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PREFACE

The Swiss-Japanese seminar on elliptic and parabolic issues in applied
sciences was held at the University of Ziirich (Switzerland) in December
7-9, 2004. This book collects different papers on the research themes that
were discussed during this seminar.

We hope that these articles will become a landmark in the field of elliptic
and parabolic problems.

We thank JSPS and SNF for having generously supported our reunion. We
extend our warm thanks to the University of Ziirich for its hospitality and
to Ms Zhang and World Scientific for their editing work.

Ziirich, October 2005

Michel Chipot
Hirokazu Ninomiya
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STEADY FREE CONVECTION IN A BOUNDED AND
SATURATED POROUS MEDIUM

SAMIR AKESBI{, BERNARD BRIGHI{ AND JEAN-DAVID HOERNELS}

In this paper we are interested with a strongly coupled system of partial differential
equations that modelizes free convection in a two-dimensional bounded domain
filled with a fluid saturated porous medium. This model is inspired by the one of
free convection near a semi-infinite impermeable vertical flat plate embedded in a
fluid saturated porous medium. We establish the existence and uniqueness of the
solution for small data in some unusual spaces.

1. Introduction

In the literature, many papers about free convection in fluid saturated
porous media study the case of the semi-infinite vertical flat plate in the
framework of boundary layer approximations. This approach allows to
introduce similarity variables to reduce the whole system of partial differ-
ential equations into one single ordinary differential equation of the third
order with appropriate boundary values. This two points boundary value
problem can be studied using a shooting method or an auxiliary dynam-
ical system either in the case of prescribed temperature or in the case of
prescribed heat flux along the plate.

In this article we first present the derivation of the equations, show how
the boundary layer approximation leads to the two points boundary value
problem and the similarity solutions, then we rewrite the full problem of
free convection in a two-dimensional bounded domain filled with a fluid
saturated porous medium. This new model, written in terms of stream
function and temperature, consists in two strongly coupled partial differ-
ential equations. We establish the existence and uniqueness of its solution
for small data.

AMS 2000 Subject Classification: 34B15, 34B40, 35Q35, 76R10, 76S05.
Key words and phrases: Free convection, porous medium, coupled pdes.
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2. The semi-infinite vertical flat plate case

Let us consider a semi-infinite vertical permeable or impermeable flat plate
embedded in a fluid saturated porous medium at the ambient tempera-
ture T, and a rectangular Cartesian co-ordinates system with the origin
fixed at the leading edge of the vertical plate, the z-axis directed upward
along the plate and the y-axis normal to it. If we suppose that the porous
medium is homogeneous and isotropic, that all the properties of the fluid
and the porous medium are constants and that the fluid is incompressible
and follows the Darcy-Boussinesq law we obtain the following governing
equations

ou, o _,
oxr "oy
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P = poo(l = B(T — To))

in which » and v are the Darcy velocities in the = and y directions, p,
p and (3 are the density, viscosity and thermal expansion coefficient of the
fluid, k is the permeability of the saturated porous medium, A is its thermal
diffusivity, p is the pressure, T' the temperature and g the acceleration of
the gravity. The subscript oo is used for values taken far from the plate. In
our system of co-ordinates there are two main interesting sets of boundary
conditions along the plate.

First, the temperature is prescribed on the wall that gives

u(z,0) =wz™T, T(z,0) = Ty(x) = To + Az™ (1)

with m € R and A > 0, see [16], [18], [21], [28] and [32].

Secondly, the heat flux is prescribed along the plate that leads to

v(z,0) = wrT %g(x, 0) = —z™ (2)

with m € R, see [10] and [17].



The parameter w € R is the mass transfer coefficient. For an imper-
meable wall we have w = 0, and for a permeable wall, w < 0 corresponds
to fluid suction and w > 0 to fluid injection. The boundary conditions far
from the plate are the same in both cases (12) and (13)

u(z,00) =0, T(z,00)="Tk.

If we introduce the stream function ¥ such that

- oy Y ov
oy’ or
we obtain the system in which it remains only ¥ and T
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Along the wall, the boundary conditions (12) become
a m—1
%(m,O) =—wr 7, T(z,0) =Ty(x) =T + Az™ (5)
and (13) becomes
B\I/ m—1 BT m
%(SL',O) = —wr s , —éz(z,O) = —z™. (6)

The boundary conditions far from the plate become
0
6—\5(:{:,00) =0, T(z,00)}="Tc. )

We will start from the equations (3)-(4) subjected to the boundary con-
ditions (5) and (7) with w = 0 to write a new model, settled in a two-
dimensional bounded domain, that we will study in the rest of this paper.

Before doing this, let us say a few words about the similarity solutions.
Assuming that convection takes place in a thin layer around the plate, we
obtain the boundary layer approximation

_ail’___pooﬂgka_T
o2 u oy’

(8)
T 1 (9T 0¥ 9T 0T )
dy? A \0z by Oy oz

with the same boundary conditions (5) or (6) and (7) as before.



For the case of prescribed heat, introducing the new dimensionless sim-
ilarity variables

t = (Ray)?

8w

K

¥(z,y) = A(Rag)? f(2),
T(a:,y) = (Tw(x) - Tw)e(t) + T

D=

with
_ PooBok(Tu(z) ~ Tw)e
BA
the local Rayleigh number, equations (8) and (9) with the boundary con-
ditions (5) and (7) leads to the third order ordinary differential equations

P mp =

Ra,

f///+
on [0, 00) subjected to
f0)=—y, f(0)=1 and f'(c0)=0

2w u
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One can find explicit solutions of this problem for some particular values of
v or m in [5], [6], [9], {20], [26], [28], [30] and [35]. For mathematical results
about existence, nonexistence, uniqueness, nonuniqueness and asymptotic
behavior, see (2], 5], [6] and [28] for v =0, and [9], [12], [15], [23] and [24]
for the general case. Numerical investigations can be found in [2], [7], [16],
[18], 28], [30] and [38].

In the case of prescribed heat flux, we introduce the new dimensionless
similarity variables

where

m—1

t = 3_%R§xTy,
U(z,y) = 33 RINGEE £ (1),
T(z,y) = 3t RT3 25 0(t) + T,

and the Rayleigh number

Then, equations (8) and (9) with the boundary conditions (6)-(7) give
fl/l+ (m+2)ffll _ (2m+ 1)fl2 =0



and
f(0)=—y, f"(0)=-1 and f'(c0)=0
where
3%R;%w
V= -
A(m +2)

The study of existence, uniqueness and qualitative properties of the solu-
tions of this problem is made in [10]. For a survey of the two cases, see
[11]. This equation can also be found in industrial processes such as bound-
ary layer flow adjacent to stretching walls (see 2], [3], [20], [26], {30]) or
excitation of liquid metals in a high-frequency magnetic field (see [33]).

One particular case of the two previous equations is the Blasius equation
"+ ff" = 0 introduced in [8] and studied, for example, in [4], [19] and
[27].

The case of mixed convection f + ff”+mf'(1—f) =0withm € Ris
interesting too and results about it can be found in [1], [13], [25] and [34].
The Falkner-Skan equation f” + ff" + m(l — f’?) = 0 with m € R is in
the same family of problems, see [19], [22], [27], [29], [37], [39] and [40] for
results about it.

New results about the more general equation f/” 4 ff" + g(f') = 0 for
some given function g can be found in [14], see also [36].

3. A model problem in a bounded domain

Let Q C R? be a simply connected, bounded lipschitz domain whose bound-
ary I' = 8% is divided in two connected parts I'y and I'y such that

Flu-fz:l_‘andrlﬂrg:w.



We start from the previous equations (3)-(4) in terms of the stream function
U and the temperature T with K = (O, &’2‘@-), and assuming that I'y
is impermeable and that the temperature 7,, > 0 is known on the whole
boundary I', we modify the equation (3) by setting K(z) = (k1(x), k2(x)) €
R? with 0 < ||K||oc < o0. Then, we obtain the following new problem in
the bounded domain €, which consists in finding (¥,T")

¥y:Q0-R
T:Q—-R
verifying the equations in Q
AV = K.VT, (10)
AAT = VT.(VI)*, (11)
the boundary conditions on I" for ¥
U=0o0onI; and @=OonI‘2 (12)
on

and the boundary conditions on I for T
T=T,onl (13)
where A € R** and for all z = (u,v) € Q, let 2t = (v, —u).

3.1. Preliminary results
Let us assume that T,, € H#(I') and let © be the unique function in H Ly
verifying
A® =0 in9, (14)
=T, onl. (15)
In the following we will need that VO € L*°(2), thus we will suppose that
it holds (it is the case if T,, € H?(T') for example).
If (¥, T) is a solution of (10)-(13) and if we set H = T — ©, then (¥, H)
is a solution of
AV = K.VH + K.VO, (16)
MH = VH.(VI)* + VO.(VE)* (17)

in the domain § with the boundary conditions for ¥

Y
U=0onI; and %ﬁ=0<mf2 (18)



and the boundary conditions for H
H=0onT. (19)

Conversly, it is clear that if (U, H) is a solution of (16)-(19) then (¥,T) :=
(¥, H 4+ ©) is a solution of (10)-(13).

In the following we set ||.L1@) = [0, lI.llz2@) = I-ll2s [z
[[-lloo and

(u,v) = / uvdz.
Q
Definition 3.1. For u € L>®(Q), v € H} () and w € H}(Q) let

a(u,v,w) = (uVv, (Vw)") L2y, 2(0)-

Remark 3.1. The trilinear form a is well defined because for u € L (),
v € HY(Q) and w € H(2) we have

|a(u, v, )| < ffufloo | VO 2| Ve ]l2.
Proposition 3.1. Foru € H}(Q) N L®(Q) and v € H(Q) we have

a(u,u,v) =0. (20)

Proof. First, let us notice that if u € H}(Q) N L>(Q) then v? € H}(Q)
and V(u?) = 2uVu. Hence

a(u,u, v) = (uVu, (VU)J_)LZ(Q),L2(Q)

1
= §(VU2, (Vo)") 2y, L2(0)

1 ..
= —5(div((V)"), v*) @y, 3 @)
=0

because u = 0 on I' and div((Vv)t) =0 in H~1(Q). O
Remark 3.2. For u,v € H}(Q) N L>®(Q) and w € H() we have

a(u,v,w) = —a(v,u, w). (21)
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3.2. A priori estimates
Let
Wy ={u|ueH(Q) andu=0o0nT,}
and
Wy = H3(Q) N L®(R).

The spaces Wy and Wy are equipped with the norms ||.{|lw, and |.||wy
defined by

lullwe = [Vullz and  ullly, = lulls + [IVul3.

In the following we will use the notation C for the Poincaré’s constant of

Q.

Definition 3.2. We will call (¥, H) € Wy x Wy a weak solution of the
problem (16)-(19) if and only if we have

(V¥,Vu) + (K.VH,u) + (K.VO,u) =0, (22)
MVH,Vv)+a(v,H,¥)+a(v,0,¥) =0 (23)
for all w € Wg and v € Wy

Proposition 3.2. Let (¥,H) € Wy x Wy be a solution of the problem
(22)-(23) and T = H + ©, then

infT, <T <supT,. (24)
r r

Proof. Set ! =supp Ty, and T = sup(T — ,0). As T+ € Wy, using (23)
with v = Tt and noticing that (VO, VT't) = 0 because A® = 0, leads to

A(VT,VT+) + a(T+, T, T) = 0.

Using the facts that A(VT,VTt) = ANVTH,VTY) and o(TT,T,¥) =
a(T*+,T*,¥) =0 by proposition 3.1 we obtain that

[VT*[z=0
and as T € H}() we have Tt = 0 on Q. We proceed in the same way
with I’ = infr T\, and T~ = inf(T" — I, 0) for the other inequality. O

Proposition 3.3. Let (¥,H) € Wy x Wy be a solution of the problem
(22)-(23), then for [|[VO||oo < m we have

IV¥2 < 2C||K]|oo||VOll2  and [[VH]2 < [VOl2.



Proof. Taking u = ¥ in (22) and using Poincaré’s inequality we obtain
IV <|(K.VH, ¥)| + |(K.VO, ¥)|
SIKlleo ([VH]l2 + [VOl2) | ¥l
<C|Klleo (IVHl2 + [[VO[l2) VTl
and
[V¥|2 < Cl|Klloo (IVH]l2 + [ VOIl2) . (25)
Taking v = H in (23) leads to
MVH,VH) +a(H,H,¥) +a(H,0,¥) =0.
Then, by proposition 3.1 we have
MVH|S < |a(H,©, )]
< IVOlleol Hll2I VT2
S CIVOleol| VA2V T2

using Poincaré’s inequality and
o
IVH|l2 < <[IVOloo [ VE]2. (26)
Then, combining (25) and (26) leads to

C?)1Klloo

IV¥lz < ClKllolVOl2 + —

VOl IV¥|l2-
Thus

A

and as ﬂ?”ﬁHV@Hw < 1/2 we have

VT2 < 20 K|l IV O2-

CHK o
(1 - —unve)nw) IV ]2 < O Kool VO]l2

Using this new inequality in (26), we obtain

IVH|2 < [VO2. O

Remark 3.3. As

A
[VOllz < (mes )2 VO] and [[VO|e <

2C%[|K]loo

we can rewrite the previous result as

A 1 A 1
Vs < 2(mes )} and [[VH|s < —oe — 5
V]2 < C(mes )2 and |[VH|2 < 2C2||K||oo(mes Q)2
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3.3. Main results

Theorem 3.1. Let M = suprTy. If MC||K|loo < A, then the problem
(16)-(19) admits at most one weak solution (¥, H) in Wy x Wg.

Proof. Let (¥y, H;) and (¥4, Hs) be two solutions of (16)-(19). Setting
H =H; — Hy and ¥ = ¥; — ¥, we obtain
(VT,Vu) + (K.VH,u) =0,
A(VI'_I,V’U) + a(U, Hy,04) — CL('U, Hy,Uy) + CL(’U,@, \T]) =0
for w € Wy and v € Wy. Choosing v = ¥ and v = H leads to
(VI,VU) + (K.VH,¥)=0, (27)
MVH,VH) +a(H,H,, V) — a(H,Hy,¥3) +a(H,0,9) =0.  (28)
From equation (27) we deduce that
NV £ ClK ool VH]l2- (29)
Let us compute
a(H,H1,%1) — a(H, Hy, ¥3) = —a(Ha, H1,¥1) — a(Hy, Hp, ¥5)
=a(Hy, H2, V1) — a(Hy, Ha, U3)
a(Hy, Ha, )
= a(I:I, Hl,\i’).

Thus, using now equation (28) we get
MVH,VH) +a(H,H +6,9)=0
and
MVH|3 < |a(H, Hy + 6, 1)
< lo(Th, H, 0)|
< Tilleol VA2 VT2
< M|[VH|2|[V¥ll2

with M = supp T,. Therefore
_ M -
IVA> < IV,

and using (29) we have

IVH]|l2 <

MC| Koo 2
= |V A2
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Choosing XK < 1 we obtain |VH]||, = 0 and ||[VT|l, = 0. This
complete the proof. 0O

In the following Theorem, we prove the existence of a strong solution
(¥, H) of the problem (16)-(19) under some hypothesis on the data. To
this aim, let us define the spaces

W\I,:{u|ueH2(Q),u=00nF1 and%:Oonfg}
n

and
Wy = HYH(Q) N H3(Q).
These spaces are equipped with the following norms
lully, = IVul @y
loll%,, = IVollZn gy,
It )Wy st = Nulliy, + 10l
and
I (w, )| 2@y L2(0) = llullz + llv]2.

Theorem 3.2. Let M = suppTy,. For max{C||VO|, M} < W{)\_H:
and small values of |K.VO||2, there exists a unique solution (¥, H) of the
problem (16)-(19) in the space Wy x Wy

Proof. Let us define the operator
A @ Wy x Wy — L3(Q) x L*(Q)
such that A(V, H) = (A1 (¥, H), A2(¥, H)) with
Ay (¥, H)=A¥ - K.VH,
Ay(¥,H) = \AH — VH(VT)* — VO.(VI)*.

Let us remark that, using the Sobolev embedding theorem, we have

HY(Q) — L*(Q) in such a way that VH.(VY)+ € L(Q).

In term of the operator A, the equations (16)-(17) can be rewritten as
A(Y,H)y = (K.VO,0).

Notice that (¥, H) = (0,0) is a solution of A(¥,H) = (0,0) and by the

same argument as in Theorem 3.1, it is the only one.
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Now we want to show that the solution of A(¥, H) = (K.V©,0) also exists
for small values of |K.VO|l2. To this end, let us compute the Fréchet
derivative of A. For ¢ € Wy and G € Wy, we have
A($,G) — (Ap — K.VG,AAG — VO.(V9)*) i= A(4,G) — L($,C)
= (0, -VG.(Ve)")
= o([1(#, ) lswy i)

because

100, VG.(VO) M)l z2yx 22y = IVG- (V) || L2(ey
SIVG L@ lIVellLs(o
< CHIVGIm@lIVell o)
2 2
< Gl A, iy
where C; is the Sobolev constant corresponding to the continuity of the
embedding H(Q) < L*(Q). Thus, L defined by L(¢,G) = (A¢ —
K.VG,AAG—-V0O.(V$)*) is the Fréchet derivative of A at the point (0,0),
ie.
A'(0,0).(¢,G) = (Ap — K.VG,AAG — VO.(V¢)1).
For f and g in L2(Q) let us now consider the system 4’(0,0).(¢, G) = (£, g)
that can be written as
—Ap+ KVG = f, (30)
—AMAG +VO.(Vé)*t = g. (31)
To prove the existence of a solution (¥, H) of (16)-(19) it remains to show
that the linear operator A’(0,0) : Wy x Wy — L2(Q) x L?(f) is invertible.
To this end, we must first prove that for every given f and g in L?(Q2) the
system (30)-(31) admits at least a solution and secondly that for (f,g) =
(0,0) only (¢, G) = (0,0) is a solution of (30)-(31).

o First, we want to prove that for every given f and g in L?((2) the
system (30)-(31) admits at least a solution. To this aim, let us
define the operator T = Q0 S : G — G; from H(Q) into H*(Q)
with S : G — ¢ where ¢ is the solution of

-Ap+ KVG=f

in Q with the boundary conditions ¢ = 0 on I'; and g—i’ =0 on I'y,
and @ : ¢ — G where G is the solution of

—MAG; +VO.(Vo)t =g
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in © with the boundary conditions G; =0 on I'.
Suppose now that G and G’ are given in H'(Q). Let us consider
6 = S(G), ¢ = S(C) and G1 = Q(¢), G} = Q(¢). Setting

G=G~-G,¢=¢—¢ and G, = G; — G}, by (30)-(31) we have

the inequalities

/ IV3|2da
Q
= —/(K.Vé’)qﬁdx
Q

<Kl ([ nv&uzdm)% (f HV@H?dr)%

A/ IVG,||%dz
Q

- / VO.(V) Cydz
Q

<cyvel [ uv&u?dx)% (] uvc':lu'*’dx)%-

Combining these two inequalities, we obtain

02||K|I<>o|IV@||ool
)

and

IVGillr2) < VG| L2

that shows us that if

C2I1 K Jloo|VOlloo
A

then T is a contraction from H'(Q) into itself and admits a fixed
point G € H2(Q) that gives us a solution (¢,G) € Wy x Wy of
(30)-(31).

The system (30)-(31) with (f,g) = (0,0) admits (0,0) for solu-
tion, let us show that this solution is unique. Let us suppose that
($,G) € Wy x Wy is a solution of (30)-(31), multiplying (30) by
¢, (31) by G and integrating on 2 leads to

C21K |0 || VOllos
A

<1

VG2 < IVGll2

from which we deduce G =0 and ¢ =0 if C?||K||0o||VO|l0o < A.



14

This shows that, for small values of || K.V©||2, the problem A(¥, H) =
(K.V©O,0) does have solutions. Thus, for such values of © and K and
C%|K||w||VO|lc < A, the problem (16)-(19) admits at least one solution
(¢,G) in We x Wy and, as Wy x Wy € Wy X Wy, by Theorem 3.1 it is
unique if, in addition, we have MC|| K |loo < A. o

Remark 3.4. Since, in the previous Theorem we have
1K.V6llz < [|K |oo | VO oo (mes 2)2
and

A
VOl < =—
VOl < Z7KT
the condition ||K.VO||5 small is realized when Zr(mes Q)% is small. It is
the case, for example, when the domain € is large and the parameter A,
that is the thermal diffusivity of the porous medium, is small.

Corollary 3.1. Let T, € H3{) and M = suppTy. If
max {C||VO|oo, M} < 5”—_,(’3”: there exists a unique solution (U, T) of the

problem (10)-(13) in the space Wy x H2(Q) for small values of | K.VO|a.

Proof. It follows immediately from Theorem 3.2 and the fact that prob-
lems (10)-(13) and (16)-(19) are equivalent. O

4. Conclusion

In this paper, starting from the model of free convection in a fluid saturated
porous medium near a semi-infinite vertical flat plate we have written an ex-
tension describing this phenomenon in a two-dimensional bounded domain.
This new problem is given by two strongly coupled partial differential equa-
tions, that allows us to compute the stream function and the temperature
of the fluid in the porous medium.

In a first approach of this complex problem, we have proved existence
and uniqueness of a solution for small data when a part of the boundary of
the domain is assumed to be impermeable.
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QUASILINEAR PARABOLIC FUNCTIONAL EVOLUTION
EQUATIONS
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Institut fiir Mathematik, Universitat Ziirich, Winterthurerstr. 190, CH-8057
Ziirich, Switzerland, email: herbert.amann@math.unizh.ch

Based on our recent work on quasilinear parabolic evolution equations and maximal
regularity we prove a general result for quasilinear evolution equations with mem-
ory. It is then applied to the study of quasilinear parabolic differential equations in
weak settings. We prove that they generate Lipschitz semiflows on natural history
spaces. The new feature is that delays can occur in the highest order nonlinear
terms. The general theorems are illustrated by a number of model problems.

Keywords: nonlinear evolution equations with memory, time delays, parabolic
functional differential equations, Volterra evolution equations.

Categories: 35R10, 35K90, 45K05: 45D05, 34K99

1. Introduction

In arecent paper [8) we have derived very general existence, uniqueness, and
continuity theorems for abstract quasilinear evolution equations of the form

i+ A(u)u = F(u). )

Here A(u) is for each given w in an appropriate class of functions a bounded
measurable function with values in a Banach space of bounded linear op-
erators. Thus ¢+ A(u)v = F(u) is for each suitable u a nonautonomous
evolution equation on some Banach space. The new feature of our result
is that the class of admissible functions, that is, the domain of definition
of A(-) and F(-), is the same as the one where a solution of (1) is being

d
sought for. More precisely, given Banach spaces E; — Eg and 1 < p < o0,
we assume that A and F' are defined on

LP((0>T)7E1) ﬂH;((O,T),Eo) (2)
and map this space into Lo ((0,T), L(E1, Eo)) and L, ((0,T), Eo) for some

r > p, respectively. Consequently, A and F' will be nonlocal operators with
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respect to the time variable, in general. This distinguishes our work in (8]
from all previous studies of nonlinear evolution equations where A and F
always have been assumed to be local maps (see [7]).

The fact that we work on the function space (2) allows for great flexi-
bility in applications. In particular, we can use the general results to treat
evolution equations depending on the history of their solution (see [4], [6],
and [9]).

It is the purpose of this paper to give a rigorous basis for such problems.
More precisely, we develop a general existence, uniqueness, and continuity
theory for functional evolution equations of the form

o+ A(ug, w)u = F(ug,u), 3)

where, as usual in the theory of functional differential equations,
us(0) :=u{t +6) for t >0 and —S < 8 < 0. (This notation should not be
confused with the partial derivative 8;u.) In particular, we show that in the
autonomous case problems of this type generate semiflows on appropriate
history spaces. So far only semilinear equations of the general form (3)
have been considered where A is independent of u and u;. For these prob-
lems there is a vast literature for which we refer to [29] and the references
therein, for example.

The main results for (3) are given in Section 4. In the section following
it we prove a rather general theorem for quasilinear parabolic differential
equations with memory. The main new feature is that we can allow mem-
ory terms in the top order coefficients and that we derive the continuous
dependence of the solution on its history. In the autonomous case this im-
plies that (3) generates a semiflow on the history space, a fact which has,
up to now, only been shown in semilinear problems.

Problems of this kind occur in several applications, for instance in cli-
mate models (see Section 2) or by regularizing ill posed problems in image
processing (see [9]). For simplicity, we restrict ourselves to weak settings.
However, it will be clear to the reader that the abstract results can also be
applied to parabolic differential equations in strong settings (as in e.g., [6]
and [9]).

In Section 2 we illustrate the power of our approach by applying the
main result of Section 5 to some model problems. We restrict ourselves to
simple cases to give the flavor of the techniques and do not strive for opti-
mal results. In particular, we do not present sophisticated global existence
results. Section 3 contains an existence and continuity theorem for param-
eter dependent quasilinear evolution equations. It is an easy consequence
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of the results in (7], but is put in a form suitable for the study of (3) in
Section 4. In the last section we show how the results for the model cases
of Section 2 follow from the basic result of Section 5.

2. Model problems

Let €2 be a bounded Lipschitz domain in R”, where n > 2. Assume that
I'; is a measurable subset of its boundary, I', denote by x : I — {0,1} the
characteristic function of I'y, and put I'g := I'\I';. The pair (€, x) is said
to be (C?) regular if  is a C? domain and Y is continuous. In this case
I’y and T'; are both open (and closed) in I'. In general, either T'g or I'; can
be empty, of course. We write 7 for the outer unit normal on I' (defined
a.e. with respect to the (n — 1)-dimensional Hausdorff measure).
In this section we consider the following evolution system

Oc(e(w)) +V-F(u) = f(u) on Qx (0,00), }
X7 F(u) + (1= x)yu=xg(w) on I x (0,c0),

(4)

v being the trace operator and V - denoting divergence. We are particularly
interested in situations where (4) is history dependent. More precisely, we
consider constitutive hypotheses of the following form

o e(u):=p*u;

o Jlu) = - x (a(-,ao * u)Vu) 4+ % (b(-,orl * u)Vu);

o F(w) = pox f(- a3 % )

o g(u):=p1*g(-,03 xu),

(5)

where 1, v;, pj, and o; are bounded (possibly Banach space valued) Radon
measures on R, to be specified more precisely below. Throughout we sup-

pose that
e acC%(QxR™R"™™) such that ]
a(x,€) is symmetric and positive definit,
uniformly for z € € and ¢ in bounded intervals;
e beCOT(QIx R™ R™"); ©)
o fcCO(QxR™);
e geCo%(I'xR™) )
for some m € N. (For convenience, we put [0,00] :=[0,00) = R* and

[—00,0] := (—00,0].) Here and below, given metric spaces X and Y, an
open subset O of X x Y, and a Banach space F', we write C% (O, F) for
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the set of all f € C(O, F) such that for each point (z,y) in O there exists
a neighborhood U x V in O such that f(-,y) : U — F' is Lipschitz contin-
uous, uniformly with respect to y € V. As usual, we omit the symbol F' if
F=R.
In this section we also suppose that
e ceither p =2,
e orn+2<p<ooand (Q,y) is regular.

We set
H;,x ={ve H; = H;(Q) s 1—x)yw=0}, Hp“,}( = (H;’,x)l7
the dual being determined by means of the L, duality pairing
(v,w) := / v-wdz, (v,w) € Ly X L.
Q

Note that

d d
1 -1
Hpy = Ly — Hpy,

where <, denotes continuous and dense embedding. Also note that
Hyl = H;'if x =0, that is, I = To. In this case the second line of (4)
reduces to ’chq homogeneous Dirichlet boundary condition yu = 0. We also
put H := Hj | for j = =+1.
Furthermore,
-z { T if p =2,
px {v € W}}‘z/” s (L=x)yv = 0} otherwise,

where W :=W;(Q) are the usual Sobolev-Slobodeckii spaces of order
s € [0,1]. Recall that, except for equivalent norms, Wy = Hj for s =0, 1.

Let I be an interval with nonempty interior I. Then

My (D) =ML (Qx I):= Ly(I,H: )N HA(I,H; 1)

PX PP X

and M} := Hj . It will be shown below that
Hp () = Co(T, Wp2/7), (®)

where Cy denotes the space of continuous functions vanishing at infinity.

For 0 < T < oo we put Jr :=[0,T) and J_r := (-T,0]. Furthermore,
we usually employ the same symbol for a function and its restriction to any
of its subdomains, if no confusion seems likely.
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Suppose that 0 < § < oo,
v € Co([-8,0], Wl %/7), (9)

and 0 < T < co. By a solution (more precisely: an H,, solution) of (4)
on (0,T) with history v we mean a

w e C(1=8, ), W57)
satisfying u|J_g = v and
veH, (J:), 0<7<T, (10)
as well as, given any w € Hy, .,

d{w, e(u)) + (Vw, J(w)) = (w, f(u)) + (yw,g(u)), on (0,7) (11)

in the sense of distributions, where (-, -)r denotes the L,(I') duality pairing
(with respect to the Hausdorff volume measure of T'). In addition, all
integrals occurring in (11) have to be well defined. Note that (10) and (11)
imply that u is a weak solution in the usual sense if p = 2.

A solution v is maximal if there does not exist a solution being a proper
extension of u. In this case Jr is the maximal existence interval for u.

Before considering some model problems we recall the concept of a semi-
flow. Let X be a metric space and suppose that J(z) is for each z € X an
open subinterval of RT containing 0. Set

X:= | J@) x {=}.
zeX

Then ¢ : X — X is said to be a (local) semiflow on X if X is open in
Rt x X, o€ C(X,X), ¢0,z) =z for x € X, and, given (¢t,z) € X and
s € J(p(t,x)), it follows that s+t € J(z) and (s, (¢, 7)) = @(s +t,2).
It is global if X = Rt x X. Furthermore, ¢ is a Lipschitz semiflow if, in
addition, ¢ € C%1-(X, X).

Given T € (0,00], a Banach space F, and u € C([-S,T],F), we re-
call that

ue(0) == u(t —0), 0<6<S, 0<t<T.

Note that u, € C([-5, 0,F)for0<t<T.

Suppose that V is a Banach space such that V < C([=8,0], Wy /" ).
Then we say that (4) is well posed in H,, and generates a semiflow on the
history space V if there exists for each v € V a unique maximal 'Hzl, solution,
u(v), of (4) and the map (¢,v) — u(v); is a semiflow on V.
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We start with a simple model problem of reaction-diffusion type:
Ou —V - j(u) = f(u) onQ,
u=0 on Iy, (12)
7-3(u) =g(u) only,
where
F(u) := —a(op * u)Vu,

that is, we set vy := &0, where §,. is the Dirac measure supported in r € R,
and b := 0. For notational simplicity, we usually do no longer indicate the
= dependence of the nonlinearities.

First we suppose that m =1 and the diffusion matrix depends on suit-
able space averages of u only. For this we assume that

K € L(L,C(Q)), (13)

where L(E, F) is the Banach space of all continuous linear maps from the
Banach space F into the Banach space F'. We also set L(E) := L(E, E).

We denote by M0, S] the space of all real valued Radon measures of
bounded variation on the interval {0, 5]. We suppose that

a € M|0,S] (14)
and consider the nonlocal time-delayed quasilinear parabolic problem
Oyu — V- (a(a* Ku)Vu) = f(a* Ku) onQ,
u=1_0 on T, (15)
U-a(lax Ku)Vu =g(ax Ku) onT}.
Here and below it is understood that the boundary conditions are taken in

the sense of traces. In particular, the right hand side of the third equation
of (15) reads more precisely as g(ya * Ku). Observe that

(a* Ku)(z,t) = /{0 Kt = n)aldr) € O@ x[0,7)

for (z,t) € @ x Jp and T > 0, provided u € Co([—S, T}, Lo).
Theorem 2.1. Let (13) and (14) be satisfied.  Then (15) is well

posed in 'H)l( and generates a Lipschitz semiflow on the history space
Co([-5, 0], Ls). It depends Lipschitz continuously on a and K. If the
support of a is contained in s, S| for some s € (0,5], then this semiflow is
global.
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The proof as well as the proofs of all the following theorems of this section
are found in Section 6, where it will be made precise how (15) is a par-
ticular instant of (4). What is meant by a semiflow depending Lipschitz
continuously on parameters is defined in Section 4.

Corollary 2.1. Ifr > 0, then the nonlocal retarded problem
O —V - (a(Ku(t —r))Vu) = f(Ku(t — 7)) on £,
u=20 on Iy,
7-a(Ku(t—r))Vu=g(Ku(t—r)) onT;

is well posed in 'H; and generates a global Lipschitz semiflow on the history
space C([—T, 0], Lg). It depends Lipschitz continuously on K.

Proof. It suffices to choose S :=r and o := §,.. [}

To treat local reaction terms in a weak setting we replace the hypotheses on
f and g in (6) by assuming, for simplicity, that n > 3, that f : @ x R - R
is a Carathéodory function satisfying f(,0) € La,/(nt2) and

£, €) = FCm < e(L+ €% + nf*/™) € — (16)

for £&,n € R™, and that go € Ly(I"). Observe that (16) is satisfied for the
model nonlinearity

F,8) =bIEP™E+ fo (17)
withm =1, b€ L, and fo € Ly. Then we consider quasilinear parabolic
problems with nonlocal time-delays in the diffusion matrix only, the reaction
term being local, that is,

u—V - (a(a * Ku)Vu) = f(u) on{,
u=0 on T, (18)

V-ala*x Ku)Vu = go onTy.
Theorem 2.2. Suppose that assumptions (13), (14), and (16) hold. Then
(18) s well posed in H>1< and generates a semiflow on the history space

C’o([—S, 0], L) which depends Lipschitz continuously on «a and K. It is
global if the following additional conditions are satisfied:

(i) supp(a) C [s, S] for some s € (0,5];
(i) there erists a constant K such that

(FC,6) — F(,0)E < k(L +]¢?), €eR
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Corollary 2.2. Ifr > 0, then the model problem
du—V - (a(Ku(t —))Vu) =blul"u+ fo onQ,
u=0 on Ty,
7-a(Ku(t —71))Vu = go on Ty

is well posed in HL and generates a semiflow on Co([—r,0], L), depending
Lipschitz continuously on K. It is global if b < 0.

Proof. With (17) this follows by choosing S :=r and a := §,.. m|

There are many conceivable choices for K. For example, we could set
Ku = (k,u), u € Ly,

for some fixed k € Ly, so that Ku is constant on Q. Nonlocal (non delayed)

quasilinear parabolic initial boundary value problems, predominantly with

this choice for K, have recently attracted some interest, in particular by

M. Chipot and coworkers (cf. [6], [10]-[12], and the references therein).
Another important case is obtained by setting

Ku =k *7, u € Lg,

where k € Lo(R™), ¥ is the extension of u to R™ by zero in ¢, and * de-
notes convolution on R™. In particular, setting k := x,g~, the characteristic
function of the ball in R™ with center at 0 and radius r, it follows that

Ku(z) = /Q( )u(y) dy, xz € Q,

where Q(z,7) := (z + rB") N Q. Thus in this case the diffusion matrix (and
f and g in the case of Theorem 2.1) depends on a suitably delayed space
average of the solution over a neighborhood of z in .

Next we consider model problems where the diffusion matrix depends
on u in a local way with respect to the x variable, but not necessarily
with respect to t. For this we suppose that m = 2 and consider the model
problem

du—V - (a(u, o xu)Vu) = f(u,a*u) on Q,
U = O on FO7 (19)
V-a(u,a*u)Vu = g(u,a*u) only.

Then the following analogue to Theorem 2.1 is valid.
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Theorem 2.3. Suppose that (Q, x) is reqular, n +2 < p < oo, and (14) is
satisfied. Then (19) is well posed in Hzlz,x and generates a Lipschitz semiflow
on the history space Co([—S,0], W;,{;Q/ P) depending Lipschitz continuously
on a. If supp(a) C [s,S] for some s € (0,5] and (a, f) = (a, f)(a*u),
then this semiflow is global.

Remarks 2.1. (a) For simplicity, we have omitted convection terms of the
form é(u) - Vu and V - (€(u)u), where &(u) is a suitable nonlocal function
of u. It will be clear from the general abstract results how this can be done.

(b) From Theorem 4.2 it will also be clear that we can obtain well
posedness results for nonautonomous equations. Of course, in such a case
the semiflow property is no longer valid.

(c) We can replace Q by a smooth submanifold of some Riemannian
manifold, provided gradients, divergence, and normals are taken with re-
spect to the corresponding Riemannian metric. O

Problems of the form (19) occur in applications, for example in certain cli-
mate models. For instance, in [20] and [21] G. Hetzer studies the quasilinear
functional differential equation

c(B*u)fu—V - (kVu) = R(t,u, B * u) (20)

on the Euclidean unit sphere in R3, assuming that ¢ is a bounded C? func-
tion being uniformly positive, 8 € C?[0,T) for some T > 0, and k and R are
sufficiently smooth functions with & being uniformly positive. By dividing
(20) by (0 * u) it is clear, due to Remarks 2.1, that this model fits into the
framework of this paper.

In the theory of heat conduction in a rigid body the functions occurring
in (4) have the following interpretation: wu is the temperature, e(u) the
interval energy density, j(u) the heat flux, f(u) and g(u), respectively, the
density of external heat sources in Q and on T, respectively. Considering
bodies with memory one arrives at the following constitutive hypotheses:

e(uy=u+h+*u
and
F(u) = —a(y, a * u)Vu — k * (b(u, o x u)Vu),
where we suppose that

he L.(RY,C'®)), ke L.(R* Ly), acM(RHCE) (21)
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for some r € (1,p’]. Thus one is led to consider the problem
S(u+h*u)~ V- (a(u,a*u)Vu+k* (a(u,a xu)Vu)) = f(u,axu) (22)

in €, subject to the boundary conditions

u=20 on Iy, (23)
7-a(u,a* u)Vu+k* (a(u,a* u)Vu) = g(u,axu) onT;.

Observe that, for example,
o0
(h # u)(z, £) = / Wz, Tz, t—r)dr,  (z,t) € Q x RY,
0
where u(t) = u(-,t) etc.

Theorem 2.4. Suppose that (Q,x) is regular, n+2 < p < oo, and (21)
is satisfled. Then (22), (23) is well posed in 'H;, and generates a Lipschitz
semiflow on the history space H,,  (J-s), where S € (0, 00] is such that

(supp(h) Usupp(k)) + supp(a) C [0, S].
If h =0, then this is true for the history space Co([—S, 0], VV,,{;?/”).

Setting h = 0 and o = 0 and assuming that & is real valued we obtain as a
particular case the quasilinear Volterra integro differential equation

Oy — V - (a(u)Vu) — /Ooo M1V - (a(u(t — 7)) Vu(t — 7)) dr = f(u).

Equations of this type, usually with zero Dirichlet boundary conditions,
have been studied by many authors, even for more general fully nonlin-
ear equations, by means of maximal regularity results in Holder and Besov
space settings (see [15], [26], and the references therein). Another approach
to such equations is based on sophisticated results from the theory of ab-
stract linear Volterra equations (see [27]). Using these techniques it is also
possible to obtain existence results in the difficult singular case where the
local second order operator V - (a(u)Vu) is not present (cf. [17]-[19], {25],
[27], [30], for example, and the references in those papers).

The only results known to the author for problems containing the
term O;(h * a) concern linear and semilinear equations (e.g., [13], [14], [22],
and [29]).

Another model case is the retarded quasilinear parabolic problem

de(u)(t) — V- F(u)(t) = f(u(t),u(t —r)) onQ,
u=0 on Iy, (24)
7 Ju)(t) = g(u(t),u(t —r)) onTy,
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where r > 0,
e(u)(t) 1= u(t) + hu(t —r) (25)
and
FW)(t) == —a(u(t), u(t — ) Vu(t) — kb(u(t), u(t — r))Vu(t —-r) (26)
with
h,k € C*(0). (27)
Theorem 2.5. Suppose that (Q,x) is regular and n+2 < p < co. Also

suppose that (25)-(27) are satisfied for some r > 0. Then (24) is well posed
in 'Hrl, and generates a Lipschitz semiflow on the history space 'H},)X(J_T).
If h =0, then this is true for the history space C([~r, 0],%1,;2/”). These
semiflows are global, if a, b, f, and g depend on u(t —r) only and not
on u(t).

A very particular instant of problem (24) is the retarded semilinear
parabolic equation

Oy (u(t) + ou(t — 7)) — aAu(t) — bAu(t — r) = f(u(t —r)) (28)

in Q x (0,00), where a, a, and b are constants with a > 0, subject to the
boundary conditions

u=20 on Iy, }
(29)

adyult) + bo,u(t —r) = g(u(t —r)) onT;.
As usual, 9, is the normal derivative on I'. It follows from Theorem 2.5

that, given any history v € H;’X(J_r), problem (28), (29) possesses a unique
global 'H,l, solution u(v), and the map

RY x ML (Jor) o HL L (Jor)y  (6,0) = u(v):

is a well defined Lipschitz semiflow on 'Hzl,’x (J-r), provided (£, x) is regular
and p > n + 2. Furthermore, if & = 0, then this remains true if we replace
Hy ,(J-r) by the history space C([-r,0], VVpl,;z/p).

3. Parameter dependent evolution equations

d
Let Ep and E; be Banach spaces such that E; — Ey. We fix p € (1, 00)
and, given a subinterval I of R with nonempty interior, we put

Ho(I,(Ey, Eo)) = Lp(I, Ey) N H(I, ).
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It follows that
'H,l,(I, (E1, Ep)) — Co(1,E), (30)
where
E = (Eo, E1)1/p p

with (-, )gp being the real interpolation functor of exponent 6 € (0,1) and
parameter p (cf. Theorem I11.4.10.2 of [2]).
Suppose that a := inf I > —oo with a € I and

A€ Loo (I, L(Ey, Ep)).

Then A is said to have (the property of) maximal L, regularity (on I
with respect to (E1, Ey)) if the Cauchy problem

u+Au=fonl, wu(a)=0

has for each f € L,(I, Eo) a unique solution H,,(I, (E1, Ep)) and if, in ad-
dition, given 7,T € I with 7 < T', the homogeneous problem

v+ Av=0on (1,T), v(r)=0 (31)

possesses in ’H; ([T, T), (Ex, Eo)) the trivial solution only. The proof of Lem-
ma 4.1 in [5] shows that assumption (31) is equivalent to: A has maximal
L, regularity on every nontrivial bounded subinterval of I being closed on
the left. (In Lemma 4.1 of [5] hypothesis (31) is missing.)

We fix a positive number T and set J := Jr. Then we denote by

MRp(J) := MR, (J, (Er, Ep))

the set of all A€ Lo(J,L(E1, Ep)) possessing maximal L, regularity,
endowed with the topology induced by Loo(J,L(E1, Eo)). We write
MR,(Eq, Ep) for the subset of MR,(J) consisting of all constant maps
t — A therein and assume that

MR (E1, Eo) # 0. (32)

Let X and Y be nonempty sets and J a subinterval of R* containing 0.
A function f: X7 — Y7 is a Volterra map if, for each T € J and each
pair u,v € X7 with u|Jp = v|Jr, it follows that f(u)|Jr = f(v)|Jr. Let
X and Y be metric spaces. Then C*(X,Y) is the space of all maps from X
into Y which are bounded on bounded sets and uniformly Lipschitz con-
tinuous on such sets. If Y is a Banach space, then C!*(X,Y) is endowed
with the Fréchet topology of uniform convergence on bounded sets of the
functions and their first order difference quotients on such sets. Note that
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C(X,Y) equals C¥(X,Y), the space of all (locally) Lipschitz continuous
maps from X into Y, provided X is finite dimensional.
For abbreviation we put

'H;,(JT) = ’H},(JT, (E1, Eo)), H:= 'H}J(J)
for 0 < T < T and assume that
e = is a Banach space and a € L(Z, E). (33)

We denote by 7o € L(H, E) the trace map for t = 0, that is, yo(u) = u(0)
for u € H, and set

D= {(6,u) €ZxH ; al€) = 10(u) }. (34)
Note that D is the kernel of
((6,u) = a(€) —1(u) € LE X H, E).

Thus it is a closed linear subspace of Z x H, hence a Banach space.
For £ € E we put

Hae) = {v €M ; v0(w) = () }
and assume that
o AeCH(D,MR,(J,(Er, E0)));
e FecCY(D,L,(J,Ey)) for some r € (p, 0]; (35)
e (A, F)(,-)is for each £ € = a Volterra map on Hqg).

We consider the parameter dependent quasilinear evolution problem
o+ Al u)u=F(u)on (0,T), u(0)=c(f) (36)
for £ € E.

Theorem 3.1. Let assumptions (33) and (35) be satisfied and suppose that
£ e E. Then:

(i) (Existence and Uniqueness) There exist @ mazximal open subinter-
val J* := J(£) of J containing 0 and a unigue uw* :=u(€) : J* — Ep
such that u*|Jr belongs to ’Hxl)(JT) and satisfies

@+ A u ) = P(§,u”) on (0,T), u'(0) = of¢)

for 0 <T < T* :=sup J*.
(i) (Global existence) If J* # J, then u* ¢ HL(J*).
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(iii) (Continuous dependence on ¢) If u* € H, then put To :=T. Oth-
erwise, fix any positive Ty < T*. Then there existr, k > 0 such that,
given any &; € 2 satisfying

g —él=<r, =12,

it follows that u(&;) € HY(Jg,) and

u(é1) — w2l (ury) < K161 — &2]l=-

(iv) (Continuous dependence on A and F) Let Ty be defined as above
and let ((A;, F})) be a sequence such that (A;, Fj) satisfies (35) for
each j € N and (A;, F;) = (A, F) in

C*(D, Lo (J, L(E1, Eo)) x Lp(J, Ep)).
Denote by u;(§) the solution of (36) with (A,F) replaced by
(A;, F;). Then u;(€) — u(€) in Hy(Jm,).

Proof. (i) and (ii) follow from Theorem 2.1 and Remark 4.3 in [8]. As-
sertions (iil) and (iv) are easily deduced from the proof of Theorem 3.1
therein by modifying appropriately the situation considered in Remark 4.3
of [8]. (In [8] assumption (31) has to be added to the definition of maximal
L, regularity since Lemma 4.1 of 5] is used in the proofs.) a

Remark 3.1. Let II be a Banach space and suppose that

e AeCl(Ilx H,MR,(J,(E1, Eo)));
e FecCt (I x H, L. (J, Ep)) for some 7 € (p, o0];
o (A,F)(m,-)is for each 7 € II a Volterra map.

Then the quasilinear parameter dependent initial value problem
w+ A(m,w)u= F(m,u) on (0,T), ug=e

has for each e € E a unique maximal solution in the sense specified in (i)
of Theorem 3.1. Furthermore, assertions (ii)—(iv) are also valid.

Proof. This follows from the preceding theorem by setting = :=II x F
and a(§) :=e for £ = (m,¢e) € E. o
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4. Functional evolution equations
Now we fix § € (0, o0] and suppose that
V e {H}((—5,0), (E1, Ey)), Co([-S,0], E) }. (37)
We put
D:={(v,w) e VxH; v(0) =w(0)},

fix a (parameter) Banach space II, and suppose that

e AeCH(Il x D, MR,(J, (E1, Ep)));

e I'c Cl'(H x D, LT(J,EO)) for some r € (p, o0];

o (A, EF)(m,v,-)is for each (m,v) € I x V
a Volterra map on H, (o).

(38)

Then, given 7 € II and v € V, we consider the following parameter depen-
dent quasilinear functional differential equation

U+ A(m, ug, w)u = F(m,ug,w) on (0,T), Uug = . (39)

By an H} solution u of (39) on Jr, where 0<T < T, we mean a

u: [=8,T) — Ep satisfying u|[-S,0) = v and u|J; € Hy(Jr) as well as
w(t) + A(m, e, u) ()u(t) = F(m, ug, u)(t), O<t<,

for 0 < 7 < T. It is maximal if there does not exist an 'H; solution being a

proper extension of w. In this case Jr is called maximal existence interval

for u.

The following general existence, uniqueness, and continuity theorem is
the first main result of this paper.

Theorem 4.1. Let assumptions (37) and (38) be satisfied. Then:

(i) (Existence and Uniqueness) Problem (39) has for each
(m,v) € I x V a unique mazimal H) solution u(w,v).

(ii) (Global existence) Denote by J(m,v) the mazimal existence inter-
val of w(m,v). If J(m,v) # J, then u(m,v) ¢ Hy(J(m, v)).

(iii) (Continuous dependence on w and v) If u(w,v) € 'H,l,(J), then set
1o := T. Otherwise, fix any Ty € Jo(7r,v). Then there existr,k > 0
such that, given (mj,v;) € IL X V satisfying

“7rj ‘WHU'F”'UJ' —vllv <, J=12,
it follows that u(w v;) € Hi(Jr,) and

llu(mr,v1) — w(ma, v2)llH(any) < K(llm = molln + [lor —vallv).
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(iv) (Continuous dependence on A and F') Let Ty be defined as in (i)
and let ((A;, F;)) be a sequence such that (Aj, Fy) satisfies (38)
for each j € N and (A;, F}) — (A, F) in

C(II x D, Lo (J, L(En, Eo)) x Lp(J, Eo)).

Denote by u;(m,v) the mazimal solution of (39) with (A, F) re-
placed by (A;, F;). Then u;(m,v) — u(m,v) in Hy(Jr,).

Proof. For (v,w) € D we set

o(t), —-8<t<0,
v®w(t) =
wt), 0<t<T.

Ify= Co({—S, 0], E), then it is obvious that
(v,w) - (vow),) € c-(D, V), 0<t<T. (40)
In the other case this follows from Lemma 7.1 in [8].
Set = :=1II x V and «(¢) :=v(0) for £ = (m,v) € E. Then (33) is satis-

fied and D =11 x D.
For (¢,u) = (m,v,u) € D define A(&,u) and F(£,u) by

)
(A, F)Eu)(t) := (A, F)(m, (v u),u)(t), tel
(

It follows from (40), ((v,u) — u) € L(D,H), and (38) that A and F sat-
isfy (35). Thus Theorem 3.1 implies the assertions. m|

Let X and Y be metric spaces and put Z := X x Y. Suppose that J(z) is
for each z € Z an open subinterval of R* containing 0. Set

= {J J(2) x {z}.
2€Z

Then ¢ : Z2 — X is a parameter dependent Lipschitz semiflow on X,
provided

W('?'ay)l Zy :={(t7$) €R+ XX; (t,.’E,y) GZ} - X

is for each y € Y a Lipschitz semiflow on X. It depends Lipschitz continu-
ously on the parameters y € Y if ((¢,2) — ¢(t, 2)) € D%*(Z, X).

Suppose that (38) is satisfied for every T > 0. Then the map (4, F)
is said to be autonomous if, given s, € Rt and u € H] »(Js1t), it follows
that, setting v°(7) ;= u(s + 1) for 0 < 7 < ¢, that

(A, F)(7, ugps, u)(t + 5) = (A, F)(m, (v°),v°) (B).
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Note that this is true, in particular, if (4, F)(,v,) is a local map.
Let (38) be satisfied for every T > 0. Then we consider the quasilinear
functional differential equation

U+ A(m,ug, uyu = F(m,us, u) on (0,00), ug=wv. (41)

Clearly, u is an ’H;} solution if it is an 'H}, solution of (39) for every T > 0.
The following theorem is the second main abstract theorem of this

paper.

Theorem 4.2. Let (37) be true and suppose that (38) holds for every
T > 0. Then

(i) Problem (41) has for each (w,v) € Il X V a unique mazimal H, so-
lution, u(m,v).

(ii) If w(m,v) € H}(Jr N J(7,v)) for every T >0, where J(m,v) is the
mazimal existence interval for u(m,v), then u(m,v) exists globally,
that is, J(m,v) = R*.

(iii) For each T € J(m,v) there are r,k > 0 such that

lu(mr, v1) = w(ma, v2)llgy a7y < K(I171 = 2l + [lor = v2lly),
whenever (m;,v;) € Il x V satisfy
“71‘]' — 7T”n + ”U]‘ — 2)”1/ <r, 7 =12

(iv) If (A, F) is autonomous then the map (t,v,7) — u(m,v); defines
a Lipschitz semiflow on V depending Lipschitz continuously on
7 eIl

Proof. (i)-(iii) are obviously implied by (i)-(iii) of Theorem 4.1.

(iv) We fix w € II and omit it from the notation since it does not play a
role in the following argument. Givenv € V and¢,s € Rt witht + s € J(v),
set w(t) := u(v)(¢t + ). Then the fact that (A, F') is autonomous implies
that

W + A(m, wy, w)w = F(r, we,w) on J(v) — s

and wo = u(v),. Note that u(v), € V and w|J. € H}(J,) for T € J(w) —s.
Hence we infer from (i) that J(u(v)s) D J(v) —s and w = u(u(v),) on
J(v) — s. On the other hand, set

B(t) = u(v)(t), -§<t<s,
w(t) == u(u(v)s)(t —s), s<teJ(u()s)+s.
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Then using Lemma 7.1 of [8] one verifies that @ is an 7, solution of (41)
on J(u(v)s) +s. Thus, by uniqueness, J(v) D J(u(v)s) + s. This implies
that J(v) = J(u(v)s) + s and

u(V) g4t = u(u(v)s)t
for s € J(v) and t € J(u(v),). Now the assertion is a consequence of (iii),

the strong continuity of the translation group on Co(R, E) and 'H;,(]R), and,
in the case where V = Cy([-S, 0], E), of (30). O

It is easy to derive from Theorem 4.1(iv) the continuous dependence
of u(m,v) on A and F. We leave this to the reader.

5. Parabolic boundary value problems

Let I be a nonempty closed interval and F' a Banach space. We denote
by M(I, F) the Banach space of all bounded F' valued Radon measures
on I (see Section 2.2 in [3] for a brief introduction to the theory of vector
valued measures and the corresponding integration). We identify M(I, F)
with the closed linear subspace of M(R, F') consisting of all bounded F val-
ued Radon measures being supported in I. We also identify L; (I, F) with
the closed linear subspace of M(I, F') consisting of all measures being ab-
solutely continuous with respect to Lebesgue’s measure d¢t. Thus, in par-
ticular, we identify f € Li(I, F) with its trivial extension (by zero on I¢)
in Ll(R, F)

Let Fy, F1, and Fy be Banach spaces and Fy x F, — Fy and assume
that (z,y) — z ey is a multiplication, that is, a continuous bilinear form
of norm at most 1. In particular, given Banach spaces F and F, we can
choose F| := L(E,F), F;:=E, Fy:=F,and Aee:= Aefor Ae L(E,F)
and e € E.

We put oo —o00 =00, Given0 < R< S <ocowithS >0, 0<T < o0,
u € Co([—8,T), F1), and p € M([0, S — R], ), the convolution integral

ux* p(t) = /u(t —7)epu(dr) (42)

is well defined for —R <¢ < T. It is not difficult to see that (u, u) — u* p
defines a multiplication

Co([-S,T), F1) x M([0,S — R], F3) — BUC([-R,T], o). (43)
It also follows from Young’s inequality that the map (v,w) > vxw is a

well defined multiplication
Lg((O, S — R), Fl) x L,((=8,T), F») — L:((—-R,T), Fo), (44)
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provided &, 7, ¢ € [1, oo] satisfy
1/6+1/n=141/¢. (45)
For abbreviation, we set

X = L27 if p= 2a
"1 C@) otherwise.

In order to specify the measures appearing in (5) we fix R and S as
above and suppose throughout that 1 < s <p’. Then we introduce the
following Banach spaces:

Ho := Ls(Jr, L(H,})); H:= Ly(Jr, L(Lp));
P:= M(JTr,L(C(Q), L¢)); Pr := M(Jg, L(C(T), L,(T)));
S = M(Ts_r, L(X,C(Q,R™))); Zr = M(Ts-gr, L(X,C(T,R™))),

where pn/(n+p) <€ <oo with £>1, and p(n—1)/n<n < oo with
771> 1, and where we agree to set Ly(Jg, F') := {0} if R = 0. We put

HHi=HixHxHxPxPrxYXxX¥xXxXp
and denote the general point of this Banach space by
7 = (h, ho, h1, po, P1,%0,01,02,03).
Given 7 € II, we set
wi=20 +hdt, vo:=68 +hodt, vq:=hidt. (46)

Now we can formulate and prove the third main result of this paper, the
following existence, uniqueness, and continuity theorem for problem (4).

Theorem 5.1. Suppose that assumptions (6) and (7) are satisfied. Fix
7 €Il and define u, vy, and vy by (46), and (4) by (5). If R = oo, then
assume in addition that, for 7 = 0,1,

either p; 1s compactly supported
ps pactly supp } )

or it is absolutely continuous with respect to dt.

Finally, suppose that V equals either H},,X(J—s) or Cq (7_5, V[/pl,;z/p) with
V=H, (J.s) ifh#0. (48)
Then:

(i) Problem (4) has for each history v € V a unique mazimal H}, solu-
tion, u(v).
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(ii) If uw(v) € Hy(Jr N J(v)) for each T >0, where J(v) is the maa-
imal ezistence interval of uw(v), then u(v) exists globally, that is,
J(v) =R*.

(iil) The map (t,v) + u(v)s is a Lipschitz semiflow on'V depending Lip-
schitz continuously on w € Il (subject to condition (47), of course).

Proof. (1) Set (Eo, Ey) := (H;L, H! ). Then E; < Fy, and, except for

X0
equivalent norms, E = W;,I; 2, Indeed, if p = 2, this follows from Propo-

sition 2.1 and Theorem 15.1 in Chapter 1 of [24] (also see Section 1.15.10
in [28]). If p > n + 2, then it is implied by Theorem 7.2 of [1], for example.
(Note that this proves (8).)

(2) Fix T > 0. The Sobolev embedding W5 %/? — C(Q) if p>n +2
and (8) imply, together with the definition of v & w, that

(v, w) » v@w) € CH(D,Co([-5, T, X)).
Hence we infer from (43) that the map
(0, (v,w)) — o * (v w) (49)
belongs to (L x D, BUC([~R, T],C(Q, R™))). Set
(@b, f)(o,v,w) := (a,b, f) (-, 0 * (v ® w)).
Then (6) and the asserted continuity properties of (49) imply that
a@,b € C*(Z x D, BUC(|-R, T, C(5, R™™))) (50)
and
f € C¥ (2 x D, BUC([-R,T],C(Q))). (51)
Similarly,

G = ((o,(v,w)) = g(,0 * (v @ w)))

€ C*(Tr x D, BUC([-R, T],C(I"))). (52
(3) For m € I and (v, u) € D define A(m,v,u) by
<90,A(7r,v,u)w> = (Ve,d(00,v, u)Vw)
for (p,w) € H;’,x X H;’X. Then it follows from (50) that
AeCH(Il x D,CJ, L(EL, Ey))). (53)

Observe that @(oo,v,u)(z,t) is symmetric and uniformly positive
semidefinit on Q x J. Thus, if p = 2, well known results on the weak solv-
ability of linear parabolic equations, essentially due to J.-L. Lions [23] (also
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see Theorem 2 in Chapter XVIII of {16], Chapter 23 in [31], or Theorem 11.7
in [12]), guarantee that

A(7,v,u) € MR, (J, (By, Ey)). (54)

If p > n + 2, this will be shown elsewhere. In particular, (32) is satisfied.
(4) For m € IT and (v,u) € D we define Fy(m,v,u) by

(w, Fo(m,v,u)) :=(Vw, (—ho * @09, v,u) + hy * b(o1, v,u)) Vu)
+ <w,p0 * f(og,v,u» + (’yw,pl * §(03,v,u)>r
for w € H, . Using Vu € L,(J, L,) and (50) we see that
({0, (v,u)) = @(00,v,u)Vu) € CT(E x D, Ly(J, Lp)).
Thus, setting 1/r :=1/p+1/s—1 € [0,1/p), we infer from (44), (45) that
((ho, 00, (v,u)) — —hg * d(00,v,w) Vu)

belongs to C"(H x % x D, L,(J, Lp)). The same is true, if @, ho, and o
are replaced by b, hy, and oy, respectively. From (43), (47), and (51) we
deduce that

((pos o2, (v, 1)) > po * f(ag,v,u)) €CH(Px 2 x D, Lo(J, Lg)).

Note that H;’,x — L¢ by Sobolev’s embedding theorem. Similarly, (43),
(47), and (52) imply

((p1,03, (v,0) > p1 * G(03,v,u) V) € C¥(Pp x Tp X D, Lo (4, Ly (T))).

(55)

Furthermore, the trace theorem implies
v € L(Hy ,, Ly (T)).
From these considerations and the boundedness of J it follows that
Fo e C(TIl x D, L.(J, Ey)). (56)
(5) Now suppose that h # 0 so that (48) is satisfied. Since
(v,u) »veu) eCH(D,H,, (J_sUJ))
(see (40)), it follows from
H,l,,X(J_S U H; ) o Ly(J_sUJ) = Ly(R, Hp_;() (57)
and (44) that
((h, (v,u)) = h* (VB u)™) € C*(Ho x D, L.(R, H; L)), (58)
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where ~ denotes extension by zero, due to k € L (R, L(H. oy )1()) Similarly,
using Lemma 7.1 of [8] we see that

((h, (v, w)) = h* (0@ u)™) € C(Ho x D, L (R, H, 1)) (59)

Since convolution and distributional derivatives commute, it is not difficult
to see that

—/¢<w,%*(v€9u)~>dt=/<p<w,h*(1)€912)>dt (60)
R R

for each smooth ¢ having compact support in J and each we Hz}’,x
(cf. Lemma 7.1 in [8]).
Given (7, (v,w)) € Il X D, set
Fi(m,v,w) = =8 (h* (v w)) = —[Bt(ﬁ * (v w)™)] |J
Then we infer from (59) and (60) that
FieC(I x D,L.(J, Eo)). (61)

(6) Put F:= Fyif h =0, and F := Fy + F otherwise. Then assumption
(38) is satisfied, due to (53), (54), (56), and (61), since the Volterra property
is obvious.

Finally, set

(A, F)(m,up) := (A, F)(m,ulJ-s,u|J)

for u: J_gUJ— Ep with (u|J_g,u|J) € D. Then, given (m,v} € II x V,
one verifies that u is an M}, solution on Jr of (4) with history v € V iff u is
an ‘H} solution on Jr of the parameter dependent functional differential
equation

U+ Al ug)u = F(myug), o =v.

Hence the assertion follows from Theorem 4.2. O

6. Proofs for the model problems

It is now not difficult to prove the theorems of Section 2 by observing that
the corresponding model problems are particular instances of (4), (5).

Proof of Theorem 2.1. (1) Set m:=1, p:=2, h:=0, hg:=h; :=0,

po = jop with j : C(Q) — Lq, p1 := jpdp with jr : C(T) = Lo(T'), g :=
o1 =09 := Ka, and o3 := vKa. Then

= (h7ho’hl)p07p1’00’01,02a03) cll
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with £ := 7 := 2 and R := 0. Hence everything but the last assertion follows
from Theorem 5.1.
(2) Suppose that supp(a) C [s, S] for some s € (0, S]. Then

ax Ku(t) = Ku(t—T),u(d’r)—{—/ Ku(t — 1) p(dr), 0<t<s.
[s,5] [s,5]
Thus on the interval [0, s] the diffusion matrix and the nonlinearities are
known functions so that (15) reduces on J, to a linear equation which has
a unique H} solution on J, with initial value v(0). Next we consider (15)
on the interval [s,2s]. Here we are now also faced with a linear problem
with initial value u(s) € E having a unique solution. By iterating this argu-~
ment we see that (15) is globally solvable since we can ‘piece together’ the
solutions on the intervals (k7,(k + 1)7) by means of Lemma 7.1 of [8]. O

It should be observed that the argument of the second part of this proof
is the ‘method of steps’, well known in the theory of retarded differential
equations (e.g., [29]).

Problem (18) does not fit completely into the framework of Theorem 5.1
since f is not continuous. However, easy modifications of the proof of the
latter theorem give the stated results.

Proof of Theorem 2.2. (1) It follows from (16) and known properties of
Nemytskii operators that
(u = f(, u)) ech (C([Oa TL L,), C([O’ T]a LE))

where £ :=2n/(n+2). Since H; — L¢ we see that F(u) is well defined
for u € C([0,T), L2) by

(v, F(w)) = (v, f(u)) + {yv, 00)r, v € Hy,
and that
Fect(c([0,T], La), C([0,T], HyY)).
Thus (30) implies
F e ¥ (Hy(Jr), Loo(J7, HL 1))

for every T > 0. With this definition of F' the proof of Theorem 5.1 remains
valid. Thus all but the last assertion follow from that theorem.

(2) If the additional assumptions are satisfied we apply again the method
of steps. However, in this case we have to solve at each step a semilinear
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equation since the diffusion matrix is known but the right hand side is still
a function of u on the corresponding interval.

Using condition (ii) and well known arguments for weak solutions
of semilinear parabolic equations we easily deduce that |Ju(-,t)llz, <¢
for 0 <t <7, where u is the maximal solution of the semilinear prob-
lem on J; and 7 € (0,s] is its maximal existence time. Consequently,
F(u) € Loo(Jr, H;'). Now maximal regularity implies v € H1(J;). Hence
we infer from Theorem 3.1(ii), for example, applied to the semilinear prob-
lem, that u exists on J, and belongs to H1(J;). Thus u(s) € Ly and the
method of steps can be carried through. (]

Proof of Theorem 2.3. Here we put m:=2 and define og by
00 = [60 ® I, ® I] with I being the identity in £(C(R)), that is,

(00.9) = (900, [ wlt)aldn), @& ColR,C@).

Now the assertions follow by the arguments of the proof of Theorem 2.1.0

It is now clear how Theorem 5.1 can be applied to prove Theorems 2.3
and 2.4. Theorem 2.5 is again obtained by the method of steps. At each
step there has to be solved a quasilinear problem to which Theorem 2.1
of [8] can be applied. For this we have to observe that the translation
group acts strongly continuously on H(R,H, ) and that it commutes
with differentiation. Thus 8;(hv(t — -)) is well defined in L,(J;, H ). If
the solution exists globally on J, then we can go on to the next step.
Otherwise, we have arrived at the maximal solution. This is true for every
step which can be carried out. Details are left to the reader.
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A LINEAR PARABOLIC PROBLEM WITH
NON-DISSIPATIVE DYNAMICAL BOUNDARY
CONDITIONS

C. BANDLE* W. REICHEL'

An existence theory for solutions of a parabolic problem wu; — div(A(z)Vu) +
q(x)u = f(z,t) for z € D and ¢t € (0,T] under a dynamical boundary condi-
tion o(x)ur + Vul A(z)n = g(z,t) for z € D and t € (0,7] is developed and a
spectral representation formula is derived. It extends the results of [2] to problems
with variable coefficients. We are interested in the case where the dynamical co-
efficient o is a sign-changing or negative function. The one-dimensional parabolic
problem is well-posed in the space C([0,T], H'(D)). This is not true in higher
dimensions. Our approach is based on the spectral theory of an associated elliptic
problem with the eigenvalue parameter both in the equation and the boundary
condition. By means of the theory of compact operators the spectrum is analyzed.
Qualitative properties of the eigenfunctions are derived, e.g. strict positivity of
the principal two eigenfunctions follows from a Harnack-type inequality. An in-
teresting phenomenon is the “parameter-resonance”, where for a specific value of
the mean of the dynamical coefficient o(x), two eigenvalues of the elliptic problem
Cross.

AMS Subject Classification 2000 35K20, 47A75, 35K60, 35C10.

Key words. Compact operator, variational characterization of eigenval-
ues, series representation of solutions, Harnack inequality.

1. Introduction

Let D ¢ RY be a bounded domain with a Lipschitz boundary 8D and
let n be its outer normal defined almost everywhere. For z € D let A(x)
be a uniformly positive definite, symmetric matrix. Assume moreover that
g € L*®(D) is a non-negative function and that o(z) is continuous on 0D
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with ¢~ = —min{c,0} # 0. In this paper we shall discuss parabolic
problems of the form

uy — div(A(z)Vu) + g(z)u = f(z,t) in D x (0,T), (1.1)

o(z)us + VuT A(z)n = g(z,t) on 8D x (0,T), (1.2)

u(z,0) = up(z) in D. (1.3)

We will study the existence of weak solutions by means of a Hilbert space
approach and derive a representation formula for the solutions.

Many authors have studied problems with dynamical boundary condi-
tions and positive dynamical coefficient o. In this case rather complete
existence theories are available, c¢f. Escher [5] for an approach via semi-
groups or Bandle, von Below, Reichel [2] for an L2-theory. In [4] von Below
and Pincet Mailly study the blow-up of solutions. Vitillaro [12] considered
nonlinear boundary conditions where wu, is replaced by |u,|™ lu;. Fila and
Quittner [8] treated the problem (1.1)-(1.3) with a nonlinear term at the
right-hand side of (1.2) of the form u|u|?~!u. They were mainly interested
under what conditions solutions exist globally for all times or when they
blow up in finite time. In all of the above papers it is assumed that o is
positive.

The case where ¢ is a negative constant is less studied, see Bandle,
von Below, Reichel {2] and Vazquez, Vittilaro [11]. It turns out that it is
much more delicate and gives rise to unexpected phenomena. In fact if
D = (0, L) is a one-dimensional interval the parabolic problem with initial
conditions in H*(D) is well-posed in the space C([0,7], H*(D)). In higher
space-dimensions the parabolic problem is ill-posed in these spaces. This
fact can only be compensated by replacing the space of initial conditions
HY(D) by a subspace H}(D), cf. Section 2.3. The case of a sign changing
function o(z) has not been treated so far. This will be done in this paper.
The goal is to generalize the results of constant coefficients A(z) = Id,
o = const. < 0 treated in [2] to the case where A(z) is uniformly elliptic
and o(z) sign-changing or negative. It leads to similar results as in the case
of constant coefficients, e.g., independently of the matrix A(z) the critical
case of parameter-resonance happens when the mean of o(z) is equal to
o0 = ~|D|/|oD].

For the expansion of the solutions of the heat equation (1.1) with dy-
namical boundary conditions (1.2) into a Fourier series we are led to the
following eigenvalue problem

—div(A(z)Ve) +q(z)p = Ap in D, VT A(z)n = Ao(z)p on 8D. (1.4)
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The corresponding Rayleigh quotient reads as

Rjy] = Ip VT A(z)Vv + q(z)v? d
- fpv?de + §p0(z)v2ds

Notice that it takes both positive and negative values if o= # 0.

The spectral theory for such problems has been treated in [2] if A = Id,
o = const. and by Ercolano and Schechter [7] for formally self-adjoint el-
liptic operators of second and higher order under lower boundedness as-
sumptions. In our case, where o(z) is negative or sign-changing, we will
show that the spectrum has in dimensions N > 2 two sets of eigenvalues,
{An}n>1 with lim, o0 Ay = 00 and {A_p}n>1 With lim, 00 A_p = —00.
For N = 1 there exist at most two negative eigenvalues. The eigenfunctions
are complete in H1(D) except in the resonance case

g(z) =0 and |D] +?{ o(z)ds=0
oD

where they have to be supplemented with an additional element. This is
very similar to the case where ¢ is a negative constant.

The main existence results for the eigenvalue problem and the lin-
ear heat equation with dynamical boundary conditions are stated in Sec-
tions 2.2 and 2.3. We follow the approach used in [2] which has the advan-
tage of providing an expansion formula for the solutions.

Section 3 deals with qualitative aspects of the eigenvalue problem (1.4).
A Harnack inequality is derived for positive solutions of linear problems
including the eigenvalue problem. This inequality is used in the discussion
of the simplicity of the principal eigenvalues A\; and A_;. Moreover it is
shown that the one-dimensional eigenvalue problem on the interval D =
(0, L) has at most two negative eigenvalues.

In Section 4 the spectrum of (1.4) will be described completely by
means of the theory of compact linear operators. We distinguish the cases
Jpa(z)dx > 0 and g(z) = 0, where in the latter case we need to make
further distinctions depending on the mean value

1
7= o(x)ds
D] oo 7
of ¢. The critical threshold of the mean value is og := —|D|/|0D| < 0.

In the last Section 5 we study the phenomenon of parameter resonance in
detail. As the mean value & of o passes through a critical value o the first
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positive eigenvalue A;(o) varies continuously into the first negative eigen-
value A_;{0). At the resonance value oy itself, the system of eigenfunctions
is incomplete.

2. Main existence results
2.1. Notation

Assume that D C RY is a bounded Lipschitz domain. For z € D let A(z) be
a symmetric matrix. Assume there exist positive ellipticity constants «, 8 >
0 such that of€[2 < SN &Ai;(z)€; < Ble|? for all € = (&y,...,én) €RY
and almost all z € D. Consider the linear problem

uy — div(A(z)Vu) + q(z)u = f(z,t) in D x RT, (2.1)
o(z)u; + Vul A(z)n = g(z,t) on 8D x R¥, (2.2)
u(z,0) = uo(z) in D (2.3)

with ¢ € L*®(D),0 € C(6D) and 0~ # 0. For u,v € H(D) we set

(u,v) = /D VuT A(z)Vv + q(z)uv dz,

(u,v):/uvdx, (U,U)0=f uvds.
D aD

If ¢ >0, [, gdz > 0 then the form (-, ) induces a norm which is equivalent
to the standard norm of H'(D).

Let us now define the concept of a weak solution of (2.1)-(2.3). Assume

that £ € L2((0,T), L3(D)), g € L*((0,T), L*8D)) and uy € H(D).

Definition 2.1. A function u € B := C([0,T], H*(D)) is called a weak
solution of (2.1)-(2.3) if

T T
— / (u, o) + (o(z)u, di)o dt —I—/ {u, @) dt
0 0
T T
- / (f,6) dt + / (9, $)o dt + (uo, 8) + (o(2)uo, d)o
0 0
for all ¢ € C([0,T], HY(D)) with ¢(-,T) = 0.

Recall that for domains D with Lipschitz boundary every function « €
H'(D) has a trace in H'/2(8D) and in particular in L2(0D), cf. Alt [1].
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2.2. Results for the eigenvalue problem

If we are looking for solutions u(z,t) = e~**¢(z) of the homogeneous heat
equation (2.1) with f = 0, g = 0 satisfying the boundary conditions (2.2)
then ¢(z) is a solution of the eigenvalue problem

—div(A(z)Ve) + g(z)¢ = A in D, VpT A(z)n = o(z)Ap on 8D. (2.4)
In space dimension N =1 and D = (0, L) the above problem reads
—(A(z)¢") + q(z)p = Ap in (0, L)
with the boundary condition
~A(0)¢'(0) = 512p(0), A(L)¢'(L) = aarp(L).

We first collect some results on the eigenvalue problem (2.4) and refer to a
later Section 4 for the proofs. Define

a(u,v) := (v, v) + (ou, v)o = /D wodz + )éD o(z)uvdz, u,ve€ HY(D).

The eigenvalue problem (2.4) can be expressed in the weak form as
(p,2) = Aa(yp,2) Vze HY(D).
We shall use in the sequel the following notation
N={1,2...}, No=Nu{0}and Z={0,+£1,+2,...}.

Let ¢; and A;, i € I denote all the eigenfunctions and eigenvalues of (2.4).
We will show that the index set I is countably infinite. A negative (resp.
positive) index will stand for a negative (resp. positive) eigenvalue. If zero
is an eigenvalue then it will be denoted by Ag. Our results on the eigenvalue
problem are as follows.

Theorem 2.1. Let ¢ > 0, [, qdz > 0. Then there exists a complete set
{¢i}icr € HY(D) of eigenfunctions of (2.4) with the property (s, ;) = 6i;.
For every u € HY(D) we have u =), (u, ¥;)¥; in HY(D).

(i) If N > 2 then there are countably many positive and negative eigen-
values, i.e. I =7\ {0}.

(ii)) Let N =1. Ifo1-09 > 0 then I = {-2,-1} UN, i.e., there are
ezactly two negative eigenvalues. If 01 -09 <0 then I = {—1}UN,
i.e, there is exactly one negative eigenvalue.
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The case ¢ = 0 is more involved. Let ¢ = ﬁ $5p0(z)ds and let
oo = —|D|/|0D|. Note that 6o = —L/2if N =1 and D = (0,L). We shall

distinguish between two cases: firstly @ # og and secondly & = oy.

Theorem 2.2. Assume ¢ =0 and & # o¢. Then there exists a complete set
{¥i}ier € H*(D) of eigenfunctions of (2.4) with the property (1;, ;) = i
foriandj # 0. For everyu € HY(D) we haveu = Eiel\{o} (u, Y)Y+ P(u)
in HY(D) where

_a(u,1)  [pudz+ §,0(z)uds

T a(1,1) T |D| + &|6D|

is a projection into the eigenspace corresponding to Mg = 0.

P(u) :

(i) If N > 2 then I = Z.
(@) Let N = 1, D = (0,L) and o1 - 02 > 0. If —L/2 < & then
I={-2,-1}UNy and if 6 < —L/2 then I = {1} UNy.
(iti) Let N =1, D = (0,L) and 01 -02 < 0. If —L/2 < & then
I ={-1}UNp end if 3 < —L/2 then I = Ny, i.e., in this case
there is no negative eigenvalue.

In order to describe the situation in the resonance case & = oy we consider
an arbitrary solution w of the boundary value problem

—div(A(z)Vw) =1in D, VwT A(z)n = o(z) on 8D. (2.5)

Note that all eigenfunctions, including the constants, belong to the space

V ={ve H(D):a(v,1) =/ vdw+£D0(w)vdS = 0}.

D
In addition, all eigenfunctions except the constants lie in the subspace

VwZ{UEV:a(v,w)=/

vwdz +7{ o(z)vwds = 0},
D 8D

where w is an arbitrary but fixed solution of (2.5). Hence every element
u € HY(D) can be split into
U = Uy + Plu) + Q(u)w

where
a(u,1)
a(w,1)’

wo € Ve, Py = S - 228 ) =

Theorem 2.3. Assume q =0 and & = 0g. Then there ezists an orthonor-
mal system {1;}ic; C H'(D) of eigenfunctions of (2.4) with (3;,v;) = 8
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for i and j # 0. By adding the functions 1 and w the expansion u =
Yien (o3 (4 ¥i)¥i + P(u) + Q(w)w holds in H'(D) for every u € H*(D).

(i) If N > 2 then I = Z.
(i) Let N =1, D=(0,L) and 01 - 63 > 0. Then I = {—~1} UNy.
(iii) Let N =1, D = (0,L) and 01 - 02 < 0. Then I = Ny, i.e., in this
case there is no negative eigenvalue.

2.3. Existence results for the linear parabolic problem

The weak solution of the parabolic problem (2.1)-(2.3) can now be con-
structed by means of the complete system of eigenfunctions introduced in
the previous section. Let %; and w have the same meaning as in Theo-
rems 2.1, 2.2 and 2.3. Let us introduce the following Banach-spaces

HYD) = {uc H'(D): Y (u,93)*eN < oo},

i€l,i<0
LAD)={ueL¥D): Y (u9:)?N < oo},
i€l i<0
L2@D) ={ue L*@D): Y (u,¢)je™ { < o0}
i€l,i<0

with the norms

2
el py = Z (u, i) e + el 32y

1el,i<0

lulZaoy = D (w9)2e™ + Jlulfa(,
1el,i<0

[wllZ2py = Z (u, ¥1)3eN + “u”L2(8D)
iel,i<0

The following simple result will be helpful for the convergence proof of the
formal solution of the parabolic problem.

Lemma 2.1. There ezists a constant C > 0 such that for every f € L*(D)
and g € L?(8D) one has

Z(f, ¥:)* < Clf122(py Z(gﬂlh) < Cllgl?2op)-

el iel
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Proof. For k € Nlet I, = I\ {0} n{—k,...,k} and let Z; = span[t);,i €
Iy]. The function 2i := } ;. (f, i) satisfies (zx,9) = (f,¢) for all
¢ € Z. Hence

(zi,26) = Y (F3)% = (f,26) < | fllzeo el 2oy < ClFlleaeoyllzill i (-

€1

Since the constants do not belong to Zj, the bilinear form (,-) produces a
norm on Zj which is equivalent to the H!(D)-norm. Therefore (zy, zx) =
Zie[k (f i) < C”f||%2(D)~ Letting & — oo we get Zie]\{o}(fv ¥i)? <
C”f”%z(D) and the same holds if ¢ = 0 is included. A similar proof works
for the second inequality of the lemma. O

Theorem 2.4. Let f € H'((0,T),L%(D)), g € H((0,T),L*(dD)) and
ug € HYD). Then problem (2.1)-(2.3) has a unique solution u €
C([0, T}, H(D)), which is in particular a weak solution in the sense of
Definition 2.1. The solution has the following form:

(i) If ¢ 20 and [, qdz >0 then

w(@,t) =Y (uo, i)thi(@)e M+ hi(t)higpi(z)e ™,

el el

where hy( fo [((FC,7) %) + (g(7), )0 eNT dr forie I
(i) Ifq=0 anda # 0o then

u(z,t) = Z (ug, ¥s) i (x)e Nt + a(uo, 1)

i€I\{0} al,1)
—xt . _ho(®)
+ D mONdi(a)e M 4 2
26;{0} a(1,1)
where h;(t fo [ ¥i) +(9(7),¥s)o] €T dr fori e I\ {0}
and hof t) —fo (or), 1> + (g7, Do dr.

() If g =0 and & = gg then

u(@,t) = Y (uo, vi)i(z)e

ieI\{0}
a(ug,w) a(w,w)a(ug,1)  a(ug,1)
a{l,w) B a(1l,w)? + a(w, 1) (w(z) =)

+ D h®Nithi(x)e ™ + ho(t) + h(t) (w(z) — t),

1€I\{0}
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where
ha(t) = /O [(FCom)6) + (97, $)o] 7 dr for i € 1)\ {0},
T w+7T  alw,w)
ho(t)_/0 (f(.,T),a(l’w) = Lw)Q)dT

o) O

0
) = ot = 1(3(:; (157)("7)’ Do 4.

Proof. As an illustration we prove (iii). The proofs of the statements (i)
and (ii) are almost the same. In view of Theorem 2.3 we look for a solution
of the form
w(e,t) = > o(t)yi(e) + o(t) + &(t) (w(z) — 1).
jen{o}

First we replace the infinite sum 37, (o} Py a finite sum Yjero Ik =
I\ {0} n{-k,...,k} and show that the coefficients c;(t) have the form
given in the theorem. We insert the finite-sum expression u* into the weak
form of (2.1)-(2.3), where uy is replaced by the projection of u% into Z; =
span(y); : i € Iy] @ span[l,w]. For finite sums u* we can use the concept
of classical solution of (2.1)-(2.3). Testing with a test function ¢ € H(D)
this means

a(uf,8) + (u*, ) = (£,4) + (g, b)o.
Replacing ¢ successively with 1;, 1 and w and keeping in mind that

Aia(Vi, ¥;5) = 85, a(th, 1) = a(1,1) = a(ths, w) =0
and <1/)za'(/)]> = 6ij’ (’()[)'L’w> - Oa
we obtain the following set of equations
T+ o = (i) + (9, %o if 6 € T\ {0},
aL(t)a(wv 1) = (fa 1) + (g) 1)03
do(t)a(w, 1) + &(t)a(w — t,w) = (f,w) + (g, w)o.

The expressions for the coefficients «;, ctg, & follow by straightforward inte-
gration if we impose as initial condition «*(0) = u¥. Now we can build the
full series defining u(z,t). We will show next that u € C([0,T], H}(D)).
This then establishes that u is a weak solution in the sense of Definition 2.1.
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Note that (,-) introduces an equivalent norm on H!(D) only in the case
/, pgqdz > 0. For ¢ = 0 it is an equivalent norm only on the subspaces
V, V.. But since these subspaces have co-dimension 1 or 2, it is enough to
control (u,u). Let

wa(z,t) = 3 (uo, i) i(@)e™, wp(z,t) = S h(O)Aigpi(z)e ™,

i€\{0} i€I\{0}

where h;(t) = fi(t) + ¢:(t) and fi(t) fo (f,)erisds, gi(t) =
fg(g, ¥;)0e*i* ds. Then for t € [0,T)] one finds

N 2
(artta) < D (uo,¥i)2e™ + N~ (ug, :)? < e JJuoll(p)

i€l i<0 1€1,5>0

by using the trivial inequality —2A;¢ < A% 4 t®. Lebesgue’s dominated
convergence theorem implies that u,(-,t) is continuous as a function from
[0,7] — HY(D). Next we need to show the same for u;. Note first that

(upyup) <2 ) (filt)® + g:()*)ATe . (2.6)
ieI\{0}

For ¢ # 0 one has

fi(t) = /0 (o pi)es ds

1 1
= U8 = (.09 - 3 / (ful-r ), i)e™* ds
and hence
2 t 2/\1*15_1
P € 30+ (7,008 + [ (i), 00 ds S
Finally this leads to
Z fi(t)2)\?e—2)\it
iel\{o}
<2 ) (GO +2 Y (F,0), %)% 42 3 (£(,0), 1)
i€I\{0} iel,i<0 i€l,i>0

[ X S s [ (st

i€l ,i<0 i€l,i>0
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Applying Lemma 2.1 we obtain

Z fi(t)QA?e—QAit
ieI\{0}

t
< C(“f('vt)”iz(D) +e’ 1£(-0)1 22y +/0 el £l OIZ2 ds)

T2 2 ’ 2
< Ce™ (o 17Oty + | 1o e ds)

T
2
<t / 1£Co By + 1ol B ds.

For 3 icn\ (0} gi(t)2 A2t g similar estimate by the H((0,T), £%(8D))-
norm of g(x,t) holds. This show that the series on the right-hand side
of (2.6) converges uniformly in ¢t. As before Lebesgue’s dominated con-

vergence theorem implies that wug(-,¢) is continuous as a function from
[0,T) — H'(D). This finishes the proof of the theorem. ]

3. Qualitative properties of eigenfunctions

The results of this section concern the simplicity of eigenvalues with eigen-
functions of constant sign and an upper estimate on the number of negative
eigenvalues in the case of space dimension N = 1. For the first purpose we
need the following version of the Harnack inequality.

Lemma 3.1. Suppose D C RY is a bounded Lipschitz domain. Let v €
HY(D) be a weak solution of

—div(A(2)Vv) = a(z)v in D, VvTA(z)n = b(z)v on 8D (3.1)

with a € L®(D) and b € L*(0D). If v > 0 in D then there exist constants
C1,Co > 0 depending only on A,a,b,D and N such that

supv(z) < Cillolacoy, nfo(E) = Callzaoy.

In particular either v = 0 or there exist K,6 >0 such that K >v >4 >0
a.e. in D and K > tracev > 6 > 0 a.e. on 8D.

Proof. The proof is based on Moser’s iteration method, cf. Gilbarg,
Trudinger [9]. We will use the following interpolation inequality: there
exists a constant C = C(D) such that for every € € (0,1) we have

]{ 2%ds < g/ 22 dx + C~’e/ |Vz|2dz for every z € HY(D). (3.2)
aD €Jp D
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We begin with the upper estimate stated in the lemma. Let L > 0 be fixed
and define ¢ = vmin{v?®, L2} with s > 0. Then

VoT A(z) Ve > a|Vu|?(min{v?, L2} + 2SU2SX{v’§L})-
Since V(vmin{v®, L}) = Vumin{v®, L} + sv°X{ye<1} Vv we obtain

(s+1)

|V (vmin{v®, L})|> < Vol A(z)Ve.

Taking ¢ as above as a test function in (3.1) and setting ¥ = vmin{v®, L}

/ l Ul dm C(/ U dﬂ: %’U dS) (3.3)

where C = C(e, ||al/oo, ||blloo)- Here and in the following the same symbol
C denotes different constants depending only on «, |la]le and ||b|jes- By
choosing € = in the interpolation inequality (3.2) we obtain from

(3.3)

1
2CE(s+1)

/|V17|2dr§C(s+1)2/ 7% dx
D D

and by adding the square of the L?-norm of % on both sides and using the
Sobolev-inequality we find
7]l 22, < C(s+1)||7]l2- (34)

Provided v € L2(+1(D) we can let L tend to infinity in (3.4) and obtain
s+1)2n

ve L5 (D) and
1
Ioll 541y 22, < (Cls + 1)) 0]l 2541y (3.5)

Hence, if so = 0 and sx41 + 1 = (sp + 1) =25 then

”v”2(5k+1+1) < (O(Sk + 1))W||U||2(sk+1)-

Since sk + 1 = (25)*,k € No it follows that

[olloo = lim nu||2<sk+l+1>skl_1o( (55 + ) 7 ol
[o0)
_ InC(sg +1)
—exp(kzj0 - ) vl

< Cexp(ik

k=0

) ol



57

and since the last sum converges we have obtained the upper estimate of
the lemma.

Now we turn to the lower estimate of the lemma. Let ¢ = 7° with s <0
where o = v + L with L > 0. Then

VuT A(z)Vep < sa5°~!| V3|2

Taking ¢ as a test function in (3.1), we find
sa/ 7* 7|\ Vo|* dx 2/ ) dm+% b~ (z)v°* ds
D D aD

> -0 / 7+l dy + 7( 7**lds). (36)
D aD

If s # —1 we set V = 5*%* and obtain |[VV|2 = (£1)*| Vo201, If s = —1
then we set V' = log® and obtain [VV|? = 572|V9|?. Together with (3.6)
this implies

1 V2d V2ds) if -1
/ TV de < Cls + |(fD T+ $sp s) if s # —1, (3.7)

D C if s =-—1,
with C = C(a, ||a||co, ||b]|c0). Using the interpolation inequality (3.2) with

1
2CC|s+1f

€= this implies

/ |VV[?dz < Cls + 1|2/ VZdzr,
D D
provided |s + 1| > |sg + 1| > 0. Adding the square of the L?-norm of V' on
both sides and using the Sobolev-inequality we get
IVl 20, < Cls+ 1V (3.8)

For p <0 let

®(p) = (/Dﬁ”dx)l/p.

s+1
Then (3.8) implies ®((s +1)=25) % < Cls +1|8(s + 1)

s+1 .
7, ie.,

®((s+1)

- 5) 2 (Cls+ 1)) TG (s + 1). (3.9)

n —
This estimate will be iterated. Set sxy1+1 = (sk +1):25 with s; < ~1.
Then sk + 1 = (s1 +1)(325)* ! and

B(sp41 +1) > (Clse + 1)) T B(sy, + 1).
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Solving this difference inequality it follows that

info > lim ®(ser1+1) > JJ(Clse + 1) PR B (sy + 1)
D k—o0 it
oQ

—21nC|sk +1|
= _— 1
exp (kgzl or 1 1] )‘P(sl +1)

c
2 P
exp (T2, (b~ 1)(252))

and since the last sum converges we have obtained that

‘I’(Sl + 1),

info > O%(s1 +1) (3.10)

for some initial number s; < —1, which we can still choose. It remains to
give a lower bound for $(p) for some p < 0. For this purpose recall the John-
Nirenberg inequality, cf. Gilbarg, Trudinger [9]: suppose V € W1 (D) is
such that there exists C > 0 with fBr |VV|dz < CrN~1 for every ball B, C

D. Then there exists a number po > 0 such that |, D ePlV=Yl dy < C where
V= I%l fpV dzx. We apply this for V = log @. Then the second inequality
of (3.7) shows that V € Wh2(D) and hence [, |[VV|dz < O||VV|lor™/? <
C||VV|]2r¥ =1 if N > 2. Thus, the John-Nirenberg inequality applies and
together with the trivial estimate £(V — V) < |V — V| we obtain

/ ePV dr < CePoV / e PV dx < CePoV,
D D
ie.,

/ ePoV da:/ e PV dr < C2.
D D

Recalling the definition of V' = log @ this shows that [}, 570 dz [, 5770 dx <
C? and hence

(/D PO da:) 1/po sCz/’”"(/DrPo dx>—1/Po‘

Together with (3.10) this shows that
inf > C&(=po) 2 C'[o].

Letting L — 0 we obtain the second claim of the lemma. O

In the next theorem we use the existence of the eigenvalues A\; and A_;.
This is proved in Section 4. We also use the fact that if [, q(z)dz > 0
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then the variational characterization as given in Section 4 guarantees that
at least one corresponding eigenfunction has constant sign.

Theorem 3.1. Assume q > 0.

(i) If [ qdz > 0 then the eigenvalues A_y and Ay are simple and their
eigenfunctions are of constant sign.

(ii) If X € R is an eigenvalue such that one eigenfunction is of constant
sign, then A= Xy, A =0 or A = A_1.

Proof. We begin by deriving inequality (3.11) below. Let ) be an eigen-
function associated to an arbitrary eigenvalue p and let ¢ be a non-negative
eigenfunction associated with another eigenvalue A # p. By Lemma 3.1 we
find that 0 < § < ¢ < K in D. Hence ¢/ is in H}(D) and can be used
as a test function for the yp-equation. This implies

29V — 2V
/D VT A(z) 222 ‘/:02 V'V e = /D (A — g(2))¥? dz + ]i ola)rde

= (A =p)a(¥,y) + / VT A(z) Vi da.
D
Hence

4 T 4
0< - - = — =(p— .31
< [ (E90-v9) 4@)(LV0 - V8) do = (u=Na(w,v). (311

(i): Let % be an eigenfunction associated to A_;. The variational prin-
ciple of Lemma 4.3 implies that ¢ = |¢| is also an eigenfunction to A_j.
By (3.11) we have

T
(Eveo-vu) 4w (2
1% 2
which proves that ¢ = ¢t in D. Hence A_; is simple and by Lemma 3.1
the associated eigenfunction is bounded away from 0. The same argument

works for A;.

(ii): If we choose u = A; then it follows from a(v,v) > 0 and (3.11)
that A < Ay, If we take u = A_; then a(¥,9) < 0 and (3.11) imply
A > A_;1. Since there are no eigenvalues in (A_1,0) and (0, ;) it follows
that A € {A_1,0, A\ }. O

ch—V'd)) dz =0 ae inD

Theorem 3.2. Assume ¢ > 0 and N = 1. Then the eigenvalue problem
(2.4) has at most two negative eigenvalues.
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The proof requires the following simple lemma.

Lemma 3.2. Let N =1 and D = (0,L). Suppose A < 0 is an eigenvalue
of (2.4) with corresponding eigenfunction . Then ¢ has either no zero on
[0, L] or exactly one zero in (0,L).

Proof. Suppose ¢ has a first zero at =y € [0,L]. Clearly z; cannot be
at 0,L, i.e.,, z; € (0,L). Assume further for contradiction that there is a
second zero T3 € (21, L) such that w.l.o.g ¢ > 0in (z1,22). Since A <0
we have (A(z)¢’) > 0 in (z1,z2), i.e,. A(x)¢'(z) > A(z1)¢'(x1) > O for
all z € (z1,72]. But clearly at the next zero zp we must have ¢'(z2) < 0.
This is impossible and thus we have a contradiction to the assumption that
 has two zeroes in (0, L). a

Proof of Theorem 3.2: If A < 0 is an eigenvalue then the associated
eigenfunction either has no zero or exactly one zero. In the first case The-
orem 3.1 shows that A is unique. Now we show that also in the second
case A is unique. This is done as follows: assume A, u < 0 are two negative
eigenvalues such that the associated eigenfunctions ¢, have exactly one
zero, i.e., p(z) = 0 = ¥(y) with 0 < z < y < L. Note that?

1 . JS w2 dt + o1u?(0)
— = min — 5 =
poou@=o0 [ At)u? + q(t)u?dt

where the minimization is done in the H'(0,y)-setting. After extending
the function ¢ by zero on the interval [z, y| it is an admissible function to
put into the variational characterization. Thus we find

1 fPdttae’0)  fetdt+ae?(0) 1
LS TTADE TR d  Jg AQR + a@e?d - X

ie. p < A. Similarly
1 . me u? dt + ou?(L)

3 min —¥ ,

w(z)=0 [* A(t)u'? + q(t)u?dt
After extending ¢ by zero on the interval [z,y] the function ¢ is an ad-
missible test function an yields as above 1/A < 1/u, i.e, A < u. Hence
A = p, which implies that ¢, are linearly dependent and =z = y. Hence

u & H'(z, L).

aThis variational formulation follows in the same way as Lemma 4.3-(b) in Section 4.1
since due to the Dirichlet condition at y there is no zero-eigenvalue and hence no extra
orthogonality condition.
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the eigenvalue A = p with eigenfunctions having one sign-change is uniquely
determined. Together with Lemma 3.2 this finished the proof. (i

4. Spectral theory

In this section we shall prove Theorem 2.1, Theorem 2.2 and Theorem 2.3
on the structure of the spectrum of (2.4). We are interested in functions
o € C(0D) such that o~ # 0. However, if 0 < 0 € L®(8D) then it follows
immediately from the arguments given below that the eigenvalue problem
(2.4) has countably many positive eigenvalues 0 < A; < Az < ... such that
Ar — o0 as k — oo and no other eigenvalues except Ay = 0 which only
oceurs if g(z) = 0.

Frequently in this section we use the following well known result, cf. Alt

(1]:

Lemma 4.1. If V is a closed subspace of H(D) not containing the con-
stants, then ([, VuT A(z)Vudz)'/? is an equivalent norm on V. In partic-
ular, there exist constants C1,Csy > 0 such that for allv € V:

/Udeg Cl/ VUTA(z)Vvdm, f v2 dsSCQ/ V'UTA(IL')VUd.’E.
D D 8D D @1

4.1. The case q(x) > 0, [, qdx > 0

In this case the form (-,-) generates the norm (f, VvTA(z)Vv +
q(z)v? dz)V/2, which is equivalent to the standard norm of H'(D). To
see this note first that by Lemma 4.1

dr 2

”v _Jpw ‘”' <c / VoT A(2) Vv dz (4.2)

Jpadz D) D

since the space {v € H(D) : [, vgdz = 0} does not contain the constants.
It follows from (4.2) that [[v[|3 py < C(f, Vol A(z) Vv +q(z)v? dz). Now
we can describe the eigenvalues of (2.4) as eigenvalues of a compact operator

as follows.
Lemma 4.2. For h € H(D) there exists a unique v € H(D) such that

—div(A(z)Vv) + g(zx)v = h in D, VvTA(z)n = o(z)h on dD. (4.3)
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The operator
k{0~ HO

h — v

is compact, invertible and self-adjoint with respect to the inner product {-,-).
Hence it has countably many eigenvalues {ui trer and the eigenfunctions
form a complete system in H(D). The eigenvalues of (2.4) are the recip-
rocals \; = pu; .

Proof. For h € H(D) the functional L, : HY(D) — R given by
Ln(¢) = [phé¢dx + §,, 0(x)heds is continuous and hence by the Riesz-
representation theorem there exists a unique v € H!(D) such that (v,¢) =
Li(¢) for all ¢ € HY(D). Thus v is the weak solution of (4.3) and the
operator K is well defined. Continuity and compactness of K are standard
and invertibility and symmetry are immediate. O

Remark. The following is a more general version of Lemma 4.2. Let
W = {(f,9) € L¥(D) x L?(8D)} be equipped with the norm ||(f,9)| =
WAZ2py + “g”%z(aD))l/2. Then for every (f,g) € W there exists a unique
v € HY(D) such that — div(A(z)Vv) +q(z)v = f in D, VoT A(z)n = o(z)g
on &D. The corresponding solution operator T : (f,g) — v from W to
H'(D) is compact.

As a consequence of Lemma 4.2 eigenvalues of (2.4) can be described
variationally as critical values of the functional

J(v) :=a(v,v) = /D v?dzx +][ o(z)v? ds

8D

in the set {v € HY(D) : [, VvT A(z)Vv + q(z)v? dz = 1}. The following
variational characterization of the eigenvalues of (2.4) is well known, see
e.g. De Figueiredo [6]:

Lemma 4.3. Suppose that

p1 =sup{J(v) : (v,v) =1} >0
and

p—1 = inf{J(v): (v,v) =1} < 0.

Then A = ul_l, A_1 = pZ1 are the first positive, negative eigenvalues of
(2.4). Moreover the following holds:
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(a) Let k € N. Suppose 0 < A\; <...< A are the (not necessarily dif-
ferent) first k positive eigenvalues with eigenfunctions 1, ..., ¥k.
Suppose that

et =sup {J(0) : (v,9) = L,a(s,v) = 0,5 =1,..., k} > 0.

Then Apyy = u;il is the next positive eigenvalue.
(b) Let k € N. Suppose Ay < ... < Ay < 0 are the (not nec-
essarily different) first k negative eigenvalues with eigenfunctions

Yog,...,¥_1. Suppose that
Pefoi = inf{J(v) v,y =1,a(;,v) =0,j = —k,...,—l} < 0.

Then A_p_1 = ,u:,lc_l is the next negative eigenvalue.

It is easy to see that the critical values p;, u—_; are attained provided
they are positive, negative, resp.

Theorem 4.1. Problem (2.4) has an unbounded sequence of positive eigen-
values.

(a) If N > 2 then (2.4) has an unbounded sequence of negative eigen-
values.

(b) Let N = 1. If 0102 > 0 then (2.4) has ezactly two negative
eigenvalues. If o1 - 09 < 0 then (2.4) has exactly one negative
eigenvalue. The multiplicity is always one.

Proof. For any function v € H}(D) we find J(v) > 0 since the boundary
integral vanishes. Thus we see that u; > 0 is attained. Now it suffices to
show that for any k € N there exists a trial function v such that a(y;,v) =0
for j =1,...,k and J(v) > 0. Such a choice is always possible in any
(k + 1)-dimensional subspace of H} (D).

Part (a): We need to show that u_r_; < 0 for all k¥ € Ny. For this
purpose we construct a function v such that a(v, ;) = 0forj = —k,..., -1
Let @ € 8D be a point where o(Q) < 0. After rotating and shifting D
we may assume that locally near @ the set 8D is described as the graph
(z',m(x")) of a Lipschitz function 7 : B,(0) C R¥~! — R where the ball
B.(0) is so small that o(z/,n(z')) < 0 for all z' = (z1,...,2zx_1) € B(0).
Moreover, we may assume that 7 > 0 on B.(0) and that the cylindrical
piece

C={(z',t): ' € B(0),0 <t <n(z')}
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lies entirely in D. Next we partition B,(0) into k+ 1 pairwise disjoint open
— —
sets D1, ..., D}, such that B.(0) = Uf_:ll D,. Then

k+1
C = |J Di with D; = {(«/,t) : 2’ € D[, 0 < t <n(z')}.

i=1
Next let 0 # g, € C*(D)), i = 1,2...k+ 1 and fix & > 0. Define k +1
functions on the cylindrical piece C by
vi(a) = z%gi(2’) if x = (o', zn) € D;,
0 else

fori=1,...,k+1 and extend theses function by zero to all of D. Let v =

Zf;l ¢iv; and determine the vector ¢ = (ey,...,cx+1) from the condition
a(y;,v) =0for j = —k,...,—1. These k conditions are represented by the
linear system

k+1

Zcia(d)j,vi) =0for j = ~k,...,~1,

i=1

where in case k = 0 there are no conditions on the value ¢. Since the

linear system consists of k equations in & 4+ 1 unknowns (cj,...,cr41) We
have at least a one-dimensional space of non-trivial solutions 0 # ¢ =
(e1,---,ckt1) € R¥FL, Setting ey = (0,...,0,1)7 we have

/ v? dm:c?/ 3 gi(z)? dz
Di i

i

c? o
“may [, 7 () d

— a+l 2
T 2a fl— 1 fgoi Ty gi(z)%en - nds

< dlamD]{ o ds.
2a0+1 oD,

Taking into account that v = 0 on 8D; N D we obtain by superposition

/v2dx=/v2d:c§dlamD}{ v2ds=dlampf v2ds.
D c 2a+1 Jscnep 20+ 1 Jop

If & > 0 is so large that —922D > g(z) for all z € 8C N 8D then J(v) =
Jpv?dz + §,,0(z)v?ds < 0. The remaining degree of freedom is the
multiple of ¢ which is chosen such that [}, |Vv|? + ¢(z)v?dz = 1. This

shows that p_,_; < 0.
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Part (b): Let D = (0,L). Let us first consider the case 01,09 < 0.
By Theorem 3.2 we know that (2.4) has at most two negative eigen-
values. It remains to show that there are at least two negative eigen-
values. For A_; it suffices to construct a function v such that J(v) =
foL v2dz + 01v2(0) + o9v?(L) < 0. This is achieved by v(z) = z* with
sufficiently large a. For A_; one needs a function v such that J(v) < 0 and
a(v, 1) = fOL vip_1 dx + 01v(0)9-1(0) + oouv(L)¥_1(L) = 0. This can be
obtained by the function

o(z) = ai|lz — L/2|* on [0,L/2],
" 1 aglz—L/2/* on [L/2,L].

For sufficiently large o the functional is negative independent of the choice
of a1,as. By choosing a1, ay appropriately one can achieve a{v,1_1) = 0.

Now we turn to the case 03 < 0 and g9 > 0. By Theorem 3.2 there
are at most two negative eigenvalues. Let us show that there is no sign-
changing eigenfunction corresponding to a negative eigenvalue. If such an
eigenfunction v existed then we could assume ¥(0) > 0 and ¥(L) < 0.
Then

—A(0)¢'(0) = o1\p(0) >0, A(L)Y'(L) = o2Mp(L) = 0,

ie. A(0)¢Y'(0) < 0 < A(LYY'(L). But A(z)y'(x) is decreasing where ) is
negative, i.e., A(z)y'(z) < 0 where v is negative. This is a contradiction.
Thus, there is a most one negative eigenvalue. The existence of one negative
eigenvalue is constructed as in the case oy,09 < 0. Making use of 6; < 0
one utilizes the test-function |L — z|® for sufficiently large @ > 0. This
finishes the proof of Part (b). a

4.2. The case q(x) =0

Again we want to apply the theory of compact self-adjoint operators in
order to describe the eigenvalues of (2.4). Now A = 0 is an eigenvalue.
Therefore we need the Hilbert-space ¥ = {v € H'(D) : a(v,1) = 0} with
a(u,v) = [yuvdz + §,, o(z)uvds. Recall that & = l—alﬁ_l $5p o(z) ds and
o = —|D|/|8D)|.

In the case & # o¢ the space V does not contain the constants and hence
(fp VT A(z) Vv dx)*/? is an equivalent norm on V. Every solution of (2.4)
except the constants belongs to V.

However, if & = g then the constants do belong to V. We must there-
fore change the setting and define a proper subspace V,, of V as follows.
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Let Vy = {v € V : a(v,w) = 0} where w is a solution of the problem
—div(A(z)Vw) = 1 in D, VwT A(z)n = o(z) on D. The constants do
not belong to V,, and ([, VoI A(z)Vv dz)'/2 is an equivalent norm on V,,.
The choice of w may seem arbitrary. In Section 5 we show why no other
choice for w is possible.

Lemma 4.4.
(i) Let & # oo. For any h € V there exists a unique v € V such that
—div(A(z)Vv) = h in D, VoTA(z)n=0oh on 8D.  (4.4)
The operator

h—wv

KZ{V—»V

is compact, invertible and self-adjoint with respect to the inner
product {-,-). Hence it has countably many eigenvalues {px}rer
and the eigenfunctions form a complete system in V. The eigen-
values of (2.4) except Ao = 0 are the reciprocals \; = 1.

(ii) The same holds in the case @ = o¢ if V is replaced by V .

Proof. We give the proof in the “resonance”-case ¢ = op. In the “non-
resonance”’-case & # 0g the same proof works by formally setting w = 0
in all of the following. For given h € V,, the functional L : V,, —» R
given by Lp(¢) = [ phodz + faD z)h¢ds is continuous and hence by
the Riesz-representation theorem there exists a unique v € V,, such that
{(v,¢) = Lp(¢) for all ¢ € V,,. We want to deduce that v is a weak solution
of (4.4). Since HY(D) = V,, @ span[l, w] this follows once we show that

(v,¢) = Lp(¢) V¢ € span[l,w]. (4.5)

The right-hand side Lp(¢) = a(¢,h) in (4.5) vanishes for ¢ € {1,w} by
the assumption h € V,,. For ¢ = 1 also the left-hand side of (4.5) van-
ishes. It remains to compute (v,w). Since w weakly solves the equa-
tion —div(A(z)Vw) = 1 in D and VwT A(z)n = o(z) on 8D we find
Jo VuT A(z)Vvdz = [ vdz+§,,, o(z)vds = 0 by definition of V,,. Hence
the operator K is well defined. Continuity and compactness of K are again
standard, and so are invertibility and symmetry. O

Remark. There is a more general version of Lemma 4.4. If & # o then let
W ={(f,g) € L*(D)x L*(8D) : [, f dz + [}, o(z)gds = 0} with the norm
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(£, 9l = (“f”%z(D) + ”9”%2(31)))1/2. For every (f,g) € W there exists a
unique v € V such that —div(A(z)Vv) = f in D, VoT A(z)n = o(x)g on
0D. The corresponding solution operator T : (f,g) — v from W to V is
compact. If & = o then the same result holds if W, V are replaced by W,,,

Vuw, where Wy, = {(f,9) e W: [}, fwdz + §,, o(z)gwds = 0}.

Since Ag = 0 is an eigenvalue with the constants as eigenfunctions, the
variational description of the eigenvalues of (2.4) differs slightly from the
one given in the case ¢(z) > 0,# 0. The eigenvalues except 0 are critical
values of

J(v) :=a(v,v)=/v2dx+a% v2ds
D aD

with respect to the set {v € V : [, VoTA(z)Vuvdz = 1} or {v € V, :
Ip Vvl A(z)Vudz = 1}. The following variational characterization is stan-
dard, see e.g. De Figueiredo [6]:

Lemma 4.5. Assume & 5 0g. Suppose that

p1 =sup{J(v):v eV, (v,v) =1} >0
and

p—1 =inf{J(v) :v eV, (v,v) =1} <0.

Then A\ = ul—l, A1 = u=l are the first positive, negative eigenvalues of
(2.4). Moreover the following holds:

(a) Let k € N. Suppose 0 = Ag < A1... < A are the (not necessarily
different) first k + 1 non-negative eigenvalues with eigenfunctions
Yo, ..., Yr. Suppose that

Hkr1 :sup{J(v):UGV,(v,v) =1,a(¥j,v) :O,j:l,...,k} > 0.

Then Apy1 = /‘1:1&1 18 the next positive eigenvalue.

(b) Let k € N. Suppose A_ < ... < A1 < Ao =0 are the (not neces-
sarily different) first k+ 1 non-positive eigenvalues with eigenfunc-
tions Y_g,...,v¥o. Suppose that

Ji_g_1 = inf {J(v) cveV, (v,v) =1,a(¥;,v) =0,j = —k,...,—l} < (
Then A_g_1 = ,u:,lc_l 15 the next negative eigenvalue.

The same holds in the case & = og if V is replaced by V,,.
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Since (v,v)!/? is an equivalent norm on V, V,, any sequence of extremal
functions is bounded in the full H'-norm. Provided p; > 0, p—; < 0 it is
easy to see that these values are attained.

Theorem 2.2 and Theorem 2.3 are implied by the following result.

Theorem 4.2. Problem (2.4) has an unbounded sequence of positive eigen-
values.

(a) If N > 2 then (2.4) has an unbounded sequence of negative eigen-
values.

(b) Let N =1, D = (0,L) and 0y - 02 > 0. If —L/2 < & then (2.4)
has ezactly two negative eigenvalues. If & < —L/2 then (2.4) has
eractly one negative eigenvalue.

(¢c) Let N =1, D = (0,L) and o1 - 02 < 0. If —L/2 < & then (2.4)
has ezactly one negative eigenvalue. If & < —L/2 then there is no
negative eigenvalue.

Proof. (a) The proof is based on the variational characterization of
Lemma 4.5. It is almost identical with the proof of Theorem 4.1.

(b) By Theorem 3.2 there are at most two negative eigenvalues. The-
orem 5.1 of the last section shows that a negative eigenvalue with corre-
sponding eigenfunction of one sign exists only for —L/2 < &. The assertion
of the theorem will follow provided it is possible to establish for all values of
& the existence of a negative eigenvalue where the corresponding eigenfunc-
tion has exactly one sign-change. This eigenvalue is obtained as follows.
Fix y € (0, L) and determine the first negative eigenvalue A_,(0,y) of

—(A(z)¢")" = Mg in (0,y) with ~ A(0)¢'(0) = a1 Ap(0), (y) =0.
Similarly let A_i(y, L) be the first negative eigenvalue of
—(A@)¢') =g in (3, L) with p(y) =0, A(L)P'(L) = o22p(L).

It is easy to see that A_;(0,y) and A_;(y,L) are both continuous in y
and that lim, o A_;(0,y) = oo and lim,_,;, A_1(y, L) = co. Hence there
exists a point yo € (0, L) such that A_1(0,y0) = A_1(yo, L). This proves
the existence of a negative eigenvalue of (2.4) where the corresponding
eigenfunction has exactly one sign-change.

(c) The fact that ¢; and o5 have opposite signs excludes the possibility
of negative eigenvalues with sign-changing eigenfunctions. Therefore the
question reduces to the existence/non-existence of eigenfunctions of one-
sign. This is completely described by Theorem 5.1 of the last section. O
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Remark. Note that in contrast to Theorem 3.1 we do not claim that
the eigenfunctions associated with A_j, A; have constant sign. In fact the
properties of A_;, A; depend on the value of & and change near the critical
value o9 = —|D|/|0D|, see Corollary 5.1 below:

&>09 = A_i simple, ¥y_; has constant sign, ¥, sign-changing,
d <09 = Apsimple, ¥y has constant sign, 1_; sign-changing,
g=090 = 1_1,9¥; are both sign-changing.

5. Eigenvalues in the resonance case

As we have seen the resonance case ¢ = 0 and & = gy = —|D|/|0D)| displays
special spectral properties, that are discussed in detail in this section.

5.1. The choice of the space V,,

Suppose one wants so solve
—div(A(z)Vv) = hin D, VT A(z)n = o(z)h on 8D (5.1)

for h € HY(D). Then necessarily h € V = {v € H}D) : a(1,v) = 0},
where a(u,v) = [ uvdz + §,, o(x)uvds. The next lemma explains why
in the resonance case & = oo one has to choose h with the extra condition
a{w,h) = 0 in order to obtain v € V. The only possible choice for w is a
solution of — div(A(z)Vw) = 1 in D and VwT A(z)n = o on 8D.

Lemma 5.1. Let h € V and let 0 € L®(0D) be an arbitrary function.
Then there erists a one-parameter family S = {vo + y},er C HY(D) of
solutions of (5.1).

Proof. Let h € V and define h = |D|~! [, hdz.
Case 1: Assume & # 0. Let a,b,c € H*(D) be solutions of

—div(A(z)Va) = h— h in D,
(4) vaT
a" A(x)n=0 on 8D,
—div(A(z)Vb) = & in D,
Vbl A(z)n = ?U(m)ﬁ on 8D,
—div(A(z)Ve) =0 in D,
Vel A(z)n = o(z)h — g(_fﬂa(x)ﬁ on &D.



70

Solutions for (A) and (B) exist for every h € H*(D) whereas the solution
of (C) only exists if additionally a(1, ) = 0. Moreover, a,b, ¢ are unique
up to additive constants. Finally vo = a + b + ¢ solves (5.1).
Case 2: Assume & = 0. Let a,b € H(D) be solutions of
(A) ~div(A(z)Va) =h~h in D,
VaT A(z)n = ha(z) on 8D,
(B) —div(A(z)Vb) = h in D,
VbT A(z)n = o(z)(h — k) on 8D.
Solutions for (A) exist for every h € H!(D) whereas the solution of (B) only

exists if additionally a(1,h) = 0. As before a, b are unique up to additive
constants and vp = a + b solves (5.1). ad

Lemma 5.2. Let h € V.

(i) There exists a unique element in SNV if and only if & # 0.

(it) Letd = o9. Then S CVifand onlyifh € Vyy = {h €V : a(w, h) =
0}. Furthermore, if h € V,, then there exists a unique element in
SNV,.

Proof. (i): A unique solution vo++v € V can be selected provided a(1,~) #
0. This is the case if only if & # oy.

(ii): We use the notation of Case 1 of the previous lemma. If w is the
solution of —div(A(z)Vw) = 1 in D, VwT A(z)n = o(z) on 8D then
b = hw. Testing the equation for w with ¢ and rearranging terms one finds

L)cdw%—}{w o(z)eds = l{m o(x)(h — h)wds,

and likewise by testing with a one obtains

/Dadx—{—jéDa(x)ads=/D(h—i_t)wda:.

Hence, the condition v € V reads

O:/a+b+cda:+}{ U(x)(a—{-b—l—c)ds:/hwdm-l-}{ o(z)hwds,
D aD D 8D

i.e., one needs the additional condition a(w,h) = 0. Uniqueness of the
solution in the space V,, holds provided a(1,w) # 0. This is true since
a(l,w) = [, VuT A(z)Vwdz. O
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5.2. Behavior of A_1,A1 near & = oy

We consider dynamical coefficients ¢ € C(8D), where C(dD) is equipped
with the maximum-norm. If ¢ is close to resonance then the consequences
for the principal eigenvalues and eigenfunctions are described as follows.

Theorem 5.1. There ezists € > 0 and a C*-map ¢ — (A(0),v(0)) for
o € B.(0o) C C(0RQ) with values in R x HY(D) such that (M(c),v(c)) is an
eigenpair for the eigenvalue problem (2.4) with the properties [, v(0) dx =
|D} and

N0 = o T a@ ~ o0 + Ollls = ol
(o) =1 = TG (5= 20)+ Ol ol

Moreover, if (A,v) is an eigenpair of (2.4) with ||o — go|| <€, || < € and
v >0, [Hvdr = |D| then either (A, v) lies on the curve or (\,v) = (0,1).

Remark. Note that & > oo implies A(¢) < 0 and & < gg implies A(o) > 0.
Hence A(o) parameterizes A_; if & > op and A, if & < 0p. It shows how A_;
passes through 0 and becomes A; as & passes through the critical value oy,
see Figure 1. The positivity of the eigenfunction is also passed on from v_;
to 1. Note that the min-max principle implies that the eigenvalues are
monotone decreasing in o with respect to the natural ordering in C(8D).

Proof. Consider the normalized eigenvalue problem

(P) —div(AVv) = Av in D, VoT A(z)n = o(z) v on 8D, / vdz = |D|.
D

In the following we describe the solutions of (P) as the zero-set of a non-

linear function F'(o, \,v) where F : C(8D) x R x H(D) — R x HY(D).

Construction of the C'-map: Define the operator

7. [C(0D) xR x H(D) - H'(D),
' { (o, v) - T(o,\,v) :=§,

where £ is the unique solution of

—div(4(z)VE) = Avin D,
VeTA(z)n = o(z) v — la—)b—T(vadac + $po(z)vds) on dD, (5.2)
Jp€dx = |D|.
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al¥

Figure 1. Eigenvalues as functions of &

Let
. C(6D) x R x HY(D) — R x HY(D),
(o, A v) — (vadm—f—faD o(z)vds, T (o, M, v) —-U).
Note that F(o9,0,1) = (0,0). Moreover, the following relation between
zeroes of F' and solutions of (P) holds:
F(o,\,v) =(0,0) = (0, A, v) solves (P),
(0, A, v) solves (P) and _
{<A,v) £(0)org=0o) = F@HV=(00)

Therefore, solving F(o,A,v) = (0,0) near ¢ = 0g,A = 0,v = 1 by the
implicit function theorem will give all statements of the theorem since

(@ ve) =00 555l o] e

(0001)} B (o — o) + Ofo — a0)>.

(00,0,1)
(5.3)
It remains to show the invertibility of %](00,0,1) and to compute the
inverse (3, z) := [%l(go,o,l)]’l(a, y) for given (o, y) € R x HY(D). This
requires to find the solution (8, z) of

orT
d ds=0, — ) —z=1. 5.4
/Dz z+ao}gDz s=aqa 500 0) (00,0,1)(,8 2)—z=y (5.4)
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Differentiation of (5.2) w.r.t. (\,v) yields %](00’0,1)(& z) = (, where ¢
solves

—div(A(z)V¢) =B in D, V¢TA(z)n = Bog on 8D, / Cdx =0,
D
i.e. ( = f(w — w). Therefore the solution (3, z) of (5.4) is determined by

/zda:—l—coyg z=a, Pw-w)—z=y.
D aD

The solution (8, z) can now be computed as

p= 2t Ipydatoodpyds 55
Jpwdz+ 00§y, wds
+ dx + d

p=dtlpydstoodopyds L0 (5.6)
Jpwdz+ a0, wds

The uniqueness of (3, z) shows the invertibility of a—g\%l(ao,o,l)- Notice
that the denominator in the above formula is [, VT A(z)Vwdz. Finally
it is easy to see that

QE_
oo

[ c(8D) - R x HY(D),
@01 | £ (§pZ(x)ds,0).

Inserting (e, y) = %€‘|(ao,o,1)(0 — ag) = (|8D|(& — 09),0) into (5.5)-(5.6)
and (5.3) gives the expansion of A(¢) and v(o) as claimed in the theorenm

We know from Theorem 3.1(ii) that eigenfunctions of constant sign can
occur only for A € {A_1,0,A1}. The next lemma sharpens this result.

Lemma 5.3. Suppose g(z) = 0. Let A be an eigenvalue and let v be a
corresponding positive eigenfunction of (2.4). If & < oo then A € {0, M}
and if & > ag then A € {A_1,0}. For & = o¢ only A = 0 is possible.

Proof. The following proof idea is attributed to Hess [10]. By the Harnack
inequality of Theorem 3.1 there exists § > 0 such that v > § in D and
tracev > § on &D. Thus, we may write v = e¥ with a function y € H!(D).
For z € C*®(D) let us use z2e¥ as a test-function for (2.4). Thus we obtain

/D —(2Vy — V)T A(@)(zVy — Vz) + VL A()Vz de

:)\(/Dzzdx—i-]gDa(x)zzds),
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which implies

/D V2T A(z)Vzdz > )\(/Dz2 dz + %SD o(z)z? ds) Vz e C®(D). (5.7)

Now recall that if & < oq then

0=X = min{/D VuTA(x)Vudm : /Du2 + -720 a(:r)u2 ds = —1}.

Together with (5.7) this implies A > 0 and hence by Theorem 3.1(ii) we
find A € {0,\}. If 0o < & then

0=X = min{/D Vul A(z)Vudz : /D u? + ng o(zx)ulds = 1},

which together with (5.7) and Theorem 3.1(ii) implies A € {A\_1,0}.
It remains to treat the case & = o0y. In this case the following two
characterizations of Ag = 0 hold simultaneously

0= A¢ =inf { /D VuT A(z)Vudz : /D u? dr + ]i) o(z)uds = —1} (5.8)

=inf{ /D VuT A(z)Vudz ; /D u? dz + fi) a(m)uzds=1}, (5.9)

where neither of the two minimization problems has a minimizer. Together
with (5.7) this implies that necessarily A = 0. So let us show (5.8) and
(5.9). Assume without loss of generality that diam D < 1 and D C {z €
RN : 0 < z; < 1}. Define u(z) = 1 £ z¢ for @ > 1. Thus, u(z) — 1 in
HY(D) for a — co. Furthermore, with e; = (1,0,...,0) we compute

[ vt a@vuds <p [ |vuf = po? [ st
D D D

a? .
=p T /D V- (z2*ley)dx < ,Baf z2e~1lds

200 — Y5
and
a(u,u) = / (1+2$)%dr + f{ o(z)(1 £ z)%ds
D aD
= / +22% + 2% dz + ]14 o(z)(£228 + 22%) ds

D 8D
since & = 0y, i.e., [,p0(z)ds = —|D|. Continuing the above calculation
we find

9o+ L2t 3 3

a(u,u) = /DV. (:l: a—li-lel+ 2;+1el) d$+£DU($)(ﬂ:2$1 + 23%)ds

gpetl  p2atl
= % (:i: ﬁ? + 2; n 1)61 n + o(x)(£22¢ + 23%) ds.
8D
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Note that there exists a sequence a — oo such that §, 20(x)z7* ds # 0.
Thus, for k& — oo the leading order-term for a(u, ux) is & §, , 20 (z)z7* ds.
Therefore fD Vqu(:n)Vuk dr/a(ug,ur) — 0 as k — oco. If we set @p =
sk(1+27*) and 4y =t (1 Fz7*) with appropriate multiples sy, t; and the
sign chosen appropriately such that a(tg, tix) = 1, a(@x, @) = —1, then G,
U are minimizing sequences for (5.8), (5.9), respectively. As a result we
get that the values of the minimization problem (5.8) and (5.9) are zero,
although they are not attained. This finishes the proof of the claim. O

Corollary 5.1. If& € (—o0,0¢) then A1 is simple, the eigenfunctions cor-
responding to A1 have constant sign and the eigenfunctions corresponding
to A_1 are sign-changing. If & > og then Ay is simple, the eigenfunctions
corresponding to A_1 have constant sign and the eigenfunctions correspond-
ing to A1 are sign-changing.

Proof. The statements on the sign-change of eigenfunctions follows from
Lemma 5.3. It remains to prove the statement on the eigenfunctions with
constant sign. Fix a function ¢ € C(6D) with & # o and let us consider
the one-parameter family

{ta-{-(l—t)ao if @ > oo,
g =

(5.10)
—to+ (1+t)og if 7 < 0

with t € R. With this choice the mean & is increasing in . By Theorem 5.1
there exists a one-parameter curve ¢ — (A(t),v(¢)) for t € (—¢, €) with values
in R x H1(D) such that F(oy, A(t),v(t)) = (0,0) for all t € (—¢, €), A(0) =0,
v(0) = 1 with

D15 — ool

At) = —th VT A Vuds +0(t%),
oD||5 — o
w() =1-tp 'vw:lL (x)vﬂ) 7= (w — ) +O(t?).

The parameter ¢ now replaces o. Let Bs(0,1) C R x H'(D) be the open
unit ball or radius § centered at (0,1) € R x H(D). For small § > 0 we
know that

degree(F(Uo, ' ‘)7 Bg(o, 1)7 (Ov 0)) 7& 0

due to the invertibility of f,{?T)kao,O,l)' Therefore, the global continua-
tion theorem, see e.g. [3], applies and shows the existence of two continua
C*t c [0,00) x R x HY(D) and C~ C (—o0,0] x R x H(D) of solutions
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(t, A, v) of F(o¢,A,v) = (0,0) containing the point (0,0,1). Locally near
(t,\,v) = (0,0,1) the two continua C*,C~ are described by the curve
t — (t,A\(t),v(t)). Note that the condition [,vdz = |D| shows that
v # 0 for every element (t,A\,v) € C*,C~. Thus, the maximum princi-
ple of Lemma 3.1 and a continuity argument show that v > 0 for every
(t,A,v) € CT,C~. Similarly, A > 0 for every (¢, A,v) € C™ except for £ = 0.
And likewise A < 0 for every (¢, \,v) € C* except for t = 0. Therefore The-
orem 3.1 (ii) shows that A = Ay provided (¢, A,v) € C* and ¢t # 0 and that
Ct,C~ can be parameterized as single-valued continuous curves depending
on t. Moreover the A-part is decreasing in t. Hence the global continuation
theorem implies that both C* and C~ are unbounded continua.

Finally let us determine the projection of C* onto the t-axis. It is clear
that C~ projects onto (—o0,0] since &; is increasing in t and o¢ < 0, i.e.,
for every £ < 0 the eigenvalue A; exists. For positive t this is different, since
for very large positive ¢ the function ¢, could become entirely positive. In
fact we find that C™ projects onto [0, m_—:}fm) in case & < ¢ and
onto [0, m—ﬂm) in case & > g, where the right-end points of the
intervals are oo if the denominator is 0.

The statement of the corollary it obtained as follows: if & < g then we
set t = —1 and obtain from (5.10) the original function ¢. This means that
(=1, A(—1),v(-1)) lies on C~ and produces for the original function o the
positive eigenvalue A1 with a positive eigenfunction. If & > o then we set
t = 1 which is an admissible value and also obtain from (5.10) the original
function o. This time it means that (1, A(1),v(1)) lies on C* and produces
for o a negative eigenvalue A_; with a positive eigenfunction. O
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The goal of this paper is to provide a simple introduction to the theory of nonlocal
elliptic problems.

1. Local versus nonlocal

Denote by €2 a bounded open set of R” with boundary I' = 9Q). Let a be a
continuous function satisfying for some positive constants A, A

0<A<a(s) <A VseR (1.1)

Let T be a part of T' with positive measure. We denote by V or H}(; o)
the subspace of H(Q) defined by

V=Hyj(To)={ve H(Q) |[v=00nTg}. (1.2)

Then for f € V' (the dual space of V) we would like to consider the two
model problems

u € H}(Q;Ty),

V. (a% u(z) da:> Vu) =finQ, (NL)

u € H}(Q;To).

{—v (a(u(@))Vu) = £ in Q,

and

In the above equations V- denotes the divergence operator, § is the average
ie.

1
]ﬁu(a:) dz = [ /Qu(a:) dz (1.3)
79
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where | - | denotes the Lebesgue measure of the sets. We refer the reader
to [1], [9], [11], for references on Sobolev spaces. The two above problems
are meant in a weak sense that is to say for both of them the first equation
has to be read

/ aVu - Vodz = (f,v) VYve H(Q;To) (1.4)
Q

where (-,-) is the duality bracket between V' and V.

The problem (L) is a “local” problem, that is to say to determine the
solution one has available a rate of diffusion varying from a point to another
— i.e. determined locally. On the contrary (NL) is a nonlocal problem in
the sense that the diffusion coefficient is determined by a global quantity,
here the average of the solution. Clearly (L) imposes more constraints on
the solution v and one expects this one to be unique. As we will see (NL)
leaves more flexibility to the solution — for instance very different functions
can have the same average and thus the same value of a in (NL). This will
lead to nonuniqueness and even to the possibility of having a continuum
of solutions. From a physical point of view, both equations can describe a
steady population density u, f is a source term, the diffusion coefficient is
supposed to vary in function of u(x) at any point in the case (L) and in
function of the total population only in the case of (NL) — see also the next
section.

To verify that (L) possesses a unique solution let us introduce

A = [ ate)de. (L5)

Due to (1.1) it is clear that u is solution to (L) iff Au is solution in a weak
above sense to

{—A(Au) =finQ, 16)

Au € HY(Q; o).

Now, clearly, (1.6) is a usual linear problem and has a unique solution.
Since A is monotone increasing, by (1.1), the solution of (L) is also unique.

Remark 1.1. If a(u(z)) is replaced by a(z,u(z)) uniqueness can still be
preserved. We refer the reader to [2] for such issues.

The rest of the paper will be devoted to problems of the type (NL) or
intermediate between (L) and (NL). First in the next section we will show
that (NL) can be obtained as a limit of a sequence of local problems. Then
we will see that (NL) reduces in fact to solving a nonlinear equation in R.
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We will consider in Section 4 the case of nonlocal problems in the calculus
of variations. Finally in the last section we will introduce a class of problem
interpolating the case of (L) and (NL) and will in particular address the
question of uniqueness for this kind of problems.

2. Nonlocal problems as the limit of local ones

Let us first start with the following remark. For ¢ > 0 consider the problem
of finding v, solution to

—0Avs + v, = f, in Q,

2.1
s _ g on 882, 1)
ov

By the Lax-Milgram theorem this problem admit a unique weak solution
for any f, € L?(f2). Then we have

Proposition 2.1. Suppose that when ¢ — 400

fo= foo in L*(Q) (2.2)
then one has, if Q is supposed to be connected
Vg —>][ foo(x)dz in HY(Q). (2.3)
Q

Proof. Since f, converges in L2(2) weakly, f, is clearly bounded in L2().
Considering the weak formulation of (2.1) - i.e.

a/ Vu,Vudz +/ vevdr = / fovdz Yve HY(Q) (2.4)
Q Q Q
and taking v = v, in (2.4) we obtain easily by the Cauchy-Schwarz inequal-
ity
2
UHVUGHZ + J'Ua'g < ,fo"2)va!2

(|- |2 denotes the usual L2(§2)-norm, |-| the euclidean norm.) Thus it comes

o IVoo |2 + vel3 < I£ol3 (2.5)
and we derive that it holds
2
|IVvoll; +lvsl3 < Ifol3 Vo1 (2.6)

It follows that v, is bounded in H'(2), when ¢ — +o00, and up to a
subsequence we have for some v,

Ve — U in  HYR). (2.7)
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To determine veo, one notices from (2.5) that
2
IIVUUHQ < |fol3/o — 0 (2.8)

when ¢ — +00. Thus Vv, — 0 strongly in L?(2) and by (2.7) we deduce
that it holds that

Vv =0 = w5 = cst.

To determine this constant taking v =1 in (2.4) leads to

/vada::/f,,da:.
Q Q

Passing to the limit since — up to a subsequence — we can assume that
Vg — Voo in L2(Q) we get

VoY = / foo dz
Q
and thus
Voo =][ foo(2) dz.
Q

Due to the uniqueness of this limit we have that the whole sequence con-
verges weakly in H'(Q) and strongly in L?(f2) toward ue. By (2.8) the
strong convergence in H!() follows. This completes the proof of the propo-
sition. O

Remark 2.1. In the case where f, = f, Vo we have of course that
Voo :][ fdz in HYQ).
Q

Any mixed boundary condition would force u, to converge toward 0. We
could replace in the above proposition —A by a general elliptic operator
depending even nonlinearly on v,.

Under the assumptions of Section 1 and for o > 0 let us consider the
following problem (see [10], [12], and the references there). One is looking
for (u,v) € H}(;To) x HY(Q) satisfying in a weak sense

—cAv+v=1u in £,

@ =0 on T,

on (Lo)
-V (a(v)Vu) = f in Q,

u=00n1"0,@=0 on '\ T.

on
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This problem is a local problem. One interpretation could be the following -
for instance when I'y = I'. v is a density of bacteria located in a container €2,
u is a density of nutrient provided at a constant (in time) rate f. The source
term of bacteria depends only on the nutrient (many modern societies enjoy
this property...) and the diffusion of the nutrient depends on the density
of population locally. The term +v in the first equation corresponds to a
constant death rate in this population. The boundary conditions are clear.
Then we have

Theorem 2.1. For o >0, f € V' there exists a weak solution to (L,) -
i.e. a couple (u,v) € HA(Q;To) x HL(Q) such that

/UVU-V&—I—UEd:E:/ufdw V¢ e HY(Q),
Q Q

/ a(v)Vu - Ve dr = (f,¢) Vo € H} (S To).
)

(2.9)

Proof. We suppose that H3(Q;T) is equipped with the norm

wall,={ | |Vu<x>|2dx}l/2, (2.10)

and H'(Q) equipped with

o)z = {|0l3 +[IVol|3}"2. (2.11)

Moreover, we denote by | - |. the strong dual norm on V’ corresponding to
(2.10). Taking ¢ = u in the second equation of (2.9) we get from (1.1)

2
NVull? < () < |71Vl (2.12)
from which it follows
| £
[IVul], < 5 (2.13)
If C, denotes the constant in the Poincaré inequality we derive then
julo < G| Vull, < 6,2 = 0 (2.14)
We set then
Be(0) ={we LX(Q) | lw; <C} (2.15)

i.e. Bo(0) is the ball of center 0 and radius C in L%(2). We consider next
the following mapping

wi—Tw=u (2.16)
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where u is defined as follows. We let v be the solution to

v € HY(Q),
(2.17)
anVv-Vfdz—}—va-{dx:fnw-fdm V¢ e HY(Q).

Since o > 0, the existence of v is a simple consequence of the Lax—Milgram
theorem. Having found v we define u = T'w as the solution to

u € Hé(Q;Fo), / a(v)Vu-Vedz = (f,¢) Yo & HHQ;To). (2.18)
Q

Since a(v) = a(v(-)) € L*®(Q), by (1.1), the existence and uniqueness of u
follows also from the Lax-Milgram theorem. Now, clearly u satisfies (2.14)
and T maps B¢(0) into itself. Moreover, by (2.13), T(B¢(0)) is relatively
compact in Bo(0). If T is continuous, by the Schauder fixed point theorem,
T will have a fixed point u and (u, v) will be the solution to (2.1). To show
the continuity of T' consider a sequence w, such that

wy, € Be(0), wn — w  in L3(Q). (2.19)
Denote by vy, the solution to (2.17) corresponding to wy,. It is clear that
vy — v in HY(Q). (2.20)
If uy, = Tw, one has — due to (2.13)
I|Vu"”2 <C

where C is some constant independent of n and ~ up to a sequence — we
have for some uo € H}H(Q)

Up = up in HY (4 To), un — uo in L2(Q), v, — v ae. in Q. (2.21)
Considering the equation
| alon@)Vun - Voda = (£,
and noting that
Vu, — Vug in L*(Q), a(vn(z)) Ve — a(u(z)) Ve in LEH(Q)

we get by passing to the limit

/ﬂa(v)Vuo Vedr = {f,p) Yo c H}(Q;Ty).
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i.e. ug = u = Tw. By uniqueness of the limit it is the whole sequence u,,
which satisfies
Up =Tw, — u in L%(Q).
This shows that T is continuous and completes the proof of the

theorem. O

Remark 2.2. At this point we do not know if the solution (u,v) of (L)
is unique (see also below).

In the theorem below we denote by {(u,,v,) a couple of solutions to
(2.9). We would like to study the asymptotic behaviour of (u,,v,) when
¢ — +o00. We have

Theorem 2.2. There exists (Uoo,Voo) € HE(Q;T0) x HY(Q) and a sub-
sequence from o such hat (us,vs) — (Uso,Voo) 0 H1(Q)? where uy is
solution to

U €Hg (4 T), / a(][ Uoo dz) Ve - Vudz
Q Q

(2.22)
= (f,v) Yv € Hy(QTo),
Voo =][ Uoo AT (2.23)
Q
Proof. From (2.14) we have
[tele < Gyl Vel < 2l = 0 (2.24)
where C is independent of o. From (2.5) we derive
o|1Vvs |2 + val? < C2. (2.25)

Since (uq, Uy ) is bounded independently of o > 1 there exists (uoo, Vo) €
HY(Q;To) x H(Q) and a subsequence of ¢ — +oo such that

Uy — U i1 HF(Q;T0), Uy — Ugo in LA(R) (2.26)
Vg — Voo IN Hl(Q), Vg — Voo I LQ(Q), Uy — Vo a.€. in . (2.27)
By Proposition 2.1 we have clearly (2.23) and a strong convergence of v,
toward ve, in H'(Q). Since without loss of generality we can assume v, —

Upo a.e. In . It is easy to get (2.22) and the strong convergence of u,
toward 1. This completes the proof of the theorem. O
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Remark 2.3. If the solution of (2.22) is unique then the whole sequence
(ug, Vo) converges toward (Uco, Voo ). We do not know if the solution (us, vs)
is unique or is unique for ¢ large. In general it would be interesting to find
conditions on @ imposing uniqueness of a solution to (2.9).

3. Simple existence result

In this section we would like to consider problems of the type (NL). We
make it slightly more general by setting

u) = / g(z)u(z) dz (3.1)
Q
where g € L?(Q2) and by considering u solution to

u € HE(;To),
/ a(f(u))Vu - Vode = (f,v) Vv e HYQ;To). (32)
0

It is clear that (NL) is the particular case of (3.2) when g = |T12T Let us

also introduce ¢ the solution to
p € Hj(;To),

/ V- Vudr = (f,v) Yve H}To). (33)
Q

By the Lax-Milgram theorem, for every f € V' the dual of H}(Q; '), there
exists a unique solution to (3.3). Then we have

Theorem 3.1. The mapping u — £(u) is a one-to-one mapping from the
set of solutions of (3.2) onto the set of solutions of the equation in R

a(p)p = £(p). (3.4)

Proof. First consider u solution to (3.2). By the uniqueness of the solution
to (3.3) we have

a(f(u))u = . (3.5)
Taking £ of both sides we obtain
a(£(u))e(u) = £(y)

and £(u) is solution of (3.4), i.e. £ goes from the set of solutions to (3.2)
into the set of solutions to (3.4).
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Let g be now a solution to (3.4). By the Lax-Milgram theorem there
exists a unique u = u,, solution to

Uy, € Hj (4 Ty),

/Qa(,u)Vu -Vudz = (f,v) VYve HYQT). (3.6)

As above we have clearly
a(p)u=¢
and thus
a(p)l(u) = £(p) = a(u)p.

Since a > 0 this implies that x4 = £(u) and thus u = u, is solution to (3.2).
This shows that the mapping £ is onto. To complete the proof it is easy to
see that if u,, us are solutions to (3.2) then £(u;) = £(uq2) implies clearly
that vy = us. O

Remark 3.1. What we used here is in fact the homogeneity of £ with
respect to positive numbers, i.e. the same result would hold true for

= [ [uelds, ) = [ glula)|de
and could be easily adapted in the case where
LOw) =Xy YA>0

(see [6]). Note also that only the positivity of a was useful here.

0 £y)

continuum of solutions for this a

-
-
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From the above theorem we can easily solve (3.2). Suppose for instance
the £(¢) > 0. Then the equation (3.4) is equivalent to find & > 0 such that

o)
a(p) "
i.e. one has to find the intersection between a branch of hyperbola and the
graph of a. Clearly this intersection could give rise to any of the situa-
tions described on the above figure (see also [4]- [6] and also [8] for further
references and some results on the parabolic case).

4. Nonlocal problems in the calculus of variations

In this section we would like to study certain features of nonlocal problems
in the calculus of variations. In particular, as we saw in the previous section
for equations, we would like to rely on a problem in R to solve them. Of
course we will consider a simple class of them. We refer to [7] for a more
involved analysis.

Set
W = L 2 g —
Tlu] = gali(w) /Q IVul? da /qu do (4.1)
where f € L?(Q) and [(u) is a linear form on L?() defined by
i) = [ g(e)ute)dz, g€ LXQ), g %0 (42)

We want to minimize this functional on H}(;T). We denote by K, the
closed convex set of H}(Q;Tg) defined by

Kp={ve H{QTo) | l(v) =m}. (4.3)
We set
J(m) = Ianm{ %a(m) /Q IVul?dz /Q fudx}. (4.4)
We suppose that
a(m)>0 YmeR. (45)

Then we have

Lemma 4.1. For every m in R, there erists a unique u,, € K,, such that

F(m) = / Vit |2 — / Fuimds, (4.6)
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Moreover, u,, is the unique solution to
U, € Ky,

(4.7)
/a(m)Vumedxz-/fwdm Yw e K.
Q Q

Proof. Since K,, is 2 nonempty closed convex set of H3(2; o), um is the
unique solution of the variational inequality:

U € K,

(4.8)
/ a(m)Vum V(v — um )dz > / flv—um)dzr VYve K.
Q o

If w,, is solution of (4.7), for any v € K, v — up, € Ko and (4.8) holds.
Conversely if (4.8) holds, taking v = +w 4 u,, in (4.8) with w € Ky we
deduce easily (4.7). O

Then we can show
Theorem 4.1. The map
u — I(u)

is a one-to-one mapping from the set of minimizers of J on H3(Q; o) onto
the set of minimizers of J over R.

Proof. Let u be a minimizer of J on H}(§%;Tq). Let mq = [(u). One has

Jlu] = Inf,, {%a(mo) /Q VulPdz /ﬂ fudx} — F(mo)
< Jp] Vv e HE(;T).
Thus, for every v € K,,
Ju) = J(mo) < J[v] Yve K, VYm
= J[u] = J(mg) < J(m) VYm

and mg = (u) is a minimizer of J. The mapping v — I(u) goes from the
set of minimizers of J into the set of minimizers of J. To show that the
mapping is onto, let mq be a minimizer of J. Let tm, the solution to (4.7)
or (4.8) corresponding to m = mg. It holds that

J(mo) = J[tm] < JPv] Vv € Kppy.
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Moreover, for v € K,,, m # mg we have
J(mo) < F(m) < Jlul.
Thus, we have
) < Jle] Vo & HYO;To)
and the mapping is onto. If u1, uy are two niifiitnizers with I(u;) = [(uz)

then clearly u; = up = u;(y;) and the injectivity is proved. O

Let us define by 8 = 8, the weak solution to

~Af8, = in ©
g 9 W (4.9)
8, € Hy(2;T).
Then we have

Lemma 4.2, Given m € R, let up, be the unique solution to (4.7). Then
it holds that u,, is the weak solution to

_a’(m)Aum = f +emg in Q, (410)
U € HE(Q;To).
where ¢, is the constant given by
em = {a(m)m — (f,6)}/1(6), (4.11)

and (f,0) = [, f0dz.
Proof. Since g # 0, 6 # 0 and from (4.9) we deduce
1(6) = / gbdz = / IV6|2dz > 0.
Q Q
Let v € H}(Q;T) and ¢ a function fixed in D(£2) such that

(o) =1

(such choice of g is possible since g # 0). From (4.7) we have, since w =
v —1(v)g € Ko, for every v € H}(;Tg)

(—a(m)Aun — f,0) = /Q {a(m)Vum Vo — fo}de
= [ tatm)VunVit)e— fito)eyes

=1(v) /Q{a(m)VumVQ — fo}dz := enl(v).
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This proves (4.10) (one can see by (4.7) that ¢, is independent of g). To
get ¢, one multiplies (4.10) by 6 -i.e. one uses the weak formulation of
(4.10)- to get

a(m)/nVumVOdm:/Qf@da:—!—cml(ﬂ)

— a(m)l(upm) = / F60dz + el (8)
Q
= em = {a(m)m — (£,0)}/1(6)
which completes the proof of the Lemma. O

Theorem 4.2. To stress the dependence of 8 on g we denote it by 0, for
any g € L?(Q). Then we have

sy 1 f(a(m)m —(£,64))% — (9,8,)(f,0r)
) = 5 99){ e } (4.12)

Proof. By the uniqueness of the solution of the problems of the type (1.4)
it holds that (see (4.10))
a(m)um = 05 + cpby. (4.13)

From (4.10) we also have by multiplying both sides by u,, and integrating
am) [ [Vim[*dz = (f,m) + e
Q

Recall that (-,-) denotes the usual scalar product in L?(Q). It follows that
we have

T(m) = ga(m) [ Vi Pz = (f,m) = 5{6mm = ().

Using now (4.13) it comes
J(m) = %{cmm - E(}n—)(f, 0; + cmeg)}.
Using the expression of ¢,, given by (4.11) we get after easy computations
J(m)
— l{a(m)2m2 _ (fa Hg)a(m)m _ (ga 69)(f7 9f) — a(m)m(fa 09) + (fa 99)2 }
2 a(m)(g,6,)
__ 1 a(m)’m?® —2a(m)m(f,6,) + (f,65)° — (9,04)(f, 67)
2(9,6,) a(m)
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which completes the proof. a

Remark 4.1. If we set

the minimization of J reduces to the minimization of

_ (amm—a) =5

a(m)

(4.15)

Note that a? < 3. It is clear that J and J are continuous functions of m
if a is continuous.

Since 0 € K one should notice that
J0)<o0

(this is also clear from J(0) = {a? — 3}/a(0)). We have shown in Theo-
rem 4.1 that J admits minimizers iff J admits minimizers on R. This is
not always the case. However we have

Theorem 4.3. Suppose that a is a continuous function satisfying (4.5). If
for |m| large enough
8

a(m) > ]

(4.16)

where § is a positive constant such that
(6—Jal)? > B (4.17)
then J[-] and J admit minimsizers. This is sharp in the sense that if for
|m| large enough
)
a(m) = —
)= T

with (§ — |a|)? < B then J[-] fails to have minimizers.

Proof. In the case where (4.16), (4.17) hold we have for |m| large enough

J(m) = a(m)m? — 2am + 2(—)ﬁ
g -8B
> |——m—|m —2am+ 22 —5 |m

2 _
:6[m[——2am+a '6|m|,
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(recall that a? — 8 < 0). This gives

2 _
J(m) 2 dlm] — 2lal|m| + =2

0
(6 —laph® -8

= |m|{———5—} — 400 when |m|— +oo.

Im|

Thus the minimization of J reduces to a minimization on a compact set
and since J is a continuous function a minimizer does exist.
In the case where a(m) = I [ we have

F(m) = ofm| — 20m + &P

=|m }{(——ﬂ———} for  sign(m) = sign(c).

Im|

and J is not bounded below for (§ — |a|)? < 8. This completes the proof
of the theorem. O

Remark 4.2. It is clear that (4.16) holds for instance when
a(m)>6>0
or more generally when
a(m) > 6|m|™" for |m| large,

v being a constant such that 0 < v < 1, § being here an arbitrary positive
constant.

Theorem 4.4. Suppose that
a>d>0. (4.18)

Then if a is discontinuous J[-] might fail to have a minimizer.

Proof. Indeed let a be a continuous function satisfying (4.18). Then J
admits minimizers. Let mg be one of them. One has

a? -4
a(mo)

J (mp) = a(mo)m3 — 2amg +

If mo or (o — B) # 0, the function

a? -3
a

a — amg — 2amg +
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is clearly increasing and one can change the value of a(mg) in such a way
that mg is no longer a minimizer. Thus, this new a — not continuous — will
be so that J has no minimizer since J has none. O

Regarding uniqueness we have

Theorem 4.5. If J is strictly convezr then J admits a unique minimizer.
Otherwise J can have as many minimizers as we wish — even for a smooth
a.

Proof. The first point is clear. Note that
a?—-p

J(m) = a(m)m2 — 2am + W

and this function is strictly convex, in particular when

12

2 _
J"(m) = a"m? + 4a'm + 2a — M{a” - 2a—} > 0.
a? a
This is in particular the case when
2
a’ > 2i
o

Suppose now — this is of course always possible
a?-p<o.

Then consider a function J having as many minimizers as we wish., It is
always possible to find a positive a such that

20 (m) = (am—a)’ -~ B <<= a?>m?—2a(am+J(m))+a?—-F=0.
Indeed the discriminant of this equation is
A = 4{(am + T (m))? — m*(a? - B)} (4.19)

and it has its roots in R. Moreover since a? — 3 < 0 the roots do not have
the same signs and one is positive. We call it a(m). It varies of course,
continuously with m, and for the corresponding problem of minimizing (4.1)
one has as many solutions as J has of minimizers. o

Remark 4.3. Without any changes we can replace f,g € L?(Q) by f,g €
V' where V' is the dual of H}(€;Ty).
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5. A class of intermediate problems

In this section we would like to consider a class of problems interpolating
between (L) and (NL). More precisely the problems that we will address
involve a parameter ». When r — 0 the solution of the problems at hand
converges toward the solution of (L} and when r is large enough this is the
solution of (NL).
Let us denote by Q(z,r) the set

Qz,r)=QnN B(z,r) (5.1)
where B(z,r) is the ball of center z and radius r > 0. Then we would like
to consider the problem of finding u such that

u € H}(Q;To),

-V {a(]i WO dy) Vu} =finQ, (5.2)

where f € V' (the notation is as above, JCQ(z,r) u(y)dy = ——lﬂ(als,r)| .
Jow.r 4(¥) dy). Then we have

Theorem 5.1. Suppose that (1.1) holds, then for any r > O there exists a
solution to (5.2).
Proof. We first get a prior estimate for . Indeed, considering in the weak
formulation of (5.2) (see (1.4)) v = u, we easily get
2
AIVall, < 1£1] Ve, (5.3)
where |f|. denotes the strong dual norm of f. It follows that it holds

C &
lulz < Cpl| V||, < —P'Af—’ =C (5.4)

where Cy, is the Poincaré constant. Denote then by B¢ (0) the ball of center
0 and radius C in L?(). For w € B¢(0) let u = Tw be the solution to

u € HE(Q;To),

V. {a (ﬁ LW dy> Vu} —finQ. (5:5)

It is clear that such a u exists and is unique. Moreover due to (5.3), (5.4),
T maps B¢(0) into itself and T(B¢(0)) is relatively compact in B¢ (0). To
get existence we just need to prove that the mapping T is continuous. For
that consider w,, € B¢(0) such that

w, —w in L%Q).
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We have

L wmdy- [ w) dy}

[Q(ZE,’I‘)I Q(z,r) " fQ(:L’, T)f Q(z,r)
<L _ S K
Qx| Jage,n |Q(z,r)1/2"

(by the Cauchy—Schwarz inequality). Thus we deduce that

][ wp(y) dy — w(y)dy a.e. in Q. (5.6)
Q(z,r) Qa,r)

|wn —w|dy < —wly

Let us denote by u, the solution to (5.5) corresponding to w, —i.e. up =
Twy,. By (5.4) it holds that

IIVU"HQ <

£l
A
and u,, is bounded in H!(Q2). Thus — up to a subsequence — we can assume
that for some uy, € Hg(;To) we have
Up, — U in HYRQ), Un — Uso in  L%Q).

Passing to the limit in

/Qa<]{l wn(y) dy) Vu, - Vo = (f,v) Yve H}(QTo)

(z,)

by (5.6) we get that us, satisfies

/ a<][ w(y) dy) Vuoo Vv = (f,v) Yv e H}(Q;T).
Q Q(z,r)

Thus we have uo, = Tw and by uniqueness of the limit the whole sequence
u, converges toward Tw. This shows that T is continuous and concludes
the proof by the Schauder fixed point theorem. O

Let us show that (5.2) somehow is an interpolation between (L) and
(NL). It is clear that for r large enough Qz,r) = Q for every x € Q and
thus in this case (5.2) is nothing but (NL). Moreover we have:

Theorem 5.2. Let u, the solution to (5.2). Suppose that
the “sequence” u, 18 equicontinuous in every Y CC Q. (5.7)
Then we have
u—u in HYQ), r—0, (5.8)

where u is the solution to (L).
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Proof. From (5.3), (5.4) we know that u, is bounded in H'(Q) indepen-
dently of 7. Thus -up to a subsequence- we can assume that

ur = ug  in HYQ), u, »uo in L*(Q), u, —ug ae inQ. (5.9)
Let us show that it holds
f ur(y)dy — ug ae. in Q. (5.10)
Q(z,r)
Let € > 0 be fixed. Let us select r such that
N !
< dzst(;l ,I)

Since u, is an equicontinuous sequence in every subdomain of 2 for every
€ > 0 there exists rg such for r < rg it holds that

lur (y) — ur(z)] < % Vrel, VyeQz,r). (5.12)

(5.11)

It follows that for r small enough we have

| ]{2 (I,r)“r(y) dy — uo(z)| = | ]{? (N;tr(y) dy — ur(z) + ur(z) — uo(z)]

<| (ur(y) — ur(2)) dy + up () — uo ()|
Q(z,r)

< ]{1 o fuels) @l dy + (@) = o)
< 5t lur(@) ~ wo(@)| < ¢

by (5.9). It follows that
][ ur(y)dy > up ae in Q. (5.13)
Q(z,r)

Since ' is arbitrary (5.10) follows. For v € Hg({;To) from the weak
formulation of (5.2) we have

/ a<][ ur(y) dy) Vu,.Vudz = (f,v). (5.14)
2 Q(z,r)
By (5.9) and (5.10) we have also

Vu, = Vug in (L3(Q)", (5.15)

a(]{l(z,r;ur (v) dy) Vo — a(ug)Vo  in (L2(Q)™ (5.16)
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Passing to the limit in (5.14) we deduce that it holds
/ a(ug)VueVudz = (f,v) VYo € H3(Q;To) (5.17)
Q

i.e. ug is the unique solution to (L). Since the limit of the subsequence is
unique the whole sequence u,. satisfies (5.9). To show now that u, converges
strongly, taking v =, in (5.14) we obtain

/Qa<]{1($w;¢r(y) dy) Vu,Vu,dz = {f,u,). (5.18)

Passing to the limit in r we get

lim a<][ ur(y) dy> Vu,Vurdr = (f,uo) = / a(uo)VuoVugdz.
Q( 0

r—0 Q z,r)
(5.19)
It follows that it holds

AV (u, - u0)||§ < /Qa(]{)(z’r)ur(y) dy) V(ur — u0)V(u, — up)dz

= / a<][ ur(y) dy) Vu,.Vu,.dr — 2/ a <][ ur(y) dy) Vu,Vupdz
Q Q(z,r) Q Q(z,r)

+/ a(ug) VugVugdz — 0.
Q
(5.20)

when r — 0. This completes the proof of the theorem. O

Remark 5.1. 1) The property (5.7) holds for instance when n = 1 due to
the estimate

) = (@) = [ "l ()de] (5.21)
<pipble -l <Lyt )

It holds also in any dimension for f € LP(Q),p > 5 due to the De Giorgi
estimates (See [9]).

2) As we have seen, the solution to (L) is unique while (NL) can have
infinitely many solutions. It would be interesting to study the variation
of the number of solutions to (5.2) when r varies (see also the following
theorem).
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As a contribution to the uniqueness issue, let us consider the following
one dimensional problem where = (0,1), I'g = {1}. It reads

- {a(]{'l(z,r;U(S) ds) UI}I =/ (5.23)

(1) =0, u(0)=0.
Then we have

Theorem 5.3. Suppose that f € L2()) and that a satisfies (1.1) together
with

la(s) —a(t)] < Als —t| Vs, t eR, (5.24)
Jor some positive constant A. If v is small enough the solution to(5.23) is

unique.

Proof. Suppose that v is another solution to the problems (5.23). It is
clear by (5.23) that

a<]{) (M;L(s) ds) o' € HY(Q) (5.25)

and thus is a continuous function in Q. From (5.23) we derive also

a (]{2 (W;L(s) ds> Y=a (1{7 (mi;(s) ds> v +e (5.26)

where c is a constant. Since all the functions above are continuous - taking
the value at the point 1 we see that ¢ = 0. Thus we get

o{f, o)~ o)+, o)}

which implies

= = (5.27)

W {a(ﬁ o v(s)ds) - a(]{] . u(s)ds) }v'. (5.28)

Claim: v’ or «’ are uniformly bounded. Indeed, from (5.23) integrated

between = and 1 we get

a(fﬂ(z,r) S)ds) /f (5:29)
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which implies
[u' (=)

Integrating (5.27) between 0 and z we get

(u—v)(z) =

A W {o (]{z(m v(s)ds) ~a ¢ - u(s)ds) o

From this follows easily — see (5.30)

Alfa [ —v)(s s
(CRRICIESS - A W CRUIO L e

| [} F(s)ds| _ |f]
| < = = (5.30)

Let us set
A
Fi)=(w-v@), =22k
Then (5.31) reads
z) < c/z][ F(s)dtds Ve (0,1). (5.32)
0 JQ(t,r)

We claim that this implies that F' vanishes for r small enough. First, it
is clear since u/, v’ are uniformly bounded and 4(0) = v(0) = 0 that F' is
uniformly bounded in (0,1). So, suppose that

0<Fx)<M Vze(0,1). (5.33)

We would like to show that (5.32) implies that
k TR

Flz) < C*M(z +k$k 1)r)

By (5.33) the formula is true for kK = 0. Suppose it is true for k. Then by
(5.32) we get

F(a:)<Ck+1M/][ (s + (k= D)r)* dtds.
Q(t,r)

Clearly the function (s+(k—1)r)* is bounded on Q(t,r) by (¢4 kr)*. Thus
we get

Vk. (5.34)

F(m)gck“%/ (t + kr)* dt.

0
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Integrating we obtain

F(z) < CFH1 (z + kr)k+ — (kr)k+l

k+1!

< Ck+1k—i\_4—1'-(:v + kr)k+L,

which completes the proof of (5.34) by induction. We claim then that for
r small, the series of term

_ C*M(z + (k — 1)r)k

N k!

Uk

converges. Indeed we have

C  (z+kr)kt!
k+1(z+(k—1)r)
_Clz+kr) z+kr k
= T

Uk+1/Uk =

kE+1 -+ (k-1
:C<M>ekln{l+mh;:}_
k1

Since for u close to 0 we have
In(1 + ) = u(1l + &(u))
we get

(z + kr)
kE+1

From that we derive

Upp1/up =C e (AeR) iep €(k) — 0 when k — +o0.

lim wgy1/ur =Cer <1 for r small. (5.35)
k—+o0

Going back to (5.34) — since the above series converges for Cer < 1 — we
get that

F=0

This completes the proof of the theorem. O

Remark 5.2. Since C' = A—Lf;lz, (5.35) gives a precise estimate on the size
of 7 which insures uniqueness.
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We deal with generalized notions of convexity for sets. Namely, the polyconvexity,
quasiconvexity, rank one convexity and separate convexity. The question has its
origin in the calculus of variations. We try to systematize the results concerning
these generalized notions imitating as much as possible the classical approach of
convex analysis. Throughout the article, we will discuss the relations between the
different convexities, separation and Carathéodory type theorems, the notion of
hull of a set and extremal points.

1. Introduction

We discuss here the extension of the notion of convex set to generalized
convex sets that are encountered in the vector valued calculus of variations
and in partial differential equations. These are: polyconvex, quasiconvex
and rank one convex set.

Contrary to classical convex analysis, where the notion of convex set pre-
cedes the one of convex function; this is not the case for the generalized ones.
This is of course due to historical reasons. Morrey introduced the notions of
polyconvex, quasiconvex and rank one convex functions in 1952 (although
the terminology is the one of Ball). It was not until the systematic studies
of partial differential equations and inclusions by Dacorogna-Marcellini and
Miiller-Sversk that the equivalent definitions for sets became an important
issue. Moreover these notions were essentially seen through the different
generalized convex hulls, leading somehow to terminologies that do not ex-
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actly covers the same concepts. One of the aims of the present paper is to
try to imitate as much as possible the classical approach of convex analysis
in the present context. This will, we hope, allow to clarify the situation.

In order to describe the content of our article, we have to get back to
classical convex analysis. Here are important facts that we will try to mimic
in the generalized context.

1) A set E is convex if and only if its indicator function

(z) = 0 ifzek
XEW = tooitz g B

is convex.

2) Important facts concerning convex sets are the separation and
Carathéodory theorems.

3) The convex hull of a set F is the smallest convex set, denoted co F,
that contains E. As consequences of this definition, one finds that if
Fe={f:R" > RU{+o0}: f|lg <0}
Fe={f:R™" =R: f|p <0}

then
coE={ze€R™: f(z) <0, for every convex f € Fg} (1)

cob={reR™: f(z) <0, for every convex f € Fg} (2)

where co £/ denotes the closure of co E.

4) Minkowski theorem for the convex hull of extreme points of compact
sets.

The article is organized as follows.

In Section 3, we define the notions of polyconvex, quasiconvex and rank
one convex set. The first and the third one are straightforward and are
equivalent, as they should be, to the polyconvexity and rank one convexity
of the indicator function. The second one is more delicate. Indeed one
would have liked to define it as equivalent to the quasiconvexity of the
indicator function; but quasiconvex functions allowed to take the value
+00 are, at the moment, poorly understood. We will give a definition of
quasiconvex set which is compatible with many of the desired properties
that should have such definition. Notably we will have that

E convex = F polyconvex = E quasiconvex = F rank one convex
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and all counterimplications turn out to be false whenever N,n > 2. This
last result is better than the corresponding one for functions, since we have
examples of rank one convex functions that are not quasiconvex (cf. Sversk
[15]) only when n > 2 and N > 3.

Separation and Carathéodory type theorems exist for polyconvex sets
and we will discuss these extensions in Section 4.

In Section 5, we consider the definitions of polyconvex, quasicon-
vex and rank one convex hulls of a given set E denoted respectively
Pco E,Qco E,Rco E. They are, as they should be, the smallest polycon-
vex, quasiconvex and rank one convex set, respectively, that contains E.
It turns out that for polyconvex sets (and in a similar way for rank one
convex sets) we have

PeoE ={¢¢€ RY*™ : £(£) <0, for every polyconvex f & Fe}

as for the convex case. However, the representation of the closure of the
hulls analogous to (2) is not true for general sets. We will discuss this
question in details introducing three more types of hulls, namely

Peoy E={¢ € RN*™ : £ (€) <0, for every polyconvex f € Fg}
Qco; E = {¢e RN*™ . £ (€) <0, for every quasiconvex f € Fe}

Reof B = {E e RVxn . f(€) <0, for every rank one convex f € fE} .
It turns out that, in general,

Pco £ g Pcos E, Qco E g Qco; E and Reo B g Rcof E.

However, if E' is compact, then
Pco B = Pcoy E.

In Section 6 we will introduce the notion of extreme points in these
generalized senses and establish Minkowski type theorems.

2. Notations and preliminaries

We recall the notation below (cf. Dacorogna (4]) used in the context of
polyconvexity.

Notation 2.1. (i) For £ € RV*" we let
T (&) = (¢,ads¢, . . ., adjyrné) € RTV™
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where adj, £ stands for the matrix of all s x s subdeterminants of the matrix
£,1<s< NAn=min{N,n} and where

r—r(N.m) =”§(§) (2) ena (V) = sy

s=1

In particular if N =n =2, then T'(¢) = (£,det§).
(ii) For s € N, let

A, = {A: o) T A 20, Y Xi= 1},
i=1

We also introduce a useful notation when defining a quasiconvex set (cf.
Definition 3.1).

Notation 2.2. Let Q be the hypercube (0,1)™ of R”. For an orthogonal

transformation R € O(n),

WLoo(RQ:RY) will denote the space of periodic functions in

per
WLo(RQ;RY), i.e. functions u verifying u(Rz) = u(R(z + e;)) for all
vectors e; of the canonical basis of R™ and all z € ;

— Wr will denote the space WL (RQ;RY) of functions whose gradients

per
take only a finite number of values.

We now recall the different notions of convexity for functions.
Definition 2.1. (i) A function f: R™ — RU{+0} is said to be convez if

FOEFA =) <AfE)+(A=A) F(n)
for every A € [0, 1] and every £, € R™.

(ii) A function f: RV*" — RU {+oo} is said to be polyconvez if there
exists a convex function g : R"™™) — RU {4+0o0} such that

f(&) = 9(T(€))-

(iii) A Borel measurable function f : RV*X" — R is said to be quasicon-
vex if

£ (&) meas(U) < /U f (€ + D (2)) dz

for every bounded open set U € R, £ € RVX™ and ¢ € W™ (U;RN) .

(iv) A function f: RN*X"  RU {400} is said to be rank one convez if

FOE+A =X <AL+ =A) f(m)
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for every A € [0,1] and every £, € RVX™ with rank(¢ — n) = 1.

(v) A function f: R™ — R U {+oo} is said to be separately convex if

FOE+A=Xn) SAFE+A =) f(n)

for every A € [0,1] and every &,1 € R™ with £ — 5 = se;, for some s € R
and i € {1,...,m} (e; denoting the i**-vector of the canonical basis of R™).

(vi) A Borel measurable function f : RV** — R is said to be quasiaffine
if both f and —f are quasiconvex.

Remark 2.1. A good definition of quasiconvex functions equivalent to the
weak lower semicontinuity of the corresponding integral taking the value
400 is not available at the moment. Moreover, if we allow it in the above
definition, then the known implication

f quasiconvex = f rank one convex
is no longer true.

Equivalent conditions for polyconvexity and quasiconvexity are given in
the next result. For the proofs see, respectively, Dacorogna [4] and Sverak

[15].

Theorem 2.1. (i) A function f: RN*" — RU{+o0} is polyconvez if and
only if

T+1 T+1
s (Z A@) <> Nf(&)
=1 i=1

whenever (Ay,...,Ar+1) € Ary1 and

741 T+1
T (Z A@) =Y AT (&)
i=1 i=1

(ii) A Borel measurable function f : RN*™ — R is guasiconvez if and

only if
(6 s/mf(£+Ds0(m))dm

for @ :=(0,1)" and every R € O(n), ¢ € WL (RQ;RY) and £ € RN*m,
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The different envelopes are then defined as
Cf =sup{g < f: g convex},
Pf=sup{g < f: g polyconvex},
Qf =sup{g < f: g quasiconvex},
Rf =sup{g < f: g rank one convex},
Sf =sup{g < f: g separately convex}.

As well known we have that, provided f : RV*® — R, the following
implications hold

f convex = f polyconvex = f quasiconvex

= f rank one convex => f separately convex
and thus

Cf<Pf<Qf<Rf<Sf<S.

3. Generalized notions of convexity

We start giving the generalized definitions of convexity for sets.

Definition 3.1. (i) We say that E C R™ is convez if for every A € [0,1]
and £,n € E, then

A+ (1— Ny € E.

(ii) We say that E C RY*™ is polyconver if there exists a convex set
K c RV such that

(K NTRYN*") = E,

where m denotes the orthogonal projection of (the first component of)
R7(V:n) iy RV*7, Equivalently, F is polyconvex if there exists a convex
set K ¢ R™(V:™) such that

{¢eRY*":T(¢)e K} =E.

(ili) We say that E C RVN*" is quasiconver if we have

£+ Dy(z) € E, ae. z€ RQ,
for some R € O(n) and ¢ € Wg
(2 denoting the hypercube (0,1)").

}:>£eE
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(iv) Let E C RYX", We say that E is rank one convez if for every
A € [0,1] and &, € E such that rank(§ — ) = 1, then

A6+ (1— Ny € E.

(v) We say that £ C R™ is separately convex if for every A € [0,1]
and &, € E such that { —n = se;, for some s € R and i € {1,...,m} (e;
denoting the i*"-vector of the canonical basis of R™), then

A+ (1— M\ € E.

Remark 3.1. (i) The operator 7 introduced in the above definition is more
precisely defined as follows. If

X =(X1,..., Xr(v,ny) then m(X) = (X1, ..., XN xn)-

In particular, if N =n =2 and X = (£,6) € R?*2 x R, then 7(X) = ¢.

(ii) The definitions of convex, rank one convex and separately convex
sets are standard.

(iii} In what concerns polyconvexity, the more usual way to define it
is with the condition in Theorem 3.1 below. However, the two conditions
turn out to be equivalent. With our definition we get some coherence with
the analogous notion for functions.

We note that one could think, in view of Definition 2.1 (i), that a set
E is polyconvex if T(E) is convex. This is however not true. Consider, for
example, the polyconvex set E = {I,£}, where [ is the identity matrix and
& = diag(2,0). Then T(F) = {(I,1), (£,0)} which is not convex.

(iv) The best definition for quasiconvex sets is unclear. Several defi-
nitions have already been considered (see Dacorogna-Marcellini [5], Miiller
[11], Zhang [18]). The one we propose here is consistent with known proper-
ties for functions and have most properties which are desirable (c¢f. Theorem
3.2 below).

We first give an equivalent condition for polyconvexity.

Theorem 3.1. Let E C RVN*", The following conditions are equivalent.
(i) E is polyconvex.

(ii)
I I
zT P =T )‘ii I
@;A ) (; £> =Y MN&EE.

& € E, (M,..,\1) € A =t
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Moreover one can take I = 7(N,n) + 1.
(iii) Denoting by coT(E) the convex hull of T(E),
E = w(coT(E) N T(RN*™))
or equivalently

E={¢eR"*": T(¢) € coT(E)}.

Proof. (i) => (ii). Suppose

I I
Z MT(E)=T (Z /\i§i> , (3)
i=1 =1

for some ¢&; € E and (M1, ..., A1) € Ar. By hypothesis, ¢ € n(KNT(RV*"))
for some convex set K C R™@™™ and so T(¢) € K. Therefore
ZLI AT (&) € coK = K and, by (3), we conclude that Zle A& € B

The fact that we can take I = 7(IN,n) + 1 in (4i) is a consequence of
Carathéodory theorem (see Dacorogna [4] ).

(1) = (iii). We have to see that E = w(coT(E) N T(RN*™)). Ev-
idently E is contained in the set in the right hand side. For the reverse
inclusion, consider ¢ € m(co T(E) N T(RN*")). So, T(¢) € coT(E) and we

can write

I
T(€) =Y \T(&)
=1

for some §; € E and (A, ...,A;) € A;. We then use (i4) to get that £ € F,
as wished.
(43i) = (i) This is immediate. O

The next result shows the relation between the notions of convexity for
sets and the corresponding notions for functions (the proof is straightfor-
ward).

Proposition 3.1. Let E C RV*" and xg denote the indicator function of
E:

0 ifeekE
+ooif £ ¢ E.

Then E is, respectively, convez, polyconvex, rank one convex or sepa-
rately convez, if and only if xg is, respectively, convex, polyconvez, rank
one convex or separately convex.

XE(§)={
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Remark 3.2. One would have liked to have the same result for quasiconvex
sets but, as already discussed, quasiconvex functions taking the value +oo
are not considered here.

The convexity conditions are related in the following way.
Theorem 3.2. Let E ¢ RVN*". We have the following implications

E conver = E polyconver = FE quasiconvez

= FE rank one convex = E separately convez.
All counterimplications are false, as soon as N,n > 2.

Remark 3.3. We will see (cf. Proposition 5.2) that, as for the convex case:
E, respectively, polyconvex, quasiconvex, rank one convex or separately
convex implies that int F is also, respectively, polyconvex, quasiconvex, rank
one convex or separately convex. However, this is not anymore true for
E. Indeed we will give (cf. Proposition 5.2) an example of a bounded
polyconvex set E C R?*? with E not even separately convex.

Proof. Part 1. We only prove the implications related to the notion of
quasiconvexity since the others are trivial and well known.
(i) We prove that if E is polyconvex then FE is quasiconvex. Assume that

£+ Dy(z) € E, ae.z € RS}

for some R € O(n) and ¢ € Wp.  We can write Dyp(r) €
{m,.m}, ae. z € RQ for some n; such that £+, € E, i = 1,...,k.
Defining

Ai = meas{z € RQ: Dy(z) =},
we have A; > 0, ZLI A; = 1. Since @ is periodic and the functions adj,
are quasiaffine (s = 1,..., N A n) we have
k

T(€) = /R (€ + Dyl@)du = Y NTE -+ ).
1

i=
Using the polyconvexity of the set E we obtain that £ € F.

(ii) We now prove that if a set E is quasiconvex then it is rank one convex.
Let £,m € E be such that rank(§ — ) = 1 and A € (0,1). We will prove
that Aé + (1 — M)y € E. To achieve this, it is enough to find R € O(n) and
¢ € Wg such that

X+ (1= A)n+ Do(z) € {€,1}, a.e. 2 € RQ
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or equivalently

Dy(z) € {1 = N(E =), —ME =)}, ae. z € RL.

The result will then follows from the quasiconvexity of F. The construction
of such ¢ is standard for relaxation theorems (see, for example, Dacorogna
[4]). We just outline the proof. Since rank({§ —7n) = 1, we can write
£—1=a®v with a € RY and v a unit vector in R*. Choose R € O(n) any
orthogonal transformation such that Re; = v (e; denoting the first vector
of the canonical basis) and define the function h : R — R by
5, 0<s< A

h(s)_{,\, A<s<1
and h(s +1) = h(s) + A, V s € R. Then ¢(z) = —A(§ — n)z + ah({z;V))
satisfies the required conditions, which finishes the proof.

Part 2. We will next see that the reverse implications are, in general, not
true.

(i) There are polyconvex sets which are not convex. Consider, for example,
the set E = {£,n7} C R?X2, where ¢ = diag(1,0) and n = diag(0, 1).

(i) Quasiconvexity does not imply polyconvexity. Consider the matrices
(cf. Dacorogna [4])

10 01 —-1-1
a=(30) ©=(01) a=(3 %)

= (o)

T(n) = %T(&) + %T(&) + %T(fs).

The set E = {£1,&2,§3} is not a polyconvex set since n ¢ E. However, it
is quasiconvex. Suppose { + Dy € E for some ¢ € Wg where R € O(2).
Since rank(§; — &;) = 2 for ¢ # j, we have that the solution of this three
gradient problem is an affine function (cf. Sverdk [13], [14], Zhang [20])
that is to say £ + Dy is identically equal to one of the matrices ¢;. Using
then the periodicity of ¢ it results that £ = ¢; € E. We can then conclude
that E' is quasiconvex.

and

We have

(iii) Rank one convexity does not imply quasiconvexity. We should again
draw the attention to the fact that our result is better for sets than for
functions. We prove this assertion in two steps.
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Step 1. There are (cf. Kirchheim [7]) ny,...,m € R2%? such that
rank(n; —n;) =2, Vi # j and there exists £ ¢ {m,...,m} and u € ue +
Wy *((0,1)2; R?) where Dug(z) = € such that Du(z) € {n1,...,m%}, a.e.in
(0,1)2.

Step 2. Let E = {n1,...,mx}. Since there are no rank one connections
between the matrices 7;, the set F is rank one convex. We will see that E
is not quasiconvex. Let u be the function mentioned in Step 1. Since u is
Lipschitz and has affine boundary data, we can write u = ug + ¢ for some
@ € WP™((0,1)%;R?). Besides Du(z) = £ + Dyp(z) € E, a.e. in (0,1)2,
but £ ¢ E, which ensures that E is not quasiconvex.

(iv) Separate convexity does not imply rank one convexity. Indeed, the set
E = {¢,n} c R?**2, where

e=(50) 7= (13)

is separately convex but not rank one convex. O

4. Separation results for polyconvex sets
We next deal with the problem of separating polyconvex sets generalizing

in this way known results in the convex context.

Theorem 4.1. Let E be a polyconvez set of RV*™,
(i) If n ¢ E orn € OE, then there exists § € RT™)\ {0} such that

(B;T()—T(€) <0, VEEE

(i) If E is compact and 1) ¢ E, then there exists 3 € RN \ {0} such
that

(B T(m) < W (BTN}

Proof. (i) Since E is polyconvex, if ¢ E then T(n) ¢ coT(E); in the case
n € OF then we get T'(n) € 8coT(E). In both cases, using the separation
theorem for convex sets we obtain the existence of 3 satisfying

(B;T(n) — X)) <0, ¥V X € coT(E),

and, in particular, for X € T(F) as desired.
(¢7) This stronger result can be obtained using the strong separation
theorem for the closed convex set coT(E). o
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As a consequence of the previous separation theorem we have the char-
acterization of a polyconvex set given in the following result. This is an
extension of the classical version for convex sets which ensures that a closed
convex set is the intersection of the closed half-spaces containing the set.

Theorem 4.2. A compact set E C RNX" is polyconvez if and only if

E={£ e RV*": (&) >0, for every quasiaffine ¢ with wg >0}

Proof. Let E be a compact polyconvex set and & be such that ¢(&) >0
for every quasiaffine ¢ satisfying pjg > 0. We will see that & € E. If this
was not the case, then, from Theorem 4.1 (3¢},

(BiT(%)) <e< if{(BTEN}

for some g € R™(N™)\ {0} and ¢ € R. Defining C = ¢ — infeeg{(8; T(€))}
and the quasiaffine function

$(&) = (6; T(§)) + C — (B; T (&)

we get a contradiction since ¥(£o0) = C' < 0 but, since ;g > 0 we should
have ¥(&) > 0.
The reverse inclusion is evident. O

5. Generalized convex hulls

Having defined the generalized notions of convexity, we are now in position
to introduce the concepts of generalized convex hulls. We follow the same
procedure as in the classical convex case.

Definition 5.1. The polyconvez, quasiconvez, rank one conver and sepa-
rately convexr hulls of a set E C RVX™ are, respectively, the smallest poly-
convex, quasiconvex, rank one convex and separately convex sets containing
E and are respectively denoted by Pco F, Qco E, Rco F and Sco E.

From the discussion made in Section 3, the following inclusions hold:
ECScoE CRcoE CQeoE CPcoE CcoE.

As we note below (cf. Remark 5.2) there are some authors who have
adopted other definitions for the rank one convex hull, but this one is more
consistent with the convex case. Besides, with the above definitions one
has the following result (cf. Dacorogna-Marcellini [5]) whose proof follows
in a straightforward manner from Theorem 5.5 below.



115

Proposition 5.1. Let E be a subset of RNX™ and xg be its indicator
function. Then

Pxg = Xpewo E
RXE = XRco E
SXE = XSco E

where Pxg, Rxg and Sxg are, respectively, the polyconvez, rank one con-
vez and separately convexr envelopes of xg.

In the following we will give some representations of the hulls defined above.
We start giving two characterizations of the polyconvex hull of a set. The
second one, which has been proved in Dacorogna-Marcellini [5], is a conse-
quence of Carathéodory theorem and is the equivalent to what is obtained
in the convex case.

Theorem 5.1. Let E C RY*™. Then
(i) Pco E = n(co T(E) N T(RV*")),

(i) Pco E =
T+1

{eeRY™: T(€) = STAT(E), & € B, (M, Argt) € Arn .
=1

In particular, if E is compact, then Pco E is also compact and if E is open,
then Pco E is also open.

Proof. (i) We prove the first representation of Pco E. It is clear that
Pco E C w(coT(E) N T(RY*™)). For the other inclusion we start noting
that, since Pco F is polyconvex, by definition,

Pco E = n(K N T(RY*™))

for some convex set K ¢ R™N™)., Since E C Pco E, K must contain T(E)
and, consequently, must contain coT(E), from that the desired inclusion
follows.

(i) For this second representation of Pco F, denoting by Y the set on the
right hand side, it immediately follows, from the definition of polyconvex
set, that ¥ C Pco E. Moreover, one easily verifies that Y is a polyconvex
set containing E which implies that PcoE C Y.

For the assertion concerning compact sets, it is trivial that Pco F is
bounded if £ is compact. Let then £, € Pco E with £, — £. By the first
representation of Pco E, T(€,) € coT(E), which is a compact set since
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T(E) is compact. Then T(¢) =limT(¢,) € coT(F) and thus £ € Pco E as
wished.
Finally, it can be seen, using an inductive argument, that, if
T+1

T(§) =Y _ AT(&),
=1

for some £,&; € RV*™ and (A1, ..., Ar41) € Ary1, then
T+1

TE+n) =Y MNT(&+n), ¥neRV™
i=1
From this and (i3}, it easily follows that Pco E is open if E is open. O

We now give a different representation of the polyconvex hull, using the
separation results of the previous section.

Theorem 5.2. Let E C RV*" be such that Pco E is compact. Then
PcoE = {¢ e RNX™ . (€) > 0, for every quasiaffine ¢ with @|g > 0}.
Proof. The set in the right hand side is polyconvex and contains F, then it

contains Pco E. On the other hand, since Pco F is polyconvex and compact
then, by Theorem 4.2 we have

PcoE = {€ e RNX™: (¢) > 0, for every quasiaffine ¢ with ¥|PeoE = 0}.

Since any quasiaffine function ¢ with ¢ p, g > 0 verifies also @5 > 0, one

gets
{¢ e RNX™ ;. o(£) > 0, for every quasiaffine ¢ with g 20} CPcoE,
which finishes the proof. 0

We next give a representation for the quasiconvex hull, similar to (i) of
Theorem 5.1. This representation is however weaker than the one obtained
in the polyconvex case since we cannot obtain the representation formula
in a prescribed finite number of steps.

Theorem 5.3. Let E C RVN*™, Let QocoE = E and define by induction
the sets

Q E £ € RVX 3 R € O(n), ¢ € Wr such that
ir1c0E =< &€ n. ’
" ¢+ Dy(z) € Q;coF, a.e. z € RQ

Then Qco E = U;enQicoF.
In particular, if E is open, then Qco E is also open.

12>0
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Proof. By definition of quasiconvex set and by induction, we have
QicoE C Qco E, for every i and thus U;eyQicoE C Qco E. The reverse
inclusion follows from the fact that U;enQicoF is, as we will see, a quasi-
convex set.

Let R € O(n), ¢ € Wg and € + Dy(z) € U;enQicoE, ae. z € RQ.
One has

Do(z) € {n1,....,mx} a.e. z € R, with

meas{z € RQ: Do(z)=mn}>0, i=1,..,k.

Moreover, £ + n; € QqcoE for some a(i) € N.  Let s =
max{a(1),...,a(k)}. Since Q;coF C QiticoE, we have, for all i = 1, ..., k,
£+ m € QscoE. Thus € + Dp(x) € QscoF and, by definition, we get
£ € Qsp1c0F C U;enQicoF; the quasiconvexity of this last set follows.
Under the hypothesis of E being an open set, one easily gets, using
induction arguments, that each Q;coF is open. By the preceding represen-
tation of Qco E it follows that this set is also open. m|

The analogous representation for the rank one convex hull of a set is
given in the result below (for the proof, see Dacorogna-Marcellini [5] ).

Theorem 5.4. Let E ¢ RV*", Let RocoE = E and define by induction
the sets

=M+ (1-N\B, xeo,1],
R,H_lCOE:{gERanl 5 ( ) [ ] }, i > 0.

A,B € RicoE, rank(A-B) =1

Then Reco F = U;enRicoFE.
In particular, if E is open, then Rco E is also open.

Remark 5.1. (i) Similar construction and results can be obtained for
Sco E.

(ii) The last assertion of the theorem follows, as in the quasiconvex case,
from the fact that each R;coFE is open if E itself is open.

(iii) In general it is not true that rank one convex hulls or separately
convex hulls of compact sets are compact (see Aumann-Hart [1] and Kolar

[9).

We will now consider representations of the convex hulls through func-
tions as we can get in the convex case.
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Notation 5.1. Given a set E C RV*" we consider the following sets of
functions

Fp={f:R"*® 5 RU {+o0} : f]z <0}
Fg={f:RV*" - R: f|p <0}.

With the above notation, one has, for E ¢ RVX",

coE = {¢ e RN ™ f(£) <0, for every convex f € Fg} (4)
coE = {§ e RNXn: 7(¢£) <0, for every convex f € fE} (5)

where co E' denotes the closure of the convex hull of E.
Analogous representations to (4) can be obtained in the polyconvex,
rank one convex and separately convex cases. However, (5) can only be
generalized to the polyconvex case if the sets are compact (see Theorem

5.6). When dealing with the other notions of convexity, (5) is not true,
even if compact sets are considered.

Theorem 5.5. Let E C RV*™, then

PcoE={¢e RV*": £(€) <0, for every polyconvez f € FE}
ReoE={¢ e RVX™ . £(£) <0, for every rank one convez f € Fe}
ScoE = {¢ e RV*™ : £ (€) <0, for every separately conver f € Fg}.

Proof. We prove the first identity, the others being analogous. Let us
call X the set in the right hand side. Evidently X is a polyconvex set
containing £ and thus PcoE C X. Consider now £ € X. Since Xpeo E
is a polyconvex function of Fg, one has xpeo £(£) < 0 and consequently
¢ € Pco E obtaining the other inclusion. O

We next introduce some new sets which will allow a better understand-
ing of the closure of the different hulls.

Definition 5.2. For a set E of RV*™, let

cof E={¢eRY*": f(
Peos E = {¢ e RN*™: f(
Qeo; E = {€ e RV*™: f(

 f(
 f(

£€) <0, for every convex f € Fg}
&) <0, for every polyconvex f € F E}

£
3

Reos E = {¢ e RV*»
Scos E = {¢€ ¢ RV*™

)
)
£€) <0, for every quasiconvex f € F E}
) <0, for every rank one convex f € F, E}
)

<
<0, for every separately convex f € F E} .
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Remark 5.2. (i) As well known,
cofE=cokFE.

(ii) The above sets are all closed because any separately convex func-
tion taking only finite values is continuous. Besides, they are, respectively,
(according to our definitions) convex, polyconvex, quasiconvex, rank one
convex and separately convex.

(iii) Some authors (see, for example, Miiller-Sverak [12], Sverak [16],
Zhang [19]), when dealing with quasiconvexity and rank one convexity,
have adopted the above definitions for the hull of a set (in the generalized
senses). They call laminate convex hull what we have called Reco E.

(iv) As in Theorem 5.1, it can easily be shown that

Pcos E = m(cos T(E) N T(RV*™)).

We next see the relations between the closures of the convex hulls and
the sets introduced in the above definition.

Theorem 5.6. Given any set E C RV*" and denoting by PcoE, Qo E,
Reo £ and Sco E the closure of, respectively, the polyconvez, quasiconvez,
rank one conver and separately convexr hulls of E, we have

PcoE C Peos E

Qco E C Qco ¢+ E

RcoE C Reos E

ScoE C Scos E.

In general, the four inclusions are strict. However if E is compact, then

PcoE = PcoE = Pcoy E.

Remark 5.3. We call the attention to the fact that, contrary to what was
stated in Dacorogna-Marcellini [5] , in general, Pco E # Pcos E, unless E
is compact. We should also draw the attention (cf. Proposition 5.2) that
in general the sets PcoE, QcoE, RcoE, ScoE are not even separately

convex.

Proof. Since Pcoy F is a closed polyconvex set containing E then PcoE C
Pcos E. In the same way we get the inclusions for the quasiconvex, rank
one convex and separately convex cases.

We now deal with the fact that the inclusions are strict. The first one
follows (cf. Proposition 5.2 below) from the fact that there are polyconvex
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sets whose closure is not polyconvex though Pcoy F is always a polyconvex
set. If we assume E to be compact then we have, as we will see,

Pco E = PcoE = Pcof E.

By Theorem 5.1, in this case, Pco F is compact and then PcoE = Pco E.
We will prove that Pcof E ¢ PcoE. We start noting that, since E is
compact, T(E) is compact and thus coT(E) is also compact. Considering
¢ € Pcoy E then, since the function  — dist(T'(n), co T(E)) is a polyconvex
function, dist(T(¢),coT(E)) = 0. Since coT(E) is closed, we can deduce
that T(§) € coT(E) and thus, £ € Pco E.

Next we use an example due to Casadio [2] (or equivalent examples by
Aumann-Hart [1] and Tartar [17]) which will give at once Qco £ g Qco,; E,

Rco B g Rcoy E and ScoF g Scos E. The second non inclusion was

already observed in Dacorogna-Marcellini [5] . Consider the following four
diagonal matrices of R2%2

51 = dlag(_l’ O)a 52 = dlag(L _1)y 63 = dla'g(27 1): £4 = dlag(()’ 2)

Since rank(&; — &;) = 2 for i # j, the set E = {£1,&2,&3,&4} is rank
one convex. It is also quasiconvex, the argument is the same as in the
proof of Theorem 3.2, assertion (4¢) of Part 2, here using the non existence
of non-affine Lipschitz functions whose gradient takes four possible values
with no rank one connections (cf. Chlebik-Kirchheim [3]). However, any
separately convex function f € Fg and consequently any rank one convex
or quasiconvex function in Fg, has f(0) < 0 (see [5]). Thus 0 € Scof E,
but 0 ¢ QcoE. O

We can write

ScoEE CRcoE C QeoFE CPcoE CcoE =cos E

and also
Scoy E C Reog E C Qecoy E C Pecoy E CcoE =coy E.

Moreover, the same example and arguments used in the proof of Theo-
rem 5.6 (see also Proposition 5.2) shows that, in general,

Sco E ¢ RcoE,  ReoyE¢QcoE  and  Qco; E ¢ PeoE.

However, if E' is compact one has Qco; E C Pco E.
We draw the attention to the fact that several characterizations of the
sets in Definition 5.2 have been used in the literature according to the
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specific needs of each situation. These sets can be written in terms of
measures (cf. Kirchheim [8], Miiller [11]) or using the distance function (cf.
Zhang [18]): if E ¢ R¥*™ is compact, then

Qeos E = {¢ e RV*™: Qdist(¢, E) =0},

where Qdist(-, F) is the quasiconvex envelope of the function dist(-, E).
We next prove, as already mentioned in Remark 3.3, that the interior of

generalized convex sets keeps the convexity (in the generalized sense), but

that, contrary to the classical convex case, this is not true for the closure.

Proposition 5.2. (i) Let E C RVNX™ be, respectively, a polyconver, qua-
siconver, rank one conver or separately conver set. Then intE is also,
respectively, polyconvex, quasiconvex, rank one conver or separately con-
vex.

(i) There is E C R?*2 g polyconvex and bounded set such that E is not
separately convez.

Proof. (i) We present the proof in the context of polyconvexity. For
the other convexities the proof is analogous. It is sufficient to prove that
Pco(intE) = intE. The non trivial inclusion is Pco(intF) C intE. Since I
is polyconvex, evidently

Peo(intE) C Pco E = E. (6)

On the other hand, intE is open and thus (cf. Theorem 5.1) Pco(intE) is
also open. From (6), it follows then the desired inclusion.

(#4) We define
p={x(gy): 0<2<1}.
Oz

It is a bounded set and E is not separately convex. In fact, let & =
diag(1,0) and ¢&; = diag(—1,0), one has £1,& € E, but A1 + (1 —N)&; ¢ E
forany 0 < A < 1.

We now show that E is polyconvex. Let &, ...,&s € E and suppose

6
T(€) =D MT(&), for some (g, ..., As) € As. (7

i=1
We have to see that £ € E. We can write {1,...,6} = I, UI_ for some I
and I_ such that

10 ... (=10 o
&—(Oxi) 1fz€I+and£i—(O —ﬂfi) ifiel_,
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where 0 < z; < 1, 1 =1,...,6. In any case det§; = ;.

If I, = 0 or I_ = { then it is clear that £ € E. We will see that the
other case: I, # { and I_ # 0, is not an admissible one. In fact, from (7),

we can write
PRI PR 0

£ = iely i€l _ (a 0)
i€l iel_
6
and deté = aff = Z’\ixi'
i=1
Then o] < 0_ =1, 8] < Z?=1 Aiz; and thus |af| < Zle Aii,
which is a contradiction. O

6. Extreme points

An important tool in convex analysis is the notion of extreme point. In
a straightforward manner we can define it for generalized convex sets as
follows (cf. Dacorogna-Marcellini [5] ).

Definition 6.1. (i) If E C R™ is convex, £ € F is said to be an extreme
point of E in the convex sense if

E= X1+ (1=
A€(0,1), &, € F

For an arbitrary set E C R™, the set of extreme points of co E will be
denoted EZ,,.

(ii) If E ¢ RV*™ is polyconvex, ¢ € E is said to be an extreme point of
E in the polyconvex sense if

T+1

T(€) => AT(&),
i=1

}=>€1=£2=£-

=&=€1=1,...,7+1.
ALy Arg1) €Ary1, i >0, & €E

For an arbitrary set E C RV*™, the set of extreme points of Pco E will be

denoted EY,,.

(iii) If E c RV*" is quasiconvex, ¢ € E is said to be an extreme point
of E in the quasiconvex sense if

€+ Dy(z) € E, a.e. z € RQ,

= Dp =0.
@=(0,1)", Re O(n), ¢ € Wr
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For an arbitrary set E C RV*", the set of extreme points of Qco E will be
denoted EZ ,.
(iv) If E ¢ RV*™ is rank one convex, ¢ € E is said to be an extreme

point of E in the rank one convex sense if

E=X01+ (1 - A& }
=&

=& =¢
AE (Oal)a 51752 € Ev ra‘nk(£1 - 62) <1

For an arbitrary set E C RV*", the set of extreme points of Rco E will be
denoted E7,,.

(v) If E C R™ is separately convex, £ € E is said to be an extreme
point of E in the separately convex sense if

E=Xa+(1-N)é
Ae(0,1), &,&€E, & -6 =se;, =& =86=¢
with s € R and e; a vector of the canonical basis of R™

For an arbitrary set £ C R™, the set of extreme points of Sco E will be
denoted E?

ert:

We next see the relations between the sets of extreme points for the
different notions of convexity.

Proposition 6.1. Let E ¢ RVN*", Then

ert C EYy C B C Egy C ES CE.

Proof. The non trivial inclusions are those related to EZ,,, the set of
extreme points of Qco E, but it can be obtained with the same argu-
ments used in the proof of Theorem 3.2, Part 1, and we opt not to repeat
them. O

Minkowski theorem (often better known as Krein-Milman theorem
which is its infinite dimensional version) assures that the convex hull of
a compact set coincides with the convex hull of its extreme points. We
next deal with the generalization of this result to the other convexities. We
start with the polyconvex case (see also Dacorogna-Tanteri {6]).

Theorem 6.1. Let E C RVX™ be q compact set. Then

PcoE = Pco EY,,.
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Proof. One inclusion is trivial: Pco E%,, C PcoE, since Ef, C PcoE.

We will next show the reverse inclusion. We start remarking that
Pco E = w(coT(E) N T(RY*™))
Pco E?,, = m(co T(EE,,) N T(RN*™)).

ert

Let £ € Pco E. We will see that £ € Pco EY,,. By the above characteri-
zation of Pco E we have T(€) € coT(E). Moreover, by Minkowski theorem,

and using the fact that T(F) is compact, we have
coT(E) = co(T(E)cze),

where T(E)¢,, is the set of extreme points of coT(F) (in the convex sense).
We will next prove that

T(E)Zzt - T(Egzt)’

which will finish the proof.
Let then X € T(F)S,,. In particular, X € T(F) and we can write
X = T(n) with n € E. It suffices then to see that n € EF ,. Suppose that

exrt:
7+1

T(n) = Z AT (ns)
i=1

for some (A1,...,Ar4+1) € Ary1, As > 0, n; € Pco E. Noting that, since
7; € Pco E then T'(n;) € coT(E), it immediately follows, from the fact that
T(n) is an extreme point of coT(E), that n; = 7 for every i, that is to say
7 is an extreme point of Pco E. The proof is finished. O

As remarked in Kirchheim (8], the result above is not true for quasicon-
vex, rank one convex or separately convex hulls (see Example 6.1 below).
Even though, for these cases, a weaker result can be proved {cf. Theorem
6.2). We reproduce the proof of Matou3ek-Plecha¢ {10], which is also seen
to apply to the quasiconvex case. See also Zhang [18] for the quasiconvex
case.

Theorem 6.2. Let E C RNX" be a bounded set and E%Y,, ETI. E:I,
denote, respectively, the set of extreme points of Qco; E (in the quasiconvex
sense), the set of extreme points of Rcoy E (in the rank one conver sense)
and the set of extreme points of Scoy E (in the separately convex sense).

Then
Qco; E = Qco; EY, Rcos E = Reos Ef, and Sco; E = Sco; B

exrt ext*
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Proof. We divide the proof in two steps. The first is common to the three
convexities and we present it in the context of quasiconvexity. In the second
step we consider separately the quasiconvex and the rank one convex cases
(this last being analogous to the separately convex case). In all what follows

we will denote by EZL the closure of EZ/,
Step 1. We remark that, for any set K ¢ RVNX" since Qcoy is au-
tomatically closed, Qcoy K = Qcoy K. Thus, it is enough to prove that
Qco; E = Qcos EZL. The inclusion Qcoy -E_th C Qcoy E is trivial. It
remains to verify the reverse inclusion. We use a contradiction argument.
Suppose there is some 7 € Qco; £\ Qcoy th, then, by definition, there
exists a quasiconvex function f : RV*" — R with f € Fgas , such that
ext
f(m) >0.
Now let

M = max f and A={£e€Qcos E: f(&)=M}.
Qco; E
This set is nonempty and compact (since Qcoy E is compact and f is a
continuous function). Thus, considering R¥*™ with the lexicographic order
(the elements of RV X" being seen as vectors) one can consider the maximum
element of A, say &. We have &, ¢ E%. which follows from

ext?

0< f(n) < QIg%;XEf =M = f(&).

As we will see in Step 2 this will lead to the existence of an element in
A greater than £y for the lexicographic order, which is absurd.

Step 2. Quasiconvez case. Since &y € Qcoy E \E¥, there are R € O(n)
and ¢ € Wg such that

£o+ Dy(z) € Qeos E, a.e. z € RQ, with Dy # 0.
We can write
Dy(z) € {£1,...,&} and A; = meas{z € RQ: Dy(z) =&} > 0.

Since &o + & € Qco; E, we have f(§o + &) < M. Consequently, by the
quasiconvexity of f we get

k
M= 1)< [ fEo+Dola)ds = 3 Mfito+6) < M
=1
implying f(& + &) = M, i = 1,...,k that is & + ¢ € A. Finally, from
the fact that Dy # 0 and 0 = [, Dy(z) dz = 3.5, Mi&; we conclude that
among the elements &, + £; there must be at least one which is greater
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than & (in the lexicographic order) which contradicts the fact that & is
the maximum element of A.

Rank one convex case. We recall that in this case the function f is a rank
one convex function. Since & € Rcoy E \ EL7,, there are 11,72 € Reof E,
with rank(m1 — 72) < 1 such that & = Ay + (1 — AN)ne and & # m1,
& # 1. As in the quasiconvex case we get f(m) = f(n2) = M and from
&0 = Ay + (1 — A)ng it follows that n; or 73 must be greater than &y, which
is a contradiction. O

As observed by Kirchheim (8], the example of Casadio [2] (or those of
Aumann-Hart [1] and Tartar [17]) considered in the proof of Theorem 5.6
shows that, in general,

QcoEl,, #QcoE, RcoEl,# RcoE and ScoE?,, # ScoFE.
ext ext

Example 6.1. We consider a set of diagonal matrices which we identify
with elements of R2. In particular, rank one convexity and separate con-
vexity coincide.

Let
E=FE UEUE;UE,UEs,
where
Ei={(z,y) €R?: 0<2<1, 0<y <1},
Ey={(z,1)eR?*: 1<z<2}, Ez3={(0,y)eR?: 1<y<2},
Ey={(z,0)eR?: -1<z<0},E5={(l,y) e R?: -1 <y<0)}.

Note that E is a compact rank one convex set and

emt ezt = {517'}32763, §4}

where

61 = (_1’0)7 52 = (1’ _1)7 63 = (2’ 1)7 54 = (0’2)

Thus, since there are no rank one connections between the elements
&y Qoo EY,y = EJ,y and Reo B, = E7,,. However, EL,, C ET,, G E =
RcoF C Qo E.

ext

In Dacorogna-Tanteri (6], it was also proved the existence of the Choquet
function for the polyconvex case. The result is the following.
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Theorem 6.3. Let E C RM*™ be a nonempty compact polyconvex set.
Then there exists a polyconvez function ¢ : RNX™ — RU {400} such that

EY.,={z€cE: p(x)=0} and (z)<0&z€kF.
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NOTE ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO AN ANISOTROPIC CRYSTALLINE CURVATURE FLOW
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Ebinokuchi, Tsuchiya, Akita 015-0055, Japan
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The motion of closed polygonal curves in the plane moving under anisotropic crys-
talline curvature flows is investigated. It is known that the flow develops a sin-
gularity in finite time. We will discuss various kinds of situations of singularities,
especially for convex curves. For nonconvex curves, a simple but suggestive exam-
ple of singularity will be showed.

1. Introduction

In this paper we study the motion of shrinking polygonal curves in the plane
R?, which is governed by an anisotropic crystalline curvature flow. Crys-
talline curvature flows were introduced by J.E. Taylor [20] and S. Angenent
and ML.E. Gurtin[4] (precise history is found in e.g., [1]). They established
a new flamework of moving curves in the case where an interfacial energy
density, defined on the curves, is not smooth and its Wulff shape is a convex
polygon.

Crystalline curvature flows are formulated as follows: Let P be a simple
closed curve in R2, and let f(n) be an interfacial energy defined on the
unit circle S* = R/27Z, i.e., f is a function of inward unit normal vector n
of curve P. The gradient flow of total interfacial energy on P, fp f(n)ds,

*e-mail: tisiwata@cc.gifu-u.ac.jp
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yields a weighted curvature flow v = (0 + ¢”/)K. Here ds is an arc-length
parameter, v is a velocity in the n direction, K is a curvature in the n
direction (K =1 if P is a unit circle), and o(f) = f(n) (6 is a normal angle
which satisfies n = —(cos 6, sin 8)). We denoted ¢” = d%0/d6?.

If the Wulff shape of o, defined by W, = Mg {(z,y) € R? |z cosd +
ysind < o(6)}, is a convex polygon, then o is not differentiable and the
weighted curvature flow v = (¢ + ¢”)K is not well-defined in the usual
sense. In this case, f = ¢ is called crystalline energy. When W, is an
N,-sided polygon (N, > 3), its normal angle’s set is defined as

®y, = {00, 01, VN, -1},

where ¢, € S! is a normal angle of the n-th edge satisfying @o < @1 <
- < PN, -1 < o + 2m with ©pt1 — @ < 7 for all n (pn, = @o mod 27).
Then the Wulff polygon W, can be restated as follows:

W, = ﬂ {(z,y) € R?|zcosp +ysiny < a(p)}.
PEdN,

When o is a crystalline, we restrict curves to piecewise linear curves
in a specific class in the following way: A curve P has N vertices (x;,y;)
(7 = 0,1,...,N — 1), which are labeled in an anticlockwise order with
(2n,yn) = (@0, 30). Let &5 = {(1 —)(z5,9;) + tzj11,9541) |0 <t < 1}
be the j-th edge of P. Then we may express P as P = U " S Let 8;
be a normal angle of S;. We say that P is an N -admzsszble curve if the
all normal angles belong to &, and the angles of adjacent edges in P are
adjacent in ®n, (In = 6y mod 27).

For an admissible curve P, the total interfacial crystalline energy is given
by Z =0 Lo (05)d; (d; is the length of S;), and then the gradient flow (in the
family of admissible curves) of this yields v; = x;l,(0;)/d;, where v; is a
normal velocity at S; in the inward normal direction n; = —(cos 8;,sin6;),
l5(0;) is a length of the n-th edge of W, satisfying ¢, = 6;, and x; is a
transition number, which takes +1 (resp. —1) if P is convex (resp. concave)
at S; in the n; direction; otherwise we set x; = 0. The quantity

is called crystalline curvature, and then v; = H; is called crystalline cur-
vature flow. Note that x; = +1 for all j if P is a convex polygon, and that
the every crystalline curvature of W, equals +1 on each edge.
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In this paper we consider the following generalized crystalline curvature
flow

v = a(b;)x;1H;|* on Sj, (1)

for j =0,1,...,N—1, where o is a positive parameter and a(6) is a positive
function which describes anisotropy of mobility.

Under the generalized crystalline curvature flow, each edge S; keeps the
same normal angle but moves in the n; direction with the velocity v;. Then
we have the following system of ordinary differential equations

Yi—1 _ Yji+1
sin(0; — 6;-1)  sin(6;41 — 6;)’

d;(t) = (cot(B;41—0;)+cot(f;—0;_1))v; —

for j =0,1,...,N — 1. Here and hereafter we denote () = d(-)/dt. See,
e.g.,, M.E. Gurtin [11]. The local existence and uniqueness of solutions of
this problem follow from a general theory of system of ODEs. Therefore,
if the initial curve P(0) is admissible, then the admissibility of a solution
curve P(t) is preserved as long as all edges of the solution curve exist.

In this paragraph let us “decompose” the quantity H; as follows. The
following operator on R™= is useful for this or other purposes: When @, =
6;, we define v,(¢,) by

1 —cos(p, — @n_ 1 —cos{pnyr —
’YU((Pn) — : (Lp ¥ 1) : ((P +1 (PTL) >0
sin(pn — pn-1) sin(@n+1 — ¢n)

and define the operator A, by

D+ u)n — (D+ U’)"—l, (D+ u)n = — Un+l — Un )
Yo (n) sin(@n+1 — @n)

Note that {¢,-1,0n+1} = {0;-1,0;+1}. Thus we have {,(6;) = v,(6;)(c +
Ay 0); with o; = 0(6;). Therefore we can decompose curvatures into
H; = (0+A,0);Kj and K; = x;j7,(05)/d;. K; is sometimes called discrete
curvature. The correspondence K; ~ K and (0 + A, 0);K; ~ (0 +0")K
are not only discrete analogue but also approximation when N, — oo,
respectively. This is the reason why crystalline curvature flows are used as
approximation scheme of curvature flows of smooth curves (see, e.g., [6],
[8], [9], [21] and [22]).

The organization of this paper is as follows. In Section 2, several results
will be shown in the case where the initial curve is a convex polygon. The
theoretical results will be mentioned in the former half. We will consider
the sublinear case o € (0, 1) mainly and show a blow-up rate in degenerate
pinching (defined below) case. In the latter half, we will discuss some open

b

(Bgu)y =
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problems. In Section 3, we will show an example of singularity in the case
where the initial curve is a nonconvex. In Appendix, we will mention a
numerical algorithm which is based on the numerical estimating method.

2. Convex case

A convex polygon is admissible if and only if N = N, holds and 6; = ¢;
holds for all j € Z = {0,1,..., N —1}. Then evolution equations are given
by
d]’(t) = "70'(01')(Aa v+ U)jr JEI,

where v; = a(0;)Hj is the j-th normal velocity with a positive crystalline
curvature H; = [;(0;)/d;. We note again that the normal angle of each
edge does not change under the crystalline curvature flow. Therefore, if
the initial convex polygon P(0) is admissible, then the admissibility and
convexity of a solution polygon are preserved as long as the solution polygon
exists.

The above evolution equations can be restated as the following system
of ordinary differential equations with respect to {v;}:

0;(t) = ab; Y%tV HA v o)), e, t>0,
(P) uN(t) = vo(t), v_1(t) = vn_1(t), t>0,
v;(0) = a(8;)H;(0)°, jeT.

Here b;’s are positive constants given by b; = a(6;)(d + A, 0)§ (note that
v; = b; K and K; = v,(0;)/d;), and H;(0) is the crystalline curvature of
the j-th edge S; of the initial polygon P(0).

It is known that for any initial admissible polygon, the maximum of
solution {v;} blows up to infinity in a finite time, say 7. This means
that for any initial admissible polygon, the maximal time of preserving the
admissibility is finite and this flow develops a singularity at t = T'.

M.-H. Giga and Y. Giga [7] showed the detailed information on limiting
shape at the final time T: if ¢ > 1 or there are no parallel edges, the
solution polygon P(t) shrinks to a single point, i.e., d;(t) — 0 as t — T for
all j € Z; and if o € (0, 1) and there exists at least one pair of parallel edges,
the solution polygon P(t) shrinks to a single point or collapses to a line
segment with a positive length. The latter phenomenon is called degenerate
pinching. B. Andrews [2] gave a sufficient condition of degenerate pinching.
In any case, the enclosed area of a solution polygon becomes zero at the
final time 7'. See Figure 1 for numerical examples of single point extinction
and degenerate pinching.
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()

Figure 1. Single point extinction (a)(c) and degenerate pinching (b)(d). In each
figure, the initial polygon P(0) is the outmost hexagon (N = 6), and from outside
to inside, time evolution of P(t) is plotted. The initial polygons in (a), (c) and
(d) are all the same regular hexagons (i.e., d;(0) = const. for all j) and the
initial polygon in (b) is not a regular hexagon with do = d2 = d3 = ds and
dy = d4 = 4dy. The parameters are the following: in (a) and (b), & = 0.5 and
b; = const.; in (c), o = 1.5 and bg = by = b3 = bs and by = by = 5bo; and in (d),
a = 0.5 and b;’s are the same as in (c).

Blow-up rate

We will characterize blow-up rate of solutions. As mentioned above, in
single point extinction case v;(t) blows up for all j since d;(t) vanishes at
t = T simultaneously for all j (case Figure 1 (a)(c)), and in degenerate
pinching case vny(¢) is bounded since lim inf;—, 1 dmax(t) > 0 holds (case
Figure 1 (b)(d)); while lim;—,7 vmax(t) = +o0c always holds (this is proved
from liminf; .7 dnin(t) = 0). In general, vy (t) and viax(t) are estimated
from above and below by a specific blow-up rate, respectively, as follows
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(see [19] in case a = 1, and its generalization [18]):

Umin(t) < brln/a()?_‘_l)((a + 1)(T - t))—'a/(a-f-l),
'Umax(t) > b:r‘/igla+1)((a -+ 1)(T _ t))—a/(a+1)_

Here and hereafter, we use the notation umax and umiy for max;ez u; and
min;er uj, respectively.

This result implies that the generic lower bound of blow-up rate is (T'—
t)~/(et1) | Moreover, if & > 1, then there exists a positive constant C
such that vmax(t) < C(T — t)“"‘/(““), that is, the blow-up rate in the case
a > 1isexactly (T—t)~%/(@+1) (see [2]). The order (T —t)~*/(>+1) gpecifies
blow-up rate in the following sense: If b; = 1 for all j € Z, then v;(t) =
((a + 1)(T — t))~*/(>+D is a special solution of (P) and a corresponding
solution polygon shrinks to a single point homothetically. This is called
self-similar solution.

Using this order, blow-up solutions can be classified as follows: We say
that the solution undergoes a “type I blow-up” if the blow-up rate of the
maximum of solution {v;} is at most the self-similar rate, that is,

SUP Umax(£)(T — t)"‘/(o‘“) < 00, (2)
0<t<T
and that the solution undergoes a “type II blow-up” if (2) does not hold.
A type II blow-up is sometimes called fast blow-up, because a solution {v;}
undergoes a type 1I blow-up if and only if

lim sup vmax (8)(T — t)a/(““) = 0.
t—T

If o > 1, the problem (P) has no fast blow-up solutions, that is, a type
I blow-up occurs only, and if @ = 1, a type I and a type II blow-up are
intermixed [2]; while if & > 1, a solution polygon shrinks to a single point
[7], even if a type II blow-up occurs. In general, the next lemma holds:

Lemma 2.1. Let o > 0. If a solution {v;} of (P) undergoes a type I
blow-up, then the solution polygon shrinks to a single point.

From this lemma, it holds that if degenerate pinching occurs, then a
type II blow-up occurs. If o € (0,1), and if the initial admissible polygon
P(0) has at least one pair of parallel edges and a distance between them
is sufficiently small compared with length of the edges, then degenerate
pinching occurs [2]. Hence, by this lemma, a type II blow-up solution
exists if @ € (0,1). The next proposition is the lower bound of a type II
blow-up rate when degenerate pinching occurs.
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Proposition 2.1. Let o € (0,1). Suppose that there exists a pair of parallel
edges Sj, and S;,, and that they do not disappear at the final time T, then
for all § # jo,j1 the solutions v; blow up to infinity at least the following
rate:

vj(t)ZO(T_t)—aa j#jOvjla te [O;T)a
for a generic constant C > 0.

Under an additional condition on monotonicity of a solution, we obtain
the exact type Il blow-up rate in degenerate pinching case.

Proposition 2.2. Assume
(A) (Ao v(0) +v(0)); >0, jeT.

Let a € (0,1). Suppose that there exists a pair of parallel edges Sj, and
S;,, and that they do not disappear ot the final time T, then it holds that

vJ(t) ~ (T - t)_a7 .7 7é jovjl, te [07T)

Here and hereafter, u ~ w means c;u < w < cyu for generic constants
c1 > 0and ¢c; > 0.

Lemma 2.1 and Proposition 2.1 and Proposition 2.2 were proved in
[17] (with the Wulff shape being regular) and in [18] (in general case),
respectively.

In our knowledge, the above results (in case a € (0,1)) and several
results (in case @ = 1) in [2] are only known about type II blow-up, and
then its rate has not been completely classified. In addition, existence
of type II blow-up solutions in single point extinction case, especially for
« € (0,1), is still open problem.

Discussion

We will discuss “possibilities” of behavior of type I blow-up solutions. Note
that the condition (A) leads the monotonicity of the solutions by maximun
principle, that is, v;(¢) > 0 for all j € 7 and t > 0. By the same argument,
we can easily obtain that if the following condition

(EM)  (Asv(to) +v(t0)); 20, jeI,

holds for some time t = ¢, > 0, then ¥;(¢) > 0 for any j € Z and ¢ > ?o.
For curve-shortening problem v = K (in case o(§) = 1 for 8§ € S on
smooth curves), it is shown that the solutions eventually become mono-
tone increasing in time (so-called “eventual monotonicity”) under certain
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conditions on initial data ([3]). What is the initial condition that has such
eventual monotonicity hold? This is an open problem. However, the fol-
lowing lemma holds.

Lemma 2.2. Suppose that the Wulff shape has no parallel edges. Then
type II blow-up solutions do not satisfy (EM) for any ty > 0.

Sketch of Proof. Assume that there exists a type II blow-up solution which
satisfies (EM) for some tg > 0. We can prove the same assertion as in
Theorem 4 and Corollary 3 in [18] under the condition (EM), from which it
follows that there exists at least one pair of parallel edges. This contradicts
the assumption on the Wulff shape. 1

When the Wulff shape has no parallel edges, single point extinction only
occurs, that is, all v;(¢) blow up. However, this lemma says that for any
t > 0 there exists j; € 7 such that 0;,(t) < 0. Namely, this lemma indicates
that, in this case, all type II blow-up solutions “oscillate” infinite many
times near the blow-up time. Is there such a blow-up solution? This is an
open problem. And the blow-up rate of type II solutions in single point
extinction case, especially for & € (0, 1), is also still open.

Next, let us consider the case where the Wulff shape has at least one
pair of parallel edges &;, and &;, and, in addition, degenerate pinching
singularity occurs. Assume that S;, and S;, do not disappear at t =T, and
lim,_,7 d;(t) = 0 holds for j # jo,j1. The distance function w(t) between
Sjo and 5;, in their normal direction is given by w(t) = 3>, ., ; d;|sin6;|.
Then we have

w(t) £ C( min Uj)_l/"‘.
FES
On the other hand, since —(t) = vj, + v;, holds, and v;, and v;, do not
blow up, we have w(t) ~ T — ¢t. Thus we have
min v; KC(T —t)™%
J#jo,f1
By virtue of Proposition 2.1, we get the following lemma.

Lemma 2.3. Let o € (0,1). Suppose that there exists a pair of parallel
edges S;, and S;,, and that they do not disappear at the final time T, then

min v; ~ C(T —t)™%.
J#joir

This lemma says that the slowest blow-up rate is exactly (T'—t)~*. If the
solutions satisfy (EM) at t = t5 > 0, we can get the upper estimate v;(t) <
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C(T—t)~* by the same argument as in the proof of Proposition 2.2. If (EM)
does not hold, then vmax(t) could blow up faster than (T —t)~*. Therefore,
blow-up set may decompose several parts by blow-up rates. By numerical
conjectures in [15], even if there exist such type II blow-up solutions, the
upper bound of their blow-up rate is at most (T'—t)~*~¢ for any £ > 0. The
numerical method for blow-up solutions is based on [13,14]. For reader’s
convenience, we will mention the algorithm of this numerical scheme in
Appendix.

3. An example of degenerate pinching singularity in
nonconvex case

When the initial admissible curve is nonconvex, the asymptotic behavior
of the solution curve, especially on limiting shape, may have variety, which
is a contrast to the convex case: Convex solution curve shrinks to a single
point or a line segment. We will show an example of variety later, in which
a solution curve shrinks to the specific shape other than a point and a line
segment. This example will indicate difficulty of convexity criterion. In
general, if @ > 1 and o(0 + 7) = o(f), a(d + 7) = a(f), then a solution
curve with an N-admissible initial curve converges to a single point or an
N'-admissible curve with N’ < N as t tends to ¢ < oo, and eventually the
solution curve shrinks to a single point in a finite time T' > ¢ ([7]). Although
it seems that a solution curve becomes convex before it shrinks to a point
at the final time T ([7]), it is known that some examples of point-extinction
solutions preserving non-convexity ([16] and Remark 3.2 stated below). A
gap is recognized in between these results, and so convexity criterion is
ambiguous at this stage. For a smooth interfacial energy density o, the
Grayson-type convexity theorem is known ([10] and [5]).

Now we will show an example of a “capital L”-shaped (L-shaped in
short) degenerate pinching singularity. Let the Wulff shape be a square
(N, = 4) with ¢, = mn/2 and l,(pn) = 1 for n = 0,1,2,3, and let
the initial curve P(0) be a 6-admissible elbow-like curve with 6; = ¢;
(7=10,1,2,3) and 0; = ¢;_4 (j = 4,5). We assume symmetry of P(0) such
as do(O) = d5(0), dl(O) = d4(0) and dQ(O) = d3(0) = do(O) + dl(O) See
Figure 2.

Suppose « € (0,1), and a(p,) = ¢ > 0 for n = 0,1 and a{p,) =1 for
n = 2,3. Then, from the symmetry of P(0), we have the following evolution
equations:

dy = —dz%, dy= —pdy® —dy®,



138

do(0)

do(0) + d1(0)

/

d2(0)

\

Figure 2. The Wulff square W, (left) and the initial symmetric 6-admissible
elbow-like curve P(0) (right).

since v; = a(0;)x;d; “, and da(t) = do(t) + d1(¢) for ¢t > 0.
Let us analyze the evolution equations. Put da(t) = r(t)di(t). Note
that 7(0) > 1. Then we have

o= d;(Ha)f(r), f(r)= rlme =y

Since f(1) = —p < 0, f'(r) > 0, f’(r) < 0 and lim,_,o, = oo, there
exists r. > 1 such that f(r) > 0 if » > r,. Therefore, if r(0) > r,, then
7(t) > 0 and so r(t) > r, for any t > 0. Moreover, if r(0) > r,, then
we get dy > —(u + r(0)~*)}d7®. Inequality p + v(0)~* < 1 holds if and
only if y € (0,1) and r(0) > (1 — u)~¥/*. Hence we have dy > —dj®
if 7(0) > max{r, +¢,(1 —p)~1/*} for any € > 0 and p € (0,1). From
dy = —d5“, we have

dy%dy > d7%d).
This yields
da(8)' ™% > da(0)' 7% 4 di ()" 7% — d1(0)'7* = dp(0)'7* — dy (0)' 7 >0,
from which it follows that
da(t) > (dg(0)1=% — dy(0)1~*)Y/ (=) = ¢y > 0.

On the other hand, we have

dy = —d;* < —dy(0)™°.
Hence it holds that

d1(t) < dy(0) —t/d2(0)*.

Now we have the following:
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+—ai

Figure 3. An L-shaped degenerate pinching singularity under the same assump-
tion as in Lemma 3.1 with o = 1/2, p = 1/v/6 and do(0) = d5(0) = 2,
d1(0) = d4(0) = 1, d2(0) = d3(0) = 3. The outmost curve is the initial elbow-like
curve. The solution curve evolves from outside to inside and finally it converges
to an L-shaped curve.

Lemma 3.1. Assume that o € (0,1), p € (0,1) and that d2(0)/d;(0) >
max{r, +¢, (1 —p)~*} for any fired ¢ > 0, where r, > 1 satisfies f(r,) =
0. Then there exists T > 0 such that lim;_,7 d;1(t) = 0 and infocicT d2(t) >
Co hold.

Remark 3.1. One can estimate r, such as 7, < (1 + u)/2~%) and so if
d2(0)/d1(0) > max{(1 — )~ (1 4 p)1/(1=*)} held, then it is enough.

This lemma shows that the limiting shape of P(t) is an L-shaped curve.
See Figure 3. Furthermore, one can easily obtain the extinction rate or the
blow-up rate of solutions as follows: From Cp < da(t) < d2(0), we have
dy ~ —1. Then we get dy(t) ~ T ~t and v, (t) ~ (T —t)~°.

Remark 3.2. (Nonconvex self-similar solutions) Put 8 = d2(0)/d1(0). If
u = By = (8 —1)/8% then there is the self-similar solution P(t) =
R(@)P(0), R(t) = ((T — t)/T)"* with T = d;(0)d2(0)*/(1 + ). We have
the following three cases: (i) Case a € (0,1). For any m > 0 there exists a
unique 8 > 1 such that m = p(8) and the solution is self-similar. (ii) Case
o = 1. For any m € (0,1) there exists a unique § > 1 such that m = u(g8)
and the solution is self-similar. (iii) Case o > 1. Let 8, = a/(a—1) > 1 and
m, = p(B.). For p = m, the solution is self-similar if and only if 8 = 8,.
Moreover, for any m € (0,m,) there exists two constants 8; € (1,8,) and
B2 > B« such that m = u(B;) = p(P2) and the solutions are self-similar,
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08

2 gr -1 05 ) 16 14 2 4 08 08 04 02 0 02

(c) (d)

Figure 4. Numerical examples of nonconvex self-similar solutions starting from
several initial elbow-like curves (see Remark 3.2): (a) & = 1/2 € (0,1), 8 = 5,
(b)a=1/2€(0,1),8=3,(c)a=2>1,8=2and (d) a=1, 8=3/2. The
outmost curve is the initial elbow-like curve. The solution curve evolves from
outside to inside homothetically and finally it shrinks to a single point. Note that
the initial curve in (b) is the same as in Figure 3.

respectively. See Figure 4 for numerical examples.
These results coincide with the three cases in [16] exactly, after the
following transformation has been done: a = dp, b = dy, 20 = (u—1)/{+1),

¢ =d;(0)/do(0), and the time rescale t — ﬁl_at/(l — zp).
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Appendiz: Numerical method of estimating blow-up ttme and rate

In [13, 14], Hirota and Ozawa developed a new numerical estimating method
of blow-up time and (T — t)~? type blow-up rate of solutions to a system
of ordinary differential equations.

We will estimate some blow-up rates numerically by using their method.
Roughly speaking, their method is based on the following three parts:

(1) Arc-length transformation technique:
Let us consider the initial value problem for the following system of
ordinary differential equations

d .
'(Eyj(t)zfj(tay()"-')yN—l)v ]EI-

The next transformation is called arc-length transformation:

t(s) 1
afw | S
def Jiesigiel )

yn-1(s) fy-1

From this transformation, a solution of a new problem never blows
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up in a finite time even if the solution of the original problem blows
up in a finite time.

(2) Generate a linearly convergent sequence to 1"
Assume that there is only (T — ¢)~P type singularity. Here p > 0,
and T is a blow-up time of the original problem. We note that
blow-up time is given by

r= [ R —
N-1
O V1+XTio £
Let {s,} be the geometric sequence given by
Spn=5801" (50>0,7r>1, n=0,1,2,...),

and let {¢,} be the time sequence given by

tn:/"___—.
0 1+ 2

Then {t,.} converges to T linearly, that is, limp_ o len/en—1] =
=P where e, =T — t,.
(3) Acceleration by the Aitken A? method:

The Aitken A2 method can be applied to linearly convergent se-
quence in order to accelerate the convergence. Thus, we obtain
an approzimation of the blow-up time, say T. Using T instead
of T, we can calculate an approximate value of p by p ~ p, =
—logr/log|é,/€n—1]|, where &, = T —t,.

For a numerical integrator of ODEs from s = s,,_; to s = s,,, we use the
DOPRIS code (see [12]) with parameters ITOL=0 and RTOL=ATOL=1.d-15.
Computations are performed by using the double precision IEEE arith-
metic. In Figure 4, we set s, = 1-2" (sg = 1 and r = 2) and apply the
Aitken A? method three times.
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A REACTION-DIFFUSION APPROXIMATION
TO A CROSS-DIFFUSION SYSTEM

MASATO IIDA

Department of Mathematics, Faculty of Humanities and Social Sciences, Iwate
University, Morioka, 020-8550 Japan

HIROKAZU NINOMIYA

Department of Applied Mathematics and Informatics, Ryukoku University, Seta,
Otsu, 520-2194 Japan

In this paper it is discussed whether reaction and linear diffusion bring about a
effect of nonlinear diffusion or not. It is proved that a cross—diffusion system for
two competitive species is realized in a singular limit of a reaction—diffusion system
with a small parameter under some assumptions.

1. Introduction

In this paper the following type of parabolic equations is called a reaction-
diffusion system:

u; = DAu + f(u), (1)
where
u = 'u,(:v,t) = t(ul(m,t), Tt ’U’M(x,t))’ f(u) = t(fl('u’)7 Tt ’fM(u))’

and D is a diagonal matrix whose elements are positive (or non-negative).
In other words, a reaction—diffusion system consists of two parts: one is a
kinetic term f(u); the other is a diffusion one DAu. Many manuscripts
reveals various dynamics of reaction-diffusion systems. Thus we meet
the questions: “What sort of behavior can be exhibited by solutions to
the reaction—diffusion system ?”, or “How rich are the dynamics of the
reaction—diffusion system 7?7 Omne of the ways to answer these questions
is to “realize” in reaction-diffusion systems the dynamics of parabolic sys-
tems which do not belong to reaction-diffusion systems (cf. [3,14]). This
is also important for modelling. From the morphological point of view,
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Mimura et al. {12] showed that reaction-diffusion systems can “realize”
density—dependent diffusion models. They considered the colonies of some
species of bacteria which exhibit the various spatial patterns. Though sev-
eral density—dependent diffusion models for such spatial patterns had al-
ready been proposed, they obtained the similar spatial patterns even from
a reaction—diffusion system by introducing “inactive state” of a bacterium
explicitly. Their concept of modelling motivated us to “reaction—diffusion
approximation”.

Our aim is to find a reaction-diffusion system which approximates a
cross—diffusion system

ui = Da(u*) + fu*,v*), z€Q, t>0, @)
o = DB V) + 9w, v, TEQ t>0
under the Neumann boundary condition
ou* ov*
=% 5, =0 € t>0 (3)
and the initial condition
u*(z,0) = uo(z), v*(z,0) = vo(z), =€ (4)

For a typical example,

a(u) = (a0 + aquw)u, B(u,v) = (6o + fru + Bav)v,
flu,v) = (fo— fiu— fav)u, g(u,v) = (go — g1u — g2v)v,

where og, fo, f;,9; are positive constants and ai, 31,32 are nonnegative
ones. This example is one of the ecological models which Shigesada et al.
[15] proposed in order to introduce the population pressure by interference
between individuals into a Lotka—Volterra competition system. In this case
u* and v* stand for population densities for two competing species. The
species for v* has a tendency to move towards where u* is less distributed
(also see [13]). Namely this system includes the “negative chemotactic
effect”. This effect induces the complex dynamics including the Hopf bifur-
cations and the segregation of a convex habitat between two similar species
(see [5,7,9,10,11]). It is well-known in [6] that if Q is convex there are no
stable inhomogeneous equilibria in the competition—diffusion system, i.e.,
oy = f1 = B2 = 0. It is shown in [9,10] that the stable spatial segre-
gation takes place under some assumptions with 31 > 0, which is called
eross—diffusion induced instability. In this paper we will show that the
cross—diffusion system (2) is actually a singular limit of a reaction—diffusion
system with a small parameter. Though reaction—diffusion systems do not
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seem to bring about the negative chemotactic effect, this fact might im-
ply that reaction-diffusion systems include such an effect. This viewpoint
also leads us to the relationship between Turing’s instability and the cross—
diffusion induced instability, which is shown in [4].

Hereafter we assume that  is a bounded domain in RY with a smooth
boundary 89, and «, 8, f, g are smooth functions satisfying

a € CYR), B e CHR?), f e CiR?), ge C*}R?), (5)
inf o (u) >0, u>%r}5>of’v(“’ v) >0, (6)
and

Uy € 04(5), Vg € 04(6),
up(z) >0, wo(z) >0 in Q.

We can take constants dq,ds,ds and d, satisfying
. p .
0<d; < ;r;%a (u), 0<ds< u>10r’1£>0ﬂu(u,v),
d3>0, dg#dl, d4>0, d47éd2.
Set
alu) := a(u) — diu, blu,v) = B(u,v) — dav.

For a small positive parameter ¢, we consider an auxiliary semilinear
parabolic system with fast reactions in w and z:

rutzdlAu-%-Aw—l—f(u,v), rxe, t>0,
vy = doAv + Az + g(u, v), zeQ, t>0,

wt:dgAw—i—%(a(u)—w), z€Q, t>0, ™
ze =dgNz + %(b(u,v) —-z), 2z, t>0
\
under the boundary condition
Ou Ov ow 0z
— =0, — =0, — =0, — = o0, t>0 8
on " On O’an ' On 0, wedit> ®)
and the initial condition
u(z,0) = uo(x), v{z,0) = vo(z), ©)
w(z,0) = a(uo(x)), z(x,0) = bluo(z),ve(z)), z€Q.
Since we can rewrite (2) as
ui = diAu* + Aalu*) + fu*,v*), e, t>0, (10)
vy = daAv* + Ab(u*,v*) + g(u*,v*), =z €Q, t>0,
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we may expect that (w,z) approximates to (a(u),b(u,v)) in (7) and that
(u,v) converges to the solution of (10) as € tends to 0. Actually we will
show later that the dynamics of (7) under (8) and (9) is close to that of
(10) under (3) and (4) as € — +0, if they are restricted to any bounded
region. Notice that the system (7) is almost a reaction-diffusion system.
Indeed, applying the linear transformation

w z _

—d3—d1’ 'U=’U——d4—d2,

aU=1u

ie.,

ds —dy’

we obtain the following reaction—diffusion system

u=1u-+

( D z

Ut=d1Au+f(u+d3_d1,v+d4_d2)

1 w

"(ds—dl)e(“(aJ’ds—dl)_’I’)’

z
A,

Oy = do AT+ g( + e , 0+
dg'—dl (11)

1 z

- W -
_(d4—d2)6<b(u+d3—d1,v+ d4—d2)——z)’

. .1 . w -
wt_dSAw+E<a(u+d3—d1)_w)’

= :d4A2+%(b(a+ dgqi)dl’f“r d4id2)—2)
for z € Q, t > 0. It is not clear whether 4, ¥, @ and Z in (11) can stand
for some biological quantities. However, using the same idea, Iida et al. [4]
shows that (2) can be approximated by another reaction—diffusion system
under additional assumptions on « and 8 and that the solutions of the
later reaction—diffusion system like (11) stand for the population densities
of some parts of the competing species which are described by the model
of Shigesada et al. [15]; besides, the later approximation gives us a better
understanding of cross—diffusion in biological models.

We remark that the existence of local solutions of (7) follows from that

of (11).

Theorem 1.1. Assume (5) and (6). Fiz positive numbers dy,da, d3,dy and
functions a(r),b(r,s) as above. For positive constants R; and Ry, there
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exist functions a(r), b(r, s), f(r,s) and §(r,s) such that

a(ry=a(r), b(r,s)=b(rs), f(r,s)=f(r,s), §(r,s)=g(rs)
for any (r,s) € [0,R,] x [0,Ry] (12)
and that the solution (u, v, w, z) = (u(z, 1), v(z,t), w(z,t), 2(z,t)) of (7)~(9)
with a, b, f, g replaced by &, b, f, § respectively exrists globally in time.
If the solution (u*,v*) = (u*(x,t),v*(x,t)) of (2)~(4) belongs to C*(l x
[0,T)) x C*( x [0,T)) and
0<u*(z,t) <Ry, 0<v*(z,t)<Ry nQx][0,7T]
for some positive constant T, then the following inequalities hold
flu — u*llcoo,73;L2 () < ei€,
llv —v*{lcoo,Ty;L2(02)) < ak, (13)

lw —a(u*)llcoqo, 2y < a6
Iz — b(u*, v*)l oo, 7);L2 () < 1€

for € > 0 where ¢; is a positive constant independent of € and (u, v, w, z).
Moreover, if N < 4, then the following inequalities also hold:

( IV (u —u*)||lcogo,71:22(0)) < cp€¥4,
V(v = v*)lcoqo, 1y 2 ) < cpe¥/4,
IV(w — a(u))llcoqo,rjs2) < o4,
V(2 = b(u*, v*))llcoo,y;22 () < c2€®/4, (14)
1A —u*)llcogo,1);2(0)) < cel/4,
| A (v — v*)cogo,13;2(0) < cael/t,
1AW — au)) ooz < csell?,
LITA(z = b(u*, v*))l cogo,Ty;22(0)) < czel/4

for 0 < e <€y where co, cs3 and €y are positive constants independent of €
and (u,v,w, z).

As long as (u(x,t),v(z,t)) belongs to the region [0, R;] x [0,Rs],
(u,v,w, z) in Theorem 1.1 is the solution of (7)-(9) without the replace-
ment of a, b, f and g. Thus this theorem implies that solutions to the
cross—diffusion system (2) can be approximated by the linear combinations
of solutions to the reaction—diffusion system (11) in any bounded region in
the phase space.

The proof of this theorem will be given in §2. We will construct @, b, f
and § by suitably truncating a, b, f and g respectively around the bounded
region [0, R1] % [0, Ry]. The constants ¢, ¢ and c3 depend on Ry, Ry, u*, v*,
and thus on T.
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See [1] for the existence, uniqueness, and regularity of a local solution
of (2)-(4), where (uo,v0) € W3(Q)? for p > N. In particular, if o, 3, f
and g are sufficiently smooth, then the local solution instantly becomes
sufficiently smooth up to the boundary. See also [2] and the references
therein. Thus the assumptions for «* and v* are not so restricted. As for
its global existence, see, e.g., [8,16,17].

2. Modification of equations

To prove Theorem 1.1, we will construct the functions &, b, f, and g in this
section. First we introduce the following stronger assumption for a, b, f

and g than (5) and (6):

(A) There exist positive constants k; (i = 1,2, 3,4) satisfying

(o' () > ky,
bv(ra S) Z k2,
3 . .
d’ oI+t
2 w“(r)’ 2 |saant?)

Jj=1 1<5+1<3, 4,120
8

+ !/0 by (T, a)dcr‘ + !/0 buw(r,a)da‘ < ks,
[fu(r, ) + 1o (r, $) + | Fuu(r, )| + | fuu(r, $)| + | fou(r, 8)| < Ka,

(19u(r, 8)| + 190 (7, )| 4 |Guu (7 )| + [guo (T )| + |guu(r, $)| < ks
(15)

for any r,s € R.

Theorem 2.1. Let (u*,v*) = (u*(z,t),v*(z,t)) (resp. (u,v,w,z) =
(u(z, t),v(z, t), w(z,t),2(x,t))) be the solution of (2) - (4) (resp. (7) -
(9)) int € [0,T]. Assume (A) and
llugl| oo @) + 105 | zoo (@) + V™[ Loo (@) + VY™ Lo ()
+dsAa(u") — o' (u™)u | 2 ()
+ldg Ab(u*,v*) — by (u”, v )up — by (u”, v )07 | Hr ) S My (16)
for0<t <T. Then (13) holds.

The proof will be given in the next section.

For positive numbers 6 and R we can easily choose a C*°-function
x{(z; 4, R) as follows:

‘ 1 for z € [0, R],
x(z; 6, R) = {0 for z € (—o00, —28] U [R 4+ 26, c0),
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and

0<x(z;6,R) <1, sup  |x'(z;6, R)| <

~o0<<o0

[~

Lemma 2.1. Assume (5) and (6). Let Ry and Ry be positive numbers, and
set

my = min a'(u), my 1= i by (u, v).
! ’LLGn[%)l,Rl] (u) 2 (uvv)E[OryI}%ﬁx[o‘Rzl (u v)
If 61 and 65 are positive but so small, then (A) holds true for the following
functions a, b, f, § and some positive constants ky,--- , kg:

6(u) = mru-+a(0) + “ 1 (s) (@ (s) — my) ds,

B(u,v) = mav + xa(v) (xl(U)b(u, 0+ [ a1, 8) (b 5) — ma) ds) ,

f(u,v) = X3(uav)f(u7 'U)a
§(u,v) := x3(u,v)g(x,v),
where
x1(u) = x(u; 81, R1),

x2(v) == x(t; —, Ra),

&y’
x3(u,v) = x(u; 61, R1)x(v; 61, Ra).
We can easily check (12). Since the support of
/ x3(u, s) (by(u, s) —mg)ds
0
is not compact, we cannot obtain the boundedness of

/Ou /0" x3(u, 8) (b, (u, s) — my) dsdo

and its derivatives. Therefore it is necessary to multiply
/ x3{u, s) (by(u, 8) —ms)ds
0

by x2(v) in the definition of b.

Proof. We show (15) only for b. If 8; is so small, then

x3(u,v) (by(u,v) —mag) > —% for (u,v) € R%.
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We can choose 85 so small that
v m
X5(v) <xl(u)b(u, 0) —l—/ x3(u, 8) (by(u, s) — mg)ds) > _Tz
0
for (u,v) € R?2. Differentiating & in v, we have

Bv(u, v) = ma + x5(v) (xl(u)b(u, 0) + /Ov x3(u, 8) (by(u, 8) — ma) ds)

+x2(v)xa(w, v) (bo(u,v) — m2)

my M2
> A
Z M2 2 2
=M
2
The other conditions of (15) can be checked. |

Proof of Theorem 1.1. The inequalities (13) are a direct consequence of
Lemma 2.1 and Theorem 2.1. Notice that the global existence of (u, v, w, 2)
is guaranteed by the fact: the grow-up rates of the nonlinear terms in
(11) are less than or equal to some affine functions of (&, 7,0, Z) after the
replacement of (a,b, f,g) with (@,b, f,§). Since the fourth derivatives of @
and b in Lemma 2.1 are bounded, the latter part of Theorem 1.1 is deduced
from Lemma 2.1 and the following theorem which will be proved in the
next section.

Theorem 2.2. Assume (A), (16), N < 4 and
0

+(9n

L2(89)

* * 0 * * K
HAu “Lco(ﬂ) + || Av “Loo(g) + H%Aa(u ) Ab(u ,u%)

L2(89)
+[ldafa(u?) - @' (W) | gragay
Tl dab(u”, o) = bu(u®, v ) — by(u”, v gy S Mz (A7)

for0<t <T. Then (14) holds.

3. Proof

Let || - || be a L?-norm and (-,-) an inner product in L%(Q). Let (u*,v*) =
(u*(z,t),v*(z,t)) and (u,v,w,2) = (u(z,t),v(z,t), w(z,t), w(z,t)) be as
in Theorem 2.1. Hereafter for the simplicity of notation, the posi-
tive constants independent of ¢ and (u,v,w,z) (namely, depending only
on dy,--- ,dg ki, ks, My, M3, T,Q, N, and €g) is denoted by ¢; (i =
1,2,---).
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Set

Uw=u-vu*, Vi=v—v*, W:i=w-a(u*), Z:=z->bu*1v"),

w* :=a(u*), 2*:=b(u*,v"),
which satisfy

Ut =di AU + AW + f(u* + U,v* + V) — f(u*,v*),
= dao AV + AZ—f— glu*+ U v* + V) — g(u*,v*),

Wt—dgAW+ (a(u +U) —a(u*) — W) + dsAw* — w},

Zy = d4ANZ + = (b(u + U, v* + V) —b(u*,v*) — Z) + dyNz* — z}.
(18)
Define

Aw) = [ als)ds,
B(u,v) == /0 " b(u, s)ds,
Ei(t) == /Q (Au* +U) — A(w*) — A'(w*)U) dz,
Ey(t) = /Q (Bw* +U,0* + V)~ B, v")
_By(u*,v")U — Bv(u*,v*)V)dz.
Proof of Theorem 2.1. Differentiating B in ¢, we have
dﬁ‘ jt / (A(w* +U) — A(u*) — A'(u*)U) dz
= /Q (AW +U)(u +Uy) — A(w )l — A" (w)uiU — A'(u*)U,} dz
- /Q {(a(u +U) ~ a(u )V, + (a(u” + V) - o(u") ~ o (w)U )ui } da.
Substituting (18) into the above equality, we can calculate dF;/dt as

/{( (u* +U) — a(u ))(dlAU+AW+f(u*+U,v*+V)—f(u*,v*))

/ / a" (u* + 6,6,U)8,U%u doldaz} (19)
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The first term of the right hand side of (19) is estimated as follows:

/ (a(u* +U) — a(u*)) (AU + AW + f(u* +U,v* + V) — f(u*,v*))dz
Q
< —/ (a’(u* + U)(Vu* +VU) — a'(u*)Vu*> -dyVUdzx
Q
T /Q (a(u® +U) — au*) AWdz + kska| U (U] + V1)

* —a(u* T — o' (u* 2dx
S/Q(a(u +U) —a(u*))AWd /le (v + U)|VU)*d

+diks My U] [VUI| + sk U (1T} + V)

< (a(u” +U) —a(u’), AW) — il—’-c}—llVUHQ +ea([UP + VI, (20)

where c4 := 3ksky/2 + d1kZM3 /(2k1). Substituting (20) into (19), we get

5 IVUIZ + es([U]* + V%), (21)

where ¢5 := ¢4 + ksM;/2. Taking an inner product between the third
equation of (18) and —AW yields

Lo .
VW = —ds | AW = ~(a(u” + 1) = a(u”), AW)

N —
&Ig_‘

1
+H(V(dsAw® ~wy), VW) — - VW|*
< —ds|| AW 2 — %(a(u* +U) — a(u*), AW)
1 2
— VW + e, (22)

where cg := M2/2. The above two inequalities (21) and (22) immediately
imply

d1 kl

d (1 2 1 2 1 2 2
g,;<5||vwn 4 E) < —ds| AW — S [W P - 2w

+2 (T + V1) + cse. (23)
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Next we consider the derivative of Ej:

dE; _ d
dt  dt

_ / {Bulw + U,0" + V)(uf + V) + Bo(u” + U,0" + V) (0} +V0)
Q
—By(u*, v*)u;y — By(u*,v*)v} — By (u*, v*)ui U — By, (u*,v*)o;U
— B, (u*,v*)U, — Buy(u*, )V — Byy(u*, v* )0V — Bv(u*,v*)Vt}dm

/(B(u + U, v*+ V)= B(u*,v*)— By (u*,v*)U — Bu(u*,v*)V>dx

= / {(Bu(u*-{— U,v*+ V)= Bu(u*,v*) = Buu(u”,0*)U = Buu (u",v*)V )
Q

—|—<Bv(u* +U,v* +V) = B,(u",v*) — By, (u*,v*)U — Bm,(u*,v*)V) vy
+(Bu(u* +U v +V) - Bu(u*,v*)> U,

+(b* +U,v* +V) —b(u*, v*))Vt}dz

< B U + IVIE) + (bl + Vv + V)= b v7), A2) = dakal| TV |2

+k3{M1(||UI| VI +IVUI +[IVVIHAIVU] + VW)
+dpks (M (U + V) + IVUIHIVV [ + 2ks(ka + ks) (U1 + IV II?)

< (o +T,0" + V) — b, v%), 82) - L2 vv)?
ser([UI2 + VI + VU + [9W2) (24)

with some positive constant c;. Similarly we have
5 dtllVZ|[2 = —d4||AZ|? - l( b(u* + U,v* + V) = b(u*,v*), AZ)
—~||VZH2 + (V(dsrz* — 21),V2Z)
< —da|AZ|? - 1( b(u® + U,v* + V) — b(u*,v*), AZ)
—§;||VZ||2 + cse, (25)
where cg := M{/2. Combining two inequalities (24) and (25), we obtain

dz k2

d{1 5 1 2 1 2 2
%<§||vzn +ZE2> S=dy| AZ)" = S IVZ)FE = = =IVV

C
+;7(IIUI|2+HVH2+IIVU||2+||VW||2)+086-(26)
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Combine (23) and (26). If v > max{4cz, 4c7/(d1k1)}, then we obtain

d (1 2, 1 Y 2, 7
g <§HVZH +-E‘E2+§“VW“ +';E1)

’Ydl k

1
< —yds| AW|? ~ dy| AZ]|* ~ 41€||VW||2 - 5 IVZ|* = == VU|?

dgkg

YCs +¢C7
2oy + 22

(U + IVII?) + (ves + cs)e. (27)
The assumption (A) implies
Ey > —I!U112
2 2 ks | k3 2, k2 2
Ey 2 —-—IIUH — ks UV + —||V|| 5 t % ) I+ IvIE.
2
Taking v so large as

4k3 1 k 407
>
¥ > max{ k ( +k2) 4c 7’d1k1}

vE1 + By 2 oo(JIUJ? + |V]?),

we have

where

Thus, (27) and the above inequality mean

;; {( V2|2 + 1E2 i ’YIIVWHQ ) e_clot}

’Yd1k1

1
- (wmwnﬁ Fdi A2 + ;j;nku? + V2P + L v

225 uvvnz) =610 (g + cg)ee™ "
for ¢19 := (7yes +¢7)/co. Finally, we obtain the first and second inequalities
of (13).
Lemma 3.1. Let A and £ be constants. If a C'—function X(t) satisfies
X'(t) < Mé-X)
for0 <t <T and X(0) <&, then X(t) <& for0 <t <T.
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This lemma can be easily checked. So, the proof is omitted.
We will show the inequality for Z = z — b(u*,v*) in (13). By (18), we
have

SN2 < vz + g+ viizl - 21217 + Mz

k2 1
< —d4|IVZ)? + —‘°‘(IIU||2 +IVI?) + Mie— 4—€||le2

< (2kie} + MP)e — —HZH2

By Lemma 3.1,

1Z)|? < 4(2k2c3 + M2)e2.
The inequality for W = w — a(u*) in (13) can be proved similarly. This
completes the proof of Theorem 2.1.

Remark 3.1. It is difficult to estimate the terms AW and AZ in the
first and second equations of (18). To overcome this difficulty, we have
introduced the functionals E;(t) and E(t) instead of ||U]|? and ||V||2. For
example, we have chosen Fi(t) in order that (a(u* + U) — a(u*), AW) in
(21) cancels out that of (22).

We prepare the following lemma for the proof of Theorem 2.2.

Lemma 3.2. Let A(t;€), p(t;€) be non-negative continuous functions in t
and satisfy

T T
/ A& e)dt <X, / p(t; €)dt < 3(e)

where X is independent of €. Assume a non-negative C1-function X (t;€)
and a non-negative continuous function Y (t;¢€) satisfy

X < =Y + At;€)X + p(t;€)
for0 <t <T. Then,
X(te) < {X(0;6) + B(e)}e / Y(s;e)ds < {X(0;€) + ()} (28)

foro<t<T.
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Proof. Since
% (Xe— fot )\(T;E)dT) < (*Y + p)e— f; A('r;e)d'r,
we have
t t
X% 6)+/Y(s; e)ef: AMriodTds < X (0; e)efot Ariodr +/ p(s; G)ef-: Mrigdr g,
0 0

We can easily check (28). o

Proof of Theorem 2.2. Owing to Lemma 3.2, it follows from the first
and second inequalities of (13) and (27) that

T
| awi? + aziPye < ene
0
By (18) we have

2 7 HVUH2 —dy | AU? HAWH HAUT + ka(IUY + IVIDIAUY

< ——IIAU||2 + o {llAW||2 +E(IUN+ 1V}
Lemma 3.2 shows us that these 1nequaht1es and (13) imply
/ " IAVde < ense (29)
It is similarly seen that ’
/0 AVt < erae. (30)

Multiplying the first equation of (18) by —a’(u*)AU and integrating
over §) yield

th/ VU |%a/( d:L'-—~/ VU 2a" (u*Yuldz + Uta"(u*)VU-Vu*dx

< —dy [ |AUPa (o - (AW,a () AV) + kaka(JU] + VI AU

Since
WUl < duf|AUY + | AW + k(U + VD,

the above inequality implies
1d
2dt

[ (vUFa s <~ AT - (AW, w)AT) + 1AW

+eis(JUN2 + VI + VU, (31)
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Similarly, operating A to the third equation of (18), multiplying it by AW,
and integrating over (), we get

||AW||2 = ~d3HVAW||2+d3/ AW — AWdS
(dsDw* — w}), AW)
(A(a(u* +U) — a(w)), AW) ~ Z[AW|?. (32)

2dt

+(A

1

4=
€

Lemma 3.3. Assume (17). Then, there exists a positive constant ci4 in-

dependent ofe and (u,v,w, z) such that

AW AWdS
an

d3

< —IIVAWII2 —EHAWII2 +ei(e? +e), (33)

dy

NZ— AstI < —||VAZ||2 E||AZ||2 +ca(e? +e).  (34)
o

Proof. The equations (7) and (8) imply

iAw =0 on 0Q,

on

and hence

3} 3 .
6—nAW = —%—Aa(u ) on 6%

Then,

AW || L2(a0)
L2(69)

< M| AW|| 1200y
< 5| AW gz (q)

< eio (IVAWIM2IAW| V2 + | AW]),

AWEAWdS‘ < ll—a——AW
80 on on

which is reduced to (33). Similarly, (34) can be checked. O

Set
I := Ala{u* + U) —a(u*)) — a'(u*)AU.
It follows from the chain rule that
I = a"(w* + U)(|Vu* + VU|? = [Vu*|?) + (a”(u* + U) — o’ (u*))[Vu*[?
+(a'(u* + U) — ' (u*))Au* + (o' (v* + U) — o' (u*)) AU.
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Then, we have

|(I1, AW)| < cp2(|U]) + [VUIIAW | + exz | VU ||Za () | AW |
+err|UllLa@ | AU | AW || ey (35)

The assumption N < 4 ensures the inclusion H(Q2) C L*(Q) and the
existence of a positive constant ¢1g such that

1Ullzs@) < cs(IVUIL+11U1),  IVUllLs@) < es(IAUN + [1UI)-

Here we also used an elliptic estimate for U under the boundary conditions
(3) and (8). There exists a positive constant c¢1g such that

Cl7||vU“%4(Q) ”AW”
< 2a17c35 (AU + U 1AW

dik 1
< AU + ZIAW |2 + exl|UNI* + ers | AT AW 2,
cr|[UllLs@ AU |AW | L@y
< ereiy(IVUI+ [UDIAVIAIVAW | + [ A
€ (&
< [ IVAW|? + 21> + VU P AU
+es (U + IVUIP) + e AU | AW 2.

Using the above inequalities, we can estimate (I, AW) as follows:

dse d1k1

(1, AW)| < —=IVAW® + I!AWII2

+4ct, + c19><||U||2 +[vul? )
C
+= AU (JUIP + [ VU + 26| AW 2) + exsl| U1, (36)

— lavj?

Combining (32), (33), and (36) yields

2
2 o NG
1
< ——3—||VAW|12 — S| AWI? + c1a(€2 + €) + Mo AW |
d1k1 4017 + ci9

— AU + - (a (u*)AU, AW) + (U +1vop?)
6129|

C
|AU|? (IIU||2+ IVU|? + 2¢| AW |” ) +=|Uj (37)
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The inequalities (31) and (37) imply that

2dt( Jvorac >dw+nzan2)
d1k1

< - SRYAI ~ LIVAWIE - LIAW| + ca(e? +0) + 2Me
+w(nvuz VU2 + V]?)
+ NI (IU)2 + VU2 + 2| AW2) + 220, (38)
Recall that

% / (VU (u*)dz + | AW|? > %—uvmﬁ + AW 2.
Q

Fix an arbitrary positive number €. Taking (13) into account, we can
derive from (38)

33 (5 [Ivoreta >das+nAWn2)

dik
< S AU? - DYTAWNE — AW + er0e? + cxo A

+en (14 ;nAUnz) (Zivoe +1awpe). (59

if 0 < € < €. Since (29) guarantees that the assumptions of Lemma 3.2
hold true with

1
p(t; €) = 2em(€/? + [|AUI2),  Altie) = 2020 (1 " ;"AUH2) ’
we can apply Lemma 3.2 to (39) and obtain

T T
IVU|? < e16®/?, / [AU|?dt < ca1€¥/2, / IVAW|2dt < cp1€'/?
0 0
(40)
for 0 < € < €.
Next we will show the inequality for ||[VV]|?. Multiplying the second
equation of (18) by —b,(u*,v*)AV and integrating over Q yield

da k2

/ [TV, 0% <~ B2 AVIP— (AZ,bu(u v )AV)+ 1022

+C22(||UII2 VI + VY. (41)

2dt
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Let us operate A to the last equation of (18), multiply it by AZ, and
integrate over §2:

thHAZIIZ = —d4]1VAZ||2+d4/ A2 AZdS+(A(d4Az —2}), A7)

+—i—(A(b(u + U, v* 4+ V) —b(u*,v*)),AZ) - ;”AZ“2- (42)

Setting
I i= Ab(u* + U, v* + V) — b(u*,v*)) — by(*, v*) AV,
we can see, in the similar manner to the argument to obtain (35), that
[(I2, AZ)| < eas(IUN| + |IVUI + VI + IVVIDIAZ]

teas (VU Iy + IVV ey ) IAZ] + caall AU | AZ

+eo3 (10l ooy + IV L) 1AV 1AZ] Lay-
As in deriving (36), the above inequality is reduced to

d dok
(L2, A2)] < i"nmzw uaznz = AV + ea| A

e (U] + VIR VI V)

+ZAVIE (JUI2 + (VU + (V7 + 19V )2)

teza (IOUI? + [AVI) | AZ]P + eas(U]* + [ V]1%). (43)
Combining (41), (42), (43) and (34), we have

2dt< /|VV|2b (u*, v )dac+|]AZ||2>

dok
<RV - BIVAZI - GIAZI +ersle? +) + 2Mafe

C: +c
+%1|AUM2 + (U + VU2 + VP + [9V2)
C:
S IAVIE (U7 + U1 + VI + [ VV?)
C C
+=22 (lATIP + AV AZI7 + Z (U + IV (44)
Hence, we can obtain
T T )
IVVI? < eue’?, [ IAVId: < e / IVAZ|2dt < cppe/?
0 0

(45)
for 0 < € < €p, using (13), (30), (40) and Lemma 3.2.


file:////AUf
file:////AVf
file:////AZf
file:////AVf
file:////AUf
file:////AVf
file:////AZf

163

Due to (22),

ks

1
Liowie < = (MU + IVUIN VW = S IV + coe

2 dt
< 4i (case®’2 = IV WI?)

where 0 < € < ¢p. Lemma 3.1 and the above inequality imply the third
inequality of (14). The fourth inequality of (14) can be also seen similarly.

Hereafter we will prove the remaining four inequalities of (14) for 0 <
€ < €p. Since

—?—(dlAU +AW)=0 ondf
on
by (18) we have
L) AU|2 < ~dy[VAU|2 + [VAW]| VAU
+||V( (W + U 0"+ V) = f(u", o)) [VAU
< ——HVAUH2 ——HVAWH2 + cgre®/?
dy

2dt

Integrating the above in t € [0,T] and using (40) yield the fifth inequality
of (14). Similarly we can show the sixth inequality of (14).

Consider the estimates of |AW|| and ||AZ]|. By (37), (42), (34) and
(43) we have

C
; dtnAWuﬂ < ~BIVAWIP + e’ 1+ E AV 4 E2 AU AW,

2L az) < fnmznﬁ +eael’? + Z(AUR + [AV]?)
e
+2 (AU + | AVIR)|AZ) 2.
The last two inequalities of (14) follow from the above inequalities, (40),
(45) and Lemma 3.2.
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BIFURCATION DIAGRAMS TO AN ELLIPTIC EQUATION
INVOLVING THE CRITICAL SOBOLEV EXPONENT WITH
THE ROBIN CONDITION *

YOSHITSUGU KABEYA !

Department of Applied Mathematics, University of Miyazaksi
Kibana, Miyazaki, 889-2192, Japan

The uniqueness and the multiplicity of radial solutions to the Brezis-Nirenberg
equation on the unit ball with the Robin condition are discussed. The scalar-
field equation is also treated and the unified approach is presented. Moreover,
depending on the Robin condition parameter, the difference between the structure
of solutions in the three dimension and that in a higher dimension is shown.

1. Introduction

The investigation of the global structure of solutions is one of the main
topics in the study of elliptic partial differential equations. Especially, the
homogeneous Dirichlet problem is well investigated. For example, Korman,
Li and Ouyang [11,12] and Ouyang and Shi [15, 16] considered various non-
linearity under which the exact multiplicity of solutions is verified. More-
over, since the pioneering work by Brezis and Nirenberg [3], the elliptic
equations with the critical Sobolev exponent has been intensively studied.
Here we study the problem

Au4+du+utD/=D =0 in B={xecR": |z| <1},

©u>0 in B, (1.1)
n—aﬁ +u=0 ondB,
ov

with dimension n > 3, where v is the outward unit normal vector to 0B,

*Supported in part by the Grant-in-Aid for Scientific Research (C) (2)(No. 15540211},
Japan Society for the Promotion of Science.

1The author will move to Department of Mathematical Sciences, Faculty of Engineering,
Osaka Prefecture University on October 1, 2005.
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k> 0and A < Ai(n; ) (the first eigenvalue of —A subject to kOu/dv+u =
0).

We vary A from positive to negative for each fixed Kk > 0. For Kk = 0
(Dirichlet Problem), the existence and uniqueness is obtained by Brezis and
Nirenberg together with Kwong and Li [13] or Zhang [22].

For Neumann problem (x = 00), no solution exists for A > 0 region and
the constant solution u = (—)*(™~2) and non-trivial solutions bifurcate
from the constant solution. Moreover, Budd, Knaap and Peletier [4] showed
that there exists A, > 0 such that (1.1) with the Neumann condition has
only the trivial solution for A € (—\.,0) if n = 3. However, for the higher
dimensional case (n = 4, 5, 6), Adimurthi and Yadava [1] have proved
that there exists a nontrivial positive solution to (1.1) under the Neumann
condition. The result shows the difference between the three dimensional
case and the higher dimensional ones. However, strangely, for n > 7, it
is proved that there exists A(n) > 0 such that the problem (1.1) has only
a constant solution for A € [—A(n),0] with the Neumann condition by
Adimurthi and Yadava [2].

In between, what will be expected for the solution structure in the case
of the Robin condition? We will answer the question. We emphasize here
that the three dimensional case is the exceptional case and we state our
results on the three dimensional case first.

Theorem 1.1. (Theorem 1.2 of [9]) Let n=3. For 0 <k <1,

(a) if u? < X < pd = A\1(3;k), then (1.1) has a unique radial solution.
(b) if —¢% < X < 3, then (1.1) has no solution,

where o, 1 and ¢ are defined by 1 — pgcot o = 1/k, uytanp; =1/ -1

for0 <k <1, p1 =7/2 for k =0, and (coth¢ = 1/k for 0 < K < 1,
{ =00 for k =0, and { =0 for k = 1, respectively.

Theorem 1.2. (Theorem 1.3 of [9]) Letn =3. For k > 1, (1.1) has a
unique radial solution if —u3 < X < p, where g is defined by ug tanh g =

(k- 1)/k.

What will happen for A < —u2? Does the value uy appear due to the
technical reason? We answer that the value u5 is essential.

Theorem 1.3. ([7]) Let n = 3. Suppose that k > 1. There exists €g > 0
such that (1.1) has at least two solutions uy(r, ), ua(r,\) for A € [—ué —
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Figure 1. The bifurcation diagram of the equation (1.1) with n = 3 and & = 0.5.
The horizontal axis is A and the vertical axis is u(0).

€0, —p3). They are monotone decreasing and ui(0,A) is uniformly bounded
while ug(0,A) — 00 as AT —p2.

For higher dimension, we first note the result on the Dirichlet problem.

Theorem A.1. ([3]) For k =0, if n > 4, then (1.1) has a radial solution
if and only if 0 < X < A;(n;0).

Thus, for a higher dimensional case with A > 0 and s > 0, the structure
of solutions must be different from the three dimensional case.

For a generic dimension, we need detailed informations of the Bessel,
the Neumann, and the modified Bessel functions (for formulae on Bessel
functions, see e.g., Watson [19]). Even for the three dimensional case, the
knowledge of the special functions are required, but only in this case, they
can be expressed by simple combinations of sin, cos, sinh and cosh. The
following are due to [5] and [6].
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Figure 2. The bifurcation diagram of the equation (1.1) with n = 3 and k = 4.
The horizontal axis is A and the vertical axis is u(0).

Theorem 1.4. Letn >4 and 0 <k < 1/(n - 2).

(a) There erists €o > 0 such that (1.1) has a unique radial solution uy
for 0 < X <gp and upr(0) — oo as A — 0.
(b) There exists ey > 0 such that (1.1) has no solution for —e; < A < 0.

We can prove the existence of a positive solution to (1.1) for any 0 < A <
A1(n; k). Theorem 1.4 emphasizes the uniqueness of the solutions for small
A > 0. The value kK = 1/(n — 2) is a critical value in the sense that the
structure of solutions changes. However, for the Robin condition, there is
no difference between n = 4,5,6 and n > 7 unlike the results by Adimurthi
and Yadava [1,2].

Theorem 1.5. Letn >4 and £ > 1/(n — 2).

(a) There ezists €2 > 0 such that (1.1) has a unique radial solution uy
for 0 < A < es.
(b) There erists €3 > 0 such that (1.1) has at least two solutions uj )
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Figure 3. The bifurcation diagram of the equation (1.1) with n = 6 and x = 0.01.
The horizontal axis is A and the vertical axis is u(0).

and uy x, which are both monotone decreasing for —eg < A < 0.
Moreover, uyy blows up as A — —0 while ug ) is uniformly
bounded.

From the bifurcation-theoretic point of view, there exists a solution branch
bifurcated from (A;(x),0) which has at least one bending point in A < 0
region and the branch goes to infinity in R x C([0, 1]) space as A 1 0. On
the other hand, if n = 3, the bending of the solution branch occurs for
A < —pu2. For the higher dimension, unlike the three dimensional case,
A =0 is always a blowup point for any x > 1/(n — 2).

This paper is organized as follows. In Section 2, we transform (1.1) to an
exterior Neumann problem as in [9]. A basic structure theorem is presented
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Figure 4. The bifurcation diagram of the equation (1.1) with n = 6 and « = 1.
The horizontal axis is A and the vertical axis is u(0).

in Section 3. Lemmas peculiar to the critical exponent are discussed in
Section 4. In Section 5, the three dimensional case treated. Section 6 is
divoted to higher dimensional case. Related topics, especially the imperfect
bifurcations are discussed in Section 7.

2. Transformation to the exterior problem

In this section, mainly following Section 2 of [9], we transform (1.1) to
the exterior Neumann problem
1 — n - n—
n—1 (Tn 11.U-,-)‘r + Q(T)w( +2)/(n=2) = 0’ T> ,01/( 2 (2 1)
w‘r(pl/(n_z)) =0,
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with some p > 0. Let ¢(r) be defined as

Jins)72(v/2r)
(n=2)/21/ 1\ “(n=2)/2
2 P(z)_——_(\/xr)m—z)/z L A>0,
e(r)y:==1¢ 1, A=0, (2.2)
2(n—2)/2r\(ﬁ)[(n—2)/2(' —)\’I‘) A<0
L 2 (\/—__Xr)("—2)/2’ ’

where I is the gamma function, J, and I, are the Bessel function and the
modified Bessel of the first kind, respectively, of order v. When n =3, ¢ is
expressed as

sin \/Xr
Var
p(ry:=4¢ 1, A=0, (2.3)
sinh /= Ar
e v

3 A>Oa

, A0,

We define
g(r) ==r""1(p(r))>.

For the transformation, we do not need to restrict ourselves to the critical
power, we consider the following generic problem

urr—i—n U+ I u+u? =0, re(0,1),

>0, re(01), (2.4)

u(0) < o0, u(l) + Kku.(1) =0.
The first step is to transform (2.4) to a special form, whose proof is ex-
pressed in Lemma 2.1 of [9].

Lemma 2.1. For A < A (n; k), set v=u/p. Then (2.4) is equivalent to
L (o) + -~ DE-D/2g0=D/200 — 0y e (0,1),
g

v>0, re(0,1), (2.5)

v(0) < oo, v(1) + pg(1)v-(1) =0,
where p = p(k, A) is given by

? 7 e {p() + rer(D} (29
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Next, we transform (2.5) to an n-dimensional exterior Neumann problem.
Note that for A = Ai(n;k), ¢ satisfies o(r) > 0 for r € [0,1] and
¢(1) + kpr(1) = 0 (p is an eigenfunction). Hence, if A < Ai(n;k), it
follows from Priifer’s comparison theorem that ¢(r) > 0 for r € [0,1] and
©(1) + k(1) > 0. Thus, for A < A\j(x), we have p > 0if Kk >0and p=0
if Kk =0.
Now, we transform (2.5) to an exterior Neumann problem.

Lemma 2.2. For A < A1(n; k), set
_ur) o h(r)
'UJ('T) - T (T 9

Tn—2 ? =

)

with
1 ds
h(r) = g(r)(/r 76 + p). (2.7)
Then (2.5) is equivalent to

1
Tn__l (Tn_le)T + Q(T)wp = 0’ TE (pl/(n—2), OO),

w>0, 7€ (/"2 o), (2.8)

wT(pl/(n—2)) — 0, Tli—’ngo T"-Qw('r) < 00,

where
Q(T) = (n _ 2)2T(n—2)17+n—4g(p+3)/27‘—(n—1)(p—1)/(n—2)' (29)

Remark 2.1. Since 72 = frl g9(s)71ds + p and g(r) = r"1p?, we see
that r ~ 1/7 near r = 0.

Proof. By definition, we have
d _ 1 d
I = (n—2)yrn=3dr’

Hence we obtain

1 _ 1
guy = —W(Tn 2w).,) = = 2(7"wT + (n — 2)w)
and
d dr
(gur)r = 3 E('rwr +(n— 2)w)%
1
= m(ﬂuﬁ + (TL — 1)'(1)7-)
1

- -1
 (n—2)2r2n-3g (7w
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Since ¢(r) = g(r)/?r=("~1/2 we see from (2.5) that w satisfies
1

n—1

"), + Q(r)uwP =0 (2.10)

with (2.9). Here, 7 varies on (p'/("=2), c0) as r varies on (0,1) in view of
(2.7).

As for the boundary condition, note that r = 1 corresponds to 7 =
pY (=2 Hence, we have

g(Dve(1) = _n_iQ{pl/(n—2)wT(pl/(n—2)) +(n— 2)w(p1/(n—2))}

and v(1) = 77 %,yw = pw(p ™). Thus v(1) + pg(1)v.(1) = 0
implies w;(p"/™~ ) = 0. Finally, we see that v(0) < oo implies
lim, 00 7" 2w(T) < 00 by the definition of w(r). 0

In the critical Sobolev case p = (n + 2)/(n — 2), we have

Q(T) — (n _ 2)2 2(n—1)g2(n—1)/(-n.—2),r—2(n—1)/(n—2)

2.11
=(n- 2) (h(r))2(n 1)/(n~2) ( )
Then, as in [9], the investigation of the behavior of Q,, i.e., rh, — h is
crucial. Useful Lemmas are given in Section 4.

We enumerate concrete expressions of p and h. First, we consider the

case where A > 0. Let A\ = p2. From the definition of ¢, we have
_ N
(1) + rpr(1) = 200D oy () — i)

and

/.1"“2&

27=2T2(n/2) Jn—2y/2(1) (Jn—2)/2(1) = KppTns2(1))

We can calculate h(r) explicitly as

) =90 ([ +0)

= ) sl [ =

p:

<n—2>/2( 1)
(n 2)/2(/“")
T 2)/2(#)(J<n—z>/z(u)—/an/z( )
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Note that

/1 ds 1 /“ dt
r NSJ(Zn_z)/g(NS) H t-](n 2)/2()

s [J—(n—Q)/?-(t)]u n: Odd
2usin 227 L J_g)/2(t) Jur ’

, M even.

K [N(n—Q)/Z(t)] “
20 L n—2)/2(t) I

Let n =2k — 1 (k > 3). Then we have

—D*rd_k—ajzy(ur) | (D) g_s0(1)

J(k—3/2)(pr) 2Jk—3/2(1)
K

+Jk-3/2(#)(Jk—3/z(#) — kpde_1/2(1)) }

For an even dimensional case n = 2k (k > 2), we have

h(r)

h(r) = r72_y(un) {4

mNg—1(pr) | mNk—1(n)
= T‘J,?_l(l”‘){ - 2J:_1(ur) 2-]:—-1(/*")

+Jk_1(u)(Jk-1(u) — kpdi(p)) } '

Next, we consider the case where A < 0. Let A = —¢£2. Similar to the
case where A > 0, we have

o(1) + kipp(1) = 20~ 2)/2F( )¢ 2)/2{I(n 2)/2(§)+H§In/2(5)}

and
En—2'g
27212 (n/2) (n-2)/2(E){ L (n-2)/2(€) + K€l /2(8) }

We can calculate h(r) explicitly as

h(r>=g(r>(/1f(—§3+p)

)

p:

. nrffn_mﬂ(ﬁr) ‘
In—2)2(E){T(n—2)/2(€) + K€L 2(8)}
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Since
! ds 1[5 d
/'r' 551(271_2)/2(53) =g £r tI(2n_2)/2(t)
_ 1[_ K(n_z)/z(t)]f
€L In_gya(t) ler’
we obtain
h(r)

_ Kn-2)/2(6r)  Kn-22(8)
= T‘I(2n_2)/2(§7'){< I(n—2)/2(§7') B I(n—-2)/2(€) )

+I(n-2)/2(€){f(n-z)/2(€) + w5l /2(6)} }

The exact form of h(r) is necessary for the investigation of the structure
of solutions by using the structure theorem in Section 3.

3. Structure of solutions to the exterior problem

Following the argument in Section 3 of [9], we show the structure the-
orem for the exterior Neumann problem. Proofs of Lemmas and Theo-
rem in this section are found in Yanagida and Yotsutani [20, 21], Kawano,
Yanagida and Yotsutani {10], Ni and Yotsutani {14], and we omit their
proofs.

In this section, we consider the auxiliary initial value problem

1
n—1

(Tn—lw‘r)'r + Q(T)wi =0, 7€ (p,00),
(3.1)

le(T) = Oa

w(p) =p6>0, lim 7"~
Tlp
where w4 = max{w,0} and p > 0.
When p = 0, the last condition in (3.1) is automatically satisfied pro-
vided that lim, o w(T) exists and is positive, and moreover w,(0) = 0 if
and only if

limr= ™Y [ "1Q(s)ds =0
710 0

(see, e.g., [14]). When p > 0, the Neumann boundary condition w,(p) =0
is imposed. In this section, we denote p1/("=2) by 5. We also impose the
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following general conditions on Q(7):

Q(7) € CH{(B, 0)),

Q(7) 20, 0 on (p,00),

TQ(7) € L'((5,p")),

Ti=(=2rQ(r) € L} (¢, 00)),
where p’ € (5,00) is an arbitrarily fixed constant. It is easy to verify that
Q(7) given by (2.9) satisfies (Q). We denote the solution of (3.1) by w(t; 8)
or simply by w(7).

We can show as in the proof of Lemma 7.2 of [14] that if a solution

w of (3.1) is positive on (5, 00), then (7"~2w), > 0 on (g, 00). Therefore,

according to the behavior as 7 — oo, we can classify solutions of (3.1) into
one of the following three types.

Q)

Definition.

(i) w is said to be a rapidly decaying solution if w > 0 on |3, 00) and
the limit lim,_,o T"’zw(T) exists and is positive.
(ii) w is said to be a slowly decaying solution if w > 0 on [5,00) and
the limit lim, _, oo 77 2w(7) = 0.
(ifi) w is said to be a crossing solution if w has a zero in (p, o).

We remark that a regular solution of (1.1) corresponds to a rapidly
decaying solution of (2.8), and a singular solution of (1.1) corresponds to a
slowly decaying solution of (2.8).

We introduce the Pohozaev identity which is effective to study the ex-
terior problem. Define

T-Tl
p+1

P(riw) = %T"“wT{TwT +(n = 2w} + Q(rywh,

G(r) =~ Jlr -{Q() - (1:2)_2@ /p "m1q(s) ds},
and
H(r):= p-|1-1 {Tz—(n—z)pQ(T) — @:ié@.’ii) /Too Sl—(n—2)PQ(3)d3}_

By (Q), the function H(t) is well-defined. The following is a fundamental
property of the Pohozaev identity.
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Lemma 3.1. Any solution w of (3.1) satisfies the identity

d
- P(riw) =G, (r)wh ! (3.2)
and its integral form
P(r,w) = G(r)w?t! — (p+ 1)/ G(s)wh w, ds. (3.3)
p

Note that
Fn-2)(p+1)/2

G (1) =72V H (1) =
) S

(r79Q), (3.4)

with

_(n-2p—(n+2)
6= 5 .

Let us put
T := inf{7 € [, 00) | G(T) < 0},
T = sup{T € [p,00) | H(T) < 0}.

Here we define 7¢ = oo if G(7) > 0 on (5,00) and 7y = p if H(7) > 0 on
(7, 0).

The purpose of this section is to introduce the following theorem, which
is essential to the proofs of the uniqueness part of Theorems 1.4 and 1.5.

Theorem 3.1. (Structure Theorem) The structure of solutions to (3.1)
is as follows under the assumption (Q).

(i) If T¢ = o0, then the structure is of type C: w(rT;B) is a crossing
solution for any 5 > 0.

(ii) If TH = 0, then the structure is of type S: w(7;B) is a slowly
decaying solution for any 3 > 0.

(ili) If0 < 7g < Tg < 00, then the structure is of type M: there exists
B* > 0 such that w(r; ) is a slowly decaying solution for any
B € (0,8*), w(r; B*) is a rapidly decaying solution and w(r; () is
a crossing solution for B € (8*,00).

The relation between the structure for (3.1) and that in (1.1) is as follows:

Theorem 3.2.

(i) If the structure for (3.1) is of type C of type S, then there exists no
solution for (1.1).
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(ii) If the structure for (3.1) is of type M, then the structure for (1.1)
is also of type M. That is, there erists a unique solution to (1.1).

Theorem 3.1 is a slight extension of Theorem 1 of [20] in which only the
case p = 0 is treated. See Theorem 3.3 of [9]. As is sated in the follow-
ing, the exterior problem has a peculiar property, which is not necessarily
possessed by the entire space problem.

Lemma 3.2. Let g > 0. If B > 0 is sufficiently large, the unique solution
w(T; B) of (3.1) is a crossing solution.

For a small initial value, the behavior of w(r; 8) and P(7;w) has a specific
limiting behavior.
Lemma 3.3. For a solution w to (3.1) satisfies

w(r) .
e =

uniformly on [p,T| with any T > p.

P(r;w) = G(1)

By the above Lemma, we can find an open interval of small initial values
for which a solution w(; 8) is a crossing solution under a specific condition
of G. This lemma helps us to prove the multiplicity of solutions.

Lemma 3.4. If there exists T > p such that G(7) = G(T) > 0 on [T, c0),
then w(T; B) to (3.1) is a crossing solution for any sufficiently small 3 > 0.

4. Critical exponent case

In this section, Lemmas necessary to prove Theorems 1.4 and 1.5 are
given. We state peculiar properties of Q in (2.11) here. That is, we are
concentrated on the problem

h n—
Tnl_1 (T”‘le)T +(n— 2)2($)2(n-1)/(n—2)w&n+z)/( 2) _ 0, T>p,
w(p) =B >0, lifn 7 lw, (1) =0,
Tlp
(4.1)
Since we are concerned with p = (n + 2)/(n — 2), we have # = 0 and

G, (1) = {(n — 2)/2n}m™Q+(7) by (3.4). Thus, for our problem, since

b‘

Qr) = (n - DD ye-0/eo),
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we obtain
(n—1)(n—2)% h(r) _oy(h(r) — rh.(7) _
GT — n/(n—2) ) 2n—-3 .
(7) o (— B (FE Y g () E, (4.2)
in view of dr/dr = —(n — 2)g(r)7™3. Thus the investigation of h — rh, is
crucial for our purpose and its concrete calculation is necessary.
First, we give a sufficient condition for (iii) of Theorem 3.1.

Lemma 4.1. Suppose that there exists 7o € (0,1] such that h — rh, < 0
on [0,70) and h — rh, > 0 on (ro,1]. If there exists cup > 0 such that
|h — rhy] > cor® near r = 0 with some £ < n + 1, then the structure of
solutions to (4.1) is of type M.

Proof. By assumption, (4.2) implies that there exists Tp > p such G, > 0
on [p,Tp) and G, < 0 on (Tp,00). Hence we see 7¢ > 7g in view of (3.4).

Next, we prove that 7¢ < co. By (4.2), since r ~ 1/7, since h(r) ~ r
and since g ~ r™ !, we have

lG‘r(T)! > clrn+£—37_2n—3 ~ Tn—l!

with some ¢; > 0 near 7 = 00. Since £ < n+41, 7~ ¢ & L!([p, 0)). Thus, we
see f:o Grdr = —o0 and 7¢ < o0. From (iii) of Theorem 3.1, the structure
is of type M. 0O

Unfortunately, the opposite sign case of h — rh, in Lemma 4.1 does
happen in our problem.
Instead, we give a sufficient condition for (i) of Theorem 3.1.

Lemma 4.2. If h — rh, > 0 on (0,1], then the structure of solutions to
(4.1) is of type C.

Proof.  Since h — rh, > 0 on (0,1}, G; > 0 on (p,o0) by (4.2). This
implies that G > 0 on [p, 00) in view of G(p) = {(n —2)/(2n)}p"Q(p) > 0.
Thus, by (i) of Theorem 3.1, the conclusion holds. O

Using the explicit form of h, we write down h — rh,..
For A = p? > 0 and n = 2k — 1(k > 3), we have
h—rh,

— 1)+l pyr2

= (__)_2_”_{ k—3/2 ()T (k—372) () + Tp—3/2(1) L o _3/2) (MT)}
—2C(2k ~ 1, K, p)ur® Jy—as2 (1) Ty _g o (ur)

(4.3)



180

with

_ _ 26+ (=D syay ()] Tk—s/2(k) — kindk_1/2(p) }
C(2k = 1,5, ) = 2Tk a2(8) Jis/2(#) — FiT172(H)) |

For A = p? > 0 and n = 2k(k > 2),

2
mur
b = T (T s s ) + Jea N )}
—2C (2k, &, ) pur? Je_1 (ur)J}._y (pr)
with
_ J— -
C(2k7 :"C,H) = 2 + ka l(u){ i 1('“') KMJk(H)}

2Tk—1 (1) (Je—1() — ki)
and for A = —£2 < 0,
h—rh, = —&rz{l (n-2)/2(6) K(n-2)/2(€7) + I(n—2)/2(&r) K én_zm(&r)}
~2C(n, 5, E)Er? Iin2/2(EX) I}, 1o €T)
with

K _ K(n-2)/2(¢)
T2y /2(E){T(n—2)/2(8) + 6L, /2(6)}  Itn—2)/2(€)

If n = 3, then the expressions are much simpler and expressed as follows:

C(n,&,€) =

K(cot u+ p) — cot
K(peotpu—1)+1

1
h(r) = ﬂ{ sin 2ur + (1 —cos 2;”")}

for A = 2, and

(€ — coth€) + coth&
Kk(€cothé —1)+1

h(r) = i{sinh 2r + £

Y3 (1 — cosh 2§7")}

for A = —¢£2.

In the following two Sections, we investigate h —rh,.. We will show that
Lemmas 4.1 and 4.2 are applicable for some range of A and for some other
range, Lemma 3.4 is applicable.

5. Three dimensional case

In this section, we concentrate on the three dimensional case. Since
proofs of Theorem 1.1 and 1.2 are shown in [9], we give sketchy proofs.
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For n = 3, we have
—vur? + O(r3) for A = pu? >0,
h—rh, =< (1-k&)r? for A =0, (5.1)
nur? +O(r3)  for —u2 <A =—-£2 <0,
at 7 =0, and if A\ = —p2, then

h—rh, = —%p%ra + O(r)

at r =0.
Moreover, we see that

2ur(sin 2ur — v cos 2ur) for A = p? >0,
(h—rhy)r =< 2(1 — K)r? for A=0, (5.2)
2¢r(— sinh 2ér + pcosh2¢r) for A = —¢£2 < 0.

Taking these behaviors into account, we can check the number of zeroes
of h — rh,.

Proof of Theorem 1.1 . Let & € [0,1]. For A € (u?, u?), we can prove that
the conditions in Lemma 4.1 are fulfilled. Then by (ii) of Theorem 3.2, we
see the existence of a unique solution to (1.1).

For A € (—¢?, u?], the conditions in Lemma 4.2 are satisfied. By (i) of
Theorem 3.2, we see the nonexistence of a solution. O

Proof of Theorem 1.2. Let k > 1. For A € [—p3, u?), the conditions in
Lemma 4.1 are satisfied. By (ii) of Theorem 3.2, we see the existence of a
unique solution to (1.1). 0

Unfortunately, for A < —u2, we cannot expect Lemma 4.1. What we
have is Lemma 3.4. However, by using the global bifurcation Theorem due
to Rabinowitz [17) and the result by [4], we can prove Theorem 1.3.

Proof of Theorem 1.3. By Rabinowitz [17], the solution-curve {(A,u) €
R x C([0,1])} which bifurcates from (u3,0) goes to co in R x C([0, 1]).
For A € [—p3,u3), by Theorem 1.2, the cannot bend back to this region.
Moreover, due to the result by [4] on the Neumann problem, the solution
curve cannot intersect with the solution curve under the Neumann condition
unless « = 0. Since the non-trivial solution-branch blows up at A = —p?
with p, satisfying p. tanh g, = 1, our solution-branch blows up between
[~u2,—u2]. By using Lemma 3.4, we can see that the blow-up point is
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A = —u32 and obtain the multiplicity of solutions and the blow-up behavior.

0

6. Higher dimensional case

In this Section, in order to prove Theorems 1.4 and 1.5, we investigate
the behavior of h — rh,. First, we consider the case where A = u? > 0. We
obtain the expansion of h — rh,.

Lemma 6.1. Suppose that pu > 0 is sufficiently small. On [0,1], there holds
forn=2k ~1 with k >3,
h—rh,
4,“’27‘3

B S R R R o(*)}r*=2  (6.1)

+O(uPr? + p*rd),
for n =2k with k > 3,
h—rh,
)
Wk -D(k-2)

+O(Wr**H 4 '),

(6.2)
and forn =4,
h—rh,
2,.3 2
B o 1) 4 e B4 00ty 4 Ly 4 Lyt
== log2 {(2x 1)+210g2+0(u)}r +4('y+2),ur

+O(uPr® + p*r® log(pr)),
(6.3)
where ~ is the Euler number.

We are now ready to prove (a) of Theorem 1.5.

Proof of (a) of Theorem 1.5.  Suppose that p > 0 is sufficiently small.
Ifx>1/(2k—-3)in (6.1),orif kK > 1/(2k —2) in (6.2), orif x > 1/2in
(6.3) (in either case, these conditions are expressed as x > 1/(n — 2)), then
h —rh, < 0 on (0,1]. Moreover, since |h — rh,| > cor® holds near r = 0,
with ¢o > 0, from Lemma 4.1, the structure of (4.1) is of type M, i.e., there
exists a unique radial solution to (1.1) by (ii) of Theorem 3.2. 0
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In case of 0 < k < 1/(n —2), h — rh, changes its sign on (0,1]. We can
prove that the zero of h — rh, is unique and thus we can prove a part of
(a) of Theorem 1.4.

Proof of the uniqueness part of (a) of Theorem 1.4. Let ro := ro(k,p)
be a zero of h — rh,.. In view of the expansion in Lemma 6.1, we have, for
n=2k~-1,

1
4 2
2k—-5

0= [{1 - (2k~3)m}(2k—1)(2k—3)(2k—5)] H (6.4)
+O(ult ),

for n = 2k,

1 Tt 1 14225
o [{1 2k~ )r}2k(k — D)k — 2)} uFE 4 O(pltET),  (6.5)

and for n = 4, we have

To = Mexp{—?j—l!;—m} [1 + O(exp{—z(lu;fn)})] (6.6)
with some constant M > 0. In either case, at r = ry, we can prove that
h — rh, is non-degenerate and the uniqueness of rg follows. Since we have
already seen |h—rh,| > c¢(n)u?r3 near r = 0 with ¢(n) > 0 as in the proof of
(a) of Theorem 1.5, the fact that the structure of (4.1) is of type M follows
by Lemma 4.1. Hence the uniqueness of solutions to (1.1) are ensured by

(ii) of Theorem 3.2. 0

As for the blowup property described in Theorem 1.4, we need informa-
tion of structure at A = 0.

Lemma 6.2. Let A =0.

(i) If 0 < k < 1/(n — 2}, then the structure of solutions to (4.1} is of
type C.

(i) If K > 1/(n —2), then the structure of solutions to (4.1) is of type
M.

For k > 1/(n — 2)with A = 0, we have a unique radial solution to (1.1)
of the form

nin—2) y~1/2 1 n(n—2) /2 S
Ulry= [{ ————( + { ( 7-2:|

n—2)k—1 nn—2)L(n—2)xk-1
(6.7)
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and note that

o n(n—2) (=24
VO == {G gt)
Let
N 1 ne —(n-2)/2
Ulrsa) i= [0 o a2 (©8)

with o > 0. We can prove that V(r) := 8U(r) /0a|a=ao does not satisfy
the boundary condition «V,.(1) + V(1) = 0. This implies that U(r) can be
uniquely continued to the region where A < 0. Thus, we have the following.

Lemma 6.3. The unique solution (6.7) is nondegenerate at A = 0.

We now prove the blow-up behavior.

Proof of (a) of Theorem 1.4 completed. At A = 0, the structure of solu-
tions to (4.1) is of type C. Since the zero of the solution w(7; A; 3) to (4.1)
is continuously dependent on A and §, the set of (A, 8) so that w(r; A; 8)
has a zero is open. Hence, for any fixed § > 0, we can take A(8) > 0
such that w(7; A; B) has a zero for any 0 < A < A(f). Thus, in view of the
type M structure of (4.1) for small A > 0, 8 > 0 such that w(r; X; 8) has a
zero satisfies § > B, where (. is the initial value for the unique solution
w(7; A; B¢). This implies that B, — 0 as A | 0. Since a solution u(r) to the
equation of (1.1) with u(0) = & > 0 sufficiently small never satisfies the
boundary condition (see, Lemma 5.2 of [9]), the initial value corresponding
to w(r; A; B) tends to infinity as A | 0. Thus u(0) — oo as A | 0. O

Finally, we consider the case where A = —£2 < 0. Similar to Lemma
6.1, we have the expansion of h — rh,.

Lemma 6.4. Suppose that £ > 0 is sufficiently small. Then, on [0, 1], there
hold for n = 2k — 1,

h—rh,
4€2T3

= Bk =k s ~ (@A 3R -1HOE)HT (69)

+O(E% % + £4%),
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for n =2k with k > 3,
h—rh,

£2T3

- 2%(k—-1)(k—2) {(2k —2)k — 1+ O(£2) }r2k—1

+O(§-2T2k+l + 541,5),

(6.10)
and for n = 4,
h —rh,
2,.3 2 3
= ———%—log%: — [(2& -1+ %logg +{r(k - 1) + 1 +7+ O(f)}fz}]rs

@Y+ )€ + O(E® 4+ €% log )
(6.11)

Proof of (b) of Theorem 1.4. Suppose that £ > 0 is sufficiently small.
If Kk < 1/(2k — 3) in (6.9), or if &« < 1/(2k — 2) in (6.10), or if K < 1/2
in (6.11) (in either case, these conditions are expressed as £ < 1/(n — 2)),
then h — rh, > 0 on (0,1]. Hence, from Lemma 4.2, the structure of (4.1)
is of type C. By (i) of Theorem 3.2, the original problem does not have a
solution. Thus, there exists £ > 0 such that (1.1) does not have a solution
for —e; < A < 0. 0

At r = 1, in view of the expansion (6.9), (6.10), or (6.11), if £ > 0 is
sufficiently small, we have

h—rh.| < =2kl <0.

r=1 2
This implies that the structure of (4.1) is neither of type C or of type M.
We will prove that there exists a rapidly decaying solution with small initial
value. (See Theorem 2 of Yanagida and Yotsutani [20]). Indeed, we have

the following lemma.

Lemma 6.5. Let £ > 1/(n —2). Then, if £ > 0 is sufficiently small,
there exists a unique ry(k,&) > 0 such that h —rh, > 0 on (0,r1(k,§)) and
h—rh, <0 on (r1(k,§),1).

Proof. From Lemma 6.4, we see that h —rh, >0 near r =0if £ >0 is
sufficiently small. We prove the uniqueness of the zeros of h — rh,. Since
the coefficients in h — rh, with £ > 0 is exactly the same as that with
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u >0 for n > 5 we can follow the proof of (a) of Theorem 1.4 to get the
conclusion. Indeed, Let 71 := r1(k, 1) be a zero of h — rh,. In view of the
expansion in Lemma 6.4, we have

_ 4 7’°l‘—5§2—y2_—5
= [{(2k - 3)k ~ 1}(2k — 1)(2k — 3)(2k — 5)] (6.12)
+O(£' 7=%)
for n =2k —1,
=] . ]—‘57 +O@ETFT)  (6.13)
VTR = Dr - 1)2k(k — 1)(k — 2) '
for n = 2k,

(2k—1)

= e e (- {14 o (- XY, 6a19)

with
My = dlexp{—27y — 1 — &(k = 1)}}(1 + o(1)).

for n = 4. In either case, at » = ry, we can prove that A — rh, is non-
degenerate and the uniqueness of r; follows. 0

From Lemma 6.5, the following holds immediately.

Lemma 6.6. If k > 1/(n —2) and £ > 0 is sufficiently small. Then there
exists By = f(k,§) such that a solution w(r;&; ) to (4.1) has a finite zero

for any B € (0, Bo).

Moreover, we can prove the existence of a solution to (1.1) with a large
initial value. Intuitively, this fact is explained as follows. Take 8 > 0 and
&o > 0 sufficiently small so that w(7;&p; ) has a finite zero. When £ = 0,
w(T;0; B) is a positive slowly decaying solution. Thus, in-between, we can
find a suitable &, > 0 such that w(7;&;; B) is a rapidly-decaying solution.

Lemma 6.7. For k > 1/(n—2), if 8 > 0 is sufficiently small, then there
exists sufficiently small §, = &,(8,K) > 0 (&x(B;6) — 0 as B — 0) such
that w(T;&; B) is a rapidly decaying solution.

We translate this Lemma to the original problem. Note that small
w(1;€1; B) corresponds to a solution for (1.1) with large initial value. A
large solution is somewhat close to the exact solution at A = 0 as expressed
in (6.8) and this smallness and largeness correspondence follows.
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Proof of (b) of Theorem 1.5. By the non-degeneracy of U(r;ap), the
solution obtained by the continuation of U(r;ag) to A < 0 region is not
a solution derived by w(7;&,; ) in Lemma 6.7 by the transformation in
Section 2. Thus, we obtain at least two different solutions.

As for the blowup property, we argue as in the proof of Theorem 1.4.
As &, | 0, the initial value of the solution u(r;€) of (1.1) corresponding to
w(7;&4; B) goes to infinity. Hence the blowup property is proved. 0O

7. Related topics

Our obtained solution branch is a part of the imperfect bifurcation
branches. Rigorous and mathematical analysis is done in Kabeya, Mor-
ishita and Ninomiya [8]. See the Figure 5 below. On each connected branch,
the number of the critical points of the solution on the branch is constant
(solutions have the same mode). Thus in Figure 5, the left branch is that
of the solutions having one critical point and the right branch is that of
solution without any critical points (monotone decreasing solutions). From
the perturbation point of view, how the branches vary from the connected
bifurcation diagrams on the homogeneous Neumann problem is stated in
[8].

Similar bifurcation diagrams are numerically obtained by Stingelin [18],
who is a former graduate student of Professor C. Bandle.

—

Figure 5. The bifurcation diagram of the problem (1.1) with n = 3 and « = 2000.
The horizontal axis is A and the vertical axis is u(0).
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GINZBURG-LANDAU FUNCTIONAL IN A THIN LOOP
AND LOCAL MINIMIZERS

SATOSHI KOSUGI and YOSHIHISA MORITA

Department of Applied Mathematics and Informatics
Ryukoku University
Seta Otsu 520-2194 JAPAN

We consider the Ginzburg-Landau functional in a 3-dimensional loop which has
thin cross section. It is formally shown that this functional is approximated by
a reduced functional in a 1-dimensional ring. In this article we rigorously prove
that if the reduced functional has a nondegenerate local minimizer and if the cross
section is sufficiently thin, there exists a local minimizer of the 3-dimensional one.

1. Introduction

In the Ginzburg-Landau theory of superconductivity a macroscopic super-
conducting state in a superconductor is represented by a complex order
parameter V. Taking account of the magnetic effect into a model yields the
celebrated Ginzburg-Landau energy functional in the superconductivity [3].
The Ginzburg-Landau equations are the Euler-Lagrange equations for this
functional and a macroscopic physical state is realized by a solution of the
Ginzburg-Landau equations.

In this paper we are dealing with a mathematical problem concerned
with a superconducting phenomenon in a thin superconducting sample with
an applied magnetic field. More precisely we consider a 3-dimensional tubu-
lar loop of the sample and consider local minimizers of the Ginzburg-Landau
functional provided that the loop is very thin. We set up such a domain.
Let

L:={p(s) eR*:s€R}
be a l-dimensional loop, where p = p(s) is an R3-valued function of class
C® with period ¢ (say C*®(R/£Z;R3)) and s is the arc length parameter
of L. We denote by {[n1(s),n2(s),n3(s)] : s € R} a family of orthonormal
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basis such that

ni(s) = %—Z(S) (Vs € R), n; € C®°(R/CZ;R?) (j=1,2,3)

and the linear map y — Z?zl y;n;(s) on R3 is orientation-preserving for
each s. Define a vector-valued function P. on R3

P(y) := p(y1) + € y2 p2(y1) n2(v1) + £ y3 p3(y1) na(y1), (1)

where ¢ is the positive parameter and py = p,(s) and p3 = p3(s) are smooth
positive functions with period £. With the aid of P (y) we define a tubular
loop §2(e) by

0@ = {e=rwosusewl=|(®) <1} @

We take £, > 0 small so that for each € € (0,¢,) the mapping P: : R/¢Z x
{ly’'| <1} — Q(e) is a bijection.

Now we consider the Ginzburg-Landau energy in the domain () with
an applied magnetic field

Ge(T, A) = %/ﬂ(g) {|(v —iA)T)? + .;“_(1 - |q1[2)2} dz
+ g/m rot A — H|? dz, (3)

where A is a magnetic vector potential, o and 8 are positive constants, and
H is the applied magnetic field. We let Ax be a vector potential of H,
namely it satisfies

H=rotAy, divAyg =0, Agec HYR®*;R>»nNCYR®;R%. (4)

For the study of the functional (3) with small ¢, it is natural to consider
a limiting behavior as € — 0. Scaling G, /2, we can formally compute the
limiting behavior as G./e? — G,

G(«zz)::%/oe{

where 1(s) is a C-valued function with period £, a;(s) and m(s) are defined
as

%1;# —iay(s)y

+3a- |¢12>2} wm(s)ds,  (5)

ai(s) 1= (n1(s), Au(p(s)))rs,  m(s) := pa(s) ps(s) (6)
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(refer to [1] and [12]). We here used the Euclidean inner product (£, n)gs =
Zj’=1 &n; for £,m € R3. Since the limiting functional (5) is much sim-
pler than (3), mathematical justification of this reduction is an important
problem.

In this article we establish that if there exists a nondegenerate local
minimizer 1o of (5), (3) allows a local minimizer (¥, A.) near {(¥,A) =
(€, Ag) : v € R} with respect to a norm, where nondegenerate implies
that the normal direction to the continuum of the solutions {e®1g : v €
R} is hyperbolic, (see (A2) in Section 2). Thus (5) certainly works as a
simplified Ginzburg-Landau model of (3) under a certain situation.

We remark that there are some mathematical results for the reduction
of the Ginzburg-Landau energy in a thin domain to the one in a lower
dimensional domain. In fact the present paper is closely related to the
works [4] and [10]. The readers also refer to {1}, [11], [12], and [13]. As for
some studies for the reduction energy see (7], 8], and [9].

The rest of this article is organized as follows: In Section 2 we state
the main result and present some examples of the domain. In Section 3 we
show a key lemma which gives an estimate of the energy. Finally we prove
the main theorem in Section 4.

2. Main result

Hereafter we regard the space C as a vector space R? with scalar R. We
thus identify a complex valued function ¥(z) = Re ¥(z) + ¢ Im ¥(z) with
a vector valued one (Re ¥(z), Im ¥(z))T.

Let us define some function spaces which are used in this article. We
denote by L2, (R/¢Z;C) a Hilbert space of C-valued functions with period
¢ in L% (R) equipped with the inner product

loc

£
(. 9)r2._yez;c) == Re /0 (s) $(s)" 7m(s) ds,

where ¢(s)* stands for the complex conjugate of ¢(s). We also define a
Hilbert space H}, (R/{Z;C) as a subspace of L2, (R/¢Z ; C) which consists
of all functions whose weak derivative is in L2 (R/¢Z;C). The bilinear
form

W dé

(U, Q) wyez;c) = (¥, 92 (Ryez;c) + ( ; )
*m (R/ ) R/ ds ' ds L2, (R/EZ:C)

is an inner product of H}, (R/£Z;C). Let G (3, ¢) (k = 1,2) be deriva-
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tives of G defined by

dk

6W(0) = (z6W+td))| e Hn®R/EC). ()

t=0

In this paper we assume
(A1) o belongs to H}  (R/£Z;C) and satisfies
Yoz, w/ezc) # 0,
{Gm(wc, H=0 (Ve HL(R/L;0),
(A2) there exists g > 0 such that
GP (%o, ) > po Ill3z, myezicyy V9 € (i) Eam B/ HO)
where
(ipo) HFem /) = (¢ € H],,.(R/HZ; C) : (8, itb0) 13, yemcy = O}

The invariance of rotation tells that a continuum {e®¢, : v € R} is a
set of local minimizers of the energy G(¢). We shall show that a local
minimizer of G. (¥, A) exists in a neighborhood of the continuum {(¥, A) =
(€0, Ag) : v € R} if € is sufficiently small. To deal with the energy
Ge (¥, A) in the neighborhood, we set up function spaces. Define

Y :={B = (B, B:,B3)T € L(R%;R®) : VB; € L*(R%;R%)}.  (8)

Then Y is a Banach space with the norm

1/2
3
|Blly i= VBl zars) = {/R > IVBj|2dx}
i=1 _

by virtue of the Sobolev inequality. Taking the gauge invariance into ac-
count, we fix the gauge so that a subspace Z of Y is given by

Z:={BeY :divB =0}
Let
Q:={yeR®:0<y <, ly'| <1}

be a stretched domain of Q(e). Given function ¥ = ¥(z) (z € Q(¢)), we
denote a transformed function ¥ = ¥(y) by

U(y) :=¥(z), z=Ply) ()
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and define inner products as

(@, %) 12 5.0) = Re/ﬁé(y) Uy my)dy  (®,V e L*((e); C)),
(4, ‘i’)H,ln(fz;C) = Re/(,)(%‘i’(y)y V¥ (y))es m(y1) dy + (8, ‘i’)Lgn(Q;C)

(8, ¥ € H(Q(e); C))

where m(y;) is defined in (6) and (-, -)cs is the Hermitian inner product
(Emes =€ =Y 3_ & nf €C (&, € C?). Put

a; = a;(s) := (n;(s), Au(p(s)))rs, (3 =2,3),

sore (23), e (20,0

and

ee(y) :=exp (ie (R(y1) a’(y1), ¥ )re) - 9)
We note that
(Pe(y) — p(y1), A (p(y1)))rs = (R (y1) a'(1), ¥ )re.

Using 1o and (9), we define an approximate solution as

Uoe(z) = Voe(y) :=vo(y1)ec(y), y=P ' (z) (ze€QE) (10)
and a d-neighborhood of the continuum {e“"¥q . : v € R} as

Te(8) = {¥ € H(Qe);C) : _inf ¥ — el @0y <6} (11)
~v€[0,2n] LA

Now we state the main result.

Theorem 2.1. Assume (Al) and (A2). Then there exist a positive con-
stant &g > 0 and a positive function gqg = €o(6) > 0 (V6 € (0,80)) such
that for each 6 € (0,8p) and € € (0,20(d)), the Ginzburg-Landau energy
Ge (¥, A) has a local minimizer (¥, A) = (U, A.) € £.(0) x Z.

We here remark that the Ginzburg-Landau equation corresponding to (3)
is written as
(V—id) T +a(l-|TP2)0 =0, z € Q(e),
((V—iA)T,v)es =0, x € 80(¢e),
Brot (rot A — H) —Im (¥*(V — i4)¥) xq) =0, z € R3,
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where v is the outward normal vector on 8€(g) and xq) is the character-
istic function. On the other hand the simplified Ginzburg-Landau equation
corresponding to (5) is

m—(ls)'i {m(S) (% - z‘al(s)) }2¢ +a(l-RY=0, scR,

b(s +£) = 9P(s), seR.

As an application of Theorem 2.1 we consider a simple situation where
the tubular domain )(¢) has a uniform thinness, that is, p2(s) = p3(s) = 1.
Then the simplified functional (5) has an Euler-Lagrange equation

d 2
(5-m() v+aQ-WRw=0 perh=ve. 02
Put
U= %/0 ay (T)dT.

Given k € Z, the equation (12) has a solution

Yr(s) = /1 — (2kn/l — p)2/cexp (i(2k7r/€ L +i/03 a; (T)d’l') (13)

if & > (2kn /€ — p)2. It is known that this solution satisfies the assumptions
of Theorem 2.1 for a > 3(2kw /€ — p)? — 212 /£? (see [9] and [15]). Hence
the theorem tells that there exists a local minimizer of (3) near the solution
(13).

Before concluding this section we will compute a1(s) for specific loops.
We let the applied magnetic field H be constant and perpendicular to the
x1x2-plane, namely H = hy(0,0, 1)T for a constant h,. Then we obtain a
vector potential

AH = (ha/Q)(—iL‘Q,.’L‘l,O)T

and we can compute a1(s) by (6) with n; = dp/ds.
First consider

p = py(s) = (coss,cos psins,sinpsins)T (s € R), (14)
for a fixed ¢ € [0,27). The loop of (14) is obtained by rotating the unit

circle po(s) = (cos s,sin s, 0)T around the x;-axis with the angle ¢. From

T

dp, . :
—= = (—sins,cospcos s,sinpcoss) ",

ds
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we easily see |dp,/ds| =1 and

a1(s) = (dp,/ds, An(p(s)))re = (ha/2) cos .

This implies that the effect by the applied magnetic field vanishes when
@ =m/2,37/2, and it is maximized if the angle ¢ takes 0 or 7.
Next consider

p = ps(s) = (sin 7 cos(cos 7),sin Tsin(cos 7),d cos )T, T =1(s), (15)
where § is a nonzero constant and 7(s) is taken so that
|dps/ds| = (cos? 7 + sin® 7 + 62 sin® 7)/2|dr /ds| = 1

holds. Note that if § = 0, the curve of (15) is lying in the z;z3-plane and
it intersects itself at the origin (See Fig. 1).

X2

Fig. 1: A curve given by putting § = 0 in (15)
For ps(s) we easily compute

hg sin® 7 dr

ai(s) = 5 i

In this case it holds that

13 h 2w
/ a1(s)ds = ———a/ sin® 7 dr = 0,
0 2 Jo

from which g = 0 in (13) follows.

3. Lower estimate of the functional
Define
1
EE(‘IJ’ B) = E_zge(waAH + B)

In this section we estimate E.(¥, B) — E¢(¥q,,0) (see Lemma 3.9 below).
As shown later, a lower bound of this energy difference plays an important
role to prove the theorem.
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3.1. Notation and preliminary

We here introduce some notation to estimate the energy. For each v € R
and ¥ € H}(Q(e); C), we put

Vye = eiW‘I’O,e (ie. ‘i"y,s(y) = e”es(y) Yo(y1)),

and

1 B
= D 2 _ 2 2
Q1= 55 /Q(E){J An+BY|" — |Day ¥ }a!:c+282 /]RalrotBl dz,

1 *
Q2= — Re ){(DAH\II’)‘,EaDAHq)>C3 —a(l = [Ty ef*) ¥, 0" } da,

52 Qe
1
Qs =53 /Q( | {IDa,®* + 20(Re(¥,,.2)% — a(l - |, . |*)|®|?} dz,
o 1 * 2 g 4
Qq:= 22 Q(e) {QO‘RG(‘IJ“”ECP ef+ 2"1)l }dx’

where Dy = V; —iA and ® = ¥ — U, .. Then a direct calculation implies

Ee(\Ija B) - Es(\IIO,m 0) - Ee(\I/9B) - EE(\I/‘Y,E’O)
=Q1+ Q2+ Q3+ Qs

We shall estimate each Q; in the next subsection. To carry out it, we need
to use the change of variables © = P.(y) frequently. For convenience of
computations we introduce the notation below. Let Dz /Dy be the Jacobian
matrix

Dz o 0 o
o= _PEa‘—-Pea_PE . 16
Dy (51/1 Oya” ° Oys ) (16)

Then it is clear that for z = P.(y),
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if Dx/Dy~! exists. Put

n=n) —y2p2<y1)<d e )nl(y1)>

R3

s Y
+y3 p3(y < (y1),m1(v1)
(n

)
o yaps y1)< 3 (1), 2 y1)> :

p2(y1) R3

Y2 p2(y1) <dnz > s dpa
T3 =T = n ,
3 3(y) 3 ( 1) (y1),n3(y1) R p3 (v1) (yl )

T = To(y) 1= dL

Then a simple calculation implies

Dx
D_y =((1+ET1)T},1 +5p27'2n2+6p37'3n3, € p2Na, €p3n3)7 (17)

1 +en) nT
= | =l +em) nT + (ep2) *nd |, (18)
—73(L +em) nT + (ep3)~'nd,
Dy Dy 1 1 Ay o 1 /00
_— 1 - D) ’ 19
Dz Dz (1 +em)? (—T’> ( »=() )+ €2 \0 R(y1)~2 (19)

Dz

det Dy = =2 (1 +em(v)) m(y1). (20)

Dy Dz !
Dz~ Dy

3.2. Estimale of Q;
We first estimate Q1. Put

g1 := min{e,, 1/2||7'1||L°°(Q)}-
Then we have the following lemma:

Lemma 3.1. If ¢ € (0,e1], there exists a positive constant C; =
C1(AH,Q, 7, p;) such that

Q> uwnm @i (€115, qe + IR IIZ, o0)) -
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Proof. A direct calculation yields

1 1
= — B 2 —_— B 2
h 222 - |¥(z)B|*dz + = ,/Q(E)(AH’ Yra |V (z)|* dz
1 8 2
- —_— 21
% o (%%, ¥ B)esda + 5 /R |VB|2dz, (21)

where we used [ rot Bl p2s) = |[VB||p2gs) for B € Z. By the Hélder
inequality we have

1 / (Agr, Bigs |9 () ? dz
7 Ja(e)

< 5_2||AH“L°°(Q(5))||B||L6(IR3)”‘I’||iu/5(n(5);c)'
With the aid of the Sobolev inequality and changing valuables,

| Bllzs®e) < (const.) [V B]|Lz(ws),

_ 5/12
19l prere o) = ( [ 18@ree 0 +en)) m(yody)

<1+ €“T1“Loo(f1))5/12 £b/8 ||¢’||L3,3/5(ﬁ;«:)

< (const.) 55/6”‘1’”11,1"(6;@)-

Thus there exist a positive constant C1; such that

i2/ (As, BYgs|¥()|? do
€ Jage)

< Cr e 3 Ag Lo ey ilq’llfq}n(fz;c)IIVB||L2(ms)
Ch gi/3
B

Similarly, using the Hélder inequality, the Sobolev inequality, and changing
valuables, we obtain

<

= B
1 Am 17 (e ”\P”‘;{}n(();c) + @”VB“%Z’(RS)- (22)

- / (¥, UB)csde
€ Ja(e)

< e[V 22 a(e)0) [ 3 @eyicy 1Bl Lo ey
< Crae™ 3V L2 e)0) 191 g7 sy IV Bll L2 w2y

C? ~ B8
< ﬂs—gguv‘l’”%z(n(s);q”‘I’”?ﬂn(ﬁ;@ + IE'E',VB,,%Z(W’), (23)
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where C13 is a positive constant. Thus applying (22) and (23) to (21) yields

C2 4/3 B
Q12— 11ﬁ ||AH||%oo(n(e))“‘I’Hz}n(ﬁ;c)
O
ﬁ 3 22/3 ”v\P”Lz(Q(s) iC) ”\IJHHI 1 (§0)° (24)

It follows from (19) that

()2 = <Dy vq/,gy v¢:>
3

Dy Dy
<V\II,D o V\II>C3

_ 18T = (Gl | R
(1+em)? e?

and hence

Oy, VU, 1) 2|2
V9 = [ Lol IR ) g

+/_ ]R_lvyrllll2 (14 em)m(yr)dy.
¢)

If € € (0,¢], we obtain
IVEB ey < 26% (141712 ) 1% EU2s i
_“R_lv \IIHL2 0y
Combining (24) with this inequality leads us to the desired inequality. O

Next we estimate Q,.

Lemma 3.2. For any vy € R, if € € (0,e1], there exists a positive constant
Co = Ca(vo, 0, Ap,Q, 75, p;) such that

L 3
Q2 2~ IR 812, ) = Coe (1 + 1By )
where ® =¥ -0, .

Proof. Put
Aj(y) = (ni(w), Ag(P-(w))re (G =1,2,3),

s A 25
) (f(y)) | (25)
As(y)



202

By changing valuables and (19), we have
<DAH \I"Y,E’ DAH @>C3
= (V- iU, An, Vi@ —i®Ag)cs

Oy, q"y,s - <Vy'¢”7,s’ e ;o= aylci) - <Vy’ci)a e
14en ’

Py(s) == e (s).
Since 0., . = 1, (y1)ec(¥),

- dep Oe
Oy, Uy e = d—;es(y) + 51!_?1’0“”
and
Vb, . =iel, (y) R(v)a' (v1),
we have
8y1 w’y’g - <Vy’ \I"y,EvT,>C2 _ ’LA ﬁ/
l4+en PEe
d
=e, ( f; (y1) — iarby (v1) + Wile ))
where
___ET dyy 1Y, _ '
Wie) = “l4em ds 1 +em1 \On (Ra ¥ )2 — (Ra', m)pe

+1 (a1 — Al) 1/)7.
By a simple calculation, it holds that

aylé— (%@,T')c2 i A&
< (1+€T1) 1A ® (1+€7‘1)

_ L <6y1 (Ber) — wl(éeg)) (B, ) ea + Wale) B

(26)
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where

By using (26) again, we have
<R b, —icl, . A RV, (I)—zs<I>A’>

52

N z_qisﬁ (¢ A RIGE)  + 0y (Ao, B A)

Taking dz = €2 (1 + € 71) m(y1) dy into account, we have
@2 =Re [ (L2 - iovw (1) + Fa(e))
(5‘3—(%;) —iay(Pe}) — er (Vy @, 7)cz + Wa(e) ée;) mdy
+Re/ &E— <a’—/1’ R_1V1<i>> (1+em)mdy
5 < 3 Yy c2 1
-i~Re/~ T, . </i' - a',@fl’>c2 (1+em)mdy
—Re/ (1 —|90o|?) Ty e @* (1 + 7)) mdy
—Re [ GOy D))y
ly']<1
- Re/_ ee <<fi;/’7’ - iaﬂpv) R7' — ’—‘Ebl(a' - A’),R-lvy,é> mdy
Q C2
+Re/ﬁW3(£)m(y1) dy
where W3(¢) is a term of O(g) given by
Wa(e) = Wi(e) g (Be2) = ima(Be) = (%o + Wale) B ct)
+ Wale)* ‘”7 —ia, | e B +imb e < ' A Ry <i>>
2 1P~ | €e 1Py (A y iy’ c2

+(14emn)yyee <fi’ —d, &)A,>c2 —ema(l—|¢ol?) ¥y ee o*.
Thus there exist constants Coy; > 0 and Cqe > 0 such that

Q2 2 ~Cau| RV ®llz (e0) ~ Co2 1%l a0y
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From
021“R v élle (Q C) ”R—lv ®”L2 (€2;C) + 26‘6’1221’

the lemma follows. O

Next we estimate Q3. Let

o= = () 2= minfer, 1/3,1/200 e 0)-

For 1, = e"y)y and & € H'(Q(¢); C), we define

Ky, (@ / {I (8/8y; —iar) B2 + |V ®|? 4 2a(Re(th, &*))?

~

—a(l = [,[2)[8? } m(v:) dy. (27)
Then we have the following estimate.

Lemma 3.3. For any v €R, if e € (0,€3], there exists a positive constant
Cs = C's(tl)o,a Ag,Q, Tj,pj) such that

Qs = K:’lb-y( ) _”R 1V q)”Lz (€:0) + o= 16 —[IR” IV \IJ“Lz (€%0)
—Cse (||:1>||H}n(ﬁ;c) +1)
where =¥ — ¥, .
Proof. Changing valuables and (19), we have

D ag®|? = ‘Bylé (Vb 7')cz — i (1+ ) Ar 8|

2

(1 +€T1

lR—lvy,é —i® A

where A; and A’ are defined in (25). In terms of the inequality
€ —nl* > (1-CO)l* + (1 -1/C)lnf* (C>0), (28)

we estimate

- - - 12
8,8 — (Vd, )z —i (1 +em) & @(

- - . . L (2
= iaylfb — (W@, 72 ~ia1 @ —i(A1 —ay +em Al)@\

-~ 2
! (A12a1+T1A1>‘§

>
“14¢

1

w - 12
‘am@ — (Y ®, e — m@] —¢
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where C = ¢/(1 +¢) in (28). With C =1 — 3¢ in (28) we obtain
2

1 . - .
IR 8 —idd| > 3R, 82— _|BAP
1> 1>

/3

By (Vy®, )¢z = (R7'V, &, Rr")¢2 and C = 2|R7'|%/(1 + 2|R7’'|2%) in
(28), it also holds that

. 2 -
! 0 .| |R-1v, &P
l i ® — (@, 7 )2 — i ‘I’l 2 TToRT% | g, —ia;® —————2;’ .

Since dz = (1 +£7‘1)€2 m(y1)dy and (14¢e7) > 1/2 for € € (0,¢&9),

1
=3 | 1o = (B e =i+ er) A mO)dy
2
+5 /~<1+sn) “RTI, & —i®A'| m(y1)dy
Q

+ % /52(1 +em) {20(Re(T,,:87)? ~ a(1 - |¢v|2)|‘f’|2} m(v1) dy

Ky, (® 1 Vi 3
2_¢3Q+§/~ <)_R_V_yl__lvy,c1>12> m(y1) dy
8 £

+ % /(2 Wy(e) m(yr) dy

where we put Wy(e) as

ET - ., . o
W4(5) = ———-—1 —|—;T1 laqu) — <vy/@,7' )CZ - Z(l +57-1)A1®’
e 2
£ 6 5 Nk A —a S\ .
—1+e}ay‘(b_(vy’q’ﬁl)c?“ml@\ —€ ( 15 1+71A1><I>
ARTPe |08 | - -
“TRaRe (o |

+ 20 { (1 + 1) (Re(ect,$))* - (Re(,8"))?}
—era(l—[p,2) B

We easily see Wy(e) is O(e). From the inequalities |V, ®| < |[R™1V, ®||¢’|
and Hp'“%m(m/ez) < 1/2¢ for € € (0, e2], it follows that

1 RV, &2 < 1 =
'2’/51 (L_e_y—j - Ivy@lZ) ) dy 2 IR N 0l gy
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Since ® = ¥ — ¥, . and (26), we have
IR lvy q)|2 |R lv lvy,\’I',%gP
=|R~ 1Vy/ —ice eqpoa|?
1 -
> S|RTV U — o o'

and then
1,
ZI—EHR 1%I¢\\L2 (Q) “R lv q)HLz (Q) “R IV \I!Hm 2 (§1)
- "H% a,an (€
We thereby obtain the desired estimate. ]

We finally give a lemma for an estimate of Q4.

Lemma 3.4. For any v € R, if € € (0,¢,)], there exists a positive constant
Cy = Cy(to, , 2, 71) such that Qa > —Cy| @[3, @y Where @ =V — T, .

Since the assertion of the lemma immediately follows from the Sobolev

inequality, we omit the proof.

3.3. Estimate of Ky ()
In this section we estimate Ky, (®), which is defined in (27).

Lemma 3.5. Assume (A1) and (A2). Then there exists a constant u; > 0,
which is independent of v € R, such that

. 2 (3.

Ko, (8) 2 ml1®17 ey VO € (ithy) im0
uhere (i,) 1O — (@ € HY(QE)C) : (8,1,)15, ey = O
Proof. Without loss of generality, we may assume

o = inf { GO (5, 8)/ 13, yezicy ¢ € (i) - Lom IO}

We here remark that ug is independent of +. Let
. = = . 208,
o = inf {1y, (B)/IBI2, ey : @ € (i) @O,

which is also independent of v, and

Ag = inf {IIVy'UIIiz(n')/IIUII%Z(n') ru€ HI(Q’;R),/ u(y')dy' = 0}

’
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where ' = {|y'| < 1} ¢ R%. This Ay is the second eigenvalue of the
operator —A,, with the Neumann boundary condition. Take uy as an
eigenfunction with respect to Ag, that is, [|ua||z2¢q/) # 0 and

611,2
ov

—Ayug = Agqug  in &, =0 on 8¢, / us(y) dy’ = 0.

By taking ®(y) = i1,(y1) u2(y'), we have & € (i) LLm(%€) and
Ky, (5)/||<f>llim;c) = Gm(d’wilbw)/||¢7||%3rm(R/eZ;C) + A2

It thus follows from G(2)(1/;7, i1py) = 0 that uy < Az. On the other hand, if
be <,L',¢]7>LLfrm(IR/EZ;C)’

Ky, (¢)/H¢”izm(ﬁ;c) = G(z)(f/f»y,¢)/”¢“%3M(R/ZZ;C)-

Thus pg < po holds and hence py < min{uo, A2}
Let &, € (iz/)7)il‘3n(95c) attain the minimum, that is,

/‘6 = ’Clﬁy((i)ub)/ll‘i)#{)“ign(ﬁ;c)’ ((i)ﬂ{)7i¢’y)L,2n(fz;C) =0.

Then ® m satisfies

=245 (Puy ®) 12 350) (29)
t=0

d ~ -
(et o)
for all ® € (ithy) L Lm(C), Let
. l F ! !
P (8) = — /Q, ®(5,9)dy'.
Then ¢,; € (iz/)7>lLfrm(R/fZ§C) and

2G® Yy, b ) =2 tg | by, H%g (R/EZ;C)

by taking ®(y) = b, (v1) in (29). Thus uh > po if || |2, @/ezicy # 0.
Consider the case (¢ (L2, (r/ez;c) = 0, that is,

1 ~
by =3 [ Bulny)d =0 (v eR).
By the definition of A,

/ [V @ (91, 9)? dy’ > Az/ﬂ |®; (v1,¥)Pdy’ (Vo1 € R).
o /
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It thus follows from G (4., $) > 0 for V¢ € H}, (R/¢Z;C) that
- 1 - , -
Ky, () = ~ /Q G (g, B (¥ Y + 1981122 )
> ’\2”&% “igﬂ(ﬁ;c)'
Consequently we obtain u) > min{pg, A2} and hence
po = min{pg, Ao} > 0.
By the definition of pg, we have the inequality
Ko, (B) 2 w812, 5oy VO € (i) En O,

while by the definition of Ky, (®), there exists a constant M = M (v, )
such that

Ky, (®) > /Q {| (8/8y1 — iar) &% + |vy,<i>12} m(y1) dy — M|1®]7, q.c)-
Since
[(8/0y1 —ia;) @2 > (1 — K1)|0® /0y |> + (1 — 1/K1)|a: B2, (K, > 0),
we have
Ko, (8) 2 (1-KD)IVEI2, g0~ ((1/K: — Dlealie ) + M) 1812,
if K1 € (0,1). For K3 € (0,1) it is clear that
Ky, (8) = (1~ K2) Ky, (8) + K2 Ky (8)
2 (1 - KQ):U‘é) “(D”ign(ﬁ;c) + Ko (1 - Kl) ”V&)”ign(();c)
= K ((1/Kx = Dlloal2 gy + M) 1812, g,
=Hn “v‘illign(();c) + p12 ”é”ifn(ﬁ;(:)
holds where
pu = K2 (1 - Ky),
paz = (1 — Ko)ph — Ky ((1/}(1 ~ D12 gy + M) .

Compute (K, K») which maximizes p1; and p12 under the condition pq; =
i12. Then

||al||Loo(fz)

Kl = s
laall oo g3y + Vo + M
, (lawll oo @y + V20 + M) 1
2

{1+ (latll gy + Vo + M2+ M
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Letting 1 := p11 = p12, we obtain the lemma. O

3.4. Adjustment of v in ¥ — e ¥y .

In the first part of this subsection we define 6.(¥) for each ¥ so that
¥ — ey and ie?¢y are orthogonal at v = 6, ().

Definition 3.1. For each ¥ € L%(Q(e); C), let 6.(¥) be a solution v =
0:(¥) € R/27Z to the equation

(\i/ - ei'y\i’o,e,iei”/)O)L?n(ﬁ;C) =0,

Arg <e‘” /Q ¥(y) wo(yl)*m(m)dyN < g

where \Ilo,g = ec(y)%o(¥1)-

It is not clear whether 6.(¥) exists or not. The following lemma presents
an existence condition of 6.(¥).

Lemma 3.6. For each ¥ € L?(S)(e); C) such that

/ﬁ T (y) vo(y1)* m(y1) dy # 0,

the solution 6.(V) exists if ¢ > 0 is sufficiently small. Moreover exp(i6.(¥))
is unique and the function exp(ife(-)) : L?(Q(e); C) — C is continuous.

Proof. It is clear that
(¥ - eh‘i’o,s,iei'yd)o)Lgn(ﬁ;c) = (‘i’,iehwo)Lgn(Q;C) - (‘i’o,s,WO)Lgn(ﬁ;c)-
From (9) it follows
(Focrito) sz, ey = [ n(elRa' o) Wow)? m(sn) d
On the other hand, a simple calculation implies
(\fl,iei7¢0)L3n(Q;C) =Im (e7¥¢) = |¢|sin (Arg(e™"¢))

where
- / F(y) Yolur)* m(y) dy.
[9]

Thus the equation (¥ — e"“’\ilo,e,iehz/)o)wn(ﬁ;c) = 0 is equivalent to

€] sin (Arg(e™7€)) = /Q sin(e(Ra’, ' )ga) [do(u1) Pm(y1) dy.



210

Therefore this equation has a unique solution satisfying | Arg(e=*7¢)| < 7 /2
if £ # 0 and ¢ is small, and hence the lemma was proved. |

Next we prove that 0. (V) exists for all ¥ € 3.(4) if ¢ > 0 and § > 0 are
sufficiently small. Put

g3 = sup {2 € (0,6,) : 1 - ecl pmc) <1/2, Ve € (0,8)},
61 := |[Yboll2,, w/ez;c)/2-
Then we have the following:

Lemma 3.7. Ife € (0,e3] and § € (0,681], the solution 8.(¥) exists for all
¥ e ¥ (6).

Proof. For each ¥ € ¥.(6), there exist ¢ € [0,27) and ¥5 € H'(Q(¢); C)
such that

U =e"“Tg . + Vs, “\i’rSHH},L(fz;C) < 4.
It thus holds that

/Q\i/(y) Yo(y1)* m(yl)dy}

eic/~ |1,b0|2mdy+eic/_(ee—1)|w0[2mdy+/_\ilngmdy'
Q Q Q

z(1-]1- 56“Loo(Q;C))||¢O||ign(Q;c) - ||‘i’6“L3n((z;C) ”’/’OHLG(Q;C)
> (ol 2, @.c/2 = 8) ol 2, ey = O
Therefore the lemma, follows from Lemma 3.6. |

Next we define a modified d-neighborhood of the continuum {e?" ¥ :
v € R}, which is used to prove the theorem.

Definition 3.2. For each ¢ € (0,e3] and § € (0,41}, define a subset F(¢) C
H(Q(e);C) as

F.(8) = {¥ € H'(Qe); C) : | I — Mo || 1 1,6y < 5}
This neighborhood is close to ¥.(d) in the following sense.

Lemma 3.8. There erist constants ¢4 € (0,e3), 82 € (0,6;), and o > 1
such that

e(6) C Fo(08) (Ve € (0,e4], ¥4 € (0,5,)), (30)
F.(6) C 5:(8) (Ve e (0,e5], V8 € (0,81)). (31)
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Proof. It is clear that (31) follows from the definitions of F(8) and X (4).
We thus prove (30). Let ¥ € ¥.(8). Then there exist ¢ € [0,27) and
Vs € H'((); C) such that

U =e“Uore+Ts, (V5] ) <6
For 6 = 6.(7),
I — ew‘i’o,s”H,ln(fz;«:) = || ¥ + (e* — ew)‘i’O,s”H,ln(fz;C)
< ”‘i’étuln(ﬁ;c) + et — e ’,‘i’O,EIIH}n(Q;C)
<8+ v/2(1 - cos(c - 0)) ”\i’O,EHH}n(fl;C)' (32)
A simple calculation implies

vy\i,oyé' = €€Vyw0 + 1/)0Vyes

dl/)o/ds
=e, ( 0 ) + 1o e« Vy(R(y1)a'(y1), y')gre
0

and hence

H\i’O,EHH}n(Q;C) < Csllvoll i1, v/ez;0) (33)
where

Cs =1 +e3]|V(Ra', ¥ g2 || oo (1) -

We show V2(1 —cos(c—)) = O(6). Since § = 6.(¥) satisfies (U —
ew\IngE, iew‘pO)Lgn(Q;C) =0, we have
(€™ — 1) o, iW0) 13 (@1,0) = (€7 = 1) (e — 1) Yo, 1%0) 12 (i)
— (¥5,5€®%0) 12 @0y (34)
It is obvious
(€= = 1) 4o, o) 2 (ac) = sin(c — 0) IollZz, ®/ezicy-

Thus substituting this equality into (34) yields

[sin(c—0)| < v2(1 — cos(c — 0)) [lee — 1l oo i,y + 9/ Y0l L2, /e2:0)- (35)
Put

€4 = sup {g € (0,€3) : flee — Ul pmayey < 1/4V2, Ve € (0, g)} ,
821 1= ||vollL2 ryezic)/2V2.
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Then it follows from (35) that
|sin(c — 0)] < 1/v2, (Ve € (0,e4], V8 € (0,84]). (36)
Let
£ = el / %ol m dy,
Q
£ = eilc=0) /Q (ec = 1) ol mey+ e [ s gma.
Then we have
|éal/1€1] < 3/4V2 < 1/V2, (Ve € (0,e4], V3 € (0,82]),
| Ace(es+ )] = o (¢ [ B mdy)j <2,

by the definition of 8 = 6.(¥). It thus follows from

| Arg{€1/(€1 + E2)} = | Arg{(&1 +&2)/61}] < sin™'([&]/1&]) < 7/4

that
| Arg e’ 9| = | Arg &1] = | Arg{(&1 + &2) [2/(61 + &)1} < 3m/4.  (37)

Since (36) and (37), it holds that /1 — cos(c — #) < |sin(c—6)[. Using this
inequality and (35), we have

v1-— COS(C - 9) < 45/3||¢0“Lim(R/£Z;C)a Ve € (0,64],V5 S (O, 621]. (38)
Put

4v/2C; )
oom14 V2 5,l¢0,,H;m(R/€Z,C). (20)
31Yoll Lz, w/ezic)

From (32), (33), (38), and (39), we can estimate

19 — Dol g @i,0) < 6 + V2(L = cos(c — 6)) [ Wo el ey

426 Csl|lvollm_ (/om0
3vollzz, m/ezic)

< ol (VE € (0, 54], V6 € (0,(521]).

<5+

Taking 5 := min{d21,61/0}, we obtain the lemma. 0
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3.5. Lower estimate of E.(¥,B) — E.(¥,,0)

In the last part of Section 3, we show a lower estimate of E.(¥,B) —
E.(Vy,,0) which is used in the proof of Theorem 2.1. Combining Lem-
mas 3.1 to 3.8, we obtain the following lemma.

Lemma 3.9. Assume (A1) and (A2). Then there ezxist €5 € (0,e4), d3 €
(0,62] and Cy = CO(T/)O,CX,Q,AH,Tj,pj) > 0 such that for each € € (0,z5]
and § € (0,43 it holds that

EE(\IIyB) - EE(\I,O,E,O) Z %”“i} 16 (‘II)\I’O e”H1 (Q C) 005

for all (¥, B) € £.(8) x Z where 8.(¥) is defined in Definition 3.1.

Proof. It follows from (33) that for each € € (0,¢3) and § € (0, 64)
1) g1 @y < 6 + Csllvollaz, wyezey (VT € Ee(6)). (40)
Combining Lemmas 3.1 to 3.4 with
VeX(8), BeZ o=U—-e"0q,, 1py=e"y, 7ER,
if € € (0,e2) we have

E(¥,B) - Es(‘I’o,e,O)

C’ e/
2= - ” ”H‘ (QC) 2/3 ”lI"“ (Q,C)HR lv ‘I/“[ﬂ (QC)
- —uR—‘vy B2, g~ Cocll+ ||<1>||H1 a0)
+ _ICIZH((I)) _HR IVy Q)I‘Lz 2 (O C) HR lv \I’HLz (€:,0)

— Coe(1+ 1912, 0)) - CallBl% e
> 1Ky, (@) - @H@HH, o

+ (1 - gl Wy o ) IR T, o

— (G + oot Ol (14 18y ) + 181y e+ N, o o)
Put v = 6.(¥). Then (&),iv,bA,)L?"(Q;C) = 0. Applying Lemma 3.5, we have

Ky, (&)) > Nl”‘i”?{}n(ﬁ;c)'
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Since L.(6) C Fc(cd) for Ve € (0,&4] and Vé € (0, d2], it holds that
“‘i)“H}n((z;c) =¥ - eiHE(W)‘i’O,EHH}n(ﬁ;C) <oé (YT e ().
Thus,
Ee(¥,B) — E:(¥Yo,,0)
> (5 = 8) 19l

1 Ci(0+ Csllvollar,, v/ezicy)® N
(1_65 - feal’ W ¥ B s ey

cl/3
_ (Cl +Cy + 03)6 {1 + 06+ o282 + 7(6 + 05||¢0||H},m(1R/ZZ;C))4}

(Ve € (0, min{ez,e4}], Vo € (0,62]},

where we used (40). Define

83 := min{da, pt1/4Cs0},

. ik }
€5 1= min { €9, &4, )
5 { 20 16°C3 (63 + Cs ol 2, (myezic))®

and
/3 )
Co :=(C1+C2+C3) { 1+ 063 + 0283 + 57(53 + Cs||%oll 2, R/ez:c))" ¢ -

Then the desired estimate follows. O

4. Proof of the theorem

First we prove the following lemma:

Lemma 4.1. E(¥, B) is weakly lower semi-continuous on H(Q(¢); C) x
Z.

Proof. By the definition of E.(¥, B), it is written as

1
Be(¥B) = 5 [ {IW¥P - 2Im(%0, ¥ (s + B)eo + |4u + B B

+oa(l-21T2+ | /2}dac + —@2—/ |VB|? dz
2¢e R3
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for (¥,B) € HY(QUe);C) x Z. If ¥ — Uy, weakly in H1(Q(e);C) and
B, — By, weakly in Y as k — oo, then

Uy — U, strongly in LI(Q{e); C),
(Ax + Bi)lae) — (Ar + Boo)lage) strongly in L7(Q(); R?)

as k — oo for ¢ € [2,6) by Sobolev embedding theorem. By using the
inequalities

V¥ ll2(a(e)i0) < iminf [V | L2 0e)sc),
IVBool| L2@s) < liminf |V Be | L2qrs)

we obtain the lemma. O

Now we are in a position to prove the theorem.

Proof of Theorem 2.1. Take a minimizing sequence (¥, By) € ¥.(d) X
Z such that

E (¥, Br) \, @, B)eE Gz E(V,B) (k— o).

Since (Vg ¢,0) € £.(6) x Z, we may assume
Eo(¥4, By) < Eo(¥0.,0) (Vk €N), (41)
Thus by the equality || rot B||2gs) = ||VB||L2ws) for B € Z,
1Bl < 262E.(y, By)/B < 26 E-(Wo,,0)/8  (vk € N).
From (40), it follows that
1kl @iy < 8+ Csllvollms,, wezsey (VK € N).

As shown in Lemma 4.1, the functional E.(¥, B) is weakly lower semi-
continuous. Applying the direct method of the variational theory, there
exist (¥¢, B;) € £.(8) x Z and a subsequence {k'} C N such that

Ty — U, weakly in H1(Q(e); C) (k" — o0),
Uy — U, strongly in LI(Q(e);C) (2<¢g<6) (k" — o0),
By — B, weakly in Y (K — 00),
E.(U.,B)= _inf _E.(U,B).

(¥,B)ED(8)x Z
Thus it suffices for verifying the theorem to prove ¥, € 3.(d), that is,
U, ¢ 8%.(8). Applying Lemma 3.9 if £ € (0, 5] and é € (0, 63) we obtain

4Coe/py 2 ||k — ei*’s(%)xi:o,gnﬁm @co (VkEN)
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and hence
2y/Coe/pr 2 lggigofll‘i’k' — eI
> ¥, - ews(q")‘i’o,s|ly,ln(ﬁ;¢:)-
Put
do := min {53,4@} , €0 = &o(d) := p16%/16Co.
Then if § € (0, o] and e € (0,&0(8)],

§>8/222/Coe/p > || T — V)T ]| 41 (51.6):

that is, ¥, € F(8) holds, where F,(d) is defined in Definition 3.2. By (31)
in Lemma 3.8, the proof of the theorem was completed.
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SINGULAR LIMIT FOR SOME REACTION DIFFUSION
SYSTEM*

KIMIE NAKASHIMA
Tokyo University of Marine Science and Technology

1. Introduction

Habitat segregation phenomena in mathematical ecology supply us with
various problems which are interesting from the aspect of interfacial dy-
namics. We mathematically discuss regional partition by competitive two
species and their competition for their own habitats. When the competi-
tion between two species is bitter, they cannot coexist at the same point.
In such cases we can expect that the two species with a suitable initial
state segregate their habitats and compete on the interface between both
the habitats. Then it is significant to understand the dynamics of the seg-
regation patterns.

In this article we treat a competition-diffusion system for two species in
competition of the Lotka-Volterra type:

uy = diAu+ (a1 — biu — c1v)u, in  x (0, 00),
vy = dpAv + (ag — bov — cou)v, in € x (0,00),

with Neumann zero boundary condition on 8Q. Here ay, by, cx and di, (k =
1,2) are positive constants; u = u(t,z) and v = v(t, x) are the population
densities of competitive two species. Our concern is the situation where the
interspecific competition is exceedingly bitter: in particular, the situation
close to the singular limit as ¢;, ¢y — oo with ¢y /¢y fixed. Thus we simply

2This is a joint work with Georgia Karali (University of Toronto), Masato lida (Iwate
university), Masayasu Mimura (Meiji university), Eiji Yanagida (Tohoku university), and
Tohru Wakasa (Waseda university) ({7], [9]).
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rewrite the above system as

uy = Au+ (a — w)u — bMuv, in © x (0, 00},

1)

vy = DAv + (d — v)v — cMuw, in £ x (0, 00),
where a, b, c,d, D are fixed positive constants and M is a huge parameter.
As seen in the following section, the spatial supports of u and v satisfying
(3) become separated from each other by an interface in a short time-
period. Then after that the segregated (u,v) behaves like a solution of a
two phase free boundary problem for the Fisher equation. We will establish
a rigorous mathematical theory both for the formation of interfaces at the
initial stage and for the motion of those interfaces in the later stage. More
precisely, we will show that, given virtually arbitrary smooth initial data,
the solution develops interfaces within the time scale of O(e?). We will
then prove that the motion of the interfaces converges to the following free
boundary problem as ¢ — 0.

ui = Au* + (e — u*)u*, v*=0in R(t),

vf = DAv* + (d — v*)v*, u* = 0 in Q\R(2), (2)
ou* ov*
> +bD e 0 on I'(¢),
where
I(t) = OR(t),

and v an inner normal to I'(¢).

There are several related works on singular limits of some reaction-
diffusion systems as the effect of interaction tends to infinity: [1], [3], 4],
[6] and [11] investigate the fast reaction limit of chemical reaction systems
(see also the references therein). As for competition-diffusion systems, [2]
investigates singular limits of the stationary problems as the interspecific
competition rate tends to infinity. The most related work is [6], which we
will mention after giving the formal derivation of the singular limit.

2. Formal derivation of the singular limit
We rewrite (1) as

b
—uv, in 2 x (0, 00),

utzAu+(a—u)u—63

v =DAv+ (d~v)v— G%UU, in Q x (0, 00),
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with the boundary condition and the initial condition such that
ou @ B
on  On
w(z,0) = uo(z), v(z,0) = vo(z),  n Q.

0, on 9Q x (0, c0),

Here up(z) > 0, vo(z) > 0, in 2, n is an outer normal to Q , and € is a
small parameter, especially. In this section we present a formal derivation
of the singular limit of (3).

Set

R(0) = {z € Q| cuo(x) > buo(x) }, Q\_R_(a ={z € Q| cuo(z) < bvo(z) },

and assume that both of R(0) and Q\R(0) possess interior points.
Let us consider the first stage of a short time period from ¢ = 0 until

t = €2

. Since the initial data is smooth, it is heuristically seen that the
behavior of the solution of (3) is formally approximated by that of (&, )
below during the very early stage, where the diffusion terms, u(a — u) and

v(d — v) are relatively small compared with the competition terms.

buv
u —_— —
t 63
Ut _021_31) (4)

4(z,0) = uo(z), ¥(x,0) =vo(z).

The solution of (4) is given by

ﬁ‘(aj!t) = ¢<6i37u0(x)7v0(x))7 5($7t) = 1!’(6_2,"“0('1')’”0(:3))7 (5)
where (¢(7;€,7),9(7; €, 1)) is a solution of
P =—cpp, P(0)=n>0.

Set A(¢,n) = c£ — bn, then we can easily observe that A(¢(7),¥(7)) is
preserved for any 7 > 0 ; so that

¢ =(A(¢,n) —ch)p,  ¢(0) =& (7)
Solving (7) explicitly, we have
AeAT — AT
B(7:6,m) = B A (1 6,m) = 1de

T A+ ct(eAT - 1) A+bn(l —e-AT)y’ ®)
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therefore,
A(¢, . A,
TEI-POQ ¢(T’ Ea 7’) = Imax {_(%7—)a 0}7 T-Er—{{loo ¢(7'7 g» 77) = max {Oa - _——(i 77) }

9)

Then it follows that the solution becomes close to the continuous function
_ [ (w(z)/e, 0) in R(0),

(@) m(@) = { 00 (10)

after a short period of time scale ¢t. The non-degeneracy of Vw on R(0) =
{z| w(xr) = 0} causes the gap of (Vuj, Vv;) across the surface OR(0).
Thus sharp transition of (Vu, Vv) appears near 0R(0). Namely the corner
layer of (u(t,-), v(t,-)) is generated along the surface dR(0) in a short time-
period.

The second stage of the dynamics of (3) describes the propagation of the
corner layer. The stretching (u,v) with a suitable scale makes the analysis
of the corner layer easier. To rescale the system in the best possible way,
we need to estimate the length scale € = (M) of the width of the corner
layer. We note that u;, v are continuous functions with bounded gradients
and that the mean curvature of the surface R(0) is bounded. It is natural
to assume in the second stage that v = O(¢), v = O(e), uy = O(1) and
Au = O(e!) on the corner layer for huge M and that the effects of Au
and Muv in (3) are well-balanced. Then we have e = O(M~1/3),

Taking account of (10) and the argument for the first stage, we can ex-
pect that u(t, z; €) almost vanishes in some region in £, namely IRY \R<(t),
on the other hand v(t,z;€) vanishes in R¢(t). Further the corner layer
of (u(t,-;€), v(t,-;€)) remains along the interface R*(t). Around each
point y € SRE(t) we introduce a local orthogonal coordinate system (&, o)
such that ¢ = (01,...,0n-1) is a local coordinate along OR¢(t) whereas
€ = &(z, OR*(t)) is the signed distance from z to OR*(t) locally defined
near y so that £ > 0 in R¢(t). Around the corner layer we stretch the so-
lution and see it using a moving coordinate system (t, p, o), where p = £/¢
is a rescaled coordinate in the normal direction to dR*(t). Suppose that
(u(t, z; €), v(t, z;€)) is asymptotically written as

(u*,v*) + O(e) away from the layer (outer expansion),
(u,v) =
€(U1, V1) + €2(Uz, Vo) + O(€®) around the layer (inner expansion),

where (u*, v*) is a bounded continuous function of the fixed coordinate (¢, z)
and (U1,V]) and (U, V,) are smooth functions of the moving coordinate
(t,p,0) with a bounded gradient; all of them are independent of ¢. By a
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formal argument based on the matched asymptotic expansion method, we
can formally conclude that (u*,v*) satisfy (2) and (U, V) satisfy

( Ulpp =cl1Vi, —0 < p <+,
adVipp = bU1V1, —00 < p < 400,

(Ul(tvpv 0)1 Vl(tapv U)) = (07 _pg_zz(t’ y)) as p— —09, (11)

*

ou
(Ul(t)pa o), Vi(t, p, o)) = (pW(fﬁyL O> as p — +o0,

and (U, V3) satisfies (30) which is given later.

Here R(t) is the formal limit of R¢(t) as € — +0, v*(v°) inner (outer)
normal to R(t), and y a point on JR(t) corresponding to the coordinate
(0,0). In (11) the boundary conditions at p = Foo reflect the request
that (u*,v*) and €(U1, V1) should be matched. The boundary condition on
JR(t) in (2) is requested for (u*,v*) in order that the elliptic boundary
value problem (11) possesses a solution. Consequently, in the second stage
the supports of u(t, -; €) and v(¢, -; €) are almost separated by the corner layer
which remains in a narrow range of O(e) along the propagating interface
OR(t). The dynamics of the segregation pattern is essentially determined
by the free boundary problem (2). We see from the elliptic equations in
(11) that the population on the interface supplied by the diffusion from
both the habitats instantly disappears by the strong competition between
two species.

3. Main result

The formal derivation of the free boundary problem (2) from (3) as € — +0
is justified by [6] on a bounded domain in IR™ under the no-flux boundary
condition in the framework of weak topology of H'. It also gives a result on
the uniqueness and existence of a Holder-continuous weak solution to (2).
However we need to justify the derivation of (2) at least in the framework of
CO-topology in order to investigate the dynamics of the segregating inter-
face. To accomplish this end we impose the existence of a classical solution
to (2) as follows.

Before stating the results, we will make some assumptions.

Assumption 3.1. (nondegeneracy condition) Suppose that

inf |cVug — bVyg| > 0.
r'(0)
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Here T'(0) = R(0)

Remark 3.1. Assumption 3.1 assures that I'y is an N — 1 dimensional
hypersurface with bounded mean curvature.

Let (u*(z,t),v*(z,t),['(t)) be a solution to the free boundary problem
(2) with an initial data

uw*(z,0) = @, in R(0), v*(z,0) = —w—(b@ in Q\R(0). (12)

Assumption 3.2. (u*(z,t),v*(z,t),I'(t)) satisfies (2) with the initial data
(12) in a classical sense for (z,t) € QA x [0,T]. T'(t) is a closed hypersurface
in Q and is in C? for each t and in C' with respect to t.

Assumption 3.3. v* and v* be nonnegative continuous functions,
|u*|,|Vu*], |Au*| are bounded in R(t) uniformly with respect to t, and
[v*|, [Vv*|, |Av*| are bounded in Q\R(t) uniformly with respect to t;

Assumption 3.4.

irllf linzll [Vu*(z)| > 0, irllf . lirrlxl |[Vo*(z)| > 0.
H = " =
v Rl YO, e ovmH

Remark 3.2. If the free boundary condition in (2) is replaced by

p%l’(t) = c—g—z-i— - bD% on I'(t),

where p is a positive constant and %F(t) denotes the propagation speed of
I'(t) in the outer normal direction, then the regularity of I'(¢) will be assured
by the parabolicity as treated in [8] and [10]. However, in our case which
corresponds to the case y = 0, it is not easy to deduce the regularity of I'(t)
in (2), because the parabolicity is partially broken on I'(t). Nevertheless,
a recent result in [11] suggests that the partial regularity of ['(t) in the
classical sense can hold also for (2). Thus we believe the above assumptions
natural.

Now we will give our main theorem.

Theorem 3.1. There exist a positive constant C > 0 such that for suffi-
ciently small € > 0, the following hold:

|ue(z,t) — u*(t,z)| < Celloge|,

|ve(z,t) — v*(t,z)| < Celloge| for (t,z) € [€2,T) x Q,
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where (ue(z,t), ve(z,t)) is a nonnegative solution of (8). More precisely,
there exists C',C",C" > 0 such that for sufficiently small €, the following
holds:
" g
ez, 1) < O exp(~ Z4E
for{z € Q\R(?) ; [d(z,t)| > C"¢[logel},
C"\d(z,1)] )

€ -

for{x € R(t); |d(z,t)| > C"¢|logel}.

|ve(z,t)| < C' exp(—

Theorem 1 shows that , for virtually arbitrary smooth initial data, the
solution develops interfaces in time ¢ = €? and the motion of the interface
is approximated by the free boundary problem (2) for ¢ € [¢2, T).

Our main tool for deriving the above results is the method of upper and
lower solutions. We will use two different pairs of upper and lower solutions,
namely (U%, V%) and (u*,v*). The first one (U*, V*) is used to analyze
the generation of the interface that takes place in a very fast time scale.
The second one (u*,v*) is used to study the motion of the interface in a
relatively slow time scale. The transition from the initial stage to the second
stage occurs within a time scale of €2. Since the behaviors of solutions are
so different between the two stages, it is important to construct suitable
upper and lower solutions for each stage and to know the right timing to
switch from (U%,V¥*) to (u*,v¥).

In the following Section 4, we deal with the generation of the interface,
and in Section 6, the motion of the interface. Section 4 is depend on [9],
and Section 6 is on [7].

4. Generation of interface

In this section we study the generation of interface that takes place in the
initial stage. We will construct an upper and lower solution for this stage.

As we have mentioned in Section 2, we can expect that the solution
(u(z,t),v(z,t)) would be approximated by

(68(553 u0(@), wo(2)), ¥(5u0(x), wo(@))) (13)

by a formal argument. Let d* > 0 be sufficiently small constant such that
dist(z,T'(t)) be signed distance function defined in {z € Q | dist(z,I'(t)) <
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3d* } We will introduce cut-off functions. We define d as a modification of
dist(z,T'(t)) such that dd > 0.

dist(z,I'(t)) if |dist(z,T'(2))] < d*,

d(z,t) = { d* < |dist(z,T(t)| < 2d* if d* < |dist(z,T(t))] < 2d*,

|dist(z,T'(t))| = 2d* for Q@ \{z € Q| dist(z,[(t)) < 2d* }.
(14)
Set

Ty =T(0).
It is easily seen that there exists 0 < Cy < C} such that
Cold(z,0)] < |w(@)| < Culd(z,0)].
Therefore, we obtain the following theorem:

Theorem 4.1. (Nakashima-Wakasa [9]) Then there exist C;, Cy > 0
such that for sufficiently small € > 0, the solution (u.,v.) of (3) satisfies
the following estimate:

ue(z,t) — ¢<613,u0(m),vo(a:)>‘ < Cie, (z,t) € Q x (0,€?),

ve(z, £) — ¢(613,u0(m),v0(z))| < Cie (z,6) € A x (0, ),

and

ue(z, €2) — max{@,O}‘ < Co, €N

ve(z, €2) —max{ ,——@H < Crez €

Moreover, under Assumption 3.1, there exist C3,Cy4,Cs > 0 such that for
sufficiently small € > 0,

C3 d(z,0)| B0V - |4
€

lue(z, €2)] < Cs exp(— ), in {z € Q\R(0) ; |d(z,0)| > Cye|loge|},

d(z,0 7
Gl de0l) i (a ¢ R(O); Yz, 0)] > Cyelog el

(15)

|ve(z, €2)| < Cs exp(~
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Theorem 2 shows that, for virtually arbitrary initial data, the solution
forms interfaces in time t = €2. More precisely, at time ¢ = €2, (u®,v?)
stays between another pair of upper and a lower solution which are given
in the next section, Motion of interface. This makes it possible to combine
two different pairs of upper and lower sclutions.

5. Proof of Theorem 4.1

In this section, we will prove Theorem 4.1 The proof of this theorem is due
to constructing upper and lower solutions, which are modifications of the
approximate solutions (%, ) in (4).

5.1. Some estimates for solutions to O.D.E. system

Let us consider (¢,1), solutions to (6). We will give some estimates for
several quantities of ¢, 1, and their derivatives with respect to £ and 7.
From (8) and (9), we can see that sign of A(£,7n) plays an essential role
to determine asymptotic behavior of (¢,4) as 7 — +oo. In order to show
Theorem 4.1, we need two kind of different estimates. One of these are
given uniformly in A, that is, these estimates are independent of A(¢, 7).
We also need estimates for ¢ (resp. ), if (§,n) € {A(£,n) < 0} (resp. if

(€,m) € {A(&,n) > 0}).

Lemma 1.
(i) For all ,¢,n >0,

A(¢,
O<¢(T;€»77)"max{ (in),o SH——FE—C{.T_)’

and

. A€, n) n
0<¢(T,€,n)—max{0’_ b }5(1+bnf)'

(it) If €,m > 0 satisfies A(€,n) < 0 (resp. A(&,n) > 0), then
0 < ¢(r;€,m) < €eAEMT  (resp. 0 < (73 €,7) < ne”AEMT)
for any T > 0.

Lemma 2. For all™>0,§ >0, >0,

b
0<¢£(7',§777) <17 "E <¢T](T;£)n) <0a
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and
b
=2 <¥e(m&m) <0, 0 <yy(r3,m) < L.

Lemma 3. If&,n > 0 satisfies A(§,n) <0 (resp. A(€,n) > 0), then there
exists Mo > 0, which is independent of £ and n, such that

|6e(73€,m)| < Mo(L+Er)et &M, |g(r;6,m)| < MogreA®mT

(resp. [e(r:&m)] < Monre™ A€M sy (r;€,m)] < Mo(1 + gr)e=A€n)7)
for any 7 > 0.
Lemma 4. (i) For all7 >0, £ >0, n >0, it holds that

B(15€,m) ’
Pe(T3€,m) Yn(T; 5,77)
(ii) There exist M1, My > 0, which are independent of £ and n, such that
¢E£(T;€:77)’ + Pen(T; £€,m) | “bm](T i€, 77)‘
¢E(T;€an) ¢’E(T7§7 ¢€ 75 67 -
7/155(7', 57 77) + 11)57](7-; fa 77) + 1/}7177 75 fa 77)( Ml
%(7';5,71) 7/)77(7';5,77) wn T3 5) -
forallT >0, £>0, n>0.

]<2§, |<2n

+ Mo,

+ Mo,

Proofs of above lemmas are ommited.

5.2. Definition of upper and lower solutions

Let (u(z,t),v(z,t)) be a smooth function defined on Q x [to,t;]. We say
(u,v) is an upper solution for equation (3) (in the time interval tg <t < ¢;)
if it satisfies

_Au—(a—u)u+b—?3220,
(16)
vt—dAv—(d—v)v—l—ce%SO

for z € Q,t5 <t <t; along with the boundary condition

— >0, <0, (z€dQ, to <t<ty).
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We say (u,v) is a lower solution for equation (3) if it satisfies

buv

_Au—u(a—u)—{—e—BSO,

v, — dAv —v(d —v)+%>0

for x € ,t0 < t < t; along with the boundary condition

@<0,g >0, (x €09, to <t <t).

The following is a consequence of the maximum principle.
Proposition 1. Let (ut,vt) be an upper solution and (u=,v™) be a lower
solution of (3) for to < t < t1. Suppose that a solution (u,v) of (3)
satisfies u~ (z,to0) < ulz,to) < ut(z,to), v (z,t0) > v(z,t0) > vt (z,to)
for z € Q. Then the solution (u,v) satisfies u™(z,t) < u(z,t) < ut(z,t)
and v=(z,t) > v(z,t) > vt(z,t) fort € [to,t1] and z € Q.

The following is also an immediate consequence of the above proposition:

Cororrary 1. Comparison principle. If (u,v) and (@, 3) are two solutions
of (3) and if u < @ and v > ¥ for ¢t = ¢y, then v < 4 and v > ¥ for ¢ > ¢o.

Remark. This comparison principle reduces to Proposition 1 in the case
of the ODE system (6). More precisely

(=) mim (EED= (g e o

5.3. Construction of an upper and a lower solution

The upper and lower solutions for the early stage are constructed by mod-
ifying the solution of the following problem:

Define
U+ (2,t) = 655 u0(@) + meexp(z5), 0(z) — mecxp()),
V*H(z,t) = 1/’(613;110(1“) + ’Y1€eXP('€t3)an(x) - ’Yzéexp(—tg)),
t t Et (19)
160 =02 < nen(E), )+ e )

V= (2,8) = (53 00(2) — meexp(zp), w(@) +meexp(5),
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where v1,v2 > 0 is constants determined later.

Lemma 5. There exists y3 > 0, 75 > 0 such that for sufficiently small
€ > 0, the functions U* , V* are pair of upper and lower solutions of (3)
for0 <t <€

Proof. We first consider the case where
Ou Ov
on  On
on 9. Consequently, we have

Ut _ U~ _avt _av- _

on  On on on

on 9Q. The general case will be considered in Remark below. We will show
that (UT, V™), (U™, V™) satisfy inequalities (16) and (17) respectively. We
set
buv
Li(u,v) = uy ~ Au— (a ~u)u+ —,
€
(20)
La(u,v) = v, — dAv — (d — v)v + =,
€

Our goal is to show that
LyUT, VY)Y >0, L (U,V7)<0, Ly(UT,VF)<0, Ly(U,V7)>0.

We will only prove £,(U*,V+) > 0 and Lo(U*, V) <0, since the other
inequalities can be proved similarly. £1(U*,V 1) and Lo(U*, V) are given
by

1

Ly(U, V) =2 exp(5)(116e — 12d)
= eel Vuo(@)I? — 20y Viio(2) V() — banl V00(@)]?
— $eAug(z) — ¢yAvg(2) — (a — @)

el 2 exp(z5) = Ra) + () (2 - 7 exp(5) = Ra),
(21)
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and
1 t
Lo(UT,VH) == EXP(G—Q)(’YN/% = Y2¥n)
— Dipee|Vuo(2)[? — 2Dt Vuo (2) Vo () — Dippy | Vo(2)[*
— D¢ Aug(z) — DipnAvo(z) — (d ~ ¥)¢
m 1 t 72 1 t
=De(J - 2 exp(5) = Ro) + (~Do)(5 - ¢ exp(5) ~ Ro)
(22)
Here R; (i =1,--- ,4) are
R, = %(a — @) + Ayg + %f—lvuoP + Q%ilvuovvo + %”E-'L[valz,
Ry = —Avy, R3 = Auy,
Ry = —-(d— 9) — Avo — Y& [Vuo|? — 242 Vuo Vo — 42| Vo2,

In above expressions, we also use several notations as follows:

t t t
¢ = ¢35 uo(w) + neexp(), vo(x) — neexp()),
0¢ , t t t
b = 6_5(6_3;%(35) + ’YlﬁeXP(G—g),UO(w) - 71€eXP(;5))’
0%t t ¢
Pee = a—gf(z;uo(z) + ’Y1€eXp(E—2),vo($) - 715eXP('€'2‘)), ete.
By Lemma 2, we can see followings: ¢¢, —¢, are positive and ¢, —1by,
are negative. Additionally, from Lemma 4, we can observe that if € is
sufficiently small, then
1 t
R < —_— —
masx(| R, |Rsl} < M (—mrs + ),

1 t
max{| Rz, |R4[} < M2(m + 5—3)

for x € , and t > 0. Here M;, M, are positive constants and, depend
on bounds of |ug|, |Vug|, |Auo|, vol, |Vvol, |Ave| in Q. Therefore apply-
ing (23) to (21) and (22), we obtain £,(U*,V*) > 0 for sufficiently large
1, Y2 > 0 independently of € > 0. The proof is complete. g

(23)

Lemma 6. There exist C;,Cy > 0 such that for sufficiently small € > 0,
the solution (u,ve) of (3) satisfies the following estimate:

lUi(z,t) — ¢(Et§,uo(z),vo(z))l < Cie, (z,t) € Q x (0,€2),

V22, 1) — (5 u0(2), wo(x))| < Cae (2,0) €2 x (0,69,
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and

lUi(x,e2) - max{@,o}\ < Che, TEQN

,Vi(x, ) — max {0, —#}' < Chez Q.

Moreover, for any B > 0, there exist C3 > 0 such that for sufficiently small
€>0,

(U (z,€2)] < Cyef, in {z € WE) ; w(z) < el logel),

|[VE(z, €2)| < C3€?, in {z € R(0) ; w(z) > Pe|loge|}.
Proof of Theorem 4.1. If we apply Proposition 1 to Lemma 5, then
for (z,t) € Q x [0,€%], U (z,t) < uc(z,t) < Ut(z,t), V(z,t) > ve(z,t) >

V+(z,t) and especially,

ue(x,t)—qﬁ(e%;uo(z),vo(x))‘ < max Ui(z,t)—qb(f%,uo(:c),vo(:v))’,

U+U-

0e(@,1) ~ (53 00(@), 90(2))| < max [VE(z,1) — 95, w0(@), (@) |

v+ v-

and

ue(m,62)—max{w—(;—),0}‘§ max Ui(a:,e2)—ma.x{w(x),0}l,

s} 00 -2

Therefore from Lemma 6, we obtain the proof. O

Proof of Lemma 6. We only show the inequalities for U*, since the
other inequalities are shown in the same way. Using mean value theorem,
we have

t
U+ @6 - ¢(5 3 wo(@), (=)
t t t t
<éen exp 6—2¢£ (6—3 ; uo() + €61y, exp = vp(z) — €fay2 exp '67) (24)

t t t t
— €72 €Xp 6—24577 (-63 ; uo(T) + efam exp — 5, U0(Z) — €472 €xp 5_2)’
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for some 0 < 6; <1 (i = 1,2,3,4). It follows from Lemma 2 below and
(24) that there exists C] > 0 such that

|U+(a:,t) — ¢>(€i3 ; uo(z),vo(m)>‘ < Cie, for (z,t) € 2 x[0,€%]. (25)

Hereafter, C; (i € IN) denotes a positive constant independent of ¢ > 0.
Set t = €2. It holds that

|U+(JJ,62) —max{-@,ﬂ}l ‘U*’ €?) — ¢<% ; uo(z), ’Uo(l'))‘
(L o0 ) s {22}
(26)
By (i) of Lemma 1,

w(z)

l‘f’(é;uo(I),vo(m)) — max{ O}J < ce

in Q. Hence combining this inequality, (25), and (26) we obtain the second
inequality for U' in Lemma 6. Now let us consider the third inequality
for Ut in Lemma 6. Fix 8 > 0, and recall (24) and (26). Using of (ii) of
Lemma 1 and Lemma 3 at ¢t = €2 (7 = e~ 1), if w(z) < —B¢|loge|, then for
sufficiently small ¢ > 0,

U+ ) <[U )~ 8 5 wola)w(@)| +[8(: 5 wol@), w@)]
<evieds (% i wo(T) + ed1m1e, vo(2) — 692726)
~ emey (2 ; uo(a) + efime,volz) — chavae)
+ ‘¢(% ; uo(x),vo(m))‘

1 w(z) + O(e
<e(r1+m2)e: M{); sug up(x) exp L)G_(_)
z€

+ sup up(z) exp —+ w(z)
zeN €
<Csexp(—ploge|) < Cse®.
(27)
Therefore we obtain the inequality for Ut. The proof is complete. d

Remark We finally consider the case where ug{x) and vp(x) do not satisfy
the Neumann zero boundary conditions. Since € is small, d(x, Q) is smooth
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in {z € Q| dist(zx,0Q) < 3e}. Set

0 if dist(z,00) > 2,
6(z) = (28)
1 if dist(z,0Q) <e¢

Choose 11,12, 73, 74 such that

o
—1m1 < mingesn {M,O} <0, 79 > maXgeo0n { vO(x),O} >0,

on on
o o
73 > MaXzeo0 uo(®) 00 20, —m4 < mingean vo(m),o <0,
on on

we define

ud (z) = uo(z) + mdist(z, 0Q)6(z),
vi (z) = vo(z) — nadist(z, 8Q)0(x),
ug (x) = uo(z) — nadist(xz, 8Q)0(z),

vy (z) = vo(z) + nadist(z, ON)6(z),

If we replace ug(z) and vo(z) in (U*+,V7*) in (19) by ud and vy, respec-
tively, we obtain the upper solutions. On the other hand, if we replace ug(zx)
and vo(z) in (U~,V ™) in (19) by vy and vy, respectively, we obtain the
lower solutions. The proof is completed by repeating the proof of Lemmas 5
and 6. Almost all the arguments are the same as the case of Neumann zero
except for two differences. One is that Auf, AvT are O(1/¢) in Lemma 5.
Therefore, we obtain
1 1 t
max{|Ril, [Ral} < Mo (5 + ———+ =),
€ infrequo(z) € (29)
1 1 t
Bal, |Ral} < Ma(Z + ———+3)
max{|Ha|, |Ral} < Ma € + infzeq vo(x) + e3/)’
insted of (23). The other difference is that we need to check the Neumann
zero boundary condition of ug, vy, ug, and vy. To show this we remark
that
0
f(r) =1, g—n >0, on 99.

Then it follows that
d + _ auo(a:)
o (2)) = 22

+ mO(x) + mdist(z, 69)% =0 on Of.
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The conditions for v, ug, vy can be obtained in the same way.

6. Motion of interface

In this section we construct another pair of upper and lower solutions for the
second stage, motion of interface. This upper and lower solutions (u*, v¥)
has interface near I'(t), the solution of the free boundary problem (2).

We first construct upper and lower solutions (Uf,i,Vi') in a tubular
neighborhood of I'(¢) by modifying the first two terms of the inner expan-
sion. After that we construct an upper and a lower solution (UZ,,V.E,)
outside the tubular neighborhood using the first term of outer expansion.
Then we match (UZ,VE) and (UZ,,VE,), then obtain (u*,v*). Once
(u*,v%) are obtained, they will later be combined with another set of upper
and lower solutions (U*, V¥) that take care of the generation of interface

at the initial stage.

6.1. An upper and a lower solution near the interface

We define an upper and a lower solutions in the following form:

Uin(,t) = U1 (@ + n(t),o) +€2U; (‘i(x’t) +n(t), 0, t) —€%(t),

Here d(z,t) is defined in (14),

n(t) = (log = )vexp(Mt), a(t) = exp(Mt), (t) = & exp(M)
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where v, 0,6 and M are positive constants to be determined appropriately,
and (U, V1) satisfies (11) and (Us, V2) satisfies

( —Uggg + C(U1V2 + UQVI) = —Ule(dt — Ad) —o0 < p < +00,
—DVaee + b(U1 Vo + UaVi) = —Vig(dy — DAd) —00 < p < 400,

< (30)
(UQ(t7p7 0')’ VZ(ty s U)) = (O, 0) as p — —o0,

\ (U2(t7 £ U)a ‘/2(t7 P 0')) = (01 0) as p — +00.

(30) is obtained by the formal argument based on the matched asymptotic
expansion. The following lemma assures the existence of the first and second
term of upper and lower solutions, whose proofs are omitted.

Lemma 1. (i) There exists a unique positive solution of (11).
(13) There exists a solution of (30).

Since the first two terms of (U, V;¥) are determined, we choose appropriate

in? "in

q and § so that (UZ V) are an upper and lower solutions.

n? in

6.2. Upper and lower solutions away from the interface

In this subsection we will construct upper and lower solutions away from
the interface modifying the first term of outer expansion.

Let g be a smooth function satisfying
g(s)=01if s<0, g(s)=11if s>1
g0)=9¢'(1)=0, ¢'(s) >0 for 0<s<1
and set
8 ~ s ~
A1(s) = g(; + R|loge|), Ax(s) = g(——e- — R|logel).

Moreover let § satisfy 0 < ¢ <« d* and define

2 P2 2 B9
—Belloge|(s + 6)? + BSRe?| log e]? + —ﬁ——e]log €,
H(s) = (=8 — Re|loge| < s £ —Re|loge|),

~ 2 o~
BéRe?| logel? + %d loge|, (s < —&— Re|loge|).
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Now we will define upper and lower solutions in the following form:

u*(z,t) + €| log | exp(Lt) — H(d(z,t)), d(z,t) < —Re|loge|
U(;I;Lt(x’t) = . _

(1= M (d(z, ONUF + Ay (d(z, t))et, d(z,t) > Re|loge|

0, d(z,t) < —Re|loge,
Vo‘;t(];’ t) =

v*(z,t) — €| log €| exp(Lt) + H(—d(z,t)), d(z,t) > Re|loge|

{ u*(z,t) — €| log €|avexp(Lt) + H(d(z,t)), d(z,t) < —Re|log €]
Ugut(z,t) = -
0, d(z,t) > Re|loge|
{ (1 = X (d(z, )W + Aa(d(z, t))el, d(z,t) < —Re|log €]
Vour(z,t) =
v*(z,t) + ¢|log elaexp(Lt) — H(—d(z,t)), d(z,t) > Re|loge|.

Here a, 8, R are positive constants to be specified appropriately.

(UZ,,VE,) are chosen so as to satisfy the following condition.

e (UZ,, VX)) is an upper and a lower solution for |d(z, t)| > Re|loge|.

e The entire upper and lower solution given by (31) below is not
smooth for |d(z,t)] = Re|loge|]. (We need to care about the
derivative of (UL, V) and (UL,,VE,) at |d(z,t)| = Relloge|.)
(UL,,VE,) are determined so that (u®,v*) given below become
an upper and a lower solutions.

e (UL,,VZ,) has the following estimate.

out? ¥ out
(UL,, VE) = (u*,v*) + O(e|loge]).

out? ¥ out

6.3. Entire solution for the motion of interface

The entire solution is given by
(U5, ViE) ld(z,t)| < Re|loge,
(ui’ vi) =

(265

ut)

) (31)
VE,) ld(z,1)] > Rellogel.

Let (u),.vi, Ry) be a solution to (2) with an arbitrary initial data
(uf,(z,0).v% (z,0)). Assume
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Assumption 6.1. Assumption 3.2 and Assumption 5.3 hold with replacing
(u*,v*, R) by (uk,,vh, Rpy).

Set T';, = OR,,, and let d,,, be difined by (15) with I" replaced by I',,,. They
give the following result:

Theorem 6.1. (lida-Karali-Mimura-Nakashima-Yanagida {7) ) For any
sufficiently large v > 0 and any sufficiently small ¢ > 0, there exist
Cs,Cq,C7 > 0 such that for sufficiently small € > 0 and the initial data
satisfying
[ue(x, 0) — ul (z,0)] < Csellog €|, [ve(z, 0) — v, (2,0)] < Cse|logel.
(32)
lue(z,0)| < Cs exp(—

¥

for {z € Q\Rm(O) | m(z,0)] > vellogel},

( a]dmix,0)|)

|ve(z,0)] < Cs exp(— | ( )l)
for {z € R,(0); |Jm(m,0)| > el loge|},
(33)
it holds that
|ue(z, t) — uy, (z,t)| < Coe|loge], |ve(z,t) — vy, (z,t)| < Cee|loge].
|ue(z,t)] < Co exp(— 7ldn ( gldm(z, )

for {z e Q\R (t); [ m(z,t)| > Cre|loge|},

o’|dm(z t)|

|ve(z, t)| < C exp(— )

for {z € Ru(t) ; |dm(z,t)| > Cre|logel}.

7. Proof of Theorem 1
Combining the estimate in Theorem 2 and expressions of (u*,v*), we have

u=(z,€?) < U (z,€)) < Ut (z,€%) < ut(z,é?),

v (z,€2) >V (z,€2) > V*(z,€2) > vh(z, ).
This and Theorems 2 and 3 implies that for arbitrarily chosen initial data
satisfying Assumption 1, the solution of (3) stays between (U~,V~) and
(Ut,V+) for ¢t € (0,€%], and stays between (v ~,v~) and (ut,v%) for ¢ €
[€2, T). Using the estimate in Theorem 3, the proof is completed.
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RAYLEIGH-BENARD CONVECTION IN A RECTANGULAR
DOMAIN

TOSHIYUKI OGAWA AND TAKASHI OKUDA

Graduate School of Engineering Science,
Osaka Univercity, Toyonaka 560-8531, JAPAN

1. Introduction

There has been a lot of studies on a convection patterns in the Rayleigh-
Bénard problem. Consider the Bussinesq approximation (Oberbeck-
Boussinesq model) with up-down symmetric boundary conditions. It is
a well-known fact that a hexagonal and a roll patterns appear when the
Rayleigh number exceeds its critical value and only the roll pattern is
stable. See for example [14]. In [9] they obtained general bifurcational
structure under the up-down symmetric boundary conditions including the
Boussinesq approximation. However, both of them have not obtained the
eigenvalues about the mixed mode solutions such as the hexagonal pattern.
On the other hand, it is rather easy to obtain a hexagonal pattern under
the same up-down symmetric situation by a 3D numerical simulation from
small random initial data. Therefore we shall exactly calculate the coef-
ficients of the cubic normal form about the critical point where both the
roll and hexagonal patterns appear and study the dynamics of them. By
the cubic normal form we can study the invariant torus which includes the
fixed points corresponding to the hexagonal patterns inside. To determine
the motion on the torus we need to calculate the normal form up to higher
order. But here, we only discuss the stability of the invariant torus and
calculate the eigenvalues for the transversal direction to the torus. We can
show that it is true that the invariant torus of the hexagonal pattern has
positive eigenvalues but they are small compared to the absolute value of
the negative ones. The invariant torus is a saddle for its transversal di-
rections and it will take quite a long time to observe unstable dynamics.
It is consistent to the classical theoretical results and also the fact that
we frequently observe "unstable” hexagonal patterns in numerical simula-

241
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tions. Notice that a hexagonal pattern can be stable in the case when the
two boundary conditions are different each other so that they break the
up-down symmetry. In fact the normal form has quadratic terms which
correspond to the hexagonal resonance([4]).

In the study of hexagonal patterns it is convenient to consider a rectan-
gular fluid container with particular size so that there exist 3 roll solutions
which have the same critical wave length and cross each other by the angle
of 120 degrees. We can consider more general situations by changing the
size of the container. It is still difficult to study the reduced dynamics for
all the variations of the system size. However, we found there are stable
mixed mode solutions (patchwork quilt type) by taking the size of the con-
tainer and the Prandtl number appropriately. We shall also consider the
2-dimensional problem, where the flow is assumed to depend only on (z, z)-
directions. We show that the pure mode solution (roll) is unstable while a
mixed mode solution is stable when the Prandtl number is small. Part of
these results are already anounced in [13]. Here, we shall take a different
algorithm to calculate the normal form and mention more detailed results.

We are specially interested in small rectangular container for the bifur-
cation analysis. Since otherwise if we consider the large system size the
bifurcation structure for the stationary solutions might become close to
that of the Ginzburg-Landau equation. Notice that the Ginzburg-Landau
equation is considered to be the reduced simplified model for the Oberbeck-
Boussinesq model. And only the pure roll solutions are stable for the
Ginzburg-Landau equations, since their nonlinear terms are cubic. See
[4] in detail.

2. The Rayleigh Bénard problem

We consider the Boussinesq approximation for the Rayleigh-Bénard con-
vection. Variation equations about the conductive state can be written in
the following non-dimensional form.

u; + (u - V)u = —=Vp+ Rbe, + Au
6+ (u- V)0 = (w+ AG)/P (1)
V-u=0

Here, u = (u,v,w) is a velocity vector and e, = (0,0,1). Equations (1) are
considered in the region R? x (0,1). Two constants R and P are called the
Rayleigh and the Prandtl numbers, respectively.
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Let the boundary conditions be free-slip for both the top and the bot-
tom:

u;=v,=w=60=0 (2=0,1). (2)

These boundary conditions simplify the normal form calculation. In fact,
we can naturally extend the functions u,8,p on z € [0,1} to the periodic
functions for z-direction whose periods are 2 from the following reasons.
First, extend w,v,p as even functions on [—1,1] and w, @ as odd functions
on [—1,1]. Then from the boundary conditions we know that these func-
tions are Cl-continuous at z = 0 and they turned out to be C? from the
equations. Second, we further extend those functions to z € R so that
they become 2-periodic, i.e., u(z) = u(z + 2). Similar argument shows
that the extended functions are also C? at z = 1. Therefore solutions to
equations (1) with the boundary conditions (2) are included in the space
of 2-periodic functions for z-direction. Conversely, if a 2-periodic functions
for z-direction satisfying (1) and moreover their u, v, p components are even
and w, § components are odd then they are solutions of equations (1) and
(2) . This is called hidden symmetry relating to the Neumann boundary
conditions (see [8]).

Now, let us assume the periodicity for both z and y directions with the
periods (27 /v, 27 /3). We can finally represent each unknown variables by
the Fourier expansion.

°w = Z T ei(mam-’;—nﬁy-l—hrz), v = Z - ei(maa:+n,3y+l7rz),
(mmn,l)eZ3 (mn,l)eZ3

W= Z Win g ei(max+nﬁy+l7rz)’ 6 — Z gm,n,l ei(mam+nﬁy+l1rz)
(m,n,l)eZ3 (m,n,l)eZ3

p= Z P ei(maz+nﬁy+l7rz)‘
(m,n,l)eZ3

We use an abbreviated notation m = (m,n,l) for the mode vector and
Um = Um,n,l.

Since all the unknown variables are real valued and their Fourier coef-
ficients have the Hermitian symmetry: u,, = T, . They also satisfy the
following properties which correspond to the even and odd symmetry of the

7
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corresponding functions.

Umnl = Umn,—I
Ummnl = VUmn,—I
Wmnl = —Wmn,—1, (3)
em,n,l - —em,n,—l,
Pmnl = Pmn,—1

Now we rewrite the equations (1) by using the Fourier coefficients as follows.

Um w2 0 0 0 —ima Um {(u-V)utm
U 0 —w2 0 0 —ing Vm {(v-V)v}m
Wm | = 0 0 —w?: R —ilrm Wm |—| {(w-V)wlm
O 0 0 1/P —w%/P 0O O {(w-V)0}m
0 ima in@  ddr 0 0 Dm 0
(4)

Here, w2 = m2a? +n2p% + I?=2.
Note that the problem (1) and (2) admit another type of symmetry: up-
down symmetry which means that they are invariant under the mapping:

(u,'u,w, 0,p)(t,l‘, Y, Z) = (’U.,’U, —w, _eap)(tv$a Y, 1- Z)'

Equation (4) inherits up-down symmetry from the original problem. More
precisely, equation (4) is invariant under the transformation:

Um,n,l — (—1)l Um,n,l,
Um,n,l — (_1)l Um,n,l,
Winyn,t = (=1)! Wi g, (5)
am,n,l - (“1)1 om,n,ly
Pmn,l — (—1)l Pm,n,l.

Equation (4) with the even-odd symmetry (3) is equivalent to (1) with
the boundary condition (2). Moreover the Fourier coefficients for the pres-
sure p and w can be eliminated by the fifth equation of (4) and finally we
obtain the following system of ordinary differential equations for m # 0.

Um Um {(u-V)u}lm mo
Vm | =Mm | vm | — | {(v-V)0}m | +km | nB (1#0) (6)
Om Om {{(u-V)0}m 0

(1) = (22) - ({2153

+ k(m,n,0) (7:;) ({ =0 and m # 0)
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Here,

b = 5 (ma(u - V)b + {1 V)b + br{ (- V),

~w? 0 —miraR/w?

Mn = 0 ~w?  —nlwBR/W? |, (1#0),
—ma/lrP —ng/lnP  —w?/P

Mm = <_“2 02>, (1 =0 and m # 0)

0 —w

Notice that the mean flow should be zero, that is ug = vg = pg = 0
and it holds that wo = 6y = 0 by the symmetry (3). It is easy to see
that the linearized matrix M, has O-eigenvalue if and only if { # 0 and
R = R(k) = (k> +1%72)3 /k? where k is the wave number with &% = m2a® +
n?B?%. R(k) takes its minimum value R, = 277%/4 at the critical wavelength
k.= \/571'/ 2. R, is called the critical Rayleigh number. We are interested
in the case when the first instability takes place as we increase the Rayleigh
number. Therefore, we have only to consider the case ! =1 and R = R(k) =

(k2 + w2)3 /K2
3. 2-D problem and stability of mixed mode solutions

Let us study the 2 dimensional case where the problem depends only on
(z, z)-direction, since it might be easier to explain our analysis in the 2-D
problem first, and we basically take similar strategy for the 3-D problem.
We refer [12] and [11] where they have obtained the same results in this
section. Now the unknown variables are w, w, 8, p and their time evolution
can be described as follows. Notice that we use the notations m = (m, 1) €
Z? for the mode vector and w2, = m2a? + 1?72,

() =e () = (G- Do) o0 (5 ) 0200
Upy = =W Um, (I = 0,m # (0,0)). (9)

Here, M., and k,, are defined as follows. We use the same notation as the
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3 dimensional case as long as it is clear.

km = (maf{(u- Viulm +ir{(a- V)w}m)/wm, (10)
_ —w2, —miraR/wZ
M = (—ma/l‘/rP —w?2 /P ) ’ (11)
(12)
Now let us caluculate the convolution terms.
] i —mal
{0 Vulm= > %Mumlumz (13)
ml—fln;%=m
ia(maly — myls)
{0 V= > ——tm,0m, (14)
mj+mg=m 1
11 #0
—1 2 li —myl
{(u-Vwlm= Y 222 (maly — my 2)um1um2 (15)

mj +mg=m lllzﬂ'
1112740

Here we denote m; = (m;,[;).

These coupled systems of countably many ordinary differential equa-
tions have a trivial zero solution. We study the local bifurcation about the
trivial solution. It is necessary to calculate the normal form on the center
manifolds which is locally spanned by critical eigenvectors of My, for each
set of parameter values of (R, o, §).

When R = R(a,m,l) := (m2a? + 1272)3/m2a? holds, (m,l)-mode be-
comes critical in the linearized problem about zero to (8)-(9). Therefore at
most two critical modes become critical at the same time. More precisely,
for a given o there exists a number R* such that all the eigenvalues about
zero is negative for R < R*, and moreover one of the following folds. (See
also Figure 1.)

e Simple critical case: There exists a natural number & such that
R* = R(a;£k,1) and if |m| # « then R* < R(o;m,1). We call
the pair of parameter values (o, R*) a simple critical point.

e Multiple critical case: There exists a nutural number £ > 2 such
that R* = R(o;+k,1) = R(a; £(k — 1),1) and if |m| # k,6 — 1
then R* < R(a;m,1). We call the pair of parameter values (a, R*)
a multiple critical point.
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aipha

Figure 1. Neutrral stability curves drawn in (a, R)-plane. They correspond the critical
curves for R(a;m) = R(a;1,1), -, R(a;4,1) respectively from left.

3.1. Simple critical case

It is easy to see that a roll solution bifurcates at a simple critical point as
a super-critical pitchfork bifurcation. In fact, My, has simple O-eigevalues
if and only if m € S := {(*k, £1), (£x,F1)}. The critical eigenvectors are
not %y, but #,y,, m € S The linear transformation:

Um \ Um B 1 mo —lP7rw,2n
(9m> = Tm (Om) T = (1 + PymalrwZ, (ma Inw?, (16)

makes the linear part of the equation for m € § diagonal as

im) (0 0O @im

im) = (0-2) (i2)

-, (%EZ . gg‘g:) + kT (g“) JL£0).  (7)

Now the center manifolds about the simple critical point can be described
by @m(m € S). The other modes: fp(m € S) and Um,Om(m ¢ S)
are the slave modes. Moreover, it holds that 4.1 = 1ix,—1 by even-odd
symmetry(3). Therefore i 1,%x,1 gives the local coordinate on the cen-
ter manifolds. We are interested in the small solutions |« 1| < & near
the critical point. Then all the slave modes are O(62) by the center man-
ifold theorem. To obtain the effective normal form on the center man-
ifolds we pick up the nonlinear term from the equation of the critical
modes in (17) up to O(6%). The nonlinear terms for the equation of @,
in (17) consist of Um,,Um, and um,,0m, with m; + my = (x,1). The
combinations of (m;,my) which give nonlinear terms up to O(83) are

{((5:2),(0,0)), (=5, 1), (2%,0)), (%, =1), (0, 2))((~~, =1), (2%, 2))}. Since
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0mo = 0 holds by the up-down symmetry and %, 0 = 0 holds in the 2-D
setting, the nonlinear terms come from the first two combinations of above
are zero. It is also zero for(m;, my) = ((—~, —1), (2%, 2)) by (13),(14) and
(15). Therefore the slave modes up to O(4®) which relate to the equation
for A := 4, are only B := ugy and C := fp 2. To obtain the normal
form on the center manifold we need to calculate the approximation of
the center manifolds by the coordinate A . The quadratic approximation
of the center manifolds ug 2 = h§y = hg,z(a,cyl,a_,;,_l,a_,g,l,am_l) and
Bo,2 = hf 5 1= h{ 5(tix,1,Tir,~1, 8,1, Tx,—1) are as follows.

82 =0(8%),
. 2 P
B o = 51T 412 4 O(5°).
From (17),
, P
A=pAd+ ———{(0-V)8}1
AT T Py (V)0

{(u-V)0}1 = 27rianw,2c’1Ahg,2 .

Here we assume p = R — R* = O(62).Finally we obtain
P?w n 1 2 4
A= pA— 25| ARA+ O(5"). (18)

It shows that a super-critical pitchfork bifurcation to a roll solution occurs
at the critical point.

3.2. Multiple critical case

In this subsection, we consider the multiple critical case in the 2D prob-
lem. M has simple O-eigenvalue if and only if

m € S := {(£x', £1), (2K, F1), (£k, £1), (£x, F1), }

where k¥’ = k — 1. After taking the similar linear transformation which
diagonalize the matrix My, the 4 critical modes are represented by

A= ﬂ,i,l, A= ﬂ,_n,_l, B = a,i/,l, B:= 'il_,c —1-
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Remember that we are interested in small solutions |A|,|B| < § near the
critical point. Moreover, the slave modes coming into the equation for A
are

C:= Ug,2 ,D = 00’2, E:= Uk—x',2; F .= 0,¢_,¢112, G = Uk+r',2) H .= 9,{_’_,4’2

up to O(8%). We obtain the following normal form when & > 2 by calculat-
ing quadratic approximation of center manifolds.(The calculation is similar
as simple critical case.)

Since, equation (17) inherited up-down symmetry from (5), any
quadratic resonance does not occur. Notice that it has quadratic resonance
term when asymmetry case and we need a different approach to analyze
the normal form as one can see in [2] .(see also [3].)

{ A= (u1+alA]* +b|B]*)A + O(8%)

B = (u2 + c|A] +d|B*)B + O(s*)

It can be separated into the equation for the modulus(amplitude) and the

argument(angle) by the polar coordinate.And the equations for the ampli-
tudes are

(19)

{ = (,ul +ar?+ bS2)7‘ + 0(64) (20)

§ = (u2 +cr® 4+ ds?)s + O(6*)

Here, we denote r = |A|, s = |B| and p; = R(a;k,1)—R*, g = R(a; &', 1)—
R*. To study the above equations (20) we consider the cut-off equations:

{T’ = (u1 +ar? + bs?)r,

§ = (2 + cr? + ds?)s. (21)

Lemma 3.1.

Assume a,b,d < 0,ad — bc > 0. Moreover, if pi,us satisfies the
inequality: cpi/a < po < dupi/b then the equilibrium of (21)F(r,s) =
(Twy 8%), 7%y Sx # 0 is asymptotically stable.

proof
From 7 = § = 0, we can obtain r,, s, as follows.

r =71, :=+/(bpa — dp1)/(ad — bc)

s =8, := /(i1 — apz)/(ad — be)
Since we assumed ad — bc > 0 and a,b,d < 0, if cpy/a < py < duy /b
then,(r,s) = (7., s.) is an equilibrium of (20). The linearized matrix for
(20) about (7., s,) is as follows.

@1 + 3ar? + bs? 207, s,
201, 8, o + cr? + 3ds?

2arf 2br,. 54
a <2cr*s* 2ds? ) (22)
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So, the eigenvalues about (r.,s.) are given as the solutions of quadratic
equation:

A? —2(ar? 4 ds?)A + 4(ad — bc)ris? = 0. (23)
This completes the proof. [J

Proposition 3.1.

Let k € {2,3,4}. Then, there exist P* > 0 such that if P < P* then
ad — bc > 0. Moreover, if 0 < P < P* then the invariant torus which
corresponds to the mixed mode solution is asymptotically stable.

proof
Notice that the coeflicients of normal form(20) a,d are as follows.

P2wi_11
irp <0 4=271p

<0.

By the lemma 3.1 if ad — bc > 0 then the mixed mode solution is
asymptotic stable. The ad — bc and ‘;—p(ad— bc) are written by P as follows.

—d4P* — d3P® — dyP? — di P + dg

ad — bc = 1+ P) (24)
d —D4P* — D3P — D;P?2 — D1P — Dy
ﬁ(ad - bc) = (1 n P)3 (25)

Here d;, D; are written by «, i, £, and the table 1 shows that approximate
values of d; for each £ & {2,3,4}. Moreover ‘;—P(ad— bc) < 0, for all P, and
if P = 0 then ad — be > 0.(See also Figure 2.) This completes the proof. O

It should be mentioned that we can show the same statement as the
above proposition for a given k > 4, say k = 100. However, we don’t
rigorously know that it holds for an arbitrary natural number . Let A, =

Il)irno ad — bc then we can show that lim A, = 0. However, it is sufficient
N K—00

in the sense that we are interested in the small size container. Notice that
the critical Prandtl numbers for the stability of mixed mode solutions in
figure 2 are the same as those obtained by [12].
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Approximate values of d; for each .
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K da ds ds d1 do
2 || 7.83x10° | 465 x 10% | 1.80 x 107 | Z7.26 x 10° | —6.69 x 103
3 [ 6.40x 10> | 1.30x 10% | 5.05 x 10° | —1.74 x 103 | —1.64 x 103
4 i 6.08 x10° | 6.20x 10% | 2.41 x 10° | 7.99 x 10? 7.57 x 102

suooE

CJWMM 3 0.4
~2ooo§
-4ooé

Figure 2. The stability of (x — 1,1) — (, 1) mixed mode for x = 2 (black), x = 3 (dark
gray) and x = 4 (light gray) . Values of ad — bc with respect to values of P are drawn
and if ad — be > 0 then the mixed mode is stable.

4. 3-D problem

In this section we consider 3 dimensional case. We diagonalize the linear
parts of the equations(6). Take the linear transformation:

Um Uyn
Vm | =Pm | Om
O B1m
—w? mlra/k? np ma
O = | —wininB/k? —ma  np (26)
1 0 k?/wilnP
so that the linear parts of the equations(6) become diagonal as
lim ph 0 0\ [im
Um [ =] 0 —w?, 0 Um
Om 0 0 pm/ \bm
{(u-V)u}m mo
— o1 [ {(uV)o}m | + 0 km | nB (27)
{(u-V)8}m 0
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Here
+ _ —(P+1) 4
Hm = 2P Wm
+ VAP + D21, T PR + i26%) — i)
are eigenvalues of My, and if R = R(k) = (k%+12)3/k? then, pt, =0, ug, =
—(1 + P)w?,/P. For the sake of convenience we define the set

Ty = {(£m, £n, £1), (£m, £n, F), (m. F n, 1), (£m, Fn, F1)},

and
S = {m = (m,n,[)|R = (m2a? + n?62 + 27%)3 /(m2a? 4+ n?B?%)}.
This means that if m € S then My, has simple 0-eigenvalue.

4.1. Neutral stability surface for 3-D problem

If we consider the special case when (o,8) = kc(1/2,V3/2),
where we usually study hexagonal mode interaction, the 3 critical roll
modes:(2,0,1), (1,+1,1) become unstable exactly at the critical Rayleigh
number R.. On the other hand, the first instability occurs at R > R,
in general. It is convenient to define the neutral stability surface for each
mode (m,n, 1) (or simply we denote (m,n}) as follows.

G ={(@B,R) ; R=Rmn(a,f)

2.2 23
— (m2a? 4+ n?p32 + 7?) afe (0,00)}

(m202 + n2f2)
The (m,n)-mode instability occurs on the surface G n. Remember that
we have set [ = 1 since we are interested in the first instability. There-
fore, for a given (e, ), the first instability occurs as (m., n.)-mode where
R (2, B) < Ryn(a,B) for any (m,n) € Z2. There can be multi-
ple critical mode. In fact when (o, 8) = k.(1/2,/3/2),both (2,0) and
(1,1) are critical at R = R.. More precisely, a set of critical modes S
is 8 :=T50,1 UT11,1 in this case. By using the Hermitian and even-odd
symmetries we have essentially 3 critical modes:

(28)

Ugo,1, U-1,1,1, U-1,-1,1.

R, (o, B) attains its minimum R, on the curve

amz{Mﬁw#M+#W=%aﬁe&wﬁ-
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;§wx
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T 0.5 1 1.5 2
alpha

aal

Figure 3. [Above left:Neutral stability surface for (2,0) and (1, 1)], [Above right:Cs o
and 01,1], [Be—
low left:Neutral stability surface for (m,n) = (1,1),(2, 0),(0,2), (3,0), (2,1),(4,0) and
(3,1)], [Below right:Cp,,n, for (m,n) == (1, 1), (2,0), (0,2),(3,0), (2, 1), (4,0) and (3,1)].

Next, if we proportionally increase or decrease the ratio of system size
B/ to some extent then we have the same set of critical modes but the
value of R is larger than R.. There are so many possibilities of multiple
critical points. (See Figure3,4.) In this article we are interested in the
critical points which has the critical modes:S := %,0,1 UTr 1. where
&, 7,7 € N. We call the point (a, 3, R) which satisfies this property the
pseudo hexagonal critical point since it has essentially 3 critical roll modes
Uk,0,15 Ur, 7,1, Ur,—71,1. In other words the set of pseudo hexagonal critical
points are on the curve G, o N G, .

4.2. Approximation of center manifolds

In this subsection we calculate quadratic approximation of center man-
ifolds to obtain the normal form.
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Figure 4. Vertical section of neutral critical surface on the line 8 = 1.55a .Each curves
in the figure in the section of G1,1, G20, G2,1, G3,0, Go,2, G3,1 and G40 from the
right.

Proposition 4.1. Let m; € S, (i =1,2,...12),mgs ¢ S,(ms = (m,, ns, l5)).
The quadratic approximation of the center manifold is given by the graph
of the functions um, = hiy, ,Vm, = hy,,, 0 = he..:

R
hne
.
{(u-V)u}m, ma
=Mz | {(u-Votm, | = Mytkm, | 78 |, (L. #0) .
{(u-V)8}m, 0
(29)
P,
(i)
_ a1 ({(w-V)ulm, a1 mao _
B “‘s({<u-V)v}m,) Mm=’“ms(n5)’<ls 0)
(30)

Proof
Rewrite equation(27) as follows
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By the center manifold theory ([6] Section2) we obtain

Ohpm, . Ohp Um,

Bliem, Btimy,

Ofim, Biim,,

dhl, dhY,

Otm;  Olimyg &
mj2

(h:;, ) ({(u : V>u}ms> (ma)
= Mo, [ B2 | = | {0 V)0)m, | 4k, [ m8 ). 3D)
e, {(u-V)0}m, 0

If |tim,| < 6 and |, | < 62 then left hand side of (31) is O(6%). Since Mm,
is a regular matrix for each m, we obtain (29). Similarly we obtain (30) for
the case [; = 0. This completes the proof. O

Now let us calculate the convolution terms.

{(11 . V)’U«}m = Z (————ia(lelll— mll2) Umj Um,

mj+mg=m

1,#0
ifB(naly — nily
+ —ll"")‘vml umg)
ia{mang; — myng
vy Hmmomm, .,

mj+mo=m
11=0,n1#0

+ E inZIB'Uml umz

mji+my=m
11=0,n1,=0
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{(@-Volm= 3 (Mlzﬂumlvmz

mj+mg=m

11 #0
18(n9ly — nyql
), )
ta(maony — mn
n Z (mamy 112) iy Vrntg

n
mj+mg=m
11=0,m7#0

+ E 'L'TLQ,B/Uml Umz

mj+my=m
1y=0,n1=0

(- Vm= > (M%Mumﬁmz

mj4mo=m

11#0
18(ngly — ngl
+Lmll__12_)vm19m)
ta(maong — mn
+ Z ( : :11 . 2)um19m2

mj+my=m
17=0,mn1#0

+ Z in2ﬁvm1 0m2

mj; +mz=m
I1=0,n1=0

Zma(maly — myls)

{(u ' V)w}m = Z (_ia g Umy Um,

mj]+mg=m

111070
—if3%ny(ngly — n1ly)
l1l27l' ma Vma
-—iaﬂng(mgll — mllg)
lllzﬂ' tmy VUm,
—iaﬁmg(nzll - ’nllz)
lilym s
—imaa?(man; — namy)
+ Z ( um1 um2
nylom

mj+mg=m
1950,m #0,11 =0

inzaﬂ(mgnl bt nzml)
- Um; Vm,
nilam
—ingmaaf3 in3B?
+ E 7 - UYmyUm, — Um; Vm,
lzﬂ' l27'('

mj+mgo=m
11=n1=0,n0#0
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Here we denote m; = (mj, n;,1;).
Finally, by using the similar argument to the previous section(2-D case)
we can obtain the normal form on the center manifold as follows.

Al = (,ul + aIAIP + blAzP + b|A3'2)A1
Az = (pg +c]A1|* + d| Ao|? + €| 43[*) A2 (32)
Az = (u2 +c|A1]? + el Az + d] A3]?) As

Here we denote

Al = ﬁ‘fc,o,l 7A2 = a—T,‘r’,l, A3 = ﬁ—‘r,—T',l )

e gt P -+
H1 = o1 B2 2= B gy (: :u'—T,—T’,l) .

In the case of hexagonal critical point((c, 3, R) = (kc/2,v3K./2,R.) it
holds that y; = ps,a =d,b=c=-¢e, for all P> 0.

We extract the equations for the amplitudes from (32) by taking the
polar coordinates A; = rje*®i:

] = (,LLl + a1'12 -+ br22 —+ b7‘32)7‘1
Ty = (,uz + C’I'12 -+ dr22 + 67‘32)1‘2 (33)
T3 = (p2 + C7'12 + 6’!‘22 + d’f‘32)7'3

Notice that the equation(33) can have the following equilibriums:

(0): (0,0,0)

(R): (r%,0,0), (0,s%,0), (0,0,s%)
(PQ): (T4,54,0) , (0,54,84), (74,0, 84)
(H): (Tans Suny Sun)

Here, each of 7%, 8%, ru, Su, Tax, Sux 18 Non-zero. We call (O):zero, (R):roll,
(PQ):patchwork quilt and (H):pseudo hexagonal solution, respectively.

In the later sections, we discuss about the stability of the patterns in the
sense of (33). That means we can show that existence of the invariant torus
which includes the fixed point corresponding to the each pattern. When the
hexagonal case, for example, the equilibrium:(H) might include the three
patterns:regular-triangle, up-hexagon and down-hexagon. To determine the
dynamics on the invariant torus, we need to calculate the normal form up
to higher order term, but we only discuss the stability of the invariant torus
and caluculate the eigenvalues for the transversal direction to the torus.
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4.3. Hexagonal case

In this subsection we study the Hexagonal case, i.e., (k,0) = (2,0) and
(r,7) = (1,1). Remember that hexagonal critical point is (o, 8,R) =
(ke/2,v/3ke/2, Re)-

The number of positive eigenvalues about each solution in the sense of
(33)is (0) : 3, (R): 0, (PQ):1, (H):2, respectively. The coefficients of
the normal form (33) are as follows.

_ -9ntp? . —9mi(12737P + 1113P + 1728)

T 21+P)y 16250(1 + P) '

Especially, the eigenvalues about (H) area —6>0, a—6>0, a+20<0
and we can show the ratio |(a — b)/(a + 2b)| between the absolute values of
positive and negative eigenvalues is small(see Figure5). More precisely we
can calculate the eigenvalues and the ratio of them as follows.

9m*(4612P% 4+ 1113P + 1728)

a

—b=
“ 16250(1 + P)
a4 2
om0 (33599 P2 + 2226 P + 3456)
16250(1 + P)
a—b|  4612P% 4-1113P 41728
a+2b|  33599P2 4 2226P + 3456
Furthermore, it is easy to see that
d a—b
ﬁ( a+2b > <0

This implies that |(a — b)/(a + 2b)| is monotone decreasing with respect to
P.

Figure 5. The stability of hexagonal pattern. Left figure correspond to ratio of positive
eigenvalues and negative one.(|(a — b)/(a + 2b)]). Right figure correspond to eigenvalues
a—band a+ 2b.
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4.4. Ezistence of the stable Patchwork-Quilt pattern

In this subsection we study the stability of the invariant torus which
corresponds to the patchwork quilt pattern. We will show that when
(r,7) = (k= 1,1),x = 2,3,4,5,6,7, the equilibriums of (33) which cor-
respond to patchwork quilt patterns can be stable by taking o, 8, R and P
suitably.

We will begin by considering the property of the curve G101 NGy ng-
If

m; = (mlvnl,l)y ms = (m27n271)7 my > Mg > 0) ny >mny 2 0.

are critical modes and (a, §) satisfies

B/a = \/(m? —m3)/(ng — n).
then, G, n, = Gy ne- Moreover, if both m; and my becomes unstable
at R = R, then, o, § satisfies

o = a = ke (nf ~ nd)/(nfm3 — mind) |

B = Be = key/(m] — m3)/(nfm3 — m3n3) .

We define 1., Vin, m, and Hm, m, as follows.

ne =/ (m? —m3)/(n§ —n3) ,
le,mg = {(a,,@, R) € Gml,m;ﬂ/a = Te, (a,ﬁ,R) € RS} \ {(acvﬂa Rc)}’
Hml,mg = (Gml,nl n GmZ,nZ) \ le,mz

Notice that Gm1,n; NGmyne = Hmi,my U Ving,m,. We are interested in the
pseudo hexagonal points:(my,n1) = (k,0) and (mg,ng) = (k — 1,1). How-
ever, when (a, 8, R) € Vi, 0,1),(x—1,1,1) and both (,0,1) and (k—1,1,1) are
first instability, it is expected that we can not obtain the nontrivial stable
mixed mode. In fact, for each & = 2,3,4,5,6,7, we can see the invari-
ant torus corresponding to the mixed mode solutions(patchwork quilt or
pseudo hexagonal pattern) can not be stable(unstable) by the normal form
analysis. So we are interested in the case when (o, B8, R) € H(x 0,1),(x—1,1,1)-

To analyze about the pseudo hexagonal critical point, we introduce
a new parameter 7 = [/c. We show that the pseudo hexagonal
point:(c, 8, R) € Hp, m, can be parameterized by n. This implies that
we can control the ratio of the system size (@, 3) by the only one parame-
ter. Remark that if m; and my are pseudo hexagonal modes then ny = 0,
but we can prove the next lemma is correct for general n;.
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Lemma 4.1. Let
m; = (my,n,1), my = (ma,ng,1)
are critical modes. Then the multiple critical point
(a, B, R) = (0ux, By Ra) € Hingymg

is parameterized by n := B/« as follows:

a.(n)=m L

e \/(<p1<pz)1/3(<pi/3 +¢3'%)
Be(n) = new(n) ,

R.(n) = Ry (c(n), B(m))

where ¢; = m2 +n2n?,

proof
If m;, my are critical modes. Then

Ry ny (av 770‘) = Rmzmz (a’ 770‘)
holds. More precisely it hold that

(mio? +nin?a? +72)°  (mdo? +ndna® +n?)3

mia? + nin2a? mia? + n3nla?

(37)

(38)

If (o, B, R) € Viny,m, (38) hold for all @, 3. Thus the critical point:(c, 3, R)
on Vin,,m, can not be parameterized by n. Denote that m? + n?rf = @;

then (38) becomes

(801a2 + 7r2)3 _ {(ﬂ)l/B((Pzaz + 7T2)}3 _o.

P2
We have
1/3
(pra® +72) — (%) (p20? +7%) =0 |
2
or
p1\1

/3
2, 2\2 2, 2 2
(pra® +79)° + (g1 + 7 ){(902) (o +m

+{(2) e =0,

Since, equation (41) does not hold, we obtain (34),(35), (36)from (40) .

Next, we study the stability of the invariant torus in (33).

(30)

(40)

O
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Lemma 4.2. Assume
(1):a,b<0,e<d<0,ad—bc>0, or (2):a,c<0,e<d<0,ad—bc > 0.

in (33). Then (83) have two asymptotically stable equilibriums:
(r1,72,73) = (74,0, 84), (T, Sx,0) by a suitable choice of (u1, mus).

proof
From 7y = 75 = 3 = 0, we can obtain r,, s. as follows.

_ [bua —dm _ fepa —aps
M= ad—bc ' T ad—bc (42)

By assumption(1), if we take p1, po which satisfies Sy < pp < %ul then
Tx, 8%+ € R. On the other hand, if assumption(2) and %ug < py < Sz hold,
then r.,s. € R. Thus (r1,72,73) = (74,0, 84), (r«, 8«,0) are equilibriums
of (33). Moreover, one of the linearized eigenvalue about (r,,0,s.)( or
(74, 84,0)) is

(d - e)(apz — cu1)/(ad - be) . (43)
And another two eigenvalues are given as the solutions of the following
quadratic equation:

X2 —2(ar? 4+ ds?)\ + 4(ad — be)ris? . (44)
This completes the proof. O

Finally, by Lemmas4.1,4.2, we can show that stability of the invariant
torus which corresponds to the patchwork quilt pattern for each ratio of
the system size. We shall concentrate on the case when there are three
critical modes which are given by (x,0,1), (k—1,1,1), (k—1,—1,1). Here
k € {2,3,4,5,6,7} and take the limit P — 0. (Remark that if P # 0 then
a,d < 0and a,d - 0 as P — 0, here a,d are coefficients of (33)) Then
there are three cases as follows.

e casel:

Let x € {2,3}, then there exists n'*) for each x such that if § <
n < 7% then ad — bc > 0. Moreover, if E<p< 7™ then the
patchwork quilt pattern can be stable in the sense of (33).
e case2:

Let x € {4,5,6}, then there exist n{™, 7" with n{® < n{® for
each x such that if § < 7 < ™ or n{ < n < 2¢/k =1 then
ad — bc > 0. Moreover, if & <7 < ™ or n{® < n < 2/ — 1 then
the patchwork quilt pattern can be stable in the sense of (33).
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Figure 6. Behaviors of normal form coefficients at each pseudo hexagonal critical point
on Hi.0,1)(x—1,1,1)- Left side figures: Graphs of ad — be vs. 7 € [5/2,2\/x —1]. Right
side figures: Graphs of b(black) and c(gray) vs. 5 € [x/2,2+v/x — 1]. Each pair of figures
in the same column corresponds to k = 2, 3,4, 5,6, 7 from the top.
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Figure 7. Qualitative comparison between the PDE numerical simulation(greek cross)
and the dynamics on the center manifold by the normal form(line). In both figures
horizontal and vertical axis represent the amplitudes of (2,0,1)-mode and (1,1,1)-
mode, respectively. The PDE simulation was obtained at the parameter values:
P = 0.2,{(o,8,R) = (1.2,1.44,673). The same values of P, R were used for the nor-
mal form.

e cased:
Let k = 7, then there exists n* such that if 77* < n < 2v/6 then
ad — bc > 0. Moreover, if n* < 7 < 21/6 then the patchwork quilt
pattern can be stable in the sense of (33).

Remark

We can calculate the coefficients of the normal form for n € [0,00). In
fact, for k € {2,3,4,5,6,7}, if n = /2 or n = 2y/k — 1 then, another
modes become unstable at the same time. More precisely, if n = &/2
then Gy = Go,2, that means the (0,2,1) mode becomes unstable as well
as (k,0,1) and (k —1,1,1). On the other hand if = 2y/k — 1 then
G0 = Gx_2,1,that means the (k—2, 1, 1) mode becomes unstable as well as
(x,0,1) and (k —1,1,1). On the contrast, both (,0,1) and (kx —1,+1,1)
modes are first instability, when 7 satisfies /2 < n < 2v/k — 1 for each
k€ {2,3,4,5,6,7).

Figure 6 shows that the patch work quilt patterns can be stable. Notice
that e < d = 0 holds and b = ¢ at n = 7, for each & .

This implies that if we take P sufficiently small then ¢ < 0 and
e < d < 0 hold. Moreover, for k = 2,3,4,5,6 there exists n which sat-
isfies b < 0,ad — bc > 0. On the other hand, for kK = 4,5,6,7, there
exist n which satisfies ¢ < 0,ad — bc > 0 for each k = 4,5,6,7. Thus, we
can show, in any neighborhood of (. (n), B«(n), R«(n)) there is parameter
value (a, 3, R) where the patchwork quilt pattern is stable. We can actu-
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ally observe the corresponding stable patchwork quilt pattern in the PDE
numerical simulation (see Figure 7).
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SOME CONVERGENCE RESULTS FOR ELLIPTIC
PROBLEMS WITH PERIODIC DATA

Y. XIE

Institut fir Mathematik, Universitdt Zirich, Winterthurerstr. 190, CH-8057
Zirich, Switzerland, email: yitian.zie@math.unizh.ch

We address some convergence issues regarding the solution of elliptic problems
when the data are periodic and the size of the domain becomes unbounded.

1. Introduction

In [3], [5] we have considered elliptic problems of the type:

Up € an (1 1)
—0;,(8400,un) + a(x)un = f(z) in Qp, '

where a;;(z) are bounded functions in R* satisfying a uniform ellipticity
condition, a{z) is a nonnegative function, Q,, is a bounded domain whose
size is becoming infinite when n goes to infinity, V,, is a closed linear space
such that

H}(Q,) €V, € HY(Q,).

We assumed in (1.1) that all the coeflicients and f were periodic with
respect to z. We have then shown in [3] [5] that the periodic data force the
solution u,, to (1.1) to be periodic when the domain Q,, becomes larger and
larger. To be precise, we derived H'-convergence of u, towards a periodic
function when n — oo in the nondegenerate case (a(x) # 0) and L*°-weak
convergence of u, in the degenerate case (a(z) = 0).

In this note, we will discuss the issue when the domain where the prob-
lems is posed is arbitrary, which means that we will show that such con-
vergence is independent of the shape of the domain. We want to study the
asymptotic behavior of u, when n — oo, we will in particular also address
the question of the rate of convergence of u, and obtain some exponential
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convergence. Moreover, we will show that the convergence of u,, to a peri-
odic function extends to a large class of nonlinear operators. For parabolic
problems, we refer the readers to [4].

2. Convergence in the linear case

Let T be a positive constant and §,, be a bounded domain in R* whose size
is going to become infinite when n approaches to infinity. For simplicity,
we will always assume that

(—nT,nT)* C Q.

Suppose a;;(z), (i, = 1,--- ,k),a(z) to be bounded functions in R*¥ such
that

3 > 0 such that ay;(z)&:€; > M¢|? V€ €R¥,ae. z € R
a(z) >0, a.e. = € R, a(x) #0.

Denote by fi(z),i =0,--- , k functions in L2 .(R¥). Moreover, assume that

loc

a;j(z), a(z) and fi(z) are T-periodic, i.e.

a;;(z)(resp. a(z), fi(z)) = aij(z + Tep)(resp. a(z + Tep), filz + Tep)),

ae € Rk,
for every £, where (e;) is the canonical basis of R*.
If u,, is the unique solution to
(un € H(2n)
i (T)0z;un0z,v + a(z)usv dz (2.1)
{ = /Q fou+ fidsvdzr Vo € HY(Qp),

and uq, is the unique solution to

(uOO € H;l)er(Q)
) /Qaij(x)azjuooaziv+a(x)uoovdm (2.2)

- /Q fov+ fibpude Vo e HL(Q),

\

(here we use Einstein convention of repeated indices) where Q = (0,T)*
and

Hpo(Q) = {v € H'(Q)o(z +Tej) = v(z) ae z€0Qn{z; =0}}
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we have:

Theorem 2.1. Suppose that u, and us are solutions to (2.1) and (2.2)
respectively. If
1) the functions f; on the right-hand side of (2.1), (2.2) satisfy

foeLic(Rk)vfiELfoc(Rk)’izl"" 7k73>k’ (23)

or
2) it exists 8> 1, M > 0 and n’ related to n, such that

(=nT,nT)k c Q, C (—/T,n'T)¥,

n' < Mn?, (2.4)

when n is large enough (see the figure below), then we have that for any
ng > 0,

Up — Uoo n Hl(Qno),

where Qn, = (—noT, noT)*.

il

n'T
— Qw
nT
QI
nT n'T

4
Qn

Figure 2.1.
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The proof is based on several lemmas:

Lemma 2.1. (see [3] [6] for a proof) Under the periodicity assumptions on
the coefficients and the f;, if ueo is extended by periodicity to R*, it holds
that

—82,(ij()02;U00) + A(T)Uo = fo — Oui fi  in D'(RF).  (2.5)
In particular, for any bounded domain 2, we have

/ 35 (2) Oz Uoo 0z, v + a(T)Uoov dT :/ fov + fiOz,vdx Vv € H3 ().
Q Q
(2.6)

Next, let us quote a maximum principle from [8].
Lemma 2.2. Suppose (2.3) holds. Then, if u is a Wh2(SQ) solution to
=0, (ai5(2)0z;u) + a(z)u = fo — O, fi  in (Y,
we have, for all ball Bag(y) C Q and p > 1,
supBa (@) < e(R7% [ 1|y, o) +e1(B)),
where ¢ and ¢i(R) are constants depending on k, A\, maz{a;;}, R, s and
.

Furthermore we will need the following lemma (see [3]):

Lemma 2.3. (Poincaré Inequality) For any ng > 0, Qn, = (—noT, neT)¥,
if a(z) is nonnegative and not identically equal to 0, a(x) is T-periodic in
all directions, it holds that

/ Vo2 +v2dz < C [Vv|? + a(z)v? dz Ve HY(Qn,), (2.7)

ng an

where C is a constant, independent of ng, depending only on Q = (0,T)*
and a(x).

We can then complete the proof of Theorem 2.1:

Proof. Set
Q = (OaT)ka Q’n = (—TlT, nT)k
Let p be a smooth nonnegative function such that

p=1lon (—1 p = 0 outside (-1,1), |Vp| is bounded.

57 '2-)7
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For any n; < n (we also assume that n; is an even number),

;
(un — UW)Hi?:lp?(m 1= (Un — Uoo) T2 (2.8)

is a test function in H(Qn,). It follows that from (2.1) and (2.6) that

/ aij(2) 0z, un Oz, { (un — oo ) TI2} + (@)t (U, — Ueo )12 dz

1

- / 01;(2) B, o0 B, { (s — 1100) 12} + A2tk (1, — t100)TI2 diz,

1

i.e.

/ 55(7) Bz, (Un, — Uoo)Fa,; { (Un — Uoo)TI?} + a(Z) (Un — teo)*TI* dz = 0.

ni

The above formula leads to

/Q {@i5(2) 0z, (Un — Uoo)u; (Un — Uoo) + () (Un — Uoo) > I da

= ———% (%) 0z, (Un — Uoo )0z, I(up — uoo)Il dx.
Mt Jon,

Using the ellipticity condition on the left-hand side and applying Cauchy-
Schwarz inequality on the right-hand side we obtain:

/Q NV (= 1100 + () (tn — 1) 2} der

< ¢ / [V (un — too)||ttn — Uoo|ILdz
ni in

3 3
<< {/ IV(un—uw)|2H2dx} {/ (un—uoo)zdm} .
ni Qny Qn,

This leads to:

/ {1V (un — too)|® + a(z) (un ~ Ueo )2 HI2 dz < 1.165 / (Un — Ugo)? dz,
Qny 1JQn,

(2.9)
where ¢ is a constant independent of n.
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SinceII=1 on Q%L, by Lemma 2.3, (2.9) implies that

./ 1V (ttn — t100)|? + (ttn — t00)? dz

Q5

55/{wm—%W+mwwwa%w
Qmy

<c / {1Vt = t100)[2 + 6() (11, — 112} dao
Qny

c
< 3 (tn — Ueo)? dz
[
= o [V (tn — oo )|* + (tin, — ts)® dz (2.10)
ny

for some constant ¢ independent of n;.
Choosing n; = 37%7 (£ is a positive integer, large enough) in (2.10) and
iterating the above inequality (£ — 1) times, we get

/ Iv(un —Uoo)|2+(un _uoo)2 dz
V5

c B 5 B )
= P2 /Q% [V (un — uo0)|” + (Un — Uoo)” dz

c
Sﬁ/ (tn, — Ueo)? dz
2
S;%{/Q uidm+/ ugod:z:}

< f%{/Q uﬁdx+(2n)’°/Qu§0dx}, (2.11)

since uy, is periodic.
Now we need to estimate / ul dz.
e In the case 1), we recall fl?t;m Lemma 2.1 that:
0, (045(2)Ps,uc0) + a()too = fo — Bufi in D (RE).
Since fo € LE _(R¥), f; € L3 (RF) (s > k), by Lemma 2.2 we have

loc loc
_k
SupB\/;T(O)luool < C(\/ET : || Uoo Ile(Bz\/F(O)) +cl(\/ET))

Due to the facts that
(=T, T)* c B z1(0), ue is periodic,
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this shows that uy, is bounded by a positive constant. One has also

=0z, (@i (2)0z,; (Un — Uoo)) + () (Un — Uoo) =0 in Qp,
Up — Upp = —Uge 0N Iy
Therefore, by the maximum principle, we obtain that

mazq, |un — Uoo| < maz|us| < M, (2.12)

where M is a constant depending on the coefficients of the operator, k, s
and independent of n. In other words,

|un| < 2M.
Going back to (2.11), this leads to

/ [V (tn — too)|? + (Un — Uso)?dz < % {4M2|Qn| -+ (2n)k/ u?, dx}
c
= L2k

Choosing 37 > ng, 2 — k > 0, we derive that u, converges towards ue.
e In the case 2), one takes v = u,, € H}(Q,) in (2.1). It comes:

/ Qij (m)arrj unaa:iun + (—'L(Z‘)’LL,?1 dzx

- / fotn + fiBa,n do
Qn

1
1

k 2 1
g {Z || f’i ||12(nn)} {L |Vun|2 +’U/$l dm}
1=0 n

k
Vun|? +u2dr <c fizdx
R >

=0V n

k
ch/ f2dz
i=0 Y Qn

u k
< g on’ 24
_cizo( n') /Qf2 T

< en®?
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Therefore, one derives from the inequality (2.11) that

/ IV (1, — 11002 + (1t — 100)? dz
9]

c
SW{/ uidm+(2n)k/ngod9:}

n

c 2 k 2
— usdz + (2n /uwdm}
{ [ et [

¢
< n2t—kB "
The proof is complete by letting 57 > ng and 2¢ — k3 > 0. o

From Theorem 2.1, we deduce that the convergence rate of u,, towards
Ugo 1S any power of n. However, if we consider that a(z) is bounded away
from 0, i.e. if

3o such that a(z) > Ao > 0,

a higher convergence can yet be achieved.
We first consider the case of the Laplace operator. Set u,, and uy the
solutions to

1
{un € H; (Qn)a ' (2.13)
—Aup + a(x)un = fo — 0z, fi in Qn,
and
1
{“°° € Hper (@), (2.14)
—Atoo + a(Z)too = fo— 02, i In Q.

Furthermore, assume that uq, solution to (2.14), is bounded, we can then
show that:

Theorem 2.2, For u, and ue (bounded) solutions to (2.13) and (2.14)
respectively, for any domain Qn, = (—noT,noT)*, there exist constants
c1 = c1(ng,a), ca = ca(a) > 0 such that

[y, — Uoo)oo < cre™ T (2.15)
and
Iun - uoo|H1(Qn0) < Cle_c2nT, (2.16)

where | - | denotes the L®-norm in Q.
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Proof. If ch(z) = 1{e® + e}, define
k
ch(eaz;)
I, (2) = —_—

() ; ch{conT)
where ¢y is a positive constant satisfying

c2 < o < a(z).
Then one has that

k ch(caz;)
—All,(z) = —c3 Z 22— M, (2),

= 1chch

i.e. it holds that
{—AHn(r) +ll,(z) =0 inQ,,
M,(z) >1 on dQ,.
Since u, and uy satisfy (2.13), (2.14), we have:
{—A(un — Uoo) + () (tUn — Uge) =0 in Qp,

(2.17)
Up — Ugo = —Uee ON OQn.
If we set W = |[Uoo|oolln — (Un ~ U ), We obtain that
—AW = —|Uoo o AT, + Alun — Uso)
= ~[too|ooc3IIn + a(z)(un — Uoo)
= —a(z)|too|oolln + {a(z) — c%}l“%'OOHn + a(z)(tn — Uoo)
= —a(z)w + {a(z) — 3 }too|ooIIn,
==> w satisfies
—Aw + a(z)w = {a(z) — A }Hucoloolln =0 in Qn,
{w > |tooloo + Uoo =0 on 0Q,.

By the maximum principle, one has that

w>0 inQ,,
ie.
[UoolooIIn = Un — U in Q.
Arguing the same way with w = —|uweo|oolIn — {(¥n — Uwo ), One derives that

_Iuoo|ooHn <up —Ug in Q'na
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which is equivalent to
[y, — Uoo| < |Uoo|oolln in Q. (2.18)

For any fixed domain K with K C B(0,dg) we derive

Ch(CZdK)
|un - uoo‘oo,K < \uooloo(k h(nCQT))

< cre~e2Tn, (2.19)

This completes the proof of (2.15).
Now, we introduce a smooth nonnegative function p(z) such that

p=1in Q,,,p =0 outside @ +1,|Vp| is bounded,

(no+1 < n). Plugging v = (un, —ueo)p? into the weak formulation of (2.17)

we get:
/ V (tn — Uoo) V{(Un — oo )%} + a(z)(Un — ueo)?p? dz = 0,
Qng+1

ie.

/Q {IV(un — too)|* + a(z) (un — ueo)?}p? dz

= -2 V(tn — Uoo )V o(tn — uso ) pdz
Qn0+1\Qn0

<cf 1 (ttn = o)t — oo dz
Qno+1

<ec {/ IV (un — uoo)|p? dx} {/ (Un — Uoo)? dz
Qno+l Qﬂo+1\Qn0

By Lemma 2.3 we obtain that

/ |V (up — too)|2 + (un — uoo)2 dz
Q

no

< c/ (un ~ uoo)z dx
Qn0+1\Qn0

< clun — uoolgo,Qno+llQno+l\Qnol

1 1
p) 2

< 016—202nT.

This completes the proof of (2.16). O
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Remark 2.1. Instead of the Laplace operator, if we are considering the
general elliptic operator L = —0,,(a;;0:,) + a(z) where the coefficients
a;j(z) are bounded, T-periodic and such that

MEP < ai(z)6:85 < A€ ae. z € R* Ve e RE,
we can derive the same exponential convergence rate if we assume that
3D >0 such that |0;,a:;(z)| < D,
and

a(fL‘) > Ao > 0.

Indeed setting w = Zle —:,':((:—57?) (o will be determined later), one sees

that
Sh(azj) _ L, 2 -z
Or;w = * h{anT) (sh(z) = 5{e® —e™*}),

and

—0z,(aij() 0z, w) + a(z)w

=— a(z a—si@ij)— a(z)w

= —0x, ( (%) ch(anT)) +a(z)

B - sh(az;) e N sh(ox;) alz)w
- 0., ey (@ — ay(@)0s, (a5 2 ) + a(e)
= —8;,(as; (x))a% — a;j (x)az%((;%sij +a(z)w

—Dak?w — AoZkw + a(x)w
{a(z) — Dok? — Aa2k}w.

Choosing a > 0 small enough we obtain that
~0;,(aij(z)0z,w) +a(z)w >0 in Qn,
w>1 ondQ,,

i.e. w is a super solution associated with the operator L.
Hence we obtain that by setting u = |ueo|oow — (Un — Ueo)

—0z,(aij(x)0z;u) + a(z)u >0 in Q,
©w2>0 ondQ,.

Mimicking the above proof, one can obtain an exponential rate of conver-
gence of u,, towards uqg.
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3. Convergence in some nonlinear cases

In this section, we will discuss some quasilinear cases. We recall that we
denote that Q,, and Q the bounded domains in R* defined by

Q. = (—nT,nT)k, Q= (0,T)F,

T is a positive constant, the period of the data which will still be periodic.
More precisely, suppose that a;;(z,p) (i,7 = 1,:--,k) are bounded,
Carathédory functions in R,

p — a;;(x,p) is continuous a.e. € RE,

T — ay;{(z,p) is measurable for Vp € R*.
We also assume that the a;;(x, p) satisfy the elliptic condition:

3\ > 0 such that AJ¢]? < a;j(z,p):€; ae TE R*,Vp € R, V¢ € R,
(3.1)
Moreover, we suppose that there exists a nondecreasing positive function
w(z) such that

|aij(z,u) — ai;(z,v)] S w(lu—2]) Vi, j, (3.2)
where
ds
/0 . W = 400,
(such a condition holds for instance when a;;(z) is Holder continuous of

order less or equal to 1).
Without loss of generality, for any positive constant ¢, we can assume

that it holds
/+m ds -
e wEE S

Assume also that a(z) is positive and bounded, f(z) is bounded,
a;j(z), a(x) and f(x) are T-periodic. To be precise for every £:

aij(z,p)(resp. a(x), f(z)) = ai;(z + Teq, p)(resp. a(z + Teg), f(x+Ter))

a.e. z € RF,
Define u,, and u, to be the solutions to
Un € H&(Qn)a (3 3)
=0z, (ij(x, un)0z,un) + a(x)u, = f(z) in Qn,
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and
{uOO € H[}er(Q)f (34)
—02,(0ij (T, Yoo )0z Uco) + &(T)Uoo = f(z) in Q,

where H}..(Q) = {v € HYQ) | v(z) = v(z + Te;) ae. z€0QN{z; =
0}}. We know that (3.3) and (3.4) admit a weak solution and especially
(3.3) has a unique one (see [1], [2] for reference). For the reader’s conve-
nience, we would like to give a proof of this last assertion in the case of
(3.4). We have:

Proposition 3.1. (3.4) possesses a unique solution.

Proof. Let u; and up be two solutions to (3.4). It is obvious that

Uy — Uy € le,er(Q).
Define

. [T ds
Fe(z)z{t/e oGE T (3.5)

0 z<g
with
+o0
I= / ;‘(i_j)z-
It is clear that, when z > 0 and € — 0, we have
F, 1.

From the definition of F,, we have also:

F(0)=0, F! <oo forz>e

1w (z)
Thus, (see [1]), we have

Fe(u1 — uz) € Hyer(Q)-
Using this function into formula (3.4), we obtain

/ aij(x,ul)(?zjulaxiFe(ul - u2) + a(ac)ulFE(ul -_ UQ) dz
Q

= / a;j (.’E, UQ)@I]. uzaziFe(ul - 'U,Q) + a(m)uzFE(ul - U2) d.’L‘,
Q
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ie.
/ aij(z,u1)0s, (u1 — u2)0y, Fe(ug — uz) + alz)(u1 — uz)Fe(u1 — uz)dz
Q

= —/ {as(z,u1) — aij(z, u2)} Op; u20z, Fe(uy — up) dz,
Q

==

1
/ 045z, u)0z, (U1 —u2)0y, {uy —uz)-I—wE +a{z)(u1 —ug) Fe{ug —ug)dx
€

€

1
S k/QE w(ul - ’UQ)IV'LLQ”V(ul et ’U,2)|md$,

where Q. = {z € Q | u; — uz > €}. By the ellipticity condition and using
Cauchy-Schwarz inequality on the right-hand side we get:

/Q AM +a(z)(u1 — ug)Fe(uy — up)dz

Tw
RYY: 3 3
Sk{/ de} {/ ilvuﬂ?dag} ,
Q. A Q. I

2
/ a(z)(ur — ug)Fe(u1 — up)dz < -k—/ |Vu2|2 dz.
Q , Ie Jq
Letting € — 0, one arrives to
/ a(z)(u1 —ug)tdr <0.
Q
Since a(z) > 0, we obtain that
(u1 —ug)t =0.
Similarly
(u1 — ’U,Q)_ = (’U,g - U1)+ = 0

Hence we proved the uniqueness for (3.4). O

We remark that in the nonlinear case, if u, is the periodic solution to
(3.4) extended by periodicity in R¥, it holds that

Lemma 3.1. uy,, solution to (3.4), satisfies:

— 85, (435 (2, Uoo )0y, Uoo) + a(T)Uoo = f  in D'(RF).
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(This is nothing but Lemma 2.1 where a;;(z, ) is considered as ai;(z)).
We have then:

Theorem 3.1, Assuming that
a{z) > A9 >0,
and that there exists a positive constant D, such that:
8z,ai(z,p)l <D ae z€RVpeR,Vi,j=1,--- ,k,

let u, and u, be the solutions to (3.3) and (3.4) respectively. For every
v > 0 it holds that

C
[un — Uoo|L1(Q.,) S ol

where ¢ is independent of n > 0, Qn, = (—noT,noT)*.
Proof. Consider F(z) and II(z) defined as in (3.5) and (2.8). Take v =

F.(un — ueo)[12 € H}(Q,,) into the weak formulation of (3.3) and (3.4),
we obtain

/ aii(z, un)szunBzi{Fe(un — uoo)l'[2} + a(z)un F(un — uoo)l'l2 dz

n

- / 05 (%, Uoo) O thoo D { Pt — 0 )TI2} ()1t F (1 — 1o )T d.

n

Therefore one derives that:
/ a(z)(Un — Uoo) Fe T2 dz
Qﬂ
+/ {aii(z, un)Oz, un — as5(z, uoo)azjuoo}aziﬂzFe dz

Qn

= —/ {aij (2, 4n) Bz, Un — (T, Uoo) Bz, Uoo } Oz, { Fe(tn — Uoo) HI? dz
Qn

- / 045 (2 1) B, (thr, — o) B { Pt — 110 TI2

n

_ / {063 (2, Un) — Q15 (%, thoo) }Oa, oo { Fie (i ~ t100) }I2 .
Qn
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If we denote the left-hand side of this equality by I, it holds that:

1--
Q.

—/ {asj(z, un) — i (2, Uoo) } Or ;oo Or,; (Un — Uco) 1 % dz
Q

045 (@, ), (U — ) Oy (1 um)ﬁﬁn2 dz

. T.w?
—_ 2 —

Q; I€w2 Q; Ieu)
_ 2

< - an dz

o
_ 2

Qﬁ Iew IE Q..

I
where Qf, = {z € Qn | un — uso > €}. Hence we obtain that

= o) (Voo [2IT° dz,
Qn

/ () (tn — ueo) FLIT? dar

+ / {as; (@, un) 0, un — aij (T, Yoo )Or, Uoo } O, II* Fe dz
Qn
c(N)

I Jo.,
Letting € — 0 and recalling that a(z) > Ag > 0, one has for a constant ¢

< |Vt 2112 dz.

/ (tn, — ugo) 112 dz
Qny

+c/ {ai;(x, un) Bz, Un—0i; (T, Uoo ) Oz, Uoo } Oz, T X {Un—uoo > 0} dz < 0,
Qny
ie.

/ (Up — o) TTI? dz
Qny

< —c/ {aij(z,un)(')mjun—a,-]-(x,uoo)azjuoo}axil'ﬂx{un—uoo > 0} dz.
ny

(3.6)
Set

P
Aij(a:,p)zfo a;;(z, s) ds,
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then
Qi (T, Un) O, Un ~ @45 (T, Yoo ) Oz Uoo
= Op; {Aij(z,un) — Aij(x,uo0)} — /un 0Oz, ai;(x,s)ds

Applying the above formula into (3.6), we obtain that

/ (Un — Uoo) TTI? dz

Qn,

<= 10n A ) = A o)}

/ Bz,0(, 8) ds}0,, I x{us — ue > 0} dz

:/ {Aij (2, un) — Aij (T, Uoo) }Oz,a, T X{Un — Uoo > 0} dx

- / / 0z, aij(z, s) dsy, T x{tn — oo > 0} dz
in

Uoo

S/ Alun ~uoo)+|<?zizjﬂ2]da:+/ D(up — ueo) T10,, 11| da
Qny Qn

S —_ (un _uoo)+ d.’E,
Qny

(we assume that |a;;| < A). The fact that the above argument also holds
for (un — ueo) ™ leads to:

ke

If we iterate this inequality after setting n; = 57%r, we get:

]un—uooldmg/ lun—uoo|l'12d:c§—c—/ i — oo .
Q 1 JQn,

1

nt
2t n

5%{/ |un|dx+/ |uoo|da:}
n Qn Qn

C
< nt {Iu"IHI(Qn)lin + (2n)k|uoo|L1(Q)} .

/ [tn = Uoo|dz € — [ [tn — Ueo|dz
n Q

To estimate |u,|f1(q, ), the usual H'-norm of u,,, we use (3.3) with v = u,
to obtain |u,|g1(q,) < en® (see [3], [4] or the proof of theorem 2.1, case 2).


file:///un-Uoo/dx
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Therefore we have for some constant ¢ independent of n,

C

2f

The result holds when ¢ — 2k > ~. ]

Remark 3.1. We can also consider the problem in a more general domain,
for instance the one in Theorem 2.1. We can prove by the same argument
the convergence of u,, towards uq.
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ON GLOBAL UNBOUNDED SOLUTIONS FOR A
SEMILINEAR PARABOLIC EQUATION

ELJI YANAGIDA
Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

1. Introduction
We consider the Cauchy problem
up = Au+ [uP~lu, zeRN,t>0,
®) {u(:c,O) = up(z), zeRY,

where v = u(z,t), A is the Laplace operator with respect to z, p > 1, and
ug is a continuous function on RY. We note that the local existence of
a solution can be shown by a standard method, and the solution can be
continued as long as it is bounded.

Since the pioneering work of Fujita [3], many of papers have been pub-
lished about the blow-up of solutions. On the other hand, it has not been
known until recently whether or not global unbounded solutions exist. In-
deed, the existence of a global unbounded solution is not an easy question
to answer. If we consider a spatially homogeneous solution v = u(t) with
the initial data ug = «, then we can easily obtain the solution explicitly as

w(t) = {a:_l - 1)t}—1/(p—1)‘

This solution tends to +oo (or blows up) ast T (p—1)~1al~?. This implies
that in order to discuss the existence of global unbounded solutions, we must
inevitably deal with spatially inhomogeneous time-dependent solutions.

The aim of this article isto survey recent development concerning global
unbounded solutions for (E). In the following sections, we describe the
existence and non-existence, grow-up rate, and grow-up sets.

2. Definitions

Before discussing global unbounded solutions, we introduce definitions of
some critical exponents and important numbers.

283
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It is well known that there are various critical exponents for (E) at which
the structure of solutions drastically changes. Fujita [3] showed that the
so-called Fujita exponent

N+2
pF:= N
oo for N <2,

for N > 2,

is critical for the existence of positive global solutions. That is, if 1 < p <
(N + 2)/N, then any positive solution of (E) blows up in finite, while if
p > 1+ 2/N, then the solution of (E) exists globally provided that initial
data ug are sufficiently small.

Concerning the existence of positive steady states, the Sobolev exponent

N+2
Pbs = N -2
oo for N <2,

for N > 2,

is critical. Namely, (E) has a one-parameter family of positive radial steady
states, i.e., solutions of

Ap+¢P =0 on RN,

if and only if p > pg. We denote the solution by ¢ = ¢,(|z]), where
a = pa(0) > 0. For each & > 0, the solution ¢, is strictly decreasing in
r = |z| and satisfies ¢(r) — 0 as r — co. We can extend the family to all
a € R by setting

Yo = —p_q fora<0 and ¢o=0.

We note that ¢, is obtained as a solution of the following initial value
problem:

N-1
Prr + _TWT + Isolp-—l(P = 07 r> Oa

¢(0) =a.

In this article, the following critical value of p plays a crucial role:

—9)2 _ _
(N —-2)"—4N +8y/N -1 N> 10,
Pe = (N —2)(N -10)
o0 if N <10.

Gui, Ni and Wang [5, 6] found that p = p. is a critical exponent where a
change in stability properties of the nontrivial steady states occurs. More
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precisely, for p < p. any nontrivial steady state u = ¢, is unstable in any
reasonable sense (in fact, for any ug > ¢4, & > 0, the solution of (E) blows
up in finite time), whereas for p > p., u = ¢ is stable under perturbations
in some weighted L space. These stability properties essentially come
from the fact that for ps < p < p. any two steady states intersect each
other, but for p > p., o is strictly increasing in a for each z. Moreover,
for p > p., . satisfies

hm (pa(T) =0 and lim (pa(r) = ono(r), r> O,
a—0 aX—00
where ¢, is a singular steady state given by
u= poo(lzl) = Ljz[™™,  {z{>0
with

m:=—2i. and L:={m(N-2-m)}™2

It is also shown in [5] that each positive regular steady has the asymp-
totic behavior
Lr—™ —ar~m™= 2 4 ho.t. if p> pe
(PQ(T) = A .
Lr=™ —qgr ™ Mlogr + h.ot. ifp=p,

as 7 — oo. Here A; is a positive constant given by

N—-2-2m—/(N-2-2m)2—8(N-2-m)

>\1 =>\1(N>p) = 2

and a = a(a, N, p) is a positive number that is monotone decreasing in c.
We note that the quadratic equation

M —(N-2-2m)A+2(N—-2-m) =0

has two positive roots if and only if p > p.; the smaller root is Ay and the
larger root is given by

_9_ ——5 o L
)‘2:/\2(N,p);=_N 2—-2m+ /(N 22 2m)2 — 8(N — 2 m)'

These roots will play an important role in this paper.
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3. Existence of global unbounded solutions

We first summarize known results about the non-existence of global un-
bounded solutions.

For p < pr, there are no positive global (bounded or unbounded) solu-
tions at all by the result of Fujita [3]. For p < pg, it seems that not only
all positive global solutions must be bounded, they have to decay to 0 as
t — 0o. So far this result has been proved under extra conditions on p or
ug. For example, it is known to be true for global solutions whose initial
data up have fast decay at spatial infinity or at least are square integrable
(see [7,12]). For ps < p, the same result is of course not valid in general
(steady states are bounded solutions that do not converge to zero), but
Mizoguchi [8] proved that it does hold provided the initial data are radially
symmetric, have compact support and other techmnical conditions are sat-
isfied. Without any additional requirements on up, the questions whether
global solutions may be unbounded has been open for ps < p < p,.

The existence of global unbounded solutions for (E) was first proved by
Poléacik and Yanagida in the case of p > p..

Theorem 3.1. (Policik-Yanagida [10]) Let p > p.. Suppose that vy sat-
isfies

D) —pollz]) Suol(z) < pollel), |2 >0,
and
lim o0 |22 {poo(|2]) — uo(2)} = 0 if p>pe,
iz o0 2™+ (log |2]) " H{poo (J2]) — uo(z)} = 0 if p=pe.

Then the solution of (E) exists globally in time and satisfies ||u(-,t)||pe —
oo ast — oo.

The proof of this result in [10] is based on global attractivity properties
of the steady states. Let us consider initial data satisfying (I). Then by
using the comparison technique, we can show that the solution of (E) exists
globally in time and is bounded by +¢o and —¢o,. Moreover, if ug is
sufficiently close to a regular steady state ¢, (|z|) near z = oo, then the
solution converges to ¢, (|z|) uniformly. Such global stability implies that
if ug is larger than ¢, near £ = oo, then by comparison the solution of
(E) eventually becomes larger than ¢, (]z|) in finite time. Therefore, if
up Is closer to ¢ than any other steady state as |x| — oo, then the
solution becomes larger than any other steady state. Since y, approaches
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the singular steady state as @ — oo, the solution must approach the singular
steady state from below as ¢ — co. We call such phenomena as grow-up.

By using Theorem 3.1 and the continuity of solutions with respect to
initial data, we can show the existence of global unbounded solutions that
behave in a rather complicated way. Indeed, it was shown in [10] that if
the initial data oscillate between 0 and ¢ as 7 — oo, the solution of (E)
may oscillate between the trivial steady state and the singular steady state
as t increases, that is,

liminft_,oo “U(',t)”Loo(RN) = O,

limsup,_,, [[u(:, t)|| Lo mny = co.

4. Grow-up rate

Once we know the existence of grow-up solutions, the next step is to deter-
mine the grow-up rate. It turns out that the grow-up rate depends on how
close the initial data are to the singular steady state near |z| = co.

The following upper bound of the grow-up rate is given in Proposition
3.3 of [1].

Theorem 4.1, (Fila-Winkler-Yanagida [1]) Let p > p.. Suppose that ug
satisfies
0 < up(z) < L|z|~™ — blz|™, lz| > R

with some constants | > m + Ay and b,R > 0. Then there ezist positive
constants C and T such that the solution of (E) satisfies

m{l—-m—Xj)

lu(-, )l oo rvy < Ct7 201
forallt > T.

Concerning the lower bound, only a partial result was obtained in [1] in
the case of [ € (m + Ay, m + Ag).

Theorem 4.2. (Fila-Winkler-Yanagida [1]) Let p > p.. Suppose that ug
satisfies (1) and

Llz|™™ — blz|™" < ug(z) < Ljz|™™, |z] >0

with some constants | € (m + A,m + A2] and b > 0. Then there exists a
positive constant C such that the solution of (E) satisfies

m(l—m—2A1)
u(0,t) > Ct™ >t~

for allt > 0.
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In order to prove Theorems 4.1 and 4.2, we first carry out formal anal-
ysis to investigate the asymptotic behavior of solutions. Then it turns out
that the grow-up solution behaves in a different way for small r and large
r, and we can determine the expected grow-up rate by matching the inner
expansion for small » and the outer expansion for large r at some interme-
diate r. Based on the formal asymptotic analysis, we can obtain a rigorous
proof by constructing appropriate comparison functions.

Theorem 4.2 implies that the upper bound obtained in Theorem 4.1 is
optimal for [ € (m+ A1, m+A2]. However, the upper bound in Theorem 4.1
is not optimal for large I. In fact, it is shown in [1] that there is a universal
upper bound independent of initial data. A sharp universal upper bound
was found by Mizoguchi.

Theorem 4.3. (Mizoguchi [9]) Let p > p.. Suppose that ug satisfies (1).
Then there exist positive constants Cy and T such that the solution of (E)
satisfies
m(Ag—A;+2)
lu(-, t)|| Lo mrivy < C1t™ 221
for allt > T. Moreover, there exists uy satisfying
Liz|™™ — be~1#/4 < uo(z) < Ljz|™™,  |z| > R

with some b, R > 0 such that the solution of (E) satisfies

m{Ag—A1+2)
fu(, ) oo (rvy > Cot™ 21

with some Cs > 0 for allt > 0.
It is clear from the universal upper bound in Theorem 4.3 that Theo-
rem 4.2 cannot be extended as it is at least for [ > m + A +2. An optimal

lower bound of the grow-up rate in the case of I > m 4 Xy was obtained
recently by Fila, King, Winkler and Yanagida,

Theorem 4.4. (Fila-King-Winkler-Yanagida [2]) Let p > p.. Suppose
that ug satisfies (I) and
Liz|™™ - blz| ™ < uo(z) < Liz|™™, |a| >0

with some [ € (m+ Ay,m+ Ay +2) and b > 0. Then there exists a positive
constant C such that the solution of (E) satisfies

m-m—X1)

u(0,t) > Ct™ 72
for allt > 0.
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In the case of | > m + Az + 2, the next result is obtained immediately
from Theoremn 4.4.

Theorem 4.5. (Fila-King-Winkler-Yanagida [2]) Let p > p.. Suppose
that ug satisfies (I) and
Liz|™™ — bjz| ™" < up(z) < Ljz|™™, |z| >0

with some l > m+ Ay +2 and b > 0. Then for any small € > 0, there exists
a positive constant C such that the solution of (E) satisfies

w(0,8) > Ot "R e
for allt > 0.

A Key idea in [2] is to consider the outer expansion more precisely. In
[2]), we used only the asymptotic behavior of the outer solution as r — oo,
while in [2]) we used more global information about the outer expansion.

When the condition (I) is dropped, the solution of (E) may grow up
faster. The following result is due to Mizoguchi.

Theorem 4.6. (Mizoguchi [9]) Let p > p.. Then for each nonnegative
even integer n, there ezists a radially symmetric global solution of (E) with
n intersections with Y (r) such that

[u(- )| oo = tP" + hoot.  ast— oo,

where

m(Ae — A1 + 2+ 2n)
by, = > 0.
" 2X1
We note that the intersection points of u and ¢ do not vanish for all
t > 0, and must move toward r» = oo.
Here we mention the work by Galaktionov and King [4]. They consid-
ered the Dirichlet problem

u = Au+ |ufP~u, z€B, t>0,
(D) uw(z,t) = LR=™,  z€8B,t>0,
u(z, 0) = up(z), z e B,

where B is a ball with radius R. Notice that this problem has a singular
steady state u = L|z|™™. It was shown in [4] that if 0 < ue < L|z|~™, then
the solution of (D) satisfies ||u(-,t)]|r~ — oo exponentially as ¢ — oo, and
the grow-up rate does not depend on the initial data.
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5. Grow-up set

For a global unbounded solution of (E), we say that £ € R" is a grow-up
point if there exists a sequence {(&;,¢;)} with & — £ and #; — oo as i — oo
such that

[u(€i,t;)| — 00 as i — oo,

The set of all grow-up points is called a grow-up set. We note that if the
initial data satisfy (I), then the solution also satisfies (I). Therefore, the
grow-up set is {0} in this case. Now the question is what if the condition
(I) is dropped.

Theorem 5.1. (Polacik-Yanagida [11]) Let p > p.. Given any closed
subset G of RN, there exist positive initial data uo such that the solution
of (E) ezists globally in time and the grow-up set is exactly equal to G.

If we consider sign-changing solutions, we can show the following result.

Theorem 5.2. (Polacik-Yanagida [11]) Let p > p.. Given any closed
subsets Gt and G~ of RN, there exist initial data ug such that the solution
of (E) ezists globally in time and satisfies the following properties:

(i) liminf, ,o u(z,t) = co for any z € G,

(ii) limsup,_, u(z,t) < L{dist(z, Gt)}~2/ P~V for any = ¢ G,
(iii) liminf, o u(z,t) = —00 for any z € G~
(iv) limsup,_,. u(z,t) > —L {dist(z,G™)} =¥ @Y for any x ¢ G~,

where

dist(z, G*) := glalcr:li ly — .

Proofs of these theorems are based on the following observation. So far,
we have considered solutions that are localized near the origin. However, by
careful construction of initial data that are not bounded by +¢uo(|z]) and
—poo(z]), We can find a solution which goes through the birth-and-death
process of a localized peak.

Lemma 5.1. (Poli¢ik -Yanagida [11]) Let p > p.. For any sequence
{(oi,&,€:)} with o; € R, & € RY and &; > 0, there exist initial data
ug such that the solution of (E) exists globally in time and satisfies the
following properties:
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(i) There erists a sequence of positive numbers {t;} such that

lu(st:) = Pl - €Dl Loy < €.

(ii) There exists a sequence of positive numbers {fl} with &; € (tirtie1)
such that

Hu(',fi)”Lw(RN) < é&;.

By virtue of this lemma, we can prove Theorems 5.1 and 5.2 by choosing
the sequence (¢, a;,€;)} suitably.

Theorems 5.1 and 5.2 imply that for any prescribed grow-up set, we
can always find a global unbounded solution. Perhaps, the definition of
grow-up set introduced as above would be too weak. It is an interesting
question to ask what if we adopt a stronger definition of a grow-up point.
For example, we may define a grow-up point as a point £ € RY such that
|u(€,t)] — oo as t — oo.
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