−τ (θ)f(τ) dτ, −r ≤ θ ≤ 0, t ≥ 0.

For the solution of the homogeneous problem (1.1), (1.2) we get from
Lemma 2.16 and the proof of Proposition 2.15

(
πλ0xt(φ)

)
(θ) = eλ0(t+θ)

κ0−1∑
j=0

t + θ)j

j!
cj , −r ≤ θ ≤ 0, t ≥ 0, (2.26)

where

cj = D−j−1p0 + · · · + D−κ0pκ0−j−1, j = 0, . . . , κ0 − 1,
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and

pj =
1
j!

dj

dλj
p(λ; φ)

∣∣
λ=λ0

=




φ(0) +
∫ 0

−r
[dη(θ)]

∫ 0

θ
eλ0(θ−τ)φ(τ) dτ

for j = 0,
1
j!

∫ 0

−r
[dη(θ)]

∫ 0

θ
(θ − τ)jeλ0(θ−τ)φ(τ) dτ

for j = 1, 2, . . . .

Using Fubini’s theorem we get
∫ 0

−r
[dη(s)]

∫ 0

s
(s − τ)jeλ0(s−τ)φ(τ) dτ =

∫ 0

−r
τ jeλ0τ

(∫ τ

−r
[dη(s)]φ(s − τ)

)
dτ

=
∫ r

0
(−τ)je−λ0τL(φτ ) dτ, j = 0, 1, . . . .

Equation (2.26) implies

(
πλ0xt(φ)

)
(θ) = eλ0(t+θ)

κ0−1∑
j=0

(t + θ)j

j!
D−j−1φ(0) + eλ0(t+θ)

κ0−1∑
j=0

(t + θ)j

j!

×
κ0−1∑
k=j

1
(k − j)!

D−k−1

∫ r

0
(−τ)k−je−λ0τL(φτ ) dτ

= D(t + θ)φ(0) +
∫ r

0
eλ0(t−τ+θ)

κ0−1∑
k=0

1
k!

(t − τ + θ)kD−k−1L(φτ ) dτ

= Dt(θ)φ(0) +
∫ r

0
Dt−τ (θ)L(φτ ) dτ, −r ≤ θ ≤ 0, t ≥ 0.

Thus we have established the following result:

Proposition 2.19 Let φ ∈ C, f ∈ L1
loc(0,∞; Cn) and λ0 ∈ σ(L) be

given. Then we have

πλ0xt(φ, f) = Dtφ(0) +
∫ r

0
Dt−τL(φτ ) dτ

+
∫ t

0
Dt−τf(τ) dτ, t ≥ 0.

(2.27)

In particular we have, for φ ∈ C,

(
πλ0φ

)
(θ) = D(θ)φ(0) +

∫ r

0
D(−τ + θ)L(φτ ) dτ, −r ≤ θ ≤ 0.



Autonomous Functional Differential Equations 99

Remark. The above result shows that the projection πλ0xt(φ, f) is
formally obtained from (1.28) and (1.31) by applying the projection πλ0

and observing that πλ0Yt = Dt, t ≥ 0. Furthermore, equation (2.27)
for f ≡ 0 allows to define the continuation of z(t) =

(
πλ0xt(φ)

)
(0) to

negative t.

Since Pλ0 is invariant with respect to the solution semigroup T and is
finite dimensional, the restriction of T to Pλ0 is generated by a bounded
linear operator, i.e., is the solution semigroup of an ordinary differential
equation, which we shall compute below.

Let b̃ν
κ0

, ν = 1, . . . , k0, be a basis for ker ∆̃κ0(λ0). Then (see the proof
of Proposition 2.3, b)) the functions

φ(ν) =
κ0−1∑
j=0

ej(λ0)bν
j , ν = 1, . . . , k0,

where b̃ν
κ0

= col(bν
0 , . . . , b

ν
κ0−1), constitute a basis for Pλ0 . We define

Φ̃κ0 = (b̃1
κ0

, . . . , b̃k0
κ0

) ∈ C
nκ0×k0 ,

Φj = (b1
j , . . . , b

k0
j ) ∈ C

n×k0 , j = 0, . . . , κ0,

Φλ0(θ) =
(
φ(1)(θ), . . . , φ(k0)(θ)

)
, −r ≤ θ ≤ 0.

Then we have Φλ0 =
∑κ0−1

j=0 ej(λ0)Φj and Φ̃κ0 = col (Φ0, . . . ,Φκ0−1).
For φ ∈ Pλ0 let a ∈ Ck0 be the coordinate vector of φ with respect to

the basis φ(1), . . . , φ(k0), i.e.,

φ = Φλ0a =
κ0−1∑
j=0

ej(λ0)Φja.

On the other hand we have

φ = πλ0φ = Res
λ=λ0

e0(λ)∆−1(λ)p(λ; φ) =
κ0−1∑
j=0

ej(λ0)cj with c̃κ0 = D̃κ0 p̃κ0 ,

where c̃κ0 = col(c0, . . . , cκ0−1), p̃κ0 = col(pκ0−1, . . . , p0) (see (2.26) for
θ = 0). This implies cj = Φja, j = 0, . . . , κ0 − 1, or equivalently

Φ̃κ0a = D̃κ0 p̃κ0 . (2.28)

Note that rank Φ̃κ0 = k0, so that (2.28) has a unique solution.
From Pλ0 = ker(A− λ0I)κ0 and (A− λ0I)κ0Aφ = (A− λ0I)κ0+1φ +

λ0(A−λ0I)κ0φ for φ ∈ Pλ0 we see immediately that APλ0 ⊂ Pλ0 .
4 This

4This also follows from S(t)Pλ0 ⊂ Pλ0 , t ≥ 0 (compare Theorem 2.17, b)), of course.
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implies

AΦλ0 = λ0Φλ0 +
κ0−2∑
j=0

ej(λ0)Φj+1 = Φλ0Bλ0

for some k0 × k0-matrix Bλ0 . This equation is equivalent to

Φ̃κ0Bλ0 = λ0Φ̃κ0 +




Φ1
...

Φκ0−1

0


 , (2.29)

which can be uniquely solved for Bλ0 . Since Dt ∈ Pλ0 , t ∈ R (see (2.24)),
we have

Dt = Φλ0H(t), t ∈ R,

for an n × k0-matrix H(t). From

d

dt
D(t + θ) = Φλ0(θ)Ḣ(t) =

d

dθ
D(t + θ) =

d

dθ
Φλ0(θ)H(t)

= φλ0(θ)Bλ0H(t), t ∈ R, −r ≤ θ ≤ 0,

we get Ḣ(t) = Bλ0H(t), t ∈ R, i.e.,

H(t) = eBλ0
tHλ0 , t ∈ R,

where Hλ0 is determined by D(θ) = Φλ0(θ)Hλ0 , −r ≤ θ ≤ 0.

Theorem 2.20 Let λ0 ∈ σ(L) and a basis Φλ0 of Pλ0 be given. For φ ∈
C and f ∈ L1

loc(0,∞; Cn) let y(t) be the coordinate vector of πλ0xt(φ, f)
with respect to Φλ0, i.e., πλ0xt(φ, f) = Φλ0y(t), t ≥ 0. Then y(t) is the
solution of

ẏ(t) = Bλ0y(t) + Hλ0f(t), t ≥ 0,

y(0) = a,
(2.30)

where πλ0φ = Φλ0a. The coordinate vector a of πλ0φ can be computed
from

Φ̃κ0a = D̃κ0 p̃κ0 ,

where p̃κ0 = col(pκ0−1, . . . , p0), pj = dj

dλj p(λ; φ) |λ=λ0, j = 0, . . . , κ0 − 1.
The matrix Bλ0 is the solution of (2.29) and Hλ0 solves

Φ̃κ0Hλ0 =




D−1
...

D−κ0


 .
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Proof. From Proposition 2.19 and the definition of H(t) we see that

πλ0φ = Φλ0

(
Hλ0φ(0) +

∫ r

0
e−Bλ0

τHλ0L(φτ ) dτ
)
,

so that a = Hλ0φ(0) +
∫ r
0 e−Bλ0

τHλ0L(φτ ) dτ . Equation (2.27) implies

Φλ0y(t) = Φλ0e
Bλ0

t
(
Hλ0φ(0) +

∫ r

0
e−Bλ0

τHλ0L(φτ ) dτ
)

+ Φλ0

∫ t

0
eBλ0

(t−τ)Hλ0f(τ) dτ, t ≥ 0,

i.e., y(t) = eBλ0
ta +

∫ t
0eBλ0

(t−τ)Hλ0f(τ) dτ , which proves (2.30).
The equation for a given in the theorem is just (2.28). The equation

for Hλ0 follows from

D(θ) =
κ0−1∑
j=0

ej(λ0)(θ)D−j−1 = Φλ0Hλ0 =
κ0−1∑
j=0

ej(λ0)(θ)φjHλ0

for −r ≤ θ ≤ 0 or, equivalently,

D−j−1 = ΦjHλ0 , j = 0, . . . , κ0 − 1.

2.3 Exponential dichotomy of the state space
According to Corollary 1.17 the set

Λα = {λ ∈ σ(L) | Re λ ≥ α} (2.31)

is finite for any α ∈ R. Let λ1, . . . , λN be the elements in Λα and denote
by ki the multiplicity of λi, i = 1, . . . , N . We set

PΛα =
N⋃

i=1

Pλi , QΛα =
N⋂

i=1

Qλi . (2.32)

Then C = PΛα ⊕ QΛα and (see Theorem 2.17,c))

QΛα =
{
φ ∈ C | ∆−1(λ)p(λ; φ) is holomorphic for Reλ ≥ α

}
.

If we define

ΦΛα =
(
Φλ1 , . . . ,ΦλN

)
, where φλi is a basis for Pλi , i = 1, . . . , N ,

BΛα = diag
(
Bλ1 , . . . , BλN

)
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and, for φ ∈ PΛα , y(t) ∈ C
k1+···+kN by

xt(φ) = ΦΛαy(t), t ∈ R, (2.33)

then y(t) solves

ẏ(t) = BΛαy(t), t ∈ R, ΦΛαy(0) = φ.

From Corollary 1.17 it also follows that there exists a γ > 0 such that

Re λ ≤ α − 2γ for all λ ∈ σ(L) \ Λα.

This implies (see Definition 1.19) that

ωL,φ ≤ α − 2γ for all φ ∈ QΛα .

Let φ ∈ QΛα be such that ωL,φ = maxψ∈QΛα
ωL,ψ. Then according to

Theorem 1.21, b) there exists a constant K = K(α, γ) ≥ 1 such that

|x(t; ψ)| ≤ K‖ψ‖e(ωL,φ+γ)t ≤ K‖ψ‖e(α−γ)t, t ≥ 0, ψ ∈ QΛα .

This implies (with K̃ = K max(1, e−(α−γ)r))

‖xt(ψ)‖ ≤ K̃‖ψ‖e(α−γ)t, ψ ∈ QΛα , t ≥ 0.

The only eigenvalues of BΛα are λ1, . . . , λN . Therefore, for any γ > 0,
there exists a K1 ≥ 1 such that

|y(t)| ≤ K1|y(0)|e(α−γ)t, t ≤ 0, (2.34)

where y(t) is defined in (2.33). If we define the norm on C
k1+···+kN by

|z| = ‖Φαz‖, then (2.34) is equivalent to

‖xt(φ)‖ ≤ K1‖φ‖e(α−γ)t, φ ∈ PΛα , t ≤ 0.

Thus we have proved the following theorem:

Theorem 2.21 For α ∈ R let Λα and QΛα, PΛα be defined by (2.31) and
(2.32), respectively. Furthermore, define the projection πΛα : C → PΛα

by

πΛαφ =
N∑

i=1

πλiφ, φ ∈ C.

Then there exist constants γ > 0 and K = K(α, γ) ≥ 1 such that, for
any φ ∈ C,

‖πΛαxt(φ)‖ ≤ K‖πΛαφ‖e(α−γ)t, t ≤ 0, (2.35)

‖(I − πΛα)xt(φ)‖ ≤ K‖(I − πΛα)φ‖e(α−γ)t, t ≥ 0. (2.36)
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In many cases Theorem 2.21 allows to reduce a problem for functional
differential equations to a problem for ordinary differential equations. As
an example we prove below a characterization of stability resp. asymp-
totic stability for equations (1.1) which parallels the corresponding result
for ordinary differential equations.

Definition 2.22 a) Equation (1.1) is called stable if and only if there
exists a constant K ≥ 1 such that, for all φ ∈ C,

‖xt(φ)‖ ≤ K‖φ‖, t ≥ 0.

b) Equation (1.1) is called asymptotically stable if and only if it is
stable and

lim
t→∞

‖xt(φ)‖ = 0 for all φ ∈ C.

c) Equation (1.1) is called exponentially stable if there exist constants
K ≥ 1 and β > 0 such that, for all φ ∈ C,

‖xt(φ)‖ ≤ K‖φ‖e−βt, t ≥ 0.

Theorem 2.23 a) Equation (1.1) is stable if and only if for all eigen-
values λ0 ∈ σ(L) the following two conditions are satisfied:

(i) Re λ0 ≤ 0.

(ii) If Re λ0 = 0 then all subspaces of Pλ0 which are cyclic with respect
to A are one-dimensional, i.e., either

k0 < n and rank ∆(λ0) = n − k0

or
k0 = n, ∆(λ0) = 0 and rank ∆′(λ0) = n

(k0 is the multiplicity of λ0).

In case of the scalar n-th order equation (2.14) condition (ii) can be
replaced by

(ii′) Re λ0 = 0 and λ0 is a simple root of det∆(λ).

b) Equation (1.1) is asymptotically stable if and only if it is exponentially
stable, which is the case if and only if condition (i) is satisfied.

Proof. We choose α = 0 in Theorem 2.21. If all eigenvalues satisfy
condition (i), then Λ0 = ∅, i.e., (I − πΛ0)xt(φ) = xt(φ), t ≥ 0, and
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the inequality (2.36) implies exponential stability. If on the other hand
(1.1) is asymptotically stable, then (i) must hold. Indeed, if Reλ0 is
an eigenvalue, then there exists a solution of the form beλ0t with b �= 0
satisfying ∆(λ0)b = 0. Asymptotic stability implies Re λ0 < 0.

If Λ0 �= ∅ and (ii) holds, then there is a finite number of eigenvalues on
the imaginary axis. The solution with initial function φ ∈ Pλ0 is bounded
on t ≥ 0 if and only if all cyclic subspaces of Pλ0 are one-dimensional.
Then the result on stability follows immediately from Proposition 2.13,
a).

3. Small Solutions and Completeness

3.1 Small solutions
We define the subspaces

Q =
⋂

λ∈σ(L)

Qλ and P =
⊕

λ∈σ(L)

Pλ

of C. From invariance of Qλ and Pλ it follows that the closed subspaces
Q and P are positively invariant with respect to the solution semigroup
T .5

In this section we shall investigate solutions of problem (1.1), (1.2)
with φ ∈ Q. Obviously we have

Q =
⋂
α∈R

QΛα .

Let φ ∈ Q be given. Then Theorem 2.21 implies that for any α ∈ R

there exists a constant K = K(α) ≥ 1 with

|x(t; φ)| ≤ ‖xt(φ)‖ ≤ K‖φ‖eαt, t ≥ 0.

This is equivalent to

ωL,φ = lim sup
t→∞

1
t

ln |x(t; φ)| = lim
t→∞

1
t

ln |x(t; φ)| = −∞

respectively to limt→∞ eβtx(t; φ) = 0 for all β ∈ R. This motivates the
following definition:

5Note that P itself is invariant in the sense of Theorem 2.17, b).
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Definition 3.1 A solution x(t; φ) of problem (1.1), (1.2) is called a
small solution if and only if x(·;φ) �≡ 0 on [−r,∞) and

lim
t→∞

eβtx(t; φ) = 0 for all β ∈ R.

From the considerations before Definition 3.1 and the obvious fact
that the Laplace-transform of a small solution is an entire function it
follows that Q is the subspace of initial values for small solutions of
equation (1.1). It is easy to see that there exist equations with Q �= ∅.
Take for instance

ẋ(t) = Ax(t − 1), t ≥ 0,

with an n × n-matrix A such that A �= 0 and A2 = 0 (which implies
n ≥ 2). We choose

φ(θ) =
1
2
Ab + bθ, −r ≤ θ ≤ 0,

where Ab �= 0. Note that φ(θ) �= 0 on [−r, 0], because φ(θ0) = 0 would
imply Ab = −1

2θ0b. But A does not have nonzero eigenvalues and Ab �=
0. So neither θ0 < 0 nor θ0 = 0 is possible. On [0, 1] the solution is given
by

x(t; φ) = φ(0) +
∫ t

0
Aφ(τ − 1) dτ =

1
2
Ab(t − 1)2, 0 ≤ t ≤ 1,

which shows x(t; φ) �= 0 on [0, 1). On [1, 2] we have

x(t; φ) = x(1;φ) +
∫ t

1
Ax(τ − 1; φ) dτ

=
1
2
A2b

∫ t

1
(τ − 2)2dτ = 0, 1 ≤ t ≤ 2.

This implies x(t; φ) = 0 for t ≥ 1 and consequently φ ∈ Q.
The main result of this section is that all small solutions of equations

of the form (1.1) behave like the solution constructed in the example
above.

Theorem 3.2 Let φ ∈ C, φ �= 0, be given. Then the following is true:

a) x(t; φ) is a small solution of equation (1.1) if and only if there exists
a t1 > −r such that x(t; φ) = 0 for all t ≥ t1.

b) Define the numbers

ξ = lim sup
ρ→∞

1
ρ

ln |det∆(−ρ)|

σ = lim sup
ρ→∞

1
ρ

ln | adj ∆(−ρ)|.
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If x(t; φ) is a small solution of equation (1.1) then the number

tφ = min
{
t1 | x(t; φ) = 0 for all t ≥ t1

}

is given by

tφ = lim sup
ρ→∞

1
ρ

ln
∣∣adj ∆(−ρ)q(−ρ; φ)

∣∣− ξ, (3.1)

where

q(λ; φ) = φ(0)−
∫ 0

−r
[dη(θ)]

∫ θ

−r
eλ(θ−τ)φ(τ) dτ+λ

∫ 0

−r
e−λτφ(τ) dτ, λ ∈ C.

Moreover, we have the estimate

−r < tφ ≤ σ − ξ. (3.2)

Proof. a) If x(t; φ) = 0 for t ≥ t1 > −r, then trivially it is a small solu-
tion. Conversely let x(t; φ) be a small solution, i.e., φ ∈ Q or equivalently
∆−1(λ)p(λ; φ) is entire. From (1.11) we get the estimate

∣∣∣
∫ 0

−r
eλθdηij(θ)

∣∣∣ ≤ e|λ|rvar[−r,0]ηij , λ ∈ C.

Therefore we have
∣∣adj ∆(λ)

∣∣ ≤ a0e
|λ|(n−1)r and |det∆(λ)| ≤ a1e

|λ|nr, λ ∈ C, (3.3)

with positive constants a0 and a1. For p(λ; φ) we obtain (compare the
proof of the estimate (1.40))

|p(λ; φ)| ≤
(
1 + �re|λ|r

)
‖φ‖, λ ∈ C.

Thus the functions adj ∆(λ)p(λ; φ) and det∆(λ) are entire functions of
exponential type. Since the quotient ∆−1(λ)p(λ; φ) is also entire, it is
also of exponential type by Proposition B.2.

By Lemma 1.18 we have the estimate

|∆−1(λ)p(λ; φ)| ≤ K‖φ‖ 1
|ω| + 1

, ω ∈ R,

which shows that x̂(iω; φ) = ∆−1(iω)p(iω; φ) is square integrable on R.
An application of Theorem B.6 proves the result in case x̂(λ; φ) �≡ 0. If
x̂(λ; φ) ≡ 0, then x(t; φ) ≡ 0 on t ≥ 0 by Theorem A.1.

b) Theorem B.6 applied to x̂(λ; φ) gives also a precise characterization
of the minimal interval which contains the support of x(t; φ), i.e., of
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tφ > 0, in case x̂(λ; φ) �≡ 0. Since we want to characterize tφ also for
small solutions with tφ < 0, we have to investigate the Laplace-transform
of y(t) = x(t − r; φ), t ≥ 0. An easy calculation shows that

ŷ(λ) = e−λrx̂(λ; φ) + e−λr

∫ 0

−r
e−λτφ(τ) dτ,

which can be written as

ŷ(λ) = e−λr∆−1(λ)q(λ; φ),

where

q(λ; φ) = p(λ; φ) + ∆(λ)
∫ 0

−r
e−λτφ(τ) dτ

= φ(0) −
∫ 0

−r
[dη(θ)]

∫ θ

−r
eλ(θ−τ)φ(τ) dτ + λ

∫ 0

−r
e−λτφ(τ) dτ.

Since x̂(λ; φ) is an entire function of exponential type, the same is true
for ŷ(λ). Moreover, ŷ(λ) �≡ 0, because φ �≡ 0. Since x(t; φ) is a small
solution, the function y(t) has compact support on [0,∞). Theorem B.6
implies that y(t) = x(t − r; φ) = 0 for t ≥ t0, where

t0 = hŷ(π) = lim sup
ρ→∞

1
ρ

ln erρ|∆−1(−ρ)q(−ρ; φ)|

= r + lim sup
ρ→∞

1
ρ

ln |∆−1(−ρ)q(−ρ; φ)|.

The number t0 cannot be replaced by a smaller one. This proves

tφ = t0 − r = lim sup
ρ→∞

1
ρ

ln |∆−1(−ρ)q(−ρ; φ)|.

In the remaining part of the proof we show that the exponential type
ξ of det ∆(−ρ) can be split off in the formula for tφ. We shall need the
following estimates:

|det∆(iω)| = O(|ω|n) as |ω| → ∞,

|adj ∆(iω)| ≤ O(|ω|n−1) as |ω| → ∞,
|q(iω; φ)| ≤ O(|ω|) as |ω| → ∞.

The first two estimates are immediate consequences of (1.11) for Re λ =
0 and the definition of ∆(λ). The third estimate follows from

|q(iω; φ)| ≤
(
1 + �r + |ω|r

)
‖φ‖, ω ∈ R.
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The above estimates show that the integrals
∫ ∞

−∞

ln+ |det ∆(iω)|
1 + ω2

dω and
∫ ∞

−∞

ln+ |g(iω)|
1 + ω2

dω

exist, where we have set

g(λ) = adj ∆(λ)q(λ; φ).

By Theorem B.5 the indicator functions of det ∆(λ) and g(λ) are given
by

hdet ∆(λ)(α) = −hdet∆(λ)(π) cos α,

hg(λ)(α) = −hg(λ)(π) cos α

for π/2 ≤ α ≤ 3π/2. Moreover, for a dense subset of [π/2, 3π/2] the
‘lim sup’ in the definition of the indicator function can be replaced by
‘lim’. This shows that for α in a dense subset of [π/2, 3π/2] we have

lim sup
ρ→∞

1
ρ

ln
∣∣∆−1(−ρ)q(−ρ; φ)

∣∣ = lim sup
ρ→∞

1
ρ

ln
∣∣∣ 1
det ∆(ρeiα)

g(ρeiα)
∣∣∣

= lim sup
ρ→∞

1
ρ

(
ln |g(ρeiα)| − ln |det∆(ρeiα)|

)

= lim sup
ρ→∞

1
ρ

ln |g(ρeiα)| − lim
ρ→∞

ln |det∆(ρeiα)|

= −
(
hg(λ)(π) − hdet ∆(λ)(π)

)
cos α.

This implies that

lim sup
ρ→∞

1
ρ

ln
∣∣∆−1(−ρ)q(−ρ; φ)

∣∣ = hg(λ)(π) − hdet ∆(λ)(π),

which is equation (3.1). It remains to prove the estimate (3.2). We have

hg(λ)(π) ≤ lim sup
ρ→∞

1
ρ

ln |adj ∆(−ρ)| + lim sup
ρ→∞

1
ρ

ln |q(−ρ; φ)|

≤ σ + 0,

where we have used (3.3) and

|q(−ρ; φ)| ≤
(
1 + �r + ρr

)
‖φ‖, ρ > 0.
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3.2 Completeness of generalized eigenfunctions
The subspace Q of initial functions for small solutions of equation (1.1)

is of central importance for the problem of completeness of generalized
eigenfunctions of equation (1.1) in C.

Definition 3.3 We say that the generalized eigenfunctions of equation
(1.1) are complete in C if and only if

P = C,

i.e., for any φ ∈ C there exists a sequence ψn, n = 1, 2, . . . , such that
each ψn is a finite sum of generalized eigenfunctions of equation (1.1)
and ‖φ − ψn‖ → 0 as n → ∞.

The following result on kerT (t) is easy to prove:

Proposition 3.4 Let

ξ = lim sup
ρ→∞

1
ρ

ln |det ∆(−ρ)| and σ = lim sup
ρ→∞

1
ρ

ln | adj ∆(−ρ)|.

Then we have
ker T (t) = Q for all t ≥ σ − ξ.

Proof. If φ ∈ ker T (t1) for a t1 ≥ 0, then T (t)φ = T (t−t1)T (t1)φ = 0 for
all t ≥ t1, i.e., x(t; φ) is a small solution of equation (1.1) and therefore we
have φ ∈ Q. On the other hand, from (3.2) it is obvious that Q ⊂ ker T (t)
for t ≥ σ − ξ.

An analogous result on the range of T (t) is much more difficult to
prove:

Theorem 3.5 Let ξ and σ be defined as in Proposition 3.4. Then we
have

range T (t) = P for all t ≥ σ − ξ. (3.4)

For a proof of this theorem we refer to [12, Section 7.8] and the lit-
erature quoted there. The proof is based on duality theory for equation
(1.1) and the fact that the existence of small solutions to the equation
which corresponds to the adjoint semigroup can be characterized in the
same way as for (1.1). Moreover, in [12] it is proved that α = σ − ξ is
the exact number such that (3.4) holds for t ≥ α.

An immediate consequence of Theorem 3.5 is the following character-
ization of completeness:

Corollary 3.6 The eigenfunctions of (1.1) are complete in C if and
only if Q = {0}, which in turn is equivalent to ξ = nr.
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4. Degenerate delay equations

4.1 A necessary and sufficient condition
In this section we restrict ourselves to degenerate equations of type

(1.1) and refer for non-autonomous equations to [18] for results and
literature. L. Weiss considered in his 1967 paper [30] controllability
and in particular null-controllability for linear control systems with time
delay in the state equation. For ODE-systems a necessary and sufficient
condition for null-controllability is that a certain matrix – the so called
controllability Grammian – has full rank. For delay systems of retarded
type this condition is only sufficient. The proof of necessity would require
that the solutions of the delay equation at any time t ≥ 0 span all of R

n,
a property which for ODE-systems clearly is satisfied. Simple examples
(see for instance [10, p. 41]) show that there exist non-autonomous linear
scalar equations such that all solutions are zero after some fixed time-
interval. L. Weiss posed the question if an analogous phenomenon is
also possible for equations of the form

ẋ(t) = A0x(t) + A1x(t − r)

More precisely, the question is, if there exists a t1 > 0 and a vector
q ∈ R

n, q �= 0, such that qTx(t; φ) = 0 for all solutions of the difference-
differential equation and all t ≥ t1.

In this chapter we only present a few important fact on degenerate
systems and refer to [18], [19] for further results, for references and
constructions of degenerate systems. Some parts of the treatment of
the degeneracy problem parallel the investigations of small solutions
in Section 10. For the rest of the chapter we assume that the delay
equations we consider have complex valued right-hand sides.

Definition 4.1 System (1.1) is called degenerate if and only if there
exists a vector q ∈ C

n \ {0} such that6

lim
t→∞

q∗eγtx(t; φ) = 0 for all γ ∈ R and all φ ∈ C. (4.1)

If this condition holds, we call system (1.1) degenerate with respect
to q.

A first result is the following:

6For a vector a ∈ C
n resp. a matrix A ∈ C

n×n the conjugate transposed is denoted by a∗

resp. by A∗.
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Proposition 4.2 System (1.1) is degenerate with respect to q ∈ C
n\{0}

if and only if

q∗∆−1(λ)p(λ; φ) is entire for all φ ∈ C. (4.2)

If this condition holds, then there exists a t1 > 0 such that q∗x(t; φ) = 0
for all φ ∈ C and all t ≥ t1. The smallest t1 with this properties is called
the degeneracy time of system (1.1).

Proof. Assume first that (4.1) holds and fix φ ∈ C. For any γ ∈ R we
have ∫ ∞

0
e−γt

∣∣q∗x(t; φ)
∣∣ dt =

∫ ∞

0
e(−γ+1)te−t

∣∣q∗x(t; φ)
∣∣ dt.

In view of (4.1) there exists an M > 0 with e(−γ+1)t|q∗x(t; φ)| ≤ M ,
t ≥ 0. This implies

∫ ∞

0
e−γt

∣∣q∗(t; φ)
∣∣ dt ≤ M.

Thus we have shown that the Laplace-integral for q∗x(t; φ) converges
absolutely for all λ ∈ C, i.e., q∗∆−1(λ)p(λ; φ) is entire.

Next assume that (4.2) holds. We cannot have q∗∆−1(λ)p(λ; φ) ≡ 0
for all φ ∈ C. Assume that this is the case. Then we have q∗x(t; φ) = 0
for all t ≥ 0, which for t = 0 implies q = 0, a contradiction. Choose
φ ∈ C such that q∗∆−1(λ)p(λ; φ) �≡ 0.

From Lemma 1.18 with α = 0 we get the estimate

∣∣q∗∆−1(λ)p(λ; φ)
∣∣ ≤ |q|const.

|λ| ‖φ‖

for Re λ ≥ 0 and |λ| sufficiently large. This proves that q∗∆−1(λ)p(λ; φ)
is square-integrable on λ = iω, ω ∈ R. Then the Paley-Wiener theorem
(see Theorem B.6) implies that there exists a tφ > 0 such that

q∗x(t; φ) = 0 for t ≥ tφ.

The number tφ is given by

tφ = lim sup
ρ→∞

1
ρ

ln
∣∣q∗∆−1(−ρ)p(−ρ; φ)

∣∣

and cannot be replaced by a smaller number. As in the proof of Theo-
rem 3.2 we see that

tφ = lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)p(−ρ; φ)

∣∣− ξ,
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where ξ is defined in Theorem 3.2. Using the estimate

|p(−ρ; φ)| ≤
(
1 + reρr

)
‖φ‖ for ρ ≥ 0

we obtain

lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)p(−ρ; φ)

∣∣

≤ lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣+ lim sup
ρ→∞

1
ρ

ln
(
eρr(r + 1)‖φ‖

)

= lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣+ r.

Using the estimate (1.36) we easily get

lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣ ≤ (n − 1)r.

Thus we have established that

0 < tφ ≤ (n − 1)r + r − ξ = nr − ξ for all φ ∈ C.

The proof of Proposition 4.2 provides also an estimate for the degen-
eracy time:

0 < t1 ≤ nr. (4.3)

The following result will be improved below (see Corollary 4.5):

Corollary 4.3 If ξ = nr, then the equation (1.1) cannot be degenerate.

Proof. If system (1.1) is degenerate then (4.3) shows that ξ < nr.

In case equation (1.1) has the form

ẋ(t) =
m∑

j=0

Ajx(t − hj), 0 = h0 < · · · < hm = r, (4.4)

then the condition of the corollary is equivalent to

det Am �= 0.

The result of Proposition 4.2 has the disadvantage that it refers to
all initial functions φ ∈ C. In the following theorem we eliminate this
shortcoming.
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Theorem 4.4 (Kappel [18]) Let q ∈ C
n\{0} be given. Then equation

(1.1) is degenerate with respect to q if and only if

q∗∆−1(λ) is entire. (4.5)

Proof. In view of Proposition 4.2 it is clear that (4.5) is sufficient. In
order to prove necessity let us assume that q∗∆−1(λ) is not entire. Then
there exists a λ0 ∈ σ(L) such that λ0 is a pole also of q∗∆−1(λ). Choose
a function g(λ) which is holomorphic at λ0 and satisfies g(λ0) �= 0. Then
q∗∆−1(λ)g(λ) has a pole at λ0. Proposition 2.15 implies that

x(t) := Res
λ=λ0

eλt∆−1(λ)g(λ), t ∈ R,

is a generalized eigenfunction corresponding to λ0. From

q∗x(t) := Res
λ=λ0

eλtq∗∆−1(λ)g(λ), t ∈ R,

we see that q∗x(t) is not identically zero, because eλtq∗∆−1(λ)g(λ) has a
pole at λ0. Since q∗x(t) is real analytic it cannot have an accumulation
point in R of zeros. Consequently q∗x(t) cannot be zero for t ≥ t1. Thus
equation (1.1) is not degenerate.

Corollary 4.5 a) Let q ∈ C
n \ {0} be given. Then equation (1.1) is

degenerate with respect to q if and only if there exists a t1 > 0 such that7

q∗Y (t) = 0 for t ≥ t1. (4.6)

b) If ξ ≥ (n − 1)r then equation (1.1) is not degenerate.

Proof. Suppose (4.6) is true. For φ ∈ C we have (see Theorem 1.11)

x(t; φ) = Y (t)φ(0) +
∫ t

0
Y (t − τ)L(φτ ) dτ, t ≥ 0.

Using (4.6) we get for t ≥ t1 + r

q∗x(t; φ) =
∫ t

t−t1

q∗Y (t − τ)L(φτ ) dτ = 0,

because we have τ + θ > t − t1 − r ≥ 0, −r ≤ θ ≤ 0, and consequently
φτ = 0 for τ ∈ (t − t1, t].

If on the other hand equation (1.1) is degenerate with respect to
q, then according to Theorem 4.4 we have that q∗∆−1(λ) is entire.

7Y (·) denotes the fundamental matrix solution of (1.1).
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But q∗∆−1(λ) is of exponential type and square-integrable on λ = iω,
ω ∈ R. If q∗∆−1(λ) ≡ 0 then we have q∗Y (t) = 0 a.e. on [0,∞). By
continuity of Y (t) we get q∗ = q∗Y (0) = 0, a contradiction. There-
fore we can apply the Paley-Wiener theorem and get q∗Y (t) = 0 for
t ≥ td = lim supρ→∞(1/ρ) ln

∣∣q∗∆−1(−ρ)
∣∣. The number td cannot be

replaced by a smaller one. As in the proof for Theorem 3.2 we see that

td = lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣− ξ.

In order to prove b) we assume that ξ ≥ (n − 1)r. Since

lim sup
ρ→∞

(1/ρ) ln |q∗ adj ∆(−ρ)| ≤ (n − 1)r,

we get the estimate td ≤ (n−1)r−(n−1)r = 0. This implies q∗Y (t) = 0,
t ≥ −r. Taking t = 0 we get q = 0, i.e., system (1.1) cannot be
degenerate with respect to any q ∈ C

n \ {0}.
Theorem 4.4 is the starting point for various constructions leading to

degenerate functional differential equations of the form (4.5) (see [19]).
The next result shows that degeneracy is in fact a property of the gen-
eralized eigenspaces of system (1.1).

Proposition 4.6 System (1.1) is degenerate with respect to q ∈ C
n\{0}

if and only if

q∗φ(θ) = 0, −r ≤ θ ≤ 0, for all φ ∈ P =
⊕

λ∈σ(L)

Pλ (4.7)

or, equivalently,
q∗x(t; φ) ≡ 0 for all φ ∈ P .

Proof. Note that t → x(t; φ) is analytic on R. Therefore condition(4.7)
is equivalent to the following: For all φ ∈ P there exists a sequence
(tn)n∈N ⊂ R which has an accumulation point on R and

q∗x(tn; φ) = 0, n = 1, 2, . . . .

Therefore we only have to prove sufficiency of condition (4.7). Assume
that equation (1.1) is not degenerate with respect to q. Then there exist
a ψ ∈ C and a sequence (tn)n∈N ⊂ [0,∞) with tn → ∞ such that

q∗x(tn; ψ) �= 0, n = 1, 2, . . . .

By (4.7) we see that ψ /∈ P . Furthermore the function q∗x̂(λ; ψ) =
q∗∆−1(λ)p(λ; ψ) cannot be the Laplace-transform of a function with
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bounded support. Assume that q∗x̂(λ; ψ) has a pole at λ0. It is clear
that λ0 ∈ σ(L). As in the proof of Theorem 2.17, c), we conclude that

q∗ Res
λ=λ0

eλt∆−1(λ)p(λ; ψ) �≡ 0 on R.

Since this function is real analytic it cannot have an accumulation point
of zeros in R. Therefore ψ(θ) = Resλ=λ0 eλθ∆−1(λ)p(λ; ψ), −r ≤ θ ≤
0, is a function in Pλ0 such that q∗x(t̃n; ψ) �= 0, n = 1, 2, . . . , for a
sequence (t̃n)n∈N ⊂ [0,∞) with t̃n → ∞, which is a contradiction to
(4.7). Thus we have shown that q∗x̂(t; φ) = q∗∆−1(λ)p(λ; φ) is entire.
From Proposition 4.2 we conclude that system (1.1) is degenerate with
respect to q.

Proposition 4.6 and the characterization of small solutions as given
in Theorem 3.2 show that the degeneracy time depends on the small
solutions only.

Proposition 4.7 Let system (1.1) be degenerate with respect to q ∈
C

n \{0} and denote by td the degeneracy time of system (1.1). Then the
following is true:
a) We have

0 < td ≤ lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣− ξ.

b) If det ∆(λ) is a polynomial in λ only, then

0 < td ≤ lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣.
Proof. Let first φ ∈ P ⊕ Q and set φ = φP + φQ, φP ∈ P , φQ ∈ Q.
Then we have q∗x(t; φP ) = 0 for t ≥ 0, because q∗x(t; ψ) ≡ 0 for all
ψ ∈ P . Consequently

q∗x(t; φ) = q∗x(t; φQ) for t ≥ −r.

We investigate the function y(t) = q∗x(t − r; φQ), t ≥ 0. As in the
proof of Theorem 3.2 we see that

q∗x(t; φQ) = 0 for t ≥ lim sup
ρ→∞

1
ρ

ln
∣∣q∗ adj ∆(−ρ)

∣∣− ξ.

Next choose φ ∈ C = P ⊕ Q. Then φ = limk→∞(φk + ψk), where
φk ∈ P , ψk ∈ Q, k = 1, 2, . . . . Since q∗x(t; φk + ψk) = 0 for t ≥
lim supρ→∞(1/ρ) ln |q∗ adj ∆(−ρ)| − ξ, k = 1, 2, . . . , we get also

q∗x(t; φ) = 0 for t ≥ lim sup
ρ→∞

(1/ρ) ln |q∗ adj ∆(−ρ)| − ξ.

It is obvious that ξ = lim supρ→∞(1/ρ) ln | det∆(−ρ)| = 0 in case that
det ∆(λ) is a polynomial in λ only.
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4.2 A necessary condition for degeneracy
In this section we first prove a necessary condition for degeneracy of

delay equations in terms of a specific factorization of the characteristic
function. Then we explain the meaning of this necessary condition for
the structure of the degenerate delay equation. We can only prove these
results for difference-differential equations with a finite number of com-
mensurate delays. We start with difference-differential equations with a
finite number of delays:

ẋ(t) =
m∑

j=0

Ajx(t − hj), 0 = h0 < · · · < hm = r. (4.8)

View R as an (infinite dimensional) vector space of the field Q of rational
numbers and denote by K the positive cone generated by8 h1, . . . , hm.
Let r̃1, . . . , r̃k ∈ K be linearly independent elements which also generate
K. Then we have

hj =
k∑

i=1

αj,ir̃i, j = 1, . . . , m,

where αj,i ∈ Q, αj,i ≥ 0, j = 1, . . . , m, i = 1, . . . , k. Denote by α the
least common multiple o the denominators of the αj,i’s. Then also the
elements ri = αr̃i, i = 1, . . . , k, generate K and are linearly independent.
We have

hj =
k∑

i=1

βj,iri, j = 1, . . . , m,

where now βj,i ∈ Z, j = 1, . . . , m, i = 1, . . . , k. We set β0,i = 0,
i = 1, . . . , k. Equation (4.8) can now be written as

ẋ(t) =
m∑

j=0

Ajx
(
t −

k∑
i=1

βj,iri

)
. (4.9)

In case k ≥ 2 we call the delays non-commensurate. If k = 1 the delays
are commensurate and (4.9) has the form

ẋ(t) =
m∑

j=0

Ajx(t − �jh) (4.10)

8K = {α1h1 + · · · + αmhm | αi ∈ Q and αi ≥ 0, i = 1, . . . , m}.
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with 0 = �0 < �1 < · · · < �m, �i ∈ N, i = 1, . . . , m. It is not difficult to
see that

∆(λ) = λI −
m∑

j=0

Aj exp
(
−λ

k∑
i=1

βj,iri

)

= λI −
m∑

j=0

Aj

(
e−λri

)βj,1 · · ·
(
e−λrk

)βj,k

= λI −
m∑

j=0

Ajµ
βj,1

1 · · ·µβj,k

k ,

where µi = e−λri , i = 1, . . . , k. We define A ∈ C
n×n[µ1, . . . , µk] by

A(µ1, . . . , µk) =
m∑

j=0

Ajµ
βj,1

1 · · ·µβj,k

k .

Then we have
∆(λ) = λI − A

(
e−λr1 , . . . , e−λrk

)
and

det∆(λ) = χA

(
λ, e−λr1 , . . . , e−λrk

)
.

In case of system (4.10) we have with µ = e−λh

A(µ) =
m∑

j=0

Ajµ
�j ,

∆(λ) = λI − A
(
e−λh

)
and

det ∆(λ) = χA

(
λ, e−λh

)
.

In the following we shall treat λ, µ1, . . . , µk resp. λ and µ as indeter-
minates. However, occasionally we have to remember that µi = e−λri ,
i = 1, . . . , k resp. µ = e−λh. Our next goal is to prove Zverkin’s necessary
condition for degeneracy of systems of the form (4.10). We introduce
the notation

p0(λ, µ) = χA(λ, µ),

q∗ adj
(
λI − A(µ)

)−1 =
(
p1(λ, µ), . . . , pn(λ, µ)

)
.

This implies

q∗
(
λI − A(µ)

)−1 =
(

p1(λ, µ)
p0(λ, µ)

, . . . ,
pn(λ, µ)
p0(λ, µ)

)
.
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We have the following claim:

If system (4.10) is degenerate with respect to q, then pj(λ, µ) �≡ 0
for at least one j ∈ {1, . . . , n}.

(4.11)

In order to prove the claim suppose that p1 ≡ · · · ≡ pn ≡ 0. This implies
q∗(λI − A(µ))−1 ≡ 0 and – taking µ = e−λh –

q∗∆−1(λ) ≡ 0 in C.

This implies q = 0, a contradiction.
We shall need the following lemma on greatest common divisors of

polynomials in C[λ, µ].

Lemma 4.8 Let p, q ∈ C[λ, µ] \ {0} and let d be a greatest common
divisor. We assume that

(i) q(λ, µ) = λκ + q̃(λ, µ) with λ-degree q̃ < κ,

(ii) ∂p(λ, µ)/∂µ �≡ 0 and

(iii)
p(λ, µ)
q(λ, µ)

is entire.

Then we have ∂d/∂µ �≡ 0, i.e., d really depends on µ.

Proof. Because of assumption (i) the function q
(
λ, e−λh

)
has infi-

nitely many different zeros λ1, λ2, . . . (see [2]). By assumption (ii) also
p
(
λ, e−λh

)
has at least the zeros λ1, λ2, . . . . From Lemma D.1 with

m = 2 we see that there exist R1, R2 ∈ C[λ, µ] and a w ∈ C[λ] such that

p(λ, µ)R1(λ, µ) + q(λ, µ)R2(λ, µ) = w(λ)d(λ, µ).

If d does not depend on µ, d = d(λ), then the last equation implies

w(λν)d(λν) = 0, ν = 1, 2, . . . ,

which is not possible. Note that d �≡ 0 because p �≡ 0 and q �≡ 0. Then
d must depend on µ.

Theorem 4.9 (Zverkin [32]) Assume that system (4.10) is degener-
ate. Then there exists a monic polynomial s0 ∈ C[λ] with degree s0 ≥ 1
such that

det(λI − A(µ)) = s0(λ)s1(λ, µ)

with some monic polynomial s1 ∈ C[λ, µ]. Consequently we also have

∆(λ) = s0(λ)s1(λ, e−λh).
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Proof. We follow the algebraic proof given in [18]. If p0(λµ) = det(λI−
A(µ)) does not depend on µ, then there is nothing to be proved. Assume
that ∂p0/∂µ �≡ 0. According to the claim (4.11) we have pj0 �≡ 0 for
some j0 ∈ {1, . . . , n}. Since, by Theorem 4.4, q∗∆−1(λ) is entire for
some q ∈ C

n \ {0}, we can apply Lemma 4.8 and get

p0(λ, µ) = d(λ, µ)s0(λ, µ) and pj0(λ, µ) = d(λ, µ)sj0(λ, µ),

where d is a greatest common divisor of p0 and pj0 . Moreover we have
∂d/∂µ �≡ 0.

Since pj0(λ, e−λh)/p0(λ, e−λh) = sj0(λ, e−λh)/s0(λ, e−λh) is entire,
Lemma 4.8 implies that in case ∂s0/∂µ �≡ 0 there exists a greatest com-
mon divisor d̃ of sj0 and s0 with ∂d̃/∂µ �≡ 0. But then dd̃ would be a
common divisor of pj0 and p0, a contradiction with the definition of d

because d̃ is non-constant. Thus we have ∂s0/∂µ ≡ 0, i.e., s0 ∈ C[λ].

4.3 Coordinate transformations with delays
Theorem D.5 states that corresponding to a factorization of the char-

acteristic polynomial χA(λ, µ) of a matrix A(µ) ∈ C
n×n[µ] we can trans-

form A by a similarity transform with a unimodular matrix to a block-
triangular form. In this section we want to investigate the meaning of
this transformation for the delay equation (4.10) corresponding to A.

Definition 4.10 Let S(µ) = S0+ · · ·+Sk′µk′
be a unimodular matrix in

C
n×n[µ] with inverse S−1(µ) = T0+· · ·+Tkµ

k. For x, y ∈ C(−∞,∞; Cn)
we define the linear mappings π, π−1 : C(−∞,∞; Cn) → C(−∞,∞; Cn)
by

(πx)(t) = T0 + · · · + Tkx(t − kh) and

(π−1y)(t) = S0 + · · · + Sk′y(t − k′h), t ∈ R.
(4.12)

If we define the shift σ : C(−∞,∞; Cn) → C(−∞,∞; Cn) by (σx)(t) =
x(t − h), t ∈ R, then(4.12) can also be written as

πx = S−1(σ)x, π−1y = S(σ)y, x, y ∈ C(−∞,∞; Cn).

From this it is also clear that π and π−1 are indeed inverses of each
other.

Let A, Ã ∈ C
n×n[µ] be given with

Ã = S−1AS,

where S ∈ C
n×n[µ] is unimodular and let π, π−1 be the mappings defined

by (4.12) Furthermore let

ẋ(t) =
(
A(σ)x

)
(t) =: L(xt) (4.13)
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and
ẏ(t) =

(
Ã(σ)y

)
(t) =: L̃(yt) (4.14)

be the delay systems corresponding to A resp. Ã. Then we have the
following result:

Proposition 4.11 a) If x ∈ C(−∞,∞; Cn) solves (4.13) for t ≥ t0,
then y = πx solves (4.14) at least for t ≥ t0 + kh.
b) Let L1 resp. L2 denote the subspaces of C(−∞,∞; Cn) consisting of
all x resp. y which are solutions of (4.13) resp. (4.14) on R. Then π
maps L1 one-to-one onto L2.

Proof. a) let x ∈ C(−∞,∞; Cn) be a solution of (4.13) for t ≥ t0, i.e.,
x is differentiable for t ≥ t0 and

ẋ(t) =
(
A(σ)x

)
(t), t ≥ t0.

Set y(t) = T0x(t) + · · · + Tkx(t − kh). Then it is easy to see that y is
differentiable at least for t ≥ t0 + kh and

ẏ(t) =
(
S−1(σ)ẋ

)
(t) =

(
S−1(σ)A(σ)x

)
(t)

=
(
S−1(σ)A(σ)S(σ)y

)
(t) =

(
Ã(σ)y

)
(t), t ≥ t0 + kh.

b) In view of part a) of the theorem it is clear that πL1 ⊂ L2. For y ∈ L2

we have x = π−1y ∈ L1 and πx = y, i.e., πL1 = L2.
In order to give more detailed information on the transformations π

and π−1 we introduce some notation:

∆̃(λ) := λI − Ã
(
e−λh

)
= S−1

(
e−λh

)
∆(λ)S

(
e−λh

)
,

P̃λ0 . . . generalized eigenspace of equation (4.14) corresponding to λ0,

∆̂k+1(λ) =




∆̃(λ) 1
1!∆̃

′(λ) · · · 1
k!∆̃

(k)(λ)

0
. . . . . .

...
...

. . . . . . 1
1!∆̃

′(λ)
0 · · · 0 ∆̃(λ)


 ∈ C

nk×nk,

ĉk+1 = col(c0, . . . , ck), cj ∈ C
n, j = 0, . . . , k.

Lemma 4.12 Let λ0 ∈ σ(L) = σ(L̃) be given and let, for some a ∈ C
n,

x(t) = eλ0t t
j

j!
a, t ∈ R.

Then we have

(πx)(t) = eλ0t
j∑

κ=0

tκ

κ!
· 1
(j − κ)!

dj−κ

dλj−κ
S−1

(
e−λ0h

)
a, t ∈ R.
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Proof. Observing (
j

κ

)
=

j!
κ!(j − κ)!

the definition of π implies:

(πx)(t) =
k∑

�=0

1
j!

(t − �h)jeλ0(t−�h)T�a

= eλ0t
k∑

�=0

1
j!

e−λ0�hT�a

j∑
κ=0

(
j

κ

)
tκ(−�h)j−κ

= eλ0t
j∑

κ=0

tκ

κ!

k∑
�=0

1
(j − κ)!

e−λ0�h(−�h)j−κT�a

= eλ0t
j∑

κ=0

t − κ

κ!
1

(j − κ)!
dj−κ

dλj−κ
S−1

(
e−λ0h

)
a, t ∈ R.

Lemma 4.13 Choose λ0 ∈ σ(L) = σ(L̃) and define the subspaces

Xk(λ0) =
{
eλ0t

k−1∑
j=0

tj

j!
bj | ∆̃k(λ0)b̃k = 0

}

X̃k(λ0) =
{
eλ0t

k−1∑
j=0

tj

j!
cj | ∆̂k(λ0)ĉk = 0

}
, k = 1, 2, . . . .

Then π maps Xk(λ0) one-to-one onto X̃k(λ0), k = 1, 2, . . . .

Proof. Let x(·) ∈ Xk(λ0) be given, i.e.,

x(t) = eλ0t
k−1∑
j=0

tj

j!
bj , ∆̃(λ0)b̃k = 0.

From Lemma 4.12 we get

(πx)(t) = eλ0t
k−1∑
j=0

j∑
κ=0

tκ

κ!
1

(j − κ)!
dj−κ

dλj−κ
S−1

(
e−λ0h

)
bj

= eλ0t
k−1∑
κ=0

tκ

κ!

k−1∑
j=κ

1
(j − κ)!

dj−κ

dλj−κ
S−1

(
e−λ0h

)
bj .
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We set

cκ =
k−1∑
j=κ

1
(j − κ)!

dj−κ

dλj−κ
S−1

(
e−λ0h

)
bj , κ = 0, . . . , k − 1.

In order to prove that πx ∈ X̃k(λ0) we have to show that ∆̂k(λ0)ĉk = 0.
It is easy to see that ĉk = T̃k(λ0)b̃k, where the matrix T̃k(λ0) is defined
by

T̃k(λ0) =




S−1
(
e−λ0h

)
· · · · · · 1

(k−1)!
dk−1

dλk−1 S−1
(
e−λ0h

)
0

. . .
...

...
. . . . . .

...
0 · · · 0 S−1

(
e−λ0h

)


 . (4.15)

Lemma 2.6 applied to

∆(λ) = S−1
(
e−λ0h

)
∆(λ)S

(
e−λ0h

)

implies (see (2.3) for the definition of S̃k(λ0))

∆̂k(λ0) = T̃k(λ0)∆̃k(λ0)S̃k(λ0). (4.16)

From ∆̃k(λ0)b̃k = 0 and (4.16) we get

∆̂k(λ0)ĉk = T̃k(λ0)∆̃k(λ0)S̃k(λ0)T̃k(λ0)b̃k.

Lemma 2.6 applied to S
(
e−λh

)
S−1

(
e−λh

)
≡ I, which is satisfied in a

neighborhood of λ0, gives S̃k(λ0)T̃k(λ0) = I ∈ C
nk×nk, so that

∆̂(λ0)ĉk = T̃k(λ0)∆̃k(λ0)b̃k = 0.

Thus we have shown that πXk(λ0) ⊂ X̃k(λ0). Taking π−1 instead of
π we obtain π−1X̃k(λ0) ⊂ Xk(λ0). Consequently we have X̃k(λ0) =
π
(
π−1X̃k(λ0)

)
⊂ πXk(λ0) ⊂ X̃k(λ0), i.e., πXk(λ0) = X̃k(λ0).

Remark. Let [−r, 0] resp. [−r̃, 0] denote the delay interval for sys-
tem (4.13) resp. (4.14). By Corollary 2.11 we see that ker(λ0I − A) =
{x |[−r,0]| x ∈ Xk(λ0)} and ker(λ0I − Ã) = {y |[−r̃,0]| y ∈ X̃k(λ0)}. We
also have seen in Section 7 that

Pλ0 = ker(λ0I −A)k, P̃λ0 = ker(λ0I − Ã)k, k = κ0, κ0 + 1, . . . .

If we agree to extend functions φ ∈ Pλ0 , φ(θ) = eλ0θ
∑κ0−1

j=0 (θj/j!)bj ,
−r ≤ θ ≤ 0, with ∆̃κ0(λ0)b̃κ0 = 0, to all of R by setting x(t; φ) =
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eλ0t
∑κ0−1

j=0 (tj/j!)bj , then we can define a mapping π : P → P̃ , where
P =

⊕
λ0∈σ(L) Pλ0 , P̃ =

⊕
λ0∈σ(L) P̃λ0 , as follows:

πφ = πx(·; φ) |[−r̃,0] .

Then it is clear that π maps P one-to-one onto P̃ . The result of
Lemma 4.13 implies that π also maps ker(λ0I − A)k one-to-one onto
ker(λ0I − Ã)k, k = 1, 2, . . . .

The next result states that a coordinate transform with delays given
by a unimodular matrix does not change the structure of the generalized
eigenspaces as given in Theorem 2.12.

Theorem 4.14 Let Ã(µ) = S−1(µ)A(µ)S(µ) with a unimodular matrix
S ∈ C

n×n[µ]. For λ0 ∈ σ(L) = σ(L̃) denote by Pλ0 resp. P̃λ0 the
generalized eigenspace of system (4.13) resp. of (4.14).

Then there exist uniquely determined numbers � ≥ 1, dρ, mρ with
mρ > 0, ρ = 1, . . . , �, satisfying 0 ≤ d1 < · · · < d� such that

Pλ0 =
�⊕

ρ=1

mρ⊕
j=1

Zρ,j and P̃λ0 =
�⊕

ρ=1

mρ⊕
j=1

Z̃ρ,j , (4.17)

where the subspaces Zρ,j of Pλ0 resp. Z̃ρ,j of P̃λ0 satisfy

(i) dim Zρ,j = dim Z̃ρ,j = dρ, j = 1, . . . , mρ, ρ = 1, . . . , �,

(ii) Zρ,j is A-cyclic and Z̃ρ,j is Ã-cyclic, j = 1, . . . , mρ, ρ = 1, . . . , �.

Moreover, we can take

Z̃ρ,j = πZρ,j , j = 1, . . . , mρ, ρ = 1, . . . , �.

Proof. From Lemma 2.5 and the proof for part (iv) of Theorem 2.4 we
see that the numbers �, mρ, dρ, ρ = 1, . . . , �, which exist according to
Theorem 2.4 for ∆(λ) = λI −A(e−λh) resp. for ∆̃(λ) = λI − Ã(e−λh) at
λ0 are the same. This establishes the decomposition (4.17).

Using the facts that the action of A and of Ã is differentiation, that π
and π commute with differentiation and that ẋ(·;φ) = x(·; φ̇) for φ ∈ Pλ0

(see Theorem 1.9) we get, for φ ∈ Pλ0 ,

πAφ = πφ̇ =
(
πx(·; φ̇)

)
|[−r̃,0]=

(
πẋ(·;φ)

)
|[r̃,0]

=
(d

dt
πx(· : φ)

)
|[−r̃,0]=

d

dt

(
πx(·; φ) |[−r̃,0]

)
=

d

dt
πφ = Ãπφ.
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Set Z = Zρ,j , k = dim Zρ,j = dρ and choose a basis φ0, . . . , φk−1 of Z
satisfying

Aφ0 = λ0φ0,

Aφj = λ0φj − φj−1, j = 1, . . . , k − 1,

(see the paragraph before Theorem 2.12). For

φ̃j = πφj , j = 0, . . . , k − 1,

we get Ãφ̃0 = Ãπφ0 = πAφ0 = λ0πφ0 = λ0φ̃0 and Ãφ̃j = Ãπφj =
πAφj = π(λ0φj − φj−1) = λ0φ̃j − φ̃j−1, j = 1, . . . , k − 1, i.e., Z̃ = πZ is
also cyclic with dim Z̃ = dim Z = k.

Remark. It is easy to see (but tedious to formulate) that all results
presented in this section hold also with appropriate notational changes
for the case of non-commensurate delays.

4.4 The structure of degenerate systems with
commensurate delays

The necessary condition for degeneracy of systems with commensurate
delays given in Zverkin’s theorem together with the triangularization
theorem for polynomial matrices over the ring C[µ] (see Theorem D.5)
suggest that degenerate systems with commensurate delays can be trans-
formed to a system which consists of two coupled subsystems, where
one of these subsystems is degenerate and has a polynomial of λ only as
its characteristic function. Loosely speaking, degenerate systems with
commensurate delays are those which are similar (under transformations
with delays) to ordinary differential equations. The precise statement is
the following:

Theorem 4.15 Assume that system (4.13) is degenerate with respect to
q ∈ C

n \ {0} and that in the factorization

χA(λ, µ) = p1(λ, µ)p2(λ)

with monic and relatively prime polynomials the polynomial p1 does not
contain a non-trivial factor independent of µ. Then there exists a uni-
modular matrix S ∈ C

n×n[µ] such that

Ã = S−1AS =
(

A1 A1,2

0 A2

)

with A1 ∈ C
n1×n1 [µ], A2 ∈ C

n2×n2 [µ], where n1 = λ–degree p1, n2 =
degree p2 > 0, and

χA1 = p1, χA2 = p2.
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Moreover, the delay system corresponding to A2(µ) is degenerate with
respect to a q2 ∈ C

n2 \ {0}, whereas the delay system corresponding to
A1(µ) is not degenerate.

Proof. Without restriction of generality we can assume that q =
col(0, q2) with q2 = col(1, 0, . . . , 0) ∈ C

n2 . Otherwise we choose a in-
vertible matrix T ∈ C

n×n such that q∗T = (0, q∗2) and replace A(µ) by
T−1A(µ)T .

By Zverkin’s result it is clear that n2 > 0. According to Theorem D.5
there exists a unimodular matrix S ∈ C

n×n[µ] such that Ã(µ) has the
properties given in the theorem. Since p1(λ, µ) does not contain a non-
trivial factor which depends in λ only, the delay system corresponding
to A1(µ) cannot be degenerate.

It remains to prove that we can choose S such that the delay system
corresponding to A2(µ) is degenerate with respect to q2. According to
Theorem 4.4 the function q∗∆−1(λ) is entire. This implies that also

q∗S
(
e−λh

)
S−1

(
e−λh

)
∆−1(λ)S

(
e−λh

)
= q∗S

(
e−λh

)
∆̃−1(λ) (4.18)

is entire. We set S = (U, V ) where U ∈ C
n×n1 [µ] and V ∈ C

n×n2 [µ].
The matrix

(
λI − Ã(µ)

)−1 is given by

(
λI − Ã(µ)

)−1 =

((
λI − A1(µ)

)−1
B1,2(λ, µ)

0
(
λI − A2(µ)

)−1

)
.

Consequently we get

q∗S
(
e−λh

)
∆̃−1(λ) = q∗

(
W1(λ), W2(λ)

)
,

where

W1(λ) = U
(
e−λh

)(
λI − A1

(
e−λh

)−1
,

W2(λ) = U
(
e−λh

)
B1,2

(
λ, e−λh

)
+ V

(
e−λh

)(
λI − A2

(
e−λh

))−1
.

Since the matrix (4.18) is entire, we see that also q∗W1(λ) is entire.
Suppose that q∗U(µ) �≡ 0. Then we see that at least one rj0(λ, µ) in the
representation

q∗U(µ)
(
λI − A1(µ)

)−1 =
1

p1(λ, µ)
(
r1(λ, µ), . . . , rn1(λ, µ)

)

is not identically zero. As in the proof of Theorem 4.9 we see that

rj0(λ, µ) = sj0(λ, µ)d(λ, µ),
p1(λ, µ) = s0(λ)d(λ, µ).
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From λ – degree rj0 < λ – degree p1 we conclude that degree s0 > 0. But
then p1(λ, µ) has a non-trivial factor depending on λ only, which con-
tradicts the assumption made on p1. This proves that

q∗U
(
e−λh

)
≡ 0.

Consequently we get

q∗S
(
e−λh

)
∆̃−1(λ) =

(
0, q∗V

(
e−λh

)(
λI − A2

(
e−λh

))−1
)
. (4.19)

We have q∗V (e−λh) �≡ 0. Otherwise we would have q∗S(e−λh)∆̃−1(λ) ≡
0, which implies q = 0, a contradiction.

Let v(µ) be the (n1 + 1)-st row of V (µ), i.e., q∗V (µ) = v(µ). This
and q∗U(µ) ≡ 0 imply that (0, . . . , 0, v(µ)) is the (n1 +1)-st row of S(µ).
Set v(µ) =

(
v1(µ), . . . , vn2(µ)

)
and let w be a greatest common divisor

of v1, . . . , vn2 . Then S(µ) = w(µ)S̃(µ) and detS(µ) ∈ C \ {0} imply

w = α ∈ C \ {0}.
Under this condition we can find a unimodular matrix P ∈ C

n2×n2 [µ]
which has v as its first row,

P (µ) =




v(µ)
∗
...
∗


 .

Using the special form of q2 we obtain

q∗V (µ) = v(µ) = q∗2P (µ).

This implies

q∗2P (µ)
(
λI − A2(µ)

)−1
P−1(µ) = q∗V (µ)

(
λI − A2(µ)

)−1
P−1(µ).

Since the vector (4.19) is entire, we see that also

q∗2P
(
e−λh

)(
λI − A2

(
e−λ

))−1
P
(
e−λh

)−1

is entire. Consequently (see Theorem 4.4) the delay system correspond-
ing to

Ã2(µ) := P (µ)A2(µ)P−1(µ)
is degenerate with respect to q2. If instead of S(µ) we take the unimodu-
lar matrix T (µ) = S(µ) diag(I, P−1(µ)), then the matrix T−1(µ)A(µ)T (µ)
is given by

T−1(µ)A(µ)T (µ) =
(

A1(µ) A1,2(µ)P−1(µ)
0 P (µ)A2(µ)P−1(µ)

)
.
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Appendix: A

Laplace-Transforms
In this appendix we collect some results on Laplace-transforms. With a few excep-

tions we do not provide proofs, but refer to the standard literature (see for instance
[7]).

Let f be in L1
loc(0,∞; C) and λ ∈ C. Then the Laplace-integral of f at λ is

defined by ∫ ∞

0

e−λtf(t) dt = lim
ω→∞

∫ ω

0

e−λtf(t) dt. (A.1)

We say that the Laplace-integral for f converges at λ if the limit in (A.1) exists,
converges absolutely at λ if limω→∞

∫ ω

0
e−t Re λ|f(t)| dt exists and converges uniformly

on a set D ⊂ C if the limit in (A.1) exists uniformly for λ ∈ D.
If the Laplace-integral for f converges absolutely at λ0, so it also does in Re λ ≥ λ0.

Therefore the domain of absolute convergence of the Laplace-integral is an open or
closed right half plane. We define the abscissa of absolute convergence by

σa(f) = inf{σ ∈ R |The Laplace-integral for f is

absolutely convergent at σ}.

If the Laplace-integral converges at λ0, then it is uniformly convergent in any sector

{λ ∈ C | | arg(λ − λ0)| ≤ ε}, 0 ≤ ε < π/2.

In particular it converges in Re λ > Re λ0. Therefore the domain of convergence of
the Laplace-integral is an open right half plane plus a subset of the boundary. We
define the abscissa of convergence by

σc(f) = inf{σ ∈ R | The Laplace-integral for f converges at σ}.

It is clear that

−∞ ≤ σc ≤ σa ≤ ∞.

All cases, except equality everywhere, are possible for these inequalities. By the
uniform convergence of the Laplace-integral in sectors the function

f̂(λ) =

∫ ∞

0

e−λtf(t) dt, Re λ > σc(f),

is holomorphic in the half plane Re λ > σc(f). We shall also use the notation L(f) =
f̂ . The derivatives of f̂ are given by

dj f̂

dλj
(λ) = (−1)j

∫ ∞

0

e−λttjf(t) dt, Re λ > σc(f).

f̂ is called the Laplace-transform of f . Frequently we shall denote by f̂ or L(f)
also the function obtained by analytic continuation.

Of fundamental importance is the following uniqueness result:

Theorem A.1 Let f̂ and ĝ be Laplace-transforms of functions f and g, respectively.
If f̂ = ĝ in some right half plane, then f(t) = g(t) a.e. on t ≥ 0.
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It is clear that taking Laplace-transforms is a linear operation. We next collect
results on the behavior of the Laplace-transform with respect to integration, differ-
entiation and convolution.

Theorem A.2 Let f ∈ L1
loc(0,∞; C) with σc(f) < ∞ and set g(t) =

∫ t

0
f(τ) dτ , t ≥

0. Assume that the Laplace-integral for f is convergent at λ0 ∈ R. Then the Laplace-
integral for g converges in Re λ > 0 if λ0 = 0 and in {λ ∈ C | Re λ > λ0} ∪ {λ0} if
λ0 > 0. Moreover,

ĝ(λ) =
1

λ
f̂(λ)

and

g(t) =

{
O(1) if λ0 = 0,

o
(
eλ0t

)
if λ0 > 0

as t → ∞.

Theorem A.3 Let f be locally absolutely continuous on t ≥ 0 and suppose that
σc(ḟ) < ∞. Then σc(f) ≤ σc(ḟ) and

L(ḟ)(λ) = λL(f)(λ) − f(0).

Moreover, for any real λ0, where the Laplace-integral for ḟ converges, we have

f(t) = o
(
eλ0t) as t → ∞.

Proposition A.4 Let fi ∈ L1
loc(0,∞; C), i = 1, 2, be given. Then the integral∫ t

0
f1(t − τ)f2(τ) dτ exists a.e. on t ≥ 0 and the function f defined by this integral,

where it exists, and by f(t) = 0 otherwise is in L1
loc(0,∞; C).

The function f whose existence is guaranteed by the above proposition is called the
convolution of f1 and f2, f = f1 ∗ f2. The operation “ ∗ ” is commutative and
associative. We shall need the following results on smoothness of f1 ∗ f2.

Theorem A.5 Let fi ∈ L1
loc(0,∞; C), i = 1, 2, be given. If f1 is bounded on bounded

intervals or if f1 and f2 are in L2
loc(0,∞; C), then f = f1 ∗ f2 is continuous on t ≥ 0.

Theorem A.6 Let f1 be locally absolutely continuous on t ≥ 0 and f2 be in L1
loc(0,∞; C).

Then f = f1 ∗ f2 is locally absolutely continuous on t ≥ 0 and

ḟ = ḟ1 ∗ f2 + f1(0)f2 a.e. on t ≥ 0.

Concerning Laplace-transforms of convolutions we have:

Theorem A.7 Let fi ∈ L1
loc(0,∞; C), i = 1, 2, be given and suppose that σa(f1) ≤ x0

and σa(f2) ≤ x0. Then σa(f1 ∗ f2) ≤ x0 and

L(f1 ∗ f2) = L(f1)L(f2).

If a function f̂(λ) is holomorphic in some right half plane, then it is of interest to
know if it is a Laplace-transform.

Theorem A.8 Let f̂ be holomorphic in Re λ > x1 and assume that

(i) for any ε > 0 and any δ > 0 there exists a K > 0 such that

|f̂(λ)| ≤ ε for Re λ ≥ x1 + δ and |λ| ≥ K,
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(ii) and the integral

∫ ∞

−∞
|f(x + iy)| dy exists for all x > x1.

Then f̂ is the Laplace-transform of a function f which, for any x > x1 is given by

f(t) =

∫

(x)

eλtf̂(λ) dλ, t ≥ 0.

Here
∫
(x)

means limy→∞(2πi)−1
∫ x+iy

x−iy
. A result of more constructive nature is con-

tained in the following theorem.

Theorem A.9 Let f̂ν be the Laplace-transforms of fν , ν = 1, 2, . . . , and assume that
there exists an x0 ∈ R such that

(i) x0 ≥ σa(fν), ν = 1, 2, . . . ,

(ii)
∞∑

ν=1

∫ ∞

0

e−x0t|fν(t)| dt is convergent.

Then the series
∑∞

ν=1 f̂ν converges uniformly in Re λ ≥ x0 and the series
∑∞

ν=1 fν(t)
absolutely a.e. on t ≥ 0. If we define f(t) =

∑∞
ν=1 fν(t), then σa(f) ≤ x0 and

f̂(λ) =
∑∞

ν=1 f̂ν(λ) for Re λ ≥ x0.

Finally we quote one version of the complex inversion formula for Laplace-trans-
forms:

Theorem A.10 Let f ∈ L1
loc(0,∞; C) with σa(f) < ∞ be given. Then for any

γ ≥ σa(f) and any t ≥ 0 where f is of bounded variation in a neighborhood of t the
following formula is valid:

∫

(γ)

eλtf̂(λ) dλ =

{
1
2

(
f(t + 0) + f(t − 0)

)
if t > 0,

1
2
f(0+) if t = 0.

For t < 0 the integral is always zero.

Appendix: B

Entire Functions
In this appendix we quote some facts on entire functions, which are used in the

section on small solutions. As standard references we cite [5, 23].

Definition B.1 A function f : C → C is called an entire function of exponential
type if and only if f is holomorphic in C and there exist constants α, β ≥ 0 such that

|f(λ)| ≤ αeβ|λ| for all λ ∈ C.

The number

τf = lim sup
ρ→∞

1

ρ
ln M(ρ),

where M(ρ) = max|λ|=ρ |f(λ)|, is called the exponential type of f .
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It is trivial that the sum and the product of two entire functions of exponential
type are again such functions. Less trivial is the result on quotients:

Proposition B.2 If f and g are entire functions of exponential type, then f/g is
also an entire function of exponential type provided it is entire.

For a proof of this proposition see for instance [23, p. 24].
A detailed description of the growth behavior of an entire function of exponential

type at infinity given by the indicator function:

Definition B.3 Let f be an entire function of exponential type. The function hf :
[0, 2π] → R defined by

hf (θ) = lim sup
ρ→∞

1

ρ
ln |f(ρeiθ)|

is called the indicator function of f .

For a detailed representation of the general properties of indicator functions see
for instance [23, Ch. 1, Sect. 15] or [5, Ch. 5]. We just mention the following result:

Proposition B.4 Let f be an entire function of exponential type. If f 	≡ 0, then hf

is finite and continuous.

If we have information on the behavior of f on a vertical line, we obtain a very
precise information on the indicator function. For our purpose very useful is the
following result (cf. [23, p. 243] or [5, p. 116]):

Theorem B.5 Let f 	≡ 0 be a function of exponential type. If

∫ ∞

−∞

ln+ |f(iω)|
1 + ω2

dω < ∞, (B.1)

then
hf (θ) = −k cos θ, θ ∈ [π/2, 3π/2],

and, for θ in a dense subset of [π/2, 3π/2],

hf (θ) = lim
ρ→∞

1

ρ
ln |f(ρeiθ)|.

The function ln+ is defined by ln+ ξ = max(0, ln ξ), ξ > 0. Condition (B.1) can be
replaced by (see [23, p. 251])

∫ ∞

−∞
|f(iω)|2dω < ∞. (B.2)

Of fundamental importance for us is the following characterization of those entire
functions of exponential type which are two-sided Laplace-transforms of functions
with compact support.

Theorem B.6 (Paley-Wiener) Let f 	≡ 0 be an entire function of exponential type.
Then the following two statements are equivalent:

(i) There exist constants H ′, H ∈ R with −H ′ < H and a square-integrable F with
support in [−H ′, H] such that

f(λ) =

∫ H

−H′
e−λtF (t) dt, λ ∈ C.
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(ii)
∫∞
−∞|f(iω)|2dω < ∞.

Moreover, if we take H ′ = hf (0) and H = hf (π), then the interval [−H ′, H] cannot
be replaced by a smaller one.

For a proof of this theorem see [23, p. 387], [5, p. 103] or [7, Vol. III, pp. 238, 241].
Finally, Hadamard’s factorization theorem assumes the following form for functions

of exponential type (see [23, p. 24] or [5, p. 22]):

Theorem B.7 Let f be an entire function of exponential type and let (an) be the
finite or infinite sequence of nonzero zeros of f . Moreover, assume that λ = 0 is a
zero of multiplicity m. Then there exist numbers α, β ∈ C such that

f(λ) = λmeα+βλ
∏
n

(
1 − λ

an

)
epλ, λ ∈ C,

where p = 0 or p = 1.

Appendix: C

An Unsymmetric Fubini Theorem
For the convenience of the reader we state in this appendix the unsymmetric Fubini

theorem of [6]. In the following it is always assumed that functions which are of
bounded variation on bounded intervals are normalized by the requirement to be
right-hand continuous.

Theorem C.1 Assume that the functions k : R → R, s : R → R and p : R × R → R

satisfy:

a) k is of bounded variation on bounded intervals.

b) s is Borel measurable on R.

c) p is Borel measurable on R × R and, for k-almost all σ ∈ R, the function p(σ, ·) is
of bounded variation on bounded intervals.

Define

V (σ, τ) =




∫ τ

0

|dνp(σ, ν)| for τ ≥ 0,

−
∫ 0

τ

|dνp(σ, ν)| for τ < 0.

If

(i)
∞∫

−∞
V (σ, τ)|dk(σ)| < ∞ for all τ

and

(ii)
∞∫

−∞
|s(τ)|dτ

∫∞
−∞V (σ, τ)|dk(σ)| < ∞ or

∞∫
−∞

|dk(σ)|
∫∞
−∞|s(τ)| |dτp(σ, τ)| < ∞,
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then the other integral under (ii) also exists and

∫ ∞

−∞
s(τ)dτ

∫ ∞

−∞
p(σ, τ)dk(σ) =

∫ ∞

−∞
dk(σ)

∫ ∞

−∞
s(τ)dτp(σ, τ).

Appendix: D

Results on Polynomial Rings and Modules
over Polynomial Rings

In this appendix we present the basic definitions and results concerning the theory
of polynomial rings and modules over polynomial rings. We give proofs for those
results where a proof is not available in the literature in the form needed here.

We denote by C[λ1, . . . , λm] the ring of polynomials in the indeterminates λ1, . . .
. . . , λm, m ≥ 1, over the field C. The ring C[λ] is a Euclidean ring and consequently
also a principal ideal domain. The rings C[λ1, . . . , λm] with m ≥ 2 are not even
principal ideal domains, but unique factorization domains. Therefore the concepts
”greatest common divisor” and ”least common multiple” are well defined in all of
these rings. If r1, r2 are polynomial in C[λ], then there exists a greatest common
divisor d ∈ C[λ] which can be computed by the Euclidean algorithm. Moreover there
exist polynomials R1, R2 ∈ C[λ] with

d = r1R1 + r2R2.

This result in C[λ] has the following analogue in the rings C[λ1, . . . , λm], m ≥ 2:

Lemma D.1 Let r1, r2 ∈ C[λ1, . . . , λm], m ≥ 2, be given and let d be a greatest
common divisor of r1, r2. Then there exist polynomials R1, R2 ∈ C[λ1, . . . , λm] and
a polynomial w ∈ C[λ1, . . . , λm−1] such that

r1(λ1, . . . , λm)R1(λ1, . . . , λm) + r2(λ1, . . . , λm)R2(λ1, . . . , λm)

= w(λ1, . . . , λm−1)d(λ1, . . . , λm).

A proof of this result can be found in [29].
Next we state some definitions and results concerning module theory. As general

references for module theory we quote [1], [3], [4], [16], [27].
Let M be an additive, commutative group and R a commutative ring with multi-

plicative unit 1. Then M (more precisely (M, R)) is called a module over R if and
only if there is a scalar multiplication (r, x) ∈ R × M → rx ∈ M satisfying

r(x1 + x2) = rx1 + rx2, r ∈ R, x1, x2 ∈ M,

(r1 + r2)x = r1x + r2x, r1, r2 ∈ R, x ∈ M, and

1 · x = x, x ∈ M.

The modules which are most similar to vector spaces are the free modules. A module
M over R is called a free module if and only if there exists a basis e1, . . . , en ∈ M
for M , i.e., every element x ∈ M has a unique representation x = α1e1 + · · · + αnen,
αi ∈ R, i = 1, . . . , n, and α1e1 + · · · + αnen = 0 implies α1 = · · · = αn = 0 (linear
independence). The modules C

n[λ1, . . . , λn] are free modules, a basis being e1 =
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col(1, 0, . . . , 0), . . . , col(0, . . . , 0, 1) (canonical basis). A set U is called a submodule
of M if and only if it is again a module over R, i.e., for α1, α2 ∈ R and x1, x2 ∈ U we
have also α1x1 + α2x2 ∈ U .

We shall need results on the modules M = C
n[λ1, . . . , λm] over the ring R =

C[λ1, . . . , λm]. The module C
n[λ, . . . , λm] consists of all n-vectors col(x1, . . . , xn)

with xi ∈ C[λ1, . . . , λm], i = 1, . . . , n. The module C
n[λ] is special among the modules

C
n[λ1, . . . , λm] by the following property:

Lemma D.2 Every submodule of C[λ] is a free module.

This result in fact is valid for free modules over principal ideal domains (see [16, p. 78]
or [27, p. 109]).

An important question in module theory is the following: If X is a submodule
of M , does there exist another submodule Y of M such that M = X ⊕ Y ? We
know that the answer is ”yes” for vector spaces. But even for the module C

n[λ] the
answer in general is ”no”. However we have also a positive result. In order to state
this result we need a definition. For a1, . . . , ak ∈ C

n[λ] let S = span(a1, . . . , ak) =
{α1a1 + · · · + αkak | αi ∈ C[λ], i = 1, . . . , k}. Obviously S is a submodule of C

n[λ],
the submodule generated by a1, . . . , ak.

Proposition D.3 Let A ∈ C
n×n[λ] (i.e., A is an n × n-matrix with elements in

C[λ]). Then there exists a submodule X of C
n[λ] such that

C
n[λ] = ker A ⊕ X.

We can take X = span(x1, . . . , xk) for any elements x1, . . . , xk ∈ C
n[λ] such that

Ax1, . . . , Axk is a basis for range A.

This result is a special case of the corresponding result for epimorphisms where the
range is a free submodule (see [27, p. 108]). Note that by Lemma D.2 the submodule
range A is a free module. Take a basis y1, . . . , yk of range A and elements x1, . . . , xk ∈
C

n[λ] with yi = Axi, i = 1, . . . , k. Observe that x1, . . . , xk are linearly independent,
because otherwise also y1, . . . , yk would be linearly dependent and could not be a
basis for range A.

For matrices A ∈ C
n×n[µ1, . . . , µm] we define the characteristic polynomial χA ∈

C[λ, µ1, . . . , µm] by

χA(λ, µ1, . . . , µm) = det
(
λI − A(µ1, . . . , µm)

)
.

For A ∈ C
n×n[µ1, . . . , µm] and p ∈ C[λ, µ1, . . . , µm] we set (with some abuse of

notation)
p(A) = p(A, µ1, . . . , µm) ∈ C

n×n[µ1, . . . , µm].

Then as in vector space theory we have (see for instance [27, p. 246])

Theorem D.4 (Cayley-Hamilton) For every matrix A ∈ C
n×n[µ1, . . . , µm], m ≥

1, we have
χA(A) = 0.

On the basis of Proposition D.3 we can prove the following result on block-
triangularization of matrices in C

n×n[µ]:

Theorem D.5 ([19, Theorem 2.1]) Let A ∈ C
n×n[µ] be given and assume that

χA = p1p2,
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where p1, p2 ∈ C[λ, µ] are relatively prime (i.e., 1 is a greatest common divisor) and
monic (i.e., the coefficient of the largest power of λ is 1). Set ni = degree pi and
assume ni > 0, i = 1, 2. Then there exists a unimodular matrix S ∈ C

n×n[µ] (i.e.,
det S(µ) ≡ c ∈ C \ {0} or, equivalently, also S−1(µ) ∈ C

n×n[µ]) such that

Ã = S−1AS =

(
A1 A1,2

0 A2

)
∈ C

n×n[µ],

χAi = pi, i = 1, 2.

In general we cannot find S such that A1,2 = 0.

Proof. We set C = p1(A) and choose a basis ẽ1, . . . , ẽr of ker C (observe that
ker C is a free module), where 0 < r < n. Choose ẽr+1, . . . ẽn ∈ C

n[µ] such that
Cẽr+1, . . . , Cẽn is a basis for range C. Then according to Proposition D.3 we have

C
n[µ] = ker C ⊕ span

(
ẽr+1, . . . , ẽn

)
.

Note that as in vector space theory all bases of C
n[µ] have the same number of

elements.
Let x ∈ ker C, i.e., we have Cx = 0. Since A and C commute, this implies CAx =

ACx = 0, i.e., Ax ∈ ker C. Consequently ker C is A-invariant. Let S ∈ C
n×n[µ]

denote the matrix corresponding to the change of bases e1, . . . , en → ẽ1, . . . , ẽn and
denote by Ã the representation of the endomorphism x → Ax with respect to the
basis ẽ1, . . . , ẽn. Then we have Ã = S−1AS. In view of the invariance of ker C with
respect to this endomorphism we see that Ã must have the form given in the theorem.

It remains to prove χA1 = p1. Then χA = χA1χA2 automatically implies χA2 = p2.
Let C(µ) denote the field of rational functions of µ with coefficients in C and C

n(µ)
the vector space of all n-vectors with elements in C(µ). Then we can view A and C
also as matrices in C

n×n(µ). Let x ∈ C
n(µ) with Cx = 0 be given. We can write x as

x =
1

s
x̃, s ∈ C(µ), x̃ ∈ C

n[µ],

where s is the least common multiple of the denominators of the coordinates of x.
Then Cx = 0 also implies Cx̃ = 0, i.e.,

x̃ =
r∑

i=1

αiẽi, αi ∈ C[µ], i = 1, . . . , r.

This implies x =
∑r

i=1

(
αi/s

)
ẽi. We conclude that ẽ1, . . . , ẽr is also a basis for ker C

in C(µ). But then vector space theory implies χA1 = p1.
That in general we have A1,2 	= 0 is demonstrated by the following example. Let

A =

(
µ 1
0 0

)

with χA(λ, µ) = (λ − µ)λ, p1(λ, µ) = λ − µ, p2(λ, µ) = λ. From

Ã =

(
A1 A1,2

0 A2

)

and χA1 = λ − µ, χA2 = λ we conclude that A1 = (µ) and A2 = (0). Assume that
we can choose a unimodular S ∈ C

2[µ] such that A1,2 = (0) and set

S =

(
s1,1 s1,2

s2,1 s2,2

)
, S−1 =

(
t1,1 t1,2

t2,1 t2,2

)
.
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Then a simple calculation shows that

(
µ 0
0 0

)
= S−1

(
µ 1
0 0

)
S

is equivalent to

t1,1

(
s1,2µ + s2,2

)
= 0, (D.1)

t2,1

(
s1,2µ + s2,2

)
= 0, (D.2)

t2,1

(
s1,1µ + s2,1

)
= 0, (D.3)

t1,1

(
s1,1µ + s2,1

)
= µ. (D.4)

Case 1: t1,1 = 0.
Equation (D.4) implies µ = 0, a contradiction.

Case 2: s1,2µ + s2,2 = 0.
Then equations (D.1) and (D.2) are satisfied. Assume that s1,1µ + s2,1 = 0. Then
(D.4) implies µ = 0, which is impossible. Thus we have s1,1µ + s2,1 	= 0. From (D.3)
we then get t2,1 = 0, i.e., we have

S−1 =

(
t1,1 t1,2

0 t2,2

)
.

Consequently we have s2,1 = 0. But this and s1,2µ + s2,2 = 0 imply s2,2 = 0, so that
det S(µ) ≡ 0.

Thus we have shown that neither case is possible, i.e., we never can get A1,2 = 0.
Analogously we can see that A cannot be transformed to diag(0, µ).

The result of Theorem D.5 does not carry over to C
n[µ1, . . . , µm] in case m ≥ 2.

The following example was given in [21]. Let

A(µ, ν) =

(
µ2 µν
µν ν2

)
∈ C

2×2[µ, ν]

be given. Then we have χA(λ, µ, ν) = λ
(
λ − µ2 − ν2

)
=: p1(λ, µ, ν)p2(λ, µ, ν). We

have p1(A) = A and ker p1(A) = span
(
col(ν,−µ)

)
. Assume that there exists a free

submodule X = span
(
col(α, β)

)
such that

C
2[µ.ν] = ker p1(A) ⊕ X.

This implies that the vectors col(1, 0) and col(0, 1) (which constitute a basis for
C

2[µ.ν]) are linear combinations of col(ν,−µ) and col(α, β), i.e., there exist poly-
nomials pi, qi ∈ C[µ, ν], i = 1, 2, such that

1 = νp1 + αp2, (D.5)

0 = −µp1 + βp2, (D.6)

0 = νq1 + αq2, (D.7)

1 = −µq1 + βq2. (D.8)

From (D.6) we see that µ divides βp2.
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Case 1: µ | p2.
This implies p2 = µp̃2, p̃2 ∈ C[µ, ν], and in view of (D.6) µ(−p1 + βp̃2) = 0. Conse-
quently we have p1 = βp̃2. Then (D.5) implies

1 = p̃2(νβ + µα),

which is impossible.

Case 2: µ | β.
In this case we have β = µβ̃, β̃ ∈ C[µ, ν], and get from (D.8)

1 = µ(−q1 + β̃q2),

which again is impossible.
Thus we have shown that ker p1(A) is not a direct summand in C

2[µ, ν]. For p2

we have

p2(A) =

(
−ν2 µν
µν −µ2

)

and ker p2(A) = span
(
col(µ, ν)

)
. Analogously as above we prove that also ker p2(A)

is not a direct summand of C
2[µ, ν].
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1. Introduction

The variation of constants formula for delay differential equations has
for some time been a puzzling part of the theory. For the general inho-
mogeneous linear equation

dx

dt
= Lxt + f(t) (1.1)

with initial value x0 = 0, the solution reads

xt =
∫ t

0
TL(t− s)X0f(s)ds (1.2)

in which X0 is the matrix-valued function defined by

X0(θ) = 0, for θ < 0; X0(0) = IdRn

and TL(t) is the semigroup associated with the homogeneous equation
on the space C = C ([−r, 0] , Rn). Formula (1.2) indicates that TL(t)
is evaluated at X0 although this function (only considering the column
vectors) is not continuous and so is not in the space where the semigroup
is defined. In the literature, this odd fact is discretely overlooked by
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using the expression ”formal”. One should note that a rigorous variation
of constants formula exists: it is enough to use the fundamental solution
U(t) instead of TL(t)X0. In terms of U(t), the solution x reads

x(t) =
∫ t

0
U(t− s)f(s)ds

The shortcoming of the above formula is that it is not expressed at the
level of the phase space of the equation, which makes it difficult to use
in the study of dynamical features of the solutions. The inconvenience
caused by this apparent inconsistency is particularly visible when deal-
ing with semilinear equations and stability or bifurcation issues. A first
step in the direction of resolving this inconsistency was made by Chow
and Mallet-Paret In a later work (1980, not published), Arino proposed
a solution close to the one proposed in , that is, to work in the space
C1 instead of C. These approaches are in fact very close to one which
emerged a few years later, first, in a completely different context, that
is, the theory of integrated semigroups. We will come to this theory last
part of this chapter, it will be discussed and used in different context
by M.Adimy and K.Ezzinbi in the third part of this book . Recently,
Maniar, Rhandi et al .use extrapolation theory to discuss the same
problem. Another approach burgeoned in the mid-eighties (1984-85)
within a group of five people, Ph.Clement, O.Diekmann, M.Gyllenberg,
H.J.A.M.Heijmans and H.R.Thieme (1985), that is, the approach of em-
bedding the problem set in a larger space containing not only continuous
functions but also such functions as X0, a space intermediary between
the space C and its bidual. This approach was not new, a thorough
study of the relationships between the dual and the adjoint semigroups
has been performed by E.Hille and R.S.Phillips(1957), and a number
of important results are to be found in their book. It seems that it had
been revivified by H.Amann in a completely different context. In the
next section, We will now give a very short summary of dual semigroups
and we will show how it can be used to provide a rigorous variation of
constants formula in the case of delay differential equations.The last sec-
tion of this chapter will be devoted to show how the theory of integrated
semigroups can be used to provide a rigorous variation of constants for-
mula. An important consequence of both of these theories is to give new
and interesting perspectives of DDE.
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2. Variation Of Constant Formula Using
Sun-Star Machinery

2.1 Duality and semigroups
Let A be the infinitesimal generator of a C0-semi-group (T (t))t≥0 in

a Banach space X.
T ∗(t) is a semigroup on the dual space X∗ of X. In the general case

T ∗(t) is not strongly continuous. It is strongly continuous when X is
reflexive. Following Hille and Phillips (1957)[21], we define

X� =
{

x∗ ∈ X∗ : lim
t→0

‖T ∗(t)x∗ − x∗‖ = 0
}

(2.3)

X� (pronunciated as X−sun) is the space of strong continuity of T ∗(t).
It is a closed subspace of X∗. One can determine X� in terms of A∗. In
fact, we have ([21]):

X� = D(A∗) (2.4)

(this is the closure with respect to the strong topology of X∗, this result
shows that X� ⊇ D(A∗)). The restriction of T ∗(t) to X�, denoted
T�(t), is a strongly continuous semigroup of linear bounded operators
on the space X�.

The infinitesimal generator of T�(t) is the operator denoted A�, which
is the restriction of A∗, to the domain

D(A�) =
{
x∗ ∈ D(A∗) : A∗x∗ ∈ X�}

D(A�) is weak* dense in X∗.One can repeat the construction starting
from X� and T�(t), that is, we can the space X�∗ from thee injection of
X� in X∗, we have X�∗ contains X∗∗, with continuous injection. Since
X∗∗ contains X , X can be considedred as subspace of X�∗, and, in
addition X is a closed subspace of X�∗. By the same operations as above
we define X��

X�� =
{

x�∗ ∈ X�∗ : lim
t→0

∥∥T�∗(t)x�∗ − x�∗∥∥ = 0
}

(2.5)

and T��(t) is the restriction of T�∗(t) to X��.
Definition: X is called sun-reflexive with respect to A if and only if

X = X��.

remark 1 This equality should be understood as identification : we no-
tice earlier that X can be identified to a closed subspace of X�∗. In the
case of sun-reflexivity this space X��.

In the sun-reflexive case, we have: A�� = A and T��(t) = T (t).
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2.1.1 The variation of constant formula:. Given a Ba-
nach space X , an operator A0 which is the infinitesimal generator of a
C0−semigroup T0(t) We assume that X is sun reflexive with respect to
A0.Let be B ∈ £(X�∗).

We consider the following equation

dx

dt
= A0x(t) + Bx(t). (2.6)

B is a perturbation of A0. At first sight this pertubation doesnt make
sense since B takes values in a space bigger than X. The only way to
make it meaningful is to look for x(t) in a bigger space in fact in the
space X�∗. Assuming that x(t) lies in this space, one can write equation
(2.6) in the form

x(t) = T0(t)x0 +
∫ t

0
T�∗

0 (t− s)Bx(s)ds (2.7)

where x(0) = x0.
Using a method of successive approximations, one can show that the

equation (2.7) has each initial value x0 one and only one x(t) defined
for all t ≥ 0. We denote T (t)x0 = x(t). T (t) is a semi-group strongly
continuous in X�∗.

We will now show that T (t) is a C0− semigroup on X. The proof goes
through the next lemma:

Lemma 18 Let f : [0, +∞[ → X�∗ be norm-continuous. Then,

t →
∫ t

0
T�∗

0 (t− s)f(s)ds

is a norm-continuous X��- valued function

Theorem 1 Given a Banach space X , an operator A0 which is the
infinitesimal generator of a C0−semigroup T0(t) We assume that X is
sun reflexive with respect to A0.Let be B ∈ L(X�∗). Then, equation2.7
has, for each x0 in X, a unique solution defined on [0, +∞[ with values
in X, continuous and such that x(0) = x0. The map T (t)x0 = x(t) is
continuous on X.

Theorem 2 Under the same assumptions as the above theorem, let A
be the infinitesimal generator of T (t). Then, we have

D(A) =
{
x ∈ D(A�∗

0 ) : A�∗
0 x + Bx ∈ X

}
(2.8)

Ax = A�∗
0 x + Bx (2.9)
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X is sun-reflexive with respect to A. Finally, D(A) = D(A�∗
0 ) and

A = A�∗
0 + B.

We have all the ingredients necessary for the application to the delay
differential equations, which will be considered next.

2.2 Application to delay differential equations
2.2.1 The trivial equation:. In the sequel we present some
properties of the unperturbed semi-group {T0(t), t ≥ 0} related to the
trivial equation: {

dx

dt
= 0,

x(θ) = ϕ(θ),

which is given by

(T0 (t)) ϕ(θ) =
{

ϕ(0) if t + θ ≥ 0,
ϕ(t + θ) if t + θ ≤ 0.

The semi-group {T0(t), t ≥ 0} is generated by A0ϕ =
.
ϕ with

D(A0) =
{
ϕ ∈ C1 ([−1, 0] , IR) ,

.
ϕ(0) = 0

}
(

.
ϕ =

dϕ

dt
).

Let IE∗ be represented by BV ([0, +∞[, IR), with the pairing given by

< f, ϕ >=
∫ +∞

0
df(τ)ϕ(−τ).

Most of the following results are borrowed from Diekmann and van Gils
(1990). We have just adapted them to the specific equation considered
here.

Lemma 19 [33] The semigroup T ∗
0 (t) is given by the formula

(T ∗
0 (t)f)(τ) = f(t + τ) for τ > 0.

Its generator A∗
0 verifies,

D(A∗
0) =

{
f : f(t) = f(0+) +

∫ t

0

g(τ)dτ for t > 0, g ∈ NBV and g(1) = 0
}

,

and for

f ∈ D(A∗
0), A∗

0(f) = g (=
df

dt
).
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Lemma 20 (Diekmann et al.)

IE� =

{
f : f(t) = f(0+) +

∫ t

0

g(τ)dτ for t > 0, g ∈ L1(R+) and g(σ) = 0 for σ ≥ 1

}

The space IE� is isometrically isomorphic to R × L1([0, 1], IR) equipped
with the norm

‖(c, g)‖ = |c|+ ‖g‖L1 .

Lemma 21 (Diekmann et al.)The semi-group T�
0 (t) is given by the for-

mula

T�
0 (t)(c, g) =

(
c +
∫ t

0
g(τ)dτ, g(t + .)

)
.

Its generator A�
0 verifies

D(A�
0 ) = {(c, g), g ∈ AC(IR+)}

and A�
0 (c, g) = (g(0),

.
g), where AC(IR+) is the space of absolutely con-

tinuous functions on R+. We represent IE�∗ by IR × L∞([−1, 0], IR)
equipped with the norm

‖(α, ϕ)‖ = sup(α, ‖ϕ‖L∞),

and the pairing:

< (c, g), (α, ϕ) >= cα +
∫ 0

−1
g(τ)ϕ(τ)dτ.

Lemma 22 [33] The semi-group T�∗
0 (t) is given by

T�∗
0 (t) (α, ϕ) = (α, ϕα

t )

where

ϕα
t (s) =

{
ϕ(t + s) if t + s ≤ 0,
α if t + s > 0.

Its generator A�∗
0 satisfies

D(A�∗
0 ) = {(α, ϕ) , ϕ ∈ Lip(α)}

and
A�∗

0 (α, ϕ) = (0, ϕ) .

Here Lip(α) denotes the subset of L∞(IR+, IR) whose elements contain
as a class in L∞ a Lipschitz continuous function which assumes the
value α at τ = 0. Taking the closure of D(A�∗

0 ), we lose the Lipschitz
condition but continuity remains.

Lemma 23 [33]

IE�� = {(α, ϕ) , ϕ continuous and ϕ(0) = α}
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2.2.2 The general equation. We now consider the equation

dx

dt
= L(xt)

The equation leads to the following ”formal” equation

d(xt)
dt

= A0xt + X0L(xt)

The map X0 ∈ IE�∗, so if t → x(t) is continuous, t → X0L(xt) is
continuous with values in IE�∗. We can then write the following fixed
point problem in

xt = T0(t)x0 +
∫ t

0
T�∗

0 (t− s)X0L(xs)ds

The solution leads to a semigroup T (t) whose generator A is defined by

Aϕ = A0ϕ + X0L(ϕ)

with
D(A) =

{
ϕ ∈ D(A�∗

0 ) : A0ϕ + X0L(ϕ) ∈ IE
}

This corresponds to

D(A) =
{
ϕ ∈ C1, ϕ′(0) = L(ϕ)

}

3. Variation Of Constant Formula Using
Integrated Semigroups Theory

In [4], [5], and [8] an approach has been developed, based on the
theory of integrated semigroups, for establishing a variation of constants
formula for functional differential equations in finite dimensional spaces.
This approach will be discussed in this section to obtain the variation of
constant formula for the following delay differential equations:

{
dx

dt
(t) = L(xt) + f(t), t ≥ 0,

x0 = ϕ = C ([−r, 0] , Rn) ,
(3.10)

where xt denotes, as usual, the function defined on [−r, 0] by xt(θ) =
x(t + θ), −R ≤ θ ≤ 0, L is a continuous linear functional from C :=
C ([−r, 0] , Rn) into R

n and f is a function from [0, +∞[ into R
n. The

initial value problem associated with equation (3.10) is : given ϕ ∈ C,
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to find a continuous function x : [−R, h[ → R
n, h > 0, differentiable on

[0, h[, satisfying equation (3.10) on [0, h[ .

We know that the solutions of the linear autonomous retarded func-
tional differential equation

{
dx

dt
(t) = L(xt), t ≥ 0,

x0 = ϕ,
(3.11)

in R
n, define a strongly continuous translation semigroup (T (t))t≥0 in

the space C := C ([−r, 0] , Rn) . The initial value problem associated with
equation (3.10) can be written formally as an integral equation

xt = T (t)ϕ +
∫ t

0
T (t− s)X0f(s)ds, for t ≥ 0,

where X0 denotes the function defined by X0(θ) = 0 if θ < 0 and
X0(0) = IdRn .

The expression T (·)X0 in the integral is not strictly defined, since
X0 is not in C and T (·) acts on C. In this paper, we prove that the
semigroup (T (t))t≥0 associated to equation (3.10) can be extended to the
space C ⊕ 〈X0〉 , where 〈X0〉 = {X0c, c ∈ R

n and (X0c) (θ) = X0(θ)c}
as an integrated semigroup of operators and we derive its consequences
regarding the nonhomogeneous linear equation (3.10) and the nonlinear
equation {

dx

dt
(t) = L (xt) + f(t, xt), t ≥ 0.

x0 = ϕ ∈ C.
(3.12)

3.1 Notations and basic results
We start by giving some basic terminology, definitions, and results

that will be needed in the sequel. The following definitions are due to
Arendt.

Definition 20 [9] Let X be a Banach space. A family (S(t))t≥0 of
bounded linear operators S(t) on X is called an integrated semigroup if
the following conditions are satisfied:
(i) S(0) = 0;
(ii) for any x ∈ X, S(t)x is a continuous function of t ≥ 0 with values
in X;

(iii) for any t, s ≥ 0 S(s)S(t) =
∫ s

0
(S(t + τ)− S(τ))dτ.
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Definition 21 [9] An integrated semigroup (S(t))t≥0 is called exponen-
tially bounded, if there exist constants M ≥ 0 and ω ∈ IR such that
‖S(t)‖ ≤ Meωt for all t ≥ 0.
Moreover (S(t))t≥0 is called non-degenerate, if S(t)x = 0, for all t ≥ 0,
implies that x = 0.

If (S(t))t≥0 is an integrated semigroup exponentially bounded, then

the Laplace transform R(λ) := λ

∫ +∞

0
e−λtS(t)dt exists for all λ with

�e(λ) > ω, but R(λ) is injective if and only if (S(t))t≥0 is non-degenerate.
In this case R(λ) satisfies the following expression

R(λ)−R(µ) = (µ− λ)R(λ)R(µ),

and there exists a unique operator A satisfying (ω, +∞) ⊂ ρ(A) (the
resolvent set of A) such that

R(λ) = (λI −A)−1, for all �e(λ) > ω.

The operator A is called the generator of (S(t))t≥0.
We have the following definition.

Definition 22 [9] An operator A is called a generator of an integrated
semigroup, if there exists ω ∈ IR such that ]ω, +∞[ ⊂ ρ(A), and there ex-
ists a strongly continuous exponentially bounded family (S(t))t≥0 of lin-

ear bounded operators such that S(0) = 0 and (λI−A)−1 = λ

∫ +∞

0
e−λtS

(t)dt for all λ > ω.

Proposition 26 [9] Let A be the generator of an integrated semigroup
(S(t))t≥0. Then for all x ∈ X and t ≥ 0

∫ t

0
S(s)xds ∈ D(A) and S(t)x = A

(∫ t

0
S(s)xds

)
+ tx.

An important special case is when the integrated semigroup is locally
Lipschitz, continuous..

Definition 23 [9]An integrated semigroup (S(t))t≥0 is called locally Lip-
schitz continuous if, for all τ > 0, there exists a constant k(τ) > 0 such
that

‖S(t)− S(s)‖ ≤ k(τ) |t− s| , for all t, s ∈ [0, τ ] .

From [9], we know that every locally Lipschitz continuous integrated
semigroup is exponentially bounded.
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Definition 24 [9] We say that a linear operator A satisfies the Hille-
Yosida (HY ) condition, if there exists M > 0 and ω ∈ IR such that
]ω, +∞[ ⊂ ρ(A) and

sup
{
(λ− ω)n

∥∥(λI −A)−n
∥∥ , n ∈ N, λ > ω

}
≤M.

The following theorem shows that the Hille-Yosida condition charac-
terizes generators of locally Lipschitz continuous integrated semigroups.

Theorem 3 [9] The following assertions are equivalent.
(i) A is the generator of a non-degenerate, locally Lipschitz continuous
integrated semigroup,
(ii)A satisfies the (HY ) condition .

In the sequel, we give some results for the existence of particulars
solutions of the following Cauchy problem

{
du

dt
(t) = Au(t) + f(t), t ≥ 0,

u(0) = x ∈ X,
(3.13)

where A satisfies the (HY ) condition.

Definition 25 [32] Given f ∈ L1
loc(0, +∞; X) and x ∈ X, we say that

u : [0, +∞[ → X is an integral solution of the equation ( 3.13) if the
following assertions are true
(i) u ∈ C( [0, +∞[ ;X)

(ii)

∫ t

0
u(s)ds ∈ D(A), for t ≥ 0,

(iii) u(t) = x + A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds, for t ≥ 0.

From this definition, we deduce that for an integral solution u, we

have u(t) ∈ D(A), for all t > 0, because u(t) = lim
h→0

1
h

∫ t+h

t
u(s)ds and

∫ t+h

t
u(s)ds ∈ D(A). In particular, x ∈ D(A) is a necessary condition

for the existence of an integral solution of (3.13).

Theorem 4 [22]Suppose that A satisfies the (HY ) condition, x ∈ D(A)
and f : [0, +∞[→ X is a continuous function. Then the problem ( 3.13)
has a unique integral solution which is given by

u(t) = S′(t)x +
d

dt

∫ t

0
S(t− s)f(s)ds, pour t ≥ 0,
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where S(t) is the integrated semigroup generated by A. Moreover u sat-
isfies

|u(t)| ≤Meωt(|x|+
∫ t

0
e−ωs |f(s)| ds), for t ≥ 0.

3.2 The variation of constant formula
Let L be a linear bounded operator from C into R

n. We consider
the linear functional differential equation (3.11). The following result is
known.

Theorem 5 [48]The operator Aϕ = ϕ′ with domain

D(A) =
{
ϕ ∈ C1([−r, 0] ; Rn), ϕ′(0) = L(ϕ)

}

is the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0

on C satisfying the translation property

(T (t)ϕ) (θ) =
{

ϕ(t + θ) if t + θ ≤ 0
(T (t + θ)ϕ) (0) if t + θ > 0,

t ≥ 0, θ ∈ [−r, 0] , ϕ ∈ C.
Furthermore, for each ϕ ∈ C, define x : [−r, +∞[→ R

n by

x(t) =
{

ϕ(t) if t ∈ [−r, 0]
(T (t)ϕ) (0) if t > 0.

Then x is the unique solution of ( 3.11) and T (t)ϕ = xt, for t ≥ 0.

For each complex number λ, we define the bounded linear operator
Lλ : R

n → R
n by

Lλ(c) = L(eλ.c), for c ∈ R
n,

where eλ.c : [−r, 0] → R
n is defined by

(
eλ·c
)

(θ) = eλθc, θ ∈ [−r, 0] .

We know, from [48] that the resolvent set ρ(A) of A is given by

ρ(A) =
{
λ ∈ C, ∆(λ)−1 exists in L(Rn)

}
,

where L(Rn) is the space of linear bounded operators on R
n and

∆(λ) = λI − Lλ.
We now present our first main result.
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Theorem 6 The continuous extension Ã of the operator A to the space
C ⊕ 〈Xo〉 , defined by

D(Ã) = C1 ([−r, 0] , Rn) , and Ãϕ = ϕ′ + X0(L(ϕ)− ϕ′(0)),

generates a locally Lipschitz continuous integrated semigroup (S(t))t≥0

on C ⊕ 〈X0〉 such that S(t)(C ⊕ 〈X0〉) ⊂ C and S(t)ϕ =
∫ t

0
T (s)ϕds, for

ϕ ∈ C.

It suffices to show that Ã satisfies the (HY ) condition .
By the Hille-Yosida theorem, there exists ω ∈ lR, such that:

ρ(A) ⊃ (ω, +∞)
sup

n∈N,λ>ω
{(λ− ω)n‖R(λ, A)n‖} < +∞

where R(λ, A) = (λI −A)−1 . In particular, for λ > ω, ∆(λ) is invertible
on L(Rn).

We need the following lemma.

Lemma 24 For λ > ω,
(i) D(Ã) = D(A)⊕

〈
eλ·〉 , where

〈
eλ·〉 =

{
eλ·c; c ∈ R

n
}

,

(ii) (ω, +∞) ⊂ ρ(Ã) and for n ≥ 1

R(λ, Ã)n(ϕ + X0c) = R(λ, A)nϕ + R(λ, A)n−1
(
eλ·∆−1(λ)c

)
,

for every (ϕ, c) ∈ C × R
n.

Proof of lemma. We consider the following operator

l : D(Ã) → R
n

ψ → l(ψ) = ψ′(0)− L(ψ).

Let ψ̃ ∈ D(Ã) and λ > ω. If we put ψ = ψ̃ − eλ·∆(λ)−1l(ψ̃), then we
deduce that ψ ∈ Ker(l) = D(A), and the decomposition ψ̃ = ψ + eλ.a,
with a ∈ R

n, is unique.
Let ϕ̃ ∈ C ⊕ 〈X0〉 , ϕ̃ = ϕ + X0c. We look for ψ̃ ∈ D(Ã), such that

(λI − Ã)ψ̃ = ϕ̃.
ψ̃ can be written as ψ̃ = ψ + eλ·a, where ψ ∈ D(A) and a ∈R

n.
We have

(λI − Ã)(ψ + eλ·a) = ϕ + X0c.

This equation splits into two{
(λI −A)ψ = ϕ
∆(λ)a = c.
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It follows that for λ > ω, (λI − Ã)−1 exists and

(λI − Ã)−1(ϕ + X0c) = (λI −A)−1ϕ + eλ·∆(λ)−1c.

Repeating this procedure, we have for every n ≥ 1

R(λ, Ã)n(ϕ + Xoc) = R(λ, A)nϕ + R(λ, A)n−1
(
eλ.∆−1(λ)c

)
. (3.14)

This completes the proof of the lemma.
On the other hand, one has

∆(λ) = λI − Lλ = λ

(
I − 1

λ
Lλ

)
.

Without loss of generality, we can assume that λ > 0, in this case, we
have ∥∥∥∥ 1

λ
Lλ

∥∥∥∥ ≤ ‖L‖λ
< 1, for λ > ‖L‖ .

Hence the operator I − 1
λLλ is invertible and

(
I − 1

λ
Lλ

)−1

=
∑
n≥0

1
λn

Ln
λ.

So, ∥∥∥∥∥
(

I − 1
λ

Lλ

)−1
∥∥∥∥∥ ≤

1
1− 1

λ ‖L‖
,

and ∥∥∆−1(λ)
∥∥ ≤ 1

λ− ‖L‖ , for λ > max(‖L‖ , ω).

Using the relation (3.14), we obtain

sup
n∈N,λ>ω0

∥∥∥(λ− ω0)
n R(λ, Ã)n

∥∥∥ < ∞, where ω0 = max(‖L‖ , ω).

We conclude by theorem 3, that Ã is the generator of a locally Lipschitz
continuous integrated semigroup.

Now, consider the nonhomogeneous functional differential equation
(3.10) {

dx

dt
(t) = L (xt) + f(t), for t ≥ 0

x0 = ϕ ∈ C,
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and the nonhomogeneous associated Cauchy problem
{

du

dt
(t) = Ãu(t) + X0f(t), for t ≥ 0

u(0) = ϕ ∈ C.
(3.15)

Theorem 7 If f ∈ C([0, +∞[ , Rn), then equation ( 3.10) has a unique
solution x on [−r, +∞[ which is given by

xt = T (t)ϕ +
d

dt
(
∫ t

0
S(t− s)X0f(s)ds), for t ≥ 0. (3.16)

Proof. It suffices to show that the function u defined by

u(t) = xt, for t ≥ 0, (3.17)

is an integral solution of equation (3.15).
Let x be the solution of (3.10), such that x0 = ϕ.
By using the relation

d

dθ

(∫ t

0
xsds

)
= xt − ϕ,

we deduce that

Ã

(∫ t

0
xsds

)
= xt − ϕ + X0

(
L(
∫ t

0
xsds)− x(t) + ϕ(0)

)
.

On the other hand, integrating equation (3.10) from 0 to t, we get

x(t) = ϕ(0) + L(
∫ t

0
xsds) +

∫ t

0
f(s)ds.

It follows that

u(t) = ϕ + Ã(
∫ t

0
u(s)ds) + X0

∫ t

0
f(s)ds.

We obtain that u is an integral solution of (3.15).
The operator Ã satisfies the (HY ) condition. So this solution can be
written as

u(t) = T (t)ϕ +
d

dt

(∫ t

0
S(t− s)X0f(s)ds

)
, for t ≥ 0.

Consider the nonlinear equation
{

dx

dt
(t) = L(xt) + f(t, xt), for t ≥ 0

x0 = ϕ,
(3.18)
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and the initial value problem associated
{

du

dt
(t) = Ãu(t) + X0f(t, u(t)), for t ≥ 0

u(0) = ϕ,
(3.19)

where f : [0, +∞[ × C → R
n is Lipschitz with respect to the second

variable and continuous.
We know that equation (3.18) has one and only one solution x which

is defined on [−r, +∞[ by

x(t) = ϕ(0) + L(
∫ t

0
xsds) +

∫ t

0
f(s, xs)ds, for t ≥ 0.

Substituting f(t, xt) for f(t) in formula 3.16, equation (3.18) can be
written as a fixed point equation.

We deduce the following result.

Theorem 8 Under the above conditions, the solution x of equation
( 3.18) can be written as

xt = T (t)ϕ +
d

dt

(∫ t

0
S(t− s)X0f(s, xs)ds

)
, for t ≥ 0.

Appendix

In this section, we prove that the integrated semigroup (S(t))t≥0 as-
sociated to the equation (3.11) can be written as a perturbation of the
integrated semigroup (S0(t))t≥0 associated to the trivial equation

{
dx

dt
(t) = 0, for t > 0,

x0 = ϕ ∈ C.
(3.20)

The generator A0 of the C0-semigroup associated to equation (3.20) is
given by

D(A0) =
{
ϕ ∈ C1; ϕ′(0) = 0

}
, and A0ϕ = ϕ′.

By theorem 6, we obtain:

Corollary 9 The continuous extension Ã0 of the operator A0 defined
on
C ⊕ 〈Xo〉 by

D(Ã0) = C1 ([−r, 0] , Rn) , and Ã0ϕ = ϕ′ −X0ϕ
′(0),
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generates a locally Lipschitz continuous integrated semigroup (S0(t))t≥0

on

C ⊕ 〈X0〉 such that S0(t)(C ⊕ 〈X0〉) ⊂ C and S0(t)ϕ =
∫ t

0
T0(s)ϕds, for

ϕ ∈ C.

Theorem 10 The integrated semigroup (S(t))t≥0 associated with equa-
tion ( 3.11) is given by

S(t)ϕ = S0(t)ϕ +
∫ t

0
S0(t− s)X0L(T (s)ϕ)ds, t ≥ 0 and ϕ ∈ C.

Proof. For every function ϕ ∈ C, consider the nonhomogenuous
Cauchy problem

{
du

dt
(t) = Ã0u(t) + h(t), for t ≥ 0

u(0) = 0,
(3.21)

where h : [0, +∞[→ C ⊕ 〈X0〉 is given by

h(t) = ϕ + X0(L(S(t)ϕ).

In view of corollary 9 , Ã0 satisfies the (HY ) condition. Hence, by
theorem 4 the nonhomogeneous Cauchy problem (3.21) has an integral
solution u given by

u(t) =
d

dt

(∫ t

0
S0(t− s)h(s)ds

)
, for t ≥ 0.

On the other hand, we have

S(t)ϕ = Ã

(∫ t

0
S(s)ϕds

)
+ tϕ.

This implies that

d

dθ
(
∫ t

0
S(s)ϕds) = S(t)ϕ− tϕ, for ϕ ∈ C.

By applying

Ãψ = Ã0ψ + X0(L(ψ)), for ψ ∈ C1,

we obtain

S(t)ϕ = Ã0(
∫ t

0
S(s)ϕds) + X0

(∫ t

0
L (S(s)ϕ) ds

)
+ tϕ,
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so,

S(t)ϕ = Ã0

(∫ t

0
S(s)ϕds

)
+
∫ t

0
h(s)ds.

Hence, the function t → S(t)ϕ is an integral solution of (3.21). By
uniqueness, we conclude that S(t)ϕ = u(t), for all t ≥ 0.
Consequently,

S(t)ϕ = S0(t)ϕ +
d

dt

(∫ t

0
S0(t− s)X0 (L(S(s)ϕ) ds

)
.

We deduce that

S(t)ϕ = S0(t)ϕ +
d

dt

(∫ t

0
S0(s)X0(L(S(t− s)ϕ)ds

)
,

and

S(t)ϕ = So(t)ϕ +
∫ t

0
S0(t− s)X0(L(T (s)ϕ)ds.

Remark: 1) All results of this section can be obtained if we consider
the following abstract functional differential equation

{
dx

dt
(t) = Bx(t) + L(xt) + f(t), t ≥ 0,

x0 = ϕ,
(3.22)

where B is generator infinitesimal of C0 semigroup (T (t))t≥0 on a Banach
space E.

2) The approach developed in the first section, based on a certain
class of weakly * continuous semigroups on a dual Banach space (see
Clement et al.) ([27]), for the study of delay differential equations in
finite dimensional spaces cannot be used in infinite dimensional spaces
because we do not have necessarily C�� � C.
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INTRODUCTION TO HOPF BIFURCATION
THEORY FOR DELAY DIFFERENTIAL
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1. Introduction

1.1 Statement of the Problem:
Consider the family of equations:

G(α, x) = 0 (1.1)

where x ∈ X , α ∈ Λ, G : Λ × X → X ; X is a Banach space; Λ

is a topological space of parameters. Suppose that equation (1.1) has
for each α, a root translated to the origin x = 0, qualified as a trivial
solution, that we have G(α, 0) = 0 for each α ∈ Λ.

The problem here is to determine non trivial solutions of (1.1).

Definition 26 We say that (α0, 0) is a bifurcating point of solutions of
( 1.1) if each neighborhood of (α0, 0) in Λ × X contains a point (α, x)
satisfying x 
= 0 and G(α, x) = 0.

Definition 27 A bifurcation branch emanating from (α0, 0) is a map
b defined from the interval I = [0, a[ ⊂ IR into Λ × X such that b :
s → b(s) = (α(s), x(s)) satisfying x(s) 
= 0 for s 
= 0, lim

s→0
x(s) = 0,

lim
s→0

α(s) = α0,and G(α(s), x(s)) = 0.

- The graph of the map b is also called the bifurcating branch (or
branch of bifurcation).

- Λ× {0} is the trivial branch.
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- A bifurcation method is any method that could be used to exhibit
a branch of bifurcation for a family of equations.

Bifurcation theory studies persistence and exchange of qualitative
properties of dynamical systems under continuous perturbations. A typ-
ical case, which we will present here, is the case of systems depending
continuously on a single parameter. We will deal with retarded differ-
ential equations of the form

dx(t)
dt

= F (α, xt) (1.2)

with F : R× C → R
n, F of class C2 and F (α, 0) = 0 ∀α ∈ R and C =

C([−r, 0] , Rn) the space of continuous functions from [−r, 0] into R
n. As

usual, xt is the function defined from [−r, 0] into R
n by xt(θ) = x(t+ θ)

, r ≥ 0 (r could be infinite ).
We will be concerned with the nature of the equilibrium point 0 (stable

or unstable) with respect to the values of the parameter α. What happens
if at such a point α0, we observe a change in the stability (that is to say,
a transition from stability to instability when the system crosses the
value of the parameter α0).

Such a change may in fact correspond to important changes of the
dynamics.

Examples of systems depending on a parameter are abundant in physics,
chemistry, biology and...etc. Parameters can be the temperature, resis-
tance, reaction rate or the mortality rate, the birth rate, etc. Under
small variations of the parameter, such systems may lose stability, more
pecisely, the ”trivial” equilibrium may lose stability, and restabilize near
another equilibrium or a closed orbit or a larger attractor. The tran-
sition can be continuous, gentle and smooth, with the new equilibrium
state emerging in the vicinity of the ”trivial” one, or it can be of a dis-
continuous nature, with the new equilibrium being far from the ”trivial”
one. The first case corresponds to a local bifurcation, the second one is
a global bifurcation.

In local bifurcations, one can distinguish two types of bifurcations:
I) the system leaves its equilibrium state and reaches a new fixed

equilibrium state.
II) the system goes from an equilibrium state to an invariant sub-

set made generally of several equilibriums and curves connecting them,
closed orbits, or tori, etc. The most elementary situation is the Hopf
bifurcation, characterized by the onset of a closed orbit, starting near
the trivial equilibrium, which is the phase portrait of a periodic solution
with period close to some fixed number (Hopf 1942).

In this course, we will restrict our attention to Hopf bifurcation.
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Definition 28 (α0, 0) ∈ R × C is said to be a Hopf bifurcation point
for equation ( 1.2) if every neighbourhood of this point in R×C contains
a point (α, ϕ), with ϕ 
= 0 such that ϕ is the initial data of a periodic
solution, with period near a fixed positive number, of equation ( 1.2) for
the value of the parameter α.

We will now make the following assumptions:
(H0) F is of class Ck, for k ≥ 2, F (α, 0) = 0 for each α, and the map

(α, ϕ) → Dk
ϕF (α, ϕ) sends bounded sets into bounded sets.

(H1) The characteristic equation

det∆(α, λ) := λId−DϕF (α, 0) exp(λ(.)Id) (1.3)

of the linearized equation of (1.2) around the equilibrium v = 0 :

dv(t)
dt

= DϕF (α, 0)vt (1.4)

has in α = α0 ≥ 0 a simple imaginary root λ0 = λ(α0) = i , all the
others roots λ satisfy λ 
= mλ0 for m = 0,±2,±3,±4, ...

((H1) implies notably that the root λ0 lies on a branch of roots λ =
λ(α) of equation (1.3), of class Ck−1)

(H2) λ(α) being the branch of roots passing through λ0, we have

∂

dα
�eλ(α) |α=α0 
= 0 (1.5)

Theorem 1 Under the assumptions (H0), (H1) and (H2), there exist
constants R, δ > 0, and η > 0 and functions α(c), ω(c) and a periodic
function with period ω(c), u∗(c), such that a) All of these functions are of
class C1 with respect to c, for c ∈ [0, R[,α(0) = α0, ω(0) = ω0, u∗(0) = 0
; b) u∗(c) is a periodic solution of ( 1.2), for the parameter value equal
α(c) and period ω(c); c) For | α − α0 |< δ and | ω − 2π |< η, any ω−
periodic solution p, with ‖p‖ < R, of ( 1.2) for the parameter value α,
there exists c ∈ [0, R[ such α = α(c), ω = ω(c) and p is, up to a phase
shift, equal to u∗(c).

1.2 History of the problem
1.2.1 The Case of ODEs:. A bifurcation result similar to
theorem1 was first established by Hopf (Hopf (1942), Absweigung einer
periodischen lösung eines differential systems. Berichen Math. Phys.
Ki. Säch. Akad. Wiss Leipzig 94, 1-22) in the case of ODE, assuming
that the function is analytic with respect to both the state variable and
the parameter. Hopf obtained α(c), ω(c) and u∗(c) analytic in c at 0.
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In the seventies, Hsu and Kazarinoff, Poore, Marsden and McCracken
(1976) and others discuss in their works the computation of important
features of the Hopf bifurcation, especially the direction of bifurcation
and dynamical aspects (stability, attractiveness, etc), both from theo-
retical and numerical standpoints. A very important new achievement
was the proof by Alexander and Yorke of what is known as the global
Hopf bifurcation theorem, which roughly speaking describes the extent
of the branch. The theory was also extended towards allowing further
degeneracies (more than two eigenvalues crossing theimaginary axis, or
multiplicity higher than one, etc) leading notably to the development
of the generalized Hopf bifurcation theory (Bernfeld et al (1980, 1982),
Negrini and Salvadori (1978), M.L. Hbid (Thèse de Doctorat 1987)).

After the work done in the seventies, one might consider that the
Hopf bifurcation theory for ODEs is essentially closed (proof of theorem
of existence of periodic solutions, computation of direction of bifurcation,
estimation of elements of bifurcation, stability of the bifurcating branch).

1.2.2 The case of Delay Equations:. - Chafee in 1971 was
the first to prove the local Hopf bifurcation theorem for DDE. Chafee’s
theorem gives both existence and stability: for this, it is necessary to
make further assumptions in addition to the extension of the conditions
stated in the Hopf bifurcation theorem for ODEs. The first proof of a
stricto sensu extension of the Hopf bifurcation theorem to DDE is at-
tributed, in historical notes of Hale’s book, to Chow and Mallet-Paret
(1974). It is probably right to say that the machinery, at the functional
analytic level, that was necessary for such an extension, was there, ready
to be used, by the beginning of the seventies, and was indeed used in-
dependently by several groups, here and there. I will now quote some
of the work done starting in the mid-seventies. This list should not be
considered exhaustive in whatever way:

- Hale in his book (1977) gives a proof of the theorem (1), based on
some of his earlier work in the case of ODE.

- Chow and Mallet-Paret (1978) use the averaging method to deter-
mine the stability and the amplitude of the bifurcating periodic orbit.

- Arino (1980 ) (not published) discusses one of the issues entailed
by DDEs, namely a lack of regularity when the parameter is the delay.
This problem shows up notably in the fixed point formulation for the
determination of periodic solutions. The method elaborated in Arino
(1980) goes through the adaptation of the implicit function theorem.

- Schumacher(1982) proves the Hopf bifurcation theorem for a strongly
continuous nonlinear semigroup defined in a closed subset of a Banach
space.
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- Stech (1985) uses the Lyapunov-Schmidt reduction method and gen-
eralizes a proof given by De Oliveira and Hale (1980) in the case of
ODEs to infinite delay differential equations. He also gives a compu-
tational scheme of bifurcation elements via an asymptotic expansion of
the bifurcation function.

- Staffans (1987) shows the theorem in a case analogous to Stech’s in
the case of neutral functional differential equations. His method is based
on the Lyapunov -Schmidt reduction method.

- Diekmann and van Gils (1990) reformulate the problem as an integral
equation. Using the theory of perturbation by duality, these authors
prove a centre manifold theorem for DDE and deduce the existence of
bifurcating periodic solutions via a reduction on centre manifold.

- Adimy (1991) proves the Hopf bifurcation theorem using the inte-
grated semigroup theory.

- Talibi (1992) uses an approximation method to obtain the existence
of periodic solutions.

- M.L. Hbid (1993) uses a reduction principle to a centre manifold,
the Lyapunov direct method and the Poincaré procedure to prove the
theorem.

- T.Faria and L.Magalhaes (1995) extend the normal form theory to
DDE and apply the theory to Hopf bifurcations of such equations.

In a more recent past, the Hopf bifurcation theory has been considered
in the case of functional partial differential equations, delay differential
equations in infinite dimensional spaces. This subject will be presented
in T.Faria’s lectures. The theory has also been extended to the case of
differential equations with state-dependent delay.

The following statement of the local Hopf bifurcation theorem is given
by J.Hale

Theorem 2 (J.K. Hale, Theory of functional differential equations, 1977)
Suppose F (α, φ) has continuous first and second derivatives with respect
to α, φ, F (α, 0) = 0 for all α, and Hypothesis (H1) and (H2) are sat-
isfied. Then there are constants a0 > 0, α0 > 0, δ0 > 0, functions
α(a) ∈ R, ω(a) ∈ R, and an ω(a)− periodic function x∗(a), with all
functions being continuously differentiable in a for |a| < a0, such that
x∗(a) is a solution of equation ( 1.2) with

x∗
0(a)Nα = Φα(a)y

∗(a), x∗
0(a)Qα = z∗0(a) (1.6)

where y∗(a) = (a, 0)T + o(|a|), z∗0(a) = o(|a|) as |a| → 0. Furthermore,
for |α| near 0 and |ω − 2π| < δ0, every ω− periodic solution of equation
( 1.2) with |xt| < δ0 must be of the type exact for a translation in phase.
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The approach we want to illustrate is based on two steps: first, a
reduction to a centre manifold, where the DDE reduces to an ODE; then,
the study of the bifurcation of periodic solutions on the reduced system.
For the reduction, we have followed the approach of Diekmann and van
Gils (1991), which itself is an adaptation to DDE of a method originally
proposed by Vanderbauwhede in the context of ODE. Once reduction
has been obtained, one has the problem of investigating the dynamics
near a critical point: nonlinearities play a crucial role there, and the
difficulty lies in the fact that the nonlinearities are only known implicitly.
The method we present here consists in computing a Lyapunov function
using the Poincaré procedure.

2. The Lyapunov Direct Method And Hopf
Bifurcation: The Case Of Ode

Before discussing the behavior of the reduced ordinary differential
system (3.28), let us recall the framework of the generalized Hopf bifur-
cation and h-asymptotic stability related to the Poincaré procedure (see
[14],[21][20]). We consider the planar system of differential equations




dx1

dt
= α(µ)x1 − β(µ)x2 + R1(µ, x1, x2)

dx2

dt
= α(µ)x2 − β(µ)x1 + R2(µ, x1, x2)

(2.7)

α(µ), β(µ) ∈ Ck+1(]−µ, µ[ , R and R1, R2 ∈ Ck+1((−µ, µ)×B2(a), R) with

k integer k ≥ 3 such that α(0) = 0, β(0) = 1 and
dα(0)
dµ


= 0, R1(µ, 0, 0) =

R2(µ, 0, 0) = 0 and DxR1(µ, 0, 0) = DxR2(µ, 0, 0) = 0
Introducing polar coordinates x1 = ρ cos θ , x2 = ρ sin θ, we have




dρ

dt
= α(µ)ρ + R∗

1(µ, ρ, θ) cos θ + R∗
2(µ, ρ, θ) sin θ

ρdθ

dt
= β(µ)ρ + R∗

2(µ, ρ, θ) cos θ −R∗
1(µ, ρ, θ) sin θ

(2.8)

where R∗
1,2(µ, ρ, θ) = R1,2(µ, ρ cos θ, ρ sin θ)

Let



W (µ, ρ, θ) = β(µ) +
R∗

2(µ, ρ, θ) cos θ −R∗
1(µ, ρ, θ) sin θ

ρ
W (µ, 0, θ) = β(µ)

(2.9)
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For every ρ0 ∈ [0, a[ , θ0 ∈ R, the orbit of (2.7) passing through
(ρ0, θ0) will be represented by the solution ρ(θ, µ0, θ0, ρ0) of the problem



dρ

dθ
=

α(µ) + R∗
1(µ, ρ, θ) cos θ −R∗

2(µ, ρ, θ) sin θ

W (µ, ρ, θ)
= R(µ, ρ, θ)

ρ(µ, θ0) = ρ0

(2.10)
When the function ρ(θ, µ0, θ0, ρ0) has been determined, complete in-
formation of the solution of (2.7) will be obtained by integrating the
following equation




dθ

dt
= W (µ, ρ(θ, µ0, θ0, ρ0), θ)

(µ, ρ, θ) ∈ ]−µ, µ[× [0, a[× [0, 2π]

(2.11)

Since α(0) = 0, it is easily seen by (2.9) and (2.10) that when
a ∈ [0, a[ and µ are sufficiently small, then for any µ ∈ ]−µ, µ[ and
c ∈ [0, a[ the solution of (2.11) exists in[0, 2π]. This solution will be
denoted by ρ(θ, µ, c)

Definition 29 [21]The function V(µ,c) = ρ(θ, µ, c) − c is called a dis-
placement function of ( 2.7).
For µ = 0, system ( 2.7) can be written in the form:




dx1

dt
= −x2 + f1(x1, x2)

dx2

dt
= x1 + f2(x1, x2)

(2.12)

where fi(x1, x2) = Ri(0, x1, x2) i = 1,2 (R1 and R2 are introduced in
formula ( 2.7).

Definition 30 [21] Let h be an integer, h ≥ 3. The solution x1 = x2

= 0 of ( 2.12) is said to be h-asymptotically stable (resp. h-completely
unstable) if
i) For every Θ, Σ ∈ C

(
B2(a), R

)
of order greater than h in (x1, x2), the

solution x1 = x2 = 0 of the system



dx1

dt
= −x2 + f12(x1, x2) + ....f1h(x1, x2) + Θ(x1, x2)

dx2

dt
= x1 + f22(x1, x2) + ....f2h(x1, x2) + Σ(x1, x2)

(2.13)
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is asymptotically stable (resp.completely unstable)
ii) Property i) not satisfied when h is replaced by any integer m ∈
{2, . . . , h− 1}

Proposition 27 [21] Let h be an integer,h ≥ 3.The following asser-
tions are equivalent:
1) The solution x1 = x2 = 0 of ( 2.12) is h-asymptotically stable (resp.
h-completely unstable).

3) There exists a Lyapunov function F such that the derivative of F
along the solution of ( 2.12) has the form:

•
F (4.6) = Gh ‖ x ‖h+1 + o(‖ x ‖h+1)with Gh < 0 (resp. > 0), x = (x1, x2).

Remark 2 The Lyapunov function F is searched using the Poincaré
procedure in the form

F (x) =
h∑

j=1
Fj(x),where the Fj

′s are homogeneous pôlynomials of

degree j in R
2.

Theorem 3 [21](Generalized Hopf bifurcation theorem)
Assume that the solution x1 = x2 = 0 of ( 2.12) is either 3-asymptotically
stable or 3-completely unstable. Then, there exists a real number µ > 0
such that for µ ∈ ]−µ, µ[ , µnear 0, system ( 2.7) has exactly one peri-
odic solution if α(µ)Gh < 0 and no periodic solution if α(µ)Gh > 0.

3. The Center Manifold Reduction Of DDE
Let us first very briefly draw the perspective of the center manifold

theorem. Consider a general nonlinear DDE

dx

dt
= f(p, xt),

in which p represents a parameter (possibly, a vector). Assuming that

f(p, 0) = 0

for all p in a given region, the local behavior of the solutions near 0 is
dependent upon the type of the linearized equation

dx

dt
= Dϕf(p, 0)xt,

2) One has
∂iV (0, 0)

∂ci
= 0 for 1 ≤ i ≤ h − 1 and

∂hV (0, 0)
∂ch

< 0

(resp.> 0), where V is the displacement function of ( 2.12), defined in
definition 29.
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which can itself be described in terms of the characteristic equation
(providing the eigenvalues of the infinitesimal generator of the linear
equation)

det(λI −Dϕf(p, 0)(exp(λ.)⊗ I)) = 0.

In the hyperbolic case, that is to say, as long as the equation has no
root with zero real part, solutions which remain close enough to the
origin either approach the origin at +∞ or escape from the origin. In
particular, no periodic solution can be found in the vicinity of the origin
in this situation. This scenario, well known in the case of ODE, has been
extended to many infinitely dimensional cases, including DDE. It is a
consequence of the so-called saddle-point theorem which can be found,
for example, in Hale’s books on DDE. We are concerned here with the
non hyperbolic case, that is, the situation that arises when for some
p = π�∗

c , the characteristic equation has a root with zero real part.
Amongst the rich variety of cases, we choose one of the two simplest
ones: we assume that at p0, the characteristic equation has a pair of
imaginary roots, each simple, and no other multiple of these numbers
(including 0) is a root of the equation.

To be more specific, we will consider the following example, the scalar
delay differential equation

dx

dt
= f(b, ε, xt), (3.14)

where
f(b, ε, ϕ) = −bϕ(−1) + ε(ϕ(−1))3 + o(ϕ3),

b and ε are two real parameters, b > 0, b >> |ε| . The vector of parame-
ters is p = (b, ε). Equation (3.14) is an example of equations that has
been considered by many authors. An example of such an equation is
the logistic delay equation in the case of an odd nonlinearity

dx

dt
= x(t)

1− x(t− 1)
1 + x(t− 1)

(Change the variable from x to y = ln(x)).

3.1 The linear equation
.
The linear equation is

dx

dt
= −bx(t− 1), (3.15)
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There exists a scalar function η(θ) with bounded variation such that

−bϕ(−1) =
∫ 0

−1
[dη(θ)] ϕ(θ).

In fact, η(θ) may be chosen as

η(θ) =
{

0 if θ = −1
−b if − 1 < θ ≤ 0.

The characteristic equation is obtained by substitution of

x(t) = eλtx0 (x0 ∈ C)

into the linear equation, that is

λ + be−λ = 0. (3.16)

Lemma 25 If we denote σ(A) (resp. Pσ(A)) the spectrum (resp. the
point spectrum) of A, σ(A) = Pσ(A) and λ ∈ σ(A) if and only if
λ satisfies λ + be−λ = 0.

Lemma 26 All the roots of equation ( 3.16) have negative real part if
and only if 0 < b <

π

2
.

Lemma 27 The characteristic equation ( 3.16) has two purely imagi-
nary roots λ1,2 = ±i

π

2
and all other roots have negative real parts if

b =
π

2
.

The adjoint equation: The formal dual product

< ψ,ϕ >= ψ(0)ϕ(0) +
∫ 0

−1

∫ 0

θ
ψ(s− θ)dη(θ)ϕ(s)ds

leads to

< ψ,ϕ >= ψ(0)ϕ(0)− b

∫ 0

−1
ψ(s + 1)ϕ(s)ds (3.17)

for every pair ϕ ∈ E
def
= C([−1, 0]; R), ψ ∈ E

∗ def
= C([0, 1]; R).

The adjoint equation is:

dy(s)
dt

=
∫ 0

−1
y(s− θ)dη(θ) = by(s + 1) (3.18)
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If y is a solution of (3.18) on an interval ]−∞, σ + 1[ then we let yt for
each t ∈ (−∞, σ) designate the element of E

∗ defined by

yt(s) = y(s + t) for 0 ≤ s ≤ 1.

We know that if x is a solution of (3.15) on τ − 1 < t < +∞ and y is a
solution of (3.18) on (−∞, σ + 1) with σ > τ , then (yt, xt) is a constant
on [τ, σ].

Let Λ =
{
−i

π

2
, +i

π

2

}
. Then ϕ1(θ) = sin

π

2
θ, ϕ2(θ) = cos

π

2
θ for−1 ≤

θ < 0 are two independent solutions of (3.15) in the case b =
π

2
. Simi-

larly, ψ∗
1 (s) = sin

π

2
s and ψ∗

2(s) = cos
π

2
s are two independent solutions

of (3.18).
Φ = (ϕ1, ϕ2) is a basis for the generalized eigenspace P = PΛ of (3.15)

and Ψ∗ = (ψ1, ψ2) is a basis for the generalized eigenspace P ∗
Λ of (3.18)

associated with Λ. The bilinear form< ψj , ϕk > j, k = 1, 2 reads

< ψj , ϕk >= ψj(0)ϕk(0)− π

2

∫ 0

−1
ψj(θ + 1)ϕk(θ)dθ; j, k = 1, 2 (3.19)

By defining a new basis, still denoted Ψ, for P ∗
Λ we can make (Ψ, Φ) = I,

I is the identity matrix. We have: Ψ = col(ψ1,ψ2) where



ψ1(s) = 2µ0(sin
π

2
s +

π

2
cos

π

2
s),

ψ2(s) = 2µ0(cos
π

2
s +

π

2
sin

π

2
s).

with µ0 =
1

1 +
π2

2

. Denote Q = QΛ = {ϕ :< ψj , ϕ >= 0, j = 1, 2} .

We have the decomposition E = P ⊕ Q. Hence any ϕ ∈ E can be
written as ϕ = ϕP + ϕQ where ϕP = Φa0, a0 = col(a1, a2), that is,




a1 = µ0πϕ(0) + µ0π
∫ 0
−1(cos π

2 s− π
2 sin π

2 s)ϕ(s)ds

a2 = 2µ0πϕ(0) + µ0π
∫ 0
−1(

π
2 cos π

2 s + sin π
2 s)ϕ(s)ds

(3.20)

If A is the infinitesimal generator of T (t), then we have A Φ = ΦB where

B =
[

0 −π
2

π
2 0

]
.

Therefore T (t)Φ = ΦetB. Since ϕQ = ϕ − ϕP , ϕP = Φa0, a0 = (ψ, ϕ)
it follows that ‖ T (t)ϕ−ΦeBta0 ‖ tends to 0 exponentially as t tends to



172 DELAY DIFFERENTIAL EQUATIONS

+∞, for every ϕ ∈ E. This means that any solution of (3.15) approaches
a periodic function given by

a1 sin
π

2
t + a2 cos

π

2
t

where a1 and a2 are given by (3.20).

3.2 The center manifold theorem
Here, we go through the derivation of the centre manifold made by

Diekmann and van Gils. There is part of the method which is general
and follows in fact the approach by Vanderbauwhede, and part which
is implicated by the delay: essentially, the treatment of the variation of
constant formula using the sun-star extension. I will first state the basic
problem, taking a general equation:

dx

dt
= Lxt + F (xt) (3.21)

We assume that F is smooth, F (0) = 0, DF (0) = 0. Moreover, I assume
that the linear part L has only a stable and a center part, which leads
to a decomposition of the state space

E = EC ⊕ ES

which corresponds to
I = πC + πS .

Using the variation of constants formula, equation (3.21) reads as

xt = T (t)ϕ +
∫ t

0
T�∗(t− s)F (xs)ds

which decomposes onto the subspaces Ec and Es as follows

πC(xt) = TC(t)ϕC +
∫ t

0
πCT�∗(t− s)F (xs)ds

πS(xt) = TS(t)ϕS +
∫ t

0
πST�∗(t− s)F (xs)ds.

Looking for solutions defined on the whole real axis and uniformly bounded
on their domain, the second identity can be written starting from any
initial point σ

πS(xt) = TS(t− σ) (xσ)S +
∫ t

σ
πST�∗(t− s)F (xs)ds.
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Letting σ → −∞, the term TS(t − σ) (xσ)S approaches 0, while the
integral has a limit, which yields an expression where the projection ϕS

has been eliminated

πS(xt) =
∫ t

−∞
πST�∗(t− s)F (xs)ds.

This leads to the following expression for xt

xt = TC(t)ϕC +
∫ t

0
πCT�∗(t− s)F (xs)ds +

∫ t

−∞
πST�∗(t− s)F (xs)ds.

(3.22)
In fact, the above formulas are not correct, the projector πC is defined
on E, thus it is necessary to extend it to the space EC in order to use it in
the above expressions. The fact that it can be done in some natural way
is proved in the paper by Diekmann and van Gils, who use the following
formula, (with the notation π�∗

C used for the extension)

π�∗
C =

1
2πi

∫
Γ
(zI −A�∗)−1dz

(Γ is a contour enclosing the imaginary roots and no other root)
The following expression is established

π�∗
C (β, h) =

1
2πi

∫
Γ

ezθ(zI − Lz)−1

[
β + L

{∫ 0

η
ez(η−s)h(s)ds

}]
dz,

(3.23)
with the same meaning for Γ, Lz = L (ez.) and (β, h) ∈ E

�∗ ∼= R
n ×

L∞ ([−1, 0] , Rn). In terms of π�∗
C , (3.22) reads

xt = TC(t)ϕC +
∫ t

0

π�∗
C T�∗(t− s)F (xs)ds+

∫ t

−∞

(
I − π�∗

C

)
T�∗(t− s)F (xs)ds

(3.24)
Note that π�∗

C is still a projection onto a finite dimensional subspace, in
fact, it has the same range as πC . In order to set up the full equation for
the center manifold, there are still two steps: 1) localizing the equation
using a truncation; 2) choosing a suitable state space in which the fixed
point problem defined by (3.24) makes sense.

Proposition 28 π�∗
C is an extension of πC to the space and we have

π�∗
C Φ =< ψ1, Φ > ϕ1+ < ψ2, Φ > ϕ2 for any Φ = (β, h) ∈ E

�∗

ψj and ϕj (j = 1, 2) are respectively the basis of the space E
∗
c and Ec.
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Proof. We first consider the case when h = 0. Then, formula (3.23)
reduces to

π�∗
c (β, 0) =

1
2πi

∫
Γ

(
ezθ(zI − Lz)−1β

)
dz =

1
2πi

∫
Γ

ezθ ∆ (z)
p (z)

βdz,

where ∆ (z) is the cofactor matrix of the matrix zI − Lz and p(z) =
det(zI − Lz). Using the residue theorem, we obtain

π�∗
c (β, 0) =

(
ei π

2 ∆(iπ
2 )

p′(iπ
2 )

+
e−i π

2 ∆(−iπ
2 )

p′(−iπ
2 )

)
β.

In the case we are considering here, ±i
π

2
are of multiplicity 1 and the

basis functions ϕj and ψj j = 1, 2 of Ec and E
∗
c may be written in the

form ϕj = eiθvj and ψj = eiθwj , j = 1, 2 , with
(
i
π

2
I − Li π

2

)
vj = 0 and wj

(
i
π

2
I − Li π

2

)
= 0.

Since i
π

2
is of multiplicity 1, we have

R
(
∆
(
i
π

2

))
= {v1}

and
R
(
∆
(
i
π

2

))
=
{

w
1

}

which implies w1v1 
= 0. R
(
∆
(
i
π

2

))
and R

(
∆
(
i
π

2

))
denotes the

range of the linear operators ∆
(
i
π

2

)
and ∆

(
i
π

2

)
, respectively.

Then, we deduce that ∆
(
i
π

2

)
= v1w1. So,

π�∗
c (β, 0) =

(
ei π

2 v1w1

p′(iπ
2 )

+
e−i π

2 v2w2

p′(−iπ
2 )

)
β.

Hence,

π�∗
c (β, 0) = (w1, β)ϕ1 + (w2, β)ϕ2, with wj = ψj(0). (3.24)

Let ϕ ∈ E = C([−1, 0], R) be such that ϕ(0) = 0. Formula (3.23) yields

π�∗
c (0, ϕ) =

1
2πi

∫
Γ

[
ezθ(zI − Lz)−1L

{
ezθ

∫ 0

θ
ezsϕ(s)ds

}]
dz.
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We may observe that the right hand side of the above formula is equal
to P0ϕ, which, on the other hand, can be represented in terms of the
formal dual product using formula (3.23). Therefore, we have

π�∗
c (0, ϕ) = (ψ1, ϕ)ϕ1 + (ψ2, ϕ)ϕ2, such that ϕ(0) = 0.

Since the space IE0 = {ϕ ∈ E, ϕ(0) = 0} is dense in L1([−1, 0], R), the
above formula holds for any (0, ϕ) ∈ E

�∗. Combining the above two
results, we deduce that for any (β, h) ∈ E

�∗ we have :

π�∗
c (β, h) = (ψ1, (β, h))ϕ1 + (ψ2, (β, h))ϕ2,

where <, > is the extension of the formal dual product given by formula
(3.17).The proof of Proposition 33 is complete.

The spectrum σ(A) is a pure point spectrum. Ec is a two dimensional
space on which T�∗(t) can be extended to a group on R. Moreover the
decomposition is an exponential dichotomy on R, that is for any β > 0,
there exists a positive constant k = k(β) such that

‖T (s)x‖ ≤ k exp(β |s|) ‖x‖ , for s ≥ 0 and x ∈ E0,∥∥T (s)x�∗∥∥ ≤ k exp((γ + β) |s|)
∥∥x�∗∥∥ , for s ≥ 0 and x�∗ ∈ E

�∗
s ,

where
γ = sup

{
Reλ, λ ∈ Pσ(A�∗) and Reλ < 0

}
.

Observe that we have the same properties for the space R
2×E

�∗, that is
R

2×E
�∗ =

(
R

2 ×Ec

)
⊗E

�∗
s and

(
R

2 × Ec

)
is a finite dimensional space

invariant by T �∗(t) � T (t). For a moment, let us consider the general
non homogeneous equation associated with (3.35), that is:

v(t) = T (t− s)v(s) +
∫ t

s
T �∗(t− s)h(s)ds. (3.25)

The Center manifold theorem. Let us recall a few definitions

Definition 31 [33]BCν(R, IE) is the space of all continuous function f
from R into E such that

sup
R

(exp (−νt)) ‖f(t)‖ <∞.

For ν = 0,we write BC(R, E). BCν(R, E) is a Banach space when en-
dowed with the norm

‖f‖ν = sup
R

(exp (−νt)) ‖f(t)‖ <∞.
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Definition 32 [33] We define K = BCν(R, R2 × E
�∗) by:

(Kh) (t) =
∫ t

0
T �∗(t− s)π�∗

c h(s)ds +
∫ t

0
T �∗(t− s)π�∗

s h(s)ds, (3.26)

for t ∈ R, ν ∈ [0,−γ[. In formula ( 3.26), π�∗
c and π�∗

s are, respectively,
the projections of (R2 × E

�∗) on the subspaces (R2 × IEc) and IE�∗
− .

Proposition 29 [33] For each ν ∈ ]0,−γ[
1) K is a bounded linear mapping from BCν(R, R2×IE�∗) into BCν(R, R2×
IE). Kh is the unique solution of equation ( 3.25) in this space with van-
ishing IE−

c component at t = 0.
2) (I−π�∗

c )K is a bounded linear mapping from BCν(R, R2× IE�∗) into
BCν(R, R2 × IE).

Let ξ be a C∞ −function defined from R+ into Rsuch that
1) ξ(y) = 1 for 0 ≤ y ≤ 1
2) 0 ≤ ξ(y) ≤ 1 for 1 ≤ y ≤ 2
3) ξ(y) = 0 for y ≥ 2

For δ > 0, we denote by

hδ = F(x)ξ
(
‖π�∗

c x‖
δ

)
ξ

(
‖(I − π�∗

c )x‖
δ

)
.

hδ is a map from R
2 × IE�∗ into itself. We still denote by hδ the map

from BCν(R, R2 × IE) into BCν(R, R2 × E
�∗) defined by

(hδ(f))(t) = hδ(f(t)).,

For υ ∈ ]0,−γ[, we define G from BCν(R, R2 × IE) × (R2 × Ec) into
BCν(R, R2 × E) by

G(u, ϕ) = T (.)ϕ +Khδ(u) (3.27)

Theorem 4 [33] Assume that δ is small enough. Then there exists a
Ck-mapping u∗ defined from R

2×Ec into BCν(R, R2×Ec) such that u =
u∗(ϕ) is the unique solution in BCν(R, R2×E) of equation u = G(u, ϕ).

Definition 33 [33] The centre manifold Wc is the image of the map
C : R

2 × E0 −→ R
2 × E defined by C(ϕ) = u∗(ϕ)(0).

In other words, we can define Wc as the graph of the map C : R
2 ×

Ec −→ E
�∗
s defined by

C(ϕ) = (π�∗
s (u∗(ϕ)))(0).
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Now let
y(t) = (π�∗

c (u∗(ϕ)))(0)(t).

Then y satisfies the equation:

y(t) = T (t)y(0) +
∫ t

0
T �∗(t− s)π�∗

c hδ(C(y(s)))ds. (3.28)

Differentiating (3.28), we obtain

dy

dt
= Ay(t) + π�∗

c hδ(C(y(t))), y(t) ∈ R
2 × Ec. (3.29)

We write
y(t) = (b, ε, z(t)) ∈ R

2 × Ec

where z(t) ∈ Ec. Therefore

C(y(t)) ∈ R
2 × Ec ⊕ E

�∗
s

Then we can write:

C(y(t)) = (b, ε, z(t),M(b, ε, z(t))) where M(b, ε, z(t)) ∈ R
2 × E

�∗
s .

3.3 Back to the nonlinear equation:
Now, consider the nonlinear delay equation:

dx(t)
dt

= −bx(t− 1) + εx3(t− 1) + o
(
(xt)

3
)

. (3.30)

(3.30) may be written in the form:

dx(t)
dt

=
∫ 0

−1
dη(s)x(t− s) + g(ε, xt), (3.31)

g(ε, ϕ) = εϕ3(−1) + o
(
(ϕ)3

)
with the initial condition: x(θ) = ϕ(θ) for

−1 ≤ θ ≤ 0; ϕ ∈ X = E.
Returning to the nonlinear delay equation (3.30) , we supplement

it with two trivial equations
db

dt
= 0 and

dε

dt
= 0. Precisely, we are

concerned in the sequel with the system of delay equations



dx

dt
= Lxt + N(b, ε, xt),

db

dt
= 0,

dε

dt
= 0,

(3.32)
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with
N(b, ε, xt) = −(b− π

2
)x(t− 1) + g(ε, xt)

and
Lxt = −π

2
x(t− 1).

Equation (3.32) may be interpreted as an evolution equation of the
form:

where A is the infinitesimal generator of the semi-group {T (t)}, solution

of the linear equation
dx

dt
= Lxt and r�∗ = (I, 0).

We note that the map

ϕ −→ r�∗N(b, ε, xt)

is defined from E into E
�∗. If we identify ϕ ∈ E with (ϕ(0), ϕ) ∈ E

��

then equation (3.33) may be written in the form:

F is a continuous function defined from R
3 × E into E

�∗ and u = xt .
The variation of constant formula in this case is

v(t) = T (t− s)v(s) +
∫ t

s
T �∗(t− s)F(v(s))ds (3.35)

with
v(t) = (b, ε, u(t)),F(v(t)) = (F (b, ε, u(t)), 0, 0)

and
T (b, ε, u(t)) = (b, ε, T (t)ϕ).

Hence, the ordinary equation (3.29) becomes, in our case,




d

dt
(xt) = Axt + r�∗N(b, ε, xt),

db

dt
= 0,

dε

dt
= 0,

(3.33)




du

dt
=

(
A�∗

0 + r�∗L
)
u + F (b, ε, xt),

db

dt
= 0,

dε

dt
= 0.

(3.34)




dz(t)

dt
=

Bz(t) + β (Φz (t) + M(b, ε, z(t)) (−1)) + ε (Φz (t) +M(b, ε, z(t)) (−1))3 +

o (Φz (t) + M(b, ε, z(t)) (−1))3 ψ(0)
dβ

dt
= 0

dε

dt
= 0

(3.36)
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with

ψ(0) =
(

µ0π
2µ0

)
, µ2 =

1

1 +
π2

2

, Φ =
(
−1

0

)
and β = b− π

2
.

So we obtain:

Note that M(b, ε, 0) = 0,
d

dt
M(b, ε, 0)z = z and z −→ M(b, ε, z) is

Ck with k ≥ 2, since g is a C∞ function with respect to ϕ, satisfying
g(ε, 0) = 0, Dg(ε, 0) = 0. From now on, we will be concerned with the
ordinary differential equation in R

2 parametrized by β and ε (β and ε
are in the neighborhood of 0). The next section will be devoted to the
existence of periodic solutions of the equation

3.4 The reduced system
We are now in a position to discuss the behavior of the reduced ordi-

nary differential system.
We first concentrate on the case β = 0 ( β is defined in section 3,

β = 0 corresponds to b = π
2 ). In this case, our ODE is reduced to

d
dt

z1(t) = −π
2

z2(t) + εµ0π [−z1(t) + M(ε, z(t))(−1)]3 + o [−z1(t) + M(ε, z(t))(−1)]3

d
dt

z2(t) = π
2

z1(t) + 2εµ0 [−z1(t) + M(ε, z(t))(−1)]3 + o [−z1(t) + M(ε, z(t))(−1)]3

(3.39)
where M(ε, z(t)(−1)) = M(0, ε, z(t)(−1)).

Since M(β, ε, 0) = 0 and
∂M(β, ε, 0)

∂z
z = z, M(β, ε, z(t))(−1) is a

o(‖ z ‖) that is
M(β, ε, z)
‖ z ‖ → 0 as z → 0.




d

dt
z1(t) =

−π

2
z2(t) + M(b, ε, z(t)) (−1) + εµ0π (−z1 (t) + M(b, ε, z(t)))3 +

o (−z1 (t) + M(b, ε, z(t)))3

d

dt
z2(t) =

(π
2 + µ0πβ)z1(t) − 2βµ0M(b, ε, z(t)) (−1) +

2µ0ε (−z (t) + M(b, ε, z(t)) (−1))3 + o (−z1 (t) + M(b, ε, z(t)))3

dβ

dt
= 0

dε

dt
= 0

(3.37)




d

dt
z1(t) =

−π
2 z2(t) + M(b, ε, z(t)) (−1) + εµ0π (−z1 (t) + M(b, ε, z(t)))3

+o (−z1 (t) + M(b, ε, z(t)))3

d
dtz2(t) =

(π
2 + µ0πβ)z1(t) − 2βµ0M(b, ε, z(t)) (−1) +

2µ0ε (−z (t) + M(b, ε, z(t)) (−1))3 + o (−z1 (t) + M(b, ε, z(t)))3

(3.38)
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A natural candidate to be the principal part of system (3.39) is the
system

Proposition 30 The origin z = 0 of ( 3.40) is 3-asymptotically stable
if ε > 0 (3-completely-unstable if ε < 0).

Before we proceed to the proof of proposition 4.2, let us derive its
consequences on equation (3.14).

Corollary 5 The origin of equation ( 3.14).is asymptotically stable if
ε > 0 and unstable if ε < 0.

Proof of Corollary 5
Equation (3.39) is a perturbation of order o(‖ z ‖3) of equation (3.40).

Therefore, it enjoys the same stability properties as equation (3.40),
when the latter is either 3-asymptotically stable or 3-completely unsta-
ble. Since equation (3.39) is the reduced equation of equation (3.14) on
the centre manifold we deduce from the fundamental centre manifold
theorem that the two equations have the same stability properties, that
is the origin of (3.14).is asymptotically stable if ε > 0 and unstable if
ε < 0.
Proof of Proposition 4.2
Proving that the origin of (3.40) is 3-asymptotically stable (resp. 3-
completely-unstable) is equivalent to determining a Lyapunov function
F of the form

F (z1, z2) = z2
1 + z2

2 + F3 (z1, z2) + F4(z1, z2)

such that
•
F (z1, z2) = Gh( z2

1 + z2
2)

2 + o
(
‖ (z1, z2) ‖4

)
(3.41)

with Gh < 0 (resp. Gh > 0 ), ( F3 and F4 are two homogeneous
polynomials of degree 3 and 4 respectively).

We have
•
F (z1, z2) =

(
−π

2
z2

) ∂F

∂z1
+
(π

2
z2

) ∂F

∂z2
−
(
εµ0πz3

1

) ∂F

∂z1
−
(
2εµ0z

3
1

) ∂F

∂z2
,

that is
•
F (z1, z2) =

(
−π

2
z2

)
∂F3
∂z1

+
(

π
2
z2

)
∂F3
∂z2

−
(
εµ0πz3

1

)
∂F3
∂z1

−
(
2εµ0z

3
1

)
∂F4
∂z2

+
(
−π

2
z2

)
∂F4
∂z1

+
(

π
2
z2

)
∂F4
∂z2

−
(
εµ0πz3

1

)
∂F4
∂z1

−
(
2εµ0z

3
1

)
∂F4
∂z2

− 2εµ0πz4
1 − 4εµ0z

3
1z2.

{
d
dtz1(t) = −π

2 z2(t) − εµ0π [z1(t) ]3
d
dtz2(t) = π

2 z1(t) − 2εµ0 [−z1(t) ]3
(3.40)
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Let T denote the operator −z
∂

∂z1
+ z1

∂

∂z2
and Tj its restriction to

the space Pj of homogeneous polynomials of degree j. We know from
[14] that Tj is a bijection from Pj to Pj when j is odd. Then, equating
terms with the same degree on both sides of (3.41), we arrive at

π

2
T3F3 = 0, that is F3 = 0,

π

2
T4F4 = G4

(
z2
1 + z2

2

)2 + 2µ0επz4
1 + 4µ0εz

3
1z2 (3.42)

and
−
(
εµ0z

3
1

) ∂F4

∂z1
−
(
2εµ0z

3
1

) ∂F4

∂z2
= o
((

z2
1 + z2

2

)2)
.

F4 is a homogeneous polynomial of degree 4,

F4 = a1z
4
1 + a2z

3
1z2 + a3z

2
1z

2
2 + a4z1z

3
2 + a5z

4
2 , (ai ∈ R, for 1 ≤ i ≤ 5).

Formula (3.42) yields a system of linear equations,

a2 = 2
πG4 + 4εµ0

a3 − 2a1 = 4
πµ0ε

a4 − a2 = 4
3πG4

2a5 − a3 = 0
−a4 = 2

πG4

from which we deduce

G4 (ε) = −3
4
µ0επ, (3.43)

a4 =
3
2
µ0ε, a2 =

5
2
µ0ε, a5

1
2
a3, a1 =

1
2
a3 −

2
π

µ0ε; a3 ∈ R.

We know from [14] that the homogenous polynomials of even degree j are
determined up to the addition of constant terms

(
z2
1 + z2

2

)j . Therefore,
we can choose a3 = 0 and the Lyapunov function F is

F (z1, z2) = z2
1 + z2

2 −
2
π

µ0εz
4
1 +

5
2
µ0εz

3
1z2 +

3
2
µ0εz1z

3
2 .

We observe that G4 (ε) < 0 if ε > 0 and G4 (ε) > 0 if ε < 0. This means
that system (3.40) is 3-asymptotically stable if ε > 0 and 3-completely
unstable if ε < 0.

Proposition 31 Suppose f (b, ε, ϕ) = −bϕ(−1)+ε (ϕ(−1))3+a (ϕ (−1))5.
For ε = 0, β = 0 and a 
= 0, the origin x = 0 is 5-asymptotically stable
(respectively, 3-completely unstable) if a > 0 (resp. a < 0).
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Proof. The reduced ordinary differential system associated to (3.14)
becomes

The candidate to be the principal part of (3.44) is the system:

Using once again the Poincaré procedure, we show that the function
given by

F (z1, z2) = z2
1 + z2

2 −
4
3π

aµ0z
6
1 −

11
4

aµ0z
5
1z2 +

10
3

µ0az3
1z

3
2 +

5
4
aµ0πz1z

5
2

is a Lyapounov function of system (3.45). Its derivative along the solu-
tions of (3.45) is

.
F (z1, z2) = −5

4
aµ0π

(
z2
1 + z2

2

)3 + o
((

z2
1 + z2

2

)3)
.

Thus, near the origin,
.
F has the sign of −a, which gives the conclusion

of the proposition
Remark 4.2
System (3.39) is a perturbation of system (3.40). From Proposition
30 and generalized Hopf bifurcation theorem, Theorem 3, we can only
concude that system (3.39) has no more than one periodic solution.
Because the linear part of this system is independant of the parameter
ε, the condition given in terms of the sign of α (µ) Gh (see Theorem 3)
is not fulfiled.

4. Cases Where The Approximation Of Center
Manifold Is Needed

Let f be a real function defined on IR. Reconsider the delay equation

x′ (t) = f (x (t− 1)) . (4.46)

Assume that f satisfies the following assumptions

(H) :
{

f ∈ Ck (IR) for some k ≥ 3
f (0) = 0.




d
dtz1(t) = −π

2 z2(t) + εµ0π [−z1(t) + M(β, ε, z(t))(−1)]3

+aµ0π [−z1(t) + M(β, ε, z(t))(−1)]5
d
dtz2(t) = π

2 z1(t) + 2εµ0 [−z1(t) + M(β, ε, z(t))(−1)]3

+2aµ0 [−z1(t) + M(β, ε, z(t))(−1)]5
(3.44)

{
d
dtz1(t) = −π

2 z2(t) − aµ0πz5
1(t)

d
dtz2(t) = π

2 z1(t) − 2aµ0z
5
1(t)

(3.45)
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Equation (4.46) may be written as

x′ (t) = −γx (t− 1) + αx2 (t− 1) + εx3 (t− 1) + o
(
x3 (t− 1)

)
, (4.47)

where γ = −f ′ (0) , α = 1
2f ′′ (0) and ε = 1

3!f
′′′ (0) .

In the last section, f ′′(0) = 0.
If we use the method developed before. The presence of a quadratic

term in equation (4.47) creates an additional difficulty compared to the
situation dealt with in the last section, also in several other works where
it is assumed that the nonlinearity is odd. The determination of the
Lyapunov function leads us to give an explicit approximation of the
homogeneous part of degree two of the local center manifold near zero
associated to equation (4.47) for the value γ =

π

2
.

It is also possible to extend the procedure to compute a center mani-
fold for a general autonomous functional differential equation.

4.1 Approximation of a local center manifold
Let us now briefly describe what the local center manifold theorem

tells us. For the most recent and satisfactory presentation of this result,
we refer to Diekmann and van Gils [33]. So, equation (4.47) has a local
center manifold

M : U × V −→ Xs

(β, ξ) �−→ M (β, ξ) ,

where U (resp. V ) is a neighborhood of zero in IR ( resp. IR2).
On this center manifold the delay equation (4.47) is reduced to an

ordinary differential one, given by




dz (t)
dt

= Bz (t) + Ψ (0) [−β (Φ (−1) z (t) + M (β, z (t)) (−1))

+α (Φ (−1) z (t) + M (β, z (t)) (−1))2

+ε (Φ (−1) z (t) + M (β, z (t)) (−1))3

+o
(
(Φ (−1) z (t) + M (β, z (t)) (−1))3

)]

dβ (t)
dt

= 0,

(4.48)
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where

B =


 0 −π

2π

2
0


 .

Denote by
h (ξ) = M (0, ξ) , for each ξ ∈ V.

h is a function with values in Xs . Under the regularity assumption made
on f , we know that one can assume that the center manifold to be Ck.
We also know that the center manifold is tangent to Xc, which implies
that Dh(0) = 0, and of course h(0) = 0. The Taylor expansion of h near
ξ = 0 yields

h (ξ) = aξ2
1 + bξ1ξ2 + cξ2

2 + o
(
|ξ|2
)

in which a, b, c are elements of XS . We denote by

h2 (ξ) = aξ2
1 + bξ1ξ2 + cξ2

2 , (4.49)

the homogeneous part of degree two of h. Even though center manifolds
are not unique, we know however that the Taylor expansion at any order
is unique. The following lemma provides us with an effective way to
determine the coefficients a, b and c.

Theorem 6 Let a, b, c ∈ Xs, be the coefficients of h2. Then (a, b, c) is
a solution of the following system of equations:




a′ (θ) =
π

2
b (θ) + Φ (θ) Ψ (0) α

b′ (θ) = −πa (θ) + πc (θ)

c′ (θ) = −π

2
b (θ)

(4.50)

for θ ∈ [−1, 0] and



a′ (0) +
π

2
a (−1) = α

b′ (0) +
π

2
b (−1) = 0

c′ (0) +
π

2
c (−1) = 0,

(4.51)

where Φ and Ψ are as in section 2 and α is the coefficient of (x(t− 1))2

in equation ( 4.47).
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Proof : For every ξ ∈ V , denote by z (t) the solution of the ordinary
differential equation


dz (t)
dt

= Bz (t) + Ψ (0) g (Φ (−1) z (t) + h (z (t)) (−1))

z (0) = ξ,

(4.52)

where g (x) =
π

2
x + f (x) =

π

2
x +

(
−γx + αx2 + εx3 + o

(
x3
))

.

The first property of a center manifold is that it is invariant with respect
to the original semiflow. So, if z is a solution of equation (3.19), then,
the function t �−→ Φz (t)+h (z (t)) is a solution of equation (4.47). This,
in particular, implies that it verifies the translation property, for each
t ∈ [0, 1] and θ ∈ [−1,−t] (ie : t + θ ≤ 0),

Φ (θ) z (t) + h (z (t)) (θ) = Φ (t + θ) ξ + h (ξ) (t + θ) . (4.53)

By differentiating equation (4.53) with respect to t and rearranging
terms,

∂h (ξ)

∂θ
(t + θ) + Φ (t + θ) Bξ =

[
Φ (θ) +

∂h

∂z
(z (t)) (θ)

]

× [Bz (t) + Ψ (0) g (Φ (−1) z (t) + h (z (t)) (−1))] .

(4.54)

So, letting t go to 0, from above , it follows that

∂h (ξ)
∂θ

(θ) =
∂h

∂z
(ξ) (θ) [Bξ + Ψ (0) g (Φ (−1) ξ + h (ξ) (−1))]

+ Φ (θ) Ψ (0) g (Φ (−1) ξ + h (ξ) (−1)) .
(4.55)

On the other hand, the local semi flow t �−→ Φz (t) + h (z (t)) generated
by the delay equation (4.47) with γ =

π

2
on the center manifold is

differentiable at t = 0. So,
∂

∂θ
[Φξ + h (ξ)] (0) = −π

2
[Φ (−1) ξ + h (ξ) (−1)]+g (Φ (−1) ξ + h (ξ) (−1)) ,

which implies

∂h (ξ)
∂θ

(0) = −π

2
h (ξ) (−1) + g (Φ (−1) ξ + h (ξ) (−1)) . (4.56)

The homogeneous part of degree two with respect to ξ of (4.55) and
(4.56)respectively, is given by

∂h2 (ξ)
∂θ

(θ) =
∂h2

∂z
(ξ) (θ) [Bξ] + Φ (θ) Ψ (0) g2 (Φ (−1) ξ) (4.57)
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and
∂h2 (ξ)

∂θ
(0) = −π

2
h2 (ξ) (−1) + g2 (Φ (−1) ξ) . (4.58)

Then, if we note that g2 (x) = αx2, conditions (4.50) and (4.51) follow
respectively from (4.57) and (4.58).

Remark We already know that (a, b, c) are unique as coefficients of
the quadratic part of the Taylor expansion of h. However, it is not ob-
vious from the beginning that the system of equations (4.50) and (4.51)
they satisfy determines these coefficients in a unique way. The following
proposition provides us with uniqueness of the solution of that system
of equations.

Proposition 32 The solution of the ordinary differential equation ( 4.50)
with the boundary conditions ( 4.51) is unique.

Proof : Put

H =




0
π

2
0

−π 0 π

0
π

2
0


 and X =


 a

b
c


 .

By the use of the variation of constant formula, the general solution of
(4.50) is given by

X (θ) = exp (Hθ) X (0) + S (θ) ,

where

S (θ) =
∫ θ

0
exp (H (θ − s)) col (Φ (s) Ψ (0)α , 0 , 0) ds.

The boundary condition (4.51) reads[
H +

π

2
exp (−H)

]
X (0)+col (Φ (s) Ψ (0) α , 0 , 0)+

π

2
S (−1) = col (α, 0, 0) .

(4.59)
Hence, if we notice that

exp (Hθ) =




1
2 [1 + cos (πθ)] 1

2 sin (πθ) 1
2 [1− cos (πθ)]

− sin (πθ) cos (πθ) sin (πθ)

1
2 [1− cos (πθ)] −1

2 sin (πθ) 1
2 [1 + cos (πθ)]


 , (4.60)

then, by virtue of (4.59), it follows that X (0) is a solution of the linear
system

DX (0) = e, (4.61)
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where

D =


 0 1 1
−2 −1 2
1 −1 0




and

e = −S (−1) + col

(
2α

π
(1− 2µ0) , 0 , 0

)
.

Since the matrix D is invertible, hence, existence and uniqueness of
X (0) are ensured from (4.61) . Therefore, existence and uniqueness of
the solution of (4.50) and (4.51) hold.

Corollary 7 Let a, b, c ∈ C. (a, b, c) are the coefficients of the quadratic
part of the Taylor expansion of h if and only if (a, b, c) is the solution of
the system of equations (4.50) and (4.51) .

Corollary 8 If a, b, c ∈ Xs are the coefficients of h2, then



a (−1) =
6α

5π
− 4αµ0

3π

b (−1) = −4α

5π
+

4αµ0

3

c (−1) =
4α

5π
− 8αµ0

3π
.

Proof : By virtue of the expression (4.60) of exp (Aθ), it follows that

S (−1) = col

(
4µ0α

3
− 4µ0α

3π
,

4µ0α

3
− 8µ0α

3π
,

2µ0α

3
− 8µ0α

3π

)

Moreover, the inverse matrix of D is given by

D−1 =
1
5


 2 −1 3

2 −1 −2
3 1 2


 .

Hence, from (4.61) it follows that

X (0) = col

(
4α

5π
− 2αµ0

3
,

4α

5π
− 8αµ0

3π
,

6α

5π
− 4αµ0

3

)
.

So, by substituting the expressions of a (0) , b (0) and c (0) in the equation
(4.51) , the result follows immediately .
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4.2 The reduced system
We are now in position to study the reduced system (4.48) . First,

suppose that β = 0 ( i.e. γ =
π

2
). Then, equation (4.48) becomes




dz1

dt
= −π

2
z2 + µ0απ (−z1 + h (z) (−1))2

+µ0επ (−z1 + h (z) (−1))3

+o
[
(−z1 + h (z) (−1))3

]

dz2

dt
=

π

2
z1 + 2µ0α (−z1 + h (z) (−1))2

+2µ0ε (−z1 + h (z) (−1))3

+o
[
(−z1 + h (z) (−1))3

]
.

(4.62)

In the sequel, we mainly deal with 3-asymptotic stability and 3-complete
unstability of the trivial solution z ≡ 0 of (4.62). To this end, it is enough
to consider the system




dz1

dt
= −π

2
z2 + µ0απ (−z1 + h (z) (−1))2 − πµ0εz

3
1

dz2

dt
=

π

2
z1 + 2µ0α (−z1 + h (z) (−1))2 − 2µ0εz

3
1 .

(4.63)

Proposition 33 Under the standing hypothesis (H), it follows that
i) If ε > 0 and α ∈ IR , then the trivial solution z ≡ 0 of (4.63) is
3-asymptotically stable .
ii) If ε < 0 , then there is α0 (ε) ∈ IR+ such that the trivial solution z ≡ 0
of (4.63) is 3-asymptotically stable for α ∈ ]−∞,−α0 (ε)[ ∪ ]α0 (ε) ,∞[
and 3-completely unstable for α ∈ ]−α0 (ε) , α0 (ε)[ .

Proof: Coming back to proposition (27)[21] it suffices to prove the
existence of a map F satisfying

F ′
(4.63) (z1, z2) = G3

(
z2
1 + z2

2

)2 + o
[(

z2
1 + z2

2

)2]
, (4.64)
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with G3 ∈ IR \ {0} . In [14], the authors have proved that such a map
may be computed using the Poincaré procedure,

F (z) =
4∑

j=1

Fj (z) , (4.65)

where Fj is a homogeneous polynomial of degree j.
Let F be a functional having the form (4.65). Then

F ′
(4.63) (z1, z2) =

π

2
T2F2 +

π

2
T3F3 +

π

2
T4F4

+

(
∂F2

∂z1
+

∂F3

∂z1
+

∂F4

∂z1

)(
µ0απ (−z1 + h (z) (−1))2 − πµ0εz3

1

)

+

(
∂F2

∂z2
+

∂F3

∂z2
+

∂F4

∂z2

)(
2µ0α (−z1 + h (z) (−1))2 − 2µ0εz3

1

)
,

where Tj is a linear operator defined on the space of homogeneous poly-
nomials of degree j by

TjP = −z2
∂P

∂z1
+ z1

∂P

∂z2
.

The expression of F ′
(4.63) (z1, z2) is desired to be of the form (4.64) , which

is equivalent to the three relations :
(i) T2F2 = 0.

(ii)
π

2
T3F3 +

(
π

∂F2

∂z1
+ 2

∂F2

∂z2

)(
µ0αz2

1

)
= 0.

(iii)

G3z4
1 + 2G3z2

1z2
2 + G3z4

2 =
π

2
T4F4 +

(
π

∂F3

∂z1
+ 2

∂F3

∂z2

)(
µ0αz2

1

)

+

(
π

∂F2

∂z1
+ 2

∂F2

∂z2

)(
−2µ0αP (z) z1 − µ0εz3

1

)
,

where P (z) = h2 (z) (−1) . For notational convenience, we denote by
m1, m2 and m3 respectively a (−1) , b (−1) and c (−1) , where a, b, c ∈ Xs

denote the coefficients of h2 (z). Now, we shall exploit relations (i),(ii)
and (iii) to derive a Lyapunov function F :
Relation (i) implies that

F2 (z) = r
(
z2
1 + z2

2

)
, for r ∈ IR.

Without loss of generality, we put r = 1. Relation (ii) implies that

F3 (z) = 4µ0α

[
2
3π

z3
1 − z2

1z2 −
2
3
z3
2

]
.
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Finally, if we define

F4 (z) = a1z
4
1 + a2z

3
1z2 + a3z

2
1z

2
2 + a4z1z

3
2 + a5z

4
2 ,

then, the relation (iii) is equivalent to



π

2
a2 − 2π (2µ0αm1 + εµ0) = G3

π

2
(2a3 − 4a1)− 4µ0α (πm2 + 2m1)− 4εµ0 − 8π (µ0α)2 = 0

π

2
(3a4 − 2a2)− 4µ0α (2m2 + πm3)− 16 (µ0α)2 = 2G3

π

2
(4a5 − 2a3)− 8m3µ0α = 0

−π

2
a4 = G3,

which implies that

G3 (ε, α) = G3 = −2µ2
0α

2 +
(
−3π

2
µ0m1 − µ0 (2m2 + πm3)

)
α− 3π

4
εµ0.

(4.66)
So, by substituting the values of mi given in corollary 8 in (4.66), it
follows that

G3 (ε, α) = λα2 − 3π

4
εµ0, (4.67)

where λ =
µ0

5

(
8
5π
− 13

)
< 0. Hence, from the study of the sign of

G3 (ε, α) with respect to the parameters (ε, α), the assertions of the
proposition follow immediately.

Remarks: i) The map α0 in the previous proposition 33 is defined by

α0 (ε) = δ
√
|ε|, for ε ∈ IR−, where δ =

√
−3πµ0

4λ
and λ is the constant

given above.
ii)By virtue of the previous proposition, we distinguish two main parts
S1 and S2 of the parameter space IR2 ( see Fig 1 ), such that G3 (ε, α) < 0
for (ε, α) ∈ S1 and G3 (ε, α) > 0 for (ε, α) ∈ S2.

Theorem 9 Assume that hypothesis (H) is satisfied. Then, for each
(ε, α) ∈ S1 ∪ S2, there exist r0 = r0 (ε, α) > 0 and β0 = β0 (ε, α) > 0
such that for every β ∈ ]−β0, β0[ , the following assertions hold
i) Equation (4.47) has exactly one periodic solution in B (0, r0) if βG3

(ε, α) < 0.
ii) Equation (4.47) has no periodic solution in B (0, r0) if βG3 (ε, α) > 0.
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Proof : By virtue of proposition 33, it follows that, if β = 0, the
system (4.62) is 3-asymptotically stable if G3 (ε, α) < 0 ( in other words
if (ε, α) ∈ S1). Hence, by the generalized Hopf bifurcation theorem 3,
there exists r0 = r0 (ε, α) > 0 and β0 = β0 (ε, α) > 0 such that the
system (4.48) has exactly one periodic solution in B (0, r0) if

Reλ (β, α, ε) G3 (ε, α) < 0, (4.68)

where Reλ (β, α, ε) is the real part of the two eigenvalues of the linear
part of (4.62) . However, Reλ (β, α, ε) = 1

2µ0πβ, then, relation (4.68) is
equivalent to βG3 (ε, α) < 0,which completes the proof of the first asser-
tion .
The proof of the second assertion is similar. In fact, by theorem 3, there
exists r0 = r0 (ε, α) > 0 and β0 = β0 (ε, α) > 0 such that the system
(4.48) has no periodic solution in B (0, r0) if Reλ (β, α, ε)G3 (ε, α) >
0.However, sign (Reλ (β, α, ε)) = sign (β) ,which yields the second as-
sertion.

In conclusion, we can state as a corollary the following immediate
consequences of theorem 9 regarding the direction of bifurcation.

Corollary 10 Assume that hypothesis (H) is satisfied. Then, the bifur-
cation of nontrivial periodic solutions of (4.47) arising from γ =

π

2
is

i) subcritical if ε < 0 and |α| is small enough.
ii) supercritical if either ε < 0 and |α| is larger than some value, or
ε < 0 and for all α.

Thus, the quadratic term pushes the bifurcation to the right, no mat-
ter its sign is. Subcriticality is caused by the cubic term and occurs only
when the coefficient of this term is negative and large enough in absolute
value.

Similar computations have been performed in the case γ < 0 (that is,
positive feedback). There is little change in the formulae, for example,

bifurcation occurs at γ = −3π

2
. The results on the direction of bifurca-

tion are as follows : the quadratic term acts in the same way as in the
negative feedback case, while the cubic term has an opposite effect.
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1. Introduction
Normal forms theory is one of the most powerful tools in the study

of nonlinear dynamical systems, in particular, for stability and bifurca-
tion analysis. In the context of finite-dimensional ordinary differential
equations (ODEs), this theory can be traced back to the work done a
hundred years ago by Poincaré [14]. The basic idea of normal form con-
sists of employing successive, near-identity, nonlinear transformations,
which leads us to a differential equation in a simpler form, qualitatively
equivalent to the original system in the vicinity of a fixed equilibrium
point, thus hopefully greatly simplifying the dynamical analysis.
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Concerning functional differential equations (FDEs), the principal dif-
ficulty in developing normal form theory is the fact that the phase space
is not finite dimensional. The first work in this direction, in such a way
to overcome this difficulty, is due to T. Faria et al. [44]. In that paper,
the authors have considered an FDE as an abstract ODE in an adequate
infinite-dimensional phase space which was first presented in the work
of Chow and Mallet-Paret [30]. This infinite dimensional ODE is then
handled in a similar way as in the finite dimensional case, and through
a recursive process of nonlinear transformations, the authors in [44] suc-
ceeded to a simpler infinite dimensional ODE so defined as normal form
of the original FDE. One of [44]′s proposal is that, for fear of loosing
the explicit relationships between the coefficients in the normal form ob-
tained and the coefficients in the original FDE, their method provides
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us an efficient algorithm for approximating normal forms for an FDE
directly without computing beforehand a local center manifold near the
singularity. However, by expliciting steps of the algorithm given in [4],
we will show that the known of Taylor coefficients of the center mani-
fold is necessary for the algorithm to go on. This point of view will be
presented in detail later.

The issue of this chapter is to present a new, efficient and algorithmic
formulation of the problem of computing local center manifolds and nor-
mal forms associated to an FDE. The problem have been considered in
the previous papers [2] and [1], but only in approximating local center
manifold associated to an FDE with special singularities (namely Hopf
and Bogdanov-Takens singularities). In this work, we are concerned with
FDEs having a general singularity. We assume that the existence of a
local center manifold is ensured by finitely many eigenvalues with zero
real part.The result generalizes singularities considered in both of the
works [2] and [1]. Our motivations for this work are two folds. First, we
derive an algorithmic scheme which allows us, by means of a recursive
procedure, to compute at each step the term of order k ≥ 2 of the Taylor
expansion of a local center manifold : In fact, we prove that the coef-
ficients of the homogeneous part of degree k of a local center manifold
satisfy an initial value problem in finite dimension, whose parameters
depend only on terms of the same order in the considered FDE and the
terms of lower order of a local center manifold already computed. Note
that the computation of Taylor expansion is, in most cases, the only in-
formation that can be extracted at the expense of nontrivial algorithmic
procedures. Secondly, we present an algorithm which provides us, in a
recursive way, with the normal form of an FDE. This is accomplished in
three steps. In the first step we consider the reduced system on a known
local center manifold for which an algorithmic scheme is developed. This
gives us idea about information needed from a local center manifold in
order to compute terms of the normal form for the reduced system. This
allows, in the second step, a simpler scheme that greatly saves compu-
tational times and computation memory. Finally, in the third step we
present a direct computing scheme of normal forms for FDEs (in the
sense of the definition given in [44]).

The chapter is organized as follows: The preliminary section 2 pro-
vides us with elementary notions and a background about the theory of
FDEs (for more details see [58]). In section 3, we state a result which
gives us an analytic characterization of a local center manifold. This
characterization is then explored to derive a computational scheme of a
local center manifold, and we consider some applications of the compu-
tation of center manifolds to the special cases of the Hopf singularity and
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Bogdanov Takens singularity respectively.We reminder the reader that
a concrete example relatedb to the Hopf singularity had been discussed
in the last chapter. An example related to the Bogdanov Taknes singu-
larity is given in the end of this section.. Section 4 details the normal
form construction for both of the reduced system and the original FDE.

2. Notations and background
In this section, we refer the reader to [53] for notations and general

results on the theory of FDEs in finite dimension spaces. Let r ≥ 0
and n ∈ N . We denote by C = C ([−r, 0] , Rn) the Banach space of
continuous functions from [−r, 0] to Rn endowed with the supremum
norm ‖φ‖ = sup

θ∈[−r,0]
|φ (θ)| , for φ ∈ C. If u is a continuous function

taking [σ − r, σ + a] into Rn, then we denote by ut the element of C
defined by ut (θ) = u (t + θ) , for every θ ∈ [−r, 0] and t ∈ [σ, σ + a] .
Our main concern throughout this paper is with the autonomous FDE
of the form

du (t)
dt

= Lut + f (ut) (2.1)

where L is a bounded linear operator from C into Rnand f is a suf-
ficiently smooth function mapping C into Rn such that f (0) = 0 and
Df (0) = 0 (Df denotes the Fréchet derivative of f). A solution u =
u (φ) of (1) through a point φ in C is a continuous function taking
[−r, a) , into Rn such that x0 = φ and satisfying (1) for t in (0, a) . Note
that the Riesz representation allows us to represent the operator L as

L (φ) =
∫ 0

−r
dη (θ)φ (θ)

where η is an n × n matrix valued function of bounded variation in
θ ∈ [−r, 0].

Together with (1) , we consider the linearized equation near zero

du (t)
dt

= Lut (2.2)

If we denote by u (., φ) the unique solution of equation (2.2) with initial
function φ at zero, then equation (2.2) determines a C0-semigroup of
bounded linear operators given by

T (t) φ = ut (., φ) , for t ≥ 0

where u is the solution of (2.2) with u0 = φ. Denote by A the infinites-
imal generator of (T (t))t≥0 . It is known that the spectrum σ (A) of A
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coincides with its point spectrum σp (A) and it consists of those λ ∈ C
which satisfy the characteristic equation

p (λ) = det∆ (λ) = 0 (2.3)

where ∆ (λ) = λIRn −
∫ 0
−r eλθdη (θ) .

Let m ∈ N be the number of solutions of (2.3) with zero real part,
counting their multiplicities. Denote by Λ = {λi, i = 1, ..., m} this set
of eigenvalues. Throughout this paper, we assume that the following
hypothesis holds:

(H) Λ 
= ∅.
Using the formal adjoint theory of Hale [53], the phase space C is de-
composed by Λ as

C = PΛ ⊕QΛ,

where PΛ is the m dimensional generalized eigenspace associated to ele-
ments of Λ and QΛ is its unique T (t) invariant complement subspace in
C. If we denote by Φ = (φ1, φ2, ...., φm) a basis of PΛ, the subspace PΛ

is then written as
PΛ = {Φx : x ∈ Rm} .

Moreover, according to the hypothesis (H) , there exists a matrix B of
the form

B =




λ1 σ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
...

. . . . . . σm−1

0 · · · · · · 0 λm




(2.4)

with σi ∈ {0, 1} such that the semi-flow generated by (2.2) restricted to
PΛ is a linear ODE whose matrix is exactly B. To explicit the subspace
QΛ and the projection operator associated with the above decomposition
of C we need to define the so called adjoint bilinear form as

〈ψ,ϕ〉 = ψ (0) ϕ (0)−
∫ 0

−r

∫ θ

0

ψ (s− θ) dη (θ) ϕ (s) ds, for ϕ ∈ C and ψ ∈ C∗

(2.5)
where C∗ = C ([0, r] , Rn∗) and Rn∗ is the n-dimensional space of

row vectors. With the this bilinear form we can compute the basis
Ψ = col (ψ1, ψ2, ...., ψm) of the dual space P ∗

Λ in C∗ such that 〈Ψ, Φ〉 =
(〈ψi, φj〉)0≤i,j≤m = IRn . and, the subspace QΛ is given in a compact
form:

QΛ = {φ ∈ C : 〈Ψ, φ〉 = col(〈ψ1, φ〉 , ...., 〈ψm, φ〉) = 0} .
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Now consider the nonlinear equation (2.1) . Using the variation of con-
stants formula given in [53], a solution of (2.1) is given by

ut = T (t)u0 +
∫ t

0
T (t− s) X0f (us) ds, for t ≥ 0

where X0 = X0 (θ) is defined by

X0 (θ) =
{

IRn for θ = 0
0 for θ ∈ [−r, 0[

According to the decomposition of C endowed by the set Λ of eigen-
values, the solution ut given above may be decomposed as ut = Φx (t)+
y (t) , where x (t) is an element of Rm and y (t) ∈ QΛ. It is important
to observe that in general y (t) does not satisfy the translation property
(ie y (t) (θ) = y (t + θ) (0)).

By the use of a fixed point theorem, the authors in [53] have considered
equation (2.1) for which they proved that, under hypothesis (H) , we
have the existence of a local center manifold. This tool allows us to
give a complete description of the local dynamics of equation (2.1) near
the steady state: more precisely, the behavior of orbits of (2.1) in C
can be completely described by the restriction of the flow to a local
center manifold associated with Λ, which is necessarily an m-dimensional
ODE. Note that the lack of uniqueness makes local center manifolds
hard to determine. However, fortunately, the uniqueness of the Taylor
expansion of these manifolds is ensured. After computing the Taylor
expansion of a center manifold up to an order k, the nonlinear term of
the reduced system can be explicitly computed up to the order k + 1.
The classical definition of a local center manifold associated with the set
Λ of eigenvalues in the imaginary axis is given as:

Definition 34 : Given a C1map h from Rm into QΛ, the graph of h is
said to be a local center manifold associated with equation (1) if and only
if h (0) = 0, Dh (0) = 0 and there exists a neighborhood V of zero in Rm

such that, for each z ∈ V, there exists δ = δ (ξ) > 0 and the solution x
of (2.1) with initial data Φz + h (z) exists on the interval ]−δ − r, δ[ and
it is given by

ut = Φx (t) + h (x (t)) , for t ∈ [0, δ[ ,

where x (t) is the unique solution of the ordinary differential equation



dx (t)
dt

= Bx (t) + Ψ (0) f (Φx (t) + h (x (t)))

x (0) = z,

(2.6)
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with B is the matrix defined in (2.4) . The ODE (2.6) is said to be the
reduced system of (2.1).

Geometrically speaking, a local center manifold is the graph of a given
function mapping a neighborhood of zero in PΛ into QΛ which is tangent
to PΛ and locally invariant under the semi-flow generated by equation
(2.1) .

In [44], the authors have presented a method for computing normal
forms for FDEs. To develop a normal form theory for FDEs, it was
necessary, in the first step, to enlarge the phase space C in such a way
that (2.1) is written as an abstract ODE. The adequate phase space
for this situation is the one introduced in [55] and used in [28] for the
application of averaging methods to FDEs. It is exactly the space BC
of the functions from [−r, 0] into Rn uniformly continuous on [−r, 0[
and with a jump discontinuity at 0. In terms of the function X0 defined
previously, an element ψ ∈ BC can be written as ψ = φ + X0α where
φ ∈ C and α ∈ Rn. Also, if we identify the space BC to C ×Rn then it
can be endowed with the norm

‖φ + X0α‖BC = ‖φ‖C + ‖α‖Rn

to be a Banach space. The abstract ODE in BC associated with the
FDE (2.1) can be written in the form

du (t)
dt

= Ãu (t) + X0f (u (t)) (2.7)

where Ãφ = φ′+X0 [Lφ− φ′ (0)] with D
(
Ã
)

= C1. The bilinear form in
C∗×C defined in (2.5) can be extended in a natural way to C∗×BC by
〈Ψ, X0〉 = Ψ (0) , and consequently, we can define the projection operator
π : BC −→ PΛ such that

π (φ + X0α) = Φ [〈Ψ, φ〉+ Ψ (0)α] for every φ ∈ C and α ∈ Rn

leading to the decomposition

BC = PΛ ⊕Ker (π)

Let u be a solution of (2.7). According to the above decomposition of
BC, the solution u can be written

u (t) = Φx (t) + y (t)
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where x (t) ∈ Rm and y (t) ∈ Ker (π) ∩D
(
Ã
)

= QΛ ∩ C1 � Q1. As π

commutes with Ã in C1, the equation (2.7) is equivalent to the system



d

dt
x (t) = Bx (t) + Ψ (0) f (Φx (t) + y (t))

d

dt
y (t) = Ã1y (t) + (I − π) X0f (Φx (t) + y (t))

(2.8)

where Ã1 is the restriction of Ã to Q1 interpreted as an operator acting
in the Banach space Ker (π) .

In applications, we are particularly interested in obtaining normal
forms for equations giving the flow on local center manifolds. In the
context of FDEs, typical equations to be considered for the computation
of normal forms read as

•
x = Bx + Ψ (0) f (Φx + h (x)) , (2.9)

where h is a local center manifold.

3. Computational scheme of a local center
manifold

In this section, we derive, at first, necessary and sufficient analytic
conditions on a given function h under which its graph is a local center
manifold of (2.1). This will be exploited in the second step to develop
the computational scheme of terms in the Taylor expansion of h.

Theorem 1 Let h be a map from R
m into QΛ with h (0) = 0 and

Dh (0) = 0. A necessary and sufficient conditions on the graph of h to
be a local center manifold of equation (2.1) is that there exists a neigh-
borhood V of zero in R

m such that, for each z ∈ V, we have

∂

∂θ
(h (z)) (θ) =

(
∂h (z)

∂z
(θ)
)

[Bz + Ψ (0) f (Φz + h (z))]

+Φ (θ) Ψ (0) f (Φz + h (z)) .

(3.10)

and
∂h (z)

∂θ
(0) = Lh (z) + f (Φz + h (z)) , (3.11)

where z (t) is the unique solution of (2.6) .

Proof. Necessity : If h is a local center manifold of equation (2.1),
then, there exists a neighborhood V of zero in R

2 such that, for each
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ξ ∈ V, there exists δ = δ (ξ) > 0 such that the solution of (2.1) with
initial data Φξ +h (ξ) exists on the interval ]−δ − r, δ[ and it is given by

xt = Φz (t) + h (z (t)) , for t ∈ ]−δ, δ[ .

The relations

Φ (θ) z (t) + h (z (t)) (θ) = Φ (t + θ) ξ + h (ξ) (t + θ) , for t + θ ≤ 0 and 0 ≤ t < δ,

(3.12)

and

Φ (θ) z (t) + h (z (t)) (θ) = Φ (0) z (t + θ) + h (z (t + θ)) (0) ,

for t + θ ≥ 0 and 0 ≤ t < δ (3.13)

are immediately deduced from the translation property of the semi-flow
t �−→ xt = Φz (t)+h (z (t)) generated by equation (2.1) in a local center
manifold. Moreover, this semi-flow has a backward extension to ]−δ, 0].
Then, it follows from (3.13) that

L (Φξ + h (ξ)) + f (Φξ + h (ξ)) = ΦBξ +
∂h (ξ)

∂θ
(0) , (3.14)

so, by using the proporety LΦξ = ΦBξ, the relation (3.11) follows
immediately.

On the other hand, for t > 0, by differentiating relation (3.12) with
respect to t, we get

Φ (t + θ)Bξ +
∂

∂θ
(h (ξ)) (t + θ) =

[
Φ (θ) +

∂h (z (t))
∂ξ

(θ)
]

× [Bz (t) + Ψ (0) f (Φz (t) + h (z (t)))

Let t go to zero. Then,

∂

∂θ
(h (ξ)) (θ) =

(
∂h (ξ)

∂ξ
(θ)
)

[Bξ + Ψ (0) f (Φξ + h (ξ))]

+Φ (θ) [Ψ (0) f (Φξ + h (ξ))] .

(3.15)

Sufficiency : From the formulae (3.12) and (3.13) , one can see that
there exists a continuous function y : ]δ − r, δ[ −→ R

n such that

yt = Φz (t) + h (z (t)) , for t ∈ ]−δ, δ[ .
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So, it remains to prove that y is a solution of (2.1) . In fact,

d

dt
y(t) =

(
Φ(0) +

∂h (z (t))
∂ξ

(0)
)

dz (t)
dt (3.16)

Letting ξ = z (t) and θ = 0 in (3.15) and substituting
∂

∂θ
(h (z (t))) (θ)

for the right hand side of (3.15) into (3.16), we obtain

d

dt
y(t) = Φ(0)Bz (t) +

∂h(z (t))
∂θ

(0)

= L (yt) + f (yt) ,

which completes the proof of the theorem.
And in the case of neutral functional differential equations of the form

d

dt
[D (xt)−G (xt)] = Lxt + F (xt) , (3.17)

where L and D are bounded linear operators from C into R
n; F and G

are sufficiently smooth functions mapping C into R
n such that F (0) =

G (0) = 0 and F ′ (0) = G′ (0) = 0 ( F ′ and G′ denote the Frechet
derivative of F and G respectively ), the analytic characterization of a
local center manifold is given in the following corollary:

Corollary 2 Let h be a map from R
m into QΛ with h (0) = 0 and

Dh (0) = 0. A necessary and sufficient conditions on the graph of h
to be a local center manifold of equation (3.17) is that there exists a
neighborhood V of zero in R

m such that, for each z ∈ V, we have

∂

∂θ
(h (z)) (θ) =

(
∂h (z)

∂z
(θ)

)
[Bz + Ψ (0) F (Φz + h (z)) + BΨ (0) G (Φz + h (z))]

+Φ (θ) [Ψ (0) f (Φz + h (z)) + BΨ (0) G (Φz + h (z))] .

and

D

(
∂h (ξ)

∂θ

)
= Lh (ξ) + F (Φξ + h (ξ))

+G′ (Φξ + h (ξ))
(

ΦBξ +
∂h (ξ)

∂θ

) .
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3.1 Formulation of the scheme
Now we are in position to derive our algorithmic scheme for approxi-

mating a local center manifold associated with (2.1) . To this end consider
the analytic characterization given in the above Theorem. Without loss
of generality we can assume that h and f can be written respectively in
the form:

h (z) =
∑
j≥2

hj (z) (3.18)

and
f (φ) =

∑
j≥2

fj (φ) (3.19)

The term hj (z) denotes the homogeneous part of degree j with respect
to z of h.

In the sequel of this work we adopt the following notation : for j ∈ N
and Y a normed space, V m

j (Y ) denotes the space of homogeneous poly-
nomials of degree j in m variables z = (z1, z2, . . . , zm) with coefficients
in Y. In other words

V m
j (Y ) =



∑
|q|=j

cqz
q : q ∈ Nm, cq ∈ Y




where |q| =
∑m

i=1 qi. Moreover, we denote by Dm
j the set of parameters

defined as

Dm
j =

{
q = (q1, q2, . . . , qm) ∈ Nm : |q| =

m∑
i=1

qi

}

endowed with the following order : for q = (q1, q2, . . . , qm) and p =
(p1, p2, . . . , pm) in Dm

j , we have p < q if the first non-zero difference
p1 − q1, p2 − q2, . . . , pm − qm is positive. Hence, the space Dm

j reads

Dm
j =

{
q(m,j,i) : i = 1, . . . , j

}
,

where j = card
(
Dm

j

)
and q(m,j,1) < q(m,j,2) < · · · < q(m,j,j).

The goal now is to develop our algorithmic scheme for computing, in
a recursive way, the polynomial (hj)j≥2 . We will show that at the step
k ≥ 2, the term hk ∈ V m

k (QΛ) is computed from the terms of lower
orders already computed (ie (hj)2≤j≤k−1 ) and from the terms of lower
order of f.
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Fix k ∈ N. Assume that steps of order 2, ...., k − 1 are already per-
formed (ie the terms (hj)2≤j≤k−1 are known). By dropping the parame-
ters k and m in the above notation for simplicity of formulae, the space
Dm

k is written as
Dm

k =
{
qi : i = 1, . . . , k

}
and as a consequence the space V m

k (Y ) can be written

V m
k (Y ) =




k∑
i=1

ciz
qi

: ci ∈ Y


 .

The homogeneous part of degree k with respect to z of equation (3.10)
is given by

∂hk (z)
∂θ

=
∂hk (z)

∂z
Bz + Fk (z) , (3.20)

where Fk (z) is an element of V m
k (C) given by

Fk (z) =
k−1∑
i=2

∂hk−i+1 (z)
∂z

Ψ (0)Hi (z) + ΦΨ (0)Hk (z)

where Hi ∈ V m
i (Rn) is the homogeneous part of degree i with respect

to z of H (z) = f (Φz + h (z)) . An exact formula of Hi is given by the
following proposition :

Proposition 34 Under the standing hypothesis (H), it follows that

Hi (z) = fi (Φz) +
∑i−1

j=2 Dfj (Φz) hi+1−j (z)

+
∑[ i

2 ]
j=2

1
j!

∑i−j
p=j Djfp (Φz)

{∑
l1+l2+...+lj=i−(p−j) hl1hl2 ...hlj

}
(z)

(3.21)
for all i ≥ 2.

Proof. Using the Taylor expansion of H (z) = f (Φz + h (z)) near
h = 0 results in

H (z) = f (Φz) + Df (Φz) h (z) +
∑
i≥2

1
i!

Dif (z) [h (z)]i .

So, according to the representations (3.18) and (3.19), the above equa-
tion reads∑

j≥2 Hj (z) =
∑

i≥2 fi (Φz) +
∑

i≥2

∑
j≥2 Dfj (Φz) hi (z)

+
∑

i≥2
1
i!

∑
j≥2 Difj (Φz)

[∑
l≥2 hl

]i
.

(3.22)
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Finally comparing the same order terms of (3.22) yields us the result of
the proposition.
Remark 3 Fk (z) (θ) is an element of V m

k (Rm) . So, according to the
above notation, the homogenous polynomial Fk (z) can be written as

Fk (z) (θ) =
k∑

i=1

F k
i (θ) zqi

, (3.23)

where F k
i are elements of C. The above proposition provides us with a

clear relationship between Fk (z) and the terms of h (already computed)
as well as the terms of the nonlinearity f of the original FED

In the same way as above, by comparing the k-order terms of (3.11),
we obtain

∂hk (z)
∂θ

(0) = Lhk (z) + Hk (z) . (3.24)

In the sequel of this section we will be concerned only with the equations
(3.20) and (3.24) . By identifying coefficients of the both sides of (3.20)
and (3.24) in the basis

(
zqi
)

1≤i≤k
an adequate formulation of computing

the term hk (z) ∈ V m
k (QΛ) will be derived

Remark 4 Let l (z) = zqi
with qi =

(
qi
1, q

i
2, ...., q

i
m

)
an element of Dm

k .

If we denote by Ii =
{

j ∈ N : pi
j = qi + ej+1 − ej ∈ Dm

k

}
, then it is easy

to see that
Dl (z)Bz = µizqi

+
∑
j∈Ii

qi
jσjz

pi
j .

where µi =
(
qi, λ

)
=
∑k

j=1 qi
jλj . Moreover we have

pi
j > qi, for all i ∈

{
1, . . . , k

}
and j ∈ Ii.

First, we put

hk (z) =
k∑

i=1

ak
i z

qi
and Xk = col

[
ak

1, a
k
2, . . . , a

k
k

]
,

where the ak
i are elements of QΛ. So according to the above remark and

by identifying the two members of (3.20) in the space of homogeneous
polynomial in z = (z1, z2, ...., zm) of degree k with coefficients in QΛ it
leads

dXk (θ)
dθ

= AkX
k (θ) + F k (θ) , for θ ∈ [−r, 0] (3.25)
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where

Ak =




µ1IRn 0 0 · · · · · · 0

� µ2IRn
. . . . . .

...

� �
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . � µk−1IRn 0
� · · · � � � µkIRn




(3.26)

and

F k (θ) = col
[
F k

1 (θ) , F k
2 (θ) , ...., F k

k
(θ)
]
, for θ ∈ [−r, 0] .

Secondly, consider the second equation (3.24) . If we put

Hk (z) =
k∑

i=1

Mk
i zqi

, for Mk
j ∈ R

n,

then, in a vector representation, the equation (3.24) reads

dXk (0)
dθ

− LXk = Mk, (3.27)

where
Mk = col

[
Mk

1 , Mk
2 , ...., Mk

k

]
.

The variation of constants formula applied to the ordinary differential
equation (3.25) yields

Xk (θ) = exp (θAk) Xk (0) + Sk (θ) , for θ ∈ [−r, 0] (3.28)

where

Sk (θ) =
∫ θ

0
exp ((θ − s) Ak)F k (s) ds.

So, by substituting the above expression of Xk into the relation (3.27),
it follows that the vector Xk (0) is a solution of the linear system

BkX
k (0) = Ek, (3.29)

where,
Bk = Ak − L (exp (·Ak)) (3.30)

and
Ek = Mk − F k (0)− LSk. (3.31)
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Then, Substituting (3.26) into (3.30) yields the matrix Bk in the form:

Bk =




∆
(
µ1
)

0 0 · · · · · · 0

� ∆
(
µ2
) . . . . . .

...

� �
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . � ∆
(
µk−1

)
0

� · · · � � � ∆
(
µk
)




(3.32)

where ∆ (.) is the characteristic matrix defined in the preliminary sec-
tion.

Summarizing, we have shown that the part of degree k of the function
h satisfies the following initial value problem :


dXk (θ)
dθ

= AkX
k (θ) + F k (θ) , for θ ∈ [−r, 0]

BkX
k (0) = Ek with Xk ∈ (QΛ)k .

(3.33)

In which F k and Ek are determined in terms h2, · · · · · · , hk−1 of h and
the terms f2, · · · · · · , fk of f.

Remark 5 It is noted that the matrix Bk need not to be nonsingular.
So, in order to compute the initial data Xk (0) of the problem (2.1) , we
should take into account the abstract condition Xk ∈ (QΛ)k . The only
way to do that is the formal adjoint theory defined in the preliminary
section. More precisely, a solution of (3.33) must satisfy

〈
Ψ, Xk

〉
= 0.

As a consequence, the vector Xk (0) should be a solution of a system of
two systems

CkX
k (0) = Nk and BkX

k (0) = Ek

where Nk = −
〈
Ψ, Sk

〉
and Ck = 〈Ψ, exp (.Ak)〉 is the n (k + 1)×m (k + 1)

matrix given by

Ck =




〈
Ψ, exp

(
·µ1
)
IRn

〉
0 0 · · · 0

�
〈
Ψ, exp

(
·µ2
)
IRn

〉 . . .
...

� �
. . .

. . .
...

...
. . .

. . . 0 0

� · · · � �
〈
Ψ, exp

(
·µk
)
IRn

〉




(3.34)
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According to the above remark, the system (3.33) reads



dXk (θ)
dθ

= AkX
k (θ) + F k (θ) , for θ ∈ [−r, 0]

BkX
k (0) = Ek and CkX

k (0) = Nk.

(3.35)

Finally, one can see that equation (3.35) is all what can be extracted
from the coefficients of hk. That’s why, our interest will be focused in
the well posedness of problem (3.35) . The following result provides us
with the complete scheme of computing the homogeneous part of degree
k of a local center manifold.

Theorem 3 Let
(
ak

i

)
i=1,··· ,k be the family of the coefficients of the graph

representation of any local center manifold associated with equation (2.1) ,

in the basis
(
zqi
)

i=1,··· ,k
of the polynomials of degree k with coefficient

in QΛ. Then, the
(
ak

i

)
i=1,··· ,k are uniquely determined by the equation

(3.35) , in which the F k are given by ( 3.23), Ek by ( 3.31) and Bk by
( 3.30).

Proof. In view of the above computations, one can see that if(
ak

i

)
i=1,··· ,k is such a family of coefficients then, it satisfies equation

(3.35). What remains to be seen is that equation (3.35) leads to a
unique set of coefficients that is, no additional information or equation
is necessary for the computation the k-th term in the Taylor expansion
of h. To this end, it is sufficient to prove that Y k ≡ 0 is the unique
solution of the problem




dY k (θ)
dθ

= AkY
k (θ) , for θ ∈ [−r, 0]

BkY
k (0) = 0 and CkY

k (0) = 0.

(3.36)

In other words, it suffices to prove that Y k (0) = 0 is the unique solution
of the two systems

BkY
k (0) = 0 and CkY

k (0) = 0. (3.37)

So, we have to prove that the kernel of the bloc matrix
[

Bk

Ck

]
is exactly

zero. To this end, we distinguish two cases: In the first case we assume
that µi /∈ Λ for all i ∈

{
1, 2, ..., k

}
. Fix i ∈

{
1, 2, ..., k

}
. Since �e

(
µi
)

=
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0, then, the characteristic matrix ∆
(
µi
)

is nonsingular. So, in view of
the form (3.30) of the matrix Bk, it follows that Ker (Bk) = {0} . Or

Ker

([
Bk

Ck

])
= Ker (Bk) ∩Ker (Ck) = {0} .

This implies that Y k (0) = 0 and thus Y k ≡ 0 is the unique solution
of the problem (3.36) . In the second case we assume that for all i in a
subset Jk ⊂

{
1, 2, ..., k

}
, the value µi coincides with an element of Λ.

To conclude the proof of the theorem we need the following lemma.

Lemma 28 Assume that for i ∈ Jk ⊂
{
1, 2, ..., k

}
, µi coincides with an

element of Λ. Then, there exist a nonsingular nk × nk matrix Dk such
that the boundary condition (3.37) can be written as

DkY
k (0) = 0,

where Dk is a matrix that can be constructed by mixing terms of Bk and
those of Ck.

Proof. Consider the mapping α : Jk � i �−→ α (i) ∈ {1, 2, ...., m} ,
such that λα(i) = µi. Then φα(i) (θ) = exp

(
θµi
)

and
〈
ψα(i), φα(i)

〉
= 1.

When n = 1 (the scalar case), we have ∆
(
µi
)

= 0 for i ∈ Jk. So, if
we denote by Dk the matrix obtained from Bk and Ck by replacing
the rows i ∈ Jk of Bk with the rows (i + α (i)) ∈

{
1, 2, ...., mk

}
of Ck

respectively. Then it is easy to see that Dk is invertible. Thus, the
boundary conditions (3.37) is equivalent to DkY

k (0) = 0. In the non-
scalar case (n > 1) , it is difficult to guess exactly the rows that we should
eliminate from the matrix Bk and the ones that we can bring from the
matrix Ck in order to build the invertible matrix Dk. But it is easy to

prove that the kernel of the block matrix
[

Bk

Ck

]
is reduced to zero. In

fact, let b = col
(
b1, b2, ...., bk

)
an element of Cnk such that Bkb = 0 and

Ckb = 0. In an induction procedure, we will show that bi = 0 for all
i ∈
{
1, 2, ...., k

}
. In view of (3.32) and (3.34) , it follows that b1 satisfies

{
∆
(
µ1
)
b1 = 0〈

Ψ, exp
(
·µ1
)
b1
〉

= 0 (3.38)

Note that µi is a complex element with zero real part. So, by virtue
of (3.38) , if µ1 /∈ Λ then ∆

(
µ1
)

is non-singular and b1 = 0 and if not(
ie.µ1 ∈ Λ

)
then ∆

(
µ1
)
b1 = 0 implies that exp

(
·µ1
)
b1 is an eigenfunc-

tion A associated to the eigenvalues µ1 = λα(1).Or,
〈
Ψ, exp

(
·µ1
)
b1
〉

= 0
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leads to
〈
ψα(i), exp

(
·λα(i)

)
b1
〉

= 0 which is not true except if b1 = 0. Let
j ∈

{
1, 2, ...., k − 1

}
. If we assume that bi = 0 for i ∈ {1, ...., j} , then,

in view of (3.32) and (3.34) , we have{
∆
(
µj+1

)
bj+1 = 0〈

Ψ, exp
(
·µj+1

)
bj+1

〉
= 0

and in the same spirit as above, we can prove that bj+1 = 0. Summariz-

ing, we have shown that Ker(Bk)∩Ker(Ck)={0}. Thus Rank

([
Bk

Ck

])

=nk and consequently, by the use of elementary linear algebra tools, one
can build a matrix Dk satisfying the lemma. This achieves the proof.

Remark 6 In the same way as above, one can prove that the problem
(3.35) can be written as


dXk (θ)
dθ

= AkX
k (θ) + F k (θ) , for θ ∈ [−r, 0]

DkX
k (0) = Rk

(3.39)

where Dk is the matrix given in the above lemma and Rk is a complex
vector whose components are a mixing of those of the vectors Ek and
Nk. In conclusion, the problem of computing terms of a local center
manifold can be formulated in resolving a sequence of finite dimensional
ODEs. This formulation makes the problem of computing coefficients of
a local center manifold in suitable form easy to manipulate in symbolic
or numerical computations.

3.2 Special cases.
3.2.1 Case of Hopf singularity. In this case, we suppose
that Λ = {±ωi}, where ω 
= 0 By virtue of assumption (H), it follows
that dimPΛ = 2.

If we put

hk (z) =
k∑

i=0

ak
i z

k−i
1 zi

2 and Xk = col
(
ak

0, · · · · · · , ak
k

)
,

where the ak
i are elements of QΛ, we prove that for θ ∈ [−r, 0] ,we have




dXk (θ)
dθ

= AXk(θ) + F k (θ) , for θ ∈ [−r, 0]

BkX
k (0) = Ek and CkX

k (0) = Nk.

(3.40)
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where

Ak =




−kiωIRn 0 0 · · · · · · 0

0 −(k − 2)iωIRn 0
. . .

...

0 0
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . (k − 2)iωIRn 0
0 · · · · · · 0 0 kiωIRn




,

Bk = Diag (∆(−(k − 2j))iω), , j ∈ {0, · · · , k})
and

Ck = Diag (〈Ψ, exp(−(k − 2j))iω)IRn〉 , , j ∈ {0, · · · , k}) .

3.2.2 The case of Bogdanov -Takens singularity.. In this
case, we assume that zero is a double eigenvalue: Λ = {0, 0}, which
ensures the existence of a center manifold associated with (2.1). By
virtue of assumption (H), it follows that dimPΛ = 2.

If we put

hk (z) =
k∑

i=0

ak
i z

k−i
1 zi

2 and Xk = col
(
ak

0, · · · · · · , ak
k

)
,

where the ak
i are elements of QΛ,then for θ ∈ [−r, 0] , we have




dXk (θ)
dθ

= AkX
k (θ) + F k (θ) , for θ ∈ [−r, 0]

BkX
k (0) = Ek and CkX

k (0) = Nk.

where

Ak =




0 0 0 · · · · · · 0

kIRn 0 0
. . .

...

0 (k − 1) IRn 0
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . 0
0 · · · · · · 0 IRn 0




,
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and Bk is a consequence of the following lemma:

Lemma 29 The exponential matrix exp(θAk) is given by

exp(θAk) =




Ck
0 IRn 0 · · · · · · 0

θCk
1 IRn Ck−1

0 IRn
. . .

...
... θCk−1

1

. . . . . .
...

...
...

. . . 0
θkCk

k IRn θk−1Ck−1
k−1IRn · · · · · · C0

0IRn




Proof : The matrix Ak is nilpotent. So, it is easy to verify that

exp(θAk) =
k∑

m=0

θm (Ak)
m

m!
.

In a recursive way, one can easily prove that (Ak)
m = (αijIRn)1≤ij≤n(k+1) ,

where

αij =




m!Ck−j+1
m , if i− j = k

0 , if i− j 
= k.

which completes the proof of the lemma .
By using the above lemma, one can see that

Bk =




Ck
0 ∆ (0) 0 · · · · · · 0

Ck
1 ∆(1) (0) Ck−1

0 ∆ (0)
...

... Ck−1
1 ∆(1) (0)

. . .
...

...
...

. . . 0
Ck

k∆(k) (0) Ck−1
k−1∆(k−1) (0) · · · · · · C0

0∆ (0)




.

Example.
In this section we consider as an application of our computational

scheme an example treated by Hale and Huang [56], where, in view of
the study of qualitative structure of the flow on the center manifold,
the authors need more precise information about a center manifold. In
particular, they need to know its Taylor expansion up to the second
order terms. It is a singularly perturbed delay equation given by

εx′ (t) = −x (t) + f (x (t− 1) , λ) , (3.41)

where ε is a real positive number assumed to be small, λ is a real para-
meter and f is an element of Ck (R, R) , k ≥ 3, more specifically

f (x, λ) = − (1 + λ) x + ax2 + bx3 + o
(
x3
)
, for some a, b ∈ R.
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With the change of variables

w1 (t) = x (−εrt) and w2 (t) = x (−εrt + 1 + εr) ,

the equation (3.41) reads



dw1

dt
= rw1 (t)− rf (w2 (t− 1) , λ)

dw2

dt
= rw2 (t)− rf (w1 (t− 1) , λ) .

(3.42)

If r = 1 and λ = 0, then, the characteristic equation associated to (3.42)
is

(µ− 1)2 − e−2µ = 0, for µ ∈ C.

The above equation has zero as a double root and the remaining roots
have a negative real part. This ensures the existence of a two dimensional
center manifold associated to the equation (3.42) with (r, λ) = (1, 0)

Throughout this section we use the notation presented in section 2
for the equation (3.42) with r = 1 and λ = 0. Base of PΛ and QΛ are
respectively

Φ =
[
−1 −1

3 − θ
1 1

3 + θ

]
and Ψ =

[
s −s
−1 1

]
, for (θ, s) ∈ [−1, 0]×[0, 1] .

It is easy to verify that 〈Ψ, Φ〉 = IR2 , and

AΦ = ΦB, with B =
[

0 1
0 0

]
.

In view of the assumed smoothness on the function f, equation (3.42)
has a local center manifold, at least of class C3, and

h (ξ) = a2
0ξ

2
1+a2

1ξ1ξ2+a2
2ξ

2
2+χ (ξ) , for some a2

i ∈ QΛ and χ (ξ) = o
(
|ξ|2
)

.

Put X2 = col
(
a2

0, a
2
1, a

2
2

)
. We showed in subsubsection 3.2.1 that the

computation of X2 can be obtained by solving the differential equation




dX2 (θ)
dθ

= A2X
2 (θ) + F 2 (θ) , for θ ∈ [−r, 0]

B2X
2 (0) = E2 and C2X

2 (0) = N2,

(3.43)
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where B2 is the 6× 6 real matrix given by

B2 =




−1 −1 0 0 0 0
−1 −1 0 0 0 0
2 2 −1 −1 0 0
2 2 −1 −1 0 0
0 −1 1 1 −1 −1
−1 0 1 1 −1 −1




.

Now, we will consider the computation of the parameters of the above
system. According to relation (3.23) we have F2 (ξ) (θ) = 0, for θ ∈
[−1, 0] . So, F 2 (θ) = 0, for θ ∈ [−1, 0] and as a consequence, we have
N2 = −

〈
Ψ, S2

〉
= 0. Moreover, the relation (3.30) leads to E2 =

col

(
−a,−a,

4a

3
,
4a

3
,
−4a

9
,
−4a

9

)
. On the other hand, by Lemma 29, it

is easy to see that the 6× 6 real matrix G2 is given by

C2 = 〈Ψ, exp (·A2)〉 =




−1
2

1
2 0 0 0 0

0 0 0 0 0 0
1
3

−1
3

−1
2

1
2 0 0

−1 1 0 0 0 0
−1
12

1
12

1
6

−1
6

−1
2

1
2

1
3

−1
3

−1
2

1
2 0 0




then by replacing the first (resp, the third) line of B2 by the first (resp, by
the third) line of the matrix C2, the boundary condition C2X

2 (0) = N2

and B2X
2 (0) = E2 imply that X2(0) is given in the unique way by

X2 (0) = col

(
a

2
,
a

2
,
a

3
,
a

3
,
11a

36
,
11a

36

)

and for θ ∈ [−1, 0] , we have

a2
0 (θ) =

a

2

[
1

1

]
, a2

1 (θ) = a

(
θ +

1

3

)[
1

1

]
, a2

2 (θ) = a

(
θ2

2
+

θ

3
+

11

36

)[
1

1

]
.

This confirms the result established Hale and Huang in [56].

4. Computational scheme of Normal Forms
In this section, we present an algorithm for computing normal forms

for FDEs. In the context of ODEs, the key idea is based on comput-
ing a change of variables that allows us to transform the original ODE
into an equation with a simpler analytic expression. In this section, we
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will be concerned with developing, in an algorithmic way, the notion of
normal forms for FDEs of the form (2.1) . Our approach is shared out
in two shutters. In the first subsection, we assume that a local center
manifold is known and we deal with developing, in conventional way, a
computational scheme of normal form for the ODE (2.9) representing
the restriction of the semi-flow generated by (2.1). In the second subsec-
tion, we deal with the equation (2.1) as an abstract infinite dimensional
ODE of the form (2.8) ; our method consists in elaborating a scheme
of computing nonlinear transformations that greatly simplify the (2.8) ,
and we will show that this scheme leads us to simpler infinite dimen-
sional ODE which coincides with the normal form of (2.1) (in the sense
of definition presented in [44]).

4.1 Normal form construction of the reduced
system

Let h be a mapping from Rm into QΛ whose graph is a local center
manifold associated with the equation (2.1) . In the previous section, we
have elaborated an algorithmic procedure allowing us to compute at any
order k the terms of the Taylor expansion of h. Note that, in general, it is
the most information that can extracted from h with the impossibility of
obtaining the closed form. Without loss of generality h may be assumed
in the form

h =
∑
i≥2

hi.

The flow of the FDE (2.1), on this local center manifold is described by
the following m-dimensional ODE

•
x = Bx + G (x) , (4.44)

where G (x) = Ψ (0)H (x) . If we assume that (hi)i≥2 are already com-
puted, then terms of the ODE (4.44) are known at any order. In other
words, if G =

∑
i≥2 Gi then Gi is known for all i ≥ 2 once (hi)i≥2 are

founded.
Consider a nonlinear transformation of the form

x = x + V (x) (4.45)

where V be a mapping from Rm into Rm such that V (0) = 0, DV (0) =
0. Assume that the effects of the above change of variables on the reduced
system (4.46) is of the form

•
x = Bx + F (x) . (4.46)



Approximating center manifolds and normal forms for FDE 215

Our main goal now is to develop an algorithmic scheme providing us
with adequate nonlinear transformations V that transform (2.6) into
a simpler equation (4.46) (ie. the nonlinearity F is simpler than H).
Without loss of generality, we put

V =
∑
i≥2

Vi and F =
∑
i≥2

Fi.

In the sequel, we will deal with developing a the recursive efficient ap-
proach for computing the kth order normal form Fk and the kth order
nonlinear transformation Vk in terms of (Gi)2≤i≤k as well as the terms
(Fi)2≤i≤k−1 already computed. We start by the following Definition:

Definition 35 Let j ≥ 2. We denote by M1
j the operator defined by

(
M1

j p
)
(x) = Dp (x)Bx−Bp (x) ,

for all p ∈ V m
j (Rm) .

The operators M1
j , defined above, are exactly the Lie brackets that

appear in computing normal forms for finite dimensional ODEs. It is
well known that the space V m

j (Rm) may be decomposed as

V m
j (Rm) = Im

(
M1

j

)
⊕ Im

(
M1

j

)c (4.47)

where the complementary space Im
(
M1

j

)c
is not uniquely determined.

Let P j be the projection associated with the above decomposition. If
we choose bases for Im

(
M1

j

)
and Im

(
M1

j

)c
, then, each element q of

V m
j (Rm) can be split into two parts P jq and

(
I − P j

)
q: P jq can be

spanned by the basis of Im
(
M1

j

)
and

(
I − P j

)
q by that of Im

(
M1

k

)c
.

Theorem 4 Fix k ≥ 2. Then, the recursive formula for computing the
coefficients of the normal form associated to the decomposition (4.47) is
given by

Fk (x) = Gk (x)−
(
M1

kVk

)
(x)

+
∑k−1

i=2 {DGk+1−i (x) Vi (x)−DVi (x) Fk+1−i (x)}
+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j DjGi (x)

{∑
l1+l2+...+lj=k−(i−j) Vl1Vl2 ...Vlj

}
(x) .

(4.48)

Proof. Substituting the change of variables (4.45) into (4.44) results
in

Bx +
∑
k≥2

Gk (x) = [I + DV (x)]


Bx +

∑
k≥2

Fk (x)


 ,
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which can be rearranged as
∑

k≥2 Fk (x) =
∑

k≥2 Gk (x + V (x)) +
∑

k≥2 BVk (x)

−
∑

k≥2 DVk (x) Bx−
[∑

k≥2 DVk (x)
] [∑

k≥2 Fk (x)
]

Then we use Taylor expansion of Gk (x + V (x)) near V = 0 to rewrite
the above equation as

∑
k≥2 Fk (x) =

∑
k≥2 Gk (x) +

∑
k≥2 DGk (x)

(∑
j≥2 Vj (x)

)

+
∑

k≥2

(
M1

kVk

)
(x)−

[∑
k≥2 DVk (x)

] [∑
k≥2 Fk (x)

]

+
∑

k≥2

(∑
j≥2

1
j!D

jGk (x)
(∑

l≥2 Vl (x)
)j
)

.

Finally comparing terms degree k in the above equation yields the for-
mula (4.48). This achieves the proof of the Theorem.

The formula (3.23) given in the above theorem can be rewritten in a
compact form

Fk = G̃k −M1
j Vk, (4.49)

where

G̃k (x) = Gk (x) +
∑k−1

i=2 {DGk+1−i (x)Vi (x)−DVi (x)Fk+1−i (x)}
+
∑k

j=2
1
j!

∑k+j
i=j DjGi (x)

{∑
l1+l2+...+lj=k−(i−j) Vl1Vl2 ...Vlj

}
(x)

Then, by virtue of (4.49) and (4.47), one can compute an adequate
nonlinear transformation Vk such that

M1
kVk = P kG̃k, (4.50)

and which leads us to

Fk =
(
I − P k

)
G̃k. (4.51)

In other words, we can find a change of variables that affect the reduced
system by taking away nonlinear terms (called non resonant terms) that
are in the range subspaces Im

(
M1

k

)
and conserving only terms (called

resonant terms) that are in the complementary subspace Im
(
M1

k

)c
.

Remark 7 It has been observed that the subspace Im
(
M1

k

)c is not
uniquely determined. Moreover, according to the equations (4.50) and
(4.51) , one can note that the nonlinear transformation Vk depends on
the choice of Im

(
M1

k

)c. Consequently the normal forms are not unique.
In applications, we choose a suitable complementary space to the situa-
tion to be handled.
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Remark 8 In view of the above Theorem, it is noted that the kth order
term Fk of the normal form depends upon the known of (Fj)2≤j≤k−1 and
the results (Vj)2≤j≤k as well as (Gj)2≤j≤k−1 . However, it has observed
from the Proposition (34) that the homogeneous polynomial Gj can be
given in terms of (hi)2≤i≤j−1 . Hence, in order to present the complete
scheme for computing normal forms for (2.6) , we must take into ac-
count the algorithm developed in section 3 and which provides us with
homogeneous parts of the mapping h. As a consequence, the complete
scheme for computing normal forms for (2.6) should be a combination
of the formulae (3.21) , (3.39) and (3.23) .

In order to save computational time and computer memory, the follow-
ing Theorem illustrates another approach that combines center manifold
and normal forms schemes into one step to simultaneously obtain a com-
pact form illustrating the close relationship between the normal forms
F , the associated nonlinear transformations V, a local center manifold h
and the coefficients of the original FDE (2.1) .

Theorem 5 Effect the reduced system (2.9) with a nonlinear transfor-
mation of the form (4.45) . So, if x is a solution of the equation ( 2.1)
then F and V satisfy

DV (x) Bx−BV (x) = Ψ (0) f
(
Φ [x + V (x)] + h̃ (x)

)
−DV (x) F (x)−F (x) (4.52)

and

Dh̃ (x)B−Ã1h̃ (x) = (I − π) X0f
(
Φ [x + V (x)] + h̃ (x)

)
−Dh̃ (x) F (x) ,

(4.53)
where h̃ (x) = h (x + V (x)) .

Proof. Substituting the nonlinear transformation (4.45) into (2.6)
results in

[I + DV (x)]
•
x = Bx + BV (x) + f̃1 (x) ,

where f̃1 (x) = Ψ (0) f
(
Φ [x + V (x)] + h̃ (x)

)
. So, in view of (FN1) it

follows that

[I + DV (x)] [Bx + F (x)] = Bx + BV (x) + f̃1 (x) ,

which can be rearranged as

DV (x)Bx−BV (x) = f̃1 (x)−DV (x)F (x)− F (x) .

This gives the relation (4.52) . To prove (4.53) , we need the following
lemma:
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Lemma 30 Let h be a map from R
m into QΛ with h (0) = 0 and

Dh (0) = 0. A necessary and sufficient conditions on the graph of h to
be a local center manifold of equation (2.1) is that there exists a neigh-
borhood V of zero in R

m such that

Dh (z) Bz − Ã1h (z) = (I − π) X0f (Φz + h (z)) − Dh (z) Ψ (0) f (Φz + h (z))

for z ∈ V (4.54)

Proof. Substituting the nonlinear transformation (4.45) into the
equation (4.54) satisfied by h results in

Dh (x + V (x))
[
Bx + BV (x) + f̃1 (x)

]
− Ã1h (x + V (x)) = f̃2 (x)

with f̃2 (x) = (I − π) X0f
(
Φ [x + V (x)] + h̃ (x)

)
. So, by the aid of the

formula (4.52) already proved, the above equation reads

Dh (x + V (x)) [I + DV (x)] [Bx + F (x)]− Ã1h (x + V (x)) = f̃2 (x) ,

which is equivalent to

Dh̃ (x)B − Ã1h̃ (x) = f̃2 (x)−Dh̃ (x)F (x) .

This achieves the proof of the theorem.
In general, the closed form solutions of (4.53) cannot be founded.

Thus, approximate solutions may be assumed in the form of

h̃ =
∑
i≥2

h̃i

where h̃i is an element of V m
i

(
Q1

Λ

)
. If we denote by M2

j the operators
defined as(

M2
j p
)
(x) = Dp (x) Bx− Ã1p (x) for all p ∈ V m

j

(
Q1

Λ

)
,

then, comparing the same order in the equations (4.52) and (4.53) in the
above theorem results in

Fk (x) = H1
k (x)−

(
M1

kVk

)
(x) (4.55)

and (
M2

k h̃k

)
(x) = H2

k (x) (4.56)

where H1
k (x) and H2

k (x) are homogeneous polynomial of degree k. More
exactly, H1

k (x) and H2
k (x) are respectively the kth homogenous part of

the functions

H1 (x) = f1
(
Φ [x + V (x)] + h̃ (x)

)
−DV (x)F (x) (4.57)
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and

H2 (x) = f2
(
Φ [x + V (x)] + h̃ (x)

)
−Dh̃ (x)F (x) , (4.58)

where f1 (φ) = Ψ (0) f (φ) and f2 (φ) = (I − π) X0f (φ) , for all φ ∈ C.

It is easy to see that H1
k = H̃k for all k ≥ 2. An exact formula of H1

k (x)
and H2

k (x) is given in the following result.

Theorem 6 The recursive formula deriving H1
k (x) and H2

k (x) is given
by

H1
k (x) = f1

k (Φx) +
∑k−1

i=2

{
Df1

k+1−i (Φx) Wi (x) − DVi (x) Fk+1−i (x)
}

+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j Djf1

i (Φx)
{∑

l1+l2+...+lj=k−(i−j) Wl1Wl2 ...Wlj

}
(x)

and

H2
k (x) = f2

k (Φx) +
∑k−1

i=2

{
Df2

k+1−i (Φx) Wi (x) + Dh̃i (x) Fk+1−i (x)
}

+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j Djf2

i (Φx)
{∑

l1+l2+...+lj=k−(i−j) Wl1Wl2 ...Wlj

}
(x)

,

where Wl = ΦVl + h̃l for all l ≥ 2.

Proof. In the same spirit of the the proof of the theorem () , one can
easily obtain the above relations.

The above result illustrates clearly how the elements H1
k (x) and H2

k (x)

depend into the terms (Vi)2≤i≤k−1 and
(
h̃i

)
2≤i≤k−1

. So if we assume

that the lower order terms in V and h̃ are already computed, then, in
order to compute an adequate nonlinear transformation Vk that greatly
simplifies the reduced system, we proceed in the following way: We con-
sider the equation (4.55) , then, by the aid of a decomposition of the
form (4.47) of the space V m

j (Rm) , the homogeneous polynomial H1
k (x)

is spliced into two parts the resonant and the non resonant one. Remov-
ing non resonant terms and letting resonant terms results in

M1
kVk = P kH1

k and Fk =
(
I − P k

)
H1

k .
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Remark 9 One can ask a question about the usefulness of the second
equation (4.56) of the scheme. In fact, once H1

k is known, the equation
(4.56) will be needed for computing the kth order term h̃k which allows
us to pass to the next step k + 1 where the computation of the (k + 1)th
order normal form Fk+1 and the (k + 1)th order nonlinear transforma-
tion as well as h̃k+1. In conclusion, solving equation (4.56) is necessary
for passing from a step to step.

Let us now consider the equation (4.56) . In view of the definition of
h̃ and the formula (4.57) one can easily observe that h̃k and H2

k are
respectively elements of V m

k

(
Q1

Λ

)
and V m

k (Ker (π)) . So, according to
the notation presented in section 3, polynomials h̃k and H2

k are written
as

h̃k (x) =
k∑

i=1

bk
i x

qi
and H2

k (x) =
k∑

i=1

ck
i x

qi
+ X0

k∑
i=1

αk
i x

qi
,

where the coefficients
(
bk
i

)
1≤i≤k

,
(
ck
i

)
1≤i≤k

and
(
αk

i

)
1≤i≤k

are respec-
tively elements of Q1

Λ, Ker (π) and Rn. It is noted that, from the fact
that H2

k ∈ V m
k (Ker (π)) , the coefficients ck

i and αk
i should satisfy the

relation ck
i = ΦΨ (0)αk

i for i = 1, .., k. Put X̃k = col
(
bk
1, b

k
2, ..., b

k
k

)
and

F̃ k = col
(
ck
1, c

k
2, ..., c

k
k

)
. Identifying the two sides of the equation (4.56)

according the canonical basis
{

xqi
: i = 1, .., k

}
leads us to




dX̃k (θ)
dθ

= AkX̃
k (θ) + F̃ k (θ) , for θ ∈ [−r, 0]

dX̃k (0)
dθ

− L
(
X̃k
)

= M̃k X̃k ∈ (QΛ)k

where M̃k = col
(
αk

1 , α
k
2 , ..., α

k
k

)
. Then, if we combine the adjoint bilin-

ear form (cf. section 2) and the variation of constant formula tools, The
above problem reads



dX̃k (θ)
dθ

= AkX̃
k (θ) + F̃ k (θ) , for θ ∈ [−r, 0]

BkX̃
k (0) = Ẽk and CkX̃

k (0) = Ñk

where
Ñk = −

〈
Ψ, S̃k

〉
(4.59)
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and
Ẽk = M̃k − F̃ k (0)− LS̃k (4.60)

with

S̃k =
∫ θ

0
exp ((θ − s) Ak)F k (s) ds

Finally, we have the following result which provides us with the algorithm
of computing coefficients

(
bk
i

)
1≤i≤k

in terms of
(
ck
i

)
1≤i≤k

and
(
αk

i

)
1≤i≤k

.

Proposition 35 Let Ak and Dk are the matrices appearing in the al-
gorithm of approximation of a local center manifold (cf. section 3). The
equation (3.38) is equivalent to


dX̃k (θ)
dθ

= AkX̃
k (θ) + F̃ k (θ) , for θ ∈ [−r, 0]

DkX̃
k (0) = R̃k

(4.61)

where R̃k is a vector whose components are a mixing of the ones of the
vectors Ẽk and Ñk respectively defined in (4.60) and (4.59).

In conclusion, we claim that the sequence of equations (4.55) and
(4.61) is all what we need for computing normal formes for the reduced
system (2.6) at any order.

Remark 10 In the work [44], the authors have been concerned with
solving, at each step, equations similar to (4.55) and (4.56) . In view of
the difficulties entailed by the operator Ã1 in the definition of M2

j (j ≥ 2),
the authors in [44] have been restricted to the study of the spectrum of
Ã1. And under non resonance conditions, the authors in [44] proved that
M2

j is nonsingular for all j ≥ 2. However, their derivation does not
allow them to compute or at least approximate the inverse of M2

j . In
contrast, the previous result provides us with a suitable form of (4.56)
which lends itself to numerical or symbolic computations by means of a
recursive process.

4.2 Normal form construction for FDEs
In this subsection, we will be concerned with equation (2.1) , for which

an algorithmic scheme for computing normal forms is derived. In view
of the preliminary section, it is known that equation (2.1) can viewed as
an infinite dimensional ODE given by{ •

x = Bx + f
1 (x, y)

•
y = Ã1y + f

2 (x, y)
(4.62)
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where f
1 (x, y) = Ψ (0) f (Φx + y) and f

2 (x, y) = (I − π) X0f (Φx + y) .
Effecting the equation (4.62) with nonlinear transformations of the form

{
x = x + V 1 (x)
y = y + V 2 (x) (4.63)

results in { •
x = Bx + g1 (x, y)
•
y = Ã1y + g2 (x, y)

(4.64)

Our goal in the sequel is to develop an iterative procedure for find-
ing adequate transformations V 1 and V 2 that greatly simplify equation
(4.62) . As has been defined in [44], the transformed equation (4.64) as-
sociated to that change of variables is called normal form of (2.1). We
first start by stating the following Theorem that illustrates us how, the
above change of variables (4.63) , affects equation (4.62) .

Theorem 7 Effecting the equation (4.62) with the change of variables
(4.45) results in equation of the form(4.64) with g1 and g2 satisfying

g1 (x, y) = f
1 (

x + V 1 (x) , y + V 2 (x)
)
− DV 1 (x) g1 (x, y)−

[
DV 1 (x) Bx − BV 1 (x)

]
(4.65)

and

g2 (x, y) = f
2 (

x + V 1 (x) , y + V 2 (x)
)
−DV 2 (x) g1 (x, y)−

[
DV 2 (x) Bx − Ã1V

2 (x)
]

(4.66)

Proof. First, differentiating the relations of (4.63) results in
{ •

x =
[
I + DV 1 (x)

] •
x

•
y =

•
y + DV 2 (x)

•
x

So, assuming that the change of variables (4.45) transforms equation
(4.62) into equation of the form (FN2) yields

{ •
x =

[
I + DV 1 (x)

] [
Bx + g1 (x, y)

]
•
y =

[
Ã1y + g2 (x, y)

]
+ DV 2 (x)

[
Bx + g1 (x, y)

]

Finally combining the above formula with (4.62) and (4.63) yields equa-
tions (4.65) and (4.66) . This ends the proof of the Theorem.

A conventional approach for computing normal forms consists in find-
ing adequate nonlinear transformations V 1 and V 2 that provide us, by
substituting them into equation (4.62) , with a simpler form of the both
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of g1 and g2. In general, however, the closed form of V 1 and V 2 respec-
tively solutions of (4.65) and (4.66) cannot be founded. Thus, approxi-
mate solutions may be assumed in the form of

V 1 =
∑
i≥2

V 1
i and V 2 =

∑
i≥2

V 2
i .

Our task is then reduced only to the computation terms of the Taylor

expansion respectively of V 1 and V 2. Denote by f̃
1
(x, y) and f̃

2
(x, y) re-

spectively the function f
2 (

x + V 1 (x) , y + V 2 (x)
)

and
f

2 (
x + V 1 (x) , y + V 2 (x)

)
. So, expanding and comparing the both sides

of equations (4.65) and (4.66) results in

g1
k (x, y) =

˜̃
f

1

k (x, y)−
(
M1

kV 1
k

)
(x) (4.67)

and

g2
k (x, y) =

˜̃
f

2

k (x, y)−
(
M2

kV 2
)
(x) (4.68)

where
˜̃
f

1

k (x, y) and
˜̃
f

2

k (x, y) are respectively the kth order term (with

respect to the arguments x and y) of the functions
˜̃
f

1

(x, y) = f̃
1
(x, y)−

DV 1 (x) g1 (x, y) and
˜̃
f

2

(x, y) = f̃
2
(x, y)−DV 2 (x) g1 (x, y) . More pre-

cisely, we have the following proposition:

Theorem 8 The recursive expression of
˜̃
f

1

k (x, y) and
˜̃
f

2

k (x, y) is given
by

˜̃
f
1

k (x, y) = f1
k (Φx + y) +

∑k−1
i=2

{
Df1

i (Φx + y) Wk+1−i (x) + DV 1
i (x) g1

k+1−i (x, y)
}

+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j Djf1

i (Φx + y)
{∑

l1+l2+...+lj=k−(i−j) Wl1Wl2 ...Wlj

}
(x)

(4.69)

and

˜̃
f
2

k (x, y) = f2
k (Φx + y) +

∑k−1
i=2

{
Df2

i (Φx + y) Wk+1−i (x) + DV 1
i (x) g1

k+1−i (x, y)
}

+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j Djf2

i (Φx + y)
{∑

l1+l2+...+lj=k−(i−j) Wl1Wl2 ...Wlj

}
(x)

(4.70)

where Wl (x) is the homogeneous part of degree l of W (x) = ΦV 1 (x) +
V 2 (x) .

Fix y = 0 in formulae (4.67) and (4.68) . Refereing to the results stated
in the previous subsection, one can find adequate nonlinear transforma-
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tions V 1
k and V 2

k satisfying

(
M1

kV 1
k

)
(x) = P k ˜̃f

1

k (x, 0) (4.71)

g1
k (x, 0) =

(
I − P k

) ˜̃
f

1

k (x, 0) (4.72)

and (
M2

kV 2
k

)
(x) =

˜̃
f

2

k (x, 0) . (4.73)

And thus g2
k (x, 0) = 0. To be explicit, we state the following definition,

similar to the one given in [44], of normal forms for (2.1):

Definition 36 The normal form for (2.1) (or equation (2.7)) relative
to the decomposition (4.47) is an equation of the form




•
x = Bx +

∑
k≥2 g1

k (x, y)
•
y = Ã1y +

∑
k≥2 g2

k (x, y)

with g1
k and g2

k satisfying (4.71) , (4.72) and (4.73) for all k ≥ 2.

Now, with the aid of the previous Definition, we are in position to
state the following Theorem summarizing the results for the new recur-
sive and computationally efficient approach, providing us with terms of
the normal form for FDEs at any order and the associated nonlinear
transformations:

Theorem 9 Consider an FDE of the form (2.1) with non hyperbolic
steady state satisfying the hypothesis (H) . If we consider (2.1) as an
infinite dimensional ODE of the form (2.8) , then there exists formal
nonlinear transformations x = x + V 1 (x) and y = y + V 2 (y) such that




•
x = Bx +

∑
k≥2 g1

k (x, y)
•
y = Ã1y +

∑
k≥2 g2

k (x, y)
(4.74)

with g1
k and g2

k satisfying (4.71) , (4.65) , (4.73) and g2
k (x, 0) = 0 for x, y

small and k ≥ 2. Moreover, a local center manifold satisfies y = 0 and
the normal form (in the usual sense for ODEs) of the reduced system of
(2.1) on this invariant manifold is given by the m-dimensional ODE

•
x = Bx + g1 (x, 0) . (4.75)
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Proof: After what was done before the statement, one can see that
the first part of the Theorem is a direct consequence of properties of the
operators M1

k and M2
k stated in the previous subsection combined with

the equations (4.71) , (4.65) , (4.73) . Let us to prove the second part of
the Theorem. This will be done in two steps: First, substituting y = 0
into (4.69) results in

˜̃
f

1

k (x, 0) = f1
k (Φx) +

∑k−1
i=2

{
Df1

i (Φx) Wk+1−i (x) + DV 1
i (x) g1

k+1−i (x)
}

+
∑[ k

2 ]
j=2

1
j!

∑k−j
i=j Djf1

i (Φx)
{∑

l1+l2+...+lj=k−(i−j) Wl1Wl2 ...Wlj

}
(x) .

So, if we observe that

H1
i (x) = Ψ (0) fi (Φx) for i ≥ 2

then, it follows that
g1
k (x, 0) = Fk (x) .

As a consequence, the equation (4.75) is exactly the normal form of the
reduced system of (2.1) in the local center manifold considered. In the
second step, we need to show that y = 0 provides us with this center
manifold. To this end we need the following lemma:

Lemma 31 The equation y = 0 yields the equation of a local invariant
center manifold of (2.1) .

Proof: Substituting y = 0 in the change of variables (4.63) yields
{

x = x + V 1 (x)
y = V 2 (x) .

(4.76)

So, by applying the implicit functions Theorem to the above equation,
one can prove the existence of a function h mapping a neighborhood V
of zero in Rm into Ker (π) such that y = l (x) . This implies that

V 2 (x) = l̃ (x) = l
(
x + V 1 (x)

)
. (4.77)

In the other hand, it is known that V 2 (x) is a solution of (4.66) . This
reads[

DV 2 (x)Bx− Ã1V
2 (x)

]
= f

2 (
x + V 1 (x) , V 2 (x)

)
−DV 2 (x)F (x) .

So, by virtue of (4.77), the above equation can be written as
[
Dl̃ (x)Bx−

(
Ã1 l̃
)

(x)
]

= G (x) , (4.78)
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where G (x) = (I − π)X0f
(
Φ
(
x + V 1 (x)

)
, l̃ (x)

)
− Dl̃ (x)F (x). To

achieve the proof of the Lemma, we should prove that the kth parts l̃k (x)
and h̃k (x) respectively of l̃ (x) and h̃ (x) coincide for all k ≥ 2. This will
be done is a recursive way: In one hand, for k = 2, it is noted that l̃2 (x)
and h̃2 (x) are respectively solutions of

(
M2

2 h̃2

)
(x) = (I − π) X0f2 (x)

and
(
M2

2 l̃2

)
(x) = (I − π) X0f2 (x), and since the operator is nonsingu-

lar then it follows that l̃2 (x) = h̃2 (x) . In the other hand, Assuming that
l̃i (x) = h̃i (x) for 2 ≤ i ≤ k − 1 results in

H2
k (x) = Gk (x) ,

where Gk (x) is the homogeneous part of degree k of the function G (x)
defined above. Thus, combining (4.78) and (4.56) leads to l̃k (x) =
h̃k (x) . This ends the proof of the Theorem.
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1. Introduction
The key idea of the normal form (n.f.) technique is to transform a

nonlinear differential equation into an equation with a simpler analytic
expression, called a normal form, which has the same qualitative behav-
iour of the original equation. In the framework of ordinary differential
equations (ODEs), this idea is very old, going back to the late XIX
century with the works of Poincaré on Celestial Mechanics, and early
XX century with the works of Liapunov and Birkhoff. More recently
(1970’s), Bibikov and Br’juno gave significant contributions to the field.

Before developing a normal form theory for delay differential equa-
tions (DDEs), a brief explanation of the method for ODEs is given.

Consider an autonomous nonlinear ODE in R
n with an equilibrium

at zero,

ẋ(t) = Bx + f(x) (1.1)

where B is an n × n constant matrix, f(0) = 0, Df(0) = 0 and f ∈
Ck(k ≥ 2). The application of the method of n.f. is of interest mostly
in the case of a non-hyperbolic equilibrium x = 0. In fact, if x = 0
is a hyperbolic equilibrium, i.e., all the eigenvalues of B have nonzero
real parts, the theorem of Hartman-Grobman assures that, around the
origin, Eq. (1.1) is topologically equivalent to the linearization ẋ = Bx.

© 2006 Springer. 
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Write the Taylor formula for f ,

f(x) =
k∑

j=2

1
j!

fj(x) + o(|x|k),

where fj ∈ V n
j (Rn) is the j-th Fréchet derivative of f at zero. Here, we

use the notation V n
j (Y ) to denote the space of homogeneous polynomials

of degree j in n variables x = (x1, . . . , xn) ∈ R
n, with coefficients in Y ,

for Y a Banach space.
The method of n.f. consists of a recursive process of changes of

variables, such that, at each step j, 2 ≤ j ≤ k, all the nonrelevant terms
of order j are eliminated from the equation. At a step j, assume that
steps of orders 2, . . . , j − 1 have already been performed, leading to

ẋ = Bx +
1
2
g2(x) + · · ·+ 1

(j − 1)!
gj−1(x) +

1
j!

f̃j(x) + h.o.t,

where 1
j! f̃j(x) are the terms of order j obtained after the changes of

variables in previous steps, and h.o.t stands for higher order terms. A
change of variables of the form

x = x̄ +
1
j!

Uj(x̄), with Uj ∈ V n
j (Rn), (1.2)

is then applied to the above equation, transforming it into

˙̄x = Bx̄ +
1
2
g2(x̄) + · · ·+ 1

j!
gj(x̄) + h.o.t, x̄ ∈ R

n, (1.3)

with the new terms of order j given by

gj = f̃j − [B, Uj ],

where [B, Uj ] is the Lie bracket

[B, Uj ](x) = DUj(x)Bx−BUj(x).

The operators associated with these changes of variables,

Mj : V n
j (Rn) → V n

j (Rn), MjU = [B, U ], (1.4)

permit to write gj = f̃j−MjUj . Hence, one can choose Uj in such a way
that

gj ∈ Im (Mj)c,
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where Im (Mj)c is a complementary space (in general not uniquely de-
termined) of Im (Mj). Let Pj : V n

j (Rn) → Im (Mj) be the canonical
projection associated with a decomposition

V n
j (Rn) = Im (Mj)⊕ Im (Mj)c. (1.5)

In order to have

gj = ProjIm (Mj)c f̃j = (I − Pj)f̃j , (1.6)

Uj must be chosen so that MjUj = Pj f̃j , thus

Uj = (Mj)−1Pj f̃j , (1.7)

where (Mj)−1 is a right inverse of Mj , associated with a decomposition
V n

j (Rn) = Ker (Mj) ⊕ Ker (Mj)c. For gj , Uj defined by (1.6), (1.7),
Eq. (1.3) is called a normal form for Eq. (1.1), up to j order terms.
The terms 1

j!gj(x) ∈ Im (Mj)c that cannot be eliminated from (1.1) are
called resonant terms of order j.

Consider now an equation (1.1) in the form
{

ẋ = Bx + f1(x, y)
ẏ = Cy + f2(x, y), x ∈ R

p, y ∈ R
m,

(1.8)

where B is a p×p matrix, C is an m×m matrix, p+m = n, Reλ(B) =
0, Re λ(C) 
= 0, f1 : R

n → R
p, f2 : R

n → R
m are Ck functions (k ≥ 2)

such that f1(0, 0) = 0, f2(0, 0) = 0, Df1(0, 0) = 0, Df2(0, 0) = 0. The
centre manifold theorem tells us that there is a centre manifold W c =
{(x, y) : y = h(x), x ∈ V }, where V is a neighbourhood of 0 ∈ R

p,
tangent at zero to the centre space R

p for the linearization of (1.8), and
that the qualitative behaviour of the flow near zero is determined by its
behaviour on the centre manifold.

In order to apply the normal form procedure to the equation for the
flow on the centre manifold of (1.8), there are two possible approaches.
We can actually compute recursively the function h(x) = 1

2h2(x) + · · ·
giving the equation of W c (see e.g. [24]), and therefore write the equation
for the flow on such manifold:

ẋ = Bx + f1(x, h(x)). (1.9)

After this first step, the method of n.f. described above is applied to
compute a n.f. for (1.9). This approach is not very efficient, since it
requires to compute the centre manifold beforehand.
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Another procedure ([29, Chapter 12]) is based on the idea that,
at each step j, a change of variables is used to project the original
equation (1.8) on the centre manifold and, simultaneously, to eliminate
the non-resonant terms of order j from the equation giving the flow
on the centre manifold. This is achieved by considering a sequence of
change of variables

x = x̄ +
1
j!

U1
j (x̄), y = ȳ +

1
j!

U2
j (x̄), (1.10)

where U1
j ∈ V p

j (Rp), U2
j ∈ V p

j (Rm). Following the procedure described
above, where now the change of variables (1.2) is replaced by (1.10),
after steps j = 2, . . . , k Eq. (1.8) is transformed into an equation in the
form{

ẋ = Bx + g1
2(x, y) + · · ·+ 1

k!g
1
k(x, y) + h.o.t,

ẏ = Cy + g2
2(x, y) + · · ·+ 1

k!g
2
k(x, y) + h.o.t, , x ∈ R

p, y ∈ R
m,
(1.11)

where the new terms gj = (g1
j , g

2
j ) of orders j, j = 2, . . . , k, are given by

g1
j = f̃1

j −M1
j U1

j , g2
j = f̃2

j −M2
j U2

j ,

with the operators M1
j defined as before, M1

j U = [B, U ], and

M2
j : V p

j (Rm) → V p
j (Rm), (M2

j U)(x) = DU(x)Bx− CU(x). (1.12)

Remark 1.1. This latter procedure provides a general setting to be
naturally extended to infinite-dimensional spaces, such as the natural
phase space for a retarded functional differential equation (FDE) in R

n.
However, some difficulties arise in working in an infinite-dimensional
phase space. First of all, it is not clear how to decompose the linear part
of an FDE in R

n so that it can be written as (1.8), where x ∈ R
p ≡ P , for

P the centre space for its linearization at zero, and y in a complementary
space P c for P . Note that the linearization of (1.8) is given by the system

{
ẋ= Bx

ẏ= Cy, x ∈ R
p, y ∈ R

m.
(1.13)

Clearly, a complementary space P c for P can be obtained by using the
formal adjoint theory for linear DDEs in R

n (cf. [58]), although this
is not sufficient to decompose a linear DDE into a decoupled system of
linear DDEs similar to (1.13). A second difficulty comes from the fact
that the operator M2

j in (1.12) will be defined in an infinite-dimensional
space V p

j (P c). Hence a decomposition similar to (1.5) is not obvious.
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Remark 1.2. For the sake of exposition, in general formal Taylor series
will be considered. Even if f is analytic, the function g = 1

2g2+ 1
3!g3+· · ·

in the n.f. is not necessarily analytic. However, in applications this is not
a problem, since we are mainly interested in applying n.f. to the study of
singularities with possible bifurcations that are generically determined
up to a finite jet.

2. Normal Forms for FDEs in Finite
Dimensional Spaces

In the next sections, we refer the reader to [58] for notation and
general results on the theory of retarded FDEs in finite dimensional
spaces.

Consider autonomous semilinear FDEs of retarded type in R
n (or

C
n) and with an equilibrium point at the origin,

u̇(t) = L(ut) + F (ut) (t ≥ 0), (2.1)

where r > 0, C := C([−r, 0]; Rn) is the Banach space of continuous
mappings from [−r, 0] to R

n equipped with the sup norm, ut ∈ C is
defined by ut(θ) = u(t+θ) for θ ∈ [−r, 0], L : C → R

n is a bounded linear
operator, and F is a Ck function (k ≥ 2), with F (0) = 0, DF (0) = 0.

Consider also the linearized equation at zero,

u̇(t) = L(ut), (2.2)

and its characteristic equation

det∆(λ) = 0, ∆(λ) := L(eλ·I)− λI,

where I is the n×n identity matrix. Let A be the infinitesimal generator
for the C0-semigroup defined by the flow of (2.2),

A : D(A) ⊂ C → C, Aϕ = ϕ̇,

where D(A) = {ϕ ∈ C : ϕ̇ ∈ C, ϕ̇(0) = L(ϕ)}. We recall that A has only
the point spectrum, and

σ(A) = σP (A) = {λ ∈ C : det∆(λ) = 0}.

2.1 Preliminaries

For R
n∗ the n-dimensional vector space of row vectors, define C∗ =

C([0, r]; Rn∗), and the formal duality (·, ·) in C∗ × C,

(ψ, ϕ) = ψ(0)ϕ(0)−
∫ 0

−r

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ, ψ ∈ C∗, ϕ ∈ C,
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where η : [−r, 0]→ R
n×R

n is a function of bounded variation such that

L(ϕ) =
∫ 0

−r
dη(θ)ϕ(θ).

The formal adjoint operator A∗ of A is defined as the infinitesimal gen-
erator for the solution operator of the adjoint equation in C∗,

ẏ(t) = −
∫ 0

−r
y(t− θ)dη(θ), t ≤ 0.

Fix a nonempty finite set Λ = {λ1, . . . , λs} ⊂ σ(A). Using the
formal adjoint theory of Hale (see [58, Chapter 7]), the phase space C
is decomposed by Λ as

C = P ⊕Q,

where P is the generalized eigenspace associated with the eigenvalues
in Λ, Q = {ϕ ∈ C : (ψ, ϕ) = 0 for all ψ ∈ P ∗}, and the dual space
P ∗ is the generalized eigenspace for A∗ associated with the eigenvalues
in Λ. For dual bases Φ and Ψ of P and P ∗ respectively, such that
(Ψ, Φ) = Ip, p = dimP , there exists a p×p real matrix B with σ(B) = Λ,
that satisfies simultaneously Φ̇ = ΦB and −Ψ̇ = BΨ.

2.2 The enlarged phase space

To develop a normal form theory for FDEs, first it is necessary to
enlarge the phase space C in such a way that (2.1) is written as an
abstract ODE. An adequate phase space to accomplish this is the space
BC (see [30, 44, 45]) defined by

BC := {ψ : [−r, 0]→ R
n | ψ is continuous on [−r, 0),∃ lim

θ→0−
ψ(θ) ∈ R

n},

with the sup norm. The elements of BC have the form ψ = ϕ+X0α, ϕ ∈
C,α ∈ R

n, where

X0(θ) =
{

0, −r ≤ θ < 0
I, θ = 0, (I is the n× n identity matrix),

so that BC is identified with C ×R
n with the norm |ϕ + X0α| = |ϕ|C +

|α|Rn .
Let v(t) = ut ∈ C. In BC, Eq. (2.1) takes the form

{
dv
dt (0)= L(v) + F (v)
dv
dt (θ)= v̇(θ), for θ ∈ [−r, 0),

232



Normal Forms And Bifurcations For DDE

with the notation dv
dθ (θ) = v̇(θ), θ ∈ [−r, 0]. Define an extension of the

infinitesimal generator A, denoted by Ã,

Ã : C1 ⊂ BC → BC, Ãϕ = ϕ̇ + X0[L(ϕ)− ϕ̇(0)],

where D(Ã) = C1 := {ϕ ∈ C | ϕ̇ ∈ C}. We then write (2.1) as

dv

dt
= Ãv + X0F (v), (2.3)

which is the abstract ODE in BC associated with (2.1). In a natural
way, we also extend the duality (·, ·)C∗×C to a bilinear form on C∗×BC
by defining

(ψ, X0α) = ψ(0)α, ψ ∈ C∗, α ∈ R
n.

The canonical projection of C onto P associated with the decomposition
C = P ⊕ Q, ϕ �→ ϕP = Φ(Ψ, ϕ), is therefore extended to a canonical
projection

π : BC → P, π(ϕ+X0α) = Φ
[
(Ψ, ϕ)+Ψ(0)α

]
, ϕ ∈ C,α ∈ R

n. (2.4)

By using the definition of π and Ã, and integration by parts, it is easy
to prove the following lemma.
Lemma 2.1. π is a continuous projection on BC that commutes with
Ã on D(Ã) = C1.

Since π is a continuous projection, the decomposition C = P ⊕ Q
yields a decomposition of BC by Λ as the topological direct sum

BC = P ⊕Ker π. (2.5)

Writing v ∈ C1 according to the above decomposition, v = Φx + y,
with x ∈ R

p (p = dim P ), y ∈ C1 ∩Ker π = C1 ∩ Q := Q1, and since
πÃ = Ãπ in C1, (2.3) becomes

Φ
dx

dt
+

dy

dt
= ÃΦx + Ãy + πX0F (Φx + y) + (I − π)X0F (Φx + y)

= Φ̇x + Ãy + ΦΨ(0)F (Φx + y) + (I − π)X0F (Φx + y).

Therefore, Eq. (2.3) is decomposed as a system of abstract ODEs in
R

p ×Ker π ≡ BC, as
{

ẋ = Bx + Ψ(0)F (Φx + y)

ẏ = AQ1y + (I − π)X0F (Φx + y), x ∈ R
p, y ∈ Q1,

(2.6)

where AQ1 is the restriction of Ã to Q1 interpreted as an operator acting
in the Banach space Ker π.
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Note that the linear part of system (2.6) looks like (1.13), i.e., the
finite dimensional variable x and the infinite dimensional variable y are
decoupled in the linear part of the equation. We also point out that
the enlarged phase space BC was used by Chow and Mallet-Paret [30]
to derive system (2.6). However, since the decomposition (2.5) was not
explicitly given in [30], the definition of the linear operator AQ1 in the
second equation of (2.6) was not adequate. In fact, the spectrum of
AQ1 plays an important role in the construction of normal forms, so it
is crucial to restrict Ã to a linear operator in the Banach space Ker π.
In this setting, we can prove [44] that
Lemma 2.2. σ(AQ1) = σP (AQ1) = σ(A) \ Λ.

2.3 Normal form construction

In applications, we are particularly interested in obtaining n.f. for
equations giving the flow on centre manifolds. Therefore, and for the
sake of exposition, we turn our attention to the case where Λ is the set of
eigenvalues of A on the imaginary axis, Λ = {λ ∈ σ(A) : Reλ = 0} 
= ∅.
The centre manifold theorem ([58, Chapter 10] and references therein)
assures that there is a p-dimensional invariant manifold for (2.1),

W c = {ϕ ∈ C : ϕ = Φx + h(x), for x ∈ V }, (2.7)

where V is a neighbourhood of 0 ∈ R
p, which is tangent to the centre

space P for (2.2) at zero. From Eq. (2.6), we write the ODE for the
flow on W c as

ẋ = Bx + Ψ(0)F (Φx + h(x)), x ∈ V. (2.8)

The goal now is to develop an algorithm of n.f. which affects si-
multaneously the linearization of the centre manifold and reduces the
ODE (2.8) to a n.f., up to a finite order k. In fact, as we will mention,
we can consider any nonempty finite set Λ ⊂ σ(A) for which there is
an invariant manifold tangent to P at zero, where P is the generalized
eigenspace of (2.2) associated with the eigenvalues in Λ. In this case, the
method described here is applied to compute a n.f. for the ODE giving
the flow on such manifold.

Consider the formal Taylor expansion of F ,

F (v) =
∑
j≥2

1
j!

Fj(v), v ∈ C,
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where Fj is jth Fréchet derivative of F . Eq. (2.6) becomes
{

ẋ = Bx +
∑

j≥2
1
j!f

1
j (x, y)

ẏ = AQ1y +
∑

j≥2
1
j!f

2
j (x, y), x ∈ R

p, y ∈ Q1,
(2.9)

with fj := (f1
j , f2

j ), j ≥ 2, defined by

f1
j (x, y) = Ψ(0)Fj(Φx + y), f2

j (x, y) = (I − π)X0Fj(Φx + y). (2.10)

As for autonomous ODEs in R
n, n.f. are obtained by a recursive

process of changes of variables. At a step j, the terms of order j ≥ 2 are
computed from the terms of the same order and from the terms of lower
orders already computed in previous steps. Assume that steps of orders
2, . . . , j − 1 have already been performed, leading to

{
ẋ = Bx +

∑j−1

=2

1

!g

1

 (x, y) + 1

j! f̃
1
j (x, y) + h.o.t.

˙̄y = AQ1y +
∑j−1


=2
1

!g

2

 (x, y) + 1

j! f̃
2
j (x, y) + h.o.t.,

where we denote by f̃j = (f̃1
j , f̃2

j ) the terms of order j in (x, y) obtained
after the previous transformations of variables. At step j, effect a change
of variables that has the form

(x, y) = (x̄, ȳ) +
1
j!

(U1
j (x̄), U2

j (x̄)), (2.11j)

where x, x̄ ∈ R
p, y, ȳ ∈ Q1 and U1

j : R
p → R

p, U2
j : R

p → Q1 are ho-
mogeneous polynomials of degree j in x̄. That is, U1

j ∈ V p
j (Rp), U2

j ∈
V p

j (Q1), where we adopt the following notation (cf. Section 1): for
j, p ∈ N and Y a normed space, V p

j (Y ) denotes the space of homo-
geneous polynomials of degree j in p variables, x = (x1, . . . , xp), with
coefficients in Y , V p

j (Y ) = {
∑

|q|=j cqx
q : q ∈ N

p
0, cq ∈ Y }, with the norm

|
∑

|q|=j cqx
q| =

∑
|q|=j |cq|Y .

This recursive process transforms (2.9) into the normal form
{

˙̄x = Bx̄ +
∑

j≥2
1
j!g

1
j (x̄, ȳ)

˙̄y = AQ1 ȳ +
∑

j≥2
1
j!g

2
j (x̄, ȳ),

(2.12)

where gj := (g1
j , g

2
j ) are the new terms of order j, given by

g1
j (x, y) = f̃1

j (x, y)− [DU1
j (x)Bx−BU1

j (x)]

g2
j (x, y) = f̃2

j (x, y)− [DU2
j (x)Bx−AQ1(U2

j (x))], j ≥ 2.
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Define the operators Mj = (M1
j , M2

j ), j ≥ 2, by

M1
j : V p

j (Rp) → V p
j (Rp), M2

j : V p
j (Q1) ⊂ V p

j (Ker π) → V p
j (Ker π)

(M1
j h1)(x) = Dh1(x)Bx − Bh1(x), (M2

j h2)(x) = Dxh2(x)Bx − AQ1(h2(x)).

(2.13)

With Uj = (U1
j , U2

j ), it is clear that

gj(x, y) = f̃j(x, y) − MjUj(x),

so for y = 0 one can define

gj(x, o) = (I − Pj)f̃j(x, 0), (2.14)

where I is the identity operator on V p
j (Rp) × V p

j (Ker π) and Pj =
(P 1

j , P 2
j ) is the canonical projection of V p

j (Rp)×V p
j (Ker π) onto ImMj .

The operators M1
j , defined by the Lie brackets, are the operators

that appear in Section 1 for computing n.f. for finite-dimensional ODEs.
The infinite-dimensional part in the transformation formulas is handled
through the operators M2

j . Clearly, the ranges of M1
j , M2

j contain ex-
actly the terms that can be removed from the equation, called non-
resonant terms. The remaining terms (resonant terms) are in general
not determined in a unique way, depending on the choices of comple-
mentary spaces Im (Mj)c for Im (Mj). We are particularly interested in
the situation of M2

j surjective and one-to-one, j ≥ 2.
Theorem 2.3. Assume that the operators M2

j , 2 ≤ j ≤ k, are one-
to-one and onto. Let (x, y) = Θ(x̄, ȳ) = (x̄, ȳ) + O(|x̄|k) be the change
of variables obtained after the sequence of transformations (2.11j), 2 ≤
j ≤ k. Then, the local centre manifold W c for (2.1) defined in (2.7) is
transformed into

W
c = {ϕ ∈ C : ϕ = Φx̄ + h(x̄), for x̄ ∈ V },

where V is a neighbourhood of 0 ∈ R
p, with

h(x̄) = o(|x̄|k).

Consequently the flow on W
c is given by (after dropping the bars)

ẋ = Bx +
k∑

j=2

g1
j (x, 0) + o(|x|k), x ∈ V , (2.15)

and the change (x, y) = Θ(x̄, ȳ) can be chosen so that (2.15) is in n.f.
(in the usual sense of n.f. for ODEs).
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Proof. Let Eq. (2.6) be transformed into
{

˙̄x = Bx̄ +
∑k

j=2
1
j!g

1
j (x̄, ȳ) + h.o.t.

˙̄y = AQ1 ȳ +
∑k

j=2
1
j!g

2
j (x̄, ȳ) + h.o.t.,

(2.16)

through the change (x, y) = Θ(x̄, ȳ). Write h(x) = 1
2h2(x) + o(|x|2). For

y = h(x), from (2.16) we get

Dh(x)ẋ = AQ1(h(x)) +
1
2
g2
2(x, h(x)) + O(|x|4).

Using again (2.16), we have

1
2
Dh2(x)[Bx + O(|x|2)] + O(|x|3) =

1
2
AQ1(h2(x)) +

1
2
g2
2(x, 0) + O(|x|3).

From (2.14), we conclude that g2
2(x, 0) = 0, because M2

2 is onto. Hence

Dh2(x)Bx−AQ1(h2(x)) = 0,

that is, M2
2 h2 = 0. Since M2

2 is one-to-one, this implies that h2 = 0, and
thus y = o(|x|2). On the other hand, since the operators M1

j coincide
with the operators in the algorithm for computing n.f. for ODEs in R

p,
equation

˙̄x = Bx̄ +
1
2
g1
2(x̄, 0) + h.o.t

is a n.f. for (2.8) up to second order terms. The rest of the proof follows
by induction.

Since A is the infinitesimal generator of a C0-semigroup, it is a
closed operator. This implies that the extension Ã is also a closed oper-
ator. Note that the restriction AQ1 = Ã|Q1 is an operator acting in the
Banach space Ker π, therefore AQ1 is also closed. Thus, it is straightfor-
ward to prove that M2

j , j ≥ 2, are closed operators in the Banach space
V p

j (Ker π), so M2
j are one-to-one and onto if and only if 0 
∈ σ(M2

j ).
The spectra of the operators M2

j are given in the theorem below.
Theorem 2.4. With the above notations,

(i) σP (M2
j ) = {(q, λ̄)− µ : µ ∈ σ(A1

Q), q ∈ Dj};
(ii) σ(M2

j ) = σP (M2
j ),

where: Dj = {q ∈ N
p
0 : |q| = j}; |q| = q1 + · · ·+ qp for q = (q1, . . . , qp);

λ̄ = (λ1, . . . , λp) where λ1, . . . , λp are the eigenvalues in Λ, counting
multiplicities; (q, λ̄) = q1λ1 + · · ·+ qpλp.

Proof. The complete proof of this theorem can be found in [44]. (See
also [45] for the situation of DDEs with parameters.) Here we give only
a sketch of the proof.
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By adapting the algebraic arguments for finite ODEs in [29, Chap-
ter 12], one can prove (i). To prove (ii), it is sufficient to show that if
α 
∈ σP (M2

j ), then the operator αI −M2
j is surjective. In order to prove

this, consider the set Dj with the following order: for q = (q1, . . . , qp)
and � = (�1, . . . , �p) in Dj , we say that q < � if the first non-zero differ-
ence q1− �1, . . . , qp − �p is positive. In this order, (j, 0, . . . , 0) is the first
element in Dj , and (0, . . . , 0, j) is the last element.

Let α 
∈ σP (M2
j ). From (i), we deduce that µq := (q, λ̄)−α ∈ ρ(AQ1)

for all q ∈ Dj . Fix g =
∑

q∈Dj
gqx

q ∈ V p
j (Ker π). By induction in Dj

ordered as above, for any q ∈ Dj it is possible to construct

h(q) =
∑

∈Dj

h
x



such that
[(αI −M2

j )h(q)]
 = g
 for � ≤ q.

For q the last element of Dj , we get (αI −M2
j )h(q) = g, proving that

αI −M2
j is surjective.

Corollary 2.5. The operators M2
j defined in (2.13) are one-to-one and

onto if and only if

(q, λ̄) 
= µ, for all µ ∈ σ(A) \ Λ and q ∈ Dj . (2.17j)

Proof. From Theorem 2.4 and Lemma 2.2 it follows immediately that
0 
∈ σP (M2

j ) = σ(M2
j ) if and only if (2.17j) holds.

Conditions (2.17j) are called non-resonance conditions of order j,
relative to the set Λ.
Theorem 2.6. Let Λ = {λ ∈ σ(A) : Reλ = 0} 
= ∅, and BC be
decomposed by Λ, BC ≡ R

p×Ker π. Then, there is a formal change of
variables of the form

(x, y) = (x̄, ȳ) + O(|x̄|2),

such that:
(i) Eq. (2.9) is transformed into Eq. (2.12) where g2

j (x̄, 0) = 0, j ≥ 2;
(ii) a local centre manifold for this system at zero satisfies ȳ = 0;
(iii) the flow on it is given by the ODE in R

p

˙̄x = Bx̄ +
∑
j≥2

1
j!

g1
j (x̄, 0), (2.18)

which is in normal form (in the usual sense of n.f. for ODEs).
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Proof. For the choice Λ = {λ ∈ σ(A) : Reλ = 0}, clearly the non-
resonance conditions (2.17j) hold for any j ≥ 2. Therefore, Im (M2

j ) =
V p

j (Ker π) and Ker (M2
j ) = {0}, j ≥ 2. From (2.14), we can choose U2

j

such that g2
j (x, 0) = f̃2

j (x, 0) − (M2
j U2

j )(x) = 0. Theorem 2.3 implies
that the centre manifold is given by equation ȳ = 0 (up to a certain
order k, if F is Ck-smooth), and that the flow on this manifold is given
by (2.18), which is an ODE in n.f..

For other choices of finite nonempty sets Λ ⊂ σ(A), this n.f. proce-
dure is justified if the non-resonance conditions hold.
Theorem 2.7. Let Λ ⊂ σ(A) be a nonempty finite set. If the nonres-
onance conditions (2.17j) hold for j ≥ 2, the statements in the above
theorem are valid for the invariant manifold for (2.1) associated with Λ,
provided that this manifold exists.

Definition 2.8. If the nonresonance conditions (2.17j), j ≥ 2, are
satisfied, Eq. (2.12) is said to be a normal form for Eq. (2.9) (or Eq.
(2.1)) relative to Λ if gj = (g1

j , g
2
j ) are defined by

gj(x, y) = f̃j(x, y)−MjUj(x),

with Uj = (U1
j , U2

j ),

U2
j (x) = (M2

j )−1f̃2
j (x, 0)

and U1
j (j ≥ 2) are chosen according to the method of n. f. for finite

dimensional ODEs: i.e.,

g1
j (x, 0) = (I − P 1

j )f̃1
j (x, 0), U1

j (x) = (M1
j )−1P 1

j f̃1
j (x, 0), j ≥ 2,

where P 1
j : V p

j (Rp) → Im(M1
j ) is the canonical projection associated

with a decomposition V p
j (Rp) = Im(M1

j ) ⊕ Im(M1
j )c, and (M1

j )−1 :
Im(M1

j ) → Ker (M1
j )c is the right inverse of M1

j for a decomposition
V p

j (Rp) = Ker (M1
j )⊕Ker (M1

j )c.

Remark 2.9. Note that P 1
j and (M1

j )−1 depend on the choices of com-
plementary spaces for Im (M1

j ) and Ker (M1
j ) in V p

j (Rp), respectively.
On the other hand, if F ∈ Ck for some k ≥ 2, and the nonresonance
conditions of order j, 2 ≤ j ≤ k, hold, one can compute Eq. (2.16), a
n.f. relative to Λ up to k-order terms.

Remark 2.10. The terms g1
j (x, 0) in the n.f. are recursively computed

in terms of the coefficients of the original FDE, according to the following
scheme: in the first step (j = 2), we have f̃1

2 = f1
2 , from which we
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compute g1
2(x, 0) = (I−P 1

2 )f1
2 (x, 0); in the second step (j = 3), we must

compute U1
2 (x) = (M1

2 )−1P 1
2 f1

2 (x, 0), U2
2 (x) = (M2

2 )−1f2
2 (x, 0), and

f̃1
3 (x, 0) = f1

3 (x, 0) +
3

2
[(Dxf1

2 )(x, 0)U1
2 (x) + (Dyf1

2 )(x, 0)U2
2 (x)− (DxU1

2 )(x)g1
2(x, 0)],

(2.19)

from which we finally obtain g1
3(x, 0) = (I − P 1

3 )f̃1
3 (x, 0); etc.

2.4 Equations with parameters

For studying bifurcation problems, we need to consider situations
with parameters:

u̇(t) = L(α)(ut) + F (ut, α), (2.20)

where α ∈ V, V is a neighbourhood of zero in R
m, and L : V →

L(C; Rn), F : C × V → R
n are respectively Ck−1 and Ck functions,

k ≥ 2, F (0, α) = 0, D1F (0, α) = 0, for all α ∈ V . As usual, L(C; Rn)
denotes the space of bounded linear operators from C to R, with the
operator norm. Introducing the parameter α as a variable by adding
α̇ = 0, we write (2.20) as

u̇(t) = L0(ut) + (L(α)− L0)(ut) + F (ut, α)
(α̇(t) = 0),

(2.21)

where L0 := L(0). Clearly the phase space for (2.21) is C([−r, 0]; Rn+m).
Its linearization around the origin is(

u̇(t)
α̇(t)

)
=
(

L0(ut)
0

)
.

Note that the term (L(α)− L0)(ut) is no longer of the first order, since
α is taken as a variable.

Consider a finite nonempty set Λ ⊂ σ(A) such that 0 ∈ Λ if 0 ∈
σ(A), and let C = P ⊕ Q be decomposed by Λ. Writing the Taylor
expansions

L(α)(u) = L0u + L1(α)u +
1
2
L2(α)u + · · ·

F (u, α) =
1
2
F2(u, α) +

1
3!

F3(u, α) + · · · , u ∈ C,α ∈ V,

the term of order j in the variables (u, α) for (2.21) is given by

1
(j − 1)!

Lj−1(α)u +
1
j!

Fj(u, α).
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Therefore, the terms (2.10) for the equation (2.6) in BC read now as

f1
j (x, y, α) = Ψ(0)[jLj−1(α)(Φx + y) + Fj(Φx + y, α)],

f2
j (x, y, α) = (I − π)X0[jLj−1(α)(Φx + y) + Fj(Φx + y, α)].

(2.22)

The above procedure can now be applied to compute n.f. for (2.11). See
[45] for details.

2.5 More about normal forms for FDEs in R
n

In [99], the n.f. theory presented here was generalized to construct
n.f. for neutral FDEs of the form

d

dt

[
D(ut)−G(ut)

]
= L(ut) + F (ut), (2.23)

where ut ∈ C, D, L are bounded linear operators from C to R
n, with

Dφ = φ(0) −
∫ 0
−r d[µ(θ)]φ(θ) and µ is non-atomic at zero, µ(0) = 0,

and G, F are Ck functions , k ≥ 2. Following the ideas above, in [99]
the infinitesimal generator general A for the semigroup defined by the
solutions of the linear equation

d

dt
D(ut) = L(ut)

was naturally extended to

Ã : C1 ⊂ BC → BC, Ãϕ = ϕ̇ + X0[L(ϕ)−Dϕ̇], (2.24)

where D(Ã) = C1. Fix e.g. Λ as the set of eigenvalues of A on the
imaginary axis, and consider C = P ⊕Q and BC = P ⊕Ker π decom-
posed by Λ. Since the projection π in (2.4) still commutes in C1 with
the operator Ã given by (2.24), in BC (2.23) is written as the abstract
ODE

v̇ = Ãv + X0[F (v) + G′(v)v̇],

and decomposition (2.5) yields

{
ẋ = Bx + Ψ(0)[F (Φx + y) + G′(Φx + y)(Φẋ + ẏ)]

ẏ = AQ1y + (I − π)X0[F (Φx + y) + G′(Φx + y)(Φẋ + ẏ)], x ∈ R
p, y ∈ Q1,

where AQ1 is the restriction of Ã to Q1 interpreted as an operator acting
in the Banach space Ker π. Define again the operators M1

j , M2
j by the

formal expression (2.13), where now Ã is as in (2.24). Lemmas 2.1 and
2.2 are true in this framework. The method for computing n.f. on centre
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manifolds (or other invariant manifolds) for neutral equations (2.23) is
then developed in [99] along the lines of the method for FDEs (2.1).

It would also be very important to generalize the above method to
construct n.f. around periodic orbits for autonomous retarded FDEs on
C = C([−r, 0]; Rn)

u̇(t) = f(ut), (2.25)

with f ∈ Ck(k ≥ 2). Suppose that p(t) is an ω-periodic solution of
(2.25). Through the change u(t) = p(t) + x(t), (2.25) becomes

ẋ(t) = L(t)xt + F (t, xt), (2.26)

where L(t) = Df(pt) and F (t, ϕ) = f(pt + ϕ) − f(pt) − Df(pt) are
ω-periodic functions in t.

The major difficulty when trying to generalize the theory of n.f. to
an FDE of the form (2.26) is that its linear part is non-autonomous. In
[35], the theory was developed for the particular case of equations (2.26)
with autonomous linear part,

ẋ(t) = Lxt + F (t, xt). (2.27)

Clearly, condition L(t) ≡ L is very restrictive. However, in this case, the
work in [35] provides a strong result.
Theorem 2.11. With the above notations, let Λ = {λ ∈ σ(A) : Reλ =
0} and assume Λ is nonempty. If the nonresonance conditions

(q, λ̄) + ik 
= µ, for all µ ∈ σ(A) \ Λ, k ∈ Z, q ∈ Dj , j ≥ 2

are satisfied, the normal form on the centre manifold for (2.27) coincides
with the normal form for the averaged equation

ẋ(t) = Lxt + F0(xt),

where

F0(ϕ) =
1
ω

∫ ω

0
F (t, ϕ)dt, ϕ ∈ C.

To treat the general periodic case (2.26), it may be useful to use
the work of Hale and Weedermann [59], where a suitable system of co-
ordinates was established, and used to deduce a natural decomposition
of C. If the new coordinates allow us to decompose also the enlarged
phase space BC, then (2.26) can be written as an abstract ODE in BC.
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3. Normal forms and Bifurcation Problems
In this section we illustrate the application of the method of n.f. to

the study of Bogdanov-Takens and Hopf bifurcations for general scalar
FDEs. In the framework of FDEs in R

n, n ≥ 2, with one or two discrete
delays, for other examples of applications of n.f. to bifurcation problems
see e.g. [38, 40, 41, 47, 57, 102, 103].

3.1 The Bogdanov-Takens bifurcation
We start by studying the Bogdanov-Takens singularity for a general

scalar FDE. In C = C([−r, 0]; R), consider

u̇(t) = L(α)ut + F (ut, α), (3.1)

where α = (α1, α2) ∈ V ⊂ R
2, V a neighbourhood of zero, L : V →

L(C; R) is C1, F : C × V → R is C2, F (0, α) = 0, D1F (0, α) = 0 for
α ∈ V .

Let L(0) = L0. For the linearization at u = 0, α = 0, we assume:

(H1) λ = 0 is a double characteristic value of u̇(t) = L0ut:

L0(1) = 0, L0(θ) = 1, L0(θ2) 
= 0;

(H2) all other characteristic values of u̇(t) = L0ut have non-zero real
parts

Above and throughout this section, we often abuse the notation and
write L0(ϕ(θ)) for L0(ϕ), ϕ ∈ C.

With the notations in Section 2, fix Λ = {0}, and let C = P ⊕ Q,
BC = P ⊕Ker π be decomposed by Λ. Choose bases Φ and Ψ for the
the centre space P of u̇(t) = L0ut, and for its dual P ∗ :

P = span Φ, Φ(θ) = (1, θ), θ ∈ [−r, 0],

P ∗ = span Ψ, Ψ(s) =
(

ψ1(0)− sψ2(0)
ψ2(0)

)
, s ∈ [0, r],

with (Ψ, Φ) = I if

ψ1(0) = L0(θ2/2)−2L0(θ3/3!), ψ2(0) = −L0(θ2/2)−1. (3.2)

Also, Φ̇ = ΦB,−Ψ̇ = BΨ for

B =
(

0 1
0 0

)
.
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Thus, for α = 0 the 2-dimensional ODE on the centre manifold has a
Bogdanov-Takens singularity. Consequently its dynamics around u = 0
are generically determined by its quadratic terms [24, 29].

Consider the Taylor expansions

L(α) = L0 + L1(α) + O(|α|2),

F (u, α) =
1
2
F2(u, α) + O(|u|3 + |α||u|2).

From Theorem 2.6 (see also Remark 2.9), we deduce that the n.f. up to
quadratic terms on the centre manifold of the origin near α = 0 is given
by

ẋ = Bx +
1
2
g1
2(x, 0, α) + h.o.t.,

where x = (x1, x2) ∈ R
2, and (conf. (2.22))

g1
2(x, 0, α) = ProjIm (M1

2 )cf1
2 (x, 0, α),

f1
2 (x, 0, α) = Ψ(0)[2L1(α)(Φx) + F2(Φx, α)].

From the definition of M1
2 in (2.13), we have

M1
2

(
p1

p2

)
=

(
∂p1

∂x1
x2 − p2

∂p2

∂x1
x2

)
,

(
p1

p2

)
∈ V 4

2 (R2).

Decomposing V 4
2 (R2) = Im (M1

2 ) ⊕ Im (M1
2 )c, a possible choice for

Im (M1
2 )c is

S := Im (M1
2 )c = span

{(
0

x2
1

)
,

(
0

x1x2

)
,

(
0

x1α1

)
,

(
0

x1α2

)
,

(
0

x2α1

)
,

(
0

x2α2

)
,

(
0

α2
1

)
,

(
0

α1α2

)
,

(
0

α2
2

)}
.

Note that

1
2
f1
2 (x, 0, α) =

(
ψ1(0)
ψ2(0)

)
{L1(α)(ϕ1x1 + ϕ2x2) +

1
2
F2(ϕ1x1 + ϕ2x2, 0)}.

Write

F2(Φx, α) = F2(Φx, 0) = A(2,0)x
2
1 + A(1,1)x1x2 + A(0,2)x

2
2.

On the other hand, from the definition of M1
2 and the choice of S, we

deduce that the projection on S of the elements of the canonical basis
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for V 4
2 (R2),

(
x2

1

0

)
,

(
x1x2

0

)
,

(
x2

2

0

)
,

(
x1αi

0

)
,

(
x2αi

0

)
, (i = 1, 2)

(
0
x2

1

)
,

(
0

x1x2

)
,

(
0
x2

2

)
,

(
0

x1αi

)
,

(
0

x2αi

)
, (i = 1, 2)

are, respectively,
(

0
2x1x2

)
,

(
0
0

)
,

(
0
0

)
,

(
0

x2αi

)
,

(
0
0

)
, (i = 1, 2)

(
0
x2

1

)
,

(
0

x1x2

)
,

(
0
0

)
,

(
0

x1αi

)
,

(
0

x2αi

)
, (i = 1, 2).

Hence

1
2
g1
2(x, 0, α) =

(
0

λ1x1 + λ2x2

)
+
(

0
B1x

2
1 + B2x1x2

)
,

with
B1 =

1
2
ψ2(0)A(2,0)

B2 = ψ1(0)A(2,0) +
1
2
ψ2(0)A(1,1)

(3.3)

and
λ1 =ψ2(0)L1(α)(1)
λ2 =ψ1(0)L1(α)(1) + ψ2(0)L1(α)(θ).

(3.4)

We remark that the bifurcation parameters λ1, λ2 and the coefficients
B1, B2 are explicitly computed in terms of the coefficients in the original
equation (3.1). Also, the new bifurcating parameters λ1, λ2 are linearly
independent. We summarize the above computations in the following
result:
Theorem 3.1. For α small, the flow on the centre manifold for (3.1) is
given by the n. f. (up to quadratic terms)

{
ẋ1= x2 + h.o.t

ẋ2= λ1x1 + λ2x2 + B1x
2
1 + B2x1x2 + h.o.t,

(3.5)

where the coefficients B1, B2 and the new bifurcating parameters λ1, λ2

are as in (3.3) and (3.4). Furthermore, if B1B2 
= 0, (3.5) exhibits a
generic Bogdanov-Takens bifurcation from u = 0, α = 0.

The bifurcation diagram for the flow on the centre manifold depends
on the signs of B1, B2. For instance, let B1 < 0 and B2 > 0. Then in
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the (λ1, λ2)-bifurcation diagram, the Hopf bifurcation curve H and the
homoclinic bifurcation curve HL lie in the region λ1 > 0, λ2 < 0, with H
to the left of HL, and both the homoclinic loop and the periodic orbit
are asymptotically stable. (See e.g. [24, 29]).

Example 3.2. Consider the scalar DDE

u̇(t) = a1u(t)− a2u(t− 1) + au2(t) + bu(t)u(t− 1) + cu2(t− 1), (3.6)

where a1, a2, a, b, c ∈ R. The characteristic equation for its linearization
at zero, u̇(t) = a1u(t)− a2u(t− 1), is given by

∆(λ) := λ− a1 + a2e
−λ = 0.

One can check that λ = 0 is a double characteristic value, i.e., ∆(0) =
0, ∆′(0) = 0 and ∆′′(0) 
= 0, if and only if a1 = a2 = 1.

Rescaling the parameters by setting α1 = a1− 1, α2 = a2− 1, α =
(α1, α2) ∈ R

2, (3.6) becomes

u̇(t) = u(t)−u(t−1)+α1u(t)−α2u(t−1)+au2(t)+bu(t)u(t−1)+cu2(t−1),

so it has the form (2.21), with the linear terms in (ut, α) ∈ C × R
2

given by L0(ut), and non-linear terms L1(α)(ut)+F (ut), where L0(ϕ) =
ϕ(0) − ϕ(−1), L1(α)(ϕ) = α1ϕ(0) − α2ϕ(−1) and F (ϕ) = aϕ2(0) +
bϕ(0)ϕ(−1) + cϕ(−1)2, for ϕ ∈ C = C([−1, 0]; R).

Fix Λ = {0}, and consider dual basis Φ, Ψ as above. We get ψ1(0) =
2/3, ψ2(0) = 2 from (3.2), and F2(Φx, 0)/2 = (a+b+c)x2

1−(b+2c)x1x2+
cx2

2. Applying formulas (3.3)-(3.4), we deduce that the ODE on the
centre manifold of the origin near α = 0 is given in n.f. by (3.5) with

B1 = 2(a + b + c), B2 =
2
3
(2a− b− 4c)

λ1 = 2(α1 − α2), λ2 =
2
3
(α1 + 2α2).

3.2 Hopf bifurcation

We study the generic Hopf bifurcation for the general scalar case.
In the phase space C = C([−r, 0]; R), consider

u̇(t) = L(α)ut + F (ut, α), (3.7)

where α ∈ V , V a neighbourhood of zero in R, L : V → L(C; R) is C2,
and F : C × V → R is C3, F (0, α) = 0, D1F (0, α) = 0 for α ∈ V .
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For u̇(t) = L(α)(ut), assume that:

(H1) there is a pair of simple characteristic roots γ(α)±iω(α) for u̇(t) =
L(α)ut crossing transversely the imaginary axis at α = 0:

γ(0) = 0, ω := ω(0) > 0, γ′(0) 
= 0 (Hopf condition);

(H2) for α = 0, there are no other characteristic roots with zero real
parts.

With the notations above, and using complex coordinates, C is
decomposed by Λ = {iω,−iω} as C = P ⊕Q, where the dual bases Φ, Ψ
for P, P ∗ can be chosen as

P = span Φ, Φ(θ) = (ϕ1(θ), ϕ2(θ)) = (eiωθ, e−iωθ), −r ≤ θ ≤ 0

P ∗ = span Ψ, Ψ(s) =
(

ψ1(s)
ψ2(s)

)
=
(

ψ1(0)e−iωs

ψ2(0)eiωs

)
, 0 ≤ s ≤ r,

with (Ψ, Φ) = I if

ψ1(0) = (1− L0(θeiωθ))−1, ψ2(0) = ψ1(0). (3.8)

Note that Φ̇ = ΦB,−Ψ̇ = BΨ for

B =
(

iω 0
0 −iω

)
.

Since B is a diagonal matrix, because of the use of complex coordinates,
the operators M1

j have a diagonal matrix representation in the canonical
basis of V 3

j (C2); in particular,

V 3
j (C2) = Im (M1

j )⊕Ker (M1
j ), j ≥ 2.

Write the Taylor expansions

L(α) = L0+αL1+
α2

2
L2+h.o.t., F (ϕ, α) =

1
2
F2(ϕ, α)+

1
3!

F3(ϕ, α)+h.o.t..

The Hopf condition assures that a Hopf bifurcation occurs on a two
dimensional centre manifold of the origin. The generic Hopf bifurcation
is determined up to cubic terms. Applying the method of n.f., we have
the n.f. on the center manifold up to third order terms given by

ẋ = Bx +
1
2
g1
2(x, 0, α) +

1
3!

g1
3(x, 0, α) + h.o.t.,
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where g1
2, g

1
3 are the second and third order terms in (x, α), respectively:

1
2
g1
2(x, 0, α) =

1
2
ProjKer(M1

2 )f
1
2 (x, 0, α),

1
3!

g1
3(x, 0, α) =

1
3!

ProjKer(M1
3 )f̃

1
3 (x, 0, α).

The operators M1
j are defined by

M1
j (αlxqek) = iω(q1 − q2 + (−1)k)αlxqek,

for l + q1 + q2 = j, k = 1, 2, j = 2, 3, q = (q1, q2) ∈ N
2
0, l ∈ N0,

e1 =
(

1
0

)
, e2 =

(
0
1

)
. Hence,

Ker (M1
2 ) = span

{(
x1α
0

)
,

(
0

x2α

)}

Ker (M1
3 ) = span

{(
x2

1x2

0

)
,

(
x1α

2

0

)
,

(
0

x1x
2
2

)
,

(
0

x2α
2

)}
.

Note that

g1
3(x, 0, α) = ProjKer(M1

3 )f̃
1
3 (x, 0, α) = ProjS f̃1

3 (x, 0, 0) + O(|x|α2),

for S := span
{(

x2
1x2

0

)
,

(
0

x1x
2
2

)}
. For the present situation,

1
2
f1
2 (x, y, α) = Ψ(0)[αL1(Φx + y) +

1
2
F2(Φx + y, α)],

1
2
f2
2 (x, y, α) = (I − π)X0[αL1(Φx + y) +

1
2
F2(Φx + y, α)],

1
3!

f1
3 (x, y, α) = Ψ(0)[

α2

2
L2(Φx + y) +

1
3!

F3(Φx + y, α)].

Since F (0, α) = 0, D1F (0, α) = 0 for all α ∈ R, we write

F2(Φx, α) = F2(Φx, 0) = A(2,0)x
2
1 + A(1,1)x1x2 + A(0,2)x

2
2

F3(Φx, 0) = A(3,0)x
3
1 + A(2,1)x

2
1x2 + A(1,2)x1x

2
2 + A(0,3)x

3
2

where A(q2,q1) = A(q1,q2). Thus, the second order terms in (α, x) of the
n.f. are given by

1
2
g1
2(x, 0, α) =

(
B1x1α
B1x2α

)
,

with
B1 = ψ1(0)L1(ϕ1). (3.9)
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Now we determine the cubic terms for α = 0. From (2.19), we have

g1
3(x, 0, 0) = ProjSf1

3 (x, 0, 0)

+
3
2
ProjS

[
(Dxf1

2 )(x, 0, 0)U1
2 (x, 0) + (Dyf

1
2 )(x, 0, 0)U2

2 (x, 0)
]
,

(3.10)
where

U1
2 (x, 0) = U1

2 (x, α)|α=0

= (M1
2 )−1ProjIm(M1

2 )f
1
2 (x, 0, 0) = (M1

2 )−1f1
2 (x, 0, 0)

and U2
2 (x, 0) = U2

2 (x, α)|α=0 is determined by the equation

(M2
2 U2

2 )(x, 0) = f2
2 (x, 0, 0).

The elements of the canonical basis for V 3
2 (C2) are

(
x2

1

0

)
,

(
x1x2

0

)
,

(
x2

2

0

)
,

(
x1α
0

)
,

(
x2α
0

)
,

(
α2

0

)
(

0
x2

1

)
,

(
0

x1x2

)
,

(
0
x2

2

)
,

(
0

x1α

)
,

(
0

x2α

)
,

(
0
α2

)
,

with images under 1
iωM1

2 given respectively by
(

x2
1

0

)
,−
(

x1x2

0

)
,−3

(
x2

2

0

)
,

(
0
0

)
,−2

(
x2α
0

)
,−
(

α2

0

)

3
(

0
x2

1

)
,

(
0

x1x2

)
,−
(

0
x2

2

)
, 2
(

0
x1α

)
,

(
0
0

)
,

(
0
α2

)
.

Hence,

U1
2 (x, 0) =

1
iω

(
ψ1(0)(A(2,0)x

2
1 −A(1,1)x1x2 − 1

3A(0,2)x
2
2)

ψ2(0)(1
3A(2,0)x

2
1 + A(1,1)x1x2 −A(0,2)x

2
2)

)
.

A few computations show that

ProjSf1
3 (x, 0, 0) =

(
ψ1(0)A(2,1)x

2
1x2

ψ2(0)A(1,2)x1x
2
2

)
(3.11)

and

ProjS [(Dxf1
2 )(x, 0, 0)U1

2 (x, 0)] =
(

C1x
2
1x2

C1x1x
2
2

)
, (3.12)

with

C1 =
i

ω

(
ψ2

1(0)A(2,0)A(1,1) − |ψ1(0)|2(2
3
|A(2,0)|2 + A2

(1,1))
)

.
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It remains to determine ProjS [(Dyf
1
2 )(x, 0, 0)U2

2 (x, 0)]. Let H2 : C ×
C → C be the bilinear symmetric form such that

F2(u, α) = F2(u, 0) = H2(u, u), u ∈ C

(i.e., F2(u, 0) is the quadratic form associated with H2(u, v)). Then,

(Dyf
1
2 )|y=0,α=0(h) = 2Ψ(0)H2(Φx, h).

Define h = h(x)(θ) by h(x) = U2
2 (x, 0), and write

h(x) = h20x
2
1 + h11x1x2 + h02x

2
2,

where h20, h11, h02 ∈ Q1. Using the definition of M2
2 , AQ1 and π, we

deduce that equation

(M2
2 h)(x) = f2

2 (x, 0, 0)

is equivalent to

Dxh(x)Bx−AQ1(h(x)) = (I − π)X0F2(Φx, 0),

or, in other words, to
{

ḣ(x)−Dxh(x)Bx = ΦΨ(0)F2(Φx, 0)

ḣ(x)(0)− L0h(x) = F2(Φx, 0),

where we use the notation ḣ = d
dθh. From this system, we deduce

h02 = h20, h11 = h11, and two initial value problems (IVPs),
{

ḣ20 − 2iωh20 = A(2,0)ΦΨ(0)

ḣ20(0)− L0(h20) = A(2,0)

and {
ḣ11 = A(1,1)ΦΨ(0)

ḣ11(0)− L0(h11) = A(1,1).

Thus, we obtain

ProjS [(Dyf
1
2 )h](x, 0, 0) =

(
C2x

2
1x2

C2x1x
2
2

)
, (3.13)

with
C2 = 2ψ1(0)[H2(ϕ1, h11) + H2(ϕ2, h20)].
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Hence, from (3.10)-(3.13) we get

1
3!

g1
3(x, 0, 0) =

(
B2x

1
1x2

B2x1x
2
2

)
,

with
B2 =

1
3!

ψ1(0)A(2,1) +
1
4
(C1 + C2). (3.14)

Therefore, the n.f. reads as

ẋ = Bx +
(

B1x1α
B1x2α

)
+
(

B2x
2
1x2

B2x1x
2
2

)
+ O(|x|α2 + |x|4), (3.15)

with B1, B2 given by (3.9), (3.14). Changing to real coordinates w,
where x1 = w1 − iw2, x2 = w1 + iw2, and then to polar coordinates
(ρ, ξ), w1 = ρ cos ξ, w2 = ρ sin ξ, Eq. (3.15) becomes{

ρ̇= K1αρ + K2ρ
3 + O(α2ρ + |(ρ, α)|4)

ξ̇= −ω + O(|(ρ, α)|),
(3.16)

with the coefficients K1, K2 explicitly given in terms of the original FDE
as K1 = ReB1, K2 = ReB2. Recall that the generic Hopf bifurcation
corresponds to the situation K2 
= 0, the direction of the bifurcation
is determined by the sign of K1K2, and the stability of the nontrivial
periodic orbits is determined by the sign of K2 (see e.g. [30]). Solving
the two IVPs above, we obtain

h20(θ) = A(2,0)

(
e2iωθ

2iω − L0(e2iωθ)
− ψ1(0)eiωθ

iω
− ψ1(0)e−iωθ

3iω

)

h11(θ) = A(1,1)

(
− 1

L0(1)
+

1
iω

(
ψ1(0)eiωθ − ψ1(0)e−iωθ

))
.

Theorem 3.3. A Hopf bifurcation occurs from α = 0 on a 2-dimensional
local centre manifold of the origin. On this manifold, the flow is given
in polar coordinates by Eq. (3.16), with

K1 = Re (ψ1(0)L1(eiωθ)) (3.17)

K2 =
1
3!

Re [ψ1(0)A(2,1)]−
A(1,1)

2L0(1)
Re [ψ1(0)H2(eiωθ, 1)]

+
1
2
Re
[ ψ1(0)A(2,0)

2iω − L0(e2iωθ)
H2(e−iωθ, e2iωθ)

]
. (3.18)
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Example 3.4. Consider the well-known Wright equation

u̇(t) = −au(t− 1)[1 + u(t)], (3.19)

which has been studied by many authors (see [30, 45] and references
therein). The characteristic equation for the linearization around zero,
u̇(t) = −au(t− 1), is

λ + ae−λ = 0. (3.20)

There is a pair of (simple) imaginary roots ±iω for (3.20) if and only if
a = aN and ω = ωN , where

aN = (−1)NωN , ωN =
π

2
+ Nπ, N ∈ N0.

With α = a− aN , (3.19) is written as

u̇(t) = −aNu(t− 1) + αu(t− 1) + F (ut, α), (3.21)

where F (v, α) = −(aN + α)v(0)v(−1). Set Λ = {iωN ,−iωN}. For ψ(0)
as in (3.8), ψ1(0) = 1−iωN

1+ω2
N

. Write the Taylor formulas

L(α)v = L0v + L1(α)v, F (v, α) =
1
2
F2(v, α) +

1
3!

F3(v, α),

where L0(v) = −aNv(−1), L1(α)v = −αv(−1) and 1
2F2(v, α) = −aNv(0)

v(−1), F3(v, α) = −αv(0)v(−1). Applying Theorem 3.3, we obtain the
n.f. on the center manifold of the origin near a = aN given in polar
coordinates by Eq. (3.16), with

K1 =
aN

1 + a2
N

,

K2 =
ωN

5(1 + a2
N )

[(−1)N − 3ωn] < 0, for N ∈ N0.

Thus, a generic Hopf bifurcation for (3.19) occurs from u = 0, a = aN .
Since K2 < 0 for all N ∈ N0, the bifurcating periodic orbits are always
stable inside the centre manifold. On the other hand, K1 > 0 if N
even, thus K1K2 < 0, and the Hopf bifurcation is supercritical. If N is
odd, K1 < 0, thus the Hopf bifurcation is subcritical. E.g., at the first
bifurcating point a = a0 = π/2 (N = 0), we have Λ = {iπ/2,−iπ/2},
and

K1 =
2π

4 + π2
> 0, K2 =

π(2− 3π)
5(4 + π2)

< 0. (3.22)

252



Normal Forms And Bifurcations For DDE

4. Normal Forms for FDEs in Hilbert Spaces
In the following, X is a real or complex Hilbert space with inner

product < ·, · > and C = C([−r, 0]; X) (r > 0) is the Banach space
of continuous maps from [−r, 0] to X with the sup norm. In order
to simplify the notation, fix R as the scalar field. Write ut ∈ C for
ut(θ) = u(t + θ),−r ≤ θ ≤ 0, and consider FDEs in X given in abstract
form as

u̇(t) = AT u(t) + L(ut) + F (ut) (t ≥ 0), (4.1)

where AT : D(AT ) ⊂ X → X is a linear operator, L ∈ L(C; X), i.e.,
L : C → X is a bounded linear operator, and F : C → X is a Ck

function (k ≥ 2) such that F (0) = 0, DF (0) = 0.
We are particularly interested in equations (4.1), since they include

reaction-diffusion (RD) equations with delays appearing in the reaction
terms. Equations involving both time delays and spatial diffusion have
been increasingly used in population dynamics, neural networks, disease
modelling, and other fields.

A typical example of a RD-equation with delays is the so-called
logistic equation with delays and spatial diffusion. In the framework of
ODEs, consider the logistic equation ẋ = ax(1 − bx), where a is the
growth rate of the population and K = 1/b the “carrying capacity”.
Taking into account the maturation period r > 0 of the population, the
model becomes

ẋ(t) = ax(t)[1− bx(t− r)],

known as the Hutchinson equation. Translating the positive equilibrium
1/b to the origin and effecting a scaling, y(t) = bx(t) − 1, we get the
Wright equation (conf. Example 3.4)

ẏ(t) = −ay(t− r)[1 + y(t)].

Considering also a spatial variable x ∈ [0, 1], and diffusion terms, we
obtain the model

∂v

∂t
(t, x) = d

∂2v

∂x2
− av(t− r, x)[1 + v(t, x)], t > 0, x ∈ (0, 1),

to which boundary conditions, such as Neumann or Dirichlet conditions,
should be added. This RD-equation is often used as a model in popula-
tion dynamics, where v stands for the density of the population spread
over the interval [0, 1], d is the diffusion rate that measures the internal
migration of the population, and a, b, r have the same meaning as before.
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4.1 Linear FDEs

For the linearized equation about the equilibrium zero

u̇(t) = AT u(t) + L(ut), (4.2)

we assume in this section the following hypotheses (see [73, 77, 101, 104]):

(H1) AT generates a C0-semigroup of linear operators {T (t)}t≥0 on X;

(H2) T (t) is a compact operator for t > 0;

(H3) the eigenfunctions {βk}∞k=1 of AT , with corresponding eigenvalues
{µk}∞k=1, form an orthonormal basis for X;

(H4) the subspaces Bk of C, Bk := {ϕβk |ϕ ∈ C([−r, 0]; R)}, satisfy
L(Bk) ⊂ span{βk}, k ∈ N.

For a straightforward generalization of these assumptions to equa-
tions (4.2) in Banach spaces see [101, Chapter 3]. For a weaker version
of (H4) see [36].

Hypothesis (H4) roughly requires that the operator L does not mix
the spatial variations described by eigenvectors βk of AT . This condition
is very restrictive in terms of applications, since it almost imposes that
L is a scalar multiplication. In Section 5 of the present text, normal
forms are developed for FDEs in Banach spaces without imposing (H3)-
(H4). Nevertheless, the situation where (H1)-(H4) hold will be studied
separately in this section since it provides a strong result: eventually
under additional conditions, for (4.1) it is possible to associate an FDE
in R

n, whose n.f. on invariant manifolds coincide with n.f. on invariant
manifolds for (4.1), up to some order. This allows us to apply to (4.1)
the n.f. method for FDEs in R

n described in Section 2 without further
computations.

As for retarded FDEs in R
n, we start by looking for solutions of the

linear equation (4.2) of the exponential type,

u(t) = eλty, y ∈ D(AT ).

Clearly u(t) as above is a non-trivial solution of (4.2) if and only if λ, y
satisfy the characteristic equation

∆(λ)y = 0, λ ∈ C, y ∈ D(AT ) \ {0}, (4.3)

where the characteristic operator ∆(λ) is defined by

∆(λ) : D(AT ) ⊂ X → X, ∆(λ)y = λy −AT y − L(eλ·y).
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Let A be the infinitesimal generator associated with the semiflow
of the linearized equation (4.2). It is well-known ([73, 77, 92, 101, 104])
that its eigenvalues are exactly the roots of the characteristic equation
(4.3), that the spectrum of A is reduced to the point spectrum and that,
for each α ∈ R, the set σ(A) ∩ {λ ∈ C : Reλ ≥ α} is finite.

Since (H4) states that L does not mix the modes of eigenvalues
of AT , and from (H3) X can be decomposed by {βk}∞k=1, we deduce
that equation ∆(λ)y = 0 is equivalent to the sequence of characteristic
equations

λ− µk − Lk(eλ·) = 0 (k ∈ N), (4.4k)

where Lk : C([−r, 0]; R) → R are defined by Lk(ψ)βk = L(ψβk), for
k ∈ N.

Again, for the sake of applications, we fix Λ = {λ ∈ σ(A) : Reλ =
0} 
= ∅, and let P be the centre space for (4.2). Since Λ is a finite set,
there exists N ∈ N, such that Λ = {λ ∈ C : λ is a solution of (4.4k)
with Re λ = 0, for some k ∈ {1, . . . , N}}.

We describe briefly an adjoint theory for FDEs (4.2) as in [73, 77],
assuming the above hypotheses. The main idea is to relate the eigenval-
ues of the infinitesimal generator A (in this case, only the elements of Λ)
with the eigenvalues of certain scalar FDEs. On Bk, the linear equation
u̇(t) = AT u(t) + L(ut) is equivalent to the FDE on R

ż(t) = µkz(t) + Lkzt , (4.5k)

with characteristic equation given by (4.4k), k ∈ N. With this identifi-
cation, the standard adjoint theory for retarded FDEs can be used to
decompose C, in the following way. For 1 ≤ k ≤ N , define (·, ·)k as
the adjoint bilinear form on C([0, r]; R∗)×C([−r, 0]; R) associated with
(4.5k), and decompose C([−r, 0]; R) by Λk := {λ ∈ C : λ satisfies (4.4k)
and Re λ = 0} as in Section 2.1 (see [58]):

C([−r, 0]; R) = Pk ⊕Qk , Pk = spanΦk , P ∗
k = spanΨk ,

(Ψk, Φk)k = I , dimPk = dimP ∗
k := mk , Φ̇k = ΦkBk ,

where Pk is the centre space for (4.5k) and Bk is an mk ×mk constant
matrix. For each k ∈ N, the projection Pk ⊕Qk → Pk, u �→ Φk(Ψk, u)k

induces a projection

C → Pkβk, ϕ �→ Φk(Ψk, < ϕ(·), βk >)kβk.

We use the above decompositions to decompose C by Λ:

C = P ⊕Q , P = Im π , Q = Kerπ,
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where dim P =
∑N

k=1 mk := M and π : C −→ P is the canonical
projection defined by

πφ =
N∑

k=1

Φk(Ψk, < φ(·), βk >)kβk .

4.2 Normal forms

As for retarded FDEs in R
n, we first enlarge the phase space so

that (4.1) can be written as an abstract ODE, along the lines of Section
2. Denote by X0 the function defined by X0(0) = I, X0(θ) = 0 , −r ≤
θ < 0, where I is the identity operator on X, and let

BC ≡ C ×X = {φ + X0α : φ ∈ C,α ∈ X}.

In BC, (4.1) reads as an abstract ODE,

d

dt
v = Ãv + X0F (v), (4.6)

where Ã is the extension of the infinitesimal generator A defined by

Ã : C1
0 ⊂ BC −→ BC

D(Ã) = C1
0 := {φ ∈ C : φ̇ ∈ C, φ(0) ∈ D(AT )}

Ãφ = φ̇ + X0[L(φ) + AT φ(0)− φ̇(0)].

We further consider the extension of the projection π : C → P to BC,
still denoted by π, by defining

π(X0α) =
N∑

k=1

ΦkΨk(0) < α, βk > βk, α ∈ X.

By using π, the enlarged space BC is decomposed by Λ as

BC = P ⊕Kerπ,

with Q ⊂ Ker π and P ⊂ C1
0 . One can prove that π is continuous and

commutes with Ã in C1
0 . For v ∈ C1

0 , using the above decomposition,
we write

v(t) =
N∑

k=1

Φkxk(t) + y(t), with xk(t) ∈ R, 1 ≤ k ≤ N, y ∈ C1
0 ∩ Ker π := Q1.
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Hence, Eq. (4.6) is decomposed as a system of abstract ODEs on
R

M × Ker π, with linear and nonlinear parts separated and with finite
and infinite dimensional variables also separated in the linear term:

ẋk =Bkxk + Ψk(0) < F (
N∑

p=1

Φpxpβp + y), βk > βk, k = 1, . . . , N,

d

dt
y =AQ1y + (I − π)X0F

( N∑
p=1

Φpxpβp + y
)
,

where AQ1 is the restriction of Ã to Q1, AQ1 : Q1 ⊂ Ker π → Ker π.
Defining B = diag (B1, . . . , BN ), Φ = diag (Φ1, . . . ,ΦN ) and Ψ =
diag (Ψ1, . . . ,ΨN ), the above system is written in a simpler form as

ẋ =Bx + Ψ(0)

(
< F

(
(Φx)�




β1

...

βN


 + y

)
, βk >

)N

k=1

d

dt
y =AQ1y + (I − π)X0F

(
(Φx)�




β1

...

βN


 + y

)
, x = (x1, . . . , xN ) ∈ R

M , y ∈ Q1.

(4.7)

Recall that the existence of a local centre manifold for (4.1) tangent
to P at zero was proven under (H1)-(H4) in [73], following the approach
in [77].

For (4.1) written in the form (4.7), it is possible to develop a normal
form theory for FDEs in X based on the theory in Section 2. Formally,
the operators M1

j , M2
j associated with the sequence of changes of vari-

ables are still given by (2.13), but now AQ1 and π are as defined above
in this subsection. On the other hand, writing the Taylor expansion for
F ,

F (v) =
∑
j≥2

1
j!

Fj(v) , v ∈ C,

where Fj is the jth Fréchet derivative of F , (4.7) reads as

{
ẋ =Bx +

∑
j≥2

1
j!f

1
j (x, y)

ẏ =AQ1y +
∑

j≥2
1
j!f

2
j (x, y) ,
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with the terms f i
j(x, y), i = 1, 2, j ≥ 2, given here by

f1
j (x, y) = Ψ(0)

(
< Fj

(
(Φx)




β1
...

βN


+ y

)
, βk >

)N

k=1

f2
j (x, y) = (I − π)X0Fj

(
(Φx)




β1
...

βN


+ y

)
, x ∈ R

M , y ∈ Q1.

The main results in Section 2 are still valid in this setting. Details and
examples of applications can be found in [37].

4.3 The associated FDE on R
N

.
If we compare Eq. (4.7) with Eq. (2.6), it is natural to associate

an FDE in R
N with the original FDE (4.1). In fact, formally we relate

(4.7) with the DDE in R
N

{
ẋ = Bx + Ψ(0)G(Φx + y)
ẏ = AQ1y + (I − π)X0G(Φx + y),

(4.8)

for the nonlinearity G : CN := C([−r, 0]; RN ) → R
N defined by

G(φ) =
(

< Fj

(
φ




β1
...

βN



)
, βk >

)N

k=1

. (4.9)

However, the operators Ã and π are defined differently in (4.7) and (4.8).
On the other hand, in order to derive the linear terms in (4.8) from the
procedure in Section 2.2, the linearization of the original FDE in R

N

(2.1) should have the form u̇(t) = R(ut), with R ∈ L(CN ; RN ) defined
by

R(φ) = (µkφk(0) + Lk(φk))N
k=1, (4.10)

for φ = (φ1, . . . , φN ) ∈ C([−r, 0]; RN ) (cf. (4.5k), k = 1, . . . , N).

Definition 4.1. The following FDE in CN := C([−r, 0]; RN ) is said to
be the FDE in R

N associated with Eq. (4.1) by Λ at zero:

ẋ(t) = R(xt) + G(xt), (4.11)

where x(t) =
(
xk(t)

)N
k=1

, xt =
(
xt,k

)N
k=1

, and G, R are defined by (4.9),
(4.10).
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The relevance of this associated FDE in R
N is summarized in the

next theorem.
Theorem 4.2. [37] Consider Eq. (4.1), and assume (H1)-(H4).

(i) if F is of class C2, then, for a suitable change of variables, the
n.f. on the centre manifold for both (4.1) and (4.11) is the same, up to
second order terms;

(ii) if F is of class C3, F (v) =
1
2!

F2(v) +
1
3!

F3(v) + o(|v|3), and

Proj span{β1,...,βN}DF2(u)(φβj) = 0 , for j ≥ N+1, u ∈ P, φ ∈ C([−r, 0]; R), (H5)

then, for a suitable change of variables, the n.f. on the centre manifold
for both (4.1) and (4.11) are the same, up to third order terms.

Note that assumption (H5) can also be written as

< DF2(u)(φβj), βp >= 0 , for 1 ≤ p ≤ N, j > N and all u ∈ P, φ ∈ C([−r, 0]; R).

The proof of this theorem is based on the possibility of identifying
the operators M1

j , M2
j of the n.f. algorithm for (4.1) with the corre-

sponding operators appearing in the computation of n.f. relative to Λ
for (4.11). The above result is not completely surprising. In fact, note
that (H4) can be interpreted as nonresonance conditions of first order,
in the sense that it imposes nonresonances inside the linear part of the
equation, between L and the operator AT . Now recall that second or-
der terms of n.f. are computed by looking at second order terms in the
equation for x ∈ R

N . The cubic terms of n.f. are obtained by using not
only second and third order terms in the equation for x ∈ R

N , but also
second order terms in the equation for y ∈ Kerπ. Therefore, it is not
surprising to expect the quadratic terms in the n.f. for the flow on the
centre manifold for both equations (4.1) and (4.11) to be the same. On
the other hand, it is natural to expect that additional nonresonance con-
ditions of second order should be imposed, in order to derive the same
result for cubic terms. The role of (H5) is to impose such nonresonance
conditions, between the second order terms of F and the eigenspaces for
AT . Of course, we could derive other nonresonance conditions between
the j-order terms (j ≤ k − 1) of F and the eigenspaces for AT , in order
to conclude that the n.f. on the centre manifold for both (4.1) and (4.11)
are the same up to k order terms. In the present framework, Theorem
4.2 is particularly relevant, since it enables us to reduce the computation
of n.f. for FDEs in Hilbert spaces X to the computation of n.f. for FDEs
in finite dimensional spaces. Moreover, even if (H5) fails, one can prove
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[37] that the associated FDE by Λ (4.11) still carries much information
that can be used when computing n.f. for (4.1).

4.4 Applications to bifurcation problems

Population dynamics models involving memory and diffusion in one
spatial variable are often given by equations of the form

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ a(x)u(t, x) + b(x)u(t− r, x)

+ c0(x)u(t, x)u(t− r, x), t > 0, x ∈ (�1, �2),

with either Neumann or Dirichlet boundary conditions on [�1, �2] ⊂ R,
and initial condition

u0 = ϕ ∈ C = C([−r, 0]; X).

For the choice e.g. X = L2[�1, �2] , the problem is not well-posed,
since L2[�1, �2] is not a Banach algebra. However, the question of exis-
tence of solutions will not be addressed here, since that is not the aim
of the n.f. theory. In order to guarantee existence of solutions, there
are several approaches. One can restrict the state space to an appro-
priate space of functions invariant under products, e.g. X = C[�1, �2]
or X = W 2,2[�1, �2] [73, 77, 101]. Another possibility is to consider
a fractional power (AT )β of AT (0 < β < 1), and take as the Ba-
nach state space the fractional power space Xβ = D(Aβ), with norm
‖v‖β = ‖(AT )βv‖; and Cβ = C([−1, 0]; Xβ) as the phase space. This
theory is well established since the work of Henry [63]. See also [
[46, 54, 93, 94]. Another procedure is to consider X = L2[�1, �2], and re-
strict the space of initial conditions that are chosen in a natural “initial-
history” space [85, 86].

As an application, we shall consider the Wright equation with dif-
fusion. For an application of the n.f. theory to a 2-dimensional RD-
equation with two delays, see [40].

Example 4.3. Consider the Wright equation with diffusion and Neu-
mann conditions ([37, 73, 77, 104]):

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
− au(t− 1, x)[1 + u(t, x)], t > 0, x ∈ (0, π)

∂u(t, 0)
∂x

=
∂u(t, π)

∂x
= 0 , t ≥ 0,

(4.12)

260



Normal Forms And Bifurcations For DDE

where d > 0, a > 0. Let X = W 2,2(0, π) and C = C([−1, 0]; X). In
abstract form in C, (4.12) is given by

d

dt
u(t) = d∆u(t) + L(a)(ut) + f(ut, a) (4.13)

where ∆ = ∂2

∂x2 , D(∆) = {v ∈ W 2,2(0, π) : dv
dx = 0 at x = 0, π} and

L(a)(v) = −av(−1), f(v, a) = −av(0)v(−1).
The eigenvalues of AT = d∆ are µk = −dk2, k ≥ 0, with corre-

sponding normalized eigenfunctions βk(x) = cos(kx)
‖ cos(kx)‖2,2

. One can easily
check that (H1)-(H4) hold. For the linearization of (4.13) about the equi-
librium u = 0, the characteristic equation is equivalent to the sequence
of characteristic equations

λ + ae−λ + dk2 = 0 , (k = 0, 1, . . . ). (4.14k)

Yoshida [104] showed that for a < π/2, all roots have negative real
parts, thus the zero solution is asymptotically stable; for a = π/2 and
k = 0, there exists a unique pair of characteristic values on the imaginary
axis, ±iπ/2, that are simple roots, and that all the other characteristic
values of (4.14k), k ∈ N0, have negative real parts. At the critical point
a = π/2, rescale the parameter by setting a = π/2 + α. Since the
Hopf condition holds [104], i.e., there is a pair of eigenvalues crossing
transversely the imaginary axis at α = 0, a Hopf bifurcation occurs on
a 2-dimensional centre manifold.

Let Λ = {iπ/2,−iπ/2}. With the above notations (except that
here k ∈ N0 instead of k ∈ N), N = 0, µ0 = 0, β0 = 1√

π
. Since

L(ψβ0) = −π
2 ψ(−1)β0, the operator L0 : C([−1, 0]; R) → R in (4.40),

corresponding to the eigenvalue µ0 = 0, is defined by

L0(ψ) = −π

2
ψ(−1).

The associated FDE (on R) by Λ at the equilibrium point u = 0, α = 0
is

ẋ(t) = L0(xt)+ < F
(
xtβ0, α

)
, β0 >, (4.15)

where F (v, α) = −αv(−1)− (π
2 + α)v(0)v(−1). We have

< F (xtβ0, α), β0 > = − < αx(t − 1)
1√
π

+ (
π

2
+ α)x(t)

1√
π

x(t − 1)
1√
π

,
1√
π

>

= −x(t − 1)[α + (
π

2
+ α)

1√
π

x(t)]

.

Thus, (4.15) becomes

ẋ(t) = −(
π

2
+ α)x(t− 1)[1 +

1√
π

x(t)], (4.16)
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i.e., (4.16) is the Wright equation (3.19) for the scaling x �→ 1√
π
x.

We prove now that hypothesis (H5) is satisfied. He have

F2(v, α) = −αv(−1)− π

2
v(0)v(−1), v ∈ C,α ∈ R.

For u ∈ P , write u = Φ0cβ0, where c ∈ C
2 and Φ0 is a basis for the centre

space P0 for the linear FDE in R (4.50), i.e., ẋ(t) = L0(xt). Then,

1
2

< D1F2(u, α)(ψβk), β0 >

= −α < ψ(−1)βk, β0 > −π

2
<
(
u(0)ψ(−1) + u(−1)ψ(0)

)
βk, β0 >

= −
[
αψ(−1) +

√
π

2
(
Φ0(0)cψ(−1) + Ψ0(−1)cψ(0)

)]
< βk, β0 >= 0,

for all k ≥ 1, c ∈ C
2, ψ ∈ C([−1, 0]; R). This implies (H5).

For (3.19), the n.f. on the centre manifold is given in polar coordi-
nates (ρ, ξ) by (3.16), where K1, K2 are given by (3.22). Effecting the
scaling x �→ 1√

π
x, from Theorem 4.2 we deduce the n.f. on the centre

manifold for (4.12) without further computations:

ρ̇ =K1αρ +
1
π

K2ρ
3 + O

(
α2ρ + |(ρ, α)|4

)

ξ̇ =− π

2
+ O

(
|(ρ, α)|

)
,

with K1, K2 as in (3.22). Thus, a generic supercritical Hopf bifurcation
occurs on the centre manifold for (4.12), with stable nontrivial bifurcat-
ing periodic solutions.

5. Normal Forms for FDEs in General Banach
Spaces

Consider again a semilinear FDE (4.1) in the phase space C :=
C([−r, 0]; X),

u̇(t) = AT u(t) + L(ut) + F (ut), (5.1)

where now X is a general Banach space, AT : D(AT ) ⊂ X → X is linear,
and F : C → X is Ck (k ≥ 2) with F (0) = 0, DF (0) = 0.

Before developing a normal form theory on an invariant manifold for
FDEs (5.1), it is necessary to establish two necessary technical tools: a
formal adjoint theory for linear equations, and the existence and smooth-
ness of centre manifolds for nonlinearly perturbed equations (5.1) ([43]).
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5.1 Adjoint theory
Consider a linear FDE in C of the form

u̇(t) = AT u(t) + L(ut), (5.2)

where AT , L are as in (5.1). In this section, we shall assume only the
following hypotheses:

(H1) AT generates a C0 semigroup of linear operators {T (t)}t≥0 on X;

(H2) T (t) is a compact operator for t > 0;

(H3) there exists a function η : [−r, 0]→ L(X, X) of bounded variation
such that

L(ϕ) =
∫ 0

−r
dη(θ)ϕ(θ), ϕ ∈ C.

Under (H1)-(H3), a complete formal adjoint theory was developed
in [43], and will be presented here, following some ideas in [16] and [92].
The adjoint theory for abstract FDEs was initiated in [92]. However, the
theory in [92] was quite incomplete and more hypotheses were assumed.
On the other hand, Arino and Sanchez [16] developed a complete formal
adjoint theory for equations u̇(t) = L(ut). From the point of view of
the applications we have in mind, equations in the form (5.1) are more
interesting, since they include RD-equations with delays. In [16], the
authors worked only with characteristic values that are not in the es-
sential spectrum in order to obtain Fredholm operators, whereas in our
setting we will be dealing with compact operators. Note that, contrary
to the situation studied in Section 4, we are not imposing any conditions
which relate L with the eigenvalues for AT .

Consider the characteristic equation (4.3) for (5.2),

∆(λ)x = 0, x ∈ D(AT ) \ {0} (5.3)

where the characteristic operator ∆(λ) : D(AT ) ⊂ X → X is defined by

∆(λ)x = AT x + L(eλ·x)− λx.

We start by recalling the results in [92]. Consider the C0-semigroup
of linear operators {U(t)}t≥0, defined by the mild solutions of (5.2) with
initial condition ϕ ∈ C, U(t) : C → C,U(t)ϕ = ut(ϕ), and its infinitesi-
mal generator A,

Aϕ = ϕ̇, D(A) = {ϕ ∈ C : ϕ̇ ∈ C,ϕ(0) ∈ D(AT ), ϕ̇(0) = AT ϕ(0) + L(ϕ)}.
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Travis and Webb [92] proved that U(t) is a compact operator for each
t > r and σ(A) = σP (A). From general results on C0-semigroups and
compact operators (see e.g. [84]), it follows that, for λ ∈ σ(A),

C = Ker [(A− λI)m]⊕ Im [(A− λI)m], (5.4)

where Im [(A − λI)m] is a closed subspace of C and Ker [(A − λI)m]
is the generalized eigenspace for A associated with λ, denoted as usual
by Mλ(A), with Mλ(A) finite dimensional. In particular, the ascent
and descent of A − λI are both equal to m, where m is the order of
λ as a pole of the resolvent R(λ; A) [90]. Our purpose now is to write
Im [(A − λI)m] in terms of a (formal) adjoint theory, in the sense that
a Fredholm alternative result should be established.

As seen in Section 4.1, λ is a characteristic value if and only λ is
an eigenvalue of A, and, in this case, there is x ∈ D(AT ) \ {0} such that
u(t) = eλtx is a solution of (5.2). Thus,

Ker (A− λI) = {eλ·x : x ∈ Ker ∆(λ)}. (5.5)

We use the formal duality << ·, · >> in C∗ × C introduced in [92]
as the bilinear form

<< α, ϕ >>=< α(0), ϕ(0) > −
∫ 0

−r

∫ θ

0
< α(ξ − θ), dη(θ)ϕ(ξ) > dξ

where C∗ := C([0, r]; X∗), X∗ is the dual of X, and < ·, · > is the usual
duality in X∗ ×X. Define the formal adjoint equation to (5.2) as

α̇(t) = −A∗
T α(t)− L∗(αt), t ≤ 0, (5.6)

where αt ∈ C∗, αt(s) = α(t+ s) for s ∈ [0, r], A∗
T is the adjoint operator

for AT , L∗ : C∗ → X∗ is given by L∗(α) =
∫ 0
−r dη∗(θ)α(−θ), and η∗(θ)

is the adjoint for η(θ), η∗ : [−r, 0] → L(X∗, X∗). Let A∗ be the infini-
tesimal generator associated with the flow for (5.6). The operator A∗ is
called the formal adjoint of A, since

<< A∗α, ϕ >>=<< α, Aϕ >> , for α ∈ D(A∗), ϕ ∈ D(A).

Inspired by the work of Hale [58, Chapter 7] and [16], we now
introduce some auxiliary operators, that will be used first of all to get an
explicit characterization of the null spaces and ranges for the operators
(A − λI)m and (A∗ − λI)m. Let λ ∈ C, j ∈ N0, m ∈ N, and define the
operators

Lj
λ : X → X, Lj

λ(x) = L
(θj

j!
eλθx

)
,
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L(m)
λ : Xm → Xm, L(m)

λ =




∆(λ) L1
λ − I L2

λ . . . Lm−1
λ

0 ∆(λ) L1
λ − I . . . Lm−2

λ
...

...
. . . . . .

...
0 0 . . . ∆(λ) L1

λ − I
0 0 . . . 0 ∆(λ)




and

R(m)
λ : C → Xm, R(m)

λ (ψ) =




−L
( ∫ θ

0 eλ(θ−ξ) (θ−ξ)m−1

(m−1)! ψ(ξ)dξ
)

...
−L
( ∫ θ

0 eλ(θ−ξ)(θ − ξ)ψ(ξ)dξ
)

ψ(0)− L
( ∫ θ

0 eλ(θ−ξ)ψ(ξ)dξ
)
.




Theorem 5.1. Let λ ∈ C, m ∈ N. Then:

(i) Ker [(A−λI)m] =
{∑m−1

j=0
θj

j! e
λθuj , θ ∈ [−r, 0], with




u0
...

um−1


 ∈

Ker (L(m)
λ )
}

;

(ii) ψ ∈ Im [(A− λI)m] iff R(m)
λ (ψ) ∈ Im (L(m)

λ );

(iii) Ker [(A∗ − λI)m] =
{∑m−1

j=0
(−s)j

j! e−λsx∗
m−j−1, s ∈ [0, r], with

 x∗
0

. . .
x∗

m−1


 ∈ Ker ((L(m)

λ )∗)
}

.

The proof of this theorem follows from direct computations, so it is
omitted. See [16, 58] for similar proofs.

We now establish some preliminary lemmas.
Lemma 5.2. The characteristic operator ∆(λ) generates a compact
C0-semigroup of linear operators on X. Moreover, λ ∈ σ(A) if and only
if 0 ∈ σ(∆(λ)).

Proof. From (5.4), clearly λ ∈ ρ(A) if and only if 0 is not an eigenvalue
of ∆(λ). On the other hand, ∆(λ) is the sum of AT , which generates
a compact C0-semigroup, with the bounded linear operator L0

λ − λI.
Hence, ∆(λ) generates a compact semigroup of linear operators on X
[84, p. 79]. This also implies that 0 ∈ ρ(∆(λ)) iff 0 
∈ σP (∆(λ)). Hence
λ ∈ ρ(A) iff 0 ∈ ρ(∆(λ)).
Lemma 5.3. Let λ ∈ C and m ∈ N. Then:

(i) if µ ∈ ρ(∆(λ)), then µ ∈ ρ(L(m)
λ ) and (L(m)

λ − µI)−1 is a compact
operator;

265



DELAY DIFFERENTIAL EQUATIONS

(ii) Im (L(m)
λ ) is a closed subspace of Xm.

Proof. Let µ ∈ ρ(∆(λ)). For m = 1, we have L(1)
λ = ∆(λ), and from

Lemma 5.2 we conclude that this operator generates a compact C0-
semigroup. Thus, its resolvent R(∆(λ); µ) = [∆(λ)−µI]−1 is a compact
operator. The rest of the proof of (i) follows by induction. For the proof
of (ii), we use (i) and general spectral properties of compact operators.
See [43] for details.
Lemma 5.4. Let λ ∈ C, m ∈ N. Then,

dimKer (L(m)
λ ) = dimKer ((L(m)

λ )∗) (5.7)

Proof. Let λ ∈ σ(A). From Lemma 5.2, 0 ∈ σ(∆(λ)). Fix any
µ ∈ ρ(∆(λ)). From Lemma 5.3 we deduce that µ ∈ ρ(L(m)

λ ). One can
prove that

Ker (L(m)
λ ) = Ker ((L(m)

λ − µI)−1 +
I

µ
),

Ker ((L(m)
λ )∗) = Ker ([(L(m)

λ )∗ − µI]−1 +
I

µ
).

(5.8)

where [(L(m)
λ )∗ − µI]−1 = [(L(m)

λ − µI)−1]∗. Also from Lemma 5.3, we
have that (L(m)

λ − µI)−1 is a compact operator, and from Schauder’s
theorem we conclude that its adjoint [(L(m)

λ − µI)−1]∗ is also a compact
operator. In particular,

dim Ker ((L(m)
λ − µI)−1 +

I

µ
) = dimKer ([(L(m)

λ − µI)−1]∗ +
I

µ
). (5.9)

From (5.8) and (5.9), we obtain (5.7).

As an immediate consequence of Theorem 5.1 and Lemma 5.4, we
can now state the following:
Theorem 5.5. Let λ ∈ C, m ∈ N. Then,

dimKer [(A− λI)m] = dimKer [(A∗ − λI)m].

In particular, σP (A) = σP (A∗), and for λ ∈ σP (A),

dimMλ(A) = dimMλ(A∗),

and the ascents of both operators A− λI and A∗ − λI are equal. That
is, if Mλ(A) = Ker [(A− λI)m], then Mλ(A∗) = Ker [(A∗ − λI)m].

We are now in the position to state a “Fredholm alternative” result.
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Theorem 5.6. Let λ ∈ σ(A), m ∈ N. Then ψ ∈ Im [(A− λI)m] if and
only if

<< α, ψ >>= 0 for all α ∈ Ker [(A∗ − λI)m].

Proof. From Lemma 5.3, the ranges of L(m)
λ are closed subspaces,

hence they coincide with the annihilator of the adjoint operator (L(m)
λ )∗,

Im (L(m)
λ ) = Ker ((L(m)

λ )∗)⊥.

From Theorem 5.1, ψ ∈ Im [(A − λI)m] iff R(m)
λ (ψ) ∈ Im (L(m)

λ ), thus
ψ ∈ Im [(A− λI)m] iff

< Y ∗,R(m)
λ (ψ) >= 0 for all Y ∗ ∈ Ker ((L(m)

λ )∗).

By using the formal duality, for Y ∗ = (y∗0, . . . , y
∗
m−1)

T ∈ (X∗)m one
proves that

< Y ∗,R(m)
λ (ψ) >

= −
m−1∑
j=0

< y∗j , L
(∫ θ

0
eλ(θ−ξ) (θ − ξ)m−j−1

(m− j − 1)!
ψ(ξ)dξ

)
> + < y∗m−1, ψ(0) >

=
m−1∑
j=0

<< e−λs (−s)m−j−1

(m− j − 1)!
y∗j , ψ >> .

Using again Theorem 5.1, we deduce that α ∈ Ker [(A∗ − λI)m] if and
only if

α =
m−1∑
j=0

e−λs (−s)m−j−1

(m− j − 1)!
y∗j ,

with Y ∗ = (y∗0, . . . , y
∗
m−1)

T ∈ Ker ((L(m)
λ )∗). The above arguments im-

ply that ψ ∈ Ker [(A − λI)m] if and only if << α, ψ >>= 0 for all
α ∈ Ker [(A∗ − λI)m].

From the Fredholm alternative result in Theorem 5.6, we denote
Im [(A − λI)m] = Ker [(A∗ − λI)m]⊥, where the orthogonality “⊥” is
relative to the formal duality << ·, · >>. For the particular case of m
being the ascent of A − λI, i.e., Ker [(A − λI)m] = Mλ(A), from (5.4)
we obtain the decomposition of the phase space C by λ ∈ σ(A) given as

C = Pλ ⊕Qλ, (5.10)

where Pλ :=Mλ(A) and Qλ :=
[
Mλ(A∗)

]⊥
. It is straightforward to gen-

eralize this decomposition to a nonempty finite set Λ = {λ1, . . . , λs} ⊂
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σ(A). For applications to bifurcation problems, we will as usual fix
Λ = {λ ∈ σ(A) : Reλ = 0}. The decompositions (5.10), λ ∈ Λ, yield a
decomposition of C by Λ as

C = P ⊕Q, (5.11)

where

P = Mλ1(A)⊕ · · · ⊕Mλs(A)

Q =
[
P ∗]⊥ = {ϕ ∈ C : << α, ϕ >>= 0, for all ∈ P ∗}

and
P ∗ =Mλ1(A

∗)⊕ · · · ⊕Mλs(A
∗).

Clearly P, Q are invariant subspaces under A and (5.2). One also proves
that for any m, r ∈ N, if λ, µ ∈ σ(A) and λ 
= µ, then << α, ϕ >>= 0
for all α ∈ Ker [(A∗ − λI)m] and ϕ ∈ Ker [(A − µI)r]. By using the
Fredholm alternative result, it is therefore possible to choose normalized
bases Φ, Ψ for P, P ∗,

Φ = (Φλ1 , . . . ,Φλs), P = span Φ

Ψ =


Ψλ1

. . .
Ψλs


 , P ∗ = span ΨΛ

where p = dimP = dimP ∗, such that << Ψ, Φ >>= Ip.

5.2 Normal forms on centre manifolds
Consider now Eq. (5.1), which can be interpreted as a perturbation

of (5.2), and assume that Λ = {λ ∈ σ(A) : Reλ = 0} is nonempty. With
the above notations, P is the centre space for (5.2), and p = dimP .
Assuming F is a C1 function, in [69], the existence of a C1-smooth p-
dimensional centre manifold for (5.2) tangent to P at zero was proven.
The following centre manifold theorem states that actually the centre
manifold is Ck-smooth.
Theorem 5.7. [43, 69] For (5.1) with F a Ck (k ≥ 1) function, there is
a centre manifold Wc = {ϕ ∈ C : ϕ = Φx + h(x), x ∈ V }, where V is a
neighbourhood of 0 ∈ R

p, and h : V → Q is a Ck-smooth function such
that h(0) = 0, Dh(0) = 0.

By using the decomposition (5.11), on Wc the flow is given by the
ODE

ẋ = Bx+ < Ψ(0), F (Φx + h(x)) >, x ∈ V,

where Φ, Ψ are normalized dual bases for bases of P, P ∗, and B is the
p× p matrix such that Φ̇ = ΦB,−Ψ̇ = BΨ.
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Let Eq. (5.1) be written as the abstract ODE (4.6) in the enlarged
phase space BC introduced in Section 4. Recall the definition of the
extension Ã of the infinitesimal generator A. Define now an extension
of the canonical projection C = P ⊕Q→ P ,

π : BC → P, π(ϕ + X0α) = Φ
(

<< Ψ, ϕ >> + < Ψ(0), α >
)
.

Again, π commutes with Ã on C1
0 = D(Ã). Hence BC is decomposed

by Λ as
BC = P ⊕Ker π. (5.12)

For v(t) ∈ C1
0 decomposed according to (5.12), v(t) = Φx(t) + y(t) with

x(t) =<< Ψ, v(t) >>∈ R
p, y(t) = (I−π)v(t) ∈ Ker π∩C1

0 = Q∩C1
0 :=

Q1, Eq. (4.6) is equivalent to the system
{

ẋ = Bx+ < Ψ(0), F (Φx + y) >

ẏ = AQ1y + (I − π)X0F (Φx + y)
(5.13)

where AQ1 = Ã|Q1 is as in Section 4.
The algorithm of n.f. now follows along lines similar to the ones in

Section 2. Writing the formal Taylor expansion of F ,

F (v) =
∑
j≥2

1
j!

Fj(v), v ∈ C,

system (5.13) becomes
{

ẋ = Bx +
∑

j≥2
1
j!f

1
j (x, y)

ẏ = AQ1y +
∑

j≥2
1
j!f

2
j (x, y)

where now the terms of order j are given by

f1
j =< Ψ(0), F (Φx + y) >, f2

j = (I − π)X0F (Φx + y). (5.14)

At each step j ≥ 2, a change of variables of the form

(x, y) = (x̄, ȳ) +
1
j!

(U1
j (x̄), U2

j (x̄)),

(U1
j ∈ V p

j (Rp), U2
j ∈ V p

j (Ker π)) is performed, so that all the non-
resonant terms of degree j vanish in the transformed equation. Formally,
the operators appearing in the n.f. process are still given by (2.13); how-
ever the operators π and AQ1 are as defined in this subsection. Of course,
for these operators, results similar to the ones proven for the case of n.f.
for FDEs in R

n must be established. See [39] for complete proofs.
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5.3 A reaction-diffusion equation with delay
and Dirichlet conditions

For the Hutchinson equation with diffusion,

∂U(t, x)
∂t

=
∂2U(t, x)

∂x2
+ kU(t, x)[1− U(t− r, x)], t > 0, x ∈ (0, π),

(5.15)
where k > 0 and r > 0, we consider now Dirichlet conditions

U(t, 0) = U(t, π) = 0, t ≥ 0. (5.16)

For (5.15) with Neumann conditions ∂U
∂x (0, t) = ∂U

∂x (π, t) = 0, t ≥ 0,
U(x, t) ≡ 1 is the unique positive steady state. In this case, the transla-
tion u = U − 1 transforms (5.15) into

∂u(x, t)
∂t

=
∂2u(x, t))

∂x2
− ku(x, t− r)[1 + u(x, t)], t ≥ 0, x ∈ (0, π),

already studied in Example 4.3.
Model (5.15)-(5.16) was first studied by Green and Stech [50]. In

[50], it was proven that the equilibrium U = 0 is a global attractor of
all positive solutions if k ≤ 1; for k > 1, U = 0 becomes unstable, and
there is a unique positive spatially nonconstant equilibrium Uk, which is
locally stable if rk max{Uk(x) : x ∈ [0, π]} < 1. This stability criterion
was improved to rk max{Uk(x) : x ∈ [0, π]} < π/2 in [65]. In [23], the
authors showed that for k − 1 > 0 small, there exists r(k) > 0 such
that Uk is locally stable if the delay r is less than r(k), and unstable for
r > r(k). They also proved that there is a sequence (rkn)n∈ν0 of Hopf
bifurcation points, where rk0 = r(k) is the first bifurcation point.

The study of (5.15) is particularly difficult when Dirichlet condi-
tions (5.16) are assumed. The main problem derives from the fact that,
since the equilibria Uk(x) are spatially nonconstant, the characteristic
equation associated with the linearization about Uk(x) is a second order
differential equation with nonconstant coefficients, subject to constraints
given by the boundary conditions. In fact, the characteristic equation is
given by

∆(k, λ, r)y = 0, y ∈ H2
0 \ {0}, (5.17)

where
∆(k, λ, r) = D2 + k(1− Uk)− ke−λrUk − λ,

with D2 = ∂2

∂x2 , X = L2[0, π], and H2
0 = H2

0 [0, π] = {y ∈ X | ẏ, ÿ ∈
X, y(0) = y(π) = 0}. In the next statement, we summarize the results
in [23].
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Theorem 5.8. [23] There exists a k∗ > 1 such that for each fixed
k ∈ (1, k∗), the eigenvalue problem (5.17) has a solution (iν, r, y), with
ν ≥ 0, r > 0, y ∈ H2

0 \ {0}, if and only if

ν = νk, r = rkn , y = cyk (c 
= 0), n ∈ N0,

where
νk = (k − 1)hk, with hk → 1 as k → 1+,

rkn =
θk + 2nπ

νk
, θk →

π

2
as k → 1+,

yk → sin(·) in L2[0, π] as k → 1+.

Furthermore, the characteristic values λ = iνk are simple roots of (5.17)
for r = rkn , and for k ∈ (1, k∗) a Hopf bifurcation arises from the
equilibrium Uk as the delay r increases and crosses the critical points
r = rkn , n ∈ N0.

In the above theorem, we emphasize that the stationary solutions
Uk, the eingenvalues iνk,−iνk, the eigenvectors yk, ȳk, and the critical
values rkn , n ∈ N0, are all known only implicitly.

The aim now is to determine the stability of the periodic solutions
near the positive steady state Uk arising from Hopf, as the delay crosses
rkn , n ∈ N0. In [23] it was stated without proof that these periodic
solutions are stable on the centre manifold. The proof of this statement
was given in [42] by using n.f. techniques, where details of the results
below can be found.

Fix k > 1. Since we want to use the delay r as the bifurcating
parameter, it is convenient to normalize the delay by the time-scaling,
Ū(t, x) = U(rt, x), and choose C := C([−1, 0]; X) as the phase space.
After translating Uk to the origin, for u(t) = Ū(t, ·) − Uk ∈ X, (5.15)-
(5.16) are written in C as

u̇(t) = rD2u(t) + Lr(ut) + f(ut, r), (t ≥ 0) (5.18)

where for k > 1 fixed we denote

Lr(ϕ) = rk[(1−Uk)ϕ(0)−Ukϕ(−1)], f(ϕ, r) = −rkϕ(0)ϕ(−1), ϕ ∈ C.

The linearized equation around the equilibrium Uk is given by

u̇(t) = rD2u(t) + Lr(ut), (5.19)

whose solution operator has infinitesimal generator Ar defined by

Arφ = φ̇,

D(Ar) = {φ ∈ C1([−r, 0]; X) : φ(0) ∈ H2
0 , φ̇(0) = r[D2 + k(1 − Uk)]φ(0) − rkUkφ(−r)}.
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Due to the time-scaling, the characteristic equation for (5.19) becomes

∆(k, λ, r)y = 0, y ∈ H2
0 \ {0}

∆(k, λ, r) = r[D2 + k(1− Uk)− ke−λUk]− λ.
(5.20)

We now describe briefly the framework for the application of the
n.f. method. One must compute the n.f. for the 2-dimensional ODE
giving the flow on the centre manifold for (5.18) at the bifurcating points
r = rkn , n ∈ N0.

Let k > 1 and n ∈ N0 be fixed. For r = rkn , set Λ = Λk,n as the set
of eigenvalues on the imaginary axis,

Λ = {iλkn ,−iλkn},

and decompose C = P ⊕ Q and BC = P ⊕Ker π by Λ via the formal
adjoint theory in Section 5.1. Consider the scaling r = rkn + α, and
write (5.18) as

u̇(t) = rknD2u(t) + Lrkn
ut + F (ut, α), (5.21)

where
Lrkn

(ϕ) = rknk[(1− Uk)ϕ(0)− Ukϕ(−1)],

F (ϕ, α) = αD2ϕ(0) + Lα(ϕ) + f(ϕ, rkn + α),

For the Taylor expansion F (ut, α) = 1
2F2(ut, α) + 1

3!F3(ut, α), we have
F2(ut, α) = 2α[D2u(t)+ k(1−Uk)u(t)− kUku(t− 1)]− krknu(t)u(t− 1),
F3(ut, α) = −3!kαu(t)u(t− 1). For the linearization u̇(t) = rknD2u(t) +
Lrkn

ut, we can choose normalized dual bases Φ, Ψ for P, P ∗ as

P = span Φ, Φ(θ) = [φ1(θ) φ2(θ)] = [yke
iλknθ ȳke

−iλknθ] (−1 ≤ θ ≤ 0)

P ∗ = span Ψ, Ψ(s) =
(

ψ1(s)
ψ2(s)

)
=

(
1

Skn
yke

−iλkns

1
Skn

ȳke
iλkns

)
(0 ≤ s ≤ 1),

where
Skn =

∫ π

0
[1− krkne−iθkUk(x)]y2

k(x)dx.

With the usual notations, in BC decomposed by Λ, (5.21) is written as
{

ẋ = Bx+ < Ψ(0), F (Φx + y, α) >

ẏ = ÃQ1y + (I − π)X0F (Φx + y, α),
(5.22)

where x(t) ∈ C
2, y(t) ∈ Q1 = Q ∩ C1

0 , and B =
(

iλkn 0
0 −iλkn

)
.
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The application of the n.f. method to (5.22) leads to the following
result:
Theorem 5.9. [42] Let k, n be fixed, with k ∈ (1, k∗) and n ∈ N0. The
n.f. up to cubic terms for the flow on the centre manifold of the origin
near α = 0 is given in polar coordinates (ρ, ξ) by

{
ρ̇= K1αρ + K2ρ

3 + O(α2ρ + |(ρ, α)|4)
ξ̇= −σn + O(|(ρ, α)|),

where α = r − rkn , K1 = ReA1, K2 = ReA2,

A1 = A1(k, n) = iνk
1

Skn

< yk, yk >

A2 = A2(k, n) =
1
4
[C1(k, n) + C2(k, n)]

and

C1 = C1(k, n) =
8k2rkn

i

νk

[
1

S2
kn

Re(eiθk )e−iθk < yk, y2
k >< yk, |yk|2 >

− 1

|Skn
|2
(
2(Re(eiθk))2| < yk, |yk|2 > |2 +

1

3
| < yk, ȳ2

k > |2
)]

C2 = C2(k, n) =− 2krkn

Skn

[
< yk, (h11(−1) + h11(0)e−iθk)yk >

+ < yk, (h20(−1) + h20(0)eiθk)ȳk >
]
,

and h20, h11 ∈ Q1 are the solutions of the IVPs, respectively,

ḣ20 − 2iλknh20 = −2krkne−iθk{ 1

Skn

< yk, y2
k > ykeiλkn θ +

1

Skn

< ȳk, y2
k > ȳke−iλkn θ},

ḣ20(0) − rkn{D2h20(0) + k(1 − Uk)h20(0) − kUkh20(−1)} = −2krkne−iθky2
k,

and

ḣ11 = −4krknRe(eiθk){ 1

Skn

< yk, |yk|2 > ykeiλkn θ +
1

Skn

< ȳk, |yk|2 > ȳke−iλkn θ}

ḣ11(0) − rkn{D2h11(0) + k(1 − Uk)h11(0) − kUkh11(−1)} = −4krknRe(eiθk)|yk|2.

Note that the coefficients K1 = K1(k, n) and K2 = K2(k, n) depend
on k, n and are given in terms of the coefficients of the original equation.
The first equation of the system for both h20, h11 is a linear ODE that can
be easily solved. However, the second equation requires the resolution of
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a PDE with non-constant coefficients and Dirichlet boundary conditions
on [0, π]. Since the solutions cannot be explicitly computed, the signs
of the meaningful constants K1 and K2 have to determined by indirect
methods. This requires hard computations, whose conclusions we give
in the next theorem. Note that these results hold for k > 1 close to 1.
An interesting question is whether the results persist for large k > 1.
Theorem 5.10. [42] Fix k ∈ (1, k∗) and n ∈ N0. Then for 0 < k −
1 << 1, K1(k, n) > 0 and K2(k, n) < 0. Therefore a supercritical Hopf
bifurcations occurs at r = rkn , with stable non-trivial periodic solutions
on the centre manifold.
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Ann. of Math Studies 17, Princeton University Press, New Jersey,
(1947).

[75] J. Mallet-Paret, Generic periodic solutions of functional differential
equation. J. Differential Equations 25 (1977), 163–183.

[76] J.E. Marsden and M. McCracken, The Hopf bifurcation and its
applications, Springer-Verlag, New York, (1976).

[77] M.C. Memory, Stable and unstable manifolds for partial functional
differential equations, Nonlinear Anal. TMA 16 (1991), 131–142.

[78] P. Negrini and L. Salvadori, Attractivity and Hopf bifurcation. Non-
linear Anal. T.M.A 3 (1979).

280



REFERENCES

[79] F. Neubrander, Integrated semigroups and their applications to the
abstract Cauchy problems, Pacific J. Math. 135 (1988), 111–155.

[80] R.D. Nussbaum, Periodic solutions of some nonlinear functional
differential equations, Ann. Mat. Pura Appl. 101 (1974), 263–338.

[81] R.D. Nussbaum, Periodic solutions of some nonlinear functional
differential equations, II, J. Differential Equations 14 (1973), 360–
394.

[82] R. Nussbaum, The range of periods of periodic solutions of x’(t)=-
αf(x(t− 1)), J. Math. Anal. Appl. 58 (1977).

[83] R. Nussbaum, A global Hopf bifurcation theorem of functional dif-
ferential systems, Trans. Amer. Math. Soc. 238 (1978), 139–164.

[84] A. Pazy, “Semigroups of Linear Operators and Apllications to par-
tial differential Equations”, Springer-Verlag, New York, 1983.

[85] W.M. Ruess, Existence and stability of solutions to partial func-
tional differential equations with delay, Advances in Diff. Eqs. 4
(1999), 843–876.

[86] W.M. Ruess and W.H. Summers, Linearized stability for abstract
differential equations with delay, J. Math. Anal. Appl. 198 (1996),
310–336.

[87] H.W. Stech, The Hopf bifurcation: a stability result and applica-
tions, J. Math. Anal. Appl. 109 (1985), 472–491.
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d’Etat de l’Université Mohamed V, Rabat, Maroc (1992).

[89] F. Takens, Unfolding of certain singularity of vector field ; general-
ized Hopf bifurcation, J. Differential Equations 14 (1973), 476–493.

[90] A.E. Taylor and D.C. Lay, “Introduction to Functional Analysis”,
Willey, New York, 1980.

[91] H. Thieme, Integrated semigroups and integrated solutions to ab-
stract cauchy problems, J. Math. Anal. Appl. 152 (1990), 416–447.

[92] C.C. Travis and G.F. Webb, Existence and stability for partial func-
tional differential equations, Trans. Amer. Math. Soc. 200 (1974),
395–418.

281



DELAY DIFFERENTIAL EQUATIONS

[93] C.C. Travis and G.F. Webb, Partial differential equations with de-
viating arguments in the time variable, J. Math. Anal. Appl. 56
(1976), 397–409.

[94] C.C. Travis and G.F. Webb, Existence, stability and compactness
in the α-norm for partial functional differential equations, Trans.
Amer. Math. Soc. 240 (1978), 129–143.

[95] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite
dimension, Dynam. Report. Expositions Dynam. Systems (N.S.) 1
(1992).

[96] H.-O. Walther, A theorem on the amplitudes of periodic solutions
of differential delay equations with application to bifurcation, J.
Differential Equations 29 (1978), 396–404.

[97] H.O. Walther, Bifurcation from solutions in functional differential
equations. Math. Z. 182 (1983).

[98] G.F. Webb, “Theory of Nonlinear Age-Dependent Population Dy-
namics”, Marcel Dekker, New York, (1985).

[99] M. Weedermann, Normal forms for neutral functional differential
equations, Fields Institute Communications 29 (2001), 361–368.

[100] E.M. Wright, A non linear differential difference equation, J. Reine
Angew. Math. 194 (1955), 66–87.

[101] J. Wu, “Theory and Applications of Partial Functional Differential
Equations”, Springer-Verlag, New York, 1996.

[102] J. Wu, T. Faria and Y. S. Huang, Synchronization and stable
phase-locking in a network of neurons with memory, Mathemati-
cal and Computer Modelling 30 (1999), 117–138.

[103] D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-
prey system with nonmonotonic functional response, J. Differential
Equations 176 (2001), 495–510.

[104] K. Yoshida, The Hopf bifurcation and its stability for semilinear
diffusion equations with time delay arising in ecology, Hiroshima
Math. J. 12 (1982), 321–348.

282



III

FUNCTIONAL DIFFERENTIAL
EQUATIONS IN INFINITE
DIMENSIONAL SPACES



Chapter 8

A THEORY OF LINEAR DELAY
DIFFERENTIAL EQUATIONS IN INFINITE
DIMENSIONAL SPACES

O. Arino
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1. Introduction
This section is intended to motivate the interest in abstract differ-

ential delay equations (DDE) by means of examples. When thinking
about extending functional differential equations from finite to infinite
dimensions, one of the first and main examples which comes to mind is
the case of evolution equations combining diffusion and delayed reaction.
This is the situation in the first example that we are going to present,
which is a model proposed by A. Calsina and O. El Idrissi ([11]), which
joins spatial diffusion with demographic reaction.

But it is not the only situation one can think of: we also present
a second example which arises from a model of cell proliferation first
introduced by M. Kimmel et al. in [24]. Several modified versions of
this model were proposed and studied later. In most treatments, it
is viewed as an integro-difference equation and solved using a step-by-
step procedure ([2], [3], [36]). While this technique offers the advantage
of allowing explicit integration in terms of the initial function, it has
also some deficiencies specially when looking at nonlinear perturbations
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and dynamical features, which are better studied in the framework of
differential equations than in the one of integral equations.

1.1 A model of fish population dynamics with
spatial diffusion ([11])

Let us consider a fish population divided into two stages, young and
adults, distributed within the water column, which is represented by an
interval of the real line. A crucial assumption is that only the young-
sters may move in the water column randomly, their movement being
described by a diffusion coefficient. The adults are structured by the
position they had when turning adult.

We introduce the following variables: t ∈ R is the chronological time,
a ∈ [0, l] is the age, where l < +∞ is the age of maturity, and z ∈ [0, z∗]
is the position in the water column, where z∗ is the depth, oriented
positively from the water surface to the bottom. Then, the model is
formulated in terms of the following state variables:

i) u(a, t, z) is the density of young fish of age a, at depth z, at time
t.

ii) v(t, z) is the density of the adult population at depth z at time t.

iii) r(t) is the maximum available resource at time t.

The system of equations satisfied by u, v, r, reads as:


∂u

∂a
(a, t, z) +

∂u

∂t
(a, t, z) =

∂

∂z

[
k(z)

∂u

∂z
(a, t, z)

]
−m1(r(t))u(a, t, z)

∂v

∂t
(t, z) = u(l, t, z)−m2(r(t))v(t, z)

r′(t) =

(
g(r(t))− h

[
L

(∫ l

0

∫ z∗

0
u(a, t, z) dadz, v(t, .)

)])
r(t)

u(0, t, z) =
∫ z∗

0
b(z, ξ)v(t, ξ) dξ

∂u

∂z
(a, t, 0) = 0

u(a, 0, z) = u0(a, z) ; v(0, z) = v0(z) ; r(0) = r0.
(1.1)

In the above system:

The function k(z) represents the mixing coefficient due to water
turbulence. It is continuous, positive on [0, z∗) and k(z∗) = 0.

The functions mi(r) are mortality rates for the young fish (i = 1)
and the adults (i = 2). They are smooth and decreasing with a
positive infimum.
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The function b = b(z, ξ) is the fertility rate of the adults combined
with a mixing process of the newborns throughout the water col-
umn: it can be for example that, for some physiological reason,
the eggs produced at any level have a density lower than the water
and go to the surface as a result of Archimedes law.

The function g(r) is smooth and decreasing and changes signs at
some critical value rc. It may be interpreted as the logistic which
would govern the dynamics of the resource in the absence of con-
sumption by fish.

L is a positive linear functional which gives the total potential pres-
sure of the fish on the resource, while the function h is a bounded
smooth and increasing function, with h(0) = 0, which models a
limiting effect on resource accessibility caused by overcrowding.

By concentrating on age cohorts, i.e. groups of individuals born at the
same time, and using the representation of the solution to the Cauchy
problem for the parabolic equation

∂w

∂t
(t, z) =

∂

∂z
[k(z)w(t, z)]

∂w

∂z
(t, 0) = 0

w(0, z) = w0(z)

in terms of the fundamental solution of the problem, namely ([89]):

w(t, z) =
∫ z∗

0
K(t, z, ξ)w0(ξ) dξ

system (1.1) leads to the following



∂v

∂t
(t, z) = e−

∫ 0
−l

m1(r(t+s)) ds

∫ z∗

0

K(l, z, ξ)

(∫ z∗

0

b(ξ, ζ)v(t− l, ζ) dζ

)
dξ

−m2(r(t))v(t, z) , for t > l
r′(t) = (g(r(t))− h[L(p(t), v(t, .))])r(t) , for t > l

v(t, z) = v0(t, z) , for 0 ≤ t ≤ l
r(t) = r0(t) , for 0 ≤ t ≤ l

(1.2)
where p(t) is given by

p(t) =

∫ l

0

∫ z∗

0

e−
∫ 0
−l m1(rt(s)) ds

[∫ z∗

0

K(a, z, ξ)

(∫ z∗

0

b(ξ, ζ)v(t − a, ζ) dζ

)
dξ

]
dzda.
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Looking at the right hand side of the two equations in system (1.2), we
can see that each of them is made up of a combination of expressions
involving the values of the unknown functions v or r either at time t or
at some earlier time: the integral in the exponential term is expressed in
terms of the values of r over the interval [t− l, t] while the other integral
uses v(t− l, ζ). Under some reasonable assumptions on the coefficients,
these quantities are smooth functions of v(t, .) or v(t− ., .) and r(t− .).
It is in fact a delay differential equation defined on a space of functions.
The difference with the initial formulation is that system (1.1) involves
partial derivatives with respect to z and so requires additional regularity
on the functions v and r to make sense.

Notice that (1.1) has been formulated from t = 0 while (1.2) only
holds for t > l. This means that if we were to solve the equation with
initial value given at t = 0, we could not do it using system (1.2). We
would have to use (1.1) to build up the solution on the interval [0, l] and
we would then be able to solve the equation for t > l by using (1.2).
On the other hand, we can always solve (1.2) directly, choosing a pair
of functions v0, r0 arbitrarily. Of course, in most cases, what we will
obtain is not a solution of (1.1). Only some of the solutions of (1.2) are
also solutions of (1.1).

So what is the point of looking at (1.2) when the problem to be solved
is (1.1)? There are at least two reasons: first of all, the Cauchy problem
associated with system (1.2) is much simpler than the one for (1.1). It
is a system of delay differential equations: even if it is formulated in a
space of infinite dimensions, it does not involve an unbounded opera-
tor and can be solved, at least theoretically, by setting up a fixed point
problem which can be shown to be a strict contraction for time small
enough. The second and main reason is that real systems are normally
expected to converge asymptotically towards their attractor where the
transients entailed by a particular initial condition vanish: in this re-
spect, systems (1.1) and (1.2) are indistinguishable, while the study of
qualitative properties of (1.2) is, at least conceptually, easier than that
of a system of partial differential equations.

1.2 An abstract differential equation arising
from cell population dynamics

In the model elaborated by M. Kimmel et al. and reported in [24],
cells are classified according to some constituent which, after division
(by mitosis) is divided in some stochastic way between the two daughter
cells. The model considers the cells only at two distinct stages:
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a) At mitosis, the number of cells going through mitosis (that is, the
mother cells), in some time interval [t1, t2], with a size in some
size interval [x1, x2], is determined in terms of a density function
m(t, x): ∫ t2

t1

∫ x2

x1

m(t, x) dtdx.

b) At the beginning of the cycle, just after division, the number of
cells born during the time interval [t1, t2], with a size in some size
interval [x1, x2] is determined in terms of a density function n(t, x):

∫ t2

t1

∫ x2

x1

n(t, x) dtdx.

The distribution of sizes from mother to daughter is modelled by a con-
ditional probability density, a function f(x, y) such that:

∫ x2

x1

f(x, y) dx = probability for a daughter cell born from a mother cell

of size y to have size between x1 and x2.

Other conditions on f include a support property: it is assumed that
there exist d1, d2, 0 < d1 < 1/2 < d2 < 1, such that

f(x, y) > 0 if and only if d1y < x < d2y.

The model is completed by two functions describing respectively:

1) The duration of a cycle in terms of the initial size

T = Ψ(x),

where Ψ is positive, decreasing, Ψ(+∞) > 0, continuously differ-
entiable and such that infa≤x≤b |Ψ′(x)| > 0 on each interval [a, b],
0 < a ≤ b < +∞.

2) The size at division in terms of the initial size

y = Φ(x),

where Φ is increasing, Φ(x) > x for x > 0, Φ is continuously
differentiable and such that infa≤x≤b Φ′(x) > 0 on each interval
[a, b], 0 < a ≤ b < +∞.
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From these basic assumptions, one can derive two fundamental equa-
tions relating the state functions n and m (see [24]). Eliminating m from
the two equations leads to

n(t, x) = 2
∫ +∞

0
f (x, Φ(y)) n (t−Ψ(y), y) dy. (1.3)

The assumption on the support of f induces a support property for n;
that is, if we assume that n(s, x) = 0 for all x outside an interval [A1, A2],
0 < A1 ≤ A2 < +∞, and s < t, then equation (1.3) yields:

n(t, x) = 0 for x < d1Φ(A1) or x > d2Φ(A2).

Assuming that

d1Φ′(0) > 1 and d2 lim sup
x→+∞

Φ(x)
x

< 1,

we deduce from the above remark that for any A1 > 0 small enough,
and A2 < +∞, large enough, the size interval [A1, A2] is invariant, that
is, all generations of cells born from cells with initial size in [A1, A2] will
have size at birth in the same interval. Note that for such cells the cell
cycle length is bounded above by the number

r = Ψ(A1). (1.4)

Assuming all the above conditions hold, choosing A1, A2 as we just said,
r being given by formula (1.4), it was proved in [24] that equation (1.3)
yields a positive semigroup in the space

E = L1 ((−r, 0)× (A1, A2)) ,

that is, the one parameter family of maps which to any initial function
p ∈ E associates the function denoted nt, t ≥ 0:

nt(θ, x) := n(t + θ, x) , −r ≤ θ < 0 , x ∈ (A1, A2),

with n0 = p, where n verifies equation (1.3)) for all t ≥ 0, determines a
strongly continuous semigroup of positive operators on E ([84]) which,
moreover, are compact for t large enough.

As a brief comment on the original proof of this result, let us point
out that the right-hand side of (1.3) is explicitly determined in terms
of the initial function p, for all 0 < t < Ψ(A2). So, the solution can
be computed on the set (0, Ψ(A2)) × (A1, A2) by a straight integration
of the initial function. Then, taking nψ(A2) as a new initial function,
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the solution can be computed on (Ψ(A2), 2Ψ(A2)) × (A1, A2); then, by
induction, it can be computed on each set (kΨ(A2), (k + 1)Ψ(A2)) ×
(A1, A2) for each k ≥ 1.

Note that the principle of integration of such equations is the same
as in the case of difference equations. Thus, computing the solutions is
almost a trivial task, the only not completely obvious thing being that
the function defined by putting end to end the pieces corresponding to
each set (kΨ(A2), (k + 1)Ψ(A2))× (A1, A2) verifies equation (1.3) for all
t > 0.

In [3], [4], [5], nonlinear extensions of equation (1.3) were introduced.
We will mention only one such model ([5]):

n(t, x) = 2λσ (N(t− τ))
∫ +∞

0
f (x, Φ(y)) n (t−Ψ(y), y) dy, (1.5)

where

N(t) =
∫ +∞

0

(∫ t

t−Ψ(x)
n(s, x) ds

)
dx, (1.6)

N(t) represents the number of cells present at time t. The expression
λσ (N(t− τ)) models a control mechanism which can be interpreted as a
rate of defective division. This rate is shaped by the function σ, assumed
to be C1, and decreasing, 0 < σ(x) < 1; λ is a coefficient of magnitude
0 < λ < 1. As λ increases from 0 to 1, σ being unchanged, stability
properties of equilibria of equation (1.5) may change. In [3], the case
τ = 0 was studied. It was proved that for λ less than some value, the
solutions converge to zero, while, above this value, zero loses its stability
and a new global equilibrium arises. In the case τ > 0, the problem is
far more complicated. In [5] some global results regarding the existence
of slowly oscillating periodic solutions were obtained, in very restricted
situations.

A reasonable conjecture is that these large oscillations are preceded
by small periodic oscillations taking place in the vicinity of the nontrivial
equilibrium, due to a local Hopf bifurcation.

One of the main motivations of our effort in the direction of abstract
delay equations lies in the fact that we aimed at investigating the above
conjecture. For this purpose, the difference equation approach is not
well-suited.

291



DELAY DIFFERENTIAL EQUATIONS

1.3 From integro-difference to abstract delay
differential equations ([8])

1.3.1 The linear equation. We will now derive two differ-
ential equations from equation (1.3). The first one leads to a partial
differential equation with retarded arguments, a retarded version of the
Lotka-Volterra equation of demography ([42]). The theory underlying
such an equation is the theory of abstract delay differential equations
with unbounded operators. Although it is probably the best framework
in the sense that it leads to the same semigroup as equation (1.3), it
involves a theory that is not available yet. The second one is a differ-
ential equation with retarded arguments and a bounded operator. It
fits into the framework within which the extension of the theory of de-
lay differential equations will be developed later ([58], [7]). The main
shortcoming of the second equation is that it leads to a dynamical sys-
tem much bigger than the one under study, one in which the solutions
of interest determine a proper subset. However, some of the dynamical
properties of the larger system also hold for the smaller one, for example,
stability and bifurcation of equilibria in the larger system reflect similar
properties for the smaller one. This fact amply justifies in our view the
study of this system which, on the other hand, is much simpler than the
smaller one.

Retarded partial differential equation formulation of equa-
tion (1.3).– Consider a solution n of equation (1.3). Assume that n can
be differentiated with respect to time and size. We will use the notations
∂1n (resp. ∂2n) to denote the function obtained by taking the partial
derivative of n with respect to its first variable (resp. the second one).
The computations we will perform are mostly formal. They could be
justified afterwards.

Taking the derivative with respect to t on both sides of equation (1.3),
we arrive at

∂n

∂t
= 2
∫ +∞

0
f (x,Φ(y)) (∂1n) (t−Ψ(y), y) dy.

We have

∂

∂y
[n (t−Ψ(y), y)] = −Ψ′(y)∂1n (t−Ψ(y), y) + ∂2n (t−Ψ(y), y) ,

from which we deduce the following expression for ∂1n:

(∂1n) (t−Ψ(y), y) = − 1
Ψ′(y)

[
∂

∂y
[n (t−Ψ(y), y)]− ∂2n (t−Ψ(y), y)

]
.
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Inserting the right-hand side of the above in the expression of ∂n/∂t, we
obtain

∂n

∂t
(t, x) = −2

∫ +∞

0

f (x,Φ(y))
Ψ′(y)

∂

∂y
[n (t−Ψ(y), y)] dy

+2
∫ +∞

0

f (x,Φ(y))
Ψ′(y)

∂2n (t−Ψ(y), y) dy.

At this point, we remind the reader that we work with functions n(t, x)
whose support in x is contained in [A1, A2], that is, n(t, x) = 0 for x < A1

or x > A2.
If we assume further that

∂

∂y

[
f (x,Φ(y))

Ψ′(y)

]
exists inL1

(
(A1, A2)2

)
, (1.7)

then we can use integration by parts on the first integral in the above
expression of ∂n/∂t, which yields the following

∂n

∂t
(t, x) = 2

∫ +∞

0

∂

∂y

[
f (x,Φ(y))

Ψ′(y)

]
n (t−Ψ(y), y) dy

+2
∫ +∞

0

f (x, Φ(y))
Ψ′(y)

∂2n (t−Ψ(y), y) dy. (1.8)

If, conversely, we start from equation (1.7), and integrate it to get back
to equation (1.3), then, in fact, we obtain:

n(t, x)− n(0, x) = 2
∫ +∞

0
f (x, Φ(y)) [n (t−Ψ(y), y)− n (−Ψ(y), y)] dy.

So, in order to come back to equation (1.3), it is necessary to complement
the partial differential equation with the boundary condition

n(0, x) = 2
∫ +∞

0
f (x,Φ(y)) n (−Ψ(y), y) dy. (1.9)

Equation (1.7) is a sort of functional transport equation, an extension
of the Lotka-von Foerster equation for age-dependent populations ([42]),
or the Bell-Anderson equation ([13]) for size-dependent cell populations.
The term

2
∫ +∞

0

f (x, Φ(y))
Ψ′(y)

∂2n (t−Ψ(y), y) dy

corresponds to ∂l/∂a(t, a) in the classical Sharpe-Lotka model of de-
mography, or ∂/∂x (g(x)p(t, x)) in the cell population model ([13]). The
quantity

−2
∫ +∞

0

∂

∂y

[
f (x,Φ(y))
|Ψ′(y)|

]
n (t−Ψ(y), y) dy
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accounts for the mortality term.
We summarize the relationship between the integro-difference equa-

tion and the P.D.E. as follows:

Proposition 36 Assume all the above stated conditions on f , Φ and
Ψ, including condition given by formula ( 1.7). Then, equation ( 1.3) is
equivalent to the system ( 1.7)-( 1.9).

Delay differential equation formulation of equation (1.3).– If
in equation (1.3) we let t > r, we can express n (t−Ψ(y), y) in integral
form. This leads to the equation

n(t, x) = 4
∫ +∞

0

∫ +∞

0
f (x,Φ(y)) f (y, Φ(z)) n (t−Ψ(y)−Ψ(z), z) dzdy.

(1.10)
Assuming that n can be differentiated with respect to t, and taking the
derivative of (1.10) on both sides, we arrive at

∂n

∂t
= 4
∫ +∞

0

∫ +∞

0
f (x,Φ(y)) f (y, Φ(z)) ∂1n (t−Ψ(y)−Ψ(z), z) dzdy.

The quantity ∂1n (t−Ψ(y)−Ψ(z), z) can be interpreted as the deriva-
tive with respect to y:

∂1n (t−Ψ(y)−Ψ(z), z) = − 1
Ψ′(y)

∂

∂y
[n (t−Ψ(y)−Ψ(z), z)] .

Once again, integration by parts using the fact that n(t, ·) has support
in [A1, A2], yields the desired equation:

∂n

∂t
(t, x) = 4

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
n (t − Ψ(y) − Ψ(z), z) dzdy,

(1.11)

provided that we assume

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
exists in L1

(
(A1, A2)3

)
.

Denoting L the linear operator:

L : C
(
[−2r, 0]; L1(A1, A2)

)
−→ L1(A1, A2)

defined by the right-hand side of equation (1.11):

(Lp)(x) := 4

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
p (−Ψ(y) − Ψ(z), z) dzdy,
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equation (1.11) reads

∂n

∂t
= L(nt). (1.12)

Equation (1.12) is an example of what we call abstract linear delay dif-
ferential equations. If, conversely, n is a solution of (1.12), integrating
the equation on both sides from 0 to t we obtain, after integration by
parts:

n(t, x) − n(0, x) = 4

∫ +∞

0

∫ +∞

0
f (x, Φ(y)) f (y, Φ(z)) n (t − Ψ(y) − Ψ(z), z) dzdy

−4

∫ +∞

0

∫ +∞

0
f (x, Φ(y)) f (y, Φ(z)) n (−Ψ(y) − Ψ(z), z) dzdy.

If we assume that

n(0, x) = 4
∫ +∞

0

∫ +∞

0
f (x, Φ(y)) f (y, Φ(z)) n (−Ψ(y)−Ψ(z), z) dzdy ,

(1.13)
then the same equality holds for all t > 0, that is

n(t, x) = 4
∫ +∞

0

∫ +∞

0
f (x, Φ(y)) f (y, Φ(z)) n (t−Ψ(y)−Ψ(z), z) dzdy .

(1.14)
Equation (1.14) is strictly more general, however, than equation (1.3),
and leads to a much bigger set of solutions than the one determined by
(1.3).

A very partial converse result in this respect is the following: if n is a
solution of equation (1.14) and, for some t0, n satisfies (1.3) for all t in
(t0, t0 + r), then n satisfies (1.3) for all t > t0.

1.3.2 Delay differential equation formulation of system (1.5)-
(1.6) . Note that in the case of system (1.5)-(1.6), the maxi-
mum delay is τ + r. If, in equation (1.5) we let t > r, we can express
n (t−Ψ(y), y) in integral form. This leads to the equation:

n(t, x) = 4λ2σ (N(t− τ))
∫ +∞

0

∫ +∞

0
f (x,Φ(y)) f (y, Φ(z))×

×σ (N (t−Ψ(y)− τ))n (t−Ψ(y)−Ψ(z), z) dzdy.(1.15)
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Assuming that n can be differentiated with respect to t, and taking the
derivative with respect to t on both sides of (1.14), we obtain:

∂n

∂t
(t, x) = σ′ (N(t − τ)) Ṅ(t − τ)

n(t, x)

σ (N(t − τ))

+4λ2σ (N(t − τ))

∫ +∞

0

∫ +∞

0
f (x, Φ(y)) f (y, Φ(z)) ×

× ∂

∂t
[σ (N (t − Ψ(y) − τ)) n (t − Ψ(y) − Ψ(z), z)] dzdy. (1.16)

We point out the fact that N can indeed be differentiated, and:

Ṅ(t) =
∫ +∞

0
[n(t, x)− n (t−Ψ(x), x)] dx. (1.17)

We note the same property as in the previous computation:

∂

∂t
[σ(N(t−Ψ(y)− τ))n(t−Ψ(y)−Ψ(z), z)]

= − 1
Ψ′(y)

∂

∂y
[σ (N (t−Ψ(y)− τ)) n (t−Ψ(y)−Ψ(z), z)] .

Integration by parts with respect to y of the last integral on the right-
hand side of (1.15) transforms this integral into

4λ2σ (N(t− τ))
∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x,Φ(y)) f (y, Φ(z))

Ψ′(y)

]
×

×σ (N (t−Ψ(y)− τ))n (t−Ψ(y)−Ψ(z), z) dzdy.

Using the above expression and formula (1.17), equation (1.15) yields
the following

∂n

∂t
(t, x) =

σ′ (N(t − τ))

σ (N(t − τ))
n(t, x)

∫ +∞

0
[n(t − τ, y) − n (t − τ − Ψ(y), y)] dy

+4λ2σ (N(t − τ))

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
×

×σ (N (t − Ψ(y) − τ)) n (t − Ψ(y) − Ψ(z), z) dzdy. (1.18)

Assume that n(t, ·) is defined on R (for example, n is a periodic solution
of (1.5)). In this case, n satisfies equation (1.14). Assuming f bounded
on bounded rectangles, we conclude that n is bounded and continuous
on each set [−T, T ] ×R+, (T > 0), which in particular implies that N
is locally Lipschitz continuous. Assuming moreover that f is C1, it is
possible to write the integral in equation (1.14) in the following way:
∫ A2

A1

∫ t−Ψ(A1)

t−Ψ(A2)
f
(
x,Φ

(
Ψ−1(t− s)

))
f
(
Ψ−1(t− s),Φ(z)

)
×
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×σ (N(s− τ)) n (s−Ψ(z), z) |(Ψ−1)′(t− s)| dsdz ,

which implies that n is locally Lipschitz in t, uniformly in x, in other
words, there exists N , a negligible set of t-values, such that n(t, x) is
differentiable for all t not in N , and all x ∈ (A1, A2). In conclusion, we
have the following

Lemma 32 If n is a solution of ( 1.5), defined for every t in R, then n
is differentiable in t with ∂n/∂t continuous in R×R, satisfying equation
( 1.17).

Equation (1.17) is a nonlinear delay differential equation on the space
L1(A1, A2), with maximum delay equal to 2r + τ . As in the linear case,
it is obvious, by construction, that the solutions of the system (1.5)-(1.6)
are solutions of equation (1.17), but equation (1.17) has a much bigger
set of solutions than system (1.5)-(1.6). The motivation for embedding
the latter system into a bigger one is that the framework of differential
equations seems to be more suited to the study of dynamical features
such as stability than the framework of integral equations.

1.4 The linearized equation of equation (1.17)
near nontrivial steady-states

Equation (1.17) is the most complete of all the equations considered
here. It can be reduced to equation (1.11) by assuming that 2λσ(N) =
1. If the delay τ = 0, we obtain the equation studied in [3]. Our
program regarding equation (1.17) is to start from the steady-states and
investigate their stability and the loss of stability in terms of λ. While
we already know from [3] that stability passes from a constant steady-
state to another one when τ = 0, we expect that in the delay case stable
oscillations may take place. This fact has been shown under several
restrictions in [5]: existence of periodic slowly oscillating solutions has
been demonstrated for a range of values of the parameters. However, the
result is not explicitly related to any bifurcation of steady-state periodic
solution. We believe however that there is a strong possibility that such
a bifurcation occurs at these values of λ where some eigenvalues of the
linearized equation cross the imaginary axis (away from zero).

1.4.1 The steady-state equation. Note that any function
n(x) of x only verifies equation (1.17) trivially. If n = n, we have

N(t) = N =
∫ +∞

0
Ψ(x)n(x) dx.
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From them we will only retain those which are non-negative solutions of
the system (1.5)-(1.6). Equation (1.5) leads to

n(x) = 2λσ(N)
∫ +∞

0
f (x,Φ(y)) n(y) dy.

Integrating the above equation on both sides and using the fact that
f (·, Φ(y)) is a probability density, we obtain

2λσ(N) = 1

and

n(x) =
∫ +∞

0
f (x,Φ(y)) n(y) dy. (1.19)

Equation (1.19) is, notably, dealt with in detail in [2]. It is a typical ex-
ample of application of the Perron-Frobenius theory of positive operators
on ordered Banach spaces.

Equation (1.19) has a unique positive solution n1 such that
∫ +∞
0 n1(x) dx = 1.

In terms of n1, n = kn1, where k is a constant. The constant k satisfies
the relation

2λσ

(
k

∫ +∞

0
Ψ(x)n1(x) dx

)
= 1. (1.20)

Assuming that

σ(0) >
1
2

; σ(+∞) = 0,

equation (1.20) has, for each λ >
1

2σ(0)
, one and only one root k = k(λ).

The function k is increasing.

1.4.2 Linearization of equation (1.17) near (n, N) . The
linearization is obtained by formally differentiating equation (1.17) with
respect to every occurrence of n as if it were an independent variable
and multiplying the result by the same occurrence of the variation ∆n.
This yields the following:

∂

∂t
(∆n)(t, x) =

σ′(N)

σ(N)
n(x)

∫ +∞

0
[(∆n)(t − τ, y) − (∆n)(t − τ − Ψ(y), y)] dy

+4λ2σ(N)

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
×

×
[
σ′(N)∆N(t − Ψ(y) − τ)n(z)

+σ(N)∆n (t − Ψ(y) − Ψ(z), z)
]

dzdy.

298



A theory of linear DDE in infinite dimensional spaces

The equation can be simplified a little bit. In view of relation (1.19),
we have

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
n(z)dzdy =

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) n(y)

Ψ′(y)

]
dy.

This, in turn, leads to
∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
∆N (t − Ψ(y) − τ) n(z) dzdy

=

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) n(y)

Ψ′(y)

]
∆N (t − Ψ(y) − τ) dy

=

∫ +∞

0

f (x, Φ(y)) n(y)∂1(∆N) (t − Ψ(y) − τ) dy

=

∫ +∞

0

f (x, Φ(y)) n(y) ×

×
[∫ +∞

0

[(∆n) (t − Ψ(y) − τ, z) − (∆n) (t − Ψ(y) − Ψ(z) − τ, z)] dz

]
dy.

We arrive at the following equation

∂

∂t
(∆n)(t, x) =

σ′(N)

σ(N)
n(x)

∫ +∞

0
[(∆n)(t − τ, y) − (∆n) (t − τ − Ψ(y), y)] dy

+2λσ′(N)

∫ +∞

0
f (x, Φ(y)) n(y) ×

×
[∫ +∞

0
[(∆n) (t − Ψ(y) − τ, z) − (∆n) (t − Ψ(y) − Ψ(z) − τ, z)] dz

]
dy

+

∫ +∞

0

∫ +∞

0

∂

∂y

[
f (x, Φ(y)) f (y, Φ(z))

Ψ′(y)

]
(∆n) (t − Ψ(y) − Ψ(z), z) dzdy.

(1.21)

1.4.3 Exponential solutions of (1.20) . The study of the
stability of n as a solution of equation (1.17) amounts to the study of
the growth rate of the semigroup associated to equation (1.20). In the
case of a compact or eventually compact semigroup, this amounts to
determining exponential solutions (exp zt)x. Then, the growth rate is
negative if sup Re z < 0, and it is positive if sup Re z > 0. Bifurcation
of equilibria occurs at the values of parameters where the growth rate
changes signs. It can be shown that the semigroup associated to equation
(1.20) is not eventually compact, but its restriction to the elements of
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C ([−r, 0]; X) satisfying (1.13) is. This remark motivates the study of
exponential solutions of equation (1.20).

Let ν(t, x) = eztp(x) be a solution of equation (1.20). Substituting
eztp(x) for ∆n in (1.20) yields

zp(x) = e−zτ σ′(N)

σ(N)
n(x)

∫ A2

A1

(
1 − e−zΨ(y)

)
p(y) dy

+2λσ′(N)

∫ A2

A1

f (x, Φ(y)) n(y) ×

×
[∫ A2

A1

e−z(Ψ(y)+τ)
(
1 − e−zΨ(u)

)
p(u) du

]
dy

+

∫ A2

A1

∫ A2

A1

∂

∂y

[
f (x, Φ(y)) f (y, Φ(u))

Ψ′(y)

]
e−z(Ψ(y)+Ψ(u))p(u)dudy.

(1.22)

To abbreviate, we will call such an equation a spectral equation. Note
that the right-hand side of the above equation vanishes for z = 0. For
this value of z, every function p satisfies the equation. Equation (1.21)
is quite complicated. We will not study it directly. Instead, we will
now introduce the eigenvalue equation associated with the linearization
of equation (1.5). Then, we will show that both equations are partially
equivalent to each other.

Ideally, one could expect that this part of the spectrum is the part
brought up by the passage from the integral to the differential formu-
lation, and the remaining part of the spectrum reflects the spectrum
of the integral equation only. The spectral equation associated to the
linearization of equation (1.5) near n is

p(x) = e−zτ2λσ′(N)

(∫ A2

A1

p(y)

(
1− e−zΨ(y)

z

)
dy

)
n(x)

+
∫ A2

A1

f (x, Φ(y)) e−zΨ(y)p(y) dy. (1.23)

One can easily verify that every solution of equation (1.22) is also a
solution of equation (1.21). In the following Lemma, we state a partial
converse of this result.

Lemma 33 Denote σ1 (resp. σ2 ) the set of complex numbers z, z 
= 0,
Re z ≥ 0, such that equation ( 1.21) (resp.) ( 1.22) ) has a nonzero
solution for the value z. Then, σ1 = σ2.
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Moreover, for each z ∈ σi, let N i
z ( i = 1, 2) be the space of functions

p such that p is a solution of ( 1.21) (resp. ( 1.22) ) for the value z.
Then, N 1

z = N 2
z.

Proof.– For each z 
= 0, we introduce the operators

Bz(p) := 2λσ′(N)
∫ A2

A1

p(y)

[
1− e−zΨ(y)

z

]
dy,

(Lzp) (x) :=
∫ A2

A1

f (x,Φ(y)) e−zΨ(y)p(y) dy.

Then equation (1.22) is

p(x) = e−zτn(x)Bz(p) + (Lzp) (x),

and equation (1.21) reads

p(x) = e−zτn(x)Bz(p) + (Lzq) (x),

where
q(x) = e−zτn(x)Bz(p) + (Lzp) (x).

We need only prove that p, a solution of (1.21) for some z 
= 0, with
Re z ≥ 0, satisfies (1.22) for the same value of z. But this is equivalent
to proving p = q. Since we have

p(x)− q(x) = (Lz(p− q)) (x),

and the equation
p(x) = (Lzp) (x)

can be satisfied with p 
= 0 only if Re z < 0, the Lemma follows.

We will now briefly discuss equation (1.22).
For z = 0, equation (1.22) reduces to

p(x) = 2λσ′(N)
(∫ A2

A1

p(y)Ψ(y) dy

)
n(x)

+
∫ A2

A1

f (x, Φ(y)) p(y) dy,

which has p = 0 as the only solution.
In fact, integrating the above equation on both sides on (A1, A2), we

obtain

2λσ′(N)
(∫ A2

A1

p(y)Ψ(y) dy

)
= 0,
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which implies that

p(x) =
∫ A2

A1

f (x, Φ(y)) p(y) dy,

and therefore, in view of (1.19):

p(x) = kn(x).

So,

0 =
∫ A2

A1

p(y)Ψ(y) dy = k

∫ A2

A1

n(y)Ψ(y) dy.

This, with the fact n > 0, implies that k = 0, that is p = 0.
For z 
= 0, integrating equation (1.22) on both sides on (A1, A2), we

obtain[∫ A2

A1

p(y)
(
1− e−zΨ(y)

)
dy

] [
2λσ′(N)e−zτ

(∫ A2

A1

n(y) dy

)
− z

]
= 0.

(1.24)
Equation (1.24) breaks down into two equations

∫ A2

A1

p(y)
(
1− e−zψ(y)

)
dy = 0, (1.25)

zezτ = 2λσ′(N)
∫ A2

A1

n(y) dy. (1.26)

Assuming (1.25) holds, equation (1.22) yields, with z 
= 0:

p(x) =
∫ A2

A1

f (x,Φ(y)) e−zΨ(y)p(y) dy,

which can be satisfied with p 
= 0 only if Re z < 0.
So, instability from nonzero roots crossing the imaginary axis can only

come from roots of equation (1.26). We have the following result:
For each λ > 0, equation (1.24) has a pair of nonzero roots crossing

the imaginary axis at each value τ = τk, where

τk =
π/2 + 2kπ

2λ|σ′(N)|
∫ A2

A1
n(y) dy

, k ∈ N.

Once equation (1.24) has been solved for z 
= 0, in order to have a full
solution of equation (1.21), it remains to solve equation (1.22) for p.

The equation can be written in the form

(I −K)p = 0,
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where K is a compact operator. The fact that

∫ A2

A1

([I −K]p) (x) dx = 0

for every p ∈ X, implies that Im (I −K) is a proper subspace of X, and
therefore, by virtue of a well known property of compact operators, the
null set of I −K is not reduced to 0.

1.5 Conclusion
The construction of a theory of delay differential equations in infinite

dimensional spaces is motivated by the study of some integro-difference
equations arising in some models of cell population dynamics. The in-
troduction of a nonlinearity in these models to account for possible self-
regulating control mechanism of cell number suggested possible oscilla-
tions. The integro-difference nature of the model did not allow the use
of any known standard techniques to exhibit such oscillations.The ob-
servation that was made that this system (and its solutions) can in fact
be viewed as solutions of a larger system of delay differential equations
in an infinite dimensional space led to the idea to extend this frame the
machinery for the study of stability that has been developed for delay
differential equations in finite dimensional spaces.

Let us conclude with a few comments about oscillations. Oscillation
with respect to time of the number of cells is a recognized fact in several
examples, among which is the production of red blood cells ([4], [17]).
This phenomenon can also be observed in cultured cells. It used to be a
common belief that such oscillations reflect the role of delays at various
stages of the life of cells. A lot of efforts were made during the seventies
in the study of homogeneous nonstructured models with the goals of
first proving existence of periodic oscillations, after that counting them
and looking at their stability and other properties. Amongst those who
contributed to these works let us mention [12], [22] and [41]. In contrast
to this, very little has been done in the case of structured models. One of
the reasons is that there is no general theory for the study of dynamical
properties of such equations. The theory on abstract D.D.E. that we
present here is a step in this direction.

2. The Cauchy Problem For An Abstract Linear
Delay Differential Equation

Our interest in functional differential equations in infinite dimensions
stemmed from the study of the dynamical properties of such equations
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and the remark we made at some point that it is possible to associate
to any of them a delay differential equation on an infinite dimensional
vector space. We start with this theory for the linear and autonomous
case and this section is devoted to the resolution of the Cauchy problem.

We start setting up the general framework of the equations under
study. The notation C stands for the space C([−r, 0]; E) (r > 0) of the
continuous functions from the interval [−r, 0] into E, E being a real
Banach space, endowed with the sup norm

‖ϕ‖C := sup
θ∈[−r,0]

‖ϕ(θ)‖E .

Let L : C −→ E be a bounded linear operator. We are considering the
following Cauchy problem for the delay equation defined by the operator
L:

For each ϕ ∈ C, to find a function x ∈ C([−r, +∞[; E), x ∈ C1([0, +
∞[; E) such that the following relations hold

(CP )
{

x′(t) = L(xt) , for all t > 0
x0 = ϕ

As usual, xt denotes the section at t of the function x, namely xt(θ) :=
x(t + θ), θ ∈ [−r, 0]. The Cauchy problem is well-posed if it has one and
only one solution for each initial value ϕ.

2.1 Resolution of the Cauchy problem
There are several ways to solve problem (CP). The most elementary

one is to write the equation in integral form

x(t) = x(0) +
∫ t

0
L(xs) ds , t > 0. (2.1)

Define the function ϕ0 : [−r, +∞[−→ E by

ϕ0(t) :=
{

ϕ(t) if t ∈ [−r, 0]
ϕ(0) if t ≥ 0.

The change of x by the unknown function

y(t) := x(t)− ϕ0(t)

transforms equation (2.1) into

y(t) =
∫ t

0
L(ys) ds +

∫ t

0
L(ϕ0

s) ds (2.2)
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which can be formulated as an abstract equation in a suitable framework.
To this end, for each α > 0 let us define

Eα
0 := {y ∈ C([0, +∞); E) ; y(0) = 0 , ‖y‖α := sup

t≥0
e−αt‖y(t)‖E < +∞}

which is a Banach space with respect to the norm ‖ · ‖α.
Let Q be the bounded linear operator defined by

Q : E0
α −→ E0

α ; (Qy)(t) :=
∫ t

0
L(ỹs) ds

where ỹ is the extension by zero of function y to [−r, 0]. In terms of this
operator, equation (2.2) reads as:

(Id−Q)(y)(t) =
∫ t

0
L(ϕ0

s) ds.

The norm of Q on Eα
0 satisfies the following estimate

‖Qy‖α ≤
‖L‖
α
‖y‖α

so, for α > ‖L‖, Q is a strict contraction. This implies that equation
(2.1) has one and only one solution defined on [−r, +∞[. This proves
that the Cauchy problem (CP) is well-posed.

As usual, bearing in mind that the initial state is the function ϕ and
the state at time t is the function xt, we introduce the solution operator
T (t) defined by

T (t)ϕ := xt , t > 0.

It is easy to check that the family {T (t)}t≥0 is a strongly continuous
semigroup of linear bounded operators on C. An obvious property of
this semigroup is that

[T (t)ϕ] (θ) =
{

ϕ(t + θ) if t + θ ≤ 0
[T (t + θ)ϕ] (0) if t + θ ≥ 0

that is, {T (t)}t≥0 is a translation semigroup.

Straightforward computation leads to the following operator as the
infinitesimal generator of the semigroup:

Aϕ := ϕ̇ (2.3)

with domain

D(A) = {ϕ ∈ C1([−r, 0]; E) ; ϕ̇(0) = L(ϕ)}. (2.4)
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2.2 Semigroup approach to the problem (CP)
Semigroups defined on some functional space of the type F(J ; E),

where J is an interval and F is some class of functions (continuous
functions, Lp functions, etc) and with infinitesimal generator A defined
by the derivative on J , have been investigated by several authors after
a pioneering work by A. Plant [34]. Extension of Plant’s results to
abstract delay differential equations can be found in [16] and in [73].
The following result is borrowed from [73].

Theorem 1 The operator A defined by ( 2.3) with domain given by
( 2.4) is the infinitesimal generator of a strongly continuous semigroup
{S(t)}t≥0 on C satisfying the translation property

(S(t)ϕ)(θ) =
{

ϕ(t + θ) if t + θ ≤ 0
(S(t + θ)ϕ)(0) if t + θ > 0

t > 0, θ ∈ [−r, 0], ϕ ∈ C. Furthermore, for each ϕ ∈ C, define x :
[−r, +∞) −→ E by

x(t) :=
{

ϕ(t) if t ∈ [−r, 0]
(S(t)ϕ)(0) if t > 0.

Then x is the unique solution of (CP) and S(t)ϕ = xt, t > 0.

Remark 1.– The last part of the theorem states that in fact S(t) =
T (t), t ≥ 0, which we can assert as soon as we know that {S(t)}t≥0 and
{T (t)}t≥0 are both associated with the same infinitesimal generator.

Proof.– In order to illustrate the type of computations and ideas in-
volved in delay equations, we will briefly sketch the proof of the theorem.

First of all, we will check that A is the infinitesimal generator of a
strongly continuous semigroup. Using the Lumer-Phillips version of the
Hille-Yosida theorem, we have to prove that:

i) A is a closed operator with a dense domain.

ii) The resolvent operator

R(λ, A) := (λI −A)−1

exists, for all real λ large enough and there exists a real constant
ω such that

‖(λI −A)−1‖ ≤ 1
λ− ω

; λ > ω.
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We skip (i), which is obvious. In order to prove (ii), given f ∈ C we have
to solve

(λI −A)ϕ = f ; ϕ ∈ D(A). (2.5)

The resolution of (2.5), which is straightforward, leads to

ϕ(θ) = eλθϕ(0) +
∫ 0

θ
eλ(θ−s)f(s) ds. (2.6)

In order to verify that ϕ ∈ D(A), we have to check the boundary condi-
tion for ϕ:

λϕ(0)− f(0) = L

(
eλ·ϕ(0) +

∫ 0

·
eλ(·−s)f(s) ds

)
. (2.7)

Let us introduce the following bounded linear operators

Lλ : E −→ E ; Lλ(z) := L(ελ ⊗ z)

where ελ ⊗ z ∈ C([−r, 0]; E) is defined by

(ελ ⊗ z)(θ) := eλθz , θ ∈ [−r, 0]

and Sλ : C −→ E defined by

Sλ(f) = f(0) + L

(∫ 0

·
eλ(·−s)f(s) ds

)
. (2.8)

Lemma 34 For each λ ∈ C, the operator Sλ is onto.

Proof.–
Let us consider the family of bounded linear operators {Σλ,k}k=1,2,... ⊂ L(E)

defined by
Σλ,k(z) := Sλ (χk ⊗ z)

where
(χk ⊗ z)(θ) := χk(θ)z , θ ∈ [−r, 0]

and {χk}k=1,2,... is the family of real functions defined by

χk(θ) := max
(

kθ

r
+ 1 , 0

)
, θ ∈ [−r, 0].

It is easily seen that for each λ, the sequence of operators Σλ,k converges
in operator norm towards the identity. Therefore Σλ,k is invertible for k
large enough.
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In terms of Σλ,k, we can build a right inverse of Sλ. To this end, let
us define Υλ,k ∈ L(E, C) by

∀b ∈ E , Υλ,k(b) := χk ⊗ Σ−1
λ,k(b). (2.9)

It holds that
Sλ ◦Υλ,k = IE

where IE is the identity operator on E. This proves our claim.

In terms of operators Lλ and Sλ, we have the following characteriza-
tion for λ to belong in the resolvent set of the operator A:

Proposition 37 A necessary and sufficient condition for λ ∈ ρ(A) (re-
solvent set of A) is that the operator ∆(λ) defined by

∆(λ) := λI − Lλ

be invertible. Assuming that λ ∈ ρ(A), it holds that

ϕ(0) = ∆(λ)−1Sλ(f)

and, for θ ∈ [−r, 0]:

R(λ, A)(f)(θ) = eλθ∆(λ)−1Sλ(f) +
∫ 0

θ
eλ(θ−s)f(s) ds. (2.10)

To complete the proof of the first part of the theorem it only remains
to obtain a convenient estimate for the norm of R(λ, A).

Straightforward computation shows that the operator Lλ is uniformly
bounded on each right half-plane of C (that is, on any set of the type
Ωa := {z ∈ C ; Re z ≥ a} for some a). So, there exists a0 ∈ R such that
∆(λ) is invertible all over regions of the complex plane Ωa with a ≥ a0.

Let us define
M := sup

Reλ≥a0

‖Lλ‖.

For any a ≥ a0, we have

Re λ ≥ a =⇒ ‖Lλ‖ ≤M.

So, if we take a > 0 and a ≥ a0 large enough, we will have

λ ≥ a =⇒ ‖Lλ‖
λ

< 1

and then
‖∆(λ)−1‖ ≤ 1

λ−M
.
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We can also readily check the following estimate for Sλ(f)

‖Sλ(f)‖ ≤
(

1 +
‖L‖
λ

)
‖f‖C .

Combining these estimates in formula (2.10) we obtain, for θ ∈ [−r, 0]:

‖ [R(λ, A)f ] (θ)‖E ≤
[
eλθ

(
1 +

‖L‖
λ

)
1

λ−M
+
(
1− eλθ

) 1
λ

]
‖f‖C .

Since the quantity inside brackets is a convex combination of two fixed
values, it is bounded by the maximum of both quantities, from which
we deduce

‖R(λ, A)‖ ≤ max
([

1 +
‖L‖
λ

]
1

λ−M
,

1
λ

)
.

To conclude, if we choose ω so that

ω > max(a0 , ‖L‖+ M)

we will have the desired inequality:

‖R(λ, A)‖ ≤ 1
λ− ω

for λ > ω.

Translation semigroup property.– It remains to check that the
semigroup {S(t)}t≥0 enjoys the translation property. To this end, for
each ϕ given in C, let us define the function

x(t) =
{

[S(t)ϕ] (0) if t ≥ 0
ϕ(t) if t ∈ [−r, 0]

What we have to verify is that

S(t)ϕ = xt , t ≥ 0.

Note that the evaluation map ϕ → [S(t)ϕ] (0) is continuous and even
locally uniformly continuous with respect to t, so the map ϕ → xt is
continuous for each t ≥ 0, and in fact it is also locally uniformly contin-
uous with respect to t. From this remark it follows that we only have to
prove the property on a dense subset of initial values. It will extend by
continuity to all initial values.

So, from this point on, we assume that ϕ ∈ D(A). Then, a basic
semigroup property ensures that S(t)ϕ ∈ D(A) for all t ≥ 0. Therefore
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we have that both t → [S(t)ϕ] (θ) and θ → [S(t)ϕ] (θ) are differentiable.
Given a pair (t, θ), t ≥ 0, θ ∈ [−r, 0], the function

h → [S(t + h)ϕ] (θ − h)

makes sense as long as t + h ≥ 0 and θ − h ≤ 0, that is, h ≥ max(−t, θ)
and can be differentiated on this domain. The derivative is equal to[

d

dt
S(t + h)ϕ

]
(θ − h)− d

dθ
[S(t + h)ϕ] (θ − h) = 0.

This implies that [S(t + h)ϕ] (θ − h) is a constant for each fixed pair
(t, θ) and h ≥ max(−t, θ).

We now consider two situations:

i) t + θ ≤ 0.
In this case, max(−t, θ) = −t. Giving h the values −t and 0, we
obtain

[S(t)ϕ] (θ) = ϕ(t + θ) for t + θ ≤ 0.

ii) t + θ ≥ 0.
This time, we give h the values θ and 0, which leads to

[S(t)ϕ] (θ) = [S(t + θ)ϕ] (0) for t + θ ≥ 0.

In both cases, we have [S(t)ϕ] (θ) = x(t + θ), according to the definition
of x, therefore, S(t)ϕ = xt, as desired.

2.3 Some results about the range of λI − A

In line with Proposition 37, we have the following results.

Lemma 35 For any λ ∈ C, we have that f ∈ R (λI −A) if and only if
Sλ(f) ∈ R (λI − Lλ).

Proof.– It follows immediately from (2.6) and (2.7) combined. For-
mula (2.6) shows that the determination of ϕ such that (λI − A)ϕ = f
amounts to determining ϕ(0) and formula (2.7) gives a necessary and
sufficient condition for existence of ϕ(0) which is precisely the condition
stated in the lemma.

Lemma 36 The subspace R (λI − A) is closed in C if and only if the
subspace R (λI − Lλ) is closed in E.

Proof.– First we suppose that R (λI − Lλ) is a closed subspace of
E and let {ψn}n=1,2,... ⊂ R (λI − A) be a convergent sequence with
ψ = limn→∞ ψn.
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From Lemma 35, we have that Sλ(ψn) ∈ R (λI−Lλ) and then Sλ(ψ) ∈
R (λI−Lλ). Again Lemma 35 enables us to conclude that ψ ∈ R (λI−A)
and so R(λI −A) is closed in C.

Now we are going to demonstrate the converse. We assume that
R (λI−A) is closed and we want to show that it implies that R (λI−Lλ)
is closed.

To this end, we recall that Sλ is surjective and that in Lemma 34 we
have exhibited a family of right inverses. Select one such map Υλ,k as
defined by (2.9).

Let {bn}n=1,2,... be a sequence in E such that the sequence {(λI −
Lλ)(bn)}n=1,2,... converges to some element e ∈ E. Define the sequence

fn := Υλ,k [(λI − Lλ)(bn)] , n = 1, 2, . . .

By construction, we have Sλ(fn) ∈ R (λI − Lλ). Therefore, in view of
Lemma 35, we have fn ∈ R (λI − A) and Sλ(fn) = (λI − Lλ)(bn). We
have also

lim
n→∞

Sλ(fn) = e ; lim
n→∞

fn = Υλ,k(e).

R (λI − A) being closed yields that Υλ,k(e) ∈ R (λI − A). Lemma 35
again can be invoked to conclude that e = Sλ [Υλ,k(e)] ∈ R(λI − Lλ).
The proof is complete.

3. Formal Duality
In this section we present an extension of the formal duality theory

to D.D.E. in infinite dimensional spaces. The presentation follows the
work made in [58].

Let us consider the space C∗ := C([0, r]; E∗) where E∗ is the topolog-
ical dual space of E. We are going to define a continuous bilinear form
denoted << α, ϕ >> on the product C([0, r]; E∗) × C([−r, 0]; E) which
will be interpreted as a formal duality.

A function f : [0, r] −→ E∗ is called simple if there exist two finite
collections x∗

1, . . . , x
∗
p ∈ E∗ and A1, . . . , Ap ∈ Σ with

⋃p
i=1 Ai = [0, r],

Ai
⋂

Aj = ∅ such that

f =
p∑

i=1

x∗
i χAi

where χA is the characteristic function of A and Σ is the Borel algebra
on [0, r]. Denote S([0, r]; E∗) the space of simple functions.
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Definition 37 For any α ∈ S([0, r]; E∗) and ϕ ∈ C([0, r]; E) we define
the bilinear form

<< α, ϕ >>:=< α(0), ϕ(0) > +
p∑

i=1

< x∗
i , L

(∫ 0

θ
χAi(ξ − θ)ϕ(ξ) dξ

)
>

where α =
∑p

i=1 x∗
i χAi and < ·, · > denote the usual duality between E∗

and E.

The value << α, ϕ >> is independent of the representation chosen for
α as a linear combination of characteristic functions.

Since

| << α, ϕ >> | ≤ (1 + r‖L‖) ‖α‖‖ϕ‖

there exists a unique continuous extension of this bilinear form to the
completion of S([0, r]; E∗)×C([−r, 0]; E) where both spaces are equipped
with the sup norm.

We restrict our extension to the product C([0, r] : E∗)×C([−r, 0]; E)
and we call this the formal duality associated with the operator L.

It is interesting to specify the formal duality for α ∈ C([0, r])⊗ E∗.

Lemma 37 Let f ∈ C([0, r]) and u∗ ∈ E∗. We consider the function
f ⊗ u∗ ∈ C([0, r]; E∗) defined by (f ⊗ u∗) (s) := f(s)u∗, s ∈ [0, r]. Then

<< f⊗u∗, ϕ >>=< u∗, f(0)ϕ(0) > + < u∗, L

(∫ 0

θ
f(ξ − θ)ϕ(ξ) dξ

)
> .

(3.1)

Proof.– The function f is representable as the limit of a uniformly
convergent sequence of simple real functions defined in [0, r]:

f = lim
n→∞

pn∑
i=1

βi
(n)χAi

(n)

and therefore the sequence of functions in S([0, r]; E∗),

{
pn∑
i=1

βi
(n)u∗ ⊗ χAi

(n)

}

n=1,2,...

converges to f ⊗ u∗.
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By continuity of the formal duality, we obtain

<< f ⊗ u∗, ϕ >>

=< (f ⊗ u∗)(0), ϕ(0) > + lim
n→∞

pn∑
i=1

< βi
(n)u∗, L

(∫ 0

θ
χAi

(n)(ξ − θ)ϕ(ξ) dξ

)
>

=< (f ⊗ u∗)(0), ϕ(0) > + lim
n→∞

pn∑
i=1

< u∗, L

(∫ 0

θ
βi

(n)χAi
(n)(ξ − θ)ϕ(ξ) dξ

)
>

=< u∗, f(0)ϕ(0) > + < u∗, L

(∫ 0

θ
f(ξ − θ)ϕ(ξ) dξ

)
> .

In particular, introducing the notation ελ(θ) := eλθ, we have

<< ελ ⊗ u∗, ϕ >>=< u∗, ϕ(0) > + < u∗, L

(∫ 0

θ
eλ(ξ−θ)ϕ(ξ) dξ

)
> .

In terms of the operator Sλ defined in (2.8) the above formula reads as

<< ε−λ ⊗ u∗, ϕ >>=< u∗, Sλ(ϕ) > . (3.2)

3.1 The formal adjoint equation
Before proceeding to the construction of this equation let us remind

some well known results about the integral representation of bounded
linear operators defined on C([−r, 0]; E). We refer to [14] for the general
theory.

Any bounded linear operator L : C([−r, 0]; E) −→ E determines a
unique vector measure m : Σ̂ −→ L(E; E∗∗) of bounded semivariation
and such that for all f ∈ C([−r, 0]; E) we have

L(f) =
∫

[−r,0]
fd m

where L(E; E∗∗) is the space of the bounded linear operators defined
on E with values in E∗∗, E∗∗ being the bidual of E, and Σ̂ the Borel
algebra on [−r, 0].

For each x∗ ∈ E∗, there exists a vector measure mx∗ : Σ̂ −→ E∗

defined by

< mx∗(A), x >:=< x∗, m(A)(x) > ; A ∈ Σ̂ , x ∈ E

which satisfies∫
[−r,0]

fd mx∗ =< x∗, L(f) > ; ∀x∗ ∈ E∗.
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Next we define the linear operator L̃ : S([0, r]; E∗) −→ E∗ for any f ∈
S([0, r]; E∗), f =

∑p
i=1 x∗

i χAi by

L̃(f) :=
p∑

i=1

mx∗
i
(−Ai).

Lemma 38 If the vector measure m is of bounded variation, then L̃ is
continuous with respect to the sup norm in S([0, r]; E∗).

Proof.– Let f =
∑p

i=1 x∗
i χAi be a simple function with ‖x∗

i ‖ ≤ 1,
i = 1, . . . , p. Then

‖L̃(f)‖ = ‖
p∑

i=1

mx∗
i
(−Ai)‖ ≤

p∑
i=1

‖mx∗
i
(−Ai)‖

≤
p∑

i=1

‖m(−Ai)‖ ≤ v(m) ([−r, 0]) < +∞

where v(m) means the variation of m and we have used that

‖mx∗
i
(−Ai)‖ = sup

‖x‖≤1
| < mx∗

i
(−Ai), x > |

= sup
‖x‖≤1

| < x∗
i , m(−Ai)(x) > | ≤ ‖m(−Ai)‖.

Under this hypothesis, there exists a unique continuous extension ˜̃L
of the operator L̃ to the completion of S([0, r]; E∗) equipped with the
sup norm and we are able to define the formal adjoint operator of the
operator L.

Definition 38 The operator L∗ is the restriction to the space C∗ of the
extension operator ˜̃L.

Just as we did in the case of the formal duality, it is convenient to ob-
tain the expression of L∗ for the elements in C([0, r])⊗E∗. Calculations
very similar to the ones above for Lemma 37 show that

Lemma 39 For each f ⊗ u∗ ∈ C([0, r]) ⊗ E∗, L∗(f ⊗ u∗) ∈ E∗ is the
linear form defined by

< L∗(f ⊗ u∗), u >:=< u∗, L(f̂ ⊗ u) > ; u ∈ E (3.3)

where f̂(θ) := f(−θ).
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For each f ∈ C([−r, 0]), u ∈ E, we have denoted by f ⊗ u the element
of C([−r, 0]; E) defined by

(f ⊗ u)(θ) := f(θ)u , θ ∈ [−r, 0].

In particular, for the functions ε
(j)
λ defined by

ε
(j)
λ (θ) :=

θj

j!
eλθ ; θ ∈ [−r, 0] , j = 1, 2, . . . (3.4)

we reach the result

< L∗(ε̂(j)
λ ⊗ u∗), u > = < u∗, L(ε(j)

λ ⊗ u) >

:= < u∗, L(j)
λ (u) >=< (L(j)

λ )∗(u∗), u > ; u ∈ E

and then
L∗(ε̂(j)

λ ⊗ u∗) = (L(j)
λ )∗(u∗).

The existence of the operator L∗ allows us to define a new linear
functional differential equation associated with problem (CP).

Definition 39 The formal adjoint equation associated to (CP) is

α̇(s) = −L∗(αs) ; s ≤ 0. (3.5)

A function α ∈ C(] − ∞, r]; E∗) is a solution to the formal adjoint
equation if α ∈ C1(]−∞, 0]; E∗) and satisfies (3.5) for all s ≤ 0.

It is easy to check that α(s) := e−λs ⊗ x∗, s ≤ 0 is a solution of (3.5)
for all x∗ ∈ N (L∗

λ − λI). Suppose that α(t) := f(t)x∗ is a solution of
(3.5) on ]−∞, b] and that x(t) is a solution of (CP) on [a,+∞[, a < b.
Then << αt, xt >> is constant for all t ∈ [a, b].

Indeed

<< αt, xt >> = < αt(0), xt(0) > + < x∗, L

(∫ 0

θ
ft(ξ − θ)xt(ξ) dξ

)
>

= < α(t), x(t) > + < x∗, L

(∫ t

t+θ
f(ω − θ)x(ω) dω

)
> .

Therefore

d

dt
<< αt, xt >> = < α′(t), x(t) > + < α(t), x′(t) >

+ < x∗, L (f(t− θ)x(t)) > − < x∗, L (f(t)x(t + θ)) > .

But since

< α(t), x′(t) > − < x∗, L (f(t)x(t + θ)) >=< α(t), x′(t) > − < α(t), L(xt) >= 0
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we have

d

dt
<< αt, xt >> = < α′(t), x(t) > + < x∗, L (f(t− θ)x(t)) >

= < α′(t), x(t) > + < L∗(ft ⊗ x∗), x(t) >

= < α′(t), x(t) > + < L∗(αt), x(t) >= 0.

3.2 The operator A∗ formal adjoint of A

In the sequel we assume that the vector measure m associated to L is
of bounded variation and L∗ has been defined.

Definition 40 We call the formal adjoint operator of A relative to the
formal duality, the operator A∗ defined by

A∗(α) := −α̇

with domain

D(A∗) := {α ∈ C1([0, r]; E∗) ; α̇(0) = −L∗(α)}.

A∗ is linear and closed, with a dense domain contained in C∗.
From Lemma 37 and after an adequate integration by parts we obtain

for α := f ⊗ x∗ ∈ D(A∗):

<< α, Aϕ >>=<< A∗α, ϕ >> ; ∀ϕ ∈ D(A).

Proposition 38 The spectra σ(A) and σ(A∗) of operators A and A∗

satisfy the equality
σ(A) = σ(A∗).

Proof.– The solution of (λI −A∗)ϕ = ψ with ψ ∈C∗ is

ϕ(θ) = e−λθϕ(0) +
∫ θ

0
eλ(s−θ)ψ(s) ds ; θ ∈ [0, r]

where ϕ(0) is to be determined so that ϕ ∈ D(A∗). We get to

(λI − Lλ
∗) (ϕ(0)) = ψ(0) + L∗

(∫ θ

0
eλ(s−θ)ψ(s) ds

)
.

The right hand side of the above formula is similar to the operator Sλ

defined in (2.8), but let us notice that it is not the adjoint of Sλ. We
will denote it Ŝλ, that is,

Ŝλ(ψ) = ψ(0) + L∗
(∫ θ

0
eλ(s−θ)ψ(s) ds

)
.
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Since Ŝλ is onto, we conclude that λ ∈ σ(A∗) if and only if λ ∈ σ(Lλ
∗).

We have seen above that λ ∈ σ(A) if and only if λ ∈ σ(Lλ) and it is
well known that σ(Lλ) = σ(Lλ

∗) ([39]). Therefore the result follows.

Notice that

N (λI −A) = {ελ ⊗ x ; x ∈ N (λI − Lλ)}

N (µI −A∗) = {ε−µ ⊗ x∗ ; x∗ ∈ N (µI − Lµ
∗)}.

Also, let us mention that if λ, µ are eigenvalues of A, A∗ respectively,
and λ 
= µ, then << α, ϕ >>= 0 for all α ∈ N (µI−A∗), ϕ ∈ N (λI−A).
Indeed,

<< A∗α, ϕ >>= µ << α, ϕ >>=<< α, Aϕ >>= λ << α, ϕ >>

therefore the condition λ 
= µ implies that << α, ϕ >>= 0.

Proposition 39 The subspace R (λI − A∗) is closed in C∗ if and only
if R (λI −A) is closed in C.

Proof.– Arguments similar to the ones used in the proofs of Lemmas
35 and 36 lead to

a) For any λ ∈ C we have that α ∈ R (λI − A∗) if and only if
Ŝλ(α) ∈ R (λI − Lλ

∗).

b) The subspace R (λI−A∗) is closed in C∗ if and only if R (λI−Lλ
∗)

is closed in E∗.

The proof is concluded by recalling the known result that R (λI − Lλ)
is a closed subspace in E if and only if R (λI − Lλ

∗) is closed in E∗.

3.3 Application to the model of cell population
dynamics

We will now see how the theory developped in this section applies to
equation (1.20). To this end, it is convenient to express the equation
in a more general setting. First of all, there is a support property for
solutions of (1.5), namely, both the functions n and ∆n(t, ·) have their
support contained in some compact interval [A1, A2]. Therefore, the
integrals on the right-hand side of (1.20) are restricted to this interval.

With the notations

r := 2Ψ(0) + τ ; E := L1(A1, A2)
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equation (1.20) is of the form

∂ν

∂t
(t, x) =

∫ A2

A1

b(x)ν(t− τ, y) dy +
∫ A2

A1

c(x)ν(t− τ −Ψ(y), y) dy

+
∫ 0

−r

∫ A2

A1

g(x, u, y)ν(t + u, y) dydu, (3.6)

where b and c belong to L1(A1, A2), g is in L1((A1, A2) × (−r, 0) ×
(A1, A2)).

The assumptions on f yield the following for g:
There exist 0 < r′ < r, M ≥ 0, such that

g(x, y, u) = 0, 0 < u < r′, for a.e. (x, y) ∈ (A1, A2)2,
∫ A2

A1

∫ 0

−r
|g(x, u, y)| dudx ≤M, for a.e. y ∈ (A1, A2).

The map L : C ([−r, 0]; E) −→ E associated with equation (3.5) is given
by

(Lϕ)(x) = b(x)
∫ A2

A1

ϕ(−τ, y) dy + c(x)
∫ A2

A1

ϕ(−τ −Ψ(y), y) dy

+
∫ 0

−r

∫ A2

A1

g(x, u, y)ϕ(u, y) dydu.

Here, E∗ = L∞(A1, A2). L∗ is determined using formula (3.3). In fact,
for ϕ ∈ C ([0, r]), v ∈ E, v∗ ∈ E∗, we have

< L∗(ϕ⊗ v∗), v >=< v∗, L(ϕ̂⊗ v) >,

with

(L(ϕ̂⊗ v)) (x) = b(x)ϕ(τ)
∫ A2

A1

v(y) dy + c(x)
∫ A2

A1

ϕ(τ + Ψ(y))v(y) dy

+
∫ 0

−r

∫ A2

A1

g(x, u, y)ϕ(−u)v(y) dydu,

< v∗, L(ϕ̂⊗ v) > =
∫ A2

A1

(∫ A2

A1

b(x)v∗(x) dx

)
ϕ(τ)v(y) dy

+
∫ A2

A1

(∫ A2

A1

c(x)v∗(x) dx

)
ϕ(τ + Ψ(y))v(y) dy

+
∫ A2

A1

[∫ A2

A1

∫ r

0
g(x,−u, y)v∗(x)ϕ(u) dudx

]
v(y) dy.
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Identifying the right hand side with the product of L∗(ϕ ⊗ v∗) and v
yields

L∗(ϕ⊗ v∗)(y) = ϕ(τ)
∫ A2

A1

b(x)v∗(x) dx + ϕ(τ + Ψ(y))
∫ A2

A1

c(x)v∗(x) dx

+
∫ A2

A1

∫ r

0
g(x,−u, y)v∗(x)ϕ(u) dudx.

The above formula can be extended to the space C ([0, r]; E∗) as:

(L∗ϕ∗)(y) =
∫ A2

A1

b(x)ϕ∗(τ, x) dx +
∫ A2

A1

c(x)ϕ∗(τ + Ψ(y), x) dx

+
∫ A2

A1

∫ r

0
g(x,−u, y)ϕ∗(u, x) dudx.

We will now determine the formal dual product. Using formula (3.1),
we have

<< ζ ⊗ v∗, ϕ >> = ζ(0)

∫ A2

A1

v∗(y)ϕ(0, y) dy +

∫ A2

A1

v∗(y)L

(∫ 0

θ
ζ(ξ − θ)ϕ(ξ, ·) dξ

)
(y) dy

+

∫ A2

A1

v∗(y)b(y)

(∫ A2

A1

(∫ 0

−τ
ζ(ξ + τ)ϕ(ξ, x) dξ

)
dx

)
dy

=

∫ A2

A1

(ζ ⊗ v∗)(0, y)ϕ(0, y) dy

+

∫ A2

A1

v∗(y)c(y)

(∫ A2

A1

∫ 0

−Ψ(u)−τ
ζ(ξ + τ + Ψ(u))ϕ(ξ, u) dξdu

)
dy

+

∫ A2

A1

v∗(y)

[∫ 0

−r

∫ A2

A1

g(y, u, z)

(∫ 0

u
ζ(ξ − u)ϕ(ξ, z) dξ

)
dzdu

]
dy.

Here, the formula extends to C ([0, r]; E∗)× C ([−r, 0], E).
Substituting ϕ∗ ∈ C ([0, r]; E∗) for ζ⊗v∗ in the above formula, we obtain

<< ϕ∗, ϕ >> =

∫ A2

A1

ϕ∗(0, y)ϕ(0, y) dy

+

∫ A2

A1

c(y)

[∫ A2

A1

∫ 0

−Ψ(u)−τ

ϕ∗ (ξ + Ψ(u) + τ, y) ϕ(ξ, u) dξdu

]
dy

+

∫ A2

A1

∫ 0

−r

∫ A2

A1

g(y, u, z)

(∫ 0

u

ϕ∗(ξ − u, y)ϕ(ξ, z) dξ

)
dzdudy

+

∫ A2

A1

b(y)

[∫ A2

A1

∫ 0

−τ

ϕ∗(ξ + τ, y)ϕ(ξ, x) dξdx

]
dy.
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3.4 Conclusion
The material presented in this section is mainly preparatory. We

have now a formal dual product as well as a formal adjoint equation. In
the next section, we will use these notions in the study of the spectral
decomposition associated to abstract D.D.E. In as much as possible,
we follow the method elaborated by J. Hale in [74], [75] and others for
D.D.E. in finite dimensions. One of the problems when going from finite
to infinite dimensions is that the representation of a linear functional
in the infinite dimensional framework is not always possible, or at least
not at all as easy to use as in finite dimensions. First of all, it is in
general necessary to embed the equation in a much larger space with
no nice way to identify the original problem in the larger one. As a
result, it is in general impossible to describe the dual product to a large
extent. For most computations, however, it is sufficient to use it for
special functions in the formal dual space for which such a description
is feasible. A second crucial difference which will appear when dealing
with spectral decomposition is the lack of compactness in general D.D.E.

4. Linear Theory Of Abstract Functional
Differential Equations Of Retarded Type

Let us recall that the subject of this section is the abstract D.D.E.:

x′(t) = L(xt) , t > 0 (4.1)

where L : C −→ E is a bounded linear operator and E is a Banach space.
We know that the Cauchy problem for (4.1) is well posed and the

general solution gives rise to a strongly continuous semigroup of bounded
linear operators. We have associated to the problem a dual product
between C and C∗ := C([0, r] , E∗) and an adjoint equation.

One way to look at the dual product is to consider that it provides
a dynamic system of coordinates which allows, for example, to better
investigate the asymptotic behavior of solutions and the stability of the
system. This goes through a decomposition of the state space C into the
sum of a stable and an unstable part, or more generally, the sum of the
most unstable and a more stable part.

Since we are in the infinite dimensional case, there is a basic feature of
the semigroup in finite dimensions which will generally be lacking: the
eventual compactness of the semigroup. Eventual compactness reduces
the problem to the study of the eigenvalues and eigenvectors of the
generator, and in many situations all amounts to looking at the real
part of the roots of a characteristic equation. In the general situation,
not much could be said. However, in the applications we have in view,
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it happens often that the most unstable part of the spectrum leads to
a decomposition of the state space and allows the same study as in
the case of eventual compactness. This is when the most unstable part
of the spectrum of the semigroup is non essential, a situation that has
been encountered by several authors in the study of population dynamics
models in the eighties ([42]).

The notion of essential/non essential spectrum however is a general
one which was introduced in the sixties in connection with the study of
partial differential equations. The next section presents a short survey
of the subject. It is based on a review paper [1].

4.1 Some spectral properties of C0-semigroups
We start considering a linear closed operator A with dense domain

D(A) ⊂ E, E being a Banach space. The spectrum of A, denoted σ(A),
is the set of λ ∈ C, such that λI − A is not boundedly invertible. The
complementary set in C, ρ(A) := C/σ(A) is the resolvent set. We refer
the reader to [15], [21], [77], [35], [37] for the general theory.

The spectrum of A can be subdivided into three disjoint subsets

σ(A) = σP (A) ∪ σC(A) ∪ σR(A)

where

i) σP (A) is the point spectrum, that is, the set of λ ∈ C such that
λI −A is not injective;

ii) σC(A) is the continuous spectrum, that is, the set of λ ∈ C such
that λI − A is injective and the range of λI − A, denoted by
R (λI −A), is not E, but is dense in E;

iii) σR(A) is the residual spectrum, that is, the set of λ ∈ C such that
λI −A is injective and R (λI −A) is not dense in E.

There are other ways to divide the spectrum. We will in fact consider
another one, in addition to the one we have just given ([10]):

The essential spectrum of A, σe(A), is the set of λ ∈ σ(A) such that
at least one of the following holds:

i) R (λI −A) is not closed.

ii) The generalized eigenspace associated to λ, N (λI−A) := ∪∞
m=1Ker

(λI −A)m is infinite dimensional.

iii) λ is a limit point of σ(A).
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The complementary set, (σ\σe) (A) is called the non-essential spec-
trum.

There are relationships between the two partitions of σ(A). We refer
to Theorem 3 in [1] for some results on this issue.

Let B be a bounded linear operator on some Banach space E, i.e.
E ∈ L(E) and let f : Ω ⊂ C −→ C be an holomorphic function with
σ(B) ⊂ Ω.

The spectral theorem states that f(B) can be defined as a bounded
linear operator on E and also:

σ(f(B)) = f(σ(B)).

This theorem extends partially to the case of an unbounded linear op-
erator. If A is the infinitesimal generator of a strongly continuous linear
semigroup {T (t)}t≥0 (that can be, with some abuse, viewed as a gen-
eralized exponential operator exp(tA)), then the point spectrum, the
residual spectrum as well as the non essential spectrum of A and T (t)
correspond to each other in the simplest way possible, namely,

σ∗
J(T (t)) =

{
etλ ; λ ∈ σJ(A)

}

where J can be either P (the point spectrum) or R (the residual spec-
trum) or NE (the non-essential spectrum), and the notation σ∗ indicates
that we are not counting 0 which might be a spectral value of T (t) (and
is indeed for t > 0 in the case of compact semigroups), while obviously
it cannot arise from the spectrum of A.

But no such relationship can be asserted in general for the continuous
spectrum or the essential spectrum. Examples of spectral values of the
semigroup (other than 0) which do not arise from the spectrum of the
generator can be found in the literature ([21]). In this direction the
following partial result can be shown:

exp(tσe(A)) ⊂ σe(T (t)) , t > 0.

This fact can be used if some information about the essential spec-
trum of the semigroup is avalaible. For example, if we know that it
is contained in the interior of the unit disk, for some t > 0. In this
case, either the whole spectrum of T (t) is located in the interior of the
unit disk, which provides exponential stability of the semigroup, or there
are spectral values of T (t) which exceed in magnitude, the ones in the
essential spectrum. These values are the ones which matter regarding
the stability issue: they are non essential and thus emanate from the
generator.
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This result shows that it is important to have means to estimate
the essential spectrum of an operator and possibly also of a semigroup
of operators. We will now quote the few results known on this issue.
The crucial point here is that the generator does not help at all at this
point. Then we will proceed to the next step, that is to say, the spectral
decomposition associated with the non essential spectrum. We will see
that it works much the same as in finite dimensions.

We will end this section providing some estimates of the essential
spectrum.

Let B be a linear bounded operator defined on the Banach space E.
The spectral radius of B is the number

r(B) := sup
λ∈σ(B)

|λ|.

There is a formula for the computation of the spectral radius which does
not use the spectrum:

r(B) = lim
n→∞

‖Bn‖1/n.

Accordingly, the essential spectral radius of B is defined by:

re(B) := sup
λ∈σe(B)

|λ|.

The computation of the essential spectral radius is a little more involved,
it has in fact to do with the distance of the operator to the set of compact
operators. Notice that for compact operators, the essential spectrum
reduces to {0}, thus the essential spectral radius is equal to 0. The
following formula was proved by R. Nussbaum ([32]). It uses the notion
of measure of noncompactness for sets and operators, which we recall in
the following.

Let U be a bounded subset of E. The measure of noncompactness of
U is the number α(U) defined by:

α(U) := inf
{

ε > 0 ; U can be covered by a finite number of
subsets of E of diameter less than ε.

}

In particular, the following is obvious: α(U) = 0 if and only if U has a
compact closure.

The above definition of measure of noncompactness can be extended
to bounded operators B ∈ L(E):

α(B) := sup
{

α(B(U))
α(U)

; U ⊂ E bounded and α(U) 
= 0
}

.
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We can now state the formula for the essential spectral radius ([32]):

re(B) = lim
n→∞

α(Bn)1/n.

Finally, the following quantity may also be of interest. The spectral
bound of a linear closed operator A, denoted s(A), is defined by:

s(A) := sup {Re λ ; λ ∈ σ(A)} .

Corresponding to the spectral radius of an operator is the growth
bound of a semigroup {T (t)}t≥0. It is the quantity ω0 defined by:

ω0 := lim
t→+∞

log ‖T (t)‖.

The connection between the growth bound and the spectral radius is
what the intuition suggests it should be, that is:

∀t > 0 , r(T (t)) = eω0t.

Accordingly we can define the essential growth bound of the semigroup.
It is the quantity ω1 defined by:

ω1 := lim
t→+∞

log α [T (t)] .

We also have the expected relationship

re(T (t)) = eω1t.

The potential interest of the theory that will be presented next lies in
the following formula ([42]):

ω0 = max

(
ω1 , sup

λ∈(σ\σe)(A)
Re λ

)
.

If we can compute or at least estimate ω1 and show that ω1 < ω0 or
ω1 < s(A), then the growth bound will be determined by the non-
essential spectrum of the generator.

4.2 Decomposition of the state space
C([−r, 0]; E)

Let σ(A), σe(A) be the spectrum and the essential spectrum respec-
tively of the infinitesimal generator A of the semigroup {T (t)}t≥0 de-
fined by the solutions to (4.1). From the general theory about operator
reduction for isolated points of the spectrum ([77], [42]), we obtain the
following theorem which yields the decomposition of C into a direct sum:
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Theorem 2 Let λ ∈ (σ\σe) (A). Then λ is an eigenvalue of A and for
some positive integer m we have

C = N (λI −A)m ⊕R (λI −A)m

where N (λI − A)m is the generalized eigenspace of A with respect to λ
and dimN (λI −A)m = q < +∞.

Moreover A is completely reduced by this decomposition, A restricted
to N (λI−A)m is bounded with spectrum {λ} and the subspaces N (λI−
A)m, R (λI −A)m are invariant under the semigroup {T (t)}t≥0.

The description of the fundamental solution matrix associated with
a finite dimensional invariant subspace done in [74] for problem (4.1) in
finite-dimensional spaces remains valid without essential modifications.
Some of the properties owe to translation semigroup features enjoyed by
abstract D.D.E. and are valid in a much more general context.

Let Φλ = (ϕ1, . . . , ϕq) be a basis for N (λI − A)m. There is a q × q

constant matrix Bλ such that Φ̇λ = ΦλBλ and λ is the unique eigenvalue
of Bλ. Therefore

Φλ(θ) = Φλ(0)eBλθ , θ ∈ [−r, 0]

and also
T (t)Φλ = ΦλeBλt , t > 0.

Furthermore, if the initial value ϕ of (4.1) belongs to N (A − λI)m,
we have ϕ = Φλa for some q-vector a and the solution is defined by

xt = T (t)ϕ = T (t)Φλa = ΦλeBλta , t > 0.

The same theory applies for a finite subset of (σ\σe) (A) and gives
a very clear description of the geometric behaviour of the solutions of
(4.1). We summarize these results in the following theorem.

Theorem 3 Suppose Λ = {λ1 . . . λs} is any finite subset of the non-
essential spectrum of A, (σ\σe) (A), and let ΦΛ := (Φλ1 , . . . ,Φλs), BΛ :=
diag (Bλ1 , . . . , Bλs), where Φλj is a basis of the generalized eigenspace

associated to λj, N (λjI − A)mj , with dimN (λjI − A)mj = qj < +∞,
and Bλj is a constant matrix such that AΦλj = ΦλjBλj . The only
eigenvalue of Bλj is λj, j = 1, . . . , s.

Moreover, let

PΛ := N (λ1I −A)m1 ⊕ · · · ⊕ N (λsI −A)ms .

Then there exists a subspace QΛ of C invariant under A and {T (t)}t≥0,
such that

C = PΛ ⊕QΛ

325



DELAY DIFFERENTIAL EQUATIONS

and the operator A is completely reduced by this decomposition. Fur-
thermore, for any initial value ϕ = ΦΛa where a is a constant vector of
dimension q1 + · · · + qs, the solution of the Cauchy problem associated
to ( 4.1) is defined by

xt = T (t)ϕ = T (t)ΦΛa = ΦΛeBΛta , t ≥ 0.

We say that A is reduced by Λ.

4.3 A Fredholm alternative principle
What we want to do next is to use the formal duality presented in the

previous section to obtain an explicit characterization for the projection
operator on the subspace QΛ. The first result is a Fredholm alternative
principle for the characterization of the range of λI −A.

Proposition 40 Let λ ∈ (σ\σe) (A). Then, f ∈ R (λI −A) if and only
if << α, f >>= 0 for all α = ε−λ ⊗ x∗, with x∗ ∈ N (λI − (Lλ)∗) where
(Lλ)∗ is the adjoint of operator Lλ.

Proof.– Since λ ∈ (σ\σe) (A), we have that R (λI − A) is closed,
so Lemma 36 gives that R (λI − Lλ) is closed in E. Therefore we can
identify an element in the range of λI − Lλ in terms of the null space
of the natural adjoint of this operator. Now, given f in C, Lemma 35
tells us that f ∈ R (λI − A) if and only if Sλ(f) ∈ R (λI − Lλ), which
holds if and only if < x∗, Sλ(f) >= 0 for all x∗ ∈ N (λI − (Lλ)∗). But,
according to formula (3.2), we have < x∗, Sλ(f) >=<< ε−λ ⊗ x∗, f >>,
which completes the proof of the proposition.

We can state Proposition 40 in a Fredholm alternative principle form:

Let λ ∈ (σ\σe) (A). Then, the equation (λI −A)ψ = ϕ has a solution
if and only if << ελ ⊗ x∗, ϕ >>= 0 for all x∗ ∈ N (λI − (Lλ)∗).

4.4 Characterization of the subspace
R (λI − A)m for λ in (σ\σe) (A)

The fact that λ is non essential ensures thatR (λI−A)m is closed with
a finite codimension, and there is an integer m0 such that R (λI −A)m

is the same for all m ≥ m0. The computations we are going to present
now are similar to the ones performed in finite dimensions. In fact, those
computations are in some sense valid in general. But, in the case when
λ is an essential spectral value, the computation will not be conclusive.
The main point is that the equation which is originally set up in C will
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reduce to an equation in the product space Em. In fact, the solution to
(λI −A)mϕ = f is given by:

ϕ(θ) =
m−1∑
j=0

(
θj

j!
eλθ

)
uj +

∫ 0

θ
eλ(θ−ξ) (ξ − θ)m−1

(m− 1)!
f(ξ) dξ , θ ∈ [−r, 0]

(4.2)
where u0, . . . , um−1 are arbitrary elements of E which must be deter-
mined so that ϕ ∈ D ((λI −A)m).

Introducing the notation

ϕ(k)(θ) :=
(

λI − d

dθ

)k

ϕ(θ) , θ ∈ [−r, 0]

we have that ϕ ∈ D ((λI −A)m) if and only if ϕ(k) ∈ D(A), k =
0, . . . , m − 1, which, in view of the expression (4.2) amounts to prov-
ing that each ϕ(k) satifies the boundary condition ϕ̇(k)(0) = L(ϕ(k)). By
direct calculation, the problem reduces to an algebraic equation to be
satisfied by the uk,

Lλ
(m)(u0, . . . , um−1)T = Sλ

(m)(f)

where (...)T means the transpose vector and we have introduced the
operators Lλ

(m) ∈ L(Em) defined by:

Lλ
(m) :=




λI − Lλ I − Lλ
(1) . . . −Lλ

(m−2) −Lλ
(m−1)

0 λI − Lλ . . . −Lλ
(m−3) −Lλ

(m−2)

...
...

...
...

0 0 . . . λI − Lλ I − Lλ
(1)

0 0 . . . 0 λI − Lλ




in which Lλ
(j) ∈ L(E), Lλ

(j)(u) := L(ελ
(j) ⊗ u), u ∈ E and ελ

(j) are
defined in (3.4). The operators Sλ

(m) : C −→ E are defined by

Sλ
(m)(f) :=




L

(∫ 0

θ
eλ(θ−ξ) (ξ − θ)m−1

(m− 1)!
f(ξ) dξ

)

L

(∫ 0

θ
eλ(θ−ξ) (ξ − θ)m−2

(m− 2)!
f(ξ) dξ

)

...

L

(∫ 0

θ
eλ(θ−ξ)(ξ − θ)f(ξ) dξ

)

−ψ(0) + L

(∫ 0

θ
eλ(θ−ξ)f(ξ) dξ

)




.
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One can check readily that

Lλ
(j)(u) =

1
j!

(
d

dλ

)j

(Lλ) (u).

Therefore, we have proved the following result

Lemma 40 f ∈ R (λI −A)m if and only if Sλ
(m)(f) ∈ R

(
Lλ

(m)
)
.

We wish to locateR
(
Lλ

(m)
)

by means of the adjoint operator
(
L(m)

λ

)∗
.

In order to achieve this, we need to see that R
(
Lλ

(m)
)

is a closed sub-
space of Em. No other result similar to the one stated in Lemma 35 is
known.

Since R (λI − A)m =
(
Sλ

(m)
)−1 (

R
(
Lλ

(m)
))

, one obtains that if

R
(
Lλ

(m)
)

is a closed subspace in Em, then R (λI−A)m is closed in C.
However, the converse statement is of a bigger interest to us. We begin
its analysis proving the following proposition.

Proposition 41 Let λ ∈ (σ\σe) (A). Then Lλ
(m) is a Fredholm opera-

tor for each m = 1, 2, . . .

The proof is an immediate consequence of the two next lemmas.

Lemma 41 If λ ∈ (σ\σe) (A), then λI − Lλ is a Fredholm operator.

Proof.– Since λ ∈ (σ\σe) (A), from Lemma 36 we infer that R (λI −
Lλ) is a closed subspace in E. On the other hand, using Lemma 34
and Lemma 35, we can see that Sλ (R (λI −A)) = R (λI − Lλ) and
S−1

λ (R (λI − Lλ)) = R (λI −A). Select a finite dimension vector space
M complementing R (λI−A) in C, which can be done since, by assump-
tion, R (λI −A) has a finite codimension.

From what precedes we deduce that Sλ(M) ∩R (λI − Lλ) = {0} and
Sλ(M)+R (λI−Lλ) = E. So, we have proved that R (λI−Lλ) is closed
with a finite codimension.

Finally, N (λI − A) is spanned by the functions ελ ⊗ u with u ∈
N (λI − Lλ), then dimN (λI − Lλ) < +∞.

Therefore, λI − Lλ is a Fredholm operator.

Lemma 42 Let A1 . . . Am be Fredholm operators on E. The operator
A(m) defined on the product space Em by

A(m) :=




A1 ∗
. . .

0 Am
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where the operators ∗ are in L(E), is a Fredholm operator.

Proof.– Fredholm operators can be characterized as follows: let F ∈
L(E). Then, F is Fredholm if and only there exist two operators D and
G in L(E) such that F ◦D = I + δ and G ◦ F = I + γ, where δ and γ
are finite rank operators.

Assuming that the Aj , 1 ≤ j ≤ m, are Fredholm operators, we can
determine Dj , δj (resp. Gj , γj) in L(E) such that Aj ◦Dj = I +δj (resp.
Gj ◦ Aj = I + γj), with the δj and the γj having a finite rank. Define
the following operator on Em:

D :=




D1 ∗
. . .

0 Dm

.




Accordingly, we may define G. The product A(m)D can be decomposed
as follows

A(m)D =




I ∗
. . .

0 I


+




δ1 0
. . .

0 δm


 := U + ∆.

The first matrix U in the right-hand side is invertible and the second
one, ·, is a finite rank operator. Multiplying the above expression on
both sides by U−1 leads to

A(m)DU−1 = I + ∆U−1.

Obviously, ∆U−1 has a finite rank. Proceeding exactly the same way on
the left, we can also determine an operator G̃ in L(Em) such that

G̃A(m) = I + ∆̃

where ∆̃ is a finite rank operator.
Therefore, A(m) is a Fredholm operator.

We return to the problem set before the statement of Proposition 41
and we conclude that R

(
Lλ

(m)
)

is closed, so Sλ
(m)(f) ∈ R(

Lλ
(m)
)

if and only if < X∗,Sλ
(m)(f) >= 0 for all X∗ = (x∗

0, . . . , x
∗
m−1)

T ∈

N
((
Lλ

(m)
)∗)

.

Notice that

<< ε̂
(j)
λ ⊗ u∗, ϕ >>=< u∗, ελ

(j)(0)ϕ(0) > + < u∗, L

(∫ 0

θ

ελ
(j)(θ − ξ)ϕ(ξ) dξ

)
>
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where the notation f̂ stands, as usual, for f(−s). Therefore

< X∗,Rλ
(m)(f) >=<<

m−1∑
j=0

ε̂
(j)
λ ⊗ x∗

m−j−1, f >>= 0.

Let us consider the subspace

Kλ
(m)∗ :=

{
α =

m−1∑
j=0

ε̂
(j)
λ ⊗ x∗

m−j−1 ; (x∗
0, . . . , x

∗
m−1)

T ∈ N
((

Lλ
(m)
)∗)}

.

Since Lλ
(m) is a Fredholm operator, the same is true for its adjoint,

thus we have that dimN
((
Lλ

(m)
)∗)

= p for some p < +∞ and then,

dimKλ
(m)∗ = p.

We summarize the results achieved up to now in the following propo-
sition.

Proposition 42 Let λ ∈ (σ\σe) (A) and let m be a positive integer.
Then f ∈ R (λI−A)m if and only if << α, f >>= 0 for each α ∈ Kλ

(m)∗.
Moreover

N (λI − A)m =


ϕ =

m−1∑
j=0

ελ
(j) ⊗ uj ; (u0, . . . , um−1)

T ∈ N
(
Lλ

(m)
)


and then dimN (λI −A)m = dimN
(
Lλ

(m)
)

< +∞.

Notice that (x∗
0, . . . , x

∗
m−1)

T ∈ N
((
Lλ

(m)
)∗)

also implies that

(0, x∗
0, . . . , x

∗
m−2)

T ∈ N
((
Lλ

(m)
)∗)

and then it is easy to prove by

direct calculation that the subspace Kλ
(m)∗ is differentiation invariant.

This fact implies that elements of this subspace are solutions of a
linear O.D.E. In fact, choosing a basis Φ∗

λ := (ϕ∗
1, . . . , ϕ

∗
p)

T of Kλ
(m)∗,

we have

Φ̇∗
λ = (ϕ̇∗

1, . . . , ϕ̇
∗
p)

T = B∗
λ(ϕ∗

1, . . . , ϕ
∗
p)

T = B∗
λΦ∗

λ

where B∗
λ is a constant p× p matrix and λ is the only eigenvalue of this

matrix. Therefore

Φ∗
λ(θ) = eB∗

λθΦ∗
λ(0) , θ ∈ [0, r].
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4.5 Characterization of the projection operator
onto the subspace QΛ

We recall the conclusion of Theorem 2, that is, for λ ∈ (σ\σe) (A),
there exists a positive integer m for which a direct sum decomposition
of the following type holds:

C = N (λI −A)m ⊕R (λI −A)m

with dimN (λI − A)m = q < +∞ and ϕ ∈ R (λI − A)m if and only if
<< α, ϕ >>= 0 for all α ∈ Kλ

(m)∗. Also dimKλ
(m)∗ = p < +∞.

We wish to find a suitable coordinate system which serves in char-
acterizing the projection operator onto the subspace R (λI − A)m. To
this end, it is first convenient to investigate the relationship between the
numbers p, q.

Recall that p = dimN
((
Lλ

(m)
)∗)

, q = dimN
(
Lλ

(m)
)

but in gen-
eral, even for Fredholm operators, we have p 
= q. We now show that
q ≤ p and next we will obtain some sufficient conditions for p = q.

Let Ψλ = (ψ1, . . . , ψq) be a basis for the subspace N (λI − A)m and
Ψ∗

λ = (α∗
1, . . . , α

∗
p)

T a basis for Kλ
(m)∗, and make up the constant p× q

matrix M :

M :=<< Ψ∗
λ, Ψλ >>:= [<< α∗

i , ψj >>]i,j=1,...,p,q. (4.3)

If (λ1, . . . , λq)T ∈ N (M), then << α∗, λ1ψ1 + · · · + λqψq >>= 0 for
all α∗ in Kλ

(m)∗ and Proposition 42 implies that λ1ψ1 + · · · + λqψq ∈
R (λI − A)m. But we also have λ1ψ1 + · · · + λqψq ∈ N (λI − A)m and
then λ1ψ1+· · ·+λqψq = 0. Therefore λi = 0, i = 1, . . . , q, N (M) = {0}.
Thus we conclude that M has rank q, implying that q ≤ p.

In particular we can choose two new bases Φλ := (ϕ1, . . . , ϕq), Φ∗
λ :=

(ϕ∗
1, . . . , ϕ

∗
p)

T such that the constant p× q matrix satisfies

<< Φ∗
λ, Φλ >>= [δij ]i,j=1,...,p,q

where δij is the Kronecker symbol.
We summarize all of this in a theorem:

Theorem 4 If λ ∈ (σ\σe) (A), then dimN (λI − A)m ≤ dimKλ
(m)∗

and there exist two bases Φλ = (ϕ1, . . . , ϕq), Φ∗
λ = (ϕ∗

1, . . . , ϕ
∗
p)

T of the
subspaces N (λI −A)m and Kλ

(m)∗ respectively such that

<< Φ∗
λ, Φλ >>= [<< ϕ∗

i , ϕj >>]i,j=1...,p,q = [δij ]i,j=1,...,p,q.
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Moreover, for each ϕ ∈ C([−r, 0]; E) we have a unique decomposition
ϕ = ϕK + ϕI with ϕK ∈ N (λI − A)m, ϕI ∈ R (λI − A)m and <<
ϕ∗

j , ϕI >>= 0, j = 1, . . . , p.
Also ϕK =

∑q
i=1 λiϕi with << ϕ∗

i , ϕK >>= λi if i ≤ q and <<
ϕ∗

i , ϕK >>= 0 if i > q.

Next we relate the matrices Bλ, B∗
λ defined by Φ̇λ = ΦλBλ, Φ̇∗

λ =
B∗

λΦ∗
λ.

It is easy to check that for α = f ⊗ u∗, f ∈ C1([0, r]), u∗ ∈ E∗ and
for all ϕ ∈ D(A), we have

<< α, ϕ̇ >> + << α̇, ϕ >>=< u∗, L
(
f̂ ⊗ ϕ(0)

)
> + < u∗, f(0)ϕ(0) >

where f̂(θ) = f(−θ).
Thus, for α ∈ Kλ

(m)∗ and ϕ ∈ D(A),

<< α, ϕ̇ >> + << α̇, ϕ >>= 0.

Therefore

<< Φ̇∗
λ, Φλ >> = B∗

λ << Φ∗
λ, Φλ >>= − << Φ∗

λ, Φ̇λ >>

= − << Φ∗
λ, Φλ >> Bλ.

Since

<< Φ∗
λ, Φλ >>=

[
Iq

0

]

where Iq is the identity q × q matrix, we obtain

B∗
λ =

[
−Bλ N

0 P

]

where N and P are two matrices of the adequate dimensions and 0 is a
zero submatrix.

Notice that for p = q the last relation reduces to

B∗
λ = −Bλ.

Next we state some sufficient conditions to have p = q.

Lemma 43 If the formal duality is non degenerate then p = q.

Proof.– As usual, we say that the formal duality is non degenerate if
the equality << α, ϕ >>= 0, for all ϕ ∈ C, implies that α = 0.
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With the above notations, let (µ1, . . . , µp)T ∈ N
(
MT
)

(M defined in
(4.3) ). Then, << µ1α

∗
1 + · · ·+ µpα

∗
p, ϕ >>= 0 for all ϕ ∈ R (λI − A)m

and also for all ϕ ∈ C. Since the formal duality is non degenerate, we
must have µ1α

∗
1 + · · ·+µpα

∗
p = 0 and then N

(
MT
)

= {0}. This implies
that p ≤ q, so p = q.

The converse is not true in general. There are examples for finite di-
mensional spaces E such that p = q and the formal duality is degenerate.

Finally we relate the equality p = q with some compactness properties
on the operator Lλ

(m). Introduce the operators

J (m) :=




0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 I
0 0 0 . . . 0 0




H
(m)
λ :=




Lλ L
(1)
λ . . . L

(m−2)
λ L

(m−1)
λ

0 Lλ . . . L
(m−3)
λ L

(m−2)
λ

...
...

...
...

0 0 . . . Lλ L
(1)
λ

0 0 . . . 0 Lλ




.

If λ 
= 0, the operator λI + J (m) is invertible and then

Lλ
(m) = λI + J (m) −H

(m)
λ = (λI + J (m))

(
I − (λI + J (m))−1H

(m)
λ

)
.

The operators J (m) and H
(m)
λ conmute and from well known general

results about the spectrum of compact operators ([35], Th. 4.25) we
have

Lemma 44 Let λ ∈ (σ\σe) (A) be an eigenvalue of A, λ 
= 0. If the
operator H

(m)
λ or some of its iterates is compact, then p = q.

Lemma 45 Let λ, µ be given in (σ\σe) (A), λ 
= µ. For any positive
integers m, r and α ∈ Kλ

(m)∗, ϕ ∈ N (µI −A)r, it holds that << α, ϕ >
>= 0.

Proof.– Given that the two polynomials in x, (x − λ)m and (x − µ)r

are relatively prime, the Bezout identity ensures the existence of two
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polynomials P (x), Q(x) such that

I =
(

λI − d

dθ

)m

P

(
d

dθ

)
+
(

µI − d

dθ

)r

Q

(
d

dθ

)

where d/dθ is the differentiation operator, so that

<< α, ϕ >> = << α, (λI − d/dθ)m P (d/dθ) ϕ >> + << α, (µI − d/dθ)r Q (d/dθ) ϕ >>

= << (d/dθ + λI)m α, P (d/dθ) ϕ >> + << α, Q (d/dθ) (µI − d/dθ)r ϕ >>

= 0.

Let Λ = {λ1, . . . , λs} be a finite subset of non essential points of
σ(A) and consider the decomposition of the space C([−r, 0]; E) stated
in Theorem 3. We are now able to characterize the subspace QΛ by an
orthogonality relation associated with the formal duality.

To this end, we define

P ∗
Λ := Kλ1

(m1)∗ ⊕ · · · ⊕ Kλs
(ms)∗.

Next, let Φj , Φ∗
j be bases of the subspaces N (λjI − A)mj , Kλj

(mj)∗

respectively, j = 1, . . . , s. From the results stated above we know that
each constant pj × qj matrix Jj :=<< Φ∗

j , Φj >>, qj ≤ pj , has rank
equal to qj and also the matrix << Φ∗

k, Φl >> is zero for k 
= l. Then
the matrix J of order (p1 + · · ·+ ps)× (q1 + · · ·+ qs),

J :=
[
<< Φ∗

j , Φk >>
]
j,k=1,...,s

has rank equal to q1 + · · ·+ qs.
Therefore there exist two bases ΦΛ, Φ∗

Λ of the subspaces PΛ, P ∗
Λ re-

spectively such that the constant matrix << Φ∗
Λ, ΦΛ > satisfies

<< Φ∗
Λ, ΦΛ >>= [δij ]i,j=1,...,p1+···+ps,q1+···+qs .

Finally we have found a characterization of the projection onto the sub-
space QΛ. Keeping all the above notations, we have proved the following:

Theorem 5 Consider the direct sum decomposition

C = PΛ ⊕QΛ.

Then,
QΛ = {ϕ ∈ C ; << Φ∗

Λ, ϕ >>= 0}.
Moreover, any ϕ ∈ C may be written as ϕ = ϕPΛ

+ ϕQΛ
with <<

Φ∗
Λ, ϕQΛ

>>= 0 and ϕPΛ
= ΦΛa where a is a constant vector of di-

mension q1 + · · ·+ qs such that

<< Φ∗
Λ, ϕ >>=<< Φ∗

Λ, ϕPΛ
>>=<< Φ∗

Λ, ΦΛ > a =
[

a
0

]

334



A theory of linear DDE in infinite dimensional spaces

and 0 is the zero vector of dimension p1 + · · ·+ ps − (q1 + · · ·+ qs) .

Notice that if pj = qj , j = 1, . . . , s, then

ϕPΛ
= ΦΛa = ΦΛ << Φ∗

Λ, ϕ >> .

4.6 Conclusion
Several extensions of Hale’s theory of functional differential equations

to infinite dimensions exist in the literature, starting from the one given
by C.C. Travis and G.F. Webb [94]. The main motivation is the study of
partial differential equations with finite or infinite delay. In most cases,
the equation is of the form

x′(t) = Ax(t) +
∫ 0

−r
dη(s)x(t + s)

where A generates a C0-semigroup on a Banach space X and dη is a
suitable restricted Stieltjes measure with values in L(X) (see [78], [79],
[38], to quote a few). Another important motivation is related to control
theory. Increasingly elaborate extensions of earlier work by C. Bernier
and A. Manitius, [9], [27], on attainability completeness or degeneracy,
to the case of partial differential equations with delays have been given
by S. Nakagiri [29], [30], [31]. The work done by S. Nakagiri includes
results on the spectral theory of such equations and the characterization
of some generalized eigenspaces in terms of the solutions of an adjoint
equation. Many of the considerations of this author are similar to ours.
The results differ in that some restrictions are imposed by Nakagiri on
the measure, which takes the form

∫ 0

−r
dη(s)ϕ(s) =

∑
Aiϕ(−τi) +

∫ 0

−r
D(s)ϕ(s) ds

with Ai ∈ L(X), D ∈ L1 ((−r, 0);L(X)). Moreover, it is assumed that
the space X is reflexive. In contrast, we make no hypotheses on the
functional term or on the space.

5. A Variation Of Constants Formula For An
Abstract Functional Differential Equation Of
Retarded Type

The aim of this section is to obtain a variation of constants formula
for an abstract linear nonhomogeneous retarded functional differential
equation. We will follow the work made in [7].
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5.1 The nonhomogeneous problem
Let us consider the Cauchy problem for the nonhomogeneous retarded

functional equation:

(NH)
{

x′(t) = L(xt) + f(t) , t ≥ 0
x0 = ϕ

where L : C([−r, 0]; E) −→ E, (r > 0), is a bounded linear operator, E
is a Banach space, f : [0, τ∗[−→ E (τ∗ > 0) is a continuous function and
ϕ ∈ C := C([−r, 0]; E).

A solution of this problem is a function x ∈ C([−r, τ∗[; E), x ∈
C1([0, τ∗[; E) which satisfies (NH) for t ≥ 0.

Uniqueness of solution for (NH) follows immediately from that of the
homogeneous problem. Regarding the existence we observe that if xH is
a solution of (CP) and xP is a solution of the particular nonhomogeneous
problem {

x′(t) = L(xt) + f(t) ; t ≥ 0
x0 = 0 (5.1)

then x = xH + xP satisfies (NH). But we already know existence and
uniqueness of xH for each initial value ϕ ∈ C([−r, 0]; E). Then it is
enough to prove the existence of xP .

Proposition 43 Given f ∈ C([0, +∞[; E), there exists a unique func-
tion xP ∈ C([−r, +∞[; E) ∩ C1([0, +∞[; E) which satisfies ( 5.1) on
[0, +∞[.

Proof.– For each fixed T > 0, let us consider the space

C0([0, T ]; E) := {ϕ ∈ C([0, T ]; E) ; ϕ(0) = 0}

and the operator Π : [0, T ]× C0([0, T ]; E) −→ C([−r, 0]; E) defined by

Π(t, ϕ) :=
{

0 , if t + θ < 0
ϕ(t + θ) , if t + θ ≥ 0.

If we extend ϕ by zero to the interval [−r, T ], it is easy to see that
Π(t, ϕ) = ϕt and then (5.1) is equivalent to the integral problem

x(t) =
∫ t

0
L(Π(s, x)) ds +

∫ t

0
f(s) ds ; t ≥ 0

and also

x(t) = Kx(t) +
∫ t

0
f(s) ds ; t ∈ [0, T ]
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where K is the bounded linear operator defined on C0([0, T ]; E) by

Ku(t) =
∫ t

0
L(Π(s, u)) ds.

It is enough to prove that I −K is invertible. Since

‖Ku‖C([0,T ];E) ≤ T‖L‖‖u‖C([0,T ];E)

we obtain the following estimations for the iterates of K:

‖Kn‖ ≤ ‖L‖nTn

n!
; n = 1, 2, . . .

and the result follows easily.

5.2 Semigroup defined in L(E)

For each Φ ∈ C([−r, 0];L(E)), b ∈ E, let Φ⊗ b ∈ C([−r, 0]; E) be the
function defined by

(Φ⊗ b) (θ) := Φ(θ)(b) ; θ ∈ [−r, 0]

and then consider the bounded linear operator

L̃ : C([−r, 0];L(E)) −→ L(E) L̃(Φ)(b) := L(Φ⊗ b).

Theorem 1 can be used to conclude that the Cauchy problem
{

V ′(t) = L̃(Vt) ; t ≥ 0
V0 = Φ

(5.2)

has a unique solution for each initial value Φ ∈ C([−r, 0];L(E)). Also,
this solution defines on C([−r, 0];L(E)) a strongly continuous transla-
tion semigroup {T̃ (t)}t≥0 such that T̃ (t)Φ = Vt, t ≥ 0.

The infinitesimal generator of this semigroup is

ÃΦ := Φ̇ ; D(Ã) := {Φ ∈ C([−r, 0];L(E)) ; Φ̇(0) = L̃(Φ)}.

Proposition 44 The semigroup {T (t)}t≥0 associated to the solution of
(CP) is related to the semigroup {T̃ (t)}t≥0 by

(
T̃ (t)Φ

)
(θ)(b) = T (t) (Φ⊗ b) (θ) ; ∀b ∈ E ; θ ∈ [−r, 0].

Proof.– Let {U(t)}t≥0 be the family of bounded linear operators defined
in E by:

U(t)(b) := T (t) (Φ⊗ b) (0) ; t ≥ 0.
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Since {T (t)}t≥0 is a translation semigroup, for t > 0, θ ∈ [−r, 0], t+ θ ≥
0, we have:

Ut(θ)(b) = T (t + θ) (Φ⊗ b) (0) = T (t) (Φ⊗ b) (θ)

and U = Φ in [−r, 0].
Also, for t > 0, θ ∈ [−r, 0], t + θ ≤ 0,

Ut(θ)(b) = Φ(t + θ)(b) = (Φ⊗ b) (t + θ) = T (t) (Φ⊗ b) (θ).

Next, we look at the equation. We have

L̃(Ut)(b) = L(Ut ⊗ b) = L (T (t) (Φ⊗ b)) ; t ≥ 0.

Now, let Φ ∈ D(Ã) be the initial value in problem (5.2) . It is easy to
prove that Φ⊗ b ∈ D(A) for all b ∈ E, and then

U ′(t)(b) = T (t)A (Φ ⊗ b) (0) = AT (t) (Φ ⊗ b) (0) = L (T (t) (Φ ⊗ b)) = L̃(Ut)(b).

That is, the function U ∈ C([0, +∞[;L(E)) satisfies (5.2). So, Ut =
T̃ (t)Φ, by definition of the semigroup {T̃ (t)}t≥0 and uniqueness of the so-
lution of equation (5.2). Finally, by density of D(Ã) in C([−r, 0];L(E)),
equality extends to all Φ.

The proof of the proposition is complete.

5.3 The fundamental solution
Let e ∈ E be given. We denote by xe(t) the unique solution of the

problem {
x′(t) = L(yt) + e ; t ≥ 0

x0 = 0,

which, in integral form, reads as:

(xe)(t) =
∫ t

0
L(xe

s) ds + et , t ≥ 0. (5.3)

We now define the fundamental solution of (NH).

Definition 41 The fundamental solution of problem (NH) is the family
of operators {U(t)}t≥0, U(t) : E −→ E, defined by

U(t)e := (xe)′(t) ; t ≥ 0.

Observe that U(0) = I and U(t)e = L(xt
e) + e. Also, it is easy to prove

that for each e ∈ E fixed, the function t −→ U(t)e is continuous in R+.
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Lemma 46 For all t ≥ 0, we have U(t) ∈ L(E).

Proof.– Given e ∈ E, from (5.3) we have:

‖xt
e‖C ≤ sup

θ∈[−t,0]

(
‖L‖

∫ t+θ

0
‖xe

s‖C ds + (t + θ)‖e‖
)

= ‖L‖
∫ t

0
‖xs

e‖C ds + t‖e‖.

This implies that ([74]):

‖xt
e‖C ≤ t‖e‖exp

(∫ t

0
‖L‖ ds

)
= t‖e‖et‖L‖.

Therefore

‖U(t)e‖ ≤ ‖L‖‖xt
e‖C + ‖e‖ ≤ ‖e‖

(
1 + t‖L‖et‖L‖

)
.

We are now going to prove the continuity in R+ of the function t −→
U(t) and to this end we need to introduce another family of operators
which is related to the fundamental solution by integration.

More precisely, let {V(t)}t≥0 be the family of operators defined by:

V(t) : E −→ E ; V(t)e := xe(t).

We have

V(t)e =
∫ t

0
(xe)′(s) ds =

∫ t

0
U(s)e ds

and also

‖V(t)e‖ ≤ ‖e‖
∫ t

0
‖U(s)‖ ds ≤ ‖e‖

∫ t

0

(
1 + s‖L‖es‖L‖

)
ds

which proves that V(t) ∈ L(E) , t ≥ 0.

Proposition 45 The function t −→ V(t) is continuously differentiable
from R+ into L(E).

Proof.– Let t1, t2 ∈ R+:

‖V(t1) − V(t2)‖ = sup
‖e‖≤1

‖V(t1)e − V(t2)‖ = sup
‖e‖≤1

∥∥∥∥
∫ t2

t1

U(s)e ds

∥∥∥∥

≤ sup
‖e‖≤1

‖e‖
∫ t2

t1

‖U(s)‖ ds

≤
∫ t2

t1

(
1 + s‖L‖es‖L‖

)
ds −→ 0 (|t1 − t2| → 0).
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The above inequality yields local Lipschitz continuity.

We extend V to the interval [−r, 0] by 0. Since V(0) = 0, local Lip-
schitz continuity is preserved. It also holds for the map t −→ Vt from R+

into C([−r, 0];L(E)). Therefore, the same holds for the map t −→ L̃(Vt).

Observe that

xe
s(θ) = xe(s + θ) = V(s + θ)(e) = Vs(θ)e = (Vs ⊗ e) (θ)

hence
L(xe

s) = L (Vs ⊗ e) = L̃ (Vs) (e).

Substituting the right-hand side of the above formula for L(xe
s) in (5.3),

we arrive at

V(t) =
∫ t

0
L̃(Vs) ds + tI ; t ≥ 0 (5.4)

from which, in view of local Lipschitz continuity of L̃(Vt), we can con-
clude that V(t) is continuously differentiable for t ≥ 0 and it holds:

V ′(t) = L̃(Vt) + I ; t ≥ 0. (5.5)

An immediate consequence of Proposition 45 is the continuity of the
fundamental solution:

Corollary 6 The function t −→ U(t) is continuous from R+ into L(E).

The fundamental solution satisfies a retarded equation which is for-
mally similar to (5.2). To see this, we extend by zero the fundamental
solution to the interval [−r, 0[. Since U(0) = I, the extension is not
continuous but we can define the sections of U(t).

These sections are related to V(t) by:

Vt(θ) = V(t + θ) =

∫ t+θ

0
U(s) ds =




0 , if t + θ < 0∫ t

−θ
Uτ (θ) dτ , if t + θ ≥ 0

and therefore we can easily show:

Vt(θ) =
∫ t

0
Uτ (θ) dτ ; t ≥ 0 ; θ ∈ [−r, 0].

From (5.5) we conclude that the fundamental solution satisfies the Cauchy
problem: 


U(t) = L̃

(∫ t

0
Uτ dτ

)
+ I ; t ≥ 0

U0 = X0

340



A theory of linear DDE in infinite dimensional spaces

where X0(θ) := 0 if θ ∈ [−r, 0[; X0(0) := I.
This retarded functional equation can be written formally in the in-

tegral form:


U(t) =

∫ t

0
L̃(Uτ ) dτ + I ; t ≥ 0

U(0) = X0

and also formally in the differential form:
{
U ′(t) = L̃(Ut) ; t > 0
U0 = X0.

Using the semigroup {T̃ (t)}t≥0 with some abuse, we may write formally:

Ut = T̃ (t)X0 ; t ≥ 0.

5.4 The fundamental solution and the
nonhomogeneous problem

We keep the above notations and we are going to express the solu-
tion of the particular nonhomogeneous problem (5.1) in terms of the
fundamental solution.

Theorem 7 Let xP be the solution of ( 5.1). Then we have:

xP (t) =
∫ t

0
U(t− s) (f(s)) ds ; t ≥ 0.

Proof.– By arguments similar to those employed in Lemma 46, we can
prove the continuous dependence of xP upon the function f . Hence it
is enough to choose f ∈ C1([0, T ]; E), T > 0.

In this case we have

d

ds
[V(t− s) (f(s))] =

(
d

ds
V(t− s)

)
(f(s)) + V(t− s)

(
f ′(s)

)
.

We define

y(t) :=
∫ t

0
U(t− s) (f(s)) ds = −

∫ t

0

d

ds
V(t− s) (f(s)) ds

= V(t) (f(0)) +
∫ t

0
V(t− s)

(
f ′(s)

)
ds ; t ≥ 0

and y(t) = 0 in [−r, 0].
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Observe that y is continuous in [−r, +∞[, since y(0) = 0, but we do
not assure the differentiability of y in t = 0.

We now prove that y satisfies the same equation as xP :

y′(t) = V ′(t) (f(0)) +
∫ t

0
V ′(t− s)

(
f ′(s)

)
ds

= L̃(Vt) (f(0)) +
∫ t

0
L̃ (Vt−s)

(
f ′(s)

)
ds + f(t)

= L

(
Vt ⊗ f(0) +

∫ t

0
Vt−s ⊗ f ′(s) ds

)
+ f(t).

On the other hand, from the definition of y for t ≥ 0 and the fact that
both y and V are identically for t < 0, we can easily check that

Vt ⊗ f(0) +
∫ t

0
Vt−s ⊗ f ′(s) ds = yt.

Substituting yt for the left-hand side of the above expression in the
formula of y′(t) we obtain:

y′(t) = L(yt) + f(t)

together with y(t) = 0 for t ≤ 0, so y(t) = xP (t), which completes the
proof of the theorem.

Lemma 47 The sections of the solution xP are given in terms of the
fundamental solution by

(xP )t =
∫ t

0
Ut−s ⊗ f(s) ds ; t ≥ 0.

Proof.– We do not carry out the details of the calculations which are
based on∫ t

t+θ
Ut−s(θ) (f(s)) ds =

∫ t

t+θ
U(t + θ − s) (f(s)) ds = 0.

We recall that the solution of (NH) is x = xH +xP and so we obtain for
each initial value ϕ ∈ C([−r, 0]; E) the following formula:

x(t) = T (t)ϕ(0) +
∫ t

0
U(t− s) (f(s)) ds ; t ≥ 0

and also

xt = T (t)ϕ +
∫ t

0
Ut−s ⊗ f(s) ds ; t ≥ 0.
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Formally:

xt = T (t)ϕ +
∫ t

0

(
T̃ (t− s)X0

)
⊗ f(s) ds.

Finally, we can also express the solution of the homogeneous equation,
xH , in terms of the fundamental solution U(t).

Given ϕ ∈ C([−r, 0]; E), let us define ϕ̃ ∈ C([−r, +∞[; E):

ϕ̃(t) :=
{

ϕ(t) if t ∈ [−r, 0]
ϕ(0) if t > 0.

Changing the unknown function x into y, defined by

x(t) = y(t) + ϕ̃(t)

we have that y satisfies the nonhomogeneous problem:
{

y′(t) = L(yt) + L(ϕ̃t) , t > 0
y0 = 0.

Theorem 7 applies and yields the following expression

y(t) =
∫ t

0
U(t− s) (L(ϕ̃s)) ds , t > 0.

Coming back to the original unknown function x, we obtain:

x(t) = ϕ(0) +
∫ t

0
U(t− s) (Lϕ̃s) ds , t > 0.

Rewriting ϕ̃ in the form

ϕ̃(t) = ϕ(t) + ϕ(0) , −r ≤ t ≤ +∞

and using this expression in the quantity under the integral, we arrive
at

x(t) = ϕ(0) +
∫ t

0
U(t− s) (Lϕ(0)) ds +

∫ min(t,r)

0
U(t− s) (Lϕs) ds

where ϕ(0) after L in the first integral is to be considered as a constant
function.

Finally we can write

x(t) =
[
I +
∫ t

0
U(s)L̃(Ĩ) ds

]
(ϕ(0)) +

∫ min(t,r)

0
U(t− s) (Lϕs) ds
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with Ĩ : [−r, 0] −→ L(E) defined by Ĩ(θ) := I.

Comparing this representation with the solution of the homogeneous
Cauchy problem associated with a constant initial data, we conclude
that the first term is the restriction of the semigroup {T (t)}t≥0 to the
constant functions.

5.5 Decomposition of the nonhomogeneous
problem
in C([−r, 0]; E)

We keep the notations of sections 3 and 4. In what follows we ac-
cept that the measure m associated with the operator L is of bounded
variation and therefore the operator L∗, formally adjoint to L, is defined.

Lemma 48 Let x(t) be a solution to (NH) defined in [a,+∞[ and let
y(t) = g(t)u∗ be a solution of the formally adjoint equation

ẏ(t) = −L∗(yt) ; t ≤ 0

defined in ]−∞, b], with a < b. Then, for all t ∈ [a, b] we have:

<< yt, xt >>=<< y0, x0 >> +
∫ t

0
< y(s), f(s) > ds.

Proof.– This can be done by calculations quite similar to those employed
for the homogeneous problem. Hence we don’t carry out the details.

We have

<< yt, xt >>=< y(t), x(t) > + < u∗, L

(∫ 0

∗
g(t + ξ − ∗)x(t + ξ) dξ

)
>

and then

d

dt
<< yt, xt >> = < ẏ(t), x(t) > + < y(t), ẋ(t) >

+ < u∗, L(ĝt ⊗ x(t)) > − < u∗, L(g(t)xt) >

= < y(t), f(t) > .

Integrating, the lemma follows.

Proposition 46 Let xt be the section of the solution to (NH) corre-
sponding to the initial value ϕ ∈ C([−r, 0]; E). Then

<< Φ∗
Λ, xt >>= e−B∗

Λt << Φ∗
Λ, ϕ >> +

∫ t

0
< eB∗

Λ(s−t)Φ∗
Λ(0), f(s) > ds
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where B∗
Λ := diag(B∗

λ1
, . . . , B∗

λs
).

Proof.– We apply Lemma 48 to yt = eB∗
ΛtΦ∗

Λ and then

<< eB∗
ΛtΦ∗

Λ, xt >>=<< Φ∗
Λ, x0 >> +

∫ t

0
< eB∗

ΛsΦ∗
Λ(0), f(s) > ds.

Also, if we define
Z(t) =<< ΦΛ

∗, xt >>

by differentiation we obtain

Ż(t) = −B∗
ΛZ(t)+ < Φ∗

Λ(0), f(t) > .

Let us suppose that that pj = qj , j = 1, . . . , s and hence B∗
Λ = −BΛ. We

apply the decomposition of the space C([−r, 0]; E) stated in theorems of
section 4 and for xt, section of the solution of (NH), we have

xt = xt
P + xt

Q ; xt
P ∈ PΛ ; xt

Q ∈ QΛ

where xt
P = ΦΛa and

a = << Φ∗
Λ, xt >>= e−B∗

Λt << Φ∗
Λ, ϕ >> +

∫ t

0
< eB∗

Λ(s−t)Φ∗
Λ(0), f(s) >ds

= eBΛt << Φ∗
Λ, ϕ >> +

∫ t

0
< eBΛ(t−s)Φ∗

Λ(0), f(s) > ds.

From this we can obtain the projection of the solution xt on the subspace
PΛ in terms of the semigroup {T (t)}t≥0:

xt
P = ΦΛeBΛt << Φ∗

Λ, ϕ >> +
∫ t

0
ΦΛeBΛ(t−s) < Φ∗

Λ(0), f(s) > ds

= T (t)ϕP +
∫ t

0
T (t− s)ΦΛ < Φ∗

Λ(0), f(s) > ds.

Let X0
P ∈ C([−r, 0];L(E)) be the operator defined by

X0
P := ΦΛ < Φ∗

Λ(0), · >

that is,

X0
P (θ)(b) := ΦΛ(θ) < Φ∗

Λ(0), b > ; b ∈ E ; θ ∈ [−r, 0].

Since(
T̃ (t)X0

P
)

(θ)(b) = T (t)
(
X0

P ⊗ b
)
(θ) = T (t)

(
X0

P (θ)(b)
)

= T (t) (ΦΛ(θ) < Φ∗
Λ(0), b >)

345



DELAY DIFFERENTIAL EQUATIONS

we finally obtain the characterization of the projection xt
P in terms of

the semigroups {T (t)}t≥0, {T̃ (t)}t≥0 and the operator X0
P :

xt
P = T (t)ϕP +

∫ t

0

(
T̃ (t− s)X0

P
)
⊗ f(s) ds.

Notice that if the measure m is not of bounded variation, the formal
adjoint operator L∗ is not defined but the last decomposition formula
remains still valid. In fact, Proposition 46 can be proved directly, so
that the last decomposition formulas are also valid.
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1. Introduction
Let (X, |·|) be an infinite dimensional Banach space and L(X) be the

space of bounded linear operators from X into X. Suppose that r > 0
is a given real number. C ([−r, 0] , X) denotes the space of continuous
functions from [−r, 0] to X with the uniform convergence topology and
we will use simply CX for C ([−r, 0] , X). For u ∈ C ([−r, b] , X), b > 0
and t ∈ [0, b], let ut denote the element of CX defined by ut(θ) = u(t +
θ), −r ≤ θ ≤ 0.

By an abstract semilinear functional differential equation on the space
X, we mean an evolution equation of the type

{
du

dt
(t) = A0u(t) + F (t, ut), t ≥ 0,

u0 = ϕ,
(1.1)

where A0 : D(A0) ⊆ X → X is a linear operator, F is a function
from [0, +∞) × CX into X and ϕ ∈ CX are given. The initial value
problem associated with (1.1) is the following : given ϕ ∈ CX , to find a

© 2006 Springer. 
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continuous function u : [−r, h) → X, h > 0, differentiable on [0, h) such
that u(t) ∈ D(A0), for t ∈ [0, h) and u satisfies the evolution equation
of (1.1) for t ∈ [0, h) and u0 = ϕ.

It is well-known (see for example [94] and [96]) that the classical semi-
group theory ensures the well posedness of Problem (1.1) when A0 is the
infinitesimal generator of a C0-semigroup of bounded linear operators
(T0(t))t≥0 in X or, equivalently when
(i) D(A0) = X,
(ii) there exist M0, ω0 ∈ IR such that if λ > ω0 (λI − A0)−1 ∈ L(X)
and

∥∥(λ− ω0)
n (λI −A0)

−n
∥∥ ≤ M0, ∀n ∈ N.

In this case one can prove existence and uniqueness of a solution of (1.1),
for example by using the variation-of-constants formula ([94], [96])

u(t) =
{

T0(t)ϕ(0) +
∫ t
0 T0(t− s)F (s, us)ds, if t ≥ 0,

ϕ(t), if t ∈ [−r, 0] ,

for every ϕ ∈ CX .
For related results, see for example Travis and Webb [94], Webb [95],

Fitzgibbon [72], Kunish and Schappacher ([78], [79]), Memory ([82],
[83]), Wu [96], and the references therein. In all of the quoted papers,
A0 is an operator verifying (i) and (ii). In the applications, it is some-
times convenient to take initial functions with more restrictions. There
are many examples in concrete situations where evolution equations are
not densely defined. Only hypothesis (ii) holds. One can refer for this
to [64] for more details. Non-density occurs, in many situations, from
restrictions made on the space where the equation is considered (for ex-
ample, periodic continuous functions, Hölder continuous functions) or
from boundary conditions (e.g., the space C1 with null value on the
boundary is non-dense in the space of continuous functions. Let us now
briefly discuss the use of integrated semigroups. In the case where the
mapping F in Equation (1.1) is equal to zero, the problem can still be
handled by using the classical semigroups theory because A0 generates
a strongly continuous semigroup in the space D(A0). But, if F 
= 0, it
is necessary to impose additional restrictions. A case which is easily
handled is when F takes their values in D(A0). On the other hand, the
integrated semigroups theory allows the range of the operators F to be
any subset of X.
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Example 3 Consider the model of population dynamics with delay de-
scribed by



∂u

∂t
(t, a) +

∂u

∂a
(t, a) = f(t, a, ut(·, a)), (t, a) ∈ [0, T ] ,× [0, l] ,

u(t, 0) = 0, t ∈ [0, T ] ,
u(θ, a) = ϕ(θ, a), (θ, a) ∈ [−r, 0]× [0, l] ,

(1.2)
where ϕ is a given function on CX := C ([−r, 0] , X), with X = C ([0, l] , IR).
By setting V (t) = u(t, ·), we can reformulate the partial differential prob-
lem ( 1.2) as an abstract semilinear functional differential equation

{
V ′(t) = A0V (t) + F (t, Vt), t ∈ [0, T ] ,
V0 = ϕ ∈ CX ,

(1.3)

where {
D(A0) =

{
u ∈ C1 ([0, l] , IR) ; u(0) = 0

}
,

A0u = −u′,

and F : [0, T ] × CX → X is defined by F (t, ϕ)(a) = f(t, a, ϕ(·, a)) for
t ∈ [0, T ], ϕ ∈ CX and a ∈ [0, l].

Example 4 Consider the reaction-diffusion equation with delay described
by



∂u

∂t
(t, x) = ∆u(t, x) + f(t, x, ut(·, x)), t ∈ [0, T ] , x ∈ Ω,

u(t, x) = 0, t ∈ [0, T ] , x ∈ ∂Ω,
u(θ, x) = ϕ(θ, x), θ ∈ [−r, 0] , x ∈ Ω,

(1.4)
where Ω ⊂ IRn is a bounded open set with regular boundary ∂Ω, ∆ is
the Laplace operator in the sense of distributions on Ω and ϕ is a given
function on CX :=C([−r, 0] , X), with X = C

(
Ω, IR

)
.

The problem ( 1.4) can be reformulated as the abstract semilinear func-
tional differential equation ( 1.3), with
{

D(A0) =
{
u ∈ C

(
Ω, IR

)
; ∆u ∈ C

(
Ω, IR

)
and u = 0 on ∂Ω

}
,

A0u = ∆u,

and F : [0, T ] × CX → X is defined by F (t, ϕ)(x) = f(t, x, ϕ(·, x)) for
t ∈ [0, T ], ϕ ∈ CX and x ∈ Ω.

In the two examples given here, the operator A0 satisfies (ii) but
the domain D(A0) is not dense in X and so, A0 does not generate a
C0−semigroup. Of course, there are many other examples encountered
in the applications in which the operator A0 satisfies only (ii) (see [64]).
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We will study here the abstract semilinear functional differential equa-
tion (1.1) in the case when the operator A0 satisfies only the Hille-Yosida
condition (ii). After providing some background materials in Section 2,
we proceed to establish the main results. A natural generalized notion
of solutions is provided in Section 3 by integral solutions. We derive a
variation-of-constants formula which allows us to transform the integral
solutions of the general equation to solutions of an abstract Volterra
integral equation. We prove the existence, uniqueness, regularity and
continuous dependence on the initial condition. These results give nat-
ural generalizations of results in [94] and [96]. In Section 4, we consider
the autonomous case. We prove that the solutions generate a nonlinear
strongly continuous semigroup, which satisfies a compactness property.
In the linear case, the solutions are shown to generate a locally Lipschitz
continuous integrated semigroup. In Section 5, we use a principle of lin-
earized stability for strongly continuous semigroups given by Desh and
Schappacher [65] (see also [87], [88] and [90]) to study, in the nonlin-
ear autonomous case, the stability of Equation (1.1). In Section 6, we
show in the linear autonomous case, the existence of a direct sum de-
composition of a state space into three subspaces : stable, unstable and
center, which are semigroup invariants. As a consequence of the results
established in Section 6, the existence of bounded, periodic and almost
periodic solutions is established in the sections 7 and 8. In the end, we
give some examples.

2. Basic results
In this section, we give a short review of the theory of integrated

semigroups and differential operators with non-dense domain. We start
with a few definitions.

Definition 42 [56] Let X be a Banach space. A family (S(t))t≥0 ⊂
L(X) is called an integrated semigroup if the following conditions are
satisfied :
(i) S(0) = 0;
(ii) for any x ∈ X, S(t)x is a continuous function of t ≥ 0 with values
in X;

(iii) for any t, s ≥ 0 S(s)S(t) =
∫ s

0
(S(t + τ)− S(τ))dτ.

Definition 43 [56] An integrated semigroup (S(t))t≥0 is called expo-
nentially bounded, if there exist constants M ≥ 0 and ω ∈ IR such that

‖S(t)‖ ≤ Meωt for t ≥ 0.
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Moreover (S(t))t≥0 is called non-degenerate if S(t)x = 0, for all t ≥ 0,
implies that x = 0.

If (S(t))t≥0 is an integrated semigroup, exponentially bounded, then

the Laplace transform R(λ) := λ

∫ +∞

0
e−λtS(t)dt exists for all λ with

Re(λ) > ω. R(λ) is injective if and only if (S(t))t≥0 is non-degenerate.
R(λ) satisfies the following expression

R(λ)−R(µ) = (µ− λ)R(λ)R(µ),

and in the case when (S(t))t≥0 is non-degenerate, there exists a unique
operator A satisfying (ω, +∞) ⊂ ρ(A) (the resolvent set of A) such that

R(λ) = (λI −A)−1, for all Re(λ) > ω.

This operator A is called the generator of (S(t))t≥0.
We have the following definition.

Definition 44 [56] An operator A is called a generator of an inte-
grated semigroup, if there exists ω ∈ IR such that (ω, +∞) ⊂ ρ(A), and
there exists a strongly continuous exponentially bounded family (S(t))t≥0

of linear bounded operators such that S(0) = 0 and (λI − A)−1 =

λ

∫ +∞

0
e−λtS(t)dt, for all λ > ω.

remark 2 If an operator A is the generator of an integrated semigroup
(S(t))t≥0, then ∀λ ∈ IR, A− λI is the generator of the integrated semi-
group (Sλ(t))t≥0 given by

Sλ(t) = e−λtS(t) + λ

∫ t

0
e−λsS(s) ds.

Proposition 47 [56] Let A be the generator of an integrated semigroup
(S(t))t≥0. Then for all x ∈ X and t ≥ 0,

∫ t

0
S(s)xds ∈ D(A) and S(t)x = A

(∫ t

0
S(s)xds

)
+ tx.

Moreover, for all x ∈ D(A), t ≥ 0

S(t)x ∈ D(A) and AS(t)x = S(t)Ax,

and

S(t)x = tx +
∫ t

0
S(s)Ax ds.
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Corollary 1 [56] Let A be the generator of an integrated semigroup
(S(t))t≥0. Then for all x ∈ X and t ≥ 0 one has S(t)x ∈ D(A).
Moreover, for x ∈ X, S(·)x is right-sided differentiable in t ≥ 0 if and
only if S(t)x ∈ D(A). In that case

S′(t)x = AS(t)x + x.

An important special case is when the integrated semigroup is locally
Lipschitz continuous (with respect to time).

Definition 45 [81] An integrated semigroup (S(t))t≥0 is called locally
Lipschitz continuous, if for all τ > 0 there exists a constant k(τ) > 0
such that

‖S(t)− S(s)‖ ≤ k(τ) |t− s| , for all t, s ∈ [0, τ ] .

In this case, we know from [81], that (S(t))t≥0 is exponentially bounded.

Definition 46 [81] We say that a linear operator A satisfies the Hille-
Yosida condition (HY) if there exist M ≥ 0 and ω ∈ IR such that
(ω, +∞) ⊂ ρ(A) and

sup
{
(λ− ω)n

∥∥(λI −A)−n
∥∥ , n ∈ N, λ > ω

}
≤M. (HY)

The following theorem shows that the Hille-Yosida condition charac-
terizes generators of locally Lipschitz continuous integrated semigroups.

Theorem 2 [81] The following assertions are equivalent.
(i) A is the generator of a locally Lipschitz continuous integrated semi-
group,
(ii) A satisfies the condition (HY).

In the sequel, we give some results for the existence of solutions of the
following Cauchy problem

{
du

dt
(t) = Au(t) + f(t), t ≥ 0,

u(0) = x ∈ X,
(2.1)

where A satisfies the condition (HY), without being densely defined.
By a solution of Problem (2.1) on [0, T ] where T > 0, we understand

a function u ∈ C1 ([0, T ] , X) satisfying u(t) ∈ D(A) (t ∈ [0, T ]) such that
the two relations in (2.1) hold.

The following result is due to Da Prato and Sinestrari.
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Theorem 3 [64] Let A : D(A) ⊆ X → X be a linear operator, f :
[0, T ] → X, x ∈ D(A) such that
(a) A satisfies the condition (HY).
(b) f(t) = f(0) +

∫ t
0 g(s) ds for some Bochner-integrable function g.

(c) Ax + f(0) ∈ D(A).
Then there exists a unique solution u of Problem ( 2.1) on the interval
[0, T ], and for each t ∈ [0, T ]

|u(t)| ≤Meωt

(
|x|+

∫ t

0
e−ωs |f(s)| ds

)
.

In the case where x is not sufficiently regular (that is, x is just in
D(A)) there may not exist a strong solution u(t) ∈ X but, following the
work of Da Prato and Sinestrari [64], Problem (2.1) may still have an
integral solution.

Definition 47 [64] Given f ∈ L1
loc(0, +∞; X) and x ∈ X, we say that

u : [0, +∞) → X is an integral solution of ( 2.1) if the following asser-
tions are true
(i) u ∈ C([0, +∞) ; X),

(ii)
∫ t

0
u(s)ds ∈ D(A), for t ≥ 0,

(iii) u(t) = x + A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds, for t ≥ 0.

¿From this definition, we deduce that for an integral solution u, we

have u(t) ∈ D(A), for all t > 0, because u(t) = lim
h→0

1
h

∫ t+h

t
u(s)ds and

∫ t+h

t
u(s)ds ∈ D(A). In particular, x ∈ D(A) is a necessary condition

for the existence of an integral solution of (2.1).

Theorem 4 [61] Suppose that A satisfies the condition (HY), x ∈
D(A) and f : [0, +∞)→ X is a continuous function. Then the problem
( 2.1) has a unique integral solution which is given by

u(t) = S′(t)x +
d

dt

∫ t

0
S(t− s)f(s)ds, pour t ≥ 0,

where S(t) is the integrated semigroup generated by A.
Furthermore, the function u satisfies the inequality

|u(t)| ≤Meωt

(
|x|+

∫ t

0
e−ωs |f(s)| ds

)
, for t ≥ 0.
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Note that Theorem 4 also says that
∫ t
0 S(t− s)f(s)ds is differentiable

with respect to t.

3. Existence, uniqueness and regularity of
solutions

We restate the problem
{

du

dt
(t) = A0u(t) + F (t, ut), t ≥ 0,

u0 = ϕ ∈ CX ,
(1.1)

where F : [0, T ]× CX → X is a continuous function.
Throughout this work, we assume that A0 satisfies the Hille-Yosida con-
dition on X :
(HY) there exist M0 ≥ 0 and ω0 ∈ IR such that (ω0, +∞) ⊂ ρ(A0) and

sup
{
(λ− ω0)n

∥∥(λI −A0)−n
∥∥ , n ∈ N, λ > ω0

}
≤M0.

We know from Theorem 2 that A0 is the generator of a locally Lip-
schitz continuous integrated semigroup (S0 (t))t≥0 on X, (and (S0 (t))t≥0
is exponentially bounded).

In view of the remark following Definition 44, we will sometimes as-
sume without loss of generality that ω0 = 0.

Consider first the linear Cauchy problem{
u′(t) = A0u(t), t ≥ 0,
u0 = ϕ ∈ CX .

This problem can be reformulated as a special case of an abstract semi-
linear functional differential equation with delay. This is{

u′(t) = (Aut) (0) , t ≥ 0,
u0 = ϕ,

where{
D(A) =

{
ϕ ∈ C1 ([−r, 0] , X) ; ϕ(0) ∈ D(A0), ϕ′(0) = A0ϕ(0)

}
,

Aϕ = ϕ′.

We can show, by using the next result and Theorem 2, that the op-
erator A satisfies the condition (HY).

Proposition 48 The operator A is the generator of a locally Lipschitz
continuous integrated semigroup on CX given by

(S(t)ϕ) (θ) =

{ ∫ 0
θ ϕ(s) ds + S0(t + θ)ϕ(0), t + θ ≥ 0,∫ t+θ
θ ϕ(s) ds, t + θ < 0.
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for t ≥ 0, θ ∈ [−r, 0] and ϕ ∈CX .

Proof. It is easy to see that (S(t))t≥0 is an integrated semigroup on
CX .

Consider τ > 0, t, s ∈ [0, τ ] and ϕ ∈CX .
If t + θ ≥ 0 and s + θ ≥ 0, we have

(S (t)ϕ) (θ)− (S(s)ϕ)(θ) = S0(t + θ)ϕ(0)− S0(s + θ)ϕ(0).

It follows immediately that there exists a constant k := k(τ) > 0 such
that

|(S (t)ϕ) (θ)− (S(s)ϕ) (θ)| ≤ k |t− s| |ϕ(0)| ,
because (S0(t))t≥0 is Lipschitz continuous on [0, τ ].

If t + θ ≤ 0 and s + θ ≤ 0, we have

|(S (t) ϕ) (θ)− (S(s)ϕ) (θ)| = 0.

If t + θ ≥ 0 and s + θ ≤ 0, we obtain

(S (t) ϕ) (θ)− (S(s)ϕ) (θ) = S0(t + θ)ϕ(0) +
∫ 0

s+θ
ϕ(u)du,

then

|(S (t) ϕ) (θ)− (S(s)ϕ) (θ)| ≤ k (t + θ) |ϕ(0)| − (s + θ) ‖ϕ‖ ,

This implies that

‖S (t)− S(s)‖ ≤ (k + 1) |t− s| .

It may be concluded that (S(t))t≥0 is locally Lipschitz continuous.
In order to prove that A is the generator of (S(t))t≥0, we calculate

the spectrum and the resolvent operator of A.
Consider the equation

(λI −A) ϕ = ψ,

where ψ is given in CX , and we are looking for ϕ ∈ D(A). The above
equation reads

λϕ(θ)− ϕ′(θ) = ψ(θ), θ ∈ [−r, 0] .

Whose solutions are such that

ϕ(θ) = eλθϕ(0) +
∫ 0

θ
eλ(θ−s)ψ(s) ds, θ ∈ [−r, 0] .
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ϕ is in D(A) if ϕ(0) ∈ D(A0) and ϕ′(0) = A0ϕ(0), that is

ϕ(0) ∈ D(A0) and (λI −A0)ϕ(0) = ψ(0).

By assumption on A0, we know that (0, +∞) ⊂ ρ(A0). So, for λ > 0,
the above equation has a solution ϕ(0) = (λI −A0)

−1 ψ(0).
Therefore, (0, +∞) ⊂ ρ(A) and

(
(λI −A)−1 ψ

)
(θ) = eλθ (λI −A0)

−1 ψ(0) +
∫ 0

θ
eλ(θ−s)ψ(s)ds,

for θ ∈ [−r, 0] and λ > 0.
On the other hand, from the formula stated in Proposition 48, it is

clear that t → (S(t)ϕ) (θ) has at most exponential growth, not larger
than ω0 = 0. Therefore, one can defined its Laplace transform, for each
λ > 0. We obtain

∫ +∞
0 e−λt (S (t) ϕ) (θ) dt =

∫ −θ
0 e−λt ∫ t+θ

θ ϕ(s)ds dt +
∫ +∞
−θ e−λt ∫ 0

θ ϕ(s)ds dt

+
∫ +∞
−θ e−λtS0(t + θ)ϕ(0) dt.

Integrating by parts the first expression, it yields

∫ +∞
0 e−λt (S (t) ϕ) (θ) dt = − eλθ

λ

∫ 0
θ ϕ(s)ds + 1

λ

∫ 0
θ eλ(θ−s)ϕ(s)ds

+ eλθ

λ

∫ 0
θ ϕ(s)ds +

∫ +∞
0 eλ(θ−s)S0(s)ϕ(0)ds,

= eλθ

λ

(∫ 0
θ e−λsϕ(s)ds +

∫ +∞
0 e−λsS0(s)ϕ(0)ds

)
,

= eλθ

λ

(∫ 0
θ e−λsϕ(s)ds + (λI − A0)

−1 ϕ(0)
)

,

=
1

λ

(
(λI − A)−1 ϕ

)
(θ).

So, A is related to (S(t))t≥0 by the formula which characterizes the infin-
itesimal generator of an integrated semigroup. The proof of Proposition
48 is complete

Our next objective is to construct an integrated version of Problem
(1.1) using integrated semigroups. We need to extend the integrated
semigroup (S(t))t≥0 to the space C̃X = CX ⊕ 〈X0〉, where
〈X0〉 = {X0c, c ∈ X and (X0c) (θ) = X0(θ)c} and X0 denotes the func-
tion defined by X0(θ) = 0 if θ < 0 and X0(0) = IdX . We shall prove
that this extension determines a locally Lipschitz continuous integrated
semigroup on C̃X .
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Proposition 49 The family of operators (S̃(t))t≥0 defined on C̃X by

S̃(t)ϕ = S(t)ϕ, for ϕ ∈ CX

and
(
S̃(t)X0c

)
(θ) =

{
S0(t + θ)c, if t + θ ≥ 0,
0, if t + θ ≤ 0, for c ∈ X,

is a locally Lipschitz continuous integrated semigroup on C̃X generated
by the operator Ã defined by

{
D(Ã) =

{
ϕ ∈ C1 ([−r, 0] , X) ; ϕ(0) ∈ D(A0)

}
,

Ãϕ = ϕ′ + X0 (A0ϕ(0)− ϕ′(0)) .

Proof. Using the same reasoning as in the proof of Proposition 48,
one can show that (S̃(t))t≥0 is a locally Lipschitz continuous integrated
semigroup on C̃X .

The proof will be completed by showing that
{

(0, +∞) ⊂ ρ(Ã) and(
λI − Ã

)−1
ϕ̃ = λ

∫ +∞
0 e−λtS̃(t)ϕ̃ dt, for λ > 0 and ϕ̃ ∈ C̃X .

For this, we need the following lemma.

Lemma 1 For λ > 0, one has

(i) D(Ã) = D(A) ⊕
〈
eλ·
〉

, where
〈
eλ·
〉

=
{

eλ·c; c ∈ D(A0), (eλ·c)(θ) = eλθc
}

,

(ii) (0, +∞) ⊂ ρ(Ã) and

(λI − Ã)−1(ϕ + X0c) = (λI − A)−1ϕ + eλ·(λI − A0)
−1c,

for every (ϕ, c) ∈ CX × X .

Proof of the lemma. For the proof of (i), we consider the following
operator

l : D(Ã) → X
ϕ → l(ϕ) = A0ϕ(0)− ϕ′(0).

Let Ψ̃ ∈ D(Ã) and λ > 0. Setting Ψ = Ψ̃−eλ·(λI−A0)−1l(Ψ̃), we deduce
that Ψ ∈ Ker(l) = D(A), and the decomposition is clearly unique.

(ii) Consider the equation
(
λI − Ã

)(
ϕ + eλ·c

)
= ψ + X0a,
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where (ψ, a) is given, ψ ∈ CX , a ∈ X, and we are looking for (ϕ, c) , ϕ ∈
D(A), c ∈ D(A0).

This yields

(λI −A)ϕ + λeλ·c− λeλ·c−X0 (A0c− λc) = ψ + X0a,

which has the solution
{

ϕ = (λI −A)−1 ψ,

c = (λI −A0)
−1 a.

Consequently,
{

(0, +∞) ⊂ ρ(Ã),(
λI − Ã

)−1
(ϕ + X0c) = (λI −A)−1 ϕ + eλ· (λI −A0)

−1 c.

This complete the proof of the lemma
We now turn to the proof of the proposition. All we want to show

is that
1
λ

(
λI − Ã

)−1
ϕ̃ can be expressed as the Laplace transform of

S̃(t)ϕ̃. In view of the decomposition and what has been already done
for A, we may restrict our attention to the case when ϕ̃ = X0c. In this
case, we have

(
(λI − Ã)−1X0c

)
(θ) = eλθ (λI −A0)

−1 c,

= λeλθ
∫ +∞
0 e−λtS0(t)c dt,

= λ
∫ +∞
−θ e−λtS0(t + θ)c dt,

= λ
∫ +∞
0 e−λt

(
S̃(t)X0c

)
(θ) dt,

which completes the proof of the proposition
We will need also the following general lemma.

Lemma 2 Let (U(t))t≥0 be a locally Lipschitz continuous integrated semi-
group on a Banach space (E, |·|) generated by (A, D(A)) and G : [0, T ] →
E (0 < T ), a Bochner-integrable function. Then, the function K :
[0, T ]→ E defined by

K(t) =
∫ t

0
U(t− s)G(s) ds

is continuously differentiable on [0, T ] and satisfies, for t ∈ [0, T ] ,

(i) K ′(t) = lim
h→0

1
h

∫ t

0
U ′(t−s)U(h)G(s) ds = lim

λ→+∞

∫ t

0
U ′(t−s)(AλG(s)) ds,
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with Aλ = λ (λI −A)−1 ,
(ii) K(t) ∈ D(A),
(iii) K ′(t) = AK(t) +

∫ t
0 G(s) ds.

Proof. Theorem 4 implies that K is continuously differentiable on
[0, T ], and for the prove of (ii) and (iii), see [61], [76] and [92]. On the
other hand, we know by the definition of an integrated semigroup that

U(t)U(h)x =
∫ t

0
(U(s + h)x− U(s)x) ds,

for t, h ≥ 0 and x ∈ E. This yields that the function t → U(t)U(h)x is
continuously differentiable on [0, T ] , for each h ≥ 0; x ∈ E, and satisfies

U ′(t)U(h)x = U(t + h)x− U(t)x.

Furthermore, we have

K ′(t) = lim
h→0

(
1
h

∫ t

0
(U(t + h− s)− U(t− s)) G(s) ds

+
1
h

∫ t+h

t
U(t + h− s)G(s) ds

)
.

If we put, in the second integral of the right-hand side, u = 1
h(s− t), we

obtain

1
h

∫ t+h

t
U(t + h− s)G(s) ds =

∫ 1

0
U(h(1− u))G(t + hu) du.

This implies that

lim
h→0

1
h

∫ t+h

t
U(t + h− s)G(s) ds = 0.

Hence

K ′(t) = lim
h→0

1
h

∫ t

0
(U(t + h− s)− U(t− s)) G(s) ds.

But
U(t + h− s)− U(t− s) = U ′(t− s)U(h).

It follows that, for t ∈ [0, T ]

K ′(t) = lim
h→0

∫ t

0
U ′(t− s)

1
h

U(h)G(s) ds.
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For the prove of the last equality of (i), see [93]
We are now able to state a first result of existence and uniqueness of

solutions.

Theorem 5 Let F : [0, T ] × CX → X be continuous and satisfy a Lip-
schitz condition

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ , t ∈ [0, T ] and ϕ, ψ ∈ CX ,

where L is a positive constant. Then, for given ϕ ∈ CX , such that
ϕ(0) ∈ D(A0), there exists a unique function y : [0, T ] → CX which
solves the following abstract integral equation

y(t) = S′(t)ϕ +
d

dt

∫ t

0
S̃(t− s)X0F (s, y(s)) ds, for t ∈ [0, T ] , (3.1)

with (S(t))t≥0 given in Proposition 48 and
(
S̃(t)

)
t≥0

in Proposition 49.

Proof. Using the results of Theorem 4, the proof of this theorem is
standard.

Since ϕ(0) ∈ D(A0), we have ϕ ∈ D(A), where A is the generator
of the integrated semigroup (S(t))t≥0 on CX . Then, we deduce from
Corollary 1 that S(·)ϕ is differentiable and (S′(t))t≥0 can be defined to
be a C0-semigroup on D(A).

Let (yn)n∈N be a sequence of continuous functions defined by

y0(t) = S′(t)ϕ, t ∈ [0, T ]
yn(t) = S′(t)ϕ + d

dt

∫ t
0 S̃(t− s)X0F (s, yn−1(s)) ds, t ∈ [0, T ] , n ≥ 1.

By virtue of the continuity of F and S′(·)ϕ, there exists α ≥ 0 such that∣∣F (s, y0(s)
∣∣ ≤ α, for s ∈ [0, T ] . Then, using Theorem 4, we obtain

∣∣y1(t)− y0(t)
∣∣ ≤M0

∫ t

0

∣∣F (s, y0(s)
∣∣ ds.

Hence ∣∣y1(t)− y0(t)
∣∣ ≤ M0αt.

In general case we have

∣∣yn(t)− yn−1(t)
∣∣ ≤M0L

∫ t

0

∣∣yn−1(s)− yn−2(s)
∣∣ ds.

So, ∣∣yn(t)− yn−1(t)
∣∣ ≤Mn

0 Ln−1α
tn

n!
.
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Consequently, the limit y := lim
n→∞

yn(t) exists uniformly on [0, T ] and

y : [0, T ]→ CX is continuous.
In order to prove that y is a solution of Equation (3.1), we introduce

the function v defined by

v(t) =
∣∣∣∣y(t)− S′(t)ϕ− d

dt

∫ t

0
S̃(t− s)X0F (s, y(s)) ds

∣∣∣∣ .
We have

v(t) ≤
∣∣y(t) − yn+1(t)

∣∣+
∣∣∣yn+1(t) − S′(t)ϕ − d

dt

∫ t

0
S̃(t − s)X0F (s, y(s)) ds

∣∣∣ ,
≤

∣∣y(t) − yn+1(t)
∣∣+
∣∣∣ d

dt

∫ t

0
S̃(t − s)X0 (F (s, y(s)) − F (s, yn(s))) ds

∣∣∣ ,
≤

∣∣y(t) − yn+1(t)
∣∣+ M0L

∫ t

0
|y(t) − yn(t)| .

Moreover, we have

y(t)− yn(t) =
∞∑

p=n

(
yp+1(t)− yp(t)

)
.

This implies that

v(t) ≤ (1 + M0L) α
L

∞∑
p=n

(M0L)p+1 tp+1

(p + 1)!
+

α

L
(M0L)n+1 tn+1

(n + 1)!
, for n ∈ N.

Consequently we obtain v = 0 on [0, T ].
To show uniqueness, suppose that z(t) is also a solution of Equation

(3.1). Then

|y(t)− z(t)| ≤M0L

∫ t

0
|y(s)− z(s)| ds.

By Gronwall’s inequality, z = y on [0, T ]

Corollary 6 Under the same assumptions as in Theorem 5, the solution
y : [0, T ] → CX of the abstract integral equation ( 3.1) is the unique
integral solution of the equation

{
y′(t) = Ãy(t) + X0F (t, y(t)), t ≥ 0,
y(0) = ϕ ∈ CX ,

i.e.
(i) y ∈ C([0, T ] ; CX),

(ii)
∫ t

0
y(s)ds ∈ D(Ã), for t ∈ [0, T ] ,

(iii) y(t) = ϕ + Ã

∫ t

0
y(s)ds + X0

∫ t

0
F (s, y(s))ds, for t ∈ [0, T ] ,
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where the operator Ã is given in Proposition 49.
Furthermore, we have, for t ∈ [0, T ],

‖y(t)‖ ≤M0

(
‖ϕ‖+

∫ t

0
|F (s, y(s))| ds

)
.

Proof. If we define the function f : [0, T ] → C̃X by f(s) = X0F (s, y(s)),
we can use Theorem 4 and Theorem 5 to prove this result

Corollary 7 Under the same assumptions as in Theorem 5, the solution
y of the integral equation ( 3.1) satisfies, for t ∈ [0, T ] and θ ∈ [−r, 0]
the translation property

y(t)(θ) =
{

y(t + θ)(0) if t + θ ≥ 0,
ϕ(t + θ) if t + θ ≤ 0.

Moreover, if we consider the function u : [−r, T ] → X defined by

u(t) =
{

y(t)(0) if t ≥ 0,
ϕ(t) if t ≤ 0.

Then, u is the unique integral solution of the problem ( 1.1), i.e.



(i) u ∈ C([−r, T ] ; X),

(ii)
∫ t

0
u(s)ds ∈ D(A0), for t ∈ [0, T ] ,

(iii) u(t) =




ϕ(0) + A0

∫ t

0
u(s)ds +

∫ t

0
F (s, us)ds, for t ∈ [0, T ] ,

ϕ(t), for t ∈ [−r, 0] .
(3.2)

The function u ∈ C([−r, T ] ; X) is also the unique solution of

u(t) =




S′
0(t)ϕ(0) +

d

dt

∫ t

0
S0(t− s)F (s, us)ds, for t ∈ [0, T ] ,

ϕ(t), for t ∈ [−r, 0] .
(3.3)

Furthermore, we have for t ∈ [0, T ]

‖ut‖ ≤M0

(
‖ϕ‖+

∫ t

0
|F (s, us)| ds

)
.

Conversely, if u is an integral solution of Equation ( 1.1), then the func-
tion t �→ ut is a solution of Equation ( 3.1).
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Proof. ¿From Proposition 48 and Proposition 49, we have for t+θ ≥ 0

y(t)(θ) = S′
0(t + θ)ϕ(0) +

d

dt

∫ t+θ

0
S0(t + θ − s)F (s, y(s)) ds,

= y(t + θ)ϕ(0),

and for t + θ ≤ 0, we obtain
∫ t
0

(
S̃(t− s)X0F (s, y(s))

)
(θ) ds = 0 and

(S′(t)ϕ) (θ) = ϕ(t + θ). Hence

y(t)(θ) = ϕ(t + θ).

The second part of the corollary follows from Corollary 6

Remark 8 A continuous function u from [−r, T ] into X is called an in-
tegral solution of Equation ( 1.1) if the function t �→ ut satisfies Equation
( 3.1) or equivalently u satisfies ( 3.2) or equivalently u satisfies ( 3.3).

Corollary 9 Assume that the hypotheses of Theorem 5 are satisfied and
let u, û be the functions given by Corollary 7 for ϕ, ϕ̂ ∈ CX , respectively.
Then, for t ∈ [0, T ]

‖ut − ût‖ ≤M0e
Lt ‖ϕ− ϕ̂‖ .

Proof. This is just a consequence of the last inequality stated in
Corollary 7. After the equation (3.1) has been centered near u, we
obtain the equation

v(t) = S′(t) (ϕ̂− ϕ) +
d

dt

∫ t

0
S̃(t− s)X0 (F (s, us + v(s))− F (s, us) ) ds,

with
v(t) = ût − ut.

This yields

‖v(t)‖ ≤ M0

(
‖ϕ− ϕ̂‖+

∫ t

0
|F (s, us)− F (s, ûs)| ds

)
,

this is

‖ut − ût‖ ≤M0

(
‖ϕ− ϕ̂‖+ L

∫ t

0
‖us − ûs‖ ds

)
.

By Gronwall’s inequality, we obtain

‖ut − ût‖ ≤M0e
Lt ‖ϕ− ϕ̂‖

We give now two results of regularity of the integral solutions of (1.1).
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Theorem 10 Assume that F : [0, T ] × CX → X is continuously differ-
entiable and there exist constants L, β, γ ≥ 0 such that

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ ,
|DtF (t, ϕ)−DtF (t, ψ)| ≤ β ‖ϕ− ψ‖ ,
|DϕF (t, ϕ)−DϕF (t, ψ)| ≤ γ ‖ϕ− ψ‖ ,

for all t ∈ [0, T ] and ϕ, ψ ∈ CX , where DtF and DϕF denote the deriv-
atives.
Then, for given ϕ ∈ CX such that

ϕ(0) ∈ D(A0), ϕ′ ∈ CX , ϕ′(0) ∈ D(A0) and ϕ′(0) = A0ϕ(0) + F (0, ϕ),

let y : [0, T ] → CX be the solution of the abstract integral equation ( 3.1)
such that y(0) = ϕ. Then, y is continuously differentiable on [0, T ] and
satisfies the Cauchy problem{

y′(t) = Ãy(t) + X0F (t, y(t)), t ∈ [0, T ] ,
y(0) = ϕ.

Moreover, the function u defined on [−r, T ] by

u(t) =
{

y(t)(0) if t ≥ 0,
ϕ(t) if t < 0,

is continuously differentiable on [−r, T ] and satisfies the Cauchy problem
( 1.1).

Proof. Let y be the solution of Equation (3.1) on [0, T ] such that
y(0) = ϕ. We deduce from Theorem 5 that there exists a unique function
v : [0, T ] → CX which solves the following integral equation

v(t) = S′(t)ϕ′ +
d

dt

∫ t

0
S̃(t− s)X0 (DtF (s, y(s)) + DϕF (s, y(s))v(s)) ds,

such that v(0) = ϕ′.
Let w : [0, T ] → CX be the function defined by

w(t) = ϕ +
∫ t

0
v(s) ds, for t ∈ [0, T ] .

We will show that w = y on [0, T ].
Using the expression satisfied by v, we obtain

w(t) = ϕ +
∫ t
0 S′(s)ϕ′ ds

+
∫ t
0 S̃(t− s)X0 (DtF (s, y(s)) + DϕF (s, y(s))v(s)) ds,

= ϕ + S(t)ϕ′ +
∫ t
0 S̃(t− s)X0 (DtF (s, y(s)) + DϕF (s, y(s))v(s)) ds.
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On the other hand, we have ϕ ∈ D(Ã) and ϕ′(0) = A0ϕ(0) + F (0, ϕ),
then ϕ′ = Ãϕ + X0F (0, ϕ). This implies that

S(t)ϕ′ = S̃(t)ϕ′ = S̃(t)Ãϕ + S̃(t)X0F (0, ϕ).

Using Corollary 1, we deduce that

S(t)ϕ′ = S′(t)ϕ− ϕ + S̃(t)X0F (0, ϕ).

Furthermore, we have

d
dt

∫ t
0 S̃(t− s)X0F (s, w(s)) ds = d

dt

∫ t
0 S̃(s)X0F (s, w(t− s)) ds

=
∫ t
0 S̃(t− s)X0 [DtF (s, w(s)) + DϕF (s, w(s))] v(s)ds + S̃(t)X0F (0, ϕ).

Then

w(t) = S′(t)ϕ + d
dt

∫ t
0 S̃(t− s)X0F (s, w(s))ds

−
∫ t
0 S̃(t− s)X0 (DtF (s, w(s)) + DϕF (s, w(s))v(s)) ds

+
∫ t
0 S̃(t− s)X0 (DtF (s, y(s)) + DϕF (s, y(s))v(s)) ds,

= S′(t)ϕ + d
dt

∫ t
0 S̃(t− s)X0F (s, w(s))ds

+
∫ t
0 S̃(t− s)X0 (DtF (s, y(s))−DtF (s, w(s))) ds

+
∫ t
0 S̃(t− s)X0 (DϕF (s, y(s))−DϕF (s, w(s))) v(s) ds.

We obtain

w(t)− y(t) = d
dt

∫ t
0 S̃(t− s)X0 (F (s, w(s))− F (s, y(s))) ds

+
∫ t
0 S̃(t− s)X0 (DtF (s, y(s))−DtF (s, w(s))) ds

+
∫ t
0 S̃(t− s)X0 (DϕF (s, y(s))−DϕF (s, w(s))) v(s) ds.

So, we deduce

|w(t)− y(t)| ≤M0

∫ t

0
(L + β + γ |v(s)|) |w(s)− y(s)| ds.

By Gronwall’s inequality, we conclude that w = y on [0, T ]. This implies
that y is continuously differentiable on [0, T ].

Consider now the function g : [0, T ] → C̃X defined by g(t) = X0F (t, y(t))
and consider the Cauchy problem

{
z′(t) = Ãz(t) + g(t), t ∈ [0, T ] ,
z(0) = ϕ.

(3.4)

The assumptions of Theorem 10 imply that ϕ ∈ D(Ã), Ãϕ+g(0) ∈ D(Ã)
and g is continuously differentiable on [0, T ]. Using Theorem 3, we
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deduce that there exists a unique solution on [0, T ] of Equation (3.4).
By Theorem 4, we know that this solution is given by

z(t) = S′(t)ϕ +
d

dt

∫ t

0
S̃(t− s)g(s)ds.

Theorem 5 implies that z = y on [0, T ].
If we consider the function u defined on [−r, T ] by

u(t) =
{

y(t)(0) if t ≥ 0,
ϕ(t) if t < 0.

By virtue of Corollary 7, we have
∫ t
0 u(s)ds ∈ D(A0) and

u(t) = ϕ(0) + A0

∫ t

0
u(s)ds +

∫ t

0
F (s, us)ds, for t ∈ [0, T ] .

We have also the existence of

lim
h→0

A0

(
1
h

∫ t+h

t
u(s) ds

)
= u′(t)− F (t, ut).

Furthermore, the operator A0 is closed. Then, we obtain u(t) ∈ D(A0)
and

u′(t) = A0u(t) + F (t, ut), for t ∈ [0, T ] .

The second part of the theorem is a consequence of Corollary 6
Assume that T > r and A0 : D(A0) ⊆ X → X satisfies (with not

necessarily dense domain) the condition



there exist β ∈
]

π
2 , π
[

and M0 > 0 such that if
λ ∈ C− {0} and |arg λ| < β, then∥∥∥(λI −A0)

−1
∥∥∥ ≤ M0

|λ| .
(3.5)

The condition (3.5) is stronger than (HY).
We have the following result.

Theorem 11 Suppose that A0 satisfies ( 3.5) (non-densely defined) on
X and there exist a constant L > 0 and α ∈ ]0, 1[ such that

|F (t, ψ)− F (s, ϕ)| ≤ L (|t− s|α + ‖ψ − ϕ‖)

for t, s ∈ [0, T ] and ψ, ϕ ∈ CX .
Then, for given ϕ ∈ CX , such that ϕ(0) ∈ D(A0), the integral solution
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u of Equation (1) on [0, T ] is continuously differentiable on (r, T ] and
satisfies

u(t) ∈ D(A0), u′(t) ∈ D(A0) and
u′(t) = A0u(t) + F (t, ut), for t ∈ (r, T ] .

Proof. We know, from ([77], p.487) that A0 is the generator of an
analytic semigroup (not necessarily C0−semigroup) defined by

eA0t =
1

2πi

∫
+C

eλt(λI −A0)−1dλ, t > 0

where +C is a suitable oriented path in the complex plan.
Let u be the integral solution on [0, T ] of Equation (1), which exists

by virtu of Theorem 5, and consider the function g : [0, T ] → X defined
by g(t) = F (t, ut). We deduce from ([89], p.106) that

u(t) = eA0tϕ(0) +
∫ t

0
eA0(t−s)g(s) ds, for t ∈ [0, T ] .

Using (Theorem 3.4, [91]), we obtain that the function u is γ−Hölder
continuous on [ε, T ] for each ε > 0 and γ ∈ ]0, 1[ . Hence, there exists
L1 ≥ 0 such that

‖ut − us‖ ≤ L1 |t− s|γ , for t, s ∈ (r, T ] .

On the other hand, we have

|g(t)− g(s)| ≤ L(|t− s|α + ‖ut − us‖), for t, s ∈ [0, T ] .

Consequently, the function t ∈ (r, T ] → g(t) is locally Hölder continuous.
By virtue of (Theorem 4.4 and 4.5, [91]), we deduce that u is contin-

uously differentiable on (r, T ] and satisfies

u(t) ∈ D(A0), u′(t) ∈ D(A0) and
u′(t) = A0u(t) + F (t, ut), for t ∈ (r, T ]

We prove now the local existence of integral solutions of Problem (1.1)
under a locally Lipschitz condition on F .

Theorem 12 Suppose that F : [0, +∞) × CX → X is continuous and
satisfies the following locally Lipschitz condition : for each α > 0 there
exists a constant C0(α) > 0 such that if t ≥ 0, ϕ1, ϕ2 ∈ CX and
‖ϕ1‖ , ‖ϕ2‖ ≤ α then

|F (t, ϕ1)− F (t, ϕ2)| ≤ C0(α) ‖ϕ1 − ϕ2‖ .
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Let ϕ ∈ CX such that ϕ(0) ∈ D(A0). Then, there exists a maximal
interval of existence [−r, Tϕ[ , Tϕ > 0, and a unique integral solution
u(., ϕ) of Equation ( 1.1), defined on [−r, Tϕ[ and either

Tϕ = +∞ or lim
t→T−

ϕ

sup |u(t, ϕ)| = +∞.

Moreover, u(t, ϕ) is a continuous function of ϕ, in the sense that if
ϕ ∈ CX , ϕ(0) ∈ D(A0) and t ∈ [0, Tϕ[ , then there exist positive constants
L and ε such that, for ψ ∈ CX , ψ(0) ∈ D(A0) and ‖ϕ− ψ‖ < ε, we have

t ∈ [0, Tψ[ and |u(s, ϕ)− u(s, ψ)| ≤ L ‖ϕ− ψ‖ , for all s ∈ [−r, t] .

Proof. Let T1 > 0. Note that the locally Lipschitz condition on F
implies that, for each α > 0 there exists C0(α) > 0 such that for ϕ ∈ CX

and ‖ϕ‖ ≤ α, we have

|F (t, ϕ)| ≤ C0(α) ‖ϕ‖+ |F (t, 0)| ≤ αC0(α) + sup
s∈[0,T1]

|F (s, 0)| .

Let ϕ ∈ CX , ϕ(0) ∈ D(A0), α = ‖ϕ‖+1 and c1 = αC0(α)+ sup
s∈[0,T1]

|F (s, 0)| .

Consider the following set

Zϕ = {u ∈ C ([−r, T1] , X) : u (s) = ϕ (s) if s ∈ [−r, 0]

and sup
s∈[0,T1]

|u(s)− ϕ(0)| ≤ 1

}
,

where C ([−r, T1] , X) is endowed with the uniform convergence topology.
It’s clear that Zϕ is a closed set of C ([−r, T1] , X) . Consider the mapping

H : Zϕ → C ([−r, T1] , X)

defined by

H (u) (t) =




S′
0(t)ϕ(0) +

d

dt

∫ t

0
S0(t− s)F (s, us)ds, for t ∈ [0, T1] ,

ϕ(t), for t ∈ [−r, 0] .

We will show that
H (Zϕ) ⊆ Zϕ.

Let u ∈ Zϕ and t ∈ [0, T1], we have, for suitable constants M0 and ω0

|H (u) (t)− ϕ(0)| ≤ |S′
0(t)ϕ(0)− ϕ(0)|+

∣∣∣∣ ddt

∫ t

0
S0(t− s)F (s, us)ds

∣∣∣∣ ,
≤ |S′

0(t)ϕ(0)− ϕ(0)|+ M0e
ω0t

∫ t

0
e−ω0s |F (s, us)| ds.
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We can assume, without loss of generality, that ω0 > 0. Then,

|H (u) (t)− ϕ(0)| ≤
∣∣S′

0(t)ϕ(0)− ϕ(0)
∣∣+ M0e

ω0t

∫ t

0
|F (s, us)| ds.

Since |u(s)− ϕ(0)| ≤ 1, for s ∈ [0, T1] , and α = ‖ϕ‖ + 1, we obtain
|u(s)| ≤ α, for s ∈ [−r, T1] . Then, ‖us‖ ≤ α, for s ∈ [0, T1] and

|F (s, us)| ≤ C0(α) ‖us‖+ |F (s, 0)| ,
≤ c1.

Consider T1 > 0 sufficiently small such that

sup
s∈[0,T1]

{∣∣S′
0(s)ϕ(0)− ϕ(0)

∣∣+ M0e
ω0sc1s

}
< 1.

So, we deduce that

|H (u) (t)− ϕ(0)| ≤ |S′
0(t)ϕ(0)− ϕ(0)|+ M0e

ω0tc1t
< 1,

for t ∈ [0, T1]. Hence,
H (Zϕ) ⊆ Zϕ.

On the other hand, let u, v ∈ Zϕ and t ∈ [0, T1], we have

|H (u) (t)−H (v) (t)| =
∣∣∣∣ ddt

∫ t

0
S0(t− s)(F (s, us)− F (s, vs))ds

∣∣∣∣ ,
≤M0e

ω0t

∫ t

0
|F (s, us)− F (s, vs)| ds,

≤M0e
ω0tC0 (α)

∫ t

0
‖us − vs‖ ds,

≤M0e
ω0T1C0 (α) T1 ‖u− v‖C([−r,T1],X) .

Note that α ≥ 1, then

M0e
ω0T1C0(α)T1 ≤ M0e

ω0T1c1T1,
≤ sup

s∈[0,T1]

{∣∣S′
0(s)ϕ(0)− ϕ(0)

∣∣+ M0e
ω0sc1s

}
,

< 1.

Then, H is a strict contraction in Zϕ. So, H has one and only one fixed
point u in Zϕ. We conclude that Equation (1.1) has one and only one
integral solution which is defined on the interval [−r, T1].

Let u(., ϕ) be the unique integral solution of Equation (1.1), defined
on it’s maximal interval of existence [0, Tϕ[ , Tϕ > 0.
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Assume that Tϕ < +∞ and lim sup
t→T−

ϕ

|u(t, ϕ)| < +∞. Then, there

exists a constant α > 0 such that ‖u(t, ϕ)‖ ≤ α, for t ∈ [−r, Tϕ[. Let
t, t + h ∈ [0, Tϕ[ , h > 0, and θ ∈ [−r, 0].
If t + θ ≥ 0, we obtain

|u(t + θ + h, ϕ) − u(t + θ, ϕ)| ≤
∣∣(S′

0(t + θ + h) − S′
0(t + θ))ϕ(0)

∣∣
+

∣∣∣∣ d

dt

∫ t+θ+h

0
S0(t + θ + h − s)F (s, us(., ϕ))ds − d

dt

∫ t+θ

0
S0(t + θ − s)F (s, us(., ϕ))ds

∣∣∣∣ ,

≤
∥∥S′

0(t + θ)
∥∥ ∣∣S′

0(h)ϕ(0) − ϕ(0)
∣∣ +
∣∣∣∣ d

dt

∫ t+θ+h

t+θ
S0(s)F (t + θ + h − s, ut+θ+h−s(., ϕ))ds

∣∣∣∣
+

∣∣∣∣ d

dt

∫ t+θ

0
S0(s) (F (ut+θ+h−s, ϕ) − F (t + θ − s, ut+θ−s(., ϕ))) ds

∣∣∣∣ .
This implies that,

|ut+h(θ, ϕ)− ut(θ, ϕ)| ≤M0e
ω0Tϕ |S′

0(h)ϕ(0)− ϕ(0)|+ M0e
ω0Tϕc1h

+M0e
ω0TϕC0(α)

∫ t

0
‖us+h(., ϕ)− us(., ϕ)‖ ds.

If t + θ < 0. Let h0 > 0 sufficiently small such that, for h ∈ ]0, h0[

|ut+h(θ, ϕ)− ut(θ, ϕ)| ≤ sup
−r≤σ≤0

|u(σ + h, ϕ)− u(σ, ϕ)| .

Consequently, for t, t + h ∈ [0, Tϕ[ , h ∈ ]0, h0[ ;

‖ut+h(., ϕ)− ut(, ϕ)‖ ≤ δ(h) + M0e
ω0Tϕ (|S′

0(h)ϕ(0)− ϕ(0)|+ c1h)

+M0e
ω0TϕC0(α)

∫ t

0
‖us+h(., ϕ)− us(., ϕ)‖ ds,

where
δ(h) = sup

−r≤σ≤0
|u(σ + h, ϕ)− u(σ, ϕ)| .

By Gronwall’s Lemma, it follows

‖ut+h(., ϕ)− ut(, ϕ)‖ ≤ β(h) exp
[
C0(α)M0e

ω0TϕTϕ

]
,

with
β(h) = δ(h) + M0e

ω0Tϕ
[∣∣S′

0(h)ϕ(0)− ϕ(0)
∣∣+ c1h

]
.

Using the same reasoning, one can show the same result for h < 0.
It follows immediately, that

lim
t→T−

ϕ

u(t, ϕ) exists.

Consequently, u(., ϕ) can be extended to Tϕ, which contradicts the max-
imality of [0, Tϕ[ .
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We will prove now that the solution depends continuously on the
initial data. Let ϕ ∈ CX , ϕ(0) ∈ D(A0) and t ∈ [0, Tϕ[. We put

α = 1 + sup
−r≤s≤t

|u(s, ϕ)|

and
c(t) = M0e

ω0t exp
(
M0e

ω0tC0(α)t
)
.

Let ε ∈ ]0, 1[ such that c(t)ε < 1 and ψ ∈ CX , ψ(0) ∈ D(A0) such that

‖ϕ− ψ‖ < ε.

We have
‖ψ‖ ≤ ‖ϕ‖+ ε < α.

Let
T0 = sup {s > 0 : ‖uσ(., ψ)‖ ≤ α for σ ∈ [0, s]} .

If we suppose that T0 < t, we obtain for s ∈ [0, T0] ,

‖us(., ϕ) − us(., ψ)‖ ≤ M0eω0t ‖ϕ − ψ‖ + M0eω0tC0(α)

∫ s

0
‖uσ(., ϕ) − uσ(., ψ)‖ dσ.

By Gronwall’s Lemma, we deduce that

‖us(, ϕ)− us(, ψ)‖ ≤ c(t) ‖ϕ− ψ‖ . (3.6)

This implies that

‖us(., ψ)‖ ≤ c(t)ε + α− 1 < α, for all s ∈ [0, T0] .

It follows that T0 cannot be the largest number s > 0 such that ‖uσ(., ψ)‖ ≤
α, for σ ∈ [0, s] . Thus, T0 ≥ t and t < Tψ. Furthermore, ‖us(., ψ)‖ ≤ α,
for s ∈ [0, t], then using the inequality (3.6) we deduce the dependence
continuous with the initial data. This completes the proof of Theorem

Theorem 13 Assume that F is continuously differentiable and satisfies
the following locally Lipschitz condition: for each α > 0 there exists a
constant C1(α) > 0 such that if ϕ1, ϕ2 ∈ CX and ‖ϕ1‖ , ‖ϕ2‖ ≤ α then

|F (t, ϕ1)− F (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,
|DtF (t, ϕ1)−DtF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,
|DϕF (t, ϕ1)−DϕF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ .

Then, for given ϕ ∈ C1
X := C1 ([−r, 0] , X) such that

ϕ(0) ∈ D(A0), ϕ′(0) ∈ D(A0) and ϕ′(0) = Aϕ(0) + F (ϕ),

let u(., ϕ) : [−r, Tϕ[ → X be the unique integral solution of Equation
( 1.1). Then, u(., ϕ) is continuously differentiable on [−r, Tϕ[ and satis-
fies Equation ( 1.1).

Proof. The proof is similar to the proof of Theorem 10
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4. The semigroup and the integrated semigroup
in the autonomous case

Let E be defined by

E := D(A)
CX =

{
ϕ ∈ CX : ϕ(0) ∈ D(A0)

}
.

Throughout this section we will suppose the hypothesis of Theorem 5
except that we require F to be autonomous, that is, F : CX → X. By
virtue of Theorem 5, there exists for each ϕ ∈ E a unique continuous
function y(., ϕ) : [0, +∞) → X satisfying the following equation

y(t) = S′(t)ϕ +
d

dt

∫ t

0
S̃(t− s)X0F (y(s)) ds, for t ≥ 0. (4.1)

Let us consider the operator T (t) : E → E defined, for t ≥ 0 and ϕ ∈ E,
by

T (t)(ϕ) = y(t, ϕ).

Then, we have the following result.

Proposition 50 Under the same assumptions as in Theorem 5, the
family (T (t))t≥0 is a nonlinear strongly continuous semigroup of contin-
uous operators on E, that is
i) T (0) = Id,
ii) T (t + s) = T (t)T (s), for all t, s ≥ 0,
iii) for all ϕ ∈ E, T (t)(ϕ) is a continuous function of t ≥ 0 with values
in E,
iv) for all t ≥ 0, T (t) is continuous from E into E.
Moreover,
v) (T (t))t≥0 satisfies, for t ≥ 0, θ ∈ [−r, 0] and ϕ ∈ E, the translation
property

(T (t)(ϕ))(θ) =
{

(T (t + θ)(ϕ))(0), if t + θ ≥ 0,
ϕ(t + θ), if t + θ ≤ 0,

(4.2)

and
vi) there exists γ > 0 and M ≥ 0 such that,

‖T (t)(ϕ1)− T (t)(ϕ2)‖ ≤ Meγt ‖ϕ1 − ϕ2‖ , for all ϕ1, ϕ2 ∈ E.

Proof. The proof of this proposition is standard.
We recall the following definition.

Definition 48 A C0−semigroup (T (t))t≥0 on a Banach space (X, |·|) is
called compact if all operators T (t) are compact on X for t > 0.
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Lemma 49 Let (S(t))t≥0 a locally Lipschitz continuous integrated semi-
group on a Banach space (X, |·|), (A, D(A)) its generator, B a bounded
subset of X, {Gλ, λ ∈ Λ} a set of continuous functions from the finite
interval [0, T ] into B, c > 0 a constant and

Pλ(t) =
d

dt

∫ t−c

0
S(t− s)Gλ(s) ds, for c < t ≤ T + c and λ ∈ Λ.

Assume that S′(t) : (D(A), |·|) → (D(A), |·|) is compact for each t > 0.
Then, for each t ∈ (c, T + c], {Pλ(t), λ ∈ Λ} is a precompact subset of
(D(A), |·|).

Proof. The proof is similar to the proof of a fundamental result of
Travis and Webb [94]. Let H = {S′(t)x; t ∈ [c, T + c] , x ∈ D(A), |x|
≤ kN}, where k is the Lipschitz constant of S(·) on [0, T ] and N is a
bound of B. Using the same reasoning as in the proof of Lemma 2.5 [94],
one can prove that H is precompact in (D(A), |·|). Hence, the convex
hull of H is precompact. On the other hand, we have, from Lemma 2

Pλ(t) = lim
h↘0

1
h

∫ t−c

0
S′(t− s)S(h)Gλ(s) ds,

and, for each h > 0 small enough and t ∈ (c, T + c] fixed, the set
{

S′(s)
1
h

S(h)Gλ(t− s), s ∈ [c, t] , λ ∈ Λ
}

is contained in H. Then, the set
{

1
h

∫ t

c
S′(s)S(h)Gλ(t− s) ds, λ ∈ Λ

}

is contained in the closed convex hull of (t−c)H. Letting h tend to zero,
the set

{Pλ(t), λ ∈ Λ}
is still a precompact set of D(A). Hence the proof is complete

Theorem 14 Assume that S′
0(t) : (D(A0), |·|) → (D(A0), |·|) is compact

for each t > 0 and the assumptions of Theorem 5 are satisfied. Then, the
nonlinear semigroup (T (t))t≥0 is compact on (E, ‖.‖CX

) for every t > r.

Proof. Let {ϕλ, λ ∈ Λ} be a bounded subset of E and let t > r. For
θ ∈ [−r, 0], we have t + θ > 0. For each λ ∈ Λ, define yλ by

yλ(t)(θ) = y(t, ϕλ)(θ).
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Then, we obtain

yλ(t)(θ) = S′
0(t + θ)ϕλ(0) + d

dt

∫ t+θ
0 S0(t + θ − s)F (yλ(s)) ds,

= S′
0(t + θ)ϕλ(0) + lim

h↘0

1
h

∫ t+θ

0
S′

0(t + θ − s)S0(h)F (yλ(s)) ds.

First, we show that the family {yλ(t), λ ∈ Λ} is equicontinuous, for each
t > r. Using the Lipschitz condition on F , one shows that
{F (yλ(s)), s ∈ [0, t] and λ ∈ Λ} is bounded by a constant, say K.

Let λ ∈ Λ, 0 < c < t− r and −r ≤ θ̂ < θ ≤ 0. Observe that
∣∣∣yλ(t)(θ) − yλ(t)(θ̂)

∣∣∣ ≤
∣∣∣S′

0(t + θ)ϕλ(0) − S′
0(t + θ̂)ϕλ(0)

∣∣∣
+ lim

h↘0

1

h

∣∣∣∣∣
∫ t+θ

t+θ̂
S′

0(t + θ − s)S0(h)F (yλ(s)) ds

∣∣∣∣∣
+ lim

h↘0

1

h

∣∣∣∣∣
∫ t+θ̂

t+θ̂−c

(
S′

0(t + θ − s) − S′
0(t + θ̂ − s)

)
S0(h)F (yλ(s)) ds

∣∣∣∣∣
+ lim

h↘0

1

h

∣∣∣∣∣
∫ t+θ̂−c

0

(
S′

0(t + θ − s) − S′
0(t + θ̂ − s)

)
S0(h)F (yλ(s)) ds

∣∣∣∣∣ ,

≤
∥∥∥S′

0(t + θ)− S′
0(t + θ̂)

∥∥∥ |ϕλ(0)|+ M0e
ω0tkK

∣∣∣θ − θ̂
∣∣∣+ c2M0e

ω0tkK

+ t sup
s∈[0,t+θ̂−c]

∥∥∥S′
0(t + θ − s)− S′

0(t + θ̂ − s)
∥∥∥ kK.

If we take
∣∣∣θ − θ̂

∣∣∣ small enough, it follows from the uniform continuity

of S′
0(.) : [a, t] → L(D(A0)) for 0 < a < t, the claimed equicontinuity of

{yλ(t), λ ∈ Λ}.
On the other hand, the family {S′

0(t + θ)ϕλ(0); λ ∈ Λ} is precompact,
for each t > r and θ ∈ [−r, 0]. We will show that, for each t > r and
θ ∈ [−r, 0].

{
d

dt

∫ t+θ

0
S0(t + θ − s)F (yλ(s)) ds; λ ∈ Λ

}

is precompact.
Observe that for 0 < c < t + θ and λ ∈ Λ

1
h

∣∣∣∣
∫ t+θ

t+θ−c
S′

0(t + θ − s)S0(h)F (yλ(s)) ds

∣∣∣∣ ≤ cM0e
ω0tkK.

Then, if h tends to zero we obtain
∣∣∣∣ ddt

∫ t+θ

t+θ−c
S0(t + θ − s)F (yλ(s)) ds

∣∣∣∣ ≤ cM0e
ω0tkK. (4.3)
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For 0 < c < t + θ and λ ∈ Λ,
∫ t+θ−c

0
S0(t + θ − s)F (yλ(s)) ds =

∫ t+θ

c
S0(s)F (yλ(t + θ − s)) ds.

By Lemma 49, if 0 < c < t + θ and λ ∈ Λ, then
{

d

dt

∫ t+θ−c

0
S0(t + θ − s)F (yλ(s)) ds, λ ∈ Λ

}

is precompact in X, for each t > r and θ ∈ [−r, 0]. This fact together
with (4.3) yields the precompactness of the set

{
d

dt

∫ t+θ

0
S0(t + θ − s)F (yλ(s)) ds, λ ∈ Λ

}
.

Using the Arzela-Ascoli theorem, we obtain the result of Theorem 14
Consider now the linear autonomous functional differential equation

{
u′(t) = A0u(t) + L(ut), t ≥ 0,
u0 = ϕ,

(4.4)

where L is a continuous linear functional from CX into X.
Given ϕ ∈ CX . It is clear that there exists a unique function

z := z(., ϕ) : [0, +∞) → CX which solves the following abstract integral
equation

z(t) = S(t)ϕ +
d

dt

(∫ t

0
S̃(t− s)X0L(z(s)) ds

)
, for t ≥ 0. (4.5)

Theorem 15 The family of operators (U(t))t≥0 defined on CX by

U(t)ϕ = z(t, ϕ),

is a locally Lipschitz continuous integrated semigroup on CX generated
by the operator P defined by




D(P) =
{
ϕ ∈ C1 ([−r, 0] , X) ; ϕ(0) ∈ D(A0),

ϕ′(0) = A0ϕ(0) + L (ϕ)} ,
Pϕ = ϕ′.

Proof. Consider the operator

L̃ : CX → C̃X

defined by
L̃ (ϕ) = X0L(ϕ).
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Using a result of Kellermann [80], one can prove that the operator G̃

defined in C̃X by {
D(G̃) = D(Ã),
G̃ = Ã + L̃,

where Ã is defined in Proposition 49, is the generator of a locally Lip-
schitz continuous integrated semigroup on C̃X , because Ã satisfies (HY)
and L̃ ∈ L(CX , C̃X).

Let us introduce the part G of G̃ in CX , which is defined by :
{

D(G) =
{

ϕ ∈ D(G̃); G̃ϕ ∈ CX

}
,

G (ϕ) = G̃ (ϕ) .

It is easy to see that
G = P.

Then, P is the generator of a locally Lipschitz continuous integrated
semigroup (V (t))t≥0 on CX .

On the other hand, if we consider, for each ϕ ∈ CX , the nonhomoge-
neous Cauchy problem

{
dz

dt
(t) = Ãz(t) + h(t), for t ≥ 0,

z(0) = 0,
(4.6)

where h : [0, +∞[→ C̃X is given by

h(t) = ϕ + L̃(V (t)ϕ).

By Theorem 4, the nonhomogeneous Cauchy problem (4.6) has a unique
integral solution z given by

z(t) =
d

dt

(∫ t

0
S̃(t− s)h(s) ds

)
,

=
d

dt

(∫ t

0
S̃(t− s)ϕ ds

)
+

d

dt

(∫ t

0
S̃(t− s)X0L (V (s)ϕ) ds

)
.

Then,

z(t) = S(t)ϕ +
d

dt

(∫ t

0
S̃(t− s)X0L (V (s)ϕ) ds

)
.

On the other hand, Proposition 47 gives

V (t)ϕ = P
(∫ t

0
V (s)ϕ ds

)
+ tϕ.
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Moreover, for ψ ∈ D(P), we have

Pψ = Ãψ + X0L (ψ) .

Then, we obtain

V (t)ϕ = Ã

(∫ t

0
V (s)ϕ ds

)
+ X0L

(∫ t

0
V (s)ϕ ds

)
+ tϕ.

So,

V (t)ϕ = Ã

(∫ t

0
V (s)ϕ ds

)
+
∫ t

0
h(s) ds.

Hence, the function t → V (t)ϕ is an integral solution of Equation (4.6).
By uniqueness, we conclude that V (t)ϕ = z(t), for all t ≥ 0. Then we
have U(t) = V (t) on CX . Thus the proof of Theorem 15

Let B be the part of the operator P on E. Then,



D(B) =
{

ϕ ∈ C1 ([−r, 0] , X) ; ϕ(0) ∈ D(A0), ϕ′(0) ∈ D(A0)
ϕ′(0) = A0ϕ(0) + L (ϕ)} ,

Bϕ = ϕ′.

Corollary 16 B is the infinitesimal generator of the C0−semigroup
(U ′(t))t≥0 on E.

Proof. See [93]

Corollary 17 Under the same assumptions as in Theorem 14, the lin-
ear C0−semigroup (U ′(t))t≥0 is compact on E, for every t > r.

To define a fundamental integral solution Z(t) associated to Equation
(4.4), we consider, for ϕ̃ ∈ C̃X , the integral equation

z(t) = S̃(t)ϕ̃ +
d

dt

(∫ t

0
S̃(t− s)X0L(z(s)) ds

)
, for t ≥ 0. (4.7)

One can show the following result.

Proposition 51 Given ϕ̃ ∈ C̃X , the abstract integral equation ( 4.7)
has a unique solution z := z(., ϕ̃) which is a continuous mapping from
[0, +∞) → CX . Moreover, the family of operators

(
Ũ(t)

)
t≥0

defined on

C̃X by
Ũ(t)ϕ̃ = z(t, ϕ̃)
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is a locally Lipschitz continuous integrated semigroup on C̃X generated
by the operator G̃ defined by

{
D(G̃) = D(Ã),
G̃ϕ = Ã + X0L(ϕ).

For each complex number λ, we define the linear operator

∆(λ) : D(A0) → X

by
∆(λ)x := λx−A0x− L

(
eλ·x

)
, x ∈ D(A0).

where eλ·x : [−r, 0]→ CX , is defined for x ∈ X by (note that we consider
here the comlexification of CX)

(
eλ·x

)
(θ) = eλθx, θ ∈ [−r, 0] .

We will call λ a characteristic value of Equation (4.4) if there exists
x ∈ D(A0)\{0} solving the characteristic equation ∆(λ)x = 0. The
multiplicity of a characteristic value λ of Equation (4.4) is defined as
dim Ker∆(λ).

We have the following result.

Corollary 18 There exits ω ∈ IR, such that for λ > ω and c ∈ X, one
has

(λI − G̃)−1(X0c) = eλ·∆(λ)−1c.

Proof. We have, for λ > ω0

∆(λ) = (λI −A0)
(
I − (λI −A0)

−1 L(eλ·I)
)

.

Let ω > max(0, ω0 + M0 ‖L‖) and

Kλ = (λI −A0)
−1 L(eλ·I).

Then,

‖Kλ‖ ≤
M0 ‖L‖
λ− ω0

< 1, for λ > ω.

Hence the operator ∆(λ) is invertible for λ > ω.
Consider the equation

(λI − G̃)(eλ·a) = X0c,

where c ∈ X is given and we are looking for a ∈ D(A0). This yields
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λeλ·c− λeλ·c + X0

(
λc−A0c− L

(
eλ·c
))

= X0a.

Then, for λ > ω
c = ∆(λ)−1a.

Consequently,
(
λI − G̃

)−1
(X0c) = eλ·∆(λ)−1c

Corollary 19 For each c ∈ X, the function Ũ(.)(X0c) satisfies, for
t ≥ 0 and θ ∈ [−r, 0], the following translation property

(
Ũ(t)(X0c)

)
(θ) =

{ (
Ũ(t + θ)(X0c)

)
(0), t + θ ≥ 0,

0, t + θ ≤ 0.

We can consider the following linear operator

Z(t) : X → X

defined, for t ≥ 0 and c ∈ X, by

Z(t)c = Ũ(t)(X0c)(0)

Corollary 20 Z(t) is the fundamental integral solution of Equation
( 4.4); that is

∆(λ)−1 = λ

∫ +∞

0
e−λtZ(t) dt, for λ > ω.

Proof. We have, for c ∈ X

(
λI − G̃

)−1
(X0c) = eλ·∆(λ)−1c.

Then

eλθ∆(λ)−1c = λ

∫ +∞

0
e−λs

(
Ũ(s)(X0c)

)
(θ) ds = λ

∫ +∞

−θ
e−λsZ(s+θ)c ds.

So,

∆(λ)−1c = λ

∫ +∞

0
e−λtZ(t)c dt

It is easy to prove the following result.

Corollary 21 If c ∈ D(A0) then the function

t → Z(t)c

379



DELAY DIFFERENTIAL EQUATIONS

is differentiable for all t > 0 and we have

∆(λ)−1c =
∫ +∞

0
e−λtZ ′(t)c dt.

Hence the name of fundamental integral solution.

The fundamental solution Z ′(t) is defined only for c ∈ D(A0) and is
discontinuous at zero. For these reasons we use the fundamental integral
solution Z(t) or equivalently Ũ(.)(X0).

We construct now a variation-of-constants formula for the linear non-
homogeneous system

u′(t) = A0u(t) + L(ut) + f(t), t ≥ 0, (4.8)

or its integrated form

y(t) = S′(t)ϕ +
d

dt

(∫ t

0
S̃(t− s)X0L [(y(s)) + f(s)] ds

)
, for t ≥ 0,

(4.9)
where f : [0, +∞)→ X is a continuous function.

Theorem 22 For any ϕ ∈ CX , such that ϕ(0) ∈ D(A0), the function
y : [0, +∞) → X defined by

y(t) = U ′(t)ϕ +
d

dt

∫ t

0
Ũ(t− s)X0f(s) ds, (4.10)

satisfies Equation ( 4.9).

Proof. It follows immediately from Theorem 5 and Corollary 6 that,
for ϕ ∈ CX and ϕ(0) ∈ D(A0), Equation (4.9) has a unique solution y
which is the integral solution of the equation

{
y′(t) = Ãy(t) + X0 [L(y(t)) + f(t)] , t ≥ 0,
y(0) = ϕ.

On the other hand, D(Ã) = D(G̃) and G̃ = Ã + X0L. Then, y is the
integral solution of the equation

{
y′(t) = G̃y(t) + X0f(t), t ≥ 0,
y(0) = ϕ.

Moreover, we have

D(G̃) = D(P) =
{

ϕ ∈ CX , ϕ(0) ∈ D(A0)
}

= E,
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and the part of G̃ in CX is the operator P. Then t → U(.)ϕ is differen-
tiable in t ≥ 0 and Theorem 4 implies

y(t) = U ′(t)ϕ +
d

dt

∫ t

0
Ũ(t− s)X0f(s) ds

5. Principle of linearized stability
In this section, we give a result of linearized stability near an equilib-

rium point of Equation (1.1) in the autonomous case, that is
{

du

dt
(t) = A0u(t) + F (ut), t ≥ 0,

u0 = ϕ.
(5.1)

We make the following hypothesis :
F is continuously differentiable, F (0) = 0 and F is satisfies the Lipschitz
condition

|F (ϕ1)− F (ϕ2)| ≤ L ‖ϕ1 − ϕ2‖ , for all ϕ1, ϕ2 ∈ CX ,

where L is a positive constant.
Let T (t) : E → E, for t ≥ 0, be defined by

T (t)(ϕ) = ut(., ϕ),

where u(., ϕ) is the unique integral solution of Equation (5.1) and

E =
{

ϕ ∈ CX , ϕ(0) ∈ D(A0)
}

.

We know that the family (T (t))t≥0 is a nonlinear strongly continuous
semigroups of continuous operators on E.

Consider the linearized equation of (5.1) corresponding to the Fréchet-
derivative DϕF (0) = F ′(0) at 0 :

{
du

dt
(t) = A0u(t) + F ′(0)ut, t ≥ 0,

u0 = ϕ ∈ CX ,
(5.2)

and let (U ′(t))t≥0 be the corresponding linear C0−semigroup on E.

Proposition 52 The Fréchet-derivative at zero of the nonlinear semi-
group T (t), t ≥ 0, associated to Equation ( 5.1), is the linear semigroup
U ′(t), t ≥ 0, associated to Equation ( 5.2).

Proof. It suffices to show that, for each ε > 0, there exists δ > 0
such that ∥∥T (t)(ϕ)− U ′(t)ϕ

∥∥ ≤ ε ‖ϕ‖ , for ‖ϕ‖ ≤ δ.
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We have

‖T (t)(ϕ)− U ′(t)ϕ‖ = sup
θ∈[−r,0]

∣∣(T (t)(ϕ)) (θ)−
(
U ′(t)ϕ

)
(θ)
∣∣ ,

= sup
t+θ≥0
θ∈[−r,0]

∣∣(T (t)(ϕ)) (θ)−
(
U ′(t)ϕ

)
(θ)
∣∣ ,

and, for t + θ ≥ 0

(T (t)(ϕ)) (θ)−
(
U ′(t)ϕ

)
(θ) =

d

dt

∫ t+θ

0
S0(t+θ−s)

(
F (T (s)(ϕ)) − F ′(0)(U ′(s)ϕ)

)
ds.

It follows that

∥∥T (t)(ϕ)− U ′(t)ϕ
∥∥ ≤M0e

ω0t

∫ t

0
e−ω0s

∣∣F (T (s)(ϕ))− F ′(0)(U ′(s)ϕ)
∣∣ ds

and

‖T (t)(ϕ)− U ′(t)ϕ‖ ≤ M0e
ω0t

(∫ t

0
e−ω0s

∣∣F (T (s)(ϕ))− F (U ′(s)ϕ))
∣∣ ds

+
∫ t

0
e−ω0s

∣∣F (U ′(s)ϕ)− F ′(0)(U ′(s)ϕ)
∣∣ ds

)
.

By virtue of the continuous differentiability of F at 0, we deduce that
for ε > 0, there exists δ > 0 such that
∫ t

0
e−ω0s

∣∣F (U ′(s)ϕ)− F ′(0)(U ′(s)ϕ)
∣∣ ds ≤ ε ‖ϕ‖ , for ‖ϕ‖ ≤ δ.

On the other hand, we obtain
∫ t

0
e−ω0s ∣∣F (T (s)(ϕ)) − F (U ′(s)ϕ)

∣∣ ds ≤ L

∫ t

0
e−ω0s ∥∥T (s)(ϕ) − U ′(s)ϕ

∥∥ ds.

Consequently,

∥∥T (t)(ϕ) − U ′(t)ϕ
∥∥ ≤ M0eω0t

(
ε ‖ϕ‖ + L

∫ t

0
e−ω0s ∥∥T (s)(ϕ) − U ′(s)ϕ

∥∥ ds

)
.

By Gronwall’s Lemma, we obtain
∥∥T (t)(ϕ)− U ′(t)ϕ

∥∥ ≤ M0ε ‖ϕ‖ e(LM0+ω0)t.

We conclude that T (t) is differentiable at 0 and DϕT (t)(0) = U ′(t), for
each t ≥ 0

Definition 49 Let Y be a Banach space, (V (t))t≥0 a strongly continu-
ous semigroup of operators V (t) : W ⊆ Y → W, t ≥ 0, and x0 ∈ W
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an equilibrium of (V (t))t≥0 (i.e., V (t)x0 = x0, for all t ≥ 0). The
equilibrium x0 is called exponentially asymptotically stable if there ex-
ist δ > 0, µ > 0, k ≥ 1 such that

‖V (t)x − x0‖ ≤ ke−µt ‖x − x0‖ for all x ∈ W with ‖x − x0‖ ≤ δ and all t ≥ 0.

We have the following result.

Theorem 23 Suppose that the zero equilibrium of (U ′(t))t≥0 is expo-
nentially asymptotically stable, then zero is exponentially asymptotically
stable equilibrium of (T (t))t≥0 .

The proof of this theorem is based on the following result.

Theorem 24 (Desh and Schappacher [65]) Let (V (t))t≥0 be a nonlinear
strongly continuous semigroup of type γ on a subset W of a Banach space
Y , i.e.

‖V (t)x1 − V (t)x2‖ ≤ M ′eγt ‖x1 − x2‖ , for all x1, x2 ∈ W

and assume that x0 ∈ W is an equilibrium of (V (t))t≥0 such that V (t)
is Fréchet-differentiable at x0 for each t ≥ 0, with Y (t) the Fréchet-
derivative at x0 of V (t), t ≥ 0. Then, (Y (t))t≥0 is a strongly continuous
semigroup of bounded linear operators on Y. If the zero equilibrium of
(Y (t))t≥0 is exponentially asymptotically stable, then x0 is an exponen-
tially asymptotically stable equilibrium of (V (t))t≥0.

6. Spectral Decomposition
In this part, we show in the linear autonomous case (Equation (4.4)),

the existence of a direct sum decomposition of the state space

E =
{

ϕ ∈ CX , ϕ(0) ∈ D(A0)
}

into three subspaces : stable, unstable and center, which are semigroup
invariants. We assume that the semigroup (T0(t))t≥0 on D(A0) is com-
pact. It follows from the compactness property of the semigroup U ′(t),
for t > r, on E, the following results.

Corollary 25 [89] For each t > r, the spectrum σ(U ′(t)) is a countable
set and is compact with the only possible accumulation point 0 and if
µ 
= 0 ∈ σ(U ′(t)) then µ ∈ Pσ(U ′(t)), (where Pσ(U ′(t)) denotes the
point spectrum).
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Corollary 26 [89] There exists a real number δ such that �eλ ≤ δ for
all λ ∈ σ(B). Moreover, if β is a given real number then there exists only
a finite number of λ ∈ Pσ(B) such that �eλ > β.

We can give now an exponential estimate for the semigroup solution.

Proposition 53 Assume that δ is a real number such that �eλ ≤ δ for
all characteristic values of Equation ( 4.4). Then, for γ > 0 there exists
a constant k(γ) ≥ 1 such that

∥∥U ′(t)ϕ
∥∥ ≤ k(γ)e(δ+γ)t ‖ϕ‖ , for all t ≥ 0, ϕ ∈ E.

Proof. Let ω1 be defined by

ω1 := inf
{

ω ∈ lR : sup
t≥0

(
e−ωt

∥∥U ′(t)
∥∥) < +∞

}
.

The compactness property of the semigroup (see [84]) implies that

ω1 = s1(B) := sup {�eλ : λ ∈ Pσ(B)} .

On the other hand, if λ ∈ Pσ(B) then there exists ϕ 
= 0 ∈ D(B) such
that Bϕ = λϕ. This implies that

ϕ(θ) = eλtϕ(0) and ϕ′(0) = A0ϕ(0)− L(ϕ) with ϕ(0) 
= 0.

Then, ∆(λ)ϕ(0) = 0. We deduce that λ is a characteristic value of
Equation (4.4).

We will prove now the existence of λ ∈ Pσ(B) such that �eλ = s1(B).
Let (λn)n be a sequence in Pσ(B) such that �eλn → s1(B) as n → +∞.
Then, there exists β such that �eλn > β for n ≥ n0 with n0 large
enough. From Corollary 26, we deduce that {λn : �eλn > β} is finite.
So, the sequence (�eλn)n is stationary. Consequently, there exists n
such that �eλn = s1(B). This completes the proof of Proposition 53

The asymptotic behavior of solutions can be now completely obtained
by the characteristic equation.

Theorem 27 Let δ be the smallest real number such that if λ is a char-
acteristic value of Equation ( 4.4), then �eλ ≤ δ. If δ < 0, then for all
ϕ ∈ E, ‖U ′(t)ϕ‖ → 0 as t → +∞. If δ = 0 then there exists ϕ ∈ E\{0}
such that ‖U ′(t)ϕ‖ = ‖ϕ‖ for all t ≥ 0. If δ > 0, then there exists ϕ ∈ E
such that ‖U ′(t)ϕ‖ → +∞ as t → +∞.

Proof. Assume that δ < 0, then we have ω1 = s1(B) < 0 and the
stability holds. If δ = 0, then there exists x 
= 0 and a complex λ such
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that �eλ = 0 and ∆(λ)x = 0. Then, λ ∈ Pσ(B) and eλt ∈ Pσ(U ′(t)).
Consequently, there exists ϕ 
= 0 such that

U ′(t)ϕ = eλtϕ.

This implies that ‖U ′(t)ϕ‖ =
∥∥eλtϕ

∥∥ = ‖ϕ‖ . Assume now that δ > 0.
Then, there exists x 
= 0 and a complex λ such that �eλ = δ and
∆(λ)x = 0. Then, there exists ϕ 
= 0 such that ‖U ′(t)ϕ‖ = eδt ‖ϕ‖ →
+∞, as t → +∞. This completes the proof of Theorem 27

Using the same argument as in [96], [section 3.3, Theorem 3.1], we
obtain the following result.

Theorem 28 Suppose that X is complex. Then, there exist three linear
subspaces of E denoted by S, US and CN , respectively, such that

E = S ⊕ US ⊕ CN

and
(i) B(S) ⊂ S, B(US) ⊂ US and B(CN) ⊂ CN ;
(ii) US and CN are finite dimensional;
(iii) Pσ(B |US) = {λ ∈ Pσ(B) : �eλ > 0} , Pσ(B |CN ) =
{λ ∈ Pσ(B) : �eλ = 0} ;
(iv) U ′(t) (US) ⊂ US, U ′(t) (CN) ⊂ CN, for t ∈ lR, U ′(t) (S) ⊂ S, for
t ≥ 0;
(v) for any 0 < γ < α := inf {|�eλ| : λ ∈ Pσ(B) and �eλ 
= 0} , there
exists M = M(γ) > 0 such that

‖U ′(t)PUSϕ‖ ≤Meγt ‖PUSϕ‖ , t ≤ 0,

‖U ′(t)PCNϕ‖ ≤Me
γ
3
t ‖PCNϕ‖ , t ∈ lR,

‖U ′(t)PSϕ‖ ≤Me−γt ‖PSϕ‖ , t ≥ 0,

where PS , PUS and PCN are projections of E into S, US and CN re-
spectively. S, US and CN are called stale, unstable and center subspaces
of the semigroup (U ′(t))t≥0.

7. Existence of bounded solutions
We reconsider now the equation (4.8) mentioned in the introduction.

For the convenience of the reader, we restate this equation{
du

dt
(t) = A0u(t) + L(ut) + f(t), t ≥ 0,

u0 = ϕ ∈ CX ,

and its integrated form

ut = U ′(t)ϕ +
d

dt

∫ t

0
Ũ(t− s)X0f(s)ds, for t ≥ 0. (7.1)
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where f is a continuous function form lR into X.
Thanks to Lemma 2, we will use the following integrated form of

Equation (4.8), which is equivalent to (7.1) :

ut = U ′(t)ϕ + lim
λ→+∞

∫ t

0
U ′(t− s)B̃λX0f(s)ds, for t ≥ 0, (7.2)

where the operator B̃λ : 〈X0〉 → CX is defined by

B̃λX0c = λ
(
λI − G̃

)−1
(X0c) = λeλ·∆(λ)−1c, c ∈ X.

We need the following definition.

Definition 50 We say that the semigroup (U ′(t))t≥0 is hyperbolic if

σ(B) ∩ ilR = ∅.
Theorem 28 implies that, in the hyperbolic case the center subspace

CN is reduced to zero. Thus, we have the following result.

Corollary 29 If the semigroup (U ′(t))t≥0 is hyperbolic, then the space
E is decomposed as

E = S ⊕ US

and there exist positive constants M and γ such that

‖U ′(t)ϕ‖ ≤ Me−γt ‖ϕ‖ , t ≥ 0, ϕ ∈ S,
‖U ′(t)ϕ‖ ≤ Meγt ‖ϕ‖ , t ≤ 0, ϕ ∈ US.

We give now the first main result of this section.

Theorem 30 Assume that the semigroup (U ′(t))t≥0 is hyperbolic. Let
B represent B(lR−), B(lR+) or B(lR), the set of bounded continuous
functions from lR−, lR+ or lR respectively to X. Let π : B → B be a
projection onto the integral solutions of Equation ( 4.4) (for any ϕ ∈ E)
which are in B. Then, for any f ∈ B, there is a unique solution Kf ∈ B
of Equation ( 7.2) (for some ϕ ∈ E) such that πKf = 0 and K : B → B
is a continuous linear operator. Moreover,
(i) for B = B(lR−), we have

π(B) =
{
x : lR− → X, there exists ϕ ∈ US

such that x(t) = (U ′(t)ϕ) (0), t ≤ 0}
and

(Kf)t = lim
s→−∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ+

lim
λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0f(τ)

)US
dτ.
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(ii) For B = B(lR+), we have

π(B) =
{
x : lR+ → X, there exists ϕ ∈ S

such that x(t) = (U ′(t)ϕ) (0), t ≥ 0}

and

(Kf)t = lim
λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ+

lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)US
dτ.

(iii) For B = B(lR), we have

π(B) = {0}

and

(Kf)t = lim
s→−∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ+

lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)US
dτ.

Proof. Theorem 28 implies that the space US is finite dimensional
and U ′(t) (US) ⊆ US. Then,{
x : lR− → X, there exists ϕ ∈ US such that x(t) = (U ′(t)ϕ) (0), t ≤ 0

}
⊆ π(B(lR−)). Conversely, let ϕ ∈ S and u(., ϕ) be the integral solution
of Equation (4.4) in S, which is bounded on lR−. Assume that there is
a t ∈ (−∞, 0] such that ut(., ϕ) 
= 0. Then, for any s ∈ (−∞, t), we have

ut(., ϕ) = U ′(t− s)us(., ϕ).

Thanks to Corollary 29 we have

‖ut(., ϕ)‖ ≤Me−γ(t−s) ‖us(., ϕ)‖ , s ≤ t.

Since us(., ϕ) is bounded, we deduce that us(., ϕ) = 0. Therefore,

π(B(lR−)) ⊆
{
x : lR− → X, there exists ϕ ∈ US

such that x(t) = (U ′(t)ϕ) (0), t ≤ 0} .

In the same manner, one can prove the same relations for B(lR+) and
B(lR).

Let f ∈ B(lR−) and u = u(., ϕ, f) be a solution of Equation (7.2) in
B(lR−), with initial value ϕ ∈ E. Then, the function u can be decom-
posed as

ut = uUS
t + uS

t ,
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where uUS
t ∈ US and uS

t ∈ S are given by

uUS
t = U ′(t−s)uUS

s + lim
λ→+∞

∫ t

s
U ′(t−τ)

(
B̃λX0f(τ)

)US
dτ, for t, s ∈ lR,

(7.3)

uS
t = U ′(t− s)uS

s + lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ, for s ≤ t ≤ 0,

(7.4)
since U ′(t) is defined on US for all t ∈ lR. By Corollary 29, we deduce
that

uS
t = lim

s→−∞
lim

λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ, for t ≤ 0. (7.5)

By Lemma 1, we get B̃λX0 = λeλ·∆−1(λ). Thus,∥∥∥∥U ′(t− τ)
(
B̃λX0f(τ)

)S
∥∥∥∥ ≤Me−γ(t−τ) Mλ

λ− ω1
sup

τ∈(−∞,0]
‖f(τ)‖ .

Consequently, we get

∥∥uS
t

∥∥ ≤ MM

γ
sup

τ∈(−∞,0]
‖f(τ)‖ , t ≤ 0. (7.6)

We have proved that

ut = U ′(t)ϕUS + lim
λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0f(τ)

)US
dτ+

lim
s→−∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
dτ, for t ≤ 0.

(7.7)
We obtain also, for t ≤ 0, the following estimate∥∥∥∥U ′(t)ϕUS + lim

λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0f(τ)

)US
dτ

∥∥∥∥ ≤
Meγt

∥∥ϕUS
∥∥+ MM

γ sup
τ∈(−∞,0]

‖f(τ)‖ .
(7.8)

Conversely, we can verify that the expression (7.7) is a solution of Equa-
tion (7.2) in B(lR−) satisfying the estimates (7.6) and (7.8) for every
ϕ ∈ E.

Let u = u(., ϕUS , f) be defined by (7.7) and let K : B(lR−) → B(lR−)
be defined by Kf = (I − π) u(., 0, f). We can easily verify that


ut(., ϕUS , 0) = U ′(t)ϕUS ,
(I − π) u(., ϕUS , 0) = 0,
u(., ϕUS , f) = u(., ϕUS , 0) + u(., 0, f).
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Therefore, K is a continuous linear operator on B(lR−), Kf satisfies
Equation (7.2) for every f ∈ B(lR−), πK = 0 and K is explicitly given
by Theorem 30.

For B(lR+) and B(lR) the proofs are similar. This completes the proof
of Theorem 30

We consider now the nonlinear equation

du

dt
(t) = A0u(t) + L(ut) + g(t, ut), (7.9)

and its integrated form

ut = U ′(t)ϕ + lim
λ→+∞

∫ t

0
U ′(t− s)B̃λX0g(s, us)ds, (7.10)

where g is continuous from lR× CX into X. We will assume that
(H1) g(t, 0) = 0 for t ∈ lR and there exists a nondecreasing function
α : [0, +∞)→ [0, +∞) with lim

h→0
α(h) = 0 and

‖g(t, ϕ1)− g(t, ϕ2)‖ ≤ α(h) ‖ϕ1 − ϕ2‖ forϕ1, ϕ2 ∈ E, ‖ϕ1‖ , ‖ϕ2‖ ≤ h
and t ∈ lR.

Proposition 54 Assume that the semigroup (U ′(t))t≥0 is hyperbolic and
the assumption (H1) holds. Then, there exists h > 0 and ε ∈ ]0, h[ such
that for any ϕ ∈ S with ‖ϕ‖ ≤ ε, Equation ( 7.10) has a unique bounded
solution u : [−r, +∞) → X with ‖ut‖ ≤ h for t ≥ 0 and uS

0 = ϕ.

Proof. Let ϕ ∈ S. By Theorem 30, it suffices to establish the exis-
tence of a bounded solution u : [−r, +∞) → X of the following equation

ut = U ′(t)ϕ + lim
λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0g(τ, uτ )

)S
dτ+

lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0g(τ, uτ )

)US
dτ.

Let (u(n))n∈N be a sequence of continuous functions from [−r, +∞) to
X, defined by

u
(0)
t = U ′(t)ϕ

u
(n+1)
t = U ′(t)ϕ + lim

λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0g(τ, u(n)

τ )
)S

dτ+

lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0g(τ, u(n)

τ )
)US

dτ.

It is clear that
(
u

(n)
0

)S
= ϕ. Moreover, we can choose h > 0 and ε ∈ ]0, h[

small enough such that, if ‖ϕ‖ ≤ ε then
∥∥∥u(n)

t

∥∥∥ < h for t ≥ 0.

389



DELAY DIFFERENTIAL EQUATIONS

On the other hand, we have
∥∥∥u(n+1)

t − u
(n)
t

∥∥∥ ≤
∫ t
0 MMe−γ(t−τ)α(h)

∥∥∥u(n)
τ − u

(n−1)
τ

∥∥∥ dτ+∫ +∞
t MMeγ(t−τ)α(h)

∥∥∥u(n)
τ − u

(n−1)
τ

∥∥∥ dτ.

So, by induction we get

∥∥∥u(n+1)
t − u

(n)
t

∥∥∥ ≤ 2h

(
2MMα(h)

γ

)n

, t ≥ 0.

We choose h > 0 such that

2MMα(h)
γ

<
1
2
.

Consequently, the limit u := lim
n→+∞

u(n) exists uniformly on [−r, +∞)

and u is continuous on [−r, +∞). Moreover, ‖ut‖ < h for t ≥ 0 and
uS

0 = ϕ.
In order to prove that u is a solution of Equation (7.10), we introduce

the following notation

v(t) =
∥∥∥∥ut − U ′(t)ϕ− lim

λ→+∞

∫ t

0
U ′(t− τ)

(
B̃λX0g(τ, uτ )

)S
dτ

− lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0g(τ, uτ )

)US
dτ

∥∥∥∥ .

We obtain

v(t) ≤
∥∥∥ut − u

(n+1)
t

∥∥∥
+

∥∥∥∥ lim
λ→+∞

∫ t

0
U ′(t − τ)

((
B̃λX0g(τ, uτ )

)S
−
(
B̃λX0g(τ, u

(n)
τ )

)S
)

dτ

∥∥∥∥
+

∥∥∥∥ lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t − τ)

((
B̃λX0g(τ, uτ )

)US
−
(
B̃λX0g(τ, u

(n)
τ )

)US
)

dτ

∥∥∥∥ .

Moreover, we have

ut − u
(n+1)
t =

+∞∑
k=n+1

(
u

(k+1)
t − u

(k)
t

)
.

It follows that

v(t) ≤ 2h

[
1 +

2MMα(h)
γ

] +∞∑
k=n+1

(
2MMα(h)

γ

)k

.

Consequently, v = 0 on [0, +∞).
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To show the uniqueness suppose that w is also a solution of Equation
(7.10) with ‖wt‖ < h for t ≥ 0. Then,

∥∥∥wt − u
(n+1)
t

∥∥∥ ≤∥∥∥∥ lim
λ→+∞

∫ t

0

U ′(t − τ)

((
B̃λX0g(τ, wτ )

)S

−
(
B̃λX0g(τ, u(n)

τ )
)S
)

dτ

∥∥∥∥
+

∥∥∥∥ lim
s→+∞

lim
λ→+∞

∫ t

s

U ′(t − τ)

((
B̃λX0g(τ, wτ )

)US

−
(
B̃λX0g(τ, u(n)

τ )
)US

)
dτ

∥∥∥∥ .

This implies

∥∥∥wt − u
(n+1)
t

∥∥∥ ≤ 2h

(
2MMα(h)

γ

)n

→ 0, as n → +∞.

This proves the uniqueness and completes the proof

8. Existence of periodic or almost periodic
solutions

In this section, we are concerned with the existence of periodic (or
almost periodic) solutions of Equations (7.2) and (7.10).

As a consequence of the existence of a bounded solution we obtain
the following result.

Corollary 31 Assume that the semigroup (U ′(t))t≥0 is hyperbolic. If
the function f is ω−periodic, then the bounded solution of Equation ( 7.2)
given by Theorem 30 is also ω−periodic.

Proof. Let u be the unique bounded solution of Equation (7.2). The
function u(. + ω) is also a bounded solution of Equation (7.2). The
uniqueness property implies that u = u(.+ω). This completes the proof
of the corollary

We are concerned now with the existence of almost periodic solution
of Equation (7.2). We first recall a definition.

Definition 51 A function g ∈ B(lR) is said to be almost periodic if and
only if the set

{gσ : σ ∈ lR} ,

where gσ is defined by gσ(t) = g(t + σ), for t ∈ lR, is relatively compact
in B(lR).

Theorem 32 Assume that the semigroup (U ′(t))t≥0 is hyperbolic. If
the function f is almost periodic, then the bounded solution of Equation
( 7.2) is also almost periodic.
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Proof. Let AP (lR) be the Banach space of almost periodic functions
from lR to X endowed with the uniform norm topology. Define the
operator Q by

(Qf) (t) = lim
s→−∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)S
(0) dτ

+ lim
s→+∞

lim
λ→+∞

∫ t

s
U ′(t− τ)

(
B̃λX0f(τ)

)US
(0) dτ , for t ∈ lR.

Then, Q is a bounded linear operator from AP (lR) into B(lR). By a
sample computation, we obtain

(Qf)σ = Q (fσ) , for σ ∈ lR.

By the continuity of the operator Q, we deduce that Q({fσ : σ ∈ lR})
is relatively compact in B(lR). This implies that if the function f is
almost periodic, then the bounded solution of Equation (7.2) is also
almost periodic. This completes the proof of the theorem.

We are concerned now with the existence of almost periodic solutions
of Equation (7.10). We will assume the followings.
(H2) g is almost periodic in t uniformly in any compact set of CX . This
means that for each ε > 0 and any compact set K of CX there exists
lε > 0 such that every interval of length lε contains a number τ with the
property that

sup
t∈R,ϕ∈K

‖g(t + τ, ϕ)− g(t, ϕ)‖ < ε.

We know from [63] that if the function g is almost periodic in t uniformly
in any compact set of CX and if v is an almost periodic function, then
the function t �→ g(t, vt) is also almost periodic.
(H3) ‖g(t, ϕ1)− g(t, ϕ2)‖ ≤ K1 ‖ϕ1 − ϕ2‖ , t ∈ lR, ϕ1, ϕ2 ∈ CX .

We have the following result.

Proposition 55 Assume that the semigroup (U ′(t))t≥0 is hyperbolic and
(H2), (H3) hold. Then, if in the assumption (H3) K1 is chosen small
enough, Equation ( 7.10) has a unique almost periodic solution.

Proof. Consider the operator H defined on AP (lR) by

Hv = u,

where u is the unique almost periodic solution of Equation (7.2) with
f = g(., v.). We can see that there exists a positive constant K2 such
that

‖Hv1 −Hv2‖ ≤ K1K2 ‖v1 − v2‖ , v1, v2 ∈ AP (lR).
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If K1 is chosen such that K1K2 < 1, then the map H is a strict contrac-
tion in AP (lR). So, H has a unique fixed point in AP (lR). This gives an
almost periodic solution of Equation (7.10). This completes the proof of
the proposition

9. Applications
We now consider the two examples mentioned in the introduction.

For the convenience of the reader, we restate the equations.
Example 1



∂u

∂t
(t, a) +

∂u

∂a
(t, a) = f(t, a, ut(·, a)), t ∈ [0, T ] , a ∈ [0, l] ,

u(t, 0) = 0, t ∈ [0, T ] ,
u(θ, a) = ϕ(θ, a), θ ∈ [−r, 0] , a ∈ [0, l] .

(9.1)

where T, l > 0, ϕ ∈ CX := C ([−r, 0] , X) and X = C ([0, l] , IR) .
By setting U(t) = u(t, ·), Equation (9.1) reads

{
V ′(t) = A0V (t) + F (t, Vt), t ∈ [0, T ] ,
V (0) = ϕ,

where A0 : D(A0) ⊆ X → X is the linear operator defined by
{

D(A0) =
{
u ∈ C1 ([0, l] , IR) ; u(0) = 0

}
,

A0u = −u′,

and F : [0, T ]× CX → X is the function defined by

F (t, ϕ)(a) = f(t, a, ϕ(·, a)), for t ∈ [0, T ] , ϕ ∈ CX and a ∈ [0, l] .

We have D(A0) = {u ∈ C([0, l] , IR); u(0) = 0} 
= X. Moreover,
{

ρ(A0) = C,∥∥∥(λI −A0)
−1
∥∥∥ ≤ 1

λ , for λ > 0,

this implies that A0 satisfies (HY) on X (with M0 = 1 and ω0 = 0).
We have the following result.

Theorem 33 Assume that F is continuous on [0, T ]×CX and satisfies
a Lipschitz condition

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ , t ∈ [0, T ] and ϕ, ψ ∈ CX ,

with L ≥ 0 constant. Then, for a given ϕ ∈ CX , such that

ϕ(0, 0) = 0,
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there exists a unique function u : [0, T ] → X solution of the following
initial value problem

u(t, a) =




∫ a
0 f(τ − a + t , τ , uτ−a+t(·, τ)) dτ, if a ≤ t,

ϕ(0, a − t) +
∫ a
a−t f(τ − a + t , τ , uτ−a+t(·, τ)) dτ, if a ≥ t ≥ 0,

ϕ(t, a), if t ≤ 0.

(9.2)

Furthermore, u is the unique integral solution of the partial differential
equation ( 9.1), i.e.
(i) u ∈ CX ,

∫ t
0 u(s, ·)ds ∈ C1 ([0, l] , IR) and

∫ t
0 u(s, 0)ds = 0, for t ∈

[0, T ] ,
(ii)

u(t, a) =




ϕ(0, a) +
∂

∂a

∫ t

0
u(s, a) ds +

∫ t

0
f(s, a, ut(·, a) ds, if t ∈ [0, T ] ,

ϕ(t, a), if t ∈ [−r, 0] .

Proof. The assumptions of Theorem 33 imply that ϕ ∈ CX and
ϕ(0, ·) ∈ D(A0). Consequently, from Theorem 5, we deduce that there
exists a unique function v : [0, T ] → CX which solves the integral equa-
tion (3.1). It suffices to calculate each term of the integral equation
(3.1).

Let (S0(t))t≥0 be the integrated semigroup on X generated by A0. In
view of the definition of (S0(t))t≥0, we have

(
(λI −A0)

−1 x
)

(a) = λ

∫ +∞

0
e−λt(S0(t)x)(a) dt.

On the other hand, solving the equation

(λI −A0) y = x, where λ > 0, y ∈ D(A0) and x ∈ X,

we obtain
(
(λI −A0)

−1 x
)

(a) = y(a) =
∫ a

0
e−λtx(a− t) dt.

Integrating by parts one obtains
(
(λI −A0)

−1 x
)

(a) = e−λa

∫ a

0
x(t)dt +

∫ a

0
e−λt

(∫ a

a−t
x(s)ds

)
dt.

By uniqueness of Laplace transform, we obtain

(S0(t)x) (a) =
{ ∫ a

0 x(s) ds, if a ≤ t,∫ a
a−t x(s) ds, if a ≥ t.
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Using Proposition 48, we obtain

(S(t)ϕ) (θ, a) =




∫ 0
θ ϕ(s, a) ds +

∫ a
0 ϕ(0, τ) dτ, if a ≤ t + θ,∫ 0

θ ϕ(s, a) ds +
∫ a
a−t−θ ϕ(0, τ) dτ, if a ≥ t + θ ≥ 0,∫ t+θ

θ ϕ(s, a) ds, if t + θ ≤ 0.

The assumption ϕ(0, 0) = 0 implies that S(·)ϕ ∈ C1 ([0, T ] , CX) and we
have

d

dt
(S(t)ϕ) (θ, a) =




0, if a ≤ t + θ,
ϕ(0, a− t− θ), if a ≥ t + θ ≥ 0,
ϕ(t + θ, a), if t + θ ≤ 0.

Remark that the condition ϕ(0, 0) = 0 is necessary to have S(·)ϕ ∈
C1 ([0, T ] , CX).

Let G : [0, T ] → X (T > 0) be a Bochner-integrable function and
consider the function K : [0, T ] → C̃X defined by

K(t) =
∫ t

0
S̃0(t− s)X0G(s) ds.

For a ≤ t + θ, we have

K(t)(θ, a) =
∫ t+θ
0 (S0 (t + θ − s) G (s)) (a) ds,

=
∫ t+θ−a
0

(∫ a
0 G (s) (τ) dτ

)
ds +

∫ t+θ
t+θ−a

(∫ a
a−t−θ+s G (s) (τ) dτ

)
ds.

For a ≥ t + θ ≥ 0, we obtain

K(t)(θ, a) =
∫ t+θ

0

(∫ a

a−t−θ+s
G (s) (τ) dτ

)
ds,

and for t + θ ≤ 0, we have K(t)(θ, a) = 0.
The derivation of K is easily obtained

dK

dt
(t)(θ, a) =



∫ a
0 G(τ − a + t + θ)(τ) dτ, a ≤ t + θ,∫ a
a−t−θ G(τ − a + t + θ)(τ) dτ, a ≥ t + θ ≥ 0,

0, t + θ ≤ 0.

If we consider the function u : [−r, T ] → X defined by

u(t, ·) =
{

v(t)(0, ·), if t ≥ 0,
ϕ(t, ·), if t ≤ 0.

Corollary 7 implies that ut = v(t). Hence, u is the unique solution of
(9.2).
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The second part of Theorem 33 follows from Corollary 7

Theorem 34 Assume that F is continuously differentiable and there
exist constants L, β, γ ≥ 0 such that

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ ,
|DtF (t, ϕ)−DtF (t, ψ)| ≤ β ‖ϕ− ψ‖ ,
|DϕF (t, ϕ)−DϕF (t, ψ)| ≤ γ ‖ϕ− ψ‖ .

Then, for given ϕ ∈ CX such that

∂ϕ

∂t
∈ CX , ϕ(0, ·) ∈ C1 ([0, l] , IR) ,

ϕ(0, 0) =
∂ϕ

∂t
(0, 0) = 0 and

∂ϕ

∂t
(0, a) +

∂ϕ

∂a
(0, a) = f(0, a, ϕ(·, a)), for a ∈ [0, l] ,

the solution u of Equation ( 9.2) is continuously differentiable on [0, T ]×
[0, l] and is equal to the unique solution of Problem ( 9.1).

Proof. One can use Theorem 10 (all the assumptions of this theorem
are satisfied).
Example 2



∂u

∂t
(t, x) = ∆u(t, x) + f(t, x, ut(·, x)), t ∈ [0, T ] , x ∈ Ω,

u(t, x) = 0, t ∈ [0, T ] , x ∈ ∂Ω,
u(θ, x) = ϕ(θ, x), θ ∈ [−r, 0] , x ∈ Ω,

(9.3)
where Ω ⊂ IRn is a bounded open set with regular boundary ∂Ω, ∆ is
the Laplace operator in the sense of distributions on Ω and ϕ is a given
function on CX := C([−r, 0] , X), with X = C

(
Ω, IR

)
.

Problem (9.3) can be reformulated as an abstract semilinear functional
differential equation

{
V ′(t) = A0V (t) + F (t, Vt), t ∈ [0, T ] ,
V (0) = ϕ,

with

D(A0) =
{
u ∈ C

(
Ω, IR

)
; ∆u ∈ C

(
Ω, IR

)
and u = 0 on ∂Ω

}
,

A0u = ∆u,

and F : [0, T ]× CX → X is defined by

F (t, ϕ)(x) = f(t, x, ϕ(·, x)) for t ∈ [0, T ] , ϕ ∈ CX and x ∈ Ω.
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We have D(A0) =
{
u ∈ C

(
Ω, IR

)
; u = 0 on ∂Ω

}
, 
= X.

Moreover {
ρ(A0)⊂ (0, +∞)∥∥∥(λI −A0)

−1
∥∥∥ ≤ 1

λ , for λ > 0,

this implies that A0 satisfies (HY) on X (with M0 = 1 and ω0 = 0).
Using the results of Section 3, we obtain the following theorems (the

all assumptions are satisfied).

Theorem 35 Assume that F is continuous on [0, T ]×CX and satisfies
a Lipschitz condition

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ , t ∈ [0, T ] and ϕ, ψ ∈ CX ,

with L ≥ 0 constant. Then, for a given ϕ ∈ CX , such that

∆ϕ(0, ·) = 0, on ∂Ω,

there exists a unique integral solution u : [0, T ] → X of the partial
differential equation ( 9.3), i.e.
(i) u ∈ CX , ∆

(∫ t
0 u(s, ·)ds

)
∈ C
(
Ω, IR

)
and

∫ t
0 u(s, ·)ds = 0, on ∂Ω,

(ii)

u(t, x) =




ϕ(0, x) + ∆
(∫ t

0 u(s, x) ds
)

+
∫ t
0 f(s, x, ut(·, x) ds,

if t ∈ [0, T ] ,

and x ∈ Ω

ϕ(t, x),
if t ∈ [−r, 0] ,

and x ∈ Ω.

Theorem 36 Assume that F is continuously differentiable and there
exist constants L, β, γ ≥ 0 such that

|F (t, ϕ)− F (t, ψ)| ≤ L ‖ϕ− ψ‖ ,
|DtF (t, ϕ)−DtF (t, ψ)| ≤ β ‖ϕ− ψ‖ ,
|DϕF (t, ϕ)−DϕF (t, ψ)| ≤ γ ‖ϕ− ψ‖ .

Then, for given ϕ ∈ CX such that

∂ϕ

∂t
∈ CX , ∆ϕ(0, ·) ∈ C

(
Ω, IR

)
,

ϕ(0, ·) = ∂ϕ
∂t (0, ·) = 0 on ∂Ω and

∂ϕ

∂t
(0, x) = ∆ϕ(0, x) + f(0, x, ϕ(·, x)), for x ∈ Ω.

There is a unique function x defined on [−r, T ]×Ω, such that x = ϕ on
[−r, 0]× Ω and satisfies Equation ( 9.3) on [0, T ]× Ω.

397



References

[1] O. Arino (1992) Some spectral properties for the asymptotic be-
havior of semigroups connected to population dynamics. SIAM
Rev. Vol.34, N.4: 445-476.

[2] O. Arino and M. Kimmel (1987) Asymptotic analysis of a cell cycle
model based on unequal division. SIAM J. Appl. Math. Vol. 47,
N.1: 128-145.

[3] O. Arino and M. Kimmel (1989) Asymptotic behavior of a nonlin-
ear functional-integral equation of cell kinetics with unequal divi-
sion. J. Math. Biol. 27: 341-354.

[4] O. Arino and M. Kimmel (1991) Asymptotic behaviour of nonlin-
ear semigroup describing a model of selective cell growth regula-
tion. J. Math. Biol. 29: 289-314.

[5] O. Arino and A. Mortabit (1992) A periodicity result for a non-
linear functional integral equation. J. Math. Biol. 30: 437-456.

[6] O. Arino and E. Sánchez (1995) Linear Theory of Abstract Func-
tional Differential Equations of Retarded Type. J. Math. Anal.
and Appl. 191: 547-571.

[7] O. Arino and E. Sánchez (1996) A variation of constants formula
for an abstract functional differential equation of retarded type.
Diff. and Int. Equat. Vol.9, N.6: 1305-1320.

[8] O. Arino and E. Sánchez (1998) An integral equation of cell pop-
ulation dynamics formulated as an abstract delay equation. Some
consequences. Math. Models and Methods in Applied Sci. Vol.8,
N.4: 713-735.

[9] C. Bernier and A. Manitius (1978) On semigroups in Rn × Lp

corresponding to differential equations with delay. Canad. J. Math.
30: 897-914.

401



DELAY DIFFERENTIAL EQUATIONS

[10] F.E. Browder (1961) On the spectral theory of elliptic differential
operators. Math.Ann. 142: 22-130.

[11] A. Calsina and O. El Idrissi (1999) Asymptotic behaviour of an
age-structured population model and optimal maturation age. J.
Math. Anal. and Appl. 223: 808-826.

[12] S.N. Chow and J. Mallet-Paret (1977) Integral averaging and bi-
furcation. J. Diff. Equat. 26: 112-159.

[13] O. Diekmann, H.J. Heijmans and H.R. Thieme (1984) On the sta-
bility of the cell size distribution. J. Math. Biol. 19: 227-248.

[14] J. Diestel and J.J. Uhl (1977) Vector Measures. Am. Math. Soc.
Mathematical Surveys N.15.

[15] N. Dunford and J. Schwartz (1958) Linear Operators. Part I: Gen-
eral Theory. Interscience.

[16] A. Grabosch (1989) Translation semigroups and their lineariza-
tions on spaces of integrable functions. Trans. Amer. Math. Soc.
311: 357-390.

[17] A. Grabosch and H.J. Heijmans (1991) Production, development
and maturation of red blood cells: a mathematical model. Math-
ematical Population Dynamics. Lect. Notes in Pure and Applied
Mathematics. Vol. 131. Marcel Dekker: 189-210.

[18] A. Grabosch and U. Moustakas (1986) A semigroup approach to
retarded differential equations. One-Parameter Semigroups of Pos-
itive Operators. R. Nagel Ed. Lect. Notes in Math. 1184 (219-232).
Springer-Verlag.

[19] J. Hale (1977) Functional Differential Equations. Springer.

[20] J. Hale and S.M. Verduin Lunel (1993) Introduction to Functional
Differential Equations. Springer.

[21] E. Hille (1948) Functional analysis and semigroups. Amer. Math.
Soc. Colloq. Pub. XXXI. A.M.S. Providence, RI.

[22] G.S. Jones (1962) The existence of periodic solutions of
f ′(x) = −αf(x − 1){1 + f(x)}. J. Math. Anal. and Applications.
5: 435-450.

[23] T. Kato (1966) Perturbation Theory for Linear Operators.
Springer-Verlag.

400



REFERENCES

[24] M. Kimmel, Z. Darzynkiewicz, O. Arino and F. Traganos (1984)
Analysis of a cell cycle model based on unequal division of
metabolic constituents to daughter cells during cytokinesis. J.
Theor. Biol. 110: 637-664.

[25] K. Kunish and W. Schappacher (1981) Variation of Constants For-
mula for Partial Differential Equations with Delay. Nonlinear Anal.
TMA. 5: 123-142.

[26] K. Kunish and W. Schappacher (1983) Necessary conditions for
partial differential equations with delay to generate C0-semigroups.
J. Diff. Equations. 50: 49-79.

[27] A. Manitius (1980) Completeness and F-completeness of eigen-
functions associated with retarded functional differential equa-
tions. J. Diff. Equations. 35: 1-29.

[28] R. Nagel (Ed.) (1986) One-Parameter Semigroups of Positive Op-
erators. Lect. Notes Math. 1184. Springer-Verlag.

[29] S. Nakagiri (1981) On the Fundamental Solution of Delay-
Differential Equations in Banach Spaces. J. Diff. Equations. 41:
349-368.

[30] S. Nakagiri (1987) Pointwise completeness and degeneracy of func-
tional differential equations in Banach spaces I: General time de-
lays. J. Math. Anal. Appl. 127: 492-529.

[31] S. Nakagiri (1988) Structural properties of functional differential
equations in Banach spaces. Osaka J. Math. 25: 353-398.

[32] R. Nussbaum (1970) The radius of the essential spectrum. Duke
Math. J. 37: 473-478.

[33] A. Pazy (1983) Semigroups of linear operators and applications to
partial differential equations. Springer Verlag, N.Y.

[34] A.T. Plant (1977) Nonlinear semigroups of translations in Banach
space generated by functional differential equations. J. Math. Anal.
Appl. 60: 67-74.

[35] W. Rudin (1973) Functional Analysis. McGraw-Hill.

[36] E. Sánchez, O. Arino and M. Kimmel (1991) Noncompact semi-
groups of operators generated by cell kinetics models. Differential
and Integral Equations. Vol.4, N.6: 1233-1249.

401



DELAY DIFFERENTIAL EQUATIONS

[37] H.H. Schaefer (1971) Topological Vector Spaces. Springer Verlag.

[38] K. Shumacher (1985) On the resolvent of linear nonautonomous
partial differential equations. J. Diff. Equations. 59: 355-387.

[39] A. Taylor (1967) Introduction to Functional Analysis. John Wiley.

[40] C.C. Travis and G.F. Webb (1974) Existence and Stability for
Partial Functional Differential Equations. Trans. Amer. Math. Soc.
200: 395-418.

[41] H.O. Walther (1975) Existence of a nonconstant periodic solution
of a nonlinear nonautonomous functional differential equation rep-
resenting the growth of a single species population. J. Math. Biol.
1: 227-240.

[42] G.F. Webb (1985) Theory of Nonlinear Age-Dependent Population
Dynamics. Marcel Dekker Inc.

[43] M.Adimy, Integrated semigroups and delay differential equations,
Journal of .Mathematical Analysis and .Applications, 177, (1993),
125-134.

[44] M. Adimy et K. Ezzinbi, Semi-groupes intégrés et équations
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1. Basic theory and some results for examples
Proofs for most of the basic results presented in this part are found in
the monograph [57]. See also [105].

1.1 Semiflows of retarded functional differential
equations

Let h > 0, n ∈ N. Let C denote the Banach space C([−h, 0], Rn), with
‖φ‖ = max−h≤s≤0 |φ(s)|. The space C will serve as state space. For x :
R ⊃ I → R

n and t ∈ R with [t− h, t] ⊂ I, the segment xt : [−h, 0]→ R
n

is the shifted restriction of x to the initial interval [−h, 0],

xt(s) = x(t + s) for s ∈ [−h, 0].

Autonomous retarded functional differential equations on C (RFDEs)
are equations of the form

ẋ(t) = f(xt),

for a given map f : C ⊃ U → R
n. In the sequel we shall assume that

U ⊂ C is open and that f is locally Lipschitz continuous. Some results
require that f is continuously differentiable. Solutions x : [t0 − h, te) →
R

n, −∞ < t0 < te ≤ ∞, of the previous RFDE are continuous, differ-
entiable on (t0, te), and satisfy the RFDE for t0 < t < te. This implies

© 2006 Springer. 
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that their right derivative at t0 exists and equals f(xt0). Solutions on
(−∞, te) (including on R) are differentiable and satisfy the RFDE every-
where.

A maximal solution xφ : [t0 − h, te(φ)) → R
n of the initial value

problem (IVP)
ẋ(t) = f(xt), x0 = φ ∈ U,

is a solution of the RFDE which satisfies the initial condition and has
the property that any other solution of the same IVP is a restriction of
xφ.

Example. Let µ ∈ R and a continuously differentiable function g :
R → R be given. The equation

ẋ(t) = −µx(t) + g(x(t− 1)) (1.1)

is an RFDE, with h = 1, n = 1, and f(φ) = −µφ(0) + g(φ(−1)) for all
φ ∈ C. Solutions are easily found via the method of steps: For φ ∈ C
given, evaluate successively the variation-of-constants formulae

x(t) = e−µ(t−n)x(n) +
∫ t

n
e−µ(t−s)f(x(s− 1))ds,

for nonnegative integers n and n ≤ t ≤ n + 1, with x0 = φ. This yields
the maximal solution xφ : [−1,∞) → R of the IVP for eq. (1.1). - If
g(0) = 0 then x : R � t �→ 0 ∈ R is a constant solution (equilibrium
solution). For µ > 0 and

ξ g(ξ) < 0 for all ξ 
= 0

eq. (1.1) models a combination of delayed negative feedback and in-
stantaneous negative feedback with respect to the zero solution. The
condition

ξ g(ξ) > 0 for all ξ 
= 0

corresponds to delayed positive (and instantaneous negative) feedback.

In case of negative feedback and µ ≥ 0, initial data with at most one
zero define slowly oscillating solutions, which have any two zeros spaced
at a distance larger than the delay h = 1.

How is slowly oscillating behaviour reflected in the state space C ? Seg-
ments xt of slowly oscillating solutions belong to the set S ⊂ C \ {0} of
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Figure 10.1.

Figure 10.2.

initial data with at most one change of sign. More precisely, φ 
= 0, and
0 ≤ φ, or φ ≤ 0, or there are j ∈ {0, 1} and a ∈ [−1, 0] so that

0 ≤ (−1)jφ(t) on [−1, a], (−1)jφ(t) ≤ 0 on [a, 0].

The set S is positively invariant, i.e., for all φ ∈ S and all t ≥ 0, xφ
t ∈ S.

We have
cl S = S ∪ {0},

and
(0,∞) · S ⊂ S

which says that S is a wedge. It can be shown that S is homotopy
equivalent to the circle; S is not convex. See [240].

Let us call a solution eventually slowly oscillating if for some t its zeros
z ≥ t are spaced at distances larger than the delay h = 1. The main
result of [177] establishes that in case µ ≥ 0, g bounded from below or
from above, and

g′(ξ) < 0 for all ξ ∈ R

almost every initial function φ ∈ C defines a solution which is eventually
slowly oscillating. More precisely, the set R of data whose maximal
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solutions are not eventually slowly oscillating is closed and a graph

T ⊃ dom→ Q

with respect to a decomposition of C into a closed subspace T of codi-
mension 2 and a 2-dimensional complementary subspace Q. This shows
that the set C \R of initial data of eventually slowly oscillating solutions
is open and dense in C.

Remark. For certain bounded but non-monotone functions g and for
certain µ > 0 there exist rapidly oscillating periodic solutions with at-
tracting orbits [116]. This means that for such g and µ the previous
statement is false.

Problem. Does the density result hold in case µ = 0 for all g which
satisfy the negative feedback condition ?

We shall see that in case of negative feedback slowly oscillating pe-
riodic solutions play a prominent role in the dynamics generated by
eq.(1.1). In a simple case, which was excluded from the considerations
up to here, they are easily found.

Exercises. Define and compute a ‘slowly oscillating periodic solution’
of eq. (1.1) for µ = 0 and the step function g = −sign. Then com-
pute a slowly oscillating periodic solution for a suitable smooth function
g which is positive and constant on some interval (−∞,−a] and linear
and decreasing on some interval [−b,∞), 0 < b < a.

In case of positive feedback, the convex cones of nonnegative and non-
positive data are positively invariant. See [137].

Back to the general case. The maximal solutions of the IVP with
t0 = 0 define a continuous semiflow

F : Ω → U,

F (t, φ) = xφ
t

and
Ω = {(t, φ) ∈ [0,∞)× U : t < te(φ)}.

The domain Ω is open in [0,∞) × U . Recall the algebraic semiflow
properties

F (0, φ) = φ and
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F (t, F (s, φ)) = F (t+s, φ) whenever φ ∈ U, 0 ≤ s < te(φ), 0 ≤ t < te(F (s, φ)).

The solution maps Ft = F (t, ·), t ≥ 0, are defined on the open sets
Ωt = {φ ∈ U : (t, φ) ∈ Ω}. For certain t > 0, Ωt may be empty.

Remark. A flow does not exist in general, as there are no backward
solutions for nondifferentiable initial data. Also, initially different solu-
tions may become identical on some ray [t,∞). Therefore solutions of
the backward IVP are in general not uniquely determined.

Example. Eq. (1.1) with g constant on a nontrivial interval I, initial
data φ 
= ψ with range in I and φ(0) = ψ(0).

Before discussing differentiability with respect to initial data a look
at nonautonomous linear delay differential equations is convenient: Let
L : [t0, te)× C → R

n, t0 < te ≤ ∞, be continuous and assume all maps
L(t, ·) are linear. Solutions of the equation

ẏ(t) = L(t, yt)

are defined as before. Maximal solutions exist and are defined on [t0 −
h, te).

Suppose f is continuously differentiable. For a given maximal so-
lution x = xφ : [t0 − h, te(φ)) → R

n of an IVP associated with the
nonlinear RFDE above the variational equation along x is the previous
linear equation with

L(t, ψ) = Df(xt)ψ for t0 ≤ t < te(φ), ψ ∈ C.

Example. Let g(0) = 0. The variational equation along the zero
solution of eq. (1.1), or linearization at 0, is

v̇(t) = −µ v(t) + α v(t− 1) (1.2)

with α = g′(0).

In case f is continuously differentiable all solution operators Ft on non-
empty domains are continuously differentiable, and for all φ ∈ Ωt, χ ∈ C,

DFt(φ)χ = vφ,χ
t

with the maximal solution vφ,χ : [−h, te(φ)) → R
n of the IVP

v̇(s) = Df(F (s, φ))vs, v0 = χ.
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On the open subset of Ω given by t > h the semiflow F is continuously
differentiable, with

D1F (t, φ)1 = ẋφ
t .

I.e., for t > h the tangent vectors of the flowline

[0, te(φ)) � t �→ F (t, φ) ∈ U

exist and are given by the derivatives of the solution segments. Notice
that for 0 ≤ t < h the solution segments are in general only continuous
and not differentiable.

1.2 Periodic orbits and Poincaré return maps
Let a periodic solution x : R → R

n of the RFDE be given. Assume f is
continuously differentiable. Let p > h be a period of x, not necessarily
minimal. A transversal to the periodic orbit

o = {xt : t ∈ [0, p]} ⊂ U

at x0 = xp is a hyperplane H = x0 + L, with a closed subspace L of
codimension 1, so that

D1F (p, x0)1 /∈ L = Tx0H.

Recall that L is the kernel of a continuous linear functional φ∗. The
relation F (t, φ) ∈ H is equivalent to the equation

φ∗(F (t, φ)− x0) = 0.

An application of the Implicit Function Theorem close to the solution
(p, x0) yields an open neighbourhood N of x0 in C and a continuously
differentiable intersection map

τ : N → R

so that τ(x0) = p and

F (τ(φ), φ) ∈ H for all φ ∈ N.

The Poincaré return map

P : H ∩N � φ �→ F (τ(φ), φ) ∈ H

is continuously differentiable (with respect to the C1-submanifold struc-
tures on H ∩N and H).
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Figure 10.3.

The derivatives DP (φ)χ, φ ∈ H ∩N and χ ∈ TφH = L, are given by

prφ ◦DFτ(φ)(φ)χ

where prφ : C → L is the projection along the (tangent) vector

η = D1F (τ(φ), φ)1 = ẋφ
τ(φ) /∈ L.

We have
prφψ = ψ − φ∗ψ

φ∗η
η.

Figure 10.4.

In particular,
DP (x0)χ = prx0DFp(x0)χ.
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1.3 Compactness
Often the solution maps Ft, t ≥ h, are compact in the sense that they
map bounded sets into sets with compact closure. (F0 = idU is not
compact, due to dim C = ∞).

Example. Eq. (1.1) with g bounded from above or from below. Com-
pactness follows by means of the Ascoli-Arzèla Theorem from simple
a-priori bounds on solutions and their derivatives.

Also Poincaré maps are often compact. It follows that all these maps
are not diffeomorphisms. Therefore standard tools of dynamical systems
theory on finite-dimensional manifolds, which had originally been devel-
opped for diffeomorphisms only, e.g., local invariant manifolds, inclina-
tion lemmas, and the shadowing lemma associated with a hyperbolic set,
had to be generalized in a suitable way for differentiable, not necessarily
invertible maps in Banach spaces.

1.4 Global attractors
Consider a semiflow F : [0,∞) ×M → M on a complete metric space
M . A complete flowline is a curve u : R → M so that

F (t, u(s)) = u(t + s) for all t ≥ 0, s ∈ R.

A set I ⊂ M is invariant if each x ∈ I is a value of a complete flowline
u with u(R) ⊂ I. This is equivalent to

Ft(I) = I for all t > 0.

A (compact) global attractor A for F is a compact invariant set A ⊂ M
which attracts bounded sets in the sense that for every bounded set
B ⊂ M and for every open set V ⊃ A there exists t ≥ 0 such that
F (s, B) ⊂ V for all s ≥ t.

Exercise. A global attractor contains each bounded set B ⊂M which
satisfies B ⊂ F (t, B) for all t > 0.

It follows from the exercise that a global attractor A contains every
compact invariant set, and that it is uniquely determined. Furthermore,
A coincides with the set of all values of all bounded complete flowlines.

Existence of global attractors is in some cases easy to verify. Consider
for example eq. (1) with µ > 0 and g : R → R injective and bounded.
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Then all solution maps are injective, and F1 is compact. For r > 1 +
(sup |g|)/µ the open ball Cr in C with radius r > 0 and center 0 is
positively invariant under the semiflow and absorbs every flowline in the
sense that for every φ ∈ C there exists t ≥ 0 with F (s, φ) ∈ Cr for all
s ≥ t. The set

A =
⋂
t≥0

F (t, Cr)

is the global attractor [137].

1.5 Linear autonomous equations and spectral
decomposition

For L : C → R
n linear continuous, consider the RFDE

ẏ(t) = Lyt.

The semiflow is now given by the C0-semigroup of solution operators
Tt : C � φ �→ yφ

t ∈ C, t ≥ 0. The domain of its generator G : DG → C is

DG = {φ ∈ C : φ continuously differentiable, φ̇(0) = Lφ},

and Gφ = φ̇. The solution behaviour is determined by the spectrum
of the generator. The solution operators are compact for t ≥ h, and
the complexification of G has compact resolvents. So the spectrum σ
of G consists of a countable number of isolated eigenvalues of finite
multiplicities, which are real or occur in complex conjugate pairs. The
Ansatz y(t) = eλt c for a solution leads to a characteristic equation for
the eigenvalues. Example: For eq. (1.2),

λ + µ− α e−λ = 0.

An important property is that any halfplane given by an equation

Reλ > β

for β ∈ R contains at most a finite number of eigenvalues.

Examples. For eq. (1.2) with µ = 0, α < −π
2 (negative feedback),

there exist pairs of complex conjugate eigenvalues with positive real part,
and there are no real eigenvalues. In case µ > 0 and α > 0 (positive
feedback) the eigenvalue with largest real part is positive and all other
eigenvalues form complex conjugate pairs.
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Figure 10.5.
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Rapid growth of the imaginary parts of the eigenvalues as Reλ → −∞
shows that G is not sectorial, and that the semigroup is not analytic.

The realified generalized eigenspaces associated with a real eigenvalue
or a pair of complex conjugate eigenvalues are positively invariant under
the semigroup, as well as generalized eigenspaces C<β associated with
all eigenvalues in a left halfplane given by an equation

Reλ < β,

with β ∈ R. On the finite-dimensional generalized eigenspace C≥β given
by the set σ≥β of all eigenvalues satisfying

Reλ ≥ β

the semigroup induces a group of isomorphisms Tt,β = eBt, t ∈ R, with a
linear vectorfield B : C≥β → C≥β . The spectrum of B is σ≥β; generalized
eigenspaces of an eigenvalue with respect to G and B coincide. On the
complementary subspace C<β ,

‖Ttφ‖ ≤ k eβ t‖φ‖, t ≥ 0,

with k = k(L, β) ≥ 0.

The unstable, center, and stable subspaces Cu, Cc, Cs of G are the
realified generalized eigenspaces given by the sets σ>0, σ0, σ<0 of the
eigenvalues with positive, zero, and negative real part, respectively. Cu

consists of segments of solutions on the line which decay to 0 exponen-
tially as t → −∞ and whose segments grow exponentially as t → ∞.
Cc consists of segments of solutions with polynomial growth. Solutions
starting in Cs decay exponentially to 0 as t →∞. We have

C = Cu ⊕ Cc ⊕ Cs.

The semigroup is called hyperbolic is there are no eigenvalues on the
imaginary axis.

Examples of other spectral decompositions of C. Consider eq. (1.2).
In the case µ ≥ 0 and α < 0 (negative feedback), there is a leading pair of
eigenvalues, i.e., there exists β ∈ R so that the sum of the multiplicities
of the eigenvalues with Reλ > β is 2. For convenience we choose β so
that there are no eigenvalues on β + iR. For the leading eigenvalues,

|Imλ| < π,
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and all solutions with segments in the 2-dimensional space

C2 = C>β

are slowly oscillating. Solutions on the line with segments in realified
generalized eigenspaces associated with other complex conjugate pairs
of eigenvalues are not slowly oscillating. Later we shall consider the
decomposition

C = C2 ⊕ C2<

where C2< = C<β . We have

C2 ⊂ S ∪ {0}

and
S ∩ C2< = ∅.

See [240].

Figure 10.6.

In the result from [177] on density of initial data for eventually slowly
oscillating solutions of the nonlinear eq. (1.2), we actually have T = C2<

and Q = C2, for the space T containing the domain dom of the map rep-
resenting the thin set R of segments of rapidly oscillating solutions and
for the target space Q of this map. Of course, C2< and C2 are here
defined by the variational equation (1.2) along the zero solution of eq.
(1.1).
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In the positive feedback case µ ≥ 0 and α > 0, with α sufficiently
large, there are at least 3 eigenvalues in the open right halfplane. Choose
β > 0 so that the 3 eigenvalues with largest real parts satisfy β < Reλ,
and there are no eigenvalues on β + iR. The solutions on the line with
segments in

C3 = C>β

have at most 2 zeros in any interval of length h = 1, and they decay
to 0 as t → −∞ faster than t �→ eβ t. Later we shall consider the
decomposition

C = C3 ⊕ C3<

where C3< = C<β . See [137].

Figure 10.7.

1.6 Local invariant manifolds for nonlinear
RFDEs

Assume f is continuously differentiable, and f(φ0) = 0. For simplicity,
φ0 = 0. Then the zero function on the line is a solution, and 0 ∈ U is
a stationary point of the semiflow: F (t, 0) = 0 for all t ≥ 0. The linear
variational equation along the zero solution is given by

L = Df(0).

There exist open neighbourhoods Nu, N c, N s of 0 in the spaces Cu, Cc, Cs,
respectively, and continuously differentiable maps

wu : Nu → Cc ⊕ Cs, wc : N c → Cu ⊕ Cs, ws : N s → Cu ⊕ Cc

with fixed point 0 and zero derivatives at 0 whose graphs

W ∗ = {χ + w∗(χ) : χ ∈ N∗}
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are locally positively invariant under the semiflow F . This means that
there is a neighbourhood N of 0 so that flowlines starting in N ∩W ∗

remain in W ∗ as long as they stay in N . The local unstable manifold W u

consists of segments of solutions x : (−∞, te) → R
n which decay to 0 ex-

ponentially as t → −∞. Conversely, all such solutions with all segments
in a neighbourhood of 0 in C have their segments in W u. All bounded
solutions on the line which remain sufficiently small have all their seg-
ments in W c. All solutions which start in W s decay to 0 exponentially as
t →∞, and the segments of all solutions on [−h,∞) which remain in a
neighbourhood of 0 and tend to 0 exponentially as t →∞ belong to W s.

Figure 10.8.

In case all eigenvalues have negative real part, one obtains the Prin-
ciple of Linearized Stability, i.e., asymptotic stability of the linearized
equation implies the same for the equilibrium of the original nonlinear
equation.

The local unstable and stable manifolds are unique (in a certain sense)
while local center manifolds are not.

It is also possible to begin with a splitting of σ not at β = 0. Con-
sider again eq. (1.1) with µ > 0 and α > 0 sufficiently large (positive
feedback), so that there are at least 3 eigenvalues in the open right half-
plane. Then there exists a 3-dimensional leading local unstable manifold
W3, i.e., a locally positively invariant C1-submanifold of C with

T0W3 = C3

which consists of segments of solutions on intervals (−∞, 0] which tend
to 0 as t → −∞ faster than t → eβ t. See [137].
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Figure 10.9.

Remark: If a global attractor exists then local unstable manifolds and
their forward extensions by the semiflow belong to the global attractor.

1.7 Floquet multipliers of periodic orbits
Assume f is continuously differentiable, and let a periodic solution x :
R → R

n and a period p > h of x be given. The associated Floquet mul-
tipliers are the nonzero points in the spectrum (of the complexification)
of the monodromy operator

M = D2F (p, x0).

They can be used to describe the behaviour of flowlines close to the
periodic orbit

o = {xt : 0 ≤ t ≤ p}.
The number 1 is a Floquet multiplier; an eigenvector in C is

ẋ0 = ẋp = D1F (p, x0)1.

The periodic orbit is called hyperbolic if 1 is an eigenvalue with 1-
dimensional generalized eigenspace, and if there are no other Floquet
multipliers on the unit circle. In case of hyperbolicity and if there are
no Floquet multipliers outside the unit circle, the periodic orbit o is ex-
ponentially stable with asymptotic phase, which means in particular that
there are a neighbourhood N ⊂ U of o, constants k ≥ 0, γ > 0, and a
function θ : N → R so that for all φ ∈ N and all t ≥ 0,

‖F (t, φ)− xt+θ(φ)‖ ≤ k e−γ t.

If there are Floquet multipliers outside the unit circle then the periodic
orbit is unstable.
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If P is a Poincaré return map on a transversal H = x0 +L and if x0 is
a fixed point of P then the spectral properties of DP (x0) : L → L and
those of the monodromy operator are closely related, due to the formula

DP (x0) = prx0 ◦M |L.

The simplest case is that M is compact and hyperbolicity holds. Then
the Floquet multipliers λ 
= 1 and their multiplicities coincide with the
eigenvalues of DP (x0) and their multiplicities. Without hyperbolicity, 1
becomes an eigenvalue of DP (x0) with a realified generalized eigenspace
of reduced dimension.

The compactness assumption can be relaxed. In the most general
case, however, several natural questions concerning monodromy opera-
tors and Poincaré maps seem not yet discussed in the literature, to the
best of my knowledge.

How can one obtain results about Floquet multipliers ? If µ = 0 and
if g is odd and bounded with |g′(0)| sufficiently large then eq. (1.1) has
periodic solutions with rational periods [120]. In the negative feedback
case, one finds, among others, slowly oscillating periodic solutions of
minimal period 4, with the additional symmetry

x(t) = −x(t− 2).

It follows that the associated monodromy operator has

V = D2F (2, x0)

as a root; the Floquet multipliers are squares of the eigenvalues of V .
For the latter, a characteristic equation is found in the following way:
Suppose

V φ = λφ, φ 
= 0.

Then the segments v0, v1, v2 of the solution v = vx0,φ of the variational
equation along x satisfy

v̇2 = g′(x(1 + t))v1, v̇1 = g′(t)v0

and
v2 = λ v0.

Substitute v0 = λ−1v2 in the last differential equation. Then (v2, v1)
satisfies

v̇2 = g′(x(1 + t))v1, v̇1 = λ−1g′(x(t))v2
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Figure 10.10.

and the nonlocal boundary conditions

v2(−1) = v1(0), v1(−1) = (v0(0) =)λ−1v2(0).

Using a fundamental matrix solution of the ODE system one finds that
a certain determinant, which depends on the parameter λ through the
fundamental matrix solution and through the boundary conditions, must
vanish. This is the desired characteristic equation. Though there is no
explicit formula and the dependence on the underlying periodic solution
x seems rather involved it was possible to make use of the characteristic
equation, first in a proof of bifurcation from a continuum of period-4-
solutions of a one-parameter family of delay differential equations [238],
and later in the search for hyperbolic stable [43] and unstable [115]
period-4-solutions. The latter were used in the first proof that chaotic
behaviour of slowly oscillating solution exists for certain smooth nonlin-
earities g of negative feedback type [153, 154]. See also [59, 60].

In recent work, more general characteristic equations for periodic so-
lutions with arbitrary rational periods were developped. A first appli-
cation was to show that for certain µ > 0 and special nonlinearities g
of negative feedback type the orbits of some slowly oscillating periodic
solutions with minimal period 3 are hyperbolic and stable [211]. It is
planned to extend the method in order to establish that certain unsta-
ble rapidly oscillating periodic solutions of eq. (1.1) with µ > 0 and g
representing positive feedback are hyperbolic; the period in this case is
5/4.

In cases where period and delay are incommensurable characteristic
equations for Floquet multipliers seem unknown.
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Local invariant manifolds of continuously differentiable

maps in Banach spaces

We also need local invariant manifolds for continuously differentiable
maps f : E ⊃ U → E on open subsets of Banach spaces (over R).
Suppose for simplicity that f(0) = 0, and that the (compact) spectrum
of the derivative Df(0) is the disjoint union of its compact parts outside,
on, and inside the unit circle. Then E is the direct sum of the associated
realified generalized eigenspaces Eu, Ec, Es, i.e., of the unstable, center,
and stable linear spaces, respectively. Assume

dim Eu < ∞, dim Ec <∞.

The derivative Df(0) induces isomorphisms of the unstable and center
spaces and an endomorphism of the stable space. With respect to an
equivalent norm on E the isomorphism on the unstable space is an ex-
pansion and the map on the stable space is a contraction. There are
open neighbourhoods Nu, Nc, Ns of 0 in Eu, Ec, Es, respectively, and
continuously differentiable maps

wu : Nu → Ec ⊕ Es, wc : Nc → Eu ⊕ Es, ws : Ns → Eu ⊕ Ec,

with w∗(0) = 0 and Dw∗(0) = 0, so that the local unstable, center, and
stable manifolds

W∗ = {x + w∗(x) : x ∈ N∗}

are locally positively invariant with respect to f and have further prop-
erties analogous to the locally invariant manifolds for the semiflow in-
troduced above.

Figure 10.11.

428



Dynamics of Delay Differential Equations

For example, Wu consists of endpoints of trajectories (xj)0−∞ of f which
tend to 0 as j → −∞, and there exist k ≥ 0 and q ∈ (0, 1) so that

‖xj‖ ≤ k q−j‖x0‖

along all such trajectories. Conversely, any trajectory (xj)0−∞ in some
neighbourhood of 0 in E which for j → −∞ converges to 0 at a certain
rate belongs to Wu.

Using the equivalent norm one can construct Wu and Ws in such a way
that f induces a diffeomorphism from a convex open neighbourhood of
0 in Wu onto Wu and maps Ws into Ws. With respect to the new norm
the inverse diffeomorphism and the map induced on Ws are contractions.

See [103] for local unstable and stable manifolds, and compare the
results in the appendices in [137]. The latter contain a proof of the
following natural result on local center-stable manifolds, which to my
knowledge and surprise was not available elsewhere in the literature.

Theorem. There exist convex open bounded neighbourhoods Nsc of 0
in Ec⊕Es, Nu of 0 in Eu, N of 0 in U , and a continuously differentiable
map wsc : Nsc → Eu with wsc(0) = 0, Dwsc(0) = 0, and wsc(Nsc) ⊂ Nu

so that the set
Wsc = {z + wsc(z) : z ∈ Nsc}

satisfies
f(Wsc ∩N) ⊂ Wsc

and ∞⋂
n=0

f−n(Nsc + Nu) ⊂Wsc.

The proof employs a method due to Vanderbauwhede and van Gils
[231].

The fixed point 0 - and the linear map Df(0) - are called hyperbolic
if there is no spectrum on the unit circle. Then Ec = {0}.

In case of a semiflow F as before and a stationary point, say φ0 = 0
for simplicity, we have local invariant manifolds for the solution maps Ft

at the fixed point 0 as well as for the semiflow.

Exercise. Show that local unstable and stable manifolds of solution
operators coincide with local unstable and stable manifolds for the semi-
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flow, respectively.

The situation for center manifolds is more subtle. There exist center
manifolds Wc for solution maps which are not locally positively invariant
under the semiflow [133].

Hyperbolic sets, shadowing, and chaotic trajectories of

continuously differentiable maps in Banach spaces

Let E denote a real Banach space. Consider an open set U ⊂ E and a
continuously differentiable map f : U → E. A hyperbolic set H of f is
a positively invariant subset of U together with a uniformly continuous
and bounded projection-valued map pr : H → Lc(E, E) and constants
k ≥ 1, q ∈ (0, 1) so that the unstable spaces Ex

u = pr(x) and the stable
spaces Ex

s = (id− pr)(x), x ∈ H have the following properties:

Df(x)Ex
s ⊂ Ef(x)

s ,

E = Df(x)Ex
u + Ef(x)

s ,

‖pr(fn(x)) ◦Dfn(x)v‖ ≥ k−1q−n‖v‖ for all n ∈ N, v ∈ Ex
u ,

‖Dfn(x)v‖ ≤ k qn‖v‖ for all n ∈ N, v ∈ Ex
s .

Figure 10.12.

See [219, 220] and [149]. So the derivative maps stable spaces into stable
spaces, but not necessarily unstable spaces into unstable spaces. Con-
cerning subsequent unstable spaces it is only required that the projec-
tions of transported vectors grow, not the iterated vectors themselves.
This is weaker than in the classical definition for diffeomorphisms in
finite-dimensional spaces, and can be verified for certain Poincaré re-
turn maps which do not have hyperbolic sets in the classical sense.

The triple (pr, k, q) is called hyperbolic structure.
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For our hyperbolic sets the Shadowing Lemma remains valid in full
generality. It asserts that under a weak additional smoothness condition
on the map f , for a given hyperbolic set H and for every sufficiently
small ε > 0 there exists δ > 0 so that each δ-pseudotrajectory (yn)∞−∞ in
H,

‖yn+1 − f(yn)‖ < δ for all integers,

is accompanied by a unique trajectory (wn)∞−∞ of f ,

‖wn − yn‖ ≤ ε for all integers.

See [219, 149]. The shadowing trajectory does in general not belong to
H.

Figure 10.13.

Very roughly, the Shadowing Lemma makes it possible to establish com-
plicated trajectory behaviour by prescribing complicated pseudotrajec-
tories, provided the hyperbolic set H is rich enough for this.

A fundamental scenario going back to Poincaré (1899, in the diffeo-
morphism case) for which one can find a hyperbolic structure is the
following. Suppose f has a hyperbolic fixed point p with local unstable
manifold Wu and local stable manifold Ws, and there is a homoclinic
trajectory (xn)∞−∞, i.e.,

xn → p as |n| → ∞,

x0 
= p. Assume also the transversality condition that there exists n0 ∈ N

so that for all integers m < −n0 and n > n0, we have xm ∈ Wu, xn ∈ Ws,
and

Dfn−m(xm)TxmWu is a closed complement of TxmWs.
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Figure 10.14.

Under these conditions the homoclinic loop

HL = {p} ∪ {xn : n ∈ Z}
is a hyperbolic set [220].

By the way, it is not excluded that eventually xn = p. This occurs,
e.g., for chaotic interval maps.

Figure 10.15.

By means of shadowing one can then prove that chaotic trajectories
close to the homoclinic loop HL exist. The precise statement of the
result requires preparations, including elementary facts from symbolic
dynamics. Let J ∈ N. Consider the space of symbols ΣJ = {1, . . . , J}
with the discrete topology. The product space

SJ = (ΣJ)Z
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of bi-infinite sequences in the symbol space is compact, and the Bernoulli
shift σJ : SJ → SJ given by

σJ((an)n∈Z) = (an+1)n∈Z

is a homeomorphism with dense trajectories and infinitely many periodic
orbits. This is a prototype of chaotic behaviour.

Let M ∈ N be given and consider the compact subset SJM ⊂ SJ

which consists of all symbol sequences composed of pieces of at least M
consecutive symbols 0, alternating with pieces of the form 12 . . . J . On
SJM , the Bernoulli shift induces a homeomorphism which still has dense
trajectories and infinitely many periodic orbits.

As f may not be invertible, it can not be expected that on given
subsets V ⊂ U the map f itself is conjugate to the homeomorphism σJM .
This difficulty is circumvented by the following construction. Consider
the set TfV of complete trajectories (wn)n∈Z ∈ V Z of f in a given open
subset V ⊂ U , equipped with the product topology from V Z. TfV is a
closed subset of V Z. The shift induced by f on its bi-infinite trajectories
in V , i.e., the map

σfV : TfV � (wn)n∈Z �→ (wn+1)n∈Z ∈ TfV

is a homeomorphism.

Theorem [220]. There exist positive integers J and M ≥ 2 and mutu-
ally disjoint open subsets V0, . . . , VJ of U with the following properties:
p ∈ V0, HL ⊂

⋃J
0 Vj = V , and for every (wn)n∈Z ∈ TfV ,

wn ∈ V0 and wn+1 /∈ V0 imply wn+1 ∈ V1,

wn ∈ Vj and j ∈ {1, . . . , J − 1} imply wn+1 ∈ Vj+1,

wn ∈ VJ implies wn+µ ∈ V0 for all µ ∈ {1, . . . , M}.

The map α : TfV → SJM given by

α((wn)n∈Z) = (an)n∈Z, an = j if and only if wn ∈ Vj ,

is a homeomorphism which conjugates the shifts σfV and σJM :

α ◦ σfV = σJM ◦ α.
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Figure 10.16.
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1.8 Differential equations with state-dependent
delays

Modelling sometimes leads to equations of the form

ẋ(t) = g(x(t− r(xt)))

with a map g : R
n ⊃ dom→ R

n and a delay functional r which is defined
on some set of functions φ : [−h, 0] → R

n and has values in [0, h], for
some h > 0. Of course, more complicated versions occur also. E.g., the
right hand side may also depend on x(t) and on further delayed values
of x. - Let us see why the associated IVP does not fit into the framework
presented before.

The differential equation with state-dependent delay rewritten as a
RFDE is

ẋ(t) = f(xt)

with
f = g ◦ ev ◦ (id× (−r)),

where
r : U → [0, h]

is assumed to be defined on a subset U ⊂ C, and

ev : C × [−h, 0]→ R
n

is the evaluation map given by

ev(φ, s) = φ(s).

The problem is that such f in general does not satisfy the previous
smoothness hypotheses, no matter how smooth g and r are. A ’reason’
for this may be seen in the fact that the middle composite ev is not
smooth: Lipschitz continuity of ev would imply Lipschitz continuity of
elements φ ∈ C. Differentiability would imply that

D2ev(φ, s)1 = φ̇

exists.

Therefore the existence and smoothness results designed for IVPs of
RFDEs on C are not applicable. If C is replaced with the smaller Banach
space C1 = C1([−h, 0], Rn) of continuously differentiable functions φ :
[−h, 0]→ R

n, with the usual norm given by

‖φ‖1 = ‖φ‖+ ‖φ̇‖,
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then the smoothness problem disappears since the restricted evaluation
map

Ev : C1 × [−h, 0]→ R
n

is continuously differentiable, with

D1Ev(φ, s)χ = Ev(χ, s) and D2Ev(φ, s)1 = φ̇(s).

So, for g and r : U → [0, h], U ⊂ C1 open, both continuously differen-
tiable, the resulting map f : U → R

n is continuously differentiable.

However, if we now look for solutions of the IVP with initial values
in the open subset U ⊂ C1, a new difficulty arises. Suppose this IVP
is well-posed. The maximal solution xφ : [−h, te(φ)) → R

n would have
continuously differentiable segments. Hence xφ itself would be continu-
ously differentiable, and the flowline [0, te(φ)) � t �→ xφ

t ∈ C1 would be
continuous. At t = 0 we get

φ̇(0) = ẋ(0) = f(x0) = f(φ),

which in general is not satisfied on open subsets of the space C1. (Notice
however that for f = p, p : C1 � φ �→ φ̇(0) ∈ R

n the equation is trivially
satisfied on C1.)

In order to obtain a continuous semiflow - and differentiable solution
operators - for a reasonable class of RFDEs covering differential equa-
tions with state-dependent delays, it seems necessary to restrict the state
space further [247, 249]. What to do and what can be achieved will be
the topic of the last of these lectures.

2. Monotone feedback: The structure of
invariant sets and attractors

Consider eq. (1.1),

ẋ(t) = −µx(t) + g(x(t− 1)),

with µ ≥ 0 and with a continuously differentiable function g : R → R

which satisfies
g(0) = 0,

and either
g′(ξ) < 0 for all ξ ∈ R

(negative feedback) or

g′(ξ) > 0 for all ξ ∈ R
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(positive feedback). The strict monotonicity properties are essential for
all results explained in this part. Assume also that g is bounded from
below or from above. Equations of this type arise in various applica-
tions, e.g., in neural network theory.

2.1 Negative feedback

Recall the positively invariant wedge

S = S ∪ {0} ⊂ C

of data with at most one change of sign, which contains all segments
of slowly oscillating solutions and absorbs the flowlines of eventually
slowly oscillating solutions. Recall also that S contains the 2-dimensional
leading realified generalized eigenspace C2 of the linearization at 0, while

S ∩ C2< = ∅.

Soon we shall use the decomposition

C = C2 ⊕ C2<

as a co-ordinate system.

The semiflow F : [0,∞) × C → C induces a continuous semiflow FS

on the complete metric space S, which has a compact global attractor
AS ⊂ S. A compact global attractor A of F exists as well; in general, AS

is a proper subset of A. It may happen that AS = {0}. Example: µ = 0
and −1 < g′. If however µ ≥ 0 and −g′(0) is sufficiently large then the
leading pair of eigenvalues is in the open right halfplane, and there exists
a leading 2-dimensional local unstable manifold W2 of the nonlinear eq.
(1.1) which is tangent to C2 at 0. W2 consists of segments of bounded
slowly oscillating solutions on the line, and is therefore contained in AS .

In the nontrivial case AS 
= {0} the attractor AS has the following
properties [240, 250]. There exists a map

a : C2 ⊃ DS → C2<

so that
AS = {φ + a(φ) : φ ∈ DS}.
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DS ⊂ C2 is an open subset of C2 containing 0, and its boundary in
C2 is the trace of a simple closed continuously differentiable curve; the
closure DS is homeomorphic to the compact unit disk in the Euclidean
plane. The map a : DS → C2< is continuously differentiable. I.e., the
restriction to the interior is continuously differentiable, and each bound-
ary point has an open neighbourhood N in C2 so that the restriction
to N ∩ intDS extends to a continuously differentiable map on N . The
manifold boundary

bd AS = AS \ {φ + a(φ) : φ ∈ DS} = {φ + a(φ) : φ ∈ ∂DS}

of AS is the orbit of a slowly oscillating periodic solution. The semiflow
FS induces a flow on AS , with solution maps continuously differentiable
on the interior part

{φ + a(φ) : φ ∈ DS}
of AS . All flowlines of the flow except the trivial one are given by slowly
oscillating solutions on the line. The periodic orbits are nested, with
the stationary point 0 in the interior of each periodic orbit. The zeros
of the underlying periodic solutions are simple, and the minimal periods
are given by 3 successive zeros. The aperiodic orbits in AS \ {0} wind
around the stationary point 0 and are heteroclinic from one periodic
orbit to another, or are heteroclinic from 0 to a periodic orbit, or vice
versa.

Figure 10.17.

A tiny but basic ingredient of the proof is the following consideration.
The fact that AS is a graph with respect the decomposition of C above
means that the spectral projection p2 : C → C2 along C2< is injective on
AS . I.e., one needs

0 
= p2(φ− ψ) for φ 
= ψ in AS .
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As S does not intersect the nullspace C2< of p2, it is sufficient to have

AS −AS ⊂ S ∪ {0} = S.

The result in [177] yields that all flowlines of F starting in the open
dense set C \R converge to the disk AS as t →∞.

In [239] explicit conditions on µ and g are given so that the manifold
boundary is the only periodic orbit in AS , and

AS = A.

Graph representations of stable manifolds associated with periodic orbits
in AS have been obtained in [241].

2.2 Positive feedback
Let us describe in greater detail the results obtained in [137, 136, 242].
A first remark is that all solution maps Ft are injective. The semiflow
is monotone with respect to the ordering on C given by the cone K of
nonnegative initial data. The positively invariant set

Σ = {φ ∈ C : (xφ)−1(0) is unbounded}

separates the domain of absorption into the interior of the positively
invariant cone K from the domain of absorption into the interior of −K.
One of the first results in [137] is that the separatrix Σ is a Lipschitz
graph over a closed hyperplane in C. So, we can speak of the parts of
C above and below Σ.

Figure 10.18.

It is not difficult to show that in case µ > 0 and g bounded the
semiflow has a global attractor. However, in case µ = 0 every maximal
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solution which starts in in the interior of K ∪ (−K) is unbounded, and
thus a global attractor does not exist. So it is natural to look for sub-
stitutes of a global attractor which are present in all cases of interest.
These are the closure of the unstable set WU of all segments of solutions
on the line which decay to the stationary point 0 as t → −∞, and sub-
sets thereof.

Notice that in case a global attractor A exists, necessarily WU ⊂ A
since for every ball B and for every t ≥ 0, WU ⊂ F ([t,∞)× (WU ∩B)),
which implies that WU is contained in every neighbourhood of the com-
pact set A, yielding WU ⊂ A = A and WU ⊂ A.

If µ and g′(0) are such that only one eigenvalue of the generator of
the semigroup given by the variational equation along the zero solu-
tion has positive real part, and all other eigenvalues have negative real
part, then WU consists of 0 and of the segments of two solutions on the
line, one being positive and one negative. More structure appears when
the 3 leading eigenvalues have positive real part. This situation can be
characterized by an explicit inequality which involves µ, g′(0), and ele-
mentary functions only. Assume that this inequality holds. Consider
the decomposition

C = C3 ⊕ C3<

and the associated leading 3-dimensional local unstable manifold W3 at
0. W3 is tangent to C3 at 0 and contained in WU . The forward extension

W = F ([0,∞)×W3)

of W3 is an invariant subset of WU . What can be said about the struc-
ture of the closed invariant set W?

In case µ > 0 two mild additional assumptions are needed. They are
related to the fact that the hypothesis about the eigenvalues implies

g′(0) > µ.

The first additional assumption is

g(ξ)
ξ

< µ for ξ outside a bounded neighbourhood of 0.

This statement and the inequality before combined show that there exist
a smallest positive argument ξ+ where g and µ id intersect, and a largest
negative argument ξ− where g and µ id intersect. The second additional
assumption then is

g′(ξ−) < µ and g′(ξ+) < µ.
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It follows that the variational equations along the constant solutions
given by ξ−, ξ+ define hyperbolic semigroups, with all associated eigen-
values in the open left halfplane.

Figure 10.19.

About the shape of W and the dynamics in W the following has been
proved. The set W is invariant, and the semiflow defines a continuous
flow FW : R×W → W . For W and for the part W ∩Σ of the separatrix
Σ in W there are graph representations: There exist subspaces G2 ⊂ G3

of C of dimensions 2 and 3, respectively, a complementary space G1

of G2 in G3, a closed complementary space E of G3 in C, a compact
set DΣ ⊂ G2 and a closed set DW ⊂ G3, and continuous mappings
w : DW → E and wΣ : DΣ → G1 ⊕ E such that

W = {χ + w(χ) : χ ∈ DW }, W ∩ Σ = {χ + wΣ(χ) : χ ∈ DΣ}.
Also,

DW = ∂DW ∪ intDW , W = {χ + w(χ) : χ ∈ intDW },
and the restriction of w to intDW is continuously differentiable. The
restriction of FW to R ×W is continuously differentiable. The domain
DΣ is homeomorphic to the closed unit disk in the Euclidean plane, and
consists of the trace of a simple closed continuously differentiable curve
and its interior. The map wΣ is continuously differentiable (in the sense
explained above for the map a).

The set

o = (W ∩ Σ) \ (W ∩ Σ) = {χ + wΣ(χ) : χ ∈ ∂DΣ}
is a periodic orbit, and there is no other periodic orbit in W . The open
annulus (W ∩ Σ) \ {0} consists of heteroclinic connections from 0 to o.
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For every φ ∈ W , FW (t, φ) → 0 as t → −∞.

The further properties of W and the flow FW are different in the cases
µ > 0 and µ = 0.

For µ > 0, W is compact and contains the stationary points ξ− and
ξ+ in C given by the values ξ− and ξ+, respectively. For every φ ∈ W ,

ξ− ≤ φ ≤ ξ+.

There exist homeomorphisms from W and from DW onto the closed unit
ball in R

3, which send the manifold boundary

bd W = W \W = {χ + w(χ) : χ ∈ ∂DW }

and ∂DW onto the unit sphere S2 ⊂ R
3. Consider χ− and χ+ given by

ξ− = χ− + w(χ−) and ξ+ = χ+ + w(χ+). The set ∂DW \ {χ−, χ+} is
a 2-dimensional continuously differentiable submanifold of G3, and the
restriction of w to DW \ {χ−, χ+} is continuously differentiable. This
means that the restriction to intDW is continuously differentiable, and
that each boundary point except χ−, χ+ has an open neighbourhood
N in G3 so that the restriction of w to N ∩ intDW extends to a con-
tinuously differentiable map on N . The points φ ∈ W \ Σ above the
separatrix Σ form a connected set and satisfy FW (t, φ) → ξ+ as t →∞,
and all φ ∈ W \ Σ below the separatrix Σ form a connected set and
satisfy FW (t, φ) → ξ− as t → ∞. Finally, for every φ ∈ bd W different
from ξ− and ξ+, FW (t, φ) → o as t → −∞.

Combining some of the results stated above, one obtains for µ > 0
the following picture: W is a smooth solid spindle which is split by an
invariant disk in Σ into the basins of attraction towards the tips ξ− and
ξ+.

Figure 10.20.
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In case µ = 0 the sets W and DW are unbounded. There exist home-
omorphisms from W and from DW onto the solid cylinder {z ∈ R

3 : z2
1 +

z2
2 ≤ 1} which send bd W and ∂DW onto the cylinder S1×R ⊂ R

3. The
boundary ∂DW is a 2-dimensional continuously differentiable submani-
fold of G3, and w is continuously differentiable. The points φ ∈ W \ Σ
above the separatrix Σ form a connected set and satisfy xφ(t) → ∞ as
t →∞, and the points φ ∈ W \Σ below Σ form a connected set and sat-
isfy xφ(t) → −∞ as t → ∞. Finally, for every φ ∈ bd W , FW (t, φ) → o
as t → −∞.

Figure 10.21.

We turn to aspects of the proof. The first steps exploit the monotonic-
ity of the semiflow. Among others we obtain that in case µ > 0 the set
W is contained in the order interval between the stationary points ξ−
and ξ+, and that there are heteroclinic connections from 0 to ξ− and ξ+,
given by monotone solutions x : R → R.

A powerful tool for the investigation of finer structures is a version
of the discrete Lyapunov functional V : C \ {0} → N0 ∪ {∞} counting
sign changes of data φ ∈ C, which was introduced by Mallet-Paret [171].
Related are a-priori estimates for the growth and decay of solutions with
segments in level sets and sublevel sets of V , which go back to [171] and
in a special case to [236, 237]. These tools are used to characterize
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the invariant sets W \ {0} and (W ∩ Σ) \ {0} as the sets of segments
xt of solutions x : R → R which decay to 0 as t → −∞ and satisfy
V (xt) ≤ 2 for all t ∈ R and V (xt) = 2 for all t ∈ R, respectively.
Moreover, nontrivial differences of segments in W and W ∩Σ belong to
V −1({0, 2}) and V −1(2), respectively. The last facts make it possible to
introduce global coordinates on W and W ∩Σ. It is not difficult to show
injectivity for the continuous linear evaluation map

Π2 : C � φ �→ (φ(0), φ(−1))tr ∈ R
2

on W ∩ Σ, and injectivity on W for a continuous linear evaluation map
Π3 : C → R

3. The map Π3 is given by

Π3φ = (φ(0), φ(−1), c(φ))tr

and
(p1φ)(t) =

1
1 + g′(0)e−λ

c(φ)eλ t,

where p1 is the spectral projection onto the realified one-dimensional
generalized eigenspace C1 of the leading eigenvalue λ associated with
the linearization at 0. The inverse maps of the restrictions of Π2 and Π3

to W∩Σ and W , respectively, turn out to be locally Lipschitz continuous.

The next step leads to the desired graph representation. Guided by
the results on negative feedback equations it seems natural to expect that
there exists a map from a subset of C3 = T0W3 into C3< which represents
W , and a map from a subset of the realified 2-dimensional generalized
eigenspace L of the complex conjugate pair of eigenvalues next to λ into
the complementary space C1 ⊕ C3< which represents W ∩ Σ. A map of
the first kind had been constructed for W by Ammar in case µ = 0 [11].
Our attempts to obtain the second map failed, however. Therefore we
abandoned the decomposition

C = C3 ⊕ C3<, C3 = C1 ⊕ L

as a framework for graph representations. Instead, R
3 ⊃ Π3W and

R
2 ⊃ Π2(W ∩ Σ) are embedded in a simple way as subspaces G3 ⊃ G2

into C, so that representations by maps w and wΣ with domains in G3

and G2 and ranges in complements E of G3 in C and E ⊕ G1 of G2

in C, G1 ⊂ G3, become obvious. It is not hard to deduce that W is
given by the restriction of w to an open set, and that this restriction
is continuously differentiable. On W , the semiflow extends to a flow
FW : R ×W → W , and FW is continuously differentiable on the mani-
fold R×W .
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Phase plane techniques apply to the coordinate curves in R
2 (or G2)

which correspond to flowlines of FW in the invariant set W ∩ Σ, and
yield the periodic orbit

o = (W ∩ Σ) \ (W ∩ Σ),

as well as the identification of Π2(W ∩ Σ) with the interior of the trace
Π2o. It follows that W ∩ Σ is given by the restriction of wΣ to an open
subset of G2.

The investigation of the smoothness of the part W ∩Σ of the separa-
trix Σ in W and of the manifold boundary bd W = W \W begins with a
study of the stability of the periodic orbit o. We use the fact that there
is a heteroclinic flowline in W ∩ Σ from the stationary point 0 to the
orbit o, i.e., in the level set V −1(2), in order to show that precisely one
Floquet multiplier lies outside the unit circle. It also follows that the
center space of the monodromy operator M = D2F (ω, p0), p0 ∈ o and
ω > 0 the minimal period, is at most 2-dimensional. The study of the
linearized stability of the periodic orbit o is closely related to earlier work
in [153] and to a-priori results on Floquet multipliers and eigenspaces
for general monotone cyclic feedback systems with delay which are due
to Mallet-Paret and Sell [176].

A first idea how to show that the graph W ∩Σ ⊂ V −1(2)∪{0} is con-
tinuously differentiable might be to consider the family of 2-dimensional
local invariant submanifolds with tangent space L at the stationary point
0 ∈ C, and to look for a member formed by heteroclinics connecting 0
with the periodic orbit o. The approach in [137] is quite different. We
consider a transversal Y of o at some point p0 ∈ o and a Poincaré return
map with domain in Y and fixed point p0. It is shown that pieces of
W ∩ Σ in Y are open sets in the transversal intersection of W with a
local center-stable manifold of the Poincaré return map.

Figure 10.22.

Then we use the flow FW to obtain continuous differentiability of the
set (W ∩Σ) \ {0}. Differentiability and continuity of the derivative at 0
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and the relation
T0(W ∩ Σ) = L

follow by other arguments which involve a-priori estimates and an incli-
nation lemma.

A technical detail of the approach just described concerns center-
stable manifolds Wcs and one-dimensional center manifolds Wc at fixed
points of continuously differentiable maps. In case there is a forward
trajectory in Wcs \Wc which converges to the fixed point we construct
positively invariant open subsets of Wcs.

Figure 10.23.

Having established continuous differentiability of W ∩ Σ it is then
shown in case µ > 0 that the set bd W \ {ξ−, ξ+}, i.e., the manifold
boundary without the stationary points ξ−, ξ+, coincides with the for-
ward semiflow extension of a local unstable manifold of the period map
Fω at a fixed point p0 ∈ o. For µ = 0 the full manifold boundary has
the same property. The long proof of these facts involves the charts Π2

and Π3 and uses most of the results obtained before.
The next step achieves the continuous differentiability of a piece of W

in a transversal H of the periodic orbit o. We construct a continuously
differentiable graph over an open set in a plane X12 ⊂ H which extends
such a piece of W ∩H close to a point p0 ∈ o∩H beyond the boundary.
Using the flow FW we then derive that W \ {ξ−, ξ+} and W ∩ Σ are
continuously differentiable, in the sense stated before.

The final steps lead to the topological description of W . In case µ > 0
the identification of bd W \ {ξ−, ξ+} as forward extension of a local un-
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Figure 10.24.

Figure 10.25.
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stable manifold is used to define homeomorphisms from bd W onto the
unit sphere S2 ⊂ R

3. Then a generalization due to Bing [29] of the
Schoenfliess theorem [210] from planar topology is employed to obtain
homeomorphisms from W onto the closed unit ball in R

3. The applica-
tion of Bing’s theorem requires to identify the bounded component of
the complement of the set

Π3(bd W ) ∼= S2

in R
3 as the set Π3W , and to verify that Π3W is uniformly locally 1-

connected. This means that for every ε > 0 there exists δ > 0 so that
every closed curve in a subset of Π3W with diameter less than δ can
be continuously deformed to a point in a subset of Π3W with diameter
less than ε. We point out that the proof of this topological property
relies on the smoothness of the set W \ {ξ−, ξ+}, and involves subsets
of boundaries of neighbourhoods of 0, ξ−, ξ+ in W which are transver-
sal to the flow FW . In order to construct these smooth boundaries we
have to go back to the variation-of-constants formula for RFDEs in the
framework of sun-dual and sun-star dual semigroups [57]. In case µ = 0
the construction of the desired homeomorphism from W onto the solid
cylinder is different but uses Bing’s theorem as well.

What can be said about W close to the attracting stationary points
ξ−, ξ+? Consider ξ+. The inclusion

W ⊂ ξ+ −K

implies that the tangent cone T0W is the singleton {0}; therefore W and
bd W are not smooth at ξ+.

Let C1+ denote the leading realified one-dimensional generalized
eigenspace associated with the variational equation along the solution
R � t �→ ξ+ ∈ R. Analogously L+ is the realified 2-dimensional gener-
alized eigenspace of the next pair of eigenvalues, and C3<+ is given by
the remaining eigenvalues. We have

C1+ = R · η+

with η+ ∈ C a segment of the associated positive decreasing exponential
solution of the variational equation.

In [242] the singularity ξ+ is described in terms of the outward tangent
cone T+bd W , defined as the set of tangent vectors c′(0) ∈ C of continu-
ously differentiable curves c : (−ε, 0] → C, ε > 0, in bd W ending at ξ+,
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and in terms of the set LTP of limit points of tangent planes Tφbd W ,
φ 
= ξ+, as φ tends to ξ+. We prove

T+bd W = [0,∞) · η+

and show that LTP coincides with the set of planes in C1+ ⊕ L+ con-
taining C1+.

Figure 10.26.

Convergence of finite-dimensional subspaces of C is here defined by
the gap topology, which is given by the Hausdorff distance of the com-
pact intersections of two such spaces with the unit sphere. The proofs
employ a-priori estimates and inclination lemmas.

For narrower classes of nonlinearities g and for the parameters µ > 0
and g′(0) > 0 in a certain smaller range than before, the periodic orbit
o is the only one of the semiflow, and the set W is in fact the global
attractor of F [136]. The first and basic ingredient of the proof is the
uniqueness result. The equations covered include examples from neural
network theory.

Let us state some open problems.

Recall the question whether W ∩Σ can be represented by a smooth
map from a subset of L into the complementary space C1 ⊕ C3<.

One may ask for diffeomorphisms instead of homeomorphisms from
DW onto the solid cylinder in case µ = 0, and from DW \{χ−, χ+}
onto the unit ball without its north and south poles in case µ > 0.

The assumption g′(ξ−) < µ, g′(ξ+) < µ, which makes the semi-
groups associated with the stationary points ξ−, ξ+ hyperbolic,
might be relaxed.
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How is the global attractor organized in case W is a proper subset?

We add a few remarks about the last question. Let us first consider sit-
uations where A is a subset of the order interval {φ ∈ C : ξ− ≤ φ ≤ ξ+}.
The segments of the solutions x : R → R with V (xt) = 2 for all t ∈ R

may form, together with the stationary point 0, a smooth disk-like sub-
manifold A2 in A which extends W ∩ Σ beyond o and contains at least
one additional periodic orbit, forming the manifold boundary of A2.
In this case, the unstable sets of the periodic orbits in A2 should be
analogues of bd W \ {ξ−, ξ+}, namely 2-dimensional invariant submani-
folds given by heteroclinic connections from the periodic orbit to ξ− and
ξ+. These submanifolds should subdivide the 3-dimensional subset A≤2

of A formed by 0 and the segments of all solutions x : R → R with
ξ− ≤ x(t) ≤ ξ+ and V (xt) ≤ 2 for all t ∈ R into invariant layers; a
section of A≤2 containing ξ− and ξ+ might have the structure shown by
a sliced onion.

Figure 10.27.

It may be the case that A = A≤2. If A is strictly larger than A≤2 then
we have to expect a finite number of analogues of the smooth disk A2,
given by higher even values of V , and a more complicated variety of
heteroclinic connections, between periodic orbits in the same disk, be-
tween periodic orbits in different disks, from periodic orbits and 0 to ξ−
and ξ+, from 0 to periodic orbits and to ξ− and ξ+. Also connections
from periodic orbits to 0 become possible. A Morse decomposition of A
similar to the one constructed by Mallet-Paret [171] should be useful to
describe a part of these heteroclinic connections.

Suppose now that A is not confined to the order interval {φ ∈ C : ξ− ≤
φ ≤ ξ+}, and there are zeros ξ∗ of g − µ id below ξ− and above ξ+ with

450



Dynamics of Delay Differential Equations

g′(ξ∗) > µ. One out of many possibilities is that the part of A in a certain
neighbourhood of a stationary point ξ∗ ∈ C given by such a value ξ∗ looks
just as we began to sketch it for the case A ⊂ {φ ∈ C : ξ− ≤ φ ≤ ξ+}.

Figure 10.28.

3. Chaotic motion
This part describes steps of the proof in [153, 154], which yields existence
of chaotic solution behaviour for eq. (1.1) with µ = 0,

ẋ(t) = g(x(t− 1)),

for functions g which satisfy the negative feedback condition. The result
in [154] was not the first one about existence of chaotic solutions of delay
differential equations, but the first concerning slowly oscillating solutions
of equations with smooth nonlinearities. The nonlinearities considered
have extrema. Recall that monotonicity implies that the attractor AS of
almost all solutions is a disk, which excludes complicated behaviour of
slowly oscillating solutions.

Nevertheless the proof begins with odd functions g which satisfy
g′(ξ) < 0 for all ξ ∈ R. For a function of this type there is a slowly
oscillating periodic solution y : R → R with the symmetry

y(t) = −y(t− 2)

and minimal period 4, whose orbit o ⊂ C is unstable and hyperbolic,
with exactly one Floquet multiplier λ outside the unit circle [115]. This
multiplier is real and simple. It follows that the period map F4 has one-
dimensional local center and unstable manifolds at its fixed point y0 = η.
We may assume y(−1) = 0 < ẏ(−1). The linear hyperplane

H = {φ ∈ C : φ(−1) = 0}
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is transversal to o at η. For an associated Poincaré return map the fixed
point η is hyperbolic with one-dimensional local unstable manifold Wu

and local stable manifold Ws of codimension 1 in H. Recall the abstract
result for maps in Banach spaces which guarantees chaotic trajectories in
a neighbourhood of a homoclinic loop. The plan is to verify the hypothe-
ses of this result for a modification of the map P , whose trajectories all
translate into slowly oscillating solutions of a delay differential equation
as before, with a nonlinearity g∗ of negative feedback type which coin-
cides with g in a neighbourhood of the interval y(R). The first major
step is to find such functions g∗ so that there is a solution z : R → R

which is homoclinic with respect to o, i.e.,with

zt → o as |t| → ∞, z0 /∈ o.

This is done as follows.

y is increasing on the initial interval, and

y(0) = ‖η‖ = max y.

Information about the eigenspace of the Floquet multiplier λ reveals
that Wu contains the segment z0 of a solution z : R → R of the original
equation with

z(0) > y(0)

so that for some ε > 0 and δ > 0,

z(t) > y(0) + ε on (−δ, 0], z(t) < y(0) + ε on (−∞,−δ).

The key to all is now a simple observation: Any modification g∗ of g
in the interval (y(0) + ε,∞) preserves y and the restriction of z to the
interval

(−∞,−δ + 1]

as solutions, but affects the forward continuation of z|(−∞,−δ +1] as a
solution z∗ : R → R of the new equation. Modifications g∗ are designed
in such a way that the curves t �→ z∗t intersect the hyperplane H close to
η at some t∗ > −δ +1. These modifications look rather complicated and
have several extrema: 3 local maxima and 4 local minima. Intersections
can be achieved above and below the local stable manifold Ws, in a
carefully chosen convex open neighbourhood N ⊂ H of η on which the
original map P is also a Poincaré return map with respect to the modified
delay differential equation, and

P (N ∩Ws) ⊂ N ∩Ws.
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Figure 10.29.

Two such modifications g∗ are connected by a one-parameter-family.
Continuity yields a member so that the intersection of the curve t �→ z∗t
with H is on Ws, and the desired nonlinearity and homoclinic solution
are found.

Figure 10.30.

Now the map P is modified. The neighbourhood N has the prop-
erty that it contains a backward trajectory (z∗tj )

0
−∞ ∈ Wu of P so that

P (z∗t0) /∈ N ; z∗(t) = z(t) on (−∞, t0]. Choose a small closed ball B∗ ⊂ N
centered at z∗t0 = zt0 = ζ, with z∗tj /∈ B∗ for j < 0 and so that one has an
intersection map on B∗ which has the value t∗ − t0 at ζ. Redefine P on
intB∗ using the previous intersection map, and keep P on N \ B∗ un-
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changed. Then the fixed point η and the points z∗tj , j ≤ 0, z∗t∗ , P j(z∗t∗),
j ∈ N, form a homoclinic loop of the new map P ∗.

Figure 10.31.

The previous construction is in fact carried out for families of one-
parameter-families of nonlinearities. This freedom is needed for the re-
maining part of the proof, which is to verify the transversality condition,
namely, that there exists n0 ∈ N so that for all integers m < −n0 and
n > n0, the points φm and φn of the homoclinic trajectory of P ∗ belong
to Wu and Ws, respectively, with

D(P ∗)n−m(φm)TφmWu ⊕ TφmWs = H.

In our situation, codim Ws = 1. In order to verify the direct sum
decomposition of H we therefore need a suitable criterion for a vector
in H not to be tangent to the local stable manifold Ws. ’Suitable’
means that the criterion should be sufficiently explicit in terms of the
nonlinearity g∗ and the periodic solution y so that it can actually be
applied. The first step towards the transversality criterion concerns the
variational equation along y,

v̇(t) = g′(y(t− 1))v(t− 1)

and the monodromy operator M = DF4(η), η = y0. The monotonicity
of g on the range of y implies that the set S of data with at most
one change of sign is again positively invariant, and that solutions v :
[−1,∞)→ R starting in S are eventually slowly oscillating. The realified
generalized eigenspace C≥ of the 2 leading Floquet multipliers on and
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outside the unit circle is contained in S; dim C≥ = 2. Let Z denote
the complementary subspace given by the remaining spectrum of M ,
i.e., the linear stable space of M . Recall that the local stable manifold
Ws(η) of the period map F4 at η satisfies

TηWs(η) = Z.

Initial data in Z define solutions v : [−1,∞) → R with segments in C\S.
So,

Z ∩ S = ∅,
and if a solution v is eventually slowly oscillating then χ = v0 ∈ C \ Z;
in other words, the initial value is transversal to Z. Here we have a first
sufficient condition for transversality, but not yet for the right map and
only at a particular point of the local stable manifold. In a next step it
is shown that for any φ ∈Ws(η) and χ ∈ C,

χ ∈ C \ TφWs(η) if and only if vφ,χ is eventually slowly oscillating.

With regard to the proof, notice that for φ close to η the spaces TφWs(η)
and Z are close. Flowlines starting in Ws(η) converge to o as t → ∞
with asymptotic phase. This yields that the coefficient function in the
variational equation along xφ : [−1,∞) → R, which is satisfied by vφ,χ,
approaches a shifted copy of the coefficient function in the variational
equation along the periodic solution y. - The main tool used in the proof
is an inclination lemma in a non-hyperbolic situation.

The final form of the criterion, for the Poincaré map P , is that for
any φ ∈Ws and any χ ∈ H,

χ ∈ H \ TφWs

if and only if

for every pair of reals (a, b) 
= (0, 0), the function

(0,∞) � t �→ a ẋφ(t) + b vφ,χ(t) ∈ R is eventually slowly oscillating.

Notice that for t > 1 the function considered here satisfies the variational
equation along the solution xφ : [−1,∞) → R. - The proof exploits the
relation between derivatives of the Poincaré map and the period map,
and the asymptotic phase for flowlines starting in Ws.

The last part of the proof that chaotic motion exists is the search for
a subclass of nonlinearities g∗ so that for all nonzero

χ ∈ D(P ∗)n(ζ)TζWu
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and for all sufficiently large integers n the sufficient condition in the pre-
vious ’transversality-by-oscillation’ criterion is fulfilled.

The nonlinearities for which the proof just described works look much
more complicated than the unimodal functions in versions of eq. (1.1)
with µ > 0 which are known from applications. A reason for this is that
g∗ was chosen in such a way that the curve t �→ z∗t through a point in Wu

close to η is driven far away from o and then returns to Ws within a short
interval of length approximately 3. In a more recent paper Lani-Wayda
was able to modify the method and obtain a result for nicer-looking uni-
modal nonlinearities [150].

Let us mention some open problems.

It has not yet been proved that the Mackey-Glass and Lasota-
Wazewska-Czyzewska equations generate chaotic flowlines. These
are equations of the form (1.1) with µ > 0 and unimodal analytic
nonlinearities.

The result presented here establishes chaotic dynamics only in a
small, thin set in state space, in a ’Cantor dust’, whereas numeri-
cal experiments indicate that many if not almost all solutions are
complicated for a variety of nonlinearities.

Other recent results on chaotic solutions of delay differential equations
are due to Lani-Wayda [151] and Lani-Wayda and Szrednicki [152].

4. Stable periodic orbits
In many cases the dynamics of nonlinear autonomous delay differential
equations is structured by periodic orbits. Existence of periodic orbits
has been shown by several methods, notably by means of the ejective
fixed point principle, by Schauder’s theorem directly, by related index
and continuation arguments, and by more geometric arguments (planar
dynamics in the attractor of almost all solutions, Poincaré-Bendixson
theorems). Much less could be achieved concerning stability and unique-
ness of periodic orbits.

Consider eq. (1.1),

ẋ(t) = −µx(t) + g(x(t− 1)),

for µ ≥ 0 and nonlinearities g : R → R of negative feedback type which
are continuous or better. As in part 1, the method of steps yields max-
imal solutions x : [−1,∞) → R of the associated IVP and a continuous
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semiflow F .

Recall that, in some contrast to the preceding remarks, there are
special equations for which it is extremely easy to find slowly oscillating
periodic solutions whose orbits in C seem very stable and attractive.
The underlying observation for this is the following. If g is constant
on some ray [β,∞), β > 0 and if initial data φj ∈ C, j = 1, 2, with
φj(t) ≥ β coincide at t = 0 then the method of steps shows immediately
that the corresponding solutions coincide on [0, 1], and consequently for
all t ≥ 0. They depend only on the values g(β) and φ(0). It is then easy
to design nonlinearities g as above so that all segments xt of solutions
x = xφ starting at φ ≥ β with φ(0) = β return after some time p > 0,
i.e., xp ≥ β and x(p) = β. The segment xp is a fixed point of the solution
map Fp and defines a periodic solution which has period p and is slowly
oscillating.

Figure 10.32.

Moreover, for every ψ ∈ C close to φ = xp the solution xψ has segments
which after some time merge into the periodic orbit

o = {xt : t ∈ R}.
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This expresses extremely strong attraction towards the periodic orbit.
Poincaré return maps on transversals to o are locally constant, the deriv-
ative at the fixed point on o is zero, its spectrum is the singleton {0}
and the periodic orbit is hyperbolic.

What has just been said is strictly limited to equations where the non-
linearity g is constant on some interval. What happens if g is only close
to such a function but not constant on any nontrivial interval? The ap-
proach sketched above fails. The general results on existence mentioned
at the beginning may give existence, but nothing beyond. In the sequel
a rather elementary method from [243] is presented which in a sense fills
the gap between the easily accessible, detailed results in special cases
as before, and the little information for nonlinearities which are close
to these but not necessarily constant on any interval. The important
property is Lipschitz continuity, which in earlier work on eq. (1.1) has
not been exploited. (In case of related equations with state-dependent
delay, however, Lipschitz continuity always played a role.).

Fix µ > 0, b > a > 0. For β > 0 and ε > 0 consider nonlinearities in
the set N(β, ε) of continuous odd functions g : R → [−b, b] which satisfy

−a− ε < g(ξ) < −a + ε for all ξ ≥ β.

For β and ε small, g ∈ N(β, ε) is steep on (0, β), and close to −a sign on
[β,∞).

When convenient the associated semiflow will be denoted by Fg.

Initial data will be taken from the closed convex sets

A(β) = {φ ∈ C : φ(t) ≥ β on [−1, 0], φ(0) = β}.

On A(β) a return map can be found for β and ε sufficiently small.

Proposition. There exists w ∈ (0, 1) such that for β, ε small and for
g ∈ N(β, ε), φ ∈ A(β) the solution xφ,g = xφ of eq. (1) is strictly below
−β on [w,w + 1]. Furthermore, there exists q = qg(φ) > w + 1 so that
xφ,g increases on (w + 1, q) and reaches the level −β at t = q.

The proof relies on the fact that on [β,∞) and on (−∞, β] the func-
tion g is close to −a sign and a sign, respectively. Using this and the
variation-of-constants formula one sees that on (0, 1] solutions starting
in A(β) lie in a narrow tongue between 2 decreasing exponentials. The
method of steps yields sharp estimates of the solutions also on the next
intervals of unit length. Moreover, derivatives can be estimated with
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Figure 10.33.

Figure 10.34.
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sufficient accuracy.

The return map R = Rg : A(β) → A(β) is then given by

R(φ) = −Fg(qg(φ), φ).

Notice that g being odd any fixed point φ of Rg defines a slowly oscil-
lating periodic solution x : R → R of eq. (1) with the symmetry

x(t) = −x(t + qg(φ)) for all t ∈ R,

and minimal period p = 2q. Fixed points exist, due to Schauder’s the-
orem. However, our objective is more than mere existence. Notice that
up to here only continuity of the nonlinearities in eq. (1) has been used.
The next objective is to find an upper estimate of the Lipschitz constant

L(R) = sup
φ�=ψ

‖R(φ)−R(ψ)‖
‖φ− ψ‖ ≤ ∞

of R. This is facilitated by a decomposition of R = Rg into the restriction
of Fg,1 to A(β), followed by the restriction of Fg,w to Fg,1(A(β)), and
finally followed by the map

Fg,1+w(A(β)) � ψ �→ −Fg(sg(ψ), ψ) ∈ A(β)

where s = sg(ψ) is defined by the equation

w + 1 + s = qg(φ) for all φ ∈ A(β) with ψ = Fg,1+w(φ).

(Observe that for all φ ∈ A(β) whose solutions coincide on [w,w+1] the
argument qg(φ) is the same - it depends only on the behaviour of the
solutions on [w,w + 1].)

The Lipschitz constant L(Rg) will be estimated by an expression
which involves the Lipschitz constant L(g) of g and the Lipschitz con-
stant

Lβ(g) = L(g|[β,∞)).

Notice that for each g ∈ N(β, ε), L(g) ≥ a−ε
β is large for β > 0 small.

On the other hand, each N(β, ε) contains Lipschitz continuous functions
g so that Lβ(g) is arbitrarily small. This will be exploited later.

We derive Lipschitz estimates of the composites of the return map Rg

for g ∈ N(β, ε), with β and ε sufficiently small.
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Proposition. L(Fg,1|A(β)) ≤ Lβ(g).

The proof is almost obvious from the facts that for φ, ψ in A(β) the
variation-of-constants formula says

Fg,1(φ)(t)− Fg,1(ψ)(t) = xφ,g(1 + t)− xψ,g(1 + t)

= 0− 0 +
∫ 1+t

0
e−µ(1+t−s)(g(φ(s− 1))− g(ψ(s− 1)))ds,

and that the arguments of g belong to [β,∞). In the same way one finds
the next result.

Proposition. L(Fg,w|Fg,1(A(β))) ≤ 1 + w L(g).

The difference to the previous proposition is due to the fact that
arguments of Fg,w may differ at t = 0, and traverse the interval [−β, β]
where g is steep. One time unit later large deviations of one solution
from another become possible.

Next we need an estimate of the Lipschitz constant of the intersection
map sg.

Proposition.

L(sg) ≤
1 + eµ Lβ(g)
a− ε− β µ eµ

The proof begins with the fact that for ψ = Fg,w+1(φ) with φ ∈ A(β)
there is an equation defining qg(φ) and sg(ψ),

β = xφ,g(qg(φ)) = xφ,g(1 + w + sg(ψ)).

The last term is evaluated by the variation-of-constants formula on
[1 + w, 1 + w + sg(ψ)]. The resulting equation for sg(ψ) and for some
sg(ψ), ψ = Fg,1+w(φ), φ ∈ A(β), are subtracted from each other. Further
elementary manipulations lead to the desired estimate.

Proposition.

L(Fg(sg(·), ·)|Fg,1+w(A(β))) ≤

L(sg) · [µ (1− a

µ
(1− e−µ)) + max{b, a + ε}] + 1 + Lβ(g).

The proof uses the triangle inequality, the preceding proposition, and
arguments as in the proof of the estimate of L(Fg,w|Fg,1(A(β)).
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Notice that L(Fg(sg(·), ·)| . . .) is bounded in terms of Lβ(g) and con-
stants for β, ε small. So this term does not become large for suitable
g ∈ N(β, ε).

The resulting estimate for the Lipschitz constant of the return map is

L(Rg) ≤ Lβ(g) (1 + w L(g))L(Fg(sg(·), ·)|Fg,1+w(A(β))).

A consequence is that there exist g ∈ N(β, ε) so that Rg is a contraction.
Examples are found as follows. First fix β and ε so that the smallness
hypothesis for the previous estimate of L(Rg) holds for all g ∈ N(β, ε).
Then choose a Lipschitz continuous odd function g : [−β, β] → [−b, b]
which satisfies −a − ε < g(β) < −a + ε. Continue this function to an
odd map on R with values in (−a − ε,−a + ε) on (β,∞) and Lβ(g) so
small that the bound for L(Rg) is less than 1.

Remarks. The small constant Lβ(g) compensates diverging solution
behaviour allowed by the factor 1+w L(g), on the way of flowlines back
to −A(β). The nonlinearities g for which Rg is a contraction are not
necessarily constant on any interval, not necessarily monotone, may not
have limits at infinity, and may not be differentiable everywhere. The
negative feedback condition may be violated in (−β, β). The orbits of
the periodic solutions obtained from the fixed points of the contracting
return maps attract all flowlines starting in A(β); one can show that in
case g is continuously differentiable the periodic orbits are hyperbolic
and stable.

A disadvantage of the previous Lipschitz estimate of L(Rg) is that it
is not easy to verify for given analytic nonlinearities, which are steep
close to 0 and flat away from 0, and which arise in applications, like,
e.g., the function

g = − tanh(γ·), γ > 0 large,

used in neural network theory. In [244] the approach described above
is refined for nonlinearities g ∈ N(β, ε) which are monotone close to
0. This involves sharp estimates of the divergent behaviour of flowlines
one time unit after the underlying solutions traverse the interval [−β, β]
where g is monotone and steep. The improved Lipschitz estimates yield
contracting return maps (and hyperbolic stable periodic orbits) for the
scaled hyperbolic tangens above, for

g = − arctan(γ·), γ > 0 large,

and for other nonlinearities.
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The sharpened estimates are obtained as follows. Let g ∈ N(β, ε) be
given. The tongue containing xφ,g, φ ∈ A(β), on [0, 1] is formed by the
solutions y> = y>,β,ε and y< = y<,β,ε of the IVPs

ẏ = −µ y − a± ε, y(0) = β.

Define w = w(β, ε) to be the argument where y> reaches the level y =
−β. For β not too large,

0 < w < 1.

Obviously,
xφ,g(t) ≤ −β on [w, 1].

Let z< = z<,β,ε and z> = z>,β,ε denote the zeros of y< and y>, respec-
tively, and let

β− = β−,β,ε = y<(w) < −β.

Figure 10.35.

For β and ε small and g ∈ N(β, ε) consider the return map Rg : A(β) →
A(β) and decompose it as before. The objective is to find a better esti-
mate for the middle composite Fg,w|Fg,1(A(β)). Recall that a Lipschitz
continuous function g ∈ N(β, ε) is almost everywhere differentiable. We
need the hypothesis that there is a set D ⊂ R whose complement has
Lebesgue measure 0, with

g′(ξ) < 0 on D ∩ (β−, β),

g′ decreasing on D ∩ (β−, 0) and increasing on D ∩ (0, β).

Proposition.

L(Fg,w)|...) ≤ 4 + L(g)
1
µ

log
(a + ε)(µβ + a− ε)
(a− ε)(µβ + a + ε)

.
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Figure 10.36.

Remark. The factors following L(g) replace the constant w in the
former estimate of L(Fg,w)|...). Notice that they vanish for ε = 0 ! This
indicates that L(Fg,w|...) may not be too large even if L(g) is large, for
β and ε small.

The proof of the proposition begins with the extension of g′ to a
function on (β−, β) which is decreasing on (β−, 0) and increasing on
(0, β). Let φ and ψ in Fg,1(A(β)) be given. For −1 ≤ t ≤ 0 and
0 < w + t,

(Fg,w(φ)− Fg,w(ψ))(t) = xφ,g
w (t)− xψ,g

w (t) =

(φ(0)− ψ(0))e−µ(w+t) +
∫ w+t

0
e−µ(w+t−s)(g(φ(s− 1))− g(ψ(s− 1)))ds,

|...| ≤ ‖φ− ψ‖+
∫ w

0
|g(φ(s− 1))− g(ψ(s− 1)))|ds.

In the last integral we have φ = x1 and ψ = z1 with solutions x :
[−1,∞)→ R and z : [−1,∞)→ R which start in A(β),

∫ w

0
|...|ds =

∫ w

0
|g(x(s))− g(z(s))|ds.

In order to estimate the integrand, consider the interval Is with end-
points x(s) and z(s), 0 ≤ s ≤ w. Obviously,

|g(x(s))− g(z(s))| = |
∫

Is

g′|

≤ sup
Is

|g′| · |x(s)− z(s)| ≤ sup
...

. . . ‖φ− ψ‖
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and

β− ≤ y<(s) ≤ min{x(s), z(s)} ≤ max{x(s), z(s)} ≤ y>(s) ≤ β,

or
Is ⊂ [y<(s), y>(s)] ⊂ [β−, β].

The last relation shows that in case 0 < y<(s) (i.e., s < z<) the
monotonicity property of g′ is applicable. We find

sup
Is

|g′| ≤ −g′(y<(s)).

In case 0 ∈ Is,
sup
Is

|g′| = −g′(0).

In case y>(s) < 0 (i.e., z> < s),

sup
Is

|g′| ≤ −g′(y>(s)).

Figure 10.37.

Now the last integrals can be estimated as follows. We have
∫ w

0
|...| ≤ ‖φ− ψ‖ · (

∫ z<

0
|g′ ◦ y<|+ |g′(0)|

∫ z>

z<

1 +
∫ w

z>

|g′ ◦ y>|).

The substitution s = y−1
< (ξ) in the first integral leads to the upper bound

1 for this integral. The substitution s = y−1
> (ξ) in the third integral leads

to the upper bound 2 for it. The endpoints z< and z> of the range in
the second integral can be computed as functions of β, ε, µ, a.

In the remaining case w + t ≤ 0, clearly

|(Fg,w(φ)−Fg,w(ψ))(t)| = |xφ,g
w (t)−xψ,g

w (t)| = |φ(w+t)−ψ(w+t)| ≤ ‖φ−ψ‖.
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Remark. It can be shown that the Lipschitz estimate of the proposi-
tion is optimal in the limit (β, ε) → (0, 0).

Continuing as in [243] one finds that for (β, ε) small and g ∈ N(β, ε),

L(Rg) ≤ Lβ(g) [4 + L(g)β ε
3µ

a2
]

·[ 1 + eµ Lβ(g)
a− ε− µβ eµ

· [µ (1− a

µ
(1− e−µ)) + max{b, a + ε}] + 1 + Lβ(g)].

The middle factor comes from the estimate of the middle composite
Fg,w|.... Recall that for suitable g ∈ N(β, ε), Lβ(g) is small.

How can one verify for given nonlinearities g that the upper bound
for L(Rg) is less than 1? Let µ > 0 and an odd bounded Lipschitz
continuous function g : R → R be given so that g′ is negative and
increasing on the complement of a set of measure 0 in [0,∞). Then g
has a limit −a ≤ 0 at +∞. Suppose a > 0, and consider the family of
functions

gγ = g(γ·), γ > 0.

Figure 10.38.

How can β = β(γ) and ε = ε(γ) be chosen so that gγ ∈ N(β, ε) and
L(Rgγ ) < 1, at least for large γ? We have Lβ(gγ) = γ Lγβ(g).

Proposition. Suppose there exists a function

β∗ : (0,∞) → (0,∞)

so that for γ →∞,

β∗(γ) → 0,
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γ β∗(γ) →∞,

γ Lγβ∗(γ)(g) → 0,

γ Lγβ∗(γ)(g) γ β∗(γ) [a + g(γ β∗(γ))] → 0.

Then there exists γ∗ > 0 so that for all γ > γ∗, Rgγ is a contraction.

In order to prove this one sets b = 2a. For every γ > 0, β > 0, and
ε = a + g(γ β), we have

gγ ∈ N(β, ε).

The function gγ is Lipschitz continuous and satisfies the monotonicity
hypothesis required for the last proposition. Then the estimate of L(Rgγ )
has to be used.

Examples. Consider µ > 0 and g as before. Suppose in addition that
for some r > 3

2 ,

D ∩ (0,∞) � ξ �→ |ξrg′(ξ)| is bounded.

Choose s ∈ (−1, 0) with 1
1+s < r and 1 + 1

2+2s < r. Then the map

β∗ : γ �→ γs

satisfies the hypotheses of the last proposition.

Special cases are given by g = − tanh, g = − arctan.

Remarks. A somewhat stronger result for one-parameter-families of
nonlinearities gγ which are at least continuously differentiable was ob-
tained earlier by Xie [255]. He proved that for γ large the orbits of given
periodic solutions are hyperbolic and stable. The proof is a study of
the leading Floquet multipliers and relies on very careful a-priori esti-
mates of periodic solutions. The hypotheses needed in [255] are that the
smooth function g has limits at infinity, that g′ is Lebesgue integrable,
and that ξ g′(ξ) → 0 as |ξ| → ∞. I.e., no monotonicity properties of g′

are required, and the behaviour of g′ at infinity is less restricted than in
the examples mentioned above.

In the approach described here the condition that the nonlinearities g
are odd is not essential. Variants of the method have also been applied
to systems of delay differential equations [246, 96] and to an equation
with state-dependent delay [245]. For the latter, no other method to
obtain stable periodic motion seems presently available.
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5. State-dependent delays

Differential equations with state-dependent delay can often be written
in the form

ẋ(t) = f(xt) (5.1)

with a continuously differentiable map f : C1 ⊃ U → R
n, U open. The

associated IVP is not well-posed on U , however. Continuous flowlines
may in general only be expected for data in the subset

X = Xf = {φ ∈ U : φ̇(0) = f(φ)} ⊂ C1.

Notice that X is a nonlinear version of the positively invariant domain

{φ ∈ C1 : φ̇(0) = Lφ}

of the generator G of the semigroup defined by the linear autonomous
RFDE

ẏ(t) = Lyt

on the larger space C, for L : C → R
n linear continuous. Notice also

that in case of a locally Lipschitz continuous map f∗ : U∗ → R
n, U∗ ⊂ C

open, all solutions x : [−h, b) → R
n, h < b, of the RFDE

ẋ(t) = f∗(xt)

satisfy

xt ∈ Xf∗ = {φ ∈ U∗ ∩ C1 : φ̇(0) = f∗(φ)} for h ≤ t < b.

I.e., the set Xf∗ absorbs all flowlines on intervals [−h, b) which are long
enough. In particular, Xf∗ contains all segments of solutions on intervals
(−∞, b), b ≤ ∞ - equilibria, periodic orbits, local unstable manifolds,
and the global attractor if the latter is present.

In order to have a semiflow on X with differentiability properties we
need that X is smooth. This requires an additional condition on f .

Proposition. Suppose X 
= ∅ and
(P1) each derivative Df(φ), φ ∈ U, has a continuous linear extension

Def(φ) : C → R
n.

Then X is a continuously differentiable submanifold of C1 with codi-
mension n.
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The proof is easy. Consider the continuous linear map

p : C1 � φ �→ φ̇(0) ∈ R
n.

Then
X = (p− f)−1(0).

It is enough to show that all derivatives D(p− f)(φ), φ ∈ X, are surjec-
tive.
Proof of this for n = 1: By (P1), for some δ > 0,

Def(φ)Cδ ⊂ (−1, 1).

There exists χ ∈ C1 ∩ Cδ with χ̇(0) = 1. Hence

0 < χ̇(0)−Df(φ)χ = D(p− f)(φ)χ,

R ⊂ D(p− f)(φ)C1.

(The Implicit Function Theorem then yields that close to φ the set X is
given by a map from a subset of the nullspace N of D(p− f)(φ) into a
complement of N in C1.)

A solution of eq. (5.1) is defined to be a continuously differentiable
map x : [t0 − h, te) → R

n, with t0 ∈ R and t0 < te ≤ ∞, so that for
t0 ≤ t < te, xt ∈ U , and eq. (5.1) is satisfied. We also consider solutions
on unbounded intervals (−∞, te). Maximal solutions of IVPs are defined
as in part I.

Theorem. Suppose (P1) holds, X 
= ∅, and
(P2) for each φ ∈ U there exist a neighbourhood V (in C1) and L ≥ 0
so that

|f(ψ)− f(χ)| ≤ L‖ψ − χ‖ for all ψ ∈ V, χ ∈ V.

Then the maximal solutions xφ : [−h, te(φ)) → R
n of eq. (5.1) which

start at points φ ∈ X define a continuous semiflow

F : Ω � (t, φ) �→ xφ
t ∈ X, Ω =

⋃
φ∈X

[0, te(φ))× {φ},

and all solution maps

Ft : Ωt � φ �→ F (t, φ) ∈ X, ∅ 
= Ωt = {φ ∈ X : (t, φ) ∈ Ω},

are continuously differentiable. For all φ ∈ X, t ∈ [0, te(φ)), and χ ∈
TφX,

DFt(φ)χ = vφ,χ
t
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with a continuously differentiable solution vφ,χ : [−h, te(φ)) → R
n of the

IVP
v̇(t) = Df(Ft(φ))vt,

v0 = χ.

Comments.

Notice that the Lipschitz estimate in (P2) involves the smaller
norm ‖ · ‖ ≤ ‖ · ‖1 on the larger space C ⊃ C1. Property (P2)
was used in [245] in a proof that for certain differential equations
with state-dependent delay stable periodic orbits exist. It is closely
related to the earlier idea of being locally almost Lipschitzian in
work of Mallet-Paret, Nussbaum, and Paraskevopoulos [175].

Property (P1) is a special case of a condition used in Krisztin’s
work on smooth unstable manifolds [132]. Almost the same prop-
erty occurred earlier [175], under the name almost Frechet differ-
entiability.

Louihi, Hbid, and Arino [164] identified the set X as the domain
of a generator in the context of nonlinear semigroup theory, for
a class of differential equations with state-dependent delay. It is
mentioned in [164] that X is a Lipschitz manifold. In [139] a
complete metric space analogous to X serves as a state space for
neutral functional differential equations.

Former results about solutions close to an equilibrium, like the
principle of linearized stability for differential equations with state-
dependent delay due to Cooke and Huang [48], or results on local
unstable manifolds [131, 132], had to be proven without knowledge
of linearizations at the equilibrium. The difficulty was circum-
vented by means of an associated linear autonomous RFDE (a) on
the large space C. Eq. (a) is obtained heuristically, for certain
classes of differential equations with state-dependent delay: First
the delays are frozen at the given equilibrium φ, then the resulting
RFDE with constant delays is linearized. Examples show how eq.
(a) is related to the actual variational equation

v̇(t) = Df(φ)vt

for data in TφX ⊂ C1: Eq. (a) is simply

v̇(t) = Def(φ)vt.
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Also, for the semigroup (T (t))t≥0 on C associated with the last
RFDE and for its generator G,

TφX = dom(G)

and
DFt(φ)χ = T (t)χ on TφX.

The theorem yields continuously differentiable local invariant man-
ifolds

Wu, Wc, Ws

of the solution maps Ft at fixed points; in particular, at stationary
points φ of the semiflow. In the last case the tangent spaces of
the local invariant manifolds at φ are the unstable, center, and
restricted stable spaces

Cu, Cc, and Cs ∩ TφX

of the generator G, respectively. At a stationary point φ the local
unstable and stable manifolds Wu, Ws coincide with local unstable
and stable manifolds W u, W s of the semiflow F . An analogous
result for - suitable - center manifolds seems unknown.

Local unstable manifolds at stationary points of differential equa-
tions with state-dependent delay were found earlier by H. Krishnan
[131] and T. Krisztin [132], under the hypothesis that the associ-
ated linear autonomous RFDE (a) is hyperbolic. Hyperbolicity is
also necessary for a recent result of Arino and Sanchez [16] which
captures saddle point behaviour of solutions close to equilibrium
for a class of differential equations with state-dependent delay.

The essential part of the proof of our theorem is to solve the equation

x(t) = φ(0) +
∫ t

0
f(xs)ds, 0 ≤ t ≤ T,

x0 = φ ∈ X,

by a continuously differentiable map

x : [−h, T ] → Rn,

for φ ∈ X given; x should also be continuously differentiable with respect
to φ. Is the Contraction Mapping Principle with parameters applicable?
How does the operator given by the fixed point equation depend on φ?
We first rewrite the fixed point equation so that the dependence of the
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integral on φ becomes explicit. For φ ∈ C1 let φ̂ denote the continuously
differentiable extension to [−h, T ] given by

φ̂(t) = φ(0) + φ̇(0)t on [0, T ].

Set u = x− φ̂. Then u belongs to the Banach space C1
0T of continuously

differentiable maps y : [−h, T ]→ R
n with

y(t) = 0 on [−h, 0];

the norm on C1
0T is given by

‖y‖C1
0T

= max
−h≤t≤T

|y(t)|+ max
−h≤t≤T

|ẏ(t)|.

u and φ̂ satisfy

u(t) + φ̂(t) = φ(0) +
∫ t

0
f(us + φ̂s)ds

and
φ̂(t) = φ(0) + φ̇(0)t = φ(0) + t f(φ)

(since φ ∈ X)

= φ(0) +
∫ t

0
f(φ)ds.

For u ∈ C1
0T this yields the fixed point equation

u(t) =
∫ t

0
(f(us + φ̂s)− f(φ))ds, 0 ≤ t ≤ T,

with parameter φ ∈ X.

Now let some φ0 ∈ X be given. For φ ∈ X close to φ0, u ∈ C1
0T small,

and 0 ≤ t ≤ T with T > 0 small, define

A(φ, u)(t)

by the right hand side of the last equation. The property (P2) is used to
show that the maps A(φ, ·) are contractions with respect to the norm on
C1

0T , with a contraction factor independent of φ: Let v = A(φ, u), v =
A(φ, u). For 0 ≤ t ≤ T ,

|v̇(t)− v̇(t)| = |f(ut + φ̂t)− f(ut + φ̂t)| ≤ L‖ut − ut‖

(due to (P2); L may be large!)

≤ L max
0≤s≤T

|u(s)− u(s)|.
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We exploit the fact that the last term does not contain derivatives: For
0 ≤ s ≤ T ,

|u(s)− u(s)| = |0− 0 +
∫ s

0
(u̇(r)− u̇(r))dr| ≤ T‖u− u‖C1

0T
.

Hence
|v̇(t)− v̇(t)| ≤ L T ‖u− u‖C1

0T
.

Also,

|v(t)− v(t)| = |
∫ t

0
(f(us + φ̂s)− f(us + φ̂s))ds| ≤ L T max

0≤s≤t
‖us − us‖

≤ L T ‖u− u‖C1
0T

.

(Property (P2) is not necessary here. Alternatively the local Lipschitz
continuity of f with respect to the norm on C1 can be used to find a
suitable upper estimate.)

For 2 L T < 1 the map A(φ, ·) becomes a contraction. One finds a
closed ball which is mapped into itself by each map A(φ, ·). The formula
defining A shows that A is continuously differentiable. It follows that for
each φ the ball contains a fixed point uφ of A(φ, ·) which is continuously
differentiable with respect to φ. This completes the essential step in the
proof of the theorem.

We give an example which is based on elementary physics. Consider
an object on a line which attempts to regulate its position x(t) by echo.
The object emits a signal which is then reflected by an obstacle. The re-
flected signal is detected and the signal running time is measured. From
this a position is computed (which is not necessarily the true position).
The computed position is followed by an acceleration towards a pre-
ferred position (e.g., an equilibrium position in a certain distance from
the obstacle).

Let c > 0 denote the speed of the signals, −w < 0 the position of the
obstacle, and µ > 0 a friction constant. The acceleration is given by a
function a : R → R; one may think of negative feedback:

a(0) = 0 and ξ a(ξ) < 0 for ξ 
= 0.

Let x(t) denote the position of the object at time t, v(t) its velocity, p(t)
the computed position, and s(t) the running time of the signal which has
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been emitted at time t− s(t) and whose reflection is detected at time t.
The model equations then are

ẋ(t) = v(t)

v̇(t) = −µv(t) + a(p(t))

p(t) =
c

2
s(t)− w

c s(t) = x(t− s(t)) + x(t) + 2w

Here only solutions with
−w < x(t)

are considered. The formula defining p(t) yields the true position if

x(t) = x(t− s(t)),

which holds at least at equilibria.

Let w+ > 0. Restrict attention further to bounded solutions with

−w < x(t) < w+ and |ẋ(t)| < c.

Then necessarily

0 < s(t) ≤ 2w + 2w+

c
= h.

The model has not yet the form (3) considered in the theorem. In
order to reformulate the model, take h as just defined, consider the
space

C1 = C1([−h, 0], R2),

and the open convex subset

U = {φ = (φ1, φ2) ∈ C1 : −w < φ1(t) < w+, |φ̇1(t)| < c for −h ≤ t ≤ 0}.

Each φ ∈ U determines a unique solution s = σ(φ) of

s =
1
c
(φ1(−s) + φ1(0) + 2w),

as the right hand side of this fixed point equation defines a contraction
on [0, h]. The Implicit Function Theorem shows that the resulting map

σ : U → [0, h]

is continuously differentiable. Elementary estimates imply that it is also
Lipschitz continuous with respect to the norm on C = C([−h, 0], R2).
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I.e., an analogue of property (P2) holds.

Assume the response function a : R → R is continuously differentiable.
Then the map

f : U → R
2

given by
f1(φ) = φ2(0),

and

f2(φ) = −µφ2(0) + a(
c

2
σ(φ)− w) = −µφ2(0) + a

(
φ1(−σ(φ)) + φ1(0)

2

)

is continuously differentiable and has property (P2), and for bounded
solutions as above the model can be rewritten in the form of eq. (5.1).

Verification of property (P1). For each φ ∈ U and all χ ∈ C1,

Dσ(φ)χ =
Ev1(χ1,−σ(φ)) + Ev1(χ1, 0)

Ev1(φ̇1,−σ(φ))− c
=

χ1(−σ(φ)) + χ1(0)
φ̇1(−σ(φ))− c

,

with the evaluation map

Ev1 : C1([−h, 0], R)× [−h, 0] � (ψ, t) �→ ψ(t) ∈ R.

Each Ev1(·, t), t ∈ [−h, 0], is the restriction of a continuous linear evalua-
tion functional on the space C([−h, 0], R). It follows that Dσ(φ) : C1 →
R has a continuous linear extension Deσ(φ) : C → R. The formula

Df2(φ)χ = −µEv1(χ2, 0) + Da(
c

2
σ(φ)− w)

c

2
Dσ(φ)χ

finally shows that f has property (P1).

Suppose
a(0) = 0.

Then φ = 0 is a stationary point, and

σ(0) =
2w

c
.

The previous calculations show that the variational equation from the
theorem is the system

v̇1(t) = v2(t)

v̇2(t) = −µv2(t) + a′(0)
v1(t− 2w/c) + v1(t)

2
.
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Notice that the heuristic approach (freeze the delay, then linearize) yields
the very same system.

Back to general results. The semiflow F from the theorem is continu-
ously differentiable for t > h provided f satisfies (P1) and the condition
that
(P1∗) the map U × C � (φ, χ) �→ Def(φ)χ ∈ R

n is continuous.

Remarks.

Notice that continuous differentiability of the semiflow (for t > h)
is needed in order to have Poincaré return maps for periodic orbits,
among others.

(P1) and (P1∗) imply (P2).

(P1∗) holds for the example.

The stronger condition that the map

U � φ �→ Def(φ) ∈ L(C, Rn)

be continuous is not satisfied by the example.

The solution maps Ft are compact for t ≥ h under certain other
hypotheses on f . The latter are satisfied by the example for suitable
functions a.

Further work, Open Problems.

For continuously differentiable center manifolds of the semiflow,
see the forthcoming survey article [107] and [134]. A first Hopf
bifurcation theorem for differential equations with state-dependent
delay is due to M. Eichmann [62].

Can the approach be generalized so that one obtains higher order
derivatives for semiflows given by differential equations with state-
dependent delay?

For suitable parameters stable periodic motion far away from equi-
librium was established in [248].

A related but in several respects more complicated problem is the
description of the motion of two charged particles, which was ini-
tiated by R.D. Driver [61].
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Chapter 11

DELAY DIFFERENTIAL EQUATIONS IN
SINGLE SPECIES DYNAMICS
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1. Introduction
Time delays of one type or another have been incorporated into biolog-

ical models to represent resource regeneration times, maturation periods,
feeding times, reaction times, etc. by many researchers. We refer to the
monographs of Cushing (1977a), Gopalsamy (1992), Kuang (1993) and
MacDonald (1978) for discussions of general delayed biological systems.
In general, delay differential equations exhibit much more complicated
dynamics than ordinary differential equations since a time delay could
cause a stable equilibrium to become unstable and cause the populations
to fluctuate. In this survey, we shall review various delay differential
equations models arising from studying single species dynamics.

Let x(t) denote the population size at time t; let b and d denote the
birth rate and death rate, respectively, on the time interval [t, t + ∆t],
where ∆t > 0. Then

x(t + ∆t) − x(t) = bx(t)∆t − dx(t)∆t.

Dividing by ∆t and letting ∆t approach zero, we obtain

∗Research was partially supported by NSF grant DMS-0412047 and a Small Grant Award
from the University of Miami.

© 2006 Springer. 
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dx

dt
= bx − dx = rx, (1.1)

where r = b − d is the intrinsic growth rate of the population. The
solution of equation (1.1) with an initial population x(0) = x0 is given
by

x(t) = x0e
rt. (1.2)

The function (1.2) represents the traditional exponential growth if r > 0
or decay if r < 0 of a population. Such a population growth, due to
Malthus (1798), may be valid for a short period, but it cannot go on
forever. Taking the fact that resources are limited into account, Verhulst
(1836) proposed the logistic equation

dx

dt
= rx

(
1 − x

K

)
, (1.3)

where r(> 0) is the intrinsic growth rate and K(> 0) is the carrying ca-
pacity of the population. In model (1.3), when x is small the population
grows as in the Malthusian model (1.1); when x is large the members of
the species compete with each other for the limited resources. Solving
(1.3) by separating the variables, we obtain (x(0) = x0)

x(t) =
x0K

x0 − (x0 − K)e−rt
. (1.4)

If x0 < K, the population grows, approaching K asymptotically as
t → ∞. If x0 > K, the population decreases, again approaching K
asymptotically as t → ∞. If x0 = K, the population remains in time at
x = K. In fact, x = K is called an equilibrium of equation (1.3). Thus,
the positive equilibrium x = K of the logistic equation (1.3) is globally
stable; that is, lim

t→∞
x(t) = K for solution x(t) of (1.3) with any initial

value x(0) = x0.

2. Hutchinson’s Equation
In the above logistic model it is assumed that the growth rate of a

population at any time t depends on the relative number of individuals
at that time. In practice, the process of reproduction is not instanta-
neous. For example, in Daphnia a large clutch presumably is determined
not by the concentration of unconsumed food available when the eggs
hatch, but by the amount of food available when the eggs were forming,
some time before they pass into the broad pouch. Between this time
of determination and the time of hatching many newly hatched animals
may have been liberated from the brood pouches of other Daphnia in
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the culture, so increasing the population. In fact, in an extreme case all
the vacant spaces K −x might have been filled well before reproduction
stops. Hutchinson (1948) assumed egg formation to occur τ units of
time before hatching and proposed the following more realistic logistic
equation

dx

dt
= rx(t)

[
1 − x(t − τ)

K

]
, (2.1)

where r and K have the same meaning as in the logistic equation (1.3),
τ > 0 is a constant. Equation (2.1) is often referred to as the Hutchin-
son’s equation or delayed logistic equation.

2.1 Stability and Bifurcation
The initial value of equation (2.1) is given by

x(θ) = φ(θ) > 0, θ ∈ [−τ, 0],

where φ is continuous on [−τ, 0]. An equilibrium x = x∗ of (2.1) is stable
if for any given ε > 0 there is a δ > 0 such that |φ(t)−x∗| ≤ δ on [−τ, 0]
implies that all solutions x(t) of (2.1) with initial value φ on [−τ, 0]
satisfy |x(t) − x∗| < ε for all t ≥ 0. If in addition there is a δ0 > 0 such
that |φ(t) − x∗| ≤ δ0 on [−τ, 0] implies lim

t→∞
x(t) = x∗, then x∗ is called

asymptotically stable.
Notice that equation (2.1) has equilibria x = 0 and x = K. Small

perturbations from x = 0 satisfy the linear equation dx
dt = rx, which

shows that x = 0 is unstable with exponential growth. We thus only
need to consider the stability of the positive equilibrium x = K. Let
X = x − K. Then,

dX

dt
= −rX(t − τ) − r

K
X(t)X(t − τ).

Thus, the linearized equation is

dX

dt
= −rX(t − τ). (2.2)

We look for solutions of the form X(t) = ceλt, where c is a constant and
the eigenvalues λ are solutions of the characteristic equation

λ + re−λτ = 0, (2.3)

which is a transcendental equation. By the linearization theory, x = K is
asymptotically stable if all eigenvalues of (2.3) have negative real parts.
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Set λ = µ + iν. Separating the real and imaginary parts of the char-
acteristic equation (2.3), we obtain

µ + re−µτ cos ντ = 0,
ν − re−µτ sin ντ = 0.

(2.4)

Notice that when τ = 0, the characteristic equation (2.3) becomes λ+r =
0 and the eigenvalue λ = −r < 0 is a negative real number. We seek
conditions on τ such that Reλ changes from negative to positive. By the
continuity, if λ changes from −r to a value such that Reλ = µ > 0 when
τ increases, there must be some value of τ, say τ0, at which Reλ(τ0) =
µ(τ0) = 0. In other words, the characteristic equation (2.3) must have
a pair of purely imaginary roots ±iν0, ν0 = ν(τ0). Suppose such is the
case. Then we have

cos ν0τ = 0,

which implies that

νoτk =
π

2
+ 2kπ, k = 0, 1, 2, . . . .

Noting that νo = r, we have

τk =
π

2r
+

2kπ

r
, k = 0, 1, 2, . . .

Therefore, when
τ = τ0 =

π

2r
,

equation (2.3) has a pair of purely imaginary roots ±ir, which are simple
and all other roots have negative real parts. When 0 < τ < π

2r , all roots
of (2.3) have strictly negative real parts.

Denote λ(τ) = µ(τ) + iν(τ) the root of equation (2.3) satisfying
µ(τk) = 0, ν(τk) = ν0, k = 0, 1, 2, . . . We have the transversality con-
dition

dµ

dτ

∣∣∣∣
τ=τk

= r2 > 0, k = 0, 1, 2, . . .

We have just shown the following conclusions.

Theorem 1 (i) If 0 ≤ rτ < π
2 , then the positive equilibrium x = K

of equation ( 2.1) is asymptotically stable.

(ii) If rτ > π
2 , then x = K is unstable.

(iii) When rτ = π
2 , a Hopf bifurcation occurs at x = K; that is, periodic

solutions bifurcate from x = K. The periodic solutions exist for
rτ > π

2 and are stable.
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Figure 11.1. The bifurcation diagram for equation (2.1).
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Figure 11.2. The periodic solution of the Hutchinson’s equation (2.1).

The above theorem can be illustrated by Fig. 11.1, where the solid
curves represent stability while the dashed lines indicate instability.

By (iii), the Hutchinson’s equation (2.1) can have periodic solutions
for a large range of values of rτ , the product of the birth rate r and
the delay τ . If T is the period then x(t + T ) = x(t) for all t. Roughly
speaking, the stability of a periodic solution means that if a perturbation
is imposed the solution returns to the original periodic solution as t → ∞
with possibly a phase shift. The period of the solution at the critical
delay value is 2π

ν0
(Hassard et al. (1981)), thus, it is 4τ (see Fig. 11.2).

Numerical simulations are given in Fig. 11.3.

2.2 Wright Conjecture
The Hutchinson’s equation (2.1) can be written as

dy

dt
= −ry(t − τ)[1 + y(t)]
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Figure 11.3. Numerical simulations for the Hutchinson’s equation (2.1). Here r =
0.15, K = 1.00. (i) When τ = 8, the steady state x∗ = 1 is stable; (ii) When τ = 11,
a periodic solution bifurcated from x∗ = 1.

by assuming y(t) = −1 + x(t)/K. Letting t = τt, y(t) = y(τ t̄), we have

d

dt
y(t) = −rτy(t − 1)[1 + y(t)].

Denoting α = rτ and dropping the bars, we obtain

dy

dt
= −αy(t − 1)[1 + y(t)]. (2.5)

By Theorem 1, we know that the zero solution of (2.5) is asymptotically
stable if α < π/2 and unstable if α > π/2. Wright (1955) showed that
the zero solution of (2.5) is globally stable if α < 3/2. Wright then
conjectured that the zero solution of (2.5) is globally stable if α < π/2,
which is still open.

Kakutani and Markus (1958) proved that all solutions of (2.5) oscil-
late if α > 1/e and do not oscillate if α < 1/e. Jones (1962a, 1962b)
studied the global existence of periodic solutions for α > π/2. For fur-
ther research on existence of non-constant periodic solutions, see Hadeler
and Tomiuk (1977), Hale and Verduyn Lunel (1993), Kaplan and York
(1975), Naussbaum (1974), Walther (1975), etc. See also Kuang (1993)
for further results and more references.

Recently, some attention has been paid to the study of equation (2.5)
when α = α(t) is a positive continuous function. For example, Sugie
(1992) showed that the zero solution of (2.5) with α = α(t) is uniformly
stable if there is a constant α0 > 0 such that

α(t) ≤ α0 <
3
2

for all t ≥ 0. (2.6)
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Chen et al. (1995) improved condition (2.6) to the following:
∫ t

t−1
α(s)ds ≤ α0 <

3
2

for t ≥ 1. (2.7)

Stability conditions such as (2.6) and (2.7) are called 3
2−stability criteria.

For further related work, we refer to Kuang (1993), Yu (1996) and the
references therein.

2.3 Instantaneous Dominance
Consider a logistic equation with a discrete delay of the form

dx

dt
= rx(t)[1 − a1x(t) − a2x(t − τ)], (2.8)

where a1 and a2 are positive constants. There is a positive equilibrium
x∗ = 1

a1+a2
, which is stable when there is no delay. Employing similar

arguments, one can prove the following results.

Theorem 2 (i) If a1 ≥ a2, then the steady state x∗ = 1
a1+a2

is as-
ymptotically stable for all delay τ ≥ 0.

(ii) If a1 < a2, then there is a critical value τ0 given by

τ0 =
a1 + a2

r
√

a2
2 − a2

1

arcsin

√
a2

2 − a2
1

a2
,

such that x∗ = 1
a1+a2

is asymptotically stable when τ ∈ [0, τ0) and
unstable when τ > τ0. A Hopf bifurcation occurs at x∗ when τ
passes through τ0.

The above result indicates that if a1 ≥ a2, that is, if the instantaneous
term is dominant, then the steady state x∗ = 1

a1+a2
is asymptotically

stable for all delay τ ≥ 0. In fact, we can show that it is asymptotically
stable for any initial value, that is, globally stable.

Theorem 3 If a1 > a2, then the steady state x∗ = 1
a1+a2

of ( 2.8) is
globally stable.

Proof. Suppose x is a continuous function from [−τ, r) to R and
denote xt(θ) = x(t + θ), θ ∈ [−τ, 0]. Choose a Lyapunov function of the
form

V (x(t), xt(θ)) = x − x∗ − x∗ ln
x

x∗ + ξ

∫ 0

−τ
[xt(θ)]2dθ, (2.9)
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where ξ > 0 is a constant to be determined. Rewrite equation (2.8) as
follows:

dx

dt
= rx(t)[−a1(x(t) − x∗) − a2(x(t − τ) − x∗)]. (2.10)

Then we have
dV

dt

∣∣∣∣
(2.10)

=
dx

dt

x − x∗

x
+ ξ[(x(t) − x∗)2 − (x(t − τ) − x∗)2]

= −{(ra1 − ξ)[x(t) − x∗]2 + ra2[x(t) − x∗][x(t − τ) − x∗]
+ξ[x(t − τ) − x∗]2}.

If a1 > a2, choose ξ = 1
2ra1, so dV

dt |(2.10) is negatively definite and the
result follows.

3. Recruitment Models

3.1 Nicholson’s Blowflies Model
The Hutchinson’s equation (2.1) can be used to explain several ex-

perimental situations, including Nicholson’s (1954) careful experimental
data of the Australian sheep-blowfly (Lucila cuprina). Over a period of
nearly two years Nicholson recorded the population of flies and observed
a regular basic periodic oscillation of about 35-40 days. To apply the
Hutchinson’s equation (2.1), K is set by the food level available, τ is
approximately the time for a larva to mature into an adult. The only
unknown parameter is r, the intrinsic growth rate of the population. If
we take the observed period as 40 days, then the delay is about 9 days:
the actual delay is about 15 days.

To overcome the discrepancy in estimating the delay value, Gurney
et al. (1980) tried to modify Hutchinson’s equation. Notice that Nichol-
son’s data on blowflies consist primarily of observations of the time vari-
ation of adult population. Let x(t) denote the population of sexually
mature adults. Then the rate of change of x(t) is the instantaneous rate
of recruitment to the adult population R(t) minus the instantaneous
total death rate D(t) :

dx

dt
= R(t) − D(t).

To express R(t) we have to consider the populations of all the various
stages in the life-history of the species concerned and make the following
assumptions:

(i) all eggs take exactly τ time units to develop into sexually mature
adults;
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(ii) the rate at which the adult population produces eggs depends only
on its current size;

(iii) the probability of a given egg maturing into a viable adult depends
only on the number of competitors of the same age.

These imply that the rate of recruitment at time t + τ is a function
only of the instantaneous size of the adult population at time t. Assume
that the average per capita fecundity drops exponentially with increasing
population, thus

R(t + τ) = θ(x(t)) = Px(t) exp[−x(t)/x0],

where P is the maximum per capita daily egg production rate, x0 is the
size at which the blowflies population reproduces at its maximum rate,
and δ is the per capita daily adult death rate.

Assume that the per capita adult death rate has a time and density
independent value δ. The additional assumption that the total death rate
D(t) is a function only of the instantaneous size of the adult population

D(t) = φ(x(t)) = δx(t)

enables the entire population dynamics to be expressed in the delay
differential equation

dx

dt
= Px(t − τ) exp

[
−x(t − τ)

x0

]
− δx(t). (3.1)

There is a positive equilibrium

x∗ = x0 ln(P/δ)

if the maximum possible per capita reproduction rate is greater than the
per capita death rate, that is, if P > δ. As in the Hutchinson’s equation,
there is a critical value of the time delay. The positive equilibrium is
stable when the delay is less the critical value, becomes unstable when
it is greater the value, and there are oscillations. Testing Nicholson’s
data, equation (3.1) not only provides self-sustaining limit cycles as the
Hutchinson’s equation did, but also gives an accurate measurement of
the delay value as 15 days. Gurney et al. (1980) showed that the fluc-
tuations observed by Nicholson are quite clear, of limit-cycle type (see
Fig. 11.4). The period of the cycles is set mainly by the delay and adult
death rate. High values of Pτ and δτ will give large amplitude cycles.
Moving deeper into instability produces a number of successive dou-
blings of the repeated time until a region is reached where the solution
becomes aperiodic (chaotic). See Fig. 11.5.
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Figure 11.4. Oscillations in the Nicholson’s blowflies equation (3.1). Here P =
8, x0 = 4, δ = 0.175, and τ = 15.
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Figure 11.5. Aperiodic oscillations in the Nicholson’s blowflies equation (3.1). Here
P = 8, x0 = 4, δ = 0.475, and τ = 15.

Equation (3.1) is now refereed to as the Nicholson’s blowflies equation,
see Nisbet and Gurney (1982), Kulenović et al. (1992), So and Yu (1994),
Smith (1995), Györi and Trofimchuk(2002), etc.

3.2 Houseflies Model
To describe the oscillations of the adult numbers in laboratory popu-

lations of houseflies Musca domestica, Taylor and Sokal (1976) proposed
the delay equation

dx

dt
= −dx(t) + bx(t − τ)[k − bzx(t − τ)], (3.2)
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Figure 11.6. Numerical simulations in the houseflies model (3.2). Here the parameter
values b = 1.81, k = 0.5107, d = 0.147, z = 0.000226, τ = 5 were reported in Taylor
and Sokal (1976).

where x(t) is the number of adults, d > 0 denotes the death rate of
adults, the time delay τ > 0 is the length of the developmental period
between oviposition and eclosion of adults. The number of eggs laid is
assumed to be proportional to the number of adults, so at time t− τ the
number of new eggs would be bx(t − τ), where b > 0 is the number of
eggs laid par adult. k − bzx(t − τ) represents the egg-to-adult survival
rate, where k > 0 is the maximum egg-adult survival rate, and z is the
reduction in survival produced by each additional egg. Notice that when
there is no time delay, i.e., τ = 0, then the equation becomes the familiar
logistic equation.

Though analytical analysis of equation (3.2) has never been carried
out, numerical simulations indicate that its dynamics are very similar
to that of the Nicholson’s blowflies equation (see Fig. 11.6). However,
unlike the Nicholson’s model, aperiodic oscillations have not been ob-
served.

3.3 Recruitment Models
Blythe et al. (1982) proposed a general single species population

model with a time delay

dx

dt
= R(x(t − τ)) − Dx(t), (3.3)

where R and D represent the rates of recruitment to, and death rate
from, an adult population of size x, and τ > 0 is the maturation period.
For a linear analysis of the model, see Brauer and Castillo-Chávez (2001).
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This equation could exhibit very complex dynamic behavior for some
functions R, such as R(x(t − τ)) = Px(t − τ) exp[−x(t − τ)/x0] in the
Nicholson’s blowflies equation. However, for some other functions, for
example

R(x(t − τ)) =
bx2(t − τ)

x(t − τ) + x0

[
1 − x(t − τ)

K

]

as in Beddington and May (1975), the time delay is not necessarily
destabilizing (see also Rodŕıguez (1998)).

Freedman and Gopalsamy (1986) studied three classes of general sin-
gle species models with a single delay and established criteria for the
positive equilibrium to be globally stable independent of the length of
delay. See also Cao and Gard (1995), Karakostas et al. (1992).

4. The Allee Effect
The logistic equation was based on the assumption that the density

has a negative effect on the per-capita growth rate. However, some
species often cooperate among themselves in their search for food and
to escape from their predators. For example some species form hunt-
ing groups (packs, prides, etc.) to enable them to capture large prey.
Fish and birds often form schools and flocks as a defense against their
predators. Some parasitic insects aggregate so that they can overcome
the defense mechanism of a host. A number of social species such as
ants, termites, bees, etc., have developed complex cooperative behavior
involving division of labor, altruism, etc. Such cooperative processes
have a positive feedback influence since individuals have been provided
a greater chance to survive and reproduce as density increase. Aggrega-
tion and associated cooperative and social characteristics among mem-
bers of a species were extensively studied in animal populations by Allee
(1931), the phenomenon in which reproduction rates of individuals de-
crease when density drops below a certain critical level is now known as
the Allee effect.

Gopalsamy and Ladas (1990) proposed a single species population
model exhibiting the Allee effect in which the per capita growth rate is
a quadratic function of the density and is subject to time delays:

dx

dt
= x(t)[a + bx(t − τ) − cx2(t − τ)], (4.1)

where a > 0, c > 0, τ ≥ 0, and b are real constants. In the model, when
the density of the population is not small, the positive feedback effects of
aggregation and cooperation are dominated by density-dependent stabi-
lizing negative feedback effects due to intraspecific competition. In other
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Figure 11.7. The steady state of the delay model (4.1) is attractive. Here a = 1, b =
1, c = 0.5, τ = 0.2.

words, intraspecific mutualism dominates at low densities and intraspe-
cific competition dominates at higher densities.

Equation (4.1) has a positive equilibrium

x∗ =
b +

√
b2 + 4ac

2c
.

Gopalsamy and Ladas (1990) showed that under some restrictive as-
sumptions, the positive equilibrium is globally attractive (see Fig. 11.7).
If the delay is sufficiently large, solutions of equation (4.1) oscillate about
the positive equilibrium. See also Cao and Gard (1995). The following
result is a corollary of the main results of Liz et al. (2003).

Theorem 4 If

τx∗(2cx∗ − b) ≤ 3
2
,

then the equilibrium x∗ attracts all positive solutions of ( 4.1).

Ladas and Qian (1994) generalized (4.1) to the form

dx

dt
= x(t)[a + bxp(t − τ) − cxq(t − τ)], (4.2)

where p, q are positive constants, and discussed oscillation and global
attractivity in the solutions.

5. Food-Limited Models
Rewriting the logistic equation (2.1) as

1
x(t)

dx

dt
= r

(
1 − x

K

)
,
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we can see that the average growth rate of a population is a linear
function of its density. In experiments of bacteria cultures Daphnia
magna Smith (1963) found that the average growth rate (1/x)(dx/dt) is
not a linear function of the density. Smith argued that the per capita
growth rate of a population is proportional to the rate of food supply
not momentarily being used. This results in the model:

1
x

dx

dt
= r

(
1 − F

T

)
, (5.1)

where F is the rate at which a population of biomass x consumes re-
sources, and T is the rate at which the population uses food when it is
at the equilibrium K. Note that F/T is not usually equal to x/K. It is
assumed that F depends on the density x (that is being maintained) and
dx/dt (the rate of change of the density) and takes the following form:

F = c1x + c2
dx

dt
, c1 > 0, c2 ≥ 0.

When saturation is attained, dx/dt = 0, x = K and T = F. Thus,
T = c1K and equation (5.1) becomes

1
x

dx

dt
= r

[
1 − c1x + c2

dx
dt

c1K

]
.

If we let c = c2/c1 ≥ 0, the above equation can be simplified to the form

1
x(t)

dx(t)
dt

= r

[
K − x(t)

K + rcx(t)

]
, (5.2)

which is referee to as the food-limited population model. Equation (5.2)
has also been discussed by Hallam and DeLuna (1984) in studying the
effects of environmental toxicants on populations.

Gopalsamy et al. (1988) introduced a time delay τ > 0 into (5.2) and
obtained the delayed food-limited model

dx

dt
= rx(t)

[
K − x(t − τ)

K + rcx(t − τ)

]
. (5.3)

They studied global attractivity of the positive equilibrium x∗ = K and
oscillation of solutions about x∗ = K (see Fig. 11.8). The dynamics are
very similar to the Hutchinson’s model.

For other related work on equation (5.3) and its generalizations, see
Gopalsamy et al. (1990a), Grove et al. (1993), So and Yu (1995), Qian
(1996), etc.
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Figure 11.8. The steady state of the delay food-limited model (5.3) is stable for small
delay (τ = 8) and unstable for large delay (τ = 12.8). Here r = 0.15, K = 1.00, c = 1.

6. Regulation of Haematopoiesis
Haematopoiesis is the process by which primitive stem cells proliferate

and differentiate to produce mature blood cells. It is driven by highly
coordinated patterns of gene expression under the influence of growth
factors and hormones. The regulation of haematopoiesis is about the
formation of blood cell elements in the body. White and red blood
cells are produced in the bone marrow from where they enter the blood
stream. The principal factor stimulating red blood cell product is the
hormone produced in the kidney, called erythropoiesis. About 90% of
the erythropoiesis is secreted by renal tubular epithelial cells when blood
is unable to deliver sufficient oxygen. When the level of oxygen in the
blood decreases this leads to a release of a substance, which in turn
causes an increase in the release of the blood elements from the marrow.
There is a feedback from the blood to the bone marrow. Abnormalities
in the feedback are considered as major suspects in causing periodic
haematopological disease.

6.1 Mackey-Glass Models
Let c(t) be the concentration of cells (the population species) in the

circulating blood with units cells/mm3. Assume that the cells are lost at
a rate proportional to their concentration, say, gc, where g has dimension
(day−1). After the reduction in cells in the blood stream there is about
a 6-day delay before the marrow releases further cells to replenish the
deficiency. Assume the flux of cells into the blood stream depends on
the cell concentration at an earlier time, c(t − τ), where τ is the delay.
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Figure 11.9. Oscillations in the Mackey-Glass model (6.1). Here λ = 0.2, a = 01, g =
0.1, m = 10 and τ = 6.
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Figure 11.10. Aperiodic behavior of the solutions of the Mackey-Glass model (6.1).
Here λ = 0.2, a = 01, g = 0.1, m = 10 and τ = 20.

Mackey and Glass (1977) suggested, among others, the following delay
model for the blood cell population

dc

dt
=

λamc(t − τ)
am + cm(t − τ)

− gc(t), (6.1)

where λ, a, m, g and τ are positive constants. The numerical simulations
of equation (6.1) by Mackey and Glass (1977) (see also Mackey and
Milton (1988)) indicate that there is a cascading sequence of bifurcating
periodic solutions when the delay is increased (see Fig. 11.9). When the
delay is further increased the periodic solutions becomes aperiodic and
chaotic (see Fig. 11.10).
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6.2 Wazewska-Czyzewska and Lasota Model
Another well-known model belongs to Wazewska-Czyzewska and La-

sota (1976) which takes the form

dN

dt
= −µN(t) + pe−γN(t−τ), (6.2)

where N(t) denotes the number of red-blood cells at time t, µ is the
probability of death of a red-blood cell, p and γ are positive constants
related to the production of red-blood cells per unit time and τ is the
time required to produce a red-blood cells. See also Arino and Kimmel
(1986).

Global attractivity in the Mackey-Glass model (6.1) and the Lasota-
Wazewska model (6.2) has been studied by Gopalsamy et al. (1990b),
Karakostas et al. (1992), Kuang (1992) and Györi and Trofimchuk
(1999). Liz et al. (2002) study these models when the delay is infi-
nite.

Other types of delay physiological models can be found in Mackey
and Milton (1988,1990) and Fowler and Mackey (2002).

7. A Vector Disease Model
Let y(t) denote the infected host population and x(t) be the popu-

lation of uninfected human. Assume that the total host population is
constant and is scaled so that

x(t) + y(t) = 1.

The disease is transmitted to the host by an insect vector, assumed to
have a large and constant population, and by the host to that vector.
Within the vector there is an incubation period τ before the disease
agent can infect a host. So the population of vectors capable of infecting
the host is

z(t) = dy(t − τ).
where d is the infective rate of the vectors. Infection of the host is
assumed to proceed at a rate (e) proportional to encounters between
uninfected host and vectors capable of transmitting the disease,

ex(t) · dy(t − τ) = by(t − τ)[1 − y(t)],

and recovery to proceed exponentially at a rate c. Thus, b is the contact
rate. Infection leads neither to death, immunity or isolation. Based on
these assumptions, Cooke (1978) proposed a delay model

dy

dt
= by(t − τ)[1 − y(t)] − ay(t), (7.1)

where a > 0 is the cure rate.
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Figure 11.11. Numerical simulations for the vector disease equation (7.1). When
a = 5.8, b = 4.8(a > b), the zero steady state u = 0 is asymptotically stable; When
a = 3.8, b = 4.8(a < b), the positive steady state u∗ is asymptotically stable for all
delay values; here for both cases τ = 5.

Using the Liapunov functional method, he obtained the following re-
sults on global stability of the steady states.

Theorem 5 For the vector disease model ( 7.1), we have the following:

(i) If 0 < b ≤ a, then the steady state solution u0 = 0 is asymptotically
stable and the set {φ ∈ ([−τ, 0], R) : 0 ≤ φ(θ) ≤ 1 for − τ ≤ θ ≤
0} is a region of attraction.

(ii) If 0 ≤ a < b, then the steady state solution u1 = (b − a)/b is
asymptotically stable and the set {φ ∈ ([−τ, 0], R) : 0 < φ(θ) ≤
1 for − τ ≤ θ ≤ 0} is a region of attraction.

The stability results indicate that there is a threshold at b = a. If
b ≤ a, then the proportion u of infectious individuals tends to zero as
t becomes large and the disease dies out. If b > a, the proportion of
infectious individuals tends to an endemic level u1 = (b − a)/b as t
becomes large. There is no non-constant periodic solutions in the region
0 ≤ u ≤ 1. Numerical simulations are given in Fig. 11.11.

Busenberg and Cooke (1978) studied the existence of periodic solu-
tions in the vector-host model (7.1) when b = b(t) is a positive periodic
function.
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8. Multiple Delays
Kitching (1977) pointed out that the life cycle of the Australian

blowfly Lucila cuprina has multiple time delay features which need to
be considered in modelling its population. Based on this observation,
Braddock and van den Driessche (1983) proposed the two delay logistic
equation (see also Gopalsamy (1990))

dx

dt
= rx(t)[1 − a1x(t − τ1) − a2x(t − τ2)], (8.1)

where r, a1, a2, τ1 and τ2 are positive constants. Other equations with
two delays appear in neurological models (Bélair and Campbell (1994)),
physiological models (Beuter et al. (1993)), medical models (Bélair et
al. (1995)), epidemiological models (Cooke and Yorke (1973)), etc. Very
rich dynamics have been observed in such equations (Hale and Huang
(1993), Mahaffy et al. (1995)).

Equation (8.1) has a positive equilibrium x∗ = 1/(a1 +a2). Let x(t) =
x∗(1 + X(t)). Then (8.1) becomes

Ẋ(t) = −(1 + X(t))[A1X(t − τ1) + A2X(t − τ2)], (8.2)

where A1 = ra1x
∗, A2 = ra2x

∗. The linearized equation of (8.2) at X = 0
is

Ẋ(t) = −A1X(t − τ1) − A2X(t − τ2).

Braddock and van den Driessche (1983) described some linear stability
regions for equation (8.1) and observed stable limit cycles when τ2/τ1 is
large. Gopalsamy (1990) obtained stability conditions for the positive
equilibrium. Using the results in Li et al. (1999), we can obtain the
following theorem on the stability and bifurcation of equation (8.1).

Theorem 6 If one of the following conditions is satisfied:

(i) A1 < A2 and τ1 > 0 such that π
2τ1

<
√

A2
2 − A2

1 < 3π
2τ1

;

(ii) A2 < A1 and τ1 > π
2(A1+A2) such that τ1 ∈ [ π

2(A1+A2) , τ1], where

τ1 = (A2
1 − A2

2)
− 1

2 arcsin
√

(A2
1 − A2

2)/A
2
1;

(iii) A1 = A2 and τ1 > 1
2A1

;

then there is a τ0
2 > 0, such that when τ2 = τ0

2 the two-delay equation
( 8.1) undergoes a Hopf bifurcation at x∗ = 1/(a1 + a2).
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Figure 11.12. For the two delay logistic model (8.1), choose r = 0.15, a1 = 0.25, a2 =
0.75. (a) The steady state (a) is stable when τ1 = 15 and τ2 = 5 and (b) becomes
unstable when τ1 = 15 and τ2 = 10, a Hopf bifurcation occurs.

Lenhart and Travis (1986) studied the global stability of the multiple
delay population model

dx

dt
= x(t)

[
r + ax(t) +

n∑
i=1

bix(t − τi)

]
. (8.3)

Their global stability conditions very much depend on the negative, in-
stantaneously dominated constant a. It would be interesting to deter-
mine the dynamics of the multiple-delay logistic equation without the
negative instantaneously dominated term (see Kuang (1993))

dx

dt
= rx(t)

[
1 −

n∑
i=1

x(t − τi)
Ki

]
. (8.4)

9. Volterra Integrodifferential Equations
The Hutchinson’s equation (2.1) means that the regulatory effect de-

pends on the population at a fixed earlier time t − τ , rather than at
the present time t. In a more realistic model the delay effect should
be an average over past populations. This results in an equation with
a distributed delay or an infinite delay. The first work using a logistic
equation with distributed delay was by Volterra (1934) with extensions
by Kostitzin (1939). In the 1930’s, many experiments were performed
with laboratory populations of some species of small organisms with
short generation time. Attempts to apply logistic models to these ex-
periments were often unsuccessful because populations died out. One of
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the causes was the pollution of the closed environment by waste prod-
ucts and dead organisms. Volterra (1934) used an integral term or a
distributed delay term to examine a cumulative effect in the death rate
of a species, depending on the population at all times from the start of
the experiment. The model is an integro-differential equation

dx

dt
= rx

[
1 − 1

K

∫ t

−∞
G(t − s)x(s)dx

]
, (9.1)

where G(t), called the delay kernel, is a weighting factor which indi-
cates how much emphasis should be given to the size of the population
at earlier times to determine the present effect on resource availability.
Usually the delay kernel is normalized so that

∫ ∞

0
G(u)du = 1.

In this way we ensure that for equation (9.1) the equilibrium of the
instantaneous logistic equation (1.3) remains an equilibrium in the pres-
ence of time delay. If G(u) is the Dirac function δ(τ − t), where

∫ ∞

−∞
δ(τ − s)f(s)ds = f(τ),

then equation (9.1) reduces to the discrete delay logistic equation

dx

dt
= rx(t)

[
1 − 1

K

∫ t

−∞
δ(t − τ − s)x(s)dx

]
= rx(t)

[
1 − x(t − τ)

K

]
.

The average delay for the kernel is defined as

T =
∫ ∞

0
uG(u)du.

It follows that if G(u) = δ(u − τ), then T = τ , the discrete delay. We
usually use the Gamma distribution delay kernel

G(u) =
αnun−1e−αu

(n − 1)!
, n = 1, 2, . . . (9.2)

where α > 0 is a constant, n an integer, with the average delay T = n/α.
Two special cases,

G(u) = αe−αu (n = 1), G(u) = α2ue−αu; (n = 2),

are called weak delay kernel and strong delay kernel, respectively. The
weak kernel qualitatively indicates that the maximum weighted response
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Figure 11.13. (a) Weak delay kernel and (b) strong delay kernel.

of the growth rate is due to current population density while past den-
sities have (exponentially) decreasing influence. On the other hand the
strong kernel means that the maximum influence on growth rate re-
sponse at any time t is due to population density at the previous time
t − T (see Fig. 11.13).

The initial value for the integro-differential equation (9.1) is

x(θ) = φ(θ) ≥ 0,−∞ < θ ≤ 0, (9.3)

where φ(θ) is continuous on (−∞, 0]. Following Volterra (1931) or Miller
(1971), we can obtain existence, uniqueness, continuity and continuation
about solutions to such a kind of integro-differential equations.

An equilibrium x∗ of equation (9.1) is called stable if given any ε > 0
there exists a δ = δ(ε) > 0 such that |φ(t) − x∗| ≤ δ for t ∈ (−∞, 0]
implies that any solution x(t) of (9.1) and (9.3) exists and satisfies |x(t)−
x∗| < ε for all t ≥ 0. If in addition there exists a constant δ0 > 0 such
that |φ(t) − x∗| ≤ δ on (−∞, 0] implies lim

t→∞
x(t) = x∗, then x∗ is called

asymptotically stable.

9.1 Weak Kernel

To determine the stability of x∗ = K, let us first consider the equation
with a weak kernel, i.e.,

dx

dt
= rx(t)

[
1 − 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
. (9.4)

T u

α

0

(a) (b)

0
u
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Using the linear chain trick (Fargue (1973) and MacDonald (1978)),
define

y(t) =
∫ t

−∞
αe−α(t−s)x(s)ds. (9.5)

Then the scalar integro-differential equation (9.4) is equivalent to the
following system of two ordinary differential equations

dx
dt

= rx(t)
[
1 − 1

K y(t)
]
,

dy
dt

= αx(t) − αy(t).
(9.6)

Notice that the positive equilibrium of system (9.6) is (x∗, y∗) = (K, K).
To determine the stability of (x∗, y∗), let X = x − x∗, Y = y − y∗. The
characteristic equation of the linearized system is given by

λ2 + αλ + αr = 0, (9.7)

which has roots
λ1,2 = −α

2
± 1

2

√
α2 − 4αr.

Therefore, Reλ1,2 < 0, which implies that x∗ = K is locally asymptoti-
cally stable.

In fact, x∗ = K is globally stable. Rewrite (9.1) as follows:

dx
dt

= − r
K x(t)(y(t) − y∗),

dy
dt

= α(x(t) − x∗) − α(y(t) − y∗).
(9.8)

Choose a Liapunov function as follows

V (x, y) = x − x∗ − x∗ ln
x

x∗ +
r

2αK
(y − y∗)2. (9.9)

Along the solutions of (9.8), we have

dV

dt
=

dx

dt

x − x∗

x
+

r

αK
(y − y∗)

dy

dt
= − r

K
(y − y∗)2 < 0.

Since the positive quadrant is invariant, it follows that solutions of sys-
tem (9.8), and hence of (9.1), approach (x∗, y∗) as t → ∞. Therefore,
x(t) → x∗ as t → ∞.

The above analysis can be summarized as the following theorem.

Theorem 7 The positive equilibrium x∗ = K of the logistic equation
( 9.1) with a weak kernel is globally stable (see Fig. 11.14).
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Figure 11.14. The steady state of the integrodifferential equation (9.1) is globally
stable. Here r = 0.15, K = 1.00.

The result indicates that if the delay kernel is a weak kernel, the logis-
tic equation with distributed delay has properties similar to the instan-
taneous logistic equation. We shall see that the logistic equation with
a strong kernel exhibits richer dynamics similar to the logistic equation
with a constant delay.

9.2 Strong Kernel
Consider the logistic equation (9.1) with a strong kernel, i.e.,

dx

dt
= rx(t)

[
1 − 1

K

∫ t

−∞
α2(t − s)e−α(t−s)x(t − s)ds

]
. (9.10)

To use the linear chain trick, define

y(t) =
∫ t

−∞
αe−α(t−s)x(s)dx, z(t) =

∫ t

−∞
α2(t − s)e−α(t−s)x(s)ds.

Then equation (9.10) is equivalent to the system

dx
dt

= rx(t)
(
1 − 1

K z(t)
)
,

dy
dt

= αx(t) − αy(t),

dz
dt

= αy(t) − αz(t),

(9.11)

which has a positive equilibrium (x∗, y∗, ε∗) = (K, K, K). Considering
the linearization of (9.11) at (x∗, y∗, z∗), we obtain the characteristic
equation

λ3 + a1λ
2 + a2λ + a3 = 0, (9.12)
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where
a1 = 2α, a2 = α2, a3 = rα2.

The Routh-Hurwitz criterion says that all roots of the equation (9.12)
have negative real parts if and only if the following inequalities hold:

a1 > 0, a3 > 0, a1a2 − a3 > 0. (9.13)

Clearly, a1 = 2α > 0, a3 = rα2 > 0. The last inequality becomes

α >
r

2
. (9.14)

Thus, the equilibrium x∗ = K is stable if α > r/2 and unstable if
α < r/2. Note that the average delay of the strong kernel is defined as
T = 2/α. Inequality (9.14) then becomes

T <
4
r
. (9.15)

Therefore, the equilibrium x∗ = K is stable for “short delays” (T < 4/r)
and is unstable for “long delays” (T > 4/r).

When T = T0 = 4/r, (9.12) has a negative real root λ1 = −r and a
pair of purely imaginary roots λ2,3 = ±i r

2 . Denote by

λ(T ) = µ(T ) + iν(T )

the complex eigenvalue of (9.12) such that u(T0) = 0, ν(T0) = r/2. We
can verify that

dµ

dT

∣∣∣∣∣
T= 4

r

=
8
5
r2 > 0. (9.16)

The transversality condition (9.16) thus implies that system (9.11) and
hence equation (9.10) exhibits a Hopf bifurcation as the average delay
T passes through the critical value T0 = 4/r (Marsden and McKraeken
(1976)).

We thus have the following theorem regarding equation (9.10).

Theorem 8 The positive equilibrium x∗ = K of equation ( 9.10) is as-
ymptotically stable if the average delay T = 2/α < 4/r and unstable if
T > 4/r. When T = 4/r, a Hopf bifurcation occurs at x∗ = K and a
family of periodic solutions bifurcates from x∗ = K, the period of the
bifurcating solutions is π

ν0
= 2π

r , and the periodic solutions exist for
T > 4/r and are orbitally stable.

Thus, the logistic equation with a strong delay kernel, just like the
logistic equation with a discrete delay, exhibits a typical bifurcation
phenomenon. As the (average) delay is increased through a critical value
the positive equilibrium passes from stability to instability, accompanied
by the appearance of stable periodic solutions (see Fig. 11.15).
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Figure 11.15. The steady state x∗ = K of the integrodifferential equation (9.10)
losses stability and a Hopf bifurcation occurs when α changes from 0.65 to 0.065.
Here r = 0.15, K = 1.00.

9.3 General Kernel
Now consider the stability of the equilibrium x∗ = K for the integrod-

ifferential equation (9.1) with a general kernel. Let X = x − K. Then
(9.1) can be written as

dX

dt
= −r

∫ t

−∞
G(t − s)X(s)ds + rX(t)

∫ t

−∞
G(t − s)X(s)ds.

The linearized equation about x = K is given by

dX

dt
= −r

∫ t

−∞
G(t − s)X(s)ds (9.17)

and the characteristic equation takes the form

λ + r

∫ ∞

0
G(s)e−λsds = 0. (9.18)

If all eigenvalues of the characteristic equation (9.18) have negative real
parts, then the solution X = 0 of (9.17), that is, the equilibrium x∗ = K
of (9.1), is asymptotically stable.

Theorem 9 If ∫ ∞

0
sG(s)ds <

1
r
,

then x∗ = K of ( 9.1) is asymptotically stable.
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Proof. Since the roots of (9.18) coincide with the zeros of the function

g(λ) = λ + r

∫ ∞

0
G(s)e−λsds,

we may apply the argument principle to g(λ) along the contour Γ =
Γ(a, ε) that constitutes the boundary of the region

{λ| ε ≤ Reλ ≤ a, −a ≤ Im ≤ a, 0 < ε < a}.

Since the zeros of g(λ) are isolated, we may choose a and ε so that
no zeros of g(λ) lie on Γ. The argument principle now states that the
number of zeros of g(λ) contained in the region bounded by Γ is equal to
the number of times g(λ) wraps Γ around the origin as λ traverses Γ. (A
zero of g(λ) of multiplicity m is counted m times.) Thus, it suffices to
show for all small ε > 0 and all large a > r, that g(λ) does not encircle
0 as λ traverses Γ(a, ε).

Along the segment of Γ given by λ = a + iν, −a ≤ µ ≤ a, we have

g(a + iν) = a + iν + r

∫ ∞

0
G(s)e−(a+iν)sds.

Since a > 0, it follows that

∣∣∣∣
∫ ∞

0
G(s)e−(a+iν)sds

∣∣∣∣ ≤
∫ ∞

0
G(s)ds = 1.

Because a > r, we may conclude that every real value assumed by g(λ)
along this segment must be positive. Along the segment of Γ given by
λ = µ + ia, ε ≤ µ ≤ a, we have

g(µ + ia) = µ + ia + r

∫ ∞

0
G(s)e−(µ+ia)sds.

A similar argument shows g(λ) to assume no real value along this path.
In fact, Img(µ + ia) is always positive here. Similarly, one can show
that Img(µ − ia) is negative along the segment λ = µ − ia, ε ≤ µ ≤ a.
By continuity, g(λ) must assume at least one positive real value (and no
negative values) as λ travels clockwise from ε + ia to ε − ia along Γ.

Finally, consider the path traced out as λ = ε + iν increases from
ε − ia to ε + ia. Under the assumption, Img(ε + iν) is seen to increase
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monotonically with ν. In fact,

d

dν
Img(ε + iν) =

d

dν

[
ν + r

∫ ∞

0
G(s)e−εs sin(νs)ds

]

= 1 + r

∫ ∞

0
sG(s)e−εs cos(νs)ds

≥ 1 − r

∫ ∞

0
sG(s)ds

> 0.

It follows immediately that g(λ) assumes precisely one real value along
this last segment of Γ. Since no zero of g(λ) lies on Γ, that real value is
non-zero. Assuming it to be negative, g(λ) would have wrapped Γ once
about the origin, predicting exactly one zero λ0 of g(λ) inside the region
bounded by Γ. Since α and G are real, the zeros of g(λ) occur in complex
conjugate pairs, forcing λ0 to be real. This, however, is a contradiction
since the positivity of α shows g(λ) to have no real positive zeros. Thus,
the real value assumed by g(λ) along this last segment must be posi-
tive. Therefore, g(λ) does not encircle the origin. This completes the
proof.

9.4 Remarks
In studying the local stability of equation (9.1) with weak and strong

kernels, we applied the so-called linear chain trick to transform the scalar
intergrodifferential equation into equivalent a system of first order or-
dinary differential equations and obtained the characteristic equations
(9.7) and (9.12). It should be pointed out that these characteristic equa-
tions can be derived directly from the characteristic equation (9.18). If
G is a weak kernel, then (9.18) becomes

λ + r

∫ ∞

0
αe−(λ+α)sds = λ +

αr

λ + α
= 0,

which is equation (9.7). If G is a strong kernel, then (9.18) becomes

λ + r

∫ ∞

0
α2se−(λ+α)sds = λ +

α2r

(λ + α)2
= 0,

which is equation (9.12).
One of the varieties of equation (9.1) is the following equation

dx

dt
= x(t)

[
a − bx(t) − c

∫ t

−∞
G(t − s)x(s)ds

]
, (9.19)
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where a > 0, b ≥ 0, c ≥ 0, b+c �= 0. Stability and bifurcation of equation
(9.19) have been studied by many researchers. We refer to Miller (1966),
Cushing (1977a), MacDonald (1978) and references cited therein. See
Corollary 13.

It should be pointed out that bifurcations can occur in equation (9.19)
when other coefficients (not necessarily the average delay) are chosen as
bifurcation parameters. For example, Landman (1980) showed that the
exists a positive a∗ such that for a = a∗, a steady state becomes unstable
and oscillatory solutions bifurcate for a near a∗. See also Simpson (1980).

10. Periodicity
If the environment is not temporally constant (e.g., seasonal effects of

weather, food supplies, mating habits, etc.), then the parameters become
time dependent. It has been suggested by Nicholson (1933) that any
periodic change of climate tends to impose its period upon oscillations
of internal origin or to cause such oscillations to have a harmonic relation
to periodic climatic changes. Pianka (1974) discussed the relevance of
periodic environment to evolutionary theory.

10.1 Periodic Delay Models
Nisbet and Gurney (1976) considered a periodic delay logistic equa-

tion and carried out a numerical study of the influence of the periodicity
in r and K on the intrinsic oscillations of the equation such as those
caused by the time delay. Rosen (1987) noted the existence of a relation
between the period of the periodic carrying capacity and the delay of
the logistic equation. Zhang and Gopalsamy (1990) assumed that the
intrinsic growth rate and the carrying capacity are periodic functions
of a period ω and that the delay is an integer multiple of the period of
the environment. Namely, they considered the periodic delay differential
equation of the form

dx

dt
= r(t)x(t)

[
1 − x(t − nω)

K(t)

]
, (10.1)

where r(t + ω) = r(t), K(t + ω) = K(t) for all t ≥ 0. They proved the
following result on the existence of a unique positive periodic solution
of equation (10.1) which is globally attractive with respect to all other
positive solutions.

Theorem 10 Suppose that
∫ nω

0
r(s)ds ≤ 3

2
. (10.2)
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Then the periodic delay logistic equation ( 10.1) has a unique positive
solution x∗(t) and all other solutions of ( 10.1) corresponding to initial
conditions of the form

x(θ) = φ(θ) ≥ 0, φ(0) > 0; φ ∈ C[−nω, 0]

satisfy
lim
t→∞

|x(t) − x∗(t)| = 0. (10.3)

Following the techniques of Zhang and Gopalsamy (1990), quite a few
papers have been produced by re-considering the delayed models which
appeared in the previous sections with the assumption that the coeffi-
cients are periodic. See, for example, the periodic Nicholson’s blowflies
model (3.1) (Saker and Agarwal (2002)), the periodic Allee effect models
(4.1)(Lalli and Zhang (1994)) and (4.2) (Yan and Feng (2003)), the pe-
riodic food-limited model (5.3) (Gopalsamy et al. (1990a)), the periodic
Wazewska-Czyzewska and Lasota model (6.2) (Greaf et al. (1996)), etc.
In all these papers, the delays are assumed to be integral multiples of
periods of the environment. The coincidence degree theory (Gaines and
Mawhin (1977)) has also been used to establish the existence of peri-
odic solutions in periodic models with general periodic delays. However
uniqueness is not guaranteed and stability can be obtained only when
the delays are constant (Li (1998)).

Freedman and Wu (1992) considered the following single-species model
with a general periodic delay

dx

dt
= x(t)[a(t) − b(t)x(t) + c(t)x(t − τ(t))], (10.4)

where the net birth rate a(t) > 0, the self-inhibition rate b(t) > 0, the
reproduction rate c(t) ≥ 0, and the delay τ(t) ≥ 0 are continuously
differentiable, ω-periodic functions on (−∞,∞). This model represents
the case that when the population size is small, growth is proportional
to the size, and when the population size is not so small, the positive
feedback is a(t) + c(t)x(t− τ(t)) while the negative feedback is b(t)x(t).
Such circumstance could arise when the resources are plentiful and the
reproduction at time t is by individuals of at least age τ(t) units of time.
Using fixed point theorem and Razuminkin technique, they proved the
following theorem.

Theorem 11 Suppose that the equation

a(t) − b(t)K(t) + c(t)K(t − τ(t)) = 0

has a positive, ω-periodic, continuously differentiable solution K(t). Then
equation ( 10.4) has a positive ω-periodic solution Q(t). Moreover, if
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b(t) > c(t)Q(t − τ(t))/Q(t) for all t ∈ [0, ω], then Q(t) is globally as-
ymptotically stable with respect to positive solutions of ( 10.4).

Notice that in equation (10.4), b(t) has to be greater than zero. So
Theorem 11 does not apply to the periodic delay logistic equation

dx

dt
= r(t)x(t)

[
1 − x(t − τ(t))

K(t)

]
(10.5)

where τ(t) a positive periodic function. As Schley and Gourley (2000)
showed, the periodic delays can have either a stabilizing effect or a desta-
bilizing one, depending on the frequency of the periodic perturbation.
It is still an open problem to study the dynamics, such as existence,
uniqueness and stability of periodic solutions and bifurcations, for the
periodic delay logistic equation (10.5).

10.2 Integrodifferential Equations
Periodic logistic equations with distributed delay have been systemati-

cally studied in Cushing (1977a). Bardi and Schiaffino (1982) considered
the integrodifferential equation (9.1) when the coefficients are periodic,
that is,

dx

dt
= x(t)

[
a(t) − b(t)x(t) − c(t)

∫ t

−∞
G(t − s)x(s)ds

]
. (10.6)

where a > 0, b > 0, c ≥ 0 are ω-periodic continuous functions on R
and G ≥ 0 is a normalized kernel. Let Cω = Cω(R, R) denote the
Banach space of all ω-periodic continuous functions endowed with the
usual supremum norm ‖x‖ = sup |x(t)|. For a ∈ Cω, define the average
of a as

〈a〉 =
1
ω

∫ ω

0
a(s)ds.

The convolution of the kernel G and a bounded function f is defined by

(G ∗ f)(t) =
∫ t

−∞
G(t − s)f(s)ds.

Observe that an ω-periodic solution of (10.6) is a fixed point of the
operator B : Γ → Cω defined by

(Bx)(t) = u(t), t ∈ R,

where Γ = {x ∈ Cω : 〈a − c(G ∗ x)〉 > 0}. Since 〈a〉 > 0, x(t) ≡ 0
belongs to Γ, that is, Γ is not empty. Define

u0(t) = (B0)(t).
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Claim I. If x1 and x2 belong to Γ with x1 ≤ x2, then Bx2 ≤ Bx1.
In fact, let αi(t) = a(t) − c(t)(G ∗ xi)(t) and ui(t) = (Bxi)(t) for

t ∈ R(i = 1, 2). Then α1(t) ≥ α2(t). Since αi(t) = u̇i(t)/ui(t)+ b(t)ui(t),
we have 〈αi〉 = 〈bui〉 because ui(t)(i = 1, 2) are periodic. Thus, we
deduce that 〈bu1〉 ≥ 〈bu2〉 and for some t0 ∈ R, u2(t0) ≤ u1(t0). Setting
v(t) = u1(t) − u2(t), we have

v̇(t) ≥ (α1(t) − b(t)(u1(t) + u2(t)))v(t),

which implies that v(t) ≥ 0 for all t ≥ t0. By the periodicity of v(t), we
have Bx2 ≤ Bx1.

Claim II. If v and c belong to Cω, then 〈c(G ∗ v)〉 = 〈v(G ∗ c)〉.
In fact, if we define G(t) = 0 for t < 0, we have

〈c(G ∗ v)〉 =
+∞∑

j=−∞

∫ ω

0
c(t)

∫ (j+1)ω

jω
G(t − s)v(s)dsdt

=
+∞∑

j=−∞

∫ ω

0
c(t)

∫ ω

0
G(t − s − jω)v(s)dsdt

=
+∞∑

j=−∞

∫ ω

0
v(t)

∫ (1−j)ω

−jω
G(t − s)c(s)dsdt

= 〈v(G ∗ c)〉.

Claim III. Let z be a bounded continuous function on R. Then

lim inf
t→∞

(G ∗ z)(t) ≥ lim inf
t→∞

z(t); lim sup
t→∞

(G ∗ z)(t) ≤ lim sup
t→∞

z(t).

We only prove the first inequality. Let l = lim inft→∞ z(t). Choose
ε > 0 and pick tε such that z(t) > l − ε for any t > tε. If t > tε, we have

(G ∗ z)(t) =
∫ tε

−∞
G(t − s)z(s)ds +

∫ t

tε

G(t − s)z(s)ds

≥ inf
t

z(t)
∫ tε

−∞
G(t − s)ds + (l − ε)

∫ t

tε

G(t − s)ds.

Hence,
lim inf
t→∞

(G ∗ z)(t) ≥ l − ε,

which implies the first inequality.

Claim IV. Let u ∈ Γ and let v(t) > 0 be the solution of (10.6). Then

lim inf
t→∞

(v(t) − u(t)) > 0 implies lim inf
t→∞

((Bu)(t) − v(t)) > 0,

lim sup
t→∞

(v(t) − u(t)) < 0 implies lim sup
t→∞

(Bu)(t) − v(t)) < 0.
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We prove the first statement. Let w(t) = (Bu)(t), t ∈ R. Then w(t)
is a solution of

ẇ(t) = a(t)w(t) − b(t)w(t)2 − c(t)w(t)(G ∗ u)(t)

while
v̇(t) = a(t)v(t) − b(t)v(t)2 − c(t)v(t)(G ∗ v)(t).

Define z(t) = w(t) − v(t). Then

ż(t) = (a(t) − b(t)w(t) − c(t)(G ∗ u))z(t) + c(t)v(t)(G ∗ (v − u))(t)
= (ẇ(t)/w(t) − b(t)v(t))z(t) + c(t)v(t)(G ∗ (v − u))(t).

Let l = lim inft→∞(v(t) − u(t)). Because of Claim III, there exists a
t0 ∈ R, such that

ż(t) > (ẇ(t)/w(t) − b(t)v(t))z(t) + lc(t)v(t)/2

for all t > t0, that is,

z(t) > z(t0) exp{
∫ t

t0

β(s)ds} +
1
2

∫ t

t0

exp{
∫ t

s
β(θ)dθ}c(s)v(s)ds,

where β = ẇ(t)/w(t) − b(t)v(t). Because ẇ(t)/w(t) is periodic and
its average is zero, b(t)v(t) is positive and bounded, we can see that∫ t
t0

β(s)ds > γ1 − tγ2, where γ1 and γ2 > 0 are constants. Thus,

z(t) > γ3

∫ t

t0

exp((s − t)γ)ds = (γ3/γ)(1 − exp((t0 − t)γ2)),

where γ3 > 0 is a suitable constant. Then lim inft→∞ z(t) ≥ γ3/γ which
implies the first statement.

Theorem 12 Suppose 〈a〉 > 0. If

b(t) > (G ∗ c)(t) (10.7)

for any t ∈ [0, ω], then equation ( 10.6) has a unique positive ω-periodic
solution x∗(t) which is globally asymptotically stable with respect to all
solutions of equation ( 10.6) under initial condition x(θ) = φ(θ), θ ∈
(−∞, 0], φ(0) > 0.

Proof. Since
u̇0(t)/u0(t) = a(t) − b(t)u0(t),

the periodicity of u0(t) and Claim II imply that 〈a〉 = 〈bu0〉 > 〈c(G∗u0)〉.
As u0 > 0, we have Bu0 ≤ u0. Therefore, for any v ∈ Cω satisfying
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0 < v ≤ u0, we have 0 < Bu0 ≤ Bv ≤ u0. Hence, the set Γ0 = {v ∈ Cω :
0 < v ≤ u0} ⊂ Γ is invariant under B. Moreover,

Bu0 ≤ Bv ≤ u0 ⇒ Bu0 ≤ B2v ≤ B2u0 ⇒ B3u0 ≤ B3v ≤ B2u0

and by induction

B2n+1u0 ≤ B2n+1v ≤ B2nu0, B2n+1u0 ≤ B2n+2v ≤ B2n+2u0, n = 0, 1, 2, ...

Since 0 < B20 = Bu0, by Claim I, we know that {B2n+1u0} is in-
creasing and {B2nu0} is decreasing. Define

un(t) = (Bnu0)(t) = (Bun−1)(t).

Then
u−(t) = lim

n→∞
u2n+1(t) and u+(t) = lim

n→∞
u2n(t)

exist with 0 < u−(t) ≤ u+(t). If we can show that u−(t) = u+(t) = u∗(t),
it is easy to see that u∗(t) is the unique fixed point of B. By the definition,
we have

u̇n(t) = (a(t) − c(t)(G ∗ un−1)(t))un(t) − b(t)un(t)2.

By the monotonicity and uniform boundedness of {un} we have the
L2−convergence of both u2n+1 and u2n and their derivatives. Taking
the limits, we have

u̇−(t) = (a(t) − c(t)(G ∗ u+)(t))u−(t) − b(t)u−(t)2,
u̇+(t) = (a(t) − c(t)(G ∗ u−)(t))u+(t) − b(t)u+(t)2.

Dividing them by u−(t) and u+(t) respectively, we have

〈a − c(G ∗ u+) − bu−〉 = 〈a − c(G ∗ u−) − bu+〉

followed by the fact that lnu+ and lnu− are periodic. Let v(t) = u+(t)−
u−(t). Then we have 〈c(G ∗ v)〉 = 〈bv〉. Now by Claim II we have 〈c(G ∗
v)〉 = 〈v(G ∗ c)〉. Hence, 〈v(b − G ∗ c)〉 = 0, which implies that v ≡ 0 by
the assumption (10.7). Therefore, u∗(t) is a unique periodic solution of
the equation (10.6).

To prove the global stability, first we show that any solution v(t) of
equation (10.6) satisfies lim inft→∞ v(t) > 0. In fact, we have

v̇(t) < a(t)v(t) − b(t)v(t)2

and
lim sup

t→∞
(v(t) − (Bu)(t)) ≤ 0.
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Choose ε > 0 so that u(t) = u0(t) + ε ∈ Γ. By Claim IV we have

lim inf
t→∞

(v(t) − (Bu)(t)) ≥ ε.

Since (Bu)(t) is strictly positive and periodic, we have lim inft→∞ v(t) >
0. Thus, by Claim III, lim inft→∞(u0(t) − v(t)) > 0 and by induction,

lim inf
t→∞

(v(t) − (B2n+1u0)(t)) > 0, lim sup
t→∞

(v(t) − (B2nu0)(t)) < 0.

Given ε > 0, choose n such that

u∗(t) − ε < (B2n+1u0)(t) < (B2nu0)(t) < u∗(t) + ε.

Since (B2n+1u0)(t) < v(t) < (B2nu0)(t) for large t, it follows that the
sequence {Bju} tends to u∗ uniformly as j → ∞.

If a, b and c are real positive constants, then condition (10.7) becomes
b > c. This is the main result in Miller (1966).

Corollary 13 If b > c and G satisfies the above assumptions, then the
positive equilibrium x∗ = a/(b + c) of equation ( 9.19) (with constant
coefficient) is globally stable with respect to positive solutions of ( 9.19).

For other related work on periodic logistic equations with distributed
delay, we refer to Bardi (1983), Cohen and Rosenblat (1982), Cushing
(1977a), Karakostas (1982) and the references therein.

11. State-Dependent Delays
Let x(t) denote the size of a population at time t. Assume that the

number of births is a function of the population size only. The birth
rate is thus density dependent but not age dependent. Assume that the
lifespan L of individuals in the population is variable and is a function of
the current population size. If we take into account the crowding effects,
then L(·) is a decreasing function of the population size.

Since the population size x(t) is equal to the total number of living
individuals, we have (Bélair (1991))

x(t) =
∫ t

t−L[x(t)]
b(x(s))ds. (11.1)

Differentiating with respect to the time t on both sides of equation
(11.1) leads to a state-dependent delay model of the form

dx

dt
=

b(x(t)) − b(x(t − L[x(t)])
1 − L′[x(t)] b(x(t − L[x(t)])

. (11.2)
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Figure 11.16. Numerical simulations for the state-dependent delay model (11.3) with
r = 0.15, K = 1.00 and τ(x) = a + bx2. (i) a = 5, b = 1.1; and (ii) a = 9.1541, b = 1.1.

Note that state-dependent delay equation (11.2) is not equivalent to
the integral equation (11.1). It is clear that every solution of (11.1) is
a solution of (11.2) but the reverse is not true. In fact, any constant
function is a solution of (11.2) but clearly it may not necessarily be a
solution of (11.1). The asymptotic behavior of the solutions of (11.2)
has been studied by Bélair (1991). See also Cooke and Huang (1996).

State-dependent delay models have also been introduced by Kirk et
al. (1970) to model the control of the bone marrow stem cell population
which supplies the circulating red blood cell population. See also Mackey
and Milton (1990).

Numerical simulations (see Fig. 11.16) show that the logistic model
with a state-dependent delay

x′(t) = rx(t)
[
1 − x(t − τ(x(t))

K

]
, (11.3)

has similar dynamics to the Hutchinson’s model (2.1). Choose r =
0.15, K = 1.00 as in Fig. 11.3 for the Hutchinson’s model (2.1) and
τ(x) = a + bx2. We observe stability of the equilibrium x = K = 1 for
small amplitude of τ(x) and oscillations about the equilibrium for large
amplitude of τ(x) (see Fig. 11.16).

Recently, great attention has been paid on the study of state-dependent
delay equations. Consider

εx′(t) = −x(t) + f(x(t − r(x(t)))) (11.4)

and assume that
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(H1) A and B are given positive real numbers and f : [−B, A] →
[−B, A] is a Lipschitz map with xf(x) < 0 for all x ∈ [−B, A], x �=
0;

(H2) For A and B in (H1), r : [−B, A] → R is a Lipschitz map with
r(0) = 1 and r(u) ≥ 0 for all u ∈ [−B, A];

(H1′) B is a positive real number and r : [−B,∞) → R is a locally Lip-
schitz map with r(0) = 1, r(u) ≥ 0 for all u ≥ −B and r(−B) = 0;

(H2′) f : R → R is a locally Lipschitz map, and if B is as in (H1′)
and A = sup{|f(u)| : −B ≤ u ≤ 0}, then uf(u) < 0 for all
u ∈ [−B, A], u �= 0.

A periodic solution x(t) of (11.4) is called an slowly oscillating periodic
(SOP) solution if there exist numbers q1 > 1 and q2 > q1 + 1 such that

x(t)





= 0, t = 0,
< 0, 0 < t < q1,
= 0, t = q1,
> 0, q1 < t < q2,
= 0, t = q2

and x(t+ q2) = x(t) for all t. Mallet-Paret and Nussbaum (1992) proved
the following theorem.

Theorem 14 Assume that f and r satisfy (H1)-(H2) or (H1′)-(H2′).
Suppose that f is in C1 near 0 and f ′(0) = −k < −1. Let ν0, π/2 < ν0 <
π, be the unique solution of cos ν0 = −1/k and define λ0 = ν0/

√
k2 − 1.

Then for each λ > λ0 the equation

x′(t) = −λx(t) + λf(x(t − r(x(t))))

has an SOP solution xλ(t) such that −B < xλ(t) < A for all t.

Mallet-Paret and Nussbaum (1996, 2003) studied the shape of general
periodic solutions of the equation (11.4) and their limiting profile as
ε → 0+. We refer to Arino et al. (1998), Bartha (2003), Kuang and
Smith (1992a, 1992b), Mallet-Paret et al. (1994), Magal and Arino
(2000), Walther (2002) for existence of periodic solutions; to Krisztin
and Arino (2001) for the existence of two dimensional attractors; to
Louihi et al. (2002) for semigroup property of the solutions; to Bartha
(2001) and Chen (2003) for convergence of solutions, and to Ait Dads
and Ezzinbi (2002) and Li and Kuang (2001) for almost periodic and
periodic solutions to state-dependent delay equations. See also Arino et
al. (2001) for a brief review on state-dependent delay models.
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12. Diffusive Models with Delay
Diffusion is a phenomenon by which a group of particles, for example

animals, bacteria, cells, chemicals and so on, spreads as a whole ac-
cording to the irregular motion of each particle. When this microscopic
irregular movement results in some macroscopic regular motion of the
group, the phenomenon is a diffusion process. In terms of randomness,
diffusion is defined to be a basically irreversible phenomenon by which
particles spread out within a given space according to individual random
motion.

12.1 Fisher Equation
Let u(x, t) represent the population density at location x and time t

and the source term f represents the birth-death process. With the logis-
tic population growth f = ru(1−u/K) where r is the linear reproduction
rate and K the carrying capacity of the population, the one-dimensional
scalar reaction-diffusion equation takes the form (Fisher (1937) and Kol-
mogorov et al. (1937))

∂u

∂t
= D

∂2u

∂x2
+ ru

(
1 − u

K

)
, a < x < b, 0 ≤ t < ∞, (12.1)

which is called the Fisher equation or diffusive logistic equation. Fisher
(1937) proposed the model to investigate the spread of an advantageous
gene in a population.

Recall that for the spatially uniform logistic equation

∂u

∂t
= ru

(
1 − u

K

)
,

the equilibrium u = 0 is unstable while the positive equilibrium u = K is
globally stable. How does the introduction of the diffusion affect these
conclusions? The answer depends on the domain and the boundary
conditions. (a) In a finite domain with zero-flux (Neumann) boundary
conditions, the conclusions still hold (Fife (1979) and Britton (1986)).
(b) Under the Dirichlet conditions, u = K is no longer a solution to the
problem. In this case the behaviour of solutions depends on the size of
the domain. When the domain is small, u = 0 is asymptotically stable,
but it losses its stability when the domain exceeds a certain size and a
non-trivial steady-state solution becomes asymptotically stable. (c) In
an infinite domain the Fisher equation has travelling wave solutions (see
Figure 11.17).
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Figure 11.17. The traveling front profiles for the Fisher equation (12.1). Here D =
r = K = 1, c = 2.4 − 3.0

12.2 Diffusive Equations with Delay
In the last two decades, diffusive biological models with delays have

been studied extensively and many significant results have been estab-
lished. For instance, the diffusive logistic equations with a discrete delay
of the form

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2
+ ru(x, t)

(
1 − u(x, t − τ)

K

)
(12.2)

with either Neumann or Dirichlet boundary conditions have been investi-
gated by Green and Stech (1981), Lin and Khan (1982), Yoshida (1982),
Morita (1984), Luckhaus (1986), Busenberg and Huang (1996), Feng and
Lu (1996), Huang (1998), Freedman and Zhao (1997), Faria and Huang
(2002), etc. The diffusive logistic equations with a distributed delay of
the form

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2
+ ru(x, t)

[
1 − 1

K

∫ t

−∞
G(t − s)u(x, t − s)ds

]

(12.3)
have been studied by Schiaffino (1979), Simpson (1980), Tesei (1980),
Gopalsamy and Aggarwala (1981), Schiaffino and A. Tesei (1981), Ya-
mada (1993), Bonilla and Liñán (1984), Redlinger (1985), Britton (1990),
Gourley and Britton (1993), Pao (1997), etc.

Recently, researchers have studied the combined effects of diffusion
and various delays on the dynamics of the models mentioned in previous
sections. For example, for the food-limited model (5.3) with diffusion,
Gourley and Chaplain (2002) considered the case when the delay is finite.
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Feng and Lu (2003) assumed that the time delay in an integral multiple
of the period of the environment and considered the existence of periodic
solutions. Davidson and Gourley (2001) studied the model with infinite
delay, and Gourley and So (2002) investigated the dynamics when the
delay is nonlocal.

The diffusive Nicholson’s blowflies equation

∂u

∂t
= d∆u − τu(x, t) + βτu(x, t − 1) exp[−u(x, t − 1)] (12.4)

with Dirichlet boundary conditions has been investigated by So and Yang
(1998). They studied the global attractivity of the positive steady state
of the equation. Some numerical and bifurcation analysis of this model
has been carried out by So, Wu and Yang (1999) and So and Zou (2001).

Gourley and Ruan (2000) studied various local and global aspects of
Nicholson’s blowflies equation with infinite delay

∂u

∂t
= d∆u−τu(x, t)+βτ

(∫ t

−∞
F (t − s)u(x, s) ds

)
exp

(
−
∫ t

−∞
F (t − s)u(x, s) ds

)

(12.5)

for (x, t) ∈ Ω× [0,∞), where Ω is either all of Rn or some finite domain,
and the kernel satisfies F (t) ≥ 0 and the conditions

∫ ∞

0
F (t) dt = 1 and

∫ ∞

0
t F (t) dt = 1. (12.6)

Gourley (2000) discussed the existence of travelling waves in equation
(12.5).

Ruan and Xiao (2004) considered the diffusive integro-differential
equation modeling the host-vector interaction

∂u

∂t
(t, x) = d∆u(t, x)−au(t, x)+b[1−u(t, x)]

∫ t

−∞

∫

Ω
F (t−s, x, y)u(s, y)dyds, (12.7)

where u(t, x) is the normalized spatial density of infectious host at time
t ∈ R+ in location x ∈ Ω, Ω is an open bounded set in RN (N ≤ 3), and
the convolution kernel F (t, s, x, y) is a positive continuous function in
its variables t ∈ R, s ∈ R+, x, y ∈ Ω, which is normalized so that

∫ ∞

0

∫

Ω
F (t, s, x, y)dyds = 1.

Ruan and Xiao (2004) studied the stability of the steady states and
proved the following results.
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Theorem 15 The following statements hold

(i) If 0 < b ≤ a, then u0 = 0 is the unique steady state solution of
( 12.7) in

M = {u ∈ E : 0 ≤ u(x) ≤ 1, x ∈ Ω̄}
and it is globally asymptotically stable in C((−∞, 0]; M).

(ii) If 0 ≤ a < b, then there are two steady state solutions in M :
u0 = 0 and u1 = (b − a)/b, where u0 is unstable and u1 is globally
asymptotically stable in C((−∞, 0]; M).

Notice that when F (t, s, x, y) = δ(x− y)δ(t− s− τ), where τ > 0 is a
constant, and u does not depend on the spatial variable, then equation
(12.7) becomes the vector disease model (7.1) and Theorem 15 reduces
to Theorem 5 obtained by Cooke (1978).

When x ∈ (−∞,∞) and the kernel is a local strong kernel, i.e.

∂u

∂t
= d∆u(t, x) − au(t, x) + b[1 − u(t, x)]

∫ t

−∞

t − s

τ2
e−

t−s
τ u(s, x)ds,

(12.8)
where (t, x) ∈ R+ × Ω, the existence of traveling waves has been estab-
lished.

Theorem 16 For any τ > 0 sufficiently small there exist speeds c such
that the system ( 12.8) has a traveling wave solution connecting u0 = 0
and u1 = (b − a)/b.

The existence of traveling front solutions show that there is a moving
zone of transition from the disease-free state to the infective state.

We refer to the monograph by Wu (1996) for a systematic treatment
of partial differential equations with delay.

Acknowledgements. The author would like to thank Stephen
Cantrell for comments and corrections on an earlier version of the pa-
per.
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1. Introduction
Consider the following inhomogeneous non-autonomous retarded dif-

ferential equation

(IRDE)
{

x′(t) = Ax(t) + L(t)xt + f(t), t ≥ s,
x(τ) = ϕ(τ − s), τ ∈ [s − r, s],

where A is a linear (unbounded) operator on a Banach space E, (L(t))t≥0
is a family of bounded linear operators from the space C([−r, 0], E)
into E, f : IR+ −→ E, and xt is the function defined on [−r, 0] by
xt(θ) = x(t + θ), θ ∈ [−r, 0].

The equation (IRDE) has attracted many authors, and has been
treated by using different techniques and methods, we cite, for instance,
[1, 3, 44, 63, 64, 105, 226, 227, 253]. In these papers, it has been stud-
ied the well-posedness of the inhomogeneous autonomous retarded dif-
ferential equations (IRDE) (L(t) ≡ L). It has been also studied the
asymptotic behaviour and the regularity properties of the solutions of
homogeneous retarded equations (HRDE) (f ≡ 0) as well as the asymp-
totic behaviour of the solutions of the inhomogeneous equations with
respect to the inhomogeneous term f .

To profit from the big development of the semigroup theory and its
tools (as the perturbation technique), many authors thought to trans-
form the retarded equation (IRDE) to an abstract Cauchy problem (un-
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retarded equation) in a product Banach space X := E×C([−r, 0], E) as
follows

(CP )f





U ′(t) = AU(t) + B(t)U(t) +
(

f(t)
0

)
, t ≥ s,

U(s) =
(

0
ϕ

)
,

where,

A :=
(

0 Aδ0 − δ′0
0 d

dτ

)
,

D(A) := {0} ×
{
φ ∈ C1([−r, 0], E) : φ(0) ∈ D(A)

}
,

and

B(t) :=
(

0 L(t)
0 0

)
, t ≥ 0.

The first remark that one can do is that X0 := D(A) = {0}×C([−r, 0], E)
�= X , which means that the operator A is not densely defined. One re-
marks also that the ranges of the perturbation operators B(t), t ≥ 0,

and the values of the inhomogeneous term
(

f(t)
0

)
, t ≥ 0, are not in

X0. Hence, one cannot use the standard theory of semigroups to solve
neither the perturbation problem (CP)0 nor the inhomogeneous Cauchy
problem (CP)f .

H. R. Thieme [224], has showed the existence of mild solutions of the
inhomogeneous autonomous Cauchy problem (CP)f , and then the ones
of the inhomogeneous autonomous retarded equations, by the introduc-
tion of a new variation of constants formula.

To study the well-posedness of the homogeneous non-autonomous re-
tarded differential equations (HRDE), A. Rhandi [199] has proposed the
use of the so-called extrapolation theory, introduced by R. Nagel [63].
Using the extrapolation theory, we have also treated, with A. Rhandi,
[178] the well-posedness of the inhomogeneous autonomous retarded
equations and, together with A. Bátkai, [17], we studied the regular-
ity of the solutions to the homogeneous autonomous equations. With B.
Amir [8, 9, 10], also using the extrapolation theory, we have studied the
asymptotic behaviour of solutions to the inhomogeneous autonomous
retarded equations. Usually by the extrapolation theory, G. Gühring,
F. Räbiger and R. Schnaubelt have studied [55, 92, 94, 93] the well-
posedness and the asymptotic behaviour of the general inhomogeneous
non-autonomous retarded equations (IRDE).

Our contribution in this book consists in the study of the well-
posedeness, the regularity and the asymptotic behaviour of the solu-
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tions of the homogeneous non-autonomous retarded differential equa-
tions (HRDE), using the extrapolation theory. Our document is orga-
nized as follows:

In section 2, we recall some definitions and important results from the
extrapolation theory. More precisely, we define the extrapolation spaces
and the extrapolated semigroups for Hille-Yosida operators, introduced
by R. Nagel [63], and present some of their important properties. At
the end, we present a perturbation of Hille-Yosida operators result, the
result is shown in [187, 199].

Section 3 is devoted to the application of the above abstract results, to
study the homogeneous non-autonomous retarded differential equations
(HRDE). We study the existence of solutions, and that these solutions
are given by Dyson-Phillips expansions and satisfy variation of constants
formulas. These last results will be crucial to study the regularity and
the asymptotic properties of these solutions.

2. Preliminaries
In this section we introduce the extrapolation spaces and extrapolated

semigroups and give all needed abstract results of the extrapolation the-
ory, e.g., perturbation results. For more details we refer to the book
[63] and [17, 186]. The extrapolation theory was introduced by R. Nagel
[63, 186], and was successfully used in these last years for many purposes,
see e.g., [6], [8], [92], [178], [186], [190], [199], [200] and [201].

We recall that a linear operator (A, D(A)) on a Banach space X is
called a Hille-Yosida operator if there are constants M ≥ 1 and w ∈ R

such that

(w,∞) ⊂ ρ(A) and ‖(λ−w)nR(λ, A)n‖ ≤ M for all λ > w and n ∈ N.
(2.1)

From the Hille-Yosida theorem, we have (cf. [109, Thm. 12.2.4]) the fol-
lowing result.

Proposition 1 Let (A, D(A)) be a Hille-Yosida operator on a Banach
space X. Then, the part (A0, D(A0)) of A in X0 := (D(A), ‖ · ‖) given

The regularity results, presented in this section, have been also shown
by many authors, using alternative different techniques, see, e.g., [1],
[105], [226], [227] and [253], but the results concerning the asymptotic
behaviour are in our knowledge new.
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by

D(A0) := {x ∈ D(A) : Ax ∈ X0}
A0x := Ax for x ∈ D(A0)

generates a C0-semigroup (T0(t))t≥0 on X0. Moreover, we have ρ(A) =
ρ(A0) and (λ−A0)−1 is the restriction of (λ−A)−1 to X0 for λ ∈ ρ(A).

Notice that Hille-Yosida operators on reflexive Banach spaces are
densely defined.

Proposition 2 Let (A, D(A)) be a Hille-Yosida operator on a reflexive
Banach space X. Then D(A) is dense in X and hence A generates a
C0-semigroup .

As an immediate consequence of Proposition 2, we have

Corollary 3 Let (A, D(A)) be the generator of a C0-semigroup (T (t))t≥0

on a reflexive Banach space X. Then (A∗, D(A∗)) generates the C0-
semigroup (T ∗(t))t≥0 on X∗.

From now on, (A, D(A)) will be a Hille-Yosida operator on a Banach
space X. We define on X0 the norm

‖x‖−1 := ‖R(λ0, A0)x‖, x ∈ X0,

for a fixed λ0 > ω. From the resolvent equation it is easy to see that
different λ ∈ ρ(A) yield equivalent norms. The completion X−1 of X0

with respect to ‖ · ‖−1 is called the extrapolation space. The extrapolated
semigroup (T−1(t))t≥0 is the unique continuous extension of (T0(t))t≥0

to X−1, since

‖T0(t)x‖−1 = ‖T0(t)R(λ0, A0)x‖ ≤ Meωt‖x‖−1, t ≥ 0, x ∈ X0.

It is strongly continuous and we denote by (A−1, D(A−1)) its generator.
We have the following properties (see [186, Prop. 1.3, Thm. 1.4]).

Theorem 4 We have the following:

(a) ‖T−1(t)‖L(X−1) = ‖T0(t)‖L(X0), t ≥ 0.

(b) D(A−1) = X0.

(c) A−1 : X0 → X−1 is the unique continuous extension of A0.

(d) X is continuously embedded in X−1 and R(λ, A−1) is an extension
of R(λ, A) for λ ∈ ρ(A−1) = ρ(A).
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(e) A0 and A are the parts of A−1 in X0 and X, respectively.

(f) R(λ0, A−1)X0 = D(A0).

The following result, concerning the convolutions of (T−1(t))t≥0 and
X-valued locally integrable functions, is one of the fundamental results
of the extrapolation theory, and is the key to show the next theorem.
For the proof, see [63].

Proposition 5 Let f ∈ L1
loc(R+, X). Then,

(i) for all t ≥ s ≥ 0,
∫ t

s
T−1(t − r)f(r) dr ∈ X0 and

‖
∫ t

s
T−1(t − r)f(r) dr‖ ≤ M1

∫ t

s
eω(t−r)‖f(r)‖ dr, (2.2)

M1 is a constant independent of t and f . For contraction semigroups
(T0(t))t≥0, M1 = 1 and ω = 0.

(ii) The function [0, +∞) � t �−→
∫ t

0
T−1(t − s)f(s)ds ∈ X0 is

continuous.

We end this section by a non-autonomous perturbation result of Hille-
Yosida operators, due to A. Rhandi [199]. For the aim of this document,
we need only a particular version of this result.

First, recall that a family (U(t, s))t≥s≥0 of bounded linear operators
on X is called evolution family if

(a) U(t, r)U(r, s) = U(t, s) and U(s, s) = Id for t ≥ r ≥ s ≥ 0 and

(b) {(t, s) : t ≥ s ≥ 0} � (t, s) �→ U(t, s)x is continuous for all x ∈ X.

Consider now a perturbation family B(·) ∈ Cb(R+,Ls(X0, X)), i.e.,
B(t) ∈ L(X0, X) for all t ≥ 0, and t �−→ B(t)x is a bounded continuous
function on IR+ for all x ∈ X0.

For all t ≥ 0, let C(t) denote the part of the perturbed operator
A + B(t) in X0. By definition, the operator C(t) is defined by

C(t) = A + B(t), D(C(t)) = {x ∈ D(A) : Ax + B(t)x ∈ X0}.

The proof of the following perturbation result relies on the fundamen-
tal Proposition 5.

Theorem 6 The expansion

U(t, s) =
∞∑

n=0

Un(t, s), (2.3)
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where

U0(t, s) := T0(t−s) and Un+1(t, s) :=
∫ t

s
T−1(t−σ)B(σ)Un(σ, s)dσ, n ≥ 0,

(2.4)
converges in the uniform operator topology of L(X0) uniformly on com-
pact subsets of {(t, s) : t ≥ s ≥ 0} and defines an evolution family on
X0, satisfying

‖U(t, s)‖ ≤ Me(ω+Mc)(t−s) (2.5)

for t ≥ s ≥ 0 and c := supτ≥0 ‖B(τ)‖L(X0,X).
In addition, (U(t, s))t≥s≥0 satisfies the variation of constants formula

U(t, s)x = T0(t−s)x+
∫ t

s
T−1(t−σ)B(σ)U(σ, s)x dσ, x ∈ X0, t ≥ s ≥ 0.

(2.6)
Moreover, if t �−→ B(t)x is differentiable on IR+ for all x ∈ X0 then,
for all x ∈ D(C(s)), t �−→ U(t, s)x is differentiable on [s,∞), U(t, s)x ∈
D(C(t)) and

d

dt
U(t, s)x = (A + B(t))U(t, s)x

for all t ≥ s.
In this case we say that the evolution family is generated by the family
(C(t), D(C(t)))t≥0.

In the autonomous case, B(t) ≡ B, the operator

C = A + B, D(C) = {x ∈ D(A) : Ax + Bx ∈ X0} (2.7)

generates a C0-semigroup (S(t))t≥0, see [187, Thm. 4.1.5]. From Theo-
rem 6, the semigroup (S(t))t≥0 is given by the Dyson-Phillips expansion

S(t) =
∞∑

n=0

Sn(t), (2.8)

S0(t) := T0(t) and Sn+1(t) :=
∫ t

0
T−1(t − σ)BSn(σ)dσ, t ≥ 0, n ≥ 0,

(2.9)
and satisfies the variation of constants formula

S(t)x = T0(t)x +
∫ t

0
T−1(t − σ)BS(σ)xdσ, t ≥ 0, x ∈ X0. (2.10)
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3. Homogeneous Retarded Differential
Equations

In this section we apply the extrapolation results from the previous
section to solve the homogeneous retarded differential equations

(HRDE)
{

x′(t) = Ax(t) + L(t)xt, t ≥ s,

xs = ϕ,

and study the regularity and the asymptotic behaviour of their solutions.
Here, A is a Hille-Yosida operator on a Banach space E. Let S :=
(S0(t))t≥0 the C0-semigroup generated by the part of A in E0 := D(A),
and (S−1(t))t≥0 its extrapolated semigroup. (L(t))t≥0 is a family of
bounded linear operators from Cr := C([−r, 0], E0) to E.

By a (classical) solution of (HRDE), we design a continuously dif-
ferentiable function x : [−r, +∞) −→ E0, which satisfies the equation
(HRDE), and by a mild solution a continuous function x : [−r, +∞) −→
E0, satisfying

x(t) =

{
S0(t − s)ϕ(0) +

∫ t
s S−1(t − σ)L(σ)xσdσ, t ≥ s,

ϕ(t − s), s − r ≤ t ≤ s.

(3.1)
To get the purpose of this section, we associate to the equation (HRDE)

an equivalent Cauchy problem on the product Banach space X := E×Cr

(CP )0

{
U ′(t) = A(t)U(t), t ≥ s,

U(s) =
(

0
ϕ

)
,

where, for every t ≥ 0,

A(t) :=
(

0 Aδ0 − δ′0 + L(t)
0 d

dτ

)
,

D(A(t)) := {0} ×
{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A)

}
,

with δ0 is the mass of Dirac concentrated at 0, δ
′
0ϕ := ϕ

′
(0) for all

ϕ ∈ C1([−r, 0] , E0).
Before showing the equivalence of (HRDE) and (CP)0, we study the

well-posedness of the last Cauchy problem (CP)0. To do this, we write
the operator A(t) as the sum of the operator

A :=
(

0 Aδ0 − δ′0
0 d

dτ

)
,
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D(A) := {0} ×
{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A)

}
,

and the operator

B(t) :=
(

0 L(t)
0 0

)
, t ≥ 0.

As we have remarked at the introduction, X0 := D(A) = {0}×Cr which
means that the operator A is not densely defined. For this reason, we
propose to use the extrapolation theory to study the well-posedness of
the Cauchy problem (CP)0.

To this purpose, we need to show that the operator A is of Hille-
Yosida. This result has been shown in [199] when A generates a C0-
semigroup.

Lemma 7 The operator A is of Hille-Yosida and

R (λ,A)n ( y
g ) = ( 0

ϕn
),

with

ϕn(τ) =

n−1∑
i=0

eλτ (−τ)i

i!
R(λ, A)n−i[y + g(0)] +

1

(n − 1)!

∫ 0

τ
(σ − τ)n−1eλ(τ−σ)g(σ) dσ

(3.2)

for all τ ∈ [−r, 0], y ∈ E, g ∈ Cr and n ≥ 1.

Proof. From the equation (λ − A)( 0
ϕ1

) = ( y
g ) on the space X , we

have

ϕ1(τ) = eλτϕ1(0) +
∫ 0

τ
eλ(τ−σ)g(σ) dσ, τ ∈ [−r, 0],

and
Aϕ1(0) − ϕ′

1(0) = y.

We conclude that

ϕ1(τ) = eλτR(λ, A)[y + g(0)] +
∫ 0

τ
eλ(τ−σ)g(σ) dσ, τ ∈ [−r, 0].

It is clear that the function ϕ1 belongs to Cr, and the relation (3.2) is
satisfied for n = 1. By induction, we obtain

ϕn(τ) =
n−1∑
i=0

eλτ (−τ)i

i!
R(λ, A)n−i[y + g(0)] +

1
(n − 1)!

∫ 0

τ
(σ − τ)n−1eλ(τ−σ)g(σ) dσ, τ ∈ [−r, 0].

Since A is a Hille-Yosida operator, it follows that
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‖ϕn(τ)‖ ≤ M

(λ − ω)n
‖y‖eλτ

n−1∑
i=0

[(−λ + ω)τ ]i

i!
+

‖g‖[ M

(λ − ω)n
eλτ

n−1∑
i=0

[(−λ + ω)τ ]i

i!
+

M

(n − 1)!
∫ 0

τ
(−σ)n−1eσ(λ−ω) dσ]

≤ M

(λ − ω)n
[‖y‖ + ‖g‖].

The last inequality comes from

M

(λ − ω)n

n−1∑
i=0

eλτ [(−λ + ω)τ ]i

i!
+

M

(n − 1)!

∫ 0

τ
(σ − τ)n−1e(λ−ω)(τ−σ) dσ =

M

(λ − ω)n

for τ ∈ [−r, 0]. Therefore,

‖R(λ,A)n‖ ≤ M

(λ − ω)n
for all λ > ω, n ≥ 1,

and this achieve the proof.
The part of A in X0 is the operator

A0 =
(

0 0
0 d

dτ

)
, D(A0) = {0} ×

{
φ ∈ C1([−r, 0], E0) : φ(0)

∈ D(A);ϕ′(0) = Aϕ(0)
}

,

and it generates a C0-semigroup (T0(t))t≥0, by Proposition 1. It is clear
then that the operator

A0 :=
d

dτ
, D(A0) :=

{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A);ϕ′(0) = Aϕ(0)

}

generates also a C0-semigroup (T0(t))t≥0, and one can easily show that
it is given by

(T0(t)ϕ) (θ) =

{
ϕ(t + θ), t + θ ≤ 0,

S0(t + θ)ϕ(0), t + θ > 0.
(3.3)

Hence as A0 is a diagonal matrix operator, we have

T0(t) =
(

I 0
0 T0(t)

)
, t ≥ 0.
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To study now the existence of classical solution of (HRDE), we assume:
(H) For all ϕ ∈ Cr, the function t �−→ L(t)ϕ is continuously differen-

tiable.
The linear operators B(t), t ≥ 0, are bounded from X0 into X and

from (H), the functions t �−→ B(t)
(

0
ϕ

)
, ϕ ∈ Cr, are continuously dif-

ferentiable. Thus, by the perturbation result, Theorem 6, the family of
the parts of operators (A + B(t)) in X0 generates an evolution family
(U(t, s))t≥s≥0 on X0 given by the Dyson-Phillips expansion

U(t, s) =
∞∑

n=0

Un(t, s), (3.4)

where

U0(t, s) := T0(t−s) and Un+1(t, s) :=
∫ t

s
T−1(t−σ)B(σ)Un(σ, s)dσ, n ≥ 0,

(3.5)
and which satisfies the variation of constants formula

U(t, s)
(

0
ϕ

)
=
(

0
T0(t−s)ϕ

)
+
∫ t

s
T−1(t − σ)B(σ)U(σ, s)

(
0
ϕ

)
dσ (3.6)

for all t ≥ s and ϕ ∈ Cr.
One can see also that, for each t ≥ 0, the part of the operator

(A + B(t)) in X0 is the operator

(A + B(t))/X0
=
(

0 0
0 d

dτ

)
,

with the domain

D((A + B(t))/X0
) = {0} ×

{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A);ϕ′(0)

= Aϕ(0) + L(t)ϕ} .

Therefore, by identification of the elements of X0 and those of Cr, we get
the following result.

Proposition 8 Assume that (H) hold. The family (AL(t), D(AL(t)))t≥0
of operators defined by

AL(t) :=
d

dτ
, D(AL(t)) : =

{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A);ϕ′(0)

= Aϕ(0) + L(t)ϕ}
generates an evolution family (U(t, s))t≥s≥0 on the space , which sat-
isfies the variation of constants formula

U(t, s)ϕ = T0(t−s)ϕ+ lim
λ→∞

∫ t

s
T0(t − σ)eλ·λR(λ, A)L(σ)U(σ, s)ϕ dσ, t ≥ s, (3.7)

Cr
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and is given by the Dyson-Phillips series

U(t, s) =
∞∑

n=0

Un(t, s), (3.8)

where

U0(t, s) = T0(t − s) and Un+1(t, s)

= lim
λ→∞

∫ t

s

T0(t − σ)eλ·λR(λ, A)L(σ)Un(σ, s)dσ, n ≥ 0, t ≥ s.(3.9)

Proof. As the operators (A + B(t))/X0
, t ≥ 0, are diagonal matrix

operators on X0 = {0} × Cr, we can show that

U(t, s)
(

0
ϕ

)
=
(

0
U(t,s)ϕ

)
for all t ≥ s anϕ ∈ Cr,

and (U(t, s))t≥s≥0 is an evolution family on the space generated by
(AL(t), D(AL(t)))t≥0.

By the variation of constants formula (3.6) and extrapolation results,
we obtain that
(

0
U(t,s)ϕ

)
=

(
0

T0(t−s)ϕ

)
+ lim

λ→∞
λR (λ,A)

∫ t

s
T−1(t − σ)B(σ)U(σ, s)

(
0
ϕ

)
dσ

=
(

0
T0(t−s)ϕ

)
+ lim

λ→∞

∫ t

s
T0(t − σ)λR (λ,A)

(
L(σ)U(σ,s)ϕ

0

)
dσ.

Hence, by Lemma 7 we obtain the variation of constants formula (3.7).
Also by the same argument, from the relations (3.4)-(3.5), we obtain

(3.8)-(3.8).

In the following proposition, we give the correspondence between the
mild solutions of the retarded equation (HRDE) and those of the Cauchy
problem (CP)0.

Proposition 9 Let ϕ ∈ Cr and s ≥ 0, we have:
(i) The function defined by

x(t, s, ϕ) :=

{
ϕ(t − s), s − r ≤ t ≤ s,

U(t, s)ϕ(0), t > s,
(3.10)

is the mild solution of (HRDE), i.e., x satisfies (3.1). Moreover, it
satisfies

U(t, s)ϕ = xt(·, s, ϕ), t ≥ s. (3.11)

Cr
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(ii) If x(·, s, ϕ) is the mild solution of (HRDE) then t �−→
(

0
xt(·,s,ϕ)

)

is the mild solution of the Cauchy problem (CP)0, and

xt(·, s, ϕ) = T0(t − s)ϕ + lim
λ→∞

∫ t

s
T0(t − σ)eλ·λR(λ, A)L(σ)xσ(·, s, ϕ) dσ, t ≥ s.

Proof. Let τ ∈ [−r, 0] and ϕ ∈ Cr. From the extrapolation results, the
variation of constants formula (3.7) and the definition of (T0(t))t≥0, we
have

U(t, s)ϕ(τ) = T0(t − s)ϕ(τ) + lim
λ→∞

∫ t

s
T0(t − σ)eλ·λR(λ, A)L(σ)U(σ, s)ϕ dσ(τ)

=




S0(t − s + τ)ϕ(0) + lim
λ→∞

∫ t+τ

s
S0(t + τ − σ)λR(λ, A)L(σ)U(σ, s)ϕdσ+

+ lim
λ→∞

∫ t

t+τ
eλ(t+τ−s)λR(λ, A)L(σ)U(σ, s)ϕdσ if t − s + τ > 0,

ϕ(t − s + τ) + lim
λ→∞

∫ t

s
eλ(t+τ−s)λR(λ, A)L(σ)U(σ, s)ϕds if t − s + τ ≤ 0,

=





S0(t − s + τ)ϕ(0) +

∫ t+τ

s
S−1(t + τ − σ)L(σ)U(σ, s)ϕdσ if t − s + τ > 0,

ϕ(t − s + τ) if t − s + τ ≤ 0

(3.12)

for all τ ∈ [−r, 0] and 0 ≤ s ≤ t. Let the function

x(t, s, ϕ) :=

{
ϕ(t − s), s − r ≤ t ≤ s,

U(t, s)ϕ(0), t > s.

Hence,

x(t, s, ϕ) = S0(t − s)ϕ(0) +
∫ t−s

s
S−1(t − σ)L(σ)U(σ, s)ϕdσ.

From the equality (3.12), one can obtain easily the relation (3.11).
Thus, this implies that x(·, s, ϕ) satisfies (3.1), and the assertion (i) is
proved. The assertion (ii) can also be deduced from the above relations.

In the particular case of autonomous retarded differential equations,
i.e. L(t) = L for all t ≥ 0, we have the following theorem. The part (a)
has been obtained also by many authors, e.g., [1], [63], [105] and [253].

Theorem 10 (a) The operator

AL :=
d

dτ
, D(AL) :=

{
ϕ ∈ C1([−r, 0], E0) : ϕ(0) ∈ D(A); ϕ′(0) = Aϕ(0) + Lϕ

}
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generates a strongly continuous C0-semigroup T := (T (t))t≥0 on the
space Cr.

Moreover, one has:
(i) the solution x of (HRDE) is given by

x(t) :=

{
ϕ(t), −r ≤ t ≤ 0,

T (t)ϕ(0), t ≥ 0.
(3.13)

(ii) If x is the solution of (HRDE), the semigroup T is given by

T (t)ϕ = xt for all ϕ ∈ Cr and t ≥ 0.

(b) The semigroup T is also given by the Dyson-Phillips series

T (t) =
∞∑

n=0

Tn(t), t ≥ 0,

where

Tn(t)ϕ := lim
λ→∞

∫ t

0
T0(t − s)eλ·λR(λ, A)LTn−1(s)ϕds,

or

Tn(t)ϕ(τ) =





∫ t+τ

0
S−1(t + τ − s)LTn−1(s)ϕds if t + τ > 0,

0 if t + τ ≤ 0
(3.14)

for all ϕ ∈ Cr and n ≥ 1, t ≥ 0.

Proof. The part of A + B in X0 = {0} × Cr is the operator given by

(A + B)/X0
=

(
0 0

0 d
dτ

)
,

D((A + B)/X0
) = {0} ×

{
φ ∈ C1([−r, 0], E0) : φ(0) ∈ D(A); ϕ′(0) = Aϕ(0) + Lϕ

}
.

From Section 2, the operator (A + B)/X0
generates a C0-semigroup T :=

(T (t))t≥0. Hence, from the form of (A + B)/X0
, one can see that the

operator (AL, D(AL)) generates also a C0-semigroup T := (T (t))t≥0 on
Cr, and

T (t) =
(

I 0
0 T (t)

)
, t ≥ 0.

Moreover, T is given by the Dyson-Phillips series

T (t) =
∞∑

n=0

Tn(t), t ≥ 0,
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where

Tn(t)( 0
ϕ ) := ( 0

Tn(t)ϕ ) :=
∫ t

0
T−1(t − s)BTn−1(s)( 0

ϕ ) ds, t ≥ 0.

From this and Lemma 7, one can see easily as in the non-autonomous
case that

Tn(t)ϕ = lim
λ→∞

∫ t

0
T0(t − s)eλ·λR(λ, A)LTn−1(s)ϕds,

and from (3.3), for τ ∈ [−r, 0], we have

Tn(t)ϕ(τ) =





lim
λ→∞

∫ t+τ

0
S0(t + τ − s)λR(λ, A)LTn−1(s)ϕds+

+ lim
λ→∞

∫ t

t+τ
eλ(t+τ−s)λR(λ, A)LTn−1(s)ϕds if t + τ > 0,

lim
λ→∞

∫ t

0
eλ(t+τ−s)λR(λ, A)LTn−1(s)ϕds if t + τ ≤ 0.

Thus, we obtain the relation (3.14). The assertions (i)-(ii) are particular
cases of Proposition 9.

The Dyson-Phillips series obtained in the above theorem will be now
used to study the regularity properties of the semigroup T solution of the
retarded equation (HRDE). As, the terms Tn of the series, see (3.14),
are convolutions between the extrapolated semigroup (S−1(t))t≥0 and
E-valued functions, to get our aim, we need the following results.

Lemma 11 [17] Let G ∈ C(IR+,Ls(Cr)). Then,
(i) If {t : t > 0} � t �→ S0(t) ∈ L(E0) is continuous (or S is

immediately norm continuous) then {t : t > 0} � t �−→
∫ t
0 S−1(t −

s)LG(s) ds ∈ L(Cr, E0) is continuous.
(ii) If the operator S0(t) is compact for all t > 0 (or S is immediately

compact) then the operator
∫ t

0
S−1(t − s)LG(s) ds

defined from Cr to E0 is compact for all t ≥ 0.

Now, we can announce the following regularity results, showed also,
for instance, in [1], [63] and [253].

Theorem 12 (i) If S is immediately norm continuous then {t : t >
r} � t �→ T (t) ∈ L(Cr) is also a continuous function.
(ii) If S is immediately compact then T (t) is also compact for all t > r.
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Proof. By the definition of the semigroup (T0(t))t≥0 it is easy to
show that t �→ T0(t) is norm continuous for t > r if we consider (i), and
that the operator T0(t) is compact for all t > r in the case of (ii).

Assume that S is immediately norm continuous. From the relations
(3.14) and Lemma 11 (i), the function IR+ � t �→ Tn(t) ∈ L(Cr) is
continuous for all n ≥ 1. We have seen in Theorem 10 that

T (t) =
∞∑

n=0

Tn(t) = T0(t) +
∞∑

n=1

Tn(t), t ≥ 0, (3.15)

and that this series converge in L(Cr) uniformly in compact intervals of
IR+. Hence, the assertion (i) is obtained.

Treat now the assertion (ii). Let t > 0 and n ≥ 1. From Lemma 11,
we have that ∫ t+θ

0
S−1(t + θ − s)LTn−1(s) ds

is a compact operator from Cr to E0 for all t + θ ≥ 0, and then Tn(t)(θ)
is also a compact operator from Cr to E0 for all θ ∈ [−r, 0].

By [63, Theorem II.4.29], we have also that S is immediately norm
continuous. Hence, by Lemma 11 (i), the set of functions {θ �→

∫ t+θ
0 S−1(t+

θ−s)LTn−1(s)ϕds ϕ in some bounded set of Cr} is equicontinuous, and
then the subset {θ �→ Tn(t)(θ) ϕ in some bounded set of Cr} of Cr is
equicontinuous. The compactness of Tn(t) for all t > 0 and n ≥ 1
follows finally from Arzela-Ascoli theorem. Consequently, as the series
(3.15) converges in the uniform operator topology of Cr, we obtain the
second assertion.

We end this section by studying the robustness of the asymptotic be-
haviour of the solutions to non-autonomous retarded equation (HRDE)
with respect to the term retard. More precisely, we show that the
solution of (HRDE) IR+ � t �−→ x(t) has the same asymptotic be-
haviour, e.g., boundedness, asymptotic almost periodicity, as the map
IR+ � t �−→ S0(t)ϕ(0).

First, let us recall the following definitions:
For a function f ∈ BUC(IR+, X0), the space of bounded and uni-

formly continuous functions from IR+ into X0, the set of all translates,
called the hull of f , is H(f) := {f(· + t) : t ∈ IR+}.

The function f is said to be asymptotically almost periodic if H(f) is
relatively compact in BUC(IR+, X0), and Eberlein weakly asymptotically
almost periodic if H(f) is weakly relatively compact in BUC(IR+, X0),
see [129] for more details.
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A closed subspace E of BUC(IR+, X0) is said to be translation bi-
invariant if for all t ≥ 0

f ∈ E ⇐⇒ f(· + t) ∈ E ,

and operator invariant if M ◦ f ∈ E for every f ∈ E and M ∈ L(X0),
where M ◦ f is defined by (M ◦ f)(t) = M(f(t)), t ≥ 0.

The closed subspace E is said to be homogeneous if it is translation
bi-invariant and operator invariant.

For our purpose, we assume that:
(H1) the C0-semigroup (S0(t))t≥0 is of contraction,
(H2) there exist s0 ≥ 0 and a constant 0 ≤ q < 1 such that

∫ ∞

0
||L(s + t)T0(t)ϕ||dt ≤ q||ϕ|| for all ϕ ∈ Cr and s ≥ s0. (3.16)

Under the above hypotheses, we have the following results.

Proposition 13 (i) For all ϕ ∈ Cr, n ∈ N and t ≥ s ≥ s0

∫ +∞

s
‖L(σ)Un(σ, s)ϕ‖dσ ≤ qn+1‖ϕ‖ (3.17)

and

‖Un(t, s)ϕ‖ ≤ qn‖ϕ‖. (3.18)

(ii) The series (3.8) converges uniformly on all the set {(t, s) : t ≥ s ≥
s0}. Moreover, the evolution family (U(t, s))t≥s≥0 is uniformly bounded
and

||U(t, s)|| ≤ 1
1 − q

for all t ≥ s ≥ s0.

Proof.
Let ϕ ∈ Cr and t ≥ s ≥ s0. For n = 0, the estimate (3.17) is only

our assumption (3.16). Suppose now that the estimate holds for n − 1.
From the relation (3.8), by using Fubini’s theorem we have
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∫ t

s
||L(σ)Un(σ, s)ϕ||dσ

=
∫ t

s
||L(σ) lim

λ→∞

∫ σ

s
T0(σ − τ)eλ·λR(λ, A)L(τ)Un−1(τ, s)ϕdτ‖ dσ

≤ lim
λ→∞

∫ t

s
||
∫ σ

s
L(σ)T0(σ − τ)eλ·λR(λ, A)L(τ)Un−1(τ, s)ϕ‖dτ dσ

= lim
λ→∞

∫ t

s

∫ t−τ

0
||L(σ + τ)T0(σ)eλ·λR(λ, A)L(τ)Un−1(τ, s)ϕ||dσdτ.

Hence, from (H1), the inequality (3.16) and the induction hypothesis
∫ t

s
||L(σ)Un(σ, s)ϕ||dσ ≤ q

∫ t

s
‖L(τ)Un−1(τ, s)ϕ||dτ

≤ qn+1||ϕ||,

and this gives the estimate (3.17).
The inequality (3.18) follows also from (H1), the relation (3.8) and

the first estimate (3.17).
The assertion (ii) follows then by this estimate (3.18).

In the above proposition we obtain the boundedness of the evolution
family (U(t, s))t≥s≥0, and thus from (3.13), the boundedness of the mild
solution of (HRDE) is also obtained. To obtain the asymptotic almost
periodicity, and other asymptotic properties of this mild solution we
need the following Lemma.

Lemma 14 Let g ∈ L1(IR+, E). If t �−→ T0(t)ϕ belongs to E for all
ϕ ∈ Cr then the function

IR+ � t �−→ T0 ∗ g(t) := lim
λ→∞

∫ t

0
T0(t − τ)eλ·λR(λ, A)g(τ)dτ

belongs to E.

Proof. For g ∈ L1(IR+, E), since (T0(t))t≥0 is bounded, it is clear that
∥∥∥∥ lim

λ→∞

∫ t

0
T0(t − τ)eλ·λR(λ, A)g(τ)dτ

∥∥∥∥ ≤ C‖g‖L1 ,
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which implies that for every g ∈ L1(IR+, E), T0∗g ∈ BC(IR+, Cr) and the
linear operator g �−→ T0∗g is bounded from L1(IR+, E) into BC(IR+, Cr),
the space of all bounded continuous functions. By this boundedness, the
linearity and the density, it is sufficient to show this result for simple
functions. Let g := 1(a,b) ⊗ x, b ≥ a ≥ 0, x ∈ E and t ≥ 0. We have,

T0 ∗ g(t + b) = lim
λ→∞

∫ b

a
T0(t + b − τ)eλ·λR(λ, A)x dτ

= T0(t) lim
λ→∞

∫ b

a
T0(b − τ)eλ·λR(λ, A)x dτ.

Hence, since E is translation bi-invariant and t �−→ T0(t)ϕ belongs to
E for every ϕ ∈ Cr, we conclude that T0 ∗ g(·) ∈ E , and this achieve the
proof.

We can now state the following main asymptotic behaviour result.

Theorem 15 Assume that (H1) and (H2) hold. If t �−→ T0(t)ϕ be-
longs to E for all ϕ ∈ Cr, and the condition ( 3.16) is satisfied then, the
Cr-valued function IR+ � t �−→ xt+s(·, s, ϕ) is also in E for all ϕ ∈ Cr

and s ≥ 0, where x(·, s, ϕ) is the mild solution of (HRDE).

Proof. From Proposition 9 and the relation (3.11), we have

xt+s(·, s, ϕ) = T0(t)ϕ+ lim
λ→∞

∫ t

0

T0(t − σ)eλ·λR(λ, A)L(s + σ)U(s + σ, s)ϕ dσ, t ≥ 0.

(3.19)

As t �−→ T0(t)ϕ belongs to E , it is sufficient to that the function f from
IR+ to Cr

f(t) := lim
λ→∞

∫ t

0
T0(t − σ)eλ·λR(λ, A)L(s + σ)U(s + σ, s)ϕ dσ, t ≥ 0

belongs to E as well. Furthermore, by Lemma 14, it is sufficient to show
that the function g(·) := L(·+ s)U(·+ s, s)ϕ belongs to L1(IR+, E), and
this follows from (3.8) and the estimate (3.17) for all s ≥ s0. Hence,
the function IR+ � t �−→ xt+s(·, s, ϕ) = U(t + s, s)ϕ belongs to E for all
s ≥ s0 and ϕ ∈ Cr.

For all s ≥ 0 and t ≥ 0, one can write

U(t + s0 + s, s)ϕ = U(t + s + s0, s + s0)U(s + s0, s)ϕ.

As s + s0 ≥ s0, then as shown above t �−→ U(t + s0 + s, s + s0)ϕ belongs
to E and by the translation bi-invariance of E , t �−→ xt+s(·, s, ϕ) =
U(t + s, s)ϕ belongs to E . This achieves the proof.



Extrapolation theory for DDE 537

The C0-semigroup (T0(t))t≥0 is given in terms of the C0-semigroup
(S0(t))t≥0, then we can hope that they have the same asymptotic be-
haviour. In the following lemma, we present some particular commune
asymptotic behaviours to these two semigroups.

Lemma 16 Let ϕ ∈ Cr. Assume that the map IR+ � t �−→ S0(t)ϕ(0) is
(1) vanishing at infinity, or
(2) asymptotically almost periodic, or

(3) uniformly ergodic, i.e., the limit lim
α→0+

α

∫ ∞

0
e−αsS0(·+s)ϕ(0) ds ex-

ists and defines an element of BUC(IR+, E0), or

(4) totally uniformly ergodic, i.e., the Cesáro limit lim
t→+∞

1
t

∫ t

0
eiθsS0(·+

s)ϕ(0) ds exists in BUC(IR+, E0) for all θ ∈ IR.
Then, the function IR+ � t �−→ T0(t)ϕ has the same property in
BUC(IR+, Cr).

Proof.
As (S0(t))t≥0 is a contraction semigroup, we have for all t > r and

θ ∈ [−r, 0]

‖(T0(t)ϕ)(θ)‖ = ‖S0(t + θ)ϕ(0)‖ = ‖S0(r + θ)S0(t − r)ϕ(0)‖
≤ ‖S0(t − r)ϕ(0)‖.

If one has (1), then ‖T0(t)ϕ‖ −→ 0, when t → ∞.
Assume now that we have (2). By the definition of asymptotic almost

periodicity, see [7], for every ε > 0 there is l(ε) > 0 and K ≥ 0 such that
each interval of length l(ε) contains a τ for which this inequality

||S0(t + τ)ϕ(0) − S0(t)ϕ(0)|| ≤ ε

holds for all t, t + τ ≥ K. Let now t > K + r. Then, one has

‖(T0(t + τ)ϕ)(θ) − (T0(t)ϕ)(θ)‖ = ‖S0(t + θ + τ)ϕ(0) − S0(t + θ)ϕ(0)‖
≤ ‖S0(t − r + τ)ϕ(0) − S0(t − r)ϕ(0)‖
< ε for all θ ∈ [−r, 0],

and this means that T0(·)ϕ is asymptotically almost periodic.
The assertions (3) and (4) can be showed by the same technique.

As the classes of functions (1)-(4) are particular homogeneous closed
subspaces of BUC(IR+, Cr), see [22], by Theorem 15 and Lemma 16, we
have the following corollary.

Corollary 17 Assume that (H1) and (H2) hold and that for all ϕ ∈ Cr

the function
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IR+ � t �−→ S0(t)ϕ(0) belongs to one of the classes (1)-(4) of Lemma
16. Then, for all ϕ ∈ Cr, the mild solution x(·, 0, ϕ) of (HRDE) belongs
to the same class.

Example 5 Consider the retarded partial differential equation




u′(t, x) = − ∂
∂xu(t, x) − αu(t, x) +

∫ 0
−1 K(t, σ, x)u(t + σ, x) dσ, t ≥ 0, x ≥ 0,

u(t, 0) = 0, t ≥ 0,

u(t, x) = ϕ(t, x), −1 ≤ t ≤ 0, x ≥ 0,

(3.20)

where K ∈ L∞(IR+ × [−1, 0] × (0,∞)) and α > 0. If we set E :=
L1(0,∞), the operators

L(t)f :=
∫ 0

−1
k(t, σ)f(σ) dσ, t ≥ 0,

are bounded from C([−1, 0], E) to E. Assume moreover that
∫ ∞

0
‖K(t)

‖∞ < ∞, then L(·) is integrable on IR+, and then the condition (3.16)
is satisfied for a large s0.

For this example, the operator A is defined on E by

Af = − ∂

∂x
f − αf, D(A) = {g ∈ W 1,1(0,∞) : g(0) = 0},

and it generates the exponentially stable semigroup

(T0(t)f) (a) :=

{
e−αtf(a − t), a − t ≥ 0,

0, otherwise.

By the above corollary, the solutions of the partial retarded differential
equation (3.20) are asymptotically stable.
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1. Introduction
Continuous time deterministic epidemic models are traditionally for-

mulated as systems of ordinary differential equations for the numbers
of individuals in various disease states, with the sojourn time in a state
being exponentially distributed. Time delays are introduced to model
constant sojourn times in a state, for example, the infective or immune
state. Models then become delay-differential and/or integral equations.
For a review of some epidemic models with delay see van den Driess-
che [228]. More generally, an arbitrarily distributed sojourn time in a
state, for example, the infective or immune state, is used by some authors
(see [69] and the references therein).

When introduced in an explicit way, time delays may change the qual-
itative behavior of a model; for example, an epidemic model with gener-
alized logistic dynamics can have periodic solutions when the time in the
infective stage is constant [112]. Qualitative differences that arise from
including time delay in an explicit way in models that include vertical
transmission are explored in [38, Chapter 4]. In population biology, a
maturation time delay is used to explain observed oscillations [192]. This
delay is included in an epidemic model by Cooke, van den Driessche and
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Zou [47]. A fixed time delay in the recruitment function for a disease
model is considered by Brauer [33].

Many disease transmission models with delay are difficult to ana-
lyze, with even the linear stability problem reducing to a hard quasi-
polynomial; see, e.g., [27, 33] and references therein. Thus a combination
of analytical and numerical techniques is often employed.

Here we proceed along the lines of van den Driessche [229], giving
details about delay in models of disease transmission by concentrating
on one particular model, namely work with two other coauthors, K. L.
Cooke and J. Velasco-Hernández [13]. In Section 2, we first motivate the
introduction of delay in epidemic models in which this delay results from
assumptions on the sojourn time in a certain epidemiological state, e.g.,
the infective state. We then (in Section 3) formulate a model including
vaccination of susceptible individuals in which the vaccine waning time is
arbitrarily distributed [13]. In Section 4, we specialize to two particular
waning functions, concentrating on the step function case that leads
to a system of delay integro-differential equations. Numerics on this
system are reported in Section 5 (with program listings in Appendix 1).
Some numerical warnings are given in Section 6, and we conclude with
an annotated listing of available delay differential equations numerical
packages (Appendix 2).

2. Origin of time delays in epidemic models
Various biological reasons lead to the introduction of time delays in

models of disease transmission. Here we concentrate on one of the pos-
sible origins: the fact that sojourn times in certain states can have a
general form, for example, can be approximately constant, as opposed
to having an exponential distribution. A formal derivation of this uses
probability theory and, in particular, survival analysis. A brief summary
of these notions is given in Section 2.1. Then, survival analysis is tied
to dynamical models of disease transmission in Section 2.2; see [225] for
a more general and more detailed presentation.

2.1 Sojourn times and survival functions
Consider a system that can be in either one of two states A and B.

Suppose that at time t = 0, the system is in state A. Suppose that
when an event E takes place, the system switches to state B, and call X
the (positive) random variable “time spent in state A before switching
to state B”. The cumulative distribution function (c.d.f.) F (t) then
characterizes the distribution of X, with F (t) = Pr{X ≤ t}, and so does
the probability distribution function f(t), where F (t) =

∫ t
0 f(x)dx.
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Another characterization of the distribution of the random variable
X is the survival (or sojourn) function. The survival function of state
A is given by

S(t) = 1 − F (t) = Pr{X > t} (2.1)

This function gives a description of the sojourn time of a system in a
particular state. Note that S must be a nonincreasing function (since
S = 1−F with F a c.d.f., thus a nondecreasing function), and S(0) = 1
(since X is a positive random variable).

The average sojourn time τ in state A is given by

τ =
∫ ∞

0
tf(t)dt

Assuming that limt→∞ tS(t) = 0 (which is verified for most probability
distributions),

τ =
∫ ∞

0
S(t)dt

Suppose that the random variable X has exponential distribution f(t) =
θe−θt for t ≥ 0, with θ > 0. Then the survival function for state A is of
the form S(t) = e−θt, for t ≥ 0, and the average sojourn time in state A
is

τ =
∫ ∞

0
e−θtdt =

1
θ

If on the other hand, for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

which means that X has a Dirac delta distribution δω(t), then the aver-
age sojourn time is a constant, namely

τ =
∫ ω

0
dt = ω

These two distributions can be regarded as extremes.

2.2 Sojourn times in an SIS disease transmission
model

Consider a particular disease, and suppose that a population of in-
dividuals can be identified with respect to their epidemiological status:
susceptible to the disease, infected by the disease, recovered from the
disease, etc. To illustrate, consider a disease that confers no immunity.
This is modeled by a very simple SIS model. Individuals are thus either
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susceptible to the disease, with the number of such individuals at time
t denoted by S(t), or infected by the disease (and are also infective in
the sense that they propagate the disease), with the number of such in-
dividuals at time t denoted by I(t). Suppose for simplicity that there is
neither birth nor death. Hence N ≡ N(t) = S(t)+ I(t) is the (constant)
total population. Infection is assumed to take place following a standard
incidence pattern (see [181] for a discussion of transmission terms): the
number of new infectives resulting from random contacts between sus-
ceptible and infective individuals per unit time is given by βSI/N . Here
β is the transmission coefficient, it gives the probability of transmission
of the disease in case of a contact, times the number of such contacts
made by an infective per unit time.

Traditional epidemiological models assume that recovery from disease
occurs with a rate constant γ. However, as in [112], the assumption is
made here that, of the individuals who have become infective at time
t0, a fraction P (t− t0) remain infective at time t ≥ t0. Thus, considered
for t ≥ 0, the function P (t) is a survival function. As such, it satisfies
the properties given in Section 2.1, and in particular, P (0) = 1. The
transfer diagram for the system then has the form shown in Figure 13.1.

P(t)

β

S I
dN

dS dI

SI/N

Figure 13.1. The transfer diagram for the SIS model.

Since N is constant, it follows that S(t) = N − I(t) and the model
reduces to the following integral equation for the number of infective
individuals

I(t) = I0(t) +
∫ t

0
β

(N − I(u))I(u)
N

P (t − u)du (2.2)

Here I0(t) is the number of individuals who were infective at time t = 0
and who still are at time t. It suffices to assume that I0(t) is nonnegative,
nonincreasing, and such that limt→∞ I0(t) = 0. The term P (t−u) in the
integral is the proportion of individuals who became infective at time
u and who still are at time t. Multiplying this with the contact term
β(N−I(u))I(u)/N and summing over [0, t] gives the number of infective
individuals at time t.

The two extreme cases for P (t) considered in Section 2.1 illustrate
various possibilities. First, suppose that P (t) is such that the sojourn
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time in the infective state has an exponential distribution with mean
1/γ, i.e., P (t) = e−γt. Then (2.2) is

I(t) = I0(t) +
∫ t

0
β

(N − I(u))I(u)
N

e−γ(t−u)du

Taking the time derivative of I(t) yields

I ′(t) = I ′0(t) − γ

∫ t

0
β

(N − I(u))I(u)
N

e−γ(t−u)du + β
(N − I(t))I(t)

N

= I ′0(t) + β
(N − I(t))I(t)

N
+ γ (I0(t) − I(t))

In this case I0(t) = I0(0)e−γt, giving

I ′(t) = β
(N − I(t))I(t)

N
− γI(t)

which is the classical logistic type ordinary differential equation (ODE)
for I in an SIS model without vital dynamics (see, e.g., [34, p. 289]).

The basic reproduction number, denoted by R0, which is a key concept
in mathematical epidemiology, is now introduced. It is defined (see,
e.g., [12, 58]) as the expected number of secondary cases produced, in
a completely susceptible population, by the introduction of a typical
infective individual. For this ODE model, R0 = β/γ. In terms of
stability, the disease free equilibrium (DFE) with I = 0 is stable for
R0 < 1 and unstable for R0 > 1. At the threshold R0 = 1, there is a
forward bifurcation with a stable endemic equilibrium (with I > 0) for
R0 > 1. Thus the value of R0 determines whether the disease dies out
or tends to an endemic value.

The second case corresponds to P (t) being a step function:

P (t) =
{

1 if t ∈ [0, ω]
0 otherwise

i.e., the sojourn time in the infective state is a constant ω > 0. In this
case (2.2) becomes

I(t) = I0(t) +
∫ t

t−ω
β

(N − I(u))I(u)
N

du

which when differentiated, gives for t ≥ ω

I ′(t) = I ′0(t) + β
(N − I(t))I(t)

N
− β

(N − I(t − ω)) I(t − ω)
N
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Since I0(t) vanishes for t > ω, this gives the delay differential equation
(DDE)

I ′(t) = β
(N − I(t))I(t)

N
− β

(N − I(t − ω))I(t − ω)
N

cf. [34, Section 7.6] (where the disease transmission is modelled using
mass action). Note that every constant value of I is an equilibrium, thus
the integral form above gives a better description than the DDE. For this
case, R0 = βω again acts as a threshold. For R0 < 1, the DFE is stable;
whereas for R0 > 1, the endemic equilibrium is locally asymptotically
stable [34, Section 7.6].

More realistically, the survival function for the infective state is be-
tween an exponential and a step function (see, e.g., [12, 225]), thus the
two cases considered above can be regarded as extremes.

3. A model that includes a vaccinated state
We now use the ideas of the previous section in a different setting.

Consider a disease for which there exists a vaccine. Suppose that, al-
though there exists a vaccine, we can assume that developing the disease
confers no immunity. For example, at a given time, there are several
strains of influenza circulating in a given population. Vaccination usu-
ally focuses on particular strains, which are expected to be the dominant
ones in a particular year. Vaccination gives partial protection from other
strains as does contracting the disease. However, this protection is only
partial, and some individuals can contract the disease several times.
Thus if considered as one single disease, influenza can fit the above de-
scription. The assumptions also apply to models in which individuals
can be in two groups depending on their transmission coefficients with
respect to a given disease. They can move between these groups as
education campaigns or policies influence their behavior.

Our model, which is similar to that in [13], has the transfer diagram
shown in Figure 13.2. The number of individuals in the susceptible,
infective and vaccinated states are given by S(t), I(t), V (t), respectively.
As noted above, V (t) may alternatively correspond to an educated state,
but we refer to it as vaccinated. Individuals move from one state to the
other as their status with respect to the disease evolves. New individuals
are born into the susceptible state with a birth rate constant d > 0, and
all individuals, whatever their status, are subject to death with the same
natural death rate constant d. It is assumed that the disease does not
cause death, thus the total population N = S(t)+I(t)+V (t) is constant,
allowing for the simplification that the number of individuals in the S
state is given by S(t) = N − I(t) − V (t). Susceptible individuals are
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vaccinated with rate constant φ, and enter the V state. Note that the
model in [13] further assumes that a fraction of newborns are vaccinated.

γ

βSI/N

I

V

dN

VI/N

φ

dS dI

dV

P(t)

S

σβ

I
S

Figure 13.2. The transfer diagram for the SIV model.

As in Section 2.2, disease transmission is assumed to be of standard in-
cidence type, thus susceptibles enter the infective state at a rate βSI/N ,
where β > 0 is the transmission coefficient. In addition, it is assumed
that successfully vaccinated individuals may only be partially protected
from infection (i.e., the vaccine is leaky). Vaccinated individuals can
contract the disease, but vaccination reduces transmission by a factor
σ ∈ [0, 1). Thus the number of new infectives produced by random con-
tacts between I infectives and V vaccinated individuals per unit time
is σβSI/N , and vaccinated individuals enter the infective state at this
rate.

Many vaccines wane with time, and so vaccinated individuals return
to the susceptible state. In [130], this waning is assumed to be expo-
nential but here we assume a more general waning function P (t). We
suppose that, at a given time t, there is a fraction P (t) of the vaccinated
individuals who are still under protection of the vaccine t units after
being vaccinated. Since the waning function P (t) is a survival function
it is assumed to be nonnegative and nonincreasing with P (0) = 1, and
moreover

∫∞
0 P (u)du is positive and finite. Finally, it is assumed that

the infective individuals can be cured, so that members of the I state
return to the susceptible state, with rate constant γ ≥ 0 (the recovery
rate).

Since the total population remains constant, it is more convenient to
use proportions (rather than number of individuals) in each state. Here-
after, we use I(t) and V (t) to denote the proportion of infective and
vaccinated individuals, respectively, with S(t) = 1 − I(t) − V (t), the
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proportion of susceptibles. Let the initial susceptible and infective pro-
portions be S(0) > 0, I(0) > 0 and let V0(t) be the proportion of individ-
uals who are initially in the vaccinated state and for whom the vaccine
is still effective at time t. With the above assumptions, the following
integro-differential system describes the model depicted in Figure 13.2.

dI(t)
dt

= β(1 − I(t) − (1 − σ)V (t))I(t) − (d + γ)I(t) (3.1a)

V (t) = V0(t) +
∫ t

0
φS(u)P (t − u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu(3.1b)

The integral in (3.1b) sums the proportion of those who were vaccinated
at time u and remain in the V state at time t. Specifically, φS(u) is
the proportion of vaccinated susceptibles, P (t− u) is the fraction of the
proportion vaccinated still protected by the vaccine t−u time units after
going in (i.e., not returned to S), e−d(t−u) is the fraction of the propor-
tion vaccinated not dead due to natural causes, and e−σβ

∫ t
u I(x)dx is the

fraction of the proportion vaccinated not infective (i.e., not progressed
to the I state). An expression for V0(t) can be obtained by formulating
the model with vaccination state-age (see, e.g., [13, 112]) as

V0(t) = e−
∫ t
0 (σβI(x)+d)dx

∫ ∞

0
v(0, u)

P (t + u)
P (u)

du (3.2)

where v(0, u) ≥ 0 is the density at t = 0 of the proportion of individu-
als in vaccination state-age u; thus V0(0) =

∫∞
0 v(0, u)du. The above

integral converges, and thus V0(t) is nonnegative, nonincreasing and
limt→∞ V0(t) = 0.

Define the subset D of the nonnegative orthant by

D = {(S, I, V );S ≥ 0, I ≥ 0, V ≥ 0, S + I + V = 1}

It is easy to show (see [13]) that the set D is positively invariant under
the flow of (3.1) with I(0) > 0, S(0) > 0.

Differentiating (3.1b) gives

d

dt
V (t) =

d

dt
V0(t) + φS(t) − (d + σβI(t))(V (t) − V0(t)) + Q(t) (3.3)

where

Q(t) =
∫ t

0
φS(u)dt(P (t − u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu

With the assumed initial conditions in D, the system defined by (3.1a)
and (3.1b) is equivalent to the system defined by (3.1a) and (3.3). This
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latter system is of standard form, therefore results of Hale and Verd1uyn
Lunel [105, p. 43] ensure the local existence, uniqueness and continua-
tion of solutions of model (3.1).

Equation (3.1a) has I = 0 as an equilibrium and using I = 0 in
equation (3.1b) as t → ∞ gives the disease free equilibrium (DFE) as
IDFE = 0,

SDFE =
1

1 + φP̃
, VDFE =

φP̃

1 + φP̃

Here

P̃ = lim
t→∞

∫ t

0
P (v)e−dvdv

which is the average length of time that an individual remains vaccinated
(before losing vaccination protection or dying).

The basic reproduction number with vaccination is defined in terms
of P̃ as

Rvac = R0
σφP̃ + 1
φP̃ + 1

(3.4)

in which R0 = β
d+γ is the basic reproduction number with natural death

but no vaccination. The number Rvac is the important quantity in this
model that includes vaccination; Rvac is equal to the product of the mean
infective period 1/(d + γ) and the sum of the contact rate constant in
each of the susceptible and vaccinated states multiplied respectively by
the proportion in that state at the DFE, namely βSDFE + σβVDFE .
Note that Rvac ≤ R0, and in the case of no vaccination, that is φ = 0,
Rvac = R0.

If R0 < 1, then the only equilibrium of (3.1a) is IDFE = 0, thus the
DFE is the only equilibrium of system (3.1) when R0 < 1. In this case,
(3.1a) gives

dI

dt
< (d + γ) ((S + σV ) − 1) I

which implies that dI/dt < 0, and so I(t) → 0 = IDFE as t → ∞, for all
initial conditions I(0) > 0. Thus the disease dies out if R0 < 1.

The importance of Rvac can be seen from the following linear stability
result.

Theorem 1 For model ( 3.1) with a general waning function, if Rvac <
1, then the DFE is locally asymptotically stable (l.a.s.); if Rvac > 1, then
it is unstable.

Proof. Linearize (3.1a) and (3.1b) about the DFE, taking t → ∞.
Then the eigenvalues z of the linearized system at the DFE are given by

z = β(SDFE + σVDFE) − (d + γ) = (d + γ)(Rvac − 1) (3.5a)
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and the roots of

1 = −φ

∫ ∞

0
P (v)e−(d+z)vdv (3.5b)

Let z = x + iy be a root of equation (3.5b). Then by the proof of
Lemma 2 in [230], if x ≥ 0, then y = 0. But since φ ≥ 0, equation
(3.5b) has no nonnegative real root, thus all of its roots have negative
real parts. Hence, from (3.5a), the DFE is l.a.s if Rvac < 1, and unstable
if Rvac > 1.

4. Reduction of the system by using specific
P (t) functions

Here we show two examples of models resulting from the choice of
specific vaccine waning functions P (t) as the two extreme cases in Sec-
tion 2.2. The first example (Section 4.1) is obtained when the distri-
bution of waning times is exponential, and leads to the ODE system
studied in [130]. As discussed in [130], for some parameter values, there
is a backward bifurcation, a rather uncommon phenomenon in epidemio-
logical models. This backward bifurcation is also present when the sys-
tem consists of delay integro-differential equations, such as is the case in
Section 4.2 when the waning function is assumed to be a step function
corresponding to a constant sojourn time in the vaccinated state.

4.1 Case reducing to an ODE system
Assuming that the vaccine waning rate is a constant θ > 0, i.e., P (t) =

e−θt, then V0(t) = V0(0)e−(d+θ)te−
∫ t
0 σβI(x)dx from (3.2), equations (3.1a)

and (3.3) give the ODE system

dI

dt
= β(1 − I − (1 − σ)V )I − (d + γ)I (4.1a)

dV

dt
= φ(1 − I − V ) − σβIV − (d + θ)V (4.1b)

which is the model studied in [130]. The DFE with IDFE = 0,

SDFE =
θ + d

d + θ + φ
, VDFE =

φ

d + θ + φ

always exists, and from (3.4) the basic reproduction number is

Rvac = R0
d + θ + σφ

d + θ + φ
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Assume that R0 > 1, then endemic equilibria (I > 0) can be obtained
analytically from a quadratic equation, and for σ > 0 (i.e., a leaky
vaccine) it is possible to have a backward bifurcation leading to two
endemic equilibria for some parameter values. This occurs for a range
of Rvac, namely Rc < Rvac < 1 where Rc is the value of Rvac at the
saddle node bifurcation point where the two endemic equilibria coincide;
see [130] for details.

4.2 Case reducing to a delay integro-differential
system

Assume that the vaccine waning period is constant and equal to ω > 0,
that is the function P (t) takes the form of a step function on a finite
interval:

P (t) =
{

1 if t ∈ [0, ω]
0 otherwise

Since S = 1 − I − V , and V0(t) = 0 for t > ω, the integral equation
(3.1b) becomes, for t > ω

V (t) =
∫ t

t−ω
φ(1 − I(u) − V (u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu (4.2)

Differentiating this last expression (see equation (3.3)), the model can
be written as the two dimensional integro-differential equation system
for t > ω

dI(t)
dt

= β(1 − I(t)−(1−σ)V (t))I(t)−(d + γ)I(t) (4.3a)

dV (t)
dt

= φ(1−I(t)−V (t))−φ(1−I(t−ω)−V (t−ω))e−dωe−σβ
∫ t

t−ω I(x)dx

−σβIV − dV (4.3b)

Hereafter, we shift time by ω so that these equations hold for t > 0. By
introducing a third state variable

X(t) =
∫ t

t−ω
I(x)dx (4.4)

which gives dX(t)
dt = I(t) − I(t − ω), the system can be regarded as a

three dimensional DDE system.
For a constant waning period, the basic reproduction number from

(3.4) is

Rvac = R0
d + σφ(1 − e−dω)
d + φ(1 − e−dω)

(4.5)
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The DFE is IDFE = 0,

SDFE =
d

d + φ(1 − e−dω)
, VDFE =

φ(1 − e−dω)
d + φ(1 − e−dω)

(4.6)

Note that the delay ω enters into these equilibrium values. If R0 < 1,
then the system tends to the DFE and the disease dies out (see Sec-
tion 3). For R0 > 1, from nullclines, there exists one (or more) (EEP)
iff there exists I∗ ∈ (0, 1] such that

1 − 1/R0 − I∗

1 − σ
=

φ(1 − I∗)(1 − e−dω−σβωI∗)
φ(1 − e−dω−σβωI∗) + d + σβI∗

(4.7)

5. Numerical considerations
We give some insights into numerical aspects by considering the de-

lay integro-differential model (4.3). First, in Section 5.1 we set up the
algorithm that is used to study the occurence of forward and backward
bifurcations at Rvac = 1. We use this algorithm in Section 5.2, and in-
vestigate the dynamical behavior of system (4.3) by running numerical
integrations.

5.1 Visualising and locating the bifurcation
An EEP exists iff there exists an I∗ ∈ (0, 1] such that (4.7) holds. So

we study the zeros of

H(I) =
1 − 1/R0 − I

1 − σ
− φ(1 − I)(1 − e−dω−σβωI)

φ(1 − e−dω−σβωI) + d + σβI

Note that H(0) = Rvac−1
(1−σ)R0

and H(1) < 0.
Let A = {β, d, γ, φ, ω, σ} be the set of parameters of the model. When

needed, we denote H(I, a) and Rvac(a), with a ∈ A a parameter, to
indicate that the bifurcation is considered as a function of this parameter
a; e.g., Rvac(β) indicates that β is the bifurcation parameter that varies.

For a totally effective vaccine (σ = 0), a unique I∗ ∈ (0, 1] such that
H(I∗) = 0 can be found explicitly for Rvac > 1, and the bifurcation
is forward with Rvac behaving as a (local) threshold [13]. For a leaky
vaccine, σ ∈ (0, 1), the zeros of H(I) for I ∈ (0, 1] cannot be found
analytically. We proceed to obtain numerical estimates by using the
following algorithm.

Choose a parameter a ∈ A.
Fix the value of all other elements of A.
Choose amin, amax and ∆a for a.
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for ak = amin to amax do
Compute I∗ such that H(I∗, ak) = 0, using MatLab’s fzero func-
tion.
Compute Rvac(a) for this value ak.
ak = ak + ∆a.

end for
Results of the use of this procedure give zero, one or two values of
I∗. Thus two bifurcation scenarios are possible, as summarized in Fig-
ure 13.3. Example bifurcation diagrams are plotted in Figures 13.4(a)
and 13.5.

In order to be able to characterize the nature of the bifurcation, we
then need to define Rc as in Section 4.1. To obtain a numerical estimate
of Rc, we use the same procedure as for the visualization of the bifurca-
tion: we find the value I∗ such that H(I∗, a) = 0 and dH(I∗, a)/dI = 0,
for a given parameter a ∈ A with all other elements of A fixed.

Forward bifurcation

Rvac

1 EEP

Rvac

1 EEP

R

Rc

c

1

=1

0 EEP

Backward bifurcation
2 EEP0 EEP

Figure 13.3. Possible bifurcation scenarios.

Suppose that R0 > 1 (otherwise there is no EEP, as was remarked
in Section 3). When Rvac < Rc, there is no EEP as H(0) < 0 and
numerical simulations indicate that H < 0 on (0, 1); when Rvac > 1,
H(0) > 0 so there is an odd number of EEP (numerical simulations
indicate this number is 1). When Rc = 1, we are then in the case of a
forward bifurcation, as illustrated in the first part of Figure 13.3 and in
Figure 13.4(c). The backward bifurcation arises when Rc < 1. In this
case, when Rc < Rvac < 1, H(0) < 0 so there is an even number of zeros
of H in (0, 1]. Numerical simulations indicate that the number of EEP
is 2. The system then undergoes the transitions shown in the second
part of Figure 13.3.

5.2 Numerical bifurcation analysis and
integration

We use the following parameter values. We suppose a 3 weeks disease
duration (γ = 1/21), taking the time unit as one day. The average
lifetime is assumed to be 75 years (d = 1/(75 × 365)), and the average
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number of adequate contacts per day is estimated as β = 0.4. The
vaccine is assumed to be 10% leaky (σ = 0.1), and susceptibles are
vaccinated at the rate φ = 0.1. Finally, we assume that the vaccine
stops being effective after 5 years, i.e., ω = 1825.

These parameters give R0 = 8.3936 and Rvac(β) = 0.8819 from (4.5),
which is in the range of the backward bifurcation since (using the above
method) Rc(β) is estimated as 0.78. The bifurcation diagram is depicted
in Figure 13.4(a). Note that in the vicinity of Rc, it is very difficult for
MatLab’s fzero function to find solutions (since it detects sign changes
and Rvac = Rc corresponds to tangency); hence the non-closed curve.
Numerical simulations of the DDE model indicate that there are no
additional bifurcations; solutions either go to the DFE or to the (larger)
EEP, as depicted in Figure 13.4(b), which shows some solutions for I(t)
with the above parameter values. These same parameter values, except
that σ = 0.3, give Rvac(β) = 2.55, and there is a forward bifurcation
(see Figure 13.4(c)) with solutions going to the endemic equilibrium as
depicted in Figure 13.4(d).

To obtain Figures 13.4(b), 13.4(d), system (4.3) is integrated numeri-
cally. These numerical simulations are run using dde23 [205], an example
code (as well as an example code with XPPAUT) being given in Appen-
dix 1. Initial data is I(t) = c, for t ∈ [−ω, 0], with c varying from 0 to 1
by steps of 0.02.

Figure 13.5 shows the bifurcation for these parameter values as a func-
tion of ω. The situation is clearly different from that of Figure 13.4(a),
since in Figure 13.5 every value of ω gives at least one endemic equi-
librium. Let ωm be the value of ω determined by solving Rvac(ω) = 1
with Rvac given by (4.5). If all other parameters are fixed as given
at the beginning of this section, and for small waning time, 0 < ω <
ωm = 457.032, giving Rvac(ω) > 1, the only stable equilibrium is a large
endemic one. This is of course a highly undesirable state in terms of
epidemic control. Then increasing ω (i.e., increasing the waning time)
past ωm allows the DFE to become locally stable, and it is found nu-
merically that solutions starting with I(0) below the unstable endemic
equilibrium tend to the DFE. Increasing ω beyond 1000 days seems inef-
fective in terms of disease control, since there is no increase in the initial
value of infectives that tend to the DFE (see Figure 13.5).

6. A few words of warning
Even more so than with ordinary differential equations, great care

has to be taken when running numerical integrations of delay differential
equations. In [47], Cooke, van den Driessche and Zou study the dynamics
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Figure 13.4. Bifurcation diagram and some solutions of (4.3). (a) and (b): Backward
bifurcation case, parameters as in the text. (c) and (d): Forward bifurcation case,
parameters as in the text except that σ = 0.3.

of the following equation for an adult population N(t) with maturation
delay:

N ′(t) = be−aN(t−T )N(t − T )e−d1T − dN(t) (6.1)

Here d > 0 is the death rate constant, b > d and a > 0 are parameters
in the birth function, T is a developmental or maturation time and d1

is the death rate constant for each life stage prior to the adult stage.
In particular, they prove [47, Corollary 3.4] that Hopf bifurcation may
occur for (6.1) even for d1 = 0. For fixed values of the parameters, as
T increases the equilibrium may switch from being stable to unstable,
giving rise to periodic solutions. For d1 > 0, it is possible for stability
of the equilibrium to be regained as T increases further. They then
proceed to illustrate the stability switches by numerical simulations of
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Figure 13.5. Value of I∗ as a function of ω by solving H(I, ω) = 0, parameters as in
text.

(6.1) using XPPAUT. For d1 > 0, equation (6.1) has a delay dependent
parameter. The introduction of delay dependent parameters can lead to
dramatic differences in dynamics, see [27].

Using the demography of (6.1), the authors of [47] formulate the fol-
lowing SIS model with maturation delay [47, (4.2)]

I ′(t) = β(N(t) − I(t)) I(t)
N(t) − (d + ε + γ)I(t)

N ′(t) = be−a(t−T )N(t − T )e−d1T − dN(t) − εI(t)
(6.2)

where S(t) = N(t) − I(t), ε ≥ 0 is the disease induced death rate con-
stant, γ ≥ 0 is the recovery rate constant, and standard incidence βSI/N
is assumed. They perform numerical simulations of (6.2), and, in par-
ticular, obtain periodic solutions for parameter values a = d = d1 = 1,
b = 80, γ = 0.5, T = 0.2, ε = 10 and β = 20.
But... When documenting their delay differential equation numerical
integrator dde23 [205], Shampine and Thompson tested their algorithm
on a large number of delay systems, among which were equation (6.1)
and system (6.2). With parameters as in the paragraph above, they
obtain a figure similar to Figure 13.6, which shows damped oscillations
to an endemic steady state.
So, what is wrong? For delay differential equations, XPP (the nu-
merical integrator part of XPPAUT) uses a fixed step-size numerical
integrator, whereas dde23 uses a variable step-size. With the particular
values of the parameters chosen for β = 20, the fixed step-size is too
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Figure 13.6. Plot of the solution of (6.2), with parameters as in the text, using dde23.

large (its default value is 0.05). In a case in which variables I and N
undergo a very quick initial drop, this is overlooked by the first integra-
tion step of XPP, and the solver ends caught in the solution curve of a
nearby periodic solution. Setting the step size in XPP to 0.005, as in
the Erratum of [47], is sufficient to obtain a correct solution as shown in
Figure 13.6.
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Appendix

1. Program listings
The following gives examples of code used with MatLab and XPPAUT to run

numerical integrations of system (4.3). In both cases, constant initial data has been
used, though both do allow for initial data of functional or of numerical type. In the
case of constant initial data, both programs have the same behavior: they extend the
given initial point to the interval [−ω, 0]. Note that we make use of the third “fake”
state variable X(t) introduced in (4.4), and of its time derivative, in order to take
care of the integral term in (4.3b).
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1.1 MatLab code
The following is called vaccddeRHS.m. It defines the vector field of (4.3). This is

done in a very similar manner to the definition of the vector field that would be used
in a MatLab program with an ordinary differential equation solver. The one important
difference is in the variable Z. dde23 can handle many discrete delays. The variable
Z, which is passed as an argument to the function, contains the state of the system
at the different delays. Here, we have only one delay. But suppose we had two delays
ω1 and ω2. Then each column of Z would contain the state variables corresponding
to one of the delays:

Z =

[
Iω1 Iω2

Vω1 Vω2

]

function v = vaccddeRHS( t , y , Z , params )
beta=params ( 1 ) ;
d=params ( 2 ) ;
g=params ( 3 ) ; %MatLab hates gamma’ s o ther than gamma func t i ons .
phi=params ( 4 ) ;
omega=params ( 5 ) ;
sigma=params ( 6 ) ;
y lag = Z ( : , 1 ) ;
v = zeros ( 3 , 1 ) ;
v (1 ) = beta∗(1−y(1)−(1− sigma )∗y (2 ) )∗ y(1)−(d+g )∗y ( 1 ) ;
v (2 ) = phi∗(1−y(1)−y ( 2 ) ) . . .

−phi∗(1−ylag (1)− ylag (2 ) )∗exp(−d∗omega )∗exp(−sigma∗beta ∗y ( 3 ) ) . . .
−sigma∗beta ∗y (1)∗ y(2)−d∗y ( 2 ) ;

v (3 ) = y (1) − ylag ( 1 ) ;

This function is then used by the main calling routine, which follows. This partic-
ular procedure will run a certain number of integrations of system (4.3). The initial
condition for V (0) (lines 16 and 17) is obtained from (4.2) by setting t = 0, that of
X(0) follows from (4.4).

path (path , ’ /home/ j a r i n o /programs/matlab/dde23/ ddea l l ’ )
beta =0.4;
d=3.65297E−05;
g=0.047619048;
phi =0.1 ;
omega=1825;
sigma =0.1;

yl im ( [ 0 , 1 ] ) ;
hold on ;
for I0 =0 :0 . 02 : 1 , %Loop on i n i t i a l cond i t i ons

% The de lay must be added to the parameter vec tor s ince i t
% i s used in the vec to r f i e l d .
params=[beta , d , g , phi , omega , sigma ] ;
% I n i t i a l cond i t i ons : I0 i s given , V0 and X0 are computed .
V0=(phi∗(1− I0 )∗(1−exp(−omega∗(d+beta ∗ sigma∗ I0 ) ) ) ) . . .

/(d+beta ∗ sigma∗ I0+phi∗(1−exp(−omega∗(d+beta ∗ sigma∗ I0 ) ) ) ) ;
X0=I0 ∗omega ; % I n i t i a l cond i t i on on X i s easy to compute .
IC=[ I0 ,V0 ,X0 ] ; % Extended to [−omega , 0 ] i f only g iven at 0 .
tspan =[0 , 800 ] ; % Set i n t e g r a t i on time range .
% Ca l l the numerical rou t ine .
s o l = dde23 ( ’ vaccddeRHS ’ , omega , IC , tspan , [ ] , params ) ;
plot ( s o l . t , s o l . y ( 1 , : ) ) ; %Plot I ( t ) versus t
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end ;
xlabel ( ’ t ’ ) ; ylabel ( ’ I ’ , ’ Rotation ’ , 0 ) ;

1.2 XPPAUT code
The following code allows the integration of system (4.3) with XPPAUT. Note that

the initial conditions for V and X have to be computed explicitly from equations (4.2)
and (4.4), since XPP does not allow inclusion of unevaluated formula in the code.

# Constants
p beta =0.4 , d=3.65E−05, g=0.04762 , phi =0.1 , omega=1825 , sigma =0.1;
# The system
dI/dt = beta∗(1− I−V+sigma∗V)∗ I − (d+g )∗ I
dV/dt = phi∗(1− I−V)−phi∗(1−delay ( I , omega)−delay (V, omega ) )\

∗exp(−d∗omega )∗ exp(−sigma∗beta ∗X)−( sigma∗beta ∗ I ∗V)−d∗V
dX/dt = I−delay ( I , omega )
# I n i t i a l c ond i t i on s
I (0)=0.1
V(0)=0.8650595334
X(0)=182.5
# s e t maxdelay
@ delay=2000
@ ylow=0
@ b e l l=0
@ bound=500
@ XP=I ,YP=V
@ XHI=1,YHI=1
# done
d

2. Delay differential equations packages
Several packages and even software are available for the numerical integration

and/or the study of bifurcations in delay differential equations. Here is a short list,
elaborated from the list given by Koen Engelborghs1.

2.1 Numerical integration
The following are numerical solvers for DDE’s.

Archi (C.A.H. Paul) (Fortran 77) simulates a large class of functional differential
equations. In particular, Archi can be used to estimate unknown scalar parameters
in delay and neutral differential equations.

dde23 (L. Shampine, S. Thompson) (MatLab) is a MatLab package that integrates
delay differential equations. It is integrated in the latest versions of MatLab (starting
with Release 13).

DDVERK (H. Hiroshi, W. Enright) (Fortran 77) simulates retarded and neutral
differential equations with several fixed discrete delays.

DifEqu (G. Makay) (DOS, Windows) simulates differential equations with discrete
possibly varying delays.

∗http://www.cs.kuleuven.ac.be/ koen/delay
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DKLAG6 (S. Thompson) (Fortran 77, Fortran 90, C) simulates retarded differential
equations with several fixed discrete delays.

Dynamics Solver (J. M. Aguirregabiria) simulates differential equations with dis-
crete possibly varying delays.

RETARD (E. Hairer, G. Wanner) simulates retarded differential equations with
several fixed discrete delays.

RADAR5 (N. Guglielmi, E. Hairer) (Fortran 90) simulates retarded differential-
algebraic equations, including neutral problems with vanishing or small delays.

XPPAUT (G.B. Ermentrout) (Unix, Windows) simulates differential equations with
several fixed discrete delays. XPPAUT is a standalone software.

2.2 Bifurcation analysis
The following software packages provide some means to carry out numerical bifur-

cation analysis of delay differential equations.

BIFDD (B.D. Hassard) (Fortran 77) normal form analysis of Hopf bifurcations of
differential equations with several fixed discrete delays.

DDE-BIFTOOL (K. Engelborghs) (MatLab) allows computation and stability
analysis of steady state solutions, their fold and Hopf bifurcations and periodic solu-
tions of differential equations with several fixed discrete delays.

XPPAUT (G.B. Ermentrout) (Unix, Windows) allows limited stability analysis of
steady state solutions of differential equations with several fixed discrete delays.
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[93] G. Gühring, F. Räbiger and W. Ruess, Linearized stability for
semilinear non-autonomous equations with applications to re-
tarded differential equations, to appear in Diff. Integ. Equat.
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Poincaré procedure, 166
population biology, 539
Population dynamics, 260
population dynamics, 349
population size, 477
positive feedback, 423
positive orbit, 8

quadratic form, 7
qualitative, 15
qualitative behaviour, 227

random variable, 540
Razumikhin functions, 7
reflexive, 145
resolvent, 355
resolvent set

of an equation, 60
Retarded Functional Differential Equa-

tions, 32

saddle point, 15
Schauder’s fixed point theorem, 12
semiflow, 255, 418, 424, 471



INDEX 581

semigroup, 12, 18, 143, 147, 348, 468
semilinear, 354
single species dynamics, 477
slowly oscillating, 414
small solution, 105
solution semigroup, 55
spectral, 266
spectrum, 12, 355

of an equation, 60
stability, 162
stable, 103

asymptotically, 103
exponentially, 103

stable manifold, 452
state, 540
state-dependent delay, 468, 470
strong topology, 145
strongly continuous, 348
submanifold, 468

submodule, 133
sun-reflexive, 145, 147
susceptible, 546

Taylor expansions, 244
translation semigroup, 150
transversality condition, 480
trivial equation, 147, 157

uniform convergence, 33
uniform convergence topology, 347
unstable manifold, 12

variation of constants formula, 4, 56, 144,
149, 529

variational equation, 12, 40
Verhulst, 478
Volterra, 1, 350


	Contents
	List of Figures
	Preface
	Contributing Authors
	Introduction
	1 History Of Delay Equations
	1 Stability of equilibria and Lyapunov functions
	2 Invariant Sets, Omega-limits and Lyapunov functionals
	3 Delays may cause instability
	4 Linear autonomous equations and perturbations
	5 Neutral Functional Differential Equations
	6 Periodically forced systems and discrete dynamical systems
	7 Dissipation, maximal compact invariant sets and attractors
	8 Stationary points of dissipative flows

	Part I General Results and Linear Theory of Delay Equations in Finite Dimensional Spaces
	2 Some General Results and Remarks on Delay Differential Equations
	1 Introduction
	2 A general initial value problem

	3 Autonomous Functional Differential Equations
	1 Basic Theory
	2 Eigenspaces
	3 Small Solutions and Completeness
	4 Degenerate delay equations
	Appendix: A
	Appendix: B
	Appendix: C
	Appendix: D

	References

	Part II Hopf Bifurcation, Centre manifolds and Normal Forms for Delay Differential Equations
	4 Variation of Constant Formula for Delay Differential Equations
	1 Introduction
	2 Variation Of Constant Formula Using Sun-Star Machinery
	3 Variation Of Constant Formula Using Integrated Semigroups Theory

	5 Introduction to Hopf Bifurcation Theory for Delay Differential Equations
	1 Introduction
	2 The Lyapunov Direct Method And Hopf Bifurcation: The Case Of Ode
	3 The Center Manifold Reduction Of DDE
	4 Cases Where The Approximation Of Center Manifold Is Needed

	6 An Algorithmic Scheme for Approximating Center Manifolds and Normal Forms for Functional Differential Equations
	1 Introduction
	2 Notations and background
	3 Computational scheme of a local center manifold
	4 Computational scheme of Normal Forms

	7 Normal Forms and Bifurcations for Delay Differential Equations
	1 Introduction
	2 Normal Forms for FDEs in Finite Dimensional Spaces
	3 Normal forms and Bifurcation Problems
	4 Normal Forms for FDEs in Hilbert Spaces
	5 Normal Forms for FDEs in General Banach Spaces

	References

	Part III Functional Differential Equations in Infinite Dimensional Spaces
	8 A Theory of Linear Delay Differential Equations in Infinite Dimensional Spaces
	1 Introduction
	2 The Cauchy Problem For An Abstract Linear Delay Differential Equation
	3 Formal Duality
	4 Linear Theory Of Abstract Functional Differential Equations Of Retarded Type
	5 A Variation Of Constants Formula For An Abstract Functional Differential Equation Of Retarded Type

	9 The Basic Theory of Abstract Semilinear Functional Differential Equations with Non-Dense Domain
	1 Introduction
	2 Basic results
	3 Existence, uniqueness and regularity of solutions
	4 The semigroup and the integrated semigroup in the autonomous case
	5 Principle of linearized stability
	6 Spectral Decomposition
	7 Existence of bounded solutions
	8 Existence of periodic or almost periodic solutions
	9 Applications

	References

	Part IV More on Delay Differential Equations and Applications
	10 Dynamics of Delay Differential Equations
	1 Basic theory and some results for examples
	2 Monotone feedback: The structure of invariant sets and attractors
	3 Chaotic motion
	4 Stable periodic orbits
	5 State-dependent delays

	11 Delay Differential Equations in Single Species Dynamics
	1 Introduction
	2 Hutchinson's Equation
	3 Recruitment Models
	4 The Allee Effect
	5 Food-Limited Models
	6 Regulation of Haematopoiesis
	7 A Vector Disease Model
	8 Multiple Delays
	9 Volterra Integrodifferential Equations
	10 Periodicity
	11 State-Dependent Delays
	12 Diffusive Models with Delay

	12 Well-Posedness, Regularity and Asymptotic Behaviour of Retarded Differential Equations by Extrapolation Theory
	1 Introduction
	2 Preliminaries
	3 Homogeneous Retarded Differential Equations

	13 Time Delays in Epidemic Models: Modeling and Numerical Considerations
	1 Introduction
	2 Origin of time delays in epidemic models
	3 A model that includes a vaccinated state
	4 Reduction of the system by using specific P(t) functions
	5 Numerical considerations
	6 A few words of warning
	Appendix

	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V




