


Topological Degree Approach to Bifurcation Problems



Topological Fixed Point Theory and Its Applications

VOLUME 5

For other titles published in this series, go to
www.springer.com/series/6622



Michal Fečkan
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Chapter 1

Introduction

1.1 Preface

Many phenomena from physics, biology, chemistry and economics are modeled
by differential equations with parameters. When a nonlinear equation is estab-
lished, its behavior/dynamics should be understood. In general, it is impossible
to find a complete dynamics of a nonlinear differential equation. Hence at least,
either periodic or irregular/chaotic solutions are tried to be shown. So a prop-
erty of a desired solution of a nonlinear equation is given as a parameterized
boundary value problem. Consequently, the task is transformed to a solvability
of an abstract nonlinear equation with parameters on a certain functional space.
When a family of solutions of the abstract equation is known for some parame-
ters, the persistence or bifurcations of solutions from that family is studied as
parameters are changing. There are several approaches to handle such nonlin-
ear bifurcation problems. One of them is a topological degree method, which is
rather powerful in cases when nonlinearities are not enough smooth. The aim
of this book is to present several original bifurcation results achieved by the
author using the topological degree theory. The scope of the results is rather
broad from showing periodic and chaotic behavior of non-smooth mechanical
systems through the existence of traveling waves for ordinary differential equa-
tions on infinite lattices up to study periodic oscillations of undamped abstract
wave equations on Hilbert spaces with applications to nonlinear beam and string
partial differential equations.

1.2 An Illustrative Perturbed Problem

For solving parameterized problems, we often apply the perturbation method,
which is one of the most powerful method used in nonlinear smooth mechanics.
This perturbation approach is by now known as the Melnikov method for the
persistence/bifurcation of either periodics or homoclinics/heteroclinics [108]. To
illustrate this, let us consider a periodically forced nonlinear oscillator like the

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 1–6. 1
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Figure 1.1: The magneto-elastic beam

following perturbed Duffing equation

ẋ = y, ẏ − x + 2x3 + µ1y = µ2 cos ωt (1.2.1)

with µ1,2 small. Note

ẍ + µ1ẋ− x + 2x3 = µ2 cos ωt

describes dynamics of a buckled beam, when only one mode of vibration is
considered [115] (see also Section 8.10). In particular, an experimental apparatus
in [108, pp. 83–84] is a slender steel beam clamped to a rigid framework which
supports two magnets, when x is the beam’s tip displacement. The apparatus
is periodically forced using electromagnetic vibration generator (see Fig. 1.1).

Next, the phase portrait of

ẋ = y, ẏ − x + 2x3 = 0 (1.2.2)

is simply to find (see Fig. 1.2). There are three equilibria: (0, 0) is hyperbolic
and (±√2/2, 0) are centers. There is also a symmetric homoclinic cycle ±γ̃(t)
with γ̃(t) = (γ(t), γ̇(t)) and γ(t) = sech t. The rest are all periodic solutions.

These results are consistent with the above experimental model without
damping and external forcing as follows: When attractive forces of the magnets
overcome the elastic force of the beam then the beam settles with its tip close
to one or the other of the magnets: these are centers of (1.2.2). There is also an
unstable central equilibrium position of the beam at which the magnetic forces
cancel: this is the unstable equilibrium of (1.2.2).

When µ1,2 are small and not identically zero, then in spite of the fact that
(1.2.1) is simple looking, its dynamics is very difficult. So as the first step, we
try to show at least the persistence of either periodic or homoclinic solutions.
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Figure 1.2: The phase portrait of ẍ− x + 2x3 = 0

Here we concentrate on the homoclinic case since the periodic one is similar.
Since we use in this book functional-analytical methods, we explain it on this
example and we refer the reader to [108, p. 184] for a geometrical approach. To
find a solution near (γ(t), γ̇(t)), we use the perturbation method, i.e. we first
make the change of variables and parameters

x(t + α) ↔ x(t) + γ(t), y(t + α) ↔ y(t) + γ̇(t), µ1;2 ↔ εµ1,0;2,0 (1.2.3)

in (1.2.1) to get

ẋ = y ,

ẏ + (6γ2 − 1)x + 2x3 + 6x2γ + εµ1,0(y + γ̇) = εµ2,0 cos ω(t + α) .
(1.2.4)

Here ε is small while µ2
1,0 + µ2

2,0 = 1 are fixed. To put (1.2.4) in a general
functional framework, we take the Banach spaces V := Cb(R, R2) and Z :=
C1

b (R, R2) – the spaces of bounded (together with the first derivatives) functions
z : R → R

2 with the usual supremum norms ‖z‖0 := supR |z(t)| and ‖z‖1 :=
supR |z(t)|+supR |ż(t)|, respectively. R is the field of real numbers. We note that
we are looking for homoclinic solutions, i.e. which belong to C1

b (R, R2). Next by
putting

Lz :=
(
ẋ− y, ẏ + (6γ2 − 1)x

)
,

N(z, α, ε) :=
(
0,−2x3 − 6x2γ + εµ2,0 cos ω(t + α)− εµ1,0(y + γ̇)

)
with z = (x, y), (1.2.4) has the form

Lz = N(z, α, ε) . (1.2.5)

Note N(0, α, 0) = 0, so z = 0 is a solution of (1.2.5) with ε = 0 and any
α ∈ R. So for ε = 0, there is a trivial branch of solutions (0, α). We intend
to find conditions that (1.2.5) has a small solution for ε �= 0 small. Next, the
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linear bounded operator L : Z → V is not invertible, since (γ̇, γ̈) belongs to
its kernel NL. So we have to apply the Lyapunov-Schmidt reduction method
(cf. [56] or Section 2.2.2) as follows: We know (see Theorem 3.1.4 with m →∞,
or [56, p. 380]) that the range RL of L is given by

RL =

⎧⎨⎩v = (v1, v2) ∈ V |
∞∫

−∞
(v2(s)γ̇(s)− v1(s)γ̈(s)) ds = 0

⎫⎬⎭
and NL = span {(γ̇, γ̈)}. We take the projection

Qv :=

∞∫
−∞

(v2(s)γ̇(s)− v1(s)γ̈(s)) ds

∞∫
−∞

(γ̇(s)2 + γ̈(s)2) ds

(−γ̈, γ̇) .

So RL = NQ. Then we decompose (1.2.5) as follows

Lz − (I−Q)N(z, α, ε) = 0 (1.2.6)

and
QN(z, α, ε) = 0 . (1.2.7)

Now
L : Z1 := {z ∈ Z | x(0)γ̇(0) + y(0)γ̈(0) = 0} → RL

is injective and surjective. By the Banach inverse mapping theorem, it is also
continuouslyinvertible.Note

{
(x, y) ∈ R

2 | (x− γ(0))γ̇(0) + (y − γ̇(0))γ̈(0) = 0
}

is the transversal section to the homoclinic curve (γ(t), γ̇(t)) at t = 0. Since
N(0, α, 0) = 0 and DzN(0, α, 0) = 0, applying the implicit function theorem,
we can uniquely solve (1.2.6) in z = z(α, ε) ∈ Z1 for ε small with z(α, 0) = 0.
Inserting this solution into (1.2.7) we get the bifurcation equation

B(α, ε) :=

∞∫
−∞

(
− 2x(α, ε)3(s)− 6x(α, ε)2(s)γ(s)

+εµ2,0 cos ω(s + α)− εµ1,0(y(α, ε)(s) + γ̇(s))
)
γ̇(s) ds = 0 .

(1.2.8)

Since z(α, ε) = O(ε), we see that B(α, ε) = O(ε) as well. So instead of solving
(1.2.8), we put

B̃(α, ε) =
{

B(α, ε)/ε for ε �= 0,
DεB(α, 0) for ε = 0

and solve
B̃(α, ε) = 0 . (1.2.9)
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We derive

M(α) := DεB(α, 0) =

∞∫
−∞

(
µ2,0 cos ω(s + α)− µ1,0γ̇(s)

)
γ̇(s) ds

= µ2,0πω sech
πω

2
sin αω − µ1,0

2
3

.

When |µ1,0| < |µ2,0|3πω
2 sech πω

2 , then clearly there is a simple zero α0 of M ,
i.e. M(α0) = 0 and M ′(α0) �= 0. So we can again apply the implicit function
theorem to solve (1.2.9) in α = α(ε) for ε small with α(0) = α0. This gives the
existence of a bounded solution of (1.2.1) close to (γ(t − α0), γ̇(t − α0)) (see
(1.2.3)) for any µ1,2 small satisfying

|µ1| < |µ2|3πω

2
sech

πω

2
. (1.2.10)

Next using the same approach, we can show the existence of a unique small
periodic solution of (1.2.1) for any µ1,2 small. With a little bit more effort
we can prove that this periodic solution is hyperbolic and the above bounded
solution accumulates on it as t → ±∞ [108, pp. 184–212], [157]. Moreover
under conditions (1.2.10), (1.2.1) is chaotic (see Sections 2.5.3 and 4.2.1 for
more details). These chaotic vibrations are also observed in the experimental
apparatus of Fig. 1.1 as it is shown in [108, p. 84].

1.3 A Brief Summary of the Book

Summarizing we see that in order to find a bounded solution of (1.2.1) for µ1,2

small, we use the following strategy

1. First we rewrite it as an abstract equation (1.2.5) in appropriate Banach
spaces.

2. Then we use the Lyapunov-Schmidt decomposition method (1.2.6–1.2.7).

3. Next we derive the bifurcation equation (1.2.8) using the implicit function
theorem.

4. Finally we find conditions for the solvability of the bifurcation equation
(see (1.2.9) and the analysis below it). Usually we get the corresponding
Melnikov function M .

We roughly follow this way in this book for various problems. Of course the
above approach is well-known [56, 157–159]. But we intend to solve problems
which are not enough smooth. So our first aim is to extend this Melnikov method
for nonsmooth/discontinuous mechanical systems like

ẋ = y, ẏ − x + 2x3 + µ1 sgn ẋ = µ2 cos ωt (1.3.1)
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for µ1,2 small (see (3.1.36)). Non-smooth differential equations occur in various
situations like in mechanical systems with dry frictions or with impacts. They
appear also in control theory, electronics, economics, medicine and biology [45,
57,129–131] (see also Chapters 3, 4 and 8 of this book for additional references
and examples).

The plan of this book is as follows. In Chapter 2 we briefly review some known
mathematical resultswhichweuse inourproofs. InChapter3westudybifurcations
of periodics and subharmonics fromeither periodics or homoclinics for systems like
(1.3.1). This is the first step to show chaos for discontinuous systems. There we also
study systems with small hysteresis and weakly coupled nonlinear oscillators as
well. In Chapter 4 we show desired chaotic solutions for discontinuous differential
equations by extended the method of Chapter 3. Then we proceed in Chapter
5 with the study of chaos for diffeomorphisms when intersections of stable and
unstablemanifolds of hyperbolic fixedpoints are only topologically transversal. To
handle this problem, again topological degree methods are necessary to use. There
we also deals with accumulation of periodic points of reversible diffeomorphisms
on homoclinic points with extensions of this phenomenon to chains of reversible
oscillators. We continue in Chapter 6 with investigation of equations on lattices
which are spatially discretized partial differential equations (p.d.eqns). There
we apply the known center manifold method. We investigate the persistence of
kink traveling waves of p.d.eqns under discretization. Chapter 7 is devoted to the
existence of periodics and subharmonics of undamped abstract wave equations
using methods to avoid resonant terms for perturbed problems. Then, in the
final Chapter 8, we study discontinuous wave equations with infinitely many
resonances. There we develop a degree for such problems with applications to
local bifurcation problems.

We note that we use the known topological degree methods as a tool for
solving concrete nonlinear problems. Only in the final chapter, we also estab-
lish a suitable theoretical topological degree background for discontinuous wave
equations. Next, most results of this book are based on the author published
papers, but we have improved and modified the original papers to simplify and
clarify final results.

Bifurcation results solved in this book are local which means that only lo-
cal branches of bifurcations are studied with small parameter changes. Global
bifurcations like Krasnoselski-Rabinowitz theorem are given in [47, 124]. Next,
we use a topological tool based on the Leray-Schauder degree theory and its
generalizations. More sophisticated topological methods based on the Nielsen
fixed point theory are presented in [5, 89].

The author is indebted to coauthors of results mentioned in this book:
J. Awrejcewicz, F. Battelli, M. Franca, J. Gruendler, R. Ma, P. Olejnik, V.M.
Rothos and B. Thompson. He also thanks to M. Medved’ for many stimulat-
ing discussions on mathematics and to L. Górniewicz for initiation to write
this book. Partial supports of Grant VEGA-MS 1/0098/08, Grant VEGA-SAV
2/7140/27 and an award from Literárny fond are also appreciated.

Bratislava, April, 2008 Michal Fečkan



Chapter 2

Theoretical Background

In this chapter, we recall some know mathematical notations, notions and re-
sults used later to help the reader with reading this book. All these results are
presented in any textbooks of linear and nonlinear functional analysis, differ-
ential topology, and dynamical systems, which are quoted in the text, and we
refer the reader for more details to these textbooks.

2.1 Linear Functional Analysis

Let X be a Banach space with a norm | · |. By N we denote the set of natural
numbers. A sequence {xn}n∈N ⊂ X (strongly) converges to x0 ∈ X if |xn−x0| →
0 as n → ∞, for short xn → x0. The dual space of X is denoted by X∗. It is
the linear space of all bounded linear functionals on X. It generates the weak
topology on X as follows: For any x ∈ X, we define its weak neighborhood as a
set ∩j

i=1 {y ∈ X | |x∗
i (y − x)| < ri} for some x∗

i ∈ X∗, ri > 0, i = 1, . . ., j. Then
a subset S of X is weakly open if any its point has a weak neighborhood laying
in S. A set is weakly compact if from every its covering with weakly open sets
it is possible to select a finite covering. If the norm | · | is generated by a scalar
product (·, ·), i.e. |x| =√(x, x) for any x, then X is a Hilbert space.

Theorem 2.1.1. Any convex closed bounded subset of a Hilbert space is weakly
compact.

A sequence {xn}n∈N ⊂ X weakly converges to x0 ∈ X if x∗(xn) → x∗(x0)
as n →∞ for any x∗ ∈ X∗, for short xn ⇀ x0. We have the following Mazur’s
theorem.

Theorem 2.1.2. If xn ⇀ x0 then there is a sequence {yn}n∈N ⊂ X such that
yn ∈ con [{xm}m≥n] and yn → x0 in X.

Here con [S] is the convex hull of a subset S ⊂ X, i.e. the intersection of all
convex subsets of X containing S.

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 7–21. 7
c© Springer Science + Business Media B.V., 2008
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Let X and Y be Banach spaces. The set of all linear bounded mappings
A : X → Y is denoted by L(X,Y ), while we put L(X) := L(X,X). A ∈ L(X,Y )
is compact if A(B1) is compact in Y when B1 := {x ∈ X | |x| ≤ 1} is the unit
ball in X. Then xn ⇀ x0 ⇒ Axn → Ax0. If X ⊂ Y and the inclusion X ↪→ Y is
bounded (compact) then we say that X is continuously (compactly) embedded
into Y .

In using the Lyapunov-Schmidt method, we first need the following Banach
inverse mapping theorem.

Theorem 2.1.3. If A ∈ L(X,Y ) is surjective and injective then its inverse
A−1 ∈ L(Y,X).

Then this lemma.

Lemma 2.1.4. Let Z ⊂ X be a linear subspace with either dim Z <∞ or Z be
closed with codim Z <∞. Then there is a bounded projection P : X → Z. Note
codim Z = dimX/Z and X/Z is the factor space of X with respect to Z.

More details and proofs of the above results can be found in [60,199].

2.2 Nonlinear Functional Analysis

2.2.1 Implicit Function Theorem

Let X, Y be Banach spaces and let Ω ⊂ X be open. A map F : Ω → Y is said
to be (Fréchet) differentiable at x0 ∈ Ω if there is an DF (x0) ∈ L(X,Y ) such
that

lim
h→0

|F (x0 + h)− F (x0)−DF (x0)h|
|h| = 0 .

If F is differentiable at each x ∈ Ω and DF : Ω → L(X,Y ) is continuous then
F is said to be continuously differentiable on Ω and we write F ∈ C1(Ω, Y ).
Higher derivatives are defined in the usual way by induction. Similarly, the
partial derivatives are defined standardly [60, p. 46]. Now we state the implicit
function theorem [56, p. 26].

Theorem 2.2.1. Let X, Y , Z be Banach spaces, U ⊂ X, V ⊂ Y are open
subsets and (x0, y0) ∈ U×V . Consider F ∈ C1(U×V,Z) such that F (x0, y0) = 0
and DxF (x0, y0) : X → Z has a bounded inverse. Then there is a neighborhood
U1×V1 ⊂ U ×V of (x0, y0) and a function f ∈ C1(V1, X) such that f(y0) = x0

and F (x, y) = 0 for U1 × V1 if and only if x = f(y). Moreover, if F ∈ Ck(U ×
V,Z), k ≥ 1 then f ∈ Ck(V1, X).

We refer the reader to [31, 127] for more applications and generalizations of
the implicit function theorem.
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2.2.2 Lyapunov-Schmidt Method

Now we recall the well-known Lyapunov-Schmidt method for solving locally non-
linear equations when the implicit function theorem fails. So let X, Y , Z be
Banach spaces, U ⊂ X, V ⊂ Y are open subsets and (x0, y0) ∈ U ×V . Consider
F ∈ C1(U × V,Z) such that F (x0, y0) = 0. If DxF (x0, y0) : X → Z has a
bounded inverse then the implicit function theorem can be applied to solve

F (x, y)=0 (2.2.1)

near (x0, y0). So we suppose that DxF (x0, y0) : X → Z has no a bounded in-
verse. In general this situation is difficult. The simplest case is when DxF (x0, y0):
X → Z is Fredholm, i.e. dimNDxF (x0, y0) < ∞, RDxF (x0, y0) is closed in Z
and codimRDxF (x0, y0) < ∞. Here NA and RA are the kernel and range
of a linear mapping A. Then by Lemma 2.1.4, there are bounded projections
P : X → N DxF (x0, y0) and Q : Z → RDxF (x0, y0). Hence we split any x ∈ X
as x=x0+u+v with u ∈ R(I− P ), v ∈ RP , and decompose (2.2.1) as follows

H(u, v, y) := QF (x0 + u + v, y) = 0 , (2.2.2)

(I−Q)F (x0 + u + v, y) = 0 . (2.2.3)

Observe that DuH(0, 0, y0)= DxF (x0, y0)|R(I − P ) → RDxF (x0, y0). So
DuH(0, 0, y0) is injective and surjective so by the Banach inverse mapping
Theorem 2.1.3, it has a bounded inverse. Since H(0, 0, y0) = 0, the implicit
function theorem can be applied to solve (2.2.2) in u = u(v, y) with u(0, y0) = 0.
Inserting this solution to (2.2.3) we get the bifurcation equation

B(v, y) := (I−Q)F (x0 + u(v, y) + v, y) = 0 . (2.2.4)

Since B(0, y0) = (I−Q)F (x0, y0) = 0 and

DvB(0, y0) = (I−Q)DxF (x0, y0) (Dvu(0, y0) + I) = 0 ,

the function B(v, y) has a higher singularity at (0, y0), so the implicit function
theorem is not applicable, and the bifurcation theory must be used [56].

2.2.3 Leray-Schauder Degree

Let X be a Banach space and let Ω ⊂ X be open bounded. A continuous
map G ∈ C(Ω̄, X) is compact if G(Ω̄) is compact in X. The set of all such
maps is denoted by K(Ω). A triple (F,Ω, y) is admissible if F = I − G for
some G ∈ K(Ω) (so F is a compact perturbation of identity) and y ∈ X with
y /∈ F (∂Ω), where ∂Ω is the border of a bounded open subset Ω ⊂ X. A
mapping F ∈ C

(
[0, 1]× Ω̄, X

)
is an admissible homotopy if F (λ, ·) = I−G(λ, ·)

with G ∈ C
(
[0, 1]× Ω̄, X

)
compact, i.e. G

(
[0, 1]× Ω̄

)
is compact in X, along

with y /∈ F ([0, 1]× ∂Ω). Let Z be the set of all integer numbers. Now on these
admissible triples (F,Ω, y), there is a Z-defined function deg [60, p. 56].
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Theorem 2.2.2. There is a unique mapping deg defined on the set of all ad-
missible triples (F,Ω, y) determined by the following properties:

(i) If deg(F,Ω, y) �= 0 then there is an x ∈ Ω such that F (x) = y.

(ii) deg(I,Ω, y) = 1 for any y ∈ Ω.

(iii) deg(F,Ω, y) = deg(F,Ω1, y)+deg(F,Ω2, y) whenever Ω1,2 are disjoint open
subsets of Ω such that y /∈ F

(
Ω̄ \ (Ω1 ∪ Ω2)

)
.

(iv) deg(F (λ, ·),Ω, y) is constant under an admissible homotopy F (λ, ·).
The number deg(F,Ω, y) is called the Leray-Schauder degree of the map

F . If X = R
n then deg(F,Ω, y) is the classical Brouwer degree and F is just

F ∈ C(Ω̄, Rn) with y /∈ F (∂Ω). If x0 is an isolated zero of F in Ω ⊂ R
n then

I(x0) := deg(F,Ω0, 0) is called the Brouwer index of F at x0, where x0 ∈ Ω0 ⊂ Ω
is an open subset such that x0 is the only zero point of F on Ω0 (cf. [56,
p. 69]). I(x0) is independent of such Ω0. Note, if y ∈ R

n is a regular value
of F ∈ C1(Ω̄, Rn), i.e. detDF (x) �= 0 for any x ∈ Ω with F (x) = y, and
y /∈ F (∂Ω), then F−1(y) is finite and deg(F,Ω, y) =

∑
x∈F−1(y)

sgn det DF (x). In

particular if x0 is as simple zero of F (x), i.e. F (x0) = 0 and detDF (x0) �= 0,
then I(x0) = sgn detDF (x0) = ±1.

It is useful for computation of the Leray-Schauder degree the following prod-
uct formula

deg (F1 × F2,Ω1 × Ω2, (y1, y2)) = deg(F1,Ω1, y1) deg(F2,Ω2, y2) ,

where (Fi,Ωi, yi), i = 1, 2 are admissible triples and the mapping

F1 × F2 : Ω̄1 × Ω̄2 → X1 ×X2

is defined by

(F1 × F2)(x1, x2) := (F1(x1), F2(x2)) ∀(x1, x2) ∈ Ω̄1 × Ω̄2

for Banach spaces X1, X2 with Ωi ⊂ Xi, i = 1, 2. In particular, it holds

deg (I× F2,Ω1 × Ω2, (y1, y2)) = deg(F2,Ω2, y2) , (2.2.5)

where (F2,Ω2, y2) is an admissible triple and y1 ∈ Ω1 for a bounded open subset
Ω1 of a Banach space X1.

Finally, we state the Schauder fixed point theorem [101].

Theorem 2.2.3. Let Ω be a closed convex bounded subset of a Banach space
X. If G ∈ K(Ω) and G : Ω → Ω then G has a fixed point in Ω.

For finite dimensional cases it is the Brouwer fixed point theorem.
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2.3 Differential Topology

2.3.1 Differentiable Manifolds

Let M be a subset of R
k. We use the induced topology on M , that is A ⊂

M is open if there is an open set A′ ⊂ R
k such that A = A′ ∩ M . We say

that M ⊂ R
k is a Cr-manifold (r ∈ N) of dimension m if for each p ∈ M

there is a neighborhood U ⊂ M of p and a homeomorphism x : U → U0,
where U0 is an open subset in R

m, such that the inverse x−1 ∈ Cr(U0, R
k) and

Dx−1(u) : R
m → R

k is injective for any u ∈ U0. Then we say that (x,U) is a
local Cr-chart around p and U is a coordinate neighborhood of p. It is clear that
if x : U → R

m and y : V → R
m are two local Cr-charts in M with U ∩ V �= ∅

then y ◦x−1 : x(U ∩V ) → y(U ∩V ) is a Crdiffeomorphism. This family of local
charts is called a Cr-atlas for M [1, 114,156].

If there is a Cr-atlas for M such that detD(y ◦ x−1)(z) > 0 for any z ∈
x(U ∩ V ) and any two local Cr-charts x : U → R

m and y : V → R
m of this

atlas with U ∩ V �= ∅ then M is oriented.
Let α ∈ C1((−ε, ε), Rk) be a differentiable curve on M , i.e. α : (−ε, ε) →M

with α(0) = p. Then α′(0) is a tangent vector to M at p. The set of all tangent
vectors to M at p is the tangent space to M at p and it is denoted by TpM . The
tangent bundle is the set

TM :=
{
(p, v) ∈ R

k × R
k | p ∈M, v ∈ TpM

}
with the natural projection π : TM → M given as π(p, v) = p. If M is a
Cr-manifold with r > 1 then TM is a Cr−1-manifold.

Let M and N be two Cr-manifolds. We say that f : M → N is a Cr-mapping
if for each p ∈ M the mapping y ◦ f ◦ x−1 : x(U) → y(V ) is Cr-smooth, where
x : U → R

m is a local Cr-chart in M around p and y : V → R
s is a local

Cr-chart in N with f(U) ⊂ V . This definition is independent of the choice of
charts. The set of Cr-mappings is denoted by Cr(M,N). Take f ∈ Cr(M,N).
Let α : (−ε, ε) →M be a differentiable curve on M with α(0) = p and α′(0) = v.
Then f ◦ α : (−ε, ε) → N is a differentiable curve on N with (f ◦ α)(0) = f(p),
so we can define Df(p)v := D(f ◦α)(0) ∈ Tf(p)N . This is independent of curve
α. The map Df(p) : TpM → Tf(p)N is linear, and if r > 1, Df : TM → TN
defined as Df(p, v) := (f(p), Df(p)v) is Cr−1-smooth.

A set S ⊂ M ⊂ R
k is a Cr-submanifold of M of dimension s if for each

p ∈ S there are open sets U ⊂ M containing p, V ⊂ R
s containing 0 and

W ⊂ R
m−s containing 0 and a Cr-diffeomorphism φ : U → V ×W such that

φ(S ∩ U) = V × {0}.
A Cr-mapping f : M → N is an immersion if Df(p) is injective for all

p ∈ M . If f : M → N is an injective immersion we say that f(M) is an
immersed submanifold. If in addition f : M → f(M) ⊂ N is a homeomorphism,
where f(M) has the induced topology, then f is an embedding. In this case,
f(M) is a submanifold of N .
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2.3.2 Symplectic Surfaces

M is a smooth symplectic surface if it is a 2-dimensional C∞-smooth mani-
fold with ω ∈ C∞(TM× TM, R) such that ∀m ∈ M, the restriction ωm :=
ω/TmM× TmM is bilinear, antisymmetric and nonzero, i.e.

ωm(a1v1 + a2v2, b1w1 + b2w2) =
2∑

i,j=1

aibjωm(vi, wj)

and ωm(v1, v2) = −ωm(v2, v1) for any a1,2, b1,2 ∈ R, v1,2, w1,2 ∈ TmM. In a local
coordinate U ⊂ R

2, ω has the form ω(x,y)(v, w) = aU (x, y)v∧w, aU ∈ C∞(U, R),
a(x, y) �= 0 for any (x, y) ∈ U and v ∧ w := x1y2 − x2y1 is the wedge product
for v = (x1, y1), w = (x2, y2). Then ω is a non-degenerate differential 2-form or
symplectic area form on M.

A mapping α ∈ C∞(TM, R) is a differential 1-form onM if for any m ∈M,
the restriction αm := ω/TmM∈ TmM∗. In a local coordinate U ⊂ R

2, α has the
form α(x,y)v = aU,1(x, y)x1+aU,2(x, y)y1 for aU,1,2 ∈ C∞(U, R) and v = (x1, y1).
Then dα is defined by

dα(x,y)(v, w) :=
(

∂aU,2

∂x
− ∂aU,1

∂y

)
v ∧ w .

For f ∈ C∞(M,M), we define a differential 1-form as

f∗(α)mv := αf(m)(Df(m)v) ∀m ∈M ,∀v ∈ TmM .

Finally, f ∈ C∞(M,M) is symplectic or area-preserving if

ωf(m)(Df(m)v,Df(m)w) = ωm(v, w) ∀m ∈M ,∀v,∀w ∈ TmM .

2.3.3 Intersection Numbers of Manifolds

Let W be an oriented Cr-manifold of dimension m+n and M,N be oriented Cr-
submanifolds of W of dimensions m,n, respectively, while M is compact and N
is closed. A point x ∈M ∩N is transversal if TxM ∩TxN = {0}. It is a positive
(negative) kind [114] if the composite map TxM → TxW → TxW/TxN preserves
(reserves) the orientation. Then we write #x(M,N) := 1(−1). If all intersection
points of M ∩N are transversal then there is a final number of them and we set
#(M,N) :=

∑
x∈M∩N #x(M,N). A similar approach is used like in the Brouwer

degree theory to extend #(M,N) for general nontransversal intersections [114].
The number #(M,N) is called the (oriented) intersection number of manifolds
M,N in W . If U is a precompact open subset of W and ∂U ∩M ∩N = ∅, then
similarly we can define a local (oriented) intersection number #(M ∩U,N ∩U)
of the manifolds M ∩U and N ∩U in U ⊂ W . These intersection numbers have
similar properties as the Brouwer degree in Theorem 2.2.2.
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2.3.4 Brouwer Degree on Manifolds

Let M , N be oriented C1-manifolds with dimM = dimN = n. Let f ∈
C1(M,N), y ∈ N and Ω be an open precompact subset of M such that y /∈
f(∂Ω). Suppose y is regular, i.e. ∀x ∈ Ω such that f(x) = y, Df(x) is in-
jective. Then f−1(y) ∩ Ω is finite, so f−1(y) ∩ Ω = {v1, v2, · · · , vk}. We take
disjoint local coordinates (Ui, xi) of vi and (V, x) of y. Then there are Brouwer
indices I(xi(vi)) of x(f(x−1

i )), which are independent of local coordinates. We
set deg(f,Ω, y) :=

∑k
i=1 I(xi(vi)). Then like in the classical degree theory, this

degree is extended to any continuous f and nonregural y. This is the Brouwer
degree on manifolds [114].

Next, let M , N be oriented C1-manifolds and f ∈ C1(M, Rp), g ∈ C1(N, Rp),
p = dimM +dimN be embeddings. Let U be a bounded open subset of R

p such
that ∂U ∩ f(M) ∩ g(N) = ∅. Then

|#(f(M) ∩ U, g(N) ∩ U)| = |deg(G,U1 × U2, 0)|

for U1 = f−1(U ∩ f(M)), U2 = g−1(U ∩ g(N)) and G(x, y) := f(x)− g(y). If in
addition M is a submanifold and N is a linear subspace of R

p with a projection
P : R

p → N then

|#(M ∩ U,N ∩ U)| = |deg((I− P ), U ∩M, 0)| .

The independence of P follows from the fact that if Q is another projection on
N then I−Q : R(I−P ) → R(I−Q) is a linear isomorphism and (I−Q)(I−P ) =
I−Q. Hence

|deg((I− P ), U ∩M, 0)| = |deg((I−Q)(I− P ), U ∩M, 0)|
= |deg((I−Q), U ∩M, 0)| .

2.3.5 Vector Bundles

A Cr-vector bundle of dimension n is a triple (E, p,B) where E, B are Cr-
manifolds and p ∈ Cr(E,B) with the following properties: for each q ∈ B there
is its open neighborhood U ⊂ B and a Cr-diffeomorphism φ : p−1(U)→ U×R

n

such that p = π1◦φ on p−1(U) where π1 : U×R
n → U is defined as π1(x, y) := x.

Moreover, each p−1(x) are n-dimensional vector spaces and each φx : p−1(x) →
R

n given by φ(y) = (x, φx(y)) for any y ∈ p−1(x) are linear isomorphisms. E is
called the total space, B is the base space, p is the projection of the bundle, the
vector space p−1(x) is the fibre and φ is a local trivialization. So the vector bundle
is locally trivial. If U = B then the bundle is trivial. The family A := {(φ,U)}
of these local trivializations is a Cr-vector atlas. The bundle is oriented if there
is a Cr-vector atlas A := {(φ,U)} such that for any two local trivializations
(φ,U) and (ψ, V ) with U ∩ V �= ∅ the linear mapping ψx ◦ φ−1

x : R
n → R

n is
orientation preserving for each x ∈ U ∩ V . A Cr-smooth mapping s : B → E
satisfying p ◦ s = IB is called a section of the bundle.
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Typical examples of vector bundles are the tangent bundle (TM, π,M) and
the normal bundle (TM⊥, π̃,M) defined as

TM⊥ :=
{
(q, v) ∈ R

k × R
k | q ∈ M, v ∈ TqM

⊥}
with the projection π̃ : TM⊥ → M given as π̃(q, v) = q, where TxM⊥ is the
orthogonal complement of TxM in R

k. A section of TM is called a vector field
on M . When M is oriented then both TM and TM⊥ are oriented. Here M is a
Cr-manifold with r > 1.

2.3.6 Euler Characteristic

Let ξ = (E, p,B) be an oriented Cr-vector bundle with dimension n = dimB
and B be oriented. Consider its Cr-section s : B → E. Let Ω be an open pre-
compact subset of B such that s �= 0 on ∂Ω. Suppose first that s has only
a finite number of zeroes in Ω, say b1, b2, · · · , bj . Let φi : p−1(Ui) → Ui × R

n,
i = 1, 2, · · · , j be local trivializations of the bundle ξ with bi ∈ Ui, Ui are disjoint
and (Ui, xi) are local coordinates. Then xi(bi) is the only zero point of vi(x) :=
φx−1

i (x)(s(x
−1
i (x))), x ∈ xi(Ui). Note vi : xi(Ui) → R

n and xi(Ui) ⊂ R
n. Ac-

cording to Section 2.2.3 it has the Brouwer index I(bi), which is independent
of φi, xi. Then we set deg(s,Ω) :=

∑j
i=1 I(bi). Then like in the Brouwer degree

theory, deg(s,Ω) is extended to a continuous section s : B → E with s �= 0 on
∂Ω. It has similar properties as the Brouwer degree in Theorem 2.2.2. When
Ω = B then deg(s,Ω) is independent of s and so deg(s,Ω) = χ(ξ), where χ(ξ)
is the Euler characteristic of the bundle ξ. So if χ(ξ) �= 0 then any continuous
section of ξ has a zero. Next, if ξ = TM with an oriented connected compact
Cr-manifold for r > 1, then χ(TM) is the Euler characteristic of the mani-
fold M . Then we get the classical result of Hopf that χ(TM) �= 0 implies the
existence of a zero of any continuous vector field of M . Moreover, if χ(TM) = 0
then TM has a continuous section without zeroes on M . We refer the reader
to [114] for more details and proofs of the above results.

2.4 Multivalued Mappings

2.4.1 Upper Semicontinuity

Let X, Y be Banach spaces and let Ω ⊂ X. By 2Y we denote the family of all
subsets of Y . Any mapping F : Ω → 2Y \{∅} is called multivalued or set-valued.
For such mappings we define sets

graphF := {(x, y) ∈ Ω× Y | x ∈ Ω, y ∈ F (x)} , F (Ω) := ∪x∈ΩF (x) ,

F−1(A) := {x ∈ Ω | F (x) ∩A �= ∅} for A ⊂ Y .

Definition 2.4.1. A multivalued mapping F : Ω → 2Y \ {∅} is
upper-semicontinuous, usc for short, if the set F−1(A) is closed in Ω for any
closed A ⊂ Y .
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This condition of usc is more transparent in terms of sequences: if {xn}∞n=1

⊂ Ω, A ⊂ Y is closed, xn → x0 ∈ Ω and F (xn) ∩A �= ∅ for all n ≥ 1, then also
F (x0) ∩A �= ∅. The following result is a part of [59, Proposition 1.2.(b)].

Theorem 2.4.2. If graphF is closed and F (Ω) is compact then F is usc. In
particular, F is usc if it has a compact graphF .

A typical example of an usc multivalued mapping is Sgn : R → 2R \ {∅}
defined by

Sgn r =
{

r/|r| for r �= 0 ,
[−1, 1] for r = 0 .

(2.4.1)

We refer the reader for more properties of usc mappings to [59, p. 3-11]
and [103].

2.4.2 Measurable Selections

Let J := [0, 1]. The characteristic function χA(x) of a subset A ⊂ J is defined
as χA(x) = 1 for x ∈ A and χA(x) = 0 for x /∈ A. Let X be a Banach space with

a norm | · |. An f : J → X is said to be a step function if f =
k∑

i=1

ciχAi
(x) for

some Lebesgue measurable sets Ai ⊂ J , j = 1, · · · , k. An f : J → X is said to
be strongly measurable if there is a sequence {fn}∞n=1 of step functions such that
|f(x)− fn(x)| → 0 as n →∞ almost everywhere (a.e.) on J . Following [59, p.
29, Problem 10] (see also [166, p. 17, Propositions 3.3–3.4], [167]), we have the
following result.

Theorem 2.4.3. Let F : J × X → 2X \ {∅} be usc with compact values, and
v ∈ C(J,X). Then F (·, v(·)) has a strongly measurable selection, i.e. there is a
strongly measurable function f : J → X such that f(x) ∈ F (x, v(x)) a.e. on J .

The above definitions are taken from [59, pp. 21–30].

2.4.3 Degree Theory for Set-Valued Maps

Let X be a Banach space and let Ω ⊂ X be open and bounded. A triple (F,Ω, y)
is admissible if F = I−G for some G : Ω̄ → 2X \ {∅} which is usc with compact
convex values and G(Ω̄) ⊂ X is compact, and y ∈ X with y /∈ F (∂Ω). Let M
be the set of all admissible triples. Then it is possible to define (cf. [59, pp. 154–
155]) a unique function deg : M → Z with the properties of Theorem 2.2.2 with
evident differences that in (i) is y ∈ F (x) in place of F (x) = y and the homotopy
in (iv) is compact usc with compact convex values. The number deg(F,Ω, y) is
the Leray-Schauder degree of the multivalued map F . We refer the reader for
more topological methods for multivalued equations to the books [5, 103].
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2.5 Dynamical Systems

2.5.1 Exponential Dichotomies

Set Z+ := N ∪ {0} and Z− := −Z+. Let J ∈ {Z+, Z−, Z}. Let An ∈ L(Rk),
n ∈ J be a sequence of invertible matrices. Consider a linear difference equation

xn+1 = Anxn . (2.5.1)

Its fundamental solution is defined as U(n) := An−1 · · ·A0 for n ∈ N, U(0) = I

and U(n) := A−1
n · · ·A−1

−1 for −n ∈ N. (2.5.1) has an exponential dichotomy on
J if there is a projection P : R

k → R
k and constants L > 0, δ ∈ (0, 1) such that

‖U(n)PU(m)−1‖ ≤ Lδn−m for any m ≤ n, n,m ∈ J

‖U(n)(I− P )U(m)−1‖ ≤ Lδm−n for any n ≤ m, n,m ∈ J .

If An = A and its spectrum σ(A) has no intersection with the unit circle, i.e. A is
hyperbolic, then P is the projection onto the generalized eigenspace of eigenvectors
inside the unit circle andNP is the generalized eigenspace of eigenvectors outside
the unit circle. Next we have the following roughness of exponential dichotomies.

Lemma 2.5.1. Let J ∈ {Z+, Z−}. Let A be hyperbolic with the dichotomy pro-
jection P . Assume {An(ξ)}n∈J ∈ L(Rk) are invertible matrices and An(ξ) → A

in L(Rk) uniformly with respect to a parameter ξ. Then xn+1 = An(ξ)xn, with
the fundamental solution Uξ(n), has an exponential dichotomy on J with projec-
tion Pξ and uniform constants L > 0, δ ∈ (0, 1). Moreover, Uξ(n)PξUξ(n)−1 →
P as n → ±∞ uniformly with respect to ξ.

Analogical results hold for a linear differential equation ẋ = A(t)x when
t ∈ J ∈ {(−∞, 0), (0,∞), R} and A(t) ∈ C(J, L(Rk)) is a continuous matrix
function. Its fundamental solution is a matrix function U(t) satisfying U̇(t) =
A(t)U(t) on J . Sometimes we require that U(0) = I [159].

2.5.2 Chaos in Discrete Dynamical Systems

Consider a Cr-diffeomorphism f on R
m with r ∈ N, i.e. a mapping f ∈ Cr

(Rm, Rm) which is invertible and f−1 ∈ Cr(Rm, Rm). For any z ∈ R
m we define

its k-iteration as fk(z) := f(fk−1(z)). The set {fn(z)}∞n=∞ is an orbit of f . If
x0 = f(x0) then x0 is afixed point of f . It is hyperbolic if the linearizationDf(x0) of
f at x0 has no eigenvalues on the unit circle. The global stable (unstable) manifold
W

s(u)
x0 of a hyperbolic fixed point x0 is defined by

W s(u)
x0

:= {z ∈ R
m | fn(z) → x0 as n →∞(−∞)} ,

respectively.
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Theorem 2.5.2. W s
x0

and Wu
x0

are immersed Cr-submanifolds in R
m.

Furthermore, let y0 be another hyperbolic fixed point of f . If x ∈W s
x0
∩Wu

y0
\

{x0, y0} then it is a heteroclinic point of f and then the orbit {fn(x)}∞n=∞ is
called heteroclinic. Clearly fn(z) → x0 as n →∞ and fn(z) → y0 as n → −∞.
If TxW s

x0
∩ TxWu

y0
= {0} then x is a transversal heteroclinic point of f . Note

x ∈ W s
x0
∩Wu

y0
\ {x0, y0} is a transversal heteroclinic point if and only if the

linear difference equation xn+1 = Df(fn(x))xn has an exponential dichotomy
on Z. When x0 = y0 then the word “heteroclinic” is replaced with homoclinic.
We refer the reader to the book [159] for more details and proofs of the above
subject.

Let E = {0, 1}Z be a compact metric space of the set of doubly infinite
sequences of 0 and 1 endowed with the metric [68]

d({en}, {e′n}) :=
∑
n∈Z

|en − e′n|
2|n|+1

.

On E it is defined the so called Bernoulli shift map σ : E → E by σ({ej}j∈Z) =
{ej+1}j∈Z with extremely rich dynamics [195].

Theorem 2.5.3. σ is a homeomorphism having

(i) A countable infinity of periodic orbits of all possible periods

(ii) An uncountable infinity of nonperiodic orbits and

(iii) A dense orbit

Now we can state the following result about the existence of the deterministic
chaos for diffeomorphisms, the Smale-Birkhoff homoclinic theorem.

Theorem 2.5.4. Suppose f : R
m → R

m, r ∈ N be a Cr-diffeomorphism having
a transversal homoclinic point to a hyperbolic fixed point. Then there is an k ∈ N

such that fk has an invariant set Λ, i.e. fk(Λ) = Λ, such that ϕ ◦ fk = σ ◦ ϕ
for an homeomorphism ϕ : Λ → E.

The set Λ is the Smale horseshoe and we say that f has horseshoe dynamics
on Λ. Theorem 2.5.4 asserts that the following diagram is commutative

Λ
fk

��

ϕ

��

Λ

ϕ

��
E σ

�� E
So fk on Λ has the same dynamical properties as σ on E , i.e. Theorem 2.5.3
gives chaos for f . Moreover, it is possible to show a sensitive dependence on
initial conditions of f on Λ in the sense that there is an ε0 > 0 such that for
any x ∈ Λ and any neighborhood U of x, there exists z ∈ U ∩ Λ and an integer
q ≥ 1 such that |fq(x)− fq(z)| > ε0.
Remark 2.5.5. Of course the above considerations hold for a smooth diffeomor-
phism f : M →M on a smooth manifold.
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2.5.3 Periodic O.D.Eqns

It is well-known [110], that the Cauchy problem

ẋ = g(x, t), x(0) = z ∈ R
m (2.5.2)

for g ∈ Cr(Rm × R, Rm), r ∈ N has a unique solution x(t) = φ(z, t) defined on
a maximal interval 0 ∈ Iz ⊂ R. We suppose for simplicity that Iz = R. This
is true for instance when g is globally Lipschitz continuous in x, i.e. there is
a constant L > 0 such that |g(x, t) − g(y, t)| ≤ L|x − y| for any x, y ∈ R

m,
t ∈ R. Moreover, we assume that g is T -periodic in t, i.e. g(x, t + T ) = g(x, t)
for any x ∈ R

m, t ∈ R. Then the dynamics of (2.5.2) is determined by the
dynamics of the diffeomorphism f(z) = φ(z, T ) which is called the time or
Poincaré map of (2.5.2). Now we can transform the results of Section 2.5.2 to
(2.5.2). So T -periodic solutions (periodics for short) of (2.5.2) are fixed points of
f . Periodics of f are subharmonic solutions (subharmonics for short) of (2.5.2).
Similarly we mean a chaos of (2.5.2) as a chaos for f . To be more concrete,
we apply these results to (1.2.1). We known from introduction that for µ1,2

small satisfying (1.2.10), (1.2.1) has a bounded solution which tends to a small
hyperbolic periodic solution. For the time map of (1.2.1) this means that it has
a homoclinic orbit to a hyperbolic fixed point. Next after some effort [159] it is
possible to show that this homoclinic point is also transversal. So the time map
of (1.2.1) is chaotic according to Theorem 2.5.4. Consequently, (1.2.1) is chaotic
for µ1,2 small satisfying (1.2.10). We also refer the reader to Subsection 4.2.1
for more details.

2.5.4 Vector Fields

When (2.5.2) is autonomous, i.e. g is independent of t, then (2.5.2) has the form

ẋ = g(x), x(0) = z ∈ R
m . (2.5.3)

g is called a Cr-vector field on R
m for g ∈ Cr(Rm, Rm), r ∈ N. We suppose

for simplicity that the unique solution x(t) = φ(z, t) of (2.5.3) is defined on R.
φ(z, t) is called the orbit based at z. Then instead of the time map of (2.5.3), we
consider the flow φt : R

m → R
m defined as φt(z) := φ(z, t) with the property

φt (φs(z)) = φt+s(z). A point x0 with g(x0) = 0 is an equilibrium of (2.5.3). It
is hyperbolic if the linearization Dg(x0) of (2.5.3) at x0 has no eigenvalues on
imaginary axis.

The global stable (unstable) manifold W
s(u)
x0 of a hyperbolic equilibrium x0

is defined by

W s(u)
x0

:= {z ∈ R
m | φ(z, t) → x0 as t →∞(−∞)} ,

respectively. These sets are immersed submanifolds of R
m. Note for any x ∈

W
s(u)
x0 , we know that

TxW s(u)
x0

=
{

v(0) ∈ R
m | v(t) is a bounded solution

of v̇ = Dg(φ(x, t))v on (0,∞), ((−∞, 0)), respectively
}

.
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Moreover, the set (
TxW s

x0
+ TxWu

x0

)⊥
is the linear space of initial values w(0) of all bounded solutions w(t) of the
adjoint equation ẇ = −Dg(φ(x, t))∗w on R [157].

A local dynamics near a hyperbolic equilibrium x0 of (2.5.3) is explained by
the Hartman-Grobman theorem for flows [108].

Theorem 2.5.6. If x0 = 0 is a hyperbolic equilibrium of (2.5.3) then there is a
homeomorphism h defined on a neighborhood U of 0 in R

m such that

h (φ(z, t)) = etDg(0)h(z)

for all z ∈ U and t ∈ Jz with φ(z, t) ∈ U , where 0 ∈ Jz is an interval.

For nonhyperbolic equilibria we have the following center manifold theorem
for flows [108].

Theorem 2.5.7. Let x0 = 0 be an equilibrium of a Cr-vector field (2.5.3) on
R

m. Divide the spectrum of Dg(0) into three parts σs, σu, σc such that �λ < 0;>
0;= 0 if λ ∈ σs;σu;σc, respectively. Let the generalized eigenspaces of σs, σu,
σc be Es, Eu, Ec, respectively. Then there are Cr-smooth manifolds: the stable
W s

0 , the unstable Wu
0 , the center W c

0 tangent at 0 to Es, Eu, Ec, respectively.
These manifolds are invariant for the flow of (2.5.3), i.e. φt (W s;u;c

0 ) ⊂ W s;u;c
0

for any t ∈ R. The stable and unstable ones are unique, but the center one need
not be. In addition, when g is embedded into a Cr-smooth family of vector fields
gε with g0 = g, then these invariant manifolds are Cr-smooth also with respect
to ε.

Under the assumptions of Theorem 2.5.7 near x0 = 0 we can write (2.5.3)
in the form

ẋs = Asxs + gs(xs, xu, xc, ε) ,

ẋu = Auxu + gu(xs, xu, xc, ε) ,

ẋc = Acxs + gc(xs, xu, xc, ε) ,

(2.5.4)

where As;u;c := Dg(0)/Es;u;c and xs;u;c ∈ Us;u;c for open neighborhoods Us;u;c

of 0 in Es;u;c, respectively. Here we suppose that (2.5.3) is embedded into a
Cr-smooth family. So gj are Cr-smooth satisfying gj(0, 0, 0, 0) = 0 and
Dxj

gk(0, 0, 0, 0) = 0 for j, k = s, u, c. According to Theorem 2.5.7, the local
center manifold W c

loc,ε near (0, 0, 0) of (2.5.4) is a graph

W c
loc,ε = {(hs(xc, ε), hu(xc, ε), xc) | xc ∈ Uc}

for hs;u ∈ Cr (Uc × V,Es;u) and V is an open neighborhood of ε = 0. Moreover,
it holds hs;u(0, 0) = 0 and Dxc

hs;u(0, 0) = 0. The reduced equation is

ẋc = Acxs + gc(hs(xc, ε), hu(xc, ε), xc, ε) , (2.5.5)

which locally determines the dynamics of (2.5.4), i.e. W c
loc,ε contains all solutions

of (2.5.4) staying in Us×Uu×Uc for all t ∈ R. In particular periodics, homoclinics
and heteroclinics of (2.5.4) near (0, 0, 0) solve (2.5.5).
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Now suppose that (2.5.3) is invariant under a linear invertible mapping
S ∈ L(Rm), i.e.

Sg(x) = g(Sx)

for all x ∈ R
m. Then the uniqueness of the Cauchy problem (2.5.3) implies

Sφ(z, t) = φ(Sz, t) for any z ∈ R
m, t ∈ R. If 0 is an equilibrium of (2.5.3)

then SDg(0) = Dg(0)S and SEs;u;c = Es;u;c. We have the following result [121,
Theorem I.10].

Theorem 2.5.8. Suppose Sc := S/Ec is unitary, i.e. |Scxc| = |xc| for any
xc ∈ Ec. Then the local center manifold can be chosen invariant under S.

More concretely, let Ss;u := S/Es;u and suppose

Ssgs(xs, xu, xc, ε) = gs(Ssxs, Suxu, Scxc, ε) ,

Sugu(xs, xu, xc, ε) = gu(Ssxs, Suxu, Scxc, ε) ,

Scgc(xs, xu, xc, ε) = gc(Ssxs, Suxu, Scxc, ε)

for any xs;u;c ∈ Us;u;c and ε small. Then the functions hs(xc, ε), hu(xc, ε) can
be chosen so that Sshs(xc, ε) = hs(Scxc, ε) and Suhu(xc, ε) = hu(Scxc, ε) for
any xc ∈ Uc and ε small. Then we have

Sc (Acxs + gc(hs(xc, ε), hu(xc, ε), xc, ε))
= AcScxs + gc(hs(Scxc, ε), hu(Scxc, ε), Scxc, ε) .

So the reduced equation is invariant with respect to Sc.

2.6 Center Manifolds for Infinite Dimensions

The center manifold theorem for flows is extended to infinite dimensional dif-
ferential equations [190, 191] as follows. Let X, Y and Z be Banach spaces,
with X continuously embedded in Y , and Y continuously embedded in Z. Let
A ∈ L(X,Z) and h ∈ Ck (X × R

m, Y ), k ≥ 1, m ≥ 1 with h(0, 0) = 0 and
Dxh(0, 0) = 0. We consider differential equations of the form

ẋ = Ax + h(x, ε) . (2.6.1)

By a solution of (2.6.1) we mean a continuous function x : J → X, where J
is an open interval, such that x : J → Z is continuously differentiable and
ẋ(t) = Ax(t) + h(x(t), ε) holds on J . We need the following definition.

Definition 2.6.1. Let E and F be Banach spaces, k ∈ N and η ≥ 0. Then we
define

Ck
b (E,F ) :=

{
w ∈ Ck(E,F ) | sup

x∈E
‖Djw(x)‖ <∞, 0 ≤ j ≤ k

}
,

BCη(R, E) :=
{

w ∈ C(R, E) | ‖w‖η := sup
t∈R

e−η|t||w(t)|E < ∞
}

.
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Now concerning A we suppose the following hypothesis.
(H) There exists a continuous projection πc ∈ L(Z,X) onto a finite dimen-

sional subspace Zc = Xc ⊂ X such that

Aπcx = πcAx, ∀x ∈ X ,

and such that if we set
Zh := (I− πc)Z, Xh := (I− πc)X, Yh := (I− πc)Y ,

Ac := A/Xc ∈ L(Xc), Ah := A/Xh ∈ L(Xh, Zh) ,

then the following hold

(i) σ(Ac) ⊂ ıR.

(ii) There exists a β > 0 such that for each η ∈ [0, β) and for each f ∈
BCη(R, Yh) the linear problem ẋh = Ahxh + f(t) has a unique solution
xh ∈ BCη(R, Xh) satisfying ‖xh‖η ≤ γ(η)‖f‖η for a continuous function
γ : [0, β) → [0,∞).

The next result generalize Theorem 2.5.7 to infinite dimensions.

Theorem 2.6.2. There are open neighborhoods Ω ⊂ X, U ⊂ R
m of origins

and a mapping ψ ∈ Ck
b (Xc × R

m, Xh) with ψ(0, 0) = 0 and Dxc
ψ(0, 0) = 0

such that for any ε ∈ U the following properties hold:

(i) If x̃c : J → Xc is a solution of the reduced equation

ẋc = Acxc + πch (xc + ψ(xc, ε), ε) (2.6.2)

such that x̃(t) := x̃c(t) + ψ(x̃c(t), ε) ∈ Ω for all t ∈ J , then x̃ : J → X is
a solution of (2.6.1).

(ii) If x̃ : R → X is a solution of (2.6.1) such that x̃(t) ∈ Ω for all t ∈ R,
then (I− πc) x̃(t) = ψ(πcx̃(t), ε), ∀t ∈ R and πcx̃ : R → Xc is a solution
of (2.6.2).

Now we generalize Theorem 2.5.8. Let Γ ⊂ L(Z) ∩ L(Y ) ∩ L(X) be a group
of linear bounded operators such that

SA = AS, Sh(x, ε) = h(Sx, ε)

for any x ∈ X, ε ∈ R
m, S ∈ Γ. Then the group Γ leaves Xc invariant. Supposing

that S ∈ Γ are unitary, the function ψ of Theorem 2.6.2 satisfies

Sψ(xc, ε) = ψ(Sxc, ε)

for any xc ∈ Xc, ε ∈ U , S ∈ Γ. This means that the reduced equation (2.6.2) is
invariant under the action Γ on Xc.

A similar result holds when (2.6.1) is R-reversible with respect to a symmetry
R ∈ L(Z) ∩ L(Y ) ∩ L(X):

RA = −AR, Rh(x, ε) = −h(Rx, ε)

for any x ∈ X, ε ∈ R
m. If R is unitary then the function ψ of Theorem 2.6.2

satisfies Rψ(xc, ε) = ψ(Rxc, ε) for any xc ∈ Xc, ε ∈ U , and the reduced equation
(2.6.2) is Rc-reversible with Rc, the restriction of R to Xc.
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Bifurcation of Periodic
Solutions

3.1 Bifurcation of Periodics from Homoclinics I

3.1.1 Discontinuous O.D.Eqns

We already know from Introduction and Sections 2.5.2, 2.5.3 that it is possible
to show chaos for smooth systems such as

ẍ + h(x, ẋ) + µ1ẋ = µ2ψ(t) (3.1.1)

under certain conditions for h, ψ(t) and small µ1,2. In particular, then (3.1.1) has
an infinite number of subharmonics. The purpose of this section is to show that
even in discontinuous perturbations there are still infinitely many subharmonics.
This is our first step to show chaos for discontinuous differential equations. So
in this section we study the existence of subharmonic and bounded solutions
on R for ordinary differential equations with discontinuous perturbations. Such
equations appear in nonlinear mechanical systems [45, 98] like the following
problem: a dry friction force acting on a moving particle due to its contact to a
wall has in certain situation the form µ(g0(ẋ)+sgn ẋ), where x is a displacement
from the rest, ẋ is the velocity, µ is a positive constant, g0 is a non–negative
bounded continuous function, and sgn r = r/|r| for r ∈ R \ {0}, see [64, 123].
So dry friction is modeled by Coulomb’s friction law [98, p. 7] expressed with
the discontinuous function sgn r. Including also viscous damping, restoring and
external forces, the following equation is studied (see Fig. 3.1)

ẍ + h(x, ẋ) + µ1 sgn ẋ = µ2ψ(t) , (3.1.2)

where h, ψ are continuous and µ1, µ2 are parameters. We assume in this section
that µ1, µ2 are small and ψ is periodic. Equation (3.1.2) is a discontinuous anal-
ogy of (3.1.1). Since (3.1.2) is discontinuous, by using the multivalued mapping

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 23–119. 23
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Figure 3.1: A moving block on a wall under a force

(2.4.1), (3.1.2) is rewritten as a differential inclusion

ẍ + h(x, ẋ)− µ2ψ(t) ∈ −µ1Sgn ẋ .

To deal with much more general equations like (3.1.2), we consider differential
inclusions which take the following form

ẋ(t) ∈ f(x(t)) +
k∑

i=1

µifi(x(t), µ, t) a.e. on R (3.1.3)

with x ∈ R
n, µ ∈ R

k, µ = (µ1, · · · , µk). We mean by a solution of any differential
inclusion in this book a function which is absolute continuous and satisfying that
differential inclusion almost everywhere. Since we are studying bifurcation from
homoclinics, we set the following assumptions about (3.1.3):

(i) f : R
n → R

n is C2-smooth and fi : R
n × R

k × R → 2R
n \ {∅}, i = 1, · · · , k

are upper–semicontinuous with compact and convex values.

(ii) f(0) = 0 and the eigenvalues of Df(0) lie off the imaginary axis.

(iii) The unperturbed equation has a homoclinic solution. That is, there exists a
differentiable function t → γ(t) such that limt→+∞ γ(t) = limt→−∞ γ(t) =
0 and γ̇(t) = f(γ(t)).

(iv) fi(x, µ, t + 2) = fi(x, µ, t) for t ∈ R, i = 1, · · · , k.

Under the above assumptions, we find conditions ensuring the existence of
infinitely many subharmonics of (3.1.3) with the periods tending to infinity and
accumulating on γ. Since our system is discontinuous, we can not apply the
classical dynamical system approach based on the Smale-Birkhoff Homoclinic
Theorem 2.5.4. We need a different approach. Proofs of results of this section
are based on a method of Lyapunov–Schmidt decomposition, which is developed
in Subsection 3.1.2, together with application of a theory of generalized Leray–
Schauder degree for multivalued mappings, which is done in Subsection 3.1.3.
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Let us note that periodic and almost periodic solutions to dry friction
problems are also investigated in [50, 59–63]. The numerical analysis is given
in [12,164,165] for a mechanical model of a friction oscillator with simultaneous
self and external excitation. These papers [163–165] present a nice introduction
to the phenomenon of dry friction as well. Finally similar equations also appear
in electrical engineering (see [6, Chap. III]), related problems are studied in
control systems (see [172]) as well, and dry friction problems were investigated
already in [168,169].

3.1.2 The Linearized Equation

Since we study bifurcation for (3.1.3), we begin by considering its unperturbed
equation with µi = 0, i = 1, · · · , k:

ẋ = f(x) . (3.1.4)

We set ds = dimW s
0 and du = dimWu

0 for the stable and unstable manifolds
W s

0 and Wu
0 , respectively, of the hyperbolic equilibrium x = 0 of (3.1.4). Clearly

γ ∈W s
0 ∩Wu

0 . By the variational equation of (3.1.4) along γ we mean the linear
differential equation

u̇(t) = Df(γ(t))u(t) . (3.1.5)

Observe that as t → ±∞, Df(γ(t)) → Df(0) in exponential rates [68], and
Df(0) is a hyperbolic matrix. Thus, the following result yields two solutions for
(3.1.5) – one solution for t ≥ 0 and one for t ≤ 0 [106].

Lemma 3.1.1. Let t → A(t) ∈ L(Rn) be a matrix valued function continuous
on [0,∞) and suppose there exists a constant matrix A0 ∈ L(Rn) and a scalar
a > 0 such that supt≥0 |A(t) − A0| eat < ∞. Then there exists a fundamental
solution Ũ of the differential equation ẋ = A(t)x such that lim

t→∞ Ũ(t) e−tA0 = I.

Proof. Let P−1A0P = J for a regular matrix P and J be the Jordan form of A0

with block diagonal form J = diag (J1, J2, · · · , Jr). The order of Ji is ki and the
corresponding eigenvalue is λi. We suppose that �λi ≤ �λi+1. Let y := P−1x
and B(t) := P−1A(t)P . Then the differential equation ẋ = A(t)x becomes

ẏ = B(t)y = Jy + (B(t)− J)y . (3.1.6)

We construct solutions to each Jordan block. So we fix a block Ji and set
pi := k1 +k2 + · · ·+ki−1. By defining qi so that �λqi−1 < �λi and �λqi

= �λi,
we decompose etJ as follows

U1i(t) := diag
(
etJ1 , · · · , etJqi−1 , 0, · · · , 0

)
U2i(t) := diag

(
0, · · · , 0, etJqi , · · · , etJr

)
.

We can choice K > 0 and b, 0 < b < a/2 such that [68]

|U1i(t)| ≤ K e(	λi−b)t for t ≥ 0 ,

|U2i(t)| ≤ K e(	λi−b)t for t ≤ 0 .
(3.1.7)
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Let t0 ≥ 0 and consider the Banach space

Ci :=
{

y ∈ C([t0,∞), Rn) | ‖y‖ := sup
t≥t0

|y(t)| e−(	λi+b)t <∞
}

.

Now we consider a linear operator Ti : Ci → Ci given by

Tiy(t) :=

t∫
t0

U1i(t− s)(B(s)− J)y(s) ds−
∞∫
t

U2i(t− s)(B(s)− J)y(s) ds .

It is well defined since we easily derive |Tiy(t)| ≤ 2K̃
a−2b e(	λi−b)t‖y‖ for any t ≥ t0

and y ∈ Ci, where K̃ := K supt≥0 |B(t) − J | eat. Hence ‖Ti‖ ≤ 2K̃
a−2b e−2bt0 .

So taking t0 = max
{

ln[4K̃/(a−2b)]
2b , 0

}
, we get ‖Ti‖ ≤ 1/2. Let ek be the kth

column of the n × n identity matrix. Since for each j ∈ {1, 2, · · · , ki}, it holds
etJepi+j ∈ Ci we see that for each j ∈ {1, 2, · · · , ki} and y ∈ Ci, system (3.1.6)
has the form

y = etJepi+j + Tiy . (3.1.8)

But Ti : Ci → Ci is a linear contraction with a constant 1/2, so (3.1.8) has a
unique solution yj ∈ Ci such that

∣∣yj(t)− etJepi+j

∣∣ ≤ 2K̃

a− 2b
e(	λi−b)t‖yj‖ .

By defining the matrix Yi(t) of the order n×ki with yj(t) in column j, we obtain

|Yi(t)− Fi(t)| e(−	λi+b)t ≤ 2K̃

a− 2b

√√√√ ki∑
j=1

‖yj‖2 ,

where Fi(t) is the n × ki-matrix with eJit in rows pi + 1 through pi + ki and
all other rows zero. Let Iki×ki

be the identity matrix of order ki × ki. Then
limt→∞ Yi(t) e−Jit = Gi and Gi is the matrix of order n×ki with Iki×ki

in rows
pi + 1 through pi + ki and all other rows zero. This construction is done for the
block Ji. To get the result, we take the n×n matrix Y (t) with Yi(t) in columns
pi + 1 through pi + ki for i = 1, 2, . . . , r. So limt→∞ Y (t) e−Jt = I. Finally, by

putting Ũ(t) = PY (t)P−1 we arrive at ˙̃
U(t) = A(t)Ũ(t) satisfying

Ũ(t) e−A0t → I as t →∞ .

The proof is finished.

Using Lemma 3.1.1, the following result expresses asymptotic behavior of
(3.1.5) (see [90,106]).
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Theorem 3.1.2. Let Is, Iu denote the identity matrices of order ds, du respec-
tively. There exists a fundamental solution U for (3.1.5) along with a
non–singular matrix C, constants M > 0, K0 > 0 and four projections Pss,
Psu, Pus, Puu such that Pss + Psu + Pus + Puu = I and that the following hold:

(i) |U(t)(Pss + Pus)U(s)−1| ≤ K0 e2M(s−t) for 0 ≤ s ≤ t

(ii) |U(t)(Psu + Puu)U(s)−1| ≤ K0 e2M(t−s) for 0 ≤ t ≤ s

(iii) |U(t)(Pss + Psu)U(s)−1| ≤ K0 e2M(t−s) for t ≤ s ≤ 0

(iv) |U(t)(Pus + Puu)U(s)−1| ≤ K0 e2M(s−t) for s ≤ t ≤ 0

(v) lim
t→+∞U(t)(Pss + Pus)U(t)−1 = C

(
Is 0
0 0

)
C−1

(vi) lim
t→+∞U(t)(Psu + Puu)U(t)−1 = C

(
0 0
0 Iu

)
C−1

(vii) lim
t→−∞U(t)(Pss + Psu)U(t)−1 = C

(
0 0
0 Iu

)
C−1

(viii) lim
t→−∞U(t)(Pus + Puu)U(t)−1 = C

(
Is 0
0 0

)
C−1

Also, there exists an integer d with rankPss = rankPuu = d.

Proof. From Lemma 3.1.1 there exist two fundamental solutions Ũ± for (3.1.5)
such that

lim
t→±∞ Ũ±(t) e−tDf(0) = I . (3.1.9)

Let C be a matrix such that J = C−1Df(0)C is in Jordan form with J =(
J1 0
0 J2

)
where the eigenvalues of J1 satisfy �λi < 0 while those of J2

satisfy �λi > 0. If U±(t) := Ũ±(t)C, then by (3.1.9), U±(t) are two fundamental
solutions for (3.1.5) satisfying

lim
t→±∞U±(t) e−tJ = C . (3.1.10)

Since these are both fundamental solutions we can write U+(t) = U−(t)R for
some constant matrix R. We now operate on R by means of elementary column
operations. The objective is to obtain

U+(t)Q = U−(t)R̄

with Q upper-triangular and R̄ such that the first non-zero entry in each column
is one with each column-leading one in a different row.
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Suppose we have reached the point where the transformed R has the follow-
ing property: there exist distinct integers j1, j2, . . . , js−1 such that

rijk
= 0 if i < k ,

rkjk
= 1 ,

rik = 0 for 1 ≤ i < s− 1, k /∈ {j1, j2, . . . , js−1} .

In row s pick the minimum js /∈ {j1, . . . , js−1} such that psjs
�= 0. Such a js

must exist as R is non-singular. Now divide column js by rsjs
so now rsjs

= 1.
Next, use column operations to get rsj = 0 for j /∈ {j1, j2, . . . , js}. Notice we
need operate only on columns to the right of column js.

Continuing this process through s = n yields a non-singular, upper triangular
constant matrix Q such that U+(t)Q = U−(t)R̄ where R̄ has the property that
given j, 1 ≤ j ≤ n, there exists σ(j) defined by jσ(i) = i such that σ(i) �= σ(j)
for i �= j, r̄ij = 0 for i < σ(j), and r̄σ(j),j = 1.

Define U(t) = U+(t)Q = U−(t)R̄ and define four projection matrices with
all zero entries except as follows:

(Pss)ii = 1 if i ≤ ds and σ(i) > ds,
(Pus)ii = 1 if i ≤ ds and σ(i) ≤ ds,
(Psu)ii = 1 if i > ds and σ(i) > ds,
(Puu)ii = 1 if i > ds and σ(i) ≤ ds.

Since Q is upper triangular we can write

Q =
(

Q11 Q12

0 Q22

)
and Q−1 =

(
Q−1

11 −Q−1
11 Q12Q

−1
22

0 Q−1
22

)
where Q11 is a ds × ds submatrix. We also have

Pss + Pus =
(

Is 0
0 0

)
.

For t ≥ 0 and s ≥ 0, these results yield

U(t)(Pss + Pus)U(s)−1 = U+(t)Q(Pss + Pus)Q−1U+(s)−1

=U+(t) e−tJ

(
etJ1 0
0 etJ2

)(
Is −Q12Q

−1
22

0 0

)(
e−sJ1 0

0 e−sJ2

)
esJU+(s)−1

=
[
U+(t) e−tJ

]( e(t−s)J1 − etJ1Q12Q
−1
22 e−sJ2

0 0

)[
esJU+(s)−1

]
.

The expressions in square brackets are bounded for t ≥ 0, s ≥ 0. We can
choose K1 > 0 and M > 0 such that

∣∣ e(t−s)J1
∣∣ ≤ K1 e−2M(t−s) = K1 e2M(s−t)

when t − s ≥ 0. In addition, for t ≥ 0 we can find K2 such that
∣∣ etJ1

∣∣ ≤
K2 e−2Mt and

∣∣ e−tJ2
∣∣ ≤ K2 e−2Mt ≤ K2 e2Mt. This proves (i). Setting t = s in

the preceding equation and taking the limit yields (v). Parts (ii) and (vi) follows
in a similar manner using

Psu + Puu =
(

0 0
0 Iu

)
.
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We now turn to (iii). If we interchange columns of R̄ so that column j moves
to column σ(j) the result is a matrix with zeros above the diagonal. In terms
of matrices there exists W such that R̂ = R̄W is lower-triangular. The matrix
Pss +Psu consists of ones on the diagonal precisely when σ(j) > ds. This means

that W−1(Pss + Psu)W =
(

0 0
0 Iu

)
.

For t ≤ 0 and s ≤ 0, combining these results yield

U(t)(Pss+Psu)U(s)−1=
[
U−(t) e−tJ

]
etJ R̂

(
0 0
0 Iu

)
R̂−1 e−sJ

[
esJU−(s)−1

]
.

Parts (iii) and (vii) follow from this; a similar argument yields (iv) and (viii).

In the language of exponential dichotomies we see that Theorem 3.1.2 pro-
vides a two-sided exponential dichotomy. For t → −∞ an exponential dichotomy
is given by the fundamental solution U and the projection Pus + Puu while for
t → +∞ such is given by U and Pss + Pus.

Let uj denote column j of U and assume these are numbered so that

Puu =

⎛⎝ Id 0d 0
0d 0d 0
0 0 0

⎞⎠ , Pss =

⎛⎝ 0d 0d 0
0d Id 0
0 0 0

⎞⎠ .

Here, Id denotes the d×d identity matrix and 0d denotes the d×d zero matrix.
For each j = 1, · · · , n, let u⊥

j be the jth column of the matrixU⊥ := U−1∗, which
is a fundamental solution of the adjoint linear equation u̇(t) = −Df(γ(t))∗u(t)
of (3.1.5). In general we always assume < u⊥

2d, γ̇ >�= 0.
We use a functional-analytic method, so we fix m ∈ N and define the follow-

ing Banach spaces [199]:

Zm = C ([−m,m] , Rn) , Zp
m = {z ∈ Zm : z (−m) = z (m)} ,

Ym = L∞ ([−m,m] , Rn)

with the maximum norm ‖z‖m := max
t∈[−m,m]

|z(t)| for Zm, respectively L∞ norm

|z|m := ess supt∈[−m,m]|z(t)|, for Ym. Integration of the inequalities in Theorem
3.1.2 yields the following result.

Theorem 3.1.3. There exists a constant A > 0 such that for any m > 0 and
any z ∈ Ym the following hold:

(i)
∫ t

0

|U(t)(Pss + Pus)U(s)−1z(s)| ds ≤ A|z|m for t ∈ [0,m] ,

(ii)
∫ m

t

|U(t)(Psu + Puu)U(s)−1z(s)| ds ≤ A|z|m for t ∈ [0,m] ,

(iii)
∫ 0

t

|U(t)(Pss + Psu)U(s)−1z(s)| ds ≤ A|z|m for t ∈ [−m, 0] ,
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(iv)
∫ t

−m

|U(t)(Pus + Puu)U(s)−1z(s)| ds ≤ A|z|m for t ∈ [−m, 0] .

In order to apply the Lyapunov-Schmidt decomposition method, now we
consider the non–homogeneous linear equation

ż = Df(γ)z + h , (3.1.11)

and we prove a Fredholm–like alternative result for (3.1.11) (see also [140]).

Theorem 3.1.4. Let U , Pss, Psu, Pus, Puu be as in Theorem 3.1.2. There exist
m0 > 0, A > 0, B > 0 such that for every m > m0, m ∈ N there exists a linear
function Lm : Ym → R

n with ‖PuuLm‖ ≤ Ae−2Mm and with the property that
if h ∈ Ym satisfies ∫ m

−m

PuuU(t)−1h(t) dt + PuuLmh = 0

then (3.1.11) has a unique solution in z ∈ Zp
m satisfying PssU(0)−1z(0) = 0 and

‖z‖m ≤ B|h|m. Moreover, this solution z depends linearly on h.

Proof. Given h ∈ Ym we use variation of constants to construct the following
two solutions to (3.1.11):

z1(t) = U(t)Psuξ1 + U(t)(Pus + Puu)U(−m)−1ϕ1

+U(t)
∫ t

0

(Pss + Psu)U(s)−1h(s) ds + U(t)
∫ t

−m

(Pus + Puu)U(s)−1h(s) ds ,

z2(t) = U(t)Pusξ2 + U(t)(Psu + Puu)U(m)−1ϕ2

+U(t)
∫ t

0

(Pss + Pus)U(s)−1h(s) ds− U(t)
∫ m

t

(Psu + Puu)U(s)−1h(s) ds

satisfying PssU(0)−1z(0) = 0. Here ξ1, ξ2, ϕ1, ϕ2 are arbitrary. We consider
z1(t) for t ∈ [−m, 0] and z2(t) for t ∈ [0,m]. First we join these solutions at
t = 0: z1(0) = z2(0) which decomposes into the following three equations:

Psuξ1 − PsuU(m)−1ϕ2 +
∫ m

0

PsuU(s)−1h(s) ds = 0 , (3.1.12)

PusU(−m)−1ϕ1 +
∫ 0

−m

PusU(s)−1h(s) ds− Pusξ2 = 0 , (3.1.13)

PuuU(−m)−1ϕ1 − PuuU(m)−1ϕ2 +
∫ m

−m

PuuU(s)−1h(s) ds = 0 . (3.1.14)

Now we join z1(t), z2(t) at the endpoints. Solving (3.1.12), (3.1.13) for ξ1,
ξ2 respectively, then substituting these formulas for ξ1, ξ2 into the equation
z1(−m) = z2(m) and rearranging terms, we get the equation[(

Is 0
0 0

)
+ R1(m)

]
C−1ϕ1 +

[
−
(

0 0
0 Iu

)
+ R2(m)

]
C−1ϕ2 = Ψ(m,h) ,

(3.1.15)
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where the matrix C is taken from Theorem 3.1.2 and

R1(m) = C−1

[
U(−m)(Pus + Puu)U(−m)−1 − C

(
Is 0
0 0

)
C−1

−U(m)PusU(−m)−1

]
C ,

R2(m) = C−1

[
−U(m)(Psu + Puu)U(m)−1 + C

(
0 0
0 Iu

)
C−1

+U(−m)PsuU(m)−1

]
C ,

CΨ(m,h) = U(−m)
∫ 0

−m

(Pss + Psu)U(s)−1h(s) ds

+U(m)
∫ m

0

(Pss + Pus)U(s)−1h(s) ds

+U(−m)
∫ m

0

PsuU(s)−1h(s) ds + U(m)
∫ 0

−m

PusU(s)−1h(s) ds .

Using Theorem 3.1.2 we see that each |Ri(m)| → 0 as m → ∞ and from
Theorem 3.1.3 we get |Ψ(m,h)| = |h|mO(1). Writing

C−1ϕ1 =
[

u1

0

]
, C−1ϕ2 = −

[
0
u2

]
, u =

[
u1

u2

]
,

where u1, u2 are of order ds, du respectively, (3.1.15) becomes[
I + R1(m)

(
Is 0
0 0

)
−R2(m)

(
0 0
0 Iu

)]
u = Ψ(m,h) .

Since |Ri(m)| → 0 as m → ∞, there exists m0 > 0 so that the coefficient
matrix of u in the preceding equation is invertible whenever m ≥ m0. In this
case the equation can be solved for u which leads to functions ϕi(m,h) such
that |ϕi| = |h|mO (1). Then the remaining condition (3.1.14) takes the form∫ m

−m

PuuU(s)−1h(s) ds + PuuLmh = 0 ,

where Lmh = U(−m)−1ϕ1(m,h) − U(m)−1ϕ2(m,h). It follows from the prop-
erties of the ϕis and Theorem 3.1.2 that ‖PuuLmh‖ = |h|mO

(
e−2Mm

)
.

To formalize the preceding result we define a closed linear subspace Ỹm ⊂ Ym

by

Ỹm =
{

z ∈ Ym :
∫ m

−m

PuuU(t)−1z(t) dt + PuuLmz = 0
}

and then define a variation of constants map Km : Ỹm → Zm by taking Km(h)
to be the solution in Zp

m to (3.1.11) from Theorem 3.1.4. The norm ‖Km‖
is uniformly bounded with respect to m, and according to (3.1.11), we have
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moreover that Km maps any bounded subset of Ỹm into a bounded one of the
Sobolev space W 1,2([−m,m], Rn) which is compactly embedded into Zm [199].
Hence Km is a “nice” operator, i.e. it is a compact linear operator. To use the
Lyapunov-Schmidt decomposition in the next subsection, which is now based
on variation of constants for (3.1.11) from Theorem 3.1.4, we need the following
result.

Lemma 3.1.5. There exist A > 0, m0 > 0 and for each m > m0, m ∈ N

a projection Πm : Ym → Ym such that

(i) ‖Πm‖ < A for all m > m0 ,

(ii) R(I−Πm) = Ỹm .

Proof. Let uj denote column j of U and let φ : R → R be a smooth positive
function such that

∫∞
−∞ φ(t) dt = 2 and supt |φ(t)uj(t)| < Ã for all j and some

Ã>0. Choose m0>0 so that
∫m

−m
φ(t) dt≥1 when m>m0 and then define φm(t) =

φ(t)
/∫m

−m
φ(t) dt . Note that we have

∫m

−m
φm(t) dt = 1 and supt |φm(t)uj(t)| ≤

Ã when m > m0. Now define a d× d matrix A(m) = [aij(m)] by

aij(m) = [Lm(φmuj)]i , 1 ≤ i ≤ d , 1 ≤ j ≤ d .

We have |aij(m)| = O
(
e−2Mm

)
. Given z ∈ Ym we define p(z) ∈ R

d as

pi(z) =
∫ m

−m

< u⊥
i (t), z(t) > dt + (Lmz)i , 1 ≤ i ≤ d .

So that ∫ m

−m

PuuU(t)−1z(t) dt + PuuLmz = (p1(z), · · · , pd(z), 0, · · · , 0) .

By increasing m0 if necessary we can assume ‖A(m)‖ ≤ 1/2 for m > m0 so
then I + A(m) is invertible and we can write α = [I + A(m)]−1p(z). Let ᾱ ∈ R

n

denote (α1, · · · , αd, 0, · · · , 0) and define

(Πmz) (t) = φm(t)U(t)Puuᾱ .

It is straight–forward to verify that Πm has the required properties.

3.1.3 Subharmonics for Regular Periodic Perturbations

Our aim is to find subharmonic solutions to (3.1.3) of very large periods which
are close to γ. So we look for solutions to (3.1.3) in Zp

m by rewriting (3.1.3) as
an abstract operator inclusion (3.1.20). We use the Lyapunov-Schmidt method
along with the Leray-Schauder degree for inclusions to handle that abstract
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operator inclusion. To realize this functional-analytic approach, first, we define
the function b : R

d−1 × (0,∞) → R
n by

b(β, r) = γ(−r)− γ(r) +
d−1∑
i=1

βi(ui+d(−r)− ui+d(r)) ,

where β = (β1, · · · , βd−1). Note that

|b(β, r)| = O(e−Mr) (3.1.16)

uniformly with respect to β from any bounded subset of R
d−1. Next, in (3.1.3)

we now make the change of variable µ ↔ s2µ and

x (t + α) = γ(t) + s2z(t) +
d−1∑
i=1

sβiui+d(t) +
1

2(m + S)
b(sβ,m + S)t ,

where 1 > s > 0, α, βi ∈ R, m ∈ Z+, S = [1/s] and [s̃] is the integer part of s̃.
The function b is constructed so that if z ∈ Zp

m+S then x ∈ Zp
m+S . The differ-

ential inclusion for z is

ż(t)−Df(γ(t))z(t) ∈ gm,s(z(t), α, β, µ, t) a.e. on [−m− S,m + S] ,

where

gm,s(x, α, β, µ, t)={
v ∈ R

n : v ∈ 1
s2

{
f
(
s2x + γ(t) + s

d−1∑
i=1

βiui+d(t)+ 1
2(m+S)b(sβ,m + S)t

)
−f(γ(t))− s

d−1∑
i=1

βiu̇i+d(t)− 1
2(m+S)b(sβ,m + S)−Df(γ(t))s2x

}
+

k∑
j=1

µjfj

(
s2x + γ(t) + s

d−1∑
i=1

βiui+d(t)+ 1
2(m+S)b(sβ,m + S)t, s2µ, t+α

)}
.

Using gm,s we define a multivalued mapping

Gm,s : Zm+S × R× R
d−1 × R

k → 2Ym+S

by the formula

Gm,s(z, α, β, µ) ={
h ∈ Ym+S : h(t) ∈ gm,s(z(t), α, β, µ, t) a.e. on [−m− S,m + S]

}
,

so the multivalued equation for z can be written

ż −Df(γ)z ∈ Gm,s(z, α, β, µ) . (3.1.17)

Since gm,s : R
n × R × R

d−1 × R
k × R → 2R

n \ {∅} is upper–semicontinuous
with compact and convex values, according to Theorem 2.4.3, each of these
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sets Gm,s(z, α, β, µ) is non–empty. Moreover, these sets Gm,s(z, α, β, µ) are all
closed convex and bounded in Ym+S ⊂ L2 ([−m− S,m + S], Rn). So by The-
orem 2.1.1, all Gm,s(z, α, β, µ) are weakly compact in the Hilbert space L2

([−m− S,m + S], Rn).
We can not solve directly (3.1.17), so first of all, we insert it to the homotopy

Gm,s,λ(z, α, β, µ) ={
h ∈ Ym+S : h(t) ∈ gm,s,λ(z(t), α, β, µ, t) a.e. on [−m− S,m + S]

}
,

for λ ∈ [0, 1], where

gm,s,λ(x, α, β, µ, t)=

{
v ∈ R

n :

v ∈ λ
s2

{
f
(
s2x + γ(t)+s

d−1∑
i=1

βiui+d(t)+ 1
2(m+S)b(sβ,m + S)t

)
− f(γ(t))

−s
d−1∑
i=1

βiu̇i+d(t)− 1
2(m+S)b(sβ,m + S)−Df(γ(t))s2x

}
+λ

k∑
j=1

µjfj

(
s2x+γ(t) + s

d−1∑
i=1

βiui+d(t)+ 1
2(m+S)b(sβ,m + S)t, s2µ, t + α

)
+ 1−λ

2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t))+(1− λ)

k∑
j=1

µjfj(γ(t), 0, t+α)

}
.

Now based on Theorem 3.1.4 and Lemma 3.1.5, we apply the Lyapunov-Schmidt
decomposition to (3.1.17) and put it also in the addition homotopy in the fol-
lowing way

0 ∈
(
z − Fm,s,λ(z, α, β, µ), Bm,s,λ(z, α, β, µ)

)
, λ ∈ [0, 1] , (3.1.18)

where (
Fm,s,λ(z, α, β, µ), Bm,s,λ(z, α, β, µ)

)
=
{(

Km+S(I−Πm+S)h,Lm+Sh
)

: h ∈ Gm,s,λ(z, α, β, µ)
}

,

and

Lm+Sv =
∫ m+S

−m−S

PuuU(t)−1v(t) dt + PuuLm+Sv .

To solve (3.1.18), we introduce the new homotopy

0 ∈
(
z − λFm,s,λ(z, α, β, µ), Bm,s,λ(z, α, β, µ)

)
, λ ∈ [0, 1] . (3.1.19)

Since ||PuuLm+S || = O(e−2M(m+S)), we consider the decomposition and homo-
topy (

Bm1,s,λ + λBm2,s,λ

)
(z, α, β, µ) , λ ∈ [0, 1] ,
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where(
Bm1,s,λ +λBm2,s,λ

)
(z, α, β, µ) =

{
Lm1,sh+λLm2,sh : h ∈ Gm,s,λ(z, α, β, µ)

}
,

and

Lm1,sv =
∫ m+S

−m−S

PuuU(t)−1v(t) dt , Lm2,sv = PuuLm+Sv .

Summarizing we obtain that the solvability of (3.1.18–3.1.19) can be replaced
by the solvability of the following multivalued equation

0 ∈ Hm,s(z, α, β, µ, λ) :=(
z − λFm,s,λ(z, α, β, µ),

(
Bm1,s,λ + λBm2,s,λ

)
(z, α, β, µ)

)
,

(3.1.20)

when Hm,s : Zm+S ×R×R
d−1 ×R

k × [0, 1] → 2Zm+S×R
d \ {∅}, while 1 > s > 0

is sufficiently small and fixed, and λ ∈ [0, 1] is a homotopy parameter. Since
clearly the multivalued mapping

gm,s,· : [0, 1]× R
n × R× R

d−1 × R
k × R → 2R

n \ {∅}

is upper–semicontinuous with compact and convex values, using standard ar-
guments based on Mazur’s Theorem 2.1.2 (see arguments below (3.1.21)), the
mapping Hm,s is also upper–semicontinuous. Moreover, according to the com-
pactness of Km, IZm+S×Rd−Hm,s has compact convex values and maps bounded
sets into relatively compact ones. Hence topological degree methods of Section
2.4.3 can be applied to (3.1.20). Furthermore, ranges of Hm,s are bounded pro-
vided that z, β, µ are bounded, s > 0 is small fixed and m ∈ Z+, α ∈ R,
λ ∈ [0, 1] are arbitrary.

To state the main result, we introduce a multivalued Melnikov mapping for
our problem

Mµ : R
d → 2R

d \ {∅} , Mµ=(Mµ1, · · · ,Mµd)

Mµl(α, β)=

{∫∞
−∞〈h(s), u⊥

l (s)〉 ds : h ∈ L2
loc(R, Rn) satisfying a.e. on R

h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t))+

k∑
j=1

µjfj(γ(t), 0, t + α)
)}

.

(3.1.21)
Here L2

loc(R, Rn) :=∩m∈NL2([−m,m], Rn). The mapping Mµ is again upper–
semicontinuous with compact convex values and maps bounded sets into
bounded ones. The boundedness is clear, so we show the upper–semicontinuity:

Let

µp → µ0, (αp, βp) → (α0, β0), p ∈ N, hp ∈ L2
loc(R, Rn)

hp(t) ∈
(

1
2

d−1∑
i,j=1

βpiβpjD
2f(γ(t))(ud+i(t), ud+j(t)) +

k∑
j=1

µpjfj(γ(t), 0, t + αp)

)
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a.e. on R, and∫ ∞

−∞
〈hp(s), u⊥

i (s)〉 ds → M̄0i ∈ R, ∀ i = 1, 2, · · · , d .

Since sup
p∈N

|hp|∞ <∞, where | · |∞ is the norm on the Banach space L∞(R, Rn),

the sequence {hp}∞1 is bounded in the Hilbert space L2([−l, l], Rn) for any l ∈ N.
From Theorem 2.1.1 we can assume, by using the Cantor diagonal procedure and
by passing to a subsequence of the original one, that there is an h0 ∈ L2

loc(R, Rn)
such that {hp}∞1 tends weakly to h0 in L2([−l, l], Rn) for any l ∈ N. Next fix l.
By Mazur’s Theorem 2.1.2 we take h̃p ∈ con [{hp, hp+1, · · · }] such that h̃p → h0

in L2([−l, l], Rn) and so by passing to a subsequence that h̃pk
→ h0 a.e. on

[−l, l]. Let us fix for a while t ∈ [−l, l] such that h̃pk
(t) → h0(t) and the above

assumptions hold. Let Ot ⊂ R
n be an open convex neighborhood of

Γt :=
1
2

d−1∑
i,j=1

β0iβ0jD
2f(γ(t))(ud+i(t), ud+j(t)) +

k∑
j=1

µ0jfj(γ(t), 0, t + α0) .

By assumption (i) of Subsection 3.1.1, there is an p0 ∈ N such that

1
2

d−1∑
i,j=1

βpiβpjD
2f(γ(t))(ud+i(t), ud+j(t)) +

k∑
j=1

µpjfj(γ(t), 0, t + αp) ⊂ Ot

for any p ≥ p0. Hence hp(t) ∈ Ot, ∀p ≥ p0, and so h̃pk
(t) ∈ Ot for any pk ≥ p0.

Consequently, we obtain h0(t) ∈ Ōt. By assumption (i) of Subsection 3.1.1 and
taking Ot arbitrarily close to Γt, we obtain h0(t) ∈ Γt. Thus we have

h0(t) ∈
(

1
2

d−1∑
i,j=1

β0iβ0jD
2f(γ(t))(ud+i(t), ud+j(t)) +

k∑
j=1

µ0jfj(γ(t), 0, t + α0)

)

a.e on R. Finally, clearly∫ ∞

−∞
〈h0(s), u⊥

i (s)〉 ds = M̄0i, ∀ i = 1, 2, · · · , d .

The upper–semicontinuity of Mµ follows from Theorem 2.4.2.

Let Sk̃−1 = {b ∈ R
k̃ : |b| = 1} be the (k̃ − 1)–dimensional sphere. We are

ready to prove the main theorems of this section [73].

Theorem 3.1.6. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

and µ0 ∈ Sk−1 such that

(i) 0 /∈Mµ0(∂B)

(ii) deg(Mµ0 ,B, 0) �= 0
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Figure 3.2: The wedge-shaped region R

Then there is a constant K > 0 and a wedge–shaped region in R
k for µ of the

form (see Fig. 3.2)

R =
{

s2µ̃ : s > 0, respectively µ̃, is from an open small connected

neighborhood U1, respectively U2 ⊂ Sk−1, of 0 ∈ R, respectively of µ0

}
such that for any µ ∈ R of the form µ = s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, the
differential inclusion (3.1.3) possesses a subharmonic solution xm of period 2m
for any m ∈ N, m ≥ [1/s] satisfying, according to the change of variable below
(3.1.16),

sup
−m≤t≤m

∣∣xm(t)− γ(t− αm)
∣∣ ≤ Ks ,

where αm ∈ R and |αm| ≤ K.

Proof. We need to solve (3.1.17), which is inserted into the homotopy (3.1.20).
To handle (3.1.20), we use the following Lemmas.

Lemma 3.1.7. The above condition (i) implies for any A > 0 the existence of
constants δ > 0, 1 > s0 > 0 such that

|Bm1,s,λ(z, α, β, µ)| ≥ δ

for any 0 < s < s0, m ∈ Z+, λ ∈ [0, 1], ||z||m+S ≤ A, (α, β) ∈ ∂B, |µ−µ0| ≤ δ.

Proof. Assume the contrary. So there is an A > 0 and

sp → 0, mp ∈ Z+, λp → λ0, ||zp||mp+Sp
≤ A, p ∈ N

µp → µ0, ∂B � (αp, βp) → (α0, β0) ∈ ∂B, hp ∈ Gmp,sp,λp
(zp, αp, βp, µp)

such that
Lmp1,sp

hp → 0 as p→∞ .

Since sup
p∈N

|hp|∞,mp+Sp
< ∞, where | · |∞,m, m ∈ N is the norm on the Banach

space L∞([−m,m], Rn), we can assume like above, by using the Cantor diagonal
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procedure, that there is an h0 ∈ L2
loc(R, Rn) such that {hp}∞1 tends weakly to

h0 in any [−l, l], l ∈ N with respect to the L2 norm. Next, again by Mazur’s
Theorem 2.1.2 we can suppose that {hp}∞1 tends to h0 almost everywhere.

Furthermore, clearly the following holds

lim
s→0+

Gm,s,λ(z, α, β, 0) =
1
2

d−1∑
i,j=1

βiβjD
2f(γ)

(
ui+d, uj+d

)
(3.1.22)

uniformly with respect to z, β bounded and α ∈ R,m ∈ Z+, λ ∈ [0, 1] arbitrary.
Moreover, by Theorem 3.1.4 and the properties (ii) and (iv) of Theorem 3.1.2,
we have

lim
s→0+

Lm1,sv =
∫ ∞

−∞
PuuU(t)−1v(t) dt , lim

s→0+
Lm2,sv = 0 (3.1.23)

uniformly with respect to v bounded and m ∈ Z+ arbitrary.
Finally using (3.1.22–3.1.23), we obtain

h0(t) ∈
(

1
2

d−1∑
i,j=1

β0iβ0jD
2f(γ(t))(ud+i(t), ud+j(t))

+
k∑

j=1

µ0jfj(γ(t), 0, t + α0)
)

a.e. on R ,

and
∫∞
−∞ PuuU(t)−1h0(t) dt = 0. This contradicts to (i) of this theorem.

Using Lemma 3.1.7, the next result follows directly from the construction of
Hm,s.

Lemma 3.1.8. There are open small connected neighborhoods Ũ1 ⊂ R, U2 ⊂
Sk−1 of 0, respectively of µ0, and a constant K1 > 0 such that

0 /∈ Hm,s(∂Ω, µ, λ)

for any 0 < s ∈ Ũ1, µ ∈ U2, λ ∈ [0, 1], m ∈ Z+, where

Ω =
{

(z, α, β) ∈ Zm+S × R
d : ||z||m+S < K1, (α, β) ∈ B

}
.

From the homotopy invariance property of the Leray-Schauder topological
degree, by Lemma 3.1.8 for any 0 < s ∈ Ũ1, µ ∈ U2, m ∈ Z+, we obtain

deg
(
Hm,s(·, µ, 1),Ω, 0

)
= deg

(
Hm,s(·, µ0, 0),Ω, 0

)
.

Since

Hm,s(z, α, β, µ0, 0)=
(
z,
{
Lm1,sh : h ∈ Ym+S satisfying a.e. on [−m−S,m+S]

h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t))+

k∑
j=1

µ0jfj(γ(t), 0, t+α)
)})

,
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in order to compute deg
(
Hm,s(·, µ0, 0),Ω, 0

)
, we take the upper–semicontinuous

homotopy{
λLm1,sh+(1−λ)

∫∞
−∞ PuuU(t)−1h(t) dt : h ∈ L2

loc(R, Rn) satisfying a.e. on R

h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t))+

k∑
j=1

µ0jfj(γ(t), 0, t + α)
)}

.

Then using (3.1.23), the assumption (ii) of Theorem 3.1.6 as well as formula
(2.2.5) and Lemma 3.1.7, when s0 is shrunk if necessary, we arrive at

deg
(
Hm,s(·, µ0, 0),Ω, 0

)
= deg(Mµ0 ,B, 0) �= 0 .

Hence (3.1.20) has a solution in Ω for any 0 < s ∈ U1, µ ∈ U2, m ∈ Z+ and
λ = 1, where U1 = Ũ1 ∩ {s ∈ R : |s| < s0}. This solution gives a solution of
(3.1.17) according to the definition of (3.1.20). The proof of Theorem 3.1.6 is
completed.

Now we concentrate on the case d = 1 since it has a specific feature. Then
Mµ : R → 2R \ {∅} has the form

Mµ(α) =

{ ∫∞
−∞〈h(s), u⊥

1 (s)〉 ds : h ∈ L2
loc(R, R);

h(t) ∈
k∑

j=1

µjfj(γ(t), 0, t + α) a.e. on R

}
.

(3.1.24)

For any A,B ⊂ R we set AB := {ab | a ∈ A, b ∈ B}.
Theorem 3.1.9. Let d = 1. If there are constants a < b and µ0 ∈ Sk−1 such
that

Mµ0(a)Mµ0(b) ⊂ (−∞, 0) ,

then there is a constant K > 0 and a wedge–shaped region in R
k for µ of the

form

R =
{
± s2µ̃ : s > 0 respectively µ̃, is from an open small connected

neighborhoodU1, respectively U2 ⊂ Sk−1, of 0 ∈ R, respectively of µ0

}
such that for any µ ∈ R of the form µ = ±s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, the
differential inclusion (3.1.3) possesses a subharmonic solution xm of period 2m
for any m ∈ N, m ≥ [1/s] satisfying, according to the change of variable below
(3.1.16),

sup
−m≤t≤m

∣∣xm(t)− γ(t− αm)
∣∣ ≤ Ks2 ,

where αm ∈ (a, b).
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Proof. We apply Theorem 3.1.6 with B = (a, b) by considering both Mµ0 and
M−µ0 . The assumption (i) of Theorem 3.1.6 is clearly satisfied. To prove (ii),
it is enough to consider the case (the remaining one is similar) that Mµ0(a)
contains positive and Mµ0(b) negative numbers, and then to take the homotopy

Mλ(α) := λMµ0(α) + (1− λ)
(a + b

2
− α
)
.

From 0 /∈ Mλ(b), 0 /∈ Mλ(a) for any λ ∈ [0, 1] it follows deg(Mµ0 , (a, b), 0) =
deg(M1, (a, b), 0) = deg(M0, (a, b), 0) �= 0. Similarly for M−µ0 .

Remark 3.1.10. The restriction |µ0| = 1 is not essential, because of Mµ in both
(3.1.21)–(3.1.24) is homogeneous with respect to the variables β and µ.
Remark 3.1.11. If d = 1, k = 1 and f1 is C2-smooth in (3.1.3) then the ex-
istence of a simple root of M1(α) = 0 implies chaos for such systems by the
Smale-Birkhoff Homoclinic Theorem 2.5.4. This is mentioned above in Chapter
1 (Introduction) and Sections 2.5.3, 3.1.1. In particular, they have subharmonic
solutions of all large periods. But the existence of a simple root α0 of M1(α) = 0
gives a small δ̃ > 0 such that a = α0 − δ̃, b = α0 + δ̃ satisfy the assumption
of Theorem 3.1.9. Consequently, Theorem 3.1.9 is an extension of the Smale-
Birkhoff Homoclinic Theorem 2.5.4 concerning subharmonics to the multivalued
case (3.1.3) (see also Subsection 4.2.1).

3.1.4 Subharmonics for Singular Periodic Perturbations

Now we directly extend a method of Subsection 3.1.3 to singularly perturbed
differential inclusions of the form

εẋ(t) ∈ f(x(t)) + εh(x(t), ε, t) a.e. on R , (3.1.25)

where ε �= 0 is small, as well as to the modification of (3.1.25) given by

εẋ(t) ∈ f(x(t)) + ε2h(x(t), ε, t) a.e. on R , (3.1.26)

where ε > 0 is small, f has the above properties (i–iii) of Subsection 3.1.1 and
h : R

n × R× R → 2R
n \ {∅} is 2–periodic in t as well as upper–semicontinuous

with compact convex values. We show the existence of 2m–periodic solutions of
(3.1.25)–(3.1.26) for any m ∈ N, not just for large m like for (3.1.3), provided
f, h satisfy additional conditions. We are motivated to study (3.1.25–3.1.26) by
similar results for differential equations with slowly varying coefficients [29,90].

Searching for periodic solutions of (3.1.25) with periods 2m, m = 1, 2, · · · is
equivalent to finding 2m

ε –periodic solutions of the differential inclusion

ẋ(t) ∈ f(x(t))± εh(x(t),±ε,±εt) a.e. on R, ε > 0 . (3.1.27)

Inclusion (3.1.27) has a slowly varying coefficient represented by the term ±εt.
Now we can apply the procedure of Subsection 3.1.3 to (3.1.27) with the follow-
ing exchanges

ε ↔ ε2, m↔ m

ε2
, S ↔ 0, m ∈ N is arbitrary .
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This induces in (3.1.27) the change of variables

x
(
t± α

ε2

)
= γ(t) + ε2z(t) +

d−1∑
i=1

εβiui+d(t) +
ε2

2m
b(εβ,

m

ε2
)t ,

where −m
ε2 ≤ t ≤ m

ε2 and 1 > ε > 0, α, βi ∈ R. Then after insertion it into
(3.1.27) the differential inclusion for z is

ż(t)−Df(γ(t))z(t) ∈ gm,ε(z(t), α, β,±, t) a.e. on [−m

ε2
,
m

ε2
] ,

where

gm,ε(x, α, β,±, t) ={
v ∈ R

n : v ∈ 1
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + ε2

2mb(εβ, m
ε2 )t
)

−f(γ(t))− ε
d−1∑
i=1

βiu̇i+d(t)− ε2

2mb(εβ, m
ε2 )−Df(γ(t))ε2x

}
±h
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + ε2

2mb(εβ, m
ε2 )t,±ε2,±ε2t + α

)}
.

Consequently, the formulas (3.1.17)–(3.1.23) can be straightforwardly modified
to (3.1.27). The multivalued mappings of (3.1.21)–(3.1.24) possess the forms

M± : R
d → 2R

d \ {∅} , M± = (M±1, · · · ,M±d)

M±l(α, β) =

{∫∞
−∞〈p(s), u⊥

l (s)〉 ds : p ∈ L2
loc(R, Rn);

p(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t))± h(γ(t), 0, α)

)
a.e. on R

}
,

(3.1.28)
and

M : R → 2R \ {∅}
M(α) =

{ ∫∞
−∞〈p(s), u⊥

1 (s)〉 ds : p ∈ L2
loc(R, R);

p(t) ∈ h(γ(t), 0, α) a.e. on R

}
.

(3.1.29)

Then Theorems 3.1.6–3.1.9 have the following analogies.

Theorem 3.1.12. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

and ∗ ∈ {−,+} such that 0 /∈ M∗(∂B) and deg(M∗,B, 0) �= 0. Then there is a
constant K > 0 such that for any sufficiently small ε �= 0 with sgn ε = ∗1, the
differential inclusion (3.1.25) possesses a subharmonic solution xm,ε of period
2m for any m ∈ N satisfying

sup
−m≤t≤m

∣∣∣∣xm,ε(t)− γ

(
t− αm,ε

ε

)∣∣∣∣ ≤ K
√
|ε| ,

where αm,ε ∈ R and |αm,ε| ≤ K.
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Theorem 3.1.13. Let d=1. If there are constants a < b such that M(a)M(b) ⊂
(−∞, 0). Then there is a constant K > 0 such that for any sufficiently small
ε �= 0, the differential inclusion (3.1.25) possesses a subharmonic solution xm,ε

of period 2m for any m ∈ N satisfying

sup
m≤t≤m

∣∣∣∣xm,ε(t)− γ

(
t− αm,ε

ε

)∣∣∣∣ ≤ K|ε| ,

where αm,ε ∈ (a, b).

Finally we consider the following differential inclusion equivalent to (3.1.26)
of the form

ẋ(t) ∈ f(x(t)) + ε2h(x(t), ε, εt) a.e. on R, ε > 0 . (3.1.30)

Now we make in (3.1.30) the change of variables

x
(
t +

α

ε

)
= γ(t) + ε2z(t) +

d−1∑
i=1

εβiui+d(t) +
ε

2m
b(εβ,

m

ε
)t ,

where −m
ε ≤ t ≤ m

ε and 1 > ε > 0, α, βi ∈ R. Then the differential inclusion
for z is

ż(t)−Df(γ(t))z(t) ∈ qm,ε(z(t), α, β, t) a.e. on [−m

ε
,
m

ε
] ,

where

qm,ε(x, α, β, t) ={
v ∈ R

n : v ∈ 1
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + ε
2mb(εβ, m

ε )t
)

−f(γ(t))− ε
d−1∑
i=1

βiu̇i+d(t)− ε
2mb(εβ, m

ε )−Df(γ(t))ε2x
}

+h
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + ε
2mb(εβ, m

ε )t, ε, εt + α
)}

.

We see that the procedure for (3.1.27) can be applied to (3.1.30). Consequently,
we obtain the following result.

Theorem 3.1.14. If either for d > 1, there is a non–empty open bounded set
B ⊂ R

d such that 0 /∈ M+(∂B) and deg(M+,B, 0) �= 0, or for d = 1, there
are constants a < b such that M(a)M(b) ⊂ (−∞, 0). Then there is a constant
K > 0 such that for any sufficiently small ε > 0, the differential inclusion
(3.1.26) possesses a subharmonic solution xm,ε of period 2m for any m ∈ N

satisfying

sup
−m≤t≤m

∣∣∣∣xm,ε(t)− γ

(
t− αm,ε

ε

)∣∣∣∣ ≤ Kε for d > 1 (≤ Kε2 for d = 1) ,

where αm,ε ∈ R and |αm,ε| ≤ K. Moreover, αm,ε ∈ (a, b) for d = 1.
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3.1.5 Subharmonics for Regular Autonomous
Perturbations

In this subsection, we study (3.1.3) when the nonlinearities are independent
of t, i.e.,

ẋ(t) ∈ f(x(t)) +
k∑

i=1

µifi(x(t), µ) a.e. on R , (3.1.31)

and k ≥ 2. So (3.1.31) is autonomous and then a time shifted solution is again
its solution. For this reason, we take α = 0 in Subsection 3.1.3. We know that to
solve the problem of existence of periodic solutions for (3.1.31) near γ is reduced
to the solvability of multivalued equation (3.1.20) with m ∈ [0,∞). Since we lose
α in (3.1.21–3.1.24) by setting α = 0, we need to replace it. For this reason, first
of all, we divide the sets {1, · · · , d− 1} and {1, · · · , k} into two complementary
subsets {i1, · · · , id1}, {id1+1, · · · , id−1} and {j1, · · · , jk1}, {jk1+1, · · · , jk} such
that d1 + k1 = d. These subsets may be empty. We put

ξ = (βi1 , · · · , βid1
, µj1 , · · · , µjk1

) ∈ R
d

τ = (µj1 , · · · , µjk1
) ∈ R

k1

ρ = (µjk1+1, · · · , µjk
) ∈ R

k−k1

θ = (βid1+1, · · · , βid−1 , µjk1+1, · · · , µjk
) ∈ R

k−1 .

The projections θ → ρ, ξ → τ are denoted by P1, P2, respectively, so ρ =
P1θ, τ = P2ξ. Instead of (3.1.21–3.1.24), we consider

Mθ : R
d → 2R

d \ {∅} , Mθ = (Mθ1, · · · ,Mθd)

Mθl(ξ) =

{∫∞
−∞〈h(s), u⊥

l (s)〉 ds : h ∈ L2
loc(R, Rn);

h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2f(γ(t))(ud+i(t), ud+j(t)) +

k∑
j=1

µjfj(γ(t), 0)
)
a.e. on R

}
.

(3.1.32)

Theorem 3.1.15. Let k > k1. Assume the existence of a non–empty open
bounded set B ⊂ R

d and θ0 ∈ R
k−1 such that 0 /∈ Mθ0(∂B) and deg(Mθ0 ,B, 0)

�= 0. Then there is a constant K > 0, an open bounded neighborhood U3 of
(I− P1)θ0 ∈ R

d−1−d1 and an open bounded region in R
k−k1 for ρ of the form

R=
{

s2ρ̃: s>0, respectively ρ̃, is from an open small connected neighborhoods

U1, respectively U2, of 0 ∈ R, respectively of ρ0 = P1θ0 ∈ R
k−k1

}
such that for any ρ ∈ R of the form ρ = s2ρ̃, 0 < s ∈ U1, ρ̃ ∈ U2, and any T ≥
[1/s], there is a (d−1−d1)–parametric family τ(T,ρ,p) ∈ P2(B), p ∈ U3 such that
the differential inclusion (3.1.31) with µ = µp = (s2τ(T,ρ,p), ρ), p ∈ U3 possesses
a T–periodic solution xT,p satisfying, according to the change of variable below
(3.1.16),

sup
−T≤t≤T

∣∣xT,p(t)− γ(t)
∣∣ ≤ Ks for d > 1, (≤ Ks2 for d = 1) .
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If d = d1 + 1 then U3 is omitted.

Proof. The proof is the same as for Theorem 3.1.6. The only difference is now
that (3.1.20) has to be solved in z and ξ ∈ R

d while θ ∈ R
k−1 is a parameter.

We note that now α = 0 and m ∈ [0,∞). Hence we have

0 ∈ Hm,s(z, 0, β, µ, λ) = Hm,s(z, ξ, θ, λ) (3.1.33)

on the set

Ω =
{

(z, ξ) ∈ Zm+S × R
d : ||z||m+S < K1, ξ ∈ B

}
for a constant K1 > 0. Consequently from the proof of Theorem 3.1.6, (3.1.33),
with λ = 1, has a solution in Ω for any 0 < s ∈ U1, θ ∈ Ũ2 = U3 × U2 ⊂
R

d−1−d1 × R
k−k1 and m ∈ [0,∞), where U1, respectively Ũ2 is an open small

connected neighborhood of 0 ∈ R, respectively of θ0 ∈ R
k−1. On the other hand,

according to the definition of Hm,s, Theorem 3.1.4 and the change of variable
below (3.1.16), any solution of (3.1.33) satisfies the relation PssU(0)−1z(0) = 0.
Consequently, solutions are different for different p ∈ U3.

Remark 3.1.16. For ρ0 = 0 in Theorem 3.1.15 we can take

R =
{
ρ ∈ R

k−k1 : |ρ| < r1

}
for r1 > 0 sufficiently small. Indeed, since now 0 ∈ U2, by expressing any ρ ∈ R
in the form ρ = s2ρ̃, 0 < s ∈ U1, ρ̃ ∈ U2, Theorem 3.1.15 can be applied.
Moreover, there is a s0 > 0 such that any µ ∈ R does possess the previous form
with s = s0 and ρ̃ ∈ U2. Consequently, (3.1.31) has in this case a T–periodic
solution for any T ≥ [1/s0], i.e., the lower bound of the period T is independent
of µ ∈ R.

For d = 1, like in Theorem 3.1.9 we can take a symmetric R with respect to
0 ∈ R

k−k1 in Theorem 3.1.15.

3.1.6 Applications to Discontinuous O.D.Eqns

In this subsection we use abstract bifurcation results of the previous Subsections
3.1.3–3.1.5 to study concrete discontinuous differential equations. First of all,
we apply Theorem 3.1.9 to (3.1.2) of the form

ẍ + g(x) + µ1 sgn ẋ = µ2ψ(t) , (3.1.34)

where µ1,2 ∈ R are small parameters, g ∈ C2(R, R), g(0) = 0, g′(0) < 0, ψ ∈
C1(R, R) and ψ is periodic. We assume the existence of a homoclinic solution ω
of ẍ + g(x) = 0 such that lim

t→±∞ω(t) = 0 and ω(0) > 0 (see Fig. 3.3).

In further calculations we need the following well-known property of ω(t).

Lemma 3.1.17. There is a unique t0 ∈ R satisfying ω̇(t0) = 0. Consequently,
ω̇(t) > 0, ∀ t < t0 and ω̇(t) < 0, ∀ t > t0.
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Figure 3.3: The homoclinic structure of ẍ + g(x) = 0

Proof. If t0 �= t1 are such that ω̇(t0) = ω̇(t1) = 0, then x0(t) = ω(2t0 − t) and
x1(t) = ω(2t1 − t) are both solutions of ẍ + g(x) = 0 satisfying

x0(t0) = ω(t0), ẋ0(t0) = ω̇(t0)
x1(t1) = ω(t1), ẋ1(t1) = ω̇(t1) .

Hence x0(t) = ω(t) = x1(t) and then

ω(2(t0 − t1) + t) = ω(t) .

But ω can not be periodic. On the other hand, since lim
t→±∞ω(t) = 0, there is a

t0 such that ω̇(t0) = 0. So there is a unique t0 ∈ R such that ω̇(t0) = 0. Since
ω(0) > 0, we obtain that ω̇(t) > 0, ∀ t < t0 and ω̇(t) < 0, ∀ t > t0.

Rewriting (3.1.34) in the form

ẋ = y, ẏ = −g(x)− µ1 sgn y + µ2ψ(t) , (3.1.35)

in the notations of Subsection 3.1.1, we put

f(x, y) =
(
y,−g(x)

)
, f1(x, y, µ, t) =

(
0,−Sgn y

)
f2(x, y, µ, t) =

(
0, ψ(t)

)
, γ = (ω, ω̇) ,

where Sgn r is defined by (2.4.1). Since n = 2, we have d = 1 and

u2 = (ω̇, ω̈), u⊥
1 = (−ω̈, ω̇) .

Since ω(0) > 0, Lemma 3.1.17 implies ω(t0) > 0. Then easy calculation in
(3.1.24) leads to

Mµ(α) = −µ1

(∫ t0

−∞
ω̇(s) ds−

∫ ∞

t0

ω̇(s) ds
)

+ µ2

∫ ∞

−∞
ω̇(s)ψ(s + α) ds

= A(α)µ2 − 2ω(t0)µ1

with A(α) =
∫∞
−∞ ω̇(s)ψ(s + α) ds. Since A is periodic and C1–smooth, there

are constants m̄ := min A and M̄ := max A. By applying Theorem 3.1.9, we
obtain the following theorem.
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Theorem 3.1.18. Assume that A has critical points only at maximums and
minimums. Then there is an open, wedge–shaped subset R of {(µ2, µ1) : µ1,2 ∈R,
µ2 �= 0} with the limits slopes

m̄

2ω(t0)
and

M̄

2ω(t0)
,

on which the (3.1.34) has subharmonic solutions with all sufficiently large periods.

Proof. For any (µ2, µ1) ∈ R
2 such that

µ2
1 + µ2

2 = 1, µ2 �= 0, m̄ <
2ω(t0)µ1

µ2
< M̄ ,

Mµ does have a simple root. Then the assumptions of Theorem 3.1.9 are satisfied
for a small open interval (a, b) containing this simple root.

Remark 3.1.19. (a) Since any element (µ2, µ1) of R satisfies

|µ2| > 2ω(t0)
max {|M̄ |, |m̄|} |µ1| ,

the driving force term in (3.1.34) has to be sufficiently large with respect to the
dry friction force for the applicability of Theorem 3.1.9 to (3.1.34).

(b) If ω(0) < 0 then Mµ(α) = 2ω(t0)µ1 + A(α)µ2.
For more concreteness, we consider the Duffing–type equation

ẍ− x + 2x3 + µ1 sgn ẋ = µ2 cos t . (3.1.36)

Then ω(t) = sech t and A(α) =
∫∞
−∞

˙sech s cos (s + α) ds = π sech π
2 sin α. So

M̄ = −m̄ = π sech π
2 , t0 = 0, ω(t0) = 1. Theorem 3.1.18 gives the following

Corollary 3.1.20. Equation (3.1.36) has subharmonic solutions with all suffi-
ciently large periods provided that the parameters µ1, µ2 are sufficiently small
satisfying

π

2
sech

π

2
· |µ2| > |µ1| .

Now we apply Theorem 3.1.14 to a modification of (3.1.34) of the form

ẍ + δg(x) +
ψ(t)√

δ
ẋ + η sgn ẋ = 0 , (3.1.37)

where g ∈ C2(R, R), g(0) = 0, g′(0) < 0, δ > 0 is a large parameter, ψ ∈
C1(R, (0,∞)) is periodic and η is a constant. Now we assume the existence of a
homoclinic solution ω of ẍ + g(x) = 0 such that lim

t→±∞ω(t) = 0 and ω(0) < 0.

Then again there is a unique t0 ∈ R satisfying ω̇(t0) = 0, and ω̇(t) < 0,
∀ t < t0, ω̇(t) > 0, ∀ t > t0 and ω(t0) < 0. Since δ is large, we set ε =

√
1/δ, and

rewrite (3.1.37) in the form

εẋ = y, εẏ = −g(x)− ε2
(
ψ(t)y + η sgn y

)
, (3.1.38)

so Theorem 3.1.14 can be applied for (3.1.38) to obtain the following result.
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Theorem 3.1.21. If the function M(α) = 2ηω(t0) − ψ(α)
∫∞
−∞ ω̇(s)2 ds has

a simple root, then for any δ > 0 sufficiently large, (3.1.37) has subharmonic
solutions of all periods.

Remark 3.1.22. (a) It is clear that for the existence of a simple root of M(α) in
Theorem 3.1.21, it is necessary to assume

η ∈
[
M̃

∫ ∞

−∞
ω̇(s)2 ds/2ω(t0), m̃

∫ ∞

−∞
ω̇(s)2 ds/2ω(t0)

]
,

where m̃ = min ψ, M̃ = max ψ. On the other hand, if ψ has critical points only
at minimums and maximums, then the condition

η ∈
(

M̃

∫ ∞

−∞
ω̇(s)2 ds/2ω(t0), m̃

∫ ∞

−∞
ω̇(s)2 ds/2ω(t0)

)
is sufficient for the existence of a simple root of M(α).

(b) If η ≥ 0 and x is a T–periodic solution of (3.1.37) then

0 =
∫ T

0

(
ẍ(s)ẋ(s) + δg(x(s))ẋ(s) +

ψ(s)√
δ

ẋ(s)2 + η|ẋ(s)|
)

ds

≥
∫ T

0

ψ(s)√
δ

ẋ(s)2 ds ≥ m̃√
δ

∫ T

0

ẋ(s)2 ds .

So x is constant. Hence (3.1.37) with η ≥ 0 has at most constant subharmonic
solutions.

For more concreteness, we consider again the Duffing–type equation

ẍ + δ(−x + 2x3) +
(2 + cos t)√

δ
ẋ + η sgn ẋ = 0 (3.1.39)

with g(x) = −x + 2x3, ψ(t) = 2 + cos t, ω(t) = −secht. Then m̃ = 1, M̃=3, t0=0,
ω(t0) = −1 and

∫∞
−∞ ω̇(s)2 ds =

∫∞
−∞( ˙sech s)2 ds = 2/3. Consequently, Remark

3.1.22 a) gives the next result.

Corollary 3.1.23. Equation (3.1.39) has subharmonic solutions with all periods
provided that δ > 0 is sufficiently large and η ∈ (−1,−1/3).

Now we deal with more difficult problem represented by the following coupled
discontinuous differential equations

ẍ1 + δg(x1) + η1 sgn ẋ1= η2x2

ẍ2 + δg(x2)= ψ(t)x1 ,
(3.1.40)

where η1 > 0, η2 �= 0 are constants, δ > 0 is a large parameter, ψ ∈ C1(R, R)
is periodic and g satisfies the properties of (3.1.34). Setting ε =

√
1/δ and

rewriting system (3.1.40) in the form

εẋ1 = y1, εẏ1 = −g(x1) + ε2
(− η1 sgn y1 + η2x2

)
εẋ2 = y2, εẏ2 = −g(x2) + ε2ψ(t)x1 ,

(3.1.41)
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we have in the notation of (3.1.30)

f(x1, y1, x2, y2) = (y1,−g(x1), y2,−g(x2))
h(x1, y1, x2, y2, ε, t) = (0,−η1 Sgn y1 + η2x2, 0, ψ(t)x1) .

Since ẋ = f(x) with x = (x1, y1, x2, y2) is ẍ1 + g(x1) = 0 and ẍ2 + g(x2) = 0, so
it is decoupled, it is better to take

γσ = (ω, ω̇, ωσ, ω̇σ), ωσ(t) = ω(t− σ), σ ∈ R

u⊥
σ1 = (−ω̈, ω̇, 0, 0), u⊥

σ2 = (0, 0,−ω̈σ, ω̇σ)
uσ3 = (ω̇, ω̈, 0, 0), uσ4 = (0, 0, ω̇σ, ω̈σ) .

Note {γσ(t) | σ, t ∈ R} represents a non-degenerate homoclinic manifold of ẋ =
f(x) to x = 0 (see Subsection 4.1.4 for similar results). So β is replaced with σ.
Then we use formula (3.1.29) twice for u⊥

σ1 and u⊥
σ2 instead of (3.1.28) to get

M(α, σ) =
( −2η1ω(t0) + η2B(σ)

−ψ(α)B(σ)

)
with B(σ) =

∫∞
−∞ ω(t− σ)ω̇(t) dt. Next we make in (3.1.30) the change of vari-

ables
x
(
t +

α

ε

)
= γσ(t) + ε2z(t) +

ε

2m

(
γσ

(
−m

ε

)
− γσ

(m

ε

))
t .

In this way, we can incorporate parameter σ in the differential inclusion above
Theorem 3.1.14 concerning (3.1.30). Consequently, it is enough to find a simple
zero point of the map

M :
(

α
σ

)
→
( −2η1ω(t0) + η2B(σ)

−ψ(α)B(σ)

)
.

Summarizing, we obtain the next result.

Theorem 3.1.24. If there is a simple root σ0 of B(σ0)− 2η1ω(t0)/η2 = 0 and
a simple root α0 of ψ(α) = 0 as well, then (3.1.40) has subharmonic solutions
with all periods provided that δ > 0 is sufficiently large.

Proof. According to the above arguments, it is enough to observe that (α0, σ0)
is a simple zero point of M , i.e. M(α0, σ0) = 0 and detDM(α0, σ0) �= 0, which
is obvious.

Corollary 3.1.25. There is a constant K > 0 such that if 0 < η1/|η2| < K
and ψ(α) = 0 has a simple root, then (3.1.40) has subharmonic solutions with
all periods provided that δ > 0 is sufficiently large.

Proof. Since B(0) = 0 and B′(0) �= 0, there is a constant K > 0 such that for
any 0 < η1/|η2| < K, there is a small simple root of B(σ0) = 2η1ω(t0)/η2. The
proof is finished by Theorem 3.1.24.
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For more concreteness, we again take g(x) = −x + 2x3, ψ(t) = cos t, ω(t) =
sech t, t0 = 0, ω(t0) = 1. Then

B(σ) = 2
sinhσ − σcosh σ

sinh2 σ
.

Function B(σ) has the only critical points: one maximum about 0.6196336 at
σ

.= −1.6061152 and one minimum about −0.6196336 at σ
.= 1.6061152. More-

over, B(σ) = 0 if and only if σ = 0. Hence we obtain the following result.

Corollary 3.1.26. The equation

ẍ1 + δ(−x1 + 2x3
1) + η1 sgn ẋ1 = η2x2

ẍ2 + δ(−x2 + 2x3
2) = x1 cos t

has subharmonic solutions with all periods provided that δ > 0 is sufficiently
large and 0 < η1/|η2| < 0.3098167.

Finally, we consider the following autonomous version of (3.1.34)

ẍ + g(x) + µ1 sgn ẋ + µ2ẋ = 0 , (3.1.42)

where µ1,2 ∈ R are small parameters and g satisfies the properties either of
(3.1.34) or (3.1.37).

Theorem 3.1.27. There is a r1 > 0 and mappings

Π1, Π2 : (−r1, r1)× (1/r1,∞) → R

such that for any T ∈ (1/r1,∞), (3.1.42) has a T–periodic solution near ω with
either for any µ2 ∈ (−r1, r1) and µ1=Π1(µ2, T ) or for any µ1 ∈ (−r1, r1) and
µ2=Π2(µ1, T ). Moreover, lim

T→∞,µ2→0
Π1(µ2, T )=0 and lim

T→∞,µ1→0
Π2(µ1, T )=0.

Proof. We apply Theorem 3.1.15 with either ξ = µ1 and θ = µ2 or ξ = µ2 and
θ = µ1. Then according to the above computations

Mθ(ξ) = −2|ω(t0)|µ1 − µ2

∫ ∞

−∞
ω̇(s)2 ds .

So we take in Theorem 3.1.15: B = (−1, 1), θ0 = 0, d = 1, d1 = 0 and
by Remark 3.1.16, we obtain the desired mappings Π1,2. Finally, the limits

lim
T→∞,µ2→0

Π1(µ2, T ) = 0 and lim
T→∞,µ1→0

Π2(µ1, T ) = 0 follow from the fact that

the only zero point of Mθ0(ξ) = 0 is ξ = 0.

Remark 3.1.28. Like in Remark 3.1.22b), it is clear that (3.1.42) with µ1µ2 ≥
0, µ2

1 + µ2
2 �= 0 has at most constant periodic solutions.
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Figure 3.4: The graphs of functions y = 2
π arctan kx (thick line) and y = Φ(x)

with k = 10

Remark 3.1.29. The discontinuous function sgn r modeling dry friction in the
Coulomb’s friction law is often approximated [9,12] by the mathematically con-
venient approximation of the form

r → 2
π

arctan kr, k � 1 .

On the other hand, its physically more relevant approximation is given by (see
Fig. 3.4)

Φ(r) =
1
π

(
7 arctan 8kr − 5 arctan 4kr

)
, k � 1 .

The function Φ has two symmetric spikes at r = ±
√

6
8k of the values

± 1
π

(
7 arctan

√
6− 5 arctan

√
6

2

)
.= ±1, 2261344 .

Moreover, Φ(r) is quickly near 1, respectively −1, when r > 0, respectively
r < 0, tends off 0. Then a multivalued version of Φ can be taken as

Sgnη,ζ,κ r =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 for r < −η ,
[−ζ,−κ] for − η ≤ r < 0 ,
[−ζ, ζ] for r = 0 ,
[κ, ζ] for 0 < r ≤ η ,

1 for r > η

for some constants η ≥ 0, ζ ≥ 1, 0 < κ ≤ 1. The term Sgnη,ζ,κ ẋ can be
considered as an extension for modeling dry friction forces.
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To apply Remark 3.1.29, let us consider the problem

ẍ + g(x)− µ2ψ(t) ∈ −µ1Sgnη,ζ,κ ẋ , (3.1.43)

where µ1 > 0, µ2 > 0 are small parameters, g has the properties of either (3.1.34)
or (3.1.37) and ψ ∈ C(R, R) is periodic. Then, for this case with η < max |ω̇|,
the multivalued mapping (3.1.24) has the form

Mµ(α) =

[
− µ1

(
ζ
∫

Iη−
|ω̇(t)| dt +

∫
Iη+
|ω̇(t)| dt

)
+ µ2A(α) ,

−µ1

(
κ
∫

Iη−
|ω̇(t)| dt +

∫
Iη+
|ω̇(t)| dt

)
+ µ2A(α)

]
,

where A is the function defined above Theorem 3.1.18 and

Iη− = {t ∈ R : |ω̇(t)| ≤ η}, Iη+ = {t ∈ R : |ω̇(t)| > η} .

Then Theorem 3.1.9 gives the following result.

Theorem 3.1.30. If η < max |ω̇| and

0 < M̄, (m̄ζ − M̄κ)
∫

Iη−
|ω̇(t)| dt < (M̄ − m̄)

∫
Iη+

|ω̇(t)| dt , (3.1.44)

where m̄ = min A and M̄ = max A, then (3.1.43) has subharmonic solutions
with all large periods provided that µ1 > 0, µ2 > 0 are sufficiently small satisfy-
ing

µ1/µ2 ∈
(

max
{

0 , m̄
/(

κ
∫

Iη−
|ω̇(t)| dt +

∫
Iη+
|ω̇(t)| dt

)}
,

M̄
/(

ζ
∫

Iη−
|ω̇(t)| dt +

∫
Iη+
|ω̇(t)| dt

))
.

(3.1.45)

Proof. We take a < b such that A(a) = m̄, A(b) = M̄ . Then (3.1.45) implies
that r1 ∈ Mµ(a), r2 ∈ Mµ(b) give r1 < 0, r2 > 0. Hence the condition of
Theorem 3.1.9 is satisfied.
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To be more concrete, we consider the problem

ẍ− x + 2x3 − µ2 cos t ∈ −µ1Sgnη,ζ,κ ẋ . (3.1.46)

Corollary 3.1.31. Inclusion (3.1.46), with 1/2 > η ≥ 0, has subharmonic
solutions with all large periods provided that µ1 > 0, µ2 �= 0 are sufficiently
small satisfying

µ1

|µ2| <
π

2
sech

π

2

/(
ζ + (1− ζ) sech t1,η + (ζ − 1) sech t2,η

)
,

where 0 ≤ t1,η < t2,η ≤ ∞ are the solutions of ˙sech t = −η.

Proof. Now g(x)=−x+2x3, ω(t)=sech t, ψ(t) = ± cos t. We note max
t∈R

| ˙sech t| =
1/2. The equation | ˙sech t| = η for 1/2 > η ≥ 0 has the solutions

−∞ ≤ −t2,η < −t1,η ≤ 0 ≤ t1,η < t2,η ≤ ∞ ,

when clearly there are strict inequalities for η > 0. Consequently, we have

Iη− = (−∞,−t2,η] ∪ [−t1,η, t1,η] ∪ [t2,η,∞), Iη+ = (−t2,η,−t1,η) ∪ (t1,η, t2,η) ,

and∫
Iη−
|ω̇(t)| dt=2(1−sech t1,η+sech t2,η),

∫
Iη+

|ω̇(t)| dt = 2(sech t1,η−sech t2,η) .

We also know by the results for (3.1.36) that A(α) = ±π sech π
2 sin α; hence

M̄ = −m̄ = π sech π
2 . By using these computations and Theorem 3.1.30, the

corollary is proved.

Remark 3.1.32. In spite of the fact that the aim of this section is to deal with
multivalued perturbation problems, we note that our method is clearly applied
to piecewise smoothly perturbed problems. For simple illustration of this, let us
consider the following concrete piecewise linearly perturbed problem

ẍ− x + 2x3 + µ1ẋ
+ + µ2ẋ

− = µ3 cos t , (3.1.47)

where µ1,2,3 ∈ R are small parameters and z+ = max {0, z}, z− = min {0, z}.
Then we have similarly like for (3.1.36) that (3.1.24) possesses for this case the
form

Mµ(α) = −µ1 + µ2

3
+ µ3π sech

π

2
sin α .

If |µ1 + µ2|/|µ3| < 3π sech π
2 then Mµ(α) has a simple root, and consequently,

(3.1.47) possesses subharmonic solutions with all large periods provided that
µ1,2,3 are sufficiently small.
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3.1.7 Bounded Solutions Close to Homoclinics

We show in this subsection the existence of bounded solutions on R of (3.1.3),
(3.1.25) and (3.1.26) which are near to γ and on which subharmonics, found in
the previous subsections, accumulate.

Theorem 3.1.33. The assumptions of Theorem 3.1.6 imply for any µ ∈ R of
the form µ = s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, where R, U1, U2 are from Theorem 3.1.6,
the existence of a solution xµ of (3.1.3) on R satisfying

sup
t∈R

∣∣xµ(t)− γ(t− αµ)
∣∣ ≤ Ks , (3.1.48)

where αµ ∈ R, |αµ| ≤ K and K is a constant from Theorem 3.1.6. Moreover, a
subsequence of the subharmonics {xm}m≥[1/s] from Theorem 3.1.6 accumulates
on xµ.

Proof. Let us fix µ ∈ R and let {xm}m≥[1/s] be the sequence of subharmonics
from Theorem 3.1.6. Since {xm}m≥[1/s] is a bounded sequence in the Sobolev
space W 1,∞(R, Rn), then by the Arzela-Ascolli Theorem [199], there is a subse-
quence {xmj

}∞j=1 of {xm}m≥[1/s] and a function

xµ ∈W 1,2
loc (R, Rn) := ∩m∈NW 1,2([−m,m], Rn)

with |xµ|∞ <∞ and such that for any p ∈ N the sequence {xmj
}∞j=1 converges

to xµ in Zp. Moreover, we can assume αmj
→ αµ ∈ R as j →∞.

We note that ẋµ exist a.e. on R. Now let t0 ∈ R be such that ẋµ(t0) exists.
Since f is continuous as well as fi, i = 1, · · · , k are upper–semicontinuous with
compact values, for any ε > 0 there are j0 ∈ N and δ > 0 with the following
property for any t, |t− t0| < δ, j ≥ j0:

f(xmj
(t)) +

k∑
i=1

µifi(xmj
(t), µ, t) ⊂ Kε ,

where

Kε =
{

z ∈ R
n : dist

(
z, f(xµ(t0)) +

k∑
i=1

µifi(xµ(t0), µ, t0)
)
≤ ε
}

.

The set Kε is compact and convex. Let us choose a y ∈ R \Kε. Then there is
at least one closest point ky of Kε to y since Kε is compact. The uniqueness
of ky follows from the convexity of Kε, since if there could be two such k′

y, k′′
y

then (k′
y + k′′

y )/2 ∈ Kε would be closer to y as either k′
y or k′′

y . Moreover from
the triangular with vertexes k ∈ Kε, ky and y it follows that the angle between
k − ky and y − ky is obtuse (see also [47, 199]). So there is a unique ky ∈ Kε

such that
〈k − ky, y − ky〉 ≤ 0, ∀ k ∈ Kε . (3.1.49)
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Next from

ẋmj
(t) ∈ f(xmj

(t)) +
k∑

i=1

µifi(xmj
(t), µ, t) a.e. on {t : |t− t0| ≤ δ}

for any j ≥ j0, and (3.1.49) we derive

2
p

∫ t0+(1/p)

t0−(1/p)

〈ẋmj
(s)− ky, y − ky〉 ds

=
〈xmj

(t0 + (1/p))− xmj
(t0 − (1/p))

2/p
− ky, y − ky

〉
≤ 0

for any p ∈ N satisfying p > 1/δ. By passing to the limit first with j →∞ and
then with p →∞, we obtain

〈ẋµ(t0)− ky, y − ky〉 ≤ 0, ∀ y ∈ R
n \Kε .

It is clear that

Kε =
⋂

y∈Rn\Kε

{
z ∈ R

n : 〈z − ky, y − ky〉 ≤ 0
}

.

Consequently, we have
ẋµ(t0) ∈ Kε . (3.1.50)

Since (3.1.50) holds for any ε > 0 and the set f(xµ(t0)) +
k∑

i=1

µifi(xµ(t0), µ, t0)

is compact, we obtain

ẋµ(t0) ∈ f(xµ(t0)) +
k∑

i=1

µifi(xµ(t0), µ, t0) .

The estimate (3.1.48) follows from the similar one of Theorem 3.1.6.

We can analogously find accumulation of subharmonics on bounded solutions
in all above results. Finally the method of this Section is extended in Chapter
4 to show chaotic behavior of (3.1.3), (3.1.25) and (3.1.26).

3.2 Bifurcation of Periodics from Homoclinics II

3.2.1 Singular Discontinuous O.D.Eqns

In this section we proceed with the study of bifurcations of subharmonics from
homoclinics in discontinuously perturbed ordinary differential equations. But
we study more complicated equations. To motivate our interest in this problem,
let us consider a mass m located in a forcing field −q(x), putting horizontally
on a moving two–dimensional ribbon with a speed v0 and periodically excited
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by a force mp(t). The viscous damping is −k̃ẋ, and the dry friction between the
ribbon and the mass is −µm sgn (ẋ + v0). Here k̃ and µ are positive constants,
and sgn r = r

|r|2 , r ∈ R
2 \ {0} (see Fig. 3.5). By taking the balance of these

forces, we arrive at the equation

mẍ + k̃ẋ + q(x) + µm sgn (ẋ + v0) = mp(t), x ∈ R
2 . (3.2.1)

Rewriting (3.2.1) as a first-order system, we get

ẋ = y, mẏ = −k̃y − q(x) + m
(
p(t)− µ sgn (y + v0)

)
. (3.2.2)

Like in the previous section, we consider (3.2.2) with m small as a singularly
perturbed differential inclusion of the form

ẋ = y, mẏ ∈ −k̃y − q(x) + m
(
p(t)− µSgn (y + v0)

)
, (3.2.3)

where

Sgn r =
{

sgn r for r �= 0 ,
{x ∈ R

2 : |x|2 ≤ 1} for r = 0 .

For more generality, we consider singularly perturbed differential inclusions of
the following form

ẋ(t) ∈ f(x(t), y(t)) + εh1(x(t), y(t), t) a.e. on R

εẏ(t) ∈ g(x(t), y(t)) + εh2(x(t), y(t), t) a.e. on R
(3.2.4)

with x ∈ R
n, y ∈ R

k and ε > 0 is small. Let 〈·, ·〉i be the inner product on
R

i, i ∈ N with the corresponding norm | · |i. Now we set the main assumptions
about (3.2.4):

(i) f ∈ C2
(
R

n×R
k, Rn

)
, g ∈ C2

(
R

n×R
k ×R, Rk

)
, and h1 : R

n×R
k ×R →

2R
n \ {∅}, h2 : R

n × R
k × R → 2R

k \ {∅} are upper–semicontinuous with
compact and convex values.

(ii) f(0, 0) = 0 and �τ �= 0 for any τ ∈ σ
(
Dxf(0, 0)

)
.

(iii) g(·, 0) = 0, g(x, y) = A(x)y + o(|y|k) for A(x) ∈ L(Rk) satisfying

B(x)A(x)B−1(x) = (D1(x), D2(x)) ∀x ∈ R
n ,

where B : R
n → L(Rk), D1 : R

n → L(Rk1), D2 : R
n → L(Rk2) are

C1–smooth mappings, k = k1 + k2 and

〈D1(x)v, v〉k1 ≥ a|v|2k1
, 〈D2(x)w,w〉k2 ≤ −a|w|2k2

∀x ∈ R
n, ∀ v ∈ R

k1 , ∀w ∈ R
k2 ,

where a > 0 is a constant.

(iv) The reduced equation of (3.2.4) of the form ẋ = f(x, 0) has a homoclinic
solution: There is a nonzero differentiable function t → γ(t) such that
limt→+∞ γ(t) = limt→−∞ γ(t) = 0 and γ̇(t) = f(γ(t), 0).
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(v) hi(x, y, t + 2) = hi(x, y, t) for t ∈ R and i = 1, 2.

When the perturbations h1,2(x, y, t) in (3.2.4) are smooth functions, then we
have singularly perturbed ordinary differential equations

ẋ(t) = f(x(t), y(t)) + εh1(x(t), y(t), t)
εẏ(t) = g(x(t), y(t)) + εh2(x(t), y(t), t) .

(3.2.5)

Setting ε = 0 in the (3.2.5) we obtain the reduced equation

ẋ = f(x, 0) . (3.2.6)

The study of dynamics between (3.2.5) and (3.2.6) is started from 1952 [187]
by showing that under certain conditions, for given T > 0 the solutions of
(3.2.5) are at a O(ε)-distance from the corresponding solutions of (3.2.6), for t
in any compact subset of (0, T ]. This result was improved in [116, 117]. Later,
in [97], a geometric theory of singular systems was developed, where this theory
is applied to the autonomous case and states, under certain hypotheses, the
existence of a center manifold for (3.2.5) defined on compact subsets on which
system (3.2.5) is a regular perturbation of the reduced system (3.2.6). This was
used to improve previous results in [100] concerning the existence of periodic
solutions of (3.2.5). Geometric theory has been used in [184, 185] to study the
problem of bifurcation from a heteroclinic orbit of the reduced system towards
a heteroclinic orbit of the overall system (3.2.5). Later, in [28, 72], the non-
autonomous case have been handled, together with the homoclinic case. These
results were improved in [21] by showing that the system (3.2.5) has a global
center manifold on which the system (3.2.5) is a regular perturbation of the
reduced system (3.2.6). Then applying regular perturbation theory a smooth
Melnikov function was derived to obtain homoclinic/heteroclinic solutions. Also
there was studied a case when the reduced system (3.2.6) has a heteroclinic
orbit joining semi-hyperbolic fixed points. Finally let us mention some other
related results in this direction. Attractive invariant manifolds of (3.2.5) are
studied in [155] when h1, h2 are independent of t. In [183] the same problem is
investigated as in [155] when h1, h2 do depend on t. Asymptotic expansions of
solutions for (3.2.5) are derived in [193]. Summarizing, a geometric theory for
(3.2.5) is rather well-developed, not like for (3.2.4). On the other hand, there
are several papers dealing with singularly perturbed differential inclusions (see
[69,104] and references therein). Singularly perturbed boundary value problems
are studied in [77,118,119,136,194].

Next from the above-mentioned results on (3.2.5) it follows that (3.2.5) un-
der certain conditions is chaotic (see [28, 72]) with an infinite number of sub-
harmonics. The purpose of this section is to find conditions ensuring that even
in multivalued case (3.2.4) there are still infinitely many subharmonics accu-
mulating on a bounded solution of (3.2.4) on R which is near to the reduced
homoclinic solution (γ, 0). But approaches already used to (3.2.5) are not pos-
sible to apply for differential inclusions such as (3.2.4). To prove our results, we
extend the method of Section 3.1 to system (3.2.4).
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3.2.2 Linearized Equations

Let W s
0 , Wu

0 be the stable and unstable manifolds, respectively, of the hyperbolic
origin for (3.2.6), and ds = dimW s

0 , du = dimWu
0 . Next, for the variational

equation of (3.2.6) along γ:

u̇(t) = Dxf(γ(t), 0)u(t) , (3.2.7)

we have Theorem 3.1.2 of Subsection 3.1.2 when (3.1.5) is replaced with (3.2.7).
We use functional-analytic approach on certain Banach spaces like in the

previous section. So we fix m, j ∈ N and define the following Banach spaces:

Zm,j = C
(
[−m,m] , Rj

)
,

Zp
m,j = {z ∈ Zm,j : z (−m) = z (m)} ,

Ym,j = L∞ ([−m,m] , Rj
)

with the supremum norms ‖ · ‖m,j for Zm,j , respectively | · |m,j for Ym,j . Next,
for the non–homogeneous linear equation

ż = Dxf(γ, 0)z + h (3.2.8)

we have the following analogy of Theorem 3.1.4.

Theorem 3.2.1. There exist m0 > 0, A > 0, B > 0 such that for every
m > m0, m ∈ N there exists a linear function Lm : Ym,n → R

n with ‖PuuLm‖ ≤
A e−2Mm and if h ∈ Ym,n satisfies∫ m

−m

PuuU(t)−1h(t) dt + PuuLmh = 0

then (3.2.8) has a solution in z ∈ Zp
m,n with PssU(0)−1z(0) = 0 and ‖z‖m,n ≤

B|h|m,n. Moreover, this solution z depends linearly on h.

Setting

Ỹm,n =
{

z ∈ Ym,n :
∫ m

−m

PuuU(t)−1z(t) dt + PuuLmz = 0
}

,

we define a variation of constants map Km : Ỹm,n → Zm,n by taking Kmh to
be the solution in Zp

m,n to (3.2.8) from Theorem 3.2.1. Then the norm ‖Km‖ is
uniformly bounded with respect to m and Km is a compact linear operator. We
have the following analogy of Lemma 3.1.5.

Theorem 3.2.2. There exist A > 0, m0 > 0 and for each m > m0, m ∈ N a
projection Πm : Ym,n → Ym,n such that

(i) ‖Πm‖ < A for all m > m0

(ii) R(I−Πm) = Ỹm,n
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Now we study the non–homogeneous variational equation

εẏ = A(γ(t))y + h(t) . (3.2.9)

Theorem 3.2.3. There is a constant c > 0 such that for any m ∈ N and
0 < ε ≤ 1, (3.2.9) has a unique solution y ∈ Zp

m,k provided that h ∈ Ym,k and
moreover, it is satisfying ||y||m,k ≤ c|h|m,k.

Proof. By taking the transformation z = B(γ)y, (3.2.9) becomes to the form

εż =
(
D1(γ), D2(γ)

)
z + ε(DxB(γ)γ̇)B−1(γ)z + B(γ)h . (3.2.10)

Let us first consider the equation

εż = D1(γ)z + h, h ∈ Ym,k1 . (3.2.11)

Let Zε be the fundamental solution of εż = D1(γ)z. Then z(t) = Zε(t)Z−1
ε (s)z0,

z0 ∈ R
k1 solves εż = D1(γ)z, z(s) = z0. Using assumption (iii) of Subsection

3.2.1, we derive

d

dt

(|z(t)|2k1

)
= 2〈ż(t), z(t)〉k1 =

2
ε
〈D1(γ(t))z(t), z(t)〉k1 ≥

2a

ε
|z(t)|2k1

.

So we get |z(t)|k1 ≤ e−a(s−t)/ε|z0|k1 for t ≤ s, that is Zε satisfies the following
property

|Zε(t)Z−1
ε (s)| ≤ e−a(s−t)/ε, t ≤ s . (3.2.12)

The general solution of (3.2.11) has the form

z(t) = Zε(t)Z−1
ε (m)z(m)− 1

ε

m∫
t

Zε(t)Z−1
ε (s)h(s) ds . (3.2.13)

Consequently, this solution is from Zp
m,k1

if and only if

z(m) = Zε(−m)Z−1
ε (m)z(m)− 1

ε

m∫
−m

Zε(−m)Z−1
ε (s)h(s) ds .

Since by (3.2.12) for 0 < ε ≤ 1 and m ∈ N :

|Zε(−m)Z−1
ε (m)| ≤ e−2am/ε < 1

|Zε(−m)Z−1
ε (s)| ≤ e−a(s+m)/ε, s ≥ −m,

we obtain

z(m) = −(I− Zε(−m)Z−1
ε (m)

)−1 1
ε

m∫
−m

Zε(−m)Z−1
ε (s)h(s) ds

|z(m)|k1 ≤ (1− e−2a)−1 1
a
|h|m,k1 .
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Moreover, for −m ≤ t ≤ m we have

|z(t)|k1 ≤ |z(m)|k1 +
1
a
|h|m,k1 ≤

1
a

(
1 + (1− e−2a)−1

)|h|m,k1 .

Hence
||z||m,k1 ≤

1
a

(
1 + (1− e−2a)−1

)|h|m,k1 .

We have a similar result for the equation

εż = D2(γ)z + h, h ∈ Ym,k2 . (3.2.14)

Since sup |(DxB(γ)γ̇)B−1(γ)| < ∞ and sup |B−1(γ)| < ∞, sup |B(γ)| <∞, the
statement of this theorem follows from (3.2.10) by using the above results for
(3.2.11) and (3.2.14).

Let Km,εh be the unique solution of Theorem 3.2.3. Because Km,ε : Ym,k →
W 1,2([−m,m], Rk) is bounded linear and W 1,2([−m,m], Rk) is compactly em-
bedded into Zm,k, we see that Km,ε : Ym,k → Zm,k is a linear compact operator.
Moreover, the norm ||Km,ε|| is uniformly bounded for m ∈ N, 0 < ε ≤ 1. We
do not know the limit of Km,ε as ε → 0+ and m →∞. On the other hand, we
have the following result.

Theorem 3.2.4. Let Xm,k = W 1,∞([−m,m], Rk) with the usual norm denoted
by ||| · |||m,k. Then for a fixed b ∈ N and any h ∈ Xm,k satisfying |||h|||m,k ≤ 1,
the function Km,εh tends on Zb,k to −A−1(γ)h uniformly by h as ε → 0+ and
m→∞.

Proof. For any h ∈ Xm,k satisfying |||h|||m,k ≤ 1, we take zh,m ∈ Zp
m,k given by

zh,m(t) = −A−1(γ(t))h(t)− t
(
A−1(γ(−m))h(−m)−A−1(γ(m))h(m)

)
/2m.

By taking y = z + zh,m in (3.2.9), we arrive at the equation

εż(t) = A(γ(t))z(t)− εżh,m

−tA(γ(t))
(
A−1(γ(−m))h(−m)−A−1(γ(m))h(m)

)
/2m.

(3.2.15)

According to the construction of zh,m, there is a constant c > 0 such that

|||zh,m|||m,k ≤ c, ||A(γ(t))
(
A−1(γ(−m))h(−m)−A−1(γ(m))h(m)

)||m,k ≤ c .

It is enough to study (3.2.11). In view of (3.2.13), (3.2.15) has the form

z(t) = Zε(t)Z−1
ε (m)z(m)− 1

ε

m∫
t

Zε(t)Z−1
ε (s)ḡh,m(s) ds

z(m) = Zε(−m)Z−1
ε (m)z(m)− 1

ε

m∫
−m

Zε(−m)Z−1
ε (s)ḡh,m(s) ds ,
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where

ḡh,m(t) = −εżh,m − tA(γ(t))
(
A−1(γ(−m))h(−m)−A−1(γ(m))h(m)

)
/2m.

According to (3.2.12), there is a constant c1 > 0 such that for any t ∈ [−b, b],
0 < b < m, we have

|Zε(t)Z−1
ε (m)z(m)|k1 ≤ e−a(m−t)/εc1 ≤ e−a(m−b)/εc1∣∣∣1

ε

m∫
t

Zε(t)Z−1
ε (s)ḡh,m(s) ds

∣∣∣
k1

≤ 1
ε

m∫
t

e−a(s−t)/εc1(ε +
b

2m
) ds ≤ c1

a
(ε +

b

2m
) .

By letting ε → 0+ and m → ∞ in the above inequalities for b ∈ N fixed, the
proof is finished.

Corollary 3.2.5. Let h ∈ L∞((−∞,∞), Rk
)

and let there be a finite sequence
of numbers −∞ < t1 < t2 < · · · < ti < ∞ such that

h/[tj , tj+1] ∈W 1,∞([tj , tj+1], Rk) ∀ j = 1, · · · , i

h/(−∞, t1] ∈ W 1,∞((−∞, t1], Rk)

h/[ti,∞) ∈ W 1,∞([ti,∞), Rk) .

For any sufficiently small ε > 0, let us consider hε ∈ W 1,∞((−∞,∞), Rk
)

defined as follows

hε(t) = h(t) for t ∈
i−1⋃
j=1

[tj , tj+1 −
√

ε ]
⋃

(−∞, t1 −
√

ε ]
⋃

[ti,∞)

hε(t) is linear on
i⋃

j=1

[tj −
√

ε, tj ] .

Then for any fixed b ∈ N and any δ > 0, there are εδ > 0 and b < mδ ∈ N such
that

||Km,εhε + A−1(γ)hε||b,k < δ

for any m ≥ mδ and 0 < ε < εδ.

Proof. Clearly |ḣε|m,k = O(1/
√

ε ) and |hε|m,k = O(|h|m,k) for any m ∈ N and
0 < ε ≤ 1. By following the proof of Theorem 3.2.4 (see (3.2.15) when h is
replaced by hε), the statement of this corollary is proved.

3.2.3 Bifurcation of Subharmonics

To find periodic solutions to (3.2.4) of very large periods which are near (γ, 0),
we follow the method of Subsection 3.1.3. By hypothesis, the multivalued vector
field in (3.2.4) has period 2m. We look for solutions to (3.2.4) in Zp

m,n × Zp
m,k.
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In (3.2.4) we change the variable

ε ↔ ε2

y(t + α) = ε2w(t)

x (t + α) = γ(t) + ε2z(t) +
d−1∑
i=1

εβiui+d(t) + 1
2(m+E)b(εβ,m + E)t ,

where 1 > ε > 0, α, βi ∈ R, m ∈ Z+ and E = [1/ε]. Then the differential
inclusions for (z, w) are

ż(t)−Dxf(γ(t), 0)z(t) ∈ gm,ε(z(t), w(t), α, β, t) a.e. on [−m− E,m + E]

ε2ẇ(t)−A(γ(t))w ∈ hm,ε(z(t), w(t), α, β, t) a.e. on [−m− E,m + E] ,

where

gm,ε(x, y, α, β, t)={
v ∈ R

n : v ∈ 1
ε2

{
f
(
ε2x + γ(t)+ε

d−1∑
i=1

βiui+d(t)+ 1
2(m+E)b(εβ,m + E)t, ε2y

)
−f(γ(t), 0)− ε

d−1∑
i=1

βiu̇i+d(t)− 1
2(m+E)b(εβ,m + E)−Dxf(γ(t), 0)ε2x

}
+h1

(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y, t + α

)}
,

hm,ε(x, y, α, β, t)={
u ∈ R

k : u ∈ 1
ε2

{
g
(
ε2x + γ(t)+ε

d−1∑
i=1

βiui+d(t)+ 1
2(m+E)b(εβ,m + E)t, ε2y

)
−A(γ(t))ε2y

}
+h2

(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y, t + α

)}
.

Introducing multivalued mappings

G1
m,ε : Zm+E,n × Zm+E,k × R× R

d−1 → 2Ym+E,n

G2
m,ε : Zm+E,n × Zm+E,k × R× R

d−1 → 2Ym+E,k

by the formulas

G1
m,ε(z, w, α, β) =

{
h ∈ Ym+E,n : h(t) ∈ gm,ε(z(t), w(t), α, β, t)

a.e. on [−m− E,m + E]
}

,

G2
m,ε(z, w, α, β) =

{
h ∈ Ym+E,k : h(t) ∈ hm,ε(z(t), w(t), α, β, t)

a.e. on [−m− E,m + E]
}

,

the above differential inclusions for z, w can be written to

ż −Dxf(γ, 0)z ∈ G1
m,ε(z, w, α, β)

ε2ẇ −A(γ)w ∈ G2
m,ε(z, w, α, β) .

(3.2.16)
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Since gm,ε : R
n × R

k × R × R
d−1 × R → 2R

n \ {∅} and hm,ε : R
n × R

k × R ×
R

d−1×R → 2R
k\{∅} are upper–semicontinuous with compact and convex values,

like for (3.1.17), Gj
m,ε(z, w, α, β), j = 1, 2 are non–empty, closed, convex and

bounded in Ym+E,n, Ym+E,k, and they are also weakly compact in L2([−m −
E,m + E], Rn), L2([−m− E,m + E], Rk), respectively.

To proceed, we assume that the following condition holds.

(H) There is an upper–semicontinuous mapping C : R × R → 2R
k \ {∅} with

compact convex values such that C(R×R) is bounded and C(t, α + 2) =
C(t, α). Moreover, for any δ > 0, l ∈ N, l > l0, where l0 ∈ N is fixed,
and α ∈ R, there are εδ,l > 0, l < mδ,l ∈ N, ζδ,l > 0 such that for any
N � m ≥ mδ,l and h ∈ Ym,k satisfying

|h|m,k ≤ 1 + sup
s,t∈R

{
max

{|v|k : v ∈ h2(γ(t), 0, s) ∪ h2(0, 0, s)
}}

(t, h(t)) ∈
{

u ∈ R
k+1 : ∃ s ∈ R; dist

{
u,
(
s, h2(γ(s), 0, s + α)

)}
< ζδ,l

}
a.e. on [−l − 1, l + 1] ,

the solution y of (3.2.9) with 0 < ε < εδ,l satisfies

(t, y(t)) ∈
{

u ∈ R
n+1 : ∃ s ∈ R; dist

{
u,
(
s, C(s, α)

)}
< δ
}

on [−l, l] .

System (3.2.16) can not be solved directly. We need it to modify. For this
reason, for (z, w, w̃, α, β) ∈ Zm+E,n × Zm+E,k × Zm+E,k × R × R

d−1, we take
the homotopy

G1
m,ε,λ(z, w, w̃, α, β) =

{
h ∈ Ym+E,n : h(t) ∈ gm,ε,λ(z(t), w(t), w̃(t), α, β, t)

a.e. on [−m− E,m + E]
}

, λ ∈ [0, 1] ,

G2
m,ε,λ(z, w, α, β) =

{
h ∈ Ym+E,k : h(t) ∈ hm,ε,λ(z(t), w(t), α, β, t)

a.e. on [−m− E,m + E]
}

, λ ∈ [0, 1] ,

where

gm,ε,λ(x, y, ỹ, α, β, t) ={
v ∈ R

n : v ∈ λ
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, 0

)
−f(γ(t), 0)− ε

d−1∑
i=1

βiu̇i+d(t)− 1
2(m+E)b(εβ,m + E)−Dxf(γ(t), 0)ε2x

}
+ λ

ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y

)
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−f
(
ε2x + γ(t)+ε

d−1∑
i=1

βiui+d(t)+ 1
2(m+E)b(εβ,m+E)t, 0

)
−Dy(f(γ(t), 0)ε2y

}
+λh1

(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y, t + α

)
+ 1−λ

2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)(ud+i(t), ud+j(t))

+Dyf(γ(t), 0)(λỹ + (1− λ)C(t, α)) + (1− λ)h1(γ(t), 0, t + α)

}
,

and

hm,ε,λ(x, y, α, β, t) ={
u ∈ R

k : u ∈ λ
ε2

{
g
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t)+ 1
2(m+E)b(εβ,m + E)t, ε2y

)
−A(γ(t))ε2y

}
+ (1− λ)h2(γ(t), 0, t + α)

+λh2

(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y, t + α

)}
.

We note that if a + b = 1, a ≥ 0, b ≥ 0 then

aG1
m,ε,λ(z, w, w̃1, α, β) + bG1

m,ε,λ(z, w, w̃2, α, β) ⊂ G1
m,ε,λ(z, w, aw̃1 + bw̃2, α, β) .

Next based on Theorems 3.2.1, 3.2.2 and 3.2.3, we use the Lyapunov-Schmidt
approach to decompose and put (3.2.16) in the homotopy as follows

0 ∈
(
z − F 1

m,ε,λ(z, w, α, β), w − F 2
m,ε,λ(z, w, α, β), Bm,ε,λ(z, w, α, β)

)
(3.2.17)

for λ ∈ [0, 1], where(
F 1

m,ε,λ(z, w, α, β), F 2
m,ε,λ(z, w, α, β), Bm,ε,λ(z, w, α, β)

)
=
{(

Km+E(I−Πm+E)h,Km+E,ε2v, Lm+Eh
)

:

h ∈ G1
m,ε,λ(z, w,Km+E,ε2v, α, β), v ∈ G2

m,ε,λ(z, w, α, β)
}

,

and

Lm+Eh =
∫ m+E

−m−E

PuuU(t)−1h(t) dt + PuuLm+Eh .

To handle (3.2.17), we consider the new homotopy

0 ∈
(
z−λF 1

m,ε,λ(z, w, α, β), w−λF 2
m,ε,λ(z, w, α, β), Bm,ε,λ(z, w, α, β)

)
(3.2.18)

for λ ∈ [0, 1]. Using ||PuuLm+E || = O( e−2M(m+E)), we consider the decompo-
sition and homotopy(

Bm1,ε,λ + λBm2,ε,λ

)
(z, w, α, β) , λ ∈ [0, 1] ,
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where (
Bm1,ε,λ + λBm2,ε,λ

)
(z, w, α, β) =

{
Lm1,εh + λLm2,εh :

h ∈ G1
m,ε,λ(z, w,Km+E,ε2v, α, β), v ∈ G2

m,ε,λ(z, w, α, β)
}

,

and

Lm1,εh =
∫ m+E

−m−E

PuuU(t)−1h(t) dt , Lm2,εv = PuuLm+Eh .

Summarizing, the solvability of (3.2.17)–(3.2.18) can be replaced by the solv-
ability of the following multivalued equation

0 ∈ Hm,ε(z, w, α, β, λ) (3.2.19)

where Hm,ε : Zm+E,n×Zm+E,k ×R×R
d−1× [0, 1] → 2Zm+E,n×Zm+E,k×R

d \ {∅}
is given by

Hm,ε(z, w, α, β, λ) =
(
z − λF 1

m,ε,λ(z, w, α, β), w − λF 2
m,ε,λ(z, w, α, β),(

Bm1,ε,λ + λBm2,ε,λ

)
(z, w, α, β)

)
for 1 > ε > 0 sufficiently small and fixed, and λ ∈ [0, 1] is a homotopy para-
meter. Like in Subsection 3.1.3, it is not difficult to observe that the mapping
IZm+E,n×Zm+E,k×Rd −Hm,ε is upper–semicontinuous with compact convex val-
ues and maps bounded sets into relatively compact ones. So topological degree
methods of Section 2.4.3 can be applied to (3.2.19).

Finally, we introduce a multivalued mapping

M : R
d → 2R

d \ {∅} , M = (M1, · · · ,Md) (3.2.20)

given by

Ml(α, β) =

{∫∞
−∞〈h(s), u⊥

l (s)〉n ds : h ∈ L2
loc(R, Rn) satisfying a.e. on R

the relation h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)(ud+i(t), ud+j(t))

+Dyf(γ(t), 0)(C(t, α))+h1(γ(t), 0, t+α)
)}

.

Following the arguments below (3.1.21), we see that mapping M is upper–
semicontinuous with compact convex values and maps bounded sets into bounded
ones. Now we are ready to prove the main theorems of this section [74].

Theorem 3.2.6. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

such that
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(i) 0 /∈M(∂B)

(ii) deg(M,B, 0) �= 0

Then there are constants K > 0 and ε0 > 0 such that for any 0 < ε < ε0,
the differential inclusion (3.2.4) possesses a subharmonic solution (xm, ym) of
period 2m for any m ∈ N, m ≥ [1/

√
ε] satisfying

sup
−m≤t≤m

|ym(t)|k ≤ Kε, sup
−m≤t≤m

∣∣xm(t)− γ(t− αm)
∣∣
n
≤ K

√
ε ,

where αm ∈ R and |αm| ≤ K.

Proof. We need to solve (3.2.16) which is plugged into the homotopy (3.2.19).
In order to handle (3.2.19), we need the following results.

Lemma 3.2.7. Let Di : [a, b] → 2R
m \ {∅}, i = 1, 2 be upper–semicontinuous

mappings with convex and compact values. Here a, b ∈ R, a < b. Let Γi be the
graph of Di. Take c, d ∈ R, a ≤ c < d ≤ b. Then ∀ ζ > 0, ∃ δ > 0 such that

λ ∈ [0, 1], yi, zi ∈ R
m, i = 1, 2, t ∈ [c, d]

dist
{
(t, yi),Γi

}
< δ, dist

{
(t, zi),Γi

}
< δ

imply
dist

{
(t, λ(y1 + y2) + (1− λ)(z1 + z2)),Γ1 + Γ2

}
< ζ ,

where Γ1 + Γ2 =
{
(s, d1 + d2) : di ∈ Di(s), i = 1, 2, s ∈ [a, b]

}
.

Proof. Assume the contrary. So there is ζ0 > 0 and for all p ∈ N, i = 1, 2:

λp ∈ [0, 1], yi,p, zi,p ∈ R
m, tp ∈ [c, d]

si,p, s̃i,p ∈ [a, b], di,p ∈ Di(si,p), d̃i,p ∈ Di(s̃i,p)

|tp − si,p|+ |yi,p − di,p|m < 1/p, |tp − s̃i,p|+ |zi,p − d̃i,p|m < 1/p

dist
{
(tp, λp(y1,p + y2,p) + (1− λp)(z1,p + z2,p)),Γ1 + Γ2

} ≥ ζ0 .

We can assume

λp → λ0, yi,p → yi,0, zi,p → zi,0, tp → t0, si,p → t0

s̃i,p → t0, di,p → yi,0, d̃i,p → zi,0, i = 1, 2 .

Hence yi,0 ∈ Di(t0) � zi,0, i = 1, 2 and

dist
{
(t0, λ0(y1,0 + y2,0) + (1− λ0)(z1,0 + z2,0)),Γ1 + Γ2

} ≥ ζ0 .

This contradicts to

λ0(y1,0 + y2,0) + (1− λ0)(z1,0 + z2,0) ∈ D1(t0) + D2(t0) ,

since D1(t0), D2(t0) are convex and

λ0(y1,0+y2,0)+(1−λ0)(z1,0+z2,0) = λ0y1,0+(1−λ0)z1,0+λ0y2,0+(1−λ0)z2,0 .

The proof is finished.
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Lemma 3.2.8. Let D : [a, b] → 2R
m \{∅} be an upper–semicontinuous mapping

with compact values. Here a, b ∈ R, a < b. Let Γ be the graph of D. Then
∀ t ∈ [a, b], ∀ ζ > 0, ∃ δ > 0 such that

y ∈ R
m, dist

{
(t, y),Γ

}
< δ =⇒ dist

{
y,D(t)

}
< ζ .

Proof. Assume the contrary. So there are ζ0 > 0, t0 ∈ [a, b] and for all p ∈ N:

yp ∈ R
m, sp ∈ [a, b], dp ∈ D(sp)

|t0 − sp|+ |yp − dp|m < 1/p, dist
{
yp, D(t0)

} ≥ ζ0 .

Wecanassumeyp → y0,sp → t0,dp → y0.Theny0 ∈ D(t0) anddist
{
y0, D(t0)

} ≥
ζ0. We arrive at the contradiction.

Lemma 3.2.9. Condition (i) of Theorem 3.2.6 implies for any A > 0 the
existence of constants δ > 0, 1 > ε0 > 0 such that

|Bm1,ε,λ(z, w, α, β)|d ≥ δ

for any 0 < ε < ε0, m ∈ Z+, λ ∈ [0, 1], ||z||m+E,n ≤ A, ||w||m+E,k ≤ A,
(α, β) ∈ ∂B.

Proof. First we note

lim
ε→0+

1
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, 0

)
−f(γ(t), 0)− ε

d−1∑
i=1

βiu̇i+d(t)− 1
2(m+E)b(εβ,m + E)−Dxf(γ(t), 0)ε2x

}
= 1

2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)

(
ui+d(t), uj+d(t)

)
,

lim
ε→0+

1
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y

)
−f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, 0

)}
= Dyf(γ, 0)y

(3.2.21)
and

lim
ε→0+

λ
ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, 0

)
−f(γ(t), 0)− ε

d−1∑
i=1

βiu̇i+d(t)− 1
2(m+E)b(εβ,m + E)−Dxf(γ(t), 0)ε2x

}
+ λ

ε2

{
f
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y

)
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−f
(
ε2x + γ(t)+ε

d−1∑
i=1

βiui+d(t)+ 1
2(m+E)b(εβ,m + E)t, 0

)
−Dyf(γ(t), 0)ε2y

}
= λ

2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)(ud+i(t), ud+j(t)) ,

lim
ε→0+

λ
ε2

{
g
(
ε2x + γ(t) + ε

d−1∑
i=1

βiui+d(t) + 1
2(m+E)b(εβ,m + E)t, ε2y

)
−A(γ(t))ε2y

}
= 0

(3.2.22)

uniformly with respect to x, y, β bounded and t ∈ [−m−E,m+E], m ∈ Z+, λ ∈
[0, 1].

Now assume the contrary in Lemma 3.2.9. So there is an A > 0 and

εp → 0, mp ∈ Z+, λp → λ0, ||zp||mp+Ep,n ≤ A

||wp||mp+Ep,k ≤ A, p ∈ N \ {1, 2}, ∂B � (αp, βp) → (α0, β0) ∈ ∂B

hp ∈ G1
mp,εp,λp

(zp, wp,Kmp+Ep,ε2
p
vp, αp, βp), vp ∈ G2

mp,εp,λp
(zp, wp, αp, βp)

such that
Lmp1,εp

hp → 0 as p →∞ . (3.2.23)

Since sup
p∈N\{1,2}

|hp|mp+Ep,n < ∞, we can assume, by using the Cantor diagonal

procedure together with Theorem 2.1.1, that there is an h0 ∈ L2
loc(R, Rn) such

that {hp}∞3 tends weakly to h0 in any L2([−l, l], Rn), l ∈ N. Now let us fix a
sufficiently large l ∈ N and let δ > 0. Then for any δ1 > 0, by using the upper–
semicontinuity of h2, (3.2.3) and Lemma 3.2.7, there is a p0 > 2 such that for any
N � p > p0, the graph of hmp,εp,λp

(zp, wp, αp, βp, ·) in the set [−l− 1, l +1]×R
k

is in the ζδ1,l–neighborhood of the graph of h2(γ(·), 0, ·+α0). By (H), the graph
of Kmp+Ep,ε2

p
vp in the set [−l, l] × R

k is in the δ1–neighborhood of the graph
of C(·, α0) provided that p > p0 is sufficiently large. Then according to Lemma
3.2.7, the upper–semicontinuity of h1 and C, (3.2.21) and (3.2.3) we have that
the graph of gmp,εp,λp

(zp, wp,Kmp+Ep,ε2
p
vp, αp, βp, ·) in the set [−l+1, l−1]×R

n

is located in the δ–neighborhood Oδ,l of the graph Γ̃ of

1
2

d−1∑
i,j=1

β0iβ0jD
2
xf(γ(·), 0)(ud+i(·), ud+j(·))

+Dyf(γ(·), 0)(C(·, α0)) + h1(γ(·), 0, ·+ α0)

for a fixed sufficiently small δ1 > 0 and for any large p ∈ N. Hence (t, hp(t)) ∈
Oδ,l a.e. on [−l + 1, l − 1] for large p ∈ N. By Mazur’s Theorem 2.1.2 there are
h̃p ∈ con [{hi : i ≥ p}], ∀ p ∈ N \ {1, 2} such that h̃p → h0 on L2([−l, l], Rn).
Consequently, we may assume that h̃p(t) → h0(t) a.e. on [−l, l]. Since we can
take arbitrarily small convex neighborhood of a compact convex subset of R

n,
by Lemma 3.2.8 and letting δ → 0+, we have (t, h0(t)) ∈ Γ̃ a.e. on [−l+1, l−1].



68 Chapter 3. Bifurcation of Periodic Solutions

By letting l →∞, we obtain

h0(t) ∈
(1

2

d−1∑
i,j=1

β0iβ0jD
2
xf(γ(t), 0)(ud+i(t), ud+j(t))

+Dyf(γ(t), 0)(C(t, α0)) + h1(γ(t), 0, t + α0)
)

a.e. on R .

Finally, by Theorem 3.2.1 and the properties (ii) and (iv) of Theorem 3.1.2, we
have

lim
ε→0+

Lm1,εh =
∫ ∞

−∞
PuuU(t)−1h(t) dt , lim

ε→0+
Lm2,εh = 0 (3.2.24)

uniformly with respect to h bounded and m ∈ Z+ arbitrary. Then (3.2.23)
and (3.2.24) give

∫∞
−∞ PuuU(t)−1h0(t) dt = 0. This contradicts to (i) of this

theorem.

The next result is a simple consequence of Lemma 3.2.9 and the construction
of Hm,ε.

Lemma 3.2.10. There is an open small connected neighborhood Ũ ⊂ R of 0
and a constant K1 > 0 such that

0 /∈ Hm,ε(∂Ω, λ)

for any 0 < ε ∈ Ũ , λ ∈ [0, 1], m ∈ Z+, where

Ω =
{

(z, w, α, β) ∈ Zm+E,n × Zm+E,k × R
d :

||z||m+E,n < K1, ||w||m+E,k < K1, (α, β) ∈ B
}

.

From Lemma 3.2.10 for any 0 < ε ∈ Ũ , m ∈ Z+, we get

deg
(
Hm,ε(·, 1),Ω, 0

)
= deg

(
Hm,ε(·, 0),Ω, 0

)
,

where according to (3.2.19):

Hm,ε(z, w, α, β, 0) =
(
z, w,{

Lm1,εh : h ∈ L2([−m− E,m + E], Rn) satisfying a.e. on [−m− E,m + E]

the relation h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)(ud+i(t), ud+j(t))

+Dyf(γ(t), 0)(C(t, α)) + h1(γ(t), 0, t + α)
)})

.

In order to compute deg
(
Hm,ε(·, 0),Ω, 0

)
, we consider the homotopy{

λLm1,εh+(1− λ)
∫∞
−∞ PuuU(t)−1h(t) dt : h ∈ L2

loc(R, Rn) satisfying a.e. on R

the relation h(t) ∈ ( 1
2

d−1∑
i,j=1

βiβjD
2
xf(γ(t), 0)(ud+i(t), ud+j(t))

+Dyf(γ(t), 0)(C(t, α)) + h1(γ(t), 0, t + α)
)}

.
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Using (3.2.24) with Lemma 3.2.9, when ε0 is shrunk if necessary, we derive

deg
(
Hm,ε(·, 0),Ω, 0

)
= deg(M,B, 0) �= 0 .

Consequently (3.2.19) has a solution in Ω for any 0 < ε ∈ U1, m ∈ Z+ and
λ = 1, where U1 = Ũ1 ∩ {ε ∈ R : 0 < ε < ε0}. This solution is a solution of
(3.2.16) according to the definition of (3.2.19).

For d = 1 we have M : R → 2R \ {∅} with

M(α) =

{∫∞
−∞〈h(s), u⊥

1 (s)〉n ds : h ∈ L2
loc(R, R);

h(t) ∈ Dyf(γ(t), 0)(C(t, α)) + h1(γ(t), 0, t + α) a.e. on R

}
.

(3.2.25)

Theorem 3.2.11. Let d = 1. If there are constants a < b such that M(a)M(b) ⊂
(−∞, 0), then there are constants K > 0 and ε0 > 0 such that for any 0 < ε <
ε0, the differential inclusion (3.2.4) possesses a subharmonic solution (xm, ym)
of period 2m for any m ∈ N, m ≥ [1/

√
ε] satisfying

sup
−m≤t≤m

|ym(t)|k ≤ Kε, sup
−m≤t≤m

∣∣xm(t)− γ(t− αm)
∣∣
n
≤ Kε ,

where αm ∈ (a, b).

Proof. We use Theorem 3.2.6 with B = (a, b): assumption (i) is clearly satisfied.
For showing (ii), we can directly repeat arguments in the proof of Theorem 3.1.9.
The proof is finished.

Remark 3.2.12. When d = 1 and h1, h2 are C2–smooth in all variables, then
according to Theorem 3.2.4, we can take

C(t, α) =
{−A−1(γ(t))h2(γ(t), 0, t + α)

}
and then M ∈ C1(R, R). A simple root α0 of M(α) = 0 implies chaos for such
systems with subharmonic solutions of all large periods. This is mentioned in
Subsection 3.2.1. But the existence of a simple root α0 of M(α) = 0 implies
also the validity of the assumption of Theorem 3.2.11 with a = α0 − δ̃ and
b = α0 + δ̃ for δ̃ > 0 small. Consequently, Theorem 3.2.11 is a generalization of
results in [28, 72] concerning subharmonics to the multivalued case (3.2.4) (see
also Subsection 4.2.1).

Finally we note that like in Subsection 3.1.7 periodic solutions of (3.2.4)
found above, accumulate on bounded solutions on R of (3.2.4), i.e. repeating
the proof of Theorem 3.1.33 we can derive the following
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Theorem 3.2.13. The assumptions of Theorems 3.2.6 and 3.2.11 imply for
any ε > 0 sufficiently small, the existence of a solution (xε, yε) of (3.2.4) on R

satisfying

either sup
t∈R

∣∣xε(t)− γ(t− αε)
∣∣
n
≤ K

√
ε for Theorem 3.2.6

or sup
t∈R

∣∣xε(t)− γ(t− αε)
∣∣
n
≤ Kε for Theorem 3.2.11 and

sup
t∈R

∣∣yε(t)
∣∣
k
≤ Kε in the both Theorems 3.2.6 and 3.2.11 ,

(3.2.26)

where αε ∈ R, |αε| ≤ K and K is a constant from Theorem 3.2.6, respectively
Theorem 3.2.11. Moreover, a subsequence of the subharmonics {(xm, ym)}m≥[1/ε]

from Theorem 3.2.6, respectively Theorem 3.2.11, accumulates on (xε, yε).

3.2.4 Applications to Singular Discontinuous O.D.Eqns

As a first application of the above results we consider (3.2.3) with k̃ = 1, for
simplicity, and q ∈ C2(R2, R2), p ∈ C1(R, R2) and p(t + 2) = p(t), ∀ t ∈ R. To
get the form of (3.2.4), we exchange the variables

y ↔ y + q(x), x ↔ x, t↔ −t ,

and then (3.2.3) possesses the form

ẋ = −y + q(x)

mẏ ∈ y + m
(
µSgn (y − q(x) + v0)− p(−t)−Dxq(x)(y − q(x))

) (3.2.27)

with
f(x, y) = −y + q(x), h1 = 0, g(x, y) = y, A(x) = I, ε = m

h2(x, y, t) = µSgn (y − q(x) + v0)− p(−t)−Dxq(x)(y − q(x))

in the notation of (3.2.4). Moreover we assume ẋ = q(x) has a homoclinic
solution γ to the hyperbolic fixed point x = 0. Then

h2(γ(t), 0, t + α) = µSgn (−γ̇(t) + v0)− p(−t− α) + Dxq(γ(t))q(γ(t))
= µSgn (−γ̇(t) + v0)− p(−t− α) + γ̈(t) .

Lemma 3.2.14. If there is only a finite sequence of numbers −∞ < t1 <
t2 < · · · < ti <∞ such that

−γ̇(t) + v0 = 0 if and only if t = t1, · · · , ti ,

and sup
[t1−1,ti+1]�t
=t1,··· ,ti

∣∣∣ d
dt

(
sgn (−γ̇(t) + v0)

)∣∣∣
2

<∞ ,
(3.2.28)

then we can take in the condition (H)

C(t, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{− µ sgn (−γ̇(t) + v0) + p(−t− α)− γ̈(t)

}
for t �= t1, · · · , ti ,{

v ∈ R
2 : |v|2 ≤ max

t∈[0,2]
|p(t)|2 + µ + 2 + sup

t∈R

|γ̈(t)|2
}

for t = t1, · · · , ti .
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Proof. Let 1 > δ > 0 be small and l ∈ N satisfying l > 3 + max {|tj | | j =
1, · · · , i}. To verify (H), we take h ∈ Ym,2 such that

(t, h(t)) ∈
{

u ∈ R
3 : ∃ s ∈ R; dist

{
u,
(
s, h2(γ(s), 0, s + α)

)}
< δ
}

a.e. on [−l − 1, l + 1]
|h|m,2 ≤ K1, K1 = max

t∈[0,2]
|p(t)|2 + µ + 2 + sup

t∈R

|γ̈(t)|2
(3.2.29)

for N � m > l. According to (3.2.28), h2(γ(t), 0, t + α), t �= t1, · · · , ti satisfies
the assumptions of Corollary 3.2.5. So for any sufficiently small 1 ≥ ε > 0, we
take h2,ε from this corollary such that

|h(t)− h2,ε(t)|2 < δ a.e. on [−l − 1, l + 1] \ ∪i
j=1[tj − δ, tj + δ] ,

|h− h2,ε|m,2 ≤ 2K1, where m > max {mδ, l + 2} .

We note that (3.2.9) has now the form (3.2.11) with D1 = I, so Zε(t) = et/ε
I.

We have for t ∈ [−l, l] the following cases:

If ti + 2δ ≤ t ≤ l, then

1
ε

l+1∫
t

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds ≤ δ .

If tj − 2δ ≤ t ≤ tj + 2δ for some j = 1, · · · , i, then

1
ε

l+1∫
t

e−(s−t)/ε|h(s)|2 ds ≤ K1 .

If tj + 2δ ≤ t ≤ tj+1 − 2δ for some j = 1, · · · , i− 1, then

1
ε

l+1∫
t

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds =
1
ε

tj+1−δ∫
t

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds

+
1
ε

l+1∫
tj+1−δ

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds ≤ δ + 2K1 e−(tj+1−δ−t)/ε

≤ δ + 2K1 e−δ/ε .
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If −l ≤ t ≤ t1 − 2δ, then

1
ε

l+1∫
t

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds =
1
ε

t1−δ∫
t

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds

+
1
ε

l+1∫
t1−δ

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds ≤ δ + 2K1 e−(t1−δ−t)/ε

≤ δ + 2K1 e−δ/ε .

On the other hand,

1
ε

m∫
l+1

e−(s−t)/ε|h(s)− h2,ε(s)|2 ds ≤ e−(l+1−t)/ε2K1 ≤ 2K1 e−δ/ε

for t ≤ l.

Furthermore, according to (3.2.13), the proof of Theorem 3.2.3 and the above
estimates, we know that

|Km,εh(t)−Km,εh2,ε(t)|2 ≤ 2 e−(m−l)/ε(1− e−2)−1K1 + δ + 4K1 e−δ/ε

for t ∈ [−l, l] \ ∪i
j=1[tj − 2δ, tj + 2δ], and

|Km,εh(t)|2 ≤ 2 e−(m−l)/ε(1− e−2)−1K1 + K1 + 2K1 e−δ/ε (3.2.30)

for t ∈ ∪i
j=1[tj − 2δ, tj + 2δ]. Then Corollary 3.2.5 gives

|Km,εh(t) + h(t)|2 ≤ |Km,εh(t)−Km,εh2,ε(t)|2 + |Km,εh2,ε(t)(t) + h2,ε(t)(t)|2
+|h2,ε(t)(t)− h(t)(t)|2 ≤ 3δ + 2 e−(m−l)/ε(1− e−2)−1K1 + 4K1 e−δ/ε

(3.2.31)
for t ∈ [−l, l] \ ∪i

j=1[tj − 2δ, tj + 2δ] and m > max{mδ, l + 2}. Now it follows
from (3.2.30)–(3.2.31) by considering sufficiently small ε > 0 and sufficiently
large m > l that

|Km,εh(t) + h(t)|2 ≤ 4δ for t ∈ [−l, l] \ ∪i
j=1[tj − 2δ, tj + 2δ] ,

|Km,εh(t)|2 ≤ K1 + δ for t ∈ ∪i
j=1[tj − 2δ, tj + 2δ] .

(3.2.32)

Recalling (3.2.29) together with (3.2.32) the Lemma 3.2.14 is proved.

The variational equation (3.2.7) is now u̇(t) = Dxq(γ(t))u(t). Clearly d = 1
and according to [157, p. 253], we can take

u⊥
1 (t) = e

−
t∫
0

(
∂q1
∂x1

(γ(s))+
∂q2
∂x2

(γ(s))

)
ds

(γ̇2(t),−γ̇1(t)) ,
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where q = (q1, q2) and γ = (γ1, γ2). Then (3.2.25) has now the form

M(α) =

∞∫
−∞

〈
− I(p(−s− α)− µ sgn (−γ̇(t) + v0)− γ̈(s), u⊥

1 (s)
〉

2
ds

=

∞∫
−∞

〈
γ̈(s) + µ

−γ̇(s) + v0

| − γ̇(s) + v0|2 , u⊥
1 (s)

〉
2
ds−

∞∫
−∞

〈
p(−s− α), u⊥

1 (s)
〉
2
ds .

(3.2.33)

The following result follows immediately from Theorems 3.2.11 and 3.2.13.

Theorem 3.2.15. If the assumptions of Lemma 3.2.14 are satisfied and there
are constants a < b such that M(a)M(b) < 0, where M is given by (3.2.33),
then for any sufficiently small m > 0, (3.2.2) possesses a 2i–periodic solution
near (γ, γ̇) for all N � i ≥ [

√
1/m ]. Moreover, a subsequence of these solutions

accumulates as i → ∞ on a bounded solution on R of (3.2.2) which is also
near (γ, γ̇).

The next result is useful for verifying assumptions of (3.2.28).

Proposition 3.2.16. If −γ̇(t1) + v0 = 0, γ̈(t1) �= 0 then t1 is an isolated
solution of −γ̇(t) + v0 = 0 and moreover,

lim
t→t1±

−γ̇(t) + v0

| − γ̇(t) + v0|2 = ∓ γ̈(t1)
|γ̈(t1)|2 , lim

t→t1±

d

dt

( −γ̇(t) + v0

| − γ̇(t) + v0|2
)

=

±1
2|γ̈(t1)|32

(
− ...

γ (t1)〈γ̈(t1), γ̈(t1)〉2 + γ̈(t1)〈...γ (t1), γ̈(t1)〉2
)

.

Proof. Since γ ∈ C3(R, R2), we get

−γ̇(t) + v0 = −γ̈(t1)(t− t1)− ...
γ (t1)

(t− t1)2

2
+ o(t− t1)2 .

So we have

−γ̇(t) + v0

| − γ̇(t) + v0|2 =
−γ̈(t1)(t− t1)− ...

γ (t1)
(t−t1)

2

2 + o(t− t1)2∣∣− γ̈(t1)(t− t1)− ...
γ (t1)

(t−t1)2

2 + o(t− t1)2
∣∣
2

=
−γ̈(t1) + o(1)
| − γ̈(t1) + o(1)|2

t− t1
|t− t1| → ∓ γ̈(t1)

|γ̈(t1)|2 as t → t1± .

Similarly we obtain the second limit.

Remark 3.2.17. Supposing
∞∫

−∞

〈
−γ̇(s)+v0

|−γ̇(s)+v0|2 , u⊥
1 (s)

〉
2
ds �= 0, Theorem 3.2.15 is

applicable only for non–large µ, because of then there is a µ0 > 0 such that
for any µ > µ0 and a < b it holds M(a)M(b) > 0. On the other hand, if
sup |q(·)|2 < ∞ and v0 �= 0 then for µ >

(
sup |q(·)|2 + m max |p(·)|2

)
/m,
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(3.2.1) has no periodic solutions: if x is a 2i–periodic solution of (3.2.1) for some
i ∈ R then

0 ≤ k̃

2i∫
0

|ẋ(s)|22 ds =

2i∫
0

(
〈−q(x(s)) + mp(s), sgn (ẋ(s) + v0)〉2

−µm
)
|ẋ(s) + v0|2 ds ≤ 0 .

This implies
2i∫
0

|ẋ(s)|22 ds =
2i∫
0

|ẋ(s) + v0|22 ds = 0, which is impossible.

Now we consider the following more simple tractable, coupled equations

z̈ + 2z3 − z = ẏ

εÿ + ẏ + y + ε sgn ẏ = εµ sin t ,
(3.2.34)

where z, y ∈ R and µ ∈ R is a parameter. Rewriting again (3.2.34) in the form

ẋ1 = x2, ẋ2 = x1 − 2x3
1 + y − x3

ẋ3 = y − x3, εẏ = −y + ε
(
µ sin t + y − x3 − sgn (y − x3)

)
,

we put

x = (x1, x2, x3), f(x, y) =
(
x2, x1 − 2x3

1 + y − x3, y − x3

)
, A(x) = −I

g(x, y) = −y, h1(x, y, t) = 0, h2(x, y, t) = µ sin t + y − x3 − Sgn (y − x3) .

Since the reduced equation is

ẋ1 = x2, ẋ2 = x1 − 2x3
1 − x3, ẋ3 = −x3 ,

we have

γ(t) = (r(t), ṙ(t), 0), r(t) = sech t, u⊥
1 (t) = (−r̈(t), ṙ(t), 0), d = 1

h2(γ(t), 0, t + α) =
[− 1 + µ sin (t + α), 1 + µ sin (t + α)

]
.

To find C(t, α), we consider (3.2.9) for this case of the form

εẏ = −y + h, h ∈ Ym,1, |h|m,1 ≤ 2 + µ, N � l < m− 1

h(t) ∈ [− 1− ζ + µ sin (t + α), 1 + ζ + µ sin (t + α)
]

a.e. on [−l − 1, l + 1] .
(3.2.35)

Putting in (3.2.35) y = z+µ sin (t+α), h = w+µ sin (t+α) and taking t ↔ −t,
we have

εż = z + εµ cos (−t + α)− w(−t), w ∈ Ym,1, |w|m,1 ≤ 2 + 2µ
w(t) ∈ [−1− ζ, 1 + ζ] a.e. on [−l − 1, l + 1] .

Following the proof of Theorem 3.2.3 (see (3.2.13)) and Lemma 3.2.14, we obtain

||z||l,1 ≤
( e−(m−l)/ε

1− e−2
+ e−1/ε

)
(2 + 2µ + εµ) + 1 + ζ + εµ .
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Consequently, we can take in (H) that

C(t, α) =
[− 1 + µ sin (t + α), 1 + µ sin (t + α)

]
,

and then (3.2.25) possesses the form

M(α) =

[
0∫

−∞
(µ sin (s + α)− 1)ṙ(s) ds +

∞∫
0

(µ sin (s + α) + 1)ṙ(s) ds,

0∫
−∞

(µ sin (s + α) + 1)ṙ(s) ds +
∞∫
0

(µ sin (s + α)− 1)ṙ(s) ds

]
=
[
− µπ sech π

2 cos α− 2,−µπ sech π
2 cos α + 2

]
.

(3.2.36)
By Theorems 3.2.11, 3.2.13 with a = 0, b = π and M is given by (3.2.36), we
obtain the following result.

Theorem 3.2.18. If |µ| > 2
π cosh π

2

.= 1.5973925 is fixed, then (3.2.34) pos-
sesses for any sufficiently small ε > 0 a 2πi–periodic solution for all N � i ≥
[1/
√

ε ]. Moreover, a subsequence of these solutions accumulates as i→∞ on a
bounded solution on R of (3.2.34).

Finally, our method is clearly applied like in Remark 3.1.32 to piecewise
smoothly and singularly perturbed problems. For instance, for

z̈ + 2z3 − z + εż+ = ẏ

εÿ + ẏ + y = εµ sin t ,
(3.2.37)

we find that (3.2.25) now has the form

M(α) = µ

∞∫
−∞

sin (s + α)ṙ(s) ds−
0∫

−∞
ṙ(s)2 ds = −µπ sech

π

2
cos α− 1

3
.

Consequently, by Theorems 3.2.11 and 3.2.13, we obtain the following result.

Theorem 3.2.19. If |µ| > 1
3π cosh π

2

.= 0.266232 is fixed, then (3.2.37) possesses
for any sufficiently small ε > 0 a 2πi–periodic solution for all N � i ≥ [1/

√
ε ].

Moreover, a subsequence of these solutions accumulates as i→∞ on a bounded
solution on R of (3.2.37).

The method of this Section is extended in Chapter 4 to show chaotic behavior
of (3.2.4).

3.3 Bifurcation of Periodics from Periodics

3.3.1 Discontinuous O.D.Eqns

In this section we continue with the study of bifurcations of periodic solutions for
ordinary differential equations with discontinuous periodic perturbations. But
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Figure 3.5: A block on a periodically moving ribbon under a force

now we investigate the problem of bifurcations of periodics from periodics, while
in the previous two Sections 3.1 and 3.2 bifurcations of subharmonics are studied
with very large periods from homoclinics. For motivation, we again consider a
mass attached to a spring and putting horizontally on a moving ribbon with a
speed v0 sin ωt (see Fig. 3.5). The resulting differential equation has the form

ẍ + q(x) + µ sgn (ẋ + v0 sin ωt) = 0 , (3.3.1)

where q ∈ C2(R, R) and µ > 0, v0 > 0, ω > 0 are constants. Like in the previous
sections, discontinuous equation (3.3.1) is considered as a perturbed differential
inclusion of the form

ẋ = y, ẏ ∈ −q(x)− µSgn (y + v0 sin ωt) . (3.3.2)

By assuming the existence of a 2π/ω–periodic solution γ of ẍ+q(x) = 0, we study
bifurcation of 2π/ω–periodic solutions for (3.3.2) from the 1-parametric family
{γ(t + θ) | θ ∈ R}. Of course, we consider more general systems of perturbed
differential inclusions than (3.3.2) which take the form

ẋ(t) ∈ f(x(t)) +
k∑

j=1

µjfj(x(t), µ, t) a.e. on R (3.3.3)

with x ∈ R
n, µ ∈ R

k, µ = (µ1, · · · , µk). Motivated by (3.3.2), we set the main
assumptions about (3.3.3):

(i) f ∈ C2(Rn, Rn) and fj : R
n × R

k × R → 2R
n \ {∅}, j = 1, · · · , k are all

upper–semicontinuous with compact and convex values.

(ii) The unperturbed equation ẋ = f(x) has a manifold of 1–periodic solutions,
i.e. there is an open subset O ⊂ R

d−1, d ≥ 1 and a C2–mapping γ :
O × R → R

n such that γ(θ, t + 1) = γ(θ, t) and γ(θ, ·) is a solution of
ẋ = f(x).
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(iii) fj(x, µ, t + 1) = fj(x, µ, t) for j = 1, · · · , k.

We investigate, if some of these periodic solutions γ(θ, t) persists after per-
turbation (3.3.3). The case when fj are all singlevalued and smooth is a classical
problem of bifurcation of periodic solutions for o.d.eqns and we refer the reader
to [55, 151] for more details. The purpose of this section is to extend some of
those results to the multivalued case (3.3.3).

3.3.2 Linearized Problem

In order to study bifurcations of 1-periodic solutions for (3.3.3) from the family
γ(θ, t), θ ∈ O, first we consider the non–homogeneous variational equation

ẋ = A(θ, t)x + h(t) a.e. on [0, 1] ,

A(θ, t) = Dxf(γ(θ, t)), h ∈ L2 := L2([0, 1], Rn) ,

x ∈ Cp = {y ∈ C([0, 1], Rn) : y(0) = y(1)}
(3.3.4)

along with the homogeneous one

ẋ = A(θ, t)x, x ∈ Cp . (3.3.5)

Note (3.3.5) is just the linearization of the unperturbed equation ẋ = f(x) of
(3.3.3) along γ(θ, t), θ ∈ O. The aim of this subsection is to derive a Fredholm-
like alternative result for (3.3.4) in order to apply the Lyapunov-Schmidt de-
composition in the next subsections to (3.3.3). The first step towards this is
the differentiation with respect to θ and t of γ̇(θ, t) = f(γ(θ, t)) which yields
respectively

∂

∂θi
γ̇(θ, t) = A(θ, t)

∂

∂θi
γ(θ, t), γ̈(θ, t) = A(θ, t)γ̇(θ, t) ,

where θ = (θ1, · · · , θd−1). We see that (3.3.5) has “trivial” 1-periodic solutions
∂

∂θi
γ(θ, t), i = 1, · · · , d− 1 and γ̇(θ, t). We assume that the following condition

is satisfied:

(iv) The family {γ(θ, t) | θ ∈ O} is non-degenerate, i.e. the only 1-periodic so-
lutions of ẋ = A(θ, ·)x are linear combinations of ∂

∂θi
γ(θ, t), i = 1, · · · , d−1

and γ̇(θ, t). Moreover, ∂
∂θi

γ(θ, t), i = 1, · · · , d − 1 and γ̇(θ, t) are linearly
independent.

Let U(θ, t) be the fundamental solution of ẋ = A(θ, t)x. Then

N (I− U(θ, 1)) = span
{ ∂

∂θi
γ(θ, 0), γ̇(θ, 0), i = 1, · · · , d− 1

}
(3.3.6)

and R(I − U(θ, 1)) is a continuous trivial vector bundle over O. The adjoint
equation to (3.3.5) has the form

ẋ = −A(θ, t)∗x, x ∈ Cp (3.3.7)
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with the fundamental solution (U−1(θ, t))∗. Then any 1-periodic solution of
(3.3.7) has the form (U−1(θ, t))∗y, y ∈ R

n with (U−1(θ, 1))∗y = y. Since

(U−1(θ, 1))∗y = y ⇐⇒ U(θ, 1)∗y = y , (3.3.8)

we get

N (I− (U−1(θ, 1))∗) = N (I− U(θ, 1)∗) =
(R(I− U(θ, 1))

)⊥
.

According to (3.3.6),
(R(I − U(θ, 1))

)⊥ is a continuous trivial vector bundle
over O. So taking its basis, there are linearly independent continuous mappings
vi(θ, t), i = 1, · · · , d, vi : O × R → R

n, vi(θ, t + 1) = vi(θ, t) and all vi are
solutions of (3.3.7). Let 〈·, ·〉 be the inner product on R

n and let Π(θ) : L2 → L2

be a projection onto the subspace⎧⎨⎩h ∈ L2 |
1∫

0

〈h(s), vi(θ, s)〉 ds = 0, ∀ i = 1, · · · , d

⎫⎬⎭
depending continuously on θ in L(L2) and having uniformly bounded ‖Π(θ)‖ on
any bounded subset of O. Such a projection exists, for instance the orthogonal
one. Now we can state the following well–known Fredholm alternative result
[110, p. 411].

Lemma 3.3.1. System (3.3.4) has a solution if and only if (I−Π(θ))h = 0. This

solution x is unique provided that it satisfies
1∫
0

〈x(s), ∂
∂θi

γ(θ, s)〉 ds = 0 for all

i = 1, · · · , d−1 along with
1∫
0

〈x(s), γ̇(θ, s)〉 ds = 0. Moreover, let K(θ) : L2 → Cp

be the linear operator defined so that x = K(θ)h be the unique solution of the
linear system

ẋ = A(θ, t)x + Π(θ)h . (3.3.9)

Then K(θ) : L2 → Cp is a compact linear operator depending continuously on θ.

Proof. We derive a parameterized Green formula for K(θ) [110]. The orthogonal
projection Π(θ) : L2 → L2 is given by the formula

Π(θ)h = h−
d∑

i=1

ci(θ)vi(θ, ·) , (3.3.10)

where ci(θ) solve the linear system

d∑
i=1

ci(θ)

1∫
0

〈vi(θ, s), vj(θ, s)〉 ds =

1∫
0

〈h(s), vj(θ, s)〉 ds, j = 1, 2, · · · , d .

(3.3.11)
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The Gram matrix

G(θ) =

⎛⎝ 1∫
0

〈vi(θ, s), vj(θ, s)〉 ds

⎞⎠d

i,j=1

is invertible, so (3.3.11) implies

(c1(θ), · · · , cd(θ))∗ = G−1(θ)

⎛⎝ 1∫
0

〈h(s), v1(θ, s)〉 ds, · · · ,

1∫
0

〈h(s), vd(θ, s)〉 ds

⎞⎠∗

=

1∫
0

G−1(θ) (〈h(s), v1(θ, s)〉, · · · , 〈h(s), vd(θ, s)〉)∗ ds .

This gives by (3.3.10) the formula of Π(θ):

(Π(θ)h)(t) = h(t)−
∫ 1

0

M1(θ, t, s)h(s) ds , (3.3.12)

where

M1(θ, t, s)h := (v1(θ, t)∗, · · · , vd(θ, t)∗) G−1(θ) (〈h, v1(θ, s)〉, · · · , 〈h, vd(θ, s)〉)∗

is a continuous n× n-matrix on O × [0, 1]2.
Next, a general solution of (3.3.9) is given by

x(t) = U(θ, t)x0 +

t∫
0

U(θ, t)U−1(θ, s)(Π(θ)h)(s) ds (3.3.13)

and it satisfies x(1) = x0 if and only if

(I− U(θ, 1)) x0 =

1∫
0

U(θ, 1)U−1(θ, s)(Π(θ)h)(s) ds . (3.3.14)

Note (R(I− U(θ, 1))
)⊥ = span {vi(θ, 0) | i = 1, 2, · · · , d} .

So (3.3.14) has a solution x0 if and only if〈 1∫
0

U(θ, 1)U−1(θ, s)(Π(θ)h)(s) ds, vi(θ, 0)

〉
= 0, ∀i = 1, 2, · · · , d . (3.3.15)

But using (3.3.8) we derive〈 1∫
0

U(θ, 1)U−1(θ, s)(Π(θ)h)(s) ds, vi(θ, 0)

〉

=

1∫
0

〈
(Π(θ)h)(s), U−1(θ, s)∗U(θ, 1)∗vi(θ, 0)

〉
=

1∫
0

〈(Π(θ)h)(s), vi(θ, s)〉 = 0
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according to the definition of Π(θ). So (3.3.14) has a solution x0. We show its
uniqueness. Put for simplicity

wi(θ, s) :=
∂

∂θi
γ(θ, s), i = 1, 2, · · · , d− 1, wd(θ, s) = γ̇(θ, s) .

Let
span {ed+1(θ), · · · , en(θ)} = {wi(θ, 0) | i = 1, 2, · · · , d}⊥

with ek(θ) continuous. Then

x0 =
d∑

j=1

ηj(θ)wj(θ, 0) +
n∑

j=d+1

ηj(θ)ej(θ) (3.3.16)

and so

(I− U(θ, 1)) x0 =
d∑

j=1

ηj(θ) (I− U(θ, 1)) wj(θ, 0)

+
n∑

j=d+1

ηj(θ) (I− U(θ, 1)) ej(θ) =
n∑

j=d+1

ηj(θ) (I− U(θ, 1)) ej(θ) .

Introducing an n× (n− d)-matrix

M(θ) :=
(
[(I− U(θ, 1)) ed+1(θ)]

∗
, · · · , [(I− U(θ, 1)) en(θ)]∗

)
,

(3.3.14) has the form

M(θ) (ηd+1(θ), · · · , ηn(θ))∗ =

1∫
0

U(θ, 1)U−1(θ, s)(Π(θ)h)(s) ds . (3.3.17)

The n× (n−d)-matrix M(θ) has the rank n−d, so the (n−d)× (n−d)-matrix
M(θ)∗M(θ) is invertible. Hence (3.3.12), (3.3.17) and the Fubiny theorem [171]
imply

(ηd+1(θ), · · · , ηn(θ))∗ =

1∫
0

M2(θ, s)h(s) ds , (3.3.18)

where

M2(θ, s) :=

[M(θ)∗M(θ)]−1
M(θ)∗U(θ, 1)

⎡⎣U−1(θ, s)−
1∫

0

U−1(θ, z)M1(θ, z, s) dz

⎤⎦
is a continuous (n− d)× n-matrix on O × [0, 1].
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Now we compute the rest ηi. Using the assumption of Lemma 3.3.1:

1∫
0

〈x(s), wj(θ, s)〉 ds = 0, j = 1, 2, · · · , d ,

together with (3.3.13), we derive

1∫
0

〈
d∑

i=1

ηi(θ)U(θ, s)wi(θ, 0), wj(θ, s)

〉
ds = H̃j(θ), j = 1, 2, · · · , d , (3.3.19)

where

H̃j(θ) := −
1∫

0

〈
n∑

i=d+1

ηi(θ)U(θ, s)ei(θ), wj(θ, s)

〉
ds

−
1∫

0

〈 s∫
0

U(θ, s)U−1(θ, z)(Π(θ)h)(z) dz, wj(θ, s)

〉
ds

for j = 1, 2, · · · , d. Using the Fubiny theorem we see that

(
H̃1(θ), · · · , H̃d(θ)

)∗
=

1∫
0

M3(θ, s)h(s) ds

for a continuous d× n-matrix M3(θ, s) on O × [0, 1]. Since

1∫
0

〈
d∑

i=1

ηi(θ)U(θ, s)wi(θ, 0), wj(θ, s)

〉
ds =

d∑
i=1

ηi(θ)

1∫
0

〈wi(θ, s), wj(θ, s)〉 ds

= G̃(θ) (η1(θ), · · · , ηd(θ))
∗

and the Gram matrix

G̃(θ) :=

⎛⎝ 1∫
0

〈wi(θ, s), wj(θ, s)〉 ds

⎞⎠d

i,j=1

is invertible, from (3.3.19) we derive

(η1(θ), · · · , ηd(θ))
∗ =

1∫
0

G̃(θ)−1M3(θ, s)h(s) ds . (3.3.20)

Inserting formulas (3.3.18) and (3.3.20) into (3.3.16), we get

x0 =

1∫
0

M4(θ, s)h(s) ds (3.3.21)
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for a continuous n×n-matrix M4(θ, s) on O× [0, 1]. Next plugging (3.3.12) and
(3.3.21) into (3.3.13), and using the Fubiny theorem, we obtain a formula of
K(θ)h of the form

(K(θ)h)(t) =

1∫
0

K1(θ, t, s)h(s) ds +

t∫
0

K2(θ, t, s)h(s) ds

for continuous n × n-matrix functions K1(θ, t, s) and K2(θ, t, s) on O × [0, 1]2.
Using standard method [199] based on the uniform continuity of continuous
functions on compact intervals along with the Arzela-Ascolli theorem [59], we
see that K(θ) : L2 → Cp is a compact linear operator which is continuous with
respect to θ. Finally, introducing the parameterized Green function G(θ, t, s) as
follows

G(θ, t, s) :=
{

K1(θ, t, s) + K2(θ, t, s) for 0 ≤ s ≤ t ≤ 1,
K1(θ, t, s) for 0 ≤ t ≤ s ≤ 1,

we see that

(K(θ)h)(t) =

1∫
0

G(θ, t, s)h(s) ds .

The proof is finished.

3.3.3 Bifurcation of Periodics in Nonautonomous Systems

In this subsection, we study bifurcation of periodic solutions to (3.3.3) by using
Lemma 3.3.1 together with topological degree arguments. For this reason, we
first scale µ→ sµ for s ∈ R \ {0} and take the change of variables [75]

x(t + α) = γ(θ, t) + sz(t), α ∈ R, s ∈ R \ {0} , (3.3.22)

so then (3.3.3) possesses the form

ż(t)−A(θ, t)z(t) ∈ g(z(t), θ, α, µ, s, t) a.e. on [0, 1] , (3.3.23)

where

g(x, θ, α, µ, s, t) =

{
v ∈ R

n : v ∈ 1
s

[
f(sx + γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]
+

k∑
j=1

µjfj(sx + γ(θ, t), sµ, t + α)

}
and g is extended to s = 0 by putting the term in the square brackets equal to
zero. Then g : R

n ×O × R× R
k × R× R → 2R

n \ {∅} is upper–semicontinuous
with compact and convex values. Introducing a multivalued mapping G : Cp ×
O × R× R

k × R → 2L2
by the formula

G(z, θ, α, µ, s) =
{

h ∈ L2 : h(t) ∈ g(z(t), θ, α, µ, s, t) a.e. on [0, 1]
}

,
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(3.3.23) is considered as a multivalued equation for z of the form

ż −A(θ, ·)z ∈ G(z, θ, α, µ, s) . (3.3.24)

Like for (3.1.17), G(z, θ, α, µ, s) are non–empty, closed, convex and bounded
in L2, and they are also weakly compact in L2. In order to solve (3.3.24), we
consider the homotopy

ż −A(θ, ·)z ∈ F (z, θ, α, µ, s, λ), λ ∈ [0, 1] , (3.3.25)

for

F (z, θ, α, µ, s, λ) =
{

h ∈ L2 : h(t) ∈ p(z(t), θ, α, µ, s, λ, t) a.e. on [0, 1]
}

,

with

p(x, θ, α, µ, s, λ, t) =

{
v ∈ R

n : v ∈ λ
s

[
f(sx + γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]
+λ

k∑
j=1

µjfj(sx + γ(θ, t), sµ, t + α) + (1− λ)
k∑

j=1

µjfj(γ(θ, t), 0, t + α)

}
.

Again p is extended to s = 0 like g above. Now we use the Fredholm alternative
result of Lemma 3.3.1 to (3.3.25) by introducing a projection L(θ) : L2 → R

d

given by

L(θ)h =

( 1∫
0

〈h(s), v1(θ, s)〉 ds, · · · ,

1∫
0

〈h(s), vd(θ, s)〉 ds

)
,

and then decomposing (3.3.25) as follows:⎧⎨⎩ 0 ∈ H(z, θ, α, µ, s, λ)

H(z, θ, α, µ, s, λ) =
{(

z − λK(θ)h,L(θ)h
)

: h ∈ F (z, θ, α, µ, s, λ)
}

.

(3.3.26)

Like in Subsection 3.1.3, H : Cp × O × R × R
k × R × [0, 1] → 2Cp×R

d \ {∅} is
upper–semicontinuous and ICp×Rd − H has compact convex values and maps
bounded sets into relatively compact ones. Finally for stating Theorem 3.3.2
below, we introduce a multivalued mapping Mµ : O × R → 2R

d \ {∅} by

Mµ(θ, α) =
{

L(θ)h : h ∈ L2, h(t) ∈
k∑

j=1

µjfj(γ(θ, t), 0, t + α) a.e. on [0, 1]
}

.

(3.3.27)
Arguing as for (3.1.21), the mapping Mµ is upper–semicontinuous with compact
convex values and maps bounded sets into bounded ones. Now we are ready to
prove the main results of this section.
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Theorem 3.3.2. Let d > 1. If there is a non–empty open bounded set B ⊂ O×R

and µ0 ∈ Sk−1 such that

(i) 0 /∈Mµ0(∂B)

(ii) deg(Mµ0 ,B, 0) �= 0

Then there is a constant K > 0 and a region in R
k for µ of the form

R =
{

sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ R and of µ0, respectively
}

such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differen-
tial inclusion (3.3.3) possesses a 1–periodic solution xµ satisfying, according to
(3.3.22),

sup
0≤t≤1

∣∣xµ(t)− γ(θµ, t− αµ)
∣∣ ≤ Ks ,

where αµ ∈ R and θµ ∈ O.

Proof. We have to solve (3.3.24) which is inserted into the homotopy (3.3.26).
In order to handle (3.3.26), we need the following results.

Lemma 3.3.3. Under condition (i) of Theorem 3.3.2, for any A > 0 there are
constants δ > 0, 1 > s0 > 0 such that |L(θ)h| ≥ δ for all h ∈ F (z, θ, α, µ, s, λ)
and for any |s| < s0, λ ∈ [0, 1], |z| ≤ A, (θ, α) ∈ ∂B, |µ− µ0| ≤ δ.

Proof. We prove Lemma 3.3.3 by the contrary. So assume that there is an A > 0
and

sp → 0, λp → λ0, |zp| ≤ A, µp → µ0, p ∈ N ,

∂B � (θp, αp)→ (θ0, α0) ∈ ∂B, hp ∈ F (zp, θp, αp, µp, sp, λp)

such that L(θp)hp → 0 as p → ∞. Using the boundedness of {hp}p
1 in L2

and Theorem 2.1.1, we can assume that hp tends weakly to some h0 ∈ L2.
Then by Mazur’s Theorem 2.1.2 like in the proof of Lemma 3.1.7, h0(t) ∈∑k

j=1 µ0jfj(γ(θ0, t), 0, t + α0) a.e. on [0, 1], and L(θ0)h0 = 0. This contradicts
to (i) of this theorem. The Lemma 3.3.3 is proved.

From Lemma 3.3.3 and the construction of H it follows:

Lemma 3.3.4. There are open small connected neighborhoods U1 ⊂ R, U2 ⊂
Sk−1 of 0 and µ0, respectively, and a constant K1>0 such that 0 /∈ H(∂Ω, µ, s, λ)
for any s ∈ U1, µ ∈ U2, λ ∈ [0, 1] with

Ω =
{

(z, θ, α) ∈ Cp × R
d : |z| < K1, (θ, α) ∈ B

}
.

Finally applying Lemma 3.3.4 for any s ∈ U1, µ ∈ U2 we derive

deg
(
H(·, µ, s, 1),Ω, 0

)
= deg

(
H(·, µ0, 0, 0),Ω, 0

)
= deg(Mµ0 ,B, 0) �= 0 .

Hence (3.3.26) has a solution in Ω for any s ∈ U1, µ ∈ U2 and λ = 1. This
solution gives a solution of (3.3.24) according to the definition of (3.3.26). The
proof of Theorem 3.3.2 is finished.
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Applying Theorem 3.3.2 with B = (a, b) together with the proof of Theorem
3.1.9 we get

Corollary 3.3.5. Let d = 1. If there are constants a < b and µ0 ∈ Sk−1

such that Mµ0(a)Mµ0(b) ⊂ (−∞, 0), then the conclusion of Theorem 3.3.2 is
applicable.

Remark 3.3.6. The restriction |µ0| = 1 is not essential, since Mµ in (3.3.27) is
homogeneous with respect to the variable µ.
Remark 3.3.7. Let f(x) = Bx for a matrix B and let γ1, · · · , γd be the maximum
number of linearly independent 1–periodic solutions of ẋ = Bx. Then we take
γ(θ, t) = θ1γ1 + · · ·+θdγd and ∂γ

∂θi
, i = 1, · · · , d represent the maximum number

of linearly independent 1–periodic solutions of ẋ = Bx. Considering now (3.3.22)
with α = 0 and repeating the above procedure, we get O = R

d and Mµ : R
d →

2R
d \ {∅} of the form

Mµ(θ) =
{

Lh : h ∈ L2,

h(t) ∈
k∑

j=1

µjfj(θ1γ1(t) + · · ·+ θdγd(t), 0, t) a.e. on [0, 1]
}

,

(3.3.28)

where Lh =
(

1∫
0

〈h(s), v1(s)〉 ds, · · · ,
1∫
0

〈h(s), vd(s)〉 ds

)
and vi, i = 1, · · · , d are

linearly independent 1-periodic solutions of v̇ = −B∗v. Then Theorem 3.3.2 is
valid with such Mµ (3.3.28).

3.3.4 Bifurcation of Periodics in Autonomous Systems

When all fj are independent of t in (3.3.3) then we need to modify the arguments
of Subsection 3.3.3. So we start from the differential inclusion

ẋ(t) ∈ f(x(t)) +
k∑

j=1

µjfj(x(t), µ) a.e. on R (3.3.29)

with x ∈ R
n, µ ∈ R

k, µ = (µ1, · · · , µk) and f, fj satisfying the assumptions (i),
(ii) and (iv). Scaling µ→ sµ for s ∈ R\{0} and taking now, instead of (3.3.22),
the change of variables

x((1 + sα)t) = γ(θ, t) + sz(t), α ∈ R, s ∈ R \ {0} , (3.3.30)

(3.3.29) is rewritten in the form

ż(t)−A(θ, t)z(t) ∈ g̃(z(t), θ, α, µ, s, t) a.e. on [0, 1] (3.3.31)

with

g̃(x, θ, α, µ, s, t) =

{
v ∈ R

n : v ∈ 1
s

[
f(sx + γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]
+αf(γ(θ, t) + sx) + (1 + sα)

k∑
j=1

µjfj(sx + γ(θ, t), sµ)

}
.
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Because of (3.3.31) has a similar form like (3.3.23), we do repeat the approach
of Subsection 3.3.3 to (3.3.31) and we arrive like for (3.3.27) at a multivalued
mapping Nµ : O × R → 2R

d \ {∅} with

Nµ(θ, α)=
{

L(θ)h : h ∈ L2, h(t) ∈ αγ̇(θ, t) +
k∑

j=1

µjfj(γ(θ, t), 0) a.e. on [0, 1]
}

.

(3.3.32)

Nµ is again upper–semicontinuouswith compact convex values andmaps bounded
sets into bounded ones. Following the proof of Theorem 3.3.2, we get the following
result.

Theorem 3.3.8. Let d > 1. Let there exist a non–empty open bounded set
B ⊂ O×R and µ0 ∈ Sk−1 such that 0 /∈ Nµ0(∂B) and deg(Nµ0 ,B, 0) �= 0. Then
there is a constant K > 0 and a region in R

k for µ of the form

R =
{

sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ R and of µ0, respectively
}

such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differential
inclusion (3.3.29) possesses a (1+sαµ)–periodic solution xµ satisfying, according
to (3.3.30),

sup
0≤t≤1+sαµ

∣∣xµ(t)− γ(θµ, t/(1 + sαµ))
∣∣ ≤ Ks ,

where αµ ∈ R, |αµ| ≤ K and θµ ∈ O.

We proceed with the case d = 1. Then γ(θ, t) = γ(t) and the adjoint varia-
tional equation (3.3.7) has a unique (up to scalar multiples) 1–periodic solution
v(t).

Corollary 3.3.9. If
1∫

0

〈γ̇(s), v(s)〉 ds �= 0 , (3.3.33)

then there is a constant K > 0 such that for any sufficiently small µ, the differ-
ential inclusion (3.3.29) possesses a periodic solution xµ with the properties of
Theorem 3.3.8.

Proof. There is a K̃ > 0 such that

dist

⎧⎨⎩Nµ(α), α

1∫
0

〈γ̇(s), v(s)〉 ds

⎫⎬⎭ < K̃

for any µ ∈ Sk−1 and α ∈ R. Then there is a K̄ > 0 such that Nµ(−K̄)Nµ(K̄) ⊂
(−∞, 0), which gives |deg(Nµ, (−K̄, K̄), 0)| = 1 uniformly for µ ∈ Sk−1. Ap-
plying Theorem 3.3.8 with B = (−K̄, K̄), the proof is finished.



3.3. Bifurcation of Periodics from Periodics 87

Remark 3.3.10. Corollary 3.3.9 is an extension of a classical bifurcation result of
[110, p. 416, Theorem 2.4] to the multivalued case (3.3.29), since when (3.3.33) is
satisfied and (3.3.29) is smooth then we can apply the implicit function theorem
in order to solve the variable α near 0 from a bifurcation equation as a function
of a small parameter µ. Note (3.3.33) is a transversality assumption for α. As
a consequence, for any small µ, there is a unique 1-periodic solution near γ in
the smooth case.

To complete the subject of Corollary 3.3.9, we suppose
1∫

0

〈γ̇(s), v(s)〉 ds = 0 . (3.3.34)

Then we loose the variable α in Nµ, and we deal with a second-order singularity
of (3.3.29) of a fold-type [56]. We need to modify the above approach. To this
end, we scale µ → s2µ for s > 0 and change the variables

x((1 + sα)t) = γ(t) + sαu(t) + s2z(t), α ∈ R, s > 0 , (3.3.35)

where u ∈ Cp is the unique solution of u̇− A(t)u = γ̇,
1∫
0

〈u(s), γ̇(s)〉 ds = 0 and

A(t) = Dxf(γ(t)). Then (3.3.31) has the form

ż(t)−A(t)z(t) ∈ ḡ(z(t), α, µ, s, t) a.e. on [0, 1] , (3.3.36)

where

ḡ(x, α, µ, s, t) =

{
v ∈ R

n : v ∈ 1
s2

[
f(sαu(t) + s2x + γ(t))− f(γ(t))

−A(t)(sαu(t) + s2x)
]
+α

s

[
f(γ(t)+sαu(t) + s2x)− f(γ(t))

]
+(1 + sα)

k∑
j=1

µjfj(sαu(t) + s2x + γ(t), s2µ)

}
.

Repeating the procedure of Subsection 3.3.3 for (3.3.36), the resulting mul-
tivalued function is (like for (3.3.27)) as follows:

Pµ(α) =

{
1∫
0

〈h(s), v(s)〉 ds : h ∈ L2 satisfying a.e. on [0, 1] the relation

h(t) ∈ α2
[

1
2D2

xf(γ(t))(u(t), u(t)) + Dxf(γ(t))u(t)
]

+
k∑

j=1

µjfj(γ(t), 0)

}
.

(3.3.37)
We have the following extension of Corollary 3.3.9.

Theorem 3.3.11. Let d = 1 and (3.3.34) hold. Suppose

A0 :=

1∫
0

〈1
2
D2

xf(γ(s))(u(s), u(s)) + Dxf(γ(s))u(s), v(s)
〉
ds > 0
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and there exists µ0 ∈ Sk−1 such that
1∫
0

〈
h(s), v(s)〉 ds<0 for any h ∈ L2 satisfy-

ing h(t) ∈∑k
j=1 µ0jfj(γ(t), 0) a.e. on [0, 1]. Then there is a constant K>0 and

a wedge–shaped region in R
k for µ of the form

R =
{

s2µ̃ : s > 0 and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ R and of µ0, respectively
}

such that for any µ ∈ R of the form µ = s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, the differential
inclusion (3.3.29) possesses two (1 + sα±,µ)–periodic solutions x±,µ satisfying,
according to (3.3.35),

sup
0≤t≤1+sα±,µ

∣∣x±,µ(t)− γ(t/(1 + sα±,µ))− sα±,µu(t/(1 + sα±,µ))
∣∣ ≤ Ks2 ,

where α+,µ > 0, α−,µ < 0 and |α±,µ| ≤ K.

Proof. Since Pµ0(α) = α2A0 + S, where A0 > 0 and

S =

⎧⎨⎩
1∫

0

〈h(s), v(s)〉 ds : h ∈ L2, h(t) ∈
k∑

j=1

µ0jfj(γ(t), 0) a.e. on [0, 1]

⎫⎬⎭
is a set of negative numbers, we have that Pµ0(0) = S contains only nega-
tive numbers, while there is an α0 > 0 such that Pµ0(±α0) contains only
positive numbers. Then according to the proof of Theorem 3.1.9, we derive
deg(Pµ0 , (−α0, 0), 0) = −1 and deg(Pµ0 , (0, α0), 0) = 1. Applying Theorem 3.3.8
with B = (−α0, 0) and B = (0, α0), respectively, the proof is finished.

Remark 3.3.12. Theorem 3.3.11 is an extension of a saddle-node bifurcation of
periodic solutions [108, p. 197], [151] to the multivalued case (3.3.29). Indeed,
if (3.3.29) is smooth then we can use the implicit function theorem for solving
a bifurcation equation, and we get the singularity fold. This means that when
k = 1, for µ > 0, there are only two 1-periodic solutions near γ, for µ = 0 the
only one is γ near it, while for µ < 0 there are no 1-periodic solutions near γ.

In the rest of this subsection, we deal with planar differential inclusions under
the condition (i), and (ii), (iv) are replaced by

(v) There are numbers 0 < c < e and a C2–mapping γ : (c, e) × R → R
2

such that γ(θ, t) has the minimal period θ in t and γ(θ, ·) is a solution of
ẋ = f(x).

Condition (v) usually holds when ẋ = f(x) is a nonlinear conservative
second-order equation, for instance like the Duffing equation z̈ − z + z3 = 0
possessing a 1-parametric family of periodic solutions (see Fig. 1.2) with explicit
formulas expressed in terms of the Jacobi elliptic functions [108, p. 198]. Next,
differentiating γ̇(θ, t) = f(γ(θ, t)) with respect to t and θ, we see that the linear
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variational equation u̇ = Dxf(γ(θ, t))u has two solutions: γ̇(θ, t) and ∂
∂θ γ(θ, t).

The first one is θ–periodic, but the second one is not, since γ(θ, t + θ) = γ(θ, t)
implies ∂

∂θ γ(θ, t + θ) + γ̇(θ, t) = ∂
∂θγ(θ, t). Consequently, u̇ = Dxf(γ(θ, t))u has

the single (up to scalar multiples) θ–periodic solution γ̇(θ, t). Then according to
Subsection 3.3.2, (v) implies the existence of a non-zero, continuous mapping
v : (c, e) → R

2 such that v(θ, t) is a θ–periodic solution of the adjoint equation
v̇ = −A(θ, t)∗v. Then w(θ, t) = v(θ, θt) is a 1–periodic solution (up to scalar
multiples) of ẇ = −θA(θ, θt)∗w.

To study bifurcation of θ-periodic solutions in (3.3.29), we scale µ → sµ like
above for s ∈ R \ {0} and change variables as follows

x(θt) = γ(θ, θt) + sz(t), s ∈ R \ {0} . (3.3.38)

Then (3.3.29) has the form

ż(t)− θA(θ, θt)z(t) ∈ p̄(z(t), θ, µ, s, t) a.e. on [0, 1] , (3.3.39)

where

p̄(x, θ, µ, s, t) =

{
v ∈ R

2 : v ∈ θ
s

[
f(sx + γ(θ, θt))− f(γ(θ, θt))−A(θ, θt)sx

]
+θ

k∑
j=1

µjfj(sx + γ(θ, θt), sµ)

}
.

Applying the procedure of Subsection 3.3.3, we can solve (3.3.39) in z ∈ Cp

considering θ ∈ (c, e) as a parameter. The corresponding multivalued mapping
has the form

Qµ(θ) =

{
1∫
0

〈h(s), w(θ, s)〉 ds : h ∈ L2,

h(t) ∈ θ
k∑

j=1

µjfj(γ(θ, θt), 0) a.e. on [0, 1]

}

=

{
θ∫
0

〈h(s), v(θ, s)〉 ds : h ∈ L2([0, θ], R2),

h(t) ∈
k∑

j=1

µjfj(γ(θ, t), 0) a.e. on [0, θ]

}
.

(3.3.40)

Summarizing, we obtain the following result.

Theorem 3.3.13. Let (i) and (v) be satisfied. If there are constants c < a < b <
e and µ0 ∈ Sk−1 such that Qµ0(a)Qµ0(b) ⊂ (−∞, 0), then there is a constant
K > 0 and a region in R

k for µ of the form

R =
{

sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ R and of µ0, respectively
}
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such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differential
inclusion (3.3.29) possesses a θµ–periodic solution xµ satisfying, according to
(3.3.38),

sup
0≤t≤θµ

∣∣xµ(t)− γ(θµ, t)
∣∣ ≤ Ks ,

where θµ ∈ (c, e).

Remark 3.3.14. If ẋ=f(x) is a Hamiltonian system and γ(θ, t)=(γ1(θ, t), γ2(θ, t))
then v(θ, t)=(γ̇2(θ, t),−γ̇1(θ, t)) and

θ∫
0

〈h(s), v(θ, s)〉 ds =

θ∫
0

h(s) ∧ γ̇(θ, s) ds =

θ∫
0

h(s) ∧ f(γ(θ, s)) ds ,

where ∧ is the wedge product given as a ∧ b := a1b2 − a2b1 for a = (a1, a2) and
b = (b1, b2) [108, p. 187].

Remark 3.3.15. Qµ(θ) in (3.3.40) is an extension of a classical Melnikov function
[55], [108, p. 195] to the multivalued case (3.3.29). Hence Theorem 3.3.13 is a
generalization of the Poincaré-Andronov bifurcation theorem.

3.3.5 Applications to Discontinuous O.D.Eqns

First we consider the following simple version of (3.3.1):

ẍ + µ1τ(x) + µ2 sgn (ẋ + v0β(t)) = 0 , (3.3.41)

with τ ∈ C(R, R), β ∈ C(R, R) is 1–periodic and µ1,2 > 0, v0 > 0 are constants.
Rewriting (3.3.41) in the form of (3.3.3)

ż = y, ẏ ∈ −µ1τ(z)− µ2 Sgn (y + v0β(t)) , (3.3.42)

we get f = 0, so we apply Remark 3.3.7. 1–periodic solutions of the variational
equation ż = y, ẏ = 0 and adjoint one u̇ = 0, v̇ = −u are constant ones
γ1(t) = (1, 0) and v1(t) = (0, 1), respectively.

Theorem 3.3.16. Let 0 ≤ t1 < t2 < · · · < t2j < 1, j ≥ 1 be the only zero
points of β. Let inf τ = Γ1 < 0 < Γ2 = sup τ . If µ1,2 > 0 are sufficiently small
satisfying

µ1/µ2 > max
{
− Γ3

Γ1
,−Γ3

Γ2

}
, where

Γ3 =
(
− 1 + 2

2j∑
i=1

(−1)iti

)
sgn β

( t1 + t2
2

)
,

(3.3.43)

then (3.3.41) has a 1–periodic solution.
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Proof. Multivalued function (3.3.28) has now the form

Mµ(θ) =

{
1∫
0

h(s) ds : h ∈ L2,

h(t) ∈ −µ1τ(θ)− µ2 Sgn (v0β(t)) a.e. on [0, 1]

}

which, by the assumptions of this theorem, has the form

Mµ(θ) = −µ1τ(θ)− µ2

(
− 1 + 2

2j∑
i=1

(−1)iti

)
sgn β

( t1 + t2
2

)
.

From (3.3.43) there are a < b such that Mµ(a)Mµ(b) < 0. The proof is completed
by Corollary 3.3.5.

The next example is a multivalued van der Pol oscillator (see [55]) of the
form

ẋ = y, ẏ ∈ −x + µφ(x)y , (3.3.44)

where φ(x) =
[
φ1(x), φ2(x)

]
, µ > 0 and φ1,2 ∈ C(R, R), φ1(x) ≤ φ2(x). Note

(3.3.42) and (3.3.44) aremultivaluedperturbationsof linear second-order o.d.eqns.

Theorem 3.3.17. If there are constants 0 < θ1, 0 < θ2 such that

0 <

2π∫
0

φ1(θ1 cos s) sin2 s ds,

2π∫
0

φ2(θ2 cos t) sin2 s ds < 0 ,

then (3.3.44) has a periodic solution for any sufficiently small µ > 0.

Proof. We apply Theorem 3.3.8. The unperturbed equation in (3.3.44) is just
the harmonic oscillator, so we have

γ(θ, t) = θ(cos t,− sin t), γ̇(θ, t) = −θ(sin t, cos t), θ > 0
v1(θ, t) = (cos t,− sin t), v2(θ, t) = (sin t, cos t) ,

and (3.3.32) now possesses the form

N1(θ, α) =

{(
−

2π∫
0

h(s) sin s ds,−2θαπ +

2π∫
0

h(s) cos s ds
)

:

h ∈ L2([0, 2π], R), h(t) ∈ [φ1(θ cos t), φ2(θ cos t)
]
(−θ sin t) a.e. on [0, 2π]

}
.
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To compute deg(N1,B, 0) with B = (θ1, θ2) × (−α0, α0) for α0 > 0 large, we
consider the homotopy

N1,λ(θ, α) ={(
(λθ + 1− λ)

2π∫
0

h(s) sin2 s ds,−2(λθ + 1− λ)απ − λθ

2π∫
0

h(s) sin s cos s ds
)

:

h ∈ L2([0, 2π], R), h(t) ∈ [φ1(θ cos t), φ2(θ cos t)
]
a.e. on [0, 2π]

}
.

If α0 > 0 is sufficiently large then 0 /∈ N1,λ(∂B), and so deg(N1,B, 0) =
deg(N1,0,B, 0) = ±1. Theorem 3.3.8 gives the result.

Now we study (3.3.2) by assuming:

(vi) There are numbers 0 < c < e and a C2–mapping γ : (c, e) × R → R

such that γ(θ, t) has the minimal period θ in t, γ̇(θ, 0) = 0 and γ(θ, ·) is a
solution of ẍ + q(x) = 0.

Fixing θ = 2π/ω, provided that c < 2π/ω < e, condition (iv) holds with d = 1.
We need the following well-known property of γ.

Lemma 3.3.18. γ̇(2π/ω, π/ω) = 0 and γ̇(2π/ω, t) �= 0 for any π/ω �= t ∈
(0, 2π/ω).

Proof. Since γ̇(2π/ω, t) is periodic, there is a smallest t1, 0 < t1 ≤ 2π/ω such
that γ̇(2π/ω, t1) = 0. Then y(t) = γ(2π/ω, 2t1 − t) is also a solution of ẍ +
q(x) = 0 such that y(t1) = γ(2π/ω, t1), ẏ(t1) = γ̇(2π/ω, t1). Hence γ(2π/ω, t) =
γ(2π/ω, 2t1 − t). Similarly we have γ(2π/ω,−t) = γ(2π/ω, t). So γ(2π/ω, t) is
2t1 periodic, and this gives 2t1 = 2π/ω.

Now we can prove the following

Theorem 3.3.19. Let v0 > 0 be sufficiently large. If (vi) holds and c < 2π/ω <
e, then for any sufficiently small µ > 0, (3.3.2) has a 2π/ω–periodic solution
near the family γ(θ, t), θ ∈ (c, e) from (vi).

Proof. We apply Corollary 3.3.5. Like in Remark 3.3.14, we have v1(t) =
(γ̈(2π/ω, t),−γ̇(2π/ω, t)). Next, for v0 > 0 sufficiently large the equation

γ̇(2π/ω, α) + v0 sin ω(t + α) = 0, 0 ≤ α ≤ 2π/ω

has as precisely the solutions t1(α) + 2πj/ω, t2(α) + 2πj/ω, j ∈ Z, where
t1, t2 are continuous functions such that t1(α) < t2(α), t1(0) = π/ω, t2(0) =
2π/ω, t1(π/ω) = 0, t2(π/ω) = π/ω, t1(α) is near π/ω − α and t2(α) is near
2π/ω − α. Moreover, for v0 > 0 sufficiently large, γ̇(2π/ω, t) + v0 sin ω(t + α)
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is positive on
(
t2(α), t1(α) + 2π/ω

)
and negative on

(
t1(α), t2(α)

)
, respectively.

Using this, (3.3.27) possesses the form

M1(α) =

{
−

2π/ω∫
0

〈h(s), γ̇(2π/ω, s)〉 ds : h ∈ L2,

h(t) ∈ −Sgn
(
γ̇(2π/ω, t) + v0 sin ω(t + α)

)
a.e. on [0, 2π/ω]

}

=
t1(α)+2π/ω∫

t2(α)

γ̇(2π/ω, s) ds−
t2(α)∫
t1(α)

γ̇(2π/ω, s) ds

= 2
(
γ(2π/ω, t1(α))− γ(2π/ω, t2(α))

)
.

We have

M1(0) = 2
(
γ(2π/ω, π/ω)− γ(2π/ω, 2π/ω)

)
= −M1(π/ω) .

According to Lemma 3.3.18, γ(2π/ω, t) has the global extrema on [0, 2π/ω] at
t = 0, π/ω, and so γ(2π/ω, π/ω) �= γ(2π/ω, 2π/ω), i.e. M1(π/ω) �= 0. This gives
that M1(π/ω)M1(0) < 0. Taking a = 0, b = π/ω in Corollary 3.3.5, the proof is
finished.

The following example is motivated by a clock–pendulum [123].

Theorem 3.3.20. Consider the equation

ẍ + q(x) + µ sgn x · sgn ẋ = 0 , (3.3.45)

where (vi) holds. Let us assume in addition

(vii) γ(θ, 0) > 0 and γ(θ, θ/2) < 0.

If there are constants c < a < b < e such that(
γ(a, 0) + γ(a, a/2)

)(
γ(b, 0) + γ(b, b/2)

)
< 0 , (3.3.46)

then (3.3.45) has a periodic solution for any sufficiently small µ > 0.

Proof. We apply Theorem 3.3.13 to (3.3.45). According to the proof of Lemma
3.3.18 and (vii), on [0, θ], γ(θ, t) has a global positive maximum at t = 0
and a global negative minimum at t = θ/2. Then there are continuous map-
pings t̃1(·), t̃2(·) : (c, e) → (0,∞) such that 0 < t̃1(θ) < θ/2 < t̃2(θ) < θ
and γ(θ, t̃1(θ)) = γ(θ, t̃2(θ)) = 0. Clearly, γ(θ, t), γ̇(θ, t) have the signs (+,−),
(−,−), (−,+), (+,+) on the intervals (0, t̃1(θ)), (t̃1(θ), θ/2), (θ/2, t̃2(θ)),
(t̃2(θ), θ), respectively. Again v(θ, t) =

(
γ̈(θ, t),−γ̇(θ, t)

)
, and then (3.3.40) for

(3.3.45) has the form

Q1(θ) = −
t̃1(θ)∫
0

γ̇(θ, s) ds +

θ/2∫
t̃1(θ)

γ̇(θ, s) ds−
t̃2(θ)∫
θ/2

γ̇(θ, s) ds +

θ∫
t̃2(θ)

γ̇(θ, s) ds

= 2
(
γ(θ, 0) + γ(θ, θ/2)

)
.
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Since the assumptions of this theorem imply Q1(a)Q1(b) < 0, the proof is com-
pleted by Theorem 3.3.13.

Remark 3.3.21. Since q̄(γ(θ, 0)) = q̄(γ(θ, θ/2)) for q̄(x) =
x∫
0

q(s) ds, inequality

(3.3.46) could be verified from the graph of q̄.

We conclude this subsection by considering coupled oscillators

ẍ1 + q1(x1) + µ1 sgn (ẋ1 − ẋ2) = 0 ,

ẍ2 + q2(x2) + µ2 sgn (ẋ2 − ẋ1) = µ3 sw t ,
(3.3.47)

where q1,2 ∈ C2(R, R), µ1,2,3 > 0 are parameters and

sw t =
{

1 for [2t] even
0 for [2t] odd .

Here [t] is the integer part of t. (3.3.47) represents a movement of two masses
on a ribbon coupled with an interference of the masses given by the relative
velocity ẋ1− ẋ2. The term sw t is a switching. In this interpretation of (3.3.47),
the coupling is given by the dry friction. We assume that there are constants
0 < c < 1 < e and mappings ρ1,2 : (c, e)×R → R such that ρi and ẍi + qi(xi) =
0, i = 1, 2 satisfy the conditions (vi) and (vii).

Theorem 3.3.22. Let us assume

(viii) There are continuous functions t̄1, t̄2 : [0, 1] → R such that t̄1(θ) < t̄2(θ),
t̄1(0) = 1/2, t̄2(0) = 1, t̄1(1/2) = 0, t̄2(1/2) = 1/2 and ρ̇1(1, t)−ρ̇2(1, t+θ)
is positive or negative on (t̄1(θ), t̄2(θ)), (t̄2(θ), t̄1(θ) + 1), respectively.

If µ1,2,3 > 0 are sufficiently small such that µ3 > 2µ2, then (3.3.47) has a
1–periodic solution.

Proof. First, defining a multivalued mapping by

Sw t =

⎧⎨⎩
1 for [2t] even and 2t /∈ Z

[0, 1] for 2t ∈ Z

0 for [2t] odd and 2t /∈ Z ,

(3.3.47) is rewritten in the form of (3.3.3):

ẋ1 = y1, ẏ1 ∈ −q(x1)− µ1 Sgn (y1 − y2) ,

ẋ2 = y2, ẏ2 ∈ −q(x2)− µ2 Sgn (y2 − y1) + µ3 Sw t .
(3.3.48)

According to Remark 3.3.14, (ii) (iv) hold with

γ(θ, t) =
(
ρ1(1, t), ρ̇1(1, t), ρ2(1, t + θ), ρ̇2(1, t + θ)

)
,

v1(θ, t) =
(
ρ̈1(1, t),−ρ̇1(1, t), 0, 0

)
,

v2(θ, t) =
(
0, 0, ρ̈2(1, t + θ),−ρ̇2(1, t + θ)

)
.
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We intend to apply Theorem 3.3.2 to (3.3.48). In this case, (3.3.27) reads

Mµ(θ, α) =

{(
−

1∫
0

h1(s)ρ̇1(1, s) ds,−
1∫
0

h2(s)ρ̇2(1, s + θ) ds
)

: h1 ∈ L2,

h1(t) ∈ −µ1 Sgn
(
ρ̇1(1, t)− ρ̇2(1, t + θ)

)
a.e. on [0, 1], h2 ∈ L2 ,

h2(t) ∈ −µ2 Sgn
(
ρ̇2(1, t + θ)− ρ̇1(1, t)

)
+ µ3 Sw (t + α) a.e. on [0, 1]

}
.

Using (viii), we can simplify Mµ = (M1µ,M2µ) as follows:

M1µ(θ) = µ1

( t̄2(θ)∫
t̄1(θ)

ρ̇1(1, s) ds−
t̄1(θ)+1∫
t̄2(θ)

ρ̇1(1, s) ds
)

= 2µ1

(
ρ1(1, t̄2(θ))− ρ1(1, t̄1(θ))

)
,

M2µ(θ, α) = µ2

( t̄1(θ)+1∫
t̄2(θ)

ρ̇2(1, s + θ) ds−
t̄2(θ)∫

t̄1(θ)

ρ̇2(1, s + θ) ds
)

−µ3

(
(ρ2(1,

1
2

+ θ − α)− ρ2(1, θ − α)
)

= 2µ2

(
ρ2(1, t̄1(θ) + θ)− ρ2(1, t̄2(θ) + θ)

)
−µ3

(
(ρ2(1,

1
2

+ θ − α)− ρ2(1, θ − α)
)
.

We have
M1µ(0) = 2µ1

(
ρ1(1, 1)− ρ1(1, 1/2)

)
= −M1µ(1/2) .

Like at the end of the proof of Theorem 3.3.19, we derive M1µ(0) > 0 and
M1µ(1/2) < 0 provided that µ1 > 0. Finally we take

B =
{

(θ, α) : θ ∈ (0, 1/2), θ < α <
1
2

+ θ

}
and put Mµ in the homotopy Mµ,λ =

(
M1µ,λ,M2µ,λ

)
given by

M1µ,λ(θ) = λM1µ(θ) + (1− λ)
(1
4
− θ
)
,

M2µ,λ = λM2µ(θ, α) + (1− λ)
(
θ − α +

1
4
)
.

Since max
[0,1]

ρ2(1, t) = ρ2(1, 0) and min
[0,1]

ρ2(1, t) = ρ2(1, 1/2) , we see that µ1 >

0, µ3 > 2µ2 > 0 implies 0 /∈Mµ,λ(∂B), λ ∈ [0, 1]. Hence

deg(Mµ,B, 0) = deg(Mµ,0,B, 0) = 1 .

Now the result follows from Theorem 3.3.2.
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3.3.6 Concluding Remarks

Remark 3.3.23. Coulomb’s law for the dry friction [64, 123] includes a statistic
coefficient of friction µs and a dynamic coefficient of friction µd. If µs = µd = µ,
then the friction law may be written as ẋ → µ sgn ẋ. This is done in this section.
On the other hand, since usually µs > µd, we can apply Remark 3.1.29.

Remark 3.3.24. Our method is clearly applied to piecewise smoothly perturbed
problems like the problem

ẍ + µ1(x+)2 + µ2x
− = µ3β(t) , (3.3.49)

where µ1,2,3 ∈ R are small parameters and β ∈ C(R, R) is 1–periodic. Then
we have similarly as for (3.3.41) that (3.3.27) now assumes the form Mµ(θ) =

−µ1(θ+)2 − µ2θ
− + µ3

1∫
0

β(s) ds. By estimating the number of simple roots of

Mµ, we obtain from Corollary 3.3.5 that (3.3.49) has a 1–periodic solution for
any sufficiently small µ1,2,3 satisfying one of the following conditions:

(a) µ3

1∫
0

β(s) ds < 0 and either µ1 < 0 or µ2 > 0

(b) µ3

1∫
0

β(s) ds > 0 and either µ1 > 0 or µ2 < 0

Moreover, (3.3.49) has at least two 1–periodic solutions for any sufficiently small
µ1,2,3 satisfying one of the following conditions:

(c) µ3

1∫
0

β(s) ds < 0 and µ1 < 0, µ2 > 0

(d) µ3

1∫
0

β(s) ds > 0 and µ1 > 0, µ2 < 0

Remark 3.3.25. Finally we note that by combining the method of this section
with that of Section 3.2, we can straightforwardly extend the results of this
section to singularly perturbed differential inclusions of the form

ẋ(t) ∈ f(x(t), y(t)) + εh1(x(t), y(t), t) a.e. on R ,

εẏ(t) ∈ g(x(t), y(t)) + εh2(x(t), y(t), t) a.e. on R
(3.3.50)

with x ∈ R
n, y ∈ R

k, ε > 0 is small, all hi(x, y, t) are 1-periodic in t and
assumptions (i) and (iii) of Subsection 3.2.1 are satisfied along with the following
one that the reduced equation ẋ = f(x, 0) of (3.3.50) has a nondegenerate
manifold of 1–periodic solutions, i.e. ẋ = f(x, 0) satisfies assumptions (ii) and
(iv) of this section.

By assuming in addition the validity of the condition (H) of Subsection
3.2.3, multivalued mappings like (3.3.27), (3.3.32) and (3.3.40) can be derived
for both the non–autonomous and autonomous versions of (3.3.50). For instance,
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a multivalued mapping M : R
d → 2R

d \ {∅} corresponding to (3.3.27) has the
form

M(θ, α) =

{
L(θ)h ds : h ∈ L2 satisfying a.e. on [0, 1]

the relation h(t) ∈ Dyf(γ(θ, t), 0)(C(θ, t, α)) + h1(γ(θ, t), 0, t + α)

}
,

where C : O× [0, 1]×R → 2R
k \{∅} is the upper–semicontinuous mapping from

the condition (H) of Subsection 3.2.3.

3.4 Bifurcation of Periodics in Relay Systems

3.4.1 Systems with Relay Hysteresis

Oscillations in systems with relay hysteresis are extensively studied in literature
[42, 153, 192] using several approaches ranging from harmonic balance methods
[143,144] to analysis of Poincaré maps [39,192]. Such oscillators model a variety
of phenomena from electrical circuitry to circadian biological clocks, chemical
oscillators and ecological systems as well (see [192] for more references). For
instance, electrical engineers are interested in the periodic behavior of circuits
with hysteresis which could be modeled by Lmy = f(y), where Lm is an mth–
order differential operator and f is a relay hysteresis operator. In this section,
we continue with this study. To deal with much more general equations, we are
interested in the periodic oscillations of systems given by

ẋ = Ax + µf(x1)b , (3.4.1)

where A is a constant n×n matrix, x1 is the first component of x ∈ R
n, b ∈ R

n

is a constant vector and µ ∈ R is a small parameter.
A relay hysteresis operator f is defined as follows: there is given a pair of

real numbers α < β (thresholds) and a pair of real–valued continuous functions
ho ∈ C([α,∞), R), hc ∈ C((−∞, β], R) such that ho(u) ≥ hc(u)∀u ∈ [α, β].
Moreover, we suppose that ho, hc are bounded on [α,∞), (−∞, β], respectively
(see Fig. 3.6). For a given continuous input u(t), t ≥ t0, one defines the output
v(t) = f(u)(t) of the relay hysteresis operator as follows

f(u)(t) =

⎧⎪⎨⎪⎩
ho(u(t)) if u(t) ≥ β ,
hc(u(t)) if u(t) ≤ α ,
ho(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = β ,
hc(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = α ,

where τ(t) = sup {s : s ∈ [t0, t], u(s) = α or u(s) = β}. If τ(t) does not exist
(i.e. u(σ) ∈ (α, β) for σ ∈ [t0, t]), then f(u)(σ) is undefined and we have to
initially set the relay open or closed when u(t0) ∈ (α, β). Of course, when either
ho(β) > hc(β) or ho(α) > hc(α) then f(u) is generally discontinuous.
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Figure 3.6: A relay hysteresis

Contrary to the above-mentioned papers, we assume that (3.4.1) is at res-
onance, i.e. ẋ = Ax has a nonzero periodic solution. Since (3.4.1) is generally
discontinuous, we consider it as a differential inclusion.

3.4.2 Bifurcation of Periodics

First we study the linear equation ẋ = Ax with its adjoint one ẋ = −A∗x. We
suppose that the following condition holds

(i) There is an x0 ∈ N
(
I− eA

)
such that Ax0 �= 0.

Then dimN (I− e−A∗)
= dimN (I− eA

)
> 1. Let 〈·, ·〉 be the inner product

on R
n. By Lemma 3.3.1, we know that the linear equation

ẋ = Ax + h(t), h ∈ L2 := L2([0, 1], Rn)

has a solution x ∈W 1,∞ := W 1,∞([0, 1], Rn) satisfying x(0) = x(1) if and only if
1∫
0

〈h(s), e−A∗sw〉 ds = 0 ∀w ∈ N (I− e−A∗)
. The norm on W 1,∞ is denoted by

|| · ||. This solution is unique if it satisfies
1∫
0

〈x(s), eAsz〉 ds = 0 ∀z ∈ N (I− eA
)
.

Let x = Kh be this solution. We put

X =
{

x ∈ W 1,∞ :

1∫
0

〈x(s), eAsz〉 ds = 0 ∀z ∈ N (I− eA
)}

.

Let

Π : L2 →
{

h ∈ L2 :

1∫
0

〈h(s), e−A∗sw〉 ds = 0 ∀w ∈ N
(
I− e−A∗)}
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be the orthogonal projection. Then K : RΠ→ X is linear and bounded.
According to assumption (i) there is a basis

{
w1, · · · , wd

}
of N (I− eA

)
such that any 1-periodic solution of ẋ = Ax has a form γ(θ, t + ω) for some
ω ∈ R and θ ∈ R

d−1, where

γ(θ, t) =
d−1∑
i=1

θi eAtwi, θi ∈ R .

Let γ1(θ, t) be the first coordinate of γ(θ, t). Now we suppose the following
conditions:

(ii) There is an open bounded subset ∅ �= O ⊂ R
d−1 such that ∀ θ ∈ O and

∀ t0 ∈ R it holds

γ1(θ, t0) = α, β =⇒ γ̇1(θ, t0) �= 0 .

(iii) min
t∈R

γ1(θ, t) < α, max
t∈R

γ1(θ, t) > β ∀ θ ∈ O.

In order to state the next theorem, we introduce a mapping given by

M : R×O → R
d, M(ω, θ) = Lh

h(t) = f(γ1(θ, ·))(t)b + ωAγ(θ, t) a.e. on [0, 1]
(3.4.2)

where L : L2 → R
d is defined by

Lh :=
( 1∫

0

〈h(s), e−A∗sw̃1〉 ds, · · · ,

1∫
0

〈h(s), e−A∗sw̃d〉 ds
)

for a basis {w̃1, · · · , w̃d} of N (I− e−A∗)
. From (ii) and (iii) we see that M is

well-defined and continuous.

Theorem 3.4.1. Assume that (i–iii) hold. If there is a non–empty open bounded
set B such that B ⊂ R×O and

(i) 0 /∈M(∂B)

(ii) deg(M,B, 0) �= 0

where M is given by (3.4.2). Then there are constants K1 > 0 and µ0 > 0 such
that for any |µ| < µ0, there are (ωµ, θµ) ∈ B and an (1+µωµ)–periodic solution
xµ of (3.4.1) satisfying

sup
t∈R

∣∣xµ(t)− γ(θµ, t/(1 + µωµ))
∣∣ ≤ K1|µ| .
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Proof. Following arguments from Subsection 3.3.4, first we make in (3.4.1) the
change of variables

x
(
(1 + µω)t

)
= µz(t) + γ(θ, t), ω ∈ R

and consider (3.4.1) as a differential inclusion of the form

ẋ−Ax ∈ µF (x1)b , (3.4.3)

where F is a multivalued mapping defined as follows

F (u)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(u)(t) if u(t) �= α, β ,
hc(α) ifu(t) = α andu(τ(s)) = α for any s < tnear t ,
ho(β) ifu(t) = β andu(τ(s)) = β for any s < tnear t ,

[hc(α), ho(α)] ifu(t) = α andu(τ(s)) = β for any s < tnear t ,
[hc(β), ho(β)] ifu(t) = β andu(τ(s)) = α for any s < tnear t .

The conditions (ii) and (iii) imply that for any K̃ > 0 there is an µ0 > 0
such that if z ∈ X satisfies ||z|| ≤ K̃ and |µ| ≤ µ0 then u(t) = µz1(t) + γ1(θ, t)
strictly monotonically crosses α and β for any θ ∈ O. Consequently, F (u) is
well–defined.

In variable z(t), (3.4.3) has the form

ż(t)−Az(t) ∈ (1 + µω)F
(
µz1 + γ1(θ, ·)

)
(t)b + ωA

(
µz(t) + γ(θ, t)

)
. (3.4.4)

Since we intend to use functional-analytical method, we take the mapping

G(z, ω, θ, µ, λ) =
{

h ∈ L2 : satisfying a.e. on [0, 1] the relation

h(t) ∈ (1 + λµω)F
(
λµz1 + γ1(θ, ·)

)
(t)b + ωA

(
λµz(t) + γ(θ, t)

)}
and consider (3.4.4) in the form

ż −Az ∈ G(z, ω, θ, µ, 1) . (3.4.5)

To solve (3.4.5), using Π and K, we rewrite (3.4.5) as follows⎧⎨⎩ 0 ∈ H(z, ω, θ, µ, 1)

H(z, ω, θ, µ, λ) =
{(

z − λKΠh,Lh
)

: h ∈ G(z, ω, θ, µ, λ)
}

.
(3.4.6)

Since f is bounded in (3.4.1), there are µ0 > 0 and K > 0 such that ‖KΠh‖ ≤ K
for any h ∈ G(z, ω, θ, µ, λ), (z, ω, θ) ∈ Ω, |µ| ≤ µ0 and λ ∈ [0, 1] where

Ω =
{

(z, ω, θ) ∈ X × R
d : ||z|| < K + 1, (ω, θ) ∈ B

}
.

Moreover, if µ0 is sufficiently small then by (ii) and (iii), the mapping

H : Ω× [−µ0, µ0]× [0, 1] → 2X×R
d

(3.4.7)
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is well–defined and singlevalued. It is easy to show that H : Ω × [−µ0, µ0] ×
[0, 1] → X ×R

d is continuous and IX×Rd −H is compact as well. Next we show

0 /∈ H
(
∂Ω× [−µ0, µ0]× [0, 1]

)
for any µ0 > 0 sufficiently small. Assume the contrary. So there are

[0, 1] � λi → λ0, ||zi|| ≤ K + 1, µi → 0, i ∈ N

∂B � (ωi, θi) → (ω0, θ0) ∈ ∂B, hi ∈ G(zi, ωi, θi, µi, λi)

such that Lhi = 0. We can assume that zi → z in C([0, 1], Rn) and hi tends
weakly to some h0 ∈ L2. Then by applying Mazur’s Theorem 2.1.2 like for
(3.1.21), we obtain

h ∈ G(z, ω0, θ0, 0, λ0) and Lh0 = 0 ,

i.e. 0 = M(ω0, θ0) for some (ω0, θ0) ∈ ∂B. This contradicts to (i) of this theorem.
Consequently, we compute for µ sufficiently small

deg
(
H(·, ·, ·, µ, 1),Ω, 0

)
= deg

(
H(·, ·, ·, µ, 0),Ω, 0

)
= deg(M,B, 0) �= 0 .

In this way, (3.4.6) has a solution (z, ω, θ) ∈ Ω for any µ sufficiently small. The
proof is finished.

Now we return to the differential equation of Subsection 3.4.1

Lmy =
m∑

i=0

aiy
(i) = µf(y) , (3.4.8)

where ai ∈ R, am = 1 and y(i) = di

dti y. Of course, (3.4.8) can be rewritten in the
form of (3.4.1). We put

L∗
my =

m∑
i=0

(−1)iaiy
(i) .

Let φ1, · · · , φd, respectively ψ1, · · · , ψd, be a basis of the space of all 1–periodic
solutions of Lmy = 0, respectively L∗

my = 0. Supposing that φd is non–constant,
it could be of the form sin 2πkdt for some kd ∈ N. Then we could take φd−1(t) =
cos 2πkdt, and as a result of this we see that any 1-periodic solution of Lmy = 0
has a form η(θ, t + ω) for some θ and ω where η(θ, t) :=

∑d−1
i=1 θiφi(t).

Theorem 3.4.2. Assume that φd is non–constant and the following conditions
hold:

(a) There is an open bounded subset ∅ �= O ⊂ R
d−1 such that ∀ θ ∈ O and

∀ t0 ∈ R it holds

η(θ, t0) = α, β =⇒ η̇(θ, t0) �= 0 .

(b) min
t∈R

η(θ, t) < α, max
t∈R

η(θ, t) > β ∀ θ ∈ O.



102 Chapter 3. Bifurcation of Periodic Solutions

If there is a non–empty open bounded set B such that B ⊂ R×O and

(i) 0 /∈M(∂B)

(ii) deg(M,B, 0) �= 0

where M : R×O → R
d is given by

M(ω, θ) =
( 1∫

0

h(s)ψ1(s) ds, · · · ,

1∫
0

h(s)ψd(s) ds
)

h(t) = f(η(θ, ·))(t) + ω

m∑
i=1

iaiη
(i)(θ, t) a.e. on [0, 1] .

(3.4.9)

Then there are constants K1 > 0 and µ0 > 0 such that for any |µ| < µ0, there
are (ωµ, θµ) ∈ B and an (1 + µωµ)–periodic solution yµ of (3.4.8) satisfying

sup
t∈R

∣∣yµ(t)− η(θµ, t/(1 + µωµ))
∣∣ ≤ K1|µ| .

Proof. We follow the proof of Theorem 3.4.1 by taking in (3.4.8) the change of
variables

y
(
(1 + µω)t

)
= µz(t) + η(θ, t), ω ∈ R .

Conditions (a) and (b) are analogies of (i–iii). Since computations are the same
as for Theorem 3.4.1, we omit details.

Results of Remark 3.3.7 can be directly modified to existence results of
subharmonic solutions of nonautonomous periodic versions of (3.4.1) expressed
in the following theorems [84].

Theorem 3.4.3. Consider

ẋ = Ax + µ
(
f(x1)b + q(t)

)
, (3.4.10)

where q ∈ C(R, Rn) is 1–periodic and A, f, b are given in (3.4.1). Assume that
(i–iii) hold. If there is a non–empty open bounded set B such that B ⊂ R × O,
0 /∈M(∂B) and deg(M,B, 0) �= 0, where M is given by

M : R×O → R
d, M(ω, θ) = Lh

h(t) = f(γ1(θ, ·))(t)b + q(t + ω) a.e. on [0, 1] .
(3.4.11)

Then there are constants K1 > 0 and µ0 > 0 such that for any |µ| < µ0, there
are (ωµ, θµ) ∈ B and an 1–periodic solution xµ of (3.4.10) satisfying

sup
t∈R

∣∣xµ(t)− γ(θµ, t− ωµ)
∣∣ ≤ K1|µ| .
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Theorem 3.4.4. Consider

Lmy = µ
(
f(y) + q(t)

)
, (3.4.12)

where Lm, f are given in (3.4.8) and q ∈ C(R, R) is 1–periodic. Assume that
φd is non–constant, and (a) and (b) of Theorem 3.4.2 are valid. If there is
a non–empty open bounded set B such that B ⊂ R × O, 0 /∈ M(∂B) and
deg(M,B, 0) �= 0, where M : R×O → R

d is given by

M(ω, θ) =
( 1∫

0

h(s)ψ1(s) ds, · · · ,

1∫
0

h(s)ψd(s) ds
)

h(t) = f(η(θ, ·))(t) + q(t + ω) a.e. on [0, 1] .

(3.4.13)

Then there are constants K1 > 0 and µ0 > 0 such that for any |µ| < µ0, there
are (ωµ, θµ) ∈ B and an 1–periodic solution yµ of (3.4.12) satisfying

sup
t∈R

∣∣yµ(t)− η(θµ, t− ωµ)
∣∣ ≤ K1|µ| .

Remark 3.4.5. The boundedness of ho and hc on [α,∞), respectively (−∞, β],
is not essential in our considerations.

Remark 3.4.6. The smallness of µ0 in Theorems 3.4.1–3.4.4 can be estimated.

3.4.3 Third-Order O.D.Eqns with Small Relay Hysteresis

First, we consider the following autonomous problem
...
y + ÿ + ẏ + y = µf(y) , (3.4.14)

where f is of the form

α = −δ, β = δ, δ > 0, ho = g + p, hc = g − p

with p > 0 constant and g ∈ C(R, R).

Theorem 3.4.7. If there are numbers δ < a1 < a2 such that the numbers

4p
( δ

ai
+

√
1− δ2

a2
i

)
+

2π∫
0

g(ai sin t) sin t dt, i = 1, 2 (3.4.15)

have opposite signs, then there is a constant K > 0 such that for any µ suffi-
ciently small there are θµ ∈ (a1, a2), ωµ ∈

(
− 3δp

πa2
1
,− δp

πa2
2

)
and a 2π(1 + µωµ)–

periodic solution yµ of (3.4.14) satisfying

sup
t∈R

∣∣∣yµ(t)− θµ sin
t

1 + µωµ

∣∣∣ ≤ K|µ| .
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Proof. We apply Theorem 3.4.2 with

φ1(t) = ψ1(t) = sin t, φ2(t) = ψ2(t) = cos t, η(θ, t) = θ sin t .

By taking O = (δ,∞), the conditions (a) and (b) of Theorem 3.4.2 are satisfied.
Let t0 = arcsin δ

θ for θ ∈ O. Computing (3.4.9) for this case, we derive

M(ω, θ) =
(
M1(ω, θ),M2(ω, θ)

)
, (3.4.16)

where

M1(ω, θ) =

2π∫
0

ω(θ cos t− 2θ sin t− 3θ cos t) sin t dt +

t0+π∫
t0

(g(θ sin t) + p) sin t dt

+

t0+2π∫
t0+π

(g(θ sin t)− p) sin t dt = −2πθω + 4p

√
1− δ2

θ2
+

2π∫
0

g(θ sin t) sin t dt ,

M2(ω, θ) =

2π∫
0

ω(θ cos t− 2θ sin t− 3θ cos t) cos t dt +

t0+π∫
t0

(g(θ sin t) + p) cos t dt

+

t0+2π∫
t0+π

(g(θ sin t)− p) cos t dt = −2πθω − 4
δp

θ
.

Now we verify (i) and (ii) of Theorem 3.4.2 when M is given by (3.4.16) and
B =

(
− 3δp

πa2
1
,− δp

πa2
2

)
× (a1, a2). For this reason, we put (3.4.16) in the homotopy

M(ω, θ, λ) =
(
M1(ω, θ, λ),M2(ω, θ, λ)

)
, λ ∈ [0, 1] ,

where

M1(ω, θ, λ)=− 2π

(
λθ + (1− λ)

a1 + a2

2

)(
ω − (1− λ)D

)
+4p

√
1− δ2

θ2

+

2π∫
0

g(θ sin t) sin t dt + 4
δp

θ
− 4λδp(

λθ + (1− λ)a1+a2
2

) ,

M2(ω, θ, λ) = − 2π

(
λθ+(1− λ)

a1 + a2

2

)(
ω − (1− λ)D

)− 4λδp(
λθ + (1− λ)a1+a2

2

)
and D := − δp

πa2
1
− δp

πa2
2
.

It is elementary to see that 0 /∈ M(∂B, λ), ∀λ ∈ [0, 1]. Indeed, for θ ∈
{a1, a2}, this follows from (3.4.15). Next, let ω ∈

{
− 3δp

πa2
1
,− δp

πa2
2

}
and θ ∈ (a1, a2).

If M2(ω, θ, λ) = 0, we have λθ + (1− λ)a1+a2
2 ∈ (a1, a2) and

ω −D

λ
+ D =

−2δp

π
(
λθ + (1− λ)a1+a2

2

)2 ∈ (− 2δp

πa2
1

,− 2δp

πa2
2

)
(3.4.17)
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for λ ∈ (0, 1]. If ω = − 3δp
πa2

1
then ω−D

λ + D ≤ ω < − 2δp
πa2

1
, and if ω = − δp

πa2
2

then
ω−D

λ +D ≥ ω > − 2δp
πa2

2
. This contradicts to (3.4.17). So M2(ω, θ, λ) �= 0. If λ = 0

then M2(ω, θ, 0) = −π (a1 + a2) (ω −D) �= 0.
Consequently, we obtain

deg
(
M(·, ·, 1),B, 0

)
= deg

(
M(·, ·, 0),B, 0

)
=− deg

(
M1(D, ·, 0), (a1, a2), 0

) �= 0.

The proof is finished by Theorem 3.4.2.

Corollary 3.4.8. If g(x) = c1x + c2 in (3.4.14) with constant c1,2 such that
c1 < 0 and 4p > −c1δπ, then the conclusion of Theorem 3.4.7 is applicable.

Proof. In Theorem 3.4.7 now we compute

4p
(δ

θ
+

√
1− δ2

aθ2

)
+

2π∫
0

(c1θ sin t + c2) sin t dt = 4p
(δ

θ
+

√
1− δ2

θ2

)
+ c1θπ .

Taking a1 > δ near to δ and a2 > a1 sufficiently large, the proof is finished.

Next we consider a forced problem of (3.4.14)
...
y + ÿ + ẏ + y = µ

(
f(y) + sin t

)
, (3.4.18)

where f is given in (3.4.14).

Theorem 3.4.9. Assume that 4p = π and g ∈ C1(R, R). If the function

ρ →
2π∫
0

g(δρ sin t) sin t dt

has a simple root ρ0 > 1, then by putting 1/ρ0 = sinω0, π/2 < ω0 < π, there is
a constant K > 0 such that for any µ sufficiently small there are (ωµ, θµ) near
to (ω0, δρ0) and a 2π–periodic solution yµ of (3.4.18) satisfying

sup
t∈R

∣∣yµ(t)− θµ sin(t− ωµ)
∣∣ ≤ K|µ| .

Proof. We apply Theorem 3.4.4. The mapping (3.4.13) for (3.4.18) has the form

M(ω, θ) =
(
M1(ω, θ),M2(ω, θ)

)
, (3.4.19)

where

M1(ω, θ) = π

√
1− δ2

θ2
+

2π∫
0

g(θ sin t) sin t dt +

2π∫
0

sin(t + ω) sin t dt

= π

√
1− δ2

θ2
+

2π∫
0

g(θ sin t) sin t dt + π cos ω ,

M2(ω, θ) = −δπ

θ
+

2π∫
0

sin(t + ω) cos t dt = −δπ

θ
+ π sin ω .
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For π/2 < ω < π, M1 = 0, M2 = 0 are equivalent to
2π∫
0

g
(

sin t
sin ω δ

)
sin t dt = 0.

Since ρ0 > 1 is a simple root of ρ →
2π∫
0

g(δρ sin t) sin t dt, then we can easily

verify (see Lemma 3.5.5) that (ω0, θ0) defined as θ0 = δρ0, 1/ρ0 = sinω0, π/2 <
ω0 < π is a simple zero of M = 0 given by (3.4.19), i.e. M(ω0, θ0) = 0 and
DM(ω0, θ0) is invertible. So the Brouwer index of M at (ω0, θ0) is nonzero.
Consequently, the proof is finished by Theorem 3.4.4 when B is taken as a small
open neighborhood of (ω0, θ0).

Corollary 3.4.10. Assume that 4p = π. If g(x) = c1x
3 + c2x in (3.4.14) with

constant c1,2 such that c1c2 < −3
4 c2

1δ
2, then the conclusion of Theorem 3.4.9 is

applicable.

Proof. We apply Theorem 3.4.9. We have
2π∫
0

g(δρ sin t) sin t dt = 3
4πc1δ

3ρ3 +

πδc2ρ for g(x) = c1x
3 + c2x. Under assumption c1c2 < −3

4 c2
1δ

2, equation
3
4πc1δ

3ρ3 + πδc2ρ = 0 has a simple root ρ0 > 1. The proof is finished.

We finish this subsection with the case c2 = 0.

Theorem 3.4.11. Assume that g(x) = c1x with a constant c1 > 0 such that
π2 − 16p2 > c2

1δ
2π2. Then there is a constant K > 0 such that for any µ

sufficiently small there are (ωµ, θµ) near to (ω0, θ0) given by

θ0 =

√(−4p + π
√

1− δ2c2
1

c1π

)2

+ δ2, sin ω0 =
4δp

πθ0
, ω0 ∈ (π/2, π) , (3.4.20)

and a 2π–periodic solution yµ of (3.4.18) satisfying

sup
t∈R

∣∣yµ(t)− θµ sin(t− ωµ)
∣∣ ≤ K|µ| .

Proof. Now (3.4.19) has the form

M1(ω, θ) = 4p

√
1− δ2

θ2
+ π cos ω + c1θπ, M2(ω, θ) = −4

δp

θ
+ π sin ω .

Since π > 4p and θ > δ, we can solve ω with π/2 < ω < π from M2(ω, θ) = 0,
and inserting it into M1(ω, θ) = 0 we see that equation M(ω, θ) = 0 is equivalent

to 4p
√

1− δ2

θ2 − π
√

1− 16δ2p2

θ2π2 + c1θπ = 0, i.e.

8πc1p
√

θ2 − δ2 + c2
1θ

2π2 = π2 − 16p2 . (3.4.21)

Since π2−16p2 > c2
1δ

2π2 then (3.4.21) has a unique simple root θ0 > δ given by
(3.4.20) . Then (θ0, ω0) is a simple root of M(ω, θ) = 0. The proof is finished by
Theorem 3.4.4 when B is taken as a small open neighborhood of (ω0, θ0).

Similarly we have
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Theorem 3.4.12. Assume that g(x) = c1x with a constant c1 < 0 such that
16p2(1 − c2

1δ
2) > π2. Then there is a constant K > 0 such that for any µ

sufficiently small there are (ωµ, θµ) near to (ω0, θ0) given by

θ0 =
1
π

√(π − 4p
√

1− δ2c2
1

c1

)2

+ 16δ2p2, sin ω0 =
4δp

πθ0
, ω0 ∈ (π/2, π) ,

and a 2π–periodic solution yµ of (3.4.18) satisfying

sup
t∈R

∣∣yµ(t)− θµ sin(t− ωµ)
∣∣ ≤ K|µ| .

Proof. We can directly follow the proof of Theorem 3.4.11 when now (3.4.21)
has a form 16p2 = c2

1θ
2π2 − 2c1π

√
θ2π2 − 16δ2p2 + π2.

3.5 Nonlinear Oscillators with Weak Couplings

3.5.1 Weakly Coupled Systems

Systems with slowly varying coefficients often arise in applications, like as an
Einstein pendulum

ẍ + ω(εt)2x = 0

with slowly varying frequency or a pendulum

d

dt

(
l(εt)2ẋ

)
+ l(εt) = g(εt, x, ẋ)

with slowly varying length and some other perturbations. We have a Duffing-
type perturbation for g(τ, x, ẋ) = µl(τ)x3 − σl(τ)ẋ [173]. Parameter ε > 0 is
assumed to be small in the both equations. Averaging method is usually applied
to study the dynamics of such systems on the intervals

[
0, O

(
ε−1
)]

. We also
study some systems with slowly varying coefficients in Sections 3.1 and 4.2 (see
(3.1.27) and (3.1.30)) by using different methods, since averaging method is not
applicable to these equations. Similarly we can formulate nonlinear oscillators
when some their coefficients are governed by weakly nonlinear equations like the
following Duffing-type one

ẍ + ω2x + x3 = εf̃(x, ẋ, t), ω̇ = εg̃(x, ẋ) , (3.5.1)

with slowly varying frequency. In this section, we investigate more general
weakly coupled equations than (3.5.1) of the form

x′ = εf(x, y, t, ε)
y′ = g(x, y) + εh(x, y, t, ε) ,

(3.5.2)

where x ∈ R
n, y ∈ R

m, f, g, h are sufficiently smooth, f, h are 1-periodic in t
and ε > 0 is a small parameter. For ε = 0, we get the unperturbed equation

ẏ = g(x, y) , (3.5.3)
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where x is considered as a parameter. We suppose that (3.5.3) has for any x in
some open subset either a single 1-periodic solution or a nondegenerate family
of 1-periodic solutions. By using the averaging method which is a combination
of the Lyapunov-Schmidt method together with the Brouwer degree theory, we
find conditions for bifurcation of 1-periodic solutions of (3.5.2) from the above
1-periodic solutions of (3.5.3). Finally, the averaging method is also used, for
instance, in [44, 48, 98, 111, 135, 141] with many interesting applications. Other
nonlinear boundary value problems are investigated in [105].

3.5.2 Forced Oscillations from Single Periodics

We start with the following condition:

(H1) (3.5.3) has a 1-periodic smooth solution y = ϕ(t, x) for any x ∈ Ω, where
Ω ⊂ R

n is an open subset.

Since we are looking for 1-periodic solutions of (3.5.2) bifurcating from ϕ(t, x),
x ∈ Ω, we shift the time t ↔ t+α, α ∈ R and change the variable y ↔ y+ϕ(t, x)
to get the equation

x′ = εf(x, y + ϕ(t, x), t + α, ε)
y′ = g(x, y + ϕ(t, x))− g(x, ϕ(t, x))+

ε
(
h(x, y + ϕ(t, x), t + α, ε)− ϕx(t, x)f(x, y + ϕ(t, x), t + α, ε)

)
.

(3.5.4)

Like in the previous sections, first we investigate the linearization of (3.5.3)
along ϕ(t, x), i.e. the variational equation

v′ = gy(x, ϕ(t, x))v , (3.5.5)

and its dual variational system

w′ = −g∗y(x, ϕ(t, x))w . (3.5.6)

Certainly the function ϕ′(t, x) satisfies (3.5.5). We suppose

(H2) There are smooth basis {vi(t, x)}r
i=0 and {wi(t, x)}r

i=0 of 1-periodic so-
lutions of (3.5.5) and (3.5.6), respectively, for any x ∈ Ω. We assume
v0(t, x) = ϕ′(t, x).

In order to apply the Lyapunov-Schmidt decomposition, we introduce the Banach
spaces

X =
{

x ∈ C(R, Rn) | x(t + 1) = x(t)∀t ∈ R

}
Y =

{
y ∈ C(R, Rm) | y(t + 1) = y(t)∀t ∈ R

}
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and then the projections P1 : X → X, Px : Y → Y defined by

P1x := x(t)−
1∫

0

x(s) ds

Pxy := y(t)− q0w0(t, x)− q1w1(t, x)− · · · − qrwr(t, x) ,

(q0, q1, · · · , qr)∗ := A(x)−1

⎛⎝ 1∫
0

(y(t), w0(t, x)) dt, · · · ,

1∫
0

(y(t), wr(t, x)) dt

⎞⎠∗

where (·, ·) is the scalar product on R
m and A(x) : R

r → R
r is the Gram matrix

given by

A(x) :=

⎛⎝ 1∫
0

(wi(t, x), wj(t, x)) dt

⎞⎠r

i,j=1

.

The meaning of these projections is the following: The nonhomogeneous varia-
tional equation of (3.5.2) along ϕ(t, x) is given by

z′ = h, v′ = gy(x, ϕ(t, x))v + y, h ∈ X, y ∈ Y . (3.5.7)

From Lemma 3.3.1 we know that (3.5.7) has a 1-periodic solution if and only
if P1h = h and Pxy = y. Moreover this solution is unique if P1z = z and
1∫
0

(v(t), vi(t, x)) dt = 0, i = 0, 1, · · · , r. Let us denote it by z := Kh and v :=

Kxy. Using these projections and operators K, Kx, like in Section 3.3, we take
in (3.5.4) the changes

ε ↔ ε2, x = u + x1, u ∈ X, P1u = u, x1 ∈ R
n

y = v + ε

r∑
i=1

βivi(t, u + x1) ,

1∫
0

(v(t), vi(t)) dt = 0, i = 0, 1, · · · , r

to obtain the decomposition of (3.5.4) on

u = ε2KP1f

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
v = Kx1Px1H(u, v, x1, ε, α, β, t) ,

(3.5.8)
and

1∫
0

f

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
dt = 0

1
ε2

1∫
0

(H(u, v, x1, ε, α, β, t), wj(t, u + x1)) dt = 0 j = 0, 1, · · · , r ,

(3.5.9)
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where β := (β1, β2, · · · , βr) and

H(u, v, x1, ε, α, β, t) := g

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1)

)
−

g(u + x1, ϕ(t, u + x1))−

gy(u + x1, ϕ(t, u + x1))

(
v + ε

r∑
i=1

βivi(t, u + x1)

)
+

+
(
gy(u + x1, ϕ(t, u + x1))− gy(x1, ϕ(t, x1))

)
v − ε3

r∑
i=1

βivix(t, u + x1)×

P1f

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
+

ε2h

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
−

ε2ϕx(t, u + x1)× f

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
.

Since

H(u, v, x1, ε, α, β, t) =
1
2
gyy(u + x1, ϕ(t, u + x1))

(
v + ε

r∑
i=1

βivi(t, u + x1)

)2

+

ε2h

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)
−

ε2ϕx(t, u + x1)× f

(
u + x1, v + ε

r∑
i=1

βivi(t, u + x1) + ϕ(t, u + x1), t + α, ε2

)

+O

⎛⎝(v + ε

r∑
i=1

βivi(t, u + x1)

)3
⎞⎠+ O(|u|)|v|+ O(ε3)

= O(|v|2) + O(|u|)|v|+ O(ε) ,

we can uniquely solve (3.5.8) in u, v small by means of the implicit function
theorem and moreover, u = O(ε2) and v = O(ε2). Then we insert these solutions
to (3.5.9) to get the bifurcation equation

0 = G(x1, β, α, ε) = G0(x1, β, α) + G1(x1, β, α)ε + · · ·+
Gp(x1, β, α)εp + Qp(x1, β, α, ε)εp+1 :=

qp(x1, β, α, ε) + Qp(x1, β, α, ε)εp+1 ,

(3.5.10)

where G(x1, β, α, ε) is the left-hand side of (3.5.9). Summarizing, we arrive at
the following result.
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Theorem 3.5.1. Suppose (H1) and (H2) hold. If there is an open bounded
subset O ⊂ Ω× R

r × R and a constant cp > 0 such that

|qp(x1, β, α, ε)| ≥ cpε
p

on the boundary ∂O for any ε > 0 small, and deg
(
qp(·, ·, ·, ε),O, 0

)
�= 0. Then

(3.5.2) has a 1-periodic solution for ε > 0 small.

Proof. To solve (3.5.10), we put it in the homotopy

G(x1, β, α, ε, λ) := qp(x1, β, α, ε) + λQp(x1, β, α, ε)εp+1

for λ ∈ [0, 1]. Then the assumptions of this theorem imply that G(·, ·, ·, ε, λ) �= 0
on ∂O for any ε > 0 small and λ ∈ [0, 1]. Hence

deg
(
G(·, ·, ·, ε),O, 0

)
= deg

(
qp(·, ·, ·, ε),O, 0

)
�= 0 .

So (3.5.10) is solvable for any ε > 0 small. The proof is finished.

For p = 0, we can immediately derive from (3.5.8) and (3.5.9) that

G0(x1, β, α) =

( 1∫
0

f(x1, ϕ(t, x1), t + α, 0) dt,
r∑

i,j=1

βiβjaijk(x1)

+

1∫
0

(
h(x1, ϕ(t, x1), t + α, 0)− ϕx(t, x1)f(x1, ϕ(t, x1), t + α, 0), wk(t, x1)

)
dt

)
,

(3.5.11)
where k = 0, 1, 2, · · · , r and

aijk(x1) :=
1
2

1∫
0

(gyy(x1, ϕ(t, x1))(vi(t, x1), vj(t, x1)), wk(t, x1)) dt .

Of course, higher-order terms Gi(x1, β, α), i ≥ 1 are much more complicated,
for this reason, we do not derive their general forms.

3.5.3 Forced Oscillations from Families of Periodics

In the case that unperturbed equation (3.5.3) possesses some symmetries then
very often instead of condition (H1) the following one holds (see Subsection
3.3.2)

(C1) Equation(3.5.3) has a smooth family ϕ(t, x, θ) of 1-periodic solutions for
any x ∈ Ω and θ ∈ Γ, where Ω ⊂ R

n, Γ ⊂ R
r are open bounded subsets.
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So the symmetry causes that (3.5.3) has not only a single 1-periodic solution
for any x ∈ Ω, like in (H1), but a family parameterized by θ ∈ Γ (see arguments
below (3.5.24) for a concrete problem). Then we can repeat the above procedure
to (3.5.2) with the next modifications: First, (3.5.5) is changed to

v′ = gy(x, ϕ(t, x, θ))v . (3.5.12)

Clearly ϕ′(t, x, θ), ϕθi
(t, x, θ), i = 1, 2, · · · , r, θ = (θ1, θ2, · · · , θr) are 1-periodic

solutions of (3.5.12). We suppose

(C2) The family ϕ(t, x, θ) is non-degenerate, i.e. the functions ṽ0(t, x, θ) :=
ϕ′(t, x, θ), ṽi(t, x, θ) := ϕθi

(t, x, θ), i = 1, 2, · · · , r form a basis of the
space of 1-periodic solutions of (3.5.12).

From Subsection 3.3.2 we know that condition (C2) implies the existence of a
smooth basis w̃j(t, x, θ), j = 0, 1, · · · , r of the space of 1-periodic solutions of
the adjoint system w′ = −g∗y(x, ϕ(t, x, θ))w to (3.5.12).

Now, in the above procedure, we keep the projection P1, but we replace Px

with Px,θ : Y → Y defined by

Px,θy := y(t)− q̃0w̃0(t, x, θ)− q̃1w̃1(t, x, θ)− · · · − q̃rw̃r(t, x, θ) ,

(q̃0, q̃1, · · · , q̃r)∗ :=

Ã(x, θ)−1

⎛⎝ 1∫
0

(y(t), w̃0(t, x, θ)) dt, · · · ,

1∫
0

(y(t), w̃r(t, x, θ)) dt

⎞⎠∗

where Ã(x, θ) :=
(

1∫
0

(w̃i(t, x, θ), w̃j(t, x, θ)) dt

)r

i,j=1

is an r × r-matrix. Then

changing

x = u + x1, u ∈ X, P1u = u, x1 ∈ R
n

y = v + ϕ(t, u + x1, θ) ,

1∫
0

(v(t), ṽi(t)) dt = 0, i = 0, 1, · · · , r

in (3.5.2) and using projections P1, Px,θ, we derive like above

u′ = εP1f (u + x1, v + ϕ(t, u + x1, θ), t + α, ε)

v′ − gy(x1, ϕ(t, x1, θ))v = Px1,θH̃(u, v, ε, α, θ, t) ,
(3.5.13)

and
1∫

0

f (u + x1, v + ϕ(t, u + x1, θ), t + α, ε) dt = 0

1
ε

1∫
0

(H̃(u, v, ε, α, θ, t), w̃j(t, u + x1, θ)) dt = 0 j = 0, 1, · · · , r ,

(3.5.14)
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where
H̃(u, v, ε, α, θ, t) := g(u + x1, v + ϕ(t, u + x1, θ))−
g(u + x1, ϕ(t, u + x1, θ))− gy(x1, ϕ(t, u + x1, θ))v+

ε
(
h (u + x1, v + ϕ(t, u + x1, θ), t + α, ε)−

ϕx(t, u + x1, θ)f (u + x1, v + ϕ(t, u + x1, θ), t + α, ε)
)

.

Finally, using again the implicit function theorem we get solutions u = O(ε)
and v = O(ε) of (3.5.13), and then inserting them into (3.5.14), we obtain the
bifurcation equation

0 = G̃(x1, θ, α, ε) = G̃0(x1, θ, α) + G̃1(x1, θ, α)ε + · · ·+
G̃p(x1, θ, α)εp + Q̃p(x1, θ, α, ε)εp+1 := q̃p(x1, θ, α, ε) + Q̃p(x1, θ, α, ε)εp+1 ,

where G̃(x1, β, α, ε) is the left-hand side of (3.5.14). Consequently, the Brouwer
degree method again gives the following result.

Theorem 3.5.2. Suppose (C1) and (C2). If there is an open bounded subset
O ⊂ Ω× Γ× R and a constant c̃p > 0 such that

|q̃p(x1, β, α, ε)| ≥ c̃pε
p

on the boundary ∂O for any ε > 0 small, and deg
(
q̃p(·, ·, ·, ε),O, 0

)
�= 0. Then

(3.5.2) has a 1-periodic solution for ε > 0 small.

Since again, the higher-order terms G̃i(x1, θ, α), i ≥ 1 are still rather com-
plicated, we do not derive them. For p = 0 from (3.5.13) and (3.5.14) we derive

G̃0(x1, θ, α) =

( 1∫
0

f(x1, ϕ(t, x1, θ), t + α, 0) dt,

1∫
0

(
h(x1, ϕ(t, x1, θ), t + α, 0)

−ϕx(t, x1, θ)f(x1, ϕ(t, x1, θ), t + α, 0), w̃k(t, x1, θ)
)

dt

)
(3.5.15)

for k = 0, 1, 2, · · · , r.

3.5.4 Applications to Weakly Coupled Nonlinear
Oscillators

We present in this part two examples, where we apply Theorems 3.5.1 and 3.5.2.

Example 3.5.3. We first apply Theorem 3.5.1 to the system

y′
1 = (x2 + 1)(y2

1 + y2
2)y2 + εy1 (3.5.16)

y′
2 = −(x2 + 1)(y2

1 + y2
2)y1 − εy3

2

x′ = ε(y3
1 sin 2πt + y2 cos 2πt) .
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We need to verify conditions (H1) and (H2) for the unperturbed system (3.5.3)
of the form

y′
1 = (x2 + 1)(y2

1 + y2
2)y2, y′

2 = −(x2 + 1)(y2
1 + y2

2)y1 (3.5.17)

possessing a smooth family of 1-periodic solutions

ϕ(t, x) =

√
2πk

x2 + 1

(
sin 2πkt, cos 2πkt

)
(3.5.18)

for k ∈ Z \ {0}. The linearization of (3.5.17) along (3.5.18) is

v′
1 = 2πk

(
sin 4πktv1 + (2 + cos 4πkt)v2

)
v′
2 = −2πk

(
(2− cos 4πkt)v1 + sin 4πktv2

) (3.5.19)

and the adjoint system is

w′
1 = 2πk

(
− sin 4πktw1 + (2− cos 4πkt)w2

)
w′

2 = 2πk
(
− (2 + cos 4πkt)w1 + sin 4πktw2

)
.

(3.5.20)

Clearly (3.5.19) has solutions

v0(t, x) = (cos 2πkt,− sin 2πkt)

ṽ(x, t) =
(

sin 2πkt + 4πkt cos 2πkt, cos 2πkt− 4πkt sin 2πkt
)

.

Hence v0(x, t) is a basis of 1-periodic solutions of (3.5.19). Furthermore, the
function

w0(t, x) = (sin 2πkt, cos 2πkt)

is a basis of 1-periodic solutions of (3.5.20). Now we do not have parameters β.
For simplicity we take k = 1. After some computations, the function G0 of
(3.5.11) for this case (3.5.16) has the form

G0(x1, α) =
√

π

2
√

2(x2
1 + 1)3/2

×
(
(2 + 3π + 2x2

1) cos 2απ,

2− 3π + 2x2
1 +

x
√

2π

(x2
1 + 1)3/2

(2 + 3π + 2x2
1) cos 2απ

)
.

(3.5.21)

We immediately see that (3.5.21) has a simple root x1 =
√

3π−2
2 and α = 1

4 .

Taking a small neighborhood O of
(√

3π−2
2 , 1

4

)
, Theorem 3.5.1 gives an 1-

periodic solution of (3.5.16) for any ε > 0 small which is in an O(ε)-neighborhood

of
(
− 2

√
3

3 cos 2πt, 2
√

3
3 sin 2πt,

√
3π−2

2

)
.
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Example 3.5.4. Finally, we consider the system

y′
1 = y2, y′

2 = −y1 − (x2 + 1)(y2
1 + y2

3)y1 − εδy2 − εµ1(y1 − y3)− εµ2 cos 2πt

y′
3 = y4, y′

4 = −y3 − (x2 + 1)(y2
1 + y2

3)y3 − εδy4 − εµ1(y3 − y1)− εµ2 cos 2πt

x′ = ε(y1 sin 2πt + y3 cos 2πt) ,
(3.5.22)

where δ, µ1, µ2 are positive parameters. We verify assumptions (C1) and (C2)
for its unperturbed system

y′
1 = y2, y′

2 = −y1 − (x2 + 1)(y2
1 + y2

3)y1

y′
3 = y4, y′

4 = −y3 − (x2 + 1)(y2
1 + y2

3)y3 .
(3.5.23)

We note that (3.5.23) has the form

ẅ + (1 + (x2 + 1)‖w‖2)w = 0 (3.5.24)

for w = (y1, y3) and ‖w‖ =
√

y2
1 + y2

3 . For Γ(θ) =
(

cos θ − sin θ
sin θ cos θ

)
we see that

if w(t) solves (3.5.24) then Γ(θ)w(t) is also its solution. We know [132] that

y1(t) = v(t, x, k) =
√

2k√
(1− 2k2)(x2 + 1)

cn
t√

1− 2k2

solves y′
1 = y2, y′

2 = −y1 − (x2 + 1)y3
1 , where cn is the Jacobi elliptic function

and k is the elliptic modulus. Consequently, (3.5.23) has a smooth family of
periodic solutions

y(t, x, θ, k) =
(

cos θ v(t, x, k), cos θ v(t, x, k)′, sin θ v(t, x, k), sin θ v(t, x, k)′
)

(3.5.25)
The function y(t, x, θ, k) has the period T (k) = 4K(k)

√
1− 2k2 for the complete

elliptic integral K(k) of the first kind. We note T (0) = 2π and T (
√

2/2) = 0.
By numerically solving the equation T (k) = 1, we find its unique solution k0

.=
0.700595 with T (k0)′ �= 0. So we fix k = k0 and take

ϕ(t, x, θ) = y(t, x, θ, k0)

to satisfy condition (C1). Next we show the nondegeneracy of ϕ(t, x, θ) from
condition (C2). The linearization of (3.5.24) at w has the form

z̈ + (1 + (x2 + 1)‖w‖2)z + 2(x2 + 1) < w, z > w = 0 , (3.5.26)

where < ·, · > is the usual scalar product on R
2. Furthermore, we can easily

check that if z = Γ(θ)z1 and w = Γ(θ)w1, then

z̈1 + (1 + (x2 + 1)‖w1‖2)z1 + 2(x2 + 1) < w1, z1 > w = 0 . (3.5.27)
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Consequently, in order to study the linearization of (3.5.23) (or (3.5.26)) at
ϕ(t, x, θ), we study the linearization of (3.5.27) at w1(t) = (v(t, x), 0), v(t, x) =
v(t, x, k0) which has the form

v′
1 = v2, v′

2 = −(1 + 3w(t, k0))v1 (3.5.28)

v′
3 = v4, v′

4 = −(1 + w(t, k0))v3 (3.5.29)

for w(t, k) = 2k2

1−2k2 cn 2 t√
1−2k2 . Equation (3.5.28) has an 1-periodic solution

v(t, x)′ and a non-1-periodic solution ∂
∂kv(t, x, k0). Equation (3.5.29) has a 1-

periodic solution v(t, x) and by solving numerically (3.5.29) with initial value
conditions v3(0) = 0, v4(0) = 1, we see that the second solution of (3.5.29) is
non-1-periodic. Consequently, condition (C2) is satisfied with

ṽ0(t, x, θ) =
(

cos θ v(t, x)′, cos θ v(t, x)′′, sin θ v(t, x)′, sin θ v(t, x)′′
)

ṽ1(t, x, θ) =
(
− sin θ v(t, x),− sin θ v(t, x)′, cos θ v(t, x), cos θ v(t, x)′

)
.

Similarly we derive

w̃0(t, x, θ) =
(
− cos θ v(t, x)′′, cos θ v(t, x)′,− sin θ v(t, x)′′, sin θ v(t, x)′

)
w̃1(t, x, θ) =

(
sin θ v(t, x)′,− sin θ v(t, x),− cos θ v(t, x)′, cos θ v(t, x)

)
.

Now we insert the above formulas to (3.5.15) and by using the evenness of
function cn , after some computations we get the first-order bifurcation function

G̃0(x, θ, α) =
(
G̃01(x, θ, α), G̃02(x, θ, α), G̃03(x, θ, α)

)
,

where

G̃01(x, θ, α) =
sin(2πα + θ)√

x2 + 1

1∫
0

w(t) cos 2πt dt ,

G̃02(x, θ, α) =

1
(x2 + 1)

1∫
0

{
− δẇ(t)2 + µ2(cos θ + sin θ)

√
x2 + 1 sin 2πt sin 2παẇ(t)

+
x

(x2 + 1)3/2

(
ẇ(t)2 − ẅ(t)w(t)

)
w(t) cos 2πt sin(2πα + θ)

}
dt ,

G̃0,3(x, θ, α) =

1
x2 + 1

1∫
0

{
µ1 cos 2θw(t)2 −

√
x2 + 1µ2(cos θ − sin θ) cos 2πt cos 2παw(t)

}
dt ,

and w(t) =
√

2k0√
1−2k2

0

cn t√
1−2k2

0

. In order to prove the next theorem, we need the

following obvious result.



3.5. Nonlinear Oscillators with Weak Couplings 117

Lemma 3.5.5. Let F1 ∈ C1 (Ω1 × Ω2, R
n), F2 ∈ C1 (Ω1 × Ω2, R

m), Ω1 ⊂ R
n,

Ω2 ⊂ R
m be open subsets. Suppose that for any y ∈ Ω2 there is a x := f(y) ∈

Ω1 such that F1(f(y), y) = 0 and DxF1(f(y), y) : R
n → R

n is regular, i.e.
F1(x, y) = 0 has a simple root x = f(y) in Ω1 for any y ∈ Ω2. Assume that
G(y) := F2(f(y), y) = 0 has a simple root y0 ∈ Ω2, i.e. G(y0) = 0 and DG(y0)
is regular. Then (x0, y0), x0 := f(y0) is a simple root of F = (F1, F2)∗, i.e.
F (x0, y0) = 0 and DF (x0, y0) is regular. Note a local uniqueness of simple roots
and their smooth dependence on parameters follow from the implicit function
theorem, so we suppose that f ∈ C1(Ω2,Ω1).

Proof. From DG(y) = DyF2(f(y), y) − DxF2(f(y), y)DxF1(f(y), y)−1DyF1

(f(y), y) and DF =
(

DxF1 DyF1

DxF2 DyF2

)
, we derive

(
DxF−1

1 0n×m

−DxF2DxF−1
1 Im×m

)
◦DF =

(
In×n DxF−1

1 DyF1

0m×n DG

)
.

Hence DG(y0) is regular if and only if DF (x0, y0) is regular. The proof is
finished.

We are ready to prove the following result [93].

Theorem 3.5.6. If one of the following assumptions is satisfied

δ �= 0.313471µ1, δ > 0.02236µ2 , (3.5.30)

F (6.38018δ/µ1) < 44.7227δ/µ2, δ �= 0.313471µ1 , (3.5.31)

0.00463021µ2 < δ < 0.0211411µ1 , (3.5.32)

where

F (A) = 3A
(
1 + A +

A2 − 4A + 1
C1/3

+ C1/3
)−1

,

C = 1 + 21A− 6A2 + A3 + 3
√

6A + 42A2 − 18A3 + 3A4 .

Then system (3.5.22) possesses an 1-periodic solution for any ε > 0 small.

Proof. In order to apply Theorem 3.5.2, we search for a simple root of G̃0(x, θ, α)

by using Lemma 3.5.5. Then its Brouwer index is nonzero. Since
1∫
0

w(t)

cos 2πt dt
.= 3.49859, we see that G̃01(x, θ, α)=0 gives two possibilities: either

2πα+θ=0 or 2πα+θ=π. Then G̃02(x, θ, α)=0 implies

√
x2 + 1 =

δ
1∫
0

ẇ(t)2 dt

µ2(cos θ + sin θ) sin 2πα
1∫
0

ẇ(t) sin 2πt dt

> 1 (3.5.33)
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By inserting (3.5.33) into G̃03(x, θ, α) = 0 we get the following equivalent
equation

δ(cos θ − sin θ) cos 2πα
1∫
0

ẇ(t)2 dt
1∫
0

w(t) cos 2πt dt−

µ1 cos 2θ(cos θ + sin θ) sin 2πα
1∫
0

w(t)2 dt
1∫
0

ẇ(t) sin 2πt dt = 0
(3.5.34)

First we consider the case 2πα = −θ. Then from (3.5.33) we obtain

δ

µ2(cos θ + sin θ) sin θ
> 0.02236 , (3.5.35)

while (3.5.34) gives

(cos θ − sin θ)
{

6.38018δ cos θ − µ1(sin θ + cos θ)2 sin θ
}

= 0 (3.5.36)

To solve (3.5.36), we first consider either θ0 = π/4 or θ0 = 5π/4, which
are simple roots of (3.5.36) if δ/µ1 �= 0.313471. Then by inserting θ = θ0 into
(3.5.35), we get δ/µ2 > 0.02236. So Theorem 3.5.6 is proved when (3.5.30) holds,
since

(√
2000.1216 δ2

µ2
2
− 1, θ0,− θ0

2π

)
is a simple root of G̃0(x, θ, α).

Now we consider that θ �= θ0 and still 2πα = −θ, then (3.5.35) and (3.5.36)
are equivalent to

A = 6.38018δ/µ1 =
(1 + tan θ)2

1 + tan2 θ
tan θ = Ψ1(tan θ) (3.5.37)

and
44.7227δ/µ2 >

1 + tan θ

1 + tan2 θ
tan θ = Ψ2(tan θ) > 0 . (3.5.38)

So we take θ ∈ (0, π/2) \ {π/4}. Since Ψ1 is increasing on [0,∞) and
Ψ1(0) = 0, we see that (3.5.37) is uniquely solvable in tan θ as a function of
A ≥ 0. Then inserting this solution into the right hand side of (3.5.38), we
obtain (3.5.31). Note condition δ/µ1 �= 0.313471 comes from 6.38018δ/µ1 =
Ψ1(tan θ) �= Ψ1(tan π/4) = 2. So Theorem 3.5.6 is proved also for this assump-
tion, since (√

2000.1216δ2

µ2
2Ψ2 (tan θ1)

2 − 1, θ1,− θ1

2π

)
with θ1 = arctan[Ψ−1

1 (6.38018δ/µ1)] ∈ (0, π/2) \ {π/4} is a simple root of
G̃0(x, θ, α).

Finally, we consider the case 2πα = π − θ. Then (3.5.37) and (3.5.38) are
changing to

−6.38018δ/µ1 = Ψ1(tan θ) (3.5.39)

and
−44.7227δ/µ2 < Ψ2(tan θ) < 0 , (3.5.40)
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respectively. So we take θ ∈ (−π/4, 0). Now the situation is different: functions
Ψ1,2 are not invertible on interval I = [−1, 0]. They are both non-positive on I.
Function Ψ1 has the minimum −0.134884 on I at −0.295598, while function Ψ2

has the minimum −0.207107 on I at −0.414214. So in order to solve (3.5.39)
we suppose −6.38018δ/µ1 > −0.134884, while the condition −44.7227δ/µ2 <
−0.207107 is sufficient for holding (3.5.40). We can put these two inequalities
into one (3.5.32). So Theorem 3.5.6 is proved also for the last assumption, since
G̃0(x, θ, α) has a simple root at(√

2000.1216δ2

µ2
2Ψ2 (tan θ2)

2 − 1, θ2,
π − θ2

2π

)

for θ2 = arctan[Ψ−1
1 (6.38018δ/µ1)] ∈ (−π/4, 0) .

Remark 3.5.7. When several conditions of (3.5.30–3.5.32) hold simultaneously,
then we get multiple 1-periodic solutions. For instance, we can numerically check
that function F (A) has a global maximum F (A0)

.= 1.20711 on [0,∞) at A0
.=

4.12132. Hence for δ/µ2 > 0.02699 and δ/µ1 �= 0.313471 both (3.5.30) and
(3.5.31) are satisfied, and we get 3 different 1-periodic solutions of (3.5.22): 2
solutions bifurcating for θ0,1 = π/4, θ0,2 = 5π/4, and the 3rd one for θ1 ∈
(0, π/2) \ {π/4} in (3.5.25). Moreover, for 0.02699µ2 < δ < 0.0211411µ1 we
have 4 different 1-periodic solutions of (3.5.22), the 4th one bifurcating for θ2 ∈
(−π/4, 0) in (3.5.25).

The case δ = 0 is a different situation. Theorem 3.5.2 gives the following
result.

Theorem 3.5.8. If δ = 0 and µ1 > 0.14264µ2 then system (3.5.22) possesses
an 1-periodic solution for any ε > 0 small.

Proof. We again search for a simple root of G̃0(x, θ, α). The form of bifurcation
function G̃0(x, θ, α) remains and G̃01(x, θ, α) = 0 gives still that either 2πα = −θ

or 2πα = π−θ. But equations G̃0j(x, θ, α) = 0, j = 2, 3 now imply the following
ones

(cos θ + sin θ) sin θ = 0 ,

(cos θ − sin θ)(7.0107µ1(cos θ + sin θ)− µ2 cos 2πα
√

x2 + 1) = 0 .
(3.5.41)

By analyzing system (3.5.41), we get a solution:

θ = 0, α = 0, 7.0107µ1/µ2 =
√

x2 + 1 .

For µ1 > 0.14264µ2, we get a simple root
(√

49.1499µ2
1/µ2

2 − 1, 0, 0
)

of

G̃0(x, θ, α). The proof is finished.

Of course, (3.5.1) could be similarly handled like (3.5.22).



Chapter 4

Bifurcation of Chaotic
Solutions

4.1 Chaotic Differential Inclusions

4.1.1 Nonautonomous Discontinuous O.D.Eqns

Motivated by several coupled oscillators with small quasiperiodic forcing terms
and with small dry friction effects like the following one

ẍ = x− 2x(x2 + y2) + εµ1 cos ω1t− εδ1 sgn ẋ ,

ÿ = y − 2y(x2 + y2) + εµ2 cos ω2t− εδ2 sgn ẏ ,
(4.1.1)

where ω1 > ω2, δ1,2 and µ1,2 are positive constants and ε > 0 is a small para-
meter, in this section, we consider differential inclusions of the form

ẋ(t) ∈ f(x(t)) + εg(x(t), ε, t) a.e. on R (4.1.2)

with x ∈ R
n and ε ∈ R small. Similar systems are studied in Sections 3.1 and 3.3

with periodic perturbations. In this section we proceed in this investigation to
show more complicated solutions under the following assumptions about (4.1.2):

(i) f ∈ C2(Rn, Rn) and g : R
n × R × R → 2R

n \ {∅} has a form
g(x, ε, t) = F (x, ε) + G(x, ε, t), where mapping F : R

n × R → 2R
n \

{∅} is upper-semicontinuous with compact and convex values, and G ∈
C(Rn+2, Rn). Moreover, for any bounded subset Ω ⊂ R

n+1, mapping
G(x, ε, t) is bounded and uniformly continuous on Ω× R.

(ii) f(0) = 0 and the eigenvalues of Df(0) lie off the imaginary axis.

(iii) The unperturbed equation has a homoclinic solution. That is, there ex-
ists a differentiable function t → γ(t) �= 0 such that limt→+∞ γ(t) =
limt→−∞ γ(t) = 0 and γ̇(t) = f(γ(t)).

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 121–142. 121
c© Springer Science + Business Media B.V., 2008



122 Chapter 4. Bifurcation of Chaotic Solutions

Hence we again suppose a homoclinic structure for the unperturbed equation
ẋ = f(x) of (4.1.2) like in Section 3.1, where bifurcation of infinitely many
subharmonics from homoclinics is shown. Here we study bifurcation of more
oscillatory solutions when perturbations are not necessary periodic. The most
interesting case is when

g(x, ε, t) = q(x, ε, ω1t, · · · , ωmt) (4.1.3)

for ω1, · · · , ωm ∈ R and the multivalued mapping q : R
n × R × R

m → 2R
n \

{∅} is upper-semicontinuous with compact and convex values. Moreover, the
multivalued mapping q(x, ε, θ1, · · · , θm) is 1-periodic in each θi, i = 1, 2, · · · ,m.
We note that our method of Subsection 4.1.5 is applicable to (4.1.3).

When g(x, ε, t) is periodic in t, this problem is also solved in [10–12]. Almost
periodic ordinary differential equations are investigated in [152, 160, 195] while
partial differential equations are studied in [38]. Our main result on (4.1.2) is
as follows: For multivalued almost periodic perturbations, we find conditions
ensuring that for any sequence E = {ej}j∈Z ∈ E and ε > 0 small, there is a
bounded solution of (4.1.2) on R. Moreover, different solutions correspond to
different sequences and in addition, each sequence E characterizes (or counts)
turnings of the corresponding solution around γ. These chaotic solutions are in
a narrow layer around γ. Consequently, we extend the deterministic chaos of
Section 2.5.3 to almost periodically perturbed problems of (4.1.2).

4.1.2 The Linearized Equation

To prove our main results, we extend the method of Section 3.1 to (4.1.2).
Hence we first extend Theorem 3.1.4 to more general cases as follows. First, we
fix τ > 0 and define the following Banach spaces:

Zτ = C ([−τ, τ ] , Rn) , Yτ = L∞ ([−τ, τ ] , Rn)

with supremum norms ‖ · ‖τ and | · |τ for Zτ , respectively for Yτ . Then we
consider the linear equation

v̇(t) = Df(0)v(t) , (4.1.4)

and put

V (t) = etDf(0), Qus = C

(
Is 0
0 0

)
C−1

Qss = 0, Quu = 0, Qsu = C

(
0 0
0 Iu

)
C−1 ,

where C is from Theorem 3.1.2. The next result follows directly from assumption
(ii).

Theorem 4.1.1. By considering in Theorems 3.1.2-3.1.3 the exchanges

U(t) ↔ V (t), Pss ↔ Qss, Psu ↔ Qsu, Pus ↔ Qus, Puu ↔ Quu ,

Theorems 3.1.2–3.1.3 are valid for (4.1.4).
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Now for any finite sequence Ep = {ej}p
j=−p ∈ {0, 1}2p+1, p ∈ N we put:

if ej = 1 then

Aj(t) = Df(γ(t)), Uj = U, P j
ss = Pss

P j
su = Psu, P j

us = Pus, P j
uu = Puu ;

if ej = 0 then

Aj(t) = Df(0), Uj = V, P j
ss = Qss

P j
su = Qsu, P j

us = Qus, P j
uu = Quu .

Let Ip = {−p,−p + 1, · · · , p}. Now we fix a sequence {ti}i∈Z, ti < ti+1 such
that ti → ±∞ as i→ ±∞. For any α ∈ AEp

, where the set AEp
is defined by

AEp
=
{

(α−p, · · · , αp) ∈ R
2p+1 : αj ∈ R if ej = 1 and αj = 0 if ej = 0

}
,

we consider the non-homogeneous coupled linear equations

żj = Aj(t− αj)zj + hj , j ∈ Ip, hj ∈ Yτj

zj(τj) = zj+1(−τj+1) for − p ≤ j ≤ p− 1
zp(τp) = z−p(−τ−p) ,

(4.1.5)

for τj = (tj+1 − tj)/2, j ∈ Ip. We put

Yp = ×j∈Ip
Yτj

with the norm |h|p = maxj∈Ip
|hj |τj

, h = (h−p, · · · , hp), hj ∈ Yτj
, j ∈ Ip.

Repeating arguments of the proof of Theorem 3.1.4, we have a Fredholm-like
alternative result for (4.1.5).

Theorem 4.1.2. For any K > 0, there exist m0 > 0, A > 0, B > 0 such that
if τj > m0 for every j ∈ Ip and α ∈ AEp

such that |α| ≤ K, then there exist
linear functions Lα,j : Yp → R

n, j ∈ Ip with ‖P j
uuLα,j‖ ≤ Ae−2Mτj and with

the property that if h ∈ Yp satisfies∫ τj

−τj

P j
uuUj(t− αj)−1hj(t) dt + P j

uuLα,jh = 0

for every j ∈ Ip, then (4.1.5) has solutions in zj ∈ Zτj
satisfying

P j
ssUj(−αj)−1zj(0) = 0 and max

j∈Ip

‖zj‖τj
≤ B max

j∈Ip

|hj |τj
.

Moreover, these solutions zj depend linearly on h and continuously on α as well.
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Proof. Putting Ũj(t) = Uj(t − αj), j ∈ Ip, we consider the following two solu-
tions to (4.1.5):

z1,j(t) = Ũj(t)P j
suξ1,j + Ũj(t)(P j

us + P j
uu)Ũj(−τj)−1ϕ1,j

+Ũj(t)
∫ t

0

(P j
ss + P j

su)Ũj(s)−1hj(s) ds

+Ũj(t)
∫ t

−τj

(P j
us + P j

uu)Ũj(s)−1hj(s) ds ,

z2,j(t) = Ũj(t)P j
usξ2,j + Ũj(t)(P j

su + P j
uu)Ũj(τj)−1ϕ2,j

+Ũj(t)
∫ t

0

(P j
ss + P j

us)Ũj(s)−1hj(s) ds

−Ũj(t)
∫ τj

t

(P j
su + P j

uu)Ũj(s)−1hj(s) ds

for arbitrary ξ1,j , ξ2,j , ϕ1,j and ϕ2,j . They satisfy P j
ssŨj(0)−1zj(0) = 0, while we

consider z1,j(t) for t ∈ [−τj , 0] and z2,j(t) for t ∈ [0, τj ]. To find the desired solu-
tion, we consider the first matching conditions determined by z1,j(0) = z2,j(0)
and then the second ones given at end points determined by z1,j+1(−τj+1) =
z2,j(τj). Now we see that the proof of Theorem 3.1.4 can be directly modified,
so we omit further details and refer the reader to [81] for a complete proof.

Following Subsection 3.1.2, we define closed linear subspaces Yα,j,Ep
⊂ Yp

by

Yα,j,Ep
=

{
z ∈ Yp :

∫ τj

−τj

P j
uuUj(t− αj)−1zj(t) dt + P j

uuLα,jz = 0

}

and a variation of constants map

Kα,Ep
: Yα,Ep

=
⋂

j∈Ip

Yα,j,Ep
→ ×j∈Ip

Zτj
= Zp

by taking Kα,Ep
(h), h = (h−p, · · · , hp) to be the solution in Zp to (4.1.5) from

Theorem 4.1.2. Then Kα,Ep
is a compact linear operator with the norm ‖Kα,Ep

‖
uniformly bounded with respect to Ep and α ∈ AEp

bounded. We note that the
norm on Zp is defined as maxj∈Ip

||zj ||τj
.

Remark 4.1.3. If ej = 0 then Yα,j,Ep
= Yp and P j

uu = 0.

Finally, Lemma 3.1.5 can be also simply adapted to closed linear subspaces
Yα,j,Ep

.
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4.1.3 Bifurcation of Chaotic Solutions

We find chaotic solutions of (4.1.2) in this subsection. First we set a mapping
M : R

d → 2R
d \ {∅}, M = (M1, · · · ,Md) given by

Ml(α, β) =

{∫∞
−∞〈h(s), u⊥

l (s)〉 ds : h ∈ L2
loc(R, Rn) satisfying a.e. on R

h(t) ∈ ( 1
2

d−1∑
i,r=1

βiβrD
2f(γ(t))(ud+i(t), ud+r(t)) + g(γ(t), 0, t + α)

)}
.

(4.1.6)
Like in Subsection 3.1.3 we know that M is upper–semicontinuous with compact
convex values and maps bounded sets into bounded ones. Now we can prove the
following result.

Theorem 4.1.4. Let (i–iii) hold and d > 1. If there are non-empty open bounded
sets Bj ⊂ R

d−1, j ∈ Z along with a sequence of intervals {(aj , bj)}j∈Z such that

(i) aj → +∞ as j → +∞, and bj → −∞ as j → −∞
(ii)

⋃
j∈Z

Bj is bounded and supj∈Z(bj − aj) <∞

(iii) inf
j∈Z

dist
(
0,M

(
∂((aj , bj)× Bj)

))
> 0

(iv) deg(M, (aj , bj)× Bj , 0) �= 0

Then there is a constant K > 0 and for any sufficiently small s > 0 there are
increasing sequences {tj}j∈Z, tj+1− tj ≥ 2/s, ∀j ∈ Z, and {k(j)}j∈Z, k(j) ∈ Z,
such that for ε = s2 and any infinite sequence E = {ej}j∈Z ∈ E, the differential
inclusion (4.1.2) possesses a solution xE,s satisfying

sup
tj≤t≤tj+1

∣∣xE,s(t)− γ(t− ᾱj,E,s)
∣∣ ≤ Ks when ej = 1 ,

sup
tj≤t≤tj+1

∣∣xE,s(t)
∣∣ ≤ Ks2 when ej = 0 ,

(4.1.7)

where ᾱj,E,s ∈ (ak(j), bk(j)) ⊂ (tj , tj+1) for any j ∈ Z with ej = 1. The mapping
E → zE,s is injective.

Proof. Let E = {ej}j∈Z ∈ E be given. We first find solutions of (4.1.2) asso-
ciated to any Ep = {ej}j∈Ip

∈ {0, 1}2p+1, p ∈ N and then by passing to the
limit p → ∞, we show the desired solutions. We closely follow the method of
Section 3.1. We start with a construction of sequence {ti}i∈Z as follows: By
using assumptions (i), (ii) of this theorem, we choose step by step an increasing
sequence {k(j)}j∈Z, k(j) ∈ Z such that t̄j = ak(j)+bk(j)

2 , j ∈ Z satisfy

t̄j ≥ 1
s + 2t̄j−1 − 2t̄j−2 + · · ·+ (−1)j+12t̄0, j ≥ 1

t̄0 ≥ 1
s , t̄−1 ≤ − 1

s
t̄j ≤ − 1

s + 2t̄j+1 − 2t̄j+2 + · · ·+ (−1)j2t̄−1, j ≤ −2 .
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Here we suppose 2/

(
sup
j∈Z

(bj − aj)
)

> s > 0. Then we get by

tj = 2t̄j−1 − 2t̄j−2 + · · ·+ (−1)j+12t̄0, j ≥ 1
t0 = 0
tj = 2t̄j − 2t̄j+1 + · · ·+ (−1)j+12t̄−1, j ≤ −1

an increasing sequence {tj}j∈Z such that tj+1 − tj ≥ 2/s, t̄j = tj+1+tj

2 =
ak(j)+bk(j)

2 and (ak(j), bk(j)) ⊂ (tj , tj+1).
Next we fix Ep. For any α ∈ AEp

we put:

if ej = 1 then

γj(t) = γ(t− αj), βj = (β1,j , · · · , βd−1,j) ∈ R
d−1

ui+d,j(t) = ui+d(t− αj), i ∈ {1, · · · , d− 1} ;

if ej = 0 then

γj(t) = 0, βj = (0, · · · , 0) ∈ R
d−1 ,

ui+d,j = 0, i ∈ {1, · · · , d− 1} .

We define the functions bj , j ∈ Ip by

bj(αj , αj+1, βj , βj+1, r1, r2)

= γj+1(−r2)− γj(r1) +
d−1∑
i=1

(
βi,j+1ui+d,j+1(−r2)− βi,jui+d,j(r1)

)
.

Clearly
|bj(αj , αj+1, βj , βj+1, r1, r2)| = O(e−2Mr)

as r = min{r1, r2} → ∞ uniformly with respect to bounded αj , αj+1, βj , βj+1.
Then we consider (4.1.2) with ε = s2 on the interval [t−p, tp+1] and we make

on each interval [tj , tj+1], j ∈ Ip the changes of variables

x (t + t̄j) = γj(t) + s2zj(t) +
d−1∑
i=1

sβi,jui+d,j(t)

+
1

2τj
bj(αj , αj+1, sβj , sβj+1, τj , τj+1)(t + τj), zj ∈ Zτj

,

(4.1.8)

where τj = (tj+1 − tj)/2, j ∈ Ip. We consider in (4.1.8) for any j with ej = 1

that βj ∈ Bk(j) and αj ∈
(
− bk(j)−ak(j)

2 ,
bk(j)−ak(j)

2

)
. Assumption (ii) of this

theorem implies that βj , αj are uniformly bounded with respect to j ∈ Z. We
set τp+1 = τ−p. Note if zj(τj) = zj+1(−τj+1) for −p ≤ j ≤ p − 1 and zp(τp) =
z−p(−τ−p), and zj are continuous then x in (4.1.8) is continuously extended on
[t−p, tp+1].

Inserting (4.1.8) into (4.1.2), the differential inclusions for zj , j ∈ Ip are

żj(t)−Df(γj(t))zj(t) ∈ gs,j,Ep
(zj(t), αj , αj+1, βj , βj+1, t) (4.1.9)
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a.e. on [−τj , τj ], j ∈ Ip, where

gs,j,Ep
(x, αj , αj+1, βj , βj+1, t) =

{
v ∈ R

n : v ∈ 1
s2

{
f
(
s2x + γj(t)

+s
d−1∑
i=1

βi,jui+d,j(t) + 1
2τj

bj(αj , αj+1, sβj , sβj+1, τj , τj+1)(t + τj)
)
− f(γj(t))

−s
d−1∑
i=1

βi,j u̇i+d,j(t)− 1
2τj

bj(αj , αj+1, sβj , sβj+1, τj , τj+1)−Df(γj(t))s2x
}

+g
(
s2x + γj(t) + s

d−1∑
i=1

βi,jui+d,j(t)

+ 1
2τj

bj(αj , αj+1, sβj , sβj+1, τj , τj+1)(t + τj), s2, t + t̄j

)}
.

We note that Df(γj(t)) = Aj(t − αj) in the notations of Subsection 4.1.2.
Now we can repeat with the help of Theorem 4.1.2 the arguments of Subsec-
tion 3.1.3 to solve (4.1.9) in Zp. We omit details, since we can directly modify
the proofs without any changes to arrive at a similar inclusion like (3.1.20).
So for j ∈ Ip such that ej = 1, according to Subsection 3.1.3 (see (3.1.20)),
(4.1.9) is homotopically associated to a mapping M̃j : R

d → 2R
d \ {∅} given by

M̃j(αj , βj) = M(t̄j + αj , βj). While for j ∈ Ip such that ej = 0, according to
Subsection 3.1.3 and Remark 4.1.3 (see again (3.1.20)), (4.1.9) is homotopically
trivial. Consequently, like in the proof of Theorem 3.1.6, the solvability of (4.1.9)
is homotopically reduced to the solvability of the system of pEp

inclusions

0 ∈ M̃j1 , · · · , 0 ∈ M̃jpEp︸ ︷︷ ︸
pEp− times

(4.1.10)

on the set

ΩEp
:= ×k∈pEp

[(
− bk(jk) − ak(jk)

2
,
bk(jk) − ak(jk)

2

)
× Bk(jk)

]
.

Here pEp
is the number of 1 in Ep and each above M̃jk

, k = 1, 2, · · · , pEp

corresponds to such jk that ejk
= 1. By assumption (iv) of this theorem, system

of inclusions (4.1.10) is solvable on ΩEp
. Consequently we get a solution xEp,s

of (4.1.2) satisfying (4.1.7). Finally passing to the limit p→∞ for xEp,s like in
Theorem 3.1.33, we get the solution xE,s of this theorem. The proof is finished.

Similarly we get the next result.

Theorem 4.1.5. Let (i–iii) hold and d = 1. If there is a sequence of intervals
{(aj , bj)}j∈Z along with a constant δ > 0 such that

(i) aj → +∞ as j → +∞, bj → −∞ as j → −∞, and supj∈Z(bj − aj) < ∞,
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(ii) Either M(aj) ⊂ [δ,∞) and M(bj) ⊂ (−∞,−δ], or M(aj) ⊂ (−∞,−δ]
and M(bj) ⊂ [δ,∞), for any j ∈ Z,

where M : R → 2R \ {∅} is defined by

M(α) =
{ ∫∞

−∞〈h(s), u⊥
1 (s)〉 ds :

h ∈ L2
loc(R, Rn), h(t) ∈ g(γ(t), 0, t + α) a.e. on R

}
Then there is a constant K > 0 and for any sufficiently small s > 0, there are
increasing sequences {tj}j∈Z, tj+1 − tj ≥ 2/s, and {k(j)}j∈Z, k(j) ∈ Z, such
that for ε = ±s2 and any infinite sequence E = {ej}j∈Z ∈ E, the differential
inclusion (4.1.2) possesses a solution xE,s satisfying

sup
tj≤t≤tj+1

∣∣xE,s(t)− γ(t− ᾱj,E,s)
∣∣ ≤ Ks2 when ej = 1 ,

sup
tj≤t≤tj+1

∣∣xE,s(t)
∣∣ ≤ Ks2 when ej = 0 ,

(4.1.11)

where ᾱj,E,s ∈ (ak(j), bk(j)) ⊂ (tj , tj+1) for any j ∈ Z with ej = 1. The mapping
E → zE,s is injective.

Hence for any ε > 0 sufficiently small and E ∈ E , (4.1.2) possesses a solution
zE,s satisfying either (4.1.7) or (4.1.11). These estimates (4.1.7) and (4.1.11)
give the chaotic behavior of solutions zE,s for any E ∈ E . This is more discussed
in the next section.

4.1.4 Chaos from Homoclinic Manifolds

In many cases, the assumption (iii) of Subsection 4.1.1 is replaced by

(iv) The unperturbed equation ẋ = f(x) has a manifold of homoclinic solu-
tions. That is, there exists a C2-smooth mapping γ : R

d−1 × R → R
n

such that t → γ(θ, t) is a homoclinic solution of ẋ = f(x) to 0 and{
∂γ
∂θi

(θ, t), γ̇(θ, t)
}d−1

i=1
, θ = (θ1, · · · , θd−1) form a basis of bounded so-

lutions on R of the variational equation u̇(t) = Df(γ(θ, t))u(t).

This usually happens when ẋ = f(x) has some symmetry. Bifurcations from
family of periodics are studied in Sections 3.3 and 3.5.

Let U(θ, t) denote a fundamental solution of u̇(t) = Df(γ(θ, t))u(t). Then
Theorem 3.1.2 is valid for each parameter θ. Let uj(θ, t) be the jth column of
U(θ, t) and define u⊥

i (θ, t) by 〈u⊥
i (θ, t), uj(θ, t)〉 = δij . Now we can repeat the

above procedure. Instead of (4.1.8), we make on each interval [tj , tj+1], j ∈ Ip

the changes of variables

x (t + t̄j) = γj(θj , t− αj) + εzj(t)

+
1

2τj

(
γj+1(θj+1,−τj+1 − αj+1)− γj(θj , τj − αj)

)
(t + τj), zj ∈ Zτj

,
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where γj(θ, t) = γ(θ, t) for ej = 1 and γj(θ, t) = 0 for ej = 0. In this way for
ej = 1, we arrive at a mapping M̃j : R

d → 2R
d \ {∅} given by

M̃j(αj , θj) = M(t̄j + αj , θj), M = (M1, · · · ,Md) ,

Ml(α, θ) =

{ ∫∞
−∞〈h(s), u⊥

l (θ, s)〉 ds : h ∈ L2
loc(R, Rn) ,

h(t) ∈ g(γ(θ, t), 0, t + α) a.e. on R

}
.

(4.1.12)

Following the proof of Theorem 4.1.4, we get the next result.

Theorem 4.1.6. Let (i), (ii), (iv) hold. If there is a non-empty open bounded
set B ⊂ R

d−1 along with a sequence of intervals {(aj , bj)}j∈Z such that

(i) aj → +∞ as j → +∞, and bj → −∞ as j → −∞

(ii) supj∈Z(bj − aj) <∞

(iii) inf
j∈Z

dist
(
0,M

(
∂((aj , bj)× B)

))
> 0

(iv) deg(M, (aj , bj)× B, 0) �= 0

where M is given by (4.1.12). Then there is a constant K > 0 and for any
sufficiently small ε �= 0 there are increasing sequences {tj}j∈Z, tj+1 − tj ≥
2/|ε|, ∀j ∈ Z, and {k(j)}j∈Z, k(j) ∈ Z, such that for any infinite sequence
E = {ej}j∈Z ∈ E, the differential inclusion (4.1.2) possesses a solution xE,ε

satisfying

sup
tj≤t≤tj+1

∣∣xE,ε(t)− γ(θj , t− ᾱj,E,ε)
∣∣ ≤ K|ε| when ej = 1 ,

sup
tj≤t≤tj+1

∣∣xE,ε(t)
∣∣ ≤ K|ε| when ej = 0 ,

where ᾱj,E,ε ∈ (ak(j), bk(j)) ⊂ (tj , tj+1) and θj ∈ B for any j ∈ Z with ej = 1.
The mapping E → zE,ε is injective.

4.1.5 Almost and Quasi Periodic Discontinuous O.D.Eqns

We apply in this subsection previous abstract results to concrete examples. For
simplicity we first study the case when

g(x, ε, t) = µ1F (x) + µ2h(t) (4.1.13)

with µ1,2 ∈ R, F : R
n → 2R

n \ {∅} is upper-semicontinuous with compact and
convex values, and h ∈ C(R, Rn) is almost periodic, i.e. it fulfills the following
definition [152].
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Definition 4.1.7. h ∈ C(R, Rn) is almost periodic if ∀ζ > 0 ∃L > 0 such that
∀a ∈ R ∃τ ∈ [a, a + L] such that |h(x + τ)− h(x)| ≤ ζ ∀x ∈ R.

Function (4.1.13) expresses usual forcing terms in mechanics with dry friction
terms and almost periodic perturbations, for example a quasi-periodically forced
Duffing’s equation (see (3.1.36)):

ẍ− x + 2x3 + εµ1 sgn ẋ = εµ2

(
cos t + cos

√
2t
)

. (4.1.14)

For (4.1.13), formula (4.1.6) has the form

Ml(α, β) = µ1

{∫∞
−∞〈h(s), u⊥

l (s)〉 ds : h ∈ L2
loc(R, Rn) ,

h(t) ∈ F (γ(t)) a.e. on R

}
+ 1

2

d−1∑
i,r=1

βiβrbirl + µ2al(α) ,

(4.1.15)

where
birl =

∞∫
−∞
〈D2f(γ(t))(ud+i(t), ud+r(t)), u⊥

l (t)〉 dt

al(α) =
∞∫

−∞
〈h(t + α), u⊥

l (t)〉 dt ,

while (4.1.12) has the form

Ml(α, θ) = µ1

{ ∫∞
−∞〈h(s), u⊥

l (θ, s)〉 ds : h ∈ L2
loc(R, Rn) ,

h(t) ∈ F (γ(θ, t)) a.e. on R

}
+ µ2al(α, θ) ,

(4.1.16)

where

al(α, θ) =

∞∫
−∞

〈h(t + α), u⊥
l (θ, t)〉 dt .

Since all functions u⊥
l (t) and u⊥

l (θ, s) are integrable over R with respect to
s, it easy to show that functions a(α) = (a1(α), · · · , ad(α)) and a(α, θ) =
(a1(α, θ), · · · , ad(α, θ)) are also almost periodic in α, while a(α, θ) uniformly
on bounded sets of θ.

Theorem 4.1.8. Let d > 1. If there is a non-empty open bounded set B ⊂ R
d−1

along with an interval (a, b) ⊂ R such that

(i) 0 /∈M
(
∂((a, b)× B)

)
(ii) deg(M, (a, b)× B, 0) �= 0

where M is given by either (4.1.15) or (4.1.16). Then the statements of Theorems
4.1.4 and 4.1.6, respectively, are applicable to (4.1.2) with perturbation (4.1.13).



4.1. Chaotic Differential Inclusions 131

Proof. We consider the case (4.1.15), the case (4.1.16) is similar. We have to
verify assumptions of Theorem 4.1.4. Since a(α) is almost periodic, by Definition
4.1.7, for any ζ > 0 there is a sequence {ck}k∈Z, ck → ±∞ as k → ±∞ such
that

|a(α + ck)− a(α)| ≤ ζ, ∀α ∈ R .

For any j ∈ Z, we put

Bj = B, aj = cj + a, bj = cj + b .

If ζ is sufficiently small, then assumptions (i) and (ii) of this theorem clearly
imply assumptions (i–iv) of Theorem 4.1.4, so the proof is finished.

Similarly we have the next result.

Theorem 4.1.9. Let d = 1. If there is an interval (a, b) ⊂ R such that
M(a)M(b) ⊂ (−∞, 0), where M is given by

M(α) = µ1

{ ∫∞
−∞〈h(s), u⊥

1 (s)〉 ds : h ∈ L2
loc(R, Rn) ,

h(t) ∈ F (γ(t)) a.e. on R

}
+ µ2a1(α) .

Then the statement of Theorem 4.1.5 is applicable for (4.1.2) with perturbation
(4.1.13).

Now we intend to show that conditions of Theorems 4.1.8 and 4.1.9 imply
the validity of these conditions also for any h∗ in the hull H(h) of h. We recall
[152,160] that the hull H(h) of h is defined as a set

H(h) :=
{

h∗ ∈ C(R, R) | ∃{τn}n≥1 ⊂ R such that

h(t + τn) → h∗(t) uniformly on R as n →∞
}

.

We note that h∗ is also almost periodic. We again consider the case (4.1.15), so

ah
l (α) =

∞∫
−∞

〈h(t + α), u⊥
l (t)〉 dt, ah∗

l (α) =

∞∫
−∞

〈h∗(t + α), u⊥
l (t)〉 dt

for l = 1, 2, · · · , d. Theorem 3.1.2 implies that

|u⊥
l (t)| ≤ K0 e−2M |t| ∀ t ∈ R .

For any δ > 0, there is an τ ∈ R such that

|h(t + τ)− h∗(t)| ≤ δ ∀ t ∈ R .
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Hence ∞∫
−∞

∣∣〈h(t + α)− h∗(t + α− τ), u⊥
l (t)〉∣∣ dt ≤ δK0/M .

This gives
|ah

l (α)− ah∗
l (α− τ)| ≤ δK0/M .

By taking δ > 0 sufficiently small, the assumptions of Theorems 4.1.8 and
4.1.9 are satisfied for h∗ in (4.1.13) instead of h with the set B and with an
interval (a − τ, b − τ). Consequently, Theorems 4.1.8 and 4.1.9 imply chaos of
(4.1.2) with the perturbation (4.1.13) over any element of the hull H(h). This
result is a generalization of similar ones from [152,160,181,195] to multivalued
perturbations. We state this result in the next theorem.

Theorem 4.1.10. Under conditions of Theorems 4.1.8 or 4.1.9, differential
inclusion (4.1.2) is also chaotic with perturbation (4.1.13) when h is replaced in
perturbation (4.1.13) by any h∗ ∈ H(h).

Clearly the above results hold also for continuous h(x, t) in perturbation
(4.1.13) when h(x, t) is uniformly almost periodic in t on any bounded set of
variable x [152, p. 68].

Applying Theorem 4.1.9 to (4.1.14) and using computations to (3.1.36), we
derive

M(α) = −2µ1 + µ2

[
π sech

π

2
sin α +

√
2π sech

√
2π

2
sin
√

2α

]
.

Since
√

2 is irrational we have supα∈R

∣∣∣π sech π
2 sin α +

√
2π sech

√
2π
2 sin

√
2α
∣∣∣ =

π sech π
2 +

√
2π sech

√
2π
2 . So for[

π sech
π

2
+
√

2π sech
√

2π

2

]
|µ2| > 2|µ1| , (4.1.17)

the assumptions of Theorem 4.1.9 are satisfies and then (4.1.14) is chaotic.
Moreover, we have [152, p. 70]

H(cos t + cos
√

2t) =
{

cos(t + ξ1) + cos(
√

2t + ξ2) | ξ1, ξ2 ∈ R, ξ1,2 ≡mod 2π
}

.

So (4.1.14) over its hull has the form

ẍ− x + 2x3 + εµ1 sgn ẋ = εµ2 (cos Ω1 + cos Ω2) ,

Ω̇1 = 1, Ω̇2 =
√

2 ,
(4.1.18)

and according to Theorem 4.1.10, system (4.1.18) is also chaotic when
(4.1.17) holds.
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Finally, we deal with weakly coupled oscillators with a symmetry given by
(4.1.1) which is considered as a differential inclusion

ẋ1 = x2, ẋ2 − x1 + 2x1(x2
1 + y2

1)− εµ1 cos ω1t ∈ −εδ1 Sgnx2 ,

ẏ1 = y2, ẏ2 − y1 + 2y1(x2
1 + y2

1)− εµ2 cos ω2t ∈ −εδ2 Sgn y2 ,

where Sgn r is defined by (2.4.1). The unperturbed equation of (4.1.1)

ẋ1 = x2, ẋ2 = x1 − 2x1(x2
1 + y2

1), ẏ1 = y2, ẏ2 = y1 − 2y1(x2
1 + y2

1) (4.1.19)

has a rotational symmetry, i.e. it has a homoclinic manifold given by γ(θ, t) =(
r(t) cos θ, ṙ(t) cos θ, r(t) sin θ, ṙ(t) sin θ

)
where r(t) = sech t (see example (3.5.22)

and [106] for similar computations). Then

u⊥
1 (θ, t) =

(− ṙ(t) sin θ, r(t) sin θ, ṙ(t) cos θ,−r(t) cos θ
)
,

u⊥
2 (θ, t) =

(− r̈(t) cos θ, ṙ(t) cos θ,−r̈(t) sin θ, ṙ(t) sin θ
)
,

where θ ∈ [0, 2π). Now (4.1.16) has for θ �= 0, π/2, π, 3π/2 the form

M1(α, θ) = πµ1 sech
ω1π

2
sin θ cos ω1α− πµ2 sech

ω2π

2
cos θ cos ω2α ,

M2(α, θ) = πµ1ω1 sech
ω1π

2
cos θ sin ω1α

+πµ2ω2 sech
ω2π

2
sin θ sin ω2α− 2δ1| cos θ| − 2δ2| sin θ| .

(4.1.20)

In order to applyTheorem4.1.8, it is enough tofindan isolated root of (4.1.20)with
a nonzero Brouwer index. We consider that θ ∈ (0, π/2) and α ∈

(
0, π

2ω1

)
= I0.

Then equation M(α, θ) = 0 has the form

A1(α) sin θ + A2(α) cos θ = 0, A3(α) sin θ + A4(α) cos θ = 0 , (4.1.21)

where functions Ai(α), i = 1, 2, 3, 4 are given by the definition. Note that
A1(α) �= 0 and A2(α) �= 0 on I0. It is clear that (4.1.21) is equivalent to

B(α) = A1(α)A4(α)−A2(α)A3(α) = 0
A1(α) sin θ + A2(α) cos θ = 0 ,

(4.1.22)

where

B(α) =
π2

2
µ2

1ω1

(
sech

ω1π

2

)2

sin 2ω1α +
π2

2
µ2

2ω2

(
sech

ω2π

2

)2

sin 2ω2α

−2δ1µ1π sech
ω1π

2
cos ω1α− 2δ2µ2π sech

ω2π

2
cos ω2α .

Since B(0) < 0, function B(α) is nonzero analytic and it could have only isolated
zeroes with finite orders. Consequently, supposing

π2

2
µ2

1ω1

(
sech

ω1π

2

)2

+
π2

2
µ2

2ω2

(
sech

ω2π

2

)2

sin
πω2

2ω1
>

√
2δ1µ1π sech

ω1π

2
+ 2δ2µ2π sech

ω2π

2
cos

πω2

4ω1
,

(4.1.23)
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we see that B
(

π
4ω1

)
> 0 and B(α) changes the sign over I0. Then there are

α0 ∈ I0, η > 0 such that B(α) has the only zero α = α0 in the interval
[α0 − η, α0 + η] ⊂ I0 and B(α0 − η)B(α0 + η) < 0. We take

θ(α) = − arctan(A2(α)/A1(α)), θ−0 =
θ(α0)

2
, θ+

0 =
2θ−0 + π

4
.

Then on the set

I = [α0 − η, α0 + η]× [θ−0 , θ+
0 ] ⊂ I0 × (0, π/2) ,

mapping M(α, θ) has the only zero point α̃0 := (α0, θ(α0)). To show the non-
vanishing of the Brouwer index I(α̃0) of this isolated zero point of M(α, θ) (cf.
Section 2.2.3), we consider the equation

A1(α) sin θ + A2(α) cos θ = 0
A3(α) sin θ + A4(α) cos θ = c1 ,

(4.1.24)

for c1 �= 0 small and (α, θ) ∈ I. Equation (4.1.24) gives

c1 = C(α) :=
B(α)√

A1(α)2 + A2(α)2
. (4.1.25)

Let L(α) be the linearization of the left hand side of (4.1.24) at point (α, θ(α)).
A boring computation gives

det L(α) = −C ′(α)
√

A1(α)2 + A2(α)2 . (4.1.26)

We note A1(α)2 + A2(α)2 �= 0 on [α0 − η, α0 + η]. Let
{
(αi, θ(αi))

}N

i=1
be the

solutions of (4.1.24) in I. Then for c1 sufficiently small such that C ′(αi) �= 0,
i = 1, 2, · · · , N , by the definition of the Brouwer degree (cf. Section 2.2.3) and
(4.1.26), we have

|I(α̃0)| =
∣∣∣ N∑

i=1

sgn det L(αi)
∣∣∣ = ∣∣∣ N∑

i=1

sgn C ′(αi)
∣∣∣

=
∣∣deg

(
C(α), (α0 − η, α0 + η), 0

)∣∣ = 1 ,

since by (4.1.25), function C(α) has the only zero α = α0 in [α0−η, α0 +η] and
C(α0− η)C(α0 + η) < 0. Hence we get from Theorem 4.1.8 the following result.

Theorem 4.1.11. If (4.1.23) holds then (4.1.1) is chaotic for any ε > 0 small.

Condition (4.1.23) means that the forcing terms must be sufficiently large
in (4.1.1) with respect to damping terms, to get chaos in (4.1.1), and the rate
is given by this condition.

We note that if the ratio ω2/ω1 is irrational, then the hull of the function
h(t) = (µ1 cos ω1t, µ2 cos ω2t) is given by

H(h) =
{

(µ1 cos(ω1t + ξ1), µ2 cos(ω2t + ξ2)) | ξ1, ξ2 ∈ R, ξ1,2 ≡ mod 2π
}

.
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So (4.1.1) considered over H(h) has the form

ẍ = x− 2x(x2 + y2) + εµ1 cos Ω1 − εδ1 sgn ẋ ,

ÿ = y − 2y(x2 + y2) + εµ2 cos Ω2 − εδ2 sgn ẏ ,

Ω̇1 = ω1, Ω̇2 = ω2 .

(4.1.27)

Theorem 4.1.10 implies chaos of (4.1.27) under condition (4.1.23). This result
is a generalization of similar ones of [152,195] to multivalued and quasiperiodic
perturbations. Of course, other discontinuous perturbations such as in Remark
3.1.29 could be considered in (4.1.1), but we do not carry out those computa-
tions.

4.2 Chaos in Periodic Differential Inclusions

4.2.1 Regular Periodic Perturbations

Using results of the previous Section 4.1, in this section we show chaotic solutions
to the problem (3.1.3) studied in Chapter 3. We suppose assumptions (i–iv) from
Subsection 3.1.1. Note that now all multivalued Melnikov functions are periodic.
So applying Theorem 4.1.4 like in the proof of Theorem 4.1.8, we immediately
have the following generalizations of Theorems 3.1.6–3.1.9 (see [76]).

Theorem 4.2.1. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

and µ0 ∈ Sk−1 such that 0 /∈ Mµ0(∂B) and deg(Mµ0 ,B, 0) �= 0, where Mµ is
defined by (3.1.21). Then there is a constant K > 0 and a wedge-shaped region
in R

k for µ of the form

R =
{

s2µ̃ : s > 0, respectively µ̃, is from an open small connected

neighborhood U1, respectively U2 ⊂ Sk−1, of 0 ∈ R, respectively of µ0

}
such that for any µ ∈ R of the form µ = s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, for any
sequence E = {ej}j∈Z ∈ E and for any m ∈ N, m ≥ [1/s], the differential
inclusion (3.1.3) possesses a solution xm,E satisfying

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,E(t)− γ(t− 2mj − αm,j,E)
∣∣ ≤ Ks when ej = 1 ,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,E(t)
∣∣ ≤ Ks2 when ej = 0 ,

(4.2.1)
where αm,j,E ∈ R and |αm,j,E | ≤ K.

Theorem 4.2.2. Let d = 1. If there are constants a < b and µ0 ∈ Sk−1 such
that Mµ0(a)Mµ0(b) ⊂ (−∞, 0), where Mµ is defined by (3.1.24). Then there is
a constant K > 0 and a wedge-shaped region in R

k for µ of the form

R =
{
± s2µ̃ : s > 0, respectively µ̃, is from an open small connected

neighborhood U1, respectively U2 ⊂ Sk−1, of 0 ∈ R, respectively of µ0

}



136 Chapter 4. Bifurcation of Chaotic Solutions

such that for any µ ∈ R of the form µ = ±s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, for any
sequence E = {ej}j∈Z ∈ E and for any m ∈ N, m ≥ [1/s], the differential
inclusion (3.1.3) possesses a solution xm,E satisfying

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,E(t)− γ(t− 2mj − αm,j,E)
∣∣ ≤ Ks2 when ej = 1 ,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,E(t)
∣∣ ≤ Ks2 when ej = 0 ,

(4.2.2)
where αm,j,E ∈ (a, b).

Note that now tj = (2j − 1)m in the notations of Theorem 4.1.4, since now
Mµ is 2-periodic in α. This comes directly following the proof of Theorem 4.1.8
(see [76] for more details).

Hence for any µ ∈ R, m ∈ N sufficiently large and E ∈ E , (3.1.3) possesses
a solution zm,E satisfying either (4.2.1) or (4.2.2). These estimates (4.2.1–4.2.2)
give the injectivity of the mapping E → zm,E for s > 0 small. Let σ : E → E
be the Bernoulli shift defined in Section 2.5.2. Now the estimates (4.2.1–4.2.2)
imply that xm,σ(E)(t) is orbitally close to xm,E(t+2m). Summarizing we obtain
the following result.

Theorem 4.2.3. Under the assumptions either of Theorem 4.2.1 or of Theorem
4.2.2, for any µ ∈ R and m ∈ N sufficiently large, (3.1.3) possesses a family of
solutions

{
zm,E

}
E∈E such that

(i) E → xm,E is injective

(ii) xm,σ(E)(t) is orbitally close to xm,E(t + 2m)

This result extends the deterministic chaos mentioned in Sections 2.5.2 and
2.5.3 to discontinuous o.d.eqns as follows. For simplicity, we consider (3.1.34)
which we recall here for the reader convenience

ẍ + g(x) + µ1 sgn ẋ = µ2ψ(t) , (4.2.3)

where g satisfies conditions of (3.1.35), ψ ∈ C1(R, R) is 2-periodic and µ1, µ2

are small parameters. When µ1 = 0, then (4.2.3) is a regular system of the form

ẍ + g(x) = µ2ψ(t) . (4.2.4)

According to computations of Subsection 3.1.6, the corresponding Melnikov
function for the problem (4.2.3) is as follows

Mµ(α) = µ2

∫ ∞

−∞
ω̇(s)ψ(s + α) ds− 2ω(t0)µ1 ,

where µ := (µ1, µ2). The Melnikov function for (4.2.4) is just

M̃(α) =
∫ ∞

−∞
ω̇(s)ψ(s + α) ds .
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Under the existence of a simple zero α0 of M̃ , i.e. M̃(α0) = 0 and M̃ ′(α0) �= 0,
the assumption M̃(a)M̃(b) < 0 of Theorem 4.2.3 is satisfied for a = α0 − ζ and
b = α0 + ζ with ζ > 0 small. But since the existence of a simple zero of M̃ is
stronger than the above assumption of Theorem 4.2.3, when µ2 �= 0 is small,
the property (ii) of this theorem for (4.2.4) has the form (cf. [157,195])

xm,σ(E)(t) = xm,E(t + 2m) . (4.2.5)

Put

Λ := {(xm,E(0), ẋm,E(0)) | E ∈ E} ⊂ R
2 .

Let Fµ2 be the time map of the flow of the first order system of (4.2.4), i.e.
Fµ2(x0, y0) := (x(2), y(2)), where x(t) and y(t) solve the Cauchy problem

ẋ(t) = y(t), ẏ(t) = µ2ψ(t)− g(x(t)), x(0) = x0, y(0) = y0 .

Then from (4.2.5) we immediately derive

Fm
µ2

((xm,E(0), ẋm,E(0))) = (xm,σ(E)(0), ẋm,σ(E)(0)) .

Hence

Fm
µ2

: Λ → Λ

and

Fm
µ2
◦ J = J ◦ σ , (4.2.6)

where J : E → Λ is defined as follows

J (E) = (xm,E(0), ẋm,E(0)) .

Then (4.2.6) means that Fm
µ2

has the same dynamics on Λ as the Bernoulli shift
J on E . So by Theorem 2.5.3, the time map Fm

µ2
is chaotic on Λ. Moreover, it is

possible to show a sensitive dependence on initial conditions of Fm
µ2

on Λ in the
sense that there is an ε0 > 0 such that for any (x, y) ∈ Λ and any neighborhood
U of (x, y), there exists (u, z) ∈ U ∩ Λ and an integer q ≥ 1 such that

|Fmq
µ2

(x, y)− Fmq
µ2

(u, z)| > ε0 .

Of course, these results are known [157, 195], and they are mentioned also in
Section 2.5.3. Hence (4.2.4) is chaotic and sensitive depends on initial conditions
as well. The set Λ is Smale’s horseshoe of Fm

µ2
and Fm

µ2
has horseshoe dynamics

on Λ.
Summarizing, when µ1 �= 0 is small then Theorem 4.2.3 extends the deter-

ministic chaos of (4.2.4) to (4.2.3), when in place of (4.2.5) we get property (ii)
of Theorem 4.2.3.
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4.2.2 Singular Differential Inclusions

In Subsection 4.2.1, Theorems 4.2.1–4.2.2 are obtained by extending Theorems
3.1.6–3.1.9 of Subsection 3.1.3. Now Theorems 3.1.12–3.1.13 have the following
extensions (see [76]).

Theorem 4.2.4. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

and ∗ ∈ {−,+} such that 0 /∈M∗(∂B) and deg(M∗,B, 0) �= 0, where M∗ is given
by (3.1.28). Then there is a constant K > 0 such that for any sufficiently small
ε �= 0, sgn ε = ∗1 and any E = {ej}j∈Z ∈ E, the differential inclusion (3.1.25)
possesses a solution xm,ε,E for any m ∈ N satisfying

sup
(2j−1)m≤t≤(2j+1)m

∣∣∣xm,ε,E(t)−γ
( t− 2mj − αm,j,ε,E

ε

)∣∣∣ ≤ K
√
|ε| when ej=1,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)
∣∣ ≤ K|ε| when ej=0 ,

where αm,j,ε,E ∈ R and |αm,j,ε,E | ≤ K.

Theorem 4.2.5. Let d = 1. If there are constants a < b such that M(a)M(b) ⊂
(−∞, 0), where M is given by (3.1.29). Then there is a constant K > 0 such
that for any sufficiently small ε �= 0 and any E = {ej}j∈Z ∈ E, the differential
inclusion (3.1.25) possesses a solution xm,ε,E for any m ∈ N satisfying

sup
(2j−1)m≤t≤(2j+1)m

∣∣∣xm,ε,E(t)− γ
( t− 2mj − αm,j,ε,E

ε

)∣∣∣ ≤ K|ε| when ej=1 ,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)
∣∣ ≤ K|ε| when ej=0 ,

where αm,j,ε,E ∈ (a, b).

Finally, we consider the singularly perturbed differential inclusion (3.2.4) of
Section 3.2. By combining the arguments of Sections 3.2 and 4.1, we obtain the
following extensions of Theorems 3.2.6–3.2.11.

Theorem 4.2.6. Let d > 1. If there is a non–empty open bounded set B ⊂ R
d

such that 0 /∈ M(∂B) and deg(M,B, 0) �= 0, where M is given by (3.2.20).
Then there are constants K > 0 and ε0 > 0 such that for any 0 < ε < ε0

and any E = {ej}j∈Z ∈ E, the differential inclusion (3.2.4) possesses a solution
(xm,ε,E , ym,ε,E) for any m ∈ N, m ≥ [1/

√
ε ] satisfying

sup
t∈R

|ym,ε,E(t)| ≤ Kε

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)− γ(t− 2mj − αm,j,ε,E)
∣∣ ≤ K

√
ε for ej = 1 ,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)
∣∣ ≤ Kε for ej = 0 ,

where αm,j,ε,E ∈ R and |αm,j,ε,E | ≤ K.
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Theorem 4.2.7. Let d = 1. If there are constants a < b such that M(a)M(b) ⊂
(−∞, 0), where M is given by (3.2.25). Then there are constants K > 0 and
ε0 > 0 such that for any 0 < ε < ε0 and any E = {ej}j∈Z ∈ E, the differential in-
clusion (3.2.4) possesses a solution (xm,ε,E , ym,ε,E) for any m ∈ N, m ≥ [1/

√
ε ]

satisfying

sup
t∈R

|ym,ε,E(t)| ≤ Kε

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)− γ(t− 2mj − αm,j,ε,E)
∣∣ ≤ Kε for ej = 1 ,

sup
(2j−1)m≤t≤(2j+1)m

∣∣xm,ε,E(t)
∣∣ ≤ Kε when ej = 0 ,

where αm,j,ε,E ∈ (a, b).

4.3 More About Homoclinic Bifurcations

In Sections 4.1 and 4.2, we study bifurcation of chaotic solutions accumulating
on bounded solutions for ordinary differential equations with small multival-
ued perturbations. We assume that the o.d.eqns have homoclinic solutions to
hyperbolic equilibria. More recently, we have considered bifurcation from non-
smooth homoclinics, i.e. we considered parameterized discontinuous o.d.eqns
with homoclinics crossing discontinuity levels. There are the following two main
possibilities.

4.3.1 Transversal Homoclinic Crossing Discontinuity

In [22] we investigate the following problem: Let G(x) be a Cr−function on
Ω ⊂ R

n, r ≥ 2 and let Ω± = {x ∈ Ω | G(x)>
<0}, Ω0 := {x ∈ Ω | G(x) = 0}. Let

f±(x) ∈ Cr(Ω̄±) and consider the equation

ẋ = f±(x) + εg(t, x, ε), x ∈ Ω̄±, (4.3.1)

where g ∈ Cr
b (R×Ω×R) and ε ∈ R is a small parameter. Assume (see Fig. 4.1)

• For ε = 0 (4.3.1) has the hyperbolic equilibrium x = 0 ∈ Ω− and a con-
tinuous (not necessarily C1) homoclinic orbit γ(t) to x = 0 that consists
of three solutions

γ(t) =

⎧⎪⎨⎪⎩
γ−(t) if t ≤ −T
γ0(t) if −T ≤ t ≤ T
γ+(t) if t ≥ T

where γ±(t) ∈ Ω− for |t| > T , γ0(t) ∈ Ω+ for |t| < T and

γ−(−T ) = γ0(−T ) ∈ Ω0, γ+(T ) = γ0(T ) ∈ Ω0.

Moreover we also assume that

G′(γ(−T ))f±(γ(−T )) > 0, and G′(γ(T ))f±(γ(T )) < 0.
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� ���
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γ+(t)

γ0(t)
γ−(t)

Ω+

Ω0

Ω−

γ(T )

γ(−T )

ẋ = f−(x)

ẋ = f+(x)

Figure 4.1: A transversal homoclinic cycle

We have derived a Melnikov bifurcation function to find a solution x(t, ε) of
(4.3.1) such that

sup
t∈R

|x(t, ε)− γ(t− α(ε))| → 0, as ε → 0

for some α(ε) ∈ R. Note γ(t) crosses transversally the discontinuity level Ω0 in
(4.3.1).

4.3.2 Homoclinic Sliding on Discontinuity

On the other hand, in [8], we study a case when a part of homoclinic orbit is
sliding on a discontinuity level: Consider the planar discontinuous system

ż = f+(z) + εg(z, t, ε) for y > 1 ,

ż = f−(z) + εg(z, t, ε) for y < 1 ,
(4.3.2)

where z = (x, y) ∈ R
2, f±, g are C3-smooth and g is 1-periodic in t. While on

y = 1 (cf. [134]), we consider the equation

ẋ =
q+2(x, 1, t, ε)

q+2(x, 1, t, ε)− q−2(x, 1, t, ε)
q+1(x, 1, t, ε)

+
q−2(x, 1, t, ε)

q−2(x, 1, t, ε)− q+2(x, 1, t, ε)
q−1(x, 1, t, ε) ,

(4.3.3)

where q± = (q±1, q±2) and q±(z, t, ε) = f±(z) + εg(z, t, ε). We suppose the
following conditions

(i) f−(0) = 0 and Df−(0) has no eigenvalues on the imaginary axis.
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Figure 4.2: A planar sliding homoclinic cycle
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y = 1

y = 1/2���

Figure 4.3: A planar homoclinic sliding crossing a line

(ii) There are two solutions γ−(s), γ+(s) of ż = f−(z), y ≤ 1 defined on
R− = (−∞, 0], R+ = [0,+∞), respectively, such that lim

s→±∞ γ±(s) = 0

and γ±(s) = (x±(s), y±(s)) with y±(0) = 1, x−(0) < x+(0). More-
over, f±(z) = (f±1(z), f±2(z)) with f±1(x, 1) > 0, f+2(x, 1) < 0 for
x−(0) ≤ x ≤ x+(0). Furthermore, f−2(x, 1) > 0 for x−(0) ≤ x < x+(0),
f−2(x+(0), 1) = 0 and ∂xf−2(x+(0), 1) < 0.

Assumptions (i) and (ii) mean (see Fig. 4.2) that (4.3.2) for ε = 0 has a sliding
homoclinic solution γ, created by γ±, to a hyperbolic equilibrium 0. Conditions
for the bifurcation of γ to bounded solutions on R of (4.3.2) under the per-
turbation εg(z, t, ε) are derived in [8]. Functional-analytical methods are used
in [8, 22] based on the implicit function theorem.

Finally, we have also studied cases when homoclinic orbit γ(s) transversally
crosses another curves of discontinuity (see Fig. 4.3). For simplicity, we supposed
that such a discontinuity in (4.3.2) occurs at the level y = 1/2, i.e. we considered
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the system
ż = f+(z) + εg(t) for y > 1 ,
ż = f−(z) + εg(t) for 1/2 < y < 1 ,
ż = F (z) + εg(t) for y < 1/2 ,

(4.3.4)

where z = (x, y) ∈ R
2, f±, F , g are C3-smooth and g is 1-periodic in t.



Chapter 5

Topological Transversality

5.1 Topological Transversality and Chaos

5.1.1 Topologically Transversal Invariant Sets

We study bifurcation of chaotic solutions of discontinuous o.d.eqns in Chapter 4
using topological degree methods. Those results are extensions of a similar clas-
sical result, the Smale-Birkhoff homoclinic theorem for smooth o.d.eqns, based
on the existence of Smale’s horseshoe which is a consequence of a transversal
intersection of stable and unstable manifolds of a hyperbolic fixed point of a
diffeomorphism. When the smoothness of an o.d.eqn is dropped, then this clas-
sical approach fails. For this reason we use topological degree arguments. This
is the aim of Chapter 4. Similar mathematical difficulties occur when a diffeo-
morphism possesses a hyperbolic fixed point, but the corresponding stable and
unstable manifolds do not have a transversal intersection. So a natural question
arises that which kind of intersection should have stable and unstable manifolds
in order to have a chaotic behavior of a diffeomorphism near that intersection.
The aim of this section is to give an answer on this question by extending the
Smale-Birkhoff homoclinic theorem in this direction. We show that a topologi-
cally transversal intersection of stable and unstable manifolds guaranties chaotic
behavior of the diffeomorphism.

In order to state our main results, we need the following notations and
definitions. Let M be a C1-smooth manifold without boundary. Consider a C1-
smooth diffeomorphism f : M→M possessing a hyperbolic fixed point p and
let W s

p , Wu
p be the global stable and unstable manifolds of p, respectively. Let

W̃ s
p , W̃u

p be open subsets of W s
p , Wu

p , respectively, which are submanifolds of
M, that is the immersed and induced topologies on W̃ s

p and W̃u
p , respectively,

coincide. We assume that W̃ s
p ∩ W̃u

p \ {p} �= ∅, i.e. there is a point q homoclinic
to p. We also suppose the existence of a compact component K � q of the set
W̃ s

p ∩ W̃u
p , that is a compact subset K ⊂ W̃ s

p ∩ W̃u
p \ {p} such that q ∈ K

and there exists an open connected precompact subset U ⊂ Ū ⊂ M \ {p}
M. Fečkan, Topological Degree Approach to Bifurcation Problems, 143–181. 143
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Figure 5.1: A transversal homoclinic set K = W̃ s
p ∩ W̃u

p ∩ U

satisfying U ∩ W̃ s
p ∩ W̃u

p = K (see Fig. 5.1). Since K is compact there is an
m0 such that fm0(K) is in a local chart Up of p. By shrinking U , we can

assume in addition that W̃
s(u)
p ∩ Ū = W̃

s(u)
p ∩ U and as well as fm0(Ū) ⊂

Up, and consequently, U is orientable. Moreover, since U is precompact and
open, W̃

s(u)
p ∩ U are also submanifolds of M and there is an N0 > 0 such that

W̃
s(u)
p ∩ U ⊂ f∓N0(W s(u)

p,loc) \ {p}. Hence W̃
s(u)
p ∩U are also orientable. Then we

can define the local intersection number #
(
W̃ s

p ∩ U, W̃u
p ∩ U

)
of the manifolds

W̃ s
p ∩ U and W̃u

p ∩ U in M. The main purpose of this section is to prove the
following result [18].

Theorem 5.1.1. If #
(
W̃ s

p ∩U, W̃u
p ∩U

) �= 0 then there exists ω0 ∈ N such that
for any N � ω ≥ ω0 there is a set Λω ⊂ M and a mapping πω : Λω → E such
that

(i) f2ω(Λω) = Λω

(ii) πω is continuous, one to one and onto

(iii) πω ◦ f2ω = σ ◦ πω, where σ : E → E is the Bernoulli shift map

Remark 5.1.2. Note that we do not know whether π−1
ω is continuous. Thus we

cannot say, in general, that Λω is homeomorphic to E . However, if q is a transver-
sal homoclinic point, πω is a homeomorphism, since in the considerations that
follow we can use the implicit function theorem instead of the Brouwer degree
theory, getting the standard Smale horseshoe of the Smale-Birkhoff homoclinic
theorem.

Remark 5.1.3. The diffeomorphism f of Theorem 5.1.1 has positive topological
entropy. This follows from [49, Lemma 1.3].



5.1. Topological Transversality and Chaos 145

Remark 5.1.4. Consider a C1-smooth diffeomorphism f : M →M possessing
two hyperbolic fixed points p1 and p2, p1 �= p2. If W s

p1
and Wu

p2
, and W s

p2
and

Wu
p1

, are topologically transversal, respectively, then we can prove a similar
result for f like in Theorem 5.1.1.

Now we present a situation where topologically transversal intersections of
stable and unstable manifolds naturally occur. Let M be a smooth symplectic
surface with the symplectic area form ω. Let f : M → M be a smooth area-
preserving diffeomorphism homotopic to identity and exactly symplectic, i.e.
f∗(α) = α + dS for some smooth function S : M → R and α is a differential
1-form such that dα = ω. Time-one-maps of 1-periodic Hamiltonian systems
are such diffeomorphisms (see (5.1.2)). We note that any exactly symplectic
map is also symplectic. If M is exactly symplectic, i.e. ω = dα, and simply
connected then any symplectic map is also exactly symplectic. Following a proof
of [196, Theorem 2.1], we have the next result.

Proposition 5.1.5. Assume that f has two hyperbolic fixed points p1, p2, p1 �=
p2. Let us suppose that W s

p1
∩ Wu

p2
�= ∅ and W s

p2
∩ Wu

p1
�= ∅. If W s

p1
�= Wu

p2

and W s
p2
�= Wu

p1
, and S(p1) = S(p2), then W s

p1
and Wu

p2
, and W s

p2
and Wu

p1
,

are topologically transversal, respectively. Hence Remark 5.1.4 gives a chaotic
behavior of f .

Example 5.1.6. Proposition 5.1.5 can be applied to the results of [41, Section 5,
p. 703]. More precisely, let us consider the equation

ü + W (u, t) = 0 , (5.1.1)

where W : R×R → R is C1-smooth and 1-periodic in t. Suppose that (5.1.1) has
two different hyperbolic periodic solutions u1 and u2. Let φ : R

2 × R → R
2 be

the flow of u̇ = v, v̇ = −W (u, t). Then f(x, y) = φ(x, y, 1) is exactly symplectic
by taking

ω = dx ∧ dy, α = −y dx, S(x, y) = −
∫ 1

0

L(φ(x, y, s)) ds ,

where L is the Lagrangian of (5.1.1) given by L(φ) = φ2
2
2 −G(φ1, t), φ = (φ1, φ2),

∂G/∂u = W . Clearly the periodic solutions u1, u2 induce hyperbolic fixed points
(u1(0), u̇1(0)) = w1 and (u2(0), u̇2(0)) = w2 of f . Then S(w1) = S(w2) is a part
of the condition (1) of [41, Definition 2.1]. Hence w1 and w2 are on the same
action level for f in the terminology of [196, Theorem 8.1]. S is naturally related
to the action functional over H1

1 = {u ∈ H1
loc(R) : u(t + 1) = u(t) a.e. in R}

defined as u �→ ∫ 1

0

(
u̇(s)2

2 −G(u(s), s)
)

ds on [41, p. 679]. Hence the assumptions
of Subsection 5 of [41] imply the validity of Theorem 5.1.1, which is stronger
than the results of Subsection 5 of [41]. On the other hand, the main results
of [41] deal with equations like (5.1.1) under assumptions on u1 and u2 weaker
than in this subsection, namely u1 and u2 are not hyperbolic but they are the
so-called consecutive minimizers, see [41, Definition 2.1]. By using variational
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methods, chaotic bumping solutions are shown to exist in [41]. Finally we note
that for a C1-smooth 1-periodic Hamiltonian system

ẋ = −∂H

∂y
(x, y, t), ẏ =

∂H

∂x
(x, y, t) , (5.1.2)

the time-one map is exactly symplectic with

ω = dx∧dy, α = x dy, S(x, y) =
∫ 1

0

(
ψ1(x, y, t)ψ̇2(x, y, t)−H(ψ(x, y, t))

)
dt ,

where ψ = (ψ1, ψ2) is the flow of (5.1.2). The action functional for (5.1.2) over
H1

1 is given by

(x, y) �→
∫ 1

0

x(t)ẏ(t)−H(x(t), y(t), t) dt =
∫ 1

0

1
2
〈Ju̇(t), u(t)〉 −H(u(t), t) dt ,

where J =
(

0 1
−1 0

)
, u = (x, y) and 〈·, ·〉 is the usual inner product on R

2.

Results similar to Theorem 5.1.1 have been proved by others authors. For
example, a semiconjugacy to the Bernoulli shift σ on E of some power of a
given map is proved in [154] provided an isolating neighborhood of the map
satisfies some conditions on the Conley indices of its subsets. On the other
hand, Lefschetz Fixed Point Theorem and Topological Principle of Wazewski is
applied in [180] to prove the existence of a compact invariant set for the Poincaré
map of a time-periodic vector field on which the same map is semiconjugated to
the Bernoulli shift σ on E and the counterimage (by the semiconjugacy) of any
periodic point of σ contains a periodic point of the Poincaré map. The notion
of periodic isolating segments is an essential tool for the proofs in [180]. Finally,
the same situation as in this section is studied in [49]. By using geometric and
homological methods, it is proved in [49] that, under the conditions of Theorem
5.1.1, there is an invariant set of some power of f on which the same power
of f is semiconjugated to the Bernoulli shift σ on E . In all these papers by
semiconjugacy it is meant that the associated map between the invariant set and
the symbolic set (in this section it is the map πω) is shown to be continuous and
onto. Hence the semiconjugacy does not directly imply the existence of infinitely
many periodic orbits of a given map (apart from the result in [180]), but it
implies positive topological entropy of the map. Our approach instead, which
is based on an idea in [16], namely on the notion of exponential dichotomies of
difference equations, allow us to prove that πω is one to one, a result that was
not stated in [49,154,180]. Consequently, f has infinitely many periodic orbits as
well as quasiperiodic ones. Moreover we are able to identify the periodic points
of the map as solutions of a particular equation.

5.1.2 Difference Boundary Value Problems

To avoid the use of either the tangent vector bundle of M or local charts of M,
we assume for simplicity in this subsection thatM = R

N . This restriction is only
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technical. Next, for any ξ ∈ W̃ s
p ∩ Ū and η ∈ W̃u

p ∩ Ū we set ξn = fn(ξ), n ∈ Z+,
ηn = fn(η), n ∈ Z−. Now we fix ω ∈ N large and put

Jω =
{− ω,−ω + 1, . . . , ω − 1, ω

}
, J̃ω =

{− ω,−ω + 1, . . . , ω − 1
}

,

J−
ω =

{− ω,−ω + 1, · · · ,−1, 0
}
, I−ω =

{− ω,−ω + 1, . . . ,−1
}

,

J+
ω =

{
0, 1, . . . , ω − 1, ω

}
, I+

ω =
{
0, 1, . . . , ω − 2, ω − 1

}
.

In this subsection we study the nonlinear system

xn+1 = f(xn) (5.1.3)

near {ξn}n∈J+
ω

and {ηn}n∈J−
ω

. As usually in the bifurcation theory, at first we
consider linearizations of (5.1.3) along {ξn}n∈Z+ and {ηn}n∈Z− given by

vn+1 = Df(ξn)vn, n ∈ Z+, (5.1.4)

wn+1 = Df(ηn)wn, n ∈ Z−, n �= 0 (5.1.5)

respectively. Since ξn → p, ηn → p as n → ±∞ and p is a hyperbolic fixed point
of f , we have the following result.

Lemma 5.1.7. Systems (5.1.4) and (5.1.5) have exponential dichotomies on
Z+ and Z−, respectively, i.e. there are positive constants L ≥ 1, δ ∈ (0, 1)
and orthogonal projections Pξ : R

N → TξW̃
s
p , Qη : R

N → TηW̃u
p such that

the fundamental solutions Vξ(n) and Wη(n) of (5.1.4) and (5.1.5) respectively,
satisfy the following conditions:

||Vξ(n)PξVξ(m)−1|| ≤ Lδn−m, m ≤ n, m, n ∈ Z+ ,

||Vξ(n)(I− Pξ)Vξ(m)−1|| ≤ Lδm−n, n ≤ m, m, n ∈ Z+ ,
(5.1.6)

||Wη(n)(I−Qη)Wη(m)−1|| ≤ Lδn−m, m ≤ n, m, n ∈ Z− ,

||Wη(n)QηWη(m)−1|| ≤ Lδm−n, n ≤ m, m, n ∈ Z− ,
(5.1.7)

respectively, along with

Vξ(n)PξVξ(n)−1 → Pp, Wη(−n)QηWη(−n)−1 → I− Pp (5.1.8)

as n →∞ uniformly for ξ, η, where Pp is the exponential dichotomy projection
of ż = Df(p)z. Moreover, L and δ can be chosen to be independent of ξ ∈ W̃ s

p∩Ū

and η ∈ W̃u
p ∩ Ū . If M and f are Cr-smooth then Pξ and Qη are Cr−1-smooth

in ξ, η respectively.

Proof. Let ξ ∈ W̃ s
p ∩ Ū , then fn(ξ) → p as n → +∞. From the roughness

of exponential dichotomies in Lemma 2.5.1, it follows that there exists rξ > 0
such that when |ξ̃ − ξ| < rξ, ξ̃ ∈ W̃ s

p ∩ Ū , vn+1 = f ′(ξ̃n)vn has an exponential
dichotomy on Z+ with constants Lξ and δξ. Covering W̃u

p ∩ Ū with a finite
number of balls centered at ξ and of radius rξ the result follows as far as the
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dichotomy on Z+ is concerned. A similar argument applies for the dichotomy on
Z−. Note that any projection having the same range as Pξ, (resp. Qη) satisfies
condition (5.1.6) (resp. (5.1.7)). Thus, it is the additional requirement that Pξ

and Qη are orthogonal that makes them unique. This uniqueness also implies
that Pξ and Qη are continuous in ξ, η respectively. In fact let us prove this for
Pξ. Since W̃ s

p is C1, we get that TξW̃
s
p depends continuously on ξ and the same

holds for its orthogonal complement (TξW̃
s
p )⊥ in R

n. So, if {v1(ξ), . . . , vd(ξ)}
is a (local) orthonormal basis of TξW̃

s
p that depends continuously on ξ in a

neighborhood of some ξ0 ∈ W̃ s
p , we have Pξv =

∑d
j=1〈v, vj(ξ)〉vj(ξ) and then

Pξ is continuous in ξ. Note that the uniqueness of Pξ implies that Pξv does not
depend on the choice of the basis {v1(ξ), . . . , vd(ξ)}. A similar argument holds
for Qη. Moreover, note that, when M and are Cr-smooth then Pξ and Qη are
of class Cr−1.

Next we study nonhomogenous equations of (5.1.4) and (5.1.5).

Lemma 5.1.8. There exist ω0 ∈ N and a constant c > 0 such that given any
ω ∈ N, ω ≥ ω0, (ξ, η) ∈ (W̃ s

p ∩ Ū) × (W̃u
p ∩ Ū), and b, hn ∈ R

N , n ∈ J̃ω,
φ ∈ RPξ, ψ ∈ RQη, there exist unique solutions {vn}n∈J+

ω
and {wn}n∈J−

ω
of

the linear systems

vn+1 = Df(ξn)vn + hn, n ∈ I+
ω ,

wn+1 = Df(ηn)wn + hn, n ∈ I−ω ,
(5.1.9)

respectively, together with the boundary value conditions

Pξv0 = φ, Qηw0 = ψ, vω − w−ω = b . (5.1.10)

Moreover such solutions are linear in (b, h, φ, ψ), h = {hn}n∈J̃ω
and satisfy

max
n∈J+

ω

|vn|, max
n∈J−

ω

|wn| ≤ c
(

max
n∈J±

ω

|hn|+ |b|+ |φ|+ |ψ|
)
. (5.1.11)

Proof. Uniqueness: When h = 0, φ = 0, ψ = 0 and b = 0 then from (5.1.9)
and (5.1.10) we get vn = Vξ(n)v0, wn = Wξ(n)w0, Pξv0 = 0, Qηw0 = 0 and
Vξ(ω)v0 = Wξ(−ω)w0. Then[

Vξ(ω)(I− Pξ)Vξ(ω)−1
]
Vξ(ω)v0 =

[
Wη(−ω)(I−Qη)Wη(−ω)−1

]
Wη(−ω)w0

By (5.1.8) we have

R [Vξ(ω)(I− Pξ)Vξ(ω)−1
] ∩R [Wη(−ω)(I−Qη)Wη(−ω)−1

]
= {0}

for ω large. Hence Vξ(ω)v0 = Wη(−ω)w0 = 0, which give vn = wn = 0.
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Existence: For b, hn ∈ R
N , n ∈ J̃ω, φ ∈ RPξ, ψ ∈ RQη, φ1 ∈ NPp, ψ1 ∈ RPp

we put

vn = Vξ(n)φ +
n−1∑
k=0

Vξ(n)PξVξ(k + 1)−1hk

−
ω−1∑
k=n

Vξ(n)(I− Pξ)Vξ(k + 1)−1hk + Vξ(n)(I− Pξ)Vξ(ω)−1φ1 for n ∈ J+
ω

(5.1.12)
and

wn = Wη(n)φ +
n−1∑

k=−ω

Wη(n)(I−Qη)Wη(k + 1)−1hk

−
−1∑

k=n

Wη(n)QηWη(k + 1)−1hk + Wη(n)(I−Qη)Wη(−ω)−1ψ1 for n ∈ J−
ω

(5.1.13)
Clearly such vn, wn satisfy (5.1.9) and Pξv0 = φ, Qηw0 = ψ. To show vω−w−ω =
b, we solve

Wη(−ω)(I−Qη)Wη(−ω)−1ψ1 − Vξ(ω)(I− Pξ)Vξ(ω)−1φ1 = Vξ(ω)φ− b

−Wη(−ω)φ +
ω−1∑
k=0

Vξ(ω)PξVξ(k + 1)−1hk +
−1∑

k=−ω

Wξ(−ω)QηWη(k + 1)−1hk

(5.1.14)
By (5.1.8) we can uniquely solve φ1, ψ1 from (5.1.14) for ω large. This gives
the desired solution of this Lemma. Estimates of (5.1.11) follow directly from
(5.1.6), (5.1.7), (5.1.12), (5.1.13) and (5.1.14). The proof is finished.

Similarly we have the next result.

Lemma 5.1.9. For any (ξ, η) ∈ (W̃ s
p ∩ Ū) × (W̃u

p ∩ Ū), φ ∈ RPξ, ψ ∈ RQη,
and for any bounded sequence {hn}n∈Z, there exist unique solutions {vn}n≥0

and {wn}n≤0 of the linear systems

vn+1 = Df(ξn)vn + hn, n ≥ 0 ,

wn+1 = Df(ηn)wn + hn, n ≤ −1 ,

respectively, together with the boundary value conditions

Pξv0 = φ, Qηw0 = ψ.

Moreover such solutions are linear in (h±, φ, ψ), h+ = {hn}n≥0, h− = {hn}n≤0,
and there exists a constant c > 0, independent of (h±, φ, ψ), such that:

sup
n≥0

|vn| ≤ c
(
sup
n≥0

|hn|+ |φ|
)
, sup

n≤0
|wn| ≤ c

(
sup
n≤0

|hn|+ |ψ|
)
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Proof. The solutions are given by formulas

vn = Vξ(n)φ +
n−1∑
k=0

Vξ(n)PξVξ(k + 1)−1hk −
∞∑

k=n

Vξ(n)(I− Pξ)Vξ(k + 1)−1hk

for n ≥ 0 and

wn = Wη(n)φ+
n−1∑

k=−∞
Wη(n)(I−Qη)Wη(k+1)−1hk−

−1∑
k=n

Wξ(n)QηWη(k+1)−1hk

for n ≤ 0. The proof is finished.

Now we are ready to study (5.1.3) near {ξn}n∈J+
ω

and {ηn}n∈J−
ω

.

Theorem 5.1.10. There exist ω0 ∈ N and a constant c > 0 such that, for
any ω ∈ N, ω ≥ ω0, and (ξ, η) ∈ (W̃ s

p ∩ Ū) × (W̃u
p ∩ Ū), there exist unique

{x+
n (ω, ξ, η)}n∈J+

ω
and {x−

n (ω, ξ, η)}n∈J−
ω

which satisfy (5.1.3) separately on I+
ω

and I−ω such that

Pξx
+
0 (ω, ξ, η) = Pξξ, Qηx−

0 (ω, ξ, η) = Qηη, x+
ω (ω, ξ, η) = x−

−ω(ω, ξ, η) ,

together with

max
n∈J+

ω

|x+
n (ω, ξ, η)− ξn| ≤ cδω, max

n∈J−
ω

|x−
n (ω, ξ, η)− ηn| ≤ cδω .

Moreover, x±
n (ω, ξ, η) are Cr−1-smooth with respect to ξ and η when M is a

Cr-manifold and f is a Cr-diffeomorphism.

Proof. We apply the implicit function theorem to (5.1.3) near {ξn}n∈J+
ω

and
{ηn}n∈J−

ω
, respectively. By putting x+

n = ξn + vn, n ∈ J+
ω and x−

n = ηn + wn,
n ∈ J−

ω , we get the system

vn+1 = f(ξn + vn)− f(ξn), n ∈ I+
ω

wn+1 = f(ηn + wn)− f(ηn), n ∈ I−ω .
(5.1.15)

Since we are looking for solutions of (5.1.3) such that x+
ω = x−

−ω, Pξx
+
0 = Pξξ

and Qηx−
0 = Qηη we add the boundary value conditions:

vω − w−ω = η−ω − ξω = O(δω), Pξv0 = 0, Qηw0 = 0 . (5.1.16)

Let v = (v0, . . . , vω) ∈ R
N(ω+1), w = (w−ω, . . . , w0) ∈ R

N(ω+1). To solve
(5.1.15–5.1.16), we take the mapping Γω : (W̃ s

p ∩ Ū)× W̃u
p ∩ Ū)× R

2N(ω+1) →
R

2N(ω+1) defined by

Γω(ξ, η, v, w) =

⎛⎜⎜⎜⎜⎝
(vn+1 − f(ξn + vn) + f(ξn))n∈I+

ω

(wn+1 − f(ηn + wn) + f(ηn))n∈I−
ω

vω − w−ω − (η−ω − ξω)
Pξv0

Qηw0

⎞⎟⎟⎟⎟⎠ ,
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where
(

Pξv0

Qηw0

)
∈ R

N = RPξ ×RQη. Since Pξ and Qη are Cr−1-smooth, for

any fixed ω ≥ ω0, Γω is Cr−1-smooth in (ξ, η, v, w) as well. We take on R
2N(ω+1)

the maximum norm maxi{|vi|, |wi|}. We have Γω(ξ, η, 0, 0) = O(δω) uniformly
with respect to (ξ, η) and the linearized map D(v,w)Γω(ξ, η, 0, 0) has the form

D(v,w)Γω(ξ, η, 0, 0)
(

v
w

)
=

⎛⎜⎜⎜⎜⎝
(vn+1 −Df(ξn)vn)n∈I+

ω

(wn+1 −Df(ηn)wn)n∈I−
ω

vω − w−ω

Pξv0

Qηw0.

⎞⎟⎟⎟⎟⎠ .

Lemma 5.1.8 implies that the map D(v,w)Γω(ξ, η, 0, 0) is invertible and that its
inverse is bounded uniformly with respect to (ξ, η). Hence from the implicit
function theorem we get that c > 0 and ω0 � 1 exist such that for ω ≥ ω0, the
equation Γω(ξ, η, v, w) = 0 can be solved uniquely for (v, w) in a neighborhood
of (0, 0) in terms of (ξ, η, ω). Moreover maxi{|vi|, |wi|} < cδω, and the solution
is Cr−1-smooth in (ξ, η), for any fixed ω ≥ ω0. The proof is finished.

5.1.3 Chaotic Orbits

In this section we prove Theorem 5.1.1.

Proof. We need the following technical arguments. Let V ⊂ M be an open
subset such that K ⊂ V ⊂ V̄ ⊂ U and ω0 be as in Theorem 5.1.10. We also
assume that ω0 is large enough that cδω0 is less than the distance of V from ∂U
and for any ξ ∈ W̃ s

p ∩ V̄ , η ∈ W̃u
p ∩ V̄ and n ≥ ω0 we have |ξn−p|, |ηn−p| ≤ Cδn

where C can be chosen independent of ξ, η because of the compactness of W̃ s
p ∩V̄

and W̃u
p ∩ V̄ . Of course, here we assume that ξn, ηn, p are in the local chart Up

of p, for any n ≥ ω0 so that we can consider their differences. Note that the
solutions {x±

n (ω, ξ, η)}n∈J±
ω

are defined for (ξ, η) ∈ W̃ s
p ∩ V̄ × W̃u

p ∩ V̄ , and

#
(
W̃ s

p ∩V, W̃u
p ∩V

)
= #

(
W̃ s

p ∩U, W̃u
p ∩U

)
because K ⊂ V implies K∩∂V = ∅.

We split the proof into the following steps.

1. Step. We show that f has enough periodic orbits oscillating between p
and K:

We recall that fm0(Ū) ⊂ Up for some m0, and then we can assume that U
is embedded in R

N , i.e. U ↪→ R
N . Let h, k be non negative integers. For any

finite sequence E = {ej}k
j=−h, ej ∈ {0, 1} such that e0 = 1, we set

{j1, j2, . . . , jiE
} =

{
j | ej = 1,

}
where −h ≤ j1 < j2 < . . . < jiE

≤ k. Note that, being e0 = 1, we have
j1 ≤ 0 ≤ jiE

. Then we set:

j0 = jiE
− h− k − 1, jiE+1 = h + k + 1 + j1. (5.1.17)
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Note that j0 ≤ −h− 1 < j1 and jiE+1 ≥ k + 1 > jiE
. Moreover:

jiE+1 − jiE
= j1 − j0. (5.1.18)

Next, for ω ∈ N fixed and large (that is greater than ω0), we define:

FE :
(
(W̃ s

p ∩ V̄ )× (W̃u
p ∩ V̄ )

)iE → R
NiE , FE =

(
FE

1 , FE
2 , . . . , FE

iE

)
where

FE
r

(
ξ1, η1, . . . , ξiE , ηiE

)
=x−

0

(
(jr−jr−1)ω, ξr, ηr

)−x+
0

(
(jr+1−jr)ω, ξr+1, ηr+1

)
,

and
ξiE+1 = ξ1, ηiE+1 = η1 (5.1.19)

and x±
0 ((jr − jr−1)ω, ξr, ηr) are derived as in Theorem 5.1.10. We note that

x+
0 ((jr − jr−1)ω, ξr, ηr) is at a distance from ξr ∈ W̃ s

p ∩ V̄ ⊂ U ↪→ R
N less than

cδω and that the same holds for x−
0 ((jr − jr−1)ω, ξr, ηr) and ηr ∈ W̃u

p ∩ V̄ ⊂
U ↪→ R

N . Consequently, x±
0 ((jr − jr−1)ω, ξr, ηr) ∈ U and we can consider the

above differences in the definition of FE .
Let us now give a brief motivation for such a definition. Assume that the

equation FE
r (ξ1, η1, . . . , ξiE , ηiE ) = 0 has a solution (ξ1, η1, . . . , ξiE , ηiE ). Then,

starting from:

x−
0 ((jr − jr−1)ω, ξr, ηr) = x+

0 ((jr+1 − jr)ω, ξr+1, ηr+1)

and using

x+
(jr+1−jr)ω((jr+1 − jr)ω, ξr+1, ηr+1) = x−

−(jr+1−jr)ω((jr+1 − jr)ω, ξr+1, ηr+1)

we obtain:

f2(jr+1−jr)ωx−
0 ((jr−jr−1)ω, ξr, ηr)= f2(jr+1−jr)ωx+

0 ((jr+1−jr)ω, ξr+1, ηr+1)=
f (jr+1−jr)ωx+

(jr+1−jr)ω((jr+1 − jr)ω, ξr+1, ηr+1)=
f (jr+1−jr)ωx−

−(jr+1−jr)ω((jr+1 − jr)ω, ξr+1, ηr+1)= x−
0 ((jr+1−jr)ω, ξr+1, ηr+1)

and then, using the induction:

f2(js−jr)ωx−
0 ((jr − jr−1)ω, ξr, ηr) = x−

0 ((js − js−1)ω, ξs, ηs) (5.1.20)

for any 0 ≤ r ≤ s ≤ jiE+1. Now, from e0 = 1 we see that ῑ ∈ {1, . . . , iE} exists
such that jῑ = 0. Then we define:

x0(ω,E) = x−
0 (−jῑ−1ω, ξ ῑ, ηῑ) = x−

0 ((jῑ − jῑ−1)ω, ξ ῑ, ηῑ)

= x+
0 ((jῑ+1 − jῑ)ω, ξ ῑ+1, ηῑ+1) = x+

0 (jῑ+1ω, ξ ῑ+1, ηῑ+1)
(5.1.21)

and note that from (5.1.17), (5.1.18) and (5.1.20) we obtain:

f2(h+k+1)ωx0(ω,E) = f2(jiE+1−j1)ωx0(ω,E)
= f2(jῑ−j1)ω[f2(jiE+1−jῑ)ωx−

0 ((jῑ − jῑ−1)ω, ξ ῑ, ηῑ)]
= f2(jῑ−j1)ωx−

0 ((j1 − j0)ω, ξ1, η1)
= x−

0 ((jῑ − jῑ−1)ω, ξ ῑ, ηῑ) = x0(ω,E)
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that is x0(ω,E) is a 2(h + k + 1)ω-periodic point of the map xn+1 = f(xn).
Next, for any r ∈ {1, . . . , jiE

}, we have, using (5.1.20):

f2jrωx0(ω,E) = f2(jr−jῑ)ωx−
0 ((jῑ − jῑ−1)ω, ξ ῑ, ηῑ)

= x−
0 ((jr − jr−1)ω, ξr, ηr) = x+

0 ((jr+1 − jr)ω, ξr+1, ηr+1)

and then Theorem 5.1.10 implies that

‖f2jrωx0(ω,E)− ηr‖ ≤ cδ(jr−jr−1)ω ≤ cδω

‖f2jrωx0(ω,E)− ξr+1‖ ≤ cδ(jr−jr−1)ω ≤ cδω

that is f2jrωx0(ω,E) belongs to a (small when ω > ω0 is sufficiently large)
neighborhood of K for any r = 1, . . . , iE . Moreover, for any j ∈ N such that
0 < j < jr+1 − jr, we have:

f2(jr+j)ωx0(ω,E) = f2jωx+
0 ((jr+1 − jr)ω, ξr+1, ηr+1)

= x+
jω((jr+1 − jr)ω, ξr+1, ηr+1)

and then, again from Theorem 5.1.10,

‖f2(jr+j)ωx0(ω,E)− p‖ ≤ ‖f2(jr+j)ωx0(ω,E)− ξr+1
jω ‖+ ‖ξr+1

jω − p‖ ≤ 2cδω.

Thus the map FE is constructed so that if FE
(
ξ1, η1, . . . , ξiE , ηiE

)
= 0, then the

diffeomorphism f has a periodic orbit attracting and repelling several times by
the hyperbolic fixed point p. More precisely, if the initial point of this periodic
orbit is given by (5.1.21), the point f2jωx0(ω,E) is near the set K if ej = 1 and
it is near the fixed point p if ej = 0. Using this it is easy to see that starting
from different E we get different periodic orbits. To solve FE = 0, we take the
simple homotopy

HE :
(
(W̃ s

p ∩ V̄ )× (W̃u
p ∩ V̄ )

)iE × [0, 1] → R
NiE , HE =

(
HE

1 ,HE
2 , . . . , HE

iE

)
given by

HE
r

(
ξ1, η1, . . . , ξiE , ηiE , λ

)
= λFE

r

(
ξ1, η1, . . . , ξiE , ηiE

)
+ (1− λ)(ηr − ξr+1) .

for 0 ≤ λ ≤ 1. Theorem 5.1.10 gives∣∣FE
r

(
ξ1, η1, . . . , ξiE , ηiE

)− ηr + ξr+1
∣∣ ≤ 2cδω ,

where the constant c is the same as in Theorem 5.1.10. Hence we get∣∣HE
r

(
ξ1, η1, . . . , ξiE , ηiE , λ

)− ηr + ξr+1
∣∣ ≤ 2cδω .

Consequently HE(·, λ) �= 0 on the boundary ∂
(
(W̃ s

p ∩V )× (W̃u
p ∩V )

)iE for any
0 ≤ λ ≤ 1. By Section 2.3.4, this gives for the Brouwer degree∣∣∣deg

(
FE ,

(
(W̃ s

p ∩ V )× (W̃u
p ∩ V )

)iE
, 0
)∣∣∣ = ∣∣∣#(W̃ s

p ∩ V, W̃u
p ∩ V

)iE

∣∣∣ �= 0 .
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Summarizing, we see that, under the assumptions of Theorem 5.1.1, the equation
FE = 0 is always solvable in the set

(
(W̃ s

p ∩ V )× (W̃u
p ∩ V )

)iE for any sequence
E = {ej}k

j=1 ∈ {0, 1}k, e1 = 1 and any k ∈ N for a fixed large (i.e. greater
than ω0) ω ∈ N. Thus we have seen that the map f has enough periodic orbits
oscillating between p and K.

2. Step. We show more oscillatory orbits of f oscillating between the homo-
clinic set K and the hyperbolic fixed point p. This is done by constructing the
set Λω and the mapping πω in Theorem 5.1.1:

Let ∼ be the equivalence relation on the set E defined as follows:

let E,E′ ∈ E . We say that E ∼ E′ if n0 ∈ Z exists such that E = σn0(E′).

Then we choose a unique element for any equivalence class in E/∼ and form a
metric subspace E∼. Without loss of generality we can also assume that E∼ ⊂
E1 := {E = {ej}j∈Z ∈ E : ej = 0 for any j ∈ Z or e0 = 1}. We obtain in
this way a subspace E∼ ⊂ E1 such that if E1, E2 ∈ E∼, then either E1 = E2

or E1 �= σn(E2) for any n ∈ Z. Now we define a map E �→ OE from E1 in the
space of orbits of f as follows. If ej = 0, ∀j ∈ Z then we put OE = {p} the
fixed point orbit of f . On the other hand, if e0 = 1, we have the following two
possibilities: either E is periodic with the minimal period m, i.e. σm(E) = E
and σk(E) �= E for 1 ≤ k < m, or E is nonperiodic, that is there is no m ∈ N

such that σm(E) = E. In the first case we apply the above procedure to the
finite sequence {ej}m−1

j=0 (m being the minimal period of E). We obtain then a
2mω-periodic orbit OE such that f2jω(x0) is either near the set K or the point
p according to ej = 1 or ej = 0, respectively. In the second case we consider,
for any m ∈ N, the finite sequence Em = {em

j }m
j=−m := {ej}m

j=−m, m ∈ N, to
obtain a periodic orbit OEm

of xn+1 = f(xn) with the same oscillation property
between K and p as above. We set OEm

= {xm
n }n∈Z. Then take a convergent

subsequence xmi
0 of xm

0 and let x0 be its limit as i→∞. Note that, OEm
being

an orbit of xn+1 = f(xn), we have xm
j = f j(xm

0 ) for any j ∈ Z. Thus xmi
j

converges to f j(x0). Hence we set: OE = {f j(x0)}j∈Z. Note that OE is an orbit
of the map f such that f2jω(x0) is either near the set K or the point p according
to ej = 1 or ej = 0, respectively. In fact for any given j ∈ Z there exists m0 ∈ N

such that em
j = ej for any m ≥ m0. Thus the conclusion follows because it is

satisfied by f2jω(xmi
0 ) for any i sufficiently large. Observe also that if E is not

periodic (that is σn(E) �= E for any n ∈ Z) then OE is also a non periodic orbit
of f because of the stated oscillation properties. Moreover, if OE = OE′ then
E = E′, that is the map E �→ OE is one to one. Finally, for OE = {f i(x0)}i∈Z

we set
f2jω(OE) = {f2jω+i(x0)}i∈Z. (5.1.22)

At this point we would like that the following holds: Oσn(E) = f2ωn(OE) when
E and σn(E) belong to E1. However this is not generally true even if it is
true that Oσn(E) and f2ωn(OE) have the same oscillating properties between
K and p. The point is that in order to define the orbit OE we actually use the
axiom of choice to choose a convergent subsequence xmi

0 of xm
0 . Thus, in general
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Oσ(E) �= f2ω(OE), because we can perhaps choose convergent subsequences of
xm

0 and xm
1 such that their limits do not satisfy the equality x1 = f(x0) (of

course, when the sequence xm
0 is itself convergent this does not happen). For

this reason, in order to extend the map E �→ OE to E we have to pass through
E∼.

Let E = {en}n∈Z ∈ E be a doubly infinite sequence of 0 and 1. If ej = 0 for
any j ∈ Z we set Jω(E) = {p}, the fixed point orbit of f . If j ∈ Z exists such
that ej = 1, a unique E′ ∈ E∼ exists such that E = σn0(E′) for some n0 ∈ Z.
Such a n0 is unique when E is nonperiodic and is defined up to a multiple of
the least period, when E is periodic. Then we set

Jω(E) = f2ωn0(OE′). (5.1.23)

This definition does not depend on n0. We only have to prove this in the case
where E is periodic with least period, say, m. We have:

f2ω(km+n0)(OE′) = f2ωn0(f2ωkm(OE′)) = f2ωn0(OE′)

for any k ∈ Z, since OE′ is 2ωm-periodic. Thus the definition (5.1.23) is in-
dependent of n0. Moreover, if E = σn0(E′), E′ ∈ E∼, then σ(E) = σn0+1(E′)
and:

Jω(σ(E)) = f2ω(n0+1)(OE′) = f2ω(Jω(E))

that is
Jω ◦ σ = f2ω ◦ Jω. (5.1.24)

Now we prove that Jω is one to one. Because of the oscillating property, it follows
immediately that Jω(E) �= {p} when E is not the identically zero sequence.
Now, let E1, E2 ∈ E be two, non identically zero, sequences such that Jω(E1) =
Jω(E2). Write E1 = σn1(E′

1) and E2 = σn2(E′
2), with E′

1 = {e′(1)n }, E′
2 =

{e′(2)n } ∈ E∼. Then Jω(E1) = Jω(E2) implies OE′
1

= f2ω(n2−n1)(OE′
2
). From

this equation and the oscillating property we see that e
′(2)
(n2−n1)

= 1, that is
σn2−n1(E′

2) ∈ E1. Moreover, as we have already observed, f2ω(n2−n1)(OE′
2
) has

the same oscillating properties between K and p as Oσ(n2−n1)(E′
2)

. Thus E′
1

and σ(n2−n1)(E′
2) are two elements of E1 such that OE′

1
and Oσ(n2−n1)(E′

2)
have

the same oscillating properties between K an p. But this means that E′
1 =

σ(n2−n1)(E′
2) from which we get immediately E1 = E2. So Jω is one to one and

satisfies (5.1.24).
Now we consider the map P : Jω(E) → R

N given by P(Jω(E)) = x0, where
Jω(E) = {xj}j∈Z. We set Λω = P(Jω(E)), we define Q : Λω → Jω(E) as
Q(x0) = {f j(x0)}j∈Z. Finally, we define πω : Λω → E as πω(x0) = J−1

ω

(Q(x0)
)
.

3. Step. Verification of properties of πω and Λω in Theorem 5.1.1:

(i) πω is one to one. This easily follows from the fact that different initial
points give different orbits (that is Q is one to one).
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(ii) πω is continuous. To show this, let x0
0, {xi

0}i∈N ⊂ Λω and xi
0 → x0

0 as i→
∞. Then f j(xi

0) → f j(x0
0) as i→∞ for any j ∈ Z. Hence for any N0 ∈ N,

and |j| ≤ N0, the points f2jω(xi
0) of the orbit Q(xi

0) = Jω(Ei) ∈ Jω(E)
and f2jω(x0

0) of the orbit Q(x0
0) = Jω(E0) ∈ Jω(E) have, for i large, the

same kind of oscillation between K and p. Consequently, the sequences Ei

and E0, for i large, have the same elements in the first j, |j| ≤ N0 places.
This implies that Ei → E0 as i→∞.

(iii) σ(πω(x0)) = πω(f2ω(x0)). In fact, we know that Jω(σ(E)) = f2ω(Jω(E))
for any E ∈ E . Thus if E = πω(x0) we have Jω(E) = Q(x0) = {f j(x0)}j∈Z,
then

Jω(σ(πω(x0)))=Jω(σ(E))=f2ω(Jω(E))=
{
f j(f2ω(x0))

}
j∈Z

=Q(f2ω(x0)) .

Thus σ(πω(x0)) = πω(f2ω(x0)) for any x0 ∈ Λω.

Summarizing, πω is continuous, one to one and πω ◦ f2ω = σ ◦ πω. By the
construction it is also clear that πω is onto. The proof of Theorem 5.1.1 is
completed.

5.1.4 Periodic Points and Extensions on Invariant
Compact Subsets

In this subsection we study periodic orbits of f on Λω more closely. First we
prove the following result.

Proposition 5.1.11. Periodic points of f are dense in the set Λω from Theorem
5.1.1.

Proof. Let x0 ∈ Λω. Then there is an E ∈ E such that P(Jω(E)) = x0 where
Jω(E) = {xj}j∈Z. Let E = {ej}j∈Z. If E is periodic then x0 is a periodic point
of f . Let E be non-periodic. There are unique E′ ∈ E∼ and n0 ∈ Z such that
E = σn0(E′). Now E′ is also non-periodic. We have Jω(E′) = f−2n0ω(Jω(E)).
The point x′

0 = P(Jω(E′)) can be approximated by the proof of Theorem 5.1.1
with periodic points of f from Λω. Of course the same hold for the point x0 =
f2n0ω(x′

0). This finishes the proof of Proposition 5.1.11.

We also get that the only isolated points of the set Λω could be periodic
points of f and f depends sensitively on the set Λ′

ω of all non-isolated points of
Λω, that is there is a constant d > 0 such that in any neighborhood of x0 ∈ Λ′

ω

there are x′
0 ∈ Λω and n′

0 ∈ N such that the distance between fn′
0(x0) and

fn′
0(x′

0) is greater than d. We do not know whether the periodic points of f in
Λω are non-isolated or not.

On the other-hand, let either Υω = Λω or Υω = Λ′
ω. We extend the map πω

on the closure Υω of Υω, and we denote this extension again by πω. So Υω is
compact but we do not know whether the unique continuous extension of πω is
one-to-one or not. The extension is made as follows: For any x0 ∈ Υω \Υω, we
take a sequence {xj}j∈N ⊂ Υω such that xj → x0. Hence f2ωk(xj) → f2ωk(x0).
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Consequently, for any N ∈ N, the orbits {f2ωk(xj)}k=N
k=−N and {f2ωk(x0)}k=N

k=−N

have the same oscillating properties between set K and point p for j large. This
implies the existence of the limit lim

j→∞
πω(xj) := πω(x0), which is independent of

{xj}j∈N. The continuity of πω follows as in the proof of Theorem 5.1.1. Clearly
the extension πω is onto E for the case Υω = Λω. If Υω = Λ′

ω then πω(Υω)
is dense in E and πω(Υω) is compact in E . This implies πω(Υω) = E also for
this case. The property πω ◦ f2ω = σ ◦ πω follows from the limit procedure
xj → x0. Of course, Υω is invariant for f2ω. For the case Υω = Λω, we again
have infinitely many periodic points of f which are dense in Υω. For the case
Υω = Λ′

ω, we have that any point x0 ∈ Λ′
ω is an accumulating point of periodic

points of f with periods tending to infinity. Iterations of those periodic points
oscillate differently between the set K and the point p. Consequently, the map
f is sensitive on Λ′

ω in the following sense: there is a constant d > 0 such that
in any neighborhood of x0 ∈ Λ′

ω there are x′
0 and n′

0 ∈ N such that the distance
between fn′

0(x0) and fn′
0(x′

0) is greater than d.

5.1.5 Perturbed Topological Transversality

Checking the topological transversality of stable and unstable manifold, is not
an easy task. This is the reason why in this subsection we study the case where
W s

p and Wu
p intersect on a homoclinic manifold and consider a C2-smooth per-

turbation of f . Then we have the following result.

Theorem 5.1.12. Let f(x, ε) be a C2 map in its arguments, and assume there
exist open, connected, bounded subsets Ω ⊂ Ω ⊂ UΩ ⊂ R

µ and C2-smooth
mappings xn(α), α ∈ UΩ, such that the following hold:

(i) xn+1(α) = f(xn(α), 0), n ∈ Z, lim
n→±∞xn(α) = p uniformly with respect to

α ∈ UΩ for a hyperbolic fixed point p of the mapping f(x, 0).

(ii)
{

∂xn

∂αi
(α), i = 1, 2, . . . , µ

}
are linearly independent and they form a basis

for the space of bounded solutions of the equation vn+1 = fx(xn(α), 0)vn

on Z for any α ∈ UΩ. Moreover, the mapping x0 : UΩ → R
N is one to

one.

Assume, moreover, that the Melnikov function (see below (5.1.34)) associated to
the perturbation f(x, ε) satisfies the following conditions:

(H1) M(α) �= 0 on ∂Ω

(H2) deg(M,Ω, 0) �= 0

Then there exists ε0 > 0 such that for 0 < |ε| ≤ ε0, it is nonzero the local
intersection number of the stable and unstable manifolds of the hyperbolic fixed
point p(ε) of the map xn+1 = f(xn, ε) which is located near the fixed point p of
the map xn+1 = f(xn, 0).
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Conditions (i) and (ii) mean that f(x, 0) has a non-degenerate homoclinic
manifold given by {x0(α) | α ∈ UΩ}. Note non-degenerate periodic and homo-
clinic manifolds of o.d.eqns are investigated in Sections 3.3 and 4.1. When a
map satisfies the conditions of Theorem 5.1.12 we obtain, thanks to Theorem
5.1.1, a kind of chaotic behavior of the perturbed diffeomorphism f(x, ε), when
ε �= 0.

Proof. We note that x0(α) ∈ W s
p∩Wu

p , for any α ∈ UΩ. In the next constructions
of this subsection, the set Ω is fixed but the neighborhood UΩ of Ω could be
shrunk by keeping its connectedness. Let U ⊂ R

N be an open and bounded
subset such that

HΩ =
{
x0(α) | α ∈ UΩ

}
= U ∩ W̃ s

p ∩ W̃u
p , (5.1.25)

where again W̃ s
p and W̃u

p are open subsets of W s
p and Wu

p , respectively, which
are submanifolds of R

N .
Let Pξ and Qη be the projections of Subsection 5.1.2 for the open subset

U , which are now C1-smooth in ξ and η, respectively. Arguing as in Subsection
5.1.2, we get the following result.

Theorem 5.1.13. There exist ε0 > 0 and ρ > 0 such that for any |ε| < ε0 and
ξ ∈ W̃ s

p ∩ U , η ∈ W̃u
p ∩ U the equations

x+
n+1(ε, ξ) = f(x+

n (ε, ξ), ε), Pξx
+
0 (ε, ξ) = Pξξ (5.1.26)

for n ≥ 0, and

x−
n+1(ε, η) = f(x−

n (ε, η), ε), Qηx−
0 (ε, η) = Qηη (5.1.27)

for n ≤ −1, have unique solutions {x+
n (ε, ξ)}n≥0 and {x−

n (ε, η)}n≤0 respectively,
such that

supn≥0 |x+
n (ε, ξ)− ξn| ≤ ρ, supn≤0 |x−

n (ε, η)− ηn| ≤ ρ (5.1.28)

Moreover {x+
n (ε, ξ)}n≥0 and {x−

n (ε, η)}n≤0 are C1-smooth in their arguments
and

limε→0 supn≥0 |x+
n (ε, ξ)− ξn| = 0, limε→0 supn≤0 |x−

n (ε, η)− ηn| = 0
(5.1.29)

Proof. We give the proof for n ≥ 0 the case n ≤ 0 being handled similarly. Let

ξ ∈ W̃ s
p ∩ U , and xn = ξn + vn. Then {vn}n≥0 satisfies the system:

vn+1 − f ′(ξn)vn = {f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn}, Pξv0 = 0 . (5.1.30)

We are looking for solutions of (5.1.30) such that supn≥0 |vn| → 0 as ε → 0. Let
ρ > 0 be fixed. From Lemma 5.1.9 it follows that the map

Γ∞(v) =
( {vn+1 − f ′(ξn)vn}n≥0

Pξv0

)



5.1. Topological Transversality and Chaos 159

has a bounded inverse. So, for any {vn}n≥0 such that supn≥0 |vn| < ρ we define
{v̂n}n≥0 as the unique solution of

Γ∞({v̂n}n≥0) =
( {f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn}n≥0

0

)
.

From Lemma 5.1.9 it follows that

sup
n≥0

|v̂n| ≤ c sup
n≥0

|f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn| ≤ c{∆(ρ) sup
n≥0

|vn|+ O(ε)}

where ∆(ρ) → 0 as ρ → 0. Thus it is easy to see that the map {vn}n≥0 �→
{v̂n}n≥0 is a contraction on the ball {{vn}n≥0 : supn≥0 |vn| < ρ} provided ρ
and ε0 are sufficiently small. As a consequence there exists a unique fixed point
{vn(ε, ξ)}n≥0 that gives rise to the solution xn(ε, ξ) = ξn + vn(ε, ξ). From the
smoothness of the map {vn}n≥0 �→ {f(ξn + vn, ε) − f(ξn) − f ′(ξn)vn}n≥0, we
obtain that xn(ε, ξ) is smooth and that (5.1.28), (5.1.29) hold. The proof is
finished.

Now we consider the function H : W̃ s
p ∩ U × W̃u

p ∩ U × (−ε0, ε0) → R
N

given by
H(ξ, η, ε) = x+

0 (ε, ξ)− x−
0 (ε, η) . (5.1.31)

Note that, because of the hyperbolicity of p, the map xn+1 = f(xn, ε) has, for
small |ε|, a unique hyperbolic fixed point p(ε) such that p(ε) → p as ε → 0.
Such a fixed point is C2-smooth in ε and the solutions of H(ξ, η, ε) = 0 give rise
to orbits {xn(ε)}n∈Z of the map xn+1 = f(xn, ε) that are homoclinic to p(ε).
Moreover, if U1 ⊂ U1 ⊂ U is an open, connected subset of U , the functions
x+

0 (ε, ξ), ξ ∈ W̃ s
p ∩ U1 and x−

0 (ε, η), η ∈ W̃u
p ∩ U1, describe open subsets of the

stable and unstable manifolds W s
p(ε) and Wu

p(ε) of p(ε) that are also immersed

submanifolds in R
n. So, denoting with W̃ s

p(ε) and W̃u
p(ε) these submanifolds of

R
N , by Section 2.3.4, the intersection number #

(
W̃ s

p(ε)∩U1, W̃
u
p(ε)∩U1

)
is found

by computing the Brouwer degree deg(H(ξ, η, ε), (W̃ s
p ∩ U1)× (W̃u

p ∩ U1), 0).
Thus, let ds = dim W̃ s

p , and du = dim W̃u
p . From the hyperbolicity of p we

get ds +du = N , hence we can write R
N = Wµ⊕Ws⊕Wu⊕Vµ where dimWµ =

dimVµ = µ, V ⊥
µ = Wµ⊕Ws⊕Wu, dimWs = ds−µ, dimWu = du−µ, and UΩ is an

open subset of Wµ. Then, replacing U and UΩ with smaller, open, connected and
bounded subsets of R

n and R
µ respectively, so that (5.1.25) and Ω ⊂ UΩ are still

satisfied, we can find open and convex subsets Os ⊂ Ws, Ou ⊂ Wu, O∗ ⊂ Vµ,
containing 0, and a C1-diffeomorphism Φ : UΩ⊕Os⊕Ou⊕O∗ → U ⊂ R

N such
that the following holds:

Φ(α) = x0(α), for any α ∈ UΩ

Φ(UΩ ⊕Os) = W̃ s
p ∩ U, Φ(UΩ ⊕Ou) = W̃u

p ∩ U
(5.1.32)

Let ξ̃, η̃ be the coordinates on Wµ⊕Ws and Wµ⊕Wu respectively. Then possibly
shrinking UΩ, Os and Ou we consider, the function

H̃ : (UΩ ⊕Os)× (UΩ ⊕Ou) → R
N
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given by:
H̃(ξ̃, η̃, ε) := Φ−1(x+

0 (ε,Φ(ξ̃)))− Φ−1(x−
0 (ε,Φ(η̃))) .

Obviously, H̃(ξ̃, η̃, ε) = 0 if and only if H(ξ, η, ε) = 0, and then

deg(H(ξ, η, ε), (W̃ s
p∩U)×(W̃u

p ∩U), 0)=±deg(H̃(ξ̃, η̃, ε), (UΩ⊕Os)×(UΩ⊕Ou), 0).

Now, Theorem 5.1.13 implies that

H̃(ξ̃, η̃, 0) = ξ̃ − η̃

from which we get H̃(α, α, 0) = 0 and

H̃(ξ̃, η̃, ε) = ξ̃ − η̃

+ε

{
[Φ′(ξ̃)]−1 ∂x+

0

∂ε
(0,Φ(ξ̃))− [Φ′(η̃)]−1 ∂x−

0

∂ε
(0,Φ(η̃))

}
+ r(ξ̃, η̃, ε) ,

where ‖r(ξ̃, η̃, ε)‖ = o(ε) uniformly in (ξ̃, η̃) ∈ (UΩ ⊕Os)× (UΩ ⊕Ou).
Let L : (Wµ ⊕ Ws) × (Wµ ⊕ Wu) → R

N be the linear map defined as
L(ξ̃, η̃) = ξ̃ − η̃. We have L(ξ̃, η̃) = 0 if and only if ξ̃ = η̃ ∈ Wµ and RL =
Wµ⊕Ws⊕Wu, so we can write R

N = RL⊕Vµ. Next, let W⊥
µ be a fixed subspace

of (Wµ ⊕Ws)× (Wµ ⊕Wu) transversal to NL = {(ξ̃, ξ̃) : ξ̃ ∈Wµ}. Then, there
exists an open convex set O1 ⊂ W⊥

µ such that 0 ∈ O1 and for any (ξ̂, η̂) ∈ O1

and α ∈ Ω the point (ξ̃, η̃) = (α + ξ̂, α + η̂) belongs to (UΩ ⊕Os)× (UΩ ⊕Ou).
We define a map Ĥ : O1 × Ω → R

N as

Ĥ(ξ̂, η̂, α, ε) := H̃(α + ξ̂, α + η̂, ε) .

Let Q : R
N → R

N be the projection that corresponds to the splitting R
N =

RL⊕ Vµ that is such that NQ = Vµ and RQ = RL, and set r̂ = r̂(ξ̂, η̂, α, ε) =
ε−1r(α + ξ̂, α + η̂, ε) = o(1). We write Ĥ(ξ̂, η̂, α, ε) as

Ĥ(ξ̂, η̂, α, ε) = ξ̂ − η̂ + εĤ1(ξ̂, η̂, α, ε) + εĤ2(ξ̂, η̂, α, ε) (5.1.33)

where

Ĥ1(ξ̂, η̂, α, ε) = Q
{

[Φ′(α + ξ̂)]−1 ∂x+
0

∂ε (0,Φ(α + ξ̂))

−[Φ′(α + η̂)]−1 ∂x−
0

∂ε (0,Φ(α + η̂)) + r̂

}
and

Ĥ2(ξ̂, η̂, α, ε) = (I−Q)

{
[Φ′(α + ξ̂)]−1 ∂x+

0
∂ε (0,Φ(α + ξ̂))

−[Φ′(α + η̂)]−1 ∂x−
0

∂ε (0,Φ(α + η̂)) + r̂

}
.
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Note that Ĥ1(ξ̂, η̂, α, ε) ∈ RQ and Ĥ2(ξ̂, η̂, α, ε) ∈ NQ. Thus Ĥ(ξ̂, η̂, α, ε) = 0
if and only if ξ̂ − η̂ + εĤ1 = 0 and Ĥ2 = 0. Next we introduce the Melnikov
function M : Ω → NQ:

M(α) = (I−Q)Φ′(α)−1

[
∂x+

0

∂ε
(0, x0(α))− ∂x−

0

∂ε
(0, x0(α))

]
, (5.1.34)

whose components with respect to a fixed orthonormal basis {e1, . . . , eµ} of
Vµ are:

Mj(α) = e∗jΦ
′(α)−1

[
∂x+

0

∂ε
(0, x0(α))− ∂x−

0

∂ε
(0, x0(α))

]
=
[
(Φ′(α)−1)∗ej

]∗ [∂x+
0

∂ε
(0, x0(α))− ∂x−

0

∂ε
(0, x0(α))

]
= ψj(α)∗

[
∂x+

0

∂ε
(0, x0(α))− ∂x−

0

∂ε
(0, x0(α))

]
where ψj(α) are defined by the equality. Note that for any v ∈ Tx0(α)W̃

s
p we

have:
ψj(α)∗v = e∗jΦ

′(α)−1v = 0

because V ⊥
µ = Wµ ⊕Ws ⊕Wu and Φ′(α)(Wµ ⊕Ws) = Tx0(α)W̃

s
p . Similarly

ψj(α)∗w = 0

for any w ∈ Tx0(α)W̃
u
p . Thus the vectors ψj(α) are exactly the initial conditions

to assign to the adjoint of the variational system

vn+1 = f ′(xn(α))vn

to obtain solutions that are bounded on Z. Thus M(α) is the usual Melnikov
function associated to the system xn+1 = f(xn, ε) (see the end of this subsection,
or [16,76,88]).

From the smoothness of the functions x+
0 (ε, ξ), x−

0 (ε, η), r(ξ, η, ε), x0(α) and
possibly changing O1, we see that

∂x+
0

∂ε
(0, ξ̂ + x0(α))− ∂x−

0

∂ε
(0, η̂ + x0(α)) + r̂(ξ̂, η̂, α, ε)

is bounded on Ō1 × Ω̄ × [−ε0, ε0]. Then we plug Ĥ(ξ̂, η̂, α, ε) in the homotopy
Ĥ(ξ̂, η̂, α, ε, t), 0 ≤ t ≤ 1 given by:

Ĥ(ξ̂, η̂, ε, α, t) = ξ̂ − η̂ + εtĤ1(ξ̂, η̂, ε, α) + kε(t)Ĥ2(tξ̂, tη̂, ε, α) (5.1.35)

where kε(t) = εt + 1 − t for ε ≥ 0 and kε(t) = εt − 1 + t for ε < 0. Note that
|kε(t)| ≥ |ε| and then kε(t) �= 0 for ε �= 0.

Lemma 5.1.14. Assume (H1) holds. Then, if the neighborhood O1 is chosen
sufficiently small there is an ε0 > 0 such that Ĥ(ξ̂, η̂, α, ε, t) �= 0 for any 0 ≤
t ≤ 1, 0 < |ε| < ε0 and (ξ̂, η̂, α) ∈ ∂(O1 × Ω).
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Proof. We have already seen that Ĥ(ξ̂, η̂, α, ε, t) = 0 if and only if ξ̂ − η̂ +
εtĤ1(ξ̂, η̂, ε, α) = 0 and kε(t)Ĥ2(tξ̂, tη̂, ε, α) = 0. Now, if (ξ̂, η̂, α) ∈ ∂(O1 × Ω)
then either (ξ̂, η̂) ∈ ∂O1 or α ∈ ∂Ω.

If (ξ̂, η̂) ∈ ∂O1, we have ξ̂ �= η̂ and then ξ̂ − η̂ + εtĤ1(ξ̂, η̂, ε, α) �= 0 for ε0

sufficiently small, because of the boundedness of

∂x−
0

∂ε
(0, ξ̂ + x0(α))− ∂x+

0

∂ε
(0, η̂ + x0(α)) + r̂(ξ̂, η̂, α, ε)

on O1 × Ω× [−ε0, ε0]. If α ∈ ∂Ω then M(α) �= 0. Since |kε(t)| ≥ |ε|, we get

kε(t)Ĥ2(tξ̂, tη̂, ε, α) �= 0

provided O1 and |ε| �= 0 are sufficiently small. So again H(ξ̂, η̂, α, ε, t) �= 0 and
the proof is finished.

Lemma 5.1.14 gives the next result.

Theorem 5.1.15. Let O1 be as in Lemma 5.1.14. Assume (H1), (H2). Then
it follows that deg(Ĥ(ξ̂, η̂, α, ε), O1 ×Ω, 0) �= 0, for any ε �= 0 sufficiently small.

Proof. Lemma 5.1.14 implies

deg(Ĥ(ξ̂, η̂, α, ε, 1), O1 × Ω, 0) = deg(Ĥ(ξ̂, η̂, α, ε, 0), O1 × Ω, 0).

Now:

Ĥ(ξ̂, η̂, ε, α, 0) =
(

L(ξ̂, η̂)
sgn εM(α)

)
and L : W⊥

µ → RL is invertible. Thus

deg(Ĥ(ξ̂, η̂, α, ε, 0), O1 × Ω, 0) = ±deg(M,Ω, 0) �= 0 .

The proof is finished.

Possibly shrinking UΩ, Os and Ou and using similar arguments like in the
proof of Lemma 5.1.14 along with assumption (H1), we get H̃(ξ̃, η̃, ε) �= 0 for any
ε �= 0 sufficiently small and (ξ̃, η̃) ∈ (UΩ ⊕Os)× (UΩ ⊕Ou)\{(α+ξ̂, α+η̂) | α ∈
Ω, (ξ̂, η̂) ∈ O1}. Then we have, because of Section 2.3.4, and the connectedness
of UΩ:∣∣∣#(W̃ s

p(ε) ∩ U, W̃u
p(ε) ∩ U

)∣∣∣ = ∣∣∣deg(H(ξ, η, ε), (W̃ s
p ∩ U)× (W̃u

p ∩ U), 0)
∣∣∣

=
∣∣∣deg(H̃(ξ̃, η̃, ε), (UΩ ⊕Os)× (UΩ ⊕Ou), 0)

∣∣∣
=
∣∣∣deg(Ĥ(ξ̂, η̂, α, ε), O1 × Ω, 0)

∣∣∣ �= 0
(5.1.36)

By (5.1.36) and Theorem 5.1.15 the proof of Theorem 5.1.12 is completed.
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When f and xn(α), n ∈ Z are all C3-smooth and M(α) has a simple root
α0, i.e. M(α0) = 0 and DM(α0) is invertible, then assumptions (H1) and (H2)
of Theorem 5.1.12 are satisfied when Ω is a small neighborhood of α0. So we
have a chaos of f(x, ε) for ε �= 0 small. But now we obtain much more: a
transversal homoclinic orbit of f(x, ε) for ε �= 0 small with the corresponding
Smale’s horseshoe. Indeed, for finding a homoclinic orbit of f(x, ε) to p(ε), we
have to solve H(ξ, η, ε) = 0 (see (5.1.31)) for ε �= 0 small, which is equivalent to
Ĥ(ξ̂, η̂, α, ε) = 0 (see (5.1.33)) and it is decomposed to

ξ̂ − η̂ + εĤ1(ξ̂, η̂, α, ε) = 0 (5.1.37)

and
Ĥ2(ξ̂, η̂, α, ε) = 0 . (5.1.38)

(5.1.37) can be solved by means of the implicit function theorem to get its C1-
smooth solutions ξ̂(α, ε), η̂(α, ε). Note that, because of uniqueness, we have:
ξ̂(α, 0) = η̂(α, 0) = 0. Plugging these solutions into (5.1.38), we obtain the
bifurcation function B : Ω×(−ε0, ε0) → R

µ, (α, ε) �→ B(α, ε), whose components
Bj(α, ε) are:

Bj(α, ε) = ψj(α)∗
[∂x−

0

∂ε
(0,Φ(α + ξ̂(α, ε))− ∂x+

0

∂ε
(0,Φ(α + η̂(α, ε))

+r(ξ̂(α, ε), η̂(α, ε), α, ε)
]
.

Now, it is not difficult to see that, for ε→ 0, B(α, ε) →M(α) and ∂
∂αB(α, ε) →

DM(α) uniformly on compact sets. So B(α, ε) = 0 is uniquely solvable at
α ∼ α0 for ε �= 0 small. This gives a homoclinic orbit of f(x, ε) for ε �= 0.
Its transversality can be proved like in [88, 107]. We conclude this part noting
that the condition that M(α) has a simple zero at some α0 is equivalent to the
fact that the function

M̃(α) :=

(
ψj(α0)∗

[
∂x+

0

∂ε
(0, x0(α))− ∂x−

0

∂ε
(0, x0(α))

])
j=1...µ

has α0 as a simple zero. In fact both M(α0) = 0 and M̃(α0) = 0 mean that
∂x−

0
∂ε (0,Φ(α0)) = ∂x+

0
∂ε (0,Φ(α0)) and then the equality Mα(α0) = M̃α(α0) easily

follows from Φ(α) = x0(α).
Theorem 5.1.12 is naturally applicable for the next problem. Consider the

second order equation
ẍ = g(x) + εq(t) ,

where x ∈ R, g, q are C2-smooth and q is 2π-periodic. Suppose that the equation

ẋ = y, ẏ = g(x)

has a homoclinic solution (p(t), ṗ(t)) to a hyperbolic fixed point. Then the Mel-
nikov function has the form M(α) =

∫∞
−∞ q(t + α)ṗ(t) dt, see computations for
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(3.1.34). M(α) is 2π-periodic and
∫ 2π

0
M(α) dα = 0. Hence if M �= 0 then

it changes the sign on [0, 2π] and Theorem 5.1.12 can be applied. Concerning
condition M �= 0, we have the following result [19, Theorem 3.3].

Theorem 5.1.16. Assume that p(t) = Φ( et), where Φ(u) is a rational function
on C such that Φ(u) → 0 and uΦ′(u) → 0 as u → ∞. Moreover, it has only
the simple poles w �= 0 and w̄ (including the case that Φ(u) has only one simple
pole w = w̄). Then for any 2π-periodic nonconstant C2-smooth function q, the
associated Melnikov function M(α) is not identically zero.

The next result [19, Theorem 4.1] allowing us to construct second order
equations determined by prescribed homoclinic solutions.

Theorem 5.1.17. Let Φ0(u) = ukG(u), k ≥ 1, be a rational function such that
G(0) �= 0 and the following hold:

(i) Φ0(u) = Φ0(1/u) (that is G(1/u) = u2kG(u))

(ii) Φ0(x) > 0 when x is real and x > 0

(iii) Φ′
0(x) = 0 on x > 0 is equivalent to x = 1

(iv) Φ′′
0(1) �= 0

Then limu→∞ uΦ′
0(u) = 0 and there exists a C1–function f(p) in a neighborhood

of [0,Φ0(1)] such that p(t) = Φ0( et) is the solution of the equation p̈ = f(p).
Moreover, if G(u) = G0(uk) for some rational function G0(u), G0(0) �= 0, the
function f(p) is C2 in a neighborhood of [0,Φ0(1)].

Moreover we proved in [19] that the equation

ẍ = 4x(2x2 − 3x coth(nπ) + 1) + εq(t) (5.1.39)

has for even (odd) n ∈ N the Melnikov function vanishing identically on any
2π-periodic C2-smooth functions q(t) (or it is identically zero for infinitely many
independent 2π-periodic C2-smooth functions but not for all). The geometrical
meaning of vanishing of the Melnikov function is that, in spite of the fact that the
perturbation of (5.1.39) is of the order O(ε), the distance between the stable and
unstable manifolds of the perturbed equation, along a transverse direction, is of
the order (at least) O(ε2). This means that in order to study the intersection of
the stable and unstable manifolds, we have to look at the second order Melnikov
function. This was also done in [19]. We refer the reader to more details about
this subject to [19].

5.2 Topological Transversality and Reversibility

5.2.1 Period Blow-Up

In this section, we continue with the study of the relationship between topo-
logically transversal intersections of certain sets for diffeomorphisms and the
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existence of oscillatory orbits. For illustration of the problem, let us consider a
second order o.d.eqn of the form

ÿ = g(y), y ∈ R
N . (5.2.1)

For N = 1, a typical phase portrait of (5.2.1) consists from several families
of periodic orbits, which are symmetric with respect to the y-axis, and those
periodic orbits either terminate into equilibria or to heteroclinic/homoclinic
cycles (see Fig. 1.2). In the last case, the minimal periods of periodic orbits
tends to infinity as they accumulate on the heteroclinic/homoclinic cycle, i.e.
we have a period blow-up. The symmetry of orbits of (5.2.1) follows from a
simple observation that if y(t) solves (5.2.1) then y(−t) is also its solution. We
say that (5.2.1) is time reversible. The time reversibility of (5.2.1) implies also
the following antisymmetry. Rewriting (5.2.1) as a system

ẋ = h(x), x :=
(

y
z

)
, h(x) :=

(
z

g(y)

)
(5.2.2)

and considering the involution Rx :=
(

y
−z

)
, we immediately see that

h(Rx) = −Rh(x) ∀x ∈ R
2N . (5.2.3)

Then (5.2.3) implies that if x(t) is a solution of (5.2.2) then so is x̃(t) := Rx(−t).
Or stated differently: Let ϕ(x, t) be the time flow of (5.2.2) and set f(x) :=
ϕ(x, 1), then (5.2.3) implies Rf(x) = f−1(Rx) ∀x ∈ R

2N . For N > 1 the phase
portrait of (5.2.1) is very complicated but period blow-up phenomenon still may
occur. This was first proved in [65–67] where it is called as a blue sky catastrophe.
These results are generalized in [188, 189]. In this section, we proceed with the
study of the period blow-up for diffeomorphisms.

5.2.2 Period Blow-Up for Reversible Diffeomorphisms

Let R : R
2N → R

2N be a linear involution, i.e R2 = I, such that dim FixR = N ,
where Fix R = {x ∈ R

2N | Rx = x}. Any subset of R
2N invariant under

the action of R is called R-symmetric. Consider a C1-smooth diffeomorphism
f : R

2N → R
2N which is R-reversible:

Rf(x) = f−1(Rx), ∀x ∈ R
2N ,

and possessing a R-symmetric hyperbolic fixed point p ∈ FixR. Let W s
p , Wu

p be
the global stable and unstable manifolds of p, respectively. Let W̃ s

p be an open
subset of W s

p which is a submanifold of R
2N such that W̃ s

p \ {p} ∩ FixR �= ∅.
Since RW s

p = Wu
p , we put W̃u

p = RW̃ s
p . We also suppose the existence of a

compact component K ⊂ W̃ s
p \ {p} ∩ FixR and an open connected bounded

subset U ⊂ Ū ⊂ R
2N \ {p} satisfying U ∩ W̃ s

p ∩ FixR = K (see Fig. 5.2). By
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Figure 5.2: A transversal R-symmetric homoclinic set K = W̃ s
p ∩ FixR ∩ U

shrinking U , we can assume that W̃ s
p ∩ U = W̃ s

p ∩ Ū . We note that W̃ s
p ∩ U

is an oriented submanifold of R
2N . Then we can define the local intersection

number #
(
W̃ s

p ∩ U,FixR ∩ U
)

of the stable manifold W s
p and the plain FixR

in U ⊂ R
2N . Note dim W̃ s

p = dim W̃u
p = dim FixR = N . The main purpose of

this section is to prove the following result [85].

Theorem 5.2.1. If #
(
W̃ s

p ∩ U,FixR ∩ U
) �= 0 then there is an ω0 ∈ N such

that for any N � ω ≥ ω0, f possesses a 2ω-periodic orbit {xω
n}n∈Z such that

Rxω
n = xω

−n, n ∈ Z. Moreover, xω
0 ∈ FixR is near to K, while xω

ω ∈ FixR is
near to p.

Proof. Let (·, ·) be an inner product on R
2N . Setting 〈x, y〉 := 1

2

(
(x, y) +

(Rx,Ry)
)

we have 〈Rx,Ry〉 = 〈x, y〉, x, y ∈ R
2N , and so ||R|| = ||R−1|| = 1.

Since RK = K, we can assume that RU = U .
For any ξ ∈ W̃ s

p ∩ Ū we set ξn := fn(ξ), n ∈ Z+ and then η := Rξ with
ηn := fn(η), n ∈ Z−. Clearly η−n = Rξn, n ∈ Z+. Let J±

ω and I±ω be the sets
defined in Subsection 5.1.2. We study the nonlinear system

xn+1 = f(xn) (5.2.4)

near {ξn}n∈J+
ω

and {ηn}n∈J−
ω

following Subsection 5.1.2. According to Lemma
5.1.7, the linearization of (5.2.4) along {ξn}n∈Z+

vn+1 = Df(ξn)vn, n ∈ Z+ (5.2.5)

has an exponential dichotomy on Z+, i.e. there are positive constants L, δ ∈
(0, 1) and the orthogonal projection Pξ : R

2N → TξW̃
s
p such that the fundamen-

tal solution Vξ(n) of (5.2.5) satisfies (5.1.6).
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From the reversibility of f we immediately see that the linearization of (5.2.4)
along {ηn}n∈Z−

wn+1 = Df(ηn)wn, n ∈ Z−, n �= 0 (5.2.6)

has the fundamental solution Wξ(n) = RVξ(−n)R−1, n ∈ Z−, and since ||R|| =
||R−1|| = 1, the (5.2.6) has an exponential dichotomy on Z− with the constants
L, δ and the orthogonal projection I − Qη, where Qη = RPξR

−1, i.e. (5.1.7)
holds. We note that the family {Pξ | ξ ∈ W̃ s

p ∩ U} is continuous on W̃ s
p ∩ U .

Applying Theorem 5.1.10 to (5.2.4) with the above notation, we have that there
exist ω0 ∈ N and a constant c > 0 such that, for any ω ∈ N, ω ≥ ω0, and
ξ ∈ W̃ s

p ∩ U , there exist unique {x+
n (ω, ξ)}n∈J+

ω
and {x−

n (ω, ξ)}n∈J−
ω

such that⎧⎪⎪⎨⎪⎪⎩
x±

n+1(ω, ξ) = f(x±
n (ω, ξ)) separately on I±ω ,

Pξx
+
0 (ω, ξ) = Pξξ, QRξx

−
0 (ω, ξ) = QRξRξ, x+

ω (ω, ξ) = x−
−ω(ω, ξ) ,

max
n∈J+

ω

|x+
n (ω, ξ)− ξn| ≤ cδω , max

n∈J−
ω

|x−
n (ω, ξ)− ηn| ≤ cδω .

(5.2.7)

Moreover, x±
n (ω, ξ) are continuous with respect to ξ. Since QRξ = RPξR

−1,
η−n = Rξn, n ∈ Z+, we see that the sequences given by

y−
n (ω, ξ) = Rx+

−n(ω, ξ), n ∈ J−
ω ; y+

n (ω, ξ) = Rx−
−n(ω, ξ), n ∈ J+

ω

also satisfy (5.2.7). The uniqueness of such orbits implies that Rx±
n (ω, ξ) =

x∓
−n(ω, ξ), n ∈ J±

ω .
In order to get a R-symmetric orbit of f , we have to solve the equation

(I−R)x+
0 (ω, ξ) = 0, ξ ∈ W̃ s

p ∩ U . (5.2.8)

Let V be an open subset such that K ⊂ V ⊂ V̄ ⊂ U . Note that the solution
x+

0 (ω, ξ) is defined for ξ ∈ W̃ s
p ∩ V̄ and

#(W̃ s
p ∩ V,Fix R ∩ V ) = #(W̃ s

p ∩ U,FixR ∩ U) �= 0 .

To solve (5.2.8), we put Fω(ξ) := (I − R)x+
0 (ω, ξ) with Fω : W̃ s

p ∩ V̄ → R− :=
R(I−R) and take the homotopy Hω : W̃ s

p ∩ V̄ × [0, 1] → R− given by

Hω(ξ, λ) = λFω(ξ) + (1− λ)(I−R)ξ .

Note Hω(ξ, 1) = Fω(ξ) and Hω(ξ, 0) = (I−R)ξ. Next (5.2.7) gives

|Hω(ξ, λ)− (I−R)ξ| = |λ(Fω(ξ)− (I−R)ξ)| ≤ cδω .

Consequently, Hω(·, λ) �= 0 on the boundary ∂(W̃ s
p ∩ V ) for any 0 ≤ λ ≤ 1 and

ω large. Note P := 1
2 (I + R) is a projection onto FixR and I− P = 1

2 (I−R).
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By Section 2.3.4, this gives for the Brouwer degree∣∣∣deg
(
Fω, W̃ s

p ∩ V, 0
)∣∣∣ = ∣∣∣deg

(
(I−R), W̃ s

p ∩ V, 0
)∣∣∣

=
∣∣∣∣deg

(
1
2

(I−R) , W̃ s
p ∩ V, 0

)∣∣∣∣ = ∣∣∣deg
(
(I− P ) , W̃ s

p ∩ V, 0
)∣∣∣

=
∣∣∣#(W̃ s

p ∩ V,Fix R ∩ V
)∣∣∣ �= 0 .

(5.2.9)

Summarizing, we see that Fω(ξ) = 0 has a solution ξ ∈ W̃ s
p ∩V for any ω ≥ ω0,

where ω0 is sufficiently large. This proves Theorem 5.2.1.

Roughly speaking, Theorem 5.2.1 asserts that a combination of a homoclinic
structure of a diffeomorphism and its reversibility may give infinitely many
periodic orbits of the diffeomorphism.
Remark 5.2.2. When q is a transversal intersection of W s

p and FixR, then
Theorem 5.2.1 was proved in [65–67, 188, 189]. Then clearly #

(
W̃ s

p ∩ U,

FixR ∩ U
) �= 0 for a small open neighborhood U of q.

Remark 5.2.3. Let N = 1. If p is a hyperbolic fixed point of f and W s
p (or

Wu
p ) meets Fix R then a local intersection number of W s

p (or Wu
p ) with FixR

is nonzero. Indeed, let q ∈ W s
p ∩ FixR be the first intersection starting on W s

p

from p. Since Rf(q) = f−1(Rq) = f−1(q), the points f−1(q), f(q) ∈ W s
p lie on

the opposite half-plains separated by FixR. Hence an open bounded connected
part W̃ s

p of W s
p such that f−1(q), f(q) ∈ W̃ s

p topologically nontrivially crosses
FixR. Similarly for Wu

p .
Remark 5.2.4. Any accumulation point of the set {xω

0 }ω≥ω0 ⊂ FixR from
Theorem 5.2.1 is a starting point of a R-symmetric homoclinic orbit of f to p.

Next, if p is a non-R-symmetric hyperbolic fixed point of f , then Rp is
also a non-R-symmetric hyperbolic fixed point of f . If q ∈ W s

p ∩ FixR then
q ∈ W s

p ∩Wu
Rp, so q lies on a R-symmetric heteroclinic orbit connecting p and

Rp. Consequently, like for Theorem 5.2.1, we can prove the following result.

Theorem 5.2.5. Suppose f has a non-R-symmetric hyperbolic fixed point p. If
W s

p and Wu
p meet FixR locally topologically transversally, then f has an infinite

number of R-symmetric periodic orbits with periods tending to infinity.

Heteroclinic period blow-up for symmetric o.d.eqns is studied in [17].

5.2.3 Perturbed Period Blow-Up

Verification of #
(
W̃ s

p ∩U,FixR ∩U
) �= 0 is not an easy task in Theorem 5.2.1.

For this reason in this part, we consider a C2-smooth perturbation f(x, ε) of f :

f(x, 0) = f(x) and Rf(x, ε) = f−1(Rx, ε) ∀x ∈ R
2N and any ε small .

Our aim is to find reasonable conditions to f(x, ε) so that Theorem 5.2.1 is
applicable for any ε �= 0 small. To this end, concerning the unperturbed diffeo-
morphism f we suppose
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(H1) There is an embedded compact C2-smooth submanifold M⊂ W̃ s
p \ {p} ∩

FixR of an open subset W̃ s
p of W s

p which is a submanifold of R
2N and

such that dim FixR∩ TξW̃
s
p = dimM for any ξ ∈M. Furthermore, there

is an oriented open bounded neighborhood O of M, M⊂ O ⊂ W̃ s
p \ {p}.

We suppose that M is orientable embedded into O.

Note always TξM ⊂ FixR ∩ TξW̃
s
p ∀ξ ∈ M and dimM = dimTξM, hence

(H1) implies TξM = FixR ∩ TξW̃
s
p ∀ξ ∈ M. Thus M is a non-degenerate

homoclinic manifold of f(x).

By the implicit function theorem, f(x, ε) has a unique hyperbolic fixed point
pε near p for ε small, i.e. f(pε, ε) = pε which implies Rpε = Rf(pε, ε) =
f−1(Rpε, ε) and the uniqueness gives Rpε = pε.

Next, Theorem 5.1.13 gives a C1-mapping x+
0 (ε, ξ), ξ ∈ W̃ s

p ∩ U which de-
termines an open subset of the stable manifold W s

pε
of f(x, ε) to the hyperbolic

symmetric fixed point pε of f(x, ε) near p. Setting

F (ξ, ε) := (I−R)x+
0 (ε, ξ)

we see that F (ξ, ε) = 0 is precisely the equation of R-symmetric homoclinic
solutions to pε. By Section 2.3.4 (see also (5.2.9)), in order to compute the local
intersection number of FixR and W s

pε
, we have to compute a Brouwer degree of

F (·, ε) for ε �= 0 small. To this end, we take a tubular neighborhood V of M in
W̃ s

p , i.e. any ξ ∈ V can be uniquely expressed as a pair ξ = (τ, v), where τ ∈M
and v ∈ TτW̃ s

p /TτM = TτW̃ s
p /(Fix R ∩ TτW̃ s

p ) = Nτ - the fiber of the normal
vector bundle of M in W̃ s

p , and |v| < � for some � > 0. Hence we identify V
with an open neighborhood of the zero section of the normal vector bundle ofM
in W̃ s

p . We note that the assumption (H1) implies the invertibility of the linear
mapping DvF (τ, 0, 0) : Nτ → RDvF (τ, 0, 0). Indeed, from x+

0 (0, ξ) = ξ we have
DvF (τ, 0, 0)v = (I−R)v, v ∈ TτW̃ s

p and hence NDvF (τ, 0, 0) = FixR∩ TτW̃ s
p .

Next, since M is orientable embedded into O and O is oriented, the tangent
vector bundle TM and the normal vector bundle ∪τ∈MNτ are both oriented.
Hence the vector bundle ∪τ∈M(I−R)Nτ = ∪τ∈MRDvF (τ, 0, 0) is also oriented,
because DvF (τ, 0, 0) : Nτ → RDvF (τ, 0, 0) is invertible. Taking the orthogonal
projection

Sτ : Fix(−R) → RDvF (τ, 0, 0) ⊂ Fix(−R)

and the oriented vector bundle ∪τ∈MFix(−R) = M × Fix(−R), the vector
bundle ∪τ∈MR(I−Sτ )Fix(−R) is oriented as well. Consequently any section of
this vector bundle has a Brouwer degree. Now we can prove the main result of
this subsection.
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Theorem 5.2.6. Assume (H1) and the following ones

(H2) There is an open connected subset Ω ⊂ M such that B(τ) �= 0, ∀τ ∈ ∂Ω,
where B(τ) = (I−Sτ )DεF (τ, 0, 0) is a section of the oriented vector bundle
∪τ∈MR(I− Sτ )Fix(−R).

(H3) deg(B(τ),Ω) �= 0.

Then there exists ε0 > 0 such that for 0 < |ε| ≤ ε0, the local intersection number
of FixR and W s

pε
is nonzero.

Proof. We have to compute a Brouwer degree of F (·, ε) for ε �= 0 small. From
F (τ, 0, 0) = 0, we get F (τ, v, ε) = DvF (τ, 0, 0)v + εDεF (τ, 0, 0) + o(|v|) + o(ε).
We consider the homotopy

H(τ, v, ε, λ) = Sτ

(
λF (τ, v, ε) + (1− λ)DvF (τ, 0, 0)v

)
+(I− Sτ )

(
λF (τ, v, ε) + (1− λ)εDεF (τ, 0, 0)

)
.

Note H(τ, v, ε, 1) = F (τ, v, ε). According to (H2), there is an open connected
bounded neighborhood U1 ⊂M of Ω̄ such that B(τ) �= 0, ∀τ ∈ U1 \Ω. Now we
take an open subset Vε = {(τ, v) ∈ V | τ ∈ U1 and |v| < |ε|r1} for a positive
constant r1 and 0 < |ε| < �/r1. We show that

H(τ, v, ε, λ) �= 0 ∀(τ, v, λ) ∈ ∂Vε × [0, 1] and ε �= 0 small. (5.2.10)

Indeed, from

Sτ

(
λF (τ, v, ε) + (1− λ)DvF (τ, 0, 0)v

)
= SτDvF (τ, 0, 0)v + o(|v|) + O(ε)

and SτDvF (τ, 0, 0) : Nτ → RDvF (τ, 0, 0) is invertible, we get that

Sτ

(
λF (τ, v, ε) + (1− λ)DvF (τ, 0, 0)v

) �= 0, ∀(τ, v) ∈ Vε, |v| = r1|ε|
for r1 sufficiently large and fixed. Furthermore, from (I − Sτ )DvF (τ, 0, 0) = 0
we have

(I− Sτ )
(
λF (τ, v, ε) + (1− λ)εDεF (τ, 0, 0)

)
= ε(I− Sτ )DεF (τ, 0, 0) + o(|v|) + o(ε) = εB(τ) + o(|v|) + o(ε) �= 0

for (τ, v) ∈ Vε, |v| ≤ r1|ε| and τ ∈ U1 \ Ω. Summarizing, we see that (5.2.10)
holds. Consequently deg(F, Vε, 0) = deg(H(·, ε, 0), Vε, 0). Note Sτ , (I − Sτ ) are
complementary orthogonal projections and

H(τ, v, ε, 0) = SτDvF (τ, 0, 0)v + ε(I− Sτ )DεF (τ, 0, 0) .

Since the linear map SτDvF (τ, 0, 0) : Nτ → RDvF (τ, 0, 0) is invertible and U1

is connected, we get

deg(H(·, ε, 0), Vε, 0) = ±deg(B(τ),Ω) �= 0 .

Consequently, we obtain deg(F, Vε, 0) �= 0, and so #(W̃ s
pε
∩ Vε,Fix R ∩ Vε) �= 0.

Theorem 5.2.6 is proved.



5.2. Topological Transversality and Reversibility 171

Remark 5.2.7. Theorems 5.2.1 and 5.2.6 imply an infinite number of R-symmetric
periodic orbits off(x, ε) accumulatingonR-symmetric homoclinic orbits of f(x, ε)
for any ε �= 0 small.

Remark 5.2.8. If (H1) holds and the Euler characteristic

χ
( ∪τ∈M R(I− Sτ )Fix(−R)

)
is nonzero, then any R-reversible C2-smooth perturbation f(x, ε) has a blue
sky catastrophe in the sense of Remark 5.2.7. Indeed, then (H3) is satisfied by
Section 2.3.6.

Nowwe showthatB(τ) is theMelnikov function for bifurcation ofR-symmetric
homoclinic orbits.

Theorem 5.2.9. Assume (H1). If f(x, ε) is C3-smooth and there is a simple
zero τ0 of B(τ), i.e. B(τ0) = 0 and DB(τ0) is nonsingular, then there is a unique
R-symmetric homoclinic orbit of f(x, ε) to pε for any ε �= 0 small bifurcating
from the R-symmetric homoclinic orbit of f(x) to p which starts from τ0 ∈M.

Proof. Since f(x, ε) is C3-smooth then F is C2-smooth. To find a R-symmetric
homoclinic orbit of f(x, ε) to pε for any ε �= 0 small, we need to solve F (τ, v, ε) = 0.
Next, we decompose it as F (τ, v, ε) = SτF (τ, v, ε)+(I−Sτ )F (τ, v, ε). SinceM is
compact, SτF (τ, 0, 0) = 0 and SτDvF (τ, 0, 0) : Nτ → RDvF (τ, 0, 0) is invertible,
using the implicit function theorem, we can solve the equation SτF (τ, v, ε) = 0 in
v near 0 for ε small and τ ∈M to get its C2-smooth solution v = v(τ, ε) = O(ε).
Then we consider the bifurcation equation

C(τ, ε) := (I− Sτ )F (τ, v(τ, ε), ε) = 0 . (5.2.11)

From (I− Sτ )DvF (τ, 0, 0) = 0 we see

C(τ, ε) = (I− Sτ )DvF (τ, 0, 0)v(τ, ε) + (I− Sτ )εDεF (τ, 0, 0)
+(I− Sτ )o(|v(τ, ε)|) + o(ε) = εB(τ) + o(ε) .

Hence C(τ, ε)/ε = B(τ)+o(1) in the C1-topology onM as ε → 0. Consequently,
the existence of a simple zero τ0 of B(τ) implies the solvability of C(τ, ε) = 0 in
τ near τ0 for ε �= 0 small. This determines the desired R-symmetric homoclinic
orbit of f(x, ε) to pε for ε �= 0 small.

Finally we simplify the formula of B(τ) using the following lemma.

Lemma 5.2.10. It holds R (I− Sτ ) =
(
TτW̃ s

p + FixR
)⊥

.

Proof. Note Sτ : Fix(−R)→ (I−R)TτW̃ s
p ⊂ Fix(−R) is the orthogonal projec-

tion. So R (I− Sτ ) = Fix (−R) ∩
(
(I−R)TτW̃ s

p

)⊥
. Since for any a ∈ Fix(−R)

and for any w ∈ TτW̃ s
p we have

〈a, (I−R)w〉 = 〈(I−R)a,w〉 = 2〈a,w〉 ,
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we see Fix (−R) ∩
(
(I−R)TτW̃ s

p

)⊥
= Fix (−R) ∩

(
TτW̃ s

p

)⊥
. Next note

Fix(−R) = (FixR)⊥ with the corresponding orthogonal projections 1
2 (I − R) :

R
2N → Fix(−R) and 1

2 (I + R) : R
2N → FixR. Consequently, we get

R (I− Sτ ) = (FixR)⊥ ∩
(
TτW̃ s

p

)⊥
=
(
TτW̃ s

p + FixR
)⊥

.

The lemma is proved.

Using dim W̃ s
p = dim FixR = N we derive

dim
(
TτW̃ s

p + FixR
)⊥

= 2N − dim
(
TτW̃ s

p + FixR
)

= 2N − dim TτW̃ s
p − dim FixR + dimTτW̃ s

p ∩ FixR

= dimTτW̃ s
p ∩ FixR = dimM .

(5.2.12)

Consequently, if ai(τ), i = 1, 2, . . . ,dimM is a continuous vector basis over M
such that ai(τ) ⊥ (TτW̃ s

p + FixR) for any τ ∈M. Then

B(τ) = (a1(τ)∗, . . . , adimM(τ)∗) D(τ)−1B̃(τ)

where components of B̃(τ) are given by

B̃i(τ) = 〈ai(τ), (I−R)Dεx
+
0 (0, τ)〉 = 2〈ai(τ), Dεx

+
0 (0, τ)〉 (5.2.13)

and D(τ) = (〈ai(τ), aj(τ)〉)dimM
i,j=1 is the Gram matrix. Clearly |deg(B(τ),Ω)| =∣∣∣deg(B̃(τ),Ω)

∣∣∣ when 0 /∈ B(∂Ω) for a connected open subset Ω of M. So in

place of B(τ) we consider B̃(τ) for computations. Note Pτx+
0 (ε, τ) = Pττ (see

(5.1.26)) implies PτDεx
+
0 (0, τ) = 0, i.e.

Dεx
+
0 (0, τ) ∈

(
TτW̃ s

p

)⊥
. (5.2.14)

5.2.4 Perturbed Second Order O.D.Eqns

In this part, we consider a perturbation of (5.2.1) of the form

z̈ = g(z) + εh(z), z ∈ R
N , (5.2.15)

where g, h ∈ C3(RN , RN ), g(0) = h(0) = 0. We use Theorem 5.2.6 to construct
a system of two perturbed second order o.d.eqns with a topologically transver-
sal, but non-C1-transversal, intersection of the stable manifold and FixR. We
rewrite (5.2.15) as

ż1 = z2, ż2 = g(z1) + εh(z1) . (5.2.16)

Let φ(t, z1, z2, ε) be the flow of (5.2.16). Then f(x, ε) = φ(1, x, ε) and x =
(z1, z2). Here R(z1, z2) = (z1,−z2) and

FixR = {(z1, 0) | z1 ∈ R
N}, Fix (−R) = {(0, z2) | z2 ∈ R

N} .
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The inner product 〈·, ·〉 is given by 〈(z1
1 , z1

2), (z2
1 , z2

2)〉 = (z1
1 , z2

1)+(z1
2 , z2

2), where
(·, ·) is the usual inner product on R

N . We assume that p = (0, 0) is a hyperbolic
equilibrium of (5.2.16).

In the sequel, we intend to derive formula (5.2.13) for (5.2.16). To this end,
we first make some general computations. For any τ ∈ FixR ∩ W̃ s

p , φ(t, τ, 0) is
a homoclinic solution to p of (5.2.16) with ε = 0. Moreover, if

φ(t, τ, 0) = (zτ
1 (t), zτ

2 (t))

then żτ
1 (0) = zτ

2 (0) = 0 and z̈τ
1 = g (zτ

1 ), so zτ
1 (t) is even and zτ

2 (t) = żτ
1 (t) is

odd. The linearization of (5.2.16) for ε = 0 along φ(t, τ, 0) has the form

v̇ = w, ẇ = Dg(zτ
1 (t))v . (5.2.17)

We know from Section 2.5.4 that

TτW̃ s(u)
p =

{
(v(0), w(0)) | v(t), w(t)

are bounded solutions of (5.2.17) on R+(−)

}
,

respectively. Furthermore, since RTτW̃ s
p = TRτW̃u

p = TτW̃u
p and for any w ∈

TτW̃ s
p , a ∈ Fix (−R), it holds 〈a,Rw〉 = −〈Ra,Rw〉 = −〈a,w〉, we get(

TτW̃ s
p + FixR

)⊥
=
(
TτW̃ s

p + TτW̃u
p + FixR

)⊥
.

So the condition a ⊥ (TτW̃ s
p + FixR) is equivalent to

a ∈ Fix (−R) ∩
(
TτW̃ s

p + FixR
)⊥

,

i.e. now a = (0, a2), and a ∈
(
TτW̃ s

p + TτW̃u
p

)⊥
. Hence according to arguments

from Section 2.5.4, v1(0) = 0 and w1(0) = a2 for bounded solutions v1(t) and
w1(t) on R of the adjoint system of (5.2.17) given by

v̇1 = −Dg(zτ
1 (t))∗w1, ẇ1 = −v1 ,

i.e. w1 is the even bounded solution on R of ẅ1 = Dg(zτ
1 (t))∗w1 with w1(0) = a2.

We note if g(z) = gradG(z) for some G ∈ C4(RN , R) then Dg(z) = Dg(z)∗. We
also see that

dim
(
TτW̃ s

p + FixR
)⊥

= dim
{

w1(0) ∈ R
N | w1 is an even

bounded solution on R of ẅ1 = Dg(zτ
1 (t))∗w1

}
.

(5.2.18)

Furthermore, since x+
0 (ε, τ) ∈ W s

p , ψ(t, ε) := φ(t, x+
0 (ε, τ), ε) is a homoclinic

solution to p of (5.2.16) with the initial value condition ψ(0, ε) = x+
0 (ε, τ). Then

(vτ (t), wτ (t)) := Dεψ(t, 0) is a bounded solutions on R+ of the system

v̇τ = wτ , ẇτ = Dg(zτ
1 (t))vτ + h(zτ

1 (t)) (5.2.19)
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with (vτ (0), wτ (0)) = Dεx
+
0 (0, τ). From (5.2.14) we know (vτ (0), wτ (0)) ⊥

TτW̃ s
p . Consequently, the corresponding component (5.2.13) of B̃(τ) to a is

given by

2〈a,Dεx
+
0 (0, τ)〉 = 2〈(0, a2), (vτ (0), wτ (0))〉 = 2(w1(0), wτ (0)) .

On the other hand, using (5.2.19) along with lim
t→+∞ v1(t) = 0 and lim

t→+∞w1(t) = 0,

we derive

(w1(0), wτ (0)) = −
∫ ∞

0

d

dt
[(w1(t), wτ (t))] dt

= −
∫ ∞

0

[(ẇ1(t), wτ (t)) + (w1(t), ẇτ (t))] dt

= −
∫ ∞

0

[−(v1(t), v̇τ (t)) + (w1(t), Dg(zτ
1 (t))vτ (t) + h(zτ

1 (t)))] dt

= −
∫ ∞

0

[−(v1(t), v̇τ (t)) + (Dg(zτ
1 (t))∗w1(t), vτ (t)) + (w1(t), h(zτ

1 (t)))] dt

= −
∫ ∞

0

[−(v1(t), v̇τ (t))− (v̇1(t), vτ (t)) + (w1(t), h(zτ
1 (t)))] dt

=
∫ ∞

0

d

dt
[(v1(t), vτ (t))] dt−

∫ ∞

0

(w1(t), h(zτ
1 (t))) dt

= −
∫ ∞

0

(h(zτ
1 (t), w1(t)) dt .

(5.2.20)
Summarizing we have the following result.

Theorem 5.2.11. Suppose g(z) = gradG(z) for some G ∈ C4(RN , R). Let

M =
{

(zτ (0), 0) | zτ (t) ∈ C3
(
O × R, RN

)
, τ ∈ O, zτ (t) is an even

bounded solution on R of (5.2.1)
}

for some open subset O ⊂ R
m. We suppose τ → zτ (0) is injective. Then M

is nondegenerate if Dτi
zτ (t), i = 1, . . . , m form a basis of all even bounded

solutions on R of ẅ = Dg(zτ (t))w for any τ = (τ1, . . . , τm) ∈ O. The Melnikov
mapping M(τ) = (M1(τ), . . . , Mm(τ)) is given by

Mi(τ) =
∫ ∞

0

(h(zτ (t)), Dτi
zτ (t)) dt . (5.2.21)

Proof. According to (5.2.12), (5.2.18) and assumptions of this theorem, we get

dimM = m = dim
(
TτW̃ s

p + FixR
)⊥

= dimTτW̃ s
p ∩ FixR. So M is nonde-

generate and ai(τ) = (0, Dτi
zτ (0)), i = 1, 2, . . . ,m. Next, (5.2.21) follows from

(5.2.13) and (5.2.20) when the factor −2 is dropped. The proof is finished.
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To be more concrete, let k ≥ 2, k ∈ N. We consider the system

ẍ = x− 2x(x2 + y2), ÿ = y − 2y(x2 + y2) + εx2k, x, y ∈ R , (5.2.22)

i.e. in the form of (5.2.16)

ẋ1 = x2, ẏ1 = y2, ẋ2 = x1 − 2x1(x2
1 + y2

1) ,

ẏ2 = y1 − 2y1(x2
1 + y2

1) + εx2k
1 .

(5.2.23)

Note G(x, y) = x2+y2

2 − (x2+y2)2

2 and pε = p = 0 in the above notations. Next,
system (5.2.23) has for ε = 0 a homoclinic manifold to 0 (see also (4.1.19))

γ(θ, t) := (xθ(t), yθ(t), ẋθ(t), ẏθ(t))

with xθ(t) = sin θr(t), yθ(t) = cos θr(t) and r(t) = sech t, which intersects Fix R
in a circle

M = {τ = (sin θ, cos θ, 0, 0) | θ ∈ R} .

Next, for τ ∈M we have

TτW̃ s
p = span {Dθγ(θ, 0), γ̇(θ, 0)}

= span {(cos θ,− sin θ, 0, 0), (0, 0,− sin θ,− cos θ)} .

Then
TτW̃ s

p ∩ FixR = span {(cos θ,− sin θ, 0, 0)} = TτM ,

so (H1) holds. On the other hand, in notation of Theorem 5.2.11 we have zθ(t) =
(xθ(t), yθ(t)) and w1(t) = Dθz

θ(t) = (yθ(t),−xθ(t)). By (5.2.21), function M(θ)
has now the form

M(θ) =
∫ ∞

0

(
(0, xθ(t)2k), (yθ(t),−xθ(t))

)
dt = −

∫ ∞

0

xθ(t)2k+1 dt

= −
∫ ∞

0

sin2k+1 θr2k+1(t) dt = −3.5 . . . (2k − 1)
2k+1k!

π sin2k+1 θ .

The bifurcation equation (5.2.11) is now analytical, so it is C̃(θ, ε) := C(τ, ε)/ε

with τ = (sin θ, cos θ, 0, 0). Hence θ = 0 is an isolated solution of C̃(θ, ε) = 0 for
any ε �= 0 small. The Brouwer degree of C̃(θ, 0) = B(θ) at θ = 0 is nonzero, so
Theorem 5.2.6 implies the following result.

Theorem 5.2.12. The point (0, 1, 0, 0) is an isolated topologically transversal
intersection of W s

pε
and FixR for (5.2.23) with ε �= 0 small. But this point is

not a C1-transversal intersection.

Proof. To prove the non-C1-transversal intersection, we consider a C3- pertur-
bation of (5.2.22) given by

ẍ = x− 2x(x2 + y2), ÿ = y − 2y(x2 + y2) + εφδ(x) , (5.2.24)



176 Chapter 5. Topological Transversality

where x, y ∈ R, δ > 0 is fixed and

φδ(x) :=
{

0 if |x| ≤ δ
(x− δsgn x)2k if |x| ≥ δ .

We see that (5.2.24) has even homoclinics xθ(t), yθ(t) for | sin θ| < δ and
any ε. Hence (0, 1, 0, 0) is not an isolated reversible homoclinic point for the
C3-perturbation (5.2.24) of the system (5.2.22). The proof is finished.

5.3 Chains of Reversible Oscillators

Methods of Section 5.2 can be directly applied to chains of weakly coupled
oscillators given by

ẋn = V (xn) + εH(xn−s, xn−s+1, . . . , xn+r) , (5.3.1)

where n ∈ Z, V ∈ C3(R2N , R2N ), H ∈ C3(R2N(r+s+1), R2N ), ε �= 0 is a small
parameter and s, r ∈ N are fixed. Such systems as (5.3.1) are considered as ordi-
nary differential systems on lattices or as chains of coupled ordinary differential
equations. They naturally occur in spatially discretized nonlinear systems (see
also Section 6.1) and they play a crucial role in modeling of many phenomena
in different fields, ranging from condensed matter and biophysics to mechani-
cal engineering [7,14,113,142,174]. Typical examples are discrete Klein-Gordon
equations

ẍn − xn + 2x3
n − ε(xn+1 − 2xn + xn−1) = 0 , (5.3.2)

ẍn + xn − x3
n − ε(xn+1 − 2xn + xn−1) = 0 , (5.3.3)

or the discrete sine-Gordon equation

ẍn + sin xn − ε(xn+1 − 2xn + xn−1) = 0 . (5.3.4)

The above equations (5.3.2–5.3.4) are spatial discretizations of a p.d.eqn

utt − uxx + h(u) = 0 , (5.3.5)

with the corresponding function h, since the spatial discretization of (5.3.5) gives

ün − 1
θ
(un+1 − 2un + un−1) + h(un) = 0 . (5.3.6)

For θ → 0; (θ → ∞) we have an integrable; (anti-integrable) case, respectively.
Now ε = 1/θ ! 1 so we deal with the anti-integrable case. The integrable
one is studied in Section 6.1. There are several papers [112, 142, 177] showing
breathers of (5.3.1) initializing from periodic solutions of anti-integrable (or anti-
continuum) limit equation

ẋ = V (x) . (5.3.7)

We recall that breathers are spatially localized time-periodic solutions, that is,
time-periodic solutions whose amplitudes decay exponentially in the space. The
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purpose of this section is to show that if (5.3.7) has a homoclinic/heteroclinic
period blow-up (or blue sky catastrophe), then also (5.3.1) will have similar
phenomena. We end this section with extending period blow-up phenomenon to
traveling waves of (5.3.1).

5.3.1 Homoclinic Period Blow-Up for Breathers

First we study the homoclinic period blow-up supposing that:

(a) System (5.3.1) is reversible, i.e. there is a linear involution S : R
2N → R

2N ,
S2 = I such that

V (Sx) = −SV (x), H(Sx1, . . . , Sxr+s+1) = −SH(x1, . . . , xr+s+1) .

(b) dim FixS = N .

(c) H(0, . . . , 0) = 0, V (0) = 0 and the spectrum of DV (0) lies off the imagi-
nary axis.

(d) There is a transversal S-reversible homoclinic orbit γ of (5.3.7) to 0, i.e.
there is an 0 �= γ : R → R

2N which is a solution of (5.3.7), lim
|t|→∞

γ(t) = 0,

Sγ(t) = γ(−t) and Tγ(0)W
s
0 ∩ FixS = {0}.

For (5.3.2), (5.3.7) has the form ẋ = y, ẏ = x−2x3 which is the Duffing equation
with γ(t) = (r(t), ṙ(t)), r(t) = sech t and S(x, y) = (x,−y). So (5.3.2) satisfies
assumptions (a–d).

According to Subsection 5.2.2, we take an inner product 〈·, ·〉 on R
2N such

that 〈Sx, Sy〉 = 〈x, y〉. Hence ‖S‖ = ‖S−1‖ = 1. Let us fix an η > 1 and consider
the Banach space

Xη =
{

x = {xn}n∈Z | xn ∈ R
2N , |x|η := sup

n
|xn|ηn < ∞

}
.

Then (5.3.1) has on Xη the form

ẋ = v(x) + εh(x) (5.3.8)

for v(x) = {V (xn)}n∈Z and h(x) = {H(xn−s, . . . , xn+r)}n∈Z. It is easy to see
from assumption (c) that v, h ∈ C3(Xη, Xη). Hence (5.3.1) is a smooth dynam-
ical system on Xη. By extending involution S onto Xη as Sx = {Sxn}n∈Z, we
see that (5.3.8) is S-reversible. We note |Sx|η = |x|η.

We denote by E0 the set of doubly infinite sequences of 0 and 1 with finite
numbers of entries 1. For any q = {qn}n∈Z ∈ E0, we put γq(t) = {γq(t)n}n∈Z ∈
Xη as follows

γq(t)n =
{

γ(t) for qn = 1 ,
0 for qn = 0 .

We see that γq(t) is a homoclinic solution of

ẋ = v(x) (5.3.9)
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to x = 0. So we take M := {γq(0) | q ∈ E0}. M is not compact, but it consists
from isolated points, i.e. it is a 0-dimensional manifold and thus TτM = {0}
for any τ ∈ M. The linearization of (5.3.9) at x = 0 is {u̇n = DV (0)un}n∈Z.
Due to hypothesis (c), (5.3.9) has the global stable and unstable manifolds
Ws

0 = {W s
0 }n∈Z

and Wu
0 = {Wu

0 }n∈Z
, respectively. Note ST0W

s
0 = T0W

u
0 and

T0W
s
0 ∩T0W

u
0 = {0}. Hence T0W

s
0 ∩FixS = {0}. Consequently, by assumption

(d) it holds
TτWs

0 ∩ FixS = {0} = TτM .

Hence hypothesis (H1) of Subsection 5.2.3 is satisfied. Now there is no a bi-
furcation function B(τ), since M is now a parametric space. We also have a
C1-transversal intersection of TτWs

0 and FixS. So for any τ ∈M we can apply
Theorem 5.2.1 and Remark 5.2.2 to obtain the following theorem (see also [82]).

Theorem 5.3.1. Let assumptions (a–d) hold for (5.3.1), (5.3.7). Then there
is an ε0 > 0 such that for any q ∈ E0 and for any |ε| ≤ ε0, there is a unique
homoclinic solution xε,q

n (t), n ∈ Z of (5.3.1) such that

(i) xε,q
n (t) → 0 exponentially fast as |t| → ∞ and uniformly for |ε| ≤ ε0 and

n ∈ Z .

(ii) xε,q
n (t) are S-reversible, i.e. Sxε,q

n (t) = xε,q
n (−t) for all n ∈ Z.

(iii) {xε,q
n (t)}n∈Z ∈ Xη is near to γq(t) in Xη and {x0,q

n (t)}n∈Z = γq(t).

(iv) The homoclinic loop {xε,q
n (t)}n∈Z is accumulated by ω-periodic S-reversible

solutions {xω,ε,q
n (t)}n∈Z of (5.3.1) for any ω > 1/ε0.

Theorem 5.3.1 ensures the existence of continuum many S-reversible homo-
clinic solutions to 0 of (5.3.1)) and each of them is accumulated by continuum
many periodic solutions with periods tending to infinity. Consequently, under
assumptions of Theorem 5.3.1, dynamics of (5.3.1) is very rich with infinitely
many narrow layers of breathers with arbitrarily large periods. Due to the hyper-
bolicity of the equilibrium x = 0 of (5.3.8) for ε small, clearly these homoclinic
solutions are not stable. We already know that Theorem 5.3.1 is applicable to
(5.3.2).

5.3.2 Heteroclinic Period Blow-Up for Non-breathers

Assumptions (a) and (b) hold for (5.3.3) and (5.3.4), but (c) and (d) must be
replaced by the following one:

(e) There is a heteroclinic loop of (5.3.7), i.e. there is a hyperbolic equilibrium
x0 of (5.3.7) such that Sx0 �= x0 and a S-reversible heteroclinic solution
γ1 : R → R

2N of (5.3.7) from equilibrium x0 to equilibrium Sx0 such
that the unstable manifold Wu

x0
of (5.3.7) at x0 C1-transversally crosses

FixS at γ1(0) along with the existence of another S-reversible heteroclinic
solution γ2 : R → R

2N of (5.3.7) from equilibrium Sx0 to equilibrium x0

such that the stable manifold W s
x0

of (5.3.7) at x0 C1-transversally crosses
FixS at γ2(0).
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Again dimW s
x0

= dimWu
x0

= N . Now we consider (5.3.8) on X1, which is the
usual �∞(2N) and instead of E0, we take E-the set of doubly infinite sequences
of 0 and 1. For any q = {qn}n∈Z ∈ E we put x0,q = {x0,q,n}n∈Z ∈ �∞(2N) by

x0,q,n =
{

x0 for qn = 1 ,
Sx0 for qn = 0

and γj,q(t) = {γj,q(t)n}n∈Z ∈ �∞(2N), j = 1, 2 as follows

γ1,q(t)n =
{

γ1(t) for qn = 1 ,
γ2(t) for qn = 0

and

γ2,q(t)n =
{

γ2(t) for qn = 1 ,
γ1(t) for qn = 0 .

Like above, we can easily verify that equilibria x0,q (Sx0,q) and Sx0,q (x0,q) of
(5.3.9) are connected by a S-reversible heteroclinic solution γ1,q (γ2,q) with a
C1-transversal crossing of the unstable (stable) manifoldWu

x0,q
(Ws

x0,q
) of (5.3.9)

at x0,q with FixS, respectively. Consequently, Theorem 5.2.5 can be applied to
get the next result.

Theorem 5.3.2. Let assumptions (a), (b), (e) hold for (5.3.1) and (5.3.7).
Then there is an ε0 > 0 such that for any q ∈ E and for any |ε| ≤ ε0, there are
unique heteroclinic solutions x1,ε,q

n (t) and x2,ε,q
n (t), n ∈ Z of (5.3.1) such that

(A) {x1,ε,q
n (t)}n∈Z connects xε,q and Sxε,q with exponential decay uniformly

for |ε| ≤ ε0. {x2,ε,q
n (t)}n∈Z connects Sxε,q and xε,q with exponential decay

uniformly for |ε| ≤ ε0. Here xε,q is a unique equilibrium of (5.3.1) near
x0,q.

(B) xi,ε,q
n (t), i = 1, 2 are S-reversible, i.e. Sxi,ε,q

n (t) = xi,ε,q
n (−t) for all n ∈ Z

and i = 1, 2.

(C) {xi,ε,q
n (t)}n∈Z ∈ �∞(2N) is near to γi,q(t) in �∞(2N) and {xi,0,q

n (t)}n∈Z =
γi,q(t), i = 1, 2.

(D) The heteroclinic loop in �∞(2N) created by {xi,ε,q
n (t)}n∈Z, i = 1, 2 is accu-

mulated by ω-periodic S-reversible solutions {xω,ε,q
n (t)}n∈Z of (5.3.1) for

any ω > 1/ε0.

Again Theorem 5.3.2 ensures the existence of continuum many S-reversible
heteroclinic loops of (5.3.1) and each of them is accumulated by continuum many
periodic solutions with periods tending to infinity. Due to x0 �= 0, of course these
periodic solutions are not breathers, since they are not spatially localized.

To apply Theorem 5.3.2, we take the involution S(x, y) = (−x, y) with x0 =
(−1, 0) and γ1(t) = (r1(t), ṙ1(t)), γ2(t) = −γ1(t), r1(t) = tanh

√
2

2 t for (5.3.3),
and with x0 = (−π, 0) and γ1(t) = (r2(t), ṙ2(t)), γ2(t) = −γ1(t), r2(t) =
2 arctan(sinh t) for (5.3.4), respectively.
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More general equations on lattices can be studied than (5.3.1). For instance,
let us consider the topological discrete sine-Gordon equation [113]

ẋn = yn

ẏn = ε cos xn(sin xn+1 + sin xn−1)−
(

ε +
1
2

)
sin xn(cos xn+1 + cos xn−1) ,

(5.3.10)
where ε is small and n ∈ Z. For ε = 0, we get

ẋn = yn , ẏn = −1
2

sin xn(cos xn+1 + cos xn−1) . (5.3.11)

We consider (5.3.10) on �∞(2) with the involution

S({(xn, yn)}n∈Z) := {(−xn, yn)}n∈Z .

Then (5.3.10) is S-reversible. For any increasing sequence q = {ni}i, ni ∈ Z, we
put x0,q = {x0,q,n}n∈Z ∈ �∞(2) by

x0,q,n =

⎧⎨⎩
(−π, 0) for n = 2ni + 1 ,
(π, 0) for odd n �= 2ni + 1 ,
(0, 0) for even n

and γj,q(t) = {γj,q(t)n}n∈Z ∈ �∞(2), j = 1, 2 as follows

γj,q(t)n =

⎧⎨⎩
(−1)j+1(φ(t), φ̇(t)) for n = 2ni + 1 ,

(−1)j(φ(t), φ̇(t)) for odd n �= 2ni + 1 ,
(0, 0) for even n

for φ(t) = 2 arctan(sinh t). We can easily verify like above that both Ws
x0,q

and
Wu

x0,q
C1-transversally cross the set Fix S at γ2,q(0) and γ1,q(0), respectively.

Summarizing, a statement similar to Theorem 5.3.2 holds also for (5.3.10) with ε
sufficiently small. Those heteroclinic and periodic solutions of (5.3.10) are again
spatially not localized.

In this section, we consider for simplicity only transversal intersections of
stable and unstable manifolds with FixS of (5.3.7), but topologically transversal
intersections could be dealt similarly.

Finally, similar approach is used in [83] to show breathers for diatomic lat-
tices modeling two one-dimensional interacting sublattices of harmonically cou-
pled protons and heavy ions [161,162] representing the Bernal-Flower filaments
in ice or more complex biological macromolecules in membranes in which only
the degrees of freedom that contribute predominantly to proton mobility have
been conserved. In these systems, each proton lies between a pair of “oxygens”.
The following two coupled infinite chains of oscillators is considered

ün =
k1

m

(
un+1 − 2un + un−1

)
+

4ξ0

md2
0

un

(
1− u2

n

d2
0

)
− 2

χ

m
ρnun ,

ρ̈n =
K1

M

(
ρn+1 − 2ρn + ρn−1

)− Ω2
0ρn − χ

M
(u2

n − d2
0) ,
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where un denotes the displacement of the nth proton with respect to the center
of the oxygen pair, k1 is the coupling between neighboring protons and m is
the mass of protons, ξ0 is the potential barrier, 2d0 is the distance between two
minima of the double-well potential of protons, ρn is the displacement between
two oxygens, M is the mass of oxygens, Ω0 is the frequency of the optical mode,
K1 is the harmonic coupling between neighboring oxygens and χ measures the
strength of the coupling. It is supposed that couplings are small k1,K1, χ ∼ 0.

5.3.3 Period Blow-Up for Traveling Waves

We finish this section with the study of traveling waves of (5.3.1) of the form
xn(t) = v(νt− n) for which we get

νv′(z) = V (v(z)) + εH (v(z + s), v(z + s− 1), . . . , v(z − r)) , (5.3.12)

where z = νt−n and ν �= 0. We are looking for S-reversible solutions of (5.3.12),
i.e. v(−z) = Sv(z), by applying results and methods of Section 5.2. Under either
assumptions (a–d) or (a), (b), (e) of this section, we only need to verify (see
(5.2.3)) that the perturbation of (5.3.12) is also S-antireversible:

v(−z) = Sv(z)⇒ Sṽ(z) = −ṽ(−z) (5.3.13)

for ṽ(z) := H (v(z + s), v(z + s− 1), . . . , v(z − r)). Since

Sṽ(z) = −H (v(−z − s), v(−z − s + 1), . . . , v(−z + r)) ,

we see that (5.3.13) is satisfied provided we suppose

(f) r = s and H is symmetric, i.e. it holds

H(x1, x2, . . . , x2s, x2s+1) = H(x2s+1, x2s, . . . , x2, x1)

for any x1, x2, . . . , x2s+1 ∈ R
2N . We have the next result.

Theorem 5.3.3. (a) Under assumptions (a–d) and (f) of this section, for any
ν �= 0 there is an ε0 > 0 that for all |ε| < ε0, (5.3.1) has a traveling wave
solution of a form xn(t) = v(νt − n) which is near to γ

(
t− n

ν

)
such that v(z)

is S-reversible and asymptotic to 0 as z → ±∞, respectively. This traveling
wave is accumulated by periodic traveling waves with minimal periods tending
to infinity.

(b) Under assumptions (a), (b), (e) and (f) of this section, for any ν �= 0
there is an ε0 > 0 that for all |ε| < ε0, (5.3.1) has traveling wave solutions (kinks)
of forms xn(t) = v1,2(νt − n) which are near to γ1,2

(
t− n

ν

)
such that v1,2(z)

are S-reversible and asymptotic to xε and Sxε as z → ±∞, respectively. These
kinks are accumulated by periodic traveling waves with minimal periods tending
to infinity. Here xε is a unique solution of V (xε) + εH (xε, xε, . . . , xε) = 0
near x0.

The constant ε0 depends on ν, but it is uniform for ν from a bounded set.



Chapter 6

Traveling Waves on Lattices

6.1 Traveling Waves in Discretized P.D.Eqns

Most nonlinear lattice systems are non-integrable even if a p.d.eqn model in the
continuum limit is integrable (see [7,99,175] and references therein). Prototype
models for such nonlinear lattices are various discrete nonlinear Schrödinger and
Klein-Gordon equations or systems. There is a particularly important class of so-
lutions so called discrete breathers which are homoclinic in space and oscillatory
in time (see Section 5.3) [99]. Other questions involve the existence and propa-
gation of topological defects or kinks which mathematically are heteroclinic con-
nections between a ground and an excited steady state [176,182] (see Theorem
5.3.3). They have applications to problems such as dislocation and mass trans-
port in solids, charge-density waves, commensurable-incommensurable phase
transitions, Josephson transmission lines etc. Prototype models here are dis-
crete sine-Gordon equations, also known as Frenkel-Kontorova models [2].

In this section, we consider a chain of coupled particles subjected to an exter-
nal potential (see Fig. 6.1). A Hamiltonian H of such system can be written as:

H =
∑
n∈Z

(
1
2
u̇2

n +
1

2ε2
(un+1 − un)2 −F(un)

)
, (6.1.1)

where un is the displacement of the n–th particle from its equilibrium position.
This gives the discrete nonlinear Klein-Gordon equation:

ün − 1
ε2

(un+1 − 2un + un−1)− h(un) = 0 , (6.1.2)

where h(un) = F ′(un), n ∈ Z. Equation (6.1.2) is also a spatial discretization of
a p.d.eqn

utt − uxx − h(u) = 0 . (6.1.3)

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 183–198. 183
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Figure 6.1: The model of discrete sine-Gordon equation

We get (6.1.2) from (6.1.3) putting

un(t) = u(εn, t) ,

uxx(εn, t) ∼ u(ε(n + 1), t)− 2u(εn, t) + u(ε(n− 1), t)
ε2

.
(6.1.4)

Since ε! 1 we study the continuum/integrable case. We suppose h ∈ C1 along
with

(A) h(0) = 0, h′(0) = −a2 < 0 and there is a homoclinic solution φ of ẍ +
h(x) = 0 such that φ(t) = φ(−t) and φ(t) → 0 as t → ±∞.

Then (6.1.3) admits traveling wave solutions

u(x, t) = φ
( x− νt√

1− ν2

)
, 0 < ν < 1

We also consider for (6.1.2) traveling wave solutions

un(t) = V
(
n− ν

ε
t
)
≡ V (z), z = n− ν

ε
t, 0 < ν < 1 .

Substituting this into (6.1.2) we obtain the following functional differential
equation:

ν2V ′′(z)− V (z + 1) + 2V (z)− V (z − 1)− ε2h(V (z)) = 0 . (6.1.5)

The discrete sine-Gordon equation for h(u) = − sin u in (6.1.2) of the form

ün = un+1 − 2un + un−1 − ε2 sin un (6.1.6)

has been numerically investigated in [71, 176]: As ε → 0, we get the continuum
sine-Gordon equation utt−uxx +sinu = 0 with the supporting moving kinks of
the form

4 arctan
[
exp
( x− νt√

1− ν2

)]
.

Thus it was natural in [71,176] to seek numerically solutions of

ν2U ′′(z) = U(z + 1)− 2U(z) + U(z − 1)− ε2 sin U(z) , (6.1.7)
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where U(z) = U(n− νt) = un(t), with the boundary conditions U(z) → 0 mod
2π as z → ±∞. They did not find such solutions. Their closest result is that
the numerical solution of (6.1.7) near

4 arctan
[
exp
(
ε

x− νt√
1− ν2

)]
has tails of periodic waves of small amplitude. But according to the form of
(6.2.5) below, that result is consistent with our analytical result, since the y-part
of (6.2.5) is oscillatory with small amplitude. Recent numerical simulations of
discrete lattices such as (6.1.6) are studied in [2] of the form

ün = un+1 − 2un + un−1 − ϑ
(1 + 2α) sin u

(1 + α(1− cos u))2
, (6.1.8)

where ϑ > 0 measures the onsite potential strength and α ≥ 0 measures the
degree of anharmonicity. For α = 0 this is (6.1.6).

Finally, the anticontinuum/anti-integrable case of (6.1.2) is

ün − θ(un+1 − 2un + un−1)− h(un) = 0 , (6.1.9)

for θ → 0. Then Theorem 5.3.3 can be applied to get a traveling wave solu-
tion un(t) = V (νt − n) of (6.1.9) near a γ̃

(
t− n

ν

)
where ν �= 0 and γ̃(t) is a

homoclinic/heteroclinic solution of ü− h(u) = 0. Note V (z) now satisfies

ν2V ′′(z)− θ(V (z + 1) + 2V (z)− V (z − 1))− h(V (z)) = 0

and u(x, t) = γ̃
(
t− n

ν

)
is a degenerate traveling wave of (6.1.3). Applying these

arguments to (6.1.6) as ε →∞, we get its traveling wave (a kink) near

2 arctan
[
sinh

(
εt− n

ν

)]
accumulated by periodic traveling waves with minimal periods tending to infin-
ity. Of course, the magnitude of ε depends on ν.

6.2 Center Manifold Reduction

Now we use the method of center manifolds of Section 2.6 in order to show
existence of periodic solutions of (6.1.5) [94].

1. Step: The idea is to rewrite (6.1.5) as an evolution equation on an ap-
propriate functional Banach space. To this end, we introduce the Banach spaces
H and D for U =

(
x, ξ,X(v)

)
H = R

2 × C([−1, 1]) ,

D =
{
U ∈ R

2 × C1[−1, 1] | X(0) = x
}

with the usual maximum norms. Then (6.1.5) can be written as follows

Ut = LU +
ε2

ν2
M(U), U(t, v) =

(
x(t), ξ(t), X(t, v)

)∗
, (6.2.1)
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where

L =

⎛⎝ 0 1 0
− 2

ν2 0 1
ν2 δ1 + 1

ν2 δ−1

0 0 ∂v

⎞⎠
M(U) =

(
0, h(x), 0

)∗
, δ±X(v) = X(±1)

with L ∈ L(D, H) and M ∈ C1(D, D). We consider (6.2.1) on D.

2. Step: A linear analysis of (6.2.1). The spectrum σ(L) of L is given by
the resolvent equation

(λI− L)U = F , F ∈ H , λ ∈ C , U ∈ D .

This is solvable if and only if N(λ) = 0 for N(λ) = λ2 + 2
ν2 (1− cosh λ). Clearly

σ(L) is invariant under λ → λ̄ and λ → −λ. The central part σ0(L) = σ(L)∩ ıR
is determined by the equation N(ıq) = 0, i.e.

q2 +
2
ν2

(cos q − 1) = 0 , q ∈ R . (6.2.2)

The basic properties of σ(L) are given in [120, Lemma 1]:

Lemma 6.2.1. (i) For each ν > 0, there exists p0 > 0 such that ∀λ ∈ σ(L) \
σ0(L), |�λ| ≥ p0.

(ii) If λ = p + ıq ∈ σ(L) then |q| ≤ 2
√

e2+4ν2

ν e cosh(p/2).

(iii) For ν > 1, 0 is the only eigenvalue on the imaginary axis with the multi-
plicity 2. There are only two real eigenvalues ±λ tending to 0 as ν → 1.
For ν ≤ 1, the eigenvalue 0 is the only real one.

(iv) For ν = 1, the eigenvalue 0 is quadruple with a 4× 4 Jordan block.

(v) There is a decreasing sequence νn, n = 0, 1, 2 . . . such that ν0 = 1 and
νn → 0, and for ν = νn with n ≥ 1, there is a pair ±ıqn of double non-
semi-simple imaginary eigenvalues in addition to the double non-semi-
simple eigenvalue at 0, and 2n − 1 pairs of simple imaginary eigenvalues
±ıg̃j such that 0 < q̃j < qn.

In this section, we assume that ν1 < ν < 1. Note ν = ν1 is the first value
from the left of 1 for which the equations

λ2 +
2
ν2

(cos λ− 1) = 0, λ− 1
ν2

sin λ = 0 (6.2.3)

have a common nonzero solution λ �= 0. Then by (v) of Lemma 6.2.1 we have
σ0(L) = {0,±ıq}. After some computations we see that the corresponding 4th-
dimensional central subspace Hc has a basis (ξ1, ξ2, ξ3, ξ4) defined by

ξ1 = (1, 0, 1) , ξ2 = (0, 1, v), ξ3 = (1, 0, cos qv) , ξ4 = (0, q, sin qv)
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with Lξ1 = 0, Lξ2 = ξ1, Lξ3 = −qξ4, Lξ4 = qξ3. So L on Hc has the form

Lc = L/Hc =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 q
0 0 −q 0

⎞⎟⎟⎠ .

The corresponding spectrum projections are derived as the residues of the in-
verse (λI−L)−1 at λ = 0, ±ıq, respectively, of the resolvent operator. Performing
these computations, the projection Pc : H → Hc is given by

Pc(U) = P1(U)ξ1 + P2(U)ξ2 + P3(U)ξ3 + P4(U)ξ4 ,

where

P1(U) =
ν2

ν2 − 1
x− 1

ν2 − 1

1∫
0

(1− s)
[
X(s) + X(−s)

]
ds ,

P2(U) =
ν2

ν2 − 1
ξ +

1
ν2 − 1

1∫
0

[
X(−s)−X(s)

]
ds ,

P3(U) =
(
ν2qx−

1∫
0

sin q(1− s)
[
X(s) + X(−s)

]
ds
)
/
(
qν2 − sin q

)
,

P4(U) =
(
ν2ξ +

1∫
0

cos q(1− s)
[
X(−s)−X(s)

]
ds
)
/
(
qν2 − sin q

)
.

So the condition (i) of a hypothesis (H) of Theorem 2.6.2 is satisfied. The last
one (ii) is shown in [122]. Hence we can proceed to the next step.

3. Step: The center manifold reduction method to (6.2.1) for simplifying it.
Since M(U) is Lipschitz, for any bounded ball Ω of Hc centered at 0, we can
apply the procedure of a center manifold method of Theorem 2.6.2 to get for ε
small the reduced equation of (6.2.1) over Ω given by

u̇c = Lcuc +
ε2

ν2
PcM

(
uc + ε2Φε(uc)

)
= Lcuc +

ε2

ν2
Pc(M(uc)) + O(ε4) ,

(6.2.4)
where uc = u1ξ1 + u2ξ2 + u3ξ3 + u4ξ4 and Φε is the graph map of the center
manifold. So any solution of (6.2.4) in Ω determines a solution U(t, v) = uc(t)+
ε2Φε(uc(t)) of (6.2.1). Using the above formulas for Pc, (6.2.4) has the form

u̇1 = u2, u̇2 =
ε2

ν2 − 1
h̃(u1, u2, u3, u4, ε

2)

u̇3 = qu4, u̇4 = −qu3 +
ε2

qν2 − sin q
h̃(u1, u2, u3, u4, ε

2) ,
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for a C1-function h̃. Considering

x(t) = x1(t) = u1(t/ε) , x2(t) = u2(t/ε)/ε ,

y(t) = y1(t) = u3(t/ε) , y2(t) = u4(t/ε) ,

(6.2.4) takes the form

ẋ1 = x2, ẋ2 =
1

ν2 − 1
h̃(x1, εx2, y1, y2, ε

2)

ẏ1 =
q

ε
y2, ẏ2 = −q

ε
y1 +

ε

qν2 − sin q
h̃(x1, εx2, y1, y2, ε

2) ,

which gives

ẍ =
1

1− ν2
f(x, εẋ, y, εẏ/q, ε) ,

ε2ÿ + q2y =
ε2q

sin q − ν2q
f(x, εẋ, y, εẏ/q, ε) ,

(6.2.5)

where f(x1, x2, y1, y2, ε) = −h(x1 + y1) + O(ε2). Consequently, for ε = 0 and
y = 0, the limit equation of (6.2.5) has the form

(1− ν2)ẍ + h(x) = 0 . (6.2.6)

Note looking for a traveling wave solution u(x, t) = w(νt − x) of (6.1.3), we
get (1− ν2)ẅ + h(w) = 0. So (6.2.6) is precisely the traveling wave equation of
(6.1.3). It is possessing a homoclinic solution x(t) = φ(t/

√
1− ν2). Summarizing

we get the following result.

Proposition 6.2.2. A dynamics of (6.2.1) can be reduced to (6.2.5) which is a
singular perturbation of the traveling wave equation (6.2.6) of (6.1.3).

4. Step: Symmetries of the reduced equation. (6.2.5) is still rather compli-
cated to study it. For this reason we consider the symmetry

S(U) =
(
x,−ξ,X(−v)

)
on H. Then (6.2.1) is reversible with respect to S, i.e. S ◦L = −L ◦ S, M ◦ S =
−S ◦M . Moreover, we have Pc ◦S = S ◦Pc and Sξ1 = ξ1, Sξ2 = −ξ2, Sξ3 = ξ3,
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Sξ4 = −ξ4. Since S is unitary, by Section 2.6, the map Φε can be chosen in such
a way that S ◦ Φε = Φε ◦ Sc for Sc := S/Hc. Note Sc : Hc → Hc. This implies

LcScuc +
ε2

ν2
PcM

(
Scuc + ε2Φε(Scuc)

)
= −Sc

(
Lcuc +

ε2

ν2
PcM

(
uc + ε2Φε(uc)

))
.

Hence (6.2.4) is reversible with respect to Sc. Moreover, Sc has in the coordinates
(x1, x2, y1, y2) on Hc the form Sc(x1, x2, y1, y2) = (x1,−x2, y1,−y2).

6.3 A Class of Singularly Perturbed O.D.Eqns

Motivated by (6.2.5), we consider a system

ẍ + h(x) = f(x, ẋ, y, εẏ, ε), ε2ÿ + y = ε2g(x, ẋ, y, εẏ, ε) , (6.3.1)

where ε > 0 is a small parameter, h ∈ C1 satisfies (A) and with f, g such that

(B) f, g ∈ C1, f(x1, x2, 0, 0, 0) = 0

(C) f(x1, x2, y1, y2, ε), g(x1, x2, y1, y2, ε) are even in the variables x2 and y2,
i.e. f(x1,−x2, y1,−y2, ε) = f(x1, x2, y1, y2, ε) and g(x1,−x2, y1,−y2, ε) =
g(x1, x2, y1, y2, ε)

Note in [15, 70, 109, 133] there are examined the existence or nonexistence of
homoclinic solutions of singular ordinary differential systems of the following
type

ε2y(4) + ÿ − y + y2 = 0 (6.3.2)

which arises in the theory of water-waves in the presence of surface tension [4].
Setting v = y, u = ÿ − y + y2, (6.3.2) leads to

v̈ = u + v − v2, ε2ü + u = ε2
[
2v̇2 − (1− 2v)(u + v − v2)

]
, (6.3.3)

which has a form of (6.3.1). Next, in [15] it is shown that bifurcation functions of
homoclinic solutions of (6.3.1) under the above assumptions are exponentially
small in addition that h, f, g are analytical. In [70, 109] it is established the
nonexistence of certain homoclinic solutions of (6.3.2).

6.4 Bifurcation of Periodic Solutions

In this section, we study the existence of periodic solutions of (6.3.1) near
(φ(t), 0). Substituting y = 0, ε = 0 into (6.3.1), we get the equation

ẍ + h(x) = 0 . (6.4.1)

Equation (6.4.1) has a hyperbolic fixed point (0, 0) with the homoclinic solution
(φ, φ̇) which is accumulated by periodic solutions with periods tending to infin-
ity. We show that in spite of the fact that generally the homoclinic solution of
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(6.4.1) does not survive under the singular perturbation (6.3.1). The problem
(6.3.1) has many layers of continuum periodic solutions near the solution (φ, 0):
The smaller ε the more layers of continuum periodic solutions of (6.3.1) exist
near (φ, 0) with very large periods. This is some kind of blue sky catastrophe
bifurcation to (6.3.1) studied in Section 5.2. Results of [15,70,109,133] are now
not applicable since h is only C1-smooth.

In order to find periodic solutions of (6.3.1) near (φ, 0), we make the change
of variables

x(t) = φ(t) + ε1/4u(t), y(t) =
√

εv(t) ,

and we get

ε2v̈ + v = ε3/2g(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε)

ü + h′(φ)u = − 1
ε1/4

{
h(φ + ε1/4u)− h(φ)− h′(φ)ε1/4u

}
+

1
ε1/4

f(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε) .

(6.4.2)

We are looking for solutions of (6.3.1) satisfying ẋ(0) = ẋ(T ) = 0, ẏ(0) =
ẏ(T ) = 0. This gives

u̇(0) = 0, u̇(T ) = −φ̇(T )/ε1/4, v̇(0) = 0, v̇(T ) = 0 . (6.4.3)

First we study linear parts of (6.4.2). We take the linearization of (6.4.1) along
φ(t) and consider the variational equation

ü + h′(φ(t))u = z(t), 0 ≤ t ≤ T (6.4.4)

with the boundary value conditions

u̇(0) = 0, u̇(T ) = b . (6.4.5)

Since h′(0) = −a2 < 0, a > 0, we have φ(t), φ̇(t) ∼ e−at as t → +∞, i.e. it
holds that

φ(t)/ e−at → c1 �= 0 and φ̇(t)/ e−at → c2 �= 0 as t → +∞ .

The homogeneous equation (6.4.4) with z = 0 has solutions wi(t), i = 1, 2 such
that:

• w1 is odd, w1(0) = 0, ẇ1(0) = 1, w1(t), ẇ1(t) ∼ e−at as t → +∞
• w2 is even, w2(0) = −1, ẇ2(0) = 0, w2(t), ẇ2(t) ∼ eat as t → +∞
The general solution of (6.4.4) has the form

u(t) = LT (z, b) ≡ c1w1(t) + c2w2(t) + z1(t) ,

z1(t) =

t∫
0

[
w2(t)w1(s)− w1(t)w2(s)

]
z(s) ds .
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The condition (6.4.5) gives c1 = 0 and c2 = − ż1(T )
ẇ2(T ) + b

ẇ2(T ) . Hence, we get

u(t) = b
w2(t)
ẇ2(T )

−
T∫

t

w2(t)w1(s)z(s) ds

+
ẇ1(T )
ẇ2(T )

T∫
0

w2(t)w2(s)z(s) ds−
t∫

0

w1(t)w2(s)z(s) ds

(6.4.6)

and

u̇(t) = b
ẇ2(t)
ẇ2(T )

−
T∫

t

ẇ2(t)w1(s)z(s) ds

+
ẇ1(T )
ẇ2(T )

T∫
0

ẇ2(t)w2(s)z(s) ds−
t∫

0

ẇ1(t)w2(s)z(s) ds .

(6.4.7)

By using the above asymptotic properties of w1 and w2, there is a constant
C1 > 0 such that for any t, s ∈ [0, T ] and T > 0 large, we get

|w2(t)/ẇ2(T )| ≤ C1 ea(t−T ), |w2(t)w1(s)| ≤ C1 ea(t−s) ,∣∣∣ ẇ1(T )
ẇ2(T )

w2(t)w2(s)
∣∣∣ ≤ C1 ea(−2T+t+s), |w1(t)w2(s)| ≤ C1 ea(s−t) ,

|ẇ2(t)w1(s)| ≤ C1 ea(t−s), |ẇ1(t)w2(s)| ≤ C1 ea(s−t) ,

|ẇ2(t)/ẇ2(T )| ≤ C1 ea(t−T ),
∣∣∣ ẇ1(T )
ẇ2(T )

ẇ2(t)w2(s)
∣∣∣ ≤ C1 ea(−2T+t+s).

These estimates imply together with (6.4.6–6.4.7) the existence of a constant
c > 0 such that

||u||+ ||u̇|| ≤ c(|b|+ ||z||) , (6.4.8)

where ||x|| = max[0,T ] |x(t)|. Summarizing, we get the next result.

Lemma 6.4.1. Problem (6.4.4–6.4.5) has a unique solution u = LT (z, b) satis-
fying (6.4.8).

Now, we consider the problem

ε2v̈ + v = εz(t), v̇(0) = v̇(T ) = 0, 0 ≤ t ≤ T . (6.4.9)

We can immediately see that the solution of (6.4.9) is given by

v(t) = Lε,T (z) ≡ 1
sin(T/ε)

T∫
0

cos
T − s

ε
z(s) ds cos(t/ε) +

t∫
0

sin
t− s

ε
z(s) ds .

If T satisfies ∣∣∣T
ε
− 2kπ ± π

2

∣∣∣ ≤ π/4, k ∈ N (6.4.10)
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then 1 ≥ | sin(T/ε)| ≥ √2/2, and we obtain the estimate

||v||+ ||εv̇|| ≤ 2T ||z||(
√

2 + 1) . (6.4.11)

Summarizing, we get the next result.

Lemma 6.4.2. If condition (6.4.10) holds then problem (6.4.9) has a unique
solution v = Lε,T (z) satisfying (6.4.11).

Note (6.4.10) is a nonresonance condition. Now we are ready to prove the
following bifurcation result.

Theorem 6.4.3. For any k0 ∈ N there is an ε0 > 0 such that for any 0 <
ε < ε0 and T = ε

(
2k[1/ε3/2]π + τ

)
with k ∈ N, k ≤ k0, τ ∈ [π/4, 3π/4] ∪

[5π/4, 7π/4], system (6.3.1) has a 2T -periodic solution near (φ(t), 0), −T ≤ t ≤
T . Here [1/ε3/2] is the integer part of 1/ε3/2. Moreover, xT,ε(t)−φ(t) = O(ε1/4),
ẋT,ε(t) − φ̇(t) = O(ε1/4), yT,ε(t) = O(

√
ε), εẏT,ε(t) = O(

√
ε) uniformly for

−T ≤ t ≤ T .

Proof. First of all, we show the existence of a solution of (6.4.2–6.4.3) applying
the Schauder fixed point theorem. We take the Banach space Xε = C1([0, T ], R)2

with the norm |||(v, u)||| = ||u|| + ||u̇|| + ||v|| + ||εv̇||. Using Lemmas 6.4.1 and
6.4.2, we rewrite (6.4.2)-(6.4.3) in the form

v = Lε,T

(√
εg(φ + ε1/4u, φ̇ + ε1/4u̇,

√
εv, ε3/2v̇, ε)

)
u = LT

(
− 1

ε1/4

{
h(φ + ε1/4u)− h(φ)− h′(φ)ε1/4u

}
+

1
ε1/4

f(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε),−φ̇(T )/ε1/4
) (6.4.12)

as a fixed point problem in Xε. Now we fix k0 ∈ N and take T = ε
(
2k[1/ε3/2]π+

τ
)

with k ∈ N, k ≤ k0 and τ ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4]. Let BK =
{
(v, u) ∈

Xε | |||(v, u)||| ≤ K
}

be a ball in Xε. Since T ∼ 1/
√

ε and φ̇(T ) ∼ e−aT , we
get φ̇(T )/ε1/4 ∼ e−a/

√
ε/ε1/4 = O(ε). From the C1-smoothness of f, g, h, there

is a constant M > 0 such that ∀K > 0, ∃ε0 > 0, ∀ε ∈ (0, ε0], ∀(v, u) ∈ BK , it
holds that ∣∣∣g(φ + ε1/4u, φ̇ + ε1/4u̇,

√
εv, ε3/2v̇, ε)

∣∣∣ ≤M ,∣∣∣∣ 1
ε1/4

{
h(φ + ε1/4u)− h(φ)− h′(φ)ε1/4u

}∣∣∣∣ ≤ 1 ,∣∣∣∣ 1
ε1/4

f(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε)
∣∣∣∣ ≤ 1 .

For any (u, v) ∈ BK , 0 < ε ≤ ε0, we put

u1 = LT

(
− 1

ε1/4

{
h(φ + ε1/4u)− h(φ)− h′(φ)ε1/4u

}
+

1
ε1/4

f(φ + ε1/4u, φ̇ + ε1/4u̇,
√

εv, ε3/2v̇, ε),−φ̇(T )/ε1/4
)

,

v1 = Lε,T

(√
εg(φ + ε1/4u, φ̇ + ε1/4u̇,

√
εv, ε3/2v̇, ε)

)
.
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Then estimate (6.4.8) implies

||u1||+ ||u̇1|| ≤ c
(
2 + O(ε)

)
,

and estimates (6.4.10–6.4.11) imply

||v1||+ ||εv̇1|| ≤ 2
√

εTM(1 +
√

2) ≤ 2M(
√

2 + 1)
(

2πk0 +
7π

4
ε3/2

)
.

Consequently, we obtain

|||(v1, u1)||| ≤ 2c + 4M(
√

2 + 1)πk0 + O(ε) .

Hence for K such that 2c + 4M(
√

2 + 1)πk0 < K and ε0 > 0 sufficiently small,
BK is mapped to itself with the compact operator defined by the right-hand
side of (6.4.12). We fix such a K and apply the Schauder fixed point theorem
to get a solution of (6.4.12) in Xε, i.e. there is a solution of (6.3.1) satisfying
ẋ(0) = ẋ(T ) = 0, ẏ(0) = ẏ(T ) = 0. Since h, f, g are C1, we get the uniqueness
of the Cauchy problem for (6.3.1). Then the evenness of f, g in x2, y2 and the
conditions ẋ(0) = 0, ẏ(0) = 0 imply that x, y are even functions. This implies

x(−T ) = x(T ), ẋ(−T ) = −ẋ(T ) = 0 ,

y(−T ) = y(T ), ẏ(−T ) = −ẏ(T ) = 0 .

Consequently, the uniqueness of the Cauchy problem for (6.3.1) implies that x
and y are 2T -periodic. The proof is finished.

Remark 6.4.4. If h ∈ C2 then, we can apply the implicit function theorem
to (6.4.12) for getting a unique 2T -periodic and even solution of (6.3.1) near
(φ(t), 0) for −T ≤ t ≤ T .

6.5 Traveling Waves in Homoclinic Cases

From Section 6.2 we get that assumptions (A), (B), (C) of Sections 6.1 and 6.3
are satisfied for (6.2.5). Applying Theorem 6.4.3, (6.2.5) has a 2T -periodic so-
lution (xT,ε(t), yT,ε(t)) near (φ(t/

√
1− ν2), 0), −T ≤ t ≤ T for any T satisfying

the assumption of Theorem 6.4.3. They have the form

uT,ε
c (t) = xT,ε(εt)ξ1 + εẋT,ε(εt)ξ2 + yT,ε(εt)ξ3 + ε(ẏT,ε(εt)/q)ξ4

in (6.2.4). All uT,ε
c (t) lie in a large ball Ω. Furthermore, we have

U(t, ·) = uc(t) + ε2Φε(uc(t)) = uc(t) + O(ε2)

for (6.2.1) on the center manifold considered in (6.2.4). We also note that the
x(t)-coordinate of U(t, v) in (6.2.1) satisfies (6.1.5). Consequently, if xT,ε(εt) is
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the x-coordinate of uT,ε
c (t) + ε2Φε(uT,ε

c (t)), then the traveling wave solution of
(6.1.2) corresponding to xT,ε(t), yT,ε(t) has the form

uT,ε
n (t) = xT,ε

(
ε
(
n− ν

ε
t
))

= xT,ε(εn− νt)

= xT,ε(εn− νt) + yT,ε(εn− νt) + O(ε2) .

Note uT,ε
n (t) is 2T/ν-periodic in t with the velocity ν and such that

uT,ε
n (t) = φ

( εn− νt√
1− ν2

)
+ O(ε1/4)

uniformly for −T ≤ εn − νt ≤ T and T satisfying the assumption of Theorem
6.4.3 for a fixed k0. Finally, we recall (6.1.4). Summarizing we get the main
result of this section.

Theorem 6.5.1. If h ∈ C1 satisfies the assumption (A) then traveling wave
solution u(x, t) = φ

(
x−νt√
1−ν2

)
for 0 < ν1 < ν < 1 of (6.1.3) can be approximated

by periodic traveling wave solutions of (6.1.2) with very large periods and with
the velocity ν.

We note that for a C∞-smooth h, the center manifold graph Φε is Ck-smooth
for any fixed k ∈ N, and then (6.2.5) is also Ck-smooth. Hence the bifurcation
function of homoclinics for (6.2.5) is of order O(εk). So it is flat at ε = 0. Since
(6.2.5) is not analytical, we do not get further information of this flatness. Hence
it seems that the center manifold method is not fruitful for detecting bounded
solutions of (6.2.5) near (φ, 0) on R.

6.6 Traveling Waves in Heteroclinic Cases

Theorem 6.4.3 can not be applied to (6.1.6) since now the limit reduced equation
(6.2.6) is a pendulum-like equation

(1− ν2)ẍ− sin x = 0

with a heteroclinic connection

Ψ̃(t) = 4 arctan exp
[
t/
√

1− ν2
]

,

while we consider in (6.4.1) a homoclinic solution (see assumption (A)). In
this part, the heteroclinic case is studied for a perturbed Hamiltonian chain of
coupled oscillators with an Hamiltonian

H =
∑
n∈Z

(
1
2
u̇2

n +
1

2ε2
(un+1 − un)2 + H(un) + µG(un+1 − un)

)
, (6.6.1)
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where ε > 0 is a discretization parameter and µ is a small parameter mea-
suring the relation of intersite and offsite potentials, and H,G ∈ C2(R). The
corresponding discrete nonlinear Klein-Gordon equation is:

ün − 1
ε2

(un+1 − 2un + un−1) + h(un)

+µ
{

g(un − un−1)− g(un+1 − un)
}

= 0 ,
(6.6.2)

where h(x) = H ′(x) and g(x) = G′(x). The following conditions are supposed.

(B1) h, g ∈ C1(R) are odd, h is 2π-periodic and g is globally Lipschitz on R.

(B2) h(−π) = h(π) = 0, h′(−π) = h′(π) = a2 > 0 and there is a heteroclinic
solution Φ of ẍ − h(x) = 0 such that Φ(t) = 2π − Φ(−t) and Φ(t) → 2π
as t → +∞.

Now the traveling wave equation (6.1.5) takes the form

ν2V ′′(z)− V (z + 1) + 2V (z)− V (z − 1) + ε2h(V (z))

+ε2µ
{

g(V (z)− V (z − 1))− g(V (z + 1)− V (z))
}

= 0 .
(6.6.3)

We need the following definition [182].

Definition 6.6.1. By a uniform sliding state of (6.6.3) we mean a smooth
function V (z) solving (6.6.3) and satisfying V (z + T ) = V (z) + 2π.

The method of this section is successfully applied in [95] to (6.6.3) and the
next analogy of Theorem 6.5.1 is proved.

Theorem 6.6.2. If h, g satisfy the assumptions (B1), (B2) then traveling wave
solution u(x, t) = Φ

(
x−νt√
1−ν2

)
for 0 < ν1 < ν < 1 of utt − uξξ + h(u) = 0 can

be approximated by both periodic traveling wave solutions and uniform sliding
states of (6.6.2) with very large periods and with the velocity ν for µ = o(ε1/4)
small.

These solutions of (6.6.3) have again tails of periodic waves of small ampli-
tude. This result is consistent with the numerical result of [71, 176] for (6.1.6)
mentioned above.

We remind that ν = ν1 is the first value from the left of 1 for which the
equations of (6.2.3) have a common nonzero solution λ �= 0. For 0 < ν <
ν1, we could still use the above method. We know from Lemma 6.2.1 that
for any νi+1 < ν < νi the linear operator L has the double non semi-simple
eigenvalue at 0, and 2i + 1 pairs of simple imaginary eigenvalues. So after the
center manifold reduction, we should get a system like (6.2.5) and we could
generalize the bifurcation result of Section 6.4 for such systems. We do not carry
out those computations in this book. Related problems are studied in [24, 25]
on the existence of periodic solutions of certain singularly perturbed systems of
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o.d.eqns having symmetry properties with applications to some singular systems
of o.d.eqns arising in the study of Hamiltonian systems with a strong restoring
force.

We finish this part with a Hamiltonian perturbation of (6.1.8) of the form

ün − 1
ε2

(un+1 − 2un + un−1) +
(1 + 2α) sin u

(1 + α(1− cos u))2

+µ
{

sin(un − un+1) + sin(un − un−1)
}

= 0 .

(6.6.4)

For α = µ = 0 we get the discrete sine-Gordon equation. Changing variables
un ←→ un − π in (6.6.4), we have

ün − 1
ε2

(un+1 − 2un + un−1) + gα(un)

+µ
{

sin(un − un+1) + sin(un − un−1)
}

= 0
(6.6.5)

for

gα(u) = − (1 + 2α) sin u

(1 + α(1 + cos u))2
.

Clearly gα ∈ C1(R) is odd and 2π-periodic, so (B1) is satisfied. Next gα(−π) =
gα(π) = 0, g′α(−π) = g′α(π) = 1 + 2α > 0 and a heteroclinic solution Ψα of
ẍ− gα(x) = 0 in (B2) is determined by an implicit equation

√
2α arcsin

√
2α sin(Ψα(t)/2)√

1 + 2α
+ arctanh

sin(Ψα(t)/2)√
1 + 2α cos2(φα(t)/2)

=
√

1 + 2αt .

Summarizing, Theorem 6.6.2 can be applied to (6.6.4) uniformly for α ≥ 0 from
bounded intervals.

6.7 Traveling Waves in 2 Dimensions

Finally, further developments on lattice equations are presented in [96] for

ün,m = (∆u)n,m − f(un,m) (6.7.1)

on the two dimensional integer lattice (n,m) ∈ Z
2 under conditions that f ∈

C1(R, R) is odd and 2π-periodic. ∆ denotes the discrete Laplacian defined as

(∆u)n,m = un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m .

For f(u) = ω sin u, we get the 2-dimensional discrete sine-Gordon lattice equa-
tion [186] (see Fig. 6.2)

ün,m − (∆u)n,m + ω sin un,m = 0 . (6.7.2)

A traveling wave solution of (6.7.1) in the direction eıθ of the form

un,m(t) = U(n cos θ + m sin θ − νt)
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Figure 6.2: The two-dimensional lattice model of rigid rotation molecules with
orientation un,m at site (n,m)

for U ∈ C2 (R, R) satisfies the equation

ν2U ′′(z) = U(z + cos θ) + U(z − cos θ)
+U(z + sin θ) + U(z − sin θ)− 4U(z)− f(U(z))

(6.7.3)

with z = n cos θ + m sin θ − νt. Topological and variational methods are used
in [96] to show periodic traveling waves and uniform sliding states of (6.7.1), i.e.
solutions of (6.7.3) satisfying either U(z + T ) = U(z) or U(z + T ) = U(z) + 2π
for any z ∈ R and some T . For instance the following results are proved.

Theorem 6.7.1. For any ω > 16 and 1.17196 < T < 1.7579, the 2d discrete
sine-Gordon equation (6.7.2) possesses 4 nontrivial/nonconstant traveling wave
solutions of the form

un,m(t) = π + U

(
1√
2

(
n + m

)
− 1

2
t

)

for U(z) satisfying either U(z + T ) = U(z) + 2π with U(−z) = −U(z), or
U(z+T ) = −U(z)+2π, or U(z+T ) = −U(z), or U(z+T ) = U(z) with U(−z) =
−U(z), respectively. Moreover, for ω = 1 and T ∈ ⋃436

k=2

(
π
r0

k, 2
√

3π(k + 1)
)
,

(6.7.2) has at least 2 nonzero traveling wave solutions of the form

un,m(t) = U
( 1√

2

(
n + m

)
− 2t

)
for U(z) odd and T -periodic, where r0

.= 0.2880.

We note that the first interval with k = 2 is approximately (21.8154, 32.6484)
and the last one with k = 436 is approximately (4755.7599, 4755.7819).
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In [87], damped and periodically forced lattice equations of (6.7.1) are stud-
ied of the form

ün,m = −δu̇n,m + χ(∆u)n,m − f(un,m) + h(µt), (n,m) ∈ Z
2 (6.7.4)

for f ∈ C1(R, R), h ∈ C(R, R), δ > 0, χ > 0, µ > 0 under conditions that f is
odd and 2π-periodic and h �= 0 is π-antiperiodic, i.e. h(x + π) = −h(x) ∀x ∈ R.
It is shown among orders that if one of the following conditions holds

(a) ν = µ 2p+1
2k for some p ∈ Z and k ∈ N such that µ4 + 4δ2µ2k2 > 16k4(L +

8χ)2

(b) ν = µ 2k
2p+1 for some k ∈ Z and p ∈ Z+ such that µ4 + (2p + 1)2δ2µ2 >

(2p + 1)4(L + 8χ)2

where L := maxR |f ′(x)|. Then for any θ ∈ R, (6.7.4) has a periodic moving
wave solution of the form

un,m(t) = U(n cos θ + m sin θ − νt, µt) (6.7.5)

for some U which is 2π-periodic in the both variables. Now the equation for
moving waves is more complicated

ν2Uzz(z, v)− 2µνUzv(z, v) + µ2Uvv(z, v) + δ (µUv(z, v)− νUz(z, v))

= χ
(
U(z + cos θ, v) + U(z − cos θ, v)

+U(z + sin θ, v) + U(z − sin θ, v)− 4U(z, v)
)
− f(U(z, v)) + h(v)

(6.7.6)

with z = n cos θ + m sin θ − νt and v = µt.
Of course, (6.7.1) can be also derived as a spatial discretization of the p.d.eqn

utt −�u + f(u) = 0

of the form
ün,m − 1

ε2
(∆u)n,m + f(un,m) = 0 , (6.7.7)

where u = u(x, y, t), x, y, t ∈ R and �u = uxx + uyy is the Laplacian. Then for

un,m(t) = U
(
n cos θ + m sin θ − ν

ε
t
)

the traveling wave equation reads

ν2U ′′(z) = U(z + cos θ) + U(z − cos θ)

+U(z + sin θ) + U(z − sin θ)− 4U(z)− ε2f(U(z)) .
(6.7.8)

It would be interesting to carry out similar computations for (6.7.8) as it is done
above for (6.1.5) considering ν and θ as parameters.



Chapter 7

Periodic Oscillations
of Wave Equations

7.1 Periodics of Undamped Beam Equations

7.1.1 Undamped Forced Nonlinear Beam Equations

Let us consider a forced sine-beam p.d.eqn given by

utt + αuxxxx + sin u + τ(x) = µ sin t, u(x + 1, t) = u(x, t) , (7.1.1)

where α > 0 is a constant, τ is a nonzero continuous 1-periodic function satisfy-

ing
1∫
0

τ(x) dx = 0, µ ∈ R is a small parameter and α is assumed to be sufficiently

large. Letting α →∞, we also consider a limit o.d.eqn of (7.1.1) of the form

ü + sin u = µ sin t , (7.1.2)

which is a forced pendulum equation. It is well-know that (−π, 0) and (π, 0) are
hyperbolic equilibria of the o.d.eqn

ẋ = y, ẏ = − sin x (7.1.3)

joined by the upper separatrix (γ(t), γ̇(t)), γ(t) = π−4 arctan (e−t). We consider
(7.1.2) as an o.d.eqn on the circle S2π := R/2πZ. Then (7.1.3) is defined on the
cylinder S2π×R � (x, y) and (−π, 0), (π, 0) are glued to a hyperbolic equilibrium
of (7.1.3) joined by the homoclinic orbit (γ(t), γ̇(t)). Furthermore, the Melnikov
function M(α̃) of (7.1.3) has now the form (see computations for (3.1.36))

M(α̃) = 2

∞∫
−∞

sech t sin(t + α̃) dt = 2π sech
π

2
sin α̃ .

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 199–226. 199
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Since α̃ = 0 is a simple root of M(α̃), Theorem 4.2.2 (see also Remark 5.1.4 and
Theorem 5.1.12) is applicable to (7.1.3) with b = −a = small. Consequently, for
any µ �= 0 sufficiently small, (7.1.2) exhibits a chaotic behavior. In particular,
it has an infinite number of subharmonic solutions with periods tending to
infinity. The purpose of this section is to show that most of them can be traced
as α →∞ for (7.1.1). Homoclinic and heteroclinic bifurcations for p.d.eqns are
already studied in [20, 23, 115, 137–139, 170, 197]. But methods of these papers
seem to be not applicable to (7.1.1), since it is undamped. We combine a method
of bifurcation of periodic solutions from Chapter 3 along with an assumption of
incommensurability for eigenvalues of the linear part of (7.1.1) to the time period
2π of (7.1.1) (cf. (7.1.39)). We also derive an estimate on a Lebesgue measure
of a set of all parameters satisfying that assumption of incommensurability.
Following this, we are able to show only the existence of any finite number of
subharmonic solutions. All these results are derived for abstract wave equations
on Hilbert spaces modeled by (7.1.1). Related problems are also studied in
[30, 150, 198]. Furthermore, we apply our abstract results also to the following
p.d.eqns

utt + αuxxxx + sin u + τ(x) = µ cos t, u(x, t) = u(1− x, t)
uxx(0, t) = uxx(1, t) = uxxx(0, t) = uxxx(1, t) = 0 ,

(7.1.4)

and

utt + αuxxxx − u + u3 + τ(x) = µ cos t, u(x + 1, t) = u(x, t) , (7.1.5)

where α > 0 is a large constant, τ is a nonzero continuous function satisfying
1∫
0

τ(x) dx = 0 and µ ∈ R is a small parameter. Now either τ satisfies τ(x) =

τ(1−x) for (7.1.4) or τ is 1-periodic and C1-smooth for (7.1.5). The limit o.d.eqn
of (7.1.5) is a forced Duffing equation

ü− u + u3 = µ cos t (7.1.6)

which is chaotic (see (3.1.36)). We are motivated to study (7.1.1), (7.1.4) and
(7.1.5) by the well-known sine-Gordon and Klein-Gordon partial differential
equations [176] when the term αuxxxx is replaced with −αuxx.

Finally, similar approach as in this section is used in [79] to the following
p.d.eqn

utt + uxxxx + Γuxx + p

⎛⎝ 1∫
0

u2(s, t) ds,

1∫
0

u2
x(s, t) ds

⎞⎠Dξ
xxu = εq(x) cos

2πt

T

u(0, ·) = u(1, ·) = uxx(0, ·) = uxx(1, ·) = 0 ,

where Dxxu = −uxx, Dξ
xx is the ξ-power of Dxx in L2(0, 1), 0 ≤ ξ ≤ 1, Γ ∈ R,

p ∈ C2(R × R, R), p(0, 0) = 0, q ∈ H2(0, 1) ∩ H1
0 (0, 1), T > 0 and ε ∈ R is a

small parameter.
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7.1.2 Existence Results on Periodics

In this subsection, we introduce abstract wave equations on Hilbert spaces mod-
eled by (7.1.1). Let Y be a Hilbert space with an inner product 〈·, ·〉 and the
corresponding norm is denoted by || · ||. Let X be a Banach space X ⊂ Y and
X is dense in Y . Let us consider the equation

utt + αAu = f(u, t) , (7.1.7)

where α > 0 is a parameter and A : X → Y is a bounded linear operator. We
assume

0 < d := dimNA <∞ .

Let {uj}0j=−d+1 be an orthonormal basis of NA ⊂ Y . Let {uj}∞j=1 be eigenvec-
tors of A with corresponding nonzero eigenvalues {λj}∞j=1 such that λ1 ≤ λ2 ≤
λi0 < 0 < λi0+1 ≤ · · · → ∞. We set λ0 := 0. We assume that {uj}∞j=−d+1 rep-
resents an orthonormal basis of Y , and the linear span of {uj}∞j=−d+1 is dense
in X. Furthermore, we suppose that f : Y ×ST → Y is continuous and globally
Lipschitz in y with a constant M . Recall ST = R/TZ is the circle.

We are looking for weak T -periodic solutions of (7.1.7) for α > 0 large. By
a weak T -periodic solution of (7.1.7) we mean u ∈ L∞(ST , Y ) satisfying

T∫
0

〈u(t), vtt(t) + αAv(t)〉 dt =

T∫
0

〈f(u(t), t), v(t)〉 dt ∀ v ∈ C2(ST , X) .

The integrability is considered in the sense of Bochner [102]. Note the Hilbert
space L2(ST , Y ) has an orthonormal basis{

1√
T

uj ,

√
2
T

sin m
2πt

T
uj ,

√
2
T

cos m
2πt

T
uj | m ∈ N, j ≥ −d+1

}
⊂ C2(ST , X) .

(7.1.8)

We consider the norm |||v||| = ess supST ||v(·)|| on L∞(ST , Y ). Next, we decom-
pose Y as follows

Y = NA⊕NA⊥

and take the orthogonal projections Q : Y → NA⊥, P : Y → NA. Then (7.1.7)
has the form

wtt + αAw = Qf(w + v, t), w ∈ NA⊥

vtt = Pf(w + v, t), v ∈ NA .
(7.1.9)

Lemma 7.1.1. Assume that there is a constant c > 0 such that

√
λj

∣∣∣∣∣sin
√

αλjT

2

∣∣∣∣∣ ≥ c ∀ j > i0 . (7.1.10)

Then the equation

Lαw = wtt + αAw = h, h ∈ L∞(ST ,NA⊥) (7.1.11)
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has a unique weak T -periodic solution w = L−1
α h ∈ L∞(ST ,NA⊥) satisfying

|||w||| ≤ β(α, T, c)|||h||| (7.1.12)

with

β(α, T, c) :=
1√
α

√
i0

λ2
i0

α
+ T 2

(
2

λi0+1
+

1
2c2

)
. (7.1.13)

Proof. Since h ∈ L∞(ST ,NA⊥), we have

h(t) =
∑
j∈N

hj(t)uj , hj ∈ L∞(ST , R), ess supST

∑
j∈N

h2
j (·) ≤ |||h|||2 .

From w ∈ L∞(ST ,NA⊥), we have w(t) =
∑
j∈N

wj(t)uj . We have to solve

T∫
0

〈w(t), vtt(t) + αAv(t)〉 dt =

T∫
0

〈h(t), v(t)〉 dt ∀ v ∈ C2(ST , X) . (7.1.14)

Hence (7.1.14) gives

ẅj(t) + αλjwj(t) = hj(t), j ∈ N . (7.1.15)

Since (7.1.10) holds, for j > i0, (7.1.15) has the solution

wj(t) =
1√
αλj

t∫
0

sin
(√

αλj(t− s)
)

hj(s) ds

+
1

2
√

αλj

1

sin
√

αλjT

2

T∫
0

cos
(√

αλj

(
s− T

2
− t

))
hj(s) ds .

(7.1.16)

Formula (7.1.16) gives

∑
j>i0

w2
j (t) ≤ 2

∑
j>i0

1
αλj

⎛⎝ t∫
0

sin
(√

αλj(t− s)
)

hj(s) ds

⎞⎠2

+
1
2α

∑
j>i0

1

λj sin2
√

αλjT

2

⎛⎝ T∫
0

cos
(√

αλj

(
s− T

2
− t

))
hj(s) ds

⎞⎠2

≤ 2
αλi0+1

∑
j>i0

T∫
0

sin2
√

αλj(t− s) ds

T∫
0

h2
j (s) ds

+
1

2αc2

∑
j>i0

T∫
0

cos2
√

αλj

(
s− T

2
− t

)
ds

T∫
0

h2
j (s) ds

≤ T

α

(
2

λi0+1
+

1
2c2

) T∫
0

∑
j>i0

h2
j (s) ds ≤ T 2

α

(
2

λi0+1
+

1
2c2

)
|||h|||2 .

(7.1.17)
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For λj < 0, let |wj(t0)|, t0 ∈ [0, T ] be the maximum of |wj(t)| in (7.1.15). Then

0 ≥ ẅj(t0)wj(t0) = −λjαwj(t0)2 + hj(t0)wj(t0) .

Hence −λjαwj(t0)2 ≤ |hj(t0)wj(t0)| and then

max
t∈ST

|wj(t)| ≤ 1
α|λj | |||h||| ≤

1
α|λi0 |

|||h||| .

In this way, we have a function w ∈ L∞ (ST ,NA⊥) with w(t) =
∑
j∈N

wj(t)uj

satisfying (7.1.12) and (7.1.15). Finally, it is not difficult to see that w is a weak
solution of (7.1.11), i.e. w satisfies (7.1.14) (see more details at the end of the
proof of Lemma 7.2.1).

Taking w ∈ L∞(ST ,NA), we consider the first equation of (7.1.9) in the
form

w = L−1
α Qf(w + v, t) .

Since

|||L−1
α Q(f(w1 + v, t)− f(w2 + v, t))||| ≤Mβ(α, T, c)|||w1 − w2||| ,

we see that if Mβ(α, T, c) < 1 then the first equation of (7.1.9) has, by the
Banach fixed point theorem, a unique solution w = w(v, α, T, c). Summarizing
we obtain the following result [86].

Theorem 7.1.2. Assume that (7.1.10) holds. If Mβ(α, T, c)<1 then the prob-
lem of existence of weak T -periodic solutions of (7.1.7) is reduced to the finite
dimensional equation

v̈ = Pf(w(v, α, T, c) + v, t), v ∈ L∞(ST ,NA) , (7.1.18)

where w(·, α, T, c) : L∞(ST ,NA) → L∞(ST ,NA⊥) is Lipschitz continuous with
a constant Mβ(α,T,c)

1−Mβ(α,T,c) . Moreover,

|||w(v, α, T, c)||| ≤ β(α, T, c)
1−Mβ(α, T, c)

(M |||v|||+ |||f(0, ·)|||) .

In particular, |||w(v, α, T, c)||| → 0 as β(α, T, c) → 0 uniformly for v bounded.

Since by (7.1.13) we see that β(α, T, c) → 0 whenever α →∞, according to
Theorem 7.1.2, the limit equation of (7.1.7) as α →∞ is the o.d.eqn

v̈ = Pf(v, t), v ∈ L∞(ST ,NA) . (7.1.19)

Of course, any weak solution v of (7.1.19) satisfies v ∈ W 2,∞(ST ,NA).
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Definition 7.1.3. A result on the existence of a weak T -periodic solution for
(7.1.19) is said to be (ε,D)-stable for some ε > 0, D > 0, if for any perturbation

f̃ ∈ C
(
L∞(ST ,NA), L∞(ST ,NA)

)
of Pf(v, ·) with

|||f̃(v)− Pf(v, ·)||| ≤ ε

on the set S := {v ∈ L∞(ST ,NA) | |||v||| ≤ D}, there does exist a weak
T -periodic solution v ∈ S of v̈ = f̃(v).

Theorem 7.1.4. Assume that (7.1.10) holds. If α > 0 is sufficiently large then
a (ε,D)-stable result on the existence of a weak T -periodic solution for (7.1.19)
implies also the existence of a weak T -periodic solution for (7.1.7).

Proof. The result follows immediately from Theorem 7.1.2 and Definition 7.1.3.
Indeed, now we have

f̃(v)(t) = Pf(w(v, α, T, c)(t) + v(t), t) .

Then Theorem 7.1.2 gives

|||f̃(v)− Pf(v(t), t)||| = |||Pf(w(v, α, T, c) + v, ·)− Pf(v, ·)|||

≤M |||w(v, α, T, c)||| ≤ Mβ(α, T, c)
1−Mβ(α, T, c)

(M |||v|||+ |||f(0, ·)|||)

≤ Mβ(α, T, c)
1−Mβ(α, T, c)

(MD + |||f(0, ·)|||)

(7.1.20)

for any v ∈ S. Consequently, |||f̃(v) − Pf(v(t), t)||| ≤ ε for α large. The proof
is finished.

Note (ε,D)-stable results for (7.1.19) can be derived by using Mawhin’s
coincidence degree theory [145].

Now we concentrate on the condition (7.1.10).

Lemma 7.1.5. Suppose ∑
k>i0

1√
λk

< ∞

and take D ≥ 0. Let S(c) be the set of all Ω > 0 satisfying

√
λj

∣∣∣∣∣sin
√

λjΩ
2

∣∣∣∣∣ ≥ c ∀ j > i0 , (7.1.21)

where c > 0 is a constant. Then the Lebesgue measure of the complement

(R \ S(c)) ∩ [D,D + 1]

satisfies

m ((R \ S(c)) ∩ [D,D + 1]) ≤
∑
k>i0

(
2cπ

λk
+

c√
λk

+
2c2π√
λkλk

)
.



7.1. Periodics of Undamped Beam Equations 205

Proof. If Ω ∈ (R \ S(c)) ∩ [D,D + 1] then
√

λk

∣∣∣sin √
λkΩ
2

∣∣∣ < c for some k > i0.

Since | sin x| ≥ 2
π |x− nπ| for any |x− nπ| ≤ π/2, n ∈ Z+, we obtain

2
π

∣∣∣∣√λkΩ
2

− nπ

∣∣∣∣ < c/
√

λk

for some n ∈ Z+. Hence ∣∣∣∣Ω− 2πn√
λk

∣∣∣∣ < πc

λk
.

Consequently, we obtain

D

2π
− c

2λk
≤ Ω

2π
− c

2λk
<

n√
λk

<
Ω
2π

+
c

2λk
≤ D + 1

2π
+

c

2λk
,

D

2π

√
λk − c

2
√

λk

< n <
D + 1

2π

√
λk +

c

2
√

λk

.

We arrive at

m ((R \ S(c)) ∩ [D,D + 1]) ≤
∑
k>i0

(
c√
λk

+
√

λk

2π
+ 1
)

2πc

λk

=
∑
k>i0

2cπ

λk
+
∑
k>i0

c√
λk

+
∑
k>i0

2c2π√
λkλk

.

The proof is finished.

Summarizing we have the following result.

Theorem 7.1.6. Assume that
∑

k>i0

1√
λk

<∞. Then for any α such that

α >
2Mi0
|λi0 |

+ M2T 2

(
4

λi0+1
+

1
c2

)
and

√
αT ∈ S(c) , (7.1.22)

assumptions of Theorem 7.1.2 are satisfied. If in addition

α >
2i0
|λi0 |K

+
T 2

K2

(
8

λi0+1
+

2
c2

)
for K =

ε

M(MD + |||f(0, ·)|||+ ε)
(7.1.23)

then assumptions of Theorem 7.1.4 are also satisfied.

Proof. (7.1.22) implies that (7.1.10) holds along with M2i0
α2λ2

i0
≤ M2i20

α2λ2
i0

< 1/4 and

M2T 2

α

(
2

λi0+1
+ 1

2c2

)
< 1/2. Hence M2β(α, T, c)2 < 1

4+ 1
2 = 3

4 and Mβ(α, T, c) <√
3/2 < 1, so assumptions of Theorem 7.1.2 are verified.

Similarly, (7.1.23) gives i0
α2λ2

i0
< K2/4 and T 2

α

(
2

λi0+1
+ 1

2c2

)
< K2/4. Hence

β(α, T, c)2 < K2/2, so β(α, T, c) <
√

2K/2 < K. Consequently, we obtain
Mβ(α,T,c)

1−Mβ(α,T,c) (MD + |||f(0, ·)|||) < ε. So by (7.1.20), assumptions of Theorem
7.1.4 are also verified.
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Note (7.1.23) implies the inequality from (7.1.22).

Remark 7.1.7. By Lemma 7.1.5, the smaller c the larger the set S(c). Moreover,
S(c1) ⊂ S(c2) whenever c1 ≥ c2 > 0 and (see Theorem 7.2.7)

m (∪c>0S(c) ∩ [D,D + 1]) = 1 ∀D ∈ N .

Finally, let us assume that f(u, t) in (7.1.7) is a gradient operator, i.e.
f(u, t) = graduF (u, t) for a F ∈ C1

(
Y × ST , R

)
.

Theorem 7.1.8. Assume that
∑

λk>0

1√
λk

<∞ and f(u, t) in (7.1.7) is a gradient

operator in u satisfying

a||u− v||2 ≤ 〈f(u, t)− f(v, t), u− v〉 ≤ b||u− v||2 ∀u, ∀ v ∈ Y, ∀ t ∈ ST

for constants a, b ∈ R. If [a, b] ∩
{
− 4π2n2

T 2

}
n∈Z+

= ∅ then for any α such that

α > max
{

T 2a2

4c2
,
T 2b2

4c2
,
|a|
|λi0 |

,
|b|
|λi0 |

}
and

√
αT ∈ S(c) , (7.1.24)

(7.1.7) has a unique weak T -periodic solution u in L2(ST , Y ).

Proof. Since |x| ≥ | sin x| ∀x ∈ R, condition (7.1.10) gives
∣∣∣√αλkT

2 − πn
∣∣∣ ≥ c√

λk
,

∀k > i0, ∀n ∈ Z+ from which we derive∣∣∣∣αλk − 4π2n2

T 2

∣∣∣∣ = ∣∣∣∣√αλk − 2πn

T

∣∣∣∣ ∣∣∣∣√αλk +
2πn

T

∣∣∣∣ ≥ 2c
√

α

T

for any k > i0 and n ∈ Z+. While for 1 ≤ k ≤ i0, we have
∣∣∣αλk − 4π2n2

T 2

∣∣∣ ≥
α|λi0 |. So the first condition of (7.1.24) gives

∣∣∣αλk − 4π2n2

T 2

∣∣∣ > max{|a|, |b|} for

any k ≥ 1 and n ∈ Z+. This together with [a, b] ∩
{
− 4π2n2

T 2

}
n∈Z+

= ∅ imply

[a, b] ∩
{

αλk − 4π2n2

T 2

}
n,k∈Z+

= ∅ . (7.1.25)

Next we take H = L2(ST , Y ), Lu = utt+αAu and N(u)(t) = f(u(t), t). The

scalar product on H is the usual one (u, v) : =
T∫
0

〈u(t), v(t)〉 dt with the corre-

sponding norm | · |. Then a weak T -periodic solution u of (7.1.7) in H is deter-
mined by Lu=N(u), which is equivalent to L̃u=Ñ(u) with L̃ : =L−�I and Ñ :

=N −�I for � = a+b
2 . Furthermore, Ñ(u)=gradu

T∫
0

(
F (u(t), t)−� ‖u(t)‖2

2

)
dt

along with

−ς|u− v|2 ≤ (Ñ(u)− Ñ(v), u− v) ≤ ς|u− v|2 ∀u, ∀ v ∈ H
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for ς = b−a
2 , which by [30, Theorem 2] or [146] gives

|Ñ(u)− Ñ(v)| ≤ ς|u− v| ∀u, ∀ v ∈ H . (7.1.26)

From (7.1.8) we see that the spectrum σ(L̃) of L̃ is

σ(L̃) =
{
−4π2n2

T 2
+ αλk −� | n, k ∈ Z+

}
.

So by (7.1.25) we have [−ς, ς]∩σ(L̃) = ∅. As R \σ(L̃) is open, we have [−ς̃ , ς̃]∩
σ(L̃) = ∅ for a ς̃ > ς. This gives ‖L̃−1‖ ≤ 1

ς̃ . By (7.1.26) we get that the mapping
L̃−1Ñ is a contraction with a constant ς

ς̃ < 1. The Banach fixed point theorem
gives a unique solution of u = L̃−1Ñ(u), and so a unique solution of Lu = N(u)
in H.

7.1.3 Subharmonics from Homoclinics

In this part, we consider a periodically forced abstract wave equation

utt + αAu = g(u) + µφ(t) , (7.1.27)

where µ ∈ R is a small parameter, α > 0 is large and A satisfies assumptions
of Subsection 7.1.2. Furthermore, g : Y → Y is Lipschitz continuous with a
constant M and φ : ST → Y is continuous. Concerning the limit o.d.eqn, we
assume

(i) NA = Rw0 with ||w0|| = 1

(ii) Function g̃(x) := 〈g(xw0), w0〉, x ∈ R is C2-smooth

(iii) g̃(0) = 0 and g̃′(0) > 0

(iv) There is a nonzero γ ∈ C2(R, R) such that lim
t→±∞ γ(t) = 0 and γ̈ = g̃(γ).

For this case, (7.1.18) and (7.1.19) with v(t) = x(t)w0 have the forms

ẍ = 〈g(w(xw0, α, T, c) + xw0), w0〉+ µ〈φ(t), w0〉 (7.1.28)

and
ẍ = 〈g(xw0), w0〉+ µ〈φ(t), w0〉 . (7.1.29)

The assumptions (iii) and (iv) mean that the o.d.eqn

ẋ = y, ẏ = 〈g(xw0), w0〉 (7.1.30)

has a homoclinic orbit (γ, γ̇) to a hyperbolic equilibrium (0, 0). We shall apply
a result of Section 3.1 to study bifurcations of periodic solutions of (7.1.28) near
γ for α > 0 large.
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Theorem 7.1.9. Assume that
∑

k>i0

1√
λk

< ∞ and (i–iv) hold as well. Let ρ>5/2.

If there are constants a<b such that M(a)M(b)<0, where

M(σ) =

∞∫
−∞

〈φ(t + σ), w0〉γ̇(t) dt .

Then there are constants K1 > 0, K2 > 0 such that for any K1 > |µ| > 0, m ∈
N, 0 < Γ ≤ 1 satisfying

1
|µ|1/2

< m <
|µ|2−ρ

T
,

mT

Γ|µ|ρ ∈ S(c) , (7.1.31)

(7.1.27) has a weak mT -periodic solution um with α = Γ−2|µ|−2ρ satisfying

max
−mT/2≤t≤mT/2

∣∣〈um(t), w0〉 − γ(t− δm)
∣∣ ≤ K2|µ| (7.1.32)

for some δm ∈ (a, b).

Proof. First we note |||v||| = ‖x‖∞ for v(t) = x(t)w0 and ‖x‖∞ := ess supR |x(·)|.
Next, Theorem 7.1.2 implies for m ∈ N and x ∈ L∞ (SmT , R

)
with ‖x‖∞ ≤

‖γ‖∞ + 1 that

‖〈g(w(xw0, α,mT, c) + xw0), w0〉 − 〈g(xw0), w0〉‖∞
≤ |||g(w(xw0, α,mT, c) + xw0)− g(xw0)||| ≤M |||w(xw0, α,mT, c)|||

≤ Mβ(α,mT, c)
1−Mβ(α,mT, c)

(M‖x‖∞ + ||g(0)||+ |µ||||φ|||)

≤ 2Mβ(α,mT, c) (M‖γ‖∞ + ||g(0)||+ |µ||||φ|||+ M)

when 2Mβ(α,mT, c) < 1, and this holds if (see (7.1.13) and the proof of
Theorem 7.1.6)

α >
3Mi0
|λi0 |

+ 4M2m2T 2

(
4

λi0+1
+

1
c2

)
. (7.1.33)

Taking α = Γ−2|µ|−2ρ for 0 ≤ Γ ≤ 1 and ρ > 5/2 from (7.1.13), we derive

β(α,mT, c) ≤ Γ|µ|ρ
√

i0Γ2|µ|2ρ

λ2
i0

+ m2T 2

(
2

λi0+1
+

1
2c2

)

≤ i0Γ2|µ|2ρ

|λi0 |
+ Γ|µ|ρmT

√
2

λi0+1
+

1
2c2

≤ µ2

(
i0
|λi0 |

+

√
2

λi0+1
+

1
2c2

) (7.1.34)
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provided |µ| ≤ 1 and mT |µ|ρ ≤ µ2, which follows from (7.1.31) when K1 is
small. To verify (7.1.33), we calculate(

3Mi0
|λi0 |

+ 4M2m2T 2

(
4

λi0+1
+

1
c2

))
α−1 ≤

3Mi0
|λi0 |

K2ρ
1 + 4M2

(
4

λi0+1
+

1
c2

)
K4

1 < 1

provided |µ| ≤ K1 and mT |µ|ρ ≤ µ2, which follow from (7.1.31). So (7.1.33) is
shown for K1 small. Consequently, when T is replaced with mT , (7.1.28) has
the form

ẍ = 〈g(xw0), w0〉+ µ〈φ(t), w0〉+ O(|µ|2) (7.1.35)

near γ whenever (7.1.31) is satisfies and K1 is small. Now, Theorem 3.1.9 implies
that if K1 is sufficiently small, then (7.1.28) has a weak mT -periodic solution
for m > 1/

√|µ| satisfying (7.1.32). The proof is finished.

7.1.4 Periodics from Periodics

Above we suppose that the limit o.d.eqn (7.1.30) has a homoclinic structure and
we study bifurcation of periodics from a homoclinic one. Now we investigate
bifurcation of periodics from a periodic solution of (7.1.30). Consequently, we
assume that (i), (ii) hold and also the following one

(v) There is a nonconstant T -periodic function γ ∈ C2(R, R) satisfying the
o.d.eqn γ̈ = g̃(γ). Moreover, the variational equation z̈ = g̃′(γ)z has a γ̇
as the only nonzero T -periodic solution up to a scalar multiple.

We shall apply a result of Section 3.3 to study bifurcations of periodic solu-
tions of (7.1.28) near γ for α > 0 large.

Theorem 7.1.10. Assume that
∑

k>i0

1√
λk

< ∞ and (i), (ii), (v) hold as well. If

there are constants a < b such that M(a)M(b) < 0, where

M(σ) =

T∫
0

〈φ(t + σ), w0〉γ̇(t) dt .

Then there are constants K1 > 0, K2 > 0 such that for any K1 > |µ| > 0, 0 <
Γ ≤ 1 satisfying

T

Γµ2
∈ S(c) ,

(7.1.27) has a weak T -periodic solution u with α = Γ−2|µ|−4 satisfying

max
t∈[0,T ]

∣∣〈u(t), w0〉 − γ(t− δ)
∣∣ ≤ K2|µ| (7.1.36)

for some δ ∈ (a, b).
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Proof. From the proof of Theorem 7.1.9 with m = 1 and for x ∈ L∞ (ST , R
)

with ‖x‖∞ ≤ ‖γ‖∞ + 1, we have

‖〈g(w(xw0, α, T, c) + xw0), w0〉 − 〈g(xw0), w0〉‖∞
≤ 2Mβ(α, T, c) (M‖γ‖∞ + ||g(0)||+ |µ||||φ|||+ M)

when

α >
3Mi0
|λi0 |

+ 4M2T 2

(
4

λi0+1
+

1
c2

)
. (7.1.37)

For α = Γ−2|µ|−4 from (7.1.34) we know

β(α, T, c) ≤ µ2

(
i0
|λi0 |

+ T

√
2

λi0+1
+

1
2c2

)

provided |µ| ≤ 1. Next, (7.1.37) is satisfied if

|µ| <
(

3Mi0
|λi0 |

+ 4M2T 2

(
4

λi0+1
+

1
c2

))−1/4

.

Consequently, (7.1.28) has the form of (7.1.35) for x near γ and µ is small.
Corollary 3.3.5 implies that if K1 is sufficiently small, then (7.1.28) has a weak
T -periodic solution satisfying (7.1.36). The proof is finished.

Remark 7.1.11. In Theorems 7.1.9 and 7.1.10 it is enough to suppose that
∀D ≥ 0, ∃M > 0, ∀u1,∀u2 ∈ Y , ‖u1‖ ≤ D, ‖u2‖ ≤ D implies ‖g(u1)−g(u2)‖ ≤
M‖u1 − u2‖.

7.1.5 Applications to Forced Nonlinear Beam Equations

In this subsection, we first apply Theorem 7.1.9 to (7.1.5) by putting

X = C5(S1, R), Y = W 1,2(S1, R), Au = uxxxx ,

g(u)(x) = u(x)− u(x)3 − τ(x), φ(t) = cos t , T = 2π .
(7.1.38)

Clearly NA = {constant functions} # R and the spectrum of A is σ(A) ={
16π4m4 | m ∈ Z+

}
with the corresponding eigenfunctions {sin 2πmx,

cos 2πmx}.
Since

∞∑
m=1

1
m2 < ∞, Lemma 7.1.5 is applicable and (7.1.10) has now the form

4π2j2
∣∣sin (4π3j2

√
α
)∣∣ ≥ c, ∀j ∈ N . (7.1.39)

Note (7.1.39) holds if and only if 2π
√

α ∈ S(c). Applying Lemma 7.1.5 and
using formulas ∑

k∈N

1
k2

=
π2

6
,
∑
k∈N

1
k4

=
π4

90
,
∑
k∈N

1
k6

=
π6

945
,
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we derive

m ((R \ S(c)) ∩ [D,D + 1]) ≤
∑
k∈N

(
c

8π3k4
+

c

4π2k2
+

c2

32π5k6

)

=
cπ

720
+

c

24
+

c2π

30240
.

From cπ
720 + c

24 + c2π
30240 < 1 and c > 0 we get

0 < c <
3
(√

7(6300 + 900π + 7π2)− 210− 7π
)

π

.= 20.7529 . (7.1.40)

So for any c satisfying (7.1.40), there is a continuum many α > 0 satisfying
(7.1.39) in any

[
D2

4π2 , (D+1)2

4π2

]
, D ≥ 0.

Let |u| =
√

1∫
0

u(x)2 dx be the norm on L2(S1, R). Then ‖u‖ =
√|u|2 + |u′|2

is a norm on Y . For any u ∈ Y , ∃x0 ∈ S1 such that |u(x0)| ≤ |u| and so ∀x ∈ S1:
u(x)2 ≤ u(x0)2 + 2|u||u′| implying |u| ≤ ‖u‖∞ ≤ 2‖u‖. Next, for any u1,2 ∈ Y
we derive

‖u1u2‖2 ≤ 16‖u1‖2‖u2‖2 + 2
(|u′

1u2|2 + |u1u
′
2|2
)

≤ 16‖u1‖2‖u2‖2 + 2
(
4|u′

1|2‖u2‖2 + 4‖u1‖2|u′
2|2
) ≤ 36‖u1‖2‖u2‖2 .

Hence ‖u1u2‖ ≤ 6‖u1‖‖u2‖, which implies

‖u3
1 − u3

2‖ ≤ 6‖u1 − u2‖
(‖u2

1‖+ ‖u1u2‖+ ‖u2
2‖
)

≤ 36‖u1 − u2‖
(‖u1‖2 + ‖u1‖‖u2‖+ ‖u2‖2

)
.

Summarizing, for any u1,2 ∈ Y with ‖u1,2‖ ≤ D, we get

‖g(u1)− g(u2)‖ ≤ ‖u1 − u2‖+ ‖u3
1 − u3

2‖ ≤
(
1 + 108D2

) ‖u1 − u2‖

and Remark 7.1.11 is verified. Moreover, with w0(x) = 1 and u ∈ L∞ (R, R) we
derive

〈g(u(t)w0), w0〉 =

1∫
0

(
u(t)− u(t)3 − τ(x)

)
dx = u(t)− u(t)3 ,

〈φ(t), w0〉 =

1∫
0

cos t dx = cos t ,

where 〈z(x), u(x)〉 :=
1∫
0

z(x)u(x) dx +
1∫
0

z′(x)u′(x) dx. Hence (7.1.29) is (7.1.6),

which is the forced Duffing equation. Conditions (i–iv) of Subsection 7.1.3 are
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clearly satisfied for (7.1.6) with γ(t) =
√

2 sech t. The functionM(σ) of Theorem
7.1.9 has now the form

M(σ) =

∞∫
−∞

〈φ(t + σ), w0〉γ̇(t) dt =
√

2π sech
π

2
sin σ .

Since σ = 0 is a simple root of M(σ), Theorem 7.1.9 is applicable to (7.1.5)
with a = −b small.

Next, we intend to apply Theorem 7.1.10 to (7.1.5). According to [108,
p.198], (7.1.6) with µ = 0 has a family of periodic solutions

uk(t) =
√

2√
2− k2

dn
(

t√
2− k2

, k

)
,

where dn is the Jacobi elliptic function and k is the elliptic modulus. The period
of these orbits is given by

Tk = 2K(k)
√

2− k2 ,

where K(k) is the complete elliptic integral of the first kind. Tk is monotonically
increasing in k with lim

k→0
Tk =

√
2π and lim

k→1
Tk = ∞. Consequently, there is a

unique k0
.= 0.982635, 0 < k0 < 1 such that Tk0 = 2π. Then assumptions (i), (ii)

and (v) of Subsections 7.1.3 and 7.1.4 are satisfied for (7.1.6) with γ(t) = uk0(t).
Now we compute

M(σ) =

Tk0∫
0

〈φ(t + σ), w0〉γ̇(t) dt

=

Tk0∫
0

u̇k0(t) cos(t + σ) dt = −
√

2π sech
πK ′(k0)
K(k0)

sin σ .

Since again σ = 0 is a simple root of M(σ), Theorem 7.1.10 is applicable to
(7.1.5) with a = −b small.

The above arguments can be repeated to (7.1.1) when now

X = C4(S1, R), Y = L2(S1, R), Au = uxxxx ,

g(u)(x) = − sin u(x)− τ(x), φ(t) = sin t , T = 2π .

Hence (7.1.29) is (7.1.2), which is the forced pendulum equation. From Subsec-
tion 7.1.1 we already know that conditions (i–iv) of Subsection 7.1.3 are satisfied,
when (7.1.3) is considered on the cylinder S2π × R. Furthermore, the function
M(σ) of Theorem 7.1.9 has now the form

M(σ) =

∞∫
−∞

〈φ(t + σ), w0〉γ̇(t) dt = 2π sech
π

2
sin σ .
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Since σ = 0 is a simple root ofM(σ), Theorem 7.1.9 is applicable to (7.1.1) with
b = −a small. Similarly, following results of [108, pp. 201–204], Theorem 7.1.10
is applicable to (7.1.1) for subharmonics. Hence like in Chapter 3, there are
bifurcations of periodics for (7.1.1) from a heteroclinic cycle of (7.1.2) created by
(γ(t), γ̇(t)) and (γ(−t),−γ̇(−t)). But we also get librational solutions bifurcating
from (γ(t), γ̇(t)), i.e. a weak solution of (7.1.1) satisfying u(x, t+2mπ) = u(x, t)+
2π for some large m ∈ N.

Finally, we investigate (7.1.4) taking

X =
{

u ∈ C4([0, 1], R) | u(x) = u(1− x), uxx(0) = uxx(1) = 0 ,

uxxx(0) = uxxx(1) = 0
}

,

Y =
{
u ∈ L2([0, 1], R) | u(x) = u(1− x)

}
, Au = uxxxx ,

g(u)(x) = − sin u(x)− τ(x), φ(t) = cos t , T = 2π .

First we note that the eigenvalue problem

uxxxx(x) = νu(x)
uxx(0) = uxx(1) = uxxx(0) = uxxx(1) = 0

(7.1.41)

is known [23] to possess a sequence of eigenvalues νk = ξ4
k, k = −1, 0, 1, · · · with

ξ−1 = ξ0 = 0 and
cos ξk cosh ξk = 1 . (7.1.42)

The corresponding orthonormal system of eigenvectors reads

u−1(x) = 1, u0(x) =
√

3(2x− 1)

uk(x) =
2

Wk

[
cosh(ξkx) + cos(ξkx)

−cosh ξk − cos ξk

sinh ξk − sin ξk
(sinh(ξkx) + sin(ξkx))

]
where

Wk = cosh(ξk) + cos(ξk)− cosh ξk − cos ξk

sinh ξk − sin ξk
(sinh(ξk) + sin(ξk)) . (7.1.43)

Then we get cos ξk = 1
cosh ξk

. Numerically we find ξ1
.= 4.73004075.

Moreover, 0 < ξ1 < ξ2 < · · · and so cosh ξ1 < cosh ξ2 < · · · . Since ξk ∼
π(2k + 1)/2 and cos(π(2k + 1)/2) = 0, we get

| sin θk| · |ξk − π(2k + 1)/2| = | cos ξk − cos(π(2k + 1)/2)| = 1
cosh ξk

≤ 2 e−ξk

for a θk ∈ (ξk, π(2k + 1)/2). But we have

1 ≥ | sin ξk| =
√

1− cos2 ξk ≥
√

1− cos2 ξ1
.= 0.999844212 ,
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Figure 7.1: The graphs of functions y = cos x (thick line) and y = sech x

since
0 < cos ξk =

1
cosh ξk

≤ 1
cosh ξ1

= cos ξ1 .

Next, we can easily see (cf. Fig. 7.1) that in fact (4k − 1)π/2 < ξ2k−1, ξ2k <
(4k + 1)π/2 and function cosx is positive on intervals (ξk, π(2k + 1)/2) for any
k ∈ N. So function sinx is increasing on these intervals, and it is positive on
[ξ2k, (4k + 1)π/2] and negative on [(4k − 1)π/2, ξ2k−1]. From these arguments
we deduce

| sin θk| ≥ | sin ξk| ≥ | sin ξ1| .= 0.9998444212 .

This gives
|ξk − π(2k + 1)/2| ≤ 2

| sin ξ1| e
−ξ1 .= 0.017654973 .

So we obtain
ξk ≥ π(2k + 1)

2
− 0.017654973 ≥ πk .

Consequently, we arrive at

|ξk − π(2k + 1)/2| ≤ 2
| sin ξ1| e

−ξk ≤ 2
| sin ξ1| e

−πk ≤ c
π

4
e−πk (7.1.44)

for c
.= 2.546875863. Furthermore, if u(x) solves (7.1.41), then also u(1 − x) is

its solution. Moreover, uk(x), k ∈ N is an orthonormal system in Y . This gives
uk(1−x) = ±uk(x) for any k ∈ N. Next, we already know that sin ξ2k > 0. Hence
sin ξ2k =

√
1− cos2 ξ2k. Using also cosh ξk = 1

cos ξk
and sinh ξk =

√
cosh2 ξk − 1

form (7.1.43) we derive W2k = −2. Similarly, from sin ξ2k−1 < 0, k ∈ N we
derive sin ξ2k−1 = −√1− cos2 ξ2k−1 and then W2k−1 = 2. Using uk(0) = 4

Wk

and uk(1) = 2, we see

u2k(1− x) = −u2k(x), u2k−1(1− x) = u2k−1(x) ∀k ∈ N .
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Consequently, the eigenvalues of A for (7.1.4) read
{
ξ4
2k−1 | k ∈ Z+

}
with the

corresponding eigenfunctions {u2k−1(x) | k ∈ Z+}. So

NA = {constant functions} # R

and (7.1.29) is again (7.1.2). From (7.1.44) we get
∑
k∈N

1
ξ2
2k−1

< ∞, and Lemma

7.1.5 is applicable. Consequently, the above results for (7.1.1) are extended to
(7.1.4). Summarizing we get the following result.

Theorem 7.1.12. Lemma 7.1.5 and Theorems 7.1.9, 7.1.10 are applicable to
(7.1.1), (7.1.4) and (7.1.5), while the corresponding limit o.d.eqns are (7.1.2)
and (7.1.6), respectively.

Theorem 7.1.12 asserts that there are many periodic/subharmonic solutions
of (7.1.1), (7.1.4) and (7.1.5) when nonresonant conditions of Lemma 7.1.5 are
satisfied.

In [26] a similar problem is studied on the existence of weak 2T√
ε
−periodic

solutions of equation

utt + uxxxx + εµh(x,
√

εt) = 0 ,

uxx(0, ·) = uxx(1, ·) = 0 ,

uxxx(0, ·) = −εf

(∫ 1

0

u(x, ·)ϕ(x)dx

)
,

uxxx(1, ·) = εg

(∫ 1

0

u(x, ·)ϕ(1− x)dx

) (7.1.45)

for ε > 0 small. We assume that h(x, t) is a 2T−periodic (in t) C1−function on
[0, 1]×R, f(x), g(x) are sufficiently smooth functions such that f(0)= g(0)= 0
and ϕ(x) = ϕa(x) ∈ L2(R, R), is a non-negative function whose support
suppϕ ⊆ [0, a], where a is a fixed positive number such that 0 < a < 1

3 , and∫ 1

0

ϕ(x)dx =
∫ ∞

−∞
ϕ(x)dx = 1 .

Physically conditions

uxxx(0, ·)=− εf

(∫ 1

0

u(x, ·)ϕ(x)dx

)
, uxxx(1, ·)=εg

(∫ 1

0

u(x, ·)ϕ(1− x)dx

)
mean that the response at the end points of the beam depends on a small
part of the beam near the end points. In [26] under additional assumptions,
our main result states that if h(x, t) = h(x,−t), ε > 0 and µ are sufficiently
small and the period 2T of h(x, t) belongs to a certain non-zero measure subset
of the interval [2T̃0, 2ε−1/4], with T̃0 sufficiently large, then (7.1.45) has a weak
2T√

ε
−periodic solution. When h(x, t) = 0, there are several layers of free symmet-

ric weak periodic vibrations of (7.1.45) for any small ε > 0. This achievement is
a p.d.eqn analogy of period blow-up results concerning accumulation of periodic
solutions to homoclinic orbits in finite dimensional reversible systems studied in
Section 5.2.
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7.2 Weakly Nonlinear Wave Equations

7.2.1 Excluding Small Divisors

In this section we proceed with investigation on the existence of periodic so-
lutions of undamped nonlinear wave equations. We study a weakly nonlinear
equation

utt + Au = εf(u, t) , (7.2.1)

where A, X, Y , f are already defined in the previous Subsection 7.1.2 and ε ∈ R

is small. To get bifurcation results, we suppose

0 < dimNA <∞ .

By a weak T -periodic solution of (7.2.1) we mean a function u ∈ L2
(
ST , Y

)
satisfying

T∫
0

〈u(t), vtt(t)+Av(t)〉 dt = ε

T∫
0

〈f(u(t), t
)
, v(t)〉 dt, ∀ v ∈ C2

(
ST , X

)
. (7.2.2)

The integrability is considered in the sense of Bochner. Generally, problems of
those kinds lead to problems of small divisors, and for this reason, it is very hard
to study such problems [13,37,128] (see also Lemma 7.1.1). This is the case for
one-dimensional wave equations when the ratio between the space length and the
period T is irrational [30,150]. On the other hand, we can very easy study these
problems for specific irrational numbers of the ratio. These irrational numbers
can be nicely characterized in notions of the number theory. We present some
results in this direction at the end of this section. To be more concrete about a
small divisor problem, first we study a linear version of (7.2.1) given by

T∫
0

〈u(t), vtt(t) + Av(t)〉 dt =

T∫
0

〈h(t), v(t)〉 dt, ∀ v ∈ C2
(
ST , X

)
(7.2.3)

for h ∈ L2
(
ST , Y

)
. Let P : Y → NA be the orthogonal projection, and set

Q̃ := I− P̃ , P̃ h :=
1
T

T∫
0

Ph(t) dt .

Note, these projections are defined for the following reason

P̃ h = 0 ⇐⇒
T∫

0

〈h(t), up〉 dt = 0, ∀up ∈ NA .
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By (7.2.3) we derive

T∫
0

〈h(t), up〉 dt = 0, ∀up ∈ NA, i.e. h ∈ RQ̃ .

Now we prove a non-resonance result for (7.2.3).

Lemma 7.2.1. Assume the existence of a constant c > 0 such that∣∣∣∣α2 − m2

λi

∣∣∣∣ ≥ c

λi
∀m ∈ N, ∀ i > i0 , (7.2.4)

where α = T/2π. Then for any h ∈ RQ̃, (7.2.3) has a unique solution u = Lh ∈
RQ̃. Moreover,

||u||
L2
(
ST ,Y

) ≤ c̃||h||
L2
(
ST ,Y

) (7.2.5)

for a constant c̃ > 0.

Proof. By our assumptions, the Hilbert space RQ̃ ⊂ Y has the orthogonal basis{
uk, sin m

2πt

T
· uj , cos m

2πt

T
· uj | m, k ∈ N, j ≥ −d + 1

}
⊂ C2

(
ST , X

)
(7.2.6)

We expand u (formally) and h really in the basis (7.2.6) to get

u(t) =
∑

(m,λj)
=(0,0)

(
u1

mj sin m
2πt

T
+ u2

mj cos m
2πt

T

)
uj

h(t) =
∑

(m,λj)
=(0,0)

(
h1

mj sin m
2πt

T
+ h2

mj cos m
2πt

T

)
uj ,

where we set λj := 0 for −d + 1 ≤ j < 0. Of course, we take u1
0j = 0 and

h1
0j = 0. If u is a solution of (7.2.3), then we take v(t) = sinm 2πt

T · uj and
v(t) = cos m 2πt

T · uj , for (m,λj) �= (0, 0), to get

ui
mj =

α2

α2λj −m2
hi

mj , i = 1, 2 .

Hence if (7.2.3) has a solution u ∈ RQ̃, then it is unique and it should be given
by

u(t) =
∑

(m,λj) 
=(0,0)

α2

α2λj −m2

(
h1

mj sin m
2πt

T
+ h2

mj cos m
2πt

T

)
uj . (7.2.7)

By (7.2.4) it holds |ui
mj | ≤ c̃|hi

mj |, i = 1, 2 for a constant c̃ > 0. Hence

||u||2
L2
(
ST ,Y

) =
∑
λj 
=0

T (u2
0,j)

2 +
∑

m 
=0,j

(T/2)
(
(u1

mj)
2 + (u2

mj)
2
)

≤ c̃2
( ∑

λj 
=0

T (h2
0j)

2 +
∑

m 
=0,j

(T/2)
(
(h1

mj)
2 + (h2

mj

)2) = c̃2||h||2
L2
(
ST ,Y

) .
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This gives u ∈ RQ̃ given by (7.2.7), and we have (7.2.5). So L is continuous.
Now we show that this u satisfies (7.2.3). Our assumptions give that the

linear hull LH of (7.1.8) is dense in C2(ST , X): one can prove this by using the
�-approximation method like in [178], see also Fejér’s Theorem [171]. So for
any v ∈ C2(ST , X) there is a sequence vj ∈ LH such that vj → v in C2(ST , X).
This gives vjtt → vtt and vj → v in C(ST , X). Hence Avj → Av in C(ST , Y ).
The equality (7.2.3) holds for any vj ∈ LH , and since X ⊂ Y continuously, we
take the limit j →∞ in (7.2.3) for v = vj to get the validity of (7.2.3) for any v.
The proof is finished.

Note (7.2.4) is satisfied when it holds∣∣∣∣α− m√
λi

∣∣∣∣ ≥ c

λi
∀m ∈ N, ∀ i > i0 (7.2.8)

for a constant c > 0. Indeed, from (7.2.8) we derive∣∣∣∣α2 − m2

λi

∣∣∣∣ = ∣∣∣∣α− m√
λi

∣∣∣∣ ∣∣∣∣α +
m√
λi

∣∣∣∣ ≥ α
c

λi
.

Considering a one-dimensional operator

Au = −uxx, u(0) = u(π) = 0, u ∈ C2 ([0, π])

determined by the one-dimensional wave operator

utt − uxx, u(·, 0) = u(·, π) = 0 , (7.2.9)

we get λi = i2, i ∈ N. Then (7.2.4) has the form

inf
i,m∈N

|i2α2 −m2| > 0 , (7.2.10)

while (7.2.8) has the form∣∣∣α− m

i

∣∣∣ ≥ c

i2
∀m, i ∈ N . (7.2.11)

Next, the real number α can be uniquely expressed in the form

α = a0 + θ1

with a0 integer and 0 ≤ θ1 < 1. If θ1 �= 0 then there is a unique α1 > 1 with

α = a0 +
1
α1

.

If α1 is not an integer number then it has a unique representation

α1 = a1 +
1
α2
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with a1 integer and α2 > 1. This procedure terminates only if α is rational. For
irrational α we get its continued fraction expansion

α = a0 +
1

a1 + 1
a2+···

= [a0, a1, a2, · · · ] .

The integers a0, a1, · · · are the partial quotients of α. We set

pn/qn := [a0, a1, a2, · · · , an−1, an]

with (pn, qn) = 1 and qn > 0. Here as usually (p, q) is the largest common
divisor of integer numbers p and q. The following interesting results are well-
known [30,51,126,150].

Proposition 7.2.2. If α is irrational then:

(i) The integers pn, qn recursively satisfy relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1 ,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, n ≥ 2 .

(ii) The rational number pn

qn
is the best rational approximation in the sense

that there is no rational number p
q with 0 < q < qn and∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣∣α− pn

qn

∣∣∣∣ .

(iii) If ∣∣∣∣α− p

q

∣∣∣∣ < 1
2q2

for some p ∈ Z and q ∈ N then p
q = pn

qn
for some n ∈ Z+.

(iv) For n = 0, 1, 2, · · · one has

1
q2
n(an+1 + 2)

≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
q2
nan+1

.

Definition 7.2.3. An irrational number α has a bounded continued fraction
expansion [a0, a1, · · · ] if max

i∈N

ai <∞.

Proposition 7.2.4. An irrational number α has a bounded continued fraction
expansion if and only if α satisfies either (7.2.10) or (7.2.11) for some c > 0

So (7.2.10) and (7.2.11) are equivalent. From (iii) and (iv) of Proposition 7.2.2
we get the following improvement of Propositions 7.2.4.
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Proposition 7.2.5. If α = [a0, a1, · · · ] with ak ≤ M for some M > 0 and all
k ≥ 1, then it holds ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
M + 2

1
q2

for any p, q ∈ N.

Unfortunately, the author does not know generally such a nice criterion like
in Proposition 7.2.4 for α in (7.2.8) with general eigenvalues λi. On the other
hand when α has no a bounded continued fraction expansion, then

inf
i,m∈N

|i2α2 −m2| = 0 ,

and we encounter to a small divisor problem in (7.2.7). This is mentioned at the
beginning of this subsection.

7.2.2 Lebesgue Measures of Nonresonances

We start with the following well-known result [51,126].

Proposition 7.2.6. The Lebesgue measure of all positive irrational numbers
with bounded continued fraction expansions is zero.

So for almost all T there is a problem of small divisors for the one-dimensional
wave operator (7.2.9) with T -periodic time conditions u(x, t + T ) = u(x, t). On
the other hand, like in Lemma 7.1.5 we have the following result.

Theorem 7.2.7. Assume ∑
i>i0

1√
λi

< ∞ .

Then the Lebesgue measure of the set of all positive α not satisfying (7.2.4) is
zero.

Proof. If (7.2.4) is false for some α ∈ (K,K + 1), K > 0, then for any d > 0
there exist m ∈ N and i > i0 such that

∣∣α2 − m2

λi

∣∣ ≤ d

λi
.

This implies ∣∣α− m√
λi

∣∣ ≤ d

Kλi
.

From α ∈ (K,K + 1), we have m2

λi
< (K + 2)2 for any 0 < d < Kλi0+1. Thus

m ≤ (K + 2)
√

λi .
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Denote by M the set of all α ∈ (K,K +1) for which (7.2.4) does not hold. Then
the Lebesgue measure µ(M) of M satisfies

µ(M) ≤
∑
i>i0

2d(K + 2)
λiK

√
λi =

2d(K + 2)
K

∑
i>i0

1√
λi

.

Since d can be arbitrarily small, it holds µ(M) = 0. The proof is finished.

Since
∞∑

i=1

1
i = ∞, this theorem is not applicable (and it can not be by

Proposition 7.2.6) for the one-dimensional wave operator (7.2.9). But taking
a one-dimensional beam operator utt + uxxxx for which

Au = uxxxx, u(0) = u(π) = 0, uxx(0) = uxx(π) = 0, u ∈ C4 ([0, π]) ,

then we have λi = i4,∀ i ∈ N, so
∞∑

i=1

1
i2 = π2

6 and Theorem 7.2.7 is applicable to

the beam operator.

7.2.3 Forced Periodic Solutions

Now we are ready to study a weakly nonlinear problem (7.2.2) from which we
see that any weak T -periodic solution of (7.2.1) satisfies

T∫
0

〈f(u(t), t
)
, up〉 dt = 0, ∀up ∈ NA . (7.2.12)

Then (7.2.1) has the form

wtt + Aw = εQ̃f(w + up, ·), w ∈ RQ̃

0 = P̃ f(w + up, ·), up ∈ NA .
(7.2.13)

Note u = w + up in (7.2.1). Using Lemma 7.2.1, the first equation of (7.2.13)
has the form

w = F (w, up, ε) := εLQ̃f (w + up, ·) . (7.2.14)

Since f ∈ C
(
Y × ST , Y

)
is globally Lipschitz in y with a constant M and

Q̃ : L2
(
Y × ST , Y

) → L2
(
Y × ST , Y

)
is orthogonal, from Lemma 7.2.1 we

derive

||F (w1, up1 , ε)− F (w2, up2 , ε)||L2
(
ST ,Y

)
≤ |ε|‖L‖‖Q̃‖|| (f (w1 + up1 , ·)− f (w2 + up2 , ·)) ||L2

(
ST ,Y

)
≤ |ε|c̃M

(
||w1 − w2||

L2
(
ST ,Y

) + ||up1 − up2 ||L2
(
ST ,Y

))
≤ |ε|c̃M

(
||w1 − w2||

L2
(
ST ,Y

) +
√

T‖up1 − up2‖
)

(7.2.15)
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for any w1,2 ∈ RQ̃ and up1,2 ∈ NA. Moreover, we have

||F (0, 0, ε)||
L2
(
ST ,Y

) = |ε|||LQ̃f(0, ·)||
L2
(
ST ,Y

) ≤ |ε|c̃||f(0, ·)||
L2
(
ST ,Y

) .

(7.2.16)
Using the Banach fixed point theorem, for ε small, i.e. |ε|c̃M < 1, we are able
to solve (7.2.14) in w := w(ε, up). From (7.2.15) and (7.2.16) we derive

||w(ε, up1)− w(ε, up2)||L2
(
ST ,Y

) ≤ |ε|c̃M√
T

1− εc̃M
‖up1 − up2‖

||w(ε, up)||
L2
(
ST ,Y

) ≤ |ε|c̃
1− εc̃M

(
M
√

T‖up‖+ ||f(0, ·)||
L2
(
ST ,Y

)) (7.2.17)

for any up, up1,2 ∈ NA. By inserting this solution w(ε, up) into the second
equation of (7.2.13) we arrive at the bifurcation equation

B(ε, up) := P̃ f
(
w(ε, up) + up, ·

)
= 0 .

Note B ∈ C
((− 1

c̃M , 1
c̃M

)×NA,NA
)
, and

B(0, up) =
1
T

T∫
0

Pf(up, t) dt, B(0, ·) : NA → NA .

Summing up we obtain the next result [78].

Theorem 7.2.8. Let (7.2.4) be satisfied. Assume the existence of an open and
bounded subset Ω ⊂ NA such that 0 /∈ B(0, ∂Ω) and deg(B(0, ·),Ω, 0) �= 0. Then
(7.2.1) has a weak T -periodic solution for any ε small.

Proof. From (7.2.17) we derive

‖B(ε, up)−B(0, up)‖ =

∥∥∥∥∥∥ 1
T

T∫
0

P
(
f (w(ε, up)(t) + up, t)− f (up, t)

)
dt

∥∥∥∥∥∥
≤ M

T

T∫
0

‖w(ε, up)(t)‖ dt ≤ M√
T
||w(ε, up)||

L2
(
ST ,Y

)
≤ |ε|c̃M

(1− εc̃M)
√

T

(
M
√

T‖up‖+ ||f(0, ·)||
L2
(
ST ,Y

))
for any up ∈ NA. Then from 0 /∈ B(0, ∂Ω) we get 0 /∈ B(ε, ∂Ω) for ε small.
Consequently, we obtain

deg(B(ε, ·),Ω, 0) = deg(B(0, ·),Ω, 0) �= 0

for ε small. Hence B(ε, up) = 0 has a solution in Ω. The proof is finished.
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Example 7.2.9. Consider

utt − uxx − n2u = εf(u, t)
u(t + T, ·) = u(t, ·), u(t, 0) = u(t, π) = 0 ∀ t ∈ R ,

(7.2.18)

where n ∈ N, f : R × ST → R is continuous and globally Lipschitz in u. Now,
we take

X =
{
u ∈W 2,2 ([0, π], R) | u(0) = u(π) = 0

}
, Y = L2 ([0, π], R)

Au = −uxx − n2u, NA = {sin nx}, λi = i2 − n2 ,

and the condition (7.2.4) reads as follows∣∣∣∣ i2 − n2

m2
− 1

α2

∣∣∣∣ ≥ c

α2m2
, ∀m,∀i ∈ N, i > n , (7.2.19)

for a constant c > 0. Note (7.2.19) is equivalent to

inf
i,m∈N,i>n

∣∣i2 − n2 − ω2m2
∣∣ > 0 (7.2.20)

for ω = 1/α.

Theorem 7.2.10. Equation (7.2.18) has a weak solution, provided (7.2.20)
holds and there are z1, z2 ∈ R such that

T∫
0

π∫
0

f(z1 sin nx, t) sin nx dx dt

T∫
0

π∫
0

f(z2 sin nx, t) sin nx dx dt < 0 .

Proof. We see that for this case

Pu =
2
π

π∫
0

u(x) sin nx dx · sin nx, up = z sin nx

B(0, up) =
2

Tπ

T∫
0

π∫
0

f(z sin nx, t) sin nx dx dt · sin nx .

Applying Theorem 7.2.8, the proof is finished.

Further results on periodic solutions for abstract wave equation are presented
in [40,80].

7.2.4 Theory of Numbers and Nonresonances

This section is devoted to results concerning the condition (7.2.20). We already
know from Proposition 7.2.4 that (7.2.20) holds for n = 0 if and only if ω has
a bounded continued fraction expansion. Note that ω has a bounded continued
fraction expansion if and only if α = 1/ω has the same property. We intend to
derive similar results for n ∈ N. This situation is different from n = 0. First we
study the case when ω is rational.
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Theorem 7.2.11. Let ω = p
q , p, q ∈ N, (p, q) = 1. Then (7.2.20) holds if and

only if any n2 ∈ N with n2 | n
(p,n) satisfies

(i) If n2 is odd then p/(p, n) does not divide (a2−b2)/2 for any a > b, a, b ∈ N

such that n2 = ab and (a, b) = 1.

(ii) If n2 is even then p/(p, n) does not divide a2 − b2 for any a > b, a, b ∈ N

such that n2 = 2ab and (a, b) = 1.

Here as usually a | b means that a is a divisor of b.

Proof. The condition (7.2.20) does not hold if and only if there are i,m ∈ N,
i > n such that

q2i2 = p2m2 + q2n2 . (7.2.21)

Hence q | pm implies q | m, i.e. m = rq, r ∈ N and (7.2.21) gives

i2 = p2r2 + n2 . (7.2.22)

After dividing (7.2.22) by (p, n)2, we get

i21 = p2
1r

2 + n2
1, p1 = p/(p, n), n1 = n/(p, n), i1 = i/(p, n) .

Similarly we have

i22 = p2
1r

2
1 + n2

2, r1 = r/(r, n1), n2 = n1/(r, n1), i2 = i1/(r, n1) .

Note (n2, p1r1) = 1. We have two possibilities:
1. If n2 is odd, then p1r1 is even and we get

i2 + n2

2
i2 − n2

2
=
(p1r1

2

)2

.

Since (p1r1, n2) = 1, we get
(

i2+n2
2 , i2−n2

2

)
= 1 and so

i2 + n2 = 2A2, i2 − n2 = 2B2, p1r1 = 2AB

i2 = A2 + B2, n2 = A2 −B2 = (A−B)(A + B)

for some A,B ∈ N with A > B and (A,B) = 1. So we derive

A =
a + b

2
, B =

a− b

2
, n2 = ab, p1r1 =

a2 − b2

2

for some a, b ∈ N with a > b and (a, b) = 1. Hence p1 = p/(p, n) | (a2 − b2)/2.
This contradiction with (i) justifies (7.2.20).

2. If n2 is even, then p1r1 is odd and we get

i2 + p1r1

2
i2 − p1r1

2
=
(n2

2

)2

.

Similarly like above we get

i2 = A2 + B2, p1r1 = A2 −B2, n2 = 2AB

for some A,B ∈ N with A > B and (A,B) = 1. This contradiction with (ii)
justifies (7.2.20). The proof is finished.
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Corollary 7.2.12. Let ω = p/q, p, q ∈ N, (p, q) = 1. Then
(a) condition (7.2.20) holds if n | p
(b) condition (7.2.20) holds for n = 2, and for a prime number n > 2 if and

only if either (n, p) > 1, or (n, p) = 1 and p does not divide (n2 − 1)/2

In the rest, we study (7.2.20) for more general ω.

Theorem 7.2.13. If ω =
√

p/q is irrational for p, q ∈ N, (p, q) = 1, then
(7.2.20) does not hold for any n ∈ N.

Proof. Since
√

pq is irrational, the Pelle equation i2 = pqm2 + 1 has a natural
number solution i0 and m0. Then i = i0n, m = m0qn satisfy i2 = ω2m2 + n2.
The proof is finished.

On the other hand, we have the following positive result.

Theorem 7.2.14. Condition (7.2.20) is satisfied for any irrational number
ω > 0 with ω = [a0, a1, · · · ] such that ak ≤ M for some M > 0 and all k ≥ 1,
and ω > (M + 2)n2.

Proof. From Proposition 7.2.5, we get∣∣∣∣ω − p

q

∣∣∣∣ ≥ 1
M + 2

1
q2

for any p, q ∈ N. Hence∣∣∣∣ i2

m2
− ω2

∣∣∣∣ = ∣∣∣∣ i

m
− ω

∣∣∣∣ ∣∣∣∣ i

m
+ ω

∣∣∣∣ ≥ ω

M + 2
1

m2

for any i,m ∈ N. Consequently, for i > n,m ∈ N, we obtain

|i2 − ω2m2 − n2| ≥ |i2 − ω2m2| − n2 ≥ ω

M + 2
− n2 > 0 .

The proof is finished.

For instance, we have the following consequence.

Corollary 7.2.15. If ω = 2M−1+
√

5
2 for some M ∈ N then (7.2.20) holds when

2M − 1 +
√

5 > 6n2 . (7.2.23)

Proof. From ω = 2M−1+
√

5
2 for some M ∈ N we get ω = [M, 1, 1, · · · ], and then

(7.2.23) implies ω > (M + 2)n2. The proof is finished.

Furthermore, following [51, 58], we can get more characterizations of ω to
satisfy (7.2.20).

Definition 7.2.16. The set of values taken by

µ(α)−1 = lim inf
q→+∞,p,q∈Z

|q(qα− p)|

as α varies is called the Lagrange spectrum.
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We know that if α = [a0, a1, a2, · · · ] then

µ(α) = lim sup
k→+∞

(
[ak+1, ak+2, · · · ] + [0, ak, ak−1, · · · , a1]

)
.

Moreover, µ(α) < +∞ if and only if α is irrational and all ai are uniformly
bounded. Next, µ(α) ≥ √5 for any α and the Lagrange spectrum on the interval
[
√

5, 3) is the set {√9− 4m−2}, where m is a positive integer number such that

m2 + m2
1 + m2

2 = 3mm1m2, m1,2 ≤ m

holds for some positive integers m1 and m2. Then ω̃ is a root of the Markoff
form Fm such that µ(ω̃) =

√
9− 4m−2. We also note that according to the Hall

theorem, the Lagrange spectrum contains every number greater or equal to
√

21.

Definition 7.2.17. Two real numbers θ and θ′ are equivalent if

θ =
rθ′ + s

tθ′ + u

for some integer numbers r, s, t, u satisfying ru− ts = ±1.

Theorem 7.2.18. Let ω′ > 0 be irrational with a bounded continued fraction
expansion, i.e µ(ω′) < ∞. Then (7.2.20) holds for any ω > 0 equivalent to ω′

satisfying ω > µ(ω′)n2.

Proof. We know that µ(ω) = µ(ω′) < ∞. Next, there are M0,M1 ∈ N, n < M0

such that if either M0 < i ∈ N or M1 < m ∈ N then∣∣i2 − ω2m2 − n2| ≥ |i− ωm||i + ωm| − n2 ≥ 1
2

[
ω

µ(ω)
− n2

]
> 0 . (7.2.24)

On the other hand, if it could be i20 − ω2m2
0 − n2 = 0 for some n < i0 ≤ M0,

m0 ≤ M1, i0,m0 ∈ N, then
√

i20 − n2 is irrational and so there are x0, y0 ∈ N

satisfying the Pelle equation x2
0 −
(
i20 − n2

)
m2

0y
2
0 = 1. Then the iteration

ik+1 = x0ik +
(
i20 − n2

)
y0mk, mk+1 = y0m

2
0ik + x0mk, k ∈ Z+

would also satisfy i2k − ω2m2
k − n2 = 0 for all k ∈ N. This would contradict

to (7.2.24) for k large. Hence i2 − ω2m2 − n2 �= 0 for any n,m ∈ N, n < i ≤
M0,m ≤ M1. The proof is finished.

For instance, if we take u = t = 1, r = s + 1, s ∈ Z, then ω = s + ω′
ω′+1 is

equivalent to ω′, and Theorem 7.2.18 is applicable for any s ∈ N such that

s > n2µ(ω′)− ω′

ω′ + 1
.

This is related to (7.2.23).



Chapter 8

Topological Degree
for Wave Equations

8.1 Discontinuous Undamped Wave Equations

In this chapter, we study bifurcation of weak 2π-periodic solutions with large
amplitudes to the discontinuous semilinear wave equation

utt − uxx − ηu− g(u)− f(x, t, u) = h(x, t) ,

u(0, ·) = u(π, ·) = 0 ,
(8.1.1)

where f : Ω × R → R, Ω = (0, π) × (0, 2π) is continuous and nondecreasing in
u, g : R → R is bounded nondecreasing, h ∈ L2(Ω) and η > 0 is a parameter.
Moreover, we suppose

|f(x, t, u)| ≤ c0|u|α + h0(x, t) ∀u ∈ R, ∀ (x, t) ∈ Ω (8.1.2)

for constants c0 > 0, 1 > α ≥ 0 and h0 ∈ L2(Ω). Continuous undamped wave
equations are studied in [33,34], based on [35] where a construction of a topologi-
cal degree is introduced for a class of monotone single-valued mappings. Related
problems are earlier studied in [43, 147–149]. The purpose of this chapter is to
extend that method to monotone multi-valued mappings modeled by (8.1.1).
So our method constitutes a combination of a multivalued Browder-Skrypnik
degree [46,179] with Mawhin’s coincidence index [145]. We note that in Sections
7.1 and 7.2 we avoid many resonances for the linear operator of wave or beam
equations assuming one of conditions (7.1.10) and (7.2.4). On the other hand,
since the linear boundary value problem utt − uxx = 0, u(0, ·) = u(π, ·) = 0 has
an infinitely many 2π-periodic solutions sinnt sin nx, cos nt sin nx, n ∈ N, the
linear part of (8.1.1) has an infinitely dimensional kernel. So here we study a
complementary case to Sections 7.1, 7.2 and moreover, we investigate discontin-
uous equations. Other topological degrees for multi-valued mappings have been
introduced in [36, 53, 54, 125]. The dual variational principle is applied to solve
elliptic problems with discontinuous nonlinearities in [3].

M. Fečkan, Topological Degree Approach to Bifurcation Problems, 227–241. 227
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8.2 Standard Classes of Multi-Mappings

Now we recall some known definitions for multi-valued mappings [125] defined
on a real separable Hilbert space H with an inner product (·, ·) and with the
corresponding norm | · |. A multi-valued mapping F : H → 2H \ {∅} is

• Monotone (denote F ∈ (mMON)), if

(f∗
u − f∗

v , u− v) ≥ 0

for all u, v ∈ H and all selections f∗
u ∈ F (u), f∗

v ∈ F (v)

• Quasimonotone (F ∈ (mQM)), if for any sequence {un}n∈N in H with
un ⇀ u and for all selections f∗

n ∈ F (un) we have

lim inf
n→∞ (f∗

n, un − u) ≥ 0

• Of class (mS+) (F ∈ (mS+)), if for any sequence {un}n∈N in H with
un ⇀ u, the existence of selections f∗

n ∈ F (un) with lim supn→∞(f∗
n, un−

u) ≤ 0 implies un → u

• Compact (F ∈ (mCOMP )), if for any bounded sequence {un}n∈N in H
and for any f∗

n ∈ F (un) the sequence {f∗
n}n∈N has a convergent subse-

quence

• Bounded, if for any bounded set B ⊂ H the set
⋃

u∈B F (u) is bounded

• Convex-valued, if F (u) is a non-empty convex set in H for any u ∈ H

• Weakly upper semicontinuous (F is w-usc), if for any sequence
{un}n∈N ∈ H, un → u ∈ H, the existence of selections f∗

n ∈ F (un)
with f∗

n ⇀ f∗ ∈ H implies f∗ ∈ F (u)

Remark 8.2.1. We always assume that all mappings used are bounded, w-usc
and convex-valued. When a mapping is defined only on a subset of H, the above
definitions can be modified in an obvious way.

Proposition 8.2.2. The following inclusion hold for the above defined classes:

(mS+) ∪ (mMON) ∪ (mCOMP ) ⊂ (mQM) .

Proposition 8.2.3. If F ∈ (mQM) and G ∈ (mS+) then F + G ∈ (mS+).

Since proofs of Propositions 8.2.2, 8.2.3 are simple, we omit them.
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8.3 M -Regular Multi-Functions

We show concrete mappings motivated by (8.1.1) which fit into the framework
of Section 8.2.

Definition 8.3.1. A function p : Ω× R → R is called

(a) superpositionally measurable if p(x, t, u(x, t)) is measurable for any
Lebesgue measurable function u : Ω → R

(b) lower semicontinuous (for short - lsc) in u if ∀(x, t, c) ∈ Ω × R the set
{u ∈ R | p(x, t, u) > c} is open

(c) upper semicontinuous (for short - usc) in u if ∀(x, t, c) ∈ Ω × R the set
{u ∈ R | p(x, t, u) < c} is open [52,171]

Definition 8.3.2. A multi-function S : Ω × R → 2R is called measurable-
bounded if there exist two superpositionally measurable functions q−(x, t, u) and
q+(x, t, u) such that

q−(x, t, u) ≤ q+(x, t, u) and S(x, t, u) = [q−(x, t, u), q+(x, t, u)]

for any (x, t, u) ∈ Ω × R where the function q−(x, t, u) is lsc in u, the function
q+(x, t, u) is usc in u and there exist positive constants d1, d2 and positive c1, c2 ∈
L2(Ω) such that

|q−(x, t, u)| ≤ c1(x, t) + d1|u| and |q+(x, t, u)| ≤ c2(x, t) + d2|u|

for any (x, t, u) ∈ Ω×R. We denote by (mMB) the set of all measurable-bounded
multi-functions.

By using a multi-function S ∈ (mMB), for any u ∈ L2(Ω) we put

N(u) :=
{

v ∈ L2(Ω) | v(x, t) ∈ S(x, t, u(x, t))
}

=
{

v ∈ L2(Ω) | q−(x, t, u(x, t)) ≤ v(x, t) ≤ q+(x, t, u(x, t))
}

and call it an M -regular multi-function. We denote the set of all such multi-
functions by (mMr). Note q±(x, t, u(x, t)) ∈ N(u), so N(u) is nonempty. Now
we are ready to show the following result.

Lemma 8.3.3. If N ∈ (mMr) then N : L2(Ω) → 2L2(Ω) is w-usc.

Proof. Let N ∈ (mMr) and un → u in L2(Ω). We have to show that if a
sequence {w∗

n}n∈N satisfies w∗
n ∈ N(un) and w∗

n ⇀ w∗ in L2(Ω) then w∗ ∈ N(u).
First, since un → u in L2(Ω), we can assume by passing to a subsequence that
un(x, t) → u(x, t) almost everywhere in (x, t) [171]. Next, we have

q−(x, t, un(x, t)) ≤ w∗
n(x, t) (8.3.1)
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for every n ∈ N. Since w∗
n ⇀ w∗, using the Mazur Theorem 2.1.2 we can choose

a sequence {vn}n∈N, vn ∈ con
[{w∗

n, w∗
n+1, . . . }

]
such that vn → w∗ in L2(Ω).

Thus we have

vn =
mn∑
k=n

λn,kw∗
k; 0 ≤ λn,k ≤ 1;

mn∑
k=n

λn,k = 1

for n ≤ mn ∈ N, n ≤ k ≤ mn.

Since vn → w∗ in L2(Ω), we can again assume that vn(x, t) → w∗(x, t) almost
everywhere in (x, t). From (8.3.1) we have

mn∑
k=n

λn,kq−(x, t, uk(x, t)) ≤
mn∑
k=n

λn,kw∗
k(x, t) = vn(x, t).

Let (x0, t0) ∈ Ω be such an element that un(x0, t0) → u(x0, t0) and vn(x0, t0) →
w∗(x0, t0). The mapping s → q−(x0, t0, s) is lsc and so for every ε > 0 there
exists a positive integer n0 such that for every k ≥ n0 we have

q−(x0, t0, u(x0, t0))− ε ≤ q−(x0, t0, uk(x0, t0)).

Summing this inequality for k = n, n + 1, . . . , mn with weights λn,k we get

q−(x0, t0, u(x0, t0))− ε ≤
mn∑
k=n

λn,kq−(x0, t0, uk(x0, t0)) ≤ vn(x0, t0)

for all n ≥ n0. Hence by the convergence vn(x0, t0) → w∗(x0, t0) we have

q−(x0, t0, u(x0, t0))− ε ≤ w∗(x0, t0) for every ε > 0.

Finally, we get
q−(x0, t0, u(x0, t0)) ≤ w∗(x0, t0)

as we need. Similar argument leads to

w∗(x0, t0) ≤ q+(x0, t0, u(x0, t0)) .

Thus w∗ ∈ N(u).

8.4 Classes of Admissible Mappings

We introduce certain multi-mappings to solve our example (8.1.1) in latter sub-
sections. Let G be a bounded open subset in H, M a closed subspace of H
and let Q and P be the orthogonal projections to M and M⊥, respectively. Let
C ∈ L(RQ,H) be compact. The family

FC
G :=

{
F : G → 2H | F = Q− (QCQ− P )f for some f ∈ (mS+)

}
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is called the class of admissible mappings.
Let L : H ⊂ D(L) → H be a closed densely defined linear operator with

RL = (NL)⊥. Let L0 := L/RL and assume that the right inverse L−1
0 : RL →

RL is compact. We choose M = RL and M⊥ = NL. Let N : H → 2H . Then
similarly to [35], we consider the mapping

F = Q− (QL−1
0 Q− P )N.

Clearly, F ∈ FC
G for N ∈ (mS+) with C = L−1

0 .

Lemma 8.4.1. Let F and N be defined as above. Then

0 ∈ Lu−N(u) with u ∈ D(L) ∩G (8.4.1)

if and only if
0 ∈ F (u) with u ∈ G .

Proof. (8.4.1)⇔ ∃u ∈ D(L) ∩ G, ∃f∗ ∈ N(u): Lu = f∗ ⇔ Qu = QL−1
0 Qf∗,

Pf∗ = 0, u ∈ G⇔ 0 = Qu− (QL−1
0 Q− P )f∗, u ∈ G ⇔ 0 ∈ F (u), u ∈ G.

8.5 Semilinear Wave Equations

We show how the previous results can be applied to the semilinear wave equation
(8.1.1). We state the precise setting of (8.1.1) by putting

q−(x, t, u) := g−(u) + f(x, t, u), q+(x, t, u) := g+(u) + f(x, t, u) ,

g+(u) := lim
s→u+

g(u), g−(u) := lim
s→u−

g(u) .

We note that g± are Borel measurable, g+ is usc and g− is lsc. By Lemma 8.3.3,
the Nemytskij operator N : H → 2H , H = L2(Ω) defined by

N(u) :=
{
v ∈ L2(Ω) | q−(x, t, u(x, t)) ≤ v(x, t) ≤ q+(x, t, u(x, t))

}
is bounded and w-usc. Clearly N ∈ (mMON) and hence by Propositions 8.2.2
and 8.2.3, ηI + N ∈ (mS+) for any η > 0.

Let C2 be the set of twice continuously differentiable functions v : [0, π]×R →
R satisfying v(0, ·) = v(π, ·) = 0 and 2π-periodic in t ∈ R.

A weak 2π-periodic solution of (8.1.1) for h ∈ H is any u ∈ H satisfying

(u, vtt − vxx)− η(u, v)− (u∗, v) = (h, v) (8.5.1)

for some u∗ ∈ N(u) and for all v ∈ C2. Here (·, ·) is the usual integral scalar prod-
uct on L2(Ω), i.e. (u, v) =

∫
Ω

u(x, t)v(x, t) dx dt. Let ϕm,n(x, t) = π−1 eimt sin nx

for all m ∈ Z, n ∈ N. Each u ∈ L2(Ω) has a representation

u =
∑

m∈Z,n∈N

um,nϕm,n ,
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where um,n = (u, ϕm,n) and um,n = u−m,n, since u is a real function. The
abstract realization of the wave operator ∂2

∂t2− ∂2

∂x2 in L2(Ω) is the linear operator
L : D(L) → L2(Ω) defined by

Lu =
∑

m∈Z,n∈N

(n2 −m2)um,nϕm,n ,

where

D(L) =

⎧⎨⎩u ∈ L2(Ω) |
∑

m∈Z,n∈N

(
n2 −m2

)2 |um,n|2 < ∞
⎫⎬⎭ .

It is easy to show that u ∈ L2(Ω) is a weak solution of (8.5.1) if and only if

h ∈ Lu− ηu−N(u)

with u ∈ D(L). Moreover, L is densely defined, self-adjoint, closed, RL =
(NL)⊥ and L has a pure point spectrum of eigenvalues

σ(L) =
{
n2 −m2 | m ∈ Z, n ∈ N

}
with the corresponding eigenfunctions ϕm,n. Clearly σ(L) is unbounded both
from above and from below, any eigenvalue λ �= 0 has a finite multiplicity, but
NL is infinite dimensional. The right inverse L−1

0 : RL → RL is compact.
Hence (8.1.1) fulfils all basic conditions for the inclusion (8.4.1) when N(u) is
replaced with ηI + N(u) + h.

8.6 Construction of Topological Degree

We construct a topological degree function for FC
G . The method is based on

the construction of continuous one-parametric generalized Galerkin projections
which we use for the derivation of a one-parametric family of multi-valued map-
pings possessing the Leray-Schauder degree. The basic Lemma 8.6.4 below is
the stabilization of this degree for large parameters. In this way, we can define
a topological degree for our multi-valued mappings. First, we define a class of
admissible homotopies.

Definition 8.6.1. A mapping: (t, u) → ft(u) from [0, 1]×G to 2H is a (multi-)
homotopy of the class (mS+), if for any sequences {un}n∈N in G, {tn}n∈N in
[0, 1], f∗

n ∈ ftn
(un) with un ⇀ u, tn → t and lim supn→∞(f∗

n, un − u) ≤ 0 we
have un → u.

We denote
HC

G = {Ft | Ft = Q− (QCQ− P )ft}
where ft is a homotopy of the class (mS+). The set HC

G is called the class of
admissible homotopies. Obviously Ft = (1− t)F1 + tF2 ∈ HC

G, 0 ≤ t ≤ 1 for any
F1, F2 ∈ FC

G . Finally, we recall Remark 8.2.1.
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Since H is separable there exists a sequence {Nn}n∈N of finite dimensional
subspaces of M⊥ with Nn ⊂ Nn+1 for all n, and ∪∞

n=1Nn is dense in M⊥.
We denote by Pn the orthogonal projection from H to Nn. We extend this to
generalized Galerkin approximations defined by

Pλ = (λ− n)Pn+1 + (n + 1− λ)Pn for any λ ∈ [n, n + 1].

We have the following obvious result.

Proposition 8.6.2. The generalized Galerkin approximations satisfy

(i) (Pλu, v) = (u, Pλv) for every λ ≥ 1, u, v ∈ H

(ii) ||Pλ|| ≤ 1 for all λ ≥ 1

(iii) Pλv → Pv for every v ∈ H as λ →∞
(iv) PnPλ = Pn for every λ ≥ n ∈ N

(v) (z, Pλz) ≥ 0 for every z ∈ H and λ ≥ 1

For each F = Q − (QCQ − P )f ∈ FC
G , we define the approximations {Fλ |

λ ≥ 1} by
Fλ = I− (QCQ− λPλ)f.

We note that (QCQ−λPλ)f is compact, convex-valued and usc for each λ ≥ 1.
Similarly, for each admissible homotopy Ft = Q− (QCQ− P )ft, 0 ≤ t ≤ 1,

we have
(Ft)λ = I− (QCQ− λPλ)ft,

which is obviously a homotopy of the Leray-Schauder type for any λ ≥ 1.

Proposition 8.6.3. Let {uk}n∈N ⊂ H and let {Pλ}λ≥1 be the projections de-
fined as above. Then

(a) if uk ⇀ u and λk →∞ then Pλk
uk ⇀ Pu

(b) if uk → u and λk →∞ then Pλk
uk → Pu

Now we can formulate the basic lemma.

Lemma 8.6.4. Let Ft = Q− (QCQ− P )ft be an admissible homotopy and let
A be a closed subset in G. If 0 /∈ Ft(A) for all t ∈ [0, 1], then there exists λ0 > 0
such that

0 /∈ (Ft)λ(A) for all t ∈ [0, 1] and λ ≥ λ0.

Proof. Assume by contrary that there exist sequences {uk}k∈N in A and {λk}k∈N

in [1,∞), λk → ∞, and {tk}k∈N in [0, 1] such that 0 ∈ (Ftk
)λk

(uk). This is
equivalent to the existence of selections g∗k ∈ ftk

(uk) and ck = −CQg∗k for
which

uk + Qc∗k + λkPλk
g∗k = 0 .
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Writing this equation in both subspaces M and M⊥ we get

Quk + Qc∗k = 0 , (8.6.1)

Puk + λkPλk
g∗k = 0 . (8.6.2)

The sequence {uk}k∈N is bounded therefore we can (taking a subsequence, if
necessary) assume that uk ⇀ u for some u ∈ H. Since the sequence g∗k is
bounded, we suppose g∗k ⇀ g∗, g∗ ∈ H and the compactness of C gives c∗k → z∗,
z∗ = −CQg∗.

Hence we have Qc∗k → Qz∗ and by (8.6.1), Quk → Qu. By (8.6.2),

1
λk

Puk + Pλk
g∗k = 0 .

The set {uk | k = 1, 2, . . . } is bounded, thus 1
λk

Puk → 0 for k →∞. This leads
to Pλk

g∗k → 0. On the other hand, for g∗k ⇀ g∗ we conclude Pλk
g∗k ⇀ Pg∗, which

yields Pg∗ = 0. Hence we have Pg∗k ⇀ Pg∗ = 0 followed by limk→∞(g∗k, Pu) = 0.
We continue with calculating of lim supk→∞(g∗k, uk − u):

lim sup
k→∞

(g∗k, uk − u) = lim sup
k→∞

(g∗k, Puk − Pu) = lim sup
k→∞

(g∗k, Puk) . (8.6.3)

From (8.6.2) we obtain Puk = −λkPλk
g∗k. Inserting it in to the last term of

(8.6.3) we get

lim sup
k→∞

(g∗k, uk − u) = − lim inf
k→∞

λk(g∗k, Pλk
g∗k).

By (v) of Proposition 8.6.2, λk(g∗k, Pλk
g∗k) ≥ 0 and it immediately follows that

lim sup
k→∞

(g∗k, uk − u) ≤ 0 .

Hence, by the definition of the homotopy ft of the class (mS+) we have uk → u,
u ∈ A. We have tn → t, g∗k ⇀ g∗ and uk → u. Since (t, u) → ft(u) is w-usc,
we get g∗ ∈ ft(u). From Quk → Qu, Qc∗k → Qz∗ using (8.6.1), we obtain
Qu + Qz∗ = 0. Since Pg∗ = 0 we have

0 = Qu− (QCQ− P )g∗ ∈ Ft(u) ,

a contradiction. The proof is complete.

We have the following important consequence for the stabilization of a
degree.

Lemma 8.6.5. Let F ∈ FC
G and 0 /∈ F (∂G). Then there exist λ1 ∈ [1,∞) such

that
dLS(Fλ, G, 0) = constant for all λ ≥ λ1 ,

where dLS is the Leray-Schauder topological degree.
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Proof. Choosing a constant homotopy Ft = F and A = ∂G, we obtain that
there exists λ1 ≥ 1 such that 0 /∈ Fλ(∂G) for all λ ≥ λ1.

Due to Lemma 8.6.5 we can define a degree function for the class FC
G . We

put
d(F,G, 0) := lim

λ→∞
dLS(Fλ, G, 0) (8.6.4)

for any given F ∈ FC
G with 0 /∈ F (∂G). In the next theorem we show that the

degree function defined by (8.6.4) has all the usual properties.

Theorem 8.6.6. Let H be a real separable Hilbert space, G be a bounded open
subset of H, M be a closed subspace of H, Q be the orthogonal projection onto
M , C ∈ L(RQ,H) be compact, FC

G be the class of admissible mappings and HC
G

be the class of admissible homotopies defined above. Then there exists a classical
Z-defined topological degree function d on FC

G satisfying the following properties:

(i) If 0 /∈ F (∂G) and d(F,G, 0) �= 0 then 0 ∈ F (G).

(ii) d(F,G, 0) = d(F,G1, 0)+d(F,G2, 0) (thus F ∈ FC
G1

and F ∈ FC
G2

), when-
ever G1 and G2 are disjoint open subsets of G such that 0 /∈ F (G \ (G1 ∪
G2)).

(iii) d(Ft, G, 0) is independent of t ∈ [0, 1] if Ft ∈ HC
G and 0 /∈ Ft(∂G) for all

t ∈ [0, 1].

Proof. If 0 /∈ F (∂G) and d(F,G, 0) �= 0 then by Lemma 8.6.4, 0 /∈ Fλ(∂G)
and dLS(Fλ, G, 0) �= 0 for λ large. Hence 0 ∈ Fλ(G). Then Lemma 8.6.4 gives
0 ∈ F (G). So (i) is shown.

If 0 /∈ F (G \ (G1 ∪G2)) then by Lemma 8.6.4, 0 /∈ Fλ(G \ (G1 ∪G2)) for λ
large. Then dLS(Fλ, G, 0) = dLS(Fλ, G1, 0) + dLS(Fλ, G2, 0). So (ii) is shown.

If 0 /∈ Ft(∂G) for all t ∈ [0, 1], then by Lemma 8.6.4, 0 /∈ (Ft)λ(∂G) for all
t ∈ [0, 1] and λ large. Then dLS ((Ft)λ, G, 0) is independent of t ∈ [0, 1]. So (iii)
is shown. The proof is finished.

More general mappings are considered in [36, 92] but we do not present
it here, since we are focussing on extension of some known results on local
bifurcations [32–35].

8.7 Local Bifurcations

We consider the inclusion

0 ∈ Lu− ηu−N(u) , (8.7.1)

where L is given in Section 8.4, η > 0 is a parameter and N ∈ (mQMN) is
bounded, w-usc, convex-valued. Hence ηI + N ∈ (mS+). Then we set

deg(L− ηI−N,G, 0) := d
(
Q− (QL−1

0 Q− P )(ηI + N), G, 0
)
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for an open bounded subset G ⊂ H such that 0 /∈ (L− ηI−N)(∂G ∩D(L)).
We also suppose that L is self-adjoint. Then L−1

0 : RL → RL is a compact,
self-adjoint operator, so the spectrum σ(L) of L is σ(L) = {λj}j∈Z, with λ0 = 0,
and the multiplicity mj of each λj �= 0 is finite. Concerning N : H → 2H we in
addition assume

(A1) sup {|v| | v ∈ N(u)} = o(|u|) as u → 0.

In this and the next sections, we intend to extend some results of [32] to (8.7.1).

Lemma 8.7.1. If η /∈ σ(L), η > 0, then

d(L− ηI, Br, 0) = (−1)χ

with χ =
∑

0<λj<η

mj and Br is the ball of H centered at 0 with radius r > 0.

Proof. Now we have F = Q(I − ηL−1
0 Q) + ηP and Fλ = Q(I − ηL−1

0 Q) + P +
ηλPλ. Let H−1, H0, H1 be spanned by eigenvectors of L with the corresponding
eigenvalues λj < 0, 0 < λj < η, λj > η, respectively. Clearly dimH0 = χ and
H = H−1⊕NL⊕H0⊕H1. So if u = u−1 +w +u0 +u1, uj ∈ Hj , w ∈ NL then

Fλ(u) = u−1 − ηL−1
0 u−1 + w + ηλPλw + u0 − ηL−1

0 u0 + u1 − ηL−1
0 u1 .

We note
(Pλw,w) ≥ 0 ∀w ∈ NL(

L−1
0 u−1, u−1

) ≤ 0 ∀u−1 ∈ H−1 ,(
L−1

0 u1, u1

)
< η−1|u1|2 ∀0 �= u1 ∈ H1

and A0 =
(
I− ηL−1

0

)
/H0 : H0 → H0 is an invertible diagonal linear operator

with negative eigenvalues. Then we can easily verify that 0 /∈ Fλt(u)∀u �= 0 and
∀t ∈ [0, 1], where

Fλt(u) = u−1 − ηtL−1
0 u−1 + w + tηλPλw + u0 − ηL−1

0 u0 + u1 − ηtL−1
0 u1 .

Hence deg(L− ηI, Br, 0) = dLS(Fλ1(u), Br, 0) = dLS(Fλ0(u), Br, 0) = detA0 =
(−1)χ for λ large. The proof is finished.

Now we present the following extension of a Krasnoselski result [60].

Theorem 8.7.2. Let (A1) hold. If η0 ∈ σ(L), η0 > 0 with odd multiplicity
m(η0), then (η0, 0) is a bifurcation point of (8.7.1), i.e. there is a sequence
{(ui, ηi)}∞i=1 such that ui ∈ D(L) \ {0}, ηi → η0 and ui → 0 as i → ∞, and
u = ui, η = ηi satisfy (8.7.1).

Proof. Let δ > 0 be so small that η0 > δ and (η0 − δ, η0 + δ) ∩ σ(L) = {η0}.
Then there is an τ1 > 0 such that

|Lu− (η0 ± δ)u| ≥ τ1|u| ∀u ∈ D(L) .
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According to (A1) there is an r0 > 0 such that ∀r, 0 < r ≤ r0, ∀t ∈ [0, 1],
∀u ∈ D(L), |u| = r it holds

0 /∈ Lu− (η0 ± δ)u− tN(u) .

Then we get

deg (Lu− (η0 ± δ)u−N(u), Br, 0) = deg (Lu− (η0 ± δ)u,Br, 0)

= (−1)

∑
0<λj<η0±δ

mj

.

Since m(η0) is odd, we obtain

deg (Lu− (η0 − δ)u−N(u), Br, 0) �= deg (Lu− (η0 + δ)u−N(u), Br, 0)
(8.7.2)

Then (8.7.2) implies the existence of u ∈ D(L), |u| = r and η ∈ (η0 − δ, η0 + δ)
solving (8.7.1). Since δ, r can be arbitrarily small, we get a sequence {(ηi, ui)}∞i=1

such that ηi → η0, ui → 0, ui ∈ D(L) and 0 �= ui solves (8.7.1) with ηi. The
proof is finished.

8.8 Bifurcations from Infinity

Now we study (8.7.1) under assumption

(A2) sup {|v| | v ∈ N(u)} = o(|u|) as |u| → ∞.

Theorem 8.8.1. Let (A2) hold. If η0 ∈ σ(L), η0 > 0 with odd multiplicity
m(η0), then (η0,∞) is a bifurcation point of (8.7.1), i.e. there is a sequence
{(ui, ηi)}∞i=1 such that ui ∈ D(L), ηi → η0 and |ui| → ∞ as i→∞, and u = ui,
η = ηi satisfy (8.7.1).

Proof. Let δ > 0 be so small that η0 > δ and (η0 − δ, η0 + δ) ∩ σ(L) = {η0}.
Then there is an τ1 > 0 such that

|Lu− (η0 ± δ)u| ≥ τ1|u| ∀u ∈ D(L) .

According to (A2) there is an r0 > 0 such that ∀r, r ≥ r0, ∀t ∈ [0, 1], ∀u ∈ D(L),
|u| = r it holds

0 /∈ Lu− (η0 ± δ)u− tN(u) .

Like in the proof of Theorem 8.7.2, then there are u ∈ D(L), |u| = r and
η ∈ (η0 − δ, η0 + δ) solving (8.7.1). Since δ can be arbitrarily small and then
r can be arbitrarily large, we get a sequence {(ηi, ui)}∞i=1 such that ηi → η0,
|ui| → ∞, ui ∈ D(L) and ui solves (8.7.1) with ηi. The proof is finished.
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8.9 Bifurcations for Semilinear Wave Equations

We apply the previous bifurcation result to the semilinear wave equation (8.1.1).
First we verify that (A2) is satisfied under (8.1.2). Note now

N(u) =
{
v ∈ L2(Ω) | v(x, t) ∈ [q̃−(x, t, u(x, t)), q̃+(x, t, u(x, t))]

}
for q̃±(x, t, u) := q±(x, t, u)+h(x, t) and q±(x, t, u) are defined in Subsection 8.5.
Let K1 := supu∈R |g(u)|. If v ∈ N(u) then the Jensen inequality [171] together
with condition (8.1.2) imply

|v|2 =
∫

Ω

v(x, t)2 dx dt ≤ 3
∫

Ω

(
K2

1 + c2
0|u(x, t)|2α + h̃0(x, t)2

)
dx dt

≤ 6K2
1π2 + 3|h̃0|2 + 6π2c2

0

(∫
Ω

u(x, t)2 dx dt

)α

= 6K2
1π2 + 3|h̃0|2 + 6π2c2

0|u|2α

for h̃0(x, t) := h0(x, t) + |h(x, t)|. Hence

|v| ≤ 3K1π + 2|h̃0|+ 3πc0|u|α .

Since 0 ≤ α < 1, we see that (A2) holds for (8.5.1). It remains to calculate the
multiplicity of a positive eigenvalue η0 ∈ σ(L). So we must find the number of
solutions of n2 −m2 = η0, n ∈ N, m ∈ Z. If n,m, m �= 0 solves it then n,−m
is its another solution. So m(η0) is odd if and only if η0 = n2 for some n ∈ N.
Summarizing, we can apply Theorem 8.8.1 to get the following result.

Proposition 8.9.1. Under condition (8.1.2), each η0 = n2, n ∈ N is a bifurca-
tion point of (8.1.1) at infinity for weak 2π-periodic solutions.

Similarly we have the following result.

Proposition 8.9.2. Under condition (8.1.2), each η0 = n4, n ∈ N is a bifurca-
tion point of the problem

utt + uxxxx − ηu− g(u)− f(x, t, u) = h(x, t) ,

u(0, ·) = u(π, ·) = 0, uxx(0, ·) = uxx(π, ·) = 0 ,
(8.9.1)

at infinity for weak 2π-periodic solutions.

Proof. Now
Lu = utt + uxxxx

with σ(L) =
{
n4 −m2 | m ∈ Z, n ∈ N

}
. So 0 < η0 ∈ σ(L) has an odd multiplic-

ity if and only if η0 = n4 for some n ∈ N. The proof is finished.

8.10 Chaos for Discontinuous Beam Equations

Combining methods of Chapters 3 and 8 together with paper [27], it would be
possible to show chaotic solutions to a weakly discontinuous system modeling a
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compressed beam with small damping and subjected to a small periodic forcing
described by the following p.d.eqn

utt + εδut + uxxxx + P0uxx − κuxx

(∫ π

0

u2
x(ξ, t)dξ

)
+ ε sgn u = εh(x, t),

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t) ,
(8.10.1)

where u(x, t) ∈ R is the transverse deflection of the axis of the beam; P0 > 0 is
an external load, κ > 0 is a ratio indicating the external rigidity and δ > 0 is the
damping, ε is a small parameter, the function h(x, t) is continuous and periodic
in t representing the periodic forcing that is distributed along the whole beam.

The first work on oscillations of an elastic beam subject to an axial com-
pression was done in [115]. More recent works on the full equation are presented
in [38, 91, 170]. An undamped buckled beam is investigated in [26, 197] (see
(7.1.45)). All these results are about beam equations with continuous terms like
the following one:

utt + µ1ut + uxxxx + P0uxx − uxx

(∫ π

0

u2
x(ξ, t)dξ

)
= µ2 cos ω0t ,

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t) ,

(8.10.2)

where P0, ω0 are constants and µ1, µ2 are small parameters. This is a model for
oscillations of an elastic beam with a compressive axial load P0 (see Fig. 8.1).
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Figure 8.1: The forced buckled beam (8.10.2)



240 Chapter 8. Topological Degree for Wave Equations

When P0 is sufficiently large, (8.10.2) can exhibit chaotic behavior for certain
small parameters µ1, µ2. For instance, we have the following result [91,115]:

Theorem 8.10.1. If 1 < P0 < 4 and ω0 �= n2
(
n2 − P0

)
, ∀n ∈ N, n ≥ 2. Then

(8.10.2) possesses a Smale horseshoe with the associated chaotic dynamics for
any µ1 �= 0 and µ2 �= 0 small satisfying∣∣∣∣µ1

µ2

∣∣∣∣ < 3
√

πω0

a3
sech πω0

2a , (8.10.3)

where a :=
√

P0 − 1.

We expect a similar result also for (8.10.1). Finally, we note that conditions
(1.2.10) and (8.10.3) are related to each order as follows. In (8.10.2) substitute

u(x, t) =
∞∑

k=1

uk(t) sin kx, multiply by sinnx and integrate from 0 to π. This

yields the infinite set of ordinary differential equations

ün = n2(P0 − n2)un − π

2
n2

[ ∞∑
k=1

k2u2
k

]
un − µ1u̇n + 2µ2

[
1− (−1)n

πn

]
cos ω0t ,

n = 1, 2, . . . .

For 1 < P0 < 4, then only the equation with n = 1 is hyperbolic while the
system of remaining equations has a center. To emphasize this let us define
p = u1 and qn = un+1, n = 1, 2, . . . . The preceding equations now take the form

p̈ = a2p− π

2

[
p2 +

∞∑
k=1

(k + 1)2q2
k

]
p− µ1ṗ +

4
π

µ2 cos ω0t , (8.10.4)

and

q̈n = −ω2
nqn − π

2
(n + 1)2

[
p2 +

∞∑
k=1

(k + 1)2q2
k

]
qn

−µ1q̇n + 2µ2

[
1− (−1)n+1

π(n + 1)

]
cos ω0t ,

n = 1, 2, . . .

(8.10.5)

where we define ω2
n = (n + 1)2

[
(n + 1)2 − P0

]
. Conditions ω0 �= ωn, ∀n ∈ N of

Theorem 8.10.1 are non-resonance ones for (8.10.5).
In (8.10.4–8.10.5) we project onto the hyperbolic subspace by setting qn = 0

for all n ∈ N in (8.10.4) to obtain the reduced equation

p̈ = a2p− π

2
p3 − µ1ṗ +

4
π

µ2 cos ω0t . (8.10.6)

So (8.10.6) is derived from (8.10.2) when only the first (hyperbolic) mode of
vibration is considered. We see that this is the forced damped Duffing equation



8.10. Chaos for Discontinuous Beam Equations 241

with negative stiffness and with similar form like (1.2.1) for which standard
theory, mentioned also in this book, yields chaotic dynamics under condition
(8.10.3) (see [91] for further details). As a matter of fact, taking transformations

p(t) =
2a√
π

x(at), µ1 = aµ̃1, µ2 =
√

πa3

2
µ̃2, ω0 = aω

in (8.10.6) we derive

ẍ = x− 2x3 − µ̃1ẋ + µ̃2 cos ωt , (8.10.7)

which is (1.2.1). Then condition (1.2.10) is just

|µ̃1| < |µ̃2|3πω

2
sech

πω

2
. (8.10.8)

But (8.10.8) is precisely (8.10.3) in the original parameters µ1, µ2 and ω0.
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[9] J. AWREJCEWICZ, M. FEČKAN and P. OLEJNIK: On continu-
ous approximation of discontinuous systems, Nonlinear Anal.-Theor. 62
(2005), 1317–1331.

[10] J. AWREJCEWICZ and M.M. HOLICKE: Melnikov’s method and
stick-slip chaotic oscillations in very weakly forced mechanical systems,
Int. J. Bifur. Chaos 9 (1999), 505–518.

243



244 Bibliography

[11] J. AWREJCEWICZ and M.M. HOLICKE: Smooth and Nonsmooth
High Dimensional Chaos and the Melnikov-Type Methods, World Scientific
Publishing, Singapore, 2007.

[12] J. AWREJCEWICZ and C.H. LAMARQUE: Bifurcation and Chaos
in Nonsmooth Mechanical Systems, World Scientific Publishing, Singa-
pore, 2003.

[13] D. BAMBUSI: Lyapunov center theorems for some nonlinear PDEs:
a simple proof, Ann. Scuola Norm. Sup. Pisa Ser. 4, 29 (2000), 823–837.

[14] D. BAMBUSI and D. VELLA: Quasiperiodic breathers in Hamiltonian
lattices with symmetries, Discr. Cont. Dyn. Syst. B 2 (2002), 389–399.

[15] F. BATTELLI: Exponentially small bifurcation functions in singular
systems of O.D.E., Diff. Int. Eq. 9 (1996), 1165–1181.
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Anal. Nonl. 17 (2000), 673–709.

[42] E.M. BRAVERMAN, S.M. MEERKOV and E.S. PYATNITSKII:
Conditions for applicability of the method of harmonic balance for systems
with hysteresis nonlinearity (in the case of filter hypothesis), Automat.
Rem. Control 37 (1976), 1640–1650.

[43] H. BREZIS: Periodic solutions of nonlinear vibrating strings and duality
principles, Bull. Amer. Math. Soc. 8 (1983), 409–426.

[44] H.W. BROER, I. HOVEIJN and M. Van NOORT: A reversible bi-
furcation analysis of the inverted pendulum, Physica D 112 (1998), 50–63.

[45] B. BROGLIATO: Nonsmooth Impact Mechanics: Models, Dynamics,
and Control, Lecture Notes in Control and Information Sciences 220,
Springer, Berlin, 1996.

[46] F.E. BROWDER: Degree theory for nonlinear mappings, Proc. Sympos.
Pure Math. 45, Part 1, AMS, Providence, R.I. (1986), 203–226.

[47] R.F. BROWN: A Topological Introduction to Nonlinear Analysis,
Birhkhäuser, Boston, MA, 1993.

[48] A. BUICA and J. LLIBRE: Averaging methods for finding periodic
orbits via Brouwer degree, Bull. Sci. Math. 128 (2004), 7–22.

[49] K. BURNS and H. WEISS: A geometric criterion for positive topological
entropy, Commun. Math. Phys. 172 (1995), 95–118.

[50] N.V. BUTENIN, Y.I. NEJMARK and N.A. FUFAEV: An Introduc-
tion to the Theory of Nonlinear Oscillations, Nauka, Moscow, 1987 (in
Russian).

[51] J.W.S. CASSELS: An Introduction to Diophantine Approximation,
Cambridge University, Press Cambridge, 1957.

[52] K.C. CHANG: Free boundary problems and the set-valued mappings,
J. Differ. Equations 49 (1983), 1–28.

[53] Y. CHEN and D. O’REGAN: Coincidence degree theory for mappings
of class L− (S+), Appl. Analysis 85 (2006), 963–970.

[54] Y. CHEN and D. O’REGAN: Generalized degree theory for semilinear
operator equations, Glasgow Math. J. 48 (2006), 65–73.



Bibliography 247

[55] C. CHICONE: Lyapunov–Schmidt reduction and Melnikov integrals for
bifurcation of periodic solutions in coupled oscillators, J. Differ. Equations
112 (1994), 407–447.

[56] S.N. CHOW and J.K. HALE: Methods of Bifurcation Theory, Springer,
New York, 1982.

[57] L.O. CHUA, M. KOMURO and T. MATSUMOTO: The double scroll
family, IEEE Trans. CAS 33 (1986), 1072–1118.

[58] Th.W. CUSICK and M.E. FLAHIVE: The Markoff and Lagrange
Spectra, Mathematical Surveys and Monographs 30, American Mathe-
matical Society, Providence, RI, 1989.

[59] K. DEIMLING: Multivalued Differential Equations, W. De Gruyter,
Berlin, 1992.

[60] K. DEIMLING Nonlinear Functional Analysis, Springer, Berlin, 1985.

[61] K. DEIMLING: Multivalued differential equations and dry friction prob-
lems, In: Proc. Conf. Differential and Delay Equations, Ames, Iowa 1991,
A.M. Fink, R.K. Miller and W. Kliemann eds., World Scientific Publish-
ing. Singapore 1992, 99–106.
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