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Chapter 1

Introduction

1.1 Preface

Many phenomena from physics, biology, chemistry and economics are modeled
by differential equations with parameters. When a nonlinear equation is estab-
lished, its behavior/dynamics should be understood. In general, it is impossible
to find a complete dynamics of a nonlinear differential equation. Hence at least,
either periodic or irregular/chaotic solutions are tried to be shown. So a prop-
erty of a desired solution of a nonlinear equation is given as a parameterized
boundary value problem. Consequently, the task is transformed to a solvability
of an abstract nonlinear equation with parameters on a certain functional space.
When a family of solutions of the abstract equation is known for some parame-
ters, the persistence or bifurcations of solutions from that family is studied as
parameters are changing. There are several approaches to handle such nonlin-
ear bifurcation problems. One of them is a topological degree method, which is
rather powerful in cases when nonlinearities are not enough smooth. The aim
of this book is to present several original bifurcation results achieved by the
author using the topological degree theory. The scope of the results is rather
broad from showing periodic and chaotic behavior of non-smooth mechanical
systems through the existence of traveling waves for ordinary differential equa-
tions on infinite lattices up to study periodic oscillations of undamped abstract
wave equations on Hilbert spaces with applications to nonlinear beam and string
partial differential equations.

1.2 An Illustrative Perturbed Problem

For solving parameterized problems, we often apply the perturbation method,
which is one of the most powerful method used in nonlinear smooth mechanics.
This perturbation approach is by now known as the Melnikov method for the
persistence/bifurcation of either periodics or homoclinics/heteroclinics [108]. To
illustrate this, let us consider a periodically forced nonlinear oscillator like the

M. Feckan, Topological Degree Approach to Bifurcation Problems, 1-6. 1
(© Springer Science + Business Media B.V., 2008
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2 cos wt ‘
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Figure 1.1: The magneto-elastic beam

following perturbed Duffing equation
=y, §—ax+22°+ py=pcoswt (1.2.1)
with 1 2 small. Note
&4 pd — x + 22> = po coswt

describes dynamics of a buckled beam, when only one mode of vibration is

considered [115] (see also Section 8.10). In particular, an experimental apparatus

in [108, pp. 83-84] is a slender steel beam clamped to a rigid framework which

supports two magnets, when x is the beam’s tip displacement. The apparatus

is periodically forced using electromagnetic vibration generator (see Fig. 1.1).
Next, the phase portrait of

it=y, §y-—x+22°=0 (1.2.2)

is simply to find (see Fig.1.2). There are three equilibria: (0,0) is hyperbolic
and (£v/2/2,0) are centers. There is also a symmetric homoclinic cycle +7(t)
with 5(t) = (y(¢),¥(t)) and (t) = secht. The rest are all periodic solutions.

These results are consistent with the above experimental model without
damping and external forcing as follows: When attractive forces of the magnets
overcome the elastic force of the beam then the beam settles with its tip close
to one or the other of the magnets: these are centers of (1.2.2). There is also an
unstable central equilibrium position of the beam at which the magnetic forces
cancel: this is the unstable equilibrium of (1.2.2).

When 17 2 are small and not identically zero, then in spite of the fact that
(1.2.1) is simple looking, its dynamics is very difficult. So as the first step, we
try to show at least the persistence of either periodic or homoclinic solutions.
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Figure 1.2: The phase portrait of & —z + 223 =0

Here we concentrate on the homoclinic case since the periodic one is similar.
Since we use in this book functional-analytical methods, we explain it on this
example and we refer the reader to [108, p. 184] for a geometrical approach. To
find a solution near (y(t),7(t)), we use the perturbation method, i.e. we first
make the change of variables and parameters

z(t+a) = x)+~v(t), yit+a)—=yl)+y(t), pre e eprozo  (1.2.3)
in (1.2.1) to get

T =y,

, . (1.2.4)
7+ (672 — D)o + 22° + 622y + ep1,0(y +7) = epaocosw(t + a).

Here ¢ is small while p3 5 + p3, = 1 are fixed. To put (1.2.4) in a general
functional framework, we take the Banach spaces V := Cy(R,R?) and Z :=
C}(R,R?) - the spaces of bounded (together with the first derivatives) functions
z : R — R? with the usual supremum norms |[z||o := supg |2(t)| and [|z]|; :=
supg |2(t)| +supg |2(t)[, respectively. R is the field of real numbers. We note that
we are looking for homoclinic solutions, i.e. which belong to C} (R, R?). Next by
putting

Lz:= (i —y,j+ (64° — 1)z),
N(z,a,¢) == (0, —22% — 622y + epg g cosw(t + a) — epr oy + )
with z = (x,y), (1.2.4) has the form
Lz = N(z,a,¢). (1.2.5)
Note N(0,a,0) = 0, so z = 0 is a solution of (1.2.5) with ¢ = 0 and any

a € R. So for € = 0, there is a trivial branch of solutions (0, ). We intend
to find conditions that (1.2.5) has a small solution for € # 0 small. Next, the
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linear bounded operator L : Z — V is not invertible, since (4,%) belongs to
its kernel N'L. So we have to apply the Lyapunov-Schmidt reduction method
(cf. [56] or Section 2.2.2) as follows: We know (see Theorem 3.1.4 with m — oo,
or [56, p. 380]) that the range RL of L is given by

RL= 0= (onuz) € V] [ (a(s)i(s) — va(s)i(s)) ds =0

— 00

and N'L = span {(%,%)}. We take the projection

oo

S (a(s)¥(s) = vi(s)4(s)) ds
Q/U = = %) (_’777) .
T G2 A ds

So RL = NQ. Then we decompose (1.2.5) as follows
Lz—(I—-Q)N(z,0,¢) =0 (1.2.6)

and
QN(z,a,e) =0. (1.2.7)

Now
L: 7 :={z¢ Z]|xz(0)%(0) +y(0)5(0) =0} - RL

is injective and surjective. By the Banach inverse mapping theorem, it is also
continuously invertible. Note { (z,y) € R? | (z — 7(0))%(0) + (y — %(0))5(0) =0}
is the transversal section to the homoclinic curve (y(t),%(¢)) at t = 0. Since
N(0,,0) = 0 and D,N(0,c,0) = 0, applying the implicit function theorem,
we can uniquely solve (1.2.6) in z = z(w, &) € Z; for € small with z(«,0) = 0.
Inserting this solution into (1.2.7) we get the bifurcation equation

oo

B(a,e) == / ( —2z(a, €)*(s) — 6x(a, €)% (s)Y(s)

—00

(1.2.8)

Fepnn cosw(s + ) — e o(y(e,€)(s) +4(s)) ) (s) ds = 0.

Since z(a,e) = O(g), we see that B(a,e) = O(e) as well. So instead of solving
(1.2.8), we put

=~ B B(a,e)/e for e # 0,
Blase) = { D.B(«,0) fore =0

and solve
B(a,e) =0. (1.2.9)
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We derive
M(a) :== D:B(a,0) = / (/1/2)0 cosw(s+ a) — u170’y(5))’y(s) ds

Tw . 2
= pg omwsech — sinaw — py o= .

) 2 ) 3
When |u10] < |M2,0|3“T“’ sech %2, then clearly there is a simple zero ag of M,
ie. M(ag) = 0 and M'(ap) # 0. So we can again apply the implicit function
theorem to solve (1.2.9) in a = a(e) for € small with «(0) = ap. This gives the
existence of a bounded solution of (1.2.1) close to (y(t — ap),¥(t — ap)) (see
(1.2.3)) for any gy 2 small satisfying

3mw Tw
[pa] < |,u2\7 sechT. (1.2.10)

Next using the same approach, we can show the existence of a unique small
periodic solution of (1.2.1) for any o small. With a little bit more effort
we can prove that this periodic solution is hyperbolic and the above bounded
solution accumulates on it as ¢ — +oo [108, pp. 184-212], [157]. Moreover
under conditions (1.2.10), (1.2.1) is chaotic (see Sections 2.5.3 and 4.2.1 for
more details). These chaotic vibrations are also observed in the experimental
apparatus of Fig. 1.1 as it is shown in [108, p. 84].

1.3 A Brief Summary of the Book

Summarizing we see that in order to find a bounded solution of (1.2.1) for 12
small, we use the following strategy

1. First we rewrite it as an abstract equation (1.2.5) in appropriate Banach
spaces.

2. Then we use the Lyapunov-Schmidt decomposition method (1.2.6-1.2.7).

3. Next we derive the bifurcation equation (1.2.8) using the implicit function
theorem.

4. Finally we find conditions for the solvability of the bifurcation equation
(see (1.2.9) and the analysis below it). Usually we get the corresponding
Melnikov function M.

We roughly follow this way in this book for various problems. Of course the
above approach is well-known [56, 157-159]. But we intend to solve problems
which are not enough smooth. So our first aim is to extend this Melnikov method
for nonsmooth/discontinuous mechanical systems like

b=y, U—a+2x3+ psgni = pgcoswt (1.3.1)
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for 1,2 small (see (3.1.36)). Non-smooth differential equations occur in various
situations like in mechanical systems with dry frictions or with impacts. They
appear also in control theory, electronics, economics, medicine and biology [45,
57,129-131] (see also Chapters 3, 4 and 8 of this book for additional references
and examples).

The plan of this book is as follows. In Chapter 2 we briefly review some known
mathematical results which we use in our proofs. In Chapter 3 we study bifurcations
of periodics and subharmonics from either periodics or homoclinics for systems like
(1.3.1). This is the first step to show chaos for discontinuous systems. There we also
study systems with small hysteresis and weakly coupled nonlinear oscillators as
well. In Chapter 4 we show desired chaotic solutions for discontinuous differential
equations by extended the method of Chapter 3. Then we proceed in Chapter
5 with the study of chaos for diffeomorphisms when intersections of stable and
unstable manifolds of hyperbolic fixed points are only topologically transversal. To
handle this problem, again topological degree methods are necessary to use. There
we also deals with accumulation of periodic points of reversible diffeomorphisms
on homoclinic points with extensions of this phenomenon to chains of reversible
oscillators. We continue in Chapter 6 with investigation of equations on lattices
which are spatially discretized partial differential equations (p.d.eqns). There
we apply the known center manifold method. We investigate the persistence of
kink traveling waves of p.d.eqns under discretization. Chapter 7 is devoted to the
existence of periodics and subharmonics of undamped abstract wave equations
using methods to avoid resonant terms for perturbed problems. Then, in the
final Chapter 8, we study discontinuous wave equations with infinitely many
resonances. There we develop a degree for such problems with applications to
local bifurcation problems.

We note that we use the known topological degree methods as a tool for
solving concrete nonlinear problems. Only in the final chapter, we also estab-
lish a suitable theoretical topological degree background for discontinuous wave
equations. Next, most results of this book are based on the author published
papers, but we have improved and modified the original papers to simplify and
clarify final results.

Bifurcation results solved in this book are local which means that only lo-
cal branches of bifurcations are studied with small parameter changes. Global
bifurcations like Krasnoselski-Rabinowitz theorem are given in [47,124]. Next,
we use a topological tool based on the Leray-Schauder degree theory and its
generalizations. More sophisticated topological methods based on the Nielsen
fixed point theory are presented in [5,89].

The author is indebted to coauthors of results mentioned in this book:
J. Awrejcewicz, F. Battelli, M. Franca, J. Gruendler, R. Ma, P. Olejnik, V.M.
Rothos and B. Thompson. He also thanks to M. Medved’ for many stimulat-
ing discussions on mathematics and to L. Goérniewicz for initiation to write
this book. Partial supports of Grant VEGA-MS 1/0098/08, Grant VEGA-SAV
2/7140/27 and an award from Literdrny fond are also appreciated.

Bratislava, April, 2008 Michal Feckan



Chapter 2

Theoretical Background

In this chapter, we recall some know mathematical notations, notions and re-
sults used later to help the reader with reading this book. All these results are
presented in any textbooks of linear and nonlinear functional analysis, differ-
ential topology, and dynamical systems, which are quoted in the text, and we
refer the reader for more details to these textbooks.

2.1 Linear Functional Analysis

Let X be a Banach space with a norm | - |. By N we denote the set of natural
numbers. A sequence {z, }nen C X (strongly) convergesto xg € X if |z, —x¢| —
0 as n — oo, for short z,, — x¢. The dual space of X is denoted by X*. It is
the linear space of all bounded linear functionals on X. It generates the weak
topology on X as follows: For any x € X, we define its weak neighborhood as a
set _;{ye X ||z}(y—x)| <r;} for some z} € X*, r; >0,i=1,...,5. Then
a subset S of X is weakly open if any its point has a weak neighborhood laying
in S. A set is weakly compact if from every its covering with weakly open sets
it is possible to select a finite covering. If the norm |- | is generated by a scalar
product (-, ), i.e. |z| = \/(x,x) for any z, then X is a Hilbert space.

Theorem 2.1.1. Any convez closed bounded subset of a Hilbert space is weakly
compact.

A sequence {z,}neny C X weakly converges to xg € X if x*(x,) — x*(xq)
as n — oo for any =* € X*, for short z,, — z9. We have the following Mazur’s
theorem.

Theorem 2.1.2. If z, — x then there is a sequence {yn }nen C X such that
Yn, € cont [{xm tm>n] and y, — zo in X.

Here con [S] is the convex hull of a subset S C X, i.e. the intersection of all
convex subsets of X containing S.

M. Feckan, Topological Degree Approach to Bifurcation Problems, 7-21. 7
(© Springer Science + Business Media B.V., 2008



8 Chapter 2. Theoretical Background

Let X and Y be Banach spaces. The set of all linear bounded mappings
A: X — Y isdenoted by L(X,Y), while we put L(X) := L(X, X). A€ L(X,Y)
is compact if A(By) is compact in Y when By := {z € X | |z| < 1} is the unit
ball in X. Then z,, — g = Az, — Axy. If X C Y and the inclusion X — Y is
bounded (compact) then we say that X is continuously (compactly) embedded
nto Y.

In using the Lyapunov-Schmidt method, we first need the following Banach
inverse mapping theorem.

Theorem 2.1.3. If A € L(X,Y) is surjective and injective then its inverse
A7t e L(Y, X).

Then this lemma.

Lemma 2.1.4. Let Z C X be a linear subspace with either dim Z < oo or Z be
closed with codim Z < co. Then there is a bounded projection P : X — Z. Note
codim Z = dim X/Z and X/Z is the factor space of X with respect to Z.

More details and proofs of the above results can be found in [60,199].

2.2 Nonlinear Functional Analysis

2.2.1 Implicit Function Theorem

Let X, Y be Banach spaces and let 2 C X be open. A map F': Q — Y is said
to be (Fréchet) differentiable at xy € 2 if there is an DF(x¢) € L(X,Y) such
that

lim |F'(zo + h) — F(x0) — DF(x0)h|

=0.
h—0 |h]

If F is differentiable at each z € Q and DF : Q — L(X,Y) is continuous then
F is said to be continuously differentiable on Q and we write F' € C1(Q,Y).
Higher derivatives are defined in the usual way by induction. Similarly, the
partial derivatives are defined standardly [60, p. 46]. Now we state the implicit
function theorem [56, p. 26].

Theorem 2.2.1. Let X, Y, Z be Banach spaces, U C X,V C Y are open
subsets and (zo,yo) € UxV. Consider F € CY(UxV, Z) such that F(xq,yo) = 0
and D, F(zo,y0) : X — Z has a bounded inverse. Then there is a neighborhood
Uy x Vi CU XV of (x9,y0) and a function f € C*(V1, X) such that f(yo) = xo
and F(z,y) = 0 for Uy x Vi if and only if x = f(y). Moreover, if F € C*(U x
V,Z), k> 1 then f € C*(V, X).

We refer the reader to [31,127] for more applications and generalizations of
the implicit function theorem.
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2.2.2 Lyapunov-Schmidt Method

Now we recall the well-known Lyapunov-Schmidt method for solving locally non-
linear equations when the implicit function theorem fails. So let X, Y, Z be
Banach spaces, U C X, V C Y are open subsets and (xg,yo) € U x V. Consider
F € CY(U x V, Z) such that F(zg,y0) = 0. If D,F(x0,50) : X — Z has a
bounded inverse then the implicit function theorem can be applied to solve

F(z,y)=0 (2.2.1)

near (xg,yo). So we suppose that D, F(zg,40) : X — Z has no a bounded in-
verse. In general this situation is difficult. The simplest case is when D, F'(xg, yo):
X — Z is Fredholm, i.e. dim N D, F(z9,yo) < 00, RD,F(xg,yo) is closed in Z
and codim RD,F(zo,y0) < oo. Here NA and RA are the kernel and range
of a linear mapping A. Then by Lemma 2.1.4, there are bounded projections
P:X - ND,F(zo,y) and Q : Z — RD,F(z0,yo)- Hence we split any z € X
as r=xo+utv with u € R(I — P), v € RP, and decompose (2.2.1) as follows

H(u,v,y) == QF(z0 +u+v,y) =0, (2.2.2)
(I-Q)F(xo+u+uv,y)=0. (2.2.3)

Observe that D,H(0,0,y0) =D, F(x0,y0)R(I — P) — RD,F(xo,y0). So
D,H(0,0,y0) is injective and surjective so by the Banach inverse mapping
Theorem 2.1.3, it has a bounded inverse. Since H(0,0,yo) = 0, the implicit
function theorem can be applied to solve (2.2.2) in u = u(v,y) with u(0, y) = 0.
Inserting this solution to (2.2.3) we get the bifurcation equation

B(v,y) == 1 - Q)F(xo + u(v,y) +v,y) =0. (2.2.4)
Since B(0,yo) = (I — Q)F(x0,y0) = 0 and
DvB(Ov yO) = (H - Q)DwF(xmyO) (D'uu(ovyO) + H) = O,

the function B(v,y) has a higher singularity at (0,yo), so the implicit function
theorem is not applicable, and the bifurcation theory must be used [56].

2.2.3 Leray-Schauder Degree

Let X be a Banach space and let @ C X be open bounded. A continuous
map G € C(Q, X) is compact if G(Q2) is compact in X. The set of all such
maps is denoted by K(Q). A triple (F,Q,y) is admissible if F = 1T — G for
some G € K(2) (so F is a compact perturbation of identity) and y € X with
y ¢ F(09), where 09 is the border of a bounded open subset @ C X. A
mapping F' € C ([0, 1] x Q, X) is an admissible homotopy if F(\,-) =1—G(\,")
with G € C([0,1] x Q, X) compact, i.e. G ([0,1] x Q) is compact in X, along
with y ¢ F ([0,1] x 092). Let Z be the set of all integer numbers. Now on these
admissible triples (F,,y), there is a Z-defined function deg [60, p. 56].
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Theorem 2.2.2. There is a unique mapping deg defined on the set of all ad-
missible triples (F,Q,y) determined by the following properties:

(i) If deg(F,Q,y) # 0 then there is an x € Q such that F(x) =y.
(ii) deg(I,Q,y) =1 for any y € Q.

(i4i) deg(F,Q,y) = deg(F,Q,y)+deg(F,Q2,y) whenever Q o are disjoint open
subsets of Q such that y ¢ F (Q\ (4 UQ)).

(iv) deg(F(X,-),Q,y) is constant under an admissible homotopy F (A, ).

The number deg(F,,y) is called the Leray-Schauder degree of the map
F. If X = R" then deg(F,,y) is the classical Brouwer degree and F' is just
F € C(Q,R") with y ¢ F(9Q). If zq is an isolated zero of F in ) C R™ then
I(zg) := deg(F, Qp,0) is called the Brouwer index of F at xo, where xg € Qp C 2
is an open subset such that xg is the only zero point of F on Qg (cf. [56,
p. 69]). I(xzp) is independent of such . Note, if y € R™ is a regular value
of F € CYQ,R"), ie. det DF(z) # 0 for any z € Q with F(z) = y, and
y & F(0R), then F~1(y) is finite and deg(F,Q,y) = Y.  sgn det DF(x). In

zeF~1(y)
particular if xg is as simple zero of F(x), i.e. F(xg) = 0 and det DF(xq) # 0,
then I(xzg) = sgn det DF(zg) = 1.

It is useful for computation of the Leray-Schauder degree the following prod-

uct formula

deg (F1 X Fo, Q1 X Qa, (y1,y2)) = deg(F1, 21, y1) deg(F2,Q2,y2)

where (F;, Qi,y;), ¢ = 1,2 are admissible triples and the mapping
FixFy: Q1 x 0y — X1 x X
is defined by
(Fy x Fy)(z1,12) := (F1(21), Fa(w2))  Y(z1,72) € Q1 x O
for Banach spaces X7, X with Q; C X;, i = 1,2. In particular, it holds
deg (I x Fo, Q1 x Qo, (y1,y2)) = deg(F2, Q2,92), (2.2.5)

where (F», Q9,ys) is an admissible triple and y; € Q4 for a bounded open subset

)y of a Banach space X;.
Finally, we state the Schauder fized point theorem [101].

Theorem 2.2.3. Let ) be a closed convex bounded subset of a Banach space
X. IfGe K(Q) and G : Q — Q then G has a fized point in €.

For finite dimensional cases it is the Brouwer fixed point theorem.
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2.3 Differential Topology

2.3.1 Differentiable Manifolds

Let M be a subset of R¥. We use the induced topology on M, that is A C
M is open if there is an open set A’ C R such that A = A’ N M. We say
that M C R* is a C"-manifold (r € N) of dimension m if for each p € M
there is a neighborhood U C M of p and a homeomorphism z : U — Uy,
where Up is an open subset in R™, such that the inverse 27! € C"(Up, R¥) and
Dz~ Y(u) : R™ — RF is injective for any u € Uy. Then we say that (z,U) is a
local C™-chart around p and U is a coordinate neighborhood of p. It is clear that
ifx:U —R™and y:V — R™ are two local C"-charts in M with UNV #
then yox~! : 2(UNV) — y(UNV) is a C"diffeomorphism. This family of local
charts is called a C"-atlas for M [1,114,156].

If there is a CT-atlas for M such that det D(y o 71)(2) > 0 for any z €
z(U NV) and any two local C"-charts  : U — R™ and y : V' — R™ of this
atlas with U NV # () then M is oriented.

Let a € CY((—¢,¢),R¥) be a differentiable curve on M, i.e. o : (—¢,6) — M
with «(0) = p. Then /(0) is a tangent vector to M at p. The set of all tangent
vectors to M at p is the tangent space to M at p and it is denoted by T},M. The
tangent bundle is the set

TM = {(p,v) e R* xRF | pe M, v e T,M}

with the natural projection m : TM — M given as w(p,v) = p. If M is a
CT-manifold with r > 1 then TM is a C"~!-manifold.

Let M and N be two C"-manifolds. We say that f : M — N is a C"-mapping
if for each p € M the mapping yo fox~! : x(U) — y(V) is C"-smooth, where
x : U — R™ is a local C"-chart in M around p and y : V — R® is a local
C"-chart in N with f(U) C V. This definition is independent of the choice of
charts. The set of C"-mappings is denoted by C" (M, N). Take f € C"(M, N).
Let o : (—¢,e) — M be a differentiable curve on M with «(0) = p and o/ (0) = v.
Then foa: (—e,e) — N is a differentiable curve on N with (f o a)(0) = f(p),
so we can define D f(p)v := D(f oa)(0) € Ty, N. This is independent of curve
a. The map Df(p) : T,M — Ty N is linear, and if r > 1, Df : TM — TN
defined as D f(p,v) := (f(p), Df(p)v) is C"~-smooth.

A set S ¢ M C R* is a C"-submanifold of M of dimension s if for each
p € S there are open sets U C M containing p, V C R?® containing 0 and
W C R™* containing 0 and a C"-diffeomorphism ¢ : U — V x W such that
o(SNU) =V x {0}.

A C"-mapping f : M — N is an immersion if Df(p) is injective for all
p € M. If f: M — N is an injective immersion we say that f(M) is an
immersed submanifold. If in addition f : M — f(M) C N is a homeomorphism,
where f(M) has the induced topology, then f is an embedding. In this case,
f(M) is a submanifold of N.
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2.3.2 Symplectic Surfaces

M is a smooth symplectic surface if it is a 2-dimensional C'°°-smooth mani-
fold with w € C°(TM x TM,R) such that ¥m € M, the restriction w,, :=
w/TmM x T,, M is bilinear, antisymmetric and nonzero, i.e.

2

Wi (a1v1 + agvz, biwy + bows) = Z a;bjwn, (vi, w;)
ij=1

and wy, (v1,v2) = —wy, (ve,v1) for any aq,2,b12 € R, v1 2, w1 2 € T), M. In alocal
coordinate U C R?, w has the form Wiz (v, w) = ay(z,y)vAw, ay € C*(U,R),
a(z,y) # 0 for any (z,y) € U and v A w := x1ys — x2y; is the wedge product
for v = (z1,y1), w = (x2,y2). Then w is a non-degenerate differential 2-form or
symplectic area form on M.

A mapping o € C*(TM,R) is a differential 1-form on M if for any m € M,
the restriction o, := w/T,, M € T,, M*. In alocal coordinate U C R?, a has the
form o, v = ap (2, y)r1+aya(x, y)y for ayi2 € C°(U,R) and v = (21, y1).
Then da is defined by

(Q)GU’Q 8aU,1
day ) (v, w) = ( or 0y )v/\w

For f € C*°(M, M), we define a differential 1-form as
[ (@)mv = apomy(Df(m)v) Vme M Vv e T, M.
Finally, f € C*(M, M) is symplectic or area-preserving if

Wem)(Df(m)v, Df(m)w) = wp(v,w) Vm € M ,Vo,Yw € T, M.

2.3.3 Intersection Numbers of Manifolds

Let W be an oriented C"-manifold of dimension m+n and M, N be oriented C"-
submanifolds of W of dimensions m, n, respectively, while M is compact and N
is closed. A point © € M NN is transversal if T, M NT, N = {0}. It is a positive
(negative) kind [114] if the composite map T, M — T,W — T, W /T, N preserves
(reserves) the orientation. Then we write #, (M, N) := 1(—1). If all intersection
points of M N N are transversal then there is a final number of them and we set
#(M,N) = cnnn #«(M, N). A similar approach is used like in the Brouwer
degree theory to extend #(M, N) for general nontransversal intersections [114].
The number #(M, N) is called the (oriented) intersection number of manifolds
M, N in W. If U is a precompact open subset of W and 0U N M NN = (), then
similarly we can define a local (oriented) intersection number #£(M NU,NNU)
of the manifolds M NU and NNU in U C W. These intersection numbers have
similar properties as the Brouwer degree in Theorem 2.2.2.
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2.3.4 Brouwer Degree on Manifolds

Let M, N be oriented C'-manifolds with dimM = dimN = n. Let f €
CY(M,N), y € N and Q be an open precompact subset of M such that y ¢
f(0R). Suppose y is regular, i.e. Vo €  such that f(z) = y, Df(z) is in-
jective. Then f~1(y) N Q is finite, so f~1(y) N Q = {v1,v2, -+ ,vr}. We take
disjoint local coordinates (U, z;) of v; and (V, z) of y. Then there are Brouwer
indices I(z;(v;)) of x(f(x; ")), which are independent of local coordinates. We
set deg(f,Q,y) = Zle I(x;(v;)). Then like in the classical degree theory, this
degree is extended to any continuous f and nonregural y. This is the Brouwer
degree on manifolds [114].

Next, let M, N be oriented C'-manifolds and f € C*(M,RP), g € C*(N,RP),
p =dim M +dim N be embeddings. Let U be a bounded open subset of RP such
that QU N f(M) N g(N) = (. Then

[#(f(M)NU,g(N) NU)| = |deg(G, Uy x Us, 0)

for Uy = f~2(UN f(M)), Uy = g {(UNg(N)) and G(z,y) := f(z) — g(y). If in
addition M is a submanifold and N is a linear subspace of RP with a projection
P :RP — N then

[#MNOU,NNU)| = |deg((I— P),UNM,0)| .

The independence of P follows from the fact that if @) is another projection on
N thenI-Q : R(I—P) — R(I—Q) is a linear isomorphism and (I—-Q)(I—P) =
I — @. Hence

|[deg((I— P),U N M,0)| = |deg((I— Q)T — P),U N M,0)]
— [deg((I— Q),U N M, 0)] .

2.3.5 Vector Bundles

A C"-vector bundle of dimension n is a triple (E,p, B) where E, B are C"-
manifolds and p € C"(F, B) with the following properties: for each ¢ € B there
is its open neighborhood U C B and a C"-diffeomorphism ¢ : p~}(U) — U x R"
such that p = m0¢ on p~}(U) where m; : UXR"™ — U is defined as 71 (z,y) := .
Moreover, each p~!(x) are n-dimensional vector spaces and each ¢, : p~1(x) —
R™ given by ¢(y) = (z, ¢ (y)) for any y € p~1(z) are linear isomorphisms. E is
called the total space, B is the base space, p is the projection of the bundle, the
vector space p~1(x) is the fibre and ¢ is a local trivialization. So the vector bundle
is locally trivial. If U = B then the bundle is trivial. The family A := {(¢,U)}
of these local trivializations is a C"-vector atlas. The bundle is oriented if there
is a C"-vector atlas A := {(¢,U)} such that for any two local trivializations
(¢,U) and (¢, V) with U NV # ) the linear mapping 1, o ¢, : R® — R" is
orientation preserving for each x € U NV. A C"-smooth mapping s : B — E
satisfying p o s = I g is called a section of the bundle.
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Typical examples of vector bundles are the tangent bundle (T'M,w, M) and
the normal bundle (TM=*,7, M) defined as

TM* = {(q,v) e RF xR* | g€ M, ve T,M"}

with the projection 7 : TM+ — M given as 7(q,v) = ¢, where T, M~ is the
orthogonal complement of T, M in R*. A section of TM is called a vector field
on M. When M is oriented then both TM and TM~* are oriented. Here M is a
C"-manifold with r > 1.

2.3.6 Euler Characteristic

Let £ = (E,p, B) be an oriented C"-vector bundle with dimension n = dim B
and B be oriented. Consider its C"-section s : B — E. Let Q be an open pre-
compact subset of B such that s # 0 on 9. Suppose first that s has only
a finite number of zeroes in (2, say by, ba, -+ ,b;. Let ¢; : p~1(U;) — U; x R™,
1=1,2,---, 7 belocal trivializations of the bundle £ with b; € U;, U; are disjoint
and (U;, z;) are local coordinates. Then x;(b;) is the only zero point of v;(z) :=
qba:;l(w)(s(x;l(x))), x € z;(U;). Note v; : z;(U;) — R™ and x;(U;) C R™. Ac-
cording to Section 2.2.3 it has the Brouwer index I(b;), which is independent
of ¢;, z;. Then we set deg(s, Q) := > 7_, I(b;). Then like in the Brouwer degree
theory, deg(s,(2) is extended to a continuous section s : B — E with s # 0 on
09. It has similar properties as the Brouwer degree in Theorem 2.2.2. When
Q = B then deg(s, ) is independent of s and so deg(s, ) = x(§), where x(&)
is the Fuler characteristic of the bundle £. So if x(£) # 0 then any continuous
section of £ has a zero. Next, if & = T'M with an oriented connected compact
C"-manifold for r > 1, then x(TM) is the Euler characteristic of the mani-
fold M. Then we get the classical result of Hopf that x(7TM) # 0 implies the
existence of a zero of any continuous vector field of M. Moreover, if x(TM) =0
then T'M has a continuous section without zeroes on M. We refer the reader
to [114] for more details and proofs of the above results.

2.4 Multivalued Mappings

2.4.1 Upper Semicontinuity

Let X, Y be Banach spaces and let Q C X. By 2" we denote the family of all
subsets of Y. Any mapping F : Q — 2Y \ {0} is called multivalued or set-valued.
For such mappings we define sets

graph F':={(z,y) e AxY |z € Q,ye€ F(x)}, F(Q):=UzeaF(z),
F YA ={zcQ|Flz)nA#0} for ACY.
Definition 2.4.1. A multivalued mapping F : Q — 2Y \ {0} is

upper-semicontinuous, usc for short, if the set F~1(A) is closed in © for any
closed A CY.
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This condition of usc is more transparent in terms of sequences: if {x,}2° ;
CQ, ACY isclosed, x, — x9 € Q and F(x,) N A # ) for all n > 1, then also
F(xz9) N A # 0. The following result is a part of [59, Proposition 1.2.(b)].
Theorem 2.4.2. If graph F' is closed and F(Q) is compact then F is usc. In
particular, F is usc if it has a compact graph F.

A typical example of an usc multivalued mapping is Sgn : R — 28\ {()}
defined by

B r/|r] for r #0,
Sgnr = { 1, 1] for 1 — 0. (2.4.1)

We refer the reader for more properties of usc mappings to [59, p. 3-11]
and [103).

2.4.2 Measurable Selections

Let J :=[0,1]. The characteristic function x a(x) of a subset A C J is defined
as xa(xr) =1forz € Aand ya(x) =0for x ¢ A. Let X be a Banach space with

k
anorm |-|. An f:J — X is said to be a step function if f = > ¢;xa,(z) for
=1

some Lebesgue measurable sets A; C J, j=1,--- k. An f: JZ—> X is said to
be strongly measurable if there is a sequence { f,, }5°; of step functions such that
|f(z) = fa(z)] — 0 as n — oo almost everywhere (a.e.) on J. Following [59, p.
29, Problem 10] (see also [166, p. 17, Propositions 3.3-3.4], [167]), we have the
following result.

Theorem 2.4.3. Let F : J x X — 2%\ {0} be usc with compact values, and
v € C(J,X). Then F(-,v(:)) has a strongly measurable selection, i.e. there is a
strongly measurable function f:J — X such that f(z) € F(x,v(x)) a.e. on J.

The above definitions are taken from [59, pp. 21-30].

2.4.3 Degree Theory for Set-Valued Maps

Let X be a Banach space and let Q@ C X be open and bounded. A triple (F, 2, y)
is admissible if F =1 — G for some G : Q — 2%\ {#} which is usc with compact
convex values and G(Q) C X is compact, and y € X with y ¢ F(0Q). Let M
be the set of all admissible triples. Then it is possible to define (cf. [59, pp. 154—
155]) a unique function deg : M — Z with the properties of Theorem 2.2.2 with
evident differences that in (i) is y € F(z) in place of F(z) = y and the homotopy
in (iv) is compact usc with compact convex values. The number deg(F, €, y) is
the Leray-Schauder degree of the multivalued map F. We refer the reader for
more topological methods for multivalued equations to the books [5,103].
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2.5 Dynamical Systems

2.5.1 Exponential Dichotomies

Set Zy := NU{0} and Z_ := —~Z,. Let J € {Z,,Z_,Z}. Let A, € L(RF),
n € J be a sequence of invertible matrices. Consider a linear difference equation

Tpt1 = AnTy . (2.5.1)

Its fundamental solution is defined as U(n) := A,,_1---Ap for n e N, U(0) =1
and U(n) := A;1--- A7} for —n € N. (2.5.1) has an exponential dichotomy on
J if there is a projection P : R¥ — R¥ and constants L > 0, § € (0, 1) such that

|U(n)PU(m)~ || < L™~ ™ for any m < n, n,m € J
U )1 — P)U(m)™ || < Lé™ ™™ for any n < m, n,m € J.

If A,, = A and its spectrum o (A) has no intersection with the unit circle, i.e. A is
hyperbolic, then P is the projection onto the generalized eigenspace of eigenvectors
inside the unit circle and A/ P is the generalized eigenspace of eigenvectors outside
the unit circle. Next we have the following roughness of exponential dichotomies.

Lemma 2.5.1. Let J € {Z,Z_}. Let A be hyperbolic with the dichotomy pro-
jection P. Assume {A,(§)},,c; € L(RF) are invertible matrices and A,(§) — A
in L(RF) uniformly with respect to a parameter €. Then x,41 = An(&)2n, with
the fundamental solution U¢(n), has an exponential dichotomy on J with projec-
tion Pe and uniform constants L > 0, 6 € (0,1). Moreover, Ug(n) PeUg¢(n)~! —
P as n — £oo uniformly with respect to €.

Analogical results hold for a linear differential equation & = A(t)x when
t € J € {(~00,0),(0,00),R} and A(t) € C(J, L(R¥)) is a continuous matrix
function. Its fundamental solution is a matrix function U(t) satisfying U(t) =
A(t)U(t) on J. Sometimes we require that U(0) =T [159].

2.5.2 Chaos in Discrete Dynamical Systems

Consider a C"-diffeomorphism f on R™ with r € N, i.e. a mapping f € C”
(R™,R™) which is invertible and f~* € C™(R™,R™). For any z € R™ we define
its k-iteration as f*(z) := f(f*"1(2)). The set {f™(2)}° ., is an orbit of f. If
xo = f(xo) then zgis a fized pointof f. 1t is hyperbolicif the linearization D f (xq) of
f at 2 has no eigenvalues on the unit circle. The global stable (unstable) manifold

W;éu) of a hyperbolic fixed point zq is defined by
W;g“) ={zeR™| f"(z) = xy as n— oo(—0)},

respectively.
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Theorem 2.5.2. W7 and W are immersed C"-submanifolds in R™.

Furthermore, let yo be another hyperbolic fixed point of f. If x € W3 NW;! \
{zo,yo} then it is a heteroclinic point of f and then the orbit {f™ ()} . is
called heteroclinic. Clearly f™(z) — xg as n — oo and f"(z) — yo as n — —o0.
If T,W; NT,W; = {0} then x is a transversal heteroclinic point of f. Note
x € Wi NWyi \{xo,y0} is a transversal heteroclinic point if and only if the
linear difference equation x,11 = Df(f™(z))x, has an exponential dichotomy
on Z. When zy = yg then the word “heteroclinic” is replaced with homoclinic.
We refer the reader to the book [159] for more details and proofs of the above
subject.

Let £ = {0,1}? be a compact metric space of the set of doubly infinite
sequences of 0 and 1 endowed with the metric [68]

ey, — €
dlfent o)) o= 32 ool
neL
On & it is defined the so called Bernoulli shift map o : € — &€ by o({e;}jez) =
{€j4+1};ez with extremely rich dynamics [195].

Theorem 2.5.3. ¢ is a homeomorphism having

(i) A countable infinity of periodic orbits of all possible periods
(i) An uncountable infinity of nonperiodic orbits and
(iii) A dense orbit

Now we can state the following result about the existence of the deterministic
chaos for diffeomorphisms, the Smale-Birkhoff homoclinic theorem.

Theorem 2.5.4. Suppose f:R™ — R™, r € N be a C"-diffeomorphism having
a transversal homoclinic point to a hyperbolic fixzed point. Then there is an k € N
such that f* has an invariant set A, i.e. fF(A) = A, such that po f¥ =co¢
for an homeomorphism ¢ : A — E.

The set A is the Smale horseshoe and we say that f has horseshoe dynamics
on A. Theorem 2.5.4 asserts that the following diagram is commutative

k
A ! A
gal iw
£ £

(e

So f* on A has the same dynamical properties as o on &, i.e. Theorem 2.5.3
gives chaos for f. Moreover, it is possible to show a sensitive dependence on
initial conditions of f on A in the sense that there is an €y > 0 such that for
any x € A and any neighborhood U of «, there exists z € U N A and an integer
q > 1 such that |f?(z) — f4(2)| > ep.

Remark 2.5.5. Of course the above considerations hold for a smooth diffeomor-
phism f: M — M on a smooth manifold.



18 Chapter 2. Theoretical Background

2.5.3 Periodic O.D.Eqns
It is well-known [110], that the Cauchy problem
& =g(x,t), x(0)=z€cR™ (2.5.2)

for g € C"(R™ x R,R™), r € N has a unique solution x(t) = ¢(z,t) defined on
a maximal interval 0 € I, C R. We suppose for simplicity that I, = R. This
is true for instance when ¢ is globally Lipschitz continuous in x, i.e. there is
a constant L > 0 such that |g(x,t) — g(y,t)] < L|x — y| for any z,y € R™,
t € R. Moreover, we assume that g is T-periodic in ¢, i.e. g(z,t +T) = g(x,t)
for any x € R™, t € R. Then the dynamics of (2.5.2) is determined by the
dynamics of the diffeomorphism f(z) = ¢(z,T) which is called the time or
Poincaré map of (2.5.2). Now we can transform the results of Section 2.5.2 to
(2.5.2). So T-periodic solutions (periodics for short) of (2.5.2) are fixed points of
f. Periodics of f are subharmonic solutions (subharmonics for short) of (2.5.2).
Similarly we mean a chaos of (2.5.2) as a chaos for f. To be more concrete,
we apply these results to (1.2.1). We known from introduction that for gy o
small satisfying (1.2.10), (1.2.1) has a bounded solution which tends to a small
hyperbolic periodic solution. For the time map of (1.2.1) this means that it has
a homoclinic orbit to a hyperbolic fixed point. Next after some effort [159] it is
possible to show that this homoclinic point is also transversal. So the time map
of (1.2.1) is chaotic according to Theorem 2.5.4. Consequently, (1.2.1) is chaotic
for py 2 small satisfying (1.2.10). We also refer the reader to Subsection 4.2.1
for more details.

2.5.4 Vector Fields
When (2.5.2) is autonomous, i.e. g is independent of ¢, then (2.5.2) has the form
t=g(x), z(0)=zeR™. (2.5.3)

g is called a C"-vector field on R™ for g € C"(R™,R™), r € N. We suppose
for simplicity that the unique solution x(t) = ¢(z,t) of (2.5.3) is defined on R.
@(z,t) is called the orbit based at z. Then instead of the time map of (2.5.3), we
consider the flow ¢; : R™ — R™ defined as ¢;(z) := ¢(z,t) with the property
Ot (9s(2)) = Pigs(2). A point zg with g(zg) = 0 is an equilibrium of (2.5.3). It
is hyperbolic if the linearization Dg(zo) of (2.5.3) at x¢ has no eigenvalues on
imaginary axis.

The global stable (unstable) manifold Wféu) of a hyperbolic equilibrium zg
is defined by

Wfé“) ={zeR™|¢(z,t) 29 as t— oo(—0)},

respectively. These sets are immersed submanifolds of R". Note for any x €
Wi we know that
o >

TLW;S“) = {1}(0) € R™ | v(t) is a bounded solution

of v = Dg(p(x,t))v on (0,00), ((—oc,0)), respectively} .
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Moreover, the set
(T,W?, + T, W2 )"

is the linear space of initial values w(0) of all bounded solutions w(t) of the
adjoint equation w = —Dg(é(x,t))*w on R [157].

A local dynamics near a hyperbolic equilibrium xq of (2.5.3) is explained by
the Hartman-Grobman theorem for flows [108].

Theorem 2.5.6. If xg = 0 is a hyperbolic equilibrium of (2.5.3) then there is a
homeomorphism h defined on a neighborhood U of 0 in R™ such that

B (6(z,)) = o PIOR(z2)
for all z € U and t € J, with ¢(z,t) € U, where 0 € J, is an interval.

For nonhyperbolic equilibria we have the following center manifold theorem
for flows [108].

Theorem 2.5.7. Let xy = 0 be an equilibrium of a C"-vector field (2.5.3) on
R™. Divide the spectrum of Dg(0) into three parts os, oy, 0. such that ®X < 0; >
0;=0 if X € 04;04;0., respectively. Let the generalized eigenspaces of o, 0,
oc be E°, E*, E°, respectively. Then there are C"-smooth manifolds: the stable
WS¢, the unstable W§', the center W§ tangent at 0 to E°, E*, E¢, respectively.
These manifolds are invariant for the flow of (2.5.3), i.e. ¢y (W) C W5™“
for any t € R. The stable and unstable ones are unique, but the center one need
not be. In addition, when g is embedded into a C"-smooth family of vector fields
ge with go = g, then these invariant manifolds are C"-smooth also with respect
to €.

Under the assumptions of Theorem 2.5.7 near zp = 0 we can write (2.5.3)
in the form .
Tg = Asxs + gs(xsa Ty Ley 5) 5
Ty = ATy + gu(xsa Ly Ly 5) ) (254)
T = Acws + gc(x87 Ty, Le,y 5) )

where Ag.q.c := Dg(0)/E%"° and %s.;c € Usg.y;e for open neighborhoods Us,y.c
of 0 in E*"€ respectively. Here we suppose that (2.5.3) is embedded into a
CT-smooth family. So g¢; are CT-smooth satisfying ¢;(0,0,0,0) = 0 and
D4, 91(0,0,0,0) = 0 for j,k = s,u,c. According to Theorem 2.5.7, the local
center manifold W, _ near (0,0,0) of (2.5.4) is a graph

choc,s = {(hs(wc,€), hulwe, €),2c) | e € U}

for hg.,, € C" (U, x V, E5") and V is an open neighborhood of € = 0. Moreover,
it holds hs.,(0,0) = 0 and Dy_hs.,(0,0) = 0. The reduced equation is

j"C = AC:ES + gC(hS(zC7 6)7 hu(xC3 E)’ xc’ 5) ) (2'5'5)

which locally determines the dynamics of (2.5.4), i.e. Wy . _ contains all solutions
of (2.5.4) staying in Usx U, x U, for all t € R. In particular periodics, homoclinics
and heteroclinics of (2.5.4) near (0,0, 0) solve (2.5.5).
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Now suppose that (2.5.3) is invariant under a linear invertible mapping
S e L(R™), ie.
Sg(x) = g(Sx)
for all € R™. Then the uniqueness of the Cauchy problem (2.5.3) implies
Sé(z,t) = ¢(Sz,t) for any z € R™ ¢t € R. If 0 is an equilibrium of (2.5.3)
then SDg(0) = Dg(0)S and SE®*° = Es"¢. We have the following result [121,
Theorem 1.10].

Theorem 2.5.8. Suppose S. := S/E° is unitary, i.e. |Scxe| = |x.| for any
x. € E€. Then the local center manifold can be chosen invariant under S.

More concretely, let Sy, := S/E%" and suppose

Ssgs(x& Loy T,y 5) = gs(SsiEs, SuTu, Sete, 5) s
Sugu(xsa Loy Ty E) = gu(Ssxs; Suxu; SC.’L‘C, 5) ,
chc(xsv Lyy Ley E) = QC(SSCES, Suxua Scmm 5)
for any @s..c € Us.ye and € small. Then the functions hg(zc,€), hy(z.,€) can
be chosen so that Sshs(ze, ) = hs(Scxe,e) and Syhy(ze,€) = hy(Sexe, €) for
any x. € U, and € small. Then we have
SC (ACxS Jr gc(hs(xc7 6)7 hu(xc, 6)7 :Llc, 6))
= AcScxs + gc(hs(scxw 5)7 hu(Scxca 5)7 Scxm 5) .

So the reduced equation is invariant with respect to S..

2.6 Center Manifolds for Infinite Dimensions

The center manifold theorem for flows is extended to infinite dimensional dif-
ferential equations [190,191] as follows. Let X, Y and Z be Banach spaces,
with X continuously embedded in Y, and Y continuously embedded in Z. Let
Ae L(X,Z) and h € C*(X xR™Y), k > 1, m > 1 with h(0,0) = 0 and
D,h(0,0) = 0. We consider differential equations of the form

&= Az + h(x,¢). (2.6.1)

By a solution of (2.6.1) we mean a continuous function z : J — X, where J
is an open interval, such that x : J — Z is continuously differentiable and
&(t) = Azx(t) + h(z(t),e) holds on J. We need the following definition.

Definition 2.6.1. Let E and F' be Banach spaces, kK € N and > 0. Then we
define

CFE,F):= {w € C*(E,F) | sup ||D'w(x)|| < o0, 0< j < k’} )
zeEE

BC"(R,E) := {w € C(R,E) | ||Jwll, := sup e " w(t)| g < oo
teR
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Now concerning A we suppose the following hypothesis.
(H) There exists a continuous projection 7. € L(Z, X) onto a finite dimen-
sional subspace Z. = X. C X such that
Arex = Az, Vre X,
and such that if we set
Zn=1-7.)2Z, Xp=0-7m)X, YV=O0-7m)Y,
Ac:=A/X. € L(X.), Ap:=A/Xp€ L(Xy,Zn),
then the following hold
(i) o(Ae) CaR.
(ii) There exists a § > 0 such that for each n € [0,5) and for each f €

BC"(R,Y}) the linear problem &, = Apzj, + f(t) has a unique solution
ry € BON(R, Xy,) satisfying ||z, < ~v(n)||fl, for a continuous function

~:[0,08) — [0, 00).
The next result generalize Theorem 2.5.7 to infinite dimensions.
Theorem 2.6.2. There are open neighborhoods Q C X, U C R™ of origins
and a mapping ¢ € CF (X. x R™, X},) with 1(0,0) = 0 and D, 1(0,0) = 0
such that for any e € U the following properties hold:

(i) If T, : J — X, is a solution of the reduced equation
j7c - Acxc + 7Tch (xc + 1/)(17c7 5)7 5) (262)
such that T(t) = Tc(t) + Y(Tc(t),e) € Q forallt € J, then 2 : J — X is
a solution of (2.6.1).

(i) If T : R — X is a solution of (2.6.1) such that T(t) € Q for allt € R,
then (I —m.) 2(t) = Y(m.2(t),e), Vt € R and 7.z : R — X, is a solution
of (2.6.2).
Now we generalize Theorem 2.5.8. Let I' € L(Z) N L(Y) N L(X) be a group
of linear bounded operators such that

SA=AS, Sh(z,e) =h(Sz,¢)

forany x € X, e € R™, S € I'. Then the group I' leaves X, invariant. Supposing
that S € T" are unitary, the function 1 of Theorem 2.6.2 satisfies

Stp(xe,e) = Y(Sxe, €)

for any x. € X, € € U, S € T'. This means that the reduced equation (2.6.2) is
invariant under the action I" on X..

A similar result holds when (2.6.1) is R-reversible with respect to a symmetry
Re L(Z)NL(Y)N L(X):

RA=—-AR, Rh(z,e)=—h(Rx,¢)

for any x € X, e € R™. If R is unitary then the function ¢ of Theorem 2.6.2
satisfies Rip(xc,e) = Y(Rx,, ) for any z. € X, € € U, and the reduced equation
(2.6.2) is R.-reversible with R., the restriction of R to X,.



Chapter 3

Bifurcation of Periodic
Solutions

3.1 Bifurcation of Periodics from Homoclinics I

3.1.1 Discontinuous O.D.Eqns

We already know from Introduction and Sections 2.5.2, 2.5.3 that it is possible
to show chaos for smooth systems such as

&+ h(z, 1) + pd = p2v(t) (3.1.1)

under certain conditions for h, 1(¢) and small p; 5. In particular, then (3.1.1) has
an infinite number of subharmonics. The purpose of this section is to show that
even in discontinuous perturbations there are still infinitely many subharmonics.
This is our first step to show chaos for discontinuous differential equations. So
in this section we study the existence of subharmonic and bounded solutions
on R for ordinary differential equations with discontinuous perturbations. Such
equations appear in nonlinear mechanical systems [45, 98] like the following
problem: a dry friction force acting on a moving particle due to its contact to a
wall has in certain situation the form pu(go(#)+sgn &), where x is a displacement
from the rest, & is the velocity, p is a positive constant, gy is a non—negative
bounded continuous function, and sgnr = r/|r| for r € R\ {0}, see [64, 123].
So dry friction is modeled by Coulomb’s friction law [98, p. 7] expressed with
the discontinuous function sgnr. Including also viscous damping, restoring and
external forces, the following equation is studied (see Fig.3.1)

&4 h(x, &) + pysgnd = usp(t), (3.1.2)

where h, 1) are continuous and pp, po are parameters. We assume in this section
that g1, pe are small and 1 is periodic. Equation (3.1.2) is a discontinuous anal-
ogy of (3.1.1). Since (3.1.2) is discontinuous, by using the multivalued mapping

M. Feckan, Topological Degree Approach to Bifurcation Problems, 23—119. 23
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Figure 3.1: A moving block on a wall under a force

(2.4.1), (3.1.2) is rewritten as a differential inclusion
&+ h(z, &) — potp(t) € —pSgn .

To deal with much more general equations like (3.1.2), we consider differential
inclusions which take the following form

k
#t) € Fe) + 3 pufie,mt) ac.on R (313)
i=1
withx € R, u € R*, = (uy,--- , pux). We mean by a solution of any differential

inclusion in this book a function which is absolute continuous and satisfying that
differential inclusion almost everywhere. Since we are studying bifurcation from
homoclinics, we set the following assumptions about (3.1.3):

(i) f:R™ — R" is C?-smooth and f; : R* x RF x R — 28"\ {},i=1,--- |k
are upper—semicontinuous with compact and convex values.

(i1) f(0) = 0 and the eigenvalues of D f(0) lie off the imaginary axis.

(iii) The unperturbed equation has a homoclinic solution. That is, there exists a
differentiable function ¢ — «(t) such that lim;_, 4o ¥(t) = lim;—, o y(t) =

0 and (t) = f(y(t))-
(IV) fl(xvﬂat+2) - fz(x,ﬂ,t) for ¢ S R, 1= 17 ,k'

Under the above assumptions, we find conditions ensuring the existence of
infinitely many subharmonics of (3.1.3) with the periods tending to infinity and
accumulating on «. Since our system is discontinuous, we can not apply the
classical dynamical system approach based on the Smale-Birkhoff Homoclinic
Theorem 2.5.4. We need a different approach. Proofs of results of this section
are based on a method of Lyapunov—Schmidt decomposition, which is developed
in Subsection 3.1.2, together with application of a theory of generalized Leray—
Schauder degree for multivalued mappings, which is done in Subsection 3.1.3.
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Let us note that periodic and almost periodic solutions to dry friction
problems are also investigated in [50,59-63]. The numerical analysis is given
in [12,164,165] for a mechanical model of a friction oscillator with simultaneous
self and external excitation. These papers [163-165] present a nice introduction
to the phenomenon of dry friction as well. Finally similar equations also appear
in electrical engineering (see [6, Chap. III]), related problems are studied in
control systems (see [172]) as well, and dry friction problems were investigated
already in [168,169].

3.1.2 The Linearized Equation

Since we study bifurcation for (3 1.3), we begin by considering its unperturbed
equation with p; =0,7i=1,--- ,k:

z = f(x). (3.1.4)

We set d; = dim W and d, = dim W' for the stable and unstable manifolds
W and W', respectively, of the hyperbolic equilibrium 2 = 0 of (3.1.4). Clearly
v € W§NW{. By the variational equation of (3.1.4) along v we mean the linear

differential equation
u(t) = Df(y(t)u(t). (3.1.5)

Observe that as t — +o00, Df(y(t)) — Df(0) in exponential rates [68], and
Df(0) is a hyperbolic matrix. Thus, the following result yields two solutions for
(3.1.5) — one solution for ¢ > 0 and one for ¢ < 0 [106].

Lemma 3.1.1. Let t — A(t) € L(R™) be a matriz valued function continuous
on [0,00) and suppose there exists a constant matriz Ay € L(R™) and a scalar
a > 0 such that sup,q |A(t) — Agle® < oo. Then there exists a fundamental

solution U of the differential equation i = A(t)z such that 75lim U(t)e~t4o =T,

Proof. Let P~ AgP = J for a regular matrix P and J be the Jordan form of Ag
with block diagonal form J = diag (J1, Ja2, -+ , J;-). The order of J; is k; and the
corresponding eigenvalue is ;. We suppose that ®\; < R\ 1. Let y := P~ 'z
and B(t) := P71 A(t)P. Then the differential equation i = A(t)z becomes

y=Bt)yy=Jy+ (B(t)—J)y. (3.1.6)
We construct solutions to each Jordan block. So we fix a block .J; and set
pi i=ki+ka+---+k;_1. By defining ¢; so that R\, 1 < FA; and A, = RN,
we decompose '’ as follows
Uy4(t) := diag (e“l,~ N | ,0)
Us;(t) := diag (O7 e, 0, eMai e“T) )
We can choice K > 0 and b, 0 < b < a/2 such that [68]

U] < K et for t>0,

3.1.7
Uss(1)] < K et for t<0. ( )
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Let tg > 0 and consider the Banach space
Ci o= {y € C([t0,00). R™) | [ly] := sup [y(t)] PNV < “} |
t>to

Now we consider a linear operator T; : C; — C; given by

t o)
Tiy(t) := /Uu(t —s)(B(s) = J)y(s) ds — /UQi(t —s)(B(s) = J)y(s) ds .
to t
It is well defined since we easily derive |T;y(t)| < f_—fgb e(RX=0)t 14| for any ¢ > to
and y € C;, where K := Ksup,s|B(t) — J|e®. Hence ||Tj|| < 25 e2bt,
So taking to = max{W,O}, we get ||T;]] < 1/2. Let ey be the kth
column of the n x n identity matrix. Since for each j € {1,2,--- ,k;}, it holds

e'’e,, 1 € C; we see that for each j € {1,2,--- ,k;} and y € C;, system (3.1.6)
has the form

y=eep i+ Ty, (3.1.8)
But T; : C; — C; is a linear contraction with a constant 1/2, so (3.1.8) has a

unique solution y; € C; such that

2K
e(?R)\i,—b)t

= 1l

By defining the matrix Y;(¢) of the order n x k; with y;(¢) in column j, we obtain

where Fj(t) is the n x k;-matrix with e”i* in rows p; + 1 through p; + k; and
all other rows zero. Let Ij, «r, be the identity matrix of order k; x k;. Then
lim; o Y;(t) e~ /it = G; and G; is the matrix of order n x k; with I, «z, in rows
p; + 1 through p; 4+ k; and all other rows zero. This construction is done for the
block J;. To get the result, we take the n x n matrix Y (¢) with Y;(¢) in columns
p; + 1 through p; + k; for i = 1,2,...,7. So lim;_., Y (t)e~’* = L. Finally, by

putting U(t) = PY (t)P~! we arrive at U(t) = A(t)U(t) satisfying

U(t)e ™t 5T as t— oo.

The proof is finished. O

Using Lemma 3.1.1, the following result expresses asymptotic behavior of
(3.1.5) (see [90,106]).
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Theorem 3.1.2. Let I, I, denote the identity matrices of order dg, d, respec-
tively. There exists a fundamental solution U for (3.1.5) along with a
non—singular matriz C, constants M > 0, Ky > 0 and four projections Pk,
Psy, Pus, Py such that Psg + Pgy + Pus + Puy =1 and that the following hold:

(i) |U(t)(Pss + Pus)U(s) 7Y < Kge*ME=8 for0 < s <t
(i3) |U(t)(Psy + Puu)U ()71 < Koe*ME=5) for 0 <t <s
(iii) |U(t)(Pss + Po)U(s) 7' < Kge*ME=9) fort <s<0

(1) |U(t)(Pus + Puu)U(s) 71 < Koe?ME=) for s <t <0

. o L o0\ .
(v) tllglooU(t)(PserPus)U(t) C’< 5 0 )C !
(vi) lim U(t)(Pay + P )U(t)10< 00 >01
Mo su uw 0 I,
(i) lm_U(1)(Pas + Pu)U (1) = c( 8 H(i )c—l
(viii) | tim_U(t)(Pas + Pu)U(0) ™" = c( o )c—l

Also, there exists an integer d with rank Pss = rank Py, = d.

Proof. From Lemma 3.1.1 there exist two fundamental solutions Uy for (3.1.5)
such that
Jim Us(t)e PO =1, (3.1.9)
Let C be a matrix such that J = C~!Df(0)C is in Jordan form with J =
< {)1 5) > where the eigenvalues of J; satisfy R); < 0 while those of Jy
2
satisfy RA; > 0. If U (t) := U (t)C, then by (3.1.9), U (t) are two fundamental
solutions for (3.1.5) satisfying

im U (t) et =C. (3.1.10)
Since these are both fundamental solutions we can write Uy (t) = U_(¢)R for

some constant matrix R. We now operate on R by means of elementary column
operations. The objective is to obtain

Up()Q=U-()R

with @ upper-triangular and R such that the first non-zero entry in each column
is one with each column-leading one in a different row.
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Suppose we have reached the point where the transformed R has the follow-
ing property: there exist distinct integers ji, jo,...,js—1 such that

Tij, =0 ifi <k,
Tkjkzlv
rie =0 fOI‘lSZ.<Sfl, k’¢{j1,j2,...,js_1}.

In row s pick the minimum js ¢ {ji1,...,7s—1} such that py;, # 0. Such a j,
must exist as R is non-singular. Now divide column js by r,;, so now r; = 1.
Next, use column operations to get rs; = 0 for j ¢ {j1,j2,...,js}. Notice we
need operate only on columns to the right of column js.

Continuing this process through s = n yields a non-singular, upper triangular
constant matrix @ such that U, (t)Q = U_(t)R where R has the property that
given j, 1 < j < n, there exists o(j) defined by j,(;) = i such that (i) # o(j)
for i # j, i = 0 for i < o(j), and 74(;) ; = 1.

Define U(t) = U+ (t)Q = U—_(t)R and define four projection matrices with
all zero entries except as follows:

(Pss)i'i =1 if 4 < ds and O'(Z) >
(Psu)n =1 if i > dg and O'(Z) > dg,
(Puu)u =1 if i > dg and U(’L) <
Since @ is upper triangular we can write
Q11 Q12 ) -1 ( Q' —Q1' Q120 )
= d = z
@ ( 0 Qax o @ 0 Q'

where Q11 is a dg X ds submatrix. We also have

I, O
PSS+PUS(O O>‘

For t > 0 and s > 0, these results yield

U(t)(Pss + PMS)U(5)71 =Us(t)Q(Pss + PuS)Q71U+<3)71

_ et I, — b et 0 s _
=U+(t)e tJ( 0 et )( 0 QlSsz )( 0 o5k )e‘JUJr(S) '

= wame ] (1 TR e

The expressions in square brackets are bounded for ¢ > 0, s > 0. We can
choose K7 > 0 and M > 0 such that ’e(t_s)‘h’ < Kqe2M(t=s) — [ ¢2M(s—1)
when ¢t — s > 0. In addition, for t > 0 we can find K5 such that ’e“l‘ <
Kye2Mt and ‘e_”?’ < Kye Mt < Ky Mt This proves (i). Setting t = s in
the preceding equation and taking the limit yields (v). Parts (ii) and (vi) follows

in a similar manner using
0 O
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We now turn to (iii). If we interchange columns of R so that column j moves
to column o(j) the result is a matrix with zeros above the diagonal. In terms
of matrices there exists W such that R = RW is lower-triangular. The matrix
Py + Py, consists of ones on the diagonal precisely when o(j) > ds. This means
that W1 ( Py, + Py, )W = ( 8 HO )

U
For t <0 and s < 0, combining these results yield

U(t)(Pas+ Pa)U(s) 1= [U_(t) 7] e“fz( i H‘i )é—le—sJ [ U_(s)"!] .

Parts (iii) and (vii) follow from this; a similar argument yields (iv) and (viii). O

In the language of exponential dichotomies we see that Theorem 3.1.2 pro-
vides a two-sided exponential dichotomy. For ¢ — —oo an exponential dichotomy
is given by the fundamental solution U and the projection P, + P,, while for
t — +oo such is given by U and Pss + Ps.

Let u; denote column j of U and assume these are numbered so that

I; 04 O 04 0q4 O
P = 0g 04 O ) Py = 0q Iy O
0 0 0 0 0 0

Here, I; denotes the d x d identity matrix and 04 denotes the d x d zero matrix.
Foreachj =1, --- ,n,let u]J- be the jth column of the matrixU+ := U~*, which
is a fundamental solution of the adjoint linear equation u(t) = —D f(y(¢))*u(t)
of (3.1.5). In general we always assume < uqy, 7 ># 0.

We use a functional-analytic method, so we fix m € N and define the follow-
ing Banach spaces [199]:

Zm = C([-m,m],R"), ZP ={z2€ Z, : z(—m)=2(m)},
Yy = L™ ([-m,m] ,R")
with the maximum norm ||z||,, := %nax | |z(t)| for Z,,, respectively L>° norm
te[—m,m
|2|m = €8S SUPye(_yp,,m]|2(t)], for Yi,. Integration of the inequalities in Theorem

3.1.2 yields the following result.

Theorem 3.1.3. There exists a constant A > 0 such that for any m > 0 and
any z € Yy, the following hold:

(i) /0 |U(t)(Pss + Pus)U(s) '2(s)|ds < Alz|,,  fort e [0,m],
(i) /tm |U(t)(Psy + Puu)U(s) " '2(s)|ds < Alz|,,  fort €[0,m],

0
(113) /t |U(t)(Pss + Psu)U(3) " 2(s)|ds < Alz|,  fort € [-m,0],
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(iv) /_ \U(t)(Pys + Puu)U(s) "' 2(8)|ds < Alz|y  fort € [-m,0].

In order to apply the Lyapunov-Schmidt decomposition method, now we
consider the non—homogeneous linear equation

2=Df(y)z+h, (3.1.11)
and we prove a Fredholm-like alternative result for (3.1.11) (see also [140]).

Theorem 3.1.4. Let U, Py, Py, Pus, Puu be as in Theorem 3.1.2. There exist
mg >0, A >0, B> 0 such that for every m > mg, m € N there exists a linear
function Ly, : Y, — R™ with ||PyLo| < Ae™2M™ and with the property that
if h € Yy, satisfies

/ P U ()" h(t) dt 4+ PuyLyh =0
then (3.1.11) has a unique solution in z € ZP, satisfying PssU(0)~12(0) = 0 and
Izllm < B|hlm. Moreover, this solution z depends linearly on h.

Proof. Given h € Y, we use variation of constants to construct the following
two solutions to (3.1.11):

21(t) = U(t) Py + U(t) (Pus + Pu)U(—m) o1

+U(t) /0 (Pas + Pou)U(s) " h(s) ds + U(t) / (Pos + Pua)U(s) " h(s) ds,

—m

22(t) = U(t) Pusba + U(t)(Psu + Puu)U(m)_1<P2
t m
+U() / (Pys + Pus)U(s) " h(s) ds — U(t) / (Pou + Pu)U(s) " h(s) ds
0 ¢
satisfying Py,U(0)~12(0) = 0. Here &1, &, @1, @2 are arbitrary. We consider

z1(t) for t € [—m,0] and z5(t) for ¢ € [0,m]. First we join these solutions at
t = 0: 21(0) = 22(0) which decomposes into the following three equations:

P& — PSUU(m)_lwg +/ PSUU(s)_lh(s) ds =0, (3.1.12)
0
0
PouU(=m) o1 +/ PusU(s)~""h(s) ds — Pasta = 0, (3.1.13)

PuuU(—m) o1 — P U(m) o +/ P U(s) h(s)ds=0. (3.1.14)
—m

Now we join z1(t), z2(t) at the endpoints. Solving (3.1.12), (3.1.13) for &,
&, respectively, then substituting these formulas for &, & into the equation
z1(—m) = z5(m) and rearranging terms, we get the equation

[ e R R
(3.1.15)
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where the matrix C is taken from Theorem 3.1.2 and
Rafin) =0 UCm) (P + Pu)0-m) = (0 ) e
U Pu(-m) ',
Ro(m) —=C-! [—U(m)(Psu 4 P )U(m) 4 C ( 8 0 ) c-1
+U<—m>Pqu<m>-1} c,

0
CU(m,h) = U(—m)/ (Pys + Ps)U(s) " h(s) ds

—m

U (m) / " (P Pu)U ()~ h(s) ds

m 0
+U(—m)/0 Pqu(s)—lh(s)ds+U(m)/_ PsU(s) " h(s)ds.

Using Theorem 3.1.2 we see that each |R;(m)| — 0 as m — oo and from
Theorem 3.1.3 we get |¥(m, h)| = |h|,»O(1). Writing

1 | wm 1, _ |0 | wm
C 501|:0:|a C Y2 = |:’U,2:|’ u|:u2:|7

where uy, uy are of order dg, d,, respectively, (3.1.15) becomes

{H+R1(m)(% ) >R2(m)< ) H‘i ﬂu\I!(m,h).

Since |R;(m)| — 0 as m — o0, there exists mg > 0 so that the coefficient
matrix of v in the preceding equation is invertible whenever m > mg. In this
case the equation can be solved for uw which leads to functions ¢;(m,h) such
that |¢;| = |h|mO (1). Then the remaining condition (3.1.14) takes the form

/ P, U(s)"'h(s)ds + PuyLiymh =0,
where L,,h = U(—m) " tp1(m, h) — U(m)~Lpa(m, h). It follows from the prop-
erties of the ;s and Theorem 3.1.2 that || Py, Ly k|| = |hlmO (e*QMm). O

To formalize the preceding result we define a closed linear subspace ?m cYn
by
Vi = {z €Yy, : / P U(t) " 2(t) dt + PuyLip,z = 0}

—m

and then define a variation of constants map K, : f’m — Z,, by taking K, (h)
to be the solution in ZP to (3.1.11) from Theorem 3.1.4. The norm | K,,||
is uniformly bounded with respect to m, and according to (3.1.11), we have
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moreover that K, maps any bounded subset of Y, into a bounded one of the
Sobolev space W12([—m, m], R"™) which is compactly embedded into Z,, [199].
Hence K,, is a “nice” operator, i.e. it is a compact linear operator. To use the
Lyapunov-Schmidt decomposition in the next subsection, which is now based
on variation of constants for (3.1.11) from Theorem 3.1.4, we need the following
result.

Lemma 3.1.5. There exist A > 0, mg > 0 and for each m > mg, m € N
a projection I, : Y,, — Y, such that

(i) L. || < A for all m > mg,
(ii) R(I—1,,) = Y, .

Proof. Let u; denote column j of U and let ¢ : R — R be a smooth positive
function such that [ ¢(t)dt = 2 and sup, |¢(t)u;(t)| < A for all j and some

A>0. Choose m>0 so that f:nm @(t) dt>1 when m>mg and then define ¢,,(t) =
o(t) /me ¢(t) dt. Note that we have [ ¢.,(t)dt = 1 and sup, |¢n, (t)u;(t)] <
A when m > mg. Now define a d x d matrix A(m) = [a;;(m)] by

We have |a;;(m)| = O (e 2M™). Given z € Y, we define p(z) € R? as

pi(z) = /m <ui(t),z(t) > dt + (Lz), , 1<i<d.

—m

So that

/_m P Ut) " 2(t) dt + PyuLimz = (p1(2), -+ ,pa(2),0,---,0).

By increasing my if necessary we can assume |[|A(m)| < 1/2 for m > mg so
then I+ A(m) is invertible and we can write o = [[+ A(m)]~!p(z). Let & € R
denote (a1, ,aq,0,--+,0) and define

(Inz) (1) = ¢m (U (t) Puud -
It is straight—forward to verify that II,,, has the required properties. O

3.1.3 Subharmonics for Regular Periodic Perturbations

Our aim is to find subharmonic solutions to (3.1.3) of very large periods which
are close to . So we look for solutions to (3.1.3) in ZP, by rewriting (3.1.3) as
an abstract operator inclusion (3.1.20). We use the Lyapunov-Schmidt method
along with the Leray-Schauder degree for inclusions to handle that abstract
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operator inclusion. To realize this functional-analytic approach, first, we define
the function b : R?~! x (0,00) — R"™ by

(/B, ) JF Z /81 uz+d - ui-&-d(r)) s

where 3 = (61, - ,B4—1). Note that
b(3,7)| = O(e™™7) (3.1.16)

uniformly with respect to 8 from any bounded subset of R?~!. Next, in (3.1.3)
we now make the change of variable p < s?u and

d—1
1
where 1 > s >0, o, 8; € R, m € Z;, S = [1/s] and [5] is the integer part of §.

The function b is constructed so that if z € Z? mig then z € zZP m+is- The differ-
ential inclusion for z is

2(t) = Df(y(t)z(t) € gm,s(2(t), o, B, p,t) ae.on [-m—S,m+S],

where
gm,s(xvavﬂnu,t):
veER" v e S%{f(sgx—i-v( )+s Z Bitita(t) +2(m+S) b(sB,m+ S)t )

d—1
~FO8) = X friiralt) = aitysyb(s8,m + ) = DI(0)s%r
k d—1
+ '21 1 fj (3233 +(t)+s 21 Bittial(t )+2(m+S b(sB,m + S)t, s*u, t+a) }
J= 1=

Using gy,,s we define a multivalued mapping
Gm.s : Zmis X R x R x RF — 9¥m+s
by the formula

Gm,s(zvaaﬂnu) =
{h €Yimts ¢ h(t) € gms(2(t), o, B, 1, t) ae.on [-m—S,m+ S]} ;

so the multivalued equation for z can be written
5= Df(1)2 € Gos(z0, B, 11). (3.1.17)

Since gms : R x R x RI™1 x RF x R — 28" \ {§)} is upper-semicontinuous
with compact and convex values, according to Theorem 2.4.3, each of these
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sets G s(2, @, 3, 1) is non—empty. Moreover, these sets Gy, s(z, @, 3, 1) are all
closed convex and bounded in Y,,+5 C L? ([-m — S,m + S],R"™). So by The-
orem 2.1.1, all Gy, (2,0, 3, 11) are weakly compact in the Hilbert space L2
([-m —S,m+ S],R™).

We can not solve directly (3.1.17), so first of all, we insert it to the homotopy

Gm,s,k(za «, ﬁa ,u) =
{h € Vinrs : h(t) € gmsr(2(t), @, B, i, t) ace. on [—m — S,m + S}} ,

for X € [0, 1], where

Ims A (T, 0, B, 1, t)= {v €ER™:
d—1

ve 3{7 (4900 ts T frusalt)+ortesyblsh,m+ 5)t) — F(1(1)
d—1 B

=5 3 itisalt) — tesyb(s,m + 8) = Df(1(1)s% |
:k -

AL i3 (52 (0) 5 3 Pkt ateyb(s8,m + )t 5%t 4 )
Jj= i=

ij=1

2 T 08, D200 a0 vy )+~ N) 3 (v(t),O,Ha)} .

Now based on Theorem 3.1.4 and Lemma 3.1.5, we apply the Lyapunov-Schmidt
decomposition to (3.1.17) and put it also in the addition homotopy in the fol-
lowing way

0e (z — Fosa(z, 0,8, 1), Bis A (%, Oz,ﬁ,u)), A€0,1], (3.1.18)
where
(Fm,s,x(aoaﬁ,u), Binsa(2, %[%u))
~ { (K50 =T 9)h, Linysh) + 1 € Gnon(z00,8,10) }
and

m~+S
Lm+SU = / PuuU(t)_lv(t) dt+PuuLm+S’U.

—m—S

To solve (3.1.18), we introduce the new homotopy
0e (z — A sa(z,a, B, 1), Bm,syA(z,a,@u)), Ael0,1]. (3.1.19)

Since || PyyLimys|| = O(e=2M(m+59)) we consider the decomposition and homo-

topy
(Bml,s,A + )\BmZ,s,)\)('za Q, 57 p,) ) A€ [07 1] )
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where

(Bml,s,)\ + )\BmQ,s,)\) (Z, a, 3, ,u) = {Lml,sh + /\LmQ,sh the Gm,s,)\(za a, B, M)} )

and
m+S
L1 ,sv = / P, Ut) M o(t)dt, Lipasv = PuLpisv.
—m—S
Summarizing we obtain that the solvability of (3.1.18-3.1.19) can be replaced
by the solvability of the following multivalued equation

0¢ Hm,s(zaaaﬂa,Uﬂ)‘) =

3.1.20
(Z - )‘Fm,s,)\(z> «, ﬁ7 M)u (Bml,s,)\ + )\Bm2,s,)\)(z7 «, 57 M)) ) ( )
when Hy, g Zmgs X R x R x RE x [0, 1] — 2Zm+s ¥R\ {1} while 1 > s > 0
is sufficiently small and fixed, and A € [0,1] is a homotopy parameter. Since
clearly the multivalued mapping

9m,s,- * [O,l} x R" XRXRd_l XRk XR—)QRH\{@}

is upper—semicontinuous with compact and convex values, using standard ar-
guments based on Mazur’s Theorem 2.1.2 (see arguments below (3.1.21)), the
mapping H,, s is also upper-semicontinuous. Moreover, according to the com-
pactness of Ky, [z o wra—Hpm s has compact convex values and maps bounded
sets into relatively compact ones. Hence topological degree methods of Section
2.4.3 can be applied to (3.1.20). Furthermore, ranges of H,, s are bounded pro-
vided that z, 8, p are bounded, s > 0 is small fixed and m € Z;, a € R,
A € [0,1] are arbitrary.

To state the main result, we introduce a multivalued Melnikov mapping for
our problem

d
MN ZRd—)2]R \{@}7 Mu,:<Mu,1;"' ?M}Ld)

loc

Mﬂl(oz,ﬁ){ [7 (h(s),ui(s))ds : h € LE (R,R") satisfying a.e. on R

M€ (35 80D TG0 w0 vass (OF 3 s £50(0), 0,0+ a))} .

7,7=1
(3.1.21)
Here L% (R,R"):=NyenL?(Fm,m],R™). The mapping M,, is again upper—
semicontinuous with compact convex values and maps bounded sets into
bounded ones. The boundedness is clear, so we show the upper—semicontinuity:

Let

Hp — Ho, (a]ﬂﬂp) - (Oéo,ﬁo), pE Na h[) S L120C(Ra Rn)
1

hp(t) € | 3 ,dz_:l5pi5ij2f(’Y(t))(Ud+z‘(f)»Ud+j(t)) + é 1 f5((£), 0, + ap))

)=
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a.e. on R, and

/<hp<s>,l<>>ds~MoZeR Vi 1,2, d.

— 0o

Since sup |hp|oo < 00, where |- |o is the norm on the Banach space L (R, R"™),
peN

the sequence {h,}5° is bounded in the Hilbert space L?([—1,],R™) for any | € N.

From Theorem 2.1.1 we can assume, by using the Cantor diagonal procedure and

by passing to a subsequence of the original one, that there is an hg € LZ (R, R")

such that {h,}{° tends weakly to hg in L?([—1,1],R™) for any | € N. Next fix [.

By Mazur’s Theorem 2.1.2 we take h,, € con [{hy, hyi1, - }] such that h, — hq
in L?([—,1],R™) and so by passing to a subsequence that h,, — ho a.e. on

[—1,1]. Let us fix for a while t € [—[,[] such that ﬁpk (t) — ho(t) and the above
assumptions hold. Let O; C R™ be an open convex neighborhood of

d—1

53 Boiios D F(3(0) w0, +Zuojfj £),0,t+ap).

3,j=1

By assumption (i) of Subsection 3.1.1, there is an pg € N such that

d—1
% Z BpiBps D* F(7(£)) (wayi(t), war s () + Zupjf] ),0,t+ ) C Oy

i,7=1

for any p > po. Hence h,(t) € O, Vp > po, and so Epk (t) € Oy for any pr > po.
Consequently, we obtain hg(t) € O;. By assumption (i) of Subsection 3.1.1 and
taking O, arbitrarily close to I't, we obtain ho(t) € T'y. Thus we have

e (; 52 s D20 a0, a5 (6) + 32 o 51010, + ao>>
a.e on R. Finally, clearly
/OO (ho(s),ui(s))ds = My;, Yi=1,2,---.d.
The upper-semicontinuity of M, follows from Theorem 2.4.2.
Let §F-1 = {b e RF - |b| = 1} be the (k — 1)-dimensional sphere. We are
ready to prove the main theorems of this section [73].

Theorem 3.1.6. Let d > 1. If there is a non—empty open bounded set B C R?
and pig € S*=1 such that

(i) 0 ¢ My, (OB)
(“) deg(M#m Bvo) 7é 0
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/

0 J2%0) S U2 C Sk71

Figure 3.2: The wedge-shaped region R

Then there is a constant K > 0 and a wedge-shaped region in R¥ for p of the
form (see Fig.3.2)

R = {52/] : s> 0, respectively fi, is from an open small connected

neighborhood Uy, respectively Uy C S¥~1, of 0 € R, respectively of uo}

such that for any p € R of the form p = 24,0 < s € Uy, i € Us, the
differential inclusion (3.1.3) possesses a subharmonic solution x.,, of period 2m
for any m € N, m > [1/s] satisfying, according to the change of variable below
(3.1.16),
sup | (t) = Y(t — am)| < Ks,
—m<t<m

where ., € R and |ay,| < K.

Proof. We need to solve (3.1.17), which is inserted into the homotopy (3.1.20).
To handle (3.1.20), we use the following Lemmas.

Lemma 3.1.7. The above condition (i) implies for any A > 0 the existence of
constants 0 > 0, 1 > sg > 0 such that

|Bm17s,>\(zvavﬁau)| Z 1)
fO’/’ any 0<s< Sp, M € Z+7 A€ [Oa 1]a ||Z|‘m+5’ < Aa (aaﬁ) € 8B7 ‘M_MO| < d.
Proof. Assume the contrary. So there is an A > 0 and

Sp — 0, myp € Z-i—a >\p — Ao, ||Z;0Hmp+Sp < Aa p €N
tp — to, OB 3 (0, Bp) = (0, 60) € OB,  hy € Gy os,.0, (2py Qs By, )

such that
Lyy1,s,hp =0 as p—oo.

Since sup |hp|oo,m,+5, < 00, where | - |oo m, m € N is the norm on the Banach
peN
space L>°([—m,m],R™), we can assume like above, by using the Cantor diagonal
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procedure, that there is an hg € L2 _(R,R") such that {h,}$° tends weakly to

ho in any [—[,], | € N with respect to the L? norm. Next, again by Mazur’s

Theorem 2.1.2 we can suppose that {h,}7° tends to ho almost everywhere.
Furthermore, clearly the following holds

d—1
1
Jim Gnoa(2,0,8,0) = 5 > BiBiD*F(7) (Wiras ujra) (3.1.22)
i,j=1

uniformly with respect to z, 3 bounded and « € R,m € Z, X\ € [0, 1] arbitrary.
Moreover, by Theorem 3.1.4 and the properties (ii) and (iv) of Theorem 3.1.2,
we have

lim Ly, v = / P, U(t) ( )dt, 1ir(r]1 Lip2,sv =0 (3.1.23)

S—>+ s—U4

uniformly with respect to v bounded and m € Z, arbitrary.
Finally using (3.1.22-3.1.23), we obtain

ho(t) € (3 ) BoiBo; D* £ (7(£)) (a4 (t), a5 (1))

i,7=1

+ Z Mojfj(’Y(t)aO,t-l- Oéo)) a.e.on R,
j=1

and [*°_ P, U(t) " ho(t) dt = 0. This contradicts to (i) of this theorem. O

Using Lemma 3.1.7, the next result follows directly from the construction of
Hy, 5.

Lemma 3.1.8. There are open small connected neighborhoods U CR, Uy C
SE=1 of 0, respectively of o, and a constant K, > 0 such that

0 ¢ Hmys(aﬂv /1'7 )‘)

forany 0 < s €Uy, pe€lUs, A € [0,1], m € Z, where
Q= {(z,a,m € Zmss X RY ¢ [|2]lmrs < K1, (a, §) € B}.

From the homotopy invariance property of the Leray-Schauder topological
degree, by Lemma 3.1.8 for any 0 < s € Uy, u € Ua, m € Z,., we obtain

deg( 7n5( ) Q 0)—deg( ’H'Lé( MOaO)aQ7O)~
Since
Hy (2, a,ﬁ MO, ):( {Lml,sh :h € Yos satisfying a.e. on [—m—S, m+S]

h(t) € (5 Z Bi3 D* f (4(£)) (wari(t), var; (t )HZ poj f5 (Y ()70,t+0<))}>7

1,j=1
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in order to compute deg (Hp (-, t10,0), €2, 0), we take the upper-semicontinuous
homotopy

loc

W) € (5SS BB D2 F (1) (s (6) war s (1) + i poi f5(4(1), 0, + a)) }.

{)\Lml,sh—k(l—/\) [ PLU@) 7 h(t)dt = h € LE (R, R")satisfying a.e. on R

ij=1

Then using (3.1.23), the assumption (ii) of Theorem 3.1.6 as well as formula
(2.2.5) and Lemma 3.1.7, when s is shrunk if necessary, we arrive at

deg (Hmﬁs(',,uo, O),Q,O) = deg(M,,,B,0) #0.

Hence (3.1.20) has a solution in 2 for any 0 < s € Uy, p € Uy, m € Zy and
A =1, where Uy = U N{s € R : |s| < so}. This solution gives a solution of
(3.1.17) according to the definition of (3.1.20). The proof of Theorem 3.1.6 is
completed. O

Now we concentrate on the case d = 1 since it has a specific feature. Then
M, : R — 2%\ {0} has the form

M, (a) = { ffooo<h(s)7uf(s)>ds : he L (R,R);
(3.1.24)

h(t) € ﬁ:l wifi(v(t),0,t +«) ae. on ]R} .

For any A, B C R we set AB :={ab|a € A,b € B}.

Theorem 3.1.9. Let d = 1. If there are constants a < b and pg € S*~1 such
that

MHO (a)M,uo (b) - (_0070)7

then there is a constant K > 0 and a wedge-shaped region in R* for u of the
form

R = { + 52[1 : s > 0 respectively fi, is from an open small connected

neighborhood Uy, respectively Uy C S*~1, of 0 € R, respectively of #0}

such that for any p € R of the form p = +s24,0 < s € Uy, i € Us, the
differential inclusion (3.1.3) possesses a subharmonic solution x.,, of period 2m
for any m € N, m > [1/s] satisfying, according to the change of variable below
(3.1.16),
Sup  |om(t) = y(t — )| < K52,
—m<t<m

where oy, € (a,b).
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Proof. We apply Theorem 3.1.6 with B = (a,b) by considering both M, and
M_,,,. The assumption (i) of Theorem 3.1.6 is clearly satisfied. To prove (ii),
it is enough to consider the case (the remaining one is similar) that M, (a)
contains positive and M, (b) negative numbers, and then to take the homotopy

M () = Ay (0) + (12 (“12 ).
From 0 ¢ M*(b), 0 ¢ M*(a) for any X € [0,1] it follows deg(M,,, (a,b),0) =
deg(M?*, (a,b),0) = deg(M?, (a,b),0) # 0. Similarly for M_,,. O

Remark 3.1.10. The restriction |uo| = 1 is not essential, because of M, in both
(3.1.21)—(3.1.24) is homogeneous with respect to the variables 5 and pu.

Remark 3.1.11. If d = 1, k = 1 and f; is C%-smooth in (3.1.3) then the ex-
istence of a simple root of M;j(a) = 0 implies chaos for such systems by the
Smale-Birkhoff Homoclinic Theorem 2.5.4. This is mentioned above in Chapter
1 (Introduction) and Sections 2.5.3, 3.1.1. In particular, they have subharmonic
solutions of all large periods. But the existence of a simple root «g of M;(a) =0
gives a small 5 > 0 such that a = o — g, b=ay+ 5 satisfy the assumption
of Theorem 3.1.9. Consequently, Theorem 3.1.9 is an extension of the Smale-
Birkhoff Homoclinic Theorem 2.5.4 concerning subharmonics to the multivalued
case (3.1.3) (see also Subsection 4.2.1).

3.1.4 Subharmonics for Singular Periodic Perturbations

Now we directly extend a method of Subsection 3.1.3 to singularly perturbed
differential inclusions of the form

ex(t) € f(x(t)) +eh(x(t),e,t) ae.on R, (3.1.25)
where ¢ # 0 is small, as well as to the modification of (3.1.25) given by
ei(t) € f(x(t)) +e%h(x(t),e,t) ae. on R, (3.1.26)

where € > 0 is small, f has the above properties (i-iii) of Subsection 3.1.1 and
h:R™ xR x R — 28"\ {0} is 2-periodic in ¢ as well as upper-semicontinuous
with compact convex values. We show the existence of 2m—periodic solutions of
(3.1.25)—(3.1.26) for any m € N, not just for large m like for (3.1.3), provided
f, h satisfy additional conditions. We are motivated to study (3.1.25-3.1.26) by
similar results for differential equations with slowly varying coefficients [29, 90].

Searching for periodic solutions of (3.1.25) with periods 2m, m =1,2,--- is
equivalent to finding 2Tmfperiodic solutions of the differential inclusion
z(t) € f(x(t)) £ eh(x(t), £e,+et) ae.on R, &>0. (3.1.27)

Inclusion (3.1.27) has a slowly varying coefficient represented by the term +et.
Now we can apply the procedure of Subsection 3.1.3 to (3.1.27) with the follow-
ing exchanges

m . .
el me —, S<0, meN isarbitrary.
€
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This induces in (3.1.27) the change of variables

d—1 2
z (t + ;2) =(t) +%2(t) + Z€ﬁiuz‘+d(t) + gfmb(g@ g)t’
i=1

where =% <t < Zz and 1 > ¢ > 0, a, ; € R. Then after insertion it into
(3.1.27) the differential inclusion for z is
. m m
2(t) = Df(y(t)2(t) € gme(2(t), o, B, £,t) a.e. on [—6—2, 52]
where

gm,s(xa «, ﬁ? :t7 t) =
-1 )

{v ER" :ve E%{f(e% +(t) + € > Biuiya(t) + 5-b(ef, g)t)
i=1

-1 )
~F(0) ~ & X Priaralt) = 5:0(0, ) — DD |
ih(e% +(t) +e dil Bitita(t) + %b(sﬁ, Bt +e?, £t + a) } .
i=1

Consequently, the formulas (3.1.17)—(3.1.23) can be straightforwardly modified
0 (3.1.27). The multivalued mappings of (3.1.21)—(3.1.24) possess the forms

My :RT 2R\ {0}, My = (Myq, -, Msy)

My (o, 8) = {f_ (s))ds : pe L (R,R™);
p(t) € (5 Zlﬁzﬁ]DQ (v()) (wasi(t), war;(t)) £ h(y(t),0,a)) a.e. on R}7
’ (3.1.28)
and
M: R— 28\ {0}
Q) = = (p(s), ut(s :
M(a) Jooo(p(s),ui(s))ds = p € Li, (R, R); (3.1.29)

p(t) € h(v(t),0,a) a.e. on R} .

Then Theorems 3.1.6-3.1.9 have the following analogies.

Theorem 3.1.12. Let d > 1. If there is a non—empty open bounded set B C R?
and * € {—,+} such that 0 ¢ M,.(0B) and deg(M.,B,0) # 0. Then there is a
constant K > 0 such that for any sufficiently small € # 0 with sgne = *1, the
differential inclusion (3.1.25) possesses a subharmonic solution x,,. of period
2m for any m € N satisfying

t—am
omelt) =7 (F225)| < KV,

where o, € R and |am o] < K.

sup
—m<t<m
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Theorem 3.1.13. Let d=1. If there are constants a < b such that M (a)M (b) C
(—00,0). Then there is a constant K > 0 such that for any sufficiently small
e # 0, the differential inclusion (3.1.25) possesses a subharmonic solution T,
of period 2m for any m € N satisfying

t— m
xm,s(t) -7 (M)‘ S K‘6|7

sup

m<t<m 3

where e € (a,b).
Finally we consider the following differential inclusion equivalent to (3.1.26)
of the form

i(t) € flx(t)) + 2h(x(t),e,et) ae.on R, £>0. (3.1.30)

Now we make in (3.1.30) the change of variables

d—1
w(t+ %) = 7(t) +222(t) + ;sﬁiui+d(t) + 5-b(e, g)t,

where —2 <t < = and 1 > ¢ > 0, a, ; € R. Then the differential inclusion
for z is
m

) ] )

(t) = Df(v(1)2(t) € gme(2(t), @, B,8) ae.on [-—, =

o |3

where
qm,&‘(x7 «, ﬁ7 t) =

d—1
vER™ ;v € E%{f(ﬁm +y(t) + € > Biuipalt) + 5=b(ep, %)t)
i=1
d—1
—f0(0) — e X Bittira(t) = 5330(e6, 2) Df(y(t))e*x
+h(521' +(t) + 5‘12—:1 Bivira(t) + 55 0(ef, )t e, et + a)} .
i=1

We see that the procedure for (3.1.27) can be applied to (3.1.30). Consequently,
we obtain the following result.

Theorem 3.1.14. If either for d > 1, there is a non-empty open bounded set
B C R? such that 0 ¢ M, (0B) and deg(My,B,0) # 0, or for d = 1, there
are constants a < b such that M(a)M(b) C (—00,0). Then there is a constant
K > 0 such that for any sufficiently small € > 0, the differential inclusion
(3.1.26) possesses a subharmonic solution x.,. of period 2m for any m € N
satisfying

sup
—m<t<m

a:m@(t)—v(t_&:%)‘gf(s for d>1 (<Ke* for d=1),

where am € R and |ap, | < K. Moreover, apm ¢ € (a,b) for d=1.
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3.1.5 Subharmonics for Regular Autonomous
Perturbations

In this subsection, we study (3.1.3) when the nonlinearities are independent
of t,ie.,

k
z(t) € fx(t)) + Zuifi(x(t),,u) ae.on R, (3.1.31)

and k£ > 2. So (3.1.31) is autonomous and then a time shifted solution is again
its solution. For this reason, we take a = 0 in Subsection 3.1.3. We know that to
solve the problem of existence of periodic solutions for (3.1.31) near ~ is reduced
to the solvability of multivalued equation (3.1.20) with m € [0, 00). Since we lose
a in (3.1.21-3.1.24) by setting o« = 0, we need to replace it. For this reason, first
of all, we divide the sets {1,--- ,d —1} and {1,--- , k} into two complementary
subsets {ib U ’id1}a {id1+17 T 7id*1} and {jlv te >jk1}7 {jk1+la T 7jk} such
that di; + k1 = d. These subsets may be empty. We put

€= (Birs- s Bia s lgrs - > My, ) € R
T= (:U’jU"' alu’jkl) € RM
p = (Mjs, 4157 1) € R~k
= (ﬂid1+1a"' 7ﬁid,1aﬂjk1+la"' 7p’jk) S Rkil .

>

The projections § — p, & — 7 are denoted by P;, P», respectively, so p =
P10, 7 = Py¢. Instead of (3.1.21-3.1.24), we consider

My : R — 2%\ {0}, My = (Mgy, -, Mpg)

loc

My (€) = {foooo<h(s),uf(s)>ds : he L (R,R");

Bty e (4SS 58,02 FV(0)) (s D) s (8)) + 2 3 £5(1(0),0)) e, onR}.

ij=1
(3.1.32)

Theorem 3.1.15. Let k > ki. Assume the existence of a non-empty open
bounded set B C R? and 0y € R¥~! such that 0 ¢ M, (0B) and deg(Mjy,, B, 0)
# 0. Then there is a constant K > 0, an open bounded neighborhood Us of
(I — P)fy € RI=1=4 and an open bounded region in R¥=* for p of the form

R= {325: s>0, respectively p, is from an open small connected neighborhoods

Ui, respectively Us, of 0 € R, respectively of po = P10y € Rk_kl}

such that for any p € R of the form p = s2p, 0 < s € Uy, p € Us, and any T >
[1/s], there is a (d—1—dy)-parametric family 77, ) € P2(B), p € U such that
the differential inclusion (3.1.31) with p = p, = (52T(T,p,p),p), p € Us possesses
a T—periodic solution xr ) satisfying, according to the change of variable below
(3.1.16),

sup |arp(t) — ()| < Ks for d>1, (< Ks® for d=1).
—T<t<T
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If d =dy + 1 then Us is omitted.

Proof. The proof is the same as for Theorem 3.1.6. The only difference is now
that (3.1.20) has to be solved in z and ¢ € R? while § € R*~! is a parameter.
We note that now o = 0 and m € [0, 00). Hence we have

0€ Hys(2,0,8,p1,A) = Hin 5(2,6,0, ) (3.1.33)
on the set

0= {(z,g) € Zmis X RY : [|2]lmes < K1, € € B}

for a constant K7 > 0. Consequently from the proof of Theorem 3.1.6, (3.1.33),
with A = 1, has a solution in Q for any 0 < s € Uy, 0 € UQ =Us x Uy C
RI-1=d 5 RF=F1 and m € [0, 00), where Uy, respectively U, is an open small
connected neighborhood of 0 € R, respectively of fy € R¥~1. On the other hand,
according to the definition of H,, s, Theorem 3.1.4 and the change of variable
below (3.1.16), any solution of (3.1.33) satisfies the relation PssU(0)~12(0) = 0.
Consequently, solutions are different for different p € Us. O

Remark 3.1.16. For pg = 0 in Theorem 3.1.15 we can take
R={pe RF=F1: p| < 1}

for r1 > 0 sufficiently small. Indeed, since now 0 € Us, by expressing any p € R
in the form p = 25,0 < s € Uy, p € Uy, Theorem 3.1.15 can be applied.
Moreover, there is a sg > 0 such that any p € R does possess the previous form
with s = sp and p € Uy. Consequently, (3.1.31) has in this case a T—periodic
solution for any T' > [1/s¢], i.e., the lower bound of the period T is independent
of € R.

For d = 1, like in Theorem 3.1.9 we can take a symmetric R with respect to
0 € R¥=*1 in Theorem 3.1.15.

3.1.6 Applications to Discontinuous O.D.Eqns

In this subsection we use abstract bifurcation results of the previous Subsections
3.1.3-3.1.5 to study concrete discontinuous differential equations. First of all,
we apply Theorem 3.1.9 to (3.1.2) of the form

&+ g(x) + prsgnd = ugp(t), (3.1.34)

where 12 € R are small parameters, g € C?(R,R), g(0) = 0, ¢’(0) < 0, ¢ €
CY(R,R) and 7 is periodic. We assume the existence of a homoclinic solution w
of & 4 g(x) = 0 such that . liim w(t) = 0 and w(0) > 0 (see Fig. 3.3).

In further calculations we need the following well-known property of w(t).

Lemma 3.1.17. There is a unique tg € R satisfying w(ty) = 0. Consequently,
w(t) >0,Vt <ty and w(t) <0, Vt>t.
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b
(w(t),w(t))
/I
,,,,,,, < x
O

Figure 3.3: The homoclinic structure of & + g(z) =0

Proof. If tg # t; are such that w(tg) = w(ty) = 0, then x((t) = w(2tp — t) and
x1(t) = w(2t; — t) are both solutions of & + g(x) = 0 satisfying

l‘o(to) = w(t0)7 Si'}()(to) = d)(to)

Z‘l(tl) = w(tl), .’i,‘l(tl) = d)(tl) .
Hence ¢ (t) = w(t) = x1(¢) and then

w(2(to —t1) +t) = w(t).
But w can not be periodic. On the other hand, since . liftn w(t) = 0, there is a
—+o0
to such that w(tg) = 0. So there is a unique ¢ty € R such that w(ty) = 0. Since
w(0) > 0, we obtain that w(t) > 0, Vt < tg and w(t) < 0, Vit > to. O
Rewriting (3.1.34) in the form

=y, y=—g(x)—pisgny+ p2(t), (3.1.35)
in the notations of Subsection 3.1.1, we put

flz,y) = (y.—g(x)), fi(z,y,nt) = (0,—Segny)
F(@y,m,t) = (0,9(1), ~v=(w,w),
where Sgnr is defined by (2.4.1). Since n = 2, we have d = 1 and

uy = (0, 0), up = (—w,d).

Since w(0) > 0, Lemma 3.1.17 implies w(tp) > 0. Then easy calculation in
(3.1.24) leads to
o0

M) = ([ asrds— [ ats)as) 4w [ ot +aras

— 00 to —00
= A(a)pz = 2w(to)
with A(a) = ffooo W(s)(s + a)ds. Since A is periodic and C'-smooth, there

are constants m := min A and M := max A. By applying Theorem 3.1.9, we
obtain the following theorem.

to
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Theorem 3.1.18. Assume that A has critical points only at maximums and
minimums. Then there is an open, wedge-shaped subset R of {(p2, 1) : p1,2 €R,
o # 0} with the limits slopes

m M

d
20(t) " 2w(ty)

on which the (3.1.34) has subharmonic solutions with all sufficiently large periods.

Proof. For any (g, 1) € R? such that

2w(t -
g4y =1, p#0, m<(M°)’“<M,
2
M,, does have a simple root. Then the assumptions of Theorem 3.1.9 are satisfied
for a small open interval (a,b) containing this simple root. O

Remark 3.1.19. (a) Since any element (u9, p1) of R satisfies

2w (to)

——— =,
max {[ M|, |m|}

lpa| >

the driving force term in (3.1.34) has to be sufficiently large with respect to the
dry friction force for the applicability of Theorem 3.1.9 to (3.1.34).
(b) If w(0) < 0 then M, () = 2w(to)p1 + Aa)pe.

For more concreteness, we consider the Duffing—type equation
F—x+22% + pysgnd = pgcos t. (3.1.36)

Then w(t) = secht and A(a) = [~ sech s cos (s + a) ds = msech & sin . So
M = —mn = 7msech §, to = 0, w(tg) = 1. Theorem 3.1.18 gives the following

Corollary 3.1.20. Equation (3.1.36) has subharmonic solutions with all suffi-

ciently large periods provided that the parameters uy, po are sufficiently small
satisfying

™

2

Now we apply Theorem 3.1.14 to a modification of (3.1.34) of the form

, P(t) . .
Z+dg(x)+ —=x+nsgni =0, 3.1.37
9(x) + —=d e (3.1.37)
where g € C%(R,R), g(0) = 0, ¢’(0) < 0, § > 0 is a large parameter, ¢ €
C'(R, (0,0)) is periodic and 7 is a constant. Now we assume the existence of a
homoclinic solution w of & + g(z) = 0 such that . liin w(t) =0 and w(0) < 0.

™
sech 3 - |pz| > |-

Then again there is a unique to € R satisfying w(to) = 0, and w(t) < 0,
Vit < to, w(t) >0, Vt>tgand w(ty) < 0. Since ¢ is large, we set € = /1/6, and
rewrite (3.1.37) in the form

ci=y, ey=—g(x)—<(Y(t)y +nsgny), (3.1.38)
so Theorem 3.1.14 can be applied for (3.1.38) to obtain the following result.
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Theorem 3.1.21. If the function M(a) = 2nw(to) — ¥(a) [~ w(s)*ds has

— 00

a simple root, then for any 0 > 0 sufficiently large, (3.1.37) has subharmonic
solutions of all periods.

Remark 3.1.22. (a) It is clear that for the existence of a simple root of M () in
Theorem 3.1.21, it is necessary to assume

ne [M/_O; (s)2 ds/2w(to) m/ ds/2w(t0)],

where 7 = min ¢, M = max 1. On the other hand, if ¢ has critical points only
at minimums and maximums, then the condition

ne (M/_o; (5)2 ds/2w(to), m/ ds/2w(to)>

is sufficient for the existence of a simple root of M («).
(b) If n > 0 and « is a T—periodic solution of (3.1.37) then

L () .
= / () (9) + dgtar(s))ils) + * i (s)? + n|x<s>|) ds

s w(f”"‘ d”?/

So x is constant. Hence (3.1.37) with n > 0 has at most constant subharmonic
solutions.

For more concreteness, we consider again the Duffing—type equation

(2 + cos t)
V5
with g(z) = —x + 223 ,w( ) = 2+ cost,w(t) = —secht. Then m = 1, M=3, t,=0,

w(to) = —1and [_w(s)?ds = [~ _(sechs)?ds = 2/3. Consequently, Remark
3.1.22 a) gives the next result.

i+ 6(—x + 22%) + &+ nsgnd =0 (3.1.39)

Corollary 3.1.23. Equation (3.1.39) has subharmonic solutions with all periods
provided that 6 > 0 is sufficiently large and n € (—1,—1/3).
Now we deal with more difficult problem represented by the following coupled

discontinuous differential equations

&1+ 0g(x1) + 11 sgnd1= naxo
. 3.1.40
Fg + 0g(w2)= Y(t)71, ( )

where 77 > 0, 7o # 0 are constants, § > 0 is a large parameter, ) € C1(R,R)
is periodic and g satisfies the properties of (3.1.34). Setting ¢ = /1/6 and
rewriting system (3.1.40) in the form

iy =y1, e =—g(z1) +>(—msgnys +n2w2) (3.1.41)
eiy =ya, el = —g(x2) + ()21, o
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we have in the notation of (3.1.30)

f(z1,y1,22,92) = (y1, —9(21), Y2, —g(x2))
h(l‘layl,$2ay275>t) = (07 —m Sgnyl + 7723327071/)(75)331) .

Since & = f(x) with © = (21,y1, 22, y2) is &1 + g(z1) = 0 and Zs + g(z2) = 0, so
it is decoupled, it is better to take

Yo = (W, W, We,Ws), we(t)=w(t—0), oc€R
uj?l = (_dawvoao)a uiQ = (0707 _‘:}0'7“'}0')

Us3 = (LZ),(IL0,0), Ugyg = (070ad)0'7(:‘.}0') .

Note {7, (t) | o,¢ € R} represents a non-degenerate homoclinic manifold of & =
f(z) to x =0 (see Subsection 4.1.4 for similar results). So § is replaced with o.
Then we use formula (3.1.29) twice for ul; and uk, instead of (3.1.28) to get

( —2mw(ty) + mB(0)
M““"”( — () B(0) )

with B(o) = [0 w(t — 0)w(t) dt. Next we make in (3.1.30) the change of vari-
ables

z (t+ %) = 7o (t) + £22(t) + — (% (7@) — (%)) .

2m €

In this way, we can incorporate parameter ¢ in the differential inclusion above
Theorem 3.1.14 concerning (3.1.30). Consequently, it is enough to find a simple
zero point of the map

o (2)- ()

Summarizing, we obtain the next result.

Theorem 3.1.24. If there is a simple root oo of B(og) — 2mw(to)/n2 = 0 and
a simple root o of Y(a) = 0 as well, then (3.1.40) has subharmonic solutions
with all periods provided that 6 > 0 is sufficiently large.

Proof. According to the above arguments, it is enough to observe that («yg, 0g)
is a simple zero point of M, i.e. M(«agp,00) = 0 and det DM (ay, o) # 0, which
is obvious. O

Corollary 3.1.25. There is a constant K > 0 such that if 0 < n1/|n2| < K
and Y(a) = 0 has a simple root, then (3.1.40) has subharmonic solutions with
all periods provided that 6 > 0 is sufficiently large.

Proof. Since B(0) = 0 and B’(0) # 0, there is a constant K > 0 such that for
any 0 < n1/|n2| < K, there is a small simple root of B(og) = 2mw(to)/n2. The
proof is finished by Theorem 3.1.24. O
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For more concreteness, we again take g(z) = —x + 223, ¥(t) = cos t, w(t) =
secht, tg = 0, w(tp) = 1. Then

inho — h
Blo) =2 sin 0" (27(:05 o
sinh” o

Function B(c) has the only critical points: one maximum about 0.6196336 at
o = —1.6061152 and one minimum about —0.6196336 at ¢ = 1.6061152. More-
over, B(o) = 0 if and only if o = 0. Hence we obtain the following result.

Corollary 3.1.26. The equation

T+ 5(—171 + QLE%) +m Sgnd:l = 122
Fo + 0(—x9 +223) = 21 cos t

has subharmonic solutions with all periods provided that § > 0 is sufficiently
large and 0 < n1/|n2| < 0.3098167.

Finally, we consider the following autonomous version of (3.1.34)
&+ g(z) + prsgnd + pat =0, (3.1.42)

where g1 2 € R are small parameters and g satisfies the properties either of
(3.1.34) or (3.1.37).

Theorem 3.1.27. There is a r1 > 0 and mappings
Iy, Iy : (—rq,71) X (1/r1,00) = R

such that for any T € (1/r1,00), (3.1.42) has a T—periodic solution near w with

either for any pe € (—ri,r1) and p1=II;(u2,T) or for any py € (—ri,r1) and

puo=Ilo(p1,T). Moreover, . lim OHI(NZaT):O and . lim OHZ(#laT):O-
o0, H2— —00, 1 —

Proof. We apply Theorem 3.1.15 with either £ = p1 and 0 = pg or £ = py and
0 = p1. Then according to the above computations

(oo}

Ma(€) = ~2loto)n — 2 | as)?ds.
—00
So we take in Theorem 3.1.15: B = (—1,1), 0 = 0, d = 1, d; = 0 and
by Remark 3.1.16, we obtain the desired mappings II; ». Finally, the limits
lim Oﬂl(ug, T) =0 and . lim OHQ(,ul, T) = 0 follow from the fact that

T—00,p12— — 00,1 —

the only zero point of My, () =01is £ = 0. O

Remark 3.1.28. Like in Remark 3.1.22b), it is clear that (3.1.42) with pqpe >
0, % + p3 # 0 has at most constant periodic solutions.
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0.5

Figure 3.4: The graphs of functions y = 2 arctan kz (thick line) and y = ®(z)
with £ =10

Remark 3.1.29. The discontinuous function sgnr modeling dry friction in the
Coulomb’s friction law is often approximated [9,12] by the mathematically con-
venient approximation of the form

2
r — —arctankr, k> 1.
T

On the other hand, its physically more relevant approximation is given by (see
Fig.3.4)

1
®(r) = —(7arctan 8kr — 5arctandkr), k> 1.
T
The function ® has two symmetric spikes at r = :tg of the values

1 6
+— (7 arctan V6 — 5arctan %) = +1,2261344.
T

Moreover, ®(r) is quickly near 1, respectively —1, when r > 0, respectively
r < 0, tends off 0. Then a multivalued version of ® can be taken as

-1 for r < —n,
[—¢, —K] for —n<r<o0,
SgnﬂCHT: [74-;(] forr =0,
” [k, ] for 0 <r <n,
1 for r >n
for some constants n > 0,¢ > 1,0 < £ < 1. The term Sgn, ., @ can be

considered as an extension for modeling dry friction forces.
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To apply Remark 3.1.29, let us consider the problem

-+ g(iC) - M?ql)(t) € _Mlsgnr],c,n i? (3143)

where p; > 0, pg > 0 are small parameters, g has the properties of either (3.1.34)
or (3.1.37) and ¢ € C'(R,R) is periodic. Then, for this case with n < max |w|,
the multivalued mapping (3.1.24) has the form

M, (a) = [ Nl((f; |d’5+f1 \dt>+u2A()

([, Jo@)]dt+ [, lo)]dt) + pA)|

where A is the function defined above Theorem 3.1.18 and

C—{teR:|o(t)<n} L ={teR:|o(t)]>n}.
Then Theorem 3.1.9 gives the following result.

Theorem 3.1.30. Ifn < max |w| and

0< M, (mC-— MK)/ l(t)] dt < (M — m)/l W) dt,  (3.1.44)

I,

where m = min A and M = max A, then (3.1.43) has subharmonic solutions
with all large periods provided that py > 0, po > 0 are sufficiently small satisfy-
mg

i € (max{o m) (s, @l f, o)},
(3.1.45)
M/@L (t)ldt+ [y, w0>

Proof. We take a < b such that A(a) = m, A(b) = M. Then (3.1.45) implies
that r1 € M,(a), o € M,(b) give 71 < 0,72 > 0. Hence the condition of
Theorem 3.1.9 is satisfied. ]
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To be more concrete, we consider the problem

& — x4 223 — pycos t € —pySgn (3.1.46)

n:C,Ni
Corollary 3.1.31. Inclusion (3.1.46), with 1/2 >
solutions with all large periods provided that p; >
small satisfying

has subharmonic

n > 0,
0, po # 0 are sufficiently

Mo T _ 1«
o] < beCh2/(<—|— (1 —{)sechty, + (¢ l)bechtg,n),

where 0 < ¢y, < ta, < 00 are the solutions of secht = —1.
Proof. Now g(x)=—x+2x3, w(t)=secht, ¢(t) = & cos t. We note max |sech t| =
1/2. The equation |secht| = 7 for 1/2 > 1 > 0 has the solutions
—00 < —tgy < —t1, <0<ty <t2, <00,
when clearly there are strict inequalities for n > 0. Consequently, we have
Iy— = (=00, —ta | Uty ti g Ultay, 00),  Int = (—tay, —tin) Uty t2y),

and
/ |w(t)| dt=2(1—secht; ,,+sechts ), / |w(t)| dt = 2(sechty ,—sechts ).
I I+

We also know by the results for (3.1.36) that A(a) = £msech 5 sin a; hence
M = —m = wsech 5. By using these computations and Theorem 3.1.30, the
corollary is proved. O

Remark 3.1.32. In spite of the fact that the aim of this section is to deal with
multivalued perturbation problems, we note that our method is clearly applied
to piecewise smoothly perturbed problems. For simple illustration of this, let us
consider the following concrete piecewise linearly perturbed problem

& — x4+ 203 + it + pedT = pscos t, (3.1.47)
where p123 € R are small parameters and z+ = max {0, z}, 2~ = min {0, z}.

Then we have similarly like for (3.1.36) that (3.1.24) possesses for this case the
form

M1+ o
My (o) = — 3

If |p1 + po|/|ps] < 3msech T then M, (a) has a simple root, and consequently,
(3.1.47) possesses subharmonic solutions with all large periods provided that
fi1,2,3 are sufficiently small.

™ .
+ psmsech 5 sino.
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3.1.7 Bounded Solutions Close to Homoclinics

We show in this subsection the existence of bounded solutions on R of (3.1.3),
(3.1.25) and (3.1.26) which are near to v and on which subharmonics, found in
the previous subsections, accumulate.

Theorem 3.1.33. The assumptions of Theorem 3.1.6 imply for any u € R of
the form u = s2f1, 0 < s € Uy, i € Us, where R, Uy, Us are from Theorem 3.1.6,
the existence of a solution x, of (3.1.3) on R satisfying

sup |z, (t) —y(t — ay)| < Ks, (3.1.48)
teR

where o, € R, |a,| < K and K is a constant from Theorem 3.1.6. Moreover, a
subsequence of the subharmonics {Ty, fm>(1/5 from Theorem 3.1.6 accumulates
on .

Proof. Let us fix p € R and let {2, }m>[1/s) be the sequence of subharmonics
from Theorem 3.1.6. Since {xy, },n>[1/5 is @ bounded sequence in the Sobolev
space W1°°(R,R"), then by the Arzela-Ascolli Theorem [199], there is a subse-
quence {Z,; }5; of {Zm }m>(1/s and a function

x, € VV&)CZ(R, R™) := NpenWH2([=m, m], R™)

with |z,]e < 0o and such that for any p € N the sequence {z,; }32, converges
to x,, in Z,. Moreover, we can assume .,; — a, € R as j — oo.

We note that &, exist a.e. on R. Now let tg € R be such that &,(to) exists.
Since f is continuous as well as f;, i = 1,--- , k are upper—semicontinuous with
compact values, for any € > 0 there are jo € N and § > 0 with the following

property for any ¢, [t — to] < d, j > jo:

k
P, (0) + 3 pifil@m, (0), 1) € K.,

i=1

where

K. = {z e R" : dist (2, f(zu(to)) + iuimz“(to),u, to)) <<}

i=1

The set K. is compact and convex. Let us choose a y € R\ K.. Then there is
at least one closest point k, of K. to y since K. is compact. The uniqueness
of k, follows from the convexity of K., since if there could be two such k;, k’y’
then (k, + k;))/2 € K. would be closer to y as either k; or k;/. Moreover from
the triangular with vertexes k € K., k, and y it follows that the angle between
k —ky, and y — k, is obtuse (see also [47,199]). So there is a unique k, € K.
such that

(k—ky,y—ky) <0, VkeK.. (3.1.49)
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Next from

k
T, (t) € f(@m, (1)) + Zliifi(xmj (t),p,t) ae on {t:|t—to| <d}

i=1

for any j > jo, and (3.1.49) we derive

9 to+(1/p)
2 / (o, (5) — kg — k) d
P Jto—(1/p)

_ <xmj (to + (1/p)) — @m, (to — (1/p))
2/p

for any p € N satisfying p > 1/60. By passing to the limit first with 7 — oo and
then with p — oo, we obtain

—ky,y—ky> <0

(Tu(to) — ky,y —ky) <0, VyeR"\K..
It is clear that

K.= () {2€R": (z—kyy—k,)<0}.
yeR™M\K.

Consequently, we have
t,(to) € K. (3.1.50)
k
Since (3.1.50) holds for any ¢ > 0 and the set f(z,(to)) + D wifi(x.(to), 1, to)
i=1
is compact, we obtain

k

&,(to) € fxu(to)) + Zuifi(%(to)vﬂ,to) .

i=1
The estimate (3.1.48) follows from the similar one of Theorem 3.1.6. O

We can analogously find accumulation of subharmonics on bounded solutions
in all above results. Finally the method of this Section is extended in Chapter
4 to show chaotic behavior of (3.1.3), (3.1.25) and (3.1.26).

3.2 Bifurcation of Periodics from Homoclinics 11

3.2.1 Singular Discontinuous O.D.Eqns

In this section we proceed with the study of bifurcations of subharmonics from
homoclinics in discontinuously perturbed ordinary differential equations. But
we study more complicated equations. To motivate our interest in this problem,
let us consider a mass m located in a forcing field —¢g(x), putting horizontally
on a moving two—dimensional ribbon with a speed vy and periodically excited
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by a force mp(t). The viscous damping is —k:, and the dry friction between the

ribbon and the mass is —pumsgn (¢ + vg). Here k and p are positive constants,
and sgnr = po,r € R%\ {0} (see Fig.3.5). By taking the balance of these

forces, we arrive at the equation

mi + ki + q(z) + pmsgn (& 4+ vo) = mp(t), =€ R2. (3.2.1)
Rewriting (3.2.1) as a first-order system, we get

i=vy, my=—ky—qx)+ m(p(t) — psgn (y + vo)) . (3.2.2)

Like in the previous section, we consider (3.2.2) with m small as a singularly
perturbed differential inclusion of the form

i=y, mye—ky—q(x)+m(p(t) — 1Sen (y + o)) , (3.2.3)
where ; L
o sgnr orr#0,
Sgnr_{{xeR2:m|2§1} forr=0.

For more generality, we consider singularly perturbed differential inclusions of
the following form

(t) € f(x(t),y(t)) +ehi(x(t),y(t),t) ae.on R
ey(t) € g(x(t), y(t)) + eha(x(t),y(t),t) ae.on R
with € R", y € R* and € > 0 is small. Let (-,-); be the inner product on

R?, i € N with the corresponding norm | - |;. Now we set the main assumptions
about (3.2.4):

S
. (3.2.4)

(i) f € C2(R" xR¥,R"), g € C2(R" x R* x R, R), and hy : R* x R¥ x R —
28"\ {Q}, hy : R™ x R*¥ x R — 28"\ {§} are upper-semicontinuous with
compact and convex values.

(ii) f(0,0) =0 and R7 # 0 for any 7 € o(D, f(0,0)).
(iii) g(-,0) =0, g(z,y) = A(x)y + o(|y|x) for A(z) € L(R*) satisfying
B(z)A(z)B™(x) = (D1(x), Do(x)) VYa €R"™,

where B : R® — L(RF), D; : R® — L(R*), Dy : R® — L(R*2) are
C'-smooth mappings, k = k; + ks and
(D1(z)v,0)k, > alvlf,,  (Da(w)w,w)r, < —alwlf,

VzeR", VoveRM, Vwe R,
where a > 0 is a constant.

(iv) The reduced equation of (3.2.4) of the form & = f(x,0) has a homoclinic
solution: There is a nonzero differentiable function ¢ — ~(¢) such that

lmy sy oo y(t) = limy—, oo y(t) = 0 and (t) = f(v(¢),0).
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(v) hi(z,y,t+2) = hiy(x,y,t) for t e R and 7 = 1, 2.

When the perturbations hy 2(x,y,t) in (3.2.4) are smooth functions, then we
have singularly perturbed ordinary differential equations

#(t) = f(2(8),y(1)) + eha (2(8), y(1), 1)

: (3.2.5)

ey(t) = g(=(t),y()) + cha(x(t), y(t), 1) -

Setting € = 0 in the (3.2.5) we obtain the reduced equation
i = f(x,0). (3.2.6)

The study of dynamics between (3.2.5) and (3.2.6) is started from 1952 [187]
by showing that under certain conditions, for given 7' > 0 the solutions of
(3.2.5) are at a O(e)-distance from the corresponding solutions of (3.2.6), for ¢
in any compact subset of (0,7T]. This result was improved in [116,117]. Later,
in [97], a geometric theory of singular systems was developed, where this theory
is applied to the autonomous case and states, under certain hypotheses, the
existence of a center manifold for (3.2.5) defined on compact subsets on which
system (3.2.5) is a regular perturbation of the reduced system (3.2.6). This was
used to improve previous results in [100] concerning the existence of periodic
solutions of (3.2.5). Geometric theory has been used in [184,185] to study the
problem of bifurcation from a heteroclinic orbit of the reduced system towards
a heteroclinic orbit of the overall system (3.2.5). Later, in [28, 72], the non-
autonomous case have been handled, together with the homoclinic case. These
results were improved in [21] by showing that the system (3.2.5) has a global
center manifold on which the system (3.2.5) is a regular perturbation of the
reduced system (3.2.6). Then applying regular perturbation theory a smooth
Melnikov function was derived to obtain homoclinic/heteroclinic solutions. Also
there was studied a case when the reduced system (3.2.6) has a heteroclinic
orbit joining semi-hyperbolic fixed points. Finally let us mention some other
related results in this direction. Attractive invariant manifolds of (3.2.5) are
studied in [155] when hq, he are independent of ¢. In [183] the same problem is
investigated as in [155] when hi, he do depend on t. Asymptotic expansions of
solutions for (3.2.5) are derived in [193]. Summarizing, a geometric theory for
(3.2.5) is rather well-developed, not like for (3.2.4). On the other hand, there
are several papers dealing with singularly perturbed differential inclusions (see
[69,104] and references therein). Singularly perturbed boundary value problems
are studied in [77,118,119,136,194].

Next from the above-mentioned results on (3.2.5) it follows that (3.2.5) un-
der certain conditions is chaotic (see [28,72]) with an infinite number of sub-
harmonics. The purpose of this section is to find conditions ensuring that even
in multivalued case (3.2.4) there are still infinitely many subharmonics accu-
mulating on a bounded solution of (3.2.4) on R which is near to the reduced
homoclinic solution (v,0). But approaches already used to (3.2.5) are not pos-
sible to apply for differential inclusions such as (3.2.4). To prove our results, we
extend the method of Section 3.1 to system (3.2.4).
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3.2.2 Linearized Equations

Let W, W' be the stable and unstable manifolds, respectively, of the hyperbolic
origin for (3.2.6), and d; = dim W§, d,, = dim W{". Next, for the variational
equation of (3.2.6) along ~:

u(t) = Do f(7(t), 0)u(t), (3.2.7)

we have Theorem 3.1.2 of Subsection 3.1.2 when (3.1.5) is replaced with (3.2.7).
We use functional-analytic approach on certain Banach spaces like in the
previous section. So we fix m, 7 € N and define the following Banach spaces:

Zm,j=C ([—m,m] ,Rj) ,
Zpj =12 € Zm;  2(-m) =2(m)},
th,j =L~ ([_mam] 7Rj)

with the supremum norms | - ||, ; for Z,, ;, respectively | - |,,, ; for Yy, ;. Next,
for the non-homogeneous linear equation

2=D,f(~,0)z+h (3.2.8)
we have the following analogy of Theorem 3.1.4.

Theorem 3.2.1. There exist mg > 0, A > 0, B > 0 such that for every
m > mg, m € N there exists a linear function Ly, : Vi n — R™ with || Py L, || <
Ae2Mm and if h € Y, satisfies

/ P U) 7 h(t) dt + Py Lyh =0

then (3.2.8) has a solution in z € ZF, . with Ps;U(0)712(0) = 0 and ||z|m.n <

m,n

B|h|m,n. Moreover, this solution z depends linearly on h.

Setting

?m,n = {Z S }/mm : / PuuU(t)ilz(t) dt + RLuLmZ = 0} )

—m

we define a variation of constants map K, : Y, n — Zpn by taking K,,h to
be the solution in Z2, , to (3.2.8) from Theorem 3.2.1. Then the norm ||/, || is
uniformly bounded with respect to m and K, is a compact linear operator. We
have the following analogy of Lemma 3.1.5.

Theorem 3.2.2. There exist A > 0, mg > 0 and for each m > mg, m € N a
projection I, : Yo, ,, — Y, n such that

(i) T, |l < A for all m > myg

(“) R(]I - Hm) = ?m,n
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Now we study the non-homogeneous variational equation
ey = A(y(t)y + h(t). (3.2.9)

Theorem 3.2.3. There is a constant ¢ > 0 such that for any m € N and
0 <e <1, (3.29) has a unique solution y € Z¥ , provided that h € Yy, ), and
moreover, it is satisfying ||y|lm.x < c|Plm. k-

Proof. By taking the transformation z = B(7)y, (3.2.9) becomes to the form
e = (Dy(3), Da(7) = + £(Du B()) B~ (3) + B()h. (3.2.10)
Let us first consider the equation
ez2=Di(y)z+h, heYny, . (3.2.11)

Let Z. be the fundamental solution of €2 = Dy (7)z. Then 2(t) = Z.(t)Z-1(s)z0,
29 € R¥1 solves €2 = Dy (7)z, 2(s) = 2. Using assumption (iii) of Subsection
3.2.1, we derive

L (20R) = 220,20, = 2D GO0, 2Ok, > 2 |=(0),

So we get |z(t)|x, < e~ 7D/%| 2|y, for t < s, that is Z. satisfies the following

property
|Z.()Z7 ()| < e72G70/e < s, (3.2.12)

The general solution of (3.2.11) has the form

2(t) = Z.() 2= (m)=(m) — é / Z.(6)Z=(s)h(s) ds . (3.2.13)

Since by (3.2.12) for 0 <e <1 and m € N :

|Ze(—m)Z2 ()] < e2om/e < 1

‘ZE(_m) (8)| —a(s+m)/57 S Z —m,
we obtain
1 —11 T’ -1
2(m) = — (I Zo(—m)Z="(m)) 6/ Zo(—m)Z=Y(s)h(s) ds

_9ay—11
2m)lk < (1= ) 7 bl g,



3.2. Bifurcation of Periodics from Homoclinics IT 59

Moreover, for —m <t < m we have

20y < 12mle, + By < (14 (= €727l
Hence 1
[2llmps < = (14 (1= e 70 Bl -
We have a similar result for the equation
ez2=Dy(y)z+h, heYyy,. (3.2.14)

Since sup |(D, B(v)¥)B~ ()| < oo and sup |B~1()| < oo, sup |B(7)| < oo, the
statement of this theorem follows from (3.2.10) by using the above results for
(3.2.11) and (3.2.14). 0

Let K, -h be the unique solution of Theorem 3.2.3. Because K, ¢ : Y 1 —
Wh2([—m, m],R¥) is bounded linear and W1:2([—m,m], R¥) is compactly em-
bedded into Z,, i, we see that Ky, . : Yy, 1 — Zm,k is a linear compact operator.
Moreover, the norm ||K,, || is uniformly bounded for m € N, 0 < ¢ < 1. We
do not know the limit of K,, . as ¢ — 04 and m — oco. On the other hand, we
have the following result.

Theorem 3.2.4. Let X, p = W1 ([—m,m], R¥) with the usual norm denoted
by ||| - [llm.k- Then for a fized b € N and any h € X, o satisfying |||h|||mk < 1,
the function K, ch tends on Zyy to —A~'(y)h uniformly by h as e — 04 and
m — 00.

Proof. For any h € X,y  satisfying |||h][[m,x < 1, we take 2, € Z), ;. given by
2 () = —ATH(y(0))h(t) — t(A™H (y(=m))h(=m) — A7 (y(m))h(m)) /2m .
By taking y = z + zp,m in (3.2.9), we arrive at the equation

ez(t) = A(v(1)z(t) — e2n.m
—tA( (1)) (A7 (v(=m))h(=m) = A7} (y(m))h(m)) /2m.

According to the construction of zj ,,, there is a constant ¢ > 0 such that
Wz mlllmg < e AR (AT (y(=m))h(=m) — A~ (y(m)h(m))|lmx < c.

It is enough to study (3.2.11). In view of (3.2.13), (3.2.15) has the form

(3.2.15)
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where

Inam(t) = —€Znm — LA(y(1)) (A7 (v(=m))h(=m) — A7} (y(m))h(m)) /2m .

According to (3.2.12), there is a constant ¢; > 0 such that for any ¢ € [—b, b,
0 < b < m, we have

|Z()22 (m)2(m)|), < ™" D/Ee < emelm Nz,

17 o v b e b

- < = a(s—t)/e e < .

’ /ZE(t)Zs ($)Gn.m(s)ds WS / e c1(e + 2m)ds =~ (e+ 2m)
t t

By letting ¢ — 04 and m — oo in the above inequalities for b € N fixed, the
proof is finished. O

Corollary 3.2.5. Let h € LOO((—oo, oo),Rk) and let there be a finite sequence
of numbers —oo < t1 <ty < --- <t; < oo such that

h/[tj,tj-i,-l} S Wl’oo([tj,tj+1},Rk) Vi=1,---,1
h/(*OO,tl] S Wl’oo((*oo,tl],Rk)
/lts,00) € W ([t5,00), B

For any sufficiently small € > 0, let us consider h. € Wl’oo((—oo,oo),]Rk)
defined as follows

he)) = h(t) for 1€ U litin = vE] U011 = vE] Ul o0)
he(t) s linear on O [t; — Ve t;].
j=1

Then for any fized b € N and any § > 0, there are e5 > 0 and b < ms € N such
that

|[Km,che + A_l(V)hEHb,k <9
for any m >mg and 0 < ¢ < &5.

Proof. Clearly |he|my = O(1/v/€) and |he|m . = O(|h|m k) for any m € N and
0 < ¢ < 1. By following the proof of Theorem 3.2.4 (see (3.2.15) when h is
replaced by h.), the statement of this corollary is proved. O

3.2.3 Bifurcation of Subharmonics

To find periodic solutions to (3.2.4) of very large periods which are near (v, 0),
we follow the method of Subsection 3.1.3. By hypothesis, the multivalued vector
field in (3.2.4) has period 2m. We look for solutions to (3.2.4) in ZJ, , x Z} ,.



3.2. Bifurcation of Periodics from Homoclinics IT 61

In (3.2.4) we change the variable

€« g2
y(t + ) = 2w(t)

d—1
w(t+a) =9(t) + (1) + X ehiuivalt) + siirmb(ehm+ B)t,
i=1
where 1 > ¢ > 0,,0; € R,m € Z; and E = [1/¢]. Then the differential
inclusions for (z,w) are

2(t) = Do f(7(1),0)2(t) € gm.e(2(t), w(t), o, ;1) ae.on [-m—E,m+ E]
2w (t) — A(Y(t)w € hpe(2(t),w(t), e, 3,t) ae.on [-m—E,m+ E],
where
Im,e (T, Y, @, B, )=
veER™ 1 v € 6%{]‘(5% +5(t)+e dill Biuira(t)+ommrmb(ef,m + E)t, 82y)

10,0~ S Bitssalt) = mteab(e.m+ B) - Daf(2(0).0)% )

d—1

+hy (5233 +y(@) +¢e Y. Biuiralt) + mb(aﬂ, m+ E)t, ey, t + a) } ,
i=1

hm,a(x7y7a76’t):

d-1
ueRk :ue 6%{9(52:6 +y(t)+e Y Biui+d(t)+mb(eﬁ,m + E)t,szy)
i=1
~A((D)2y |

d—1
+h (6233 +(t) +e X Birira(t) + simrpyb(ef, m+ E)t, %y, t + a) } :
i=1

Introducing multivalued mappings
Gret ZmtEn X Zmrpg X Rx RITH— 2Ymirn
Gl ot ZmiBn X Zmyp g X R X RITH — 2Ymink
by the formulas
Ghye(zw0,0,8) = {h€ Yyt hlt) € gne(2(),w(t), 0, 5,1)
a.e.on [-m—E,m+ E]} ,
an,e(z,w,a,ﬂ) = {h €EYmarr: h(t) € hp(2(t),w(t), o, B,t)
a.e.on [-m—E,m+ E]} ,

the above differential inclusions for z, w can be written to
zZ— le(F%O)Z € ng,a(zawa Oé,ﬁ)

3.2.16
e — A(y)w € G7, .(z,w,a, 3). ( )
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Since gme : R” x RF x R x R4 x R — 28" \ {0} and hp, . : R x RF x R x
R4-1xR — 2%°\ {}} are upper-semicontinuous with compact and convex values,
like for (3.1.17), Gﬁﬁnﬁ(z,w,a,ﬂ), j =1, 2 are non—empty, closed, convex and
bounded in Y, 455, Ymirk, and they are also weakly compact in L?([—m —
E,m+ E],R"), L*([-m — E,m + E],RF), respectively.

To proceed, we assume that the following condition holds.

(H) There is an upper-semicontinuous mapping C : R x R — 28°\ {})} with
compact convex values such that C'(R x R) is bounded and C(t,a + 2) =
C(t, ). Moreover, for any § > 0,1 € N, I > [y, where lp € N is fixed,
and a € R, there are e5; > 0,1 < ms; € N, (5; > 0 such that for any
N> m >ms; and h € Y, ;, satisfying

|Ame < 14 sup {max {llk = v € ha(~(t),0,5) U hg(0,0,s)}}
s, teR

(t,h(t)) € {u e RML ¢ 35 € R; dist {u, (s, ha(7(5),0,5 + ) } < g;,l}
a.e.on [—l—1,1+1],

the solution y of (3.2.9) with 0 < € < €5, satisfies

(t,y(t)) € {u e R" : Js e R; dist {u, (S,C(s,a))} < (5} on [-1,1].

System (3.2.16) can not be solved directly. We need it to modify. For this
reason, for (z,w,w,a, ) € ZmiEgn X ZmtBk X Zm+er X R x R we take
the homotopy

G (2w, D, 0, ) = {h € Ymsmn t h(t) € gmen(2(t), w(t), @(t), o, B, 1)
a.e. on [—m — E,m—&—E}}, Ae0,1],
G2 \(zw,a,8) = {h € Vmipg : h(t) € home(2(8), w(t), a, 3, 1)
a.e.on [—m — E,m + E]}, Ae0,1],

where
gm,e,k(my Y, ga «, ﬂ? t) =
d—1
VER" v e 5%{]”(5% + (1) + & X Bittiralt) + grpyb(eBm + E)t,O)
i=1
d—1
—f(v(t),0) —¢ 21 Bittiya(t) — mb(fﬁ,m +E)— D, f(v(t), 0)52$}

d-1
+€%{f(52x +y(t) +e X Biuira(t) + gpmrmyb(eB,m + B, 52y>

i=1
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d—1
(7 470k T Brnsa(t)t slgb(eB, mB)0) = Dy(f(1(1), 0<%y }

d—1
+Ahy (6296 +(t) +e X Biuira(t) + gpmrmyb(eB, m+ E)t ey, t + a)
=1

225 55,210, 0) a0 v 0)

e
+D, f(7(8), 007 + (1= N)C(t,0)) + (L= Nha (7(8),0,1 + a>} ,
and
hmen(@,y, a, B,1) =
ueRF :ue E%{g(a%c +5(t) + adg:jll Bitira(t)+ gy b(e8,m + E)t, E2y)
—AGW)ery |+ (1= Nha(3(6),0,1 + a)

d—1
+Ahs (6293 +(t) + e 3 Bittira(t) + gy 0(eB, m+ E)t, %y, t + a) } :
=1

We note that if a +b=1, a >0, b > 0 then

1 ~ 1 ~ 1 ~ ~
aG, - \ (2, 0,01, 0, B) + G, (2, 0,102, @, 8) C Gy, o\ (2, w, a1 + bz, a, () .

Next based on Theorems 3.2.1, 3.2.2 and 3.2.3, we use the Lyapunov-Schmidt
approach to decompose and put (3.2.16) in the homotopy as follows
0e (z — Fﬁm’)\(z, w,a, fB),w — Fgm)\(mw, a, ), B e (2, w,mﬁ)) (3.2.17)

for X € [0, 1], where

(F'r}z,e,)\(z7 w, ¢, ﬂ)? F’r%],’g’)\(’z? w, ¢, 6)7 Bm,s,k(zv w, a, ﬂ))
- {(Km+E(]I Ly ) Ky .20, meh) :
heGh  \(z,w,Kpipe2v,a,3), veG? (z,w,a,ﬁ)} ,

m,e,\ m,e,\

and

m—+FE
Ly gh= / P U ()" h(t) dt + PyuLimygh .
—m—FE

To handle (3.2.17), we consider the new homotopy
0e (z—)\Fgm’)\(z,w7a7ﬁ),w—)\Fi’€’)\(z7w,a,ﬂ),Bm,E’A(z,w,mﬁ)) (3.2.18)

for X\ € [0,1]. Using ||PuyLyig|| = O(e2Mm+E)) "we consider the decompo-
sition and homotopy

(Bml,e,)\ + )\BmQ,s,)\) (Z, w, o, ﬂ) ) DS [07 1] )
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where
(Bml,a,)\ + )\BnLQ,E,)\) (Z7 w, &, 6) = {LnLl,Eh + )\Lm2,8h :
h e Gin,e,)\(zv w, Km+E,EZU7 a, /8)7 (S ng’g’)\(ZV w, /8)} )

and

m+FE
Ly ch = / P U@  h(t)dt, Lpacv = PuLyigh.
—m—FE

Summarizing, the solvability of (3.2.17)—(3.2.18) can be replaced by the solv-
ability of the following multivalued equation

0€ Hy(z,w,0,8,\) (3.2.19)

where Hy, « ¢ Zmgbm X Zmagh X RX R X [0,1] — 2Zm+50 X Zmsp s xR\ ()
is given by

Hpe(z,w, 0, 8,A) = (z — /\F,}L&/\(z,w, a,fB),w — )\F,%w,/\(z,w,a,ﬁ),

(Bml,a,)\ + )\BmQ,E,)\) (Z, w, &, ﬂ))

for 1 > ¢ > 0 sufficiently small and fixed, and A € [0, 1] is a homotopy para-
meter. Like in Subsection 3.1.3, it is not difficult to observe that the mapping
12, 5.0 Zmsp xR — Hm e 1s upper—semicontinuous with compact convex val-
ues and maps bounded sets into relatively compact ones. So topological degree
methods of Section 2.4.3 can be applied to (3.2.19).

Finally, we introduce a multivalued mapping

MR — 2B\ {0}, M= (M-, My) (3.2.20)

given by

loc

Mi(a, 8) = {ff;(h(s),uf-(s)}n ds : h € L}, (R,R") satisfying a.e. on R

the relation h(t) € (3 dll BiBi D3 f(7(t),0) (uai(t), war; (1))

4,J=

Dy F(2(0), 0)(C (1, )y (1 (1), t+00) } |

Following the arguments below (3.1.21), we see that mapping M is upper—
semicontinuous with compact convex values and maps bounded sets into bounded
ones. Now we are ready to prove the main theorems of this section [74].

Theorem 3.2.6. Let d > 1. If there is a non—empty open bounded set B C R?
such that
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(i) 0 ¢ M(OB)
(i) deg(M,B,0) #0

Then there are constants K > 0 and €9 > 0 such that for any 0 < € < €q,
the differential inclusion (3.2.4) possesses a subharmonic solution (Tu,Ym) of
period 2m for any m € N, m > [1/+/2] satisfying

sup  |ym(O)|r < Ke, sup |xm(t)—'y(t—am)|n < K/e,
—m<t<m —m<t<m

where a;, € R and |an,| < K.

Proof. We need to solve (3.2.16) which is plugged into the homotopy (3.2.19).
In order to handle (3.2.19), we need the following results.

Lemma 3.2.7. Let D' : [a,b] — 28" \ {0}, i = 1,2 be upper-semicontinuous
mappings with convexr and compact values. Here a,b € R, a < b. Let I'; be the
graph of D'. Take c,d € R, a <c<d<b. Then¥V( > 0,35 >0 such that

Ae[0,1], yi,z€eR™ i=1,2 te€]|ed]
dist {(t, yl),I‘l} < 5, dist {(t,zl),I‘z} <6

imply
dist { (£, A(y1 4+ y2) + (1 = A) (21 + 22)),T1 + T2} < ¢,

where I'y + Ty = {(s,dy + d2) : d; € D'(s), i =1,2, s € [a,b]}.
Proof. Assume the contrary. So there is (y > 0 and for all p e N, i =1, 2:
Ap €10,1], Yip, zip €R™, t, €c,d]
Sips Sip € [a,b], dip € D'(sip), dip € D'(5;,)
Ity = Sipl + [Wip — diplm <1/, |ty = Sip| + |2ip — diplm < 1/p
dist {(tpv Ap(Y1p +y2,0) + (1= Ap)(21p + 22p)), T1 + F2} > Co-
We can assume
Ap = Aoy Yip = Yi0s  Zip — Zio, tp—to, Sip— o
Sip—to, dip— Yior dip— %o, i=1,2.
Hence y; 0 € D'(to) 3 20, i = 1,2 and
dist { (to, Ao (y1,0 + y2,0) + (1 = Xo) (21,0 + 22,0)), 1 + T2} > Co .
This contradicts to
Xo(y1,0 + 92,0) + (1 = Xo) (21,0 + 22,0) € D' (to) + D*(to),
since D (tg), D?(to) are convex and
Ao(Y1,0+y2,0)+(1—=X0) (21,0 +22,0) = Aoy1,0+ (1 —Xo)z1,0+Aoy2,0+ (1 —Ao)2z20 -
The proof is finished. O
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Lemma 3.2.8. Let D : [a,b] — 28"\ {0} be an upper—semicontinuous mapping
with compact values. Here a,b € R, a < b. Let I be the graph of D. Then
Vit € [a,b], V¢ > 0,3 >0 such that

yeR™, dist{(t,y),I'} <d = dist{y,D(t)} <.
Proof. Assume the contrary. So there are (y > 0, to € [a,b] and for all p € N:

yp €ER™, s, € a,b], d, e D(sp)
lto = sp| + [yp — dplm < 1/p, dist {yp7 D(to)} > Co-

We can assume y, — 4o,Sp — to,dp — yo. Thenyy € D(to) and dist {yo, D(to)} >
Co. We arrive at the contradiction. O

Lemma 3.2.9. Condition (i) of Theorem 3.2.6 implies for any A > 0 the
existence of constants § > 0, 1 > g9 > 0 such that

|B’m1,E,A(Zawa a)ﬁ)|d Z 0

fO’f’ any 0 < € < g9, m € Z+7 A€ [071]5 ||Z‘|m+E,n < A7 HmeJrE,k < Aa
(o, B) € OB.

Proof. First we note

d—1
sl_i,%{r E%{f(EQ:L‘ +(t) +e Z; Bitiira(t) + gpmrmyb(eB, m + E)t, 0)
d—1
FO1),0) = & 5 Brivalt) = sitemblelm + B) = Daf ((2), 0)e%x |
d—1

=1 3 BB D2 (v(1),0) (uivalt). ujra(t))

7,7=1

d—1
lim %z{f (s%: +9(t) + e 3 Biuira(t) + gpmrgyb(eB, m+ B, sz)
+ =1

d—1
—f (22 +9(0) + & X Busralt) + sirimb(eB,m + E)L0) | = Dyf(7,0)y

=1
(3.2.21)
and

d—1
lim A{ f(s% + () +e Y Bitiralt) + grrgbef.m + E)t, o)
i=1

e—04

_f(’Y(t)70) - Edgjll ﬁiuier(t) - 2(m1+E) b(Eﬁvm + E) - Da:f(’)/(t),())&jx}

d—1
$2{7(Pr 490+ € T Biuisalt) + gty b(eh m o+ Bt <)
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d—
—f&%+vw+sghmwaw+%ﬁfw@@m+Enﬁ)—Dﬁmﬁxméﬂ
d—1 -
=3 ) B3 D2 f(7(t), 0) (was (t), uar; (1)) ,

4,J=

d—1
. A
Jim 2 {g(20 () + T Btalt) + artepyblet.m + )t cy)
~A(()y} =0

(3.2.22)

uniformly with respect to z, y, 8 bounded and ¢t € [-m—FE, m+FE],m € Z,,\ €
[0,1].
Now assume the contrary in Lemma 3.2.9. So there is an A > 0 and

ep =0, my €Zy, N — Ao, |#pllmy+E,m <A

lwpllm, +m,x <A, peN\{L,2}, B3 (ap, fp) — (a0, f0) € IB

1 2
hy € Gmp,sp,Ap(zpawvamp+Ep,6,%”pvap7ﬂp)= Up € Gmp,sp,Ap(mepaO‘pvﬂp)

such that
Lim,1e,hp =0 as p—oo. (3.2.23)

Since  sup  |hp|m,+E,n < 00, we can assume, by using the Cantor diagonal
peN\{1,2}
procedure together with Theorem 2.1.1, that there is an hg € LY (R,R™) such
that {h,}5° tends weakly to hg in any L*([—I,{],R"), I € N. Now let us fix a
sufficiently large [ € N and let § > 0. Then for any §; > 0, by using the upper—
semicontinuity of hsg, (3.2.3) and Lemma 3.2.7, there is a py > 2 such that for any
N> p > po, the graph of hy,, oz, (2p, Wp, p, Bp, ) in the set [—1 — 1,1+ 1] x RF
is in the (5, ;—neighborhood of the graph of ha(y(-),0, -+ ap). By (H), the graph
of Ko+ B, ,e20p in the set [—I,I] x R¥ is in the &;-neighborhood of the graph
of C(-,ap) provided that p > pg is sufficiently large. Then according to Lemma
3.2.7, the upper—semicontinuity of hy and C, (3.2.21) and (3.2.3) we have that
the graph of g, e, 5, (2p, Wp, K, + B, ,62Up, O, Bp, -) in the set [l+1,1-1]xR"

is located in the d—neighborhood Os; of the graph I of

d—1
5> Boio; D2 (), 0)(wtsi (), s ()

i,j=1

+Dyf(’}/('), O)(C(, O‘O)) + hl (7(')7 07 -+ aO)

for a fixed sufficiently small 6; > 0 and for any large p € N. Hence (t, h,(t)) €
Os, a.e. on [—1 + 1,1 — 1] for large p € N. By Mazur’s Theorem 2.1.2 there are
h, € con[{h; : i >p}], Vp € N\ {1,2} such that h, — ho on L?([—1,],R™).
Consequently, we may assume that h,(t) — ho(t) a.e. on [~1,1]. Since we can
take arbitrarily small convex neighborhood of a compact convex subset of R",
by Lemma 3.2.8 and letting & — 0, we have (¢, ho(t)) € T a.e. on [—1+1,1—1].
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By letting | — oo, we obtain

ol (}:%%Dﬂ()memwmm

i,j=1

+D,, f(7(t),0)(C(t, ) + ha((t),0,t + ao)) ae.on R.

Finally, by Theorem 3.2.1 and the properties (ii) and (iv) of Theorem 3.1.2, we
have

hm Ly ch / P U@ h(t)dt, lim Lye.h=0 (3.2.24)

e—0 e—04

uniformly with respect to h bounded and m € Z; arbitrary. Then (3.2.23)
and (3.2.24) give [* P, U(t)"*ho(t)dt = 0. This contradicts to (i) of this
theorem. 0

The next result is a simple consequence of Lemma 3.2.9 and the construction
of Hpe.

Lemma 3.2.10. There is an open small connected neighborhood UcCR of 0
and a constant K1 > 0 such that

0 ¢ Hp o (09, \)
forany0<eecU, € [0,1], m € Z,., where
Q= {(z;w,a,ﬂ) € ZmtEn X Lm+Ek X R?
I#llmsmn < Ko lellms 2 < K1, (@ 8) € B

From Lemma 3.2.10 for any 0 < e € U, m € Zy, we get
deg (Hp (-, 1),9,0) = deg (Hyp o (+,0),9,0)
where according to (3.2.19):
Hpe(z,w,0,6,0) = (z,w,
{Lyych:h e L*([-m— E,m+ E, R”) satisfying a.e.on [-m — E,m + E]
the relation h(t) € (3 Z BiBi D2 f((t),0) (uari(t), wat;(t))

i,j=1
+D,F(1(1), 0)(C(t,0)) + h (1), 0, + ) }) -
In order to compute deg (Hm’g(-, 0),Q, 0), we consider the homotopy
{ALml (1= N) [ P, U@ h(t)dt : h € L2, (R,R") satisfying a.e. onR

the relation  h(t) € (3 Z BiBi D2 f(y(t),0) (waqi(t), uar;(t))

2]—

+Dy f(1(8),0)(C (¢, 0)) + I (1(1), 0, + ) }
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Using (3.2.24) with Lemma 3.2.9, when &¢ is shrunk if necessary, we derive
deg (Hm,s(~, 0),Q, 0) = deg(M,B,0) #0.

Consequently (3.2.19) has a solution in  for any 0 < e € Uy, m € Z, and

A=1,where Uy =U;N{e € R : 0 < e < egp}. This solution is a solution of
(3.2.16) according to the definition of (3.2.19). O

For d = 1 we have M : R — 28\ {0} with

M(a) = {foooo<h(s),uf(s)>n ds : he L} (R,R);

h(t) € Dyf(v(t),0)(C(t, ) + h1(v(¢),0,t + ) ae.on R5.
(3.2.25)

Theorem 3.2.11. Letd = 1. If there are constants a < b such that M (a)M (b) C
(—00,0), then there are constants K > 0 and €9 > 0 such that for any 0 < e <
o, the differential inclusion (3.2.4) possesses a subharmonic solution (T, Ym)
of period 2m for any m € N, m > [1/+/€] satisfying

sup  |ym )|k < Ke, sup ‘xm(t)—'y(t—am)‘n < Ke,
—m<t<m —m<t<m

where oy, € (a,b).

Proof. We use Theorem 3.2.6 with B = (a, b): assumption (i) is clearly satisfied.
For showing (ii), we can directly repeat arguments in the proof of Theorem 3.1.9.
The proof is finished. O

Remark 3.2.12. When d = 1 and hy, he are C?>-smooth in all variables, then
according to Theorem 3.2.4, we can take

C(tv OL) = { - Ail(’Y(t))hQ(V(tL 07 t+ a)}

and then M € C'(R,R). A simple root a of M(a) = 0 implies chaos for such
systems with subharmonic solutions of all large periods. This is mentioned in
Subsection 3.2.1. But the existence of a simple root ag of M(«) = 0 implies
also the validity of the assumption of Theorem 3.2.11 with a = ag — § and
b= ay+ 6 for 6 > 0 small. Consequently, Theorem 3.2.11 is a generalization of
results in [28, 72] concerning subharmonics to the multivalued case (3.2.4) (see
also Subsection 4.2.1).

Finally we note that like in Subsection 3.1.7 periodic solutions of (3.2.4)
found above, accumulate on bounded solutions on R of (3.2.4), i.e. repeating
the proof of Theorem 3.1.33 we can derive the following
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Theorem 3.2.13. The assumptions of Theorems 3.2.6 and 3.2.11 imply for
any € > 0 sufficiently small, the existence of a solution (zc,y:) of (3.2.4) on R
satisfying

either  sup |wc(t) — y(t — a5)|n < Kv/e for Theorem 3.2.6
teR

or sup |z.(t) —y(t — a5)|n < Ke for Theorem 3.2.11 and (3.2.26)
teR

iu}g ’ya(t)’k < Ke in the both Theorems 3.2.6 and 3.2.11,
€

where a. € R, |ae| < K and K is a constant from Theorem 3.2.6, respectively
Theorem 3.2.11. Moreover, a subsequence of the subharmonics { (L, Ym) }m>[1 /6]
from Theorem 3.2.6, respectively Theorem 3.2.11, accumulates on (e, ye).

3.2.4 Applications to Singular Discontinuous O.D.Eqns

As a first application of the above results we consider (3.2.3) with k= 1, for
simplicity, and ¢ € C?(R?,R?), p € C*(R,R?) and p(t +2) = p(t), Vt € R. To
get the form of (3.2.4), we exchange the variables

y—y+tqlx), vz, to—t,
and then (3.2.3) possesses the form
& =—y+q()
my € y+m(pSgn (y — q(z) +vo) = p(~t) = Dpa(2)(y — a(x)))
with

(3.2.27)

f(xvy):_y+Q(x)v h1 =0, g(:c,y):y, A(l‘) =I e=m
ha(x,y,t) = pSgn (y — q(x) + vo) — p(—t) — D2q(x)(y — q(x))

in the notation of (3.2.4). Moreover we assume & = ¢(z) has a homoclinic
solution ~ to the hyperbolic fixed point z = 0. Then

ha((t),0,t +a) = pSgn (—¥(t) + vo) — p(—t — ) + Daq(y(t))q(v())
= 1Sgn (=3(t) + vo) — p(—t — ) +5(t).
Lemma 3.2.14. If there is only a finite sequence of numbers —oo < t; <
to < -0 < t; < o0 such that

—4({t)+vo=0 if and only if t=ty, - ,t;,

d 2.2
and sup (sgn( A(t) + ’Uo))‘ < 00, (3.2.28)
[t1—1,ti+1]DtEty -t 2
then we can take in the condition (H)
{ — msgn (=5(t) + o) +p(—t —a) = 4(t)}
for t#ty,-- b,
Clt,a) =9 {veR?: |v|s < max |p( N2+ 1+ 24 sup |5(t)|2}
t€[0,2] teR

fOT‘ t:tl,"',ti.
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Proof. Let 1 > § > 0 be small and | € N satisfying [ > 3 + max{[t;| | j =
1,---,i}. To verify (H), we take h € Y}, o such that

(t,h(t)) € {u €R® : Is € R; dist {u, (s, h2(7(s),0,5s+a))} < 5}
a.e.on [l —1,1+1] (3.2.29)
|hlm2 < K1, Ki= max_ |p(t)]2+ p+ 2+ sup |5(t)|2
t€[0,2] teR

for N 3 m > [. According to (3.2.28), ha(v(t),0,t + «), t # t1,--- ,t; satisfies
the assumptions of Corollary 3.2.5. So for any sufficiently small 1 > ¢ > 0, we
take ho . from this corollary such that

|h(t) — hoe(t)]2 <6 ae on [-1—1,1+1] \U;Zl[tj —0,t; +46],
|h—hoelme < 2Ky, where m > max{ms,!+2}.

We note that (3.2.9) has now the form (3.2.11) with Dy =1, so Z.(t) = e*/*L.
We have for t € [—1,1] the following cases:

If t; + 26 < t <, then

I+1
1

: / o=/ | (s) — hy.o(s)|a ds < 6.
t

Ift; —26 <t <t;+20 for some j =1,--- i, then

1 I+1
E / o~ =D/2| ()]s ds < K .

S
t

If t; +26 <t <tj4; —20 for some j =1,--- i — 1, then

= 1 s
: / TINE) ~hae(lads = 2 / e~ C/%|R(s) — hao(s)2 ds
' t
1 I+1
+g / e*(sft)/a‘h(S) —hoc(s)lads <d+ 2K, o= (tit1—0—t)/e
tjt1—0

§5+2K1675/6.
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If -1 <t<t; — 26, then

1 +1 1 s
z / e—(s_t)/6|h(8) —hoe(s)ads = - / e—(s—t)/g|h(8) () ds
t ¢
1 I+1
+ / e T/E|h(s) — hoo(s)|ads < 6+ 2K, e~ (19-t)/e
t1—0

<§+2K e %¢,

On the other hand,

m

1
B / e_(s_t)/5|h(s) —hae(s)]2ds < e~ (H1-t/eo g < 9K, e79/¢
1+1

for t <.

Furthermore, according to (3.2.13), the proof of Theorem 3.2.3 and the above
estimates, we know that

| Kom ch(t) = K chac(H)|2 < 277051 — ™) UK + 6+ 4B e70/°
for t € [=1,1] \ Ui, [t; — 26,t; + 20], and
| Ko ch(t)]o < 2eMm70/5(1 — )UK + K + 2K, e79/¢ (3.2.30)
for t € U;zl[tj — 20,t; + 26]. Then Corollary 3.2.5 gives

|Km’€h(t) + h(t)|2 < |Km,€h(t) - Km,6h2,6(t)|2 + |Km’5h2’€(t) (t) + h2,6(t)(t)|2

Hlho(8)(t) — h(E)(t)]2 < 36 + 26~ TD/E(1 — e72) T K + 4Ky e7/F
(3.2.31)
for t € [=1,1] \ Us_,[t; — 26,t; + 20] and m > max{ms,! 4 2}. Now it follows
from (3.2.30)—(3.2.31) by considering sufficiently small ¢ > 0 and sufficiently
large m > [ that

| K ch(t) + h(t)]2 < 46 for t € [—1,1] \ Ui_,[t; — 26, t; + 26],

i (3.2.32)
|Km’6h(t)|2 <Ki+dforte Uj:l[tj — 26, tj + 2(5] .
Recalling (3.2.29) together with (3.2.32) the Lemma 3.2.14 is proved. O

The variational equation (3.2.7) is now u(t) = D,q(v(t))u(t). Clearly d = 1
and according to [157, p. 253], we can take

(8 (s 4 252 (4(5)) ) ds ,
ur(t)y=e © (a ' v ) (F2(t), = (1)),
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where ¢ = (q1,¢2) and v = (71,72). Then (3.2.25) has now the form

Ma) = / < —I(p(—s — a) — pwsgn (—¥(t) + vo) — y(s)7uf(s)>2ds
- / <"?(S)+Mm,uf‘(s)>2 ds — / (p(—s — @), ui (s)), ds.

(3.2.33)
The following result follows immediately from Theorems 3.2.11 and 3.2.13.

Theorem 3.2.15. If the assumptions of Lemma 3.2.14 are satisfied and there
are constants a < b such that M(a)M(b) < 0, where M is given by (3.2.33),
then for any sufficiently small m > 0, (3.2.2) possesses a 2i—periodic solution
near (7,%) for all N34 > [y/1/m]. Moreover, a subsequence of these solutions
accumulates as © — oo on a bounded solution on R of (3.2.2) which is also

near (y,75).
The next result is useful for verifying assumptions of (3.2.28).

Proposition 3.2.16. If —4(t1) + vo = 0, ¥(t1) # 0 then t; is an isolated
solution of —(t) + vo = 0 and moreover,

s <s s
i v A0 7(7’7()1%0 ):
t—tiz | —§(t) + vol2 F(t)le”  t=tie dt \| = () + vol2

T (— FEEE) A+ 50 (T 1) (0))e)

Proof. Since v € C3(R,R?), we get

, . s (t—1t)?
—A(t) +vg = —F(t1)(t — t1) — ’Y(tl)% +o(t — t1)2 .
So we have
() +v0 _ —&(t )t —t1) = F(t) 52 + oft — 1)’
[ =30 +volz | = §(t)(t —tr) — 7 (tr) 5L T +o(t —t1)2],
_ ) +o(h) t—tl L)
TTAE) o -t )l
Similarly we obtain the second limit. O

Remark 3.2.17. Supposing f <% ul(s)>2 ds # 0, Theorem 3.2.15 is

applicable only for non— large 1, because of then there is a ug > 0 such that
for any p > po and a < b it holds M(a)M(b) > 0. On the other hand, if

sup |¢(-)]2 < oo and vy # O then for p > (Sup lg(-)|]2 + m max \p(-)\g)/m,
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(3.2.1) has no periodic solutions: if x is a 2i—periodic solution of (3.2.1) for some
i € R then

0<E [fas)ds = [ ((-alols)) + mp(s), s i (s) + o))z
—,um) |£(s) + vol2ds < 0.

This implies f li(s)|3ds = f |i:(s) + vol3 ds = 0, which is impossible.

Now we con81der the followmg more simple tractable, coupled equations
54223 —2=4y
5y+y+;—+&:sgny :ysusin t, (3:2:34)
where z, y € R and p € R is a parameter. Rewriting again (3.2.34) in the form
Ty = X9, To=1x —2xi’+y—x3
ig=y—wx3, ey=—y+e(usint+y—ax3— sgn(y—x3)),
we put
x = (x1,22,23), flz,y)= (:vz,xl - Qxi’ +y—x3,y— x3)7 A(z) = -1
g(z,y) = -y, hi(z,y,t) =0, ho(z,y,t)=psint+y—x3— Sgn(y — x3).
Since the reduced equation is
T1 =T2, Tog=21 —2xi’—x3, T3 = —23,
we have
y(t) = (r(t),7(t),0), r(t) = secht, wui(t)=(—#(t),7(t),0), d=1
ha(v(t),0,t + o) = [ — 14 psin (t + @), 1 + psin (t + )] .
To find C(t, «), we consider (3.2.9) for this case of the form
ey=-y+h, heYyi, |hm1<2+pu N>3Il<m-1

h(t)e [—1—C+psin(t+a),1 + ¢+ psin(t+a)] ae on [-1—1,1+1].
(3.2.35)
Putting in (3.2.35) y = z+usin (t+«), h = w+ psin (t+ «) and taking t « —t,
we have
eZ=z+epcos(—t+a)—w(—t), weYni, |Wmi1<24+2u
w(t) € [-1—-¢, 1+ ae on [-I-—1,01+1].

Following the proof of Theorem 3.2.3 (see (3.2.13)) and Lemma 3.2.14, we obtain

—(m=0)/e
e
l[2]li,1 < (1_76_2 +e 1/8)(2+2u+5u)+1+C+5u
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Consequently, we can take in (H) that
C(t,o) = [—1+psin(t+a), 1+ psin (t + a)],

and then (3.2.25) possesses the form

0 o0
M(a) = [ J (psin(s+a) = 1)r(s)ds + [(psin (s + a) + 1)7(s) ds,
0o 0
0 oo
J (psin(s +a) + 1)7(s)ds + [(psin (s + a) — 1)7(s) ds
—00 0
= [—/Mrsechgcos a — 2, —pmsech 5 cos a—&-Z} .
(3.2.36)
By Theorems 3.2.11, 3.2.13 with a = 0, b = m and M is given by (3.2.36), we
obtain the following result.

Theorem 3.2.18. If |u| > ZcoshZ = 1.5973925 is fized, then (3.2.34) pos-
sesses for any sufficiently small € > 0 a 2mwi—periodic solution for all N > i >
[1/4/€]. Moreover, a subsequence of these solutions accumulates as i — oo on a
bounded solution on R of (3.2.34).

Finally, our method is clearly applied like in Remark 3.1.32 to piecewise
smoothly and singularly perturbed problems. For instance, for

54222 —z+4e3t =y

Lo . (3.2.37)
ey+y+y=eusint,
we find that (3.2.25) now has the form
[eS) 0 1
M(a)=p / sin (s + a)7(s) ds — / 7(s)% ds = —pm sech g cos a— 7.

Consequently, by Theorems 3.2.11 and 3.2.13, we obtain the following result.

Theorem 3.2.19. If|u| > 5= cosh § = 0.266232 is fized, then (3.2.37) possesses
for any sufficiently small € > 0 a 2mwi—periodic solution for all N > i > [1/+/e].
Moreover, a subsequence of these solutions accumulates as i — oo on a bounded
solution on R of (3.2.37).

The method of this Section is extended in Chapter 4 to show chaotic behavior
of (3.2.4).

3.3 Bifurcation of Periodics from Periodics

3.3.1 Discontinuous O.D.Eqns

In this section we continue with the study of bifurcations of periodic solutions for
ordinary differential equations with discontinuous periodic perturbations. But
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- >

° Vo sin wot °

Figure 3.5: A block on a periodically moving ribbon under a force

now we investigate the problem of bifurcations of periodics from periodics, while
in the previous two Sections 3.1 and 3.2 bifurcations of subharmonics are studied
with very large periods from homoclinics. For motivation, we again consider a
mass attached to a spring and putting horizontally on a moving ribbon with a
speed vg sinwt (see Fig. 3.5). The resulting differential equation has the form

&+ q(x) + psgn (¢ 4+ vosinwt) =0, (3.3.1)

where ¢ € C?(R,R) and p > 0, vg > 0, w > 0 are constants. Like in the previous
sections, discontinuous equation (3.3.1) is considered as a perturbed differential
inclusion of the form

t=y, y€—qlx)—pnSgn(y+vosinwt). (3.3.2)

By assuming the existence of a 2 /w—periodic solution v of &+¢(z) = 0, we study
bifurcation of 27 /w-periodic solutions for (3.3.2) from the 1-parametric family
{7(t+0) | 8 € R}. Of course, we consider more general systems of perturbed
differential inclusions than (3.3.2) which take the form

k
a(t) € f(z(t) + > pifi(@(t),p.t) ae on R (3.3.3)
j=1

with z € R, u € R¥, = (pq,- -+, px). Motivated by (3.3.2), we set the main
assumptions about (3.3.3):

(i) f € C*(R",R") and f; : R x RF x R — 2%" \ {@}, j = 1,--- , k are all
upper—semicontinuous with compact and convex values.

(ii) The unperturbed equation & = f(x) has a manifold of 1-periodic solutions,
i.e. there is an open subset @ C R d > 1 and a C?> mapping ~ :
O x R — R™ such that y(0,t + 1) = ~(0,t) and ~(6,-) is a solution of
&= f(x).
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(111) f](x,u,t—Fl) = fj(l‘,,u,t) fOI‘j = 17 7k-

We investigate, if some of these periodic solutions (0, t) persists after per-
turbation (3.3.3). The case when f; are all singlevalued and smooth is a classical
problem of bifurcation of periodic solutions for o.d.eqns and we refer the reader
to [55,151] for more details. The purpose of this section is to extend some of
those results to the multivalued case (3.3.3).

3.3.2 Linearized Problem

In order to study bifurcations of 1-periodic solutions for (3.3.3) from the family
~v(0,t), 6 € O, first we consider the non-homogeneous variational equation

&= A(0,t)x + h(t) ae.on [0,1],
A(0,t) = Do f(v(6,t)), heL?:=L*[0,1],R"), (3.3.4)
z€Cp={yeC(0,1,R") : y(0) =y(1)}

along with the homogeneous one
t=A0,t)x, ze€C,. (3.3.5)

Note (3.3.5) is just the linearization of the unperturbed equation & = f(x) of
(3.3.3) along v(6,t), 8 € O. The aim of this subsection is to derive a Fredholm-
like alternative result for (3.3.4) in order to apply the Lyapunov-Schmidt de-
composition in the next subsections to (3.3.3). The first step towards this is
the differentiation with respect to 6 and t of 4(0,t) = f(v(6,t)) which yields
respectively

0 . 0

where 0 = (61, ,04-1). We see that (3.3.5) has “trivial” 1-periodic solutions
%7(9,1&), i=1,---,d—1and %(0,t). We assume that the following condition
is satisfied:

(evt)’ 7(9775) = A(evt)’}/(evt) )

(iv) The family {y(6,t) | 0 € O} is non-degenerate, i.e. the only 1-periodic so-

lutions of & = A(#, -)x are linear combinations of %7(9, t),i=1,---,d-1
and 4(0,t). Moreover, %W(Q,t), i=1,---,d—1and 4(0,t) are linearly
independent.

Let U(0,t) be the fundamental solution of & = A(f,t)x. Then

NI-U(@0,1)) = span{ 0

53700, 5(0,0), i =1, d - 1} (336

and R(I —U(6,1)) is a continuous trivial vector bundle over O. The adjoint
equation to (3.3.5) has the form

t=-A0,t)'z, xz€C, (3.3.7)
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with the fundamental solution (U~1(6,t))*. Then any 1-periodic solution of
(3.3.7) has the form (U~1(0,t))*y, y € R™ with (U~%(0,1))*y = y. Since
U0, )y =y <= U0, 1)'y=y, (3.3.8)
we get
N(I= (U7H6,1)) = NI - U0, 1)) = (RE- U 1))

According to (3.3.6), (R(I — U(#, 1)))L is a continuous trivial vector bundle
over (. So taking its basis, there are linearly independent continuous mappings
vi(0,t),i = 1,---,d,v; : O xR — R" v;(0,t +1) = v;(0,t) and all v; are
solutions of (3.3.7). Let (-,-) be the inner product on R™ and let I1(f) : L? — L?
be a projection onto the subspace

h€L2|/ ),vi(0,8))ds =0, Vi=1,---,d

depending continuously on 6 in L(L?) and having uniformly bounded || TI()|| on
any bounded subset of O. Such a projection exists, for instance the orthogonal
one. Now we can state the following well-known Fredholm alternative result
110, p. 411].

Lemma 3.3.1. System (3.3.4) has a solution if and only if I—T1(8))h = 0. This

1
solution = is unique provided that it satisfies [(x(s), %7(9,8)) ds = 0 for all
0

1
i=1,--,d—1 along with [(x(s),%(0,s))ds = 0. Moreover, let K(0) : L> — C,

0
be the linear operator defined so that x = K(0)h be the unique solution of the

linear system
&= A(0,t)xr +II(0)h . (3.3.9)

Then K(0) : L? — C)p is a compact linear operator depending continuously on 0.

Proof. We derive a parameterized Green formula for K () [110]. The orthogonal
projection II(#) : L? — L? is given by the formula

d
= }: 0)v:i(6,-), (3.3.10)

where ¢;(0) solve the linear system

d 1
Ecl /vlﬁs v;(0,s))
i=1 r

s),v;(0,8))ds, j=1,2,---,d.

O\H

(3.3.11)
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The Gram matrix

is invertible, so (3.3.11) implies

1 d
G(9) = (vi(8,5),v(0,s)) ds)
(O/ ij=1
(c1(0),--+ ,cq ( ), v1(0, 8)) ),v4(0, 8)) )
v

- \/Gil(e) (<h(s)’v1(97 S)>, ) <h(s)>vd(0, 5)))* ds.
0
This gives by (3.3.10) the formula of TI(6):

O\H

/ M, (6,t, ) (3.3.12)

where
My (0,t,8)h := (v1(0,8)*, - ,vg(0,6)*) G7HO) ((h,v1(0,8)),- -, {h,v4(6,5)))"
is a continuous n x n-matrix on O x [0, 1]%.
Next, a general solution of (3.3.9) is given by
t
z(t) = U(0,t)xo + / UO,t)U~1(0, s)(TI(0)h)(s) ds (3.3.13)
0
and it satisfies x(1) = xo if and only if
1
(I—-U(0,1))x0 = /U(G, DU, s)TL(O)h)(s) ds . (3.3.14)
0
Note
(R(I—U(6,1)))" = span {v;(6,0) | i =1,2,--- ,d} .
So (3.3.14) has a solution z if and only if
1
</U(9,1)U_1(9,s)(H(9)h)(s) ds,vi(9,0)> =0, Vi=1,2,---,d. (3.3.15)
0
But using (3.3.8) we derive
1
< / U(6,1)U (8, 5) (T1(0)1) () ds,vi(9,0)>

0

_ /((n(@)h)(s),U*(a,s) ) 0:(6,0)) / ), 0i(6,5)) = 0
0 0
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according to the definition of II(6). So (3.3.14) has a solution xo. We show its
uniqueness. Put for simplicity

(0 S) 8({; '7(0,3), 1= 1727 T 7d_ 1; wd(eas) = 7(035) .

Let
span {eqr1(0), -+, en(0)} = {wi(0,0) |i=1,2,--- ,d}*

with e () continuous. Then

n

Ty = Zn] Jw;(6,0) + Z n;(8)e;(8) (3.3.16)
j=d+1
and so
d
([=U(0,1)z0 =Y n;(0) (- U(6,1)) w;(6,0)
j=1
+ D O A-U©,1)e;(0) = D n;(0) (I-U(6,1))e;(6).
j=d+1 j=d+1

Introducing an n x (n — d)-matrix

M(0) = ([(L-U®,1)) ear (O], -+, [(T-U(0,1)) en(®)]) ,

(3.3.14) has the form

M(0) (na41(0),- -+ ,nn(0 /U 10, s)(IL(0)h)(s)ds.  (3.3.17)
0

The n x (n — d)-matrix M (0) has the rank n —d, so the (n —d) x (n — d)-matrix
M(6)*M () is invertible. Hence (3.3.12), (3.3.17) and the Fubiny theorem [171]

imply
1

(asr (8, 7 (8))" = / Ma(6, $)h(s) ds (3.3.18)

0

where

[M(6)"M(6)) " M(6)"U(6,1)

“10,s)— [ UTHO, 2) M (0, 2,5) dz
/ |

is a continuous (n — d) X n-matrix on O x [0, 1].
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Now we compute the rest 7;. Using the assumption of Lemma 3.3.1:

),w;(@,s))ds =0, j=1,2,---,d,

O\H

together with (3.3.13), we derive

/<Zn U(0, s)wi(6,0), w; (6, s)> s=H;(0), j=1,2---,d, (3.3.19)

—0/1<§:: ni(6)

i=d+1

where
U(0,s)ei(0),w; (0, s)> ds

S

—/</U(Q,S)U_l(e,z)(H(Q)h)(z) dz,wj(9,5)> ds

for j =1,2,--- ,d. Using the Fubiny theorem we see that

(F:(0).-- . Ha0)) = / Ms (6, 5)h(s) ds

for a continuous d x n-matrix Ms(6,s) on O x [0,1]. Since

/<Zm U0, s)w;(6,0),w;(8, s)> ds =

=G(0) (m(0), - ,na(0))

(O/wzﬂs w]95)>d)

is invertible, from (3.3.19) we derive

=1

1

0) [ {wi(0.5),y(6.) ds
0

and the Gram matrix

3,7=1

(1(8), - (0 /G V=1 My (0, 5)h(s) ds. (3.3.20)
0

Inserting formulas (3.3.18) and (3.3.20) into (3.3.16), we get

xo = | My(0,s)h(s)ds (3.3.21)
/
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for a continuous n x n-matrix My(6, s) on O x [0, 1]. Next plugging (3.3.12) and
(3.3.21) into (3.3.13), and using the Fubiny theorem, we obtain a formula of
K(0)h of the form

1

(K(9)h)(t) = / K1(0,t,5)h(s) ds + / K(0,t, 5)h(s) ds
0

0

for continuous n x n-matrix functions K (6,t,s) and Kz(6,t,s) on O x [0,1]2.
Using standard method [199] based on the uniform continuity of continuous
functions on compact intervals along with the Arzela-Ascolli theorem [59], we
see that K(0) : L? — C, is a compact linear operator which is continuous with
respect to 6. Finally, introducing the parameterized Green function G(0,t, s) as
follows

| Ki(0,t,s) + Ka(0,t,s) for 0<s<t<I,
G(0,1,5) '_{ K1(0,t,s) for0<t<s<1,

we see that .
(K(0)h)(t) = /G(&t, s)h(s)ds.
0
The proof is finished. O

3.3.3 Bifurcation of Periodics in Nonautonomous Systems

In this subsection, we study bifurcation of periodic solutions to (3.3.3) by using
Lemma 3.3.1 together with topological degree arguments. For this reason, we
first scale 1 — sp for s € R\ {0} and take the change of variables [75]

z(t+ o) =7(0,t) +s2(t), acR, seR\{0}, (3.3.22)
so then (3.3.3) possesses the form
Z(t) — A(0,t)z(t) € g(2(t),0,, u,8,t) ae. on [0,1], (3.3.23)

where
g(x,0,a, 1, s,t) = { veR":ve | f(sw+y(0,t) — f(v(0,t) — A(G,t)s:c]

k
+ Zl /u’jfj(sx + ’Y(Qvt)a Sﬂat + O[)}
]:

and ¢ is extended to s = 0 by putting the term in the square brackets equal to
zero. Then g : R” x O x R x R¥ x R x R — 28"\ {{)} is upper-semicontinuous
with compact and convex values. Introducing a multivalued mapping G : C), x

O xR x RF x R — 2L by the formula

G(z,0,a,u,s) = {h € L? . h(t) € g(2(t),0,a,u,8,t) ae on [0, 1]},
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(3.3.23) is considered as a multivalued equation for z of the form
2—A0,)z € G(z2,0,a,u,s). (3.3.24)

Like for (3.1.17), G(z,6,a, u,s) are non—empty, closed, convex and bounded
in L2, and they are also weakly compact in L?. In order to solve (3.3.24), we
consider the homotopy

z2—A(0,)z € F(z,0,a, 1,8, \), Xe€]0,1], (3.3.25)
for
F(z,0,a,u,8,\) = {h € L? : h(t) € p(2(t),0,,p,s,\t) a.e. on [0, 1]} ,

with
pla, 0,5, 0 1) = { eR" i v e 2[f(sw+7(0,6) = F((6,1) = A, t)sa]
k k
+A glﬂjfj(sx+7(9,t)7su,t+a) +(1=X) Z:lujfj(’y(ﬁ,t),(),tJra)} .

Again p is extended to s = 0 like g above. Now we use the Fredholm alternative
result of Lemma 3.3.1 to (3.3.25) by introducing a projection L(6) : L? — R?

given by
1 1
h_</ ), v1(0, s)) / ), va(0,5)) >,
0 0

and then decomposing (3.3.25) as follows:

0e H(Z567a7,ua3a)‘)
H(2,0,0,11,8,)\) = {(z — MK (0)h, L(O)h) : h € F(z,@,a,u7s7)\)} .
(3.3.26)

Like in Subsection 3.1.3, H : C, x O x R x RF x R x [0,1] — 2B\ {§} is
upper—semicontinuous and I¢ xre — H has compact convex values and maps
bounded sets into relatively compact ones. Finally for stating Theorem 3.3.2
below, we introduce a multivalued mapping M, : O x R — 2R \ {0} by

M,0,a)= {L((‘))h chel? h Zujfj ),0,t+ «) a.e. on [0, 1]}

(3.3.27)
Arguing as for (3.1.21), the mapping M,, is upper—semicontinuous with compact
convex values and maps bounded sets into bounded ones. Now we are ready to
prove the main results of this section.
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Theorem 3.3.2. Letd > 1. If there is a non—empty open bounded set B C O xR
and pg € S*¥=1 such that

(i) 0 ¢ M, (9B)
(i) deg(M,,,B,0) # 0
Then there is a constant K > 0 and a region in R for p of the form

R = { sfi : s and i are from open small connected neighborhoods

Uy and Uy C S*=1 of 0 € R and of po, respectz'vely}

such that for any p € R of the form p = sf, s € Uy, i € Us, the differen-
tial inclusion (3.3.3) possesses a 1-periodic solution x,, satisfying, according to
(3.3.22),

sup ’xu(t) — (0t — au)‘ < Ks,
0<t<1

where a, € R and 6, € O.

Proof. We have to solve (3.3.24) which is inserted into the homotopy (3.3.26).
In order to handle (3.3.26), we need the following results.

Lemma 3.3.3. Under condition (i) of Theorem 3.3.2, for any A > 0 there are
constants 6 > 0, 1 > so > 0 such that |[L(O)h| > & for all h € F(z,0,a, u,s,\)
and for any |s| < so, A € [0,1], 2| < A, (6,a) € OB, | — po| < 4.

Proof. We prove Lemma 3.3.3 by the contrary. So assume that there isan A > 0

and
Sp—>07 )\p—>)\0, |Zp| SA, Hp — Ho, peNﬂ

OB > (0p,ap) — (Bo,00) € 0B,  hy € F(zp,0p, ap, ltp, Sp, Ap)
such that L(6,)h, — 0 as p — oo. Using the boundedness of {h,}}] in L?
and Theorem 2.1.1, we can assume that h, tends weakly to some hy € L?.
Then by Mazur’s Theorem 2.1.2 like in the proof of Lemma 3.1.7, ho(t) €
Z§=1 toj fi(v(600,t),0,t + ) a.e. on [0,1], and L(6p)ho = 0. This contradicts
to (i) of this theorem. The Lemma 3.3.3 is proved. O
From Lemma 3.3.3 and the construction of H it follows:

Lemma 3.3.4. There are open small connected neighborhoods Uy C R, Us C
Sk=1 of 0 and pg, respectively, and a constant K1>0 such that 0 ¢ H (982, i, s, \)
for any s € Uy, p € Uz, X € [0, 1] with

Q= {(z,e,a) €C, xRY ¢ |2] < Ky, (8,0) € B}.
Finally applying Lemma 3.3.4 for any s € Uy, u € Uy we derive
deg (H(vﬂla S, 1)7970) = deg (H('7M07030)7970) = deg(MuoaBa O) 7& 0.

Hence (3.3.26) has a solution in  for any s € Uy, p € Uy and A = 1. This
solution gives a solution of (3.3.24) according to the definition of (3.3.26). The
proof of Theorem 3.3.2 is finished. O
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Applying Theorem 3.3.2 with B = (a, b) together with the proof of Theorem
3.1.9 we get

Corollary 3.3.5. Let
such that M, (a)M,, (b
applicable.

d = 1. If there are constants a < b and py € SF1
) C (—00,0), then the conclusion of Theorem 3.3.2 is
Remark 3.3.6. The restriction |uo| = 1 is not essential, since M, in (3.3.27) is
homogeneous with respect to the variable p.
Remark 3.3.7. Let f(x) = Bz for a matrix B and let 71, - - - , 74 be the maximum
number of hnearly mdependent 1 peI‘IOdIC solutions of Z = Bx. Then we take
Y(0,t) = 0171+ -+ 0474 and 2 89 ,i=1,--+,drepresent the maximum number
of linearly independent 1— perlodlc solutlons of 4 = Bz. Considering now (3.3.22)
with a = 0 and repeating the above procedure, we get O = R% and M, : ‘R —

2R \ {0} of the form
M, (0) = { Lh:hel?

h(t) € i:l i fi (0171(t) + -+ -+ 04va(t),0,t) a.e. on [0, 1]} ,

(3.3.28)
1 1

where Lh = (f(h(s),vl(s» ds, -+, [(h(s),va(s)) ds) and v;, 1 = 1,--- ,d are
0 0

linearly independent 1-periodic solutions of © = —B*v. Then Theorem 3.3.2 is

valid with such M, (3.3.28).

3.3.4 Bifurcation of Periodics in Autonomous Systems

When all f; are independent of ¢ in (3.3.3) then we need to modify the arguments
of Subsection 3.3.3. So we start from the differential inclusion

k
i(t) € f(z(t))+zﬂj fi(z(t),n) ae on R (3.3.29)

with z € R™, p € R*, = (p1,- -+, ux) and f, f; satisfying the assumptions (i),
(ii) and (iv). Scaling u — su for s € R\ {0} and taking now, instead of (3.3.22),
the change of variables

(14 sa)t) =~v(0,t) + s2(t), aeR, seR\{0}, (3.3.30)
(3.3.29) is rewritten in the form

2(t) — A(0,t)2(t) € g(2(t),0,a, u, s,t) a.e. on [0,1] (3.3.31)
with

g(z,0,a, pu,s,t) = {v eR” :ve % flsz+~(0,t) — f(~(0,t)) — A(G,t)sx}

+af(v(0,t) + sz) + (1 + sa) zi: fi(sz +~(0,1), s,u)}
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Because of (3.3.31) has a similar form like (3.3.23), we do repeat the approach
of Subsection 3.3.3 to (3.3.31) and we arrive like for (3.3.27) at a multivalued

mapping N, : O x R — 2R \ {0} with

k
N,.(0, a):{L(a)h che L2 h(t) € a(8,) + > i f;(7(6,1),0) a.e. on [0, 1]} .
j=1
(3.3.32)
N, is again upper-semicontinuous with compact convex values and maps bounded
sets into bounded ones. Following the proof of Theorem 3.3.2, we get the following
result.

Theorem 3.3.8. Let d > 1. Let there exist a non-empty open bounded set
B C OxR and o € S*=* such that 0 ¢ Ny, (0B) and deg(N,,,,B,0) # 0. Then

Moo
there is a constant K > 0 and a region in R* for u of the form

R = { st = s and fu are from open small connected neighborhoods

Uy and Uy C S*=1 of 0 € R and of po, respectively }

such that for any p € R of the form pu = sfi, s € Uy, i € Uy, the differential
inclusion (3.3.29) possesses a (1+sa,,)—periodic solution x,, satisfying, according
0 (3.3.30),
sup |x#(t) — (0, t/(1+ sa#))| < Ks,
0<t<l+say

where o, € R, |a,| < K and 0, € O.

We proceed with the case d = 1. Then y(6,t) = v(¢) and the adjoint varia-
tional equation (3.3.7) has a unique (up to scalar multiples) 1-periodic solution

u(t).

Corollary 3.3.9. If
1

/ (3(s),0(s)) ds # 0, (3.333)
0

then there is a constant K > 0 such that for any sufficiently small p, the differ-
ential inclusion (3.3.29) possesses a periodic solution x, with the properties of
Theorem 3.3.8.

Proof. There is a K > 0 such that
1
dist { N, (a),a / G(s),0(s)) ds b < &
0

for any u € S¥~1' and a € R. Then ther re is a K > 0 such that N,(—K)N,(K) C
(—00,0), which gives |deg(N,,(—K,K),0)| = 1 uniformly for p € S¥~1. Ap-
plying Theorem 3.3.8 with B (—K, K), the proof is finished. O
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Remark 3.3.10. Corollary 3.3.9 is an extension of a classical bifurcation result of
[110, p. 416, Theorem 2.4] to the multivalued case (3.3.29), since when (3.3.33) is
satisfied and (3.3.29) is smooth then we can apply the implicit function theorem
in order to solve the variable o near 0 from a bifurcation equation as a function
of a small parameter u. Note (3.3.33) is a transversality assumption for a. As
a consequence, for any small p, there is a unique 1-periodic solution near v in
the smooth case.

To complete the subject of Corollary 3.3.9, we suppose

[0 ds =0, (3.3.34)
0

Then we loose the variable o in N, and we deal with a second-order singularity
of (3.3.29) of a fold-type [56]. We need to modify the above approach. To this
end, we scale  — s2u for s > 0 and change the variables

z((1+ sa)t) = y(t) + sau(t) + s?2(t), a€R, s>0, (3.3.35)

1
where u € C), is the unique solution of © — A(t)u =7, [(u(s),5(s))ds =0 and

A(t) = Dy f(7(¢)). Then (3.3.31) has the form ’
Z(t) — A(t)z(t) € g(2(¢), o, 1, 8,t) a.e.on [0,1], (3.3.36)

where
EXNE { ER" i ve | flsault) + sz +5() — F(1(1)
—A()(sau(t) + 822) |+ 2 [ F(v(D)+sau(t) + 5%2) — F((1))]
+(1 + sa) '21 wjfi(sau(t) + s2x + (1), s2p)} .

Repeating the procedure of Subsection 3.3.3 for (3.3.36), the resulting mul-
tivalued function is (like for (3.3.27)) as follows:

1
Py(a) = { 0f<h(s), v(s))ds : h € L?satisfying a.e. on [0, 1] the relation

A1) € a2 1D O) @), u(0) + Do S GO)u)] + 3 s 1500 o>}.

(3.3.37)
We have the following extension of Corollary 3.3.9.

Theorem 3.3.11. Let d =1 and (3.3.34) hold. Suppose

Ao = / (3D2F () (u(s), u(s) + Daf(1(s))u(s), v(s)) ds > 0
0
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1
and there exists po € S*~1 such that [ (h(s),v(s)) ds<0 for any h € L* satisfy-
0

ing h(t) € Z§=1 to; f5(v(t),0) a.e. on [0,1]. Then there is a constant K>0 and
a wedge—shaped region in R for p of the form

R = { s2fi: s >0 and i are from open small connected neighborhoods

Uy and Uy C S*=1 of 0 € R and of jio, respectively }

such that for any i € R of the form p = s2fi, 0 < s € Uy, i € Us, the differential
inclusion (3.3.29) possesses two (1 + sax ) —periodic solutions x4+ ,, satisfying,
according to (3.3.35),

sup e, (8) —(/(1+ sax,) - sawu(t/(1+ sax,)| < Ks?,
0<t<1+sat

where ay ;, >0, a— , <0 and |ax .| < K.
Proof. Since P, (a) = a4 + S, where Ag > 0 and

1

k
S— /(h(s),v(s)) ds:h e I (1) € Y jiog 5 (1(0),0) e on [0, 1

0

is a set of negative numbers, we have that P, (0) = S contains only nega-
tive numbers, while there is an o9 > 0 such that P, (+a) contains only
positive numbers. Then according to the proof of Theorem 3.1.9, we derive
deg(Pp,, (—0,0),0) = —1 and deg(P,,, (0, ap),0) = 1. Applying Theorem 3.3.8
with B = (—ayp,0) and B = (0, ap), respectively, the proof is finished. O

Remark 3.3.12. Theorem 3.3.11 is an extension of a saddle-node bifurcation of
periodic solutions [108, p. 197], [151] to the multivalued case (3.3.29). Indeed,
if (3.3.29) is smooth then we can use the implicit function theorem for solving
a bifurcation equation, and we get the singularity fold. This means that when
k =1, for p > 0, there are only two 1-periodic solutions near -y, for 4 = 0 the
only one is v near it, while for ;1 < 0 there are no 1-periodic solutions near +.

In the rest of this subsection, we deal with planar differential inclusions under
the condition (i), and (ii), (iv) are replaced by

(v) There are numbers 0 < ¢ < e and a C?-mapping 7 : (c,e) x R — R2
such that (6, t) has the minimal period 6 in ¢t and (0, -) is a solution of

@ = f(x).

Condition (v) usually holds when # = f(z) is a nonlinear conservative
second-order equation, for instance like the Duffing equation 3 — z + 23 = 0
possessing a 1-parametric family of periodic solutions (see Fig. 1.2) with explicit
formulas expressed in terms of the Jacobi elliptic functions [108, p. 198]. Next,
differentiating 4(0,t) = f(v(6,t)) with respect to t and 6, we see that the linear
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variational equation @ = D, f(v(0,t))u has two solutions: ¥(6,t) and %7(9, t).
The first one is f—periodic, but the second one is not, since v(6,t + 0) = (6, t)
implies %W(G,t +0)+5(0,t) = %7(0715). Consequently, w = D, f(v(0,t))u has
the single (up to scalar multiples) 6—periodic solution (6, t). Then according to
Subsection 3.3.2, (v) implies the existence of a non-zero, continuous mapping
v : (c,e) — R? such that v(6,t) is a f-periodic solution of the adjoint equation
0 = —A(0,t)*v. Then w(f,t) = v(6,0t) is a 1-periodic solution (up to scalar
multiples) of w = —0A(0, 6t)*w.

To study bifurcation of #-periodic solutions in (3.3.29), we scale p — su like
above for s € R\ {0} and change variables as follows

x(0t) = v(0,0t) + sz(t), seR\{0}. (3.3.38)
Then (3.3.29) has the form
Z(t) — 0A(0,0t)z(t) € p(z(t),0, u,s,t) a.e.on [0,1], (3.3.39)

where
p(x,0, 1, 8,t) = {v ER?:ve | f(sz+~(0,0t) — f((0,0t) — A(H,Gt)sx]
k
+0 ;1 ,Ujfj(S.T + 7(97 915), Su)} :

Applying the procedure of Subsection 3.3.3, we can solve (3.3.39) in z € C,
considering 6 € (c,e) as a parameter. The corresponding multivalued mapping
has the form

(h(s),w(0,s))ds:he L?,

Ct—

Qu(‘g) = {

h(t) € 0 zk: wifi(v(6,60t),0) ae on [0, 1]}
=t (3.3.40)
(h(s),v(0,s))ds : h € L*(]0,0],R?),

I
—
C—=c

h(t) € i:ly’jfj(f)/(eat)ao) a.e. on [0,0]}

Summarizing, we obtain the following result.

Theorem 3.3.13. Let (i) and (v) be satisfied. If there are constants ¢ < a < b <
e and po € S such that Q. (a)Q, (b) C (—00,0), then there is a constant
K >0 and a region in R* for u of the form

R = { sfi: s and i are from open small connected neighborhoods

Uy and Uy € S*=1 of 0 € R and of po, respectively}
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such that for any u € R of the form u = sp, s € Uy, i € Us, the differential
inclusion (3.3.29) possesses a 0, —periodic solution x, satisfying, according to

(3.3.38),

Sup |'Tﬂ(t) - fY(eﬂvt)| S KS,
0<t<0,,

where 0, € (c,e).

Remark 3.3.14. If ©=f(z) is a Hamiltonian system and v(0, t)=(v1(0,t), v2(0,1))
then v(0,t)=(¥2(0,t), —31(0,1)) and

0 ] 0
/ (h(s),v(0, 5)) ds = / h(s) AA(6,5) ds = / h(s) A F(2(6, 5)) ds,
0 0 0

where A is the wedge product given as a Ab := a1bs — asb; for a = (a1, az) and

Remark 3.3.15. Q,(0) in (3.3.40) is an extension of a classical Melnikov function
[55], [108, p. 195] to the multivalued case (3.3.29). Hence Theorem 3.3.13 is a
generalization of the Poincaré-Andronov bifurcation theorem.

3.3.5 Applications to Discontinuous O.D.Eqns

First we consider the following simple version of (3.3.1):
&+ pi7(x) + posgn (& + veB(t)) =0, (3.3.41)

with 7 € C(R,R), 8 € C(R,R) is 1-periodic and p1,2 > 0, v > 0 are constants.
Rewriting (3.3.41) in the form of (3.3.3)

=y, y€—mt(z)— p2Sgn(y+voB(t)), (3.3.42)

we get f =0, so we apply Remark 3.3.7. 1-periodic solutions of the variational
equation z = y, y = 0 and adjoint one & = 0, ¥ = —u are constant ones
7 (t) = (1,0) and vy (t) = (0, 1), respectively.

Theorem 3.3.16. Let 0 < t; <ty < -+ < tg; < 1,5 > 1 be the only zero
points of B. Letinf T =11 <0< Ty =sup 7. If u12 > 0 are sufficiently small
satisfying

I's TIg

H1/phe > max { - ﬁ,—g}, where

bs = <_ L+ 2%(—1)%) Sgn5(¥) , #338)
i=1

then (3.3.41) has a 1-periodic solution.
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Proof. Multivalued function (3.3.28) has now the form

M,(0) = { jh(s) ds : heL?
0
h(t) € —u17(0) — 2 Sgn (veB(t)) a.e.on [0, 1]}

which, by the assumptions of this theorem, has the form

My (6) = ~m7(0) = pa — 142 i(—niti) sgn5(¥) .
i=1

From (3.3.43) there are a < bsuch that M,,(a)M,(b) < 0. The proof is completed
by Corollary 3.3.5. O

The next example is a multivalued van der Pol oscillator (see [55]) of the
form

t=y, Y€-—z+up(r)y, (3.3.44)
where ¢(z) = [¢1(2), pa(z)], p > 0 and ¢12 € C(R,R), ¢1(x) < ¢a(x). Note
(3.3.42) and (3.3.4 )are multivalued perturbations of linear second-order o.d.eqns.

Theorem 3.3.17. If there are constants 0 < 01, 0 < 05 such that

27 27
0< / ¢1(61 cos s) sin? s ds, /d)g(@g cost) sin® sds < 0,
0 0

then (3.3.44) has a periodic solution for any sufficiently small pn > 0.

Proof. We apply Theorem 3.3.8. The unperturbed equation in (3.3.44) is just
the harmonic oscillator, so we have

~v(0,t) = O(cost, —sint), ~(0,t) = —6(sint,cost), 6 >0
v1(0,t) = (cost, —sint), wv9(0,t) = (sint,cost),

and (3.3.32) now possesses the form

27 27
N (0,) = {(— /h(s) sinsds,—29a7r+/h(s) cossds) :
0 0

h e L*([0,2n],R), h(t) € [¢1(0cost), p2(f cost)](—Osint) a.e. on |0, 27r]} .
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To compute deg(Ny, B,0) with B = (61,02) X (—ag, ap) for ag > 0 large, we
consider the homotopy

N1,>\(9,a) =

27 2m
{(()\9 +1-X) / h(s)sin?sds, —2(A\0 +1 — N)am — )\G/h(s) sinscossds) :
0 0

h € L*([0,27],R), h(t) € [¢1(0cost), d2(f cost)] ae. on[0, ZW]} .

If ap > 0 is sufficiently large then 0 ¢ N; \(0B), and so deg(N1,B,0) =
deg(N1,0, B,0) = £1. Theorem 3.3.8 gives the result. O

Now we study (3.3.2) by assuming:

(vi) There are numbers 0 < ¢ < e and a C%?-mapping v : (c,e) x R — R
such that (6, ) has the minimal period € in ¢, 4(0,0) = 0 and (0, -) is a
solution of & + ¢(z) = 0.

Fixing 0 = 27 /w, provided that ¢ < 27/w < e, condition (iv) holds with d = 1.
We need the following well-known property of ~.

Lemma 3.3.18. Y¥(27/w,7/w) = 0 and (27 /w,t) # 0 for any n/w # t €
(0,27 /w).

Proof. Since (27 /w,t) is periodic, there is a smallest ¢;, 0 < ¢; < 27/w such
that 4(27/w,t;) = 0. Then y(t) = v(27/w,2t; — t) is also a solution of & +
q(z) = 0 such that y(t1) = v(27/w, t1), y(t1) = ¥(27/w, t1). Hence v(27/w, t) =
v(27/w, 2ty — t). Similarly we have y(27/w, —t) = (27 /w,t). So v(27/w,t) is
2t periodic, and this gives 2t; = 27 /w. O

Now we can prove the following

Theorem 3.3.19. Let vg > 0 be sufficiently large. If (vi) holds and ¢ < 27w <
e, then for any sufficiently small p > 0, (3.3.2) has a 27w /w—periodic solution
near the family v(0,t), 0 € (c,e) from (vi).

Proof. We apply Corollary 3.3.5. Like in Remark 3.3.14, we have vi(t) =
(F(2m/w,t), =¥ (27 Jw, t)). Next, for vy > 0 sufficiently large the equation

Y21 /w, ) +vpsinw(t+ o) =0, 0<a<2r/w

has as precisely the solutions t1(a) 4+ 27j/w, ta(a) + 27j/w, j € Z, where
t1, to are continuous functions such that t1(a) < ta(@), t1(0) = 7/w, t2(0) =
2w, t1(m/w) = 0, to(m/w) = m/w, t1(a) is near 7/w — a and ty(a) is near
27 /w — a. Moreover, for vy > 0 sufficiently large, §(27/w,t) + vosinw(t + «)
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is positive on (f2(e),t1(a) + 2m/w) and negative on (¢1(a), t2(cv)), respectively.
Using this, (3.3.27) possesses the form

27w
M (a) = {— of (h(s),¥(27/w,s))ds : h € L?,

h(t) € — Sgn (§(27/w,t) + vosinw(t + a)) a.e. on [0, 27r/w]}

t1(@)+2m/w ta(a)
= (f) A(2m/w, s)ds — (f)f'y(27r/w75) ds
= 2(7(27/w, t1(@)) — v(27/w, t2(a))) .

We have
M;(0) = 2(y(27/w, 7/w) — v(27 Jw, 27 Jw)) = =M (T /w) .

According to Lemma 3.3.18, v(27/w, t) has the global extrema on [0,27/w] at

t =0,7/w, and so y(27/w, 7 /w) # v(27 /w, 27 /w), i.e. M1 (7/w) # 0. This gives

that My (7/w)M7(0) < 0. Taking a = 0, b = w/w in Corollary 3.3.5, the proof is

finished. O
The following example is motivated by a clock—pendulum [123].

Theorem 3.3.20. Consider the equation

&4 q(x)+ psgnz- sgnk =0, (3.3.45)
where (vi) holds. Let us assume in addition
(vii) v(0,0) > 0 and v(0,0/2) < 0.

If there are constants ¢ < a < b < e such that

(7(a,0) +7(a,0/2) (+(6,0) +(5,5/2)) <0, (3.3.46)
then (3.3.45) has a periodic solution for any sufficiently small 1 > 0.

Proof. We apply Theorem 3.3.13 to (3.3.45). According to the proof of Lemma
3.3.18 and (vii), on [0,0], v(f,t) has a global positive maximum at ¢ = 0
and a global negative minimum at ¢ = 6/2. Then there are continuous map-
pings £1(-), to(+) : (c,e) — (0,00) such that 0 < #1(0) < 0/2 < t2(0) < 0
and 7(0,%1(0)) = v(0,2(0)) = 0. Clearly, v(6,t), §(6,t) have the signs (+, —),
(_a_)v (_a+)7 (+a +) on the intervals (0751(0))7 ({1(0)a0/2)7 (9/2752(0)%
(t2(0), 0), respectively. Again v(0,t) = (5(6,t), —¥(6,t)), and then (3.3.40) for
(3.3.45) has the form

£1(0) 0/2 t2(0) 0
@O =~ [ 409ds+ [ 509ds— [ s0.9ds+ [ 0.9
0 t1(0) 0/2 210

=2(~(6,0) +(0,0/2)) .
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Since the assumptions of this theorem imply Q1(a)Q1(b) < 0, the proof is com-
pleted by Theorem 3.3.13. O
Remark 3.3.21. Since q(v(6,0)) = ¢(v(0,0/2)) for g(x) =
(3.3.46) could be verified from the graph of q.

We conclude this subsection by considering coupled oscillators

q(s) ds, inequality

O—x5

1+ qu(x1) + prsgn (&1 — 42) =0,

. . . 3.3.47
Fo + qa(w2) + posgn (g — 1) = pugswt, ( )

where ¢1 2 € C?(R,R), p1,23 > 0 are parameters and

i = 1 for [2t] even
WET1 0 for [2t] odd.

Here [t] is the integer part of ¢. (3.3.47) represents a movement of two masses
on a ribbon coupled with an interference of the masses given by the relative
velocity @1 — @2. The term swt is a switching. In this interpretation of (3.3.47),
the coupling is given by the dry friction. We assume that there are constants
0 < ¢ <1 < e and mappings p; 2 : (¢,e) x R — R such that p; and &; + ¢;(z;) =
0, ¢ = 1,2 satisty the conditions (vi) and (vii).

Theorem 3.3.22. Let us assume

(viii) There are continuous functions t1, ta : [0,1] — R such that t1(0) < t2(0),
t1(0) = 1/2, t2(0) =1, £1(1/2) = 0, t2(1/2) = 1/2 and p1(1,t)—p2(1,t+6)
is positive or negative on (t1(0),12(0)), (t2(0),t1(0) + 1), respectively.

If w123 > 0 are sufficiently small such that ps > 2u9, then (3.3.47) has a
1-periodic solution.

Proof. First, defining a multivalued mapping by

1 for [2t] even and 2t ¢ Z
Swt = [0,1] for 2t € Z
0 for [2t] odd and 2t ¢ Z,

(3.3.47) is rewritten in the form of (3.3.3):

Ty =y1, € —q(w1) — p1Sgn (y1 —y2),

. . 3.3.48
To =y2, Y2 € —q(x2) — p2Sgn (Y2 —y1) + puz Swt. ( )

According to Remark 3.3.14, (ii) (iv) hold with

7(07t) = (pl(lvt)apl(lvt)ap2(17t+ 9)7p2(17t + 0)) )
vi(0,t) = (ﬁl(lut)ﬂ —pl(l,t),0,0) )
va(6,t) = (0,0, p2(1, ¢+ 6), —p2(1,t 4+ 6)) .
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We intend to apply Theorem 3.3.2 to (3.3.48). In this case, (3.3.27) reads

1
M, (0, ) {( fh1 s)p1(1,s)ds, — [ ha(s)p2(1, s+9)ds) . hy € L2,
0
hi(t) € —p1 Sgn (p1(1,t) — p2(1,t+0)) ae.on [0,1], hg € L?,

ho(t) € —p2 Sgn (p2(1,t +6) — p1(1,t)) + p3Sw (t+ ) a.e. on [O,l]}.

Using (viii), we can simplify M, = (M, M, ) as follows:

t2(0) t1(0)+1
M) =i ([ psyds— [ puts)s)

= 201 (pr(1,£5(0)) — p1 (1,1 (6 )))

t1(6)+1 a(
Mgu(ﬁ,a):;Lg( p2(l,s+0)ds — / (1,s+0) ds)
t2(0) 1(0)

1
—ps((p2(1, 5 + 0 =) = p2(1,6 — )

= 2u5 (pa(1, 1<9> +0) — pa(1,2(0) + 0))
—p3((p2(1, +9—a) p2(1,0 — a)).

We have
Ml#(o) =2 (p1(17 1) - pl(l’ 1/2)) = _Ml,u(]-/Q) :

Like at the end of the proof of Theorem 3.3.19, we derive M;,(0) > 0 and
M, (1/2) < 0 provided that pq > 0. Finally we take

B:{(e,a) 1 0€(0,1/2), 9<a<;+6}

and put M, in the homotopy M, \ = (Mlp,/\7 M2H7A) given by

M r(6) = M, (6) + (1 X) (5 — )
Moy = AMs,(0,a) + (1= X) (0 —a+ i) .
Since I[I(}i)](pg(l,t) = p2(1,0) and %,ilr}lpg(l,t) = p2(1,1/2) , we see that pu; >
0, 13 > 249 > 0 implies 0 ¢ M, A (9B), A € [0,1]. Hence
deg(M,,,B,0) = deg(M,,0,B,0) =1.

Now the result follows from Theorem 3.3.2. O
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3.3.6 Concluding Remarks

Remark 3.3.23. Coulomb’s law for the dry friction [64,123] includes a statistic
coefficient of friction pus and a dynamic coefficient of friction pg. If ps = pqg = p,
then the friction law may be written as & — psgn 4. This is done in this section.
On the other hand, since usually ps > g, we can apply Remark 3.1.29.
Remark 3.3.24. Our method is clearly applied to piecewise smoothly perturbed
problems like the problem

B+ pa(a)? + porT = psft), (3.3.49)

where p1 23 € R are small parameters and 8 € C(R,R) is 1-periodic. Then
we have similarly as for (3.3.41) that (3.3.27) now assumes the form M, (0) =
1

—p1(07)% — 26~ + ps [ B(s)ds. By estimating the number of simple roots of

0
M,,, we obtain from Corollary 3.3.5 that (3.3.49) has a 1-periodic solution for
any sufficiently small p; o 3 satisfying one of the following conditions:

1

(a) ps [ B(s)ds < 0 and either pg < 0 or pg >0
0

1
b) ws [B(s)ds > 0 and either y; > 0 or ps < 0
0

Moreover, (3.3.49) has at least two 1—periodic solutions for any sufficiently small
{t1,2,3 satisfying one of the following conditions:

1
) ps [B(s)ds <0and g <0, pz >0
0

1
d) ps [B(s)ds > 0and g >0, po <0
0

Remark 3.3.25. Finally we note that by combining the method of this section
with that of Section 3.2, we can straightforwardly extend the results of this
section to singularly perturbed differential inclusions of the form

#(t) € f(x(t),y(t) +eh(x(t), y(t), t
ey(t) € g(z(t),y(t)) + eha(z(t), y(t)

with # € R", y € R¥, ¢ > 0 is small, all h;(z,y,t) are 1-periodic in ¢ and
assumptions (i) and (iii) of Subsection 3.2.1 are satisfied along with the following
one that the reduced equation & = f(z,0) of (3.3.50) has a nondegenerate
manifold of 1-periodic solutions, i.e. & = f(z,0) satisfies assumptions (ii) and
(iv) of this section.

By assuming in addition the validity of the condition (H) of Subsection
3.2.3, multivalued mappings like (3.3.27), (3.3.32) and (3.3.40) can be derived
for both the non—autonomous and autonomous versions of (3.3.50). For instance,

e on R,
i e on (3.3.50)

,t) ae.on R
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a multivalued mapping M : R — 28"\ {()} corresponding to (3.3.27) has the
form

M0, a) = {L(Q)h ds : h € L? satisfying a.e. on [0, 1]
the relation h(t) € Dy f(7(0,t),0)(C(0,t,a)) + hi(v(0,1),0,t + a)} )

where C : O x [0,1] x R — 28"\ {0} is the upper—semicontinuous mapping from
the condition (H) of Subsection 3.2.3.

3.4 Bifurcation of Periodics in Relay Systems

3.4.1 Systems with Relay Hysteresis

Oscillations in systems with relay hysteresis are extensively studied in literature
[42,153,192] using several approaches ranging from harmonic balance methods
[143,144] to analysis of Poincaré maps [39,192]. Such oscillators model a variety
of phenomena from electrical circuitry to circadian biological clocks, chemical
oscillators and ecological systems as well (see [192] for more references). For
instance, electrical engineers are interested in the periodic behavior of circuits
with hysteresis which could be modeled by L,,y = f(y), where L,, is an mth—
order differential operator and f is a relay hysteresis operator. In this section,
we continue with this study. To deal with much more general equations, we are
interested in the periodic oscillations of systems given by

&= Az + pf(x1)b, (3.4.1)

where A is a constant n X n matrix, x; is the first component of x € R™, b € R”
is a constant vector and p € R is a small parameter.

A relay hysteresis operator f is defined as follows: there is given a pair of
real numbers o < 3 (thresholds) and a pair of real-valued continuous functions
he € C(la,00),R), he € C((—o0, B8], R) such that hy(u) > h.(u)Vu € [, ]
Moreover, we suppose that h,, h. are bounded on [a, 00), (—00, (], respectively
(see Fig.3.6). For a given continuous input u(t), t > ¢, one defines the output
v(t) = f(u)(t) of the relay hysteresis operator as follows

hogugtgg 1£ ugtg >4,

_ ) he(u(t if w(t) <a,

TOU=Y hotutn) it u( e @) and u(r(n) =,
he(u(t)) if w(t) € (a,f) and u(r(t)) =,

where 7(t) = sup{s : s € [to,t], u(s) = a or u(s) = S}. If 7(¢) does not exist
(i.e. u(o) € (a,8) for o € [to,t]), then f(u)(o) is undefined and we have to
initially set the relay open or closed when u(ty) € («, 8). Of course, when either
ho(B) > he(B) or ho(a) > he(a) then f(u) is generally discontinuous.
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v
ho(u)
[ S S
f
* t
} e
@ oo
f
___________ ' —
he(u)

Figure 3.6: A relay hysteresis

Contrary to the above-mentioned papers, we assume that (3.4.1) is at res-
onance, i.e. £ = Ax has a nonzero periodic solution. Since (3.4.1) is generally
discontinuous, we consider it as a differential inclusion.

3.4.2 Bifurcation of Periodics

First we study the linear equation & = Az with its adjoint one & = —A*z. We
suppose that the following condition holds

(i) There is an xg € N (]I — eA) such that Azg # 0.

Then dimN (I— e™4") = dimN (I— e?) > 1. Let (-,-) be the inner product
on R™. By Lemma 3.3.1, we know that the linear equation

i = Az +h(t), heL?:=L*[0,1],R")

has a solution z € W1>° := W°°([0, 1], R") satisfying 2(0) = z(1) if and only if
1
J(h(s), e=* *w)ds = 0 Vw € N (I— e~*"). The norm on W is denoted by
0

[|]]- This solution is unique if it satisfies }(m(s), eMz)ds =0z e N (I— e).
Let © = Kh be this solution. We put ’
1
X = {erl"x’ : /(x(s), e2)ds =0 VzeN (I- eA)}.

0

Let

o:1°?— {h el?: j(h(s), efA*Sw> ds=0 Yw EN(]I— efA*> }
0
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be the orthogonal projection. Then K : RII — X is linear and bounded.

According to assumption (i) there is a basis {wy, -+ ,wq} of N (I— e?)
such that any l-periodic solution of & = Az has a form (6,t + w) for some
weR and 6 € R4, where

d—1
~v(0,t) = Z&i eMw;, 0, eR.
i=1

Let v1(6,t) be the first coordinate of v(6,t). Now we suppose the following
conditions:

(i) There is an open bounded subset () # O C R?~! such that V6 € O and
Vto € R it holds

71(07750) = Q, 6 = ;Yl(evt()) 7é 0.
(iii) min m(0,t) < a, max mm(0,t)>p VvOeO.

In order to state the next theorem, we introduce a mapping given by

M:Rx0O—RY Mw,b) =Lh

(3.4.2)
h(t) = f(1(0,)(t)b+wAvy(0,t) a.e.on [0,1]
where £ : L? — R? is defined by
1 1
Chi= (/<h(s), Ry ,/(h(s), e A iy) ds)
0 0
for a basis {1, - ,wWq} of N (I— e~4"). From (ii) and (iii) we see that M is

well-defined and continuous.

Theorem 3.4.1. Assume that (i-iii) hold. If there is a non-empty open bounded
set B such that BC R x O and

(1) 0 ¢ M(9B)
(i) deg(M,B,0) #0

where M is given by (3.4.2). Then there are constants K1 > 0 and po > 0 such
that for any |p| < po, there are (w,,0,) € B and an (1+ pw,,)-periodic solution
x,, of (3.4.1) satisfying

sup |2 (t) = ¥ (O, t/ (1 + pwp))| < Kilpl -
S



100 Chapter 3. Bifurcation of Periodic Solutions

Proof. Following arguments from Subsection 3.3.4, first we make in (3.4.1) the
change of variables

z((1+ pw)t) = pz(t) +v(0,t), weR
and consider (3.4.1) as a differential inclusion of the form
& — Az € pF(x1)b, (3.4.3)

where F' is a multivalued mapping defined as follows

F@ i ) £a, 8,
he(a) ifu(t) = aandu(r(s)) = afor any s < tneart,

F(u)(t) = ho(f) ifu(t) = fand u(r(s)) = ffor any s < tneart,
[he(a), ho(a)] ifu(t) = aandu(r(s)) = ffor any s < tneart,

[he(B), ho(B)] ifu(t) = Fandu(r(s)) = afor any s < tneart.

The conditions (ii) and (iii) imply that for any K > 0 there is an uo > 0
such that if z € X satisfies ||z|| < K and |u| < po then u(t) = pzi(t) +v1(6,t)
strictly monotonically crosses a and 8 for any 6§ € O. Consequently, F'(u) is
well-defined.

In variable z(t), (3.4.3) has the form

i(t) — Az(t) € (1 + pw)F (pz1 +71(0,-)) ()b + wA(pz(t) +v(0,1)) . (3.4.4)
Since we intend to use functional-analytical method, we take the mapping
G(z,w,0,u,\) = {h € L? : satisfying a.e. on [0, 1] the relation
h(t) € (14 Apw)F (Apz1 +71(6,-)) (£)b + wA(Auz(t) + (6, t))}
and consider (3.4.4) in the form
Z2— Az € G(z,w,0,u,1). (3.4.5)
To solve (3.4.5), using IT and I, we rewrite (3.4.5) as follows
0€ H(zyw,0,pu,1)
H(z,0,0,1,0) = { (= = ACTIL, £1) + h € G(z,w,0,1,0) }. (346)
Since f is bounded in (3.4.1), there are p19o > 0 and K > 0 such that [|[KIIA| < K
for any h € G(z,w,0, i, A), (z,w,0) € Q, |u| < pp and A € [0, 1] where
0= {(z,w,e) EX xR [z <K +1, (w,0)¢ B} .

Moreover, if pg is sufficiently small then by (ii) and (iii), the mapping

H:Qx [—po, o] % [0,1] — 2X¥E* (3.4.7)
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is well-defined and singlevalued. It is easy to show that H : Q x [—uq, po] X
[0,1] — X x R? is continuous and Iy ga — H is compact as well. Next we show

0 ¢ H (92 x [—po, po] x [0,1])
for any pg > 0 sufficiently small. Assume the contrary. So there are

[0,1]9A1—>>\0, HZZHSK-’-L i — 0, i €N
0B > (wi, 0;) — (wo,00) € OB,  h; € G(2i,wi, 04, pi, Ai)
such that Lh; = 0. We can assume that z; — z in C([0,1],R"™) and h; tends

weakly to some hg € L2 Then by applying Mazur’s Theorem 2.1.2 like for
(3.1.21), we obtain

h e G(Z,WO,0070,>\0) and ,Cho =0,

i.e. 0 = M(wo,0p) for some (wp, bp) € 9B. This contradicts to (i) of this theorem.
Consequently, we compute for p sufficiently small

deg (H('Wv'v//'a 1)7970) = deg (H(a ) '7/’5)0)7970) = deg(Ma B, 0) 7é 0.

In this way, (3.4.6) has a solution (z,w, ) € Q for any p sufficiently small. The
proof is finished. O

Now we return to the differential equation of Subsection 3.4.1

m

Lny =Y ay” = uf(y), (3.4.8)
=0

di

where a; € R, a,,, = 1 and y(l) = I

form of (3.4.1). We put

y. Of course, (3.4.8) can be rewritten in the

Ly= Z(—l)iaiy(i) .
i=0
Let ¢1,- -+, ¢4, respectively 11, - -+ , 14, be a basis of the space of all 1-periodic
solutions of L,y = 0, respectively L} y = 0. Supposing that ¢4 is non—constant,
it could be of the form sin 27k4t for some k; € N. Then we could take ¢q—1(t) =
cos 2mkgt, and as a result of this we see that any 1-periodic solution of L.,y = 0
has a form 7(0,t + w) for some 6 and w where n(60,t) := Z;j:_ll 0:0;(t).

Theorem 3.4.2. Assume that ¢4 is non—constant and the following conditions
hold:

(a) There is an open bounded subset ) # O C R~! such that V0 € O and
Vitg € R it holds

n,to) =, B = n(0,t0) #0.

(b) grélﬂgn(ﬁ,t)<oz, I{l&g{n(@,t)>ﬁ Vo eO.
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If there is a non-empty open bounded set B such that B C R x O and
(i) 0 ¢ M(OB)
(i) deg(M,B,0) #0

where M : R x O — R? is given by

1

M(w,0) = (/h(s)wl(s) ds, - ,/h(swd(s) ds)
0 0 (3.4.9)

h(t) = f(n(0,))(t) +w > _iam?(0,t) a.c.on [0,1].
i=1

Then there are constants K1 > 0 and ug > 0 such that for any |u| < po, there
are (wyu,0,) € B and an (1 + pw,)-periodic solution y,, of (3.4.8) satisfying

sup |y () = (0, t/ (1 4 pewy))| < Kilpl .

Proof. We follow the proof of Theorem 3.4.1 by taking in (3.4.8) the change of
variables

y((1+ pw)t) = pz(t) +n(0,t), weR.
Conditions (a) and (b) are analogies of (i-iii). Since computations are the same

as for Theorem 3.4.1, we omit details. O

Results of Remark 3.3.7 can be directly modified to existence results of
subharmonic solutions of nonautonomous periodic versions of (3.4.1) expressed
in the following theorems [84].

Theorem 3.4.3. Consider
i = Az + p(f(z1)b+q(t)), (3.4.10)

where ¢ € C(R,R"™) is 1-periodic and A, f, b are given in (3.4.1). Assume that
(i-iii) hold. If there is a non—empty open bounded set B such that B C R x O,
0 ¢ M(9B) and deg(M,B,0) # 0, where M is given by

M:Rx0O—RY Mw,8) =Lh

(3.4.11)
h(t) = f(m(0,)E)b+ gt +w) ae on [0,1].

Then there are constants K1 > 0 and ug > 0 such that for any |u| < po, there
are (wy,0,) € B and an 1-periodic solution z, of (3.4.10) satisfying

sup ‘mu(t) =y (Ot — wu)‘ < Kilp| .
teR
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Theorem 3.4.4. Consider

Ly = p(f(y) +q(t)) (3.4.12)

where Ly, f are giwen in (3.4.8) and ¢ € C(R,R) is 1-periodic. Assume that
@4 is non—constant, and (a) and (b) of Theorem 3.4.2 are valid. If there is
a non—empty open bounded set B such that B C R x O, 0 ¢ M(0B) and
deg(M,B,0) # 0, where M : R x O — R% is given by

=

M(w,0) = ( / B()r(s)ds, -, [ h(s)iba(s) ds) (3.4.13)
0

.e.on [0,1].

S o

h(t) = f(n(8,-))(t) +g(t +w)

Then there are constants K1 > 0 and o > 0 such that for any |u| < po, there
are (wy,0,) € B and an 1-periodic solution y,, of (3.4.12) satisfying

sup ’yu(t) - 77(9;“?? - wu)’ < Kilpl.
teR

Remark 3.4.5. The boundedness of h, and h. on [, 00), respectively (—oo, 3],
is not essential in our considerations.

Remark 3.4.6. The smallness of g in Theorems 3.4.1-3.4.4 can be estimated.

3.4.3 Third-Order O.D.Eqns with Small Relay Hysteresis

First, we consider the following autonomous problem
Y+i+y+y=pfly), (3.4.14)
where f is of the form
a=-9, PB=6 §6>0, ho=9g+p, hce=g—p
with p > 0 constant and g € C(R,R).

Theorem 3.4.7. If there are numbers § < a1 < as such that the numbers

) 5?2
4p(f o1 ﬁ) + /g(ai sint)sintdt, i=1,2 (3.4.15)
% 4
have opposite signs, then there is a constant K > 0 such that for any p suffi-
ciently small there are 0, € (a1, a2), w,, € (—%, —%) and o 2m(1 + pw,,) -
1 2
periodic solution y,, of (3.4.14) satisfying
(1) ~ Bsin | < Kl
sup —0,sin —| < .
teR Ui P+ :
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Proof. We apply Theorem 3.4.2 with
d1(t) = 1 (t) = sint, ¢a(t) = ¥o(t) = cost, n(0,t) =0sint.

By taking O = (4, o), the conditions (a) and (b) of Theorem 3.4.2 are satisfied.
Let tg = arcsin% for 8 € O. Computing (3.4.9) for this case, we derive

M(w,0) = (M;(w,8), Ma(w,0)), (3.4.16)
where
27 to+m
Mi(w,0) = /w(&cost —20sint — 30 cost)sintdt + / (9(0sint) + p)sintdt
0 io
to+2m 62 2
+ / (g(@sint) — p)sintdt = —270w + 4py /1 — ] + /g(@sint) sintdt,
to+m 0
27 to+m
Ms(w,0) = /w(@ cost — 20sint — 30 cost) cost dt + / (9(0sint) + p) costdt
0 to
to+2m
. op
+ (g(@sint) — p)costdt = —2mlw — 4? .
to+m

Now we verify (i) and (ii) of Theorem 3.4.2 when M is given by (3.4.16) and
B= (—&’2’, —5—”2) X (a1, az). For this reason, we put (3.4.16) in the homotopy
1 2

M(w,0,0) = (Mi(w,0,\), Ma(w,6,))), Xel0,1],

where
2
M;(w,0,)) = — 27 ()\9+(1—/\)a1;a2)(w—(l—)\)D)+4p\/1—22
7 5 AN
. . P '4
fsint)sintdt + 4L —
+/g( sint)sint dt + 0 ot (- nae)

0
4
Mﬂ%&ﬂ}z—2w(Wﬂl—M A%p

a1 + as
) B eV V==Y

and D = -2, — 9p

p 7.
Tai Tas

It is elementary to see that 0 ¢ M(IB,\), VA € [0,1]. Indeed, for 6 €
{a1,az}, this follows from (3.4.15). Next, let w € {735—]’ 76—”} and 6 € (a1, a2).

ma?’  wal
If My(w,6, ) =0, we have A0 + (1 — \) 222 € (ay,a5) and
-D —20 28 26
Y iD= b 2e:<—€,—€) (3.4.17)
A 7 (A0 + (1 — \)@ataz) Tay  wa;
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for A € (0,1]. f w = —% then %+D <w< —%, and if w = —% then
1 1 2
eLiD>w> —%. This contradicts to (3.4.17). So Ma(w,0,A) #0. If A =0
2
then Ms(w,6,0) = —m (a1 + a2) (w — D) # 0.
Consequently, we obtain

deg (M(-,-,1),B,0) = deg (M(-,-,0),8,0)= — deg (M1(D, -,0), (a1, az),0) # 0.
The proof is finished by Theorem 3.4.2. 0

Corollary 3.4.8. If g(x) = c1z + c2 in (3.4.14) with constant ¢y 2 such that
c1 <0 and 4p > —c107, then the conclusion of Theorem 3.4.7 is applicable.

Proof. In Theorem 3.4.7 now we compute

2
0 02 0 02
4p(5+ 1—ﬁ>+/(010sint+62)sintdt:4p(§—|— 1—9—2)+0107r.

0
Taking a; > d near to 6 and as > a; sufficiently large, the proof is finished. [
Next we consider a forced problem of (3.4.14)
U+i+y+y=np(fly) +sint), (3.4.18)
where f is given in (3.4.14).
Theorem 3.4.9. Assume that 4p = 7 and g € C*(R,R). If the function

27
p—>/g(§psint) sint dt
0

has a simple root py > 1, then by putting 1/py = sinwyp, 7/2 < wy < 7, there is
a constant K > 0 such that for any p sufficiently small there are (w,,0,) near
to (wo,0po) and a 2m-periodic solution y,, of (3.4.18) satisfying

sup |yu(t) — O sin(t — wu)‘ < Klp|.
teR

Proof. We apply Theorem 3.4.4. The mapping (3.4.13) for (3.4.18) has the form
M(w,8) = (Mi(w,0), Ma(w,0)), (3.4.19)

where

2 2
2

M (w,0) =7 1—2—2—|—/g(@sint)sintdt+/sin(t+w)sintdt
0

0
2
[ 62 . .
=7 1—§+/g(081nt)smtdt+7rcosw,
0
27

My(w,8) = f%r + /sin(t+w) costdt = f%r + wsinw.
0
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21
For /2 < w < w, My =0, My = 0 are equivalent to [ g(%&) sintdt = 0.
0

2w
Since pp > 1 is a simple root of p — [ g(dpsint)sintdt, then we can easily
0

verify (see Lemma 3.5.5) that (wy, 6p) defined as 6y = dpg, 1/po = sinwg, 7/2 <
wp < 7 is a simple zero of M = 0 given by (3.4.19), i.e. M(wq,6) = 0 and
DM (wyg,0) is invertible. So the Brouwer index of M at (wg,0y) is nonzero.
Consequently, the proof is finished by Theorem 3.4.4 when B is taken as a small
open neighborhood of (wp, 0p). O

Corollary 3.4.10. Assume that 4p = 7. If g(x) = c123 + cox in (3.4.14) with
constant c12 such that cica < —6162 then the conclusion of Theorem 3.4.9 is
applicable.

2
Proof. We apply Theorem 3.4.9. We have [ g(dpsint)sintdt = 571‘01(53,03 +
0

mcap for g(z) = c12® + cow. Under assumption cico < =2c?6%, equation
37¢16%p® 4+ mdcap = 0 has a simple root pg > 1. The proof is finished. O

We finish this subsection with the case ¢y = 0.

Theorem 3.4.11. Assume that g(x) = cix with a constant ¢; > 0 such that
2 —16p? > c25%n%. Then there is a constant K > 0 such that for any u
sufficiently small there are (w,,,0,) near to (wo,6p) given by

4 1— 522\ 2 45
90\/( P+7T\/7cl> + 42, SinwO:rezs,wog(w/Q,w), (3.4.20)

cC1T

and a 2w -periodic solution y,, of (3.4.18) satisfying

sup |yu(t) — 0, sin(t — wu)‘ < K|ul.
teR

Proof. Now (3.4.19) has the form

[ 62 4
Mi(w,0) =4py/1 — ] +7mcosw+ c10m, Ma(w,0) = —4% + msinw.

Since 7 > 4p and 6 > 4, we can solve w with 7/2 < w < 7 from Ms(w,0) = 0,
and inserting it into M; (w, 0) = 0 we see that equation M (w,#) = 0 is equivalent

to4p\/1—g—§— \/1—16622—1— c10m =0, i.e.

8meipy/ 02 — 62 + 20%n? = 12 — 16p2 . (3.4.21)

Since 72 — 16p? > ¢36272 then (3.4.21) has a unique simple root 6y > § given by
(3.4.20) . Then (Ay,wp) is a simple root of M (w, ) = 0. The proof is finished by
Theorem 3.4.4 when B is taken as a small open neighborhood of (wg,6p). O

Similarly we have
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Theorem 3.4.12. Assume that g(x) = cix with a constant ¢; < 0 such that
16p*(1 — ¢362) > w2. Then there is a constant K > 0 such that for any p
sufficiently small there are (w,,,0,) near to (wo,6p) given by

1 —4p\/1 — 62c3\ 2 48
0p = \/(ﬂ- L Cl) + 1652p2, sinwoz—p,
™ C1 7T90

wo € (7/2,7),

and a 2m-periodic solution y,, of (3.4.18) satisfying
sup |y, (t) — 0, sin(t — wu)| < K|pl.
teR

Proof. We can directly follow the proof of Theorem 3.4.11 when now (3.4.21)
has a form 16p? = 20?72 — 2¢cy7+/0%272 — 1652p2 + 7. O

3.5 Nonlinear Oscillators with Weak Couplings

3.5.1 Weakly Coupled Systems

Systems with slowly varying coefficients often arise in applications, like as an
Einstein pendulum
F+w(et)’r =0

with slowly varying frequency or a pendulum

% (I(et)*®) + U(et) = g(et, z, 1)

with slowly varying length and some other perturbations. We have a Duffing-
type perturbation for g(7,z,#) = pl(r)a® — ol(7)% [173]. Parameter ¢ > 0 is
assumed to be small in the both equations. Averaging method is usually applied
to study the dynamics of such systems on the intervals [0,0 (¢7*)]. We also
study some systems with slowly varying coefficients in Sections 3.1 and 4.2 (see
(3.1.27) and (3.1.30)) by using different methods, since averaging method is not
applicable to these equations. Similarly we can formulate nonlinear oscillators
when some their coefficients are governed by weakly nonlinear equations like the
following Duffing-type one

itwlr+ a2’ =cf(x, i t), w=cgz, i), (3.5.1)

with slowly varying frequency. In this section, we investigate more general

weakly coupled equations than (3.5.1) of the form
' =¢ef(x,y,t, e

, @y t.e) (3.5.2)

y =9(x,y) +eh(z,y,t,e),

where z € R", y € R™, f, g, h are sufficiently smooth, f,h are 1-periodic in ¢
and € > 0 is a small parameter. For ¢ = 0, we get the unperturbed equation

v =g(z,y), (3.5.3)
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where z is considered as a parameter. We suppose that (3.5.3) has for any z in
some open subset either a single 1-periodic solution or a nondegenerate family
of 1-periodic solutions. By using the averaging method which is a combination
of the Lyapunov-Schmidt method together with the Brouwer degree theory, we
find conditions for bifurcation of 1-periodic solutions of (3.5.2) from the above
1-periodic solutions of (3.5.3). Finally, the averaging method is also used, for
instance, in [44,48,98,111,135,141] with many interesting applications. Other
nonlinear boundary value problems are investigated in [105].

3.5.2 Forced Oscillations from Single Periodics

We start with the following condition:

(H1) (3.5.3) has a 1-periodic smooth solution y = ¢(t, x) for any z € 2, where
) C R" is an open subset.

Since we are looking for 1-periodic solutions of (3.5.2) bifurcating from (¢, x),
x € Q, we shift the time ¢ <> t+«, @ € R and change the variable y < y+ (¢, x)
to get the equation

z' = €f(l'7y + @(tax)at + 04,6)
y' =gz, y+o(t,z)) — glz, o(t, 7))+ (3.5.4)
E(h(x,y +o(t,x),t + a,e) — . (t,x) f(x,y + o(t,x),t + a,s)) )

Like in the previous sections, first we investigate the linearization of (3.5.3)
along ¢(t,x), i.e. the variational equation

v = gy(,p(t,x))v, (3.5.5)
and its dual variational system

/

w' = —g;(z, 0t z))w. (3.5.6)
Certainly the function ¢'(t, x) satisfies (3.5.5). We suppose

(H2) There are smooth basis {v;(t,z)};_, and {w;(t,z)}_, of 1-periodic so-
lutions of (3.5.5) and (3.5.6), respectively, for any = € Q. We assume
”Uo(t,:C) = go'(t,:c).

In order to apply the Lyapunov-Schmidt decomposition, we introduce the Banach
spaces

X = {x € O(R,R™) | z(t +1) = 2(t)Vt € R}

Y = {y € C(R,R™) | y(t+1) = y(t)Vt € R}
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and then the projections P, : X — X, P, : Y — Y defined by

Pix = x(t) — /1;8(3) ds
0

ny = y(t) - QOWO(ta Z) - Q1w1(t7x) - QTwr(ta SU) N
1 1 *
(dorr - 1) 1= A()? / (u(t), wolt,z)) dt, -, / (y(1), we(t,2)) dt
0 0

where (-, -) is the scalar product on R™ and A(x) : R” — R" is the Gram matrix

given by
1 T

Aw) = | [ witta),wgte.o)ae
0 ij=1
The meaning of these projections is the following: The nonhomogeneous varia-
tional equation of (3.5.2) along ¢(, x) is given by

Z=h, V=gy(x,0t,x))v+y, heX, yeY. (3.5.7)

From Lemma 3.3.1 we know that (3.5.7) has a 1-periodic solution if and only

if PPh = h and P,y = y. Moreover this solution is unique if Piz = 2z and
1

[ (v(t),vi(t,x)) dt =0, i =0,1,---,r. Let us denote it by z := Kh and v :=
0

K.y. Using these projections and operators K, I, like in Section 3.3, we take
in (3.5.4) the changes

c—e?, z=u+z, uvueX, Pu=u, z;€R"

, 1
y:U—FEZﬁivi(t,u—&—xl),/(v(t),vi(t)) dt=0, i=0,1,---,r
i=1 i
to obtain the decomposition of (3.5.4) on
_ 2 - 2
u=¢e kP f <u+x1,v+52ﬂivi(t,u+x1) +o(t,u+x1),t+a,e >

=1

U= ICIIPle(U,U,$17E,a7ﬁ7t)7

(3.5.8)
and
1 T
/f <u+x1,v+52ﬂivi(t,u+x1) +<p(t,u+x1),t+oz,52> dt =0
i=1
0 (3.5.9)

1
1
?/(H(u,v,xl,s,a,ﬂ,t),wj(t,u+:L'l))dt:O ]:0717 , Ty
0
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where 8 := (61,02, -+, 5,) and

H(u,v,21,6,0,5,t) == g <u+x1,v+az&vi(t,u+x1) +<p(t,u+x1)> —

i=1

g(u + 21, ‘p(tvu =+ 1'1))7

gy(u+z1, 0(t, u+ 1)) (U + EZﬁivi(t,u + m1)> +

i=1

+(gy(u + X1, QD(t,U + xl)) - gy(‘rla @(Lxl)))v - 63 Zﬂlvlﬂ(tvu + ZEl)X
=1

i=1

P f (u—i—xl,v—l—EZﬁivi(t,u—l—xl)+<p(t7u+x1),t+a,52> +

,
eh (u +x,v +EZﬂivi(t,u+ z1) +o(t,u+21),t + a,s2> -
i=1

,
2o (t,u+x1) X f <u+x1,v+82ﬂivi(t,u+x1) +<p(t,u+x1),t+a752> .
i=1

Since

2
1 r
H(U7U7x176aaaﬂat) = igyy(u+$17§0(t,u+$1)) <’U+€Zﬁﬂ]i(t7u+$1)> =+
i=1

e2h (u +x1,v+ 526ivi(t,u + )+ o(t,u+x1),t+ a,52> -

i=1

T
pp(t,u+a1) x f <u+x1,v+52@-vi(t,u+x1) +<p(t,u+x1),t+a,52>
i=1

r 3
+0 <v +e) Bviltut x1)> +O(lu)) o] + O(e®)

i=1
= O([vf*) + O(Jul)[v] + O(e) ,
we can uniquely solve (3.5.8) in u,v small by means of the implicit function
theorem and moreover, u = O(g?) and v = O(g?). Then we insert these solutions
to (3.5.9) to get the bifurcation equation
0= G(xlvﬂaaag) = GO(xlﬂﬂva) + Gl(mla/@aa)e +ot
Gp(xlaﬁ7 a)5p+Qp($laﬁ7a7€)Ep+l = (3510)
qp(xla /37 a, 5) + Qp(xla ﬁv «, 5)€p+1 )

where G(x1, 3, a,¢) is the left-hand side of (3.5.9). Summarizing, we arrive at
the following result.
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Theorem 3.5.1. Suppose (H1) and (H2) hold. If there is an open bounded
subset O C 1 x R" x R and a constant ¢, > 0 such that

‘qp(xhﬁv OZ,E)| > CpEp

on the boundary 0O for any & > 0 small, and deg (qp(-, 4 E), (9,0) # 0. Then
(3.5.2) has a l-periodic solution for e > 0 small.

Proof. To solve (3.5.10), we put it in the homotopy

G(Il,ﬂ,@[,57>\) = QI)(I17ﬂ7O[7€) + )\Qp(ﬂfl,ﬂ,047€)€p+1

for A € [0,1]. Then the assumptions of this theorem imply that G(-,-, -, &, \) # 0
on 0O for any € > 0 small and A € [0,1]. Hence

deg (G(7 ERE) 6)7 (97 0) = deg (qp('> ERE) 5)7 Oa 0) 7& 0.
So (3.5.10) is solvable for any € > 0 small. The proof is finished. O
For p = 0, we can immediately derive from (3.5.8) and (3.5.9) that

Go(wlaﬂa (/f xlaQD t xl) t+0£ 0 dt Z 615]‘11314 1’1)

i,j=1

1
+/ (z1,p(t, 1), t + ,0) — @x(t,xl)f(xl,cp(t,xl),t+a,0),wk(t,a:1)) dt> ,
0
(3.5.11)
where £k =0,1,2,--- ,r and

azyk 171

=5 [ Gl b))t 0, 03100, wn,1) .
0

l\D\H

Of course, higher-order terms G;(x1,3,«), ¢ > 1 are much more complicated,
for this reason, we do not derive their general forms.

3.5.3 Forced Oscillations from Families of Periodics

In the case that unperturbed equation (3.5.3) possesses some symmetries then
very often instead of condition (H1) the following one holds (see Subsection
3.3.2)

(C1) Equation(3.5.3) has a smooth family ¢(¢,z,0) of 1-periodic solutions for
any x € Q and 0 € I', where 2 C R", I' C R" are open bounded subsets.
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So the symmetry causes that (3.5.3) has not only a single 1-periodic solution
for any x € Q, like in (H1), but a family parameterized by 6 € T' (see arguments
below (3.5.24) for a concrete problem). Then we can repeat the above procedure
0 (3.5.2) with the next modifications: First, (3.5.5) is changed to

v =gy (@, 0(t,z,0))v. (3.5.12)

Clearly ¢'(t,x,0), o, (t,z,0),i=1,2,--- ,r, 0 = (61,02, ,0,) are 1-periodic
solutions of (3.5.12). We suppose

(C2) The family ¢(t,x,6) is non-degenerate, i.e. the functions vg(t,z,0) :=
o' (t,x,0), v;(t,x,0) := @, (t,x,0), i = 1,2,--- ,r form a basis of the
space of 1-periodic solutions of (3.5.12).

From Subsection 3.3.2 we know that condition (C2) implies the existence of a
smooth basis w;(t,x,0), j = 0,1,--- ,r of the space of 1-periodic solutions of
the adjoint system w’ = —g; (=, (¢, z,0))w to (3.5.12).

Now, in the above procedure, we keep the projection P;, but we replace P,
with P, :Y — Y defined by

Pxﬁy = y(t) - gO{DO(tvxa 0) - 511’51(123% 9) - (fj?"{D?"(taxa 0) )
(607517"' aar)* =
1 1 *
A(z,0)” / ), wo(t,x,8)) / ), W, (t,x,0))dt
0 0

_ 1
where A(z,0) = (f(@i(t,xﬁ),@j(tw,ﬁ)) dt) is an r x r-matrix. Then
0 i,j=1
changing

r=u+z;, uweX, Pu=u x€R"
1

y:U+¢(tau+$150)7/(1}(75)7’771(1")) dt:O, 7':0’13 s T
0

in (3.5.2) and using projections Py, P g, we derive like above

W =ePif (u+x1,v+ @(t,u+21,0),t + )

: (3.5.13)
v — gy(x1,0(t,21,0))v = Py, oH(u,v,e,,0,1),

and

1
/f(u+a:1,11+gp(t,u+x1,0),t+o¢,s) dt =0
0

(3.5.14)

1

1 ~

f/(H(u,v,s,a,@,t),@j(t,u+z1,0))dt:0 j:Oal;"' PR
0

)
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where

H(U,U,&,O[79,t) = g(u + 21,0+ @(tvu +$1,9))_
g(u + 5[317(,0(t,’u + 1’179)) - 9y($1a¢(tvu + xl,ﬂ))v—F

5(h(u+x1,v+<p(t,u+x1,9),t+a,5)—

goz(t,u—i—xl,ﬂ)f(u—i—xl,v+g0(t,u+x1,0)7t+a75)) .
Finally, using again the implicit function theorem we get solutions u = O(g)
and v = O(e) of (3.5.13), and then inserting them into (3.5.14), we obtain the
bifurcation equation
0= é(xh 07 O[,E) = éo(xla 0, Oé) + él('rlv 9, Q)E +ee
Gypla1,0,0)e? + Qpx1,0, , £)eP ! := G (21,60, v, €) + Qp(1,6, v, )P

where C:‘(:vl, 0, a, ) is the left-hand side of (3.5.14). Consequently, the Brouwer
degree method again gives the following result.

Theorem 3.5.2. Suppose (C1l) and (C2). If there is an open bounded subset
O CQxT xR and a constant ¢, > 0 such that

‘ap('rh 67 «, E)' Z Epgp
on the boundary 0O for any ¢ > 0 small, and deg <§p(~, Y E), 0,0) # 0. Then
(3.5.2) has a 1-periodic solution for e > 0 small.

Since again, the higher-order terms éi(wlﬁ,aL i > 1 are still rather com-
plicated, we do not derive them. For p = 0 from (3.5.13) and (3.5.14) we derive

1 1
G0($1797a) = (/f(l‘l,@(t,xl,9>,t+a70) dta/(h(xh@(taxlae)at—’—aao)
0 0

—@x(t,xlﬂ)f(xl,go(t,x1,9),t—|— a70)7’&;k(t7x159)) dt
(3.5.15)
for k=0,1,2,--- 7,

3.5.4 Applications to Weakly Coupled Nonlinear
Oscillators

We present in this part two examples, where we apply Theorems 3.5.1 and 3.5.2.

Example 3.5.3. We first apply Theorem 3.5.1 to the system
vy = (@ + 102 + 132 + emn (3.5.16)
vy = —(@® + (Ui +y3)y1 —ev3
2’ = e(y} sin 21t + yg cos 2nt) .
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We need to verify conditions (H1) and (H2) for the unperturbed system (3.5.3)
of the form

/

yi = (@ + D)@ + 93y, vh=—(2>+1)(yi +v3)n (3.5.17)

possessing a smooth family of 1-periodic solutions

2k

o(t,r) = 2l

(sin orkt, cos 27rkt) (3.5.18)
+1

for k € Z \ {0}. The linearization of (3.5.17) along (3.5.18) is

vy = 27rk(sin drktvy + (2 + cos 47rkt)v2>

(3.5.19)
vh = —27rk((2 — cosdmkt)vy + sin 47Tktv2)
and the adjoint system is
wy = 2mk( — sin4nktw; + (2 — cos 4mkt)ws
(3.5.20)

wh =21k ( — (2 + cosdrkt)w; + sin dwktws

Clearly (3.5.19) has solutions

vo(t,x) = (cos2mkt, —sin 2mkt)

vz, t) = ( sin 2wkt 4 4wkt cos 2mkt, cos 2wkt — 4kt sin 27rkt) .

Hence vo(z,t) is a basis of 1-periodic solutions of (3.5.19). Furthermore, the
function
wo(t, x) = (sin 2wkt cos 2mkt)

is a basis of 1-periodic solutions of (3.5.20). Now we do not have parameters (.
For simplicity we take k& = 1. After some computations, the function Gy of
(3.5.11) for this case (3.5.16) has the form

VT >
Go(z1, :—x(2+37r+2x cos 2a,
O( 1 ) 2\/5(27% + 1)3/2 ( 1)
/o (3.5.21)
x/2m
2 — 31 4 227 + W@ + 37 4 227) cosQom) .
We immediately see that (3.5.21) has a simple root z; = /22 and a = 1.

—2
747

perlodlc solution of (3.5.16) for any € > 0 small which is in an O(e)-neighborhood
of ( 2¥3 cos 2mt, 2‘[ sin 27t, 3”_2) .

Taking a small neighborhood O of ( Theorem 3.5.1 gives an 1-

2
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Example 3.5.4. Finally, we consider the system

Y=y, vh=—y1— (@®+1)(y] +y3)y1 — edy2 — ep1 (Y1 — y3) — e cos 2t

ys = va, Yy =—ys — (@ + 1)(u} + v3)ys — €0ya — epa(ys — y1) — epz cos 2t
x' = ey sin 27t + y3 cos 27t) ,
(3.5.22)

where 0, u1, o are positive parameters. We verify assumptions (C1) and (C2)
for its unperturbed system

Yi=v2, yh=—y — (&> + 1Dy +y3)m (3.5.23)
Y5 =y Y1 =—ys— (> + 1)(yi +93)ys -
We note that (3.5.23) has the form
W+ (1+ (2% + 1) ||w||*)w =0 (3.5.24)

cosf —sinf

for w = (y1,y3) and ||w|| = /y7 + y3. For I'(9) = ( sn0  cosd > we see that

if w(t) solves (3.5.24) then I'(@)w(t) is also its solution. We know [132] that

V2k t
VI )21 V12

n(t) =v(t,z, k) =

solves ¥} = vo, ¥4 = —y1 — (2% + 1)y}, where cn is the Jacobi elliptic function
and k is the elliptic modulus. Consequently, (3.5.23) has a smooth family of
periodic solutions

y(t,z,0,k) = (cos Ov(t,x, k), cosOv(t,x, k) sinbu(t,z, k), sinfv(t,z, k)’)

(3.5.25)
The function y(t, x, 0, k) has the period T'(k) = 4K (k)v/1 — 2k? for the complete
elliptic integral K (k) of the first kind. We note T'(0) = 27 and T'(v/2/2) = 0.
By numerically solving the equation T'(k) = 1, we find its unique solution kg =
0.700595 with T'(ko)" # 0. So we fix k = ko and take

@(t’ Jj, 0) = y(t7 x’ 0’ ko)

to satisfy condition (C1). Next we show the nondegeneracy of o(t,z,6) from
condition (C2). The linearization of (3.5.24) at w has the form

P41+ @+ D|wlP)z+2*+1) <w,z>w=0, (3.5.26)

where < -,- > is the usual scalar product on R?. Furthermore, we can easily
check that if z =T'(0)z; and w = T'(§)w,, then

24 (L4 (@ + Dllwr]?)z1 +2(2* + 1) < wi, 21 >w =0. (3.5.27)
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Consequently, in order to study the linearization of (3.5.23) (or (3.5.26)) at
o(t, z,0), we study the linearization of (3.5.27) at wy(t) = (v(t, z),0), v(t,z) =
v(t, z, ko) which has the form

v] = v, vy = —(1+43w(t, ko))v1 (3.5.28)
vy =vg, vy =—(1+w(t ko))vs (3.5.29)
for w(t, k) = 121522 0112\/1 . Equation (3.5.28) has an 1-periodic solution

v(t,z)" and a non-1-periodic solution Z-v(t,x, ko). Equation (3.5.29) has a 1-
periodic solution v(t,z) and by solving numerically (3.5.29) with initial value
conditions v3(0) = 0, v4(0) = 1, we see that the second solution of (3.5.29) is
non-1-periodic. Consequently, condition (C2) is satisfied with

Uo(t,z,0) = (cos@v(t,x)',cosﬁv(t,a:)”,sin@v(t,m)’,sin@v(t,x)”)

vy (t, 2z, 0) = ( —sinfu(t,x), —sinfv(t,z), cos G v(t, a:),cos@v(t,x)’) .
Similarly we derive

wo(t,x,0) = ( —cosOu(t,x)"”, cosOv(t,x), — sin9v(t,x)”,sin@v(t,x)’)

wy (t,z,0) = (sin@v(tw)', —sinfo(t, z), —cos@v(t,x)’,cos@v(um)) .

Now we insert the above formulas to (3.5.15) and by using the evenness of
function cn , after some computations we get the first-order bifurcation function

éo(xy 67 Oé) = (é()l(x, 93 Oé), 602 ($7 97 O[), 603(*%.’ 97 Oé)) )

where
sin(2ra + 0) /
~ sin(2ra +
Go1(x,0, /w ) cos 2mt dt
01 ( ) = sl J
G02 (93, 9, Oé) =
1
@TD / { — 6w (t)? + po(cos O + sin §)\/x2 + 1sin 27t sin 2ra (t)
0
+(2+IW ((t)2 — 1 (£)w(t))w(t) cos 2t sin(2ma + 9)} dt,
x
éo’g(ir, 9, a) =
1
/ p1 cos 20w(t)? — /22 + 1ps(cos § — sin @) cos 2rt cos 27raw(t)} dt,
0
and w(t) = Voko p In order to prove the next theorem, we need the

V1-2k3 T \/1-2k2°
following obvious result.
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Lemma 3.5.5. Let F; € C! (Ql X Qg,Rn), Fs e Ct (91 X QQ,RM), Qy C R7,
Qo C R™ be open subsets. Suppose that for any y € Qg there is a x := f(y) €
Qq such that Fi(f(y),y) = 0 and D, Fi(f(y),y) : R® — R" is regular, i.e.
Fi(z,y) = 0 has a simple root x = f(y) in Q; for any y € Qa. Assume that
G(y) = F2(f(y),y) = 0 has a simple root yo € Qa, i.e. G(yo) =0 and DG(yop)
is reqular. Then (xo,y0), xo = f(yo) is a simple root of F = (Fy, Fs)*, i.e.
F(zo,y0) = 0 and DF(x0,y0) is regular. Note a local uniqueness of simple roots
and their smooth dependence on parameters follow from the implicit function
theorem, so we suppose that f € C*(Qa,82).

Proof. From DG(y) = DyFa(f(y),y) — DaFa(f(y),y)DuFi(f(y),y)” ' DyF

_( D,y DyFy .
(f(y),y) and DF = ( DuFy D.F, ), we derive
DIFl_l 0n><m o DF _ Han DmFl_lDyFl .
_DmFQDzFfl mem Omxn DG

Hence DG(yg) is regular if and only if DF(x0,y0) is regular. The proof is
finished. O

We are ready to prove the following result [93].

Theorem 3.5.6. If one of the following assumptions is satisfied

§ # 031347101, & > 0.0223642 , (3.5.30)
F(6.380180/111) < 44.72276 /s, 6 # 0.313471py (3.5.31)
0.00463021 115 < & < 0.0211411 11, (3.5.32)

where

i

A% —4A+1 173\
AT —edA+] /3
s O )
C=1+21A—6A2+ A% + 3\/6A + 4242 — 1843 + 3A4.

F(A) = 3A(1 +A+

Then system (3.5.22) possesses an 1-periodic solution for any e > 0 small.

Proof. In order to apply Theorem 3.5.2, we search for a simple root of éo(a:, 0, )
1

by using Lemma 3.5.5. Then its Brouwer index is nonzero. Since [w(t)
0

cos2mt dt = 3.49859, we see that (~¥01(ﬂc,6‘,a):0 gives two possibilities: either
2wa+0=0 or 2ra+6=m. Then Gya(z, 8, a)=0 implies

2+ 1= > 1 (3.5.33)
p2(cos 0 + sin 6) sin 2ra [ (t) sin 27t dt
0
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By inserting (3.5.33) into éog(l‘,o,a) = 0 we get the following equivalent
equation

1 1
§(cos @ — sin ) cos 2mav [i(t)? dt [w(t) cos 2t dt—
0

o ) (3.5.34)
p1 cos 20(cos 6 + sin 0) sin 2w [w(t)? dt [(t)sin 27t dt = 0
0 0
First we consider the case 2ma = —6. Then from (3.5.33) we obtain
0 > 0.02236 (3.5.35)
pa(cosf +sinf)sind = ’ A
while (3.5.34) gives
(cos @ — sin 9){6.380186 cos 0 — puy (sin @ + cos §)? sin 0} =0 (3.5.36)

To solve (3.5.36), we first consider either 6y = w/4 or 6y = 5w /4, which
are simple roots of (3.5.36) if §/pu1 # 0.313471. Then by inserting § = 6y into
(3.5.35), we get 6/p2 > 0.02236. So Theorem 3.5.6 is proved when (3.5.30) holds,

since (, /2000.12162—2 — 1,00, —%’T) is a simple root of éo(x, 0, ).
2

Now we consider that 6 # 6y and still 2ra = —0, then (3.5.35) and (3.5.36)
are equivalent to

(1 + tan 0)?
A = 6.38018) =-——"tanf = Uy (tand .5.37
38 /1 T tanZg A0 1(tan 9) (3 )
and | + tand
an
44.72276 ————tanf = Usy(tand 0. 3.5.38
[h2 > g tand = Toltand) > (3:5.38)

So we take 0 € (0,7/2) \ {n/4}. Since ¥; is increasing on [0,00) and
U,(0) = 0, we see that (3.5.37) is uniquely solvable in tanf as a function of
A > 0. Then inserting this solution into the right hand side of (3.5.38), we
obtain (3.5.31). Note condition 6/p; # 0.313471 comes from 6.380185/p; =
Uy (tanf) # ¥4 (tanm/4) = 2. So Theorem 3.5.6 is proved also for this assump-

tion, since
2000.121662 01
—— 35— L, ——
u5Usy (tan ;) 27
with 0, = arctan[¥; ' (6.380185/u1)] € (0,7/2) \ {n/4} is a simple root of
Go(x,0, ).

Finally, we consider the case 2ra = m — 6. Then (3.5.37) and (3.5.38) are
changing to

—6.380185 /1 = U4 (tand) (3.5.39)

and
—44.72275 /o < ¥o(tand) < 0, (3.5.40)
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respectively. So we take 6 € (—m/4,0). Now the situation is different: functions
U, o are not invertible on interval Z = [—1, 0]. They are both non-positive on Z.
Function ¥ has the minimum —0.134884 on Z at —0.295598, while function ¥,
has the minimum —0.207107 on Z at —0.414214. So in order to solve (3.5.39)
we suppose —6.380180/u1 > —0.134884, while the condition —44.72275/ps <
—0.207107 is sufficient for holding (3.5.40). We can put these two inequalities
into one (3.5.32). So Theorem 3.5.6 is proved also for the last assumption, since
ég(l’, 0, «) has a simple root at

2000.121662 T — 0y
—— 35 — L0,
(5% (tan 0y) 2m

for y = arctan[¥ ! (6.380185/p1)] € (—7/4,0) . O

Remark 3.5.7. When several conditions of (3.5.30-3.5.32) hold simultaneously,
then we get multiple 1-periodic solutions. For instance, we can numerically check
that function F'(A) has a global maximum F(Ag) = 1.20711 on [0, 00) at Ag =
4.12132. Hence for §/pe > 0.02699 and 6/p; # 0.313471 both (3.5.30) and
(3.5.31) are satisfied, and we get 3 different 1-periodic solutions of (3.5.22): 2
solutions bifurcating for 6y = /4, 0p2 = 57/4, and the 3rd one for 6; €
(0,7/2) \ {n/4} in (3.5.25). Moreover, for 0.02699u2 < 0 < 0.0211411p; we
have 4 different 1-periodic solutions of (3.5.22), the 4th one bifurcating for 65 €
(—m/4,0) in (3.5.25).

The case § = 0 is a different situation. Theorem 3.5.2 gives the following
result.

Theorem 3.5.8. If § = 0 and py > 0.14264us then system (3.5.22) possesses
an 1-periodic solution for any € > 0 small.

Proof. We again search for a simple root of éo(x, 0, «). The form of bifurcation
function Go(z, 0, ) remains and G (z, 0, o) = 0 gives still that either 2ra = —0
or 2ree = m— 6. But equations Gy,;(x,6,a) = 0, j = 2, 3 now imply the following
ones

(cos@ +sinf)sinf =0,
(3.5.41)
(cos @ —sin0)(7.0107u; (cos O + sin 0) — g cos 2ran/z? +1) = 0.

By analyzing system (3.5.41), we get a solution:

=0, a=0, 7.0107u1/ps=/22+1.

For p; > 0.14264us, we get a simple root (\/49.1499;1%/#%—1,0,0) of
éo(x, 0, ). The proof is finished. O

Of course, (3.5.1) could be similarly handled like (3.5.22).



Chapter 4

Bifurcation of Chaotic
Solutions

4.1 Chaotic Differential Inclusions

4.1.1 Nonautonomous Discontinuous O.D.Eqns

Motivated by several coupled oscillators with small quasiperiodic forcing terms
and with small dry friction effects like the following one

i =x—2x(z* +y*) + epy coswit — €6y sgn i,

o 9 B ) (4.1.1)
J=vy—2y(x® +y°) + cua coswat — edasgny,

where wy > wa, 01,2 and pq 2 are positive constants and € > 0 is a small para-
meter, in this section, we consider differential inclusions of the form

z(t) € f(x(t)) +eg(x(t),e, t) ae.on R (4.1.2)

with x € R™ and ¢ € R small. Similar systems are studied in Sections 3.1 and 3.3
with periodic perturbations. In this section we proceed in this investigation to
show more complicated solutions under the following assumptions about (4.1.2):

(i) f € C?(R",R") and g : R* x R x R — 28"\ {} has a form
g(x,e,t) = F(x,e) + G(z,e,t), where mapping F : R* x R — 28"\
{0} is upper-semicontinuous with compact and convex values, and G €
C(R"*+2 R™). Moreover, for any bounded subset Q@ C R"*! mapping
G(z,¢,t) is bounded and uniformly continuous on £ x R.

(ii) f(0) = 0 and the eigenvalues of D f(0) lie off the imaginary axis.

(iii) The unperturbed equation has a homoclinic solution. That is, there ex-
ists a differentiable function ¢ — ~(t) # 0 such that lim; 4. y(t) =

limy—,_ oo y(t) = 0 and 4(t) = f(~(¢)).

M. Feckan, Topological Degree Approach to Bifurcation Problems, 121-142. 121
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Hence we again suppose a homoclinic structure for the unperturbed equation
& = f(x) of (4.1.2) like in Section 3.1, where bifurcation of infinitely many
subharmonics from homoclinics is shown. Here we study bifurcation of more
oscillatory solutions when perturbations are not necessary periodic. The most
interesting case is when

g(x,e,t) = q(z,e,wit, -+ ,wnt) (4.1.3)

for wy, - ,wm € R and the multivalued mapping ¢ : R” x R x R™ — 2R" \
{0} is upper-semicontinuous with compact and convex values. Moreover, the
multivalued mapping ¢(x,e,01,- - ,6,,) is 1-periodic in each 6;, i =1,2,--- ,m.
We note that our method of Subsection 4.1.5 is applicable to (4.1.3).

When g(z, e, t) is periodic in ¢, this problem is also solved in [10-12]. Almost
periodic ordinary differential equations are investigated in [152,160, 195] while
partial differential equations are studied in [38]. Our main result on (4.1.2) is
as follows: For multivalued almost periodic perturbations, we find conditions
ensuring that for any sequence E = {e;};cz € € and € > 0 small, there is a
bounded solution of (4.1.2) on R. Moreover, different solutions correspond to
different sequences and in addition, each sequence E characterizes (or counts)
turnings of the corresponding solution around 7. These chaotic solutions are in
a narrow layer around 7. Consequently, we extend the deterministic chaos of
Section 2.5.3 to almost periodically perturbed problems of (4.1.2).

4.1.2 The Linearized Equation

To prove our main results, we extend the method of Section 3.1 to (4.1.2).
Hence we first extend Theorem 3.1.4 to more general cases as follows. First, we
fix 7 > 0 and define the following Banach spaces:

Z;=C ([_Ta 7_] 7Rn) ) Y, =L~ ([_7_7 7_] 7Rn)

with supremum norms || - ||, and | - |, for Z,, respectively for Y. Then we
consider the linear equation

(t) = DF(O)u(t), (4.1.4)
and put

Vi =0, Qu=c(§ g )c

Q=0 Qu=0. Qu=c(g { Joo.

where C is from Theorem 3.1.2. The next result follows directly from assumption
(ii).
Theorem 4.1.1. By considering in Theorems 3.1.2-3.1.3 the exchanges

U(t) « V(t)v Py = Qss,  Pouw = Qou, Pus & Qus,  Puu = Quu,
Theorems 3.1.2-3.1.3 are valid for (4.1.4).
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Now for any finite sequence Ej, = {e;}/__, € {0,1}***!, p € N we put:

if e; = 1 then

A,() =Df(y(1)), U;=U, Pl =P,

stu:Psu; qu,S:Pusz Pg,u:Puum
if ¢; = 0 then
Pgu:qua Pgs:Quw Pgu:Quu

Let I, ={—p,—p+1,--- ,p}. Now we fix a sequence {t;};cz, t; < t;+1 such
that t; — 400 as i — Foo. For any a € Ag,, where the set Ag, is defined by

Ag, = {(a_p,~~ cap) ERPTL e Rife; =1 and o =0 if e; :O},
we consider the non-homogeneous coupled linear equations

Zj ZAj(t—Oéj)Zj—f—hj, Jj e, hj EYTJ.
2j(7j) = zj41(=7j41) for —p<j<p-1 (4.1.5)
2p(Tp) = 2—p(—T—p) ,
for T = (tj+1 — tj)/27 j e Ip. We put
Vp = Xjer,Yr,

with the norm |h|, = maxjey, |hjlr;, b = (h_p, -+ hy), hy € Yo, j € I,
Repeating arguments of the proof of Theorem 3.1.4, we have a Fredholm-like
alternative result for (4.1.5).
Theorem 4.1.2. For any K > 0, there exist mg > 0, A > 0, B > 0 such that
if T; > mg for every j € I, and a € Ag, such that || < K, then there exist

linear functions Lo @ Yy, — R", j € I, with |P1, L ;|| < Ae™?MTi and with
the property that if h € Y, satisfies

/ © PLU(t — ;) hy(t) dt + P, La,ih =0
for every j € I, then (4.1.5) has solutions in z; € Z,, satisfying
Pl Uj(—a;)"'2;(0) =0 and max |z, < B max |hj|, .
jEl, jEl,

Moreover, these solutions z; depend linearly on h and continuously on o as well.
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Proof. Putting U;(t) = U;(t — ), j € I, we consider the following two solu-
tions to (4.1.5):

z1;(t) = U;(O) P& ; + U;(0) (P, + Pl )U; (—15) 1
t
+075(t) / (PY, + P1,)0;(5) "Ly (5) ds
0

+UK®/¢(RL+JﬂJﬁﬂﬁlhﬂ@d&

T

20,5(t) = U () Pl &y + U, () (P, + PL)U;(75) o,
t
+075(t) / (PY, + P,)0;(5) "Ly (5) ds
0

—0(t) / " (PA, + P3O () hy(s) ds

for arbitrary & j, € 4, 1.5 and g ;. They satisty PZU;(0)~12;(0) = 0, while we
consider z ;(t) for t € [—7;,0] and 29 ;(¢) for ¢ € [0, 7;]. To find the desired solu-
tion, we consider the first matching conditions determined by 21 ;(0) = 22,;(0)
and then the second ones given at end points determined by 21 j11(—7j41) =
22,j(7j). Now we see that the proof of Theorem 3.1.4 can be directly modified,
so we omit further details and refer the reader to [81] for a complete proof. [

Following Subsection 3.1.2, we define closed linear subspaces Y, jr, C YV,
by

Ti . .
YOAJ,E}, = {Z c yp : / PguUj(t — aj)_lzj(t) dt + Pguﬁa’jz = O}

-
and a variation of constants map

Ka,Ep :Ya’EP = n Yoz,j,Ep - XjGIPZTJ' = Zp
jel,

by taking Ko g,(h), h = (h_p,--- ,hy) to be the solution in Z, to (4.1.5) from
Theorem 4.1.2. Then K, g, is a compact linear operator with the norm || K, g, ||
uniformly bounded with respect to £, and a € Ag, bounded. We note that the
norm on Z, is defined as max;cy, ||2||-, .

Remark 4.1.3. If e; = 0 then Y, j g, = V), and Pj, =0.

Finally, Lemma 3.1.5 can be also simply adapted to closed linear subspaces
Yo,i.B,-
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4.1.3 Bifurcation of Chaotic Solutions

We find chaotic solutions of (4.1.2) in this subsection. First we set a mapping
M : Rd - QRd \{®}7 M = (Mla T aMd) given by

Mi(a, 8) = { JZ (h(s),ui(s)) ds : h € L (R, R™) satisfying a.e. on R

h(t) € (3 dil BiBr D2 £ (7(1)) (ua4i (), uasr (t)) + 9(7(1), 0, +a)) ¢ .

i,r=1
(4.1.6)
Like in Subsection 3.1.3 we know that M is upper—semicontinuous with compact
convex values and maps bounded sets into bounded ones. Now we can prove the
following result.

Theorem 4.1.4. Let (i-iii) hold and d > 1. If there are non-empty open bounded
sets B; C RY™Y, j € Z along with a sequence of intervals {(a;,b;)} ez such that

(1) aj — 400 as j — 400, and b; — —o0 as j — —o0
(i1) Ujez Bj is bounded and sup;cz(bj — a;) < oo

(iii) iI€1£ dist (0, M (9((a;,b;) x B;))) >0

(iv) deg(M, (a;,b;) x Bj,0) # 0

Then there is a constant K > 0 and for any sufficiently small s > 0 there are
increasing sequences {t;}jez, tiy1 —t; > 2/s,¥j € Z, and {k(j)}jez, k(j) € Z,
such that for e = s> and any infinite sequence E = {e;};cz € €, the differential
inclusion (4.1.2) possesses a solution xp s satisfying

sup |asEvs(t) —y(t— &j7E7S)’ < Ks when e;=1,
PSSt (4.1.7)

sup  |zgs(t)] < Ks* when e; =0, o
t<t<tji1

where & g5 € (ar(s), br(jy) C (t,tj41) for any j € Z with e; = 1. The mapping
E — zg s is injective.

Proof. Let E = {ej}jez € &€ be given. We first find solutions of (4.1.2) asso-
ciated to any E, = {e;};er, € {0,1}?’*1, p € N and then by passing to the
limit p — oo, we show the desired solutions. We closely follow the method of
Section 3.1. We start with a construction of sequence {¢;};cz as follows: By
using assumptions (i), (ii) of this theorem, we choose step by step an increasing

sequence {k(j)} ez, k(j) € Z such that t; = Wﬂf%km, J € Z satisfy
2o+ 4 (—1)7F12%, j>1

%+2tj+1 —2t_j+2+"'+(—1)j2t_71, <=2



126 Chapter 4. Bifurcation of Chaotic Solutions

Here we suppose 2/ <sup(bj — aj)> > s > 0. Then we get by
jEL
tp =201 —2tj o+ -+ (=1)7T120, j>1
to =0 ]
t; =2t — 2t + -+ (17128, j< -1

an increasing sequence {t;}jez such that t; ., —t; > 2/s, {; = YL —
.er .

7%(’)2 k) and (ak(j),bk(j)) C (tj,tj+1).
Next we fix E,. For any a € Ap, we put:

if e; =1 then
fYJ(t) :V(tiaj% ﬁj - (61,ja"' 7ﬁd—l,j) ERdil
quJ(t) = Uier(t — O[j), 1€ {1, s ,d — 1},
if e; = 0 then

’yﬂ'(t):& ﬁj:(O,"' 70) ERd_lv
uier)j:O,Z'E{l,'“ 7d—1}.

We define the functions b;, j € I, by

bj(aj, 41, B, Bj+1,71,72)

d—1
= Yjg1(=r2) —y(r1) + X2 (ﬂi,j+1uz’+d,j+1(*rz) - ﬁi,jui-&-d,j(rl)) :
=1

Clearly

b (cj, ji1, By, Bit1,m1,m2)| = Oe2MT)

as r = min{ry, 72} — oo uniformly with respect to bounded «;, aj41, 85, Bj41-
Then we consider (4.1.2) with € = s? on the interval [t_,,¢,+1] and we make
on each interval [t;,t;41], j € I, the changes of variables

d—1
T(t+E) = () + 520 + Y 8B tira (1)
— (4.1.8)
1
5050, 541,505, 58541, 74, i) (U +75), 2 € Zoy

2Tj

where 7; = (tj41 —t;)/2, j € I,. We consider in (4.1.8) for any j with e; =1
that 3; € By, and a; € (— bk(”;ak‘”, bk‘”;“’“‘”). Assumption (i) of this
theorem implies that (;, o; are uniformly bounded with respect to j € Z. We
set Tp41 = T—p. Note if z;(7;) = 2zj41(—7j41) for —p < j <p—1 and z,(7,) =
Z_p(—7_p), and z; are continuous then z in (4.1.8) is continuously extended on

[t—ps tps1]-
Inserting (4.1.8) into (4.1.2), the differential inclusions for z;, j € I, are

2j(t) = Df(v(8)z;(t) € gs,5,8,(25(1), o5, v, By, B, t) (4.1.9)
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a.e. on [—7;,7;], j € I, where

gs,j,Ep(x7ajaaj+17ﬂjaﬂj+17t) = {U eR":ve é%{f<82$ + F)/j(t)

d—1

+s Zl Bijtitd(t) + 55 bj (0, 041,885, 8811, 75, i) (t + Tj)) = f(v;(®)
P :

d—1
=8 2, Pigira,(t) - 3 0i(0, 041,885, 88541, 75, Tj1) — Df (v (f))s%}
=
d—1
g (20750 + 5 T Bguira (1)
1=1
+2%jbj(aj, Oéj_|_17 Sﬂj, Sﬂj+17 Tj, Tj+1)(t + Tj), 52, t + EJ) } .

We note that Df(v;(t)) = A;(t — «;) in the notations of Subsection 4.1.2.
Now we can repeat with the help of Theorem 4.1.2 the arguments of Subsec-
tion 3.1.3 to solve (4.1.9) in Z,. We omit details, since we can directly modify
the proofs without any changes to arrive at a similar inclusion like (3.1.20).
So for j € I, such that e; = 1, according to Subsection 3.1.3 (see (3.1.20)),

(4.1.9) is homotopically associated to a mapping ]\ij : R4 — 2R \ {0} given by
Mj(aj,ﬂj) = M(t; + aj,3;). While for j € I,, such that e; = 0, according to
Subsection 3.1.3 and Remark 4.1.3 (see again (3.1.20)), (4.1.9) is homotopically
trivial. Consequently, like in the proof of Theorem 3.1.6, the solvability of (4.1.9)

is homotopically reduced to the solvability of the system of pg, inclusions

0eM,, ---, 0eM

-h’Ep

(4.1.10)

PE,— times

on the set

be(e) = QkGin) Ok(in) — k()
QEp = Xbeps, |:<_ (k) . (Jk)’ (k) . (]k)) « Bk(jk) '

Here pg, is the number of 1 in E, and each above Mjk7 k=12 .pg,
corresponds to such jj, that ej, = 1. By assumption (iv) of this theorem, system
of inclusions (4.1.10) is solvable on Q E,- Consequently we get a solution zp, s
of (4.1.2) satisfying (4.1.7). Finally passing to the limit p — oo for zp,  like in
Theorem 3.1.33, we get the solution xg , of this theorem. The proof is finished.

O

Similarly we get the next result.

Theorem 4.1.5. Let (i-iii) hold and d = 1. If there is a sequence of intervals
{(a;,bj)}jez along with a constant § > 0 such that

(i) aj — +00 as j — +00, bj — —00 as j — —00, and sup;¢z(b; — a;) < oo,
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(i1) Either M(a;) C [4,00) and M(b;) C (—o0,—6], or M(a;) C (—o0,—0]
and M(bj) C [6,00), for any j € Z,

where M : R — 28\ {0} is defined by

M) ={ [ 4n(s),ut (s)) ds
he L2 (R,RY),h(t) € g(4(£),0,t +a) ae. on R}

loc
Then there is a constant K > 0 and for any sufficiently small s > 0, there are
increasing sequences {t;};cz, tjy1 —t; > 2/s, and {k(j)}jez, k(j) € Z, such
that for e = +s* and any infinite sequence E = {ej};ez € &, the differential
inclusion (4.1.2) possesses a solution xg. s satisfying

sup  |zps(t) —Y(t —dyps)| < Ks® when e; =1,
fiSiStin (4.1.11)

sup ‘xEs(t)| < Ks*> when e;j =0, o
t;<t<tji1

where & g s € (), brijy) C (tj,tj41) for any j € Z with ej = 1. The mapping
E — zg s is injective.

Hence for any € > 0 sufficiently small and E € £, (4.1.2) possesses a solution
zp.s satisfying either (4.1.7) or (4.1.11). These estimates (4.1.7) and (4.1.11)
give the chaotic behavior of solutions zg s for any £ € £. This is more discussed
in the next section.

4.1.4 Chaos from Homoclinic Manifolds
In many cases, the assumption (iii) of Subsection 4.1.1 is replaced by

(iv) The unperturbed equation & = f(z) has a manifold of homoclinic solu-
tions. That is, there exists a C2-smooth mapping 7 : R x R — R”
such that ¢ — ~v(0,t) is a homoclinic solution of & = f(x) to 0 and

{sr0.0.50.0)}

lutions on R of the variational equation @(t) = Df(~(6, t))u(t).

1
, 0 = (61, -+ ,04—1) form a basis of bounded so-
1

This usually happens when & = f(z) has some symmetry. Bifurcations from
family of periodics are studied in Sections 3.3 and 3.5.

Let U(0,t) denote a fundamental solution of @(t) = D f(v(0,t))u(t). Then
Theorem 3.1.2 is valid for each parameter 6. Let u;(6,t) be the jth column of
U(0,t) and define u;-(6,t) by (ui(0,t),u;(0,t)) = §;;. Now we can repeat the
above procedure. Instead of (4.1.8), we make on each interval [t;,t;11], j € I,
the changes of variables

z(t+1t;) =05t — ;) +e2(t)

1
+§(%‘+1(9j+17 —Tj+1 — 1) —Y5(05, 75 — aj))(t +7i) % € 2y,
J
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where 7;(6,t) = v(0,t) for e; = 1 and 7;(6,t) = 0 for e; = 0. In this way for
ej = 1, we arrive at a mapping M; : R¢ — R \ {0} given by
a]7 = +Oé],0), M:(Mla"'7Md)7

ui-(0,s))ds : h € L2 (R,R"),

/—"\

(4.1.12)

€ g(y(0,t),0,t +a) ae.on R}.

Following the proof of Theorem 4.1.4, we get the next result.

Theorem 4.1.6. Let (i), (ii), (iv) hold. If there is a non-empty open bounded
set B C RY™1 along with a sequence of intervals {(a;,bj)}jez such that

(i) aj — 400 as j — 400, and b; — —o0 as j — —00
(i) StueZ(bj —a;) < o0

(i) Ji_xelgdist (0, M(8((aj,b;) x B))) >0

(iv) deg(M, (a;,b;) x B,0) # 0

where M is given by (4.1.12). Then there is a constant K > 0 and for any
sufficiently small € # 0 there are increasing sequences {t;}jez, tj+1 — t; >
2/lel, Vi € Z, and {k(j)}jez, k(j) € Z, such that for any infinite sequence
E = {e;}jez € &, the differential inclusion (4.1.2) possesses a solution zg .
satisfying

sup  |wpe(t) —v(0),t — G5 pe)| < Kle| when e =1,
tj<t<tji1
sup  |zp(t)] < Kle| when e; =0,
L St<tjta

where o pe € (ag), b)) C (t,tj41) and 05 € B for any j € Z with e; = 1.
The mapping E — zg . 1s injective.
4.1.5 Almost and Quasi Periodic Discontinuous O.D.Eqns

We apply in this subsection previous abstract results to concrete examples. For
simplicity we first study the case when

g(.’L’,E,t) :M1F<$)+u2h(t) (4'1'13)

with 10 € R, F: R" — 28"\ {0} is upper-semicontinuous with compact and
convex values, and h € C'(R,R™) is almost periodic, i.e. it fulfills the following
definition [152].
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Definition 4.1.7. h € C(R,R") is almost periodic if ¥¢ > 0 3L > 0 such that
Va € R 37 € [a,a + L] such that |h(x +7) — h(x)| < ( Vz € R.

Function (4.1.13) expresses usual forcing terms in mechanics with dry friction
terms and almost periodic perturbations, for example a quasi-periodically forced
Duffing’s equation (see (3.1.36)):

F— x4+ 22 +epysgnd = epy (cost + cos \/§t> . (4.1.14)

For (4.1.13), formula (4.1.6) has the form

Mi(ev, B) = ul{ Jo(hls),ui () ds + b€ LY, (R, R™)

. (4.1.15)
h(t) € F(v(t)) a.e. on R} + 3 2 BiBrbin + poai(a),
i,r=1
where -
birt = [ (D2 f(7(t)) (ari(t), uasr(t)), ui (1)) dt
ai(a) = [ (h(t+a),uj (1)) dt,
while (4.1.12) has the form
Mi(a,0) = ul{ ff;(h(s),ull(ﬂ,s)} ds : h e L} (R, R"),
(4.1.16)
h(t) € F(y(0,t)) a.e. on R} + poai(a, 9),
where -
rfe,0) = [ e+ o). ut 0.0) dt.
Since all functions u;-(t) and uj (6, s) are integrable over R with respect to
s, it easy to show that functions a(a) = (a1(a), -+ ,a4(a)) and a(a,d) =
(a1(a, 0),--- ;aq(c,B)) are also almost periodic in «a, while a(a, ) uniformly

on bounded sets of 6.

Theorem 4.1.8. Let d > 1. If there is a non-empty open bounded set B C R4~1
along with an interval (a,b) C R such that

(1) 0 ¢ M(9((a,b) x B))
(ii) deg(M, (a,b) x B,0) £ 0

where M is given by either (4.1.15) or (4.1.16). Then the statements of Theorems
4.1.4 and 4.1.6, respectively, are applicable to (4.1.2) with perturbation (4.1.13).
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Proof. We consider the case (4.1.15), the case (4.1.16) is similar. We have to
verify assumptions of Theorem 4.1.4. Since a(«) is almost periodic, by Definition
4.1.7, for any ¢ > 0 there is a sequence {ci }rez, cx — +00 as k — £oo such
that

la(a+cx) —al(a)] < ¢, VaeR.
For any j € Z, we put
Bj:B, aj=c;+a, bj=c;+b.

If ¢ is sufficiently small, then assumptions (i) and (ii) of this theorem clearly
imply assumptions (i-iv) of Theorem 4.1.4, so the proof is finished. O

Similarly we have the next result.

Theorem 4.1.9. Let d = 1. If there is an interval (a,b) C R such that
M(a)M(b) C (—00,0), where M is given by

M(a) = Ml{ JZ (h(s),ut(s))ds : he L} (R,R"),
h(t) € F(y(t)) a.e. on R} + p2aq ().
Then the statement of Theorem 4.1.5 is applicable for (4.1.2) with perturbation

(4.1.13).

Now we intend to show that conditions of Theorems 4.1.8 and 4.1.9 imply
the validity of these conditions also for any h* in the hull H(h) of h. We recall
[152,160] that the hull H(h) of h is defined as a set

H(h):= {h* € C(R,R) | I{7}n>1 C R such that
h(t + 7,) — h*(t) uniformly on R as n — oo} .

We note that h* is also almost periodic. We again consider the case (4.1.15), so

oo [ee]

al'(0) = / (Wt + )t () dt, al () = / (Bt + o), ui (£)) dt

forl =1,2,--- ,d. Theorem 3.1.2 implies that
lui- (1)) < Koe 2MIt vt e R.
For any ¢ > 0, there is an 7 € R such that

Ih(t+71) —h*(t)| <5 VteR.
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Hence

/ (Bt + @) — W*(t + o — 1), ()] dt < 6Ko/M .

This gives
lal(a) —al (a —7)| < 6Ko/M .

By taking § > 0 sufficiently small, the assumptions of Theorems 4.1.8 and
4.1.9 are satisfied for A* in (4.1.13) instead of h with the set B and with an
interval (a — 7,b — 7). Consequently, Theorems 4.1.8 and 4.1.9 imply chaos of
(4.1.2) with the perturbation (4.1.13) over any element of the hull H (k). This
result is a generalization of similar ones from [152,160,181,195] to multivalued
perturbations. We state this result in the next theorem.

Theorem 4.1.10. Under conditions of Theorems 4.1.8 or 4.1.9, differential
inclusion (4.1.2) is also chaotic with perturbation (4.1.13) when h is replaced in
perturbation (4.1.13) by any h* € H(h).

Clearly the above results hold also for continuous h(z,t) in perturbation
(4.1.13) when h(z,t) is uniformly almost periodic in ¢ on any bounded set of
variable z [152, p. 68].

Applying Theorem 4.1.9 to (4.1.14) and using computations to (3.1.36), we
derive

V2r
2

M(a) = —2p1 + po | wsech g sin o 4+ V27 sech

sin \/ia] .
Since v/2 is irrational we have SUp,, cr ’ﬂ' sech % sin a + /27 sech @ sin \/ia‘ =
msech 5 + V27 sech @ So for

Ve
2

lwsech;T + V2 sech 1 lpa| > 2|pa], (4.1.17)

the assumptions of Theorem 4.1.9 are satisfies and then (4.1.14) is chaotic.
Moreover, we have [152, p. 70]

H(cost + cosV/2t) = {cos(t + &) +cos(V2t + &) | &1, 6 € R, & 5 =mod 27r} .

So (4.1.14) over its hull has the form

F—x+ 2% + epy sgnid = epg (cosQp + cosQy)

. . 4.1.18
Ql =1, QQ = \/57 ( )

and according to Theorem 4.1.10, system (4.1.18) is also chaotic when
(4.1.17) holds.
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Finally, we deal with weakly coupled oscillators with a symmetry given by
(4.1.1) which is considered as a differential inclusion

1 =X, Lo—T1+ 2z1(:c% + y%) — ey coswit € —edy Sgn o,

J1=y2, U2~y + 2y (2] +y7) —epp coswat € —d2Sgnya

where Sgnr is defined by (2.4.1). The unperturbed equation of (4.1.1)
i1 =g, B2 =21 — 201 (2T +41), G =w2, U2 =y — 2u1 (2] +u7) (4.1.19)

has a rotational symmetry, i.e. it has a homoclinic manifold given by ~v(0,t) =
(r(t) cos 8, 7(t) cos 0, r(t) sin 0,7 (t) sin ) wherer(t) = secht (seeexample (3.5.22)
and [106] for similar computations). Then

ut(0,t) = (—#(t)sind,r(t)sin,(t) cos 0, —r(t) cos ),
uy (0,t) = (— #*(t) cos 0,7 (t) cos §, —(t) sin 0, 7(t) sin §) ,
where 6 € [0,27). Now (4.1.16) has for § # 0,7/2,7,37/2 the form
M (e, 0) = wuq sech % sin @ cos wi — g sech % cos f coswax
Ms (e, 0) = wpywy sech % cos 0 sinw; o (4.1.20)
7 paws sech % sin 0 sin waar — 261 | cos O] — 283 sin 6] .
In order to apply Theorem 4.1.8, it is enough to find an isolated root of (4.1.20) with

a nonzero Brouwer index. We consider that § € (0,7/2) and o € (O, ﬁ) = .
Then equation M («,#) = 0 has the form

Ai(a)sind + Ay(a)cos® =0, Asz(a)sing + Ay(a)cosfd =0, (4.1.21)

where functions A;(«), i = 1,2,3,4 are given by the definition. Note that
Ai(a) # 0 and Az(a) # 0 on Iy. It is clear that (4.1.21) is equivalent to
B(a) = Aj(a)As(a) — Ax(a)As(a) =0

4.1.22
Ai(a)sing + Az(a)cosd =0, ( )

where
2 2

2 2
B(a) = %p%wl ( sech %) sin 2wy + %u%wg ( sech %) sin 2wa v

w1 wWa T
—267 pup sech 5 coswia — 2o 19 sech ~ COS Wax .

Since B(0) < 0, function B(«) is nonzero analytic and it could have only isolated
zeroes with finite orders. Consequently, supposing

2 2 2 2
ﬂ-—,u%wl(sech M) + W—u%wg(sech %) sin o2 >
TW2

\ﬁél,ulw sech “ir + 299 o sech il cos ——
2 2 4w1
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we see that B (ﬁ) > 0 and B(«) changes the sign over Iy. Then there are

ag € Iy, 7 > 0 such that B(«) has the only zero @ = «p in the interval
[ag — 1,00 + 1] C Iy and B(ag — n)B(ag + 1) < 0. We take

()

20y +
2 '

0(a) = —arctan(Az(a) /A1 (@), Oy = 1

05 =
Then on the set
= [CVO—?%OZO‘H?] X [96793] CIO X (077(/2)7

mapping M (a, ) has the only zero point &y := (oo, 8(ap)). To show the non-
vanishing of the Brouwer index I(ayg) of this isolated zero point of M(a,6) (cf
Section 2.2.3), we consider the equation

Aj(a)sin€ + As(a) cosf =0

4.1.24
As(a)sin® + Ay(a) cosd = ¢, ( )

for ¢; # 0 small and (o, §) € Z. Equation (4.1.24) gives
a=Ca):= Bl (4.1.25)

\/A1 )2+ As( )

Let L(«) be the linearization of the left hand side of (4.1.24) at point (a, 6(«)).
A boring computation gives

det L(a) = —C"(a) /A1 ()2 + Ay()?. (4.1.26)

We note Aj(a)? + Az(a)? # 0 on [ag — 1, a0 + 7). Let {(cy,0 az))} be the
solutions of (4.1.24) in Z. Then for ¢; sufficiently small such that C”(al) # 0,
i=1,2,---, N, by the definition of the Brouwer degree (cf. Section 2.2.3) and
(4.1.26), we have

N
= ‘Z sgn C' ()

:‘deg(C(a)( —n,a0+ 1), )]—1

since by (4.1.25), function C'(«) has the only zero a = oy in [ag — 1, g + 1] and
C(ag—n)C(ap+1n) < 0. Hence we get from Theorem 4.1.8 the following result.

Theorem 4.1.11. If (4.1.23) holds then (4.1.1) is chaotic for any € > 0 small.

N
[I(ag)| = ‘Z sgn det L(a;)
i=1

Condition (4.1.23) means that the forcing terms must be sufficiently large
in (4.1.1) with respect to damping terms, to get chaos in (4.1.1), and the rate
is given by this condition.

We note that if the ratio ws/wq is irrational, then the hull of the function
h(t) = (u1 coswit, pa coswst) is given by

H(h) = {(ul cos(wit + &1), o cos(wat + &2)) | £1,62 € R, &1,2 = mod 27r} .
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So (4.1.1) considered over H(h) has the form
i=x—2x(x® +y*) +epicosQy —edysgni,
i =1y —2y(z® +y%) + eug cos Qy — edysgny, (4.1.27)
Ql = w1, QQ = Wy .
Theorem 4.1.10 implies chaos of (4.1.27) under condition (4.1.23). This result
is a generalization of similar ones of [152,195] to multivalued and quasiperiodic
perturbations. Of course, other discontinuous perturbations such as in Remark

3.1.29 could be considered in (4.1.1), but we do not carry out those computa-
tions.

4.2 Chaos in Periodic Differential Inclusions

4.2.1 Regular Periodic Perturbations

Using results of the previous Section 4.1, in this section we show chaotic solutions
to the problem (3.1.3) studied in Chapter 3. We suppose assumptions (i-iv) from
Subsection 3.1.1. Note that now all multivalued Melnikov functions are periodic.
So applying Theorem 4.1.4 like in the proof of Theorem 4.1.8, we immediately
have the following generalizations of Theorems 3.1.6-3.1.9 (see [76]).

Theorem 4.2.1. Let d > 1. If there is a non—empty open bounded set B C R?
and po € S*=1 such that 0 ¢ M, (0B) and deg(M,,,,B,0) # 0, where M, is
defined by (3.1.21). Then there is a constant K > 0 and a wedge-shaped region
in R* for p of the form

R = {82,& 2 s> 0, respectively [i, is from an open small connected

neighborhood Uy, respectively Uy C S*=1, of 0 € R, respectively of Mo}

such that for any p € R of the form u = s, 0 < s € Uy, fi € Uy, for any
sequence E = {e;}jez € &€ and for any m € N, m > [1/s], the differential
inclusion (3.1.3) possesses a solution x., g satisfying
sup |Tm,5(t) = y(t —2mj — apjp)| < Ks  when e; =1,
(25 —1)ym<t<(2j+1)m
sup |sz(t)| < Ks*> when e; =0,
(2j—1)m<t<(2j+1)m
(4.2.1)
where oy j g € R and |ay, ;5| < K.

Theorem 4.2.2. Let d = 1. If there are constants a < b and pg € S*~1 such
that M, (a)M,,,(b) C (—00,0), where M,, is defined by (3.1.24). Then there is
a constant K > 0 and a wedge-shaped region in R¥ for u of the form

R = { + 5% s> 0, respectively [i, is from an open small connected

neighborhood Uy, respectively Uy C S*=1, of 0 € R, respectively of Mo}
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such that for any i € R of the form u = +s%ji, 0 < s € Uy, ji € Uy, for any
sequence E = {e;}jez € &€ and for any m € N, m > [1/s], the differential
inclusion (3.1.3) possesses a solution ., g satisfying

sup |JCm7E(t) —y(t—2mj — a,,L7j,E)} < Ks® when e; =1,
(2j—-1)m<t<(2j+1)m

Sup |me(t)| < Ks* when e; =0,
(25 —1)m<t<(25+1)m
(4.2.2)

where auy, j B € (a,b).

Note that now ¢; = (2§ — 1)m in the notations of Theorem 4.1.4, since now
M,, is 2-periodic in «. This comes directly following the proof of Theorem 4.1.8
(see [76] for more details).

Hence for any p € R, m € N sufficiently large and E € £, (3.1.3) possesses
a solution z,, g satisfying either (4.2.1) or (4.2.2). These estimates (4.2.1-4.2.2)
give the injectivity of the mapping £ — z,, g for s > 0 small. Let 0 : £ — &
be the Bernoulli shift defined in Section 2.5.2. Now the estimates (4.2.1-4.2.2)
imply that x,, »(g)(t) is orbitally close to 2, g(t+42m). Summarizing we obtain
the following result.

Theorem 4.2.3. Under the assumptions either of Theorem 4.2.1 or of Theorem
4.2.2, for any u € R and m € N sufficiently large, (3.1.3) possesses a family of
solutions {Z"%E}Ees such that

(i) E — x5 is injective
(i) Ty, o(p)(t) is orbitally close to Ty, g(t 4 2m)

This result extends the deterministic chaos mentioned in Sections 2.5.2 and
2.5.3 to discontinuous o.d.equs as follows. For simplicity, we consider (3.1.34)
which we recall here for the reader convenience

&4 g(x) + pysgnd = poip(t), (4.2.3)

where g satisfies conditions of (3.1.35), ¥ € C1(R,R) is 2-periodic and py, u2
are small parameters. When p; = 0, then (4.2.3) is a regular system of the form

I+ g(x) = pat(t). (4.2.4)

According to computations of Subsection 3.1.6, the corresponding Melnikov
function for the problem (4.2.3) is as follows

Mue) =pz [ @(5)(s +a)ds — lto)p
where p := (p1, p2). The Melnikov function for (4.2.4) is just
M(a) = / o(s)0(s + a) ds.

— 00
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Under the existence of a simple zero aq of M, i.e. M(ag) = 0 and M’(ag) # 0,
the assumption M (a)M (b) < 0 of Theorem 4.2.3 is satisfied for a = ap — ¢ and

b = ag + ¢ with ¢ > 0 small. But since the existence of a simple zero of M is
stronger than the above assumption of Theorem 4.2.3, when ps # 0 is small,
the property (ii) of this theorem for (4.2.4) has the form (cf. [157,195])

Tio(e)(t) = Tm g(t +2m). (4.2.5)

Put
A= {(xm.r(0), 7, r(0)) | E € £} C R2.

Let F),, be the time map of the flow of the first order system of (4.2.4), i.e.
Fo,(z0,90) := (2(2),y(2)), where x(t) and y(t) solve the Cauchy problem

@) =y(t), §(t) = pap(t) — g(x(t)), 2(0) =zo, y(0) =yo-

Then from (4.2.5) we immediately derive

F (2m,2(0), #m,£(0))) = (Tm,o(£)(0), £m.0(1)(0)) -

Hence
FliiA— A
2

and
F[ZQLOJZJOO’, (4.2.6)

where J : £ — A is defined as follows
J(E) = (m,e(0), 2m,e(0)) .

Then (4.2.6) means that I} has the same dynamics on A as the Bernoulli shift
J on €. So by Theorem 2.5.3, the time map F}} is chaotic on A. Moreover, it is
possible to show a sensitive dependence on initial conditions of F} on A in the
sense that there is an gy > 0 such that for any (z,y) € A and any neighborhood

U of (x,y), there exists (u,z) € UNA and an integer ¢ > 1 such that
[ (2, y) — Fia(u, 2)| > €.

Of course, these results are known [157,195], and they are mentioned also in
Section 2.5.3. Hence (4.2.4) is chaotic and sensitive depends on initial conditions
as well. The set A is Smale’s horseshoe of F and F)7} has horseshoe dynamics
on A.

Summarizing, when p; # 0 is small then Theorem 4.2.3 extends the deter-
ministic chaos of (4.2.4) to (4.2.3), when in place of (4.2.5) we get property (ii)
of Theorem 4.2.3.
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4.2.2 Singular Differential Inclusions

In Subsection 4.2.1, Theorems 4.2.1-4.2.2 are obtained by extending Theorems
3.1.6-3.1.9 of Subsection 3.1.3. Now Theorems 3.1.12-3.1.13 have the following
extensions (see [76]).

Theorem 4.2.4. Let d > 1. If there is a non—empty open bounded set B C R?
and * € {—,+} such that 0 ¢ M,(0B) and deg(M.,B,0) # 0, where M, is given
by (3.1.28). Then there is a constant K > 0 such that for any sufficiently small
e #0,sgne = x1 and any E = {e;j}jez € €, the differential inclusion (3.1.25)
possesses a solution xp, . g for any m € N satisfying

t—2mj — e, E

sup
(2j—1)m<t<(2j+1)m

T ORT )| < EVIE when ¢;=1,

e

sup |Tm,e.p(t)| < Kle| when e;=0,
(2j-1)m<t<(25+1)m

where oo j - £ € R and |am e 5] < K.

Theorem 4.2.5. Let d = 1. If there are constants a < b such that M (a)M (b) C
(—00,0), where M is given by (3.1.29). Then there is a constant K > 0 such
that for any sufficiently small € # 0 and any E = {e;}jez € &, the differential
inclusion (3.1.25) possesses a solution xp, o g for any m € N satisfying

t— 2m] - am,j,e,E

sup T B (t) — 'y( )‘ < Kle| when e;j=1,

(2j—1)m<t<(2j+1)m €

sup |2 e p(t)] < Kle| when e;=0,
(2j—1)m<t<(2j+1)m

where oy, j - g € (a,b).

Finally, we consider the singularly perturbed differential inclusion (3.2.4) of
Section 3.2. By combining the arguments of Sections 3.2 and 4.1, we obtain the
following extensions of Theorems 3.2.6-3.2.11.

Theorem 4.2.6. Let d > 1. If there is a non—empty open bounded set B C R?
such that 0 ¢ M(OB) and deg(M,B,0) # 0, where M is given by (3.2.20).
Then there are constants K > 0 and €9 > 0 such that for any 0 < € < &g
and any E ={e;};ez € €, the differential inclusion (3.2.4) possesses a solution
(Tm.e. By Ym,e,p) for any m € N, m > [1/\/e] satisfying

sup |ym,s,E(t)| S Ke

teR

sup |xm7E,E(t) —y(t—2mj — am,j75,E)| < K\ fore; =1,
(2j-1)m<t<(2j+1)m

sup |Tmep(t)] < Ke for e;=0,
(2j—1)m<t<(2j+1)m

where ooy j - g € R and |am je 5] < K.
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Theorem 4.2.7. Let d = 1. If there are constants a < b such that M (a)M (b) C
(—00,0), where M is given by (3.2.25). Then there are constants K > 0 and
g0 > 0 such that for any 0 < e < g9 and any E = {e;};cz € €, the differential in-
clusion (3.2.4) possesses a solution (T, e. 5, Ym.e.r) for anym € N, m > [1//¢]
satisfying

sup [ym e, 6 (t)| < Ke

teRr

sup |xm7€7E(t) —y(t —2mj — am7j187E)| < Ke fore; =1,
(25 -1)m<t<(2j+1)m
sup |Tm,e.p(t)| < Ke when e; =0,
(2j-1)m<t<(2j+1)m

where ooy j - & € (a,b).

4.3 More About Homoclinic Bifurcations

In Sections 4.1 and 4.2, we study bifurcation of chaotic solutions accumulating
on bounded solutions for ordinary differential equations with small multival-
ued perturbations. We assume that the o.d.eqns have homoclinic solutions to
hyperbolic equilibria. More recently, we have considered bifurcation from non-
smooth homoclinics, i.e. we considered parameterized discontinuous o.d.eqns
with homoclinics crossing discontinuity levels. There are the following two main
possibilities.

4.3.1 Transversal Homoclinic Crossing Discontinuity

In [22] we investigate the following problem: Let G(z) be a C"—function on
QCR" r>2andlet Qp ={z e Q|G(z)20}, Q= {z e Q|G(z) =0}. Let
f+(z) € C"(Q4) and consider the equation

i = fi(z) +eg(t,z,e), z€Qy, (4.3.1)
where g € C7 (R x Q2 x R) and ¢ € R is a small parameter. Assume (see Fig.4.1)

e For ¢ = 0 (4.3.1) has the hyperbolic equilibrium z = 0 € Q_ and a con-
tinuous (not necessarily C'') homoclinic orbit v(¢) to # = 0 that consists
of three solutions

v_(t) ift<-T
y(t) = Y) f-T<t<T
ve(t) ift>T
where vy (t) € Q_ for [t| > T, vo(t) € Q4 for |t| < T and
V-(=T) =7%(=T) € Qo, 74(T) =0(T) € Qo.

Moreover we also assume that

G'(y(=T)Nf(y(=T)) >0, and G'(¥(T))f=(+(T)) <O.
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Figure 4.1: A transversal homoclinic cycle

We have derived a Melnikov bifurcation function to find a solution z(t,e) of
(4.3.1) such that

sup|z(t,e) —y(t —ale))] = 0, ase — 0
teR

for some «(e) € R. Note 7(t) crosses transversally the discontinuity level Qg in
(4.3.1).

4.3.2 Homoclinic Sliding on Discontinuity

On the other hand, in [8], we study a case when a part of homoclinic orbit is
sliding on a discontinuity level: Consider the planar discontinuous system

P=fu(z) +eglztie) for y>1,

(4.3.2)
2= f_(2)+eg(zte) for y<l1,

where z = (x,y) € R?, fi, g are C3-smooth and ¢ is 1-periodic in ¢. While on
y =1 (cf. [134]), we consider the equation

. q+2(xalat75)
xr = 1 l’,17t,5
q+2($,1,t7€) 7Q—2(‘r717t7€)q+ ( )
Q—Z(m717ta6)

q,2($7 ]-vta 5) - q+2($, 17t75)

(4.3.3)

q—l(xa la t,&) )

where gz = (qe1,042) and qi(z,t,) = fi(2) + eg(zt,€). We suppose the
following conditions

(i) f-(0) =0 and Df_(0) has no eigenvalues on the imaginary axis.
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z=f1(2)
NN NN NN

Figure 4.2: A planar sliding homoclinic cycle

z=f1(2)
NN N N NN

P4 P A A A —

Figure 4.3: A planar homoclinic sliding crossing a line

(ii) There are two solutions vy_(s), v+(s) of 2 = f_(2), y < 1 defined on
R_ = (—00,0], Ry = [0,+00), respectively, such that lirf v+(s) =0

and vx(s) = (x+(s),y+(s)) with y£(0) = 1, 2_(0) < 24+(0). More-
over, fr(z) = (fr1(2), f+2(2)) with fii(z,1) > 0, fia(z,1) < O for
2_(0) < & < 24(0). Furthermore, f_s(x,1) > 0 for z_(0) < z < 24(0),
f=2(24(0),1) =0 and 9, f—2(z4+(0),1) < 0.

Assumptions (i) and (ii) mean (see Fig.4.2) that (4.3.2) for € = 0 has a sliding
homoclinic solution 7, created by v, to a hyperbolic equilibrium 0. Conditions
for the bifurcation of v to bounded solutions on R of (4.3.2) under the per-
turbation eg(z,t,¢) are derived in [8]. Functional-analytical methods are used
in [8,22] based on the implicit function theorem.

Finally, we have also studied cases when homoclinic orbit v(s) transversally
crosses another curves of discontinuity (see Fig. 4.3). For simplicity, we supposed
that such a discontinuity in (4.3.2) occurs at the level y = 1/2, i.e. we considered
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the system

= f+(2) +eg(t) for y>1,

=f_(2)+eg(t) for 1/2<y<1, (4.3.4)
2=F(z)+eg(t) for y<1/2,

where z = (z,y) € R?, fy, F, g are C®-smooth and g is 1-periodic in ¢.



Chapter 5

Topological Transversality

5.1 Topological Transversality and Chaos

5.1.1 Topologically Transversal Invariant Sets

We study bifurcation of chaotic solutions of discontinuous o.d.eqns in Chapter 4
using topological degree methods. Those results are extensions of a similar clas-
sical result, the Smale-Birkhoff homoclinic theorem for smooth o.d.eqns, based
on the existence of Smale’s horseshoe which is a consequence of a transversal
intersection of stable and unstable manifolds of a hyperbolic fixed point of a
diffeomorphism. When the smoothness of an o.d.eqn is dropped, then this clas-
sical approach fails. For this reason we use topological degree arguments. This
is the aim of Chapter 4. Similar mathematical difficulties occur when a diffeo-
morphism possesses a hyperbolic fixed point, but the corresponding stable and
unstable manifolds do not have a transversal intersection. So a natural question
arises that which kind of intersection should have stable and unstable manifolds
in order to have a chaotic behavior of a diffeomorphism near that intersection.
The aim of this section is to give an answer on this question by extending the
Smale-Birkhoff homoclinic theorem in this direction. We show that a topologi-
cally transversal intersection of stable and unstable manifolds guaranties chaotic
behavior of the diffeomorphism.

In order to state our main results, we need the following notations and
definitions. Let M be a C'-smooth manifold without boundary. Consider a C'-
smooth diffeomorphism f : M — M possessing a hyperbolic fixed point p and
let W7, W be the global stable and unstable manifolds of p, respectively. Let

W;, Wg be open subsets of W, W/

p b)
M, that is the immersed and induced topologies on W, and W/, respectively,
coincide. We assume that W, N W'\ {p} # 0, i.e. there is a point ¢ homoclinic
to p. We also suppose the existence of a compact component K > g of the set
Wy N W', that is a compact subset K C W75 N Wy \ {p} such that ¢ € K
and there exists an open connected precompact subset U C U C M\ {p}

respectively, which are submanifolds of

M. Feckan, Topological Degree Approach to Bifurcation Problems, 143—181. 143
(© Springer Science + Business Media B.V., 2008
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Figure 5.1: A transversal homoclinic set K = /V[71f N W;ﬁ nu

satisfying U N W; N W; = K (see Fig.5.1). Since K is compact there is an
mg such that f™°(K) is in a local chart U, of p. By shrinking U, we can
assume in addition that Wz‘f(u) NU = W;(u) NU and as well as fmo(U) C
U,, and consequently, U is orientable. Moreover, since U is precompact and
open, W, () VU are also submanifolds of M and there is an Ny > 0 such that

W;‘“) NnU C ijNO(WS(u)) \ {p}. Hence W,f(“) NU are also orientable. Then we

p,loc
can define the local intersection number #(VVI;S NUWSNU ) of the manifolds

W; NU and W;‘ N U in M. The main purpose of this section is to prove the
following result [18].

Theorem 5.1.1. If#(wzf NnU, W; N U) = 0 then there exists wyg € N such that
for any N > w > wq there is a set A, C M and a mapping 7, : A, — & such
that

(i) f2w(Aw) = Ay
(i) m, is continuous, one to one and onto
(iii) 7, o f?* = o om,, where o : £ — & is the Bernoulli shift map

Remark 5.1.2. Note that we do not know whether 7! is continuous. Thus we
cannot say, in general, that A, is homeomorphic to £. However, if ¢ is a transver-
sal homoclinic point, m, is a homeomorphism, since in the considerations that
follow we can use the implicit function theorem instead of the Brouwer degree
theory, getting the standard Smale horseshoe of the Smale-Birkhoff homoclinic
theorem.

Remark 5.1.3. The diffeomorphism f of Theorem 5.1.1 has positive topological
entropy. This follows from [49, Lemma 1.3].
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Remark 5.1.4. Consider a C'-smooth diffeomorphism f : M — M possessing
two hyperbolic fixed points p1 and pa, p1 # pa. If W7 and W, and Wy, and
W', are topologically transversal, respectively, then we can prove a similar

result for f like in Theorem 5.1.1.

Now we present a situation where topologically transversal intersections of
stable and unstable manifolds naturally occur. Let M be a smooth symplectic
surface with the symplectic area form w. Let f : M — M be a smooth area-
preserving diffeomorphism homotopic to identity and exactly symplectic, i.e.
f*(a) = a+ dS for some smooth function S : M — R and « is a differential
1-form such that da = w. Time-one-maps of 1-periodic Hamiltonian systems
are such diffeomorphisms (see (5.1.2)). We note that any exactly symplectic
map is also symplectic. If M is exactly symplectic, i.e. w = da, and simply
connected then any symplectic map is also exactly symplectic. Following a proof
of [196, Theorem 2.1}, we have the next result.

Proposition 5.1.5. Assume that f has two hyperbolic fixed points p1, p2, p1 #
p2. Let us suppose that W5 NW3 # 0 and Wi, "W £ 0. If W5 # W
and Wy, # W, and S(p1) = S(p2), then W and W, and W, and W',
are topologically transversal, respectively. Hence Remark 5.1.4 gives a chaotic

behavior of f.

Example 5.1.6. Proposition 5.1.5 can be applied to the results of [41, Section 5,
p. 703]. More precisely, let us consider the equation

i + W (u,t) =0, (5.1.1)

where W : RxR — R is C*-smooth and 1-periodic in t. Suppose that (5.1.1) has
two different hyperbolic periodic solutions u; and us. Let ¢ : R? x R — R2 be
the flow of & = v, © = =W (u,t). Then f(z,y) = ¢(z,y,1) is exactly symplectic
by taking

1
w=deAdy, a=—yds, S(e.y)=-— / L(é(x,y, s)) ds.
0

where L is the Lagrangian of (5.1.1) given by L(¢) = %% —G(p1,t), & = (d1, d2),
0G /Ou = W. Clearly the periodic solutions uy, us induce hyperbolic fixed points
(u1(0),11(0)) = wy and (u2(0),u2(0)) = ws of f. Then S(w;) = S(ws) is a part
of the condition (1) of [41, Definition 2.1]. Hence w; and we are on the same
action level for f in the terminology of [196, Theorem 8.1]. S is naturally related
to the action functional over H{ = {u € H} (R) : u(t + 1) = u(t) a.e. in R}

defined as u +— fol (ﬂ(;)z —G(u(s), s)) ds on [41, p. 679]. Hence the assumptions

of Subsection 5 of [41] imply the validity of Theorem 5.1.1, which is stronger
than the results of Subsection 5 of [41]. On the other hand, the main results
of [41] deal with equations like (5.1.1) under assumptions on u; and uy weaker
than in this subsection, namely u; and us are not hyperbolic but they are the
so-called consecutive minimizers, see [41, Definition 2.1]. By using variational
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methods, chaotic bumping solutions are shown to exist in [41]. Finally we note
that for a C''-smooth 1-periodic Hamiltonian system

OH OH
= ——— )= — 1.2
T ay (x7y7t)7 Yy ox (xay7t)7 (5 )

the time-one map is exactly symplectic with

1
w=drxNdy, «a=xdy, S(z,y) :/0 (1/J1(£U7yaf)wz(%y;t)—Hw(l"yﬂf))) dt,

where 1 = (t1,2) is the flow of (5.1.2). The action functional for (5.1.2) over
HY is given by

(@) = [ 00~ Hale). 0.0 = [ Sa0).0(0) ~ Hule). 0.

0 1

where J = ( 1 0

>, u = (z,y) and (-,-) is the usual inner product on R?.

Results similar to Theorem 5.1.1 have been proved by others authors. For
example, a semiconjugacy to the Bernoulli shift ¢ on £ of some power of a
given map is proved in [154] provided an isolating neighborhood of the map
satisfies some conditions on the Conley indices of its subsets. On the other
hand, Lefschetz Fixed Point Theorem and Topological Principle of Wazewski is
applied in [180] to prove the existence of a compact invariant set for the Poincaré
map of a time-periodic vector field on which the same map is semiconjugated to
the Bernoulli shift o on £ and the counterimage (by the semiconjugacy) of any
periodic point of o contains a periodic point of the Poincaré map. The notion
of periodic isolating segments is an essential tool for the proofs in [180]. Finally,
the same situation as in this section is studied in [49]. By using geometric and
homological methods, it is proved in [49] that, under the conditions of Theorem
5.1.1, there is an invariant set of some power of f on which the same power
of f is semiconjugated to the Bernoulli shift ¢ on £. In all these papers by
semiconjugacy it is meant that the associated map between the invariant set and
the symbolic set (in this section it is the map ) is shown to be continuous and
onto. Hence the semiconjugacy does not directly imply the existence of infinitely
many periodic orbits of a given map (apart from the result in [180]), but it
implies positive topological entropy of the map. Our approach instead, which
is based on an idea in [16], namely on the notion of exponential dichotomies of
difference equations, allow us to prove that m, is one to one, a result that was
not stated in [49,154,180]. Consequently, f has infinitely many periodic orbits as
well as quasiperiodic ones. Moreover we are able to identify the periodic points
of the map as solutions of a particular equation.

5.1.2 Difference Boundary Value Problems

To avoid the use of either the tangent vector bundle of M or local charts of M,
we assume for simplicity in this subsection that M = R This restriction is only
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technical. Next, for any £ € W;ﬂﬁ and n € W;;LHU we set &, = f"(§), n € Zy,
N = f™(n), n € Z_. Now we fix w € N large and put

Jw:{_wa_w+1a--'7w_1’w}? jw:{_w7_w+1""’w_1}’
Jo={-w,~w+1,--,-1,0}, I;={-w—w+1,...,—1},
JE=10,1,...,w—-1,0}, IF=1{0,1,...,w—2,w0—1}.

In this subsection we study the nonlinear system

Tn+1 = f(xn) (513)

near {&n}, c;+ and {nn}, ¢ ;- As usually in the bifurcation theory, at first we
consider linearizations of (5.1.3) along {&, tnez, and {n, }nez_ given by

Unt1 = Df(&)vn, n€Zy, (5.1.4)

Wpy1 = Df(np)w,, ne€Z_, n#0 (5.1.5)

respectively. Since £, — p, 7, — p as n — oo and p is a hyperbolic fixed point
of f, we have the following result.

Lemma 5.1.7. Systems (5.1.4) and (5.1.5) have exponential dichotomies on
Zy and Z_, respectively, i.e. there are positive constants L > 1, 6 € (0,1)
and orthogonal projections P : RY — TgW;, Qy : RN — TT,/W;L such that
the fundamental solutions Ve(n) and W,(n) of (5.1.4) and (5.1.5) respectively,
satisfy the following conditions:

[Ve(n)PeVe(m) ™| < L6™™™, m<mn, m,n€Zg,

1 B (5.1.6)
[Ve(n) (T = P)Ve(m)~Y|| < L6™", n<m, myneZs,
W, (n) (I — Qy)W,y(m) | < L6™™™, m<n, mmneZ_, (5.17)
||W77(n)QT7WY](m)71|| S Lamina n S m7 mvn 6 Z— Y o
respectively, along with
V‘é(”)PEVé(n)il — By, Wn(_n)Qan(_n)il —1-P (5.1.8)

as n — oo uniformly for €, n, where P, is the exponential dichotomy projection
of 2 = Df(p)z. Moreover, L and & can be chosen to be independent of £ € W;DU

andn € W; NU. If M and f are C"-smooth then P: and Q, are C"-smooth
in &, n respectively.

Proof. Let £ € W; N U, then f*(¢) — p as n — +oo. From the roughness
of exponential dichotomies in Lemma 2.5.1, it follows that there exists r¢ > 0

such that when [€ — ¢| < e, e W; NU, vni1 = f'(2)vn has an exponential
dichotomy on Z, with constants L¢ and d¢. Covering W;j N U with a finite
number of balls centered at { and of radius r¢ the result follows as far as the
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dichotomy on Z is concerned. A similar argument applies for the dichotomy on
Z_. Note that any projection having the same range as P, (resp. @) satisfies
condition (5.1.6) (resp. (5.1.7)). Thus, it is the additional requirement that P
and @, are orthogonal that makes them unique. This uniqueness also implies
that P: and @, are continuous in &, 7 respectively. In fact let us prove this for

Pe. Since W; is O, we get that TEW:S depends continuously on ¢ and the same
holds for its orthogonal complement (TeW3)* in R". So, if {v1(£),...,va(£)}
is a (local) orthonormal basis of T¢W; that depends continuously on ¢ in a
neighborhood of some &, € W;, we have Pev = Zj:1<v,vj (&))v;(€) and then
P is continuous in £. Note that the uniqueness of P; implies that P:v does not
depend on the choice of the basis {v1(£),...,v4(§)}. A similar argument holds

for @,,. Moreover, note that, when M and are C"-smooth then P¢ and @, are
of class C" 1. O

Next we study nonhomogenous equations of (5.1.4) and (5.1.5).

Lemma 5.1.8. There exist wg € N and a_constant ¢ > 0 such that given any
weN w>w, (&n) € (W;OU) X (W;fﬂU), and b, h, € RN, n € J,,
¢ € RP, ¥ € RQy, there exist unique solutions {vn}, c;+ and {wn}, ;- of
the linear systems

Un+1 = Df(gn)vn +hn, ne I: ,

B (5.1.9)
Wp+1 = Df(nn)wn + hn, nec Iw 5
respectively, together with the boundary value conditions
Pevg =¢, Quwo =1, v, —w_,=>. (5.1.10)

Moreover such solutions are linear in (b, h,$,v), h = {hn}, .5 and satisfy

max |vy, |, max |wy,| < ¢( max |h,| + [b] + |¢] + [¥]) . (5.1.11)
neJtd neJs neJE

Proof. Uniqueness: When h = 0, ¢ = 0, v = 0 and b = 0 then from (5.1.9)
and (5.1.10) we get v, = Ve(n)vo, wp, = We(n)wo, Pevo = 0, Quwo = 0 and
Ve(w)vg = We(—w)wp. Then
[Ve(w)(I = Pe)Ve(w) "] Ve(w)vo = [Wy(=w) (I = Qu)Wy(~w) '] Wy (~w)wo
By (5.1.8) we have
R [Ve(@)(I = Pe)Ve(w) ™ ] N R [Wy (—w) (I = Qu) Wy (—w)~'] = {0}

for w large. Hence Ve (w)vg = W, (—w)wy = 0, which give v, = w, = 0.
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Existence: For b, h, € RN, n € J,, ¢ € RP:, ¢ € RQ,), 61 € NPy, b1 € RP,

we put

on = Ve(n ¢>+ng ) PeVe(k +1) " hy

w—1
=Y Ve(n)(T = Pe)Ve(k+ 1) g + Ve(n) (I — Pe)Ve(w) 61 forn e J}
= (5.1.12)
and
n—1
wy =Wy(n)d+ Y Wy(n) (I = Qy)Wy(k+ 1) by
k=—w
- Z W,( (k4 1) hy 4+ Wy (n)(T— Q)W (—w) by for n e J
(5.1.13)

Clearly such vy, w, satisfy (5.1.9) and Prvg = ¢, Quwo = 1. To show v, —w_,, =
b, we solve

Wy (—w)(I *Qn) n(=w) "1 = Ve(@) (L= Pe)Ve(w) o1 = Ve(w)ep — b

—1
¢+ZV5 W)PeVe(k + 1) hi + D We(=w)QyWy(k + 1) hy,
k=—w
(5.1.14)
By (5.1.8) we can uniquely solve ¢1, ¥ from (5.1.14) for w large. This gives
the desired solution of this Lemma. Estimates of (5.1.11) follow directly from
(5.1.6), (5.1.7), (5.1.12), (5.1.13) and (5.1.14). The proof is finished. O

Similarly we have the next result.

Lemma 5.1.9. For any (&,1) € (W NU) x (WeNU), ¢ € RP, ¥ € RQy.
and for any bounded sequence {hy,}nez, there exist unique solutions {vy,}n>0
and {wy }n<o of the linear systems

Un+1 :Df(é-n)vn+hn7 71207
Wny1 = Df(mn)wn + hyny, n < —1,

respectively, together with the boundary value conditions
PSUO = ¢7 ano = ¢

Moreover such solutions are linear in (h®,¢,v), ht = {hp}n>0, b~ = {hn}n<o,
and there exists a constant ¢ > 0, independent of (h*, ¢,1), such that:

sup |vp| < C(Suplh [+ 101), sup|wn| < c(sup [hy| + [¢])
n>0 n<0 n<0
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Proof. The solutions are given by formulas

vn = Ve(n ¢+ZV§ n)PeVe(k + 1)~ 1hk—ZV5 (I — Pe)Ve(k+1) " hy,
k=n

for n > 0 and

—1

n—1
wn = Wy(n)o+ Z Wi (n) (I=Qy) W (k+1) )" he— ZW£ n)Qy Wy (k+1)""hy

k=—o0 k=n

for n < 0. The proof is finished. O
Now we are ready to study (5.1.3) near {&,},,c;+ and {nn},,c ;-

Theorem 5.1.10. There ewist wg € N and a constant ¢ > 0 such that, for
any w € N, w > wo, and (§,n) € (W NU) x (WrNU), there exist unique
{ah (W, &Mt heyr and {x, (W, &)}, - which satisfy (5.1.3) separately on I}
and I, such that

Pfxg(w7§7n) = Pﬁga ana(w7§7n) = anﬂ mj)_(waé—?n) = CU:W(W»&??) )
together with

max |2y (w,&,1m) = &nl < €6, max |z, (w,&m) = | < 0.

neJb nedy

Moreover, x(w,€,m) are C"~L-smooth with respect to & and 1 when M is a
cr mamfold and f is a C"-diffeomorphism.

Proof. We apply the implicit function theorem to (5.1.3) near {fn}ne‘mr and
{nn}neﬂ, respectively. By putting ;7 = &, + v,, n € JI and z,, = n, + wy,
n € J;, we get the system

Vny1 = f(€n +vn) — f(n), n€ I:

: (5.1.15)
W1 = [ +wn) — f(mn), neEIL.
Since we are looking for solutions of (5.1.3) such that z} = 2=, Peal = P
and Q,z, = Q,n we add the boundary value conditions:
Vo —Wegy =N—g — & = 0(8¥), Pevg=0, Quwo=0. (5.1.16)
Let v = (vo,...,v,) € RVNOWHD oy = (w_y,,...,wp) € RVN@H), To solve

(5.1.15-5.1.16), we take the mapping I',, : (W3 N U) x W NU) x RN+ —
R2N(@H1) defined by

(vn-‘rl - f(fn + Un) + f(fn))ne]:;
(wn+1 - f(nn + wn) + f(nn))nEL;
Fw(fvnvvvw) = Vy —W—_p — (77—44.) - fw) )
PEUO
anO



5.1. Topological Transversality and Chaos 151

where < ggig ) € RN = RP: x RQ,. Since P¢ and Q, are C"~'-smooth, for
nwo

any fixed w > wp, T, is C"~'-smooth in (&, 7, v, w) as well. We take on R2N(@+1)
the maximum norm max;{|v;], |w;|}. We have T',,(£,7,0,0) = O(6*) uniformly
with respect to (§,7) and the linearized map D(y,,.)['w(§,7,0,0) has the form

(Vnt1 = Df(&n)vn) e+

v (Wny1 — Df(nn)wn)n61;
D(U,w)rw(fvnaoao) ( W ) = Vy — Wy
Pg’l)o
ano.

Lemma 5.1.8 implies that the map D, .,)I',(§,7,0,0) is invertible and that its
inverse is bounded uniformly with respect to (£,7n). Hence from the implicit
function theorem we get that ¢ > 0 and wg > 1 exist such that for w > wq, the
equation I',,(§,n,v,w) = 0 can be solved uniquely for (v,w) in a neighborhood
of (0,0) in terms of (&, n,w). Moreover max;{|v;|, |w;|} < ¢§“, and the solution
is C"~-smooth in (£,7), for any fixed w > wy. The proof is finished. O

5.1.3 Chaotic Orbits

In this section we prove Theorem 5.1.1.

Proof. We need the following technical arguments. Let V' C M be an open
subset such that K C V C V C U and wg be as in Theorem 5.1.10. We also
assume that wy is large enough that ¢§“° is less than the distance of V' from 0U
and for any £ € WyNV, n e WiNV and n > wy we have |§, —p|, [n, —p| < C"
where C' can be chosen independent of &, 17 because of the compactness of W; )%
and W' N V. Of course, here we assume that &,,7n,,p are in the local chart U,
of p, for any n > wy so that we can consider their differences. Note that the
solutions {mf(w,f,n)}neﬁ are defined for (§,n) € Wy NV x Wy NV, and
#(WsnV,WenV) = #(WsNU,W2NU) because K C V implies KNIV = 0.
We split the proof into the following steps.

1. Step. We show that f has enough periodic orbits oscillating between p
and K :

We recall that f™o(U) C U, for some mg, and then we can assume that U
is embedded in RY, i.e. U < RY. Let h, k be non negative integers. For any
finite sequence F = {ej}é?:_h, e; € {0,1} such that ey = 1, we set

(i1, g2, din} = {J' lej = 1,}

where —h < j1 < j2 < ... < jip < k. Note that, being eg = 1, we have
j1 <0 < j;,. Then we set:

Jo=1Jig —h—k—=1 Jizxi=h+k+1+71. (5.1.17)
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Note that jo < —h —1 < j; and j;,4+1 > k+ 1 > j;,. Moreover:
Jig+1 = Jig = J1 = Jo- (5.1.18)
Next, for w € N fixed and large (that is greater than wp), we define:
FE . ((W; NV) x (W;m‘/)) " RNie pE_ (PE FE,... FE)
where
FTE (517 7717 s 7£iEv UZE):Q:O_ ((j?"_.jr—l)wv £r7 UT) _1‘3_ ((j?“-‘rl_j?“)wa €T+1a 77T+1)a
and A A
R (5.1.19)
and 2F((j, — jr_1)w,€",1") are derived as in Theorem 5.1.10. We note that
ad ((jr — Jro1)w,€",n") is at a distance from & € wyn V C U < RY less than
c0* and that the same holds for zg ((jr — jr—1)w,&",n") and 0" € W; nv c
U — RYN. Consequently, z((j, — jr—1)w,&",n") € U and we can consider the
above differences in the definition of F¥.
Let us now give a brief motivation for such a definition. Assume that the

equation FZ (¢l nt, ... &% n'E) = 0 has a solution (¢1,7%, ..., n'E). Then,
starting from:

2 ((Gr = Gr—1)w, §0") = 2 ((Grs1 — G, &1 0™
and using
xar+1—jv‘)w((jr+1 — Jr)w, 57“—0—1’ 77T+1) = x:(jr+1—jr)w((jT+1 — Jr)w, §T+1a 77T+1)
we obtain:
FRUATIO g (fr—fp1)w, £, ") = FROm IO (g =y )w, €, ) =
f(]rJrl7]T)wxar+1_jr)w((jr+l - jr)wa §T+la TITH) =
flramieg” o (G = e, &) = 2 (e )w, € )

and then, using the induction:

230905 (e = Gret)w, €507) = 25 (G — Jam)w, €,0°) (5.1.20)

for any 0 < r < s < j;.+1. Now, from eg = 1 we see that 7 € {1,...,ig} exists
such that j; = 0. Then we define:

xO(w, E) - xa(*jz_lw, £Z7 17[) = xa((]f - jZ—l)w7 £Z7 77[)
- ﬂUa_((sz - jf)w’fzﬂ,nzﬂ) = $ar(jz+1W,§Z+1a77Z+l)

and note that from (5.1.17), (5.1.18) and (5.1.20) we obtain:

(5.1.21)

fz(h+k+1)wm0(w7E) _ fQ(jiE“*jl)‘”xo(w,E)
= U@ f2Uip 1= 5 (57 — jro1)w, £, 7))
= fRUmIY g (i — jo)waﬁl,ﬂl)

= 336((35 - jf*l)w7gz7 77L) = xo(w, E)
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that is xo(w, F) is a 2(h + k 4+ 1)w-periodic point of the map z,+1 = f(z,).
Next, for any r € {1,..., .}, we have, using (5.1.20):

fAreay(w, B) = fA0r 0% ((jr = jra)w, € 1)
=g ((Gr = dr-1)w, & 117) = 2 ((Gr1 = Jr)w, €07+
and then Theorem 5.1.10 implies that
[£27rzo(w, B) — || < cdUr—ir-1@ < g
1250w, B) = €| < el 910 < 5

that is f2%"“zq(w, E) belongs to a (small when w > wy is sufficiently large)
neighborhood of K for any r = 1,...,ig. Moreover, for any j € N such that
0<j < jr+1 — Jjr, we have:

POy (w, B) = f274xg ((jrar = gr)w, €7, 0")
= x;_w((.j'f-ﬁ-l - j?“)wa §T+1a 77T+1)
and then, again from Theorem 5.1.10,

LF20 w0 (w, B) = pll < If20 D 2wo(w, B) = LM+ 1I€55" —pll < 2¢5°.

w

Thus the map F'¥ is constructed so that if F# (¢!, nt, ..., n'#) = 0, then the
diffeomorphism f has a periodic orbit attracting and repelling several times by
the hyperbolic fixed point p. More precisely, if the initial point of this periodic
orbit is given by (5.1.21), the point f?/“zy(w, E) is near the set K if e; = 1 and
it is near the fixed point p if e; = 0. Using this it is easy to see that starting
from different £ we get different periodic orbits. To solve Fp = 0, we take the
simple homotopy

HE . ((W; NV) x (W N V))iE x [0,1] — RNz HP = (HF, HE, ... HP)
given by
HE(En', . &2, ) = ARF(Eh ', €2 0 ) + (1= N) (" — &)
for 0 < A < 1. Theorem 5.1.10 gives
|EE (& nt, .. 67 ') — " + & < 2067,
where the constant c is the same as in Theorem 5.1.10. Hence we get
[HE (& nt . 8% 0 A) — i + & < 2e6

Consequently HZ (-, \) # 0 on the boundary 8((%; NV) x (W; N V))ZE for any
0 < A < 1. By Section 2.3.4, this gives for the Brouwer degree

‘deg (FE (W= V) x (W N V))iE,O)‘ - ‘#(W; NV, WEN V)

£0.
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Summarizing, we see that, under the assumptions of Theorem 5.1.1, the equation
Fr =0 is always solvable in the set ((WPS NV) x (W;‘ N V))lE for any sequence
E = {e;}_; € {0,1}¥,e1 = 1 and any k € N for a fixed large (i.e. greater
than wp) w € N. Thus we have seen that the map f has enough periodic orbits
oscillating between p and K.

2. Step. We show more oscillatory orbits of f oscillating between the homo-
clinic set K and the hyperbolic fixed point p. This is done by constructing the
set A, and the mapping w, in Theorem 5.1.1:

Let ~ be the equivalence relation on the set £ defined as follows:

let E,E" € £. We say that E ~ E’ if ng € Z exists such that E = o™ (E").

Then we choose a unique element for any equivalence class in £/~ and form a
metric subspace £.. Without loss of generality we can also assume that £. C
& ={E ={ejljez € € : ej =0 forany j€Zor ¢g = 1}. We obtain in
this way a subspace £. C & such that if Fy, Fy € £, then either E; = Ey
or By # o™(Es) for any n € Z. Now we define a map E — Op from &; in the
space of orbits of f as follows. If e; = 0, Vj € Z then we put Op = {p} the
fixed point orbit of f. On the other hand, if ey = 1, we have the following two
possibilities: either E is periodic with the minimal period m, i.e. ¢™(E) = E
and o*(E) # E for 1 < k < m, or E is nonperiodic, that is there is no m € N
such that ¢™(F) = E. In the first case we apply the above procedure to the
finite sequence {e; };“;01 (m being the minimal period of E). We obtain then a
2mw-periodic orbit O such that f29¢(z() is either near the set K or the point
p according to e; = 1 or e; = 0, respectively. In the second case we consider,
for any m € N, the finite sequence E,, = {e"}7L_ = {e;}jL_,,, m € N, to
obtain a periodic orbit O, of z,41 = f(x,) with the same oscillation property
between K and p as above. We set Og, = {z]'},ez. Then take a convergent
subsequence xy" of zJ' and let x¢ be its limit as i — co. Note that, O, being
an orbit of z,41 = f(x,), we have 2" = f/(xf") for any j € Z. Thus z7"
converges to f7(zo). Hence we set: O = {f7(x¢)}jez. Note that O is an orbit
of the map f such that 2% (x) is either near the set K or the point p according
to ej =1 or e; = 0, respectively. In fact for any given j € Z there exists mg € N
such that e}” = ¢; for any m > mg. Thus the conclusion follows because it is
satisfied by f%%(x("") for any 4 sufficiently large. Observe also that if E is not
periodic (that is ¢™(F) # E for any n € Z) then OF is also a non periodic orbit
of f because of the stated oscillation properties. Moreover, if O = Opg/ then
E = FE’, that is the map E + Og is one to one. Finally, for Og = {f*(z0)}icz
we set

FH9(0p) = {f2“ " (x0) }iez- (5.1.22)
At this point we would like that the following holds: Ogn gy = f2*"(Og) when
E and ¢™(E) belong to &£ . However this is not generally true even if it is
true that O,» gy and f>*"(Op) have the same oscillating properties between
K and p. The point is that in order to define the orbit O we actually use the
axiom of choice to choose a convergent subsequence z;"* of z7*. Thus, in general
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Ou(p) # f?%(Og), because we can perhaps choose convergent subsequences of
2" and z]" such that their limits do not satisfy the equality x1 = f(zo) (of
course, when the sequence z{" is itself convergent this does not happen). For
this reason, in order to extend the map F +— Op to £ we have to pass through
En.

Let E = {e,}nez € € be a doubly infinite sequence of 0 and 1. If e; = 0 for
any j € Z we set J,(F) = {p}, the fixed point orbit of f. If j € Z exists such
that e; = 1, a unique E’ € . exists such that £ = ¢ (E’) for some ng € Z.
Such a ng is unique when E is nonperiodic and is defined up to a multiple of
the least period, when E' is periodic. Then we set

J,(E) = f2™ (0. (5.1.23)

This definition does not depend on ng. We only have to prove this in the case
where E is periodic with least period, say, m. We have:

f2w(km+ng)(OE,) _ f2u.m0 (fQka(OE/)) _ wano (OE’)

for any k € Z, since O is 2wm-periodic. Thus the definition (5.1.23) is in-
dependent of ng. Moreover, if E = ¢™(E’), E' € €., then o(E) = o™ T(E)
and:

Jo(o(E)) = [t )(Op) = f2(Ju(E))

that is
J,oo = f*olJ,. (5.1.24)

Now we prove that J, is one to one. Because of the oscillating property, it follows
immediately that J,(F) # {p} when E is not the identically zero sequence.
Now, let E1, Ey € € be two, non identically zero, sequences such that J,(E;) =
Jo(Es). Write By = o™ (E}) and Ey = o™2(E}), with B} = {e{V}, E}, =
{6;52)} € &.. Then J,(F1) = J,(E2) implies Op; = f2“’("2_"1)((’)Eé). From

this equation and the oscillating property we see that e/((Ti)_nl) = 1, that is

o2 (EY) € & . Moreover, as we have already observed, f2w(”2_"1)((’)Eé) has
the same oscillating properties between K and p as (’)UOLT”I)( B Thus FEf
and ¢("2="1)(E}) are two elements of £, such that Op; and O, (ny—n1) () have
the same oscillating properties between K an p. But this means that E| =
o(2=m1) (Fh) from which we get immediately By = E. So J,, is one to one and
satisfies (5.1.24).

Now we consider the map P : J,, () — RY given by P(J,(E)) = zg, where
Ju(E) = {z;}jez. We set A, = P(J,(E)), we define Q : A, — J, (&) as
Q(xo) = {f7(w0)}jez. Finally, we define 7, : A, — € as m,(z0) = J* (Q(xo)).

3. Step. Verification of properties of w, and A, in Theorem 5.1.1:

(i) 7, is one to one. This easily follows from the fact that different initial
points give different orbits (that is Q is one to one).



156 Chapter 5. Topological Transversality

(ii) 7, is continuous. To show this, let 23, {z{}ien C A, and 2§ — 2 as i —

0o. Then f7(xf) — f7(xd) as i — oo for any j € Z. Hence for any Ny € N,
and |j| < Ny, the points f29%(z}) of the orbit Q(zf) = J,(E?) € J (&)
and f%7%(z8) of the orbit Q(x)) = J,(E°) € J,(€) have, for i large, the
same kind of oscillation between K and p. Consequently, the sequences E?
and EY, for i large, have the same elements in the first 7, |j| < Ny places.
This implies that E* — E? as i — oo.

(iii) o(my(20)) = mo (f2(20)). In fact, we know that J,(0(E)) = f2*(J,(E))
forany £ € €. Thus if £ = m,,(x¢) we have J,,(E) = Q(zo) = {f7(z0) } ez,
then

Jo(0(m(w0))= o (0 (E) =2 (Ju (B))={ £ (f** (20)) } ; ., =Q(f** (w0)) -

Thus o (7, (20)) = 7, (f2(x0)) for any x¢ € A,,.

Summarizing, 7, is continuous, one to one and 7, o f2** = ¢ o m,. By the
construction it is also clear that 7, is onto. The proof of Theorem 5.1.1 is
completed. O

5.1.4 Periodic Points and Extensions on Invariant
Compact Subsets

In this subsection we study periodic orbits of f on A, more closely. First we
prove the following result.

Proposition 5.1.11. Periodic points of f are dense in the set A,, from Theorem
5.1.1.

Proof. Let z¢ € A,. Then there is an E € & such that P(J,(E)) = xg where
Jo(E) =A{x;}jez. Let E = {e;}jez. If E is periodic then z is a periodic point
of f. Let FE be non-periodic. There are unique E’ € £. and ng € Z such that
E = o™ (E'). Now E’ is also non-periodic. We have J,,(E') = f=2"0%(J,(E)).
The point z{, = P(J,(E’)) can be approximated by the proof of Theorem 5.1.1
with periodic points of f from A,. Of course the same hold for the point xg =
f2m0@(z(). This finishes the proof of Proposition 5.1.11. O

We also get that the only isolated points of the set A, could be periodic
points of f and f depends sensitively on the set A/, of all non-isolated points of
A, that is there is a constant d > 0 such that in any neighborhood of zy € A/,
there are 2/, € A, and n{ € N such that the distance between f™ (x) and
fro (x() is greater than d. We do not know whether the periodic points of f in
A, are non-isolated or not.

On the other-hand, let either T, = A, or T, = A/,. We extend the map =,
on the closure Y, of T, and we denote this extension again by 7. So T, is
compact but we do not know whether the unique continuous extension of m,, is
one-to-one or not. The extension is made as follows: For any ¢ € T, \ Y., we
take a sequence {z;};en C Y, such that z; — xo. Hence f2<%(z;) — 2k (z).
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Consequently, for any N € N, the orbits {f2“%(z;)}¥=N and {f2“*(20)}i=Ny

have the same oscillating properties between set K and point p for j large. This

implies the existence of the limit lim 7, (z;) := 7, (20), which is independent of
J—00

{z;}jen. The continuity of m,, follows as in the proof of Theorem 5.1.1. Clearly
the extension m,, is onto & for the case T, = A,. If T, = A/, then m,(Y,)

is dense in & and 7, (Y,,) is compact in £. This implies 7,(Y,) = & also for
this case. The property 7, o f?* = o o 7, follows from the limit procedure
x; — . Of course, T, is invariant for f2¢. For the case T, = A, we again
have infinitely many periodic points of f which are dense in Y. For the case
Y, = A/,, we have that any point 29 € A/  is an accumulating point of periodic
points of f with periods tending to infinity. Iterations of those periodic points
oscillate differently between the set K and the point p. Consequently, the map
[ is sensitive on A in the following sense: there is a constant d > 0 such that
in any neighborhood of 2y € A/, there are x), and n{, € N such that the distance
between f70(zo) and f70(z}) is greater than d.

5.1.5 Perturbed Topological Transversality

Checking the topological transversality of stable and unstable manifold, is not
an easy task. This is the reason why in this subsection we study the case where
W, and W} intersect on a homoclinic manifold and consider a C?-smooth per-
turbation of f. Then we have the following result.

Theorem 5.1.12. Let f(x,¢) be a C? map in its arguments, and assume there
exist open, connected, bounded subsets 2 C Q C Uqg C R* and C?-smooth
mappings x,(a), o € Uq, such that the following hold:

(i) Tpi1(a) = f(zn(a),0), n € Z, lilil xn () = p uniformly with respect to
n—=xTroo

a € Ug for a hyperbolic fixed point p of the mapping f(x,0).

(ii) {g%’:(a), 1=1,2,... ,p} are linearly independent and they form a basis
for the space of bounded solutions of the equation v,41 = fo(n(a),0)vy,

on Z for any a € Ugq. Moreover, the mapping xo : Ug — RN is one to
one.

Assume, moreover, that the Melnikov function (see below (5.1.34)) associated to
the perturbation f(x,e) satisfies the following conditions:

(H1) M(a) # 0 on 09
(H2) deg(M,$,0) #0

Then there exists £9 > 0 such that for 0 < |e| < &g, it is nonzero the local
intersection number of the stable and unstable manifolds of the hyperbolic fired
point p(e) of the map w1 = f(xn,e) which is located near the fized point p of
the map xp41 = f(xnv O)
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Conditions (i) and (ii) mean that f(x,0) has a non-degenerate homoclinic
manifold given by {z¢(a) | @ € Uq}. Note non-degenerate periodic and homo-
clinic manifolds of o.d.eqns are investigated in Sections 3.3 and 4.1. When a
map satisfies the conditions of Theorem 5.1.12 we obtain, thanks to Theorem
5.1.1, a kind of chaotic behavior of the perturbed diffeomorphism f(z,¢), when

e #0.

Proof. We note that zo(a) € WynW, for any a € Uq. In the next constructions

of this subsection, the set 2 is fixed but the neighborhood Uq of € could be
shrunk by keeping its connectedness. Let U C RY be an open and bounded
subset such that

Hao = {zo(a) |a € U} =UNWENW, (5.1.25)

where again W; and W;j are open subsets of W7 and W', respectively, which
are submanifolds of RV,

Let P and @), be the projections of Subsection 5.1.2 for the open subset
U, which are now C'-smooth in & and 7, respectively. Arguing as in Subsection
5.1.2, we get the following result.

Theorem 5.1.13. There exist g > 0 and p > 0 such that for any |e| < o and
§eW,nNU, ne Wy NU the equations

l‘:_,'_l(&’,g) = f(l‘;r(&‘,f),&‘), Pgl‘a_(&‘,f) = P€§ (5126)
forn >0, and

Toi1(en) = [z, (e,m),€),  Quag (€,m) = Qun (5.1.27)

forn < —1, have unique solutions {x} (¢,£)}n>0 and {z;, (£,1) }n<o respectively,
such that

SUp,>o T4 (€,6) =&l < p, sup,<olz, (€,m) =1l < p (5.1.28)

Moreover {z;}(g,€)}n>0 and {z;, (e,n)}n<o are Cl-smooth in their arguments
and

lim._.o Sup,>o |x,+1(5, §) =&l =0, lim._o Sup,,<o |z, (e,m) —nn| =0
(5.1.29)

Proof. We give the proof for n > 0 the case n < 0 being handled similarly. Let
e W; NU, and z,, = &, + vy,. Then {v, },>0 satisfies the system:
Vnt1 = [ (§n)vn = {f(€n +vn,8) = f(€n) — f'(€n)vn}, Pevo=0. (5.1.30)

We are looking for solutions of (5.1.30) such that sup,,~q [v,] — 0 as ¢ — 0. Let
p > 0 be fixed. From Lemma 5.1.9 it follows that the map

Too(v) = < {vn+1 = F/(€)vntnz0 )

PE'UO
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has a bounded inverse. So, for any {v,, },>0 such that sup,,~q |v,| < p we define
{0 }n>0 as the unique solution of

Loo ({Dn }ns0) = ( {f(&n + vn,e) — f(Oﬁn) — f"(&n)vntn>0 ) .

From Lemma 5.1.9 it follows that

sup [0, | < esup | f(§n + vn, ) = f(&n) = f/(€n)vn] < c{A(p) sup |va| + O(e)}

n>0 n>0 n>0
where A(p) — 0 as p — 0. Thus it is easy to see that the map {v,}n>0 —
{0y }n>0 is a contraction on the ball {{v,}n>0 : sup,>¢|vn| < p} provided p
and g are sufficiently small. As a consequence there exists a unique fixed point
{vn(e, &) n>0 that gives rise to the solution x,(¢,&) = &, + v, (g, ). From the
smoothness of the map {v, }n>0 — {f (& + vn, &) — f(&n) — f/(En)vntn>0, We
obtain that x,(e,£) is smooth and that (5.1.28), (5.1.29) hold. The proof is
finished. O

Now we consider the function H : W; NU x W; NU x (—ep,e0) — RY
given by
H(&m,e) = g (5,€) — 2 (€,m) - (5.1.31)
Note that, because of the hyperbolicity of p, the map x,+1 = f(xn,e) has, for
small |e|, a unique hyperbolic fixed point p(e) such that p(e) — p as ¢ — 0.
Such a fixed point is C?-smooth in & and the solutions of H(¢,7,¢) = 0 give rise
to orbits {z,(¢)}nez of the map x,1 = f(ay,,e) that are homoclinic to p(e).
Moreover, if U; C U, C U is an open, _connected subset of U, the functions
z(e,€), £ € W,y NUy and x4 (g,7m), n € W, N Uy, describe open subsets of the

stable and unstable manifolds Wps( o) ancfiv (&) of p(e) that are also immersed

submanifolds in R™. So, denoting with W;(E) and W;‘( o) these submanifolds of
R, by Section 2.3.4, the intersection number #(Wps(e) NUy, W;‘(E)ﬁUl) is found

by computing the Brouwer degree deg(H (&,n,€), (Wps NUp) x (W;‘ NU7),0).
Thus, let ds = dim W;, and d,, = dim W;‘ From the hyperbolicity of p we
get dy+d, = N, hence we can write RY = W, oW,dW, @V, where dimW, =
dimV,, = p, V,j‘ =W,oW,eW,, dimW, = d;—p, dimW,, = d,,—u, and Ugq is an
open subset of W,,. Then, replacing U and Uq with smaller, open, connected and
bounded subsets of R™ and R* respectively, so that (5.1.25) and 2 C U, are still
satisfied, we can find open and convex subsets O° C W,, O* C W,, O* C V,,,
containing 0, and a C'-diffeomorphism ® : Ug & O° ® O & O* — U C RY such

that the following holds:
®(a) = zo(a), for any o € Ug
Y _ (5.1.32)
O(Ug@0%) =WNU, dUqeO0") =WnNU

Let 57 7 be the coordinates on W, ®W, and W, &W,, respectively. Then possibly
shrinking Ug, O® and O" we consider, the function

H: (Ug® 0%) x (Ug ® 0%) — RN
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given by: o _
H(E, 7€) = @7 (zg (6, 2(€))) — ' (2 (e, 2(1))) -
Obviously, H(,7,¢) = 0 if and only if H(¢,n,£) = 0, and then

deg(H (&, m,2), (WnU X (WynU), 0)==tdeg(H (€, 7], £), (Un®0*) x (Ua®0"), 0).
Now, Theorem 5.1.13 implies that
HE 7,00 =€ -7

from which we get H(a,a,0) = 0 and
ﬁ(a 777 5) - gf 77
10x4

xl ~ ~
225 0.0(0) - @@ G 0.060) | +rETe).

s { i@

where ||7(&,7,€)|| = o(e) uniformly in (£,7) € (Uq & 0%) x (Ug & O%).
Let L : (W, & Ws) x (W, & Wy) — RY be the linear map defined as
L(E,7) = € — 7. We have L(¢,7) = 0 if and only if £ = 7 € W, and RL =
W, &Ws®W,, so we can write RN = RL®V,. Next, let Wj be a fixed subspace
of (W, & Wy) x (W, & W,) transversal to N'L = {(€,6): €€ W, }. Then, there
exists an open convex set O C WML such that 0 € Oy and for any (é, ) € ol
and « € Q the point (5 ) = (a+ &, a+7) belongs to (Ug & 0%) x (Ug & O%).
We define a map H: 01 x Q= RN as

H( h,a,e) = H(a+E a+i,e).

Let @ : RY — RY be the projection that corresponds to the splitting RN =
RL @V, that is such that NQ =V, and RQ = RL, and set 7 = #(, 7, a,e) =
(o + & a+17,e) = o(1). We write H(E, 7, o, €) as

HE B aye) =€ — i+ e (€7, a,€) + eHa (€, ), v, €) (5.1.33)
where
Hy (€., 0,¢) = Q{ [ (o + €))7 22 (0, B(ar + €)
—@%a+mr“ﬁwa@w+ﬁ»+f}
and

Hy(,f,a.8) = (I - Q){ [ (a+ €))7 %5 (0, & (o + £))

—@%Hwﬂ1%W0ﬂa+m%F}
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Note that Hy(€,7,a,¢) € RQ and H2(§ fl,a,e) € NQ. Thus H(E,h,c,e) =0
if and only if £ — )+ ¢H; = 0 and H, = 0. Next we introduce the Melnikov
function M : Q — N Q:

+
M(a) = (1 Q@'(0) ™ | 20 (0,2z0(a)) ~ 22 (0, z0fc)) |, (5139
Oe Oe
whose components with respect to a fixed orthonormal basis {eq,...,e,} of

V), are:
Z‘+ €Z
My(a) = @' () | 5 0.20(@) - G0, an(a)|

where 9;(«) are defined by the equality. Note that for any v € TIO(Q)W;‘ we
have:

Yi()v=e;® (a) v =0
because V.- = W, & W, & W, and & (a)(W,, & W) = Ty (ayW. Similarly
Yi(a)*w=0

for any w € Tmo(a)fi;. Thus the vectors 1, («a) are exactly the initial conditions
to assign to the adjoint of the variational system

Vpg1 = f'(@n(@))v,

to obtain solutions that are bounded on Z. Thus M («) is the usual Melnikov
function associated to the system z,, 11 = f(z,,¢) (see the end of this subsection,
or [16,76,88]).

From the smoothness of the functions z{ (¢, &), 7y (,7), 7(£,1,€), zo(a) and
possibly changing O1, we see that

oxrgy 2 Oxg -

(;;; (07 5 + .130(0()) - gg() (07 ﬁ + 1‘0(04)) + f(ga ’f]v Q, 5)
is bounded on Oy x Q X [—&q, g0]. Then we plug H(E, 7, o, ) in the homotopy
H(&,%,a,¢e,1), 0 <t <1 given by:

H(E e, ,t) = € — ) + ety (€7, 6, 0) + ke () Ha(t€, i), 6,0)  (5.1.35)

where k.(t) = et +1—t for e > 0 and k.(t) = et — 1 + ¢ for ¢ < 0. Note that
|ko(t)] > |e| and then k.(t) # 0 for € # 0.

Lemma 5.1.14. Assume (H1) holds. Then, if the neighborhood Oy is chosen
sufficiently small there is an g9 > 0 such that H(§, 7, a,e,t) # 0 for any 0 <
t<1,0<|e| <eg and (&, 1, a) € 0(0O1 x ).
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Proof. We have already seen that H(E, 9, a,e,t) = 0 if and only if £ — 7 +
etHy (€, 9,e,0) = 0 and k. (t)Hy(t€, ), e, a) = 0. Now, if (£,7),a) € (01 x Q)
then either (£,7) € 0, or o € H.

If (5717) € 804, we have £ # 7 and then & — N+ Etﬁl(é,ﬁ,a,a) # 0 for g¢
sufficiently small, because of the boundedness of

Oxy , . 2 Oxy -
S (0,€ + @0(@) = 20,1+ 20(0)) + (€, 0,)

on O1 X Q X [—eg,g0]. If @ € 90 then M (a) # 0. Since |k:(t)| > |e], we get
ke () Ho (6, 1), £, @) # 0

provided Oy and |e| # 0 are sufficiently small. So again H(£,7, a,e,t) # 0 and
the proof is finished. O

Lemma 5.1.14 gives the next result.

Theorem 5.1.15. Let O; be as in Lemma 5.1.14. Assume (H1), (H2). Then
it follows that deg(H (€7, a,e), 01 x Q,0) # 0, for any € # 0 sufficiently small.

Proof. Lemma 5.1.14 implies

deg(H (£, 7, a,2,1), 01 x Q,0) = deg(H (€, 9, o, ,0),01 x Q,0).

(D L(€, M)
H = ’
(6,7’],570170) < SgDEM(OZ)
and L : Wul — RL is invertible. Thus
deg(H (£,7, a,2,0),01 x Q,0) = £ deg(M,2,0) £ 0.
The proof is finished. O

Possibly shrinking Uq, O° and O" and using similar arguments like in the
proof of Lemma 5.1.14 along with assumption (H1), we get I;f(g, 7,¢) # 0 for any
¢ # 0 sufficiently small and (€,7) € (Ug @ 0°) x (Uq @ O")\{(a+&,a+17) | a €
Q, (é, ) € O1}. Then we have, because of Section 2.3.4, and the connectedness
of UQ:

’#(W;@ aL/ATAN U) ‘ - ’deg(H(&, n,e), (W2 A U) x (W NU),0)

— |deg(H(E.7,), (Ua © 0%) x (U ® 0"),0)|

= |deg(FT(€ 7, 0,), 01 x ,0)] £0
(5.1.36)
By (5.1.36) and Theorem 5.1.15 the proof of Theorem 5.1.12 is completed. O
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When f and z,(a),n € Z are all C3-smooth and M («) has a simple root
ag, i.e. M(ap) =0 and DM () is invertible, then assumptions (H1) and (H2)
of Theorem 5.1.12 are satisfied when € is a small neighborhood of ag. So we
have a chaos of f(z,e) for € # 0 small. But now we obtain much more: a
transversal homoclinic orbit of f(z,e) for € # 0 small with the corresponding
Smale’s horseshoe. Indeed, for finding a homoclinic orbit of f(x,¢) to p(e), we
have to solve H(§,m,e) = 0 (see (5.1.31)) for € # 0 small, which is equivalent to
H(¢, 7, a,e) = 0 (see (5.1.33)) and it is decomposed to

§—i+eH (€ 7,a,6) =0 (5.1.37)

and o

Ho(€, 5, 0,6) = 0. (5.1.38)
(5.1.37) can be solved by means of the implicit function theorem to get its C''-
smooth solutions £(«,¢), N(a,e). Note that, because of uniqueness, we have:

&(a,0) = 7(a,0) = 0. Plugging these solutions into (5.1.38), we obtain the
bifurcation function B : Qx(—eg,e0) — R*, (a, ) — B(a, €), whose components
Bj(a,¢) are:

Oe Oe
+r(€(a,e), e, e), a,e) .

Bj(a,2) = (a)" [ 20, 8(a +E(a,)) = (0, 8(a + (o e))

Now, it is not difficult to see that, for ¢ — 0, B(a, ) — M(«) and %B(a, g) —
DM («) uniformly on compact sets. So B(a,e) = 0 is uniquely solvable at
a ~ «ap for € # 0 small. This gives a homoclinic orbit of f(z,e) for ¢ # 0.
Its transversality can be proved like in [88,107]. We conclude this part noting
that the condition that M («) has a simple zero at some «yq is equivalent to the
fact that the function

~ I o
Mi(o) = (wmo)* %55 0uza(a) - G 0.0 )

J=1l...pn

has ag as a simple zero. In fact both M (o) = 0 and M(ao) = 0 mean that
—_ + —
ng (0,P(ag)) = 86%0(0, ®(ayp)) and then the equality M, (ap) = My (ap) easily
follows from ® () = xo(a).
Theorem 5.1.12 is naturally applicable for the next problem. Consider the
second order equation

& =g(x) +eq(t),
where z € R, g, ¢ are C?-smooth and ¢ is 27-periodic. Suppose that the equation

has a homoclinic solution (p(t),p(t)) to a hyperbolic fixed point. Then the Mel-
nikov function has the form M(a) = [*°_q(t + a)p(t) dt, see computations for
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(3.1.34). M(«a) is 2m-periodic and fo% M(a)da = 0. Hence if M # 0 then
it changes the sign on [0,27] and Theorem 5.1.12 can be applied. Concerning
condition M # 0, we have the following result [19, Theorem 3.3].

Theorem 5.1.16. Assume that p(t) = ®(e'), where ®(u) is a rational function
on C such that ®(u) — 0 and ud’(u) — 0 as u — oo. Moreover, it has only
the simple poles w # 0 and w (including the case that ®(u) has only one simple
pole w = w). Then for any 27-periodic nonconstant C?-smooth function q, the
associated Melnikov function M («) is not identically zero.

The next result [19, Theorem 4.1] allowing us to construct second order
equations determined by prescribed homoclinic solutions.

Theorem 5.1.17. Let ®q(u) = u*G(u), k > 1, be a rational function such that
G(0) # 0 and the following hold:

(i) ®o(u) = ®o(1/u) (that is G(1/u) = u**G(u))
(i) ®o(x) > 0 when x is real and x > 0
(i11) ®4(x) =0 on x > 0 is equivalent to x =1

(i) ®G(1) # 0

Then lim, o, u®)(u) = 0 and there exists a C*—function f(p) in a neighborhood
of [0, ®0(1)] such that p(t) = Po(e') is the solution of the equation p = f(p).
Moreover, if G(u) = Go(uF) for some rational function Go(u), Go(0) # 0, the
function f(p) is C? in a neighborhood of [0, ®q(1)].

Moreover we proved in [19] that the equation
# = 4x(22* — 3z coth(nm) 4+ 1) + eq(t) (5.1.39)

has for even (odd) n € N the Melnikov function vanishing identically on any
27-periodic C?-smooth functions ¢(t) (or it is identically zero for infinitely many
independent 27-periodic C2-smooth functions but not for all). The geometrical
meaning of vanishing of the Melnikov function is that, in spite of the fact that the
perturbation of (5.1.39) is of the order O(e), the distance between the stable and
unstable manifolds of the perturbed equation, along a transverse direction, is of
the order (at least) O(g?). This means that in order to study the intersection of
the stable and unstable manifolds, we have to look at the second order Melnikov
function. This was also done in [19]. We refer the reader to more details about
this subject to [19].

5.2 Topological Transversality and Reversibility

5.2.1 Period Blow-Up

In this section, we continue with the study of the relationship between topo-
logically transversal intersections of certain sets for diffeomorphisms and the
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existence of oscillatory orbits. For illustration of the problem, let us consider a
second order o.d.eqn of the form

j=g(y), yeRY. (5.2.1)

For N = 1, a typical phase portrait of (5.2.1) consists from several families
of periodic orbits, which are symmetric with respect to the y-axis, and those
periodic orbits either terminate into equilibria or to heteroclinic/homoclinic
cycles (see Fig.1.2). In the last case, the minimal periods of periodic orbits
tends to infinity as they accumulate on the heteroclinic/homoclinic cycle, i.e.
we have a period blow-up. The symmetry of orbits of (5.2.1) follows from a
simple observation that if y(¢) solves (5.2.1) then y(—t) is also its solution. We
say that (5.2.1) is time reversible. The time reversibility of (5.2.1) implies also
the following antisymmetry. Rewriting (5.2.1) as a system

i=h(z), z:= ( Z ) h(z) == ( g(zy) ) (5.2.2)

)

and considering the involution Rz := ( Z. ), we immediately see that

h(Rz) = —Rh(z) Yz e RV, (5.2.3)

Then (5.2.3) implies that if 2(¢) is a solution of (5.2.2) then so is Z(t) := Rx(—t).
Or stated differently: Let ¢(x,t) be the time flow of (5.2.2) and set f(z) :=
¢(x, 1), then (5.2.3) implies Rf(x) = f~1(Rz) Vo € R?Y. For N > 1 the phase
portrait of (5.2.1) is very complicated but period blow-up phenomenon still may
occur. This was first proved in [65-67] where it is called as a blue sky catastrophe.
These results are generalized in [188,189]. In this section, we proceed with the
study of the period blow-up for diffeomorphisms.

5.2.2 Period Blow-Up for Reversible Diffeomorphisms

Let R : R2N — R2¥ be a linear involution, i.e R?> =1, such that dim Fix R = N,
where Fix R = {x € R?N | Rz = x}. Any subset of R?V invariant under
the action of R is called R-symmetric. Consider a C'-smooth diffeomorphism
f:R2N — R2N which is R-reversible:

Rf(z) = fY(Rx), VYxeR*?,

and possessing a R-symmetric hyperbolic fixed point p € Fix R. Let W, W be
the global stable and unstable manifolds of p, respectively. Let W, be an open
subset of W3 which is a submanifold of R*N such that W3\ {p} N Fix R # 0.
Since RW, = W,
compact component K C W7\ {p} N Fix R and an open connected bounded

subset U C U C R?N \ {p} satisfying U N W; NFix R = K (see Fig.5.2). By

we put W: = RW;. We also suppose the existence of a
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Figure 5.2: A transversal R-symmetric homoclinic set K = W; NFixRNU

shrinking U, we can assume that WPS nU = W; N U. We note that W; nu
is an oriented submanifold of R?YN. Then we can define the local intersection
number #(WPS NU,FixRN U) of the stable manifold W, and the plain Fix R
in U ¢ R*M. Note dim Wz‘f = dim W;‘ = dimFix R = N. The main purpose of
this section is to prove the following result [85].

Theorem 5.2.1. If #(W; NU,FixRN U) # 0 then there is an wy € N such
that fm“ any N 3 w > wy, [ possesses a 2w-periodic orbit {x¥}ncz such that
Ray = a%,, n € Z. Moreover, x§ € Fix R is near to K, while z¥ € Fix R is
near to p.

—n’

Proof. Let (-,-) be an inner product on R2V. Setting (z,y) := %
(Rz, Ry)) we have (Rz, Ry) = (z,y), z,y € R*N, and so ||R|| = ||[R™||
Since RK = K, we can assume that RU = U.

For any ¢ € WS NU we set &, := f(€), n € Z, and then 1 := R¢ with
e = (), n € Z . Clearly n_,, = R¢,,, n € Z. Let J* and I* be the sets
defined in Subsectlon 5.1.2. We study the nonlinear system

i

2Y)

Tnt1 = f(xn) (5.2.4)

near {§n}, ¢+ and {n,}, ;- following Subsection 5.1.2. According to Lemma
5.1.7, the linearization of (5.2.4) along {&, }nez,

Un+1 = Df(fn)v’m n ey (525)

has an exponential dichotomy on Z,, i.e. there are positive constants L, § €
(0,1) and the orthogonal projection P : R*N — T W, such that the fundamen-
tal solution Ve (n) of (5.2.5) satisfies (5.1.6).
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From the reversibility of f we immediately see that the linearization of (5.2.4)

along {nn fnez_
Wpt1 = Df(mp)wn, ne€Z_, n#0 (5.2.6)

has the fundamental solution W¢(n) = RVe(—n)R™!, n € Z_, and since ||R|| =
||[R~1]| = 1, the (5.2.6) has an exponential dichotomy on Z_ with the constants
L, ¢ and the orthogonal projection I — Q,,, where @, = RP:R™!, i.e. (5.1.7)

holds. We note that the family {P¢ | £ € W; N U} is continuous on W5 NU.
Applying Theorem 5.1.10 to (5.2.4) with the above notation, we have that there
exist wg € N and a constant ¢ > 0 such that, for any w € N, w > wp, and
£ € Wy N U, there exist unique {2} (w,€)}, ¢+ and {z;, (w,§)}, ;- such that

o1 (w,6) = flay (W, €)) separately on I, ,

Pél’g(waf) = Pfga QR&JI(; (w7£) = QRﬁRfv x:(‘*}aé) = ‘T:w(wag)a

max [} (0,€) = | < 0¥, max fo; (,€) — | < 8
ner neJ,

(5.2.7)

Moreover, z;(w,£) are continuous with respect to £. Since Qe = RP:R™!,
Nen = Ry, n € Z, we see that the sequences given by
(w,€) = Rrt, (w,&), nelJ); t(w, &) = Ra”,(w,&), neJr
yn ) 9 ) w ? yn ) —n ) ) w

—n

also satisfy (5.2.7). The uniqueness of such orbits implies that Rz (w,&) =
¥ (w,€), n e JE.
In order to get a R-symmetric orbit of f, we have to solve the equation

(I - R)ag (w,€) =0, £eW:nU. (5.2.8)

Let V' be an open subset such that K C V' C V C U. Note that the solution
rd (w, &) is defined for ¢ € Wy NV and

#(W:NV,FixRNV) = #(W: NU,Fix RN U) #0.

To solve (5.2.8), we put F,,(€) := (I — R)ay (w, &) with F, : Ws NV — R_ :=
R(I — R) and take the homotopy H,,, : W; NV x[0,1] — R_ given by

Hw(§7/\) = )‘Fw(g) + (1 - )‘)(H - R)g
Note H,(&,1) = F,,(§) and H,(§,0) = (I — R){. Next (5.2.7) gives
[Ho (85 A) = (I= R)¢| = [A(FL(§) — (I = R)E)| < c0”.

Consequently, H, (-, A) # 0 on the boundary 3(%; NV) for any 0 < A <1 and
w large. Note P := 1 (I+ R) is a projection onto Fix R and I — P = 1 (I — R).
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By Section 2.3.4, this gives for the Brouwer degree

‘deg (Fu, W V,O)‘ - (deg (1-R),W:nV, 0)‘

deg <; (I—R), WV, 0)’ _ ‘deg ((JI—P),W; mv,o)’ (5.2.9)
- ‘#(W;HV,FixRﬂV)‘ £0.

Summarizing, we see that F, (§) = 0 has a solution £ € W; NV for any w > wy,
where wy is sufficiently large. This proves Theorem 5.2.1. O

Roughly speaking, Theorem 5.2.1 asserts that a combination of a homoclinic
structure of a diffeomorphism and its reversibility may give infinitely many
periodic orbits of the diffeomorphism.

Remark 5.2.2. When ¢ is a transversal intersection of W and Fix R, then

Theorem 5.2.1 was proved in [65-67, 188, 189]. Then clearly #(W; N u,
Fix RN U) # 0 for a small open neighborhood U of q.
Remark 5.2.3. Let N = 1. If p is a hyperbolic fixed point of f and W, (or
W) meets Fix R then a local intersection number of W (or W) with Fix R
is nonzero. Indeed, let ¢ € W N Fix R be the first intersection starting on W
from p. Since Rf(q) = f~'(Rq) = f~'(q), the points f~'(q), f(¢q) € W lie on
the opposite half-plains separated by Fix R. Hence an open bounded connected
part W, of W) such that fYq), f(q) € W, topologically nontrivially crosses
Fix R. Similarly for Wj'.
Remark 5.2.4. Any accumulation point of the set {z§}.>w, C FixR from
Theorem 5.2.1 is a starting point of a R-symmetric homoclinic orbit of f to p.
Next, if p is a non-R-symmetric hyperbolic fixed point of f, then Rp is
also a non-R-symmetric hyperbolic fixed point of f. If ¢ € W, N Fix R then
q € Wy N Wg,, so g lies on a R-symmetric heteroclinic orbit connecting p and
Rp. Consequently, like for Theorem 5.2.1, we can prove the following result.

Theorem 5.2.5. Suppose f has a non-R-symmetric hyperbolic fized point p. If
W and W' meet Fix R locally topologically transversally, then f has an infinite
number of R-symmetric periodic orbits with periods tending to infinity.

Heteroclinic period blow-up for symmetric o.d.eqns is studied in [17].

5.2.3 Perturbed Period Blow-Up

Verification of #(W; NU,Fix RN U) # 0 is not an easy task in Theorem 5.2.1.
For this reason in this part, we consider a C?-smooth perturbation f(x,¢) of f:

f(z,0) = f(z) and Rf(x,e) = f~'(Rx,e) Vo € R?Y and any & small.

Our aim is to find reasonable conditions to f(x,e) so that Theorem 5.2.1 is
applicable for any € # 0 small. To this end, concerning the unperturbed diffeo-
morphism f we suppose
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(H1) There is an embedded compact C%-smooth submanifold M C W; \{p} N
Fix R of an open subset sz of W, which is a submanifold of R2N and
such that dim Fix RN T{W; = dim M for any £ € M. Furthermore, there

is an oriented open bounded neighborhood O of M, M C O C W; \ {p}.
We suppose that M is orientable embedded into O.

Note always TeM C Fix RN TeW;s Ve € M and dim M = dim Tz M, hence
(H1) implies TeM = FixR N TgW; V¢ € M. Thus M is a non-degenerate
homoclinic manifold of f(x).

By the implicit function theorem, f(z,<) has a unique hyperbolic fixed point
pe near p for ¢ small, i.e. f(p.,e) = p. which implies Rp. = Rf(p-,e) =
f~Y(Rp.,e) and the uniqueness gives Rp. = pe.

Next, Theorem 5.1.13 gives a Cl-mapping z{ (¢,£), € € Wg N U which de-
termines an open subset of the stable manifold W of f(x,¢) to the hyperbolic
symmetric fixed point p. of f(z,e) near p. Setting

F(§>E) = (H - R)l’g(&',f)

we see that F(£,e) = 0 is precisely the equation of R-symmetric homoclinic
solutions to p.. By Section 2.3.4 (see also (5.2.9)), in order to compute the local
intersection number of Fix R and W, , we have to compute a Brouwer degree of
F(-,¢) for € # 0 small. To this end, we take a tubular neighborhood V of M in
W;, i.e. any £ € V can be uniquely expressed as a pair £ = (7,v), where 7 € M
and v € TTWPS/TTM = TTW;/(FiXR N TTW;) = N, - the fiber of the normal
vector bundle of M in W;, and |v] < A for some A > 0. Hence we identify V
with an open neighborhood of the zero section of the normal vector bundle of M
in W;. We note that the assumption (H1) implies the invertibility of the linear
mapping D, F(7,0,0) : N, — RD,F(r,0,0). Indeed, from z7 (0,£) = £ we have
DyF(r,0,0)v = (I - R)v, v € T,W; and hence N'D, F(7,0,0) = Fix RN T, W.
Next, since M is orientable embedded into O and O is oriented, the tangent
vector bundle M and the normal vector bundle U,;c N, are both oriented.
Hence the vector bundle U, e p(I— R)N; = Urce mRD, F(7,0,0) is also oriented,
because D, F(7,0,0) : N, — RD,F(7,0,0) is invertible. Taking the orthogonal
projection

Sr : Fix(—R) — RD,F(7,0,0) C Fix(—R)

and the oriented vector bundle U;e mFix(—R) = M x Fix(—R), the vector
bundle U;c mR(I— S, )Fix(—R) is oriented as well. Consequently any section of
this vector bundle has a Brouwer degree. Now we can prove the main result of
this subsection.
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Theorem 5.2.6. Assume (H1) and the following ones

(H2) There is an open connected subset 3 C M such that B(1) # 0, V1 € 09,
where B(1) = (I-S;)D.F(7,0,0) is a section of the oriented vector bundle
UremR(I — S;)Fix(—R).

(H3) deg(B(r), ) #0.

Then there exists eg > 0 such that for 0 < |e| < g, the local intersection number

of Fix R and W is nonzero.

Proof. We have to compute a Brouwer degree of F(-,¢) for € # 0 small. From
F(7,0,0) =0, we get F(r,v,e) = D,F(7,0,0)v +eD.F(7,0,0) + o(|v]) + o(e).
We consider the homotopy

H(r,v,e,A\) =5, ()\F(T, v,e)+ (1= N)D,F(r, 0,0)v)
+(I - S;)(AF(1,v,e) + (1 = N)eD.F(7,0,0)) .

Note H(7,v,e,1) = F(7,v,¢). According to (H2), there is an open connected
bounded neighborhood U; C M of Q such that B(7) # 0, V7 € U; \ Q. Now we
take an open subset V; = {(1,v) € V | 7 € U; and |v| < |e|r1} for a positive
constant r; and 0 < |e] < A/r;. We show that

H(r,v,e,A) #0 VY(7,v,\) € OV. x [0,1] and & # 0 small. (5.2.10)
Indeed, from
S+ (AF(7,v,€) + (1 = A\)DyF(7,0,0)v) = S, D, F(7,0,0)v + o(|v]) + O(e)
and S;D,F(7,0,0): N, — RD,F(r,0,0) is invertible, we get that
S (AF(1,v,) + (1 = N)DyF(7,0,0)v) #0, V(r,v) € Vo, |v] =r1le]
for 7 sufficiently large and fixed. Furthermore, from (I — S;)D,F(7,0,0) = 0

we have
(I—S;)(AF(7,v,e) + (1 — A)eD:F(7,0,0))
=¢e(I—S;)D.F(7,0,0) + o(|v]) + o(e) = eB(7) + o(|v]) + o(e) # 0
for (r,v) € V2, |v| < rile| and 7 € Uy \ Q. Summarizing, we see that (5.2.10)

holds. Consequently deg(F,V;,0) = deg(H(-,¢,0),V;,0). Note S;, (I —S,) are
complementary orthogonal projections and

H(r,v,e,0) = S:D,F(1,0,0)v + (I — S;)D.F(7,0,0).

Since the linear map S, D, F(7,0,0) : N, — RD,F(7,0,0) is invertible and U;
is connected, we get

deg(H(+,€,0),V.,0) = +deg(B(7),Q) #0.

Consequently, we obtain deg(F, V,0) # 0, and so #(szs NV, Fix RNV.) #£0.
Theorem 5.2.6 is proved. O
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Remark 5.2.7. Theorems 5.2.1 and 5.2.6 imply an infinite number of R-symmetric
periodicorbits of f(z, ) accumulating on R-symmetric homoclinic orbits of f(z, )
for any € # 0 small.

Remark 5.2.8. If (H1) holds and the Euler characteristic
X(Urem R(I— S;)Fix(—R))

is nonzero, then any R-reversible C?-smooth perturbation f(z,e) has a blue
sky catastrophe in the sense of Remark 5.2.7. Indeed, then (H3) is satisfied by
Section 2.3.6.

Now we show that B(7) is the Melnikov function for bifurcation of R-symmetric

homoclinic orbits.

Theorem 5.2.9. Assume (H1). If f(z,€) is C3-smooth and there is a simple
zero g of B(T), i.e. B(m9) = 0 and DB(7y) is nonsingular, then there is a unique
R-symmetric homoclinic orbit of f(x,€) to pe for any € # 0 small bifurcating
from the R-symmetric homoclinic orbit of f(x) to p which starts from 9 € M.

Proof. Since f(z,¢) is C3-smooth then F is C?-smooth. To find a R-symmetric
homoclinic orbit of f(x, ) to p. for any € # 0 small, we need to solve F'(7,v,e) = 0.
Next, we decompose it as F'(1,v,e) = S; F(7,v,€) 4+ (I— S, )F(7,v,€). Since M is
compact, S-F(7,0,0) = 0and S, D, F(7,0,0) : N, — RD,F(r,0,0)isinvertible,
using the implicit function theorem, we can solve the equation S, F(7,v,e) = 0 in
v near 0 for € small and 7 € M to get its C?-smooth solution v = v(7,e) = O(e).
Then we consider the bifurcation equation

C(r,e) .= (1 - S;)F(r,v(r,e),e) =0. (5.2.11)
From (I — S;)D,F(7,0,0) = 0 we see

C(r,e) = (I —S;)D,F(7,0,0)v(r,e) + (I — S;)eD.F(1,0,0)
+(I = S;)o(|v(r,e)|) + o(e) = eB(T) + o(e) .

Hence C(7,¢)/e = B(7)+0(1) in the C*-topology on M as e — 0. Consequently,
the existence of a simple zero 7y of B(7) implies the solvability of C(7,¢) = 0 in
T near 7o for € # 0 small. This determines the desired R-symmetric homoclinic
orbit of f(z,¢) to p. for € # 0 small. O

Finally we simplify the formula of B(7) using the following lemma.
— i
Lemma 5.2.10. It holds R (I — S,) = (TTW; + Fix R) .

Proof. Note S; : Fix(—R) — (I— R)T;V[Zf C Fix(—R) is the orthogonal projec-
L

tion. So R (I — S;) =Fix(—R) N ((]I — R)TTW;) . Since for any a € Fix(—R)

and for any w € TTW; we have

(a, (I = R)w) = (I - R)a,w) = 2{a,w),
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L L
we see Fix(—R) N ((H - R)TTW;) — Fix(=R) N (TTW;> . Next note
Fix(—R) = (Fix R)* with the corresponding orthogonal projections % (I — R) :
R?N — Fix(—R) and 1(I+ R) : R?Y — Fix R. Consequently, we get
SN N L
R(I—S,) = (FixR)* N (TTW;> - (TTW;’ + FixR) .
The lemma is proved. O
Using dim W;' =dimFix R = N we derive
~ L ~
dim (T,W; + FixR) = 2N — dim (T, W, + Fix k)
— 2N — dim T, W; — dim Fix R + dim T, W N Fix R (5.2.12)
= dim 7, W NFix R = dim M .

Consequently, if a;(7), i =1,2,...,dim M is a continuous vector basis over M
such that a;(7) L (T W, + Fix R) for any 7 € M. Then

B(7) = (a1(7)", ..., adimm (7)) D(r) "' B(7)
where components of B (1) are given by
Bi(7) = (ai(7), 1= R)Dexg (0,7)) = 2(a;(7), Deag (0, 7)) (5.2.13)
and D(7) = ((ai(7), a;(r))){ 27" is the Gram matrix. Clearly |deg(B(7), Q)| =
deg(B(7),Q)| when 0 ¢ B(9RQ) for a connected open subset Q of M. So in
place of B(t) we consider B(r) for computations. Note Prxd(e,7) = Po7 (see
(5.1.26)) implies P, Dz (0,7) = 0, i.e.
L
Dea(0,7) € (TTW];”) . (5.2.14)

5.2.4 Perturbed Second Order O.D.Eqns

In this part, we consider a perturbation of (5.2.1) of the form
2=g(2) +eh(z), zeRY, (5.2.15)

where g, h € C3(RY,RY), g(0) = h(0) = 0. We use Theorem 5.2.6 to construct
a system of two perturbed second order o.d.eqns with a topologically transver-
sal, but non-C'-transversal, intersection of the stable manifold and Fix R. We
rewrite (5.2.15) as

21 =29, Zo= 9(21) + Eh(zl) . (5216)
Let ¢(t,z1,22,¢) be the flow of (5.2.16). Then f(z,e) = ¢(1,z,e) and x =
(21,22). Here R(z1, 22) = (21, —22) and

Fix R = {(21,0) | z1 € RV}, Fix(—R) = {(0,22) | 20 € RV} .
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The inner product (-, -) is given by ((zl,z%) (22,22)) = (21, 23) + (22, 22), where
(-,-) is the usual inner product on RY. We assume that p = (0,0) is a hyperbolic
equilibrium of (5.2.16).

In the sequel, we intend to derive formula (5.2.13) for (5.2.16). To this end,

we first make some general computations. For any 7 € Fix RN W;, o(t,7,0) is
a homoclinic solution to p of (5.2.16) with ¢ = 0. Moreover, if

o(t,7,0) = (21 (1), 23 (1))

then 27(0) = 27(0) = 0 and 27 = g (27), so 2](¢) is even and 2J(t) = 27(¢) is
odd. The linearization of (5.2.16) for ¢ = 0 along ¢(¢,7,0) has the form

v=w, w=Dg(z](t))v. (5.2.17)
We know from Section 2.5.4 that
T, = { (0(0),w(0)) | o(t), w(?)
are bounded solutions of (5.2.17) on RH*)} ,
respectlvely Furthermore, since RT: W = TRTW =T W“ and for any w €
TTW,,, a € Fix (—R), it holds (a, Rw) = —(Ra, Rw) = —(a,w), we get
— 1 — — 1
(TT W + Fix R) — (TTW,f + T, W + Fix R)
So the condition a L (T;W:f + Fix R) is equivalent to

— 1
a € Fix(—R) N (TTW; + Fix R) ,

— L
i.e. now a = (0,a2), and a € (TTWIf + TTW;‘) . Hence according to arguments
from Section 2.5.4, v1(0) = 0 and w;(0) = ay for bounded solutions vy (t) and
w1 (t) on R of the adjoint system of (5.2.17) given by
01 = —=Dg(2] (¢)) wy, w; =—-vy,
i.e. wy is the even bounded solution on R of w; = Dg(2] (t))*w; with wy(0) = as.
We note if g(z) = grad G(z) for some G € C*(RY,R) then Dg(z) = Dg(z)*. We
also see that
. 1
dim (TTI/V]DS + Fix R) = dim {wl(O) € RY | w; is an even

(5.2.18)
bounded solution on R of w; = Dg(z{(t))*wl} .

Furthermore, since z (g, 7) € Wy, ¥(te) = ¢(t, x3 (e,7),¢) is a homoclinic
solution to p of (5.2.16) with the initial value condition (0, ¢) = x{ (¢, 7). Then
(vr(t), wr(t)) := Dp(t,0) is a bounded solutions on Ry of the system

e = wr, by = Dg(](t))vr + (2 (t)) (5.2.19)
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with (v,(0),w,(0)) = D.xg(0,7). From (5.2.14) we know (v,(0),w,(0)) L
T, W, . Consequently, the corresponding component (5.2.13) of B(7) to a is
given by

2(a, Deag (0, 7)) = 2((0, a2), (v-(0), wr(0))) = 2(w1(0), w-(0)).

On the other hand, using (5.2.19) along with lim v;(¢t) = 0and lim w;(¢) = 0,
t—+oo t—-+o00

we derive

(wa(0) - (0) == [~ G (wr(0)wr(0)]

== /OOO (1 (£), wr (t)) + (wi(t), - (t))] dt
=" /OOO [—(vi(t), 0-(t)) + (w1 (t), Dg(=] (£))v-(t) + h(2] ()] dt
= /OOO [—(v1(8), 0 (1)) + (Dg(2] (1)) w1 (t), v- (£)) + (w1 (t), h(z] (1)))] dt

— /00" [— (o1 (), 0, (1)) — (01(t), v, (t)) + (wy (t), h(2](t)))] dt
= [T ool - [, neEo)
== /0 (h(27 (t),wi (t))dt.

(5.2.20)
Summarizing we have the following result.

Theorem 5.2.11. Suppose g(z) = grad G(2) for some G € C*(RN,R). Let

M = {(ZT(O),O) |27(t) € C* (O xR,RY), 7 €0, 27(t) is an even

bounded solution on R of (5.2.1) }

for some open subset O C R™. We suppose 7 — z7(0) is injective. Then M
is nondegenerate if D z7(t), i = 1,...,m form a basis of all even bounded
solutions on R of w = Dg(z.(t))w for any 7 = (11,...,7Tm) € O. The Melnikov
mapping M (1) = (My(7), ..., My (7)) is given by

M;(r) = /OOO (h(2"(t)), Ds, 27 (1)) dt. (5.2.21)

Proof. According to (5.2.12), (5.2.18) and assumptions of this theorem, we get
. L N

dimM = m = dim (T,W; + FixR) = dim T, W; 1 Fix R. So M is nonde-

generate and a;(7) = (0, D,,27(0)), i = 1,2,...,m. Next, (5.2.21) follows from

(5.2.13) and (5.2.20) when the factor —2 is dropped. The proof is finished. O



5.2. Topological Transversality and Reversibility 175

To be more concrete, let k£ > 2, k € N. We consider the system

i=x—2x(x*+9?), jJ=y—2y@®+y?) +e2®*, =z yeR, (5.2.22)
i.e. in the form of (5.2.16)

S.Cl = X9, 211 = Y2, i'2 =T — 2561(1'% +y%)7

2k

: (5.2.23)
g2 =11 — 21 (et +u7) +exit.

— 5 and p. = p = 0 in the above notations. Next,

) = T (2*+v*)"
23) has for € = 0 a homoclinic manifold to 0 (see also (4.1.19))

Note G(z

Y
system (5.2.

V(0,) = (o (t), yo(t), &0 (1), Jo (1))

with z¢(t) = sin0r(t), yo(t) = cosOr(t) and r(t) = sech ¢, which intersects Fix R
in a circle

M = {7 =(sinh,cos6,0,0) | § € R} .

Next, for 7 € M we have

T, W, = span {Dy(6.0),7(6.0)}
= span {(cos#, —sin6,0,0), (0,0, —sinf, —cos )} .

Then .
T-W, NFix R = span {(cos®, —sin6,0,0)} = T- M,

o (H1) holds. On the other hand, in notation of Theorem 5.2.11 we have 2% (t) =
(wg(t),yo(t)) and wy (t) = Dgz’(t) = (ya(t), —we(t)). By (5.2.21), function M (6)
has now the form

M(0) = /000 ((0,x9(t)2k), (yo(t), —xe(t))) dt — — /oo ze(t)2k+1 di

0

o 35...(2k—-1
= —/ sin?* T 92l (1) dt = _35..(2k-1)

. 2k41
n 0.
]

TSI

The bifurcation equation (5.2.11) is now analytical, so it is C(6,¢) := C(r,¢) /e
with 7 = (sin#, cos 6, 0,0). Hence § = 0 is an isolated solution of C'(6,¢) = 0 for
any ¢ # 0 small. The Brouwer degree of C(6,0) = B(6) at 6 = 0 is nonzero, so
Theorem 5.2.6 implies the following result.

Theorem 5.2.12. The point (0,1,0,0) is an isolated topologically transversal
intersection of W and Fix R for (5.2.23) with € # 0 small. But this point is
not a C'-transversal intersection.

Proof. To prove the non-C'-transversal intersection, we consider a C®- pertur-
bation of (5.2.22) given by

E=z—2z(@®+y), G=y—2"+1°) +eps(z), (5.2.24)
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where z,y € R, 6 > 0 is fixed and

bo(z) = 0 if |z| <o
ST (@ — dsgn )k if |[x] > 4.

We see that (5.2.24) has even homoclinics x4 (t), yo(t) for |sinf] < ¢ and
any ¢. Hence (0,1,0,0) is not an isolated reversible homoclinic point for the
C3-perturbation (5.2.24) of the system (5.2.22). The proof is finished. O

5.3 Chains of Reversible Oscillators

Methods of Section 5.2 can be directly applied to chains of weakly coupled
oscillators given by

Ty = V(xn) + 5H($n75, Tn—s+1y--+ xn+1”) ’ (531)

where n € Z, V € C3(R2N,R?N), H € C3(R2Nr+s+1) R2V) ¢ £ () is a small
parameter and s, € N are fixed. Such systems as (5.3.1) are considered as ordi-
nary differential systems on lattices or as chains of coupled ordinary differential
equations. They naturally occur in spatially discretized nonlinear systems (see
also Section 6.1) and they play a crucial role in modeling of many phenomena
in different fields, ranging from condensed matter and biophysics to mechani-
cal engineering [7,14,113,142,174]. Typical examples are discrete Klein-Gordon
equations

Fp — xp + 205 —e(Tpy1 — 220 + 20 1) =0, (5.3.2)
Fp +xp — 20 —e(Tpi1 — 200 +2p1) =0, (5.3.3)

or the discrete sine-Gordon equation
Fp +sinx, — (X1 — 20, + p—1) =0. (5.3.4)
The above equations (5.3.2-5.3.4) are spatial discretizations of a p.d.eqn
Ut — Uy + h(u) =0, (5.3.5)

with the corresponding function h, since the spatial discretization of (5.3.5) gives

iy — %(un+1 Q4 tn1) + () = 0. (5.3.6)
For § — 0;(0 — oo) we have an integrable; (anti-integrable) case, respectively.
Now ¢ = 1/6 < 1 so we deal with the anti-integrable case. The integrable
one is studied in Section 6.1. There are several papers [112,142,177] showing
breathers of (5.3.1) initializing from periodic solutions of anti-integrable (or anti-
continuum) limit equation

i=V(z). (5.3.7)

We recall that breathers are spatially localized time-periodic solutions, that is,
time-periodic solutions whose amplitudes decay exponentially in the space. The
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purpose of this section is to show that if (5.3.7) has a homoclinic/heteroclinic
period blow-up (or blue sky catastrophe), then also (5.3.1) will have similar
phenomena. We end this section with extending period blow-up phenomenon to
traveling waves of (5.3.1).

5.3.1 Homoclinic Period Blow-Up for Breathers
First we study the homoclinic period blow-up supposing that:

(a) System (5.3.1) is reversible, i.e. there is a linear involution S : RN — RV
S? =T such that

V(Sz) =—-SV(z), H(Sxi,...,5%risy1) =—SH(T1, .. Trisi1)-

(b) dimFix S = N.

(¢) H(0,...,0) =0, V(0) =0 and the spectrum of DV (0) lies off the imagi-
nary axis.

(d) There is a transversal S-reversible homoclinic orbit v of (5.3.7) to 0, i.e.
there is an 0 # v : R — R?Y which is a solution of (5.3.7), lim ~(t) =0,
t|—oo

It]
Sy(t) = v(—t) and T,y W5 NFix S = {0}.

For (5.3.2), (5.3.7) has the form i = y, § = x— 22> which is the Duffing equation
with y(t) = (r(¢t),7(¢t)), r(t) = secht and S(z,y) = (z, —y). So (5.3.2) satisfies
assumptions (a—d).

According to Subsection 5.2.2, we take an inner product (-,-) on R*" such
that (Sxz, Sy) = (z,y). Hence ||S| = ||S~!|| = 1. Let us fix an > 1 and consider
the Banach space

X, = {x ={Zn}nez | Tn € RV, |z, := sup |z, |n" < oo} .
n

Then (5.3.1) has on X, the form
& =wv(x) +eh(x) (5.3.8)

for v(z) = {V(zp)}tnez and h(z) = {H(Tp—s,. -, Tnir) tnez. 1t is easy to see
from assumption (c) that v,h € C*(X,, X,). Hence (5.3.1) is a smooth dynam-
ical system on X,. By extending involution S onto X,, as Sz = {Sz, }nez, we
see that (5.3.8) is S-reversible. We note |Sz|, = |z|,,.

We denote by & the set of doubly infinite sequences of 0 and 1 with finite
numbers of entries 1. For any ¢ = {qn }nez € o, we put v4(t) = {v4(t)n}tnez €
X, as follows

_J ) for gn=1,
WQ(t)n_{ 0 for ¢, =0.

We see that 7,(t) is a homoclinic solution of

& =wv(x) (5.3.9)
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to x = 0. So we take M := {74(0) | ¢ € & }. M is not compact, but it consists
from isolated points, i.e. it is a O-dimensional manifold and thus T, M = {0}
for any 7 € M. The linearization of (5.3.9) at © = 0 is {4, = DV (0)uy tnez.
Due to hypothesis (c), (5.3.9) has the global stable and unstable manifolds
W5 = AW },er and WY = {W'},, o4, respectively. Note SToWg = ToWg' and
ToWs NToW§ = {0}. Hence ToW§ NFix S = {0}. Consequently, by assumption
(d) it holds
T, W NFix S = {0} = T, M.

Hence hypothesis (H1) of Subsection 5.2.3 is satisfied. Now there is no a bi-
furcation function B(7), since M is now a parametric space. We also have a
C'-transversal intersection of T, W and FixS. So for any 7 € M we can apply
Theorem 5.2.1 and Remark 5.2.2 to obtain the following theorem (see also [82]).

Theorem 5.3.1. Let assumptions (a—d) hold for (5.3.1), (5.3.7). Then there
is an g9 > 0 such that for any q € & and for any |e| < eg, there is a unique
homoclinic solution x5(t), n € Z of (5.3.1) such that

(i) x59(t) — 0 exponentially fast as |t| — oo and uniformly for |e| < e and
net.

(ii) x5(t) are S-reversible, i.e. SxS9(t) = x59(—t) for alln € Z.
(iii) {259(t) bnez € Xy is near to v4(t) in X, and {x29(t)}nez = 7,4(1).

(iv) The homoclinic loop {x51(t) }nez is accumulated by w-periodic S-reversible
solutions {x2=1(t) bnez of (5.3.1) for any w > 1/eg.

Theorem 5.3.1 ensures the existence of continuum many S-reversible homo-
clinic solutions to 0 of (5.3.1)) and each of them is accumulated by continuum
many periodic solutions with periods tending to infinity. Consequently, under
assumptions of Theorem 5.3.1, dynamics of (5.3.1) is very rich with infinitely
many narrow layers of breathers with arbitrarily large periods. Due to the hyper-
bolicity of the equilibrium = 0 of (5.3.8) for & small, clearly these homoclinic
solutions are not stable. We already know that Theorem 5.3.1 is applicable to
(5.3.2).

5.3.2 Heteroclinic Period Blow-Up for Non-breathers

Assumptions (a) and (b) hold for (5.3.3) and (5.3.4), but (¢) and (d) must be
replaced by the following one:

(e) There is a heteroclinic loop of (5.3.7), i.e. there is a hyperbolic equilibrium
xo of (5.3.7) such that Sxzy # z¢ and a S-reversible heteroclinic solution
71 R — RV of (5.3.7) from equilibrium x¢ to equilibrium Sz, such
that the unstable manifold W2 of (5.3.7) at g C'-transversally crosses
Fix S at 71 (0) along with the existence of another S-reversible heteroclinic
solution 75 : R — R2Y of (5.3.7) from equilibrium Sz to equilibrium
such that the stable manifold W of (5.3.7) at xo C Ltransversally crosses
Fix S at v2(0).
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Again dimW; = dim W} = N. Now we consider (5.3.8) on X, which is the
usual o, (2N) and instead of &, we take E-the set of doubly infinite sequences
of 0 and 1. For any g = {¢n }nez € € we put x9q = {Z0,9,n}necz € s (2N) by

_ o for ¢, =1,
To.qn = Sz for ¢q,=0

and v;,4(t) = {7j,¢ t)n}nez € € (2N), j = 1,2 as follows

_ m@®) for ¢, =1,
V() = { Y2 (t) for ¢, =0

and @
et for ¢,=1,
maon={ 70 o o

Like above, we can easily verify that equilibria zo 4 (Szo,4) and Sz 4 (20,4) of
(5.3.9) are connected by a S-reversible heteroclinic solution 71 4 (72,4) With a
C'-transversal crossing of the unstable (stable) manifold We (W3, ) of (5.3.9)
at xo,q with Fix S, respectively. Consequently, Theorem 5.2.5 can be applied to
get the next result.

Theorem 5.3.2. Let assumptions (a), (b), (e) hold for (5.3.1) and (5.3.7).
Then there is an g9 > 0 such that for any q € £ and for any |e| < eq, there are

unique heteroclinic solutions x>%9(t) and x259(t), n € Z of (5.3.1) such that

(A) {xL=9(t)}nez connects x. 4 and Sx. , with ezponential decay uniformly
for |e| < eg. {2259(t) }nez connects Sxe 4 and x. , with exponential decay
uniformly for |e| < 9. Here x4 is a unique equilibrium of (5.3.1) near
Z0,q-

(B) z454(t), i = 1,2 are S-reversible, i.e. Sxi%9(t) = x459(—t) for alln € Z
and i =1,2.

(C) {xb59(t) ez € Loo(2N) is mear to v; 4(t) in loo(2N) and {x5%9(t) }rez =
%,q(t), 1=1,2.

(D) The heteroclinic loop in £s(2N) created by {x:59(t)}pez, i = 1,2 is accu-
mulated by w-periodic S-reversible solutions {x%*(t)}nez of (5.3.1) for
any w > 1/eg.

Again Theorem 5.3.2 ensures the existence of continuum many S-reversible
heteroclinic loops of (5.3.1) and each of them is accumulated by continuum many
periodic solutions with periods tending to infinity. Due to zo # 0, of course these
periodic solutions are not breathers, since they are not spatially localized.

To apply Theorem 5.3.2, we take the involution S(z,y) = (—x,y) with z¢ =
(=1,0) and 1 (t) = (r1(t),71(1)), 2(t) = =1 (¢t), r1(t) = tanh gt for (5.3.3),
and with zg = (—m,0) and 1 (t) = (r2(t), 72(t)), 1=({t) = —71(t), r2(t) =
2arctan(sinh ) for (5.3.4), respectively.
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More general equations on lattices can be studied than (5.3.1). For instance,
let us consider the topological discrete sine-Gordon equation [113]

Tn = Yn
. . . 1\ .
Un = €COS Ty (SiNTpyq +sinz,_1) — |+ 3 sin &, (cos Ty 1 + COSTp—1) s

(5.3.10)
where € is small and n € Z. For ¢ = 0, we get

1
Tpn =Yn, Un= ~5 Sin x,, (oS 41 + COSXTp—1) . (5.3.11)

We consider (5.3.10) on £+ (2) with the involution
SH{(@n,yn) tnez) = {(=Tn,yn) tnez -

Then (5.3.10) is S-reversible. For any increasing sequence ¢ = {n;};, n; € Z, we
put Zo,g = {Z0,¢.n}nez € £oc(2) by

(=m,0) for n=2n;+1,
To,gn =4 (7,0) for odd n #2n; + 1,
(0,0) for even n

and 7;,4(t) = {7j,¢(t)ntnez € €(2), j = 1,2 as follows
o(

(=17 (o(1), (1) for n=2m;+1,

Yiahn =q (1) ((t), 6(1)) forodd  n # 2n; +1,
(0,0) for even n

for ¢(t) = 2arctan(sinh?). We can easily verify like above that both W3~ and

Wi C'l-transversally cross the set Fix S at 42,,(0) and ~1,4(0), respectively.
Summarizing, a statement similar to Theorem 5.3.2 holds also for (5.3.10) with ¢
sufficiently small. Those heteroclinic and periodic solutions of (5.3.10) are again
spatially not localized.

In this section, we consider for simplicity only transversal intersections of
stable and unstable manifolds with Fix S of (5.3.7), but topologically transversal
intersections could be dealt similarly.

Finally, similar approach is used in [83] to show breathers for diatomic lat-
tices modeling two one-dimensional interacting sublattices of harmonically cou-
pled protons and heavy ions [161,162] representing the Bernal-Flower filaments
in ice or more complex biological macromolecules in membranes in which only
the degrees of freedom that contribute predominantly to proton mobility have
been conserved. In these systems, each proton lies between a pair of “oxygens”.
The following two coupled infinite chains of oscillators is considered

. kq A AN

iy, = *(un 1 2un + Unfl) d2 Unp (1 d2 ) Qmpnun )
B K X
P = Ml(pn-ﬁ-l — 2pn pn—l) Qgpn M( i dg) ’
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where u,, denotes the displacement of the nth proton with respect to the center
of the oxygen pair, k; is the coupling between neighboring protons and m is
the mass of protons, &y is the potential barrier, 2dy is the distance between two
minima of the double-well potential of protons, p,, is the displacement between
two oxygens, M is the mass of oxygens, {2 is the frequency of the optical mode,
K is the harmonic coupling between neighboring oxygens and x measures the
strength of the coupling. It is supposed that couplings are small ki, K1, x ~ 0.

5.3.3 Period Blow-Up for Traveling Waves

We finish this section with the study of traveling waves of (5.3.1) of the form
xn(t) = v(vt — n) for which we get

w'(2) =V (v(2)) +eH (v(z +s),v(z +s—1),...,0(z — 1)), (5.3.12)

where z = vt—n and v # 0. We are looking for S-reversible solutions of (5.3.12),
i.e. v(—z) = Sv(z), by applying results and methods of Section 5.2. Under either
assumptions (a—d) or (a), (b), (e) of this section, we only need to verify (see
(5.2.3)) that the perturbation of (5.3.12) is also S-antireversible:

v(—z) = Sv(z) = SU(z) = —v(—=2) (5.3.13)
for v(z) := H (v(z + s),v(z +s—1),...,v(z —r)). Since
Sv(z) = —H (v(—z—s),v(—z—s+1),...,0(—=z+71)),
we see that (5.3.13) is satisfied provided we suppose

(f) » = s and H is symmetric, i.e. it holds
H(x1,22,. .., %25, T2511) = H(T2541, T2, - .-, T2, 1)

for any z1,x2,...,2T2s41 € R2N . We have the next result.

Theorem 5.3.3. (a) Under assumptions (a—d) and (f) of this section, for any
v # 0 there is an g9 > 0 that for all |e| < eo, (5.3.1) has a traveling wave
solution of a form x,(t) = v(vt — n) which is near to y (t — ) such that v(2)
is S-reversible and asymptotic to 0 as z — =+oo, respectively. This traveling
wave is accumulated by periodic traveling waves with minimal periods tending
to infinity.

(b) Under assumptions (a), (b), (e) and (f) of this section, for any v # 0
there is aneg > 0 that for all |e| < eq, (5.3.1) has traveling wave solutions (kinks)
of forms z,(t) = v1,2(vt —n) which are near to 1 2 (t — %) such that v 2(2)
are S-reversible and asymptotic to x. and Sx. as z — Fo0, respectively. These
kinks are accumulated by periodic traveling waves with minimal periods tending
to infinity. Here x. is a unique solution of V(x.) + eH (e, xc,...,2:) = 0
near xg.

The constant €y depends on v, but it is uniform for v from a bounded set.



Chapter 6

Traveling Waves on Lattices

6.1 Traveling Waves in Discretized P.D.Eqns

Most nonlinear lattice systems are non-integrable even if a p.d.eqn model in the
continuum limit is integrable (see [7,99,175] and references therein). Prototype
models for such nonlinear lattices are various discrete nonlinear Schrédinger and
Klein-Gordon equations or systems. There is a particularly important class of so-
lutions so called discrete breathers which are homoclinic in space and oscillatory
in time (see Section 5.3) [99]. Other questions involve the existence and propa-
gation of topological defects or kinks which mathematically are heteroclinic con-
nections between a ground and an excited steady state [176,182] (see Theorem
5.3.3). They have applications to problems such as dislocation and mass trans-
port in solids, charge-density waves, commensurable-incommensurable phase
transitions, Josephson transmission lines etc. Prototype models here are dis-
crete sine-Gordon equations, also known as Frenkel-Kontorova models [2].

In this section, we consider a chain of coupled particles subjected to an exter-
nal potential (see Fig.6.1). A Hamiltonian H of such system can be written as:

H= Z (;ui + %(unﬁ-l - Un)2 - F(”H)) ) (6.1.1)

nez

where u,, is the displacement of the n—th particle from its equilibrium position.
This gives the discrete nonlinear Klein-Gordon equation:

. 1
Uy — ;(un_,_l = 2Uy, +Up—1) — h(u,) =0, (6.1.2)

where h(u,) = F'(uy),n € Z. Equation (6.1.2) is also a spatial discretization of
a p.d.eqn
Upp — Ugg — h(u) = 0. (6.1.3)

M. Feckan, Topological Degree Approach to Bifurcation Problems, 183—198. 183
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Figure 6.1: The model of discrete sine-Gordon equation

We get (6.1.2) from (6.1.3) putting

un(t) = ’LL(ETL, t) ,
w(e(n +1),t) — 2u(en, t) + u(e(n — 1),1) (6.1.4)

Uy (EN, ) ~ =

Since e < 1 we study the continuum //integrable case. We suppose h € C! along
with

(A) h(0) = 0, B'(0) = —a® < 0 and there is a homoclinic solution ¢ of & +
h(z) = 0 such that ¢(t) = ¢(—t) and ¢(t) — 0 as t — £oo.

Then (6.1.3) admits traveling wave solutions

u(z,t) :¢(%), O<r<l

We also consider for (6.1.2) traveling wave solutions

un(t):V(n—gt>EV(z), z:n—gt, 0O<v<l.

Substituting this into (6.1.2) we obtain the following functional differential
equation:

V() = V(z+1)+2V(2) = V(2 —1) —?h(V(2)) = 0. (6.1.5)
The discrete sine-Gordon equation for h(u) = —sinw in (6.1.2) of the form
fiy = Ung1 — 2Up + Up_1 — 28N U, (6.1.6)

has been numerically investigated in [71,176]: As e — 0, we get the continuum
sine-Gordon equation s — Uz, + sinu = 0 with the supporting moving kinks of

the form
r— vt
4 arctan {exp <7)} .

V1—12

Thus it was natural in [71,176] to seek numerically solutions of

VU"(2) =U(z+1) = 2U(2) + U(z — 1) — 2sinU(2) , (6.1.7)
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where U(z) = U(n — vt) = uy,(t), with the boundary conditions U(z) — 0 mod
21 as z — +o0o. They did not find such solutions. Their closest result is that
the numerical solution of (6.1.7) near

T — vt
4 arctan [exp (67)}

V1—1p2

has tails of periodic waves of small amplitude. But according to the form of
(6.2.5) below, that result is consistent with our analytical result, since the y-part
of (6.2.5) is oscillatory with small amplitude. Recent numerical simulations of
discrete lattices such as (6.1.6) are studied in [2] of the form

(14 2a)sinu
(1+a(l —cosu))?’

fin = Upp1 — 2 + Upy — O (6.1.8)

where ¥ > 0 measures the onsite potential strength and o > 0 measures the
degree of anharmonicity. For o = 0 this is (6.1.6).
Finally, the anticontinuum/anti-integrable case of (6.1.2) is

U — O(tpnt1 — 2up + Up—1) — h(u,) =0, (6.1.9)

for § — 0. Then Theorem 5.3.3 can be applied to get a traveling wave solu-

tion wu,(t) = V(vt —n) of (6.1.9) near a 5 (t — ) where v # 0 and F(t) is a

homoclinic/heteroclinic solution of i — h(u) = 0. Note V' (2) now satisfies
V()= 0(V(z+1)+2V(2) = V(2 —=1)) = h(V(2) =0

n

and u(z,t) =7 (t — 2) is a degenerate traveling wave of (6.1.3). Applying these
arguments to (6.1.6) as e — oo, we get its traveling wave (a kink) near

2 arctan [Sinh (Et — 2)}
v

accumulated by periodic traveling waves with minimal periods tending to infin-
ity. Of course, the magnitude of € depends on v.

6.2 Center Manifold Reduction

Now we use the method of center manifolds of Section 2.6 in order to show
existence of periodic solutions of (6.1.5) [94].

1. Step: The idea is to rewrite (6.1.5) as an evolution equation on an ap-
propriate functional Banach space. To this end, we introduce the Banach spaces
H and D for U = (z,&, X (v))

H=R? x C([-1,1]),
D={UeR*xC'[-1,1] | X(0) = z}
with the usual maximum norms. Then (6.1.5) can be written as follows

U, = LU + i—zM(U), U(t,v) = (2(t),£(1), X (t,v))", (6.2.1)
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where
0

1 0
L= -2% 0 L&+ 50!
0 0 Oy
M(U) = (0,h(z),0)", §*X(v) = X(£1)
with L € £(D,H) and M € C!(D,D). We consider (6.2.1) on D.

2. Step: A linear analysis of (6.2.1). The spectrum o (L) of L is given by
the resolvent equation

NM-LU=F, FeH,\eC,UeD.

This is solvable if and only if N(A) = 0 for N(A) = A* + 2 (1 — cosh A). Clearly
o(L) is invariant under A — A and A — —\. The central part oo(L) = o(L) NiR
is determined by the equation N(1q) = 0, i.e.

2
q2+ﬁ(cosq—l):0, qER. (6.2.2)

The basic properties of o(L) are given in [120, Lemma 1]:

Lemma 6.2.1. (i) For each v > 0, there exists py > 0 such that VA € o(L)\
oo(L), [RA| = po.

(i) If \=p+1q € o(L) then |q| < 27“3?;4”2 cosh(p/2).

(i4i) For v > 1, 0 is the only eigenvalue on the imaginary axis with the multi-
plicity 2. There are only two real eigenvalues =\ tending to 0 as v — 1.
For v <1, the eigenvalue 0 is the only real one.

(iv) For v =1, the eigenvalue 0 is quadruple with a 4 x 4 Jordan block.

(v) There is a decreasing sequence vy, n = 0,1,2... such that vo = 1 and
v, — 0, and for v = v, with n > 1, there is a pair +1q, of double non-
semi-simple imaginary eigenvalues in addition to the double mon-semi-
simple eigenvalue at 0, and 2n — 1 pairs of simple imaginary eigenvalues
+1g; such that 0 < ¢; < gn.

In this section, we assume that v; < v < 1. Note v = vy is the first value
from the left of 1 for which the equations

2
A2+

1
ﬁ(cos)\fl) =0, A— ﬁsin)\:o (6.2.3)

have a common nonzero solution A # 0. Then by (v) of Lemma 6.2.1 we have
oo(L) = {0, xug}. After some computations we see that the corresponding 4th-
dimensional central subspace H, has a basis (£1, &2, &3, &4) defined by

gl = (1,0, 1)7 52 = (07 1,’0), 53 = (1,0,COS(]’U), 54 = (O7qa sinqv)
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with Lgl = 0, Lfg = 51, L§3 = —q£4, L§4 = q§3. So L on Hc has the form

01 0 0
00 0 0
Le=L/He=| o o o .
00 —q 0

The corresponding spectrum projections are derived as the residues of the in-
verse (\[—L)~! at A = 0, +1q, respectively, of the resolvent operator. Performing
these computations, the projection P.: H — H, is given by

P(U) = Pr(U)&1 + P2(U)éz + P3(U)&s + Pa(U)éa,

where
R0 = V21_ : /(1 ~§)[X(s) + X(—s)] ds.
0
Py(U) = 2” X(s)] ds,
e
PU) = qu /smq 1—s)[X(s) + X (—s)] ds)/(ql/Q—sinq),

0
Py(U V2§ + /cosq 1—s)[X(—s)— X(s)] ds)/(qu2 —sing) .
0

So the condition (i) of a hypothesis (H) of Theorem 2.6.2 is satisfied. The last
one (ii) is shown in [122]. Hence we can proceed to the next step.

3. Step: The center manifold reduction method to (6.2.1) for simplifying it.
Since M (U) is Lipschitz, for any bounded ball Q of H,. centered at 0, we can
apply the procedure of a center manifold method of Theorem 2.6.2 to get for
small the reduced equation of (6.2.1) over € given by

. g2 ) g2 A
e = Loue + ﬁPCM(uC + e @E(uc)) = L.u, + ﬁPC(M(uC)) + 0(e%),
(6.2.4)
where u, = u1& + u2és + uzés + us€y and d. is the graph map of the center
manifold. So any solution of (6.2.4) in 2 determines a solution U (¢,v) = u.(t) +
e2®_(u.(t)) of (6.2.1). Using the above formulas for P., (6.2.4) has the form

82

. . T 2
Uy =z, Up = —5——h(ur, uz, us, ug, €%)
2
. . € = 2
U3 = qug, U4 = —quz + —5————h(u1,uz, u3, u4,€%),
qU< — s q
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for a C'-function h. Considering

x(t) = 21(t) = ui(t/e), x2(t) =ua(t/e)/e,
y(t) = yi(t) = us(t/e), ya(t) = ualt/e),

(6.2.4) takes the form

1

7 2
V2 — 1h($1a5x23y17y2a5 )

1 = T2, T =

g
2
2 o h($1»5$2>y1792,5 )7

. _q . q
Y1 =-Y2, Y2=—-U1+
€ € qU Sin g

which gives

. 1 . .
T = mf($75m7y;5y/q,5) 9
) (6.2.5)

g
1 f(w,ei,y,e0/q,2),

i+ ¢’y = S —
sinqg — v3q

where f(x1,72,91,%2,6) = —h(z1 + y1) + O(g?). Consequently, for ¢ = 0 and
y = 0, the limit equation of (6.2.5) has the form

(1— )i+ h(x) =0. (6.2.6)

Note looking for a traveling wave solution wu(z,t) = w(vt — x) of (6.1.3), we
get (1 — ) + h(w) = 0. So (6.2.6) is precisely the traveling wave equation of
(6.1.3). It is possessing a homoclinic solution x(t) = ¢(t/v/1 — v?). Summarizing
we get the following result.

Proposition 6.2.2. A dynamics of (6.2.1) can be reduced to (6.2.5) which is a
singular perturbation of the traveling wave equation (6.2.6) of (6.1.3).

4. Step: Symmetries of the reduced equation. (6.2.5) is still rather compli-
cated to study it. For this reason we consider the symmetry
S(U) = (2, & X(~v))

on H. Then (6.2.1) is reversible with respect to S, i.e. SoL=—LoS, MoS =
—S o M. Moreover, we have P.oS = So P, and S§ = &1, S& = —&, S&3 = &3,
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S¢&4 = —&4. Since S is unitary, by Section 2.6, the map ®. can be chosen in such
a way that So®. = ®.0 S, for S.:= S/H.. Note S, : H, — H,. This implies

2 2
LoSati + %PCM(SCuC +e20,(S,u,)) = 8. (Lu n %PCM(uc n 62@5(%))) .

Hence (6.2.4) is reversible with respect to S.. Moreover, S, has in the coordinates
(21, 22,91, y2) on He the form Se(z1, 22, y1,42) = (21, =22, Y1, —Y2).

6.3 A Class of Singularly Perturbed O.D.Eqns

Motivated by (6.2.5), we consider a system
&+ h(x) = f(z,&,y,e9,€), X+y==cg(x, i,y ¢e9¢), (6.3.1)
where £ > 0 is a small parameter, h € C*! satisfies (A) and with f, g such that
(B) f,g € C, f(x1,22,0,0,0) =0

(C) f(x1,22,y1,Y2,€), g(x1,T2,Y1,Y2,€) are even in the variables xs and ys,
Le. f(xla —Z2,Y1, —yg,é‘) = f($1,x2,y1,y2,€) and 9(331, —x2,Y1, _y276) =
g(thQayl?vaE)

Note in [15,70,109, 133] there are examined the existence or nonexistence of
homoclinic solutions of singular ordinary differential systems of the following
type

2y iy +42=0 (6.3.2)
which arises in the theory of water-waves in the presence of surface tension [4].
Setting v =y, u = § — y + 2, (6.3.2) leads to

b=u+v—1% eXi+tu=e’[20°—(1-20)(u+v—12?)], (6.3.3)

which has a form of (6.3.1). Next, in [15] it is shown that bifurcation functions of
homoclinic solutions of (6.3.1) under the above assumptions are exponentially
small in addition that h, f,¢ are analytical. In [70,109] it is established the
nonexistence of certain homoclinic solutions of (6.3.2).

6.4 Bifurcation of Periodic Solutions

In this section, we study the existence of periodic solutions of (6.3.1) near
(6(t),0). Substituting y = 0,e = 0 into (6.3.1), we get the equation

i+ h(z)=0. (6.4.1)

Equation (6.4.1) has a hyperbolic fixed point (0,0) with the homoclinic solution
(¢, @) which is accumulated by periodic solutions with periods tending to infin-
ity. We show that in spite of the fact that generally the homoclinic solution of
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(6.4.1) does not survive under the singular perturbation (6.3.1). The problem
(6.3.1) has many layers of continuum periodic solutions near the solution (¢, 0):
The smaller ¢ the more layers of continuum periodic solutions of (6.3.1) exist
near (¢,0) with very large periods. This is some kind of blue sky catastrophe
bifurcation to (6.3.1) studied in Section 5.2. Results of [15,70,109,133] are now
not applicable since h is only C''-smooth.

In order to find periodic solutions of (6.3.1) near (¢, 0), we make the change
of variables

2(t) = 6(1) + M 4ult), (1) = VEu(d),

and we get

%+ v =e"2g(¢ + e u, ¢ + &'/, Ve, e¥/%0, €)

i+ B ($)u = —el%{h(aﬁ +e'/hu) — h(e) — h’(¢)€”“ﬂ} (6.4.2)
+51%f(¢ +etu, ¢+ e, Veu, %0 e) .

We are looking for solutions of (6.3.1) satisfying #(0) = #(T") = 0, y(0) =
y(T) = 0. This gives

w(0) =0, @(T)=—¢(T)/e*, 5(0)=0, o(T)=0. (6.4.3)

First we study linear parts of (6.4.2). We take the linearization of (6.4.1) along
¢(t) and consider the variational equation

i+ h(pt)u==z2(t), 0<t<T (6.4.4)
with the boundary value conditions
u(0) =0, w(T)="». (6.4.5)

Since 7'(0) = —a® < 0, a > 0, we have ¢(t),d(t) ~ e~ as t — +oo, i.e. it
holds that
o)) e ¥ ¢ #0 and G(t)/e ™ - #0 as t— +oo.

The homogeneous equation (6.4.4) with z = 0 has solutions w;(t), i = 1,2 such
that:
e w is odd, wy(0) =0, w1 (0) =1, wy(t), w1 (t) ~ e as t — 400

at

e wy is even, wy(0) = —1, w2(0) = 0, wa(t),we(t) ~ € as t — 400

The general solution of (6.4.4) has the form

u(t) = Lp(z,b) = cyw (t) + cowa(t) + 21(t) ,

z1(t) = / [wa (t)w (s) — wi (t)wa(s)]z(s) ds.

0
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The condition (6.4.5) gives ¢; = 0 and ¢y = —212((?) + w;ZT). Hence, we get

a1
. ) (6.4.6)
+Zf£§ /wz(t)wg(s)z( )dsf/wl(t)wg( )2(s) ds
0 0
and .
a(t) _ / o ()wn (5)2(s) ds
T ' . (6.4.7)
+Z;EQ / wa (H)ws(s)2(s) ds — / oy (£)wa(s)=(s) ds .
0 0

By using the above asymptotic properties of w; and ws, there is a constant
Cy > 0 such that for any t,s € [0,T] and T > 0 large, we get

w2 (t) /s (T)| < Cre® 0, Jun(t)w(s)] < Crett=),

W (T)
w(T)
s (t)w1 (s)] < C1 =) |uiy ()wa(s)| < Cy =),

iy (T)
o (T)

U}Q(t)w2(s)) < Oy e 2THtts) lwy (H)ws(s)| < Cy eals=t)

[iba () /1o (T)| < Cy e, j o (t)wa(s)| < € ed(2T+t+9),

These estimates imply together with (6.4.6-6.4.7) the existence of a constant
¢ > 0 such that
[l + llal] < c(b] + [I211) , (6.4.8)

where ||z|| = maxjo 71 [2(t)|. Summarizing, we get the next result.

Lemma 6.4.1. Problem (6.4.4-6.4.5) has a unique solution u = Lp(z,b) satis-
fying (6.4.8).

Now, we consider the problem
2 +v=-cz(t), 00)=0(T)=0, 0<t<T. (6.4.9)

We can immediately see that the solution of (6.4.9) is given by

T

¢
v(t)=Leg(2) = ———~ o T/E /cos s)dscos(t/e) + /Sin ! ; Sz(s) ds.
0

0

If T satisfies T
‘7 —kaig‘ <7/4, keN (6.4.10)
13
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then 1 > |sin(7/¢)| > v/2/2, and we obtain the estimate
o]l + lleol] < 2T[2[|(V2+1). (6.4.11)

Summarizing, we get the next result.

Lemma 6.4.2. If condition (6.4.10) holds then problem (6.4.9) has a unique
solution v = L. p(z) satisfying (6.4.11).

Note (6.4.10) is a nonresonance condition. Now we are ready to prove the
following bifurcation result.

Theorem 6.4.3. For any ko € N there is an g > 0 such that for any 0 <
e <eoand T = e(2k[1/e3/n + 1) with k € N, k < ko, 7 € [r/4,3n/4] U
[5m/4,Tm /4], system (6.3.1) has a 2T -periodic solution near (¢(t),0), =T <t <
T. Here [1/£%/?] is the integer part of 1/e3/2. Moreover, xr . (t)—¢(t) = O(e'/4),
i1o(t) = O(t) = O(EY), yr(t) = O(VE), eime(t) = O(E) uniformly for
-T<t<T.

Proof. First of all, we show the existence of a solution of (6.4.2-6.4.3) applying
the Schauder fixed point theorem. We take the Banach space X, = C1([0, 7], R)?
with the norm |||(v,w)||| = ||ul] + ||@]| + ||v|| + ||e?||. Using Lemmas 6.4.1 and
6.4.2, we rewrite (6.4.2)-(6.4.3) in the form

v = LE,T (\/gg(d) + 51/4“7 (rb + 51/4&7 \/gva 53/2{)7 5))

u=Lr( - E%{hw 2 4u) — h(6) — W (9} (6.4.12)
*ﬁf (&+ /1,6 + e/, VEu, 6920, 2), ~(T) /e1/4)

as a fixed point problem in X.. Now we fix ko € N and take T' = ¢(2k[1/e*/2|m+
7) with k € N, k < ko and 7 € [r/4,37/4] U [57/4,77/4]. Let B = {(v,u) €
X | [|l(v,w)]|| £ K} be a ball in X.. Since T ~ 1//¢ and H(T) ~ e T we
get ¢(T) /el /4 ~ e=4/VE/cl/4 = O(¢). From the C'-smoothness of f, g, h, there
is a constant M > 0 such that VK > 0, 3g¢ > 0, Ve € (0,e¢], V(v,u) € B, it
holds that

‘g(¢ + e, ¢ + eV, Jev, e/ %0, E)‘ <M,

o {6+ M) — () — (@) | <1,

1 .
70+ eV, ¢+ V4, e, €320, €)
£

For any (u,v) € Bk, 0 < e < &g, we put
1
wr = Dp (= {6+ /%) = h(o) — W(9)eV
1 . )
o £+ < b 4, e, €%, ), ~(T) /)

U1 = LE,T (\Eg(¢ + 81/4”7 (b + 51/41’1’3 \@’U7 53/2’[}7 E)) .

<1.
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Then estimate (6.4.8) implies
lur]| +[J@n]] < e(2+ O(e)) ,

and estimates (6.4.10-6.4.11) imply
7
[Jor]| 4 [letn|| < 2vETM (1 4+ V?2) < 2M (V2 + 1)<27rk0 + ZIr€3/2> .

Consequently, we obtain
(01, ur)]|| < 2¢ +4M (V2 + 1)mko + O(e) .

Hence for K such that 2¢ 4+ 4M(v/2 + 1)7ko < K and g > 0 sufficiently small,
By is mapped to itself with the compact operator defined by the right-hand
side of (6.4.12). We fix such a K and apply the Schauder fixed point theorem
to get a solution of (6.4.12) in X, i.e. there is a solution of (6.3.1) satisfying
#(0) = &(T) = 0, y(0) = y(T) = 0. Since h, f, g are C', we get the uniqueness
of the Cauchy problem for (6.3.1). Then the evenness of f, g in 23,y and the
conditions #(0) = 0, y(0) = 0 imply that z,y are even functions. This implies

w(=T) ==(T), @(-T)=-#T)=0,
y(=T) =y(T), y(=T)=—y(T)=0.

Consequently, the uniqueness of the Cauchy problem for (6.3.1) implies that
and y are 27-periodic. The proof is finished. O

Remark 6.4.4. If h € C? then, we can apply the implicit function theorem
to (6.4.12) for getting a unique 27-periodic and even solution of (6.3.1) near
(¢(),0) for —T <t <T.

6.5 Traveling Waves in Homoclinic Cases

From Section 6.2 we get that assumptions (A), (B), (C) of Sections 6.1 and 6.3
are satisfied for (6.2.5). Applying Theorem 6.4.3, (6.2.5) has a 2T-periodic so-
lution (z7.(t), yr.(t)) near (¢p(¢t/v1—12),0), =T <t <T for any T satisfying
the assumption of Theorem 6.4.3. They have the form

ug S(t) = wre(et)éy + eire(et)e + yre ()€ + (yre(et) /a)éa
in (6.2.4). All ul*¢(¢) lie in a large ball Q. Furthermore, we have
U(t, ) = ue(t) + 2@ (ue(t)) = uc(t) + O(c?)

for (6.2.1) on the center manifold considered in (6.2.4). We also note that the
z(t)-coordinate of U(t,v) in (6.2.1) satisfies (6.1.5). Consequently, if z7°¢(et) is
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the z-coordinate of ul*¢(t) + e2®.(ul*¢(¢)), then the traveling wave solution of
(6.1.2) corresponding to xr(t), yr.(t) has the form

T,e _ Te _ Z — T _
uyS(t) =z (5 (n . t) ) x % (en — vt)
=x7.(en — vt) +yp(en — vt) + O(?).

Note ul*(t) is 2T /v-periodic in ¢t with the velocity v and such that

() = o( =25 ) + O

uniformly for =T < en — vt < T and T satisfying the assumption of Theorem
6.4.3 for a fixed ko. Finally, we recall (6.1.4). Summarizing we get the main
result of this section.

Theorem 6.5.1. If h € C! satisfies the assumption (A) then traveling wave

solution u(x,t) = (;5(\}”1&) for0 < vy <v <1 of(6.1.3) can be approrimated

by periodic traveling wave solutions of (6.1.2) with very large periods and with
the velocity v.

We note that for a C'>°-smooth h, the center manifold graph ®, is C*-smooth
for any fixed k € N, and then (6.2.5) is also C*-smooth. Hence the bifurcation
function of homoclinics for (6.2.5) is of order O(£¥). So it is flat at ¢ = 0. Since
(6.2.5) is not analytical, we do not get further information of this flatness. Hence
it seems that the center manifold method is not fruitful for detecting bounded
solutions of (6.2.5) near (¢,0) on R.

6.6 Traveling Waves in Heteroclinic Cases

Theorem 6.4.3 can not be applied to (6.1.6) since now the limit reduced equation
(6.2.6) is a pendulum-like equation

(1—v?)& —sinz =0
with a heteroclinic connection

U(t) = 4 arctan exp {t/ﬂ} :

while we consider in (6.4.1) a homoclinic solution (see assumption (A)). In
this part, the heteroclinic case is studied for a perturbed Hamiltonian chain of
coupled oscillators with an Hamiltonian

H= Z (u + — (Un+1 —up)? + H(up) + pGtpy1 — un)> ,  (6.6.1)

nez
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where ¢ > 0 is a discretization parameter and p is a small parameter mea-
suring the relation of intersite and offsite potentials, and H,G € C%(R). The
corresponding discrete nonlinear Klein-Gordon equation is:

. 1
Up — j(un—l-l — 2uy, + un—l) + h(un)
€ (662)

{9t = tn-1) = gl = u) } =0,
where h(z) = H'(z) and g(z) = G'(x). The following conditions are supposed.
(B1) h,g € CH(R) are odd, h is 27-periodic and g is globally Lipschitz on R.

(B2) h(—n) = h(r) = 0, b/(—7) = W/(7) = a®> > 0 and there is a heteroclinic
solution ® of & — h(z) = 0 such that ®(¢) = 27 — &(—t) and P(t) — 27
as t — +o0.

Now the traveling wave equation (6.1.5) takes the form
V" (2) = V(e +1)+2V(2) = V(2 — 1) +%h(V(2)

)
+g2u{g(v(z) —V(z=1)—g(V(z+1) - V(Z))} —o. (6.6.3)

We need the following definition [182].

Definition 6.6.1. By a uniform sliding state of (6.6.3) we mean a smooth
function V(z) solving (6.6.3) and satisfying V(z +T) = V(z) + 27.

The method of this section is successfully applied in [95] to (6.6.3) and the
next analogy of Theorem 6.5.1 is proved.

Theorem 6.6.2. If h, g satisfy the assumptions (B1), (B2) then traveling wave

solution u(z,t) = @(%) for 0 < v <v <1 of ug —uee + h(u) =0 can
be approximated by both periodic traveling wave solutions and uniform sliding
states of (6.6.2) with very large periods and with the velocity v for p = o(e*/%)

small.

These solutions of (6.6.3) have again tails of periodic waves of small ampli-
tude. This result is consistent with the numerical result of [71,176] for (6.1.6)
mentioned above.

We remind that v = vy is the first value from the left of 1 for which the
equations of (6.2.3) have a common nonzero solution A # 0. For 0 < v <
vy, we could still use the above method. We know from Lemma 6.2.1 that
for any v;41 < v < v; the linear operator L has the double non semi-simple
eigenvalue at 0, and 2i + 1 pairs of simple imaginary eigenvalues. So after the
center manifold reduction, we should get a system like (6.2.5) and we could
generalize the bifurcation result of Section 6.4 for such systems. We do not carry
out those computations in this book. Related problems are studied in [24, 25]
on the existence of periodic solutions of certain singularly perturbed systems of
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o.d.eqns having symmetry properties with applications to some singular systems
of o.d.eqns arising in the study of Hamiltonian systems with a strong restoring
force.
We finish this part with a Hamiltonian perturbation of (6.1.8) of the form
(1+2a)sinu
(I+ a(l —cosu))? (6.6.4)

—HL{ sin(t, — Up41) + sin(uy, — Un—1)} =0.

— E—Q(unH —2Up + Up—1) +

For a« = pn = 0 we get the discrete sine-Gordon equation. Changing variables
Up < Uy — 7 in (6.6.4), we have
1

'an - 72(un+1 - 2un + un—l) + ga(un)
e (6.6.5)

—|—,u{ sin(uy, — Upt1) + sin(u, — un_l)} =0
for
(14 2a)sinu
1+ a(l+cosu))?”
Clearly g, € C*(R) is odd and 27-periodic, so (B1) is satisfied. Next g, (—7) =

9ga(m) =0, ¢’ (—7) = ¢, (m) = 1+ 2a > 0 and a heteroclinic solution ¥, of
Z — go(x) =0 in (B2) is determined by an implicit equation

. V2asin(U,(t)/2) sin(U,(t)/2) -
V2a arcsin Ve + arctanh \/1 20020, (012) =1+ 2at.

Summarizing, Theorem 6.6.2 can be applied to (6.6.4) uniformly for a > 0 from
bounded intervals.

6.7 Traveling Waves in 2 Dimensions

Finally, further developments on lattice equations are presented in [96] for

an,m = (Au)n,m - f(un,m) (671)

on the two dimensional integer lattice (n,m) € Z? under conditions that f €
CY(R,R) is odd and 27-periodic. A denotes the discrete Laplacian defined as

(Au)n,m = Un+1,m + Un—1,m + Un,m+1 + Un,m—1 — 4un,m .

For f(u) = wsinu, we get the 2-dimensional discrete sine-Gordon lattice equa-
tion [186] (see Fig.6.2)

tip,m — (AU)pm + wsinuy m = 0. (6.7.2)
A traveling wave solution of (6.7.1) in the direction e of the form

Un,m(t) = U(ncosf +msin b — vt)
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Un,m+41 m —|— 1
Un—1.m Un,m Unt+1l.m m
Yn.m—1 m—1

Figure 6.2: The two-dimensional lattice model of rigid rotation molecules with
orientation u,, ,, at site (n,m)

for U € C? (R, R) satisfies the equation

V2U"(2) = U(z + cos @) + U(z — cos )

+U(z+sin®) + U(z —sinf) — 4U(z) — f(U(z)) (6.7.3)

with z = ncos@ + msinf — vt. Topological and variational methods are used
in [96] to show periodic traveling waves and uniform sliding states of (6.7.1), i.e
solutions of (6.7.3) satisfying either U(z +T) =U(z) or U(z+T) =U(z) + 27
for any z € R and some T'. For instance the following results are proved.

Theorem 6.7.1. For any w > 16 and 1.17196 < T < 1.7579, the 2d discrete
sine-Gordon equation (6.7.2) possesses 4 nontrivial/nonconstant traveling wave
solutions of the form

Un,m(t) =7+ U<\}§ <n+m) . ;t)

for U(z) satisfying either U(z + T) = U(z) + 2m with U(—z) = —U(z), or
U(z+T) = =U(z)+2m, orU(z+T) = =U(2), orU(z+T) = U(z) withU(—z) =
—U(z), respectively. Moreover, for w =1 and T € U436 ( k,2v/3m(k + 1 )

(6.7.2) has at least 2 nonzero traveling wave solutions of the form

Unm (£) = U(% (n + m) - 2t>

for U(z2) odd and T-periodic, where ro = 0.2880.

We note that the first interval with k = 2 is approximately (21.8154, 32.6484)
and the last one with k& = 436 is approximately (4755.7599,4755.7819).
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In [87], damped and periodically forced lattice equations of (6.7.1) are stud-
ied of the form

Unm = —0Un,m + X(AWpnm — [(Unm) + h(ut), (n,m) € 72 (6.7.4)

for f € CY(R,R), h € C(R,R), § > 0, x > 0, u > 0 under conditions that f is
odd and 27-periodic and h # 0 is w-antiperiodic, i.e. h(x +7) = —h(z) Vz € R.
It is shown among orders that if one of the following conditions holds

(a) v= uzg—zl for some p € Z and k € N such that pu* + 4622k? > 16k* (L +
8x)?

(b) v = uﬁ% for some k € Z and p € Z, such that pu* + (2p 4+ 1)26%u2 >
(2p + 1)4(L + 8x)?

where L := maxg |f’(x)|. Then for any 6 € R, (6.7.4) has a periodic moving
wave solution of the form

Un,m (t) = U(ncosd +msinf — vt, ut) (6.7.5)

for some U which is 2m-periodic in the both variables. Now the equation for
moving waves is more complicated

V2UZZ(Z, v) = 2uvU,, (z,v) + uQUm,(z, v) + 0 (uUy(z,v) —vU,(z,v))
= X(U(z +cos@,v) + U(z — cos0,v) (6.7.6)

+U(z+sin,v) + U(z —sinf,v) — 4U(z,v)) — f(U(z,v)) + h(v)

with z =ncosf +msinf — vt and v = put.
Of course, (6.7.1) can be also derived as a spatial discretization of the p.d.eqn

ugg — Au+ f(u) =0

of the form )
Uy — ?(Au)n,m + f(tnm) =0, (6.7.7)

where u = u(z, y,t), z,y,t € R and Au = uy, + uy, is the Laplacian. Then for
Un,m(t) =U (ncos@ + msinf — Zt)
5

the traveling wave equation reads

VAU (2) = U(z + cos ) + U(z — cos 0)

. . , (6.7.8)
+U(z +sin0) + U(z —sinf) —4U(z) — e~ f(U(2)) .

It would be interesting to carry out similar computations for (6.7.8) as it is done
above for (6.1.5) considering v and 6 as parameters.



Chapter 7

Periodic Oscillations
of Wave Equations

7.1 Periodics of Undamped Beam Equations

7.1.1 Undamped Forced Nonlinear Beam Equations

Let us consider a forced sine-beam p.d.eqn given by
Ut + QUggry +Sinu+ 7(x) = psint,  u(z+1,t) = u(x,t), (7.1.1)

Where a > 0 is a constant, 7 is a nonzero continuous 1-periodic function satisfy-
ing f z)dx =0, u € Ris a small parameter and « is assumed to be sufficiently

large Letting o« — o0, we also consider a limit o.d.egn of (7.1.1) of the form
i+ sinu = psint, (7.1.2)

which is a forced pendulum equation. It is well-know that (—m,0) and (,0) are
hyperbolic equilibria of the o.d.eqn

=y, y=-—sinz (7.1.3)

joined by the upper separatrix (y(¢),(t)), v(t) = 7—4 arctan (e~ *). We consider
(7.1.2) as an o.d.eqn on the circle S?™ := R/27Z. Then (7.1.3) is defined on the
cylinder S?™ xR 3 (x,y) and (-, 0), (7, 0) are glued to a hyperbolic equilibrium
of (7.1.3) joined by the homoclinic orbit (y(t),¥(t)). Furthermore, the Melnikov
function M (&) of (7.1.3) has now the form (see computations for (3.1.36))

oo

~ . ~ ™ .~
M(a)=2 / secht sin(t + &) dt = 27 sech 5 sina.
—0o0
M. Feckan, Topological Degree Approach to Bifurcation Problems, 199-226. 199
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Since & = 0 is a simple root of M (&), Theorem 4.2.2 (see also Remark 5.1.4 and
Theorem 5.1.12) is applicable to (7.1.3) with b = —a = small. Consequently, for
any p # 0 sufficiently small, (7.1.2) exhibits a chaotic behavior. In particular,
it has an infinite number of subharmonic solutions with periods tending to
infinity. The purpose of this section is to show that most of them can be traced
as a — oo for (7.1.1). Homoclinic and heteroclinic bifurcations for p.d.eqns are
already studied in [20,23,115,137-139,170,197]. But methods of these papers
seem to be not applicable to (7.1.1), since it is undamped. We combine a method
of bifurcation of periodic solutions from Chapter 3 along with an assumption of
incommensurability for eigenvalues of the linear part of (7.1.1) to the time period
27 of (7.1.1) (cf. (7.1.39)). We also derive an estimate on a Lebesgue measure
of a set of all parameters satisfying that assumption of incommensurability.
Following this, we are able to show only the existence of any finite number of
subharmonic solutions. All these results are derived for abstract wave equations
on Hilbert spaces modeled by (7.1.1). Related problems are also studied in
[30, 150, 198]. Furthermore, we apply our abstract results also to the following
p-d.eqns

Ut + QUggzy + sinu + 7(x) = peost, wu(z,t) =u(l —x,t)

7.1.4

and
Ugt + QUgzzs — u+ud +7(2) = pcost, u(z+1,t) =u(x,t), (7.1.5)

where o > 0 is a large constant, 7 is a nonzero continuous function satisfying
1

J7(z)dx = 0 and p € R is a small parameter. Now either 7 satisfies 7(z) =
0

7(1—=) for (7.1.4) or 7 is 1-periodic and C''-smooth for (7.1.5). The limit o.d.eqn
of (7.1.5) is a forced Duffing equation

il —u+u® = pcost (7.1.6)

which is chaotic (see (3.1.36)). We are motivated to study (7.1.1), (7.1.4) and
(7.1.5) by the well-known sine-Gordon and Klein-Gordon partial differential
equations [176] when the term quyz.. is replaced with —aty,.

Finally, similar approach as in this section is used in [79] to the following
p.d.eqn

2t

1 1
Ut + Ugzazz + DUge + P / S, t dsa/u (Svt) ds Dgzu = €Q(x) Cos T
0 0
u(l,

U(O ) ) = Uzz(o ) = Uzr(la ) =0,

where D, u = —u,,, DS, is the &-power of D, in L%(0,1),0< ¢ <1, T € R,
p € C?(R x R,R), p(0,0) =0, ¢ € H*(0,1) N H(0,1), T >0 and e € Ris a
small parameter.
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7.1.2 Existence Results on Periodics

In this subsection, we introduce abstract wave equations on Hilbert spaces mod-
eled by (7.1.1). Let Y be a Hilbert space with an inner product {-,-) and the
corresponding norm is denoted by || - ||. Let X be a Banach space X C Y and
X is dense in Y. Let us consider the equation

ug + aAu = f(u,t), (7.1.7)

where o > 0 is a parameter and A : X — Y is a bounded linear operator. We

assume
0<d:=dimNA< .

Let {u; }?:—d+1 be an orthonormal basis of NA C Y. Let {u;}32, be eigenvec-
tors of A with corresponding nonzero eigenvalues {\;}32; such that Ay < Ay <
Xip <0< Njpg1 < -+ — 00. We set \g := 0. We assume that {“j};ifdﬂ rep-
resents an orthonormal basis of V', and the linear span of {u;}52 _,; ; is dense

in X. Furthermore, we suppose that f : Y x ST — Y is continuous and globally
Lipschitz in y with a constant M. Recall ST = R/TZ is the circle.

We are looking for weak T-periodic solutions of (7.1.7) for o > 0 large. By
a weak T-periodic solution of (7.1.7) we mean u € L*°(ST,Y") satisfying

/<u(t),vtt(t) + adu(t)) dt = /(f(u(t),t),v(t))dt Yo e C3(ST, X).
0 0

The integrability is considered in the sense of Bochner [102]. Note the Hilbert
space L?(ST,Y) has an orthonormal basis

1 2 2mt 2 2mt
{\/Tuj, \/ Tsinm%u‘j, \/Tcosm%uj |meN,j> —d—l—l} c C*(ST.X).
(7.1.8)

We consider the norm |||v]|| = ess supgr ||v(-)|| on L°(ST|Y). Next, we decom-
pose Y as follows

Y =NApNA+

and take the orthogonal projections Q : Y — NAL, P:Y — NA. Then (7.1.7)

has the form
wyy + aAw = Qf(w +v,t), weNAt

7.1.9
Utt:Pf(w+v,t), ’UGNA ( )
Lemma 7.1.1. Assume that there is a constant ¢ > 0 such that
. Cl{)\jT . 3
VA |sin >c Vji>ig. (7.1.10)

Then the equation

Low = wy + aAw =h, he L>(ST,NAt) (7.1.11)
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has a unique weak T-periodic solution w = L;th € L>(ST N AL) satisfying
Hwl[| < B(e, T, c) [l (7.1.12)

2 4 1) . (7.1.13)

lo+1 2c2

with

Bla,T,c) :

Proof. Since h € L (ST, N A1), we have
h(t) = hi(tyu;, hj € L¥(ST,R), esssupgr »_h3(-) < [[|A]|]*.

jEN jEN
From w € L>=(ST, N A1), we have w(t) = > w;(t)u;. We have to solve
JjEN
T T
/(w(t),vtt( )+ adu(t / Wt Yoe ST, X).  (T.1.14)
0 0

Hence (7.1.14) gives
w;(t) + aXjw;(t) = h;(t), jEN. (7.1.15)
Since (7.1.10) holds, for j > dg, (7.1.15) has the solution

Vo (t — 8)) h;(s)ds

1 1 T
+ /cos vadj(s——=—t))hj(s)ds.
2\/al\; ar T 2
sin s

O\ﬁ

(7.1.16)

. 2
1
Zw?(t)SQ — /sin (\/a)\ (t—s)) hj(s)ds
j>io 7>10 @ J 0
- 2
1 1 T
Jr% Z L T /cos <\/a)\j (s — 3 t>> hj(s)ds
J>10 )\ Sln2 T 0
T
< )\ Z/sm Vad(t—s) / j(s)ds (7.1.17)
AAj5+1 >0 0
2 5 Z/cos VaA; ( > ds/h?(s)ds
ac
J>10 0
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For \; <0, let |w;(to)|, to € [0,T] be the maximum of |w;(¢)| in (7.1.15). Then
0 > 1 (to)w;(to) = —Ajaw;(to)? + hy(to)w;(to) -
Hence —)\jaw]‘(to)Q < |hj(t0)w]‘(t0)| and then

1 1
()] < ——|lh]]] € ——
ma s (0] < Al < o

IR

In this way, we have a function w € L™ (ST, NAL) with w(t) = 3 w;(t)u;
JEN
satisfying (7.1.12) and (7.1.15). Finally, it is not difficult to see that w is a weak
solution of (7.1.11), i.e. w satisfies (7.1.14) (see more details at the end of the
proof of Lemma 7.2.1). O

Taking w € L>(ST,NA), we consider the first equation of (7.1.9) in the
form

w=L'Qf(w+uv,t).
Since
|‘|L;1Q(f(w1 +’U,t) - f(wQ +’U,t))”| < Mﬂ(aaTac)mwl 7w2”|7

we see that if M3(«,T,c) < 1 then the first equation of (7.1.9) has, by the
Banach fixed point theorem, a unique solution w = w(v, o, T, ¢). Summarizing
we obtain the following result [86].

Theorem 7.1.2. Assume that (7.1.10) holds. If MB(a, T,c)<1 then the prob-
lem of existence of weak T-periodic solutions of (7.1.7) is reduced to the finite
dimensional equation

b= Pf(w,a,T,c) +v,t), veLl>®ST,NA), (7.1.18)

where w(-, a, T, c) : L®(ST,N'A) — L>*(ST,NAL) is Lipschitz continuous with
Mp(a,T,c)

a constant m MO?"@O’U@T‘,
B, T c)
T <——F——— (M 0, - .
(v, 0. 7.0l € =32 (11| 1£(0.) )

In particular, |||w(v,a, T, c)||| = 0 as B(a, T, c) — 0 uniformly for v bounded.

Since by (7.1.13) we see that 8(«, T, ¢) — 0 whenever o — oo, according to
Theorem 7.1.2; the limit equation of (7.1.7) as o — oo is the o.d.eqn

o= Pf(v,t), veL®(ST NA). (7.1.19)

Of course, any weak solution v of (7.1.19) satisfies v € W2>°(ST, N A).
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Definition 7.1.3. A result on the existence of a weak T-periodic solution for
(7.1.19) is said to be (g, D)-stable for some € > 0, D > 0, if for any perturbation
feC(L=(ST,NA), L= (ST, N A))

of Pf(v,-) with N

[f(v) = Pfv, )|l <e
on the set S := {v € L>(ST,NA) | ||[v]]| < D}, there does exist a weak
T-periodic solution v € S of ¥ = f(v).

Theorem 7.1.4. Assume that (7.1.10) holds. If a > 0 is sufficiently large then
a (g, D)-stable result on the existence of a weak T-periodic solution for (7.1.19)
implies also the existence of a weak T-periodic solution for (7.1.7).

Proof. The result follows immediately from Theorem 7.1.2 and Definition 7.1.3.
Indeed, now we have

f)(#) = Pf(w(v, o, T,¢)(t) +v(t), t).

Then Theorem 7.1.2 gives

IIf(v) = Pfo(@), )| = [|IPf(wv,e,T,c) +v,-) = Pf(v,)]]
< Mt 7.0l < TR LD ) +150.91D (7 50
MpB(a, T, c)
< 2T (D + 150,91

for any v € S. Consequently, |||f(v) — Pf(v(t),t)||| < e for a large. The proof
is finished. O

Note (e, D)-stable results for (7.1.19) can be derived by using Mawhin’s
coincidence degree theory [145].

Now we concentrate on the condition (7.1.10).
Lemma 7.1.5. Suppose

1
>l
k>io )\k

and take D > 0. Let S(c) be the set of all > 0 satisfying

A Q
V% [sin Y

where ¢ > 0 is a constant. Then the Lebesgue measure of the complement

(R\ S(e))N[D,D +1]

sin

>c Vj>ig, (7.1.21)

satisfies

2¢em c 2¢2T
m((R\ 5()) N [D, D +1]) SZ (Ak+m+ mxf) |
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Proof. T Q € (R\ S(¢)) N[D, D + 1] then m(sm@

Since |sinz| > 2|z — nr| for any |z — nw| < 7/2, n € Z, we obtain

it \/);kQ —mr‘ < /v Ak

< ¢ for some k > ig.

™

for some n € Z. Hence

‘Q— 2mn <E
VAR /\k

Consequently, we obtain

D c Q c n Q c D+1 c

D L R AT e e R
A W S S VY5 VRN S ) Wi s S W
D c +1 c
2w — = 2ELA
2w k 2V A B

27 2V
We arrive at
c A 2me
m((R\ S(c))N[D,D +1]) < ;; (m+g+1) S
Z 2cm Z 2c%n
k>ig k>ig VA
The proof is finished. O

Summarizing we have the following result.

Theorem 7.1.6. Assume that Y r < 00. Then for any a such that

k>1ig
2Mi 4 1
a> 220y ( + 2) and +/aT € S(c), (7.1.22)
Ao Aig+1 - €

assumptions of Theorem 7.1.2 are satisfied. If in addition

24 T2 ( 8 €

2
o> — | — for K =
[Ni| K K2 \ Xig41 02> M(MD +[|[£(0,)][| +¢)

(7.1.23)

then assumptions of Theorem 7.1.4 are also satisfied.

Proof. (7.1.22) implies that (7.1.10) holds along with JVZIAZZ < ]\;Ii;gg < 1/4 and

MAT? ( R 262> < 1/2.Hence M?B(a, T, c)? < 1+1 =2 and MB(a, T, c) <

a Aig+1

V3/2 < 1, so assumptions of Theorem 7.1.2 are verified.
Similarly, (7.1.23) gives ﬁ < K?/4 and %2 ( Z_ 4 262> < K?/4. Hence
)

Aig+1
Bla,T,e)? < K2%/2, so B(a,T,c) < v2K/2 < K. Consequently, we obtain
% (MD +1]|£(0,9)]]]) < e. So by (7.1.20), assumptions of Theorem
7.1.4 are also verified. O




206 Chapter 7. Periodic Oscillations of Wave Equations

Note (7.1.23) implies the inequality from (7.1.22).

Remark 7.1.7. By Lemma 7.1.5, the smaller ¢ the larger the set S(c). Moreover,
S(c1) C S(ez) whenever ¢ > ¢o > 0 and (see Theorem 7.2.7)

m (UesoS(c)N[D,D+1])=1 VDeN.

Finally, let us assume that f(u,t) in (7.1.7) is a gradient operator, i.e.
f(u,t) = grad, F(u,t) fora F € C* (Y x ST R).
Theorem 7.1.8. Assume that > ﬁ < oo and f(u,t) in (7.1.7) is a gradient

A >0
operator in u satisfying

allu —v|* < (f(u,t) — f(v,t),u —v) <bllu—v||* Vu,VoeY,vVteST

for constants a,b € R. If [a,b] N { — 4”T22”2 } L= 0 then for any a such that
nely

T?a® T?v* |a| |b|
402 ’ 402 ,|)\i0|’ |)‘io|

a>max{

} and /aT € S(c), (7.1.24)

(7.1.7) has a unique weak T-periodic solution u in L*(ST,Y).

Proof. Since |z| > |sinz| Vo € R, condition (7.1.10) gives ‘ VO‘A’”T wn’ > \/37’
Yk > 19, Vn € Z4 from which we derive

2 2rn| _ 2cy/a
aAk—T :‘\/Of)\>— a)\k—FTZ T
for any k > io and n € Z,. While for 1 < k < 4o, we have ’oz)\k _arn?| >

alAi,|. So the first condition of (7.1.24) gives ‘a)\k - 4“2” ‘ > max{|al, |b|} for

any k > 1 and n € Z,. This together with [a,b] N { - 47}2” } . () imply
neZy

4 2,2
[a,b] N {a)\k - ”2”} =0. (7.1.25)
T n,k€Z

Next we take H = L?(ST)Y), Lu = uy+aAu and N(u)(t) = f(u(t),t). The
scalar product on H is the usual one (u,v) : = f )) dt with the corre-

sponding norm | - |. Then a weak T-periodic solutlon u of (7 1.7) in H is deter-
mined by Lu=N (), which is equivalent to Lu=N (u ) with L : =L —wl and N :

=N — @l for w = %£°. Furthermore, N(u):graduf (F(u(t),t) — w%) dt
0
along with

—clu—v|> < (N(u) = N(v),u—v) <clu—v|> Vu,VveH
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for ¢ = 252, which by [30, Theorem 2] or [146] gives
IN(u) = N()| < ¢lu—v| Vu,VveH. (7.1.26)

From (7.1.8) we see that the spectrum o(L) of L is

~ 4
J(L)_{ 7; +a/\kwnk€Z+}.

So by (7.1.25) we have [—¢,<]No (L L) =0. As R\ o(L) is open, we have [—¢, 3] N
O’( L) =0 for a< > . This gives |L71| < L 1 . By (7.1.26) we get that the mapping
L~1N is a contraction with a constant & < 1. The Banach fixed point theorem

gives a unique solution of u = L~ 1N( ), and so a unique solution of Lu = N(u)
in H. O

7.1.3 Subharmonics from Homoclinics

In this part, we consider a periodically forced abstract wave equation
u + cAu = g(u) + po(t), (7.1.27)

where p € R is a small parameter, « > 0 is large and A satisfies assumptions
of Subsection 7.1.2. Furthermore, g : Y — Y is Lipschitz continuous with a
constant M and ¢ : ST — Y is continuous. Concerning the limit o.d.eqn, we
assume

(i) NA = Ruwg with [[wo|| =1
(ii) Function g(x) := (g(zwq),wp), z € R is C?-smooth
(i) 5(0) = 0 and 7(0) > 0
(iv) There is a nonzero v € C?*(R, R) such that hm ~(t) = 0 and 4 = g(v).

For this case, (7.1.18) and (7.1.19) with v(t) = x(¢)w have the forms
& = (g(w(rwo, a, T, ) + xwp), wo) + p(p(t), wo) (7.1.28)

and
& = (g(zwo), wo) + pu(o(t), wo) . (7.1.29)

The assumptions (iii) and (iv) mean that the o.d.eqn

=y, y= {g(xwy),wo) (7.1.30)

has a homoclinic orbit (v,%) to a hyperbolic equilibrium (0,0). We shall apply
a result of Section 3.1 to study bifurcations of periodic solutions of (7.1.28) near
~ for a > 0 large.
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Theorem 7.1.9. Assume that Y ﬁ < o0 and (i—w) hold as well. Let p>5/2.
k>ig 777
If there are constants a<b such that M(a)M(b)<0, where

A«w=1/wa+wwmwwm.

Then there are constants K1 > 0, Ky > 0 such that for any Ki > |pu| > 0, m €
N, 0 < I" < 1 satisfying

2—p T
" m

PG T T €5 (7.1.31)

(7.1.27) has a weak mT -periodic solution u, with o =T 2|u|=2° satisfying

_ — < .
B 2 |t (£), wo) —~(t = 6m)| < Ko|ul (7.1.32)

for some 0,, € (a,b).

Proof. First we note |||[v]|| = ||#]|co for v(t) = x(¢)wp and ||z||oo := esssupg |2 (+)].
Next, Theorem 7.1.2 implies for m € N and = € L> (S™T R) with [z]. <
[7]loc + 1 that

{g(w(zwo, o, mT, ¢) + wwo), wo) — {9(zwo), wo)loo
< lg(w(zwo, o, mT, ¢) + wwo) — g(azwo)||| < M[[w(zwo, o, mT, c)||

M T
< o (Ml + 1)+ el

< 2MpB(a, mT, ¢) (M|[[lse + [lg(O)I| + |ull||2l]] + M)

when 2MB(a,mT,c) < 1, and this holds if (see (7.1.13) and the proof of
Theorem 7.1.6)

3Miyg
o> —
|)‘io|

41
AMPm2T (/\_ —+ 62) . (7.1.33)
1o

Taking o = I'2|u| =2 for 0 < T < 1 and p > 5/2 from (7.1.13), we derive

il [p|? 2 1
T,c) < T|ul’ 272
Mmm,d_/4¢ T (g
il |20 2 1
< 0|)\|| Ty [ 5 (7.1.34)
10 0

< /ﬁ 7'70 4 L + i
- [Ado | i1 2¢?
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provided |p| < 1 and mT|u|? < p?, which follows from (7.1.31) when K; is
small. To verify (7.1.33), we calculate

3Mig 2 92 4 1 -1
4M T —— + — <
( | Ao | - " Nig+1 ta))e =
3Mio ., 4 1
K2P 4+ 40> K <1
il - ()‘io+1 02> P

provided |u| < K7 and mT|u|? < p?, which follow from (7.1.31). So (7.1.33) is
shown for K small. Consequently, when T is replaced with mT, (7.1.28) has
the form

& = (g(xwo), wo) + p(e(t), wo) + O(|ul?) (7.1.35)

near y whenever (7.1.31) is satisfies and K is small. Now, Theorem 3.1.9 implies
that if K is sufficiently small, then (7.1.28) has a weak mT-periodic solution
for m > 1/4/|p| satistying (7.1.32). The proof is finished. O

7.1.4 Periodics from Periodics

Above we suppose that the limit o.d.eqn (7.1.30) has a homoclinic structure and
we study bifurcation of periodics from a homoclinic one. Now we investigate
bifurcation of periodics from a periodic solution of (7.1.30). Consequently, we
assume that (i), (ii) hold and also the following one

(v) There is a nonconstant T-periodic function v € C?(R,R) satisfying the
o.d.eqn 4 = g(y). Moreover, the variational equation 2 = §’(y)z has a %
as the only nonzero T-periodic solution up to a scalar multiple.

We shall apply a result of Section 3.3 to study bifurcations of periodic solu-
tions of (7.1.28) near v for a > 0 large.

Theorem 7.1.10. Assume that r < oo and (i), (i), (v) hold as well. If
k>ig
there are constants a < b such that M(a)M(b) < 0, where

T
/ (t+ o), wo)(t) dt .
0

Then there are constants Ky > 0, Ky > 0 such that for any K1 > |p| > 0,0 <
I' <1 satisfying
T

Tu?
(7.1.27) has a weak T-periodic solution u with o = T'=2|u|=* satisfying

S S(C) )

—A(t—8)| <K 7.1.36
trerfowé\ ), wo) — Y(t — 8)| < Koyl ( )

for some 0 € (a,b).
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Proof. From the proof of Theorem 7.1.9 with m = 1 and for x € L™ (ST,]R)
with [|2]lc < [|7]|co + 1, we have

[{g(w(zwo, a, T, ¢) + zwo ), wo) — {g(zwo), wo)l|oc
<2MB(e, T, ¢) (M[[Y]loo + [lgO)I| + |l ]]] + M)

when
3Mig

>
‘)‘20|
For a = I'2|u|~* from (7.1.34) we know

4 1
AM>T? = . 7.1.37
- (/\io-H * 02) ( )

] 2 1
6(04,T,C)§/A2< ‘0 +T +>

| Ado | Aigy1 - 2¢?

provided |p| < 1. Next, (7.1.37) is satisfied if

3Mi ) 2( 4 1 ))‘1/4
< + 4MPT + = .
I ( Ao | Nigr1 - €2

Consequently, (7.1.28) has the form of (7.1.35) for = near v and p is small.
Corollary 3.3.5 implies that if K is sufficiently small, then (7.1.28) has a weak
T-periodic solution satisfying (7.1.36). The proof is finished. O

Remark 7.1.11. In Theorems 7.1.9 and 7.1.10 it is enough to suppose that
VD > 0,3IM > 0, Vui,Vug € Y, ||u1]| < D, ||uz|| < D implies ||g(u1) — g(u2)|| <
Mlluy — uz]|.

7.1.5 Applications to Forced Nonlinear Beam Equations

In this subsection, we first apply Theorem 7.1.9 to (7.1.5) by putting

X =C°S"R), Y=W"2(S'R), Au=1uppes,

g(u)(@) = u(z) — u(@)® — 7(x), () = cost, T =2r. (7.1.38)

Clearly NA = {constant functions} ~ R and the spectrum of A is o(A) =
{167T4m4 | m € Z+} with the corresponding eigenfunctions {sin2wmazx,
cos2rma}.

Since Y. -1 < oo, Lemma 7.1.5 is applicable and (7.1.10) has now the form
m=1

47?5% |sin (47%5%/@)| > ¢, Vj€N. (7.1.39)

Note (7.1.39) holds if and only if 2m\/a € S(c¢). Applying Lemma 7.1.5 and
using formulas

2

1 s 1 4 1 m
2@ % LmToy Lo

kEN keN keN
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we derive

c c 2
m((R\S(C))ﬂ[D,D+1])<Z< N N )

8m3kt  4Amw2kZ - 3270kS
keEN

CcT c 02 ™

=720 T 21 T 30210

From =55 + o3 +30240<1andc>0weget

3 (\/7(6300 19007 + 772) — 210 — 77r)

™

0<c< = 20.7529. (7.1.40)

So for any ¢ satisfying (7.1.40), there is a continuum many « > 0 satisfying
(7.1.39) in any {DQ M}, D >0.

T2 472
1
Let |u| = {/ [u(z)? dz be the norm on L*(S*,R). Then |lu| = v/|ul? + [u/[?
0

is a norm on Y. For any u € Y, Jz¢ € S* such that |u(zg)| < |u| and so Vz € S*:
u(z)? < u(zo)? + 2|ul[v| implying |u| < [Jullee < 2|Jul|. Next, for any uj o € Y
we derive

o < 16]jus [Pzl + 2 (uus|? + [urih|?)
< 16]ur Pzl + 2 (4 2 [us |2 + 4llur [2lub?) < 36] s |luzll?

Hence ||ujus|| < 6||uy]|||uz||, which implies

luf — w3l < 6llur —uall (lud ]| + llusuall + lu3])
< 36/lur — wa| (ua | + lJuallfluz]| + [Juz]?) -

Summarizing, for any u; 2 € Y with [Jus 2| < D, we get
lg(ur) = glua)|l < [lur — || + |luf —w3]| < (1 +108D?) [lus — us||

and Remark 7.1.11 is verified. Moreover, with wo(z) = 1 and v € L* (R,R) we
derive

(g(ultywo), wo) = / (u(t) — u(t)® — 7(2)) do = u(t) — u(t)?,

1

(¢(t), wo) :/COSL‘d33=cost7

0

[

where (z(x),u f x)dr + f (x) dz. Hence (7.1.29) is (7.1.6),

which is the forced D fﬁng equation. Condltlons (i-iv) of Subsection 7.1.3 are
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clearly satisfied for (7.1.6) with v(t) = v/2sech t. The function M (o) of Theorem
7.1.9 has now the form

M(o) = / (p(t + o), wo)(t) dt = V27 sech g sino .

—00

Since o = 0 is a simple root of M (o), Theorem 7.1.9 is applicable to (7.1.5)
with @ = —b small.

Next, we intend to apply Theorem 7.1.10 to (7.1.5). According to [108,
p.198], (7.1.6) with 1 = 0 has a family of periodic solutions

i () = \/%dn (ﬁk)

where dn is the Jacobi elliptic function and k is the elliptic modulus. The period
of these orbits is given by

Ty = 2K (k)\/2 — k2,

where K (k) is the complete elliptic integral of the first kind. T} is monotonically
increasing in k with %imo T, = v/2m and lllml Ty = oo. Consequently, there is a
unique kg = 0.982635, 0 < ko < 1 such that Ty, = 27. Then assumptions (i), (ii)
and (v) of Subsections 7.1.3 and 7.1.4 are satisfied for (7.1.6) with () = ug, (¢).
Now we compute

Tieo
M(o) = [ (Bt + o), wo)¥(t)dt
0/
b (ko)
= U cos o = —V/ 27 sec ﬂsino
_/ ko (t) cos(t + o) dt = —/2 hK(kO) .

0

Since again ¢ = 0 is a simple root of M(c), Theorem 7.1.10 is applicable to
(7.1.5) with @ = —b small.
The above arguments can be repeated to (7.1.1) when now

X:C4(SlaR)7 Y:LQ(‘S’lvR)7 Au:u;ﬂzw7;7
g(u)(z) = —sinu(x) — 7(x), o) =sint, T =2x.
Hence (7.1.29) is (7.1.2), which is the forced pendulum equation. From Subsec-
tion 7.1.1 we already know that conditions (i-iv) of Subsection 7.1.3 are satisfied,

when (7.1.3) is considered on the cylinder S** x R. Furthermore, the function
M(c) of Theorem 7.1.9 has now the form

M(o) = / (p(t + o), wo)(t) dt = 27 sech g sino .

— 00
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Since o = 0 is a simple root of M (o), Theorem 7.1.9 is applicable to (7.1.1) with
b = —a small. Similarly, following results of [108, pp. 201-204], Theorem 7.1.10
is applicable to (7.1.1) for subharmonics. Hence like in Chapter 3, there are
bifurcations of periodics for (7.1.1) from a heteroclinic cycle of (7.1.2) created by
(v(t),4(t)) and (y(—t), —y(—t)). But we also get librational solutions bifurcating
from (y(¢),5(¢)), i.e. a weak solution of (7.1.1) satisfying u(x, t+2mmn) = u(x,t)+
27 for some large m € N.
Finally, we investigate (7.1.4) taking

X = {u € 04([07 H)R) | u(x) - u(l - x),um(O) = uzw(l) =0,

Y ={ue L*([0,1],R) | u(z) =u(l—2)}, Au= tpses,
g(u)(z) = —sinu(z) — 7(x), ¢(t) =cost, T =2r.

First we note that the eigenvalue problem

7.1.41
is known [23] to possess a sequence of eigenvalues v, = &, k= —1,0,1,--- with
§-1=%& =0and

cos&coshéy =1. (7.1.42)

The corresponding orthonormal system of eigenvectors reads
u_y(x) =1, wuo(z) =302z —1)

ug(x) = Wik [cosh(ka) + cos(&xx)

_coshf;C — cos &y
sinh &, — sin &

(sinh(gy) + sin(&a)) |

where

Wy = cosh(€x) + cos(éx) — SSLEE TCOSEk (4 (6) +sin(€)) . (7.1.43)

sinh &, — sin &

Then we get cos &, = ———. Numerically we find & = 4.73004075.

cosh &g,

Moreover, 0 < & < & < --- and so cosh&; < cosh&; < ---. Since & ~
m(2k + 1)/2 and cos(w(2k + 1)/2) = 0, we get

< Qe ¢k

|sin Oy - |&x — m(2k + 1)/2| = | cos & — cos(m(2k + 1)/2)| = cosh &, =

for a 6y € (&, m(2k +1)/2). But we have

1> |siné&g| = /1 —cos? &, > /1 — cos? €1 = 0.999844212 ,
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0.5}

25 5 75 10 | 125 15

11

Figure 7.1: The graphs of functions y = cosx (thick line) and y = sech

since

1 1
<
cosh &, — cosh &
Next, we can easily see (cf. Fig.7.1) that in fact (4k — 1)7/2 < &op—1, &or <
(4k + 1)7/2 and function cos x is positive on intervals (£, m(2k + 1)/2) for any
k € N. So function sinx is increasing on these intervals, and it is positive on

[Eok, (4k + 1)7/2] and negative on [(4k — 1)7/2, &2 —1]. From these arguments
we deduce

0 < cosé&y = =cosé; .

|sin O] > |sin&g| > |sin&;| = 0.9998444212 .
This gives

l&x — m(2k +1)/2| < e™¢ = 0.017654973 .

2
|Sin£1|

—0.017654973 > 7k .

So we obtain (s w2k +1)
p > —

Consequently, we arrive at

2 2
—&k < e Tk < Lok (7.1.44)

—m(2 1)/2| <
1€ — m(2k +1)/2] < | sin & ¢ ~ |sin&| 4

for ¢ = 2.546875863. Furthermore, if u(z) solves (7.1.41), then also u(1 — ) is
its solution. Moreover, ug(x), k € N is an orthonormal system in Y. This gives
ug(1—2) = tug(z) for any k € N. Next, we already know that sin {55 > 0. Hence

sin&o, = /1 — cos2 &, Using also cosh &, = ﬁ and sinh &, = \/cosh? &, — 1

form (7.1.43) we derive Wy, = —2. Similarly, from sinés,—1 < 0, k € N we
derive sin&ar—1 = —/1 — cos? {1 and then Wa,_1 = 2. Using uy(0) = Wik

and ug (1) = 2, we see

ugk (1 — ) = —uop (), wugp—1(l —x) =ugk—1(x) VkeN.
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Consequently, the eigenvalues of A for (7.1.4) read {&3,_, | k € Zy } with the
corresponding eigenfunctions {usg—1(x) | k € Z4+}. So

N A = {constant functions} ~ R

and (7.1.29) is again (7.1.2). From (7.1.44) we get > 52# < 00, and Lemma
keN ~2k-1
7.1.5 is applicable. Consequently, the above results for (7.1.1) are extended to

(7.1.4). Summarizing we get the following result.

Theorem 7.1.12. Lemma 7.1.5 and Theorems 7.1.9, 7.1.10 are applicable to
(7.1.1), (7.1.4) and (7.1.5), while the corresponding limit o.d.eqns are (7.1.2)
and (7.1.6), respectively.

Theorem 7.1.12 asserts that there are many periodic/subharmonic solutions
of (7.1.1), (7.1.4) and (7.1.5) when nonresonant conditions of Lemma 7.1.5 are
satisfied.

In [26] a similar problem is studied on the existence of weak %—periodic
solutions of equation

Ut + Uggaa + E/’Lh(xa \/gt) = 07
uzm(ou ) = UII(L ) = Oa

Uz (0,) = —€f (/01 u(x, -)<p(x)dx> 7 (7.1.45)

tensl1.) =z ([ (e, Yol1 - )i

for ¢ > 0 small. We assume that h(x,t) is a 2T—periodic (in t) C'—function on
[0,1] x R, f(x), g(z) are sufficiently smooth functions such that f(0)=g(0)=0
and ¢(z) = ¢u(z) € L?*(R,R), is a non-negative function whose support
supp ¢ C [0, a], where a is a fixed positive number such that 0 < a < %, and

1 o]
/ p(x)dx = / p(x)dr=1.
0 —oo
Physically conditions

ters(0)= o ( | e, dolalde ), et )=z ( [ (e, Yoll - )i )

mean that the response at the end points of the beam depends on a small
part of the beam near the end points. In [26] under additional assumptions,
our main result states that if h(x,t) = h(x,—t), € > 0 and p are sufficiently
small and the period 27 of h(z,t) belongs to a certain non-zero measure subset
of the interval [27p, 2e=1/4], with T} sufficiently large, then (7.1.45) has a weak
27Tg—pe1ri0dic solution. When h(z,t) = 0, there are several layers of free symmet-
ric weak periodic vibrations of (7.1.45) for any small € > 0. This achievement is
a p.d.eqn analogy of period blow-up results concerning accumulation of periodic
solutions to homoclinic orbits in finite dimensional reversible systems studied in
Section 5.2.
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7.2 Weakly Nonlinear Wave Equations

7.2.1 Excluding Small Divisors

In this section we proceed with investigation on the existence of periodic so-
lutions of undamped nonlinear wave equations. We study a weakly nonlinear
equation

uy + Au=ef(u,t), (7.2.1)

where A, X, Y, f are already defined in the previous Subsection 7.1.2 and ¢ € R
is small. To get bifurcation results, we suppose

0<dimNA< .

By a weak T-periodic solution of (7.2.1) we mean a function u € L? (ST,Y)
satisfying

T T
/ ), v () + Av(t g/ v(t))dt, YveC?(ST,X). (7.2.2)
0 0

The integrability is considered in the sense of Bochner. Generally, problems of
those kinds lead to problems of small divisors, and for this reason, it is very hard
to study such problems [13,37,128] (see also Lemma 7.1.1). This is the case for
one-dimensional wave equations when the ratio between the space length and the
period T is irrational [30,150]. On the other hand, we can very easy study these
problems for specific irrational numbers of the ratio. These irrational numbers
can be nicely characterized in notions of the number theory. We present some
results in this direction at the end of this section. To be more concrete about a
small divisor problem, first we study a linear version of (7.2.1) given by

T T
/ e (t) + Avu(t / v(t))dt, VveC*(ST,X) (7.2.3)
0 0

for h € L*(ST,Y). Let P: Y — N A be the orthogonal projection, and set

Note, these projections are defined for the following reason

Ph =0+ /(h(t),up>dt =0, Yu,cNA.
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y (7.2.3) we derive
T
/(h(t),up> dt=0, Yu,eNA, ie. heRQ.
0
Now we prove a non-resonance result for (7.2.3).

Lemma 7.2.1. Assume the existence of a constant ¢ > 0 such that

2
2 m

Ai

2% YmeN, Yi>ig, (7.2.4)

where a = T/27. Then for any h € RQ, (7.2.3) has a unique solution u = Lh €
RQ. Moreover,

ell s (gry) < A (g ) (7.2.5)
for a constant ¢ > 0.

Proof. By our assumptions, the Hilbert space ’R@ C Y has the orthogonal basis

27t 27t
{uk,sinm; Uj, COST—rm cu; |mkeN, j> d+1}CC2(ST,X)

(7.2.6)
We expand u (formally) and h really in the basis (7.2.6) to get
2 27t
u(t) = Z (ul i smm% +u?, j COS M~ )uj
(m,A;)#(0,0)
27t 27t
h(t) = Z (h}m sinm% + hfnj cos m%)uj ,

(m,A;)#(0,0)

where we set A\; := 0 for —d +1 < j < 0. Of course, we take Uoj = 0 and
hi; = 0. If u is a solution of (7.2.3), then we take v(t) = sinm2ft - u; and
v(t) = cosmZEL - uy, for (m, ;) # (0,0), to get

a2

7 7 -
uy, . =———h 1=1,2.
mJ a2)\J m2 mj ’

Hence if (7.2.3) has a solution u € RQNQ, then it is unique and it should be given
by

2

o} 2mt 2wt
u(t) = Z PP (hl smmT + h2 COS M~ ) uj. (7.2.7)
(m,2)#(0,0) 7Y

By (7.2.4) it holds |uf, ;| < ¢|hi,;|, i = 1,2 for a constant ¢ > 0. Hence

||u||2 ST Y Z T( uo ] Z (T/2)((u71nj)2 + (Uiz])2)

Aj 70 m#0,j

<P( TP+ Y @)+ (12,)°) =EINE, 0y

A;#0 m#0,j
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This gives u € RQ given by (7.2.7), and we have (7.2.5). So L is continuous.
Now we show that this u satisfies (7.2.3). Our assumptions give that the
linear hull Ly of (7.1.8) is dense in C?(S7, X): one can prove this by using the
A-approximation method like in [178], see also Fejér’s Theorem [171]. So for
any v € C?(S7, X) there is a sequence v; € Ly such that v; — v in C?(S7, X).
This gives vj; — vy and v; — v in C(ST, X). Hence Av; — Av in C(ST,Y).
The equality (7.2.3) holds for any v; € Ly, and since X C Y continuously, we
take the limit j — oo in (7.2.3) for v = v; to get the validity of (7.2.3) for any v.
The proof is finished. O

Note (7.2.4) is satisfied when it holds

m

Vi

for a constant ¢ > 0. Indeed, from (7.2.8) we derive

> vmeN, Vi>ig (7.2.8)

o —

<
i

m

Vi

> C
a— .
= >\7,

o+

Ai
Considering a one-dimensional operator
Au= —tyy, u(0)=u(r)=0, ueC?([0,7])

determined by the one-dimensional wave operator
Ut — Ugz, u(+,0) =wu(-,m) =0, (7.2.9)

we get \; =42, i € N. Then (7.2.4) has the form

inf |i*a® —m? >0, (7.2.10)
i,meN
while (7.2.8) has the form
‘a—@,‘ >< YmieN. (7.2.11)
1 1

Next, the real number « can be uniquely expressed in the form
a=ag+ 6

with ag integer and 0 < 6y < 1. If 7 # 0 then there is a unique «; > 1 with

a=ay+ —.
aq
If oy is not an integer number then it has a unique representation

o] =ay + —
a2
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with a; integer and ag > 1. This procedure terminates only if « is rational. For
irrational a we get its continued fraction expansion

1
o =ay+———— = [ap,a1,0a2,---] .
o1+ o
The integers ag, ay,- - are the partial quotients of a. We set
Pn/an = lag,a1,a2, -+, an—1,ay]

with (pn,gn) = 1 and ¢, > 0. Here as usually (p,q) is the largest common
divisor of integer numbers p and q. The following interesting results are well-
known [30,51,126, 150].

Proposition 7.2.2. If a is irrational then:

(i) The integers p,, qn recursively satisfy relations

po=ao, qo=1, pir=apa1+1, q=a1,

Pn = GnPn—1+Pn-2, Gn = pGn—1+ Qn_2, N =>2.

(i) The rational number ’q’—" is the best rational approrimation in the sense

that there is no mtiona? number % with 0 < q < q, and

a_p] < \a_pn
q In
(iii) If
p 1
— < _
‘a q]  2¢*

for somep e Z and g € N then%:%f0r50m6n€Z+.

(iv) Forn=0,1,2,--- one has

1
Q%(an-&-l + 2)

1
<lo——| < — .
dnan+1

Definition 7.2.3. An irrational number « has a bounded continued fraction
expansion [ag, ay, - - -] if maxa; < oo.
1€

Proposition 7.2.4. An irrational number o« has a bounded continued fraction
expansion if and only if « satisfies either (7.2.10) or (7.2.11) for some ¢ >0

So (7.2.10) and (7.2.11) are equivalent. From (iii) and (iv) of Proposition 7.2.2
we get the following improvement of Propositions 7.2.4.
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Proposition 7.2.5. If a = [ag, a1, -] with ap, < M for some M > 0 and all
k > 1, then it holds
o — P > 1 i
|~ M+2¢

for any p,q € N.

Unfortunately, the author does not know generally such a nice criterion like
in Proposition 7.2.4 for « in (7.2.8) with general eigenvalues \;. On the other
hand when « has no a bounded continued fraction expansion, then

inf [i2a®? —m? =0,
i,meN

and we encounter to a small divisor problem in (7.2.7). This is mentioned at the

beginning of this subsection.

7.2.2 Lebesgue Measures of Nonresonances

We start with the following well-known result [51,126].

Proposition 7.2.6. The Lebesgue measure of all positive irrational numbers
with bounded continued fraction expansions is zero.

So for almost all T" there is a problem of small divisors for the one-dimensional
wave operator (7.2.9) with T-periodic time conditions u(z,t +7T) = u(x,t). On
the other hand, like in Lemma 7.1.5 we have the following result.

Theorem 7.2.7. Assume

1
Z\/E<oo.

>0

Then the Lebesgue measure of the set of all positive o not satisfying (7.2.4) is
zero.

Proof. If (7.2.4) is false for some a € (K, K + 1), K > 0, then for any d > 0
there exist m € N and ¢ > 7o such that

‘aQ — m2| < i
it TN
This implies
o < 4
VAT KN
From o € (K, K + 1), we have T—z < (K +2)% for any 0 < d < K\;,41. Thus

m < (K +2)v/\i.
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Denote by M the set of all « € (K, K 4 1) for which (7.2.4) does not hold. Then
the Lebesgue measure p1(M) of M satisfies

20(K +2) 2K +2) ~ 1
HM D T V=T )
i>io i>ig ¥

Since d can be arbitrarily small, it holds (M) = 0. The proof is finished. O

Since

18

—_

% = 00, this theorem is not applicable (and it can not be by
7

Propositior: 7.2.6) for the one-dimensional wave operator (7.2.9). But taking
a one-dimensional beam operator s + Uzzqze for which

AU = Upzze, uw(0) =u(m) =0, up(0) =uze(m) =0, weC*([0,7]),

o0

then we have \; = i*,Vi € N, so Zl %2 = %2 and Theorem 7.2.7 is applicable to
i=

the beam operator.

7.2.3 Forced Periodic Solutions

Now we are ready to study a weakly nonlinear problem (7.2.2) from which we
see that any weak T-periodic solution of (7.2.1) satisfies

T
/(f(u(t),t),up> dt =0, VYu,ENA. (7.2.12)

0

Then (7.2.1) has the form

Wy + Aw zeéf(w+up,-), w e R@

i (7.2.13)
0=Pf(w+up,-), u,cNA.

Note u = w + u, in (7.2.1). Using Lemma 7.2.1, the first equation of (7.2.13)
has the form _

w=F(w,up, ) '=eLQf (w+up,-) . (7.2.14)
Since f € C (Y X ST,Y) is globally Lipschitz in y with a constant M and
Q: L2 (Y x STY) — L* (Y x 8T,Y) is orthogonal, from Lemma 7.2.1 we
derive

||F(w1,up1,€) - F(w%upwg)HLz (ST’y)

< LGN (n + 1) = F 2+ D .9
_ (7.2.15)
< e (Js = wall oy + i, =l s.) )

< 16120 (Jlun = wall g ) + VT = 1)
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for any w2 € RQ and u,, , € N'A. Moreover, we have

1F0.0.0)1,a 51y = ENEQSON o r ) < IO gr )
(7.2.16)

Using the Banach fixed point theorem, for € small, i.e. |¢|cM < 1, we are able
to solve (7.2.14) in w := w(e, up). From (7.2.15) and (7.2.16) we derive

(e, wpy) — (e upy)| < MV
» Yp1) T »Up2) e (g y) = Up, P2
( )= Tz (7.2.17)

||w(6’u3”)||L2(ST,Y) < 1_aM (Mf”up” +1£(0, )|L2(ST7y))

for any u,,u, , € NA. By inserting this solution w(e,u,) into the second
equation of (7.2.13) we arrive at the bifurcation equation

B(e,up) == ]E’f(w(s,up) —|—up7~) =0.
Note B € C ((— cM,CM)X./\fA NA), and
T
l/pf(up,t)dt, B(0,): NA— NA.

T
0

B(0,u,) =

Summing up we obtain the next result [78].

Theorem 7.2.8. Let (7.2.4) be satisfied. Assume the existence of an open and

bounded subset Q C N'A such that 0 ¢ B(0,99) and deg(B(0,-),,0) # 0. Then
(7.2.1) has a weak T-periodic solution for any e small.

Proof. From (7.2.17) we derive

T
1B 1) = BO.w)l = |7 [ P(£ wleu)(O) 1.~ ] (1))
0

M
7 ||w€up ||dl‘<\f\|w(5 Up)ll 2 (s7.v)

- \€|0M
T (1 —eeM)VT

for any u, € NA. Then from 0 ¢ B(0,09) we get 0 ¢ B(e,09) for ¢ small.
Consequently, we obtain

deg(B(g,-),Q,0) = deg(B(0,+),2,0) #0

for € small. Hence B(e,u,) = 0 has a solution in . The proof is finished. O

(ATl + 102 .11
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Example 7.2.9. Consider

Ut — Uge — TL2’LL = Ef('LL, t)

w(t+T,-) =u(t,), ut,0)=ult,7)=0 ViR, (7.2.18)

where n € N, f: R x ST — R is continuous and globally Lipschitz in u. Now,
we take

X = {ue W22 ([0, 7], B) | u(0) = ul(r) =0}, ¥ = L2 ([0, R)
Au = —ug, — nu, ./\/’A:{smnx}, N =% —n?,

and the condition (7.2.4) reads as follows

iZ2 —n? 1 c

s VYm,Vi €N, i>n, (7.2.19)

for a constant ¢ > 0. Note (7.2.19) is equivalent to

2

inf [i* =n® —w?m? >0 (7.2.20)

i,meN,i>n
for w=1/a.

Theorem 7.2.10. Equation (7.2.18) has a weak solution, provided (7.2.20)
holds and there are z1,z9 € R such that

T w T =
//f(zl sin nz, t) sinnxdxdt//f(zz sinnz, t)sinnzdrdt <0.
00 0 0

Proof. We see that for this case

s

Pu= f/u(x) sinnz dz - sinnz, u, = zsinnz
T
0

T =
2
B(0,up) *T—W//f zsinnaz,t) sinne dr dt - sinnz .
0

Applying Theorem 7.2.8, the proof is finished. O

Further results on periodic solutions for abstract wave equation are presented
in [40, 80].

7.2.4 Theory of Numbers and Nonresonances

This section is devoted to results concerning the condition (7.2.20). We already
know from Proposition 7.2.4 that (7.2.20) holds for n = 0 if and only if w has
a bounded continued fraction expansion. Note that w has a bounded continued
fraction expansion if and only if @ = 1/w has the same property. We intend to
derive similar results for n € N. This situation is different from n = 0. First we
study the case when w is rational.
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Theorem 7.2.11. Let w = g, p,q €N, (p,q) = 1. Then (7.2.20) holds if and
only if any ne € N with ns | ﬁ satisfies

(i) If ny is odd then p/(p,n) does not divide (a*>—b%)/2 for any a > b, a,b € N
such that ne = ab and (a,b) = 1.

(ii) If na is even then p/(p,n) does not divide a*> —b* for any a > b, a,b € N
such that no = 2ab and (a,b) = 1.

Here as usually a | b means that a is a divisor of b.

Proof. The condition (7.2.20) does not hold if and only if there are i,m € N,
i > n such that
¢i% = p*m? + ¢*n?. (7.2.21)
Hence g | pm implies ¢ | m, i.e. m =rq, r € N and (7.2.21) gives
i? =p?r? +n?. (7.2.22)
After dividing (7.2.22) by (p,n)?, we get

Z% :p%T‘2+’I‘L%’ P1 :p/(pan)a nq :n/(p7n)7 i1 :Z/(pan)

Similarly we have
i5 =pirs +n3, ri=r/(r,n), na=ni/(r,n1), ds=1i1/(r,n1).

Note (ng,p1r1) = 1. We have two possibilities:
1. If ns is odd, then piry is even and we get

ig +ngia — N2 <p17“1)2
2 2 \2 /)7

Since (p1r1,n2) =1, we get (”"'7"2, %) =1 and so
io+mng =242, iy —ng =2B% pir, =2AB
ip=A*+B* ny=A>-B>=(A-B)(A+B)
for some A, B € N with A > B and (A, B) = 1. So we derive

a+b a—>b a? —v?
B = = —
9 9 N2 a/b; piri 2
for some a,b € N with a > b and (a,b) = 1. Hence p; = p/(p,n) | (a® — b?)/2.
This contradiction with (i) justifies (7.2.20).

2. If no is even, then piry is odd and we get

A:

G2 +piriiz —pir _ (@)2
2 2 2/
Similarly like above we get
i2:A2+Bz7 pPiTr1 :Az—Bz, 712:2AB

for some A, B € N with A > B and (4, B) = 1. This contradiction with (ii)
justifies (7.2.20). The proof is finished. O
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Corollary 7.2.12. Let w =p/q, p,q € N, (p,q) = 1. Then

(a) condition (7.2.20) holds if n | p

(b) condition (7.2.20) holds for n =2, and for a prime number n > 2 if and
only if either (n,p) > 1, or (n,p) =1 and p does not divide (n® —1)/2

In the rest, we study (7.2.20) for more general w.

Theorem 7.2.13. If w = +/p/q is irrational for p,q € N, (p,q) = 1, then
(7.2.20) does not hold for any n € N.

Proof. Since ,/pq is irrational, the Pelle equation i? = pgm? + 1 has a natural
number solution iy and mg. Then i = ign, m = mogn satisfy i2 = w?m? + n?.

The proof is finished. O

On the other hand, we have the following positive result.

Theorem 7.2.14. Condition (7.2.20) is satisfied for any irrational number
w > 0 with w = [ag, a1, -] such that a, < M for some M > 0 and all k > 1,
and w > (M + 2)n?.
Proof. From Proposition 7.2.5, we get
w— b > ! i
T~ M+2¢?

for any p, ¢ € N. Hence

i2 9
— —w
m

w 1
> -
— M +2m?2

i i
m m
for any 7, m € N. Consequently, for i > n,m € N, we obtain

li2 — w?m? —n?| > |i2 —w?m? —n

9 w
>
~ M+2
The proof is finished. O

—n?>0.

For instance, we have the following consequence.

Corollary 7.2.15. Ifw = w for some M € N then (7.2.20) holds when

OM — 145> 6n2. (7.2.23)
Proof. From w = M for some M € N we get w = [M,1,1,---], and then
(7.2.23) implies w > (M + 2)n?. The proof is finished. O

Furthermore, following [51, 58], we can get more characterizations of w to
satisfy (7.2.20).

Definition 7.2.16. The set of values taken by

—1 e
= liminf —
plo)™ = Jiminf g(gor —p)]

as « varies is called the Lagrange spectrum.
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We know that if o = [ag, a1, az, -] then
‘U,(Ol) = hmsup ([ak-i-h Ak+42, " ] + [Oa Ay Af—1, " " ° 70“1}) .
k——+oco

Moreover, p(a) < 4oo if and only if « is irrational and all a; are uniformly
bounded. Next, p(a) > +/5 for any o and the Lagrange spectrum on the interval
[vV/5,3) is the set {v/9 — 4m—2}, where m is a positive integer number such that

m? + m% + mg =3mmimsa, Mmi2 <M

holds for some positive integers m; and mso. Then w is a root of the Markoff
form F), such that pu(@) = v9 — 4m=2. We also note that according to the Hall
theorem, the Lagrange spectrum contains every number greater or equal to v/21.

Definition 7.2.17. Two real numbers 6 and 0" are equivalent if

9_T9’+8
Tt +u

for some integer numbers r, s, t, u satisfying ru — ts = +1.

Theorem 7.2.18. Let w’ > 0 be irrational with a bounded continued fraction
expansion, i.e p(w') < co. Then (7.2.20) holds for any w > 0 equivalent to w’
satisfying w > p(w)n?.

Proof. We know that u(w) = p(w') < oo. Next, there are My, M7 € N, n < My
such that if either My < i € N or M; < m € N then

1
|i* — w?m? = n?| > |i —wml|i + wm| —n® > [w - nz} >0. (7.2.24)
2 [p(w)

On the other hand, if it could be i2 — w?m? — n? = 0 for some n < iy < Mj,
mo < My, ig,mp € N, then /i2 — n? is irrational and so there are zg,yo € N

satisfying the Pelle equation 2 — (i3 — n?) m3y3 = 1. Then the iteration

: : 2 2 2,
lt1 = Tolk + (20 —-n ) Yomg, Mi4+1 = YoMyl + Tome, k € Zy

would also satisfy i2 — w?m? —n? = 0 for all k € N. This would contradict
to (7.2.24) for k large. Hence i2 — w?m? —n? # 0 for any n,m € N, n < i <
My, m < My. The proof is finished. O

For instance, if we take u =t =1,r = s+ 1,5 € Z, then w = s + #4/-1 is

equivalent to w’, and Theorem 7.2.18 is applicable for any s € N such that

s >nu(w') —

w41
This is related to (7.2.23).



Chapter 8

Topological Degree
for Wave Equations

8.1 Discontinuous Undamped Wave Equations

In this chapter, we study bifurcation of weak 2m-periodic solutions with large
amplitudes to the discontinuous semilinear wave equation

Uty — Ugy _nu_g(u) - f(ac,t,u) = h(.’L’,t)7

u(0,+) = u(m, ) =0, (8.1.1)

where f: QxR — R, Q = (0,7) x (0,27) is continuous and nondecreasing in
u, g : R — R is bounded nondecreasing, h € L?(Q2) and n > 0 is a parameter.
Moreover, we suppose

|f(z,t,u)] < colu|®+ ho(z,t) YueR, V(z,t) €Q (8.1.2)

for constants ¢y > 0, 1 > a > 0 and hg € L?(Q2). Continuous undamped wave
equations are studied in [33,34], based on [35] where a construction of a topologi-
cal degree is introduced for a class of monotone single-valued mappings. Related
problems are earlier studied in [43,147-149]. The purpose of this chapter is to
extend that method to monotone multi-valued mappings modeled by (8.1.1).
So our method constitutes a combination of a multivalued Browder-Skrypnik
degree [46,179] with Mawhin’s coincidence index [145]. We note that in Sections
7.1 and 7.2 we avoid many resonances for the linear operator of wave or beam
equations assuming one of conditions (7.1.10) and (7.2.4). On the other hand,
since the linear boundary value problem usy — gy = 0, u(0,-) = u(m,-) = 0 has
an infinitely many 2m-periodic solutions sinntsinnz, cosntsinnz, n € N, the
linear part of (8.1.1) has an infinitely dimensional kernel. So here we study a
complementary case to Sections 7.1, 7.2 and moreover, we investigate discontin-
uous equations. Other topological degrees for multi-valued mappings have been
introduced in [36, 53,54, 125]. The dual variational principle is applied to solve
elliptic problems with discontinuous nonlinearities in [3].

M. Feckan, Topological Degree Approach to Bifurcation Problems, 227-241. 227
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8.2 Standard Classes of Multi-Mappings

Now we recall some known definitions for multi-valued mappings [125] defined
on a real separable Hilbert space H with an inner product (-,-) and with the
corresponding norm | - |. A multi-valued mapping F : H — 25\ {0} is

e Monotone (denote F' € (mMON)), if
(f;: - ':7’“_7]) >0
for all u,v € H and all selections f¥ € F(u), fr € F(v)

e Quasimonotone (F € (mQM)), if for any sequence {uy }ney in H with
u, — u and for all selections [ € F(u,) we have

liminf(f, w, —u) >0

n—oo

e Of class (mS;) (F € (mSy)), if for any sequence {up}neny in H with
u, — u, the existence of selections ff € F(u,) with limsup,,_, . (f, u, —
u) < 0 implies u, — u

e Compact (F' € (mCOMP)), if for any bounded sequence {uy fnen in H

and for any f} € F(u,) the sequence {f;},en has a convergent subse-
quence

¢ Bounded, if for any bounded set B C H the set |, F'(u) is bounded
e Convex-valued, if F'(u) is a non-empty convex set in H for any u € H
e Weakly upper semicontinuous (F is w-usc), if for any sequence
{un}tneny € H, u, — u € H, the existence of selections f¥ € F(uy,)
with f* — f* € H implies f* € F(u)
Remark 8.2.1. We always assume that all mappings used are bounded, w-usc
and convex-valued. When a mapping is defined only on a subset of H, the above
definitions can be modified in an obvious way.
Proposition 8.2.2. The following inclusion hold for the above defined classes:
(mS4)U(mMON)U (mCOMP) C (mQM).

Proposition 8.2.3. If ' € (mQM) and G € (mSy) then F + G € (mSy).

Since proofs of Propositions 8.2.2, 8.2.3 are simple, we omit them.
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8.3 M-Regular Multi-Functions

We show concrete mappings motivated by (8.1.1) which fit into the framework
of Section 8.2.

Definition 8.3.1. A function p: Q x R — R is called

(a) superpositionally measurable if p(z,t,u(z,t)) is measurable for any
Lebesgue measurable function u : 2 — R

(b) lower semicontinuous (for short - lIsc) in u if V(z,t,¢) € Q x R the set
{v e R | p(x,t,u) > c} is open

(¢) upper semicontinuous (for short - usc) in w if V(x,t,¢) € Q x R the set
{v e R | p(z,t,u) < c} is open [52,171]

Definition 8.3.2. A multi-function S : Q@ x R — 2R is called measurable-
bounded if there exist two superpositionally measurable functions ¢_ (z, t,u) and
g+ (x,t,u) such that

q_(x,t,u) S Q+(x7tau) and S(xat7u) - [Q—(‘xatau%q-‘r('r)tu)}

for any (z,t,u) € Q x R where the function ¢_(z,t,u) is Isc in u, the function
g+ (x,t,u) is usc in v and there exist positive constants dy, ds and positive ¢1,co €
L?(Q) such that

- (2, u)| < ez, t) + diful and gy (2, u)| < ca(, 1) + daful

for any (z,t,u) € QxR. We denote by (mM B) the set of all measurable-bounded
multi-functions.

By using a multi-function S € (mM B), for any u € L*(Q) we put
N(u) := {v € LX(Q) | v(,t) € S(x,t,u(x,t))}
= {ve L2(Q) | ¢ (o, t,u(z, 1) < v(e,t) < g4 (2t 0z, 1) |

and call it an M -reqular multi-function. We denote the set of all such multi-
functions by (mMr). Note gy (x,t,u(x,t)) € N(u), so N(u) is nonempty. Now
we are ready to show the following result.

Lemma 8.3.3. If N € (mMr) then N : L*(Q2) — 2L%( ) s w-usc.

Proof. Let N € (mMr) and u, — u in L%(2). We have to show that if a
sequence {w}: },en satisfies w? € N(u,) and w}, — w* in L?(Q) then w* € N (u).
First, since u,, — u in L?(£2), we can assume by passing to a subsequence that
un (z,t) — u(z, t) almost everywhere in (z,t) [171]. Next, we have

q—(x,t,up(x,t) < wp(z,t) (8.3.1)
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for every n € N. Since w}, — w*, using the Mazur Theorem 2.1.2 we can choose
a sequence {vn }nen, Uy € con [{w),wk 4,...}] such that v, — w* in L?*().
Thus we have

My Mn
Un = Z )\n,sz; 0< )\n,k < ]-; Z >\n¢k =1
k=n k=n

forn <m, eN,n<k<m,.

Since v, — w* in L?({2), we can again assume that v, (z,t) — w*(z,t) almost
everywhere in (z,t). From (8.3.1) we have

M, Mn
Z /\n,kQ— (.T, t, uk(xv t)) < Z )\n,kw;:(zv t) = Un(xa t)'
k=n k=n

Let (zg,t0) € Q be such an element that u, (zo,to) — u(xo,to) and v, (zg, to) —
w*(xg,t0). The mapping s — ¢q_(xo,%0,s) is Isc and so for every ¢ > 0 there
exists a positive integer ng such that for every k > ng we have

q— (o, to, u(zo,t0)) — e < q—(xo, to, ur(xo, to))-

Summing this inequality for k =n,n +1,..., m, with weights A, ; we get
Mn
q— (0, t0, u(zo, to)) —€ < Z An,kq- (2o, to, uk (2o, o)) < vn(Zo,to)
k=n

for all n > ng. Hence by the convergence v, (o, to) — w*(zo, to) we have
q—(xo,to, u(xo, to)) — e < w*(xo,tp) for every e > 0.

Finally, we get
q— (o, to, u(wo, to)) < w*(2o,0)

as we need. Similar argument leads to
w*(2o,to) < q+(20,to, u(wo,t0)) -

Thus w* € N(u). O

8.4 Classes of Admissible Mappings

We introduce certain multi-mappings to solve our example (8.1.1) in latter sub-
sections. Let G be a bounded open subset in H, M a closed subspace of H
and let Q and P be the orthogonal projections to M and M=, respectively. Let
C € L(RQ, H) be compact. The family

FE = {F:é—>2H | F=Q— (QCQ — P)f for some f € (m5’+)}
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is called the class of admissible mappings.

Let L : H C D(L) — H be a closed densely defined linear operator with
RL = (NL)*. Let Ly := L/RL and assume that the right inverse Ly ' : RL —
RL is compact. We choose M = RL and M+ = N'L. Let N : H — 29 Then
similarly to [35], we consider the mapping

F=Q-(QL'Q~P)N.
Clearly, F' € F§ for N € (mS;) with C = L.
Lemma 8.4.1. Let F and N be defined as above. Then
0¢ Lu—N(u) with we D(L)NG (8.4.1)
if and only if o
0€ F(u) with uwed.

Proof. (8.4.1)& Fu € D(L)NG, 3f* € N(u): Lu = f* & Qu = QLale*,
Pff=0,uceG<0=Qu—(QL;'Q—-P)f*,ucG&0cFlu),ucdG O

8.5 Semilinear Wave Equations

We show how the previous results can be applied to the semilinear wave equation
(8.1.1). We state the precise setting of (8.1.1) by putting

qg—(z,t,u) :=g—(u) + f(z,t,u), qp(z,t,u) =gy (u) + f(z,t,u),
g+(u) = lim g(u), g-(u) = lim g(u).

S—U_—

We note that g+ are Borel measurable, g is usc and g_ is Isc. By Lemma 8.3.3,
the Nemytskij operator N : H — 28 H = L2() defined by

N(u) = {v e L*Q) | ¢—(z,t,u(z,t) < v(z,t) < g4 (2, t,u(z,t))}

is bounded and w-usc. Clearly N € (mMON) and hence by Propositions 8.2.2
and 8.2.3, NI+ N € (mS,.) for any n > 0.

Let C? be the set of twice continuously differentiable functions v : [0, 7| xR —
R satisfying v(0,-) = v(m, ) = 0 and 27-periodic in ¢t € R.

A weak 27-periodic solution of (8.1.1) for h € H is any u € H satisfying

(w, V4t — Vg) — N(u,v) — (u*,v) = (h,v) (8.5.1)

for some u* € N(u) and for all v € C2. Here (-, -) is the usual integral scalar prod-
uct on L*(Q), ie. (u,v) = [u(z, t)v(x,t)dzdt. Let @, p(z,t) =7 e sinna

Q
for all m € Z,n € N. Each u € L?(2) has a representation

u = § Um,nPm,n »

meZ,neN
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where Uy = (U, Pm,n) and Uy, n = U_m p, since u is a real function. The
. . 2 2 . . .
abstract realization of the wave operator % — % in L2(€2) is the linear operator

L:D(L) — L*(9) defined by

2 2
Lu= E (n* —m*)Um nPmn
meZ,neN

where

DIL)={ue ()] > (n®—m?) |umnl® < oo
meZ,neN

It is easy to show that u € L?((2) is a weak solution of (8.5.1) if and only if
h € Lu —nu — N(u)

with v € D(L). Moreover, L is densely defined, self-adjoint, closed, RL =
(NL)* and L has a pure point spectrum of eigenvalues

o(L)={n®>—m?|m € Z,n e N}

with the corresponding eigenfunctions ¢y, . Clearly o(L) is unbounded both
from above and from below, any eigenvalue A # 0 has a finite multiplicity, but
NL is infinite dimensional. The right inverse Ly : RL — RL is compact.
Hence (8.1.1) fulfils all basic conditions for the inclusion (8.4.1) when N (u) is
replaced with nll + N (u) + h.

8.6 Construction of Topological Degree

We construct a topological degree function for 5. The method is based on
the construction of continuous one-parametric generalized Galerkin projections
which we use for the derivation of a one-parametric family of multi-valued map-
pings possessing the Leray-Schauder degree. The basic Lemma 8.6.4 below is
the stabilization of this degree for large parameters. In this way, we can define
a topological degree for our multi-valued mappings. First, we define a class of
admissible homotopies.

Definition 8.6.1. A mapping: (t,u) — f;(u) from [0,1] x G to 2 is a (multi-)
homotopy of the class (mSy), if for any sequences {u, fnen in G, {t,}nen in
[0,1], fX € fi, (upn) with u, — u, t, — t and limsup,, , . (f, u, —u) < 0 we
have u,, — u.

We denote
HE ={F | F, = Q — (QCQ — P)f:}
where f; is a homotopy of the class (mS,). The set HE is called the class of
admissible homotopies. Obviously Fy = (1 —t)Fy +tF; € Hg, 0 <t <1 for any
,F e }"g. Finally, we recall Remark 8.2.1.
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Since H is separable there exists a sequence { N, }nen of finite dimensional
subspaces of M+ with N, C Npy1 for all n, and USZ N, is dense in M-+,
We denote by P, the orthogonal projection from H to N,,. We extend this to
generalized Galerkin approximations defined by

Ph=AX—n)Pp1+(n+1—X)P, forany X € [n,n+1].
We have the following obvious result.
Proposition 8.6.2. The generalized Galerkin approximations satisfy
(i) (Pu,v) = (u, P\xv) for every A\ > 1, u,v € H
(ii) ||PA]| <1 forall XA >1
(iti) Pyxv — Pv for everyv € H as A — oo
(iv) P,P\ = P, for every A\ >n €N
(v) (z,Prz) >0 for every z € H and A > 1
For each F = Q — (QCQ — P)f € FS, we define the approximations {F) |

A>1} by
Fx=1-(QCQ —AP\)f.
We note that (QCQ — A\Py) f is compact, convex-valued and usc for each A > 1.
Similarly, for each admissible homotopy F; = Q — (QCQ — P)f:, 0 <t <1,
we have

(F)x =1-(QCQ — AP)) fi,
which is obviously a homotopy of the Leray-Schauder type for any A > 1.

Proposition 8.6.3. Let {ug}nen C H and let {Pa}x>1 be the projections de-
fined as above. Then

(a) if up = u and N\, — oo then Py, up — Pu
(b) if up — u and A\, — oo then Py, ur — Pu
Now we can formulate the basic lemma.

Lemma 8.6.4. Let F}, = Q — (QCQ — P) f; be an admissible homotopy and let
A be a closed subset in G. If 0 ¢ Fy(A) for allt € [0,1], then there exists g > 0
such that

0¢ (F)N(A)  forallt €[0,1] and A > Ay

Proof. Assume by contrary that there exist sequences {ug }ren in A and { A }ren
in [1,00), Ay — oo, and {t;}ren in [0,1] such that 0 € (Fy, )x, (ux). This is
equivalent to the existence of selections g; € fi, (ur) and ¢, = —CQg; for
which

up + Qcg, + A\ Prgr = 0.
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Writing this equation in both subspaces M and M+ we get
Quy + Qcj, =0, (8.6.1)

Puy, + APy, g5 =0. (8.6.2)

The sequence {u}ren is bounded therefore we can (taking a subsequence, if
necessary) assume that uy — w for some w € H. Since the sequence gj is
bounded, we suppose g; — g%, ¢* € H and the compactness of C' gives ¢ — z*,
2 =-CQg".

Hence we have Qcj, — Qz* and by (8.6.1), Qui — Qu. By (8.6.2),

1

Puy, -‘rP)\ng =0.
Ak

The set {uy | k=1,2,...} is bounded, thus A—lkPuk — 0 for k — oco. This leads

to Py, g5 — 0. On the other hand, for g; — g* we conclude Py, g; — Pg*, which

yields Pg* = 0. Hence we have Pg; — Pg* = 0 followed by limy_. (g}, Pu) = 0.
We continue with calculating of limsup,,_, (g5, ux — u):

lim sup(gy;, ux, — u) = limsup(gjy,, Pur, — Pu) = limsup(gy, Puy) . (8.6.3)

k—o00 k—o0 k—o00
From (8.6.2) we obtain Puj, = —A, P, g;. Inserting it in to the last term of
(8.6.3) we get
lim sup(gz, ur —u) = flikminf A (95, Pr,gr)-
k—oc0 —00

By (v) of Proposition 8.6.2, Ax(gx, Px.g;) > 0 and it immediately follows that

lim sup(g7, ur —u) <0.

k—o00

Hence, by the definition of the homotopy f; of the class (mSy) we have ux, — u,
u € A. We have t,, — t, g — ¢* and up — w. Since (t,u) — fi(u) is w-usc,
we get g* € fi(u). From Qup — Qu, Qc; — Qz* using (8.6.1), we obtain
Qu+ Qz* = 0. Since Pg* = 0 we have

0=Qu—(QCQ - P)g" € Fy(u),
a contradiction. The proof is complete. O

We have the following important consequence for the stabilization of a
degree.

Lemma 8.6.5. Let F € FS and 0 ¢ F(0G). Then there exist \; € [1,00) such
that
drs(Fyx,G,0) = constant  for all A\ > Ay,

where dpg is the Leray-Schauder topological degree.
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Proof. Choosing a constant homotopy F; = F and A = 0G, we obtain that
there exists A\ > 1 such that 0 ¢ F)\(9G) for all A > A;. O

Due to Lemma 8.6.5 we can define a degree function for the class ]—'g . We
put
d(F,G,0) = Alim drs(Fy,G,0) (8.6.4)

for any given F' € FS with 0 ¢ F(OG). In the next theorem we show that the
degree function defined by (8.6.4) has all the usual properties.

Theorem 8.6.6. Let H be a real separable Hilbert space, G be a bounded open
subset of H, M be a closed subspace of H, @) be the orthogonal projection onto
M, C e L(RQ, H) be compact, ]:g be the class of admissible mappings and Hg
be the class of admissible homotopies defined above. Then there exists a classical
Z-defined topological degree function d on FS satisfying the following properties:

(i) If 0 ¢ F(0G) and d(F,G,0) # 0 then 0 € F(G).

(ii) d(F,G,0) = d(F,G1,0)+d(F,G2,0) (thus F € F§ and F € F§, ), when-
ever Gy and Gy are disjoint open subsets of G such that 0 ¢ F(G \ (G U
Ga)).

(iii) d(Fy, G,0) is independent of t € [0,1] if Fy € HE and 0 ¢ Fy(OG) for all
t €10,1].

Proof. If 0 ¢ F(0G) and d(F,G,0) # 0 then by Lemma 8.6.4, 0 ¢ F)\(0G)
and drs(Fy,G,0) # 0 for A large. Hence 0 € F)(G). Then Lemma 8.6.4 gives
0 € F(G). So (i) is shown.

If 0 ¢ F(G\ (G1 UG3)) then by Lemma 8.6.4, 0 ¢ F\(G \ (G1 U G>)) for A
large. Then dLs(F)\, G, O) = dLs(F)\, Gy, 0) + dLs(F,\, G, 0). So (ii) is shown.

If 0 ¢ F;(0G) for all t € [0,1], then by Lemma 8.6.4, 0 ¢ (F;)»(0G) for all
t € [0,1] and X large. Then dps ((F})x, G,0) is independent of ¢ € [0,1]. So (iii)
is shown. The proof is finished. O

More general mappings are considered in [36,92] but we do not present
it here, since we are focussing on extension of some known results on local
bifurcations [32-35].

8.7 Local Bifurcations
We consider the inclusion
0€ Lu—nu—N(u), (8.7.1)

where L is given in Section 8.4, n > 0 is a parameter and N € (mQMN) is
bounded, w-usc, convex-valued. Hence nl + N € (mS,). Then we set

deg(L —nl— N,G,0) :=d (Q — (QLy'Q — P)(nl + N),G,0)
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for an open bounded subset G C H such that 0 ¢ (L —nl — N)(0G N D(L)).

We also suppose that L is self-adjoint. Then Lal :RL — RL is a compact,
self-adjoint operator, so the spectrum o(L) of L is (L) = {\;}ez, with A\g = 0,
and the multiplicity m; of each \; # 0 is finite. Concerning N : H — 2 we in
addition assume

(A1) sup{|v|| v e N(u)} = o(|u]) as u — 0.
In this and the next sections, we intend to extend some results of [32] to (8.7.1).

Lemma 8.7.1. Ifn ¢ o(L), n > 0, then
d(L —nl, By, 0) = (=1)X

with x = >, m; and B, is the ball of H centered at 0 with radius r > 0.
0<;j<n

Proof. Now we have F = Q(I —nLy'Q) +nP and Fy = Q(I —nL,'Q) + P +
nAPy. Let H_q, Hy, Hy be spanned by eigenvectors of L with the corresponding
eigenvalues A; < 0, 0 < A\; < n, A; > 7, respectively. Clearly dim Hy = x and
H=H ®NL®Hy®H;.Soifu=u_1+w+ug+uy, uj € Hj, w € NL then

Fy(u) =u_q — nLalu,l + w4+ nAPyw + ug — nLaluo +uy — nLalul .

We note
(Pyw,w) >0 YweNL
(Lalu_l,u_l) <0 VYu_i€H_q,
(Lalul,ul) <7)71|u1|2 VO;&ul € Hy
and Ay = (I[ — nLal) /Hy : Hy — Hy is an invertible diagonal linear operator

with negative eigenvalues. Then we can easily verify that 0 ¢ Fy;(u)Vu # 0 and
vt € [0, 1], where

Fxi(u) = u_y —ntLy u_y +w + tAPw + ug — nLg 'uo + uy — ntLg 'us -

Hence deg(L — I, B,,0) = dps(Fxi(u), Br,0) = dps(Fao(u), Br,0) = det Ay =
(=1)X for A large. The proof is finished. O

Now we present the following extension of a Krasnoselski result [60].

Theorem 8.7.2. Let (A1) hold. If ng € o(L), ng > 0 with odd multiplicity
m(no), then (no,0) is a bifurcation point of (8.7.1), i.e. there is a sequence
{(ui,mi) oy such that u; € D(L) \ {0}, n; — no and u; — 0 as i — oo, and
u=u;, n=n; satisfy (8.7.1).

Proof. Let 6 > 0 be so small that 79 > § and (19 — d, 1m0 + ) N o (L) = {no}.
Then there is an 71 > 0 such that

|Lu — (no £ 0)u| > 71|u| Vu € D(L).
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According to (A1) there is an r9 > 0 such that ¥r, 0 < r < ro, V¢t € [0,1],
Vu € D(L), |u| = r it holds

0¢ Lu— (no+d0)u—tN(u).
Then we get

deg (Lu — (no £ 6)u — N(u), B,,0) = deg (Lu — (19 = d)u, B,.,0)

_ (71)o<xj<noiam'j

Since m(n) is odd, we obtain

deg (Lu — (o — §)u — N(u), B,,0) # deg (Lu — (1o + 8)u — N (u), B, 0)
(8.7.2)
Then (8.7.2) implies the existence of u € D(L), |u| =r and n € (ng — §,n0 + 9)
solving (8.7.1). Since 4, r can be arbitrarily small, we get a sequence {(n;, u;)}52,
such that 7; — no, u; — 0, u; € D(L) and 0 # w; solves (8.7.1) with 7;. The
proof is finished. O

8.8 Bifurcations from Infinity
Now we study (8.7.1) under assumption
(A2) sup{[v[ | v e N(u)} = o(lul) as [u] — oo.

Theorem 8.8.1. Let (A2) hold. If no € o(L), no > 0 with odd multiplicity
m(no), then (no,00) is a bifurcation point of (8.7.1), i.e. there is a sequence
{(ui,mi) ooy such that u; € D(L), n; — no and |u;| — 0o as i — oo, and u = u;,
n=mn; satisfy (8.7.1).

Proof. Let 6 > 0 be so small that 19 > § and (19 — §, 1m0 + ) N o (L) = {no}.
Then there is an 7; > 0 such that

|Lu — (no £ 0)u| > 71|u| Vu € D(L).

According to (A2) there is an 79 > 0 such that Vr, r > ro, Vt € [0, 1], Yu € D(L),
|u| = r it holds

0¢ Lu— (no+0)u—tN(u).

Like in the proof of Theorem 8.7.2, then there are v € D(L), |u] = r and
n € (no — d,mp + J) solving (8.7.1). Since ¢ can be arbitrarily small and then
r can be arbitrarily large, we get a sequence {(n;,u;)}$2, such that n; — o,
|u;| — 00, u; € D(L) and u; solves (8.7.1) with n;. The proof is finished. O
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8.9 Bifurcations for Semilinear Wave Equations

We apply the previous bifurcation result to the semilinear wave equation (8.1.1).
First we verify that (A2) is satisfied under (8.1.2). Note now

N(u) = {v c L*(Q) | v(x,t) € [q- (x,t,u(a:,t)),Z]@(x,ﬁu(x,i))}}

for i (z,t,u) :== g4 (x,t,u)+h(z,t) and ¢4 (2, ¢, u) are defined in Subsection 8.5.
Let Ky :=sup,cp |g(w)|. If v € N(u) then the Jensen inequality [171] together
with condition (8.1.2) imply

o[ = / (e, t) dodt < 3/ (K% + Alu(z, t)2 +E0(x,t)2) dz dt
Q Q
< 6K2m2 + 3|ho|* + 6722 (/ u(z,t)? dr dt) = 6K272 + 3|ho|? + 6723 |ul>
Q

for ho(x,t) := ho(x,t) + |h(x,t)|. Hence
lv| < 3K + 2|ho| + 3meo|ul® .

Since 0 < o < 1, we see that (A2) holds for (8.5.1). It remains to calculate the
multiplicity of a positive eigenvalue 179 € o(L). So we must find the number of
solutions of n? —m? = ny, n € N, m € Z. If n,m, m # 0 solves it then n, —m
is its another solution. So m(ng) is odd if and only if 179 = n? for some n € N.
Summarizing, we can apply Theorem 8.8.1 to get the following result.

Proposition 8.9.1. Under condition (8.1.2), each no = n?, n € N is a bifurca-
tion point of (8.1.1) at infinity for weak 2m-periodic solutions.

Similarly we have the following result.

Proposition 8.9.2. Under condition (8.1.2), each ny = n*, n € N is a bifurca-
tion point of the problem
Ugt + Ugzzz — MU — g(u) — f(2,t,u) = h(x,t),
)

w(0,) = u(m,) =0, Ugg(0,") = Upa(m,-) =0, (8.9.1)

at infinity for weak 2m-periodic solutions.

Proof. Now
Lu= Ut + Uggaa

with o(L) = {n* = m? | m € Z,n € N}. So 0 < 9 € o(L) has an odd multiplic-
ity if and only if 9 = n* for some n € N. The proof is finished. O
8.10 Chaos for Discontinuous Beam Equations

Combining methods of Chapters 3 and 8 together with paper [27], it would be
possible to show chaotic solutions to a weakly discontinuous system modeling a
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compressed beam with small damping and subjected to a small periodic forcing
described by the following p.d.eqn

Wt + €0UL + Upppr + Pollgy — Kllyy (/ ui(& t)dﬁ) +esgnu = eh(x,t),
0

w(0,t) = u(m,t) =0 = 1y (0, ) = ugy(m, 1),

(8.10.1)
where u(z,t) € R is the transverse deflection of the axis of the beam; Py > 0 is
an external load, x > 0 is a ratio indicating the external rigidity and § > 0 is the
damping, ¢ is a small parameter, the function h(x,t) is continuous and periodic
in ¢ representing the periodic forcing that is distributed along the whole beam.

The first work on oscillations of an elastic beam subject to an axial com-
pression was done in [115]. More recent works on the full equation are presented
in [38,91,170]. An undamped buckled beam is investigated in [26, 197] (see
(7.1.45)). All these results are about beam equations with continuous terms like
the following one:

™
Ut + H1Ut + Ugrre + POum:c — Ugy </ ui(fa t)d£> = M2 COS thv
0

u(0,t) = u(m,t) =0 = Uy (0, 1) = ugy(m, 1),

(8.10.2)

where Py, wg are constants and p1, o are small parameters. This is a model for
oscillations of an elastic beam with a compressive axial load Py (see Fig.8.1).

2 cos wot

u(z,t)

Py

Figure 8.1: The forced buckled beam (8.10.2)
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When Py is sufficiently large, (8.10.2) can exhibit chaotic behavior for certain
small parameters p1, po. For instance, we have the following result [91,115]:

Theorem 8.10.1. If1 < Py < 4 and wg # n> (n2 — PO), Vn € N, n> 2. Then
(8.10.2) possesses a Smale horseshoe with the associated chaotic dynamics for
any 1 # 0 and ps # 0 small satisfying

3
Ve sech 0

& a3 C. 2a (8103)

H2

<

where a :== /Py — 1.

We expect a similar result also for (8.10.1). Finally, we note that conditions
(1.2.10) and (8.10.3) are related to each order as follows. In (8.10.2) substitute

u(z,t) = > uk(t)sinkz, multiply by sinnz and integrate from 0 to m. This

k=1
yields the infinite set of ordinary differential equations

- 1—(=1)"
iy, = nz(Pg - n2)un - gnz L; kQUi] Up, — 1y + 240 {;n)} cos wot ,
n=12,....

For 1 < Py < 4, then only the equation with n = 1 is hyperbolic while the
system of remaining equations has a center. To emphasize this let us define

p=wuy and ¢, = Upy1, n = 1,2,.... The preceding equations now take the form
T = 4
p=a’p— = |[p*+ Z(kj + 1)%2] D — p1p + — o cos wot (8.10.4)
2 — T
and
. 7r
Gn = —wngn — 5 (n+1)* |p* + ;(k + 1)211;3] n
1— (=1)nt+t (8.10.5)
—padn + 2p2 | —F———~— t,
W1Gn + 242 [ T+ 1) ] COS Wo
n=12,...

where we define w? = (n + 1) [(n + 1) — Fy]. Conditions wy # wy, Vn € N of
Theorem 8.10.1 are non-resonance ones for (8.10.5).

In (8.10.4-8.10.5) we project onto the hyperbolic subspace by setting ¢, = 0
for all n € N in (8.10.4) to obtain the reduced equation

. 2 m
= Qa _
p p 9

So (8.10.6) is derived from (8.10.2) when only the first (hyperbolic) mode of
vibration is considered. We see that this is the forced damped Duffing equation

3 ., 4
p° — pp+ —h2 cos wot . (8.10.6)
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with negative stiffness and with similar form like (1.2.1) for which standard
theory, mentioned also in this book, yields chaotic dynamics under condition
(8.10.3) (see [91] for further details). As a matter of fact, taking transformations

2a _ Ta’
p(t) = ﬁx(atL M1 = apy, p2 = fTﬂQ, wo = aw

in (8.10.6) we derive
i =1 —22% — [iy3 + fig coswt , (8.10.7)
which is (1.2.1). Then condition (1.2.10) is just

~ | 3Tw W
|| < |,u2\7 sech - (8.10.8)

But (8.10.8) is precisely (8.10.3) in the original parameters p1, o and wy.
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