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Preface 

These two introductory texts provide a sound foundation in the key 
mathematical topics required for degree level chemistry courses. While they 
are primarily aimed at students with limited backgrounds in mathematics, 
the texts should prove accessible and useful to all chemistry undergraduates. 
We have chosen from the outset to place the mathematics in a chemical 
context - a challenging approach because the context can often make the 
problem appear more difficult than it actually is. However, it is equally 
important to convince students of the relevance of mathematics in all 
branches of chemistry. Our approach links the key mathematical principles 
with the chemical context by introducing the basic concepts first, and then 
demonstrates how they translate into a chemical setting. 

Historically, physical chemistry has been the target for mathematical 
support; however, in all branches of chemistry - be they the more traditional 
areas of inorganic, organic and physical, or the newer areas of biochemistry, 
analytical and environmental chemistry - mathematical tools are required to 
build models of varying degrees of complexity, in order to develop a language 
for providing insight and understanding together with, ideally, some 
predictive capability. 

Since the target student readership possesses a wide range of mathematical 
experience, we have created a course of study in which selected key topics are 
treated without going too far into the finer mathematical details. The first 
two chapters of Volume 1 focus on numbers, algebra and functions in some 
detail, as these topics form an important foundation for further mathemat- 
ical developments in calculus, and for working with quantitative models in 
chemistry. There then follow chapters on limits, differential calculus, 
differentials and integral calculus. Volume 2 covers power series, complex 
numbers, and the properties and applications of determinants, matrices and 
vectors. We avoid discussing the statistical treatment of error analysis, in part 
because of the limitations imposed by the format of this series of tutorial 
texts, but also because the procedures used in the processing of experimental 
results are commonly provided by departments of chemistry as part of their 
programme of practical chemistry courses. However, the propagation of 
errors, resulting from the use of formulae, forms part of the chapter on 
differentials in Volume 1. 
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Numbers and Algebra 

Numbers of one kind or another permeate all branches of chemistry (and 
science generally), simply because any measuring device we use to record 
a characteristic of a system can only yield a number as output. For 
example, we might measure or determine the: 

0 Weight of a sample. 
0 Intensity or frequency of light absorption of a solution. 

Vibration frequency for the HCl molecule. 
Relative molecular mass of a carbohydrate molecule. 

Or we might: 

Confirm the identity of an organic species by measuring its boiling 
point. 
Measure, or deduce, the equilibrium constant of a reversible reaction. 
Wish to count the number of isomeric hydrocarbon species with 
formula C4HI0. 

In some of these examples, we also need to: 

0 Specify units. 
Estimate the error in the measured property. 

Clearly then, the manner in which we interact with the world around us 
leads us quite naturally to use numbers to interpret our experiences. 

In many situations, we routinely handle very large and very small 
numbers, so disparate in size that it is difficult to have an intuitive feel for 
order of magnitude. For example: 

The number of coulombs (the basic unit of electrical charge) 
associated with a single electron is approximately 
0.000 000 000 000 000 000 160 2177. 
The equilibrium constant for the electrochemical process 

Au3+(aq) + Al(s) e Au(s) + A13+(aq) 

is of the order of 1 followed by 4343 zeros.' In chemical terms, we have no 
problem with this answer, as it indicates that the equilibrium is totally 
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towards the right side (which means that the aluminium electrode will be 
completely consumed and the gold electrode untouched). 

These two widely different examples, of a type commonly experienced 
in chemistry, illustrate why it is so important to feel at ease using numbers 
of all types and sizes. A familiarity and confidence with numbers is of 
such fundamental importance in solving quantitative chemical problems 
that we devote the first two chapters of this book to underpinning these 
foundations. Our main objective is to supply the necessary tools for 
constructing models to help in interpreting numerical data, as well as in 
achieving an understanding of the significance of such data. 

1.1 Real Numbers 

I .I .I Integers 

One of the earliest skills we learn from childhood is the concept of 
counting: at first we learn to deal with (positive, whole 
numbers), including zero, but we tend to ignore the concept of negative 
numbers, because they are not generally used to count objects. However, 
we soon run into difficulties when we have to subtract two numbers, as 
this process sometimes yields a negative result. The concept of a negative 
counting number applied to an object can lead us into all sorts of trouble, 
although it does allow us to account for the notion of debt (you owe me 
2 apples is the equivalent of saying “I own -2 apples”). We therefore 
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extend natural numbers to a wider category of number called 7 

which consist of all positive and negative whole numbers, as well as zero: 

. . . ,-3,-2,-1,0,1,2,3 ,... 

We use integers in chemistry to specify: 

0 The atomic number, 2, defined as the number of protons in the 
nucleus; 2 is a positive integer, less than or equal to 109. 
The number of atoms of a given type (positive) in the formula of a 
chemical species. 
The number of electrons (a positive integer) involved in a redox 
reaction occurring in an electrochemical cell. 
The quantum numbers required in the mathematical specification of 
individual atomic orbitals. These can take positive or negative integer 
values or zero, depending on the choice of orbital. 

I B 2  Rational Numbers 

When we divide one integer by another, we sometimes obtain another 
integer: For example, 6/-3 = -2; at other times, however, we obtain a 
fraction, or , of the form %, where the integers a and b are 
known as the and , respectively, for example, 3. 
The denominator, b, cannot take the value zero because $ is of 
indeterminate value. 

Rational numbers occur in chemistry: 

0 In defining the spin quantum number of an electron (s = 1 /2), and the 
nuclear spin quantum number, Z, of an atomic nucleus; for example, 
45Sc has Z = 4. 
In specifying the coordinates (O,O,O) and (;,;,;), which define the 
locations of two of the nuclei that generate a body-centred unit cell of 
side a. 

0 

I .I B 3  Irrational Numbers 

Rational numbers can always be expressed as ratios of integers, but 
sometimes we encounter numbers which cannot be written in this form. 
These numbers are known as and include: 

0 , of the form a, (h, which are obtained from the solution of a 

, which, in contrast to surds, do not derive 
quadratic or higher order equation. 

from the solution to algebraic equations. Examples include n, which 
0 
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we know as the ratio of the circumference to diameter of a circle, and 
e, the base of natural logarithms. 

I .I .4 Decimal Numbers 

occur in: 

Defining relative atomic masses. 
Measuring chemical properties, and interpreting chemical data. 

Specifying the values of fundamental constants. 

Decimal numbers consist of two parts separated by a 

0 

Digits to the left of the decimal point give the integral part of the 
number in units, tens, hundreds, thousands, etc. 
A series of digits to the right of the decimal point specify the fractional 
(or decimal) part of the number (tenths, hundredths, thousandths, 
etc.). 

We can now more easily discuss the distinction between rational and 
irrational numbers, by considering how they are represented using 
decimal numbers. 

Rational numbers, expressed in decimal form, may have either of the 
following representations: 

A finite number of digits after the decimal point. For example, f 
becomes 0.375. 
A never-ending number of digits after the decimal point, but with a 
repeating pattern. For example, $ becomes 2.121 212 . . ., with an 
infinite repeat pattern of “12”. 

Irrational numbers, expressed in decimal form have a never-ending 
number of decimal places in which there is no repeat pattern. For 
example, 7c is expressed as 3.141 592 653.. . and e as 2.718 281 82..  . As 
irrational numbers like 7c and e cannot be represented exactly by a finite 
number of digits, there will always be an error associated with their 
decimal representation, no matter how many decimal places we include. 
For example, the important irrational number e, which is the base for 
natural logarithms (not to be confused with the electron charge), appears 
widely in chemistry. This number is defined by the infinite sum of terms: 

1 1 1 1  1 
l! 2! 3! 4! n ! 

e = l +  -+-+-+-+...+-+...  

where n! is the (pronounced “n factorial”) of the number n, 
defined as n! = 1 x 2 x 3 x 4. - x n; for example, 4! = 1 x 2 x 3 x 4. 
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The form of equation (1.1) indicates that the value for e keeps becoming 
larger (but by increasingly smaller amounts) as we include progressively 
more and more terms in the sum, a feature clearly seen in Table 1.1, where 
the value for e has been truncated to 18 decimal places. 

Table 1.1 An illustration of the effect of successive truncations to the 
estimated value of e derived from the infinite sum of terms given in equation (1 . I )  

n Successive estimated values for e 

1 2.000000000000000000 
5 2.716666666666666666 
10 2.718 281 801 146 384 797 
15 2.718 281 828 458 994 464 
20 2.718 281 828 459 045 235 
25 2.718 281 828 459 045 235 
30 2.718 281 828 459 045 235 

Although the value of e has converged to 18 decimal places, it is still not 
exact; the addition of more terms causes the calculated value to change 
beyond the eighteenth decimal place. Likewise, attempts to calculate 71: are 
all based on the use of formulae with an infinite number of terms: 

Perhaps the most astonishing method uses only the number 2 and 
surds involving sums of 2: 

x . . .  2 2 2 
71:=2x-x- Jz drnXdTTm 

Another method involves an infinite sum of terms: 

71: 1 1 x 1  1 x l x 2  1 x l x 2 x 3  
-=-+- + + * " ,  2 1 l X 3 + 1 X 3 X 5  1X3X5X7 

0 A particularly elegant method uses a formula that relates the square 
of 71: to the sum of the inverses of the squares of all positive whole 
numbers: 

n2 1 1 1 1  
- = l + ~ + - g + ~ + j y .  
6 2 

However, this requires an enormous number of terms to achieve a 
satisfactory level of precision (see Chapter 1 in Volume 2 for more on 
infinite series and convergence). 

Working with Decimal Numbers 

As we have seen above, numbers in decimal form may have a finite, or 
infinite, number of digits after the decimal point. Thus, for example, we 
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say that the number 1.4623 has four decimal places. However, since the 
decimal representations of irrational numbers, such as rc or the surd d,  
all have an infinite number of digits, it is necessary, when working with 
such decimal numbers, to reduce the number of digits to those that are 

(often indicated by the shorthand, “sig. figs.”). In specifying 
the number of significant figures of a number displayed in decimal form, 
all zeros to the left of the first non-zero digit are taken as not significant 
and are therefore ignored. Thus, for example, both the numbers 0.1456 
and 0.000 097 44 have four significant figures. 

There are basically two approaches for reducing the number of digits to 
those deemed significant: 

0 of the decimal part of the number to an appropriate 
number of or significant digits. For example, we could 
truncate n, 3.141 592 653.. ., to seven significant figures (six decimal 
places) by dropping all digits after the 2, to yield 3.141 592. For future 
reference, we refer to the sequence of digits removed as the “tail” 
which, in this example, is 653.. . 

number of decimal places is achieved by some generally accepted 
rules. The number is first truncated to the required number of decimal 
places, in the manner described above; attention is then focused on 
the tail (see above): 

0 or the decimal part of a number to a given 

(i) If the leading digit of the tail is greater than 5 ,  then the last digit 
of the truncated decimal number is increased by unity (rounded 
up), e.g. rounding n to 6 d.p. yields 3.141 593. 

(ii) If the leading digit of the tail is less than 5 ,  then the last digit of 
the truncated decimal number is left unchanged (the number is 
rounded down), e.g. rounding n to 5 d.p. yields 3.141 59. 

(iii) If the leading digit of the tail is 5 ,  then: 

If this is the only digit, or there are also trailing zeros, e.g. 
3.7500, then the last digit of the truncated decimal number is 
rounded up if it is odd or down if it is even. Thus 3.75 is 
rounded up to 3.8 because the last digit of the truncated 
number is 7 and therefore odd, but 3.45 is rounded down to 
3.4 because the last digit of the truncated number is 4 and 
therefore even. This somewhat complicated rule ensures that 
there is no bias in rounding up or down in cases where the 
leading digit of the tail is 5. 
If any other non-zero digits appear in the tail, then the last 
digit of the truncated decimal number is rounded up, e.g. 
3.751 is rounded up to 3.8. 
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Observations on Rounding 

Worked Problem 1.1 illustrates that different answers may be produced if 
the rules are not applied in the accepted way. In particular, sequential 
rounding is not acceptable, as potential errors may be introduced because 
more than one rounding is carried out. In general, it is accepted practice 
to present the result of a chemical calculation by rounding the result to 
the number of significant figures that are known to be reliable (zeros to 
the left of the first non-zero digit are not included). Thus, although n is 
given as 3.142 to four significant figures (three decimal places), n/1000 is 
given to four significant figures (and six decimal places) as 0.003142. 

Rounding Errors 

It should always be borne in mind that, in rounding a number up or 
down, we are introducing an error: the number thus represented is merely 
an approximation of the actual number. The conventions discussed 
above, for truncating and rounding a number, imply that a number 
obtained by rounding actually represents a range of numbers spanned by 
the implied error bound. Thus, n expressed to 4 decimal places, 3.1416, 
represents all numbers between 3.14155 and 3.14165, a feature that we 
can indicate by writing this rounded form of n as 3.14160 & 0.00005. 
Whenever we use rounded numbers, it is prudent to aim to minimize the 
rounding error by expressing the number to a sufficient number of 
decimal places. However, we must also be aware that if we subsequently 
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combine our number with other rounded numbers through addition, 
subtraction, multiplication or division, the errors associated with each 
number also combine, propagate and generally grow in size through the 
calculation. 

I .I .5 Combining Numbers 

Numbers may be combined using the of addition 
(+), subtraction (-), multiplication ( x )  and division (/ or +). The type 
of number (integer, rational, irrational) is not necessarily maintained 
under combination. Thus, for example, addition of the fractions 1/4 and 
3/4 yields an integer, but division of 3 by 4 (both integers) yields the 
rational number (fraction) 3/4. When a number (say, 8) is multiplied by a 
fraction (say, 3/4), we say in words that we want the number which is 
three quarters of 8 which, in this case, is 6. 

For addition and multiplication the order of operation is unimportant, 
regardless of the number of numbers being combined. Thus: 

2 + 3 = 3 + 2  

and 
2 x 3  = 3 x 2  
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and we say both addition and multiplication are . However, 
for subtraction and division, the order of operation is important, and we 
say that both are 

2 - 3 2 3 - 2  

and 
2 3  
7% 

One consequence of combining operations in an arithmetic expression is 
that ambiguity may arise in expressing the outcome. In such cases, it is 
imperative to include brackets (the generic term), where appropriate, to 
indicate which arithmetic operations should be evaluated first. The order 
in which arithmetic operations may be combined is described, by 
convention, by the rules of precedence. These state that the 
order of preference is as follows: 

Brackets 
Of (multiplication by a fraction) 
Division 
Multiplication 
Addition/Subtraction 

For example: 

0 If we wish to evaluate 2 x 3 + 5,  the result depends upon whether 
we perform the addition prior to multiplication or vice versa. The 
BODMAS rules tell us that multiplication takes precedence over 
addition and so the result should be 6 + 5 = 11 and not 2 x 8 = 16. 
Using parentheses in this case removes any ambiguity, as we would 
then write the expression as (2 x 3) + 5. 
If we wish to divide the sum of 15 and 21 by 3, then the expression 
15 + 21/3 yields the unintended result 15 + 7 = 22, instead of 12, as 
division takes precedence over addition. Thus, in order to obtain the 
intended result, we introduce parentheses ( ) to ensure that 
summation of 15 and 21 takes place before division: 

(15 + 21)/3 = 36/3 = 12 

Alternatively, this ambiguity is avoided by expressing the quotient in 
the form: 

15 + 12 
3 

However, as the 
important to be aware of possible ambiguity. 

sign, /, for division is in widespread use, it is 
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Powers or Indices 

When a number is repeatedly multiplied by itself in an arithmetic 
expression, such as 3 x 3 x 3, or x f x $ x i, the or notation 
(also often called the ) is used to write such products in the forms 
33 and 2 , respectively. Both numbers are in the general form a n ,  where 
n is the index. If the index, 12, is a positive integer, we define the number a 
as a raised to the nth power. 

We can define a number of laws for combining numbers written in this 
form simply by inspecting expressions such as those given above: For 
example, we can rewrite the expression: 

(2), 

as 
3 3 3 3  3 3 1  4 

2 2 2 2  2 2 - x - x - x - =  (!) ( ) = (i) 
and we see that the result is obtained simply by adding the indices of the 
numbers being combined. This rule is expressed in a general form as: 

For rational numbers, of the form i ,  raised to a power n, we can rewrite 
the number as a product of the numerator with a positive index and the 
denominator with a negative index: 

( I  .3) 

which, in the case of the above example, yields: 

On the other hand, if b = a,  and their respective powers are different, then 
the rule gives: 

The same rules apply for rational indices, as is seen in the following 
example: 

(;) 3'2 = @ = 3  33'2 312 x 2-312 
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Rational Powers 

Numbers raised to powers i, f, 4, . . . define the square root, cube 
root, fourth root, .. . , nth root, respectively. Numbers raised to the 
power m/n are interpreted either as the rnth power of the nth root or as 
the nth root of the rnth power. For example, 3 m J " = ( 3 1 ' " ) ~ = ( 3 ~ ) 1 J " .  
Numbers raised to a rational power may either simplify to an integer, 
for example (27)lJ3 = 3, or may yield an irrational number, for example 
(27)lJ2 = 3 x 31J2 = 33J2. 

Further Properties of Indices 

Consider the simplification of the expression (32 x 103)2: 

The above example illustrates the further property of indices that 
(a")" = anxm. Thus, we can summarize the rules for handling indices in 
equation (1.5): 

Note that, when multiplying symbols representing numbers, the 
multiplication sign ( x )  may be dropped. For example, in the 
penultimate expression in equation (1 S), a" becomes anm. In these 
kinds of expression, n and m can be integer or rational. Finally, if the 
product of two different numbers is raised to the power n, then the result 
is given by: 

Worked Problem 1.2 and Problem 1.4 further illustrate how the 
(BODMAS) rules of precedence operate. 
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I .I .6 Scientific Notation 

As has been noted earlier, many numbers occurring in chemical 
calculations are either extremely small or extremely large. Clearly, it 
becomes increasingly inconvenient to express such numbers using 
decimal notation, as the becomes increasingly large 
or small. For example, as seen in the introduction, the charge on an 
electron (in coulombs), expressed as a decimal number, is given by: 

0.000 000 000 000 000 000 160 2 177 
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To get around this problem we can use to write such 
numbers as a signed decimal number, usually with magnitude greater than 
or equal to 1 and less than 10, multiplied by an appropriate power of 10. 

Thus, we write the fundamental unit of charge to nine significant 
figures as 1.602 177 33 x lo-'' C. 

Likewise, for very large numbers, like the speed of light, we write c 
= 299 792 458 m s-l, which, in scientific notation, becomes 2.997 924 58 x 
lo8 m s-l(9 sig. figs.). Often we use c = 3 x lo8 m s-I, using only one sig. 
fig., if we are carrying out a rough calculation. 

Sometimes, an alternative notation is used for expressing a number in 
scientific form. Instead of specifying a power of 10 explicitly, it is common 
practice (particularly in computer programming) to give expressions for 
the speed of light and the charge on the electron as 2.998e8 m s-l and 
1.6e-19 C, respectively. In this notation, the number after the e is the 
power of 10 multiplying the decimal number prefix. 

Combining Numbers Given in Scientific Form 

Consider the two numbers 4.2 x 
quotient are given respectively by: 

and 

and 3.5 x their product and 

4.2 x lo-' x 3.5 x 14.7 x 1.47 x 

However, in order to calculate the sum of the two numbers (by hand!), it 
may be necessary to adjust one of the powers of ten, to ensure equality of 
powers of 10 in the two numbers. Thus, for example: 

4.2 x + 3.5 x = 0.042 x loa6 + 3.5 x = 3.542 x 

Names and Abbreviations for Powers of Ten 

As we have seen in some of the examples described above, an added 
complication in performing chemical calculations often involves the 
presence of units. More often than not, these numbers may be expressed 
in scientific form, and so, in order to rationalize and simplify their 
specification, it is conventional to use the names and abbreviations given 
in Table 1.2, adjusting the decimal number given as prefix as appropriate. 

~~ ~~~ ~ ~ 

Table 1.2 Names and abbreviations used to specify the order of magnitude of numbers expressed in scientific notation 

1015 i o I 2  lo9 lo6 103 10-1 10-2 10-3 10-6 10-9 10-12 10-15 10-18 

peta tera giga mega kilo deci centi milli micro nano pic0 femto atto 
P T G M k d C m P n P f a 
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Thus, for example: 

The charge on the electron is given as 0.16 aC, to two significant 
figures. 
The binding energy of the electron in the hydrogen atom is given by 
2 . 1 7 9 ~  lo-'* J ,  which is specified as 2.179 aJ. 
The bond vibration frequency for HF is 1.2404 x 1014 s-l, which is 
given as 124.04 Ts-' or 0.124 04 Ps-'. 

Some of these data are used in Problem 1.5. 

The results you obtain for Problem 1.5 should show that, since the 
joule (J) is a macroscopic base unit of energy, property values on the 
microscopic scale have extremely small magnitudes. We now explore this 
idea further in Worked Problem 1.3 and in Problem 1.6 to give more 
practice in manipulating numbers in scientific form and, more impor- 
tantly, to provide further insight into size differences in the microscopic 
and macroscopic worlds. 
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I .I .7 Relationships between Numbers 

Frequently in chemistry we find ourselves considering the significance of a 
numerical quantity, associated with some property of a system, in terms 
of its relationship to some accepted standard. For example, we might 
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measure a rate constant which tells us whether a particular reaction is fast 
or slow. We can only draw a conclusion in this respect by comparing it to 
some standard which we know to imply one extreme or the other or 
somewhere in between. Of course, this activity is important in all areas 
of life, and highlights the value of being able to assess how numbers relate 
to one another. Historically, this relationship has been made easier by 
associating numbers with patterns (see Figure 1.1). 

3 6 10 15 .. 

These so-called figurate numbers (in this case, triangular numbers) are 
more easily presented in order of increasing magnitude, simply because it 
is easy to see that there are more blobs to the right than to the left. By 
following this convention, it is then straightforward to deduce the next 
number in the sequence (here 2 1, by constructing a triangle with a row of 
six blobs at the base. Intuitively, we can see that 6 is of greater (>) 
magnitude than 3, and of lesser (<) magnitude than 15, simply by 
counting blobs. The mathematical notation for describing these two 
relations is 6 >  3 and 6 <  15. Such relations are termed . Note 
that it is equally true that 3 < 6 and 15 > 6. We can also combine these two 
relations into one: either 3 < 6 < 15 or 15 > 6 > 3. 

Negative Numbers 

Figure 1.1 The relationship 
between numbers is made easier 
by associating them with patterns. 
In general, numbers which can be 
represented in this way are called 
figurate numbers. In this example, 
the numbers 3, 6, 10 and 15 are 
known as triangular numbers and 
their relative magnitude is easily 
seen by the increasing number of 
dots used to represent them 

The question of negative numbers must now be addressed. All negative 
numbers are less than zero, and hence we can say immediately that - 6 < 3. 
Furthermore, as 6 > -3, we can obtain the latter inequality from the 
former simply by changing the sign of the two numbers (multiplying 
through by - 1) and reversing the inequality sign. 
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Very Large and Very Small Numbers 

The numerical value of the Avogadro constant is 6.022 x a very 
large number. An expression of the disparity in the size between this 
number and unity may be expressed in the form 6.022 x >> 1; 
likewise, for the magnitude of the charge on the electron, we can express 
its smallness with respect to unity as 1.602 x 10- 19<< 1. 

Infinity 

The concept of an unquantifiably enormous number is of considerable 
importance to us in many contexts, but probably is most familiar to us 
when we think about the size of the universe or the concept of time as never 
ending. For example, the sums of the first 100,1000 and 1000 000 positive 
integers are 5050, 500 500, and 500 000 500 000, respectively. If the upper 
limit is extended to 1000 000 000, and so on, we see that the total sum 
increases without limit. Such summations of numbers - be they integers, 
rationals, or decimal numbers - which display this behaviour are said to 
tend to . The use of the symbol 00 to designate infinity should not be 
taken to suggest that infinity is a number: it is not! The symbol 00 simply 
represents the concept of indefinable, unending enormity. It also arises in 
situations where a constant is divided by an increasing small number. 
Thus, the sequence of values &, p, 1 . . . (that is, lo6, lo2', 10*ooo) 
clearly tends to infinity, whilst the same sequence of negative terms tends 
to -00. Once again, there is no limiting value for the growing negative 
number -& as the value of n increases (the denominator decreases 
towards zero). Although it is tempting to write = 00, this statement 
is devoid of mathematical meaning because we could then just as easily 
write = 00, which would imply that 1 = 2, which is clearly not the case. 
We shall see in Chapter 3 how to evaluate limiting values of expressions in 
which the denominator approaches zero. 

10-'000, 1 

The Magnitude 

The magnitude of a number is always positive, and is obtained by 
removing any sign. Thus, the magnitude of -4.2 is given using the 

notation as 1-4.21 = 4.2. 
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1.2 Algebra 

Much of the preceding discussion has concerned numbers and some 
of the laws of used for their manipulation. In practice, 
however, we do not generally undertake arithmetic operations on 
numbers obtained from some experimental measurement at the outset: 
we need a set of instructions telling us how to process the number(s) to 
obtain some useful property of the system. This set of instructions 
takes the form of a involving , of fixed value, and 

represented by a symbol or letter: the symbols designate 
quantities that, at some future stage, we might give specific numerical 
values determined by measurements on the system. Formulae of all 
kinds are important, and their construction and use are based on the 
rules of . The quantity associated with the symbol is usually 
called a variable because it can take its value from some given set of 
values. These variables may be if they can take any 
value from within some interval of numbers (for example, temperature 
or concentration), or they may be if their value is 
restricted to a discrete set of values, such as a subset of positive 
integers (for example, atomic number). One further complicating issue 
is that, in processing a number associated with some physical property 
of the system, we also have to consider the units associated with that 
property. In practice, the units are also processed by the formula, but 
some care is needed in how to present units within a formula (an issue 
discussed later on in Chapter 2). However, the most important point is 
that algebra provides us with a tool for advancing from single one-off 
calculations to a general formula which provides us with the means to 
understand the chemistry. Without formulae, mathematics and theory, 
we are in the dark! 

1.2.1 Generating a Formula for the Sum of the First n 
Positive Integers 

Consider first the simple problem of summing the integers 1, 2, 3, 4 and 
5. The result by arithmetic (mental or otherwise) is 15. However, what if 
we want to sum the integers from 1 to 20? We can accomplish this easily 
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enough by typing the numbers into a calculator or adding them in our 
head, to obtain the result 210, but the process becomes somewhat more 
tedious. Now, if we want to sum the sequence of integers from 1 to 
some, as yet unspecified, upper limit, denoted by the letter n, we need a 
formula that allows us to evaluate this sum without actually having to 
add each of the numbers individually. We can accomplish this as 
follows: 

Write down the sum of the first five integers, 1 to 5 ,  from highest to 
lowest, and introduce the symbol S5 to represent this sum: 

s5 = 5 + 4 + 3 + 2 + I 
0 Repeat the exercise by summing the same five integers from lowest to 

highest: 

5’5 = 1 + 2 + 3 + 4 + 5 

Add the two expressions to obtain: 

2S5 = 6 + 6 + 6 + 6 + 6 = 5 x 6 = 30 +- S5 = 15 

where the symbol +- means “implies”. 

If we repeat this procedure for the first six integers, rather than the first 
five, we obtain: 

We can see that, in each case, the respective sum is obtained by 
multiplying the number of integers, n, in the sum by the same number 
incremented by 1 ,  and dividing the result by 2; that is: 

5 x 6  
s5 = - = 15 

2 
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The pattern should now be apparent, and we can generalize the 
expression for the sum of the first n positive integers by multiplying n 
by n + 1, and dividing the result by 2: 

n x ( n +  1) 
2 

sn = 

It is usual practice, when symbols are involved, to drop explicit use of the 
multiplication sign x , thus enabling the formula for S n  to be given in the 
form: 

n(n + 1) 
2 

sn = 

We can test our new formula, by using it to determine the sum of the 
positive integers from 1 to 20: 

= 210 
20 x 21 S = -  

2 

1.2.2 Algebraic Manipulation 

The rules for manipulating algebraic symbols are the same as those for 
numbers. Thus we can formally add, subtract, multiply and divide 
combinations of symbols, just as if they were numbers. In the example 
given above, we have used parentheses to avoid ambiguity in how to 
evaluate the sum. The general rules for expanding expressions in 
parentheses ( ), brackets [ ] or braces { take the following forms: 

a(b  + c )  = ab + ac = ( b  + c)a ( 1 *8> 

and 

When we want to 
first rule is simply 

we can expand by 

and then: 

(b  + c ) / d  = b / d  + c /d  (1.9) 

multiply two expressions in parentheses together, the 
applied twice. Thus, if we are given the expression 

( a  + b>(c + a) 

letting 

X =  (a + b)  

(a  + b)(c  + d) = X ( c  + d) = Xc + Xd = (a  + b)c + (a  + b)d 
= ac+bc+ad+bd (1.10) 
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We can use these rules to expand our expression for the sum of n integers 
above to obtain either: 

However, it would be usual in this case to stick to our original expression 
because it is more compact and aesthetically pleasing. 
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Dealing with Negative and Positive Signs 

In the algebraic expressions considered so far, all the constituent terms 
carried a positive sign. In general, however, we have to work with 
expressions involving terms carrying positive or negative signs. Dealing 
with signed terms is straightforward when we appreciate that a negative 
or positive sign associated with a number or symbol simply implies 
the “multiply by - 1 or + l”, respectively. For example, 
the operation: 

is equivalent to writing: 
(-4 x (4 

-1 x u x  -1 x b  = (-1 X - 1 )  x a x b  = ab 

A simple set of rules can be constructed, using this reasoning, to help us to 
carry out multiplication and division of signed numbers or symbols: 

Multiplication Division 

[(+a) x (-b)] = -ab 
[(+a) x (+b)] = ab K+a>/(+b>l = a /b  

[(+a)/(-b)] = -a/b 
((-a)  x (+b)] = -ab [(-a)/(+b)] = -a/b 
[(-a)  x (-b)] = ab [(-a)/(-b)l = a/b  

These rules are valid if a and b are numbers, symbols or algebraic 
expressions. 
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Working with Rational Expressions 

A rational expression (often called a ) takes the form 8 ,  where a 
and b may be simple or complicated expressions. In many instances it 
is necessary to simplify the appearance of such expressions by searching 
for (symbols or numbers common to each term) and, 
if necessary, by deleting such factors in both the numerator and 
denominator. For example, in 

3x2 - 12xy 
3 

the numerator has 3 and x as common factors, whilst the 
has 3. Since the denominator and numerator both have 
factor 3, this may be cancelled from each term to give: 

x2 -4xy 2 = x  -4xy 
1 

denominator 
the common 

which simplifies further to x(x -4y), once the common factor x has been 
removed from each term. In this case, the rational expression reduces to a 
simple expression. We should also be aware that, whenever we are faced 
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with a rational expression involving symbols, it is necessary to specify 
that any symbol appearing as a cancellable common factor, in both 
numerator and denominator, cannot take the value zero, because 
otherwise the resulting expression would become Q , which is indetermi- 
nate (i.e. meaningless!). 

1.2.3 Polynomials 

A is represented by a sum of symbols raised to different 
powers, each with a different coefficient. For example, 3x3-2x+ 1 
involves a sum of x raised to the third, first and zeroth powers (remember 
that xo = 1) with coefficients 3, - 2, and 1,  respectively. The highest power 
indicates the of the polynomial and so, for this example, the 
expression is a polynomial of the third degree. 

Factorizing a Polynomial 

Since x does not appear in all three terms in the polynomial 3x3 -2x + 1, 
it cannot be a common factor; however, if we can find a number a, such 
that 3a3 -2a + 1 = 0, then x -a is a common factor of the polynomial. 
Thus in order to factorize the example given, we need first to solve the 
expression: 

3a3-2a+ 1 = 0 

Trial and error shows that a = - 1 is a solution of this equation, which 
means that x - (- 1) = x + 1 is a factor of 3x3 - 2x + 1. It is now possible 
to express 3x3 -2x + 1 in the form (x + 1)(3x2 -3x - 1). Note that the 
second degree polynomial in parentheses does in fact factorize further, 
but the resulting expression is not very simple in appearance. 
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Forming a Common Denominator 
X Y  An expression of the form -+-- may be written as one rational 
a b  

expression with a common ab as follows: 

x y xb+ya  -+-=- 
a b ab 

(1.11) 

If there are three terms to combine, we reduce the first two terms to a 
rational expression, and then repeat the process with the new and the 
third terms. 

1.2.4 Coping with Units 

In chemistry, we work with algebraic expressions involving symbols 
representing particular properties or quantities, such as temperature, 
concentration, wavelength and so on. Any physical quantity is described 
in terms not only of its , the latter 
giving rise to units, the natures of which are determined by the chosen 
system of units. In chemistry, we use the SI system of units. For example, 
if we specify a temperature of 273 K, then the dimension is temperature, 
usually given the symbol T, the magnitude is 273 and the base of 
temperature is the Kelvin, with name K. Similarly, a distance between 
nuclei of 150 pm in a molecule has dimensions of length, given the symbol 
I ,  a magnitude of 150 and a unit of pm (10-l2 m). All such physical 
quantities must be thought of as the product of the magnitude, given by a 
number, and the appropriate unit@), specified by one or more names. 
Since each symbol representing a physical quantity is understood to 
involve a number and appropriate units (unless we are dealing with a pure 
number like percentage absorbance in spectroscopy), we treat the 
property symbols and unit names as algebraic quantities. All the usual 
rules apply and, for example, in the case of: 

but also of its 
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The molar energy property, E, we may wish to use the rules of indices 
to write E =  200 kJ/mol as 200 kJ mol-I. 
Concentration, c, we are concerned with amount of substance (name 
n, unit mol) per unit volume (name V, unit m3). 

If necessary, as seen earlier, we can manipulate the various prefixes for the 
SI base units as required. Further practice is given in the following 
problem. 
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Functions and Equations: 
Their Form and Use 

As we saw in Chapter 1, the importance of numbers in chemistry derives 
from the fact that experimental measurement of a particular chemical or 
physical property will always yield a numerical value to which we attach 
some significance. This might involve direct measurement of an intrinsic 
property of an atom or molecule, such as ionization energy or 
conductivity, but, more frequently, we find it necessary to use theory to 
relate the measured property to other properties of the system. For 
example, the rotational constant, B, for the diatomic molecule CO can be 
obtained directly from a measurement of the separation of adjacent 
rotational lines in the infrared spectrum. Theory provides the link 
between the measured rotational constant and the moment of inertia, I ,  of 
the molecule by the formula: 

where h is Planck’s constant and c is the speed of light. The moment of 
inertia itself is related to the square of the bond length of the molecule by: 

2 I = p r  

where p is the reduced mass. The relationship between B and r was 
originally derived, in part, from the application of quantum mechanics 
to the problem of the rigid rotor. In general, relationships between one 
chemical or physical property of a system and another are described by 
mathematical functions. Such functions are especially important for 
building the mathematical models we need to predict changes in given 
property values that result from changes in the parameters defining the 
system. If we can predict such changes, then we are well on the way to 
understanding our system better! However, before we can explore these 
applications further, we have to define function in its mathematical sense. 
This is a necessary step because, in chemistry, the all-pervasive presence 
of units complicates the issue. 

29 
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2.1 Defining Functions 

Our aim in this section is to show what features need to be understood in 
order to define a function properly as a mathematical object. First of all, 
let us consider the association between an arbitrary number, x, and the 
number 2.x + I .  We can thus associate the number 6 with 13, n with 2n + I ,  
1.414 with 3.828, and so on. It is conventional practice to express this 
association as a formula, or equation: 

y = 2 x + I  

where the unspecified number, x, is the input number for the formula, and 
y the output number. Before we can say that this association expresses y 
as a of x, we need to: 

Specify the set of numbers for which the formula applies (the ). 
Check that each value of x is associated with only one value of y .  

In the present example, we could specify the domain as either the 
collection of all real numbers (conventionally described as the R), or 
the set of all integers, I, or a subset of either or both, thereby satisfying the 
first requirement. 
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We can also see in this case that any number chosen as input generates a 
single number, y ,  as output and SO the second requirement is also 
satisfied. It is very important to keep in mind that the function is defined 
not only by the formula but also by the domain; consequently, if we 
specify that the formula y = 2x + 1 applies to any real number as input, x, 
then we can define the function y =f(x)  wherefix) = 2x + 1 with domain 
R. In this case, f is the name of the function that describes both the 
formula and the permitted values of x. If we had specified that the same 
formula y = 2x + 1 is used with the domain consisting of all integers, I, 
then we would be dealing with a dzfferent function, which we might wish 
to call y =g(x). For both functions, y is the number produced by the 
formula for a given x defined within the specified donlain of the function. 
The association between x and y defines different functions for different 
subsets of numbers, even though the formula of association is the same. 
Where a function is defined by a formula, and the domain is not explicitly 
stated, then it is assumed that the domain consists of all real numbers for 
which the function has a real value. This is called the of the 
function. 

The symbols x and y ,  used in the function formulae, are conventionally 
termed the and , respectively. This 
terminology conveys the idea that we are free to assign values to the 
independent variable but that, once we have done so, a unique value for 



32 Maths for Chemists 

the dependent variable results. A function may have more than one 
independent variable, in which case a domain needs to be specified for 
each variable. For example, the formula: 

Y = P4/r 

expresses an association between the three independent variables p ,  q and 
r and the dependent variable y .  The domain is defined by specifying 
the permitted values associated with each of the independent vari- 
ables. Having checked that only one value of the dependent variable 
results for a given set of values of p ,  q and r ,  we may then define the 
function: 

In practice, although many functions that we meet in a chemical 
context have more than one independent variable, the function may be 
reduced to a single variable by specifying that one or more of the other 
variables remain constant. 

Frequently, we specify functions by formulae that do not explicitly 
involve a dependent variable but express the function simply in terms of 
the formula and the label used to denote the function. For example, the 
formula Ax) = 2x + 1 defines the function f that associates the number 
2x + 1 with the number x. Thus, A-5) = -9 implies that f associates -9 
with -5, whilef(3)=7 implies thatfassociates 7 with 3. Although this 
way of presenting the function does not involve a dependent variable, 
we can introduce one by letting y=f(x) ,  and rewriting the function as 
y = 2x+ 1. The most frequently encountered labels used for the 
independent and dependent variables are x and y ,  respectively, but 
these labels are entirely arbitrary. We might just as easily use the labels 
p and r or 4 and p; similarly, when labelling the function, instead off 
we might use g ,  h, I ;  or $, or indeed any label which we think 
appropriate. For example, if we wanted to collectively label the group 
of Is, 2s, 3s, . . . atomic orbital functions, we might use the name 4, and 
then distinguish each function using a numbered suffix, say $2,  $3. 

Our choice here is entirely arbitrary, but is designed to allow us, in this 
case, to group similar types of functions under a common name. You 
could rightly argue that the labels 41, 4 2 ,  4 3  provide little that the 
labels Is, 2s, 3s, . . . do not. The point here is that either will do, and it 
is really just a matter of taste, context, convenience or convention that 
dictates what labels and names we use. It is very important that we do 
not allow unfamiliar labels to give the impression that an otherwise 
straightforward association or function is more complicated than it 
actually is! 
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The requirement that a function be single valued, for a given input value 
for the independent variable, will hold for the majority of associations 
between one number and another. However, the association between any 
real number and its square root always yields both a positive and a 
negative result. For example, the two square roots of 9 are 3, and so we 
say that 9 is associated with both -3 and 3. Thus, if we write this 
association as y = x1l2, then we cannot define the function y =Ax) = x1/2. 
However, if we explicitly limit the values of y to the positive (or negative) 
roots only, then we can redefine the association as a single-valued 
function. Alternatively, if we square both sides to yield y2 = x, we can take 
the association between x now as a dependent variable and y as an 
independent variable and define the function x = g(x) = y2, for which there 
is only one value of x for any value of y .  
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An everyday example might be the association between price and item in 
a supermarket. As there are in all likelihood many items that have the 
same price, we cannot describe this association as a function; however, 
the association of item with price does define a function, as each article 
has only one price. In this latter case, the domain of the function is simply 
a list of all items for sale in the supermarket. 

2.1.1 Functions in a Chemical Context 

As we have seen in the previous section, functions involve associations 
between numbers. However, when we work with functions in a chemical 
context, we have to recognize that any association involving chemical 
properties necessarily involves units. Consider, for example, the relation 
between atomic number, 2, and atomic first ionization energy, IE. While 
there are clearly no units associated with atomic number, the ionization 
energy has units of kJ mol-' (although we could just as easily have chosen 
any other unit of energy such as eV, cm-', J, kcal mol-', and so on). In 
this example, there is clearly a relation between the subset of the positive 
integers (1,2,3,4, . . . , lo!?), corresponding to 2, and the subset of the 109 
decimal numbers corresponding to the values of IE/kJ mol-'. Note that 
the association remains between two numbers devoid of units because, in 
the case of the ionization energy, we have divided IE by the units of 
energy chosen. For example, in the case of atomic nitrogen, where 2 = 7, 
and IE/kJ mol-' = 1402.3, there is a relation between the positive integer 
7 and the decimal number 1402.3. This relation has physical meaning only 
for positive integers greater than or equal to 1 and less than or equal to 
109 (alternatively written as 1 5 2 5 109), since each value of IE/kJ 
mol-' is associated with only one positive integer in the subset of integers 
already identified. Hence, in mathematical terms, we say that the relation, 
or association, just described defines a function, as we have specified both 
the domain for which the association is valid and also checked that each 
number, 2, of the domain has an association with only one decimal 
number. 

In most chemical problems we usually deal with functions that are 
defined in terms of a formula, in which the permitted values for 
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the variables appearing in the formula (given by symbols) are determined 
by physical considerations. For example, in the case of temperature on the 
absolute (Kelvin) scale, negative values have no physical basis in reality. 

In the next section, we explore in more detail the role that units play in 
the relation of formula and function. 

Understanding the Role of Units: the Mathematically 
Correct Approach 

Consider the ideal gas law, expressed in terms of the simple formula: 

P = nRT/V 

where the symbols have the following roles: P is the pressure, n is the 
amount of gas, V is the volume, T is the temperature and R is the gas 
constant. Each of the properties listed has associated units, and the units 
on both sides of equation (2.2) must be equivalent, or equal. In the SI 
convention, the following choices of units are common, with the 
equivalent combinations of base SI units also given, where appropriate: 
P in Pa (pascal), atm or bar, which are names defining appropriate 
multiples of the base units kg m-l sP2; n in mol; V in m3; T in K; and 
R = 8.314 J K-' mol-', equivalent to kg m2 s - ~  K-' mol-'. Thus, on the 
left side of the equation the units are kg m-l sP2, and on the right side we 
have mol kg m2 sW2 K-' mol-' K/m3 = kg rn-l sP2, as required. 

The ideal gas equation is the outcome of a model devised for 
understanding the properties of a gas, in which there is no interaction 
between the atoms or molecules occupying the volume, V. In 
mathematical terms, however, this ideal gas equation remains a formula 
until we know how to use it as a function, a key aspect of which is 
developed next. 

Creating a Function from a Formula 

As already noted, the ideal gas formula involves symbols that are 
associated with a value and its associated units. As we know that the units 
on the left and right sides of the formula are the same and therefore 
cancel, we can express each symbol as a value multiplied by appropriate 
units, leaving us with a relation involving new symbols that stand for 
numerical values in the ordinary sense of algebra. In particular, if we 
make the following substitutions: 

P = p P a ;  n=Bmol ;  R=rJK- 'mol- ' ;  V = v m ;  3 T = t K  

then the formula: 
nRT p=- 

V 
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takes the form: 
nmol r JK-' mol-' t K 

v m3 pPa  = (2.4) 

which, on cancelling the units, becomes: 
nrt p = -  

V 

wherep, n, r ,  t and v are positive numbers, with t also permitted to take 
the value zero. In this case, we see that p is a function of the three 
variables ii, t and v ( r  is a constant). However, if the amount of gas and 
either temperature or volume is held constant, then there is only one 
independent variable and, in these circumstances, we say that p is 
proportional to t or that p is inversely proportional to v, respectively: 

p m t  or p ~ l l v  

The are given by fir/v or by art, respectively. 
In each case, we can collect our constants together and re-label them as a 
single constant, expressed using a new symbol. Thus, we can express the 
ideal gas law as: 

p = bt or p =  c l v  
where b = nr /v  and c = nrt. 

Understanding the Role of Units: the Pragmatic Approach 

In the discussion above, we have seen how a formula involving chemical 
properties may be converted into a function, essentially by removing the 
units. This procedure works because the units must balance on each side 
of the equality (=) defining the formula or association. It is very easy to 
become confused by the distinction between formula and function and 
the role that units play in defining this distinction. The approach detailed 
above describes how to treat units in a mathematically correct fashion, 
but in practice the more pragmatic approach is simply to ignore the units 
and treat a formula describing some physical relationship as a function 
(for which the domain is the physically meaningful range of values for the 
independent variable). Consequently, we find that in most chemistry texts 
there is an understandable degree of mathematical looseness, which 
skates over this distinction between formula and function in a chemical 
context, and frequently results in the units being ignored. For example, it 
is often stated that the ideal gas law indicates that P is a function of T and 
V,  in which P 0~ Tand P 0~ l /V. The latter two statements are, of course, 
true, so long as it is understood that the proportionality constants carry 
the units of pressure divided by temperature and pressure multiplied by 
volume, respectively. It is not our intention here to add unnecessary levels 
of complexity, but it is nevertheless important to be aware of the role that 
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units play and of the distinction between formula and function in the 
chemical context. We shall return to this problem of units in the next 
section, where we consider methods used for representing functions. 
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2.2 Representation of Functions 

Functions of a single variable, involving a relation between two sets of 
numbers, may be expressed in terms of a table (expressing an association), 
formula, prescription or graphical plot. For functions of two indepen- 
dent variables (see below), the preferred representations are formula, 
prescription or graphical plot; for three or more variables, a formula or 
prescription is the only realistic representation. 

2.2.1 Tabular Representations of Functions 
of a Single Variable 

The function y = g(x), where g(x )  = 2x + 1, with the domain consisting of 
the integers from -5 to 5,  can most easily be expressed in tabular form (see 
Table 2.1). For each value of x there exists one value of y .  

Table 2.1 The function g(x )  = 2% + 1, with the domain consisting of the integers from 
-5 to 5 expressed in tabular form 

~ ~ ~~~~ ~~~~~ ~ 

% -5 -4 -3 -2 -1 0 1 2 3 4 5 
g(%) -9 -7 -5 -3 -1 1 3 5 7 9 11 

It is clear that there are 11 numbers (elements) in the domain. However, it 
is not possible to present the functionflx) = 2x + 1 with the domain of all 
real numbers from -5 to 5 in tabular form, as there is an infinite number 
of elements in the domain. The formulaflx) = 2x + 1 is the most effective 
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non-graphical way of specifying this function, with the domain as 
specified above. 

2.2.2 Grapkical Representations of Functions 
of a Single Variable 

For the function y =fix), each ordered pair of numbers, (x ,y) ,  can be used 
to define the coordinates of a point in a plane, and thus can be represented 
by a graphical plot, in which the , 0, with coordinates (O,O), lies at 
the intersection of two perpendicular axes. A number on the horizontal 
x-axis is known as the , and defines the x-coordinate of a point in 
the plane; likewise, a number on the (vertical) y-axis is known as the 

, and defines the y-coordinate of the point. Thus, an arbitrary 
point (x,y) in the plane lies at a perpendicular distance 1x1 from the y-axis 
and IyI from the x-axis. If x > 0, the point lies to the right of the y-axis; if 
x < 0, it lies to the left. Similarly, if y > 0, the point lies above the x-axis, 
and if y < 0, it lies below (see Figure 2.1). 

Figure 2.1 The Cartesian 
coordinate system used to 
represent the points (3,3) and 
(--3,-3) in the plane defined in 
terms of coordinates referenced 
to the origin (0,O) 

For functions such as y =g(x), where g ( x )  :z 2x + 1, the most appro- 
priate type of plot is a if the domain is limited to integers 
lying within some range. Figure 2.2 displays such a plot for this 
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function, which is defined only at the 11 values of x in its domain 
(indicated by small open circles). 

Figure 2.2 A point plot illus- 
trating the values of the function 
y=g(x) in its domain [-5,5] 

Strictly speaking, it is not appropriate to connect the points with a line, as 
this would imply that the function is defined at points other than at the 
integers from -5 to + 5 .  However, in some instances, as we shall see 
below, it may be appropriate to connect the data points with straight line 
segments in order to guide the eye, but this has no mathematical 
significance. In contrast, the of the function y =Ax) = 2x + 1 is 
created by taking a sufficient number of points in its domain, to enable a 
smooth curve to be drawn (Figure 2.3). In this case, it would be similarly 
misleading to represent this plot as a series of discrete points, no matter 
how small the gap between adjacent points. The only way of correctly 
representing this function is as a smoothly varying line plot, but, of 
course, in practice we recognize that the logistics of generating a graphical 
line plot involve arbitrarily selecting discrete points within the domain 
and then joining the points. This applies equally whether we are drawing 
the plot by hand or using a computer plotting program. 

A Chemical Example of a Point Plot 

Consider the association between the atomic first ionization energy, IE, 
and the atomic number 2 (a positive integer). It is convenient to use the 
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Figure 2.3 Line plot of the 
function y = f(x) = 2x + 1 

electronvolt unit, eV, where 1 eV=96.485 kJ mol-'. As there is no 
formula to express this association, we present the function first in the 
form of a table, and then as a point plot; in both representations we take 
as domain the 2 values for the first 18 elements. Since units have to be 
removed in order to define a function, we consider in Table 2.2 the 
association of 2 with IE/eV. 

Table 2.2 Atomic number and ionization for the first 18 elements 

Z 1 2 3 4 5 6 7 8 9 
IE/eV 13.6 24.6 5.4 9.3 8.3 11.3 14.5 13.6 17.4 
Z 10 11 12 13 14 15 16 17 18 
IE/eV 21.6 5.1 12.8 6.0 8.2 10.5 10.4 13.0 15.8 

The data in the table are now displayed in graphical form as a point plot 
(or scatter plot) in Figure 2.4, with points defined by the number pairs (2, 
IE/eV). In this procedure, 2 is specified as abscissa (x-axis) and IE/eV as 
ordinate (y-axis). 

For every value of 2 there is clearly only one value for the ionization 
energy, which establishes a function with domain given by the set of the 
first 18 positive integers, a subset of the atomic numbers of the 109 
elements in the Periodic Table. In this example, the fact that the data 
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Figure 2.4 A point plot dis- 
playing atomic number versus 
ionization energy in eV 

points are connected by dashed straight-line segments has no mathemat- 
ical significance: it simply acts as a visual aid to improve the display of the 
trends in IE/eV values. 

There are many situations where we are unable to provide a formula 
that relates one chemical property with another, even though, intuitively, 
one may be expected. Thus, in the example given above, it is not possible 
to construct a simple model, based on a formula, that relates 2 to IE/eV 
for atoms containing more than one electron (although a simple 
relationship does exist for one-electron species, if we ignore relativistic 
effects). However, regardless of whether a particular problem is as 
intractable as this one, we can only enhance our understanding of 
chemistry by using the mathematical tools at our disposal to develop new 
models to crack particular chemical “nuts”! As an example of this kind of 
model development, we now consider some pressure/volume data for a 
real gas in order to test the ideal gas law, derived from the Boyle model, 
and to see how we can refine the law to find a better “fit” to our data. 

In Section 2.1.1 we saw that, for an ideal gas, the numerical values of 
the pressure, p ,  and volume, v,  are related according to p 0~ 1 / v ,  or p = c/v,  
where c = firt (a constant). We can now explore how well the ideal gas law 
works for a real gas by considering experimental data’ for 1 mol of C02 at 
T= 313 K. The ideal gas law suggests that pressure is inversely pro- 
portional to the volume and so in the first two rows of Table 2.3 we 
present the variation of p with l / v  for the experimental data (note that 
the working units for the pressure and volume in this case are atm and 
dm3, respectively). In the third row, we show values for l /vB,  obtained 
using the ideal gas equation, where, in this case, the constant of 
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proportionality c = 25.6838 at T= 313 K. The data in the fourth and fifth 
rows derive from a refinement to the model, discussed below. 

Table 2.3 A comparison of experimental p versus l lvdata for 1 mol of C 0 2  at 313 K 
with values for l / v  generated from the ideal gas law, from a fit to the van der Waals 
equation, and from the van der Waals equation but using the book values' for the 
constants a and b (see text for details) 

D = P/atm 1 10 50 100 200 500 
~~ ~ ~~ ~~~~ ~ 

l / v  = I/( !4dm3) 0.0392 0.4083 2.6316 14.300 19.048 22.727 
1 /vB 0.0389 0.3893 1.9467 3.8934 7.7867 19.467 
1 /VvdW,f ft 0.0391 0.4010 2.3294 7.402 19.175 22.730 
1 Ivvd W, book 0.0391 0.4048 2.5189 11.249 14.184 16.835 

It should be quite obvious that, although the model provided in the form 
of the ideal gas law does a reasonable job at lower pressures, it rapidly 
deviates as the pressure increases and the volume decreases. We can see 
this more clearly in Figure 2.5, where we compare the real data with that 
derived from the ideal gas law in a scatter plot o fp  versus l/u. We can see 
from our plot that the experimental data, shown as solid circles, are 
modelled reasonably well by a linear (straight line) function, but only for 
pressures less than 50 atm. The Boyle model is clearly of limited 
applicability in this case. 

Figure 2.5 Plot of p versus I/v, 
assuming the Boyle model (open 
box symbols). Experimental data 
for C02  at 313 K are shown as 
solid circles 

Improving on the Boyle Model 

An example of a model equation for a real gas is provided by the van der 
Waals equation: 

RT a p = -  -- 
V - b  V2 
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in which some essence of non-ideality is included through the two 
parameters a and 6. Values of a and b for C02 can be obtained by fitting 
the experimental data to this model expression. For the experi- 
mental data set given in Table 2.3, we obtain values for a and b of 
2.645 atm dm6 mol-2 and 3.025 x dm3 mol-', respectively. The book 
values for a and b are 3.592 atm dm6 mol-2 and 4.267 x lop2 dm3 mol-', 
respectively.2 The differences arise from the limited number of data points 
available to us, but we can see that, in spite of this, our fitted values for a 
and b are of the same order of magnitude as the book values. If we now 
compare a scatter plot of p versus l/vvdW,fit, using our fitted values for a 
and b (Figure 2.6), we see that, although the fit to our experimental data is 
really quite good in both the low- and high-pressure regions, it is quite 
poor in the region of the critical point where we have a 
on our plot (see Chapter 4). Using the book values for the van der Waals 
constants gives a reasonable fit below 50 atm, but increasingly poorer fits 
to higher pressures; however, the fit in the critical region is much better 
than that achieved from our fitted values for a and b. While we have not 
been able to construct a model that fits the experimental data perfectly, it 
is a considerable improvement on the Boyle model and allows some 
insight into what factors might be causing the deviation from ideal gas 
behaviour. Furthermore, our model provides a starting point for further 
refinements, which might focus, for example, on improving the model for 
different regions of the domain (such as in the critical region) or even 
taking a different approach altogether, such as looking for a poly- 
nomial function in l/v that has a more extended validity (see Chapter 1 in 
Volume 2). 

Figure 2.6 van der Waals 
(open symbols) and experimen- 
tal data (solid circles), used in a 
pressure versus volume plot for 
CO2 
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2.2.3 Representing a Function in Terms of a Prescription 

The simplest function defined in terms of a 
are sometimes termed piecewise functions) is the 
Ax) = 1x1 defined as follows: 

(such functions 
7 

x,xzo 
f(4 = {-x,x < 0 

a plot of which is given in Figure 2.7. 

Figure 2.7 The modulus func- 
tion y =  14 

The modulus function in equation (2.7) is an example of a function 
displaying a “kink” at the origin. In this case it is necessary to split the 
domain into two subintervals, in each of which the formula takes a 
different form. Further examples of this type of behaviour are described 
in Chapter 3. 



46 Maths for Chemists 

Prescription Functions in Chemistry 

Functions, specified in the form of a prescription, are required when 
describing properties of chemical systems that undergo phase changes. 
For example: 

The function describing the change in entropy, as a function of 
temperature, involves the use of a prescription that contains a 
formula specific to a particular phase. At each phase transition 
temperature the function suffers a finite jump in value because of the 
sudden change in thermodynamic properties. For example, at the 
boiling point Tb the sudden change in entropy is due to the latent heat 
of evaporation (see Figure 2.8). 

Figure 2.8 A plot of the func- 
tion describing the change in 
absolute entropy as a function of 
temperature. The discontinuities 
occur at phase changes 

The function describing the change in equilibrium concentration of a 
given species following a sudden rise in temperature (in a so-called 
temperature jump experiment), has two parts, corresponding to times 
before and after the temperature jump (Figure 2.9). 

2.3 Some Special Mathematical Functions 

There are many different kinds of function in mathematics, but in this 
chapter we shall restrict the discussion to those , 
such as exponential, logarithm and trigonometric functions, that have 
widespread use in chemistry. 
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Figure 2.9 The exponential 
relaxation of the equilibrium con- 
centration to a new equilibrium 
concentration following a sudden 
temperature jump from TI to T2 

2.3.1 Exponential Functions 

In Chapter 1 we saw that there are 2" spin states for n equivalent protons, 
where the physics of such systems requires that n 2 1. If we now change 
the name of the independent variable from n to x, we can define the 
function y =f(x) = 2" with a domain, for example, initially restricted to 
the integer values - 4 to + 4. We have displayed this function as a scatter 
plot in Figure 2.10. If we now extend the domain to any real value for x, 
we can define the equal to 2, 
part of which is displayed in Figure 2.10 as the full line plot. 

function y = g(x )  = 2", with 

Figure 2.10 Scatter and line 
plots of the functions y = f(x) = 2x, 
domain x = -4, -3, -2, -1, 0, 1 2, 
3 ,  4 (open circles) and y = g(x) = 
2x, domain R (full line) 
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In chemistry, in addition to base 2, which we meet rather infrequently, 
we also encounter exponential functions with base 10 in, for example, 
relating pH to the activity, a, of hydronium ions in aqueous solutions, 
using the formula a = lovpH. However, the base most commonly 
encountered is provided by the unexpectedly strange, irrational number 
e, which has the value 2.71 8 28 1 828 . . . This base arises when describing 
growth and decay processes in chemistry, e.g. in kinetics, where changes 
in concentration with respect to time are the focus of attention, and in 
quantum chemistry, where we are interested in the changes in the 
probability density function for finding an electron at a particular point in 
space. In a mathematical context, however, e defines the base of the 
natural logarithm function (see below), and also has a major role in 
calculus (Chapter 4). 

In comparing exponential functions with different bases, the larger the 
base, the more rapidly the value of the function increases with increasingly 
large positive values of x, and decreases with increasingly negative values 
of x. The value of y at x = 0 is unity, irrespective of the choice of base. 
Regardless of the choice of base, exponential functions display a 

at y=O: as x takes on increasingly large negative 
values, the curve approaches the line y = 0 but never crosses it. We explore 
the limiting behaviour of functions in more detail in Chapter 3. 

Two Chemical Examples 

In modelling the vibrational “umbrella” mode for ammonia, the 
potential energy function V = ikx2 + be-cx2 is commonly used, where 
b and c are constants (see Figure 2.1 1). 

Figure 2.1 1 A plot of the 
potential energy function 
V = kx2 + be-cx2, using appro- 
priate values of b and c, to 
describe the umbrella motion in 
ammonia 

The number of molecular species, ni, occupying a given energy state, 
E ~ ,  is estimated using the Boltzmann distribution function: 
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- ( Ei--EO) / k T  ni = nOe 

where no is the number of species in the lowest energy state, k is the 
Boltzmann constant, T the temperature and the suffix i takes values 0, 1, 
2, 3, . . . Since this function has the domain of positive integers, it can only 
be visualized graphically using a point plot (see Figure 2.12). 

Figure 2.12 A scatter plot of 
the Boltzmann distribution show- 
ing the fractional population of 
energy levels at a given tem- 
perature, T 

2.3.2 Logarithm Functions 

Logarithm functions appear widely in a chemical context, for example in 
studying: 

0 The thermodynamic properties of an ensemble of atoms or molecules. 
0 The model equations for first- and second-order kinetics. 
0 The temperature dependence of equilibrium constants. 
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Defining the Logarithm Function 

If y = ax (a is the base), then we define the logarithm to the base a of y to 
be x, ix.: 

loguy = x (2.9) 

It follows that: 
alog,Y - - a  x = y  (2.10) 

Properties of Logarithms 

Given two numbers yl, y2,  such that y1 = dland y2  = ux2, we have from 
the definition: 

10gu(YlY2) = log,(a x1 SX2) = x1 + x2 (2.1 1) 

However, again from the definition, we have log,yl = x1 and log,y2 = x2, 
and hence: 

lOg,(YlY2) = log, Yl + log, Y2 (2.12) 

By a simple extension of this argument, we find that: 

log,( 4'7 = nlog, Y (2.13) 

Note that this applies equally if the index is negative; thus: 

log,(y-n) = -n log, y (2.14) 

Similarly, by using the laws of indices and the defining relations for 
logarithms above, we have: 

Finally, to convert the logarithm from base a to base b, we can use the 
initial equality: 

to give: 
logb y = logb(axl) = x1 logb a and x1 = log, y (2.17) 

and hence: 

(2.18) 
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A Convention 

Logarithm functions with the bases e and 10 are usually designated by In 
and log, respectively. 

2.3.3 Trigonometric Functions 

Consider the right-angled triangle shown in Figure 2.13. The basic 
, given the names sin and cos, and 
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respectively, are defined using the ratios of the side-lengths of a right- 
angled triangle as: 

BC 
sine = - 

AB 

and 

AC 
cose = - 

AB 

(2.19) 

(2.20) 

Figure 2.13 A right-angled tri- 
angle, with angle BAC specified 
as 8 

The sides of a right-angled triangle are referred to as the adjacent or base 
(AC); opposite or perpendicular (BC); and hypotenuse (AB), opposite the 
right angle. The of the angle 6 is given by the quotient of sin8 and 
case: 

sine BC t a d = -  - - 
cose - AC 

(2.21) 

The Question of Angle 

Figure 2.14 shows a circle of radius r and an arc (a portion of the 
circumference) of length s, subtended by the angle 6. There are two basic 
measures of the angle 6: the first, and probably more familiar, is the 

. The angle 0 has the value of one degree if the arc-length s is equal 
to one 360th of the circumference of the circle; and so a complete 
revolution corresponds to 360 degrees, with half a revolution correspond- 
ing to 180 degrees and a quarter to 90 degrees (a right angle). The second 
measure of angle is the ; one radian is the angle made when the arc 
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length is equal to the radius of the circle; in other words, it is defined in 
terms of the ratio of arc length to radius, i.e. 8 = s/r .  As the circumference 
of the circle is equal to 271r, it follows that there must be 271 radians in one 
complete revolution, n radians in half a revolution and 4 2  in a quarter 
revolution. Since n: radians is equivalent to 180 degrees, we can see that 
one radian must equal 180/n = 57.296 degrees (to 5 sig. figs). 

Figure 2.14 A circle of radius r 
and an arc of length s, subtended 
by the angle 8 

Angle Measure in SI Units 

Since radians are defined in terms of the ratio of two lengths, the values 
associated with an angle carry no units and are said to be dimensionless. 
Similarly, the degree measure of angle is also dimensionless. We can 
reinforce this by remembering that the sine or cosine of an angle, whether 
measured in degrees or radians, is defined as the ratio of the lengths of 
two sides of a triangle. The dimensions of sine or cosine must then cancel, 
which, in turn, implies that the angle itself is dimensionless. However, in 
order to indicate which form of angle measure is in use, it is common 
practice to attach the SI symbol "rad" (as a quasi unit), or to place a small 
circle as a superscript to indicate degrees. For example, we have 8 =n/2 
rad or 8 = 90" or, equivalently, B/rad = 4 2  or O/" = 90. 

Sign Conventions for Angles and Trigonometric Functions 

The geometric definition given above for the trigonometric functions, in 
terms of the ratio of the sides of a right-angled triangle, restricts the angles 
to values in the range 0" to 90" or, alternatively, to: 

n 
0 ~ 8 ~ -  rad 2 

The definition of angle may be broadened, however, by considering the 
location of a point (x ,y)  on the circumference of a circle, with centre at the 
origin of a xy-coordinate system (sometimes referred to as a 
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) (see Figure 2.15). The line joining the point 
on the circle to the origin is of length r ,  and equal to the radius of the circle. 

Figure 2.15 The angle 8 rep- 
resented in terms of a circle 
placed on a Cartesian coordinate 
system 

A zero value for the angle corresponds to the point lying on the positive 
x-axis. The angle increases in a positive sense as the point circulates in an 
anticlockwise direction; circulation in a clockwise sense is indicated by a 
negative value of 6. Thus, for example, 8 = - $  is equivalent to 0 = 
(see Figure 2.16). 

Figure 2.16 Positive values for 
an angle are generated by 
rotation in an anti-clockwise 
sense, while negative values 
imply clockwise rotation 

We can now redefine the trigonometric functions in terms of the radius Y, 
and the coordinates x and y ,  of a point on the circle: 

Y (2.22) Y X 
sin0 = -, cos0 = - and tan0 = - 

r r x 
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These definitions are not in conflict with those given earlier, but now 
allow for all angles; for example, angles lying in the range 90" < 6 < 180" 
correspond to negative values for x and positive values for y ,  whilst those 
in the range 270"< 6< 360" correspond to positive values for x and 
negative values for y .  We can also see how the signs of the values of the 
trigonometric functions depend upon which of the four quadrants of 
the circle the point lies in (see Figure 2.15 and Table 2.4). For example, in 
quadrant 11, where 90"< 6 < 180°, and where x is negative and y positive 
(and remembering that r is always positive): sin6>0, cos6<0 and 
tan6 < 0. 

Table 2.4 The signs of the trigonometric functions sin, cos and tan in each of the four 
quadrants shown in Figure 2.14 

Function 
Quadrant sin cos tan 

I + + + 
II + 
Ill 
IV - + 

- - 

- - + 
- 

Special Values for Trigonometric Functions 

There are only a few special cases where trigonometric functions have 
exact values, all of which are obtained easily without reference to tables or 
resorting to the use of a calculator. For example, sin(n/4) is calculated 
from the definition of the sine function and use of Pythagoras. An angle of 
6= 71/4 (or 6= 45") requires the magnitudes of x and y to be equal, which 
implies the length of the hypotenuse (given by r )  to be a factor of 4 larger 
than either x or y .  Thus, if sin0 = y / r ,  then sin(n/4) = $. Table 2.5 lists 
some of the special values for the sine, cosine and tangent functions. 

Table 2.5 Some special values for the sin, cos and tan functions 

6 = 0 n/6 n/4 nI3 d 2  TC 3nl2 2n 

siriu U - 

2 
- 

2 
I U - I 

1 COS6 1 -1 0 1 

- 1 1  8 . .  0 -m 0 8 0 
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Reciprocal Trigonometric Functions 

Three further trigonometric functions, 9 and , are 
provided by the reciprocals of the basic functions: 

(2.23) 
1 - cos8 

cot8=- - sec 8 = - cosec 8 = - 
sin 8 ’ cos 8 ’ tan0 - sin 8 

1 1 

Domains and Periodic Nature of Trigonometric Functions 

Thus far we have considered angles ranging from 0 to 2.n (0 to 360°), but 
we can further extend this range by allowing additional complete 
rotations about the origin. Each additional rotation, anticlockwise or 
clockwise, adds or subtracts 2n to or from the angle, with the value of the 
sine and cosine trigonometric functions simply repeating with each full 
rotation. The tangent function repeats every half rotation. Thus, for the 
angles 8 & 21-271, where n = 0, 1, 2, 3, . . .: 

sin(8 f 2n.n) = sin 8 and cos(8 & 2n.n) = cos 8 (2.24) 

and for the angles 8 nn: 

tan(8 _+ nn) = tan 8 (2.25) 

Plots of the three trigonometric functions are shown in Figure 2.17. 
Functions having a property f i x  f a) =f(x)  are known as 

a, and are said to be with a . In the 
examples given above, the period for the sine and cosine functions is 271, 
while that for the tangent function is n. 

We can see from Table 2.5 and Figure 2.17 that the sine and cosine 
functions both have as domain the set of real numbers. The domains of 
the tangent and reciprocal trigonometric functions are different, however, 
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Figure 2.17 Plots of the tri- 
gonometric functions sin8 (dot- 
dash line), cos 8 (full line), and 
tan8 (dashed line) for - 2 ~  5 8 5 

271. The principal branch of each 
function is shown by the thick 
lines. The dotted vertical lines at 
odd multiples of 71/2 indicate the 
points of discontinuity in the 
tangent function at these values 
of 8 

because we must exclude values of 8 for which the denominator of the 
defining formula is zero. Thus, for example, since cos8=0 for 
8 = (2n - l)n:/2, where n is any integer (including zero), the domains 
for the secant (sec) and tangent (tan) functions consist of the set of real 
numbers, with the exclusion of 0 = (2n - 1)7c/2 with n defined as above. 
For the tan and sec functions, the lines at 8 = (2n - 1)n:/2 are known as 

, because the curves of the respective functions 
approach these lines without ever crossing them (see Figure 2.17). In 
some situations it is necessary to limit the domains so that the functions 
are so-called 1:l functions (as opposed to many-to-one). The 

for the sine, cosine and tangent functions, chosen by convention 
to define them as 1: 1 functions, are: 

(2.26) 
n: n: sin0: - - S O < ,  
L L 

(2.27) 

(2.28) 
71 71 t an0:  - - < 8 ~ -  
2 2 
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Important Identities Involving Trigonometric Functions 

The Addition Formulae 

Expressions for the sine and cosine of the sum or difference of two angles 
are given by the following formulae: 

sin(A+B) = sinAcosB+ sinBcosA (2.29) 

cos ( A  k B )  = cos A cosBT sin A sin B (2.30) 

Thus, for example, in the discussion of periodicity above, and with the use 
of Table 2.5, we see that: 

sin (0 + 271) = sin 6 cos 271 + sin 271 cos 6 = sin 0 (2.3 1) 

cos (0 + 271) = cos 0 cos 271 - sin0 sin 271 = cos 0 (2.32) 

Useful Identities 

c o s 2 ~  + sin2A = 1 (2.33) 

cos 2A = cos2A - sin2A (2.34) 

sin 2A = 2cosA sin A (2.35) 

where the expressions cos’A and sin’A mean (cos A)’ and (sin A)2, res- 
pectively. All the other identities that we may need follow from these 
three identities and the addition formulae. For example: 

cos 3A = cos (2A + A )  = cos2A cos A - sin 2A sin A 

= cos3A - sin2A cos A - 2 sin2A cos A 

= C O S ~ A  - 3 sin2A cos A 

(2.36) 

but since sin’A = 1 - cos’A, we can rewrite this as: 

cos3A = 4 C O S ~ A  - 3 cos A (2.37) 

Fu rt h e r I m po rtan t Pro pert i es of Tr i go norn et ric Functions 

Since negative angles arise when using trigonometric functions, it is 
important to establish how, for example, sin(4) is related to sine. 
The periodicity of the sine function yields the equality: 
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sin (-0) = sin (2n - 0) 

and, so using the sine addition rule, we obtain: 

(2.38) 

sin (-0) = sin 2ncos 0 - sin 0cos271 = - sin 0 (2.39) 

2.3.4 Exponential Functions with Base e Revisited 

The hyperbolic sine and cosine functions and are defined in 
terms of the sum and difference of the exponential functions ex and e-x. 
respectively : 

(2.40) 
1 

sinh x = - (ex - e-") 
2 

1 
cosh .Y = - (ex + e-") 2 (2.41) 

and have the graphical forms depicted in Figure 2.18. 
The other and , defined in 

terms sinh and cosh, are the hyperbolic analogues of the functions tan, 
cosec, sec and cotan, and are defined as follows: 

sinh x 1 
cosh x sinh x ' 

t anhx  = ~ , cosechx = ~ 

cosh x 
cosh x ' sinh x 

cothx = - 
1 

sechx = - (2.42) 

The coth and tanh functions play an important role in the modelling of 
the magnetic behaviour of transition metal complexes. 
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Figure 2.18 Plots of the hyper- 
bolic functions (a) y= sinh xand 
(b) y=cosh xcompared with the 
exponential functions y= ;ex, 
y= le-x and y= -1 -x 

28  

Symmetric and Antisymmetric Functions 

Functions having the property f(-x) =fix) are called 9 or , 
functions, whilst those having the property f(-x) =-Ax) are called 

functions. In our discussion of trigonometric and 
hyperbolic functions, we have encountered a number of examples of 
functions that fall into one or other of these categories, as well as some that 
fall into neither. Symmetric and antisymmetric functions are so called 
because they are symmetric or antisymmetric with respect to reflection in 
they-axis. A close look at Figure 2.17 shows that, since cos8= cos(-O), and 
sin8 = -sin(-8), the cos and sin functions are symmetric and antisym- 
metric, respectively. Likewise, we can classify the cosh and sinh functions 

or 
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as symmetric and antisymmetric, respectively (see Figure 2.18). The 
exponential functions displayed in Figure 2.18 are neither symmetric nor 
antisymmetric. In Chapter 6 we shall meet these ideas again, when we 
consider the integration of functions having well-defined symmetry, a 
feature that has important applications in quantum mechanics where we 
consider the physical significance of whether certain integrals involving 
wave functions of atoms and molecules are zero or non-zero. 

The Product Function x2eWx 

The function y=x2e-" is a product of two functions, x2 and e-"; the 
former increases rapidly with increasing x, but the latter decreases even 
more rapidly with increasing x. The result is that the value of the product 
function, which is initially dominated by the quadratic term, will quite 
rapidly be overcome by the exponential term as x increases. In fact this is 
true regardless of the degree of the power term: it does not matter whether 
we consider the function y=x2e-* or y=x20e-x or y=x200e-x. 
Eventually, and for surprisingly small values of x, the exponential term 
will always dominate. In fact, even in the last example the function starts 
to become overwhelmed by the exponential term around x = 200. 
However, for increasingly negative values of x, both terms in the product 
function are positive and increasing, thus ensuring that the product 
function increases more rapidly than either of its component terms. All of 
these features are apparent in Figure 2.19. 

Figure 2.19 Plots of the func- 
tions y= 2, y= ePx and the 
product y= $e-" 

Product of a Polynomial or Trigonometric Function 
with an Exponential Function 

The most common types of expression of this kind found in chemistry 
typically have one of the following forms: 
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sin(nx)e-" 
P,(x)e-x, where P,(x) is a of degree n 

Polynomial functions have the general form 

P,(x) = co + c1x + c2x2 + c3x 3 + * * * + cnxn (2.43) 
where co, cl, ..., c,, are real constants and n is a positive integer, the largest 
value of which defines the degree of the polynomial. Polynomial functions 
of degree 3 or higher may display finite regions of oscillation (see Figure 
2.20); in contrast, the trigonometric functions sin and cos oscillate 
indefinitely (see Figure 2.17). 

Figure 2.20 Plots of the poly- 
nomial functions (a) y= 32+4x+1 
(degree 2), (b) y= 2 - 7 2  + x + 6 
(degree 3) and (c) y = ;x5-7x3 
--x + 6 (degree 5); the latter two 
display finite regions of oscillation 

When we form a product of either a polynomial or a trigonometric 
function with the exponential function y = e-*, the rapid decline in value 
of the exponential function as x increases from zero results in a rapid 
damping of the oscillation (see Figure 2.21). 

In the case of polynomials of higher degree, a jz'nite number of 
oscillations occur before they become overwhelmed by the exponential 
function, whereas for the product of sine or cosine with an exponential 
function the number of oscillations is injnite, with their amplitude 
decreasing with increasing positive x. For negative values of x the 
opposite occurs, with the amplitude of the oscillations increasing with 
increasingly negative values of x. 

A Chemical Example: the 3s Atomic Radial Wave Function 
for the Hydrogen Atom 

The radial part of the 3s atomic orbital function for the hydrogen atom is 
a good chemical example of a product of a polynomial with an 
exponential function, and takes the form: 
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Figure 2.21 
a polynomial or (b) a trigono- 
metric function with the expo- 
nential function y = ePx results in 
a rapid damping of the oscillation 
as x increases 

The product of (a) 

(2.44) 

where N is a constant, having the form 1 This may look rather 
complicated but it is in fact relatively straightforward in its form, 
comprising a second-degree polynomial function and an exponential 
function, both of which are expressed as a function of the independent 
variable r (the distance of the electron from the nucleus). In fact, wherever 
r appears in both parts of the product, it is divided by ao, the Bohr radius, 
and we say in the case of the polynomial function that it is second degree 
in r/ao (the independent variable). A plot of R3sa03/2 versus r/ao is given in 
Figure 2.22. If we compare the plot with the function displayed in Figure 
2.19 it should be clear that they both have essentially the same form. The 
main difference in the case of the radial wave function is that we consider 
only values of r 2 0, simply because negative values for the radial distance 
have no physical meaning. 

8 1 ~ : / ~ &  ' 
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Figure 2.22 A plot of the radial 
function for a 3s hydrogen atomic 
orbital 

2.3.5 Explicit and Implicit Functions 

Up to this point, we have met functions of the form y =Ax) in which the 
independent variable appears on the right side and the dependent variable 
appears on the left. In such cases, the association between a given value of 
the independent variable and the value of the dependent variable is 
explicit. For example, the function: 

y = ex 

is an example of one in which y is an of x. However, we 
can always express such functions in the formAx,y) = 0 in which y is an 

of x. For example, the function y = ex may be presented 
in an implicit form as: 

lny - x = 0 

In this example the implicit form of the function may be rearranged into a 
form in which either variable is an explicit function of the other. How- 
ever, sometimes we meet functions which are impossible to arrange into 
an explicit form. The function: 

y + e Y = x  5 

is an example of an implicit function for which there is one unique value 
of y associated with each value of x but which cannot be expressed in the 
form of an explicit relationship between y and x. It is nevertheless possible 
in this case to compute each value of y associated with a particular value 
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of x using numerical methods. An example from chemistry is the 
van der Waals equation (2.6) in which both P and T can be expressed as 
an explicit function of the other: 

However, it is most convenient to consider the 
implicit function of P and T (see equation 2.53). 

molar volume Vm as an 

2.4 Equations 

Consider the plots of the quadratic polynomial functions y = x2 - 4x + 3, 
y = x 2  - 4x + 4 and y = x 2  - 4x + 6 in Figure 2.23. Curve (a) cuts the 
x-axis (y=O) at x= 3 and x= 1, values which correspond to the two 
solutions (or ) of the x2 - 4x + 3=0.  In this 
example, we can more easily obtain the two roots by factorizing the 

, rather than by plotting the function. Thus x2 - 4x + 3 
can be expressed as the product of two linear factors: 

x2 - 4x + 3 = (x - 3)(x - 1) 

and we can see that this will equal zero when either of the two linear 
factors equals zero, i.e.: 

when x - 3 = 0 + x = 3 
or when x- 1 = O +  x =  1 

Figure 2.23 Plots of quadratic 
polynomial functions 
(a) y = x2 - 4x + 3, 
(b) y = x2 - 4~ + 4, 
(c) y = X* - 4~ + 6 
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In cases where factorization proves difficult, it is always possible to use 
the formula for the roots of a quadratic equation, ax2 + bx + c=O: 

-b+ db2 - 4ac 
2a 

x =  (2.45) 

In this example the coefficients a, b and c have values equal to 1, - 4 and 3 
and substituting these into our formula gives: 

fi 
= 2+-- = 2+_1 

4+Jic-(Gq 
2 2 

X =  

The quantity b2 - 4ac is known as the , and its value can be 
positive, zero or negative. In cases where it is positive, the equation has 
two real and different roots; if it is zero, then the equation will have two 
identical roots; and if it is negative, then there are no real roots, as the 
formula involves the square root of a negative number, for which there is 
no real result. A way around this latter difficulty is described in Chapter 2 
of Volume 2, where 

The value of the discriminant for the equation x2 - 4x + 3 = 0  is 
positive, and we see that there are clearly two different roots, as indicated 
in plot (a) of Figure 2.23, which shows the curve cutting the x-axis at x = 1 
and x = 3. The curve of the function y = x2 - 4x + 4, shown in plot (b), 
touches the x-axis at x= 2. In this case the discriminant is zero, and we 
have two equal roots, given by x = $ + = 2 & 0. Note that although 
the curve only touches the x-axis in one place, the equation x2 - 4x + 4 = 0 
still has two roots: they just happen to be identical. Finally, in the case of 
curve (c), there are no values of x corresponding to y = 0, indicating that 
there are no real roots of the quadratic equation x2 - 4x + 6 = 0, as the 
discriminant is equal to -8. 

are introduced. 

In general, a quadratic equation has either two or zero real roots. 
However, a may have one or three real roots, as seen in 
Worked Problem 2.5. 
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Figure 2.24 Plots of the 
polynomial functions 
(a) x3 - 7x  + 6,  (b) x3 - 4x2 
-2% - 3 

2.4.1 An Algebraic Method for Finding Roots 
of Polynomial Equations 

For a given polynomial function y = f ( x ) ,  one (or more) roots of the 
polynomial equationflx) = 0 can often be found by an algebraic method. 
Suppose the polynomial f ( x )  is of degree n. If x= il is a root of the 
polynomial equation, then f ( A ) = O ,  and (x - A) is a factor of the 
polynomial: 

f ( x )  = (x - A)(Clx"-' + c2xn-2 + ... + c,) (2.46) 

The truth of the previous statement follows by substituting x = A into the 
above equation, where we see that, irrespective of the value of the second 
expression in parentheses, which is a polynomial of degree n- 1, the first 
term in parentheses is zero, thus implying that f ( A )  = 0. If there is a root 
with integer value, then it can sometimes be found by trial and error, 
using A =  f 1, f 2, . . . the polynomial of degree n- 1 can then be treated 
in the same way. If no further roots can be found algebraically, at any 
stage in the iterative procedure, then the current polynomial can be 
plotted to exhibit the existence, or otherwise, of remaining roots. 
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The key requirement is that, at each step, the coefficients ci are found, in 
order to facilitate the recovery of another root. Once the polynomial of 
degree two is reached, it is easiest to use the formula given in equation 
(2.45) to test for the existence of a further two or zero roots. 
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Figure 2.25 Plot of the function 
f ( X )  = 2x3 + 1 1x2 + 1 7 ~  + 6 = 0 

2.4.2 Solving Polynomial Equations in a Chemical Context 

In practice, the solution of polynomial equations is problematic if no 
simple roots are found by trial and error. In such circumstances the 
graphical method may be used or, in the cases of a quadratic or 
cubic equation, there exist algebraic formulae for determining the 
roots. Alternatively, computer algebra software (such as Maple or 
Mathernatica, for example) can be used to solve such equations 
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explicitly. In Worked Problem 2.7 we show how the calculation of the 
pH of lop6 mol dm-3 HCl(aq) requires the solution of a quadratic 
equation. 
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Polynomial Equations of Higher Degree in Chemistry 

Polynomial equations of degree three (cubic equations) arise in a number 
of areas of classical physical chemistry; however, such equations also 
arise in the modelling of: 

Electronic structures, through the determination of molecular 
orbitals, constructed as linear combinations of atomic orbitals 
(LCAO); thus, for example, the determination of the simplest 
cr-type molecular orbitals for HCN, in its linear configuration (as in 
the ground state), involves the use of the seven (T atomic orbitals lsH, 
Isc, lsN, 2sc, 2sN, 2paC and 2paN, and leads to the solution of a 
polynomial equation of degree seven for the molecular orbital 
energies. 
Characteristic frequencies of molecular vibrations. In the case of 
HCN, for example, there are four vibrational frequencies that may be 
calculated from a polynomial equation of degree four, by making 
appropriate assumptions about the stiffness of bond stretching and 
bond angle deformation. 
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Examples of a Cubic Polynomial Equation in Physical Chemistry 

The van der Waals Equation Revisited 

Consider the relationship between pressure, temperature and volume that 
is provided by the van der Waals equation, used to model the physical 
properties of a real, rather than an ideal, gas: 

(2.52) 

Here, a and b are parameters for a specific gas, and Vm is the molar 
volume. If we now multiply both sides of this equation by Vk( Vm - b) ,  
and rearrange the terms, the following cubic equation results: 

(2.53) 

We can use this third-degree polynomial to find the molar volume of a gas 
at a given temperature, T, and pressure, p .  For e ~ a m p l e , ~  we can estimate 
the molar volume of C 0 2  at 500 K and 100 atm using the literature 
values2 for a=3.592 atm dm6 mol-' and b=0.04267 dm6 mol-' and 
taking R = 0.082058 atm dm6 K-' mol-'. The solution to equation (2.53) 
yields only one real root (the other two roots are complex), and we obtain 
a value V,=O.3663 dm3 (found using Maple, the computer algebra 
software). The plot of the function (Figure 2.26) confirms this finding. 

Figure 2.26 Plot of the 
van der Waals polynomial func- 
tion for COP using P= 100 atm 
and T=500 K 
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The 4s Radial Wavefunction for the Hydrogen Atom 

In order to locate the 
orbital: 

in the radial part of the hydrogen 4s atomic 

R4s = N{24 - 18(:) + 3(:)*- (-33{ (2.54) 

we need to solve a cubic polynomial equation for the three values of -& 
and hence Y, as a multiple of ao. Unlike the simple expressions for the 
solutions of a quadratic equation given in equation (2.45), and the cubic 
equation in Worked Problem 2.6, a more involved algebraic procedure 
is required to solve the cubic equation given in equation (2.54). 
However, we know that a hydrogen 4s atomic orbital has three radial 
nodes (n-Z-1), and since there are three roots to the third-order 
polynomial equation R&) = 0, we conclude that all three roots are real. 
In this case, therefore, the graphical method will give good estimates for 
the location of the roots, which can then be improved by trial and error; 
alternatively, computer algebra software can be used to determine the 
roots to any sensible number of decimal places. 
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Limits 

The concept of the limit is a fairly broad one, commonly used for probing 
the behaviour of mathematical functions as the independent variable 
approaches a particular value, either in exploring errant or unexpected 
behaviour or in examining the behaviour of functions as the independent 
variable takes on increasingly large or small positive or negative values. 
More importantly, limits are central to our understanding of differential 
calculus, as is seen in the work of Fermat who, in the early 17th century, 
used the concept of the limit for finding the slope of the tangent at a point 
on a curve (a topic discussed in Chapter 4). Likewise, in Chapter 6 we 
shall see how the concept of the limit provides a foundation for integral 
calculus. 

3.1 Mathematical and Chemical Examples 

3.1. I Point Discontinuities 

The function shown in Figure 3.1 shows a break at x = 3, where the value 
of y is i, and is therefore indeterminate. In this situation the function is 

77 
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said to exhibit a at x = 3, which means that it is impossible to 
sketch the plot of the function by hand without taking the pencil off the 
paper. 

Figure 3.1 A plot of the function 
y = (2 - 9)/(x- 3) over the 
subinterval 0 5 x I 5 

A chemical example is shown schematically in Figure 2.8, where 
discontinuities are seen in the entropy function at the melting and boiling 
points, i", and i"b, respectively, as well as at a temperature T, where a 
change in crystal structure occurs in the solid state. Although the entropy 
function is undefined at these three transition temperatures, the 
discontinuities are finite in nature, as the corresponding changes in S 
are finite in size. We can see from this example that S is continuous only 
over sub-intervals of the domain; furthermore, at each of the transition 
temperatures, T,, Tb and Ts, the value of S is ambiguous. This situation 
arises because two values of S result, depending on whether we approach 
a transition temperature from higher or lower values of 2". 

. For 
example, the function y = f ( x )  = 1/( 1 - x), shown in Figure 3.2, displays 
such a discontinuity at x = 1 because as we approach x = 1 from higher 
and lower values of x the value offix) tends towards infinitely large values 
in negative and positive senses, respectively. In this example the line x = 1 
is known as a vertical asymptote (see Sections 2.3.1 and 2.3.3 for further 
discussion of asymptotic behaviour). 

The tangent function, tan x = sin x/cos x, shown in Figure 3.3, is 
interesting because it exhibits infinite discontinuities whenever x passes 
through an odd multiple of 5. 

Sometimes we meet functions displaying an 
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Figure 3.2 A plot of the function 
f(4 = 1 / ( 1  -x) 

Figure 3.3 A plot of the function 
(x )  = tan x 

3.1 B 2  Limiting Behaviour for increasingly Large Positive 
or Negative Values of the Independent Variable 

We now turn to examining the of functions as the 
independent variable takes on increasingly large positive or negative 
values. As an illustration, consider the function shown in Figure 3.2. We 
see from the form off($ that the value of y approaches zero as x becomes 
increasingly large in both positive and negative senses: the line y = 0 is an 

. In the former case the values of y are increasingly small 
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negative numbers and in the latter they are increasingly small positive 
numbers. The 

Periodic functions such as sin x or cos x have no asymptotes (no single 
limiting value), because their values oscillate between two limits as the 
independent variable increases in a positive or negative sense. For 
example, the value of the function fix) = cos(2x) oscillates between + 1 
and - 1 as x -+ 00 (see Figure 3.4). 

offix) are therefore zero in both cases. 

Figure 3.4 A plot of the function 
ryx) = cos(2x) 

3.1.3 Limiting Behaviour for Increasingly Small Values 
of the Independent Variable 

Frequently, the context of a particular problem requires us to consider 
the limiting behaviour of a function as the value of the independent 
variable approaches zero. For example, consider the physical measure- 
ment of heat capacity at absolute zero. Since it is impossible to achieve 
absolute zero in the laboratory, a natural way to approach the problem 
would be to obtain measurements of the property at increasingly lower 
temperatures. If, as the temperature is reduced, the corresponding 
measurements approach some value m, then it may be assumed that the 
measurement of the property (in this case, heat capacity) at absolute zero 
is also m, so long as the specific heat function is continuous in the region 
of study. We say in this case that the limiting value of the heat capacity, 
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as the temperature approaches absolute zero, is m. As we shall see in 
Section 3.2, the notation we use to describe this behaviour is: 

where, in this case, m = 0 because the limiting value of the heat capacity as 
T + 0 K is zero. It is also important to note that it is only possible to 
approach absolute zero from positive values of T; thus, in this situation, 
the “right” limit, usually written as lim C,(T) = m, is the only one of 
physical significance. T+O+ 

3.2 Defining the Limiting Process 

For a function of a single variable x ,  symbolized, as usual, by y = A x ) ,  we 
are interested in the value off(x) as x approaches a particular value, a, but 
never takes the value a. Points where the function is not defined, as seen, 
for example, at x =  1 in Figure 3.2, are excluded from the domain of the 
function; at other points, the function is continuous. 

play an important role in probing the behaviour of a function 
at any point in its domain, and the notation we use to describe this 
process is: 

lim f ( x )  = m 
x-.a 

Note: in this symbolism, the suffix to the symbol lim indicates that, 
although x approaches a,  it never actually takes the value a. For the limit 
to exist, the same (finite) result must be obtained whether we approach a 
from smaller or larger values of x .  Furthermore, if m=f(a),  then the 
function is said to be continuous at x = a .  

3.2.1 Finding the Limit Intuitively 

Consider the plot of the function: 

x2 - 9 y = f ( x ) ,  wheref(x) = ~ 

x - 3  (3.3) 

shown in Figure 3.1. It is evident thatf(x) is continuous (unbroken) for all 
values of x except x = 3 .  Since the denominator and numerator of 
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the function are both zero at x=3,  we see that the function is 
indeterminate at this value of x; however, as seen in Table 3.1, the ratio 
of the numerator and denominator seems to be approaching the value 
y = 6  as x --;r 3 from smaller or larger values. 

Table 3.1 Values of f(x) = ($-9)/(x-3) in the  vicinity of x= 3 

X x 2 - 9  x -  3 (x2 - 9)/( x - 3) 

4 
3.5 
3.1 
3.01 
3 
2.99 
2.9 
2.5 
2 

7 
3.25 
0.61 
0.0601 
0 

-0.0599 
-0.59 
-2.75 
-5 

1 
0.5 
0.1 
0.01 
0 

-0.01 
-0.1 
-0.5 
-1 

7 
6.5 
6.1 
6.01 
indeterminate 
5.99 
5.9 
5.5 
5 

Taking even smaller increments either side of 3, say x = 3 & 0.0001, we 
find thatf(3.0001) = 6.0001 andf(2.9999) = 5.9999. These results suggest 
that for smaller and smaller increments in x, either side of x = 3 ,  the 
values of the function become closer and closer to 6. Thus we say that, in 
the limit as x -+ 3, m takes the value 6: 

x2 - 9 
lim - = 6  
x-3 x - 3 

3.2.2 An Algebraic Method for Evaluating Limits 

(3-4) 

In practice, it is often easiest when evaluating limits to write x = a  & 6, 
and consider what happens as 6 -+ 0, but never takes the value zero. This 
procedure allows us to let x become as close as we like to the value a, 
without it taking the value x = a .  
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3.2.3 Evaluating Limits for Functions whose Values 
become Indeterminate 

Whenever the value of a function becomes indeterminate for particular 
limiting values in the independent variable (for example, division by zero 
or expressions such as m/m or 00 - m), we need to adopt alternative 
strategies in determining the limiting behaviour. Such situations arise 
quite commonly in chemistry, especially when we are interested in 
evaluating some quantity as the independent variable takes on increas- 
ingly large or small values. Good examples occur in dealing with 
mathematical expressions arising in: 

Manipulating the solutions of rate equations in kinetics. 
Determining high- or low-temperature limits of thermodynamic 
properties. 



84 Maths for Chemists 

The limiting behaviour of functions for increasingly small values of the 
independent variable can be found in a similar way by applying exactly 
the same principles, except that, now, the lowest power of x provides the 
largest term in both numerator and denominator. 
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3.2.4 The Limiting Form of Functions of More Than 
One Variable 

Sometimes, we are interested in how the form of a function might change 
for limiting values in one or more variables. For example, consider the 
catalytic conversion of sucrose to fructose and glucose by the enzyme 
invertase (P-fructofuranidase). The rate of formation of product P for this 
reaction varies in a rather complicated way with the sucrose concen- 
tration [S]. At low [S], the reaction is first order in [S], and at high [S] it is 
zero order. The behaviour observed in Figure 3.5 is established by 
investigating the form of the function describing the rate of reaction for 
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the two limiting cases where [S] approaches either very large or very small 
values, rather than the absolute value of the function as in the examples 
discussed above. This is a consequence in this case of the rate equation 
being a function of more than one variable. 

Figure 3.5 The variation in rate 
of enzymolysis for low and high 
sucrose concentration, [S], 
where the reaction is first and 
zero order, respectively 
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Differentiation 

A great deal of chemistry is concerned with processes in which properties 
change as a function of some variable. Good examples are found in the 
field of chemical kinetics, which is concerned with measuring and 
interpreting changes in concentrations of reactants or products with time, 
and in quantum mechanics, where we are interested in the rate of change 
in the electronic wavefunction of a diatomic molecule as a function of 
bond length. 

89 
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4.1 The Average Rate of Change 

Consider the plot of the function y =fix), in which x is the independent 
variable, shown in Figure 4.1. The ofJTx) over the 
increment Ax in x is given by: 

where f(x0) and fTxo + Ax) are the values of Ax) at the points xo and 
xo + Ax, and Ay is the change in y that results in the change Ax in x. 

Figure 4.1 Defining the aver- 
age rate of change of (x)  as x is 
incremented from xo to xo+Ax 

This average rate of change corresponds to the slope of the PQ; that 
is, the slope of the straight line (sometimes termed the )joining P 
and Q. In chemical kinetics, we can draw a direct analogy by equating the 
concentration of a species A at time t ,  often designated by [A], to the 
dependent variable (designated as y in Figure 4.1), and the time after 
initiation of the reaction, t ,  to the independent variable (designated by x 
in Figure 4.1). Consequently, if we measure the concentration of a 
reaction product at two intervals of time, say one minute apart, we might 
conclude that over that interval the concentration of the product had 
changed by 1.00 mol dm-3. In this case, we could state that the average 
rate of reaction in this interval is 1 .OO mol dm-3 per minute. The problem 
here is that we know nothing about how the reaction rate changes in 
detail during that interval of one minute, and it is this detail that is so 
crucial to our understanding of the kinetics of the reaction. Consequently, 
what we need, in general, is to be able to quantify the rate of change of the 
dependent variable at a particular value of the independent variable 
rather than simply the average rate of change over some increment in 
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the independent variable. This equates, in our chemical analogy, to being 
able to measure the instantaneous reaction rate at a given instant in time 
(and consequently for a given concentration of reactant or product), 
rather than the average rate of reaction over some extended period of 
time. However, before we can determine these instantaneous chemical 
rates, we must first establish some mathematical principles. 

4.2 The Instantaneous Rate of Change 

4.2.1 Differentiation from First Principles 

If we now reconsider the general situation shown in Figure 4.1, we can 
determine the by examining the limiting 
behaviour of the ratio, QR/PR, the change in y divided by the change in x, 
as Ax tends to zero: 

The limiting value defined in equation (4.2) exists if: 

The function does not undergo any abrupt changes at xo (it is 
continuous at the point xo). 
It is independent of the direction in which the point xo is approached. 

If the limit in equation (4.2) exists, it is called the of the function 
y =JTx) at the point .yo. The value of the derivative varies with the choice 
of xo, and we define it in gencral terms as: 

where ($$=xo is the name given to the value of the derivative at the point 
xo. The derivative of the function y=f (x )  at x = x o  in Figure 4.1 
corresponds geometrically to the slope of the tangent to the curve y =Ax) 

The basic formula (4.3) for the derivative is often given in the form: 
at the point P (known as the 1- 

for an arbitrary value of x. 
We should also note that: * is the name of the dx as f'(x). 

, commonly also represented 

The domain of the derivative function is not necessarily the same as 
that of y =fix) (see Table 4.1). 
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The requirement that, for the limit in equation (4.2) to exist, the 
function does not undergo any abrupt changes is sometimes overlooked, 
yet it is an important one. An example of a function falling into this 
category is the modulus function, y = 1x1, defined by: 

x if x a 0  1 -x if x < O  
y = f ( x )  = I x I = 

This function is continuous for all values of x (Figure 4.2a), but there is 
no unique slope at the point x=O as the derivative is undefined at this 
point (Figure 4.2b). 

Figure 4.2 (a) The modulus 
function y= (x )  = 1x1; (b) the 
derivative of the  modulus 
function 

Chemical examples showing this type of behaviour include processes 
associated with sudden changes in concentration, phase, crystal structure, 
temperature, etc. For example, Figure 2.9 shows how the equilibrium 
concentration of a chemical species changes suddenly when a temperature 
jump is applied at time to. Although there are no discontinuities in this 
function, its derivative is undefined at time to. 
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4.2.2 Differentiation by Rule 

Some Standard Derivatives 

The derivatives of all functions can be found using the limit method 
described in Section 4.2.1. Some of the more common functions, and their 
derivatives, are listed in Table 4.1. Unless otherwise indicated, the 
respective domains (Dom) are “all values of x”: 
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Table 4.1 Derivatives of some common functions, and their respective domains 

C 

X” 

sin ax 
cos ax 
tan ax 
sec ax 
In ax 
eax 

0 
nx*’ (n  # 0) 
a cos ax 
-a sin ax 
a sec2ax 
a sec ax tan ax 
alx 
a.eax 

- - 1 

3 
4 

x f  (2n+I)n/2 x #  (2n+l)n/2 6 

x#O for n<O x #  0 for n<-1 2 

x f  (2n+l)n/2 x f  (2n+l)n/2 5 

x>o X # O  7 

- - 
- - 

- - 

‘The constant function, c 
2n= 0 corresponds to the constant function 
3a # 0; for a 1 :I  function, Dom( (x))  = [-n/2,n/2] 
4a # 0; for a 1 : 1 function, Dom( (x)) = [OJ] 
596.7a # 0 

However, as we have seen above, and in Table 4.1, we do meet 
functions for which the derivative f ’ ( x )  does not exist at selected 
values of x. The functions y =Ax) = In x at x = 0 and y =f(x) = tan x at 
x = (2n + l)n/2, both listed in Table 4.1, fall into this category. Naturally, 
since the derivative does not exist in these cases at selective values of x, the 
domain of the derivatives of these functions will not be the same as the 
original functions. The restrictions on the respective domains are best 
seen in sample plots of these functions shown in Figure 4.3. 

An Introduction to the Concept of the Operator 

The notation 2 (or sometimes dy/dx) for the derivative is just one of a 
number of different notations in widespread use, all of which are 
equivalent: 

The more commonly used notations are 2 andf’(x), but expressing the 
derivative in the form fif(x) provides a useful reminder that the derivative 
function is obtained from the function y=f (x )  by the operation 
“differentiate with respect to x”. Thus, we express this instruction in 
symbols as: 

d d dY 
dx dx dx 

bf(x) = f ( x )  = -y  = - (4.5) 

It is worth emphasizing that the symbol does not mean dy divided by 
dx in this context, but represents the limiting value of the quotient Ay/Ax 
as Ax 0. 
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Figure 4.3 The functions 
(a) y= f(x) = In x and 
(b) y= f(x) = tan x are both 
examples of functions for which 
the derivative does not exist at 
certain values in the independent 
variable (see Table 4.1) 

In general, an , 2, is represented by a symbol with a caret 
(“hat”) denoting an instruction to undertake an appropriate action on 
the object to its right (hereflx)). In equation (4.9,  we consider 2 to be the 
differentiation operator & acting on the functionfix), which we have 
labelled y ,  to give a new function, say g(x): 
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We will come to appreciate the full significance of the concept of the 
operator in Section 4.3.1, when we consider the eigenvalue problem. 

4.2.3 Basic Rules for Differentiation 

Although all functions can be differentiated from first principles, using 
equation (4.4), this can be a rather long-winded process in practice. In this 
chapter, we deal with the differentiation of more complicated functions 
with the aid of a set of rules, all of which may be derived from the defining 
relation (4.4). In many cases, however, we simply need to learn what the 
derivative of a particular function is, or how to go about differentiating a 
certain class of function. For example, we learn that the derivative of 
y =fix) = sin x is cos x, but that the derivative of y =Ax) = cos x is -sin x. 
Similarly, we can differentiate any function of the type y =Ax) = xn by 
remembering the rule that we reduce the index of x by 1, and multiply the 
result by n; that is: 

For functions involving a combination of other elementary functions, we 
follow another set of rules: if u and v represent functionsflx) and g(x), 
respectively, then the rules for differentiating a sum, product or quotient 
can be expressed as: 

d du dv 
dx dx dx 
-(u+v)=-+-  

d du dv 
dx dx dx 
-(UV) =v-+u-- (4.9) 

(4.10) 
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4.2.4 Chain Rule 

Quite frequently we are faced with the problem of differentiating 
functions of functions, such as y = ln(x2 + x + 1). The derivative of this 
function is not immediately obvious, and so we use a strategy known as 
the to reduce the problem to a more manageable form. We can 
proceed as follows: 

Introduce a new variable u = x2 + x + 1 to transform the function 
y = ln(x2 + x + 1) into the simpler form y = In u. 
Determine the derivative of y with respect to u: 

dy - 1 - -  - 
du u 

Determine the derivative of u with respect to x: 
du 
- = 2 x + 1  
dx 

Combine the two derivatives, using: 

dy dydu 1 
dx-dudx u 
- - -- = - (2x + 1) 

Eliminate the variable u: 

dy 2x+ 1 
dx x 2 + x + l  

- - - 

4.3 Higher-order Derivatives 

In general, when we differentiate a function y =Ax), another function of x 
is obtained: 

dY 
- = f ’ ( x )  
dx 
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If this derivative function is specified, say, by the relation h=f ‘ (x )=  
g(x), then, so long as g(x) is not zero, h may be differentiated again to 
yield the second derivative of f ix):  

This process may usually be repeated to determine higher-order 
derivatives, if they exist. Thus, for example, iff(x) = x3 - x + 1, then: 

We can gain some useful insight into what exactly the first and second 
derivatives of a function tell us by looking at the form of the three 
functions f i x ) ,  f ’ ( x )  and .f”(x) shown in Figure 4.4. 

The original function y =Ax) = (1 + x ) ~  must be positive for all values 
of x and has a minimum value of zero at x=-1. The first derivative 
f ’ ( x )  = 4(1+ x ) ~  gives us the rate of change (slope of the tangent) of the 
functionflx) for any value of x. For x < - 1 the value off ’(x) = 4( 1 + x ) ~  
is negative, which means the slope of the original function is also negative 
(which we can see for ourselves by inspection of the plot). For x>-1 the 
first derivative is positive and so the slope of the original function is also 
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Figure 4.4 Plots of the function 
f(x) = (1 + x ) ~  and its first two 
derivatives 

positive. The fact that the value of f ’ ( x )  = 4(1 + x ) ~  is zero at x =-I 
indicates that the slope of the function is zero at this point. Such a point is 
identified as a , which, in this case, corresponds to a 
minimum (as we can see from the plot). We shall see later in Section 4.4 
how to prove whether a stationary point is a maximum or minimum 
(or point of inflection) without needing to plot the function. Similarly, the 
form of the second derivative, f”(x)  = 12( 1 + x ) ~ ,  gives us the slope, or 
rate of change, of the first derivative and by extension the slope of the 
slope of the original function f (x) .  The form of the second derivative 
provides us with the means to characterize the nature of any stationary 
points in the original function, while that of the first derivative tells us if 
and where the stationary points exist (see Section 4.4). 
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4.3.1 Operators Revisited: an Introduction 
to the Eigenvalue Problem 

In Section 4.2.2 we defined the act of differentiation as an operation 
in which the operator 6 = d/dx acts on some function fix). Similarly, 
we can express the act of differentiating twice in terms of the operator 
B2 = d2/dx2. 

The Eigenvalue Problem 

A problem common to many areas in physical chemistry is the following: 
given an operator,a, find a function $(x), and a constant a, such tha ta  
acting on $(x)  yields a constant multiplied by 4(x).  In other words, the 
result of operating on the function 4(x) b y 2  is simply to return 4 ( x ) ,  
multiplied by a constant factor, a. This type of problem is known as an 

, and the key features may be described schematically 
as follows: 

The of the operator A 
J 1  

f 
A m  = 4(x )  

of the operator A The 
I _J 

The solution to Worked Problem 4.4 is an example of an eigenvalue 
problem. 
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4.4 Maxima, Minima and Points of Inflection 

We often encounter situations in the physical sciences where we need to 
establish at which value@) of an independent variable a maximum or 
minimum value in the function occurs. For example: 

The probability of finding the electron in the ground state of the 
hydrogen atom between radii r and r + dr is given by D(r)dr, where 
D(r) is the radial probability density function shown in Figure 4.5. 
The most probable distance of the electron from the nucleus is found 
by locating the maximum in D(r) (see Problem 4.12 below). It should 
come as no surprise to discover that this maximum occurs at the value 
r = ao, the Bohr radius. 

Figure 4.5 The radial probability 
density function for the 1 s atomic 
orbital of the hydrogen atom 

When we attempt to fit a theoretical curve to a set of experimental 
data points, we typically apply a least-squares fitting technique which 
seeks to minimize the deviation of the fit from the experimental data. 
In this case, differential calculus is used to find the minimum in the 
function that describes the deviation between fit and experiment. 

4.4.1 Finding and Defining Stationary Points 

Consider the function y = f l x )  in Figure 4.6. As we saw in our discussion 
of Worked Problem 4.3, values of x for which f ’ ( x ) = O  are called 
stationary points. A stationary point may be: 

A maximum (point E, a turning point) or a minimum (point C, 
a turning point). The value of dy/dx changes sign on passing through 
these points. 
A point of inflection: the tangent cuts the curve at this point (points 
A, B and D). 
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Figure 4.6 A plot of the function 
y= f (x ) .  Points A, C and E are 
all stationary points, for which 
f ’ (x )  = 0, while points C and E are 
also turning points (minimum 
and maximum, respectively). 
Points A, B and D are all points of 
inflection, but B and D are 
neither stationary points nor turn- 
ing points. Note that at the points 
of inflection, the tangents (dashed 
lines) cut the curve 

Turning Points (Maxima and Minima) 

Points E and C are called because in passing through E and 
C the value of dy/dx changes sign. The existence and nature of stationary 
points, which are also turning points, may be identified through the first 
and second derivatives of the function. If we consider point C, we see that 
as we pass through this point the gradient becomes less negative as we 
approach C, passes through zero at point C, and then becomes positive. 
Clearly the rate of change of the gradient is positive at point C (because 
the gradient changes from negative to positive), which suggests that the 
function has a minimum at this point: 

A exists if f’ (x) = 0 and f(’) (x) > 0. 

Similarly, on passing through point E, the gradient becomes less positive, 
passes through zero at E and then becomes negative. In this case, the rate 
of change in the gradient is negative and we can identify point E as a 
maximum: 

A exists if f’(x) = 0 andf(2)(x) < 0. 

In general, y = f ( x )  will display a number of turning points within the 
domain of the function. 

Turning points corresponding to maxima and minima may be classified 
as either: 

. A  

* A  

or minimum which has a value greater or smaller 

or miniinurn which has a value greater or smaller 
than all other points within the domain of the function. 

than all neighbouring points. 
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Poi nts of I nf I ect i o n 

At a 
point: 

(A, B, D), which may or may not be a stationary 

The tangent cuts the curve. 
The slope of the tangent does not change sign. 

Note that A is both a point of inflection and a stationary point, but while 
B and D are both points of inflection, they are not stationary points 
becausef’(x) # 0. 

Points of inflection occur when the gradient is a maximum or 
minimum. This requires thatf(2)(x) = 0, but this in itself is not sufficient 
to characterize a point of inflection. We achieve this through the first non- 
zero higher derivative. 

If f ’(x) = 0, f ( 2 ) ( ~ )  = 0 but f ( 3 ) ( x )  # 0, then we have a point of 
inflection which is also a stationary point (such as point A). However, if 
f ’(x) # 0 , f ( 2 ) ( ~ )  = 0 andf(3)(x) # 0, then we have a point of inflection 
which is not a stationary point (B, D). The rules for identifying the 
location and nature of stationary points, turning points and points of 
inflection are summarized in Table 4.2. 

Table 4.2 The location and nature of turning points, stationary points and points of 
inflection are given by the first, second and, where appropriate, third and fourth 
derivatives 

f ‘(4 f ‘*’(X) f ‘3’(x) f ‘‘’(x) 

Minimum 0 >O - - 

Maximum 0 <O - - 

Inflection point (stationary) 0 0 # O  
Inflection point (not stationary) # O  0 # O  
Turning points where f (*)(x) = 0 0 0 0 # O  

- 
- 

Interestingly, in the last row of Table 4.2 we see that a turning point may 
exist for whichf(2)(x) = 0. In such ~ases , f (~)(x)  = 0, and the nature of the 
turning point is determined by the sign of the fourth derivative. 
An example of a function for which this latter condition applies is 
y =fix) = (x - l)4. If there is any doubt over the nature of a stationary 
point, especially if the second derivative vanishes, it is always helpful to 
sketch the function! 
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Figure 4.7 A plot of the function 
y= f(x)=x2-x3/9 for -3.5 5 x s  1 o 
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4.5 The Differentiation of Functions of Two 
or More Variables 

In chemistry we frequently meet functions of two or more variables. 
For example: 

The pressure (p) of an ideal gas depends upon two independent 
variables, temperature (T )  and volume (0: 

nRT p = -  
V 

The electron probability density function, p(x,y,z)  for a molecule 
depends upon three spatial coordinates (x ,y ,z)  to specify its value at a 
chosen position. 
The entropy, S,  for a system containing three species, A, B and AB, 
at a given temperature and pressure depends upon five variables: 
NA, NB, NAB, T and p ,  where N x  is the number of moles of A, B 
or AB. 

When we explore the nature and form of these and other multi-variable 
functions, we need to know how to locate specific features, such as 
maximum or minimum values. Clearly, functions of two variables, such 
as in the ideal gas equation above, require plots in three dimensions to 
display all their features (such plots appear as surfaces). Derivatives of 
such functions with respect to one of these (independent) variables are 
easily found by treating all the other variables as constants and finding 
the with respect to the single variable of interest. 
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For example, we can see from the ideal gas equation: 

nRT p = -  
V 

that p varies linearly with T but in a non-linear way with V (Figure 4.8). 

Figure 4.8 The ideal gas 
equation p = nRT/V shows that 
(a) p varies linearly with Tat 
constant volume but (b) in a 
non-linear way with Vat constant 
temperature 

If we were to differentiate this expression with respect to T and V, we 
would be able to evaluate precisely the rate at which p varied with respect 
to T (a constant) for any given T, or, with respect to V, for any given V 
(a variable) (see Problem 4.13). 
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Differentials 

In many areas of chemistry (e.g. error analysis; thermodynamics) we are 
concerned with the consequences of small (and, sometimes, not so small) 
changes in a number of variables and their overall effect upon a property 
depending on these variables. For example, in thermodynamics, the 
temperature dependence of the equilibrium constant, K,  is usually 
expressed in the form: 

AG"/RT K = e -  

where the change in Gibbs energy, AG* = AH* - TAS", itself depends 
upon temperature, both explicitly through the presence of T, and 
implicitly, as AH" and AS* are, in general, both temperature 
dependent. However, if we assume that AH* and AS* are, to a good 
approximation, independent of temperature, then for small changes in 
temperature we obtain the explicit formula relating K and T: 

(AH "- TAS ") / R T - - ( AHu/ T- AS") / R K = e -  - 

Quite frequently, we are interested in the effect of small changes in the 
temperature on the equilibrium constant. We could, of course, use 
equation (5.1) to calculate K at two different temperatures for any 
reaction which satisfies the requirements given above and determine 
the change in K by subtraction. However, in practice, a much more 
convenient route makes use of the properties of differentials. This 
chapter is concerned with exploring what effect small changes in one 
or more independent variables have on the dependent variable in 
expressions such as equation (5.1). We shall see that this is particu- 
larly useful in determining how errors propagate through expressions 
relating one property to another. However, before discussing further 
the importance of differentials in a chemical context, we need to 
discuss some of the background to the method of differentials. 

109 
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5.1 The Effects of Incremental Change 

We recall from Chapter 4 (Figure 4.1) that if Ay is the change in y that 
accompanies an incremental change Ax in x, then: 

Ay = f ( x  + Ax) - f ( x )  (5.2) 

For example, if we consider the function y =Ax) = x3,  the incremental 
change in y that accompanies a change in Ax in x is given as: 

Ay = (x +  AX)^ - x3 
which, on expanding, yields: 

Ay = 3x2Ax + 3 ~ ( A x ) ~  + (Ax)’ 

For sufficiently small values of Ax, the power terms in Ax decrease very 
rapidly in magnitude. Thus, for example, if Ax = lop2, then Ax2 = 
and Ax3 = lop6. This may be expressed algebraically as: 

(Ax)3 << (Ax)2 << Ax 

and, if we neglect Ax raised to power 2 or higher, we can approximate the 
expression for Ay by: 

Ay = 3x2Ax 
The appearance of 3x2 in this expression is no accident. If we rewrite the 
expression for Ay as: 



Differentials 111 

then it is clear that, for very small Ax, the term in parentheses is an 
approximation for the derivative off(x), which, for the present choice of 
function, is 3x2. We can therefore rewrite the general result in the form 
Ay = f '(x)Ax. 

5.1 .I The Concept of Infinitesimal Change 

An dx, gives rise to a 
corresponding change in y that is well represented by the differential dy: 

change in x, known as the 

dy =f'(x)dx (5.4) 

We can see from the defining equation (5.4), and from Figure 5.1, that 
f '(x) is the slope of the tangent to the curve y =Ax) at the point P. We can 
also see that dy represents the change in the dependent variable y that 
results from a change, Ax, in x, as we move along the tangent to the curve 
at point P. It is important to stress that, although dy is not the same as Ay, 
for small enough changes in x it is reasonable to assume that the two are 
equivalent. Consequently, the difference between Ay and dy is simply the 
error in approximating Ay to dy. However, the same is not true of the 
differential dx, because, at all times, Ax = dx. 

Figure 5.1 (a) The differential 
dy, for a change Ax in x, for the 
function y=  @). The actual 
change in yis given by Ay= dy+ E ,  

where E is the difference between 
Ayand dy. (b) As Ax -, 0, the error 
E gets proportionately smaller and 
A y  becomes increasingly well 
approximated by dy. 
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The Origins of the Infinitesimal 

The concept of the infinitesimal first arose in 1630 in Fermat’s “Method 
of Finding Maxima & Minima”. This work marks the beginning of 
differential calculus. The ideas introduced by Fermat lead to speculation 
about how we can evaluate “just” before or ‘yust” after. In the 17th 
century, the infinitesimal was known as the “disappearing” and tangents 
as “touchings”. Leibniz thought them “useless fictions”, but they were 
subsequently recognized as being capable of producing extraordinary 
results. The philosopher Berkeley attacked differentials as “neither finite 
quantities, nor quantities infinitely small, not yet nothing. May we not call 
them the ghosts of departed quantities”. Today, Borowski and Borwein in 
their Dictionary of Mathematics’ regard an infinitesimal as “a 
paradoxical conception - - . largely abandoned in favour of the epsilon- 
delta treatment of limits, * - . but made their reappearance in the formulation 
of hyper-real numbers”! 

5.1 B 2  Differentials in Action 

The use of the differential is important in the physical sciences because 
fundamental theorems are sometimes expressed in differential form. In 
chemistry, for example, the laws of thermodynamics are nearly always 
expressed in terms of differentials. For example, it is common to work 
with the following formula as a means of expressing how the molar 
specific heat capacity at constant pressure, C,, of a substance varies with 
temperature, T: 

cp = g(T)  where g ( T )  = a + pT+ yT2 (5 .5)  

The optimum values of the parameters a, p, y are found by fitting 
measured values of C, over a range of temperatures to equation (5.5). 
Thus, if we know the value of C, at one temperature, we can evaluate it at 
another temperature, and thereby determine the effect of that incremental 
(or decremental) change in temperature, AT, upon C,, given by AC,. 
Alternatively, we can use the properties of differentials given in equation 
(5.4) to evaluate the differential of C,, dC,, in terms of the differential 
d T  as: 

dC, = g’(T)dT = ( p  + 2yT) x d T  (5.6) 

For small enough changes in T, it is reasonable to make the 
approximation that the differential dC, is equivalent to the actual change 
AC,, and we can use the expression above as a simple one-step route to 
evaluating the effect of small changes in Tupon C,. 
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Sometimes, Ay will be smaller than dy, as in Worked Problem 5.1, but 
sometimes it can be larger: examples include functions whose slope 
decreases with increasing values of the independent variable, such as y = 
f ( x ) = l n x a n d y =  f i w h e r e n > l .  
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5.2 The Differential of a Function of Two or More 
Variables 

We have seen in equation (5.4) that the differentials dy and dx are related 
through the derivative dy =f '(x)dx, which we can rewrite as: 

We can now extend this principle to define differentials for functions of 
two or more variables. If z=f(x, t) is a general function of two 
independent variables x and t ,  then there are two contributions to 
the differential dz: one from the change in x and the other from the 
change in t: 

a Z  az 
ax at  

dz = -dX +-dt 

This result extends readily to functions of y1 independent variables xl ,  x2, 
x3 ,..., xn. Thus, if z=fTxI, x2, x3 ,..., xn), the differential of z is built up 
from contributions associated with each independent variable, as a 
straightforward generalization of the result for two independent 
variables: 

Examples of functions of two or more variables expressed in differential 
form are common in thermodynamics. For example, the equation: 

relates the consequence of very small changes in the enthalpy, H ,  and 
entropy, S,  on the Gibbs energy, G (here, G is the dependent variable, and 
H and S are the independent variables). As we shall see below, the use of 
differentials helps us to study such effects, if the changes are small. 
However, for large changes in the defining variables we have to evaluate 
the overall change in the property with the aid of integral calculus, which 
we meet in Chapters 6 and 7. 



Differentials 115 

5.3 The Propagation of Errors 

In many chemical situations we deduce a value for a property of interest 
by placing experimentally measured values in the right-hand side of an 
appropriate formula. For example, if we use the ideal gas equation: 

RT 
p = n -  

V 
(5.10) 

to calculate the pressure, p, from a knowledge of volume, temperature, 
amount of substance and the gas constant, R, we might wish to know how 
the errors in the measured property values (n, T, V)  propagate through to 
errors in the calculation of the pressure, p. If, for simplicity, we assume 
that n and R are fixed (given) constants, how can we estimate the error, 
dp, inp  that results from errors, dTand dV, in the measurement of Tand 
V ,  respectively? The answer lies in using equation (5.8) to obtain dp in 
terms of dV and dT: 

ap ap 
i3T av d P  = -dT + -dV (5.11) 



116 Maths for Chemists 

If d V and d T  are the estimated errors in the measured values of V and T, 
then we need to know the two partial derivatives, so that we can estimate 
the error dp in P. However, in this and other instances the differentials 
themselves do not provide realistic measure of the errors. For example, an 
absolute error of 10 cm in a measured length is insignificant if we are 
talking about the shortest distance from Berlin to Moscow, but highly 
significant if a furniture van driver has enough clearance to pass under a 
low bridge in a country lane. For this reason, the , or the 
closely related , give much more useful measures of error 
than absolute errors. Thus, in the context of the ideal gas example, the 
two kinds of error are defined as follows: 

0 The relative error in p is given by -. 

The percentage error in p is given by - x 100. 

dP 

dP 
P 



Differentials 117 



118 Maths for Chemists 



Integration 

I 

In the earlier chapters on arithmetic, algebra and functions, we saw 
examples of actions for which there was another action available to 
reverse the first action: such a reversing action is called an . Some 
examples of mathematical actions and their inverses are listed below: 

Start -+ Action + Result -+ Inverse action -+ Result 

2 Add 3 5 Subtract 3 2 
3 Subtract 2x 2 - 2x Add 2x X 2  

( x -  1) Multiply by x3 ( x  - l)? Divide by x3 ( x -  1) 
X Logarithm In x Exponential exp(ln x) x 
? - ?+l Differentiate 3x2 - 2x Integrate x3 - x2+c  

The final example listed above proposes that the inverse to the 
operation of differentiation is known as . The field of 
mathematics which deals with integration is known as integral calculus 
and, in common with differential calculus, plays a vital role in 
underpinning many key areas of chemistry. 

119 
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6.1 Reversing the Effects of Differentiation 

Integration is used frequently in kinetics, thermodynamics, quantum 
mechanics and other areas of chemistry, where we build models based on 
changing quantities. Thus, if we know the rate of change of a property, 
y (the dependent variable), with respect to x (the independent variable), 
in the form of dyldx, then integral calculus provides us with the tools 
for obtaining the form of y as a function of x. We see that integration 
reverses the effects of differentiation. 

Consider, for example, a car undergoing a journey with an initial speed 
u and moving with a constant acceleration a. The speed, v ,  and distance, s, 
travelled after time t are given by: 

(6.1) 
1 2  v = u + at and s = ut + - at 
2 

The rate of change of distance with time yields the speed, v at time, t :  

ds 
= u + at = v - 

dt 

However, the reverse process, in going from speed to distance, involves 
integration of the (6.2). In chemistry, the concept of rate is 
central to an understanding of chemical kinetics, in which we have to deal 
with analogous rate equations which typically involve the rate of change of 
concentration, rather than the rate of change of distance. For example, in a 
first-order chemical reaction, where the rate of loss of the reactant is 
proportional to the concentration of the reactant, the rate equation takes 
the form: 

where k ,  the constant of proportionality, is defined as the rate constant. 
The concentration of the reactant at a given time is found by integrating 
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the rate equation (6.3), and the relationship between the differentiated 
and integrated forms of the rate equation is given schematically by: 

differentiate 1’ 1 integrate 

[A] = 

where [Ale is the initial concentration of reactant A We will discuss the 
integration methods required for obtaining the solution of this type 
of problem in some detail when we discuss differential equations in 
Chapter 7. 

6.2 The Definite Integral 

6.2.1 Finding the Area Under a Curve: The Origin 
of Integral Calculus 

The concept of integration emerges when we attempt to determine the 
area bounded by a plot of a function f ( x )  (where f(x)>O) and the 
x axis, within an x = a to x = b (written alternatively as [a,b]). 
Clearly, if the plot gives a straight line, such as for the functions y = 4  
or y = 2x + 3, shown in Figure 6.1, then measuring the area is straight- 
forward, as the two areas are rectangular and trapezoidal in shape, 
respectively. However, for areas bounded by a curve and three straight 
lines, the problem is more difficult. The three situations are shown in 
Figure 6.1. 

The solution to the general problem of determining the area under a 
curve arises directly from differential calculus, the concept of limits, and 
the infinitesimal. Seventeenth century mathematicians began to think of 
the area, not as a whole, but as made up of a series of rectangles, of width 
Ax, placed side by side, and which, together, cover the interval [a$] (see 
Figure 6.2). 

With this construction, there are two ways of estimating the area under 
the curve. First, the interval [a$] is divided into n subintervals of width 
A x  = (b - a)/n. The area of each rectangle is obtained by multiplying its 
width, Ax, by its height on the left vertical side, as shown in Figure 6.3a. 

In this case, the total area is given by: 

Al(n) = f ( a ) A x  + f (a + Ax)Ax +f(a + 2Ax)Ax + 

. . . + f (a + [n - l ]Ax)Ax = 1 f (a + kAx)Ax 
n- 1 

(6.4) 
k=O 
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Figure 6.1 
functions (a) y = 4, (b) y = 2x+ 3 
and (c) y = 16~e-*'~. Evaluat- 
ing the area bound by the straight 
line functions and the x-axis in the 
interval x = a to x = b in (a) and 
(b) is straightforward but, in (c), 
where the plot is a curve, we 
need to make use of the definite 
integral 

Plots of the three 

Figure 6.2 Approximating the 
area under a curve by a contig- 
uous sequence of rectangles 
of width Ax 
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Figure 6.3 Choice of rec- 
tangles for estimating the area 
under the curve: (a) using the left 
side; (b) using the right side 

Alternatively, we might have used the height of the right vertical side 
in computing the total area (Figure 6.3b), in which case the total area is 
given by: 

A, (n)  = f ( a  + Ax)Ax + f ( a  + 2Ax)Ax + f ( a  + 3Ax)Ax + . . 
n 

k= 1 

The two estimates we obtain for the area will be different, but if we 
decrease the subinterval width, thereby increasing the number, n, of 
subintervals, then in the limit n --+ 00, Al(n) and A,(n) converge to the same 
limiting value, A ,  which is the area under the curve: 

Thus, from the definition of A,(n), and with an analogous expression 
involving the limit of Al(n), we can write: 

where f lxk )  = f ( a  -I- kAx). 
In order to symbolize this sum, Leibnitz introduced an elongated S 

which gives the familiar integral signJ . Thus we can rewrite our equation 
as: 

r h  n 
A = f(x)dx = lim xf(x,)Ax, 

n+m 
J U  r= 1 

where x takes all values between the lower and upper limits a and h, 
respectively. This integral is known as the because we 
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have restricted x to the interval [a,b] and, as seen in Figure 6.3, we can use 
the concept of area under the curve of y =fix) to give a visualization of 
the value of the integral. 

Negative ‘ ‘Areas” 

Attractive though the concept of area is whenfix) L 0, for x restricted to 
[a,b], we do need to be careful ifflx) also takes negative values in [a$]. It 
turns out that, for those regions where the curve lies below the x axis, the 
contribution from fix) to the definite integral is negative. If it transpires 
that A = 0, this is perfectly acceptable, as the definite integral has equal 
positive and negative contributions (see Figure 6.4); likewise, if the curve 
lies below the x axis, the definite integral will have a negative value. 

Figure 6.4 In this plot of the 
function (x )  = cos x the definite 
integral has a positive value over 
the interval [ O , f ] ,  a negative value 
over the interval [;,XI and a zero 
value over [O,.] 

6.2.2 A Chemical Example: Where is the Electron 
in the Hydrogen Atom? 

Consider the radial probability density function, D(r),  for the ground 
state of the hydrogen atom. This function describes the probability per 
unit length of finding an electron at a radial distance between r and r + dr 
(see Figure 6.5). 

The probability of finding the electron between r and dr is D(r)dr, and 
corresponds to the area under the curve between r and dr. Thus the area 
under the curve between Y = 0 and infinity simply gives us the probability 
of finding the electron somewhere in the interval 0 to 00, which we know 
intuitively must be unity. 

Before we discuss the definite integral any further, we first explore 
integration as the to differentiation. This will prepare us 
for a most important result that enables us to evaluate the definite integral 
offix), without first plotting the function as a prelude to computing the 
area under the curve. 
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Figure 6.5 A plot of the radial 
probability density, 
D(r) = Nr2e-2r/%, for the 1 s 
orbital of the hydrogen atom, 
where a,, is the Bohr radius (units, 
m) and N has units of m-3 

6.3 The Indefinite Integral 

The indefinite integral of a function y =fix) is usually written as: 

where: 

Ax) is known as the 
C is an arbitrary constant called the 
F(x) + C is known as the 

The new function, y = F(x) + C, which we obtain after integration, must 
be such that its derivative is equal tofix), to ensure that the definition 
conforms with the requirement that integration is the reverse (or inverse) 
of differentiation. Thus, we must have: 

d 
dx - ( F ( x )  + C )  = F ’ ( x )  =Ax) (6.10) 

The relation between the indefinite integral offix) andf(x) itself is shown 
schematically in Figure 6.6 for the functionsflx) = 18x2 and F(x) = 6x3. 

So, to summarize: the indefinite integral is determined by finding a 
suitable function, F(x),  which, on differentiation, yields the function we 
are trying to integrate, and to which we then add a constant. In common 
with the strategies described in Chapter 4 for finding the derivative of a 
given function, an analogous set of strategies can be constructed for 
finding the indefinite integral of a function. For simple functions, a set of 
standard indefinite integrals can be constructed without too much 
difficulty, some of which are listed in Table 6.1. 
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Figure 6.6 Integration of the 
function f(x) =18x2 (right) yields 
a family of functions given by the 
indefinite integral F(x) = 6x3+C 
(left), where C can take any 
value. Differentiation of f (x) 
yields the original function, f(x) 

Table 6.1 A selection of functions, (x), and their indefinite integrals, F(x)+C 

f(x) - integrate F(x)+C 
Xa+l 

In (x) , + C 
xa (a#  -1) mfC 
- 1 

1 
x + a  
cos( ax) 

sin( ax) 

eax 

In( x+ a) + C 

$sin(ax)+C 

$eax+C 

- &cos(ax)+C 

sec2(x) tan(x)+ C 

f ( 4  - differentiate F(x)+C 
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6.4 General Strategies for Solving More 
Complicated Integrals 

Integrals involving complicated forms for f i x )  require strategies for 
reducing the integral to one or more integrals of simpler (standard) form, 
thus making it possible to find F(x). If all else fails, or we do not have an 
explicit form for f i x ) ,  then numerical integration must be carried out, 
using methods described elsewhere.' 

Some of the strategies involved in simplifying the form of an integral 
are quite straightforward. For example: 

Ifflx) is in the form of a linear combination of simpler functions, e.g.: 

(6.1 1) 

then we may be able to rewrite such an integral as a sum of standard 
integrals that are immediately recognizable: 

I (3x2 + 2x + 1)dx 

I (3x2 + 2x + 1)dx = 3x2dx + 2xdx + ldx (6.12) 1 1 1  
Integrals can be simplified by placing constant terms outside the 
integral, e.g.: I (3x2 + 2x + 1)dx = 3 (6.13) 
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In practice, we may find ourselves faced with more complicated functions, 
the solutions to which require us to use methods involving adaptation of 
some of the rules for differentiation. The choice of method more often 
than not involves some guesswork, but coming up with the correct 
guesses is all part of the fun! In addition, it may be necessary to use a 
combination of several methods. In the following two sections, we discuss 

and the 

6.4.1 Integration by Parts 

This method starts from the familiar product rule, used in differential 
calculus (equation 4.9): 

d du dv 
dx dx dx 
- (UV) = v- + u- 

Integration over x yields: 

(6.14) 

and, on using the properties of differentials, the left side J & (uv)dx 
becomes 
exmession yields: 

d(uv) = uv. It follows that rearrangement of the above 

ju$dx = uv - j v-dx :: (6.15) 

Equation (6.15) shows that the integral on the left side, which is the one 
sought, is replaced by two terms, one of which is another integral which 
we hope is more tractable than the initial integral. This method of integral 
evaluation is appropriate for integrands of product form. The success of 
the method relies on making the right choices for u and dvldx. The term 
identified as u is differentiated to form part of the integrand on the right 
side of equation (6.15); the other part of the integrand is formed by 
integrating the term identified as dvldx. 
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6.4.2 Integration Using the Substitution Method 

The second integration technique, known as the substitution method, 
derives from the inversion of the chain rule for differentiation described 
in Chapter 4. The objective here, once again, is to transform the 
integrand into a simpler or, preferably, a standard form. However, just 
like the integration by parts method, there is usually a choice of 
substitutions and although, in some cases, different substitutions yield 
different answers, these answers must only differ by a constant 
(remember that, for an indefinite integral, the answer is determined 
by inclusion of a constant). The substitution method is best illustrated 
using a worked problem. 
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Use of Trigonometrical Substitutions 

The integrand in Problem 6.5 is of a form which suggests that a 
trigonometrical substitution might be appropriate. Bearing in mind the 
key identity cos2u + sin2u = 1, the appearance of a factor like ( 1  - x2)1/2 
in the integrand suggests the substitutions x = cos u or x = sin u. 
Thus, for the substitution x = cos u, the factor (1 - x2)1/2 becomes 
(1 - cos2 u)1’2 = sin u. 
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General Comment 

The choice of method for evaluating indefinite integrals relies on 
experience to a large extent. Sometimes, integration by parts and the 
substitution methods are equally applicable; however, in many cases they 
are not. For example, the integration by parts method is much more 
suited to finding the integral of the function@) = x cos x, described in 
Worked Problem 6.2, than the substitution method (which would prove 
frustrating and fruitless in this case). It may also be necessary to use 
several applications of one or both methods before the answer is 
accessible. However, whichever method is used, the answer may always 
be checked by verifying that F'(x) =Ax). 

6.5 The Connection Between the Definite 
and Indefinite Integral 

As we saw in Section 6.2.1, the concept of integration emerged from 
attempts to determine the area bounded by a plot of a functionflx) and 
the x-axis, within some interval [a$]. This area is given by the definite 
integral, the definition of which derives from numerical methods 
involving limits (see Section 6.2.1). Such numerical methods can be 
tedious to apply in practice (although instructive!) but, fortunately, there 
is a direct link between the indefinite integral, F(x) + C, of a function,&), 
and the definite integral, in which x is constrained to the interval [a,b]. 
The relationship between the two forms of integration is provided by the 
fundamental theorem of calculus: 

labf(x)dx = (F(b)  + C) - (F(a)  + C )  = F(b)  - F(a)  (6.16) 

where F(a) is the value of F(x) at x = a  and F(b) is the value of F(x) at 
x = b .  In other words, the definite integral over the interval [a$] is 
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obtained by subtracting the indefinite integral at the point x = a from that 
at x = b .  Furthermore, we see that the constant of integration, which 
appears in the indefinite integral, does not appear in the final result (see 
equation 6.16). 
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Differential Equations 

In Chapter 2 we explored some of the methods used for finding the roots 
of algebraic equations in the form y =Ax). In all of the examples given we 
were seeking to determine the value of an unknown (typically the value of 
the independent variable, x )  that resulted in a particular value for y ,  the 
dependent variable. In general, the methods discussed can be used to solve 
algebraic equations where the dependent variable takes a value other than 
zero, because the equation can always be rearranged into a form in which 
y = 0. For example, if we seek the solution to the equation: 

2 4 = x  - 5  

then we can rearrange it to: 

2 o = x  - 9  

by subtracting 4 from both sides. The problem now boils down to one in 
which we search for the two roots of the equation which, in this case, are 
x =  +3. 

In this chapter we are concerned with equations containing derivatives 
of functions. Such equations are termed , and arise in 
the derivation of model equations describing processes involving rates of 
change, as in, for example: 

Chemical kinetics (concentrations changing with time). 
Quantum chemical descriptions of bonding (probability density 
changing with position). 
Vibrational spectroscopy (atomic positional coordinates changing 
with time). 

In these three, as well as in other, examples we are trying to determine how 
the chosen property (such as concentration, probability density or atomic 
position) varies with respect to time, position or some other variable. This 
is a problem which requires the solution of one or more differential 
equations in a procedure that is made possible by using the tools of 
differentiation and integration discussed in Chapters 4 and 6, respectively. 

135 
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7.1 Using the Derivative of a Function 
to Create a Differential Equation 

Consider the function: 

where B is a constant. The first derivative of this function takes the form: 

- dy = -2Be-2x 
dx 

If we now substitute for y ,  using equation (7.1), we obtain the 
differential equation: 

= -2y - dY 
dx (7.3) 

which must be solved for y as a function of x. In other words, the solution 
to this problem will provide us with an equation which shows quanti- 
tatively how y varies as a function of x. The solution is, of course, 
provided by the original equation (7. l), but the purpose here is to explore 
the means by which we find that out for ourselves! 
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If we now differentiate equation (7.2) with respect to x, and substitute 
for dy/dx using equation (7.3), we obtain the second-order differential 
equation (7.4): 

This differential equation is of 
order derivative is two. 

, simply because the highest 

The last part of Problem 7.1 demonstrates that a given function does 
not necessarily correspond to the solution of only one differential 
equation. In later sections we shall address the question of how to 
determine the number of different functions (where each function differs 
from another by more than simply multiplication by a constant) that are 
solutions of a given differential equation. 

7.2 Some Examples of Differential Equations Arising 
in Classical and Chemical Contexts 

One of the principal motivations for the development of calculus by 
Newton and Leibnitz in the 18th century came from the need to solve 
physical problems. Examples of such problems include: 

The description of a body falling under the influence of the force of 
gravity: 

d2 h 
p = - g  (7.5) 

The motion of a pendulum, which is an example of simple harmonic 
motion, described by the equation: 

2 - --cox - d2x 
dt2 - 
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If we extend this last example to the modelling of molecular vibrations, 
we need to include additional terms in the differential equation to account 
for non-harmonic (anharmonic) forces. 

In these last two examples of equations of motion, the objective is to 
determine functions of the form h =At) or x = g(t), respectively, which 
satisfy the appropriate differential equation. For example, the solution of 
the classical harmonic motion equation is an oscillatory function, 
x =g(t), where g(t) = cos cot, and co defines the frequency of oscillation. 
This function is represented schematically in Figure 7.1 (see also Worked 
Problem 4.4). 

Figure 7.1 A plot of the func- 
tion g(t) = cos ot, describing 
simple harmonic motion 

In chemistry, we are mostly concerned with changing quantities. For 
example: 

In kinetics, the concentration of a species A may change with time in a 
manner described by the solution of the differential equation: 

In quantum mechanics, the value of a wave function, $, changes with 
the position. For a single particle system, $ is obtained as the solution 
of the Schrodinger equation: 

+ V(x)$ = E$ 
fi2 d2$ 
2m dx2 

--- 

operator, I?, given by -2m.G+ Ii2 d2 V ( x ) ,  is where the 
associated with the total energy, E, and V(x) is the potential energy 
of the particle; m is the mass of the particle and tz is the Planck 
constant divided by 271. 
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In spectroscopy, the response of a molecule to an oscillating 
electromagnetic field leads to absorption of energy, the details of 
which are revealed after solving an equation of the form: 

In vibrational spectroscopy, where the treatment of molecular 
vibrations is based on the differential equation for an harmonic 
oscillator: 

-tz2 d2$ 
-- f $ k x 2 $  = E$ 
2m dx2 

(7.10) 

In all of the examples given above, we are faced with having to deal 
with the relationship between some property and its rate of change. 
The differential equations that describe such relationships contain 
first-, second- or even higher-order derivatives. Most examples of this 
type of equation that we meet in chemistry are either of the first or 
second order, and so this is where we shall concentrate our efforts. 

7.3 First-order Differential Equations 

As already indicated, a Jirst-order differential equation involves the first 
derivative of a function, and takes the general form: 

2 = F(x, y )  
dx 

(7.11) 

where y is a function of x, and F(x,y) is, in general, a function of both x 
and y .  The method used to solve equation (7.11) depends upon the form 

7.3.1 F(x,y) is Independent of y 

In this simplest example, where F(x,y) =Ax), the general solution is found 
by a simple one-step integration: 

9 =f(x)  j y = f(x)dx = F(x)  + C 
dx I (7.12) 

where F(x)+C is the indefinite integral and C is the constant of 
integration (see Chapter 6), which can, in principle, take any value. It is 
important to note that the solution to a first-order equation involves: 

One step of integration. 
One constant of integration. 
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The solution of an nth order differential equation involves n steps of 
integration and yields n constants of integration. 

Figure 7.2 The family of 
solutions y = 2 + x + c (for 

to the differential equation 

3 
C= ..., 3, 1.5, 0, -1.5, -3 ,...) 

$ =x2+1. Note that 
F ( x )  = $+x. The dashed line 
is the solution satisfying the 
boundary condition y= 0, 
x=3 

7.3.2 Boundary Conditions 

In the case of a first-order differential equation, the constant of 
integration is usually determined by a , or constraint 
on the solution. For example, if y is known at x = 0, then this boundary 
condition is sufficient to determine the constant of integration, C. Thus, 
out of the family of possible solutions, only one solution is acceptable and 
this is the one satisfying the boundary condition. 

For example, if the boundary condition for the solution of the 
differential equation in Worked Problem 7.1 is such that y = 3 at x = 0, 
then the solution is constrained to take the form: 

A 
y = F(x) + 3 = - + x +  3 

3 
since F(0) = 0 + C = 3 (see the dashed-line solution in Figure 7.2). 
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It should be noted that, in most chemical situations, we rarely need the 
general solution of a differential equation associated with a particular 
property, because one (or more) boundary conditions will almost 
invariably be defined by the problem at hand and must be obeyed. For 
example: 

In a first-order reaction the concentration of the reacting species is 
specified at one particular time (usually at the start of the reaction). 
The value of the radial part of an atomic orbital wavefunction must 
tend to zero at very large distances from the nucleus. 

As the number of boundary conditions is usually the same as the 
order of the differential equation for a particular chemical problem, 
there will be no undetermined constants of integration associated with 
the solution. 

7.3.3 F(x,y) is in the Form f(x)g(y) 

Separation of Variables Method 

Suppose we are required to solve a differential equation of the form of 
equation (7.1 l), in which dy/dx is equal to the product of two functions, 
each of which depends only on one of the variables: 

This equation is solved by first rewriting it in the form: 

dy = f ( x )  godx 
which, on integration with respect to x, yields: 

j -&zdx = I f ( x )  dx 

(7.14) 

(7.15) 

Since the differentials dx and dy are linked by the expression dy = g d x ,  
the integration over x in the integral on the left-hand side of the equation 
can be transformed into an integration over y :  

(7.16) 

It now just remains to carry out separate integrations over y and x in 
order to obtain the required solution in the form of an expression of the 
general form: 

G(y)  + A = F(x)  + B (7.17) 
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Notice, that, although each integral yields one constant of integration, the 
two constants of integration can be combined into a singZe constant, C,  
after taking A over to the right side of equation (7.17). 

The procedure just described is known as the 
. In some instances it is possible to re-write equation (7.17) in the 

form y=P(x ) ,  to give an explicit relation between y and x [where B is 
contained within P(x)];  in other cases the solution may have to be left in a 
form of an implicit relation between y and x (see Section 2.3.5). 
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7.3.4 Separable First-order Differential Equations 
in Chemical Kinetics 

Consider a first-order rate process, with rate constant k: 

(7.18) k A + B  

The rate of loss of the reactant A is proportional to its concentration, and 
is expressed in the form of the differential equation: 

(7.19) 

where [A] is the concentration of the reactant at time t. Note here that [A] 
is the dependent variable and t the independent variable. 

We are interested in solving equation (7.19) to obtain an expression 
which describes how the concentration of A varies with time, subject to 
the boundary condition that the concentration of the reactant at time 
t = 0 is [A], (note that the differential rate law above tells us only how the 
rate depends on [A]). Thus, using the separation of variables method, 
equation (7.19) is first rearranged to: 

and then integrated, recognizing that k is a constant: 

U 
- ln[A] = kt + C 

(7.20) 

(7.21) 

(7.22) 

If we now impose the boundary condition above, we find that C= 
-1n[Alo, and the (7.22) becomes: 

- ln[A] = kt - ln[A], (7.23) 

which may be expressed in the alternative forms: 

ln[A] = -kt + ln[A], 

or 

In - = -kt (29 

(7.23a) 

(7.23b) 
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Note that, in equation (7.23a), [A] is an implicit function of t ;  further- 
more, there is a linear relation between ln[A] and t. Thus, a plot of ln[A] 
against t will give a straight line of slope -k and intercept 1n[Alo. 
Alternately, we can rearrange equation (7.23b) by taking the exponential 
of each side, to generate an explicit function which shows the exponential 
decay of [A] as a function of time (see Figure 7.3 and Chapter 2): 

(7.24) 

which rearranges to: 

[A] = (7.25) 

Figure 7.3 demonstrates clearly how the value of k determines the rate of 
loss of A. 

Figure 7.3 A plot of against 
t/min for (a) k =  1 min-’ and 
(b) k= 2 min-’ 

An important feature of such first-order reactions is the half-life, t 1 / 2 ,  

which is the time taken for [A] to reduce to half of its initial value. Thus, 
for t = t1/2,  we have: 

which simplifies to: 

(7.26) 

(7.27) 
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Taking natural logarithms, we have: 

1 
2 

In- = -kt,/, (7.28) 

Using the property of logarithms that Ink = - lna, we can rewrite 
equation (7.28) as: 

In2 = kt,,, (7.29) 

and it follows that the half-life is expressed in terms of the rate constant, 
k,  according to: 

In 2 
k tl/2 = - 

78385 First-order Differential Equations Linear in y 

A first-order linear differential equation has the general form: 

(7.30) 

(7.3 1) 

in which the dependent variable (here y) appears on the left-hand side 
with index unity. Equations of this form cannot be solved using the 
separation of variables method unless Q(x)  = 0. 

The general solution of a first-order linear differential equation, in the 
form of equation (7.31), is: 

where R(x),  known as the 
follows: 

, is defined 

There are thus two integrations to perform: one 

(7.32) 

in terms of P(x)  as 

(7.33) 

to determine the 
integrating factor, and a second which involves the product R(x)Q(x) as 
integrand. Since we are dealing with a first-order differential equation, we 
expect only one constant of integration, but, from the above discussion, it 
appears that two such constants may arise. We now describe why there is, 
in fact, only one undetermined constant of integration. 

The Constant of Integration 

In determining the integrating factor, the complete expression becomes: 

~ ( x )  = eg(x)+C = AedX) (7.34) 
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where g(x) + C is the indefinite integral of the function P(x)  and A = ec. 
Thus, if we now substitute equation (7.34) into (7.32), we obtain: 

(7.35) 

Since the constant A appears in both the numerator and denominator in 
the right side of equation (7.39, it can be cancelled to yield the general 
solution of equation (7.3 1): 

(7.36) 

Only one constant of integration will be produced from the indefinite 
integral $(")Q(x) dx and, since the constant arising from the determi- 
nation of R(x) can be discarded, we see that a single constant of integration 
arises from the solution to a first-order differential equation, as expected. 

7.3.6 First-order Differential Equations in Radioactive 
Decay Processes 

Consider the following radioactive /?- decay processes, involving two 
sequential first-order steps, in which A1 and L2 are decay constants 
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(analogous to rate constants in a chemical kinetic process) associated with 
the emission of energetic electrons: 

(7.37) 

The amounts of ';;U, 2;ZNp and ';:Pu (units mol) at any given time are 
denoted by N1, N2 and N3,  respectively, and we specify that, initially, 
N l = l  mol. The change in the amount of 2;ZNp with time has two 
contributions: one from the decay of ';;U and the other from the decay of 
2;;Np itself. Thus, on the basis that these processes are first order in 
nature, the net rate of increase of 2;;Np is given by: 

(7.38) 

By analogy with the first-order chemical reaction (equation 7.25) we 
know that: 

N1 = (Nl)oe-'l" 

where (Nl)o is the initial amount of 2:$. Thus: 

dN2 = A1 (Nl)oe-'lr - A2N2 + dt dN2 + A2N2 = Al (Nl)Oe-'l' (7.39) 
dt 

If we identify t with x and N2 with y ,  then we can see that equation (7.39) is 
of the form of equation (7.31), where P(x)  = A2 and Q ( x )  = A1 (Nl)oe-'l'. 
After determining the integrating factor, the solution is obtained using 
equation (7.36). The derivation of the solution forms the basis of the next 
Problem. 
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In Problem 7.5 the large disparity in the decay constants leads to a 
situation in which the number of 2i!Np species builds up rapidly to its 
maximum value, and then decreases slowly (see Figure 7.4). 

Figure 7.4 A plot of the vari- 
ation in the amount of 2iSNp, 
given by N2 as a function of time 
in the radioactive decay of ';:U 
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7.3.7 First-order Differential Equations 
in Chemical Kinetics Processes 

Consider the following kinetic process, involving two sequential first- 
order steps: 

This is the same model process that we described above for radio- 
active decay of 22;U; if we substitute decay constants by rate cons- 
tants, and amount of substance by concentration, and assume that 
[Ale= 1 mol dmP3, we can adapt equation (7.40) derived in Problem 
7.5(c) to describe how [B] varies with time: 

(7.41) 

If we consider initially the limiting case, in which the rate constant k2 
(governing the second step) is very much smaller than kl  (e.g. k l  = 2  s-', 
k2 = 0.01 s-'), we obtain a plot of [B] over the time interval from 0 to 30 
seconds shown in Figure 7.5. 

Figure 7.5 A plot of the variation 
in the concentration of the reac- 
tion intermediate, [B], with time in 
a two sequential first-order 
reaction mechanism 

We can see in Figure 7.5 that, at the start of the reaction, the concen- 
tration of the intermediate, B, initially rises quite rapidly to a maximum, 
and thereafter declines slowly. The level to which the concentration of B 
builds up will depend on the rate constants governing the two steps. For 
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reactions where the rate constant k2 is very much larger than for k l ,  the 
concentration of B never has the opportunity to build up and remains 
essentially constant throughout most of the reaction. Under such 
conditions it is said to have reached a steady state. 

7.4 Second-order Differential Equations 

In Section 7.1 we saw how differential equations of second order can be 
generated from a particular function. Thus, for example, if we 
differentiate the function y = e2x twice, we obtain first: 

= 2y - dY 
dx 

and then: 

d2Y dx’ = 4y 

(7.42) 

(7.43) 

which is a second-order differential equation. If we now reverse this 
process, we need two acts of integration to yield an expression for y. 
However, as each integration step leads to a constant of integration, 
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the resulting expression for y ,  which now contains two undetermined 
constants, represents the of the second-order differential 
equation (7.43). 

In general, a second-order differential equation will take the form: 

d23: dx2 = G ( $ y , x )  (7.44) 

where G ( 2  ) y ,  x) can, in principle, represent any function of 2, y and x. 
In the example above, equation (7.43) is not, in fact, a function of 2 or x, 
and so we can write instead that equation (7.43) has the form = G(y) .  

Most of the problems involving second-order differential equations 
which we encounter in chemistry are 

, which take the general form: 

(7.45) 

Unfortunately, unlike the general linear Jirst-order differential equation 
(7.31), there is no simple template which provides the solution, and we 
need therefore to apply different methods to suit the equation we meet 
in the chemical context. Equations of the general form given in 
equation (7.45) crop up in all branches of the physical sciences where 
a system is under the influence of an oscillatory or periodic change. In 
chemistry, some of the most important examples can be found in 
modelling: 

Vibrational motions of molecules. 
The interaction of molecules with electromagnetic radiation (light). 
The radial motion of the electron in a hydrogen-like species. 

As a first example, we will consider the differential equation describing 
the dynamics of simple harmonic motion, and demonstrate how the 
general solution is found. 

7.4.1 Simple Harmonic Motion 

The special case of equation (7.45) with P(x) = Q ( x )  = 0 and S(x)  equal to 
a positive constant, n2 (the choice of n2 as the constant ensures that it is 
positive quantity for any real value for n), gives rise to equation (7.46) for 
simple harmonic motion, the solution of which can be used to model 
nuclear motion in molecules: 

d2Y 2 
-Q=-ny  (7.46) 
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Thus, for example, if we apply equation (7.46) to describe the periodic 
vibrational motion in a diatomic molecule, x represents time, and positive 
and negative values for y correspond to bond extension and compression, 
respectively. Finally, we can see that equation (7.46) is an eigenvalue 
equation in which y is the eigenfunction and -n2 is the eigenvalue (see 
Section 4.3.1). 
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7.4.2 Second-order Differential Equations 
with Constant Coefficients 

Linear second-order differential equations of the general form given in 
equation (7.45) are quite tricky to solve, but, fortunately, we are usually 
interested in situations where P(x) and S(.x) are both constant functions, 
say c1 and c2: 

d2Y dY 
- + ~ 1 -  + C ~ Y  = Q(x) dx2 dx (7.47) 

A number of possible variants of this equation can result from the 
different choices for c1 and c2: 
(a) c1= 0 and c2 = 0. This simple case results in the differential equation: 

(7.48) 

which simply requires two steps of integration to yield an expression for y .  
(b) c1 = 0, Q(x) = O  (the null function), c2 positive. The differential 
equation now adopts the form of an eigenvalue problem (see 
equation 7.46): 

-9 

d"Y dX2 = -C2Y (7.49) 

which is solved using the procedure described in Worked Problem 7.4. 
Likewise, for c'2 < 0 the solution is obtained using the same procedure. 
(c) c1 and c2 are both positive and Q(x) = 0. Equation (7.47) now becomes 
a homogeneous linear second-order 
form: 

d2y dy ---+c1-- 
dx2 dx 

differential equation having the 

= --c2y (7.50) 
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Equation (7.50) is also an example of an eigenvalue problem (see Section 
4.3.1), of the type commonly encountered in chemistry when modelling 
electronic and nuclear motions. 

7.4.3 How is an Eigenvalue Problem Recognized? 

The simplest way of thinking about an eigenvalue problem is to consider 
the result of some operator, A, acting on a suitable function,flx), to yield 
a constant, A, multiplied by the original function, fix): 

@(x) = Af(x) (7.51) 

The objective in this type of problem is to find the eigenfunctions,f(x), 
and associated eigenvalues, A, for a given operator, 2. The solution will 
generally yield a number of different eigenfunctions, and associated 
eigenvalues, all of which emerge from a single general solution. 

The procedure used to solve second-order differential equations of the 
form of equation (7.50) is essentially the same as that described in 
Worked Problem 7.4 and involves the construction of trial eigenfunctions 
from some of the functions introduced in Chapter 2. 

The Search for Eigenfunctions 
2 

We first re-write equation (7.49), using differentiation operators B2 = % 
and D = --, to give: dx 

* d  dx 

Factorizing yields: 

(B2 -+ c& = -c2y 

which is of the form of an eigenvalue equation: 

A 

4 = -C2Y, 

where: 

2 = B2 + c , 6  

(7.52) 

(7.53) 

(7.54) 

is the operator; y is the eigenfunction and -c2 the eigenvalue. The form of 
the operator 2 is such that its eigenfunctions must be functions whose 
first and second derivatives differ only by a constant. 
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The key feature emerging from Worked Problem 7.6 is that if two 
functions, fi and f2, are eigenfunctions of an operator A, and have the 
same eigenvalues, A, then an arbitrary linear combination of the two 
functions is also an eigenfunction of A with eigenvalue A. In this example, 
the two functions y = cos nx and y = sin nx are both eigenfunctions of the 
f i 2  operator with eigenvalue -n2. Consequently, it follows that an 
arbitrary linear combination of the two functions is also an eigenfunction 
of this operator with eigenvalue -n2. This concept is expressed formally 
in the following expression: 
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