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Preface

In essence, class field theory is the study of the abelian extensions of arbitrary global
or local fields. In particular, one is interested in characterizing the abelian extensions
of a given field K in terms of the arithmetical data for K. The most basic example
of such a characterization is the Kronecker-Weber Theorem, which states that the
abelian extensions of the field of rational numbers are subfields of its cyclotomic
extensions, so expressible in terms of roots of unity.

Also of interest is to describe how the prime ideals in the ring of integers of a
global or local field decompose in its finite abelian extensions. In the case of the
quadratic extensions of the field of rational numbers, such a description is obtained
through the Law of Quadratic Reciprocity. There are also higher reciprocity laws of
course, but all of these are subsumed by what is known as Artin Reciprocity, one of
the most powerful results in class field theory.

I have always found class field theory to be a strikingly beautiful topic. As
it developed, techniques from many branches of mathematics were adapted (or
invented!) for use in class field theory. The interplay between ideas from number
theory, algebra and analysis is pervasive in even the earliest work on the subject.
And class field theory is still evolving. While it is prerequisite for most any kind of
research in algebraic number theory, it also continues to engender active research. It
is my hope that this book will serve as a gateway into the subject.

Class field theory has developed through the use of many techniques and points
of view. I have endeavored to expose the reader to as many of the different tech-
niques as possible. This means moving between ideal theoretic and idele theoretic
approaches, with L-functions and the Tate cohomology groups thrown in for good
measure. | have attempted to include some information about the history of the
subject as well. The book progresses from material that is likely more naturally
accessible to students, to material that is more challenging.

The global class field theory for number fields is presented in Chapters 2-6, which
are intended to be read in sequence. For the most part they are not prerequisite for
Chapter 7. (The exceptions to this are in Chapter 6: profinite groups and the theory
of infinite Galois extensions in Section 6, and the notion of a ramified prime in
an infinite extension from Section 7.) The local material is positioned last primar-
ily because it is somewhat more challenging; for this reason, working through the
earlier chapters first may be of benefit.
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For students who have completed an introductory course on algebraic number
theory, a one-term course on global class field theory might comprise Chapters 2-5
and sections 1-4 of Chapter 6. For more experienced students, some of the material
in these chapters may be familiar, e.g., the sections on Dirichlet series and the The-
orem on Primes in Arithmetic Progressions. In that case, the remainder of Chapter 6
may be included to produce a course still entirely on global class field theory. For
somewhat more sophisticated students, Chapter 7 provides the option of including
the local theory.

Facility with abstract algebra and (very) basic topology and complex analysis
is assumed. Chapter 1 contains an outline of some of the prerequisite material on
number fields and their completions. Nearly all of the results in Chapter 1 appear
without proof, but details can be found in Frohlich and Taylor’s Algebraic Number
Theory, [FT], or (for the global fields) Marcus’ Number Fields, [Ma].

The level of preparation in abstract algebra that is required increases slightly
as one progresses through the book. However, I have included a little background
material for certain topics that might not appear in a typical first-year course in
abstract algebra. For example there are brief discussions on topological groups,
infinite Galois theory, and projective limits. Finite Galois theory is heavily used
throughout, and concepts such as modules, exact sequences, the Snake Lemma, etc.,
play important roles in several places. A small amount of cohomology is introduced,
but there is no need for previous experience with cohomology.

The source for the material on Dirichlet characters in Chapter 2 is Washington’s
Cyclotomic Fields, [Wa], while the material on Dirichlet series was adapted primar-
ily from Serre’s A Course in Arithmetic, [Sel], and the book by Frohlich and Taylor,
[FT]. The section on Dirichlet density is derived mostly from Janusz’ Algebraic
Number Fields, [J], and Lang’s Algebraic Number Theory, [L1].

I first saw class fields interpreted in terms of Dirichlet density in Sinnott’s lec-
tures, [Si], which greatly influenced the organization of the material in Chapters 3
and 4. (This point of view appears also in Marcus’ Number Fields, [Ma].) Other
sources that were particularly valuable in the writing of these two chapters were [J],
[L1], and Cassels and Frohlich’s Algebraic Number Theory, [CF].

The main source consulted in the preparation of Chapters 5 and 6 is [L1],
although [J], [CF], [Si], Neukirch’s Class Field Theory, [N], and the lecture notes of
Artin and Tate, [ATT], also were very valuable throughout. For section 7 of Chapter 6,
[Wa] is the primary source, and Lang’s Cyclotomic Fields I and II, [L3], was also
consulted.

Other references that proved particularly useful in the preparation of the chap-
ters on global class field theory include Gras’ Class Field Theory, [G], and Milne’s
lecture notes, [Mi].

The presentation of local class field theory in Chapter 7 relies mainly on the
article by Hazewinkel, [Haz2]. Also very useful were Iwasawa’s Local Class Field
Theory, [1], Neukirch’s book, [N], and the seminal article of Lubin and Tate, [LT].

A preliminary version of this book was used by a group of students and faculty at
the University of Colorado, Boulder. I am indebted to them for their careful reading
of the manuscript, and the many useful comments that resulted. My thanks espe-
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cially to David Grant, who led the group and kept detailed notes on these comments,
and to the members: Suion Ih, Erika Frugoni, Vinod Radhakrishnan, Zachary Strider
McGregor-Dorsey and Jonathan Kish.

Several incarnations of the manuscript for this book have been used for courses
in class field theory that I have offered periodically. I am grateful to my class field
theory students over the past few years, who have participated in these courses using
early versions of the manuscript. Among those who have helped in spotting typo-
graphical errors and other oddities are Eric Driver, Ahmed Matar, Chase Franks,
Rachel Wallington, Michael McCamy and Shawn Elledge. Special thanks also to
John Kerl for advice on creating diagrams in LaTeX and to Linda Arneson for her
excellent work in typing the first draft of the course outline, which grew into this
book.

In completing this book, I am most fortunate to have worked with Mark Spencer,
Frank Ganz and David Hartman at Springer, and to have had valuable input from
the reviewers. My sincere thanks to them as well.

Tempe, AZ
2007
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Chapter 1
A Brief Review

For the convenience of the reader and to fix notation, in this chapter we recall some
basic definitions and theorems for extensions of number fields and their comple-
tions. Typically the material discussed in this chapter would be presented in detail
in an introductory course on algebraic number theory.

We conclude this chapter with a brief discussion of some questions that arise
naturally in the study of algebraic number fields. These questions were important to
the development of class field theory. In subsequent chapters, we shall explore some
of the mathematics they have inspired. Class field theory provides information on
the nature of the abelian extensions of number fields, their ramified primes, their
primes that split completely, elements that are norms, etc. We also treat the abelian
extensions of local fields in a later chapter, where analogous questions may be asked.
The present chapter is intended to be used as a quick reference for the notation,
terminology and precursory facts relating to these concepts.

We state nearly all of the results in this chapter without proof. For a more thor-
ough treatment of introductory algebraic number theory, see Frohlich and Taylor’s
Algebraic Number Theory, [FT], (which includes material on completions), or Mar-
cus’ Number Fields, [Ma], (which does not). Somewhat more advanced books on the
subject include Janusz’ Algebraic Number Fields, [J], and Lang’s Algebraic Number
Theory, [L1].

1 Number Fields

A number field is a finite extension of the field QQ of rational numbers. If F is a
number field, denote the ring of algebraic integers in F by Op. It is well-known that
Or is a Dedekind domain, so that any ideal of OF has a unique factorization into a
product of prime ideals. A fractional ideal of F is a non-zero finitely generated O -
submodule of F. The fractional ideals of F' form a group Zr under multiplication;
the identity in Zr is O, and for a fractional ideal a, we have

al={xeF:xalOp).

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 1, 1
© Springer Science+Business Media, LLC 2009



2 1 A Brief Review

The principal fractional ideals of F form a (normal) subgroup of Zr, denoted Pr.
The quotient Cr = Ir / P, is called the ideal class group of F. A non-trivial the-
orem in algebraic number theory says that Cr is a finite group for any number field
F. Its order is the class number of F, denoted hf.

Given a finite extension K/ F of algebraic number fields, consider the ideal pOk,
where p is a non-zero prime ideal of Of. Using unique factorization of ideals in Ok,
we have

pOx = P - P

where the 3; are (distinct) prime ideals of Ok, g = g(p) is a positive integer and
the e; are positive integers. We call e; the ramification index for °B;/p, denoted
ej = e(P;/p). If K/F is a Galois extension, then the Galois group permutes the I3 ;
transitively, so thate; = - -- = ¢, = e, say.

Since every non-zero prime ideal is maximal in a Dedekind domain, the quotients
Ok / T, and 9F /p are fields, called residue fields. Indeed, they are finite fields of

characteristic p, where p N Z = pZ. We may view OF /p as a subfield of Ok / DU
The residue field degree is

Fpi =% Jqn, : O fp].

If K/F is Galois, then f(Bi/p) =--- = f(B,/p) = f, say.

In general, we have Z§=1 e(B;/p)fCB;/p) = [K : F]. When K/F is Galois,
this becomes efg = [K : F].

If K/F is an extension of number fields, we say that the prime p is unramified
in K/F if e(B;j/p) = 1 for all j, p is totally ramified in K /F if there is a unique
prime ‘B above p with e(B3/p) = [K : F], p remains inert in K /F if pOk is prime
in Ok, and p splits completelyin K /F if g = [K : F].

Given an extension K/F of number fields and a prime ideal p of Op, one
approach to finding the factorization of pOy is the following, sometimes called
the Dedekind-Kummer Theorem.

Theorem 1.1. Let K / F be an extension of number fields and suppose Og = Op[a].
Let f(X) = Irrp(a, X), the irreducible polynomial of o over F, and let p be a prime

ideal in Op. Put F, = OF/p, and denote the image of f(X) in Fp[X] by f(X),
(reduce the coefficients of f modulo p). Suppose in F,[ X1, the factorization of f(X)
is given by

FX) = pX)" - pe(X)”
where the p;(X) are distinct monic irreducible polynomials in Fy[X]. For each j,

let p;(X) be a monic lift of the corresponding p;(X) to Op[X], and let B be the
ideal of Ok generated by p and p j(«). Then
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PO = {1+

with the B ; distinct prime ideals of Ok . O

The discriminant of an extension of number fields will be of use to us. This can be
defined in terms of the discriminants of bases for K as a vector space over F. Recall
that if K/F is a finite extension of number fields, with {v, ..., v,} an F-basis of
K, then we define the discriminant of this basis to be

d(vi, ..., v,) = det[Trg/r(v;v;)] = det[o;(v;)]?

where 01,...,0, : K — F¥ are F -monomorphisms. The relationship between
the discriminants of two different bases for K over F can be described in terms of
the change of basis matrix between them: If A is an n x n matrix with
(wi, ..., wy) = A(vy, ..., v, then

dwy, ..., wy) = (detA)’d(vy, ..., v,).

In the case when K = F(a) where [K : F] = n, the matrix [o;(a/™1)] is
Vandermonde, so

dil,....a" =[] (ei(e)— o).

I<i<j<n

Specifically, if Ox = Opla] and f(X) is the irreducible polynomial of « over F,
then N/r(f'(@) = (=" "d(1, @, ...,a" ).

Note that different F-bases for K need not have the same discriminant. Hence
the discriminant of the extension K /F must be defined in terms of all the possible
bases for K. To do so, we generate a module with all these discriminants.

Suppose M is a non-zero Op-submodule of K and M contains an F-basis of K.
We let d(M) be the Op-module generated by all d(vy, ..., v,) where {vy, ..., v,} C
M varies through the F-bases for K contained in M. Of course if M is a fractional
ideal of K then d(M) is a fractional ideal of F. Moreover, if M is a free O r-module,
say M = ®_,Orw;, thend(M) = d(wy, ..., w,)OF.

The (relative) discriminant of the extension K/ F'is dx,r = d(Ok), where O is
considered as a (finitely generated) Or-module. This makes dx,r an integral ideal
of Of. The (absolute) discriminant of K is dx = dgg. Note that Ok is a free
Z-module of rank n = [K : Q], so dx = dk g is a (principal) ideal in Z, generated
by d(vy, ..., v,) where {vy, ..., v,} is any integral basis for Ok, (by integral basis
we mean a Z-basis for Ok).

One of the reasons why discriminants will be useful to us is that they carry infor-
mation about the primes that ramify in an extension. For a non-zero prime ideal p
of OF, we have that p is ramified in K /F if and only if p | dkr.

We shall make heavy use of the notion of the norm of a fractional ideal. We
record its definition and a few basic facts here. Let K/F be a finite extension of
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number fields. Let p be a non-zero prime ideal of O and let *3 be a prime of Ok
dividing pOk . Define the norm of B as N, r(P) = p/ F/?. Now extend Nk, to
arbitrary fractional ideals of K by multiplicativity, i.e.,

Ng/r(B B = Ner(B)™ - Nep(Bo)™.

Thus the norm of a fractional ideal of K is a fractional ideal of F. Note that if K/F
is Galois, then

Nk r()Ok = l_[ o ().

oeGal(K/F)

Ifo € K, then Ng,r(eOk) = Ng,r()OFp, where the norm on the right is the usual
element norm. Also, if F/ € E C K are number fields, then

Nk/r = Ngjr o NkJE.

The specific case when F = Q gives N () = aZ for some a € Q. We shall
sometimes write N2 for Nk (%), and frequently in our expressions for Dirichlet
series we shall also use N2 to represent the non-negative generator |a| of aZ.

Given a Galois extension of number fields K /F with Galois group G, a non-
zero prime ideal p of Of and a prime ideal 3 of O with &B|pOK, we define the
decomposition group

ZPB/p)={0 € G:0(P) ="}

Note that Z(J3/p) acts on the finite field Fp = Ok /m’ fixing the subfield F,, =

O / p elementwise, so there is a natural homomorphism of groups

Z(B/p) — Gal (Fop/Fyp).

From algebraic number theory, we have the following.

Theorem 1.2. Let K /F be a Galois extension of number fields with Galois group
G. Let p be a non-zero prime ideal of OF.

i. G acts transitively on the set of prime ideals P of Ok that divide pOk whence
[G : Z(CB/p)] = #{primes P of Ok : ‘]3|p(’)1<} =g.
Also, if B, P are prime ideals of Ok dividing pOk, then Z(P/p) and Z (R’ /p)
are G-conjugate.

ii. Np=4#F,, NP = #Fqg and Gal (Fyz/F) is cyclic, generated by the Frobenius
automorphism @, : x > x™P.
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iii. The homomorphism Z(B/p) — Gal (Fp/Fy) is surjective; its kernel is called
the inertia subgroup, denoted T (3 /p). Note that [Z(B/p) : TCB/p)] = f and
T(B/p) has order e. O

In the case of a Galois extension K / F of number fields, the decomposition group
and inertia subgroup give rise, via the Galois correspondence, to intermediate fields,
called the decomposition field and inertia field, respectively. Let K be the fixed
field of Z(*3/p) and let K7 be the fixed field of 7'(3/p). For an abelian extension,
the factorization of the ideals generated by p in these intermediate fields is given by
the following result from algebraic number theory.

Theorem 1.3 (Layer Theorem). Let p be a non-zero prime ideal of O, where K | F
is an abelian extension of number fields. Then p splits completely in Kz /F. The
primes above p remain inert in Kt /K z and ramify totally in K /Kt . O

If e(B/p) = 1, then via the natural homomorphism in (iii ) of Theorem 1.2, we
have Z(P/p) = Gal (Fyz/Fy) is cyclic of order f. The Galois group for the residue
fields is generated by the Frobenius automorphism ¢,, whence there is a unique
element o € Z(3/p) that corresponds to ¢, under the natural isomorphism. We
have Z(B/p) = (o). This element o is called the Frobenius element at 3. We

denote it o = (K?F) =B, K/F).

Proposition 1.4. Let K/F be a Galois extension of number fields, p a non-zero
prime of Op that is unramified in K/F and ‘B a prime of Ok with ‘]3|p(’)K. Then
the Frobenius element at ‘B is the unique element o € Gal (K/F) that satisfies
o) = a™? (mod P) for every a € O.

Proof. Say o(a) = a™? (mod P) for all @ € Ok. From this congruence we see
that o (P3) € B, whence o (P) = B, i.e,, 0 € Z(P/p). Clearly, the isomorphism
Z(P/p) = Gal (Fas/F,) maps o to gp. Thus o = (qup) . 0

If we suppose further that G is abelian, then by (i) of Theorem 1.2 we know
that Z(3/p) depends only on p and we may write Z(p). Also, if p is unramified
in K/F, then we show in Proposition 1.5 below that the Frobenius element at ‘I3
depends only on p. In this case, we call it the Artin automorphism for p, denoted

K’;F) = (p, K/F). We may define a map
{primes of OF that are unramifiedin K/F} - G

givenby p > oy, = (K’;F).

Proposition 1.5. Let K/F be an abelian extension of number fields, p a non-zero
prime of Op that is unramified in K/F and ‘B a prime of Ok with ‘]3|p(’)K. Then

o= ( K?F) does not depend on the choice of the prime 3 above p.
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Proof. To show independence, suppose the primes ‘B and P’ divide pOg. Write
o, o’ for the Frobenius elements at 3, ', respectively. Now by (i ) of Theorem 1.2,
there exists T € G such that t(3) =/, so

to(a) = t(@™?)  (mod )
= 7(a)"" (mod P’ Ya € Ok.

But o = o1 since G is abelian, so o(z(a)) = ()M (mod ) for all & € O.
Since 7 is a bijection, we must have o («) = VP (mod ') for all « € Ok, whence
o=o'. O

Proposition 1.6. Suppose K/ F is an abelian extension with Galois group G and we
have a field L with F € L C K, (so L/F and K /L are also abelian). Let p be a

prime of Oy that is unramified in K/F. Then ( Lp ) and ( P F) are both defined

/F K/
( | > ( ; >

Proof Leto = (K’;F), o = (L’/’F), and let I3 be a prime ideal of O above p.
Then o (a) = ™ (mod P) forall @ € Ok. Let P = PN Op. Forevery a € O
we have o (a) = ™ (mod J'). Thus O"L =o' o

and

L

Exercise 1.1. Suppose K/ F is Galois but not necessarily abelian. Let 3 be a prime
of Ok above p, and suppose e(*/p) = 1.

a. Find and prove a statement similar to Proposition 1.6 for the Frobenius element
at .

b. Suppose L is an intermediate field in the extension K /F. How are (

( K?F) related?

B
K/L) and

c. Fix the prime ideal p of Op and let B vary through all the prime ideals of
Ok above p. Show that the set i(xq/gF) : ‘J3|p(’)K} is a conjugacy class in
G = Gal(K/F). O

Example.

l.LLet F = Q, K = Q(): then G = Gal(K/F) = (Z/mZ) . We may
assume that m is either odd or divisible by 4, so that p|m if and only if pZ

ramifies in K /Q. Suppose p { m. Leto = ( and suppose ‘B|pZ. Then

Pz )
Qwm)/Q
o(a) = a? (mod P). In particular, o(¢,) = & (mod 3). We claim this implies
o(Zm) = k. Suppose we have verified this claim. Then o(¢,,) = &}. Since
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ok = 0,(&m) and &, generates K /Q, it follows that ¢ = o,. The Artin auto-
morphism is the same as the p" power map in this case. It remains to verify the
claim. The following proposition resolves this.

Proposition 1.7. If ¢, ¢’ are m™ roots of unity in K and ‘]3| pZ is unramified, with
¢ =¢' (mod *B), then ¢ = ¢'.

Proof. Let w,, denote the set of m™ roots of unity and consider the polynomial
X™ —1=]],., (X —n). Differentiate to obtain:

mX" ' = Z H(X —).

NE€Mm 0'Fn

NEMm

Now evaluate for X = ¢:

me" "t =>"T]e-m=]]ec-m.

NE€Mm 0'Fn n'#

Suppose ¢ = ¢’ (mod PB) and ¢ # ¢’. Then ]—[,],#(g —7n') = 0 (mod P),
which yields m¢™~! = 0 (mod ). It follows that P|m¢™ 'O, so P|mOk. We
conclude that p|m and thus p is ramified (a contradiction). m|

We shall encounter the Artin automorphism again in Chapter V; it plays a central
role in our proofs of the main theorems of class field theory. For now, we are content
to use it to show the following result on primes that split completely in subextensions
of cyclotomic fields. The reader is encouraged to keep this result in mind as we
discuss the definition of class field in Chapter 3.

Theorem 1.8. If K € Q(¢,,), then identify Gal (Q(¢,)/Q) = (Z/mz)X and let

H < (Z/mZ) be the subgroup corresponding to Gal (Q(¢,)/K). The primes
p t m that split completely in K /Q are those p such that p mod m € H.

Proof. The primes that split completely in K /Q are precisely the primes with triv-
ial decomposition group, hence precisely the unramified primes with trivial Artin

automorphism.
Since p f m, we have that p is unramified. Hence p splits completely if and only

if its Artin automorphism is trivial: (;/ZQ) = 1. But (15/%@) = (Q(fz)/(@) ‘ =
2 K

op < Thus

p splits completely in K/Q <= op|x =1
—o0p € Gal (@(Cm)/K)
<= pmodm € H. O

For example, when m = 13, Q(¢13)/Q is of degree 12 and has cyclic Galois
group. Let K be the unique subfield of Q(¢;3) with [K : Q] = 3. In this case, we
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have H = Gal (Q(¢13)/K) and H is the unique subgroup of (Z/13Z) of order 4.
Thus H = {1, 5, 12, 8} = (5). By Theorem 1.8,

p splits completely in K/Q < p =1,5,8, or 12 (mod 13).

Finally, for a number field F, we shall need to understand the group O5. Let

r1 denote the number of embeddings FF < R and let r, denote the number of
conjugate pairs of imaginary embeddings F' < C. (Then [F : Q] = r; + 2r,.) The
group Op; is described by the following.
Theorem 1.9 (Dirichlet Unit Theorem). Let F be a number field and let r; and
ry represent the number of real embeddings and the number of conjugate pairs of
imaginary embeddings of F, respectively. There are units €1, ..., & 4+r—1 € Of
such that

OF EWr X (e1) X -+ X (&r4r,-1)
= Wr x 20
where Wr is the group of roots of unity in F. The € j are called a fundamental system

of units for F. O

Among many other things, fundamental units are used to define the regulator of
F.Let{e, ..., &} beafundamental system of units for F, where r = r; +r, — 1.
Consider the matrix

A =llogloj(epl;] forl <i<randl <j<r +n

where:
x| = x| ifl <j<n
P xPPifr+1<j<r +nr.
Here | - | is the usual absolute value on C, and o1, . . ., 0, are all the real embeddings
of F, while 6,41, ..., 0,4+, are a set of representatives (one from each conjugate

pair) of the imaginary embeddings. The regulator Ry is the absolute value of the
determinant of any » x r minor of A. It is independent of the choice of the fun-
damental system {ej, ..., &}. The volume of a fundamental parallelopiped in the
lattice associated to O may be expressed in terms of the regulator as \/r; + 2 Rp.

2 Completions of Number Fields

As our study of class field theory progresses, it will become evident that the various
completions of a number field F all play equally important roles. We gather some
of the basic facts about completions in this section.

Let F be an algebraic number field. An absolute value on the field F is a function
F — [0, 00), where the image of x € F is denoted |x|, such that
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i. |x]=0ifandonlyifx =0
ii. |xy|=|x]||y|forallx,y e F
iii. |x +y| <|x|+|y|forallx,y € F.

A non-Archimedean absolute value is an absolute value that satisfies the stronger
condition

iii’. |x +y| < max{|x|,|y|}forallx,y € F.

If | - | is an absolute value on F, then it gives rise to a metric on F viad(x, y) =
[x — y|. We say two absolute values on F are equivalent if they give rise to the
same metric topology on F. When we discuss places a bit later, we shall relax our
definition of absolute value slightly, but it will turn out that this relaxed notion of
absolute value does not alter the topological situation: Any such (relaxed) absolute
value will induce a topology homeomorphic to the topology induced by an absolute
value satisfying (i ), (ii) and (iii ), above.

To obtain a non-Archimedean absolute value on a number field F, let p be a non-
zero prime ideal of Of. For x € F*, we may factor the fractional ideal generated
by x as a product of prime ideals, paying particular attention to our fixed prime p;
say

xOp =p“p{" -9/,

where the p; are distinct to p, and «, &; € Z. By unique factorization of fractional
ideals in F, we may define

ordy(x) = a.

The function ord, : F* — Z is what is known as a discrete valuation on the field
F. (To be a valuation, a function v : F* — R must satisfy v(xy) = v(x) + v(y)
and v(x + y) > min{v(x), v(y)}. To be discrete, its image v(F*) must be a discrete
subgroup of R.) In fact, ord, is normalized, meaning that ord,(F*) = Z. Using
it, we define the p-adic absolute value on F as follows. Fix a real number ¢, with
0 < ¢ < 1 and define

0 ifx =0
|x|P = Cordp(x) if x 75 0.

(Different choices of the real number ¢ yield equivalent absolute values.) It is easy to
verify that | - |, is a non-Archimedean absolute value on F'. Also, if p # ¢, then | - |,
and | - |4 are inequivalent absolute values on F. Typical choices for the real number
c are 1/p, where pZ = p N Z, or I/Np’ where Np is the positive generator of
Nrjop).

One may obtain an Archimedean absolute value on a number field F from any
embedding o : F — C by setting
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[x|le = |o(x)] where | - | is the usual absolute value on C.

Let oy, ..., 0, be all the distinct real embeddings of F and let 0,41, ..., 0y 4, bE
distinct imaginary embeddings of F, chosen so that each conjugate pair of imagi-
nary embeddings is represented exactly once. One may show that the absolute values
[ loys-oesl o, are pairwise inequivalent on ', while the absolute values | - |;
and | - |z for a conjugate pair of imaginary embeddings of F are equivalent on F.
For example, F = Q(+/3) has two inequivalent Archimedean absolute values:

la + b3 = |la + b3k
la + bv/3|2 = |la — by/3|g.

By a theorem of Ostrowski, every non-trivial absolute value on a number field F
arises (up to equivalence) as a | - |, or a | - |, for some non-zero prime p of Of or
some embedding o : F — C.

The completion of an algebraic number field F' with respect to the absolute value
| -] is the field

{Cauchy sequences in F'} .
{Null sequences in F}.

Via constant sequences, we may view F as a subfield of any of its completions. If
|- | ="y for some non-zero prime ideal p of OF, then we denote the completion
of Fby Fp. If | - | = | - |, for some embedding o : F' — C, then the completion of
F is isomorphic either to R or C, according as o (F) < R or not.

Let us examine the p-adic completion F}, in more detail. Let

Op ={xeF:|x]p <1},

the ring of p-adic integers. O, is a local ring (in fact a discrete valuation ring) with
unique maximal ideal

Po=1{xeF, x|, <1}

(The units of O, are precisely those elements having absolute value one.) Note that
Or is a subring of O, and is dense in Op,. We also have P, = pO, and

% /p, =" [y,

Hence Fy is a local field, i.e., it is complete with respect to a discrete valuation, and
it has finite residue field.

Choose 7 € p — p? and view 7 as an element of F,. Observe that Pp = (m);
we say 7 is a uniformizer in Fy,. Every element x € F,, may be written as x = en’,
where t € Z and ¢ € O, This leads to the p-adic expansion of x:
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o0
x = Z ajm’
Jj=t

where the a; may be chosen from a (finite) set of distinct representatives for Op / Py

In particular, when F = Q, we have p = pZ for some prime number p. Denote
the completion by Q,,, and the ring of p-adic integers by Z,. In this case, we may
choose the a; from the set {0, ..., p — 1}.

Again let F be a number field and let p be a prime ideal of Of. The following
result allows us to lift a factorization of a polynomial over the residue field Or / p
to a factorization over the completion Fy. It is one version among many that bear
the same title. While similar statements hold in more general settings, this version
is all that we require.

Theorem 2.1 (Hensel’s Lemma). Let F be a number field and let p be a non-zero
prime ideal of Of. Suppose we are given a monic polynomial f(X) € Op[X], say of
degree n. Let f(X) be the canonical image of f(X) in the ring Op /Pp [X], (reduce
the coefficients modulo Py ). If we have a factorization F(X) = g(X)h(X) where
deg(@) = t and where g and h are monic and coprime in Op /Pp [X], then there is
a factorization f(X) = g(X)h(X) in O, [g(], where degg = t and g, h are monic
polynomials that reduce modulo Py to g, h respectively. O

In particular, note that if we apply Hensel’s Lemma to the special case where
g(X) is linear, we find that a simple zero of f(X) lifts to a simple zero of f(X).
Thus it is perhaps not surprising that the proof of Hensel’s Lemma may be regarded
as a generalization of Newton’s method for approximating a zero of a polynomial.
See Exercise 1.3 for an opportunity to apply Hensel’s Lemma.

Observe that Q, is not algebraically closed, but unlike the situation for the Archi-
medean absolute value on Q, when one takes an algebraic closure @?,lg for Q,, it will
not be complete! (Finite extensions of Q, are complete, but the algebraic closure is
an infinite extension.) Luckily, the completion of an algebraic closure of @, is both
algebraically closed and complete. Thus we have a field that is analogous to the
complex numbers C in this regard. We denote it C,. There is a unique absolute
value on C, that extends the p-adic absolute value of Q,. We continue to use | - |,
to denote this absolute value on C,,.

At first glance, the Archimedean and non-Archimedean absolute values on a
number field seem to arise in very different ways. However, this is something of a
misconception. To illustrate, we first introduce the following notational convention.
Let | - |« denote the usual Archimedean absolute value on Q. Allowing p to be any
fixed prime, or p = oo, observe that if we have an absolute value on a number field
F that extends | - |, from Q, then the completion of F' with respect to this absolute
value is the compositum FQ,, (where Q is R).

Still taking p to be any fixed prime or p = oo, let F be a number field and
suppose 0 : F — (@'j,lg is an embedding, (where @@f = C). We may define for
x e F,
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[x|o = |U(x)|p-

Then | - |, is readily seen to be an absolute value on F that extends | - |, on Q.
Moreover, every extension of | - |, to F arises (up to topological equivalence) as
some | - |,. When do two embeddings o7 and o, of F give rise to equivalent abso-
lute values on F? Precisely when they are conjugate embeddings, i.e., when there
is an automorphism ¢ of Q?,lg such that ¢ o 07 = o07. Thus there is a bijective
correspondence

{topologically distinct extensions of | - |, to F}

<«—> {conjugacy classes of embeddings o : F «— Qj‘}g}.
If we write the number field F as a simple extension of Q, say F = Q(«), then we
may use the monic irreducible polynomial f(X) of o over Q to learn more about
the extensions of | - | ,. In Q,[X], we factor f(X) into irreducibles, say

JX) = hi(X)- - he(X)

with the ;(X) distinct irreducible polynomials over Q. Then two embeddings o7,
oy are conjugate if and only if they send o to roots of the same %;(X). Thus there
are g distinct extensions of | - |, to F. Moreover, if o («) is a root of /;(X) and the
completion of F' with respect to | - |, is denoted Fy, thendegh; = [F, : Q,].
Returning exclusively to the non-Archimedean case, suppose F is an algebraic
number field and p is a non-zero prime ideal of O, with pNZ = pZ. The restriction
of the absolute value | - |, to Q gives the same topology on Q as | - |, does. The
completion F}, is a finite extension of Q, that can be embedded as a subfield of

?,lg , hence also of C,,. There is one subtle point. This embedding must preserve the
topology, so must be chosen so that elements of F, that are “close” with respect to
the p-adic absolute value are mapped to elements of C,, that are close with respect
to | - |,. By the above, we know that | - |, arises from an embedding o : F' < (@?,lg.
We have F, = F,; and our embedding of F} into C, will extend o.

Suppose K/F is an extension of algebraic number fields and p is a non-zero

prime ideal of OF. We may factor
pOK = 443?' e gg

where the 3; are distinct prime ideals of Ok and the e; are positive integers. The
absolute values |-|sp,, . . ., |-|g, are pairwise inequivalenton K, but their restrictions
to the subfield F all produce the same topology on F as | - |, does. The absolute
values | - g, ..., | - |y, represent all the topologically inequivalent extensions of
| - |p to K. Each completion Ky, is a finite extension of Fy,. Conversely, if we begin
with any finite extension k of Fj, there will be some finite extension K of F' and
some prime ideal 3 of Ok so that k = K. Thus all the finite extensions of F}, arise
from prime ideals in finite extensions of F.
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Analogous to the number field case, the notion of fractional ideal applies to the
completions F,. As with number fields, we have unique factorization of fractional
ideals (O, is a p.i.d.). Of course the factorizations are very simple in this case
because there is only one prime ideal! For the extension Ky /F,, we can factor
the ideal P,Op = pOgp as Py for some positive integer e = e(Pyp/Py), the

local ramification index. Putting f = f(Pyp/P,) = [0‘43 / Py Op / Pp]’ (the
local residue field degree), we have ef = [Kyp : Fy]. (Since Op, and Oy are local
rings, necessarily we have no splitting in the extension Kq3/F),.) We also use the
terminology totally ramified (f = 1), ramified (e > 1), and unramified (e = 1) in
the local setting, but we can apply these descriptions to the entire extension, since
there is only one prime for each field.

In general, if K/F is an extension of number fields and p is a prime ideal of
Op with pOx = P --- P, then e(Py,/Py) = e(B;/p), and f(Py,/Py) =
f(B;/p), i.e., ramification indices and residue field degrees for the number fields
and their completions coincide. Moreover, if K/ F is Galois, then so is K 3,/ Fps and

Gal(Kg,/Fy) = {o € Gal(K/F) : |o(x)|g, = |x|gp, Vx € Kgp,}
=Z(B;/p).

Example.

2. Let K = Q@), F = Q, p = 5Z. We have that 5Z splits completely: 5Z[i] =

BB, where P, = (2 —i) and P, = (2+i). Since we have a prime that splits
completely, the ramification index and residue field degree are both trivial, i.e.,
e = f = 1, so the extensions Kgq3,/Qs are trivial. This means that we have
Ky, = Ky, = Qs. However, we must be careful how we distinguish between
K, and Ks,. On one hand, they are both Qs, but on the other hand each must
contain an isomorphic copy of K that is the image of a continuous embedding,
and the topology on K is different in each case.
There are two square roots of —1 in Qs; say « is the one that is congruent to
2 modulo 5. Since Kz, = Qs, there is an embedding ¢, : K < Qs. This
embedding must preserve absolute values, so that 2 — i € ‘3, is identified with
2 —a € QQs, while 2 + i is identified with a 5-adic unit. On the other hand, the
embedding tsp, : K < Qsmaps2+i € Prto2 —a € Qs while 2 — i is
now mapped to a unit. Thus we have found the two distinct embeddings of K
into Qs (one for each extension of | - |5 to K). As the above illustrates, writing
“2 4 i” for an element of Q5 is ambiguous unless the embedding of K into Qs
being used is understood.

Exercise 1.2. Let F = Q(B), where f is aroot of f(X) = X*> —3.Let p = oo. Use
f(X) to find the extensions of | - | to F. %

Exercise 1.3. Let F = Q(8), where B isarootof f(X) = X>—X —1.Let p = 17.
Factor f(X) over Q17 to find the number of extensions of | - |17 to F and the degrees
of their respective completions over Q7 (Hensel’s Lemma may be of use for this).
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Find ramification indices and residue field degrees for the primes of Of above 17Z
and verify that this agrees with the information obtained from the factorization of

f(X). O

The following theorem collects some other facts about ramification in extensions
of Fy; these results typically are proved in a first course in algebraic number theory.
For example, proofs may be found in the books of Frohlich and Taylor, [FT], Janusz,
[J], and Lang, [L1].

Theorem 2.2. Let F,, denote the completion of a number field F at a non-zero prime
ideal p of OF.

i. Every finite totally ramified extension of F, has the form Fy(r), where 7 is a
zero of some Eisenstein polynomial in Oy[T].

ii. Ifm e Fglg is a zero of some Eisenstein polynomial in O[T, then Fy(m)/F,
is totally ramified.

iii. For a given positive integer f, there is a unique unramified extension of Fy
of degree f, (unique within some fixed algebraic closure). It is Galois with a
cyclic Galois group, and is obtained by adjoining to F, a lifting of any primitive
element for the degree- [ extension of the finite field Op / Py O

Finally we remark that the norm of an element or of a fractional ideal, the dis-
criminant, etc., may be defined for the extension K,/ F}, in exactly the same way
as was done for extensions of number fields.

Exercise 1.4. Let K/F be an extension of algebraic number fields, and let p be a
prime ideal of Op. For any o € K, show that

Nisp(a) = [ | Nkg/r, (tp()).
PBlp

(HINT: It may help to study the previous example; if we identify F}, and K¢y with
extensions of Q, (where pZ = p N7Z), the embeddings (3 of K into its completions
must be chosen correctly or the above formula does not hold.) O

3 Some General Questions Motivating Class Field Theory

Let F be a number field, Cr its ideal class group. (Thus Op is a u.f.d. if and only
if Cg = {1}.) Suppose Cr # {1}. It would be useful to embed F into a larger
number field K, where Oy is a u.f.d. Can one find a finite extension K /F of class
number one, i.e., with Cx = {1}? For a long time, the answer to this question was
not known. There were known examples of cases where such an extension K exists,
but (for good reason) no one had succeeded in proving that K must always exist. As
was first shown in the early 1960s by Shafarevich and Golod, there are examples of
number fields F having no finite extension K of class number one.



3 Some General Questions Motivating Class Field Theory 15

Perhaps we may ask for a bit less. Is there an extension K /F such that any non-
principal ideal a of Of becomes principal in Ok, (i.e., the ideal aOk is principal in
Ok)? Happily, the answer here is yes, by aresult called the Principal Ideal Theorem,
(see Chapter 6). This was conjectured by Hilbert, but not proved until the 1930s by
Furtwingler.

The well-known theorem of Kronecker and Weber gives a classificaton of all the
finite abelian extensions of (Q, proving that any such extension is a subfield of a
cyclotomic field. There are also results describing the abelian extensions of imagi-
nary quadratic fields (in terms of special values of elliptic modular functions). It is
natural to seek to extend this to the study of all abelian extensions of an arbitrary
number field F. This is the heart of class field theory. As we shall discover, the
finite abelian extensions K of a number field F correspond to certain subgroups of
ideals (or alternately, of ideles), whose factor groups turn out to be isomorphic to
the Galois groups Gal (K /F). (These are the Existence, Completeness and Isomor-
phy Theorems.) While these results give a description of the nature of the abelian
extensions of an arbitrary number field F', the problem of constructing explicitly the
abelian extensions of F remains an open question. Progress in special cases has been
made using techniques from computational number theory. For a nice introduction
to this facet of the subject, see Cohen’s Advanced Topics in Computational Number
Theory, [Coh].

While we do not treat them in this text, there are results (using algebraic K-
theory) that provide information on the abelian extensions of fields of finite tran-
scendence degree over their prime fields. This more general setting has been studied
in the work of Bloch, Kato, Saito, et al., beginning in the 1980s (for example, see
[Ka], [B1] and [KS]). Raskind, [R], has gathered much of the material on this topic
into an extensive survey. Another area of recent interest (also outside the scope
of this text) is non-abelian class field theory, (the Langlands philosophy), much of
which is still only conjectured.



Chapter 2
Dirichlet’s Theorem on Primes in Arithmetic
Progressions

As is well-known, Euclid gave a proof of the existence of infinitely many primes.
Centuries later, Euler devised another proof using the Riemann zeta function.

Dirichlet’s proof of his theorem on primes in arithmetic progressions is a gener-
alization of Euler’s idea, except the zeta function is replaced by the L-function of
a Dirichlet character. Dirichlet gave the proof for prime modulus in 1837, finishing
the general case in 1840.

Theorem (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If m is
a positive integer and a is an integer for which (a, m) = 1, then there are infinitely
many primes p satisfying p = a (mod m).

Taking m = 1 gives a restatement of Euclid’s result, and reduces Dirichlet’s proof
to the one given by Euler. The theorem on arithmetic progressions was a key ingredi-
ent in Legendre’s attempted “proof” of Quadratic Reciprocity. Unfortunately, while
he relied upon it, Legendre didn’t prove it; it remained conjectural until Dirichlet’s
1837 paper. The first complete proof of Quadratic Reciprocity (by Gauss, using a
different approach) also came later, although it pre-dates Dirichlet’s Theorem.

In this chapter, we introduce Dirichlet characters and their L-functions, and give
a proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions, which moti-
vates our discussion of ray class groups in Chapter 3.

1 Characters of Finite Abelian Groups

We recall some basic facts about characters of finite abelian groups. Given a finite
abelian group G, a character of G is a multiplicative homomorphism G — C*. Let
G denote the set of all characters of G.

If x, ¥ € G, then we define their product x 1 to be the function x : G — C*
that satisfies x ¥ (g) = x(g)¥(g). It is straightforward to show that x v is also a
character of G, and that under this multiplication, Gisa group, called the character
group of G. For example, the homomorphism x, : G — C* givenby x, : g — 1is
called the trivial character on G. It serves as the identity in G. In fact, we have the
following.
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Proposition 1.1. If G is a finite abelian group, then G = G.

Proof. Since G is abelian, it may be written as a direct sum of cyclic groups of the
form Z / mz,- 1t follows that G is the product of groups of the form Z / mz, - For any

X € Z / m7, the complex number x (1) determines x completely, since Z / m7 18
an additive cyclic group generated by 1. Thus we have an injective homomorphism

of groups Z/mZ — C* given by g +—> x(1). Note also that the image of this
homomorphism is precisely the set of m™ roots of unity in C, which is a cyclic

group of order m. Hence Z /.77 = ~Z /m7- and we conclude G = G. O

It is clear from the above proposition that G = G, but we include additional
details because it is possible to give a canonical isomorphism explicitly. Given g €

G,letg : G — C* bedefinedby g : x — x(g),(s0 g € G).
Exercise 2.1. Show that the map g +— g is a homomorphism G — G. O

Proposition 1.2. The map g — g is an isomorphism G — G.

Proof. To show injectivity, suppose g € G satisfies x(g) = 1 forall x € G. Let
H = (g) < G. Then the elements of G may be viewed as (distinct) characters of

G / K- But by Proposition 1.1, there are exactly # (G / H) of these. It follows that
#H = 1. We have shown that if x(g) = 1 forall x € G, then g = 1. Hence, we

A

have an injective homomorphlsm G < G. Since the orders are equal, it follows
that this is an isomorphism G — G O

Proposition 1.3. Let G be a finite abelian group. For H < G, let

H'={xeG:xthy=1 forallh € H};

i. ifH <G, thenH' =G /y
ii. if H <G, then H = G/Hi
iii. (HY)' = H, (if we identify G = G).

Proof. o
(i.) The isomorphism is given by identifying x € H' with ¥ € G / H » Where
Y(gH) = x(g). This mapping is well-defined since yx is trivial on H. It is
routine to check that it is an isomorphism of groups.
(ii.) Clearly restriction x +— x |H is a homomorphism G — H with kernel H*.

This yields an embedding G / gL = H . It must also be surjective, since the
orders agree:
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= 4(5Ti) = O/ n)
=*C J4n
whence #H = #H = #G/#HJ_

A
= G/#Hl.

(iii.) By definition, (H+)* = {g € G g(x) = 1forall x € H'}. Considering
orders, we get

—

Y = 4G ) =40/,

- #G/ #H*
=*C/ wG )
— #H.

Since the orders agree, it suffices to observe thatif h € H,thenh : x — x(h)
satisfies A(H1) = {1} from which we deduce that H = H < (H+)*. ]

Finally, we give a proof of two very useful equations known as the orthogonality
relations.

Proposition 1.4 (Orthogonality Relations).
i. Fix a character x of the finite abelian group G. Then

_ 0 ifx #x

geCG
ii. Fix an element g of the finite abelian group G. Then
_JOo ifg#1
ZX(g)_ {#Gifg:l]
x€eG

Proof. For (i), leth € G and note that Z x(g) = Z x(gh) = x(h) Z x(g). This

geCG geG geG
implies that (1 — x (h)) Z x(g) =0, forallh € G.If x # x,. then there is some
geCG
h € G for which x(h) # 1. It follows that Z x(g) = 0. Of course, for x = ,, the
geG

expression becomes Z X(8) = Z 1 =#G.
geG geG
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For (ii), note that Z x(g) = Z &(x) and use (i). |
xeG xeG

2 Dirichlet Characters

The notion of Dirichlet character predates considerably the more general ideas dis-
cussed in the previous section. However, we shall make use of the more modern
terminology to define Dirichlet characters as follows. Let n be a positive integer. A

Dirichlet character modulo n is a character of the abelian group (Z / nZ) ,i.e.,a
multiplicative homomorphism

X : (Z/nZ) — C*.
We call n the modulus of .

Examples.

1. Let p be an odd prime, and let x : (Z / pZ) — C* be the Legendre symbol

mod p, i.e., x(a) = (p)

2. Leti be the usual complex number, and define y : (Z/SZ) — C* by x(1) =

Lx@)=i,xB)=—-i, x4 =-1L

If x is a Dirichlet character of modulus n and n|m, then by using the natural
homomorphism ¢ : (Z/mZ) — (Z/nZ) , we may define x’ = x o ¢. Now x’
is also a Dirichlet character, but of modulus m. In this situation, we say that x’ is
induced by .

Let f, be the minimal modulus for the Dirichlet character yx, i.e., x is not induced
by any Dirichlet character of modulus smaller than f,. Call f, the conductor of .
A Dirichlet character defined modulo its conductor is called primitive.

Examples.

3. Let y (Z/lzz)x — C* be given by x(1) = 1, x(5) = —1, x(7) = 1,
x(11) = —1. Since x(a + 3k) = x(a) we see that x is induced by the char-
acter  : (Z/3Z)X — C*, where ¥(1) = 1, ¥(2) = —1. Furthermore v is
primitive. We conclude that f;, = 3.

4. Let x : (Z/lzz)x — C* be given by x(1) = 1, x(5) = —1, x(7) = —1,

x(11) = 1. It is easy to check that yx is primitive, whence f, = 12.
A Dirichlet character x also may be regarded as a function y : Z — C by letting

| x(@ mod f,) if(a, fy)=1
X(a)_{o it £ 1.
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We also refer to this periodic function on Z as a Dirichlet character, and we do not

X
distinguish notationally between a Dirichlet character as a function on (Z / f Z)

and the periodic function on Z associated to it.
Let x, denote the trivial character of conductor 1. Let x, ¥ be primitive Dirichlet
characters of conductors f,, fy, respectively. Let n = lem(f, fy ). The function

n: (Z/HZ)X — C* defined by
n:ar> x(a)y(a)

is easily seen to be a (possibly imprimitive) Dirichlet character. Define the product
X ¥ to be the primitive Dirichlet character that induces #. In this way, we are able to
define a multiplication on primitive Dirichlet characters that is closed. It is trivial to
check that this multiplication is associative and commutative and that x, serves as
the identity. Note that the conductor of x 1 must be a divisor of the product of the
conductors of x and .

Example.

5. Let

x:(%/12z)" = C by (=1 2= 1 x(M =1 (D=1

v (Z/4Z)X S C byy() =1, ¥(3) = —1.

Then 7 : (Z/uz) S C by =1,75) = -1, n(7) = 1, n(11) = —1.
The character 7 is imprimitive, induced by the primitive character x . We find

that 9 (2/37)" — by x0() = 1 @) = ~1. Note: xQU(2) =
0% XV (2.

Exercise 2.2. Show: if (f,, fy) = 1, then f,y = f, fy. O

X
Given a Dirichlet character x : (Z / nZ) — C*, we can associate to it the

map ¥ : (Z/HZ)X — C* by x(a) = (x(a))~' = x(a), the complex conjugate.
It is straightforward to show that y is a Dirichlet character, that it has the same
conductor as x, and that y x = x,. Thus the (primitive) Dirichlet characters form
a group under multiplication. The order of a Dirichlet character is its order as an
element of this group. Because the image of a Dirichlet character is necessarily a
(finite) group of roots of unity in C*, its order will always be finite. Indeed, if x has
conductor n, then the order of x must be a divisor of ¢(n). A Dirichlet character of
order 2 is sometimes called a quadratic Dirichlet character.

For any Dirichlet character x, we must have y(—1) = £1. If x(—1) = 1, then x
is called even; if x(—1) = —1, then y is called odd.
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Exercise 2.3. Show that the set of all even Dirichlet characters is a subgroup of the
group of all Dirichlet characters under multiplication. O

Given a fixed positive integer n, the Dirichlet characters having conductors divid-
ing n form a finite group. In fact, letting ¢, be a primitive n-th root of unity, we
can identify Gal (Q(¢,)/Q) = G with (Z / nZ) whence the group of Dirichlet

characters modulo n may be regarded as characters of the Galois group G.
Let x be a character of G = Gal (Q(¢&,)/Q). Let K be the fixed field of the kernel
of x. We call K the field associated to .

Example.

6. Let x : G = Gal(Q(412)/Q) — C* by x(01) = 1, x(05) = —1, x(o7) = 1,
x(o11) = —1, where 0} : {1p > ¢{,. Thenker x = {01 = id, 07}

Q(¢12) {o1}
Q(¢s) ker(x) = (o7)
Q G
Now 07({3) = &3, so ker x fixes elements of Q(¢3). Comparing orders and

indices, we see that Q(¢3) is the fixed field of ker x = Gal (Q(£12)/Q(&3)).
Hence Q(¢&3) is the field associated to x. It follows that x is really a character of

G/kerxs which corresponds to Gal (Q(¢3)/Q) = (Z/3Z)X. Note f, = 3.

More generally, let X be a finite group of Dirichlet characters and let n be the least
common multiple of all of the conductors of these characters. Then we may view
X as a subgroup of G, where G = Gal (Q(£,)/Q). Let H = Nker x, where the
intersection is over all x € X. Then H is a subgroup of G; let K be the fixed field
of H. K is called the field associated to X.

Note that if x € X, then H < Ker x, so the field associated to x is a subfield
of the field associated to X. Also, if X is cyclic, generated by x, then the field
associated to X is the same as the field associated to x.

Examples.

7. Let x : (Z/15Z>X — C* be given by x(1) = 1, x2) = —1, x4) = 1,

x(7) = =1, x(8) = —1, x(11) = 1, x(13) = —1, x(14) = 1. Consider x
as a character of Gal (Q(Z15)/Q). Now ker x has order 4, so its fixed field K
must satisfy [K : Q] = 2. Also K must be real, since its elements must be
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fixed by o4, which is complex conjugation. The quadratic subfields of Q(¢;s)
are diagrammed below.

Q(¢15) = Q(¢3,¢5)

/

/

Only one of the quadratic subfields of Q(¢15)/Q, is real. Thus K = Q(«/ 5) is the
field associated to x. Note that dx,o = 5, and x has conductor 5.

8. Let ¢ : (Z/ISZ)X — C* be the Dirichlet character given by ¥(1) = 1,
v2) =-Ly@ =Ly =1Lvy® = -1, ¢ = -1, y(13) = 1,
w(14) = —1. Let v : (Z / 15Z)X — C* be the Dirichlet character given
by (1) = 1,92) = 1,94 = 1, 97) = -1, 9@08) = 1, 9(11) = —1,
?(13) = —1, ¥(14) = —1. Consider y and ¢ as characters of Gal (Q(¢;5)/Q).

As in the previous example, each must correspond to a quadratic subextension
of Q(¢15)/Q. Checking conductors, we see that the conductor of v is 3, while

the conductor of # is 15. Thus we must have that v is a character of (Z / SZ) s

so that the field associated to ¥ is Q(¢3) = Q(+/—3). The field associated to ¥
must be the only remaining possibility, i.e., Q(+/—15).

9. Let G = Gal (Q(¢,)/Q) = (Z / nZ) and let X be the set of all even characters

in G. Exercise 2.3 tells us that X is a subgroup of G. Note that X has index 2
in G (the product of two odd characters is even, so the only non-trivial coset in

G / x contains all the odd characters). Since y(—1) = 1 for all x € X, we must
have o_; € ker x for all x € X. Now, the automorphismo_; : ¢, > ;“,jl is
complex conjugation, so the field associated to X must be real. In fact, if x is
any character, then the field associated to x is real if and only if x is even. Since
X is the largest subgroup of G consisting entirely of even characters, one expects
that its associated field will be the maximal real subfield of Q(¢,). Soon we shall
have a theoretical result that makes this apparent. For now, however, we simply

find N ker x.
xeX

We have shown N ker x D {0}, 0_1}. The reverse containment is also true,
xeX

for if o, € ﬂX ker x is non-trivial, then the canonical isomorphism G — G
X€
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gives that 6, is non-trivial, (see Proposition 1.2). But then there is some ¥ € G
such that /(0,) # 1. We cannot have ¥ € X, so ¢ must be odd. However >
is even, and hence %(c,) = 1. It follows that y/(o,) = —1. Since [G X1 =2,
any other odd character of G will have the form i x for some x € X, so 6,
sends every odd character in G to —1 and every even character in G to 1. But

then 6, = &_1. Thus the field associated to X is the fixed field of {0y, 0_1},

which is Q(g, + ¢, 1), the maximal real subfield of Q(¢,).

In several of the previous examples, the reader has perhaps noticed a relationship
between the conductor of a Dirichlet character and the discriminant of its associated
field. We include the following result without proof, although we have seen evidence
to support it in our examples, (it may be proved using analytic techniques — see
Chapter 7 of Long’s Algebraic Number Theory, [Lo]).

Theorem 2.1 (Conductor Discriminant Formula). Let X be a finite group of
Dirichlet characters and K its associated (abelian) number field. Then

dijg = (=" ] £y

xeX

where ry is the number of pairs of imaginary embeddings of K. O

Exercise 2.4. Let p > 2 be a prime. Use the Conductor Discriminant Formula to
find the discriminant of Q(¢, + ¢, ") over Q. O

Exercise 2.5. Let p > 2 be a prime and let n > 0 be an integer. Use the Conductor
Discriminant Formula to find the discriminant of Q(¢,») over Q. %

We want to describe more precisely the relationship between groups of Dirichlet
characters and their associated fields. What results is an enhancement of the Galois
correspondence for abelian extensions of Q. Let Q € L C K, where K /Q is finite
abelian. Let X ¢ denote the group of characters of Gal (K /Q). Then

{x € Xk : x(g)=1 forall g € Gal(K/L)} = Gal (K /L)*

= Gal (K /D51 (k /1)
= GW@) =X
where X, is the group of characters associated to L.
Conversely, beginning with a finite abelian extension K /(QQ having group of char-
acters X, let Y be any subgroup of X and let L be the fixed field of Y*. Then
Yt = {g €eGal(K/Q): x(g)=1 forall x € Y} = Gal(K/L)

and

Y = (YHt = Gal (K/L)* = Gal (L/Q) = X;.
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We have shown that there is a bijective correspondence
{subgroups of X} <— {subfields of K}

given by:
Y <— fixed field of Y*
or by
X, =Gal(K/L)* < L.

Note that the above correspondence is order-preserving, i.e., L € L, if and only if
X1, € Xp,. The following diagram illustrates this correspondence.

N

K {1} Xk =G
L H = Gal (K/L) X, =H*= 5/;
Q G = Gal (K/Q) X} =6+

Let us revisit Example 9 momentarily. We consider the group X consisting of
all even Dirichlet characters whose conductors divide n. We know that the field
associated to X is real. If L is any real subfield of Q(¢,), then L is fixed by o_1, so
o_| € Xf, i.e., all the elements of X; are even. But then X; C X. It follows that
the field associated to X must be the maximal real subfield of Q(¢,).

Exercise 2.6. Let X ; be the group of Dirichlet characters corresponding to the field
L; (j =1, 2). Prove or disprove each of the following.

a. The group generated by X and X, corresponds to the compositum L L.
b. The group X; N X, correspondsto L; N Lj. O

For abelian extensions of Q, we can compute ramification indices in terms of
Dirichlet characters. To describe how, we need to make some preliminary observa-
ti.on.s. Let n be a positive integer, and suppose n = ]_[’j’.’=1 p?’ , where the p;’s are
distinct primes and a; > 0. Then

(%) = ﬁ(z
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so a Dirichlet character y defined modulo n may be written as
m
X = l_[ Xp;
j=1

where x,, is a Dirichlet character modulo pj.’ .

For example, the character ¥ : (Z/ISZ) — C* defined by 9(1) = 1, 9(2) =
L4 =1,9(7) =—-1,908) =1,0(11) = -1, 9(13) = —1, ¥(14) = —1 (from
Example 8) may be written as ¢+ = 9, where

O, : (Z/3Z>X — Cisgivenby 0,(1) =1, 9,(2) = —

U, (Z/SZ) — C isgivenby v,(1) =1, 9,(2) = —1,9,(3) = —1,9,(4) = 1.
Let X be a group of Dirichlet characters modulo n = ]_[7’21 pj’ , and put
Xp, ={xp;, : x € X}

We have the following result.

Theorem 2.2. Suppose X is a group of Dirichlet characters with associated field K .
If p € Z is prime then the ramification index of p in K /Q is e = #(X ).

Proof. Letn = lem{f, : x € X} and say n = p“m where p { m. We have
K € Q(¢&,), and we note that Q(¢,,) € L = K(;m) C Q(¢,). What is the the group of
characters with associated field L? Since Gal (L /Q) is generated by Gal (K /Q) and
Gal (Q({W,) /Q), it is generated by X and the characters modulo m. Since (p, m) = 1,

G@ Q) is the direct product of X, with the characters of Q(¢,,). We have L =
EQ(&,) where E is the subfield of Q(¢,«) corresponding to X .

/ Q(¢n)

N
AN

BN

Q(Gm)

\/

Q(Gpe

\

Since p is unramified in Q(¢,,)/Q, the ramification index for p in L/Q is e. Since
p is unramified in L/E, the ramification index for p in E/Q is e. But p is totally
ramified in Q(¢,¢)/Q, so also in E/Q. Thus e = [E : Q] = #(X ). O
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Corollary 2.3. Let X be a group of Dirichlet characters and let K be its associated
field. A prime p is unramified in K /Q if and only if x(p) £ O forall x € X.

Proof. Suppose p ramifies in K /Q. We have e = #X, # 1, so X, contains some
non-trivial element x. Thus there is a non-trivial character x in X with conductor
divisible by p, i.e., with x(p) = 0.

Conversely, if x(p) = 0 for some element x of X, then the conductor of x must
be divisible by p. Thus X, must be non-trivial. But this implies that e = #X, > 1,
whence p is ramified. O

Example.

10. In K = Q(¢,,), the subfield L = Q(i) has associated characters
X, ={x mod12: x(o)=1 forallc € Gal(K/L)}.

Now Gal (K /L) = {1, 0} where o fixes i = ¢, hence o : ¢, +— ¢>. We find
that x(o) = 1 if and only if x(5) = 1. Thus X; = {1, ¥}, where 9(1) = 1,
?(5)=1,9(7) = —1,9(11) = —1. Now ¢ has conductor 4, so ?(p) = 0 if and
only if p = 2. This confirms that 2 is the only ramified prime in Q(i)/Q.

Exercise 2.7. In this exercise we study quadratic Dirichlet characters and their asso-
ciated fields.

a. Let m be an odd positive integer. How many quadratic Dirichlet characters mod-
ulo m are there? How many of them are primitive? (HINT: if p is an odd prime,
how many quadratic Dirichlet characters have conductor p? How many have
conductor p??)

b. What does your answer to part a tell you about the quadratic subfield(s) of Q(¢)),
where p is an odd prime? Does a quadratic subfield always exist? Is it unique?
When is it real?

c. Let p be an odd prime. How many quadratic Dirichlet characters modulo 4p
are there? How many of them are primitive? What does this tell you about the
quadratic subfield(s) of QQ(¢4,), where p is an odd prime?

d. Answer similar questions about the quadratic subfield(s) of Q(¢,).

e. For any odd prime p, show Q(,/p) € Q(gy) form = p or 4p. Use this to
show (without Kronecker-Weber) given any integer d, there is some m such that

Q(Wd) S Q&w). O

Theorem 2.4. Let X be a group of Dirichlet characters with associated field K . Let
p be prime, and define the subgroups

Y={xeX:x(p)#0}
Yi={xeX:x(p)=1}L
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Then:

X / y is isomorphic to the inertia subgroup for p
X / Y, is isomorphic to the decomposition group for p

Y/Y1 is cyclic of order f.

Proof. By Corollary 2.3, the subfield L of K associated to Y must be the largest
subfield of K in which p is unramified. Thus L = K7 is the fixed field of the inertia
subgroup 7}, and T, = Gal (K /L).

By the bijective correspondence between subgroups of X and subfields of K, we
have

Y = Gal(K/L)*

whence

X Gal (K /
[y =5 /Q)/Gal(K/L)L

= Gal(K/L)
=~ Gal(K/L)=T,.

Thuse =#(T,) =[X:Y].

Now consider only the extension L/Q. It is unramified at p and its group of
characters is Y. If n = lem{f, : x € Y}, then L € Q(¢,). Also p { n
since p is unramified in L/Q. Recall that the Frobenius automorphism for p in
G = Gal(Q()/Q) is 0, : & + & (0, is unique since p is unramified).
Now Gal(L/Q) = G/Gal (Q(¢)/L) 5© the Frobenius automorphism for p in
Gal (L/Q) is identified with &,, the coset of o, in the quotient. But if x € Y,
then x(o) is trivial on Gal (Q(¢,)/L) whence x(5,) = x(o,) = x(p). Thus
Yy ={x € X: x(6,) =1} = (6,)" and Y/Y1 ~ @ = (6,), a cyclic group of
order f. Wehave[Y : Y ] = f,[V1:1] =g.

Finally, recall that (5,,) is isomorphic to the quotient of the decomposition group
by the inertia subgroup. But p is unramified in L/Q, so (5,) is isomorphic to the
decomposition group for p in L/Q (The order of the inertia subgroup is 1). Let F'
be the fixed field of the decomposition group for p in L/Q. The character group of
Fis Y| (F is the fixed field of 5, s0 x € Gﬁ@) if and only if x(6,) = 1, so if
and only if x € Y;). Hence Y| = Gal (F/Q).

We return to K /Q. Now p splits completely in F/Q, the primes above p remain
inertin L/F, and ramify in K /L.
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K {1}
ramifies

L T, = inertia subgroup for p in K/Q
is inert

F Zy, = decomposition group for p in K/Q
p splits

Q G

The decomposition group for p in K/Q is isomorphic to Gal (K / F), since the only
splitting of p in K/Q occurs in F/Q, and p splits completely there. We conclude
that Y; = Gal (K /F)* by the bijective correspondence, and

Xy = Gal (K /Q) /Gal P Gal(K/F)

=~ Gal (K /F),

which is isormorphic to the decomposition group for p in K /Q. O

As mentioned earlier, Dirichlet characters will play an important role in the next
section, where we give a proof of Dirichlet’s Theorem on Primes in Arithmetic
Progressions. But results such as the one above also may be used to study certain
finite unramified abelian extensions of a number field K (in the case when K is
abelian over Q).

Example.

11. Let x be a generator of the cyclic group Gal (@\(;5) /Q) and let  be a generator

of Gal@/@). Let K be the field associated to the character x?y and let L
be the field associated to the character group (x2, ). Now x 23 has conductor
20, so we may view all these characters as elements of Gal (@) /Q). Writing
0} : &, = ¢/ asusual, we see thatkery = (0,,), and ker x> = (0, 0,,), whence
L is the fixed field of (o0, ). Also, ker x>y = (0,), so K is the fixed field of (o).
It is now elementary to verify that L = Q(+/5,i) and K = Q(+/—5).

Clearly L/K is unramified at all primes other than 2 and 5. Using the above
results on the relationship between Dirichlet characters and ramification, we may
find the ramification indices for 2 and 5 in the extensions L/Q and K/Q from
which the ramification indices in L/K may be deduced. For the extension K /Q
and p = 2 or 5, we have X = {x,, x>¥} and Y = {x,}, whence e; = e5 = 2
for K /Q. For the extension L/Q and p = 2, we have X = {x,, x> ¥, x*>¥} and
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Y = {x,, x*}, whence e; = 2 for L/Q. For the extension L/Q and p = 5, we
have X = {x,, x> ¥, x>¥} and Y = {,, ¥}, whence es = 2 for L/Q. Thus the
extension L/K is unramified at every prime. (In fact, L /K is also unramified at
the “infinite prime” of K ... terminology we shall explain in Chapter 3.)

It should be noted that while very effective in certain situations, the use of Dirich-
let characters to find ramification indices, etc., has limitations. In the above example,
we were able to find the ramification indices for L/K not merely because L/K was
abelian, but rather because L/Q was abelian. Otherwise we could not have used
Dirichlet characters for L/Q.

More generally, one might ask whether, for a given number field K, it is possi-
ble to find a non-trivial abelian extension L/K in which every prime is unramified
(without requiring that L /Q be abelian). Is it possible to find more than one? Is there
a finite bound on the the degree [L : K] or might it be that a fixed number field K has
everywhere unramified abelian extensions of arbitrarily large degree? (If we require
that L /Q be abelian, then we leave it as Exercise 2.8 to show that there is a maximal
such L, which has finite degree over K.) We shall return to these kinds of questions
(for L/Q not necessarily abelian) after we have defined the Hilbert class field.

Exercise 2.9. Let K be the field associated to the character x 21, where x is a gen-
erator of Gal (@\(;5) /Q) and ¥ is a generator of Gal (@\(;) /Q). Use the above ideas
to construct an extension of number fields L/K in which every prime is unramified,
and for which Gal (L/K) is cyclic of order 2. (HINT: Let L be the field associated
to the character group (x?2, ¥).) O

Exercise 2.10. Let K be the field associated to the character x>y, where x is a
generator of Gal(@\(g) /Q) and v is a generator of Gal (@) /Q). Construct an
extension of number fields L/K in which every prime is unramified, and for which
Gal (L/K) is cyclic of order 2. O

Exercise 2.11. Let K be the field associated to the character x*y, where x is a
generator of Gal (@) /Q) and ' is a generator of Gal (@\(;) /Q). (If you want to
express K as a splitting field of some irreducible polynomial over Q, it may be best
to employ technology to aid in the computations.) Construct an extension of number
fields L/K in which every prime is unramified, and for which Gal (L/K) is cyclic
of order 3. O

Exercise 2.12. Let K = Q(+/—21). Find an extension L of K so that L/Q is
abelian, [L : K] = 4 and every prime is unramified in L/K. (HINT: Use Dirichlet
characters modulo 84.) O

3 Dirichlet Series

The Riemann zeta function and the Dirichlet L-functions are examples of Dirichlet
series. In this section, we shall discuss a few general properties of Dirichlet series,
which we shall need later. This is a very rich subject; much more than what we
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do here can be said. The reader is encouraged to consult a text on analytic number
theory.
A Dirichlet series is a series of the form

o0

ICED N

n=1

where a, € C for all n, and s is a complex variable. We gather some facts about
Dirichlet series in the following discussion. More can be found in Serre’s A Course
in Arithmetic, [Sel].

Exercise 2.13. Prove ABEL’S LEMMA: let (a,,) and (b,,) be sequences, and for r >
m,putA,, =y _ a,andS,, =>_ a,b,. Then

n=m

Sm,r = Z Am,n(bn - bn+l) + Am,rbr- <>

Exercise 2.14. Let A be an open subset of C and let (f,,) be a sequence of holomor-
phic functions on A that converges uniformly on every compact subset to a function
f. Show that f is holomorphic on A and the sequence of derivatives (f,) converges
uniformly on all compact subsets to f’. (HINT: Let D be a closed disk contained in
A and let C be its boundary. For s in the interior of D, Cauchy’s Formula applies
to the f,(so). Let n — oo to get a similar formula for f (so) For the derivatives,

proceed in the same way, using f’(sg) = / f6s) o
(s — SO)2

Lemma 3.1. If f(s) = Y o, @ converges for s = sy, then it converges uniformly

in every domain of the form {s : Re(s — s9) > 0, |Arg(s — s9)| < 0} with 6 < ’;

Proof. Translating if necessary, we may assume sy = 0. Then we have that Y - a
converges and we must show that f(s) converges uniformly in every domain of the
form {s : Re(s) > 0, |Arg(s)| < 6} for & < 7. Equivalently, we must show that

f(s) converges uniformly in every domain of the form {s : Re(s) > 0, 'Y(L) < M}.
Lete > O and let A,, , be as in Abel’s Lemma (see Exercise 2.13 above). Since
Y™, a, converges, there is a sufficiently large number N so that if r > m > N

then we have |A,, | < €. Let b, = n™* and apply Abel’s Lemma to get

Smr =Y Apa(n™ =4+ 1))+ Ay r .
Taking absolute values, and noting that

d
. N .
|efc: _ ede| — |S| efz‘Re(s)dt — | | (efcRe(s) _ edee(s))’
. Re(s)
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we obtain

Is] <, & B
Smr < 1 e(s) _ 1 Re(s) .
| .|_e<+Re(s)Z<n (n 4 1)7R)

n=m

Hence
Sl < & (14 M(m=8C) — 70 < e(1 + M).

Of course S, is just a difference of partial sums of our Dirichlet series, so the

uniform convergence of f(s) on the domain {s : Re(s) > 0, R‘g('s) < M} follows. O

Theorem 3.2. If the Dirichlet series f(s) = Y ., “ converges for s = s, then it

n=1 ps

converges (though not necessarily absolutely) for Re(s) > Re(sy) to a function that
is holomorphic there.

Proof. Clear from Lemma 3.1 and Exercise 2.14. O
Corollary 3.3. Let f(s) = >~ % be a Dirichlet series.

i. If the a, are bounded, then f(s) converges absolutely for Re(s) > 1.
ii. If A, =a;+ ...+ a, is abounded sequence, then f(s) converges (though not
necessarily absolutely) for Re(s) > 0.
ii. If f(s) =Y oo, o converges at s = so, then it converges absolutely for Re(s) >
Re(so) + 1.

Proof
i. Suppose the a, are bounded, say |a,| < M. Then

-
<M E n?’
n=1

-
Qn
2

n=1

o 1
n=1 no

where 0 = Re(s). The result now follows from the convergence of
foro > 1.

ii. Forr >mletA, , = Z,rl:m a, as in Abel’s Lemma. We have that the A,, , are
bounded, say A,,, < M. Apply Abel’s Lemma with b, = n™* as in the proof
of Lemma 3.1. We get

By Theorem 3.2, we may assume that s = o is real. But then we have

r—1

Sl < M (Z

n=m

1 1
n (n+1)

1

I

Surl <,
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from which we see that the partial sums of f(s) comprise a Cauchy sequence
when Re(s) > 0.
iii. Let

|
§6) = fls+50) =Y )( ).

Since f(sg) converges, b, = ;;;) — 0 asn — oo. Hence, {b,} is bounded. By

(1), g(s) converges absolutely for Re(s) > 1. Thus f(s) = g(s — s¢) converges
absolutely for Re(s — s9) > 1, i.e., for Re(s) > Re(sg) + 1. |

X
Let x : (Z / mZ) — C*, be a Dirichlet character. The Dirichlet L-function
associated to x is

L(s, x) = Z X;?).
n=1

The Riemann zeta function is

[ee]

;@):Znﬂ.

n=1
Suppose x # x,.- Let A, = x(1) + ...+ x(n) and write n = mk + r, where

0<r <m-—1.Then

Ay =[x +...+ xm]+[xm+D+...+xCm)]+...
+[xtkm+ 1)+ ...+ x(km +r)]
=xtkm+1D+...+ xtkm+r)

SO |A,| <r < m.
Now use Corollary 3.3. By (ii ), if x # x,, L(s, x) is analytic for Re (s) > 0. For
any x (including x,), L(s, x) converges absolutely for Re (s) > 1 by (iii).

Proposition 3.4. L(s, x) has a so-called Euler product:

Ls.o= [] A=x(pp™™"  forRe(s)> 1.

p prime

Proof. Fix s, with Re (s) > 1. We want to show:

x(p\ !
lim (1— p) — L(s, x).
N—00 ps

P=N

Say pi, ..., pi are all the primes less than N. Then
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k AN L k ) m
n(l—X(f’)> =]—[<1+X;f’)+...+xéfqg)+...)

i=1 i
x(PY Py )
(P Py )

where Jy = {n € Z : n > 0 and n is not divisible by any prime p > N}.

—1
We have L(s, x) — l_[ <l — X(p)) = Z x(n) . Taking absolute val-
nX

S
p=N p ne@ndn)
ues, and applying the triangle inequality, we get

x(n) 1
Z s < Z " where 0 = Re (s)
neZ\Jn neZi\Jn
1
< Z o —- 0 as N — oo,
n>N
since Y, I, converges for o > 1. The result follows. O

Note that L(s, x) # 0 for Re (s) > 1. We obtain
log L(s, x) = — »_log(1 — x(p)p™),
P
where “log” denotes the branch of the logarithm such that log L(s, x) — 0 as
§ — 00.

Using the expansion for log(1 + T'),

log L(s, x) = »_ —log(1 = x(p)p™)

p
_ x(p)'p™
=227,

p n>1
-y
— npn:
Now )g:) < ‘pl = p}m where o = Re (s), so
x(p)' 1 !
ZZ np"s SZZPWUSZMU’
P n>1 p n>1 m=>1
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which converges for o > 1. Hence the above expression for log L(s, x) is absolutely
convergent for Re (s) > 1. This allows us to rearrange the terms to get

x(p)' x(p) x(p)'
10gL(s» X):ZZ I/lpns :Z px +ZZ np’” :
p nxzl P p nz2
Let

peo=Y Y 0
P

n>2

Note that (s, x) is absolutely convergent for Re (s) > 1/2, (so B(1, x) takes a
finite value).

4 Dirichlet’s Theorem on Primes in Arithmetic Progressions

In this section, we give a proof of Dirichlet’s Theorem on Primes in Arithmetic

Progressions. As we mentioned earlier, Dirichlet’s proof of this theorem is a gener-

alization of a technique of Euler that used the Riemann zeta function to prove that

there are infinitely many primes, (the case m = 1). We sketch Euler’s proof here.
Recall that the Riemann zeta function is given by

;(s>=ans = [Ja-p"

n=I p prime

Suppose there are only finitely many primes py, p2, ..., p, in Z. Then

cw=[Ja-pH " =] (1 b )
j=1 ;

j:] p‘j

Taking limits, we have

) n 1
‘}gr}é“(S)=]—[<1_ 1 )

Jj=1 Pj

a rational number. But, (from the series for ¢(s)) it is clear that lin} Z(s) = o0, a

contradiction.
In the proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions, the
zeta function is replaced by Dirichlet L-functions.

Theorem 4.1 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If m
is a positive integer and a is an integer for which (a, m) = 1, then there are infinitely
many primes p satisfying p = a (mod m).
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Proof. Let (m, a) = 1 and consider all Dirichlet characters x that are defined mod-
ulo m. Then

Y x@ ogLs. 0 =Y x@! (Z X;f) + B, x))
X p

x€(@uz)"

= Z ;S Zx(a)‘lx(p) + Zx(a)_lﬂ(s, x)
P X X

= Z pls Zx(pa_l) + Zx(a)_lﬂ(s, x)-
p X X

But, by the orthogonality relations,

ZX(PG_I)Z{g(m) p=a (modm)
X

otherwise,
)
something
Z x(a) "log L(s, x) = ¢(m) Z p+ abs. conv. Y]
X p=a (mod m) for Re (s) > )

Now let s — 1. For the right side of (x) we get

li - finit tant),
Sgl} o(m) Z p—" + (afinite constant)

pP=a (mod m)

which would be finite if there were only finitely many primes p with p = a
(mod m). The proof will be complete if we can show that for the left side of (x)

. —1 _
we have }Enl Z x(a)” log L(s, x) = oo.

X
First, if x = x,, (with modulus m), then

L(s, x,) = l_[(l — %P~ =¢0s) l_[(l —p¥)—> o0 ass — 1
P

plm

whence log L(s, x,) — oo ass — 1.

Now, if x # x,. then we have seen by (ii) of Corollary 3.3 that L(s, x) is
analytic for Re(s) > 0. Since L(1, x) is defined for x # x,, logL(1, x) will
be finite if we can show that L(1, x) # 0 for x # x,. Given this, we’ll have
Zx x(@)~'log L(s, x) — oo as s — 17, and the proof will be complete.

Of course, it remains to show that L(1, x) # 0 when x # x,. In 1840, Dirichlet
gave an analytic proof of this result. In 1850, Kummer gave an arithmetic proof,
which we begin here. We shall need the Dedekind zeta function.
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Let K be an algebraic number field and let a vary through the nonzero integral
ideals of Ok, (so that we may view Na as a positive integer). Define the Dedekind
zeta function of K as

IOEDY Nlas.

a

By an argument similar to the one for L-functions, we have

tx(s)=[Ja=nNp™7,
P

where p runs over the prime ideals of Ok. (The proof uses unique factorization of
ideals.) It is easy to see that

(o]

Lk (s) = Z Zn where y, = #{a : Na = n}.

s
n=1

Exercise 2.15. Show that ¢x(s) is absolutely convergent for Re (s) > 1. (Com-
pare this to (i) of Corollary 3.3 in the section on Dirichlet series — are the y,
bounded?) O

The following theorem comes from the work of Dedekind; we omit the proof.

Theorem 4.2. ¢k (s) can be analytically continued to C — {1}, with a simple pole at
s=1,1ie,

p(K) . .
Lk (s) = ! + (something entire).
5§ —
Moreover
2MQ2m)2hg R
p(K) = (2m)?hg Rg
wi/ldk gl
where

r1 = # real embeddings of K

ro = # pairs of imaginary embeddings of K
hx =#Cg = class number of K
Ry = regulator of K
wg = # roots of unity in K

dx,o = the discriminant.
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We shall use the Dedekind zeta function to show that L(1, x) # 0 for x # x,,
completing the proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions.
Take K = Q(¢n,), where m is the modulus in Dirichlet’s Theorem, so also the
modulus of the characters x. We have

cx(s) = Ja—np™
p

=[][Ta—-np"

P plp
- (HH(I - NpS)l)(l"[]"[(l - pr)1>.
plm plp ptm plp

Now Np = p/, where f is the residue field degree, and since K /Q is Galois, we
have efg = o(m). If ptm, thene = 1, f =#Z(p) = ord,, p, g = p(m)/f.

Lemma 4.3. If p { m, then (1 — T/)*// =T[ . (1 — x(p)T).

Proof. Let G = Gal(K/Q), where K = Q(¢,,) as before. Let Z = Z(p) be the
decomposition group for p in K /Q and define amap G — Z by x — x| . Then
z

[Ta-xD=]] J] a-x»n)
xeG veZ xeG,
x|Z=w

=[]a-vpn®

veZ
where
) =#xeG: x| =y}

= #tker (G — 2)

_#Gy |

= /#z

=vm /e =g
Thus

[Ta-xmD) =] =vpTy.

xeG vez

It remains only to show that 1 — 7/ = ]_[]/,EZ(I — ¥ (p)T). As a subgroup of
(Z/mZ) , Z is generated by p mod m. Map Z — wp = {f™ roots of unity} by
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¥ = Y (p). Since p is a generator, this is an isomorphism. Thus

[Ja—vmny=[]a-n1)

vez USITN
=1-71/.

Now put 7 = p~* in Lemma 4.3:

(A= p= Ny =TTa = x(pp™~".
X

Take the product over all p { m:

[Ta=phy e =TT ] = xp ™"

ptm X ptm

Now, if p|m then x(p) =0, so

l_[(l — pShy—emif — 1_[(1 — p eIl — 1_[ L(s, x).
X

ptm P
On the other hand,
l_[(l — p—Sf)—W(m)/f — 1_[ 1_[(1 _ Np—x)—l
pim ptm plp
=@ [0 —Np™.
plm plp
Thus

w0 = Np) =[] L6 0

plm plp X

=L(s, x) [] LG, 0

XF#Xo

= [Ja-p) [T L6 0.

plm XFXo
We get

1—Np~*
(Hmm [T,,( p )) x(s) = l—[ L(s, x).
(1_[17|m(1 o p—S)) C(S) s

39
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Now [] l_[(l —Np~™)and l—[(l — p~¥) are non-zero constants, while each of ¢ (s)

PIm pip plm
and ¢ (s) has a simple pole at s = 1. Letting s — 1, the expression on the left side

approaches a constant, hence Hx #%o L(s, x) does too. This shows that L(1, x) # 0
forall x # x, and our proof of Dirichlet’s Theorem is complete. O

S Dirichlet Density
Let f(s), g(s) be defined for s € R, s > 1. Write f(s) ~ g(s) to signify that
f(s) — g(s)is bounded as s — 1%,

We may reformulate our proof of Dirichlet’s Theorem using this notation. Recall
that for any y,

log L(s, x) = Z Xl(f) + {Dirichlet series converging for Re (s) > 1/2},

P

SO
x(p)
log L(s, x) ~ Z f .
s P
Thus (assuming L(1, x) # 0if x # x,)

Y x@ logLis. )~ Y. “’;’?)
X

pza(mod Wl)

~ log L(s, x,)-

Now

-1
Les.x) =[] (1 - X°(f’)> = (H(l - p‘f));(sx

p p plm

so log L(s, x,) ~ log ¢(s) and we get

Z l'v ! log ¢ (s).
S @(m)

s
pza(mod m) p

Letting s — 17, we find that ) _
Theorem.

p=a(mod m) pl diverges, which gives Dirichlet’s
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The above reformulation leads naturally to the notion of Dirichlet density. Note
that lir§1+(s —1)¢(s)=1,and

1 1 1
o(m) log¢(s) = o) <log(s — 1)¢(s) + log (s B 1))

Hence

2 e ()
@(m) s—1)

pza(mod Wl)

Indeed

a1
im Lp= (mOdl P .
s—1+ log(x—l) (0(1’)1)

This motivates the following definition.
Let S be any set of primes. If

ZPES p*S

im ) =§ exists,
s—1t log(x_l)

then we say that 8 has Dirichlet density § = §(8).

Examples.

1

12. If § = {primes p : p = a (mod m)}, then §(8) = o)

13. If § is a finite set of primes, then §(8) = 0.

14. If § = {primes p : the first digit of p is “1”’}, (e.g., 11, 17, 103, etc.), then
8(8) = log,, 2. (This example is due to Bombieri; it illustrates the distinction
between Dirichlet density and natural density. See 6.4.5 of Serre’s A Course in
Arithmetic, [Sel].)

Exercise 2.16. Is the converse to Example 13 also true? O

Exercise 2.17. Show that if § = {all primes of Z}, then §(8) = 1.

Exercise 2.18. Let H be a subgroup of Z / n7, and let
S = {primes pof Z : p+nZ € H}.

Find §(8) in terms of #H and prove that your answer is correct. O

Exercise 2.19. Suppose & and T are sets of primes with 8 N T = ¢. Show that if
any two of §(8), 8(7), 8(8 U T) are finite then so is the third, and that in this case
88 UT) =4(S) + 8(7). O
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Theorem 5.1. Let K /Q be Galois, and let
Sk ={p € Z: p splits completely in K /Q}.

Then 8(Sx) = 1/[1( L Q]

Proof. Let¢x(s) = ]_[p(l — Np~*)~! for Re (s) > 1, be the Dedekind zeta function
for K. Consider s € R, s > 1. We have

log ¢x(s) = — Y log(1 — Np™)
p
00 1 -
DI
p n=l1 n
Now log £ (s) = log((s — )¢k (s)) + log(1/(s — 1)), so

log ¢k (s) ~ log(1/(s — 1))

> l —ns
~2>. b

p n=l1

~ Z Np—s + Z Z :l Np—nx
p p n=2
«,ZZ:pJp*S
p

since © INp=s is bounded as s — 17. Hence
22 p

n=2 n

1
log ¢k (s) ~ log (s N 1> ~y N
p

~ Z o+ Z pI IS Z .

p p p
S (p/p)=1=e(p/p) fp/p)>1 Sfp/p)=1
e(p/p)>1

Note that the second series is bounded as s — 17. The third is also, since the
number of ramified primes is finite. Hence,

1
log ¢k (s) ~ log (s B 1) ~ Y epp.
PESK
If p € 8k, then g(p) = [K : Q], so

1
log ¢k (s) ~ log (S - 1) ~ Y IK:Qlp

PESK
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whence

1
log<s_ 1) =[K:Q1 Y p~ +b0s)

PESK

where b(s) is bounded as s — 1*. We may now compute §(Sg).

—5

. Z esg P
5 8 = 1 e
(Sk) X—l>nll+ log(xil)
| ([K QY s, P MS))_I
= lim
Z[}ESK pis
—[K:QI". D

More generally, we may also define Dirichlet density on sets of prime ideals in a
number field F. If § is a set of prime ideals of OF, and

s—>1+

lim Lpes NP

| =§ exists,
s—1t log(x_l)

then we say that 8 has Dirichlet density § = §(8).
The previous theorem holds in this more general setting:

Corollary 5.2. Let K/ F be Galois, and let

Sk/r = {p € OF : p splits completely in K /F}.

Then 6r(Sk/F) = l/[K . F]

Proof. Exercise 2.20.
O

Let 8,7 be sets of primes in Op, where F is a number field. We define the
following notation.

Write 8§ < T tomean §(8\7T) = 0.
Write 8 ~ Tif § < T < 8.

Exercise 2.21. Let F be a number field.

a. Compute §7(8), where § = {primes p of O : f(p/pN7Z)=1}.

b. Let 8 and 7 be arbitrary sets of primes in OF. Prove or disprove: 8 ~ T if and
only if § and T differ by finitely many elements. O

Theorem 5.3. Let E and K be number fields, each of which is Galois over Q. Then
8k < 8g ifandonlyif E C K.
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Proof. “<="is clear. For “=" suppose Sx < 8g. Note that Sxr = 8 N Sx. We
have §(Sg '\ 8g) = 0, so (using Exercise 2.19),

8(8kE) =08(SENB8k) =8(8k\8g) +8(8g N8k) = 8(Sk).

Theorem 5.1 gives [KE : Q] = [K : Q], whence KE = K and E C K. O
Exercise 2.22. Can the hypothesis that E£/Q is Galois be omitted in Theorem 5.3?¢

Exercise 2.23. Generalize Theorem 5.3 to two extensions E and K of an arbitrary
number field F using 67 and 8g/r, Sg/F. O



Chapter 3
Ray Class Groups

As we have seen in the previous chapter, there are infinitely many primes of Z in an
arithmetic progression {a + jm : j € N} whenever (a, m) = 1. This is a theorem
about primes of Z, but one may hope to generalize it to prime ideals of O where
F is an algebraic number field.

Are there infinitely many primes p of O in an “arithmetic progression”? What
might one mean by an “arithmetic progression”? Perhaps we could interpret it as a
question about ideal classes: Given an ideal class ¢ € Cp, are there infinitely many
primes of O in ¢? (Recall Cr = Zr / Pr where Zr = {nonzero fractional ideals of
F}, Pr = {principal fractional ideals in Zr}.) But where does the modulus m enter
into this?

If we hope to follow Dirichlet, we must replace m by an ideal m of Op, and we
must consider “congruences” modulo m. This leads naturally to the idea of general-
ized ideal class groups, defined for each such m, called ray class groups. We shall
also need to expand our notions of Dirichlet character and L-function if an analogue
of Dirichlet’s argument is to apply in this more general setting.

In this chapter, we pursue these ideas, following the framework of Dirichlet’s
argument, as Weber did. This will lead us to the notion of class field, and the proof
of the Universal Norm Index Inequality. First, however, we shall need a brief dis-
cussion of absolute values and the Approximation Theorem.

1 The Approximation Theorem and Infinite Primes

Theorem 1.1 (Approximation Theorem). Let | - |y, - - - | - |,, be non-trivial pairwise
inequivalent absolute values on a number field F, and let B, ..., B, be non-zero
elements of F. For any ¢ > 0, there is an element a € F such that |a — B;|; < &,
foreach j=1,...,n.

Proof. First, we show that there are elements xi, ..., x, € F such that for every
j=1,...,n

|xjl; > 1, and|x;|; < 1foranyi # j

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 3, 45
© Springer Science+Business Media, LLC 2009
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by induction on n.

Let j = 1, (other values of j are handled similarly). For n = 2, since | - |
and | - |, are inequivalent, we must have that there are elements y, z € F such that
Iyli > 1, |yl < 1, while |z]; <1, |z]p > 1. Take x; = 7.

Now suppose there is some x € F' that satisfies |x|] > 1l and |x|; < 1 for all
j=2,...,n—1.Bythe n = 2 case, there is some v € F with |v]; > 1 and
|[v], < 1. Choose x; so that

X if |x], <1

x =1 x"v ifjx], =1
r .
T fxl > 1,

where r € Z will be determined as follows. In the case where |x|, = 1, note that
while [v]; may be larger than 1, we still have |x"v|; < 1forall j =2,...,n, when
r is sufficiently large. In the case where |x|, > 1, we have

r
lGlvly vl

x| = = .
U ey T e,

[v];

When 2 < j < n — 1, this yields |x(]|; < — 0asr — o00. Also, |x1]; <

[Ix" 1]
HX|‘1E,|]*” — |v|i as ¥ — oo, while |x1], < ||X|‘;1”—1| — |v|], < 1 asr — oo. Thus,
again, if r is sufficiently large, then we have |xi|; < 1 forall j =2,..., n, while
|X1|1 > 1.
Our induction argument shows that we have x; € F thatis large at | - [; and small
at all other | - |;. By symmetry, we may find x», ..., x, similarly.
L

Now let = ) j 1i!x Bj where ¢ will be determined below. We have (by the
triangle inequality) '

Bj
1 + x¢
Xj

la — Bjl; <

J

!
+Z‘1+xi[ﬁi

o i

Choose ¢ to be a sufficiently large integer so that the above expression is smaller
than ¢ for every j. O

Note that when p is a prime ideal of O and ¢ = ||, for 7 € p — p?, the
statement o # 0 and |o — Bl, < & gives ordp(g — 1) > n, where n is given by
‘;‘p < c". If o and B are p-adic units, then this just means « = B (mod p"). In
particular, if each of the absolute values in the Approximation Theorem is p-adic
for some p, we get the Chinese Remainder Theorem.

Note also that when | - |; = | - |, where o : F' < R, the statement 8 # 0 and
|l — Bls < € for small ¢ means that o (a/8) > 0.

The Approximation Theorem is yet one more result that suggests that it would
be advantageous to have some kind of unifying notation that would allow us to treat
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simultaneously the p-adic absolute values on a number field F and the absolute
values arising from embeddings of F into C.

In the p-adic situation above, we were able to write « =  (mod p"). We can
write something similar in the case of the real embeddings o of F if we make the
following convention. When o : F < R, we associate to o a formal object that we
call an infinite real prime, which we denote by p,. We may then define

a=p (mod p,)ifand onlyif o(a/B) > 0.

(We may also define infinite imaginary primes: We associate an object p, to each
conjugate pair 0,5 : F — C. We don’t use the congruence notation with infinite
imaginary primes however.)

Other language used for prime ideals can be adapted to infinite primes as well.
In particular, if K/F is an extension of number fields, we say that an infinite prime
po ramifies in K/ F if and only if o (F) C R, but for some extension of o to K we
have o(K) € R.

Using the infinite real primes (and the usual primes), we may also define what is
known as a divisor, (or modulus) for F as a formal product [, p'®, where 7(p) € N
is non-zero for only finitely many p, and can only take a value of O or 1 when p is an
infinite real prime. (We may consider the notion of an infinite imaginary prime, but
if we do, we must take #(p) = O for all infinite imaginary primes p.) Specifically, we
shall denote the product of all the infinite real primes by Mmoo = [, ;eu Po-

In the next section, we avoid the use of these infinite primes at first, but at the
end we discuss how one may rewrite what we have done in terms of them. It is
recommended that the reader consider this question while progressing through the
section.

In the next chapter, we shall present the notion of places, which is a somewhat
different way to treat these ideas, and which will be the language we use in our
discussion of ideles.

2 Ray Class Groups and the Universal Norm Index Inequality

If an element @ € F satisfies o(«) > O for every real embedding o of F, we say
that « is fotally positive, and write o >> 0. Let m be a non-zero integral ideal of OF.
Define P;m to be the subgroup of Pr generated by

{la) :a € Op,a =1 (modm), and a > 0}.

How do we characterize a fractional ideal in P} ? The following exercise pro-

vides an answer. Write « =1 (mod m) when & = 1 (mod p°% (™) in the com-
pletion F, for every p|m. (We are abusing notation slightly here; when writing
congruences modulo powers of p in the completion, we really mean congruences
modulo powers of the unique maximal ideal in the ring of integers of F},.)



48 3 Ray Class Groups

Exercise 3.1. Show that

Pim=@):aeFa >0,a=1 (mod m)}

= {(a) : g > 0;0,p € Op primetom;a = B (mod m))}.

0

Let Zr(m) be the group of fractional ideals of F whose factorizations do not
contain a non-trivial power of any prime ideal dividing m:

Zr(m) ={a € Ir : ordya = 0 for all pjm}.
The strict (narrow) ray class group (or generalized ideal class group) of F for m, is

Tr(m
R;m: F( )/P;m-

Example.

1. Let F = Q, m = mZ, where m > 1. If (r) € Z(m), then we may suppose r > 0
and r = a/b, where (a, m) = (b, m) = 1. The map

Z X
To(m) — ( / mZ)
givenby (r) > ab~! (mod m) is then well-defined. It is clearly surjective and its

kernelis {(r) : r > 0,r =a/b,(a,m)=(b,m) =1,a =b (mod m)} = Péf’m.
Hence for F = Q, m = mZ, we have

IQ(m)/P&m = (Z/mZ)X :

For a non-zero integral ideal m of O we define the ray modulo m as
Prm={{@):a=1 (modm)}.
The ray class group of F for m is

7
RF,m = F(m)/’PF,m.

(The strict ray class group R;m may also be viewed as a ray class group in the
above sense if one views P} as a ray modulo the divisor mm,,. We discuss this
briefly a bit later.)
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Returning to Example 1, for F = Q, m = mZ, we have R(&m = (Z/mZ) and

Rom = (Z/mZ)X/{il}.

These ideas are consistent with the original notion of an ideal class group of F,
for when m = O, we have

Rim = Lr / P = Cr, the ordinary ideal class group

R; m = Ir /,P+, the strict (narrow) ideal class group.
' F

Exercise 3.2. Let F = Q(4/m) where m > 1 is a square-free integer. Let m = Op
and let ¢ be a fundamental unit in Of.

a. Suppose Nrg(e) = —1. Show that the ideal class group of F and the strict ideal
class group of F' are isomorphic.

b. Suppose Nrg(¢) = 1. Show that the strict ideal class group of F' is twice as
large as the ideal class group of F. O

Our question about a possible generalization of Dirichlet’s Theorem on Primes
in Arithmetic Progressions may be formulated as follows.

Fix a non-zero integral ideal m of O, where F is an algebraic number field. Are there
infinitely many prime ideals p of OF in each class of R;,m ?

In the hope that the answer is yes, we shall attempt (as Weber did) to follow the
framework set by Dirichlet. Define a generalized Dirichlet character (or Weber
character) of modulus m as a homomorphism of groups x : R;m — C*. Recall

from our example in the case F = Q, m = mZ, we have R&m = ( /mZ) SO

that this truly is a consistent generalization of the classical Dirichlet characters. We
may also define an L-function for generalized Dirichlet characters: let

Lu(s, )= Y, x(@Na™,

integral ideals
a of Op,
(a,m)=1

where by x (a), we really mean x of the image of a in R;,m‘ These L-functions are
sometimes called Weber L-functions. (In the case F = QQ, we recover the Dirichlet
L-functions.)

As with Dirichlet L-functions, we have an Euler product for Ly, (s, x):

Ln(s, ) = [ [ = xNp™) 7",

ptm
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Taking logs and proceeding as before, we find that there are infinitely many primes
p in each class, provided that L., (1, x) is defined, and L (1, x) # O for every
X F Xo-

If we wish to continue to follow Dirichlet’s argument, we must find an extension
K/ F such that L, (s, x) occurs as a factor of g (s). Class field theory will establish
this field K.

First we want to study the strict ray class groups R;m. There is a well-known
result that the ordinary class group is finite; its order has been the subject of much
study. We may ask whether the strict ray class groups are also finite groups. The
answer is provided by the following proposition.

Proposition 2.1. R}’m is a finite group, with

_ hF27p(m)

#RE =
B Up UL

where

hF = #GF
r1 = # of real embeddings of F
p(m) = # (OF/m) = l_[Npe*’_l(Np — 1), wherem = [T, ., b

pim
Ur = OF, the units of Op
Ufn={e€lp:e>0,e=1 (modm)).

#R}"m is called the strict ray class number modulo m or the ray class number mod-
ulo mme.

Proof. Let Pr(m) = {principal fractional ideals in Zr(m)} = Zp(m) N Pr. We
divide the proof into four steps.

Zr(m ~7 _
stEP 1. ZF( )/PF(m) > F/pF = Cp. . .
Proof of step 1. We must show Zp = Zp(m)Pr (i.e., for each a € Zf there exists
o € F such that a = ()b, for some b € Zr(m)).

VA
/

N

Pr(m)
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Letpy, ..., p, be the primes dividing m. For each j,letw; € p; —p%. Leta e Zp,
ej = ordy (a) € Z. Choose € F satisfying:

lo — 7o, < i1y,
foralli =1, ..., r (possible by the Approximation Theorem).
It follows that |a|,, = |7rj.f|pf, whence ordy, («) = e; = ordy,(a). Thus
ordy (@ 'a)=0forall j =1,...,r.

Let b = a~'a; by the above, it will be in Zr(m), and clearly we have a = (a)b.
Pr(m) ~ F(m)
STEP 2. /F /P;f,m = /UFF;: where

F(m) = {e € F*: (a) € Zp(m)}
Fr={oe F*:a>0,a=1 (modm)}.

Proof of step 2. Consider the epimorphism F(m) — Pr(m) / Pt that is given
Fm

by a = (@) Py .. Its kernel is

{o € F(m): (@) € P{ )
= {a € F(m): 3B € F,} such that () = (B)}
= {a € F(m): 3B € F,;! such that B = ae for some ¢ € Ur}
— UpFY.

Thus

F(m)/UFF,I ~ PF(m)/P;m'

STEP 3. F(m)/FnJ.[ = (1) (OF/m)X.
Proof of step 3. Map F(m) — {£1}" (OF /m)X by
o — (signoi(a), ..., signo, (o))(or +m)

where o1, . . ., 0, are the real embeddings of F.
We leave it as Exercise 3.3 to show this map is an epimorphism. Its kernel is

e Fim):a >0, a=1 (modm)}=F}.

UrFT ~U
STEP 4. “*F m/FQ; = F/u;m.
Proof of step 4.
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MFF“t/F; guF/uFmF; = uF/u;m.

Now we combine the information from all four steps. Consider the following
diagram.

Zr(m)

F(m) <«—— 7Pr(m)

UprFF «—— Pf

We have
#RY = [Zp(m) : P} ] = [Zr(m) : PrOwIPr(m) 2 Pf ]
7z P F i 2
_ [Zr(m) : Pp(m)][F(m) m]/[uFF; £
— hr2"e(m)
= / (Ur U ] .
Example.

2. Let F = Q(+/3), m = OF. As we have seen previously, Rfwm= Ir /P; With

hp2g(m) . .
Wr ity 1" For this particular field F, the

quantities in the numerator of this formula are well-known: r; = 2, hp = 1, and
o(m) = o(Of) = # (OF /OF) = 1. To find the denominator, note that by
Dirichlet’s Unit Theorem,

.. . +
Proposition 2.1, we obtain #R . =

Ur = (£1) x Z = {£1) x ()

where ¢ is a fundamental unit. The fundamental units for Q(«/ 3) are 2 + N 3,
both of which are positive. Take ¢ = 2 + +/3; then we have ¢ > 0, and

Ufw={ueclr:u>0,u=1 (mod Op)} = (e).

Hence [Ur : U} ] = 2, and we conclude
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1221

Rin=

2.

Finally, note that in this case Ry = Ir / Py SO We obtain #Rp , = #Cp =
hrp = 1.
Exercise 3.4. Let F = Q(+/5), m = Op. Find the fundamental units for F, and

determine R}’m (up to isomorphism of groups). O

The definition of class field is due to Weber ([We2], 1897-1898). Earlier, Kro-
necker (e.g., [K1], 1853) had observed that every abelian extension of Q is cyclo-
tomic. (In 1886-1887 Weber gave the first complete proof, [Wel].) Kronecker had
also observed ([K3], 1883-1890) that the transformation and division equations of
modular and elliptic functions generated abelian extensions of imaginary quadratic
fields. (He had hoped to prove that every abelian extension of an imaginary quadratic
field can be obtained thus. Weber, [We3], partially succeeded in doing this in 1908,
but the first complete proof did not come until Takagi, [T], in 1920. See also
Hilbert’s twelfth problem, [Hi3].) In these examples, Weber observed that the primes
that split completely in these abelian extensions seemed to be related to the Galois
groups. (Compare Theorem 1.8 in Chapter 1.) These ideas led Weber to his defini-
tion of class field.

Let K/F be Galois, and let m be an integral ideal of Op. We say that K is the
class field over F of P if

Sk/r = {primes p of O : p splits completely in K/ F'}
~ {primes p of O : p € P} .}
(Recall that § = T if and only if they differ by a set with Dirichlet density zero.)
Example.
3. For F = Q and m = mZ, we have
{pZ: pZ e Péfqm} ={pZ:p=1 (modm), p> 0}

= {pZ : pZ splits completely in Q(¢,,)/Q}
= 8awn/Q-

Thus K = Q(&,) is the class field over Q of P ..

More generally, we may define the notion of class field for subgroups of Ir(m) that
contain P;m. If m is a non-zero integral ideal of O, and H satisfies

Pfw <M <Zp(m),
then we say K is the class field over F of 'H if K /F is Galois and

Sk/r ~ {primes p of Of : p € H}.
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What Weber had observed in the cases F = Q and F equal to an imaginary
quadratic extension of (Q, was that the Galois groups for K /F were isomorphic to
the associated factor groups Zr(m) / 7 (so clearly abelian). The isomorphism with
the Galois group in these examples is an illustration of the Isomorphy Theorem,
which we state shortly (its proof will be a consequence of Artin Reciprocity, see
Chapter 5).

It will be some time before we can address the question of the existence of a class
field for any such H, but the issue of uniqueness can be settled easily.

Theorem 2.2 (Weber). If the class field K of H exists, then it is unique.
Proof. Recall the Dirichlet density of a set § of primes of F is

1
5,(8) = lim Z”ESIN"S.
s—>1+ 10g(571)

We have shown that 6 /(8 /r) = [Kle]’ If K, K> are two class fields for H, then let
K = K1 K>. We find

Sk/r = Sk,yF N Sky/F
~{pof F:peH}

i.e.,
Sk/F X 8k, /r X SkyF-
Thus
1 1 1
[K:F| (K :F] [Ky:F]
and we must have K = K| = K. O

Exercise 3.5. Let F be a number field and let n, m be (not necessarily distinct)
ideals of Op. Let Py | < Hi < Zp(n), and Py < Hay < Zp(m). If Hy # Ha, is it
possible for them to have the same class field over F? O

Let us return to our efforts to generalize the techniques of Dirichlet in his proof
of the Theorem on Primes in Arithmetic Progressions. Let F, m be as before.

Recall that a group homomorphism yx : Zr(m) / pt C* is called a gener-

Fm
alized Dirichlet character, and we have defined the Weber L-function L, (s, x) =
Zuel(m) );/(;5), which has Euler product Ly(s, x) = ]_[Mm(l — x(MNp~)~! for

Re(s) > 1. We collect a few facts about Weber L-functions below, but omit the
proofs, which are generalizations of the arguments used to prove the analogous facts
about Dirichlet L-functions.
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Some Facts About Ly (s, x).

1. For x # x,, Lm(s, x) can be analytically continued to the entire complex plane.

2. Lu(s, x,) can be analytically continued to the entire complex plane except for a
simple pole at s = 1.

3. For yx,, we have:

Lin(s, x,) = [ J(1 = Np~)"

pim

= (1‘[(1 — NpS));F(s).

plm

Recall that if § is finite, then it has Dirichlet density (8) = 0; if & consists of
all the primes of F, then §¢(8) = 1.
For a € Zr(m) we may define

8a.m = {primes p of Op : p=ain R} .} = {primes p € a P} }.
We claim that if for every character x # x, of R}"m we have L, (1, x) # 0O, then

8r(Sa,m) l
FOQaqm) =
#RE ..
Of course, this says 8q4.m contains infinitely many prime ideals. Thus the general-
ization of the Theorem on Primes in Arithmetic Progressions will follow once we
have shown that L,,(1, x) # 0 when x # x,. This turns out to be related to Weber’s
notion of class field, as we shall soon discover.
First we need to prove the claim about § (84 m). More generally, we shall prove
the following.

Proposition 2.3. Let a € Zr(m). Suppose P;m < H < Zp(m). If for all characters
X # X, of Zp(m) that are trivial on H, we have L (1, x) # 0, then

1
Sr({primes p of Of : p € aH}) = (Zr(m) : 1.
Proof.
Lo(s, ) = J(1 = x(p)Np™)"
pfm
log Lin(s, x) = — Y log(1 — x(p)Np™)
ptm

> ()N
=227

ptm n=1



56 3 Ray Class Groups

_ . — X(p)"Np
=D Ny T

pfm pfm n=2

—ns

~ > x(PNp~.

ptm

Now if yx is a character of Zp(m) that is trivial on H, then y may be viewed as a
character of Zr(m) / H- For a fixed prime p of Of, we have

—1 _]0 ifp ¢ aH
;X(a) X(p)_{[I(m):H] ifp eaH

where the sum is over x € IF(m)/H. Taking B,(5) = > ptm 2one xPYNPT e

n=2 n
get
D x(@ M og La(s, x) =Y x(@)" [ D xmNp~ + ﬂxm}
X x ptm
> x(@) " log Lin(s, x) = By()] = Y [Zp(m): HINp~. ()
X peaH

Let & = {primes p of OF : p € aH}. We must show that

Zpes Np_x
m
s> log(, 1)

converges to the desired limit. From (x),

S IZrm) : HIND™ = Y x(@)” (log Lin(s. x) = B(s))

pes XFX
+log((s — DLwn(s, x,)) — log(s — 1) — B, (s)

Letting i = [Zr(m) : H], this becomes

1
S = S @ o Lt 0 - 60
pes XFXo

1 1 1 1
+ , logl(s = DLm(s. x,)I+ , log (s _ 1) = 5 Bx (8-

Rearranging, we get



2 Ray Class Groups and the Universal Norm Index Inequality 57

1 1 1

pes X#Xo

1 1
+, logl(s = DLm(s, X)) =, By, (5)-

Note that the right side of the above equation is bounded as s — 17 (since
Lw(1, x) #Oforall x # x,, and Ln(s, x,) has a simple pole at s = 1). Therefore

Np~—* 1
Lpes 113 — — 0 as s — 1T,
log(, ")) h
But then
1 1
Sp(8) = =
r® =, [Zr(m): H].

O

Using Artin Reciprocity, it is possible to prove other results similar in nature to
Proposition 2.3. See the homework problems in Chapter 5 for some examples.

We can now begin to address the remaining ingredient in our attempt to gen-
eralize the Theorem on Primes in Arithmetic Progressions. Recall that we need to
show L (1, x) # 0 whenever x # yx, is trivial on H. The following theorem nearly
accomplishes this.

Theorem 2.4. Suppose K / F is Galois, and P;m < 'H < Ip(m). Suppose there is
some set of primes T C 'H with 8g;r ~ T. Then

[Zr(m) : H] < [K : F],

and L (1, x) # 0 whenever x # x, and x is trivial on 'H.

Proof. Let m(x) = ords—1(Lm(s, x)). For x # x,, we know m(x) > 0, while

m(x,) = —1. Since y is trivial on H, we may view yx as a character of IF(m)/H.
There is some constant a such that

[T Lm0 =at—1"""+ .

xeZ(m)/H

Taking logs, we get

Y log Lin(s, X) ~ (Zm(x)) log(s — 1)
X X

- ((, L)
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Now

TN 3

ptm n=1

~ > x(ENp~*

ptm

as before, so

D 1og Lu(s, ) ~ Y [Tp(m) : HINp™
X

peH

as before. Hence,

1
D IZr(m) : HINp™ ~ —(;m(x)> 10g(s_ 1>~

peH

But

> [Zr(m) : HINp™ = [Zp(m) : H](Z Np™ 4 Y Np‘s).

peH peT peH\T
Dividing by log(, '), and letting s — 17, we get

[Z6(m) : H] Y pes,,, Np~
log(,'))
+ lim [Zrp(m): H] prH\gw Np™*
s—1+ log(sil )

—(Zm()()) = lim
p s—1

= [Zr(m) : H]18r(8k/F) + [Zr(m) : H] (a finite nonnegative constant)
> Tem): M /ey

(Note that the first term on the right above converges since 8(Sk /r) exists, whence
the second term on the right side must also converge because the left side is finite.)
Recalling that m(x) > O for all x # x, and that m(x,) = —1, we have

Lz 1= Y moozErm:H />0

XF#Xo
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whence

0=—> m(x)>-L

XFX

But this forces m(x) = 0 for all x # x,. Hence _<Zx m()()) = 1and

[K : F] = [Zp(m):H].

Finally, whenever x # x,, the fact that m(x) = O gives that L,,(s, x) has a nonzero
constant term when expanded in powers of s — 1. But this implies that L, (1, x) # 0
forall x # x,. |

Corollary 2.5. If K /F is Galois and K is the class field for H where P;m <H<
Zr(m), then

[Zr(m) : H] =[K : F].

Proof. Say K is the class field for H, i.e., {primes p of Or : p € H} ~ Sk,r. Then

o

. . pey

Sr({primes p € M} Sg/p) = lim "~ VT =0,
log(,_,)

so proceeding as in the proof of Theorem 2.4, we get

1= —Zm(x)z [Zr(m): H]/[K L
X

By Theorem 2.4, we shall have concluded the proof of the generalization of the
Theorem on Primes in Arithmetic Progressions as soon as we verify that there is
always a class field for H = P;f’m. This issue will be settled in Chapter 6. With
what we have done thus far, we may readily obtain the following result first proved
by Weber ([We2], 1897-1898).

Theorem 2.6 (Universal Norm Index Inequality). (Historically, this was called
the First Fundamental Inequality of Class Field Theory. Later it was called the
Second Fundamental Inequality.) Let K /F be a Galois extension of number fields
and let' H = ”P;mNK/F(m) where

O

N r(m) ={a € Zp(m): a = Ng,r () for some A in Tg}.

(Note that the factorization of the fractional ideal A of K cannot contain a non-
trivial power of any prime ideal that divides mQOk, i.e., A € Tx(mOk).) Then
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[Zr(m) : H] < [K @ F].

Proof. If p € S8k r and ‘Blp, where ‘P is a prime of Ok, then Ng,rP = p (since
p € Sk/r, it splits completely in K/F giving f(B/p) = 1). Thus Sg/r =~ T
for some T € H and we may apply the previous theorem to get [Zp(m) : H]
<[K:F] |

It is natural to ask whether one may better specify the relationship between the
two indices [Zp(m) : ‘H] and [K : F]. The “Global Cyclic Norm Index Inequality”
(historically, the Second Fundamental Inequality of Class Field Theory, later the
First Fundamental Inequality) says that if K/F is cyclic and m is divisible by a
sufficiently high power of each p that ramifies in K /F, then

[Zr(m) : Pp  Niyr(w)] > [K @ F].

It then follows that these indices are equal in the cyclic case. The proof of the Global
Cyclic Norm Index Inequality uses techniques that are entirely different to those
used in this chapter, and must be delayed for now (see Chapter 4). We shall be able
to say more about the non-cyclic abelian case when we study Artin Reciprocity in
Chapter 5.

As was mentioned earlier, it is possible to rephrase what we have done in terms
of divisors. For a divisor m = [, p*® of F, we shall write mo = [T, , P and
Mye = [[eu 0 p®®) . Of course, if p is real, then a(p) is either O or 1, and in general,
we have a(p) = O for all but finitely many p.

Given a divisor m of F', we write = 1 (mod m) to denote that « =1 (mod myg)
(i.e., ordy (o — 1) > ordy(my) for all p dividing my), and that o («) > 0 whenever o
is a real embedding with p, dividing m.

Remembering that m is a divisor of F (and not necessarily an ideal), we let
Pr.m denote the set of principal fractional ideals of F' that have a generator o with
a =1 (mod m). (Pr, is sometimes called the ray modulo the divisor m.) Also, set

Tr(m) = Zp(mg). We call Rp = ZF(m)/pF.m the ray class group modulo the

divisor m.
Comparing this with what we did before, note that for an ideal my, P;mo =
PF.moma» Where Moo = [[ea p . Similarly, we have R;mo = Rr.mym.,- This

notation is consistent, for in the case of Pr m, and R m,, the ideal my may also
be viewed as a divisor with no infinite factors.

3 The Main Theorems of Class Field Theory

In this chapter, we have seen from a historical perspective the origins of some of
the central ideas of Class Field Theory. Many of these ideas first surfaced in the
work of Kronecker, Weber and Hilbert. However, their proofs often remained elusive
until the 20th century; the majority of these proofs were first given in generality by
Takagi, ([T], 1920).
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In subsequent chapters, we shall discuss the theorems in detail, introducing some
of the techniques that contributed to the discovery (or the reformulation) of their
proofs. For now, we simply give an outline of the results themselves. The first two
results give us a bijective correspondence between the finite abelian extensions of
a number field F and the groups H that satisfy P;m < 'H < Ip(m) for some m.
The third result tells us that the Galois group of such an extension is related to the
group H. Moreover, this relationship can be described in terms of a canonical map
(the Artin map).

Existence Theorem. For any H, with P;m < 'H < Zr(m), there is a class field
K / F associated to H.

In fact, the theorem holds if we replace P;m above with Pr , where m is a divisor. In

particular, if we take H = P;m , then the Existence Theorem implies that L, (1, x) # 0 for
all x except x = x,, so provides the missing step to complete the proof of the generalization
of Dirichlet’s Theorem on Primes in Arithmetic Progressions.

Completeness Theorem. For any abelian extension K /F, there is some m and
some H with P;m < H < Zr(m) such that K is the class field over F of H.

Isomorphy Theorem. When P;m < 'H < Zp(m), and K is the class field over
F of 'H, we have

Gal (K /F)y=Tr(m) /,,

with the isomorphism being induced by the Artin map.

In particular, if m = Op, and H = Pp y,, then we get a class field K, for H, called the

Hilbert class field. By the Isomorphy Theorem, Gal (K /F) = Ir / Pp = Cr. We shall also
see that K is the maximal unramified abelian extension of F (every prime is unramified
including the infinite ones).



Chapter 4
The Idelic Theory

Ideles were introduced by Chevalley ([Ch2], 1940); the modern definition is due
to Weil. They were used by Chevalley as an alternative to the approach of Takagi
using ray class groups and L-functions. For example, with ideles, he was able to
give a proof of the Universal Norm Index Inequality that did not rely on L-functions
([Ch2], 1940), and he was able to consider infinite Galois extensions, as we discuss
in Chapter 6. Chevalley’s idele class groups will play a role similar to that played by
the ray class groups of Chapter 3. One of our tasks in the present chapter will be to
describe precisely the relationship between idele class groups and ray class groups.

In order to define ideles, we shall need places. In about 1900, Hensel introduced
the p-adic numbers for p a prime in Z. This can be generalized as in Chapter I to
p-adic numbers, where p is a prime ideal of O for some number field F. To define
ideles, we consider simultaneously all of the Archimedean absolute values on F,
together with the p-adic absolute values on F for all the primes p of Op.

Each place is a collection of topologically equivalent absolute values, treated as
a single entity. The ideles are then defined in terms of all of the places of the number
field F. Because the ideles of F carry global information about F in terms of local
information at each of its places, they are a successful implementation of the local
global principle, which is a recurring theme in algebraic number theory.

In the first section, we use a definition of absolute value that is slightly less
restrictive than the definition we gave in Chapter 1. This allows us to normalize
our absolute values in a particular way, so that certain formulas will hold once we
begin working with ideles in the third section. Fortunately, it does not affect things
topologically.

In the fourth section, we pause to study a small amount of cohomology, so that
we may make use of the Herbrand quotient when we return to ideles in Section 5.
The cohomological approach to class field theory was developed in the 1950s, (e.g.,
Artin’s notion of “class formations” as discussed in [AT]; see also [HN] and [Tat]).
These ideas give rise to alternate proofs of many of the results for number fields
included in this text, and also can be used to treat local class field theory. They are
important to the proofs of other related results, (e.g., one can use higher cohomology
groups to get information on the norms in non-cyclic abelian extensions, as we
mention at the end of Section 5).

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 4, 63
© Springer Science+Business Media, LLC 2009
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1 Places of a Number Field

Let F be an algebraic number field. An absolute value on F is a mapping
I-1:F —[0,00)

that satisfies ||0|| = 0, whose restriction to F'* is a homomorphism of multiplicative
groups F* — R, and that satisfies

11+ x| <c whenever ||x| <1

(for some suitable constant c).
Such an absolute value induces a (metric) topology on F via fundamental sys-
tems of neighborhoods of the form:

{xeF:|x—al| <e¢},e>0.

Note that we must have ¢ > 1.

Exercise 4.1. For any such absolute value || - ||, show that there exists a positive real
number A such that the absolute value || - ||* satisfies the triangle inequality (i.e., is
an absolute value in the stricter sense of Chapter 1). O

We say that two absolute values are equivalent if they induce the same topology.
Exercise 4.1 gives that any absolute value || - || is topologically equivalent to an
absolute value that satisfies the triangle inequality.

A place of F is an equivalence class of non-trivial absolute values on F. Denote
the set of places of F by V. By a theorem of Ostrowski, each of the places of F
falls into one of the following three categories.

1. Places that contain one of the p-adic absolute values given by [, = Np~—°d» @),
for a non-zero prime ideal p of Op. These are the finite (or non-Archimedean, or
discrete) places of F.

2. Places that contain one of the absolute values ||«|l, = |o(«)l|,, for some real
embedding o : F < R of F. These are the infinite real (or real Archimedean)
places of F.

3. Places that contain one of the absolute values ||, = |a(a)|é, for some o :
F — C, an imaginary embedding of F. These are the infinite imaginary (or
imaginary Archimedean) places of F.

Note that two distinct non-zero prime ideals of O cannot produce absolute values
that are equivalent, so there is a distinct finite place for each non-zero prime ideal
of Op. Similarly, distinct real embeddings produce inequivalent absolute values so
are associated to distinct places of F. In the case of imaginary embeddings, we
have that each place contains the two (equivalent) absolute values corresponding to
a conjugate pair of embeddings. On the other hand, if two imaginary embeddings of
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F are not conjugate, then they give rise to inequivalent absolute values. Thus there
is a single place for each conjugate pair of imaginary embeddings of F.

For a number field F, there are a finite number of infinite places. Also, given
x € F*, there can be only finitely many prime ideals p of OF for which x|, # 1,
(namely those p that appear in the factorization of the fractional ideal xOF).

For a non-zero prime ideal p of O, we let v, denote the place containing || - ||;.
For an embedding o : F — C, we let v, denote the place containing || - ||, .

Conversely, for a finite place v € Vp, we let p, denote the associated prime ideal
of O. To simplify notation, we write ord, instead of ord,, .

For a place v € Vg, we let || - ||, denote the specific absolute value described in
(1), (2) or (3) above (and not merely an arbitrary absolute value from the place v).
These particular absolute values satisfy the product formula: For any x € F*

[T 0x =1

veVp

It is important to note that if v is an infinite imaginary place, the absolute value
|- ||, does not satisfy the triangle inequality. However, by Exercise 4.1 there is some
) such that || - ||* does. Of course, we know well that A = 1/2.

Examples.

1. Let F = Q(+/3) and K = Q(¢12) = Q(i, +/3). Now F has two embeddings
(both real):

o1:a+bvV3sa+by3 and 0r:a+bvV3 > a—bV3.
Each of these may be extended to K in two ways:

al.lzx/3+—>«/3,i|—>i and 01,2:«/3»—>x/3,i+—>—i extend oy,

021 : V3> —\/3,1' i and 07 : V3> —\/3,1' — —i extend o,.

The real places of F are v,, and v,,, (F has no imaginary places). There is one
place of K above v, , namely the imaginary place v,,, = vs, ,, and one place of
K above v,,, namely the imaginary place v,,, = Vo, , -

2. Let F = Q(+/3) and K = Q(+/3). The places of K are:

Vo, ,» Vo, and vy, , = v5, , above vy, and

Vo,, = Vs, and v,,, = vs,, above vy,

where
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o1 : V3 V3,
o1 V3 —5/3,
013 V3> ixs/S,
021 V3 EV/3,
0201 V3 £33,

for £ a primitive 8™ root of unity.

3. Let F = Q(¢12). Note that 3 ramifies in Q(¢3)/Q with ramification index 2,
while 3 is inert in Q(i)/Q. Thus we have e = f = 2 for the prime 3 in F/Q,
p = (v/=3) is prime in O, and 30F = p>. We may compute ||3]|, = Np~—?2 =
972, Meanwhile, as we saw in Example 1, F has two imaginary places v; and
vp, where v; contains the absolute values arising from the identity and complex
conjugation, while v, contains the absolute values arising from the maps ¢ +—
¢ and £12 > ¢,. We have ||3]],, = [3]*> = 9, for j = 1, 2. Consequently, we
compute ]_[UEvF 131, = 131lp 131, I3]ls, = 1 as the product rule predicts.

Exercise4.2. Let F = Q(v/2) and K = Q(v/2,+/3). Find all of the infinite
places of F and K, grouping the places of K according to which place of F they
extend. O

Exercise 4.3. Let F = Q(i) and x = 2 — i. Compute ||x||, for all of the places
v € Vp and verify that the product formula holds for x. O

Exercise 4.4. Let K/ F be a Galois extension of number fields, and let v be an infi-
nite real place of F. Show that the places of K above v are either all real, or all
imaginary. O

For a number field F and a place v € Vy, we may complete F with respect to
(any of the absolute values in) v. Denote the completion by F,. Note that if v is a
finite place, then F, = F}, for some non-zero prime ideal p of Of. If v is an infinite
real place, then F, = R, while if v is an infinite imaginary place, then F, = C.

We may embed F into F, for each place v; write ¢, : F' < F, for the embedding.
Note that ¢, is continuous if F' is given the topology from ||- ||, and that ¢, (F') is dense
in F,. If @ € F is non-zero, then (,(«) is a non-zero element of F, for every v. Fur-
thermore, ¢, («) is a unit of F, for all but finitely many of the places v. (For an infinite
place v, we understand the “units” of F, to be the group F,*; for a finite place v, we
understand the “units” of F, to be the group U/, = O, the elements having absolute

v
value one.) These embeddings ¢,, will be important to our discussion of ideles.

2 A Little Topology

A topological group is a group G that is also a topological space, for which multi-
plication 1 : G x G — G, given by u : (a, b) +— ab, and inversion p : G — G,
given by p : a — a~! are continuous.
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Proposition 2.1. Let G be a topological group and fix g € G. If f, : G — G is
given by f,(x) = gx (left multiplication by g), then f, is a homeomorphism.

Proof. First note that for any subset A of G, we have
[ A ={gla: a e A} = fri(A)

so that it suffices to show that fg’l(A) is open in G for any open subset A of G and
forany g € G.Letn, : {g} x G — G x G beinclusion. Then pon, : {g} xG — G
is continuous. But (u o 73) ™' (A) = {g} x f; '(A). Hence f; '(A)isopenin G. O

Similarly right multiplication by g is a homeomorphism, so that a topological
group G is necessarily a homogeneous space (i.e., for any two elements of G there
is a homeomorphism from G onto G that carries one element to the other).

If G is a topological group and H is a subgroup of G, then we may give the
set of left cosets of H in G the quotient topology. Since we may also define left
multiplication by g on the cosets, it is easy to see that the set of left cosets G / H is
a homogeneous space. If H is normal in G, then G / H is also a topological group.
Exercise 4.5. Note that the additive group of integers Z is a normal subgroup of
the additive group of real numbers R. If R is given its usual topology, then it is a
topological group. Describe the topological group R / 7 O
Exercise 4.6. Show that if H is a subgroup of the topological group G, then the
closure of H is also a subgroup of G. O

Exercise 4.7. Let G be a topological group with identity 1, and suppose there is
some compact neighborhood A of 1 in G. Show that G is locally compact. O

Exercise 4.8. Let H be a subgroup of the topological group G.

a. Show that if H is open in G, then H is also closed.
b. Show that if H is closed with finite index in G, then H is also open.
c. Show that if G is compact and H is open in G, then [G : H] is finite. O

Exercise 4.9. Let G be a topological group with identity 1. Prove or disprove and
salvage:

a. If H is a subgroup of G that contains an open neighborhood of 1, then H is open
in G.

b. If A is an open neighborhood of 1 in G, then A is a subgroup of G. O

Exercise 4.10. For each of the following, determine whether it is a topological

group. If so, is it compact, locally compact or neither? Is it connected? totally dis-

connected?

a. The p-adic integers Z, under addition, with its usual p-adic metric topology.
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The p-adic units Z; under multiplication, with the usual p-adic metric topology.
The additive group Q,, with its usual p-adic metric topology.

& o o

The complex numbers C under addition, with its usual metric topology.

e. The torus © / », under addition, with the quotient topology, where L is a lattice
in C. 0

3 The Group of Ideles of a Number Field

An idéle of a number field F is an “infinite vector” a = (..., ay, .. .)yey, Where
each a, is an element of its corresponding F,*, and where a, € U, for all but finitely
many v.

The ideles of F form a multiplicative group, denoted Jp = HUFUX, (the symbol
[] denotes a so-called “restricted topological product”— see below).

We let & = HveVF U,, (clearly a subgroup of Jr). We may give £ the product
topology, where each U/, has its metric topology.

We want to put a topology on Jr that will make it a locally compact topological
group. The challenge is to make the operations in Jr continuous and to have the
subspace topology on £ agree with the product topology. To do so, we require
afr to be an open subset of Jp for every a € Jp, and also require that the map
Er — a&p (multiplication by a) be a homeomorphism for every a € Jp. These
requirements already are sufficient to determine the topology on Jg. Specifically,
Jr must be the restricted topological product of the F, with respect to the U,. We
define this next. Then Exercise 4.11 shows that as a subspace of Jr, & will have
the product topology as desired. Note however that the topology on Jr will not be
the product topology.

In general, restricted topological product is defined as follows. If {B; : i € J}isa
family of topological spaces, and if for each i (or for all but finitely many of the i),
we are given an open subset A; C B;, we may form

B = {{xi}icg : x; € B; forall i; x; € A; for all but finitely many i}.
Give B atopology by taking
{l_[ C; : C; is an open subset of B; foralli; C; = A; for all but finitely many 7}

as a basis of open sets. The space B with this topology is called the restricted topo-
logical product of the B; with respect to the A;. Note that for any finite subset T of
J, this makes [ ;.o Bi [[; o Ai an open setin B.

Exercise 4.11. Show that for Jr, a basis of open sets may be given by

{aA : a € Jp, and A is an open subset of Ef}.
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Hence the subspace topology on & is the product topology, as desired. O

Exercise 4.12. Show that Jr with this topology is a topological group. O
Note that for a finite place v, U, is compact, so

Er = l_[ U, l_[ U, = (R*)" x (C*)? x {a compact set}.

v infinite v finite

It is easy to show that in the restricted topological product, if the B; are locally
compact and the A; are compact, then B is locally compact. We give a proof for the
special case B = Jr next.

Proposition 3.1. J is a locally compact topological group.

Proof. By Exercise 4.12, Jr is a topological group. Thus, it suffices to find a com-
pact neighborhood of 1. For v infinite, let

Ay ={x e F e — 1], < 1/2)

(a compact neighborhood of 1 in F*). Now let A = [, ivginite Av [ [, finice Uv- Clearly
A is a compact neighborhood of 1 in £, as £ has the product topology. Thus A is
a compact neighborhood of 1 in J as well. O

Exercise 4.13. What happens if instead of Jr we consider [ [, F,* with the product
topology? O

Exercise 4.14. For an idele a = (..., ay, ...) € Jr, we define the content of a to
be content(a) = HuevF llayll,. Show that the map a — content(a) is a continuous
homomorphism Jr — RJ. O

Proposition 3.2. The quotient group Jr / & 1s isomorphic to Zr, the group of frac-
tional ideals of F'.

Proof. Defineamapn : Jr — Zp by

nia=(...a...)~ (@= [] py™«.

v finite

Note that the product on the right is actually a finite product, since ord,(a,) = 0 for
all but finitely many v. Now 7 is clearly a surjective homomorphism of groups, and

kern ={(...,ay,...): ordy(a,) = O for all finite v} = EF. O

We may view o« € F* as an idele (..., (@), ...), where ¢, : F — F) is
an embedding of F into its completion at v. This gives an embedding, called the
diagonal embedding,
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t: F* — Jp, where t(a) = (..., (), ...).

Usually it will do no harm to identify « and ((«), and we shall often write F'* when
we really mean ((F>). If we do, we find that n(e) = [, fnice pfjrd"(“) = aOFr and
n(F>) = Pr. This observation gives us:

Proposition 3.3. For a number field F, we have

JF/FXSF = Cr =IF/pr.

O

The embeddings ¢, : F — F, mentioned above are important. A given place v
of F will lie above either the infinite real place co of Q or above a finite place of
corresponding to a prime p of Z, (abusing the language slightly, we say “above p”).
Above the place oo, we choose the ¢, from the set of embeddings F — F, € C, so
that each infinite place of F is represented exactly once. Analogously, for the finite
places v above p, we want to choose the ¢, from the set of embeddings F — F, C
C,, so that each place of F above p is represented exactly once.

Let | - | denote the usual absolute value on C. For the infinite places and their
embeddings, we have ||x||, = |t,(x)|? (where d = 1 if visreal andd = 2 if v is
imaginary,i.e.,d = [F, : R]). The same occurs for the finite places: for a finite place
v = vp, where p lies above the prime p of Z, the embedding ¢, : F — F, € C,
satisfies ||x ||, = |t,(x)|%, where d = [F, : Qpland]|-|, is the p-adic absolute value
on C,, normalized so that |p|, = }D

Example.

4. If F = Q(, v/3) = Q(¢), where ¢ is a primitive 12™ root of unity, we find that
there are two places of F' above p = 5. Say they are associated to the distinct
prime ideals ps and p; of OF. Let 05 be one of the two solutions to X> —3 = 0
in Cs. Note that [Q5(05) : Q5] = 2 and (identifying the completions of F with
extensions of Q,), FPs = Qs5(05) = Fp;. There are two solutions to X> +1 =0
in Qs; call them x5 and &5. Note that ksks = 1, and without loss of generality we
may choose ks = 2 (mod 5), (so &5 = 3 (mod 5)). If we look ati = ¢3 € F, we
find that i — 2 is in one of ps, P;’ while i — 3 is in the other. Suppose i — 2 € ps.
Now |k5 — 2|5 = |K5 — 3|5 < 1, so the embeddingSLps, byl F — Qs(6s) must
satisfy ¢, (i) = ks, ¢ (i) = k5. We may then take Lps(\/3) =05 = Lp;(\/3) to
complete the deﬁmtlons of Ly and Ly

Let us look also at the case p = 3 There is a single prime ideal p3 of F above
the prime p = 3, and we have [F,, : Q3] = 4. In this case, we have only one
place above our prime, and we may choose 65 to be either of the solutions to
X? — 3 = 0 and &3 to be either of the solutions to X> + 1 = 0 in C3. We have
Fy, = Q3(03, «3) and we let 1, : F < Q3(63, k3) be given by ¢,,(i) = «3 and
tp;(V/3) = 65.



3 The Group of Ideles of a Number Field 71

Finally, let us look at the infinite places of F. There are two imaginary places
(one above each real place of (@(\/ 3)); say v; is above the real place of Q(«/ 3)
that corresponds to the embedding that sends V3 3, and v, is above the real
place of Q(+/3) that corresponds to the embedding that sends v/3 — —+/3. We
have F,, = F,, = C and we let ¢,,,1,, : F < C be given by 1,,(+/3) = /3,
L, (v3) = —v/3,and 1, (i) = i = 1,,(i).

Say @ = /=3 € F. The idéle in Jr associated to o is

W) = (V=3,—v/=3, ..., b3k3 , Osks, Bsis , ...).
- —~ - —— -~ - -
above oo above 3 above 5

Exercise 4.15. Show that F'*, (viewed as a subset of Jg, so identified with («(F*)),
is a discrete subgroup of Jg. It is called the subgroup of principal idéles and Cr =

Jr / Fx is called the group of idele classes. O

Exercise 4.16. The following steps may be used to give a proof of the finiteness of
the ideal class group Cp.

a. Denote the kernel of the content map on Jr by J } Show that F* < J } and that
1
Jr / X (with the quotient topology) is compact.

b. Let n : Jp — Zr be as before. Show that if Z is given the discrete topology,
then 7 is continuous.

c. Show that n(J}) = Zr.

d. Show that ZF / Pr is compact. (Since it is also a discrete group, it must be
finite.) ¢

Proposition 3.4. Let m be a non-zero integral ideal of OF, and define
Ji.={aeJr:a,>0forallreal v, anda, =1 (mod pg™™) for all p,|m},
Efm=JrnNEr.

Then
JF ~ +
/FXSKm = R

Proof. Note that J,/ N F* = {a € F* : & > 0,a=1 (mod m)} = F. We
claim J;fmFX = Jr.

To prove the claim, let (..., a,,...) = a € Jp, and let ¢ > 0. By the Approx-
imation Theorem, and the density of ¢,(F) in F), there exists « € F* such that
llty(er) — aylly < € for all infinite real v, and also for all finite v with p,|m. Thus, if
¢ is sufficiently small, then:
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sign (¢,((r)) = sign (a,) for all infinite real v, and
(@) 'a, = 1(mod pﬁrd”(m)) for all v with p,|m.

We conclude that the idele o 'a is in J; .

This implies Jp = J;£  F*, as claimed.
From the claim, we get

It It - Ji F* 7
F’"‘/F+= trpanEe =00 /FX = F/FX,

m

whence a = ab for some b € J; .

whence

Ji ~ JF
F‘"‘/f;* Fr = /FXg;m.

Fm’m

As in the proof of Proposition 3.3, let
N I = Zr(m)

be given by

Mmia=(...a...) @= [] pr.

v finite

Then clearly nm = 1|, and nu(J7 ) = Zr(m). Alsokerny = J NEF = EF
o : : :
and we conclude

+
Tim [ = Tpam.
Fm

Thus

G Ry

Fm’m

_ Ir(m) — Rt
- /P?,m = R}

But then

1

Jr :JJr,/
/Fxs;m— ' fer Ft

+
RF.m‘ O
Fm®m

Corollary 3.5. The set of subgroups H of Jg, with H 2 F Xé’;m for some m,
corresponds to the set of open subgroups of Jg that contain F'*.
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Proof. We have that E;f’m is an open subgroup of Jr; in fact

En= T[] o JIr: JTa+p™ [T th.

v imaginary v real v finite v finite
pulm putm

which is open in £, (€ has the product topology), so is open in Jr. This gives that
F*Ef . is open, whence any subgroup H of Jp, with H 2 F*E/ is open.

Conversely, if H is an open subgroup of Jr that contains F'*, then we claim that
HD E;_m for some m. Now 1 € H, so there is an open neighborhood, A, of 1 in H.
We may take A to be of the form: A = ]_[v A,, where A, = U, for all but finitely
many places v, and for the remaining places, A, is an open neighborhood of 1 of
the form

1+ for v finite
"7 l{xeF,:|lx—=1], <e} forv infinite.

Now let H, be the subgroup of Jr generated by A. We have H, € H. Also,

Ho= ] = ] 4 [] A

veVp v infinite v finite

since 1 4 p7v is already a group.

For v real, (A,) = R or R*. (This is clear, since if @ € R, then an € A, for
n sufficiently large, giving « € (A,). Thus Ri C (A,) CTR*)

For v imaginary, (A,) = C*. (This follows, since if z € C*, then |Z|']le’5 €A,
for n sufficiently large and & = argz, whence z € (A,).)

Putting everything together, we get

Ho= [] C© J[®R*orRY} [] 4,

v imaginary v real v finite
where
A — U, almost everywhere
T 14l else.

Let m = []p’, where the product is over the finite places v € Vp for which
Ay =1+pl . ThenH, 2 EF ., and we have H D H, D £ ... o

We may now reformulate Takagi’s class field theory in terms of ideles. The main
ideas translate to the following claim.
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There is an order reversing, bijective correspondence between the set of all finite abelian
extensions K /F and the set of open subgroups H of Jr for which H © F*. In this corre-

spondence Gal (K/F) = JF/H.

Compare the result that JF/FXE;“r,m = IF(m)/P;{m = R;m. Subgroups ‘H

as in the claim will contain F Xé’;m for appropriately chosen m. It remains for
us to answer many questions about the precise nature of the “translation” between

Takagi’s ray classes and Chevalley’s ideles. For example, if H is an open subgroup

of Jr containing F*&/ H

F.m» then we may consider the subgroup

X of the
/ FXEL
factor group Jr / Fret - What is the corresponding subgroup of R;m?

Fm

Recall the Isomorphy Theorem asserts that if P;m CHCT r(m) and K is the
class field for 7, then Gal (K /F) = ZF(m)/ﬁ. If the subgroup H/’P+ of R}
F,m ’

corresponds to the subgroup H / FXET of JF / Fxet o how are the class field
F,m F.m

K of H and the extension K/ F associated to H (in the claim) related?

We were also especially interested in the subgroups P;mNK/F(m), where
Ngp(m) = {a € Zrp(m) : a = Ng/r() for some A € g}, (see the Universal
Norm Index Inequality). It is perhaps not surprising that the open idelic subgroups
H containing F* and the subgroups H = P;mNK sr(m) of Zp(m) are related.

We may make a more precise statement (to be proved later), if we introduce
the notion of the norm of an idele. Let K/F be an extension of number fields.
Define Nk,r : Jx — Jr as follows. Let (..., ay,...) = a € Jk, where the w are
places of K. For a fixed v € Vp, the set {w € Vg : w|v} is finite. We construct
the norm of a as an idele of F' by computing each v-component in terms of the
corresponding set {w € Vi : w|v}. Specifically, we let b, = [],, Nk, /F,(ay) and
define N](/F(a) = ( A bu, .. ) e Jr.

Recall that if ¢ € K, then for any fixed v € Vp,

wlv

Nk r(a) = l_[ Nk, /F, (tw(0)).

wlv

Hence if @ € K* is viewed as an idele in Jg, then Ng,r(a) is the idele in Jr
arising from the usual norm of the element «. In other words, we have a commutative
diagram:

K* — Jk

Ng/r [ [ Ng/r

Fx _— JF



4 Cohomology of Finite Cyclic Groups and the Herbrand Quotient 75

If 'H corresponds to K in the claim above, then it turns out that H = F* Ng,rJxk.
Moreover, soon we’ll be able to show the following (it is Proposition 5.6).

Proposition. Let K /F be abelian Galois, and let
H = F x N K/F ] K

(so F* € 'H < Jp). Then H is an open subgroup in Jr. Moreover, if m is chosen
so that

Eim CH

then the image of H under the isomorphism
Jr ~ Zp(m) /
[rein =7
+
is precisely PrmNk/r(m) / p+ and
Fm

JF Ip(m)

H:FXNK/FJK A — P;mNK/F(m)

x o+ +
F gF,m PF,m

in particular, we have [J : H] = [Zp(m) : P} Nk, p(m)] < [K : F]. O

Compare the above proposition with the Universal Norm Index Inequality of
Chapter 3. Before we can give a proof, we need to study (a very small amount of)
cohomology of groups. Once we have done so, we shall return to ideles and prove
the above proposition.

4 Cohomology of Finite Cyclic Groups and the Herbrand
Quotient

Let G be a finite cyclic group, say G = (o), and let A be a G-module, (so G acts
on A and A is a module over the group ring Z[G]). Let

s(Gy=140+---+0"",
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where n is the order of G.
Consider the map o — 1 on A. We have

ker(c —1)={ae€e A:0(a)=a} = AC.
Note that s(G)A C AY:
c—-Dl4+o+-4c"H=06G"-1)=1-1=0
since n = #G. Similarly
(o0 — 1)A C kers(G).

We define

G .
Qp(A) =147 S(G)A]/[kers(G) (0 — DA]

when these indices are finite. The number Q;(A) is called the Herbrand quotient of
A for the group G.

Example.

5. Let G = (o) be cyclic of order n and let A = Z, with G acting trivially on A.
Then

A°={aeZ:0@=a}=7
and
s(G)A = s(G)Z = nZ.

Also, ker s(G) = {0}, and (o — 1)A = {0}. We get

G .
Q6(A) = [A S(G)A]/[kers(G) S0 —1A] = [Z : nZ] = n.

Next we want to study some properties of the Herbrand quotient. For their proofs,
we use a lemma about the Tate cohomology groups

HO(A) — kerA(U — 1)/S(G)A

H](A):kerAs(G)/(O_ . I)A

Note that #HO(A)/#Hl(A) = Qg (A).
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Lemma 4.1. (Exact Hexagon Lemma). Suppose we have an exact sequence of
Z|G]-modules0 — B —f> A -%5 C —> 0. Then there are Z[G]-homomorphisms

fo, f1, &o» &1, 80, 81 such that

HOB) Lo HO(A)

51/ \90
HY(C) H°(0)
!]1\ /60
H'(4) — H'(B)

is exact.
Proof. Define

fo: H'(B) - H°(A) by
b+ s(G)B+— f(b)+s(G)A
go: H%(A) — H(C) by
a—+s(G)A+— g(a)+s(G)C
fi:H'(B) > H'(A)by
b+ (o —1)Br f(b)+(c — DA
g1 : H'(A) = H'(C) by
a+(oc—1A+— gla)+ (o —1)C.

All are clearly well-defined Z[ G]-homomorphisms.
Now define 8y : H’(C) — H'(B) as follows. Let ¢ € kerc(c — 1). We must
define dp(c + s(G)C). Now g is surjective, so there is an element ap € A such that

g(ap) = c. And since ¢ € ker (o — 1), we have

(o — 1)(g(ao)) =0
g((o — 1)ap)) =0
(o — 1)(ap) € kerg = im f.

Hence there is an element by € B such that f(byg) = (o — 1)(ap). Now s(G)(o — 1)
is the zero map, so

0 =s(G)(o — 1)(ao)

= 5(G) f(bo)
= f(s(G)(bo)).



78 4 The Idelic Theory
But f is injective, so s(G)(by) = 0. This gives by € ker ps(G), so we may let
So(c +s(G)C) =bo+ (o — 1)B (€ H'(B)).

We must show that & is well-defined. Suppose ¢ +s(G)C = ¢’ 4+ 5(G)C. Repeating
the above for ¢/, we obtain

ay € A with g(aj) = ¢, and
b}, € B with £(b}) = (o — 1)(a}).

It suffices to show that
by — by € (0 — 1)B.

We have that c — ¢’ € s(G)C and since g : A — C is surjective, there is some a € A
with

¢ —c' = 5(G)(g(a) = g(s(G)(a)).
Also ¢ — ¢’ = g(ap) — g(a)) = glap — ap). Thus
g(ap —ay — 5(G)(a)) = 0,
ie.,
ap — ay — s(G)(a) € kerg = im f.
But now there exists b € B with

)= ay — ag — s(G)a)
(0 = D(f(b)) = (0 — D(ag — ay — 5(G)(a))
= f(bo) — f(bp)
f(lo = D®)) = f(bo — by).

Since f is injective, we must have

(o — 1)(b) = by — b},
by — b}y € (6 — 1)B.

We have shown 4§y is well-defined. The proof that §y is Z[G]-linear is routine. We
leave it as Exercise 4.17.

Now we must define 8, : H'(C) — H%B). Let ¢ € ker¢s(G). Since g is
surjective, we know that there is some a; € A such that g(a;) = c. Also, since
¢ € ker ¢s(G), we have
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5(G)(g(a) =0
g(s(G)(a) =0
s(G)(ay) e kerg =im f.

Hence there exists b; € B with f(b;) = s(G)(a;). Now

0=(0 — Ds(G)(a1)
= (o = D(f (D)
= f((o = D(b).

Since f is injective, we must have

(c —=D)=0
by e kerg(o — 1).

Hence we may let §;(c + (6 — 1)C) = by + s(G)B.

Exercise 4.18. Show that §; is well-defined, and that the “hexagon” is exact.

Proposition 4.2. If B is a G-submodule of A, and C = A / B then
Q6(A) = Q6(B)26(0).

(In particular, if any two of these exist, then so does the third.)

Proof. We have the canonical exact sequence

0—B- a5 c—o0

so we may apply Lemma 4.1 to get the the exact hexagon below.

HYB) L% HOA)

51/ \go
H(C) H°(C)
91\ /50
H'(A) — H'(B)
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Now suppose Qg(B), Q;(A), Q6(C) are defined. (Note that if any two of them are

defined, then so is the third.) Then
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#H"(B) = #(ker fo) #(im fo)
#H'(C) = #(ker 8) #(im 8y)
#HO(A) = #(ker go) #(im g¢), etc.

From the exact hexagon, we have

#HO(B)#H (C)#H'(A)
= #(ker fo) #(im fy) #(ker 6o) #(im §¢) #(ker g) #(im g;)
= #({imd;) #(ker go) #(im go) #(ker fi) #(im f}) #(ker ;)

=#H'(C)#H (A)#H'(B),
whence

0 0
Q6(B) 96(C) = FHBIRHAC) [y o ericc

0

O
Proposition 4.3. If A is a finite G-module, then Qg (A) = 1.
Proof. Since A is a finite Z[G]-module, we have
k —1):i G
Q5(A) = ker(e = 1z ims( )]/[kers(G) sim (o — 1)]

_ #ker(o — D#im(o —1) #A {

~ #ims(G) #kers(G)  #A
(Note that since A is finite, all of the cardinalities above are finite.) a
Corollary 4.4. if B is a G-submodule of A of finite index, then Qg(A) = Qg (B).
Proof. Clear. O

Proposition 4.5. (Shapiro’s Lemma). Suppose A = A; & --- ® A,, where the
A are subgroups of A (not submodules) and suppose that G transitively permutes
Ar,..., A . Let

Gi={teG:1(Aj))=A;}.

Then A; is a G j-module and Qg (A) = Qg,(A;). (Note that since G is cyclic, each
G is also cyclic so Qg (A ;) makes sense.)

Proof. We shall give the proof for j = 1 (clearly the proof for arbitrary j is the
same).
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STEP 1. First, we show that the natural projection v : A — A induces an isomor-
phism Hg(A) = Hgl(Al).

B
Proof. Let G = _U1 0G| be a coset decomposition of G, where o satisfies 0;(A;) = A;. Then
j=

A% =ker (0 — 1) = {Zaj(al) tay € AIG‘}.

j=1

(For “2>” suppose a; € AIG1 . We have o € 0, G for some (unique) k, so o = oyt for some 7 € G;.
Given j € {1,...,r} there is a unique i; € {1,...,r} such that ajak_l € 0;,G or, equivalently,
oroi, € 0;Gy, say 0x0;, = 0,7, (r; € G1). Note the i; are pairwise distinct, so

0(201‘(611)) = 0(2%(“1)) =Y ot (ar)
i=1 j=1 j=1
= Zakoi,(al) = Zaﬂj(al) = Zo,-(m).
j=1 j=1 j=1

For “C” suppose a € A®. We have a = > iy a; for a unique set of a; € A;. Also, since
0j(A)) = Aj, we have a; = 0;(a;) for some @; € Aj. Soa = Z;=1 oj(a;) € AS . For a fixed
index 7, apply crt._l

.
—1 —1 ~
a=o0; (a)= Zai oj@;),
j=1

the first equality being true because a € AC. Thus the A;-component of a is cri_lcr,» (a;) = a;. But
we know that the A;-component of « is unique, so a; = @;. This must hold for every i. Hence,
a= Z;zl 0;(@;) = Z;zl oj(ar), as needed.)

Since A¢ = {Z;:l ojla) : a; € AIG‘} we see that an element of A is completely
determined by its A;-component. Thus AIG1 = A% viag:a Z;:l oj(ar). Under ¢, we
also have

S(GN@) = Y 0js(Gr)ar) = s(G)ar) € s(G)A.
j=1

Thus the map
Gy

S\ A°

ZRE /s(Gl)Al — /s(G)A
given by a; +s(G1)A| — Z;:l oj(ar)+s(G)A is well-defined. It is also surjective, since
¢ was. Now for a; + s(G1)A; to be in ker ¢, we must have Z;:l oj(a;) = s(G)(b) for
someb € A. Writeb = b, + --- + b, = 1(b;) + - - - + 0,.(b,) where Ej € Ay. Then

S(GYbi) =Y 010;5(G1)(By).
j=1
But, since s(G)(b;) = ai’ls(G)(b,v), we also have

s(GYb) =Y 0;s(G)(B).

j=1
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Ifa; +s(G)A; € ker ¢, then

r

> ojlan) =) s(G)bi)
j=1

i=1

=YY 0s(GDE)

i=1 j=1
=Y 0;5(G) <Z E;) .
j=1 i=1

Compare A;-components in the above to get

oi(a)) = 015(Gy) <Z};i>
i=1
a) = S(Gl) (Z;),) (S S(G])Al.
i=1

Thus ker ¢ is trivial, and we have

Gy

A /s(Gl)Al = G/s(G)A.

STEP 2. Next we show Hj(A) = Hf (Ay).
Proof. Exercise 4.19.
We now have

_H#HY(A)  #HG (A)

Qo(4) = #HL(A) — #H (A)

Example.

= 9¢,(A)).

4 The Idelic Theory

6. Let F/Q be a cyclic extension of number fields, with G = Gal (F/Q), and let

A = Of (so G acts on A). What is Qg(OF)?

The Normal Basis Theorem gives the existence of a Q-basis for F' of the form
{a®™ : T € G}. (Here we are using the notation a* in place of t(a).) We may
assume a € O (if a ¢ OF some multiple of it is). Let B = Za + Za° + Za®" +
oo 4 Za®"" where G = (o) has order n. Now rank B = n, and [Of : B]is
finite. Thus Qg(OF) = Qg(B). Let Ay = Za. Then G| = {t € G : 1(A) =

A1} = {1}. We have (by Shapiro’s Lemma):

Gy .
Q6(B) = Qg, (A1) = Ay S(GI)AI]/[kers(Gl) 1 (o1 — 1A{]

=1 A foy o = 1

Hence Qg (Op) = 1.
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5 Cyclic Galois Action on Idéles

Let K/ F be a (not necessarily abelian) Galois extension of number fields. We return
to our study of ideles by defining an action of Gal (K /F) on Jk.

LetG =Gal(K/F)andleta=(---,ay,---) € Jx. Leto € G. For a place w
of K, define the place o w by

letllow = llo ™" @),
or equivalently ||o(®)|lsw = |l¢]lw. Note that T(cw) = (ro)w. It is clear that G
transitively permutes the places of K, and (K, || - ||,,) is isometric to (K, || - ||l5w) Via

o0 : o > o(w). Thus o induces an isomorphism between the completions that we
also denote by o:

o1 Ky —> Koy
We may now define for each v € Vy
0(.., au, .. Jwp =C...by, .. Dy
where
bow = 0(ay), 1ie., by, =oc(as-1y,)-

This gives an action of o on Jg.

Exercise 4.20. Show that this action is consistent with the usual action of G on K *,
where we view K* C Jg as before. O

Now we have that Jg is a G-module. What is JZ? We endeavor to find it: Sup-
pose a € JS ie.,0(a) =aforall o € G. Then, for every place v of F, we have

o( . u, . Jwp =(C.o\sus - Julo
whence
ay = o(ag-1y) for all o, and for all w.

Ifwelet G, = {0 € G : ow = w}, then a,, = o(ay) for every 0 € G,. Note
that G, is the Galois group of K,/ F,; in particular, if w is a finite place of K, then
Gy, = Z(By/py), (the decomposition group). We have shown that a,, € F, for
every place v of F and for every place w of K above v. Now suppose w;, w, both
lie above v. Then there is some ¢ € G with ¢ : ws — w;. Since w, = o~ 'w;, we
have a,,, = o(ay,). Buta,, € F, and a,,, € F,. It follows that a,,, = a,.
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We have shown that if o (a) = a for all 0 € G, then for every place v of F,
(o ay, - Jwp = (by, ..., by)
for some b, € F,. This gives
JE={C..,(by,....by),.. )} = Jr,

where we have identified Jr with its image in Jx under the obvious embedding
Jp — Jgsending (..., by, ... )~ (..., (by, ..., by),...).

Now suppose G is cyclic. We want to study s(G)Jx. We shall use multiplicative
notation for s(G), so s(G) : Jx — Jg by a > [[, s o(a). This suggests that we
consider norms. Is [ [ _; o (a) the same as N ,r(a) (the idélic norm)?

Recall fora = (- -+ , ay, .. )uev,, if foreachv € Vp, wesetb, = ]_[w‘v Nk, /F,(aw),
then Ng/p(a) = (..., by, ...), anidele of F.

Fix v € Vg. Then

Gt Dupp = (@ 11, D ayy, 1, 1) (1 o 1ay,).

Now ]_[J < 0(ay,, 1,...,1)is invariant under the action of G. Hence, by our com-
putation of J¢, we see that

na(awlv11--~71):(Cvs~--7cv)
oeG

for some ¢, € F,. On the other hand, if o ¢ G,,, then the first coordinate of

o (ay,, 1, ..., 1)is 1. Thus the first coordinate of ]_[660 o(ay,,1,...,1)is

l_[ O'(Clwl) = NKw]/F,,(awl)‘

0€Gy,

It follows that

[Tot@w.1..... 1) = (N, /r.(@w). ... Nx,, /r,(@n,).

oeG

In the same way,

[Tod. ... law,. 1..... 1) = Nk, e @) ... Nr, /r(a)

oeG

for each j. We get

[Te@.....an) = (]‘[NKU,/FL(aw), ...,HNK,,//maw)). ()

oeG wlv wlv
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Since [1,,, Nk, /r,(aw) is the v™ coordinate of Ni,r(a), if we embed Jr < J as
before, we have

[[o@ = Ngri@

oeG

as desired.
Now we may study the Herbrand quotient. Say G = (o) is a finite cyclic group,
with G = Gal (K /F) as before. Recall, for a G-module A, we have

G .
Qs(A) = LA™ S(G)A]/[kers(G) : (0 — DA].

We want [Jr : F*Ng,rJk] to be of the form [AC : s(G)A]. In order to make this
statement more precise, (and to give a proof of it!), we need to know more about
the Herbrand quotient on ideles and idele class groups. We begin with the following
lemma.

Lemma 5.1. Let Cx = Jk / g x be the group of idele classes of K, and similarly
let Cr = JF/FX. The embedding Jr < Jg induces an embedding Cr — Ck.

Furthermore, C$¢ = Cp.

Proof. Leta € Jp and a € JF/FX be the image of a in Cr. Suppose when we

consider a as an element of Jg, we find that it is in K, i.e., @ = 1 in Cgx. Now
acJp=J¢also,soaec JENK* = (K*)° = F*. Thusa = 1in Cp. We
have shown that there is an embedding Cr — Ck that arises from the embedding
Jr — Jg as claimed. It remains to find Cg.

Suppose b € Jg has image b in Cx and that b € C§. Then for all 0 € G,

o(b) = b,ie,forallc € G,o(b)b~! = 1, ie,forallo € G, “ e K*. Let

op:G—> K*bygp:0 > ":)b).Then,forr,o € G, we have
ron(on = P
o =
@b <(b)
= gp(t)[en(0)] "

(The above equation gives that ¢ is what is known as a /-cocycle or a crossed
homomorphism.) By Hilbert’s Theorem 90, (see below), there is some « € K such
that

op(0) = o(@) forallo € G.
o
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We have
o@ o)
« b
ol@'d)=a"'b forallo € G

a'beJf =Jp.

forallo € G

Now a~'b = b in Cg, since ! € K*. But a~'b € Jr by the above, so we must

have a='b € Cp. The map Cr <> Ck is injective. Thus b € Cr, and we have
shown Cg C Cpr. The reverse inclusion is clear. m]

We record the statement of Hilbert’s Theorem 90 in its modern form here.

Theorem 5.2 (Hilbert Theorem 90). Lert G = Gal(K/F), and let f : G — K*
satisfy f(ro) = t(f(0))f(t) Then there is some o € K* such that f(o) = ”;“)
forallo € G. O

The classical version of this theorem, which originated in the work of Gauss and
Kummer, says that if we have 8 € K* and Nk/r(B) = 1, then 8 = "fx"‘) for
some ¢ € K*, where G = Gal(K/F) = (o) is cyclic. Note that for a crossed
homomorphism f, we have

Nip(f@) =[] r(f(o)

teG

_ 11 (@)
B 1_([; ( f@ >

[1 f(zo)

teG

[l f(@

teG
=1.

Reviewing what we have done so far, we have
JE =Jr
s(G)Jx = Ng/rJk

CF —> CK
C$ =Cr.

Also, we have defined Ng,r on Cg, and the diagram below commutes.
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1 K> JK Ck 1
NK/FJ NK/Fl NK/FJV
1 FX Jr Cr 1

Putting this together,

[C$ :s(G)Ck]=[CF : Ng;rCkl

_|Jr/ . NkypJk [
Fx° FX 0 Nijr g

= [-]F : FXNK/FJK].

(As we’ll see, [Jr : F*NgyrpJgl = [Zp(m) : P;mNK/F(m)] for some m.) Given
the above, it seems potentially useful to study Q5(Cg) when G = Gal(K/F) is
cyclic.

Our approach to this study begins by recalling that we have shown Tk / K*Ex =
Ck, the ideal class group of K. In particular, K *Eg has finite index in Jg, which
K> &k

implies that / K* has finite index in Ckg, the ideéle class group. This gives

QG(CK)=QG(KX5K/KX).
Now Ex N K™ =Ux = OF, so

Kk [

12

EK/EKHKX = SK/UK

whence

96(C) = 96(%% [y, )-

On the other hand,

k=[] u =]‘[<]‘[uw>

weVg veVp wlv

and G = Gal (K /F) permutes {U,, : w|v}. This makes [ [, Uy, a G-module.

wlv

Exercise 4.21. If A and B are G-modules that have Herbrand quotients, show that

Q6(A x B) = Q5(A)Qs(B). ¢

By Exercise 4.21, we may choose any finite set & of places v € Vp, and write

([T [Tth) = (]‘[%(]‘[uw)) (QG<]"[]‘[uw)).

veVp wlv ves wlv vgS wlv
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By Shapiro’s Lemma, we know

QG ( Huw) = QGw(Z/{w)

wlv
where G, = {0 € G : cw = w}. In our study of Qs (Ck), we shall take
8 = {v € Vg : v is infinite or v is finite and p, ramifies in K/F},

(see (iii ) of Proposition 5.7 below).

From the above observations, it is apparent that it will be useful to study the Her-
brand quotient on units in local fields. We continue to use multiplicative notation, so
that from the Herbrand quotient, we obtain information about the norm index. The
following lemma shows that for a cyclic extension of local fields this is governed by
the ramification index for the extension.

Lemma 5.3. Let k»/k; be an extension of local fields, (for us this means that for
some p, k;/Q, is a finite extension), with Gal (k»/ ki) = G, a cyclic group. Let U
denote the units of k;, i.e., the elements of absolute value 1. Then Qg (U4) = 1, and

(U 2 s(GYUa] = [Us = NiyyiyUa] = e(ka/ky)

(whence also [ker s(G) : (6 — DU,] = e(ka/ ky)).

Proof. Consider the p-adic power series

o0
X -1
10gX=Z(—1)”_1( . )
n=1
0 n

epr:Z)’:!.

n=0

These converge ( p-adically) on small discs about 1 and 0, respectively. If we take the
radii of these discs to be less than p~ = , these functions satisfy the usual identities.

Let D = pN 0,, where O, denotes the integers of k,. (For large N, D is a small
open subgroup of O,, preserved by the Galois group G.) Let B = exp(D) (this will
be defined if N is sufficiently large).

Now log 1 = 0, (and log is continuous), so taking & = |pN|p, there exists § > 0
such that whenever |x — 1|, < § we have |logx|, < . Thus |x — 1], < § implies
logx € D, whence x € B. We have shown that B contains an open neighborhood
of 1:

B O {x:|x—1], <48}

Hence B is open.
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The map exp : (D, +) —> (B, -) is a group isomorphism. Also, for ¢ € G,
o(expx) = exp(o(x)), so exp is in fact an isomorphism of G-modules.

Now D has finite index in O,. Also B has finite index in 4. (Since B is open,
the cosets of B in U, are all open, so that U4, is a disjoint union of open sets. But
U, is compact, so there exists a finite subcover of ;. Since the union is disjoint, we
cannot eliminate any coset from the union and still cover {/,. Thus the total number
of cosets must be finite already.)

We conclude Qg () = Qg(B) = Qg(D) = Qs(0>). As in the number field
case, (see the example following Shapiro’s Lemma), Qg (O;) = 1. (Note: in the
global situation we were discussing before the present lemma, we can now say that
for a finite place w, Qg (Uy) = 1.)

w

Since Q(O;) = 1 = Qg (Us), we have
Uy : Nigyi o] = [US : 5(GYL] = [keryy,s(G) : (0 — 1.
Let A = kery,s(G), (foru € A, we have s(G)(u) = 1, i.e., Ny, (u) = 1). By
Hilbert’s Theorem 90, if u € A then u = ° for some & € k. Let 7 be a
uniformizer in k, and write
a=mn'e, forsomet € Z, ¢ € Uy.
We get
o(a) o)\ (o)
u = =
o b4 e

(a(”)) (mod (o — 1)la).
T

Hence °™ generates A/(a — i, = kerz,,zs(G)/(G — 1)U, To find the order

T
of this group, we need only find the order of its generator, i.e., the smallest positive

t
exponent ¢ such that (“(" )) € (o — Db

g

t t ! P
Say ("(”)) € (o — 1)l. Then ("(”)) = 057"), for some 1 € Uy, s0 °7) ="'

b4 b4 a(n) n
and we find that o fixes ’;/. Since G = (o) = Gal (ky/ k1), we must have ’: €

k1. But for any element y € klx, we have elord,(y), where e = e(ky/k;) is the
n
Conversely, if we let p be a uniformizer in &y, then 7¢ = §p for some § € U>, so
700 = 7P € (0 = k. Thus (") € (0 — 1k

e T

ramification index. Thus ¢t = ord, (”1> is divisible by e.

We have shown that e is the order of “;’T ) in the group kery,s(G) / (0 — Dy

o(m)
b4

Since is a generator for this group, it follows that
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e = [kery,s(G) : (o — D]
= [U : Niy/i U] 0

Note in particular, that if k,/k; is an unramified extension of local fields, then
e = 1 and Lemma 5.3 gives Ui = Ny, r,U>. This shows that the norm is surjective
on units in unramified local extensions. (If k»/ k; is unramified, then it is necessarily
cyclic.)

What can be said in the case of a non-cyclic (hence ramified) abelian extension
of local fields? Our strategy will be to decompose the extension into a tower of
intermediate subfields, so that each stage in the tower is a (normal) extension with a
cyclic Galois group.

Lemma 5.4. Let k;/k; be an extension of local fields and suppose we have sub-
groups B < A < U,, with [A : B] = d. Then Ny, /x, B € Ny, /1, A are subgroups of
Z/{l and [Nkz/kl A Nkz/kl B] divides d.

Proof. That Ny, x, B € Ni,/x, A are subgroups of U is clear. Let ¢ : A — A/B be
the canonical epimorphism, and define a map

A Ny i, A
g =R N B

given by
JfraB = Nk (@)Ni i, B.

It is routine to verify that f is a well-defined epimorphism. We have B = kerg C
ker(f o ¢) € A, whence [A : ker (f o ¢)] divides [A : B] = d. The result now

. N, A ~
follows, since 'Vk2/k /Nkz/le >~ A/ker(f o) ]

Let k; € ko € k3 be a tower of local fields, and suppose [Uf; : Ny, i, U] <
e(ka/ky), and [Us © Ny, Us] < e(k3/k»).

Us

/

Us

U Nks/k2u3

Niy i, Uo

Niy /e Us
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Since Ni,/k, = Niy/k, © Nig/ky» We have Ny, i, Us © Ny, i, Uz, and

[U1 2 Nig i, Usl = [U1 2 Nig i, U [ Ni i, U = Niy 71, Us
= [U1 : Nipiy U1 Niy 1, U = Nig i, (Nig 1, U3) 1.

By Lemma 5.4, [Ny, ik, U : Ni, i, (Ni, /1,U3)] divides [Uy - Ny, 1,U3]. It follows that
(U1 : Nigji,Us] < e(ka/ ki) e(ks/ ko) = e(ks/ky).

We have shown the following.

Corollary 5.5. If k,/ k; is an abelian extension of local fields, then

[Uy : Niyji U] < e(ka/ky). |

Exercise 4.22. Let ky/k; be an extension of local fields above Q. Show that, with
respect to the p-adic topology, Ny, /x, : k2 — ki is continuous. O

Returning to the (global) number field case, we may now prove the following
proposition. A straightforward consequence of this proposition will be that for
some m,

~

Jr Ir(m)
/FXNK/FJK - /P;me/F(m)-

Proposition 5.6. For an abelian extension K /F' of number fields with group G, let
H = FXNK/FJK. Then

i. Hisopenin Jg,soH 2 S;m for some m,
ii. the image of H under the isomorphism

Jr /FXE);{m ~ Tp(m) /P;m

(see Proposition 3.4) is precisely

P+mNK F(m)
PR s

Proof. 1. Since H 2 Nk rJk, we have

H 2 Nijrég = l_[ (H NK,,//Fvuw)~

v wlv

Say v is finite. If w|v is unramified, then Nk, /r Uy, = U,. If w|v is rami-
fied, then [Uf, : Ng,,;r,U»] < e(w/v), the ramification index. Since Nk, /r,
is continuous, we have that N, ,r,U,, is compact. Thus Nk, ,r U, is a closed
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subgroup of finite index in the compact group U, . This gives that Nx, ,r U, is
open (see Exercise 4.8).

If v is infinite, then U,, = C* or R*, and Nk, ,r,U, = C*, R* or R} is
open.

Since £F has the product topology, we conclude that Ng,rEk is open in
Er. But this implies that H = F*Ng,rJk is open in Jr, (we may give an
open neighborhood of a € H by noting that since 1 € Ng,rEk, we have a €
aNg,r€k € 'H, and aNg,rEk is open since it is a basis set for the topology
on Jr). Recall the result in Corollary 3.5. Since H is open and F* C H, we
know that there is some m for which H 2 £/ .

ii. Wehave F*E; € F*Ng/pJx =H S Jp = F*J, and (as we saw in the
proof of Propos1t10n 34)

Jr P I U
/F R D Y O o

Now F*Nk rJx = F*(F*Nk/rJg 0 Jf ), s0

FXNK/FJK/ ~ F*Nk/rJg mJ}JPr.m/
= F*NF*Ngpdg N Jf
~ FXNK/FJKQ‘I;:,m/F_,'_
o
The map nw : J5 ,, — Zr(m) given by
Cooap. ) [ et

v finite

is surjective with kernel £ .
Consider the restriction of 7y to F* N, pJxg N J7 .. Since £ € F* N, rJx,
the kernel of the restriction is still S;m. We leave it as Exercise 4.23 to show that
its image is P\ Nk, #(m). Thus

F*Ng/rJk me/ ~ proN
= m
F,m K/F( )

and

12

FXNK/FJK/ F*NgrJg ﬁJFm/FJrg

FXEL

12

P;mNK/F(m)/
O

In the above proposition, we may say a bit more about the ideals m that satisfy
H 2 5;,m- Recall that we proved (in Corollary 3.5) that such an ideal must exist for
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an open subgroup H of Jr containing F* by first finding an open neighborhood of
1 in H of the form A =[] A,, where A, = U, for all but finitely many places and

o i for v finite

v {{x e F,:||lx—1|, <&} forv infinite
for the remaining places. We then set m = []p”*, where the product was over the
finite places v of F for which A, = 1 + p}*. Since we know that the local norm
is surjective for the unramified finite places, it is clear that we may find an open
neighborhood of 1 in H = F*Ng,rJg for which A, = U, for all unramified v.
Thus we may find an ideal m that satisfies the propostion and that is divisible only
by primes that ramify in K/ F.

Example.

7. Let p > 2 be a prime and let K = Q(¢,), F = Q, so H = Q*Ng/gJx. We
want to find m = mZ so that H 2 £ .. Now

£t = B3 x [] (1402 x []2;.

qlm qtm

For a prime ¢ # p, we know that ¢ is unramified in K /Q. If w is a place of K
above g, then the local norm map is surjective on units, i.e., Nk, /@qZ/{w = Z;.
On the other hand, the prime p is totally ramified in K /Q, so if w is a place of
K above p, then [Zf, : Nk, /q,Uw] = p — 1. Since Z; = pp—1 X (14 pZy)
has only one subgroup of index p — 1, we must have Nk, o,Uw = 1 + pZ,.
Thus

Nijolx =RE x (14 pZ,) x [ | 2.
q#p

This allows us to take m = pZ for Q(¢,)/Q.

Exercise 4.24. Let E/F be an arbitrary extension of number fields (not necessarily
Galois). Let H = F*Ng/pJe. Use an argument similar to the proof of part (i) of
Proposition 5.6 to show that H is an open subgroup of Jr. O

For an arbitrary abelian extension of number fields K/ F, let m be divisible only
by ramified primes and such that F* Nk ,rJg 2 E;f’m. Let us examine the proof of
Proposition 5.6 more closely. It gives us an isomorphism

~

Jr Ip(m)
/FXNK/F-]K - /P;mNK/F(m)a

+
which we see arises from the isomorphism Jr / Fx =~ Jrm / F Recall that we
m

first encountered this isomorphism during the proof of Proposition 3.4:
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JF ~ +
/Fxg;m = RF,m‘

In that proof, we argued that given a € Jp, there is some o € F* such that va €

+
J;m. It was from this that we deduced the isomorphism JF/FX = JF’m/FnJ: .
Explicitly, consider the map

J+

m
given by
p:a — oaFl — (xa)P} .

where « € F* is chosen so that wa € J }’ m- Specifically, we are taking o € F*
to satisfy ty(a)a, > O for all real places v of F, (,(@)a, € O, and (,(a)a, = 1

(mod po®™) for all finite places v. (Recall that for an idéle b € J = we have
(b) = nm(b) as before.)
Exercise 4.25. Show that the map ¢ is well-defined. What is its kernel? O

Our results on cyclic extensions of local fields also allow us to prove the follow-
ing proposition on Herbrand quotients of local units arising from a cyclic extension
of number fields, which in turn will allow us to evaluate the Herbrand quotient for
the idele class group Ck.

Proposition 5.7. Let K/F be a Galois extension of number fields, with cyclic
Galois group G = (o). Let v be a place of F and let w be a place of K above
v. Then

i. Qg,U,) = 1if wis finite, if w is real, or if v is imaginary.
ii. Qg,U,) = 2 if w is imaginary but v is real.
iii. QG(nu¢s Hw\v U,) = 1, where

8 = {v € Vg : v isinfinite, or v ramifies in K/F}.

Proof.

i. First assume that w is real (so v is real). Then G,, = Gal(K,,/F,) = {1} and
Uy = R*. Thus Qg, (U,) = 1.
Next assume that v is imaginary. Again G,, = {1} so Q¢, (U,,) = 1.
If w is finite, then Lemma 5.3 gives that Q¢ (U,,) = 1.

ii. Suppose that w is imaginary and v is real. Then G, is generated by complex
conjugation. We have US» = (C*)° = R*, and s(G,)Uy, = 5(G,,)C* = {zZ :
z € C*} =R}, Also

kery, s(G,) ={z € C*:zz =1},

w
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the “unit circle group,” and if T denotes complex conjugation,

(t— DUy = —1DC* =" :1zeC*}

z
Z
is also the unit circle group. It follows that

UG+ ()] = [R* - RY] =2
[kery, s(Gy) : (r — DUy] =1,

whence Qg (Uy,) = 2.
iii. Let

8 = {v € Vp : v isinfinite or v is ramified in K /F}.

Note that § is a finite set. Let

A= HA”’ where A, = l—[L{w.

ve¢S wlv

By Shapiro’s Lemma, Q;(A,) = Qg, (U,,) and this equals 1 by part (i).

w

Now AUG = {(u,...,u) : u € Uy} = U, (see (x) in the proof that s(G)(a) =
Nk,r(a) fora € Ji). Also

S(G)A, = [ | N, /el = Uy,

wlv

since

SOty = (oo [ Newsmaw. )

wlv
wlv

As before,

l_[ NKU,/FUZ/{w = Z/{v

wlv
since v ¢ § implies v is unramified so that the local norm Nk, ,r, is surjective on

units by Lemma 5.3.
We have [AUG :s(G)A,] = 1.Butalso Qg(A,) = 1. Thus

[ker 4. 5(G) : (0 — 1)A,] = 1.
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We get

A =[TAS =[] =[[5(G)A, = s(G)A.

vegS ve¢S ve¢S

It follows that [AY : s(G)A] = 1. Since ker 4,5(G) = (0 — 1)A,, we obtain

ker 45(G) = [ [ ker4,5(G) = [ Jto = DA, = (0 — DA.
ve¢S vegS

It follows that [ker 45(G) : (6 — 1)A] =1 and

QG<A)=QG(]‘[]‘[uw> = 4

vgS wlv

Observe that Proposition 5.7 allows us to compute the Herbrand quotient of £k :
Q6(Ex) =2,

where a = #{v € Vp : visreal on F, but extends to imaginary places on K}.

We want to find the Herbrand quotient of Uk, where K / F is a cyclic extension of
number fields. Once we have done so, we can combine it with the above information
about Q;(Ek) to find the Herbrand quotient of the idele class group Ck. This in
turn will lead to a proof of a result on the norm index in the case of a cyclic global
extension.

We shall need two preliminary lemmas.

Lemma 5.8. Let S be a finite set and let V = & RX,, be a real vector space. For

wes
anelement Y ¢ a, X,, of V, define

we§

1 awXul, = max{la,| : w e 8},
wes

(the sup-norm on V). If {X/ : w € 8} is given so that || X/, — X,,||, < , ' for

0 dim, V
each w, then {X|, : w € 8} is also a basis for V.

Proof. Suppose not. Then there is a set of scalars {b,, : w € 8} € R such that
Zwe sbyX,, = 0 and not all of the b,, are 0. Without loss of generality we may
assume max,, |b,,| = 1. Then

0= waX:,, = wa(X:,) - Xw) + waXw

wes wes wes
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whence

waXw = - wa(x;) - Xw)'

we§ we§

Taking norms, we obtain

1 = max |b|
w

Y 1bul X, = Xull,

wes

<> IX, = Xull,

wes

1
<2 dim,_V

wes

IA

a contradiction. O

Next, we prove the following, which appears in the Artin-Tate class field theory
notes of 1961, [AT].

Lemma 5.9. Let G be a finite group acting on a finite set 8. Let V. = @& RX,, be a

wes
vector space. Then G acts on V via

a(Zanw> =Y awXou.

wes wes

Note that the action of G preserves sup-norms: [[o(X)|l, = [|X||, forall X € V. Let
L C V be a lattice preserved by G. Then there is a basis {¥y,}ycs of V contained in
L such that o(Y,,) = Y,,, forall o € G and for all w € 8.

Proof. We have a lattice £ in V, so RL = V. Our finite group G acts on the finite set
8; let r denote the number of orbits of G in 8, and let wy, ..., w, be a complete set
of representatives for the orbits, (one w; from each orbit). Foreach j = 1,...,r,
choose X7, € QL such that

/
“ij _ij”U < dlm V

R
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and define

1
X! = X' )).
wj #ij< 2 o wf))

GEG‘“X

Then

1
” . /
“ij — ij“o - H #Gw < Z U(ij)> - Xu)j

0€Gy; 0
D
= > (ox,) = o(Xu)) H
(since 0(Xy,) = Xy, forallo € Gy,)

> o), = Xuw)l,

w;
J UEij

l !
= e 21X, = Xuly

Wi oGy,
(since [lo(X)|l, = | X||, for all o, for all X)
=X, — Xu l,
1
< .
dim, V

<
T #G

Thus, for any w € §, one can write w = ocw; for some j and some o, and define
" o__ "
X, =0X w,)-

(This is independent of o, so long as cw; = w, so is well-defined. This is why we
needed to define the X”. We couldn’t have used the X7, : The above would not be
independent of ¢.)

By Lemma 5.8, we have that {X/ : w € 8} is a basis for V. Note also that X/, €
QCL for all w. Hence, there exists a sufficiently large integer N so that NX!/ € L for
allw e 8S.

We may now take Y,, = NX/, for each w € 8. Then {Y¥,, : w € 8} is a basis for
V. It remains only to show that o(Y,,) = Y,,, for all o, for all w. We leave this as

Exercise 4.26. after which our proof of Lemma 5.9 will be complete. O
Proposition 5.10. Let K/F be a Galois extension of number fields, with cyclic
Galois group G = (o). Then

2(1

QeUx) = (K : Fl

where a = #{v € Vp : visreal on F, but extends to imaginary places on K }.
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Proof. Leta = #{v € Vp : v isreal, but becomes imaginary in Vg}. LetUgx = O,X(.
By Dirichlet’s Unit Theorem, ranky Ugx = r; +r, — 1. Let

LU — R
be given by
be)= (... logllellw, - - Jwloo-

Then ¢(Uy) is a discrete subgroup of V = R (i.e., £(Ux) is a lattice in a sub-
space of V. In fact, it is a lattice in Vo = {(..., xy,...) € V : Zw xy, = 0}. Note
that dimRV() =ri+rn—1)

Let8 = {w € Vg : wis infinite}, and forw € §,let X, = (0,...,0,1,0,...,0)
where the 1 is in the w"™ component. Then V =— @RX,,. Let G = Gal(K/F)

. wes
actviao(X,) = Xy and let

L = 0Ux) D ZL,, where £y = wa =(1,..., 1.

Note that £ is a lattice in V = V @ R£y. We shall compute Qg (Ug ) by relating it
to Qg (L).
Now o (€o) = D5 0(Xu) =D cs Xow = Lo, and for & € Uy, we have
Lo(e))=(...,logllo(®)llw,...)
= logllo @l Xu

wes
= Zlog llo(&)llowXew
wes
= Zlog Nl Xow
wes
- a<Zlog ||8|Iwa>
wes

=o(..,loglelw,--.)
= o(£(e)).
Thus o (((Uk)) = L(c(Uk)) = L(UKk). Since we also have o (£y) = £y, it follows
thato (L) = L.
Recall that ker £ = Wk, the (finite) group of roots of unity in K, so we have an

exact sequence

0 — Wk — Ux —> tUk) — 0,

and MK/WK = L(Uk). We get



100 4 The Idelic Theory

QeUxk) = QeWik)Q6(UUx)) = Qc(EUk)).

Now G acts trivially on Z£y = 7Z, so Qg(ZLy) = #G. Thus, as a G-module, the
lattice £ = ¢(Ux) & 7Ly has Herbrand quotient

Q6 (L) = Qs (UUk)) Qs (Zto)
= QeUx)IK : F].

Now we may apply Lemma 5.9. There is a basis {Y,,} of V with ¥, € £ and
t(Yy) =Y., forall w € §, forall T € G.
Let £ =— @®ZY,, asublattice of L: rank, L = #8 = rank, £ and £ C L.

wes

Hence £ / r is finite and Qg (L) = Qg (L’). We may reorder the w to get

L= (@ZYw).
veVrp \wlv
v|oo

Each @ ZY,, is a G-module, and G permutes its summands transitively, so we may

wlv

apply Shapiro’s Lemma to get

Q(DZYy) = Ui, (ZY ).

wlv
Since ZY,, = 7 with trivial G,,-action we get Qg, (ZY,,) = #G,,. Hence

QG(E/) = l—[ #Gy

v|oo
veVp

where we take one arbitrary w|v for each factor of the product. Now

1 if w, v are both real or both imaginary

#G, = [Ky : Fy]l = {2 otherwise.

Thus

Qg(L) =2¢
where a = #{v € Vr : v is real but extends to an imaginary w € Vg}. We get

Qg(L)
(K : F]
_ 96(L)
" [K : F]
2(,1
(K : F]’ ]

QeUk) =
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Given Proposition 5.10, finally we have enough information to find the Herbrand
quotient of the idele class group and to use it to prove the Global Cyclic Norm
Index Equality.

Corollary 5.11. Q;(Ck) = [K : F].

Proof. 96(Cx) = g (£% [y, ) =2 ([,3;])_1 . o

Theorem 5.12 (Global Cyclic Norm Index Equality). If K / F is a cyclic extension
of number fields and m is an integral ideal of O that is divisible by a sufficiently
high power of every ramified prime in K / F, then

[Zr(m) : Pi  Ng/p(m)] = [K : F].
Proof. Since Qg(Ck) = [K : F], we have
[Cg :8(G)Ck]l = [K : Fllker ¢, s(G) : (6 — 1)Ck].

But also [C§ : 5(G)Ck] = [CF : Nxk/rCk] = [Zr(m) : P} Nk r(m)], whenever
m satisfies F* Ng/rJx 2 Eﬁm. Thus [K : F] divides [Zp(m) : P;mNK/F(m)] and
we have obtained the “Global Cyclic Norm Index Inequality”

(K : F1 < [Zp(m) : Pi o Ng/r(m)l.

Meanwhile, on the other hand we have already shown the Universal Norm Index
Inequality, which gives [Zy(m) : P;f’mNK/F(m)] <[K:F]. O

Note that the preceeding proof also gives us (0 — 1)Cx = kerc,s(G) when
G = (o) is cyclic.

The hypothesis that K/ F is cyclic may be weakened in Theorem 5.12, but we
obtain the resulting stronger statement (for arbitrary abelian extensions) as a con-
sequence of Artin Reciprocity, which we haven’t yet discussed (see Chapter 5).
Indeed, Takagi took the equation [Zp(m) : H] = [K : F] to be the defining property
for K to be a class field for H.

The term “Second Fundamental Inequality” has previously been used for the
inequality [K : F] < [Zp(m) : ”P;f’mNK ,r(m)] because historically its proof came
later (Takagi, [T], 1920) than that of the Universal Norm Index Inequality, which
was proved by Weber, [We2], (using Dirichlet L-series) in the late 19t century.
This terminology was the convention originally. Many authors however, (including
Artin and Tate, [AT]), reverse the order in which the two inequalities are presented,
and consequently refer to the above as the First Inequality and the Universal Norm
Index Inequality as the Second Inequality. It is perhaps best to avoid this confusion
by using the names “Global Cyclic Norm Index” and “Universal Norm Index” for
these inequalities.

Exercise 4.27. Let K / F be a cyclic extension of number fields and suppose D < Jp
satifies
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i. D C NK/FJK
ii. F*D is densein Jp.

Show that K = F. Does this result generalize to arbitrary abelian extensions

K/F?

o

We must emphasize that the techniques we have used in this chapter (ideles,
cohomology) were not available to Takagi. They came onto the scene only in the
1930s. The original proof of the Global Cyclic Norm Index Inequality, for example,
uses what Hasse called a “far-reaching generalization” of Gauss’ theory of genera
of quadratic forms, [CF]. See Disquisitiones Arithmeticae, 1801, for Gauss’ results.

To conclude this chapter, we discuss a result about norms that is a nice application

of what we have done so far. Let

A =ker ;. s(G)
B =ker ¢, s(G)

and let 6 : A — B be the restriction of the natural homomorphism Jx — Cg. We

have the following commutative diagram with exact rows and columns.

1 1
0
A _ B
1 —— Kx SN Jr - Cx
NK/Fl NK/Fl:S(G) Nik/r | =s(G)
1] —— Fx — Jr - Cr

! !

FX/NK/FKX —— JF/NK/FJK

l l

1 1

The Snake Lemma gives the existence of 6 : B —> F* / x so that
Ng/rK

6 L 2k [
A— B — /NK/FKX—) F/NK/FJK

is exact.
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Since s(G)(o—1) =0, we have (0 —1)Jx € A = ker ;,5(G). Thus (6 —1)Cx <
0(A), whence B = 6(A) by Theorem 5.12. Now exactness gives ker§ = 6(A), so

8(B) = {1}. It follows that the map 7 : FX/NK/FKX — JF/NK/FJK has trivial

kernel, i.e., 7 is an injection. From this, we conclude that if « € F* C Jp is in
Nk,rJk,thena € Ng,rp K>, whence @ = Ng,r(B) for some g € K*.

Exercise 4.28. Let K/ F be a cyclic extension. Suppose @ € F*, and view F* C Jp
as usual. Show that o € Nk,rJk if and only if & € Nk, ,r, K, for all places v of F
and all places w of K with w|v. O

Given Exercise 4.28, we have

Hasse’s NorM PRrINCIPLE. For any cyclic extension K /F, an element @ € F* is a norm
from K if and only if « is a local norm in each completion.

The hypothesis that K /F is cyclic is necessary here. Hasse’s norm principle fails
in general for K /F non-cyclic abelian. Indeed, the simplest example occurs for the
simplest non-cyclic abelian Galois group: In the extension Q(+/13, +/17)/Q), there
are many examples of rational numbers that are local norms for every completion
but are not global norms. For more about the defect in the non-cyclic abelian case
one must look at higher cohomology. See the article by Tate in Algebraic Number
Theory, (Cassels and Frohlich, [CF]) for details.

Hasse’s norm prinicple is useful in proving the Hasse-Minkowski Theorem on
quadratic forms: A non-degenerate quadratic form over a number field F that rep-
resents zero in F, for all v must represent zero in F. Exercise 4.4 in Cassels and
Frohlich, [CF], outlines the steps of the proof.



Chapter 5
Artin Reciprocity

Artin Reciprocity answers explicitly the problem of finding a proof for the Isomorphy
Theorem. Takagi ([T], 1920) proved the isomorphism by considering cyclic groups
and their orders, but he did not give a canonical map for it. Indeed, mathematicians
working at the time did not seem to be concerned with finding such a map.

Artin ([A2], 1927), using some ideas from Chebotarev’s work on a conjecture of
Frobenius, was able to give explicitly a map that was the desired isomorphism. This
was a more complete answer than the original problem had required and it allowed
Artin to prove a result on L-functions, which had been his motivation at the time.
Together with some other work of Artin, it also leads to a proof of a conjecture of
Hilbert that says that every ideal of a number field generates a principal ideal in its
Hilbert class field. The first proof of this, the Principal Ideal Theorem or Principal
Divisor Theorem, was given by Furtwiéngler ([Fur2], 1930). A simpler proof, using
an idea of Artin ([A3], 1930) that reduces the problem to a question in group theory
was given subsequently (Iyanaga, [Iy], 1934). We discuss the Hilbert class field and
the Principal Ideal Theorem in Chapter 6.

Artin Reciprocity is regarded as the central result in class field theory, even
though its proof came later than the proofs of nearly all of the other results. Once
it was known, many of the other main theorems of class field theory were seen to
follow from it. It was also seen to imply all previously known reciprocity laws.

In this chapter, we define the Artin symbol, and give a proof of Artin Reciprocity.
The proof we give is Artin’s, although not his original proof from 1927. We also
show how Artin Reciprocity can be used to obtain a proof of Quadratic Reciprocity.
The other main theorems of class field theory will be treated in Chapter 6.

1 The Conductor of an Abelian Extension of Number Fields
and the Artin Symbol

Recall that for an ideal m of Of, we set
J;fm ={ae Jr:a, >0forallrealv, a, =1 (mod pf’fd“(m)) for all finite v}

S m =T nNEr

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 5, 105
© Springer Science+Business Media, LLC 2009



106 5 Artin Reciprocity

Fi=Jf,NF~
Zp(m) = {a € Zp : ordya = 0 for all p|m}
Prm={@) ePr:ia>0 a=1 (modm))
Ni/r(m) = {a € Zr(m) : a = Ng,r(A) for some A € T}

and showed

JF/FXS;_ -~ Fm/g+ L = Zr(m )/PJr

me

via the homomorphism 7y, : J;m —> Tr(m) given by

a= (o) fa) = ] o,

v finite

Given an abelian Galois extension of number fields K /F, we have also shown
that the subgroup H = F* Nk ,rJx of Jr contains Szm for some (integral) ideal
m € Zr divisible by sufficiently high powers of the primes that ramify in K/F.
The ideal m is not unique however. Suppose n is another ideal of O for which
S;n C 'H. Let (m, n) denote the g.c.d. of m and n.

Exercise 5.1. Show that £  Ef  =&F . O

By Exercise 5.1, we have that there is a minimal ideal f of O such that £ +f CH.
This ideal f is called the conductor of 'H (or of K/F), denoted f = {(K/F). By
minimality here, we mean precisely that if E;m C H then f|m.

Exercise 5.2. Let K/F be an abelian extension of number fields, and let | =
f(K/F).
a. Show: if m is an ideal of OF such that 5+ C F*Ng/rJk, then Ip(m) € Zg(f).

b. Prove or disprove and salvage: If EF m & F*Ng,rJk, then P;mNK/F(m) =
Pre Nk /() N Zp(m).
c. Suppose Zr(m) € Zr(f). Show that there is a natural embedding

Zr(m) Zr ()
F /’P;mNK/F(m)C—) F f/P;fNK/F(f)

induced by inclusion.
d. Under what circumstances is the embedding of part c an isomorphism? O

Exercise 5.3. Suppose F' € E C K are number fields and K/ F is abelian. How are
f(K/F) and {(E/F) related? O
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Which primes of Of can divide the conductor f(K /F)? Recall from Chapter 4,
we can find an ideal m that is divisible only by the primes that ramify in K /F and
for which 5;m C F*Nk,rJk (see the discussion following the proof of Proposi-
tion 4.5.6). For any m, as in the proof of Corollary 4.3.5, we have

o= I CTIRJTO+p™ ] th-

v imaginary v real polm pofm
Since Nk, rEk is open in £, we can choose m so that
+
gF,m - NK/FEK-

(Such an m is said to be admissible for K /F.) But for an unramified prime p,, and
any place w of K above v, we know that N, ,r, is surjective on units. Thus

NK/F5K=< l_[ L{v)< l_[ l—[NKw/F‘,Z/{w)< l_[ l_[NKw/FUK;)'

v finite v finite wlv v infinite w|v
unramified ramified

It follows that we only need ord,m > 0 when Nk, U, # U,, which cannot
happen unless v is ramified. By the minimality of f, we therefore have that if p, is
unramified then p, t f. The conductor cannot be divisible by any unramified prime.

If p, is aramified prime, then we have not yet determined whether p, must divide
f. We shall return to this question in Chapter 6 after we have developed a bit more
of the theory.

Exercise 5.4. Suppose K/F is a cyclic extension of number fields and m is an
admissible ideal for K /F. What can you conclude from Lemma 4.5.3 about divisi-
bility of m by ramified primes? O

For some authors, the conductor is a divisor, and includes factors involving
the infinite real primes of F that extend to imaginary primes of K (the ramified
infinite primes). This makes sense, as it is precisely for these infinite places that
Nk, /r K = NejrC* = RY # R*. For us, however, the conductor is an ideal
of O F-

We may incorporate the notion of conductor into some of our results from Chap-
ter 4. To summarize, we have shown (via the Global Cyclic Norm Index Equality)

[K: F]=[CF: Ng/rCg]
= [Jr : F*Ng;rJk]
= [Zr(f) : Pp Nisr(h)]
for K/F cyclic and §f = f(K/F). This is actually still true if K /F is only assumed

to be abelian, but we have not yet shown it. (It does not generalize to non-abelian
Galois extensions.)
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Let us return briefly to the question of the primes of O that split completely in
an abelian extension K/ F. Recall we set

Sk/r = {primes p of F' that split completely in K /F}.

We have seen in Chapter 3 that Sk /¢ is central to Weber’s notion of class field and

that the Dirichlet density 87 (Sk/r) = | ‘ #)- Now consider the set

Jk/r = {primes p € P;fNK/F(f)}'

If p splits completely in K/ F, then (p, f) = 1 and for B|p, we have Ng,rPB = p.
Thus 8x/r € Tk,r. Also, (see Proposition 3.2.3), if we can show L(1, x) # 0
for all characters x # x, of Zp(f) that are trivial on 73 NK /F(f), and if we have
the generalization to abelian extensions of the Global Cychc Norm Index Equality
mentioned above, then

1 1

8r(T/r) = B
ORI = gy PNk T LK FL

= 8r(Sk/F),

so 8g/r ~ Tk,r. Recall, according to Weber’s definition of class field, it would
then follow that K is the class field over F of 77;{ Nk/r(f), and the Completeness
Theorem would be established.

After we have proved Artin Reciprocity, we shall be able to say more about
Sk,r and Tk r. Artin Reciprocity gives an explicit isomorphism between the Galois

group of an abelian extension K /F and the group Ir (m)/P+ Ng/r(m) for suit-
Fom

able m, yielding (among other things) the generalization of the Global Cyclic Norm
Index Equality to arbitrary abelian extensions. Moreover, the nature of the isomor-
phism is such that information about Sk, r is readily obtained. This isomorphism is
defined using the Artin symbol, which we introduce next.

Let K/F be a Galois extension of number fields with abelian Galois group G.
Let p be a prime ideal of OF that is unramified in K /F. Then the decomposition
group Gp = Z(p) must be cyclic (inertia is trivial) with a canonical generator o, =

X / r) the Artin automorphism.
Let m be an ideal of O that is divisible by all the primes that ramify in the

extension K /F and no others. The map p + o}, induces a homomorphism A =
Aksr i Zr(m) — G givenby a = o, =
we set

K/F) where, for a = [, p"» € Zr(m),

H = <K/F>
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(0q does not depend on the choice of m.) The map A is called the Artin map and
( KC/‘ F) is the Artin symbol. Note that since m is divisible by all the ramifying primes,

oy, is defined for all p { m.
Recall that if T : K — K’ is an isomorphism, and 7(F) = F’, then

( p ) B - < p/ >
T T =
K/F K'/F'

where t(p) = p’, (a prime of Op).
Next we prove a result on the Artin symbol in towers of number fields.

Proposition 1.1 (Consistency Property). Let F € L € K, F C E C K be
number fields and suppose K /F is abelian. Let p be a prime ideal of OF that is
unramified in K/F and let Bk be a prime ideal of Ok that divides p. Let B, =
Px N L, P =Pk N E (prime ideals of O, Oy, respectively, that divide p).

K PBx

L/ \E ‘J3L/ \‘BE
N7 N/

Then

(%7e)], = (ute)
K/E)|, \L/F
where f = f(Bg/p) is the residue field degree.

Proof. Let o, = (L'/“F). Recall, for « € Oy, we have

op(a) = o™? (mod PB,),

and this congruence completely characterizes oy.
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Letoy, = (K/E) Then o, (o) = &V®# (mod Py ) foralle € Ok. Ifa € Oy,
then o, (@) = oV¥# (mod Px N L). Of course Px N L = Py, s0 o, | (@) =
L
oV¥FE (mod Py).
Now NPz = (Np)/, so

apf(oz) =o' =™ (mod P,).

Hence o} (a) = oy, | (@) (mod By ). It follows that ap = oy, | asdesired. (They

are equal on the res1due field, and the map to the residue field has kernel equal to
the inertia group, which is trivial here.) O

By the Consistency Property, we have

<m) _<p>f_(pf)_<NE/Fq3E)
k/E)| ~\L/F) ~\L/F) \ L/F )’

Multiplicativity gives
A _ [ Ne/r2d
K/E)| ~\ L/F

for any fractional ideal % € Zg(m), (where m is divisible by all the ramified primes,
and no others).

Corollary 1.2. Let F € L C K be number fields, where K /F is abelian Galois.
Let p be a prime ideal of O that is unramified in K/ F. Then

<KiF> ‘ B <L?F>

Proof. Putting E = F in Proposition 1.1 gives p = Lg; the corollary follows. O

Corollary 1.3. Let F € E C K be number fields, where K /F is abelian Galois.
Let p be a prime ideal of O that is unramified in K /F and let ‘B be a prime of

Of above p. Then
() = ("%07")
K/E) \ K/F )’

Proof. Putting L = K in Proposition 1.1 gives the result. O

Corollary 1.4. Let K /F be an abelian Galois extension of number fields. Let m be
an ideal of Op that is divisible by all the primes that ramify in K /F. Then

NK/F(m) - ker (.A : IF(m) — G)
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(See (iii ) of Artin Reciprocity in the next section.)

Proof. Putting L = K = E in Proposition 1.1 gives

("er )= ()
K/F ) \K/K

If 2 is any ideal of K that is prime to the ramifying primes of K / F, then by factoring
A, we have
NK/FQ[ -1
K/F )]

Exercise 5.5. Let K = Q(+/5,i). Then Gal(K/Q) = {1, 0, 1,01}, where o is
complex conjugation, while 7 fixes i and sends /5 — —+/5. Suppose pZ is an
unramified prime in K/Q.

K

O

pZ

K /Q)’
mine whether the Artin symbol is 1, o, 7, or or. (HINT: If you can find some
cyclotomic field that contains K, then Example 1 of Chapter 1 may be of use.)

a. Compute ( i.e., give conditions (in terms of congruences) on p that deter-

b. Give necessary and sufficient conditions (in terms of congruences) for the prime
pZ to split completely in K/Q. Compare your answer with part a and Theo-
rem 1.1.8.

c. Suppose pZ is inert in Q(7)/Q. What can you say about (é’%’(g))"

d. Suppose pZ splits in Q(i)/Q, say pZ[i] = pp’. What can you say about

P ?
K/Q0) )°

2 Artin Reciprocity

Theorem 2.1 (Artin Reciprocity). Let K/F be an abelian extension of number
fields, and assume m is an ideal of O, divisible by all the ramifying primes. Let
G = Gal(K/F). Then

i. A:Zp(m) —> G is surjective,
ii. theidealm of Of can be chosen so that it is divisible only by the ramified primes

and satisfies P}'m C ker (A); thus we have an epimorphism Zr (m)/PJr —
’ Fm

G (it is surjective by (i)),
iii. Ngsr(m) C ker (A).
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Choosing m as in (ii ), we have a well-defined homomorphism

To(m)
P Ngypm) > C

(still surjective). Since # <IF(m)/P+ NK/F(m)> < [K : F] = #G by the Univer-
Fm

sal Norm Index Inequality, in fact we have

Tr(m) o~
/P;mNK/F(m) =G
Note that this isomorphism is given explicitly by the Artin map. (Compare this to the
Isomorphy Theorem.)

Proof. Tt will take some effort to give the proof. However, we have shown (iii)
already, as a corollary to the Consistency Property in the previous section.

Next we prove (i), (i.e., A : Zr(m) — G is surjective). Let H = A(Zr(m)) C G,
and let E be the fixed field of H. Note that

(EjF> B (KjF)

for all a prime to m, by Corollary 1.2.

By our choice of H, we have ( K‘; F) € H, and since E is the fixed field of H,

(KjF) T (E%)

In particular, if a = p is any prime with p { m, then ( E'; F) = 1 generates the

E

we have

decomposition group Zg,r(p). Therefore p splits completely in E/F.
Let 8g/r be as before, and let 8§ = {all primes p of F}. Then, by the above
8F\8g/F is finite, whence

1

(E: F] r(8g/r) = 8r(SF)
Thus F = E is the fixed field of H. It follows that H = G.

Finally, we prove (ii ), i.e., there exists m such that P;m C ker(A : Zp(m) —
G). Moreover, we may take m to be divisible only by primes that ramify in K/ F.

We begin with the special case F = Q, and K = Q(¢,,) where ¢, is a primitive

m"™ root of unity. Let pZ be a prime of Z, where (p, m) = 1. Then (]é’/ZF) = o),

where 6, : {y > Gh. Leta € Zy, say a = p{'--- p“, and suppose the p; are all
prime to m. Then
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where o, : {y = ¢ Now say a = IZ, (where b, ¢ € Z). Then ca = b, so

caZ
K/F = O¢q = 0,04 = Op.

Thus,0, =o0, o' Choosed € Z, withdc =1 (mod m). Theno, ' = o,, and
04 = 0pq. When do we have o, = 1, i.e.,, when is aZ € ker (Zg(mZ) — G)? Our
choice of d gives o, = 1 if and only if 0,4 = 1, so if and only if bd = 1 (mod m).
But this happens if and only if a =1 (mod mZ), (since a and bd are congruent
modulo p®4™ in Q, for any prime p dividing m). Hence ker (Zg(mZ) — G) =
P@,mz’ and we have shown that (if ) is true for Q(¢,,)/Q.

Next suppose F is an arbitrary number field and K = F(g,).

K= F(Cm)
VRN
Q(Cm) F
Q

We have

() ...~ (aea)
K/F) |~ \QGw/Q

by the Consistency Property. Note that an automorphism o € Gal (K /F) is trivial if

and only if o =1.
Q(m)

Let m = mOp, and suppose a € P;m. Then a = («), where o =1 (mod m),

and o >> O. IhuS
Q(m) / Q&m) @(;m)/@ @(;m)/@ )

(i7r)
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Since o > 0, we must have Na > 0. Moreover, since « =1 (mod m), we must
have No = 1 (mod m). But we already know from our discussion of Q(¢,,)/Q that
( e ) — 1ifand only if Na =1 (mod m). Thus

ém)/Q
/ Q(&m) ( )/

and (as we have already observed), this is only possible if ( K‘/‘

;) =lie,ifae
ker (A : Zr(m) — G). It follows that P;m C ker (A) and (ii) is true for F(¢,)/ F,

where F is any number field.

Exercise 5.6. Show that (i) is true for E/F where F is any number field and E C

E (). ¢

Nextlet K/ F be an arbitrary cyclic extension of number fields. We have seen that
[K : F]1=[Zr(m) : P;mNK ,r(m)] for m “sufficiently large,” i.e., for m divisible
by all the ramifying primes and such that 5;m C F*NgsrJk. Since A : Tp(m) —
G is surjective, we find:

[Zr(m) : ker A] = #G = [K : F] = [Zp(m) : P} Ng/r(m)].
We’ll show (Proposition 2.2 below) that
ker A - P;mNK/p(m).

Given this, we conclude ker A = P} Ng/r(m) 2 P/ . Proposition 2.2 thus
suffices to complete the proof that (ii ) is true for K /F arbitrary cyclic.

Finally, let K /F be an arbitrary abelian extension. By the above, for each cyclic
E/F there is some mg such that P;mE is contained in the kernel of the Artin map

for E/F.Letm= [] mg. ThenP; C Py forallsuch E. This means that
E/F cyclic ' ’
ECK

P;m is contained in the kernel of the Artin map for every such E/F.

a

Suppose a € P} .. Then (E/F

) = 1 for every cyclic subextension E/F. Let

o = ( K‘; F); SO O"E = 1 for every E. If 0 # 1, then there exists a non-trivial
character x : (o) — C* (so x(o) # 1). Extend x to a character of G and let
H = ker x. Then G/ H is cyclic, since the image of x is a finite subgroup of C*.
(Infact, H = (x)tso(x) = H+ = G//; > G/H.)

We have that G/ H is cyclic. If we take E to be the fixed field of H, then we have
that Gal (E/F) = C/y is cyclic. By the above, o

have o € H and x (o) = 1, a contradiction.

= 1, which means we must
E
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Hence 0 = 1 onall of K, i.e., (K‘;F

Artin map for K/ F. It follows that P;f’m is contained in the kernel of the Artin map
for K/F. O

) = 1. Thus a must be in the kernel of the

For the proof of Artin Reciprocity to be complete, it only remains to show the
following proposition.

Proposition 2.2. If K/ F is a cyclic extension of number fields with Galois group G,
and m is an ideal of O sufficiently large so that it is divisible by all the ramifying
primes in K/F and so that S;m C F*Ng,rJk, then the kernel of the Artin map
satisfies ker (A : Zp(m) — G) € Py Ng,r(m).

Proof. Leta € Ty(m) with . ) = 1. We'll show

a= (a)Ng,r(2)

where @ > 0, @ = 1 (mod m), A € Tx(mOk). This will require several lemmas;
the proofs of the first few are due to Van der Waerden (1934). Also see the work of
Birkoff-Vandiver, Chevalley, Iyanaga and Takagi.

Lemma 2.3. Letr > 1, a > 1 be integers, and let g be a prime number. There is a

prime number p such that the order of a mod p in (Z/ pZ) isq".

q" _ r—1
Proof. Lett = aj,',,_ll, andu =a? — 1. We have

q
2

a’ —1 _ (I+u?—1
u o u

=q+<g)u+-~-+u"‘1

=g (mod u).

a"/=(1+u)q=l+w+< )uz—i-----i-uq, whence

=

Let p be a prime dividing ¢. If p|u, then p|g, and we get p = g. Thus, unless ¢
is a power of ¢, we may choose p|t, p # g and therefore have p  u. We get

a’ =1 (mod p)but a?  #1 (mod p).

This will give that the order of @ mod p in (Z/ pZ) is ¢" as claimed. It remains

only to consider the case when ¢ is a power of ¢.

Suppose ¢ = ¢q°¢, for some e € Z,. Note in fact ¢ > 1, since the binomial
expansion forces ¢ > ¢. So ¢?|t. Using the binomial expansion, we find g |u. Since
qlu, we have



116 5 Artin Reciprocity

o

=gq 1 (mod ¢?)

If g > 2,thenu?~! = 0 (mod ¢?), and we get 0 = ¢ (mod ¢?), a contradiction.
Thus g = 2.

If ¢ = 2, then we have 2|u so that 2|azr7l — 1 whence a is odd. Since r > 1, we
get

W' =u=@ P -1=0 (mod8).
Butg +u?' =0 (mod qz), which (for g = 2) gives
g+u’'=24+u=0 (mod4),

a contradiction.
Our proof is complete, since ¢ cannot be a power of g. O

Corollary 2.4. Leta > 1 be an integer. Given ¢ as before, there are infinitely many

primes p such that g” divides the order of @ mod p in (Z/ p Z) .
Proof. Apply Lemma 2.3 to ¢"**, for all k € Z,. o

Lemma 2.5. Let S be a finite set of primes, and let ¢ > 1, n > 1 be integers.
There is an integer d, prime to all the elements of 8, such that n divides the order of

a mod d in (Z/dZ) .
Proof. Write n = q;' - - - ¢*. The above corollary implies that for any j there is a

prime p; ¢ § such that the order of @ mod p; in (Z/ ij) is divisible by q;’ .
Hence n divides the order of @ mod d in (Z/dZ) where d = p; - - ps. O

Now fix n,a € Z, with n,a > 1, and a finite set of primes 8. Find d as in

Lemma 2.5, i.e., n dividing the order of @ mod d in (Z/dZ) .

Let 8 = S U {primes p : p|d}, and let n’ be the order of @ mod d in (Z/dZ)X,
(so n|n’). Apply Lemma 2.5 to &', n’, to get d’ € Z, prime to all the elements of &
(i.e., to 8 and to d), and such that n” divides the order of a mod d’ in (Z/d/Z)X
Letm =dd'.

Lemma 2.6. Given integers n > 1, a > 1, and a finite set § of primes, there is a
positive integer m such that

i. m is prime to all the elements of §

ii. n divides the order of @ mod m in (Z/mz)
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iii. there exists b € Z such that n divides the order of » mod m in (Z/mZ) but a
and b are independent modm, (i.e., (a mod m) N (b mod m) = 1).

Proof. Letm, d, d’, n’, § as before. Then (i) and (ii) are clear. For (iii), take

b=a (modd)
b=1 (modd").

(The Chinese Remainder Theorem implies that b exists.) Then

order of b mod m in (Z/mZ)X = order of @ mod d in (Z/dZ)X
=0 (mod n).

Suppose a and b are not independent modulo m. Then there exist integers i, j such
that 1 # a’ = b/ (mod m). Since b = 1 (mod d’), we have

ad=b/=1 (modd).

Since n’ divides the order of a mod d’ in (Z/d/Z) , we get n’|i. Now n’ is the

order of a modd in (Z/dZ) ,s0 a’ = 1 (modd). But m = dd’, whence

a’ = 1 (mod m), a contradiction. Thus a and b must be independent modulo m as
claimed. O

Lemma 2.7. Let F be a number field, § a finite set of primes in Z, p a prime of Op.
Then for any integer n > 1, there exists m € Z, prime to 8 and to p, such that if ¢,
is a primitive m™ root of unity, then

i. Gal(F(Zn)/F) = (Z/mZ> .
ii. (F(;)/F) has order divisible by n in Gal (F(&,)/ F).
iii. thereis some t € Gal (F(¢,,)/F) of order divisible by n, such that 7 is indepen-

p
dent to ( F(en)/F )
generates the decomposition group Z(p).]

. [Note: independence implies (t) N Z(p) = 1, since ( F@: Y F)

Proof. Let
8 = {p : pZramifiesin F/Q}U {p NZ} U S8.

Apply Lemma 2.6 to &, a = Np, and n € Z, n > 1. There is some integer m, prime

to all the elements of &', such that the order of a mod m in (Z/mZ) is divisible

by n. In addition, there is an integer b, also having order divisible by n, which is
independent modulo m to a.
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/F (Cm)\
Q(Gm) /F

N

Qm) N F

Q

Now, since m is prime to the elements of &', the primes dividing m are unramified
in F/Q. But primes that do not divide m cannot ramify in Q(¢,,). Thus F N Q(¢,) is
everywhere unramified over Q. By Minkowski theory, Q doesn’t have a non-trivial
extension that is everywhere unramified. We must have F N Q(¢,,) = Q, whence

Gal (F(&)/ F) 2 Gal @)/ = (Lyz)

Under this isomorphism,

(rare) ™ Crrir) oo, = (@)
= = — a mod m.
F(&u)/F FE)/F) lge,  \Qw)/Q

Since n divides the order of a mod m, we have shown (i) and (ii).

Meanwhile, there is some integer b that has order divisible by » in (Z/m Z) s

and that is independent modulo m to a. If we take T € Gal (F(¢,,)/ F) corresponding
to b mod m, then (iii) follows also. |

Lemma 2.8 (Artin’s Lemma). Let K /F be a cyclic extension of number fields of
degree n, § a finite set of primes of Z, p a prime of Op. Then there is some m € Z.,
prime to the elements of § and to p, and an extension E/F such that

i. KNE=F

i. K(&w) = E(Cn), e, KE S K(¢n) = E(Gn)
ii. KNF@y)=F

iv. p splits completely in E/F.

| DR,

Proof. Enlarge § to contain all the primes that ramify in K/Q. Using n = [K :
F]in Lemma 2.7, we obtain m € Z, prime to the enlarged 8 and to p, such that

Gal (F(¢)/F) = (Z/mZ) , with the order of (F@f) /F) divisible by 1, and T

independent to (F({S)/F), etc. Thus FNQ(¢,) = Q, KNQ&,) = Q, KNF(gy) =
F, and (iii) is proved.
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/\
/\/
\/

Let G = Gal (K /F) = (o). Now
Gal (K(¢,)/ F) = Gal (K /F) x Gal (F(&)/F)
= (@) x (“nz)

We shall identify Gal (K (¢,,)/ F) and Gal (K / F) x Gal (F(¢,,)/ F). Note that, under

] .. ] ﬁ . ,

Let 7 satisfy the conditions from the previous lemma, (so t € Gal (F(¢,)/F)). Let
p p

H be the subgroup of Gal (K (¢,,)/ F) generated by o x T and by (K/F) X (F({/,,)/F) .

Let E be the fixed field of H.

K(Cm)

N

F(Cm) K E

~ 7

generates the decomposition group Zg ) r(p), we have

: p
Since (K@m)/F)

Zg,)F(p) € H.

Thus E is a subfield of the decomposition field for p in K(¢,,)/F. This shows that p
splits completely in E/F, i.e., (iv) is proved.
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Now, since 0 X T € H, we have that o x 1 fixes the elements of £ and hence
in particular, those of K N E. Also 1 x t € Gal(K/F) x Gal (F(¢y,)/F) fixes the
elements of K, so it fixes the elements of K N E. Hence
oxl=(x1)1x1)!
fixes the elements of K N E. Since o generates G = Gal (K /F), we must have

K N E = F,and (i) is proved.
It remains only to prove (ii). Now H = Gal (K (¢,)/ E). A typical element of H

is
() )
(0 x 1) X .
K/F F(&n)/ F

Also Gal (K (¢,)/ F(&m)) = G x 1 has typical element 0 x 1. Note that HN (G x 1)
has fixed field E(&).

K(Cm)

|
/ \

Say b € HN (G x 1). Then
b:(oxt)i<< P >><< P ))jzo“xl.
K/F F(m)/F

Comparing second coordinates, we see that

'L’i< P )j =1
F(w)/ F

By the previous lemma, n divides the order of t and also divides the order of

p . . . p
<F<cm)/F)' Thus n|i and n|j, (since T and (F({/,,)/F
Now we consider first coordinates and find

ai< P )j =0
K/F

) are independent).
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Since #G = n and n|j, n|i, we must have 0 = 1 whence b = ¢¢ x 1 = 1.
Thus H N (G x 1) = {1} = Gal(K(&n)/E(&)). 1t follows that K(¢,) = E(&n)
completing the proof of (ii). O

We are now ready to prove the proposition that was all that was needed to com-
plete the proof of Artin Reciprocity. Recall Proposition 2.2 asserts that when K /F
is cyclic and m is sufficiently large, ker (A : Zp(m) — G) C P;f’mNK sr(m).

Proof. Let K/F be cyclic, and suppose G = Gal(K/F) = (o) with #G = n =

a
K/F

f = J(K/F), chosen divisible by all the ramified primes and no others. We may
factor

[K : F]. Let a € ker Ag/r, i.e., suppose = 1, and let m be a multiple of

Let d; be defined by

Yi
GARS
K/F

Since (K‘;F) =1, we find @+ +% = |, whence n|d, + - - - + d,.

Apply Artin’s Lemma to py, .. ., p, in succession to get integers my, ..., m, and
fields Ey, ..., E, as in the following diagram.

F(Gm,) E; K
F

Let G; = Gal(F(¢y,)/F). We may assume that m;, ..., m, are pairwise relatively
prime (enlarge & each time we apply Artin’s Lemma), and that each is prime to
all the primes that ramify in K /Q and to py, ..., p, (again by enlarging 8). Thus
ae€eZp(my---mym).

Workingin L = K(&pyy ooy $m, ), Pt E=E;---E,. Then KNE = F = KNE;

andGal(L/F) =2 G x Gy x --- x G,.Since K N E = F, we have
G =Gal(K/F)=Gal(KE;/E;)) = Gal(KE/E),

the isomorphisms being given by restriction.
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KE
E
B ... E,
F
LetBr € Zg(my - --m,mOf) be such that
B
=0
KEJE) |,

(the Artin map is surjective so some such B exists) and let by = Ng,rB . (Note
that by € Zp(m; - - - m,m).) Then

(e/r) = (xzre)

=0
K

and for each i,

Vi —di
Pibr =o%g 4 =1,
K/F

Since p; splits completely in E;/F, it is a norm from E; (of any prime of E; that
lies above it). Thus p:’ b;d" is a norm from E; (recall by is a norm from E O E;).
Hence p;’ b;d’ = Ng,/rUE,, for some fractional ideal 2, of E;. (Note that the U,
are prime to m;m.) By the Consistency Property, we have

Q[E, _ p;’ib;d! =1
KE;JE; )1« — \ K/F |

Since Gal (K E;/E;) = Gal (K /F) via restriction, we must have (KilE/E) = 1.
Thus Q[E,- € ker (IE,(m,m(’)E,) — Gal (KE,/E,))
For each i we have K E; C E;({y,).
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K(Cm,) = Ei(Cm,)

!
/\
\/

We have already shown that Artin Reciprocity is true for the extension E;(¢,)/ Ei.
By Exercise 5.6, it is also true for the subextension K E;/ E;; we use this fact to get

AE, = (g, )Nk, /e Ak E,
where o g, = I(modm;mOg,), ag, > 0 and Ax g, € Tgg, (m;mOkE,). Thus

P OR" = Nirfe,
= NE[/F((‘XE[)NKE[/E,Q[KE[)
= (Ng,r(ag)) Nk g, rkE,
e PY Nk, r(mim)

F.mm
because
Ng, r(ag,) = 1(modm;m)

Ng, r(ag) >0
Nkg,rk e, € Ngjrp(mm).

We have py‘b;d‘ € Pt wNg/p(mym) for all i, so [T_, pl'b;% € P} Ni/p(m),

F.mjm
Le., ab 1T T e PNk p(m). Now n|(—d) — - - - —d,) (where n = [K : F]).
Say —d; — -+ —d, = —dn. Then

a(bz)" = aNk,r(b/Ok) € Pi  Ni/p(m).

But NK/p(b;dOK) € P;mNK/F(m) already, since by € Zp(m). It follows that
ae P;mNK ,F(m), and our proof is complete. O

Exercise 5.7. Let K/F be an abelian extension of number fields. Show that if m is
any admissible ideal for K/ F' then
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Zr(m) ~
/P;mNK/F(m) = Gal(K/F)

and in particular, the conductor f(K / F) satisfies Artin Reciprocity. O

If K /F is abelian, Artin Reciprocity gives us (for an appropriately chosen m)
Tr(m) o~
/P;:_mNK/F(m) = Gal(K/F).

In the case of a cyclic extension K /F, we already knew that the orders were equal
by the norm index inequalities. From the above isomorphism, we see that the orders
are equal for all abelian extensions K /F, as was claimed in Chapter 4.

Now that we have completed the proof of Artin Reciprocity, we may also revisit
our consideration of the primes that split completely in an abelian extension of num-
ber fields. As before, suppose m satisfies Artin reciprocity and let

Sk/r = {prime ideals p of OF : p splits completely in K /F}
Tk/r = {prime ideals p of Op : p € ’P;mNK/F(m)}‘

Recall we have seen that if Ln(1, x) # O for all characters y # yx, of R;m
that are trivial on P;mNK ,r(m), then Dirichlet density can be used to show that
Sk/r ~ Tkyr, ie., K is the class field over F of P} Ng/r(m), thus proving
the Completeness Theorem. Also, we have seen that 8x/r € Tk, r. Using Artin
Reciprocity, we may obtain the Completeness Theorem without the result on the
Weber L-functions. Compare the following corollary to Theorem 1.1.8.

Corollary 2.9. Let K/F be an abelian extension of number fields, say with [K :
F] = n, and let p be a prime of OF, unramified in K/F. Suppose m is divisible
by all the ramified primes and no others, and suppose m satisfies Artin Reciprocity.
Let f be the smallest positive integer such that p/ € P/ N r(m). Then, in O,
we have a factorization pO; = ‘P --- B,, where each ; is a prime of O with
residue degree f over p, and where g = n/f. In particular, Sx,r = Tg/F.

Proof. Let A : Zp(m) — G as in Artin Reciprocity, so ker (A) = P;f’mNK sF(m).
From our choice of the integer f, it follows that f is the smallest positive integer

such that pf € ker (A). Hence f is the order of (K';F) in Gal (K /F).
Since p is unramified and the extension is Galois, we have a factorization pQ; =
B1 - P, where the primes P, are distinct and have equal residue degrees. This

common residue degree is the order of the decomposition group, which is cyclic and

generated by ( ) = A(p). Hence the residue degree is equal to f as claimed.

p
K/F
For the assertion about 8¢, note we have
pedSkir= Z(p) =1

— p e ker(A) = P} Nk r(m)
= peTx/r o
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Exercise 5.8. Now that we have 8x/r = Tg/r, we may apply Theorem 3.2.4 to
deduce that L (1, x) # O for all characters x # yx, of R;’m that are trivial on
P;mNK ,r(m). Is this sufficient to finish the proof of the generalization of the The-
orem on Primes in Arithmetic Progressions? Explain. O

In the following exercises, we continue to revisit some of the ideas from Chap-
ter 3. To answer them, it may be necessary to assume that for any number field F,
any ideal m of OF and any non-trivial character x of R} ., the Weber L-function
satisfies Ly (1, x) # 0. (As we saw in Chapter 3, this follows from the Existence
Theorem, which we shall prove in Chapter 6.)

Exercise 5.9. Let K /F be an abelian extension of number fields with Gal (K /F) =
G.Leto € G and define

S8 = {primes p of Op : p is unramified in K/F and (K};F) =o}.

Show that 87(85) = |\ 5- o

Exercise 5.10. Let K/F be a (possibly non-abelian) Galois extension of number
fields with Gal(K/F) = G. Because the extension is not necessarily abelian,
instead of the Artin automorphism associated to a prime p of O, we must consider
Frobenius elements at the primes above p. Let 0 € G and let [0], = {tot™! :
7 € G} be the conjugacy class of o0 in G. Let E = K and putn = [K : F],
d =[K : E],c =#[o],. Define

K‘ﬂ) € [o1, for PlpOx)

8g.o = {primes Q of O : p = QN OF is unramified in K/F, f(Q/p) =1

and( - ):a}
K/E

Sk.o = {primes P of Ok : e(B/P N OF) =1and <Kq/3F> =o}.

8, = {unramified primes p of OF : (

. Show that 8£(8g0) = .
. Show that 8 — P N Of gives a bijection Sk » — Sp -

a
b
c. Show that f — P N O sends [, primes of Sk , to each prime of S,.
d. Prove the CHEBOTAREV DENSITY THEOREM: §£(Sy) = | . O
Exercise 5.11. Let F be a number field, and let f(X) € F[X] be a polynomial.
Suppose f(X) splits into linear factors modulo p for all but finitely many prime
ideals p of OF. Use the Chebotarev Density Theorem, applied to the splitting field
of f(X), to show that f(X) splits in F[X]. O
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Exercise 5.12. Let f(X), g(X) € Z[X] be irreducible and denote their splitting
fields (over Q) by K7, K,, respectively. Let

Spl(f) = {primes p € Z : f(X) factors completely modulo p}
Spl(g) = {primes p € Z : g(X) factors completely modulo p}.

a. What is the relationship between Spl(f) and Sk, /q?

b. Prove the INCLUSION THEOREM: Ky 2 K, if and only if Spl(f) is “almost”
a subset of Spl(g), i.e., with finitely many exceptions, Spl(f) is a subset of

Spl(g). O

The statement and proof of Artin Reciprocity were formulated in terms of ideals. In
order to understand how all this fits together with the results of Chapter 4, we need to
find an interpretation in terms of ideles. If m is chosen so that 5;m C F*Ng/rJk,
then we have

~

. Jr . Ir(m) =
’r canonical /FXNK/F Jk /P;mNK/F(m) Atin map Gal (K/F)-
surjection

Let
PK/F - JF —_—> Gal(K/F)
be this composition of functions; it is a surjective homomorphism of groups with

kernel F* Nk, rJx. We say K is the class field over F of F* Nk ,rJg and we call
pk/F the idélic Artin map. For a € Jp, we sometimes denote

a
Pk r(@) = <K/F> .
Can we give pg,r explicitly? Recall from Chapter 4, the isomorphism

J Tr(m)
F/FXNK/FJK - g /P;mNK/F(m)

~

. . . . J . .
arises via the isomorphism Jr / px =°F ,m/ [+ S0 arises via the map
m

Ji Zrp(m)
JF —> va/F; — /,P[.»,:_m

given by

ar> bF! —> (b)P;m
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where b = «a, with « € F* chosen so that «a € J;m. This means we must choose
o € F* so that

i. for any finite place v of F, (,() € O,, and (,(a)a, = 1 (mod pfjrd"m)
ii. for any real place v of F, t,()a, > 0.

By Exercise 4.25, we know that the map a — bF;} + (b)P/ . is well-defined.

Exercise 5.13. Show that the idelic Artin map is given by

(a)

Pk r(@) = <K/F

) € Gal (K /F)

where « is as in (i) and (ii) above, and

(ota) = l_[ p?}l‘du(u(a)av)

v finite
as usual. O

Exercise 5.14. For K/ F abelian, we know that the idelic Artin map Jr — Gal (K /F)
is surjective with kernel F* Nk, Jg, (Artin Reciprocity). Alternatively, show how

we may write this in terms of the idele class group Crp = Jr / px-In particular,
show that the Artin map gives rise to a homomorphism Cr — Gal (K /F), which is
surjective with kernel Nk, Cg. Thus,

J ~C ~
F/FXNK/FJK = F/NK/FCK :Gal(K/F)

(We shall not pursue it now, but those familiar with inverse limits may also wish
to consider what happens if we take inverse limits here. Doing so yields a map
Cr — Gal (F®/F) where F? is the maximal abelian extension of F. This map
is also surjective. See the discussion on the norm residue symbol in Chapter 6 for
more about this.) O

Exercise 5.15.Let F € L € K, F € E C K be number fields and suppose K /F

is abelian. If a € J, do we have
[ Neyr(a)
-\ L/F
L

(i¢)

as we did with the classical Artin maps on fractional ideals? O
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3 An Example: Quadratic Reciprocity

Throughout this section, let F = Q, K = Q(\/(—l)";l p), where p > 2 is a prime.
Then p is the only finite prime that ramifies in K /Q, so the ideal m in the statement
of Artin Reciprocity is a positive power of pZ. Also, co ramifies in K /Q if and only
if 7 ;1 is odd. Consider the Artin map

Pk/0 : Jo — Gal(K/Q) = {£1}.
We have (by Artin Reciprocity), that ker px /o = Q* Nk, Jx. We want to compute
the image under pg /g of several particular ideles.

Letco = (—1,1,1,...) € Jg, (where the —1 is in the component at co). Take
a=1— po™ 5o that aey € J&m. Then

_ <Olcoo>>
Pk /0(Cx) = < K/Q .

Now pk/g(€x) = 1if and only if ¢, € ker pk . This is easily seen to be true if and
only if —1 € Nx_ /0. (KX) = Nk_/r(KZ), which occurs if and only if K, = R,
i.e., if and only if (—1) "' = 1. We have shown that

pot -1
00) = —l 2 = s
Pk /Q(€o0) = (=1) ( » )

the Legendre symbol.

Now let £ be aprime of Q and lete, = (1,...1, —1,1,...) € Jg, (where the —1
is in the component at v). If £ # p, 0o, then ¢, € Q} so we may take « = 1. We
get

_ (e o\
prraten = | )_U(K/@) -

Artin Reciprocity says that —1 € Q* C ker pg/qg. Since, as ideles, ((—1) = I1ee,
where £ ranges over all the primes (including oo) of QQ, we must have

1= prjo(=1) = [ [ px/oleo)
4

= pk,/0(Cx0) Pk /0(C)).

-1
pK/Q(cp) = < » )

We conclude that
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Let g be a prime of Z and letb, = (1,...,1,q,1,...) € Jg, where the g is in
the component at vg. For £ # p, € # g, we have b, € Jg and

p ord, (b,)
Pk /o(be) = l_[ (K/v@> =1.

If £ = p # q, then we have ab, € Jéﬁm for some positive o € Z with g = 1
(mod p°™). Now pg so(bp) = 1if and only if b, € ker pg g, which, by Artin
Reciprocity, happens if and only if b, € Q*Nk,pJk, i.e., if and only if ¢ is a
norm from K, to Q,. Now K,/Q, is totally ramified of degree 2, so the norms in
Up = Z} have index e = 2 in the group Z ;. (Note that g € Z.) We know

Z; = Mp—1 X 1+ pr)’

where 11,_ denotes the (p — 1)™ roots of unity in Z;. Since p is odd, the only
subgroup of index 2 is ,uf,_l x (1+ pZ,) = (Z})*. Thus, pk g(b,) = 1 if and only
ifg € (Z, )%, which happens if and only if ¢ is a square modulo p, i.e., if and only

if (;’)) = 1. We have shown pg q(b,) = (Z) .
If ¢ = g # p, then we have ab, € Jg fora =1,and

, ord, (ee(by)y) 7
pK/Q(bq):l—[<Kp/Q) - <Ig/Q)

Thus

z
prjoby) = 1 <= <1?/@> —1

<= gZ splits completely in K /Q
(by Corollary 2.9)

= (—1)1)5I p is a square in Z,

() ()=
— =1lifg #2
q q

or(—=1)"2 p=1 (mod 8)if g = 2.

Artin Reciprocity says that g € Q* C ker pgq. For ¢ # p, 2, we have



130 5 Artin Reciprocity

1= prso((@) = [ ] px/obe)
4

= pK/Q(bq)pK/Q(bp)

- (0)()
q p
Meanwhile for g = 2, we have

2 1)2—1
()
p

since (—1)"2 p =1 (mod 8) if and only if p = £1 (mod 8).

The above example shows that Quadratic Reciprocity follows from Artin Reci-
procity! Indeed, after Artin Reciprocity was proved, all previously known reci-
procity laws were seen to follow from it. For more on this, see the exercises in
Cassels and Frohlich, [CF].

4 Some Preliminary Results about the Artin Map on Local Fields

We want to study the idelic Artin map on local fields. First, we consider the image
of the local units. Let K/F be an abelian extension of number fields, and consider

the map Jr — Gal(K/F) given by a — (K*;F). Let m be an ideal of Op that is

divisible only by the ramified primes in K /F', and such that 5;{m C F*NgrJk.

Let v be any place of F. Recall if v is infinite, then we take U, = F, by conven-
tion. We may view the local units U/, as a subgroup of Jr as follows. Map u € U, to
the idele

o) =(1,...,Lu1,..) e Jp,

where the u is in the component corresponding to v. Via the map ¢,,, we see readily
that

U=0,.... U, 1,...) < Jr.

Example.

1. Let F = Q, K = Q(&15), v = 3, u = 5. For this extension, we know that
the conductor is divisible only by the primes that ramify, i.e., only by 3 and 5.
Eventually, we shall be able to prove that the conductor m of this extension is
exactly 15Z. We have U, = Z5 . Of course, 5 € Z7, so what is pxg(¢3(5))? We
must find & € Q* such that

a(p3(5)=(a,...,ot,5a,a,...)eJ&m
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soweneed o > 0, = 1 (mod pfjrd"m) for finite v # 3, and Sa = 1
(mod 3°rdvmy. Using the future result (Chapter 6) that m = 15Z, we see that
we may take o = 11. Then

[ (11gs(5))
pK/@(ws(S))—< K/0 )

p(3)rd3(55) 1—[ 3 lo)rdv(ll)
v
K/Q

_ < 11Z )
K/Q)’
which is the automorphism of K sending {5 +— ;“1151 (see the example in Chap-
ter 1).
Now suppose the finite place v has p, unramified in K/F. Let u € U,, with

o) = (1,...,1,u,1,...,1) as above. Then, since p, is unramified, we have
py tm, 50 @ (u) € J (clearly ¢,(u) = 1 (mod q) for all qm, and g, () > 0). It

follows easily that px,r(@,(1)) = (‘fg;’?) = 1. Thus, we have shown that for every

finite unramified place v, (‘”[2(7})) = {1}.

Exercise 5.16. We say that an infinite place v of F ramifies in K /F if and only if
v is real and it extends to some imaginary place of K. With this notion of ramified
infinite place, and with the convention ¢/, = F,* for infinite places, does the above
still hold when v is infinite? O

In the same way, we can view F“ as a subgroup of Jr. Simply extend the map ¢,
forany x € F), let ¢,(x) = (1,...,1,x,1,...), where the x is in the component
corresponding to v. Now fix a uniformizer 7 for F*. Any x € F,* may be written
x = un® for some u € U,, and some integer a. Again suppose v is a finite place of
F, with p, unramifiedin K/F.If x € F, then ¢,(x) € J ;”  already, and

a

(pu(x)) = (%(Hﬂa)) =Py

We get

wwmm»=(;;)

where a = ord,(x).
Since ( Kp/"F) generates the decomposition group Z(p,) when v is finite and p, is
unramified, we find in this case

(%(va)

K/F > = Z(pv)'
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Exercise 5.17. With the conventions discussed in the previous exercise, is the above
still true when v is infinite and unramified? To rephrase, for infinite primes, we
are taking U, = F°, so their images are the same. How would you define the

decomposition group of an infinite place? Is it going to be trivial in the case of an
unramified infinite place? O

What happens when v is ramified? Suppose v corresponds to a finite prime p, that
ramifies in K /F. Let K denote the fixed field of the inertia subgroup 7 (p,). Then

p, is unramified in K7 /F, so (‘ZS{F)) = 1. Now Gal (K7 /F) = Gal(K/F)/T(pv).

The idelic version of the Consistency Property for Artin symbols gives

<§0u(uu)> _ <‘pv(uv)) . 1
K/F Jlg, \Kr/F)
Thus

P (Uy) .

< K/F > C Gal(K /K1) = T(py)-

(They are actually equal, but it will be some time before we can prove it.)

We can also find a result on pg,r(¢,(F,*)) when v is ramified. For any finite
place v of F, let Z(p,), T (p,) be the decomposition and inertia subgroups of G =
Gal (K /F) as usual. Let Kz, K7 be their respective fixed fields.

Since p, splits completely in K, we know that ¢,(F,*) € Nk, rJk, (see the
corollary to Artin Reciprocity). Thus, for x € F*, we have

P r(@u(x)) = (‘2;’2 )

_ <NKZ/F(b)
~\ K/F

:<K/sz)

€ Gal (K/Kz) = Z(pv)

> for some b € Jg,

We have shown that for any finite place v of F,

Pk /F(@u(F)) S Z(po).

As with our result on the image of U, more is true. Eventually, we shall prove that
the above is in fact an equality.

Example.
2. Suppose we have an abelian extension K /F' of number fields that is everywhere

unramified (including the infinite places). Let H = F* Nk r Jx. By Artin Reci-
procity, H = ker pg/r. Since no prime ramifies, we have
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PoUy)\ |
K/F

p,(Uy) € H = F*Ng/rJx

and

for every place v. Now H is open of finite index in Jr, hence H is also closed

(the compliment is open since it is the union of finitely many non-trivial cosets

of H). Consider the subgroup of Jr generated by {¢,(lf,) : all v}. Itis contained

in H, and H is closed, so its closure is contained in H, i.e., ]_[U U, = Er C H.

Thus the open subgroup F*Er C 'H.

We shall refer to the above example again; it will help us to begin our study of
Hilbert class fields. To do so will require the Existence Theorem, which we prove in
the next chapter.

Exercise 5.18. Let K/F be an abelian extension of number fields such that all the
principal fractional ideals of F are in the kernel of the Artin map. What can you
conclude about the relationship of the class number of F to the degree [K : F]? ¢



Chapter 6
The Existence Theorem, Consequences
and Applications

Let K/ F be abelian, and let m be an ideal of O that is divisible by all the ramifying
primes in K /F and is such that 5;m C F*Ng,rJk. As we have seen previously,
the kernel of the idelic Artin map Jr — Gal (K/F)is F*Ng,rJg,and F*Ng,rJg
is an open subgroup of Jr containing F*.

This suggests the following question. Given an open subgroup H < Jr with
F>* C 'H, when will H be of the form F* Nk ,r Jg for some finite abelian extension
K /F? The answer is provided by the Existence Theorem, which we state here in
terms of ideles.

Theorem (Existence). Every open subgroup H € Jp with ' H 2 F* is of the form
H = F>*Nk,rJg for some (unique) finite abelian extension K/ F.

Once we verify the Existence Theorem, then we shall know that there is a bijec-
tive correspondence

{finite abelian extensions K /F} <—> {open subgroups H of Jr : F* C H}.

The field K is the class field to . (This statement combines ide¢lic versions of the
Existence and Completeness Theorems.) We have shown in Chapter 3 that the class
fields of Weber (defined in terms of ideals) are unique. Uniqueness of K follows
from this, using the relationship between the classical (ideal-based) theory and the
idelic theory that we proved in Chapter 4. But it is also easy to verify directly, which
we shall do in the first section.

The correspondence in the Existence/Completeness Theorems is given by

H = F*Ng/rJk.
Our results from Chapter 5 then imply that we have
I /4, = Gal(K/F)

via the Artin map (this is the Isomorphy Theorem).

Thus, the Existence Theorem is all that remains in order to complete the proofs
of the theorems we discussed in 3.3. One of the main objectives of this chapter is to
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prove the Existence Theorem. The proof we give uses Kummer extensions, so we
shall spend a bit of time discussing them. The results on Kummer extensions also
will allow us to return to our partially completed study of the Artin map on local
fields and prove the Complete Splitting Theorem.

The special case of the Hilbert class field is discussed in the fourth section. In the
fifth section, we take a moment to consider extensions of number fields that are per-
haps non-abelian. In Section 6, we show how to extend the Artin map to a maximal
abelian extension of a number field, and sketch a proof of the Existence Theorem
that uses this idea. The remainder of the chapter contains a few applications of class
field theory to cyclotomic fields.

1 The Ordering Theorem and the Reduction Lemma

We begin with a consequence of Artin Reciprocity that is related to the Complete-
ness Theorem, and that proves part of the bijective correspondence between finite
abelian extensions of a number field F, and open subgroups of J that contain F*.

Proposition 1.1. Let

@ : {finite abelian extensions K of F}
— {open subgroups H of J that contain F*}

be given by ®(K) = F* Ng/r Jx. Then:
i. K C K'if and only if ®(K’) € ®(K), the ORDERING THEOREM,
ii. DKK') = B(K)N DK,
iii. ®(KNK')=DK)DK).
iv. f H =®(E)= F*Ng,rJeg and K D E, then E is the fixed field of px/r(H).

Proof. Let H = ®(K), H' = ®(K'). By Artin Reciprocity, we have H = ker pk,r
and H' = ker px//r.

(i) Since ( /F)‘ = (i) and (g /F)‘ = (i ). it follows that
K K/
kCI‘,OKK//F - Hﬂ'H/

Conversely, if a € H N H/, then there is some element 0 = ( X Ka / F) in

Gal (K K’/ F) that s trivial on both K and K’. Thuso = 1 on K K’, and we conclude
that a € ker pxg//F.

(1) If K - K/, then N](f/FJK/ = NK/F(NKf/](JK/) - NK/FJK’ which giVCS us
H C H.

Conversely, if H' € H, then H' "H = H/, so

(K': F] :#(JF/H,)

J
=#( F/HmH’)
— [KK': F] by ().
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But then K’ = KK’, whence K C K'.
(iv.) We have K © E 2 F and H = ker pg,r by Artin Reciprocity. If a € H,

then
a a
<K/F> ‘ N (E/F) = per@ =1

so pg/r(H) fixes E.
If x € K is fixed by pg,;r(H), then E(x) is fixed by px,r(H). Hence, for any

acH,
<E I ) !
E(x) (x)/ ’

i.e., a € ker pg(y)/r. We have shown

Px/r(a)

H = F*Ng/rJe Cker pepyr = F*Newyr JE)-

It follows that ®(E) € P(E(x)). Now we may apply (i) to conclude E(x) € E and
hencex € E.

(iii.) Since K, K’ 2 K N K’, we have H, H' € ®(K N K’) by (i). But then
HH C P(KNK).

Conversely, let E be the fixed field of pxx,/r(HH'). Now H < HH/, so
pxkxF(H) € pxk/r(HH'). Hence the fixed field K of px x//#(H) must contain the
fixed field E of pxx//r(HH'). Similarly, H' € HH',so K’ © E. Thus KNK’ D E.

On the other hand, if b € H and b’ € H’, then

b/
<K K'/F >

(e )|, = (o)
KK'/F m,‘(KK//F

Hence pk g/ r(bb’) fixes K N K’, so that we must have K N K’ € E. We have
E = KNK" and ®(E) = F*Ng;rJg = ker pg/r. By (iv), we must have that E
is the fixed field of pxx//r(P(E)). By the bijectivity of the Galois correspondence,
we conclude pKK//F((I)(E)) = ,OKK//F(HH/).

Now a € ®(E) implies pxx//r(a) = pxgr(bb’), where b € H and b’ € H'.
But then a(bb’) ™! € ker pxx/r = P(KK') = H NH' by (i), whence a € HH'. O

=1.

KnK' KnK'

Note that (i) of the above proposition shows that the map @ is injective. Once
we have shown the Existence Theorem, we shall know that ® is actually surjective
as well, i.e., every open subgroup H of Jp that contains F* is of the form H =
F*Nk,rJx = ker pg,p for some finite abelian extension K of F, (this field K is
the class field to H over F). The proof of the bijective correspondence will then be
complete.

Corollary 1.2. Suppose K is the class field to the open subgroup H of Jr, where H
contains F*, and let H' © H be an open subgroup of Jr. Then H' has a class field
over F.
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Proof. Let K’ be the fixed field of px,r(H'). We have F € K' C K. Also,

(s7¢) = (s2r)

a
ackerpgr
PK'/F (K/F)

, SO

I'd

K’

¢:(K;)emwmv

ab~!
<= therei b € H' with =1
ere is some b € H' wi (K/F)

&= there is some b € 1’ withab™' € ker px/r = H
—acHH =H. o

Proposition 1.3 (Reduction Lemma). Let K/F be a cyclic extension of number
fields and suppose H is an open subgroup of Jr that contains F*. Let Hx = {x €
Jx : Nxjp(x) € H} = N,}}F(H). If Hg has a class field over K, then H has a class
field over F.

Proof. Let E be the class field of Hx over K. Then Gal (E/K) is abelian and Hx =
KXNE/](JE = kerpE/K.

We first show that E/F is Galois. Let E’ be the Galois closure of E/F, (i.e., the
smallest Galois extension of F that contains E). Let o € Gal (E’/F). Note that for
X € Jg, Ngsr(0(x)) = Ng/p(x). Also, x € Hg if and only if Ng,r(x) € H, so if
and only if Ng,r(0(x)) € H. Thus 0 Hx = Hg. This implies that 0 £ = E (since
o E is the class field for 6’ Hg). Thus E' = E and E/F is Galois.

Next we show that E/ F' is abelian. Let o € Gal (E/F) withGal (K /F) = (o |K),
(possible since K/ F is cyclic). Let t € Gal (E/K). It suffices to show that o and ©
commute.

Since E /K is abelian, it makes sense to talk about the Artin map pg,k. By Artin
Reciprocity, pg/k is surjective, so there is some b € Jx with T = pg,k(b). Then

1_(a®)>_(dM)
oto = = .
ocE/ocK E/K

Now NK/F(G(b)/b) =1¢cH,so G(b)/b € Hg = ker pg k. Thus

o(b) . b
E/K) \E/K)’
We getoto™ = 1, whence E/F is abelian as claimed.
Since E is the class field over K to Hg, we have Hx = K*Ng,x Jg. Also, by
definition Ng,rHg < H. Now that we know that E/F is abelian, we also find

that E is the class field over F to the subgroup F* Ng,r Jg of Jr. Combining these
observations, we obtain

1
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F*NgpJg € F*Ngr(NgjxkJg) € F*NgyrHg € F*H ="H.

By Corollary 1.2, we conclude that H has a class field, namely the fixed field of
pe/F(H). o

2 Kummer rn-extensions and the Proof of the Existence Theorem

Let n be a positive integer. An abelian group G is said to have exponent n if g" = 1
for every g € G. Similarly, an abelian extension K/ F' is said to have exponent n if
the abelian group Gal (K /F) has exponent n.

Let H be an open subgroup of Jr with FF* C H, and suppose that JF / 1 has
exponent n. (It certainly has some exponent, since it is a finite group.) We want to
show that H has a class field over F.

Consider the extension F(¢,)/F, where as usual ¢, is a primitive n™" root of unity.
We can find a tower of intermediate fields:

F=FCFC---CF =F(

such that each Gal (F;4/F;) is a cyclic group. For each i, let H; = N;/_;FH. Note
that we have a € H; if and only if N, /r(NffF,_ (a)) € H, so if and only if
Nr,r_(a) € N;i]/FH =H;_y. Thus H; = NEI/FHH,-,l. Our strategy will be first
to prove that H; has a class field and then to apply the Reduction Lemma to the
cyclic extension F;/F;_; to conclude that H,_; has a class field. Continuing in (a
finite number of) steps, we get eventually that H = H has a class field.

The above shows that when 77 / 714 has exponent n, we are reduced to considering
the case where F contains u,, the set of all n'™ roots of unity. This situation has been
the subject of sufficiently much study to have acquired its own set of terminology.
A finite abelian extension K /F is called a Kummer n-extension if Gal (K/F) is
a group with exponent n and F contains all the n" roots of unity. We need some
facts from the theory of such extensions (“Kummer theory”). First we show that the

Kummer n-extensions correspond to the finite subgroups of F* / (F*)"

Theorem 2.1. Let F be a number field containing all the n™ roots of unity. There
is a bijective correspondence between the finite Kummer n-extensions K of F and

the subgroups W of F* with (F*)" € W and W/(FX)n finite. The correspon-
dence associates W to the field K = F(W'/™), for which we have Gal (K /F) =
w

/(FX)H .

Proof. Let K be a Kummer n-extension of F with Galois group G. Let

D={aeK*:a" € F*}.
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Then o € D is a root of a polynomial X" — a for some a € F*. Thus foro € G,
we have o (a) = ¢« where ¢ is some n' root of unity in F.

Given @ € D, let ¥, : G —> F* be given by ¥,(c) = “ff‘) € u, C F*.
Note that this makes v, a character of G. Moreover, the map ¢ : o — ¥, is a
homomorphism D — G with ker Y = F*. Thus ¢ gives rise to an embedding

D/FX(—)’G\.

We claim that this is an isomorphism.

Suppose (D) is a proper subgroup of G. Let L be the field associated to (D).
Then L is the fixed field of

N kerxy = Nkery, ={c € G:0o(x) =« forallw € D}
XEV(D) aeD

and L C K. Note also that D C L. Since L # K, there is some non-trivial 0 € G
with o |L = 1. Buttheno € Q(D)ker x and Y, (o) = 1 forevery o € D. It follows
X€E

that there is some o € G witho # 1 and Y,(0) = 1 foralle € D.

Since G is abelian, we may write G = (t) X Gy, where we may choose 7 and
Gosothato & Goand o = tly, with 8 # 1, y € Gy. Let E be the fixed field of
Go; then Gal (E/F) = (1) is cyclic, say of order ¢. (Note that ¢|n and ¢ { £.) Let &
be a primitive /" root of unity in F. Then N /r(E) = &' = 1. Hilbert’s Theorem 90
implies that there is some o € E* with & = ’g"). Thus &’ € F and @ € D. By our
choice of o, we have 1, (c) = 1. But ¥, (7)) = ’ff‘) = £ so that v, is one-to-one on
(). Also, ¥,(Gy) = 1 since « € E. Thus

1 # Yo (T = Yu(t'y) = (o) = 1,

a contradiction. Thus we must have ¥(D) = 6, whence

12

b/x=G=a.

Since no non-trivial element of G fixes all of D, it follows that K = F(D).
The n'™ power map gives rise to an epimorphism

D/Fx — D /(FX)n.

If two elements of D have equal n'" powers, then their quotient is an n™ root of
unity, so is in F*. Thus we have an isomorphism

D ~ D"
[E< =7 [ pey

This shows that all Kummer n-extensions arise as claimed, (take W = D").
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Now let W be any subgroup of F* with (F*)" € W and W/(FX)n finite.
Let ay, ..., o be representatives for a set of cosets that independently generate

w
/(FX)n.Pllt
K=FW"Yy=F@, ... a/m.

Then K/ F is Galois of finite degree. Let o € Gal (K /F). Then o(a’") = ¢a)’"

where ¢ is some n™ root of unity in F. We find 6" = 1. Since Gal (K /F) is clearly
abelian, we have shown that K/ F is a finite Kummer n-extension.

It remains only to show that W is uniquely determined by K = F(W'/"). Let
D ={a e K*:a" e F*}. Then D" D Wanan/(Fx)n has order [D : F*] =
[K : F] as before. We need only show [K : F] < [W : (F*)"]toget D" = W.

Let o;(F*)" have order d; in the group W/(FX)n, so that [W : (F¥)"] =

dy---d.. Now afl’ e (F*)", whence

[F(Ya;): F]1 < d
[K: Fl=[F(Jai,...,a): F1<d---d,. O
Now that we have some information about Kummer extensions, we need to define
certain subgroups of the ideles. They too will play an important role in the proof of
the Existence Theorem.

Let F be a number field. Let S be a finite set of places of F and assume § 2
8o = {infinite places of F'}. Define

Jrs = l—[ F) x HZ/IU an open subgroup of Jr,
ves vgS

Fs = Jpg N F* the 8-units of F, a discrete subgroup of Jr s.
Note that Fg also may be defined without using ideles:

Fs = {a € F* : the factorization of («) involves no prime p, with v ¢ 8}.

Exercise 6.1. What are Jr s and Fg_? O
Lemma 2.2. There is a finite set of places § 2 S84, such that Jp = F* Jr g.

Proof. Since the ideal class group of F is finite, we can choose a set of representa-

tives ap, ..., a; for the classes in Cp. There are finitely many prime ideals in Op
that appear in the factorizations of the a;, say pi, ..., p, are these primes. Choose
8 to be the set of places of F corresponding to pi, ..., p, together with the infinite

places of F'. We claim that this 8 satisfies Jr = F*Jrs.
That Jp D F*Jp g is clear. For “C” leta = (..., ay,...) € Jp. As in Proposi-
tion 3.2 of Chapter 4, we associate a fractional ideal to a by putting
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n@= [] pyoe.

v finite

Since the a; comprise a complete set of representatives for Cr, there is a; with
n(@) € a;Pr, say n(a) = («)a;, with @ € F*. Consider the idele a~'a. We have
n(e'a) = a;, so

-1
a; = l_[ plojrdv(a av).

v finite

All the primes in the factorization of a; come from 8, so ord, (e~ 'a,) = 0 whenever
v & 8. It follows that alae Jr.s, whence a € F* Jp g as desired. O

Exercise 6.2. The group of 8-idele classes of F is

CF,S = JF’S/FS.

We have Jp s C Jr and Fs C F*. so there is a natural monomorphism Cp g —
Cr. Show that there is a topological and algebraic isomorphism

J ~C
s = Crg O

We are now ready to give a proof of a result on S-units that has its origins in the
work of Dirichlet, Chevalley and Hasse.

Theorem 2.3. Let 8 be a finite set of places of F, with S, C 8. Then Fy is the direct
product of the (finite cyclic) group of roots of unity in F, and a free abelian group
of rank #8 — 1. That is,

FS = WF X Z#S_l.

Proof. Write §) = & — S and let Zg, be the group of fractional ideals of F' gener-
ated by {p, : v € 8p}. We have an exact sequence

1 — Up —> Fs > T,

where Uy = Of and y : o +— (a). Foreach v € 8, note that p” must be a principal
ideal in Zg,, (h = #Cp), so

T¢ Cy(Fs) S TIs,.

Since both Zg, and Igo are free abelian groups of rank #8(, we must have that y (Fs)
is too.
Exercise 6.3. Show that Fg = O x y(Fs).

The theorem now follows from Dirichlet’s Unit Theorem. O
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Corollary 2.4. If F contains the n'™ roots of unity and § D 8 is a finite set of
places of F, then

[Fs: F&l1=n".

Proof. Fs = (¢) x A, where ¢ is a root of unity of order divisible by n and A is a
free abelian group of rank #5 — 1. Now () / %) has order n and 4 / An has order
n#8—1 0

Let us return to the proof of the Existence Theorem. Recall we have reduced
the problem to the case where F contains the 2™ roots of unity (for n equal to the

exponent of Jr / - First we prove a lemma about n™ powers in completions of F.

Lemma 2.5. Let v be a finite place of F, and let n € Z,.. If u, denotes the set of all
n™ roots of unity, then

iU, U= ”;”v#(F,) 0 fhn).
i [FS (BT = 0 #(Fy O ).

Proof. (ii) follows from (i) since F,* = U, x Z (via the map x — (&, m), where for
a fixed uniformizer 7, we have x = ex™).

It remains to prove (i). The proof we give is Artin’s.

Let 7 be a uniformizer for F, and choose an integer ¢ sufficiently large so that

' = 7).
We have
(14 x7")'=1+nxn' (mod nz'™), foranyx € O,.
If ord,n = r, then
(L+p)" =1+p,"

Take ¢ sufficiently large so that no non-trivial n' root of unity lies in 1+p’ . Consider
the homomorphism f : U, —> U, given by f(x) = x". We have

(Lo = 14 py] = [F@) = f(1+p)lker £ o ker f| ]

= [Uy (1 +p)"I[Fy Ny 2 1]
= (U 1+ py T HF, 0 )
Uy 1+pit]

=t #(Fy N ).
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Thus

[Uy 2 1+ pit]
Uy : 1+p]
=[1+pl: 1+ piPHE, N )

= Np, #(Fy N )

[y MS]Z #OFy N )

1
= #OFy N ).
lInll,
O

Note that if F, contains the n™ roots of unity, then [, : U]'] = ”,;’” and [F)* :
(FXy =

Theorem 2.6. Let F be a number field that contains all the n™ roots of unity. Let
8 be a finite set of places of F containing 8o, the places v such that p,|n and
sufficiently many finite places so that Jr = F* Jp s. Let

B = ]—[(FUX)" x ]_[uv.

ves vgS

Then F* B has class field F(FSU") over F.
Proof. Clearly Fg N (F*)" = Fg. Also

Fs(F™)" ~ F F
S( ) /(FX)H = S/FSQ(FX)H = S/Fg

is a finite group of order n*$ by Corollary 2.4. Thus K = F(F. S]/ ") is the Kummer
n-extension corresponding to Fs(F*)", and the group of order n*$ above is isomor-
phic to Gal (K /F). Note that K is obtained by adjoining to F' the roots of equations
f(X) = X" —a = 0 with a € Fg. If B is such a root, then f'(8) = np" ! is
divisible only by primes associated to places in 8. Hence if v ¢ S then p, cannot
ramify in K /F. We must show that F*B = F*Ng,rJxk.

For “C”, note that since Gal (K /F) has exponent n, any element x € (F,)" for
v € § satisfies ¢, (x) € ker px/r = F*Ng,;rJx. Meanwhile, any x € U, forv ¢ §
is a local norm since the norm is surjective on units in unramified local extensions.
Thus vas Z/{v - NK/FJK-

For “2”, note that since [Jr : F*Ng/rJx] = #Gal(K/F) = [K : F] = n*s
by Artin Reciprocity and Corollary 2.4 above, and since we now have F*B C
F* Nk rJx, it suffices to show that [Jr : F*B] = n*®. But

[Jr: F*B]=[F*Jrs: F*B]
B [Jrs: B]
" [JrsNF*:BNFX]
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_ HUES[FUX : (va)n]

[Fs: BN F~*]
[ies 1
= <8 Inl, by Lemma 2.5
[Fs: BN FX]
s
= by the Product Formula.
[Fs: BN FX]

If we can show that B N F* = Fg, we’ll be done. Clearly Fg € BN F*.
Conversely, let x € BNF*. Then x is alocal n'™ powerat all v € 8. Thus [F,(x!/") :
F,] = 1forallv € 8, whence p, splits completely in F(x'/")/F forall v € 8. Also,
if v & 8, then p, is unramified in F(x'/"). We have shown Jr g C NeimyrJpim
from which we conclude

JF = FX.]F,S g FXNF(xl/n)/FJF(xl/n).

This says that the kernel of the Artin map for F (xl/ ")/ F is all of Jr, whence
Gal (F(x'/")/F) is trivial, i.e., F(x'/") = F, and x'/* € F. Now x € B implies
x € Fg. O

Let F be a number field. Given an open subgroup H of Jr containing F*, let
Jr / 1 have exponent n. As we have observed before, we may assume that F' con-
tains the n'™ roots of unity. Find a set § of places as in the above theorem, then
enlarge § further to contain all v such that ¢, € H. For this enlarged 8, we get
B C 'H. Since F*B has a class field (by the theorem) and H = F*H 2 F*B,
Corollary 1.2 applies and we conclude that H has a class field too. This completes
the proof of the following.

Theorem 2.7 (Existence). Let F be a number field. Let H be an open subgroup of
Jr with F* C H. Then 'H has a class field over F, i.e., there is a finite abelian
extension K of F such that H = F*Ng,rJk. O

With this, we have finished the proofs of all the theorems mentioned at the end
of Chapter 3. Also, we have completed the proof of the generalization of Dirichlet’s
Theorem on Primes in Arithmetic Progressions, as the existence of a class field for
P, was all that was needed to show that the Weber L-function satisfies Ly (1, x) #
0 for every non-trivial character x of R} . Given Exercise 5.10, the proof of the
Chebotarev Density Theorem is also complete.

Using the Existence Theorem, we may also obtain a bit more information about
the primes that split completely in abelian extensions K /F. Recall the corollary to
Artin Reciprocity:

Sk/r = {p of OF : p splits completely in K/ F}
={pof Op : p € PiNg/r(m)} = Tg/r.
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We want to look at Sk, as it relates to the open subgroups of the ideéles. We shall
use the embeddings ¢, : F < J defined in Chapter 5.

Theorem 2.8. Let H be an open subgroup of Jr that contains F* and let K be the
class field of H over F. Let v be a place of F. If p, splits completely in K /F, then
ou(F)) € H.

Proof. If p, splits completely in K/F, then the local norm at v is surjective on
units (because ¢ = 1), and there is a uniformizer 7 for F,, with 7 the norm of a
uniformizer for K,,, where w is a place of K above v (because f = 1). Since every
element of F* has the form ez’ for some ¢ € U, and some ¢ € Z, we conclude that
every element of F* is a norm. Thus ¢.(F,) € F*Ng,;rJgx = H. O

The converse of the above proposition is also true (it is called the Complete
Splitting Theorem), but its proof requires more work; we postpone it until the next
section. For now, we shall show a partial converse (for Kummer extensions). Its
proof is based on a technique of Herbrand.

Theorem 2.9. Let H be an open subgroup of Jr that contains F* and let K be the

class field over F of H. Suppose Jr / H has exponent n and that F contains the n'
roots of unity. Let vy be a place of F with ¢,,(F,;) € H. Then p,, splits completely
inK/F.

Proof. Let 8 be a finite set of places of F chosen so that all of the following are
true:

8 €8,

vy € 8,

{v: p, ramifiesin K/F} C 8,
{v:pyn} C 8§, and

Jr=F*Jps.
Let
By =F; x [TFY <[t
ves vgS
v#£Up
Bz = (sz)n X l—[ FU>< X l_[L{U
ves vgS
v#V)

Both are open subgroups, and we have

BiNBy=[[(F)" x[[th = B.

ves veg8

We claim that B; C H. To prove the claim, note that (va(FUE) C 'H by hypothesis,

and since /F / H has exponent n, ¢,((F,)") € H. Finally, if v ¢ 8, then p, is
unramified in K/F and the local norm is surjective on U/, whence ¢,(U,) € H =
F*NkrJk.
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Since By € H, F*By € F*H = H. Now F*Bj has a class field over F, say
K. Since F*B; € 'H, we have K C K. We’ll show that p,, splits completely in
K,/F,whence alsoin K/F.

Let Wy = F* N By, W, = F* N By. Then Fg € W; N (F*)" (why?).

Conversely, Fg 2 W; N (F*)" is clear, so that Fg = W; N (F*)". Let

Li=FW,"), L,=FW/™).

We claim L; = K. Now L; = F((Wo(F*)")!/"), and similarly for L,, so we may
apply Kummer theory to conclude

[Ly: F]=[Wa(F7)" - (F*)"]
=[W: W N (F><)n]
=[Wy: F2).

Similarly, [Ly : F] = [W; : Fg].

Let’H; = F*Np, rJ1,,sothat L; is the class field of H; over F. Note that for v ¢
8, p, cannot ramify in L; /F because L; is obtained by adjoining roots of equations
f(X)=X"—a =0witha € F* N B;.If B is such a root, then f'(8) = np"!
is divisible only by primes associated to places in 8. Thus the extensions L;/F are
unramified outside 8.

If x € W, = B, N F*, then x is a local n™ power at vy, so that x'/" € F, . It
follows that [F, (x'/") : F,,] = 1 = ef and p,, splits completely in F(x'/")/F,
hence also in L;/F. Similarly, if v € & and v # vy, then p, splits completely in
L,/F.

Now ¢,,(Fy) € H; by Theorem 2.8, and ¢,((F,)") € H; forv € 8, v # vy,
since L/ F is a Kummer n-extension. Also, ¢,(U,) € H; for v € § since such v
are unramified in L,/ F so all their local units are norms. Thus B; C H;. Similarly
B, € 'H,.

We get

[L;: Fl=[Jr:Hi] by Artin Reciprocity
<[Jr: F*By] since F*B; C H,

=[F*Jrs: F*Bi]

_ rs:Bil
T [Fs: F*N Bl
[Toes [F) : (F))"]
=[F*NB :F| " (%)

[Fs : F{1

[Toes [F): (F))"]

_ . n vF#V)
=[W;: FS] S

Ly: F
_ ,21#5 ] [TUFs: (E.
ves

v#V)
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Similarly,

. . X [Li: F] X . X\1
[Ly: F1<[Jr:F B] = S [F,, © (F,)"] (k)

Putting these together, we get

[Toes[FS = (F7)"]

[Ly: F]lLy: F] < [Li: F]lLy: F]

28
_ [loes ||Z||U [Ly: Fl[L,: F]
= s b z
1
:l—[ [Ly: F][L2: F]
ves ”n”L
=[L;: F][L,: F].

The last equality follows by the Product Formula (since 8 contains all v for which
ln|l, # 1). We must have equality everywhere in () and (), whence

[Li: Fl=1[JF: F*B].
Since H; = F*Ny,/rJ1,, we also have
[Li N F] = [JF . Hl]

We have shown that L} = K| is class field to F* B, so that p,, splits completely
in L;/F as claimed. o

3 The Artin Map on Local Fields

We have reached a point where it is possible to revisit our discussion of the Artin
map on local fields. In particular, we can prove the following.

Theorem 3.1. Let K/F be an abelian extension of number fields, and let v be a
finite place of F. The Artin map pgr satisfies pxr(¢u(F,)) = Z(py), the decom-
position group.

Proof. Previously, we have shown that pg/r(¢,(F,)) € Z(p,) and that they are
equal when p, is unramified in K/ F. Since we are concerned only with the comple-
tions, and since the completion of Kz equals the completion of F, we may assume
F = Ky, the fixed field of Z(p,), and thus g(p,) = 1 for K/F.

Let E be the fixed field of the subgroup pk /r(¢.(F,)) of Z(p,). We must show
E=F.
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Suppose E # F. Then Gal(E/F) is a non-trivial abelian group, so there is a

field L, with F € L C E and Gal (L/F) cyclic of prime order, say of order g. Let
¢ be a primitive g™ root of unity, and consider the fields below.

K

AN
\/\
\/

Note that

prr(@u(F)))

')
)|

( L/F
( 0o (F))

K/F
1

since L C E, the fixed field of px,r (¢, (F))).

Exercise 6.4. Show that this implies pr«)/r)(@w(F(¢),5)) = 1, where w is a place
of F(¢) above v. O

Now we use Exercise 6.4. We have

0uw(F(2),) Sker prey/re)

and
TFO) [xer pyieeie) = Gal (L) F(O)) = Gal (L/ F),

(note [F(¢) : F]is a divisor of ¢ — 1 so is prime to g). Since this has exponent
q, we may apply Theorem 2.9 from the previous section to conclude that p,, splits
completely in L(¢)/F(¢). Again note that (¢, g — 1) = 1; since e and f are multi-
plicative in towers of fields, we must have e = f = 1 for L/F also.

We have shown that p, splits completely in L/F. Since F = Ky, this is not
possible unless L = F, a contradiction. Thus £ = F as claimed. O

Corollary 3.2 (Complete Splitting Theorem). Let 7 be an open subgroup of Jg
with F* C H, and let K be the class field of H over F. Let v be a finite place of F.
Then p,, splits completely in K /F if and only if ¢, (F,*) € H.
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Proof. The forward implication follows since every element of F) is a norm,
as we have observed before. We have shown the reverse implication for Kum-
mer n-extensions already; now we prove it in general. Suppose ¢,(F,) € H =

F*Ng,rJx = kerpg,p. Then 1 = (“’“(F“X)) = Z(p,) by Theorem 3.1. Since

K/F
#Z(p,) = ef = 1, we get that p, splits completely. O
Exercise 6.5. Is the above also true for infinite places v? %
Exercise 6.6. Show (for w|v), that ker (o ,r o ¢,) = Nk, /r, K. O

Corollary 3.3. Let H be an open subgroup of Jx with F* C H and let K be the
class field of H over F. Then

(pv(FUX) NH= Qov(NKw/FvK;)
%(Uv) NH= wv(NKw/F,,uw)‘

Proof. H = ker pg . O

Theorem 3.4. Let K/F be an abelian extension of number fields, and let H =
F*Ngk,rJk. Let v be a finite place of F. Then pk,r(¢,(Uy)) = T (p,), the inertia
subgroup in Gal (K / F).

Proof. Recall, we have shown pk,r(¢,(U,)) € T (p,) in general, and equality when
p, is unramified, i.e., when T'(p,) is trivial.

As before, we may assume that ' = Kz, so that Gal (K /F) = Z(p,). Let K1 be
the fixed field of T'(p,); it is the maximal subfield of K that is unramified over F.
We have Gal (K /K7) = T ().

If w is a place of K7 above v, then

(ww(uw)> _ (NKT/F((pw(Z/{w))>
K/Kr ) K/F

_ (%(Nm),,//ﬂuw))
B K/F
_ (wua/fv)

K/F ) since (K1), /F, is unramified.

Since f = 1 for P, in K /K7, there is a uniformizer 7 of (K7),, thatis a local norm
from the completion of K. Thus ¢,,(7) € K Nk, Jx, whence (2“/(1’8) = 1. Now
(K1) = () x Uy, and

Puw((KT)y)
= Z(Pw) = Gal (K /K1) = T(po).
< K/Kr (PBw) al(K/Kr) (pv)
The above implies that we must have (‘Q%T)) = T(p,) since the image of 7 is

trivial. Thus (‘”,;‘7;)) =T (py). o
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Corollary 3.5. If ‘H is an open subgroup of Jp with F* C H, and K is the class
field to 'H over F, then for any finite place v of F, the class field to He,(U,) is the
maximal subfield of K in which p, is unramified, hence it is the field K. a

Recall we have shown (Chapter 4) that [/, : Nk, ,r,Uy] < e(w/v), with equality
when the extension is cyclic. By Theorem 3.4, we now have equality for any abelian
extension.

Corollary 3.6. Let K/F be an abelian extension of number fields, v a finite place
of F, and w a place of K above v. Then

U, N
[ N thy = T ]

Now that we have shown that [, : Nk, ,rU,] = e(w/v) for any abelian
extension K/F, we can prove a result about the conductor, as was promised in
Chapter 5.

Theorem 3.7. If K/ F is an abelian extension of number fields, then {(K / F) is divis-
ible by all the ramified primes, and no others.

Proof. By definition, the conductor is the minimal ideal { of O such that 5;{ i €
F*Ng,rJg = H. For any m, we have

Stm= [I CxJIRIx [Ta+pr™x [Tth.

v imaginary v real pylm pofm

Since Nk, rEk is open in £p, we can choose m so that

Efw € Niypéx = l_[l_[ Nk, r,Uy.

v owlv

Since the local norm is surjective on units at unramified places, we have
©o(Uy) € Nijr&k

whenever p, is unramified. Thus the ideal m need not be divisible by any unramified
prime.

The minimality of f implies f|m for any such m, so f is not divisible by any
unramified prime.

On the other hand, suppose p, is ramified in K/F. Recall H = F*Ng;rJx =
ker px,r by Artin Reciprocity. We know (for p, ramified), that pg/r(@,(Uy)) =
T(py) # 1, whence ¢,(U,) € ker px,r = H. If p, 1 {, then the component of 5*
at v would be all of U,, i.e., we would have ¢,(U,) < 5+ Since 5+f C H by the
definition of conductor, we get ¢,(U,) C H, a COIltI'adICUOIl Thus p, |f whenever p,
is ramified. O
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Recall, by Corollary 3.3 (to the Complete Splitting Theorem), for H = F* N ,r Jx,
we have H N ¢, (U,) = ¢,(Nk, /r,Uy,). We may combine this with Theorem 3.7 to
find the conductor of a cyclotomic extension of Q.

Example.

l. Let F = Q, K = Q(&n), where m = p' for some prime p and some positive
integer 7. Let f be the conductor of K /Q. The only ramified prime is p, so that
by Theorem 3.7, we have f = p”Z for some positive integer r. Now p ramifies
totally in K/Q, so

[Z : Nk, jq,Usl = p"'(p—1).

Recall that Z; = Wp—1 X (14 pZ,), so we must have NKw/quw =1+4+p'Z,,
(for p = 2 this can be checked directly; for p > 2 this is the only subgroup of
Zy with index p'~'(p — 1) — why?).

On the other hand,

E =Ry x (1 +p'Zy) x [ty <M.
q#p

This gives

(1 +p"Zp) S HN@p(Zy) = ¢p(Nk, 0,Un)
1+ Per c 1+ Pth

r=t.

By the minimality of f, we must have r = ¢, i.e., f = mZ.

Exercise 6.7. Let F = Q, K = Q(¢,,), where m is any positive integer. Show that
f(K/Q) =mZ. O

Exercise 6.8. For K = Q(v/d), where d is square-free, and F = Q, show that this
notion of conductor again agrees with the classical definition of the conductor, i.e.,
f = fZ where f is the smallest positive integer such that K € Q(¢). (If we had
defined the conductor as a divisor, then we would have had f = fZ when K is real
and f = po f7Z when K is imaginary, where p is the infinite prime of Q.) O

Let us consider cyclotomic fields further. We have shown 55, i € H = Q*Nk,oJk,
where K = Q(¢), f = mZ, and m = p' for some prime p and some positive inte-
ger t. Exercise 6.7 allows us to extend this result to all positive integers m. Recall
‘H = ker pk g by Artin Reciprocity. In Proposition 3.4 of Chapter 4 we showed

J ~ +
Q/QX%f =Raf

the ray class group, and in Chapter 3 we showed
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RE, = (Z/mZ)X.

By Artin Reciprocity,

JQ ~ ~ Z x
N = HEIO= (/)
Putting this together, we conclude

Q €y = Q" NijoJx-

It follows that K = Q(Z,,) is the class field of Qxé’@_mz, (or, in terms of ideals, of
,P([zg,mZ)'

Now suppose F/Q is any finite abelian extension. Then F is the class field of
Q* Np/gJF, or, in terms of ideals, it is the class field of some subgroup H of Zg(f)
with 736! i € ‘H. (Here { is the conductor of F/Q, anideal fZ of Z.) Since Péqu CH,
we have (@XE& ;i © Q*Np/@Jr in terms of ideles. By the order-reversing property
of the correspondence between open subgroups of Jg and class fields, the class field
of (@Xf,’@_ ; must contain the class field of Q* Ng,gJr. It follows that F € Q(¢y).
We have shown the following.

Theorem 3.8 (Kronecker, Weber). Every finite abelian extension F of Q satisfies
F C Q(¢) for some root of unity ¢. 0

4 The Hilbert Class Field

Now that we have proved the Existence Theorem, we know that the group H =
F*Jrs.,, = F*Er has a class field. Call it F;. Recall the example at the end of
Chapter 5. In it, we showed that if K /F is everywhere unramified, then F'* Nk, Jx 2
F*Er. Thus K C Fj.

The converse is also true. Suppose H 2 F*E&p is a subgroup of Jr. Then H is
open, so it has a class field K over F. Since ¢,(Uf,) € H = ker pxr for every v,

we have that (“’[2%)) = 1, whence T'(p,) = 1. We have shown the following.

Proposition 4.1. Let F' be a number field and let H be an open subgroup of J that
contains F*. Then: H D F*&p if and only if the class field to H over F is an
abelian extension of F' that is everywhere unramified. O

Taking H = F*&p and applying Proposition 4.1, we find that the extension
F\/F is abelian and everywhere unramified; it is necessarily the maximal unrami-
fied abelian extension of F. Fj is called the Hilbert class field of F.

Note that the Isomorphy Theorem gives Gal (Fi/F) = Jr / F*Ep But we

showed (much) earlier, that Jr / F*E&F = Cp, the ideal class group (see Propo-
sition 4.3.3). Thus
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Gal(F,/F) = Cp.

In particular, note that [F; : F] = hp and the maximal unramified abelian extension
of a number field is a finite extension.

Exercise 6.9. Which primes of O split completely in F;? O

Exercise 6.10. Let F be a number field, and let F be its Hilbert class field. Find the
conductor f of F;/F and identify the subgroup H with P;f < H < Zr(f) that has
F as its class field over F (in the sense of Weber). O

Exercise 6.11. Let F € K € E C K; be number fields, where K is the Hilbert
class field of K, and suppose E/F is abelian. Show that j(E/F) = j(K /F) and that
an infinite prime of F ramifies in E/F if and only if it ramifies in K/ F . O

Exercise 6.12. Let K be the maximal unramified abelian p-extension of a number
field F. Show that Gal (K /F') is isomorphic to the Sylow p-subgroup of the ideal
class group Cr. The field K is called the Hilbert p-class field of F. Find the con-
ductor f of K /F and identify the subgroup H with P;f < H < Zfr(f) such that the
class field over F of 'H is the Hilbert p-class field. %

Example.

2. Let F = Q(v/—5). The conductor §(F/Q) = fZ, where f is the smallest posi-
tive integer such that F' € Q(¢y). Thus f(F/Q) = 20Z. We may use Minkowski
theory to compute the class number of F: hp = 2. Thus [F; : F] = 2. We
are seeking an extension F;/F of degree 2 that is everywhere unramified. It
will necessarily be the (unique) maximal unramified extension of F. We found
such an extension in Chapter 2 (using Dirichlet characters). Hence we conclude

Fi =Q(, V-5

Exercise 6.13. Let F = Q(+/—15). Find the Hilbert class field F;. O
Exercise 6.14. Let F = Q(+/—21). Show (without Minkowski theory) that 4 > 4.
Assuming that 4 = 4, find the Hilbert class field Fj. O

The above example and exercises are perhaps misleading in that all share the
property that F;/Q is abelian. This need not be the case in general. Indeed, F/Q
may not even be Galois. We include the following example from Janusz’ book, [J],
to illustrate this situation.

Example.

1. Let F = Q(), where « is the real cube root of 11. Minkowski theory gives
hr = 2. We may factor 2O by noting that

X} —1l=X+DX*+X+1) (mod?2)
so that 20F = p1p, where Np, = 27, Np, = 47. One may show (see Chapter 1

of [J]) that p; is not principal and that p7 = (¢® — 5). The units in Of are
{£1} x (&), where ¢ > 0 is a fundamental unit.
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Since F/Q is not normal, we use Kummer theory to find F;. Note that [F :
F]=2,s0 F;/F is a Kummer 2-extension. Thus Fj is a subfield of the extension
of F obtained by adjoining the square roots of all the 8-units for a suitable choice
of §, as in the proof of the Existence Theorem. Here we may take 8 = {p, p»}
US8wo.

If x € F* is divisible only by primes in 8, then

(x) = pips = (mip2)’p§ " = (2)"p§ "
Only even powers of p; are principal, so a — b is even, and we get
(x) = 2")(@® = 5)
where k = ”5”. Thus
x =2"(? = 5)u
for some unit u. We have shown that the S-units are
Fs = {£1} x () x (2) x (&> = 5).

To get an unramified extension of F of degree 2 = hp, we want to adjoin a
root of some (irreducible) polynomial of the form X> — B with 8 € Fs chosen
so that no prime ramifies. If 2 or > — 5 divides B then p; will ramifiy. Hence
we must take § € {£1} x (¢). Since F has a real prime and we do not want it to
ramify either, we must take 8 > 0. Thus

Fi = F(J/e)

where ¢ > 0 is the fundamental unit in F. Janusz computes this fundamental

unit explicitly in his Chapter 1 as & = 89 + 40« + 18a>.

As we mentioned in Chapter 3, the work of Weber on class field theory grew out
of two main examples. First was the study of the abelian extensions of @, which
are completely described by the Kronecker-Weber Theorem. Second was the study
of the abelian extensions of imaginary quadratic fields. For an imaginary quadratic
field F = Q(+/—d), the theory of complex multiplication gives us a description of
the abelian extensions of F. A theorem of Weber ([We3], 1908) and Fueter ([Fue],
1914) tells us that there is a one-to-one correspondence between the ideal classes in
Cr and isomorphism classes of elliptic curves over C with complex multiplication
by Op; the j-invariant j of such an elliptic curve is an algebraic integer, and the
field F(j) is the Hilbert class field F;. The above imaginary quadratic examples
and exercises bear this out. More generally, the maximal abelian extension of F
is generated over F by the j-invariant and the values of a certain analytic func-
tion (a Weber function) at all the torsion points of the elliptic curve, (Takagi, [T],
1920). For details, see Shimura’s Introduction to the Arithmetic Theory of Automor-
phic Functions, [Sh], or Lang’s Elliptic Functions, [L2]. Also see Serre’s article
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Complex Multiplication in Cassels and Frohlich, [CF]. Hilbert’s Twelfth Problem,
[Hi3], is to find for any number field F, functions that play the same role. The theory
of elliptic curves with complex multiplication by an imaginary quadratic field has
been generalized to higher dimensions: One considers abelian varieties with com-
plex multiplication by a C M-field and automorphic functions. This provides some
nice results for C M-fields. However, for other number fields, in general we do not
have explicit constructions of their abelian extensions.

A conjecture of Hilbert was that any ideal of a number field F becomes principal
in F;. This was one of the original motivations for class field theory. It was not
proved until 1930 by Furtwingler, [Fur2]. Now called the Principal Ideal Theorem,
its proof was simplified shortly thereafter using an idea of Artin, [A3], which we
describe here.

Let F, be the Hilbert class field of F;. We first show that F,/F is Galois. To
this end, suppose X is an F-isomorphism F, —> A(F3). Then A|Fl e Gal (Fy/F),
so A(Fj) = Fj. But A(F3) is everywhere unramified and abelian over A(F}) = Fj,
whence A(F,) = F, by the uniqueness of the Hilbert class field.

Let G = Gal(F,/F) and let A = Gal (F,/F}), so that G/A = Gal(F/F).
Clearly, within F,, the subfield F; is maximal abelian over F, so G / A is the largest
abelian factor group of G. Thus A = G’, the commutator subgroup of G. Note also
that since A is abelian, (G')’ is trivial.

Consider the map

7 T
v F/PF - FI/PFl

given by aPr — (aOpr, )P, . This is readily seen to be a well-defined group homo-
morphism y : € —> Cp,. To prove the Principal Ideal Theorem amounts to
showing that this map is trivial.

By Artin Reciprocity, we have

Cr=Gal(F/F) =0/, =06/ and
Cr, = Gal(F/F)=A=G.

LetV: G / ' — G’ be the homomorphism making the following diagram com-
mute.

er —— G/
vl lv
(EFI T G/

Exercise 6.15. Given any group G, put G = G / G- Suppose H < G with
[G : H] finite. We can define V : G®* — H?2 as follows. Choose a set R of
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representatives for the left cosets of H in G. Let g € G. For each r € R there is a
unique pair 7 € R and 4, such that gr = 7h,. Put V(gG') = [ [, hH'. Show that
this map V is well-defined and that it is the desired map to make the above diagram
commute. O

Artin’s idea was to show that the map V, the group theoretical map called the
transfer (or Verlagerung), must be trivial. This reduced the problem to a purely
group theoretical result (also called the “principal ideal theorem,” even though it
does not appear to be about ideals at all!):

If G is a finite group and G’ is its commutator subgroup, then the transfer V : G / G —

G//(G’)’ is the trivial map.

We omit the proof, but the interested reader may consult the 1934 paper of Iyanaga,
[Iy], the 1954 paper of Witt, [Wi], or Neukirch’s book, [N]. We record the result
below. (For a result that has the Principal Ideal Theorem as a corollary, see Suzuki’s
1991 article, [Su].)

Theorem 4.2 (Principal Ideal Theorem). Every fractional ideal a of a number
field F becomes principal in Fy, i.e., aOp, is principal. O

Consider the tower
FChHChC---

called the Hilbert class field tower of F. If this tower is finite, then every ideal
of some F; is principal, so that the number field F' is contained in a number field
F; of class number 1. It was an open question for a long time as to whether the
Hilbert class field tower could ever be infinite. In the early 1960s, Golod and
Shafarevich, [GS], were able to give examples of number fields F having infinite
class field towers. For example, the field Q(«/d), whered = 2>-3-7-11-13.
19 - 23 is such a field. (See Roquette’s article in Cassels and Frohlich, [CF], for
details.)

Suppose F is a number field that can be embedded in a number field L of class
number 1.

7\
N/

Since h;y = 1, we must have L; = L. Since LF;/L is abelian and everywhere
unramified (because F/F is), we must have LF; € L;. Thus F; C L.
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L=1,

F

Now consider F. By the same reasoning, L F, /L is everywhere unramified and
abelian, so F, € L. Continuing by induction, we find that the entire class field tower
for F is contained in the number field L. This forces the class field tower of F to
be finite. The result of Golod and Shafarevich shows that there are number fields
F that cannot be embedded into a number field of class number 1. In such a tower,
for any i the ideals of F; will all become principal in Fi4, but there will always be
other ideals of F;,, that are non-principal.

The above argument is based on the fact that if K/F is an extension of number
fields, then K F;/K is abelian and everywhere unramified so that K F; € K;. We
can exploit this idea further to obtain information about class numbers in certain
situations.

Theorem 4.3. Let K / F be an extension of number fields and suppose K N F; = F.
Then

i. hp|hg.
ii. themap Ng,r : Cx —> Cp is surjective.

Proof. Note that Gal (K F;/K) = Gal(F;/F) = Cp is abelian. Also K F;/K is

everywhere unramified (since Fj/F is). Thus K € K F; € K. We have the follow-
ing picture.

K,

KF,

N

Fy
But then

Cx = Gal (K\/K) > Gal (K F\/K) = Gal (F| /F) = Cr
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This implies that hp|h .
Apply the Consistency Property of the Artin symbol, and it follows that for any

an{(,

Note that the Artin symbol is defined for any ideal of K, since K;/K is unramified
everywhere. This gives us a commutative diagram:

Cx ——— Gal(K,/K)
NK,!F‘J‘ Jvrcstriction to Fy

Cp —— Gal(F,/F)

The horizontal arrows are the isomorphisms arising from Artin Reciprocity.

Since Gal (K F;/K) = Gal (F;/F) via restriction, the vertical arrow on the right
is an epimorphism. This implies that the map Ng,r : Cx —> Cp is surjective. O
Proposition 4.4. If K /F is an extension of number fields, and there is some prime
p of Op that is totally ramified in K/ F, then hp |hK.

Proof. Let K /F be an extension of number fields and suppose p is a prime of Op
that is totally ramified in K /F. Now p is totally ramified in K N F;/F because it is
totally ramified in K /F. But also p is unramified in F;/F, so it is unramified K N
F/F. The only way that p can be simultaneously totally ramified and unramified
in KN F/Fisif KN F, = F.Now apply (i) of the Theorem. O

5 Arbitrary Finite Extensions of Number Fields

The ideas from the previous section can be used to obtain some information on
non-abelian extensions of number fields. For example, if E/F is a (not necessarily
abelian) Galois extension of number fields, let G = Gal (E/F) and let G’ be the
commutator subgroup of G. Put G* = G / G’ as before. If K denotes the fixed
field of G’, then K /F is abelian with Galois group isomorphic to G*. By Artin
Reciprocity, we have an isomorphism

JF ~ ab

/FXNK/FJK = G*.
It is easy to show that F* Ng,pJp € F* Nk rJk since K C E, but in fact we can
say more. The following theorem gives F'** Ng,rJp = F* Ng,rJk, since it shows
that they have the same class field.
Theorem 5.1. Let E/F be an extension of number fields and let H = F*Ng,r Jg,

an open subgroup of Jr that contains F*. Let K be the class field of H over F.
Then K/ F is the maximal abelian subextension of E | F.
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Proof. We know that H is an open subgroup of Jr by Exercise 4.24. Thus it has
a class field K over F'. Now K /F is abelian, and F*Ng,;pJx = H. If K/F is a
subextension of E/F, then it is clearly the maximal abelian subextension of E/F.
(By the Ordering Theorem, any properly larger abelian subextension of £/F would
correspond to a smaller subgroup H with H = F*Ng,rJp € H C H.) Hence
it suffices to show that K € E. We do this by considering the extension K E/E.
By Artin Reciprocity H is the kernel of the Artin map for K/F. If a € Jg, then

Ng,r(a) € H, whence
=(%00) = (e
~\ K/F ) \KEJE

by the Consistency Property. Since an automorphism of K E/E is completely deter-
mined by its action on K, we must have that a is in the kernel of the Artin map for
K E/E. It follows that the kernel of the Artin map for K E/E is all of Jg. Thus (by
Artin Reciprocity again), Gal (K E/E) is trivial, i.e., KE = Eand K C E. m]

K

Exercise 6.16. Let F' be a number field and let H be an open subgroup of Jp that
contains F'*. Show that if E/F is a finite extension, then K E is the class field over
E to NE/IFH. 0

Exercise 6.17. Let E/ F be a finite extension of number fields. Show that [E : F] =
[JF : F*Ng,pJelif and only if E/F is abelian. O

At the present time, efforts to extend class field theory to arbitrary Galios exten-
sions of number fields remain largely incomplete. However, there is at least one
idea that generalizes quite nicely, via the Chebotarev Density Theorem. Let K/ F
be a Galois extension of number fields and as usual let Sx,r be the set of prime
ideals of Op that split completely in K/F. If K/F is abelian, then we know that
Sk,r uniquely determines K. Using the Chebotarev Density Theorem, (see Exer-
cise 5.10), we may extend this result to arbitrary finite Galois extensions of the
number field F.

Let G = Gal (K /F), a possibly non-abelian group, where K / F' is a Galois exten-
sion of number fields. For o € G, put

8, = {unramified primes p of OF : < ¥ ) € [o], for &B|p(’)K}

K/F

(as before [o], denotes the conjugacy class of o in G). Note that if o and 7 are
conjugate in G, then 8, = §;, while if they are not conjugate, then §, N §; = @.
The Chebotarev Density Theorem says that §7(8,) = ,Cl, where ¢ = #[o], and
n = #G.

Now let E/F be an arbitrary (not necessarily Galois) extension of number fields
and put

SE/F = {unramified primes p of O : f(P/p) = 1 for some prime ‘B|p(’)E}.
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Note we have SE/F = 8g/r when E/F is Galois. In general, suppose K /F is the
normal closure of E/F,and put G = Gal (K /F), H = Gal (K /E). Then, up to a set
of Dirichlet density zero, we may write § }5 Jpasa disjoint union over the conjugacy
classes [0], in G:

S~ U S,.
EIE 1,020 ©

Observe that we have H C o] U ;é@[a] . with equality if and only if E/F is Galois.
olsNH

Thus

1 #H
[E:F] #G

IA

> #ol,

lol;NH#D

D> 8r(80) by Chebotarev
[ol,NH#D
=or( U 8)

[U]GﬂH#ﬂ

=08r(S/p).

with equality if and only if E/F is Galois.

Exercise 6.18. Let £/ F be an extension of number fields. Show that £/ F is Galois
if and only if every prime in 8% /r splits completely in E/F. O

Theorem 5.2. Suppose K/ F is a Galois extension of number fields and L/ F is any
finite extension. Then SlL/F < 8kyr ifand only if K C L.

Proof. We show the forward implication (the converse is clear). Suppose 8} F<
Sk,r and let N/F be the Galois closure of KL/F.Put G = Gal(N/F) and H =

Gal (N/K), H' = Gal (N/L).
N
/ KN
K L

N\
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Then

So.N/F < Sk/F = 5}(/1: ~ U 8N

8L p ~
L/F [t], N H#Y

U
lol,NH'#D

Let o € H'. By Chebotarev, the set 8, y,r has positive Dirichlet density. So there is
some some prime p € 8, y,r that occurs in one of the 8; y,r, Where T € G satisfies
[t], N H # . We have shown that 8; y/r N 8; y/r contains the prime p. But the
only way to have 8, x/r N 8; n/r # D isif [o], = [7],, and since H is normal in
G, we also have [t], € H. It follows that o € H. We have shown that H' € H,
and thus their fixed fields satisfy the reverse containment: K C L. m|
Corollary 5.3. A Galois extension of number fields K/ F is uniquely determined by
the set Sk, of primes that split completely. |

Note that when E/F is Galois and non-abelian, and K/ F is its maximal abelian
subextension, then on the one hand we have FF* Ng,rJr = F*NgrJg by Theo-
rem 5.1, but on the other we have Sg/r C Sk ,r by Corollary 5.3. This behavior is
illustrated for example in the case when F = Q and E is the splitting field of X*—11
over Q. The reader may verify that the prime 77Z splits completely in K = Q(¢3)/Q
but not in E/Q, while the prime 197 splits completely in E£/Q (so also in K /Q).

6 Infinite Extensions and an Alternate Proof of the Existence
Theorem

We begin with a brief review of infinite Galois theory. Let M/F be a (possibly
infinite) Galois extension with Galois group G. In order to describe the Galois cor-
respondence it is necessary to topologize G. For each 0 € G, we take the cosets

{oc Gal(M/K) : K/F is a finite subextension of M/ F}

as a basis of open neighborhoods of o. The resulting topology is called the Krull
topology on G.

Exercise 6.19. Let G = Gal (M/F) as above.

a. Show that the topology defined above makes G a Hausdorff topological group.

b. What are the open subgroups if the extension M/ F is finite? What are the closed
subgroups? O

Exercise 6.20. We can show that G is compact as follows. Consider the map

9 : G| ]Gal(K/F) givenby #:0 > ]_[a|K
K K

where K/ F runs through all finite Galois subextensions of M/ F.
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a. Show that [, Gal (K /F) is compact.
b. Show that ¢ is injective and continuous.
c. Show that ¥(G) is closed in [ [ Gal (K /F). O

Theorem 6.1 (Main Theorem of Galois Theory — General Case). Let M/F be
a Galois extension with Galois group G. The map L +— Gal(M/L) is a bijective
correspondence between the subextensions L/ F of M/ F and the closed subgroups
of Gal (M / F ). Moreover, in this correspondence the open subgroups of Gal (M /F)
are paired with the finite subextensions of M/ F, (this is because any open subgroup
is also closed, so has finite index in Gal (M / F) by Exercise 6.20).

Proof. We must show that if L/F is a subextension of M/F, then Gal (M/L) is a
closed subgroup of G. Certainly it is a subgroup. Also, we may write

Gal(M/L)= N Gal(M/K).
KcL
[K:Fl<oo

Thus it suffices to show that Gal (M /K) is closed for all finite subextensions K/ F.
But if K/F is a finite subextension and N is its normal closure in M, then N/F is
finite, and for any o € Gal (M/K), we may see that o lies inside an open neigh-
borhood within Gal (M/K) by noting we have o € o Gal(M/N) € Gal(M/K). It
follows that Gal (M/K) is open, and hence it is also closed.

It is clear that the map L +— Gal(M/L) is injective, since the fixed field of a
subgroup of G is uniquely determined. We must show that it is also surjective, i.e.,
if H is a closed subgroup of G, then there is some subextension L/F such that
H = Gal (M/L). If this is to succeed, it must be that L is the fixed field of H. Thus
we must show that if H is a closed subgroup of G and L is the fixed field of H, then
Gal(M/L) =

That Gal (M /L) 2 H follows from the definitions, so we consider an arbitrary
element T € Gal(M/L). Let E/L be any finite subextension of M/L and apply
the natural map H — Gal(E/L), (given by restriction to E). The image of H in
Gal (E /L) has fixed field L, and since E /L is a finite extension, we may apply finite
Galois theory to conclude that the image of H is all of Gal (E/L). Thus we may find
o € H such thato| = ‘C| .Buttheno € T Gal (M/E)N H, and hence 7 lies inside
the topological closure of H. Since H is closed, we have T € H as needed. O

Much in the same way as for finite extensions one may also show that closed
normal subgroups of Gal (M/F) correspond to intermediate fields L such that L/F

is Galois, and in this case we have Gal(M/F)/Gal (M/L) = Gal(L/F).

Exercise 6.21. Let G = Gal(M/F) and let oy € G denote the identity. Show that
o9 has a basis of neighborhoods consisting of normal subgroups of G. A compact
Hausdorff topological group with this property is called a profinite group. (HINT:
Consider the groups Gal (M/K), where K varies through the finite Galois subex-
tensions of M/F.) O
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Exercise 6.22. Show that a compact Hausdorff topological group is profinite if and
only if it is totally disconnected. (Hence every finite group is a profinite group.) ¢
Exercise 6.23. Show that the group of units of the ring of integers in a finite exten-
sion of Q, is a profinite group. O

Next, we discuss how profinite groups can be constructed from finite groups.
Recall, a directed set is an ordered set J that has the property that every pair of
elements iy, i, € Jis dominated by some element of J, i.e., there is some element
i3 € Jsuch that i} < i3 and iy < i3. A projective system over a directed set J is
a family of sets (groups for us) G; and morphisms (group homomorphisms for us)
¢ij : Gj — G; defined whenever i < j in J, such that ¢;; = idg, for any i, and
wheneveri < j < k we have ¢;; o ¢jx = @ix. Given a projective system, we define
its projective limit to be

G = (li_mGi = { l_[Ui € HGi : ¢ij(0;) = o; wheneveri < j}.

ied ieJ ied

When the G, are groups and the ¢;; are homomorphisms, G is a group. When the G;
are topological spaces and the ¢;; are continuous, we get that G is a closed subspace
of the product of the G;, (see Exercise 6.24).

Exercise 6.24. Let {G;, ¢;;} be a projective system of finite groups over the directed
set J. Show that lim G; is a closed subgroup of [[,.; G;. (Consider the G; as
PZ—
ieJ
discrete topological spaces.) O
Exercise 6.24 tells us that the projective limit of finite groups (h_m G, is acompact
ieJ
Hausdorff toplogical group (here we are using the subspace topology induced from
the product topology on [[,.; G:). Hence (h_m G, will be a profinite group if it has

i€J
a basis of open neighborhoods of 1 consistineg of normal subgroups.
For a finite subset J of J, consider the subgroups of [[,_; G; of the form

Uy =[]6:]]H:.
i¢d i€l
where each H; is a normal subgroup of G;. The intersections Ug N (h_m G, are
normal subgroups of (h_m G,. It is straightforward to verify that they fornﬁf basis of
open neighborhoods oife% in (h_m G,. Hence the projective limit of finite groups is a

i€J
profinite group (thus the termi‘;ology “profinite”)!

Exercise 6.25. Let p be a prime. Order N in the usual way, and (for n < m) use the
natural maps Z / [/ Z / PAS form a projective system. Show that

(h_m /p”Z = ZP' O
neN
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Example.

4. Fix a prime p and consider the extension ]F'jl,lg /Fp. For each positive integer n,

we have a finite subextension IF . /IF, of degree n inside ]F'jl,lg /Fp. Let @, denote
the Frobenius automorphism in Gal (F . /IF ,); then there is an isomorphism

Gal(Fp/Fp) =2/,

given by ¢, + 1 + nZ. The Galois groups Gal (F,./F,) comprise a projec-
tive system, indexed by the positive integers (ordered by “divides”). The maps
Gal (IFpn /F,) —> Gal (IF,» /IF},) in this projective system are the canonical ones.
We may form the group

lim Gal(F/IF,)

neZy

={[[ one [] Gal®,/F,): ow| = 0, whenevern|m}.

ne’ly ne’ly

It is clear that we have an isomorphism

. ~ Vi 2
(h_m Gal(F[,n/F[,) = (h_m /”ZZ

nely nely

where in the limit on the right, the ordering on Z is again “divides,” and where

the maps Z / m7, — Z / n7, for the limit on the right (when n|m) are the natural
ones.

Exercise 6.26. Show that

Gal (F3%/F ) = lim Gal (F /).

neZy

Then use the Chinese Remainder Theorem to show that lim Z / n7,» which is usu-
PA—
neN

ally denoted Z, is isomorphic to the product [ ], Z,,. O

Continue to let ¢, denote the Frobenius automorphism in Gal (IFF . /IF ;). Under
: : alg ~ lim & — 7 —
the isomorphism Gal (F,"/IF,) = (h_m /nZ = Z,theelementgp = (..., ¢@,,...) €
neN
Gal (Fj‘,lg/IE‘p) ismappedto (..., 1+nZ,..)=1¢€ 7. Under the isomorphism with
]—[p Z,, the element ¢ correspondsto (..., I,...).

Exercise 6.27. Let p be a prime and let G = Gal (]F'jl,lg /Fp). Show that the element
¢ € G as discussed above, satisfies ¢ : x — x”. Hence ¢ is the Frobenius automor-
phism in G. O
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By Exercise 6.27, the Frobenius automorphism ¢ € G = Gal (IF?,lg/IFp) is
mapped to 1 € 7 under the isomorphism of Exercise 6.26. It follows that the image
of (p) in 7 is (1) = Z. Hence, (in contrast to the situation for finite extensions
of ), (¢) is a proper subgroup of G. Note however, that (1) = Z is dense in 7
(why?), so that (p) is dense in G.

Exercise 6.28. Let G be a profinite group and let A vary through the open normal
subgroups of G. Show that G = (h_m G / K topologically and algebraically. O

H
Exercise 6.29. Show that if M/ F is a Galois extension, then its Galois group (with
the Krull topology) is a profinite group. O

Example.

5. For a natural number n, we let Q™ denote the unique subfield of Q(¢ 1) that is
cyclic of degree p" over Q. Then

Q:(@(O)CQ(I)CQ(Z)C.”

and if Q) = UQ™ then Q©/Q is infinite Galois, with Galois group isomor-
phic to Z,,.

More generally, if F is a number field, we put F® = FQ®™ and F® =
FQ©) = UF®, Then F©°/F is infinite Galois with Galois group isomorphic
to Z,. (This extension F®/F is called the cyclotomic Z,-extension of F; any
infinite Galois extension of F with Galois group isomorphic to Z, is called a
Zp-extension of F.)

Exercise 6.30. Suppose that K /F is a Z,-extension. Show that for every n € N
there is a unique intermediate field K™ with [K™ : F] = p". Moreover, show that
these intermediate fields K™ are the only proper intermediate fields in the extension
K/F. O

If G is any group, then the profinite completion of G is

lim @/
H

where H varies through all the normal subgroups of G of finite index in G. For
example, the profinite completion of Z is Z.

Exercise 6.31. What is the profinite completion of a finite group? O
Exercise 6.32. Suppose A is a G-module, where G is a profinite group. Show that

the following are equivalent.

i. UA® = A, where H runs through the open subgroups of G.

H
ii. The map G x A — A defined by (g, x) — gx is continuous, where A is given
the discrete topology. O
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At this point, we may return to our study of class field theory. We want to sketch
an alternate proof of the Existence Theorem. For this proof, we need to have an
analogue of the Artin map for an infinite abelian extension M of a number field F.
Using the above discussion of infinite Galois theory, we are led to consider projec-
tive limits as we study Gal (M/ F). It is the Consistency Property of the idelic Artin
symbol that allows us to construct an Artin map for an infinite extension using the
Artin maps for its finite subextensions.

From the Consistency Property, we see that if K/F and L/E are abelian exten-
sions of number fields, with F C E and K C L, then the diagram below commutes.

PL/E
_

JEg Gal (L/E)

ove | |

PK/F

Jp 2, Gal (K/F)

(The vertical map on the right is the natural one.)
Suppose M/ F is an infinite abelian extension, where F is a number field. We
may define a homomorphism

PM/F - Jr — (}al(ﬁ4/17)

using a projective limit. If K /F runs through the finite subextensions of M/ F then
the elements pk,r(a) can be pasted together to form an element of (h_m Gal (K /F).

K
Since we can identify (h_m Gal (K /F) with Gal (M/ F), we may set the correspond-

ing element of Gal (M/KF) equal to py,r(a). Note that if a € F*, then for any of
the finite extensions K /F, the image pg,r(a) is the identity in Gal (K /F). Hence
om/r(a) must be the identity in Gal (M/F), i.e., F* C ker py,r. We continue to
use the term “Artin map” for oy, r, even when M/ F is infinite Galois.

Continuing to let F be a number field, we let M = Fy, be the maximal abelian
extension of F, an infinite Galois extension. The group Gal (F,,/F) is profinite, as
we have seen in Exercise 6.29. Recall that when K /F is finite abelian, the Artin
map gives rise to a surjective homomorphism

Cr — Gal(K/F)
with kernel Ng /¢ Ck . Taking the projective limit of the set of all finite abelian groups
Gal (K /F) as discussed above, we construct the Artin map py/r in the case M =
Fy, (typically, pf, /r is denoted simply pr). Now let wr denote the map on C that
corresponds to the map pr on Jr (possible since F* C ker pr). The map

wrp : Cp — Gal(Fy/F)

is called the norm residue symbol for F.
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Exercise 6.33. Show that the norm residue symbol is a continuous surjective homo-
morphism, and its kernel is contained in every open subgroup of finite index in
Cr. O

Now we sketch an alternate proof of the Existence Theorem, as it appears in the
lecture notes of Artin and Tate, [AT]. Define an absolute value on J by

lal = [ [ laull
v

and put J = {a € Jr of absolute value 1} and C%. = {[a] € Cr wherea € J?}.
F F

Exercise 6.34. Show that the above satisfies the axioms for an absolute value on Jr.
Then show that F* C J2, from which we see that CY is well-defined. O

Exercise 6.35. Show that C is compact and that wr(C%) = w#(CF). O

Let B be an open subgroup of finite index in Cr. Then B is also closed in Cp.
By Exercise 6.35, C% is compact. Since B® = BN CY is closed in C%, it is compact
as well. Note that [CY. : B®] = [CF : B].

Put H = wp(BY); this is a closed subgroup of G = Gal (Fy,/F). Since B 2
ker wr, we may conclude that B® = w,'(H) N CY%. Thus [G : H] = [CY : B'] =
[Cr: B].

Let K be the fixed field of H. Then (from the definition of wr) Ng,rCx <
w;l(H) C B.Butthen [Cr : NgrCgl = [K : F1 =[G : H] = [CF : B] gives
B = N](/F CK.

The argument sketched above shows that every open subgroup B of finite index
in C is of the form Nk, r Ck for some finite abelian extension K / F'. For uniqueness
of the extension K/ F, see the Ordering Theorem or Theorem 3.2.2.

7 An Example: Cyclotomic Fields

Let p > 2 be prime, let E = Q(¢,), and let E* = Q(¢, + C,,_l), the totally real
subfield of index 2 in E .

E=Q(¢) Ef
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We have a Hilbert class field E;" of E™ that is everywhere unramified over E* and
also we know that pZ is totally ramified in £/Q, so alsoin E/E*. Thus ENE; =
E™T and we may apply Proposition 4.4 from the section on the Hilbert class field
to get that hg+ divides hg. (Note that the infinite primes of E* are all real and the
infinite primes of E are all imaginary, so that the infinite primes ramify in E/E*

t00.)
Leth = hg and h* = hg+. Define

h™ = h/h+, the relative class number of E.

How can we interpret 4~ algebraically? Since E{ N E = E™, we have the following
picture.

Ey

EE;}

ay
NI

Q
Thus, we may apply (ii ) of Theorem 4.3 to conclude that Ng,g+ : Cg —> Cp+
is surjective. Let
G*E = {[Cl] € GE : NE/E+CL € PE+} = kerGENE/E+-

We have shown that

c NE/E+
1l —-C, — Cg — Cpgr — 1

is exact, whence

CEfor = Cpe.
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From this we conclude

Gal (E|/E) = Cg
Gal (EE|/E) = Gal(E| /JET) = Cg+
Gal (E|/EE}) = €.

Exercise 6.36. How much of the above can be generalized to the cyclotomic field
E = Q&) where m is a prime power? What if m is an arbitrary positive
integer? O

For E = Q(¢,), we record the following result of Kummer.

Theorem 7.1. Let p > 2 be a prime, let E = Q(¢,) have class number h, and let
Et =Q(, + {;1) have class number h*. Let h™ = h/h+‘ Then

1
nm=2p [ ,L0.0
X odd
fx=pr

ht = [Ug : Vil

where Vg is the group of cyclotomic units of E, i.e.,

1—;3
Ve = b:a,biO (mod p)¢ .
I_Cp m]

The above theorem allows one to study /4~ using techniques from complex anal-
ysis, and also, (because there are p-adic interpolations of Dirichlet L-functions),
techniques from p-adic analysis.

The result that says h* divides h comes from a proposition that applies more
generally (to fields that are not necessarily cyclotomic). In particular, we could use
it to show that & divides h g whenever E is a totally imaginary extension of a totally
real field F, with [E : F] = 2, (a CM-field). In the case when E is cyclotomic, we
actually have a stronger result; its proof makes use of the roots of unity in E.

Theorem 7.2. Let p > 2 be a prime, let E = Q({,), and let EY = Q(¢, + ;1,’1) as
before. The map Cp+ —> Cp given by [a]g+ — [aOglg is injective.

Proof. We must show that if aOp, is principal in E then a was principal in E*
already. Say

aOf = {(a)

for @ € E and note that % / « 1s real and

(4 [a) = 80! Op = O = (1),
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(because a is real so that @ = a). Thus d/a is a unit in Of. Also &/a has absolute
value 1 in C, as do all of its conjugates (over Q).

Exercise 6.37. Show that if ¢ is an algebraic integer all of whose conjugates have
absolute value 1 in C, then ¢ is a root of unity, (a theorem of Kronecker). O

By Exercise 6.37, &/a is a root of unity. Let 1 = ¢, — 1. Then ‘B = () is the
prime ideal of E above pZ and

n/ﬁ:é-p_l/é-p—l_lz_gp

so” /7 generates the group Wg. Thus

o T !
Ja=("/z)
for some ¢, whence an! = an’ € R. Also a € R. Now if x € RN E, then

ord; (x) € 2Z. Similarly, since a C R, we have ordg(a) € 2Z. Thus

t = ord,(am’) — ord, ()
= ord, (anr’) — ordyp(a) € 27Z.

We get

¥ = (=L, € WE.
Thus

a 2a _ L8
/Olz(_;p) = p/Ed
p
whence ¢ € R. This gives
aOp = aOf = OngOE = (aC;l)OE

where (agj ) is a principal ideal of E*. By Exercise 6.38 below, we must have
a = (agf). O

Exercise 6.38. Let E/F be an extension of number fields and let a, b be fractional
ideals of F. Show that if aOr = bOf then a = b. O

Exercise 6.39. Can the previous theorem be generalized to the field Q(¢,,), where
m= p'? O

We record the following two theorems of Kummer, which are related to the one we
already mentioned. The first comes from results on special values of L-functions.
The second represents one of the classical approaches to the search for a proof
of Fermat’s Last Theorem; however it was an incomplete approach, as we discuss
below.
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Theorem 7.3. Let E = Q(¢,) and let B, denote the n™ Bernoulli number, i.e.,

¢ o "
e —1 ZB"n!‘
n=0

Then plhg if and only if p divides the numerator of some By, where 1 < k
-1

<. |
Theorem 7.4. If p > 2 is prime and p t hg, where E = Q(¢,), then

xP +y? =2z", (xyz, p)=1
has no non-trivial solution in integers. O

If p 1 hg, we say p is regular. Otherwise p is irregular. There are infinitely
many irregular primes (the proof is by contradiction, using congruences amongst
Bernoulli numbers). The first few examples of irregular primes are 37, 59, 67, 101,
103, ... Also, h g grows rapidly as p increases; O is a p.i.d. in only a small number
of cases, (a result obtained independently by Montgomery and Uchida in 1971 says
that hg = 1 if and only if p < 19).

A conjecture known as Vandiver’s conjecture, (although its origin seems to date
to Kummer’s work), says that if £ = Q(¢,), then p { h™. It has been verified com-
putationally for primes up to several digits. There are probabilistic heuristics that
seem to indicate that it should be true for a large majority of primes. See Chapter 8
of [Wa] for a discussion of this.

We know it is very possible to have p|h. And certainly, if p|h~ then p|h. If we
want to prove the converse, then showing that p|a™* implies p|h~ will suffice. The
result that p|h if and only if p|h~ allows one to study regular versus irregular primes
using only &2 ~, (which is generally more accessible, since one may apply analytic
techniques using L-functions). This is exactly the approach taken in the proof of
the theorem of Kummer mentioned above, where the Bernoulli numbers arise. The
reader is encouraged to consult a text on analytic number theory, (or on cyclotomic
fields), for a detailed account of the relationship between L-functions and Bernoulli
numbers and a proof of Kummer’s result. See Washington’s Introduction to Cyclo-
tomic Fields, [Wal], and Lang’s Cyclotomic Fields I and II, [L3], for much more on
these and other related ideas. We shall be content here to prove that p|h if and only
if p|h~. First we need a lemma.

Lemma 7.5. If K/E is everywhere unramified and Galois with Gal (K /E) = G,
then Z,? =1F.

Proof. That Ig D Ty is clear. For “C” suppose 2 € Ig and factor 2 as a product
of prime ideals in Ok. For P|A, let p = P N E. Since G transitively permutes the
primes above p, but fixes 2, we see that every prime of O that divides p must occur
in the factorization of 2 and that all occur with equal multiplicity. Thus 2l has the
form

Q[:pq]...p?ol(’

which we identify with an ideal of E in the obvious way. O
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Theorem 7.6 (Kummer). Let E = Q({,) where p > 2 is prime. If p|h™, then
plh—.

Proof. Assume p|ht. Since ht = [E| : E*], we see that G = Gal (E, /E™) has
a quotient of order p, whence there is an intermediate field L with EY C L C E 1*,
and [L : ET] = p. Note that L/E™ is everywhere unramified and abelian (in fact

cyclic). Let K = EL.
Ef K
L E
E+

Now K /E is also unramified everywhere and cyclic of degree p (because E N L =
E™T since (2, p) = 1). Say Gal (K /E) = (o).

Note that Nx,£(¢,) = {5 = 1, so we may apply Hilbert’s Theorem 90 to con-
clude that ¢, = 053) forsome B € K*.Now 8 & E,as ¢, # 1.

We geto(B) = ,3;,,‘1 and also that o fixes 87 = «, say. We have o« € E and

K 2 E(Ja) = E(B) 2 E.

Since [K : E] is prime, we must have K = E(f).

Now Gal (E/E™) = {j), say, where j is essentially complex conjugation. Thus
Gal (K /L) is also generated by complex conjugation; we use j to denote the gener-
ator of Gal (K /L) as well. Write B = j(8) as usual. Then in Gal (K /E™), we have

0j = jo (why?) and o (BB) = ,3{;1;3;“,,_1 = BB.Thus BB € E. Of course, BB € R
too, so BB € E™.

Consider the ideal B8Ok. Since o(B) and B are associates in Ok, the ideal 8Ok
is fixed by o, hence by Gal (K / E).

Since K /E is everywhere unramified, Igal(K/ B — Zr by Lemma 7.5, whence

BOk = a0k

for some a € Zr. We claim that [a] has order p in C}..
To show that [a] € C%, note that since BOg = aOk, we have

(Nk/LaOgk) = (Ng;.BOk),
aj(@)Ok = BBOk.

But BB € ET. Also (Ng/e+a)Of = aj(a), an ideal of E. By Exercise 6.38,

aj(a) = BBOk
Ngjgra = (BB)in ET.
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To show that [a] has order p, note that
a?Ok = POk = aOk
and o € E. By Exercise 6.38 again,
a’ = (a) in E.

It remains to eliminate the possibility that [a] has order 1, i.e., a is principal
in E. Suppose a = yOp, for some y € E. Then yOx = aOg = B0k, so
Bl =¢ecOfand K = E(B) = E(e).

Now &? = 'Bp/yp = O‘/yp € E,so0¢e? € OF, say ” = §. Since ¢ generates K
over E and Gal (K/E) = (o), we have o(¢) # €. But

((Ofe) =@ )5 =25 =1

SO 0(8)/5 is a primitive p” root of unity, say ¢y, with (a, p) = 1. We have o' (¢) =
e

Letn = 8/5, an element of O. Since Gal (K /L) = Gal (E/E™) = (j) we see
that L is totally real and K is totally imaginary. If A : K < C is any embedding,
then A(L) € R and

whence [A(n)|. = 1 for every embedding A of K. Thus 7 is a root of unity.
Also, since n = € / 7, We may compute

a 2a
o(n) = 6(5)/0(5) = éh"g/;ag = “le= .
P

Since (a, p) = 1 and p > 2, we have (2a, p) = 1 and ;“[%“ # 1. This gives o () # n,
son & E.

Now E ; E(n) € Kand [K : E] = p,so K = E(n) = Q(¢p, n), a cyclotomic
extension of E. All cyclotomic extensions are ramified (Exercise 6.40). Thus K /E
is ramified, a contradiction. We have shown that [a] cannot have order 1 in C%, so
must have order p and the claim is proved.

Now p|#C}, and

105 =#0r [y, =" [ = h

Thus plh~. O
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We can also apply what we know about infinite Galois extensions to cyclotomic
fields, yielding some ideas about Z ,-extensions that are important in Iwasawa the-
ory. To do this, we must first understand ramification in infinite extensions. The
notion of ramification index is troublesome, since the upper field in our extension
is not a number field. Without factorization of ideals, we cannot determine a ram-
ification index using the methods employed for number fields. Instead, we shall
approach the issue by considering inertia groups. Recall in the case of a finite Galois
extension, the ramification index of a prime ideal is simply the order of its inertia
group. In the infinite Galois case, we want to use an analog of this to define the
ramification index. Of course, first we must have a suitable definition of the inertia
subgroup associated to a prime ideal in the case of an infinite Galois group.

If K is an algebraic extension of Q (finite or infinite), then we let Ok denote the
ring of algebraic integers in K. If °B is a prime ideal of Ok, then B N Z is a prime
ideal of Z. Moreover, if I3 is non-zero, then so is ‘B N Z (why?). Thus ‘BN Z = pZ
for some prime p.

Exercise 6.41. Show that Ok / is a field, and is an algebraic extension of I ,; then
show that it is Galois over IF,, with abelian Galois group. O

Now suppose that K/ F is a (finite or infinite) Galois extension. Let 13, Ok be as
before and put p = P N OF, a prime ideal of Op.

Exercise 6.42. Show that Gal (K /F) acts transitively on the set of prime ideals of
Ok above p. (HINT: You can assume this result for finite extensions of F', then use
the profiniteness of the Galois group for K/F to relate the infinite extension K /F
to an appropriately chosen tower of finite subextensions.) O

We define the decomposition group for ‘B3/p as we did for finite extensions of
number fields:

Z(B/p) ={o € Gal(K/F) : o (P) = P}.
We also define the inertia subgroup:
TCB/p) ={c € ZCP/p): o(x) =x (mod P) forall x € Ok}.

The decomposition and inertia subgroups are closed subgroups of Gal (K/F) so
correspond to intermediate fields. And just as in the case of a finite extension of
number fields we have an exact sequence

L — TC/p) — ZB/p) — Gal (/% [, ) — 1.
When K/ F is Galois we can define the ramification index for 3/p by

e(P/p) =#T(B/p).
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In the case when K/ F is an algebraic but not necessarily Galois extension, we
must find a way to use inertia subgroups if we want a definition of the ramification
index that does not rely on factorization of ideals. But to have an inertia subgroup we
must first have a Galois extension. We accomplish this by considering an algebraic
closure Q2. Let  be a prime ideal in the ring of algebraic integers of Q2 that lies
above P. Since the extensions Q*¢/K and Q¥2/F are Galois, we may consider the
inertia groups 7'(Q/P) and T'(Q/p). Note that T(Q/P) = T(Q/p) N Gal (Q*2/K).
We define the ramification index for *3/p as

e(B/p) = [T(Q/p): T(Q/P)].

Note that if K/F is Galois, this definition gives e(I3/p) = #7T (3/p) so is consis-
tent with the conventional definition of ramification index for extensions of number
fields. Also note that the ramification index need not be finite when K/F is an
infinite extension.

Exercise 6.43. How would you define the ramification index for an Archimedean
place in the (possibly infinite) algebraic extension K /F? (HINT: Consider exten-
sions to K of the embeddings of F, but take care to show that in a Galois extension,
the Galois group acts transitively on the extensions of a given infinite place of F;
then define decomposition and inertia groups for these infinite places and follow the
ideas we used above.) O

Proposition 7.7. Suppose K/ F is a Z ,-extension, where F is a number field. Let g
be a prime of F that does not divide pOp. Then K/ F is unramified at q.

Proof. Let T be the inertia subgroup for q in Gal (K /F). We know T is a closed
subgroup of Gal(K/F) = Z,, so we must have T' = O or T = p™Z, for some m.
Suppose it is the latter. Then we may choose primes q,, of K™ above q recursively
as follows. Put qo = q, and let g, be a prime of K+ above q,,.

Let K" denote the completion of K™ at g, and let K\ = U K{". Let U{",
Z/{é"o) be the units in the integer rings of K wK éoo) respectively. By Theorem 3.4,
there is a surjective homomorphism Z/{é") —> T(qn+1/9n), where T(q,+1/qy) is the
inertia subgroup for g, in Gal (K™D /K ™). We leave it as Exercise 6.44 to show
that there is a surjective homomorphism Z/{C(IOO) — T.Since T = p"Z,, we have a
surjective homomorphism Z/{c(,oo) —> p"Zp.

On the other hand, if ¢ is the prime number such that ¢ N Z = gZ, then one can
use the g-adic logarithm to show that Z/{éoo) = (a finite group) x Zg for some positive
integer a.

Note that the torsion part of p™Z, is trivial. Hence the above implies that there is
a continuous surjective homomorphism Z; — p"Z,. Composing with the natural
map, (reduction modulo p’”“), we find there is a continuous surjective homomor-
phism Zj —> "7, / o] z, so there is a closed subgroup of index p in Zj. Since

no such subgroup exists, we have a contradiction. Thus 7 = 0 and q is unramified
inK/F. O
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Proposition 7.8. Let K /F be a Z,-extension, where F is a number field. Some
prime of Op ramifies in K /F and moreover there is some level m such that every
prime that ramifies in K /K™ is totally ramified.

Proof. The maximal abelian unramified extension of F (i.e., the Hilbert class field
of F) is a finite extension, so some prime must ramify in K /F. By Proposition 7.7,
only primes above p can ramify in K/F. Call them p;,...,ps; and let Ty, ..., T
be their inertia groups. Then N T; = p™Z, for some m. The fixed field of p™Z, is
K™ and Gal (K /K™) C T for each j. Thus the primes above p; in K are all
totally ramified in K /K ™. O

Next we show how class field theory is used to define a certain Galois action
that is central to Iwasawa theory. Those wishing to read more about Iwasawa theory
should consult Washington’s book, [Wa], for a nice introduction to the subject.

Let K/F be a Z,-extension, where I' = Gal(K/F) = Z,. Since the closed
subgroups of Z,, are precisely 0 and p"Z, for natural numbers n, it follows that for
each n there is a unique intermediate field K such that [K™ : F] = p", and also
that these K™, together with K, are the only intermediate fields in K /F. We have

F:K(O) C K(l) c K(2) c...CK.
For each n, let M™ be the maximal unramified abelian p-extension of K™, and put
X, = Gal(M™/K™).
Recall from Exercise 6.12 on the Hilbert p-class field that X,, is isomorphic to the
p-Sylow subgroup of the ideal class group of K™. Let M = U M™ and let X =
Gal (M/K).

Exercise 6.45. Show that each (finite) extension M /F is Galois, then show that
the (infinite) extension M/ F is also Galois. %

Let G = Gal (M/F). We have the following diagrams.

M

M
X X
. K K
: G
MO x
. r
Xo K@)
F
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One of the central ideas in Iwasawa theory is that X can be viewed as a I"- module
in a natural way. (In fact, although we don’t show it here, it turns out to be finitely
generated and Z,[[I"]]-torsion.) Structure theorems about such modules then lead
to a rich theory, which includes a surprising relationship to p-adic L-functions. See
Washington [Wa] or Lang [L3] for (many) more details. We shall be content here
simply to describe the action of I" on X.

Replacing F by some K™ if necessary, we shall assume for simplicity that all
primes that ramify in K /F are totally ramified. With this assumption, we have that

K@D Ay — g
and
Gal (M(")/K(")) >~ Gal (K(rH-l)M(n)/K(rH-l))

is a quotient of X, ;. We have a map X,;; —> X,, which, via class field
theory, is seen to arise from the norm map on the ideal class groups. But also
X, = Gal(KM™/K). Thus

3 >~ (n) — —
(h_mX,, = Gal <(UKM )/K) =Ga(M/K)=X.

n=0

Fory € I}, = F/F,,n = Gal (K™/F), we may extend y to 7 € Gal(M™/F).
For x € X,,, we have an action of y via

x’ =pxp L

This makes X, a Z,[I},]-module. Suppose we are given an element y € I" and an
element x = (xg, x1,...) € X = (H_an. For each n we let the coset of y in Z [ I7,]

act on the n'" component of x by conjugation as described above. We leave it as
Exercise 6.46 to show that the result, which we denote x”, is in X, and hence that
X is a Z,[[I"]]-module as desired.

Exercise 6.47. In fact, show that the above action of I" on X is given by x? =
7x7~", where in this case ¥ is an extension of y to G = Gal (M/F). O

Finally we include a brief discussion of another infinite extension of a number
field F that is important in Iwasawa theory. Fix a prime p and let M be the maximal
p-extension that is unramified except at primes above p. Let N/ F be the maximal
unramified subextension of M/ F, i.e., N is the Hilbert p-class field of F. We have
an exact sequence

1 — Gal(M/N) — Gal(M/F) — A — 1
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where A is the Sylow p-subgroup of the ideal class group Cr. Thus we shall have
described Gal (M/ F) once we have described Gal (M /N). It is possible to do this
in terms of certain groups of units.

LetUy, = O} and let Uy = {x € U, : x =1 (mod p)}. Let U denote the topo-
logical closure of the image of Oy inU, = [, , U, under the diagonal embedding.
Let Uy, = [1,, Uy-

. u'
Exercise 6.48. Show that Gal (M/N) =“"r [/ 1 _ - O
/ U » NU.

The above is related to an important conjecture, due to Leopoldt. Note that &/ 11, is

a Z,-module of rank [F : Q] so U, N U is also a Z,-module. By Exercise 6.48, we
have

rank, (Gal(M/F)) = [F : Q] — rank, U, NU).

Leopoldt’s Conjecture says that rankZF (Z/{}, NU) = r; +r, — 1 where r| and r»
are the number of real embeddings of F' and the number of conjugate pairs of
imaginary embeddings of F, respectively. There is a proof of this conjecture, given
by A. Brumer, in the case when F is an abelian extension of Q. In the general
case it remains an open problem. If Leopoldt’s Conjecture is true, then we have
rankzp (Gal(M/F)) = r» + 1. This would give that the Z,-rank of the Galois
group of the compositum of all the Z,-extensions of F is r, + 1. See Washington’s
Introduction to Cyclotomic Fields, [Wa], for more on the implications of Leopoldt’s
Conjecture.



Chapter 7
Local Class Field Theory

Many of the main theorems on the class field theory of local fields were first proved
by Hasse ([Has], 1930), but his proofs relied on connections to global class field the-
ory. Schmidt ([Sc], 1930) and Chevalley ([Ch1], 1933) were able to give an approach
that did not rely on the global theory. Indeed, once this had been accomplished, it
became apparent that the proofs of many of the results for the global case could be
reinterpreted using the analogous local results. A cohomological approach to local
class field theory was crystallized in the work of Hochschild and Nakayama ([HN],
1952). See also the book by Artin and Tate, [AT], Serre’s book, [Se2], and Serre’s
article in Cassels and Frohlich, [CF].

One may rephrase the Kronecker-Weber Theorem to say that a maximal abelian
extension of QQ is generated by the torsion points of the action of Z on C*, (where
n € Z sends x € C* to x"). Similarly, a maximal abelian extension of a local
field K is generated by the torsion points of an action of the ring of integers of K
on a module that arises via the formal group laws of Lubin and Tate. We discuss
here the approach of Lubin and Tate ([LT], 1965), especially as treated in a paper
of Hazewinkel ([Haz2], 1975), who was able to adapt the ideas from [LT] so that
the theory of formal groups was not explicitly present in the exposition. While we
take Hazewinkel’s point of view, we also include a bit about the underlying formal
groups, so that the module mentioned above can be described.

This chapter is intended as an introduction to the subject; for a more complete
exposition of local class field theory describing in detail the relationship to formal
groups, see Iwasawa’s Local Class Field Theory ([1], 1986), wherein work of Cole-
man ([Col], 1979) plays an important role. An extensive treatment of local class
field theory from a different point of view may be found in Serre’s Local Fields,
[Se2].

In the first section, we discuss some preliminary results on local fields and their
extensions, including some important infinite extensions. The second section is
devoted to the study of extensions of a complete discretely valued field with alge-
braically closed residue field. In the third section, we return to local fields (where
the residue field is finite) and prove some key results on units and their norms.
Formal group laws and the Lubin-Tate formal group laws are introduced in sections
four and five, respectively. In section six we see how the ideas of Lubin and Tate
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lead to certain totally ramified extensions of a local field, from which its maximal
abelian extension is constructed. We conclude with an explicit construction of the
local Artin map and a local version of Artin Reciprocity in section seven.

The reader may notice that for completions of number fields, some of the results
in this chapter follow from the class field theory for number fields, (in particular,
see sections 5.4 and 6.4). However, we prove them here without relying on global
class field theory.

1 Some Preliminary Facts About Local Fields

In this section, we let K denote a field that is complete with respect to a normalized
discrete valuation vg : K* — Z. If desired, the reader may assume that K is an
extension field of Q,, (of possibly infinite degree). Let

O ={x e K : vg(x) >0}
Uk = {x € K : vg(x) =0}
7, , a uniformizer in K, so vg(w,) =1
Pxk={xe K:vgkx)>0}=n,0g

Ug ={xelx: x=1 (mod P¥)}
Fgx = Ok /PK’ the residue field of K.

We do not necessarily assume K is a local field (where the residue field F is finite),
however we do assume that Fg is perfect. If Fg is either finite or algebraically
closed, and L /K is a finite Galois extension, then Gal (L/K) is solvable (see Serre’s
Local Fields, [Se2], for a proof).

Exercise 7.1. Suppose L/K is a finite Galois extension. Let K; denote the maximal
unramified subextension in L/K. Put G = Gal(L/K), and Gy, = Gal(L/Kp).
(Most authors use G instead of G, but we shall follow Hazewinkel here.)

a. Show: Gy, is a normal subgroup of G and G / Gram is a cyclic group. Does Gy
have an analogue in the global theory (of number fields)?

b. Suppose E is an intermediate field in L/K, and E/K is Galois. Show that the
image of G, under the natural map Gal (L/K) — Gal (E/K) is contained in
Gal (E/K)ram. O

We shall be interested in several extensions of K. Denote by
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K, a maximal unramified extension of K,
K, the completion of K,
Fy the residue field of Ky,

£2 a complete, algebraically closed extension of Ky;.

Consider the case when K is local. Let K(;) denote the unramified extension of
K of degree 1, i.e., the splitting field over K of the polynomial X9 — X, where
q = #Fk. Clearly K;) € Ky if and only if #|n. The field K, is simply the union
LtJ K. (It is straightforward to show that any unramified extension of K, finite or

not, must be contained in this union.)

Proposition 1.1. Let K be a local field. The field F,, is an algebraic closure of Fg.
Moreover, there is a natural isomorphism Gal (K,/K) = Gal (Fg,,/Fg).

Proof. First note that Ok, = U Ok, and Px,, = u Pk, sothatFg, = U Fg,. But

[Fg, : Fx]l = [Kq : K] =t, so Fg,, is just the unique degree ¢ extension of the
finite field F. Thus, F,, is an algebraic closure of Fg.
For the assertion about the Galois groups, note that

Gal (Ky/K) = lim Gal (K()/K)
and
Gal (F, /Fx) = lim Gal (Fx, /F),

where the maps for the limits are the canonical ones. Since Gal (K¢)/K) =
Gal (Fg,,/Fk), the result follows. |

We have a notion of Frobenius automorphism for finite unramified extensions
L/K oflocal fields; namely the Frobenius automorphism is just the lift to Gal (L/K)
of the map x +— x? from Gal (F, /Fx). (Here ¢ is the cardinality of the residue field
of K.) But the map x + x7 also can be viewed as belonging to Gal (Fg,, /Fg); its
lift to Gal (Ky:/ K ) will be called the Frobenius automorphism of K, denoted ¢.

Exercise 7.2. Suppose F is a finite field.

a. Show that K;/K is abelian, so that we may write K, O Ky, where K, denotes
a maximal abelian extension of K.

b. Show that Gal (K;/K) = Z, (see Exercise 6.26).

c. Show that the subgroup (¢) is dense in Gal (K,;/K) and that K is the fixed field
of (p) in Ky;.

d. Let L/K be a finite extension with residue field degree f. Let ¢, denote the
Frobenius automorphism of L. Show that L, = LKy and ¢, |K = (pf .

e. What elements must be adjoined to K to obtain K, when K = Q,,? O
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Proposition 1.2. Let K be a local field and suppose L/K is Galois with Ky, € L.
Let o € Gal(L/K) be such that o| = @. Let F be the fixed field of o in L. Then
FKy=Land FNK,; = K, so Gal(L/F) Gal (K,/K). Note this implies F/K
is totally ramified.

Proof. The fixed field of a| must be F N K. Since K is the fixed field of ¢, we
get F N Ky = K. Recall, for a positive integer ¢, we let K denote the (unique)
unramified extension of K of degree ¢. To show that F K, = L, it suffices to show
for any ¢ that FK,) = E whenever F C E C L and [E : F] = t. Since F N
Ky = K, we have [FK(;) : F] = t, from which it follows that EK )/ F is a finite
subextension of L/ F.

N

Since (o) is dense in Gal (L/F), (F is the fixed field of o), we find that (a|EK )y =

(1)

Gal (EK )/ F). Because this is cyclic, there is only one intermediate field of degree
tover F. Hence E = FK;. O

Exercise 7.3. Suppose L/K is a finite Galois extension. Show that iur/ Ky is
Galois, with Gal (Ly,/Ky) = Gal (L/K )ram- O

One may show that when Fg is a finite field and L/K is an unramified Galois
extension, the norm map Ny,x : U, —> Uk is surjective. In Chapter 4 (see
Lemma 4.5.3) we proved this when L and K are finite extensions of QQ,, for some
prime p. In the case where g is algebraically closed and L/K is a finite extension,
the norm map Ny x : U; —> Uk is again surjective, as is Ny jx : L —> K,
(see Serre’s Local Fields, [Se2]).

Theorem 1.3 (Decomposition Theorem). Let L/K be a finite Galois extension,
and suppose F is a finite field. There is a totally ramified extension L'/ K such that
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L, =LK, = LK, = L,. Moreover, if Gal (L/K )an is central in Gal (L/K),
then we can take L' /K to be abelian.

Proof. Letting K be as in Exercise 7.1, we have that Gal (K1 /K) is cyclic, gener-
ated by Frobenius ¢. Lift ¢ to ¢’ € Gal (L/K). The order of ¢ is [K, : K], which
must divide the order of ¢’. Thus for ¢ equal to the order of ¢’ in Gal (L/K), we get
K1 € K.

K

/ LK(t)\

Ky,

N

K

Let ¢” € Gal(LK(;)/K) be determined by the following conditions:

= Frobenius in Gal (K(;,/K),

/

This uniquely determines ¢”. Denote the fixed field of ¢” by L. Then L’/ K is totally
ramified (why?) and L'K;y = LK. But Ky C Ky, and this implies L'K,, =
LK.

Now suppose Gal (L/K )ram is central in Gal (L/K). Then Gal (LK )/ K )ram 18
central in Gal (LK)/K), so {¢") is a normal subgroup. Thus L'/K is Galois (and
abelian). O

Example.

1. Let K = Qs and let L be the splitting field of the polynomial X* —3X? + 18 over
Q3. Then L/Qjs is a cyclic Galois extension of degree 4 and ramification index
2; the intermediate field K is the only quadratic extension of Q3 contained in
L. Note that K; /Qj3 is unramified with Gal (K, /Q3) = (¢), where ¢ : x — x>
is the Frobenius automorphism. The lift ¢’ of ¢ to Gal (L/Qj3) has order 4, so
t = 4. The field LK) is a degree-8 extension of Qs, with Gal (LK4)/Q3) =

Z/zz X Z/4Z. The automorphism ¢” has order 4 in Gal (L K4)/Q3); its fixed
field L’ is a totally ramified quadratic extension of Q.
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Exercise 7.4. Suppose Gal(L/K) = Qg (the quaternions) and Gal (L/K )yym =
Gal(L/K}) is cyclic of order 4. (For example, this occurs when K = Q3 and L
is a splitting field of X® 4+ 9X* + 36. See the database of Jones and Roberts, [JR],
for other such examples.) Find the order of ¢’ in Gal (L/K), the degree [LK ) : K]
and the degree [L' : K]. What can you say about L'NL? Is L’/ K a Galois extension?
Prove that your answers are correct. O

Exercise 7.5. Suppose F is a finite field.

a. Let M be a maximal totally ramified abelian extension of K. Show that K, =
KuM.

b. Show that Gal (Kap/K )ram = (h_m Gal (L/K)ram, where L varies over the finite

abelian extensions of K and the maps Gal (L/K)iam —> Gal(E/K)pm for
the limit (where £ C L) are induced by the natural maps Gal(L/K) —>
Gal(E/K).

c. Show that Gal (K/K) = Gal (Kup/K )ram X Z. O

Exercise 7.6. Suppose Fx is algebraically closed, and let L/K be an abelian exten-
sion. Show that L/K is totally ramified. O

2 A Fundamental Exact Sequence

In this section, we prove a result for abelian extensions L/K, where K is com-
plete with respect to a normalized discrete valuation and has an algebraically closed
residue field Fg. This result will play a crucial role as we progress toward the local
version of Artin Reciprocity. Before continuing, we must take a moment to prove a
lemma on finite abelian groups.

Lemma 2.1. Let G be a finite abelian group and let g € G. Then G contains a

subgroup H such that O / i is cyclic and the order of gH in G / g is the same as
the order of g in G.

Proof. Decompose the abelian group G as a direct sum G = @ G, where G, is the
P
Sylow p-subgroup of G. Identify g € G with the element (..., g,,...) € ®G,.
P
. . . ~ 7
Now write each G, as a direct sum of cyclic groups, say G, = /pi‘Z DD

Z/pifZ and identify g, € G, with (g,1, ..., gpr) in this direct sum. Let
dp(gp) = 11333{1.” - Ordp(gpn)}v

so the order of g, in G, is p%7¢»). Let j be an index where the maximum is attained,
ie., d,(gp) =1; —ord,(gp). Let H, = @ Z/pi"Z (a subgroup of G,) and let
nj
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H = @ H, (a subgroup of G). For any p, the order of g,H,, in GP/HP is the same
p
as the order of g, in G,. Thus H is the desired subgroup of G. O

Throughout this section, we suppose K is complete with respect to a discrete
valuation and Fg is algebraically closed. For the extension L/K, we put
o(u)
V(L/K) =< Cuel, o€ Gal(L/K)>,
u

a subgroup of U,.
Exercise 7.7. Let L/K be as above, and suppose o, T € Gal (L/K).

ot(m,) o) t(m,

and . ) represent the same coset in U / V(L/K):

L L L

a. Show that

otrr) o) . UL/
b. Letr € Z. Show that o and x represent the same coset in V(L/K)'O

L

Exercise 7.8. Show that the map i : Gal(L/K) — Us /V(L/K) givenby i(o) =

o(m,

)V(L /K) is a well-defined homomorphism of groups. O

T
Proposition 2.2. Let L/K be a finite abelian extension. The group homomorphism
i of Exercise 7.8 is injective.

Proof. Let 1 € G = Gal(L/K) with t # 1 and let H be a subgroup of G such that
G / H is cyclic and the order of T H in G / K 1s the same as the order of 7 in G. Let

o € G be such that o H generates G/H and letr € Z, with tH = 0" H. Since
TH # H, we may take r < |o|. We have t = o h for some hy € H. Suppose
i(r) = V(L/K). Then, using Exercise 7.7 and considering the form of a typical
element of V(L/K), we have

o) ho(w,) _ ﬁ I o h(ug,)

" T u
L L s=1 heH sh

where each uy, € Up. Now replace each factor on the right-hand side with the
expression derived from the following equation

o h(usy) [ o*hug) o 'h(us) — oh(ug) oh(ug)| h(ug)
N Oﬁs*lh(”sh) 0-572]1(”5}1) ah(ush) h(”sh) Ush
o [0 hug) 0P h(ug) - o hGug) hQus)] h(ug,)
o5 hugy) 05 2h(ug) - oh(ugy) h(usy) s
o (ws) hugp)
Wqh Ugp ’

Ush

say,
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yielding
o]

O‘(ﬂr) h()(]T ) _ l_[ l—[ o (Wsn) h(ush)
Wsh

T’ u
L s=1 heH sh

where each wy;, € Uy, Collecting, we obtain

o(m]) ho(m,)  o(w) h(up)
= ]_[

" T u
L L heH h

forw € U, up, € Uyr. Let E be the fixed field of H and apply Ny /g to both sides of
this equation to obtain

G &)

7-[7'
E

I

where 7, = Ny e(7,), ® = Np/p(w), and 6 € Gal(E/K) corresponds to o H €
G / H - Since G / H is cyclic generated by o H, Gal (E/K) is cyclic generated by
&, so the above implies that n;ﬁ)‘l € K. But, since E/K is totally ramified (see
Exercise 7.6) and r < |6| = [E : K], this cannot happen. Thus, for t # 1, we have
i(t) #V(L/K). O

We have reached the first step in our effort to define a local analogue of the norm
residue symbol (see section 6). Namely, we are able to show, for a finite abelian
extension L/K where Fg is algebraically closed, a certain sequence is exact. This
will be accomplished by first proving the result for cyclic extensions, then using
induction and the cyclic result to deduce exactness of the sequence for abelian
extensions.

Theorem 2.3. Suppose Fg is algebraically closed, and L /K is a finite cyclic exten-
sion. Let N : UL/V(L/K) —> Uk be the map that sends the coset uV(L/K) to

Ny k(). Since elements of V(L/K) have norm 1, this is a well-defined homomor-
phism. The sequence

1 — Gal(L/K) -5 UL/V(L/K) MU — 1

is exact.

Proof. We have shown that i is injective and we also know that N is surjective since
Fg is algebraically closed. It remains to show that the image of i and the kernel of
N are equal.

It is clear that the composition Ni is the trivial map, as Ny gx(o(m,)) =
Ny k() for any 0 € Gal(L/K). Thus imi C ker N. For the reverse contain-
ment, suppose uV(L/K) € kerN, i.e., Ny x(u) = 1. By Hilbert’s Theorem 90,
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there is some y € L* such that u = o) where o is a generator of Gal(L/K).
We can write y = nL’v for v € Uy, r € Z. Using Exercise 7.7, we conclude

o' (m,)

W(L/K) = "TPVL/K) = T TP WLIK) = i(0") € im i, o

Now we begin the process of generalizing Theorem 2.3 to finite abelian exten-
sions L/K. We continue to assume that ¢ is algebraically closed.

Lemma 2.4. Let L/K be a finite Galois extension, and let K € E C L, where
E/K is Galois. Then Ny ;g V(L/K) = V(E/K).

Proof. Let H = Gal (L/E), a subgroup of G = Gal (L/K). For “2” we must show
that if g € Gal(E/K) = O /p and if u € Ug, then ™ € Ny zV(L/K). Now
we know that Ny, : U —> Up is surjective, so there is some v € Uy such that

Npp(v) =u.Let g € Gal(E/K). Then g corresponds to some gH € G/H, where
g € G. We have

Nije (giv)) _ l—[ hglfv)

heH
[Ty etg'he)w)
B [1, h(v)
&[T, he)(w))
B [T, h(v)
_ &)

u

as needed. Note by starting with v € U, and g € G, the above equation also gives
us “§9" O

Lemma 2.5. Let L/K be a finite abelian extension, let E be an intermediate field
such that L/E is cyclic. Then

1 — Gal(L/B) =5 Y/ =, “hipiy — 1

is exact, where the map N is induced by N, JE-

Proof. First, i is injective because it is the restriction of an injective map on
Gal(L/K). Also, N is surjective because Ny g : Uy —> Ug is surjective. We
have a commutative diagram

1 —— Gal(L/E) ., UL/V(L/E) SEELEEN UE — 1

- | |

1 Gal(L/B) — U fyp oy~ U [y ey —— 1
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where the vertical maps are the natural ones (note V(L/E) € V(L/K)), and the top
row is exact. We must show ker N = image i in the bottom row. Let uV(L/K) €
ker N. Then u € U, satisfies Ni,e(u) € V(E/K). The previous lemma implies
that there is v € V(L/K) such that Ny ;g(v) = Np e(u), whence NL/E(uvfl) =

o(m,)

1. Exactness of the top row gives uv~'V(L/E) = . V(L/E) for some o €
L

o)

Gal(L/E).ButthenuV(L/K) = " V(L/K) € image i. We have shown ker N C
L
image i. The reverse containment is clear. O

Theorem 2.6. [f Fx is algebraically closed and L/K is a finite abelian extension,
then

1 — Gal(L/K) -5 ML/V(L/K) MU — 1

is an exact sequence.

Proof. We induct on the degree [L : K]. The base step is trivial. For the induction
step, let E/K be a proper subextension of L/K (so the induction hypothesis applies
to E/K), chosen so that L/E is cyclic. Consider the following diagram.

1 1

| |

Gal(L/E) ——— Gal(L/E)
incl.l zl

I —— Gal(L/K) —— Ye/y 50y

| T

N

Uk 1

1 — Gal(BE/K) ——s UE/V(E/K) Uy 1

| |

1 1

It is straightforward to check that this commutes. The previous lemma makes the
second column exact. The induction hypothesis makes the third row exact. Clearly
the first column is also exact. Hence the second row must be exact too. O

Exercise 7.9. Extend the previous theorem to the case where L/K is totally ramified
non-abelian to obtain an exact sequence

1 — Gal(L/K)ab I UL/V(L/K) I UK — 1. O
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3 Local Units Modulo Norms

Throughout this section we suppose K is a local field (so Fg is finite). Let L/K
be a finite abelian extension that is totally ramified. Then the extension Lo / Ky
is abelian and totally ramified with Gal (I:ur / kur) = Gal(L/K). Recall we let [Fy,
denote the residue field of K, ur (and of K;), so that F,; is an algebraic closure of Fg.
We use ¢ to denote the Frobenius automorphism in Gal (F;/Fx); also we continue
to use ¢ to denote its lifts in Gal (Ky;/K) and Gal (L,;/L), and their extensions to
Ky and L. We have a homomorphism

o —1 :Z/{i(ur — Z/{Kur

given by u +— @(u)u~'. With it, we obtain the following commutative diagram,
where A, B, C, D are the appropriate kernels and cokernels, so that the rows and
columns are exact.

— =
— g — =

U
1—7G31LK—>Lur/A . - U~ |
(L/K) V(Lu/Kor) o
<p—1l w—ll w—ll
1 — Gal(L/K) —— “t..../ U —1
V(Lur/Kur) ur
C SN D
1 1
Lemma 3.1. In the situation described above, we have:
i. ¢ —1:Ug, —> Uy, issurjective,asisp — 1: O —> O ,
ii. 9 —1:V(Ly/Ky) — V(Ly/Ky) is surjective,
iii. ker (go —1:Ug, — ukm) = Uk.
Proof. For (i), let L{;Z( ={u e Uy, :u=1 mod ”1’:}’ where n is any positive

integer. We have induced homomorphisms
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U U
o—1: Km/1 N Ku./1
U, Uy,

and, forn > 1,

u: u:
p—1: K/ ntl —> Kur/ el
Ur., Uk, -

But
Ui ~ Tox S
Kur ul = F (the multiplicative group)
Kur

and, forn > 1,

Uy ~ .

/ Yyt = Fur (the additive group).
IA{UT

Thus we have homomorphisms

o —1:F; — Fn givenby x> x4

o —1:Fy — Fy given by x = x? —x.

Since F, is algebraically closed, these are surjective. We leave it as Exercise 7.10
to show that this implies ¢ — 1 : Ug —> Uy is surjective. A similar argument,
(using 77Oy instead of L{;Z( ), givesthatp — 1 : Og —> O is also surjective.
For (i), let t(x)x~! € V(iur/kur) and choose y € U; suchthat (p —1)(y) = x.
Then
T\ _ et t)\ _ te(y) e\t ()
w=0(") =" () = () =
y p(y) Ny T(y) \ y x
(we have used that L/K is totally ramified to deduce that ¢ and T commute).
For (iii ), suppose u € U; satisfies p(u) = u. We may write u = g9+, v, where
g0 € Ky Since ¢(u) = u, we have ¢(g9) = &g mod 7, , so we may find up € K
with 4 = ug + 7, w;. But now ¢(u) = u gives p(w;) = w;. Write w; = n}("sl,
where ) e U R then ¢(e]) = €. Repeat the above with ¢ in place of u to get

ni+1
K

n+2

2w, where ug, u; € K.

U=uy+m up+m
By induction we find that « is congruent to an element of K modulo 77 for any
n. Since K is complete, this implies u € Uy (we already knew u € Uy, ). Thus

ker (¢ — 1) € Uk. The reverse containment is clear. m|
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Now we want to define a map
QL/]( Iu]( —_—> Gal(L/K)

for abelian extensions L/K that are totally ramified. In the diagram (x), the rows
are exact by Theorem 2.6, so we can apply the Snake Lemma to obtain a homo-
morphism § : B —> C. By (iii) of the previous lemma, B = Ug. Also, since
L/K is totally ramified, ¢ commutes with any t € Gal(L/K). It follows that
¢ —1 : Gal(L/K) — Gal(L/K) is the “zero” map, so we have identified
C = Gal(L/K). We let 07k (u) be the element of Gal(L/K) that corresponds
tod(u) € C.

Proposition 3.2. Let 6, /¢ be as described above. Then

i. Op/k is surjective,
ii. kerOL/K = NL/KL{L.
Proof. For (i) it suffices to show D = 0 in (x). But we know by (i) of Lemma 3.1
thatp — 1 :U; —> Uj  is surjective.

For (ii), the diagram (%) implies that B(A) 2 Ny xUyr. Let ¥ = xV(Ly/Ku) €
A, where x € U; . Since A = ker(¢ — 1) we have g(x)x™' € V(Lu/Ku). By
(ii ) of Lemma 3.1, there is y € V(Lu/Kur) such that ¢(y)y ™' = ¢(x)x~'. But then

@(xy™") = xy~' so that xy~" € U, by (iii) of Lemma 3.1. Since xV(Ly/Ku) =
xy"YW(Ly/Kur), we also have

Ni ke = Np g, ey
= Nk (xy™") (why?)
€ NL/KZ/{L.

It follows that (%) € N /xUy. O

Theorem 3.3. For any finite totally ramified abelian extension L/K, there is an
isomorphism

Bk Y5 [ Ny, — Gal (L/K),

Moreover, if E/K is a subextension of the totally ramified abelian extension L/K,
then the following diagram commutes.

éL/K
Uk / Nyl — Gal(L/K)

nat.l lnat‘

éE/K
Uk / Nl —— Gal (B/K)
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Proof. The isomorphism follows from the proposition. The commutativity of the
diagram follows from (). |

We want to consider finite abelian extensions L /K that are not necessarily totally
ramified. If ¢ is the Frobenius automorphism in Gal (F,./Fx), let ¢’ be any lift of
@ to Gal (L, /K). Let L’ be the fixed field of ¢’. We know that L’/K is abelian and
totally ramified. Also L), = L, We may identify Gal (L/K);m and Gal(L'/K)
and obtain the following diagram.

1 1
| |
A 5, B
| |
1 —— Gal(L/K)am —— uﬁur/v(ﬁur/f(m) — Ui, —— 1
Lp’—ll <P’—1l Sp_ll
1 —— Gal(L/K)am —— uﬁ“r/v(iur/f(ur) - ufﬂ,r — 1
| |
C SN D
| |
1 1

As before, it follows that we have an isomorphism
Ux / Npjxtdy — Gal(L'/K) = Gal (L/K ).

There is some finite unramified extension E/K such that L'E = LE and LE/L
is unramified. Moreover, since the norm is surjective on units in an unramified
extension, we have Nig/xUrg = Np/xNrgjiUre = NpxUp, and similarly
NL/E/KML’E = NL//KZ/{L/. Thus NL//KL{L/ = NL/KZ/{L, and we have an isomorphism

O Y% [ Ny ey, — Gal (/K.

The following theorem gives us a starting point for the definition of (the totally
ramified part of) the local Artin map. (See the proof of Theorem 6.8 for the extension
of this theorem to Gal (K,,/K).) If the local field K is a completion of the global
field F, then the Artin map for K and the Artin map for F are connected as in
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Section 3 of Chapter 6. However, soon we shall be able to give a definition of the
local Artin map that does not rely on the global Artin map. Compare the theorem
below with Corollary 3.6, whose proof uses the global Artin map.

Theorem 3.4. If L/ K is a finite abelian extension, then there is a canonical isomor-
phism 9L/K : Uk /NL/KUL —> Gal (L/K),qn and moreover, if K € M C L, then
the following diagram commutes.

Uty Gal (LK)

nat.l lnat.

Uk /NM/KMM —=  Gal (M/K);am

Proof. We have already shown the isomorphism; commutativity of the diagram fol-
lows from (). |

4 One-Dimensional Formal Group Laws

Formal groups were first defined by Bochner ([Bo], 1946) in characteristic zero.
The theory in characteristic p was developed by Chevalley and Dieudonné in the
1950s. An interpretation of formal groups using power series was developed by
Lazard ([Lazl], [Laz2], 1955). Lazard’s is the approach that we use here. We begin
with a few general facts about one-dimensional formal group laws. There are higher
dimensional formal group laws, but we shall not need them. For a complete treat-
ment of formal group laws, including higher dimensions, see Hazewinkel’s Formal
Groups and Applications, [Hazl].

Let R be a commutative ring with identity, and denote by R[[X]], R[[X, Y]],
etc., the rings of formal power series with coefficients from R. For two such formal
power series F, G we write F' = G (mod deg d) to mean that F' and G coincide
in terms of degree less than d.

A one-dimensional formal group law over R is a power series, F' € R[[X, Y]]
such that

i. F(X,0)=X, F(0,Y)=Y,and
ii. F(X,F(Y,2))=F(FX,Y),2).

If we also have F(X,Y) = F(Y, X), then F is said to be a commutative formal
group law.

Exercise 7.11. Show that (i ) in the above definition may be replaced by the require-
ment F(X,Y)= X +Y (mod deg 2). O
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Example.

2. Over an arbitrary commutative ring R with identity, we may define
G,(X,Y)=X+Yand G,(X,Y)=X+7Y + XY.

Each is easily seen to be a commutative formal group law. G, is called the addi-

tive formal group law and G,, is called the multiplicative formal group law.

All one-dimensional formal group laws over a “nice” ring R are commutative.
To have a non-commutative one-dimensional formal group law over R, there must
be some non-zero torsion nilpotent element in R (a result of Connell and Lazard).

Exercise 7.12. Let R = Frlil/ (2 and let F(X.¥) = X +¥ +1XY?. Show that

F is a non-commutative one-dimensional formal group law over R. O

Exercise 7.13. Let F be a one-dimensional formal group law over R. Show that
there is a power series i(X) € R[[X]] that functions as an “inverse” for F, i.e., so
that F(X,i(X)) =0. O

In certain circumstances, a formal group law over R may be used to define an
actual group operation. For example, if R is a complete local ring with maximal
ideal p, then it is easy to see that for x, y € p, the formal group law F (X, Y) over
R converges p-adically at X = x, ¥ = y to an element of p. Thus we may define a
group operation 4, on p by setting

x‘f‘Fy:F(Xay)-

Exercise 7.14. Let F be a one-dimensional commutative formal group law over R.
For f, g € XR[[X]], define

f 48 =F(f(X), g(X)).

Show that with this operation, X R[[ X]] is an abelian group. O

We may define a notion of “homomorphism” between formal group laws as fol-
lows. Suppose F and G are one-dimensional formal group laws over R. A power
series 6 € R[[X]] that satisfies

i. (X) =0 (mod deg 1), and
ii. 0(F(X,Y))=GO(X),06(Y))

is called an R-homomorphism from F to G. Denote the set of all R-homomorphisms
from F to G by Homg(F, G). An R-homomorphism from F to F is called an
R-endomorphism of F. Denote the set of all R-endomorphisms of F' by Endg(F).

Exercise 7.15. Show that Homg(F, G) is a subgroup of X R[[X]] under the opera-
tion +, defined earlier. O
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Exercise 7.16. Show that Endg (F) is aring under +, and “formal composition” (of
power series): (0 o0 6')(X) = 0(0'(X)). O

There is, of course also a notion of isomorphism for formal group laws. Sup-
pose 8 € Homg(F, G). If there is some 8’ € Homg(G, F) so that 0 and 0’ satisfy
0'(0(X)) = 0(0'(X)) = X, then we say 6 is an R-isomorphism and 6’ is the inverse
isomorphism to 6.

Example.

3. The formal power series exp(X) and log(1+4X) are mutually inverse Q-isomorphisms
between the formal group laws G, and G,, of Example 2.

Given 6 € Homg(F, G), we denote by J(0) the element a € R such that
0(X)=aX (mod deg 2).

J(0) is called the Jacobian of 6.

Exercise 7.17. Show that 6 is an isomorphism if and only if the Jacobian J (@) is a
unit in R. O

Example.

4. Take R = FF5. Then

G,(X,G,(X,X)=G,(X, X+ X)
=X+X+X
=0,
Gn(X,Gp(X, X)) =Gpu(X, X + X + X?)
=X +X+HX+ X+ X2+ X+ X
= X3
IfO(X) = a; X + a,X* + - -- were an F3-isomorphism from G,, to G,, then its

Jacobian would have to be a unit, whence a; # 0 in F5. But also, it would have
to satisfy (G, (X, Y)) = G,(6(X), 6(Y)), which implies

0(X?) = 0(G (X, Gu(X, X))
= G,(0(X), 0(Gnu(X, X)))
a1 X? + X0+ = G (0(X), Ga(0(X), 6(X)))
= 0’

a contradiction. Hence G, and G, are not F3-isomorphic.

Exercise 7.18. Show that G, and G,, are not IF ,-isomorphic for any prime p.
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S The Formal Group Laws of Lubin and Tate

The formal group laws we study in this section were introduced in 1965 by Lubin
and Tate, [LT]. Following the approach in Hazewinkel’s paper, [Haz2], we shall use
them to prove the main results of local class field theory (see Iwasawa’s book, [1],
for a more general treatment).

Let K be alocal field. Lubin-Tate formal group laws (over O ) are certain power
series F'y(X, Y), which we define below. In order to give the definition, we first need
some notation and a technical lemma. For each uniformizer 7 of K, let

Fr={f(X) € Ok[[X]]: f(X)=nmX (mod deg 2), and f(X) = X? (mod Pg)}.

We shall make use of the following lemma several times, for various choices of
linear form £(X1, ..., X,,), for various m. It can be generalized to the case where
f € I, and g € F,» with w # 7/, but to do so involves more cumbersome notation.
Since we only must address this more complicated situation once, for the sake of
clarity we have opted to postpone our discussion of it until Lemma 7.6. See Iwa-
sawa’s book, [1], for the general statement.

Lemma 5.1 (Lubin, Tate). Let 7 be a uniformizer in a local field K, and let Fg
have order g. Suppose f, g € F, and let £&(X,.... Xpn) = a1 X; + - anXn
be a linear form (with a¢; € k). Then there is a unique power series F €
Okl[X1, ..., X,;]] such that

F(Xi,...,Xm) =Xy, ..., X,) (mod deg 2)

JFXy, .., X)) = F(g(X1), ..., g(Xm)).

Proof. We construct F by defining a sequence Fj, F, ... of polynomials, where
deg F; <i,with F; = ¢ and

f(F(X1, ..., X)) = Fy(g(X1),...,8(X,,)) (mod deg n+ 1).

It will follow that F = hm F, is the desired power series. Proceed recursively,

beginning with F; = £. Suppose we have found F, € Ok[Xy, ..., X,,] of degree
no greater than n satisfying the above congruence. To construct F,H_] we seek a
homogeneous polynomial /2,11 € Og[X}, ..., X,,] of degree n + 1 such that

FEXn, ooy X)) + hpn (X, oo X))
= Fu(g(X1), ..., (X)) + Mg 1 (8(X1), - .., (X)) (mod deg n +2).

(Note that for any such h,,; we also get F,, + h,y; = F, (mod degn + 1)
and deg(F, + hn4+1) < n + 1.) Uniqueness of the power series F will follow
if we find that the homogeneous polynomial %, is unique. If the polynomial
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hu4+1 exists, then we put F,,1 = F, + h,,. Given the nature of f and g, we
must have
fF Xy, oo, X)) = f(Fu( Xy, .0 X))+ whp i (X, .0, X))
Fu1(g(X1), ..oy (X)) = Fu(g@(X1)s - .o, (X)) + 7" hyi 1 (X1, oy Xin)

where both congruences are (mod deg n-+2). From this, the only possible candidate
for h,; is the (homogeneous) degree n + 1 part of

SFX, 0 X)) — Fa(@(X0), ..., g(Xn))
antl — ’

The above has coefficients in K and has no terms of degree less than n + 1. We need
only verify that its coefficients lie in Og. Since f(X) = X9 = g(X) (mod 7) and
for any a € Og we have a? = a (mod 7), it follows that

F(g(X1), ..., g(Xm) = F((XT, ..., X1)

= F,(X1, ..., Xp)!

= f(Fu(X1,..., X)) (mod 7).
Thus 7 divides f(F,(X1, ..., Xn)) — Fu(g(X1), ..., 8(X,)) and the polynomial
hu41 has coefficients in Og. 0

For f € I, let Fr(X, Y) be the unique power series in Ok [[X, Y]] that satisfies

Fr(X,Y)=X+Y (mod deg2),
S(Fp(X,Y)) = Fr(f(X), f(Y)).

(Apply the lemma withm =2, f = gand {(X,Y)=X+7Y.)

Exercise 7.19. Show that F; is a commutative formal group law over O. The for-
mal group laws F for f € F are called the Lubin-Tate formal group laws for 7.
(Hint: To verify the equations in the definition of formal group law, show that each
side satisfies Lemma 5.1 for an appropriately chosen linear form ¢; the uniqueness
part of the lemma then gives that the two sides must be equal. For example, taking
£(X,Y) = X + Y in the lemma shows F;(X,Y) = Fg(Y, X) since both make the
lemma true for this £.) O

Example.

5. Let K = Q,, m = p. Itis elementary to verify that f(X) = (1 + X)” — 1 isin
JF,. Now consider the multiplicative formal group law G,,(X,Y) = X+Y+XY.
We have

Gu(f(X), fY) =X+ DY +DP =1 = f(Gu(X,Y)).
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By uniqueness, it follows that F;(X,Y) = G, (X, Y) in this case.

Lemma 5.2 (Lubin, Tate). Suppose K is a local field, with residue field F ¢ of order
q. Let m be a uniformizer in K, and let f(X), g(X) € F;. Then for any a € Ok
there is a unique power series [a]/4(X) € Ok[[X]] such that

flaly.g(X)) = [alyq(g(X))
[al;e(X)=aX (mod X?).

Proof. Apply Lemma 5.1 withm = 1 and €(X) = aX. O

The power series [a]f,¢(X) will play an important role in what is to come. By the
following corollary, each power series [a],,(X) gives us a homomorphism from F,
to Fy, which will be an isomorphism precisely when its Jacobian a satisfies a € Uk .

Corollary 5.3 (Lubin, Tate). Let K be a local field and let = be a uniformizer in
K. Suppose f(X), g(X), h(X) € F, and a, b € Og. As is customary, we put
[aly = laly.s.

L[] (X) = f(X).

ii. [alfg([bles(X)) = [ab]s4(X) forany a, b € O.
- e p (X)) = X.
A
-

=
=

i
iv
V.

alye(Fg(X,Y)) = Fr(laly(X), [aly(Y)).
a+blrge(X) = Fr([alyq(X), [b]f¢(X)).

Proof. For (i ), note that both F(X) =[] s(X) and F(X) = f(X) are solutions to

f(F(X) = F(f(X))
F(X)=nX (mod X?).

By the uniqueness part of Lemma 5.1, it follows that [7] (X) = f(X). The proofs
of (ii) — (v) are similar, and are left as Exercise 7.20. |

As can be seen from the above corollary, the power series [a]s(X) allows us to
define a formal Og-module structure when combined with the formal group law
F;. In turn, this allows us to define an actual Ok -module as follows.

For x, y € Pg, the series F;(x, y) converges to an element of Pg, which we
denote x +, y. It is straightforward to check that Pg, is an abelian group under this
operation. Similarly, for a € Ok and x € Pg, the series [a](x) converges to an
element of Py, which we denote a - ;X Using this as our “scalar multiplication,”
the corollary implies that Py, becomes an Og-module, which we denote P;.

Care must be taken to remember that the operations on Py are not the usual ones
inherited from the field §2 (hence the alternate notation for the same set). Py is
called the Lubin-Tate module for 7.

The following exercise shows that, up to isomorphism, Py is independent of
choice of f € .

Exercise 7.21. Let f, g € F;. Show that the Ox-modules P, and P, are isomorphic.{
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6 Lubin-Tate Extensions

In this section, we see how the formal group laws of Lubin and Tate lead to
totally ramified extensions of the local field K. To begin, we need a lemma about
polynomials.

Lemma 6.1. Let k be any field, and let g(X) = X" + a1 XV gy € k[X]
where either char k = 0 or n is prime to char k. Then we may find a positive integer
r and a polynomial g(X) € k[X] of degree less than r, such that the polynomial
h(X) = X"g(X) + g(X) has only simple zeros.

Proof. If k has infinite cardinality, then take r = 1, 8(X) = ag € k; this yields
d‘g((Xg(X) + ap) = g(X) + Xg'(X), which is prime to Xg(X) + ao for suitable ay.
Thus we may suppose that k has finite cardinality, say #k = ¢. Note if g is linear,
there is nothing to prove, so we assume n > 1. Since n is prime to char k, we know
thatdegg’ =n—1> 0.Letay, ..., a,_ be the zeros of g'(X) and let k¥’ be a finite
extension of k(y, ..., «,—1), chosen so that #&' = ¢* > deg g. Take r = g**! and
8(X)=X9(X)+ 1 to get

s+1

h(X) =X g(X)—X1g(X)+1
R(X)= (X7 — X0)g'(X) (note char k divides ).

If B is a zero of h'(X), then it is a zero of X4 — X4 or of £'(X). In the first case,
we have 4(8) = 1 # 0. In the second, we have 8 € k’, so 7 = B, and again
h(B)=1#0. O

We shall use the polynomials that give rise to Lubin-Tate formal group laws to
construct certain totally ramified abelian extensions of a local field K. Let g = #[Fg
and, as before, let ’J",,K denote the set of all power series f(X) € Ok[[X]] such that
f(X) = m,X (mod X?) and f(X) = X? (mod 7,). Suppose f(X) € F_isa
monic polynomial of degree g. Then

f(X)= X7+ 7t,((czq,1Xq*1 +o X))+ X, where a; € Ok.
For a positive integer m, define recursively
fPX) = fOO, FPX) = FFEO). ... fX) = f(F"PX).
By (i) and (ii ) of Corollary 5.3, we have
fX) =[x pX) and  fOUX) = [2"](X0).

It follows that if A € Py, (the Lubin-Tate module), then

(m) "
FOX) = a2
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Exercise 7.22. Let " (X) be as above.

a. Show, form > 2, that f""~D(X)| f"™(X).

b. Prove it is possible to find Ay, Ay, ... € §2 so that A is a zero of f(X), and for
eachm > 2, A,, is a zero of £ (X) but not a zero of f""~D(X). Moreover, show
that the A,, can be chosen so that f(A,,) = Ap—; form > 2.

F00

FO=DX)
and has constant term equal to 7, . O

c. Show, form > 2, that the polynomial is Eisenstein of degree (¢ —1)g™ !

Let Ay, A2, ... be as in part (b) of Exercise 7.22, and put L,, = K(A,,). By part
(c) of Exercise 7.22, the extension L,, /K is totally ramified of degree (¢ — 1)g™ !,
the element A, is a uniformizer in L,,, and 7, is a norm from L,, (for any m). Since

7, Am = 0, we may view the element A,, as a 7r"-torsion point in the Lubin-Tate
module Py. It is “primitive” since 7" ~" - A, # 0.

Example.

6. We shall find L,, for K = Q,, m, = p, and f(X) = (1 + X)? — 1. Recall
this choice of f(X) qualifies as an element of F,. A simple computation yields

mn

F(X) =1+ X)” — 1, so we obtain

M) a4+x)7" -1
TR OO Sl
= (me(l + X)s

where @, is the cyclotomic polynomial. Hence we find A,, = ¢,» — 1 and
L, = Q,(¢pm), where {,n is a primitive p™-th root of unity in £2. If we choose
the primitive p™-th roots of unity coherently, we also get f(1,) = A,—; for
m > 2.

Proposition 6.2. Let K be a local field and fix a polynomial f(X) € F; . For
m € Zy, let L, be the field associated to f(X) as discussed above. Then

Ni, kUL, S Ug.

Proof. A typical element of U, has the form eu, where ¢ is a (¢ — 1) root of unity
and u € U; . Observe that

m—1

NL,,,/K(S) = gla=Da =1

so we must show Ny, x (1) € Uy forany u € U; . This is clear if m = 1. Assume
m>2. Nowuel gm may be written

u:1—|—a1)\m+a2)\fn+-~-+ankﬁl+w
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where a; € Ok, n = m(qg — 1)¢g"~! — 1, and the valuation of w satisfies v(w) >

v(ry). Note this choice of n gives (n, char Fg) = 1. Let
dX)=X"+a, X" '+ +a,

and let g(X) € Fg[X] be the image of d(X) modulo Pk. Apply Lemma 6.1 with
k = Fg, and let » and g(X) be as the lemma provides. Now lift g(X) to g(X) €
Ok[X], where deg § = deg g, and let

h(X) = X"d(X) + &(X).

Then the image of #(X) in Fg[X] has no multiple zeros and the zeros of h(X) are
in Ky;.

As can be seen from the proof of Lemma 6.1, we may choose the constant term
of g(X) so that the constant term of #(X) is 1. Let «y, . . ., oi; be the zeros of h(X).
Since the constant term of 2(X) is 1, we have [ [ «; = £1, and the zeros of h(X) are
all in Uk,,. Also,

(1 _051)‘-171)"'(1 _at)‘m): 1+al)‘-m ++an)\nm+w/
where v(w’) > v(r"). We have

u=1+aky+-+ah, +w
= —airy) -1 —ar,)+w—w
= —airy) (1 —ohn)1+y)

where y = ﬂ :_wk . Note we have v(y) > v(r!") and hence N, /x (1 +y) € Ug.
It remains to show NLm/K(]_[,-(l — aikm)) € Uy, which will follow if we show
NLmKu,‘/Km(]_[i(l — aikm)) € Uk, . because Uy N Ux = Uy and the following
diagram commutes (since Ky;/K is unramified and L,,/K is totally ramified).

incl.
L, —— LK

NLm/Kl lNLmK“r/Km-

K incl. Kur
. . . . . (m) . .
Because K,/K is unramified, the Eisenstein polynomial f-fm,,()f;) remains irre-
ducible over Ky, so it is the minimum polynomial of A, over K,. Hence for
a € Uk, we have

Fo@
I

NLmKur/Kur(l - C()\.m) = a(q_])qm—l
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Thus
R AL )
NL/nyur/Kur(l:[(l — Oéi)nm)) = (Uai)(q g U f(m_l)(alfl)
(m)(py—1
=11 f{ 1()‘;‘1' )1) »  (since [;o; =+l andm > 2)
. m- o;
=1+ l—li f(m)(afl) - l_[i f(m_l)(afl)
fone

Now a; ! is a unit, so £"~V(a; ') is also a unit. Thus we need only show
t t
[Tr™@H=]]r" @ "H=0 (modz™).

i=1 i=1

The Frobenius automorphism ¢ permutes the «; (they are the zeros of (X)), so ¢
also permutes the al._l. Modulo 7, the map ¢ is just x > x9; also (since f € I )

the map x — f(x) mod =, is just x — x?. This means f(ozi’l) = a;l (mod )
for some j. In general, if a, b € Ok, satisfy a = b mod 7, forr € Z, then

a?=b? (mod 7/
and

n.a' =mw.b' (mod n;“) foranys=1,...,qg — 1.
Hence

fl@)= f(b) (mod 7).

Since f(; ') = ;' (mod 7,), we may apply this result with a = f(; "), b =

aj_l and r = 1. A simple induction argument yields

F™@ " = " V) (mod ™).

But then

t t

l_[ feh = l_[ f7 V@) (mod 7l

i=1 j=1

as needed. O



6 Lubin-Tate Extensions 205

Exercise 7.23. Let f, g € F; _be polynomials of degree g and suppose 1 € Pg is
a zero of g (X) but not a zero of g™~ D(X). Leta € Ok. Show

a. lalf.g(1) is a zero of f(’”)(X),
b. if u € Ux, then [u] (1) is not a zero of "~ D(X). .

By the exercise above, if A, is a zero of f"(X) but not a zero of f"~D(X),
then [u]7(A,) is also a zero of £ (X) but not a zero of f™~D(X). Observe that
[ul (M) € K(Ay) = L, because [u] r(X) € Ok[[X]] and L,, is complete. We want
to prove that the extension L,, /K is Galois; we do this by showing that varying u in
[1] (A,,) yields all the conjugates of A,,.

Lemma 6.3. Let f(X) € Og[[X]], and suppose L/K is a finite extension. If there
is some A € L with vy (A) > 0 and f(A) = 0, then there is a power series h(X) €
Ok[[X]] with f(X) = (X — M)h(X).

Proof. We work with polynomials: For any n there is a polynomial /,(X) € Og[X],
and some constant b, € O such that f(X) = (X — Mh,(X) + b, (mod X").
Since f(A) = 0, we have b, = 0 (mod n;(’), so v (b,) = nvp(A) > 0. This says

lim vz (b,) = co. We have
n—0o0

(X = Dhp1(X) + bugr = (X — My (X) + by (mod X™)
buy1 =b, (mod ")

so that
(X = M(hp1(X) = hy (X)) =0 (mod (X", 1")).

Say hy1(X)—h,(X) = an X" +ay_ X" '+ -+a; X +ao. Then v (agh) > nvp(A),

and vy (a;A —a;—1) = nvp(X), fori = 1,...n — 1. But this implies vy (ap) > (n —

Dvr(X), ve(ar) = (n—2)vp(A), ..., vr(a,—1) > 0. Hence we conclude lim #,(X)
n—0o0

exists; put 2(X) = lim h,(X). Then for any n,
n—0o0

F(X)=(X — V(X)) (mod (X", A")).

But this is only possible if f(X) = (X — A)h(X). |

Lemma 6.4. Suppose u, u’" € Uk and let f(X) € F_ be a polynomial of degree g.
If [ul () =[]y (Xp) then uldy = u' Uy

Proof. First note that [u]s([u']7(X)) = [uu'];(X). Because of this, it suffices to
show that if [u]f(A,,) = Ay, thenu € U . Leto : L,, — $2 be any K -embedding.
Then o(1,,) is a zero of [u]s(X) — X. Also, since [u]s(f(X)) = f([ulr(X)), we
have that f(1,,) is a zero of [u] ;(X) — X. Applying this idea repeatedly, we see that
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FO(Ay) is a zero of [u] /(X) — X for any r < m. But then all the zeros of ™ (X)
are zeros of [u] ;(X) — X. Now use the previous lemma to write

[ulp(X) — X = f"(X)h(X)

for some i(X) € Ok[[X]]. Note that f"(X) = 7" X (mod X?), and compare
coefficients in the two sides of the above equation. It follows that u — 1 = hoﬂ,’?,
where A is the constant term of 2(X). Since the coefficients of 2(X) lie in Ok, we
have u € Uy as desired. O

Theorem 6.5. Let K be a local field and let L,, be as above, for some polynomial
f(X) € Iy of degree q. Then L,, /K is Galois, and Gal (L, /K) = Ux /U;g"

Proof. For any u € Uk, we know that [u]s(%,) is a conjugate of A, in L,.

Thus, Lemma 6.4 implies that distinct cosets in Uy / ur correspond to distinct

conjugates of A, in L,. But #(Z/{K /Z/{?) = (g — g™ ' =[L, : K]. It fol-
lows that all the conjugates of A,, are in L,,, and hence that L, /K is Galois.
Now map Gal(L,/K) — MK/M;? by 0 — uldy, where u € Uy satisfies

[ulf(A) = o(Ap). It is straightforward to show that this yields a well-defined
isomorphism of groups. O

We have succeeded in showing that varying u in [u];(A,,) yields all the conju-
gates of A,,. Considering a certain submodule of the Lubin- Tate module Py leads

to a similar result. To discuss this, we study the 7" -torsion points of Py a bit more.
For a degree-g polynomial f € F ., put

Wim =ker[z]y ={r € Py - A =0}

Observe that Wy, is an Og-submodule of Py, and because Wy, is annihilated by
7' Ok, it also can be regarded as an Ok / n;(nOK-module. We have

ObcWrpCcWppC-o-C Wy Cove
Putting f@(X) = X, (so that Wy = {0}), we have (form > 1)
#W i = #Wpm1 + (g — Dg" ",
from which it follows that #W,,, = ¢™.
Now fix A,, € Wg,, —Wy,—1, and define 6 : Ox — Wy, by é(a) =a *; Am- The

map 8 is easily seen to be O-linear. To find ker §, note that any non-zero a € Ok
may be written a = nl’(u for some u € Uk and some ¢t € N. If §(a) = 0, then
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0=a-, knm=lals(Am)
= [7luly(Am)
= [ 1 (] Oom))
= fOUulf o))

Since u € Uy, we know that [u] r(,,) is a conjugate of A,,, so it is a zero of f"™(X)
and not a zero of f"~D(X). Since fO([ul;(An)) = 0, we must have ¢ > m. We
have shown: If ¢ € ker§, then a € n,’(" Ok. The converse is also clearly true. Hence
kerd = 77" Ok.

By the above argument, § gives rise to an injective Ok -linear map

. 0
0 K/?T;(nOK — Wen.

This map is actually an isomorphism of Ok -modules, since the cardinalities agree:
(@] —gm _
#( K/rr;”OK) =" =H#W .
Now consider the map Ok /JT’"(’)K —> Endop, (Wy,,) given by a +— [a]y.
K

12

By Corollary 5.3, this is a ring homomorphism. Since Endok(oK / iTmOK)
K

Ok / ﬂ,'("OK as (finite) rings, we may use the Og-linear isomorphism & defined

above to conclude
Ok /7'[:(”01( = Endo, (Wy,m)
as rings. Comparing the units in these rings, we also get
Ux [y = Auto, (W)

via the map u > [u];.
Exercise 7.24. Let f, g € J;_be polynomials of degree g.

a. Show that Wy, and W, ,, are isomorphic as Og-modules.

b. Show that Wy, is a free Ok / 7" (O “module of rank 1. O
K

We know that L,,/K is Galois; we now discover it is also independent of the
choice of f € ¥ .

Corollary 6.6. The extensions L,, /K depend only on the choice of uniformizer ;
they do not depend on the choice of polynomial f(X) € F_. The field L,, is called

the m"™ Lubin-Tate extension of K associated to the uniformizer 7, .
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Proof. Suppose

f(X) = Xq +7r,((aq,1Xq_1 + ... +a2X2)+7TKX
gX) =X+ (by 1 XU+ X))+ 7 X,

where a;, b; € Og. By Lemma 5.2, there is a unique power series [1]7,(X) €
OkI[[X]], such that [1]7,(X) = X (mod X?)and f([1],(X)) = [1]7,(g(X)). Let
m be a zero of g™ (X) that is not a zero of g™ ~V(X). By Exercise 7.23, [1] 7 ¢(ttm)
is a zero of £ (X) and is not a zero of f™~Y(X). Hence L,, = K([1]17,¢(ttm))-
Since [1]7,(ttm) € K(ftm), we must have L,, € K(u,). Since they have equal
degrees over K, it follows that L, = K(iy,). a

Corollary 6.7. Let L,, be the m™ Lubin-Tate extension of a local field K. Then
NLm/KZ/{Lm = Z/{?

Proof. We have shown Ny, ,xU;, < UF. Also, since L, /K is totally ramified, we
have Gal(L,,/K) = UK/NLM/KULM via the map éL/,,/K' The result is then clear
from Theorem 6.5. O

We have reached the point where it is possible to study the extension K,,/K,
where K is a local field (so Fg is finite).

Theorem 6.8. Let K be a loAcal field. There are isomorphisms Gal (K /K )y = Uk
and Gal (K ,/K) = Uk x Z.

Proof. We have shown that if L/K is a finite abelian extension, then there is an
isomorphism 67 : Ux / Nyxly — Gal (L/K)am- Now we take the limit over
all finite abelian extensions L to obtain an isomorphism

Ok : liﬂuK/NL/KUL =5 Gal (Kap/K)ra.

For any such L, the group U, is compact and the map N,k is continuous. It
follows that Ny ,xU; is a compact subgroup in k. But it also has finite index in
Uk, since Gal (L/K )y is finite. Thus Ny xU; is both open and closed in Uk . In
particular, there is some m € Z, such that Uy C Np,xU;. We have shown that
Uy = N, kU, where L, is the m™ Lubin-Tate extension of K. Thus, we must
have

This allows us to consider 6k, /x as an isomorphism /g —> Gal (Ka/ K )ram-
For the second assertion, it suffices to recall that
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Gal (Kup/K) = Gal (Kap/ K )ram x Z

by Exercise 7.5. o

Corollary 6.9. Let K be a local field with uniformizer r, . Put L, = UL, where
the L,, are the Lubin-Tate extensions of K associated to the uniformizer . Then
Kab = erK Kur~

Proof. Since LﬂK Ky:/K is abelian, we have L,,K Ky € K. For the reverse con-
tainment, let o : Gal (K,,/K) — Gal (LﬂK Ky:/K) be the natural homomorphism
and consider the following commutative diagram with exact rows.

1 ——  Gal(Kup/K)mm —— Gal(Kupy/K) — Gal(Ky/K) —— 1

1 —— Gal (L, Kur/K)ram— Gal (Ly Ky /K) —— Gal (Ky/K) —— 1

(Here o’ is the homomorphism induced by «.) Taking projective limits as in the
theorem, we also have homomorphisms

Okw/k - Ux —> Gal (Kab/K)ram
QL,.,K Ku/K - MK —> Gal (LT[K Kur/K)ram

where in the first case the limit is over all the finite abelian extensions L /K, and in
the second case the limit is over finite extensions L/K, with L C L”K K. By the
theorem, Ok, /x is an isomorphism. Similarly 0L, Ku/K is an isomorphism. More-
over, we have

/ —
o o bk = 0L, Ku/K

so that o, (and hence «), is also an isomorphism. |

Example.

7. Let K = Q,. Using 7 = p and f(X) = (X + 1)’ — 1, we have computed
Am = ¢pm—1,s0that L, = Q,(¢,»). The extension L, /Q, will then be obtained
by adjoining all p-power roots of unity to Q,,. The maximal unramified extension
of Q, can be obtained by adjoining all the roots of unity whose orders are prime
to p. By Corollary 6.9, we now have that the maximal abelian extension of Q,
is Qp(1oo), Where o is the set of all roots of unity in £2.

Exercise 7.25. Give K* = Uk x Z the topology of open subgroups H of finite
index (where H is open with respect to the topology of the valuation vg ). Show that
the completion of K in this topology is Uk X Z. O
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7 The Local Artin Map

Observe that Exercise 7.25 gives us an embedding K * — Uk X 7. Also, since we
have Ug x 7 = Gal (K,,/K), we have an embedding K * — Gal (K,,/K). Our
aim, however, is to find a canonical isomorphism — we want to be able to choose
the isomorphism Ug x 7 = Gal (Kab/K) so that for any finite abelian extension
L/K the kernel of the map given by the composition

nat.

K525 e x 7 =5 Gal (K /K) 2% Gal (L/K)
will be Ny x L*. Thus, if we succeed in finding such an isomorphism, we shall have
obtained a local analogue of Artin Reciprocity.
Lemma 7.1. If L/K is a finite abelian extension, then [K ™ : N,k L*] = [L : K].

Proof. Let K; /K denote the maximal unramified subextension of L/K. Then The-
orem 3.4 implies that [L : K, ] = #(Z/{K / Ny, KUL)‘ Consider the following com-
mutative diagram with exact rows,

1 U Lx .7 1
NL/KVL NL/KJV “J,
1 Ug K*x 2,7 1

where p : Z — 7 is multiplication by [K; : K. It follows that [K*: Ny /g L*] =
[Kp : KUk : NpyxUrl =1Kp : KI[L: K ]=[L:K]. 0

Now suppose L/K is a finite totally ramified abelian extension, and choose the
uniformizer r, to be a norm from L. Let K,/ K be an unramified extension of K of
degree t. We want to use the map 0 /x that was defined previously for finite totally
ramified abelian extensions of K to construct a map for LK. We let p;, Ko/K -
K> — Gal (LK(;)/K) be the unique homomorphism that satisfies

PLg kW) =0 k™) foru € Uy
PLK K () =@ Frobenius in Gal (LK ;y/L).

Note that Gal (L/K)am = Gal(L/K) so that 67k is onto Gal (L/K) by Proposi-
tion 3.2. Since we also have Gal(L/K) = Gal (LK«)/K)), the above definition
of prk,/k(u) for u € Uk should be interpreted by identifying Gal (L/K) and
Gal (LK (;)/K1y). Since LK(;y/L is finite and unramified, we have Gal (LK)/L) =
(@), so the map prk,/k is surjective. To be useful, we want the map po.k,,/x tO
depend only on the extension L K(;)/K and not on the totally ramified subextension
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L/K used to define it. Our first task is to show that if E is another finite totally
ramified abelian extension of K such that EK) = LK, then the maps ok, /x
and pgk,,/k agree.

Lemma 7.2. Let K(;)/ K be a finite unramified extension of K of degree ¢. Let L/K
and E /K be finite totally ramified abelian extensions of K such that LK) = EK).
Consider the composition

PLI 4y /K
_—

K* Gal (LK (;)/K) —=— Gal (E/K).

The kernel of this composition is Ng/x E*.

Proof. By the previous lemma it suffices to prove that Ng,x E* is contained in the
kernel. Since we already know that N, g UE is contained in the kernel, it remains to
show that N, (r,) is in the kernel, where 7, is a uniformizer in E.

Note that prk,/x(Ux) = Gal(LK)/K)wam, so there is some u € Uy such
that (o g, k(1) ) has fixed field E. Let 7, be a uniformizer in L, chosen so that
Npx(mr,) = m, and let 7, = em,. We leave it as Exercise 7.26 to show that
Nirk, k(&) € Ug. By our choice of u, we have (pLk,,/x () ¢)(,) = 7, s0

(Or/x ™)) _ (PLK, K W)(T,)

T[L ]TL
= (P () ¢) () since ¢(,) = 7,
nL
(pLK(,)/K(u) <P)(5_1) . _1
= ot sincee”'m, =,
. (PLi k@) @) (™) @e™)
B p(e7) !
-1
E g"(;l V(e R,

We have shown that i (6,/x(«~")) and (¢ — 1)(5‘1V(iur/kur)) are equal. From the
diagram (), it follows that Ny, /x,,(¢) € u Np xUy . But then

PLkw/K(NE/k (7T,)) = pLk k(W) = pLK, k(W) Q.

Since this fixes the elements of E, the result follows. a

Lemma 7.2 tells us that the definition of o7k, x does not depend on the choice of
finite totally ramified abelian extension L /K . For, if E /K is another such extension,
with EK(;y = LK), then our definition of pgk,,x would require
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pEK(:)/K(u) =9E/K(M71) foru GZ/{K
PEK/K(T) =@ Frobenius in Gal (EK )/ E),

where n; is a uniformizer in K that is a norm from E.

Exercise 7.27. Use Lemma 7.2 to verify that p.k,,x and pgg, /k are equal on
K*. O

With what we have done, we are able to define a local reciprocity homomor-
phism, which plays a role comparable to the Artin map in the global class field
theory. (It is called the local Artin map or the local norm residue map, denoted
pk.) To do so, we choose a uniformizer 7w, of K, and use the union L,,K of the
Lubin-Tate extensions of K, recalling that K,, = L,,K Ky, and we may identify
Gal (K /Ky) = Gal (L”K /K). Define px : K* —> Gal (K, /K) to be the unique
homomorphism that satisfies

pr() =0k, k") € Gal (Lr /K)  foru €U
pr(m) =9 Frobenius in Gal (Kab/Lx, ).

Since w, € Ni,/xL,, for all the Lubin-Tate extensions L,,/K, it follows that
pk agrees with pr, x,/x. Thus the definition of pg is independent of choice of

uniformizer 7, of K by Lemma 7.2. Recall Ug x 7 = Gal (Ka/K). By Exer-
cise 7.28 below, the homomorphism pk is the restriction to K of an isomorphism
Uk x 7. —> Gal (Kyp/K).

Exercise 7.28. Give Gal (K,,/K) the Krull topology.

a. Is px continuous? Prove that your answer is correct.
b. Is the image px (K *) dense in Gal (K,,/K)? Prove that your answer is correct.
c. Show pg can be extended to an isomorphism Ux X 7, —> Gal (Kap/K). O

Lemma 7.3. Let L/K be a finite abelian extension and let K; be the maximal
unramified subextension of L/ K, where [K; : K] = n. Then the following diagram
commutes.

Nip/x

K} K>

o |

Gal(L/KL) —2& Gal(L/K)

Proof. Choose a totally ramified abelian extension L'/K and an associated positive
integer ¢ as in the Decomposition Theorem. Then L'K(,y = LK), where as usual
K is the unramified extension of K of degree t. We also have L = L, and
K; € K¢y sothatn <t.
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K

LK(t L K(t

VRN

K

\/
\

Nk, /Kx

K} K>

] |

Gal ('K /K) —2% Gal (L'K4)/K)

It suffices to show that the following diagram commutes.

Since any element of K can be expressed as a product of an element of Uk, times a
power of some fixed uniformizer, we shall check the commutativity of this diagram
by first considering where the mappings send a uniformizer and then where they
send units.

Note that if ¢ € Gal (L'K(;y/L’) is the Frobenius automorphism, then ¢" is the
Frobenius automorphism in Gal (L' K(,/L'K ). Choose a uniformizer 7, so that it
is a norm from L’, (note m, is a uniformizer in K; too); then pgx(Nk, k(7)) =
pK(nl’(’) = ¢" = pk, (7, ). Hence it remains to check commutativity on elements of

K-

We want to show for u € Uk, , that pg, (u) = px(Ng,/x (). Choose v € Z/{L, SO
that N; iR (v) = u. (The unit v exists because the extension is unramified, so 'the
norm is sur]ectlve on units.) Recall that in Gal (L'K; /K ) = Gal(L'K(,/K(;)), the
element pg, (1) is characterized by

pr, (W)(r,,) V(L/ /Km) = V(L/ /Kur)
@ ( )

r

where 77, is any uniformizer in L’. But then

n—1
PO jr gy v P0) @)

L/ Ku).
T, () ¢*(v) @'V o o)
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Now u - (u) - 9" '(u) = Nk, /x(u), so if we putw = v - ¢(v) - -- 9"~ (v), then
NL;,/km(w) = Nk, /k(u), and we have

Pk, (u)(,,)

V(I,\‘:Jr/kur) = v V(z;r/kur)
plw

v (w)
Now consider pk(x) € Gal(L'K)/K()), where x € Ug. Choose y € UL;, so that
NL;,‘/i(m(y) = x. Then pg(x) is characterized by

P (xX)(,,)

V(i‘:]r/f(m') = y V(Iz;r/f(ur)
(4%

»

)%

Putting everything together, we must have px, (u) = pg(Nk, /x (1)), (an element of
Gal (L/K(t)/K(,)) - Gal(L/K(,)/KL)). O

The following theorem amounts to a local version of Artin Reciprocity.

Theorem 7.4. Let L/K be a finite abelian extension. Consider the composition

restr,

K* 25 Gal (Kag/K) =25 Gal(L/K).

The kernel of this composition is Ny jx L™.

Proof. We have shown [K™: Ny ,xL*] = [L : K] so it suffices to show Ny g L*
is contained in the kernel. Suppose K is the maximal unramified subextension
of L/K, where [K; : K] = n. Consider p;k,. Since L/K, is totally ramified,
ker,oL/KL = NL/KLLX by Lemma 7.2. Also NL/KLX = NKL/K(NL/KLLX)- By
commutativity of the diagram in the previous lemma, the theorem follows. O

Corollary 7.5. The open subgroups of finite index in K> are precisely the sub-
groups of the form Ny ,x L™, for L/K finite abelian. Indeed, any open subgroup of
finite index in K * is the kernel of the composition

K 25 Gal (Ky/K) = Gal (L/K)

for some finite abelian extension L/K.
Proof. Exercise 7.29. O

Lubin and Tate have given an explicit construction of the reciprocity homomor-
phism pg using formal groups. We discuss this construction next. To begin, we
need a technical lemma about formal power series. It provides a generalization of
Lemma 5.1.

Lemma 7.6. Let 7 and 7" be uniformizers in a local field K, say with 7" = um,
where u € Ug. Let ¢ = #F ¢ and suppose f(X), g(X) are polynomials of degree g
such that f(X) € F,; and g(X) € F,,» We use ¢ to denote the Frobenius automor-
phism in Gal (K,;/K) and also its extension to K.
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i. There is a power series ¥(X) € Okm[[X]] such that #%(X) = ?([u] ;(X)), and
9(X) = X (mod X?) for some ¢ € Uk, - (Here 9¥(X) is the power series
obtained by applying ¢ to the coefficients of ¥(X).)

ii. There is a power series ©#'(X) that satisfies (i ), and also satisfies

9'(lalf (X)) = [al,(¥'(X))  foranya € O.

Proof. i. Choose ¢ € Uy sothatu = @(e)e™!, (possible since ¢ — 1 is surjective
onUg, by Lemma 3.1). Put 9(X) = ¢X. We have

(X)) = p(e)X = euX = »i([ul (X)) (mod X?).
Continuing recursively, suppose we have constructed o,,(X) satisfying

Ou(X)=eX (mod X?),
95(X) = O([ul (X)) (mod X™*).

It follows that there is some ¢ € O such that
(X)) — O([ul (X)) = —cX™ ' (mod X" ).
By the surjectivity of ¢ — 1 on O, there is b € O, such that
@(b) — b = (cu) " Ve = p(e) " e,
Thus
e(be™ ) = (b + () " Ve)p(e)" ™! = bo(e)" ! +c.
Now put
Oyt (X) = 0 (X) + bem™ T XL
Then ¥,,41(X) = 9,,(X) = ¢X (mod X?) and

85100 = D ([l ()
= (9500 + (@)™ + X" ) = (D([u];00) + bip(e)™ X )
= 95(X) — D] (X)) + X!
=0 (mod X"*?).

The desired series is then ¥(X) = lim 9,,(X).
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ii. Consider the power series ©(X) from (i ). There is a power series in O &, X1,
which we shall denote 9~ (X), such that (9 ~' (X)) = X = o' (#(X)). Put

h(X) = (@~ (X)).
Applying (i) and noting that f(X) = [7]7(X), we get
h(X) = 0 ([ul,(f @ (X)) = O (ul 7], (X)) = 271, (X))

We leave it as Exercise 7.30 to show that 2¢(X) = h(X) so that 2(X) has coef-
ficients in Ok. If we examine the series #(X) more closely, we find

hX)=g@E)me ' X =usne ' X =unX =7'X (mod X?),
h(X) = 9%(@ 7 (X)) = 99(@~H(XN)) = X?  (mod 7).

This means (by Lemma 5.2) there is a power series [1], ,(X) € Og[[X]] that
satisfies [1];,,(X) = X (mod X?) and g([11g,n(X)) = [1]g,n(h(X)). From this
we can define the series

?'(X) = [0 (3 (X))

Because the coefficients of [1], 5(X) are in Ok, it follows that ¢'(X) satisfies (i ).
It remains to show &'([a] (X)) = [al,(¥'(X)) for any a € Ok. Equivalently, we
shall show ﬁ’([a]f((l‘/”)*l(X))) = [aly(X). Let r(X) = ﬂ/([a]f((ﬂ/)*l(X))).
Then

g(r(X)) = g(@'([al s (@)~ (X))

= g([1gn@[al; @ ([110,g(X)))))

= [gn(h@(al ;@ ([110,g(X)))))
Hen@ (71,07 @ (a0 ([1ns (X))
Hen (' 1r(al ;@ ([1a,g (X))
Hen @ (al ('@ ([ 1, (X))))))
Hen((laly @~ (h([114,4(X))))
[0 ([al; (@ ([11a.(g(X)))))
= 9'(lal/((®) " (g(X))))
=r(g(X)).

[
[
[
[

But this says that the power series r(X) satisfies the definition of [a]g(X). Since
[alg(X) is the unique power series that behaves this way, we conclude r(X) =
[alg(X) as needed. O
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Exercise 7.31. Let w and 7’ be uniformizers in a local field K, and suppose
f(X), g(X) are polynomials of degree ¢, where ¢ = #Fg, such that f(X) € F,
and g(X) € F,.. What does the result of Lemma 7.6 tell us about the relationship
between the formal group laws F(X, Y) and F,(X, Y)? O

Let K be alocal field and fix the uniformizer # = 7, . Recall the union L of the
Lubin-Tate extensions L,,/K satisfies L, K,y = K,p. Let A, be as in Exercise 7.22
(so L,, = K(\y)). Let f(X) € F,. We have seen, for u € U, that there is an
automorphism o, € Gal(L;/K) such that o,(A,) = [u]s(A,) for any m, (see
Theorem 6.5).

With what we have done, we are able to define explicitly a homomorphism
Ve + K* — Gal(L,K,/K), which we shall show is just the reciprocity homo-
morphism pg. To determine y, completely, we need only give the image of w and
of an arbitrary element u of Ux. We put

Va(U) = 0y in Gal (L; Ky/Ky) = Gal (L /K),
V() =0 Frobenius in Gal (L, Ky/Ly).

Theorem 7.7. The homomorphism y, defined above does not depend on the choice
of uniformizer . Moreover, vy is the local Artin map, i.e., Yz = pk.

Proof. Let w and 7’ be uniformizers in K, say n’ = um. Note that y, (') and
¥ (') induce the Frobenius automorphism on K., while on L./, by definition
¥ (7') is the identity. Hence to deduce that y, (n") = y,/(1t’), we want to show that
v () is the identity on L. To get this, it suffices to show that y, (7w')(A},) = A/, for
all m. (Here A, generates L, = K(A,,).) Recall, from Exercise 7.22, the element

(m)
© Where g(X) € F, is a monic polynomial of degree g.

£
£
q in ¥, so that L, = K(A,). Consider a power series 9'(X) € (’),gur as in (ii ) of
§"(X)
g )’
¥ (Am) = A,,. Let ¢ denote the Frobenius automorphism in Gal (L, Ky/Ly). Then

ros 8
A, 1s a zero of D (X)’

Now let A,, be a zero of where f(X) is a monic polynomial of degree

the previous lemma. It follows that ©'(%,,) is a zero of Thus we may put

Ya (1)) = Y () 90 ()
= e (W)@ ([l f (A1)
= 0'([u] (Y () (X))
= ' ([ul ([~ 1 Oom)))
=" (Am)
=2

Finally, we note that y, and px agree, since at w each is the Frobenius automor-
phism on K and the identity on L. O
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Exercise 7.32. Let K be a local field, and let L,, be the m™ Lubin-Tate extension of
K. Factora € K* asa = un,, where u € Uk and t € Z. Show thata € ker pr,,/x
if and only if u~" € U}. O

Exercise 7.32 tells us ker p7, /x = () x Uy, a subgroup of K*. But we know
that ker p;,/x = Ni,/x L,, by Theorem 7.4. Hence L,, is the class field over K of
the group (7, ) x Uy.

Exercise 7.33. Suppose E/K is unramified, and let ¢ € K*. Find, as explicitly as
possible, pg/k(a). O
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