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Preface

Matrix equations, such as Lyapunov, Sylvester, Riccati and other linear and non-
linear equations, are widely used tools in the general, stability and control theory
for operator equations as well as in many application areas (systems theory, sig-
nal processing, and others). There is a huge literature on this topic that covers
existence and uniqueness of solutions, numerical methods and also, more recently,
perturbation analysis for special classes of such equations. Although perturbation
theory is not very popular among scientists and engineers, it is essential for un-
derstanding the problems and estimating the accuracy of the computed results.
Indeed, the mathematical models that are used to solve application problems are
typically subject to modelling uncertainties (due to simplifications), and measure-
ment errors in the data. Furthermore, the solution of the problem is usually carried
out with numerical methods that may include approximation errors due to trun-
cation of infinite series and/or discretization of continuous processes. In addition,
the final result is contaminated by rounding errors due to the implementation
of computational algorithms in finite precision arithmetic. The influence of the
above uncertainties and errors on the computed result depends on the sensitivity
of the problem. Thus, without a detailed perturbation analysis, it is not possible
to assess the quality of the computed results.

In the last years, in a sequence of research papers, a general framework has
been developed by the authors of this monograph in order to perform perturbation
analysis of general matrix equations in a systematic way and it is the main goal
of this monograph to present this general scheme in a concise and systematic
way. Then, for several important classes of matrix equations, the framework is
specialized and the perturbation results are presented. In all cases both local first
order and nonlocal perturbation bounds are derived.

The general framework for perturbation analysis of matrix equations was de-
rived in part while the authors were cooperating in the development of numerical
methods in control within the European Community BRITE-EURAM III The-
matic Networks Programme NICONET (contract number BRRT-CT97-5040). We
thank the other partners of this network for many helpful discussions.

We also thank the Departments of Mathematics at the Technical University
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of Chemnitz, Technical University of Berlin, and University of Architecture, Civil
Engineering and Geodesy — Sofia, the Department of Engineering at the Univer-
sity of Leicester, and the Department of Systems and Control at the Technical
University of Sofia for providing excellent facilities to carry out this research. We
also thank the DFG Research Center FZT86 “Mathematics for Key Technologies”
in Berlin for the support in the final stage of preparing of this manuscript.

This book would not be accomplished without the help and understanding of
our wives and children. We cordially thank them all.
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Chapter 1

Introduction

This monograph is devoted to the perturbation analysis of algebraic matrix equa-
tions. In general, the perturbation analysis of a given problem is aimed at esti-
mating the perturbation in the solution as a function of perturbations in the data,
see [65, 206, 134, 135, 127] as well as [119, 16, 60] for a general treatment of this
subject.

There are many reasons to look for perturbation bounds for a given problem
(a perturbation bound is a function whose argument is the perturbation in the
data and which majorizes the perturbation in the solution). Major sources of
perturbations are parametric and structural uncertainties in mathematical models
as well as the effects of finite precision arithmetics in the numerical simulation of
the models.

Mathematical models for the description of the physical behavior of a system
typically contain measurement errors, modelling errors and/or estimated param-
eters. When such models are treated numerically, discretization and rounding
errors are introduced. Furthermore, usually a given model is applicable only for
values of its parameters within certain bounds. For parameter values out of these
bounds the model is not correct and the solution of the corresponding computa-
tional problem may not exist or may have no physical meaning.

Let us consider a real world example which displays these issues.

Example 1.1 To derive a mathematical model that describes the complete traffic
in a realistic rail network [31], many components are needed, which include the
dynamic equations for the movement of the train; the constraints for the move-
ment, like e.g. global velocity constraints; the properties of the real network (e.g.
local velocity constraints, slopes) and the complex interaction between the trains
induced from the signal system and the schedule.

The most simple model for the dynamics of one train is the motion of one
mass point (the center of mass of the vehicle), governed by the second order
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scalar differential equation #(t) = f(z(¢),u(t)) with initial conditions z(ty) = zo,
#(to) = #o. Here z(t) is the position of the point at the moment ¢ and o,
%o are the initial values for the position and the velocity of the point. As the
load of the vehicle changes, the mass is only determined approximately, while
the center of mass may change as well. Also, due to delays and the interaction
between the trains, the determination of the initial or the current position and
velocity is also contaminated with errors. All in all, the model which is a high
dimensional nonlinear control problem, however refined it may be, will contain a
lot of simplifications and uncertainties. If one uses a numerical method to solve
the resulting boundary value problem, then discretization and rounding errors
occur. It is evident for everybody that uses such a train network regularly that
the effect of these measurement and computational errors may be very large even
if the errors themselves are small. ¢

This example demonstrates that it is important to know how much the solution
of a problem may change when the data vary over certain admissible sets. A
simple problem (which may be computationally very difficult!) is the evaluation
of a scalar real continuous function ¢ at a given point a € R, i.e., the computation
of £ = ¢(a). Let da and dx be perturbations in a and z with

dz = p(a + da) — p(a).
Then a perturbation estimate is an inequality of the form
|0z < f(|dal),

where the perturbation bound f is a nonnegative nondecreasing function on certain
interval [0, ¢), ¢ > 0, and satisfies f(0) = 0.

In this monograph we present basic concepts and tools in perturbation theory
for the solution of computational problems in finite dimensional spaces. We, in
particular, derive the following types of perturbation bounds.

— Local (or asymptotic) bounds . These bounds are linear or first order homoge-
neous functions in the data perturbations and are valid theoretically when
the perturbations tend to zero. The coefficients in the linear functions are
known as condition numbers. For particular perturbations, however, asymp-
totic bounds may be misleading: either because of underestimating signifi-
cantly the actual perturbation they claim to estimate, or because the per-
turbed problem does not even have a solution. Asymptotic bounds are often
obtained by using (or estimating) the Fréchet derivatives of certain map-
pings.

— Linear nonlocal bounds. Sometimes it is possible to derive linear bounds which
are nonlocal and thus do not suffer from the disadvantages of the local esti-
mates. In general it may be more difficult to get reasonable linear nonlocal
estimates in comparison with the local ones.



It must be stressed that for some problems asymptotic first order bounds,
both local and nonlocal, do not exist, see Chapter 2.

— Nonlinear nonlocal bounds. If properly defined, these bounds always estimate
the true perturbation from above. Moreover, for the domain where these
bounds are well defined, it is guaranteed that the perturbed problem has a
solution for which the bound is valid. Nonlocal bounds are usually defined
as real analytic functions in subsets of the set of admissible perturbations.
The first order term of the corresponding Taylor series expansion gives an
estimate from above (or is equal) to the local bound. As would be expected,
nonlinear nonlocal bounds are more difficult to derive in comparison with
the local bounds. A disadvantage of nonlinear bounds is that they may
have smaller domain of applicability in comparison with the actual domain
of perturbations for which the solution of the perturbed problem still exists.
Obviously this is the price of having rigorous perturbation results.

Example 1.2 Let us illustrate the different types of bounds with a very simple
but instructive example. Consider the real scalar equation axz = b fora = b = 1.
Let éa, 6b be perturbations in a, b with |da] < a < 1, |6b] < G, and let dx be the
corresponding perturbation in the solution £ = 1. Then we have

_b6b~1xda  6b—da

= |da| < 1.

)
T a+da 1+da’

For small «, 3 the local estimate
|6z| < o + B,

linear in ¢, B, is often used in practice, since it guarantees an accuracy of order
O(g?), ¢ — 0, where £ = max{a, 5}. The bound «a + 3 may severely be violated
for da approaching —1.

A nonlocal nonlinear estimate is

a+f

loz| <
11—«

, a < 1.

This estimate is rigorous but it may be very pessimistic for da close to 1.
For o < 0.5 we may also use the nonlocal linear estimate

[0z| < 2(a+ B), a <0.5.

This estimate is rigorous but may be pessimistic for da close to 0.5. Note that the
above nonlocal estimates “work” better for da < 0.

Finally, there is an interesting phenomenon. For da = §b we have éz = 0 and
all estimates are pessimistic.

In Figure 1.1 we give the local linear, nonlocal linear and nonlocal nonlinear
bounds, respectively, for 8 =0 and 0 < o < 1. For § < 0 the linear bound always
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Figure 1.1: Local and nonlocal bounds

underestimates the true perturbation which in this case is equal to the nonlocal
bound.

¢

A very effective tool to get both local and nonlinear nonlocal perturbation
bounds is the technique of Lyapunov majorant functions [160, 85, 135, 127], or
briefly Lyapunov majorants. We will discuss this technique in great detail in
Chapter 5 and use it for all classes of matrix equations that we consider. In order
to apply this technique, the perturbed problem is first rewritten as an equivalent
operator equation for the perturbation in the solution. It is then shown that the
corresponding operator maps a certain compact convex set (contracting to the
origin when the perturbations tend to zero) into itself. Then, according to the
Schauder fixed point principle, there exists a solution of the operator equation,
tending to zero together with the data perturbations. If in addition the operator
is a contraction, the uniqueness of the solution to the perturbed problem is guar-
anteed in view of the Banach fixed point principle. Estimating the domain of the
operator by Lyapunov majorants gives the desired nonlocal nonlinear perturbation
bounds.

Throughout this monograph we will use the following framework for the per-
turbation analysis of matrix equations that was suggested in [127)].

Consider a general matrix equation

F(A,X) =0,

where F' is a continuous matrix valued function, A = (A;,...,A,) is a collection
of matrix parameters and X is the unknown matrix. Let X be a given solution



and let the data be changed from A to A + §A. Then we obtain the perturbed
equation

F(A+64,X +6X) =0,

where 6 X is the perturbation in the solution.
Two major problems then arise:

s Find conditions which guarantee that the perturbed equation has a solution
dX = Z(6A), depending continuously on §A4 and such that Z(0) = 0.

e Derive computable bounds for a norm ||§X]| of 6X as a function of the
perturbations §; = ||04;]|.

To solve these problems we follow a general framework for the perturbation
analysis of matriz equations [102) that consists of the following stages.

1. Construction of an equivalent operator equation. This is a matrix equation
0X =TI(6A4,5X)

for X, where II(0,0) = 0. For this purpose the technique of Fréchet
derivatives is used. Via an appropriate representation, the operator equa-
tion is then represented as an equivalent matrix equation. After this, the
matrix equation is vectorized as x = m(a,z), where £ = vec(6X) and
a=(a1,...,ar), a; = vec(dA;).

2. Calculation of condition numbers. The quantity m(a,z) is represented as

mig(a) + moo(a) + m2(a, z),

where
mwo(a) = O(llal}), a =0,
mo(a) = o(llal), a =0,
ma(a,z) = o(llall + llzll), llall + [z} — 0.

When only one component a; of @ is nonzero, then the quantity ||w1o(a)|/|la:|
is asymptotically bounded by K;, the absolute condition number for the solu-
tion X relative to perturbations in the matrix A;. Here K; is the asymptotic
Lipschitz constant of 714 in a; (if 730 is not Lipschitz continuous in a; then
the condition number relative to A; does not exist). If F is Fréchet differ-
entiable then the condition numbers (in Frobenius norm) are the spectral
norms of certain matrices depending on the Fréchet derivatives of F.
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3. Derivation of local perturbation bounds and overall measures of conditioning.
The maximum of ||mjp(a)|| under the constraints |ja;]| < &, ¢ = 1,...,r
is estimated to obtain local perturbation bounds and overall measures of
conditioning. These are solutions to complicated optimization problems. For
the solution of those problems, simple and easily—computable upper bounds
are derived.

4. Construction, analysis and solution of Lyapunov majorant equations. Setting
d = (41,...,4,), a Lyapunov majorant function for the operator = (a,-) is
constructed, This is a function (8, p) — h(d, p) such that

”7(((1, I)HQ < h((s’ p)

provided that ||a;||2 < 4; and ||z|2 < p. Under certain conditions on A and
0 the majorant equation

p = h(d,p) (1.1)

has a solution pg = f(§), where f is continuous and f(0) = 0. An inclusion
of the type ¢ € €, where Q is a certain set (possibly small but finite) then
guarantees that such a solution exists.

In many cases the majorant equation (1.1) is an algebraic equation. Then
there are two approaches to solve this algebraic equation. For a given d the
majorant equation is either solved numerically or (if possible) analytically
to determine the smallest positive root pg. If there are no positive solutions
then 4 is too large and the method of Lyapunov majorants does not produce
nonlocal perturbation bounds. This may also indicate that the perturbed
equation has no solutions 6 X vanishing together with § P. A second approach
is to majorize h(d,p) by a new Lyapunov majorant ﬁ(é, p) for which the
equation p = ﬁ(é, p) has a convenient closed form solution py = ]?(5) with f
continuous and f(O) = 0. This guarantees that the initial majorant equation
has a solution pg < f(&)

(&34

Topological fized point principles and nonlocal perturbation bounds. If we
have a smallest solution f() of the majorant equation (or some of its upper
bounds ]?(5)), then the fixed point principles of Schauder and Banach are
used to prove that the equivalent vector equation has a solution z in the
central, closed ball of radius f(8). In view of the identity |6 X||r = ||z|l2 this
gives the nonlocal estimate

-~

[6X(r < f(8) < f(3), 6 €2

The monograph is organized as follows. In Chapters 2-4 we give the problem
statement and consider general problems with explicit and implicit solutions. We
present the basic concepts (regularity and conditioning in particular), related to



the sensitivity of computational problems. The technique of Lyapunov majorants
is presented in Chapter 5 and singular problems are briefly discussed in Chapter 6.

General concepts concerning types and properties of perturbation bounds are
introduced in Chapter 7. Then in Chapter 8 and 9 perturbation bounds for general
and specific Sylvester equations are derived. Using symmetry, then these bounds
are extended in Chapter 10 for general Lyapunov equations and in Chapter 11 for
Lyapunov equations from systems and control theory.

The perturbation analysis for general quadratic equations is presented in Chap-
ter 12. These results are then improved for continuous-time Riccati equations that
arise in the control and filtering of linear time-invariant systems in Chapter 13.
For systems of coupled Riccati equations the perturbation results are presented
in Chapter 14. General fractional-affine equations are studied in Chapter 15. In
Chapter 16 perturbation results are given for discrete-time Riccati equations that
arise in control theory as well as for a class of symmetric fractional-affine equations.

The monograph includes several appendices where the following issues are con-
sidered: elements of algebra and analysis, unitary and orthogonal decompositions,
Kronecker product of matrices, fixed point principles, Sylvester, Lyapunov and
Lyapunov-like operators. Finally a list of notation is given that is used through-
out the monograph.
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Chapter 2

Perturbation problems

2.1

Introductory remarks

The aim of perturbation analysis is to study the sensitivity of computational prob-
lems or mathematical models under perturbations. This means to estimate how
the solution changes when the data of the problem are changed. In a more re-
stricted framework the objective of perturbation analysis is to provide computable
bounds for the perturbation in the solution of a given problem as a function of
the perturbation in the data. At present, perturbation analysis techniques are

important issues in numerical analysis and control and also in all areas of science
and engineering.

In this chapter principal issues in the perturbation analysis of computational
problems in finite dimensional spaces (matrix equations) are discussed, which in-
clude:

properties of the perturbation function,

sensitivity and conditioning,

classification of perturbation bounds,

properties and classification of solutions and solution sets of equations,
construction of equivalent perturbation operators,

Lyapunov majorants,

application of fixed point principles,

analysis of singular problems,

scaling of problems and error estimates.

Examples and case studies are included and are illustrated.

9
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2.2 Problem statement

Independently of their particular nature, most problems in science and engineer-
ing may in general be formulated in one of the following two ways: as problems
with explicit solutions, e.g. evaluating functions defined by explicit computable ex-
pressions, and as problems with implicit solutions, e.g. solving equations. There
are also modifications of these problems such as computing canonical forms of
matrices under the action of various transformation groups. This distinction is
sometimes only formal, since the above ways to formulate a problem may often,
at least in theory, be transformed into each other. Also, a complicated problem
may be defined by a chain of explicit and implicit subproblems.

Consider a function ® : 4 — X, where the set A of data, or inputs, and
the set &' of results, or outputs, are (subsets of) normed linear spaces, which are
usually finite-dimensional. The function @ is continuous and in many problems it
is differentiable. For every data A € A we have the result

X=9(A)eX.

A particular example for such problems is the evaluation of a scalar or vector
function.

Sometimes the dependence of X on A is not functional, in the sense that there
may be more than one result corresponding to a given data (for some problems this
type of nonuniqueness may be inherent). In this case we may consider a set-valued
function ® : A — 2% which assigns a set @(A) of solutions to every data A € A.
A useful approach here is to derive computable perturbation bounds which hold
at least for one of the solutions of the perturbed problem.

A computational problem is identified with the pair (&, A) when we deal with
a single collection of data, and with the pair (®,.4) when we have a family of
problems with data from the set A.

The function ® may also be defined implicitly via the equation

F(A,X) =0, (2.1)

where F': AXx X — X is a given continuous function. (Sometimes F' is a function
from A x X to X, where X, is another linear space.) The problem here is to
compute the solution X for a given A and to investigate (at least locally) the
behavior of the implicitly defined function ® : A — X, satisfying the identity
F(B,®(B)) = 0 in a certain neighborhood of A.

Typical examples of such problems are various classes of linear and nonlinear
matrix equations in linear algebra and control theory such as the equations of
Sylvester, Lyapunov, Riccati and others that are discussed in detail below.

Modifications of implicit problems are various types of matrix decompositions
and canonical or condensed forms of matrices. They may be formulated by the
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equation
P(C(A,U)) =0, (2.2)

where U is a transformation matrix from a certain matrix group I', C(4,U) is a
condensed form of A with C being a continuous function and P is a projector. The
problem here is to compute both U and C(A,U), where U = U(A) is implicitly
defined by the data A via equation (2.2), i.e. P(C(A4,U(A))) = 0. We stress
that the dependence of U on A may not be functional, especially when condensed
rather than canonical forms are considered.

We consider problems in which a subset A of matrix r-tuples from a linear
space, interpreted as data, is transformed into the set of matrices X := F**™,
interpreted as results, where F"*™ is the space of n x m matrices over F and F
is the set of real (F = R) or complex (F = C) numbers. The spaces X and A are
endowed with norms or generalized norms.

Both the data and the result of a given problem may be elements of infinite-
dimensional (Hilbert or Banach) spaces. But in numerical computations one can
deal only with finite dimensional spaces, and actually, in a finite precision environ-
ment, only with finite sets of rational numbers. So we typically deal with data that
are collections of matrices (a collection is a set with possibly repeated elements.)

The assumption that the data A is a collection of matrices is natural, since in
practice all problems depend on finite collections of input parameters. But that
the result X is an element of a finite-dimensional space may seem rather restrictive
having in mind problems defined via differential or other functional equations. In
fact, it is not.

Consider a problem, defined by the relations G(A4,Y) = 0 and X = H(Y),
where G : A x)Y — V) and H : )) — X are given functions, and the solution Y
of the equation G(A,Y) = 0 is an intermediate result. Here the spaces Y and Vi
may be infinite-dimensional but the final result X is a finite collection of numbers,
see next example as well as Examples 2.5 and 2.6 below.

Example 2.1 In Example 1.1 the solution z is a function but actually only the
values of = at a certain finite set of times are needed. ¢

When studying the sensitivity of a problem, identified with a certain function
®: A — X, we assume that ® has some minimal smoothness properties and, in
particular, that it is continuous in a neighborhood of given data A. This issue
is not trivial, since even simple nonlinear equations of type (2.1), together with
smooth solutions, may have discontinuous solutions A — $(A4).

Consider a particular problem corresponding to a given nominal data A € A.
When the nominal data is changed to A + §A we get a new problem, the so called
perturbed problem. One of the main characteristics of a problem is its sensitivity.
Quantitatively the sensitivity is a numerical measure of the continuity properties
of the function @ near certain nominal data or in the whole data space. Func-
tions whose values change significantly when the argument is slightly changed,
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correspond to sensitive problems. But “significantly” and “slightly” are not math-
ematical terms and even for practical purposes they must be described by some
quantitative measures.

A practically useful measure of sensitivity must be connected to the parameters
of the finite precision arithmetic. Thus, typically the sensitivity becomes a joint
property of both the problem and the finite precision arithmetic.

A sensitive problem is usually computationally difficult to solve and one must
expect that the computed solution is contaminated with large errors. However,
in a different computational environment the same problem may be solved more
accurately. Of course, the properties of the implemented numerical algorithm are
also crucial for the accuracy of the solution computed in finite precision arithmetic.

As we have discussed before, one of the main purposes of perturbation analysis
is to study qualitatively and quantitatively the sensitivity of individual problems
(for fixed nominal data) or of classes of problems (for data from a given set).
However, for many problems the domain A (or the set of all A such that ®(A4) is
well defined) is not known a priori, e.g., when the function ® is defined implicitly
via an equation. Here it is important to get an estimate for the natural domain of
®, i.e. for the largest set on which ® can be defined. This also gives an answer to
the question whether the solution of a particular perturbed problem exists.

Perturbation analysis produces local (or asymptotic) and nonlocal bounds for
the perturbation in the result as functions of the perturbation in the data.

Local bounds are linear or first order homogeneous functions of the perturba-
tions in the data. They are valid asymptotically, for infinitesimal perturbations
dA — 0 in the data only. They are often obtained in a relatively simple way and
are in many cases easy to compute.

An example of such a local bound is the condition number of a problem that
is widely used throughout numerical analysis.

Definition 2.2 For a given problem X = ®(A) the finite quantity

[B(A +04) — 2(4))|
[6A]l

is called the absolute condition number of the problem X = &(A).

K(A) = lim sup { LA 40, 54] < a } (2.3)

In this definition only the dependence of K on the data A is explicitly marked
assuming that the function @ is fixed. Sometimes it is convenient to write the
absolute condition number also as K(®, A), showing its dependence on the function
® as well.

When the data of a problems differ widely in their magnitude, then it is often
better to measure the sensitivity in terms of the relative perturbations

_ x4l

y PA:
X1l 1A
in the solution and data when X # 0 and A # 0.
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Definition 2.3 The quantity

IAL _ gy 1A
11 12l

k(A) := K(A)
is called the relative condition number of the problem (@, A).

We will return to condition numbers in much more detail below.

In contrast to local bounds like condition numbers, nonlocal perturbation bounds
are usually nonlinear functions and they are valid rigorously in a neighborhood
of the nominal data. The derivation of nonlocal perturbation bounds is more
involved. In addition they may be pessimistic in terms of both the size of the
predicted perturbation and the domain of applicability.

In matrix problems the set A is a subset of a linear, finite dimensional, real or
complex space V of dimension dim(V). Since X = F**™, we also have dim(X) =
nm. Hence A may be identified with a subset of F#™A) and F**™ with F*™. In
the following we assume that A is an open subset of the Cartesian product V of
T > 1 matrix spaces Vi,..., V,,

ACV:i=V; X xV,, V; = Fmixm (2.4)

and
dim(A) = dim(V) = miny + - - - + mn,.

Thus, the data A is a matrix r-tuple

A:(Al,...,Ar)EV, A; € V.. (25)

When dealing with perturbation problems we use norms and generalized norms
for the corresponding matrices and/or matrix r-tuples. We denote by || X|| € R

and |X| = [|lz|] € RT*™ the norm and the absolute value of the matrix X =
[x:5] € X, respectively. Here | - || is a unitarily invariant norm such as the spectral
norm || - ||z or the Frobenius norm || - ||p. For a matrix r-tuple (2.5) we use the
norm

NAN = [ Aall + - - + 1A
or the generalized norm
AN = A, AT € Ry (26)
We also use the matrix absolute value (which is also a generalized norm)
lAl := (JA1l, .., |An]) € Vi := RV oo  RPXMT, (2.7)

The generalized norms || - || and | - | are functions of the type v : V — K. Here
K is a nonnegative cone, defining a partial order relation < by z <y ify —z € K.
(In our case =< is a system of component-wise inequalities.) A generalized norm
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satisfies a number of relations similar to those for standard scalar norms, e.g.,
v(A) = 0, v(aA) = |a|lv(A) for a € F and v(A4 + B) < v(A) + v(B). If we define a
multiplication of r-tuples V x V — V via

AoB := (AloBl, cee ,A.,JB»,-),

where XoY = [z;;1;;] is the Hadamard (elementwise) product of two matrices X
and Y of same size, then the generalized norm satisfies the inequality

v(AoB) X v(A)ew(B).

Let & : A — X be a continuous function, which maps each r-tuple data 4 € A
into the resulting matrix X = ®(A) € X. The problem of finding X for a given A
is also denoted as A — ®(A) or X = ®(A), while the problem of finding the set X}
of results for all r-tuples from the subset Ag C A is denoted briefly as Ay — ®(Ag)
or Xy = ®(Ap), where ®(Ay) is the image of Ay under ®. In the latter case we
have a family of problems X = ®(A), parametrized by the data A € Ay. Since
the function @ is usually fixed, the computational problem X = ®(A) is further
identified with the data A only. Similarly, the problem X = ®(Ap) is identified
with the set Ajy.

It is often convenient to reformulate a matrix problem into vector form in order
to use standard techniques of matrix theory. For this purpose we utilize the vector
representations of stacking the columns of a matrix in one vector, obtaining

z = vee(X)eF™
a; = vec(4;) e Fm™ (2.8)
a = vec(A):= [a],... ,a,T]T € Féim

for the matrices X, A; and the r-tuple A. In this case we use the notation z = ¢(a),
where ¢ := vec o ®.

Example 2.4 A problem with explicit solution is the evaluation of a given scalar
expression T = ¢(a) for a € A, where A € F and the function ¢ : 4 — R is
defined by an explicit expression in terms of arithmetic operations and elementary
functions, e.g.,
pla) = — 1T
1.000001 — sina’

Another example is the evaluation of z = ¢(a), where (a) is defined by the series

€R.

oo

0(a) = crla—ao)k, (2.9)

k=0

convergent for la — ag| <e.
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Example 2.5 The initial value problem

y'(t) = My(t), teR,
y(O) = Yo,

where y(t) € R™ and M € R™*"™, gives rise to the problem of evaluating the vector
function y at a given moment ¢, say t = 1. We have y(1) = exp(M)ys, where the
matrix exponential exp is defined by the convergent power series
o0
Mk
exp(M) := -
k=0

Thus, the solution of the problem is x := y(1), corresponding to the data
A= (A1, A) == (M,yo) € V = R¥" x R* ~ RV +7,

In this case p(a) := exp(M)yo € R™ and dim(A) = n? + n. ¢

Example 2.6 As a generalization of Example 2.5, let

y(t) = f(y(t),t,p), t € [to, tel, y(to) = Yo,

be an initial value problem, where y(t) is a function with values in R™ and p is a
vector of parameters. Then the value x := y(;) of the function y at the moment ¢,
is the solution, depending on the data A = (p,yo). This problem may be written
in the form G(A,y) = 0, z = H(y), where the function G : A x Y — )Y is defined
as G(A,y)(t) :=y'(t)— f(y(t),t,p) if t € (to,ts]) and G(A, y)(to) := y(te) —yo. Here
Y and ), are the spaces of differentiable and continuous functions [tg, tf] — R™,
respectively. Thus, we have a problem with data A and result z being elements
of finite-dimensional spaces, and with an intermediate result y which is a function
from an infinite-dimensional space.

When solving this initial value problem numerically, we are interested in the
values of y at certain points ¢y,...,¢, € (0,%]. In this case the result is

X :=[y(t1),...,y(tm)] € R™™.

Let us discuss now the formulation of problems with implicit solution. Many
such problems are defined via matrix equations. Consider the finite dimensional
linear space )V := FP*9 where usually we assume that FP*9 is isomorphic to
X = F*™ ie, pg = mn. Let D C ¥V x X be a certain domain (an open
and connected set). Let the equation F(4,X) = 0 in X € X be given, where
F :D — Y is a continuous function. Here the problem is to find the solution, or
the result X for a given A, interpreted as data, or as a parameter matriz.
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Usually we are interested in a particular solution X = ®(A) of this equation,
which depends continuously on the data A, but sometimes it is also necessary to
determine the solution set of the equation

Z(A) = {X: F(A X) =0}

of all solutions for a fixed value of A. Using the vectorizations (2.8) we also have
f(a,z) = 0, where a = vec(A), z = vec(X) and f(-,-) := vecoF(vec™ (), vec™1(")).

In this statement of the problem there are some important issues such as exis-
tence and uniqueness of the solution, which will be discussed as well.

Example 2.7 Consider the algebraic equation
fla,z) = aez" + a12" '+ 4+ an_17 +a, =0.

Here the vector a := [ag,a1,...,a,]" € F*t! is the data. Any particular solution
x € I is a result, and if ap # 0, then the collection {z,...,z,} of n roots z; is
the solution set =(a) of this equation. ¢

Example 2.8 Consider the quadratic matrix equation
FAX) = A1 + Ao X + XA3 + XA X =0,

where A, € F"*™ Ay € F™*", Ay € F™X™, A4 € F™*" are given matrix co-
efficients and X € F"*™ is the unknown matrix. Here the data is the matrix
quadruple A = (A1, Az, A3, A4) and the solution set A has dimension dim(A) =
mn+m? +n? +mn = (m+n)? O

The two formulations of problems — with explicit and implicit solutions, are
closely related. Indeed, a problem with explicit solution X = ®(A) may always be
written as an equation, e.g. X —®(A) = 0, and often the solution X of an equation
F(A, X) = 0 may formally be written as an explicit expression X = ®(A), see
Example 2.5 and Example 2.9 below. We stress that the availability of an explicit
formula X = ®(A4) in terms of arithmetic operations and elementary or special
functions does not necessarily mean that it is good for a reliable computation of
the solution X in finite precision arithmetic.

Example 2.9 Consider the linear system Mz = b, where the matrix M € F*x»
and the vector b € F™ are given and z € F" is the solution. The elements of
M and b form the vector a := [vecT (M),b7])T € F**+" of data. This problem is
formulated as an equation. If the matrix M is nonsingular, then we may write z =
@(a) := M~1b, obtaining a problem with explicit solution. It is well-known that
to obtain z by inverting M is usually not recommended when the computations
are done in finite precision arithmetic. ¢
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Example 2.10 Consider the problem of transforming a square n X n matrix 4
into Schur form 7' = UM AU, where the matrix T is upper triangular and the
matrix U is unitary, see Appendix B. Then A is the data and the pair (T,U) is
the solution. In this case the transformation matrix U is implicitly determined by
the system of equations Low(UR AU) = 0, URU = I,,, where Low is the projector
to the subspace of lower triangular matrices. Note, however, that even if T is the
canonical form of A with respect to the similarity action of the unitary group (i.e.,
T is uniquely determined by A), then the transformation matrix U is not uniquely
determined. {

Theoretically, problems with nonuniqueness of the solution may be treated
by introducing equivalence classes of solutions and set-valued mappings. From a
computational point of view, however, it is important to have a particular solution
rather than the whole solution set. Accordingly, the aim of perturbation analysis
in such cases is to obtain computable perturbation bounds, which are valid at least
for one of the solutions of the perturbed problem.

Suppose that the nominal data A is perturbed to A + §A. As a result the
solution is also perturbed from X = ®(A) to X + 6X = &(A + 6A).

One of the most important properties of a problem X = ®(A) is its sensitivity
which is measured by the size of the perturbation

5X = (A +64) — D(A)

in the solution X relative to a given class of perturbations 6A in the data A.
Intuitively, the problem is sensitive if small perturbations in the data lead to large
perturbations in the result. Of course, the terms “small” and “large” need to be
specified.

As we have mentioned above, the sensitivity of problems is the objective of
perturbation analysis. Here the perturbations in the data and in the solution are
expressed in terms of norms or generalized norms, see (2.6) and (2.7). Using norms
| - || or generalized norms || - || we study the perturbations in the matrices as a
whole and do not take into account the perturbations in the individual matrix
elements. To deal with such perturbations, various techniques of component-wise
perturbation analysis have been developed. One of them is based on the use of
matrix absolute values and generalized norms | - | as defined in (2.7).

In summary, we have seen that there are at least three important reasons to
study the sensitivity of various problems relative to perturbations in the data from
a given class.

e Perturbation analysis may give an independent and deep insight in the very
nature of the problem, being therefore of independent theoretical interest.
For example, perturbation analysis may provide an estimate for the distance
from an object of a given set, with data 4 € Ag C A, to the complementary
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set of objects with data from A\ Ag, see e.g. [51] for a comprehensive study
of this problem. In brief, the sensitivity of a given object {or of the corre-
sponding computational problem) is among its most important properties.

o Perturbation bounds provide a realistic framework for most problems in
mathematical modelling of objects and processes. Indeed, in practice there
are inevitable measurement and other parametric and/or structural uncer-
tainties. This means that we have to deal with a family of models rather
than with a single model. In this case the perturbation bounds define a tube
in the space of models, to which the characteristics of the particular model
actually belong. Having a model with given parameters and estimates for
their values, the only thing that we can rigorously claim is that the model
will behave within the tube predicted by perturbation analysis.

e When a numerically stable algorithm [101, 233] is applied to solve a problem,
then the solution, computed in finite precision arithmetic, will be close to
the solution of a near problem. Having tight perturbation bounds and a
knowledge about the equivalent perturbation [233] for the computed solution,
it is possible to derive condition and accuracy estimates, see e.g., [181].
Without such estimates, a computational algorithm cannot be recognized as
reliable from the viewpoint of modern computing standards [1].

2.3 Numerical considerations

The sensitivity is one of the important factors which determine the accuracy of
the computed solution when a problem is solved by a numerical algorithm in
finite precision arithmetic, e.g., in a floating-point computing environment with
rounding unit eps. Without going into detail, eps is half the distance from 1 to
the next larger floating point number.

In finite precision arithmetic one gets the computed solution X which may be,
or not be, close to the exact solution X = &(A).

Definition 2.11 The quantities ax := H)N( — X|| and px := ||)Z' - X/I1X1 @f
X # 0) are called the absolute and relative norm-wise errors in the computed
solution.

Sometimes also the relative error px := || X — X||/|| X|| is used in practice, since
the exact solution X usually is, and remains, unknown.

The desirable case is when the magnitude of px or px is of order of the rounding
unit eps, but often this is not the case.

We shall not define precisely the concept of numerical algorithm. The intuitive
notion of an algorithm is a sequence of arithmetic operations (and possibly of
evaluations of elementary functions), which are performed with relative error of
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the order of the rounding unit. In addition, at each step the algorithm must
produce results which are in the standard range of the finite precision arithmetic
in order to avoid over- and underflows.,

In the analysis of computational errors it is convenient to introduce, following
{101, 232, 233], the concept of backward error.

Definition 2.12 A collection E = (Ejy,...,FE,), such that X = ®(A+ E), is
called an eguivalent perturbation (if the equivalent perturbation is not unique, we
take one with minimum norm). The norm || E||, or the generalized norm || E| of E,
is called the absolute norm-wise backward error of the computed solution X. If the
backward error is small in the sense that | E|| < cieps||A||, where ¢; is a moderate
constant (or a low degree polynomial in the dimension of the data vector a), then
the algorithm is said to be numerically backward stable.

Usually, backward stability is achieved not on the whole domain A of ® but
on a restricted subset Ap C A.

We stress that the equivalent perturbation and hence the backward error de-
pend not only on the problem X = ®(A) but also on the finite precision arithmetic
and the numerical algorithm implemented to compute X.

Unfortunately, the equivalent perturbation F may not exist even for very simple
problems solved in finite precision arithmetic, as shown in the next example. In
such cases the norm-wise backward error is formally defined as oco.

Example 2.13 Consider the computational problem
r=p(a):=1+1/a, a>0.

For a > 1/eps the computed solution is T = 1 by the definition of the rounding unit
eps. To find the equivalent perturbation e we must solve the equation 1 = ¢(a+e¢)
which yields 1/(a + ¢) = 0. Hence no finite equivalent perturbation e exists and
the backward error is infinite. {

Together with the concept of backward stability, the notion of forward stability
is also useful.

Definition 2.14 An algorithm is numerically forward stable on Ay, if for every
A € Ap the gomputed solution X is close to the exact solution X = ®(A) in the
sense that [[X — X| < cpeps|| X ||, where c; is similar to ¢; in Definition 2.12.

However, forward stability may be achieved only if the problem X = ®(4) is
not very sensitive on the whole set 4. For example, an algorithm for solving
the linear vector algebraic equation Mz = b cannot be numerically forward stable
on the data set 4, consisting of all nonsingular matrices M. The reason is that
there are matrices from .4 with arbitrarily large condition numbers, for which
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the condition of forward numerical stability does not hold. We recall that the
condition number of a nonsingular matrix A with respect to inversion is defined
as [[All[A™].

In order to deal with problems for which the backward error does not exist
and/or which are very sensitive (something that no algorithm is responsible for)
one may use a more general notion of numerical stability, see [101].

Definition 2.15 Suppose that the computed solution X is close (if not equal) to
some X = ®(A + E) with E small. If a computational algorithm produces such
answers for a set of computational problems with data A € A, then it is called
numerically stable on the set Ag. Here the closeness is interpreted in terms of the
particular finite precision arithmetic as

X = X|| < cseps|| X||, |E| < caeps||All,
where c3, ¢4 are moderate constants as in Definition 2.12.

Note that X may not be the solution of any problem with data from Ag as in
Example 2.13 and in this case the numerically stable algorithm cannot be backward
numerically stable.

It may be shown that if an algorithm is backward or forward numerically
stable, then it is also numerically stable. To show that the opposite is not true
in general (i.e., that numerical stability does not necessarily imply backward or
forward numerical stability) is much more subtle [101].

We note also that in the bounds of Definitions 2.11-2.15, it is implicitly as-
sumed that the norms of the involved matrices A and X are larger than 1, since in
this case the rounding errors are supposed to be large. If this is not the case, then
in the expressions of the form c;eps||Z|| one should formally set ¢; = 1 if || Z]| < 1,
where Z stands for A or X.

The result X , produced by a numerically stable algorithm from the data A,
may be far from the exact solution X = ®(A) if the problem is very sensitive and
the quantity X = ®(A4 + E) differs significantly from X. More details about this
phenomenon are given in Section 2.5. In all cases the perturbation analysis of the
computational problem is an important stage in the process of obtaining a reliable
numerical solution.

There are different concepts of reliability in numerical computations. Here
we consider a numerical procedure reliable if it provides the computed solution
together with sensitivity and accuracy estimates.

2.4 Component-wise and backward analysis

In this section we briefly consider the concepts of component-wise perturbation
analysis , see, e.g., [80, 101]. In general, this type of analysis is aimed at estimating
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the sensitivity of the elements x; of the solution z to perturbations in the elements
a; of the data a, or in estimating the perturbation in the solution when the elements
of the data vary in a special way, e.g., when some of them remain constant (in this
section we use the vector representation z = ¢(a) of a problem X = ®(A), where
a = vec(A), z = vec(X) and ¢ = veco ®).

This analysis is useful when the perturbations in the components of a and/or
z differ significantly, since in this case the norms ||da|| or ||6z| of éa and dx are
relevant measures only for largest of perturbations in a or z, while for smaller or
structured perturbations the corresponding bound would be pessimistic. The tech-
nique of component-wise perturbation analysis is well developed and commonly
applied to various problems in linear algebra and control theory.

Another technique of perturbation analysis is the derivation of backward per-
turbation bounds. The aim of this type of analysis is, given certain approximate
solution Z of the problem z = ¢(a), to find the minimal (in certain sense) pertur-
bation da in the data which satisfies T = ¢(a + 6a). Thus, da is a solution of a
constrained minimization problem.

When studying relative perturbations of a computational problem with data
a # 0, having some components a; = 0, it is appropriate to introduce a norm-like
function which reflects the changes in the data in a component-wise style as shown
below.

Suppose that A C FP. For a vector a = [aj,...,a,]" € A, having zero entries
at prescribed positions, we denote by pat(a) = [sy, ..., sp]T the zero-pattern vector
with components

{ 1 ifa; #0,
8 = .
0 if a; = 0.

Define Q{a) C A as the set of all b € A, having the same zero-pattern as q, i.e.,
pat(b) = pat(a). Then for b= [by,...,b,]"T € Q(a) we define the vector b/a as

b/a := (diag(ai, . .., a,))'b € Q(a)

with components

bi/ai if a; 75 0,
b/a); =
(b/a) { 0 ifa, =0
(Here diag(ay,...,ap,)t denotes the Moore-Penrose pseudo-inverse [83] of

diag(a,...,ap).)
Definition 2.16 The quantity
b/alleo = min {v > 0: |b;} < vas|}

is known as the component-wise relative norm of b with respect to a.
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Replacing the inclusion a + da € A by a + da € Q(a) in the definition of the
relative condition number we obtain a new quantity

—~ N 16| o 1 _
kla) = i%sup{ mm ca+da € Qa),|da] X afal } .

Definition 2.17 The quantity k(a) is known as the mized relative condition num-
ber of the problem x = ¢(a).

The use of the mixed condition number often gives sharper estimates, especially
when computational processes in finite precision arithmetic are considered. This is
due to the fact that usually no rounding errors are introduced in the zero elements
of the data vector a.

Since

“—”Hﬂ < Ib/alloe
we have

#(a) < (a),

where the standard relative condition number x(a) (see Definition 2.3) is taken
with respect to the infinity norm || - |-
If the Fréchet derivative ¢'(a) exists then

R(a) = “W(a)diag(al, ce s ) |loo < n(a) = 12" (@) lolalloo

12l o ele

and for |da| < aja| we have

|6z oo

1|00

< k(a)a+ o(a), a — 0.
In a similar way we may define yet another component-wise condition number,
see [80].

Definition 2.18 The quantity

~ . 6/l |
k(a) := lim su —_t
@ = e { oo |
is called relative component-wise condition number of the problem z = ¢(a).

If the Fréchet derivative ¢’(a) of ¢ at a exists and the solution = [z1,...,z4]T

has no zero components, then

K(a) = ||diag(1/a1,...,1/z,)¢' (a)diag(ay, . . ., ap)ll4 -
Various relations between the condition numbers

k(a), k(a), K(a) (2.10)
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are established in [80] for the case when ¢ = @3 0 ¢ is a composition of two
functions ¢; and .

Usually the domain A C F? of the function ¢ in the computational problem
z = ¢{a) is of positive p—dimensional measure. Thus, the perturbations da in
a are allowed to vary in a p-dimensional volume in the definition of x(a), and in
the definition of ¥ and ¥ if all components of a are nonzero. At the same time in
some practical problems the perturbations in the data are allowed to vary only in
a lower dimensional subset 7 C A (see Example 2.19 below).

In this case we may consider the new restricted (or structured) computational
problem z = (a) for the restriction ¥ := p|r of v on 7. All three condition
numbers (2.10), computed for the problem z = 1(a), are referred to as structured
condition numbers, see [80].

Example 2.19 Consider the operation ® : GL(n,F) — GL(n,F) of matrix in-
version, ®(A) := A~1. (Here GL(n,F) denotes the group of nonsingular n x n
matrices with elements in F. Restricting ourselves to the inversion of a given
class of matrices, say the class 7of nonsingular Toeplitz matrices, we get the re-
stricted problem A — ®|7(A) of inversion of Toeplitz matrices A, in which the
perturbations 0 A are subject to the constraints A + §A € 7. At the same time
®'(A)(6A) = ~A"16AA~! and k(®, A) = cond(A). (Recall that a Toeplitz matrix
Is a matrix that is constant on every diagonal.) {

Example 2.20 Consider the matrix inversion ® from Example 2.19 as a mapping
F** — F"* with z = ¢(a) and a := vec(A), = := vec(A™!), ¢ := vec o @, and set
Y 1= vec (]A_1| |A] ]A‘ll) .

Then K(a) = ||yllo/|lZ|lcc and K(a) = ||y/z|lco, provided that z has no zero ele-
ments.

Another type of component-wise perturbation bounds for the computational
problem z = p(a) are inequalities of the form

|6z| < Cléal, |6a] < p € R,

where C' = C(a, p) € R{"" is the Lipschitz matriz of ¢ in the p-neighborhood of
a. Now the influence of the i-th element of a on the j-th element of x is measured
by the (7,1)-entry ¢;; of C. If | -] is the corresponding matrix absolute value, then
the quantity

dpi

—(a + da
P, ( )

(if it exists) is an upper bound for ¢;;. Similarly, if | - | is a generalized norm, and

sup
[6al=p

a1 <P1(a)
a = y @3 € ]Fma (P(a) = )
Qr ps(a)
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where ; : FP — F% then

Piays
o (a + da)

sup
[dal=p

is an upper bound for c¢;;.

In local linear component-wise perturbation estimates the matrix |¢'(a)| may
be used instead of C. We recall that in such a case the perturbation in the data
must be in the asymptotic domain of the local bound, i.e., that the neglected higher
order terms are of moderate size relative to the linear (or first order homogeneous)
terms that are taken into account.

Nonlocal nonlinear componentwise estimates will also be discussed, e.g.,

oz < f(l6al), 6a] < p € RY, (2.11)

where
Fi=lfn o £ [0, p] x - x [0,p,] = RS,

is a continuous vector function such that f; is nondecreasing in each of its ar-
guments and f(0) = 0. Sometimes the domain of applicability of these nonlocal
bounds may be quite complicated.

2.5 Error estimates

In this section we describe a general model of error estimation for a computa-
tional process in finite precision arithmetic, based on perturbation bounds for the
computational problem.

2.5.1 Forward error

Consider a problem in the form x = ¢(a), where ¢ is a given continuous function,
or a function of class C*, k > 1, or C®, z is the solution and a are the data. We
assume that z and a are elements of finite dimensional spaces, say x € F?, a € FP.
Let K = K(a) be the absolute condition number of the problem at the data a.
In finite precision arithmetic with roundoff unit eps the solution of the com-
putational problem is usually contaminated with rounding errors. In this case the
actual error in the computed solution depends on three main factors, [102, 134]:

¢ Properties of the finite precision arithmetic (the roundoff unit eps in partic-
ular),

e properties of the computational problem (the sensitivity in particular),

¢ properties of the computational algorithm (the numerical stability in partic-
ular).
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When implementing a numerically stable algorithm, the computed solution =
is near to the exact solution T = ¢(a + €) of a slightly perturbed problem. From
a quantitative point of view this means that the following inequalities are fulfilled

12— Z|| < eps M|jz||, [l€]l < epsNllall,

where the constants M, N characterise the properties of the numerical algorithm
(if [z| or |laff is less than 1 we set M = 1 or N = 1, respectively), see also
Section 2.3.

It is possible to estimate the actual absolute error a; := || —z|| and the relative
error (if z # 0) p; := a,/||z]| in the computed solution Z as follows. Neglecting
second and higher order terms in eps, we have

o: = IF-pla)l = |IF - +% - (o)l
< |F -3l + lpla +8) — (@)
< eps M|zl| + K|[é] < eps (M| + K N]lal). (212)

The relative error in the computed solution is estimated by dividing both sides
of (2.12) by ||=||:

pzr < eps (M + NK%) =eps (M + &(a)N), (2.13)
x
where x(a) is the relative condition number of the problem.
The estimate (2.13) reveals directly the main factors which determine the ac-
curacy of the computed solution:

¢ the properties of finite precision arithmetic (the rounding unit eps),
o the properties of the problem (the relative condition number &), and
¢ the properties of the algorithm (the constants M and N).

If a nonlinear sensitivity estimate of type ||6z|| < f(||da]|) is available, then the
corresponding estimates are

az < eps M|iz|| + f(eps Nflal)) (2.14)

and
o < eps 4 LlepsNlal)
lll

Nonlinear component-wise estimates for |T — z|, similar to (2.14), may be
derived provided a component-wise bound of type |dz] < f(|da]) is available.
This, however, remains an open question for many computational problems.

The above numerical considerations demonstrate the crucial role of sensitivity
estimates in the floating point solution of computational problems. In fact, a
solution computed in finite precision arithmetic cannot be accepted as reliable
unless a bound on the actual error is known [134].
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2.5.2 Backward error

Consider the problem z = ¢(a), a # 0, under the assumption that the Fréchet
derivative ¢’(a) of ¢ at the point a exist. Let Z be an approximate solution (e.g.,
a solution obtained in finite precision arithmetic) and suppose that 7 is the exact
solution to a slightly perturbed problem, i.e., that

zZ = p(a+da) (2.15)

for some (small) da. Then we may consider the problem to estimate the smallest
perturbation da for which (2.15) holds. This leads to the concepts of absolute and
relative backward errors, corresponding to the approximate solution Z.

Definition 2.21 The quantity

9(@) o= min { L2

where the minimum is taken over all §a which satisfy (2.15), is said to be the
relative backward error of the approximate solution Z.

The relative backward error may be estimated as follows. Within first order
terms we have

Z = ¢(a) + ¢'(a)(da) + o(I8]}) = = + ¢'(a)(0a) + o(||d])), 6 — 0

and
ba = (¢'(a))! & - x) + o({l8]), &~ 0.

Therefore, the estimate for the backward error

@) < LWy,

is proportional to the norm of the residual z — 7.

If a is structured as in (2), then the backward error is defined via

el )

where the minimum is taken in accordance with the constraints (2.15).
Let z be an approximate solution to the equation f(z,a) = 0 such that

f(Z,a+6éa)=0
for some perturbation da. Within first order terms we have

f(Z,a) + fo(%,a)(da) = 0.
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Thus, the minimum norm perturbation da is obtained approximately from

= _<f;(i’ a))ff(iv a’)?
which in turn leads to the estimate

< IE )t
B(E) & oo B S o))

The case of an equation with structured data of type (2) is treated in a similar
way.

2.6 Scaling

The scaling of a computational problem consists of applying transformations on
the data and/or intermediate (or final) results to avoid over- and underflows, or
to improve the conditioning of the original problem in order to reduce the effect
of rounding in finite precision arithmetic.

It must be pointed out that the conditioning of a computational problem is
usually beyond the effective control of the user, although it is a common opinion
that preliminary manipulations such as scaling may improve the conditioning.
That this is not exactly the case is demonstrated as follows.

Consider a scaling of the computational problem X = ®(A), consisting in the
implementation of two linear nonsingular transformations

B =U(A), Y = V(X)

in the input and output spaces A and X, respectively. As a result we get the new
computational problem

Y =¥(B), T:=VodolU L

If @ is Fréchet differentiable at A with a derivative ®'(A), then ¥ is also Fréchet
differentiable at B, and

V(B)=Vod(A)oU™"

Hence, the relative condition numbers «(®, A) of the original problem X = ®(A)
and &(¥, B) of the transformed problem Y = ¥(B) are (if A # 0) is given by

i _ Al
oAl

(¥, B) V(X

Vo @'(4) o UMl i

The scaling procedure consists in finding transformations U,V for which (¥, B)
is minimal.
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If we introduce new norms in the input space A and the output space X' as
Al := 1T, 1 XTlv = VX,
we see that the corresponding subordinate norm of ®’(A) is
1% (Dlloy = [|V o @'(4) o U]

Hence, the relative condition number of the transformed problem ¥ = ¥(B) is
exactly the relative condition number of the original problem X = ®(A) but
for the norms || - (|7, || - |lv. Hence, scaling in this case does not decrease the
condition number, but rather corresponds to finding new norms in input and
output spaces for which the amplification of perturbations from input to output
is minimal [76]. Whether this actually improves the numerical behaviour of a
particular computational algorithm, depends on the application. We stress that
the use of different norms in order to improve error estimates and stability factors
is a common practice, in particular in the implementation of numerical methods
for the solution of differential equations.

Of course, scaling aimed to reduce the norms of matrices and vectors in order
to avoid over- and underflows and eventually to reduce the rounding errors, im-
proves the numerical behavior of the computational procedures in finite precision
arithmetic.

2.7 Notes and references

Modern numerical analysis, taking into account the effects of finite precision arith-
metic, starts with the fundamental works of von Neumann, see e.g. [7, 172, and
A. Turing [226]. The concept of backward error and backward stability was intro-
duced by J. Wilkinson [232, 233}, see also [234]. Stability in the sense of Defini-
tion 2.15 is first considered by W. Kahan [115, 116].

General techniques for perturbation analysis of linear control problems are
considered in (142, 180, 147, 127].

General properties of the perturbation operator have been considered in [133,
134, 135].

For component-wise and backward analysis in a sense similar to that considered
in Section 2.4 see [30, 80, 100]. Scaling of computational problems in the framework
presented in Section 2.6 has been discussed in [76).

Often computational problems X = ®(A) are solved decomposing ® as ®;0-- -0
®;. In this some of the subproblems X;,; = ®;.1(X;) may be very ill-conditioned
(or even singular) even if the original problem is regular and well-conditioned. The
effects of such decompositions are considered in [102].



Chapter 3

Problems with explicit
solutions

3.1 Introductory remarks

Although the main purpose of this monograph is the perturbation analysis of
matrix equations, in this section we present some general issues concerning the
sensitivity of problems with explicit solution X = ®(A). These results may be
extended to problems with implicit solution such as matrix equations F(A, X) =
0. Indeed, let X be a solution of this equation, corresponding to the particular
value of A. Then under some natural restrictions on F (for instance under the
conditions of the implicit function theorem, see [173] or Appendix A), there exists
a continuous function @, defined in a neighborhood N4 of A, such that X =
®(A) and F(B,®(B)) = 0 for all B € N4. So the general considerations about
sensitivity for problems with explicit solution (explicitly defined functions) apply
also to problems with implicit solution (implicitly defined functions).

3.2 Perturbation function

Consider a problem with explicit solution X = ®(A), where ® : A — X is a
continuous function and A is a subset of the Cartesian product V of matrix spaces
as in (2.4). The spaces V and X are endowed with norms and generalized norms,
see e.g. (2.6) and (2.7). When relative perturbations are studied, we assume in
addition that A # 0 and X # 0.

Let 0A be a perturbation in the data 4 such that A+ §A4 € A and let

F={(AE):Ac A,LA+Ec A} CAxV

be the set of all pairs (A, E) from A x V such that A + E is in .4. (Observe that

29
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F may not be a subset of A x A, see Example 3.1 below.) Also, for a fixed A € A
let £4 C V be the set of all E € V such that A+ E € A. Thus

F=|J{{A} x €a}.
AcA
Example 3.1 Let V = R and let A be the open interval (a,@) C R. Then F is
the open parallelogram

F={(a,e):a<a<a,a—a<e<a-—a}l

As before, denote by 6X = ¥(A,8A4) the perturbation in the result X, corre-
sponding to the perturbation A — A + 6 A in the data, where

U(A,5A) 1= B(A + 6A) — B(A), for (4,04) € F. (3.1)

Definition 3.2 The function ¥ : F — X is called the perturbation function of
the family of problems A — ®(A).

In this definition we emphasize the dependence of §X on both A and §A. For a
fixed A € A the function VU(A4,-) : £4 — X is the perturbation function of the
single problem X — ®(A).

As thus defined, the perturbation function may not be useful in practice. In-
deed, one intuitively expects that if ¥(A, JA) is well defined for some perturbation
dA then it should remain well defined for smaller perturbations. That this may
not be the case when ¥ is defined on F, is shown in the next example.

Example 3.3 For the scalar problem
z=1/a, a € A:=R\{0}

we have

fz{(a,e):a#O,e#—a}CR?

For a # 0 and da = —2a we have (a,a+ da) € F; but for the smaller perturbation
6a = —a the solution of the perturbed problem 1/(a 4 ) is not defined. ¢

Therefore, we have to impose some additional conditions for connectivity and
convexity of the domain of the perturbation function ¥ as it will be done next.

We are interested in perturbations § A for which ¥(A, §A) tends to zero together
with A and the expression U (A4, E) is well defined for all E € V with ||E|| < [|6A||
or |[E] = {|6A]. It must be pointed out that not every perturbation §A4 with
(A,8A) € F satisfies this requirement. To impose additional restrictions on JA we
introduce following definition.
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Definition 3.4 A pair (4,64) € F is called admissibleif A+ F € Aforall E €V
with [[E]| < [6A]| (or | E]l < JAL).

One may also determine the subset Fogm C F of all admissible pairs (4, 4A).
Since the set A is open then for every A € A there exists £ = £(A) > 0 such that
all pairs (A, 6 A) with ||§ Al < ¢ are admissible.

Example 3.5 For the data set from Example 3.1 the set Faqrm, is the open square

Fadm = f;cli?n U f;gi?“, where
f;éin = {(g,e):a<a<(a+a)/2,a—a<e<a-a}l,
féﬁj?n {(a,e) : (e+T)/2<a<d,a—-T<e<a-—a}.

The function ¥(A,-) : £4 — X depends on the matrix parameter A. When A
varies over A, we have a family of functions {¥(A4, )} s 4, which is parametrized
by A € A.

Let a function ¥ : & — X be given, where S is a subset of A x V. Then the
question arises whether ¥ is the perturbation function for some family of problems
Ap — ®(Ap). If this is the case, the next task is to find the function & : A4y — X
itself, i.e., to solve the functional equation

O(A+E) - ®(A) = V(A,E), (A LE)e S

relative to @ for a given ¥. In this case the function & will be determined up to
an arbitrary additive constant matrix from X.

If ¥ is a perturbation function then ¥(A,0) = 0. However, not every con-
tinuous function ¥ with ¥(A,0) = 0 is the perturbation function for a family of
problems.

Example 3.6 Consider the function ¢ : F x F — F, defined by (a,e) = €2 + ae.
If o(a+e) — ¢(a) = €® + ae for some continuous function ¢ : F — F, then setting
a = 0 we get p(e) = ¢(0) + 2. Substituting this expression back in the functional
equation for ¢ we obtain ae = 0. This is an additional restriction on a and e and
hence the domain of ¢ cannot be F x [F and thus, v is not a perturbation function.
In contrast, the function (a,e) — e? 4 2ae, defined on F x F, is the perturbation
function of the family of problems z = a2, a € F. ¢

Proposition 3.7 A continuous function ¥ : S — X is a perturbation function if
and only if for some A® € A the equation

V(A" E+A—- A% —0(4%A—- A% =¥(4,E)

holds for all (A, E) € S.
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Since we are interested in problems with continuous mappings ®, it is reason-
able to define admissible perturbation functions according to the following defini-
tion.

Definition 3.8 The function ¥ : S — X is admissible if there exists a continuous
function ® : A — & such that U(A, E) = ®(4 + E) — ®(A).

For a given A € A the domain £4 C V may be quite complicated even for
simple problems as the next example demonstrates.

Example 3.9 Let A= GL(n,F) and ®(A) := A~1. Then
Ea={FE € F"*" :det(A + E) # 0}

The boundary 0€4 of €4 consists of all matrices £ with det(4 + E) = 0. It is a
closed algebraic variety in F**" ~ F** of degree n and codimension 1, and has a
very complicated structure.

The above considerations show that it is reasonable to restrict the perturbations
dA to certain simple subsets of £4 containing the origin. An example of such a
set is the generalized ball

Bpay == {E: |E|l 2 p(A)},

where p(A) is a given nonnegative vector. In particular, one may choose p(A) =
|l All, where € > 0 is (usually) a small parameter.

This restriction of the problem is still rather general. It includes as particular
cases many structured perturbation problems as discussed below.

Taking the generalized norm in A as |a| € Riim(A) we obtain a perturbation

problem with interval data,
Byay = [a,a],

which is the most structured type of perturbation. Indeed, here we may take
pla) = (@—a)/2.

The other extreme (most unstructured) case is when a norm in A is used. This
leads to the ball

Byay :={E: |E|l <p(A)},

where p(A) > 0 is now a scalar. In particular we may choose p(4) = ¢[|A|.

The general case of structured perturbations is also included in our statement.
It corresponds to a special choice of the data set .4 and the function ® as follows.
Consider a problem X = ®(A) under the structured perturbation §A = ©(A) € A,
where A € D, D is an open subset of a finite dimensional space with dimension less
than dim(A) and © : D — A is a given continuous function satisfying ©(0) = 0
(in many applications © is a linear function, see Example 3.10 below). Defining
the function &:D— X via B(A) := B(A+O(A)), we get the structured problem
X = ®(0).
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Example 3.10 Consider the problem of computing the eigenvalues of the matrix
A € F**" under the structured perturbations d4 = BAC, where B € F"*?,
C € F9*™ are given matrices, A € FP*9 and pq < n?. Here A = F"*" D = FP*x4
and ©(A) = BAC. $

Under the action of the perturbation function the set B4y is transformed into
the set

U(A,Bya)) == {¥(A,E): E € Byay} C X.

The aim of nonlocal perturbation analysis is to give bounds for the set U(A, B,4)).
Although the simple set B, 4) has some nice properties such as convexity, the
set W(A, B,(4)) may be of very exotic structure as it is shown in the next example.

Example 3.11 The set of solutions of the linear algebraic interval equation
Mz =b; M € [M,M] c R**?, be [bb] CR?
where [M,m :={M : M < M < M}, may have the form of a multi-ray star.{

These considerations show that it is reasonable not to estimate the set
W(A, B,(ay) itself but rather its norm-wise radius

max {|[U(A, E)| : E € Byay} € Ry.
A more ambitious task is to estimate the set
V" (A, Bya)) = {|¥(4, E)| : E € Byay} CRP™

of the matrix absolute values of the perturbations §X when the perturbation 6A
varies over the set B,4). We will do this later for linear matrix equations.

Somewhat easier, although still quite complicated, is the problem of estimating
the radius vector r* of U™ (A, B,y(a)), ie., the minimal vector r* € R, relative to
the component-wise order relation < such that

\I’*(A, BP(A)) C B,~.

In this statement of the problem we include the task of estimating the continuity
module p1: A x R} — R of the function & at the point A, given by

1#(4,6) := max{||¥ (4, E)| : | E] < 6}.

In addition to analyzing nonlocal perturbation effects, there are also pertur-
bation techniques for studying the local behavior of the perturbation §X in the
solution as a function of the perturbation A in the data. Since in practice we
always have finite perturbations, it is necessary to define local properties in some
quantitative way. This may be done by using the concept of asymptotic domain,
introduced below.
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Suppose that we can represent the continuous perturbation function ¥ as
W(A,54) = TU,(A,54) +o(||64]), A — 0,

where 0(z)/z — 0 for z — 0 and the function ¥, (A, ) is first order homogeneous,
ie.,
U, (A, AE) = |M\¥,(A,E), AeF.

Then we have
10X < w(ISA]l) + o(||6Af]), 64 — 0,

where, for n € R, the function w is defined by
w(n) := max{||¥1(A, E)|| : |E] 2 n}.

In practice we cannot explicitly determine the exact maximum w(n) of ||¥1(A4, E)||
over E € B, (except for linear equations). For this reason we use an upper bound
w1(n) > w(n), which is easier to compute.With such a bound we have

16X < wi(J5AR) + o 6A]l), 64 — .

Such bounds are usually considered in chopped form |6 X || < w;(||6A4]]), which
is obtained by neglecting higher order terms in [|6A4[. It should be noted though,
that these chopped bounds may be misleading, since actually the opposite inequal-
ity ||[0X | > wi(||6A}]) may occur if the neglected terms are large.

In order to use such bounds without a serious underestimation of the actual
quantity [{0X]|, we introduce the concept of asymptotic domain of the chopped
bound, which is the set of data perturbations for which the quantity wy(||6A[)
produced by the local bound, is N times larger than the neglected terms o(||0 A4]]).
Here N is a positive constant and it is desirable that N > 1 but even if N < 1,
then the local bound may still be useful. Indeed, if ||§X || and w;(|[dAf|) are both
very small, then even for [6X| > wi(]|6A])) the quantity w; (]| A]|) may be a good
approximation for the actual perturbation ||6X||, at least concerning its order of
magnitude.

The local, or asymptotic perturbation analysis produces local (usually linear
or first order homogeneous) perturbation bounds wq (JJ6A4]) for ||6X| by keeping
first order and neglecting higher order terms in ||[§A]. There is nothing wrong
with such bounds if they are used properly. But one must always bear in mind
that a “practically small” or even a “practically negligible” perturbation may not
be small at all in the rigorous mathematical sense, i.e., it may be far beyond the
asymptotic domain of the corresponding bound. In contrast, the nonlocal pertur-
bation analysis gives rigorous perturbation bounds which are valid in a certain
(possibly small but finite) domain of perturbations in the data.

There is a variety of viewpoints about of (chopped) local bounds. From a
strict mathematical position, the use of such bounds is not appropriate unless it



3.3. REGULARITY AND LINEAR BOUNDS 35

is guaranteed that the data perturbations are in the asymptotic domain. This, of
course, requires an estimate of the neglected terms which is much more difficult
than the derivation of local bounds. To estimate higher order terms means in fact
to derive nonlocal perturbation bounds. Although rigorous, this viewpoint could
lead to difficulties in practice, where even the derivation of local bounds may be a
problem.

On the other hand, there are users of methods, who apply local estimates
for a wide range of perturbations, hoping that everything is fine, or simply not
suspecting that something may go wrong. Actually, we experience that many users
in industry do not like condition and error estimates at all, since they require extra
computational time, and since the user is not trained to interpret large sensitivity
estimates.

It is difficult to determine the reliable “common sense” position, which should
be a compromise between these the extreme positions of mathematically rigorous
and sometimes pessimistic nonlocal bounds on one hand and easy to use chopped
local local bounds on the other hand.

3.3 Regularity and linear bounds

As we have discussed, the sensitivity of (numerical) problems is measured by the
size of the perturbations in the solution relative to the size of the perturbations
in the data. The ratio of these quantities characterizes quantitatively the local
sensitivity of the problem. In this subsection we consider the fundamental concepts
of well-posedness and regularity for problems with explicit solution and the closely
related issue of constructing linear perturbation bounds. Some of these results can
be directly extended to problems with implicit solution.

We recall that A C V is an open set and ® : A — X is a given continuous
function, where V and X are finite dimensional real or complex spaces. For fixed
A € A the evaluation of X = &(A) is a problem with explicit solution.

Definition 3.12 A problem X = ®(A), where ® is continuous in an open neigh-
borhood of A, is called well-posed. We also say that ® is well-posed at A. A
problem, or a function, which is not well-posed at certain A is said to be ill-posed
at A.

The family of problems A — ®(A4) is well-posed if ¢ is continuous on the set
A (we also say that ® is well-posed on A).

The concept of well-posedness is somehow trivial for problems with explicit
solution, since it simply means continuity. However, this concept is much more
involved for problems with implicit solution, see Chapter 4.

It is instructive to see what ill-posedness means. The function @ is not well-
posed on A if it is ill-posed for at least one A € A. If the function ®, defined
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on an open neighborhood of certain A, is ill-posed at A, then one of the following
situations may happen:

— The function ® is discontinuous at A. This means that either the limit
limp_, 4 ®(B) does not exist, or it exists but is different from the value ®(4). A
classification of points of discontinuity will not be discussed here.

— The function & is continuous at A but for any £ > 0, there exists a data B
with ||A — B|| < ¢ such that ® is discontinuous at B. This means that A is an
isolated point of the set of points of continuity of ®. There even exists a function
® which is arbitrary times differentiable at A but discontinuous at every point
B # A, see Examples 3.14 and 3.15 below.

For ill-posed problems little can be said about the quantitative dependence of
the perturbations in the solution on the perturbations in the data.

Definition 3.13 A problem X = ®(A) is said to be regular if it is well-posed and
the ratio ||6.X]|/||0A| is uniformly bounded for §4 — 0. If a problem is not regular
it is called singular.

Regularity means that there exist positive constants o and 3 such that ||§X|| <
BlI6A|l for all §A with ||6A|| < a. Also, a regular problem is well-posed but, of
course, a well-posed problem may not be regular.

A terminology remark. There is no unified terminology in the field of perturba-
tion analysis. Here we have adopted terminology close to the Hadamard definition
of posedness in functional analysis, see [44]. Sometimes problems, which we have
just referred to as “regular” or “singular”, are called in the literature “well-posed”
or “ill-posed”, respectively.

We will now return to condition numbers. Recall the Definition 2.2. the
absolute condition number of a problem X = ®(A). If a problem X = ®(A), with
® a continuous function in an open neighborhood of A4, is not regular because the
ratio ||6.X1|/||6All is not bounded for 64 — 0, we set K(A) = oo. Thus, for every
continuous function ® : A — X, relation (2.3) defines the function K : A — [0, 00]
from A to the extended real axis [0, o).

The absolute condition number is always well defined for well-posed problems.
Indeed, consider a regular problem X = ®(A) and set

1¥(A, B

K%(A’*:S“p{ E

1
: 0, ||F| <-—
B0 IBI< |
forn =1,2,.... We have 0 < K,;+1(A) < K,(A) < oo and hence, the sequence
{K,(A)} is nonincreasing. Since it is also bounded from below, it is convergent
to some nonnegative finite value K(A).
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We may determine the quantity K (A) even for an arbitrary function @, defined
in an open neighborhood of A. In this case the inequality K(A) < oo alone does not
imply regularity of the problem X = ®(A). It only guarantees that @ is continuous
at the point A but not necessarily in a neighborhood of A, see Example 3.14.

Example 3.14 Consider the function ¢ : R — R defined as

[ a if aeR\Q
S0(“)‘{0 if acQ,

where Q is the set of rational numbers. We have ¢(0) = 0 and for a = 0 the
perturbation function is ¢(0, e) = ¢(e). The function ¢ is continuous at 0 and the
function 4 is continuous at (0,0). In addition, the absolute condition number for
a =0 is K(0) = 1. However, the problem x = y(a) is singular at every a. Indeed,
the function ¢ is discontinuous at every point a # 0 and the problem can not be
regular at a # 0. Furthermore, the function ¢ is continuous only at a = 0 and
hence, it is not continuous in any open interval containing 0, i.e., the problem is
singular everywhere. {

In the next example we show that for every integer m > 1 there exists a function ¢,
defined on R, which is m times differentiable at a given point and is discontinuous
elsewhere.

Example 3.15 Let the function ¢ : R — R be defined via

_f a™ if aeR\Q
‘p(“)_{ 0 if acQ

This function is m times differentiable at 0 with *)(0) = 0 for k = 0,1,...,m.
At the same time ¢ is discontinuous at every point a # 0. The absolute condition
number at a = 0 is zero in this case. {

If the Fréchet derivative ®'(A) (see Appendix A and [188]) of the function ®
at the point A exists, then the absolute condition number may be computed as

K(4) = @' (A)]- (3.2)
Here the norm ||®'(A)|| of the linear operator ®'(A) : A — X is defined as
12" (A)|| := max {[|®"(A)(E) : | Ell = 1}

Note that ®’(A) depends on A as a parameter. Thus, ®'(A)(FE) is the image of
E € A under the action of the linear mapping ®'(4): A — X.

When we consider the vectorizations (2.8) and ¢ = vec o ® then the linear
operator ¢’(a) is identified with the N x M Jacobi matrix

B%(a)] [&p(a) Bw(a)]

da, Ba; ' Bay

¢'(a) = [
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of the vector function ¢ = [p1,...,on]T, evaluated at the point a = [ay,...,an] ",
where ¢; and a; are the components of the function ¢ and the argument a, and
N =mn, M =mny + -+ mpn,.

Example 3.16 Consider the function ® : F™*"™ — F™*"  defined by
O(A) = AC1A + CLA + AC5 + Cy,

where C; € F"*™ C, € F™X™ (3 € F**", Cy € F™*™ are given matrix coeffi-
cients. Then the linear operator ®'(A) : F™*” — F™*" is determined as

' (A)E) = (Cy+ ACH)E + E(C;3 + C1 A).
Setting a = vec(A) € F™*, A = vec™1(a), = vec(X) € F™, ¢ = veco ® and
using the Kronecker product (Appendix C), we obtain
¢'(a) = I, ® (Ca + vec ! (a)C1) + (C5 + C’lvec_l(a))T ® Iy,
¢

It may happen that the Fréchet derivatives of ¢ at some points from A do not
exist although the problem A — ®(A) is regular for all data A € A.

Example 3.17 The function a — ¢(a) := ||a||, @ € RM, is not differentiable at
a = 0 but the corresponding problem z = ¢(a) is regular with K(a) = 1 for all
a€R™ O

For regular problems we may derive component-wise bounds as follows. Con-
sider a problem in vector form z = ¢(a), where z has size n and a is size m. If the
Fréchet derivative ¢'(a) exists and is locally bounded, then for some 0 < p € R"
we have

le(a + 6a) — p(a)| = L{a, p)|dal (3.3)
for all da with [da| < p, where L(a,p) = [Lj(a,p)] € R}*™ is a matrix with
elements

O¢i
lij(a,p) = max{|-—(a+e)|:le| 2p;.
8aj

Note that even if the Fréchet derivative does not exist, then the bound (3.3) is
still valid with

Li;(a, p) := max{|es;(a + €)| : le] <X p},

where
©;;(a) == lim sup (et 2¢;) = i) 1z #£0, |2 £ a}
a—0 |z|
and ey, ..., en are the columns of the identity matrix I,,,.

There is a deep connection between differentiability and regularity as described
next. It follows from the definition of regularity that the problem X = ®(A) is
regular if and only if the function ® is locally Lipschitz continuous.
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Definition 3.18 A function ® is locally Lipschitz continuous at the point A if
16X = [[¥(A,5A)|| < L(A, ) |6A|, 16A]| < o (3.4)
for all o € [0, ap) and some ap = ap(A4) > 0. Here

1¥(A, B)l

L(A a):= sup{ TE] :E#£0, |E| Sa} < 00

1s the Lipschitz constant of ® in the closed a-neighborhood of A.

Since L(A,a) > 0 is nondecreasing in a > 0, we see that K(A) < L(A4, o) and

lim L(4,0) = K(A). (3.5)

The connection between local Lipschitz continuity and local differentiability is
revealed by the theorem of Rademacher.

Theorem 3.19 If the function ® is Lipschitz in a neighborhood Na of A then it
is almost everywhere Fréchet differentiable in N4.

Thus, differentiability implies regularity, while regularity implies differentiability
almost everywhere.

It is important to observe that the bound (3.4) is linear but nonlocal. Such
bounds are of special interest in perturbation theory. Note that not only may
K(A) be obtained from L{A,«) via (3.5), but also vice versa. A nonlocal bound
(3.4) may be constructed using the absolute condition number K via the relation

L(A,a) :=sup{K(A+E):||E| <a}. (3.6)

To utilize (3.6) for a differentiable function ¢ = veco ® in a = vec(A) one may use

the property that
_ Opi(a)
k=%

Example 3.20 Consider the problem of computing the power ®(A) := AP of the
square matrix A € F**" where p > 0 is a positive integer. Then ® is locally
Lipschitz continuous for all A, and

-1

L(A,a) _ (”A” + a - ”AH Z < )“A”kap-l—k'
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Example 3.21 Consider the problem ®(4) := A, defined on the set of nonsin-
gular matrices. The function @ is locally Lipschitz continuous. Let £ € F**™ be
any matrix with ||E| < ag := [|[A™!||~1. Using the representation
V(AE) = (A+E)t-471
= —AT'EAT 4+ (AT'E (I, + ATIE) AT,

we obtain

1 a?
L(A,a):?<1+ a>,0§a<a0.
0 ap —

Regularity (or local Lipschitz continuity) is a desirable property of problems,
especially when they are solved in finite precision arithmetic. However, there are
problems for which the function ® grows (locally) faster than any linear function.
To deal with such problems we introduce the concept of Holder continuity.

Definition 3.22 The problem X = ®(A) is said to be locally Hélder continuous
if there exist quantities ap(A) > 0, y(A) > 0 and H(A, a) > 0 such that

16X ) < H(A, a)lBA|"™D, ||6A]| < a

for all a € [0, (A)). Here H(A, a) and y(A) are the Holder constant and Holder
exponent of ® in the closed a-neighborhood of A.

If the function ® is Hoélder continuous at A with an exponent v(A)} > 1, then
it is in fact Lipschitz continuous as well. Indeed, for v(A) = 1 this holds by
definition. Suppose that v(A) > 1. Then for | E|| < a we have

(A, B)| < H(A, o)l E|"™ < L(4,0)| B

with L(A4,a) := a"W~1H(A, a).
Functions which are Holder continuous with v(A) < 1 grow faster than any
Lipschitz continuous function in a neighborhood of A.

Example 3.23 The scalar problem z = |a|™, where 0 < ¥ < 1, is Hélder con-
tinuous at @ = 0 with constant 1 and exponent y(0) = vp. ¢

Example 3.24 The problem of computing a multiple root x of an algebraic equa-
tion is Holder continuous with exponent 1/k, where k > 1 is the multiplicity of z.

o

Example 3.25 The problem of computing a multiple eigenvalue A of a square
matrix, corresponding to nonlinear elementary divisors, is Hélder continuous with
exponent 1/k, where k > 1 is the size of the largest block with eigenvalue X in the
Jordan canonical form of the matrix.
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According to the definition of regularity, a Hélder continuous problem X =
®(A) with constant v(A) < 1 is singular. But there are also singular problems
which are not even Holder continuous, since the function ® grows (locally) faster
than any power function.

Example 3.26 The scalar real function ¢ : (—1,1) — R, defined as

| —sign(a)/Inla] if O0<|a| <1
pla)i= { 0 if a=0

is not Holder continuous at a = 0. Note that the inverse function ¢~! : R —
(—1,1), defined via

- | sign(z)/exp(—~1/]z|) if #0
() _{ 0 if z=0

is infinitely differentiable everywhere and extremely “flat” at the origin. It is
analytic (i.e., representable by its Taylor series) for z # 0 but not for z = 0.
Indeed, all derivatives of ¢~ ! vanish at £ = 0. Hence, the Taylor series of p~!
at £ = 0 is identically zero and is thus different from ¢~! on any open interval,

containing 0.

For a regular problem X = ®(A) we have the asymptotic bound
16X < K(A)|I6A]| + o(||6A])), 6A — 0, (3.7

where o(z)/z — 0 for z — 0 and the o-term is typically of the form O(||6A|?),
d0A — 0. Neglecting the o-term, it would be good if the inequality

10X < K(A)||6A] (3.8)

would hold, but unfortunately it does not hold in general for nonlinear problems.
First, it may not be true for large ||§A]]. Second, if it holds for some small ||§A|,
there is no indication for the size of ||§A|| (it may well happen that (3.8) is valid
only for 4 = 0 or under some special assumptions on §4). At the same time a
true bound is for instance the inequality

16X < L(A, ) || 6 A

which is rigorously valid for all A with ||§A|| < a. However, while K (A) is usually
easily computable, it is much more difficult to calculate or estimate L({A, c).

In the following examples we study the validity of linear bounds for small finite
perturbations in scalar problems.
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Example 3.27 Consider the scalar problem z = @(a), where ¢ : R — R is ana-
lytic at a. Suppose that ¢(a) # 0 and that ©(*)(a) is the first nonzero derivative
of p at @ with k > 1. Then we have

|6z| = |dal |¢'(a) + ‘p(kk),(a) (60)*1| + O(la|*+Y), da — 0.

Hence, the bound (3.8) will be valid for all da in a certain small neighborhood if
and only if k is odd and ¢'(a)p*)(a) < 0. This in particular implies k£ > 3 and
thus, a is an inflection point and (3.8) is not valid generically. $

Example 3.28 Consider the scalar function a — ¢(a) = a? in a neighborhood of

a = 0. Since ¢’(0) = 0, then (3.8) yields |dz| = 0. Since in fact 0z = (6a)?, we see
that the bound (3.8) is valid only for §a = 0.

Examples 3.27 and 3.28 show that inequality (3.8) is generically not valid for
all 04 in an open neighborhood of the origin.

To avoid this delicate situation of a bound-that-may-be-violated, we proceed
as follows. We introduce the special symbol < to denote an inequality within first
order terms of magnitude, i.e.,

al g (3.9)
is equivalent to
a<fB+0o(F), 8- +0. (3.10)

We use (3.9) instead of (3.10) because in practice we do not deal with limiting pro-
cesses (3 — -0, but rather with finite (although possibly small) positive quantities
(3. With this notation we may write

86X ~ K(A)|SA] (3.11)

which is a linear local estimate, i.e., it should be used in a small neighborhood
of A. We again stress that in contrast to (3.11), the estimate (3.4) is linear but
nonlocal.

Linear local estimates of the form (3.11) are widely used in computational
practice in the chopped form (3.8) which typically produces acceptable results.
However, the bound (3.8) may severely underestimate the actual perturbation
16X (. Indeed, consider the simple case of a scalar real function ¢, having contin-
uous second derivative on a given interval. If the second derivative of ¢ is small,
the bound (3.8) will give satisfactory results. But if the second derivative of ¢ is
large, there may be a serious underestimation of the actual perturbation.

Example 3.29 Let

1
— p(a) = ——— g < 1000000.9999999.
z=(0)= Tomoor—a’ ¢ =
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For a = 1000000 we have z =1 and ¢'(a) = 1. Therefore, if a = 0.999999, then
the estimate (3.8) gives

—Q

while the actual perturbation is

bz = ba _ %% _ 999999
(1000001 — a) (1000001 —a —da)] 1-0a

i.e., we have an underestimation by a factor 10°. Note that here ¢”{(a) = 2 and
the error is not due to the size of the second derivative, but rather to the fact that
the remainder R{a,da) in the Taylor formula

bz = p(a + 8a) — p(a) = ¢'(a)da + R{a,da)

is large (in fact R(a, da) = 999 998.000001).
This example is actually not too artificial, since the relative perturbation in a
is less than 10~6. ¢

Recalling the definition of relative condition number x(A) (see Definition 2.3),
we have for the relative perturbations px and p4 the relationship

px < kK(A)pa+o(pa), pa—0

and hence,
px ~ k(A)pa (3.12)

is the linear local perturbation bound.

In the definition of the relative condition number, the assumptions X # 0 and
A # 0 may be too restrictive when we study the local sensitivity of a problem
and one of the following three conditions holds (i) K(A4) = oo, (ii) 4 = 0 or (iii)
®(A) = 0. A typical example here is the evaluation of the function a — a7 : R, —
R, , where v € (0,1) is a parameter, at the point a = 0. Here all three conditions
(i), (ii), (iii) hold. In such a situation, a generalization of the relative condition
number may be introduced as follows. For A € A set

E1(A) = {EcA:K(A+E)<oo}, &(A):={-A},
&(A) = {EcA:®(A+E)#0}
and
E(A) =& (A)U&E(A)UE(A).
Definition 3.30 The limit (finite or infinite)

K(A+ E)|A+ E|
12(A + E)|

k(A) = ii_}rrhsup{ :E e &(A), |Ell < a} (3.13)

is called a generalized relative condition number of the problem X = ®(A4).
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When none of the conditions (i), (ii), (iil) holds, then the generalized relative
condition number is the standard relative condition number of the problem.

Definition 3.31 A problem X = ®(A) is called R-regular if its generalized rela-
tive condition number is finite.

Example 3.32 The continuous function a — a” : Ry — Ry, where v € (0,1),
is singular at @ = 0, since K(0) = co. At the same time the generalized relative
condition number exists for all @ > 0 and is equal to v.

If the data A is represented as in (2.4), then the local linear bound in terms of
absolute perturbations has the form

16X )| = Ka (A))6A| = K(A)]sAl, (3.14)
i=1
where

K(A) :=[Ka,(A),...,Ka,(A)] € RI*"

is now the vector absolute condition number and K 4,(A) is the individual absolute
condition number with respect to A;. If A; # 0, then an estimate in terms of
relative perturbations is straightforward,

Sx ~ > K (A)ba, = K(A)da, (3.15)
i=1
where
£, (A)]| Al Ka, (A)I 4 1x
K A = 1 ge ey S R T?
W o= | IX] +
S A;

b4 = [(5,417 .. .,5A1_]T S R:, 5,41. = ””AH“

Here x(A) is the vector relative condition number and k4,(A) is the individual
relative condition number with respect to A;.

The accuracy of condition number based perturbation bounds depends strongly
on the structure of the data, as shown in the next example.

Example 3.33 Consider the problem
-
= Ma; + Msay = Ma, M := [Ml, MQ], a:= [alT, a;] s

where the data a1, a3 and the result x are finite-dimensional vectors, and My, My, M
are matrices of compatible dimensions. Then

0x = Midaq + Mjybas = Mia.
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Hence, in 2-norm the bound
16| < [| M1 [I6as]| + || Mz]| [|6az|| (3.16)
based on condition numbers is valid. We also have the bound
16z < M {1dall = M]lv/lldar]l* + [|da2|(>. (3.17)

Which bound is better depends on the data. If das # 0 and | M|} > ||M1]}, then a
simple computation shows that the bound (3.17) is better than (3.16) if and only

if
mime — \/m# +m2 — 1 < 16| _ mamg + vVmi+mi -1
1—mi lidazl 1-mi

where m; := [[M;||/{|M||. At the same time, we have a third bound [140]

[6z]| < \/I|M1I|2ll<5a1ll2 + 2| M Molldar|[1dazll + (| M2*[lda21?,

which is always better than (or equal to) the condition number based bound (3.16)
since {|M{'Ma|| < [|My ||| Ma]. &

Often it is preferable to have a single overall condition number for a given
problem even when the data are naturally presented in the form (2.4). Suppose
that the problem is regular and ||6A4;|| < ¢||A;||, where € > 0 is a small constant.
Then

px N er(A),

where
-

w(A) = 3 ki(A)
i=1
is the overall relative condition number of the problem.

The overall relative condition number x*(A), together with the rounding unit
eps of the finite precision arithmetic, is among the main factors of determining the
accuracy of the solution. The relative condition number itself may be considered as
“large” or “small” only within a particular computing environment. In particular,
in finite precision arithmetic we have the following heuristic concepts.

A regular problem (@, A) is considered as well-conditioned if the quantity <*(A)
is small, and ill-conditioned if it is large in the context of the finite precision
arithmetic with rounding unit eps, used to solve the problem. Usually the problem
is considered as very well-conditioned if k*(A) ~ 1 and as very ill-conditioned if
epsk*(A) = 1.

The solution of very ill-conditioned problems in finite precision arithmetic may
lead to a result with no correct digits. More generally, the following heuristic rule
of thumb is often used in practice. If epsx*(A) < 1, then about (or no more than)

—log,o (epsx™(4)) (3.18)

correct decimal digits may be expected in the computed solution.
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Example 3.34 The relative condition number of the problem z = @(a) # 0 of
evaluating a differentiable scalar function ¢ at the point a # 0 is

e (@)
@)= To@)

Hence, x(a) may be large, and the problem may be very ill-conditioned, if |a| or
|¢'(a)] is large and/or |p(a)| is small. If p(a) = sina, then the computational
problem is ill-conditioned for arguments a with large absolute values and/or close
to an integer multiple of 7. {

A generalization of the concept of regularity of single problems to families of
problems is the following.

Definition 3.35 A family of computational problems A — ®(A) is said to be
regular if the function ® : A — X is continuous and the quantity

K(A) :=sup{K(A): Ae A}

1s finite. Here K(A) is the absolute condition number of the family of problems
X = ®(A), parametrized by the data A € A.

Hence, a family of regular problems is regular if the set of absolute condition
numbers of its members is bounded.

A relative condition number for a family of problems is defined in a similar
way.

Definition 3.36 A family of computational problems A — ®(A) is said to be
R-regular if the function ® : A — X is continuous and the quantity

k(A) :=sup{k(4) : A € A\{0}, B(A) #0}

s finite. The quantity x(A) is the relative condition number of the family of
problems X = ®(A), parametrized by the data A € A.

It is interesting to note that a family which is R-regular may have members
that are not regular.

A family of problems A — ®(A) with ® being a continuous function may be
neither regular nor R-regular. In turn, regularity does not imply R-regularity and
vice versa as shown in the next examples.

Example 3.37 For the family of problems a — a™, a € R, where m > 0 is a
parameter, the absolute and relative condition numbers are K(a) = m|a]™~! and
k(a) = m, respectively. (The values of K for a = 0, m < 1, and of & for a = 0, are
not defined.) Thus, the family is R-regular for all m > 0. At the same time the
problem is not regular at a = 0if m < 1. &
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Example 3.38 The family of problems a — sina, a € [0,27) is regular with
absolute condition number equal to 1, but is not R-regular because its relative
condition numbers are not finite at a =0 and a = 7. {

Example 3.39 The problem A — A~! of inverting a square matrix is not R-
regular on the set of all invertible matrices, since the relative condition number
cond(A4) = || A]| |A~ || of the matrix A with respect to inversion is not uniformly
bounded on that set. {

Example 3.40 Let a,z € F* and x = ¢(a) := Ma, where M € F™*™ is a given
nonsingular matrix. Then K (a) = ||M|| and the relative condition number is

M| el

@) = Tl

The relative condition number with respect to the whole space F™ is

[M]l{laf .

") = sup {W -

ac ]F"} = cond(M).

&

3.4 Nonlocal bounds

The linear local sensitivity bounds (3.11), (3.12) may underestimate the true size
of the perturbation, since they are valid only in a (usually small) asymptotic
domain which is not known in practice. But in real applications perturbations in
the data are always finite, of nonzero size. Hence, without a rigorous bound on the
neglected higher order o-terms in the corresponding expressions, the use of local
bounds may lead to erroneous conclusions. Thus, the use of local estimates for
practical purposes remains, at least theoretically, unjustified unless an additional
analysis of the neglected terms is made. But to obtain bounds for the neglected
nonlinear terms means to find a nonlinear perturbation bound.

Sometimes it is possible to derive linear nonlocal perturbation bounds which
do not underestimate the actual perturbation in the solution. The problem of the
accuracy and the domain of applicability of such bounds, however, still remains
open. It must be stressed that the behavior of the true perturbation is inherently
strongly nonlinear even for simplest linear equations, see Section 3.5.

The disadvantages of local estimates may be overcome by using the technique
of nonlinear perturbation analysis (Section 8), which has two main purposes: first,
to show that a solution of the perturbed problem exists for a given range of per-
turbations, and second, to find a nonlocal (and in general nonlinear) perturbation
bound of the form

16X < p(IGA]), 64l < e, (3.19)
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where o > 0 and p : [0,a] — R, is a nondecreasing function with p(0) = 0. (We
use the term “perturbation bound” for both the function p and the inequality
(3.19).)

For the representation (2.4) the nonlinear bound has the form

16X < p(5AN), lI6A]l € &, (3.20)

where Q C R, is a closed set and p is a function of r arguments, nondecreasing in
each of them, and satisfying p(0) = 0.
When matrix absolute values are used for A and X, we have

I6X| < P(|6A]), |6A] €T, (3.21)

where I' C V. is a closed set. The elements of the matrix-valued function P : T —
R"™™ have the properties of the function p in (3.20).

An important property of the nonlocal bounds is that they are valid rigorously
in the corresponding domains for ||§A[|, [|6A[ or |6A], in contrast to the chopped
first order local estimates, where higher order terms are neglected.

A desirable property of a perturbation bound is to be unimprovable.

Definition 3.41 The perturbation bound (3.19) is said to be unimprovable rel-
atiwe to the set of data A if for any positive n < 1 there exist A € A and JA
with A+ 6A € A and ||6A|| < «, such that the true perturbation 6X satisfies
16X = np(lldAll).

Thus, an unimprovable bound is almost or exactly reached for some data (take
n close to 1). Similar definitions apply also for the bounds (3.20) and (3.21). The
concept of unimprovability is close to that of almost necessity, see e.g., [135]. Of
course, an unimprovable estimate may as well give pessimistic results for other
data and/or data perturbations.

A detailed study of the properties of perturbation bounds is presented in Chap-
ter 7.

3.5 Case study

Consider the scalar equation a,x = ay, where a1ay # 0, and let éa; be perturba-
tions in the data a; satisfying da; # —a;. This equation is reduced to an explicit
problem
az
(a1,a2) —» z = —. (3.22)
ay
Although being quite simple, problem (3.22) reveals some important issues in
perturbation analysis. We have

_ day — xzda

ox
a1 + day
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and
(5_113 - 6a2/a2 - 5a1/a1

T 1+ da1/aq

Thus, §z exposes highly nonlinear behavior in a neighborhood of the vertical line

da1 = —ay in the plane of perturbations dai,das. Setting
oz | day
Pz == Pa; ‘= a
we get
. < M (3.23)
1- Pay

This is a nonlinear nonlocal bound with domain of applicability 0 < p,, < 1. The
estimate (3.23) is unimprovable. If we set
~ |6x|

Pz = |l‘+(5.’l:|

then for 0 < p,,, pa, < 1 we get another unimprovable nonlinear bound as

~ Pa; t Pas
po < Lor Pz
) 1_Pa2

The relative condition numbers with respect to a; and ay are both equal to 1.
Thus, the local linear estimate is

Pz ~ Pay + Pay (3.24)

and it underestimates the true perturbation arbitrarily for éa; approaching —a;.
Take for instance a; = az = 1, da; = —0.999999 and das = 0. Then the true
relative perturbation is p, = 999 999, while the local estimate (3.24) gives p, NEEY

In addition, the linear estimate formally can be written down also for day = —a;.
Here the perturbed equation 0z = as + day either has no solution (if dag # —ag)
or has infinitely many solutions (if da; = —a3). In the first case the resulting

. <
estimate p; ~ 1 + pq, makes no sense.

To find a linear nonlocal estimate, we suppose that p,, is allowed to vary only
in the interval [0,1 — p], where p < 1 is a positive constant. Then

1 1
S__
1—=pa, ~ p

and

1
Pz < ;(pal +pa2)a 0<po, £1—p
Taking 1 = 0.5 we obtain the linear nonlocal estimate

Pz < 2(pay + Pay)s 0 < pay <0.5.
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3.6 Notes and references

Properties of problems with explicit solution have been considered in [134, 135]. In
particular, the concept of perturbation function (Section 3.2) has been introduced
therein.

Condition numbers for various types of problems have been considered in [188,
89]. Condition estimators are discussed in [38, 121, 166].

Condition numbers for complex functions which are not Fréchet differentiable
but have Fréchet pseudoderivatives are analyzed in {140, 145, 137, 127].



Chapter 4

Problems with implicit
solutions

4.1 Introductory remarks

The general considerations made in Chapters 2 and 3 are applicable to problems
with explicit or implicit solutions. However, problems with implicit solution (e.g.,
solving equations) have many special features which are better considered in a
specific framework.

4.2 Posedness and regularity
Consider a problem formulated in terms of the equation
F(A,X)=0 (4.1)

relative to the unknown quantity X € X = F**™ where A € V is a parameter and
the set V is defined by (2.4). Here F : D — FP*? is a given continuous function,
and D C V x X is a domain, i.e., an open and connected set.

Equation (4.1) gives rise to several global and local objects. One global object
is the set of all pairs (A, X) for which (4.1) holds. This is a manifold P C D in
V x X of generic dimension dim(V) 4+ mn — pg (for manifolds For a fixed A we also
have (locally) the set =(A) C X of all solutions X of (4.1) corresponding to this
particular value of A. A particular solution X € Z(A) may or may not depend
continuously on the data. A rigorous definition of these concepts follows below.

Denote by

Dy :={A:(A4,X)eD}CV (4.2)

51



52 CHAPTER 4. PROBLEMS WITH IMPLICIT SOLUTIONS

the projection of D on V which in this case is also a domain. Let
P={(A,X)eD:F(AX)=0}CD (4.3)

be the set of all pairs (A4, X) from D satisfying (4.1). Thus, P is a variety of generic
dimension dim(P) = dim(V) + mn — pq and we assume that P # (. Let finally

A={A:(A,X)eP}CDy

be the set of all A from Dy, for which equation (4.1) is solvable. In view of the
assumption that P is nonempty, the set A is also nonempty. However, even if the
set Dy is easily definable, to determine the set A may be difficult.

The unknown matrix X is defined as an implicit function A — X via equation
(4.1), see [173] and Appendix A for the implicit function theorem.

To avoid trivial results we assume that for every A € A the FP*%-valued func-
tions X — F(A, X), defined on open subsets of X, are not identically zero.

When real nonlinear algebraic matrix equations (polynomial or rational equa-
tions in particular) are considered, it is necessary to deal with the fact that the
field R of real numbers is not algebraically closed, i.e., that polynomial equations
with real coefficients such as z2 + 1 = 0 may not have real solutions. In this case
the matrix F(A, X) is real, provided that X and A are also real, but we usually
admit complex solutions X as well. This formally corresponds to the case when V
is a linear space over R while X € C™*™ and F(A, X) € CP*9 are complex matri-
ces. Thus, real problems are naturally imbedded in a complex environment which
provides some nice algebraic and geometric properties. In particular an algebraic
equation of n-th degree in such an environment has always n roots counted with
multiplicity.

In what follows we denote by (F,.A) the family of problems A — X defined via
(4.1) when A varies over A. For a fixed A € A denote by

E(A) ={XeX:(4,X)eDand F(A X) =0}

the solution set of equation (4.1), which is the set of all X, satisfying (4.1). Thus,
=(A) C X is the V-section of theset PC D CV x X.

We can also define Z(A) for all A from the set Dy, and set Z(4) = § if A €
Dy\A. Thus, the corresponding problem may be defined via the multi-valued
mapping

A—EA)cXx, Ae A

In many problems we are interested in solutions of (4.1) which are matrices of
a special form (e.g. symmetric or Hermitian solutions when m = n). Suppose that
Xo C & is a given set. Then we may define the subset Ay C A of data A which
gives rise to solutions X € Ap,

Ao :={A € A:Z(A)N X, # 0}
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An interesting phenomenon may be observed for some equations of type (4.1),
namely that the solution set does not effectively depend on A as in the next two
examples.

Example 4.1 Let F(A, X) be a matrix, which may be written as a product
Fi1(A)F2(X)F3(A), where the matrices Fi(A) and F3(A) are nonsingular for all
A € Dy. Then equation (4.1) is equivalent to the equation F5(X) = 0 which does
not depend on A. $

Example 4.2 Let z1,z2 € F be two distinct numbers and ¢ : F — {z1,z2} be a
surjective (and hence discontinuous) function. Then the solutions of the equation

(z - 21)(z - 22)(@ — (@) = 0, a c F

are z1, 72 and therefore, the solution set Z(a) = {z1,z2} does not change with a.

o

In Example 4.2 the left-hand side of the equation is not continuous. We will
not consider this case in detail. However, it was included to show that even in
such cases the solution set may look nice.

To avoid trivial results we will make another assumption in order to exclude
cases in which equation (4.1) does not depend effectively on the parameter A.

In what follows we assume that there exist at least two parameters A, B € A
such that =(A) # =(B). This means that equation (4.1) depends on the parameter
A effectively.

The above assumptions guarantee that, for some value of A, equation (4.1)
has a solution set Z(A) which is a nontrivial subset of X, i.e., E(A) # 0 and
Z(A) # X. Moreover, the solution set depends nontrivially on 4 in the sense that
Z(A) changes along with A.

Instead of solving the global problem to determine Z(A) when Z(A) contains
more than one element, often it is necessary to consider only a particular solution
X € E(A) of equation (4.1). We are especially interested in solutions which depend
continuously on the data in a certain neighborhood of a given nominal data A from

A.

Definition 4.3 The equation (4.1) is said to be well-posed at A if there exist
a neighborhood (not necessarily open) A4 C A of A and a continuous function
®: Ny — X such that F(B,®(B)) = 0 for all B € N4.

Thus, a well-posed equation has at least one solution X := ®(A4) which depends
continuously on the data in a neighborhood of A.

Even if the equation is well-posed at A it may have a solution Xe E(A) for
which (A, X ) is an isolated point of the set P, defined in (4.3). In this case there
is no continuous function @, defined in a neighborhood of A such that X = <I)(A)
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Thus, a well-posed equation may have solutions which do not depend continuously
on the data on neighborhoods of a given nominal value of A. The last clarification is
essential, since a function is continuous by definition at the isolated points (if any)
of its domain. In fact, well-posedness just means that at least one solution (but
not necessarily all solutions) depends continuously on the data. The dependence
of the solutions on the data may be a subtle problem even for simple equations.

Example 4.4 Consider the scalar equation in F
(z —a—1)(|z| + |al) = 0.

The solution set Z(a) here is a single-element set {a+1} if a # 0 and a two-element
set {1,0} if a = 0. The set P in (4.3) consists of the straight line {(a,a +1):a €
F} C F? and the isolated point (0,0) € F2. Hence, the equation is well-posed at
any a, since we have the solution £ = a + 1, depending continuously on a. For
a = 0 we also have the solution 0 € Z(0), which does not depend continously on the
data. At the same time for a = —1 the solution 0 € =(—1) depends continuously
ona. $

Definition 4.5 For A € A denote by 2(A) the set of all X-valued functions @,
defined in a neighborhood N4 C A of A and satisfying F(B,®(B)) = 0 for all
B € N 4. The set of continuous functions from Q(A) is denoted by Q.(A). The
elements of (2(A) are called solution functions of equation (4.1).

We are interested mainly in continuous solution functions, although discontin-
uous ones may also be of theoretical and practical interest. It must be stressed
that equations of type (4.1) with I continuous may have discontinuous solution
functions, and an equation with F discontinuous may have continuous solution
functions. In fact, if an equation has two or more solution functions (continuous
or not) it has also infinitely many discontinuous solution functions, see Exam-
ple 4.7. This is based on the following observation. Let the function A — ®(A)
be discontinuous and the function (4, X) — F(A4, X) be continuous. Then the
function A +— F(A, ®(A)) may be continuous (the constant zero function in par-
ticular). For example, a function (4, X) — Fy(A, X)F2(4, X) may be continuous
even if the matrix valued functions (4, X) — F;(A, X) are not.

Example 4.6 If the function ¢ : F x F — {—1,1} is surjective then it is dis-
continuous at least at one point of its domain (and may as well be discontinuous
everywhere). At the same time a — ¢?(a) is the constant function, equal to 1,
which is of course continuouson F x F. &

Example 4.7 Consider the scalar equation

fla,z) := (2 — ¢1(a))(z — ¥2(a)) = 0,
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where ¢1,p2 : F — [F are given distinct functions which in this case are also
solution functions. Let F; and Fy be any two nontrivial subsets of F such that
F =F,;UF; and F; NFy = §. We may construct a new solution function ¢ : F — F
by the rule p(a) = @;(a) if a € F;. Then we have the following observations.

o The solution function ¢ is discontinuous. By a suitable choice of the sets F; it
is possible to make ¢ discontinous at any point a € F, where ¢;(a) # p2(a).
(Take for example F; as the set of all a € F with |a| € Q.)

e If ¢, is continuous and 3 is not, then f is not continuous. At the same time
we still have the continuous solution function (.

We also need the notion of a path in the set A x X. Let & : Ny — X be any
function (for a moment we do not suppose that the function ® is continuous nor
that it is a solution function of equation (4.1)), defined in a neighborhood N4 of
Ac Aandlet X := ®(A).

Definition 4.8 A path through the point (A4, X) € Ax X is the graph of ®, which
is the set

T(®) = {(A,®(4)): A€ Na} C AX X.

The path I'(®) is continuous at (A, X) if the function ® is continuous at A. The
path is continuous on N4 if ® is continuous on N4, and smooth on N4 if @ is
Fréchet differentiable on N4, see Appendix A. If ® € (A) then the path T'(®) is
a solution path of equation (4.1).

Together with the concept of well-posedness of an equation for a given data,
we will introduce the notion of well-posedness for a particular solution.

Definition 4.9 A solution X € Z(A) of F(A,X) = 0 is said to be well-posed if
X = ®(A) for some & € Q.(A). If the solution X € Z(A) is well-posed then every
® € Q.(A) with ®(A4) = X is referred to as a supporting function of this solution.

In other words, the solution X is well-posed if (A4, X) lies on a certain contin-
uous solution path. According to the definitions above, this continuous path may
not be locally unique.

Example 4.10 The scalar equation z2 — a? = 0 is well-posed at every a € F, and
even every solution is well-posed. The solution z = 0, corresponding to a = 0, lies
on two continuous paths, namely {(a,a) : a € F} and {(a, —a) : a € F}, i.e., there
are two supporting functions ¢ = ¢ and x = —a of the zero solution. In the real
case F = R, there are even four suporting functions £ = a, z = —a, z = |a| and
z = —|a| of the zero solution. ¢
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A solution X € Z(A) (well-posed or not) may lie on a path in A x X which is
discontinuous at (A, X) or even everywhere in a neighborhood of (4, X). Also, the
solution X may lie on a path which is continuous at (A4, X) but is discontinuous
elsewhere, see the next example.

Example 4.11 Consider the real scalar equation

(#* + ¢3(a) (= - 91(a))(z — p2(a)) = 0,

where 1,92 : R — R are two distinct differentiable functions and the function
o : R — R is continuous. For every a € R we have the smooth solution functions
1 and @2 and hence, the equation is well-posed. Suppose now that wg(ag) = 0
and that ¢1(ag)p2(ao) # 0 for some a € R. Then zo = 0 is an isolated solution,
since the point (ag,0) does not lie on any solution path.

We also have the solution function ¢, defined by ¢(a) = ¢1(a) if a € Q and
w(a) = po(a) if @ € R\Q. For every a € R such that ¢;(a) # pa(a), there is
an open interval A, > a such that ¢ is discontinous at every point from N,. If
w1(a) = pa(a) for some a € R, then ¢ may be continuous or even differentiable at
a, being discontinuous at every point of the pierced interval M, \{a}. Indeed, we

may choose @2 = 0 and ¢;(a) = a or p1(a) = a®. O

Example 4.12 The scalar complex equation
a1xy +axxs —az =0,

where a = [a1,aq,a3]" € C3 and z = [z1,72] T € C?, is well-posed if and only if
either a1]?+|az|? > 0 or @ = 0. If [a1|2 + |as|? > 0, then there is a one-parametric
family of solutions

aiag aza3

Tl =s—F5 5 +Q22, T = 7—5——— — Q12
el ee T T T P A e MY

where z € C is a parameter. More generally, the linear algebraic equation Mz = b
is well-posed if and only if rank([M, b]) = rank(M), or equivalently, b € Rg(M).
¢

The next problem we study is the uniqueness of the solution.

Definition 4.13 solution X € Z(A) is said to be locally unique if there exists an
open neighborhood Ny of X such that Ny NZ(A) = {X}.

Other equivalent conditions for local uniqueness of the solution are given in the
next proposition.

Proposition 4.14 The solution X € Z(A) is locally unique in the sense of Defi-
nition 4.18 if and only if one of the following three equivalent conditions hold.
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o There exists an open neighborhood N'x of X such that NG NE(A) = 0, where
0 = Nx\{X} is the pierced open neighborhood of X.

o There exists € = (A, X) > 0 such that for every Y € E(A) withY # X the
inequality ||Y — X|| > ¢ holds.

e The solution X is an isolated point of the set Z(A).

Note that for a locally unique solution X € Z(A) (being an isolated point of
Z(A) by necessity) the point (A, X) need not be (and generically is not) an isolated
point of the set P in (4.3). But if (A, X) is an isolated point of P then the solution
X is an isolated point of Z£(A), i.e., it is locally unique.

Solutions that are not locally unique may be characterised as follows.

Proposition 4.15 A solution X € Z(A) is not locally unique if and only if it
s an accumulation point of the set Z(A), i.e., if and only if there is a sequence
{Xn}$° C E(A) such that lim, o = X.

Proof. Indeed, if there is such a sequence, then the solution X cannot be locally
unique, since any open neighborhood of X contains some member of the sequence
and hence, infinitely many such members. Suppose now that X is not locally
unique. Then any open ball, centered at A and of radius 1/n must contain at least
one solution X, € E(A) (otherwise X would be an isolated point of =(A)). Thus,
we have constructed the sequence {X,}$° C E(A) which is convergent to X and
hence, X is an accumulation point of the solution set £(A4). O

In the next example we give an equation such that Z(A) contains a solution X
together with a sequence {X,,}3° which is convergent to X.

Example 4.16 Consider the scalar equation f(a,z) = 0, where f is the differen-
tiable function

— (2 — a)3si T
fla,z) = (z — a) sm(x_a) , T#a
and f(a,a) = 0. The solution set is
E(a) ={a,axl,a+1/2,...,a+1/n,...}
and hence, the solution a € E(a) is not locally unique. ¢

In Example 4.16 the solution set Z(a) is countable (isomorphic to N) with a
single accumulation point a. All other points a + 1/n of Z(a) are isolated.

Another possibility for nonuniqueness of a solution X € Z(A) is when X €
M, where M C EZ(A) is a connected set. All solutions of the equation from
Example 4.12 are of this type. Another example is given below.
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Example 4.17 For a < 3 define the analytic function hq g : R — (—1,1) by

—exp(l/(z—a) if z<a
ha,p(x) = 0 if a<z<p
exp(l/(B—z)) if x>0

The inverse function h;’lﬁ exists and is analytic on (—1,0) U (0,1). Consider the
equation ho g(z) — ¢ = 0. It has a unique solution z = h;}lﬂ(a) for any a €
(=1,0)U(0,1). For a = 0, however, any z € [, (] is a solution, i.e., 2(0) = [, (]

¢

A solution which is locally unique may or may not be well-posed. Since we
are mainly interested in solutions which are simultaneously well-posed and locally
unique, we come to the following definition.

Definition 4.18 The solution X € =(A) is said to be proper if it is well-posed
and locally unique. The solution X € Z(A) is improper if it is not proper.

That the properties well-posedness and local uniqueness are independent is
clear from the next example.

Example 4.19 The solution a € Z(a) from Example 4.16 is well posed but not
locally unique. The solution 0 € Z(0) from Example 4.4 is locally unique but not
well-posed.

We stress that an improper real solution of a real equation may become proper
if we allow complex solutions, thus imbedding the equation in a complex environ-
ment.

Example 4.20 Consider the real scalar equation (z — 1)(z? + a2?) = 0. Here the
set P C R? in (4.3) consists of the straight line {(a,1) : @ € R} C R? and the
isolated point (0,0). The solution set is determined by Z(a) = {1} if @ # 0 and
Z(0) = {1,0}. Hence, the real solution 0 € Z(0) is not proper. If we allow complex
solutions, then we have Z(a) = {1, £1a} and the solution 0 is proper, since it lies

on the paths {(a, t1a) : a € R} ¢ C2.

Below we will also introduce the concept of properness for equations. There
are two alternatives. An equation may be called proper if it has at least one proper
solution, or alternatively, if all its solutions are proper. We prefer the first concept.

Definition 4.21 The equation (4.1) is said to be proper at A € Dy, with Dy as
in (4.2) if there is at least one proper solution X € Z(A). The equation (4.1) is
tmproper at A € A if all solutions X € Z(A) are improper.
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Example 4.22 The algebraic equation from Example 2.7 is proper when at least
one of the coefficients ag,...,a,-1 is nonzero.

The linear algebraic equation Mz = b, where M € F**™ and b € ", is proper
if and only if m = n = rank(M). ¢

Since in fact we may not know A and even Dy, we may as well say that
the equation is improper at A € V if either F(A, X) is not defined (A ¢ Dy),
or F(A,X) is defined but the equation has no solution (i.e., A € Dy\A and
E(A) = 0), or the set =(A) is nonempty (i.e. A € A) but all its elements are
improper.

Example 4.23 The real scalar equation z2 4+ a? = 0 is improper at every a € R.
Indeed, for a # 0 the equation has no solution. For a = 0 the solution is z = 0, but
{0,0) is an isolated point of P and hence, the only solution 0 € Z(0) is improper.

¢

The effects discussed in Example 4.23 are due to the fact that we deal with real
solutions only. If we allow complex solutions then the equation becomes proper
for all @ € R. As a matter of fact, complex algebraic equations are proper at all
A € A. But complex nonalgebraic equations may as well be improper for some
(or all) values of the parameter A.

Example 4.24 The complex scalar (nonalgebraic) equation |z| + |a|] = 0 is solv-
able only for @ = 0 and in this case the only solution is 0 € Z(0). In this case
P C C? is reduced to the single point (0,0) and hence, the equation is improper.

o

So far we have introduced a large number of concepts characterizing the prop-
erties of solution sets and of particular solutions. This variety of properties is
possible, since we have considered equations of type (4.1) in which the function ¥
is continuous (or differentiable, or analytic).

If we restrict ourselves to algebraic equations, in which the function F is al-
gebraic in both its arguments, then the set P will be an algebraic manifold (or
variety) and the number of (possible) properties of the solutions is substantially
reduced. If in particular F = C and the function F is algebraic (polynomial or
fractional-rational in particular) then all solutions X € =(A) will become well-
posed.

We now come to the last and most important concept, which characterizes the
dependence of solutions on parameters.

Definition 4.25 The solution X € E(A) is said to be regular if it is proper and
at least one of its supporting functions @ is Lipschitz continuous. The solution
X € E(A) is singular if it is not regular.
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Regularity means that there are constants a = a(A4) > 0 and L(A,a) > 0, such
that
(®(A+ E) - @A) < LA, E], IE] € a.

Note that if X is a regular solution then some of its supporting continuous functions
may not be Lipschitz continuous.

Example 4.26 The scalar equation (z — a)(z? — a) = 0 is well-posed at every
a € F. The solution 0 € Z(0) is regular, since one of its supporting functions
a — a is Lipschitz continuous. At the same time this solution also has the contin-
uous supporting function ¢ — +/a which is not Lipschitz continuous but Holder
continuous with exponent 0.5 in a neighborhood of the origin. ¢

Thus, a solution may be singular for one of the following reasons:

e It is not well-posed.
e It is not locally unique.

o It is well-posed and locally unique but none of its supporting functions is
Lipschitz continuous.

Example 4.27 Every root of the algebraic equation from Example 2.7 with ag #
0 is regular (respectively singular) if it is simple (respectively multiple).

The solution of the linear equation Mz = b with M € F**™ is regular if and
only if m = n = rank(M). ¢

In the following we discuss proper problems in which the spaces X = Fn*™
and FP*? are isomorphic (i.e., mn = pq) and the solution X € Z(A) is proper and
in particular locally unique. In matrix theory and applications, typical problems
with unique solutions are various classes of matrix equations. In linear systems
theory such problems are for example the reduction to canonical forms or the pole
assignment problem for single-input systems.

The case when the solution of equation (4.1) is not locally unique is not con-
sidered in detail in the remainder of this monograph. Note that this may be the
case when the number of scalar unknowns mn is larger than the number pg of
scalar equations. In matrix algebra such problems include some least square prob-
lems and the computation of the eigensystem or Schur system of a matrix, see
Appendix B (respectively the generalized eigensystem or the generalized Schur
system of a pair of matrices), while in linear systems theory an important prob-
lem with nonunique solution is the pole assignment for linear multi-input systems.
It must be stressed, however, that even a single scalar equation in many scalar
unknowns may have only locally unique solutions.

Example 4.28 The scalar equation F(A4, X) := || X — ®(A4)|| =0, where & : A —
X is a continuous function, has a unique solution X = ®(A4). Observe that the
function F is not differentiable at the solution. ¢
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The considerations presented so far include many possible types of solutions
of the equation (4.1) with a continuous left-hand side F. If, however, the par-
tial Fréchet derivatives of I exist at the solution, then the continuous solution
functions may have some nice properties such as uniqueness and differentiability.

Suppose that for some A € A equation (4.1) has a solution X € Z(A) such
that the partial Fréchet derivative Fix := Fx (A, X) of the function F relative to
X at the point (A4, X) exists. We recall that Fy is a linear operator F**™ — FP*d
such that

F(AX+Y)=F(A,X)+Fx(Y)+o(Y|), Y —0.

The partial Fréchet derivative Fu := F4(A, X) of F relative to
A = (Ay,...,A) € A is the r-tuple Fu = (Fa,,...,Fa,.), where the partial
Fréchet derivatives Fs, := Fy4,(A,X) of F relative to A; at (A, X) are linear
operators V; — X. If both Fréchet derivatives of F' in X and A exist, then we
have

F(A+E7X+Y) = F(A7X)+FX(Y)+§:FA1(E1) (44)
=1
+o(IlY + 1 ElD); E,Y — 0.

In the following we will use the induced norm ||£]| of a linear operator £ : Y —
Z, where Y and Z are linear spaces, defined via

0] := max {IL(Y)| : Y € D, |IY]| = 1}.
We recall the following concepts of invertibility of linear operators.

Definition 4.29 A linear operator L is right invertible if there exists a linear
operator L' : Z — Y (called right inverse of L), such that £ o L' = Iz,
where Iz is the identity operator in Z. Similarly, the operator £ is said to be left
invertible, if there exists a linear operator Ll_l : Z — Y (called left inverse of L),
such that Ll_l oL = Iy. If an operator L is left and right invertible it is snvertible.

For an invertible operator £ the left inverse is equal to the right inverse and is
denoted by £ 1.

If the operator £ : Y — Z is invertible, then the norm of the inverse operator
L7 Z = Y is obtained from

mex (167(2)] 2] = 1) = max { LA 2 20

= mox{ gy Y o} = mex{ gy Y11=
1

min {[|L(YV)]|: Y[} =1}

1=
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Let the matrix spaces V;, F"*™ and FP*9 be endowed with the Frobenius
norm | - |g. If we consider invertible operators £ : F**™ — FPX4 then it is
necessary to assume that mn = pg =: I. We denote by Lin(p,m,n,q,F) the
space of linear matrix operators M : F™*"™ — FPX4 and we use the abbreviations
Lin(m, n,F) = Lin(m, m,n,n,F) and Lin(n,F) = Lin(n,n,n,n,F).

Any linear operator £ € Lin(p, m, n,q) has a matriz representation (or briefly
a matriz)

My := Mat(L£) € T

defined by the identity vec(L(X)) = Mgvec(X) for all X € F**™. In this case
the induced norm of L is determined by

I£]

max {||L(X)|| : | X[|F = 1} = max {||Mcz|]2 : [lz]l2 = 1}
= |[Mcl2 = Omax(Mc).
Similarly, for the induced norm of an invertible operator £ we have
1
O'min(L)'

Here onin(L) and opmax(L) denote the minimal and maximal singular value of the
matrix L, respectively, see Appendix B.

174 = 1Mz 2 =

4.3 Linear bounds

Let X € Z(A) be a fixed solution of equation (4.1). It follows from the implicit
function theorem (Appendix A) that if the linear operator Fx is invertible at
(A, X) then the solution X is proper. If in addition the partial Fréchet derivative
F4 exists at the point (A4, X), then the solution X is regular. Indeed, as we will
show, here the solution X € Z(A) is well-posed and linear estimates hold.

Meanwhile it is worth mentioning that the invertibility (or even the existence)
of Fx is by no means necessary for the regularity of the solution.

Example 4.30 The scalar equation f(a,z) := (z — a)® = 0, where k > 2 is an
integer, is proper and for any a € IF it has only the regular solution z = a. At the
same time the partial derivative f,(a,z) = k(x — a)*¥~! is zero at the solution. ¢

Thus, an algebraic equation may have regular solutions of arbitrary algebraic mul-
tiplicity. This is possible only for equations whose coefficients are not arbitrary
but belong to certain close algebraic varieties. Indeed, choosing k¥ = 2 in Exam-
ple 4.30, we get 22 ~ 2az + o = 0. This is an equation of type z2 + a1z + as = 0,
where the pair (a;,a2) lies on the parabola a? — 4ay = 0. Another viewpoint here
is that the singular problem of finding multiple roots is regularized by a special
choice of the data, see Chapter 6.
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Let the parameter A € A in equation (4.1) be perturbed to A+ 64 € A. This
leads to the perturbed equation

F(A+6A,X +6X) =0 (4.5)

in the unknown matrix perturbation § X, which may also be written as an equation
F(A+6A,Z) =0 in the perturbed solution Z = X + §X. Suppose that (4.5) has
a solution for every A € Ny, where A} is an open neighborhood of 0. Then it
follows from (4.1), (4.4) and (4.5) that the solution 6X of the perturbed equation
(4.5) satisfies

6X = —Fy'(Fa(64))+o(p) = —Fx' o F4(6A) + o(p) (4.6)

~Fx' (Z Fa, (5A)> Folp) = ) L34 +olp), p =0,
i=1

i=1

Il

where p := ||[6X]| + [|6A]| and £; : V; — F**™ are linear operators, determined by
Li(E;) := —Fx'(Fa,(E:)) = —Fx' o Fa,(Ei).

Thus, the solution X = ®(A) of the unperturbed equation (4.1) is regular
according to Definition 4.25. Moreover, the function ® : A — X is differentiable
in some open neighborhood of A, and the partial Fréchet derivatives of ® in A,
are in fact the operators £;,

By, =Li=—-FyloFy,.

To estimate the norm of the perturbation in the solution as a function of the
norms of the perturbations in the data we may use the linear bound

16X <3 Ka,

=1

5A1” + O(p)5 p— 0)

where
Ka, =Ka (A X):=|Fx'oFa,]

,i=1,...r

are the absolute condition numbers of equation (4.1) with respect to A;, computed
at the point (A, X). We also say that K 4, is the absolute condition number of the
solution X, corresponding to the data A,.

The evaluation of K 4, via the induced norms ||£;|| of the linear operators £; :
V; — X may be a difficult task in general. Of course, we have the estimate K4, <
|F5 |l | Fa, ||, which often may be quite pessimistic. However, if the Frobenius
norm is used, the computation of the condition numbers (at least in theory) is
straightforward. Indeed, taking the vec operator from both sides of (4.6) we have

T
dx = ZMLiéai +o(p), p— 0,

=1
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where x := vec(X), a; := vec(4;) and
Mg, := —(Mat(Fx))”*Mat (Fa,)

is the mn x m;n; matrix of the linear operator £;. Thus,

16X |lr = fl62ll2 < > [ Mg,

i=1

2 16 A:lp +0(p), p—0

and hence,
Ka, = [|Mc. |,

A drawback of this approach for evaluating the conditioning of the problem
may be the large size of the involved matrices. Indeed, for a moderately sized
matrix equation with 100 x 100 matrices X and A;, the size of the matrices of the
linear matrix operators will be 10000 x 10000. Condition and error estimates for
the solution of matrix equations without forming large matrices are proposed in
[179].

The existence of the Fréchet derivatives Fix, F4 and the invertibility of Fy is
sufficient but not necessary for the regularity of the solution. For special choices
of the parameter A, this has been already discussed in Example 4.30.

4.4 Equivalent operator equation

Suppose that the spaces X = F**™ and FP*? are isomorphic, i.e., mn = pg = [.
Then nonlocal, nonlinear sensitivity estimates for the regular solutions of (4.1)
may be obtained as follows. First we transform the perturbed equation into an
equivalent operator equation for the perturbation §X. We then show that the
corresponding operator has a fixed point in a set whose radius is a continuous
function of || A]|, vanishing at 64 = 0. This radius is then the desired rigorous
nonlocal perturbation bound for ||[§X||. For this purpose the technique of Lya-
punov majorants is used, see (85, 135]. How this approach works is shown in the
remaining part of this chapter.

Consider equation (4.1) along with its perturbed version (4.5). We may apply
transform the perturbed equation (4.5) into an equivalent operator equation

5X =TI(5A,6X) (4.7)

for the perturbation § X, where II : N(;A x Ng¥ — X is a continuous function and
Nit, N are open neighborhoods of the origins in A and X, respectively. Here
the operator II satisfies I1(0,0) = 0. Using the vectorizations (2.8) we also have

dz = n(éa,dz), m:=vecoll.
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There are several ways to determine the operator II so that equation (4.7)
in X is locally equivalent to the perturbed equation (4.5). The concept of local
equivalence here needs some clarification. Local equivalence of two equations de-
pending on a parameter means that they have the same solution for all parameters
in a (small) neighborhood of a given nominal value of the parameter. However, we
may construct formally equivalent equations for § X which cannot be used for de-
riving meaningful results. For example, if the solution of (4.1) is well-posed, then
we have X = ®(A), where ® is a continuous function. So we may write formally
0X = ®(A + 6A) — ®(A), which is an equation that is locally equivalent to the
perturbed equation (4.5). But since the function ® is usually unknown (otherwise
we would have had a problem with explicit solution), this equivalent equation for
dX does not lead to any concrete perturbation bounds.

A general approach to construct the operator II is based on the representation

(E,Y)=Y +GoF(A+E, X +Y)+ Ho F(4,X), (4.8)

where G, H : X — FP*4 are invertible (usually linear) operators and the equality
F(A,X) = 0 is taken into account. The idea is to make TI(E,0) small of order
O(||E]]), and to make I1(0,Y) small of order o(||Y||) (or even O(}|Y||?)) for E — 0
and Y — 0. These requirements may be written as

I(E,Y) = O(|E|) + o(J Ell + IY}); E,Y —0.

If the partial Fréchet derivative Fx of F in X is invertible at the solution, one
may choose G = —H := —F5 ! which corresponds to Newton’s method [173] for
solving the equation. If in addition the partial Fréchet derivative Fs also exists,
this scheme is applied as follows.

For every (A, X) e P and (E,Y) eV x X, such that (A+ E, X +Y) € P, we
have the identity

F(A+E,X+Y) = F(A X)+ Fa(A, X)(E)+ Fx(A,X)(Y)

+ R(A, X)(E,Y), (4.9)
where
R(A,X)(E)Y) = FA+E,X+Y)-F(A X) - Fa(4,X)(E)
— Fx (A, X)(Y). (4.10)

We stress that here Fa(A4,X)(:) : V — X, Fx(A,X)(-) : X — X are linear
operators, and R(A, X)(-, ) is a mapping from a subset of Vx X to X, all depending
on the pair (A4, X) as a parameter. To make the notation more readable we use
the abbreviations

FA(E) Fa(A, X)(E), Fx(Y):= Fx(4,X)(Y),
R(E,Y) := R(A X)E,Y),

i
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omitting the dependence of the corresponding expressions on the pair (4, X). We
finally note that in relations (4.9) and (4.10) it is not assumed that the equalities
F(A,X)=0o0r F(A+ E,X +Y) =0 hold.

If X and 6X satisfy equations (4.1) and (4.5), then it follows from (4.9) that

Fu(SA) + Fx(6X) + R(6A,6X) =0

and

60X = ~Fy' o FA(6A) — Fx' o R(6A,56X).
Therefore,

0X =TI(6A,6X) =11, (0A) + II5(0A4,6X), (4.11)
where

II;(E) := —F5' 0 F4(E), I,(E,Y) := —~F5' o R(E,Y).
Thus, we have that
I(EY)=Y - F{"(F(A+ E,X +Y) — F(4, X)),

which is the representation (4.8) with G = —H := —F".
Consider finally the case when the partial Fréchet derivative of F' in A does
not exist. Then we have

F(A+E, X +Y)=F(A X)+ Fx(Y) + S(E,Y), (4.12)

where
S(E)Y):=FA+E,X+Y)-F(A,X)-Fx(4X)(Y). (4.13)

If X and 6X solve (4.1) and (4.5), then it follows from (4.12) that

Fx(6X) + S(64,6X) =0

and
0X = —F);l 0 S(6A4,0X).
Therefore,
§X =TI(6A,8X),
where

T(E,Y) := —F5'o8(E,Y).
Note that again
I(E,Y)=Y - F{'(F(A+ E,X +Y) - F(4,X)).

Hence, I = II and the only difference is that the additive representation (4.11) is
possible for the operator I, while for the operator II such a representation may
not be valid.
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The above considerations are illustrated below for the case of a general quadratic
matrix equation. Let

F(A,X) = Ay +L(AX)+Q(AX)

A+ LA X) + ) Q(A,X),

i=1 j=1

where L;(A,-) is a linear matrix operator, defined by L;(A4,X) = B;XC;, and
Qi(A, ") is a quadratic matrix operator, determined as Q;(A4,X) = R;XS; XT;.
Here we have r = 1 + 2p + 3¢ and

A= (A17B1aC1a v 7Bpan9R11Sthv oo 7Rq»5anq) = (A17 . AT)
Example 4.31 Consider the equation
F(A,X) = A + A XAz + XA X = 0.

We have
Fx(Y)=AYA3 + XA)Y + YAX

and, for E = (E4, Eq, E3, Ey),
FA(E) = By + E2X A3 + Ay XE3 + XE4X.

Furthermore,

R(E,Y) = A)YE;+E,YA;+Ey)(X +Y)E;s
+ XE{Y + YE; X +Y(As + Ey)Y.

Setting € := || E2|| + || Es|| + || E4]l + ||Y]| we obtain
|R(E,Y)| < ce®+€3/4, (4.14)

where ¢ 1= max{||X[|, || A4][, || A2l1/2, | As[l/2}.

4.5 Linear equations

There are different techniques to deal with equation (4.1) depending on whether it
is linear or nonlinear. The technique for nonlinear equations involves topological
fixed point principles and, of course, it works for linear equations as well. But
there is also a straightforward approach to get perturbation bounds in the case of
linear equations.

Definition 4.32 Equation ({.1) is said to be linear if the function F(A,-) is
affine, or equivalently, if the function F(A,-) — F(A,0) is linear.
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In this section we write a linear equation as
Ay + L(DY(X) =0,

where L(D)(-) : X — X is a linear matrix operator, depending on the parameter
D, ie,

L(DYAX + puY) = AL(D)(X) + pL(D)Y)
for all X,Y € X and A, u € F. We note that every linear matrix operator may be
represented in the form

L(D)(X) = i B, XC;,
=1

where
D= (Bl, Cl, ey Bk, Ck) = (Az, e ,AT-).
Is a given matrix 2k-tuple, see Appendix E.
Hence, we may set

A= (Al,Bl,Cl,...,Bp,Cp) = (Al,Az,...,Ar)

with r = 2p + 1.
Assuming that the operator £(D) is invertible we see that the linear equation
has a unique solution, which formally may be written as

X = ®(4) := —L7HD)(Ay).

Let the parameters D and A be perturbed to D+ 6D and A+ dA. If the perturba-
tion 4D is small enough (in a sense to be discussed later), the perturbed operator
L(D + é6D) will be invertible and the perturbed equation

A +0A1 + L(D+ D)X +6X)=0
will also have a unique solution
6X = L7YD)(A1) — L7HD + 6D)(4A; + 6A;).

Below we present two approaches to estimate the perturbation in the solution
as a function of the perturbation in the data. The first one is classical and is based
on the following observation.

We note first that the set of linear operators X — X, where X is a linear
space over I, is also a linear space with multiplication by scalars F x X — X
and summation X x X — X, defined by (AL)(X) = AL(X) and (£ + M)(X) =
L{X) + M(X), respectively.

Let the linear operator £ : X — X be invertible. Then, if £; is a (small)
perturbation to £, the resulting operator £ + £; will be invertible, provided that

£t o Ly < 1. (4.15)
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This sufficient condition for invertibility of the perturbed operator £ + £ is also
“almost” necessary in the sense that if the inequality is replaced with equality,
then the operator £ + £; may not be invertible. Indeed, choosing £; = —L we
have Hﬁ'l ) L:lH = 1, and of course, the operator £ + £, = 0 in this case is not
invertible.

Under condition (4.15) we have

(LH+L) P =(x+M) oL M:=L"1oLy,

where 1y is the identity operator in X. Furthermore, for every integer v > 1 we
have

(£+£1)“1 — (i(_M)i+(_M)u+1(1X +M)—l> oL}

i=0
= <Z(—M)i> oL7L.
i=0
Therefore,
e+ L) < e (4.16)
T 1M
and

(L+L) P -LV=-Mo(Qx+M) oLt

When information is available only for the norm of £,, one may use, instead
of (4.15), the stronger condition

LA Ll < 1.

In this case the quantity | M| in (4.16) should be replaced by ||| |£1]].
The above relations may be used in the perturbation analysis of linear equations
setting

L=L(D), L, =Ly(D,6D):=L(D+D)— L(D)
and
M = M(D,ésD) := L~YD) o L£,(D,éD)

as follows. We may write X as

§X = (LTHD)~L YD +6D)) (A1) - L YD+ 8D)(6A;)
= M(A,84)(1x + M(A,A)"Y(X) - L7Y(D + 6D)(54,).

Let o = [02,...,6,]" € R7! be a given vector and set
Ble) := max{||L1(D,G)|f : IGN = o},

where G := (Ey,..., E,) and |G| = [| E2]); . -, WEAT-
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Since 3 is continuous and B(0) = 0, then o may be choosen so that
B)IL~HD)|| < 1.
This yields
IM(D,sD)|| < IL7HD)| |1£4(D, 6D)|| < Bla)|£7HD)| < 1

and the operator £L(D + §D) is invertible for all perturbations dD with ||6D| < a.
Moreover, we have

Bla)iL~ 1 (D)]|
= Be)L~H(D)|
If A; # 0 then X # 0 and we have the following bound in relative perturbations

X[ _ x(D)ex + (IAIZ~HDI/I1X) €a,
[/ 1-#(Der '

16Xl < 5 (XN + 1271 D) N8 ALlD. (4.17)

(4.18)

Here
(D) := D)L~ (D))

is the relative condition number of the operator £(D) with respect to inversion,

and
) n = 194l
IO (A
Having in mind that
4] £~ (D)
1< ———————— < k(D),
S Er =P

we also have the less accurate bound

15X)| _ _ (D)
IXI = T=w(D)ex

(eL +ea,), (4.19)

which is usually used in numerical linear algebra, [83].
Then using the Banach fixed point principle, see Appendix D it is possible to
obtain the perturbation bounds (4.17)-(4.19) in an easier and more elegant way.
We may write the perturbed linear equation in the equivalent form

§X =TI(6A,8X) := —L~Y(D)(64; + L1(D,6D)(X + 6X)). (4.20)
Assuming that |6D|| X «, we have

(A, X)) < I£7HDY 18AL + Bla) £~ D)IUX ] + I8X1)-
If B(e)IL~H(D)]| <1 and JI§X|| < p, where

5. BIET D) (1X] + £ (D) 1644 ])
' 1- Bl (D)] ’




4.6. CASE STUDY 71
then
1104, 5)] < p.

Therefore, the operator II(64,-) transforms the closed ball B,, centered at the
origin and of radius p, into itself. Since for all Y, Z ¢ X

ITH(8A,Y) —TI(6A, Z)|| < Ba)IL~HD)INY ~ Z|

and f(a)||L71(D)|| < 1, the operator TI(§A4,-) is a contraction on B,. According

to the Banach fixed point principle, there exists a unique solution of the operator

equation (4.20) for 6X, satisfying ||6X| < p which is exactly the bound (4.17).
Linear equations are considered in more detail in Chapters 8, 9, 10 and 11.

4.6 Case study

In this section we shall illustrate the concepts introduced so far for the case of a
real scalar quadratic equation

24+air+ay=0, a:= [al,ag]T e R%. (4.21)

The computational problem defined via equation (4.21) is regular if the discrimi-
nant d(a) := a} — 4a, is nonzero, and singular at the parabola

= {{a1,as]" : ap = a?/4, a; € R} C R

For a ¢ T the condition numbers for the root = are defined taking the partial
derivatives in a; of both sides of equation (4.21)

0
(2m+a1)(—9—5—1+x=0,

ox
2 — 4+ 1=0.
(x+a1)aa2+

Thus, for a; # 0, az # 0, the relative condition numbers x; of x relative to a; are

o, = |9z |lal | a1
! dar| 1zl |VA@|’

o _ |2zl | e
2 Oaz| |z z+/d(a)

(note that here z # 0 by necessity). In Figure 4.1 we show the conditioning % + 2
of the problem as a function of a for 0 < a1, az < 5.

In Figure 4.2 we show the relative changes |6z/x| in the solution of the per-
turbed equation

(x + 02)% + (a1 + da1)(z + 6z) + az + day = 0
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Conditioning of a quadratic equation

log10({cond)

Figure 4.1: Conditioning of a quadratic equation

Perturbed solutions of a quadratic equation
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Figure 4.2: Perturbed solutions of a quadratic equation

for a; = 2.0000001, ay = 1, due to perturbations in @ which satisfy —4.998x1078 <
daq,day < 4.998 x 1078,

In Figures 4.3 and 4.4 we show the local linear bound (based on condition
numbers) and the nonlocal perturbation bounds for equation (4.21) with a; =
2.0000001, ay = 1.

In Figure 4.5 we give the distance to singularity of the quadratic equation as
a function of a.
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Linear estimate for the perturbed quadratic equation

Relative perturbation in the solution
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Figure 4.3: Linear estimates for a perturbed quadratic equation

Figure 4.4: Nonlinear estimates for a perturbed quadratic equation

Nonlinear estimates far a perturbed quadratic squation

Relative perturbation in the solution

W st

s

P s st
s s
74

pert(a2) peri{al)

73

Finally, in Figure 4.6 we compare the magnitude of the exact perturbation
16x| (denoted by pert(z)) with the linear and nonlinear perturbation bounds for

a1:3,a2:2.
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Distance to singularity for a quadratic equation

dist

Figure 4.5: Distance to singularity for a quadratic equation

Estimates and true perturbation for a quadratic equation
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Figure 4.6: Comparison of perturbation bounds for a quadratic equation
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4.7 Notes and references

General properties of problems with implicit solution are considered in [134, 135].
Perturbation bounds for various classes of equations are derived by many authors,
see [74, 75, 187, 39, 149, 95, 191, 150, 66] as well as in [177, 178, 136, 140, 211,
212, 213].

A general scheme for perturbation analysis of nonlinear algebraic problems is
proposed in [195].

Perturbation theory of matrix decompositions, which are special problems with
implicit solution, is considered in [147], see also [28].
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Chapter 5

Lyapunov majorants

5.1 Introductory remarks

In this section we describe the technique of Lyapunov majorant functions (or
briefly, Lyapunov majorants) which is an important tool in the perturbation anal-
ysis of various problems in linear algebra and control theory (85, 135, 147].

A Lyapunov majorant is a nonnegative function which bounds from above the
size of the equivalent operator for the perturbation in the solution. It gives rise to
the so called majorant equation whose solution is the desired perturbation bound
for the norm or generalized norm of the perturbation in the solution of the problem.

5.2 General theory

Consider the case of a nonlinear equation (4.1) together with its perturbed version
(4.5) and the equivalent operator equation (4.7). Suppose that it is possible to
find estimates for the size and the rate of change of the operator of II in the form

ITI(E, Y)I| < h(n,p), (5.1)
where 7 := ||E||y = [||E1||,.. ., ||E-]l]T is the generalized norm of E, and
I(E,Y) - I(E, Z)|| < hy(n, Y — Z|| (5.2)

for all Y, Z € X with ||Y||,||Z]] < p. Here h : G — Ry is a continuous function,
defined in a domain G C R7, x Ry, differentiable in its second (scalar) argument,
and satisfying h(0,0) = 0.

If we set

9(n, p) = max {|I(E,Y)|| : | Ellg =, |Vl < p},

77
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then the ideal case would be to choose h(n, p) = g(n, p). However, the determina-
tion of g{(n, p) is possible only for simple linear matrix equations. In general it is
only possible to find an expression h(7, p) which is an upper bound for g(n, p).

Note that h is a function of r + 1 scalar arguments. It may be more convenient
to work with a function of only two arguments, setting

ho(e, p) = h(eéo, 0)s

where §° € R?_ is a given vector with positive elements.
When applying the technique of Lyapunov majorants it is convenient to intro-
duce the concept of backward invariance of sets of nonnegative vectors as follows.

Definition 5.1 Aset Q C R, is called backwardly invariant if it is closed, contains
a positive vector and for every § € € the inequalities 0 < 1 < 4 yield n € Q.

Setting
Ps:={neR} :n=5}

for 6 € R7, we see that the closed set 2, containing a positive vector, is backwardly
invariant if
b€ Q< Ps C

For a set M C R" denote by sup(M) € R" and inf(M) € R" the supremum and
infimum of M, defined as [my,...,m,]" and [m,,...,m,]", respectively, where

m; :=sup{m; : m € M}, m, = inf{m; : m € M}
and m = [mq,...,m,]".
It is easy to verify that the following Theorem holds

Theorem 5.2 A backwardly invariant set Q C RY, is connected, of positive mea-
sure and
0 = inf(Q) € Q, sup(2) € Q.

Note that a backwardly invariant set does not have to be convex. Actually, the
structure of a backwardly invariant set may be quite complicated.

Example 5.3 The backwardly invariant subsets of Ry are the closed intervals
[0,a] with @ > 0. In R% a backwardly invariant set may be described as follows.
Let f : [0,a] — Ry be a continuous nonincreasing function with f(0) > 0. Then
the set

{[61,60]7 :0< 61 <a, 085 < f(1)}

is backwardly invariant. {

Next we define one of the main tools in nonlocal perturbation analysis of opera~
tor equations (matrix equations in particular) - the Lyapunov majorant functions.
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Definition 5.4 A function h as in (5.1), (5.2} is called a Lyapunov majorant
function (or briefly Lyapunov magjorant) for the operator equation (4.1) if it satisfies
the following conditions

1. The domain G admits the structure of a convex cylinder, i.e., there is a
convex set @ C R”, and a continuous function 7 : & — R, such that either

G={(8,p):p<T(d),d €} (5.3)

or G = Q x R;. In the latter case we may formally set 7 = oo, reducing it
to (5.3).

2. The function A is nondecreasing and strictly convex in every of its » + 1
arguments and

. p
lim ———= <1 (5.4)
p—7(8) h(d, p)

for each 6 € Q.
3. The relations
h(0,0) =0, h;(0,0) <1 (5.5)
hold.

The importance of Lyapunov majorants may be explained as follows. If in-
equalities (5.1) and (5.2) hold, and for some p > 0 the relations

h(8,p) = p, h,(8,p) <1 (5.6)
are fulfilled, then the operator II is a contraction in the ball
B, ={X e X:||X| <p}

Hence, by the Banach fixed point principle, there exists a unique solution §X € B,
o (4.1). At the same time the quantity p, satisfying (5.6), depends on 4, namely
p = f{8). Hence
16X11 < £(lI0Allg), |6Allg <8 (5.7)
is the desired nonlocal nonlinear norm-wise perturbation bound.
If only the equation h(d, p) = p holds, then the bound (5.7) is still valid al-

though the perturbation §X may not be unique. This will be the case e.g. in
problems with nonunique solution, see [147].

Definition 5.5 The equation
p = h(3,p) (5.8)

is referred to as a majorant equation for the operator equation (4.7).
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One of the main problems in this approach is to determine a set g C R’ such
that for & € Qg the relations (5.6) are fulfilled for some p = p(8). If we apply
the Schauder rather than the Banach principle, then only the majorant equation
h(é,p) = p must be satisfied instead of (5.6). But if equation (4.1) admits a
Lyapunov majorant, then one may always select a closed bounded set Qy C R,
with the properties listed above.

For linear matrix equations the Lyapunov majorant is an affine function in p,

h(6,p) = ho(6) + hi(5)p,

where the functions hg, h; are nondecreasing in each argument, i.e., h;(a) < hi(3)
if @« < 8, and h;(0) =0, i =0,1. In this case there exists a domain Q¢ C R such
that hi(d) =1 for § € Qg and hy(8) < 1 for § € Q§ (we recall that 6§y and Qf
are the boundary and the interior of the set Qq, respectively, see Appendix A).
Hence the perturbation bound here is

ho(6)

f(5):m—)7 § € Qg.

In the remainder of this section we consider only the case of nonlinear equations,
when the Lyapunov majorant is also nonlinear.

For several important problems that we will discuss below, the Lyapunov ma-
jorant h(4, p) is a polynomial in r 4 1 variables 61, ..., d,, p which can be written
in the form

h(6,p) = ho(8) + ma(8)p + -+ hw ()", N > 2,

where h;(4) are polynomials in § with nonnegative coefficients, the polynomial hy
is nonzero, and
ho(0) = hi(0) = 0. (5.9)

Hence, we have @ = R, G = Q x R, and 7 = oo. This is, for example, the case
for algebraic matrix Riccati equations.
Another type of Lyapunov majorants is of the form

N

_ pi(é’ P)
MO0 =2 T )

where p;, g;, r; are polynomials with nonnegative coefficients, such that ¢;(0) > 0
and 7;(0,0) = 0. Here 7(8) is the smallest among the roots of the N equations

q’i(é)_r’i(éap)zoa 2:1a7N

The case when ¢; are constants (and hence may be chosen as equal to 1 after
an obvious scaling) is typical. Lyapunov majorants of this type arise in the non-
local spectral perturbation analysis of matrices and matrix pencils with distinct
eigenvalues [141].
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In general, the Lyapunov majorant has a power series expansion

o0

h(& p) = Z hz(é)pza (510)

1=0

where h;(8) are power series in § with nonnegative coefficients, and ho, hy satisfy

(5.9). Here 7(6) is the radius of convergence of the series in the right-hand side of
(5.10).

Example 5.6 Consider the scalar equation

da(1 + 6z
dx = 7['((5(1,5.’17) = m)‘

Setting 6 := |dal, for [6x| < p, then we get the estimate

1+ p)é

|m(8a,dz)| < h(d,p) := 28

The domain © coincides with R,. Furthermore,

[ 2/6, 6>0,
T(é)_{oo, 6=0.

Here the coefficients of the power series (5.10) for the Lyapunov majorant are given
by

) (2+6)8

ho(8) = > hi(8) = g1 12 L

In the technique of Lyapunov majorants a crucial role is played by the majorant
equation (5.8) in the unknown quantity p, where § € Q is considered as a vector-
parameter.

The solvability theory for equation (5.8) may be quite complex. It may have
two real solutions, a double solution or no solutions at all depending on whether
the parameter 4 belongs to a certain bounded set Qo C Q, to (a part of) its
boundary 02, or is outside of Qy, respectively.

Although Q is convex, the set g may not in general be convex. The set Qg
has the following important property. For each dy € € all nonnegative vectors §
with § < 0 also belong to Qg, i.e.,

50€Qo<:>{(5:5j(50}CQ().

Definition 5.7 Let S C R", be a bounded set. Then S is said to be quasi-convex
if the following conditions hold:

1. For allw € S the set [0,w] := {tw : t € [0,1]} s contained in S.

2. For all w € 08 the sets {tw:t > 1} and S are disjoint.
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Thus, a quasi-convex set S satisfies the convexity condition only for pairs 0,w €
S. It is obvious that a convex set is also quasi-convex, but the opposite is not true
in general. Intuitively, our notion of convex and quasi-convex subsets of R’, is
covered by the sets S1, Sy C Ri from the example below.

Example 5.8 The set
S = {(wl,LUg) 0<wy <1 —wf,O <wi < 1} C Rﬁ_
is convex, but
2

Sy 1= {(wl,wg) 0 <wy < <1 —w1)2,0 <wi < 1} C R+

is only quasi-convex, see Figure 5.1. {

Convex and quasi-convex sets
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Figure 5.1: Convex and quasi-convex sets

While Condition 1. in the definition of a quasi-convex set is clear, Condition
2. needs some explanation. It is introduced in order to exclude some exotic sets,
satisfying only Condition 1. Indeed, consider the cactus, obtained as the union of
the set S from Example 5.8 and a number of needles

w,pw] =={1+t)w:0<t<p-—1},

where w = (w1, (1 — w1)?) is a point on the boundary 8S;, and p > 1. This set
satisfies only Condition 1. and is, therefore, not quasi-convex.
The following characterization of quasi-convex sets is easily verified.
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Theorem 5.9 A bounded set S C RY, is quasi-convez if and only if the following
two conditions are fulfilled:

1. For all w € RY, the set {tw : t > 0} has exactly one common point with the
boundary 8S of S.

2. For allw € S and € > 0 the set B.(w) NS is of positive measure, where
B.(w) C R" is the ball centered at w and of radius €.

Using the concept of quasi-convexity we may formulate and prove the follow-
ing theorem, which justifies the use of Lyapunov majorants in the perturbation
analysis of nonlinear equations.

Theorem 5.10 There exists a quasi-convex set Qy C 2, such that one and only
one of the following three assertions for equation (5.8) holds:
(1) If 6 € Q, then equation (5.8) has two roots

p1(6) < pa2(6)
in the interval (0,¢(8)) (Figure 5.2), and we may choose
f(8) = p1(d), 6 € Qo (5.11)
wn the perturbation bound (5.7).

Majorant equation with two roots
T T

3 — T T

Figure 5.2: Majorant equation with two roots

(i) For some &y € 98 equation (5.8) has a double root

p1(do) = p2(do)
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in the interval [0,v(8)) (Figure 5.3) and we may again choose

f(60) = pl(ég), (50 S BQO (512)

in (5.7).

Majorant equation with double root
6 T T T T T T T T

Figure 5.3: Majorant equation with double root

(1) If 6 ¢ Qo, then equation (5.8) has no real roots in the interval [0, 7(6))
(Figure 5.4).

Proof. Let the Lyapunov majorant have the form (5.10). We first note that
since the function h(4,) : [0,7(8)) — R, is convex, equation (5.8) may have two
different roots, one (double) root, or no roots.

For some o > 0 and for all § € Q with ||§]| < «, there exists a unique quantity
po = po(d) < 7(8) such that

(8, po) = 1. (5.13)
Indeed, relation (5.5) implies that h/,(6,0) = h;(8) < 1 for ||6]| sufficiently small.
At the same time, according to (5.4), we have h,(6,p) > 1 for p less than but
sufficiently close to 1(d). Hence, (5.13) holds for some pg € (0,%(d)). That this
po is unique, follows from the convexity of the function h(4,-) : {0,%(6)) — R
We now show that there exist two positive quantities dy < d1 such that

h(8, po) < po, |16]] < do (5.14)

and
h(6, p0) > po, 18] > di. (5.15)
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Majorant equation with no roots
T T T T

—

Figure 5.4: Majorant equation with no roots

Consider first the case when the sum in (5.10) is finite, i.e., h;(d) =0, i > N,
for some integer N > 2. Suppose that

N
h(8,p0) = Y _ hi(8)ph > po. (5.16)
1=0
Since N
Ry (6,00) = Y ihi(8)ph " = 1, (5.17)
i=1
we get
N
po =Y ihi(8)pi. (5.18)
i=1

Relations (5.16) and (5.18) yield

N . N .
Z hi(8)pg 2 Z”M’@)Pé
=0 i=1

and

Hence, for ¢ > 2,
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and, using (5.17), we get

N . ho(8) 1-1/i
e h1(5)+§m1(5)<(2_1)h (5)>
= +i2 1/1 1 0(5))1—1/i(hi(5))1/i (5'19)

< ha(8) + 2v/ho(6) Z(m(a))“?

Since ho(0) = h1(0) = 0, inequality (5.19), and hence (5.16), is not valid for ||6]]
sufficiently small. This proves (5.14).

Relation (5.15) follows from the second inequality in (5.5).

Consider the implications of relations (5.14) and (5.15). We have actually
divided the convex domain © into the disjoint union of three parts:

Q=0;,UQ,UQ;3,

where
Q = {5eQ:|8|| <do},
Qo = {5€Qd0§”(5“<d1},

For 6 € Q; equation (5.8) has two roots. Indeed, consider the function x : G —
R, given by

x(6,p) = h(é, p) —
The function
x(8,) 1 [0,4(5)) = R

is convex and has an unique minimum at the point pg. Since

x(6,0) = ho(é) >0
x(d,p0) = h(3,p0) — po <0,
lim x(d4,p) > 0,

p—1p(8)

it follows that x(d,-) has at least two roots py < pp and p2 > pp in the interval
[0,%(8)). But the function x(,-) is convex and has at most two roots, which are
then exactly p; and po.

Let now ¢ € Q3. Then x(8, po) = h(d, po) ~ po > 0, i.e., the minimum of x(4, -)
is positive and hence x(4, -) has no roots.

Finally consider the case § € Q5. Select two points

do

g 1=
T

5691
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and
2d,

51 = ——50 € Qg
do
such that ||do|| = do/2 and |[d;|| = dy, and consider the homotopy w : {0,1] X
[0,¥(8)), defined by

w(tvp) = h((SO + t((sl - 60)3 p) - P

which connects the points h(8p, p) — p = w(0, p) and h(d1,p) — p = w(1,p). For t
fixed, the function w(t, ) : [0,%(d)) — R has two, one or no roots. Let to = to(d) be
the supremum of all ¢ € [0,1] such that w(t, ) has two roots, and ¢, = t1(d) be the
infimum of all ¢ € [0,1] for which w(t,-) has no roots. Obviously 0 <ty <t; < 1.

We now show that tg = t;. Indeed, suppose that to < t;. Then for allt € (to,t1)
the function w(t, -) does not have two roots but does have at least one root, i.e., it
has exactly one root and is, in particular, nonnegative. But, since §p # 0, we see
that w(t, p) is strictly increasing in t. Hence, for t < 7 with t,7 € (tp,t;) we get
w(r, p) > w(t,p) > 0. This is a contradiction to the fact that w(7, p) has one root.
Hence the assumption tg < t; is false and we have tg = ¢;.

Setting
do

£ =

2d; —dp’
we obtain

dp\ ¢ .
8o +t{dy — &) = (dl ~?) m(t—t ).

Hence the set
Qo := {80 +t(8; — do) : t € [t*,t0), 6 € Q}
with boundary
O = {60 +to(6; — o) : 6 € O}
has the desired properties. 0O
As a result of (5.11) and (5.12) we find the estimate
16X1 < f(II6A]lg), [16A]llg € cl() := Qo U 0. (5.20)

We will now analyze the three cases in Theorem 5.9 in detail.

Theorem 5.11 The function f: cl(Qg) — Ry in (5.11) is nondecreasing in each
of its T arguments and satisfies f(0) = 0. Moreover, in the domain g the function
f 15 real analytic, i.e. it may be represented by its Taylor series

F8) =3 1:(6),
1=0

where
fi(8) = 0(|js})*), 6 = 0

are homogeneous polynomials in & of degree .
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Note that the boundary 9Qq of the domain Qy may be obtained by eliminating
p > 0 from the system of equations

h(d, p) = p, h;(av p)=1.

Having a Lyapunov majorant, the next step is to solve the majorant equation
and in particular to find its small solution pg (whenever it exists). It is highly
desirable to do that finding the dependence of pg in § in an explicit form. Of
course, given a fixed § the majorant equation can always be solved numerically
and if it has two roots 0 < gy < p; one can choose fy as a candidate for the small
solution vanishing together with §. This ‘numerical’ approach may or may not
work. The problem is that it is not clear whether for the computed solution pg
there is indeed a continuous function f with pg ~ f(8) and f(0) = 0 (i.e., whether
a small solution exists). The next example shows that the numerical approach
may be misleading.

Example 5.12 Let
2

h(5, p) = 66 + l‘sf S GERy. (5.21)

Then the majorant equation is formally equivalent to the quadratic equation

(1+8)p* —(1+68)p+65=0, p#1.
For § < (3 —v/6)/6 ~ 0.09175 the small solution

B 126
1465 +1202 120 +1

is of order 66 and indeed tends to zero with § — 0. However, for § > (3++/6)/6 ~
0.90825 the quadratic equation has roots which are not small because ¢ cannot be
small. For example, if 4 = 1 then the roots are 1.5 and 1. Of course, the latter
case should in fact be excluded from consideration since h(4, p) in (5.21) is defined
only for p < 1. But in practice, cases like this may cause problems. ¢

po = f(0)

In many applications the expression h(d, p) has the form

92(57 P)
g(8) — g3(8,p)’

where g;(d, p) are polynomials in p, g;(6,p) = Z;zo a;;(6)p?, i = 1,2,3. Here
the coefficients a; () and g(6) are polynomials in § € RX with nonnegative co-
efficients, and g(0) > a3,(0). Also, we must have a;(0) = a20(0) = 0 and
a1,1(0) + a2,1(0) < 1. In this case h(4, p) is well defined if § € R and p < 9(6),
where 9(0) is the smallest positive root of the algebraic equation g(8) = g3(4, p).

h(67 P) = 91(67 p) +
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Furthermore, the majorant equation can be reduced to an algebraic equation
of degree r := max{ry,ry + 73,73 + 1} in p, namely

d(6,p) ==Y _d;(8)p’ =0, p <9(d). (5.22)
j=0

Note that the coefficients d;(d) may not be nonnegative and/or nondecreasing in
8.

Here the surface § C R% is defined by the equation A(d) = 0, where A(4) is the
discriminant of d, see [9] for the corresponding definition. In this case equation
(5.22) (and hence the majorant equation) has a double nonnegative root. The
discriminant of d may be constructed by different schemes (whenever appropriate
we omit the dependence of d and d; on their arguments). Let r > 2 and consider
the derivative d,(4, p) = Z;;é(j + 1)d;41p° of d in p which must be zero at the
double root. Multiplying d by p,...,p 2 and d, by p,... ,p" L in view of d = 0
and d, = 0, we obtain 2r — 1 homogeneous linear equations in the quantities
1,0,...,p* 1! which can be written as a vector equation

7O =, T = [tﬁ’] e Rfr—l)X(Zr—l)’ b = [1,p’.“’p2r—1]T c R'ff‘l.
Here the elements tg) of T are given by

0 ifi<i<r-1 andj<i,
di—; fl1<i<r—-1 andi<j<r+jy,
) 0 if1<i<r—-1 andj>r+z,
K 0 fr<i<2r—1 andj<i-r+1,
(J—t+nr)djigr fr<i<2r—1 andi-r+1<j<y,
0 fr<i<2r-1 andj>q.

Example 5.13 For r = 2 and r = 3 the equations for b and b(® are

[dy di dy 1
Tp2 = di 2ds 0 p | =0, (5.23)
L 0 di 2 p*

(do di dy dy O 1
0 do d1 dz d3 p
TG = | dy 2dy 3d3 0 0 o | =0
0 d1 2d2 3d3 0 p3
4

L 0 0 d1 2d2 3d3 p
&

The discriminant of d is A = det(7("). Since b # 0 and having in mind that
T depends on ¢, it follows that S = {6 € RE : det(T™(5)) = 0}.
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5.2.1 Polynomial Lyapunov majorants

In the important particular case of polynomial or pseudo polynomial [140] matrix
equations F(P, X) = 0 the Lyapunov majorant is a polynomial in p,

T

h(d,p) =Y _ a;(6)p?, (5.24)

=0

where a; are continuous, nonnegative and nondecreasing functions of § € R’i
and a,(8) > 0 for some § € R%. In fact, a;(8) are often polynomials in & with
nonnegative coefficients. In this case the conditions a¢(0) = 0 and a1(0) < 1 are
fulfilled (in most applications we even have a1(0) = 0).

Consider the majorant equation

p=>_a;(0)p (5.25)
j=0

We can always solve this equation numerically for a given § € R%. Let the com-
puted solutions be pg < py. Then we can take pp as the small solution lying on a
continuous path to zero. Despite of that it is still convenient to have (approximate)
closed form solutions. Next we consider techniques to construct such solutions.

We denote by Q, C RE the set of all § such that equation (5.25) has a small
solution pg, denoted as f.(§), where the function f, is continuous and f,.(0) = 0.
Upper bounds for f,, defined for § € fAZT, are denoted as fr As we shall see, )y
is bounded but not closed, while for r > 1 the set , is compact. Obviously we
have fj+1(6) < fj(é) and Qj+1 - Q]‘, 7=12,...

The case r = 1. Here the function h(4,-) is not strictly convex. Equation
(5.25) has a unique solution

ao(é)

= Q
f1(9) = 0:(3)’ 6 € 1\Sy,
where ; = {5 € Ri ra1(d) < 1} and S; = {5 € Ri caq(8) = 1}. This case

arises in studying linear algebraic equations.

The case v = 2. Here the function h(4,-) is strictly convex for some §. The
domain for 4 is

Q= {5 € RE : a(6) + 2120w (0) < 1}, (5.26)

and the surface So C {2 is obtained by replacing the inequality in (5.26) by
equality. For § € Q\S, the majorant equation has two roots, the smaller one
being

. 2(10((5)
f2(8) := 1—a1(8) + /(1 —a1(3))? — 4ao(d)az(3)
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For § € S, the majorant equation has a double root f2(d8) = 2a¢(8)/(1 — a1(d)),
d e So.
Similar results hold for the case when

ago + a21(0)p + agp®

h(8, p) = a10(8) + a11(6)p + g(p) — az1(d)p

The case 7 = 3.  Here the majorant equation is cubic. The surface S is
obtained by det(T(®(8)) = 0, where the matrix 7% is defined by (5.23). For
this case there are closed form solutions, given by the Cardano formula. But we
are interested in the case when the equation has two nonnegative solutions {(and
hence one negative solution as well). This is the so called irreducible case when
the explicit form solution is not very practical. So we shall find an approximate
closed form solution.

Suppose that for a given ¢ such that a;(8) < 1, equation (5.25) has two non-
negative solutions. Suppose also that a3(6) > 0, since otherwise the majorant
equation is of order less than 3.

For the small solution po = f3(d) it holds that pg < 73, where 73 is the unique
solution of the equation 1 = h,(6, p), i.e., 1 = a; + 2az73 + 3a372. Hence

1 —ay(4) .
a2(8) + \/a3(8) + 3az(8)(1 - a1(9))

Furthermore for p < 73 we have

T3 = 7'3(5) =

p < ag+arp+ (az + azTs)p. (5.27)

The right hand side of (5.27) is again a Lyapunov majorant in the form of a second
degree polynomial in p. So we can apply the estimates already obtained for r = 2
above. As a result we get the estimate

20,0(5)

- al((s) + \/(1 — al((S))2 _ 4(10((5)62(5)’ 6 € Q, (528)

F3(6) < f5(5) =

where
Q3 = {5 € RX :a1(6) + 2v/a0(8)a2(d) < 1} (5.29)
and 52(5) = a2(5) + a3(5)7'3(6).
We recall that the estimate (5.28), (5.29) is valid under the assumption that
the majorant equation p = ag +ajp+ azp® + azp® has nonnegative solutions. And,
of course, the inclusion d € Q3 by no means guarantees that such solutions exist

(in general Q3 may be a proper subset of ﬁg) Fortunately, here the existence of
nonnegative solutions is easily checked by the inequality

F3(8) < m3(6), (5.30)

involving already computed quantities. In particular the equality in (5.30) is equiv-
alent to det(7®(8)) = 0 or § € S3. More precisely, the following result holds.
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Theorem 5.14 The following assertions are valid in case of a cubic majorant
equation.

1. If (5.30) is fulfilled then the majorant equation has a small solution f3(8) <
f3(8). If (5.80) is violated, then the majorant equation has no nonnegative
solutions.

2. The equality in (5.30) describes the surface S3 C RE on which the dis-
criminant of the majorant equation vanishes and this equation has a double
nonnegative root.

Proof. The equality in (5.30) means that the quantity ]";,(5) satisfies both the
majorant equation p = h(4, p) and the equation 1 = h,(4, p). Hence ]?3(5) is a
double root. 0O

Note that inequality (5.30) is equivalent to h(d,73(8)) < 73(8) as well as to
he(8,73(8)) < 1.

If h(é,f;(é)) < ﬁ,(é) then we can construct better approximations by the
scheme

Pt pDag(8)

=1,2,...,
P —h(5,p@) + ao(0)

where p(® = f5(6).

Example 5.15 Consider the majorant equation p = h(d, p) := 6(1 + p+ p° + p?),
where 6 > 0 is a scalar. Here the interval [0,S3] for § is easily obtained noting
that S3 is the maximum of the expression p/(1 + p + p? + p3) in p > 0. This
maximum is achieved for the positive root of the equation 2p% + p? —1 = 0 and is
S3 =~ 0.27695. We have 73(8) = (1 — 8)/(6 + v/36 — 262) and

) 2
f3(8) = 1—6+4+/1-20 — 02(3+ 73(d))

The results for the exact small solution f3(§) and its bound f3(6) are shown at
Table 5.1. The cases when the solution does not exist are marked by double
asterisk. The bound does not exist in the case marked by asterisk. We see that
the bound fg,(&) is good whenever applicable, i.e., for § < S3. But it also ‘works’
a bit after Sz (for example § = 0.28) although for this value of § the majorant
equation does not have a small solution.

¢

The case r > 3. For r = 4 there is a closed form solution, which is not very
suitable for practical implementation. For r > 4 in general there are no closed form
solutions. That is why for r > 3 we shall construct closed form approximations
for the small solution of the majorant equation as in the case r = 3.
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Table 5.1: Solutions and bounds for a cubic majorant equation

4 f3 f3
0.03000 | 0.03096 | 0.03105

0.09000 | 0.09999 | 0.10148
0.15000 | 0.18350 | 0.18968
0.21000 | 0.29601 | 0.31388
0.27000 | 0.52607 | 0.57302
S3 ~0.27695 | 0.65730 | 0.65730
0.28000 * 0.74925
0.29000 *k *

Suppose that for a given ¢ such that a;(6) < 1 and a,(§) > 0 equation (5.25)
has two nonnegative solutions. For the small solution py = f.(8) we have py < 7.,
where 7, = 7,.(8) is the unique solution of the equation 1 = h,(9, p),

r—1
1= (j+aju17l. (5.31)

7=0
This equation has a unique solution. Indeed, 1 > a; = h,(5,0). On the other
hand for p sufficiently large (take ra,p"~1 > 1) we have 1 < h,(6, p). Hence there
is a solution 7, of equation (5.31). That 7, is unique follows from the fact that the

function h,(4,-) is increasing.

We have po < g(6, 7-(8), po) == ao(d) + a1(6)po + a2(8)pf + b(3, 7-(8)) §, Where

b(d, 1) : Zaf“ yrit,

Here g(d, p) := ¢(8,73(d), p) is a new Lyapunov majorant. Note that g(é,7,p) e
h(4, p) for p e 7, where o stands for <, = or >, respectively. Since for 7 > 3 there
is no convenient closed form expression for 7, we shall find an upper bound 5(6)
for (8, 7-(8)). It follows from (5.31) that (j + 1)a;4172 < 1 — a1 and

~ 1/
TTS(—.L“—> =2, -1
(7 + 1)ajr

Hence

and
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As a result we have p < ag(8) + a1(8)p + (az(8) +3(6))p2 and
20,0(5)

Fo(8) < Fr(6) 1= = (5.32)
1 - a1(8) + /(1 - 01(6))? — dao(8)(az(s) + ()
provided that
5eQ, = {5 € R: : 0, (6) + 21/ ao(8)(az(8) + b(8)) < 1} . (5.33)

Thus we have proved the following result.

Theorem 5.16 Consider the majorant equation 5.25 for v > 3. If the inequality
fr(0) < 1,.(8) is fulfilled then the majorant equation has a small solution f,(8) for
which the estimate (5.32), (5.88) holds.

Example 5.17 The bound (5.32), (5.33) is applicable for r = 3 as well (in this
case we shall denote the bound as ¢3(§)) although it will give slightly worse re-
sults than the bound (5.28), (5.29). Consider again the majorant equation from
Example 5.15. Here ¢3(d) is the small solution of the equation (& + a3(8))p? ~
(1 ~4)p+ 0 = 0. The results are shown at Table 5.2. In the case marked by an
asterisk the bound (3 does not exist.

Table 5.2: More solutions and bounds for a cubic majorant equation

Y f3 3
0.03000 | 0.03096 | 0.03106

0.09000 | 0.09999 | 0.10181
0.15000 | 0.18350 | 0.19190
0.21000 | 0.29601 | 0.32554
0.27000 | 0.52607 *

%

Example 5.18 Consider the majorant equation p = h(d, p) := §(1 +p+p? +p> +
p*), where § > 0 is a scalar. The interval [0, 4] for & is obtained by noting that
Sy is the maximum of p/(1 + p+ p2 + p2 + p*). This maximum is achieved for the
positive root of the equation 2p® 4 p? — 1 = 0 and is S3 ~ 0.27695. We have

-~ _ s\ 1/2 _5\2/3
b(8) = az(8) + ay() = 62 (}3_5> 4+ §1/3 (lz_)

Fal6) = l .
1 -6 +1/(1-6) — 48(5 + 5(5))

and
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The results for the small solution f4(d) and its bound ﬁ(é) are shown at Table 5.3.
The cases when the solution does not exist are marked by a double asterisk. The
bound does not exist in the case marked by an asterisk. The bound ﬁ;(é) is
satisfactory whenever applicable. We also see that the bound ceases to to exist
before the critical value Sy for 4.

Table 5.3: Solutions and bounds for a quartic majorant equation

0 fa fa
0.02000 | 0.02042 | 0.02047

0.08000 | 0.08769 | 0.09004
0.14000 | 0.16831 | 0.18215
0.20000 | 0.27568 | 0.34254
0.26000 | 0.53064 *

5S4 ~ 0.26079 | 0.56774 *
0.26100 o *

¢

We conclude this subsection by justifying certain ‘cheap’ perturbation bounds.
An interesting feature of these bounds is that while they are valid for any r > 2,
only the first two or three terms a; o’ of h are taken into account explicitly. The
influence of higher order terms is implicit by the requirement § € €),..

Theorem 5.19 Consider the majorant equation 5.25 forr > 2 and let 6 € Q. \S;.
Then

fr(6) < b2(8) < b1(6), (5.34)

where
_ 200 by(6) := 3ag(6)
1—ay(8)’ T 1—a,(8) + /(1 = a1(0))% = 3ao(8)az(5)

Proof. We note first that the relation § € Q. C ), guarantees that a; +
2\/apaz <1 and hence the quantities b; are correctly defined by (5.35). Consider
now the second estimate f, < b; in (5.34). Recall that 7, satisfies (5.31). Set-
ting ¢1(6,p) == ai(8)p? ™t + - + a,(8)p" !, where | = 2,3, we see that a;(8) +
27.(6)c2(6,7,(9)) < 1 and hence ¢3(d,7-(8)) < (1 — a1(8))/(27-(8)). On the other
hand for every p < f.(6) we have

bl(d) =

(5.35)

p < ao(8) + a1(8)p + c2(8,7(8))p* < ao(d) + a1 (8)p + (1 - “1“”—27’)?5)'

Since p < 7,.(6), we get that p < ag(6)+a1(8)p+(1—a1(8))p/2 and hence p < by(4).
Now the first inequality in (5.34) follows, since p may be chosen as f(4).
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Consider next the first bound f,. < by in (5.34). We have a;(8) + 2a2(0)7,(6) +

372(8)cs (6, 7-(6)) < 1 and hence ¢3(6,7-(0)) < (1 — a1 () — 2a2(8)7,-(6))/(372(6)).
For every p < f.(6) it is fulfilled that

IA

ag(8) + a1(6)p + a2(6)p? + c3(8,7,(6)) 0>

ao(8) + a1(8)p + az(6)p* + (1 — a1(6) — 202(8)7-())

P
3

p
3r2(8)

IA

Now p < 7.(48) yields
p < aol8) + a1 (8)p + aa()p? + (1 — ax(8) — 2a2(8)p)p/3

)p2. Thus p < by(8) for all p < f,.(5).

and 0 < 3ag(0) — 2(1 — a1(8))p + az(é
d) < by(6) is verified by direct calculation. This

Finally the inequality bo(
completes the proof. 0

Of course, in applying the cheap estimates (5.34) one has to check whether
6 € . A sufficient condition for f,(8) < b;(6) to be valid is A(6, b;(8)) < b;(6).

We conclude the consideration of cheap bounds with the following remarks. For
d — 0 the small solution f,(3) is of asymptotic order a(é) + o(||6]|), where a(d) :=
ao(6)/(1 — a1(0)). At the same time the bound by(8) is of order %a(é) + o(l}8)]),
while 6;(8) is of order 2a(d) + o(||6]|). We note finally that b;(8) = bo(4) if and

only if 6 € So, ie., 01(5) + 2\/&0(5)&2(5) =1.

5.2.2 Asymptotic solutions of polynomial majorant equa-
tions

Consider the problem of asymptotic expansion of the solution to the majorant
equatuon. Suppose that the coefficients a; in (5.24) can be represented as a; () =
a;0(0) + a;1(8) + - - - (the case when some of these expansions contains infinitely
many terms is not excluded) where a;;(8) = O(||6]|'), § — 0. For example, a;, can
be polynomlals in ¢ of degree [. We recall that the degree of a nonzero polynomial
20,50 Ch. 10 o6 is L= max{ly + - + Ik : 1,1, # 0} In particular aj,0 are
nonnegative constants. Since (4, p) is a Lyapunov majorant we have ago = 0 and
ayo < 1.

We shall represent the small solution of (5.24) as po(8) = >°,_; pi(6), where
pi(6) is of order [[§f|* for § — O (note that the expansion for p starts with the
term p1(8) = O(||4]])). For this purpose we shall use the technique of the fictitious
small parameter, see [135]. Represent the coefficients a; as 3_,_, €'aj; and po as
PO =1 elp;. Substitute these expressions in (5.24) and equate the coeflicients
of the equal powers of the parameter . As a result p; is immediately obtained.
For the next coefficients ps, ps . . ., a recurrent scheme emerges as described below.
Finally ¢ is set to 1. We have p1 = ag .1 +a1,001, p2 = o2 +a1,002+0a1,1p1 +a2,007,
p3 = Qo3 +a1,003 + 01,102 + a2,10% +2a2,0p1p2, etc., and pry1 = Qo141+ G1,00141 +
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qlp1,...,m), | > 3, where q; is a polynomial of degree [ in py,...,p;. As a result
we have
ag,1 ag,2 + a1,1p1 + a2,00% ao3 + a1,1p2 + az,1p3 + 2a2,001p2

pl:l*m,o’m: 1—-a10 P = l—aip ’
(5.36)

etc., and
ao,l+1 +Qt(P17~~,m), 1> 3.
1 —aio

Pl+1 =

Example 5.20 Consider the majorant equation p = §; + &2 + 81 p+ p2 + p3, where
6= [51,52]T € Ri We have ap,1 = 81 + 69, a0 = 0, ar = 01, azo=1,a30=1
and the other g, ; are zero. Using (5.36) we obtain p = (81 + d2) + (262 + 36152 +
63) + (763 + 166285 + 126103) + O(||6]|4), § — 0. &

Example 5.21 Consider the Lyapunov majorant h(é,p) := & + ép + p* + p°,
where § > 0 is a scalar. The maximum allowed value S3 for § is easily obtained
excluding ¢ from the equations p = (4, p) and 1 = h,(d, p). As a result we obtain
6§ =1-2p~3p% and 1 — 2p — 4p® — 2p® = 0, which gives p ~ 0.29716 and
83 =~ 0.14078. Here the asymptotics of the small solution is

f2(8) = 6 + 262 + 75% + O(6%).
The approximate solution ﬁ(é) is

299

fg(a):ﬁgaz 53+0(54)~5+23352+83153+0(54)

The slightly worse approximation from Example 5.17 is

0s(8) = 6+ (2 + 7) 524 (2?? 23) 514 0(6%) = §+2.586247.00 8% +O(6%),

while the cheap bounds from (5.34) are

ba(6) = —6+ 281 10553+0((54) =1.56 +2.6240% 4 6.56 6% + O(6*%)

and by (8) = 26 + 262 + 26% + O(64). &

Assume now that we have estimates of type (5.1), (5.2) for the corresponding
generalized norms, i.e.

ITI(E, Y)]lg

h(IEllg: p)s
ho(1Ellg, MY = Z]lg

A 1A

for all y, z with
1Yhg 1 Z)lg % 0= o1, .. ,/’s}T € RY.
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Suppose that the function
h=[h,...,hs]" : R x R% - RS

is continuous, differentiable in its last s arguments, and A(0,0) = 0. We assume
also that h(4, p) is nondecreasing in each of its s + r arguments and that the
relations

p; =o0(h;(6,p)), pj — o005 j=1,...,8

and
rad(h},(0,0)) < 1

are fulfilled, where rad(A) is the spectral radius of the matrix A.

The application of the method of Lyapunov majorants here again allows to
prove that there exists a closed convex domain @y C R’,, such that for every 6A
with ||0A|l; € ©, the perturbed equation (4.5) has a unique solution 6X, where
0X is a function of §4 such that 6X = 0 for 64 = 0. Moreover, there exists a
function

f: [fla"'afs]T :CI(QO) HRj—a

such that f; is nondecreasing in each of its arguments, satisfies f(0) = 0, and
16X 1lg = F(lI6Allg), 15A]lg € o (5.37)

The boundary 9Qp of the domain Qg is obtained by eliminating p € RS from
the system of equations

1(6,p) = p, det(,(6,p) - I,) = 0.

The inequality (5.20) or (5.37)) gives nonlinear nonlocal perturbation bounds
for the solution in case of a regular computational problem with implicit solution.

Consider finally the case when the solution of equation (4.1) is not unique.
We shall restrict ourselves to the case ¢ > r, i.e., when we have more unknowns
than the number of equations. Suppose that the linear operator Fx : X — Y
is surjective, or equivalently, rank(M) = r, where M := Mat(Fx) € F"*9 is the
matrix representation of Fx.

Let F)T( : Y — X be the right pseudo-inverse of Fx, such that

Mt = Mat(FL) = MY(MMT) L

Then all relations from the present section are valid with Fg ! replaced by F ;(
In this case, however, the operator equation (4.7) is not equivalent to the original
equation (4.1): all solutions of (4.7) are solutions of (4.1) but the converse may
not be true. This will not cause a problem, since we usually have to find at least
one solution. In addition, here it is not necessary to prove the uniqueness of
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the solution of the operator equation, since the original equation has no unique
solution.

Thus, when using Lyapunov majorants h(d, p), it is sufficient to prove that
the majorant equation p = h(4, p) has a root vanishing together with 4, without
the requirement that the derivative /,(, p) (in case of a scalar h) or the spectral
radius of the matrix h(d, p) (when h is a vector function) is less than 1.

5.3 Case study
Consider the real scalar quadratic equation
q + 2azx — sz? = 0, (5.38)

where ¢ > 0 and s > 0. The positive solution of equation (5.38) is

d
x:a+ , d:=+/a? + sq.

S

Let dg, da and ds be perturbations in q, @ and s, respectively, which preserve the
form of the equation, i.e., |6g] < ¢ and |ds| < s. The perturbation in the solution
is then -

séa — ads + sd — d(s + és)

(5 =
* s(s +ds)

+

where

d:=+/(a+08a)? + (s + 6s)(q + 0g) .

Setting ¢ = (¢, a,s) and ds = (¢, da, ds), the equivalent operator equation for the
perturbation dx is

dz =Tl{bc,8z) = My (ds) + [11(dc, 8z) + M2(dc, bx), (5.39)
where
1(8c) = (dq+ 2zda — x%8s)/(2d),
Iy (dc,02) := (ba—xés)éz/d, Ty(dc,dx) := —(s + 8s)dz?/(2d).

Hence, the Lyapunov majorant is

h(b¢, p) = ag(éc) + a1 (8¢)p + az(dc)p?,

where
ag(dc) = (8q+ 2x6, + 2°5s)/(2d),
a1(6c) = (da+zbs)/d,
as(dc) := (s + ds)/(2d).
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If wetake g =a =s=1and dq = ¢, 6a = £ and ds = —¢, where 0 < e < 1,
then after some simple computations we obtain z = 1 + v/2 and

(5x(5): 8\/— <1+\/_+1+\}m>

Furthermore,
ao(dc) = (2 + 1.5v/2), a1(d¢) = e(1 + v/2), az(dc) = 0.25v2(1 + ¢)
As a result we have the perturbation bound
bz < f(e), € <o,

where
2ap(dc)
1 — a1(6c) + /(1 — a1{6¢))? — 4ag(dc)az(dc)
£(4+3v/2)
1—e(1+v2) +4/1-¢e(5+4V2)

fle) =

and g9 = 1/(5 + 4v/2) = 0.0938 (up to four figures after the decimal point).
The expressions for the exact perturbation dz(¢) and the bound f(e) have
equal first order terms, namely

sz(e) = £(2+1.5vV2) + €32+ 1.375v2) + O(£%)
= 4.1213¢ 4+ 3.9445¢2 + O(e®), € — 0,
fe) = &(2+1.5V2) + (8 + 5.625v/2) + O(%)
= 4.1213¢ +15.9550¢% + O(e®), € — 0.

In Figure 5.5 we give the graphs of the functions éz : [0,1) — R4 and f : [0,&0) —
R,.

5.4 Notes and references

The method of finite majorant equations was proposed by A.M. Lyapunov in 1893
for the analysis of series expansions of solutions of ordinary differential equations,
see [162, 163]. The corresponding majorant functions are known as Lyapunov
majorants. The use of Lyapunov majorants and fixed point principles in proving
existence and uniqueness results for operator equations in nonlinear oscillation
theory was proposed in [160], and, in a more general statement, in [85]. This tech-
nique had been further developed in [134, 135] for perturbation analysis of matrix
problems. The combined use of Lyapunov majorants and fixed point principles in
the perturbation theory for matrix equations is considered in [127], see also [147].
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Exact perturbation and nonlinear baund
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Figure 5.5: Exact perturbation and nonlinear bound

It is worth mentioning that the technique of Lyapunov majorants is in fact
widely used in many problems of the general theory and perturbation theory of
operator equations (including equations in abstract spaces), often without stating
this explicitly.
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Chapter 6

Singular problems

6.1 Introductory remarks

In this chapter we consider basic concepts for singular problems, such as the dis-
tance to singularity, and the classification and regularization of singular problems.

As discussed in Chapters 2, 3 and 4, problems with implicit solution may be
regular or singular. Fortunately, regular problems are usually generic in the data
space. At the same time the analysis of singular problems is important from both
theoretical and practical points of view.

Singular problems are also often called infinitely ill-conditioned. The pertur-
bation in the solution of a singular problem may be extremely large even if the
perturbation in the data is small. A regular problem which is close to the set of
singular problems may be very ill-conditioned and there is a close relation between
the conditioning and the distance to singularity of a given regular problem.

Example 6.1 The problem of computing a particular solution z = z; of the
algebraic equation

" tar" 4 ap_r+a, =0

is regular if x, is a simple root, and singular if z; is a multiple root. A solution of
multiplicity k corresponds to data a = [ay,...,a,)" € R™, belonging to a closed
(n — k + 1)-dimensional variety in the data space R"™. The sensitivity of multiple
roots may be very high. For example, the equation

(z—-1)"=0

has a root z = 1 of multiplicity n. Perturbing the constant term in the polynomial
by a small quantity u we get the equation

(Z-1)"—p=0
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which has roots z+6x = 1+ g/p. If u = 107", then the perturbations in the roots
are of magnitude 107!, i.e., they are 107! times larger than the perturbations in
the data.

One should not make an erroneous conclusion that, if an algebraic equation
has only simple roots, then they are well conditioned. For instance, the famous
“perfidious” polynomial equation, introduced by Wilkinson [232],

(z-1)(z-2)-(2—20) =22 - 210z + .- +20! =0

shows high sensitivity of the roots z; = i relative to changes in the coefficients.
This is due to the very large condition number of some of the roots.{

Example 6.2 Similar to Example 6.1, the problem of computing the eigenvalues
of a matrix A € F"*™ is regular if and only if the matrix A has only linear elemen-
tary divisors. This holds for example in the case of pairwise distinct eigenvalues.
The set of singular problems (corresponding to matrices with nonlinear elementary
divisors) is a closed (n? — 1)-dimensional variety in F**". ¢

Usually, the set of singular problems B is a variety of co-dimension 1 in the
data space A. Thus, B has irreducible components, which are hyper-surfaces,
described by a scalar equation g(A) = 0. Furthermore, although the “probability”
that a particular problem is singular is zero, for a family of problems the situation
changes dramatically. Even if we deal with a one-dimensional family (i.e., a curve)
of problems with data {4;} C A, parametrized by the scalar t € R, most probably
it will meet some hyper-surface from B for some t. In such a statement, singular
problems seem more like a rule rather than just an exception.

An important characteristic of a regular problem is its distance to the set of
singular problems. This is the norm of the smallest perturbation that transforms
a regular problem into a singular one. It is intuitively clear that ill-conditioned
problems are close to singularity and vice versa. The interconnection between
conditioning and distance to singularity is studied in [51].

The perturbation analysis and the solution of singular problems presents a
challenge in modern scientific computing. Some issues in the classification and
analysis of singular problems are considered in the next subsections.

6.2 Distance to singularity

An important characteristic of a problem X = ®(A) is its distance to the closest
singular problem.

Definition 6.3 The absolute distance of the problem X = ®(A) to the set B C A
of singular problems is the quantity

Aabs(A) := dist(A, B) = inf{||0Al| : A+ 6A € B}.
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For problems with A # 0 we also define the relative distance Are1(A) as
Aabs(A)

IlAl
Thus, a problem is singular if and only if its distance to B is zero.

For many problems the relative distance A, (A) is inversely proportional to
the relative condition number & of the problem, or to its square k2 [51].

Arel(A) =

Example 6.4 Let A € F"*" be a nonsingular matrix and let

Aabs(4)
A (A) = 22077
A= g
be its relative distance to the set of singular matrices, where A,ps(A) is the norm

of the smallest perturbation 64, such that A + §A is singular:
Aaps(A) := min{||6A]| : det(A + §A) = 0}.
Since Aaps(A) = 1/]|A7Y| we have cond(A4)Ae(4) = 1. O

Hence, the relative distance to singularity and the relative condition number (with
respect to inversion) of a nonsingular matrix are reciprocal.

A problem, solved in finite precision arithmetic with roundoff unit eps, for
which Are(A) is of order eps, is practically singular. Indeed, when writing the
data in the computer memory, i.e., rounding A to the closest collection A of data
with exact representation in the finite precision arithmetic, we get a problem with
data A4, which may as well be singular, since |4 — A|| ~ eps||A]|.

6.3 Classification

In this section we classify different types of singular problems. Singular problems,
corresponding to data from the set B, are very sensitive and their numerical solu-
tions in finite precision arithmetic may be contaminated with large errors. These
errors may depend on the round-off unit eps in a highly nonlinear way, e.g., they
may have magnitude of order eps!/* where k > 1. Different problems may be
characterized by different values of k. But there are also problems which are so
sensitive that no perturbation bound of order eps!/* exists.

Example 6.5 The function ¢ : (-1,1) — R, defined by

() = { 1/log(()1/|a|) iig i |0a| <1
increases so fast in the neighborhood of the point @ = 0, that no estimate of the
type
lp(a) = (0) < claf”
exists, regardless of how small 7 > 0 is. ¢
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We may classify singular problems according to their sensitivity, see [134], as
follows. For a given problem X = ®(A), A € A, with ¢ at least continuous in an
open neighborhood of A, and for & > 0 small enough to ensure A+ A € A for all
0 A with |0 A| < a, set

w(4,a) = sup {||6X] : [|6A] <a}.
Suppose that w(A, @) may be represented in the form of an asymptotic series
w(4,a) = ij(A,a),
Jj=z1
where
wjr1(4,a) = o(w;(4,0)), «— 0

and o(a)/a — 0 for & — 0. The function w; is called the principal term in the
expansion of w, and it determines the magnitude of w in the neighborhood of
a=0.

If the problem is regular then

wi(4,a) = K(A)a,

where K(A) is the absolute condition number of the problem.
Singular problems are characterised by a larger rate of increase of w for smali
@, e.g.,
wi(4,a) = Ho'/* k> 1

and they may be classified by the behavior of the functions w or w;.
Definition 6.6 Two problems X = ®(A) and Y = ®(B) are said to be sensitivity

equivalent if there exist constants 0 < ¢; < ¢3 < 00, such that for some ag > 0 the
inequalities

w(A4, a)
< <ey, 0 <
CI_(U(B,O[)_CQ <« (o 7))

hold.

The sensitivity equivalence relation allows to divide the set A into pair-wise
disjoint orbits (or equivalence classes) Ay, As, ..., such that two problems belong
to a given orbit if and only if they are sensitivity equivalent. We suppose that the
orbits are numbered such that more sensitive problems correspond to orbits with
larger numbers. Thus, A; may be the set of regular problems, while the union
Az U Az U - - of the remaining orbits is the set B of singular problems.

For a wide class of problems the expressions w;(A,a) are fractional powers
in «, which correspond to a function ® that is locally Holder continuous in a
neighborhood of A. Suppose that the function & is locally Holder continuous on



6.3. CLASSIFICATION 107

A and hence, on B C A. Then for every A € B there exists a number 7 € (0,1)
such that the quantity

H(A 1) = lim sup { ](l{‘fffnfi c 64 < a }

is finite. Then we have
16X < H(A, )|6A]|7 + o(||6AllT), 64 — O.

Denote by 75 < 1 the exact upper bound of the set of all numbers 7 when A
varies over B, and let Ay be the set of all A such that ® is locally Holder in a
neighborhood of A with a power 5. Furthermore, by induction, we define powers
T3, T4,... (T2 > T3 > ---) and sets A3, Ajg,..., such that ® is locally Holder
continuous with a power 7; in the neighborhood of A € A;.

Setting 71 = 1, we see that A; is the set of regular problems (with the restriction
@} 4, of & on A, being Lipschitz continuous), while the set B of singular problems
is the union of A;, j > 2.

Typically the orbits A; are manifolds of decreasing dimensions:

dim(A) = dim(A4;) > dim(Ay) > ---.

If the set B of singular problems is defined as an algebraic variety, then 7; are
rational numbers, and often 7; = 1/5.

Example 6.7 Consider the equation
2 +a=0

with data a € F. Here A4; = F\{0} is the set of regular problems, while B = A; =
{0} is the set of singular problems. The sequence of Holder exponents is 1 and

1/2. &
Example 6.8 Consider the equation
 + a1 x+ay=0

with data a = [a1,as]" € A = R?. Here the set B is the semi-cubic parabola

ad a3
B= oL 2 o0y,
{“ T }

It may be represented as B = Ay U A3, where for a € 4; = B\{0} the equation
has a double root, and for a € A3 := {0} it has a triple root. Thus, we have a
sequence of Holder exponents 71 = 1, 7 = 1/2 and 73 = 1/3, corresponding to the
manifolds A;, Az and Az with dimensions 2, 1 and 0, respectively.
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Example 6.9 Consider the general algebraic equation of degree n
f(a,l') = aox“+a1m”1 +.-4a,=0

with real or complex coefficients, forming the data vector a := [ap, a1, ... ,an]T €
F*t1. Here we may choose A as the set of all @ with agp # 0. The set B is defined
from the condition that f(a,z) and f.(z,a) must have a common root. $

6.4 Regularization

The classification of singular problems may be effectively used in numerical anal-
ysis by applying various regularization techniques. These techniques are based on
projecting the problem onto the nearest (regularized) problem with higher sensitiv-
ity. Sometimes regularization means an imbedding of the problem into a problem
of lower sensitivity; these two approaches are dual in a certain sense.

We may regularize a problem by restricting the set of possible perturbations so
that the new perturbed problem to be of higher sensitivity, since in fact the new
restricted problem is less sensitive in comparison to the original one. There is no
contradiction in this (strange at first glance) assertion, see Example 6.12. Indeed,
the higher sensitivity of the regularized problem is exposed only to general per-
turbations, while relative to the restricted class of perturbations the new problem
is of lower sensitivity. These phenomena are explained next.

If A € Aj, then ® is locally Holder continuous in A with an exponents 7;,
and its sensitivity increases when A approaches the boundary 0.4; of A;. This is
reflected in the increase of the coefficient H(A,7;) in the local estimate

16X < H(A,7;)lI6A]™
of the perturbation in the solution. In the limiting case we have

li H(A,7;) = o0.
i H(A,7,) = o0

Denote by A° € A;11 a point from 4,41 which is closest to A, so that ||A°— Al
is the distance from the point A to the set A1, and consider the regularized
problem

X =®(A), Ac AC Ajy. (6.1)
The essential fact about (6.1) is that A is a neighborhood of A? which lies entirely
in Aj;1. Now the problem (6.1) is characterized with a sensitivity, determined by
the power 7; rather than 7,4, independently of the fact that Ac Ajpae

16X1] := [|®(A) — (A%)|| < H(A®,7))||A — A7,
where usually the quantity H(A%,7;) is such that

H(A%, 7))

H(A,T) <1
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The regularized problem (6.1) differs from the original problem X = ®(A4),
since the function in (6.1) is in fact the restriction ®| ; of the original function @
on the lower dimensional variety A.

Example 6.10 Consider the quadratic equation
z? + a1z +ay =0
with data a = [a1,a2]T € R? which has roots

—ay + \/a% — 4(12
5 .

T12 =

For a near to the parabola B C R?, defined via a? = 4a3, the equation becomes
ill-conditioned. Indeed, we have

6xi _ Ty 85!31‘ 1

60;1_‘—‘0.14-2.’131” Bag—-a1+2mi’
which gives
’ i2 = = .
la% —4@2' \/|a% —4a2|

Here K;; is the absolute condition number of the root z; relative to perturbations
in the coefficient a,;.

For a € B the equation is singular and z; = z2 = —a1/2. If now a; is perturbed
to a; + da;, we have

_ —da; + \/5(11(50,1 + ((5(11)2 — 4da,

5$1,2 = 5
Hence, the perturbation may be of order
6212 = \/a} + 4{/da|'/* + O(|l6al), @ — 0
and this is achieved for
sa — el o 2l

IR E S e

If, however, we choose a special perturbation with
2a15a1 + (6(11)2 = 45@2

then the perturbation in both roots is —8a;/2 and the problem is regularized.
This special perturbation in fact means that a + da € B. It is interesting to
observe that the problem is regularized also for a;da; = 20ay. In this case the
perturbation in one of the roots is zero and in the other root it is —6a;. In this
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second regularization the perturbed data a + da belongs to the straight line 7 in
R2, parametrized as

T :={la1 +t,ai/d + a1t/2]” 1t € R}
which is in fact the tangent to the parabola B at the point [a,a?/4]. &
Example 6.10 is very instructive. In general we have the following result.

Theorem 6.11 A singular problem X = ®(A) with data A € B is reqularized if
A+ 0A is allowed to vary either in the variety A = B or in the tangent space
A =1T15(A) of B at the point A.

The described regularization technique is applicable also to regular but ill-
conditioned problems with a € A; and a large relative condition number x(A).
In this case we may project the problem to the nearest (or some) point A° € A;,
obtaining a new family of problems X = ®(4), A € A, which are better condi-
tioned. Among the problems that can be solved in this way one should mention
the solution of ill-conditioned linear algebraic equations, the determination of the
numerical rank of a matrix, the computation of the eigenstructure of a matrix with
almost multiple eigenvalues as well as the solution of some basic ill-conditioned
problems in the theory of linear control systems.

Example 6.12 Consider the problem of rank determination for the matrix A €
F7*™_ Suppose that rank(A) = n and denote by

A=USVH S = diag(oy,...,0n), U,V €Uy,

the singular value decomposition of A, see [83] and Appendix B, where g1 > g2 >
... 2 op = 0 are the singular values of A. If o,, is relatively small, say o,, = epsory,
then the computation of rank(A) in finite precision arithmetic with roundoff unit
eps is a very ill-conditioned problem (practically a singular problem), since the
rounding of the data may lead to a matrix A*, which is not of full rank. Now let
us choose a threshold 7 > eps and consider as zero all singular values that are less
than or equal to 7. We get a new matrix

AV = USOVH 30 .= diag(ey,...,0%,0,...,0),

where the integer k is determined from o, > 7, 041 < 7. The number k is the
numerical rank of A corresponding to the threshold 7 (or, briefly, the T-numerical
rank of A), and A is the projection of A onto the set of matrices which are of
rank k. Now the numerical rank determination in a neighborhood € of A° is a
regular, and even a well-conditioned problem, if we consider the singular values of
matrices A € 2 that are less than the threshold 7, as zero. {
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This regularization technique uses a projection of a singular problem onto the
nearest (or some other close) problem of higher sensitivity. Another way to regu-
larize an ill-posed or a singular problem is imbedding it into a regular problem.

Example 6.13 Consider the linear algebraic equation Mz = b with M € F**»
singular or close to singularity. If M is singular, then the problem is also singular
but may even be ill-posed. If M is close to singularity the problem will be close
to singularity or to ill-posedness. We may regularize the problem by imbedding it
in the regular problem (M + al)z, = b, where a > 0 is a (small) parameter. This
approach is known as Tikhonov regularization, see [92]. ¢

6.5 Notes and references

Singular problems in the sense of this chapter (we recall that the problem X =
®(A) is regular if the function ® is continuous in a neighborhood of the data A,
and singular otherwise) are called also ill-posed by some authors [51]. Here we
prefer to use the classical terminology going back to H’Adamard [42, 43, 44].

The distance to singularity (sometimes called distance to ill-posedness) and
related problems have been considered in [51, 52, 53, 67, 93].

The classification of singular problems from this chapter had been proposed in
(133).

Regularization schemes have been proposed in [219, 218] and further developed
as computational procedures in [220, 221].
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Chapter 7

Perturbation bounds

7.1 Introductory remarks

In this chapter we discuss the main properties of perturbation bounds for the
analysis of problems with either explicit or implicit solutions. Some important
concepts are introduced and illustrated by examples.

7.2 Definitions and properties

The literature of perturbation theory is rich in various types of perturbation
bounds. However, for many of them neither quantitative nor qualitative mea-
sures of exactness are discussed. Also, often the domains of applicability of some
bounds are not known, or at least not stated clearly. This is particularly true for
linear local perturbation bounds, based on condition numbers.

In order to compare perturbation bounds, several criteria are important. Ide-
ally, the bound should be rigorous, its domain of applicability should be known
and, if possible, the bound should be sharp or ezact in some sense.

If the bound is too pessimistic in some cases, this should be made clear for the
user.

A desirable property of a bound is to be general in the sense that it imposes
minimum restrictions and is thus applicable to a general class of problems.

These requirements do not mean that bounds with unknown domain of appli-
cability, as well as some heuristic (or experimentally stated) bounds are practically
useless. Such bounds are of practical use, but one should be careful if a bound is
not proven to be rigorous.

If the above criteria are met and the bound can also be computed numerically
in a reliable way, then it should be included in software tools for solving engineering
and scientific problems. We stress that without sensitivity and error estimates the
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corresponding software cannot be recognized as reliable. Unfortunately, some of
the program systems for scientific computing do not include such estimates, and,
as a result, they sometimes produce erroneous results without warning the user.

In this section we present the concepts of sharpness, exactness and attainability
of perturbation bounds, which seem to be intuitively clear but nevertheless format
definitions are needed.

Let X be a solution of a regular problem with data A = (A, ..., A;), and let
X + 06X be a solution, corresponding to the perturbed data A + dA. In case of
an explicit problem we have X = ®(A), where the function is locally Lipschitz
continuous, and

80X =T(A0A) :=D(A+64) - P(A).
In case of an implicit problem, let X be the solution of the equation
F(A, X) =0.

Here ® is the supporting function, which is locally Lipschitz continuous and sat-
isfies F(B,®(B)) = 0 for all B from a neighborhood of the nominal data A, see
Chapter 4. We set

dx = [6X|| = [[¥(A,6A)],

or 0x = dx(6A), denoting explicitly the dependence of the quantity §x only on
dA for a fixed value of A.

We recall that here 6 A must belong to the domain £4, which is the set of all
E such that A+ 6A € A for all 4 with ||6A||y < ||E]ly, where

1Allg = ALl - - 1417 € RY.
Suppose that we have a perturbation bound
ox < f(I6Alg), 164, € D, (7.1)
where the domain D C R’, contains a set
{zeR":0< 2 < pi}
of positive measure (p; >0 forall i =1,...,7), and let

w(8) == max{dx (5A) : |6A], < 6} (7.2)

be the maximal norm of the perturbations in the solution for perturbations in the
data 6A, varying over the generalized ball

Bs ={E:|El, <}

Definition 7.1 A perturbation §A = (6Ay,...,0A,) in the data A is called full if
all 6A; are nonzero.
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Now we are in a position to define our first concept of exactness of a pertur-
bation bound.

Definition 7.2 The bound (7.1) is said to be asymptotically sharp if there erists
E € RT, such that
Ox(eE) = f(el Ellg) + ole), € — 0.

We note that for any E € D there exists ¢ > 0 such that ¢E € D for all € € [0, &g].

Thus, asymptotical sharpness is a property that is connected to the existence of
at least one infinitesimal one-parametric family of full perturbations {¢E}, € — 0,
for which the bound (7.1) is asymptotically equivalent to the maximum possible
perturbation (7.2) in the solution. More precisely, an asymptotically sharp bound
is asymptotically equivalent to the actual perturbation for the given family of full
perturbations in the sense that

. fElElg) _
A S EE)

A good perturbation bound should be asymptotically sharp, otherwise it may
be substantially improved.

Example 7.3 For a scalar problem = = ¢{a) with ¢ differentiable at a, the
chopped, condition number based bound is |6z| < |¢’(a)||6a|. For ¢(a) = a?
and a = 0 this bound reduces to §z = 0 which is not true for all da # 0. {

If we consider bounds which are asymptotically equivalent to the maximal
perturbation in the solution for all infinitesimal perturbations, then we come to
the concept of asymptotic exactness.

Definition 7.4 The bound (7.1) is said to be asymptotically exact if
w(d) = f(8) +o(llé][), 6 — O.

Asymptotically exact bounds are asymptotically equivalent to the maximum
perturbation in the solution for all infinitesimal families {E}, E — 0, of pertur-
bations.

Of course, the most desirable property of a bound is to be exact in the sense
of the following definition.

Definition 7.5 The bound (7.1) is said to be exact if D= Q and f = w.

Obviously, nothing more can be achieved in the norm-wise perturbation anal-
ysis than an exact bound. And, as may be expected, exact bounds are available
only in rare cases.

Example 7.6 For the scalar problem z = a? the exact bound is f(&) = 6(2]a|+6).
¢
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The only nontrivial bound in this book, that is proven to be exact, is that for
the linear matrix equation AX = C, see Chapter 9.

Some perturbation bounds known in the literature have the property of attain-
ability which we define as follows. Denote by D4 C D the set of all § € D with
d >~ 0.

Definition 7.7 The bound (7.1) is said to be attainable if there exists a manifold
M C Dy of dimension dim(M) = r — 1, such that f(8) = w(6) for 6 € M.

Often attainable bounds are not even asymptotically sharp. In turn, an asymp-
totically exact bound may not be attainable. The next two examples of scalar
linear equations illustrate these concepts.

Example 7.8 Consider the scalar equation
ax=c¢ a#£0

with solution z = ¢/a, and let . := |d¢|, d, := |da| and &, := |dz| be the absolute
perturbations in ¢, ¢ and z. For da # —a we have

c+déc ¢ bc—zéa
or = _—— = ——
a+da a a+ da

Hence, the maximum absolute perturbation in z is

and the domain Q for § = [6,,8,]T € R% is Ry x [0,]a]). Consider the following
expression in §, depending on two parameters a > 1 and § > 0,

_alb. + |z]ds)
PO = T =,

We have five possible cases.

1. If o = 1 and 8 < 1, then the inequality 4, < fi g(§) may not hold and hence,
f1,5(8) is not a bound in the strict sense.

2. If « = 8 = 1, then the bound is exact and hence, asymptotically sharp,
asymptotically exact and attainable.

3. If a = 1 and 8 > 1, then the bound is asymptotically exact and hence,
asymptotically sharp, but not exact and not attainable. Here D = R, X
[0, |al/B) is a proper subset of €.

4. If @ > 1 and B < 1, then the bound is not asymptotically sharp {and hence
not asymptotically exact and not exact), but it is attainable. In this case it
is valid in the domain D = R, X [0, ap], where ag := (o —1)|a|/(a — 8). The
manifold M (see Definition 7.7) here is Ry % {ao}.
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5. If & > 1 and 8 > 1, then the bound has none of the pleasant properties from
Definitions 7.2 — 7.5 and 7.7 but is nevertheless rigorous.

In Figure 7.1 we compare the exact quantity w with the bound from case 4.
with |a| =1, z = 1 and @ = 2, 8 = 0 in the 3-dimensional space of parameters
§, = 6., 8, = 8, and f. After the intersection of the surface w = (8. + d4)/(1 — da)
with the plane f = 2(é. + d,) the expression for f is not a rigorous bound. ¢

Approximate bounds

deita_1

Figure 7.1: An attainable bound which is not asymptotically sharp

The next example shows that a bound may be asymptotically sharp without
being asymptotically exact.

Example 7.9 Consider the equation from Example 7.8 together with the bound

/6 2 + 62
This bound is defined in the set D =  but is not asymptotically exact. At the
same time it is asymptotically sharp and attainable. Indeed, we have f(4) = w(d)
at the one-dimensional manifold M, defined via é, = |z|é; < |a|. In Figure 7.2 we
show the exact quantity w and the bound f for laj =1l and z =1. {

We will show that the concepts of asymptotical sharpness, asymptotical ex-
actness, exactness and attainability are applicable effectively to general linear and
nonlinear matrix equations (as well as to linear and nonlinear operator equations
in abstract spaces) and, in particular, to the polynomial and fractional-polynomial
equations that arise in control theory.
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Approximate bounds

0
delta_2 0 delta 1

Figure 7.2: An attainable asymptotically sharp bound which is not asymptotically
exact

7.3 Conservativeness of “worst case” bounds
Consider a rigorous perturbation bound
6x < f(6), 6€D
for the problem X = ®(A), where X € X, A€ A, 6x = ||[6X]],
6X = W(A,64) := ®(A + 5A) — D(A)

and ||0A]lg < 6. We recall that A is a matrix collection (Ay,..., 4,).

Since the bound is rigorous, it is also a ‘worst case’ perturbation bound in the
following sense. The bound is valid for all perturbations with ||§ A/, < ¢, including
those for which the norm-wise perturbation dx in the solution is maximal. At the
same time, for other perturbations, the actual perturbation 6x may be much less
than the bound f(é) predicts (or even zero). Thus, all rigorous perturbation
bounds are conservative for certain classes of particular perturbations. This is
true even for exact bounds f(d§) = w(§), where

w(0) := max{|| (A + 64) — 2(A)]| : |04]l, = 6}

is the maximal perturbation in 6y when §A varies over the set of admissible
perturbations €.

It may happen that for a given class Q of perturbations §A the perturbation
4X in the solution X is zero.
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For an explicit problem X = ®(A) we consider
Q:={Ee€&4:Y(4,E) =0}

For an implicit problem, defined via an equation F(A, X) = 0 with F: AxX —
Y,V ~ X, we consider

Q:={EecD:F(A+E,X)=0},

or, if we have already constructed the perturbation equation §X = II(6A,5X),
then we consider

Q:={E eD:II(E,0) =0}.
In the generic case when the problem is regular and the partial Fréchet deriva-
tive Fa(A, X) at (A, X) is surjective, then the set Q is a manifold of dimension
dim(A) — dim(X).

Let the matrix collection A be represented as A = (B, C), where B and C are
in turn matrix collections. Suppose that we may rewrite the equation F(A, X) =0
in the equivalent form G(B, X) = H(C), where G and H are continuous functions.
If B and C are perturbed to B+ 6B and C +6C we obtain the perturbed equation

G(B +6B,X +48X)=H(C +dC). (7.3)
Suppose further that we have the perturbation bound

5X S f(6a7>7 (677) € Q1

provided that ([0Blly < 3, {{6C|q < 7.
If the perturbations 0B, C satisfy the additional relation

G(B + 6B, X) = H(C + 6C) (7.4)

then the perturbed equation (7.3) has a solution 6 X = 0 and accordingly 6x = 0.
Hence, nevertheless how good the bound f(3,+) is, it may be very conservative in
this particular case.

Note that relation (7.4) will be fulfilled if for example, H is the identity operator
and

§C = G(B +6B,X)~C.

The most simple example here is the linear equation BX = C, where B is
mx m and C, X are m X n matrices, respectively, with B being nonsingular, and
C # 0. Assuming that |C7!{]||6B)) < 1 and

dC = 6BX = 6BB™'C, (7.5)
we see that the perturbed equation

(B +6B)(X +6X) =C +6C



120 CHAPTER 7. PERTURBATION BOUNDS

has the unique solution X = 0 and hence, ex = ||6X|/||X]| = 0. At the same
time, setting eg = ||0BJ{/||B||, we have the standard perturbation bound

ex < flep) == _2cond(Bep (7.6)

" 1—cond(B)eg’
For ep approaching 1/cond(B) the bound f(£g) becomes arbitrarily large, while
the exact perturbation is zero.

The observed effect of extreme conservativeness of the perturbation bound (7.6)
is not typical (or generic) and is destroyed in any neighborhood of the perturbation
(6C,6B). Note that the relation (7.5) defines an m2-dimensional subspace Q in
the m(n + m)-dimensional linear space of pairs (C, B). If (6C,6B) € Q is such
that B+ 4B is close to a singular matrix, then there exists a perturbation 6C such
that (6C,6B) ¢ Q, the quantity ||3C — 6C|| is small, and the relative perturbation
in the solution, corresponding to the perturbation (5_0—, dB), is close to the bound

f(eB).

7.4 Notes and references

In the literature there are only few studies in which the exactness of perturbation
bounds is analyzed, see e.g. [135].



Chapter 8

General Sylvester equations

In this chapter we present the perturbation analysis for various types of Sylvester
equations. We also derive improved first order homogeneous perturbation bounds
which are applicable to large classes of nonlinear matrix equations as well.

A linear matrix equation in the form £(X) = C, where £ : X — )Y is a linear
operator and X', are (isomorphic) linear finite-dimensional spaces of matrices
may be written as a linear vector equation Lz = ¢, where = and ¢ are the vector
representations of X and C, and L is the matrix of £. Hence, perturbation bounds
for linear matrix equations may be obtained using the perturbation theory of linear
vector equations. This approach, however, neglects the specific structure of L,
originating from the particular form of £, and may lead to pessimistic bounds.
As a result many of the existing perturbation estimates for particular classes of
linear matrix equations may be improved and this is true for both norm-wise and
component-wise bounds, which in turn may be local or nonlocal.

In this chapter we derive nonlocal nonlinear perturbation bounds for the most
general type of linear matrix equations in finite-dimensional matrix spaces.

8.1 Introductory remarks

We begin the analysis with an informal introduction of some basic concepts in the
theory of linear matrix equations.
Sylvester equations are linear matrix equations of the form

AXB+CXD+ - =E, (8.1)

where A, B, ..., E are given matrices, called matriz coefficients, and X is the
unknown matrix, or solution. The matrices in (8.1) are real or complex, or may
have elements from an arbitrary field. It is assumed that the sizes of all matrices
are such that the matrix operations in (8.1) are correctly defined. At this stage,

121
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without significant loss of generality, the reader may assume that all matrices are
real, square and of equal dimension.
The left-hand side of (8.1) defines a linear operator £, namely

L(X)=AXB+CXD+ -,
which allows to write the Sylvester equation briefly as
L(X)=E.
We recall that the linearity means that
L(aX +BY) =al(X)+ BLY)

for all matrices X, Y and all scalars «, (.

Equation (8.1) may be written also as a linear vector equation. This may be
done in many ways. Let for instance the unknown matrix X be represented by its
columns z;, i.e.,

X ={x1,22,.. .}

Then the elements of X may be stacked column-wise in a long vector

T
vee(X)= | T2

Stacking accordingly both sides of equation (8.1) (or taking the ‘vec-operation’ in
(8.1)) we obtain the linear vector equation

Lvec(X) = vec(E), (8.2)

where
L=B"@A+DT®C+--

is the matriz representation or matriz of L (see Appendix C for definitions and
properties of the Kronecker product ®).

A natural question that may arise in connection with the vector form (8.2)
of equation (8.1) is: Why is it necessary to develop a general theory (existence,
uniqueness, representation of solution, etc.) as well as perturbation theory for
linear matric equations when the corresponding theories for vector equations are
well developed and understood? There are several independent reasons and two of
them are discussed below.

First of all, as we have already point out, the vectorization process may make
the size of the equation (8.2) inacceptably high. It is in general better to apply
methods for solving linear matrix equations of relatively modest order rather than
to solve their high order vectorized formulations. Note that if n x n is the size
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of the coefficient matrices, then very good methods of computational complexity
O(n?) exist, while the vectorized form in general leads to methods of complexity
O(n®).

Moreover, perturbation theory for vector equations, when applied to (8.2) with-
out taking into account the special structure of the matrix L, will lead to rather
weak results, e.g., the corresponding perturbation bounds may be very conserva-
tive.

8.2 Motivating examples

Equations of type (8.1} arise in both mathematical theory and engineering practice.
We now present some examples of such equations, associated with continuous and
discrete time-invariant dynamical systems. When dealing with such systems we
need the concepts of stable and convergent matrices.

Definition 8.1 A square (real or complex) matriz A is called stable if its eigen-
values A\;(A) have negative real parts (or if the spectrum, spect(A), of A lies in
the open left complex half-plane C_). The matriz A is said to be convergent if
its ergenvalues have absolute values less than 1 (or if its spectrum lies in the open
unit disc Dy in the complez plane).

Next we recall some facts about the spectra of composite matrices, see [157]
and Appendix C. Let A and B be m x m and n x n matrices, respectively, and
a, 3 be scalars. Then the eigenvalues of the matrix al,, + 84 are a + BX;(A),
which may be written as

spect(al, + BA) = {a} & Bspect(A).

In turn, the eigenvalues of the matrix L, = I, A + BT ® I,,, that represents the
operator

X = L(X)=AX+XB
are A;(A) + M (B), i.e.,

spect(L.) = spect ([, ® A+ B' ® I,) = spect(A) @ spect(B).

Finally, the eigenvalues of the matrix L, = BT ® A — I, that represents the
operator

X — Ly(X)=AXB-X
are A\i(A)Ax(B) — 1, i.e.,

spect(Ly) = spect (BT ® A — Inn) = spect(A4) ® spect(B) © {1}.

(For definition of operations &, © and ® with collections see Appendix A)
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Definition 8.2 A matriz A is called semi-stable if its eigenvalues have nonposi-
tive real parts and the eigenvalues with zero real part correspond to linear elemen-
tary divisors (i.e., to 1 x 1 blocks in the Jordan canonical form of A). The matriz
A is semi-convergent if its eigenvalues have absolute values less than or equal to 1
and the eigenvalues with absolute value 1 correspond to linear elementary divisors.

Consider the set of two continuous time-invariant real dynamical systems

Z'(t) = Az(t), z(0)

= (8.3)
y'(t) = By(t), y(0) =yo

To

ki
?

where ¢ > 0 and z(t) and y(t) are m- and n-dimensional vectors, respectively. The
states z(t) and y(t) are determined by

z(t) = exp(At)zo, y(t) = exp(Bt)yo,

where exp(A) is the matriz exponential of A, defined by the convergent matrix
power series

A A? LAl
! ! = v

Let @ € R™*™ be a given matrix. An important problem in control theory
and stability analysis [157] is to evaluate the integral

o(t) ::/0 z " (s)Qy(s)ds = o (/0 exp(ATs)Q exp(Bs)ds) Yo,

as well as the improper integral

lim @(t) = x4 </000 exp(ATs)Qexp(Bs)ds> Yo.

t—ro0

We have ¢(0) = 0 and
¢'(t) =27 ()Qy(1). (8.4)
Consider the task of finding a Lyapunov function [158] v of the form
o(t) = 2] Pyo — 27 (£) Py(t), (8.5)

with the matrix P to be determined, and such that v(0) = 0 and v'(t) = ¢'(¢) for
t > 0 and all initial states 2o and yo. This would yield v = ¢. Differentiating (8.5)
in view of (8.3), we get

V'(t) = —(2'(t)) T Py(t) — T ()Py'(t) = —z" (t)(AT P + PB)y(t).
The comparison with (8.4) shows that P must satisfy the matrix equation

ATP+PB+Q=0. (8.6)



8.2. MOTIVATING EXAMPLES 125

This is a Sylvester equation, which is a particular case of (8.1). It has a unique
solution if and only if X;(A) + Ax(B) # O for all i,k, see Appendix C. If, in
particular, both matrices A and B are stable, then there exists a unique solution
P of (8.6) for every Q. Moreover, since in this case both z(t) and y(t) tend to zero
as t — 0o, we get the representation

P= / exp(A" s)Q exp(Bs)ds. (8.7)
0
Consider next the matrix differential equation
X't)=AX{t)+ X(t)B+C (8.8)

with initial condition X(0) = X, where the coefficients A, B, C and the solution
X(t) are m x m, n x n, m x n and m x n matrices, respectively. The solution of
(8.8) may be represented as

X(t) = exp(At) Xg exp(Bt) + /t exp(As)C exp(Bs)ds.
0

Equation (8.8) is autonomous (or time-invariant) in the sense that its right-hand
side does not depend explicitly on ¢. If its right-hand side vanishes for some
constant matrix, then this matrix will be a solution in the following sense.

Definition 8.3 A constant m x n matriz R is a steady-state solution (or an
equilibrium state) of the differential equation (8.8) if the substitution R = X(t)
annihilotes the right-hand side of the equation, i.e., if R satisfies the Sylvester
equation

AR+RB+C=0.

In this case the differential equation has a constant solution ¢ — R.
If the matrix I, ® A + BT ® I,,, is stable then we may represent the solution
matrix R as

R= /oo exp(As)C exp(Bs)ds. (8.9)
0

In this case the differential equation (8.8) is globally asymptotically stable in the
sense that for every initial state X the solution X (t) tends to R asymptotically,
ie.,

lim X(t) = R.

t—o0

These observations for continuous-time systems have discrete-time counter-
parts. Let two discrete time-invariant dynamical systems

Tey1 = Azg, (8.10)
Byk’

Yr+1
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with initial states xg, yo be given, where k = 0,1,2,... and z; and y, are m- and
n-dimensional vectors. The states x; and yj are then given by

), = A¥xo, yp = B*y,.

Consider the problem of evaluating the power series

oo o0
o= inTQyi =1z (Z(AT)’QBl) Yo (8.11)
i=0 i=0
for arbitrary choices of the initial states xzg, 3o and a given matrix Q. Since
o = x4 Syo, where
oo
S:=Y (AT)QB', (8.12)
i=0
we see that ¢ is convergent for all zy and yo if and only if the matrix series S is
also convergent. If S is convergent then

S=Q+ i(AT)’QB" =Q+ AT (i(AT)iQBi> B=Q+ ATSB.

i=1 =0

Thus, we have the Sylvester equation
ATSB-85+Q=0, (8.13)
which is solvable for every @ if and only if A;(A)Ax(B) # 1, or
1 ¢ spect(A) ® spect(B).
Consider finally the matrix difference equation
Xk =AXkB+C, k=0,1,2,..., (8.14)

with initial state X, where the coefficient matrices A, B, C and the solution
matrix X are m x m, n x n, m X n and m X n, respectively. The solution of (8.14)

1S
k-1

Xy, = A*XoB* + Y A'CB'.
i=0
A constant mxn matrix 7 is said to be a steady-state solution (or an equilibrium
state) of the difference equation (8.14) if the substitution 7" = X makes its right-
hand side equal to T, i.e., if T' satisfies the Sylvester equation

T =ATB+C.

In this case the difference equation has a constant solution k +— T. If the matrix
BT ®A is convergent, then the difference equation is globally asymptotically stable,
ie.,

lim Xk = T,

k—oo
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and the steady state solution 7" may be represented as

T =Y ACB" (8.15)

=0
8.3 General linear equations
In this section we discuss general linear matrix (Sylvester) equations
L(P)(X)=C, (8.16)
in the unknown matrix X, where the operator

L(P) € Lin(p,m,n,q)

is given by
T T
L(P)(X):= szk—1XP2k = ZAkXBk
k=1 k=1
and P := (Py,...,Py). Here Pop_; = Ag, Por = By and C € FPX? are given
matrices and mn = pg =: s. The matrix equation (8.16) is equivalent to the

vector equation
L(P)vec(X) = vec(C),
where .
L(P) := ZB,I ® Ay € Fo*® (8.17)
k=1
is the matrix of the operator £L(P), see [125] and Appendix E. If r is the Sylvester
indez of L(P), i.e., the minimum number of terms in the representation of L(P),

see again Appendix E, then all 2r matrix coefficients A; = P;,...,B, = Py in
(8.16) are nonzero. Let Py := C and

D= (Py,P) = (Py, Py,..., Py) € FPX9 x FPX™ 5 F™X9 5 ... x FPXT x F7%0,

Remark. We use two sets of notations P; and Ay, By, C for the matrix coeffi-
cients in (8.16). This is done in order to keep the usual notation with coeflicients

A, B, C, etc., on one hand, and to have unified notations for all coefficients, on
the other.

In general some of the matrices in (8.16) may be mutually dependent, for
instance AY = B, = A, B, = Ay = I, which gives rise to the Lyapunov equation

AlX +xA=cC.
Another example is the equation

ABXC - XB?=C.
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Since there is a large variety of such combinations, for simplicity, we assume in
this chapter that the matrix coefficients Ay, By, C are subject to perturbations in
such a way that the matrices that are perturbed are independent. Thus, we exclude
Lyapunov equations which are considered later.

Important cases of (8.16) include the following equations.

(i) Standard matrix linear equations with possibly several right hand sides

AX =C. (8.18)

(ii) Power Sylvester equations

> awA'XB* =C, ay €F. (8.19)
i,k=1

(iii) Continuous-time Sylvester equations

AX+XB=C. (8.20)

(iv) Discrete-time Sylvester equations

AXB-aX =C, ael. (8.21)

(v) Linear equations in two matrix unknowns, for example
AX+YB=C, (8.22)

where A € F™*™ B ¢ F™*" are matrix coefficients and X € F™*" Y ¢
F™X™ are the unknown matrices. Setting

X

U:=[X,Y]€F™? and V:= [ v

:| c F2mxn

we may rewrite (8.22) in two equivalent forms

AU[h]+U[O]:Q

0 B
or
4,0V +[0, I,]JVB =C.
(vi) General equations in several matrix unknowns Xi,..., X,, e.g.

iﬁs(Xs) = iiAstsBsk = C, (8.23)
s=1

s=1k=1
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where L, : F™«*"s 5 FPX*9 Setm:i=my+---+mgyand n:=n;+---+ng,.
If X = [Xy;] € F™*™, where X,; € F™*" is a block-diagonal matrix with
Xss = X5, then (8.23) may be written as

503" (ef ® Au) X (0008 B = C.

s=1k=1

where e, is the s-th column of I,.
(vii) General systems of equations in one matrix unknown, e.g.
L(X)=Cs, s=1,...,0, (8.24)

where L, : F™*" — [FP=X4:  System (8.24) may be written as a single
equation in X as in {(vi),

s Ts

373 (eos ® Ask) X (e, ® Byi) = diag(Ch, .., Co)

s=1k=1

(we use the notations from (vi) having in mind that the sizes of the involved
matrices are possibly different).

(viii) General systems of equations in several matrix unknowns. These are com-
binations of (vi) and (vii) and are not considered in detail.

In cases (i) - (iv) we have A € F™*™ B € F**" and C, X € F™x",

In what follows we assume that mn = pg = s and that the operator L(P) €
Lin(p,m,n,q,F) in (8.16) is invertible, i.e., that its matrix L(P) € R***, defined
by (8.17), is nonsingular. This is equivalent to the requirement that equation
(8.16) has a unique solution

X := L7 P)(C).

8.4 Perturbation problem

In this section we formulate the problem of perturbation analysis for general
Sylvester equations.
8.4.1 Norm-wise perturbations
Suppose that the matrices P; in (8.16) are perturbed as
P; — P;+4P;, 5=0,1,...,2r

and that the perturbed equation has again a unique solution (we recall that Py =
C, Pay_1 = Ag and Py, = By). Then the problem is to estimate the perturbation
in the solution X as a function of the perturbations 6 P; in the data P;.
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We assume that the information about the perturbations §P; is coded in the
norm-wise inequalities

0P;llr <75, 5=0,1,...,2r, (8.25)
where 7; > 0 are given quantities. Denote by
0P :=(6P,...,6P,) = (0A4,...,0B;)

and
0D = (6Py,0P,...,0P) = (6C,6A,,...,0B,)

the perturbations in the matrix collections P and D. Then inequalities (8.25) may
be written as

”(SD“g j n= [770a771> e 7”27‘]_‘— [S R_Z{_r+1,

where
IDllg = [I1Polle, 1Pyl - - -, | ParllE] T € REF?.

If some matrix P; is not perturbed, then we set the corresponding bound 7;
to zero. However, often it it more convenient to deal only with the matrices P;
that are subject to (nonzero) perturbations. Suppose that these are the matrix
coeflicients

P, Pj,,..., P,
where 0 <j; <--- < j, <2r. Set
Ji={j1,..,Jp} C{0,1,...,2r},

Ek = ij’ 6k ;:njk, k‘:l,,p

and
E:=(Ey,...,E,), §:=[61,...,5,]" €R.

The vectors  and 4§ are connected by the relations
n=RS 6=R"n,
where the permutation matrix
R=[rpg) e RUFZIXP 552 0.1,....2r, ¢=1,...,p,
satisfies RTR =1 »» and the element 7,4 is equal to 1 if ¢ = j, and is zero otherwise.

Example 8.4 Consider the equation AX + XB = C which corresponds to D =
(C,A,I,1,B). In principle it is possible to perturb all five matrix coefficients in D
and we have [|0P;||r < 7;, 7 =0,1,...,4. If, however, only the matrices C, 4, and
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B are perturbed, then we have p = 3, 1, = 13 = 0, E = (E1, Es, E3) = (C, A, B)
and 8, = 19, 65 = 11, 03 = n4. The matrix R here is

1 0 0
01 0
R=|0 00
0 0 0
0 0 1
%
Let

P(8) == {3E: |I6E] 4 % 6}

be the set of allowed perturbations in E, where
IElg = [IEx], -, | Elle] " € RE.

The perturbed Sylvester equation is obtained by replacing £ with £ + JF,
which results in P - P+ 6P and D — D + 6D, i.e.,

L(P +§P)(Y) =C +4C. (8.26)

We are interested in conditions which guarantee that the perturbed operator £(P+
dP) is also invertible.

Denote by Q C Rip the set of all § such that the matrix
L(P+46P)=L(P)+46L

is nonsingular for every dP € Pp(§), where
T
0L =6L(8P):= > (6B ® Ax + B ® Ay + 0B ®6A).
k=1

In general the set © has a very complicated structure and we need a simpler
criterion to decide how small § must be for L(P + 6P) to be nonsingular.

The minimum singular value oy, (L(P)) > 0 of the matrix L(P) may be
interpreted as the distance from £(P) to the set of noninvertible operators.

Let £ be the set of all 4, satisfying the inequality

r

1(8) :="Y " (Il Akll2n2k + I Bell2nze—1 + nak-172k) < Omin(L(P))
k=1

(we recall that 7 = R$). The next proposition, based on the fact that
I6L[]2 < 1(3),

shows that the set €; may indeed be used in the perturbation analysis.
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Proposition 8.5 The inclusion Q; C ) is valid.

Proof. For § € € the perturbed operator L(P + 6 P) is invertible. If € < ¢ then
l{e) <U(8) < omin(L(P)) and € € Q. Hence, § € Q and £; C Q as claimed. O
For § € O the perturbed equation (8.26) has a unique solution X + X, where

6X =6X(0E) := LY (P + 6P)(C +6C) — L7H(P)(C).

Let
dx =6x(0F) = ||6X(0E)|F

be the absolute norm-wise perturbation in the solution. For § € Q; denote by
w(0) :=max{dx(0F) : 0E € P(4)}

the maximum of dx (6 F) over the set P(4) of allowed perturbations J E. We note
that w(d) is well defined, since according to the Weierstral theorem [96] the
function dx (-) reaches its maximum in the compact set P(8) for some 0F = G €
P(6), i.e., w(d) = dx(G).

The expression w(d) may be represented as wi(8) + wa(d), where w;(8)
O(llé]*) for 6 — 0. The function w;(-) is first order homogeneous, i.e., wi(\§) =
Awy(8) for A > 0.

Definition 8.6 Denote by
G =G(68) = (G1(9),...,Gp(9))

the collection of perturbations, which produce the mazimum w(d) of 6x(-) accord-
ing to w(8) = dx(G(8)). The perturbation G = G(8) is said to be an extremal
perturbation.

Let si be the number of entries of Ej and set s :== s; + -+ + s,. We may
consider G' = G(0) as a parametrization of a s-dimensional manifold § C R*:

S:={G(6):6 € Y} = 63} (w(d)).

The manifold S is the pre-image of the set of maximal values of the function
dx(-) : Pe(6) — Ry for all § € . In general |Gk, (6)||r = 6k and S has several
connected components.

It is usually a difficult task to construct the true bound w :  — R,. So we
approach two easier problems.

o The first problem is to find a simple domain D C € of positive measure in
R? such that for every § € D and for all §P € Pp(d) the perturbed operator
L(P + éP) is invertible.
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o The second problem is to derive a bound
dx < f(ll6Dllg), 6D € Pp(é),

or, if we have a perturbation 4D in the set PY(8) := {SE : ||0E|; =6} C
P(4), a bound

Sx < f(8), 6D, (8.27)

where f(-) : D — Ry is a continuous function, nondecreasing in each of its
arguments and satisfying f(6) = O(||é]|), § — 0. In most applications the
function f is piece-wise analytic. Also, in some cases it is not differentiable
at 0 € D.

The quantity f(6) in (8.27) is only an upper bound for the true maximal
perturbation w(d). One of the important tasks here is to determine how close
the expressions f(§) and w(é) are, and, in particular, to decide whether f(4) is
equivalent to w(d) asymptotically in the sense of the definitions from Chapter 7.

For some classes of Sylvester equations it is possible to prove that f(4) is exactly
equal to w(d). Since to find w(§) for a general Sylvester equation in the form (8.16)
is a hopeless task, we first consider a bound f(8) and then try to determine a class
of equations for which this bound is asymptotically sharp or exact in the sense of
Definitions 7.2, 7.4 .

Note that the bound (8.27) is nonlocal, since it is valid for a finite (although
possibly small) domain D for §. In contrast, local bounds are valid only asymp-
totically, i.e., for § — 0.

In what follows we consider mainly absolute perturbation bounds, since relative
bounds may be obtained from the absolute ones by simple substitution, namely

ey = 19XlE _ f(IDulles, -, [ Dpllpe,)
I XNe — 11Xl ’

where the quantities e := 85 /|| Dy ||p are the relative perturbations in the matrix
coefficients Dy.

8.4.2 Component-wise perturbations

Another task of the perturbation analysis for matrix equations is to find component-
wise perturbation bounds. In our case it is convenient to work with the vector
representations

vg 1= vec(Ey), dvg 1= vec(8Ey)
of the matrices Ey and their perturbations 6Ej.
Let
AgeHe, k=1,...,p,
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be nonzero vectors with nonnegative entries of the size of the corresponding per-
turbed vectors vy, where Hy, is one of the spaces R}, RE™ or R’?. Suppose that
the perturbations dvg in vy satisfy the component-wise inequalities |dvg| < Ayj.
Set

vi=(v1,...,Yp)

and
A= (Ar,. ., A), o= (jul, - ul), [0v] = (Jovrl, ..., [6v,])

(we recall that |z| is the vector whose elements are the absolute values of the
elements of the vector z). We write v X Aif vy < Apfork=1,...,p.
Let
Qa CH:=H; x - xH,

be the set of all nonnegative collections A, such that the operator L(P + 0P) is
invertible for all 6F with |6v| < A. Then the problem is to derive a bound for
[6X| as a function of |dv],

[vec(6 X)) < F(]dv]), (8.28)

or, if 6FE = A, then
|VeC(5X)I < F(A), A € Da C QA. (8.29)

Here DA is the domain of applicability of the bound F. The function F' takes
values in R7'", satisfies F'(0) = 0 and each of its components is a nondecreasing
function of the elements of the vectors Ag.

Bounds of type (8.28) or (8.29) may also be local and nonlocal. The concepts
of asymptotical sharpness, exactness and attainability for component-wise pertur-
bation bounds are analogous to those for norm-wise bounds from Definitions 7.2
- 7.5 and 7.7 from Chapter 7.

8.4.3 Other perturbations

The bounds considered in the previous section may be viewed as forward in the
sense that they solve the problem: given a perturbation in the data, find a bound
for the perturbation in the solution. There are also other types of bounds (e.g.,
backward perturbation bounds [201, 101, 190]}, which are connected with an ap-
proximate solution X of equation (8.16). Note that X may be the solution that is
computed in finite precision arithmetic.

Here we may formulate the following two problems.

P1 Find a bound for | X — X||p or vec(|X — X|).

P2 Determine the minimal perturbation §F in the data, which gives rise to the
approximate solution X.
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Both problems are connected. If, for instance, §F is the minimal perturbation
in Problem P2, then
X — X{lr < f(IOE]g)

and -~
vec(|X — X|) X F(|év])

where f and F' are the bounding functions, defined in the previous section.

A direct solution of Problem P1 may be more efficient and more useful in
practical computations, see for example [99]. Note that we cannot simply calculate
the difference X — X , since in most cases we do not know the exact solution X.

Problem P1 is solved immediately. We rewrite (8.16) as

L(P)(X - X) =R, (8.30)

where R:=C- -L(P)(X ) is the residual, corresponding to the approximate solution
X. Note that R is an easily computable quantity. Furthermore, we have

A

vec(|X — X)) ‘L,_I(P)vec(ﬁ)| )

IX - X|p

IN

”L_l(P)vec(E) ”2 .

Of course, for computing X — X it is not necessary to form and invert L~! but to
solve equation (8.30) via an appropriate solver.
Problem P2 may be further developed as follows.

Definition 8.7 Let a vector 0 < w € RY. be given. The quantity

o~

(X, w) := min {a >0: L(P+6P)(X) = C +6C, |6E], = aw}

is said to be the norm-wise backward equivalent perturbation (or error) of X
relative to w.

We note that usually the elements wy of w are taken as W = 16 Ex|lF and in
this case E(X w) is called the relative norm-wise error of X. This concept was
introduced and analyzed in [190] for standard linear equations Az = b.

Let the collection W = (Wy,...,W,) € H be given with W = 0, Wy # 0,
k=1,...,p

Definition 8.8 The quantity
(X, W) := min {a >0: L(P +§P)(X) = C +6C, |6v| < 5W}

is said to be the component-wise backward equivalent perturbation (or error) of
X relative to W.
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8.5 Local perturbation analysis

In this section we consider local perturbation bounds for general Sylvester equa-
tions. These are bounds in which only the principal term of f(6) of order O(||4}]) is
known. If we take only this term as a bound, it will be valid only asymptotically,
i.e., for 6 — 0. An application of such bounds for possibly small but neverthe-
less finite perturbations é requires additional justification (e.g., an estimate of the
neglected second and higher terms).

The perturbation bounds that we present are generically asymptotically sharp.
They are then fully incorporated into the nonlocal, nonlinear perturbation bounds
derived later. The local bounds are in general not linear but first order homo-
geneous functions of the vector of absolute perturbations §. In particular, these
bounds are not formulated in terms of condition numbers. The reason is that linear
local bounds, based on condition numbers, may wipe out the effect of “useful” can-
cellations among some perturbed quantities, and thus may be more conservative
than other first order homogeneous bounds.

8.5.1 Norm-wise bounds

In this section we study a slightly more general perturbation problem. Suppose

that every matrix coefficient P; is a linear combination of the matrices Fy,..., E,
such that
p
vec(Py) =Y Tjpvk, 5 =0,1,...,2r, (8.31)
k=1
where vy := vec(Ey). Obviously, this includes our previous statement of the

perturbation problem as a particular case. Indeed, taking Tpq = I if ¢ = j, and
Tpq = 0 otherwise, we get P;, = E.

Suppose that we have a perturbation 6 F in the set PY(8) := {0E : ||6E||y = §}.
The perturbed equation (8.26) may then be written in the equivalent form

L(P)(5X) = My(0E) + My(6X, 5E), (8.32)

where M contains first order and M, contains second and higher order terms in
0X, 6E, namely

T
Mi(BE) = 6C - (§AxXBi+ AcX0By), (8.33)
k=1

= (0AkZBy + AvZ0Bi + §Ax(X + Z)0By).
k=1

M3(Z,6E)

Having in mind the dependence (8.31) of the perturbations éP; on §Ek, it
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follows from (8.32) and (8.33) that

vec[§X] = Avec[M(6E)] +O(|l6|%) = Z Nidug +O(||6]1%)  (8.34)
k=1
= Nvec(dv) + O(||6]|*), § — 0,

where A := L~!. The matrices N; and N are determined by

p
Np = A (Tok = > (RpiaToio1k + R2iT2i,k)> ; (8.35)
i=1
N = [Nl,...,Np],
where
Ryis1 = (BiX)' @I, e F*™?, (8.36)
Ry = I, ®(A;X) e Fox™a,

Relation (8.34) makes it possible to obtain different local estimates
dx <est(8) +O(|6)|%), § — 0,

where est(d) is a bound for |Név|; when ||6E|y; <X §. To do this, one has to
estimate the maximum of || Ndv||2 via the maximization problem

-
|Nu|lz — max, u:= {uir, ... ,u;] € F®, uy € F*, (8.37)

subject to the constraints [juk|s < 8, k= 1,...,p, or equivalently
lullg = (luallz,- - upll2) T 2 6. (8.38)

Since in view of (8.38) the domain for u is compact, the maximization problem
(8.37), (8.38) has a solution

w18, N) := [N llo = max{|[Nul, : lully < 5} (8.30)

for some u® with ||u®||; < &, which is the desired local bound. Here we write
w1(8, N) for the principal asymptotic term w;(8) (which is of asymptotic order
O(||8]]), 6 — 0) of the maximal perturbation w(§) in the solution in order to
indicate its dependence not only on § but on the matrix N as well.

Proposition 8.9 The function wy(-, N) : R — Ry in (8.89) is first order homo-
geneous in the sense that for A > 0 we have w1 (A, N} = Aw; (8, N).

Proof. For A = 0 the assertion of the theorem is trivial. For A > 0 we have

i

w1 (A4, V) max{||Nullz : [lully < A6}

Amax{HN;H2 : H.}Hg < 6} = w1 (6, N).
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Typically the quantity wy(d, N) cannot be determined in a closed form. Since
wi(d, N) is a solution of a large optimization problem (8.37), (8.38) of order s,
its numerical computation may be very expensive. To overcome this problem, let
us consider the following approximation of this maximization problem which is of
order at most (p — 1).

Let i =1,y >0fork=2,...,p, v:=[v2,-- -, V)" ERi_l and

Y := diag (Isl,’)’zfsz, ... ,ypIsp) € R%**.
Then

p
INulla = [[NTPull, < [[NTH, I Tulls = [[NT7, | D v2llull3.
k=1

Hence, we obtain an optimization problem of order p — 1,
Yo(6, N) := min{y(y,d, N) : v = 0} > w;i(4, N), (8.40)

where (7,6, N) = ¢1(v, N)ta(, d) and

=, ]
Y2 Yo

These considerations are justified by the following proposition.

Proposition 8.10 The minimization problem (8.40) has a solution, i.e., there
exists v° > 0 such that (3, N) = 9(4°, 8, N).

Proof. Denote by 3 := ||N||2]|6]|2 the value of ¥(v,6,N) for o =+ =7, = 1.
Then the minimization of 9 has to be carried out only for those 7, which satisfy
¥(7,4,N) < 8. On the other hand for any fixed i € {2,...,p} it follows that

1 Nill2
¢1(77N) Z ﬁ1(717N> = ”LH% + “ 72" ’
%

Yo(7,0) > Ba(vi,0) :=dy/1+ 2,

where d := min{dy : k =1,...,p}. Since

¢(77 57 N) Z /81(7% N)/62(’Yi96>7

we restrict the minimization of v to those ; for which

B1 (s, N)B2(vs,6) < B.
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The last inequality is equivalent to

2
e ((% . ||N,vH§> L2 - 1) 2+ ILIZINIE < 0.

The corresponding algebraic fourth-degree equation has exactly two positive dif-
ferent roots, say a; < &;. Hence, the fourth-degree inequality for v; > 0 is satisfied
if a; <+, <b; and ~ varies in the domain

gi:{ViakS’Ykak, j=1,...,p—l},

which is compact. According to a Weierstra§ theorem [96] the function ¥ (-, 4, N)
reaches its minimum for some 4% € G. 0O

At least three simple local perturbation bounds may be derived for §x by
solving the maximization problem (8.37), (8.38) approximately. They are functions
of the perturbation vector & and the coefficients matrix N. We combine two of
these bounds in order to get a bound, which is relatively tight and asymptotically
sharp in particular.

1) Applying several times the triangle inequality to (8.37), (8.38), one obtains

P P
INulla <Y [ Nkflzlluklla <> 1Nk 26k
k=1 k=1

Thus, we get the first bound

ox <esty(6,N) +O(||6]*),8 — 0, (8.41)
where
p
est1(4, N) := ZKkék
k=1
and Ky := |[[Ni||2 are the absolute condition numbers of the equation. This bound

is linear in §.

2) The second bound uses the result from the optimization procedure for de-
termining (8, N) = ¢(7°,4, N) (see (8.40) and Proposition 8.10), i.e.,

0x < 9o(8,N) +O(|l6]1%), § — 0.

We note that 1o (8, N) < ¢(v, 6, N) for every choice of v > 0. If, in particular, we
take v = [1,1,...,1]7, then we obtain the second bound

6x <estz2(6,N) + O(]|6))?), 6§ -0 (8.42)

where
esta (6, N) := || N|[2)|6}2.



140 CHAPTER 8. GENERAL SYLVESTER EQUATIONS

This bound is not a linear but a first order homogeneous function in 4.

3) Using the relation

f

p
uINHNy = Z uS NENyuy
k=1

P 4
ST INENG| Nuillallullz < ST NN, 6:6%

ik=1 ik=1

IV ull3

IA

we have the third bound
dx <estg(d,N)+ O(||6||2), 6 — 0. (8.43)

Here

ests(8, N) := VTN

and N = [ni] € Rixp is a matrix with elements

Nig 1= “NiHNkH2; i,kz 1,...,p.

As in case 2), the bound ests is a norm-like function which is first order homoge-
neous in 4.

We have the following relations between the bounds est;, 1 = 1,2, 3.

Theorem 8.11 The gquantity est3(, N) is bounded by

VaLlldlls < ests(d,N) < /| Nl2]|5]l2, (8.44)

where
ny :=min{n; :i=1,...,p}. (8.45)

Moreover, both inequalities in (8.44) are achievable.

Proof. The right inequality is obvious. Since the matrix N is symmetric and
element-wise nonnegative, then according to the Perron-Frobenius theorem [26], its
norm ]]J\Af ||2 is an eigenvalue of N and the corresponding eigenvector z may be taken
as nonnegative. Choosing § = z, we see that the equality est(§, N) = Hﬁ Il21161]2 is
achievable.

To prove the left inequality in (8.44), suppose that the minimum in (8.45) is
achieved for ¢ = k, i.e., n; = ng;, and consider the minimization problem

v(8) := min{z ' Nz}

subject to the constraints
0=z, |lzllz = |Id]2,
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where ¢ = [z1,...,z,]T € R?. We have est3(J, N) > /v(), where equality may
be achieved. Furthermore,

2
i = 1615 = D =3
itk
and hence,
TNz = I3 + ) (s — ni)a + 3> nimiz; > nie|9]13
ik i# g

which proves the left inequality in (8.44). ~

Finally, choosing z; = 0 if i # k and zxx = ||6]|2, we see that 27 Nx = ngi |61,
which proves that the case of equality /n1(|6]|2 = est3(d, N) in (8.44) is achievable.
0

The bound est;, based on condition numbers, is bounded from below by ests.
Indeed, we have

p P
esta(8,N) < | Y [INill2lIN;ll26:8; = > || Nill26; = est1 (8, N).

ij=1 i=1

Thus, linear local bounds of type est;, based on condition numbers, are generally
less sharp than first order homogeneous local bounds of type ests and eventually
esta. In turn, the bounds esty(§, N) = |N|2||d]l2 and est3(é, N) = V6TNG are
alternative, i.e., which one is better depends on the particular value of 4, see
Proposition 8.12 below.

In case of single perturbations, for example when all perturbations d; except
one are equal to zero, then all three bounds est;, esty and ests coincide. Also, in
problems such as AX = C with very little specified structure, estimates in terms
of condition numbers produce acceptable results. For general equations of type
(8.16) with strongly specified structure, however, estimates based on condition
numbers may be pessimistic.

As a result of the local perturbation analysis we have the overall homogeneous
local estimate

5x <est(6, N) +O(||s)|%), § =0, (8.46)

where

est(6, N) := min{est2(d, N),est3(s, N)} (8.47)
- min{||N||2||5||2,\/5TN5}.
Since the bound (8.46), (8.47) is obtained by taking the minimum of the quan-

tities esto(d, V) and est3(d, V), the overall estimate est(-, N) may not be differen-
tiable for some values of . Also, for p > 1 the function est(-, N) is not differentiable
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at 0 € RY. As a result we see that est(-, N) is a piece-wise real analytic function
in the domain R4 \{0}.

In the general case we get the following comparison between the bounds est2 (4, N)
and est3 (4, N).

Proposition 8.12 The bounds esto(8, N) and est3(6, N) are alternative, i.e. which
one of these expressions is smaller depends on the particular choice of § and N.

Proof. We have

[ NEN; ... NEN,
N3 = SRR
_N,I]{Nl NpHNp )
NN, INENL T
< : = ||N |2
-HN;{N1“2 HN;INPH2 2

Moreover, the inequality |[N|3 < ||N||; holds for some equations. Since N is
nonnegative definite and satisfies N = NT » 0, then according to the Perron-
Frobenius theorem [26] an eigenvector £ of the matrix N , corresponding to its
maximum eigenvalue ||J/\f |2, is nonnegative, and we may choose § = £ {if £ is not
strictly positive we may choose § to be strictly positive and arbitrarily close to £).
For this choice of § we have est3(d, N) < est3(d, N).

To show that the inequality est2(§, N) > est3(d, V) is also possible is more
subtle (the inequality | N||2 > omin(No) is not helpful, since a nonnegative eigen-
vector, corresponding to the minimum eigenvalue of N , may not exist). Assume
that p > 1, since otherwise both bounds are equal to || Ny||201.

First we show that

INJ2 > n = min{HNng =1, ,p} .
Indeed, suppose that the opposite inequality || V|3 < n; holds. Since
INIB 2 o = max {INil} 50 =1, 0},
this implies || N||2 = n; = ny. Moreover, for any fixed k¥ > 2 we have |[N|js >

[I[V1, Ni]|l, and hence, [|[N1, Nilll2 = [ Nillz = || Nill2-
Let N, = USVH be the singular value decomposition of Ny. Then

I[V1, N]|l2

It

ot | 3

I[UR N, E])l2 = 122

2
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If a is the first row of UHX Ny, then

IUENLEWe 2 [diag(L,0)[U" Ny, |2

lla, o1 (Nk), 0lll2 = 4/ llall + o (Nk) = 01(%)

and hence, a = 0. Therefore, N = A must be singular, which is a contradiction
and hence, ||N||2 > n;.
Let k be the index for which ny = || Ni||2, let v > 0 be fixed, and let

I

Y
€<=
be a small positive parameter. Choosing §; = € fori # k and 0, = /v%2 — (p — 1)e2,
we get
eStZ((S’ N) = ||N||277
est3(6, N) = /miy+0(e), e =0

Using the inequality || N{j2 > |/n1, we see that the inequality esty(8, N) > est3(5, N)
holds. 0O

For some equations we have | N||2 = |[N||,. In these cases the bound est3(d, N)
is superior to estz(d, N), i.e., est3(d, N) < esta(d, N), for all 5. At the same time
it follows from the proof of Proposition 8.12, that the opposite is impossible, i.e.,
for a given equation the inequality est3(8, N) < est2(, N) cannot be valid for all
3.

As we have mentioned above, the bound est3(§, N) is as least as sharp as
est; (0, N) in the sense that est3(6, N) < est;(§, N) for all § and N. Going fur-
ther, it is interesting to see how much better est3(§, N) can be in comparison
with est; (8, N). The following result shows that the ratio est3(d, N)/est1(d, N) is
bounded from below by a constant, depending only on p (the size of the vector 4).
Indeed, we have

est3(d, N) > |||l =

p
SN2,
=1

where 7 € R% is a vector with components 7; := || N;||2d;. Since here est1(6, N) =

{1, we obtain
est3 (6, V) S I7ll2 .

est1(6,N) ~ Irlli — /P

and thus,
1 < est3(6,N)

\/—ﬁ ~ est1(d,N)

The left equality is reached if NEN, = 0 for i # j, and §; = 1/||N||2, while the
right one is reached if all §; except one are equal to zero.

<1. (8.48)
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It is interesting to note that when NiHNj =0, i # j, then
esta(8, N) = max{||Ni|l2: i =1,...,p}6]l2

and we may have

est3(6, N) _ min{||[Nill2:é=1,....p} m
est2(6, N)  max{||Ny2:i=1,...,p} n2

This equality is reached when all elements of § except 6 are equal to zero, where
[Nkll2 < |INi|l2 for i = 1,...,p. Therefore, the ratio est3(d, N)/esto(6, N) may
become arbitrarily close to zero. A similar argument shows that the same is valid
for esty(d, N)/esto(d, N).

The bound (8.46), (8.47) is generically at least asymptotically sharp as shown
in the next proposition.

Proposition 8.13 Let the right singular vector u of the matriz N, corresponding
to its mazimum singular value ||N|2, satisfy ||lullg > 0. Then the bound (8.46),
(8.47) is asymptotically sharp.

Proof. Let the perturbation §E be chosen as vec(6E)} = u. Then
[Nullz = || Nl2 = esta(flullg, N) > est(|[ullg, V)

and hence, the bound (8.46), (8.47) is asymptotically sharp. 0O

Since the inequality |lufl, > 0 holds generically, Proposition 8.13 tells us that
the bound (8.46), (8.47) is asymptotically sharp generically.

The bound est;, based on condition numbers, will be asymptotically sharp if
there exist p— 1 constants A; > 0 such that Nyu, = A\ Nqiu;, where u; is the right
singular value of the matrix N;, corresponding to its maximum singular value
IN; ll2- n this case A = | Ni[l2/ [N 1> and

p o
INul = [N (1 + Zxk) = 3" Nk
k=2 k=1

The problem whether the bound (8.46), (8.47) is asymptotically exact is more
difficult and will be discussed later for particular classes of Sylvester equations.
Note that chopped local estimates of the form

dx < est{4, N},

obtained from (8.46) by neglecting second and higher order terms in |§|, may
underestimate the true perturbation arbitrarily.
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Example 8.14 Consider the linear scalar equation ax = ¢ with a,¢ > 0. The
chopped local estimate in relative perturbations is
Oz _ |écl |0

=< : = = —
Ex ‘I' S EctEa; Ec ICI y €a Ial s

while for §¢ > 0 and —a < da < 0 the exact relative perturbation bound is

EctEq
Ep = ——.
1—¢,

With da approaching —a the chopped bound arbitrarily underestimates the exact
perturbation in the solution. $

A difficulty that arises in practice is that local estimates, being valid only
asymptotically (for 6 — 0) are often used nonlocally, i.e., for fixed values of 4.
Even when 6 seems small in the sense that the norm of the relative perturbations
vector is much smaller than 1, the chopped bound may become useless due to the
finite escape of the perturbed solution, namely dx — oo as 6P — P — P, where
P € 69 and L(P) is not invertible.

To apply local estimates rigorously one must find the so called asymptotic
domain of the bound (see [135]), for which the neglected term O(||6]|?) can be
bounded as ¢||d|| for some constant ¢. But to estimate this constant may be as
difficult as to find a nonlocal perturbation bound.

8.5.2 Component-wise bounds

A local component-wise bound for X follows immediately from (8.34) — (8.36).
Recalling that [vec(§Er)| < Ay, we have

p
vec([0X]) = Z |Nk|Ag + O (HA||2) , A—=0 (8.49)
k=1

8.6 Nonlocal perturbation analysis

In this section we present a nonlocal perturbation analysis of Sylvester equations,
which gives rigorous nonlocal nonlinear bounds for the perturbation in the solution
dx as a function of the perturbations in the data 6. A nonlocal perturbation
bound is defined in a certain domain D, where it is guaranteed that the perturbed
equation still has a (unique) solution.

Nonlocal bounds often have a practical drawback: their domain of applicability
may be too small, and they may produce pessimistic results for some equations,
overestimating considerably the true perturbed quantities. This is due to the fact
that such bounds are aimed at the worst case.
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Example 8.15 Consider the perturbed equation (8.26) under a special choice of
the perturbation in C, namely

5C = L(P + 6P)(L™(P)(C)).

This artificial perturbation gives 6x = 0, but of course the perturbation analysis
machinery cannot recognize this and produces its worst case bounds. &

We emphasize again that nonlocal perturbation bounds must be at least asymp-
totically sharp. This means that the first order part of the corresponding nonlocal
bound must be asymptotically sharp.

8.6.1 Application of the Banach principle

Nonlocal perturbation analysis of nonsingular linear matrix equations may be done
by an application of the Banach fixed point principle.
Consider the operator equation

z = ®(z,n), (8.50)
where @ : X x H — X is a continuous mapping. Here X is a normed space
with norm || - || : X - R4 and H is a normed space with generalized norm
I llg : H — RE.

Equations of this type arise naturally in perturbation analysis problems, where
z is the perturbation in the solution and 75 is a vector, characterizing the pertur-
bations in the data. It is assumed that |||y < 8, where § > 0 is a given vector.
The problem is to find a domain D C Rf and a bound ||z|| < f(d), 6 € D with
f(8) = O(J|4])) for § — 0. For this reason we shall refer to ® as the equivalent
perturbation operator.

The equivalent perturbation operator is constructed as follows. Consider the
(linear or nonlinear) matrix equation

F(E,X) =0,

where F' : H x X — ) is a continuous mapping, X is the unknown matrix and
E € H is a collection of matrix or vector parameters. Let X be the solution,
corresponding to a particular value of E. If the partial Frechét derivative

Fx =Fx(E,X): X >)Y
of I in X at the point (E, X) is invertible, than the perturbed equation
F(E+46E,X+46X)=0

may be written in the form (8.50), where z := 6X, n := dE and the equivalent
perturbation operator is given by

®(z,n) = Fx'(Fx(z) — F(E+n,X +1z)).
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Example 8.16 Consider the algebraic Riccati equation
F(E,X):=E + E; X+ XE; + XE4 X =0,
where the unknown X and the coeflicients E; are square matrices. Then
Fx(Z)=(FE:+ XE\Z + Z(E3z + E4X).
Setting z = §X and n; = §E; we get the equivalent perturbation operator
(z,n) = —Fx'(m+mX +Xnz + XnyX)

= Fx (2 + Xna)a + z((m3 + 1aX) + 2(Eq + 10)2).

¢

We may rewrite the expression for ® as ®(z,n) = ®1(n) + ®2(x,n), where
®4(n) := ®(0,n) and ®3(z,7n) := ®(z,n) — ®(0,n). Suppose that &(-,n) : X — X
is affine, i.e., that ®5(-,77) : ¥ — X is linear, and that ®&(z,0) = 0. Setting

@20, Ml = max{||@2(z,n)|| : l=]| =1},

we note that the function n — | ®2(-,n)| is continuous and vanishes for 7 = 0.
Thus, for a given § € R/ the quantities

p(8) = max {[|®2( )|l : lInlly < 6}

and
0(0) == max {||®:(n)| : lInll, =4}
are well defined and tend to zero as § — 0.

Let us choose ¢ sufficiently small so as to have u{4) < 1 and denote the set of
such § by D C RY.. Set

Bs :={z e &: |zl < f(6)},

where

(8.51)

For z,y € Bs we have

12(z, Ml < [ P2(z,m)l| + @1l < 1(8)f(d) + 6(8) = f(4)
and
12(z,m) — @y, Ml = @2z — y, M < p(d)llz —yi.

Therefore, ®(-,7) is a contraction and maps the closed set Bs into itself. According
to the Banach fixed point principle there exists a unique solution z of the operator
equation x = ®(xz,n) in the ball Bs, i.e.,

Izl < 7(6), 6 €D. (8.52)
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The estimate (8.52), (8.51) is nonlocal and with a proper choice of 6(6) and
1{8) it may be asymptotically sharp, asymptotically exact, or even exact in the
sense of Definitions 7.2, 7.4 and 7.5.

In order to apply this approach to the perturbation analysis of linear matrix
equations we first rewrite (8.26) as an operator equation

§X = (56X, 6E).

The main problem is then to estimate properly the quantities 8(6) and p(§) making
them as small as possible using the underlying structure of the linear operator
L(P). This is done in a unified way, obtaining a tight bound of type (8.52). We
note that for problems with minimum specified structure (such as AX = C) very
little can be done in improving the perturbation bound. For highly structured
equations of type (8.16), however, taking into account the underlying structure,
one can get tight nonlocal perturbation bounds.

To derive component-wise perturbation bounds, consider again the operator
equation (8.50) in z € X = R® under the assumptions already made for ®. Here
z = vec(X),n=0F and || < A. In order to study component-wise perturbations
we use the following generalization of the Banach fixed point principle [135], see
also Appendix D.

Since @ is affine, there exist a vector ©(A) € RS and a matrix ¥(A) € R,
such that

[@1(n)| < ©(A)
and
[(z,m) — Dy, )] < T(A)lz — y]
for all z,y € R® and 1 with || < A. By the continuity of ® and the condition

®(0,0) = it follows that both ©(A) and ¥(A) tend to zero as A — 0. Hence, for
A sufficiently small we have

rad(¥(A)) < 1. (8.53)
Set
F(A) = (I, — (A)~'e(A) (8.54)
and let Bp(a) be the set of all z with |z| < F(A). Then for z € Br(a) we have
|@(z,n)| 2 T(A)F(A) +6(A) = F(A), (8.55)

Le., ®(Br(a),n) C Br(a). Relations (8.53) and (8.55) show that ® is a generalized
contraction on Bpay. Hence, there exists a unique solution z of the operator
equation (8.50) in the rectangle B, for which

z| < F(A), A € Da, (8.56)

where Da is the set of all A > 0 such that rad(¥(A)) < 1. The relations (8.56),
(8.54) give the desired component-wise perturbation bound. Here the problem is
again to estimate properly the vector ©(A) and the matrix ¥(A).
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8.6.2 Equivalent perturbation operator

The equivalent perturbation operator ® for a general Sylvester equation of type
(8.16),
L(P)(X)=C,
may be written in the form
$(0X,0F) = ®,(0F) + (0 X,4E),
where
®,(0E) = L YP)(C)+ (Lpmng) — LYP)oL(P+ éP)) (X),
22(6X,6E) = (lpmmg — L7 HP)o L(P+6P)) (6X).

In order to get tight perturbation bounds it is necessary to estimate the norm or
the components of the operator

Lpmng — L7HP) o L(P + 6P)

as accurately as possible.

8.6.3 Norm-wise bounds

In order to apply the results from Section 8.6.1 we rewrite the perturbed Sylvester
equation as

80X = ®(6X,8F) := &,(0F) + ®,(6X,6E), (8.57)
where
d,(6F) = E"I(P) (50 - Z(6AkXBk + AL X0Bg + 5AkX<5Bk)> ,
k=1
®,(Z,6E) = —E‘I(P) (Z(éAkZBk + Ay Z6 By, +<5AkZ<5Bk)> . (8.58)
k=1

Taking the vec operation on both sides of (8.57), and using (8.58) and the
notation of Sections 8.5 and 8.6.1, we have

(®1(BE)r < 6(5) :=est(d,N) + [ X[2€2(9),

ﬂ% < p(8) = e(8) +e6), Z#0,

where the quantities e;(4) are given by

p T
e1(d) = > bk, e(d) :=1All2>_ 63163,
k=1 k=1
p
b= > (|ABT @ L) ||, I Toic1kllz + 1A (T ® Adlly 1T lz2) -
=1

Thus, we have proved the following result.
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Theorem 8.17 For general Sylvester equations the following nonlocal perturba-
tion bound holds

est(8, N) + || X ||2e2(8)
1~ 61(5) — 62(6)

The domain of applicability of the bound (8.59) is the set

ox < f(5) = , 0 € Ds. (8.59)

Ds = {(5 =0:e1(8) +ex(d) < 1}. (8.60)

We note that e;(6) = O(||6]|*), § — 0. Hence, the expression f(é) may be
expanded as

k
£O) =3 £56) + O+, 8 0.

where f;(6) = O(||6]|7), § — 0. The first three terms in this expansion are

f1(6y = est(4,N),
fz((s) = ||X”262(6) +€1(5)68t(6, N),
f3(6) = (e%(&) + 62(6)) est(d, V).

When the matrices in D vary independently (or, in particular, are constant),
then we have p = 2r + 1 and we may set

Ey:=C, Eg = Ay, Epp1:=Bi, k=1,...,7.

Here 6, =42_,,k=1,...,2r +1, and

2r+1

> b, b= lA]l2,

k=1
A (BT @ L), loiwr = AL ® Ai)l, -

61(5)

I

I

log

If a particular matrix P is not perturbed, then we have d;41 = &) = 0 in the
above relations.

Since the bound (8.46) is generically asymptotically sharp, so is the bound
(8.59). The problems of asymptotical exactness and exactness, however, are more
subtle and, at this stage, will be illustrated using model scalar equations.

Example 8.18 Consider the scalar equation
ax+zb=(a+bx=¢c z=c/(a+Db),

where a4+ b # 0 and |d¢| < 4, |da| < 4, |0b] < 8. Here L acts as L(z) = (a+b)z.
The domain Q for §, > 0, §, > 0 is the triangle, given by

6a+5b<|a+b|
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and the bound (8.59) becomes
8 + x| (0q + bp)
d, < f(6) = .
<7®) la +b] — (6a + ds)
At the same time for §, + &, < |a + b} the actual perturbation is
_ 6c— z(da + 6b)
T v brsatob

Based on the last expression, a simple calculation shows that w(é) = f(6) and
hence, the bound (8.59) is exact. ¢

Example 8.19 Consider the scalar equation
azb = abx = ¢, z = ¢/{ab),

where ab # 0 and the notation of Example 8.18 is used. The domain § for é,, s
is the rectangle, described by the inequalities

8a < lal, 0 < |b].

Since
_ bc —x(bda + adb + 6adb)
- (a + ba)(b + &b) ’
then the exact perturbation bound is
8e + |z|(|b]6a + |aldy — Io0s)
w(d) = .
( (1l = 8.)08 - 5)
At the same time the bound (8.59) reduces to
8¢ + |z|(1b]éa + laldp + 840s)
< =
% < f(9) |ab] — |bl6, — |aldp — babb

ox

(8.61)

and is valid in the set
D= {[8a,8)" = 0: [b|6a + |aldy + 820y < |ab]}.

The principal terms of order O(||4]]) of w(d) and f(J) coincide and hence, the
bound (8.59) in this case is asymptotically exact. However, it is not exact. The
difference between f(8) and w(d) is in the sign of the quadratic term §,0; in the
numerator and denominator of both expressions. ¢

Using the results presented in Examples 8.18 and 8.19 it may be shown that
only in the cases (i) and (ili) of Section 8.3 it is reasonable to expect that the
bound (8.59), (8.60) are exact for some classes of equations.

It was experimentally observed that for small § the exact perturbation behaves
more as

est(6, N) — || X||ze2(9)

1 —e () + ex(6)
rather than as according to (8.59), see also expression (8.61) for w(§) in Exam-
ple 8.19.

ox <
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8.6.4 Component-wise bounds

Consider the problem of deriving nonlocal component-wise perturbation bounds
for Sylvester equations. Suppose first that all matrices

C=PF, Ph=A,,...,Pp =58,
in (8.16) are perturbed and the perturbations are bounded as
vec(|0P:]) <X Ak, k=0,1,...,2r

(if a particular matrix P; is not perturbed, then in the following formulas we set
Aj = 0). Then, using (8.58), we obtain

[@1(6E)] 2 ©(A) := O1(A) + O3(A)vec(|X]),
[®2(Z,0E)| 2 ¥(A)1Z] :=(T1(A) + 62(A))]2].

Here the vector ©;(A) > 0 and the matrices ©3(A) = 0, ¥;(A) > 0 are determined
by

01(A) = |A|Ao+§:l|z\((XBk)T@1,,)|A2k_1 (8.62)
+ ZIA ) |Az,

92(4) = ;IAI (Wak ® Wak_1) ,

Uy(A) = }:jA Bl @ I)| (I, ® Waj_1)

+ Z A (I, ® A)| (Way, ® Iy)
k=1

STIAL(BxIT © War—1 + Way ® |A4k) ,
k=1

1A

where
Wok-1 1= vec™ ! (p, m)(Agk—1), Wak :=vec™(n, q)(Dax)-

Therefore, we have proved the following theorem.

Theorem 8.20 For general Sylvester equations the nonlocal component-wise per-
turbation bound is

[vec(AX)| < F(A) := (I, ~ ¥1(A) = ©5(A)) " (B1(A) + ©2(A)|X]).  (8.63)
The domain of applicability of the bound is
A€ Dp:={A > 0:rad(V1(A) + 02(A)) < 1}. (8.64)
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Since ©;(A), ¥,(A) are of order O(||A||*) for A — 0, we have

k
F(A) = Fi(A)+Oo(jaj*H!), A —o,

J=1

where ||F;(A)[| = O(|A)JF), A — 0. The first three terms in the expansion of
F(A) are

Fi(8) = 61(4),
F(A) = 62(A)1X]+ ¥1(A)6:1(A),
F3(A) = W1(A)02(A)|X|+ (¥](A) + 62(A)) ©1(A).

Component-wise bounds may be derived also using the following approach. Let
the vector equation

(A+B)x=b

be given, where the matrix A is nonsingular and rad(]A"!B|) < 1. Then the
matrix A 4+ B is also nonsingular and the following component-wise perturbation
estimate for the solution z is valid:

ol < (I~ |A7'B) " 1471,

The trick here is to exploit fully the underlying structure of A, B and b (and hence,
of the products A~'Z) and not to use directly the inequalities |A71Z| < |A71}|Z|.
The advantage of this approach may be seen for example in the inequality for
¥, in (8.62) - the second bound for ¥;(A) is obtained by direct majorization
|A=1Z| < |A~1||Z| and is hence, worse.

8.7 Notes and references

Algebraic linear matrix equations have been intensively studied since the times of
Sylvester and Kronecker [152, 215, 214], see also [196, 193, 229]. Brief historical
reference may be found in [8]. In particular, the problems of existence, uniqueness
and representation of the solution are solved for such equations, see e.g. [10,
12, 19, 20, 33, 36, 56, 69, 84, 94, 101, 106, 107, 153, 155, 165, 167, 189, 206,
181, 205, 224, 228, 230, 235, 236, 241]. The properties of special linear matrix
transformations have also been studied [40, 41, 79, 86, 216, 223, 222]. There is a
variety of techniques, algorithms and software for solving linear matrix equations
(17, 13, 14, 6, 15, 18, 25, 45, 46, 50, 72, 73, 82, 88, 91, 90, 109, 164, 175, 192,
194, 202, 239, 240]. The great interest in linear matrix equations is due in a large
extent to their wide application to various areas [11, 49, 48, 59, 62, 104, 105, 103,
170, 225]. Also, the perturbation theory for linear matrix equations, including the
Sylvester and Lyapunov equations arising in linear control theory, has been studied
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[38, 110, 68, 95, 99, 114, 113, 112, 136]. The perturbation theory for operators in
abstract spaces [119] and for general linear equations [97, 98] also applies in a large
scale to the perturbation analysis of linear matrix equations. Other investigations
are connected with establishing bounds on the solution of linear matrix equations
are given [171, 176].

Some results concerning backward perturbation analysis are given in [99, 101,
112].



Chapter 9
Specific Sylvester equations

In this chapter we present perturbation results as well as some general properties
for classes of Sylvester equations that arise in linear control theory. The results
are based on those from Chapter 8.

We derive bounds of type (8.59) and (8.63) for the types of equations in (i) —
(iv) in Section 8.3 and we present the expressions for est(d, N), e;(d) and ez(6)
in the norm-wise case, and for ©(A) and ¥(A) in the component-wise case. The
following slightly different notation is used:

e 4z > || Z]|r — the norm-wise bound for Z;

o A — the collection (A, A4) in cases (i), or (Ag, Aa, Ag) in cases (iii), (iv),
respectively. The same convention is adopted for the vector § with elements
(50, 5,4 and 5c, (5,4, 53.

e Az > vec(|Z]) — a vector component-wise bound for Z;
e Wz =vec ! (Az) > |Z| - a matrix component-wise bound for Z,

where Z stands for A, B,C or X. To simplify the notation, we use the same letter
L for the Sylvester operator in all cases.
The estimates presented below are valid for both real and complex equations.

9.1 Standard linear equation
The standard linear matrix equation (8.18), namely

AX =C, (9.1)

with A invertible, gives rise to some of the most popular and widely used perturba-
tion bounds (norm-wise, component-wise, structured and backward) in numerical

155



156 CHAPTER 9. SPECIFIC SYLVESTER EQUATIONS

linear algebra [83, 101]. It is instructive to see how the concepts for various types
of perturbation bounds (see Chapter 7) are applied to this equation.

We consider the nontrivial case C # 0 which implies X # 0. However, the
results are valid also for the case C' = 0 with the exception of those connected to
relative perturbation bounds.

Writing the perturbed equation in the operator form

6X = ®(6X,6E) := A1(6C - 6AX) — A"16A6X, 6F := (6C,54),
we get the following well known a posteriori bound

AT Y2(0e + 11X [l264) 1

0x < f(6):= T AT , 04 < m (9.2)

This bound is asymptotically sharp (see Definition 7.2) and it is even asymptot-
ically exact (Definition 7.4) as shown below. We also prove that for m > 1 the
bound (9.2) in general cannot be exact (see Definition 7.5), and the class of equa-
tions, for which it is exact, is fully described. Note that here the exact domain for
4 is the interval [0,1/||A7Y2).

For equation (9.1) the bound (8.59) yields

< eSt((Sc,(SA,A,NA)
=TT A28

» a <1/[[All2, (9:3)

where
A=, 0A) ' =1, A7}, Ny=-AXT ®L,).

In turn, the component-wise perturbation bound for equation (9.1) is obtained as
follows. If

rad (JA71|W,) < 1,
then the bound (8.63) reduces to

Vec(8X)| < (L2 — In @ (A=Y Wa)) (IAAc + INAIA ). (9.4)

The only visible difference between the classical bound (9.2) and the bound
(9.3) is in the numerator, since the denominators coincide in view of

[Allz = |A™"l2-
The numerator in (9.2) is
A~ l2(d¢ + || X ||264) = est1(dc, 64, A, Na).
On the other hand we know that

est < esty < est;.
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In fact, both bounds coincide for this case. Indeed,

Ny = -AX"®In)=—-U, oA WX QL) =-X"®A7},
N = [ANA=[L,-X"]eA™?
and
ATNpg= (I, A" NWXT @A )= -XT @(44T) L.
Hence,
INallz = BA 2l X2, [JATNall, = 1AYIZNX 12,
A Nalll, = JA M2 || [T, =X ]|}, = 1A l2y/1 + X113
and

est3(6c,5A,A,NA) = “A_1||2((5C + ]|X“25A) = est1(60,5A,A,NA).

Consider the bound that is obtained by minimizing the expression (v, d, N)

in v, see (8.40). We have that
N
10 AR

2

\/5% + | XN136% + 6%7* +

1/)(7’6C76AaA> NA)

i

I X11202
2C

I

The minimum of ¥ in v > 0 is achieved for

7’ = IX|l20c /04

and is equal to est; (we suppose that 4 > 0, since otherwise the results are
trivial).

Thus, the local bounds (with the exception of esty) coincide with the bound est.
The reason is that equation (9.1) has no specific structure. After having shown
that the bound f(4) is asymptotically sharp, we prove that it is also asymptotically
exact.

Proposition 9.1 The bounds (9.2) and the (8.59) are asymptotically exact for all
Sylvester equations of type (9.1).

Proof. Let

X = QXxRY =Qdiag(o:(X),...,0x(X),0,...,0)RY,
A = UZ,VH = Udiag(oi(A),...,0m(A))VE

be the singular value decompositions of X and A, respectively, where

k = rank(X).
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Let g;, 7y and u;, v; be the columns of the orthogonal matrices , R and U, V,
respectively. If we define integers kg and £y via

ko = min{i:oy(4) =0,(4)}, (9.5)
£y = max{i: o (X)=01(X)},

then we have
[Nvec(6E)|2 = ||vec™! (m,n)(Nvec(§E))||, = ||A"H(6C — AX)||,,

where
vec(0E) := [vec' (6C),vec' (84)]".

If we fix the integers i € {1,...,4} and j € {ko,...,m}, and choose

6C = ¢ (e; ® “j) R = 5C“jr?’
0A = =04 (emi ®u;) Q" = —dau;q],

where e,; is the i-th column of I,,, then

A7y = A2y, ¢PQEXRY = oy (X)ri.

Since )
-1 —
HA ||2 - O'm(A)7
we get
INvec(BE)2 = [|A Mu; (8ari' +daq; QExRY|5
= (Sc+ 1 X28a) |A™ uyri ||
IA™ 2(8¢ + | X Nl284) [Ju;ri ||
= A Y|2(dc + I X[264) = est(6, N)
and hence,
est(6, N) < wy(8, N),
where

w1(6,N) := max{[|[Az + Nazall : |ll2 < dc, llzall2 < 04}.

On the other hand
est(6, N) > w1(8, N)

by construction. The last two inequalities yield
est(6, N) = w1 {6, N)

which completes the proof. O
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Finally we will determine the class of equations of type (9.1) for which the
perturbation bound is exact. To find conditions for exactness of the bound (9.2),
we consider mainly the case n = 1 when (9.1) is a vector equation, since it is
equivalent to n vector equations for the columns of X.

Setting

€1 0N

Cm Ym
where ¢;,y; € F1*" we get Y4y = ¢, ie.,
0iY; = Cq, izla"'am7 (96)

where 0; := 0;(A).
We look for extremal perturbations

c—oc+ G, g ——>2A+G):A
with
[Gellr < dc, |Gx,llF <04 <om
in the pair (¥4, ¢) for which the norm of the perturbation

8y = (Za +Gz,) H(Ge = Gx,y)
in the solution
y=3'c=VHX
is maximal, i.e.,
w(8) = max{[|(Za+ %) (5c—6%y)||r : |6cllr < bc, I6Z|r < ba}
I(Za + Gz,)"HGe — Gz, y)lle-

To do this we use the notion of an acute perturbation of a nonsingular matrix A.

Definition 9.2 A perturbation 6A of A is acute in the norm || - || if

1
A < ————
1A < T

and
A4

1A+ 04 = Ty =y oAy

Often it is better to estimate [[(A+8A4)7!||2 as a function of ||§A|lr. Then this
definition must be slightly modified, since the F-norm is not an operator norm but
satisfies the inequality

IAB|lr < | All2l|Bllr
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which yields
A 2 '
A==l Al

(A +64) M2 < =

Definition 9.3 A perturbation §A of A € GL(m) with
I6AllF < omin(A)

is said to be F-acute if

g AT L
1A+ 04 e = T A=, 5 ATr = sm(A) — T0ATs

Given a value o with
0<a<1/|A™ Y.,

there are exactly m — k + 1 different F-acute perturbations § A4 with
6AllF = e,

namely
0A = ——aujv?, ji=k,...,m.

For the matrix ¥ 4 the F-acute perturbations are
884 = —a E;(m,m)

with kg < ¢ < m. Generically 6,,—1 > o and kg = m, i.e., there is only one
F-acute perturbation
6A = ~aunmvh.

The properties of acute perturbations strongly depend on the underlying norm.
If we consider p-acute perturbations A in the Holder p-norm with

18Al, < (A7,

for which 1
A i,

1A= pll6 AN,
then, for instance, if m > 1, there are infinitely many 2-acute perturbations.

It follows from the inequalities o; > 0 and the diagonal structure of system
(9.6) that Gy, < 0 and that the i-th element of G, must have the sign of the
corresponding right-hand side ¢;, provided that n = 1. Moreover, G5, must be
diagonal, i.e.,

(A +84)~ ), =

Gz, = -diag(e,...,ém), & =0,

Gc [’Yl Sign(cl), e Ym sign(cm)]T, Yi > 0.

I
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Hence,
. des
(5yi — j:’yl + ly'LI 7/.
g; —&;

The extremal perturbation is then obtained as a solution of the maximization
problem
3 (2t luder)”
( 1 1 z) — max (97)
g, — &,

i=1

subject to the constraints

V<88, Y el <63, (9.8)

i=1

s

,.
i
—

where d4 < o,

Using particular examples, we see that in general the bound (9.2) is not exact
when m > 1.

Example 9.4 Consider the system (9.6) with m =2, n =1 and ¢ = 04 = 7.
The bound (9.2) here is

f(n,m) = (1 +/9 +y§) 02"_,7-

The maximization problem (9.7),(9.8) in v;, &; depends on five parameters o1, o,
[y11, ly2| and n, where

01>02>0 0<1< 09
and

ly1] + ly2| > 0.

Depending on the relations among these parameters we have the following two
cases.

First, let (01 = 02) or (01 > 09 and |y | < |y2|). Then

win,m) = (1 + max{iy:], al}) ——.
02— 1
In this case the extremal perturbation Gx, in L4 is F-acute. The bound f(#,7)
is exact if and only if (61 > 02 and ¢; = 0) or (07 = 02 and ¢z = 0).

Second, if 01 > o2 and |y1| > |y2|, then the bound f(n,7n) is not exact. At
the same time the extremal perturbation in ¥4 may not be F-acute. Indeed, the
maximum norm of the perturbation éy in y for an F-acute perturbation Gy, of
EA is

vg = (1+ |y2|)

o2 —1
Suppose that
(I +{yi])oz > (1 + |yal)or
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and
(14 lyif)oa — (1 + fy2))on

lya] = lyel

Then, taking the perturbations in ¢ and ¥ 4 as

| | -m 0
e-[3] w7 0]

we obtain that the norm of the perturbation in y is

n<

n
g2 — 1

V= (1 + \yll) > Vg

Hence, the extremal perturbation, for which the norm of dy is at least v, cannot
be F-acute.

The following proposition reveals the role of F-acute perturbations in exact
bounds.

Proposition 9.5 If the bound (9.2) is exact, then every extremal perturbation G 4
in A is F-acute (this is true in the general case n > 1).

Proof. Suppose that the bound (9.2) is exact (f(d) = w(d)) but the extremal
perturbation G 4 in A is not acute. Then

1A +Ga) e < ——
Om — 0A

which yields

W) = |(A+Ga) "N GCo - GaX)|p
< (4+Ga), IGe - GaXle
. 1Gc - GaXr < o + [ Xlada _ £(5),

Om — 04 Om — 04

i.e., the bound is not exact. This contradiction shows that G 4 must be F-acute.
O

The converse statement to Proposition 9.5, namely that an extremal perturba-
tion may be F-acute, while the bound (9.2) is not exact, is not true as demonstrated
in Example 9.4. Hence, it is important to determine the class of equations (9.1),
for which the bound (9.2) is exact.

Theorem 9.6 If n = 1, then the perturbation bound (9.2) is exact if and only
if there exists an integer j € {k,...,m}, such that ¢; = wl'C = 0 fori # j (or
equivalently, such that ”u?CH2 = ||Cll2), where uy, ..., uy are the columns of the
matriz U in the singular value decomposition A = USAVH of A.



9.1. STANDARD LINEAR EQUATION 163

Proof. Necessity. Suppose that the bound (9.2) is exact. Then according to
Proposition 9.5 the extremal perturbation Gy, in 24 is F-acute, i.e., there exists
an integer j € {kg,...,m} such that

’Yi/Ui if i#3j,
dy; = (9.9)
(v; +1y;l6a)/(om —64) if i=3.

Since o; > o; for all ¢ € {1,...,m}, the maximum of ||dy|l2 in y1,...,Ym is
achieved for ; = 0 if ¢ # j and v; = 6¢. Hence,

dc + |y;lda

Om — 5,4 '
Since the bound is exact, it follows from the comparison with the right-hand side
of (9.2) that |y;| = ||y|l2. Having in mind that y; = ul!C/0;, we see that y and
hence, C has all but one element (in the j-th position) equal to zero.

Sufficiency. Let [|u}'C||, = ||C]lz. Then the only nonzero element of U#C and

hence, of y is in the j-th position and (9.9) holds. Choosing v; = 0 if ¢ # j and
v; = 0¢c we get

6yll2 = |0y;| =

B _dc+y;10a  bc +lyllada
l6yll2 = |6y;] = o b T e —6, = f(4),

i.e., the bound f(4) is reached and is thus exact. O
In the generic case ky = m Theorem 9.6 tells us that the bound (9.2) is exact
if and only if
CHU =10,...,0,£[IC|12) "

If the perturbations are measured in 2-norm, then we have

A~ 2 (ISC 12 + 1XHi2l16All2)

0 Xl <
18Xl < = AT 54T

(9.10)

The bound (9.10) is asymptotically exact for all n > 1. Similarly to Theo-
rem 9.6 we have the following result.

Proposition 9.7 The bound (9.10) is exact for n = 1 if and only if
1CP fuk, - . umll, = IC]J2-
Proof. The proof follows immediately by using the 2-acute perturbation
0¥ 4 = diag(0, —62lm_k+1)

in system (9.6). O
It follows from AX = C that

ICll2 < [|All211 X Il
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and

Substituting the last inequality in (9.10) yields the well known a priori relative

perturbation bound
. condz(A4) (ec +€4)
X = "1 cond, (A)ea

where ez := [|6Z||2/||Z||2 for Z = C, A and

(9.11)

condz(4) := Al A7

Unfortunately, in general the bound (9.11) is not asymptotically sharp, this is
the price for deleting the a posteriori quantity || X ||2.
The asymptotically exact (and hence, asymptotically sharp) relative perturba-

tion bound here is
condy(A) (cec +€4)

9.12
I conda(A)e 4 (912)
where
ol lCl
[All201 X1l | All2llA=2Cl2
Since
JA~ICl2 < [JA7YI2HCll2,
we have .
— < e < 1.
condy(A) — csl

Thus, if conda(A) is large, c is close or equal to 1/cond2(A4) and €4/e¢ is small,
then the a priori bound (9.11) may be arbitrarily larger than the true a posteriori

bound (9.12).
a=g 2] ie=[Y]

0 O 0
e[t 2] 2]

where € > 0 is a small parameter. The exact relative perturbation in X is

Example 9.8 Let

and

2¢

The a priori bound (9.11) here takes the form

1+e¢
ex < fap(e) = 1—¢
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while the bound (9.12) is reduced to

2e
1—¢

Ox < pue(e) =
(and is even exact for this particular case). We see that the ratio of the two bounds

Pap(e) _1+e¢
wur(€) 2e

tends to infinity as € tends to zero.

It follows from the above considerations that the bound (9.11) is asymptotically
exact (for all n > 1) if and only if ¢ = 1, which is equivalent to

ICll2 = I All21 X [l2 = | All2llA™*Cla- (9.13)
This condition may be reformulated as follows.
Proposition 9.9 Set
myp = max{i: 0;(4) = 01(A)}.

The bound (9.11) is asymptotically exact for any n > 1 of and only if one of the
following alternative conditions holds:

1. A = aQ, where 0 # o € R and Q is real orthogonal, when mg = m in the
real case, and A = aQ, where 0 #Z a € C and Q is unitary in the complex
case;

2. ulC =0 for i > mg, when mg < m,

Proof. 1. In the real case we have my = m if and only if A = aQ, where Q is
real orthogonal, i.e. @ € O(m,R). In this case

X=Q'C/a

and
1 XNz = ICll2/|al.

The complex case is treated similarly. Since ||Alj2 = ||, we have
ICll2 = [|All2l X |l2-

2. Consider the transformed system (9.6). The condition (9.13) is equivalent
to

llell = Iall3ylI3
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which in turn gives

2
20“12 = ZC+203-
i=vt1 7 i=v+l

Since
01> 0p41 27 2 Om,

it follows that
c=ulC=0

fort>mg. 0O
Combining Theorems 9.6 and 9.9 we also get the following necessary and suf-
ficient condition for exactness of the bound (9.11).

Theorem 9.10 The bound (9.11) is exact if and only if A = o), where0 # a € R
and @ € O(m, R) in the real case, and A = aQ, where 0 # o € C and Q is unitary,
t.e., QQ € U(m) in the complex case.

At the same time the relative bound (9.12) is exact together with the absolute
bound (9.10) under the weaker condition of Proposition 9.7. When A is a scalar
multiple of an orthogonal or unitary matrix as in the condition of Theorem 9.10
then kg = 1 and the condition of Theorem 9.7 holds.

Example 9.11 Let the matrices A, B and C in the Sylvester equation
AX+XB=C
be n x n diagonal with diagonal elements a;, b; and ¢;, respectively. Let
a:=min{|a; + b;| : 4,7 =1,...,n} = |a;, +bj,| > 0.

Then the solution X is the unique diagonal n x n matrix with diagonal elements

Note that the above results depend on the used norm. For Hélder p-norms with
p # 2 the conditions for various types of exactness of the perturbation bounds will
be different.

In Figures 9.1 and 9.2 we show the elements of the relative perturbed solu-
tions 6X/||X|| of 3rd order well-conditioned and ill-conditioned linear equations
generated by perturbations in the elements a11, as; and as; of the matrix A. The
perturbations in the data are represented by spheres while the perturbed solutions
are represented by ellipsoids.
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Figure 9.1: Perturbed solutions of well-conditioned linear equation
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9.2 General equations

In the case of (8.19) we have an interesting equation with (8.20) and (8.21) as
particular cases. The spectrum of the linear matrix operator £ is then

spect(L) = { Z Bii i (AN(B); ke {l,...,m}, L€ {1,...,n}} )
i,5=1

where A\;(Z) are the eigenvalues of the matrix Z. Hence, equation (8.19) is
uniquely solvable if and only if 0 ¢ spect(£). The bound (8.59) may be applied to
this case by ordering the degrees A* and BY for (i,7) with 8;; # 0 as {P1, P»,...}
and using the following result.

Proposition 9.12 For every nonnegative integer i and
04 = |6 Al

the following estimate holds

A

(A aay -4y < (Ala+60) — lals = 3 () 14455

k=1
AT 54 +O(6%), 64 — 0. (9.14)

Proof. We prove the inequality in (9.14) by induction on i. For ¢ = 0 the
inequality reduces to 0 <1 —1 = 0. Suppose that it holds for 1 = m > 1, i.e., that

i 1= (A -+ 5A)™ ~ A7y < o= (Al + 50 | AI-
For i = m + 1 we have

mi1 = [[(A+BA)(A+6A)™ — AL
JA((A+SA)™ — A™) + SA(A+ 6A)™|p
[All2am + [[(A + 6A)™[|264

| All2B8m + (| All2 + 64)™04 = Bm+1,

IN A

e, amy < By, implies o471 < Bry1 and the proof is complete. O

9.3 Continuous-time equations
The spectrum of the operator £ in the continuous-time Sylvester equation

L£(X)=AX +XB=C (9.15)
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is
spect(L) = {MNA)+MB):i=1,...,m, k=1,...,n}
= spect(A) @ spect(B).
As corollaries of Theorems 8.17 and 8.20 we obtain the following results.

Corollary 9.13 The norm-wise perturbation bound for equation (9.15) is

eSt(éc,(SA,JB,A,NA,NB)

, 9.16)
T~ 11AT2(6a + 65) (

X =

where A = (BT @ Iy, + I, ® A)_1;

Nsg = -A(XT®In), Ng=-AI,®X)

and the expression for est is given in (8.47). The bound (9.16) is valid for

1
0a+0 < ——- = omin(A).
A+ 05 < = omin(A)

Corollary 9.14 The component-uise bound of type (8.63) for equation (9.15) is
[6X| = (I, ~ 11 (8)) 'O (D)
with
©1(8) = |AJAc +|NalA4 +|NplAs,
V(D) = |AIn® Wa)l + A (W5 & 1)
and it is valid if rad(¥1(A)) < 1.
Example 9.15 Consider the Sylvester equation

L(X):=AX+XB=C

1.5 0.5 0.5 —05 1 -2
A‘[o.s 1.5]’3_[—0.5 0.5]’0“[2 —1]'

The Sylvester operator £ is invertible and the solution is
0 -1
X = .

20 05 -05 00
05 20 00 -05
-05 00 20 05
00 -05 05 20

with

The matrix L of L is
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and we have
7 =2 2 -1
1 -2 7T -1 2
_r-1__ -
Ne=L"=%1 9 21 7 2|

-1 2 -2 7

2 -1 -7 2

1l -1 2 2 -7

12 7 -2 -2 1|’
2 7 1 -2

Ny=-LY'(XTohL)=

9 7 1 2
_ 1] -7 —2 —2 —1
Np =L 1(12®X):I§ 1 2 2 7

-2 -1 -7 -2

Furthermore,

Ny Nzll2 =1, Y, Z € {C, A, B}
and

INllz = [[N¢, Na, N5lll2 = V3.
Hence,

esta(6, N) = V3 1/62 + 62 + 6% < est1(8, N) = est3(6, N) = ¢ + 64 + 65
and the perturbation bound is

do+64+0B

< =
ox < 1-64-0g

¢

Example 9.16 Consider the Sylvester equation

L(X):=AX+XB=C

S RS P

The Sylvester operator £ is invertible and the solution is X = I,. The matrix
representation of L is

with

L = diag(A + I, A)

and we have

2 -9 0 0

1o 20 o
Noa=[L1==Z

c=1L 410 0 4 -36

0 00 4
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with
v:=|[Neliz = 9.1098

and
Ny =Ng=—-N¢.

Hence, the nonlocal perturbation bound is

v(be + 6A + 6¢)
1- l/((SA + 53)

1
0x < , 5A+6B<;- (9.17)

Taking the perturbations as

0 0 00 c o
= = 6B = 3
Sl R I R IR
where € > 0 is a small parameter, a simple computation shows that the perturbed
Sylvester operator is invertible if ¢ < &g, where

g0 = 2/(11 + V/117) = 0.0917
(up to four digits) is the smaller positive root of the quadratic equation
g2 —1le+1=0.

For € < gp the perturbation in X is determined by

18¢ —4e
S
—9¢ e(l —e)
5 = e — [ R A—
12 1—11e 4+ €2’ 0222 1—1le +¢2

and we have

340 19 — 2¢ + &2
ox =46 = , € < 0.0917.
x = 0x(e) 5\/(4—95)2 A ©

At the same time the bound (9.17) gives

27.3293¢
ox < fle):

o o0 0.0549.
1-182195:" <

%

9.4 Discrete-time equations
The spectrum of the operator £ of the discrete-time Sylvester equation

L(X):=AXB-aX =C (9.18)
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is
spect(L) = {MN(A)M(B)-a:i€{l,...,m}, ke {l,...,n}}
= spect(A) ® spect(B) © {a}
The application of Theorem 8.17 to equation (9.18) gives the following result.

Corollary 9.17 The norm-wise perturbation bound for equation (9.18) is
est(0c, 84,08, A, Na, Np) + || X||2[|All26495

ox < 1—1n64 — o5 — [[Al20A05 ! (9.19)
where
A= (BT @A~ aln,)
and
Ny = -A((XB)T®I,), Ng=~A(l, ®(4X)),
la = |[ABT®ILy)|,, b= AU, ® A,

The domain D for §a, 6p in (9.19) is defined by the inequality
lada+1lgép + “A||25A53 < 1.
Finally, the component-wise bound (8.63) in this case is as follows.

Corollary 9.18 The component-wise perturbation bound for equation (9.18) is

56X 2 (I = U1(A) = ©(A))7H(O1(A) + O2(A)vec(| X)),

D
B
I

IAMlA¢ +|NalAa + [Np|Ap, ©2(A) = |A (WS @ Wa),
Ui(A) = |ABT®In)|(In®Wa) + AL, ® A)| (W] ® In) -

9.5 Notes and references

Algebraic linear matrix equations have been intensively studied since the times of
Sylvester and Kronecker [152, 215, 214], see also [196, 193, 229]. Brief historical
reference may be found in [8]. In particular, the problems of existence, uniqueness
and representation of the solution are solved for such equations, see e.g. [10,
12, 19, 20, 33, 36, 56, 69, 84, 94, 101, 106, 107, 153, 155, 165, 167, 189, 206,
181, 205, 224, 228, 230, 235, 236, 241]. The properties of special linear matrix
transformations have also been studied [40, 41, 79, 86, 216, 223, 222]. There is a
variety of techniques, algorithms and software for solving linear matrix equations
(17,13, 14, 6, 15, 18, 25, 45, 46, 50, 72, 73, 82, 88, 91, 90, 109, 164, 175, 192, 194,



9.5. NOTES AND REFERENCES 173

202, 239, 240]. The great interest in linear matrix equations is due in a large extent
to their wide application to various areas [11, 49, 48, 59, 62, 104, 105, 103, 170, 225].

Perturbation analysis for linear matrix equations, including the Sylvester and
Lyapunov equations arising in linear control theory, has been done in [38, 110, 68,
95, 99, 114, 113, 112, 136).

Perturbation bounds for the standard vector linear equation Az = b are given
in many textbooks [64, 36, 106, 122, 54, 224]. However, the problems of exactness
of these bounds have benn considered here for the first time.

The perturbation theory for operators in abstract spaces [119] and for general
linear equations [97, 98] also applies in a large scale to the perturbation analysis
of linear matrix equations. Other investigations are connected with establishing
bounds on the solution of linear matrix equations are given [171, 176).

Some results concerning backward perturbation analysis are given in [99, 101,

112]. Backward errors and conditioning for structured linear equations are con-
sidered in [97].
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Chapter 10

General Lyapunov equations

10.1 Introductory remarks

In this chapter we present a complete perturbation analysis for general Lyapunov
matrix equations. Local and nonlocal, norm-wise and component-wise, perturba-
tion bounds are derived for real and complex Lyapunov equations, particular cases
of which are the continuous- and discrete-time Lyapunov equations, arising in the
theory of linear time-invariant systems. Results in this area have been already
published in the literature for particular classes of Lyapunov equations, see e.g.
95, 125, 134).

The first order bounds are based on the standard induced norm as well as on the
Lyapunov norm of Lyapunov operators. The latter norm allows to obtain tighter
results for Lyapunov equations under symmetric perturbations of the constant
term.

Conditions for invertibility of certain classes of Lyapunov operators are also
presented.

Due to the highly specific structure of Lyapunov matrix equations, the results
for complex equations cannot be deduced trivially from those for real equations.
For this reason we treat real and complex equations separately.

10.2 Application to descriptor systems

Matrix Lyapunov equations arise naturally in many areas of linear systems theory.
In this section we discuss the use of such equations in studying continuous and
discrete time-invariant dynamic systems in descriptor form.

Consider the continuous time-invariant descriptor system

Ei(t) = Az(t), t € Ry; z(0) = zp € R",

175
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together with the cost functional
Jo(z) = / o' ()Cx(t)dt,
0

where z(t) e R™ and E,A,C ¢ R***", E#£0,C > 0.
Suppose first that we have a regular descriptor system, i.e., that E is nonsin-
gular and the matrix E~'A4 is stable,

spect(E~*A4) ¢ C_.
Then it follows from the Pontryagin maximum principal (see [167]) that
Jo(z) = 7 X 0,
where X, > 0 is the unique solution of the Lyapunov equation
L(X)+C=0.
Here the continuous-time Lyapunov operator £, € Lin(n,R) is defined as
L(X):=(ETTATX +XE A

If the matrix F is ill-conditioned with respect to inversion, this may cause nu-
merical difficulties (the formation of E~1A should be, of course, avoided). An
approach to deal with this problem is as follows. Setting

X:=E"YE,
the descriptor Lyapunov equation in Y is
LEY)+C =0,

where the continuous-time descriptor Lyapunov operator £L# € Lin(n,R) is de-
fined by
L¥Y):=A"TYE+E"YA

Note that the standard continuous-time Lyapunov equation
ATX+XA+C=0

is a particular case of the descriptor equation for E = I,.
If the matrix F is singular with

rank(E) =r < n,

then let
E=USVT =U;zV,’
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be the singular value decomposition of E, where the matrices U = [U1,Us], V =
[V4, V,] are orthogonal, Uy, Vi € R™*", and

S = diag(X,0), L := diag(c1(E),...,0(E)).

Setting
y=Wz, z=V, z,
and
H:=UTAV = [H;]
where H is a block 2 x 2 matrix with Hj; € R™", we get
Zyt) = Huy(t) + ngz(t),
0 = Hyy(t)+ Haz(t).

Suppose that Hay € R(®~"*(n=7) j5 nonsingular, i.e., that the descriptor system
is of index 1 (this can always be achieved, see [24, 167]}, and

g € Ker ([Hzl,HQQ]VT) .

Then
z(t) = —Hy Hay(t),

the vector y is the state of the descriptor system
£4(6) = By(t), t € Ry, y(0) = yo := Wy o,
with
B := Hyy — Hi2Hy Ha.

The cost functional takes the form
Je(z) = K (y) = /0 y' (t)Dy(t)dt,

where

I
D:=[I, -HLH; VTCV[ o ]
[ 214422 ] _112211'{21

If
spect(X7'B) Cc C_,
then we have

K.(y) = yg T'vo,

where T solves the Lyapunov equation

('BY'T+TS 'B+ D=0,
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i.e., the problem is reduced to the regular case.
Consider similarly the discrete-time descriptor system

Ex(t+1) = Az(t), t € {0,1,...}; z(0) = 2o € R",
together with the cost functional

Jaz) = 32T ()Cx (1),

t=0

using the same notation as in the continuous-time case. Suppose first that the
matrix E' is nonsingular and the matrix E~'A4 is convergent, i.e.,

spect(E~14) C Dy.

Then, see [167], we have
Jd(x) = Zngxo,

where X is the unique nonnegative definite solution of the Lyapunov equation
Lg(X)+C =0,
where the discrete-time Lyapunov operator £4 € Lin(n, R) is defined by
Li(X):=(E'ATXEA-X.
To avoid the computation of the matrix E~ 1A, we set
X:=E'YE.
The discrete-time descriptor Lyapunov equation for Y is
LEY)+C =0,

where
L¥Y)=A"YA-E"YE.

The standard discrete-time Lyapunov equation
ATXA-X+C=0

is a particular case of the descriptor discrete-time Lyapunov equation, correspond-
ingto E=1,.

The case when F is singular is treated similarly as in the continuous-time case.
Complex descriptor systems with z(t) € C", etc., may be studied in the same way,
see [167].
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10.3 Additive matrix operators

To solve the perturbation problem for general complex Lyapunov equations we

need some facts about additive matrix operators. In particular, we are interested

in real representations of complex additive (not necessarily linear) operators.
Consider a matrix function (or matrix operator)

]_-: [f”] :anX'n. —)Iann,

where fi; : F**™ — [ are scalar functions of a matrix argument. By F T = [f jz‘] and
FH = [Tjil we denote the transposed and complex conjugate transposed operators
to the operator F, respectively.
Every matrix operator
f . ann N ]F'I’l)(’ﬂ

is equivalent to a vector function
fiFY S FY
by setting
f(z) = vec(F(vec™}(x)),

where
z = vec(X), X = vec” (z).

In turn, a complex operator F : C**™ — C™*™ may be identified with the real
operator
]:lR CRTXT ¢ RAXT ) RTXT « RVXT

that is defined as follows. Let X = Xy +1X; and
F(X) = Fo(Xg, X1) + 21 F1(Xo, X1),
where X, and F; are real. Then we may set
FR(Xo, X1) = (Fo(Xo, X1), F1(Xo, X1))-

We can also set

FR(Xo, X) = [ FolXo, Xy) ] |

F1(Xo, X1)

In this case the co-domain of FR js RZ#X",
If Z = Zy + 12, € C**", where Zy, Z; € R™*"™, then set

R o VeC(Z()) 2n? R .__. ZO _Zl 2nx2n
vec (Z>'~[vec(Zl)}eR A 7. 7 eC .

For
A,B,Z e CV™
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and
z=29+12; € C" 29,21 € R”
we have
vecR(AZB) = (BT ® A)®vecR(2)
and
vecR(Az) = AR [ “ ] ;
Z1
where

By Ao~ B ® Ay — (B] ® Ao+ B] ® 4i)
B;—®A0+BJ®A1 BJ@Ao—B;r(@Al

(BT @ A)R = [

Hence, if £ € Lin(n, C) and
Mat(L) € C™ *n’
is the matrix of £, then
vecR(L(Z)) = Mat®(L)vecR(Z).
We recall [119] the following definitions.
Definition 10.1 An operator F is additive f
FX+Y)y=FX)+ F(Y),

homogeneous if
FlaX) =aX
and semi-homogeneous if
FlaX) =aF(X)

for all XY € F**" and o € F. An operator F is linear if it is additive and
homogeneous,
FlaX + 8Y) =aF(X) + BF(Y),

and semi-linear if it is additive and semi-homogeneous,
FlaX + BY) =aF(X) + BF(Y),
forall X, Y e F**™ gnd o, 8 € F.

In the real case F = R the properties of linearity and semi-linearity coincide.
Also, a complex semi-linear operator becomes linear if we consider C**™ as a linear
space over R instead of C. This is based on the observation that a linear space V
over any field F (including V = F) is also a linear space over any subfield E of F.
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Any general operator £ € Lin(n,F) may be represented as
T

where A;, B; € F**™ are given matrix coefficients and r is the Sylvester index of £,
i.e., the minimum number of terms, required in the representation of £ as a sum
of elementary linear operators X — A; X B;, see [125] and Appendix E. Similarly,
a general semi-linear operator M : C**™ — C™*" admits the representation

M(X) = L(XT) = ZA XHB,; (10.2)

or

M(X)=NX) = Z C, XD, (10.3)

where £, N € Lin(n,C). The real versions of (10.2) and (10.3) are

vecR(M(X)) = MatR(L) [ _P;;’j:((égz)]
= Mat®(£)diag (P2, — Pp2) vecR(X)
and
vecR(M(X)) = Mat®(N)diag (1,2, —I,2) vec® (X),
where

X = Xo+1X; € CV"; Xo, X1 € R¥*™
Thus, we come to the following definition.
Definition 10.2 The matrix representation (or briefly, the matrix) of the real
version MR of the semi-linear operator M is
Mat(MR®) = Mat®(£)diag (P,z2, —Pp2)
= Mat®(N)diag (I2, —1I,.2) -
Note that a semi-linear complex operator F is in general not differentiable.
However, its real version FR is a linear operator. We note that if F is a linear
operator, so is F ', while FH is semi-linear.

Taking the vec operation on both sides of the expressions (10.1) and (10.2) for
a linear and a semi-linear operator we get

vec(L(X)) = Lvec(X)

and

vec(M(X)) = LP,2vec(X),
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where

,
L:=Mat(C) =Y B] ®4; e F*">*™
i=1
is the matrix of the linear operator L.

We also discuss complex additive operators F, which may be represented as
sum of a linear and a semi-linear operator, i.e.,

F(X) = L1(X) + L2(XT), (10.4)
where £,, £y € Lin(n, C). In this case we have
vecR(]-‘(X)) = M:aut(]:]R)vecIR(X)7

where the matriz representation of the real version F* of the semi-linear operator
Fin (104) is

Mat(FR) = (MatR(ﬁl) + MatR(£,)diag (Ppa, —Pnz)> vec®(X).
In the following we introduce polynomial and pseudo-polynomial operators.

Definition 10.3 An operator F = |[fi;] is called polynomial if its elements f;; :
F™*" — [ are polynomial functions.

A polynomial operator F is globally Fréchet differentiable in the sense that for
every Xo € F™*™ we have

F(Xo+ Z) = F(Xo) + £(Z, Xo) + H(Z, Xo),
where L(-, Xo) € Lin(n,F) and

o 192, X0)]
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In this case the linear operator £{-, Xo) is referred to as the Fréchet derivative of F
at the point Xy and is denoted as Fx (X)(-) or briefly as Fx(-), see Appendix A.

Definition 10.4 A complex operator F is called pseudo-polynomial if it may be
represented as

F(X)=6(X,xM), (10.5)

where

g :IF‘I’LXTI XIF’RXTL _>IF’I‘LX’I‘L

s a polynomial operator.
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Pseudo-polynomial operators are not differentiable, but their real versions are real
polynomial operators. If F is a pseudo-polynomial operator, given by (10.5), we
may define the additive operator Fx (Xo)() by

Fx(Xo)(Z) = Gi(Xo)(Z) + G2(Xo)(2M),

where Gi(Xo) is the partial Fréchet derivative of G(X1, X2) in X, computed at
X1 = Xp, X2 = X(}){. We have

F(Xo+ Z) = F(Xo) + Fx(Xo)(Z2) + H(Z, Xo),

where

H(Z, Xo) = o(liZ])), Z— 0.

Thus, Fx(Xp)(-) is an analogue of the Fréchet derivative in the case of pseudo-
polynomial operators and is referred to as the Fréchet pseudo-derivative of F at
the point X (Appendix A). Whenever they exist, the Fréchet derivatives and
pseudo-derivatives are unique.

Definition 10.5 If||-|| is a norm in F**", then the induced norm of an operator
L from Lin(n,F) is defined as

LI = max{| L(X)]| : | X]| = 1} (10.6)
If the Frobenius norm in F**" is used, then
[£]le = max{[[L(X)||r : | X]lr =1} (10.7)

= max{]jvec(L(X))|l> : [vec(X)ll> = 1}

= max{||Mat(L)vec(X)]s : [[vec(X) 2 = 1}

= [Mat(L)]2.

When the operator M is semi-linear,

M(X) = L(XM), £ € Lin(n,F),

we may again define its norm via (10.6) and (10.7) and thus, the induced norm
of M is equal to the induced norm of the underlying operator £. However, if the
complex operator F is only additive,

F(X) = L1(X) + Lo( XM, L4, L, € Lin(n, C), (10.8)
then the determination of its induced norm is more subtle. Let
Li = Lyg +1Lg; € CV7™° k= 1,2,

be the matrix of the operator £j, where the matrices Ly; are real. Define the
norm of the additive operator F, induced by the Frobenius norm in C**", via

171 = max{ | F(X){r : [ X|[r < 1}.



184 CHAPTER 10. GENERAL LYAPUNOV EQUATIONS

Then
IF]l = max{|[vec(F(X))ll2 : llvee(X)[|l2 < 1}.

Recalling that

vec(F(X)) = vec(ﬁl(X))—Fvec(ﬁz()i{))

Livec(X) + Lo Pyevec(X)

we get

N FIl = v(L1, L2) := | M (L1, L2)ll2, (10.9)
where

Lyg+ LogPrz  —Lyy + Lo B2

[p— IR =
M(LhLZ) = Mat(]: ) - Ly + L21Pn2 L10 - L20Pn2

(10.10)

is the matrix of the real version F® of F. Thus, we have proved the following
proposition.

Proposition 10.6 The induced norm of an additive operator F with o repre-
sentation (10.8) is equal to the induced norm of its real representation when the
underlying norm in C"*"™ is the Frobenius norm.

Definition 10.7 An operator F : F**™ — F"*™ 45 said to be symmetric if
FH(X) = F(XH).
Linear symmetric matriz operators are also called Lyapunov operators.

More details about Lyapunov operators are given in [125] and Appendix F.
Every Lyapunov operator F may be represented as

F(X) = L(X) + LT XH) (10.11)

where £ € Lin(n,F). Thus, a general Lyapunov operator F € Lin(n,F) has the
representation

T1 r2
F(X) =" (A:XBF + B.XAY) + 3 erCuXCH, (10.12)
=1 k=1

where A;, B;,C; € F™*" are given matrices and e = +1. This form seems
different from (10.11) in view of (10.1), but it is not, since the symmetric monomial
terms may be expressed as

CpXCH = A XBE + B, x AY,

where

A = axCx, B = BiCk,
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and ay, By are scalars from F with ay0, = 1/2. However, we choose the rep-
resentation (10.12), in which the symmetric terms CxXC} (if any) are grouped
separately in order to reduce the number of terms in the representation of £ as a
sum of elementary linear operators. As usual, summation from 1 to 0 is considered
void. Thus, r; = 0 means that there are no terms AiXBlH + BiXA?, while 7, =0
means that there are no symmetric terms Ci X C’,ﬁl.

For Lyapunov operators £ € Lin(n,F), in addition to the standard norm
(10.7), a new symmetrized, or Lyapunov norm may be introduced, see [125] and
Appendix F.

Definition 10.8 The symmetrized, or Lyapunov norm of the operator £ € Lin(n,F)
s given by
L] = max{|C(X)||r : IX]lr = 1, X = X"} (10.13)

In the real case this norm may be computed via
IC]l« = |LQ|2, £ € Lin(n, R}, (10.14)
where L is the matrix of £ and
Q= [QT:]]Z;”:]

is a specific n* x n(n + 1)/2 matrix. It is an n x n block matrix with blocks Q;;,
which are n x j matrices, given by:

Qij = 0 if 'l>],
1

. LIy 0

0 0 1
Qll = : ) Qkk = 0 0 y

0

0 0

1 e -

Qi = —E; if i<j.

V2
Here E;; is an n x j matrix with a single nonzero element, equal to 1, in position
(4,1). For instance, the matrices Q = Q,, for n = 2, 3,4 are, with ¢q := 1/\/5,

[1]0 o]o 0 0]

0fg 0|0 0 ©

0{0 0]g 0 0

(1)28 0lg 0[0 0 O
szqu,Q3:001000,
olo 1 0(0 0/0 ¢ O
0{0 0{qg 0 O

0{o 0{0 ¢ ©

oo 0f0 0 1]
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The determination of the symmetrized norm in the complex case is more in-
volved. Let the matrix L € C*"*"” of the operator £ € Lin(n,C) be represented
as L = Lo + 1Ly, where Ly, Ly € R**". It is shown in [125] that

, L€ Lin(n,C).  (10.15)
2

12l = || Rdiag@ @), = ” 0O LoD

LQ -L,Q J

The n? x n(n — 1)/2 matrix Q is obtained from Q by deleting the columns with
1’s and numbered as

k(k+1)/2, ke1,n,

and changing the sign of every second element 1/+/2 in each column of the reduced
matrix.
The ratio izl
i =
of the symmetrized and usual norms may be arbitrarily small for some Lyapunov
operators £, when the underlying norm in F?*" is the Frobenius norm. Thus,
the use of the symmetrized norm is preferable in order to get tighter perturbation
bounds.

Definition 10.9 An operator F : F™*" — F"X" is called affine if it may be
represented as

F(X)=A+ L(X),

where A € F**™ and L € Lin(n,F). An affine operator F is called symmetric if
in the above representation A = A® and L is a Lyapunov operator.
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10.4 Perturbation problem

Consider the general Lyapunov equation

T1 T2
F(X,P):= Ao+ Y (AXB!+ B XAM) + ) e G XCH =0, (10.16)
1=1 k=1

where X ¢ F?"*" is the unknown matrix. The function
F(.’P) :IFTLXTL _)Iann

is an affine symmetric matrix operator, depending on the parameter matrix (1 +
2r1 + r2)-tuple

P:= (AO;AluBl7'"7AT13B7‘1;017'~-»C1‘2)1

where Ag = Afl. With certain abuse of notation we identify P with the set of the
matrix coefficients, and write A4; € P, etc.

In the real case the dependence of F'(X,-) on the matrices Z € P is polynomial
and we denote by

Fz(X, P) € Lin(n,R) (10.17)

the partial Fréchet derivative of F in the corresponding matrix argument Z = X
or Z € P, computed at the point (X, P).

In the complex case, however, F(X, -} is affine in Ay and is a pseudo-polynomial
operator in each Z € P\{Ag}. Hence, the partial Fréchet derivatives in Z €
P\{Ag} do not exist. In this case we use the same notation (10.17) for the partial
Fréchet pseudo-derivative of F in Z € P\{Ao}, computed at the point (X, P).

Since the operator F'(-, P) is affine, the partial Fréchet derivative

Fy ()(07 P)() (S Lin(n, IF)

does not depend on Xy and is in the following denoted by Fx(:). We assume
that the operator Fx(-) is invertible, i.e., that its matrix Lx := Mat(Fx) is
nonsingular. Then equation (10.16) has a unique solution X for every Ag and, in
view of Ag = Afl, we have X = XH.

The perturbation problem for equation (10.16) is stated as follows. Let the
matrices from P be perturbed as

Ag— Ag +6Ag, A;— A, + 8§A;, B;— B;+B;, Cp— Ci + 0C},

where 4y = A}, Denote by P + §P the perturbed tuple P, in which every
matrix Z € P is replaced by Z + 6Z. Then the perturbed equation is

F(X +6X,P+6P) =0. (10.18)
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In general, some of the matrices from P may not be perturbed and we set the
corresponding perturbations to be zero. Denote by

P:={Z\,2,,...,7Z:} CP

the set of matrices from P, which are perturbed. We also write P = (Z1,Za2,...,%y)
and, if necessary, consider P as an element of the linear space (F"*")". For in-
stance, given the standard continuous-time real Lyapunov equation

AX+XAT+C =0,

we have

P=(C;AI,,I,,AT), P=(C,A),

if only perturbations in C and A are considered.

Since the operator F is invertible, the perturbed equation (10.18) has a unique
solution X + 46X = (X + 6X)H in the neighborhood of X, if the perturbation §P
is sufficiently small. Moreover, in this case the elements of the real representation
of 6X are analytic functions of the elements of the real representations of the
matrices from §P.

Denote by
8O = [69,82,89,...,62 5,00 (10.19)
= (040,641,881 00, -, 6c,,] €RY
the full norm vector of absolute perturbations §z := ||6Z|| in the data matrices,
where v := 1+ 2r; +ry. Let also
§:=1[61,00,...,8,]" :=[02,,02,,...,02.] €R} (10.20)

be the norm vector of perturbations of the matrices §Z. Note that some of the
elements of 6° may be zero (when the corresponding matrices are not perturbed),
while all elements of § are positive, since by assumption they are the norms of the
nonzero perturbations in the matrix coefficients.

The perturbation problem is to find a bound

ox < f(6), 6€QCRY, (10.21)

for the perturbation
5X = H(SXHF,

where Q is a given set and f is a continuous function, nondecreasing in all of its
arguments and satisfying f(0) = 0. In the following subsections, a first order local
bound

dx < f1(8) +O(llé)1*), 6 — 0,
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is derived, which is then incorporated in the nonlocal bound (10.21). The inclusion
§ € Q also guarantees that the perturbed equation (10.18) has a unique solution
X +46X.

Estimates in terms of relative perturbations

16Z;1lr 5
a; =€z, = ==, Z; € P,
’ 1Z;le * ™7
for
oy oo 18Xl
1 Xlir
are straightforward when Ag # 0, and hence, X # 0. Indeed, we have
< flzilray, .. 1 Z-llrar)
X > .
1 X{le

In the following sections we present local and nonlocal perturbation bounds for
the general Lyapunov equation (10.16).

10.5 Local perturbation analysis

10.5.1 Condition numbers

Consider the calculation of condition numbers for equation (10.16). Since F/(X, P) =
0, the perturbed equation (10.18) may be written as

F(X +6X,P+6P):= Fx(6X)+ Y _ Fz(8Z) +G(6X,6P) =0,  (10.22)
ZeP

where Fz(-) are the partial Fréchet derivatives (in the real case) or pseudo-derivatives
(in the complex case) of F(X,-) in the corresponding matrix arguments Z € P. In
both cases Fx(-) is a linear symmetric operator and F4,(-) is the identity operator.
The matrix G(6X,0P) contains second and higher order terms in 6X, 6 P.

A straightforward calculation leads to

1

T2
Fx(2) = > (A:ZB!+BZAY)+) CrzCY,

i=1 k=1
Fa(2) = Z,
Fa(2) = zxBM4 B xZH
Fg,(2) = A;XZH 4+ ZXxAY,
Fo,(Z) = e (ZXCH+CuX2ZM).

Since the operator Fx(.) is invertible, we get

0X = ®(5X,0P):=~ Y Fx'oFz(52) — Fx'(G(6X,6P)). (10.23)
zep
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Relation (10.23) gives

dx <Y Kzbz+0(|6]%), 6 =0, (10.24)
ZeP
where the quantities
Kz :=||F5'oFyz||, Z€ P, (10.25)

are the absolute individual condition numbers [188] of equation (10.16). Here
IF|| is the norm or the symmetrized norm of the corresponding linear or additive
operator F, induced by the Frobenius norm, i.e.,

171 = max{ [ F(¥)][p : [IY[le = 1},

see (10.7), (10.9), (10.14) and (10.15) for the corresponding explicit expressions.
If X # 0 then an estimate in terms of relative perturbations is

60X
ex = WXIE < S kses o), 60,
X |r 4
zZepP
where the scalars 12|
= K Fa Z € ﬁ’
2 X e

are the relative individual condition numbers with respect to perturbations in the
matrix coefficients Z € P.

The calculation of the condition numbers Kz is straightforward. First we
consider the matrix representations of the partial Fréchet derivatives in X and
Ay. Denote by

Lz e Fnzxnz

the matrix representation of the operator Fz(-), where Z = X or Z = Ap. Noting
that (AH)T = 4 in both the real and complex case, we get

1 T2

Lx = Z (4;®B; +B;® A;) + ZEkak ®Cy, La, = Iz

i=1 k=1

and
Kao == [IFx ], < 12X,
see (10.14) and (10.15) for the calculation of the symmetrized norm | - |l.. The
computation of the other matrix representations and individual condition numbers,
however, is different in the real and complex case and we have to treat them
separately.
Consider first the real case F = R. Here Fz(-) € Lin(n,R) are the partial

Fréchet derivatives of F(X,-) in all Z € P at (X, P) and we denote by Lz their
matrix representations. Using (10.23), the symmetry of X and the formulae

vec(DZE) = (ET ® D)vec(Z), (A® B)Py2 = P2 (B ® A),
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we obtain
La, = (BiX)® Iy + (I ® (BiX))Ppe (10.26)
= (2 + P2) (B X)® 1),
LB, = (Inz + Pnz) ((A1X) ® In),
Lc,c = & (Inz + Pnz) ((CkX) ® In)
Therefore, the absolute condition numbers in the real case are
Kay =1, Kz =|L3'Lz|,, Z € P\{Ao}. (10.27)
In the complex case F = C we have
vec (Fx' o Fa(Z)) = L3N(B:X)® I)vec(Z) (10.28)
+Lx (In ® (BiX)) Pa2vec(Z),
vec (Fy' o Fp, (2)) = LP((AX)®I,)vec(2)
+ Ly (I, ® (A X)) Pravec(2),
vec (Fx' o Fe, (2)) = ex L ((CrX) ® In)vec(Z)
+ex Ly (In ® (Ci X)) Ppavec(Z).
Hence, we may apply relation (10.9) with
Ly = LyN((B:iX) ® I,), Ly = Ly (I, ® (B: X)),
etc. Setting
x(Z) :=v (L YZ o 1I,),L (I ® Z)Py2) (10.29)
(see (10.9) and (10.10)) we get
|Fx' o Fa (643l < x(BiX)da,,
”FX OFB ((5B “F S X(AzX)(sB!,
|Fx' o Fe, (5Ck)|l, < x(CkX)dc,,
fori=1,...,7 and k = 1,...,7r5. Thus, the absolute individual condition num-
bers relative to perturbations in A;, B; and Cj in the complex case are given
by
KA; = X(BlX)v
KB,- = X(AiX), izl,...,Tl,
ch = X(CkX), k:].,...,T'Q.

A drawback of this approach is the dimension n? x n? of the involved matrices.
Condition and accuracy estimates, avoiding the formation and analysis of large

matrices, are proposed in [179].
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An overall relative condition number may be defined as follows. Since we
consider P as an element (Z;,Z5,...,Z,) of a linear space, we may define the
product

aP = (aZy,aZs,...,0Z;)
of 15, a € F, as well as the sum
P4+ P'=(Z1+ 2,2+ 2Y,...,Z, + Z})
of two r-tuples P’ and P”. We also introduce the generalized norm
1Pllg := [1Z1lle, | Zzlle, - 1 Zl7] " € R

of the r-tuple P.
Let X = 0 X (6P) be the perturbation in the solution, where

0P :=(621,02,,...,0Z,),
and let ¥ € R" be a vector with positive elements.

Definition 10.10 The absolute overall condition number with respect to v is
defined as

K(y) = lim max {|SX (6P)|[r : 5P, = =7}
We have
K(y) =max{ || Y Fx'oFz(32)|| :[I6Plg <7 3 - (10.30)
zeP F
Definition 10.11 The relative overall condition number with respect to v s
£(7) == K()/IIX|l¥-

Definition 10.12 If vy has a single nonzero element v; = || Z;||r, then the quanti-
ties K(y) and k(v) are the individual norm-wise relative condition numbers Kz,
and kz, relative to perturbations in the matriz Z; € P. When v = 1 Z;lle for
allj =1,2,...,r then K(7v) and x(7y) are the overall relative norm-wise condition
numbers of equation (10.16).

Unfortunately, in general there are no closed form expressions for K () and
%(7). Using the matrix expressions M; for the operators Fy 'oF zinJ=1,...,1,
we find that

-
K(y) =max ¢ 1Y Mz :|zlz <
j=1 .
In the next section we will derive bounds

K(v) <est(y,M), M := [My,...,M,],
for K (7).
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10.5.2 First order homogeneous bounds

In this subsection we derive local first order homogeneous perturbation bounds,
which are generally better than the bounds using condition numbers.

Consider first the real case. The operator equation (10.22) for the perturbation
X may be written in vector form as

vec(6X) = > Nzvec(8Z) — Ly vec(G(8X,5P)), (10.31)
ZeP

where
2 2
Nz:=-Ly'Lz e R**", Z€P.

Noting that
ox = 16X |lp = |[vec(6X)l|2

and
[vec(8Z)|l2 < dz

we see that the condition number based estimate is a corollary of (10.31),

Sx < esty(8,N)+O(||5]%), 6 — 0,

where
est1(6, N) := > |INgll262
ZeP
and
N :=[Ny,Ny,...,N,] = [Nz,,Ng,,...,Nz,] € R**™". (10.32)

Relation (10.31) also gives a second first order bound
6x <esta(8,N) +O(5]|%), § =0, (10.33)

where

esta(d, N) := [ N|12l|6]l2.

The bounds est; (4, N) and esty(8, N) are alternative, depending on the particular
value of 6.

We again have a third bound, which is always less than or equal to est; (4, N).
Indeed, we have

5x <estz(5, N) +O(||6]|), § — 0, (10.34)
where
estz(6, N) := /8T Nyd.
Here Ny is the r x r matrix with elements n;; := || N;T N
Since

|V NG, < NGl Nz,
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we get
est3((5, N) < estl(é, N)

for all perturbation vectors § and matrices N. Hence, we have the overall estimate
6x < est(d, N) +O()8]]?), 6 — 0, (10.35)

where
est(d, N) := min{est2(8, N), est3(6, N)}. (10.36)

The local bound est in (10.35), (10.36) is a nonlinear, first order homogeneous and
piece-wise real analytic function in 6.
Consider now the complex case. We have

vecR(6X) = Z Nvec®(57) — vec® (F (G(6X,6P))),
zZeP

where . ,
~ 2
Ny i= ~Mat ((Fx' o Fz)") & R *2

are the matrices of the real versions of the additive operators
——Fk_l oFy, Z € P.
Using (10.10) and (10.28) we obtain

Na, = —W(B;), Np, = —~U(A;), Ng, = —ex¥(Ch),

i

where
\I/(Z) L [ LlO(Z) +L20(Z)Pn2 —Lu(Z) +L21(Z)Pn2 ]
o L (Z)+ Ly (Z)Py2  L1o(Z) — Lao(Z) P2
and
Lww(Z) ] . _\R[ Re(ZX)®1,
[ In(2) } = (X)) [ _Im(ZX)® I, }
Ly(Z) _ _1R| I, ® Re(ZX)
[ Lo1(2) ] = (IX) [ I, ® Im(ZX) ] '
Here

X =Xp 41X, eCxn
is the solution to the unperturbed equation (10.16), the matrix
7 = Zy 412, € CV*"

is arbitrary,
Xo,X1,20,Z) € R™"
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and
Re(ZX) = ZoXo— Z1X1,
Im(ZX) = ZoX1+ Z1Xp.

Now we can use the results for the real case, replacing the matrices N; € R**%
with N; € R2%*2n" . The overall bound is

5x < est(A,N)+0(||Al?), A —0,

where

—~

N =[Ny, Ny, ... Ny = [ﬁzl,ﬁzz,...,ﬁzr] e R2n°x2rm’ (10.37)

and in the expression for est3(8, N) the elements of the matrix Ny are

ny; = |NJN;|l2.

10.5.3 Component-wise bounds

The local component-wise bound in the real case then follows directly from relation
(10.31) as

vec(8X)| < Y |Lx Lz| Ivec(6Z)| + O([18]1%), & — 0.
ZeP

To implement a component-wise bound one must have information about~the per-

turbations in the components of the data, e.g., |vec(Z)| < wz, Z € P, where
wz = 0 are given vectors.

10.6 Nonlocal perturbation analysis

In this section we derive nonlinear perturbation bounds. For these we obtain a
domain

QCRY
and a nonlinear function
f:Q—=Ry
such that
ox < f(6)
for all § € Q.

Let the tuples P and P be perturbed to P + §P and P+ P+ §P and let
X + 46X be the solution of the perturbed equation (10.18). In what follows we
mark only the dependence on the perturbations 6 X and 6P, recalling that X is a
fixed solution of (10.16).
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10.6.1 Real equations

The perturbed equation (10.18) may be rewritten in the form

§X = ®(6X,0P) := Bo(6P) + ®1(6X,6P), (10.38)
where
®(6P) = —Fx'(Go(8P)),
®,(6X,6P) = —Fx'(G1(56X,5P))
and
Go((SP) = 5A0+R1(X,5P)+R2(X,5P),
G1(6X,6P) = Ry{(6X,0P) + Ry(6X,6P).

Here Ri(-,6P) are linear operators of asymptotic order k relative to 6P, 6P — 0,
given by
1
R(Z,6P) = Y (6A;ZB] + AZ6B] + 6B ZA] + B;Z5A])

=1

+ ) ek (6CkZCk + CLZ6Cy)
k=1

> (6A:Z6B] +BiZSA] ) + > exdCrZ5CY, .

i=1 k=1

Ry(Z,6P)

If | Z||r < p, then we have

[o(6P)lr < ao(d),
<

121(Z,6P)|ir a1(d)p,

where
ao((S) = Ao ((5) + a02(5), (1039)
a1(6) = a11(5) + (1,12(5)

and where the quantities a;x(8) are of asymptotic order O(||6]|¥) for § — 0. These
are determined as follows.
In the case i = 0, we have

ap1(6) = est(d, N}, (10.40)

T r2
IExHL X2 (226/1,.631- + zaa) :
i=1 k=1

aoz(A)
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and in the case 1 = 1 we get
1
an(8) = Y X' (Tnz + Pa2) (Bi @ I)||, 64, (10.41)
i=1

™
+ D NEX! Tnr + Pa2) (As @ L), 65,

i=1

+ 3 ILF (n + Pu2) (Ck © L) |, b,
k=1

r r
anl®) = |FE. (2215,1,.53,. +§zjagk) .
i=1 k=1
It
1Z1le. 1 Z]le < p,
then a Lyapunov majorant (see (85, 135] and Chapter 5) for equation (10.38) is

a function (4, p) — h(4,p), defined on a subset of R x R and satisfying the
conditions

12(Z,6P)|r < h(6,p)
and

12(2,6P) -~ (Z,8P) < h)(8,p)|Z ~ Z]lr-
Here the Lyapunov majorant is affine in p and it is determined by
h(6,p) = ao(8) + a1(6)p.
In this case the fundamental majorant equation
h(8,p) = p

for determining the nonlocal bound p = p(é8) for dx gives

5x < f(6) = 1—% §eQ, (10.42)
where
Q:={6>0:a1(8) <1} CR,. (10.43)

As a result of the nonlocal perturbation analysis we obtain the perturbation
bound (10.42), (10.43), where the involved quantities are determined via the rela-
tions (10.39) — (10.41).
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10.6.2 Complex equations

In the complex case we have again the bound (10.42), where
ao1 () = est (6, N)),

the quantity ag2(d) is as in the real case,

r1 T2

a11(8) = > (x(Bu)da, + x(4:)d5,) + D _ X(Ck)dc,

i=1 k=1

the quantity a;2(d) is again as in the real case, the matrix N is given by (10.37)
and Z is as in(10.29).

10.6.3 Component-wise bounds

In the derivation of nonlocal component-wise perturbation bounds for Lyapunov
equations we use again the generalized Banach fixed point principle, see Ap-
pendix D.

Let the operator equation z = 7(x) be given, where z € F™ and 7 : F™ — F™
is a continuous function. Suppose that for all z,y € F™ the operator 7 satisfies
the conditions

u+ Mix|, (10.44)
M}',E - yl7

()]

=
[m(z) —7(y)] =

where u € R and M € RT*™. If 7 is a generalized contraction, i.e., spect(M) C
D1, then there exists a unique solution z° € F™ of the operator equation, such
that

2% < (In — M) 1.
Suppose that we have the following component-wise bounds

162]
vec(|6Z])

for the perturbations 6Z and vec(6Z) in the matrix coefficients, where W € R}*"
are given matrices and Wy, = W/;ro. Set

W .= (WZ17W221--'7WZT)-

Using (15.14) and (10.26), (10.28) we see that the right-hand side of the operator
equation

T = ¢(x,P) := vec(®(vec™(z), I P))
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for = := vec(6X) satisfies the conditions (10.44) with

p(W) = (W) + Mx(W)|X],
Ml(W) + MQ(W)

=
=
I

The expressions for u(W) and M (W) are different in the real and complex case
and we present them separately.
In the real case we have

pmW) = |Lx!|wa, + Y |Lx'Lz| wz,
ZEP
My(W) = > |Lx (In2 + Pp2) (Bi @ I)| (In ® Wa,)
=1

+ Y |LE (In2 + Po2) (A @ In)| (In © W)
1=1
)

+ 3 LR Uz + Pa2) (G ® In)| (In ® We,)
k=1

My(W) = |L3D (Wa, @ W, + Wa, @ Wa,)

=1
72
+ | L ZWCk ® We,,
k=1

where the matrices Lz are determined by (10.26).
In the complex case the corresponding expressions are

) = (L3 W, + S (QUBXOW, + QUAX)Wa,) + 3 QUCKX)We,
i=1 k=1
M (W) = i:(IL;(I (Bi® L)| (I, ®Wa,) + |£3' (In ® B))| (Wa, ® I,))
=1

71

+ 3 (123 (A ® L) (I ® Wa,) + |£X (In ® Ai)| (W, ® 1))

i=1
T2

+ 3 (L (Ck ® In) | (In ® We,) + |£3 (I ® Ck)| (We, ® 1))
k=1

where
Q(Z) =L} (X @ LI,)| + | L (In ® Z) Pye|

and the expression for My(W) is as in the real case.
As a result we have the nonlocal component-wise perturbation bound

lvec(8X)| = (In2 — M(W)) p(W)
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provided that W is small enough to ensure that

spect(M(W)) C Dy.

10.6.4 Other bounds

Let X be an approximate solution to the Lyapunov equation
F(X,P)=0,
in which the Fréchet derivative
Z— Fx(Z)y:= F(X,P)— F(0,P)

is invertible. The matrix X may be, e.g., the solution, computed in finite precision
arithmetic.
Denote by
R:=F(X,P)

the residual, corresponding to X. In view of the linearity of the operator Fy we
get

X - X =F;'(R).

Hence
IX = Xlle < [|F5']], IRle (10.45)
and
[vec(X — X)| < [L}ll vec(R)| (10.46)
where Ly is the matrix of the operator Fx and || - ||. is the symmetrized norm,

computed via (10.14) in the real case and (10.15) in the complex case. Note that
the bounds (10.45) and (10.46) are exact.

10.7 Notes and references

General Lyapunov operators have been considered in [125]. Perturbation analysis

of the type presented above (for particular classes of Lyapunov equations) is given
in [132].



Chapter 11

Lyapunov equations in
control theory

11.1 Introductory remarks

In this chapter we use the results of the previous chapter to present a complete
perturbation analysis for Lyapunov matrix equations arising in systems and control
theory. Local and nonlocal norm-wise and component-wise perturbation bounds
are derived for real and complex Lyapunov equations. The first order bounds are
based on the standard induced norm as well as on the Lyapunov norm of Lyapunov
operators. The latter norm allows to obtain tighter results for Lyapunov equations
under symmetric perturbations in the constant term. Invertibility conditions for
certain classes of Lyapunov operators are also presented.
separately.

11.2 General equation

The perturbation analysis of the general Lyapunov equation (10.12) is based on the
norm of the inverse operator to the Lyapunov operator £, defined by the left-hand
side of the equation.

In the real case the matrix representation of L is

L=> (Bf ® Al + Al ® B{ +¢(C{ ®CY)), ex = *L.
k=1

Here one should recall that instead of ||Alj2, where A := L', we use the sym-
metrized norm

IAN3 = max {J.L(XO)p : [ X]lp =1, X =X} <[All2

201
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As shown in [125], the symmetrized norm of the matrix A of the inverse Lyapunov
operator £~! may be obtained as

A2 = AQ]2,

where
Q= [Qi) € RM*XMHD/2, G 51,

is a block upper-triangular projector (QTQ = Lynt1y/2)- The blocks Qg5 € R™*J
are defined by

0 if Q>
[1,0,...,0]7 i i=j=1,
[diag(ql;_1,1),0]7 if i=j>1,

qE;i(n, 7) it 1<y,

Qij =

where ¢ := 1/\/5
Consider now the complex Lyapunov operator

Lo(X) =" (ARXBi + BEX Ax + e, (CHXCY)) . (11.1)
k=1

Here the symmetrized norm of the matrix

A, =L71

C 3

where
Tr

L.:

(BI ® A + Al @ Bl + ¢ (CF ® C}))
k=1

is defined as
JAl3 = max {Lo(X)]llp : [Xle = 1, X = X7} < Ao
and may be calculated as follows. Let
Ae = Ay + 1Ay,

where A; are real. Then

g = || 29 ~AQ )
Tl M @ |,

The matrix
@ € anxn(n—l)/2
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is obtained from @ by deleting the columns containing 1’s which are numbered as
k(k+1)/2, k = 1,...,n, and by changing the sign of each second element ¢ in
each column of the reduced matrix. This procedure is described as follows. Let

R= [Rij] = [5i(i+l)/2,j] € Rn(n+l)/2xn(n—1)/2’
where §;; is the Kronecker delta, and
Ji={lkn+Lk(k—-1)/2+0):k=1,...,n—-1,1=1,...,k}.
Then
0= { @y i G
N —(QR); if (1,5)eJ
It must be pointed out that the ratio ||A||3/||Al|2 may be arbitrarily close to
0, i.e. the use of symmetrized norms instead of usual 2-norms for the inverse
Lyapunov operators may significantly improve the perturbation bounds for both
real and complex Lyapunov equations. Of course, it is also possible that ||A|5 =
IIA|l2 and then using any of these norms gives identical results. The description of

the class of Lyapunov operators for which the last equality holds is an open and
probably a difficult problem, see also the discussion in [40].

11.3 Continuous-time equations
For the standard real continuous-time Lyapunov equation
LX):=ATX +XA=C (11.2)
the spectrum of £ is
spect(L) = {N(A) + M (A) 14,k =1,...,n}.

Corollary 11.1 The norm-wise bound (8.59) for (11.2) is

eSt(éc, da, A, NA)

S < , 11.3
F - 2]Ala i
where
A= AT@L+L,eAT) ",
Nis = -AI,®X + (X ®I,)P2)

= —A(Inz + Pn2)(1n ®X)

and it is valid for
1

0a < ——u.
47 20A]3
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The next example shows that the bounds esty(d, N) and est3(d, N) are alterna-
tive for equations of type (11.2) for n = 2. This means that the overall expression

eSt((Sc,(sA,A,NA) = min{est2(50,6A,A,NA), eStg(Jc,(;A,A, NA)}

depends nontrivially on both bounds est, and ests, being a piece-wise analytic
function in 6 = 0 for § # 0 and 64 < 1/ (2||All3).

Example 11.2 Let n = 2 and

A [ 1.415 0.927 ] ’

0.903 0.462
0 1.028 '

0.462 0.724
Then, displaying three digits, we have

N2 = 0.815 < /]| No|l» = 0.884.

Hence, for § equal to the eigenvector of the matrix Ny, corresponding to its max-
imum eigenvalue ||Np||2, we have

eStz((Sc,éA,A,NA) =0.815 < eStg((Sc,(SA,A,NA)} = (.884.
¢

Corollary 11.3 The component-wise bound (8.63) for equation (11.2) is

[6X] <X (I, — ¥1(A)) ©1(A), (11.4)
where
01(A) = |AlAc +|Na|Ag,
Ui(A) = AW, +WieL).

Example 11.4 Consider the n X n continuous-time Lyapunov equation
L(X):=AX+Xx4=C,

where the matrix A is stable (i.e., Re();(A4)) < 0) and C® = C < 0. Suppose
that the matrices A and C can be simultaneously reduced to diagonal form by a
unitary congruence transformation. Then we may assume that

A= diag(/\l, RN )\n), Q= —Re()\i) >0

and
C = —diag(v,..., ), % = 0.

The solution
X = diag(zy,...,x,) € R™*"
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is defined by
Ty = ’7,‘/(20!1') Z 0.

Let

o = min{ay,...,an}.

Denote by J C {1,...,n} the set of all indices such that j € J implies a; = a.
For j € J fixed, take perturbations in A and C as

8A = 64E;;(n),6C = —3cEjj(n).

Then we have §X = dx Ej;(n).

&

Example 11.5 Consider the Lyapunov equation
LX) =ATX+XA=C

in R?*2, where

1.5 —0.5 7 -5
A‘[—0.5 1.5}’0_[—5 7]'

2 -1
S |

the matrix L of the Lyapunov operator L is

The solution is

6 -1 -1 0
1{ -1 6 0 -1

L= 2 -1 0o 6 -1
0 -1 -1 6
and we have
17 3 3 1
1] 3 17 1 3
J— -1 _ —_—
Ne=L"" = 48 3 1 17 3
13 3 17
Furthermore,
-31 11 -5 1
1 3 —-15 -15 3
—— -1 = 31
Na=—L7 Ia+ P)(® X) = o 3 -15 -15 3

1 -5 11 31
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Thus, we have
[[Ncll2 = 0.5, ||[Nallz = 1.5, ||[Nco, Nal|l2 = 1.5275, IN&Nall2 = 0.5.

Consider the perturbations

el 1 1 1 1
(5A:—§[1 1],50—25[1 1]

with ||6A|F = ¢, ||6C||r = 4¢, where 0 < & < 1. The perturbation in X is then

2(1 4 2¢)

], 1] = 20229,

5X — 2e [1 1

1—-e¢| 1 1
At the same time the first order bounds for §x are
est; = 3.5000¢, esty = 3.4157¢, estg = 2.3452¢.

Hence, the norm-wise bound is

2.3452¢
1—¢ '

Relative perturbations in the solution of a Lyapunov equation

pen(c12). pert(x, ) pert(c, ), pen(x1 1)

Figure 11.1: Perturbed solutions of well-conditioned Lyapunov equation
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Relative perturbations in the solution ot a Lyapunov equation

x 107

pert(c, ), pert(x, ,) pert(c,,). pert(x, )

Figure 11.2: Perturbed solutions of ill-conditioned Lyapunov equation

In Figures 11.1 and 11.2 we show the relative changes in the elements of the so-
lutions §.X/| X || of 2nd order well-conditioned and ill-conditioned Lyapunov equa-
tions generated by perturbations in the elements C1y, (12 and Coy of the matrix
C'. The perturbations in the data are represented by spheres while the perturbed
solutions are represented by ellipsoids.

For the complex continuous-time Lyapunov equation

LX) =ARX + XA=C, (11.5)
with C = CH, the spectrum of L. is
spect(Le) = {N(A4) + Ae(A) 14,k =1,...,n}.

The presence of the term §AH in the perturbed equation makes it more difficult
to get tight (and in particular asymptotically exact) perturbation bounds. Here
we use an approach based on the real version

[,R RZn N ]R2n2
of the linear operator
[: zcnxn ,:(an _}CTLXTL ,:CTLZ
Let the operator N : C* — C™ be defined via

N(u) := Ru + S7, ueC",
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where R, S € C™*™ are given matrices. We identify N with the ordered pair
(R, S) € CMmXn 5 QXN

and write also N = N(R, S).
For A € C set AN(R,S) = N(AR,\S). Also, if N; = N(R;, S;), i = 1,2, are
two operators of this type, set

N1 +N2 :N(R1 + Ry, 51 +Sz).

Hence, the set of the operators N is a linear space (in fact it is isomorphic to
C?*m7) and we equip this space with the norm

v(N) =v(R,S) := max {|N(u)|z: u € C” |luls <1}. (11.6)

This concept needs justification, since the operator N is additive (N (u + v) =
N(u) + N(v)) but not homogeneous (NV(Au) # M (u) for A € C\R) and hence it
is not linear over C if S # 0.

Proposition 11.6 The function v : C™*" x C™*" — R, defined by (11.6), is a
norm.

Proof. We show that

v(N) 0 ifand only if N =0, i.e., R=5=0,
v(AN) Av(N), AeC, (11.7)
VN1 +N2) < v(M) + v(Ne),

f

i.e. that v has indeed the properties of a norm. We have

v(R,S) = max{||Ru+ Sullz:ueC" |ulz<1}
< max {||Ru + Sv||2: u,v € C |lull2, lv]|]2 < 1}

< max{H[R,S] [ z] : [Z] € C™, [Z] S\/i}
V2[R, 8]l|2-
Similarly, we get
v(R,S) = max{||Ru+ Sz|s:uecC |ul <1}
> max {||Ru+ ST|j2: u € R", [julls <1}
= max {[[(R+ S)ullz : u € R?, [jufz <1}
> max {|{Re(R + S)2, [Im(R + S){|2}
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and
v(R,8) = max{||Ru+ Sull2:ueC" [ullz <1}
> max {||Ru+ Su|lz : w € (IR)", |lulz <1}
= max {||(R - Sullz : v € (R)", |Jullz <1}
> max {|[Re(R - )|z, [Im(R — S)]i2} -

Hence, we have

max {||Re(R + S)|l2, [Im(R + S)[|2, [Re(R — S)llz, [Im(R — 5)|2}
< V(Rv S) < \/§“[R’ S]”2- (11'8)

That N =0 ( i.e., R = S = 0) implies ©(0,0) = 0 is obvious. If now v(R,S) =0
then the left inequality in (10.44) gives R + S = 0 and R — S = 0, which yields
R = S = 0. Thus, the first condition in (11.7) is fulfilled. The second and the
third relation in (11.7) follow by inspection. 0O

Although the operator A is not linear (it is not even differentiable, together
with the map z — %), it becomes linear if we consider C* and C™ as linear spaces
of complex vectors with R as the field of scalars.

To compute the norm v(N), however, it is more convenient to use the real
version

NR . RZn N RZm

of N over R, which is a linear operator.
Let

R=Rg+ 1Ry, S=85p+15
and

u = ug + W1,

where R;, S; and u; are real. Then the real version of u € C" is

u
umz[ O]ERQ".
Uy

Setting similarly
N(u) = wg +

we have

AR (R) = [ wo ] — Mat(R, 5) [ i ] :

w1 1
where

Mat(R, S) := Mat(NF)

Il

Ry + S Sl—R1:|
Ri+8; Ro— 5
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is the matrix representation of N®. Since
IV )13 = INF[®)l2 = llwolf3 + llwilf3,
we get
U(N) = V(R7 S) = ”Ma‘t(R7 S)HZ

The column-wise vector operator form of the perturbed complex Lyapunov
equation is

vec(6X) = A (vec(C)— (X' ®I,) Pravec(64) — (I, ® X)vec(5A))
— Avec(SAMSX + 6X6A),

where .
Ae=L"= (I, A" + AT®I,)" =Ag+1A €C™"

and A, € R"*™. Hence, the norm-wise perturbation bound for this case is

est (6C76A7AR’N1[§) 1
¥ < " s 0a < ¥
1— 2] Acl[30a 2[|Acll3
where
Ao —A
I
[Al Ao ]’
N} = —Mat(Ac(I, ® X),Ac (XT ®I,,) Pp2) .

Corollary 11.7 The component-wise bound for the complex Lyapunov equation
(11.5) has the form (11.4) as for the real Lyapunov equation (11.2) but with the
vector ©1 and the matriz Uy given by

01(4) = |AJAc+ (|Ac(Tn ® X)| + |Ac (XT ® I,) Pr2|) Aa,
¥1(A) Ae| (In @ W4 + W4 @ L,)).

I

11.4 Continuous-time equations in descriptor form

In general, there is no simple expression for the spectrum spect(L) of the Lyapunov
operator £ in the continuous-time descriptor Lyapunov equation

L(X):=A"TXB+BTXA=C (11.9)
Hence, spect(£) may be computed, if necessary, as spect(L), where
L=AT@B"+BT®A"

is the matrix of L.
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In the following we give three equivalent tests for invertibility of £, based
on n X n matrices. Two of them involve the inversion of an n x n matrix (or the
solution of n algebraic linear vector equations of n-th order) and a spectral analysis
of another n x n matrix, while the third one is based on the spectral analysis of
an n x n regular matrix pencil.

Let us first recall some facts about matrix pencils. Two matrices A and B of
the same size determine a matriz pencil

Pen(A,B) := {8A—aB :a,8 € C}.

Definition 11.8 A matriz pencil Pen(A, B) is called regular if A and B are square
matrices and det{BA — aB) is not identically zero.

Example 11.9 Let A, B € C?*2. Then the pencil Pen(A, B) is regular if and
only if

| det(A)| + | det(B)| + lai2ba1 + az21b12 — a11baz — az2b11] > 0.

It seems natural to determine the eigenvalues of a regular pencil Pen(A, B) as
the nonzero pairs (e, 8) for which the matrix SA — aB is singular. This defini-
tion, however, may cause problems, since such pairs are not uniquely determined.
Indeed, if (a, 3) is such a pair, then any pair (7o, 78) with 7 # 0 should also be
considered as an eigenvalue. To avoid this nonuniqueness we must not distinguish
such pairs and consider them as equivalent. This is done according to the following
definition.

Definition 11.10 The pairs («, 5) and (!, ') are said to be equivalent (denoted
as (@, 08) = (o', 5')) if af' = o' B.

It is easy to show that the pairs (a, 3) and (o/, 8') are equivalent if and only
if there is a nonzero complex number 7 such that (o/, 8') = (ra, 7).

The set C? of all ordered pairs (a, 3) may be divided into disjoint subsets,
called equivalence classes or orbits, such that two pairs belong to the same class if
and only if they are equivalent. Thus, each pair (o, 3) € C? gives rise to the orbit

[a, 8] := {(7e, 70) : T € C\{0} } C C2.
The set of all equivalence classes in this case is the projective plane P!(C).

Definition 11.11 An element v = v(A, B) € P(C) is called eigenvalue of the
regular pencil Pen(A, B) if the matriz BA — aB is singular for some (and hence
for every) member (o, B) of .
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If A,B € C™" and the pencil Pen(A4, B) is regular , then there are (at most) n
eigenvalues

Il

'7i(AvB) [ai(A7B)7ﬂi(AvB)]

{(rai(A,B),78;(A,B)) : 7 #0}, i=1,...,n,

of Pen(A, B). We note that if e.g., B is nonsingular then the eigenvalues of B~ A
are

A(B14) = % (11.10)
for any

%i(4,B) = [ai(Av B)vﬁi(AvB)]'

Now we are in position to formulate necessary and sufficient conditions for
invertibility of £ in terms of n x n matrices only.

Proposition 11.12 The operator £ in (11.9) is invertible if and only if at least
one of the following three equivalent conditions holds.

(i) The matriz A is nonsingular and

MATBY+ M(ATIB) #£0; 4,k =1,...,n.

(ii) The matriz B is nonsingular and

MN(B7'A)+ M(B71A) #0; i,k =1,...,n.

(iii)
a; (A, B)Br(A,B) + ax(A,B)B:(A,B) #0; i,k=1,...,n.
Proof. (i) Suppose that £ is invertible but A is singular. Then there exists

U € O(n) such that AU = [A4;,0], where A; € R*** and k = rank(A4) < n. We
have

A XBU
0

X X

UTL(X)U = [ ] + [UTBTXA,0] =

X Om—k)x(n—k)
where x denotes unspecified matrix block. Due to the zero bottom right block of
UTL(X)U for any X € R™ ™, we see that the operator £ cannot be surjective
and hence, not invertible. This shows that A is nonsingular.
Furthermore, let
L=B"®AT+AT®B"

be the matrix of £, which is invertible together with £. Set

Li=L(A®A) T =(A'B) @I, + I, ® (A"'B)".
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The eigenvalues of Ly are \i(A™'B) + M\ (A71B); i,k = 1,...,n, and, since L,
is also nonsingular, zero is not among them. Since all arguments go in both
directions, we have proved that L is invertible if and only if (i) holds.

(i) Conditions (i) and (ii) are equivalent, since interchanging A and B we have
the same operator L.

(iii) Suppose that (i) (and hence (ii)) is fulfilled. Then o;(A, B) # 0 and

B(AB) | Bu(A,B)
a;(A,B)  ar(A, B)
ar(A, B)Bi(A, B) + a;(A, B)Bx(A, B)

a;(A, B)ax(A, B)

0 # M(AT'B)+ M(A7'B) =

for all i,k = 1,...,n, which proves (iii).

Let finally (iii) be valid. Then a;(A4,B) # 0 and A is nonsingular. Dividing
the inequality in (iii) by o;(A, B)ak(4, B) we obtain (i). 0O

To use the conditions (i) or (ii) of Proposition 11.12 it is not necessary to
explicitly invert A or B but rather to solve n vector equations Az; = b; for the
columns z; of A™'B, where B = [b),...,b,]. Note also that the invertibility of
both A and B is a necessary condition for the invertibility of L.

Theorem 11.13 The norm-wise perturbation bound for equation (11.9) is

< eSt(507 5/1’ 537 A» NA) NB) + 2”X”2“A”§5A53

bx s 1 —1a64 — 1805 —2||A[56408 ’ (L1
where
A = (AT®BT +BT®AT)_1,
Np = -A(lyz+ Pp)(I,® (B'X)),
Npg = —A(In2 + Pp2) (I, ® (AT X)),
la = ALz + Pw2) (In® BT)||,,
I = ||AZp2 + Pp2) (I ® AT)H2

and the quantities 84, dp satisfy the inequality
laba +1lgég + 2”1\”;6,453 <1

Proof. The expressions for N4, Ng and l4, Ip are obtained as follows. First
we note that P2, = I,» and

P:(A® B)P,: =B®A,
see e.g. [107]. Then the matrix N, is defined by considering the vector

v1 = v1(6A) := —Avec(6AT XB + BT X5 A)
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in the vectorized expression
vec(6X) = vec(®(6X,6D)), 6D := (6C,64A,4B), (11.12)

of the operator equation
86X = ®(6X,6D)

for §X. We have
vy = —A (((BTX) ® I,) vec(6AT) + (In® (BTX)) vec(6A))
= —A(((B"X)® 1) Ppz + I, ® (BT X)) vec(6 A)
~A(Poz (Po2 (BT X) ® 1) Po2) + I, ® (BT X)) vec(6 A)
—A(Ppz + I2) (In ® (BT X)) vec(6 A)
= Nyvec(sA).

In turn, the quantity [4 is obtained from
La = | Nallz,
where N, is the matrix N 4 with X replaced by I,
Na=—A(l2+Py2) (I, ®BT).
The expression for [4 is obtained by estimating the norm of the vector
vy = v3(0X,64) := —Avec(JAT6XB + BT6X5A)
in the right-hand side of (11.12). Similarly to the expression for v; we have

v = —A((6X5A)"B+ BT (6X5A))
= —A(In2 + Pp2) (In® B7) vec(§X6A)
= Navec(6X5A)
and hence,
lvalla < 1adadx.

The quadratic terms in the numerator and denominator of (11.11) are obtained
by bounding from above the norms of the matrices

~A(BATXSB +6BTX A)

and
~A(BAT6XSB + 6BT6XA)

respectively, and using the concept of the symmetrized norm of A. 0O
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The component-wise perturbation bound for equation (11.9) is

0X| = (I — ©1(A) — ©2(A)) 71 (01(A) + O2(A))vec(|X 1)), (11.13)
where

01(A) = |AAc +|NalA4 + |NBl|AB,

0:(8) = |A|(Wg @W, i +W]eWs),

W,(8) = [A(BT 8 L) (Lo W]) +|A (Lo BT)| (W] o 1)

b AAT 9 L) (e W) +]A (I AT)] (WS 9 1,).
For the complex continuous-time descriptor Lyapunov equation
L.(X):=A"XB+BiXA=C (11.14)
we obtain the following result.

Proposition 11.14 The operator L., defined by (11.14), is invertible if and only
if at least one of the following three equivalent conditions holds:

(i) The matriz A is nonsingular and
M(ATIB) + X (A7IB) #£0; i,k=1,...,n
(ii) The matriz B is nonsingular and
M(B7PA) 4+ X(BTTA) #£0; i, k=1,...,n.
(iii)
a;(A,B)3,(A,B)+a(A,B)B:(A,B) #0, i,k=1,...,n.
Theorem 11.15 The norm-wise perturbation bound for equation (11.14) is

§v < eSt((sC,éAaéBa A]R, NE}» N]g) + 2||X“2“AC“;6.463
X = 1— K64 — Rog — 2]|A]30405 ’

(11.15)

provided that
B54 + 1865 + 2||Acli50408 < 1.

Here
Ao —A
AR — [A(IJ A01}7
NE = —Mat (A (I, ® (B¥X)),A. (XB)T ® I,) Pa),
NE = —Mat (A(I, ® (ARX)), A, (XA)T ® I,) Po2),
5 = |[Mat (AL ® BY), Ac (BT @ L) Pra) |,
B = |[Mat (Ac(ln ® A%), A (A7 ® L) Pa)|
and

Ac:= (BT @ A" + AT @ BH) ™ = Ag + 1A,
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Theorem 11.16 The component-wise bound for the complex equation (11.14) has
the form (11.18) with ©; and ¥ defined by

01(4) |AclAc + (JAc (In ® (BEX))| + |Ac (X B)" ® I,) Paz|) Ay
+ (|Ac (In ® (A7X)) | + |[Ac (XA)T ® 1) Pz |) A,

02(8) = |A| (W @W, + W, @W5),

T, (A) A (BT ® L)| (I, @ Wj) + |Ac (In ® BY) | (W4 ® 1)

+ [A(AT QL) | (I.@Wg) +|Ac (In® A%)| (W5 ® I,) .

11.5 Discrete-time equations

The spectrum of the Lyapunov operator £ in the real discrete-time Lyapunov
equation

LX)=ATXA-aX=C (11.16)
spect(L) = {A{A)p(4A) —a:4,k=1,...,n}.

Theorem 11.17 The norm-wise perturbation bound for equation (11.16) is

< &st(6c, 04, A, Na) + 1 X (|2 ]| All36%

5 , 11.17
R Ty VT —
where
da < 2
A
la+ /5 +4]AT3
and
A = (AT0AT —alw) ",
Na = —ALp+Pp) (I, ® (ATX)),
la = HA(Inz -+ Pnz) (In X AT) ”2 .
Theorem 11.18 The component-wise bound for equation (11.16) is
10X | 2 (In2 — ¥1(A) — ©2(A)) (B1(A) + ©2(A))vec(1X])), (11.18)
where
©1(4) = JAlAc +|NajAg,
©2(4) = |A[(Wy @W]),
U(A) = AATOL)|(I.oW)+ AL, ®AT)| (Wi ®L).
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The spectrum of the linear operator £, in the complex discrete-time Lyapunov
equation

LX) =ABXA-aX =C (11.19)
is
spect(Le) = {Mi(A)M(A) —a:i,k=1,...,n}.
Theorem 11.19 The norm-wise perturbation bound for equation (11.19) is

est(dc, 0.4, AR, NE) + [ X [[2[|Acll36%

< , 11.20
Ox 12864 — ||Acf356% ( )

where

x _ [Ay —A

AT = [Al Ao ]’

N% = —Mat (Ac(ln ® (A¥X)), A (XA)T ® I,) Py2)

B = |Mat (A (I, ® A") A, (AT ® I,,) Pa)|,
and

Ae=L7' = (AT @ A — alpe) ™" = Ao +1A;.

Theorem 11.20 The component-wise bound for the complez equation (11.19) has
the form (11.18) with ©; and ¥, defined by

©1(A) = |AcAc+ (|Ac (In ® (A" X))| + [Ac (XA)T ® I,) Py2|) Aa,
©2(8) = [AJ(WioW[),
Vi(A) = [Ac(AT @ L)| (In®@ W4) +|Ac (I ® AT) | (Wi ® L) .

11.6 Discrete-time equations in descriptor form

Again, no simple expression for the spectrum spect(£) of the Lyapunov operator
L in the descriptor discrete-time Lyapunov equation

L(X)=ATXA-B"XB=C (11.21)

is available in the nontrivial case when neither 4 nor B are multiples of I,,. Hence,
spect(£) may be computed (if necessary) as spect(L), where

L=A"@A" -B"®B' (11.22)

is the matrix of £. In this case we again have a test for invertibility of £ in terms
of n X n matrices instead of the n? x n? matrix L.

Proposition 11.21 The operator L is invertible if and only if at least one of the
following two conditions is fulfilled:
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(i) At least one of the matrices A or B is nonsingular and either
MATIB)(AT'B) £1; i,k=1,...,n
(if A is nonsingular), or
MNBTAMN(BTIA) £1; i k=1,...,n
(if B is nonsingular).

(i)
ai(AvB)Bk(A»B) # ak(AvB)Bi(A7B); Lk=1,...,n

Proof. (1) We show first that if £ is invertible then at least one of the matrices
A or B is nonsingular. If both A and B are nonsingular there is nothing to prove,
so suppose that A is singular. Then there exists V € O(n) such that

AV = [A1, Opx1].

Partition the matrix BV = [Bj, b] accordingly, where b € R™.
In view of the invertibility of the operator £ its matrix L, given in (11.22), is
nonsingular. Hence, the matrix

Li:=(VTeVNL
is also nonsingular. We have
Ly = (AV)T@AV)T —(BV)T ® (BV)"

[ ’g ] ® AV)T - [ f%T ] ® (BV)T

I

B Al @ (AV)T — B] ® (BV)T J
B [ -b" ® (BV)7 '

Therefore, the matrix
2
bT @ (BV)T e R™™

must be of full row rank, equal to n. Since
rank(b' ® (BV)") = rank(b)rank(B),

we see that b # 0 and rank(B) must be n, i.e., B is nonsingular.
Next we show that in this case

M(BTTAMMBIA) #1; i,k=1,...,n. (11.23)
Indeed, the matrix

Ly:=L(B®B) " =(B'A)T @B 14" — I,
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is nonsingular together with the matrix L from (11.22), since its eigenvalues
Aj(L2) = M(B71A)(BTA) -1

are nonzero.

That (i) implies the invertibility of £ is checked by repeating the above argu-
ments in reverse order.

(ii) Suppose that (i) holds and that e.g. B is nonsingular. Then the identities

ai(A, B)
/Bi(Av B) ’

together with (11.23) yield (ii). In turn, if B is nonsingular then (ii) yields (11.23).
0

M(BT'A) =

1=1,...,n,

Theorem 11.22 The norm-wise perturbation estimate for equation (11.21) is

est(dc, 04,08, A, Na, Ng) + | X |2l All3 (63 + 63)

bx < , 11.24
X = 1—1aba —1dp — ||All3 (6% + 63) ( )
where
A= (ATeA"-BTeB") ",
Ni = —A(lp2+ Pp2) (In (AT )
Ng = A(l+ Pp) (I, ® (BTX)),
la = |[AlTnz + Pu2) (In® A7),
lg = “A n2+P2)( ®BT H2
The domain for 64, 6p in (11.24) is determined by
1aba +1ép +||Al3 (05 +0%) < L. (11.25)

If X is nonnegative or nonpositive definite, then the expression §% + 52 g may
be replaced by max {6%,6%} in both the numerator and the denominator of the
norm-wise bound (11.24) as well as in the left-hand side of (11.25).

Theorem 11.23 The component-wise bound for equation (11.21) is

16X] =X (In2 — ¥1(A) — 02(A)) (B1(A) + ©2(A))vec(| X 1)), (11.26)
where
©1(A) = |Aléc + |Na|lAa + |NB|AB,
0:(8) = [A|(WieW] +WjeoW]),

W(A) = [A(AT@L)| (I e W) +|A (1 ® AT)| (W] & L)
A(BT & 1) (fn @ W]) + A (1@ BT)| (W] @ L)

+



220 CHAPTER 11. LYAPUNOV EQUATIONS IN CONTROL THEORY

Consider finally the complex discrete-time descriptor Lyapunov equation
Lq(X):=AMXA-BHXB=C. (11.27)
A result, similar to Proposition 11.14 is the following.

Proposition 11.24 The operator Ly is invertible if at least one of the following
conditions is fulfilled:

(i) At least one of the matrices A or B is nonsingular and either
MNATIBYL(ATIB) #1; i,k=1,...,n
(if A is nonsingular), or
M(BTYAN(B 1A #£1; i,k=1,...,n

(if B is nonsingular).

(i)
ai(AaB)—Bk(AfB) # ak(A7B)/Bi(AaB); i,k=1,...,n

Theorem 11.25 The norm-wise perturbation bound for equation (11.27) is

est(0c, 64,0, A%, N5, NB) + | X lallAcl3 (63 + 63)

ox < , 11.28
= 1~ 1564 — %65 — || Acll3 (65 + 6%3) (11.28)
where
R _ Ao —My
A= [ A Ao } ’
Ni = —Mat (A, ® (ATX)),A. (XA)T ® 1) P2),
NE = Mat(A(l, ® (B1X)),A. (XB)T ® I,) Pu2),
= [Mat(Ac(f, ® AT),Ac (AT ® 1) Prs)],
1§ = |Mat(Ac(l, ® BY),Ac (BT ® I) Po2) ||,
and
Ac= (AT @ A" — BT @ BH) ™! = Ag + 1A,
The domain for 64, 6p in (11.28) is given by
1564 + 1565 + (| A3 (6% +63) < 1. (11.29)

If X is positive or negative semidefinite we may, as in the real case, replace
8% + 6% by max {63, 6%} in both the numerator and the denominator of the norm-
wise bound (11.28) as well as in the left-hand side of (11.29).
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Theorem 11.26 The component-wise bound for the complex equation (11.27) has
the form (11.26) with ©; and ¥, defined by

01(8) = [AdAc+ (|Ac (In ® (ATX))| + |Ac (XA)T @ L) Prz|) Aa
+ (|Ac (I ® (BRX))| + [Ac (XB)T ® I,) P2|) A,

Al (WS @ W4 + W5 WS ),

Ac (AT ® L) | (I.@ WJ) + |Ac (I, ® A¥) | (W[ ® I,)

+ |Ac(BT @ L) (I.® Wg) + |Ac (In® BY)| (W5 ® I,) .

& @
= X
i
T

11.7 Notes and references

The presented results are partially published in the literature for particular classes
of Lyapunov equations, see e.g. [95, 3, 134, 132, 136, 125]. The presentation above
follows the paper [132]. Residual bounds for the standard discrete-time Lyapunov
equation are given in [78].

Descriptor Lyapunov equations are studied in [207], while condition and error
estimates for the solution of Lyapunov equations are given in {179, 146].
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Chapter 12

General quadratic equations

12.1 Introductory remarks

In this chapter we present a complete perturbation analysis for general quadratic

matrix equations. We also briefly consider symmetric quadratic matrix equations,
particular cases of which are the continuous-time Riccati equations, arising in the
optimal control and filtering (including Ho, control and filtering) of continuous

time-invariant control systems.

12.2 Problem statement

Consider the general quadratic matrix equation
F(X,P)y:=AX,P) +Q(X, ) =0,

where X € F™*™ is the unknown matrix. The function

F(., P):F™*" — FPx4

(12.1)

is a quadratic matrix operator, depending on the matrix collection P = (Py, Ps).

In (12.1)
A(, Py) : F™X™ —, FPX4

is an affine operator,

A(X,P) = Ao+ Y AXB,

i=1

depending on the matrix collection
Pl = (AOaAlaBla N 1AT1aBT1)7

223

(12.2)
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where
Ag € FPX9 A, ¢ FPX™ B, ¢ X1

are given matrix coefficients. Furthermore,
Q(, Pp) : F™X™ — P4

is a homogeneous quadratic operator,

Q(X,Py) ==Y CyXDyXE, (12.3)
k=1

depending on the matrix collection
P = (Clle’E17 s 7Cr2aDrzaET2) ’

where
Ck c prm’ Dk c ]anm7 Ek c Fx4

are given matrices.

It is assumed that mn = pq := [. The matrix (2r; + 1)-tuple P; depends on
pq +r1(mp + ng) parameters — the elements of the matrices Ag, A; and B;, while
the 3ro-tuple P, depends on ro(pm + nm + nqg) parameters.

Denote by

Fz(X,P):F*t — FP*e

the partial Fréchet derivative of F in the corresponding r X ¢ matrix argument
ZeP = {Ao,Al,Bl,...,Crz,DTZ,Em}, (124)

computed at the point (X, P).
We assume that equation (12.1) has a solution X, such that the linear operator

FX = Fx(X,P):men —>]prq

is invertible (we recall that mn = pg and hence the matrix spaces F™*" and
FP*4 are isomorphic). Then according to the implicit function theorem (see {117,
173] and Appendix A) the solution X is isolated, i.e., there exists € > 0 such
that equation (12.1) has no other solution X with || X — X|| < e. The problems
of existence and uniqueness of the solution of quadratic matrix equations are of
independent interest but they are not the subject of this monograph. We only
mention that the general solution (i.e., the set of all solutions) of equation (12.1)
is the intersection of [ quadrics and is thus a closed algebraic variety in the Zariski
topology of FP*? ~ F!. For the geometry of such sets see [198, 199].

The perturbation problem for equation (12.1) is stated as follows. Let the
matrices from P be perturbed as

Ay — Ao+ 0Ag, A;— A;+6A4A;, B;— B; +4B;,
Cy — Cy+6Cr, Dy D+ 6Dy, Ep — Ey + 6Ey.
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Denote by P + 4P the perturbed collection P, in which every matrix Z € P is
replaced by Z + §Z. Then for a given solution X, the perturbed equation is

F(X+6X,P+4éP)=0. (12.5)
Typically, some of the matrices from P are not perturbed. Denote by
P:={21,Z9,...,2,} CP

the set of matrices from P, which are perturbed.

Since the operator Fx is invertible, equation (12.5) has a unique isolated solu-
tion X 40X in the neighborhood of X if the perturbation é P is sufficiently small.
Moreover, in this case the elements of §X are analytic functions of the elements
of §P.

Denote by
50 = [82,82,83,...,69 5,601,697 (12.6)
= 640,641,081, 8c,,,0D,,,08,,] €RY
the full vector of absolute norm perturbations éz := ||6Z||r in the data matrices

(12.4), where
v:=1+2r; + 3rs;.
Let also
§:= (61,82, 6,7 :=[62,,025,..,02,]" €R, (12.7)

be the vector of nonzero norm perturbations of the matrices 67 for Z € P.
The perturbation problem is to find a bound

5x < f(8), € QCRT, (12.8)

for the perturbation
6X = ”6X“F»

where ) is a given set and f is a continuous function, nondecreasing in each of its
arguments and satisfying

5(0) =o0.

We first derive a local bound
5x < f1(8) +O(l16]I*), 6§ — 0,

which is then incorporated in the nonlocal bound (12.8). The inclusion § € §
guarantees that the perturbed equation (12.5) has a unique solution X + éX in
the neighborhood of the solution X of the original equation (12.1).

Estimates in terms of relative perturbations

. 16Z;]le

pi = , Z'G'ﬁ,
TNzl
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for

oo 10Xe
X

are straightforward when X # 0. Indeed, we have

« < LUZdwps, - 1 Zrlerr).
- 1X1e

Suppose now that p = ¢ = m = n and that we have a symmetric quadratic
matrix equation of type (12.1).

Definition 12.1 A symmetric operator
G(-,R) : F**" — X
depending on a collection of matrices R, satisfies
GT(X,R)=G(X",R)

in the real case and
GH(X,R) = (X" R)
in the complex case.
Hence, in symmetric quadratic matrix equations we must assume that A and

Q are symmetric operators. Thus, in the real case the symmetric operator A is of
the form

15 k1
A(X,R1) = Ao+ > (AXBi+ Bl XAT) + 3 e;MXM],

1=1 =1

where
AOZAJ, g ==, 2l +k1=m

and
Ry :={Ao, A1, B1,..., A, Bi,, My, ..., My, }.

Similarly, the symmetric operator @ is determined by

2 ko
Q(X,R2) =Y (CkXDyXEy + E{ XDI XC{) + ) ex kX Si X Ty ,
k=1 k=1
where
Sk =Sy, er=+1, 2y + ko =19
and

R2 = {ClaDlaEl,"-70127D12)E121T17SI5'"1Sk25Tk:2}-
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In the complex case we have

I3t k1

=1 i=1

and
12 k2
Q(X,Ry) =Y (Ck XDy XEy + EFXDEXCH) + > ek T X S X T,
k=1 k=1

where Ag = AB{ and S = S,Ic{.

The symmetric quadratic matrix equations, arising in the optimal control and
filtering of continuous time-invariant linear systems, are called continuous-time
algebraic Riccati equations. An example of a real continuous-time algebraic Riccati
equation is given in the next section.

12.3 Motivating example
Nonsymmetric quadratic matrix equations arise in the analysis of continuous time-
invariant systems as shown in the following example.
Example 12.2 Consider the continuous time-invariant dynamic system
(t) = Az(t), t > 0,

with initial condition z(0) = xo, where z(t) € F™. Let n = g + p, where p,q > 1
are integers. We may write the system in a partitioned form

t1(t) = Anzi(t) + Apza(t),
.’i‘z(t) = Aglfll(t) + A22$2(t), t>0,

with initial conditions z,(0) = x;9, where
o(t) = [&] (£),23 (8)] |, z1(t) € F9, zo(t) € FP.

The system admits a mutual observation property [128] if there exists a matrix
X € FP*4, such that for every zo € F* one has

.'L‘Q(t) = X:l)l(t) +U2(t), t >0,
where vy(t) € F? is the state of a time-invariant system,

U2(t) = Bava(t), t >0, v2(0) = 20 — X210,
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and

where

we see that
a(t) = B(X)u(),

where

_ A+ ApX Ag
B(X):=UYX)AU(X) = :
(X) ( ) (X) Az + ApX — XA — XA12X  Agpp — XA

Hence, the mutual observation property will be valid with
By = Ay — X Ap»
if the matrix X satisfies the nonsymmetric Riccati equation
Ag1 + ApX — XA — XApX =0

under the additional condition Re(A;) < Re(\;) for every Ay € spect(A11 + A12X)
and Ao € spect(Aay — X Ag3).
Consider also two types of descriptor systems,

Ey&(t) = Ax(t), E; := diag (F1,1Ip),

and
Eyi(t) = Az(t), E; := diag (I, F),

where the matrices F; are nonsingular and the matrices E, 1A are stable. In
the first case, to ensure the mutual observation property, we have to solve the
nonsymmetric Riccati equation

Ann + ApYF — YA —YARYF =0

for Y :=TF[ ! In the second case the nonsymmetric Riccati equation is
At + A X — F, XA — FR XA, X =0.

o

Similar nonsymmetric quadratic matrix equations arise in the problem of de-

Ui } for the matrix A € Fn*n,

termining invariant subspaces of the form Rg [
2

where the matrix U; € F?*9 is nonsingular.
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12.4 Local perturbation analysis

In this section we derive local perturbation bounds for the general quadratic matrix
equation (12.1). A detailed study of its symmetric real and complex versions is
given in Chapter 13.

12.4.1 Condition numbers

Consider the conditioning of equation (12.1). Recall that Lin(p, m,n,¢,F) is the
space of linear operators F™*" — FP*4 Having in mind that F(X, P) = 0, the
perturbed equation (12.5) may be written as

F(X +6X,P+6P):= Fx(6X)+ Y _ Fz(6Z) + G(6X,6P) =0, (12.9)

zeP
where

Fx(-) = Fx(X,P)(-) € Lin(p,m,n,q),
Fao(1) = Fa,(X,P)() € Lin(p,p,q,4,F),
Fa () 4,(X, P)() € Lin{p, p,m, ¢, F),
Fg. (") Fp, (X, P)(-) € Lin(p,n,q,q,F),
Fo () = Fg (X, P)(-) € Lin(p,p,m, q,F),
Fp.() = Fp,(X,P)() € Lin(p,n,m,q,F),
Fg,() = Fg(X,P)()€ Lin(p,n,q,¢,F)

are the Fréchet derivatives of F(X, P) in the corresponding matrix arguments,
evaluated at the solution X and the matrix G(6X, § P) contains second and higher
order terms in §X, 0P. A straightforward calculation leads to

Fx(Z) = ZlAiZBi + i(CkXDkZEk + CuZD X Ey),
i=1 k=1
Fa(Z) = 2,
Fa(Z) = ZXB,,
Fs.(2) = AXZ, (12.10)
Fe(Z) = ZXDiXEx,
Fp (Z) = CwXZXEy,
F.(Z) = CiXDiXZ.

Since the operator Fx(.) is invertible we get

§X = - Fx'oFz(0Z) - Fx'(G(6X,6P)). (12.11)
Zep
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Relation (12.11) gives

ox <> Kzdz+0([6]?), 6 -0, (12.12)
zeP
where the quantities N
Kz :=||Fx'oFys||, Z€P, (12.13)

are the absolute individual condition numbers [188] of the quadratic matrix equa-
tion (12.1). Here .|| is the norm, induced by the Frobenius norm in the corre-
sponding space of linear operators, i.e.,

IF1 = max{[| F(¥Y)|e : [Y]le = 1}.

If X # 0, then an estimate in terms of relative perturbations is

_ 15X
e

Px < Y kzpz + O(|8]|?), 50,
ZeP

where the scalars
1Z]l¢

Xl
are the relative individual condition numbers with respect to perturbations in the
matrix coefficients Z € P.

A calculation of the condition numbers K is straightforward. Denote by
Lz € FPI*"t the matrix representation of the operator Fz(-) € Lin(p,r,t,q). We
have

z =K ,ZG?B,

Lx = ZBJ®A1+ZQ(EJ®(CkXDk)+(DkXEk)T®Ck),

Ly, = }l_,l .

Ly, (XB))" ® I,

Lp, = I,®(4:X), (12.14)
Le, = (XDyXEp)' o1,

Lp, = (XE)  ®(CuX),

Lg, = I,®(CuXDyX).

Thus, the absolute condition numbers are
Kz =|Ly'Lz|,, Z € P. (12.15)

A drawback of this approach is the large size of the involved matrices. Condition
and accuracy estimates, avoiding the formation and analysis of large matrices, are
proposed in [179)].
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An overall relative condition number may be defined as follows. Denote by
@ = (Zl,...,Zr)

the r-tuple of matrix coefficients from P. The matrix collection © may be consid-
ered as an element of a linear space (the Cartesian product of the matrix spaces,
to whom the matrices Z; belong). Hence, we may define the product

a® = (aZ,aZs,...,02,)
of © and o € F as well as the sum

®+é:(Zl+21,22+22,..-,2r+5r)

of two r-tuples © and ©. We also introduce the generalized norm

18lg := W Zillr, 1 Zalle, - -, 1 Z:1lF) T € RY

of the r-tuple ©.
Let

0X = 6X(60O)
be the perturbation in the solution, where
60 :=162,,62,...,82,],

and v € R” is a vector with positive elements.

Definition 12.3 The absolute overall condition number with respect to -y is
w(7) = lim max ([|5X(60) s : [56]]; < €7}

We have (see Chapter 8)

k() =max § | Fgl o Fz(52)| < [6Ollg <7 3. (12.16)
zep 2

When v; = || Z;|lr and ; = 0 for ¢ # j, then the quantity () is the individual
absolute condition number with respect to the matrix Z; € P, determined above.
When v = ||©||, then x(vy) is the overall norm-wise relative condition number of
equation (12.1).

In general there does not exist a closed form expression for x(vy). However, we
will derive bounds for k(7) in the next section.
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12.4.2 First order homogeneous bounds

In this section we derive local first order homogeneous estimates.
The perturbed equation may be written in vector form as

vec(6X) = Y Nyvec(5Z) — Ly'vec(G(6X,5P)), (12.17)
ZeP

where N
Nz :=-L3'Lz, Z€P.

The absolute condition number based estimate is a corollary of (12.17). When
using the Frobenius norm, the estimate is obtained as follows. Set

5x = 16X s = [vec(5X)]l>.
Since dz > ||vec(6Z)||2, we have
5x <esty(8) 4+ O(||6]?), 6 — O,

where

est1(8) == Y |Nzll2bz = > Kzdz.

zePp zeP
Relation (12.17) also gives
6x < esta(8) + O(]16]|%),6 — 0, (12.18)
where
esta(8) = [N 1261 (12.19)
and
N := [NI,NQ,...,NT] = [NZI,NZ2,...,NZT]. (1220)

The bounds est; () and est2(d) are alternative, i.e., which one is of less value
depends on the particular value of 4.
Again, a third bound, which is always less than or equal to est; (), is given by

5x < est3(6) + O(J|8||*), 6 — 0, (12.21)
where
est3(8) := VT Mé (12.22)
and M = [my;] is an 7 X r matrix with elements [m;;] := || NEN;|l2.

Hence, we have the overall estimate
6x <est(8) + O(||6]1?), 6 — 0, (12.23)

where
est(6) := min{esty(d),estz(6)}. (12.24)

The local bound est in (12.23), (12.24) is a nonlinear, first order homogeneous and
piece-wise real analytic function in 6.
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12.4.3 Component-wise bounds

A local component-wise perturbation bound follows from (12.17):

vec(8X)| = Y |Lx'Lz|Ivec(32)| + O(|5]|*), § — 0.
ZeP

Its implementation requires information about the perturbations in the compo-
nents of the data such as |vec(Z)| < Wz, Z € P, where Wz > 0 are given vectors.

12.5 Nonlocal perturbation analysis

In this section use nonlinear perturbation analysis to determine a domain Q C R”,
and a nonlinear function f : Q@ — R, such that

ox < f(6)

for all 6 € Q.

The inclusion § € Q guarantees that the perturbed equation has a solution.
Also, the estimate éx < f(8) is rigorous, i.e., it is true for perturbations with
d € , unlike the local bounds.

Let the collections P; be perturbed to P; + § P; and hence P ~ P + §P. Set
Y = X +6X for the solution of the perturbed equation (12.5). In what follows we
shall mark the dependence of certain quantities only on the perturbations 6 X, § P;
and 6 P, recalling that they are evaluated at the nominal collection P, and that X
is a fixed solution of (12.1).

The perturbed equation (12.5) may be rewritten as an operator equation

60X = ®(0X,6P) := ®o(6P) + ®1(6X,5P) + ®2(6X,9P), (12.25)
where
®o(6P) = -F3Y(X,P)(Go(6P)),
®,(0X,6P) = —FyY(X,P)(Gi(8X,6P)), i=1,2,

are homogeneous functions of order ¢ in §X. Here the quantity Go(6P) depends
only on 6P, while G,(6X,8P), i = 1,2, depend on both X and 6P, as shown
below. We have

Go(éP) = G()l((;P) + GOQ((SP) + G03(6P2),
Gl((SX,(SP) = Gll(5X,5P)+G12((5X,5P)+G13(5X,5P2),
G2(6X,6P) = Gao(6X,6P) + Ga1(5X,5P) + Cas(6X, 5P) + Gag(6X,6P5),

where the matrices G;;(6X,0P), i = 0,1,2, are sums of perturbed terms of order
J with regard to 6 P and are defined as follows.
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In the case 1 = 0 we have

71
Goi(6P) = 649+ > (6A;XB; + A, X6B;)

i=1

+ 3 (6CxX Dy X Ey, + Ct XDy X Ey, + Cy X Dy X6 Ey),
k=1

G02(5P) = Z(SAZXCSBZ

i=1

+ Z(JC’kXéDkXEk + C XdDy XOEy, + 6C X Di X0 Ey.),
k=1

re
Go3(6P) = Y OCkXSDyXSEx.
k=1

In the case i =1 it holds that
r1 T2
Gu(Z,6P) =  (SAiZB;+ AiZ6B;) + Y  6Cx(XDiZ + ZDp X)Ey,

i=1 k=1

T2
+ Y Cw(X8DyZ + Z6Dy X)Ey,
k=1

+ > Cw(XDipZ + ZDyX)0Ey,
k=1

G12(Z,6P) = > 3AZ8B;
i=1

+ > 6C(X6DyZ + Z6 Dy X) B
k=1

+ Y Ce(X0DyZ + Z8Dy X )8 Ey,
k=1

T2
+ Y 6CK(XDiZ + ZDy X)SEy,
k=1

72

G13(Z,6P) = Y (8CwXODyZSEy + 6C,Z8 Dy X0 Ey).
k=1

Finally, in the case i = 2 the corresponding expressions are

r2
Gw(2) = ) CvZDiZEj,
k=1
2
Ga1(Z,6Py) = > (8CkXDyZEy + CyZ8DyZEy, + CxZDy Z8Ey),

k=1
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T2

G?Q(Z,(SPQ) = Z(5CkX5DkZEk+CkZ(SDkZ(5Ek+5CkZDkZ(5Ek),
k=1

G23(Z,6Py) = Y 8CxZ8DyZ8Ey.
k=1

Suppose that ||Z||r < p. Then we have

12o(6P)Ir < ao(d),
121(Z,6P)llr < ai(d)p,
122(Z,8P)p < aa(6)p”,
where
ao((S) = a01(6)+a02(6)+a03(6), (1226)
(11((5) = a11(5)+a12(5)+a13(6),

ag(é) aog + (121((5) + a22(6) + a23(6).

The quantities a;;(8) are of order O(||4||?) for § — 0 and are given by the following
formulae.
In the case i = 0 we have

ao1(6) = est(d), (12.27)
(102(5) = HL)_(1H2“X”2Z(SA;531
i=1
+||X||zZHL (XEW)' @ L) |, 8¢.p,

11Xl Z IL%" (Ig ® (Ck X)), 0p, 85,

T2
+IEXM, X102 ¢, 0,

k=1
72
ags(8) = (LM, 1X13D " bc.6p, 0k, -
k=1
The case i = 1 is characterized by
ar1(4 ZH BT®I Hz‘sf\ +( H Q®Ai)||263i) (12.28)

+ZH(L;( (Bf @ I)||, | In ® (XDy) + (DeX)T © I, bc,
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+2||X||2Z|| L(EL & G|, 0n
+§N@‘ (Ig ® Ci)|ly [|1n ® (XDi) + (DiX)" @ Inn||, O,
oul®) = 51,3 utn
+Z|} YEF @ L), |1 © X + X7 ©In|,dc.dp,
+ Z (Lx' (I, & Co)|, |1 In ® X + X @ In]|, 60,0,
+ 125, ZHI (X D) + (DiX)" ® Ii|, 8¢, 05,

a3(8) = 2| L3, I X1 ZackaDkaEk.
k=1

Finally, in the case i = 2 the expressions are

w0 = D0 (B @G 1Dkl (12.29)
a1 (d) = ZHL (E{ ® )|, | Dkll2dc,

*-EZHLgluﬂ'®CkﬂgaDk

+ ZHL I, ® Ci)||, 1 Dxll26 5
mm::ZM (E{ ® I)||, 6c. b,

+ Z IL%" (I ® Ci)l|,0p.0m,

T2
+ ”L;(IHZ Z ||Dk||25Ck5Ek,

k=1
T2
azs(6) = |||, IDkll2dc, 6D, b,
k=1

In the following we apply again the technique of Lyapunov majorants and
Banach fixed point principle in order to show that the operator equation (12.25)
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has a (unique) solution and to estimate its norm.
Let

I1Z)le, 1 Z))F < p.

The Lyapunov majorant (see Chapter 5) for equation (12.25) is a function (4, p) —
h(é, p), defined on a subset of R”, x R, and satisfying the conditions

1®(Z,6P)ll¢ < h(5,p)

and
|®(Z,0P) —®(Z,6P)||r < h,(8,p)II1Z = Z||¥-

The Lyapunov majorant here is
h(6,p) = ao(d) + a1(8)p + az(6)p?

and the majorant equation
h(é,p) = p

for determining the nonlocal bound p = p{(§) for §x is quadratic,
a2(8)p® — (1 — a1(8))p + ao(8) = 0. (12.30)
Suppose that § € Q, where
Q1= {82 0: a1(6) +2v/a0(§)aa(6) < 1} C R} (12.31)

Then equation (12.30) has nonnegative roots p;1(6) < p3(48) with

_ N 2ap(9)
p1(8) := f(8) := 1—a1(8) + /(1 —a1(6))? - 4a(8)as(8)’

The operator ®(-,P) maps the closed convex ball

(12.32)

B(8) = {Z € F™ | Z|g < £(8)} C F™>"
into itself. According to the Schauder fixed point principle there exists a solution
06X € B(d)
of equation (12.25), for which
dx =16 X||lr < f(8), 6 € Q. (12.33)

In addition, the elements of X are continuous functions of the elements of §P
and hence of those of §O.
If 6 € Q;, where

Q= {5 =01 a1(6) + 21/a0(0)a2(0) < 1} c o,
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then
p1(8) < p2(8), hy(p1,0) <1

and the operator ®(-,d) is a contraction on B(§). Hence, according to the Banach
fixed point principle the solution §X, for which the estimate (12.33) holds, is
unique. This means that the perturbed equation has an isolated solution X +4X.
Moreover, in this case the elements of X are analytic functions of the elements
of §P.

As a result of the nonlocal perturbation analysis we have the perturbation
bound (12.31)—(12.33), where the involved quantities are determined via the rela-
tions (12.26) — (12.29).

12.6 Notes and references

Results similar to those that we have presented were obtained in [149, 120, 150,
134, 211]. The perturbation bounds, given in this chapter, are derived in [131] and
are an improvement over the results from [150] .



Chapter 13

Continuous-time Riccati
equations

13.1 Introductory remarks

In this chapter we present perturbation bounds for continuous-time matrix Riccati
equations as they arise in control and filtering of linear multivariable systems. Both
standard and descriptor, real and complex equations are considered. As before, we
derive condition numbers, first order local bounds and nonlinear nonlocal bounds.

13.2 Motivating example

Consider the stabilizable and detectable continuous-time control system
() = Aa(t) + Bu(t), t > 0, o(0) = 3o, (13.1)
y(t) Cz(t),

where z(t) € F*, u(t) € F™ and y(t) = F” are the state, control and output
vectors, respectively, and 4 € F**" B € F**™ (C € F™*" are constant matrices.
The system is real or complex if the underlying field IF is R or C, respectively.

We recall that the system (13.1), or the pair [A, B), is stabilizable if there exists
a gain matrix H € F™*™ such that the closed-loop system matrix A+ BH is stable,
Le., has its spectrum in the left open complex half-plane. The system (13.1), or
the pair (C, A], is detectable if the pair [AH, CH) is stabilizable. Systems of type
(13.1), or triples (C, A, B), that are both stabilizable and detectable are called
regular.

I

Let the quadratic performance index
J(u, zg) = / W (®)y(t) + u () Ru(t))dt — min (13.2)
0

239
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be given, where R = R" > 0 is a positive definite weighting matrix. The control
that minimizes J(u,xp) for every initial state zo € F™ can be realized as a state

feedback u(t) = —R™!BHX,z(t), where Xy, = X}' is the nonnegative definite
solution of the standard continuous-time matriz Riccati equation
Q+AUX +XA-XS$X =0, Q:=c%C, $:=BR'B". (13.3)

In this case J(u,zo) = zf Xoxo. It follows from the regularity of (C, A, B) that
equation (13.3) has a unique symmetric (in the sense Xo = X}!) nonnegative
definite stabilizing solution Xj. At the same time the Riccati equation may have
other solutions (which necessarily are not nonnegative definite and not stabilizing),
including nonsymmetric ones.

Consider also the descriptor system

ty
E.%\
I

Ax(t) + Bu(t), t >0, z(0) = =, (13.4)
y(t) = Cz(t),

with the same performance index (13.2). Here the matrix £ € F**™ is nonsingular
but may be ill-conditioned with respect to inversion. Formally we have

z'(t) = E71Az(t) + E~'Bu(t).

If the triple (C, E~'A4, E~!B) is regular then the optimal control in (13.4), (13.2)
may again be realized by a feedback u(t) = ~R~'BHE-H X,z(t), where X is the
nonnegative stabilizing solution of the Riccati equation

Q+ (E'AMX + XE'A- XE'SE"¥X =0. (13.5)

There are two ways to deal with equation (13.5). First, setting Q = EHQE,
A:=E"'AE and S := E"'SE~M we have the Riccati equation

Q+A"XE+EYXA- EHXSXE =0. (13.6)

To avoid even the formal inversion of E one may also set )?0 = EHX,E.
Then it follows from (13.5) that the matrix Xy is the nonnegative solution to the
descriptor continuous-time matriz Riccati equation

Q+AUXE + FUXA - ENXSXE =0 (13.7)

In the following we will work with equation (13.7) instead of (13.6).

Matrix Riccati equations of the types considered arise also in many other areas
of linear control systems theory. For example, in the so called filtering problem
the standard Riccati equation is in the dual form S + AX + XA — XQX =0.

In Hy, control problems Riccati equations of type (13.3) arise without the
assumptions that @ is nonnegative definite and/or R is positive definite, e.g.,
the matrix R may be symmetric nonsingular and indefinite. With regard to the
perturbation analysis the real and complex cases are treated similarly. A — A" is
not linear (it is additive but not homogeneous).
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13.3 Standard equation

13.3.1 Statement of the problem

Consider first the real standard equation
F(PX)=Q+ATX+XA-XSX =0, P:=(Q,4,5), (13.8)

under the assumption that it has a symmetric solution Xg such that the linear
matrix operator X : R"*™ — R™"*"  defined by

K(Z)=(A-8Xo)"Z+ Z(A - SXo),
is invertible. The eigenvalues of K are the eigenvalues of its matrix
K:=I,8(A—SXo)" + (A - SXo)T ® I, e R*'*

and are equal (with multiplicity counted) to A\;(A — SXo) + A;(4 — SXo), 4,5 =
1,2,...,n. We recall that the matrix K of a linear matrix operator K is defined
by vec(K(Z)) = Kvec(Z) for all Z.

Note that if Q, S are nonnegative definite and the triple (Q, 4, S) is regular then
there is a (unique) nonnegative definite solution X such that the matrix A — SX,
is stable and hence, the operator K is invertible. This latter case is interesting
from the point of view of applications but the perturbation analysis given below
holds also under the weaker assumption that a solution Xo = X, exists with X
invertible. There are also other sets of sufficient conditions for invertibility of X
which are not considered here.

The matrix parameter P may be regarded as a matrix triple (Q, 4,S) from
R™ X" x R™*™ xR™*™ or as a matrix [Q, 4, S] from R™**". Hence, we may introduce
a norm and a generalized norm of P by

121 = 1I1Q, 4, 81l € R, NPU == [IQIL, 4l ISI]T € R,

where || - || is any matrix norm.

Let the matrix coefficients in (13.8) be subject to perturbations Q — Q + Q,
A— A+6A, S— S+65 IfQ =C"Cand S = BR'B" and C,B,R are
perturbed as C — C +dC, B — B + 6B, R — R+ 6R with 6R = SR and
R + 4R invertible, then the perturbations §Q = CTéC 4 6CTC + §CT6C and
68 =BR'BT+6BR™'BT +6BR"'6BT —(B+6B)R '6R(R+6R)"(B+6B)T
in @ and S respectively, are also symmetric.

The analysis given below applies to both symmetric and nonsymmetric pertur-
bations in the matrices Q and S. The aim of perturbation analysis here is to find
computable bounds for the norm

bx = |6 X|lp
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of the perturbation in the solution X as a function of the perturbation vector
§ :=[61,82,083]" = [dg,04,0s]" € RY
whose components
6q = [|6Qllr, 64 := [|6AllF, ds := [|6S|F

are the Frobenius norms of the perturbations in the data matrices @, A, S. Thus,
6 =l6P].

Relative perturbations in the solution of a Riccati equation

x107

pen(qm), pen(x12)

pert(a, ), pert(x, )

Figure 13.1: Perturbed solutions of Riccati equation

In Figure 13.1 we show the elements of the perturbed solutions §X/||X|| of a
2nd order Riccati equation, generated by perturbations in the elements ¢11, qi2
and go2 of Q. The perturbations in the data are represented by a sphere and the
changes in the solution are represented by an ellipsoid.

13.3.2 Perturbed equation

The perturbed equation is obtained from (13.8) by replacing a nominal value P =
(Q, A, S) of the collection of data matrices with P+6P = (Q+8Q, A+3A4,S5+6S):

F(P+46P,X +6X) =0. (13.9)
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A priori it is not clear whether, given a perturbation §P, the perturbed equation
(13.9) has a solution at all. So, formally, we have to assume that a solution to
(13.9) exists for the given 6 P. However, from the nonlinear perturbation analysis
presented below, we will obtain conditions for the solvability of equation (13.9).

We may rewrite (13.9) as an equivalent equation F(P, X) = 0, where X € R**"
is the unknown matrix and P = (Py,...,P) a k—tuple of matrix parameters
Py, ..., Py, and use the general scheme, that has been described in Chapter 12.
We have, for any P,6P = (6P1,...,8P;) and X,Z € R™"*", that

F(P+6P,X + Z) = F(P,X) + Fx(P,X)(Z) + Fp(P,X)(6P) + F(P,X)(6P, Z),

where Fx (P, X) : R™*™ — R™ " is the partial Fréchet derivative of F in X
calculated at the point (P, X). Similarly,

k
Fp(P,X)(6P) = Y _ Fp,(P,X)(6P).

=1

In the complex case the operators Fp, (P, X) are not Fréchet derivatives but
some related additive operators constructed as follows. Suppose that F(P, X) is
written in the form F(Py, Py, ..., Py, Py, X) and, for X fixed, consider the function

1,2y,..., Y, Zk) — F(Y1,Z4,. .., Y, 2, X).
Assume that the partial Fréchet derivatives Fy, (P, X), Fz,(P, X) of this function

exist. Then we set

k
Fp(P,X)(6P) =Y (Fv,(P,X)(6P,) + Fz,(P, X)(6P)) .

i=1

The operator Fp(P,X) : C**" — C™*" is additive in the sense that Fp(U +
V,X)=Fp(U,X)+ Fp(V, X) but it is not homogeneous.
The term F (P, X){0P, Z) contains second and higher order terms in 6P, Z,

I(F (P, X)(EP, Z)|| = O(I8P)* + 11 Z1I), 16Pl + | Z]| — ©.

Suppose that the linear operator Fx (P, X) is invertible, where F(P, X,) = 0.
Then we may rewrite the perturbed equation F(P + 6P, Xo + 6X) = 0 as

§X = —Fx!(P, Xo) o Fp(P, Xo)(6P) — Fx (P, Xo) o F(P, Xo)(6P,6X,). (13.10)

Note that Fp(P, X()(0) = 0 and F(P, X;)(0,0) = 0. This guarantees that for
small 0 P the perturbed equation (13.10) has a “small” solution §X in the sense
that

6X = —Fx' (P, Xo) o Fp(P, Xo)(6P) + O(||6P||?) = O(||6P]|), 6P — 0.
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In the following we abbreviate Fx (P, Xy) as Fx, etc., thus, omitting the de-
pendence on the fixed quantities P, X; whenever appropriate.
For equation (13.9) we then obtain

K = Fx, Fp(0P) = 0Q + 6AT Xo + Xo6A — Xo65Xp.

Therefore
K(6X) = U (6P) + Uy(6P,6X),
where
Ui(6P) = X068Xo—6Q —86A7 Xo — XA,
Us(8P,Z) = Z(S+68)Z + Z8SXy+ Xo6SZ —6ATZ — Z5A.

Note that |U;(8P)]| = O(||6P]), 6P — 0.

Since K is invertible we have
0X =TI(6P,6X) := 11, (6 P) + II2(6 P, 6 X}, (13.11)

where

0, (6P) := K~Y(U(8P)), M(6P,6X) := K™Y (Us(6P,6X)).

The equivalent operator equation (13.11) and its vectorized counterpart are the
basis of the local and nonlocal perturbation analysis presented next.
It is convenient to rewrite (13.11) in vectorized form using the formulae

vec(ABC) = (CT @ A)vec(B), (B® A)P,2 = P,2(A® B),

where P2 € R** X" ig the vec-permutation matrizsuch that vec(A' ) = Pravec(A).
Introducing

£ = vec(dX), (13.12)
pr = vec(6Q), pg := vec(dA), ug:= vec(dS) € an,
poi= vee(6P) = [uf,pf,pd]" € R¥,

we have 6X = vec™1(¢), 6P = vec™!(u) and

§ = ﬂ'(/_l,,f) = 7T1(,U) + 7T2(,LL,€), (1313)
where
mi(p) = K‘lvec(Ul((SP)) = Mipy + Mopy + Msus,
M1 = -—K—l,
My = —K Y (I,2+ Pp) (I, ® Xo),

Mz = K_l(XO ® Xo)
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and

To(p, &) = K YUy(6P,6X) = K tvec(6X(S +85)6X) (13.14)
+ K™Y X ® I,)vec(6X6S) + K~ (I, ® Xo)vec(656X)
— K (vec(6AT6X) + vec(6 X5 A)).

For the complex equation
Q+AX 4+ XA-XSX =0. (13.15)

we obtain

K(6X) = U,(6P) + Ua(6P,6X),
where the linear matrix operator K : Cr*n - CmX7 s defined by
K(Z) = (A= SXo)'Z + Z(A - 5X,)
and

Ui(6P) = Xo6SXo —6Q — 6AF Xy — Xod A,
Us(6P,Z) == Z(S+68)Z + 268X + Xo0SZ — 6AMZ — Z5 A.

Since K is invertible we have
§X =TI(8P,6X) := 1 (6P) + (6P, 6 X), (13.16)
where _ N _ o
L {(6P) := )C_I(UI(JP)), I, (6P, 6X) := K~-Y(U,(6P,5X)).

As in the real case we rewrite the equivalent operator equation (13.16) in
vectorized form

& = 77(/-"’7 f) = %l(ﬂ) + %2(Ma€)

Here we have used the substitutions (13.12) (having in mind that now &, u; € C*°
and p € C3"2) as well as

Ti(n) = Mg + Mayyps + Mogliy + Maps, (13.17)
MI = —I?_l, M21 = —I?_I(In ®X()),
Mzz = —I?_l(-Xo@In)Pnz, M;g 1= I?—I(Y()@Xo)
and
To(,€) = K 'vec(6X(S + 68)6X) + K~ 1(Xo ® I,)vec(6X55) (13.18)

+ K~Y(I, ® Xo)vec(656X) — K~ (vec(6AR6X) + vec(§X5A)).

In (13.17), (13.18) we have utilized the fact that X, is Hermitian.
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13.3.3 Condition numbers and local bounds

In this section we use the results from Section 13.3.2 to determine the condition
numbers and to derive local, first order perturbation bounds for the perturbation
dx = ||6X||F in solution Xy of the standard Riccati equations (13.8) and (13.15).

If we suppose for the moment that the solution € of (13.13) exists, when this
is the case will be proved in the next section, then based on (13.13) we have

€ = m(w) + O(llull® + I1EN%), Hlull + Il — o
Since [|€|| = O(Jlu]l), # — 0, this is equivalent to

§ = Mip + Mapa + Msps + O(|ul|*), u— 0.
Hence, using the fact that 6x = ||£]|s, we have the following theorem.

Theorem 13.1 In Frobenius norm the absolute condition numbers Kz for the
solution Xg of the real equation (13.8) relative to the matriz coefficients Z =
Q,A,S are

Kq = (M2 =K,
Ka = |[Ma)l2 = |[K " 2 + Po2)(In ® Xo)||,,
KS = “MBH2:HK_1(X0®X0)H2'

In particular, if only one matrix Z from the set P := {Q, A, S} is perturbed, we
have
6x < Kz|16Z|p + O(8%), 6Z — 0.

Note, however, that if more than one matrix coefficient is perturbed, then the
condition number based linear bound

Ix < est1(8) + O([I8]1%) == > Kzdz + O(||é]*), 6 — 0,
ZEP

may not give good results.
In addition to the condition number based estimates we also have

x < esta(8) + O(J|8]|%), 6 — 0,

where
esta(8) = ||[M1, Ma, M3]|21l5]l2.

Another perturbation bound is
6x < estz(6) + O(||6}|%), 6 — 0,

where

est3(8) := V6T MS
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and M = [m;;] € R3*3 is the matrix with elements
ms; = “MJ—MJ”2’ i,j = 1,2,3.

The bounds esty and esty are again alternative, in the sense that in general
both inequalities esty(d) < est3(d) and esty(d) > est3(d) are possible. Thus, we
obtain the following theorem.

Theorem 13.2 The perturbation 5x in the solution Xy of the real equation (13.8)
satisfies the local perturbation estimate

dx < est(d) +O(l[]*), 6 — 0,

where
est(8) := min{est2(d), est3(d)}.

Fr the complex Riccati equation (13.15) we obtain similar results.

Recall some results about nonlinear additive operators. Let I' = 'y + oIy,
A = Ag+1A; be complex mxn matrices (with [o, 'y, Ag, Ay real), and z = zp+121
be a complex n-vector (with 2y, z; real). Then according to Chapter 10 we have

max{[I'z + AZ|j2 : [|z)lz < a} = a||O(T, A)]l2,
where

O(T, A) =

Tot+ 8o A1 —T ] . (13.19)

FI+A1 FQ—AO

Theorem 13.3 In Frobenius norm the absolute condition numbers K z for the

solution Xo of the complex equation (13.15) relative to the matrix coefficients
Z=0Q,A,S are

Ko =K Y Ka= H@(Mm,ﬁzz)ﬂz, Ks = Hk_l(yo ®Xo)”2,

where the matrices Mgl, My, are displayed in (13.17).
To derive local first order bounds in the complex case observe that
£ = Mllll + Mm,u.g + Mzzﬁz + M3u3 + O(H,u.“z), p— 0. (13.20)

For the product I'z of a complex matrix ' = I'g + :I"; € C™*™ and a complex
vector z = zp + 127 € C™ with ['g,I'; and zg, 21 real, we have the real versions

(T2)R .= IR.R ¢ R?™,
where

P eR™ TR .= Fo -I4 € R?mx2n,
21 Iy Toe
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Note that (I'z + AZ)® = (', A)2R and O(T',0) = 'R
Now it follows from (13.20) that

€8 = MYUE + ©(May, M) + MEp§ + O(|lu®|[?), u® — 0.
Since €]z = H{RHQ, we have
I€]l2 < esta(8) + O(|I8]12), 6 — 0,

where

esta(8) = || [M2, M3, M2]||, 612

and
M? = Mllk, Mg = @(le,ﬁg2), M:? = Mék

Similarly, it is also fulfilled that
I€llz < ests(8) + O(lI8]|*), & — 0,

where

est3(8) := V6T MO§
and M° = [m{;] € R}*? is the matrix with elements

my = )0

I, 1.5 =1,2,3.

Thus, we get the following theorem.

Theorem 13.4 The perturbation §x in the solution Xy of the complex equation
(18.15) satisfies the local perturbation estimate

5x < &st(8) + O(I8I), §— 0,

where

est(8) := min {ésvtz(cs),ésvtg(é)} .

Note that the bounds given in Theorems 13.2 and 13.4 may be tight. Indeed,
let w € F™ be the right singular vector of the matrix W € F™*", corresponding
to its maximum singular value ||Wll2. Then |[Ww|2 = ||W|2. Also, for v = aw,
where a € F, we have |Wul||z = |a| |[W|2. Suppose now that the vector p is
proportional to the singular vector of the matrix [M;, M2, M3], corresponding to
its 2-norm. Then |7 (u)|2 is equal to est2(d) and hence, to est(d). Similarly, the
quantity ||71(u)||l2 may be equal to its bound est(6).
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13.3.4 Nonlocal bounds

For the nonlocal perturbation analysis we show that, for § from a certain small
set €1, the equivalent operator m(y,-) in (13.13) maps a closed convex set B C R
into itself. The set B is also small, of diameter f(§) = O(||8])). Then according to
the Schauder fixed point principle, see Appendix D, there exists a solution £ € B
of (13.13) and hence, dx = ||£]|l2 < f(4). It even turns out that for § € Q\Q,,
where ; is a part of the boundary 9, the operator m(y,-) is a contraction and
according to the Banach fixed point principle (see Chapter D) the solution to the
perturbed equation is unique.

Consider first the real equation (13.8) which is equivalent to the operator equa-
tion (13.13). Suppose that |||z = dx < p for some p > 0. Estimating the
right-hand side of (13.13) we get

7 (s iz < llma(p)ll2 + N2 i, )l
Since {|m1(u)||2 < est(d) and, in view of (13.14),

2 (ps ©)ll2 < WK™ Hi2(lIS)l2 + 85)6%
+ (|KH(Xo @ In)|l, + || K~ (In ® Xo)||,) 6s0x + 2 K " [|2646x,

we obtain
(i O)ll2 < h(, p) = a0(8) + a1 (8)p + az(6)p%, (13.21)
where
ap(6) = est(d),
a1(8) = (|[K ' (Xo® L), + ||K 7 (In ® Xo)||,) &s + 2| K~ *{|204,
ax(8) = (K Yl2(iSl2 + &s)-

The functions a; : R3 — R,, i = 1,2,3, are nondecreasing in the sense that
0 < & < 6 implies a:(8) < a;(8) (here < is the component-wise partial order
relation in R3).

The function h is a Lyapunov majorant (Chapter 5) for the operator equation
(13.13). It is a quadratic polynomial in p and we may apply directly the results
from Chapter 5.

Consider the domain

Q= {5 € R3 : a1(6) + 2v/a(8)az(0) < 1}. (13.22)

Since a¢(0) = a1(0) = 0, a continuity argument shows that for some § with positive
elements it is fulfilled a1(8) + 2v/ao(8)az(6) < 1. Hence, the set Q@ C R3 is well
defined and has a nonempty interior. This set is bounded by the coordinate planes
and by part of the surface S C R3 given by (1 —a1(6))? = 4ap(6)az(8). Due to the
nonlinearity of ag the set 2 may have a complex geometry. In particular it may
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not be convex. However, it has the property that § ¢ Q and 0 < ) implies
0 € Q. If one chooses a linear ag(-), say ag(d) = est;(8), then S is a quadric.
If 6 € © then the majorant equation p = h(4, p), equivalent to

ag(8)p* — (1 — a1(8))p + ao(8) = 0,
has a root

- N 2a0(6)
p(8) = f(9) := 1—-a1(6) + \ﬂl —a1(6))% - 4a0(5)a2(5).

Hence, for ¢ € € the operator 7(u,-) maps the set By sy into itself, where

(13.23)

B, = {¢c R : gl < v}

is the closed central ball of radius r > 0. Then according to the Schauder fixed
point principle (Appendix D) there exists a solution £ € By of equation (13.13)
and we have the following result.

Theorem 13.5 Let § € Q, where Q is given in (13.22). Then the nonlocal per-
turbation bound

dx < f(4)
is valid for the real equation (13.8), where f(8) is determined by (13.23).

Note that if the perturbation vector ¢ is in the subdomain of Q defined by the
strict inequality in (13.22) then n(y,-) is a contraction and the operator equation
(13.13) (and hence, the perturbed equation (13.9)) has a unique solution.

In the complex case we have a similar nonlocal result. The quantities a;(8) in
the expressions determining the domain 2 and the bound f(§) need to be replaced
by a;(4), where

ao(8) = est(d),
a1(5) (Hf(—l(ma In)”2 i Hf{‘l(In ®X)“2) 8s + 2| K~ Yj264,
() K= 2(1S][2 + 8s).

As a result we can formulate the following nonlocal bound.

Theorem 13.6 For the complex equation (13.15) the nonlocal bound

5. < 20 (5)
X = - = = =
1-— a1(5) + \/(1 — al(é))2 — 4&0(5)0,2(6)

is valid provided that § € R3 is small enough to ensure

a1(8) + 2v/aop(8)az(d) < 1.
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To illustrate the perturbation bounds we present some examples.

Example 13.7 Consider the scalar version of (13.8) Q +2AX — SX? = 0, where
S > 0 and @ > 0. Let the nominal values of the parameters be @ = 5 =1 and
A = 0, which gives the positive solution X3 = 1. We have K = -2, M, = 0.5,
Mz = 1, M3 = —0.5 and

1 1 21
M = 1 2 4 2
1 21
The bounds est2(d) and est3(d) are
esta(8) = ||[0.5,1, —0.5]|2[|6]l2 = V'1.54/6% + 62 + 62,

est3(4) VITMé = 0.5(61 + 83) + 2.

Here the bound est3(d) is always better than esty(d) since

(61 — 83)% 4 (26; — 62)2 + (62 — 203)? >0

est3(8) — est2(8) = 1 2

The two bounds are equal only when §; = §3 = §,/2.

A right singular value of the matrix [M;, Ma, M3] corresponding to its norm
V1.5is (1,2, —~1]T /v/6 and this suggests that the corresponding perturbations may
be taken as 6Q =0 > 0,405 = —0c <0 and 64 = 20 > 0, i.e., 6P = (0,20, —~0)
and § = [0,20,0]T. For ¢ < 1 the positive solution to the perturbed equation
l+o0+40(1+6X)-(1-0)(1+6X)?=0is

_20+V1+302 |
= Tioe

At the same time ao(d) = 30, a1(§) = 30 and a3(d) = (1 + 0)/2. Thus, the
local and nonlocal bounds are est(§) = 30 and

dX

60

T 1_30+vI-120 1302

respectively, where the nonlocal bound is valid for 1 — 120 + 362 > O or ¢ <
2 - 4/11/3 ~ 0.0851. Since for o > 0 it is fulfilled

f(8)

6X>20+1—1: 30
1—0o 1-0

> 30,

we see that the local bound always underestimates the true perturbation for this
particular structure of the perturbation 4 P.

In Table 13.1 we give the exact perturbation §x = 6.X, the local bound est and
the nonlocal bound f as a function of o > 0. The cases when the nonlocal bound
does not exist are marked by asterisk.
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Table 13.1: Exact perturbation, local and nonlocal perturbation bounds

o bx local | nonlocal
0.01 | 0.03046 | 0.03000 | 0.03144
0.02 | 0.06184 | 0.06000 | 0.06621
0.03 | 0.09417 | 0.09000 | 0.10516
0.04 | 0.12750 | 0.12000 | 0.14959
0.05 | 0.16183 | 0.15000 | 0.20156
0.06 | 0.19722 | 0.18000 | 0.26485
0.07 { 0.23368 | 0.21000 | 0.34769
0.08 | 0.27125 | 0.24000 | 0.47842
0.09 | 0.30997 | 0.27000 *
0.10 | 0.34988 | 0.30000 *

We see the main drawback of the nonlocal bounds — their relatively small
domain of applicability. On the other hand in this case the local bound is not an
upper bound for the perturbation in the solution but only gives information for
its order of magnitude.

Example 13.8 Consider the same equation as in Example 13.7 but with no per-
turbation in A. Here the exact perturbation in the solution is

1+o0 2

50X = —1:o+52—+0(a3).

l1—-0

The local perturbation bound is est(§) = ¢ < 6X for ¢ > 0, while the nonlocal

one is
20

f(6) = :
(©) l1-0++V1-40 — o2
The corresponding results are presented in Table 13.2.

Here again the local bound always underestimates the true perturbation. ¢

o < V5 —2~0.2361.

The case n = 2 already reveals some nontrivial sensitivity properties of Riccati
equations for multivariable systems. The following two examples are devoted to
this case.

Example 13.9 Consider the standard equation (13.8) for n = 2 and
00 0 0 s 0
LRI R PR P

where ¢,a,s > 0. The positive definite solution here is X, = [ ;

, where
T2

= ql/zs——l/Z, T = \/§q1/4a1/2s‘3/4, zg = \/§q3/4a‘1/2s'1/4.
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Table 13.2: Exact perturbation, local and nonlocal perturbation bounds

o) Ox local nonlocal
0.03 | 0.03046 | 0.03000 | 0.03145
0.06 | 0.06191 | 0.06000 | 0.06631
0.09 | 0.09444 | 0.09000 | 0.10558
0.12 | 0.12815 | 0.12000 | 0.15084
0.15 | 0.16316 | 0.15000 | 0.20486
0.18 | 0.19959 | 0.18000 | 0.27323
0.21 | 0.23760 | 0.21000 | 0.37154

0.24 | 0.27733 | 0.24000 *
0.27 | 0.31899 | 0.27000 *
0.30 | 0.36277 | 0.30000 *

We take the nominal parameters to be ¢ = s = 1, a = 2, which gives z; = 2,

T =2z =1. Hence,A—SX():[_; _éJand
2 0 0 4 4 2 4 4
1{0 2 -2 4 1{0 04 4
M; == ==
'=8lo 2 2 4|"MT7]0 20 4 4
1 -2 -2 6 0 -1 2 6
12 8 8 6
1| 46 2 4
Maq= —=
T8 4 2 6 4
2 2 2 3

The condition numbers are Ko = 1.18596, K4 = 2.73749, Ks = 2.64920. Fur-
thermore, we have

1.40651 3.04150 2.57588
M = | 3.04150 7.49386 6.89220
2.57588 6.89220 7.01826

and [|[M,, M2, Ms]||2 = 3.90524. Taking the perturbations as

6 —2 18 45 —67 0
5Q-5[—2 27]’5A”€[ 7 49]’53_8[ 0 0]’

where £ > 0 is a small parameter, then g = 27.8029%, 64 = 69.2748¢, d5 = 67¢
and

est1(0) = 400.109¢, esty(8) = 391.713¢, est3(6) = 392.233¢.
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Table 13.3: Exact perturbation, local and nonlocal perturbation bounds
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k Ox local nonlocal

10 | 3.2388 x 1078 | 3.9171 x 10~8 | 3.9171 x 10™8
9 | 3.2388 x10-7 | 3.9171 x 10~7 | 3.9171 x 10~ 7
8 | 3.2388 %1076 | 3.9171 x 107% | 3.9172 x 1076
7 132388 x107° | 3.9171 x 10~° | 3.9175 x 10™°
6 | 3.2390 x 1074 | 3.9171 x 10~* | 3.9204 x 1074
5 | 3.2411 x 1073 | 3.9171 x 1073 | 3.9503 x 1073
4 | 3.2626 x 1072 | 3.9171 x 102 | 4.2966 x 10?2
3 |3.4924 x 107! | 3.9171 x 10! *

2 10.2532 3.9171 *

We see that here esto(0) gives best results and hence, the local perturbation bound
according to Theorem 13.2 is ag(d) = est(d) = estz(d). Furthermore, a1(d) =
370.229¢ and ay(6) = 1.18596 + 79.4593¢. Therefore, the nonlocal perturbation
bound described in Theorem 13.5 is

B 783.426¢
1 - 370.229¢ + /1 ~ 2598.682¢ + 12568.54922

f(9)

The results are illustrated in Table 13.3 for e = 107% and k = 10,9,...,2. {

We see that for k = 2 the local bound underestimates the true perturbation
more than twice. However, in this case the relative perturbation in S is 67 percent
and is not small at all.

Example 13.10 Consider again the standard equation for n = 2 from Exam-
ple 13.9. Let now ¢ = 1, a = 2 and s = 0~4, where ¢ > 0 is a parameter. In this
example we study the conditioning of the standard equation as a function of the
parameter 0. For this case the stabilizing solution X (o) and the corresponding
closed-loop system matrix are

X(0) = [ 203 o2 ~20 —1/0? ]

, UJ,A-—S(O’)X(U)Z[ A

ag

In Table 13.4 we give the individual condition numbers Kq(o), Ka(o), Ks(o)
as well as the quantity K. (o) := ||[M1(c), Ma(c), M3(c)]|2 for 0 = 10* and k =
~5,—4,...,1,2.

¢
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Table 13.4: Individual condition numbers

k| Kg K4 Kg K.

-4 | 1.2500 x 10° | 2.5000 x 1073 | 3.7500 x 10~13 | 1.2500 x 10°
-3 ] 1.2500 x 102 | 2.5000 x 10~ | 3.7500 x 10~10 | 1.2500 x 102
-2 | 1.2505 x 10! | 2.5020 x 1073 | 3.7508 x 10~7 | 1.2505 x 10!
-1 1 1.3014 x 10° | 2.6940 x 10~2 | 3.8344 x 10~% | 1.3017 x 10°
0| 1.1860 x 10° | 2.7375 x 10° | 2.6492 x 10° 3.9052 x 10°
1] 50504 x 102 | 1.0198 x 10° | 1.5084 x 107 1.5084 x 107
2 1 5.0005 x 10° | 1.0001 x 10'® | 1.5001 x 10 | 1.5001 x 10**

13.4 Descriptor equation

13.4.1 Statement of the problem

In this section we consider the descriptor Riccati equation (13.7). The perturbation
analysis for this equation is similar to that for the standard Riccati equation except
that the calculations (and corresponding expressions) are more involved. So we
follow the scheme from Section 13.3 but omit some of the details.

Consider first the real descriptor equation

GT,X)=Q+A"XE+E"XA-E"XSXE=0, T:=(Q,E,A,S), (13.24)
where the matrix E is nonsingular and Q = Q7, § = S§T. We assume that
equation (13.24) has a symmetric solution Xy such that the linear matrix operator
L:R*™*™ — R™*" defined by

L(Z):= (A~ SXoE)"ZE + E" Z(A - SX,E),
is invertible. The eigenvalues of £ are the eigenvalues of its matrix
L:=E" ®(A-SXoE)" + (A— SXoE)T ® ET e R* *™".

The operator L is invertible if and only if the matrix (A — SXoE)E~! = AE~! —
SXo has no eigenvalues of opposite signs, i.e.,

M(AE™! — SXo) + X (AE™' = SX0) #0, 4,5 = 1,2,...,n.
Note that if Q,§ > 0 and the triple (Q,E~'A,E~1SE~T) is regular, then

there is a (unique) stabilizing solution Xy > 0 such that the matrix AE~! — SX
is stable and hence, the operator £ is invertible.
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13.4.2 Perturbed equation

Let the matrix coefficients in (13.24) be subject to perturbations Q — Q + 6Q,
E—E+dE, A— A+54,S— S+68.

The perturbed equation is obtained by replacing T with T+ 6T = (Q +0Q, E +
0E,A+6A,5+4S) in (13.24):

G(T + 6T, X + 6X) = 0. (13.25)

This equation is quite technical, since its left-hand side contains 50 terms (a prod-
uct of k perturbed matrices produces 2% terms), which after some manipulations
reduce fortunately to only 26.

We can rewrite (13.25) as an equation for the perturbation §X,

L(6X) = V1(8T) + Va(6T, 6X),

where
Vi(6T) = V1 (8T) + Via(8T),
Vii(6T) = - 6Q —SE" Xo(A - SXoE) — (A - SXoE)T X6E
— SATXoE — E" Xo6A + E' Xo6SXoE,
Vi2(6T) = — AT Xo0E — 6E" Xo6A + 6E XoSXo0E
+ 0ETXo0SXoE + ET X06SXo0E + 6ET Xo6S X0 E
and

Va(8T, Z) Vo1 (6T, Z) + Vi (8T, Z),
Vo1(8T,Z) = —6E"ZA-ATZS6E—6A"ZE — E'Z6A
+ ET(Z(S +65)Xo + Xo(S + 65)Z)0E
+ 8ET(Z(S + 8S)Xo -+ Xo(S + 6S)Z)E
+ ET(Z65X + Xo0SZ)E + 6ET (Z(S + 65) X,
+ Xo(S + 65)Z)JE,
Vaa(6T,Z) = SETZ(S+36S)ZE + E"Z(S + 6S)ZSE
+ ETZ(S+0S)ZE + 6ET Z(S + 6S) Z4E.

Note that ||V1,(6T)|| = O(||6T||*), 6T — 0 and ||Vai(6T, Z)|| = O(| Z||*), Z — 0,
i=1,2.

The aim of perturbation analysis here is to find computable bounds for the
norm éx := |[0X||r of the perturbation in the solution Xy as a function of the
perturbation vector

7= [n,n2,n3,m]" = [00,0p,04,0s]" € RL
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with elements dg := ||0Q||r, dg := ||6E||F, da := ||6A|lF, s := [[0S|lF, which are
the norms of the perturbations in the data matrices @, E, A4, S.
Since the operator L is invertible we have

5X = ®(6T,6X) := &,(6T) + Bo(6T, 6X), (13.26)

where

®,(6T) := L7 (V1(8T)), 89(6T,6X) = L™ (Va(6T,8X)).

The equivalent operator equation (13.26) is

€ = vec(6X), 11 :=vec(8Q), vy :=vec(6E), vz := vec(dA),
vg = vec(dS) e RY v = vec(6T) = [vf ,vg ,vs ,v4]" € R (13.27)

We have §X = vec™!(¢), 6T = vec™!(v) and

§= (p(u, §) = <pl(’/) + ‘/’2(”» 6)’ (13‘28)

where

p1(v) := L™ vec(V1(8T)), wa(v, &) := L™ vec(Vo(0T, 6X)).
We now may represent 1 and @, as
e1(¥) = 11(¥) + v12(¥), @2(v,€) = pa1(¥,€) + p22(v,€),
where
1:(v) == L™ tvec(V1;(8T)), @2y, €) := L™ vec(Vyi (6T, 6X)), i = 1,2.
After some computations we obtain

11(v) = Nivy + Navp + Navs + Nyvy,

where
Ny = —L7Y Ny:=-L7 Y2+ Pp) (I, ® (A - SXoE)" Xo), (13.29)
N3 = —L 'Ip2+Pp2) (I,®E"Xo), Ny:= LY (E"Xo®E" Xo).

We also obtain the bound

ler2(¥)l2 < 65(B16E + B264 + B3ds + PadEds), (13.30)

where

[

B 1L~ M2l Xoli311S N2, B2 = 2[LL™ 2l Xoll2,
Bz = | Xoll2 (IL7H (BT Xo @ L) ||, + L7 (I ® ET Xo)[l,)
Bs = |IL7Y2l| Xoll3.
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For the complex descriptor equation
Q+ARXE + EHXA - EHXSXE =0. (13.31)

we obtain B
L5X) = Vi(6T) + V2(0T,6X),

where the linear matrix operator £ : C"*"™ — C™*™ is defined by

L(Z) = (A- SXoE)RZE + ERZ(A — SX,E),

with
Vi(8T) = Vi (6T) + Via(6T),
Vii(0T) = — 6Q — 6EUXo(A — SXoE) — (A — SXoE)* Xo0E
— 6AR X FE — ENXy6A + ENXo6SXoE,
Vi2(OT) = - 6AYX(0E — SE¥Xo0A + 6EM X, SXo0E
+ 0ER X068 XoE + ER X065 Xo0E + 6EHN X065 X6 F
and
Va(8T,Z) = Vi (6T, Z) + Vaa(6T, Z),
Vo1(8T,Z) = — 6EHZA - ABZ6E — §AHZE — EMZ5A

+ EMN(Z(S +68)Xo + Xo(S + 65)Z)0E
+ 0EM(Z(S +65)Xo + Xo(S +6S)2)E
+ ER(Z55 Xy + Xo0SZ)E + 6ER(Z(S + 68)X,
+ Xo(S +6S)Z)SE,
Voo(6T,Z) = 6EHZ(S+68)ZE + ERZ(S + 65)Z6E
+ ENZ(S+68)ZE + 6EVZ(S + 68)ZSE.

Since £ is invertible, we have
6X = ®(6T,6X) := &1(6T) + B2(6T,6X), (13.32)

where
®1(0T) := L X(V1(6T)), B2(3T,6X) := L~ (Va(6T, 6X)).

As in the real case we rewrite the equivalent operator equation (13.32) in vectorized
form

§=¢(1,8) = a1(v) + a1, §)-
Here we have used the substitutions (13.27) noting that now £,1; € C* and
v e C**. Then,

e1(v) = o1 (V) + Gr2(v), B2(v, €) = @21 (v, €) + P22(v, §),
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where ;;(-) := L™ vec(®;;(+)), i, = 1,2. In particular

pulv) = N1/11 + N21N2 + 1\722ﬂ2 + ﬁ31N3 + NypT3 + N4V4, (13.33)
Ni = —L7Y Noy:=-L ' (I, ® (A - SXoE) Xo),
Ny = —L7'((A-SXoE) Xo®I,) Pz, Nap:=-L' (I, ® E"Xo),
N3y = LY (E"Xo®IL,) Py, Ny:= L' (E"X,®EFXy),

where in (13.33) we have used the fact that X, = X,.
Finally, we obtain the bound

IB12(¥) )12 < S(BrdE + Baba + Bsds + Badrds), (13.34)
where
Bi = LMoY Xol3lS ]2y B = 2127 [l2ll Xoll2,
By = [1X|2 (HE—I (BTXos L) + Hi—l (I ®EHX0)H2) ,
Bs = [IL7 Y2l Xoll3-

13.4.3 Condition numbers and local bounds

In this section we use the results from Section 13.4.2 in order to derive the condition
numbers and to derive local, first order bounds for the perturbation dx = [[0.X ||
in the solution X of the descriptor Riccati equation (13.7).

Based on (13.28) we have

€= e1(v) + O(llv* + [I€®), lIvll + ligh — 0.
Since ||€}] = O(]|¥|), v — 0, this is equivalent to
& = Nyv1 + Novp + N31/3 + Nyvg + O(”I/”2), v— 0.

Hence, using the fact that éx = ||€||2, and having in mind (13.29), we see that the
following result holds.

Theorem 13.11 In Frobenius norm the absolute condition numbers Kz for the

solution X of the real equation (13.24) relative to the matriz coefficients Z =
Q,E A, S are

Kq IL7 2, Kg =||[L7" (In2 + Pp2) (In ® (A — SXoE) Xo)|
Ka = ||[L7" (In2 + Pn2) (I, ® ET Xo)|

27
g Ks = ”L_l (ETXO ®ETX0)H2'

In particular, if only one matrix Z from the set {Q, E, A, S} is perturbed, we
have

ox < Kzl|6Z||r + O(6%), 62 — 0.
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We again have two more bounds. First observe that

8x < esta(n) + O(Inll*), n — 0,

where
estg(n) := ||[N1, N2, N3, Na]||2]|7]|2

and the matrices NV; are displayed in (13.29).
The other perturbation bound is

8x < ests(n) +O(lInll*), n — 0,

where
estz(n) :=v/n"Nn
and N = [n;;] € R{*? is the matrix with elements

nij = [N N;|, 4,5 =1,2,3,4.

The bounds est; and est3 are again alternative, since both inequalities est(n) <
est3(n) and esty(n) > est3(n) are possible. Thus, we have the following theorem.

Theorem 13.12 The perturbation §x in the solution X of the real equation (13.24)
satisfies the local perturbation estimate

6x <est(n) + O(|Inll*), n — 0,

where
est(n) := min{est2(n), estz(n)}.

For the complex descriptor Riccati equation (13.31), we give only the final
results, since the technique for their derivation had already been described in
detail.

Theorem 13.13 In Frobenius norm the absolute condition numbers Kz for the
solution Xo of the complex equation (13.31) relative to the matriz coefficients
Z=Q,E A,S are

IN{Q = ”z_lllz, Kg = “@(Nzl,ﬁzz)lt,

K4

H

o s 457500 2200
Define the real 2n x 2n2 matrices
N{) = Nik, Ng = e(ﬁ217ﬁ22); Né) = @(ﬁgl,ﬁ32), Ng = ]A\/’v4]R

and let

N := [f) € R, g = [(N)END],, 4,5 =1,2,3,4.
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As in the real case, set

esty(n) := ||[ND, N3, N3, N§]||, Inll2, esta(n) := y/nT No.
Thus, we have the following result.

Theorem 13.14 The perturbation 8x in the solution Xy of the complex equation
(18.31) satisfies the local perturbation estimate

8x < est(n) + O(lInll*), n -0,

where

est(n) := min {é&g(n),ésvtg(n)} .

13.4.4 Nonlocal bounds

The nonlocal perturbation analysis is similar to that of Section 13.3.4. Consider
first the real case. Suppose that ||£]|2 < p for some p > 0. Estimating the right-
hand side of (13.28) we get

le(, Oz < llpr(W)llz + lp2(v: 8)l2-

Furthermore,

1 (V)ll2 < bo(n) := est(n) + (816 + B2da + B3ds + PabEds)

and
lp2(v,E)ll2 < bi(m)p + ba(n)p?,
where
bi(n) = a16p + @204 +a3ds + a4(5125,
ba(n) = (ISll2 + &s) (o + 116E + 120%) -
Here the constants a; and v; are given by
ar = [[LTHAT @ L), +[|IL7 (@ AT,
+ (ISl +85) (ILTHE T Xo ® L) ||, + | L7 (1. ® ET X0)|[,)
+ 1 Xoll2 ISz + 65) (1L (BT @ L) ||, + IL7" (I @ E7)],)
o = |[LTHET® L), + LT (@ BT,
o = L ET X ® BT, + L7 (B @ BT X))
ar = 2L Y2l Xoll2(lIS)l2 + bs).
and
7% = [LTUET@ET),,
n o= [LTHET L)+ LT (@ BT,

I

Y2 L~ 2.
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Hence, we get

(v, €)ll2 < Un, p) := bo(m) + ba(m)p + ba() . (13.35)

The Lyapunov majorant function [ is a quadratic polynomial function in p and
we may apply directly the results from Chapter 5. Consider the domain

U= {n e RY 1 b1(n) +2¢/bo(n)b2(n) < 1} : (13.36)

If n € U, then the majorant equation p = I(7, p), equivalent to

ba(n)p? — (1 = by(n))p + bo(n) = 0,
has a root

2bo(n) )
1 —bi(n) + /(1 = b1(n))? — 4bo(nm)ba(n)

Hence, for 7 € ¥ the operator (v, ) maps the set Bgy(s) into itself. Applying the
Schauder fixed point principle we obtain the following result.

p(n) = g(n) == (13.37)

Theorem 13.15 Let n € U, where VU is given in (15.36). Then, for the real
equation (13.24), the nonlocal perturbation bound

dx < g(n)

holds, where g(n) is determined by (13.37).

In the complex case we have a similar nonlocal result. Let

bo(n) = est(n) +35(Bi6g + Bada + Psds + Baduds),
§1(n) ‘= @105 + Ga0s + G3bs + a0,
ba(n) == (ISll2 +8s) (Fo + F10m + F20%) ,
where
& = I en)| +[I (e at)
+ (||5|[2+5S)( LTYETX,®1,) 2+HZ—1 (In®EHX0)H2)
+ 1 Xolla(1S )2 + 65) (|27 (BT @ 1) |+ ||[E (T 0 89| ).
Gy 1= Hf‘l(ETébIn) 2+HE"1 (In®EH)‘ ,
o = [ e )+ [ (7o 5

Oy = 2||Z_1||2HX0||2(”S||2 +ds),
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and
5o = |[TUETe B |
o= Hi—l(ETQMn) 2+HE—1(In®EH)H2,
Foo= (1L

then we obtain the following theorem.
Theorem 13.16 For the complex equation (18.81) the nonlocal bound
2b
by < —— 3(77) __
1= Ba(n) + /(L= Ba(m))? — Bo(m)ba(m)
holds, provided that n € Ri is such that

by (n) + 2y/bo(mba(n) < 1.

To illustrate the perturbation bounds consider the following example of a 2 x 2
descriptor equation under special perturbations.

Example 13.17 Consider the descriptor 2 x 2 Riccati equation with matrices
0 0 eg 0O 0 0 s 0
= E = A = ] S = b
L I S IR PR Y

where ¢, e;,e9,a,s > 0. Setting Xy = [ o7 ], the element-wise version of the
z 2

equation becomes

G(T, X) = [ e1(2az — e1sx?)  ex(azs —zelle) ] = Oy,
ez(axy — e1szxy) q— e55x
The positive definite solution is given by
z = qYV2%;'sV2 g = \/§q1/4el—1/2e2_1/2a1/2s_3/4,
Ty = \/5q3/4ei/2e;3/2a‘1/28"1/4.

Note that 2,22 — 2% = ge;'s~! and the matrix (AE~! — $X,) = [ 8T T }

afe;r 0
has eigenvalues \,/5q1/4el_1/2e2_1/2a1/231/4(—1 +1).
We choose nominal values of the data as g = e; = e3 = s = 1, a = 2, which

2 1 2 -1
i X: A— =
gives X |:1 1}, SXoE [2 0 }and
2 0 0 4 -2 0 -4 -2
1lo 2 -2 4 1| 00 -4 —2
M=31l0 2 2 4|"™M=3] o0 4 2|
1 -2 -2 6 11 -4 -3
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4 2 4 4 12 8 8 6
110 0 4 4 1| 4 6 2 4

Ny = = _ 1
55710 -0 4 4" M= 4 2 6 4
0 -1 2 6 2 2 2 3

The condition numbers are Kg = 1.18596, Kg = 4.60750, K4 = 2.73749,
Kg = 2.64920. Furthermore, we have

1.40651  5.37067  3.04150  2.57588
5.37067 21.22907 12.40750 10.83322
3.04150 12.40750 7.49386  6.89220
2.57588 10.83322 6.89220 7.01826

and ||[N1, Na, N3, Ng]||2 = 5.9781.

Let the perturbations in the data be dg = ¢ > 0, de; = de; = bs = —o0,
da = 20, which gives § = 0[1,+/2,2,1]7. Then the perturbation in the solution is
ér1 Oz
0X =
[ 5z bz, ], where
b = (Q+0)2(1-0)"%2-1, bz =20 +0)** 1 —0) /4 -2,
by = (1+o)/41—-0) %4 1.

We also have
est;(d) = 15.82610, est2(d) = 16.90870, est3(d) = 15.54870.

Thus, est(§) = est3(d) = 15.5487¢0. The quantities b;(§) in the nonlocal bound
from Theorem 13.15 are

bo(6) 15.54870, by(8) = 0(23.4487 + 25.54790),
b2(8) = 1.1860 + 4.54040 + 5.72630% + 2.37195°.

fl

The results for this example are given in Table 13.5.

&

Example 13.18 Consider the descriptor equation from Example 13.17 with the
same nominal data but now with perturbations

3 _2 6 67 10 29
5Q—”[-2 19]’5E‘_”[—4 37}’5’4_‘7{ 3 33}’

42 0}

6.5':—0[ 0 o

where ¢ > 0 is a small parameter. Hence, § = ¢[19.4422,76.8765,45.1553,42.0] T
and [|6]] = 100.4540. Furthermore, we have est;(§) = 612.14490, est2(d) =
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Table 13.5: Exact perturbation, local and nonlocal perturbation bounds

o Ox local nonlocal
0.001 | 0.005945 | 0.01555 | 0.01624
0.002 | 0.01191 | 0.03110 [ 0.03409
0.003 | 0.01789 | 0.04665 | 0.05394
0.004 | 0.02388 | 0.06219 | 0.07643
0.005 | 0.02989 | 0.07774 | 0.1025
0.006 | 0.03592 | 0.09329 | 0.1341
0.007 | 0.04197 | 0.1088 0.1752
0.008 | 0.04803 | 0.1244 0.2410
0.009 | 0.05411 | 0.1399 *
0.010 | 0.06020 | 0.1555 *

600.52590, est3(d) = 601.2477¢. Thus, est(d) = esta(d) = 600.52590. The quanti-
ties a;(4) in the nonlocal bound are

ao(6) = 10%°0(0.60053 + 95.5770 + 1997.202),
a1(6) = 10°0(1.0859 + 36.70 + 1541.40?),
az(6) = (1 +420)(1.186 + 182.3430 + 7009.352).

The results for these perturbations are presented in Table 13.6.

13.5 Notes and references

There are several studies in the literature on perturbation analysis of continuous-
time Riccati equations arising in linear control theory [35, 149, 87, 66, 150, 120,
4, 237, 131, 211], see also (184, 186, 185]. Until recently, however, the results for
the complex case had not been clarified. Here the treatment in [211] had to be
complemented with the analysis from [145]. The analysis for the descriptor case
is new [127].

Condition and error estimates for the solution of Riccati equations are given
in 182, 183, 179, 146].

Residual bounds for algebraic Riccati equations are given in [210].

Perturbation analysis of pairs of Riccati equations arising in the H, control is
done in [144].

Backward errors for the Riccati equation are derived in [77].

Computational methods for Riccati equations are considered in [37, 181, 167,
159, 200, 32, 21, 22, 23, 168]. General theory of algebraic Riccati equations is
presented in (81, 61, 154, 156, 108].
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Table 13.6: Exact perturbation, local and nonlocal perturbation bounds

o Ox local | nonlocal
0.00002 | 0.0112 { 0.0120 { 0.0125
0.00004 | 0.0225 | 0.0240 | 0.0261
0.00006 | 0.0338 | 0.0360 | 0.0411
0.00008 | 0.0452 | 0.0480 | 0.0577
0.00010 | 0.0566 | 0.0601 | 0.0764
0.00012 | 0.0681 | 0.0721 | 0.0979
0.00014 | 0.0797 | 0.0841 [ 0.1233
0.00016 | 0.0913 | 0.0961 | 0.1550
0.00018 | 0.1030 | 0.1081 | 0.1989
0.00020 | 0.1147 | 0.1201 *

In this book we do not consider differential and difference matrix equations.
Perturbation bounds for matrix differential and difference Riccati equations are
given in [120, 143, 139, 138, 123)].



Chapter 14

Coupled Riccati equations

In this chapter we present the perturbation theory for coupled systems of continuous-
time Riccati equations

Fl(Xl,XQ,Pl) = (A1+31X2)TX1+X1(A1 +BlX2)
+ O — X1Dy X1 = 0, (14.1)
Fy(X1, X2, P2) = (A2 + X1B2)Xz + Xa2(Az2 + X1B2)"

+ Cy — X9Dy X5 =0,

where X; € R are the unknown matrices, 4,,B; € R, C;,D; € S, i = 1,2,
are given matrix coefficients and P; := (A;, B;,C;, D;) € R*. Here we use the
abbreviations R =R" ™ and S={AcR: A=AT}CR.

Equations of this type arise in the Hs/H, analysis and design of linear mul-
tivariate control systems [27, 227, 118] and in differential games [5].

14.1 Problem statement

For the perturbation analysis we set

P = (P, P)=(A,B1,C1,Di1,As B,,C, D)
=: (E1,E3 E3,Eq, E5, Eg, E7, Es) € R,

i.e., the individual matrix members of P are denoted as Ej,..., Es. The general-
1zed norm of the matrix 8-tuple P is the vector

IP):= [|Erlle, - .-, | Eslle] " € RS (14.2)

Although the matrices C;, D; are symmetric, system (14.1) may have solutions
(X1, X2) in which one (or both) of the matrices X; is not symmetric. In this work

267
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we are interested only in symmetric solutions of system (14.1), i.e., (X1, X2) € S%.
The nonsymmetric case may be treated similarly.

Note that the system (14.1) may be written as one matrix equation. This may
be done in several ways. Set, for example,

X =[X1,Xq] € RnXQn, C:=[C,Cy) € R7X 21

Then we have the single equation

A 0 - —Dy I,
‘”X[ 0 AJ]*(“‘“X[ BT DX[ 0

e (x| Gy )x[0 2]
R PRI P AL )

and the condition (X1, X») € S? may be expressed as

1, 0
X| M|, X €S
o] x[n]
Thus, we may apply the general perturbation theory for quadratic equations of
Chapter 12. However, in this case it is difficult to take into account the special
structure of the coeflicient matrices and the resulting perturbation bounds will not
be tight.

Another desired property of the solutions of (14.1) is whether they stabilize
the corresponding closed-loop system matrices.

o o
[E—

Il
o

Definition 14.1 The solution pair (X1, Xs) € S? is called stabilizing if the ma-
trices

G, = A+ B X, — D1 X,

Gy Ay + X1By — X2Dy

I

are stable.

Note that F; as defined by (14.1) are functions from R x R x R* = RS to R. It
will be convenient to write the (14.1) as one operator equation. For this purpose
we set

X = (Xl,X2), F .= (Fl,FQ)

and obtain
F(X,P) =0. (14.3)

Here F is considered as a mapping R® — R2, or equivalently, as a mapping
Rnx2n % RS N RnxQn_
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Finding conditions for existence of solutions (X, X2) € 8% with X; nonnegative
of system (14.1), as well as of stabilizing solutions, is difficult. Even if both triples
(Ci, A;, B;) are controllable and observable the system may have no solution in S?
with nonnegative definite X, X5, nor a stabilizing solution, see Example 14.2.

Example 14.2 Consider the simplest case n = 1,

2(a; + biz2)zy + ¢ —dizi = 0, (14.4)

2((12 + b2IL‘1):L'2 + o — dz.’L‘% = 0,

where a;, b;, ¢;,d; and the unknowns z; are scalars. Suppose that bibacico # 0,
thus excluding trivial solutions z; = 0 as well as cases of decoupling. If in addition
di1dy # 0 then the system (14.4) is equivalent to a quartic equation. Geometrically,

the solution is given by the intersection points of two hyperbolas with two branches
each. We have

diz? — 20,7 — i ., .
x] - 2b1/xl ’ 1 75 .71
and
4
Z aikmi'c = 07
k=0
where
(6 711 = —C?dj,
a;; = —4(bicia; + aicid;),
Qo = 2 (C,‘,didj + 2b?Cj - Za?dj — Qbic,-bj - 4aibiaj) s
a3 = 4 (bid,-aj + a,-didj — 2aibibj) R
Qg4 = d1(4b1b2 — d1d2).

Let a; = b; = ¢; = d; = 1, i = 1,2. Then we have a double root (z;,z3) =
(-1, 1) and two more roots (c, 8), (8,a), where a := 1 — 2/v/3 ~ —0.1547 and
G:=1+ 2/\/§ ~~ 2.1547. Hence, the system has no solution with z;,z2 > 0. Also,
the closed loop system matrices a; +b,z; —d;z; = 1+1z;—x; are not simultaneously
negative on any of the solution pairs (z1,z2). Hence, there do not exist stabilizing
solutions as well. $

In what follows we assume that (14.1) has a solution X = (X1, X3) € S? such
that the partial Fréchet derivative Fx (X, P)(:) of F in X at the point (X, P) is
invertible.

The partial Fréchet derivative of F in X at (X, P) is a linear operator R? — R2,
calculated as follows. Let Y = (Y7,Y2) € R? be arbitrary. We have

Fx(X,P)(Y) = (F1,x(X,P)(Y), F2.x (X, P2)(Y))



270 CHAPTER 14. COUPLED RICCATI EQUATIONS

and
Fy x (X, P)(Y) = Fi x, (X, P)(Y1) + F; x, (X, P;)(Y2).

A direct calculation gives

Fix,(X,P)(2) = G{Z+2G,

FLx,(X,P)(Z) = Xi1BiZ+Z Bl X, (14.5)
Fox,(X,P)(Z) = X3B]Z' + ZByXo,

Fox,(X,Po)(Z) = Ga2Z+ZG;.

We use the following abbreviations for the partial Fréchet derivatives of F' and

E;
L() := Fx(X,P)(-) € Lin(R? R?),
L’L() = Fl,X(XaR)() € Lin<R27R)7
Lij(') = Fi,X]- (X, Pl)() S Lin(R, R)

Thus, we have
Fx (X, P)(Y) = (L1(Y),La(Y)) = (L11 (Y1) + L12(Y2), La1 (Y1) + Loo(Y3)).

Note that Ly;(-) are Lyapunov operators. At the same time L;;(-), 1 # j, are
associated Lyapunov operators when X; € S, see [125].

Applying the vec operation to the pair Fx (X, P)(Y) and using the identity
(A® B)P,2» = P,2(B ® A) we obtain that the matrix representation of the linear
operator L(-) is

Ly L 2y o2
L= Mane) = | p | emet
where
Lu = Li®G] +G| ®1I,,
Lz == (Inz + Pp2)(In ® (X1B1)),
Ly = (Iya+ Pp) ((B2Xa)' ® 1),
Ly = I,b8Gy+G2®1I,.

Here L;; € R™*" is the matrix representation of the operator Ly;(-), 1,7 =1,2.
Example 14.3 For the system from Example 14.2 we have

a; +bixe — dizy bizy

L=2
boxo ag + boxy — doxo

c R2><2

and

det(L) = 4((0,1 — dlml)(CLQ - dzl'g) + blwz(ag — dz:l?g) + b2.’L’1((11 — dllL'l)).
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By assumption and using the implicit function theorem [173] it follows that
the solution X is isolated, i.e., there exists € > 0 such that equation (14.3) has no
other solution X with || X — X| <e.

In the following, with a certain abuse of notation, we consider P; both as an
ordered pair (and hence, as an element of the linear space R*) and as a collection.

The perturbation problem for (14.1) is formulated as follows. Let the matrices
from P; be perturbed as

Ai— A; +684A;, B;— B; +6B;, C;— C; + 6C;, D, D; + 0D;

(if some of the above matrices are not perturbed then the corresponding pertur-
bations are assumed to be zero).

We assume that the perturbations 6C; and 6 D; are symmetric. This assump-
tion is necessary to ensure that the perturbed equation, considered below, also has
a solution in S2.

Denote by P; + 6 P; the perturbed collection P;, in which every matrix Z € P,
is replaced by Z + 0Z and let 0P = (6P;,6P;). Then the perturbed version of
equation (14.3) is

F(X +6X,P+4éP)=0. (14.6)

The invertibility of the operator Fx and the symmetry of the matrices C;+6C;,

D; +6D; implies that equation (14.6) has a unique isolated solution X + X € S?

in the neighborhood of X if the perturbation ¢ P is sufficiently small. Moreover, in
this case the elements of §X are analytic functions of the elements of §P. Setting

5::[51]€R8+,

P}
where
T
61 = [6Ai758,76C,'75D,‘] € Ria
the vector of absolute Frobenius norm perturbations 6z := [|[6Z]|F in the data

matrices Z € P, then the perturbation problem for (14.1) is to find bounds
ox, < fi(8), € QCRY, i=1,2, (14.7)

for the perturbations dx, := ||6.X;||r. Here  is a certain set and f; are continuous
functions, nondecreasing in each of their arguments and satisfying f;(0) = 0. The
inclusion 6 € Q guarantees that the perturbed equation (14.6) has a unique solution
X 40X in a neighborhood of the unperturbed solution X such that the elements
of X, 6X, are analytic functions of the elements of the matrices §Z, Z ¢ P,
provided § is in the interior of Q.

In the next section, first order local bounds

b6x, < esti(8) +O(||8]|?), 6 —» 0, i =1,2, (14.8)
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are derived with est;(6) = O(||4]]), 6 — 0, which are then incorporated (see Sec-

tion 14.3) in the nonlocal bounds (14.7). Here the functions est; : R& — R, are

nonlinear first order homogeneous, i.e., est;(A§) = Aest;(0) for every A > 0.
Estimates in terms of relative perturbations

_ 16Z]je
£z = 2l 0#Z¢€ P,
for 2]
L dIF
TR TR

are straightforward when X; # 0, X> # 0, and are therefore not given in detail.

14.2 Local perturbation analysis

In this section we present a local perturbation analysis for the system (14.1) by
determining the functions est; in (14.8).

14.2.1 Condition numbers

Consider first the conditioning of (14.1). Let
Lin := Lin(R, R)

ge the space of linear operators R — R. Since we want that F;(X, P;) = 0, the
perturbed equations may be written as

2
Fy(X +6Xi, P+ 6P) =Y Li;(6X;)+ > Fiz(6Z) + Hi(6X,8P,) =0, i = 1,2,
j=1 ZeP;

where

Fi,Z(') = Fz‘,Z(X, Pt)() S Lin, Z € R,
are the Fréchet derivatives of F;(X, P;) in the matrix argument Z, evaluated at
the point (X, P;). The matrix expressions

Hi(6X,6P;) = O (||[6X,6P)||%), 6X — 0, 6P, — 0,

contain second and higher order terms in 6X, 6P;. In fact, for Y = (Y1,Y3) € 82,
we have

H (Y,6P) = (§B1Y> —30D1Y1)" X1+ X1(6B1Ys — 6D YY) (14.9)
+ Y10B1 X5 + X26B, V3
—Y1(Dy +6D1)Y, + Y164, +6A] Y,
+ Yi(By + 6B1)Ys + Y2(B1 + 6B;) ' 13
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and

Ho(Y,6P) = X, (Yi6By —Y36D5)" + (Y10By — Y26D2) X»  (14.10)
+ X16B,Y, + Y26B, X
— Ya(D3 4 6D,)Y, + §AgY2 + YadAg
+ Y5(By + 6By) Yy + Yi(By + 6B3)Ys.
We stress that the first four terms in the right-hand sides of (14.9) and (14.10)
have extra structure that will be exploited later in the derivation of tighter nonlocal
bounds. Indeed, suppose that we want to bound from above the 2-norms of the

vector Avec(BZC), where A, B and C are given matrices and the only information
about the matrix Z is that

[Z]lp = |lvec(Z)]2 < 6z
Then we have the rough bound

|l Avee(BZC)2 < || Alzlivec(BZO)2 = [|Allz|BZC e (14.11)
1AL Bl2ClzNZ e < IAll2IBl2lIC 262

IA A

But we have also the bound
|Avec(BZC)||2 = [|A(CT & B)vec(Z)||2 < | A(CT ® B)||20z, (14.12)
and since
IA(CT ® B)lj2 < || All2llBli2lIC ]2
and since the strict inequality is possible, we see that the bound (14.12) is tighter
than (14.11).
Note that we have already calculated the operator Fx (X, P)(-) = L(-) via the
operators Fy x, (X, P;)(-) = L;(-) and Fj x,(X, P;)(*) = Li;(-), i,J = 1,2, namely
Fx (X, P)(Y) = (L1(Y), La(Y)),
where
L(Y) = Lii(Ys) + Li; (Y5)-
Recalling that the matrix representation of L;;(-) is denoted by L;;, we have for
(Xl,XQ) (S 82 that

Fia2) = X1Z+2Z"X,,
Fip(2) = X1ZXo+ XoZ" X,
Fic,(Z) = Z,

Fip(Z) = —X1ZX,
Fy4,(2) = ZXy+X,Z7,
F25,(Z) = X\ZXy+ X2Z' Xy,
Fy.c,(2) Z,

Fyp,(2) = —XpZX,.
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The inverse
M(-) := L(:)~! € Lin(R? x R?)

of the operator L = Fx (X, P)(-) may be represented as

L) = (Ma(), M2()),
where, for Z := (Z1,Z,) € R?,
M(Z) = M1{Z1) + M;3(Z2), M;;(-) € Lin, i =1,2.
Hence, we have
0X = —M(W1(6X,6P), Wa(6X,5P,)), (14.13)

where
Wi(Y,6P,) := Y F;z(52) + Hi(Y,6P).
ZEP;

In this way we obtain

which gives

2

= =Y M0 F;2(52) (14.14)
J=12Z¢cP;
2
—ZM” (0X,6P;)), i=1,2.

Therefore, we have the bounds

2
x; < Z Z 1.],Z6Z+O ”6” ) 5—)07
i=1Zep,

where the quantity
Kijz = |Myj 0 Fj zl|Lin, 4,7 =1,2,

is the absolute condition number of the solution component X; with respect to the
matrix coefficient Z € P;. Here ||.[|Lin is the induced norm in the space Lin of
linear operators R — R.

If X; # 0, then estimates in terms of relative perturbations are given by

2
exi S0 3 kiyzez +O(I8]%), §—0,

j=1ZeP;
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where the quantity

ij,Z =

4,2 11.7-:172’
X

is the relative condition number of the solution component X; with respect to the
matrix coefficient 0 # Z € P;.

The calculation of the condition numbers K;; z is straightforward when the
Frobenius norm is used in R. Indeed, for U € Lin we have

1Ulltin = max [[[U(Z)]l¢ : |Z]lF = 1}
= max{|ivec(U(Z))l2 : [lvec(Z)llz = 1}
max{|[Mat(U)vec(Z)llz : [lvec(Z)[|2 = 1}
= |[Mat(U)ll2 = omax(Mat(U})),

where 0y,x(A) is the maximum singular value of the matrix A.

Let L, z € R™* 7" be the matrix of the operator F; z € Lin. Then a direct
calculation yields

Lia, = (Pp+IL2)(I,®Xy),
Lo, = (Pp+I12)(X2®1,),
Lip, = (Pp2+IL2)(X2® Xy),
Ly, = (P24 I2)(X2® X1),
Lic, = Inp,

Lo, = I,

Lip, = X1®Xi,

L2,D2 = X720 Xa.

Denoting the matrix representation of the operator

M(-) = F5'(X, P)(-) € Lin(R? R?)

My, My

M :=Mat(M) =L .=
(M) [ My Mo

2 2
] , Mz] c R" xn ,
the absolute condition numbers are calculated from

Kijz = IMi;L; 2|2, Z € P, 4,5 =1,2.

A possible disadvantage of this approach may again be the large size n? x n? of

the involved matrices.
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14.2.2 First order homogeneous estimates

If we rewrite equations (14.14) in vectorized form as

vec(dX;) Z Z N, zvec(62) (14.15)

j=1ZeP;

—ZMuvec (6X,0P;)), i=1,2,

where
2 2
Niz = —-MyL;z e R**", Ze€P;, i,j=1,2,

then the condition number based perturbation bounds may be derived as an im-
mediate consequence of (14.15), as

Sx, = 10Xl = |vec(6X:) |12 < estt”(6) + O(||8]|?), 6 — 0,

where
2

est(l) Z Z “Ni,Z”25Z~

j=1ZeP;

Note that the bounds estl(-l) (-) are linear functions in the perturbation vector é €
RS,
Relations (14.15) also give the second perturbation bound

Sx, <est®(6) +0(5)%), 6 — 0,

where
est(*)(8) := [INi2ll0]l2
and
Ni = [Ni1,Nig] € R¥>®7
Ni,j = [Ni,AjaNi,Bj7Ni,Cj>Ni,Dj] € Rn2x4n2, 1=1,2.

The bounds est (1) (5) and est(z)(é) are again alternative and we also have the
third bound, which is always less or equal to est (5) We have

6%, = vec (6X,)vec(6X,) = 0 N Nim + O(I8]1%), 6 — 0,

where

n = [vecT (6A;),vecT (8By),...,vec (6D3)] € RE™.

We will represent the matrix

2 2
NiTNi c Rin x8n
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as a 8 x 8 block matrix with n2? x n? blocks as follows. Let the n? x n? blocks of
N; be denoted as Ny, k=1,...,8, ie,

o~ o~ —~

—~ 2 2
N; = [Ni,11Ni,2;-~-7Ni 8] , Njp e R* ¥,

)

where

o~

Ni1:= N;a,, Njg:=N;p,,...,Nyg:= N;p,.

»

Then we have that
n' NJ Nip < 87 Ny,

where N; = [nipq) € R3*®, i = 1,2, is a matrix with elements

o7 o
Ni,pq = HNi,pNt,q

' y b,d = 17---’8'
2
In this way we obtain

Sx, < estlP(8) +O(||6)|?), & — 0,

where
est® (6) 1= /6T Ny,
and since
”ﬁ;ﬁi’q '2 = 1 ﬁi’p 2 ”ﬁi’q ‘2’

then estgs)(é) < es’cgl)(é) and we have the overall estimates
dx, = est;(8) + O(||8]|%), 6 — 0, i =1,2, (14.16)

where

est; () := min {estgz)(é),est?)(é)} , 1=1,2. (14.17)

The local bounds considered in this section are continuous, first order homoge-
neous, nonlinear functions in §. Also, for § # 0 these functions are real analytic.

All three bounds estgk) are in fact majorants for the solution of a complicated
optimization problem, defining the conditioning of the problem as follows. Set

& =vec(dX;), i =1,2,
and
6= [51, . ,68]T = [5.417 sy <SDQ]T € Rﬁ-
Then we have

8
&= Z N ke + O(|16]|%), 6 =0

k=1
and
8x; = ll&ill2 < Ki(8) + O(||6]|%), 6 — 0,
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where

K;(§) := max {

8
Z Nz‘,knk
k=1

is the exact upper bound for the first order term in the perturbation bound for the
solution component X; (note that K;(4) is well defined, since the minimization in
7 Is carried out over a compact set).

The calculation of K;(4) is a difficult task. Instead, one can use again a bound
such as est;(d) > K;(4).

For a given vector v € Ri we may define the relative conditioning of the
problem as follows.

imwll < 0k, k=1,...,8}
2

Definition 14.4 Let X; # 0. The quantity

o Ki(v)
)= X

is the relative condition number of X; with respect to 7.
If ||P|| is the generalized norm (14.2) of P, then s;(||P||) is the relative norm-
wise condition number of X;.

Note that if all elements v of vy are zero except one, equal to ||E;||r in the I-th
position, then the quantity x;(vy) is the individual relative condition number of X
with respect to perturbations in the matrix coefficient E;.

14.3 Nonlocal perturbation analysis

14.3.1 Implicit bounds

As in the previous section, we obtain nonlinear bounds by using the techniques of
nonlinear perturbation analysis. As a result, we get a domain Q@ C R% and two
nonlinear continuous functions fj, f2 :  — R, satisfying

fl(o) = f2(0) = 07

and such that
dx, < fi(d), 6, i=1,2. (14.18)

The inclusion § € Q guarantees that the perturbed equation has a unique solution
in a neighborhood of the unperturbed solution. Furthermore, the estimate (14.18)
is rigorous, i.e., the inequality holds for all perturbations with § € Q. To get the
nonlinear nonlocal bounds the perturbed equation

F(X +6X,P+6P)=0
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is again rewritten as an operator equation for the perturbation 6X
§X =TI(6X,6P), I = (I3, I1I2), (14.19)

where

TI(Y, §P) := —~M(Fp(X, P)(6P) + H(Y,6P)).

Here
H(Y,8P) := (H{(Y,6P,), Ho(Y, 6 P,))

contains second and third order terms in Y and 4P, see (14.9), (14.10).
Equation (14.19) comprises two equations, namely

§X; =TI(6X,6P), i = 1,2, (14.20)

where the right-hand side of (14.20) is defined by relations (14.14). Setting

& = vec(3X;) eR™,i=1,2,
51 ] 2n?
= e R*™ |
¢ [52

we obtain the vector operator equation

§=m(¢mn) (14.21)
in R2"" which is reduced to two coupled vector equations
€i - 71-1'(6777)7 1= 1127

in ]R”z, respectively.
To obtain Lyapunov majorants we define generalized norms in R2"* and R®
by

&2 ] | e
Nl = léalls | €Ry
and
flmillz |
Il = : eRS.
limsll2

For p € Ri let
B, = {e e R : el < )

be the ball centered at the origin and of generalized radius p. We determine

:[’“ ] .R2 xR - RZ,
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such that the functions h; : R2 x R§ — R, are nondecreasing in all of their scalar
arguments; for all § € Ri the function A(-,4) : Ri — IR_%_ is differentiable; and the
relations

h(0,0) =0, rad(h,(0,0)) < 1

hold. Here h,(p, §) is the Jacobi matrix of the function p — h(p, d) for a fixed value
of §. In our case the matrix h,(p,d) is nonnegative and according to the Perron-
Frobenius theorem [26] its spectral radius is equal to its maximum (nonnegative)
eigenvalue.

Suppose that for all p € R%, all £, € B, and all n € R& with Inll =< &, the
inequalities

(& mIl = h(p, 6)

and

Il (€, m) — (& m)k = R, 6)liE — €l

hold, then the function h is a Lyapunov majorant and there exists a domain
Q C R% such that for § € Q the vector majorant equation

p = h(p,d)

has a solution

r=s0=[ g J =

Here f : Q — Ri is a continuous function, the components f; of f are nonde-
creasing in each of their scalar arguments (i.e., § < § implies f (&) =f (5~)), and
F(0) =0.

For 6 € € the operator #(,§) : R2 , R2 maps the closed convex set Bjs)
into itself. Hence, according to the Schauder fixed point principle (Appendix D),
there exists a solution £ € Bys) of the operator equation (14.21) and the desired
nonlocal perturbation bounds for the solution are

0x; = ll&ill2 < fi(9), 6 € .

We have
mi(&,n) = Nimi + (€, m),

where
2

Pi(&,m) == —vec ZMijvec (Hj (vec_l(f),vec"l(nj)))

Jj=1

The next step is to show that the operator 7(-,8) : R?" — R2"" is a contrac-
tion on a certain small set of diameter that vanishes together with 4. An estimate
of this set in terms of the perturbation vector ¢ will give us the desired nonlocal
perturbation bound.
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The vectorizations of the matrices H;(Y,dP;) are given by

vec(H (Y, 0P)) = (I, ® X)) (In2 + Pp2)vec(6B1Y, — 6D Y1)
+ (X2 ® I,) (Inz + Pp2) vec(Y10B) (14.22)
— vec(Y;(Dy + 6D,)Y1) + vec (Y184, + §A{Y7)
+ vec (Yi(B1 + 6B1)Yz + Ya(B1 + 6B1) ' Y1)

and
vec(Ho(Y,6P,)) = (Xo®I,)(In2 + Pp2)vec(Y16By — Y20D,)
+ (In ® X1) (In2 + Pp2) vec(6B2Y3) (14.23)
— vec(Ya(Dy + 6D2)Ys) + vec (§42Ys + Yab A7)
+ vec (Ya(Bs + 6B2) "Y1 + Yi(By + 6B2)Y) .
Let

”YVlHF < Pis 1= 172a

where p; are nonnegative constants. Then it follows from (14.22), (14.23) that

2
(€ mllz < esty(8 Z ;jvec(H;(Y, 6P;))
5=l 2
2
< esty( Z | My vec(H;(Y, 6P)|,
-<_ hi(pv 6)7
where
P1 2
= cR
P [ p2 ] *
and
hi(pr,p2,0) = esti(0) + air(0)p1 + aiz(d)p2
+ 2b;(8)p1pa2 + ci1 (8)p? + cin(8)p3, i =1,2.
Here
a;1(8) = 2||Mi||204, + vi1(6B, +dp,) + Vi2dB,,
ai2(6) = 2||Mi|l204, + vi2(dB, +0p,) + virds,,
bi(6) = |Mull2(IBillz + d5,) + | Mazll2(|| Bz2ll2 + 6B.),
cia(d) = [Mull2(ID1ll2 + 6D, ),
ci2(6) = ||Mall2(l| D2ll2 + 6p,), i =1,2,
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and

Vi1l = ”M'Ll(In ®X1) (In2 +Pn2)||27
Vie = |[Mp(X3 ®In) (In2 + Pa2)ll, -

The function h : R% xR% — RZ that we have constructed is a vector Lyapunov
majorant for the operator equation (14.21) and the majorant system of two scalar
quadratic equations

pi = hi(p1, p2,8), i = 1,2, (14.24)

may also be written in vector form as

p = h{p, ),
where
_ | hlp,d)
M) = [ h;(p, 5) ]
We have
h(0,5) = est1 () ]
! )_ estg(é)
ho(p,6) = a11(6) + 2b1(8)p2 + 2c11(8)p1  a12(6) + 2b1(8)p1 + 2¢12(8) p2
als 0,21(6) + 2b2(5)p2 + 2021(5)p1 a22(6) + 2b2((5)p1 + 2622(5)/)2 '
and

h(0,0) = 0, h,(0,0) = 0.

Therefore, for § sufficiently small, the system (14.24) has a solution

r=ro=[ 55|

which is continuous, real analytic in § # 0 and satisfies f(0) = 0. The function f{(-)
is defined in a domain 2 C ]Ri whose boundary 692 may be obtained by excluding
p from the system of equations

p = h(p,d), det(I2 — h,(p,d)) = 0. (14.25)

The second equation in (14.25) implies that the Jacobi matrix h,(p, ) of h in p has
an eigenvalue 1. In fact, in this case the spectral radius of h,(p, ) is equal to 1.
Relations (14.25) form a system of 3 scalar functionally independent equations of
4-th degree in 10 unknowns (the elements of p and §). This defines a 7-dimensional
algebraic variety Qc Rio. In a neighborhood of the origin the variety Q may be
parametrized as

o~

p=pt), §=105@t), teR,
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where p(-) : R” — R% and p(-) : R7 — R% are algebraic functions. In turn, the
surface (an algebraic variety of co-dimension 1) in Ri, parametrized by

5§=4(t), teR7,

forms part of the boundary of the set 2 C R8.
The second equation in (14.25) is equivalent to

w(p,8) = 1-¢(6)+ai(6)p1+ a2(6)p2 +26(8)p1p2
+ 11(8)p} + 72(6)p5 =0,

where
e(6) = an(d) + ax(d) — an1(6)aza(d) + a12(d)a2(9),
a1(0) = =2(c11(6){1 — az2(8)) + b2(8)(1 — a11(d))
+ a12(8)c21(6) + b1(6)az1(9)),
az(6) = —2(c22(8)(1 — a11(6)) + b1(8)(1 — a22(4))
+ a21(8)c12(8) + ba(d)ai2(8)),
B(6) = 4(c11(8)eaz(d) — c12(d)ea1(9)),
1(8) = 4(b2(8)e11(8) — br(d)ea1(9)),
Y2(8) = 4(b1(8)c22(d) — b2(6)c12(6)).

Thus, for the determination of (part of) the boundary 99 of the set Q we have
a system of 3 scalar full 2-nd degree equations in p;, pa, whose coeflicients are
2-nd degree polynomials in §. For § € Q denote by p = f(4) the smallest nonneg-
ative solution of the majorant system (14.24). As a result, we have the nonlocal
nonlinear perturbation bounds

b5x, < fi(6), 6€Q, i=1,2. (14.26)
Note that if 4 is not on the boundary of €, in the sense that w(p, ) > 0, then

rad(h,y(p,0)) < 1.

In this case (-, ) is a generalized contraction on B, and, according to the Banach
fixed point principle, the solution for §X is locally unique. Moreover, its elements

are real analytic functions in the elements of the perturbations in the coefficient
matrices.

14.3.2 Explicit bounds

In practice, it is not necessary to explicitly determine the domain ) and the
functions f;. It suffices, for a given 6, to solve numerically the majorant system
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(14.24) and then to check the condition w(p,d) > 0, where p is the computed
solution. Then, if such solutions exist (which is guaranteed for ¢ sufficiently small),
one has to choose the smallest nonnegative solution of the system (14.24). We can
again avoid the numerical solution by finding a new Lyapunov majorant g, such
that
h(p,8) = g(p, 6)

and for which the equation

p=g(p,6) (14.27)

has an explicit form solution. This can be done in many different ways. The
sharpest result is obtained by considering Consider the function | = [I1,l2]T with
components

Li(8,p) = e; + a;1p1 + asap2 + 2bp1pa + clpf + cop?
together with the majorant equations
pi = li(p,8), i=1,2.
Subtracting both sides of these equations we get
p1L — p2 = an1p1 + ai2p2 — A2101 — G222 + €1 — €.
If we assume that a;; < 1+ aj;, then we have
pr = Ap2 +

where

_1+4a1n—ao . 1

_1+a21—a11’ '_1+a21—a11'

Substituting this expression in any of the equations p; = l;(p,d) we get the
quadratic equation

A

Bapy — (L= B1)pz + o =0
for po, where the coefficients By = B;(§) are given by

Bo = esty+cipi(er — en)?,
/31 = )\a21 + aso + Qu(b + cl>\)(€1 - 62)’
B2 = co+ 1A+ 20

It
b= {5 eRY: 1(0) +2v/Bo(0)Ba00) <1}
then we obtain the perturbation bound
_ 2060 (%) .
1—81(8) + /(1 = B1(5))2 — 450(6)B=(5)

Hence, we also have the bound

p1 < pu(8)(e1(6) — e2(8)) + A(8)p2(6)-

p2 < p2(0)
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14.4 Notes and references

Coupled linear and quadratic matrix equations arise in many areas of control
theory, see [27, 227, 57, 118]. Their sensitivity analysis, however, is less developed.
Perturbation analysis of coupled Lyapunov equations is done in [47]. Complete
local and nonlocal perturbation analysis of coupled Riccati equations, as presented
above, is published in [124], see also [2]. The test examples presented in [124] show
that the perturbation bounds presented above can be very tight.
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Chapter 15

(General fractional-affine
equations

15.1 Introductory remarks

In this chapter we present the perturbation analysis for general fractional affine
matrix equations of the form

Py + RF;'Fy =0,

where the F; are affine matrix expressions in an unknown matrix X. We also briefly
discuss symmetric fractional affine matrix equations, particular cases of which are
the discrete-time Riccati equations. A detailed treatment of this equation is given
in Chapter 16.

Each fractional affine term in a fractional affine matrix equation includes the
inversion of a matrix, depending on the solution. Thus, in general the equation is
not defined over the whole space of matrix arguments. This significantly compli-
cates the proof of existence theorems for the solution, and still little is known in
this area for general fractional affine matrix equations.

15.2 Problem statement
Consider the general fractional affine matrix equation
F(X,P):= (X, P) + F5(X, P)F; (X, P3)Fy(X, Py) = 0, (15.1)
where X € F™*" is the unknown matrix. The function
F(-,P) :F™*" — [FP*4q

287
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is a fractional affine matrix operator, depending on the matrix collection
P= (P1>P27P37P4)
and
Fi(-, P) : 7™ — P
are affine operators,

Fy(X,P):=C;+ Y AixXBu, (15.2)
k=1

depending on the matrix collections
Pi = (Ci, Aily Bila .. 7Ai,ria Bi,ri) s 1= 1, 2, 3, 4.
Here
Ci € ]FPinz'7 Aik c H;‘mxm7 Bik c Fnx%

are given matrix coefficients. It is assumed that mn = pg := [ and

PL=p2=pP, P3=Pa=8 1 =q4=4, 42 =43 = S.

The matrix (2r; + 1)-tuple P; depends on p;q; + r;(mp; + ng;) parameters — the
elements of the matrices C;, A;x and Byg.
The most general fractional affine matrix equation

FI(X,P1)+ Y Foy(X, Py F3; (X, P3j)Faj (X, Pyz)

j=1

includes r» > 1 fractional affine terms ngF3;-1F4j.
Denote by
Fz(X,P): Frxt — FPX4

the partial Fréchet derivative of F' in the corresponding r x t matrix argument
ZeP:= {C17A117 Blla cee )047 (AR A4,7‘47 B4,7‘4} ) (153)

computed at the point (X, P).
We assume that equation (15.1) has a solution X, such that the linear operator

FX = Fx(X,P) : men — FP*4

is invertible. We recall that we assume in general that mn = pq and hence, the
matrix spaces F™*™ and FP*9 are isomorphic.

The problem of existence and uniqueness of the solution of general fractional
affine matrix equations is of independent interest but it is not the subject of this
monograph.



15.2. PROBLEM STATEMENT 289

According to the implicit function theorem, (see Appendix A) the solution X
is isolated, i.e., there exists € > 0 such that equation (15.1) has no other solution
X with ||)~( — X|i < e. The matrix Fg()?, 133) is invertible in an open neighborhood
of the pair (X, P;) and hence, the functions F3(-,-) and F(-,-) are properly defined
and even analytic in some neighborhoods of (X, P3} and (X, P), respectively.

The perturbation problem for equation (15.1) is stated as follows. Let the
matrices from P be perturbed as

Ci Ci +0C;, Ay — A+ 8Ay, By — Bix + 0By

(if some of the above matrices are not perturbed then the corresponding pertur-
bations are assumed to be zero). Denote by P + § P the perturbed collection P, in
which each matrix Z € P is replaced by Z + §Z. Then the perturbed equation is

F(Y,P +6P) = 0. (15.4)

In general some of the coefficient matrices from P may not be perturbed. For
instance, some of the matrices C; may be zero, or some A;x or B;; may be unit
matrices as in the symmetric fractional affine matrix equations discussed below.
To treat such cases we shall need some more notation. Denote by

ﬁiz {Zl,Zg,...,Zr}Cp

the set of all matrices from P, which are perturbed, and let x* : P — {0,1} be
the characteristic function of the subset P, i.e.,

1 if ZeP
*Z: ’~
X(2) {0 if ZeP\P.

Consider for example the following equation in F**"
C1 + A1 X + XBy(I, + X)"1A4X = 0.

Then
P= {ClyAlv Ina 01 I‘n1 B2;InvIn7[n;0aA4aIn}

and
P = {C1, A1, By, Ay}

if perturbations in Cy, A1, By and A4 are considered.
Since the operator Fx is invertible, equation (15.4) has a unique isolated solu-
tion X + 6.X in the neighborhood of X if the perturbation d P is sufficiently small.

Moreover, in this case the elements of §X are analytic functions of the elements
of 6P.
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Denote by
0 0 0 50 ) 0 ol T
& = {51%52, 53,-..,54+2(T1+r2+r3),...,5,,_1,5,,] (15.5)
T v
= [501’5‘411’5311" "’5047' "35A4,T476B4,7‘4] € R+
the full vector of absolute norm perturbations d; := ||0Z||r in the data matrices

(15.3), where
v:=4+42(r; +r + 713+ 74).

Similarly, let
T T r
§:= [(51,52,...,(5,«] = [5Z1,522,...,(5ZT] €R+ (15.6)

be the vector of non-zero absolute norm perturbations in the data matrices Z € P.
Thus, some of the quantities 67 > 0 may be zero, while all §; are positive.
The perturbation problem for equation (15.1) is to find a bound

5x < f(6), 6€ QCRY, (15.7)
for the perturbation §x := ||§ X||r. Here f is a continuous function, non-decreasing
in each of its arguments ; and satisfying

£(0) = 0.

The inclusion ¢ € Q guarantees that the perturbed equation (15.4) has a unique
solution X + §X in a neighborhood of the unperturbed solution X, such that the
elements of X are analytic functions of the elements of the matrices 62, Z ¢ 73,
provided 4 is in the interior of 2. We derive a first order local bound

8x < f1(8) +O([4]*), 6 — 0,
which is then incorporated in the non-local bound (15.7), where
f1(8) = O(lj4l)), 6 — 0.

Estimates in terms of relative perturbations

_ l16Z]r

zZ = y Z e ’ﬁa
121l

for px := ||6X||lr/|| X||r are straightforward when X # 0, and are not given in
detail.

An important special case of fractional affine equations are symmetric fractional
affine matrix equations of type (15.1). Symmetry means that the operator F'
satisfies

FT(X,P)=F(X",P)
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in the real case and
FY(x, P)=F(X" P)

in the complex case. Hence, we must assume that F; and F2F3‘1F4 are symmetric
operators. This will be the case when the operators Fy and F3 are symmetric and,
since they are affine, that their linear parts

Ti
Z— Y AwZBi, i=13,
k=1

are Lyapunov operators, see Appendix F and that the operator Fj is the trans-
pose or the complex conjugate transpose of the operator F». Hence, in the real
symmetric case

ri
Fi(X,P)=Ci+> (AxXBJ + BuXA} +exDaXD}), i =1,3,
k=1
with Cl = C;r, C3 = C:;r, Eik = :t]., and
(2] T2
Fy(X,P) =Ca+ Y AwXBjy, Fa(X,P) =C5 + Y BuX A,

k=1 k=1

In the complex case we have
E(X,P)=C; + Z (A XBE + By X Al + e Dy X DY), i = 1,3,
k=1
with C; = CH, C3 = CE, and
F(X,Py) = Co + iAszBglk, Fy(X,P) = C3 + iszXAgk.

k=1 k=1

Note that the above conditions on Fy, F3 and Fy imply symmetry of the fractional
affine term FyF; ' Fy but they are not necessary for symmetry to occur as shown
next.

Symmetric fractional affine matrix equations, as they arise in optimal control
and filtering of discrete-time linear systems, are often called discrete-time algebraic
Riccati equations, see Chapter 16.

15.3 Local perturbation analysis

In this section we present the local perturbation analysis of equation (15.1).
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15.3.1 Condition numbers

Consider the conditioning of equation (15.1). The perturbed equation (15.4) may
be written as

F(X +6X,P+6P) = Fx(6X)+ Y Fz(6Z)+G(3X,6P) (15.8)
ZEP
= Fx(6X)+ > x"(2)Fz(6Z) + G(6X,6P)
ZeP
= Fx(8X)+ ) Fz(02)+ G(6X,6P) =0,
zeP

where
Fx (") := Fx(X, P)(:) € Lin(p,m,n, q,F)

and
FCi(') = FCi(X,P)() € Lin(papivqiaQ7F),
FAik(') = FAik_(X’ P)() E Lin(p)pi’maqu)v
Fp,() := Fg,, (Xa P)() € Lin(p, n,qi, q,F)

are the Fréchet derivatives of F(X, P) in the corresponding matrix arguments,
evaluated at the solution X (see Appendix A), and the matrix G(6X, 5 P) contains
second and higher order terms in 6X, 6 P.

A straightforward calculation leads to

Fx(2) = Y AwZBu + <Z Aszng) N (15.9)
k=1 k=1
T3 T4
- M (Z Angng> N+M (Z A4kZB4k> y
k=1 k=1
and
Fc(Z) = Z, Fa, (Z)= ZXBy, Fp, (Z) = A1 X Z,
Fe,(Z) = ZN, F4,,(Z) = ZXByN, Fp, (Z) = Ak XZN,
Fe (2) —MZN, Fa,, (Z)=~-MZXBsN, Fp, (Z)=—-MA3,XZN,
Fe(Z) = MZ, Fa,(Z) = MZXBa, Fp, (Z) = MAyXZ,
where

M := F5(X,P)F;Y(X, P), N := F;1(X, P)Fy(X, P). (15.10)
Since the operator Fx(.) is invertible, we get

0X = - Y Fx'oFz(5Z) - Fx'(G(X,6P)). (15.11)
zZeP
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Relation (15.11) gives

ox <Y Kzbz +O(J5)), 6 -0, (15.12)
ZeP
where the quantities
Kz:=||Fx'oFs|, Z € P, (15.13)

are the absolute individual condition numbers [188] of equation (15.1). Here ||.|| is
the induced norm in the corresponding space of linear operators.
If X # 0, then an estimate in terms of relative perturbations is given by

0X
px = WXE o 5™ ks + O(181%), 50,
Xl = 2

where the scalars

11lr

ZeP,
1 Xlle’

J— KZ
are the relative condition numbers with respect to perturbations in the matrix
coefficients Z € P.

The calculation of the condition numbers Kz is straightforward. Denote by
Lz € FP9%"t the matrix representation of the operator Fz(-) € Lin(p,r,t,q). We
have

T2

Lx = ZBlk ® Ak + Z By N)T ® Ay (15.14)
k=1 k=1
— Z(ngN MA3k) + Z B4k ® (MA4k)
k=1
and

LCl = I, LAlk = (XBlk)T ®Ipv LBlk = Iq ® (AlkX)v
Le, = NT'®I, La, =(XByN)" ®I,, Lp,, =NT ® (AxX),
Le, = -N"@M, La,, = —(XBxN)' @M, Lp,, = -N' & (MAxX),
Le, = I,®M, La, =(XBy)' @M, Lp,, = I, ® (MAyX).

With these expressions, the absolute condition numbers are calculated from
Kz = |Lx'Lzll2, Z € P. (15.15)

A possible disadvantage of this approach may again be the large size of the involved
matrices Lx and Lz. Condition and accuracy estimates, avoiding the formation
and analysis of large matrices, are proposed in [179].
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15.3.2 First order homogeneous bounds

As in Section 12, we derive local first order homogeneous estimates. For this we
rewrite the perturbed equation in vector form as

vec(6X) = Z Nzvec(6Z) — Ly'vec(G(6X,5P)), (15.16)
zZeP

where _
Nz:=-L3'Lz, Z€P.

The condition number based estimate is an immediate consequence of (15.16),
taking into account that 6z > ||vec(62)]2,

bx = X lp = vec(5X)lz < esty(5) + O(I6]%), & — 0,

where

est1(6) := > |Nzll26z-
zeP
Relation (15.16) also gives

6x < esta(d) + O(|8)1%), 6 — 0,

where

estz(0) == || N2[1d]l2

and
N = [Nl,Nz,...,NT] = [NZ]7N227"'7NZT]'

The bounds est; (§) and esty(d) are again alternative, i.e., which one is better
depends on the particular value of A. Again, there is a third bound, given by

5x < est3(8) +O(||6]?), § — 0,

where

est3(6) := Vo T Ms

and M is a r X r matrix with elements
o H
mq; = [N Nyl

Since
mij < || Nill2llV; |2

then
est3(0) < estq(6).

Therefore we have the overall estimate

6x <est(6) + O(||8]|?), § — 0, (15.17)
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where
est(d) := min{esta(d), est3(d)}. (15.18)

The local bound est in (15.17), (15.18) is a non-linear, first order homogeneous
and piece-wise real analytic function in 4.

15.3.3 Component-wise bounds

A local component-wise bound follows directly from relation (15.16) as

vec(6X)| < Y |Lx'Lz|Ivec(62)| + O(|4]%), & — .
ZeP

To compute the componentwise estimate one must have information about ttle
perturbations in the components of the data of the form |vec(Z)| < Az, Z € P,
where Az = 0 are given vectors.

15.4 Non-local perturbation analysis

To derive non-local bounds we use the matrix Taylor expansion of (A + E)~! in
E, where A is invertible and rad(A='E) = rad(EA™!) < 1. It is a generalization
of the scalar Taylor expansion

1 1 e e?

P :a——ﬁ-}raﬁ—“-:tm(a,€)+7‘m(a‘76)7

where m € N and

. 1 e (—)me™ 1 L (ENF
tm(a,e) = E*;-{-"'-FW—ZEE_O(_I) (5) )
m+1 1
m 9 = -1 mtl (E) )
rm(a.€) (-1) a ate

which is valid for @ # 0 and |e| < |a|. The generalization to the matrix case is
straightforward

(A+E)™" = A'—A'EA '+ A'EAT'EA ...
= Tw(A E)+Rn(4,E),

where
Tn(AE) = AT (-DREATY,
k=0

Rn(AE) = (-1 (A7 E)'(A+ By (BA7)E
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Here k may take any of the values [ = 0,1,...,m + 1, since the value of R,, in
fact does not depend on k. Thus, we have m + 2 different forms for the remainder
R... In particular for m = 0 and m = 1 we have

(A+E)y '=A"'—(A+E)'EA ' = A1 - A'E(A+ E)™! (15.19)

and
(A+E)™? = A'-A'EA 4+ (A+E)"HEATY? (15.20)
= AT'-A'EAT' 4+ AT'E(A+ E)T'EAT?
= AT - ATEATY 4 (ATTE(A+ B),
respectively.

Let now the collections P; be perturbed to P;+4P;. Then in equation (15.4) we
may represent the perturbed quantities F;(X + 6X, P; + 6F;) as described below.
In what follows we mark only the dependence on the perturbations 6X and §F;,
recalling that X is a fixed solution of (15.1). We have

F,:= Fy(X +6X,P, + 6P,) = F, + E{(6X,6P,),
where F; := F;(X, P;) and
Ei(0X,6P;) == Li(6X) + Ki(0F;) + Qi(6 X, 0 F5).

Here L;(-) : F™*™ — FPiX4 jg a linear operator, defined by

Li(Z) := Z A ZBi.
k=1

The term

Ki(6P) :=6Ci + > (6AixX By + A X 6By
k=1
contains the first order perturbations in P;, and Q;(-,dF;) is the affine operator

Qi(Z,0P,) 1= (6AixZBik + A Z6Buy, + 0 A (X + Z)6By).
k=1

Thus, the expression Q;(6X, dP;) contains the second and third order terms in 6 X
and 0.P;. The perturbed equation

Fvl + ﬁzfg_lﬁ;l =0
may be written as

F(€) = Fi+ & + (Fy + &) (Fs + &) M (Fu + &) = 0, (15.21)
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where £ 1= (£1,82,€3,&4) and &; := Ei(dX,éPi). We may represent f(é’) as the
sum L(&) of its partial Fréchet derivatives F¢,(0) in &; at £ = 0 plus the second
and higher order terms @Q(€) in &,

F(&) = L(€) + Q(£).

Then we have

Fe, (0)(2) Z, Fg,(0)(Z) = ZN,
Fe,(0)(Z) = —MZN, F¢,(0)(Z) = MZ,

where the matrices M and N are defined in (15.10). Hence,
L((S) =& +EN— MEN + MEy. (15.22)

The expression for Q(€) is more tricky. It may be written in six different forms
which lead to 12 possible norm estimates. We present only one of them, which
is based on the two representations in (15.19) and the three representations in
(15.20). We use the ‘most symmetric’ form, using both representations in (15.19)
and the second one in (15.20). This gives

Q(€)

Eo(F3 + E3) 716y — Ey(F3 + £3) &N (15.23)
+ME&E(Fs + 53)_153N — ME&3(F5 + 53)_154
(E2 — ME)(F5 + &) (€4 — E3N).

i

In the following we give an estimate for

(€)= | Fx " QEN -
When estimating the Frobenius norm of the expression & (F3 + £3)71&;, we get
two different bounds based on the representations

Ei(Fs + &)\ = & (I + Fy &) T Byl = &R (I + &F 1) 7 gy,

namely
- I€:ll2 [| 757 &l
” ( 3 3) J”F - 1= ”F3_153”F ( )
and 1
| oy o NEFS I 1€ 525
[€:(Fs + €2) 71| < &, (15.25)

In order to have equal denominators we must choose the first (15.24) or the second
(15.25) option in all four terms in the first equality in (15.23). Let us for example
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choose the first option (15.24). Then we have

1y M€l ||F5 &l _ €212 || F5 ! &)
&) < ||ILxM], —=2 L ILXN(NT @ L) ||, ———— 2 2
(P( ) H X l|2 1_”F3—1€3HF || X ( P)“Q 1—HF3 153HF
_ €52 || 5 &4
+ L5 (I, © M)||, 12—l
Il e 20l s
- I€3llz || F5 &5
+ |ILFNNT @ My, =8 2
R RN

Using the second equality in (15.23) we also get

1E2 — ME&; |2 ||F5 ' (4 — EsN) ],

P(€) < ILX, = (15.26)

I

The implementation of (15.26) and (15.26) may produce different overall perturba-
tion bounds. This, however, will result in small (second and higher order) changes,
so we shall consider only bounds based on (15.26).

The perturbed equation may be rewritten as an equivalent operator equation
for 60X,

6X = ®(6X,6P) := &,(6P) + 02(6X,6P) + U(5X,6P), (15.27)
where
®1(6P) = —F;'(Ki(6P,)+ Ka2(6P2)N (15.28)
— MK3(0P3)N + MK(6Fy)),
®2(Z,6P) = ~F3YQ1(Z,6P) + Qa(Z,6P,)N

— MQ3(Z, 6P3)N + MQ4(Z, (5P4)),
—Fx ' ((B2(Z,6Py) — ME3(Z,6P3))
X(F3 + Eg(Z, (5P3))_1(E4(Z, 5P4) — E3(Z, 6P3)N))

V(Z,6P)

1

We again apply the technique of Lyapunov majorants and fixed point principles
(Chapter 5) in order to derive non-local perturbation bounds.
Let || Z||r < p. After some straightforward calculations we get

|E2(Z,6Ps) — ME3(Z,6Ps)|2 < aa(8) + B2(6)p, (15.29)
|F5 ' Es(Z,6P3)||, < as(6) + B3(8)p,
|Fs (Ea(Z,6Py) — Ea(Z, SP)N)|l, < 0a(d) + Ba(d)p,

where, for i = 2, 3,4,

a(6) = au(d)+ ai(d), (15.30)
Bi(9) Bio(8) + Bi1(0) + B2 (9).
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The quantities
aij(6) = O([l61); Bix(8) = O(lI8]|*), 6 — 0,

are determined as follows.

Case 1 = 2:
@1(8) = bc, + Y (IIXBakll26ay + | A2k X|265,,) (15.31)
k=1
r3
+[|M|l26c, + > _(IM]|2]| X Bakll2bas, + 1M Ase X |12084,),
k=1
() = [|X|2022(4),
B20(8) = (D B ® Ay~ > _ By ® (MAs)||
k=1 k=1 2
Ba1(8) = Y (IBakll2ay, + Il Azkll205,.)
k=1
+ > (1M 12l Bak |20 4y, + | M Asi[|208,),
k=1
Ba2(8) = Z 04208y + M|z Z 043k 0By
k=1 k=1
Case 1 = 3:
an(8) = ||F5|,0c, (15.32)
+ > (IF ), IXBaell2ba, + || Fs ' Az X ||, 85, )
k=1
as(d) = [ X|2832(4),
B30(8) = ZB;}C ® (F3'4s)|
k=1 2
Ba1(0) = Z (”FB_luz | Bakll20.4,, + HF3—1A3’€H253%) )
k=1
ﬁ32(6) = HFS_IHQZ(SAEU:(SBBI:'
k=1
Case i = 4:
oq(6) = ||F5Y, dc, (15.33)

+ 3 (IE 1 1 X Bakll2b an + 11F5 "  Aak X 126 5,,)
k=1
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+ ||F57 |, IV ]|28¢,

+ Z (IF5 I, 1 X B3k N 28 aqe + 1 F5 " Ask X |2l N 2055, ) »

k=1
agp(d) = || X[28:(4),
T4 r3
Bao(d) = ZBLC ® (F; ' Au) Z By N)" ® (Fy Az
k=1 k=1 2
Ba(8) == Y (1F |, 1Barll20 g + ||Fs* Aak], 65.)
k=1
+ Z (||F3_1H2 | Bsk N [|2044, + I|F3—1A3k”2 ”N”25Bak) )
k=1
T4 73
'642(5) = IIF§1||2 (Z 6A4k534k + “N”2 26A3k533k> :
k=1 k=1
It follows from (15.29)-(15.33) that
[@1(6P) + ®2(Z,6P)lr < ao(8) + a1(é)p, (15.34)

bo(8) + b1(8)p + ba(8)p?

W(Z 6P <
N BT ORACT
provided that
1—a3(9) 15.35
< hm) 1539
Here
a0(5) = am(é) + a02(5) = est(&) + “X”z(lm(é),
al(é) = a11(5)+a12(5),
™1 1
an(®) = D LX (Bl @ L)l 040 + I IILX (I, ® Aw)ll, 08,
k=1 k=1
r2 T2
+Z]M?(@%NV®AME%H+E:W&WNT®A%Wﬁ&k
k=1
35 (B 020 (15.3)
+ Z L3 ® (MAsk)) ||, 054

T4
+ Z HL)_(l (B;I;c ® M)”g 61441: + Z HL;(I (Iq ® (MA4/€))H2 5B4k7
= k=1

1 2
alg(é) = Z HL)—(1H2(5_41k531,c + Z HL)“(l (NT ®Ip)||2 5A2k532k
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+ Z HL)_(I( ® M H26Aiik533k + Z HL ®M H26A4k:634k

k=1
and
bo(6) = ||Lx||, o2(8)as(d), (15.37)
b1(8) = ||Lx'|l, (ca(8)Ba(6) + as(A)B2(A)),
b2(8) = ||Lx'[|, B2(6)Ba(6).

Using (15.34) we see that the Lyapunov majorant h(d, p) for equation (15.27),

such that
12(Z, 6P)|lr < h(5,p),
is
bo(8) + b1(8)p + b2(8)p?
as(8) — Ba(0)p

Thus, the fundamental majorant equation h(d, p) = p for determining the non-local
bound p = p(é) for §x is quadratic:

h(8, p) = ao(6) + a1(8)p +

d2(8)p* — d1(8)p + do(8) = 0, (15.38)
where
do(6) = bo(8) + ao(8)(1 — a3(é)), (15.39)
di(d) = ao(8)B3(d) + (1 — a3(8))(1 — a1(8)) — b1(B),
d2(A) = b2(8) + B3(6)(1 — a1 (9)).

Suppose that § € Q, where

Q= {5 > 0: 2¢/do(8)d2(0) < dl(d)} CR. (15.40)

Note that the inclusion § € ) guarantees that inequality (15.35) is fulfilled. Then
equation (15.38) has non-negative roots p;(p) < p2(4),

2do(9)
) + /d2(8) — 4do(8)d2(6)

p1(0) = f(8) := (15.41)

Hence, the operator ®(-,P) maps the closed convex ball
B(6) :={Z e F™*" : || Z||r < f(8)} C F™*"

into itself. According to the Schauder fixed point principle there exists a solution
0X € B(d) of equation (15.27), for which

5x = |6X|lp < £(5), 6 € Q. (15.42)
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If 6 € 4, where

Q= {5 > 0: 2/do(0)d2(0) < dl(d)} cQ,

then p;(0) < p2(8) and the operator ®(-,6P) is a contraction on B(d). Hence, the
solution 0.X, for which the estimate (15.42) holds true, is unique. This means that
the perturbed equation has an isolated solution X + §X, where the elements of
0X are analytical functions of the elements of 6 P.

As a result of the non-local perturbation analysis, presented above, we have the
perturbation bound (15.40)-(15.42), where the involved quantities are determined
via the relations (15.30)—(15.31), (15.37) and (15.39).

15.5 Notes and references

Local and nonlocal perturbation bounds for general fractional-affine matrix equa-
tions have been derived in {130]. The problem of existence of solutions of certain
classes of nonsymmetric matrix quadratic equations is addessed in [217].



Chapter 16

Symmetric fractional-affine
equations

16.1 Introductory remarks

Symmetric fractional-affine equation in general form may be described as

k
Q+ Lo(X) + > _S(X)LTH(X)SF(X*) =0,

i=1

where @ is symmetric (Q* = Q), Lg, L1, ... Ly are Lyapunov operators and S; are
Sylvester operators (see Appendices F and E).

The corresponding general perturbation results are cumbersome and we shall
not give them here. Instead, we shall consider two important classes of symmetric
fractional-affine equations: the descriptor discrete-time Riccati equation arising in
the theory of optimal control and filtering, and a special equation arising in some
applications.

16.2 Discrete-time Riccati equations

16.2.1 Statement of the problem

In this section we present perturbation bounds for the decriptor discrete-time
matrix Riccati equations arising in the control and filtering of linear multivariable
systems. Both real and complex equations are considered. We derive condition
numbers, first order local bounds and nonlinear nonlocal bounds.

We note that a complete perturbation analysis for the descriptor discrete-time
Riccati equation has not been published up to the moment.

303



304 CHAPTER 16. SYMMETRIC FRACTIONAL-AFFINE EQUATIONS

We use the notations Fy = F?X" x F**" x Fr*™ x F**" and accordingly
R4 — Rnxn X RTLXTI X Rnxn X Rnxn C4 — (Cnxn X Cnxn X Cnx’ﬂ X (C'n.xn.

16.2.2 Motivating example

Consider the stabilizable and detectable discrete-time control system

Ex(t+1) Az(t) + Bu(t), t =0,1,..., z(0) = zo, (16.1)
y(t) = Cz(1),

i

where z(t) € F*, u(t) € F™ and y(t) = F are the state, control and output vectors,
respectively, and £, A € F**" B € F"*™ (C € F"*™ are constant matrices. It is
supposed that the matrix E is nonsingular but may be ill-conditioned with respect
to inversion. The system is real or complex if the underlying field F is R or C.
Accordingly, we use A* to denote AT in the real case and A" in the complex case.
We recall that the system (16.1), or the pair [E~1A, E71B), is stabilizable
if there exists a gain matrix H € F™*" such that the closed-loop system ma-
trix E~Y(A + BH) is convergent, i.e., has its spectrum in the central open unit
disc in the complex plane. The system (16.1), or the pair (C, E~'A4], is de-
tectable if the pair [A*E~* C*) is stabilizable. Systems of type (16.1), or triples
(C,E~'A, E7!B), that are both stabilizable and detectable are called regular.
Let the quadratic performance index

o0
J(u,20) := Y (v ()y(t) + u*(t)u(t)) — min
=0
be given. The control sequence u = {u(t)}, ¢ = 0,1,..., that minimizes the

quantity J(u,xo) for each initial state zop € F™ can be realized in the form of a
state feedback

u(t) = —(Im + B*XoB) ' B* X, Axz(t),
where Xy = X5 > 0 is the solution of the descriptor discrete-time Riccati equation
E'XE=C"C+A* XA~ A*XB(I,, + B*XB)"'B*X A. (16.2)

In this case J(u,zo) = z§Xoxo.
The closed-loop system is described by the equation z(t + 1) = E~1Agz(t),
where

Ap:= A~ B(I, + B*XoB) !B*X,A

and the matrix E~1A4 is convergent.
Matrix Riccati equations of this type arise also in other areas of control and
filtering theory for discrete-time linear systems.
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16.2.3 Statement of the problem

Recall that for arbitrary matrices U, V over F such that the products UV and
VU are defined, the nonzero eigenvalues of UV and VU coincide (the eigenvalues
are counted according to their algebraic multiplicity). Hence for B € F**™ and
S := BB the spectra of I,, + SX and I, + XS coincide since spect(l, + M) =
1 + spect{M) for an arbitrary matrix M € F"*™. Moreover, for m < n the
eigenvalues of SX are those of B* X B plus n — m zero eigenvalues. In particular
the matrices I, + SX and I,, + B*X B are simultaneously singular (if B*X B has
an eigenvalue —1) or nonsingular. Suppose further on that —1 ¢ spect(B*X B).
Using the identities

(In+SX)"' = I,-B({I,+B*XB)"'B*X,
(I.+XS)™' = I,-XB(I,+B*XB)"'!B*
we can rewrite equation (16.2) in the equivalent form
R(P,X)=E*XE-Q-A"X(I,+SX) 'A=0, (16.3)
where P:= (Q, E, A, S) € F4, X € F**"*. We also have the form
E*XE-Q - A*(I, + XS)"'XA=0.

It follows from the regularity of the system that equation (16.3) has a unique
symmetric (in the sense Xo = XJ) nonnegative stabilizing solution Xo. At the
same time the Riccati equation may have other solutions (which necessarily are
not nonnegative and not stabilizing), including nonsymmetric ones. Note also that

A=A - B(In + B*XoB)~'B*XoA = (I, + SXo) ' A.

In many applications the systems under considerations are real (F = R) and
the corresponding equation is also real,

ETXE-Q-ATX(I, + 5X) 1A =0, (16.4)
P:=(Q,E A S) € Ry, X e RV

In the complex case F = C the descriptor equation is

EUXE-Q - A"X(I, + 5X)™'A =0, (16.5)
P:=(Q,E,A,8)ely X eC™

The real and complex cases are treated similarly as a whole with one excep-
tion. In calculating condition numbers and constructing first order estimates the
technique from [147, 139] must be used which is based on the theory of additive
complex operators. The reason is that the function A — A is not linear (it is
additive but not homogeneous).
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Consider equation (16.3) under the assumption that is has a solution X, = X
such that the linear matrix operator £ : F**™ — F"*" defined by

L(Z)=E*ZE — AjZ Ao, Z € F™*7,
is invertible. The eigenvalues of £ are the eigenvalues of its matrix
L:=ET®E - A] ® A € F*" <.

We recall that the matrix L of a linear matrix operator L is defined by the relation
vec(L(Z)) = Lvec(Z) for all Z.

It is easy to show that £ is invertible if and only if Ai; := X;(E~ 1 4g)X; (E~ 4g)—
1+#0,4,7=1,...,n. Indeed, the matrix L is invertible if and only if so is the
matrix

LETQE") ™ =12~ (E7'4) ® (E'4)". (16.6)
But the eigenvalues of the matrix (16.6) are exactly the numbers \;;, 4,7 = 1,...,n.

Note that if @, S > 0 and the triple (Q, E-1A, E-1SE~*) is regular then there
is a (unique) stabilizing solution X > 0 such that the matrix E~! Ay is convergent
and hence the operator L is invertible. This latter case is interesting from point
of view of applications but the perturbation analysis given below holds also under
the weaker assumption that only a solution Xo = X§ with £ invertible exists.

Let the matrix coeflicients in (16.3) be subject to perturbations @ — Q + 4Q,
Ew— E+6E, A— A+64, S— S4+65 IfQ = C*C and S = BB* and
C, B are perturbed as C +— C + 6C, B — B + 6B, then the perturbations §Q =
C*6C 4 0C*C + 6C*6C, S = B6B* + §BB* + §BB* are also symmetric (here
symmetry means (Q = Q*, etc.).

The analysis given below is different for symmetric and nonsymmetric pertur-
bations in the matrices () and S. We shall consider symmetric perturbations only.
The nonsymmetric case can be treated by the scheme proposed in [153].

The aim of the norm-wise perturbation analysis is to find computable bounds
for the norm

bx 1= |6X |r

of the perturbation in the solution Xj as a function of the perturbation vector
6 :=[61,02,03,04)" :=[6q,0p,04,05]" € R

whose elements dg := ||6Q||r, 05 = ||0E||r, 64 := ||6Allr, ds := ||6S||F are the
Frobenius norms of the perturbations in the data matrices Q, F, 4, S.
Having a perturbation estimate

dx < f(9)

in absolute perturbations 6z = ||6Z||f, a perturbation bound in relative perturba-
tions
oz
£z

=22z 40,
1Z e
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is straightforward, namely

f(De)
I Xlte

ex <

where ¢ := [e,€4,6p,65] € R, D := diag(|[Qlr, [ Allr, | Ellr. [IS][r)-

16.2.4 Perturbed equation
General case

The perturbed equation is obtained from (16.3) replacing the nominal value P =
(@, E, A, S) of the collection of data matrices with

P+6P=(Q+Q,E+6E,A+6A,S+46S),

namely

R(P+6P,Y) =0. (16.7)

A priori it is not clear whether the perturbed equation (16.7) has a solution with
the required properties. So we shall assume that a solution to (16.7) exists for the
given 6 P. However, from the nonlinear perturbation analysis presented below we
shall find conditions for solvability of equation (16.7), see also Chapter 13.

Setting Y = X + §X we may rewrite (16.7) as an equivalent equation for the
perturbation X in Xj.

The construction of the equivalent perturbed equation is based on the following
scheme, described in Chapter 13.

Suppose that the linear operator Rx (P, Xy) is invertible, where R(P, Xp) = 0.
Then we may rewrite the perturbed equation

R(P+ 6P, Xo+6X) =0
as
5X = —R3 (P, Xo) o Rp(P, Xo)(6P) — Rx!(P, Xo) o R(P, Xo)(6P,6X). (16.8)

Note that Rp(P, Xp)(0) = 0 and R(P, X)(0,0) = 0. This guarantees that for
small 6 P equation (16.8) has a small solution 6X in the sense that

§X = —Ry'(P,Xo) o Rp(P, Xo)(8P) + O(||5P||?), 6P — 0.
Further on we shall abbreviate Rx (P, Xy) as Rx, etc., omitting the depen-

dence on the fixed quantities P, Xy whenever appropriate. We shall also write the
unperturbed solution as X.
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Real case
In the real case £ := Ry is a real Lyapunov operator R"*" — R"*", defined by
L(Z)=E"ZE — Aj Z Ao, Z € R™*",

and has a matrix
L=E"QET - Al ® Al e R"*"
We also have
Ro(2) -Z, Rp(Z)=Z"XE+E"X2Z,
Ra(Z) = —-Z"XAy-AlXZ, Rs(Z)= A XZXAo

I

and hence
Rp(0P) = —0Q +6E" XE + ETX6E — 6AT X Ag — Aj X6A + Ag X65X Ao.
Thus we can write equation (16.8) as
0X =TI(6P,6X) =111 (6P) + II1(6P, 6 X), (16.9)

where I11(6P) := —L~ ! o Rp(U1(6P)), I2(6P,6X) := —L7Y(R(6P,6X)).
Set
M:=1I1,+5X, M:=M+H, H:=8Z+65(X +Z) (16.10)
and -
Ni=M'-M1l1=M'HM '=M1HM™ (16.11)

Note also that
ATXN=AJXHM™', NA= M"'HA,. (16.12)

Using the inequalities (16.10)—(16.12), the term
R(6P,Z) = R(P+0P,X + Z) - R(P,X) — Rx(Z) — Rp(dP)
can be written in the form

R(3P,Z) = AJX65ZA¢—~ AJXHM "HA
+ 6EZE+ E' ZSE + 6E' X86E + 6E" Z6E
— AT ZM YA - SAZAg — AT XM ISA - AT ZM15A
+ 6AT(X + Z)NSA+ AT (X + Z)NSA
+ ATZNA+6AT(X + Z)A.

We shall rewrite (16.9) in a vector form. Denote

3
Ay

i

vec(6X), Ay :=vec(dQ), Az :=vec(dE), Az :=vec(dA), (16.13)
vec(6S) € R™, A = vec(6P) = [A],A], A5 ,Af]T € R4,
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We have
£ =m(A,8) ==m (D) + m(4,§), (16.14)
where 71 (A) := L™ vec(U1(8P)), ma(A, €) := L™ Ivec(Uz(0P, 6X)).

After some computations we obtain

m{A) = M1A1 + MaAg + M3Az + MyAy,

where
My = L' My:=L Yl + Pp)(In®ETX), (16.15)
M; = — LYz + Pu) (I, ® 4] X),
My = — LY (A4] X ® A X).

For éx < p the Frobenius norm of II3(6 P, §X) can be estimated as

bo + bip + bap?

HHQ((SP, 6X”F <ap+ap+
Co —C1p

where ¢g > 0 is a constant and the coefficients oy, ay, b; and c; are nondecreasing
nonnegative functions of § with a(0) = a;1(0) = bp(0) = b1(0) = 0.
We do not present here the coefficients in explicit form since this can be done

- —

immediately using the expression for (£(R)) = L{R).

Complex case

In the complex case of equation (16.5) there are certain modifications. For prop-
erties of nonlinear complex additive operators see Chapter 13. We recall that for
complex m x n matrices G = Gy +1G,, H = Hy + 1H, we set

o(G, H) := [ Go+ Hy H,—-G ]

G+ H, Go— Hy

We may define the real version z® € R?" of the vector z € C" as

z
zR::[ 0 } e R™,
21

This gives (Gz)R := GRzR ¢ R?™, where

Go -Gy Imx2
GIR = R mXx2n
[ Gr Go ] ©
is the real version of G. Note that
(Gz + HZ)® = (G, H)®

and ©(G,0) = GR,
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The complex Lyapunov operator

K:=Rx: Cnxn _, onxn

acts as
K(Z)= EHZE - AflZA,, Z ¢ C™*7,

and has a matrix

K=E"®FE" - A] ® AL
Due to the invertibility of X we have

0X =U(6P,6X) := T (6P) + Ty(6 P, 6X), (16.16)
where
U1 (6P) := K~1(VL(8P)), Wo(6P,6X) := K1 (Va(6P,6X)).

The expressions V; are similar to U; in the real case, with transposition replaced
by Hermitian conjugation.

As in the real case we rewrite the equivalent operator equation (16.16) in a
vector form

£ =19(A,8) == ¥1(A) +12(A,8).
Here we have used the substitutions (16.13) having in mind that £, A; € C"" and
A € C**. We have v; := K~lvec(¥;). In particular

Y1(A) = Nips+ Norpz + Noofiy + Naipiz + Na2lAs + NaAg,  (16.17)
Ny = K' Nyjy=K'(I,® Af X),
Ny = K '(AJX®I,) Py2, N3y =K' (I, ® ERX),
N3z == ~K ' (E'X®I,) Py, Ny:=-K ' (A4 X ® Af X).

16.2.5 Condition numbers and local bounds
In this section we give condition numbers and derive local first order bounds for
the perturbation dx = ||6.X || in the solution X of the descriptor Riccati equation
(16.3).
Real equation
Based on (16.14) we get
€ =m(A) + O(|A)* + [1€12), Al + ligl — o

Since [|€]] = O(||Al]), A — 0, this is equivalent to

&= MiAL + MoAy + M3As3 + MyAy + O(“A”2), A — 0.

Hence, using the fact that x = [|£[|2, and having in mind (16.15), we see that the
following result is valid.
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Theorem 16.1 In Frobenius norm the absolute condition numbers Cgz for the
solution X of the real equation (16.4) relative to the matriz coefficients Z = Q,
E A S are

Cq = |Mill2, Cg = ||M2l2, Ca = ||Mal|2, Cs = || Myl>.

The determination of the relative condition numbers ¢z := Cz||Z||p/|| X ||F is
straightforward provided Z, X # 0.
Except condition number based estimates we also have

Ox < esta(d) + O(I0*) == |[[M1, Mz, Ms, Ma]ll21l6]|2 + O(I6]|*), 6 - 0,

where the matrices M, are displayed in (16.15).
Another perturbation bound is [133]

Sx < ests(8) + O(||6]12) := /3T Mod + O([|6]12), 6 — 0,

where
M() = [m”] S RiX4, ms; = “MiTMj“Z’ Z,] = 1,2,3,4.

We stress that the matrix My may not be nonnegative definite, i.e., it may
have negative eigenvalues. At the same time 6" Myd > 0 for § € RY.

The bounds est, and estz are alternative since both inequalities esty{(d) <
est3(d) and esta(d) > est3(d) are possible.

Thus we see that the following theorem is valid.

Theorem 16.2 The perturbation dx in the solution X of the real equation (16.4)
satisfies the local perturbation estimate

dx < est(8) + O(|8]I%), 6 — o,
where

est(d) := min{esty (4}, ests(d)}.
Complex equation

Consider the complex descriptor Riccati equation (16.5). We give only the final
results.

Theorem 16.3 In Frobenius norm the absolute condition numbers KzS for the

solution X of the complex equation (16.5) relative to the matriz coefficients Q, E, A, S
are

Kq = |Nilla, Kg = |©(N21, Na2)lly s
Ka |©(N31, Nag)ll,, Ks = ||Nall2.
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If Z,X # 0 the relative condition number for X relative to Z is kz :=
Kz|IZ|le /)| X |l
Define the matrices

Ty := NR, Ty := ©(Nay, Ngg), Ts := O(Nay, Nag), Ty := N¥
from R2"**27* and let
T := [t;;] € Ry, by o= [TRTy|),, 4,5 =1,2,3,4.
As in the real case, set
Est2(6) := [|[T1, T2, T3, Td]ll, |16]|2, Ests(8) := V&1 T6.
Then we have the following result.

Theorem 16.4 The perturbation 6x in the solution X of the complex equation
(16.5) satisfies the local perturbation estimate

5x < Est(6) + O(|I6]), 5 — 0,

where

Est(6) := min {Esta(6), Ests(6)} .

The bounds given in Theorems 16.2 and 16.4 have the properties of the similar
bounds in the real case. In particular they may be very accurate.

Suppose that the perturbations in the coefficient matrices Z € {Q, E, A, S} sat-
isfy |0Z||r = €||Z||r for some £ > 0. Let d;(P, X) be the quantity est; (| P|)/| X ||r
in the real case or Est;(J|P}|)/|| X ||r in the complex case, i = 2,3. The quantities
ed;(P, X)e are first order bounds for the relative perturbation dx /|| XF in the
solution X. Thus we may define the overall relative conditioning of X as

d(P, X) = min{ds(P, X), d3(P, X)}.

16.2.6 Nonlocal bounds

The local estimates from Theorems 16.2 and 16.4 are valid for asymptotically small
perturbations.

To avoid the disadvantages of the local bounds one can apply the methods
of nonlocal perturbation analysis. As a result one gets nonlocal (and in general
nonlinear) perturbation bounds of the form dx < f(8) for § € 2, where Q is a
certain domain in the space of the norms of the perturbations in the coefficient
matrices, see Chapter 13. Here the inclusion § € Q guarantees that the perturbed
equation (16.7) indeed has a solution Y = X + X for which the bound dx < f(§)
holds true.

The nonlocal perturbation analysis is based on the techniques of Lyapunov
majorants and fixed point principles.
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Real equation
Set ag(d) := ag(d) + est(d). Then we have the Lyapunov majorant

bo(8) + b1(8)p + b2(d)p?
co —c1(d)p '

h{6,p) = ap(8) + a1(8) +

For @;(0) < 1 the majorant equation p = h{4, p) reduces to the quadratic
equation
ma(8)p? — m1(8)p + mo(d) = 0,

where
ma(6) = b2(6) + c1(8)(1 — a1(6)),
mi(6) = ao(d)e1(d) + co(l — ar(6)),
mo(é) = bo((s) + C()ao((S).

Thus we come to the following statement.

Theorem 16.5 Let § is small enough in order to satisfy the inequality

ma(6) > 21/mo(8)ma(8).
Then the nonlocal bound
2mo(6)
m1(8) + /m2(8) — 4mo(8)m2(4)
ia valid for the perturbation 6X in the solution X.

dx Sf(é) =

16.2.7 Complex equation

In the complex case we have similar nonlocal result with some differences, e.g.
L is replaced by K, est(d) — by Est(d), and the transposition — by Hermitian
conjugation.

16.2.8 An alternative approach

An alternative approach to the construction of Lyapunov majorant for the operator
equation is given in [153]. It is based on the following considerations. Suppose that
the matrices S + 65 and @ + 6Q) are symmetric and nonnegative definite and that
the perturbed system is regular. Then the perturbed equation has a nonnegative
definite solution ¥ = X 4 §X. It is shown in [153] that for every nonnegaive
definite S+ 4.5 and Y one has

1Y (I + SY) lr = |(Zn + YS)"'Y | < Y, (16.18)
1Y (In + (S +68)Y) " Hlr < Y1,
I(Zn + SY)1S|| < |iS||
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for both the spectral and Frobenius norms. Indeed, the first inequality is obvious if
Y is nonsingular since Y (I,+SY) ™! = (Y "14+5) L and Y "1 +S > Y ~1. This gives
(Y= +9)"1 <Y. If Y is singular we may consider the matrix Y (u) := Y + ul,,
4 > 0, and pass to the limit u — 0.

Consider for simplicity only the real case. The complex case is treated similarly
using the expressions for the induced norms of additive operators.

We can rewrite the perturbed equation as

R(P)Y)+ R(P+ 0P, Y)— R(P,Y)=0. (16.19)
Furthermore we have
R(P,Y)=R(P,X)+ Rx(6X) + B(6P), (16.20)

where
B(Z) = Ay Z(I, + S(X + Z))"1SZ A,. (16.21)

In turn, we have
R(P+6PY) - R(P,Y)=A"Y(I, + SY) '6SY (I, + (S + 6S)Y) 14
— ATY (I, + (S +3S)Y) 1A —6ATY (I, + (S + 6S)Y) 14 (16.22)
= SATY (I, + (S +38S)Y) 1A - 6Q
+dE'YE+ E"YSE + 6ETYSE.

It follows from (16.21), (16.22) and(16.18) that

I£7'B(Z)|ir |27 (A5 ® A )|, I1Z2(In + S(X + Z)) 7' SZ||k

<
< L7 (Ag @ 49) ||, ISH201Z 1% (16.23)
and

1L (R(P +6PY) = R(P,Y)lr < [IL7Y|2(8¢ + (X |l2 + 6x)3%)

+ L7 In2 + Po2) (In ® ET) |, 051X |12 + 6x) (16.24)
+ IL7HAT ® AT)||28s(| X |12 + 6x)?

+ L7 T2 + Po2) (In @ AT) ||, 04 (|| X ]|2 + 6x)%.

Relations (16.23) and (16.24) yield the Lyapunov majorant
h(3, p) = ao(8) + a1(8)p + a(8)p?,
where

ao(8) = [[L€ |20 + ||[L7 (In2 + Po2) (In @ ET) ||, | X ||265
+ HL—I(In2 + Pn2) (In ® AT) Hg ”X”25A
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+ |L7HAT ® AT)|2)1 X365
+ L 2l X iz (6% + 6%)
() = |[L7' L + Po2) (In® ET)”sz
+ [T e + Pz) (In @ AT) ||, 64 + 21 L7HAT ® AT)[l20s
+ Iz (6% + 63)
ax(8) = L7 (Ag ® A7) ||, ISll2 + 1L (AT ® AT)ll2ds.

Hence we have the following resuls.
Theorem 16.6 Let
sel = {al(é) +2v/a0(8)az () < 1}.
Then the nonlocal nonlinear perturbation estimate

(SX S g((;) — 20(()((5)

T 1- () + (@)

Y(8) == a2(8) — dap(8)arz(8).

s valid, where

16.2.9 Numerical example

We shall illustrate the implementation of Theorem 16.6.
Cousider a third order standard discrete-time matrix algebraic Riccati equation

X-ATX(I1+SX)"'1A-Q=0
with matrices Q = VQoV, A = VAV, S = VSV, where V is an elementary
reflection, V = I3 — 2vv' /3, v = [1,1,1]", and
Qo = diag(10%,1,107%), Ay = diag(0,107%,1), S = diag(107%,107% 107%)

for some positive integer k. The sensitivity of this equation increases with the
increasing of k.

Due to the diagonal form of the matrices Qg, A¢ and Sy, the solution is given
by X = VX,V, Xy := diag(z1, 2, x3), where

o a?+gisi— 1+ (a2 + gisi — 1)% + dgys:) V2
=
281‘

and g;, a; and s; are the corresponding diagonal elements of Qp, Ap and Sp.
The perturbations in the data are taken as AQ = VAQyV, AA = VAAV,
AS = VAS,V, where

10k -5 7 _
AQo=| -5 1 3 | x1077,
k

7 3 10
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Table 16.1: Exact perturbation, local and nonlocal perturbation bounds for k =0

J | X r/IiX|lr est2 est3 9(9)
L
10 | 7.51x1071% | 1.72x1079 | 6.21x107° | 1.02x1078
9 751x107% | 1.72x1078 | 6.21x1078 | 1.02x10~7
8 7.51x1078% | 1.72x1077 | 6.21x1077 | 1.02x10~6
7 751%x1077 | 1.72x107% | 6.21x107% | 1.02x107°
6 7.51x107% | 1.72%x107°% | 6.21x107° | 1.02x107*
5 7.51x1075% | 1.72x107% | 6.22x107% | 1.03x1073
4 7.51x107% | 1.72x1073 | 6.27x107% | 1.06x1072
3 751x1073 | 1.72x107% | 6.83x1072 | 1.70x10~!
| 2 7.51x107%2 | 1.72x107 ! | 1.72x107! *
3 —4 8
AAg=| -6 2 -9 | x1077
2 7 5
107 —107%F 2x107F
ASy=| -107% 5x107% -107% | x107/

2x107F  -107% 3 x107*
for j =10,9,...,2.
"The perturbation [|[6X|r in the solution is estimated by the local bounds
est2(d), est3(d) and the nonlocal bound g(§).
The cases when the nonlocal estimate is not valid since the existence condition
4 € I is violated, are denoted by asterisk.

The results obtained for different values of k and j are shown at Tables 16.1~
16.2.

16.3 Symmetric fractional-linear equation

16.3.1 Statement of the problem
In this section we present perturbation bounds for the complex matrix equation
F(X,A) =X~ A, —cAllX"14;, =0, (16.25)

where A; € C™*" and the solution X € C**" are symmetric matrices, and A :=
(A1, A2). Real equations of type (16.25) are formally obtained replacing C by R,
and the complex conjugation AY - by the transposition A; .
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Table 16.2: Exact perturbation, local and nonlocal perturbation bounds for k =1

i | N6 X eI X |7 est2 est3 g(8)

10 | 1.07x1071% [ 326x1079 | 2.84x1079 | 2.36x1078
9 1.07x1077 | 3.26x107% | 2.84x1078 | 2.36x10~7
8 1.07x107% | 3.26x10°7 | 2.84x10~7 | 2.36x107°
7 1.07x10~7 | 3.26x1076 | 2.84x107% | 2.36x1075
6 1.07x107% | 3.26x1075 | 2.84x107°% | 2.36x10¢
5 1.07x107° | 3.26x1074 | 2.84x10~% | 2.39x1073
4 1.08x107% | 3.26x1073 | 2.84x1073 | 2.78x1072
3 1.09x1073 | 3.26x1072 | 2.84x1072 *

2 1.17x1072 | 3.26x10"! | 2.84x107! *

First order local bounds and nonlinear nonlocal bounds are derived for equation
(16.25) following the general scheme described in this book. The technique used is
based on Lyapunov majorants and fixed point principles [137]. The perturbations
in the data A and the solution X are estimated in terms of the Frobenius matrix
norm || - |[p. The use of this norm allows to obtain explicit expressions for the
individual condition numbers of X relative to perturbations in Ag. The pertur-
bation bounds allow to derive condition and accuracy estimates for the computed
solution when a numerically stable algorithm is applied to solve (16.25). To avoid
trivial results we assume that Ay # 0.

16.3.2 [Existence and uniqueness of the solution

We do not consider in detail the problems of existence and (local) uniqueness of
the solution of equation (16.25) which may be quite complicated. In particular
this equation may have no solutions or may have both symmetric (in the sense
X" = H) and nonsymmetric solutions. In turn the solutions may be isolated (or
locally unique) or belong to certain algebraic manifolds. An idea of these problems
is illustrated in the following low order examples for real equations.

Example 16.7 For n = 1 the equation X = A; + A3/X with Ay # 0 is equivalent
to the quadratic equation
X?2-A X - A2=0
and has real solutions
Ay /A2 + 442
5 .
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%

Example 16.8 Let n = 2, A; = 0 and A; = diag(l,w), where w € R is a
parameter. If X is a solution of the equation then

det X = (det A)?/ det X = w?/det X

and hence for w = 0 the equation has no solution. For w # 0 we have det X = tw
and the equation has two isolated solutions X7 2 = £Aj, two 1-parametric families

of solutions
1 ¢

0 —w

X(t) = [

and one 2-parametric family of solutions

],—X(t), te R,

t1 w(l—1t2)/ts
t2 —wtl

X(t1,t2) = [ ] , t1 € R, ty € R\{0}.

The isolated solutions are symmetric, each 1-parametric family of solutions con-
tains one symmetric matrix (take ¢ = 0) and the 2-parametric family of solutions
contains a 1-parametric family of symmetric matrices (take t? + t3/w = 1). ¢

We assume that equation (16.25) has an (local) unique solution. Conditions for
existence and uniqueness of extremal solutions to (E.3) are given in [58] and [63].
Applications of this equation to a number of problems in control theory, networks,
dynamic programming, filtering and statistics are considered in [111, 242], while
a computational algorithms for its solution is proposed in {171].

In the following the subindexes k,! take values 1,2.

Consider the matrix equation (16.25) under the assumption that for a partic-
ular value A° of A it has a symmetric solution X° such that the partial Fréchet
derivative of F in X at the point (X, A°) is invertible. Further on we omit the
superindex “0” and denote the matrix parameter and the particular solution as A
and X.

The perturbed equation is obtained from (E.3) by replacing a nominal value
A = (A1, A2) of the collection of data matrices with A+JA = (A1 +d6A;, Axy+5Az) :

F(X +6X,A+34)=0. (16.26)
Let d; > 0 and suppose that
o = |0 Ak|lr < d.

Set
(514 = (5A1, (SAQ)

For §j, sufficiently small the perturbed equation (16.26) has a solution

§X = T(8A),
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depending on §A and such that Y(0) = 0. The solution with this property is
unique and, moreover, the elements of the matrix valued function T are analytic
functions of the elements of §A.

Denote

§:=|l6X]lr
and
§:=[61,82]" = [|0A1]lg, 1Aallg] " € BE.
Then we have
£ <I(d),
where

I(8) := sup{ T(GA)lr : o < b}

Thus the aim of perturbation analysis is to estimate the quantity I'(§) from above
since its exact determination is a hopeless task. In particular the local perturbation
analysis produces the individual condition numbers c; which are defined by

T'(8) = c181 + 262 + O([|5]2), 6 — 0.

In what follows we shall also find a first order homogeneous function g : R2 — R,
such that

T(6) < g(8) +O(ll8lI*), 6 — 0,
and

9(8) < 161 + c209.

However, the use of the “chopped” bounds
§ <ci161 + b

or
£ < g(d)
may be misleading since for some values of § the opposite inequalities may in fact

hold.

To obtain rigorous perturbation bounds one can use the techniques of nonlocal
perturbation analysis. As a result one gets a domain Q C ]R2+ and a function
f: 2 — R, such that

£<f(9), 6,

where f is nondecreasing in each of its arguments and f(0) = 0.
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16.3.3 Local perturbation analysis

We may rewrite (16.26) as an equivalent equation for the perturbation 6.X in X.
We have

F(X+0X,A+6A) = F(X,A)+ Fx(X,A)(0X)+ Fa,(X,A)(0A))
Fu, (X, A)(64z) + F, (X, A)(842) + G(X, A)(8X, 0 4),
where Fx(X,A) : C**™ — C"™*" is the partial Fréchet derivative of F' in X

calculated at the point (X, A), and Fy, (X, A) : C*** — C**™ is the partial
Fréchet derivative of F' in A; calculated at the point (X, A). Similarly,

FAz(X’ A)(5A2) + F—Zz (X7 A)(‘SZQ),

is the partial Fréchet derivative of F(X + X, A + dA) in A;. The operator
F4,(X,A) is additive but not homogeneous. This specific difficulty arises due
to the fact that complex conjugation (and hence the map A — A!) is not a linear
operation.
Set
L:=Fx, £,:= Fu,, Lo= Lo+ Lop:=Fy, +FZQ’

than
F(X+6X,A+0A) = F(X, A)+L(EX)+L1(6A1)+L21(0A2)+Lo2(642)+G(6X, 5A),
where G contains second and higher order terms in 6X, 6 A,

G(6X,04) =0+ 3 +al), € +ar+az — 0.

Having in mind that F(X, A) = 0 and supposing that the operator £ is invert-
ible we obtain

6X = L7 o L1(64) — L7 0 L41(8A3) — L7 0 Lo3(0A3) + O(||a]|?), a — 0
and
T = Mia; + Maras + Moy as + O(||a||2), a— 0. (16.27)

Here
x = vec(dX), ap := vec(dAx)

are n2—vectors,

a = vec(dA4) = [ “ ] e C™,
a2
M, == —L7'L; ¢ C"2xn2, is the matrix of the operator —£7 ! o £, My, =

—L 'Ly € C™*7* is the matrix of the operator —L£L™1 o Lok, and L, L1, Loy €
2 2
R™ X" are the matrices of the operators £, £1, Lo respectively.
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Recall the fact that for nonlinear additive operators the following is fulfilled,
see [139].

For the complex m x n matrices H = Hp + 1Hy, A = Ay +1A; (with
Hy, Hy, Ag, A real), and the complex n—vector z = zp + 121 (with zg, z1 real) we
have

max{||Hz + AZll3 : |zll2 < a} = allO(H, Az,

where

(16.28)

O(H,A) = [ Ho+ A0 Ay - H, ]

Hi+ Ay Hy—Ao

Hence for the product Hz of a complex matrix H = Hy +1H; € C**™ and a
complex vector z = zg + 121 € C™ with Hy, H; and z, z; real, we have the real
versions

R 20 2n R Hy —-H 2mx2n
= R H* = eR
i [ z ] R [ Hi Ho ]

(Hz + AZ)R = ©(H, A)R

and ©(H,0) = HR.

Now it follows from (16.27) that

2% = Mia} + ©(Ma, Maz)af + O(Jla®|*), a® — 0.
Since
LY)=Y +0AYX Y X 14,
it follows that
L=1I:+0(X14;)7 @ (AFX1). (16.29)

By definition, the eigenvalues of the operator £ are the eigenvalues (counted
according to their algebraic multiplicites) of its matrix L which in turn are

1+ oX(X AN (ARX D),

where A\;(Z) are the eigenvalues of the matrix Z. Hence the operator £ and its
matrix L are invertible if and only if

oA (X 1AM (ARX Y #£ —1. (16.30)

In what follows we assume that the inequalities (16.30) hold true.
Furthermore we have

Li(Y)=~Y, Lo1(Y) = —c AV XY, Lgp = —ocYHX 14,
and hence

L = —I., (16.31)
Lo —al, ® (ARX 1),
Loo —U((X—1A2)T ®In)Pn27

i



322 CHAPTER 16. SYMMETRIC FRACTIONAL-AFFINE EQUATIONS

where P,z € C"**"" ig the so called vec-permutation matrix such that
vec(Y ) = Ppavec(Y)

for each Y € C**™. For the matrices M1, M2, we obtain

M, = -L7% (16.32)
My = —oL NI, ® (AFX™Y),
My = —oL Y (X7 'A)T ® I,))P,2

Recalling that £ = ||6X||r = ||z]|2 and since |22 = ||z™|]2 we have

€ < b+ O(||8]1?) = 161 + 202 + O(||5]12), § — 0,

where
c:=[c1,¢) € RY*?
and
e = [MPll, MY = MY,
¢y = ||M3|2, Mg :=©(May, May).

Hence the absolute individual condition numbers are calculated from

cr = [|My]],, e = |22

) (16.33)

where the matrices MIO, Mé) are the real version of the matrices My, ©(May, Mao),
given by (16.32), (16.28), and (16.29). The relative individual condition numbers
are then computed from v; = ¢ || Agllr/|| X ||F-
Relation (16.27) also gives
€ < esta(8) + O(l|6%) = || [MT, M3] {l2[16]12 + O(I16]1*), 6 — 0,
and
€ < est3(8) + O(||8]|2) := V8T MO + O(]|5)|*), § — 0,
where [M?, MJ] € R***2n* and MO = [m?,] € R?*? is a symmetric matrix with
elements m?, = HM,?TMIO k .
2
Since cd < V6T MO6 (see [142]) we find the local perturbation estimate
£ < g(6) + O(l6]1%), 6 — 0, (16.34)

where

g(8) := min {est2(4),est3(d)} . (16.35)
The estimate (16.34), (16.35) allows to define the overall relative condition number
as follows. Let 0 = €|| Ay ||r, where € > 0 (in floating point arithmetic the quantity
€ may be taken as a multiple of the rounding unit). Then g(§) = £g(a®), where
a® := [||A1||r, || A2llr]T. Hence the relative perturbation in the solution can be
estimated as [|0X| g/ X|lr < ve, where v := g(a®)/|| X||r is the overall relative
condition number of equation (E.3) at the particular solution X.
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16.3.4 Nonlocal perturbation analysis
Suppose that the perturbed equation (16.26) has a solution with
16X 1r < 1/ X2 = omin(X)-
Equation (16.26) may be written in the form

LX) = Do(A) + B1(6X,5A) + B(6X,54),

where
o(6A) = A1 +0AYX 164 + 06ATX 1Ay + 00 AN X 16 4,,
®1(0X,64) = —ocANX16XX 1645 — o0 ARX 16X X714,y —
: odAR XI5 X X715 A,,
Dy(6X,04) = oAy +6A)E(A; + 64,),

E = (XY X)*(I,+X16x)1x- L
The above relations are based on the identity
(X+6X) ' =X XXX+ (X 1X)2 (L + X716 X) P XL
As a result we get the operator equation
0X =T1(0X,0A4) :=To(6A) + I, (6X,84) + TI2(6 X, 5 4), (16.36)

where II, = £71(®,).

We shall show that under certain conditions on the F-norms &; of Ay the
operator II(:, 6 A) maps a central ball B, of diameter p = f(§) into itself, where f
is continuous and f{0) = 0. Hence according to the Schauder fixed point principle,
see Appendix D, the operator equation (16.36) has a solution 6X € B,. Finally
the estimate ||0X || < f(4) is the desired nonlocal perturbation estimate for §
belonging to a certain set ) C ]Ri containing the origin.

Suppose that £ < p, where p < 1/{|X 1|2 = omin(X) is a positive quantity.
Then, after some calculations, we obtain the inequality

2
IP(3X,84)|r < h(p,6) := ao(68) + ar(6)p + g12(—*6);5);'

Here p1:= || X712,

ao(8) = g(6) + c1ub3,
ar(8) = a1dz + a1263,
a2(8) = a2 + a1y + aznd}
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and
an = p (27 (T (AFXY) [+ 7 (1 40) T @ 4) P ).
a2 = Cl/'ﬂv
aw = u|L7(A] © 4F)]l,,
agn = pP||[L7V (A3 ® L) Pz + L7 (I, ® AY)| .,
- 3
a2 = C1u".

The function h is a Lyapunov majorant for the operator II, see [85, 137]. The
corresponding majorant equation p = h(p,d) is equivalent (for p < 1/u) to the
quadratic equation

(@2(8) + u(1 = a1(8)))p* — (1 = a1(8) + pao(6))p + ao(8) = 0.

Denote

d(8) := (1 — a1(8) + nao(8))* — 4ao(6)(a2(8) + p(l - a1(4))).

Consider the domain

Q:= {6 €R? : a1 ~ pag + 2v/ao(az + p(l — ay)) < 1} : (16.37)
If 6 € Q then the majorant equation p = h(p, §) has a root

2a0(%)
1 —ay + pao + /d(8)

Hence for § € Q the operator II(.,6A) maps the set B 7(5) into itself, where

p(8) = £(6) =

(16.38)

B, = {x ec” . lz]l2 < 7“}

is the closed central ball of radius 7 > 0. Then according to Schauder fixed point
principle there exists a solution dX € By of equation (16.36).
Thus we have the following result.

Theorem. Let 6 € Q, where Q is given in (16.87). Then the nonlocal pertur-
bation bound [|0X||p < f(68) is valid for equation (E.3), where f(8) is determined
by (16.38).

As an example consider the complex fractional-affine matrix equation X — A; —
aAgX_lAg = 0 with matrices

0.6192 + 0.3963¢ —~0.5293 — 0.3246i ~0.2048 - 0.8099:
A = —0.5293 - 0.3246¢ —0.0546 + 1.2761¢ —1.1566 —0.3197¢ |, 0 = +1,
—0.2048 — 0.8099: —1.1566 — 0.3197¢  0.2078 + 0.17641
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[ 1.3808 + 1.6037i
Ay = | 0.5293+0.3246i
| 0.2048 + 0.8099i

[ 0.2190 + 0.0535%
A = 0.0470 4+ 0.5297¢
| 0.6789 + 0.6711%

0.5293 4+ 0.3246:  0.2048 + 0.8099:

2.0546 +0.7239¢ 1.1566 + 0.31974

1.1566 + 0.3197¢ 1.7922 + 1.8236¢

0.6793 4+ 0.0077: 0.5194 + 0.41752
0.9347 4+ 0.3834: 0.8310 + 0.6868:
0.3835 4 0.0668: 0.0346 + 0.5890¢

The perturbations in the data are taken as

144 144 143
6As = 6X=100M 1 1445 144 144 |,
144 143 143
, —0.0448 + 0.0168;  0.1832 + 0.1004:
6A4; = 100k 0.1832 + 0.10047; —0.1901 — 0.89134

—0.0689 + 0.12861

c=+1,

2.0448 + 1.9832; 1.8168 + 1.8996i
A1 = 10® | 1.8168 +1.8996i 2.1901 + 2.8913i
2.0689 + 1.87145 1.3787 + 2.1385i

o=-1

for k = 10,9, ..., 2.

0.6213 — 0.1385¢

2.0689 + 1.87141
1.3787 + 2.13857
1.8993 + 1.5669¢

b
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—0.0689 + 0.12862
0.6213 — 0.1385¢
0.1007 + 0.4331:

This problem was designed so as to have solutions X = I3 and X +6X = Is+46X

of the unperturbed and perturbed equation respectively.

The perturbation |[§X| r in the solution is estimated by the local bounds
est2(4), est3(d) from Section 3 and the nonlocal bound (16.38), (16.37) from Sec-

tion 4.

The cases when the nonlocal estimate is not valid since the existence condition
d € {2 is violated, are denoted by asterisk.
The results obtained for different values of k are shown at Table 16.3, for the
equation with ¢ = 1. When k decreases from 10 to 2 the nonlocal estimate is
slightly more pessimistic than the local bounds est2(6), est3(8). We also see that
for this particular example the bound est3(d) is superior to est2(d).
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Table 16.3: Exact perturbation and perturbation bounds for o =1

k 16X |7 est2 est3 p(0) (16.38)
10 | 4.24x10719 | 1.48x107° | 1.43x107° | 1.43x107°
9 | 4.24x1079 | 1.48x1078 | 1.43x107% | 1.43x1078
8 | 4.24x107% | 1.48x1077 | 1.43x1077 | 1.43x10~7
7 | 4.24x10"7 | 1.48x107° | 1.43x107% | 1.43x1076
6 | 4.24x107% [ 1.48x107° | 1.43x107° | 1.43x107°
5 | 4.24x1075 | 1.48x107% | 1.43x10~% | 1.44x1074
4 | 4.24x107% | 1.48x1073 | 1.43x1073 | 1.44x107°
3 | 4.24x1073 | 1.47x1072 | 1.43x1072 | 1.48x1072
2 | 4.24x107% | 1.47x1071 | 1.43x107! *

16.4 Notes and references

The local bounds of the type est(d), presented in Section 16.2.5, had been proposed
in [133].

There is a number of papers devoted to the perturbation analysis of discrete-
time Riccati equations arising in linear systems theory [151, 153, 210, 214, 213,
130]. Until recently, however, the results for the complex case had not been clar-
ified. Here the treatment in [213] for the standard Riccati equation should be
complemented with the analysis from [147], see also [215].

Perturbation analysis of the periodic discrete-time Riccati equation is done in
[163].

Backward errors for the standard discrete-time Riccati equations are analyzed
in [211].

Perturbation analysis of the special symmetrix fractional-affine equation from
Section 16.3 is given in [241, 123, 132, 216].



Appendix A

Elements of algebra and
analysis

A.1 Introductory remarks

In this book we study perturbations in matrix equations, and, in a less extent,
problems of existence and uniqueness of the solution to such equations. Hence, a
basic knowledge of algebra and analysis is assumed. For convenience of the reader
in this appendix we recall some facts from algebra (including linear algebra) and
analysis that are used in the book. A good introduction to this subject is the
classical textbook [29].

A.2 Sets and functions

A set X is defined by the characteristic property of its elements z, X = {z : s(z)},
where s(z) is a statement about z. Thus, z is an element (or a point) of X,
denoted as z € X, if and only if the statement s(z) holds. A set is also denoted
by explicitly describing its elements, e.g., X = {z,y,...}.

If z is not an element of X we write z ¢ X. The set X is a subset of the set
Y if z € X implies z € Y. In the latter case we write X C Y. Two sets X and YV
are equal, written as X =Y, if they consist of the same elements, or equivalently,
if and only if X C Y and Y C X. The union X UY of the sets X and Y is the
set of all z with x € X or x € Y. The intersection X NY is the set of all z with
zeXandzeY.

The set, containing no elements, is referred to as empty set and is denoted by
(. The empty set is a subset of any set. A set {z} containing a single element x is
called a singleton. An element of a set can itself be a set. Also, an object = must
be distinguished from the singleton {z} containing z as its single element.

327
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Example A.1 The set {§}} # @ is a singleton with element §. ¢

Two sets X and Y are disjoint if X NY = 0. The complement Y\X of the set
X relative to the set Y is the set of all , such that z € Y and = ¢ X. Obviously
X\X = 0 and, more generally, Y C X implies Y\ X = 0.

The set X x Y of all ordered pairs (z,y) with z € X and y € Y is called
the Cartesian product of X and Y. We also write X x X = X?. The Cartesian
n-th degree power X™, 2 < n € N, of the set X is defined inductively as X" :=
X x X™~1 or as the set of ordered n-tuples (z1,Z2,...,Z,) with z; € X. The set
of all pairs (z,z) with x € X is the diagonal of a set of X x X.

A subset R of X x Y is said to be a relation. The relation R is functional if
for each z € X there is an unique y € Y, such that (z,y) € R. In this case we
also say that the relation R defines a function, or a mapping f : X — Y with a
domain X and co-domain Y. For every x € X the (unique) element y € Y, such
that (x,y) € R, is said to be the image of z under f and is denoted as y = f(z).
We also say that x is the argument, and y is the value of the function f at the
point x.

Let f: X — Y be a function and A C X, B C Y. The set f(4) := {f(z) :
x € A} of the images of the elements of A under f is called the image of A under
f, or simply the image of A if the underlying function f is preassumed. The set
f~YB):={r € X : f(z) € B} is the pre-image of B. When B = {y} is a singleton
we write f~'(y) instead of f~!({y}). Similarly, if f~*(B) is the singleton {z} we
write f~!(B) = z. If in particular the pre-image of y € Y is the singleton {z} we
write f~1(y) = r.

The function f : X — Y is onto, or a surjection, if Y = f(X),ie. ifeachyeY
is the image of some z € X under f. The function f is an injection if 1 # zq
implies f(x1) # f(z2), or equivalently, if the pre-image of each y € Y contains
at most one element. The function f is a bijection, or one-to-one function, if it
is simultaneously a surjection and an injection. In the latter case there exists an
inverse function f~! : Y — X, which maps each y € Y into its (unique) pre-image
z=f"y).

When dealing with objects such as systems of vectors, spectra of matrices, etc.,
it is convenient to consider collections, or sets with repeated elements, such as
Y, = {o, o, B}. From set-theoretical point of view a collection is indistinguishable
from the set, obtained by deleting the repeated elements. For example, as a set
{a, o, B} is the same as {a,3}. Note that a finite collection with n elements
is different from the corresponding vector (or ordered n-tuple) having the same
elements in a certain order.

We now define some operations with sets (or with collections) such as summa-
tion and multiplication, which are useful in the description of the spectra of linear
matrix operators. These operations are different from the standard set operations
such as union, intersection, complement, etc.
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Let A be a commutative algebra over the field F, i.e. (i) A is a linear space
over IF, and (ii) in A x A a multiplication (z,y) — zy = yz € A is defined for each
z,y € A, which obeys the distributive law (z + y)z = zz + y=z.

Let X, Y be subsets of A. We define the sum and the product of X and Y as
X+Y ={z+y:zeX, yeY}CAand XY :={zy:z € X, ye Y} C A. For
n € Z we also define the product nX by nX = {nz:x € X} C Aand, if n € N,
the power X(™ := {g" : z € X} C A. If all elements of X are invertible then we
may define X (™ for negative integers n as well.

It is easy to verify that nX ¢ X +--- + X (n summands), X™ c X-.- X
(n factors) as well as (X +Y)Z C (XZ)+ (YZ) and (m +n)X C mX + nX for
n,m € N.

Finally we define the difference of thesets X and Y as X —-Y := X +(-1)Y =
{z—y:zeX yeY}CA

A.3 Algebraic systems

In this section we recall some basic facts about algebraic systems.

Let I' be a nonvoid set. A unary operation on I is a function I' — I". An n-ary
operation, or simply an operation on I, where n € N, is a function I'* — I'. An
algebraic system is a set I' together with one or more operations on it. Binary
operations I' x I' — I' are of special interest when studying algebraic systems.
Among them are various types of summation and multiplication.

A group is a set ' of elements a, 3,7,. .., together with a binary operation
o:I'xI' = T (called a group operation or a composition law) with the following
properties.

o Associative law: ao (Bovy) = (aoB) o~ for all @, 8,7.

o Identity law: There exists a neutral element, or an identity ¢ € T, such that
aoce =coq=q for all a.

o [nverse law: For every a there exists an inverse, denoted as o™}, satisfying

aoa"l=aloa=c¢.

It is easy to show that in any group the equations {oa = fand aong =
in ¢ and 7, respectively, have unique solutions ¢ = foa ! and n = a1 0 8.
Hence, each of the equalities a0 3 = aovyand foa =yoa implies 3 =. As a
consequence we see that there is exactly one identity € and for every « the inverse
a~! is unique.

Sometimes the group operation o is called multiplication. Then we simply
write ov o 8 = aff and denote the identity as ¢ = 1 or ¢ = 1p. In this case we
have a multiplicative group. When the group operation is called addition we write
aofl =a+ [ and refer to T as an additive group. Here we denote the identity as
€ =0 or € = Or and the inverse of o as —a.
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A group (T, o) is commutative, or Abelian, if the group operation is commuta-
tive: o 8= o for all a, 5.
The following sets are commutative groups:

o The sets Q*, R* and C* of nonzero rational, real and complex numbers,
respectively, are multiplicative groups.

e The sets Q} and R} of positive rational and real numbers are multiplicative
groups.

o The sets Z, Q, R and C of integer, rational, real and complex numbers,
respectively, are additive groups.

o The set of complex numbers exp(ip), where ¢ € R, is a multiplicative group.

A field @ is an algebraic system with two binary operations (called field op-
erations), namely addition (o, 8) — a + 8 and multiplication (o, 8) — af3, such
that

e Under addition ® is a commutative group with identity, called zero and
denoted 0 or Og.

e Under multiplication the nonzero elements of ® form a commutative group
with identity, called unit and denoted 1 or 1.

¢ The distributive law a(8 + v) = af + o is valid for all o, 5,7y € ®.

Let (T', o) be a group with identity ¢ € I" and A C T". If (A, ¢} is again a group,
it is called a subgroup of (I',0). When the group operation is not mentioned
explicitly, we say that A C I is a subgroup of the group I'. Obviously {¢} and T
are the smallest and the largest subgroups of I'. They are called trivial subgroups.
A subgroup is proper if it is not trivial.

If A; and Ay are subgroups of I' then their intersection A; N A, is again a
subgroup of I'. It is the largest subgroup of I, contained in both A; and As.
Dually, the smallest subgroup of T, containing A; and Ay, consists of all products
of powers of elements of A; and A,. It is called the join of A; and As.

Let two multiplicative groups I" and A be given. The function 2 :T' — A is a
homomorphism of T' to A if h(afB) = h(a)h(5). Under the homomorphism h the
identity 1r of I' goes to the identity 15 of A, i.e., A{lp) = 1a. Thesetof all o € T,
such that h(a) = 1, is a subgroup of T, called the kernel of the homomorphism
h, and denoted as Ker(h). Thus, Ker(h) := {a € T : h(a) = 1a} = h™1(1a) is
the pre-image of 15 under h. If the homomorphism % : ' — A is a bijection, it is
called isomorphism between the groups I' and A. An isomorphism I" — T is called
automorphism. For instance the function o — o~! is an automorphism on T.
Note that a bijection I' — T is not necessarily an automorphism. For instance, if
a # 1r is fixed, the bijection 8 — a8 is not an automorphism since 1r + a # 1r.
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A.4 Linear algebra

We first consider the fundamental concept of a linear space.

Let V be a set and E be a field (such as C, R, Q, etc.). The elements of V are
called vectors and are denoted by z,y,...,z and Oy. The elements of E will be
referred to as scalars (note that the case V = E is not excluded) and denoted by
o, B,...,7. The unit and zero element of E are denoted as 1 and 0. The pair (V,E)
is said to be a linear (or wector) space if two algebraic operations — multiplication
of a scalar and a vector (a,z) — az = za € V and summation of two vectors
(z,y) — xz+y =y +zx €V are defined with the following additional properties,
valid for all z,y,z € V and o, € E:

L{z+y+z=z+y+2)=x+y+z

2. {a+ B)(z +y) =az+ay+ Pz + Py,

3. lz = z and a(fz) = (af)z = afz;

4. there exists a zero vector Oy € V, such that 4+ 0y = z and a0y = 0z = Oy.

The fact that (V,E) is a linear space is expressed by saying that V is a linear
space over E. If V is a linear space over E it is also a linear space over any subfield
E’ of E. However, the properties of the linear spaces (V,E) and (V,E’) may be
quite different.

Examples of linear spaces over a field E are as follows.

o The vector space E™ and the matrix space E™".

¢ The set of all polynomials in one or more indeterminates of a degree, not
exceeding a given number, and with coefficients from E.

e The set of functions V — W, where W is a linear space over E.

We consider column n x 1 and row 1 x n vectors z with real or complex elements
(z); = z; and denote them as z = [z;]. Consider for example the set F"* of column
n-vectors with elements from the field F = R or F = C. The set F” is a linear space
over E in the following sense. The (element-wise) multiplication F x F* — F" of a
scalar 8 and a vector z = [z;] is defined via (3, z) — Bz = [Bz;] and the (element-
wise) summation F* x F* — F" of two vectors x = [z;] and y = [y;] is given by
(z,y) — x + y = [z; + y;]. The vector with zero elements is called the zero vector
and is denoted by 0, or 0,,x1.

To recall the concepts of linear dependence, rank and dimension which are
fundamental in the theory of linear spaces, let S := {z,y,...,2,...} be a system of
one or more vectors from a vector space V over F, and let £ := {o, 5,...7,...} CF
be a collection of scalars, which is in one-to-one correspondence with S, i.e., for
every s € S, there is a ¢ € T and vice versa {note that the case when the set
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S and hence, ¥ is infinite, is not excluded). The collection ¥ is called trivial if
a=f=-=y=-..=0.

A vector u:=ax+By+---+vz+ - is a linear combination of the vectors
from S. Thus, given the system S, every collection ¥ of scalars defines a linear
combination of vectors from S. The linear combination w is zero if ¥ is trivial.
However, the vector u may be zero even if ¥ is not trivial, i.e., if some of the
scalars are not zero as in the case u = z + y, where S = {z,y} and y = —=z.

A system S is said to be linearly independent if u = 0 implies that ¥ is trivial.
Alternatively, a system S is linearly dependent if u = 0 for some nontrivial col-
lection ¥ of scalars. If a system S is linearly independent (or dependent), we say
that its vectors z,y, ..., z are linearly independent (or dependent).

If a system S contains one vector z, i.e., S = {z}, then it is linearly independent
if and only if z # 0. Equivalently, a system {z} is linearly dependent if and
only if x = 0. When a system S consists of two or more vectors it is linearly
dependent if and only if one of the vectors may be expressed as a linear combination
of the other vectors. A linearly independent system S cannot contain the zero
vector. Indeed, if for example 0 = x € S then the nontrivial linear combination
1:0+0-y+---40-24---+ (with a collection of scalars {1,0,...}) is zero and
hence, the system is $ linearly dependent.

A finite system S = {x,v,..., 2} is of rankr if it contains r linearly independent
vectors and each subsystem of S with more than r vectors is linearly dependent.
We also say that the rank of S is the (maximum) number of its linearly independent
vectors. Thus, a system S is of zero rank if and only if z =y =--- =2 = 0.

A linear space V over E has an important integer characteristic, called dimen-
sion, which may be defined as follows. A linear space, containing only the zero
vector, is of dimension zero. Let now n be a positive integer. The linear space
V is n-dimensional if there is a linearly independent system S C V, containing n
vectors, and any system with more than n vectors from V is linearly dependent.
If, for any n, there exist a linearly independent system with n vectors, the linear
space is infinite-dimensional. The dimension of V is denoted by dim(V).

A linearly independent system S = {z,y,...,z} is a basis for the linear space
V if every vector v € V may be represented as a linear combination v = az +
By + - - - + vy of vectors from S. In this case the representation, i.e., the choice of
scalars, is unique. The basis itself is, of course, not unique. If dim{(V) < oo and S
is a basis for V, then dim(V') = rank(S).

A set X C V is said to be a (linear) subspace of V if for every a, 8 € E and
z,y € X we have ar + fy € X, ie., if any linear combination of vectors from X
belongs to X. Given a system of vectors S C V, the set of all linear combinations of
vectors from S is a subspace, called the span of S and denoted as span(S). A basis
for the subspace X is any linearly independent system S, such that span(S) = X.
The dimension dim(X) of the subspace X of a finite dimensional space V is the
rank of its basis.
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We consider mxn matrices A = [a;;] with real or complex elements (A);; = a5,
ie., A e F™*" where F = R or F = C. Matrices with elements from smaller fields
such as Q are not considered, since the solution of a nonlinear matrix equation
with rational coefficients is generically not a matrix over Q, as in z2 = 2. At the
same time matrix equations with real coefficients may have complex solutions as
in the simplest case 22 = —1.

The standard operations with matrices are the element-wise multiplication with
a scalar F x F™>*"™ — F™*"_ defined by (3, A) — BA = AB = [Bas;], the element-
wise summation F™X" x FMX" — FmX" defined by (4, B) — A+ B, (A+ B);; =
a;; + b;; and the row by column multiplication F™*™ x F**P — F™*P, given by
(A, B) — AB, where (AB);; = Y_p_; aixbk;. Other types of matrix multiplications
are described in Appendix C.

The matrix space F™>" is a linear space over F of dimension mn. A basis for
F™>™ is the set of mn matrices E;;(m,n). Here E;j(m,n) is an m x n matrix with
a single nonzero element, equal to 1, in position (i, j).

The set R™*™ will always be considered as a linear space over R and then its
(real) dimension is mn. However, the set C™*" may be considered as a linear
space over C with a complex dimension mn, or as a linear space over R and then
it is of real dimension 2mn. The terms ‘real’ and ‘complex’ here are interpreted
as follows. A space V is of real dimension [ if one needs [ real scalars to determine
a vector (or a point) from V. Similarly, V is of complex dimension ! if a vector
from V is determined in general by | complex scalars.

The number of linearly independent columns of a matrix A is equal to the
number of its linearly independent rows. This number is called the rank of A and
is denoted by rank(A). Thus, if A is m x n then rank(A) < min{m,n}. The
matrix A is of full rank if rank(A) = min{m, n}. In turn, a full rank m X n matrix
A is either of full row rank if rank(A) = m, or of full column rank if rank(A4) = n.
Therefore to say that the matrix A is of full row rank simply means that it is of
full rank and the number of its rows is less than or equal to the number of its
columns.

If A € F™*" the span of the columns of A is said to be the range (or image) of A
and is denoted by Rg(A). It is the image of F"™ under the linear mapping z — Az,
namely Rg(A) := {Az : z € F*} C F™. The set of solutions to the equation
Az = 0 is the kernel of A and is denoted by Ker(A4) := {z : Az =0} C F*. It
is easy to see that Rg(A) is a subspace of F™ and Ker(A) is a subspace of F™.
Moreover, dim(Rg(A)) = r and dim(Ker(A4)) = m — r, where r = rank(A).

A square matrix A is invertible if there exists another matrix B of the same size
such that AB = I, where I is the unit matrix. In this case we also have BA =1,
the matrix B is referred to as the inverse of A and is denoted as A~1.

If A is a rectangular matrix of full rank then we may define its left and right
inverses as follows. A matrix B is a right (respectively left) inverseof Aif AB =1
(respectively if BA = I). Thus, a matrix is simultaneously right and left invertible
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if and only if it is square and invertible. A square matrix is invertible if and only
if it is of full rank. In this case we also say that the matrix is nonsingular.

If a matrix A is not square, it has a right (respectively left) inverse if and
only if it is of full row (respectively column) rank. In this case the corresponding
inverse is not unique. For a matrix A of full row rank over F a right inverse is
AH(AAM)~L If A is of full column rank a left inverse is (AHA)~1A¥. Here, AH
denotes the conjugate transpose of A and analogously A" denotes the transpose
of A.

Let A be an n x n real or complex matrix. A pair (A, z), where X is a number
and = # 0 is an n-vector, is said to be an eigenpair of A, if Axr = Az. The
number X is an eigenvalue and the vector z is an eigenvector of the matrix A.
The eigenvalues of A are uniquely determined. We have (A, — A)z = 0 and since
z # 0, then X satisfies the characteristic equation x4(\) = det(A\I, — A) = 0 of
the matrix A. At the same time the eigenvectors are determined within a nonzero
scalar factor. Indeed, if z is an eigenvector of A, corresponding to the eigenvalue
A, then for every nonzero number o the vector ax is also an eigenvector of A,
corresponding to the same eigenvalue. It is usually assumed that the eigenvectors
are normed as ||z||2 = 1.

There are various types of matrices according to their form, pattern of specified
elements (for example zero and/or unit elements) and other properties.

A matrix A = [a;;] (not necessarily square) is:

o diagonal, if a,; = 0 for i # j;

o upper triangular, if a;; = 0 for i > j;

o strictly upper triangular, if a;; = 0 for 1 > j;

e lower triangular if a;; = 0 for 1 < 7,

o strictly lower triangular, if a;; = 0 for ¢ < j.

A square matrix A is:

e orthogonal, if ATA = I. In this case we also have AAT = I;
e unitary, if AHA = I. In this case we also have AAH = [;

e normal if AHA = AAH,

o symmetricif AT = A;
o skew-symmetric if AT = —A;
e Hermitian if AH = A4;

o skew-Hermitian if AH = —A;
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e positive definite if z Az > 0 for all nonzero vectors = € F%;

o nonnegative definite if z™ Az > 0 for all nonzero vectors z € F».

A.5 Normed spaces

The concept of a length of a vector is naturally generalized for abstract objects in
the following way. Let = be a real or complex n-th vector with elements x;. Then
its Euclidean length, or 2-norm, is defined as |z|| = ||z]l2 = /|z1|> + -+ + |z.|%
Thus, the length is a nonnegative function with three important properties.

First, if  # 0 then ||x|} > 0. Second, if we multiply the vector = by the
scalar «, then the length of the new vector az is |a| times the length of z, i.e.,
ezl = |a| ||z}|. This may be interpreted as homogenity of the length. And third,
if z and y are two n-vectors, then they, together with their difference z — y, form
a triangle and the length of the third vector z — y does not exceed the sum of the
lengths of the other two, i.e., ||z —y|| < |z|| +]||y||. Replacing y with —y and using
the second property we have the more symmetric relation ||z + y|| < |lz|| + ||ly|,
called the triangle inequality.

Given a linear space, we may introduce the concepts of a norm, which is similar
to the concept of length, considered above.

Let V be a linear space over E with a zero element 0y. A function ||-|| : V — R
is said to be a norm, if it satisfies the following conditions:

L. ||z}l # 0 if z # Oy (nontriviality of the norm);
2. JJazx]] = |a|||z|| (homogenity of the norm);
3. lz+yll <|lz|| + |yl (the triangle inequality for norms).

Two important properties of norms can be deduced as follows. Setting & = 0 in
Condition 2 we see that ||0v || = 0. Furthermore, setting y = —z in Condition 3 and
using Condition 2 and the identity |0y || = 0 we obtain |0y | =0 < |lz|| + ]| —z| =
2||z||, e, |lz|| > 0. Thus, the norm is a nonnegative homogeneous function,
satisfying the triangle inequality.

The triple (V, || - ||, E) is said to be a normed space. We also say that (V,||-||) is
a normed space over E, or even more briefly that V is a normed space. If we have
several normed spaces V,W,... the corresponding norms are denoted as | - ||v,
|- llw, ete.

Let V be a linear space over F = C or F = R. The function V x V — F is
called a scalar product if it is: not identically zero, semi-linear in its first argument
and linear in its second argument. Hence, if (z,y) € F is the scalar product of

z,y € V,and X € F, then (Az,y) = Mz, ¥), (2, \y) = A(z,y) and (z,y) = (y, ).
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Example A.2 For F equal to C or R a scalar product in F” is (z,y) = zH Ay,
where A = AH ¢ F"*" is a positive definite matrix. For A = I we have the
standard scalar product (z,y) = z%y. ¢

Having a scalar product (z,y) in a linear space V over C or R, the function
x> +/(z,1) is a norm in V.

The norm ||z — y|| of the difference of two vectors x and y is the distance
between x and y. With the notions of norm and distance it is convenient to use
the geometric language and in particular to call the elements of V ‘points’.

A sequencein a set V is a function 7 : N — V. Setting z; = x(i) € V fort € N
we denote the sequence as {z;}° or briefly {z;}. Thus, the sequence is a numbered
infinite collection. With certain abuse of notation we also write {r;} C V (instead
of the rigorous z(N) C V).

The sequence {z;} of points z; from a normed space V converges to a point
a € V if for every £ > 0 there exists n = n(¢) € N such that ||z; — a|| < ¢ for
all © > n. The sequence X is a Cauchy sequence if for every ¢ > 0 there exists
n =n(g) € N such that ||z; - z;|| <e for all i,5 > n.

The normed space V is said to be a Banach space if every Cauchy sequence
X C V converges to a point ¢ € V. The finite dimensional spaces over F = R
or F = C, are Banach spaces. According to the Bolzano-Weierstrass theorem
[96] every bounded sequence {z;}32, in a finite dimensional space over F has a
convergent subsequence {x;, }32 ;.

Let z € V and p > 0. The sets By(z):={y € V : |ly—z| < p}, By(z) == {y €
Villy -zl < p} and Sy(z) :={y € V : ||y — z|| = p} are called open ball, closed
ball and sphere, respectively, centered at the point x and with radius p (for p =0
we have By(x) = 0 and Bo(z) = So(z) = {z}).

The set X C V is open if for every z € X there exists a nonempty open ball
By(z) € X. The set X is closed if its complement V\X is open. Any (open) set,
containing a particular point x € V, is said to be a {open) neighborhood of x.

A set may be open, closed, neither open nor closed or even open and closed
simultaneously.

Example A.3 The empty set § and the whole space V' are open as well as closed.
The open ball B,(z) is an open set, while the closed ball B,(z) and the sphere
Sp(z) are closed sets. The set Bi(z)\{z} of all y # = with [ly — z[| <1 is neither
open nor closed.

A more subtle example is the set of all vectors z = [zy, ... ,xn]T with entries
z; € Q, satisfying ||z]] < 1. This set is neither open nor closed in R™. ¢

Let X C V. A point z € X is a boundary point for the set X if every B,y(z)
contains points from X as well as points from V\X. Note that a boundary point of
X may not belong to X. The set of boundary points of X is called the boundary of
X and is denoted by dX. The union X := X UOX of the set X and its boundary
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dX is the closure of X. A set X is closed if and only if X = X. The set of all
z € X, for which X is an open neighborhood, is said to be the interior of X and
is denoted by X°. Thus, X is open if and only if X = X°.

Example A.4 The sphere S,(z) is the boundary of the open B,(z) as well as of
the closed ball B,(z). The set B,(z) = B,(x) U S,(z) is the closure of Bj(x).
Also, B,(x) is the interior of B,(z) provided p > 0. ¢

A set X C V is bounded if it is contained in a ball of finite radius.

A family of open sets {O;}icz is an open cover of X if their union U;c7O; is
equal to X. A set X is compact if for every open cover there is a finite sub-cover.
In a finite dimensional space over F a set is compact if and only if it is closed and
bounded.

A subset X of a linear space V is convez if for every z,y € X we have tz +
1-t)lxeXfor0<t<1.

Example A.5 If p > 0, then the balls B,(z) and B,(z) are convex, while the
sphere S,(x) is not convex. {

For x € V and X C V the quantity dist(z,X) := inf{jlz — y| : y € X}
is the distance between the point z and the set X. The quantity diam(X) :=
sup{llz ~ y|| : 7,y € X} is the diameter of the set X.

A.6 Matrix functions

In this section we consider the problems of continuity and differentiability of matriz
functions, i.e. of matrix-valued functions of matrix arguments. First we discuss
the corresponding problems for functions in normed spaces.

Let f : D — W be a function with a domain D C V, where V and W are
normed spaces over the field E C F with norms || - ||, where F stands for R or C
(we use the same notation for norms || - ||y and || - ||w in V and W). Typically we
assume that V = F" and W = F™,

If D C R is an interval and W = R™, then the function f (or its image
f(D) C R™) is interpreted as a curve. If D ¢ R™™1 and W = R™ then f (or
its image f(D)) defines a surface in R™ (under this definition, in R? curves are
surfaces and vice versa).

When W = F™, to determine a function f : D — W means to determine its
components f; : D — F, i = 1,...,m. In this case we write f = [fl,...,fm]T or
simply f = (f1,..., fm)-

A function f is continuous at the point o € D if for all € > 0 there exists
d = &(e, o) > 0, such that ||f(z) — f(zo)|| < € for any x € D with ||z — 2ol < 4.
The function f is continuous on the set E C D if it is continuous at all points of
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E. A function f = (f1,..., fm) : D — F™ is continuous at zq € D if and only if
every component f; : D — IF of f is continuous at xg.

The function f : D — W is bounded on the set E C if the image f(F) of E
under f is a bounded set. The function f is locally bounded on D if it is bounded
on each bounded subset £ C D.

If D C F" is compact (i.e., closed and bounded in this particular case) and the
function f: D — R is continuous on D, then f is bounded on D and reaches its
minimum and maximum values on D.

A function f : D — W is uniformly continuous on the set E C D if for every
€ > 0 there exists § = 6(e) > 0 such that || f(z) — f(xo)| < € for all z,z¢ € E with
lx — x0]| < 6. Note that uniform continuity is not connected with a particular
point from E, but with the whole set E.

A difference between the (usual) continuity and uniform continuity of a function
on a set is as follows. Recall from the above definitions that the function f :
D — W is continuous on E C D if for every ¢ > 0 and zg € E there exists
0 = d(e,x0) > 0 such that || f(z) — f(zo)|| < € for all z € F with |z — zof < 6.
Thus, for the usual continuity the quantity § = &(, z¢) depends on ¢ and zg, while
in the uniform continuity it depends only on &.

Uniform continuity on E implies continuity on E, but the opposite may not be
true. Let the function f : D — W be continuous on D and d(g, zo) be the quantity
in the corresponding (g, §)-definition. If §°(¢) := inf{d(e,z0) : zo € D} > 0 then
the function is uniformly continuous. Indeed, in this case we may take § to be §°
in the definition of uniform continuity. If a function f : D — W is continuous
then it is also uniformly continuous on every compact subset E of D.

Example A.6 Consider the scalar real function z — z?, defined on the interval
[0,a) C R, where a > 0. We have |22 — xg[ = |z — zo|lz + xo|. If |z — zo| < & then
| 4+ 20| < 2|xo| + 4. In this case the inequalities |z — zo||z 4+ xo] < 6(2|zo| +6) < €

yield 6 = 6(e, zp) := ¢/ ([a:ol +\/z2 + 5).

If a < oo, then we have d(g,z9) > 6°(c) := £/ (a+Va?+¢) > 0 and the
function = — z? is uniformly continuous on [0, a). If the interval J is not bounded
(a = o0), then the infimum of §(e, 7o) in ¢ € [0, 00) is zero. Therefore the function

z — z? is continuous but not uniformly continuous on [0, 00). &

If the function f : D — W is continuous at the point z¢o € D and the sequence
{z:} C D converges to zy then the sequence {f(z;)} C W converges to f(zo). But
f may not be continuous at some point g, or even may not be defined at zg, and
still the sequence {f(z;)} may converge to some point yo € W. Of course, in this
case zg must either belong to D or be ‘close’ to D in the following sense.

The point z¢ is an accumulation point for the set D if there is a sequence from
D, which converges to zg. Let xo be an accumulation point for the set D. The
function f : D — W has a limit yo at the point zq, denoted as limz ., f(x) = yo,
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if the sequence {f(x;)} converges to yo provided the sequence {z;} C D converges
to xg.

Consider a sequence of functions {f;}, mapping the set D into W. For a given
z € D we have the sequence of points {f;(z)} € W. Suppose that the limit
flx) 1= lim;_, o fi(z) exists for every z € D. Then we say that the function
sequence {f;} converges point-wise on D to the function f. If the functions f; are
continuous then the limit function f may or may not be continuous. To ensure
that a limit of continuous functions is itself a continuous function we need the
stronger concept of uniform convergence of a function sequence.

A function sequence {f;} with f; : D — W converges uniformly to the function
f:D — W if for every £ > 0 there exists N = N(e¢) > 1 such that for all : > N
and all z € D we have || f;(x) — f(z)|| < €. If a sequence of continuous functions
{fi} with a common domain D converges uniformly to the function f, then the
limit function f is continuous on D.

A function f : V — W is called linear if, for all scalars o, 8 € E and vectors
z,y € V, it is fulfilled that f(az + By) = af(z) +6f(y). The function f: V — W
is affine if f(z) = b+ I(z), where b € W and the function | : V. — W is linear.
The affine function, defined via f(z) = yo — I(@o) + I(z), takes a prescribed value
Yo at the point z¢. Linear and affine functions are often referred to as linear and
affine operators.

Linear and affine operators in vector and matrix spaces may be defined as
follows. A linear operator f : F* — F™ is defined via f(z) = Az, and an affine
operator — via f(z) = Az + b, where A € F™*"™ and b € F™. A linear operator
L : F™*" — FPX9 may be defined by L(X) = Y ;_; AiXB;, X € F™*", where A,
and B; are given p x m and n x ¢ matrices, respectively. An affine operator F has
the form F(X) = B + L(X), where B € FP*? and L is a linear operator.

A function f : V — W is called homogeneous (absolutely homogeneous) of order
ke Nif f(az) = ok f(z) (if f(oz) = lal*£(2)).

Let V and W be linear spaces over C. A function f : V — W is semi-
homogeneous of order k € N if f(az) = @* f(x). A function f is semi-linear if it
is additive and semi-homogeneous of first order, i.e., f(z + y) = f(z) + f(y) and
floz) =af(z).

A function f: Vi x Vo — W, where V; and V; are linear spaces, is bilinear if
for fixed z; € V; the functions f(-,z3) : Vi — W and f(z;,-) : Va2 — W are linear.
Similarly, the function f : Vj x --- x V,; — W of n arguments is multi-linear if it
is linear in each of its arguments.

Let a function f : D — W be defined on the open set D C V and let = be a
fixed point from D. A function f is said to be Fréchet differentiable (or simply
differentiable} at the point z if there exists a linear operator [ : V' — W such that
flx +h) = f(z) + (k) + w(h) for all h € V with £ + h € D, where the function
w:V — W satisfies limy_,o Jw(h)||/||h]l = 0. The linear operator I(-) : V — W
depends on both the function f and the point z. It is called the Fréchet derivative
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of f at = and is denoted as f'(z)(-), fu(z)(-) or J(z)(-). When it exists, the
Fréchet derivative is unique. Below we describe the Fréchet derivatives of some
matrix-valued functions of matrix arguments.

If V.= W = R then the Fréchet derivative f’(z) € R is the standard derivative
of the real-valued function f of a real argument at the pointz € D. If V=W =C
then the Fréchet derivative f'(z) € C is the standard derivative of the complex-
valued function of a complex argument at the point z € D. If V =F" and W = F™
then the Fréchet derivative of f = [f1,..., fm]T at € D is the m X n matrix
(known also as the Jacobi matrix of f at z)

! L afz
@) = )= | 32 @]

Iff:Vix.--xV, - W is a function of n (matrix) arguments zi,...,2Zn,
then we define the partial Fréchet derivative l;(-) = fz,(x)(:) : V; = W of f in the
argument z; at the point z = (zy,...,xz,) via f(z + h) = f(a) + li(h:) + w(h),
where h = (hy,...,hy,) and hy =0 for k # 1.

The existence and uniqueness of the solution as well as the perturbation anal-
ysis problems for nonlinear equations are often treated on the basis of the implicit
Sfunction theorem. The implicit function theorem gives conditions which guarantee
that the solution of a nonlinear equation, depending on a parameter, exists and
continuously depends on this parameter. Usually the existence of the solution is
claimed locally, in an open neighborhood of a fixed solution of the equation.

Let the continuous function f(-,-): A x X — Y be given, where A, X and Y
are open subsets of the finite dimensional normed spaces X, A and ), respectively,
with norms || - ||, where X and Y are isomorphic.

Let the point (ag, zg) satisfy the equation f(ao,zo) = 0. We are interested in
conditions for solvability of the equation

fla,2) =0 (A1)

in a neighborhood of (ag,xo) in the form z = ¢(a), where ¢ is a continuous
function, satisfying ¢(ag) = zg. Setting da := a — ag and dz := z — x¢ we get
oz = p(ag + da) — ¢(ag).

Theorem A.7 [173] Suppose that the partial Fréchet derivative fr(ao,zo)(-) :
X — Y of f in x at the point (ap, o) exists and is invertible.

Then there is an open set D C A and a continuous function ¢ : D — X, such
that xo = (ao) and f(a,¢(a)) =0, a € D.

Ef=[fi,.. fa]T :F*xF™ S F* and z = [z},...,%,] " then the conditions
of the implicit function theorem reduce to the existence of the nonsingular Jacobi

matrix 5 n
[-5{-(&0, 330)} = [%(ao, xo)]

J i,j=1
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When the partial Fréchet derivative f,(ag,zo) of f in a at {ag, o) also exists,
we have z = zg — f (ap, To) © falao, To)(a ~ ap) + w(a — ag), or

5z = —f7 (ag, x0) © fa(ao, zo)(da) + w(da),

where lim,_o ||w(2)|/]|z|| = 0.

The above concepts apply to matrix valued functions of matrix arguments as
follows. Let F' : D — IFP*9 be a matrix-valued function of a matrix argument,
defined in an open neighborhood D C F™*™ of the matrix X € F™*". The
function F is said to be differentiable at the point X if there exists a linear operator
L FmXn — FPX9 guch that

F(X + H) = F(X) + L(H) + o(H), (A.2)

where the matrix-valued function o : F™*" — [FPX4 gatisfies

e _
Ao TH]

(A.3)

The linear operator £(-) in (A.2) in general depends on X, i.e., £({-) = L(-, X). It is
called the Fréchet derivative of F at the point X and is denoted by £(-) = F/(X)(:).
If it exists, the Fréchet derivative is unique. The value F'(X)(H) of the Fréchet
derivative is the (best) linear approximation to the increment F(X + H) — F(X).

If the function F is differentiable for all X € D it is differentiable on the set
D.

Let now F : Dy X --- x D, — FP*X49 be a function of the multi-matrix argument
X = (X1,...,X;), where D; C F™*™ are open neighborhoods of some points
Xio € F™>n The function F is said to be differentiable in X; at the point
Xo = (X10,--.,Xro) if there exists a linear operator £;(+) : F™*™ — FPX4 guch
that

F(X + H) = F(X) + [,,(H-L) + ai(Hi),

where H = (H,,...,H,), Hy = 0 for k # i, and a; satisfies (A.3). The linear
operator £;(-) is said to be the partial Fréchet derivative of F in X; at the point
X and is denoted by L;(-) = Fx,(X)(-), or briefly Fx,(-) if the point X at which
it is calculated is clear from the context.

The Fréchet derivative of matrix-valued functions has many properties of the
standard derivative of scalar functions of a scalar argument as shown below.

If F = F) + Fy, where Fy, F5 : D — FPX9 and D C F™*" then

FI(X) = F{(X) + F3(X),
or, more generally,

(FU(X) + - + Fie(X)) = F{(X) + - + F(X).
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Here and in the rest of this section we suppose that the corresponding Fréchet
derivatives exist.

If F=GoH :F™*"™ — FPX4 i3 a composition of the differentiable matrix-
valued functions G : F™** — FPX9 and H : F™*" — F">¢, then F is also differen-

tiable, and I’ = G’ o H', or equivalently,
F'(X) = G'(H(X))H'(X).

This is known as the chain rule and it may be extended for a function F =
FiloFyo--.0F, as
F'(X) = F{ o Fjo---0 F{(X).

If F = F1F, is a product of two functions Fy : D — FP*8 and Fy : D — F$*4
then
FI(X) = F{(X)F2(X) 4+ Fi (X)F5(X).

This is the Leibnitz rule, which can be extended to k > 2 factors as follows. If
F(X) = FI(X)F(X) - Fx(X) then

F(X) = F(X)FyX) - Fe(X) + F(X)F(X) - F(X)
+ o+ F(X)Fa(X) - F(X).

Another example of differentiation of composite functions is when F' may be
represented as F(X) = Fy(X)F; Y (X)F3(X), where Fy : F™*n — FpXs F, .
Fmxn — %S and Fy : F™*" — F$X4, In this case

F(X) = F{(X)F5'(X)Fs(X)+ Fi(X)F; (X)F}(X)
~ Fi(X)F3  (X)F3(X) Fy  (X)Fa(X).

Example A.8 Let F(X) = AX +XB+XCX+DX 'E, where A,B,C,D,E €
F**™ and X € F"*" is nonsingular matrix. Then F/(X)(H) = (A + XC)H +
H(B+CX)- DX-'HX-'E.

A.7 Transformation groups

Let S be a set and I be a group of automorphisms S — S. The elements of I are
called transformations and I itself is called a transformation group on the set S.
The group I' defines an equivalence relation = on S according to the rule z = y if
there is a transformation v € I" such that y = y(x).

The set of all elements y € S, equivalent to a given z € S, is said to be the orbit
of z and is denoted as I'(z), or as [z] := {y € S:y =1} = {y(z) : v € [}. We
note that for every y € S either both z and y belong to one orbit (i.e., [z] = [y]),
or [z] N [y] = . Thus, the set S is divided into disjoint orbits. The set S/ = of
all orbits is called the orbit space (or the factor-space) of S relative to the action
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of I'. The mapping = — [z], which assigns to every member of S its orbit from
S/ =, is called the canonical projection and is denoted by 7 : S — S/ =.

A function f : S — T, where T is a given set, is said to be an invariant
relative to I' if z = y implies f(z) = f(y). This means that f is constant on the
orbits, induced by T'. It is usually assumed that an invariant is surjective, i.e., that
f(S)} = T, since this can easily be achieved. If in addition f(z) = f(y) implies
x = y, then the function f is a complete invariant for the action of I on the set S.

If 'y ¢ T is a subgroup of I', then there exist complete invariants f : S — T
and fo : S — Tp for I' and T’y respectively, such that f is a ‘part’ of fp in the sense
that fo may be represented as fy = (f,g), where g : § — T is another invariant
for I'y.

A subset C C S is called a canonical set for T if it contains exactly one member
z. of each orbit [z]. The element z. € C is the canonical form of z relative to
I'. In this case the mapping = — z. of S onto C is a complete invariant for I'.
When S is a set of objects with internal structure (such as general matrices), the
canonical set usually is a set of objects of simplified structure (e.g., triangular
matrices). The construction of canonical sets is an important task in the analysis
of the action of transformation groups, and of matrix transformation groups in
particular.

A.8 Notes and references

Elements of algebra and analysis can be found in classical textbooks such as [29,
96].
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Appendix B

Unitary and orthogonal
decompositions

B.1 Introductory remarks

This appendix is an introduction to unitary and orthogonal decompositions (or
factorizations) of a matrix. First we consider elementary unitary matrices. Then
we describe the unitary-triangular, or QR decomposition, as well as some related
matrix decompositions. We also present the Schur decomposition of a square
matrix, and the polar and singular value decomposition of an arbitrary matrix.

Transformations with unitary and orthogonal matrices (we identify transfor-
mations with the corresponding matrices when the type of action of the transfor-
mation group is clear from the context) are useful in practical computations, since
the absolute values of their elements do not exceed 1 and hence, the elements and
the norms of the transformed matrices are not changed much. This is important,
since most matrix computations are performed in finite precision arithmetic, where
the rounding errors are usually proportional to the magnitude of the computed
quantities.

Recall that a matrix U € F**" is unitary if URU = I, and orthogonal if
U'U = I,. A complex unitary or a real orthogonal matrix U is also called
orthonormed, since its columns u; satisfy the conditions ul!
the Kronecker delta.

The sets of n x n unitary and orthogonal matrices over F (where F = R or
F = C) are denoted by U(n) and O(n,F), respectively. They are multiplicative
groups under the standard matrix multiplication.

The spectral, or 2-norm ||Alj2 = max{||Az||z : ||z|l2 = 1} and the Frobenius,
or F-norm ||A|r = \/tr(AHA) play an important role in connection with unitary
transformations. The reason is that these norms are unitary invariant. in the

u; = &5, where &;; is

345
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sense that they preserve the norm of the transformed matrix: ||S||z = || A]|; and
ISl = ||Allr. Also, we have the useful inequality || AB[lr < ||Al2]|Bllr which is
easily generalized to

A1 - Arlle < | Akllr T T 11442 (B.1)
i#k

for each k € {1,...,r}.

U eU(n)or U e O(n,R) then ||Ullz = 1 and |U||r = /n. Thus, U(n) C
C™**™ and O(n,R) ¢ R™*™ are closed balls of radius \/n relative to the distance,
induced by the scalar products (U, V) = tr(UBV) and (U, V) = tr(UTV) (or by
the Frobenius norm).

If a square (complex) matrix U is represented as U = Uy + Uy, where Up,
U, are real, then it is unitary if and only if the matrix UR := [ 5(1) _UZI ] is
orthogonal.

In many applications a general matrix A is decomposed as a product, involving
unitary or orthogonal matrices, namely A = USVH or A = USVT, where the
matrix S has the size of A, while U and V are unitary or orthogonal matrices.
The matrices U and V' may not be independent (for example V may be equal to U),
or one of them may be the identity matrix or a permutation matrix. The matrix
S typically has a simple condensed form, e.g., triangular or diagonal. It reflects
the invariant structure of A under unitary transformations A — S = URAV.

B.2 Elementary unitary matrices

A general unitary matrix may be decomposed into a product of “elementary”
unitary matrices. There are several types of matrices, considered as elementary.
Among them are the plane (or Givens) rotations and the elementary (or House-
holder) reflections.

An elementary complex plane rotation (Givens rotation) is a unitary matrix,
which differs from the identity matrix in at most four positions, occupied by the
elements of a 2 x 2 unitary matrix and has determinant 1. More precisely, a
rotation in the (p,q)-plane, p < ¢, is an n X n matrix Rp,, whose (i, k) elements
T;% are determined as follows. The 2 x 2 matrix

[ Top Tpg ] (B.2)
Tap Taq
is unitary and rj; is the Kronecker delta if {z,k} N {p,q} = 0.

An elementary real plane rotation is defined similarly. It is a real orthogonal
matrix with the structure of Rp,, where the matrix (B.2) is orthogonal.
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Another type of elementary unitary matrices are the elementary reflections.
Let u € C™ be a nonzero vector. The matrix

2uuH

H(u):=1I, - Ty,

= Cnxn

is said to be a elementary complex (or Householder) reflection. It follows from that
H(u) = H{au) for each nonzero scalar a. The matrix H(u) is both Hermitian
and unitary. Elementary real reflections are defined similarly as

2007
ART

H(v):=1, - e R™™ 0#£veR™
The matrix H(v) is both symmetric and orthogonal.

The multiplication of a vector z € C® by a reflection H(u) is reduced to the
calculation of a single scalar product ufz, multiplication of a vector by a scalar
and substraction of two vectors according to

2utly
H(u)zzz—(uﬂu>u

In particular we have

and det(H (u)) = —1.

A multiplication with H(u) reflects any vector relative to Ker(uf!). Based on
this we have an elegant solution to the following problem. Given two different
vectors z,y € C" of equal 2-norm, find a unitary matrix U, which transforms z
into y, i.e. y = Uz. It follows from the reflection property of H(u) that a solution
of this problem is U = H(z — y), i.e.,

H(z - y)zr =y, llzll2 = llyll2 > 0.

It is often necessary to transform a nonzero vector x into a form with only
one nonzero element in the k-th position. Suppose that the vector z € C" is not
proportional to the k-th column ex of the identity matrix I,. Let o € C and
la| = 1. Then the required transformation is

H(z -y)z =y, y:= a|z|ex # = (B.3)
In the real case we have o« = £1 and
H(z —y)z =y, y = ||z|ex. (B.4)

The choice of o in (B.3), respectively of the sign in (B.4), is done from numer-
ical considerations in order to avoid possible cancellations in substracting close
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quantities. If the argument of xy is ¢y, i-e., Tx = pr exp(ipy), then we choose the
argument of & as ¢y, + 7 which gives & = — exp(1px). In this way the k-th element
of the vector x — y becomes (p + ||z]|2) exp(2wk).

In the real case if z; is nonnegative (respectively negative) we choose y =
|lz||l2ex (respectively y = —||z||2ek).

Since the matrix H(x F ||z||2ex) is both Hermitian and unitary we have

z = H(z —y)y = a|zll.H(z — y)er = allzl2hi(z —y),

where hy(z — y) is the k-th column of H(z — y).

Now we may solve the following problem. Given a unit vector z € C" find a
n X (n— 1) matrix V such that the matrix U := [z, V] is unitary. If z is colinear to
some column e of I, then V contains the other columns of I,,. Suppose now that
z is not colinear to a column of I,,. Let hq,...,h, be the columns of the reflection
H{zFe;) which transforms z into e;. Then a solution is V = [ha, ..., hy]. Indeed,
in this case x = +h;.

B.3 QR decomposition

Using a finite number of orthogonal or unitary transformations it is possible to
construct, the unitary-triangular, or QR decomposition of a general rectangular
matrix. First we define the echelon form of a matrix.

Let A = [a;;] be an m x n matrix of rank » > 1. Denote by ki,...,k, the
numbers of the first r linearly independent columns of A. Let s € {1,...,7} be a
given integer. We say that A is in row s-echelon formifa;; =0fori =1,...,s
and j < k; aswellasfor I =1,...,sand i > k;, § = k;. The matrix A is in row

echelon form if it is in row r-echelon form (for completeness we assume that the
zero matrix is in row echelon form and that every matrix is in row 0-echelon form).

Thus, the row echelon form is a matrix A with a;x, # 0 fori =1,...,7 and
zero elements before and below each element a;x,. If A is in row s-echelon form
then a;x, # 0 for i = 1,...,s. Also, if A is in row echelon form then a;; = 0 for

t > r. It is obvious also that if A is in row s-echelon form with s > 1 it is also in
row [-echelon form for [ =1,...,s — 1.

The row echelon form A is an upper triangular matrix, and even an upper
trapezoidal matrix if k, > r, e.g. if the first 7 rows of A are not linearly indepen-
dent.

An important observation is that if a matrix A of rank r is in row k-echelon
form, then 4 = [ Ax %

0 Arpr
and the (m — k) x (n —ry) matrix Ay is of rank r — k. the corresponding matrix.

Given a general m x n matrix A of rank r, we may construct a unitary matrix
Q € U(m), such that

} , Where the & x ri matrix A is in row echelon form

A=QR, (B.5)
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where the m x n matrix R is in row echelon form. Note that if r < m then the
last m — r rows of R are zero and we have

A=QR=[Q1, Q] [ fo } = QiRy, (B.6)

where R; is an 7 x n full row rank upper triangular matrix in row echelon form and
Q1 is the matrix, formed by the first r columns of Q. The factorizations A = QR
and A = Q1R are referred to as the QR decomposition and the condensed (or
skinny) QR decomposition of A.
Sometimes the QR decomposition includes a right multiplier, A = QRII, where
IT is the n x n permutation matrix, chosen so that the first r columns of AIl are
linearly independent. This is called QR decomposition with column pivoting.
There is also a triangular-unitary, or LQ decomposition A = LPY, where L is
in column echelon form and P € U(n). If r < n then the last n — r columns of L
are zero and
P!

— H _
A=LP" =[L,0 [ P

] =L, PE

Here L, is of full column rank and P; is the matrix, formed by the first 7 columns
of P.

If the matrix A is real, then all matrices in the QR and LQ decompositions
may be chosen real with @ and P being orthogonal.

If some additional assumptions on R and L are imposed, then these matrices
will be canonical forms for the actions A — R = QHA and A — AP of U(m) and
U(n) on C™*™. To achieve this, one may impose the requirement that the pivots
in R and L are real and positive.

Let [,,...,l, be the numbers of the first r linearly independent columns of A
and hence, of L. The canonical forms R and L contain at most r(n+1) =Y 7_, k;
and 7(m + 1) — >"7_, l; nonzero elements (among them r positive), respectively,
which constitute the algebraic invariant of A relative to the left and right mul-
tiplicative actions of U(m) and U(n). Generically k; = l; = i and we have
r(2n —r +1)/2 and r(2m — r + 1)/2 scalar algebraic invariants, respectively. At
the same time the integer r-tuples (k1,...,k,) and (Iy,...,l;) constitute the arith-
metic invariant for the above actions. The arithmetic and the algebraic invariants
form a complete set of invariants for the multiplicative action of the corresponding
unitary group.

Using the QR decomposition it is easy to solve the following problem. Given
an m x n matrix X with n < m orthonormal columns, find a m x (m —n) matrix
Y such that the matrix [X,Y] is unitary. If X = QR is a QR decomposition of
X, then Y is the matrix, formed by the last m — n columns of Q.

If the rank r of A is less than min{m, n} then the canonical forms R and L may
be further compressed, resulting in the QCP (or URV)-decomposition, described
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below. Let R; = [C1,0]PY be the LQ decomposition of the matrix R; in (B.6).
Then we have the QCP decomposition

A=qcPi=q| © Orxn—r) | pit, (B.7)
Opm—ryxr Omm—ryx(n-r)
where the r x r matrix C is nonsingular. The QCP decomposition may also be
written in the condensed form A = QlClPlH , where )7 and P; are the matrices,
formed by the first r columns of @ and P, respectively.

In contrast to the singular value decomposition, described below, the QCP
decomposition is achieved in a finite number of steps and may be easily updated.
The decomposition (B.7) allows also to derive easily the polar decomposition and
the singular value decomposition, considered below.

B.4 Schur decomposition

One of the most useful results in applied linear algebra is the following theorem
of Schur. It allows to obtain the spectrum of a general square matrix using only
unitary (or orthogonal) transformations.

Theorem B.1 [83] Let A € F™*™. Then there exists U € U(n), such that

A=UTUH, (B.8)
where
t11 tiz ... tlin
ropiap=| 0 o | (B.9)
0 0 .t

The decomposition (B.8), (B.9) is called the Schur decomposition of the matrix
A.

The diagonal elements t;; of T are the eigenvalues \; = A;(A) of A. The upper
triangular matrix 7' is said to be the Schur form of A. The columns of the unitary
matrix U form the Schur basis of F™ relative to A (or, briefly, the Schur basis for
A). The pair (T,U) is referred to as the Schur system of the matrix A.

In this statement of the problem the Schur system of a matrix, and the Schur
form, in particular, is not unique. That is why we do not call this Schur form
canonical. For canonical forms of square matrices relative to the unitary similarity
action see [197]. Note that it is possible to achieve any ordering of the eigenvalues
of A on the diagonal of T.

If the matrix A is real and has only real eigenvalues then the matrix U may
be chosen real and orthogonal, i.e., U € O(n,R). If, however, A is real but has
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at least one pair of complex conjugate eigenvalues, then U cannot be real with T
being upper triangular and hence, complex.

Let for instance the real matrix A have n; real and 2n, complex eigenvalues
(ny + 2ny = n). Set p = ny + ny. In this case there exist W € O(n,R) and a real
upper triangular p X p block Schur form

Th T ... Ty
0 — W AW - 0 Ty ... Ty
0 0 ... T,

of A, where the blocks T;; are 1 x 1 and equal to A; when they correspond to
real eigenvalues A;, or 2 x 2 when they correspond to pairs of complex conjugate
eigenvalues a; + 106; of A.

A diagonal 2 x 2 block, corresponding to the eigenvalues o+ 13, may be further

reduced to [ : i J with v6 = —f32, or [ ; _Jﬂ } with v + 6 = 2a.

In contrast to the QR decomposition, the Schur decomposition in general can-
not be constructed by a finite number of algebraic operations (arithmetic opera-
tions plus taking roots). This is a principal limitation following from the famous
Abel-Ruffini-Galois theorem [29], which states that the roots of a general algebraic
equation of degree > 5 cannot be expressed by its coefficients in a finite number
of algebraic operations. Now, if a general n X n matrix with n > 5 could be trans-
formed into Schur form by a finite algebraic algorithm, then this would be true for
the companion matriz

0 1 0 0
0 0 0 0
Cp =
0 0 0 1
—Qn —Qp_-1 ... —Gy —ay

of a general polynomial p(A) = A" + a1 A""! + .- + a, of n-th degree. But the
eigenvalues A;(Cp) of the matrix C, are the roots of the polynomial p, which
cannot be computed by a finite algebraic procedure. Hence, an algorithm for the
computation of the Schur decomposition of a general matrix must be iterative.
An example of such an algorithm is the famous QR algorithm of Francis and
Kublanovskaya {83].

If the matrix A is normal, i.e. AHA = AAH, then its Schur form T from
(B.9) is diagonal. Indeed, it follows from the identities AHA = UTHTU® and
AA" = UTTRUY that A is normal if and only if its Schur form T is normal,
Le, THT = TTH. If we set t = [t12,...,t1n] € Fr_; then a direct computation
shows that the (1,1) element of THT is |t;;]?, while the (1,1) element of TTH is
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[t11]* + ||tli3. Hence, t = 0 and T must be of the form T = diag(t11, T2), where
Ty is (n — 1) x (n — 1) upper triangular matrix. But now the normality of T is
equivalent to normality of T5. Hence Ty = diag(ta2,T3) and T = diag(t11, t22, T3).
After a total of n — 1 such steps we come to the conclusion that 7" is a diagonal
matrix.

The Schur decomposition allows to compute analytic functions of normal ma-
trices as follows (analytic functions of general matrices may be computed using
the Jordan decomposition).

Let f: D — C be an analytic function,

o0
Z z—a , 2 €D,

in the domain D C C, defined on the spectrum of the normal n x n matrix A4 (i.e.,
spect(A) C D) with Schur decomposition A = UTUY. In view of the normality of
A we have T = diag(t11,...,tnn). Now we may define the matrix-valued function
f as follows (we use the same letter f for the scalar-valued function and for its
matrix-valued counterpart)

Z —al,)¥, spect(A) C D.

The expression f(A) is correctly defined if | A — al,|| is smaller than the distance
from the point a € C to the boundary of D. Since A¥ = UT*UY we may com-

pute f(A) from f(A4) := Uf(T)UY, where f(T) := diag(f(t11),-- -, f(tan)). In
particular, if A is Hermitian and nonnegative definite, then T is real diagonal
with nonnegative diagonal elements and we may compute the nonnegative definite

square root of A as AY/? := Udiag («/tu, ceey \/tnn) UH.
B.5 Polar decomposition

A direct consequence of the QR and Schur decompositions is the so called polar
decomposition of a square matrix A. Suppose first that A is nonsingular. Then the
matrices ARA and AA" are Hermitian positive definite and normal in particular.
Consider the matrix U := A(AHA)~1/2. We have

VU = A(AHA)~12(AH A)=1/2 48 — A(ABA)~ 1AM = AA-TAHAH = ],
and hence, U; is unitary. Now we have the identity
A= U(4"4)/2, (B.10)

where the matrix (4" A)'/2 is Hermitian positive definite.
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The decomposition (B.10) is called a polar decomposition of A. There is also a
similar polar decomposition, defined as

A= (AANHY 2y, (B.11)

where the matrix (AA")'/2 is Hermitian positive definite and the matrix U, :=
(AAMY~1/2 4 is unitary.

The decompositions (B.10) and (B.11) are generalizations of the polar decom-
position z = v/2Zexp(1p) = |z| exp(1p) of the complex number z # 0 and this is
the origin of their name.

Decompositions of type (B.10) and (B.11) are valid also when A is a singular
n X n matrix of rank r < n. Here the Hermitian factors are nonnegative definite
and the unitary factors are defined in a different way. Indeed, in this case the we
obtain
0

C
A=Q[ 0 O]PH:QIGIPP,

where P = [Py, P5], Q = [Q1, Q2] € U(n), the matrices Q; and P, are nxr and the
r x 7 matrix C is nonsingular. A straightforward calculation shows the existence
of the polar decompositions

—1/2

A=V(A"A)'2, Vo= [Ques (cfien) T Qo] PR eum),  (B12)

and

A= (44", v, = [Pcl (ot ™

H
,PQ] e U(n). (B.13)
Note that here

(C{{CI)I/2 Orx(n-r)

O(n—r)xr O(n—r)x(n—r)

(ARA)2 = p PH

and

(4412 = Q

(Clc{{)l/?‘ Orx(n—r) :l QH
)

O(n—r)xr O(n-—r)x(n—r

A polar decomposition of a rectangular matrix may also be defined as the
product of a Hermitian matrix and a matrix with orthonormal columns or rows.
For instance, if A is rectangular with full column rank then relation (B.10) is
valid, where U is a rectangular matrix with orthonormed columns. Similarly, if
A is rectangular of full row rank then (B.11) is valid with U, being a rectangular
matrix with orthonormed rows.

For real matrices we have similar results, replacing “Hermitian” by “symmet-
ric” and “unitary” by “orthogonal”.



354 APPENDIX B. UNITARY AND ORTHOGONAL DECOMPOSITIONS

B.6 Singular value decomposition

As a direct consequence of the QR decomposition, the Schur decomposition and the
polar decomposition we may deduce the singular value decomposition of a general
matrix. This decomposition is widely used in matrix theory and its applications.

A singular value decomposition (or briefly SVD) of the m x n matrix A is the
product A = USVH if 4 is complex, or A = USV T if A is real, where the matrices
U, V are unitary in the complex case and orthogonal in the real case. The matrix
S in both cases is real diagonal with nonnegative diagonal elements ordered in
descending magnitude. It is a canonical form of A under the above action of
U{m) x U(n) or O(m,R) x O(n,R). The description of S depends on the integers
m, n and r = rank(A). In the trivial case A = Oy, xpn, we have S = 0pyxpn. If 72> 1
we have four possibilities: r =m =n,r =n <m,r =m < n and r < min{m, n}.

1. The case r = m = n. Consider the polar decomposition 4 = Uj(AFA)1/2
of A, where U, = A(A"A)~'/2. Since the matrix (A" A)!/2 is Hermitian positive
definite, its Schur decomposition is (AHA)/2 = VEVH where V € U(n) and
¥ = diag(o1,...,0+), 01 > -+ > o, > 0. Hence, we have the singular value
decomposition A = USVH, § = %, where U := U}V € U(r) and the matrix
U, = A(ARA)=1/2 € U(r) is the left unitary factor in the polar decomposition 4 =
Ui (AR A)Y2 of A. Thus, we have proved the existence of the SVD for nonsingular
matrices.

2. The case r = n < m. Here the QR decomposition of A is A = QR = Q1 R,
where Q = [Q1, Q2] € U(m), the matrix Q1 is m X r and the r x 7 upper triangular
matrix R; is nonsingular. If R; = U; XV is the SVD of Ry, where U,V € U(r),

then the SVDof Ais A=U [ z ] VE where U = [Q1U1, Q2]

Om—r

3. The case 7 = m < n. The LQ decomposition of A hereis A = LPH = L, PH,
where P = [Py, P,] € U(n), the matrix Py is n x r and the r x r lower triangular
matrix L; is nonsingular. If L; = ULSVH is the SVD of L;, where U, V; € U(r),
then the SVD of Ais A = U[%,0,_,]JVH, where V := [P Vi, Po).

4. The case r < min{m,n}. Consider the compressed QCP decomposition
A = QCP" = Q,C, P! from (B.7), where the matrices Q; and P; are formed by
the first 7 columns of Q and P respectively. Let A; = U; XV be the SVD of the
nonsingular r x r matrix A;. Then the SVD of A is

A-vsvE-y| % Orxnor) |yt (B.14)
Om—ryxr  Opm—r)x(n-r)
where U := [QlUla U2], P= [P1V1,P2].
The singular value decomposition of a general matrix A may always be written
in the form (B.14), where any of the zero matrices Opxq4 is considered void if p = 0
or g =0.
The numbers o; = ¢,(A) > 0 are called the singular values of the matrix A.
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Their number is min{m,n}. The first r of them, where r = rank(A4), are the
positive eigenvalues of (AHA)!/2 or (44AH)1/2,
Since
AM A = Vdiag(2% 00—y x (n-r)) V!
and
AAT = Udia’g(227O(m—r)x(m—r))Uﬂv

we see that U and V are the matrices of eigenvectors of AHA and AAY, respec-
tively. The columns of U and V are also referred to as the left and right singular
vectors of A. Using the left and right singular vectors of A, the SVD of A may be
written as ,
A= U12V1H = Z:O'i’ui’l)zl-{,

i=1
where 7 = rank(A) and the matrices U, V are partitioned as U = [U,Uy], V =
[V1, V2] with U; being m x r and V) being n x r. Hence, we get the following
orthonormed bases for the subspaces Rg(A4) and Ker(A):

Rg(A) = Rg(Uh) = Ker (UL!), Ker(A) = Ker (V) = Rg(Va).

The SVD is also used in the determination of the so called pseudo-inverse of
an arbitrary matrix.

Consider the SVD (B.14), where 0 < r < min{m,n}, i.e., the case A4 = O xn
is not excluded. As usual, the matrices 0,x¢ and Oy, are considered void.

The n x m matrix

-1
Al=vsivh =y | Orxm-r) | yu (B.15)
O(n—r)xr O(n——r)x(m—r)

is called a pseudo-inverse of the m x n matrix A. Since there are other pseudo-
inverses as well, this particular one is also referred to as the Moore-Penrose pseudo-
tnverse. The pseudo-inverse A' exists for any matrix A. In particular, of =

mxn
Onxm and (AN = A
All solutions of the least squares problem
min{||Az — b||2 : z € F*}
are given by
=A"+ (I, — At4) ¢,

where the vector ¢ € F” is arbitrary. Under the additional requirement ||z[, —
min the solution z° = A'b is unique.

B.7 Notes and references

Unitary and orthogonal matrix decompositions are considered in most books on
linear algebra and matrix theory, see [70, 71, 83, 107, 228] and [157, 36, 54, 224].
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Appendix C

Kronecker product of
matrices

C.1 Introductory remarks

In this appendix we present some basic facts about the Kronecker product of
matrices which is a very useful tool in analyzing and solving matrix equations.
C.2 Definitions and properties

Let the matrices A = [a,;] € F™*" and B € F?*? be given.

Definition C.1 The matrix

allB G,12B SN alnB
a21B (ZQQB ce an B

A ® B = [G’UB] = . . i n < ]Fmpan
ami1B ameB ... amnB

is called the Kronecker product (or the tensor product) of the matrices A and B.

The Kronecker product A ® B is an m x n block matrix, whose (i, j)-block
is the p X ¢ matrix a;;B. In the above representation A in turn may be a block
matrix, i.e., Definition C.1 is valid with a;; being arbitrary m; x n; matrices. Note
that no restrictions on the sizes of A and B are imposed for the matrix A ® B to
exist.

Usually the standard matrix product, the Kronecker product and the standard
matrix summation are considered as algebraic operations of decreasing priority,
e.g., the expression E = ((AB)® C) + D is written without brackets as E = AB®

357
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C + D. However, to avoid misunderstandings, we shall consider all multiplications
as operations of equal priority, resulting here in the expression ¥ = (AB)®C+ D.
Some important applications of the Kronecker product to the theory of matrix
equations and other areas are based on the column-wise vector representation of
the product AX B, namely (we assume that the standard matrix products are

correctly defined)
vec(AXB) = (BT ® A)vec(X) (C.1)

and in particular
vec(AX) = (I, ® A)vec(X), vec(XB) = (BT ® I,,) vec(X).
As a direct corollary we have
[AX|fw = lvec(AX)|l2 = ||(In ® A)vec(X)|l2 < [[In ® All2[vec(X)|l2 = || All2l| XF.

Here we have used the fact that I, ® A = diag(4, ..., A) and hence, |I, ® A2 =
IAll2- Similarly, | XBljp = |BTX|lp < [|Bll2l|X |l and

IAXBlr < |All2[ XBlr < [All2lICli2l X le-

The generalization of this result to the product of any number of matrices now
follows by inspection.
If the matrix X is m X n then

vec(X ) = Py, pvec(X),
where
m n
Pm,n = Z Z Eij(m, n) ® Eji(m, n) g Rmnxmn
i=1 j=1
and Ejj(m,n) € R™*" is defined in Appendix 10.17. Here P, , is a permutation

matrix (its columns are a permutation of the columns of the identity matrix I,,,,),
called the vec-permutation matriz. It has the property

Pun=P =P} (C.2)

The matrix P, , is denoted also as P,2.

The matrices A ® B and B ® A have equal sizes mp x ng. This is in contrast
to the standard matrix product, where one (or both) of the products AB and BA
may not be defined, or AB and BA may be defined but have different sizes.

The Kronecker product is in general not commutative, i.e. A ® B # B® A.
In addition, A # I ® A and A # A® I unless I = 1 (the scalar unit). However,
the Kronecker product is associative, and distributive relative to the standard
summation:

(A®B)®C = AR(B®C)=AQBQC, (C.3)
(A+B)®C = AQC+B®C,C(A+B)=C®A+C®B.
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A basic relation between the standard matrix product and the Kronecker prod-
uct is

(A® B)(C ® D) = (AC) ® (BD). (C.4)

Furthermore we have

(A9B)' =AT®B", A B=4% B, (A9 B)" = A @ BY. (C.5)

If the matrices A and B are square and nonsingular then their Kronecker
product A ® B is also square and nonsingular, and

(A@B)"'=4"'@ B (C.6)

Example C.2 Let the matrices A and B be nonsingular and A be a 2 x 2 matrix.
Then
-1 1 [ GIQQB—I —CL12B—1 ]

A® B = —
(4®B) det(4) | —az1 B!  ap B!

The transposition and inversion of a Kronecker product do not invert the order
of factors, in contrast to the standard matrix product, where (AB)T = BT AT and
(AB)~! = B71A~!. To invert the order of multiplication in a Kronecker product,
one may use the formula [107]

(A® B)P, g = Pp ,(B® A), (C.7)

or, equivalently, A® B = P, ,BQ AP, ,.
Using (C.7) we may derive an expression, similar to (C.1), for the row-wise
vector representation of the product AXB. Denote by

I'OW(X) = [517627' .. vgm] S ]lemn

the row-wise vectorization of the m x n matrix X with rows &,...,&, € FIXn,
We have row(X) = vec' (X7) = vec' (X)P, . Representing both sides of the
relation Y = AX B as row vectors we obtain the row-wise counterpart of (C.1)

row(AX B) = row(X)(AT ® B). (C.8)

The singular values of the matrix A ® B are the products o;(A4)ok(B), where
0:(A) and o (B) are the singular values of A and B. Indeed, let A = UASAVE
and B = UBJS'BV]gI be the SVD of A and B, respectively. Then AQ B = (Uy ®
Up)(Sa® Sp) (Vi ® V) is the SVD of A® B (up to reordering of the diagonal
of S4 ® Sp). Since the matrices S4 and Sp are diagonal with diagonal elements
0;(A) and oy (B), respectively, the diagonal elements of S4 ® Sg are all possible
products ¢;(A)or(B).
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Similarly, if A € F™*™ and B € F"*", then the eigenvalues of their Kronecker
product A®B are all possible products A;(A) A\x(B), where A;(A) and A;(B) are the
eigenvalues of A4 and B. Indeed, let A = WsTaWX be the Schur decomposition
of A. Then A® B = (Ws ® I,)(Ta ® B) (W} ®1,) and the eigenvalues of
A ® B are those of Ty ® B. But T4 ® B is an upper triangular block matrix with
diagonal blocks A\;(A)B. Each of these blocks has spectrum X;(A)spect(B). The
union of these spectra is the collection spect(A) ® spect(B) of all possible products
Ai(A)Ar(B) (for operations with collections see Section A.2).

If Ac C™*™, B e C", C e C™m, g e C!and F is an analytic function,
then we have

fl

det(B ® A) (det(B))™ (det(A))*, tr(B ® A) = tr(B)tr(A),
exp(B® A) = exp(B)exp(4),
F(I,®A) = IL,®F(A), FIAQI,) = F(A)® I,,
Cezr = (I,1)C, C®z' =C(In®z').

Let A € C™*™ and B € C**™. The Kronecker sum of the matrices B and A
is the matrix

B®A:=B®I,+1I,®AcCm>mn,

Note that the Kronecker summation is not commutative.

The eigenvalues of B @ A are all possible sums A;(A) + Ax(B). Indeed, let
B = WBTBWLIQI be the Schur decomposition of B. Then the matrix B & A is
similar to

(UB®L,) (BOA(Us®ILy) =Ts @Iy + I, A=Tg ® A

The matrix Tg @ A is n x n upper block triangular with m x m diagonal blocks
A + A (B)I,. The spectrum of such a block is spect(A4) + {\¢(B)}. The whole
spectrum of T @ A and hence, of B@® A is the union of the spectra of the diagonal
blocks, which is exactly the set spect(A) + spect(B).

Thus we have the problem of finding a simple expression for the spectrum of the
matrix M := AQ B+C®D, where A, C are mxm and B, D are nxn. This is only
possible if some special structure of the involved matrices is preassumed. Suppose
for instance that the matrices A and C have a joint Schur basis U, i.e., that there
is a unitary matrix U, such that the matrices T4 := URAU and T¢ := URCU are
upper triangular. Then the matrix M is similar to M= (UH ® In) MU®IL) =
Ta ® B+ Tc ® D. The matrix M is m x m upper block triangular with n x n
diagonal blocks A;(A)B + A\ {C)D. Thus, the spectrum of M and hence, of M is
the sum of collections

spect(M) = i": spect(X\;(A)B + A (C)D)).
i,k=1
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The above results are directly applicable to the analysis of spectra of linear
matrix operators.

Example C.3 Let A € C™*™ and B € C**". Consider the operators £, and Lq4
in the continuous- and discrete-time Sylvester equations L.(X) := AX + XB =C
and L£;(X) := AXB— X = C, respectively, where X is an m x n unknown matrix.
The spectrum of a linear operator is the spectrum of its matrix. Hence,

spect(L) = spect (I, ® A + BT ® I) = spect(A) + spect(B)

and
spect(Lq) = spect (BT ® A ~ ) = spect(A)spect(B) — {1}.

¢

C.3 Notes and references

More detailed information about the Kronecker product and sum of matrices and
their applications may be found in 19, 230, 84], see also [107, 157, 231].
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Appendix D

Fixed point principles

D.1 Introductory remarks

Among the most powerful tools to study the problems of existence and unique-
ness of the solutions of various classes of equations, including equations arising in
perturbation analysis of matrix problems, are the topological fired point principles
named after Banach and Schauder (the Schauder principle in its finite dimensional
version is known also as the Brauer principle). In this section we briefly state these
principles for operators in finite dimensional spaces.

D.2 Banach principle

Consider a finite dimensional space X endowed with the norm | - || and let II :
B, — X be a (nonlinear) operator, defined in the ball B, := {z € X : ||z|| < o}
for some o > 0. We are interested in the existence and uniqueness of solutions to
the operator equation

z = II(x). (D.1)

The solutions of (D.1) are called fized points of the operator II.

Definition D.1 The operator Il is said to be a contraction (or a contractive oper-
ator ) if there exists a nonnegative constant | < 1 such that I1 satisfies the Lipschitz
condition

“H('T) - H(y)” < l”.’L' - y”a T,y € Ba-

The quantity | = l(a) is the Lipschitz constant of II.

The main result for contractions is formulated in Theorem D.2 below.

363
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Theorem D.2 (Banach principle). Let the inequality
[ITI0) |
1-1

be fulfilled for the operator 1 : B, — X with Lipschitz constant [ < 1.
Then the following assertions hold.

Qg = <«

1. The contractive operator II has o unique fized point € € B, and ||€]| < ap.

2. The unique solution € of equation (D.1) may be obtained as the limit point
of the iterative process

Ti+1 :H(mk)a k =0,1,..., (DQ)
where the point o € By, is arbitrary.

3. The rate of convergence of the iteration (D.2) to the solution & is determined
by
1%
1€ = zll < 3= (D.3)

where § := |1 — xo| = |Il(zo) — zol|-

Proof. First we show that the operator II maps the set B,, into itself which
yields that the sequence {zx} is well defined. Indeed, for z € B,, we have

(@) = (=)~ T1(0) + II(0)]| < ||(z) - IL(O)] + |TL(O)]
< Ul + [THO)]| < lao + [TIO)] = ao.

Furthermore, we have

orer — 2kl = [M(zx) - Wzp-1)l| < Ulzk — Tl < Pllzh-1 — Th—2l|
< 1|3y — 2ol = 1¥6.

Using the last inequality, we may estimate the quantity ||Zg4m — zx|| for m > 2
subtracting and adding some terms in order to get differences of the type z;41 —;,
whose norms have been already estimated. We have zx 1, — 5 = Efi o -1 (Tig1—

x;) and

k+m-—-1 k+m—1

|Zkpm — 2l = Z @ —z)|[ < Y lwig—zl (D4
i=k i=k
k+

iy le
k 3
=6l E I'< 1 l

Since I < 1 we have limy_, o [|Zk+m —2Zk|| = 0 and hence {z}} is a Cauchy sequence.
Thus, it is convergent to some element & € By, namely limg_,o, zx = £. Passing

A
<D
Ms

i=k



D.3. GENERALIZED BANACH PRINCIPLE 365

to the limit k£ — oo on both sides of (D.2) we see that ¢ is a fixed point of I, i.e.,
£ = TI(¢).

In turn, letting m — oo in (D.4) we have Tgim,m — £ and hence the estimate
(D.3) for the rate of convergence holds.

To demonstrate that the solution £ € B,, is unique in By, suppose that there
is another solution 7 € B, different from ¢. Then

0 < [I€ —nll = ITL(&) — TI(m)Il < UI€ —nll < I€ — |-
This is a contradiction, which proves that the solution is unique. 0O

Example D.3 Suppose that we have a scalar equation f(z) = 0, where the func-
tion f is defined on the interval [—«, o] and satisfies there the two-sided Lipschitz
condition m|z — y| < |f(z) — f(y)| < M|z — y|, where 0 < m < M < co. Then we
can rewrite the equation in an equivalent operator form z = I[I(z) := z — K f(z),
K = 2/(M + m). The operator Il is a contraction with Lipschitz constant
l:= (M ~m)/(M +m) < 1. Hence, the equation has a unique root £ € [~a, o],
such that [£| < ap, provided that ag := |f(0)|/(1 =) = |f(0)]/(mK) < a.

D.3 Generalized Banach principle

Consider now the case when the space X is endowed with the generalized norm
l]:X — RS, s > 1. Suppose that the operator II : B, — X satisfies the
generalized Lipschitz condition

ITl(z) - (y)| < Lz — y|; z,y € B,.

Here B, := {z € X : |z| X p} C X is the generalized ball centered at the origin
and of generalized radius p € RY, while L = L(p) € R}*® is the Lipschitz matriz
of the mapping II.

Definition D.4 The operator Il is said to be a generalized contraction on the set
B, if the matriz L is convergent, i.e. if its spectral radius rad(L) is less than 1.

We recall that according to the Perron-Frobenius theorem [26] the spectral
radius of a nonnegative matrix is equal to its largest nonnegative eigenvalue. For
a nonnegative convergent matrix L the matrix I, — L is invertible and the matrix
(I = L)™' is well defined and nonnegative.

Example D.5 Let I1 = [IIy,...,T1,]" : D — F¢, where D C F?. If the Jacobi
matrix

I'(z) = [J;;(z)] := [M] eFIX g =[z1,...,2,]"
81‘]'
exists, then the Lipschitz matrix may be taken as L = [l;;], where [;; is the

supremum of |J;;(z)| in z over the domain D of II. ¢
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For generalized contractions we have similar results as for usual contractions
according to the following theorem.

Theorem D.6 (Generalized Banach principle). Let the inequality
po = (I - L) HI(0)] < p

be fulfilled.
Then the following statements hold.

1. The contractive operator II has a unique fized point & € B, and || < po.

2. The unique solution £ of the operator equation (D.1) may be obtained as the
limit point of the iterative process

Tr41 ZH(CL'k), k:0717-~-a (D5)
where T € B, is arbitrary.

3. The rate of convergence of the approrimations x, to the solution £ is deter-
mined by
€~z S LH(I - L)7'5, (D-6)

where B := |z1 — x| = [I(z0) — zo] € RS,.

Proof. We have

M) [T(z) - IL(0) + I1(0)| < [TI(z) — I1(0)] + |11(0)]

Liz{ + [I1(0)| = Lpo + |T1(0)] = po

1A

and the operator IT maps the set B,, into itself. Hence, the sequence {u;} is
well defined via (D.5).

Furthermore
|Tes1 — zk| = |(z) — D{zg-1)| X Lz — Th—1]
< LP|zpoy —zpo| X - X L¥|z1 — 3| := L*B
and
k+m—1 k+m-—1
|xk+m - 37k| = Z ($i+1 - l’z) = Z I$1+1 - $¢| (D-7)
i=k i=k

IA

k4+m-—1 m—1
( > L’) B=L* (Z L’) B =< LFI-L)7 8.

i=k i=0
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Since limg o, L* = 0 then the sequence {z}} is convergent to an element £ € B, .
Passing to the limit & — oo in (D.5), we see that ¢ = II(€), i.e., the operator
equation (D.1) has £ as a solution.

Setting m — oo in (D.7) we get the rate of convergence (D.6) for the generalized
norms of the differences & — zy.

To show that the operator II has no other fixed points in B, except £ € B,,,
let n € B, be any solution of the equation = = II(z). Then

& — 0l = |I(€) = I(n)| L LIE~n| X L% —nl =

and | —n| < L¥|¢ —n| for all k € N. Taking the limit k — oo in view of rad(L) < 1,
we obtain |6 — | =0,ie.n=¢& O

A norm-wise estimate for the rate of convergence in case of generalized con-
tractions may be obtained as follows. For each positive ¢ < 1 —rad(L) there exists
[107) a norm || - || : R® — R, such that ||L|| = rad(L) + ¢ < 1 for the corre-
sponding operator norm ||L| of L € R%*%. Hence, if |z|| < |/|z|| for the norms
l-1I: X =Ry and |-|: X — R, we have also a norm-wise estimate for the rate
of convergence:

&~ il < IL5( — L)7'8ll < | LIMIC - L)76ll

Example D.7 Consider the equation f(z) = 0, where f : F¢ — F9. Suppose
that f satisfles the generalized Lipschitz condition |f(z) — f(y)| < M|z - y|,
M = [M;;) € RY*Y, as well as the lower growth bounds m;|h| < |f(z+ he;) — f(x)],
m; > 0, where e; is the i-th column of the unit matrix J;. Then we may rewrite
the equation in an equivalent operator form z = Il(z) := z — K f(z), where
K = diag(K,,...,Ky), K, := 2/(M;; + m;). As in Example D.3, the operator II
satisfies the generalized Lipschitz condition |[I(z) — [I{y)] < L|z — y|, where the
elements l;; of the matrix L are determined from

| (M —mg) /(M +m;) if i=3j
v 2M;; /(M +my) if 1#7.

Hence, the equation will have a unique solution if rad(L) < 1. If m := min{m,}
and p = max{M;; : i # j} then the inequality rad(L) < 1 will be fulfilled provided
that u < (g —1)m. &

The use of generalized contractions is very useful in many applications, includ-
ing some important problems in perturbation analysis. In particular, there are
problems for which it is easier to show that the equivalent operator is a general-
ized contraction rather than a contraction. This will be the case when the operator
is a generalized contraction with a Lipschitz matrix L such that |[L|| > 1 for some
of the commonly used matrix norms.
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Ao
0 X
p-norm of L satisfies ||L||, > [ and may become arbitrary large for large [. At the
same time the spectral radius rad(L) = max{A;, A2} does not depend on [ and is
always less than 1. $

Example D.8 Let L = [ ], where A1, A2 € [0,1) and | > 0. Any Hdélder

The main application of generalized contractions in perturbation analysis is
in the derivation of component-wise perturbation bounds which are usually more
informative in comparison with the norm-wise bounds.

D.4 Schauder principle

Consider now the implementation of another powerful topological fixed point prin-
ciple, the so called Schauder (or Brauer) principle, which gives sufficient conditions
for existence of solutions to the operator equation = = Il(z) in X.

IfI1: S — X is amap and T C S, we denote by II(T') the set of all II(z) when
x varies over T

Theorem D.9 (Schauder principle). Let the operator Il : B — X be continuous
and II(B) C B, where B C X is a conver compact.
Then the operator equation x = I1(zx) has a solution £ € B.

Proof. For a complete proof see [173, 117, 34]. However, it is instructive to give
the proof in the scalar real case X = R. Here the nontrivial convex compact sets
are the closed intervals with different end points, say B = [0,1]. Let IL: B — B be
a continuous function. If II(0) = 0 or II(1) = 1 then II has a fixed point £ = 0 or
§ = 1 and there is nothing to prove. Therefore assume that I1(0) > 0 and II(1) < 1,
and consider the function ¢ : B — B, defined from %(z) = z — II(z). According
to the last two inequalities we have ¢(0) = —II(0) < 0 and (1) = 1 — II(1) > 0.
By a continuity argument, there exists a point ¢ € (0, 1) such that (&) = 0 which
is equivalent to £ = I1(¢). O

Since in most applications the operator I : X — X is continuous, to apply the
Schauder principle one must construct a suitable convex compact set B C X, and
then to show that II(B) C B.

We see that the price of the substantial reduction in the requirements, imposed
on the equivalent operator II in the Schauder principle (no Lipschitz conditions,
only continuity), is that we claim only existence but not uniqueness of the solution.
Thus, the Schauder principle is applicable to problems with nonunique solutions.

Conditions for an operator to be a contraction or a generalized contraction
(in order to use the Banach principle), or to map a certain compact convex set
into itself (so that to apply the Schauder principle), may be formulated using the
technique of Lyapunov majorants [85, 135, 127], see Section 5.
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D.5 Notes and references

There are many standard text books and review articles that discuss fixed point
principles and their applications, e.g., [117, 173, 34, 55].
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Appendix E

Sylvester operators

E.1 Introductory remarks

In this appendix Sylvester operators in real and complex matrix spaces are studied,
which include as particular cases the operators arising in the theory of linear time-
invariant systems. Let M : F™*" — [FPX4 be a linear operator, where F = R
or F = C. The operator M is elementary if there exist matrices A € FP*™ and
B € F?"", such that M(X) = AXB. Every M can be represented as a sum of
minimum number of elementary operators, called the Sylvester index of M. An
expression for the Sylvester index of a general linear operator M is given. For this
purpose a special permutation operator V, ,, : FPI*™" — FPMXR4 js considered,
such that the image V), ;n (BT ® A) of the matrix BT ® A of the nonzero elementary
operator M is equal to the rank 1 matrix vec(A)row(B). The application of V, ,
reduces a sum of Kronecker products of matrices to the standard product of two
matrices.

E.2 Basic concepts

Denote by Lin(p, m, n, ¢, F) the linear space of linear matrix operators M : F™*"
FPxa ie., M(X) € FPX9 X € F™*". In what follows a linear operator will often
depend on a collection of 2r matrices

C:= (A, B1,..., Ar,B;) € Ty 1= (FP™ x F™X9)T, (E.1)

where Ay € FP*™, By € F**?. To emphasize this dependence we write &,.(C) €
Lin(p,m,n, q,F) for the operator itself and £,(C)(X) € FP*4 for its matrix value
at a given X. Thus, we have a family of operators {&,(C)}cex, and &, may be
considered as a mapping

E()() : By x FMXn _, FPXa, (E.2)
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quadratic in its first argument C' € X, and linear in its second argument X €
men.

An operator M € Lin(p,m,n,q,F) may be determined as follows. Let pq
vectors m; ; € F™, i =1,...,p, j = 1,...,q, be given. Define the linear func-
tionals p;; : F™*" — F from p, ;(X) := mzjvec(X) € F, X € ™" Then the
operator M : F™*™ — FPX9, given by M(X) = [u;;(X)]}']_,, is a linear matrix
operator. The matrix M := Mat(M) € FPI*™" of M, is defined via the equality
vec(L(X)) = Mvec(X) and hence

M = [m171, ma1-... ,mp,1,m172, m2,2, N ,mpyz, N ,ml,q, mz,q N ,mp,q]—r
Definition E.1 The operator £,(A, B) € Lin(p, m,n,q,F), such that
E1(A,B)(X) := AXB, X € F™X" yhere A € FP*™ and B € F™**9, is called an

elementary Sylvester operator with a pair of generating matrices (A, B).

The zero operator Op m n 4 € Lin(p,m,n,q,F) and the identity operator 1, 5, €
Lin(m,n,F) are elementary Sylvester operators & (A, B) with pairs of generating
matrices (A4,0nx,) (or (Opxm,B)) and (I, I,), respectively, where A € FP*™ (or
B € F™*9) is arbitrary. A pair (A, B), corresponding to the zero operator (with
at least one of its components A or B being zero), is said to be a trivial pair.

Let a matrix 2r-tuple as defined in (E.1) be given. Consider a nonzero operator
&.(C) € Lin(p, m, n, q,F), which is represented as a sum of r nonzero elementary
Sylvester operators &1{Ag, Br), i.e.,

E(C)(X) =) E1(Ar, Bi)(X) = > AxXBi, X € F™"™, (E.3)
k=1 k=1
Operators of the form (E.3) are called Sylvester operators.
Every M € Lin(p, m,n, q,F) may be represented in the form (E.3), i.e., M =
&-(C) for some r and C. Applying the vec operation to the expression for £,.(C)(X)
we get

vec(&r(C)(X)) = Er(C)vec(X), (E.4)
where i
E, = E,(C) := Mat(&,(C)) = ) Bf ® Ay, € Fraxmn (E.5)
k=1

is the matrix of the operator £,.(C).

Using the vec operator and its inverse, vec,, ,11 : BP9 — FPX9. any operator
M € Lin(p, m,n,q,F) and its matrix representation M € FPIX™" are related via
the relations vec(M(X)) = Mvec(X) and M(X) = vec, | (Mvec(X)), X € F™*™.
There exist different collections C € I, such that M has a representation of type
(E.3), i.e., M = &,.(C) for some collection C, which satisfies the bilinear matrix
equation

Y Bl @ Ay = M. (E.6)
k=1
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Definition E.2 The minimum number £ € N, such that the nonzero operator
M € Lin(p,m,n,q,F) may be represented as a sum of £ elementary Sylvester
operators, is said to be the Sylvester index of M and is denoted by indy, m n,q(M).
The zero operator is of Sylvester indez 1. Any representation of M as a sum of
minimum number of elementary operators is called a condensed representation.
We also abbreviate indy, », := indp, mnn and indy, = indy ppn

For M € Lin(p, m,n, q,F) we have
[IMX)lIF = [lvee(M(X))ll2 < [|M |l2llvec(X)]l2 = IM|l2]| X ||

with equality holding if vec(X) is a right singular vector of the matrix M, corre-
sponding to its maximum singular value |[M|;. Hence, we may define a norm in
Lin(p,m,n, ¢, F) as follows.

Definition E.3 The (Frobenius) norm of M € Lin(p,m,n,q,F) is
[Mllg := max{[IM(X)]lr : [ X|r = 1} = | M]],.

Other norms as |[M||q,s := max{|M(X)|la : | Xllg = 1}; o, B > 1, where
|-l is a Holder norm, may also be used. Here convenient expressions for || - e,
are known only for & = 8 = 2 when M is the standard continuous-time X
A*XE + E*XA or discrete-time X +— A*XA — E*XE Lyapunov operator of
(generically) Sylvester index 2, see e.g., [95, 68].

E.3 Representations

Consider the problem of representing a general linear matrix operator M with
associated matrix M in the form (E.3). The dimension (real or complex) of
Lin(p,m,n,q,F) ~ FPIX™" ~ FP™™ i5 pmng. In particular, for every matrix
M € FPI*™" there exists C € ¥, with r = indp, 1, n,g(M), such that the associ-
ated matrix E,(C) of the operator £.(C) € Lin(p,m,n,q,F) is equal to M, i.e.,
E.(C)=M.

Relation (E.6) may be considered also as an equation for both r € N and C €
¥r. A particular solution is obtained as follows. Partition the matrix M € Fraxmn
into ng blocks of size p x m as

M = [Mi,]’], Mi,j E]prm; 1= 1,...,q, j:l,...,n. (E7)

Then M may be written as M = ZZ‘;‘ZI E; j(g,n) ® M, ;. Therefore, in view
of (E.6), a possible solution for C is Ay = M; ;, By = Eji(n,q), k = k(1,7) :=
i+ (j — 1)g, in which the number of nontrivial pairs (Ag, Bg) is the number of
nonzero blocks M; ; of M, which is at most ng. Thus the resulting operator & (C)
and hence M are of Sylvester index at most ng. A similar argument shows that
this index is at most pm.
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Next we calculate the Sylvester index of a linear operator and construct a
representation of type (E.3). For this purpose we introduce a special linear matrix
operator Vp m, defined on matrix spaces FPo*™0 when plpg and m|myp.

Let p,m,pg,mp € N be given integers such that p|po and m|mg. Then each
matrix Z € FPo*™o may be partitioned into ng blocks Z; ; of size p X m, where
q := polp, n 1= mo|nu:

Zvy Zip - Zin
Zoy Zan v 2o,

- |~ ) L2, e TPXm (E.8)
Zgr Zga o Zgnm

Definition E.4 Set z;; := vec(Z; ;). The linear operator
Vpm @ FPOM™ _ FPmxnd (E.9)
is defined by
VpmlZ] i= (21,1, 22,1, - 1 2,10 21,2, 22,24+ - s 2,21 - - » Z,ms Z2,m0 - - -, Zqm)- (E.10)
The properties of the operator V, , are described in the next two propositions.

Proposition E.5 The operator V, ., is a permutation operator, for which the
following relations hold

Ve ©Vpm = Vpq 0 Vo = Vgp 0 Vym = Vgp © Voun = Lpmnyg- (E.11)
Proof. The proof follows by inspection. 0
Proposition E.6 Let M ¢ FPeX™» A ¢ FP*™ and B = [b; ;] € F**9. Then

Vii(M) = (vec(M)T, Vign(M) = M7, Vpm(M) = Vgn(ln ML) T,
Vpg (M) = M, Vpgmn(M) =vec(M), Vpm(lmp) = M ps

and
Vom(BT ® A) = row(B) ® vec(A) = vec(A)row(B). (E.12)

Proof. Relations (E.12) follow from the definition of Vp . To prove (E.12) we
note that

bl,lA bz,lA e bn,lA
n,q bl,ZA b272A e bn,ZA
BT R A= Z bi7jE¢7j(q,n)®A: . . . .
G,j=1

bioA bogA ... bugA
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and hence

Vom(BT ® A)

[b1,1vec(A), by avec(A), ..., b1 qvec(A),
by, 1vec(A), by avec(A),. .., by gvec(A4),. ..,
bn,1vec(A), by avec(A),. .., by qvec(A)]
= row(B) ® vec(A) = vec(A)row(B)
as claimed. 0O

The operator V, ., allows the reduction of a sum of Kronecker products of
matrices into a product of two matrices. Thus one may solve efficiently equation

(E.6).

Suppose that M € FPI*™" ig the matrix representation of the operator M €
Lin(p,m,n,q,F), partitioned as in (E.7), and set M# := I, ;MIL, ,,, = [M,fl],
whereM,ffl eF*" k=1,...,pl=1,...,m

Using the operator V, o define the matrices

M = Vpm(M) = [vec(My,1),...,vec(Mg1),...,vec(My ), ..., vec(M, )]
€ [Fpmxan

and
M#* = Vq,n(M#):[vec(Mfl),...,vec(M;’fl),...,vec(Mfm),...,Vec(Mfm)]

e Fm,

Now we can determine the Sylvester index of an arbitrary operator
M € Lin(p,m,n,q,F) and construct a matrix collection C' € ¥, such that M =
().

Proposition E.7 Let M € FPI*™" pe the matriz representation of the operator
M € Lin(p,m,n,q,F). Then

indp mn,q(M) = indy m n g (M) = indg,p,m»(M) = max{l, p(M)},
where p(M) := rank(M) = rank(M#).

Proof. It follows from Proposition E.6 that for given r € N equation (E.6) for
C = (A, By, ..., A, B,.) may be written as a bilinear equation

AB=M (E.13)
in the unknown matrices
A = [vec(A1),vec(As),. .., vec(4,)] € FP™XT (E.14)
row(Bj)
row(Bs)
B = [vec(B1),vec(By),...,vec(B,)] I, . = , € Frxm,

rokaT)
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Equation (E.13), (E.14) is fundamental for determining the indices as well
as for the construction of the linear matrix operator M as a sum of elementary
operators, provided the matrix M of M is given.

Let ©,(M) C FP™*" x FT*™ be the set of solutions of (E.13). We shall show
that ©,.(M) # 0 if and only if r > p(M) and hence equation (E.13) is solvable
for r = p(M). The proof is constructive and provides explicit expressions for
Op(a) (M)

In the trivial case M = 0p  n4 We have r = 1 by definition and the solu-
tion of (E.13) may be taken as (A,01xnq) or (Opmx1,B) with max{pm, ng} free
parameters. Hence,

©1(0p,m,n,q) = (F"™ x {O1xng}) U ({Opmx1} x FHX79).
Consider the general case M # 0y .54 It follows from (E.13) that
p(M) < min{rank(A),rank(B)} <r.

We prove that if » = p(M), then (E.13) is explicitly solved. Consider the three
possible cases.
1. If r = p(M) = pm < nq then the solution set is

©,(M)={(P,P"'M): P e GL(pm,F)}.
2. If r = p(M) = ng < mn then the solution set is
O,(M) = {(MP~,P): P e GL(ng,F)}.
3. If r = p(M) < min{pm, nq} then M may be decomposed as
M = Udiag (Ir,0(pm—r)x (ng—r)) V"1,

where U € GL(pm,F), V € GL(ng,F). Thus, the solution set may be represented
as

O, (M) = {<U_1 [ F ] P70 (ng—m)] V) :PGQL(T,IF)}.

O(pm—r)xr

Similar arguments hold for the transposed operator with a matrix M#, showing
that indp ;mn,q(M) = indg n,mp(M). Note finally that M# = M, see Proposition
Eé6. O

We see from the proof of Proposition E.7 that in the nontrivial case M #
Op,m,n,q the set of all collections C in the condensed representation of M is iso-
morphic to GL(r,F), where r is the Sylvester index of M. Hence, it is an open
algebraic variety (of real or complex dimension r?) in the corresponding Zariski
topology.
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When M # Opmn,g the solution set ©,.(M) of (E.13) with r = v(M) is
parametrized by the r? free elements of the matrix P € GL(r,F). Note that the ma-
trix equation (E.13) is equivalent to pmngq scalar quadratic equations in r(pm+ngq)
scalar unknowns (the elements of A and B). Hence, we may expect that in general
the solution set ©,.(M) is a k-parameter family, where k := r(pm-+ng)—pmnq is the
number of unknowns minus the number of equations. Since r’—k = (pm~r)(ng—r)
and generically v(M) = min{pm,nq}, we may indeed expect that k = r2.

Example E.8 Consider the transposition operator Tp, n, € Lin(n, m,n, m,F), act-
ing as Ty n(X) = X T. The matrix representation of Tm.n 18 I, ». Since
Vam(Ilmn) = I, » (see Proposition E.6) and rank(Il,, ,) = mn, we see that
indy m n.m(Tmn) = mn. In particular we have [107]

X" = Z E; j(n,m)XE; ;(n,m).

t,j=1

Consider the case when mn = pq and the operator M € Lin(p,m,n,¢,F) is
invertible, i.e., its associated matrix M € F™"*™" ig nonsingular. For some classes
of invertible operators it may be shown that

indp, ;mn,q(M) = indpm pgn(M™1). (E.15)

It is interesting to determine whether (E.15) holds for all invertible operators
M € Lin(p,m,n,q,F).

E.4 Notes and references

Linear matrix equations and linear matrix operators have been studied since the
pioneering work of Sylvester and Kronecker [152, 215, 214], see also [196, 193,
229] and [8]. Now there are hundreds of papers, surveys and many books, e.g.,
(12, 10, 69, 106, 107, 205, 228] devoted to the analysis, existence, uniqueness and
representation of the solution and also to the numerical algorithms and software
to solve various types of linear matrix equations. Most of the existing results,
however, are connected with particular classes of such matrix equations.

The problem of representing a general linear matrix operator has only recently
been studied in [125].
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Appendix F

Lyapunov operators

F.1 Introductory remarks

In this appendix Lyapunov operators in real and complex matrix spaces are stud-
ied, which include as particular cases the operators arising in the theory of linear
time-invariant systems.

A linear operator £ : F**™ — F**™ is a Lyapunov operator if
(L(X))* = L(X7),

where the star denotes transposition in the real case and complex conjugate trans-
position in the complex case. Characterizations and parametrizations of the sets
of real and complex Lyapunov operators are given and their dimensions are de-
termined. Relevant Lyapunov indices for Lyapunov operators are introduced and
calculated. Similar results are given also for several classes of Lyapunov-like linear
and pseudo-linear operators. The concept of Lyapunov singular values of a Lya-
punov operator is introduced and the application of these values to the sensitivity
and a posteriori error analysis of Lyapunov equations is discussed.

Despite of the existence of a large amount of literature on Lyapunov equations
and operators some general properties of finite-dimensional Lyapunov operators,
however, have not been studied to a sufficient extent. In particular, the notion
of the minimal singular value of a Lyapunov operator is sometimes misused. In-
troducing the new concept of Lyapunov singular values of a Lyapunov operator,
some well-known estimates in the sensitivity theory of matrix equations may be
substantially improved.

In this appendix we denote by Q(n,F) C F2"*2" the set of all matrices L €
F27x2n such that LP,: = P,2L. We use the notation from Appendices E and
10.17.

379
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F.2 Real operators

An important class of linear operators are the Lyapunov operators which are au-
tomorphisms in F®*". 1In this section we consider the class of real Lyapunov
operators in Lin(n, R).

Definition F.1 An operator £ € Lin(n,R) is called a real Lyapunov operator if
(LX) = £(XT), X e R™™,
We denote by Lyap(n,R) C Lin(n,R) the set of real Lyapunov operators.

It follows from Definition F.1 that X = X7 = £(X) = (£(X))T and X = - X T =
L(X) = —(L(X))T provided £ € Lyap(n,R). Hence, the subspaces Her(n,R)
of symmetric and SHer(n, R) of skew-symmetric real matrices are invariant sub-
spaces for operators from Lyap(n,R) (see also [40], where the particular case
L(X) = A"X + X A has been considered).

Below we need the operator V,, := V), ,, : F2%2n , F2nX2n defined by (E.9),
(E.10) for p = m = n = g, which in the given case is an involutary permutation,
V2=1p,,.

The set Lyap(n,R) itself is a linear subspace of Lin(n,R), which may be
characterized in the next proposition.

Proposition F.2 The following four statements are equivalent:

(i) £ € Lyap(n,R).

(ii) There exists M € Lin(n,R), such that
LIX)=MX)+(MX)NT, X e Fxn,

ie, L(X) =34, (AcXBr + B X A]), or equivalently

r

L:=Mat(L)=> (Bf ® Ax+ Ax® By ),
k=1

where Ag, B, € R™ ™ are given matrices.

(iii) L € Q(n,R), where Q(n,R) is the subspace of real n? x n? matrices L, satis-
fying the equation P2 L = LP,2.

(iv) The matriz L := V(L) is symmetric.

Proof. The equivalence between (i) and (ii) follows from the definitions. To
prove (iii) we perform the vec operation on both sides of the characteristic equation
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(L(X))T = L(XT) of the Lyapunov operator £ with associated matrix L, which
gives

vec((L(X)T) = vec(L(XT)),
Poavec(L(X)) = Lvec(XT),
Pnszec(X) = LPnzvec(X)

for all X € R"*™ and hence, P2L = LP,2.

To prove (iv) note that the relation Y ;_, (B} ® Ax + Ay ® B ) = L from
(i) is an equation for the matrices Ay, By, ..., Ay, By, similar to (E.6). After
some calculations we get the following counterpart of the bilinear equation (E.13),
(E.14):

AB +(AB)' =L (F.1)

and hence, the matrix L is symmetric. 0O

Representations of £ € Lyap(n,R) as in Proposition F.2(ii) usually arise in
the theory of continuous-time standard and descriptor dynamical systems. They
involve 2r terms and cannot be condensed in the sense of Definition F.1. In
particular, the representation of the Lyapunov operator X + DX DT (of Sylvester
index 1) in the form (ii) requires two terms, e.g. r =1 and A; = D, By = D" /2.

As in the case of a general Sylvester operator M € Lin(n,F), the real Lya-
punov operator £ € Lyap(n,R) may be represented in a condensed form as a sum
of ind,, (£) elementary linear operators (not necessarily Lyapunov) but in this case
the formal symmetry in Proposition F.2(ii) may be lost. To preserve this symme-
try, characterizing Lyapunov operators, we introduce the following two symmetric
representations that hold for every nonzero operator £ € Lyap(n,R).

The continuous-time representation is of the form

[
L(X)=> (AXBip+BlXA]), X e R, (F.2)
k=1

while the discrete-time representation is
£q
L(X) =Y eD;XD], X e R™", (F.3)
i=1

where ¢; = +1 and D;, Ag, B € R™*™. Obviously 2¢, > ind,(£) and £; >
ind, (£).

Mixed representations as £(X) = DXDT + AT X + XA may be reduced to
some of the above two types (F.2) or (F.3).

Definition F.3 The representations (F.2) and (F.3) of L € Lyap(n,R) are said
to be cl-condensed and dl-condensed respectively, if there are no representations
of L of the corresponding types with less terms. The numbers clind, (L) = 24,
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and dlind, (L) := ¢4 in the cl-condensed representation and in the di-condensed
representation are called the continuous-time Lyapunov index and the discrete-
time Lyapunov index of L.

Example F.4 Let A;, 2 € R, with A\; > 0. Then the operator £ € Lin(2,R),
defined via

L(X) = [ XNz Aoz J, X = [ 11 12 } ’

MAaTar  Aizoo T21 Tz

has both its Lyapunov indices equal to 2. It admits the cl-condensed representation
L(X) = AX+X A and the dl-condensed representation £(X) = D1 X Dy~DyX Dy,
where A := diag(A1, A2} and

. AL+ Az , Ay — >\2)
Dy :=diag { v/2)\, —= |, D, :=diag| 0, .
1 g < 1 T, ) 2 g ( o,

Explicit expressions for the Lyapunov indices of Lyapunov operators are given
below. Obviously ind,(£) > clind,,(£),dlind,(£). In fact we will show that the
Sylvester index of a Lyapunov operator is equal to its discrete-time Lyapunov
index.

Proposition F.5 The continuous-time and the discrete-time Lyapunov indices of
the nonzero operator £ € Lyap(n,R) are determined by

clind,(£) = 2max{v,(L),v-(L)},
dlind,(£) = v (L) +v_(L) = rank[L].

In particular, the Sylvester and the discrete-time Lyapunov index of an operator
L € Lyap(n,R) coincide, i.e.

ind,(£) = dlind, (£) > clind,,(L).

Proof. Consider first the continuous-time case and set C = AB in equation
(F.1). Hence, the number r := clind,(£)/2 may be computed from

r = min {rank(C) :Ce R"ZX“Z,C +CT = L} .

Denoting a := v (L), 8 := v_(L) and 7y := a+ 3 we will show that r = «. Indeed,
there exists P € GL(n?,R) such that the matrix L is factorized as L = PALPT,
where Ay, := diag(2/a, —2I3,0,2_,). Setting C = PY PT we obtain that r is the
minimum of the ranks of the matrices Y, such that ¥ + Y = Ayr,. The general
form of Y is
In+Y =Y, =Y
Y = Yo ~Ig+Ye -Yih |, (F.4)
Ya Yo Y3
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where the matrices Y1; € SHer(a,R), Y3 € RAX® Vi € R("z_”x"‘, Yy €
SHer(5,R), Y3, € R("Q‘V)Xﬁ, Y33 € SHer(n? — «,R) are arbitrary. Suppose
w.lo.g. that o > 3. The eigenvalues A\(1, + Y11) of the matrix I, + Y11 are equal
to 1 + A(Y11). In turn, Y7; has its eigenvalues on the imaginary axis, i.e., the
eigenvalues of I, + Y11 have real part 1. Hence, the diagonal block I, + Y13 of Y
in (F.4) is nonsingular and rank(Y’) > rank[l, + Y11] = a. Moreover, for certain
Y the equality rank[Y} = « is achieved. To see this, take Y11, Y31, Y22 and Yag as
zero matrices, and let Yz := [I3,084 (o—g)]. Then Y21Y,] = I and hence,

I, 0 0 I, =Y, o
~Yy Iz 0 Y={0 0 0],
0 0 I, 0 0 O

which yields rank(Y) = a. Therefore we may find matrices A, B, satisfying
AB + (AB)" = L with r = . Since the continuous-time representation of a
Lyapunov operator has 2r terms, we have proved the first part of the proposition.

Consider now the discrete-time case. Denote D := [vec(Dy),...,vec(D,)] €
R* %" and let E € GL(r,R) be a diagonal matrix with elements £; = =1 on the
diagonal. Then the equation "} _, ex(Dy ® Di) = L for the matrices Dy, ..., Dy
becomes DED' = L. We have r > v = rank(L). Consider again the factorization
L = PALPT. Partitioning the matrix P as P = [Py, P;] with P, € R"" %7, we
may choose r = v and D = Py, E = diag(ly,~135). O

According to parts (i) and (iii) of Proposition F.2, a matrix L € R™**"” is the
matrix representation of a Lyapunov operator if and only if it has the symmetry
property P2 L = LFP,2, or, equivalently, L. = P,2LP,2. This leads to the following
proposition.

Proposition F.6 The subspace Q(n,R) C R xn’ of matriz representations of
real Lyapunov operators is isomorphic to the subspace

Ker (Ij2 ® Py — P2 ® I2) = Ker (Prz ® Poz — Ina) C R™. (F.5)

Proof. Multiplying the last equation on the left with P2 and taking into
consideration that P2, = I, we also get L = P,2LP,>. The characterization
of Q(n,R) by the subspace (F.5) is obtained taking the vec operation on both
sides of the equalities P2 L — LP,2 = 0p24,2 and P2 LP,2 — L = 0,25 ,2, namely
(I,2® P2 — P2 ® I2)vec(L) = 0pay;. O

Next we will give two explicit parametrizations of the set Q(n,R), which in
particular yield the dimension of the space of real Lyapunov operators. For this
purpose we need the Jordan form J, of P,2. The matrix P,z has two eigenvalues:
A1 = 1 with multiplicity n; := n(n + 1)/2 and Ay = —1 with multiplicity ny :=
n(n — 1)/2. Thus, the Jordan form of P, is

Jn =0 P20, = diag(l,,, —I,), (F.6)
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where the orthogonal matrix ©, € O(n% R) may be obtained as follows. The
permutation L — P,2L leaves n rows of L at their positions (k — 1)n + k, k =
1,...,n, and interchanges the positions of the rows in the remaining n{n — 1)/2
pairs of rows. Hence, there is a permutation matrix ©/,, such that

INT r_ g 01 0 1
(©,,) Pnz@n—dlag<ln,[1 ol 11 ol

ol ;:diag<1n,[$ ""J,...,[“’ v ]) wi=1/V2.

w [} w

Let

Then

(0.6")" P,20! 0" = diag(I,,1,-1,...,1,-1).
Let ©7 = I; and, if n > 2, let ©! be the permutation matrix, corresponding to
the permutation n+2! - n?+1-21, 1 =1,...,(n—1)(n—2)/2, leaving the other
elements of {1,...,n?} unchanged. Then

0, =0,0/0. (F.7)
Example F.7 For n = 2 the transformation of Il into J, is done via
0

—w

0, = , Jo = ©, 11,0, = diag(1,1,1, —1).

o O O =
- O O O
o & &€ ©

0

Proposition F.8 The subspace Q(n,R) is parametrized as

Qn,R) = V. Y(Her(n? R))
Ly 0 T nixns
= ZLn’ R™ t.
{@n[ w0 ]en c

In particular the (real) dimension of Lyap(n,R) and 2(n,R) is n? +n2 = n?(n?+

1)/2.

Proof. The first parametrization of Q(n, R) follows immediately from Proposi-
tion F.2(iv) and we see that the dimension of Q(n, R) is that of Her(n? R), i.e.,
n?(n? +1)/2.

Consider the second parametrization. The matrix equation P,2L = LP,2 for
the matrix L is equivalent to

J.L=LJ,, L:=06]Le,. (F.8)

The general solution of equation (F.8) is of the form L= diag(Lqy, Lo}, where
the matrices L;; € R®n; X n; are arbitrary, which completes the proof. 0
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Example F.9 For n = 2 and n = 3 the sets Q(2,R) and Q(3,R) are 10- and
45-dimensional real spaces with patterns A; and A3 of the free parameters as

follows:
1 2 3 2 4 5 3 5 61
7 8 9 10 11 12 13 14 15
1 2 2 3 16 17 18 19 20 21 22 23 24
Z 5 6 ; 7 10 13 8 11 14 9 12 15
A = A6 5 7 ,As=125 26 27 26 28 29 27 29 30
8 9 9 10 31 32 33 34 35 36 37 38 39
- - 16 19 22 17 20 23 18 21 24
31 34 37 32 35 38 33 36 39
| 40 41 42 41 43 44 42 44 45 |

In both cases the underlined elements are in the positions, corresponding to the
zero scalar identities for the elements of L in the matrix equation P,2L = LP,..

If M € Lin(n,R) is a general Sylvester operator, then according to Defini-
tion E.3 we have | M||p := 0max(M) := o1 (Mat(M)) = max{||M(X)||r : | X]|lr =
1}. Similarly

Tmin(M) := o2 (Mat(M)) = min{| M(X)|lr : | Xlr = 1}

and if M € Lin(n, R) is invertible, then |M™!||p = 1/omin(M).

For Lyapunov operators £ € Lyap(n,R), however, in addition to the standard
maximum and minimum singular values opax(£) and omin(£), we may also define
the maximum and minimum Lyapunov singular values

1Ll = Fmax (£) = max{[|L(X)|le < | X[p =1, X = X7}

and
Fmin(£) = min{|L(X)Ip: [ X|p =1, X = X"},

If £ is invertible, then ||£-1|z = 1/0mm(L). Obviously
Umin(ﬁ) < 01;1—1;1(‘6) < E-n\lgc([') < Umax(ﬁ)-

Each of these inequalities may be strict, i.e., the inequalities oyin (L) < Tmin(£)
and Tmax(L) < Omax(L) are possible. Moreover, as we show below, the differences
Tmin(L£) = Omin(L) and omax(L) — Tmax(L) may be arbitrarily large, see Exam-
ple F.12.

Let A € R™™ and a := vec(4) ¢ R™* . Using the notation vec, ' (a) =
(vec,;}(a)) T define the set Z(n) := {a eR™ :vec;(a) = vec;T(a)}, correspond-
ing to the symmetric matrices A = vec;!(a), which is an n(n + 1)/2-dimensional
subspace of R®*. We will show that Z(n) = Rg(l,2 + P,2) = Rg(P,), where
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Py = [Po;] € R¥™Xn(+1)/2 5 — 1 is an upper block-triangular matrix.
The blocks P, ;; € R**J are defined by

Onxj if i>j,
Foij= [ L ] if 1=y,
O(n—iyxi

If L is the matrix representation of £ € Lyap(n,R), then we can rewrite the
expression for g, (£) in the equivalent form

o~ P,
Omax(L) = max{”LLHz:Oyéan(n)}:max{M:O;ébeR"("+1)/2}
lall2 || Prbll2

HLQn”2 = amax(LQn)y

where
Qn = P’n(PT—LrPTL)—I = [Qn,ij] € anxn(n+1)/2; Za] = 17 e N (Fg)

is an upper block-triangular projector (QIQn = Intn+1)/2). The blocks @, ;; €
R™*J are given by Qnij = 0ifi > 4, Quur = [1,0,...,0]T € R”, Qnkk =
[diag(wlx—-1,1),0]" and Qn 5 = wEji(n,j) if i < 7, where w := 1/v/2.

The matrices P, and Q, have the same sign-patterns, the only difference being
that the nonzero elements of P, are equal to 1, while the nonzero elements of Qn
are equal to 1 or w.

Example F.10 The matrices Qs, Q3, Q4 are

1o olo 0 o
0lw 0/0 0 0
o o 0/0 0lw 0 0
olo o 0lw 0{0 0 0
Q= |Gt :Q=]0]0 1|0 0 0],
olo 1 00 00 w 0
0/0 0w 0 0
00 0/0 w 0
[ 0/0 00 0 1|
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1lo olo o olo 0 0 0
0lw 0l0 0 0l0 0 0 0
0lo olw 0 0l0 0 0 0
0lo 0l0 0 0Ojw 0 0 O
0lw 0]0 0 0[]0 0 0 O
0lo 110 0 0lo 0 0 O
0/0 0/0 w 0{0 0 0 O

~|olo olo 0o 0|0 w 0 O

Q=170 0lw 0 0]0 0 0 0
0/0 0/0 w 0]{0 0 0 O
0/0 0/0 0 1]0 0 0 0
010 010 0 0{0 0 w O
0/0 0(0 0 Olw 0 0 O
0lo 0{0 0 0{0 w 0 0
0/lo olo 0 0{0 0 w O
[ 0o]o olo o olo 0 0 1]

Similarly, we have for the minimum Lyapunov singular value

Omin(L) = Tmin(LQn)

Definition F.11 The singular values of the matriz LQ,, are called Lyapunov sin-
gular values of the Lyapunov operator L with associated matriz L. The set of
Lyapunov singular values of L is denoted as o(L) := o(LQy).

To compare the standard and Lyapunov maximum and minimum singular val-
ues, consider the following example.

Example F.12 Let operators £1, L2 € Lyap(n,R) be determined by

L1(X) = EnXEs+ ExnXEn — E12XEy, — EnXEo,
Lo(X) = X +BLy(X), X € R¥*?,

where E;; := E;;(2,2) and 3 > —1/2. Setting L; := Mat(L;) we have

0 0 0 1 0 0 0
0 — -

L= L-1tof o 148 -8 0O

0 -1 1 0 0 -8 148 0

0 0 0 0 0 0 0 1

Since opmax(L1) = 2 and L1Q = 0443, the maximum singular value gpyax(6L1) =
2|3| of the operator 8L, may be arbitrarily larger than its maximum Lyapunov
singular value omax(3L£1) = 0. Furthermore, we have o(£3) = {26+1,1,1,1} and,
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since LaQ2 = @9, we obtain o(L2) = {1,1,1}. Then for large 8 the maximum
singular value omax(L2) = 206 + 1 of L, is arbitrarily larger than its maximum
Lyapunov singular value Gyax(£2) = 1. Finally, let 8 = —1/2 4 £/2, where £ > 0
is a small parameter. Then the minimum singular value o, (L£2) = € of Lo may
be arbitrarily smaller than its minimum Lyapunov singular value, which is equal
to 1.

The relationship between the sets of standard and Lyapunov singular values of
a Lyapunov operator is revealed by the following assertion.

Proposition F.13 If £ € Lyap(n,R) then (L) C o(L).

Proof. The set Her(n, R) is an invariant subspace of the operator
L € Lyap(n,R). The orthogonal complement of that invariant subspace, the set
SHer(n, R), is also an invariant subspace of £. It follows that (L) C ¢(£). O
From an application viewpoint it is important to define the class of Lyapunov
operators £ with Sylvester index ind,,(£) < 2 such that

Omin(‘c) = U/r\n-x/n(ﬁ) and O'max(L) = ;n:;c(ﬁ) (F]'O)

As Example F.12 shows, for ind,(£) > 4 it is possible that opmin(£) < Tmin{L)
and/or omax(L) > Gmax(L). The results in [40] can be extended to show that for
n =3 and ind3(L) = 2 relation (F.10) is not valid in general.

If (F.10) holds, then for Lyapunov operators that are most used in practice,
e.g. for the descriptor continuous- and discrete-time operators £, and Ly, given
by Lo(X) = ATXE + ETXA and L4(X) = ATXA - ETXE, it is justified to
use the minimum and maximum standard singular values, since they are equal
to the corresponding Lyapunov singular values. For general Lyapunov operators,
however, one should use the Lyapunov singular values, since they produce tighter
bounds.

Note finally that the converse of Proposition F.13 is not true, i.e., the inclusion
o(M) C o(M) for some M € Lin(n,R) does not imply M € Lyap(n,R), as is
demonstrated in the following example.

Example F.14 Let

O OO =
O N =~ O
SN = O
= O O O

Then 6(M) = ¢(MQ;) = {V10,1,1} C o(M) = {+/10,1,1,0}, but M ¢ Q(2,R)

and hence, the corresponding M is not a Lyapunov operator.
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F.3 Complex operators

The results for real Lyapunov operators have their counterparts for complex Lya-
punov operators, defined next.

An operator M € Lin(n,C) may always be represented in the form (E.3),
where A, By € C**". Definition E.3 is directly applicable to such operators and
Proposition E.7 holds as well. Definition F.1 is modified as follows.

Definition F.15 The complex operator L € Lin(n,C) is said to be a Lyapunov
operator if

(O = £(x™), x e CV™

The set of complex Lyapunov operators is denoted by Lyap(n,C).

It follows from Definition F.15 that X = X! = £(X) = (£(X))¥ and X =
-X" = £(X) = —(L(X))! provided £ € Lyap(n,C). Therefore Her(n,C) and
SHer(n,C) are invariant sets for complex Lyapunov operators.

In the complex case, due to the nonlinearity of the complex conjugation, the
set Lyap(n, C) C Lin(n, C) of Lyapunov operators is not a subspace of Lin(n, C)
and the set Q(n,C) C C?"*2" s not a subspace of C2"*2" (these sets may become
subspaces if we consider linear spaces of complex matrices with R as a field of
scalars or if we pass to the representation C2"*?" ~ R2"2><2"2).

We have the following analogue of Proposition F.2 in the complex case.

Proposition F.16 The following four statements are equivalent:
(i) £ € Lyap(n,C).
(ii) There exists M € Lin(n,C), such that

LX) = M(X) + M(X"NY, X e C™m,

i, L(X) = Yh_; (AcX By + BEXAY) and
Li=Mat(C) = 3" (B{ ® Ay + A ® BY),
k=1

where Ay, By € C*™™ are given matrices.

(iii) L € Q(n,C), where Q(n, C) is the set of complex n?xn? matrices L, satisfying
the equation P2 L = LP,>.

(iv) The matriz L := V,,(L) is Hermitian.
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Proof. The proof is similar to this of Proposition F.2. In particular we have
the equation

AB + (AB)Y =1L,

showing that L is Hermitian. 0O ,
2
If we represent L € Cr'xn’ as L =S + 1T, where ST € R™ *™ | then Propo-
sition F.16(lii) yields

P,2S = SP,2, Pyp2T = —TP,:. (F.11)
Hence, we come to the following analogues of Propositions F.6 and F.8.

Proposition F.17 The set Q(n,C) C C*"*?* of matriz representations of com-
plex Lyapunov operators is isomorphic to the subspace

Ker [diag (In2 Q@ Poz — P2 @ L2, 2 ® Prz + P2 @ Iy2 )]
= Ker [diag (Pnz QP2 —L,4,P2® P2 + In4)] C R2n4.

Proof. The proof follows directly from (F.11). 0O

Using the Jordan form (F.6) of P2 and the matrix ©, from (F.7) we can
parametrize the set Q(n,C) and determine its real dimension according to the
following proposition.

Proposition F.18 The set Q(n,C) is parametrized as

Lyt Ly

Qn,C) =V, (Her(n?,C)) = {Qn [ Loy Log

]@I:LU GR’“X"J}.

In particular the real dimension of Lyap(n,C) and Q(n,C) is nt.

Proof. The first representation follows from Proposition F.16(iv). The second
is based on equations (F.11) for the matrices S and T'. Using the Jordan form J,
of P> we obtain the equivalent equations

JnS = 8J,, §:=0180,; J,T=-TJ, T:=0]Te,. (F.12)

The general solution of (F.12) is of the form

a Ly, 0 - 0 Lo ]
S = T= s
[ 0 L22 ] ! [ L21 0
where the matrices L;; € R™*" are arbitrary. [0

Similarly to the real case, a complex Lyapunov operator £ € Lyap(n, C) admits
also the Hermitian representation

£a
L(X)=Y ¢;D,XD},

=1
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where €; = £1 and D; € C**". Accordingly, the concepts from Definition F.3 are
easily extended to the case of complex Lyapunov operators. In particular we see
that Proposition F.5 holds also in the complex case.

The maximum and minimum Lyapunov singular values of the operator £ €
Lyap(n,C) are defined as

Omax (L)
amin(c)

max{|L(X)]lp : |1 X ]l = 1, X = X1}, (F.13)
min{[|C(X)lle : |X]lr =1, X = X7},

respectively.

The Lyapunov singular values of a complex Lyapunov operator £ € Lyap(n,C)
with matrix

L =S+41T; S € Her(n,R), T € SHer(n,R),

are defined as follows. Let

L[R = l: ; '_ST jl € R2nx2n

be the real version of L. Let X =Y +1Z, where Y, Z € R**™. Then the restriction
X = XH in (F.13) means that Y is symmetric and Z is skew-symmetric, i.e.,
y :=vec(Y) € Rg(Jn2 — Pp2) and 2 := vec(Z) € Rg(In2 + Pynz). Furthermore, we

have
LIR Yy
z

amax(‘c) = H\I,R(L)H2 = UI(WH(L))) gmin(‘c) = Op2 (\I’n(L)),

LX) e =

2
Therefore, as in the real case, we obtain

where the matrix ¥, (L) is defined by

Vo(L) := LRdiag(Qn, R,) = [ ,f,g: S:’;ziﬂ ] € 2 xn?,
Here the matrix R, € R* *™7=1)/2 i5 obtained from Qn (see (F.9) and Example
F.10) by deleting the columns containing 1’s (which are numbered as k(k +1)/2,
k =1,...,n) and by changing the sign of each second element w in each column
of the reduced matrix. Formally this procedure is described as follows. Let A, =
[Anij = [0iir1y/2,5] € RPHD/2xn(n=1)/2 "where §; ; is the Kronecker delta, and

J={lkn+Lk(k-1)/2+1):k=1,...,n-1,1=1,... k}.
Then the elements [R,]; ; of the matrix R,, are given by

o @nbaliy i (4,5) ¢ T,
Bl _{ —[QuAn)i; i (6,5) € J.
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Example F.19 The matrices Ry, R3, Ry are

olo o
w 0 0
0 |—-w O
0 —w | 0 0
Ro=|—* Rs=| 0|0 o [,
g 00 w
0 0 |—-w O
0 0 -w
oo 0 |
T 0o]lo olo o 07
w| 0 o]0 o o0
0|lw 00 0 o0
010 o0|w 0 o0
—w|0 0l0 0 0
olo o]0 0 o0
0l 0 wl]o 0o o0
0l0 0]0 w o0
Ri= =T o To o o
0l 0 —w|o0 0 o0
olo oo o o
olo o]0 0 w
0] 0 0 ]|-w 0 0
0/l0 0[]0 -w o0
0lo0o 0]0 0 -w
L o|o o]o o0 o0 |

Definition F.20 The Lyapunov singular values of the complez Lyapunov operator
L € Lyap(n,C) with associated matriz L € (n,C) are the singular values of the
matriz ¥, (L), namely 5(L) := o (¥, (L)).

A similar statement 5(L£) C (L) as in the real case can be stated for complex
Lyapunov operators L.

Consider now some problems concerning the inversion of Lyapunov operators.
The operator £ € Lyap(n, F) is invertible if and only if its matrix L is nonsingular,
and in this case we have Mat(£~1) = L~!. In addition, the inverse of a Lyapunov
operator is again a Lyapunov £ operator since for L € GL(n?,F) the equations
P,:L = LP,2 and P,2L~! = L™ P, are equivalent. Conditions for invertibility
of general real and complex Lyapunov operators are given in [132].

The continuous-time Lyapunov indices of the operator and its inverse may
differ, see Example F.22.
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Consider the continuous-time and discrete-time Lyapunov operators from
Lyap(2,R).

Example F.21 Given the matrix A € R?*2, the continuous-time operator L 4 . €
Lyap(2,R) is defined by L4 .(X) 1= (AT, I, I, A) = ATX + XA, X € R¥*2,
It is invertible if and only if tr(A) # 0 and det(A) # 0. Also, it is of index 1 if and
only if A is a scalar multiple of I, and of index 2 otherwise.

The discrete-time operator £4 4 € Lyap(2,R), defined by

Lag(X)=E(AT,A L, -I,)= A" XA - X, X ¢ R¥*?

is invertible if and only if det(A4) # 1 and tr(A) — det(A) # 1. It is of index 1 if
and only if A is a scalar multiple of I,, and of index 2 otherwise.

Al ],whereo#/\ER. Then

E le F.22 Let A =
xample et [0 I\

Lao(X) = [ 2Xz11 11 + 2AT12

, X = |z Eszz,
i1 + 2)\.’1721 T21 + T19 + 2A$22 :| [ U]

-~ —lyn 2%2
L 1 Y — l |t Y11 Y12 :l , Y — e R X
aeld) yo1 — lyn 20%y11 — lyar — lyiz + ya2 [y

where | := 1/(2)). Hence, the matrix L. of L4 is

240 0 0

1 20 0 0

Lac=1 1 9 ar o0

0 1 1 2\

The matrix

92 1 0 2A

1 0 0 1

Vallae)=| 4 o 2x o
oA 1 0 2)

has two eigenvalues 2\ £ V42 + 2 of opposite sign and two zero eigenvalues.
Hence, clind(£ 4,c) = dlindz(L 4,c) = 2. The matrix V3(L}".) € Her(4, R) has two
eigenvalues of the same sign and two zero eigenvalues. Therefore dlindg(ﬁ:‘}c) =
2, clindg(l::"lc) = 4. If for example A > 0, then we have the following discrete-

time representation EZ‘IC(Y) = DiYD] + DzYD;—, where Dy := V1 [ 10 ],

-1 1
00
Dy =1 .
) \fz[lo}

So far we have made an analysis of general Lyapunov operators. In the following
section, we discuss the application of these results to the sensitivity and a posteriori
error analysis of Lyapunov equations.
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F.4 Sensitivity and error analysis

Consider the Hermitian Lyapunov equation

‘C(X) =Q, QH =Q#0, (F14)

with an invertible Lyapunov operator £. The minimum symmetric singular value
Tmin(L) of L is a relevant measure for the sensitivity of the Lyapunov equation
(F.14) relative to perturbations in the coefficient matrices of £ and Hermitian
perturbations AQ = AQY in the matrix Q.

Denote by Xo = X{! = £-1(Q) the solution of (F.14) and let X = Xy + 60X
be the solution to the perturbed Lyapunov equation £(X) = Q + 6Q. We have
6X = L71(5Q) and hence,

16X lle < 1L IRN0Q)F = ( )||5QIIF~
In terms of relative perturbations it holds that
~ - 1 Qle
Ex < KeEQ, K=
@ Umm( ) HXOHF
where ez := ||6Z||r/||Z||r and K is the relative condition number of the Lyapunov

equation (F.14) with respect to Hermitian perturbations in . Note that usually
Q = DUD and when the matrix D is perturbed, then the perturbation 6Q =
SDHD + DHD + 6DHSD in Q is Hermitian.

Most of the perturbation bounds in the literature [95, 68] are based on omin(£)
instead on omymin{L), e.g. the condition number is taken as

% = [|Qllr /(1 XollFomin (£))-

Since K > K may be much larger than &, it is clear that in case of Hermitian
perturbations one should use the relevant sensitivity estimates, based on symmetric
singular values instead on standard singular values of Lyapunov operators. At the
same time sensitivity estimates, based on the standard singular values, should be
used in case of non-Hermitian perturbations.

Consider now the a posteriori error analysis of equation (F.14). Suppose that
X is an approximate solution of equation (F.14). For example this may be the
solution, produced by a numerical method in finite precision arithmetics. Then
it is important to have a sharp computable bound on the actual relative error
bg = ||)? —Xo|l7/|| Xo||r. Such a tight bound may be derived using the symmetric
singular values of £ and in particular the symmetric relative condition number of
L, defined below.

Denote by @ = L'()? ) the residual, corresponding to the approximate solution
X. We have £(X — Xo) = Q — Q, which gives X — Xo = £~1(Q - Q) and

IQ - Qlle

1% = Xolle < Z— 7"

(F.15)
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Since [|Qlr < Tmax(L)]| Xol|F, it holds that

< Tmax(£) (F.16)
[ Xolir ~ lIQIlF
Combining (F.15) and (F.16) we get the desired estimate
IQ - Qllr
§¢ < cond )
% = condslO Ty,
where c/o;ﬁz([l) = U"“”‘((ﬁ)) is the symmetric relative condition number of £ with

respect to inversion. This condition number may be used also for a posteriori error
analysis of approximate solutions to symmetric matrix Riccati equations.

F.5 Notes and references

Since the fundamental work of Lyapunov on stability of motion, Lyapunov matrix
equations have been widely used in stability theory of differential equations [236),
in the theory of linear-quadratic optimization and filtering (181}, in the perturba-
tion analysis of linear and nonlinear matrix equations (68, 95, 120, 151] and other
fields of pure and applied mathematics. This has motivated a continuous interest
to both the theory and numerical treatment of Lyapunov operators and equations
[40, 41, 79, 203, 204, 2186, 69] and also recently in the context of the analysis and
numerical simulation of descriptor systems via generalized Lyapunov equations
[167).

The results presented in this chapter are entirely based on the papers (126, 125].
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Appendix G

Lyapunov-like operators

G.1 Introductory remarks

In this appendix we consider six more classes of Lyapunov operators and present
their parametrizations and dimensions in particular. The proofs are similar to
these from Appendix F and are omitted.

G.2 Skew-Lyapunov operators
Real skew-Lyapunov operators L from Lin(n,R) are defined via
(LX) = -L(XT), X e RV™,

and may be represented as

L(X)=> (AxXBy - Bl XAy); Ak, B € R™", (G.1)
k=1

The matrix L € R** %"’ of a skew-Lyapunov operator satisfies P2 L = —LP,2 and
has the form
0 Ly |7
L=0© 0,
" [ Ly 0 } "
where the matrices L;; € R™*" are arbitrary. Hence the space of real skew-
Lyapunov operators is of dimension 2n;ny = n?(n?~1)/2. Since AB—(AB)" =L
then the matrix L := V,,(L) of a real skew-Lyapunov operator £ is skew-symmetric.
Complex skew-Lyapunov operators L from Lin(n, C) are defined by the relation

(LX) = —£(xM), X e C™m,

397



398 APPENDIX G. LYAPUNOV-LIKE OPERATORS

and may be represented as
L(X) = (AxXBp ~ BEXAR); Ay, By e C™ ™ (G.2)
k=1

The matrix L = S+ 7T € C***"* with S, T € RV *7* of a complex skew-Lyapunov
operator L satisfies the equation P,2L = —LP,> and hence, P,:S = —SP,2,
P2T =TP,2. Thus
JLin  Lyo T

L=6n [ Loy jLa2 ]8"7
where the matrices L;; € R®*™ are arbitrary. Hence, the space of complex skew-
Lyapunov operators is of real dimension n*. The matrix L := V,(L) for a complex
skew-Lyapunov operator L is skew-Hermitian since AB — (AB)! = L.

The skew-Lyapunov indez of a skew-Lyapunov operator is defined as the mini-
mum number of terms in the representations (G.1) or (G.2) and may be determined
as follows.

Consider the equation C— C* = L in C := AB for a skew-Lyapunov operator.
The matrix L is congruent to the matrix

. 0 -1 0 -1
dlag (|: 1 0 :|a-'-7 [ 1 0 :| 7O(n2—2r)><(n2—2r))

with r blocks of size 2 x 2 on the diagonal in the real case, and to the matrix

diag (’LIa, —ZIg, O(nz—'y)x(rﬂ—'y))

in the complex case, where y := o+ = rank(L). Hence, the minimum achievable
rank of C is the rank of L. Thus, the skew-Lyapunov index of the skew-Lyapunov
operator £ € Lin(n,F) with matrix L is equal to the rank of the matrix L :=
Vn(L).

G.3 Associated Lyapunov operators

Associated Lyapunov and Riccati equations have been considered in [148] in the
real case and in [140] in the complex case. Below we present the parametrizations
of associated Lyapunov operators.

Real associated Lyapunov operators £ from Lin(n, R) are defined by

(LX) =L(X), X eR™™,

and are given by

r
L(X)=> (AXBi+BIXTA]); A, By € R™™,
k=1
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The matrix
r

L= Z (B ® Ax + Ay ® B] P,2) € R
k=1

of the associated Lyapunov operator £ satisfies P,2L = L and has the form

L=en[ Ly ]@I,

On2 xn?

where the matrix L; € R®n; x n? is arbitrary. Hence the space of real associated
Lyapunov operators is of dimension n3(n +1)/2. It may be shown that L,; = LiTj,
where L;; are the n x n blocks in the partition L = [L;;] of the matrix L := V,,(L).

Complez associated Lyapunov operators C**™ — C™*™ are defined by
(LN = £(X), X e C™T,

and may be represented as

L(X)=> (AxXBy+Bix"Al); Ay, By € CV.
k=1

Complex associated Lyapunov operators are not linear, but pseudo-linear opera-
tors, see Chapter 13 and [140}. For pseudo-linear operators £ : C**™ — C™*" we
have £(X) = M (X) + M(X®), M; € Lin(n,C), and vec(L(X)) = Mvec(X)+
My P 2vec(X), M; := Mat(M;). Thus, the set of these pseudo-linear operators is
of complex dimension 2n4.

For a complex associated Luapunov operator it is fulfilled M, = Ml, ie.,
vec(L(X)) = Avec(X)+Avec(X), A € C**™. Hence, the set of complex associated
Lyapunov operators is of complex dimension n.

The values of an associated Lyapunov operator are symmetric matrices in the
real case and Hermitian matrices in the complex case. Hence, these operators
are not surjective if considered as mappings F**" — F"*™ and thus, one should
consider associated Lyapunov operators as mappings F**" — Her(n, F).

G.4 Associated skew-Lyapunov operators
Real associated skew-Lyapunov operators L from Lin(n, R) are defined by

(['(X))T =-L(X), X € R™*™,

and may be represented as

L(X) = (AxXBy - B XTA]); Ay, By € R™™.
k=1
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The matrix .
L= (B} ® Ay — (Ax ® B Pp2)) € R ¥
k=1
of an associated skew-Lyapunov operator satisfies P,2 L = —L and has the form

Lo, My Jer,

where the matrix L, € Rm*n’ ig arbitrary. Hence the space of real associated
skew-Lyapunov operators is of dimension nyn? = n3(n —1)/2.
It is easily proved that L;; = —LiTj7 where L;; are the n x n blocks in the
partition of the matrix L := V,(L).
Complex associated skew-Lyapunov operators C**™ — C"*" are determined
by
(L(XNHE = —L£(X), X e CV*7,

and may be represented as

‘C(X) = Z (AkXBk - BEXHA};I) ) Ak,Bk e Crm,
k=1

These operators are pseudo-linear and satisfy vec(L£(X)) = Avec(X) — Avec(X),
A € C**™. Thus the set of complex associated skew-Lyapunov operators is of
complex dimension n?.

The values of associated skew-Lyapunov operator are skew-symmetric matrices
(in the real case) or skew-Hermitian matrices (in the complex case) and these oper-
ators are not surjective if considered as mappings F**™ — F"*". Hence, one may

consider associated skew-Lyapunov operators as mappings C**" — SHer(n, ).

G.5 Notes and references

Lyapunov-like and other related (bilinear and Riccati) operators have been con-
sidered in [125].



Appendix H

Notation

We usually use upper case for matrices, lower case for vectors and lower case Greek
for scalars.

In what follows we list the common notation which is used throughout the text.

H.1 Sets and spaces

1 = y/—1 — the imaginary unit;
R and C - the fields of real and complex numbers;

R, = [0, 00) — the set of nonnegative real numbers;

sup{M} - the supremum (least upper bound) of the set M C R, i.e., the least
real number such that o € M implies o < sup{M}. The supremum of the empty
set is assumed to be —oo;

inf{ M} — the infimum (largest lower bound) of M, i.e., the greatest number
such that a € M implies & > inf{AM}. The infimum of the empty set is assumed
to be oo;

F — a replacement of either R or C;
C_ - the open left complex half-plane;
D; — the open unit complex disc, centered at the origin;

Fm*™ — the space of m x n matrices A = [a;;] with elements a;; € F. The

elements of A are also denoted as (A);;. The pair (m,n) is the size of A € F™*™;
F? = F**! — the space of column n-vectors z = [z;] with elements z; € IF;

2% — the set of subsets of the set X.

401
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H.2 Matrices

I, (or I) ~ the n x n identity matrix;

Omxn (or 0) — the m X n zero matrix, or a zero matrix, whose size is clear from
the context. If m = 0 or n = 0 the matrix 0, is void;

E;;j(m,n) € R™*™ — 3 matrix with a single nonzero element, equal to 1, in
position (i, §); Eij(n) = Eyj(n,n);

AT = [aj;] € F"™™ — the transpose of A = [a;;] € F™*™;

A = [@;;] € F™*™ - the complex conjugate of A € F™*m;

AR = AT e Fm - the complex conjugate transpose of A € Fm*™,

Re(4) € R™*" and Im(A) € R™*" - the real and imaginary parts of A €
Cmx™ je., A= Re(A) + 1Im(A);

diag(ai,...,an) — a (block) diagonal matrix with diagonal (block) elements a;,
where a; are scalars or matrices;

rank(A) — the rank of A, equal to the number of its linearly independent
columns or rows;

det(A) and tr(A) - the determinant and trace of A;

A1(A),..., Ap(A) € C - the eigenvalues of A € F™*"  counted according to
their algebraic multiplicity;

spect(A) = {A1(A4),..., A\ (4)} C C - the spectrum of A € F*"*™. We note
that spect(A) is a collection, i.e., a set with (possibly) repeated elements;

rad(A) = max {|z] : z € spect(A)} - the spectral radius of A;

o1(A) > --- > 04(A) > 0 - the singular values of A € F™*" where k =
min{m,n}. The positive singular values of A (whose number is r = rank(A)) are
the positive square roots of the positive eigenvalues of AHA or AAH. We also
denote oyax(A) = 01(A) and oy (4) = 0,.(A);

Ker(A) = {x € F" : Az = 0} C F" and Rg(A) = {4z : x € F*} C F™ - the
kernel and range (or image) of A € F™*",

A® B = [ay;B] € F™*n _ the Kronecker product of A = [a;;] € F™*" and
B e FRxL

GL(n,F) C F**™ — the group of nonsingular n x n matrices over F;
U(n) C GL(n,C) - the group of unitary matrices U € C**" (URU = I,);
O(n,F) C F**™ — the group of orthogonal matrices U € F*** (UTU = I,,);

Her(n,F) C F**" — the set of Hermitian matrices, satisfying A" = A. In the
real case Her(n,R) C R™*" is the set of symmetric matrices;

v4(A), v_(A) and vp(A) - the number of positive, negative and zero eigenvalues
of the matrix A € Her(n,F);
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SHer(n,F) C F*X" - the set of skew-Hermitian matrices, satisfying A™ = —A.
In the real case SHer(n,R) C R™*™ is the set of skew-symmetric matrices;

We write A < B if a;; < b;; for all 4, j, where A = [a;;] and B = [b;;] are real
matrices of equal size.

H.3 Matrix operators
For A = [a;;] € F™*™ we denote by
vec(A) = [@11y- 5, Qm1s Q124 o, B2y~ v, Blny e - - ,amn]T e Fmn

the column-wise vector representation of A. If A is represented by its columns
a; € F™ as A = [a,...,ay] then vec(A) = [a]—, ... ,aI]T. When the size (m,n)
of A is essential, we also write vec(A) as vecm n(A4) (vec, = vec,,) . We also
consider vec,, ,, as a linear operator F™*™ — F™m»,

-1

vec,,., : F™™ — F™X™ — the inverse of vecy, , : F™*" — F™" vec;! = vec; !

n,n’

P n € R™X™ — the vec-permutation matrix such that
vec(M ") = P pvec(M)

for M € F™*™, P2 = Py s

roWm n(A) = (vec(A™)T = [au,...,am] = (vec(4))T Pom € FX™ _ the
row-wise vector representation of the matrix 4 = [af ... ,a,Tn]T € F™*" where
a; € F*X™ are the rows of A. We also use the shorter notation row(A);

The matrix representation (or briefly the matrix) of a linear matrix operator
L is denoted by Mat(£). If Y = £(X), where X and Y are matrices, then
vec(Y) = Mat(L)vec(X).

Lin(p, m,n, ¢,F) - the space of linear matrix (Sylvester) operators M : F™*? —
FPX49. We abbreviate Lin(m,n,F) = Lin{m, m,n,n,F) and
Lin(n,F) = Lin(n,n,n, n,F).
An operator M € Lin(p, m,n, ¢, F) may be represented as
r
M(X) =" AXB;, X e F™",
i=1

where A; € FP*™ and B; € F"*4 are given matrices. In this case the matrix of M
is

Mat(M) = ZBIT ® A;;
i=1

0p,m,n,q and 1y, — the zero operator in Lin(p,m,n,q,F) and the identity
operator in Lin(m, n,F), respectively;
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Lyap(n,F) C Lin(n, F) - the set of Lyapunov operators £, defined by (£(X))® =
£(XH).
The singular values o;(M) of an operator M € Lin(p, m,n,q,F) are the sin-

gular values o;(M) of its matrix representation M, ie., 0;(M) = o;(M). For
operators £ € Lyap(n,F) we also define Lyapunov singular values 7,;(L).

H.4 Norms

I -] — a norm in F™ or F™m*";

|z|l, — a Holder p-norm of z € F*,

n 1/p
el = (Z w) P21

In particular we have

n n 1/2
Izl =D ladl, Nl = (Z IinQ) » zlloo = max {|z;| : 1 < i < n};
i=1 i=1

| Allp,q — an induced norm of the matrix A € F™*™:
I Allp,g = max {||Az|y : x € F", ||zfl, = 1}, p,g > 1.
We set || Allp = [|Allp,p;

{|Allp - the Frobenius norm of A = [a;;] € F™*",

1/2
1Allr = (tr(4"4))"* = (th) ;

1,j=1

|A| = [lai;]] € RT*™ — the matrix absolute value of A = [a;;] € F™*™;
j + j

llall = [lla1},-- -, lla-ll]T € R7, - a generalized norm of the r-tuple

= (al, e ,ar),
where a, are vectors or matrices. When all a; are scalars, then the generalized
norm agrees with the vector absolute value |al;

For a linear or additive matrix operator M : F™>™ — FP*? we denote
IMllp = max{[|M(X)]|p : | X1l = 1},

where p € [1,00) of p = F;

Bo(a) ={x € F": ||z —a| < p} C F" - a closed ball, centered at a € F™ and of
radius p > 0. The same notation is used for a generalized ball B,(a) = {z € F* :
|z —a| = p} C F", centered at a and of generalized radius p € R7}.
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H.5 Perturbation analysis

A, X, ~ (subsets of) linear finite dimensional spaces, isomorphic to F?, F9, F",
respectively. An example is X = F? or X = F™*" ~ F™. Typically A is the
space of data and X is the space of results of a given problem;

I+ — a norm in X;
Il - [lx,y — a norm in the space of linear operators X — };
C(X,)) - the space of continuous functions X — ;

® (or ¢) : A — X - a function, defining a problem with data A (or a) € A
and result X = ®(A) € X or z = p(a) € X. The data A is usually a collection
(Ai,..., A;) of matrices A;;

F: Ax X — Y — a continuous function, defining a computational problem
with data A and result X via the equation F(4, X) = 0;

dA € Aand §X € X - perturbations in A € 4 and X € X, such that X + §X
is a solution of a perturbed problem with data A + §A;

dx = [|6X]| — an absolute norm perturbation in X € X’;
ex = ||6X])/I|X]| - a relative norm perturbation in X # 0;

V¥ - a perturbation operator, defined via
V(A E)=®(A+ E) - d(A).

With this notation we have §X = ¥(A4,5A);

[6X] < F(I6A]l) or 16X || < f(JISA]) - a perturbation bound for a problem
X = ®(A). Obtaining such bounds is the goal of perturbation analysis;

Fx (A9, Xo) : X — Y - the partial Fréchet derivative of the mapping F :
Ax X — Yin X, evaluated at the point (Ag, Xo). Thus Fx (A, Xp) is a linear
operator from X to J. The partial Fréchet derivative of F in A at (Ao, Xo) is
denoted Fa(Ao, Xo) and it is a linear operator from A to ). Often the partial
Fréchet derivatives are abbreviated as Fy and F ‘A

Fx (Ao, X0)(Y) € Y and Fa(Ap, Xo)(Z) € Y —theimagesof Y € X and Z € A
under the linear mappings Fx (4o, Xo) and F4(Ag, Xo).

II:X - Xorll: XxA— X - a (nonlinear) operator which is locally
equivalent to the perturbation analysis problem. Usually the perturbation problem
is rewritten as an operator equation §X = I1(6X,8A). It is further shown that II
has a fixed point in a set B C X of diameter f(||6A|) = O(||64])), A — 0. As a
result a perturbation bound [|6X|| < f(]|6A]]) follows.
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H.6 Other notation

We denote by eps the roundoff unit of the finite precision arithmetic (the floating

point computing environment in particular). For many computer platforms eps is
of order 1071¢, see also [174].

The notation m|n (m divides n) means that m,n,n/m € N.
The symbol := stands for “equal by definition” and O marks the end of proofs.



Bibliography

1]

3]

[4]

9]

E. Anderson, Z. Bai, C.H. Bischof, J.M. Demmel, J.J. Dongarra, J.J.
Du Croz, A. Greenbaum, S.J. Hammarling, A. McKenney, S. Ostrouchov,
and D.C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, third
edition, 1999.

V. Angelova, M. Konstantinov, D. Gu, and P. Petkov. Perturbation bounds
for general coupled matrix Riccati equations. J. Math. Game Theory Alg.,
2003. To appear.

R. Aripirala and V.L. Syrmos. Sensitivity analysis of stable generalized
Lyapunov equations. In Proc. of the 32nd IEEE Conf. on Decision and
Control, pages 3144-3149, San Antonio, 1993.

R. Aripirala and V.L. Syrmos. Sensitivity analysis and computable bounds
for the generalized algebraic Riccati equation. In Proc. of the 1994 Amer.
Control Conf., pages 2680-2684, Baltimore, 1994.

T Bagar and P. Bernhard. Hu,-Optimal Control and Related Minimaz De-
sign Problems: A Dynamic Game Approach. Systems and Control: Founda-
tions and Applications. Birkhauser, Boston, 1991.

Y. Bar-Ness and G. Langholz. The solution of the matrix equation
XC — BX =D as an eigenvalue problem. Int. J. Syst. Sci., 8:385-392,
1977.

V. Bargmann, D. Montgomery, and M. J. Von Neumann. Solutions of linear
systems of high order. Technical Report NORD-9596, Navy B. Ord., 1946.
Also in J. V. Neumann. Collected Works (A. H. Taut, Ed.), Pergamon Press,
London, 1963, vol. 5, pp. 421-478.

J.B. Barlow, M.M. Monahemi, and D.P. O’Leary. Constrained matrix
Sylvester equations. SIAM J. Matriz Anal. Appl., 13:1-9, 1992.

S. Barnett. Matrices in Control Theory. Van Nostrand Reinhold Co., Lon-
don, 1971.

407



408 BIBLIOGRAPHY

[10] S. Barnett. Introduction to Mathematical Control Theory. Oxford Univ.
Press, Oxford, 1975.

[11] S. Barnett and C. Storey. Some applications of the Liapunov matrix equa-
tion. J. Inst. Math. Appl., 4:33-42, 1968.

[12] S. Barnett and C. Storey. Matriz Methods in Stability Theory. Nelson,
London, 1970.

[13] AY. Barraud. A numerical algorithm to solve AT XA — X = Q. IEEE
Trans. Automat. Control, AC-22:883-885, 1977.

(14] A.Y. Barraud. Comments on “The numerical solution of ATQ+QA = ~C”.
IEEE Trans. Automat. Control, AC-24:671-672, 1979.

[15] R.H. Bartels and G.W. Stewart. Algorithm 432: Solution of the matrix
equation AX + XB = C. Comm. ACM, 15:820-826, 1972.

[16] H. Baumgéartel. Analytic Perturbation Theory for Matrices and Operators.
Birkhéser Verlag, Basel, 1985.

[17] A.N. Beavers and E.D. Denman. A new solution method for the Lyapunov
matrix equation. SIAM J. Appl. Math., 29:416-421, 1975.

(18] P.R. Bélanger and T.P. McGillivray. Computational experience with the
solution of the matrix Lyapunov equation. IEEE Trans. Automat. Control,
AC-21:799-800, 1976.

[19] R. Bellman. Kronecker products and the second method of Lyapunov. Math-
ematische Nach., 20:17-19, 1959.

[20] R. Bellman. Introduction to Matriz Analysis. McGraw-Hill, New York,
second edition, 1970. Reprinted by STAM Publications, 1997.

[21] P. Benner. Contributions to the Numerical Solution of Algebraic Riccati
Equations and Related Figenvalue Problems. Logos-Verlag, Berlin, 1997.

[22] P. Benner. Computational methods for linear-quadratic optimization. Rend.
Circ. Mat. Palermo, ser. II, pages 21-56, 1999.

[23] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical methods for
linear quadratic and H, control problems. In G. Picci and D.S. Gillian,
editors, Dynamical Systems, Control, Coding, Computer Vision, volume 25
of Progress in Systems and Control Theory, pages 203-222, Basel, 1999.
Birkhauser Verlag.

[24] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical solution of linear-
quadratic control problems for descriptor systems. In Proc. IEEE Conf. on
Computer Aided Control Systems Design, Hawaii, 1999. CD Rom:.



BIBLIOGRAPHY 409

(25]

[26]

27]

28]

29]

[30]

[34]

[35]

[36]

[38]

[39]

C.S. Berger. A numerical solution of the matrix equation P = ¢P¢! + S.
IEEE Trans. Automat. Control, AC-16:381-382, 1971.

A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM, Philadelphia, 1994.

P. Bernstein and W. Haddad. LQC control with H, performance bound:
A Riccati equation approach. IEEE Trans. Automat. Control, 34:293-305,
1989.

R. Bhatia. Matrix factorizations and their perturbations. Linear Algebra
Appl., 197-198:245-276, 1994,

G. Birkhoff and S. Mac Lane. Modern Algebra. Mackmillan Publ., New
York, 1977.

A. Bjérek. Component-wise perturbation analysis and error bounds for linear
least squares solutions. BIT, 31:238-244, 1991.

C. Blendinger, V. Mehrmann, A. Steinbrecher, and R. Unger. Numerical
simulation of train traffic in large networks via time-optimal control. Preprint
722, Institut fir Mathematik, TU Berlin, 2001.

D. Boley and B. Datta. Numerical methods for linear control systems. In
C. Byrness et al., editor, Systems and Control in 21 Century, volume 22 of
Progress in Systems and Control Theory, pages 51-74. Birkhauser, 1997.

T.L. Boullion and G.D. Poole. A characterization of the general solution of
the matrix equation AX + XB = C. Industrial Math., 20:91-95, 1970.

G.E. Bredon. Topology and Geometry. Springer-Verlag, New York, 1993.

R.S. Bucy. Structural stability for the Riccati equation. SIAM J. Cont.
Optim., 13:749-753, 1975.

W. Bunse and A. Bunse-Gerstner. Numerische Lineare Algebra. Teubner,
Stuttgart, 1985. In German.

A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for
algebraic Riccati equations. In S. Bittanti, editor, Proc. Workshop on the
Riccati Equation in Control, Systems, and Signals; Como, Italy, pages 107-
116. Pitagora Editrice, Bologna, Italy, 1989.

R. Byers. A LINPACK-style condition estimator for the equation
AX — XBT = C. IEEE Trans. Automat. Control, AC-29:926-928, 1984.

R. Byers. Numerical condition of the algebraic Riccati equation. Contemp.
Math., 47:35-49, 1985.



410

(40]

(41]

[54]

BIBLIOGRAPHY

R. Byers and S. Nash. On the singular “vectors” of the Lyapunov operator.
SIAM J. Algebraic Discrete Methods, 8:59-66, 1987.

D. Carlson and R. Loewy. On ranges of Lyapunov transformations. Linear
Algebra Appl., 8:237-248, 1974.

F. Chaitin-Chatelin and V. Frayssé. Elements of a condition theory for the
computational analysis of algorithms. In Iterative Methods in Linear Algebra,
pages 15-25, Amsterdam, 1991. North Holland.

F. Chaitin-Chatelin and V. Frayssé. Qualitative computing. Technical re-
port, CERFACS, Orsay, France, 1991.

F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computa-
tions. SIAM, Philadelphia, 1996.

K.-W.E. Chu. Singular value and generalized singular value decompositions
and solution of linear matrix equations. Linear Algebra Appl., 88/89:83-98,
1987.

K.-W.E. Chu. Symmetric solutions of linear matrix equations by matrix
decompositions. Linear Algebra Appl., 119:35-50, 1989.

A. Czornik and A. Swiernak. On the sensitivity of the coupled discrete-time
Lyapunov equation. IEEE Trans. Automat. Control, 46:659-664, 2001.

B.N. Datta and Y. Saad. Arnoldi methods for large Sylvester-like matrix
equations and an associated algorithm for partial pole assignment algorithm.
Linear Algebra Appl., 156:225-244, 1991.

K. Datta. The matrix equation XA — BX = R and its application. Linear
Algebra Appl., 109:91-105, 1988.

E.J. Davison and F.T. Man. The numerical solution of A’Q + QA = —C.
IEEE Trans. Automat. Control, AC-13:448-449, 1968.

J.W. Demmel. On condition numbers and the distance to the nearest ill-
posed problem. Numer. Math., 51:251-289, 1987.

J.W. Demmel. The probability that a numerical analysis problem is difficult.
Math. Comp., 50:449-480, 1988.

JW. Demmel. Nearest defective matrices and the geometry of ill-
conditioning. In Reliable Numerical Computation, pages 35-55, Oxford,
1990. Clarendon Press.

J.W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.



BIBLIOGRAPHY 411

[55]

(56]

[57]

(58]

67}

(68|

V. Demyanov. Fixed point theorems in nonsmooth analysis and its applica-
tions. Numer. Funct. Anal. Appl., 16:53-109, 1995.

T.E. Djaferis and S.K. Mitter. Exact solution to Lyapunov’s equation using
algebraic methods. In Proc. 1976 IEEE Conf. on Decision and Control incl.
15th Symposium on Adaptive Processes, pages 1194-1200, Clearwater, FL,
1976.

J. Doyle, K. Zhou, K. Glover, and B. Bodenheimer. Mixed H; and Hu
performance objectives: Optimal control. IEEE Trans. Automat. Control,
39:1375--1387, 1994.

J.C. Engwerda, A.C.M. Ran, and A.L. Rijkeboer. Necessary and sufficient
conditions for the existence of a positive definite solution of the matrix equa-
tion X + A*X 1A = Q. Linear Algebra Appl., 186:255-275, 1993.

M.A. Epton. Methods for the solution of AXD — BXC = FE and its appli-
cation in the numerical solution of implicit ordinary differential equations.
BIT, 20:341-345, 1980.

M. Eslami. Theory of Sensitivity in Dynamic Systems. Springer-Verlag,
Berlin, 1994.

L.E. Faibusovich. Algebraic Riccati equation and symplectic algebra. Inter-
nat. J. Control, 43:781-792, 1986.

K.V. Fernando and H. Nicholson. Solution of the Lyapunov equation for the
state matrix. FElectron. Lett., 17:204-205, 1981.

A. Ferrante and B.C. Levy. Hermitian solutions of the equation X = Q +
NX~'N*. Linear Algebra Appl., 247:359-373, 1996.

G. Forsythe and C.B. Moler. Computer Solution of Linear Algebraic Systems.
Prentice Hall, Englewood Cliffs, N.J., 1967.

P. Gahinet. Perturbational and Topological Aspects of Sensitivity in Control
Theory. PhD thesis, ECE Dept., Univ. of California, Santa Barbara, CA,
1989.

P. Gahinet and A.J. Laub. Computable bounds for the sensitivity of the
algebraic Riccati equation. SIAM J. Cont. Optim., 28:1461-1480, 1990.

P. Gahinet and A.J. Laub. Algebraic Riccati equations and the distance to
the nearest uncontrollable pair. SIAM J. Cont. Optim., 30:765-786, 1992.

P.M. Gahinet, A.J. Laub, C.S. Kenney, and G.A. Hewer. Sensitivity of the
stable discrete-time Lyapunov equation. IEEE Trans. Automat. Control,
35:1209-1217, 1990.



412
[69]
70}

71)
72)

BIBLIOGRAPHY

Z. Gaji¢ and M.T.J. Qureshi. Lyapunov Matriz Equation in System Stability
and Control. Academic Press, San Diego, 1995.

F.R. Gantmacher. Theory of Matrices, volume 1. Chelsea, New York, 1959.
F.R. Gantmacher. Theory of Matrices, volume 2. Chelsea, New York, 1959.

J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of the
Sylvester matrix equation AXBT + CXDT = E. ACM Trans. Math. Soft-
ware, 18:223-231, 1992.

J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler. Algo-
rithm 705: A Fortran-77 software package for solving the Sylvester matrix
equation AXBT + CXDT = E. ACM Trans. Math. Software, 18:232-238,
1992.

W. Gautschi. On the condition of algebraic equations. Numer. Math.,
21:405-424, 1973.

W. Gautschi. Questions of numerical condition related to polynomials. In
C. De Boor and G.H. Golub, editors, Recent Advances in Numerical Analysis,
pages 45-72. Academic Press, New York, 1978.

A.J. Geurts. A contribution to the theory of condition. Numer. Math.,
39:85-96, 1982.

A.R. Ghavimi and A.J. Laub. Backward error, sensitivity and refinement
of computed solutions of algebraic Riccati equations. Numer. Alg. Appl.,
2:29-49, 1995.

A.R. Ghavimi and A.J. Laub. Computation of approximate null vectors of
Sylvester and Lyapunov operators. IEEE Trans. Automat. Control, 40:387—
391, 1995.

W. Givens. Elementary divisors and some properties of the Lyapunov map-
ping X — AX 4+ XA*. Technical Report ANL-6456, Argonne Nat. Lab.,
1961.

I. Gohberg and I. Koltracht. Mixed, componentwise, and structured condi-
tion numbers. SIAM J. Matriz Anal. Appl., 14:688-704, 1993.

I. Gohberg, P. Lancaster, and L. Rodman. On Hermitian solutions of the
symmetric algebraic Riccati equation. STAM J. Cont. Optim., 24:1323-1334,
1986.

G.H. Golub, S. Nash, and C. Van Loan. A Hessenberg—Schur method for the
problem AX + XB = C. IEEE Trans. Automat. Control, AC-24:909-913,
1979.



BIBLIOGRAPHY 413

(83]

[84]

(8]

(6]

[88]

[89]

[90]

[91]

92]

(93]

(94]

G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins
Univ. Press, Baltimore, third edition, 1996.

A. Graham. Kronecker Products and Matriz Calculus with Applications.
Wiley, New York, 1981.

E.A. Grebenikov and Yu.A. Ryabov. Constructive Methods for Analysis of
Nonlinear Systems. Nauka, Moscow, 1979. In Russian.

R.P. Guidorzi. Transformation approaches in the solution of the matrix
equation ATX + XB = P. IEEE Trans. Automat. Control, AC-17:377-379,
1972.

C. h. Chen. Perturbation analysis for solutions of algebraic Riccati equations.
J. Comput. Math., 6:336-347, 1988.

P. Hagander. Numerical solution of A7S + SA + Q = 0. Inform. Sci., 4:35~
50, 1972.

W.W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5:311—
316, 1984.

S. Hammarling. Numerical solution of the discrete-time, convergent, non-
negative definite Lyapunov equation. Syst. Contr. Lett., 17:137-139, 1991.

S.J. Hammarling. Numerical solution of the stable, non-negative definite
Lyapunov equation. IMA J. Numer. Anal., 2:303-323, 1982.

P.C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical
Aspects of Linear Inversion. SIAM, Philadelphia, 1998.

C. He. On the distance to uncontrollability and the distance to instability

and their relation to some condition numbers in control. Numer. Math.,
76:463-477, 1997.

H.V. Henderson and S.R. Searle. The vec-permutation matrix, the vec op-
erator and Kronecker products: A review. Lin. Multilin. Alg., 9:271-288,
1981.

G. Hewer and C. Kenney. The sensitivity of the stable Lyapunov equation.
SIAM J. Cont. Optim., 26:321-344, 1988.

E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer-Verlag,
New York, 1965. Third Printing 1975.

D.J. Higham and N.J. Higham. Backward error and condition of structured
linear systems. SIAM J. Matriz Anal. Appl., 13:162-175, 1992.



414

98]

[99]

[100]

101

[102]

[103)

[104]

[105)

[106]

[107)

[108)

[109)

[110]

BIBLIOGRAPHY

D.J. Higham and N.J. Higham. Componentwise perturbation theory for
linear systems with multiple right-hand sides. Linear Algebra Appl., 174:111-
129, 1992.

N. J. Higham. Perturbation theory and backward error for AX — XB = C.
BIT, 33:124-136, 1993.

N.J. Higham. A survey of componentwise perturbation theory in numer-
ical linear algebra. In W. Gautchi, editor, Mathematics of Computation
1943-1995: A Half Century of Computational Mathematics, volume 48 of
Proc. of Symposia in Applied Mathematics, pages 49-77. Amer. Math. Soc.,
Providence, RI, USA, 1994.

N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, second edition, 2002.

N.J. Higham, M. Konstantinov, V. Mehrmann, and P. Petkov. Sensitivity
of computational control problems. Control Systems Mag., 6, 2003. (To be
published).

A.S. Hodel. Recent applications of the Lyapunov equation in control the-
ory. In R. Beauwens and P. de Groen, editors, Iterative Methods in Linear
Algebra, pages 217-227. Elsevier (North-Holland), Amsterdam, 1992.

A.S. Hodel and K.R. Poolla. Heuristic approaches to the solution of very
large sparse Lyapunov and algebraic Riccati equations. In Proc. 27th IEEE
Conf. on Decision and Control, pages 2217-2222, Austin, TX, 1988.

A.S. Hodel and K.R. Poolla. Numerical solution of very large, sparse Lya-
punov equations through approximate power iteration. In Proc. 29th IEEE
Conf. on Decision and Control, pages 291-296, Honolulu, HI, 1990.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge Univ. Press,
Cambridge, 1985.

R.A. Horn and C.R. Johnson. Topics in Matriz Analysis. Cambridge Univ.
Press, Cambridge, 1991.

V. Ionescu, C. Oari, and M. Weiss. Generalized Riccati Theory and Robust

Control: A Popov Function Approach. John Wiley and Sons Inc., Chichester,
UK, 1999.

A. Jameson. Solution of the equation AX + X B = C by inversion of a M x M
or N x N matrix. STAM J. Appl. Math., 16:1020-1023, 1968.

E.A. Jonckheere. New bound on the sensitivity of the solution of the Lya-
punov equation. Linear Algebra Appl., 60:57-64, 1984.



BIBLIOGRAPHY 415

[111]

[112]

[113]

[114]

[115)

[116]

[117]

118]

[119]

120

[121]

[122)

[123)

[124]

W. Anderson Jr., T. Morley, and G. Trapp. Positive solutions to X =
A — BX 'B*. Linear Algebra Appl., 134:53-62, 1990.

B. Kagstrom. A perturbation analysis of the generalized Sylvester equation.
SIAM J. Matriz Anal. Appl., 15:1045-1060, 1994.

B. Kagstrom and P. Poromaa. Distributed and shared memory block algo-
rithms for the triangular Sylvester equation with sep~! estimators. SIAM
J. Matriz Anal. Appl., 13:90-101, 1992.

B. Kagstrom and L. Westin. Generalized Schur methods with condition esti-
mators for solving the generalized Sylvester equation. IEEE Trans. Automat.
Control, 34:745-751, 1989,

W. Kahan. Numerical linear algebra. Canadian Math. Bull., 9:757-801,
1966.

W. Kahan. A survey of error analysis. In Proc. IFIP Congress, pages 1241~
1239, Amsterdam, 1971.

L. V. Kantorovich and G. P. Akilov. Functional Analysis in Normed Spaces.
Pergamon, New York, 1964.

V. Kapila and W. Haddad. A multivariable extension of the Tsypkin crite-
rion using a Lyapunov-function approach. IEEE Trans. Automat. Control,
41:149-159, 1996.

T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin,
second edition, 1980. Reprint 1995.

C. Kenney and G. Hewer. The sensitivity of the algebraic and differential
Riccati equations. SIAM J. Cont. Optim., 28:50-69, 1990.

C. Kenney and A.J. Laub. Condition estimates for matrix functions. SIAM
J. Matriz Anal. Appl., 10:191-209, 1989.

A. Kielbasinski and H. Schwetlick. Numerische Lineare Algebra. Verlag
Harri Deutsch, Berlin, 1988.

M. Konstantinov and V. Angelova. Sensitivity analysis of the differential
matrix Riccati equation based on the associated linear differential system.
Adv. Comp. Math., 7:295-301, 1997.

M. Konstantinov, V. Angelova, P. Petkov, D. Gu, and V. Tsachouridis.
Perturbation analysis of coupled matrix Riccati equations. Linear Algebra
Appl., 359:197-218, 2002.



416

[125]

126]

[127]

[128)

[129]

[130]

[131]

132)

[133]

[134)

[135]

[136)

BIBLIOGRAPHY

M. Konstantinov, V. Mehrmann, and P. Petkov. On properties of general
Sylvester and Lyapunov operators. Linear Algebra Appl., 312:35-71, 2000.

M. Konstantinov, V. Mehrmann, P. Petkov, and D. Gu. Structural properties
and parametrizations of Lyapunov and Lyapunov-like operators. Technical
Report 99-6, Dept. of Engineering, Leicester Univ., Leicester, UK, 1999.

M. Konstantinov, V. Mehrmann, P. Petkov, and D.W. Gu. A general frame-
work for the perturbation theory of matrix equations. Technical Report
Prep. 760, Inst. Math., TU-Berlin, 2002.

M. Konstantinov, S. Patarinski, P. Petkov, and N. Christov. Mutual obser-
vation in linear systems and synthesis under incomplete information. Math.
Balkanica, 6:88-98, 1976. in Russian.

M. Konstantinov, P. Petkov, and V. Angelova. Sensitivity of general discrete
algebraic Riccati equations. In Proc. 28 Spring Conf. of Union of Bulgar.
Mathematicians, pages 128-136, Montana, Bulgaria, 1999.

M. Konstantinov, P. Petkov, V. Angelova, and D. Gu. Perturbation analy-
sis of fractional affine matrix equations. Technical Report 98-12, Dept. of
Engineering, Leicester Univ., Leicester, UK, 1998.

M. Konstantinov, P. Petkov, and D.W. Gu. Improved perturbation bounds
for general quadratic matrix equations. Numer. Func. Anal. Optim., 20:717-
736, 1999.

M. Konstantinov, P. Petkov, D.W. Gu, and V. Mehrmann. Sensitivity of
general Lyapunov equations. Technical Report 98-15, Dept. of Engineering,
Leicester Univ., Leicester, UK, 1998.

M. Konstantinov, P. Petkov, D.W. Gu, and I. Postlethwaite. Numerical
issues in linear control. part i. Technical Report 93-65, Dept. of Engineering,
Leicester Univ., Leicester, UK, 1993.

M. Konstantinov, P. Petkov, D.W. Gu, and I. Postlethwaite. Perturbation
techniques for linear control problems. Technical Report 95-7, Dept. of En-
gineering, Leicester Univ., Leicester, UK, 1995.

M. Konstantinov, P. Petkov, D.W. Gu, and I. Postlethwaite. Perturbation
analysis in finite dimensional spaces. Technical Report 96-18, Dept. of En-
gineering, Leicester Univ., Leicester, UK, 1996.

M. Konstantinov, P. Petkov, A. Linnemann, J. Kawelke, D.W. Gu, and
I. Postlethwaite. Sensitivity of system norms. Int. J. Control, 72:84-95,
1998.



BIBLIOGRAPHY 417

[137]

138]

[139)

140]

[141]

142]

[143)

[144)

[145)

[146]

[147)

[148)

M. Konstantinov, P. Petkov, V. Mehrmann, and D. Gu. Additive matrix
operators. In Proc. 80 Spring Conf. of Union of Bulgar. Mathematicians,
pages 169-175, Borovetz, Bulgaria, 2001.

M. Konstantinov, I. Popchev, and V. Angelova. Conditioning and sensitivity
of the difference matrix Riccati equation. In Proc. Amer. Control Conf.
ACC’95, volume 1, pages 466-467, Seattle, 1995.

M. Konstantinov, I. Popchev, and V. Angelova. On the sensitivity estimation
of the matrix differential Riccati equation. In Proc. Third Europ. Control
Conf. ECC’95, volume 3, pages 20842086, Rome, 1995.

M. Konstantinov, M. Stanislavova, and P. Petkov. Perturbation bounds and
characterisation of the solution of the associated algebraic Riccati equation.
Linear Algebra Appl., 285:7-31, 1998.

M. M. Konstantinov, P. Hr. Petkov, D.-W. Gu, and 1. Postlethwaite. Non-
local sensitivity analysis of the eigensystem of a matrix with distinct eigen-
values. Numer. Funct. Anal. and Optim., 18, 1997.

M.M. Konstantinov, N.D. Christov, and P.Hr. Petkov. Perturbation analysis
of linear control problems. In Prepr. 10 IFAC Congress, volume 9, pages 16—
21, Munich, 1987.

M.M. Konstantinov and G.B. Pelova. Sensitivity of the solutions to differen-
tial matrix Riccati equations. IEEE Trans. Automat. Control, 36:213-215,
1991.

M.M. Konstantinov, P.H. Petkov, and N.D. Christov. Conditioning of the
continuous-time H, optimisation problem. In Proc. Third Europ. Control
Conf. ECC’95, volume 1, pages 613-618, Rome, 1995.

M.M. Konstantinov and P.Hr. Petkov. A note on “Perturbation theory for
alegbraic Riccati equations”. SIAM J. Matriz Anal. Appl., 21:327, 1999.

M.M. Konstantinov and P.Hr. Petkov. Condition and error estimates in
the solution of Lyapunov and Riccati equations. Math. Balkanica (N.S.),
15:139-153, 2001.

M.M. Konstantinov and P.Hr. Petkov. The method of splitting operators
and Lyapunov majorants in perturbation linear algebra and control. Numer.
Func. Anal. Optim., 23:529-572, 2002.

M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov. The associated al-
gebraic Riccati equation. In Proc. Third Internat. Conf. on Systems Engr.,
pages 530-537, Wright State Univ., Dayton, 1984.



418

(149)

[150]

[151]

152]

[153)

[154]

[155]

[156]

[157]

[158]

[159)

[160)

[161]

162

BIBLIOGRAPHY

M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov. Perturbation analysis
of the continuous and discrete matrix Riccati equations. In Proc. 1986 Amer.
Control Conf., pages 636-639, Seattle, 1986.

M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov. Perturbation analysis
of matrix quadratic equations. SIAM J. Sci. Statist. Comput., 11:1159-1163,
1990.

M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov. Perturbation analysis
of the discrete Riccati equation. Kybernetica (Prague), 29:18-29, 1993.

L. Kronecker. Algebraische Reduction der Schaaren bilineare Formen. S.B.
Akad. Berlin, pages 12251237, 1880.

V. Kuéera. The matrix equation AX + XB = C. SIAM J. Appl. Math.,
26:15-25, 1974.

V. Kucera. Algebraic Riccati equation: Symmetric and definite solutions. In
S. Bittanti, editor, Lecture Notes of the Workshop on “The Riccati Equation
in Control, Systems and Signal”, pages 73-75. Pitagora Editrice, Bologna,
Italy, 1989.

P. Lancaster. Explicit solutions of linear matrix equations. SIAM Rev.,
12:544-566, 1970.

P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford Univ.
Press, Oxford, 1995.

P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press,
Orlando, FL, second edition, 1985.

J.P. LaSalle and S. Lefschetz. Stability by Liapunov’s Direct Method with
Applications. Academic Press, New York, 1961.

A.J. Laub. Invariant subspace methods for the numerical solution of Riccati
equations. In S. Bittanti, A.J. Laub, and J.C. Willems, editors, The Riccati
Equation, pages 163-196. Springer-Verlag, Berlin, 1991.

D.K. Lika and Yu.A. Ryabov. Iterative Methods and Lyapunov Majorant
Equations in Non-Linear Oscillation Theory. Shtiinca, Kishinev, 1974. In
Russian.

W. Lin and J. Sun. Perturbation analysis of the periodic discrete-time alge-
braic Riccati equation. SIAM J. Matriz Anal. Appl., 24:411-438, 2002.

AM. Lyapunov. General Problem of Stability of Motion. Gostehizdat,
Moscow, 1950. In Russian.



BIBLIOGRAPHY 419

163]

[164]

[165]

[166]

[167)

[168]

[169]

[170]

[171)

(172)

[173]

[174)

175)

[176)

(177]

A.M. Lyapunov. A finite series solution of the matrix equation
AX — XB=C. SIAM J. Appl. Math., 14:490-495, 1966.

E.-C. Ma. A finite series solution of the matrix equation AX — XB = C.
SIAM J. Appl. Math., 14:490-495, 1966.

C.C. Mac Duffee. The Theory of Matrices. Chelsea, New York, 1946.

R. Mathias. Condition estimation for matrix functions via the Schur decom-
position. SIAM J. Matriz Anal. Appl., 16:565-578, 1995.

V. Mehrmann. The Autonomous Linear Quadratic Control Problem, The-
ory and Numerical Solution. Number 163 in Lecture Notes in Control and
Information Sciences. Springer-Verlag, Heidelberg, 1991.

V. Mehrmann and H. Xu. Numerical methods in control. J. Comput. Appl.
Math., 123:371-394, 2000.

B. Meini. Efficient computation of the extreme solutions of X +4*X'4 = Q
and X — A*X~'A = Q. Math. Comp., 71:1189-1204, 2001.

B. Molinari. Algebraic solution of matrix linear equations in control theory.
Proc. IEE, 116:1748-1754, 1969.

M. Mrabti and A. Hmamed. Bounds for the solution of the Lyapunov matrix
equation—A unified approach. Syst. Contr. Lett., 18:73-81, 1992.

J. Von Neumann and H. Goldstein. Numerical inverting of matrices of high
order. Bull. AMS, 53:1021-1099, 1947.

J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables, volume 30 of Classics in Applied Mathematics. SIAM,
Philadelphia, 2000.

M. Overton. Computing with IEEE Floating Point Arithmetic. SIAM,
Philadelphia, 2001.

LS. Pace and S. Barnett. Comparison of numerical methods for solving
Lyapunov matrix equations. Internat. J. Control, 15:907-915, 1972.

R.V. Patel and M. Toda. On norm bounds for algebraic Riccati and Lya-
punov equations. IEEE Trans. Automat. Control, AC-23:87-88, 1978.

S. Peng and C.E. de Souza. Bounds on the solution of the algebraic matrix
Riccati equation under perturbations in the coefficients. Syst. Contr. Lett.,
15:175-181, 1990.



420

(178]

[179]

[180]

181]

[182]

[183]

[184)

185]

[186]

[187)

[188]

[189]

BIBLIOGRAPHY

S. Peng and C.E. de Souza. On bounds for perturbed discrete-time algebraic
Riccati equations. In H. Kimura and S. Kodama, editors, Mathematical
Theory of Systems, Control, Networks and Signal Processing. Proc. of the
International Symposium MTNS-91, Kobe, Japan, June 1991, pages 9-14.
Mita Press, Tokyo, 1992.

P.H. Petkov, M.M. Konstantinov, and V. Mehrmann. DGRSVX and DM-
SRIC: Fortan 77 subroutines for solving continuous-time matrix algebraic
Riccati equations with condition and accuracy estimates. Technical Report
SFB393/98-16, Fak. fiir Mathematik, TU Chemnitz, Chemnitz, Germany,
1998.

P.Hr. Petkov, N.D. Christov, and M.M. Konstantinov. A new approach to
the perturbation analysis of linear control problems. In Prepr. 11th IFAC
Congress, pages 311-316, Tallin, 1990.

P Hr. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Meth-
ods for Linear Control Systems. Prentice-Hall, Hemel Hempstead, 1991.

P.Hr. Petkov, N.D. Christov, and M.M. Konstantinov. Numerical issues in
the solution of matrix Riccati equations. In Proc. Second European Control
Conf. ECC’93, pages 2379-2384, Groningen, 1993.

P.Hr. Petkov, M.M. Konstantinov, D.W. Gu, and I. Postlethwaite. Nu-
merical issues in the solution of continuous-time matrix algebraic Riccati
equations. Technical Report 96-13, Dept. of Engineering, Leicester Univ.,
Leicester, UK, 1996.

A.C.M. Ran and L. Rodman. Perturbation analysis of algebraic matrix
Riccati equations. In Proc. 29th IEEE Conf. on Decision and Control, pages
1855-1856, Honolulu, HI, 1990.

A.C.M. Ran and L. Rodman. Stable hermitian solutions of discrete algebraic
Riccati equations. Math. Control Signals Systems, 5:165-193, 1992.

A.C.M. Ran and L. Rodman. Stable solutions of real algebraic matrix Riccati
equations. SIAM J. Cont. Optim., 30:63-81, 1992.

W. Rheinboldt. On measures of ill-conditioning for non-linear equations.
Math. Comp., 30:104-111, 1976.

J.R. Rice. A theory of condition. SIAM J. Numer. Anal., 3:287-310, 1966.

J.R. Rice. Matriz Computation and Mathematical Software. McGraw-Hill,
New York, 1981.



BIBLIOGRAPHY 421

[190]

191]

[192)

193]

[194]

195

196]

(197]

[198]

[199]

[200]

201

202)

203)

(204)

[205]

J.L Rigal and J. Gaches. On the compatibility of a given solution with the
data of a linear system. J. Assoc. Comput. Mach., 14:543-548, 1967.

J. Rohn. New condition numbers for matrices and linear systems. Comput-
ing, 41:167-169, 1989.

L.G. Rosen and C. Wang. A multilevel technique for the approximate solution
of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer.
Anal., 32:514-541, 1995.

W.E. Roth. The equations AX —YB = C and AX — XB = C in matrices.
Proc. Amer. Math. Soc., 3:392-396, 1952.

D. Rothschild and A. Jameson. Comparison of four numerical algorithms
for solving the Lyapunov matrix equation. Internat. J. Control, 11:181-198,
1970.

S.M. Rump. Estimation of the sensitivity of linear and nonlinear algebraic
problems. Linear Algebra Appl., 153:1-34, 1991.

D.E. Rutherford. On the solution of the matrix equation AX + XB = C.
Nederl. Akad. Wetensch. Proc. Ser. A, 35:53-59, 1932.

H. Shapiro. A survey of canonical forms and invariants under similarity.
Linear Algebra Appl., 147:101-167, 1991.

M.A. Shayman. Geometry of the algebraic Riccati equation, Part I. STAM
J. Cont. Optim., 21:375-394, 1983.

M.A. Shayman. Geometry of the algebraic Riccati equation, Part II. STAM
J. Cont. Optim., 21:395-409, 1983.

V. Sima. Algorithms for Linear Quadratic Optimization. Marcel Dekker
Inc., New York, 1996.

R.D Skeel. Iterative refinement implies numerical stability for Gaussian
elimination. Math. Comp., 35:817-832, 1980.

G. Starke and W. Niethammer. SOR for AX — XB = C. Linear Algebra
Appl., 154-156:355-375, 1991.

P. Stein. On the ranges of two functions of positive definite matrices. J.
Algebra, 2:350-353, 1965.

P. Stein and A. Pfeffer. On the ranges of two functions of positive definite
matrices II. JCC Bull., 6:81-86, 1967.

G.W. Stewart. Introduction to Matriz Computations. Academic Press, New
York, 1973.



422

206

207)

208

209]

210)

[211]

212]

[213]

[214)

[215]

[216)

[217]

[218)

[219]

[220]

BIBLIOGRAPHY

G.W. Stewart and J.-G. Sun. Matriz Perturbation Theory. Academic Press,
New York, 1990.

T. Stykel. Numerical solution and perturbation theory for generalized Lya-
punov equations. Lin. Alg. Appl., 349:155-185, 2002.

J.-G. Sun. Sensitivity analysis of the discrete-time algebraic Riccati equation.
Technical Report UMINF 96.08, Dept. of Computing Science, Univ. of Umea,
Umea, Sweden, 1996.

J.-G. Sun. Backward error for the discrete-time algebraic Riccati equation.
Linear Algebra Appl., 259:183-208, 1997.

J.-G. Sun. Residual bounds of approximate solutions of the algebraic Riccati
equation. Numer. Math., 76:249-263, 1997.

J.-G. Sun. Perturbation theory for algebraic Riccati equations. SIAM J.
Matriz Anal. Appl., 19:39-65, 1998.

J.-G. Sun. Sensitivity analysis of the discrete-time algebraic Riccati equation.
Lin. Alg. Appl., 275-276:595-615, 1998.

J.-G. Sun. Condition numbers of algebraic Riccati equations in Frobenius
norm. Lin. Alg. Appl., 350:237-261, 2002.

J.J. Sylvester. Sur la solution du cas le plus général des équations linéaires
en quantités binaires, ¢’est-a-dire en quaternions ou en matrices du second
ordre. C.R. Acad. Sci. Paris, 99:117-118, 1884.

J.J. Sylvester. Sur ’équation en matrices pr = zq. C.R. Acad. Sci. Paris,
99:67-71, 1884.

O. Taussky and H. Wielandt. On the matrix function AX + X’A’. Arch.
Rat. Mech. Anal., 9:93-96, 1962.

A.J. Telford and J.B. Moore. On the existence of solutions to nonsymmet-
ric algebraic Riccati equations. In S. Bittanti, editor, Lecture Notes of the
Workshop on “The Riccati Equation in Control, Systems and Signal”, pages
83-86. Pitagora Editrice, Bologna, Italy, 1989.

A.N. Tikhonov. Regularization of incorrectly posed problems. Soviet. Math.
Dokl., 4:1624-1627, 1963.

A.N. Tikhonov. Solution of incorrectly formulated problems and the regu-
larization method. Soviet. Math. Dokl., 4:1036-1038, 1963.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed Problems. Wiley,
New York, 1977.



BIBLIOGRAPHY 423

[221]

222]

[223)

(224

[225]

(226)

227]

[228)

[229]

230)

[231]

[232]

[233)

[234]

[235]

[236]

A N. Tikhonov, A.V. Goncharov, V.V. Stepanov, and A.G. Yagola. Nu-
merical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht,
1995.

A. Trampus. A canonical basis for the matrix transformation
X - AX + XB. J. Math. Anal. Appl., 14:242-252, 1966.

A. Trampus. A canonical basis for the matrix transformation X — AXB.
J. Math. Anal. Appl., 14:153-160, 1966.

L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, Philadel-
phia, 1997.

C.-C. Tsui. On the solution to matrix equation TA — FT = LC and its
applications. SIAM J. Matriz Anal. Appl., 14:33-44, 1993.

A. Turing. Rounding-off errors in matrix processes. Quart. J. Mech. Appl.
Math., 1:287-308, 1948.

E. Tyan and P. Bernstein. Anti-windup compensator synthesis for systems
with saturation actuators. Int. J. Robust. Nonlin. Control, 5:321-337, 1995.

D.S. Watkins. Fundamentals of Matriz Computations. John Wiley and Sons
Inc., 1991.

J.H.M. Wedderburn. Note on the linear matrix equation. Proc. Edinburgh
Math. Soc., 22:49-53, 1904.

R.J. Weidner and R.J. Mulholland. Kronecker product representation for
the solution of the general linear matrix equation. IEEE Trans. Automat.
Control, AC-25:563-564, 1980.

A. Weinmann. Uncertain Models and Robust Control. Springer-Verlag, Wien,
1991.

J.H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, 1963.

J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Univ. Press,
Oxford, 1965.

J.H. Wilkinson. Modern error analysis. SIAM Rev., 13:548-568, 1971.

H.K. Wimmer. Explicit solutions of the matrix equation 3, A*'X D" = C.
SIAM J. Matriz Anal. Appl., 13:1123-1130, 1992.

W.M. Wonham. Linear Multivariable Control: A Geometric Approach.
Springer-Verlag, New York, third edition, 1985.



424 BIBLIOGRAPHY
[237] S. Xu. Sensitivity analysis of the algebraic Riccati equations. Numer. Math.,
75:121-134, 1996.

[238] X. Zhan. Computing the external positive definite solutions of a matrix
equation. SIAM J. Comput., 17:1167-1174, 1996.

(239] K. Zigtak. The Chebyshev solution of the linear matrix equation AX +Y B =
C. Numer. Math., 46:455-478, 1985.

[240] K. Zigtak. On a particular case of the inconsistent linear matrix equation
AX +YB =C. Linear Algebra Appl., 66:249-258, 1985.

(241] L.E. Ziedan. Explicit solution of the Lyapunov-matrix equation. IEEE Trans.
Automat. Control, AC-17:379-381, 1972.



Index

2-norm, 335

Abelian group, 330

absolute condition number, 5, 12, 46,
63

absolute distance, 104

absolute errors, 18

absolute norm-wise backward error
19

absolute overall condition number, 192

accumulation point, 57, 338

acute perturbation, 159

additive group, 329

admissible function, 32

affine function, 339

algebraic system, 329

argument of a function, 328

associated Lyapunov operators, 398

associated skew-Lyapunov operators
399

asymptotic bounds, 2, 12

asymptotic domain, 34, 145

asymptotically sharp bound, 115

automorphism, 330

1

3

backward stable algorithm, 19
backwardly invariant set, 78
Banach principle, 363, 364
Banach space, 336

basis, 332

bijection, 328

bilinear function, 339
Bolzano-Weierstrass theorem, 336
boundary, 336

425

bounded function, 338
bounded subset, 337
Brauer principle, 363

canonical form, 343

canonical projection, 343

canonical set, 343

Cartesian product of sets, 328

chain rule, 342

characteristic equation, 334

closed ball, 336

closed set, 336

closure, 337

co-domain of a function, 328

column-wise vector representation, 358

commutative group, 330

compact set, 337

companion matrix, 351

complement of a set, 328

complete invariant relative to a group,
343

complex Lyapunov operator, 389

component—wise perturbation analy-
sis, 20

component-wise condition number, 22

composition law, 329

computational problem, 10

condensed representaion of a Sylvester
operator, 373

condensed representation of a Lya-
punov operator, 381

condition number, 12

continuous function, 337

continuous path, 55



426

continuous-time Lyapunov index, 382
contraction, 363

contractive operator, 363
convergent matrix, 365

convex set, 337

descriptor system, 240

detectable pair, 239

difference of sets, 329
differentiable function, 339, 341
dimension, 332

discrete-time Lyapunov index, 382
disjoint sets, 328

distance, 337

domain of a function, 328

e;ementary real reflections, 347

eigenpair, 334

eigenvalue, 334

eigenvector, 334

elementary real plane rotation, 346

elementary complex plane rotation,
346

elementary complex reflection, 347

elementary Sylvester operator, 372

empty set, 327

equilibrium state, 125, 126

equivalence relation, 342

equivalent classes, 106

equivalent operator equation, 244

equivalent perturbation, 19

error, 135

Euclidean length, 335

exact bound, 113

explicit solutions, 10

extremal perturbation, 132

factor-space, 342

field, 330

field operation, 330

finite precision arithmetic, 12
forward stable algorithm, 19
Fréchet derivative, 182, 339

INDEX

Fréchet pseudo-derivative, 183

Frobenius norm, 345

Frobenius norm of a Sylvester opera-
tor, 373

full column rank, 333

full rank matrix, 333

full row rank, 333

function, 328

functional relation, 328

general bound, 113

generalized Banach principle, 366
generalized ball, 32

generalized condition number, 43
generalized contraction, 365
generalized Lipschitz condition, 365
generalized matrix norms, 13
generating matrices, 372

Givens rotation, 346

group, 329

group operation, 329

Hélder constant, 40

Holder continuous problem, 40
Holder exponent, 40
homogeneous function, 339
homomorphism, 330
Householder reflection, 347

ill-conditioned problem, 45

ill-posed problem, 35

image, 328, 333

image of a set, 328

imbedding, 111

implicit function, 52

implicit function theorem, 340

implicit solutions, 10

improper solution, 58

individual relative condition number,
44

induced norm, 183

infimum, 78

injection, 328



INDEX

interior, 337

intersection, 327

invariant relative to a group, 343
invariant structure, 346

inverse function, 328

inverse of a matrix, 333
isomorphism, 330

Jacobi matrix, 37, 340

kernel, 333
Kronecker product, 357
Kronecker sum, 360

least squares problem, 355

left inverse, 61, 333

Leibnitz rule, 342

limit of a function, 338

linear combination, 332

linear function, 339

linear nonlocal bounds, 2

linear operator, 180

linear space, 331

linear subspace, 332

linearly independent vectors, 332

Lipschitz condition, 363

Lipschitz constant, 39, 363

Lipschitz continuous function, 39

local bounds, 2, 12

locally unique solution, 56

LQ decomposition, 349

Lyapunov indices, 379

Lyapunov majorant, 77, 79, 197, 249

Lyapunov norm, 185

Lyapunov operator, 184, 379

Lyapunov singular values, 385, 387,
392

majorant equation, 77, 79, 250
mapping, 328
matrix

diagonal, 334

Hermitian, 334

427

invertible, 333
lower triangular, 334
nonnegative definite, 335
normal, 334
orthogonal, 334
positive definite, 335
skew-Hermitian, 334
skew-symmetric, 334
strictly lower triangular, 334
strictly upper triangular, 334
symmetric, 334
triangular, 334
unitary, 334
matrix absolute value, 13
matrix exponential, 124
matrix function, 337
matrix norms, 13
matrix pencil, 211
matrix representation, 181
mixed condition number, 22
Moore-Penrose pseudo-inverse, 355
multiplication of matrices, 333
multiplicative group, 329
mutual observation property, 227

natural domain, 12

nominal data, 11

nonlinear nonlocal bounds, 3

nonlocal perturbation bounds, 13

nonsingular matrix, 334

norm, 335

norm-wise backward equivalent per-
turbation, 135

normal matrix, 351

normed space, 335

numerical algorithm, 18

numerically stable algorithm, 20

open ball, 336
open cover, 337
open set, 336
orbit, 342



428

orbit space, 342
orthogonal matrix, 345
orthonormed matrix, 345

parameter matrix, 15
Perron-Frobenius theorem, 142, 365
perturbation analysis, 1
perturbation bound, 1, 2
perturbation estimate, 2
perturbation function, 30
perturbed equation, 63
perturbed problem, 11

point, 327

polar decomposition, 353
pre-image of a set, 328

principal term, 106

product of sets, 329

projection, 111

proper solution, 58
pseudo-inverse matrix, 355
pseudo-polynomial operator, 182

QCP decomposition, 350

QR decomposition, 349

QR decomposition with column piv-
oting, 349

R-regular problem, 44

range, 333

rank, 332

real Lyapunov operator, 380
regular problem, 36

regular solution, 59

regular system, 304

regular systems, 239
regularization techniques, 108
regularized problem, 108
relation, 328

relative backward error, 26
relative condition number, 13, 46
relative distance, 105

relative norm-wise error, 135
relative overall condition number, 192

INDEX

relative perturbations, 12

reliable numerical procedure, 20
right inverse, 61, 333

rigorous bound, 113

row echelon form, 348

row-wise vector representation, 359

scaling, 27

Schauder principle, 363, 368
Schur basis, 350

Schur decomposition, 350

Schur form, 350

Schur system, 350
semi-convergent matrix, 124
semi-homogeneous function, 339
semi-linear function, 339
semi-stable matrix, 124
sensitivity, 17

sequence, 336

set, 327

sharp bound, 113

singleton, 327

singular problem, 36

singular solution, 59

singular value decomposition, 354
singular values, 354

singular vectors, 355
skew-Lyapunov index, 398
skew-Lyapunov operators, 397
solution path, 55

solution set, 16

span, 332

sphere, 336

stabilizable pair, 239

stable matrix, 123, 239
steady-state solution, 125, 126
structured computational problem, 23
structured condition numbers, 23
structured perturbations, 32
subgroup, 330

subset, 327

sum of sets , 329



INDEX

summation of matrices, 333
supporting function, 55
supremum, 78

surjection, 328

SVD, 354

Sylvester equations, 121
Sylvester index, 127, 373
Sylvester operator, 372
symmetric operator, 184, 186

tensor product, 357

Tikhonov regularization, 111
transformation group, 342

triangle inequality, 335

trivial pair of generating matrices, 372

unary operation, 329

uniformly continuous function, 338
unimprovable perturbation bound, 48
union, 327

unitary invariant norm, 345

unitary matrix, 345
URV-decomposition, 349

value of a function, 328
vec-permutation matrix, 244, 358
vector, 331

vector relative condition number, 44
vector space, 331

well-conditioned problem, 45
well-posed problem, 35

zero vector, 331

429



This Page Intentionally Left Blank



	Perturbation Theory for Matrix Equations
	Copyright Page
	Preface
	Contents
	Chapter 1. Introduction
	Chapter 2. Perturbation problems
	2.1 Introductory remarks
	2.2 Problem statement
	2.3 Numerical considerations
	2.4 Component-wise and backward analysis
	2.5 Error estimates
	2.6 Scaling
	2.7 Notes and references

	Chapter 3. Problems with explicit solutions
	3.1 Introductory remarks
	3.2 Perturbation function
	3.3 Regularity and linear bounds
	3.4 Norilocal bounds
	3.5 Case study
	3.6 Notes and references

	Chapter 4. Problems with implicit solutions
	4.1 Introductory remarks
	4.2 Posedness and regularity
	4.3 Linear bounds
	4.4 Equivalent operator equation
	4.5 Linear equations
	4.6 Case study
	4.7 Notes and references

	Chapter 5. Lyapunov majorants
	5.1 Introductory remarks
	5.2 General theory
	5.3 Case study
	5.4 Notes and references

	Chapter 6. Singular problems
	6.1 Introductory remarks
	6.2 Distance to singularity
	6.3 Classification
	6.4 Regularization
	6.5 Notes arid references

	Chapter 7. Perturbation bounds
	7.1 Introductory remarks
	7.2 Definitions and properties
	7.3 Conservativeness of “worst case” bounds
	7.4 Notes and references

	Chapter 8. General Sylvester equations
	8.1 Introductory remarks
	8.2 Motivating examples
	8.3 General linear equations
	8.4 Perturbation problem
	8.5 Local perturbation analysis
	8.6 Nonlocal perturbation analysis
	8.7 Notes and references

	Chapter 9. Specific Sylvester equations
	9.1 Standard linear equation
	9.2 General equations
	9.3 Continuous-time equations
	9.4 Discrete-time equations
	9.5 Notes and references

	Chapter 10. General Lyapunov equations
	10.1 Introductory remarks
	10.2 Application to descriptor systems
	10.3 Additive matrix operators
	10.4 Perturbation problem
	10-5 Local perturbation analysis
	10.6 Nonlocal perturbation analysis
	10.7 Notes and references

	Chapter 11. Lyapunov equations in control theory
	11.1 Iritroductory remarks
	11.2 General equation
	11.3 Continuous-time equations
	11.4 Continuous-time equations in descriptor form
	11.5 Discrete-time equations
	11:6 Discrete-time equations in descriptor form
	11.7 Notes and references

	Chapter 12. General quadratic equations
	12.1 Introductory remarks
	12.2 Problem statement
	12.3 Motivating example
	12.4 Local perturbation analysis
	12.5 Nonlocal perturbation analysis
	12.6 Notes and references

	Chapter 13. Continuous-time Riccati equations
	13.1 Introductory remarks
	13.2 Motivating example
	13.3 Standard equation
	13.4 Descriptor equation
	13.5 Notes and references

	Chapter 14. Coupled Riccati equations
	14.1 Problem statement
	14.2 Local perturbation analysis
	14.3 Nonlocal perturbation analysis
	14.4 Notes arid references

	Chapter 15. General fractional-affine equations
	15.1 Introductory remarks
	15.2 Problem statement
	15.3 Local perturbation analysis
	15.4 Non-local perturbation analysis
	15.5 Notes and references

	Chapter 16. Symmetric fractional-affine equations
	16.1 Introductory remarks
	16.2 Discretc-time Riccati equations
	16.3 Symmetric fractional-linear equation
	16.4 Notes and references

	Appendix A. Elements of algebra and analysis
	A.1 Introductory remarks
	A.2 Sets and functions
	A.3 Algebraic systems
	A.4 Linear algebra
	A.5 Normed spaces
	A.6 Matrix functions
	A.7 Transformation groups
	A.8 Notes and references

	Appendix B. Unitary and orthogonal decompositions
	B.1 Introductory remarks
	B.2 Elementary unitary matrices
	B.3 QR decomposition
	B.4 Schur decomposition
	B.5 Polar decomposition
	B.6 Singular value decomposition
	B.7 Notes and references

	Appendix C. Kronecker product of matrices
	C.1 Introductory remarks
	C.2 Definitions and properties
	C.3 Notes and references

	Appendix D. Fixed point principles
	D.1 Introductory remarks
	D.2 Banach principle
	D.3 Generalized Banach principle
	D.4 Schauder principle
	D.5 Notes and references

	Appendix E. Sylvester operators
	E.1 Introductory
	E.2 Basic concepts
	E.3 Representations
	E.4 Notes and references

	Appendix F. Lyapunov operators
	F.1 Introductory remarks
	F.2 Real operators
	F.3 Complex operators
	F.4 Sensitivity and error analysis
	F.5 Notes and references

	Appendix G. Lyapunov-like operators
	G.1 Introductory remarks
	G.2 Skew-Lyapunov operators
	G.3 Associated Lyapunov operators
	G.4 Associated skew-Lyapunov operators
	G.5 Notes and references

	Appendix H. Notation
	H.l Sets and spaces
	H.2 Matrices
	H.3 Matrix operators
	H.4 Norms
	H.5 Perturbation analysis
	H.6 Other notation

	Bibliography
	Index



