Loppdigiiei Malsital

Fundamentals
of
Equilibrium and
Steady-State
Thermodynamics

by
Nicholas W. Tschoegl



Fundamentals of Equilibrium and
Seady-Sate Ther modynamics

By Nicholas W. Tschoeaql

Fundamenrals
i
Equilsbriam and
aready-Seare
Thermodynamics

-y
e Froelan W, Thesgd

ISBN: 0444504265
Pub. Date: April 2000
Publisher: Elsevier Science & Technology Books



PREFACE

“The history of modem science has shown repeatedly that a
quantitative description of nature can often be achieved most
successfully by first idealizing natural phenomena, ie., by setting
up a simplified model, either physical or mathematical, which
crudely describes the essential behavior while neglecting details. —
The behavior of nature is then related to the idealized model by
various correction terms which can be interpreted physically and
which sometimes can be related quantitatively to those details in
nature which were neglected in the process of idealization.”

J. M. Prausnitz

This book contains essentially the somewhat expanded material of a one-term course
which 1 presented at the California Institute of Technology over several years. In that
course I attempted to summarize the salient features of both equilibrium and steady-state
thermodynamic theory under a uniform postulatory viewpoint. I wished to emphasize the
logical structure of thermodynamic theory, its formal aspects, to allow it to emerge as a
coherent whole, unfettered by much of those details which—albeit indispensable in practical
applications—tend to obscure this coherent structure. Largely because of this, I also
avoided any statistical mechanics or reference to molecular structure—barring an occasional
allusion. The treatment is, therefore, 'classical, or—using a perhaps more appropriate
word—'phenomenological'. Thus the concept of entropy (as is that of chemical potentiai) is
introduced simply as required by the formalism—to complete the pattern, as it were.

1 almost exclusively dealt with ‘ideal' systems. 1 made an exception (the van der
Waals equation of state) only when discussing phase transitions because ideal gases do not
show such transitions. Generally, I took the view that the treatment of 'real' systems
properly belongs into the realm of applied, rather then theoretical thermodynamics. For
these reasons, only selected ideal systems are covered. Ideal gases are discussed
extensively. The ideal solution is treated as an example of a liquid system. The amorphous
ideal rubber serves as an example of a solid. 1 chose this partly because much of my
research has been concerned with the properties of rubberlike materials, but—perhaps more
importantly—because the formalism developed is a model for the treatment of other, non-
simple systems. To avoid getting into lengthy discussions that—in my opinion—contribute
nothing essential to an exposition of the findamental structure of thermodynamic theory, 1
did not talk about crystalline solids. 1 also omitted dealing with critical phenomena in terms
of scaling laws. I do not consider these omissions to be shortcomings of the text as I
concentrated on conveying a sense of the structure of the theory.

J. M. Prausnitz's (1978) words in the motto refer to ideal systems. They apply
equally well, however, to the whole approach I took in the course. The theory I presented is
an idealized model theory designed to help us understand thermodynamics. Any such model,
if correctly developed, stands on its own as a creation of the human mind whether it applies
or not to anything in nature. In fact, the simplifying assumptions that must be made when
constructing such a model virtually guarantee that it cannot truly describe reality. Its
usefulness lies in the fact that it is relatively easy to grasp, that it orients our thinking, and
that we can ‘get away' with trying to apply it to reality because its domain of validity can
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come arbitrarily close to reality. One can 'get away' with it only within this domain which
must be defined and appreciated. The ideal gas furnishes a perfect illustration of this point.
It is the essence of a model that it can never truly be in a one-to-one correspondence with
reality, not even within its domain of validity. To construct a perfect model one would have
to be the Creator Himself.

The course was not meant to be a first course in thermodynamics. It was presented
to classes consisting mainly of chemical engineering, materials science, and chemistry
graduate students with a smattering of undergraduates. All students had had undergraduate
thermodynamics and many had some other graduate thermodynamics courses. Nevertheless,
in unsigned but obligatory course evaluations the students asserted that they found the
course helpful and that they liked it because it presented the material in a novel way.

I was struck by my students' almost uniform clamor for more steady-state thermo-
dynamics. None of them had been exposed to steady-state theory before. They were clearly
intrigued by it and felt (as do 1) that a knowledge of at least the rudiments of steady-state
theory deepens the understanding of thermodynamics as a whole, and that it guides one's
thinking in this field. It does seem useful to me to discover that such well-known empirical
relations as Fourier's Law of Heat Conduction and Fick's First Law of Diffusion can be
firmly founded in steady-state theory. In particular, I deem it most gratifying to learn that
the steady state is a state of minimum entropy production. My own, perhaps novel,
contribution consists in paralleling the notions—central to the exposition of equilibrium
thermodynamics in this text—of entropy and energy representations by the notions of
entropy production and energy retention representations in my treatment of the theory of
coupled linear steady states. In view of my students' interest in the thermodynamics of the
steady state, I was tempted to enlarge this part of the book. I eventually decided against it
because I felt that whetting the readers appetite is all I really am qualified to do.

The exposition is postulatory, i.e., it is based on a small number of postulates which
are simply assumed to be valid without further justification. Their ultimate justification must
be sought in their usefulness. The arguments in favor of a postulatory exposition have been
well presented by H. Callen (1963, 1985). In my lectures I pointed out that—stretching an
analogy—postulates somewhat resemble base vectors. One simply defines an appropriate
set of base vectors to suit one's purpose. It is the same with postulates. I emphasized that
currently there does not appear to be any way to decide how many postulates are required
to completely underpin the theory, and that there are at this time no rigorous methods to
decide whether a given set of postulates is complete.

These and other difficulties with thermodynamics as a physical science arise from its
non-metric character. Weinhold (1975, 1976) has introduced a 'metric' into thermo-
dynamics. This work has attracted less attention than it probably deserves, partly perhaps
because the mathematics are couched in the ‘language' of Dirac's ket and bra notation which
is familiar to quantum physicists but not to the majority of thermodynamicists. To me
Weinhold's metric thermodynamics—although intriguing—did not appear to make the
presentation of thermodynamic theory any easier and so I did not include it in my lectures.

Callen (1974, 1985) pointed out that the non-metric nature of thermodynamics
implies that it is rooted in symmetry relations rather than quantitative laws. He then
proceeded to outline the role of symmetry considerations in thermodynamics, effectively
basing thermodynamics on symmetry laws. This is certainly promising work. However, it
has apparently not yet led to predictions concerning the nature, number, and role of
postulates in the theory.
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The book is subdivided into three parts. These are:

1. Equilibrium Thermodynamics
IL Steady-state Thermodynamics
IH. Appendices.

The text is followed by a list of references, a list of symbols, and a quite detailed
author and subject index. The first Part contains twenty-one chapters, the second nine.
There are seven appendices. The chapters are broken down into sections, each with its own
number and title. The former serve for indexing and cross-referencing. I tried to keep these
sections quite short and concise. Thus, some contain just a paragraph or two. Others that
could not be subdivided profitably are somewhat longer. A section entitled "Chapter
Contents” lists them at the beginning of each chapter.

A word needs to be said about the figures in the text which depict the fundamental
surface in thermodynamic configuration space (Figs. 3-2, 4-3, 4-4, 5-1, and 5-4). I followed
Callen (1963, 1985) in their representation, adapting them slightly for my own purposes.
These figures are essentially streamlined versions of J. C. Maxwell's plaster model of the
thermodynamic surface of water, which he presented to Gibbs in 1875 (Weinhold, 1978).

Finally, the mottoes on the title pages of the three parts of the book and at its end
are from Arthur Whaley's (1938) translation of the Analects of Confucius. The first is from
Book 1I-17, the second from Book IX-16, the third from Book I-1, and the fourth from
Book VII-1, 2, 3.

Naturally, I did not invent any new thermodynamics. Rather, this book is an
amalgam, or distillate, of ideas culled from a number of excellent textbooks, notably Callen
(1963, 1985), but also Abbott and van Ness (1972), Blinder (1969), Kestin (1966), Modell
and Reid (1983), Denbigh (1965, 1966), ter Haar and Wergeland (1966), Zemansky (1968),
de Groot and Mazur (1984), Haase (1966), Prigogine (1967), Wisniewski ez al. (1976), and
others more. 1 hope that this short 'structural overview' will find favor with students,
teachers, and engineers. I would greatly welcome any feedback, including references to
typographical or other errors.

In conclusion, it is a pleasure to acknowledge the helpful suggestions 1 received
from two of my colleagues, Zhen-Gang Wang and Constantinos Giapis. The latter, in
particular, read the entire manuscript. I deeply appreciate their efforts. I am also indebted to
Igor Emri of the University of Ljubljana for his most welcome comments and suggestions.
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1. DEFINITIONS

This text presents the fundamentals of the structure of the phenomenological theory of
equilibrium and steady-state thermodynamics on a postulatory basis. A postulatory basis is
a set of independent statements, serving as the necessary and sufficient foundation of a
deductive system of thought.

This chapter contains a glossary of certain essential conceptual tools of equilibrium
and steady-state thermodynamics that simply require some comment (e.g., energy, matter,
work, etc.) or, at best, a dictionary definition to establish their meaning with some precision
(e.g., system, state, process, etc.). Others will need some understanding of the theory and
will be defined in the text.

All of these concepts are required in the development of the theory but are not part
of the postulatory basis. Many, if not all, may not have real physical existence. However,
they can always be imagined to result from an extension of some quality or property to an
appropriate limit.

1.0 Chapter Contents

1.1 Energy and Matter

1.2 Thermodynamics

1.3 Theoretical and Applied Thermodynamics

1.4 Work, Heat, and Energy

1.5 Factorability of the Energy

1.6 Ideal and Real Thermodynamic Systems

1.7 Thermodynamic Systems and their Surroundings
1.8 Reactive and Non-Reactive Thermodynamic Systems
1.9 Simple Thermodynamic Systems

1.10 Thermodynamic Properties

1.11 Thermodynamic Equilibrium

1.12 Thermodynamic States

1.13 Thermodynamic Processes

1.14 Thermodynamic Functions

1.15 Postulates, Theorems, Laws, Rules, and Principles

1.1 Energy and Matter

Energy and matter are the two fundamental manifestations of physical reality. They
are interconvertible; however, this interconvertibility will not play any role in this text. We
will primarily be concerned with erergy interchanges. Matter will enter our considerations
largely because changes in the amount of matter or in its composition are generally
accompanied by exchanges of energy.

1.2 Thermodynamics

Thermodynamics is the science of heat as a special form of energy exchange. It is
thus a branch of energetics, the general science of the forms and interchanges of energy.
From a thermodynamic standpoint energy can be exchanged in two fundamental ways: in
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the form of work or in the form of heat. Work or heat represent energy transfers. They are
energy in transit.

Thermodynamics may conveniently be subdivided into two main disciplines:
equilibrium and non-equilibrium thermodynamics. Equilibrium thermodynamics deals with
the thermodynamics of systems in mechanical, chemical, and thermal equilibrium and is
treated in Part 1 of this text. Non-equilibrium thermodynamics is the thermodynamics of
irreversible processes. It can be further subdivided into steady-state thermodynamics,
treated in Part II of this text, and non-steady-state or general, irreversible thermodynamics
that is outside the scope of this text.

1.3 Theoretical and Applied Thermodynamics

There are two sides to every body of knowledge: a theoretical and a practical side.
The theoretical side is concerned with the codification, in a self-contained and self-
consistent manner, of the principles and rules that govern that particular field of knowledge.
The practical side is concerned with the application of those principles and rules to reality.
As in any science, in any thermodynamic discipline we also distinguish these two sides,
namely, theoretical and applied thermodynamics. This text deals with the former.

1.4 Work, Heat, and Energy

Work is transfer of energy to the macroscopically observable coordinates of motion
of the constituents of matter. In the performance of physical work the material composition
remains unchanged. Examples of physical work are mechanical, electrical, and magnetic
work.

In contradistinction to physical work chemical work is associated with changes in
(internal) energy resulting from changes in the amount or the chemical composition of
matter. Since its nature is quite different from that of physical work (it cannot be measured
in any direct way), the term mass action is preferable and will be used throughout this text
where the distinction appears indicated. Occasionally both physical and chemical work will
be subsumed under the common term of work.

Heat is transfer of energy to the macroscopically wnobservable (or hidden)
coordinates of motion.

Energy manifests itself as work or heat when crossing the boundaries of a system. It
is diminished, when work is done, by an amount equal to the work and is therefore defined
in terms of work and expressed in the same units. Pofential energy is the capacity for
mechanical work that a body possesses by virtue of its position. Kinetic energy is the
capacity for mechanical work that a body possesses by virtue of its motion. The concepts of
potential and kinetic emergy are useful also in considering forms of energy other than
mechanical. Potential and kinetic energy are referred to as external energies. Internal
energy will be introduced later in the text.

1.5 Factorability of the Energy

Any form of energy exchange can always be expressed as the product of two factors
or parameters: an intensity factor or intensive parameter, and a capacity factor or extensive
parameter. The capacity factor depends on the extent or the amount of the system under
consideration. The intensity factor does not. It is the same in any part of the system
regardless of its size. As two examples, if the energy exchange is in the form of pressure-
volume work, then the intensity factor is the pressure, and the capacity factor is the volume;
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if it is in the form of electrical work, then the former is the voltage, and the latter is the
charge.

1.6 Ideal and Real Thermodynamic Systems

A thermodynamic system is that part of the physical universe which has been singled
out for observation or manipulation. An ideal thermodynamic system is a model system
whose behavior underlies the behavior of a corresponding real system. As a model system,
the ideal system is a simplification which allows it to be subjected to a rigorous treatment
within the compass of theoretical thermodynamics. The behavior of idealized model
systems simulates the behavior of real systems under certan limiting conditions. The
thermodynamic treatment of real systems—though important—does not, however, contain
anything new in a fundamental theoretical sense and, therefore, belongs in the realm of
applied thermodynamics.

1.7 Thermodynamic Systems and their Surroundings

That part of the physical universe with which a given thermodynamic system may
interact is called the environment, or the surroundings, of the system. The means by which
the system is separated from its surroundings are called its boundaries. The boundaries of a
system are also referred to as barriers, constraints, restraints, or walls.

With respect to their interaction with their surroundings we distinguish several
thermodynamic systems. A system which exchanges neither matter nor energy with its
surroundings is an isolated system. A system that does not exchange matter with its
surroundings but may exchange energy with it is called a closed system. The boundary of a
closed system is impermeable, i.c., it is restrictive with respect to matter.

A system which exchanges both matter and energy with its surroundings is an open
system. The boundary of an open system is non-restrictive with respect to matter. It is
permeable when it is non-restrictive to all forms of matter, and semi-permeable when it is
non-restrictive to some form of matter but restrictive to all other forms. With respect to
energy interchanges, the walls of an open system are movable or rigid according to whether
they permit exchange of energy in the form of physical work or do not; and they are called
diathermal or adiabatic according to whether they permit exchange of energy in the form
of heat or do not.

1.8 Reactive and Non-Reactive Systems

A system in which chemical or nuclear reactions are allowed to occur is a reactive
system. In the absence of chemical or nuclear reactions the system is non-reactive. This text
deals with isolated reactive chemical systems only.

1.9 Simple Thermodynamic Systems

The thermodynamic system with which this text will mainly be concerned is referred
to as a simple system. A simple thermodynamic system is, by definition, macroscopically
homogeneous, isotropic, uncharged, chemically inert (non—reactive), and is sufficiently large
so that surface effects can be neglected. It is not acted upon by electric, magnetic, or
gravitational fields. Pressure is the only mechanical force allowed to affect the simple
system. A simple system thus only undergoes dilation or contraction.
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A single-component simple system contains only one kind of matter. A
multicomponent simple system contains two or more kinds of matter. A simple system with
constant composition will be called a physical simple system.

A composite (simple) system comprises at least two simple systems, divided by a
controllable internal barrier which is restrictive to at least one form of energy or matter. It is
often convenient to consider the system of interest and the surroundings with which it
interacts as two subsystems combined into an isolated composite system.

A non-simple system is a system which is not bound by the criteria applicable to a

simple system.

1.10 Thermodynamic Properties

The macroscopic observables which survive statistical averaging over the
microscopic coordinates of motion are called thermodynamic properties, coordinates,
variables, ot parameters. A thermodynamic property is a variable whose change during any
change of state depends only on the initial and final state of the system. It is, therefore, also
called a variable of state or function of state. An infinitesimal change in a state variable is
an exact differential (see Appendix 1).

Properties are measurable either directly (primitive properties, e.g., volume,
pressure, or temperature) or indirectly (derived properties, e.g., internal energy, entropy, or
chemical potential). Properties are neutral properties if they play no role in the energy
exchange considered (e.g., color).

A property is extensive if it depends on extent (length, area, volume) or on amount
(mass, charge). A property is intensive if it does not depend on extent or amount. A
property may be neither extensive nor intensive. An extensive property becomes intensive
when scaled with respect to either extent or amount. An extensive property becomes a
molar property when expressed per mole of matter, a specific property when expressed per
unit of mass, and a density when expressed per unit volume. Molar and specific properties
are mtensive and so are densities.

1.11 Thermodynamic Equilibrium

The concept of equilibrium is taken from mechanics but is basic in thermodynamics
as well. We distinguish between stable, metastable, unstable, and neutral equilibrium. When
a thermodynamic system is in stable equilibrium, a perturbation will result only in small
(virtual) departures from its original conditions and these will be restored upon removal of
the cause of the perturbation. A thermodynamic system is in unstable equilibrium if even a
small perturbation will result in large, irreversible changes in its conditions. A system in
metastable equilibrium will act as one in stable equilibrium if perturbed by a small
perturbation but will not return to its initial conditions upon a large perturbation. Finally, a
system in neutral equilibrium will not suffer any change i its conditions under any
perturbation.

1.12 Thermodynamic States

The state of a thermodynamic system is its condition as specified by its properties.
For any system there is a minimum number of properties which completely characterize its
state.

A system is in a state of (stable) thermodynamic equilibrium if its state can be
described by properties which do not depend on time and are the same at any point of the
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interior of the system. A system in a state of equilibrium does not interact with its
environment. A simple system is in a state of equilibrium when it is in mechanical, chemical,
and thermal equilibrium.

A system which exchanges energy and/or matter with its environment at a constant
rate is said to be in a stationary or steady state. The properties of a system in a steady state
are also time-invariant but are generally different at different points of its interior.

1.13 Thermodynamic Processes

A change from one equilibrium state to another is called a change of state or a
process. An infinitesimal change that may or may not take place but is compatible with the
constraints of the system is called a virtual change.

A process that is carried out at an infinitely slow rate so that it is at all times infini-
tesimally close to a state of thermodynamic equilibrium is called a quasistatic (‘almost
static') process. A quasistatic process is thus an ordered succession of equilibrium states.

A reversible process is conducted in such a manner that, at its conclusion, both the
system and its surroundings are restored to their initial state without producing a change in
the rest of the universe. A reversible process is necessarily quasistatic.

A real physical process (a spontaneous natural process or actual process) is a
temporal evolution of equilibrium and non-equilibrium states. Such a process is irreversible.

A cyclic process is a process in which the system is returned to its initial state after
completion of the cycle.

1.14 Thermodynamic Functions

Thermodynamic functions are either state functions or process functions. A state
function (or function of state) is independent of the process by which the final state is
reached from the initial state and thus depends solely on the initial and final state of the
system. By contrast, a process function depends on the way by which the final state is
reached from the mitial one. The differential of a state function is an exact, that of a process
function an inexact differential. Appendix 1 contrasts exact and inexact differentials.

1.15 Postulates, Laws, Principles, Rules, and Theorems

In this text there are frequent references to postulates, laws, principles, rules, and
theorems. These terms are largely traditional and the distinction between their meanings is
often somewhat tenuous. In general:

Postulates are propositions to be accepted without proof They form the first
premises in trains of thought and are commonly (as in this text) referred to under a
descriptive name or phrase (e.g., the Postulate of the Existence of Entropy). By contrast,
laws, principles, rules, and theorems are usually associated with a personal name (e.g.,
Henry's Law, Le Chételier's Principle, Maxwell's Rule, the Gibbs Theorems) but there are
exceptions (e.g., the Second Law of Thermodynamics, the Principle of the Conservation of
Energy, etc.).

Laws are formal statements of the manner or order in which a set of natural
phenomena occur under certain conditions. These phenomena are, as far as is known,
invariable under the stated conditions.

Principles enunciate an established mode of action or operation in natural
phenomena. Principles emphasize the idea of fundamental truth or general applicability.
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Rules are prescribed forms, methods, or sets of instruction for solving a given class
of problems. Rules emphasize the idea of more specific direction or regulation.

Theorems are general statements that have been proved or whose truth has been
conjectured. They embody that which has been considered and established as a principle or
law; hence, sometimes, a rule.
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A thermodynamic system is characterized in terms of its extensive properties. In addition to
the directly measurable extensive parameters such as the volume, V, or the mole number,
N, complete characterization requires two additional extensive thermodynamic parameters,
the internal energy, U, and the entropy, S. These are not measurable directly and are
introduced through postulates. Three additional postulates complete the postulatory basis
upon which the discussion of equilibrium thermodynamics in this text is based.

2.0 Chapter Contents

2.1 Existence of an Internal Energy — POSTULATE 1

2.2 Additivity of the Internal Energy

2.3 Path Independence of the Internal Energy

2.4 Conservation of the Internal Energy — POSTULATE 11

2.5 Transfer of Internal Energy: Work, Mass Action, and Heat

2.6 Heat as a Form of Energy Exchange—The First Law of Thermodynamics
2.7 Heat Exchanged with the Surroundings and Internally Generated Heat
2.8 Measurability of Changes in Internal Energy

2.9 Measurability of the Heat Flux

2.10 Measurability of the Mass Action

2.11 Infinitesimal Change in Work

2.12 Infinitesimal Change in Mass Action

2.13 Insufficiency of the Primitive Extensive Parameters

2.14 Existence of Entropy - POSTULATE INI

2.15 Additivity of the Entropy

2.16 Path Independence of the Entropy

2.17 Non-Conservation of Entropy - POSTULATE IV

2.18 Dissipative Phenomena

2.19 Infinitesimal Change in Heat

2.20 Special Nature of Heat as a Form of Energy Exchange

2.21 Limit of Entropy — POSTULATE V — The Third Law of Thermodynamics
2.22 Monotonic Property of the Entropy

2.23 Significance of the Concept of Entropy

2.1 Existence of an Internal Energy - POSTULATE 1
Postulate I asserts that:

“For any thermodynamic system there exists a continuous, differentiable,
single-valued, first-order homogeneous function of the extensive parameters
of the system, called the internal energy, U, which is defined for all equili-
brium states”.

2.2 Additivity of the Internal Energy
Being a function of the extensive parameters of the system, the internal energy is
itself extensive and is therefore additive over the subsystems of a composite system.
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2.3 Path Independence of the Internal Energy

Being defined for all equilibrium states, the internal energy is a function of state or
state function (§ 1.14). A change in intemnal energy therefore depends solely on the
difference between the values of U in the final and initial states and is independent of the
path along which the system has been led between these states. A finite change, AU, is thus
given by

U
AU = dU =Us - Uj; (2.3)

Gi

where the subscripts f and i refer to the final and initial states, respectively. It further
follows that dU, an infinitesimal change in U, is an exact differential (see Appendix 1).

2.4 Conservation of the Internal Energy - POSTULATE 1
Postulate II claims that:

“In an isolated composite system the total change in internal energy over all
subsystems involved in the change is zero.”

Mathematically this is expressed by the relation
AUroua = 0. 2.4)

Postulate I asserts the conservation of energy. According to this postulate, in an
isolated system energy can neither be destroyed nor created. Clausius (1850) stated this in
the words: 'Die Energie der Welt ist konstant’ (The energy of the universe is constant).

2.5 Internal Energy Transfer: Work, Mass Action, and Heat

Equilibrium thermodynamics is concerned with the transfer, or exchange, of energy
in quasistatic processes. In this text energy transferred fo the system is positive, and energy
transferred from the system is negative

Work is the change in the internal energy of a non-reactive thermodynamic system
resulting from the performance of physical work either on or by the system while it is
isolated from its surroundings by adiabatic impermeable walls.

Mass action manifests itself in two distinct ways in a thermodynamic system. In an
open system it is the change in internal energy resulting from a transfer of matter into or out
of the system while it is enclosed by adiabatic rigid walls. In a closed system it is the change
in internal energy resulting from a change in the composition of matter while the system is
confined between adiabatic, rigid, and impermeable walls.

Heat is the change in the internal energy of a non-reactive thermodynamic system re-
sulting from the transfer of energy to or from the system in a quasistatic process while the
system is isolated from its surroundings by rigid impermeable walls.

Work, mass action, and heat are not functions of state. Because they are process
Junctions (cf. § 1.14), elemental changes in these quantities are inexact differentials We
denote an inexact differential by & instead of d (see Appendix 1).
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2.6 Heat as a Form of Energy Exchange—The First Law of Thermodynamics

An increase in the internal energy, AU, of a system, not in motion, is equal to the
energy transferred to it in the form of (physical) work, W, mass action, M, or heat, Q. A
finite change in U is therefore given by

AU=W+M+Q, (2.6}

while an elemental change becomes
dU =W +6M +6Q . (2.6)

Equations (2.6) represent the principle of the conservation of energy i thermo-
dynamics. They extend the scope of the principle as formulated in mechanics to include heat
as a form of energy transfer and are commonly considered to constitute mathematical
expressions of the First Law of Thermodynamics (cf. § 7.16).

The equations clarify the meaning of path in § 2.3 and, hence, the meaning of the
term process function and function of state (§ 1.14) The same change in internal energy will
result if the change in any of the quantities W, M, @, or 6W, 6M, 6Q, is exactly compen-
sated by an equivalent change in either or both of the other two. Since the way in which this
can be achieved is arbitrary, a final state can be reached from a given initial state along a
variety of paths.

2.7 Heat Exchanged with the Surroundings and Internally Generated Heat

Apart from heat, @, that is imparted to, or is abstracted from, the system, i.e., the
heat exchanged between the system and its surroundings, there is another form of heat, ¢,
that is not transferred into or out of the system but is generated in its interior as a result of
the unavoidable energy dissipation in real physical, i.e., irreversible, processes.

Clausius (1850) who introduced the concept, called Q' the ‘uncompensated heat'
because it is not 'compensated’ for in the surroundings of the system by a commensurate
change in heat. It would more fittingly be called ‘heat generated irreversibly in the interior
of the system’. Since this expression is too unwieldy, we shall call it simply the infernally
generated heat. This heat is always produced at a finite rate and, hence, is not quasistatic. It
is always positive and vanishes only in reversible processes (cf. Chapter 5). In the thermo-
dynamics of irreversible processes an attempt is made to determine it quantitatively (cf. Part
II). In equilibrium thermodynamics it plays only a subordinate qualitative role.

2.8 Measurability of Changes in Internal Energy

The internal energy, U, cannot be measured directly. However, only changes in
internal energy are of concern in thermodynamics and these changes can be measured by
physical means. The measurability of changes in internal energy follows from Egq. (2.6)
and, hence, ultimately from Postulate IT upon which the equation rests. For a non-reactive
thermodynamic system of constant composition, enclosed by an adiabatic, impermeable
wall, Eq. (2.6); reduces to AU = W. Now, the physical work, W, can be measured by
physical means and, given two equilibrium states, A and B, it is always possible to carry the
system either from state A to state B, or from state B to state A, by some physical process
while the system is enclosed by adiabatic impermeable walls (Joule 1847, 1849). Hence,
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AU can be determined by measuring the work, W, done in the process under the stated
conditions.

2.9 Measurability of the Heat Flux

By Eq.(2.6);, in any process, the heat flux! to or from a system enclosed by
impermeable walls is equal to the change in internal energy diminished by any work done in
the process. Since both AU and W can be measured, so then can §. A device which
measures heat fluxes is called a calorimeter. The heat evolved or absorbed in a system
undergoing chemical reactions can also be determined calorimetrically (cf. § 21.6).

2.10 Measurability of the Mass Action

In a closed system mass action results from a change in composition within an
isolated system. Since the system is isolated, AU = 0, and, by Eq.(2.6); the mass action
term becomes

M=-W-¢q. (2.10)

If volume change is the only work, this can be determined, and the heat can be
measured in a calorimeter. If volume change is not the only work, the mass action can still
be measured in principle although it may be difficult to devise a suitable experimental
arrangement.

The mass action representing the change in internal energy resulting from a flow of
matter either to or from an open system is quite another matter. The flow of matter is an
inherently irreversible process. Matter always transports with it a certain amount of energy.
In isothermal diffusion in the steady state the energy transported per mole of matter, the so-
called energy of transport, may be obtained, at least in principle, from measurements of the
heat of transport if the molar enthalpy of the fluid is known. A fuller discussion of this topic
must, however, be deferred until the concepts of the energy of transport and the heat of
transport have been properly introduced in Part IL It will be taken up again in § 29.5.

2.11 Infinitesimal Change in Work
When only rigid barriers are lifted in a composite system, the infinitesimal change in
internal energy equals the infinitesimal change i work and is given by

oU

k&; ka (k = 1,2,...,1") (2.11)

X(#X0)

dU:éW:Z

where the X are the extensive primitive (i.e., observable or measurable) parameters of the
system excluding the mole numbers, and X denotes the totality of all extensive parameters.

! The terms "heat' and “heat flux’ may generally be used interchangeably.
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2.12 Infinitesimal Change in Mass Action
When only impermeable barriers are lifted in a non-reactive composite system, the
infinitesimal change in internal energy equals the infinitesimal change in mass action and is

given by

ou

= N, k= 1,2, ... 212
an d k ( r+ 9 L ) ( )

dU = 6M = Zk .

where the N, are the kth mole numbers and X is again the totality of all extensive
parameters.

2.13 Insufficiency of the Primitive Extensive Parameters

The primitive, i.e., the directly measurable, extensive parameters, X, of a thermo-
dynamic system are msufficient to determine the infinitesimal change in intemnal energy
when an adiabatic constraint is lifted, because none of them is an extensive parameter of
heat.

Temperature is the intensive parameter of heat. The recognition that energy can
always be factored into the product of an extensive and an intensive parameter (cf. § 1.5)
allows us to introduce the required extensive parameter of heat simply through a postulate.

2.14 Existence of Entropy - POSTULATE 11l
Postulate 11 states that:

“For any thermodynamic system there exisis a continuous, differentiable,
single-valued, first-order homogeneous function of the extensive parameters
of the system, called the entropy, S, which is defined for all equilibrium
states and which is the extensive parameter of heat.”

2.15 Additivity of the Entropy
Being a function of the extensive parameters of the system, the entropy is itself
extensive and is therefore additive over the subsystems of a composite system.

2.16 Path Independence of the Entropy

Being defined for all equilibrium states, the entropy is a state function. A change in
entropy therefore depends solely on the difference between the values of S in the final and
initial states and is independent of the path along which the system has been led between
these states. A finite change, AS, is therefore given by

St
AS :‘/ dS =5t — 5 (2.16)
S

where the subscripts f and i again refer to the final and iitial states. It follows further that
dS, an infinitesimal change in S, is an exact differential (see Appendix 1).
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2.17 Non-Conservation of Entropy —- POSTULATE 1V
In contrast to the internal energy, entropy is not conserved. Postulate IV asserts
that:

“In a closed adiabatically isolated system the change in entropy over all
subsystems involved in the change is positive semi-definite”.

Mathematically this may be expressed by the relation
ASreta1 2 0. 217

The change is zero only in a reversible process. In any real physical process (or
spontaneous natural process) the change is positive. Equation (2.17) shows that while
entropy, like internal energy, cannot be destroyed, unlike internal energy, it can be created
and, in fact, always is created in any spontaneously occurring process. Clausius (1850)
stated this in the words: 'Die Entropie der Welt strebt einem Maximum zu' (The entropy of
the universe tends fowards a maximum).

2.18 Dissipative Phenomena

Postulate IV is in accordance with the common experience that a real physical
process is invariably accompanied by dissipative phenomena such as mechanical friction,
turbulence, electrical resistance, viscosity, and others more. These dissipative phenomena
(cf. § 7.3) manifest themselves as internally generated heat (cf. § 2.7), thus increasing the
entropy of the system and decreasing the amount of energy available for work (cf §§ 8.11,
8.14, and 8.17).

Production of entropy is the central problem of Part II of this text.

2.19 Infinitesimal Change in Heat

When only an adiabatic barrier is lified in an isolated composite system, the infini-
tesimal change in internal energy in the subsystem under consideration equals the
infinitesimal change in heat and is given by

U
AU =6Q = = , 2.19
Q=73 _Y(¢S)d5 (2.19)

2.20 Special Nature of Heat as a Form of Energy Exchange

Just like intemal energy, entropy, the extensive parameter of heat, cannot be
measured directly in the way in which the other extensive parameters, such as the volume
and mole numbers, can be measured. This, together with the fact that entropy is not a
conserved quantity in an isolated system, imparts a special status to heat as a form of energy
exchange. This, indeed, is the reason for the existence of thermodynamics as a special
branch of mechanics.
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2.21 Limit of Entropy — POSTULATE V — The Third Law of Thermodynamics
According to Postulate V:

“The entropy of any finite system is positive semi-definite in the state for
which the partial derivative of the internal energy with respect fo the
entropy vanishes”.

The state just referred to is characterized by the relation

ou

== =0. 2.21
55 (2.21)

X(#5)

Postulate V embodies one form of the Third Law of Thermodynamics (see § 7.19
for other formulations of the Third Law).

2.22 Monotonic Property of the Entropy
It follows from Postulate V that

a5
= >0, (2.22)
ou X(F#U)

i.e., the entropy is a monotone non-decreasing function of the internal energy.

2.23 Significance of the Concept of Entropy

The recognition that energy can always be factored into the product of an extensive
and an intensive parameter lead to our introduction of the entropy as the extensive
parameter of heat. The identification of the entropy as an extensive parameter of any
thermodynamic system makes it possible to extend the theory of mechanical equilibrium to
thermodynamic equilibrium involving thermal effects.
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3. THE FUNDAMENTAL EQUATION

A functional relation between all extensive parameters of a thermodynamic system is called
its fundamental equation (Gibbs, 1948). The fundamental equation contains all of the
thermodynamic information on the system. Thermodynamic theory does not depend on the
knowledge or even the existence of an explicit form of the fundamental equation. If one
can, indeed, be formulated, it is bound to be rather complicated in general, because the
constitution of the matter of which the thermodynamic system is composed will necessarily
be complex. Thus, precious few explicit fundamental equations have been proposed and
these all describe particularly simple systems (cf §§ 12.1, 15.1, and 17.13). It is, never-
theless, crucial to an understanding of thermodynamic theory to examine the formal aspects
and properties which characterize any fundamental equation, whether its explicit form is
known or not. This is the task of the present chapter.

3.0 Chapter Contents

3.1 The Entropy and Internal Energy Representations of the Fundamental Equation
3.2 The Fundamental Surface in Thermodynamic Configuration Space

3.3 The Intensive Parameters in the Energy Representation

3.4 The Intensive Parameters in the Entropy Representation

3.5 The Intensity Factor of Heat — The Thermodynamic Temperature

3.6 Conjugate Parameters

3.7 The Chemical Potential

3.8 Significance of the Chemical Potential

3.9 The Gibbs Equation

3.10 The Euler Equation

3.11 Equations of State

3.12 Relation between the Fundamental Equation and the Equations of State

3.1 The Entropy and Internal Energy Representations of the Fundamental Equation
The functional relation

fv,s, ..., X, ...)=0 G.1y

is a first-order homogeneous equation of the extensive parameters of the system. Since U
and S are the only two extensive parameters that cannot be measured directly (cf §§ 2.8
and 2.20), we cast Eq.(3.1); in either of two equivalent forms, explicit either for the internal
energy, U, or the entropy, S. In the latter case we have

S=8U,..., Xe,...), (G.1),

and speak of the entropy function, or the fundamental equation in the entropy
representation. The extensive variables of state U, ..., X, ... , are called the ‘natural' or
'canonical’ variables in the entropy representation.
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Since, by Postulates Il and V, the entropy, .5, is a continuous, differentiable,
monotone non-decreasing function of U, Eq.(3.1); can be inverted to give

U=U(S,...,Xe... ). (3.1)3

Equation (3.1); is called the energy function, or the fundamental equation in the internal
energy representation, or simply the energy representation. The extensive variables of state
S, .... X, ... , are called the 'natural or ‘canonical' variables in the energy representation.

The entropy and the energy representations are two different but equivalent ways of
representing the same fundamental equation. Other representations will be introduced in
Chapter 8. However, the entropy and the energy representations are the only ones whose
canonical variables consist exclusively of extensive parameters. The energy function, U, and
the entropy function, S, may be called the cardinal functions of equilibrium thermo-
dynamics.

3.2 The Fundamental Surface in Thermodynamic Configuration Space

The fundamental equation defines a surface, the fundamental surface, in thermo-
dynamic configuration space (Gibbs space). The coordinates of this space are the extensive
parameters S, U, and X,,. For the physical simple system these parameters become simply
S, U, and V. Hence, the fundamental equation of this system can be represented by a
surface in three-dimensional Euclidean space as shown schematically in Fig. 3.2.

Fig. 3.2 The surface S=S(U, V)in S, U, V- space

3.3 The Intensive Parameters in the Energy Representation

The differential form of the fundamental equation in the energy representation
becomes
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awv=Y ds +y ou

7 dx 3.3)
35 |xes) k 9X, k G:3n

X(#Xy)

where £ = 1,2, ..., r,.... We recognize the first term on the right as the right hand side of
Eq.(2.19), and the second term as containing the right hand sides of both Eqgs.(2.11) and
(2.12).

In accordance with the factorability of the energy, the first-order partial derivatives
in Eq.(3.3); are recognized as the intensive parameters of the system in the energy
representation. We denote the general intensity parameter in this representation by Y, and
write

AU =YodS +)_, YidX;, (3.3)2
where
oUu
o= 45 (3.3)s
) X(=5)
and
U
Y = —— ) (3.3)
0X X(#Xe)

The nature of the Y}, depends on the system considered. When k =1, 2, ..., r, we shall let
the Y, d X, represent physical work terms. When k = r + 1, ... , the Y, d X, will represent
chemical work, i.e., mass action terms.

3.4 The Intensive Parameters in the Entropy Representation
In the entropy representation the differential form of the fundamental equation
becomes

85

ds = =2
s 8Uu

dXs . (3.4);

X(=0)

where the first-order partial derivatives are the infensive parameters of the system in the
entropy representation. We denote them by I, and write

dS =1IodU +)_ I, dX; (3.4),

where
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as
IO = — (34)3
U | xar)
and
as
I, = —- (3.4)4
X X(#Xx)

Again, when k=1,2, ..., 7, the I.dX, represent physical work terms, and when
k =r+1,...,they represent chemical work, i.e., mass action terms.

3.5 The Intensity Factor of Heat — The Thermodynamic Temperature

Postulate TII established entropy as the capacity factor of heat. In accordance with
the factorability of the energy we identify ¥y in Eq.(3.3): with the thermodynamic
temperature, T, the intensity factor of heat. The differential form of the fundamental
equation in the energy representation thus becomes

dU = TdS + Z Vi dX, (3.51

where TdS is the heat term and the remainder are the work terms. The partial derivatives in
Eqs.(2.19) and (2.21) are now also recognized to represent the temperature, 7.

We note that by Postulate V, i.e. by the monotonic property of the entropy (§ 2.22),
the thermodynamic temperature is positive semi-definite.

In an analogous manner the partial derivatives in Eqs.(2.22) and (3.4); are seen to
be the reciprocal thermodynamic temperature, 1/T. Thus,

1 Y
Iy = = Ip= —— 3.5
0=7% and k T (3.5),
and the differential form of the fuindamental equation in the entropy representation thus
becomes

1
d§ = — dU ~ > LdX, (3.5)3

where dU /T is the heat term while the remaining terms are the work terms.
In both representations of the fundamental equation we distinguish the beat terms
from the work terms because of the special nature of heat as a form of energy exchange

(§ 2.20).
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3.6 Conjugate Parameters

The pairs of intensive and extensive parameters T' and S, and Y, and X in the
energy representation, as well as 1/7 and U, and I, and X in the entropy representation,
are conjugate parameters. The product of conjugate parameters in the energy
representation have the dimensions of energy while that of conjugate parameters in the
entropy representation have the dimensions of entropy.

The lowest value of subscript k& will always be 1. We shall use subscript j instead of
k when the lowest value is 0, and m when the lowest value is 2.

3.7 The Chemical Potential
We call the intensive parameters furnished by the first-order partial derivatives of the
internal energy, when taken with respect to the mole numbers,

au

U - (k=r+1,..) (7
Nk Ik

the chemical potentials. The concept of the chemical potential is again due to Gibbs (1948).
The name reflects the fact that the intemnal energy, U, may be considered a potential for
chemical work (cf. § 8.4). Thus, we recognize the prdN, (k=r+1, ... )terms in
Eq.(3.3); as the mass action terms or chemical work terms. Just as in the case of the
entropy (cf. § 2.13) the chemical potential, 4, is required by the factorability of the energy
as the intensity factor in the product uN, the mole number, N, supplying the extensive
factor (cf. § 1.5).

Unlike the other intensive parameters, the chemical potential cannot be measured
directly. Its relation to measurable physical quantities is in the form of a differential equation
[see Eq.(8.22)s)]. Since the solution of such an equation requires a constant of integration,
absolute values of the chemical potential must be defined relative to a judiciously chosen
reference state (cf. § 12.12). Generally, however, only the change in chemical potential is of
mterest.

3.8 Significance of the Chemical Potential

The chemical potential is required by the factorability of the energy (cf. § 1.5) as the
intensity parameter of mass action. It is the driving force for any change in the chemical
composition of matter as specified by the mole numbers. The introduction of the concept of
the chemical potential thus extends the scope of thermodynamics to the treatment of open
systems, ie., to systems which exchange matter with their surroundings, of phase trans-
itions, ie., transitions between homogeneous subsystems bounded by a surface across
which the physical properties change discontinuously (see Chapter 19), and of reactive
systems, 1.e., to systems in which changes in composition occur as a result of chemical
reactions (see Chapter 20).

3.9 The Gibbs Equation

The differential forms of the fundamental equation, Egs.(3.5); and (3.5);, are
commonly called the Gibbs equations. For the (multicomponent) simple system these
equations become
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dU =TdS — PdV +Y | mdNy (3.9

in the energy representation, and

1

ds = =
T

P 7.
§ om 3.9
dU + = dV dN,, (3.9)

in the entropy representation. In writing these equations we have taken into account that—
for the simple system—pressure-volume work is the only physical work admitted. Thus, X
is the volume, V', and — Y7 is the pressure, P, of the simple system.

For a single component simple system the above equations become simply

dU = TdS — PdV + udN (3.9
and
1 P 7
dS = —dU + =dV — = dN . 3.9
s 74U+ 5 dV — - dN (3.9)4

in the energy and entropy representations, respectively.
3.10 The Euler Equation

Since the internal energy is a first-order homogeneous equation of the extensive
variables of the system (Postulate I), we may write

UAS, oo, Ay ... )= AUGS, .o, Xy ool ) (3.10)

where A is a scaling parameter. Differentiating with respect to A and then letting A = 1 we
obtain the energy function in the form

U= Zj Y; X; (3.10),

where the Y; are given by Eqs.(3.3); and (3.3)s. Equation (3.10); is called the Euler
equation in the energy representation. It equates the energy function to the (algebraic) sum
of the products formed from the conjugate parameters of the system.

The entropy function takes the form

=3 .IiX;. (3.10);
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where the I; are defined by Eqs.(3.4); and (3.4)s. Equation (3.10); is called the Euler
equation in the entropy representation. It equates the entropy function to the (algebraic)
sum of the products formed from the conjugate parameters of the system.

For the (multicomponent) simple system the cardinal functions become

U=TS—-PV + Zmp,mNm (3.10)4
in the energy representation, and
1 P 7
S==-U+=V - 2N, 3.10
U+ Zm T (3.10)s
in the entropy representation.
The cardinal functions are connected through the relation
U= -TS. (3.10)¢
Indeed, multiplication of Eq.(3.10)s by — T and rearranging leads at once to Eq.(3.10),.
3.11 Equations of State
A functional relation expressing an intensive parameter in terms of the extensive
parameters of the system is called an equation of state. An equation of state is a zeroth-
order homogeneous equation of the extensive parameters of the system.

The equations of state are obtained as the partial derivatives of the Euler equation.
In the energy representation they are, therefore,

U
Yi=Y(S,.... Xk, ... )= o= 3.11
i=YAS, L Xy ) %, |y (3.11)y
and the entropy representation they become
a5
Li=LU,....Xp,...)= = 3.11
J J( > s Ak, BXJ ., ( )2
For the (multicomponent) simple system we have
-2 -1 (G.11)

T 85|y,
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aUu
Yi = — =P
YT avy,,
and
oU
1/2 - 8Nm ‘S(J.#g ——/JIm’

in the energy representation, and

as 1
I:_ _
T Uy, T
295 _F
YoV, T

and

1_85 _ Hm
2T ONLly, T

in the entropy representation.

3.12 Relation between the Fundamental Equation and the Equations of State

23

(3.11)32

(3.11)33

(3.11)41

(3-11)42

(3-11)43

Equations of state are generally much easier to establish than fundamental equations.
However, in contrast to a fundamental equation, an equation of state does not contain com-
plete information on the thermodynamic system. This follows from the fact that the
intensive variables are (partial) derivatives of the extensive ones. The differentiation results
in a loss of information. Nevertheless, the fotality (i.e., the complete set) of the equations of
state is equivalent to the fundamental equation. To recover the latter it is only necessary to
insert all the state equations into the Euler equation from which were derived (cf. §§ 12.3
and 13.8). Since we thus regain the complete information on the system, this is tantamount
to an integration. The Euler equation in either representation is therefore a form of the

fundamental equation.
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4. THERMODYNAMIC EQUILIBRIUM

Chapters 2 and 3 developed the basic armamentarium of the theory of equilibrinm thermo-
dynamics. We are now ready to address its central problem: the conditions of thermo-
dynamic equilibrium (§ 1.11). In particular, we consider the conditions under which an
isolated composite system returns to a state of equilibrium after the lifting of an internal
constraint (the removal of a barrier).

4.0 Chapter Contents

4.1 Representation of Equilibrium in Gibbs Space
4.2 Extremum Principles
4.3 The Extremum Principle for the Entropy
4.4 The Extremum Principle for the Internal Energy
4.5 Egquivalence of the Extremum Principles for the Energy and the Entropy
4.6 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Energy Representation
4.7 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Entropy Representation
4.8 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Partial Barrier Removal
4.9 Equilibrium Conditions in Terms of the Intensive Parameters:
The Adiabatic Case
4.10 Direction of Change in the Attainment of Equilibrium
4.11 Multibody Thermal Equilibrium — The Zeroth Law of Thermodynamics

4.1 Representation of Equilibrium in Gibbs Space

An equilibrium state (§ 1.12) is represented by a point in thermodynamic
configuration space. The equilibrium states accessible to a given system lie on the
fundamental surface.

4.2 Extremum Principles

An extremum principle minimizes or maximizes the fundamental equation subject to
certain constraints. The principle of maximum entropy and its equivalent, the principle of
minimum internal energy, are the fundamental principles of equilibrium thermodynamics.
Alternative extremum principles will be introduced in Chapter 8.

4.3 The Maximum Principle for the Entropy

In accordance with Postulate IV, upon the removal of an internal barrier in an
isolated composite system the extensive parameters of the system assume those values
which maximize the entropy over the manifold of equilibrium states consistent with the
remaining constraints. The extremum principle for the entropy states:

“At equilibrium the value of any unconstrained parameter of an isolated
thermodynamic system is such that the entropy is maximized at constant
internal energy”.
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The entropy maximum principle thus characterizes the equilibrium state as one of
maximum entropy for a given total internal energy. Figure 4.3 illustrates this for the
Physical simple system

Fig. 4.3 The equilibrium state A as a point of maximum S for constant U/

Mathematically the principle is expressed by the usual conditions for a maximum,
ie, by

(dS)y =0 and (d’S)y < 0. (4.3)

The first of these is the condition (or criterion) of thermodynamic equilibrium. The second
is the condition (or criterion) of thermodynamic stability which will form the subject of
Chapter 18.

4.4 The Extremum Principle for the Internal Energy

An equivalent extremum principle can also be established for the internal energy as
illustrated below in Figure 4.4, again for the physical simple system.

The energy minimum principle characterizes the equilibrium state as one of
minimum energy for a given total entropy. It reads:

“At equilibrium the value of any unconstrained parameter of an isolated
thermodynamic system is such that the internal energy is minimized at
constant entropy”.
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Fig. 4.4 The equilibrium state A as a point of minimum U for constant S

Mathematically this is expressed by the conditions for a minimum, i.e., by
(dU)s =0 and (d°U)s >0 4.4

where the first is again the condition (or criterion) of thermodynamic equilibrium, and the
second is the condition (or criterion) of thermodynamic stability (see Chapter 18).

4.5 Equivalence of the Extremum Principles for the Energy and the Entropy

The extremum principles for the internal energy and for the entropy express the con-
dition of equilibrium of the isolated thermodynamic system in the entropy representation
and in the energy representation, respectively. They are thus equivalent and may be used
interchangeably.

To prove this assertion, assume that, upon the establishment of a new equilibrium,
the internal energy is not minimum while the entropy is maximum. It would then be possible
to withdraw work from the system at constant entropy, and reinject it in the form of heat.
This would restore the system to its original energy. However, the resultant increase in
entropy would be inconsistent with the requirement that the equilibrium state be one of
maximum entropy. Consequently, the two extremum principles imply each other.



4. THERMODYNAMIC EQUILIBRIUM 27

4.6 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Energy Representation

The conditions of thermodynamic equilibrium were stated in §§ 4.3 and 4.4 in terms
of the extensive parameters, U and S. Equilibrium conditions can, however, also be
established in terms of the intensive parameters. Here, and in §§ 4.7 to 4.9 we discuss these
conditions as they apply to a single-component simple system. Generalization to
multicomponent simple systems and to non-simple systems is straight-forward.

We distinguish two cases: the diathermal and the adiabatic case. We first investigate
the conditions of equilibrium in the diathermal case in the energy representation.

Removal of a barrier, inside an isolated composite system, each a single-component
simple system, both composed of the same kind of matter, lifis the constraints of
adiabaticity, rigidity, and impermeability between the two subsystems.

Fig. 4.6 Isolated composite system consisting of two subsystems, A and B

Since the composite system as a whole is isolated, the following conservation
(isolation) constraints apply:

Sa + Sg = constant dSa = —dSp (4.6)14
Va + Vg = constant dVa = —dW (4.6)12
NA + NB = constant dNA = — dNB (4.6)1.3

Equations (4.6); state that the total entropy, volume, and number of moles of the
composite system Temain constant in a virtual change of the internal energy at equilibrium.
The internal energy being additive, it follows by Eq.(3.10); and the condition of
equilibrium, dU = 0, that

dU = (Ta — Tp) dSa — (Pa — P3) dVa +(ua — ) dNa =0 (4.6)

Because dSA, dVA, and dNA represent infinitesimal changes in independent
variables, we must have
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Tr =T (4.6)3.1

PA = PB (4-6)32
and

HA = iB (4.6)33

when equilibrium is reestablished after removal of the barrier. Equations (4.6); are the equi-
librium conditions in terms of the intensive variables in the energy representation. They
express, respectively, the criteria of thermal, mechanical, and diffusional equilibrium. The
corresponding stability criteria will be discussed in § 18.8 to 18.11.

4.7 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Entropy Representation
We now examine the conditions of equilibrium in the diathermal case in the entropy
representation. The first of the conservation constraints becomes

Ua + Ug = constant dUs = —dUg 4.7

and the other two remain unchanged. Thus now the total energy, volume, and number of
moles of the composite system are constant in a virtual change of the entropy at
equilibrium. 1t follows by the condition of equilibrium, dS = 0, that

1 1 P, B HA  UB
as=[L_1)g DA gy, - [EA_EB)uNy=0 @7
(TA TB> UA+(TA TB) A (TA TB) : @0

and this furnishes the equilibrium conditions

_ 4.7
TA = TB ( )3.1
Py B
AR 4.7
TA TB ( )32
KA _ B

_ 4.7
CTA - TB ( )3.3

in the entropy representation. Equations (4.6); and (4.7); are clearly equivalent.
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4.8 Equilibrium Conditions in Terms of the Intensive Parameters:
The Diathermal Case — Partial Barrier Removal

If the barrier remains rigid and only the constraints of adiabaticity and
impermeability are lifted, dV, = dV5 = 0, and only the first and third of the equilibrium
conditions are obtained in either the energy or the entropy representation. Similarly, when
the barrier remains impermeable so that only the constraints of adiabaticity and rigidity are
lifted, dN5 = dNg = 0, and only the first and second of the equilibrium conditions ensue.
Finally, when the barrier remains rigid and impermeable and only the constraint of
adiabaticity is lifted, only the first of the equilibrium conditions results.

In all four cases in which the barrier becomes diathermal, the equilibrium conditions
are sufficient to characterize the equilibrium state. Although we may have no equilibrium
condition in terms of the pressures or chemical potentials, the system remains fully
determined because the corresponding extensive parameters, the volumes or mole numbers,
are known since they can be measured before the barrier is lified and they remain constant
thereafter.

4.9 Equilibrium Conditions in Terms of the Intensive Parameters:
The Adiabatic Case

The special nature of heat as a form of energy exchange (§ 2.20) renders the
adiabatic case indeterminate. Let us again remove a barrier between two subsystems of an
isolated composite system, each a single-component simple system, and both composed of
the same kind of matter. If the barrier remains adiabatic but becomes movable and
permeable, there is no heat flux and the energy transfer between the two subsystems
consists only of work and/or mass action. Hence, by the energy minimum principle,

dU = —(PA-PB)dVA—F(/J,A—-,UB)dNA=0. (49)

Thus we recover the second and third of the equilibrium conditions we had found
for the diathermal case, but no condition can be found for the temperatures. Clearly, if the
barrier is adiabatic and impermeable, we obtain only Py = Py, while, if it is adiabatic and
rigid, we can find only s = up.

Application of the entropy maximum principle furnishes the same indeterminate
result. Therefore, if the barrier remains adiabatic, nothing can be said about the
temperatures in the two subsystems and their entropies are not known because they cannot
be measured directly. Indeed, it would be possible to withdraw a certain amount of heat
from one subsystem and inject another amount into the other so that dSy = — dSg. The
system could again be brought to equilibrium but the entropies of the subsystems would
have changed. Thus, in the adiabatic case, the system is not completely determined.

4.10 Direction of Change in the Attainment of Equilibrium
Lifting only the adiabatic constraint, Eq.(4.7); may be rewritten as

AS = (~ - —)AUA (4.10),
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where we have assumed, for the sake of simplicity, that T, = T, and that the changes are
finite. If T4 > Tj, then, since AS is necessarily positive, AU, < 0, i.e., the internal energy
in subsystem A decreased, hence heat flowed from subsystem A to subsystem B. Thus:

“Heat flows from the hotter to the colder body”,

in accordance with commeon experience.
Removing only the constraint of rigidity and letting T4y =T = T,Eq.(4.7)
becomes

_PA-—PB

ds
T

dVy . (4.10);
If Py < Py, then dV, is necessarily negative, ie., the volume of subsystem A has
decreased, ie.,

“An increase in pressure decreases the volume”.
This again is in accordance with normal expectation.

Finally, let us assume that the impermeable wall has been made permeable but stays
rigid while the temperatures are the same. We then have

ds = ”—A—T_ﬂ dNy . (4.10);

If ua > pg, then d Ny must be negative. This leads to the conclusion that:
“Matter flows from regions of high to regions of low chemical potential ”

The statement may be interpreted as saying that matter flows from regions of high
concentrations to those of lower ones, once again in accordance with normal experience.

4.11 Multibody Thermal Equilibrium — The Zeroth Law of Thermodynamics
Repeated application of the procedure outlined in § 4.6, removing adiabatic barriers

only, leads to the following realization:

“Two bodies that are in thermal equilibrium with a third body will be in thermal
equilibrium with each other”.

This statement, known as the Zeroth Law of Thermodynamics, is the basis of thermometry.
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5. THERMODYNAMIC PROCESSES

The lifting of a constraint in a composite system in an equilibrium state that is compatible
with the constraint leads to a new state of equilibrium (§ 1.11). The transition from state A
to state B is called a process (§ 1.13). This chapter looks at these thermodynamic
processes.

5.0 Chapter Contents

5.1 Quasistatic Processes

5.2 Reversible Processes

5.3 The Claustus Equality

5.4 Measurability of Entropy Changes

5.5 The Clausius Inequality — The Second Law of Thermodynamics
5.6 Entropy Production

5.7 TIrreversible Processes

5.8 Direction of an Irreversible Process

5.9 TIrreversible Processes in Equilibrium Thermodynamics

5.1 Quasistatic Processes

Any real physical process is a temporal evolution of both equilibrium and non-
equilibrium states and, as such, proceeds at a finite rate. In the limit that the process evolves
infinitely slowly, it becomes an infinitely dense succession of equilibrium states, ie., it
becomes quasistatic (cf. § 1.13). A quasistatic process is represented by a locus’ (ie., a
succession of points) on the surface in thermodynamic configuration space defined by the
fundamental equation. Figure 5.1 below shows such a succession of points.

Quasi-static __[," B g
locus or C 4 Initalstate
Quasi-static  “~__ _—

process s Xk

Fig. 5.1 Representation of a quasistatic process in thermodynamic configuration space
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For simplicity the surface S = S(U, ..., Xj, ... ) is displayed as a function, in
addition to the internal energy, of only one out of the totality of the extensive parameters,
X, of a composite system.

5.2 Reversible Processes

If, in a thermodynamic process, the system and its surroundings are at equilibrium
with each other at all times, a reversal of the direction of the process does not require any
external agency. Such a process is called reversible. There is no internally generated heat.
At the conclusion of a reversible process the state of the system is the same as it was before
the process began (cf. §1.13) and the change in total entropy is zero, i.e.,

dStewi = 0. (5.2)

The process thus proceeds at constant total entropy as illustrated in Fig. 5.3. Such a

Fig. 5.3 A reversible process proceeding along a quasistatic isentropic locus

"isentropic’ reversible process would proceed from state A to state B along the intersection
of the § = const plane with the fundamental surface (§ 3.2). The coordinates of the surface
in the thermodynamic configuration space span the composite system consisting of the
system of interest as one, and its surroundings as another, subsystem. A reversible process
is necessarily quasistatic although the converse is not true. Figure 5.1 illustrates a quasi-
static process which is not isentropic and, hence, not reversible.

A reversible, ie., isentropic quasistatic process is essentially a useful artifice
representing an ideal limiting case. Many real physical processes do, however, approach
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reversibility surprisingly closely. This is especially true of mechanical processes in which
friction effects can often be kept to a bare mininmum.

5.3 The Clausius Equality

Comparison of Egs.(2.6); and (3.5); reveals the quasistatic heat flux, 6Q, to be
equal to the heat term, T'dS, and it follows that the infinitesimal change in entropy thus
becomes

dS = §QIT . (5.3)

Equation (5.3) is called the Clausius equality.

5.4 Measurability of Entropy Changes

The Clausius equality enables us to measure changes in entropy in a quasistatic
(reversible) process. The reciprocal temperature, 1/T, is recognized as an infegrating factor
which permits integration of the inexact differential, 6Q. The integration yields the finite
change in entropy as

AS = f e Q (54

and, since @ can be measured (cf. § 2.9), the change in entropy can be obtained by dividing
the quasistatic heat flux, @, by the temperature, T.

5.5 The Clausius Inequality — The Second Law of Thermodynamics

By Postulate IV a real physical process (a spontaneous natural process) is always
accompanied by an increase in entropy (cf. § 2.17). Therefore, the change in entropy taking
place in a real physical process is always greater than the change which would occur as the
result of a quasistatic heat flux. This is expressed by the Clausius Inequality

dS > 6QIT (5-5n

in which the equal sign applies only to the limiting case of a quasistatic process. The
inequality is commonly referred to as a mathematical expression of the Second Law of
Thermodynamics (cf. § 7.17).

Making use of the internally generated heat (cf. § 2.7), we can rewrite Eq.(5.5); as

dS = 6QIT + 6Q'IT . (5.5)

The two Eqgs. (5.5) become the Clausius equality when the internally generated heat
vanishes.
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5.6 Entropy Production

According to the foregoing, the elemental change in entropy can be divided into two
parts. The first, d.S, is the change in entropy arising from interactions with the exterior of
the system. The second, d;S, represents the entropy change produced in its interior due to
internally generated heat. We therefore have

dS =6QIT +6Q'IT =d.,S +d;S . (5.6)
Postulate IV, formulated another way, states that
&S =6Q'IT >0 (5.6),

i.e., the entropy created in the interior of a system is never negative. It vanishes only in a
process in which there is no internally generated heat and, hence, no production of entropy
in the interior of the system. Clearly, in that case dS = d,S.

Equilibrium thermodynamics cannot say anything about the production of entropy in
a real physical process. This, indeed, is the central problem of the thermodynamics of non-
equilibrium processes. The quantitative determination of the entropy produced in a steady-
state process will be the central problem of Part 1.

5.7 Irreversible Processes

Any real physical process is irreversible. The very fact that the process is assumed
to proceed implies that the entropy in the final state is greater than that in the initial state. It
is impossible to reverse the process by manipulating constraints within the same isolated
system because a manipulation resulting in a decrease in entropy in the isolated system
would be a violation of the entropy maximum principle. The terms: real physical (or
spontaneous natural) process and irreversible process, may be used interchangeably
(cf. § 1.13).

5.8 Direction of an Irreversible Process

The direction of a real physical process is determined by the Clausius inequality.
Such a process will proceed spontaneously only in the direction in which the total entropy
of the isolated system in which the process occurs, increases (cf. § 4.10). A change in the
opposing direction requires an external agency (cf. § 7.4).

For a real physical process to proceed spontancously, the change in entropy at
constant internal energy must increase and, concomitantly, the change in internal energy at
constant entropy must decrease. In mathematical language this is expressed by

(dS)y >0 and (dU)s <O. (5.8)

These relations therefore determine the direction of an irreversible process and should be
compared with the equilibrium conditions given in §§ 4.3 and 4.4.
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5.9 Irreversible Processes in Equilibrium Thermodynamics

The reason that at least some aspects of irreversible processes can be treated in
equilibrium thermodynamics is the following: For every irreversible (i.e., real physical)
process proceeding from an equilibrium state A to a new equilibrium state B, a reversible
process may be devised which has the same mitial equilibrium state A and final equilibrium
state B. Thus, an ordered succession of equilibrium states may be substituted for the real
physical process which is a temporal evolution of both equilibrium and non-equilibrium
states. The state functions which characterize the equilibrium states are independent of the
path through which the system has been taken and the end result is the same whether the
path had been a highly idealized reversible path or an irreversible one.
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6. REVERSIBLE SOURCES AND RESERVOIRS

We now introduce a set of idealized auxiliary thermodynamic systems with special
propetties that they possess by definition. These systems are the reversible work, heat, and
matter sources” and reservoirs. We call them auxiliary systems because they serve as
components in composite systems whose main component we wish to investigate. Their
primary purpose is to assure constancy of one or the other intensive parameter (the
temperature, pressure, or chemical potential) in the main component. Much use is made of
these auxiliary systems in the next chapter but their use occurs frequently also elsewhere
throughout this text.

6.0 Chapter Contents

6.1 Reversible Work Source

6.2 Work Reservoir

6.3 Reversible Heat Source

6.4 Heat Reservoir

6.5 Reversible Matter Source

6.6 Matter Reservoir

6.7 Total Change in Entropy in Interaction with a Reversible Source

6.1 Reversible Work Source (RWS)

A system enclosed by adiabatic impermeable walls in which all processes of interest
are quasistatic is a reversible work source. When coupled to another system through a
movable wall, a reversible work source acts as a quasistatic source or sink of work.

Since there is neither heat nor matter flux into or out of the reversible work source,
it is at constant entropy, i.e. dS®¥S = 0. There is an appropriate reversible work source for
each kind of work. If the latter is pressure-volume work, the reversible work source is a
reversible source of volume. In that case the change in internal energy becomes

dURWS _ sWRWS _ _ pRWS ;1 -RWS (6.1)

6.2 Work Reservoir (WR)

A very large reversible work source is called a work reservoir. In a work reservoir
the intensive parameter of the work term is constant. If the work is pressure-volume work,
the pressure of a volume reservoir (VR) is constant. Such a work reservoir acts as a
manostat. It keeps the pressure of a coupled system constant at the value of its own
pressure. The atmosphere can frequently be considered to be a good approximation to a
volume reservoir.

2 The idealized system will be called a source regardless of whether it functions as a source or as a sink.
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6.3 Reversible Heat Source (RHS)

A system enclosed by rigid impermeable walls in which all processes of interest are
quasistatic is a reversible heat source. When coupled to another system through a
diathermal wall, a reversible heat source acts as a quasistatic source or sink of heat.

Since the only enmergy exchange of the reversible heat source with any coupled
system is a flux of heat, the change in internal energy within the reversible heat source is

given by
dURHES = sQRYS . TRES jGRHS (6.3)

6.4 Heat Reservoir (HR)

A very large reversible heat source is called a heat reservoir. The temperature of a
heat reservoir is constant. A heat reservoir coupled to another system through a diathermal
wall acts as a thermostat. It keeps the temperature of the coupled system constant at the
value of its own temperature. The atmosphere can frequently be considered to be a good
approximation to a heat reservoir.

6.5 Reversible Matter Source (RMS)

A system enclosed by rigid diathermal walls in which all processes of interest are
quasistatic is called a reversible matter source. When coupled to another system through a
permeable wall, a reversible matter source acts as a quasistatic source or sink of matter.

No work is exchanged with a reversible matter source. However, if the walls of the
reversible matter source were adiabatic to exclude any flow of heat, its entropy would not
be constant because of the flow of matter which carries its own entropy (cf. § 2.10). Hence,
the walls of a reversible matter source must be diathermal as well as permeable and the
reversible matter source is simultaneously a reversible heat as well as a reversible matter
source.

There is an appropriate reversible matter source for each kind of matter. If several
kinds are considered, the walls of the reversible matter source must be semi-permeable, i.e.
permeable to one kind of matter only.

6.6 Matter Reservoir (MR)

A very large reversible matter source is called a matter reservoir. In a matter
reservoir the chemical potential of the species of which it consists is constant. When
coupled to another system through a semi-permeable wall, a matter reservoir keeps the
chemical potential of the coupled system constant at the value of its own potential. It thus
acts as a chemostat. The ocean can be considered to be a good approximation to a matter
reservoir for sodium chloride.

6.7 Total Change in Entropy in Interaction with a Reversible Source
In the interaction of a given thermodynamic system with a reversible heat, work, or
matter source the foral change in entropy is zero because the processes are reversible.
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7. WORK AND HEAT

This chapter inquires into the circumstances under which heat can be converted into work.
The reverse, i.e., the conversion of work into heat, can always be accomplished completely,
i.e., with 100% efficiency. Moreover, if the process is carried out isothermally—removing
the heat generated or supplying the heat needed—the system that accomplishes the
conversion remains itself unchanged at the end of the process. The process can therefore be
continued indefinitely. The situation is quite different when heat is converted into work.
This is another manifestation of the special nature of heat as a form of energy exchange
(cf. § 2.20).

7.0 Chapter Contents

7.1 Conversion of Heat into Work

7.2 Maximum Work and Maximum Mass Action Processes

7.3 Useful Work and Lost Work

7.4 Decrease in Entropy in a Real Physical Process — Thermodynamic Engines
7.5 Prnciple of Operation of a Heat Engine

7.6 Efficiency of a Heat Engine

7.7 Principle of Operation of Heat Pumps and Refrigerators

7.8 Performance of a Heat Pump

7.9 Performance of a Refrigerator

7.10 Cyclic Operation

7.11 The Camnot Cycle and the Camnot Engine

7.12 Analysis of the Carnot Cycle

7.13 The Complete Camot Cycle

7.14 Thermodynamic Temperature Scale

7.15 The Dimensions of Entropy and of Temperature

7.16 Poincaré Statement of the First Law

7.17 Kelvin-Planck and Clausius Statements of the Second Law

7.18 Alternative Formulations of the First and Second Laws

7.19 Statements of the Third Law

7.20 Unsuitability of the Historic Laws of Thermodynamics as Postulates

7.1 Conversion of Heat into Work

Although it is possible to convert heat into work completely, at the end of such a
process the state of the system is changed. To illustrate: consider the isothermal expansion
of an ideal gas. The system is attached to a heat reservoir (effectively a thermostat,
cf § 6.4) to ensure isothermal conditions. The internal energy of an ideal gas depends solely
on the temperature (cf. § 12.2). Since this is constant, there is no change in internal energy.
Hence, AU = W + @ = 0, and the heat, Q, drawn from the heat reservoir is completely
converted into the work of expansion, W. However, at the end of the process the volume
as well as the pressure of the system are not what they were before the expansion. The state
of the system thus has changed. To continue ad /ibitum a process of converting heat into
work it is necessary to arrange a cyclic process m which the system is restored to its
original state at the completion of each cycle. It turns out that this requires the sacrifice of a
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portion of the heat (cf. § 7.5 below). As a result, such a conversion never proceeds with
100% efficiency even if the conversion were carried out reversibly. It thus becomes
necessary to establish the conditions under which the maximum amount of work can be
extracted from a given process, and to consider how heat can be converted into work in a
continuous cyclic operation.

7.2 Maximum Work and Maximum Mass Action Processes

Of all processes occurring between a given initial and a given final state of a system,
the flux of heat is minimum, and the flux of work or matter is maximum, in the absence of
internally generated heat, ie., in a reversible process (cf. § 5.2). Thus, when a system is
coupled to another system to which it delivers heat, work, or mass action, the heat delivered
is minimum, and the work and the mass action are maximum, if the transfer is to a reversible
heat, work, or matter source. We then speak of a maximum work process, or a maximum
mass action process.

7.3 Useful Work and Lost Work

The maximum work that the system can deliver in a reversible process is useful
work. In an irreversible, i.e., real physical process, this work is reduced by the portion lost
to dissipative phenomena (cf § 2.18) in the form of internally generated heat. This work is
called dissipative or lost work although it is properly speaking a lost opportunity to extract
work. Equilibrium thermodynamics does not inquire into the origin or the nature of the
various dissipative effects (mechanical friction, viscosity, electrical resistance, etc.). It
simply acknowledges their existence and provides a framework for dealing with them
thermodynamically in an appropriate manner. It does that through the concept of entropy
and, in particular, through that of the Clausius inequality (cf. § 5.5).

7.4 Decrease in Entropy in a Real Physical Process — Thermodynamic Engines

In an isolated thermodynamic system a real physical process is necessarily
accompanied by an increase in entropy because an isolated system in equilibrium cannot
spontancously proceed to another equilibrium state with lower entropy (cf §5.8).
However, in a cyclic process the system must be brought into a state of lower entropy as
part of the cycle. This can be accomplished if the system is coupled with another, and if
thereby the fotal entropy of the composite system increases. This principle can be illustrated
with the help of idealized devices known as thermodynamic engines. They are either heat
engines, or heat pumps and refrigerators. Coupled thermodynamic engines operate
cyclically.

7.5 Principle of Operation of a Heat Engine

A heat engine is a device that converts heat into work. In the schematic below the
heat engine withdraws an amount of heat, 5Q, from a reversible heat source (the 4ot
source) at the temperature 7", rejects the amount of heat 5Q° to another reversible heat
source (the cold source) at the temperatuyre T°, and delivers the difference, SWRWS, 0 a
reversible work source. The heat engine, the two reversible heat sources, and the reversible
work source, form an isolated composite system in which the total change in internal energy
is zero.
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Hot RHS
7h

sah

RWS
RWS oW

éQc

7¢
Cold RHS

Fig. 7.5 Schematic of the operation of a heat engine

Hence, by the principle of the conservation of energy (§ 2.6),
dU = §WRWS L 5QP +6Q° =0. (7.51

Since the coupled processes considered are deemed to be reversible, the total change in
entropy is also zero, i.e.,

(St +5°)=0. (7.5)

The entropy in the hot source decreases. However, this decrease is exactly compensated by
an equivalent increase of the entropy in the cold source. Since T° < Th, 6Q° = T°dS° is
less than 5Q" = T"dS®, the changes in entropy, dS° and dS®, being of the same
magnitude. The difference in energy is available as work. From Eq.(7.5); we obtain the
work delivered to the reversible work source as

5Q° T
SWERWS — _ s0h [1 4 @] - — Q" [1 _ ﬁ] i (7.5);

the second of these equations following from Eq.(7.5),. The signs in Eq.(7.5); are chosen
from the viewpoint of the heat engine. The work, SWEXWS  is delivered by the heat engine,
the heat, 6Q", is delivered 7o it. The work is maximum because we have considered rever-
sible processes. In an irreversible, ie., real physical process, the work would not be
maximum because of the occurrence of dissipative phenomena, but the principle of
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operation of the heat engine remains the same. Clearly, the total amount of the heat
withdrawn, 6Q", could be converted into work only if the heat could be rejected to a
reservoir at 7° = 0.

It is also clear that at the conclusion of the process the system is now at the
temperature T° whereas it originally was at TP, Its thermodynamic state has therefore been
changed. To operate cyclically it is necessary to reverse, as it were, the process just
described so that at the end of the new process the system is returned to its original state
(cf. § 7.10).

7.6 Efficiency of a Heat Engine
The fraction of the heat withdrawn that can be transformed into work is the
theoretical (thermodynamic) efficiency, €., of a heat engine. By Eq.(7.5); it is given by

— GWRWS  Th_ e
sQhr T Th

€ =

(7.6)

and is thus the ratio of — §WE®YS, the work delivered to the reversible work source, to
5Q", the heat extracted from the reversible heat source. If the process is irreversible, the
efficiency of the heat engine is clearly less than the theoretical (thermodynamic) efficiency.

We note that ¢, is a universal function of two temperatures. It does not depend on
the definition of the temperature scale on which the temperatures are measured.

7.7 Principle of Operation of Heat Pumps and Refrigerators

The thermodynamic heat engine just considered delivers work. In two other types of
thermodynamic engine work is absorbed. A thermodynamic engine that converts work into
heat is called either a heat pump or a refrigerator according to the way it is operated. A
schematic of the operation of a heat pump is shown in Fig. 7.7 below.

Hot RHS
7h

| RWS

7C
Cold RHS

Fig. 7.7 Schematic of the operation of a heat pump
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The engine absorbs the amount of work, §WEYS from a reversible work source, and the
amount of heat, §Q°, from a reversible heat source (the cold source) at the temperature T°.
It then delivers the amount of heat, 5QP, to a reversible heat source (the kot source) at the
temperature TP, Since the hot source becomes hotter, the engine is a heat pump.

If the process is conducted in such a manner that the cold source becomes colder,
the engine is called a refrigerator. In both cases the state of the gystem is altered from the
original state at the end of the process.

7.8 Performance of a Heat Pump
The ratio of — 6Q", the heat delivered by the pump, to sWEWVS, the work absorbed
by it is called the coefficient of performance of the heat pump. It is given by

_ 5Qh Th
SWRWS — Th _ 7c

(7.8)

€

The work taken from the work source is minimized (i.e., the negative work is maximized) in
a reversible process.

7.9 Performance of a Refrigerator
The coefficient of performance of a refrigerator is the ratio of 6Q°, the heat taken
from the cold source, to SWEWS, the work taken from the work source. It is given by

5Q° T

€

Again, the work required is minimized in a reversible process.

7.10 Cyclic Operation

To achieve the conversion of heat into work in a continuous cyclic process, the
operation of a heat engine must be combined with that of a heat pump. Since the state of
two thermodynamic engines operating in this manner is unchanged on completion of a full
cycle, they effectively are not part of the process of converting heat into work. Such a
combination is therefore often called an auxiliary heat engine when attention is focused on
the conversion process as such.

7.11 The Carnot Cycle and the Carnot Engine

Many cyclic operations can be devised and many are of great practical importance.
Historically the first to be described is the cycle named after its original investigator, Sadi
Camot (1878). We shall consider here only this, rather idealized, cycle because it is
distinguished by its simplicity and by its fundamental importance. An engine operating under
a Carnot cycle, i.e., a Carnot engine, is conceived to operate reversibly. This assures it of
maximum efficiency. It is useful to know that any cyclic process can always be broken into
an assembly of Carnot cycles .

3 see, e.g,, ter Haar and Wergeland (1966).
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To consider the operation of a Carnot engine in detail we image an idealized system
consisting of a cylinder filled with a suitable working fluid and provided with a frictionless
movable piston. This auxiliary engine forms an isolated system with a reversible work
source to which it is permanently attached, and with two heat reservoirs to either of which
it can be attached or not, as needed. We consider heat reservoirs instead of reversible heat
sources merely as a matter of convenience since it allows us to deal with finite instead of
infinitesimal changes.

A full cycle of operation of the system will comprise four distinct steps. Since we
are concerned with heat, we follow the changes in temperature (the intensive parameter of
heat) and in entropy (the extensive parameter of heat) and plot them against one another on
aT, S—diagram as

T
A B
=
-0 c
]
]
i
5 5 S

Fig. 7.11 T, S - diagram of a Carnot cycle

shown in Fig. 7.11. Other diagrams (e.g., a P, V —diagram) may, of course, be constructed
and may be useful in various contexts.

Step 1. During the first two steps the system operates as a heat engine. At the
beginning of the cycle we imagine it to be in contact with the hot, but not with the cold,
heat reservoir. The working fluid is under pressure (the piston is latched) and is at the
temperature, T1, of the reservoir. Its state is represented by point A in the diagram. In the
first step of the cycle we now allow the working fluid to undergo an isothermal expansion
by frecing the latch. In this process the engine takes an amount of heat, Q* = T*"AS, from
the heat reservoir and transfers a certain amount of work to the reversible work source. The
process is isothermal (we move from point A to point B in the diagram along the upper
isotherm AB).

Step 2. In the next step the engine is switched from the hot to the cold heat
reservoir. The working fluid now expands adiabatically until its temperature reaches that of
the cold reservoir, 7° In this process a firther amount of work is transferred to the
reversible work source from the engine at the expense of the internal energy of the working
fluid. There is no transfer of heat. Since the process is adiabatic and quasistatic, the change
in entropy is zero, i.e., AS = 0, and we move from point B in the diagram to point C along
the right adiabat BC.

Step 3. At the end of the first two steps the thermodynamic state of the engine is
altered. Its entropy and volume have increased, and its internal energy has decreased. To
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restore it to its original state, the first two steps are now reversed, in effect operating the
engine as a heat pump. In the third step the working fluid is first attached to the cold heat
reservoir and is then compressed isothermally. The reversible work source now performs
work on the working fluid until its entropy attains its original value. We move from point C
in the diagram to point D along the lower isotherm, CD. The engine transfers the amount of
heat, Q° = T°AS, to the cold heat reservoir.

Step 4. In the final step, the system is detached from the cold heat reservoir and the
working fluid is further compressed adiabatically until its temperature reaches that of the
hot heat reservoir, 7%, again. During this process the reversible work source performs more
work There is no transfer of heat, and the change in entropy is zero, ie., AS =0 as in
Step 2. In the diagram we move from point D to point A along the left adiabat DA, thus
completing the cycle. The internal energy and volume of the working fluid have now also
been restored to their original vales.

7.12 Analysis of the Carnot Cycle
The analysis of the complete cycle is simple. Because the engine has returned to its
initial state at the end of the cycle, the total change in its internal energy is zero. Hence,

AU = —W+Q"-@Q° =0, (7.12),

where W is the net work delivered to the reversible work source. W and Q° are taken with
the negative sign because they represent work and heat delivered by the engine. We have

W=Q'-Q°=(TE—T°)AS. (7.12),

There is a net transfer of work even though the engine works in reverse during part
of the cycle. The net work delivered per cycle, W, is represented by the rectangular area
ABCD in Fig. 7.11 while the areas ABSgS, and DCSpS, rtepresent Q" and Q°,
respectively.

Elimination of AS between Q" = TRAS and Q° = T°AS yields

Q" @
6= 7o (7.12);
The thermodynamic efficiency of the Carnot engine [cf. Eq.(7.6)] is given by
w T
€C a =1- ﬁ - (7.12)4

The last two equations govern the cycle and are known as the Carnot equations.
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7.13 The Complete Carnot Cycle

To recapitulate: In a complete Camnot cycle a quantity of heat is taken fiom a
reversible heat source, part of it is rejected to another reversible heat source at a lower
temperature, and the rest is delivered as work to a reversible work source. This is precisely
the process we have outlined qualitatively in § 7.1. We have now carefully specified the
steps in a cyclic operation which leaves the engine in its original state at the completion of
the cycle.

Since the efficiency of the Carnot engine is maximal, any engine operating cyclically
and reversibly between two temperatures follows the Carnot cycle and is a Camnot engine.

7.14 Thermodynamic Temperature Scale

Since W and @ are measurable (cf. § 2.9), the Camot equations, Eqs.(7.12); and
(7.12),, allow us to obtain temperature ratios. When a suitable reference temperature has
been selected, the temperature of any other body can, in principle, be determined
independently of any material property of the thermometric substance or of the definition of
the scale on which the temperatures are measured (cf §§ 4.11 and 7.6). That real physical
processes are never reversible, is a practical rather than a theoretical difficulty. Choosing the
triple point of water (cf § 19.14) as the reference temperature defines the absolute
thermodynanmic temperature scale or Kelvin scale.

7.15 The Dimensions of Entropy and of Temperature

By Eq.(3.10), the product of entropy and temperature has the dimensions of energy.
Within this restriction the dimensions of either factor can be selected arbitrarily. At least in
thermodynamics, the entropy is best considered to be a dimensionless quantity. This is in
accordance with the statistical mechanical view of entropy as a measure of randomness. The
dimensions of temperature then become the dimensions of energy. Selection of suitable
units of measurement for the entropy and/or the temperature is a matter of applied
thermedynamics.

7.16 Poincar¢ Statement of the First Law

The First Law of thermodynamics (§ 2.6) can be recast as a general statement on the
conversion of heat into mechanical work in a cyclic process. The statement, due to
Poincaré, reads:

“In any cyclic process the work done by a system equals the heat received
byit”.

Mathematically this can be expressed by the equation

f&w = f 5Q (7.16)

in which the integrals are circular integrals taken over a cycle, and W and Q are both
expressed in the same units of measurement.

A device which would violate the First Law by allowing the extraction of more
work from a system than the heat delivered to it, is called a perpetuum mobile (a perpetual
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motion device) of the first kind The Poincaré statement asserts the impossibility of the
existence of such a device.

7.17 Kelvin-Planck and Clausius Statements of the Second Law

The Second Law of thermodynamics (§ 5.5) can also be restated to apply
specifically to cyclic processes. The Clausius statement has reference to heat pumps. It
states:

“It is impossible to construct a device that, operating in a cycle, will produce
no effect other than the transfer of heat from a cooler to a hotter body”.

A device that would transfer heat from a cooler to a hotter body (in violation of the
principle enunciated in § 4.10) would be a perpetuum mobile of the second kind. The
Clausius statement thus asserts the impossibility of the existence of such a device.

The Kelvin-Planck statement has reference to heat engines. It states:

“It is impossible to construct a device that, operating in a cycle, will produce

no effect other than the extraction of heat from a reservoir and the performance

of an equivalent amount of work”.

The Kelvin-Planck and the Clausius statements are, of course, equivalent. Demon-

strations of this have been given frequently?. Mathematically, the statements may be
expressed as

6Q
f{ F =0 (7.17)

obtained by integrating Eq.((5.2), over the cycle. This equation is commonly referred to as
representing the Clausius theorem.

7.18 Alternative Formulations of the First and Second Laws

There are many alternative formulations of both laws. The ones that probably most
beguile by their simplicity and immediate application to everyday life, are:

“You can't get anything for nothing” or “There is no free lunch”
for the First Law, and

“What you get is less than what you expect” or “Life is tough”

for the Second Law.

4 see, e.g , Blinder (1969), p.303; Zemansky (1958), p.185.
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7.19 Statements of the Third Law

Although statements of the Third Law do not require the notion of a cyclic process,
we include some of them here for completeness. Nemnst originally formulated the Third Law
in the words:

“The entropy of any system vanishes at zero temperature”.

This is also known as the Nernst Heat Theorem (§ 2.21). The statement, however, is
not true in general There are systems (e.g. certain macromolecular compounds) for which
the entropy would not vanish at zero temperature even if the system were cooled infinitely
slowly.

A wider definition of the Third Law states that

“The entropy of any finite system is positive semi-definite in the state for which
=0

This statement is equivalent to Postulate V (cf. § 2.21) since, by §§ 3.3 and 3.5, the
derivative (0U /3S)|x(+s) defines the thermodynamic temperature.
Another formulation states:

“It is impossible to reduce the temperature of any system to zero by any
process in a finite number of steps".

This is akin in form to the statements of the Second Law in § 7.17 in that it asserts
the impossibility of a device or process. It expresses the unattainability of absolute zero.
That this statement follows from the Nemst Heat Theorem has been shown, e.g., by Blinder
(1969).

There are other statements of the Third Law, each emphasizing particular aspects.
Among them are the formulations associated with the names of Planck, Simon, Fowler and
Guggenheim, and others more.

7.20 Unsuitability of the Historic Laws of Thermodynamics as Postulates

A brief comment is in order here concerning the suitability of the so-called /aws of
thermodynamics as postulates for a systematic exposition of thermodynamic theory. The
laws evolved historically, and not in the order in which they are numbered. The essentials
leading to the Second Law were known before the First was generally appreciated. The
Zeroth Law was added after the Third.

Formulation of these laws in precise mathematical language requires other thermo-
dynamic concepts as already known. The statement of the Zeroth Law (§ 4.11) requires an
understanding of the notion of thermal equilibrium. Similar difficulties arise in connection
with the other laws.

The statement of the First Law contained in § 7.16 presupposes the notions of heat,
work, and a thermodynamic cyclic operation. Poincaré's statement for a cyclic process can
be recast as

yf (6Q — 6W)=0. (7.20)
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In a general, non-cyclic process the (algebraic) sum of 6Q and 6W is, of course, not zero.
We have [cf. Eq.(2.6),]

W+ 6Q =dU (7.20)

where 6W is now the work done on the system. A generalization of the First Law of
Thermodynamics thus /eads to a definition of the internal energy . However, we would
rather start with such a definition.

The Clausius Inequality, Eq.(5.5);, as well as the Clausius Theorem, Eq.(7.17) may
be taken as mathematical expressions of the Second Law but they cannot be reconciled with
the statements in § 7.17 without first introducing the concepts of entropy, temperature, and
cyclic processes.

The formulations of the Third Law given in § 7.19 require the notion of entropy and
temperature. With respect to that law it is now generally accepted that a true understanding
of it can be achieved only in the framework of quantum mechanics which exceeds the scope
of the present work.

We conclude that the historical laws do not form a postulatory basis for an
exposition of the structure of the theory of equilibrium thermodynamics.
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8. THERMODYNAMIC POTENTIALS

To understand the behavior of a thermodynamic system when one or more of its infensive
parameters are held constant requires forms of the fundamental equation in which one or
more of the extensive parameters are replaced by the conjugate intensive parameter without
loss of information.

If these forms of the findamental equation are derived in the energy representation,
we refer to them as alfernative thermodynamic potentials for reasons that will become clear
in the first few sections to follow. These thermodynamic potentials, their derivation through
the use of the Legendre transformation, their properties, and some closely related topics—in
particular the Gibbs-Duhem equation and the degrees of freedom of a thermodynamic
system—are the subject of this chapter.

In the entropy representation an analogous development defines the so-called
Massieu functions that form the subject of the next chapter.
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8.1 The Internal Energy as a Thermodynamic Potential

The internal energy, U, may be regarded as a thermodynamic potential for work,
heat, or mass action. We recognize this when we examine the partial derivative of U with
respect to the volume, V, or the entropy S, or the mole numbers, IV,,,, keeping all others
constant. By §§ 3.3 and 3.6, in the energy representation the jth intensity parameter is

=22 . 8.1)

9X; X(2X;)

Let us now substitute for X in Eq.(8.1) the parameters V', S, N,,, in turn.

8.2 The Internal Energy as a Potential for Work

Consider first a multicomponent simple system in which volume change is the only
work. Taking the derivative with respect to the volume, we have, at constant entropy and
mole numbers,

U

—-P=_— .
Vis, .v..

(8.2)

Thus, by an analogy from mechanics, at constant entropy and constant mole numbers, the
internal energy, U, may be considered a 'potential for work’. To see this more clearly,
consider an isolated system in contact with a reversible work source (RWS). By the
principle of the conservation of energy (Postulate II, § 2.4), since there is no change in
either heat or mass action,

—dU = SWRWS | (8.2),

The decrease in internal energy therefore indeed represents the amount of work the simple
system can deliver to a reversible work source in a reversible process at constant entropy
and constant mole numbers.

8.3 The Internal Energy as a Potential for Heat
At constant volume and mole numbers, Eq.(8.1) becomes

U

T="=
N

(8.3n

and, by Eq.(8.3);, U may equally be regarded as a 'potential for heat'. This time let the
system be in contact with a reversible heat source (RHS). Since there is no change in either
work or mass action,



8. THERMODYNAMIC POTENTIALS 51
— dU = 6QRHS | (8.3)

and this is the decrease in internal energy representing the amount of heat the system can
deliver to a reversible heat source in a reversible process at constant volume and constant
composition.

8.4 The Internal Energy as a Potential for Mass Action
Finally, at constant volume, entropy, and all mole numbers except the mth,

U

l_[, o — 5 (8.4)1
" aNm S,V, N(#Nx)

and this shows U to be a 'potential for mass action' at constant entropy, volume, and mole
numbers other than N,,,. We now find

_ dU = §MRMS (8.4),

for the decrease in internal energy representing the amount of mass action the system can
deliver to a reversible matter source (RMS) in a reversible process at constant entropy,
volume, and the chosen constant mole number.

8.5 Alternative Thermodynamic Potentials

An alternative thermodynamic potential is a fundamental equation containing one or
more intensive parameters as canonical variables. Such a fundamental equation cannot be
obtained simply by replacing an extensive parameter by its conjugate intensive parameter. A
simple replacement does not turn a fundamental equation into another one. Instead, it
produces an equation of state, with an attendant loss of information.

Consider an example. Replacement of the entropy, S, in the fundamental equation
for the physical simple system, U = U (S, V), by its conjugate parameter, the temperature,
T, gives U = U(T, V), the differential form of which is

a =2 ar+ %

= 8.5
aT |- avi, @ (85)

T

This implies that T = T(U, V), i.e., a functional dependence of T on U and V' which, by
§ 3.11, is an equation of state. The replacement has thus resulted in a loss of information
because 7 is a partial derivative of U (cf § 3.12). Integration of Eq.(8.5) can therefore
recover the fundamental equation only within an arbitrary constant of integration.
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8.6 The Legendre Transformation

The appropriate device for generating alternative thermodynamic potentials without
loss of information is the Legendre transformation (see Appendix 3). Each alternative
thermodynamic potential leads to an altemative form of the fundamental equation with its
own extremum principle, equilibrium and stability conditions, Gibbs equation, and Euler
equation. Not all possible alternative potentials are in common use.

8.7 Number of Alternative Thermodynamic Potentials

We consider the number of alternative thermodynamic potentials that are possible
for a given thermodynamic system. A system with n parameters (all of which are extensive)
has as many alternative thermodynamic potentials as there are partial® Legendre transforms
of the internal energy. By § A3.7 this number is 2" — 2. The fotal number of thermo-
dynamic potentials includes the internal energy and is therefore 2" — 1, i.e., 1 more than the
number of alternative potentials.

8.8 Degrees of Freedom

While the extensive parameters of a thermodynamic system are independent of each
other, the conjugate intensive parameters are not (cf § 8.22). The number of intensive
parameters that are capable of independent variation is called the rnumber of degrees of
Jfreedom, f, of the system. This number is 1 less than the number of extensive variables, i.e.,
f=n — 1. If the system is of constant composition, the number of degrees of freedom
reduces by one and the number of alternative thermodynamic potentials is halved. If the
system is composed of more than 1 component, the number of extensive variables is
increased by 1 for each added component.

To illustrate: the single-component simple system with U = U (S, V, N) has 3
extensive parameters, 2 degrees of freedom, 6 alternative, and a total number of 7 thermo-
dynamic potentials. At constant composition the number of alternative potentials is halved
because only the Legendre transformations that exclude the chemical potential, u, are of
interest. The total number of thermodynamic potentials then becomes 4.

8.9 The Primary Alternative Thermodynamic Potentials

We now proceed to introduce what we may call the primary alternative thermo-
dynamic potentials, namely, the potentials of the single-component simple system at
constant composition. The three new primary potentials (ie., those in addition to U), are
the free energy, F, the enthalpy, H, and the free enthalpy, G. These potentials are
obtained as Legendre transforms involving the temperature and/or the pressure. For each of
the new potentials we consider the work available when the respective intensive canonical
variable or variables are held constant. We then state the extremum principle, the
equilibrium and stability conditions, and the Gibbs and the Euler equations for each
potential.

Brief reference will be made in §§ 8.19 and 8.21 to the potentials obtained through
Legendre transformations including the chemical potential, u.

3 The complete Legendre transform vanishes (see §§ 8.22 and A3.5)
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8.10 The Free Energy

In a single-component simple system U[T] is that Legendre transform of
U(S,V,N) in which the entropy, S, has been replaced by the temperature, T. The
thermodynamic potential

F=U[T|=U-TS (8.10)

is called the (Helmholtz) free energy or Helmholiz potential®. The canonical variables of the
free energy of a simple system are T, V,and ... N_.... Thus, we have the alternative
fundamental equation of a multicomponent simple system in the free energy representation

F=F(TV,...N,...) (8.10),
and the Gibbs equation becomes

dF = — SdT — PdV + Zmpmde (8.10)3

in the same representation. The relations

OF
—P=_—— 8.10
Vil (8.10)4
and
oF
Bm = o8 (8.10)s
m T, V, N(£N,)

show that the free energy is a potential for work at constant temperature and composition,
and one for mass action at constant temperature, volume, and mole numbers other than N;,.
Taking the total differential of F' = U — T'S we see that at constant temperature the
change in free energy is
dF = dU — TdS. (8.10)6
Substituting for U in F = U — T'S from Eq.(3.10), yields
F=—-PV+3> tmNg (3.10);

as the alternative form of the Euler equation in the free energy representation.

6 The free energy is sometimes, particularly in the older literature, refered to as the work content and is then
usually assigned the symbol A.
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8.11 Work Available at Constant Temperature

The free energy represents the amount of work available from a closed simple
system in contact with a reversible work source and with a heat reservoir. By Postulate 11
(§ 2.4), since in a closed system there is no change in mass action,

dU = — SWRWS _ QR (8.11)

where the work term has been given the negative sign because it is work delivered by the
system 7o the reversible work source. Now, by § 6.3, 6QER = THRGSHR and, since the
temperature is constant and the reversible work source is at constant entropy, we have
SQMR = 0, and, hence,

~dF = —d(U —TS) = sWR¥S, (8.11),

This shows that, as asserted, the decrease in free energy equals the amount of work a closed
system can deliver in a reversible process at constant temperature.

We may express this in another way by saying that F represents that part of the
internal energy that can be transformed into work at constant temperature. It is thus the free
energy while T'S may be called the bound energy or the isothermally unavailable energy.

8.12 Extremum Principle, Equilibrium and Stability Conditions for the Free Energy
The extremum principle for the free energy states:

“At equilibrium the value of any unconstrained parameter of a system in
diathermal contact with a heat reservoir is such that the free energy is

minimized at constant temperature”.

By § 4.4) the conditions of equilibrium and stability for the free energy are
(dF)r =0 and (d’F)r >0. (8.12)

For a process to proceed spontancously at constant temperature we must therefore have
(dF)r < 0, ie., the free energy of a system must decrease.

8.13 The Enthalpy
The alternative thermodynamic potential

H=U[P]|=U+PV (8.13)

7 The enthalpy is sometimes referred to as the heat content.
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is called the enthalpy’. Its canonical variables in a simple system are S, P, and ... N,,...
We now have the fundamental equation of a multicomponent simple system in the enthalpy
representation

H=H(S,P,...N,...) (8.13),
and the Gibbs equation

dH =TdS+VdP+Y  pndN,. (8.13);

in the same representation. The relations

OH
T=22 8.13
aS P,...N... ( )4
and
= 2 (8.13)s
N |, P, N{(#N,,)

show that the enthalpy is a potential for heat at constant pressure and composition, and a
potential for mass action at constant entropy, pressure, and mole numbers other than V,,,.
At constant pressure the change in enthalpy is

dH = dU + PdV . (8.13)s

Substituting for U in H = U + PV from Eq.(3.10), yields

H=TS+ Zm,umNm (8.13);

as the alternative form of the Euler equation in the enthalpy representation.
8.14 Work Available at Constant Pressure
The enthalpy represents the amount of work available from a closed simple system

in contact with a reversible work source and a volume reservoir. Since there is neither heat
flux nor mass action, we have

dU = — §WRWS _ siwVR | (8.14),

7 The enthalpy is sometimes referred to as the heat content.
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But
SWVYR = PYRGyWR (8.14),

and therefore
~dH = —d(U 4+ PV) = 6WRWS, (8.14)3

Thus, the decrease in enthalpy equals the amount of work a closed system can deliver in a
reversible process at constant pressure.

In an arbitrary process both heat and work may be transferred to the system. If the
latter is closed and is maintained at constant pressure, all but the first term on the right-hand
side of Eq.(8.13); vanish and we have

(dH)p,. . n. =TdS =6Q (8.14)4

by Eq.(5.3). Thus, heat added to a closed system at constant pressure appears as an increase
in enthalpy.

8.15 Extremum Principle, Equilibrium and Stability Conditions for the Enthalpy
The extremum principle for the enthalpy states:

“At equilibrium the value of any unconstrained parameter of a simple
system coupled with a volume reservoir through a movable wall is such that

the enthalpy is minimized at constant pressure”.

The conditions of equilibrium and stability for the enthalpy become:
(dH)p=0 and (d°H)p>0. (8.15)

For a process to proceed spontaneously at constant pressure we must therefore have
(dH)p < 0,1e., the enthalpy of the system must decrease.

8.16 The Free Enthalpy
The alternative thermodynamic potential

G=U[T,Pl=U-TS+PV=H-TS (8.16),

is called the fiee enthalpy or Gibbs free energy or Gibbs potential. Its canonical variables in
a simple systemare T, P, and ... N,,,. ..
We obtain the fundamental equation in the free enthaipy representation as
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G=G(T,P,...Ny...) (8.16)

and the Gibbs equation as
dG = — SdT +VdP + Zmpmde (8.16)3

in the same representation. The relation

e
Hm = BN,

(8.16)4

T,P,N(#Npn)

shows that the free enthalpy is a potential for mass action at constant temperature, pressure,
and mole numbers other than N,,,.
At constant temperature and pressure the change in free enthalpy is

dG = dU — TdS + PdV . (8.16)s

Substituting for U in G = U — T'S + PV from Eq.(3.10)4 yieldsthe Euler equation
as

G= Zm,umNm. (8.16)s

The Euler equation of a multicomponent simple system in the free enthalpy representation
thus consists of the mass action terms only.

Equations (8.16)4 and (8.16)¢ are valid only for simple thermodynamic systems. In
non-simple systems other alternative potentials assume the role of the free enthalpy [see
§ 8.25 and the Introduction to Chapter 17; specifically, compare the two equations
Eqs.(8.16)4 and (8.16)¢ with Egs.(17.10); and (17.5)4+].

8.17 Work Available at Constant Temperature and Pressure

The free enthalpy represents the amount of work available from a closed simple
system in contact with a reversible work source and a heat reservoir as well as a volume
reservoir. By arguments analogous to those used in §§ 8.11 and 8.14, we have

~dG = —d(U - TS + PV) = — d(H — TS) = sW™¥S_ (8.17)

Thus, the decrease in free enthalpy equals the amount of work a closed simple system can
deliver in a reversible process at constant temperature and pressure.

Expressing this again in another way we may say that G represents that part of the
internal energy that can be transformed into work at constant temperature and pressure.
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Alternatively, it is that part of the enthalpy that can be transformed into work at constant
temperature. It is thus the free enthalpy while T'S may be called the bound enthalpy or the
isothermally unavailable enthalpy. The term 'free enthalpy' thus appears preferable to the
alternate terms Gibbs free energy or Gibbs potential.

8.18 Extremum Principle, Equilibrium and Stability Conditions, for the Free
Enthalpy
The extremum principle for the free enthalpy states:

“At equilibrium the value of any unconstrained parameter of a system
coupled with a heat reservoir through a diathermal wall and with a volume
reservoir through a movable wall is such that the free enthalpy is minimized
at constant temperature and pressure”.

The conditions of equilibrium and stability for the free enthalpy become:

(dG)rp=0 and (d°G)rp>0. (8.18)
For a process to proceed spontaneously at constant temperature and pressure we must
therefore have (dG)r p < 0, i.e., the free enthalpy of the system must decrease.

8.19 The Grand Canonical Potential
The potential

J =U[T, p] =U = TS — puN,, = — PV, (8.19),

called the grand canonical potential for the mth component, is a potential for open
systems. Its canonical variables are T, V', and p,,,.

The Gibbs equation of the grand canonical potential of a single-component simple
system becomes

dJ = — 8dT + PdV — pudN . (8.19),

The grand canonical potential has found use in statistical mechanics.

8.20 The Extremum Principle, Equilibrium and Stability Conditions for the Grand
Canonical Potential
The extremum principle for the grand canonical potential states:

"At equilibrium the value of any unconstrained parameter of a single
component simple system coupled with a heat reservoir through a
diathermal wall and with a matter reservoir through a semi-permeable
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barrier is such that the grand canonical potential is minimized at constant
temperature and the chemical potential.

The conditions of equilibrium and stability for the grand canonical potential become:
(dN)r,=0 and (d®J)r,>0. (8.20)

For a process to proceed spontaneously at constant temperature and pressure we must
therefore have (dJ)r, < 0,i.e., the grand canonical potential of the system must decrease.

8.21 Other Thermodynamic Potentials of the Simple Systems

Of the six partial Legendre transforms of the internal energy of a single-component
simple system the first-order transform,

Ulul=T85 - PV, (8.21)
and the remaining second-order transform,

UP, ] =TS, (8.21),

have not received separate symbols or names. In a multicomponent simple system we also
have the additional transforms Ulu,, ], UT, g, and U[P, ., ]

8.22 The Gibbs-Duhem Equation

The complete Legendre transformation of the internal energy replaces all canonical
variables (i.e., extensive parameters) of the system by their conjugate intensive parameters
in the energy representation. But the complete Legendre transform of any system vanishes
(cf. § A3.5). The resulting differential equation linking the intensive variables of the system,

Zj Y;dX; =0, (8.22)

is called the Gibbs-Duhem equation.
As an example, the complete Legendre transform of a single-component simple
system is

UIT,P,ul=U—-~TS+PV —uN (8.22),
But, substituting for U from the Euler equation, Eq.(3.10)4, we find that
UIT,P,ul=0, (8.22);

and thus Eq.(8.22), yields
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SdT —VdP + Ndu =0 (8.22)4

as the Gibbs-Duhem equation of the single-component simple system. For a multi-
component simple system the equation takes the form

SdT — VAP +Y  Npdpn,= 0. (8.22)s

We infer that the Gibbs-Duhem equation of any system, including any non-simple system,
establishes a similar relation between the system's intensive parameters.

8.23 Significance of the Gibbs-Duhem Equation

The Gibbs-Duhem equation represents an important relation between the intensive
parameters, Y, of a system. Since the Y}, are all connected through this equation, they are
not independent of each other (cf. § 8.8). The integrated form of the equation can therefore
be used to find explicit expressions for the chemical potential.

8.24 The Chemical Potential Revisited

Taking the partial derivative with respect to N in the appropriate forms of the Gibbs
equation of a single component simple system, ie., Egs.(3.10);, (8.10);, (8.13)3, and
(8.16);, we find

au
8N

_ot
T’ ‘.' BN

oG

s.p ON

_F

= _— (18.24)
sy ON

T, P

In other words, the derivative of any of the thermodynamic potentials with respect to the
mole number (the amount of material) equals the chemical potential. Thus the chemical
potential occupies a special position among the other intensive parameters of the system: it
allows us to calculate the change in any of the thermodynamic potentials with a change in
the amount of material.

Equation (8.24) is easily extended to multicomponent simple systems. The partial
derivatives then take the forms exemplified by Eqs.(8.4);, (8.10)5, (8.13)s, and (8.16)4.

8.25 Thermodynamic Potentials in Non-Simple Systems

Hitherto we have considered only the so-called simple systems in which the PV
term is the only work term allowed. If work terms other than PV are to be accommodated,
then the Gibbs equation for a single component non-simple system m the energy
representation takes the form

dU =TdS —~ PdV + ZP Y,dX, + udN (8.25)
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where the Y, X, are the added work terms in which the Y, are the intensive, and the X, are
the extensive parameters. We must then define new thermodynamic potentials with the help
of the appropriate Legendre transformations. An example of this is discussed in Chapter 17.
The formalism can be extended to systems in which surface effects cannot be neglected or
which are acted on, e.g., by electrical, magnetic, or gravitational fields. Unfortunately the
number of definable thermodynamic potentials increases rapidly with the number of work
terms considered.
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9. MASSIEU FUNCTIONS

A Legendre transformation resulting in the replacement of one ore more extensive variables
by the conjugate intensive variable in the entropy representation defines a Massieu function.
We consider here only the Massieu functions for a single-component simple system. The
intensive parameters of this system in the entropy representation are 1/T, P/T, and u/T.
Extension to multicomponent simple systems is straightforward. There is no general
agreement on the symbols and names for the Massieu functions. We assign non-italic
uppercase Greek letters to them in this text.

Massieu functions are useful in manipulations based on the entropy representation.
Thus, they find application in irreversible thermodynamics and in statistical mechanics. In
this text, two of the Massieu functions serve in deriving the stability criteria in the entropy
representation (§ 18.14).

9.0 Chapter Contents

9.1 Massieu Functions from First-order Legendre Transformations

9.2 Massieu Functions from Second-order Legendre Transformations
9.3 The Gibbs-Duhem Equation in the Entropy Representation.

9.4 Relation of the Massieu Functions to the Thermodynamic Potentials
9.5 The Extremum Principles for the Massieu Functions

9.1 Massieu Functions from First-Order Legendre Transformations

By § 8.7 there are 6 Legendre transforms, hence 6 Massieu functions, for the single-
component simple system. We start by listing the Massieu functions obtained from the first-
order Legendre transforms of the base function, S = S(U, V, N) for that system in the
entropy representation. We recall the Euler equation in the entropy representation

1. P 4
- U 4+-V ) 9.1)
S U+ N G.1n

Let the first of the Massieu functions be
\I!=S[~} =S--U ©.1),
which is often called THE Massieu function. lis differential form is

'y Pav _Han. (9.1)s

d\If:dS[%]:—Ud—f+? 5

The next two Massieu functions of the single-component simple system are



9. MASSIEU FUNCTIONS 63

P P
=G5l =5 — — 9.1
S[T] SV D
with
P 1 P u
== — == - — = 9.1
d ds[T] FdU-vaz-£an, (9.1)s
and
_qlF] _ Jad 9.1
o sz -+ o
with
" 1 P du
_agfP1_ 1 P ap 91
de ds[T] A0+ av+nN L 9.1y

The last two functions are unnamed.

9.2 Massieu Functions from Second-order Legendre Transformations
Of the three Massieu functions for the single-component simple system resulting
from second-order Legendre transformations, the function

1P 1 P
== —_— —_— = _—— _— 9'2
@ S[T’ T] S—zU-FV -2
with
1P 1 P
aw=as|t Bl- —val_val - Ean 9.2
@ dS[T’T] Vdrp-Vdr-r1 ©-2)2
is often called the Planck function. The function
1 u 1 i
Q: =} == _— — 9-2
S[T’T] S—gU+g N -2
with
1w 1 P 1
S[T,T] Udr+=dV+Ndk (9.2),

is sometimes called the Kramer function. Finally, we have the unnamed fanction

P u

P B
r_s[f,f]=5—;fv+?zv (9.2)s

with
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P 1 P
dP:ds[—T—,%} =TdU—Vd~f+Nd%, (9.2)6

9.3 The Gibbs-Duhem Equation in the Entropy Representation.

For the single-component simple system the third order Legendre transformation is a
complete transformation. There is thus only one such Massieu function and this is the
Gibbs-Duhem equation in the entropy representation. We obtain it as

1 P p <
Udz+Vdr ~Ndz =0 9.3)

and this may be compared with its form in the energy representation, Eq.(8.22),.

Equation (9.3) is a relation between the I, the intensive parameters of the single
component simple system in the entropy representation, 1/T, P/T, and p/T, just as
Eq.(8.22) is a relation between the intensive parameters, T, P, and p, of the single
component simple system in the energy representation.

Extending this to the multicomponent simple system and to non-simple systems
alike, avers that the intensive parameters in the entropy representation are not independent
of each other (cf. § 8.23).

9.4 Relation of the Massieu Functions to the Thermodynamic Potentials

The Massieu functions bear simple relations to the thermodynamic potentials
although the relations are not immediately obvious for all. They are, however, readily
obtained. For convenience, we recall the Euler equation in the energy representation,

U=TS PV +uN. (9.4),

Then

F
. - - 9.4
=% (94

by Eq.(8.10),,

_TS—-PV _U-uN Uly
- T - T T

{1]

(9.4)3

by Eq.(8.21),,

_TS+uN U+PV _H

(]
T T T’

(9.4),
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by Eq.(8.13);,

 U-TS+PV _

G
T T’

P =

by Eq.(8.16),,

U-TS-uN PV

Q:

J
T T T’
by Eq.(8.19),, and finally

r_TS—PV+uN _U
- T T

by Eq.(3.10),.
We complete the pattern by noting that

by Eq.(8.21)s.

9.5 The Extremum Principles for the Massieu Functions

65

(9.4)

(9.4)

(9.4);

(9.4)g

While a thermodynamic potential is minimized at equilibrium for constant values of
its intensive canonical variable(s), a Massieu function is maximized under the same
conditions. This is easy to see in case of the ¥ and ¢ functions. Equations (9.4), and (9.4)s
indeed show that ¥ is maximized when F is minimized at constant temperature, and that ®
is maximized when G is minimized at constant temperature and pressure. However,
maximization of = requires that P/T be maximized while 1/T is varied. Thus, although the
principle is valid in theory, its experimental realization may be quite difficult, if not

impossible.
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10. SECOND-ORDER PARTIAL DERIVATIVES

In § 3.3 we introduced the intensive parameters as the first-order partial derivatives of the
internal energy. The second-order partial derivatives are no less important. A system having
n extensive variables and, hence, f = n — 1 degrees of freedom (cf. § 8.8), has a total of
f+1=n first order, and a total of J(f+ IXf+ 2) = n(n +1)/2 distinct second-order
partial derivatives of the internal energy. Since the order in which the differentiation is
carried out does not affect the value of a 'mixed' partial derivative, such derivatives are
equal and are not counted separately in the stated total number. The equivalence of the
mixed partial derivatives gives rise to a set of important refations known as the Maxwell
relations.

Second-order partial derivatives may be derived from thermodynamic potentials
other than the internal energy. Accordingly, we distinguish several sets of such derivatives.

10.0 Chapter Contents

10.1 The Fundamental Set

10.2 The Primary Set

10.3 Relations between the Fundamental and the Primary Sets
10.4 'Hybrid' Sets

10.5 Reduction of Partial Derivatives to the Primary Set

10.6 The Maxwell Relations

10.7 Corresponding Members of a Maxwell Relation

10.1 The Fundamental Set

We consider the second-order partial derivatives of the simplest thermodynamic
system3, the physical simple system (cf. § 1.9), for which U = U(S, V). It has thus a single
degree of freedom and, hence, two first-order, and three second-order partial derivatives.
The first-order derivatives are

U U
as|. = T and av |, ’
and the three second-order ones take the forms
U U | U ’ U
852 |, ovVasS|g 858V v vz

Making use of the first partial derivatives, the second ones become

8 For an example of a more complex system see Chapter 17.
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_ _9%F
s 8s

op
‘f’ aV

or
as

8T
v v

Nt

These derivatives are normally used in the form of their reciprocals

as

—1 =y 10.1

aT |, Cv/T (10.10

v s

A R 10.1

T | P |, asV (10.1),
1%

A 10.1
2P|, ksV (10.1)

where Cy is the heat capacity at constant volume (the isochoric heat capacity), ag is the
adiabatic expansivity, and kg is the adiabatic compressibility. We call this set of second-
order partial derivatives the fundamental set.

The useful relation
U
Cy = — i0.1
V=57 y (10.1)4

follows from Eq.(10.1); because in the physical simple system dU =TdS — PdV
[cf Eq.(3.10)4].

10.2 The Primary Set

In the derivatives just introduced the variables held constant were the extensive
parameters. A corresponding set of derivatives in which the intensive parameters are kept
constant, is obtained by using the free enthalpy, G, instead of the internal energy, U, as the
basis of the derivation. For the physical simple system we have G = G(T', P)and obtain

G G
—| = -8 — | =V
aT |, and oP |,
for the first, and
#c #c | _ vc G
8T\ 8PaT |,  8TAP|, aP? |,
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for the second-order derivatives. Making use of the first derivatives again, we find

_ % 95| _ov _w
T |p’ dP|y OT|p P |’
Again we use their reciprocals in the form
85
= Cp/T 10.2
a7, Cp/ (10.2);
2% 8s
_ —a 102
oT|,~ ~ap|, Y (102)
8v
—— = 10.2
aP . KTV ( )3

where Cp is the heat capacity at constant pressure (the isobaric heat capacity), ap is the
isobaric expansivity, and kr is the isothermal compressibility.

The new second-order partial derivatives can all be expressed in terms of the
fundamental set. They are, however, of primary importance experimentally. We therefore
call this set the primary set.

Since dH = TdS + VdP by Eq.(8.13);, we have

O0H

Cp="=
P= a7,

(10.2)

in analogy to Eq.(10.1),.

10.3 Relations between the Fundamental and the Primary Sets

Some useful relations can be established between the members of the fundamental
and the primary sets of the second-order partial derivatives. First we define the heat
capacity ratio as

v=Cp/Cy =cp/ey (10.3)
where cp = Cp/N and ¢y = Oy /N are the molar heat capacities. We then have

CP/C‘.'=FET/K,521—CYP/QS (10.3)2



10. SECOND-ORDER PARTIAL DERIVATIVES 69

i.e., the ratio is equal to the ratio of the compressibilities and is also simply related to the
ratio of the expansivities.
The heat capacity difference is usually given in the form

OV = CP - TVCY%;/KT . (103)3

These relations are derived in Appendix 2

10.4 'Hybrid' Sets

The fundamental and primary sets of second-order partial derivatives of the physical
simple system were derived from U = U(S, V), and G = G(T, P), respectively. In the
first, the canonical variables were the extensive parameters. In the second, they were the
intensive ones. Second-order partial derivatives may be obtained also from the alternative
thermodynamic potentials, the free energy, F = F(T, V), and the enthalpy, H = H(S, P).
These derivations form ybrid’ sets whose canonical variables comprise both extensive and
intensive parameters. A new coefficient is obtained only from the mixed second-order
partial derivatives of these potentials. We have :

8°F oP 82F as
—_— = — = /‘/V - — = — (104)1
aTdV |, ~ 8T |, avaT|, ~ avlg
and
0 H av o*H aT
— = =1 —_ — = . 10.4
asap|, = 85|, = Y = 3pas|, " aP|, (10.4),

where ~y is the isochoric (constant volume) pressure-temperature coefficient. Its
experimental determination from (8P /8T)y gives access to the other three derivatives
above that are difficult to obtain experimentally because they require manipulation of the
entropy, S.

10.5 Reduction of Partial Derivatives to the Primary Set

It is often desirable to express a given partial derivative in terms of the members of
the experimentally more convenient primary set or, in other words, in terms of the
parameters Cp, ap, and k7. Reduction of a derivative in this way is equivalent to a
coordinate transformation in thermodynamic configuration space to the canonical variables
of the free enthalpy, T, P, ....(cf. Eqs.10.2).

Several methods have been proposed for the reduction of partial derivatives to the
primary set. Callen (1963) describes a method of elimination based on the Maxwell relations
that form the topic of §10.6.

Another method is due to Bridgman. Bridgman (1914, 1961) constructed a table
containing the numerators and the denominators of the partial derivatives occurring in the
thermodynamics of the physical simple system in the form (9x),. A typical example
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illustrating the use of Bridgman's table follows. Suppose we wish to reduce the so-called
Joule-Thompson coefficient, (0T/9P)y [cf. Eq.(A2.3)16]. Then

9T| (@D V—-TVap V(Tap—1) (105)
8P|, @Pyy  -Cp _ Cp e

where (8T)y and (OP)y are taken from the table. This is certainly the simplest method.
Unfortunately, for any thermodynamic system with more than one degree of freedom the
table would have to be quite large and apparently no extended table has ever been published.

A convenient transformation of derivatives is based on the use of Jacobians. The
method consists in rewriting the derivative as a Jacobian, multiplying both the numerator
and the denominator by (T, P, ...N...), and rearranging. As an example, consider the
constant volume pressure-temperature coefficient introduced in the preceding paragraph.
We have

oP

_OP| _ &P, V) ¥T,P)  8V| OP
p OV

T 8T\, A&T,P) &T,V)  aT

= ap/h:]‘. (105)2
T

W

10.6 The Maxwell Relations

The relations equating the mixed second-order partial derivatives are known as the
Maxwell relations. These important relations often allow the substitution of a derivative
which is measured with relative ease in one experiment, for a derivative which is difficult, if
not impossible, to determine in another. A system with f degrees of freedom has %f(f +1)
mixed second-order partial derivatives—and, therefore, Maxwell relations—for every one
of the thermodynamic potentials. Since the total number of thermodynamic potentials is
2f+1 — 1 (cf. § 8.7), the total number of Maxwell relations for f degrees of freedom is
E+1)(28 —1).

The single-component simple system has 2 degrees of freedom. Of its 21 Maxwell
relations we list those that are derived from the thermodynamic potentials U, H, F, and G
since only these are in common use. The four potentials are displayed in bold font in the left
margin.

U:
oT oP aT Su oP au |
— = - 5 — - 5 - = (10‘6)]
A% SN as VN ON SV 35y n N sV av SN
F:
as| _op os|  _ou L TP
v TN - aT V,A\" ON T,V T V,,\"’ ON T,V v T’V ?
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H:
orT oV oT ou ov ou
= =220 0 Z4 228 2 ZZEE (106)
OP|s y 0OS PN ONl|sp 0Slpy aN S, P op S,N
G:
a5 oV as ou oV u
-2l =Hl . -2 =2E 0 oo = ZEjaoe)
OP|r y OT PN ON rp Tipn ON|r p ar T, N

Of these, the first of Eqs.(10.6); and (10.6); were introduced before as the
reciprocals of Eqs.(10.1)e and (10.2),, while the first of Eqs.(10.6) and (10.6); are non
others than Eqs.(10.4); and (10.4),, respectively. These 'first' equations are particularly
important because they allow us to determine hard-to-measure variations involving the
entropy, in terms of the expansivities and the isochoric pressure-temperature coefficient.

10.7 Corresponding Members of a Maxwell Relation

Let us consider the number of possible Maxwell relations in general. For the single-
component simple system (f = 2) there are altogether 21 Maxwell relations. For a binary
simple system (f = 3) the number of possible Maxwell relations rises to 90.

Clearly, we need a method for enabling us to find—given a mixed second-order
derivative—the corresponding member of the Maxwell relation whenever it is required. A
method to do this may be found in Appendix A2 on Jacobians. The necessary relations are
tabulated in § A2.2, part (5). An example is given in § A2.3, part (1).
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11. IDEAL SYSTEMS

The first ten chapters of this text established the armamentarium necessary to describe the
fundamental features of the phenomenological theory of equilibrium thermodynamics. This
chapter introduces concepts underlying idealized (or simply ideal) thermodynamic systems.
The next six chapters then discuss several such systems:

o the ideal gas,

o the monatomic ideal gas,

o the ideal mixture,

o the multicomponent ideal gas,
¢ the ideal solution,

e the ideal rubber.

Focusing particular attention on the single-component ideal gas, the first of the next
chapters describes more generally the features shared by all ideal gases. The chapter on the
ideal mixture discusses features common to the multicomponent ideal gas and to the ideal
solution. The behavior of the three ideal gas systems underlie the behavior of real gases.
Similarly, the ideal solution and the ideal rubber model the behavior of real solutions and
real rubbers. The ideal solution and the ideal rubber are examples of a liquid and a solid
system, respectively.

11.0 Chapter Contents

11.1 Idealized Systems

11.2 1deal Behavior

11.3 Criteria for Ideal Behavior
11.4 Domain of Validity

11.1 Idealized Systems

The idealized systems to be discussed in the following six chapters are model
systems in the sense of the motto heading the Preface. Thus, they are not, in general,
directly applicable to any real physical system. They do, however, model the basic features
of such systems. Real physical systems generally show deviations from the behavior
predicted by the idealized models. Much ingenuity has been devoted to the development of
improvements to account for the behavior of real systems. While extremely important in
practice, these improvements do not, however, present anything new from the viewpoint of
the basic structure of the theory of thermodynamic behavior and, therefore, are outside the
scope of this text.

11.2 Ideal Behavior

For the purposes of this text a necessary (but not necessarily sufficient) condition for
ideal behavior is that the contributions of the extensive parameters in the fundamental
equation be separable at constant composition. Putting this another way:
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“The fundamental equation of an ideal system consists of additive terms,
every one of which depends only on a single extensive variable aside from
compositional variables such as the mole numbers”.

This feature characterizes all six of the systems mentioned above.

It further follows that, at constant composition, each equation of state of an ideal
system—excepting the one involving the chemical potential—depends on only one of the
extensive variables of the system..

11.3 Criteria for Ideal Behavior

Sufficient conditions for ideal behavior are conveniently formulated in terms of the
intensive parameters since these do not depend on the size of the system. They are linked by
the Gibbs-Duhem equation [cf Eq.(8.22);]. We may thus express the sufficient condition for
the ideal behavior of a system by specifying the functional dependence of the chemical
potential on the other intensive parameters. For the single-component general ideal gas and
for the monatomic ideal gas the intensive parameters are T, P and. Hence, for these systems
the implicit form of the sufficient condition becomes

For the ideal mixture, the multicomponent ideal gas, and the ideal solution, this relation
becomes

pi = ;i (T, P, ;) (11.3)

because the chemical potential of the ith component depends on the composition. The latter
is taken into account by including the intensive compositional variable, 72;, i.e., the sth mole
fraction (cf § 14.5). The criteria for ideal behavior are then obtained by making the two
implicit relations above explicit for each of the systems considered (cf §§ 12.12, 13.10,
14.7,15.12, 16.4 and 17.16).

11. 4 Domain of Validity

The systems listed at the beginning of this chapter are model systems. It is in the
nature of a model that it bears no one-to-one correspondence to that which it models. The
set of properties assigned to every model defme its domain of validity within which it
comes arbitrarily close to the reality that underlies it. The domain of validity does not need
to be stated explicitly. However, when using a model, the user must always be aware of its
domain of validity and of its limitations outside of this domain. The monatomic ideal gas
furnighes a perfect example (see § 13.9).
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12. THE IDEAL GAS

The two extreme idealized thermodynamic systems are the ideal gas and the perfect crystal
In the first the arrangement of molecules (or atoms) is completely random, in the second it
is perfectly ordered. The thermodynamic properties of an ideal gas are particularly
instructive because of their relative simplicity. The simplest ideal gas is the monatomic ideal
gas which will be discussed in the next chapter. Any real gas, monatomic or not, appro-
ximates the behavior of an ideal gas in the limit that 77 — ocoand P — 0.

12.0 Chapter Contents

12.1 The Fundamental Equation of the Ideal Gas in the Entropy Representation
12.2 The Equations of State of the Ideal Gas in the Entropy Representation
12.3 Equivalence of the Complete Set of the Equations of State
with the Fundamental Equation
12.4 Empirical Ideal Gas Laws
12.5 The Primary Set of Partial Derivatives for an Ideal Gas
12.6 The Fundamental Equations of the Ideal Gas in Parametric Form
12.7 The Fundamental Equations of the Ideal Gas in Parametric Form
i Terms of ¢y (T')
12.8 The Fundamental Equations of the Ideal Gas in Parametric Form
in Terms of cp(T")
12.9  The Fundamental Equation of the Ideal Gas in the Free Energy
Representation
12.10 The Fundamental Equation of the Ideal Gas in the Free Enthalpy
Representation
12.11 The Gibbs-Duhem Equation of the Ideal Gas

12.1 The Fundamental Equation of the Ideal Gas in the Entropy Representation

Although thermodynamic theory does not depend on the existence of an explicit
form of the fundamental equation (cf. § 3), it is, nevertheless, useful to learn how the theory
applies when such a fundamental equation is available. The ideal gas presents us with the
opportunity of studying the properties of a rather simple fundamental equation. The ideal
rubber offers another such opportunity (cf. § 17.15).

The fundamental equation of an ideal gas cannot be derived within phenomeno-
logical thermodynamic theory. It can be obtained, however, in the entropy representation
from a complete set of the equations of state (cf. § 12.3), and can also be derived with the
help of classical statistical mechanics and quantum mechanics. Appendix 4 gives a short
account of the derivation of the (molar) fundamental equation of the single-component ideal
gas in the entropy representation. It leads to

s = s(u, v) = s, +Ru) + RiInv/v, (12.1)

where R is the universal gas constant, s = S/N,u =U/n,v=V /N, and the subscript
‘o' denotes a suitably chosen reference state. Equation (12.1); contains no term which
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depends simultaneously on both u and v and thus satisfies the requirement for ideal behavior
as formulated in § 11.2. The function f{u) is a function of = only. Its explicit form differs
from gas to gas but it will always be such that f{u,) = 0. Because fu) is not known
explicitly in general, Eq.(12.1); cannot be solved for the molar findamental equation in the
energy representation, u = u(s, v).

In terms of the mole number, N, Eq.(12.1); becomes

VN,

12.1
VN (12.1),

S = N% +NRU/N)+ NR In
o

as the general form of the fundamental equation of a single-component ideal gas in the
entropy representation. In the remainder of this chapter 'ideal gas’ will refer to a single-
component ideal gas unless otherwise stated.

12.2 The Equations of State of the Ideal Gas in the Entropy Representation

Because we have no explicit fundamental equation of the ideal gas in the energy
representation, we derive the three equations of state of the ideal gas in the entropy
representation. For the first equation we find

1 8s dRU/N)  dRu)
= — = _— = -2
T oU|, y N=gu du (12.2)

from Eq.(3.11)4 . Although, in the absence of an explicit differentiable fumction of U, the
differentiation could only be indicated, Eq.(12.2); shows that the internal energy depends—
apart from the mole number, N—only on the temperature, 7. This exclusive dependence of
the internal energy on the temperature is an important characteristic of the ideal gas and
allows us to express the first equation of state of the ideal gas in the form

Snl ik 12.2

T i - (12.2),
where ¢ is a dimensionless constant (see the introduction to Chapter 13).

The second equation of state follows from Eq.(3.11)4 as

P 85 NR R

ol == (12.2);

T iy 14 v

This is commonly written as

PV = NRT or Py =RT (12.2)4
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and has the same form for all ideal gases including the multicomponent ideal gas
(cf. § 15.3). The second equation of state is sometimes referred to simply as THE equation
of state of the ideal gas or THE ideal gas equation of state.

Introducing the equations U/ = cNRTand PV = NRT mto H =U + PV it is
seen at once that the enthalpy of an ideal gas also depends only on the temperature apart
from the mole number, N.

To derive the third equation of state we turn to Eq.(3.11)45: We find

7 a8 0 [NS, VN,

£ _ 72 = NR! 122

T~ "N, 6N[ N, T NRUMN) A NRIngy (12.2);
ie.,

b _ Sy SRU/N) VN, 8in N

TN fRU/N)—- N N~ Rin VON+NR 3N (12.2)s
so that

7 So U oRU/N) VN,

B 2 Ny+ =27 _ —2+R 12.2

- N RU/ )+N6(U/N) RanoN+ , (12.2);
or

% = —s,—flu)+u/T—Rinv/v, +R. (12.2)s
Equation (12.2)g follows from (12.2); because

RU/N) dfiv)

— L = 12.2

HU/N) du ’ (122)5

and this equals 1/7° by Eq.(12.2);. Equations (12.2); and (12.2); represent the third
equation of state of a single-component ideal gas.

12.3 Equivalence of the Complete Set of the Equations of State with the Fundamental
Equation
In § 3.12 we asserted that the complete set of the equations of state is equivalent to
the fundamental equation. Indeed, inserting Eqs.(12.2)y, (12.2)3, and (12.2)g into the molar
form of the Euler equation, Eq.(3.10)s, in the entropy representation,

1
s=—u+4+—pv-E (12.3)

immediately reproduces the fundamental equation, Eq.(12.1);.
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The expectation that substitution of the equations

T=u/cR (12.3),

P =RT/v (12.3);
and

p= —3,T —Tf{u)+u—-RTInv/v, + RT (12.3)y

mnto the molar form of the Euler equation in the energy representation,

u=Ts— Pv+uyu, (12.3)5

might lead to the fundamental equation in the energy representation, is not borne out.
In fact, doing so leads to

Tf(u) = us/cR — 5,T — RT lnv/v, (12.3)s

and resubstitution of Eq.(12.3)e, multiplication by T, and rearranging leads to
flu) = s — 5,7 — RT Inv/v, (12.3);
which we could have obtained simply by solving Eq.(12.2); for f(u).

12.4 Empirical Ideal Gas Laws

There are several historical empirical gas 'laws' that are commonly referred to under
the name of their originators. Thus the dependence of the internal energy per mole, u, on
the temperature only, expressed by the first equation of state in the form u = cRT is
sometimes referred to as Joule's Law. Several other such laws are seen to follow from the
second equation of state. Boyle's Law claims that, for a given volume of an ideal gas at the
same temperature, PV = const, implying that the volume changes inversely as the
pressure. The law first enunciated by Charles and later independently by Gay-Lussac states
that at constant pressure a given volume of an ideal gas is directly proportional to the
(absolute) temperature. This is expressed by V = NRT'/ P. Finally, Avogadro’s Law states
that at the same temperature and pressure the molar volume of all ideal gases is the same.
This follows fromv = V/N = RT/P.

12.5 The Primary Set of Partial Derivatives for an Ideal Gas

The second equation of state of an ideal gas leads to particularly simple expressions
for the primary set of the second-order partial derivatives. Introducing V = NRT/P into
Eqgs.(10.2), and (10.2)3 yields the isobaric expansivity as

(12.5),
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and the isothermal compressibility as

1 3V 1
'{T:————— =

L 12.5
V8P|, P (123

These two relations apply to any ideal gas, thus also to the monatomic and
multicomponent ideal gases to be discussed in detail in Chapters 13 and 15.

The same cannot be said about the isochoric and the isobaric heat capacities of an
ideal gas. Differentiation of the entropy, Eq.(12.1),, with respect to the temperature shows
that the heat capacities of an ideal gas are functions of f{u) and, therefore, generally, of the
temperature. The monatomic ideal gas is an exception (see § 13). Since f{u) differs from gas
to gas for all other ideal gases, so also do Cy(T) and Cp(T). However, combining
Eq.(10.3)s, ie., ¢p = ey + Tvak /K7, with the equation of state, Pv=RT, gives the
molar heat capacity difference of any ideal gas as

CP(T) - CV(T) =R 5 (125)3

which, for the monatomic ideal gas becomes simply cp — cvv = R, and for any component
of a multicomponent ideal gas takes the form cp; (T) — cv;(T) =R (cf. § 15.4).

12.6 The Fundamental Equations of the Ideal Gas in Parametric Form

Since in an ideal gas u depends on the temperature only, it is possible to express
fu), and thus also the internal energy and the entropy of an ideal gas, in terms of the
experimentally accessible molar heat capacities, c/(T) and cp(T). In either case the
resulting expressions: s = s(u, v) for the entropy, and u = u(s,v) for the internal energy,
then constitute two parametric equations for the fundamental equation. The latter could, in
principle, be obtained in either the entropy or the energy representation from the parametric
equations by elimination of 7T between them. Because, however, the temperature
dependence of the heat capacities is not known explicitly in general, this is possible only in
special cases. The monatomic ideal gas (cf. § 13.1) represents such a special case

While the parametric equations cannot be combined through the elimination of the
temperature into fundamental equations in the energy or the entropy representations, it is
possible to obtain fundamental equations from the parametric equations in the free energy
and in the free enthalpy representations (cf. §§ 12.9 and 12.10). In these cases there is no
need for the elimination of the temperature since it is a canonical variable in both these
alternative representations.

12.7 The Parametric Fundamental Equations of the Ideal Gas in Terms of ¢y (T")

We proceed to express the parametric equations of the single-component ideal gas
in terms of the temperature dependence of the molar heat capacity at constant volume,
cy{T). This can be determined experimentally and, in some cases, explicit expressions may
be obtained from statistical mechanical considerations.

Because u is a function of temperature only, Eq.(10.1)4 becomes
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du = cy(T)dT . (12.7)
and integration yields
T

U= U, +/ ey(THYdT”, (12.7),
Ty

the molar form of the first of the sought-for parametric equations.
Substituting Eq.(12.7); into the first equation of state, dfiu)=du/T, and
integrating using f{u,) = 0, yields

T ,
flu) = /T T 4 (12.7);

Inserting this into Eq.(12.1);renders the second parametric equation as

T CV(T',)

8 =8¢+ ——dT"+Rinv/v, . (12.7)4
n T

Equations (12.7), and (12.7)4 are the molar parametric equations for a single-component
ideal gas in terms of ¢y (T'), the molar heat capacity at constant volume.

12.8 The Parametric Fundamental Equations of the Ideal Gas in Terms of cp(77)
The last three equations can be rewritten replacing cy(T') by the experimentally
more convenient cp(17). Using Eq.(12.5);,1.e., cy(T) = cp(T) — R, Eq.(12.6), becomes

T
u=1ug+ | ep(THT —R(T -T,), (12.8),
T
Eq.(12.7); yields
Tep(T)
flu) = / ~ AT ~RinT/T,, (12.8),
Ty

and Eq.(12.7)4 turns into
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Tep(T)
s:so+/ ~T,—dT'—RlnT/To—H{lnv/vo (12.8);
Ty
or
Tep(T")
5 =84+ ——dI"-RmnP/P, (12.8)
7 T

where P, = RT,/v,. Equations (12.8); with (12.8); or with (12.8), form alterative pairs
of the molar parametric equations of the single-component ideal gas in terms of ¢p(T'), the
molar heat capacity at constant pressure.

12.9 The Fundamental Equation of the Ideal Gas in the Free Energy Representation

To derive the expression for the fundamental equation of the ideal gas in the free
energy representation, we first multiply the expressions for the molar parametric equations
written in terms of the heat capacity at constant volume, ¢i-(T'), by the number of moles,
N. This leads to

U, T
U=N=2+N/[ o(T)HdT’ (12.9)
N, I

from Eq.(12.7);, and to

T . ,
s=n2 oy [ o)

N, n T dT" + NR /nv/v, (12.9),

from Eq.(12.7)4. Combining these according to F' = U — T'S gives

N T T
=_—F,+N

F
N, T

e (T7)dT" — NRT In v/v, (12.9)3

with F, = U, — T'S,, as the fundamental equation of the ideal gas in the free energy
Tepresentation,

12.10 The Fundamental Equation of the Ideal Gas in the Free Enthalpy Representation

To obtain the fundamental equation of the ideal gas in the free enthalpy
representation we use the parametric equations written in terms of the heat capacity at
constant pressure, cp(T'), since we need the pressure as another canonical variable in this
case. By multiplying with the number of moles, IV, we obtain
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T
U=N% o N[ cprydr - NR(T-T))
NO To

from Eq.(12.8),, and

T . (T
s=n2 iy [ =)
o To

dT" - NRIn P/P,

I3

from Eq.(12.8)4. Using both G = U — T'S + PV and PV = NRT yields

G T T
G=N24+N
No+ n I

cp(T")dT" + NRT in P/P,
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(12.10);

(12.10),

(12.10)

with G, = U, — TS, + P,V,, as the fundamental equation of the ideal gas in the free

enthalpy representation.

12.11 The Gibbs-Duhem Equation of the Ideal Gas in Terms of ¢z (T")
Multiplication of the third equation of state, Eq.(12.2)s, by T yields

p=—Tso—TRu)+u—-RT Inv/v, +RT.

With the help of Egs. (12.8); and (12.8), and the use of Pv = RT this becomes

4 = po(T)+RT In P/P,

where

T
bo(TY=ug — Tso +RT, +
T

ep(T) AT .

2

or, alternatively,

T T N
po(T) =t —Tso +RT —RT In T/T,) + e (T)dT".

n T

(12.11),

(12.11),

(12.11)

(12.11),

The function po(T) is the standard chemical potential at the temperature T and the
standard (reference) pressure F,. The zero subscript in po(T) refers to this pressure. Thus
Lo(T) is standard with respect to a standard pressure but it is a function of temperature.
Equation (12.11), with either (12.11)3 or (12.11)4 provides a functional relation
between the intensive parameters T, P, and p. They thus together represent the integrated
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form of the Gibbs-Duhem equation of the ideal gas in terms of the molar heat capacities at
constant pressure or constant volume. Behavior in accordance with Eq.(12.11)s constitutes
a sufficient condition for the ideal behavior of a gas.
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13. THE MONATOMIC IDEAL GAS

Among all ideal gases, the monatomic ideal gas shows by far the simplest behavior. It is
known from statistical mechanics® that the constant 'c’ in Eq.(12.2), has the value 3/2. Thus
¢y = 3R/2 by Eqs.(10.1); and it follows that cp = 5R/2. The heat capacities of a
monatomic ideal gas thus do not depend on the temperature and this resylts in considerable
simplification of the thermodynamic properties of this gas. In particular, it becomes possible
to write an explicit fundamental equation for the monatomic ideal gas, and to obtain this not
only in the entropy and energy representation but in the alternative representations as well.
In addition, the monatomic ideal gas allows us to demonstrate that, if the equations of state
are at hand, the fundamental equation can be obtained through the introduction of the state
equations into the Euler equation.

13.0 Chapter Contents

13.1 The Fundamental Equation of the Monatomic Ideal Gas in the Entropy
Representation

13.2 The Fundamental Equation of the Monatomic Ideal Gas in the Energy
Representation

13.3 The Fundamental Equation of the Monatomic Ideal Gas in the Enthalpy
Representation

13.4 The Fundamental Equation of the Monatomic Ideal Gas in the Free Energy
Representation

13.5 The Fundamental Equation of the Monatomic Ideal Gas in the Free Enthalpy
Representation

13.6 The Equations of State of the Monatomic Ideal Gas in the Entropy
Representation

13.7 The Equations of State of the Monatomic 1deal Gas in the Energy
Representation

13.8 Equivalence of the Complete Set of the Equations of State and the
Fundamental Equation — Revisited

13.9 The Domain of Validity of the Fundamental Equation of the Monatomic

Ideal Gas
13.10 The Gibbs-Duhem Equation of the Monatomic Ideal Gas

13.1 The Fundamental Equation of the Monatomic Ideal Gas in the Entropy
Representation
In the case of a monatomic ideal gas the generally unspecified function f{z) becomes
explicit through the substitution of 3R/2 for ¢y (T') in Eq.(12.7);. Integration yields

flu) = gklnT/To (13.1)

9 see, e.g., Blinder (1969), p. 274.
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and mtroducing this into Eq.(12.1); leads to
3
s=so+5R1nT/To+Rlnv/vo. (13.1);
With ¢ = 3/2, Eq.(12.2), yields T = 2u/3 R and we find
3
s=s(,-i—5Rlnu/uo-f—RInv/vo (13.1)3

as the molar fundamental equation of the monatomic ideal gas in the entropy representation.
Through multiplication by the mole number, N, we obtain

5= N%‘—’; +NR /t:[(%)s%(%)s} (13.1),

as the fundamental equation in terms of the canonical variables U, V/, and V.
We note that this derivation is tantamount to an elimination of T° between the
parametric equations that play a prominent role in Chapters 12 and 15.

13.2 The Fundamental Equation of the Monatomic Ideal Gas in the Energy
Representation
Equation (13.1)3 can be solved for u = u(s, v) to yield the molar fundamental
equation of the monatomic ideal gas in the internal energy representation as

u = Ug(ve/v) 2exp[(2/3R)(s — o)) - (13.2)

We recall that we were not able to obtain v = u(s, v) for the general ideal gas (cf. § 12.3).
Multiplication by the mole number, N, gives the fundamental equation of the
monatomic ideal gas in the internal energy representation as

Uo ° </ o
U=NF°(;’JJ\Z)°3exp[%(%—;—O)] (13.2),

in terms of the canonical variables S,V and N.
13.3 The Fundamental Equation of the Monatomic Ideal Gas in the Enthalpy
Representation
By Eq.(8.13); the enthalpy, H, is given by

H=U~+PV. (13.3)
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To obtain H for the monatomic ideal gas in term of the canonical variables, S, P, and NV,
we first need to solve Eq.(13.1), for V. This gives

() () R o
Combining Eqs.(13.2); and (13.3); according to Eq. (13.3)¢ leads to
2= () (B) o[ 5 - 5]

where H, = %Po‘/;.

Equation (13.3); is the fundamental equation of the monatontc ideal gas in the
enthalpy representation in terms of the canonical variables S, P,and N. The molar form
follows as

h = ho(P/ P exp[(2/3R)(s — s,)].- (133),
where ho = 5P,v,/2.
13.4 The Fundamental Equation of the Monatomic Ideal Gas in the Free Energy
Representation
The free energy, F, is given by Eq.(8.10),as
F=U-TS5. (13.4),

Combining Egs.(13.2), and (13.1), according to Eq.(13.4); we obtain

NT 3/2
Ty VN“] , (13.4),

F=F—— — =
Py NRTln[(To N

where F, = U, — T,5,.
Equation (13.4), is the fundamental equation of the monatomic ideal gas in the free
energy representation in terms of the canonical variables T, V', and N. Its molar form is

3/2

f=foT/T, —RT ln{(T/To) / v/vo} (13.4);

where f, = uy, — T's,.
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13.5 The Fundamental Equation of the Monatomic Ideal Gas in the Free Enthalpy
Representation
Equation (8.16); gives the free enthalpy as

G=H-TS. (13.5)

Combining Eqgs.(13.3); and (13.1)4 according to Eq.(13.5), leads to

NT T\52 P
— R i - 13.5
G =Gory g — NRT ln[(TO) Po] i (13.5)s

where G, = U, — T,5, + P,V,.

Equation (13.5) is the fundamental equation of the monatomic ideal gas in the free
enthalpy representation in terms of the canonical variables T, P,and N. The molar form
becomes

g = g.T/T, — RT 1;:[(T/:r(,)5'2 P/POJ , (13.5);

where g, = uy, — Tso + Pov,.

13.6 The Equations of State of the Monatomic Ideal Gas in the Entropy
Representation
The equations of state of the monatomic ideal gas in the entropy representation
follow at once from Eq.(13.1); as

1_293 3SVR 3R (13.6),
T~ oU|. 2U ~ 2u
P 35 NR R
P_0685, _NR_R 13.6
T oV, V v’ (13.6),
and
" 3s 5 S, 3. UN, VN,
B_ 921 _2p_2e_Zpy —RJ
T 3N |-, R, RNy Ry
(13.6);

=25R -5, — LARInu/u, — Rinv/v,

where we have given the molar forms also.
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13.7 The Equations of State of the Monatomic Ideal Gasin the Energy
Representation
Since we now have an explicit fundamental equation in the energy representation,
we may obtain the equations of state in that representation also. Applying Eq.(3.11);we get

I T RN EYCE- B
and
p= g—;fr— " (1- ;ﬁ%)%(&q)g/sw [%(% - %)] (13.7)s

We make use of these equations of state in the next section.

13.8 Equivalence of the Complete Set of the Equations of State with the Fundamental
Equation — Revisited
In § 12.3 we demonstrated that the complete set of equations of state of the general
ideal gas is equivalent to the fundamental equation in the entropy representation. This is, of
course, also true of the monatomic gas. Substituting Eqs.(13.6); to (13.6); into the Euler
equation,

1

=7

P B
— V- 13.8
U+ T 14 T]V, ( h

we promptly recover Eq.(13.1)y.

In the case of the general ideal gas we were not able to obtain the fundamental
equation in the energy representation from the equations of state (cf § 12.3). Now,
however, substitution of Eqs.(13.7); to (13.7); into the Fuler equation,

U=TS— PV +uN, (13.8)

in the energy representation leads, after some algebra, to the fundamental equation,
Eq.(13.2),, as expected.
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13.9 The Domain of Validity of the Fundamental Equation of the Monatomic Ideal
Gas

By Postulate V, Eq.(2.21), the partial derivative of the internal energy with respect
to the entropy, Eq.(13.7);, when equated to zero, should yield the entropy, S, as a positive
semi-definite quantity. However, 8U /8S = 0 requires that 5 = — co. The fundamental
equation for the monatomic ideal gas thus violates Postulate V.

The reason, of course, is that the equations of state derived in § 13.7 are appro-
ximations to the frue equations of state and these approximations are valid only under the
assumptions of high temperatures (T" — oco) and low pressures (P — 0). The assumptions
are implicit also in the quantum mechanical derivation of the fundamental equation (see
Appendix 4). Even in the case of the monatomic ideal gas, the frue fundamental equation
thus remains unknown. Equation (13.1); is therefore valid only at sensibly high
temperatures and low pressures, and these conditions define its domain of validity The fact
that the fundamental equation (and the equations of state) are valid only over a range of the
intensive parameters does not impair their utility as long as they are applied within their
domain of validity

13.10 The Gibbs-Duhem Equation for the Monatomic Ideal Gas
The Gibbs-Duhem equation for the monatomic ideal gas is identical with
Eqs.(12.11) sor (12.12); for the general ideal gas,

t=puo(T)+RT In P/P, (13.10),

except that the standard chemical potential, 1:o(7T"), now simplifies to

po(T) = g — Tsg — gRT;, + ;RT(l —InT/T,) (13.10)

either through substitution of cp (7'} into Eq.(12.11)3, or of ¢y (T) into Eq.(12.12)s.

Equations (13.10), and (13.10), together represent the integrated form of the
Gibbs-Duhem equation of a monatomic ideal gas. Conformance with Eq.(13.10),
constitutes a sufficient condition for the ideal behavior of a monatomic gas just as it does
for the ideal behavior of a general gas.
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14. THE IDEAL MIXTURE

Most thermodynamic systems consist of more than one component. Macroscopically
homogeneous multicomponent systems form mixfures. By contrast, blends are
multicomponent systems that are not homogeneous. Mixtures may be gases or condensed
systems (liquids or solids). We will be concerned primarily with the ideal gas mixture (the
multicomponent ideal gas, Chapter 15) and with the ideal solution (Chapter 16).

A discussion of the thermodynamics of mixtures requires the concepts of molar and
partial molar quantities, and of mole fractions. These concepts, together with a discussion
of those characteristics of the ideal mixture that are common to the multicomponent ideal
gas and the ideal solution, form the topic of the present chapter. We will use the terms
mixture and multicomponent system interchangeably.

The simplest mixture is the two-component mixture or binary system. It will receive
special attention wherever called for.

14.0 Chapter Contents

14.1 Molar Quantities

14.2 The Molar Fundamental Equation

14.3 The Molar Gibbs and Euler Equations

14.4 Partial Molar Quantities

14.5 Mole Fractions

14.6 Partial Molar Quantities and the Chemical Potential

14.7 Dependence of the Chemical Potential on Composition

14.8 Change in the Chemical Potential upon Mixing

14.9 Changes in Volume upon Mixing

14.10 Changes in Enthalpy upon Mixing

14.11 Changes in Internal Energy upon Mixing

14.12 TheFree Enthalpy, Free Energy, and Entropy of Mixing of an Ideal Mixture

14.13 General Comments on Changes in the Thermodynamic Potentials upon
Mixing

14.14 The Gibbs-Duhem Equation of a Mixture — The Binary Mixture

14.1 Molar Quantities

In a single-component system with constant composition, division of any of the
extensive parameters by the mole number, N, yields the corresponding molar quantity. We
shall denote this by the corresponding lower case letter. Thus,

o U/N = u is the internal energy per mole or molar internal energy,
e S/N = s isthe entropy per mole or molar entropy,
s V/N = v is the volume per mole or molar volume, etc.

The molar quantities are intensive parameters. Some molar quantities had already been used
earlier.
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14.2 The Molar Fundamental Equation

As an example of the use of molar quantities we express the fundamental equation,
of a single-component simple system, in terms of the molar quantities. Since the
fundamental equation is homogeneous of the first order in its canonical variables (cf. § 3.1),
we have

S(U,V,N)y=NS(U/N,V/N,1) (14.2)
or

SWU,V,N)/N = S(u, v, 1). (14.2);
Thus we have

s = s{u,v) and u = u(s,v) (14.2)3
for the molar fundamental equation of the single-component simple system in the entropy
and in the energy representations.

Molar forms of the fundamental equations have, of course, been used already in the
preceding chapters.
14.3 The Molar Gibbs and Euler Equations

Both the Gibbs and the Euler equations also have molar forms. In the energy
representation the molar Gibbs equation for the single-component simple system becomes

du = Tds — Pduv, (14.3
and the Euler equation takes the form

u=Ts—Pv+pu. (14.3);

In the entropy representation we have

1 P
ds = Tdu + Tdu (14.3)3
and
1 P
S = Tu -+ T’U (143)4

for both equations.
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14.4 Partial Molar Quantities

In a multicomponent simple system we require a set of thermodynamic quantities
which represent the contributions of the ith component to each extensive variable of the
system. These quantities are the partial molar quantities. Just like the molar ones, the partial
molar quantities are intensive parameters They are defined as follows.

Let X be an extensive property of the ith component. Then

X

- X 14.4
ON: |pp. (134

< Ngziyeo-

where the overbar indicates the partial molar value of the property X for the ith
component. As an example, in a binary solution, V'; would be the partial molar volume of
the solvent, and V; would be the partial molar volume of the solute. We note that the
partial molar values of those extensive properties that are not measurable directly (U, S)
must, of course, be calculated with respect to the same reference state as the extensive
property itself.

Since X is extensive, hence additive, we have

For a pure substance
Xi==z, (14.4);

i.e., the partial molar quantities of a pure substance are identical with the molar quantities.

14.5 Mole Fractions
The quantity

7 = NN (14.5),
where N = N, is called the mole fraction of component i. By definition,

Sa=1, (14.5),
i.e., the sum of the mole fractions is unity.
14.6 Partial Molar Quantities and the Chemical Potential

Rewriting Eq.(8.16), for a single component we see that at constant temperature
and pressure the chemical potential of a single component simple system is
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_9% ) (14.6),
ON |7 p
It is thus equal to the molar free enthalpy, g, since, be Eq.(8.16)s,
oG
— =G/N = 14.6
N |y » /N=g (14.6),

for a single-component simple system.

In a multicomponent simple system (ie., a mixture) the partial derivatives with
respect to the mole number, N, are replaced by the partial molar quantities. The chemical
potential of the ith component thus becomes

oG

i = (14.6);
ON:ir p, 5
where, for convenience, we have written N for ... N;( # N;)... . We now have
oG —
—Gi= (14.6)
aN; T.P....Nywy) ...

i.e., the chemical potential of the ith component of a multicomponent simple system is the
partial molar free enthalpy of that component.

14.7 Dependence of the Chemical Potential on Composition

In accordance with Eq.(11.3), at constant temperature and pressure the chemical
potential of the /th component of an ideal mixture depends only on the mole fractions, 72;.
This dependence is given by the notably simple relation

i = pi(T, P, ;) = pi(T, P)+RT Inm; (14.7)

where pX(T', P) is the value of u; when 7; = 1. It is thus the chemical potential of the ith
pure substance at the temperature and pressure of the mixture. Behavior in accordance with
Eq.(14.7) constitutes a sufficient condition for the ideal behavior of a multicomponent
simple system or mixture.

14.8 Change in the Chemical Potential upon Mixing
By Egs.(14.6); and (14.6),, the change in the chemical potential of the ith
component upon mixing at constant temperature and pressure is
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_9AG

Ay; = (14.8)

aN; T,P,“.Nj(;&Ng),,..

For an ideal gas mixture Egs.(14.6), and (14.8) apply without reservation. Provided the
molecular structure of the components is closely similar they also apply to condensed
systems (liquids and solids). A mixture of isotopes constitutes a case in point.

14.9 Changes in Volume upon Mixing

The mixing of ideal components into an ideal mixture does not produce any changes
in either volume, enthalpy, or internal energy. To show this, we proceed as follows.

Partial differentiation of Eq.(14.7) with respect to P yields

O,
apP

_ 9ui(T, P)

= (14.9),
T,.. .m... opP

T

The right-hand-side is independent of composition and thus so is the left. But, by the third
of the Maxwell relations, Eqs.(10.6),,

v

o, _
~ 8N;

oP

= vz =v;. (149)2
T,P,.. Npgi) -

T, . Npgey .

The last relation follows from Eq.(14.4);. An ideal mixture thus exhibits no volume change
upon mixing and thus

AVyix = 0. (14.9),

because V =Y, N;V; = 3, Nyv;.

14.10 Changes in Enthalpy upon Mixing
Dividing Eq.(14.7) by T and then differentiating with respect to T yields

T |p . Npw... or P

A /T _ oui(T, P)/T (14.10),

Since the right-hand-side of this equation is independent of composition, so is the left. By
the second of the Maxwell relations, Eqs.(10.6)y,
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o __95 =3,. (14.10),
OT |p, . Nogus... ONiT P, N ...

But, by Eq.(14.6)4,
pi=G;=H;-TS§;. (14.10);

where H; and S; are the partial molar enthalpy, and entropy, respectively. Combining these
two equations, and rearranging, gives

o /T

(14.10),
0T \p . N

Again, the last relation follows since H = Y, N;H; = Y, N;h;. Hence, the total enthalpy

of the mixture is equal to the sum of the enthalpies of the components before mixing and
thus

AHpy =0. (14.10)s

i.e., the heat of mixing is zero.

14.11 Changes in Internal Energy upon Mixing
Because AUy, = AHpix — PAVy, it follows immediately that

AUgx =0, (14.11)

i.e., that the internal energy of mixing is also zero.

14.12 The Free Enthalpy, Free Energy, and Entropy of Mixing of an Ideal Mixture

Similar relations do not hold for the free enthalpy of mixing, AGix, the free energy
of mixing, A Fyy;y, and the entropy of mixing, ASp;,. For mixing to occur, the change in the
free enthalpy of the mixture, i.e., the difference between the free enthalpy before and after
mixing, must be negative. Since mixing is an irreversible process (you cannot unscramble
eggs, as Bertrand Russell put it), the change in entropy, i.e., the entropy of mixing, ASmx,
is necessarily positive. Hence, the free enthalpy of mixing becomes

AGumix = AHpiy — TASpix = — TASmix (14.12),
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since A Hpie = Oby Eq.(14.10)s.
In an analogous way the free energy of mixing, AF,;,, in an ideal mixture is given
by

AFpiy = AUpiy — TASpix = — TASux . (14.12),

Because of the absence of heat effects upon mixing, in an ideal mixture AGpyx, AFmix, and
ASyix, are called the athermal free enthalpy, the athermal free energy, and the athermal
entropy of mixing.

14.13 General Comments on Changes in the Thermodynamic Potentials upon Mixing
To be valid, the relations AV = 0, AHyx = 0, and AUpix = Orequire that all
components be at the same temperature. With this proviso they apply equally to the nulti-
component ideal gas (Chapter 15), and to the ideal solution (Chapter 16).
Explicit expressions for AGp; and ASp;; will be given for the multicomponent
ideal gas in § 15.13. For the ideal solution the expression for ASy,, will be found in § 16.7,
and that for the free enthalpy of dilution, AG; , in §16.8.

14.14 The Gibbs-Duhem Equation of a Mixture — The Binary Mixture
By Eq.(8.22)s , at constant temperature and pressure, the Gibbs-Duhem equation of
a multicomponent simple system or mixture becomes

> Nudpn=0. (T,P =const)  (14.14)

Clearly, the chemical potentials are not independent of each other and one can always be
expressed in terms of the others.

The simplest—and most frequently encountered-—multicomponent simple system is
the mwo-component simple system, or binary system or mixture. Let 1 and 2 denote the two
components of a binary mixture. Its Gibbs-Duhem equation at constant temperature and
pressure becomes

Nidpy + Nodpy =0 (T, P = const) (14.14),

and can be brought into a form that relates the two chemical potentials to each other.

The binary system is characterized by a single mole fraction since 7y + 7 = 1.
Letting Z stand for either 1 or 2, the infinitesimal variation of pz in terms of T', P, and m,
becomes

Buz Oz O
dug = F2ar + O 4p 4 M1 14.14
K2 =B ¢t 9p O T 5, 9 (14.19)s

Equating the second-order mixed partial derivatives of
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dG = — SdT +VdP + pd Ny + p2d N, (14.14),

with respect to T and Ny, and to P and N, respectively, we recognize that

% - - g%z - -5 (14.14)s
and

% _ g%z _V,. (14.14),
Hence, Eq.(14.14); becomes

duz = — 5,dT +VzdP + %dﬁl (14.14);

Inserting dpand dy, from dpz into Eq.(14.14),, canceling terms, and dividing by
N = N; 4+ N; yields

%)
m La—ay22l o (14.14)s
Oniir, p T, p
or,using 7y = 1 — 7,
8
w0 (14.14)0
81’11 T,P anz T.P

as two forms of the Gibbs-Duhem equation for a binary system that relate the two chemical
potentials, 1) and u;, to one another at constant temperature and pressure.
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15. THE MULTICOMPONENT IDEAL GAS

A multicomponent gas is a mixture of gases. This chapter discusses the properties of a
simple multicomponent gas whose extensive variables are U, S, V,and Ny, ... N; ... . The
relations derived in Chapter 12 for a single-component ideal gas with the extensive variables
U, S, V, and N, remain substantially the same for a multicomponent idcal gas. However,
the internal energy and the entropy of the multicomponent gas are the sums of the internal
energies and the entropies of the component gases, and the total number of moles is the sum
of the number of moles of the components. We have U = ;U;, S = £;,5;, and N = E; N,
Thus, the expressions for the multicomponent ideal gas are obtained simply by summing
over the expressions for all components. These, in turn, are obtained by considering the
expressions for the single-component gas to be those for the ith component, and labeling
them accordingly.

15.0 Chapter Contents

15.1 The Fundamental Equation of the Multicomponent 1deal Gas in the
Entropy Representation
15.2 The Molar Internal Energy and Molar Entropy of a Multicomponent
Ideal Gas
15.3 The Equations of State of the Multicomponent Ideal Gas
15.4 The Primary Set of Partial Derivatives for a Multicomponent Ideal Gas
15.5 The Fundamental Equations of the Multicomponent Ideal Gas
in Parametric Form in Terms of ¢y (T')
15.6 The Fundamental Equations of the Multicomponent ldeal Gas
in Parametric Form in Terms of cp(T)
15.7 The Extended Gibbs Theorems
15.8 Dalton's Law
15.9 Amagat's Law
15.10 The Fundamental Equation of the Multicomponent Ideal Gas in the
Free Energy Representation
15.11 The Fundamental Equation of the Multicomponent Ideal Gas in the
Free Enthalpy Representation
15.12 The Gibbs-Duhem Equations of the Multicomponent Ideal Gas
15.13 The Entropy and Free Enthalpy of Mixing of a Multicomponent Ideal Gas

15.1 The Fundamental Equation of the Multicomponent Ideal Gas in the Entropy
Representation
We obtain the molar fundamental equation of the ith component of the
multicomponent ideal gas in the entropy representation by rewriting the equation of the
general ideal gas, Eq.(12.1);, for the ith component multicomponent ideal gas. Thus, we
write

s; = so; + ;) +Rinv/v, . (15.1)

the molar fundamental equation of the ith component multicomponent ideal gas
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15.2 The Molar Internal Energy and Molar Entropy of a Multicomponent Ideal Gas
It follows from U = ;U;, $ = £;S;, and N = X; N; that the molar internal energy
and molar entropy of a multicomponent ideal gas become

E DL (15.2)
and

=== Z =) s (15.2)

where 7; is the mole fraction, u; = U;/N; is the molar internal energy, and s; = S;/N; is
the molar entropy of the ith component. The last two equations allow us to obtain the
fundamental equation of the multicomponent ideal gas in parametric form.

15.3 The Equations of State of the Multicomponent Ideal Gas

The equations of state of the multicomponent ideal gas are obtained from the
fundamental equation in the usual way by taking the appropriate derivatives. For the first
equation this simply confirms that the internal energy of each component, u;, is still a
function of T" only, and so, therefore, is the total internal energy, U. For the second
equation we recover Eq.(12.2)4, i.e., PV = NRT, where now N is the total number of
moles of all components.

The third equation of state of the single-component ideal gas, Eq.(12.2)g, is valid for
each component of the multicomponent gas. We thus have 7 = 1, 2,... equations of the
form

= —soi——ﬂu;)+%—Rlnv/vo+R. (15.3)

NIE

Equations (15.3) may be made explicit through introduction of the molar heat capacities at
constant volume or at constant pressure by using either Eqs.(12.7);and (12.7)s, or
Eqs.(12.8); and (12.8),, writing them for f(u;) and u;,

15.4 The Primary Set of Partial Derivatives for a Multicomponent Ideal Gas

Since the ideal gas equation of state, PV = NRT, applies to the muiticomponent as
well as to the single-component ideal gas, Eqs.(12.5); for the isobaric expansivity and
(12.5), for the isothermal compressibility are equally valid for a multicomponent ideal gas.
Equation (12.5); for the molar heat capacity difference is then simply rewritten as

Cpi(T) - Cv,'(T) =R (15~4)

for each of the components.
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15.5 The Parametric Equations of the Multicomponent Ideal Gas in Terms of ¢y (T7)
As we have done in the case of the general ideal gas, we express the fundamental
equation of the multicomponent ideal gas in parametric form making use of the heat
capacities at constant volume, and at constant pressure, respectively.
In terms of the molar heat capacity at constant volume we obtain the parametric
equations of the ith components from Eq¢s.(12.7); and (12.7)4 as

T
Ui = Ug; + f evi(T) dT” (15.5),
To
and
T ,
(T , _
S; = 8¢; + # dT"+Rinv/v, —Rinw; (15.5);
T,

The reference molar internal energy, u,;, and molar entropy, s;, differ from gas to gas. The
other reference quantities, V,, N,, T, and v, = V,/N,, are the same for all components.
Summing over all components according to Egs.(15.5), and (15.2), yields

T
u= Y Ay + > m /T evi(T) dT” (15.5);

and

T ,
(T . —
s=) Misei + 7 L C";, ) 4T + NRinv/v, —RY mlnm  (155)

as the parametric equations of the fundamental equation of the multicomponent ideal gas in
terms of the molar heat capacities at constant volume.

15.6 The Parametric Equations of the Multicomponent Ideal Gas in Terms of cp(T")
In terms of the molar heat capacity at constant pressure an analogous derivation
yields

T
U = g + f epdT")dT" — R(T — ) (15.6)
T
and
T ep(T)
S; == 8¢i + -T—, dT" —Rin P/Po —Rinm; . (15.6),
To

Summing over all components then yields
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T
u = Ziﬁiuoi + Ziﬁi/; ep(T)dT — NR(T - T,). (15.6);

and

T ,
Cp; T , — -
s=3 :iﬁisoi + :iﬁi/; P}, ) ar —~RInP/P,—R> Ailnm. (15.6)

In Eqs.(15.6), and (15.6)4 the reference pressure, P, = RT,v,, is the same for all
components.

15.7 The Extended Gibbs Theorems
The contents of Eqs.(15.5); and (15.6);, and of Eq.(15.5)4 can be expressed in two
statements known as the Gibbs theorems. These are:

“The internal energy of a multicomponent ideal gas is equal to the sum of
the energies that each gas would have at the same temperature.”

and
“The entropy of a multicomponent ideal gas is equal to the sum of the
entropies that each gas would have if it alone occupied the same volume at

the same temperature.”

These statements may be extended by adding another embodying the content of Eq.(15.6)4:

“The entropy of a multicomponent ideal gas is equal to the sum of the
entropies that each gas would have if it alone were at the same pressure

and the same temperature.”

15.8 Dalton's Law
Dalton's law expresses a fundamental property of a mixture of ideal gases. It says:

“The pressure of a mixture of gases is equal to the sum of the pressures
that each of its components would exert if it alone were to occupy the

volume at the same temperature”.

In symbols Dalton's law becomes

P=Y P (15.8),

where
P, = Pn; (15.8),

is the partial pressure of the ith component. The partial pressure is defined as the pressure
the ith component would exert if it alone were present in the volume of the mixture at the
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same temperature. The sum of all partial pressure is equal to the total pressure, P. A
mixture of gases obeying Dalton's Law is an ideal mixture of gases even if its components
are not.

15.9 Amagat's Law
Amagat's law mirrors, as it were, Dalton's. It has reference to volumes instead of
pressures, and claims that

“The volume of a mixture of gases is the sum of the volumes of its
components, each at the pressure and temperature of the mixture”.

In terms of the partial molar volumes Amagat's Law becomes simply
V=S N7, (15.9)

[cf Eq.(14.4),].

15.10 The Fundamental Equations of the Multicomponent Ideal Gas in the
Free Energy Representation
In §§12.9 and 12.10 we introduced the fundamental equations of the single-
component ideal gas in the free energy and the free enthalpy representation. We now do the
same for the /ith components of the multicomponent ideal gas. Combining Egs.(15.5); and
(15.5)2 according to f; = u; — T's; furnishes

Tr—r
fi=fo + T evi(T)dT — RT Inv/v, (15.10);
T

with fo; = e — T'se; as the ith component of the free energy of the multicomponent ideal

gas.
Summing over all components we obtain

T
F= Mifuty 7 /T 0 d = T v dT") dT" — NRT Inv/v, . (15.10)

as the molar free energy of the multicomponent ideal gas.

15.11 The Fundamental Equations of the Multicomponent Ideal Gas in the
Free Enthalpy Representation
Analogously, combination of Eqs.(15.6), and (15.6), using g = u; — T's; + P, and
Py = RT yields
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‘—goz+/ cPt(T)dT +RT In P,/F, (15.11)

with gy = ug; — T'se; + Py, as the ith component of the free enthalpy of the
multicomponent ideal gas.
Summing over all components yields

cP,(T )dT' + NRT In P/P, (15.11),

g=) Migei+ P 7 /

as the molar free enthalpy of the ideal multicomponent gas.

15.12 The Gibbs-Duhem Equations of a Multicomponent Ideal Gas
To obtain the integrated form of the Gibbs-Duhem equation for the ith component
of a multicomponent ideal gas we rewrite Eq.(12.11); as

i = poi(TY+RT In P;/P, (15.12),

where P; is the partial pressure (cf § 15.8), of the ith component. Using P, = P7;, y;
becomes

i = pei(TY+RTInP/P,+RT In7w; . (15.12);

Thus, at constant temperature and pressure, the chemical potential, y;, of component ¢
depends only on its own mole fraction, 77;, and not on the mole fraction of any other
component. We remark that letting

poi( T)+RT In PPy = uX(T, P), (15.12)

Eq.(15.12), becomes Eq.(14.7) .

Equation (15.12); shows that the chemical potential of a single component in a
multicomponent ideal gas is equal to the chemical potential that tiat component would have
if it were at the same temperature and the reduced pressure (i.e., the partial pressure), P,

For the standard chemical potential of the ith component we have either

T -

- T
i = oi — Toos +RT) + / cp(T')dT" (15.12)4

To
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from Eq.(12.11)3, or
T —T
oT) = i — Tous + RT R T/T,) + [T e aT” (15.12)
T

from Eq.(12.11)4.

The standard chemical potential of component ¢ clearly does not depend on the
composition and, in fact, remains the same when 7; —» 1. Compliance with the sets of
equations introduced above constitutes the sufficient condition for the ideal behavior of a
multicomponent gas.

15.13 The Entropy and Free Enthalpy of Mixing of a Multicomponent Ideal Gas

Chapter 14 introduced the entropy of mixing of an ideal mixture but did not specify
it explicitly. We are now ready to do this for the multicomponent ideal gas.

Equations (15.5)4 and (15.6)4 reduce to Eqs.(12.7)4 and (12.8); as 7; — 1. The
terms — R}, 7; In7; in these equations thus represent the difference between the entropies
of a mixture of ideal gases and of a simple collection of individual ideal gases before they
form a mixture. This difference therefore constitutes the entropy of mixing. Multiplying by
N, we obtain

ASux = —RY__N; In7; (15.13),

as the entropy of mixing of a multicomponent ideal gas. Despite the minus sign in
Eq.(15.12);, the entropy of mixing, ASyy, is positive because any one of the 7;'s is less
than unity.

The athermal free enthalpy of mixing,

AGm,'x = RTZz Nl In n; . (]5]3)2

follows directly from Eq.(14.12),.
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16. THE IDEAL SOLUTION

The concepts developed in the preceding two chapters can be extended from gaseous to
condensed systems, i.e., to liquid and solid mixtures. Solutions are homogeneous mixtures
formed by dissolving one or more substances, whether solid, liguid, or gaseous, in another
substance. In a solution the mole fraction of one component, called the solvent, is generally
much larger then the individual mole fractions of the other components, called the solutes.
Although the solvent is usually a liquid, it equally can be a gas or a solid. In this case we
speak of gaseous, or solid solutions. This chapter deals with liquid solutions only. More
particularly, it considers infinitely dilute solutions, i.e., solutions in which the mole fraction
of the solvent approaches unity. In contrast to the solvent, a pure phase, the solution
constitutes a mixed phase.

16.0 Chapter Contents

16.1 The ldeal Solution

16.2 The Fundamental Equation of the Ideal Solution

16.3 The Equations of State of the Ideal Solution

16.4 The Chemical Potential of the Ideal Solution

16.5 The Fundamental Equation of the Ideal Solution in Parametric Form
16.6 The Gibbs-Duhem Equation of the Ideal Solution

16.7 The Entropy of Mixing of the Ideal Solution

16.8 The Free Enthalpy of Dilution

16.9 Solution Equilibrium and Free Enthalpy of Dilution

16.10 Solution Equilibrium and Vapor Pressure

16.11 Henry's Law

16.12 Raoult's Law

16.13 Colligative Properties

16.14 The Osmotic Pressure

16.15 Osmotic Pressure and Solvent Concentration

16.16 Osmotic Pressure and Solute Concentration — van't Hoff's Relation
16.17 The Entropy and Free Enthalpy of Mixing of Macromolecular Solutions

16.1 The Ideal Solution

A solution becomes an ideal solution in the limit of infinite dilution. Designating the
mole fraction of the solvent by 7, the condition of infinite dilution can be expressed as
7; — 1 and is the analog of the conditions T — oo, P — 0 for an ideal gas (cf. § 12).
Being an ideal mixture, an ideal solution exhibits no volume change and no heat effects
upon dilution in accordance with §§ 14.9 and 14.10.

16.2 The Fundamental Equation of the Ideal Solution

In the energy representation the fundamental equation of the ideal solution takes the
form

U=(S,V, Ny, ...Nn...) (16.2)
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and in the entropy representation it becomes
S=(U,V, N, ...N,...) (16.2);

The subscript '1* on the mole numbers, N, traditionally refers to the solvent while the
solutes take subscripts m > 1. The most frequently encountered ideal solution contains a
single solute. The fundamental equations of the binary ideal solution therefore are

U= (S) Vy leNZ) (162)3
and

S=(U,V, N, N). (16.2)

in the energy, and the entropy representation, respectively.

In the absence of an explicit form for the fundamental equation of the ideal solution,
we make use of the assumptions that the extensive variables are independent of each other
(cf. § 11.2). The molar form of the ith component of the fundamental equation of the ideal
solution in the entropy representation then becomes

8; = 3oi + fu;) + Rinv/v; + Rink; (16.2)s

in analogy to the equation for the multicomponent ideal gas, Eq.(15.1).

16.3 The Equations of State of the Ideal Selution

The equations of state of the ideal solution are to all intents and purposes identical
with those of the multicomponent ideal gas. The first again merely confirms that the internal
energy of the ideal solution is a fimction of the temperature only. The second equation of
state is still Pv = RT.Equation (15.3) models the third equation of state of the ith
component of the ideal solution.

16.4 The Chemical Potentials of the Ideal Solution
The chemical potential of the ith component of the ideal solution is the chemical
potential of the ith component of the ideal mixture given by Eq.(14.7). Thus, it is

w; =pi (T, PY+RT Inwm; , (16.4)

where pI (T, P) is the chemical potential of the ith pure substance at the temperature and
pressure of the solution. Equation (16.4) may be considered to be the defining equation of
the ideal solution and constitutes a sufficient condition for its ideal behavior.
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16.5 The Fundamental Equation of the Ideal Solution in Parametric Form
Because the internal energy of the ideal solution is a function of the temperature
only, and its volume is deemed to be independent of the pressure, we may write

T
U; = Ugj +/ CV,'(T’) dT’ (165)[
T
and
T ,
AT
8 = 8g; +/ @ilT) 47 _ R (16.5),
. T

for the parametric forms of the fundamental equation of the ith component of the ideal
solution.
Summing over all components yields

T
U= MU + _ﬁ,‘/ cvi(T) aT’ (16.5)3
S ot + i [ o
and
T . ’
S = Ziﬁisoi =+ Ziﬁi\/—; 'C‘—;(;D dT" —R Ziﬁi lnﬁl (165)4

for the parametric molar forms of the fundamental equation if the ideal solution in terms of
the heat capacities at constant volume, cy(T).

16.6 The Gibbs-Duhem Equation of the Ideal Solution
The integrated form of the Gibbs-Duhem equation for the ith component of an ideal
solution becomes simply

idT+ Y Nip dptir =0. (16.6)

For the special case of the binary solution see § 14.14.

16.7 The Entropy of Mixing of the Ideal Solation
The ideal solution is an athermal solution whose entropy of mixing is given by

ASmix = — RZ: Ni ln ﬁi (167)1

in analogy to that of a multicomponent ideal gas. For a binary solution
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ASpix = —R(Ny In7y + Ny In7is) (16.7),

(cf. § 14.12).

16.8 The Free Enthalpy of Dilution
The partial molar entropy of the solvent m an ideal solution is obtained by
differentiating Eq.(15.12); with respect to N;. This yields

— OAS
— mx 7 16.8
AS, = ) = Rinnyg, ( h

and the partial molar free enthalpy then follows from

AG; = — RTAS, (16.8)
as
— OAG
— mix = 16.8
AGy BN, RT Innq . ( )

AGH, called the free enthalpy of dilution, is the change in the free enthalpy of the solution
when an additional mole of solvent is added to it. Since 0 < 7; < 1, the free enthalpy of
dilution is negative as required. In all three equations we have omitted the subscript 'mix’ as
unnecessary because partial molar quantities exist only in mixtures.

16.9 Solution Equilibrium and Free Enthalpy of Dilution
As solution takes place, the change in the chemical potential of the solvent, Ay, is
given by

Apy = p1 —p§ (16.91

where 4 is the chemical potential of the solvent in the solution, and 9 is the chemical
potential of the pure solvent. We then have [cf. Eq.(14.8)],

IAG —
= = 16.9
N, I p. AGy (16.9),

Apy

Ny

At equilibrium the chemical potential of the solvent in the solution and the chemical
potential of the pure solvent must be equal. Thus, yq = p9, and therefore the change in the
free enthalpy of dilution vanishes, i.e.,
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AG; =0. (16.9);

Since, therefore, at equilibrium the change in the free enthalpy of the solution is zero when
an additional mole of solvent is added to it, Eq.(16.9); expresses the condition of solution
equilibrium, i.e., the condition that the free enthalpy of the system be a minimum with
respect to changes in the composition of the solution.

16.10 Solution Equilibrium and Vapor Pressure

The condition for two phases to be in equilibrium with respect to their composition
is that their chemical potentials be the same (cf. §§ 19.16). At equilibrium the chemical
potential of the ith component of the solution, u%!, and that of the vapor above it, e
must therefore be equal. Through the condition of phase equilibrium,

ulgol — u;”P’ (16. 10)1

the equilibrium of an ideal solution can therefore be discussed thermodynamically in terms
of the partial pressures in the saturated vapor as long as the vapor can be regarded as a
multicomponent ideal gas. The chemical potential of the ith component of the vapor is then,
in accordance with Eq.(15.12);, given by

w™® = pi(T)+RT In P;/P, (16.10),

where 11,;(T) is given by Eq.(15.12)s.

16.11 Henry's Law
Substituting Eqs. (16.4), and (16.10), into the equilibrium condition, Eq.(16.10);,
we find

(T, PY+RT Inm; = po;(TY+RT In P,/P, . (16.11)
or

ui(T, Py — poTYy=RT In B,/n,P, = RT nK;/ P, (16.11),
where

P =K (16.11);

P, is the partial pressure of the ith component in the vapor. Equation (16.11); is known as
Henry's Law and expresses the proportionality of the vapor pressure of the ith component
with its mole fraction in the ideal solution. K; is referred to as Henry's constant. It is con-
sidered to be a constant because it is independent of composition although it depends on
temperature and pressure, and should properly be denoted by K; (T, P).
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16.12 Raoult's Law
In the limit that @, — 1, K; approaches P?°, the vapor pressure of the pure
component 3. The relation

P, =P’m; (16.12);

is Raoult's Law. 1t defines ideal behavior in a solution in terms of the partial vapor pressure
instead of the chemical potential [cf. Eq.(16.4)].

We note that by Raoult's Law the free enthalpy of dilution can be stated in terms of
the vapor pressures as

_ OAG
AGy = AN,

= RTInP,/P°. (16.12)

Raoult's Law ultimately depends on the validity of Eq.(16.7); which expresses the
entropy of mixing in terms of the mole fractions. This assumes that the molecules of all
components are of comparable (theoretically equal) size. If this is not the case, Raoult’s Law
fails (cf § 16.17).

16.13 Colligative Properties
We may rewrite Raoult's Law, Eq.(16.12);, for the solvent in a binary solution as
P, /P =7, = 1 — 75. Rearranging gives

PP - P

=y, 16.13
P? 2 (16.13)

Thus, the relative lowering of the vapor pressure of the pure solvent that occurs upon the
introduction of the solute, equals the mole fraction of the solute.

Phenomena related to the relative lowering of the vapor pressure are the depression
of the freezing point, the elevation of the boiling point, and the osmotic pressure. These
phenomena are collectively referred to as colligative properties. Because they allow the
experimental determination of the mole fraction of the solute, they form the basis of
experimental methods for the determination of molecular masses (molecular weights).

16.14 The Osmotic Pressure

We single out the osmotic pressure from among the colligative properties for further
discussion. Consider an ideal binary solution separated from the pure solvent by a
membrane which is impermeable to the solvent and the solute alike. Both the pure solvent
and the solution are in comtact with a heat teservoir and are, therefore, at constant
temperature T. They are not, however, in contact with a work reservoir.

In accordance with the dictum that matter flows from regions of high to regions of
low chemical potential (cf § 4.10), the chemical potential of the pure solvent at the pressure
P, u*(P), is clearly higher than that of the solvent in the solution, uj(P), at the same
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pressure P. If now the membrane is made permeable with respect to the solvent, this will
flow (diffuse) into the solution until partial equilibrium (ie., thermal and diffusional
equilibrium) is attained. At that point, however, mechanical equilibrium has rot been
reached. The pressures on both side of the membrane are different because the influx of
solvent into the solution has created an extra hydrostatic pressure on the latter. The
difference between the two pressures, the pressure, P*, on the solution, and the pressure,
P, on the solvent,

OI=P-P, (16.14)

is called the osmotic pressure. 1t is the excess pressure that would have to be exerted on the
solution to prevent any further diffusion of solute ito it, thus assuring that the solution is in
mechanical as well as thermal and diffusional equilibrium.

16.15 Osmotic Pressure and Solvent Concentration

We wish to relate the osmotic pressure to the solvent concentration, i.e., to the mole
fraction of the solvent in the solution. The Maxwell relation listed as the third of
Eqgs.(10.6); may be restated for the solvent as

v

om| _ OV
TN 6N1

A5
= (16.15),

T.P

The right-hand-side is equal to V';, the partial molar volume of the solvent in the solution.
Inserting Eq.(16.4) into the left-hand-side yields

du*(T, P)
P

ORT In ny

=V (16.15),
T,]V 3P !

TN

which we integrate between the pressures, P° and P. This yields

P P
RT Inmy = —/ ,u*(T,P)dP’+/ V.dP'. (16.15);
Ps

s

Neglecting the compressibility of the solvent over the pressure range of interest, the first
integral vanishes and the molar volume can be taken out from under the second integral
sign. We then obtain

RT In 7y ~ V(P — P°%), (16.15)4

and the relation between the osmotic pressure and the mole fraction of the solvent becomes
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RT
Vi

The osmotic pressure in an ideal solution is thus independent of the nature of the solute.

16.16 Osmotic Pressure and Solute Concentration — van't Hoff's Relation
Let us take another look at Eq.(16.15)s. As 7; — 1, we may write

in [ ZZTL(I —ﬁg)ﬁ — 729, (1616)1

so that Eq.(16.15); becomes

m=2Lm (16.16)s
Vi

But 1y = Ny /N, and in a very dilute solution N = N; + N, =~ Ny, so that V| N = V;, the
volume of the solvent in the solution. This is indistinguishable from V', the volume of the
solution, when n; — 1. We therefore arrive at van't Hoff's relation,

II="22 =RTc (16.16);

since Ny /V = cq, the volume concentration of the solute molecules. Thus in the limit of
very dilute solution the osmotic pressure is independent of the nature of the solvent.

The relation bears a striking formal resemblance to the equation of state of an ideal
gas, Eq.(12.2),. It must be noted, however, that ideal behavior in the sense of van't Hoffis a
more stringent condition than ideal behavior in the sense of Raoult's Law. For van't Hoff's
relation to be valid, the solution needs to be more dilute than is necessary for ideal behavior
in general.

Because My = coV'/Na, where M, is the molecular mass of the solute, van't Hoff's
relation may be used in the determination of the molecular masses of small molecules by
osmometry, the measurement of the osmotic pressure.

16.17 The Entropy and Free Enthalpy of Mixing of Macromolecular Solutions

Ideal behavior in the sense of Raoult's Law (§ 16.12) requires that both solvent and
solute molecules be of closely comparable size. This assumption is reasonable when one
considers gas molecules and remains reasonable for many solvent-solute systems. However,
even extremely dilute solutions of macromolecules (long chain molecules) depart strongly
from ideal behavior in the sense of Raoult's Law when their behavior is examined in terms
of mole fractions. A better form of the entropy of mixing for a solution of macromolecules
comes from the Flory-Huggins theory'> (cf. p. 126) that takes into account the disparity
between the size of a solvent molecule and the size of a long-chain molecule. It considers
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the chain to consists of = solvent-sized segments. The expression for the entropy of mixing
then takes the form

ASmjx = - R(N1 In U1 +Ng In ’l—)g) . (1617)1

where

N1 d _ .’L‘Ng
= - n: y = T .
N1 +$Ng 2 vz Nl +3N2

V1 (16 1 7)2

are the volume fractions of the solvent, and the macromolecular solute, respectively.
Equation (16.17), is valid in this form in the absence of any enthalpy change on dilution
[cf § 17.24 for the addition of an extra term taking account essentially of changes in the
free enthalpy of dilution]. .

Thus, when the solvent and solute molecules are of dissimilar size, the mole
fractions must be replaced by the volume fractions. We note that Eq.(16.17), is the more
general expression and comprises the equation

ASyx = — R(NyInm, + Ny InTs), (16.17);

valid for small solute molecules [cf. Eq.(16.7),], as a special case when z = 1.
From Eq.(16.17)sthe free enthalpy of mixing follows as

AGm = M(Nl In 1 + Ng In 52) (1617)4

for of a solution of macromolecules.
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17. THE IDEAL RUBBER

This chapter discusses rubber as an example of a homogeneous non-crystalline solid that
provides an example of a single-component thermodynamic system whose fundamental
equation is characterized by four, not three, extensive variables. The formalism developed
here thus serves as a model for systems in which surface effects cannot be neglected or
which are acted on, for instance, by electrical, magnetic, or gravitational fields.

The first three sections contain some needed background information. They are
followed by fourteen sections dealing with rubbers at constant composition, ie., with
unswollen rubbers. The last two of these sections are concerned with the ideal rubber, an
example of an ideal solid system. The final five sections tackle the thermodynamics of
swelling and of swollen rubbers. Rubbers generally swell in organic liquids. However,
swelling phenomena are also of great importance in tissues and other biological materials
were water is the swelling liquid.

17.0 Chapter Contents

17.1 The General Solid

17.2 The Isotropic Solid

17.3 Rubbers (Elastomers)

17.4 The Fundamentai Equation of an Elastomer

17.5 Alternative Thermodynamic Potentials for Elastomers

17.6 The Fundamental Set of Second-order Partial Derivatives of an Elastomer
17.7 The Primary Set of Second-order Partial Derivatives of an Elastomer
17.8 ‘'Hybrid' Primary Sets of Second-order Partial Derivatives of an Elastomer
17.9 The Maxwell Relations for Elastomers

17.10 The Chemical Potential of an Elastomer

17.11 The Gibbs-Duhem Equation for Elastomers

17.12 The Assumption of Incompressibility

17.13 The Ideal Rubber

17.14 The Equations of State of the Ideal Rubber

17.15 The Fundamental Equation of the Ideal Rubber

17.16 The Chemical Potential of the Ideal Rubber

17.17 The Shear Modulus of the Ideal Rubber

17.18 The Elastic Restoring Force

17.19 The Relative Internal Energy Contribution to the Elastic Restoring Force
17.20 Swelling

17.21 The Free Enthalpy of Dilution of a Swollen Rubber

17.22 The Swelling Pressure

17.23 The Change in Free Enthalpy upon Swelling

17.24 Swelling Equilibrium

17.1 The General Solid

In a fluid (a gas or a liquid) no definite relations exist between the various parts of
the matter of which the fluid consists. Consequently, the mechanical distortion (change in
shape) of a fluid requires no work and only its compression (change in size, i.e. volume) is
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of interest thermodynamically. In the thermodynamics of fluids, therefore, shape is a neutral
property (§ 1.10). In the thermodynamics of solids, by contrast, we must consider the total
work required to change both shape and size, i.e. the mechanical work of deformation. In
the energy representation the Euler equation for a single-component homogeneous general
solid therefore becomes

U=TS+Y_ 0u(Voea) +uN a7.1)

where o, and &, represent the six independent components of the symmetric second-order
stress and strain tensors, respectively. The stress tensor components have the dimensions of
force per unit area and are intensive quantities. The strain tensor components are dimen-
sionless and are rendered extensive through multiplication by the initial (undeformed)
volume, V.

17.2 The Isotropic Solid

A solid whose properties are the same in all three of the principal directions is called
isotropic. Writing f; for the forces and L; for the extensions in the three principal
directions, the Gibbs equation of such a solid becomes!?

AU =TdS — PdV + Y fidL; +udN . i=123 (17.2)

A further simplification results from the consideration that, if the solid is isotropic,
all the thermodynamic information on its mechanical behavior can be obtained from
experiments in simple tension, also called uniaxial tension. In this deformation a force, f,
{or an extension, L) is applied in only one direction and the resulting extension (or force) is
measured. Since the forces in the other two directions are zero, Eq.(17.2); becomes simply

dU =TdS — PdV + fdL + udN (17.2),

and the Euler equation in the energy representation takes the form
U=TS - PV +fL +uN. (17.2);

Because of the presence of the fL term in this equation, a crosslinked rubber furnishes an
example of a non-simple system [cf. Eq.(8.19)].

17.3 Rubbers (Elastomers)

Rubbers, also called elastomers, form a class of rather unique solids. They are
organic materials consisting of long, flexible chains of macromolecules crosslinked
somewhat loosely to form a three-dimensional network. Thus, a rubber is theoretically one
giant molecule. Because of the presence of the crosslinks, rubbers are capable of very large

10 see Sharda and Tschoegl (1974)
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(up to ~ 1000%) reversible deformations and will not dissolve but will swell in a suitable
solvent. Above the so-called glass tramsition temperature the chains possess sufficient
mobility to impart to a rubber some of the characteristics of a liquid (e.g., relative
incompressibility; see § 17.12).

Any real elastomer is an imperfect network that contains certain network defects.
Such defects are loose ends, i.e., chains that are connect to the network at one end only,
physical entanglements, i.e., chains looping over others, and closed loops resulting from
linkages of two points on a single chain. There may also be present chains that are not tied
to the network. Our concern here is with a perfect network that is deemed not to contain
any network imperfections.

17.4 The Fundamental Equation of an Elastomer
In the energy representation the fundamental equation of an elastomer is thus given
by

U=U(S,V, L, N) (17.4)

where the number of moles, N, is interpreted as the number of moles of network chains.
The number of canonical variables being 4, the number of degrees of freedom becomes 3
[cf Eq.(8.7)].

In the absence of swelling an elastomer is at constant composition. We proceed to
examine the alternative thermodynamic potentials of an elastomer under this aspect.

17.5 Alternative Thermodynamic Potentials for Elastomers

With 3 degrees of freedom, an elastomer in simple tension has 21 —2 =14
alternative thermodynamic potentials. At constant composition this number is halved
(cf. § 8.7) and the total number of thermodynamic potentials of interest therefore becomes
7+ 1 = 8. The seven alternative potentials to consider are

F=U[T|=U-TS, (17.5)1,
H=U[P]=U+PV, (17.5)12
D=Ulf]=U~fL, (17.5)13
G=U[T,Pl=U—-TS+PV, (17.5)14
B=U[T, f1=U-TS - fL, (17.5)5
E=U[P,fl=U+PV - fL, (17.5)16
Z=UT,P,fl=U-TS+PV - fL, (17501

and the alternative fundamental equations follow as

F=F(T,V,L,N), (17.5)21
H=H(S P LN), (17.5)3,
D=D(S,V,f N), (17.5)3
G = G(T, P, L, N) 5 (175)24
B=B(T,V,f,N), (17.5)25
E=E(S,P,f,N), (17.5)26

Z=Z(T,P,f,N). (17.5)27
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In addition to Eqs.(17.2),and (17.2); for the internal energy the seven alternative Gibbs
equations in the energy representation then become

dF = — SdT — PdV + fdL + pdN , (17.5)51
dH =TdS + VdP + fdL + udN , (17.5)3.2
dD = TdS — PdV — Ldf + udN , (17.5)3
dG = — SdT +VdP + fdL + pdN , (17.5)s4
dB = — SdT — PdV — Ldf + pdN , (17.5)s.5
dE = TdS + VdP — Ldf + udN , (17.5)36
dZ = — SdT + VdP + Ldf + pdN , (17.5)37

while the seven Euler equations in the same representation take the forms

F= —PV+fL+uN, (17.5)41
H =TS + fL-uN, (17.5)4,
G = fL+uN, (17.5)s3
D=TS—PV +uN, (17.5)44
B= — PV +yN 5 (17.5)4.5
E =TS +uN, (17.5)6
Z =uN. (17.5)s7

The potential functions U, F, H, and G differ from those in use in the
thermodynamics of fluids in the additional fL terms. F, H, and G measure the work
available in a reversible process from an elastomer at constant temperature, at constant
pressure, and at constant temperature and pressure, respectively.

D and E measure the work available in a reversible process from an elastomer at
constant force, and at constant pressure and force, respectively. B and Z measure the work
available in a reversible process from an elastomer at constant temperature and force, and at
constant temperature, pressure and force, respectively. B and Z are the free energies
associated with D and E. Of the four, E and Z may respectively be called elasthalpy and
free elasthalpy, but no special terms have come into use for D and B which are seldom
used.

17.6 The Fundamental Set of Second-order Partial Derivatives of an Elastomer

In simple tension the internal energy of an elastomer at constant composition is
U=U(S,V, L). It thus has f+ 1 = 3 first-order, and 3(f+ 1)Xf+ 2) = 6 second-order
partial derivatives.

The first order derivatives are

U U U
S|y, 174 P o =5

and the fundamental set becomes
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as v ov

- = O — = y - — =V 17.6

aTly , Cv /T, 3Ty, Vas, 3P |5 Ks.L (17.6);
and

oL oL oL

— = e = _— = L ;. 17.6

ET Lesv,  5r sv Lbsy. aP|g, (17.6):

The first three coefficients are familiar except that they are now taken at constant
length in addition to constant volume or constant entropy. Thus Cy ;. is the heat capacity at
constant volume and length, and a5 ; and &g ; are the adiabatic expansivity and adiabatic
compressibility at constant length.

The next three coefficients are new. They represent the adiabatic change in length at
constant volume as a finction of the force, the temperature, and the pressure, respectively.
In particular, pg - is the adiabatic-isochoric length-force coefficient per unit length, Bs v is
the adiabatic-isochoric length-temperature coefficient per unit length and, finally, x5 v is the
adiabatic-isochoric linear compressibility. The requirement of adiabaticity and that of
constant volume (which demands the application of a hydrostatic pressure), place severe
experimental restrictions on the experimental determination of these coefficients.

17.7 The Primary Set of Second-order Partial Derivatives of an Elastomer

For an elastomer the appropriate potential from which to derive the primary set of
second-order partial derivatives is the free elasthalpy, Z, since it is this potential that has all
the intensive parameters as camonical variables. At constant composition we consider
Z = Z(T, P, f)and the three first-order partial derivatives become

8z 8z oz
—— P 5 —_ — V, e = - L .
or P i oFP T.f of T,P
The primary set then follows as:
a8 v oV
oT P, f p.s /T, T pf ep.f> 8P T, f FT.1 ( 5
and
oL oL 8L
—— = L —_— == L -— = L . ]7~7
85 Iz, » PT, P> 3T |5 Bp, 4, 3P‘T,f XT. f (17.7)2

Again, the first three coefficients are the familiar isobaric heat capacity, isobaric
expansivity, and isothermal compressibility, all now at constant force. The three new
coeflicients represent changes in length with respect to force, temperature, or pressure,
while the other two intensive parameters are held constant. In particular, pr p is the
isothermal-isobaric length-force coefficient per unit length, Bp s is the isobaric length-
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temperature coefficient per unit length at constant force, and xr s is the linear isothermal
compressibility, also at constant force.

17.8 'Hybrid’ Primary Sets of Second-order Partial Derivatives for an Elastomer
Experimentally, changes at constant length are also important. The second-order
partial derivatives of the free enthalpy at conmstant length, G = G(T, P, L), furnish a
‘hybrid' primary set of derivatives in which the length, L, an extensive parameter, replaces
the force, £, an intensive parameter, in the canonical variables of the elasthalpy. We have

N 21% vV

5T, Cp.1/T, 5T, , Vap g, 3P|, , Verp (17.8n
and

af af af

—_— —_— A = — = . 17.8

3L, 1/Lpr.p, 5T ,, UpL, 9P, , ¢r.L (17.8),

where Cp 1 is the isobaric heat capacity at constant length, ap  is the isobaric expansivity
at constant length, and k7 ; is the isothermal compressibility, also at constant length. The
reciprocal of pr p has been discussed in the preceding paragraph. The last two coefficients
are the isobaric force-temperature coefficient at constant length, ¥p ;, and the isothermal
force-pressure coeflicient at constant length, {7 1.

The remaining thermodynamic potentials also furnish 'hybrid' sets of second-order
partial derivatives (cf. § 10.7). An important (and experimentally useful) one is the pressure-
temperature coefficient at constant volume and length,

oP
WL = or - =ap /KT L (17.8);

[cf. Eq.(10.5);] because neither ap, 1, nor £, 7 require measurements at constant volume.

17.9 The Maxwell Relations for Flastomers

By §¢ 8.6 and 8.7, at constant composition an elastomers with 3 degrees of freedom
possesses a total of (21 — 2) 4 1 = 2f = 8 thermodynamic potentials, and {Rf+ 1) =3
‘mixed' second order partial derivatives for each potential. The number of Maxwell relations
therefore is 24. The complete set is assembled below.

U:

_ _9F
s 08

oT
v.p 0L

op
L’ ‘/" aL

of

sV ~aS

o1
oV

s
v,S BV

(17.9);
LS
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F:

o5\ _9oF _ o3y _of _opp_of

Virr 0TIy OLiry OT|.y Ly, r OV
H:

or| _ov| or| _of|  ov| _of

OPlsp 08Slpr OLlsp 9S|Lp OLips OPiLs
G:

o5 v _osy o ovy  _9of

0P|, 0T|p . OL|r p T\, p OLipr 0P

D:

oy _ _9oP ory, _ _oL op)  _ 9L

Vils s S|y Ofls v S\sv  Oflv.s oV
B:

os| _oP|  os| _er|  op| _ oL

OViry 0T\, Oflry OTl;yv Oflvr Vier
E:

or| _av| er| _ _er) vl _ oL

OPlg; OSip; Oflsp 8Si;p Oflips oP
Z:

av| oS a8 oL oL 1%

ﬁIP,f__a?T,f’ a—fT,P=6—T P aﬁpf,rz_a_f P,
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(17.9),

LT

(17.9)

(17.9)
LT

(17.9)s
7.8

(17.9)8

T

The potentials from which the relations are derived are again listed in the left margin in bold

font.

17.10 The Chemical Potential of an Elastomer

The statement is often seen that the chemical potential equals the molar Gibbs
potential, ie., g, the molar free enthalpy[cf. Eq.(14.2)¢].In the thermodynamic simple
system the canonical variables of G are the intensive parameters of the system apart from
the mole number, N. In an elastomer, however, the chemical potential is given, in analogy

to § 8.24, by
ou|  _em| _oF| _aG|
oN S,V,L aN S,P,L aN T,V,L aN T,P,L

(17.10)
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from the first four thermodynamic potentials, and

8D

22 __ 0B
oON

SV, f B ON

_oF
Vv, f ON

8z

=22 —pu (17.10),
s.p.; ON

I,P f

from the last four. Thus, the chemical potential of an elastomer is the same as the molar free
enthalpy when taken at constant length. If one wishes to equate the chemical potential of a
rubber to that molar thermodynamic potential whose canonical variables, apart from the
mole number, are the complete set of intensive parameters, one must turn to the free
elasthalpy. We have

o0z

#:— :Z/N:;’ (17.10)3
ONir p s

where : is the molar free elasthalpy.
17.11 The Gibbs-Duhem Equation for Elastomers

As the complete Legendre transform of the internal energy, U = U (S, V, L, N},
the Gibbs-Duhem equation for an elastomer becomes

SdT —VdP + Ldf +Ndu=0 (17.11)

in the energy representation.

17.12 The Assumption of Incompressibility

At Ansantass manttine o alptowmsne mannnanan tha thenn aanatinne nf ctata
——

1 1
T = T(U’ V, L),

f

P P f
_ I _ L 17.12
T(U,V,L) and % T(U,V,L) ( h

T

in the entropy representation. This system of equations can be simplified by utilizing the
experimentally well-established fact that rubbers are virtually incompressible. If this incom-
pressibility assumption is accepted, deformation causes no change in volume, and the
equations of state become

l —_ lll'f 'Y and ‘_f- —_ i(l’f R Y (17 12},
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17.13 The Ideal Rubber
Ideal behavior, as defined in § 11.2, requires that, at constant composition, each
equation of state depend on only one extensive parameter. Thus, Eqs.(17.12), must become

L f_ 7
T = 70  and 7= 7D (17.13)

and these equations represent necessary conditions for the ideal behavior of a rubber. An
ideal rubber is, of course, necessarily also a perfect rubber (cf. § 17.3).

17.14 The Equations of State of the Ideal Rubber

The second of Eqs.(17.12); is commonly called simply THE equation of state of the
ideal rubber. An explicit form for it cannot be derived within thermodynamic theory. The
statistical mechanical theory of rubber elasticity!! furnishes

f=AuRT(A —X7%),. (17.14),

where A, is the initial (i.e. undeformed) cross-sectional area on which the force, f, acts, and
A = L/L,, where L, is the initial (undeformed) length, is called the stretch ratio. R is the
universal gas constant, and v, is the crosslink density, i.e., the number of moles of effective
network chains per unit volume. Hence, the second equation of state,

L
% = Aoyek[f _ ‘L—;jl (1714)2

is more appropriately called the mechanical equation of state of the ideal rubber. This is
seen, as required, to depend on L only since v,, of course, does not depend on A.

The first of Eqs.(17.13) asserts that the internal energy must depend on the
temperature only. This can be expressed as

ou

o =0 (17.14);

T,v

or, in words, that at constant temperature and volume, U does not depend on L.
We note that Eq.(17.14); parallels the requirement that

oUu

S =9 (17.14)4

T

1 see, e.g,, Treloar (1975), pp. 42-100; Mark and Erman (1988), pp.7-21.
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for an ideal gas, since the internal energy of an ideal gas also is a function of the
temperature only (cf. § 12.2).

17.15 The Fundamental Equation of the Ideal Rubber

The fundamental equation of an ideal rubber in simple tension becomes
S = S(U, L) in the entropy representation because at constant composition Uand L are its
only canonical variables. To express the fundamental equation in parametric form we
integrate the Gibbs equation

1 f

after suitable substitutions for dU and f/T. Because U depends only on the temperature,
we have dU = Cy (T)dT. Considering the heat capacity to be constant over the
temperature range required, this simplifies to

dU = Cy 1 dT (17.15),

and integration yields
U=Cv (T-T,). (17.15);

Inserting this as well as Eq.(17.14), into Eq.(17.15);, integration produces
1
S =8+ CvinT/T, - 5 NR(OAZ +2071) (17.15)4

since AyLov, = Vyv, = N is the number of moles of network chains. Equations (17.15);
and (17.15)4 are the parametric equations for the fundamental equation of an ideal rubber.
They constitute another example of an explicit form of a fundamental equation (cf. § 13.1),
albeit in parametric form.

17.16 The Chemical Potential of the Ideal Rubber

Substituting Eq.(17.15), into the first of Egs.(17.10); we obtain the chemical
potential of an ideal rubber as

H = = CV,LT~ (1716)

By Eq.(11.3); behavior in accordance with the above is a sufficient condition for the ideal
behavior of a rubber.
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17.17 The Shear Modulus of the Ideal Rubber

Appendix 5 presents the derivation of the mechanical equation of state by the
methods of continuum mechanics. This derivation does not make any assumptions
concerning the structure of the material as a three-dimensional network of flexible chains. It
yields the equation in the form

=G\ -2 (17.17),

where o = f/A, is the stress in simple tension and G is the shear modulus of the rubber.
The latter is an important parameter in the theory of the rheological behavior of rubber.
Classical elasticity theory defines the shear modulus as ¢ = Ge, where ¢ is the hookean
strain, ie., the strain in infinitesimal deformation, also called the Cauchy strain. By
contrast, A — A\~ above, also called the nechookean strain, is a strain in large deformation.
Experimentally, Eq.(17.17); commonly holds only for about 20-40% extensions, depending
on the type of rubber, but this is significantly larger then the deformations other materials
can be subjected to without causing rupture or irreversible plastic changes in shape (flow).

In continuum mechanics Eq.(17.17); represents a constitutive equation, i.e., an
equation linking a measure of stress and a measure of strain through a material property
characteristic of the constitution of matter, here the shear modulus, G. Comparison of
Eqgs.(17.17), and (17.14); identifies the latter as

G = vRT = pRT/M, . (17.17),

This claims that the modulus is directly proportional to the (absolute) temperature, and also
directly proportional to the crosslink density, v,. It is also inversely proportional to M., the
number average molecular mass (molecular weight) of the chains, p being the density of the
rubber. The modulus may be obtained in a number of ways. The simplest one of these is the
measurement of o as a function of A — A~2 and taking the slope of the initial, straight-line
portion of the plot. For an estimate of v, from swelling measurements see § 17.24.

17.18 The Elastic Restoring Force

The original length, L,, of a piece of ideal rubber that has been stretched to the new
length, L, is completely recovered once the force, f, is removed. The process of
deformation is therefore a purely elastic one (the applied force has experienced no viscous
dissipation of the energy of deformation). Thus, the force responsible for restoring the
original shape is identical with the force required to deform the material, and f is also called
the elastic restoring force.

At constant composition, i.e., at any given crosslink density, we obtain f as

OF

= 2= .18
F = G|y (17.18)

from Eq.(17.5)3 1, and using F = U — T'S. Hence we may write
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oU as
= _TI= = 17.18
f 8L _— 8L _— fu +fs ( )2
where
aUu
= — 17.18
fu 8L _— ( )3

is the internal energy contribution to the elastic restoring force in the rubber, while

of
& (17.18),
7,7 3T V,L

is the entropic contribution. The second of the latter equations follows from the second of
the Maxwell relations referenced as Eqs.(17.9),.

In an ideal rubber the restoring force results purely from entropy changes since
fu =0 by Eq17.14);. The statistical mechanical theory of rubber elasticity shows that
these entropy changes are changes in the configurational entropy of the chains, brought
about by the imposed deformation'! (cf. p. 121).

17.19 The Relative Internal Energy Contribution to the Elastic Restoring Force

The relative contribution, f,/f, of the internal energy to the elastic restoring force
in a rubber, is of some theoretical as well as experimental interest. From f, = f — f;, using
Eq.(17.18)4, we obtain this ratio as

fu T of
fo_, T o7 17.19
7 1 7T, ( JJ

The experimental determination of the force-temperature coefficient at constant
volume is difficult. It is possible, however, to make use of the thermodynamic identity

oFP

of op
by 0T

oT

_of

of
- a7 (17.19),
vr 0T

V,L 9P IT,L

to replace the coefficient at constant volume with that at constant pressure. Using
Eqs.(17.19); and (17.8)3, we find

(17.19)
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where

oP apr
= = ot 17.19
WL = v mr’ ( )

is the pressure-temperature coefficient at constant volume and length which conveniently
does not require measurements at constant volume [of Eq.(17.8)3].

17.20 Swelling

Hitherto we have discussed the thermodynamics of rubber under the assumption of
constant composition. This assumption is no longer tenable when a piece of rubber is
immersed in a solvent. It then changes its composition because it swells, i.e., it imbibes a
certain amount of the solvent. It cannot dissolve (cf. § 17.3) because the network chains are
held together by the crosslinks.

The fundamental equation of a swollen elastomer becomes

U=U(S,V,L N, Ns) (17.20)

where Njand N, are respectively the number of moles of solvent molecules and of network
chains!2.

The process of swelling has much in common with the process of solution. Both
processes are concerned with the equilibrium between a pure and a mixed phase. In the
latter case the pure phase is (generally) solid (the solute) and the mixed phase is liquid (the
solution). In the former case the situation is reversed: the pure phase is liquid (the swelling
agent, that is, the solvent) and the mixed phase is solid (the swollen rubber, a gel).
Thermodynamically the difference is irrelevant.

17.21 The Free Enthalpy of Dilution of a Swollen Rubber
In terms of the vapor pressures the free enthalpy of dilution upon swelling is, in
analogy to Eq.(16.12), for a solution, given by

IAGw
ONy

AG: = =RT In P/P° (17.21)

where Pis the vapor pressure of the solvent in the swollen rubber and P° is the vapor
pressure of the pure solvent. We have omitted the bar over G, and the subscript on the
pressures since only the solvent has an appreciable vapor pressure. At equilibrium, P = P°,
since AG1 = 0. Thus, the equilibrium degree of swelling is the same whether the piece or
rubber is immersed in the solvent or is exposed to the saturated vapor.

2 N» is V, v, where v, is the crosslink density (cf. § 17.14).
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The second term in Eq.(17.23), is the free enthalpy change associated with the
elastic isotropic expansion of the three-dimensional chain network upon swelling. As shown
in continuum mechanics it is14

AGq = 3G\ - 1) (17.23),
where A =1/ 6;"/3 is the linear swelling ratio. Substituting for A in the equation above gives

AGy = 3RTw,(1/5;° — 1) (17.23)s
where the relation G = 1, RT [cf. Eq.17.17,] serves to introduce the crosstink density, ve.

17.24 Swelling Equilibrium

Even when a piece of rubber is in contact with an excess of solvent, swelling
eventually attains equilibrium when a balance is reached between the entropic forces
promoting the mixing of the network chains and the solvent, and the elastic forces resisting
the expansion of the network. At equilibrium, therefore, there can be no further penetration
of solvent into the network. The condition for equilibrium, as already stated, is the
vanishing of the free enthalpy of dilution, i.e., AG; = 0. We thus have

aAC’!sw aAGle aAGel
AGy = = =0. 17.24
1=9N, - on, T oon, (17.24)

To take the derivative of the mixing term, we need to take into account that the volume
fractions are given by Eqs.(16.17), containing the number, x, of solvent-sized segments.
Differentiation, and letting z increase without limit, i.e., letting z — oo, yields

OAGmix
N,

=RT[In(1 ~ %) + 7 + XxT5] . (17.24),

To differentiate the second term, consider that a unit cube of dry rubber will swell to
a volume of 1 + Njv;, wherev; is the molar volume of the solvent and N;v; is thus the
volume of solvent that entered the cube. The volume fraction of the rubber in the swollen
volume therefore becomes

1

- 17.24
14 Nyo; ( )3

Uy

Sukciso i T e Y s s g T e e T sepieting leads to

14 Different theorenca: considerations lead to different expressions for the front factor that is here given as
3/2. For details see Mark and Erman (1988).
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AGqy

N, = RTv, 17, . (17.24)4

Combining both equations and applying the equilibrium condition, AG; = 0, yields
In(1 =)+ + X% +veny =0. (17.24)s
This equation contains three ‘'unknowns': the equilibrium volume fraction v,, the interaction

parameter x, and the crosslink density v,. Expanding the logarithm to the first two terms
gives the equilibrium swelling volume as

05-—x1°3
7y o [ X] . (17.24)
Vile

Since x may be taken as a constant less than 0.5 it is clear that the equilibrium swelling
volume will be the smaller, the greater v, is.

Measurement of ¥, provides one method for determining the crosslink density, v,
and/or the (number average) molecular mass, M., of the network chains from

In(1— )+ 02 + X3

173
V1Uy

Ve:p/Mcz -

(17.24),

if the interaction parameter, x, is known.
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18. STABILITY

A thermodynamic system that returns to its original equilibrium state upon having been
subjected to a perturbation is said to be in stable equilibrium. The present chapter examines
the circumstances under which a system will act in this way. Under certain circumstances,
however, a thermodynamic system may become unstable. The system then separates into
distinct subsystems, called phases, thus exhibiting the phenomena of phase transitions and
the existence of critical states and critical points. These phenomena will be discussed more
fully in Chapter 19. This chapter first examines the general aspects of thermodynamic
stability. It considers stability within an isolated single system or intrinsic stability, and
stability between the subsystems of a composite system or mutual stability.

18.0 Chapter Contents

18.1 The Criteria of Thermodynamic Stability

18.2 Intrinsic Stability

18.3 The Stability Criteria in Quadratic Form

18.4 Phase Separation

18.5 Definiteness of the Quadratic Form

18.6 Criteria of Intrinsic Stability

18.7 Le Chatelier's Principle

18.8 Stability Criteria in the Simple System - Energy Representation
18.9 The Criterion of Thermal Stability

18.10 The Criterion of Mechanical Stability

18.11 The Criterion of Diffusional Stability

18.12 Effect of Parameter Ordering

18.13 Sufficiency of the Highest-Order Criterion

18.14 Stability Criteria in the Simple System - Entropy Representation
18.15 Ciritical States

18.16 Critical Points

18.17 Mutual Stability

18.1 The Criteria of Thermodynamic Stability
The stability criteria, or criteria of stable equilibrium, are

(d*U)s >0 and (d*S)y <0 (18.1)

based respectively on the energy minimum principle or the entropy maximum principle
(cf §§ 4.4 and 4.3). These criteria are valid for perturbations from a state of stable
equilibrium. They are sufficient criteria, complementing the equilibrium criteria,

(dU)s =0 and (dS)y =0, (18.1)



130 1. EQUILIBRIUM THERMODYNAMICS
as necessary conditions. Qur task now is to express the stability criteria in terms of
quantities that are accessible experimentally. These will be the fundamental and the primary
sets of second-order partial derivatives (cf. §§ 10.1 and 10.2) of the fundamental equation.
We note that a valid fundamental equation must satisfy the criteria of stability.

18.2 Intrinsic Stability
We examine the problem of intrinsic stability, i.e., stability in an isolated system. Let

¥ =y Ny, 2, ... ) (18.2)

denote either S or U with extensive parameters x1, 3, ... T,. and let us consider a general
virtual displacement from equilibrium. The result of this perturbation will be given by the
Taylor expansion

1
vy +dzy, ... 2, +dz,) — ¥z, ... z2) =dy @ + 3 Ey +.. . (182),

The first-order effects form the series

n
dy® = 3"y dr; (18.2);
=1

and the second-order effects result as

0 = 33 e, 52

i=1 j=1
where we have used the shorthand notation

o _ 04
t a.’Eian

(18.2)s

T1,22,. . TicdpTitl e T LT HL5 - o

Now dy¥ is either d(I/)s or (dS); and the first-order effects therefore vanish by
the conditions of equilibrium, d(U)s = 0 and (dS); = 0. By Eqs.(18.1);, however, the
second-order effects must be greater or less than 0, i.e., we must have

4@ >0 and d*4® <o (18.2)s
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depending on whether U or S is the base function. Effects of order higher than the second
can be neglected at this point but will be addressed again later in § 18.16.

18.3 The Stability Criteria in Quadratic Form
Mathematically, d24® is a homogeneous quadratic form. Setting

y(ZOJ) = Ay, dz; = q;, (18.3)
Eq.(18.2)4 becomes
i3 3
&y =33 o] dridz; =q'Aq (18.3),
=1 j=1

where A is a symmetric matrix formed from the A;;, ie., from the second-order partial

derivatives of the chosen base function, and q is a column vector composed of the dx;, i.e.,

the infinitesimals of the extensive parameters of the system. The symbol T denotes the

transpose of the vector q. Thus, gTA q is the quadratic form in matrix notation.
Reformulating the stability criteria in the matrix notation yields

Py =q'Aq>0 and dy® =qTAq <0 5(18.3);

for the criteria in the energy representation and the entropy representation, respectively.

18.4 Phase Separation

We now examine the conditions under which the system would become unstable,
i.e., would separate into two phases. Phases are homogeneous subsystems bounded by a
surface across which the physical properties change discontimuously. As shown in Fig. 18.4
below, we imagine the system to be subdivided into two such phases which are iitially
identical, and are separated by a diathermal, movable, and permeable wall. This purely
imaginary subdivision turns our single system effectively into a composite one. Indeed, we
shall see later that the problem of intrinsic stability underlies the problem of mutual stability
(cf § 18.17).

©

B

Fig. 18.4 Isolated system comprising two subsystems, « and &
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We shall call the two subsystems the a-phase and the [S-phase, respectively. The same
Greek letters will be used as superscripts to distinguish quantities as belonging to one or the
other phase. The perturbation effects for the composite system then are

d*y® = (¢"A q)* +(q"A q)° . (18.4),

In the Taylor expansion the partial derivatives are evaluated at the initial conditions
and, by assumption, the a- and the G-phase are identical at the onset of the perturbation.
Hence, introducing molar quantities, we find that

oa _ N® 03
Yi; :Wyij . (18.4),

The system being isolated, the conservation constraints, Eqs.(4.6); ; or (4.7),, require that
dxfda = (- dz}X - d,,-f) = dx;’dxj . (18.4);
Substituting Egs. (18.4), and (18.4); into Eq.(18.4); vields
N
dly(o) =3 (qTA q)° (18.4)4

where N = N@ + N3,

Equation (18.4)4 contains derivatives (i.e., variations) only of the a-phase. The
stability of the a-phase thus implies the stability of the [-phase. To examine the
circumstances under which the phases would separate it is therefore sufficient to ascertain
the criterion of stability for the a-phase alone.

18.5 Positive Definiteness of the Quadratic Form

The quadratic form can be arranged in the form of a square array. The dx;dx;-terms
on the principal diagonal of the array, being squares, are necessarily positive. Nothing can
be said, however, about the signs of the off-diagonal terms. To establish the conditions
under which the form will be either positive or negative definite, it is therefore necessary to
'diagonalize' it, that is, to express it as a sum which contains no 'mixed’ terms. One way of
doing this is described in Appendix 6. The result is

n—1
q'Aq=> " dr (18.5)

Jj=1
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where the yﬁ’; Y are the second-order partial derivatives of the Legendre transforms of order
j—1 of the chosen base function. The identical subscripts mean that the stability criteria are
based on second-order derivatives formed from conjugate pairs of parameters. No criteria

can be based on any mixed partial derivative.

18.6 Criteria of Intrinsic Stability
- 2 - .. .. T .. . v . .
Since dr; is necessarily positive, q' A q will be positive or negative definite
according to whether

#0>0 or #5 <o, j=12..n1 (18.6)

Here, n = f+ 1, n and f'being the number of canonical variables and of degrees freedom.

The two inequalities above furnish the criteria of intrinsic stability. With U as the
base function the method described in Appendix 6 leads to the first inequality while the
choice of S as the base function leads to the second inequality instead.

18.7 Le Chitelier's Principle
The physical content of the two criteria embodied in the Inequalities (18.6) is known
as Le Chatclier's principle. It states:

“Spontaneous processes induced by a displacement from equilibrium work
to restore the system to equilibrium."”

As an example, suppose that in a portion of a system the temperature is raised above
that of the rest of the system. The spontaneous process which will occur then is a flow of
heat away from the hotter region (cf. § 4.10) until equilibrium is reestablished throughout
the system.

Le Chitelier's principle carries the concept of equilibrium from mechanics to
thermodynamics. It applies not only to physical processes such as phase changes but to
chemical reactions as well (cf.§ 21.8).

18.8 Stability Criteria in the Simple System - Energy Representation
In this section we demonstrate the method for formulating the stability criteria in the
internal energy representation, based on the first inequality of § 18.6.

G-1)
yj; >0

In § 18.14 we give a brief illustration using the entropy representation.

Consider a binary simple system that has U = (S, V, Na, Np) for its fundamental
equation. The system is characterized by four extensive parameters, hence there will be
three criteria, to be derived from the second-order partial derivatives of the findamental
equation's Legendre transforms of zeroth, first, and second-order. Since the two mole
fractions are interrelated by the appropriate form of the Gibbs-Duhem equation
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(cf. § 14.14), the mole number of any one of the components is sufficient to characterize the
system. We have arbitrarily chosen V,.

In the 'standard’ order, 3 = U(S,V, N,), the transforms and their canonical
variables!’ are

¥ =U(S,V, Na).
yP = F(T,V,Ny),
and

y(Z) = G(T> _P> NA)

Writing A for N for notational simplicity, the second-order partial derivatives take
the forms:

U
1 8°’F
(22) = a—vg = Fyy,
and
9 8’G
2y _ _
Y33 = OAZ Gaa -

We have made use here of the handy 'double subscript’ notation for the second order partial
derivatives. With this notation we obtain succinctly

Uss >0, (18.8)

Frv >0, (18.8),
and

Gan > 0. (18.8);

for the three criteria of a binary simple system.

18.9 The Criterion of Thermal Stability
Since

Uss = (8T [0S W Ny = T/Cv (18.9n

15 The pressure is best handled as — P, adjusting the notation eventually as appropriate.
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[cf. Eq.(10.1);], we have T'/Cy > 0. But this can be true only if

Cy >0. (18.9),

The criterion is appropriately called the criterion of thermal stability because the ntensive
variable to which it relates is the temperature. Since, at constant volume and mole numbers,
TdS = 6Q, we have 5Q/dT > 0.The criterion, therefore, states the rather obvious fact
that the addition of heat to a stable system increases its temperature.

18.10 The Criterion of Mechanical Stability
Next,

Fyy = —(OP/0V)rnm = 1/VEr (18.10),
[cf Eq.(10.2);], and the second criterion becomes
Kk >0. (18.10);

It implies that 3P/3V < 0 and, hence, indicates that an isothermal expansion of a stable
system at constant temperature must decrease its pressure. It is called the criterion of
mechanical stability.

18.11 The Criterion of Diffusional Stability
Finally,

GAA = (aﬂ/aNA)T’P,NB. (18.11)1

No special symbol for the derivative is in common use. Introducing the mole fraction, 72,4,
we obtain the third criterion in the form

Bun/87p > 0. (18.11),

This may be referred to as the criterion of diffusional stability because it expresses the fact
that the introduction of an additional amount of matter into a stable system at constant tem-
perature and pressure will increase its chemical potential.

18.12 Effect of Parameter Ordering

The criteria listed in the preceding section were obtained by taking the extensive
parameters of the base function in the ‘standard' ordering y©@ = U(S,V,Na,Np). A
different ordering produces different but equivalent criteria. We illustrate this again for the
binary simple system. The ordering U = U(V, S, Na, Np), for example, will furnish the
relations
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y(O) = U(V> S> NA);
y<1) = H(_P7 Sa NA):

and
¥? = G(—P, T, Ny).

The second-order partial derivatives then follow as

U
(0)
Y = 92 = Upv
1 U
Yy = a5z = Hss
and
(23 U
Yz = IAZ =Gaa

The second-order transform remained as it was in § 18.8 since the position of Vo was not
changed in the new ordering. The two new criteria now become

Uyy >0, (18.12)
and

Hgs > 0. (18-12)2
But

UV" = — (6P/6V)S,NAM3 = I/VK,S (1812)3

[cf Eq.(10.1);] and, hence,

ks >0. (18.12),

This is another form of the criterion of mechanical stability. It implies that an isentropic
expansion of a stable system increases its temperature as does an isothermal expansion.
Now

Hss =(0T/3S)p nyn =T/Cp (18.12)s
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[cf Eq.(10.2);] which, in turn, gives
Op >O, (1812)(,

Equation (10.3);, Cp = Oy +TVal/kr, shows that Cp > 0 implies Cy > 0
because TV a%/kr > 0 if kr > 0. Further, it is readily seen from k7 /ks = Cp/Cy that
ks > 0 implies k7 > Obecause Cp is always greater than Cy. Clearly, the two sets of
criteria obtained from the two different orderings are equivalent although they differ in
form.

18.13 Sufficiency of the Highest-Order Criterion

The highest order criterion (j = n — 1 = f) is a sufficient criterion. The lower order
ones are necessary, but not sufficient criteria. Consider the two criteria of the single
component simple system,

Uss >0, (18.13)
and

Fyy =(Uss Upy —Udy) > 0. (18.13),

Now let Ugg decrease. Then, Fyy will become negative before Usg can become zero (or
negative), unless Uy increases without limit. Thus, the second criterion is violated before
the first.

This reasoning can be extended to systems with an arbitrary number of extensive
parameters. In general, the necessary and sufficient criterion for a stable equilibrium is

2 1 2 1
WD =0 o D =i V<o, (18.13);

depending on whether the criterion is sought in the energy, or in the entropy representation.
The equations above are, of course, the Inequalities 18.6 with f = j.

18.14 Stability Criteria in the Simple System - Entropy Representation

The last three sections dealt with formulating the stability criteria based on the
internal energy representation. An analogous procedure based on the second of the
inequalities of § 18.6,

-1
¥i; 0 < 0

>

furnishes the stability criteria in the entropy representation. This approach makes use of ¥
and @, two of the Massieu functions introduced in Chapter 9. We shall obtain here the
criteria for the bmary simple system we have used in § 8.8. For this system
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Y9 = S(U, V, Na),

y(l) = \Il(l/Tv V7 NA) 5
and
y? = &(1/T,1/P, Na),

where ¥, THE Massieu function, is given by Eq.(9.1)e, while &, the Planck function, is
given by Eq.(9.2);.
Again using A for N,, the derivatives become

0 8%s
y(n) = a—U—g = Sur
Oy
e
and
&
(2)
Y33 = W =®Paa .

The three criteria require that we have

Spw <0 (18.14)

‘I’V" <0 (1814)2
and

Ban < 0. (18.14)
Now,

83 a(1/T) 81/T 8T 1
Spp = —— = = — = — ) 18.14
CToU%, . 8U |y 0T 9U|y, T2Cy (18.14)

since (8U /8T )y = Cy- by Eq.(10.1)4. But then the criterion Syy < 0can only be true if
Cy > 0 and thus we recover the criterion of thermal stability.

Similarly,
R 8(P/T) 18P

\If"y = 5 = = =T = — I/FZTV . (18.14)5
ov? T.A v T.A ToV T°




18. STABILITY 139

But then the criterion ¥y < Ocan only be true if k7 > 0, and this is the criterion of
mechanical stability that we had found earlier.
Finally,

o’® O(u/T)

oer __ 1o
84%|; » 8A

- E—_] Ton 18.14
. TaA ua/TORA  ( )s

T, P

Bpa =

which is another expression for the criterion of diffusional stability of § 18.11.

18.15 Critical States
At the limit of intrinsic stability the Inequalities (18.6) become the equality

ygij.” =0, i=1,2,...n-1 (18.15)

in either representation.
A system at the limit of stability is in a critical state since it can become unstable by
an infinitesimal variation in conditions. Not all phase transitions have critical states.

18.16 Critical Points
Critical states are characterized by critical points. To decide whether a perturbation
will take the system into a stable or an unstable state, we must examine perturbations of

order higher than the second in the Taylor expansion, Eq.(18.2);. Given n canonical
variables, we must therefore look at

L i .
dy D =49 da; . i=12,...n-1 (18.16),

Let us assume that the a-phase is stable and that

$ >0, j=12,...n~1  (18.16)
Then, Eq.(18.16); becomes

Ay =y dre S 0. i=1,2,...n-1 (18.16);

Since the system is isolated we have dz$ + dxf = 0. Hence, whatever the sign of dz§,
that of dxf is its negative inverse. If dz;a > 0it would follow that
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s . )
dygt” = y]@g}” drf <0. i=1,2,...n-1 (18.16)4

Equations (18.16); and (18.16), are in contradiction with the original assumption that the
a- and B-phase are identical before the onset of the perturbation. Therefore, we must set

ygz” =0. j=1,2,...n-1 (18.16)s

This, together with the conditions

g , .
Y >0 or Wil<o, j=1,2,...n-1  (13.16)

is the criterion for the existence of a stable critical point. The first condition applies in the
energy, and the second in the entropy representation. An application of these equations is
discussed in § 19.10.

If the fourth order derivative is found to vanish, the fifth order derivative must be
zero for a stable critical point to exist. In general, if the internal energy is selected as the
base function, the lowest non-vanishing derivative of even order must be positive for that
critical point to be stable.

18.17 Mutual Stability

The stability of the mutual equilibrium state of two single component simple systems
interacting through a non-restrictive wall is guaranteed by the intrinsic stability of the
individual systems. Intrinsic stability thus dominates the problem of mutual stability.
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19. PHASE TRANSITIONS

If the criteria of intrinsic stability are not satisfied, the system breaks up into one or more
portions or phases. Examples are common. The phases of water have been studied
extensively from the beginning of thermodynamic investigations, largely because of the role
of water as the working fluid in steam engines that utilize the liquid-vapor transition of
water to produce useful work. Water is also 2 common solvent.

19.0 Chapter Contents

19.1 Phase Transitions in an Ideal Gas

19.2 The van der Waals Equation of State

19.3 The Critical Point

19.4 The Spinodal

19.5 The Binodal — Maxwell's Rule

19.6 The Metastable Region

19.7 The Saturation region

19.8 The Lever Rule

19.9 Phase Equilibrium and Stability Criteria in Terms of the Free Energy

19.10 The F,v-diagram

19.11 Latent Heat

19.12 The Clapeyron Equation — Phase Equilibrium in Terms of the Chemical
Potential

19.13 The Clausius-Clapeyron Equation

19.14 The Triple Point

19.15 Coexistence Lines and Existence Regions

19.16 Phase Transitions in Simple Systems — The Phase Rule

19.17 Phase Transitions in Multicomponent Systems — The Binary Solution

19.18 Phase Transitions in Non-Simple Systems

19.19 Higher-Order Phase Transitions

19.1 Phase Transitions in an Ideal Gas

An ideal gas is by definition in stable equilibrium because the stability criteria are
intrinsically satisfied for all ideal gases. The criterion of thermal stability, Cy > 0, is
satisfied because for all ideal gases, the heat capacities are always positive {cf. Eq.(12.5)3].
Similarly, so is the criterion of mechanical stability, k7 > 0 [cf. Eq.(12.5)]. An ideal gas,
therefore, does not exhibit the phenomena of phase transitions and critical points.

19.2 The van der Waals Equation of State

To illustrate the theoretical aspects of the liquid-vapor (or liquid-gas) transition in
water and other fluids we turn to the semi-empirical van der Waals equation of state (van
der Waals 1873). This equation is an extension of the second equation of state of the ideal
gas. It models the behavior of real gases at moderately low temperatures and moderately
high pressures quite well. For the physical simple system the equation takes the form
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(P+a/v*)(v—b)y=RT (19.2),

where a and b are material constants.
Figure 19.1 shows a schematic plot of the pressure, P, against the molar volume, v,
at different temperatures, T, for an arbitrary set of the constants, a and b.

P
plait point
IS -
metastable regior
T>T,
=T,
Prranst — ——

> T<T,

v /1 liquid

) g

spinodal-l‘y ga! | binodal
Y Ve g v

Fig. 19.2 Van der Waals isotherms

By Eq.(10.2)s the slope, (8P /8v)r, of the isotherms must obey the relation

op

v = — 1/’UK:T . (]92)2

T

Since the physical simple system has two degrees of freedom, by Eq.(18.13); 1 the
highest order stability criterion becomes

>0 (19.2)s
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But this is the criterion of mechanical stability, k7 > 0 (§ 18.10). The criterion is fulfilled
everywhere along these isotherms at higher temperatures where the slope is everywhere
negative. At these temperatures the system is therefore in stable equilibrium and will not
separate into phases. The fluid can only exist as a vapor, i.e., a gas, and the gas cannot be
liquefied at any pressure. At lower temperatures the slope changes sign, the system becomes
unstable, and phase separation can occur. Liquid and vapor can then coexist.

19.3 The Critical Point
The lowest of the stable isotherms is called the critical isotherm. It contains a
horizontal point of inflection at which

apP

orP| P
ov

=T 0. (19.3),

T
By Eq.(18.15) the criterion for a critical state becomes

(1) F

8P
Yoo = Fvu = 502 =

T-~-&)‘

= 0 . (19.3)2
T

The inflection point in the critical isotherm is therefore the critical point or plait point (cf. §
18.16). The pressure, volume, and temperature at the critical point are the critical pressure,
F, the critical (molar) volume, v., and the critical temperature, 1.

19.4 The Spinodal

Below the critical isotherm, the constant temperature van der Waals curves develop
minima and maxima. These denote the limits of intrinsic stability at which Eq.(18.15)
becomes

op

=0. 19.4
5l (19.4)

The parabola-like spike shown as a dashed line in Fig. 19.2 is called the spinodal. It
passes through the minima on the left up to the critical point and then down through the
maxima on the right, demarcating the region of absolute instability. The slope of the van
der Waals isotherm is positive within this region, thus violating the criterion of mechanical
stability. Consequently, within it part of the fluid must exist as a vapor (i.e., gas), the other
part must exist as a liquid.

19.5 The Binodal - Maxwell's Rule

Liquid and vapor can also coexist, however, outside the region demarcated by the
spinodal. The region of incipient phase separation is marked off by the binodai shown in
Fig. 19.2 as the solid parabola-like curve. The binodal marks the endpoints of the horizontal
portion of the true isotherm. This is the horizontal line marked P = Py, Where Pipans is
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the pressure that remains constant during the phase transition. The line is drawn in such a
way that the areas enclosed by it and by the isotherm below and above it have equal areas as
shown in Fig. 19.2. This construction is due to Maxwell and is known as Maxwell's rule or
Maxwell's construction.

19.6 The Metastable Region

At the endpoint of the line, ie., at the binodal points, (9P/dv)r < 0, and the
system is in stable equilibrium. Inside the binodal, however, in the region between the
binodal and the spinodal, the system is in metastable equilibrium. With careful supercooling
or superheating it is possible to proceed along the van der Waals isotherm towards the
points of absolute instability represented by the spinodal. Normally, however, the system
will follow along the horizontal part of the isotherm given by Maxwell's construction. Thus,
the region between the binodal and the spinodal is a region of metastable equilibrium.

19.7 The Saturation region

When a gas is compressed isothermally below the critical temperature, T, its
pressure first rises slowly because the gas is highly compressible. When the isotherm attains
the binodal, saturation occurs, i.e., the vapor begins to condense. The pressure now stays
constant until the left branch of the binodal is reached, at which point the pressure rises
more steeply because the liquid is relatively incompressible. If the left branch is approached
from the left, at the binodal it is now the liquid which is saturated and it begins to vaporize.
Hence, the region within the binodal, including the region within the spinodal, is also known
as the saturation region.

19.8 The Lever Rule

Within the saturation region an arbitrary fraction of the fluid is present as a liquid in
equilibrium with the vapor. The state of the system may be characterized by the average
molar volume,

Uay = T Vg + Tl Uy, (19.8),

of the total system, where v; < v,y < v,, and v; and v, are the (molar) volumes at the lefi
(i.e., the liquid) and the right (i.e., the gas) endpoints of the horizontal part of the isotherm
(cf. Fig. 19.2). The volume v,, divides this horizontal part of the isotherm in the ratio of the
mole fractions of the fluid in the gas phase, 72,, to that in the liquid phase, 72;. But
7y +7ng = 1 and, therefore,

(Re +ng)vay = T v + T v . (19.8),

Rearranging gives

8 _ v % (19.8);
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Now let d; be the distance (vyy — v¢) between the liquid endpoint and the point of

division, and d, the distance (v, — v,y) between the division point and the gas endpoint in
Fig. 19.2. Then Eq.(19.8); becomes

e ds =ﬁgdg. (19.8),4

This expression is known as the lever rule because it is a formal analog of the rule for the
mechanical equilibrium of forces around a fulcrum at the division point with weights equal
to the mole fractions 72, and 7,4 at the liquid and gas endpoints, respectively.

Subtracting v; from both sides of Eq.(19.8); and using 72; + 7, = 1 gives

Upy — U = g (vg — vg) (19.8)s

from which it follows that

_ d
= 19.8
" 4, 14 (198)
By an analogous derivation then
dg
_— . 19.8
T &+, 198y

These two equations allow us to find the mole fractions of the gas and the liquid for
any point along the flat portion of the isotherm.

19.9 Phase Equilibrium and Stability Criteria in Terms of the Free Energy

Since we are considering changes along isotherms, it is instructive to view these
changes in the light of the equilibrium and stability criteria expressed in terms of the free
energy, F'. The equilibrium criterion is

(dF)r = 0. (19.9)

In § 812 we introduced the stability criterion for perturbation from a state of stable
equilibrium as (d?F)r > 0. However, at the limit of stability (d2F)7 vanishes. In
accordance with § 18.16, we must therefore examine higher order perturbations as well, and
the criteria of stability become

(®F)r >0 and (d"F)r >0 (19.9),
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where (d"F)r is the lowest-order non-vanishing variation. We proceed to examine this
case.

19.10 The F', v—Diagram

Let us consider F as a function of v. An F, v—diagramis shown in Fig. 19.10 for the
physical simple system. The points A and B represent points on that isotherm. They have a
common

Fig. 19.10 F, v — diagram for the physical simple system

tangent of slope (8F /3v)r = — P. The two points C and D are the spinodal points, at
which (GP/0v)r = 0. They represent the minima and maxima in the van der Waals
isotherm. By § 18.15 both points therefore indicate a critical state!. Since

24 8.1
d-F = - —
( r v

(dv)y =0, (19.10),
T

we must consider the variation of order three, i.e.,

3P
9v?

(&F)r = - (dv)7, (19.10);

T

in accordance with § 18.16.

16 Observe that we have

(1) (1) @*F)r _ 2°F

Vi, =Y =Fw =G = Gr

T
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Now, the point C is a minimum in the P,v—diagram of Fig. 19.2. Consequently,
(8P /8v)r is positive. Hence, for variations that decrease volume, i.e., for variations for
which (dv)%. <0, (d®F)r > 0 and the phase is intrinsically stable. Conversely, for
variations that increase volume, i.e., for variations for which (dv)3. > 0, (d®F)r < 0and
the phase is unstable.

By contrast, the point D represents a2 maximum in Fig. 19.2. Hence, here (3P /0v)r
is negative, and the phase is stable for variations that increase volume, and unstable
otherwise. The two considerations bear out the contention that points along the spinodal
represent critical states.

We note that between the points C and D the derivative (9P /3v)r is always
positive. Hence, by Eq.(19.10);, (dF)3 is then negative and the system is always unstable.
Between the points A and C, and between D and B the system is stable for some changes
and unstable for others. Hence, it is metastable.

As the temperature is increased to the critical temperature, T, the two spinodal
points coalesce in the critical point. At this unique point, again in accordance with § 18.16,

(dF)yr =(d’F)r =(*F)r =0, (d'F)r >0, (19.10);
ie.,

oP P *pP 9P

= == === = — >o0. 19.10

ouly B2y 9|y 0 ot (1910}

The latter is therefore the lowest non-vanishing variation.
Above the critical point, (9P /8v)r is always negative, and the system is always
stable.

19.11 Latent Heat

We have discussed liquid-vapor transitions (condensation/evaporation) in the
physical simple system. Similar considerations apply, however, to other phase transitions
such as the solid-liquid transition (crystallization/fusion), the solid-vapor transition
(crystallization/sublimation), or solid-solid transitions between different crystalline forms of
the same substance.

A phase transition necessarily entails a change in entropy. At constant temperature
the change in molar entropy, As, is associated with the heat flux, TAs = @, between the
system and the heat reservoir which keeps the temperature constant. This heat flux is called
the latent heat, A, which therefore represents the heat of vaporization, fusion,
crystallization, sublimation, etc., as the case may be.

19.12 The Clapeyron Equation — Phase Equilibrium

By the equilibrium condition, Eq.(4.6);, the chemical potentials of two coexisting
phases must be equal. For the physical simple system we must therefore have

pNT, P) = p”(T, P), (19.12),
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where the superscripts a and (B denote the two phases, respectively. This implies a
functional relation between the temperature, T', and the pressure, P, of the system. We
proceed to make this relation explicit.

By the Gibbs-Duhem equation for the physical simple system we have

dp® = — s*dT ++*dP (19.12),

and

dp® = —§PdT +4°dP . (19.12);

Thus the chemical potentials of the two phases can be represented by two surfaces above
the P, T'—plane.

l,]

Fig. 19.12 Chemical potential surfaces for two phases, o and 3

The projection of their intersection forms a line in the plane, the coexistence line. In the
case of liquid-vapor equilibrium, the coexistence line is the vaporization curve which ends in
the critical point (T, P.) as displayed in Fig. 19.15 below.

By Eq.(19.12); we then obtain

dP As AS
b _fe_ A5 (19.12),

an equation first derived by Clapeyron.

19.13 The Clausius-Clapeyron Equation
Let us further elaborate the Clapeyron equation. To express the right-hand side of
Eq.(19.12), in terms of measurable quantities, we introduce the Clausius equality, Eq.(5.2),
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in the form AS = Q/T. But now the heat, Q, is the latent heat, A, and at constant pressure
this is equal to the change in the enthalpy, AH, in accordance with Eq.(8.7);. Hence, we
obtain the equation

dP AH

apP _ . 19.13
dT ~ TAV (19.13n

Because it was derived for a single-component simple system, this equation is valid in this
form only as long as the chemical potentials do not depend on the composition.

When one of the phases is a condensed phase (a liquid or a solid), and the vapor
above the phase can be considered to be ideal, the approximation AV = V¥ =RT/P
furnishes the Clausius-Clapeyron equation in the form

dinP A
dT ~— RT?’

(19.13),

This is valid only as long as P is not too large.

19.14 The Triple Point
If we had three instead of two phases in equilibrium, the condition of equilibrium
between the chemical potentials, i.e., the conditions of phase equilibrium, would be

p(T, P) = u’(T, P) = u(T, P). (19.14)

Since we now have two equations in the two variables, T, and P, the solution gives the
coordinates of a point in the P, T —plane. This point is called the triple point. A pure
substance may have several triple points since it may exist in several forms in the solid state.
Nevertheless, the maximum number of coexisting phases of a pure substance is three. This
is expressed by the phase rule that forms the subject of § 19.16. A well-known example is
the triple point of water at which solid, liquid, and vapor phases coexist. Taking the
temperature of this point to be 273.16 K defines the absolute thermodynamic temperature
scale (cf. §7.14).

19.15 Coexistence Lines and Existence Regions

The P, T —plane of a typical pure substance is shown in Fig. 19.15. We distinguish
three regions in the P, T —plane below the critical temperature: the solid, liquid, and gas (or
vapor) regions. They are separated by the coexistence lines, here the fusion or melting-
point curve, the sublimation curve, and the vaporization or vapor-pressure curve,
respectively. The three lines meet in the triple point. While the fusion curve extends upward
indefinitely, the vaporization curve ends in the critical point C.

In each of the three regions the substance must be entirely in the respective phase.
To see this more clearly, consider that the dashed portion of the vaporization curve, the
coexistence line for the gas and the liquid, lies above the chemical potential surface for the
solid. For the free energy to be a minimum in this region, the substance must therefore be
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entirely in the solid phase. This, then, is the only stable phase in this region. Consequently, it
is known as the existence region of the solid phase. Similar considerations apply to the
other two existence regions.

The critical point marks the highest temperature and pressure at which a pure
substance can exist in liquid-vapor equilibrium. At higher temperatures and pressures the
material exists in the fluid (or supercritical) region. The dashed lines emanating from the
critical point indicate the boundaries of this region. There are no phase transitions across
these boundaries. Indeed, it is possible to proceed from the liquid to the gas phase without

P
1
1
! Fluid
L ™~ Region
Liquid 1
I Region = Ol
Fusion Curve
Vaporizalion Curve,
Solid
Region
Gas
Tz Triole ooint Region
SUblananen cove
T T

Fig. 19.15 P, T —diagram of a pure substance

any visible phase transition by circum-navigating the critical point as indicated by the curved
arrow connecting points A and B in Fig. 19.15. Along such a path there is a gradual
transition from the liquid to the gas region. This occurs without any abrupt change in
properties.

19.16 Phase Transitions in Simple Systems — The Phase Rule

The phase rule, due to Gibbs, connects the number of phases that are possible in any
thermodynamic system with the number of components of the system and with the number
of thermodynamic variables that characterize it.

We consider ¢ components distributed over ¢ phases of a simple system!”. The
conditions of phase equilibrium (cf. § 19.12) become

p™(T, P)= (T, P) = ... = u°(T, P). (19.16);

Since thus all ¢ potentials are determined if one is known, this provides ¢ — 1 equations.
Hence, the total number of equations that must be satisfied for ¢ components is c(¢ — 1).
The most convenient set of parameters with which to characterize the system consists of the

17 The rule may, of course, be extended to non-simple systems (cf. § 19.18).
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ntensive parameters, i.e., the temperature, the pressure, and the mole fractions. Because the
latter compositional variables are related by 3,;7; = 1, we need to know ¢ — 1mole
fractions, ie., ¢(c — 1) fractions for ¢ phases. Adding the temperature and pressure, this
makes ¢(c — 1) + 2 the number of intensive parameters capable of independent variation. If
there are more equations than independent variables, no solution exists, i.e., no equilibrium
is possible under those circumstances. When the number of independent variables exactly
matches the number of equations, there is a unique solution for one temperature, pressure,
and composition of the phases. If there are more independent variables than phases,
equilibrium is possible for certain manifolds of states. The number by which the independent
variables exceed the number of phases is the number of degrees of freedom, f This is the
number of independently variable intensive parameters of the system [cf. § 8.7]. We have

f=2+¢(c—1)—c(¢ — 1) (19.16),
or

f+op=c+2. (19.16);

Equation (19.16); embodies Gibbs's phase rule for the simple system. For a pure substance,
¢ =1. The maximum number of phases in a simple system is therefore three, and that
number is possible only if the number of degrees of freedom is zero. Hence the point at
which all phases coexist is a triple point.

19.17 Phase Transitions in Multicomponent Systems — The Binary Solution

Excepting the preceding section we have, so far, considered single-component
systems only. As the simplest example of a multicomponent system we shall now consider a
binary system, and we select the case of a binary solution as one of the most frequently en-
countered such systems. Extension to systems with more than two components is straight-
forward in principle.

In the system under consideration we are primarily interested in compositional
changes at constant (normally atmospheric) pressure and at different constant temperatures.
It is therefore convenient to diagram these changes as constant pressure isotherms of one of
the two chemical potentials as function of the mole fraction of the corresponding
component in the solution. Such isotherms are shown in Fig. 19.17.

The plot shows many similarities to that displayed in Fig. 19.2. Above a critical
point, here called the consolute point, the two components are miscible in all proportions.
At lower temperatures the solution separates into two phases. There is again a spinodal as
well as a binodal curve, and analog considerations of stability apply, except that the highest
order criterion now is the criterion of diffusional stability that we have introduced in § 18.11

O
— >0. 19.17
o7 |y p = ( h

As was pointed out there, at any given temperature an increase in the mole fraction
of a component increases its chemical potential.
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Hy P = constant

metastable

region

binodal

0 _ 1
m

Fig. 19.17 Chemical potential vs. composition for a binary system
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and the consolute point is a point of stable equilibrium.

19.18 Phase Transitions in Non-Simple Systems

The phase rule is valid in the form given by Eq.(19.16); only for a multicomponent
simple system. The constant 2 appears because the only intensive parameters considered
apart from the mole fractions are the temperature and pressure. If, e.g., magnetic field
intensity is also to be taken into account, the constant would be 3.

19.19 Higher-Order Phase Transitions

The phase transitions we discussed in the preceding sections involved discontinuous
changes in the volume, V, and the entropy, S, respectively. Clapeyron's equation,
Eq.(19.12)4, relates the change of pressure with temperature to these discontinuous changes
in the entropy and the volume. The latter quantities are the first-order derivatives of the free
enthalpy, G. Phase transitions that show discontinuities in these first-order derivatives are
called first-order transitions.

A second-order transition occurs when the second-order derivatives of G, i.e., the
members of the primary set (cf. § 10.2) of second-order partial derivatives, ap, k7, and
Cp, are discontinuous while the first-order ones remain continuous.
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Higher-order transitions may be defined similarly. The classification is due to
Ehrenfest who also introduced the equation

dP _Aap  ACp
dT' ~ Axy  TVAa

(19.19)

as the analog of the Clapeyron equation for a second-order phase transition. While some
second-order phase transitions appear to exist (superconductors in zero magnetic field are
reputed to show such transitions), there does not seem to be any evidence for the existence
of transitions of order higher than the second.

Some transitions have many of the features of second-order transitions in the
Ehrenfest sense but are, in fact, kinetic phenomena and not true thermodynamic second-
order transitions. A peint in case is the so-called glass transition in high polymers.
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20. CHEMICAL REACTIONS

Previous chapters were concerned with non-reactive systems. We now turn to an
examination of the equilibrium thermodynamics of systems in which chemical reactions
ocour, ie., reactive systems. Chemical reactions produce changes in composition and,
therefore, entail mass action. They also cither evolve or absorb heat. There is therefore
production of entropy in at least some part of the system and chemical reactions are thus
inherently irreversible processes. Much of the theory of chemical reactions can, however, be
discussed within the framework of classical equilibrium thermodynamics and this discussion
forms the subject of Chapters 20 and 21, the last chapters of Part I of this text. In these
chapters some concepts will be introduced which will recur in the theory of chemical
reactions as irreversible processes which forms the subject of Chapter 22, the first chapter
of Part II. The equilibrium thermodynamics of chemical reactions may thus be considered to
form a transition to irreversible thermodynamics.

20.0 Chapter Contents

20.1 The Reactive Simple System

20.2 The Stoichiometric Equation

20.3 The Stoichiometric Equation: An Example

20.4 The Extent of Reaction

20.5 The Affinity: Change in Mass Action in a Reactive System
20.6 The Basic Thermodynamic Equations for Chemical Reactions
20.7 The Heat of Reaction at Constant Pressure

20.8 The Heat of Reaction at Constant Volume

20.1 The Reactive Simple System

The reactive simple system is a closed simple system in which chemical reactions
take place. We may consider a chemical reaction to occur as the result of removing some
constraint that had hitherto prevented the components, as the case may be, either from
dissociating, or from reacting with each other. The removal of the barrier might be
visualized as being brought about by the introduction of a catalyst.

We consider the reactive simple system to be initially in equilibrium with respect to
temperature and pressure. It is not, however, in chemical equilibrium, i.e., in equilibrium
with respect to the distribution of matter among the reactants and products of the chemical
reaction, and is thus only in partial equilibrium. Reactions are thus spontaneous, hence
irreversible, processes, resulting in an increase in the entropy of the system. The latter
generally evolves or absorbs heat in the course of the reaction and this is the source of the
irreversibility. A simple example is a mixture of ideal gases that react chemically. The
concentration (amount per unit volume) of each species is uniform throughout the reaction
volume but at any instant during the reaction the concentrations are not those that exist at
chemical equilibrium.
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20.2 The Stoichiometric Equation

Since the reactive simple system is closed, the change in the mole numbers of the
components occurs only by dint of the reaction and is expressed by the stoichiometric (or
chemical) equation

j=r j=n
Dy = > iy (20.2),
J=1 J=r+1

in which the Q; are the chemical symbols of the various compounds, and the v; are the stoi-
chiometric coefficients. The latter are the smallest possible integers which will balance the
equation.

By convention, the quantities on the left represent the reactants and those on the
right the products. By affixing negative signs to the stoichiometric coefficients of the
reactants and then transferring them to the right hand side of Eq.(20.2),, the stoichiometric
equation becomes

Z ¥ Q=0. (20.2),

The stoichiometric equation represents the relative amounts of the components of the
reactive simple system at equilibrium [cf. Eq.(21.1),].

20.3 The Stoichiometric Equation: An Example
To illustrate, let us consider the reaction having the stoichiometric equation

3H; + SO, — H,S +2H,0. (20.3)

Here, ; = H,, Q; = SO, 23 =H,S, and Q4 = H;0. Letting vy = —3, 1, = — 1,
v3 = 1, and v4 = 2, the reaction may be written

-3 - L+ +20=0 (20.3),
in accordance with Eq.(20.2),.
20.4 The Extent of Reaction

We now introduce the important concept of the extent of reaction. Because of the

stoichiometry of the reaction, changes in the mole numbers of any two components are
related to each other through their respective stoichiometric coefficients. Thus,

de _ Vj
dNi

(20.4),
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or

a _dN, __ dNa (20.4),

v vy h Un

Since these ratios are all equal to each other!®, they may all be equated to a quantity d¢. We
may write

S ae (20.4);

Here £ expresses the amount or extent to which the reaction as a whole has proceeded, and
was called the degree of the advancement of the reaction!® by de Donder (1936).
Equivalent terms are the extent (or amount) of reaction, or the reaction coordinate. For
Eq.(20.3); we find

dNn, dNgo, dNg,s dNy,0
3 1 1 5 3 (20.4)4

At any instant, £ is an extensive variable of state. The concept of the reaction coordinate
can be extended to phase transitions as well as to order-disorder phenomena such as, e.g.,
the rearrangement of copper and zinc atoms in brass [Denbigh, 1966]. It is, therefore, also
called the order parameter.

20.5 The Affinity: Change in Mass Action in a Reactive System
With the help of Eq.(20.4); we see that the change in mass action in a reactive
simple system becomes

6M = i dN; = (3 uvs)de. (20.5);
We now introduce the affinity of the chemical reaction,
A= =Y wy, (20.5),

(de Donder, 1928). The affinity is the driving force of the chemical reaction. It is positive if
the reaction proceeds spontaneously from the left to the right of the stoichiometric equation
and negative conversely. Being a weighted sum of chemical potentials, the affinity is an

12 Obviously, these relations are valid only in a closed system.
19 This should not be confused with the degree of reaction. See Callen (1963), p. 202, (1985), p.169.
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intensive parameter. It is, however, not an independent physical variable like the
temperature or pressure because it depends on the state of the system at any particular
instance.

With the help of the affinity, 4, and the extent of reaction, £, we may now write

M = — Ad¢ (20.5)s

for the change in the mass action term in a chemical reaction. The introduction of 4 and ¢
will allow us to identify the infinitesimal change in the internally generated heat, 6Q’, in a
chemical reaction with the mass action term [cf. Eq.(22.1)4].

20.6 The Basic Thermodynamic Equations for Chemical Reactions

In the reactive simple system the negative products of the affinity with the extent of
reaction replace the products of the chemical potential and the mole numbers. Thus, in the
energy representation the Euler form of the fundamental equation of the reactive simple
system becomes

U=TS~ PV — 4t (20.6),

Its differential form and those of the usual Legendre transforms follow as

dU = TdS — PdV — Ad¢, (20.6)
dH = TdS + VdP — Ad¢, (20.6);
dF = — SdT — PdV — Ad¢, (20.6)4
dG = — SdT + VdP — Adt . (20.6)s

The Gibbs-Duhem equation for the reactive simple system is given by
SdT —VdP —£dA=0. (20.6)s
In the entropy representation the Euler equation of the reactive simple system becomes

1

P A
S = TU+—fV+f§’ (20.6);

and its differential form is

1 P A
dS = — + =dV + = .
S daU d d¢. (20.6)
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The various Massieu functions, their differential forms, and the Gibbs-Duhem
equation in the entropy representation are easily obtained but will not be needed here.

20.7 The Heat of Reaction at Constant Pressure

During a chemical reaction heat is either evolved or absorbed. In the first case the
reaction is exothermic, in the second case it is endothermic. At constant pressure this heat
of reaction represents the change in the enthalpy, AH, of the reacting system. This change
is positive in exothermic, and negative in endothermic reactions. It can be obtained from
C'p, the heat capacity at constant pressure of the reaction mixture, by Kirchhoff's equation

Ty
AH= | CpT)dT. (20.7),
T

To understand the meaning of A H more clearly, consider that it is the change of the
enthalpy with the extent of reaction at constant temperature and pressure. Thus,

oH
o

dN; _
. PEJ = ZJ, v;H; = AH , (20.7),

oH
Y5

T,P

where H ;s the partial molar enthalpy of component j at the temperature T.
In terms of the affinity, A, Eq.(20.6); yields

=T8A

rp 0T

AH = 2=
H ot

iy (20.7)s
P, ¢

where we have used the Maxwell relation

as
23

94

rp OT

P,f.

Near equilibrium the affinity will become vanishingly small (cf. § 21.1)). However, its
temperature derivative does not vanish. Close to equilibrium, therefore,

_oH
- 5

04
=T
T.P oT

AH (20.7)s

P,f'

This identity is justified because the affinity is positive if the reaction proceeds from the left
to the right of the stoichiometric equation at constant pressure (A H is exothermic), and is
negative in the opposite direction (A H is endothermic).
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20.8 The Heat of Reaction at Constant Volume
An entirely analogous derivation starting from Eq.(20.6), instead of (20.6);
produces

au

ou| o4
23

=T2l =AU (20.8)
v,P or

V,¢

where AU = S».U, is the change in internal energy when the reaction proceeds at
constant volume, and ﬁ}. is the partial molar internal energy of component j at constant
temperature.
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21. REACTION EQUILIBRIUM

The concepts of the extent of reaction and of de Donder's affinity greatly simplify the
thermodynamics of chemical reactions. We make use of both of these concepts as we
inquire into the nature of reaction (or chemical) equilibrium. We then iquire into the
determination of the composition at equilibrium. This requires the notion of equilibrium
constants. We further introduce the equation of van't Hoff which relates the equilibrium
constants to the heat of reaction, and we examine the stability of chemical reactions and
the effects of temperature and pressure on reaction equilibrium. Finally, we consider
simultaneous reactions and their additivity.

21.0 Chapter Contents

21.1 The Equation of Chemical Equilibrium

21.2  The Equilibrium Constant K,(T')

21.3 The Equilibrium Constants K(T", P) and K.(T)
21.4 The Equilibrium Composition

21.5 The Equilibrium Composition: An Example

21.6 van't Hoff's Equation

21.7 The Stability of Chemical Reactions

21.8 The Effect of Temperature on Reaction Equilibrium
21.9 The Effect of Pressure on Reaction Equilibrium
21.10 Simultaneous Reactions

21.11 Additivity of Reactions

21.1 The Equation of Chemical Equilibrium
At constant temperature and pressure Eq.(20.6)s reduces to

dG = — Adt . (21.1)

At equilibrium dG must vanish for an arbitrary value of d£, and the condition for reaction
equilibrium is therefore expressed by A = 0. The condition demands that the affinity, the
driving force of the reaction, vanish at equilibrium. Equation (20.5), then becomes

> Hivi=0. (21.1)

Tbhis equationis called the equation of chemical equilibrium. 1t is analogous to the
condition of diffusional (matter flow) equilibrium, p; = p [cf Eq.(4.6)33]. Comparison
with Eq.(20.2), shows that the equation of chemical equilibrium may be obtained from the
stoichiometric equation simply by substituting the jth chemical potential, y;, for the jth
chemical symbol, £2;.
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21.2 The Equilibrium Constant K (T")
The question now arises: what is the equilibrium composition in a reactive system?

To answer this question we introduce the concept of the equilibrium constant and to do
this, we need to know the integrated form of the Gibbs-Duhem equation for a reactive

simple system, i.e.,

pi=piI,P,A4). (21.2)

In reactions between ideal gases the situation is particularly transparent. In that case the
chemical potential of the jth component {cf. Eq.(15.12):] is

K= [J,oj(T) +RT In .PJ (212)2

considering the standard pressure, P, , to be unity. Multiplying by »; and summing yields

Z,- vin; = Zj Vj piof(T) + RT In HJ, Py (21.2)3
or, using Eq.(20.5),,

A=A(TY—RT In Hj Py (21.2)4
where

A(T)= = vj Hoi(T) (21.2)s

is the standard affinity at unit standard pressure, P,
At equilibrium the affinity vanishes and we have

A(T)=RT In Hj P, (21.2)s
Let us introduce
K(T) = HJ_ Py (21.2),

as the equilibrium constant of the reaction. Substituting it into Eq.(21.2), leads to

Ao(T) = RT In Ky(T) (21.2)g
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and introducing this into Eq.(21.2)4 gives

k(D) =, Prew(5) (212

which relates the equilibrium constant to the affinity.

The subscript p on K,(I') indicates that it is expressed in terms of the partial
pressures of a gas. In this form the equilibrium constant depends on the temperature only.
Since p$ = 17 by the condition of phase equilibrium, Eq.(21.2)s is also valid for
solutions, at least as long as the vapor can be considered to be ideal. The P;'s then stand for
the partial vapor pressures above the solution.

21.3 The Equilibrium Constants K;(T', P) and K(T)
The equilibrium constant can be formulated in terms of parameters other than the

partial pressures. If the gases or vapors can be considered ideal, the relation P; = P7;
(cf. § 15.8) yields

Ka(T, P) =[] .77 = P Ky(T) (21.3);

J

where ¥ = X,v;. K5(T, P) is the equilibrium constant of the reaction in terms of the mole
fractions. It is independent of pressure only when 77 = 0 as it is, for instance, in the reaction
H; +Cl, = 2HCL. Using the relation P; = c;RT where ¢; = N;/V is the molar
concentration?? | we derive

Ko@) =[], ¢ = RTY” Ke(D) (21.3),

for the equilibrium constant in terms of the molar concentrations.
Elimination of K,(T') between the last two equations yields

KT, P) = (RT/P)’ K(T) (21.3);

as the relation linking the equilibrium constants K(7', P) and K (7).

21.4 The Equilibrium Composition
To obtain now the composition at equilibrium, we integrate Eq.(20.4); to yield

Nj = Noj + vy Af 5 (214)

20 The molar concentration is often assigned the symbot [Q;].
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where N,; is the initial number of moles of the jth species, and N; = N7n; is the final
number of the same species after the reaction has reached equilibrium. Thus, prediction of
the equilibrium composition requires knowledge of only a single number, A£. We proceed
to relate this to the equilibrium constant, K,(T').

21.5 The Equilibrium Composition: An Example
The procedure to be followed in finding the N/'s is best considered on hand of an

example. We use the reaction whose stoichiometric equation is given by Eq.(20.3),. For this
reaction the equation of chemical equilibrium, Eq.(21.1),, becomes

— 3pm, — Hso, +pms +2pmo =0. (21.5%

Suppose the initial composition consist of the following mole numbers:

Ny, =2
Ngo, =1
Nips = 0.5
Npo = 0753

and the temperature and pressure are such that the gases may be considered ideal. Then,
since by Eq.(21.4) we have N; = N,; + v;Aé, the composition at equilibrium becomes

Ng, =2 — 3A¢
NgO, =1 — A€
Nps =05 + A
Nmo =075 + 2A¢

and the total number of moles, X; N; = N, is 4.25 — AL,
Now, by Eq.(21.3); the equilibrium constant, K,(T'), may be recast as

Ky(T) = P* Hj n; =(P/NY I_L- N} (21.5)
and, since vV = X; v; = — 1 (cf § 20.3), we find
K, (T) = P! (05 + AEY0.75 + ALy (4.25 - A¢). (21.5)3

(2-3A8P(1 - AY

This can be solved for A¢. Substitution of the result into the equations for the mole
numbers then vields the composition at equilibrium.

21.6 van't Hoff's Equation
It is of interest to relate the temperature coefficient of the equilibrium constant to
the heat of reaction, AH. By Eqs.(20.7); and (20.7), we have
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AH = T%— b A (21.6)

and
A=RTIn ﬁfl . (21.6)
I, P )

Combining the two leads to

AH TaA RT / il (21.6)
=T = - N ——— 0)3
OT | p.e I1; By
and integration with respect to T at constant P and £ gives
Ke(T) d InKy(T
AH = —A+RT In +r7? L KAT) (21.6)3

IT, P” dT

J

At equilibrium the first two terms on the right vanish by Eq.(21.6), and we obtain van't
Holff's equation

dmKy(T) AH
i TRE (21.6)s

which is the desired relation between the temperature coefficient of the equilibrium constant
and the heat of reaction. It implies that K,(T") increases with temperature in endothermic,
and decreases with it in exothermic reactions. We note the formal resemblance of van't
Hoff's equation and the Clausius-Clapeyron equation as given by Eq.(19.13)s.

By Eq.(21.3)

Ko(T) = (RT)" K(T) . (21.6)s

Ext we also have AH =X jujﬁj and, since we are considering ideal gases,
H; =U; +RT. Hence,

dinK(T) AU
4T —RI2 (21.6)
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is another form of van't Hoff's equation. Determination of K (I') as a function of
temperature therefore allows calculation of AU and, hence, AH, from concentration
measurements instead of the more difficult calorimetric measurements required for the
determination of K,(T').

21.7 The Stability of Chemical Reactions
The stability criterion for chemical reactions is

v >0 (2L.7)

where v = U(S, V, £) is the base function. Therefore, the criterion takes the form

84
Ger = — — 0 21.7
& ag TP > ( )2
or
04
5 <0. 21.7
3 | » (21.7)

Thus the affinity decreases as the extent of reaction increases. In the limit of stability 4 = 0
and we obtain the criterion of reaction equilibrium in the form G¢e = 0.
It is possible to have

04

- >0. 21.7
B |1 p (21.7)4

The affinity then increases as £ increases. This is the case of an unstable, ie., 'rTun-away'
reaction.

21.8 Effect of Temperature on Reaction Equilibrium

Let us now consider the stability of chemical reactions in the light of Le Chatelier's
principle. We first consider variations in £ with temperature at constant pressure, i.c.,
(0£/8T)p, 4. Using the chain rule for partial differentiation, we obtain

%4

oT

a4
r.p OT

23

pa 04

(21.8),

P,&“.

Using Eq.(20.7)s for the second derivative on the right gives by
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¢ 1 8H ¢
o) _ _L1oHp of) 21.8
OT|py T 9|, odlr, e
But 1/T is > 0 by definition and
o¢
— 2= 21.8
54, >0 (21.8)s

by the stability criterion, Eq.(21.7);. Paying attention only to the sign of the expressions,
we have

O0H

Sgn —?é
or P, A T,P

The relation above shows that an increase in temperature increases the extent of reaction for
an endothermic reaction and decreases it for an exothermic one. An increase in the
temperature at constant pressure therefore shifts the chemical equilibrium in the direction in
which the system absorbs heat, in accordance with Le Chatelier's principle (cf. § 18.7)..

21.9 The Effect of Pressure on Reaction Equilibrium
Next, we consider variations in £ with pressure at constant temperature, ie.,
(0¢/0P)p, 4. This is given by

04

9
ra 0P

P

%3

95 (21.9)
7,¢ 04

k4
T,P

and, using the Maxwell relation given by Eq.(A2.2)y for the first term on the right, we
obtain

o¢ v 8¢
oty _ oV o , 21.9)
OPlr ., O&irpO4lrp ( ’
By virtue of Eq.(21.8); we thus find
o¢ v
sgn 2o = —egm O (21.9)
T PR T3 ’




21. REACTION EQUILIBRIUM 167

Hence, again in accordance with Le Chatelier's principle, increasing the pressure at constant
temperature shifts the chemical equilibrium in the direction in which the total volume
decreases.

21.10 Simultaneous Reactions

It is easy to extend the formalism for a single reaction to that for several
simyltaneous reactions. Let there be p reactions among the r constituents of the reactive
simple system. There is an equation of chemical equilibrium for each reaction, i.e., we have

ZJ_ p =0 (21.10),
where the superscript (k) marks the kth reaction. We further have

AN = P Ag®, (21.10);
Thus, there are k equations for the & unknowns A&® which, in turn, by

N; = N,; +Z,~ VP Ag® (21.10);

determine all the mole numbers at equilibrium.

21.11 Additivity of Reactions
Let there be given two reactions,

(1) (2)
D4 2=0 ad Y P0;=0. (21.11)
Now consider a third reaction,
3) (1) 2)
Zj v Q= ZJ, [a v;’ +b I/§ } Q; (21.11)

that is a combination of the first two, a and b being arbitrary positive integers.
Combining Eqs.(21.2); and (21.2); gives

> j vy = Zj Vi ptoi(T) +RT In Ky(T) , (21.11);

and, since X;1;v; = 0, we find
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nK((T)= —(1/RT) Zj A oi(T) (21.11)4

nKoT) = = (1/RT) Y 17 poi(T). (21.11)s
and

k(@)= —(1/RDY [a W0 4 bu§2)] foAT) (21.11)g
ie,

InK3(T) = a InK\(T) + b In KAT) . (21.11),

It follows that the constants for additional reactions that are combinations of the known
ones, can be obtained directly if the equilibrium constants are known for some reactions.
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22. CHEMICAL REACTIONS AS IRREVERSIBLE PROCESSES

Chapters 20 and 21 dealt with the equilibrium thermodynamics of chemical reactions. A
chemical reaction is an irreversible process and is therefore invariably accompanied by the
production of entropy. It is the task of Chapter 22 to examine chemical reactions as
irreversible processes. This undertaking necessarily leads to the introduction of a number of
concepts that are required in the treatment of the thermodynamics of the steady state, such
as, in particular, the entropy production, energy dissipation, and energy retention functions.
A consideration of chemical reactions as irreversible processes thus constitutes a natural
transition from equilibrium to steady-state thermodynamics.

22.0 Chapter Contents

22.1 De Donder's Inequality

22.2  The General Criterion of Irreversibility

22.3 Particular Criteria of Irreversibility

22.4 The Rate of Reaction

22.5 The Rate of Entropy Production

22.6 The Entropy Production Function

22.7 The Energy Dissipation and Energy Retention Functions
22.8 The Phenomenological Equation

229 Relation between the Rate of Reaction and its Driving Force
22.10 Dynamic Equilibrium — The Steady State

22.11 The Scalar Steady-State Theory

22.12 Simultaneous Reactions

22.13 Coupled Reactions

22.1 De Donder's Inequality
Consider a chemical reaction taking place in a vessel that is closed but not isolated.

It can thus exchange heat but not matter with its surroundings. By Eq.(5.6); the
infinitesimal change in entropy becomes

dS =6Q/T+6Q' /T = d.S +diS , (22.1)
and substituting this equation into Eq.(20.6)g leads to

dU +PdV  Ad¢

d, S = 22.1
S +dS T + T (22.1)

In the absence of any entropy produced within the reaction vessel, we would simply have

Td,S = 6Q = dU + PdV . (22.1)
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If, however, entropy is generated within the vessel [cf. Eq.(5.6):] we additionally have the
heat term

Td,S = 6Q = Adt > 0. (22.1),

The last relation is de Donder’s inequality. It identifies the internally generated heat, 6Q’, in
a chemical reaction with the mass action term, Ad¢, and states that this is positive semi-
definite. It is zero when the internal changes are reversible, and positive when they are
irreversible.

22.2 The General Criterion of Irreversibility
Since d;S represents production of entropy, de Donder's inequality in the form

&S >0 (22.2)

is a criterion of irreversibility. It is also the only general criterion of irreversibility.

22.3 Particular Criteria of Irreversibility

Criteria applicable under particular conditions are readily obtained from the Gibbs
equation for the internal energy, U, and its first-order Legendre transforms. The changes in
the thermodynamic potentials are given by Egs. (20.6); to (20.6)s. We have, therefore,

aUu 8H 8F 8G

= =28 =2 - =—4 (22.3)

Ot |s v Otlsp Oflr, Oflrp '
and

dU =dH =dF =dG < 0 (22.3),

as the criteria of irreversibility in terms of the thermodynamic potentials U, H, F, and G,
ie., at constant S and V, constant S and P, constant T and V', and constant T and P,
respectively. By these criteria all four potentials necessarily decrease as a chemical reaction
takes place.

22.4 The Rate of Reaction

During the course of a reaction the extent of reaction, introduced in § 20.4, evolves
with time until equilibrium is reached. The time derivative of the evolving extent of reaction
is called the rate of reaction, v. The rate of reaction depends not only on the time but also
on the temperature, T, and on the pressure, P. These latter may be arbitrary functions of
time, i.e., we may have T = T'(¢), and P = P(t). However, if these functions are specified,
the rate of reaction is completely determined and we may write simply
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y= % . (22.4),

Now, by de Donder's inequality, Ad¢ > 0, we have

dé
= — Ay > 22.4
A 7 Av>0 ( )

whence,
if then
A>0 v>0
A=0 v=20
A<0 v<0

Thus, the affinity has the same sign as the tate of reaction. If the affinity is zero, the
rate of reaction is also zero, ie., the system is at equilibrium. The latter follows because, if
v # 0 when 4 = 0, the reaction would proceed with a finite rate at equilibrium, which is
contradictory. Note, however, that we may have v = 0, 4 # 0. The system is then in false
equilibrium (e.g., a mixture of gaseous hydrogen, H;, and oxygen, O;).

22.5 The Rate of Entropy Production
We now introduce three important new concepts related to the rate of reaction. The
rate of entropy production, O |, i.e., the entropy produced per unit time, is

&S 6Q° Adt 4
= — = = = = . 22~5
O= s “Ta~Ta -1 (22.3)

It is positive definite because of the thermodynamic irreversibility of any chemical reaction.

22.6 The Entropy Production Function

The entropy produced per unit time and unit volume, ie., the rate of entropy
production per unit volume, is called the entropy production function, or the entropy source
density, or the entropy source strength. It becomes

A
-2 _ 4 22.6
é T > 0 (22.6)

<I®

and is again positive definite in any single chemical reaction.
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22.7 The Energy Dissipation and Energy Retention Functions
The product of ¢ with the temperature, T, is called the energy dissipation function,

A
v=To= v >0, (22.7)

because it represents energy dissipated per unit volume and unit time. In any single
chemical reaction the energy dissipation function is positive definite.
The negative inverse of the energy dissipation function,

T=-w<o, (22.7)

will be called the energy retention function. Since the energy dissipated is taken as positive,
T stands for a negative amount of energy. This is refained in that it is not dissipated and is
negative definite in any single chemical reaction.

22.8 The Phenomenological Equation

Since the affinity, A4, and the extent of reaction, £, are conjugate quantities, so are A
and v. The rate of reaction, v, is clearly a function of A/T which is appropriately called the
driving force of the reaction. If v depends linearly on A/T we have

yv=1 (22.8)

where L is the kinetic or phenomenological coefficient. Equation (22.8) is termed the
phenomenological equation of the reaction. To assign meaning to the phenomenological
coefficient, L, we need to find a suitable /inear relation between v and 4/T.

22.9 Relation between the Rate of Reaction and its Driving Force
We seek a general expression linking v and A/T. The overall rate of reaction, v, is

the difference between the forward rate, v , and the backward rate, v . It is shown in the
theory of chemical kinetics that

o -
V=k[[¥  amd v =K][[ (22.9)
A+

— —
where r is the number of reactants, n — r is the number of products, and k and k are called
the kinetic constants. It is further shown in the Kinetic theory that the ratio of the kinetic
constants is equal to the equilibrium constant so that

Kk =K(T). (22.9)
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We thus have

VJi

Jn

K I

J T+1 —
v

— T |

H

1

=/
1"
Frtl

But, since the v;'s of the reactants carry the negative sign,

H o / T,

_]~1 Jrtl

and we find

_ILE
Ke(T)

<l

’

v=7[] H

(T)

where the second equation follows because

K(D)/IL¢7 = 1=%e(/]], B

by Eqs.(21.2); and (21.3),. Using Eq.(21.2)s we obtain

()]

as the sought-for general relation between and v and A/T.

22.10 Dynamic Equilibrium — The Steady State

175

(22.9);

(22.9)4

(22.9)s,

(22.9%

(22.9);

Equation(22.9); is not a linear relation between v and A/T. However, as
equilibrium is approached, 4 becomes quite small and the exponential may then be
approximated by 1 — A/RT. At the same time, both the forward and the backward reaction
rates approach the same value?!, the equilibrium rate, v.,. Hence,

21 This is required by the principle of microscopic reversibility (cf. § 23.9).
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Veq 4

im v=_2-. 22.10
- YERT ( h
In this limit, therefore, a dynamic equilibrium or steady state will be reached in which the

rate at which products are formed equals the rate at which reactants are reformed
(microscopic reversibility, see § 23.9). We then regain Eq. (22.8) with L now given by

L =vgq/R. (22.10),

Equation (22.10), identifies the phenomenological coefficient, L, as the equilibrinm
rate of reaction divided by R, the universal gas constant. It is in the nature of chemical
reactions that a linear phenomenological equation applies only quite close to equilibrium
and that, hence, a meaningful interpretation of the phenomenological coefficient is possible
only in that limit.

22.11 Scalar Steady-State Theory

We may now rewrite the phenomenological equation, Eq.(22.8), in the terminology
of the theory of the steady state to be discussed more fully in the next Chapter. The
equation then takes the form

J=LF (22.11)
where

aé
=y = 22.11
J=v at ( )

(i.e., the rate of reaction) is termed the thermodynamic scalar flux, and
A
F=2= 22.11
T ( )3

is called the thermodynamic scalar driving force.
Because the variables in Eq.(22.11) are all scalars, the thermodynamics of chemical
reactions in dynamic equilibrium is called a scalar steady-state theory.

22.12 Simultaneous Reactions

In the preceding sections we were concerned with entropy production in a single
reaction. If £ reactions occur simultaneously (cf. § 21.10), rewriting Eq.(20.5), for the case
of multiple reactions yields

Ak = — Ejl-‘jvjk (2212)1
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for the affinity of the kth reaction. By de Donder's inequality and the additivity of the
entropy, the entropy production in the interior of the system is then given by

1
s = ?Zkvakdgk ) (22.12),

Hence, the rate of entropy production per unit volume, ie., the entropy production
function, results as

1
&= ﬁZkaAk , (22.12)

and we obtain
1
T=-—-Té= — Vzk"kAk . (22.12),

for the energy retention function.
22.13 Coupled Reactions
When two reactions occur simultaneously, we have

1
@ = oo (A + Aow) (22.13)

for the entropy production function. It is perfectly possible to have two reactions occurring
simultaneously for which 4yv; < 0 and 4,v; > 0, provided that ¢ > 0. Such reactions are
called coupled reactions. They are of great importance in biological processes.
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23. THE POSTULATES OF STEADY-STATE THERMODYNAMICS

Chapter 4 identified the problem of equilibrium as the central problem of the theory of
equilibrium thermodynamics. The central problem of the thermodynamic theory of
irreversible processes is the determination of the entropy produced as internally generated
heat due to the various dissipative phenomena (cf §§ 2.7, 2.18, 7.3 and 7.5) occurring in
any natural spontaneous process. In the preceding chapter we have examined entropy
production in chemical reactions. To determine the production of entropy in the general
case is a rather difficult problem. No general theory of non-equilibrium thermodynamics is
available. Much progress has been made, however, in the understanding of processes near
equilibrium when the system is in a steady state, and when the steady state is characterized
by linear relations between conjugate parameters. In most cases of practical interest the
restriction to near equilibrium is not as stringent as it is in the case of chemical reactions.
The remainder of this text is concerned primarily with the thermodynamics of the (linear)
steady state.

23.0 Chapter Contents

23.1 The Postulatory Basis of Steady-State Thermodynamics
23.2 Local Equilibrium — POSTULATE V1

23.3 The Steady State

23.4 Scalar Theory

23.5 Vector Theory

23.6 Tensor Theory

23.7 The Curie Symmetry Principle

23.8 Phenomenological Equations— POSTULATE VI

23.9 Reciprocity Relations - POSTULATE VIII

23.10 The Linear Steady State

23.1 The Postulatory Basis of Steady-State Thermodynamics

Development of a comprehensive theory of steady-state thermodynamics requires
the mtroduction of three new postulates in addition to those of equilibrium thermodynamics.
The first of these is the postulate of the existence of local equilibrium. The second esta-
blishes relations between generalized thermodynamic driving forces and generalized
thermodynamic fluxes. The third postulate imposes symmetry restrictions on these
relations,

23.2 Local Equilibrium — POSTULATE VI
Postulate VI states that:

“Although a thermodynamic system as a whole may not be in equilibrium,
small elements of its volume may be considered fo be in thermodynamic
equilibrium locally. Elements in local equilibrium can be characterized by
the same state functions that characterize global equilibrium in equilibrium
thermodynamics.”’
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It is this postulate that permits us to place steady-state thermodynamics firmly onto
the basis formed by the five postulates of equilibrium thermodynamics.

23.3 The Steady State
In view of Postulate VI we refine our earlier definition of the steady state (§ 1.12) as
follows:

“4 steady, or stationary, state of a thermodynamic system is a stable, time-
invariant state, generally of an open system, which is characterized by local
equilibrium of the thermodynamic variables.”

The steady state is sustained by stable, time-invariant conditions at the system boundaries
(see Appendix 7 for an example). These maintain a spontaneous, hence irreversible, process,
resulting in the production of entropy.

23.4 Scalar Theory

In Chapter 22 we had already developed most of the basic concepts of the thermo-
dynamics of the steady state when we considered chemical reactions as irreversible
processes. We showed (cf. § 22.10) that in dynamic reaction equilibrium, i.e., in the steady
state, the thermodynamic driving force, F = 4/T, and the thermodynamic flux, J =,
could be related linearly through the phenomenological equation, J = LF in which L is the
phenomenological coefficient. The equation contains only scalar quantities. The theory of
chemical reactions viewed as irreversible processes is, therefore, a scalar theory. That scalar
theory is, however, easily extended to a general theory of coupled linear steady-state
processes by considering ' to be a generalized thermodynamic scalar driving force (or
generalized thermodynamic scalar affinity), and J to be a generalized thermodynamic scalar
flux.

23.5 Vector Theory

In many steady-state processes of interest, the thermodynamic fluxes and the driving
forces that give rise to them are vector?? quantities. The former are called generalized
thermodynamic vector fluxes, flows, or currents, and will be represented by the symbols J
or J;. These flow vectors are typically the fluxes (quantity per unit time per unit volume) of
the extensive parameters of a system, such as the internal energy or the entropy. The
generalized thermodynamic driving forces or generalized thermodynamic affinities that
elicit them will be represented by the symbols F or F;. They are typically the gradients of a
system's intensive parameters, exemplified by the temperature, pressure, or chemical
potential. The fluxes and driving forces are conjugate quantities.

22 Scalars are set in non-bold italics (S). Vectors and tensors will be represented in the indicial as well as in
the symbolic notation. In the indicial notation vectors and tensors are set in non-bold italics as are
scalars. The number of indices (zero, one, or two) identify the variable as a scalar, a vector, or a
(second-rank) tensor. In the symbolic notation, vectors are set in bold italic serif type (V) while second
rank tensor are set in bold italic sans-serif type (F). Thus, in the symbolic notation, vectors and tensors
are in bold type but scalars are not. A single contraction, e.g, that of two vectors to a scalar, is indicated
by a raised bold dot ( - ). A double contraction, e.g,, that of two second-rank tensors to a scalar, is
indicated by a bold colon ( : ).
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This text describes steady-state thermodynamics primarily in terms of the vector
theory.

23.6 Tensor Theory

The generalized thermodynamic driving forces and fluxes may also be second-order
tensors typified by, e. g., stress, strain, and rate of strain tensors. Such tensors would be
represented by the symbols F or Fj;, and J or Jy;. The tensor theory encompasses the
vector theory as a special case, while the vector theory comprises the scalar theory in
similar fashion. However, the tensor theory is beyond the scope of this text and will
therefore receive only an occasional mention (cf e.g., §§ 23.7, 26.1, and 26.2). Extension
to tensors of rank higher than the second does not seem to be required in the theory of
steady-state thermodynamics.

23.7 The Curie Symmetry Principle

In the general case the generalized fluxes of whatever tensorial character are
functions of all the generalized thermodynamic forces. In a system which is isotropic at
equilibrium, symmetry considerations restrict these functional dependencies. According to
P. Curie (1908):

“Quantities whose tensorial characters differ by an odd number of ranks
cannot interact in an isotropic medium.”

The principle can be understood as follows. If the thermodynamic forces and fluxes
are tensors of the same rank, the elements of the matrix of phenomenological coefficients
are scalars which depend on the local state of the medium but in an isotropic medium do not
depend on the gradients of the intensive parameters. If they are tensors of different rank, the
phenomenological coefficients are tensors of rank equal to the difference between the ranks
of these tensors. A phenomenological coefficient which is a tensor of even rank can exist in
an isotropic medium. One of odd rank would, however, cause the medium to be anisotropic
and therefore cannot exist in an isotropic medium.

The Curie principle asserts the absence of cross-effects between scalar and vector
phenomena in an isotropic medium. Second rank tensors can be separated into spherical and
deviatoric tensors. The former can be treated as scalars. Cross-effects from the traceless
deviatoric tensors appear to be weak or non-existent.

23.8 Phenomenological Equations— POSTULATE VII

The thermodynamic vector fluxes are linked to the driving forces through second-
order tensors denoted by L or L;.. The latter are the generalized phenomenological
coefficients, kinetic coefficients, or thermodynamic conductances or conductivities. The
interrelations among these quantities are the phenomenological equations.

Postulate VII states that:

“The generalized thermodynamic vector fluxes depend on all the
generalized thermodynamic driving forces through the phenomenological
coefficients.”
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This is expressed succinctly by the equations
J=L-F or Ji = Lika (238)

where the J or J; are the vector fluxes, the F or Fj, are the driving forces, and the L or L;;,
are the phenomenological coefficients linking them. We note that the fluxes and forces are
related linearly. Invoking a mechanical analogy, Eqs.(23.8) are also called the thermo-
dynamic equations of motion.

23.9 Reciprocity Relations - POSTULATE VII
Postulate VIII asserts that:

“The phenomenological coefficients are related by the Onsager reciprocity
relations, Ly = Ly;, if there are no forces determined by a vector product,
and by Ly (f) = Ly (—1), the Onsager-Casimir reciprocity relations, if there
are.

The Onsager-Casimir relations apply in the presence of Coriolis forces (in a rotating
system) or of Lorentz forces (in a system subjected to centrifugal or magnetic fields). The
field vector, f, is thus either the angular velocity, w, or the (external) magnetic field, B.

The statistical mechanical analog of the reciprocity relations is the principle of
microscopic reversibility. As formulated by Tolman (1938), it states:

“Under equilibrium conditions any molecular process and the reverse of
that process will take place on the average at the same rate.”

We had appealed to this principle earlier in § 22.10.
23.10 The Linear Steady State
The global equilibrium state is the limiting case of the steady state when the fluxes
from the environment approach zero, i.e., when the system becomes isolated. If
o the phenomenological coefficients are time-invariant (Postulate VI),
o the phenomenological equations are linear (Postulate VII), and
o the matrix L;; is symmetrical (Postulate VIII),

a steady state will be called a linear steady state.
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24. COUPLED LINEAR STEADY STATES

Linear steady-state thermodynamics truly comes into its own when it considers spontaneous
vector processes that are coupled, i.e., occur simultaneously and influence each other. Thus,
that part of non-equilibrium thermodynamics which is the subject of this text might more
appropriately be called the thermodynamics of coupled linear steady states. This chapter
lays the groundwork for more detailed considerations to follow in subsequent chapters.

24.0 Chapter Contents

24.1 Parallel Concepts in Equilibrium and Steady-State Thermodynamics
24.2 The Pivotal Functions of Linear Steady-State Thermodynamics
24.3 Entropy Production and Energy Retention Representation

24.4 The Phenomenological Equations in the Two Representations

24.5 Significance of the Phenomenological Coefficients

24.6 Physical Interpretation of the Phenomenological Cross-Coefficients
24.7 Simultaneous Flow of Heat and Matter — Thermal Diffusion

24.1 Parallel Concepts in Equilibrium and Steady-State Thermodynamics

It is useful to consider certain features in the thermodynamics of coupled linear
steady states that parallel concepts in equilibrium thermodynamics. While they are not strict
analogies, these correspondences do help in understanding the formal aspects of linear
steady-state thermodynamics. Thus, as already asserted in § 23.5, the generalized thermo-
dynamic vector fluxes, J, of the steady-state theory are the time rates of change of the
extensive parameters of the equilibrium theory, while the generalized thermodynamic vector
driving forces, F', are the gradients of the intensive parameters.

These corrspondences are brought into relief by comparing the energy and the
entropy representations of the Euler equation of the equilibrium theory with the energy
retention and entropy production functions of the steady-state theory. In thermal diffusion,
where pressure-volume effects are absent, the Euler equation for the energy, Eq.(3.10),, is

U=TS+Y;uN;, (24.1);

while that for the entropy, E¢.(3.10)s, takes the form

_ 1 Fip.
S = TU—ZJ,TNJ. (24.1

These equations are seen to parallel those of the energy retention function,
T=VT-Js+) Vu-Jx, (24.1)

[cf. Eq.(27.3)4], and the entropy production function,
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S = V(%) < Jy — Z;V(%) - JIn; (24.1)4

[cf Eq.(27.2)4] of the steady state theory. In these equations Jy, is the flux of the jth
matter species. The fluxes Jir, Js and Jy; will be derfined in the next chapter..

We recognize that—as asserted—the vector products of the gradients of the
intensive parameters and the fluxes of the extensive parameters in the functions 1" and &
parallel the scalar products of the intensive and extensive parameters in the equations for U
and S of the equilibrium theory. For more on the subject of parallel concepts in the two
theories see §§ 26.5, 26.6, 27.1, 27.4, and 28.8.

24.2 The Pivotal Functions of Linear Steady-State Thermodynamics

In view of the foregoing it should come as no surprise that in the thermodynamics of
coupled linear systems the entropy production function, &, and the energy retention
Junction, T, assume roles that are somewhat similar to those played by the cardinal
functions, S, and U, of equilibrium thermodynamics. They assume a pivotal role in Part II
of this text and will therefore be called the pivoral functions of the thermodynamics of the
linear steady-state. They will be more fully discussed in Chapter 26 and in Sections 27.2 and
27.3.

24.3 Entropy Production and Energy Retention Representation

In Part 1 of this text we have made extensive use of the entropy and energy
representations of the fundamental equation. In the thermodynamics of coupled linear
steady states we employ the parallel concepts of the entropy production and energy
retention representations to express the generalized fluxes and forces, the pheno-
menological equations and phenomenological coefficients, as well as the quantities of
transport (cf. Chapter 28), in terms of one or the other of the two pivotal functions.
Although different in form, the two representations are entirely equivalent (cf § 28.8) just
as the entropy and energy representations of equilibrium thermodynamics (¢f. § 3.1).

24.4 The Phenomenological Equations in the Two Representations

In § 23.8 Postulate VII introduced the phenomenological equations J= L - F
where the Jare the vector fluxes, the F are the vector driving forces, and the L are the
second order tensors formed from the phenomenological coefficients in the enfropy
production representation. To distinguish between this and the energy retention represen-
tation we write J=A-Z, or J; = A;;Z,, for the phenomenological equations in the
energy retention representation, using the symbols A and 4;. for the phenomenological
coefficients, and Z and Z,, for the vector driving forces.

24.5 Significance of the Phenomenological Coefficients

The phenomenological coefficients L;; or A;. in the phenomenological equations
represent material properties. By the reciprocity relations introduced through Postulate VIII
the matrices [L;;.] and [A;;] are symmetrical, i.e., L;, = Ly;, and Ay, = Ay,

The cross-coefficients (the off-diagonal elements, L;y;.x or A;s.p) of the matrices
may be zero. Thus, if L;.q.24 = 0, the thermodynamics of the linear steady-state provides
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the theoretical foundation for such well known empirical relations as Fourier's law of heat
conduction (§27.9), Fick's first law of diffusion (§27.10), Ohm's law of electrical
resistance, and others more.

In coupled processes the cross-coefficients are not zero. Their numerical values are
identical but their physical interpretations differ.

24.6 Physical Interpretation of the Phenomenological Cross-Coefficients
The ikth phenomenological cross-coefficient in the entropy production repre-
sentation is the partial derivative of the ith flux with respect to the kth driving force, i.e.,

aJ;
Ly =24 , (24.6)
‘ OF; Za(n=k) 1
It follows from the reciprocity relation, L;;. = Ly;, that
oJ; _ %% _ (24.6),
OF i pmety  OFilE ey

Thus an increase in the flux J; elicited by unit increase in the driving force Fj, when all other
forces are held constant, is equal to an increase in the flux J;. elicited by unit increase in the
driving force F;.

In the energy retention representation we have analogously

8

A = 246
k aZk z.{n=k) ( )3
and
J;
8 _ 9% _ (24.6)4
2k zm=ty  9Zilz iy

Equations (24.6), and (24.6), exhibit formal analogies with the Maxwell relations of
equilibrium thermodynamics [cf. Eq.(A2.2),].

24.7 Simultaneous Flow of Heat and Matter — Thermal Diffusion

In § 1.2 we defined thermodynamics as the science of heat as a special form of
energy exchange. Non-equilibrium thermodynamics is therefore concerned with processes in
which a heat flux is coupled with one or more other fluxes. Among these other fluxes a
matter flux is probably didactically the most useful to discuss. The text will therefore
concentrate on the steady-state thermodynamics of a simultaneous flow of heat and matter
(i.e., thermal diffusion).
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The simultaneous flow of heat and matter (see Chapters 25, 27, and 28) is
characterized by two fluxes. In the entropy production representation the two fluxes are the
energy flux, Jy, and the mass-action flux, Jy,. In the energy retention representation the
two fluxes are the entropy flux, Ji, and again the mass-action flux, Jj,. The latter is defined
in § 27.1. Jy and Jgs appear in these formulations because, as has been pointed out in
§ 2.10, a matter flux always carries with it a certain amount of energy, and it also carries
along entropy.
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25. ENTROPY PRODUCTION IN THE STEADY STATE

The preceding chapter introduced the notion of the two pivotal functions of steady-state
thermodynamics, the entropy production function, @, and the energy retention function, 7",
without as yet having addressed the underlying issue of the production of entropy in the
steady state. This issue, as stated in the introduction to Chapter 23, is the basic problem of
the thermodynamics of irreversible processes, and thus also of the thermodynamics of
coupled linear steady states. In accordance with § 24.7 the present chapter therefore
considers the rate at which entropy is produced in a simultaneous flow of matter and heat.
To do this, we first establish the equations of continuity for the energy, for the matter, and
for the entropy, in a region small enough to be in local equilibrium (Postulate VI). The
continuity equation for the entropy yields the rate of entropy production per unit volume in
the region. Integration over all regions then furnishes the global rate of entropy production,
©. The entropy production function is then obtained simply by dividing © by the volume,

V,since @ is the rate at which entropy is produced per umit time and unit volume
(cf § 22.6).

25.0 Chapter Contents

25.1 The Gibbs Equation for Simultaneous Matter and Heat Flow
25.2 The Continuity Equation for the Energy

25.3 The Continuity Equation for the Matter

25.4 The Continuity Equation for the Entropy

25.5 The Rate of Entropy Production

25.1 The Gibbs Equation for Simultaneous Matter and Heat Flow

The starting point in our presentation of the steady-state thermodynamics of a
simultaneous flow of matter and heat is the Gibbs equation, the differential form of the
fundamental equation. Consider a system consisting of a fluid mixture contained in a vessel
of fixed volume, V'. The walls of the vessel are diathermal and permeable to the jth matter
species. The Gibbs equation in the entropy representation, Eq.(3.9),,

1 P
S = ~dU +
T T

[,Lj
E : . 25.1
[ A% iT dN;, ( h
is reduced, in view of the fixed volume, to

1 K 5
ds = Tdu — Zj%dcj (25.1)2

where s = S/N,u =U/N, and ¢; = N;/N.
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In the energy representation the Gibbs equation becomes
du=Tds + ) pde;. (25.1)

Equations (25) and (25.1)3 are molar forms of the Gibbs equation (cf. § 14.3).

25.2 The Continuity Equation for the Energy

We now establish the equation of continuity for the energy. Let R be a region within
the vessel with volume, ¢, and surface, o. We consider this volume to be small enough so
that it is in Jocal equilibrium (Postulate V1). If dv is an elemental volume in R, the total
internal energy in the region is [, u du. The rate at which the internal energy changes in the
region R equals the rate at which energy enters or leaves R across its surface, o.
Introducing the energy flux, energy flow vector, or energy current density, Jy, as the
amount of energy crossing uuit arca in unit time, we have

du
— 24y = - 25.2
/;,dt dv /GJ(, da (25.2)

where da is an elemental vector area of the surface, o, and the flow vector is defined as
positive for outward flow. Thus, Eq.(25.2); expresses the fact that the energy within the
region R decreases when the matter flows from the inside to the outside of the region.
Now, by the divergence theorem,

/JU -da = /V -Jpdvu, (25.2),
o &
and, therefore,

/(% +V - Jy)dv=0. (25.2);

But this is true for an arbitrary volume, dv. Consequently, the continuity equation for the
energy becomes

du
T = 7= . 5.
n +V-Jy=0 (25.2)4

The first term on the left represents the increase in the energy in the region R per unit time.
The second term represents the rate of outflow of the energy from the region per unit area
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of surface in an exchange with the surroundings. According to Eq.(25.2)4 the sum of the
two terms is zero. The equation thus expresses the conservation of energy (cf. § 2.4).

25.3 The Continuity Equation for the Matter

The amount of the jth species of matter in R is [;c;dv. We introduce the matter
Sux, matter flow vector, or matter current density, Jy,, of the jth species as the number of
moles of j, N, entering or leaving R across unit area of its surface, o, in unit time. Here
also, the flow vector is defined as positive for ousward flow. Hence, we have

dc;
%% = [7e  da. 25.3
/odt dv /;J_N: da (25.3)

Again invoking the divergence theorem, the continuity equation for the jth species
of matter results as

dCJ'
— Jn = 53
Fraa V.-Jy, =0. (25.3),

The first term on the left represents the increase in the matter contained in the region R per
unit time. The second term represents the rate of outflow of matter from the region per unit
area of surface in an exchange with the surroundings. By Eq.(25.3), the sum of the two
terms is zero. The equation thus expresses the conservation of matter.

25.4 The Continuity Equation for the Entropy
We are now ready to calculate the local rate of change of the entropy, i.e., the rate
of entropy production in the local region R. By Eq.(25.1),

Substituting from Egs. (25.2); and (25.3), gives
@ Iv T Mgy (25.4),
dt T iT ;

But, if A is a scalar, and A is a vector, then
AV.A=V-(OA)—A-VX. (25.4)

Making use of this identity in both terms on the right hand side of Eq.(25.4),, and
introducing the entropy flux, entropy flow vector, or entropy current density,
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Js = %JU -y Ha, (25.4)4
we obtain
%ﬁ +V T = V(%) Ju =2V (E) -, (25.4)5

This equation is the equation of continuity for the entropy in the region R. The first
term on the left represents the increase of the entropy per unit time. The second term
represents the rate of outflow of the entropy per unit area of surface in an exchange with
the surroundings. The sum of these two terms is not zero. Hence, the entropy in the region
R is not conserved. The right hand side represents the rate of production, generation, or
creation of entropy in the region R per unit volume in unit time, i.e., the entropy production
function, ¢. We thus have

%:_ YV T =& (25.4)s
where
&= v(%) Iy =3 v(2) gy @5.4),

is the entropy produced per unit time and unit volume. Since this does not vanish,
Eq.(25.4)s expresses the non-conservation of the entropy {cf. § 2.17).

25.5 The Rate of Entropy Production

So far we have examined the situation in a region R of the total volume making use
of the postulate of local equilibrium (Postulate V1). The global relations are obtained simply
by integrating over all regions. Integrating Eq.(25.4)s over unit volume, V', and using the
divergence theorem, we find

d
— sdv+/Jg-da=/¢dv=9. (25.5)
dt Jy b5 v

The right hand side of this equation is the rate of entropy production, ©. If the vessel is
isolated, the second integral on the left hand side vanishes. The first integral is thus seen to
represent the entropy generated within the vessel per unit time, d;S/dt. By Eq.(25.4)s this
vanishes when the gradients of the temperature and of the chemical potentials vanish, i.e., at
equilibrium,
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26. THE PIVOTAL FUNCTIONS

Section 24.2 referred to the entropy production function, &, and the energy retention
function, 1", as the pivotal functions of the theory of coupled linear steady-state thermo-
dynamics. These functions had first been introduced in §§ 22.6 and 22.7 in the framework
of the scalar theory. We now extend their definition and meaning in some generality to the
vector and tensor theories and elaborate some of their salient features.

26.0 Chapter Contents

26.1 The Entropy Production Function
26.2 The Energy Retention Function
26.3 The Energy Dissipation Function
26.4 Determination of the Amount of Entropy Produced,
or Energy Retained or Dissipated
26.5 Conjugate Fluxes and Driving Forces
26.6 Non-Uniqueness of the Pivotal Functions
26.7 Transformation of Vector Fluxes and Driving Forces
26.8 Comparison between the Pivotal and Cardinal Functions

26.1 The Entropy Production Function

The entropy production function is the sum of the products of the thermodynamic
fluxes and their conjugate driving forces. If tensorial cross-effects are negligible, the Curie
symmetry principle allows us to extend our earlier definition of the entropy production
function, &, as one of the two pivotal functions of steady-state thermodynamics to include
scalar, vector, and tensor quantities alike. In the most general case, then, the entropy
production function becomes

&= > FJ+Y F-Jy+> F:d >0 (26.1),

where the subscripts s, v, and t refer to the number of scalar, vector, and tensor pairs of
variables. We shall call F, F, and F the thermodynamic driving forces in the entropy
production representation. The entropy production function, &, is positive definite quantity
(cf §22.6)..

Equation (26.1); represents the most general case. When considering vector
processes only, the entropy production fumction becomes simply

¢=ZVR,-JV >0 (26.1),

where the thermodynamic flow vectors, Jy, are the fluxes of the appropriate extensive
parameters, while the vector driving forces, F,, are the gradients, VI, of the conjugate
intensive parameters in the entropy representation.
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26.2 The Energy Retention Function

In equilibrium thermodynamics the relation I, = — Y3/T [cf Eq.(3.5),] links the
intensive parameters of the physical work and mass action terms in the entropy
representation to those in the energy representation. In linear steady-state theory we may
similarly let

F,= —ZJT, F,= —Z,T, F= -2Z/T. (26.2),

Introducing these relations into Eq.(26.1);, multiplying by T, and taking the negative
inverse, we obtain the most general form of the energy retention function as

Y=-T6=> ZJ+Y Zi-Juty Z:J,<0, (26.2),

where the subscripts s, v, and t again refer to the number of scalar, vector, and tensor pairs
of variables. The driving forces, Z, Z, and Z, will be called the thermodynamic driving
forces in the energy retention representation. The energy retention function, T, is negative
definite quantity (cf. §22.7).

When considering vector processes only, the energy retention function becomes

T = szv - Jy <0. (26.2)

In this function the thermodynamic flow vectors, J,, are again the fluxes of the appropriate
extensive parameters while the vector forces, Z,, are the gradients of the conjugate
intensive parameters in the energy representation, VY.

26.3 The Energy Dissipation Function
The negative inverse of the general form of the energy retention function

Wz"T:—ZSZSJS—ZVZV'JV_ZtZt:Jt>O- (263)

yields the general form of the energy dissipation function, or just the dissipation function.
This function has the same dimensions as the energy retention function and is positive
definite (cf § 22.7)..

26.4 Determination of the Amount of Entropy Produced, or Energy Retained or
Dissipated
It is one of the noteworthy features of the linear steady state that in this state, &, the
amount of entropy produced, as well as 7" or ¥, the amount of energy retained or dissipated
per unit volume in unit time, can be calculated from the equations listed in §§ 26.1 and 26.2
if the fluxes and driving forces are measured.
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26.5 Conjugate Generalized Fluxes and Driving Forces

As is obvious from Eq.(26.1),, the scalar products of J; and F;, the contractions of
J, and F,, and the double contractions of J, and F; have the dimensions (entropy per unit
time and unit volume) of &, the entropy production function. They therefore constitute
conjugate pairs of variables just like the parameters I; and X in the entropy representation.

Similarly, by Eq.(26.2), the scalar products of J; and Z;, the contractions of J, and
Z,, and the double contractions of J, and Z, have the dimensions (energy per unit time and
unit volume) of 1", the energy retention function. They thus also form conjugate pairs of
variables as do the parameters Y; and X in the energy representation.

26.6 Non-Uniqueness of the Entropy Production and Energy Retention Functions
Neither the entropy production function, nor the energy retention function are
determined uniquely. It suffices that the products of whatever are chosen as the generalized
fluxes and driving forces have the dimensions of enfropy per unit time per unit volume [$],
and energy per unit time per unit volume [1°], respectively.
In dealing with vector fluxes and driving forces we thus must have

¢=) J-F =Y J.,-F (26.6),
and

r=> J-2,=) J-Z (26.6),

where the J and F, and the J/ and Z/ are alternative pairs of conjugate vector fluxes and
driving forces.

26.7 Transformation of Vector Fluxes and Driving Forces

It is often desirable to select an alternative pair of vector fluxes and driving forces.
Examples of this occur in §§28.7 and 28.9. A transformation of fluxes will usually take the
form

J=J-1J and J}=Js (26.7),

where I is an intensive variable such as, e.g., T, P, u, or u, h,etc. The variable I must be
chosen so that the equations are dimensionally correct.

Because of the constraint imposed by Eq.(26.6),, these transformations require that
the driving forces in the entropy production representation become

Fllel and FZIZFZ +IF| (267)2

when the fluxes and driving forces are selected as products of $. When they are chosen as
products of 7", the driving forces in the energy retention representation must take the form
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zZ =2z and Z,=2,+12, (26.7)s

because of the constraint imposed now by E¢.(26.6),.
The same equations can be used for the transformation of the driving forces. We
then start either from Eq.(26.7), or from Eq.(26.7)3, and require Eq.(26.6),.

26.8 Comparison between the Pivotal and the Cardinal Functions

In § 24.1 we compared the pivotal functions of the linear steady-state theory with
the cardinal functions of the equilibrium theory. We now amplify this comparison.

Equation (26.1),

&= .F;-Jj, (26.8);

the entropy production function, &, may be compared with Eq.(3.10)3, the entropy
function,

S = LX;. (26.8),
In like manner, Eq.(26.2)s,
r=3%,z-J, (26.8)5

for the energy retention function, 7', bears comparison with Eq.(3.10)3, the energy function,
U= ZijXJ- . (26.8)4

Clearly, the pivotal functions and the cardinal functions are formally analogous in that ¢ and
S, and 7" and U, both consist of the algebraic sums of the products of pairs of conjugate
variables. In equilibrium thermodynamics S is the sum of products of the intensive
parameters I and the extensive parameters X while U is the sum of products of the
intensive parameters Y and again the extensive parameters X. In steady-state thermo-
dynamics & is the sum of products of the generalized forces F, F, and F and the generalized
fluxes J, J, and J while 1" is the sum of products of the generalized forces Z, Z, and Z and
again the generalized fluxes J, J, and J We note, however, that while S and U are
themselves extensive parameters, ¢ and 1" are not generalized fluxes, and neither are they
equations of state.

Furthermore, while the pairs of conjugate extensive and intensive parameters that
compose the cardinal functions are unique, the pairs of conjugate generalized fluxes and
generalized driving forces are not. Herein lies another difference between the energy and
entropy representations of equilibrium thermodynamics, and the energy retention and
entropy production representation of steady-state thermodynamics.
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27. MATTER AND HEAT FLOW

In § 24.1 we had already presented the expressions for the pivotal functions, the entropy
production function, &, and the energy retention function, T", in a simultaneous flow of
matter and of heat at constant volume, i.e., in thermal diffusion (§ 24.7) without formally
deriving them We now proceed to do just that. This requires first of all the introduction of
two new vectors, the first expressing the heat flux, the second the mass-action flux. We then
establish the phenomenological equations in simultaneous heat and matter flow and define
the Dufour and the Soret effects from the phenomenological cross coefficients. Finally, we
relate the heat flux to Fourier's Law of Heat Conduction, and the mass-action flux to Fick's
First Law of Diffusion.

27.0 Chapter Contents

27.1 Heat Flux and Mass-Action Flux

27.2 The Entropy Production Function in Simultaneous Matter and Heat Flow

27.3 The Energy Retention Function in Simultaneous Matter and Heat Flow

27.4 Relation between the Entropy Production and the Energy Retention Function

27.5 The Phenomenological Equations in the Entropy Production Representation

27.6 The Phenomenological Equations in the Energy Retention Representation

27.7 The Phenomenological Coefficients in Simultaneous Matter and Heat Flow —
The Dufour and Soret Effects

27.8 The Phenomenological Coefficients in Pure Heat and Pure Matter Flow

27.9 Fourier's Law of Heat Conduction

27.10 Fick's First Law of Diffusion

27.1 Heat Flux and Mass-Action Flux

We introduce the heat flux, heat flow vector, or heat current density, Jg, through
the equation

Jo=TJs (27.1);

where J is the entropy flux introduced in § 25.4.
We analogously define a mass-action flux, mass-action flow vector, or mass-action
current density,

Jy=>_ iy (27.1)

where J; v, is the matter flux introduced in § 25.3.
The energy flux, Ji-, then follows as
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Jo = Jo+du =TJs + 3 u;J, (27.1)s

This equation can be viewed in the light of Eq.(2.6); which expresses the conservation of
energy in equilibrium thermodynamics. At constant volume the work term in that equation
is zero and the equation becomes

AU =Q+M=TAS+) 1;AN;. (27.1)

Comparison of the last two equations shows that the fluxes Jir, Jg, and Js may be viewed
in some sense as the steady-state equivalents of the equilibrium quantities AU, Q, and M.

27.2 The Entropy Production Function in Simultaneous Matter and Heat Flow

In simultaneous matter and heat flow the entropy production function, &, is
characterized by the energy flux, Jy, and the mass-action flux, Jy; (cf §27.1). It is
therefore given by

& =Fy-Jy +Fy-Jy=Fy-Jdy +ZjEVj-JNj (27.2)1
where
1
FU = V(T> (27-2)2

is the driving force for the energy flux, while Fy; is the driving force for the mass-action
flux, both forces being formulated in the entropy production representation. For the latter
flux we have Jyr = > p;Jy,, and thus Fy = ZJ-FNJ., where Jy, is the flux of the jth

species of matter, driven by

Fy, = — V(%) . (27.2)s
We thus have
&= v(%) N A Zjv(%) Sy, (27.2)4

which should be compared with Eq.(25.4);.

The driving forces in the entropy production representation, Fy, the thermal
driving force, and Fl , the jth diffusional driving force, are recognized as the gradients of
the intensive parameters in the entropy representation. We see Eq.(27.2); as a particular
instance of Eq.(26.1),.
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27.3 The Energy Retention Function in Simultaneous Matter and Heat Flow

In simultaneous matter and heat flow the energy retention function, 7, is a function
of the entropy flux, Js, and the mass-action flux, Jys (¢f. § 27.1). It is thus given by

Y=25-Js+2Zy-Jy=2Zs-Js +ZjZNj - Jn; (27.3n

where
Zs=VT (27.3),

is the driving force for the entropy flux, while Z, is the driving force for the mass-action
flux, both these forces being formulated in the energy retention representation. The latter
flux, Jyy, is still the same, and we now have Zy = > ;Zn; where Jy;, the flux of the jth

species of matter, is driven by

Z_\'j = vl"'j . (27.3)3
Thus we finally have
TZVTJS +ZJV#JJ:\, (273)4

The two driving forces in the energy retention representation, the thermal driving force,
Zs, and the jth diffusional driving force, Zx,, are recognized as the gradients of the
intensive parameters in the energy representation. We recognize Eq.(27.3); as a particular

instance of Eq.(26.2);.
27.4 Relation between the Entropy Production and the Energy Retention Function

The relation between the entropy production function and the energy retention
function follows from Eqs.(26.2), as

Y= -T&. (27.4),
To formally derive this relation we apply Eq.(27.4); to the case of the simultaneous flow of
heat and—for simplicity and without loss of generality—the flow of a single species of
matter. By Eqs.(27.2); and (27.3); we then have

$=F;-Jy+Fyx-Jy (27.4)
and

T=25-Js+Zn-Jy. (27.4)

But
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1 1
p—sg —_— = — 27’4
Fy=v( T) VT (27.4)4
while
I i I
;= — — ) = — — — 27~4
Fy V(T) ZVut VT (27.4)5
and therefore
1 1
@= — SVI-Jy—ZVu-Jy+ EF“—ZVT- I . (27.4)

Substitution of Eq.(27.1), that is, Jy = T'Js + uJy, then yields
b= l vT-J l Vu-J (27.4)
=7 ST o H-JIN, S

and application of Eq.(27.4); leads to
Y= -T6=VT-Js+Vyu-Jy. (27,4)8

But this is Eq.(27.4); since VT = Z5 and Vi = Zy.
We remark that the relation ¥ = — TS between the two pivotal fimctions parallels
the relation U = — T'S between the cardinal functions [cf Eq.(3.10)6].

27.5 The Phenomenological Equations in the Entropy Production Representation

The simultaneous flow of matter and heat is a typical instance of the occurrence of
two coupled processes. Accordingly, the phenomenological equations enjoined by Postulate
VII contain cross-coeflicients between the heat flux and the matter flux. Since in the
entropy production representation the two fluxes are the energy flux, Jy, and the mass-
action flux, Jy,, the phenomenological equations take the form

Jy = Lyy Fy + Z L Low, Fy, (27.5n
for the former, and
Juy = Z]. (LA;UFU + Z L, EV,) (27.5)2

for the latter. Equation (27.5); expresses the energy flux as the sum of the energy
transported as heat (a pure heat flow) and the energy transported by the diffusing particles
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of the fluid (a pure matter flow). Energy depends on temperature. Hence, in Eq.(27.5),, the
matter flux depends on the thermal as well as the diffusional driving force.

27.6 The Phenomenological Equations in the Energy Retention Representation
In the energy retention representation of a simultancous matter and heat flow the
energy flux is replaced by the entropy flux,

Js = AssZs + Y Asx.Zx, (27.6h
and the mass-action flux becomes

Jar = ZJ. (AnsZs + E Axv2y,) - (27.6)

In analogy to Eq.(27.5)1, Eq.(27.6), expresses the entropy flow as the sum of the entropies
associated with the flow of heat and with the diffusion of the particles of the fluid. Similarly,
Eq.(27.6), shows that the matter flux again depends on the thermal as well as the
diffusional driving force.

27.7 The Phenomenological Coefficients in Simultaneous Matter and Heat Flow —
The Dufour and Soret Effects

In a simultaneous flow of matter and heat it is the cross-coefficients that are of
interest. In the entropy production representation the cross-coefficient Ly N, Tepresents the
tendency of the jth diffusional driving force, Fly,, to give rise to a flow of energy and is
referred to as the Dufour effect. Its twin, Ly, represents the tendency of the thermal
driving force, Fy;, to give rise to a flow of the jth species of matter and is called the Soref
effect or the thermal diffusion effect.

Similarly, in the energy retention representation Ay, represents the tendency of the
Jth chemical potential gradient, Z, to give rise to an entropy flux, while Ay g represents
the tendency of the temperature gradient, Zs, to give rise to a flow of the jth species of
matter.

By Postulate VIII, Ly y, = Lyt and Asy, = Ay,s. The reciprocity relations assert
that the intensities of both tendencies are identical.

27.8 The Phenomenological Coefficients in Pure Heat and Pure Matter Flow

Let us now focus attention on Ly and Ly v, the two same-index coefficients in
the entropy production representation. In the absence of matter flow (i.e., when the
chemical potential gradients vanish), Eq.(27.2); becomes

S=Fp -Jy=Fy-Jy. (27.8)

The entropy production is then seen to be the result of a pure heat flow, Jg, driven by Fp,
the thermal driving force.
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On the other hand, when the temperature gradient vanishes (i.e., at constant
temperature), we find

S=Fy-Jy=Fy- -Jy= ZJ. Fy. -Jy. . (27.8),

In that case the entropy production is seen to result from Jyr = > ; Jn;, Le., from a pure
matter flow (diffusion).
We now proceed to analyze the meaning of first Ly, and then L N;N;-

27.9 Fourier's Law of Heat Conduction

For a pure heat flow the second term in Eq.(27.5); vanishes and the pheno-
menological equation for the pure heat flow in the entropy production representation may
be written as

1

QQ
Loy 27.9
T) 72 VT (27.9)

Jo =LooFg = LQQV(

where we have let Lyy = Lgg. Comparing this with the empirical relation known as
Fourier’s law of heat conduction

Jo= —kVT, (27.9),
we see immediately that

Lgg = «T% (27.9);
This relates the phenomenological coefficient Lgg to the material property « known as the
thermal conductivity.
27.10 Fick's First Law of Diffusion

Just as the phenomenological coefficient Log can be related to the thermal
conductivity, the phenomenological coefficient L ~;n; can be related to the material property

known as the coefficient of diffusion.
The phenomenological equation for a pure matter flow of the jth species of matter is

Iy, =LynFy, = — — Vy;. (27.10),

The second equation follows from Eq.(27.2); because 7 is constant. Introducing the
concentration of the jth species, c; , we find
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L.y 8u;
Ty, = — 2N dad] Ve;. (27.10),
i T Bcj TP
Now, by Eq.(14.7)
p; =piHT,P)~RT Inc +RT Inc;, (27.10);

since 72; = ¢;/c where ¢ is the total concentration. Thus, at constant c,

op;|  _RT ) (27.10),
9|z p Cj
and, therefore,
Ly.yvR
Iy, = — N Ve;. (27.10)s

i

We can now give meaning to the phenomenological coefficient Ly, in terms of the
empirical relation known as Fick's first law of diffusion

.I;\,ﬂ = - DjVCj . (2710)6

Comparing the last two equations we see immediately that
LNJ\ = DJ'CJ‘/R . (2710)7

This expression relates the jth phenomenological coefficient to the material property known
as the diffusion coefficient, D;, of the jth species of matter.
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28. THE QUANTITIES OF TRANSPORT

Chapter 27 discussed simultaneous matter and heat flow. We now examine a particular case
of such a flow, the case of thermal migration through a barrier. This will lead us to
recognize three specifically non-equilibrium quantities called quantities of transport. They
are: the enfropy of transport, the energy of transport, and the heat of transport. The latter
is a true thermodynamic quantity which can be determined by calorimetric measurements in
steady-state migration.

28.0 Chapter Contents

28.1
28.2
283
284
28.5
28.6
28.7
28.8

28.9
28.10

Thermal Migration through a Barrier

The Phenomenological Equations in the Entropy Production Representation
The Phenomenological Equations in the Energy Retention Representation
The Entropy of Transport

The Energy of Transport

Interrelation between the Entropy and Energy of Transport

The Entropy of Transport by an Alternative Method

Equivalence of the Entropy Production and Energy Retention
Representations

The Heat of Transport

Meaning of the Heat of Transport

28.1 Thermal Migration through a Barrier
Consider the system represented schematically in the figure below.

Fig. 28.1 Thermal migration through a barrier
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Two vessels containing a single-component fluid are connected via a barrier that
may be, e.g., a porous plate, a membrane, or a capillary. The two vessels are not at the same
temperature or pressure. In each vessel, the temperature and pressure is mamtained constant
by coupling the vessel with its own heat reservoir, HR, and reversible work source, RWS.
Thus, the temperature and pressure differences, AT and AP, are constant in any given case
but may vary from case to case. To simplify matters, we consider flow through the barrier
only in the z-direction.

The barrier is considered to be of infmitesimal thickness, dx. This allows us to
dispense with an analysis of any processes that might occur inside the barrier itself. They
may be deemed negligible without prejudicing the main conclusions we wish to draw from
our thought experiment.

Two subsystems connected by an infinitesimal barrier represent a discrete composite
system. By contrast, in Chapter 27 we considered continuous systems. In a discrete system
we may replace the gradients of the intensive parameters by their differences. The fluxes and
the driving forces will be the z-components, J, and F,, of the vectors, J and F. The y-
and z-components are deemed to vanish. We write the z-components simply as J and F,
omitting the subscript for convenience. Thus, e.g., the z-component of the energy flux, Jy,
will be written Ji-, not Jg-,.

28.2 The Phenomenological Equations in the Entropy Production Representation
In the entropy production representation the fluxes are the energy flux, Ji-, and the
matter flux, Jy. These are driven by the conjugate discontinuous driving forces

Fy = A(l) and Fy = A( - %) (28.2),

[cf. Eqs.(27.2); and (27.2);]. The first is the thermal, the second the diffusional, driving
force.

In analogy to Eq.(27.2); the entropy production function becomes

S =JpFy +JvdN, (28.2),
Le..

S =T A(/T)+ INA(—p/T), (28.2);
and, by Postulate VII, the phenomenological equations become

Juv = LypFy + LpnFy (28.2)4
and

Jx =Ly Fr- + LyyFx . (28.2)s
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Equation (28.2)4 expresses the energy flux as the sum of the energy transported as heat and
the energy transported by the diffusing particles of the fluid. Equation (28.2)s states that
only particles with sufficient energy (in excess of the average energy of the bulk fluid), can
pass the barrier. Energy depends on temperature. Hence, the matter flux depends on the
thermal as well as the diffusional driving force.

The cross coefficient Lyy represents the tendency of the thermal driving force,
A(1/T), to give rise to a flow of matter. Similarly, Ly represents the tendency of the
diffusional driving force, A( — /7)), to give rise to a flow of energy. By Postulate VIII,
Lyy = Lyy. While the two cross coefficients are identical, their physical interpretations
are different (cf §27.7).

28.3 The Phenomenological Equations in the Energy Retention Representation
In the energy retention representation the fluxes become the entropy flux, Js, and
the matter flux, Jy, and these will be driven by the conjugate discontinunous driving forces

ZS = AT and ZN = A,u 5 (28.3)1

[cf Eqs.(27.3); and (27.3);]. Zg and Zy are again the thermal and the diffusional driving
forces.
In analogy to Eq.(27.3); the energy retention function becomes

Y =JsZs +JInZN, (28.3)2
ie.,

T =JsAT +JyAp. (28.3)

With the phenomenological coefficients, Agj, the phenomenological equations now
become

Js = AssZs +AsnZy (28.3)4
and

Iy =AxsZs + AvvZy . (28.3)s

Again, Asy = Ays by Postulate VIII although the two cross coefficients have different
physical interpretations (cf. § 27.7).

28.4 The Entropy of Transport

We now make use of the phenomenological equations in the energy refention
representation to derive the first of the quantities of transport. Consider isothermal
diffusion. Because AT = 0, the thermal driving force, Zs = AT, vanishes and Eqs. (28.3)4
and (28.3)s yield
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_ ASIV

Jo =
7 Avx

Iy = s*Jy . (28.4)

Since Jg is the entropy flow vector while Jy is the matter flow vector, s* is the entropy
transported per mole of matter at constant temperature and is therefore called the enfropy
of transport.

28.5 The Energy of Transport

The phenomenological equations in the entropy production representation furnish
the second of the quantities of transport. Again we consider isothermal diffusion. Because
we now have A(1/T) = 0, the thermal driving force, Fy = A(1/T), again vanishes and
Eqgs. (28.2)4 and (28.2)s yield

Liw
Jy = UN Jy = u*Jy (28.5)
Lxyy

where u* is the energy transported per mole of matter at constant temperature and is
therefore called the energy of transport.
28.6 Interrelation between the Entropy and Energy of Transport

Consider the isothermal transport of a single matier species. By Eq.(27.1); the

energy flux is Jp = Jg + Jyy where Jy is given by Eq.(28.5), and Jyr = puJy. The heat
flux thus becomes

Jo = (u* — p)Jy . (28.6);
But Jo = TJs by Egs. (27.1),. Thus, using Eq.(28.5) yields

JQ = TS*JN . (28.6)2

Equating the two relations then furnishes

u*=Ts*+p, (28.6)3

and this establishes the link between the energy and entropy of transport.

28.7 The Entropy of Transport by an Alternative Method

In § 28.4 we have derived the entropy of transport from the phenomenological
equations in the energy retention representation. We now demonstrate the use of a
transformation of vector fluxes and driving forces (cf. § 26.7) to derive it from the pheno-
menological equations in the entropy production representation. We write these as
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J£7 = LUUF(Q -+ LUNFJIV (287)1
and

Jy = LuynFy + LynFy (28.7)

[ef Eqs.(27.5); and (27.5)].

To derive the entropy of transport from these equations we transform them using
Eqs.(26.7); and (26.7).. The first task is the selection of the transformation variable, I. By
Eq.(27.1);, Ju = Js + uN and this suggests the use of . for I. Thus, we obtain

J(’] = JU - ,uJN and J.{V = JN (28.7)3
for the transformation of the fluxes, and
F(I] = FU and FIIV = FN +/,LFU 5 (287)4

for that of the forces. Substituting these equations into Eqs.(28.7);and (28.7), yields the
transformed phenomenological equations in the entropy production representation as

Ju — pdy = (LyyteLyy)Fy + LunFy (28.7)s
and

Iy = (Lyy+pLyy)Fy + LvnFy (28.7)

in terms of Jy and Jy.Now, in isothermal diffusion the thermal driving force, Fyy, vanishes
and we obtain

Ly
Jy = ( Uy +H>JN. (28.7);
NN

But Jy = u* Jy by Eq.(28.5). Hence,

Lioar
Loy _ ey, (28.7)
LNN

and, by the discrete composite system analog of Eq.(25.4)4 ,
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Jo= Ly _Fy (28.7)
s = T 2 T N .

Using Eq.(28.5) again, we find

u¥ —pu

T

1
k=fk—%h= Jx . (28. 710

But u* — y =Ts* by Eq.(28.6);.Hence, we recover Eq.(28.4) for the entropy of
transport.

28.8 Equivalence of the Entropy Production and Energy Retention Representations

We had first derived the expression for the entropy of transport, Jg, from the
phenomenological equations in the energy retention representation, Eqs.(28.3), and (28.3)s.
In the preceding section we derived Js from the phenomenological equations in the entropy
production representation, Eqs.(28.7), and (28.7);. Thus, as it should, the same result is
obtained, regardless of the representation selected. This served to demonstrate the
equivalence of the representations by the pivotal equations of linear steady-state thermo-
dynamics and parallels the equivalence of the representations by the cardinal equations of
the equilibrium theory (c¢f. § 3.1).

28.9 The Heat of Transport

Let us now make another transformation based on the entropy production
representation. Since we are seeking an expression for the transport quantity called the heat
of transport, let the transformation variable I be %, the molar enthalpy of the fluid. The
transformations become

i =Jy —hJy and Jy=Jn (2891
and
F[,} = FL" and _’\’v = -FN + hFU . (289)2

With these substitutions for the driving forces the phenomenological equations take the
form

J =(Lyy +h Lyy) Fy + Ly Fy (28.9)
and

v =(Lyp + hLyy)Fy +Lyy Fy . (28.9)4

When the temperature is constant, Fy; again vanishes and we obtain



28. THE QUANTITIES OF TRANSPORT 207

g = Lux JU . (28.9)s
Lyy -

But J!! = Ji; — hJy by the first of E¢s.(28.9); and Jy = u*Jy by Eq.(28.5) so that

LUN =u*—h (289)6
Ly
and
Ji = (u* — h)JY . (28.9);
The quantity
g*=u*—h (28.9)3

is the Aeat of transport. We proceed to examine its meaning.

28.10 Meaning of the Heat of Transport

Consider an isothermal transfer of dN moles of fluid from Vessel I to Vessel 1I in
Fig. 28.1. By definition, the energy flow is u*d N and this would be energy lost from Vessel
I if no other process took place. However, Vessel I is maintained at constant temperature,
T, by the absorption of the heat SQT® from the heat reservoir I, and at constant pressure,
P, by the performance of the work SWRWS on the system by the reversible work source L
Hence,

dU = —u*dN + 6QURT 4 swRWSH (28.10),

is the change in the internal energy in Vessel I But dU = —udN and dV = —vdN
since both decrease. Therefore, SWEWVST = Py dN, and we have

5QHR_I:(u*—u—P’U)dN=(u*—h)dN- (28.10),

Consequently, u* — h = g* is the heat per mole of matter leaving Vessell, which is
absorbed from the reservoir to maintain constant temperature. It is thus a pure heat flow but
not between the two vessels. It is the heat flow from the reservoir to the vessel at the lower
temperature, ie., the vessel from which matter diffuses across the barrier. The heat of
transport is thus the heat exchanged with the reservoir per mole of matter.

The quantity ¢*is seen to be the amount of energy by which u* exceeds the molar
enthalpy of the fluid in the state characterized by the temperature, T', and the pressure, P.
We note that, while u* and % are defined only within an arbitrary constant, their difference,
g™ is, at least in principle, a quantity amenable to direct calorimetric measurement.
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Finally, we may rewrite Eq.(28.9); in the form

Jo =q*Jy (28.10);

to emphasize that we are dealing with a pure heat flow. Jg is also a pure heat flow
{cf. Eq.(27.8)1] but the two differ in their nature. As we have seen, Jg = T'J is related to
the entropy transported between the two vessels, while Jo is related to the entropy
transported from the heat reservoir to the vessel at the lower temperature.
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29. USES OF THE HEAT OF TRANSPORT

The heat of transport is a true thermodynamic quantity capable of experimental deter-
mination. It is essential in the definition of the thermomolecular pressure effect and the
thermomechanical effect. These are the subjects of the first four sections of this chapter.
The last section reexamines the problem of the measurability of mass action in an open
system that had been deferred from § 2.10.

29.0 Chapter Contents

29.1 The Thermomolecular Pressure Effect

29.2 The Thermomechanical Effect

29.3 Interrelation between the Thermomechanical and the Thermomolecular
Pressure Effect

29.4 Thermodynamic Steady-State Equations

29.5 Measurability of Mass Action in an Open System

29.1 The Thermomolecular Pressure Effect

The two vessels in Fig. 28.1 are maintained at their respective temperatures and
pressures by the heat reservoirs and reversible work sources but they are not in contact with
a matter reservoir. Hence, some time afier the restrictions on the barrier have been removed
(ie., after it has been made diathermal and permeable), a dynamic equilibrium will be
established with respect to matter exchange (diffusion). Thus, the matter flow will
effectively cease. The system is then in a steady state which is maintained by the (constant)
temperature difference, AT, between the two vessels. This temperature difference entails a
concomitant pressure difference, AP. We seek the relation that links AP and AT at the
temperature 7.

To derive the relation, we will need to express the fluxes, Ji; and Jy;, as fanctions
of AT and AP. First, however, we rewrite the driving forces. Admitting that p may
depend or T', and substituting the identities [see Eqgs. (28.2)]

Fy =AQ1/T)= - AT/T? (29.1)
and

Fy =A(— p/T)= — Ap/T + pu AT/T? (29.1),
into Egs. (28.9),, we obtain

1
Fy= - = AT (29.1)s

for the thermal, and
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1 1 1 s
=~ 2 Ap—(h—p) = AT = — ~Au— 2AT 29.1
Fy= =7 Mu—(h-p)z; AT = = ZAu— ZAT, (29.1s

or, making use of the Gibbs-Duhem equation, Eq.(8.22)4,

Fy = —vAP/T, (29.1)s

for the diffusional driving force. The phenomenological equations can therefore be written
in the form

Ly vLipn
R Plihdind A8 29.1
Jo= -2 AT - EX AP (29.1%
and
Lyy vLyy
Lo — 29.1
Jy = AT = AP (29.1y

When a steady state has been reached, the matter flow will have ceased. Since then Jy = 0,
we find

AP 1 Ly

AT = ToL,y

(29.1)8

Making use of the reciprocity relation, Ly, = Ly, and using Eqs. (28.9)s and (28.9)g we
obtain

Lyvo Ly
=M TUN kB o= g% 29.1
L_\'I\' LA\'A\' 7 ( )9
Hence,
*
AP= — L AT, (29.1)10
vl

This steady-state equation describes the effect known as the thermomolecular pressure
effect. It links changes in pressure and in temperature in the steady state when matter flow
has ceased. It is not an equilibrium state since the heat flux does not vanish. The effect is
determined by the heat of transport, ¢*.
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29.2 The Thermomechanical Effect

Suppose now that we keep the temperature constant throughout the system, so that
AT = 0, but maintain a pressure difference, AP. This will result in a flow of matter from
one vessel to the other, accompanied by a flow of energy which can be measured by
measuring the amount of heat required to keep the temperature constant. The two flows are
proportional and the proportionality constant is again the heat of transport, ¢*.

We can deduce this from the phenomenological equations, Eq.(29.1)s and (29.1);.
When AT = 0, we have

Jy  Lyy

= (29.2)

Iy Lyy

or, using Eq.(29.1)o,
Jy =q*Jy . (29.2)

This effect is known as the thermomechanical effect. It relates the matter flux to the energy
flux at constant temperature via the heat of transport, g*.

29.3 Interrelation between the Thermomechanical and the Thermomolecular
Pressure Effect
The reciprocity relation Lj, = Ly, establishes the link between the thermo-
mechanical effect and the thermomolecular pressure effect. Combining Eqs.(29.1)g and
(29.2);, we find

AP 1y (29.3)
AT Jy=0 VT Jy |ar—o

Because of the relation between them, both effects will always be manifest in the same
system.

29.4 Thermodynamic Steady-State Equations

In the steady state Eq.(29.1)10 is an example of a true thermodynamic equation in
that it is a necessary relation between thermal and mechanical quantities that can all be
measured. The reciprocity relations (Postulate VIII) are valid whether a steady state has
been reached or not as long as the relations between fluxes and driving forces are linear.
However, in the non-steady-state the phenomenological coefficients are kinetic coefficients
and must be determined by actual measurements of the rates or from a molecular model. In
steady-state thermal migration, by contrast, ¢* can be measured directly, at least in
principle, by calorimetric measurements.
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29.5 Measurability of Mass Action in an Open System

In §2.10 we deferred discussion of the measurability of mass action in an open
system to this section. We are now ready to take it up again and concern ourselves with the
mass action representing the change in internal energy resulting from the occurrence of a
pure matter flow at constant temperature and pressure. Consider an isolated system com-
posed of two subsystems which are initially divided by a diathermal and movable but
impermeable barrier. The system is in contact with a heat reservoir and a reversible work
source, and is thus kept at constant temperature and pressure. If now the barrier is made
permeable to the species of interest, then the energy transported per mole of matter at
constant temperature and pressure in the steady state from the subsystem having the higher
chemical potential to that having the lower potential (cf. § 4.10), is

u* =g*+h (29.5)

by Eq.(28.9);. Here ¢*, the heat of transport, is the heat exchanged with the reservoir per
mole of matter, and ~ is the molar enthalpy of the diffusing species. The energy of
transport, u*, is free from the heat (entropy) carried by the diffusing matter. Although ¢*
can be measured, the molar enthalpy of the fluid is defined—as are all thermodynamic
potentials—with respect to a reference that depends on the circumstances under which 4 is
determined. It may be obtained from Kirchhoff's equation [cf. Eq.(21.8);]

T
ho=he+ / ep(T') dT’ (29.5),
Ty

where A, is the molar enthalpy at the reference temperature T, and the (constant) pressure
P. Thus u* is obtained within the same constraints. Keeping this in mind, we obtain the
change in internal energy caused by the mass action as

AU = N(u* — u,*) = Ng* + AH (29.5)

where N is the total number of moles transported, u,* is the reference energy of transport
and AH = N(h — h,). Since W = 0, and Q = 0 also (no heat, except Ng*, flowing in or
out of the system), we then have

M = N(u* — ug*). (29.5)

as the mass action due to the diffusional flow. Thus, unless u,* can be obtained
independently, the mass action M can be determined only within the uncertainty of not
knowing the reference energy of transport.
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30. MINIMUM ENTROPY PRODUCTION

To conclude Part II we show that the linear steady state is a state of minimum entropy
production. This represents the most general result of the theory of steady-state
thermodynamics.

30.0 Chapter Contents

30.1 The Rate of Entropy Production in the General Case
30.2 The Rate of Entropy Production in the Linear Steady State
30.3 The State of Minimum Entropy Production

30.1 The Rate of Entropy Production in the General Case

Let us consider a thermodynamic system, initially not in a steady state, in which the
thermodynamic forces and fluxes vary with time within the system but remain constant at its
boundaries so that the system can eventually reach a steady state. In such a system the rate
of entropy production, and therefore also the entropy production function, change with
time. Thus we may write

o(t) = / &(t)dv = / Z Ji(t) - Fr(t) dv (30.1)

where V is the volume.
Let us now consider dO(¢)/dt, the time rate of change of the rate of entropy
production. Differentiation of ©(¢) with respect to time yields

do(t) _ drO(t) , dsO(t)

dt  dt dt (30.1),
where
drB(t) / BF.(t)
= vZk Jk(t)-Tdv<0 (30.1)3

is that part of the rate at which O(t) changes with time because the driving forces change,
while

dje(t) /Z BJk(t  Fi(t) dv (30.1)4

is that part which arises from changes of the fluxes with time.
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In the general case we can say nothingZ? about the sign of dO(t)/dt. The first term
in Eq.(30.1), is bound to be negative if the conditions at the boundaries of the system are
constant (see Appendix 7). Nothing, however, can be inferred about the second term
because it can carry any sign in the general, non-equilibrium, case.

30.2 The Rate of Entropy Production in the Steady State

Consider therefore now what happens when the system that we have just discussed
approaches a linear steady state. By Postulate VII the fluxes depend linearly on the driving
forces, i.e.,

Jp = Z, L F, (30.2)

and by Postulate VIII, the phenomenological coefficients obey the reciprocity relations, ie.,
L = L. Furthermore, all these quantities are independent of time by Postulate V1.

Taking the limit as ¢ becomes constant, and inserting Eq.(30.2); into Eqgs.(30.1)3
and (30.2)4 yields

: dFe(t) d}:‘@ 8Fk
m g / > LuFe (30.2),
and
d;O(t) d Je
fl’c‘ﬁsf dt f ZHLM - Fy dv. (30.2);

But the two integrals are identical because—as just asserted—they are invariant with
respect to an interchange of the indices k& and I because the reciprocity relations hold.
Hence,

dr® d,0
dt ~ dt ° (3024

ie., as the steady state is approached the contribution to the rate of entropy production due
to the time changes of the fluxes and the contribution due to the driving forces approach
equality.

30.3 The State of Minimum Entropy Production

It follows from the foregoing that in the steady state the time rate of change of the
rate of entropy production becomes

23 See, e.g., Wisniewski et al. (1976), p.44.
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A6 dr©® d;0
- - 30.3
at e T e (30-3n

It is then still true that dr©/dt is a negative quantity if the conditions at the boundaries of
the system are stationary so that the system can attain a steady state (see Appendix 7)..
However, now d;©/dt is also negative because it is equal to dp©/dt. Thus

9

30.3
=0 (30.3),

i.e., the time rate of change of the entropy production decreases as the system approaches
the (linear) steady state, until a minimum is reached in that state. The equality holds
whenever the steady state has been attained. The linear steady state is thus a state of
minimum entropy production.
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Al. EXACT AND INEXACT DIFFERENTIALS

This chapter presents a brief discussion of exact and inexact differentials.
A1.0 Contents

Al.1 The Equation of Integrability
A1.2 The Exact Differential
A1.3 The Inexact Differential

Al.1 The Equation of Integrability
Consider a thermodynamic fimction, U = U(S, V'), where U and S are functions of
state. The total differential, dU, is then an exact differential. To show this, we set

dU = X(5, V)dS +Y(S, V)dV {Al.1}
where
oU oUu
X = =—1 . Al.l
S, V) 35|, and Y5, V) v, ( Y

Now, if dU is an exact differential as asserted, mixed derivatives do not depend on
the order of differentiation. Thus

3U U
_ oY ALl
858V ~ aVaS’ (ALD:s
and it further follows that
8X(S,V) aY (S, V) .
- ‘ ALl
v | s |, (ALD,

The last equation is the equation of integrability. Tt must be satisfied, as it is here,
for the differential dU to be an exact differential. It thus constitutes a test for the exactness
of a differential.

A1.2 The Exact Differential
Let us test the relation

dU =TdS — PdV (A1.2);
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for exactness. We now have X(5,V) =T, and Y(S,V) = — P, and thus Eq.(Al.1),
becomes

or
v

oP

= - = (A1.2),
) as 1

But this is the first of the Maxwell relations, Eq.(10.6);, asserting that mixed derivatives do
not depend on the order of differentiation. Thus the equation of integrability is satisfied.

A1.3 The Inexact Differential
Now consider the differential dU = dQ + dW where dW = — PdV and neither
Q nor W are functions of state. We wish to ascertain if

dQ = dU + PdV (A1.3),

is an exact differential. To subject it to the test of Eq.(A1.4), we first express dU in the
form

ou
dU = —
aS

oU
as + Y
R

av (A1.3),

v S

and then substitute this into dQ = dU + PdV . The substitution yields

iQ = au s [BU

as |y v

+ P} dv (A1.3),
S

and comparison with Eq.(A1.1); shows that

aoU
XS5, V) = — Al3
S, V) 35 |, (A1.3),
while
oUu
Y = - 1.3
S, V) av | + P. (AL.3);
Thus
0X U
— = Al.3
Vi, ~ avas (A1-3)g

and
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Yy U P

ovy _OU  aP AL3),
35|, ~ a5av " 85|, (AL3),

Clearly, the equation of integrability is not satisfied and dQ) is therefore an inexact
differential. To emphasize this distinction inexact differentials are written in this text as 6@},
oW, 6 M, etc., instead of d@, dW, and d M, etc.
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A2. JACOBIANS

Jacobians are determinants whose elements are partial derivatives. They are widely used in
thermodynamics largely because of their usefulness in manipulating derivatives. The key to
their use is the relation

Ou 9wy, ... 2)

= = A2.0
Oz - Nz, y,...2) ( )

.z

which expresses a partial derivative as a Jacobian. The quantities which are kept constant in
the derivative are incorporated in the Jacobian. The following sections discuss some of their
properties and applications.

A2.0 Contents
A2.1 Definition
A2.2 Properties
A2.3 Applications

A2.1 Definition

Let u, v, ... w be functions of z, y, ... 5. Then the Jacobian is defined as
ou  ou ou
oz dy tee 9z
a( ) Guv  Gv v
ey uv,...w - Oz ay et a: (A21)
Nz, y, ... %) ’
Sw  Guw duw
Oz oy tee 8z

Inside the determinant we have omitted, for simplicity, to indicate the variables being held
constant.

A2.2 Properties

The five properties of Jacobians that are most useful in thermodynamics are listed
below without proof. Thorough discussions can be found in any good text on calculus.

1. Reciprocals:

Nu, v, ... w) Nz, y,... 2)
Nz, y,...2) | Hu,v,... w)

(A2.2),
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2. Row or column interchange:
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a(u,v,...w)___ _a(v,u,...w) (A2.2),
Nz, y, ... 2) Nz, y,... 2)
3. Chain rule:
AN(u, v, ... w) _ Nu, v, ... w) O(,s, ... t) (A2.2)5
Nz, y,... 2) a,s,...t) Az, y,... 2
4. Determinant expansion:
@_l du
Owv) |0y iy | Oul | Ou] dv (A2.2)4
oz, y) @I v dz|,dy|, 08yl oz,
oxly Oy =
or
B(u,v) _ 8w, y) 0, 2) _ 8, z) (v, 9) (A22)s

Az, y) Az, y) By, x)

5. Maxwell relations:

Oy, x) 8=, y)

Let =, y; and x5, y» be pairs of conjugate extemsive (x)and intensive (y)
parameters. Then the four possible Maxwell relations are

921\ _ son(yrrn) %2
Oy, gy 233/1 y;
01| | on(yrn) 22
axz “ Y22 ay IZ’

and

Sy 92

— i = — A2.2
9za ., sgn(¥2z2)7 . (A2.2)s
6y1 8x2

CCIY R 9221 (A22
B9 .. Sz‘;ﬂ(yzivz)ax1 J (A2.2)

where sgn(ysx5) takes the values +1 or —1, according to the sign of the yrz;—term in the
Euler equation, Eq.(3.10),. A demonstration of the use of these equations follows.

A2.3 Applications

Below we illustrate the use of Jacobians in thermodynamics on hand of several

typical applications.
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1. Find the corresponding member in a Maxwell relation (cf. § 10.7)

We wish to find the corresponding member when (9u/85)y is given. Since p is an
intensive, and Sis an extensive parameter, the appropriate relation to use is Eq.(A2.2)s.5.
Inserting the values y) =pu, 2y =N, 2, =5, yp =T, and sgn(yexs) = sgn(T'S) = 1,
immediately yields

o
as

_aT

= — A2.3
LT aN (A2.3)

s

fcf. the second of Eqs.(10.6); and the second of Eqs.(10.6)3, the first at constant volume,
and the second at constant pressure, respectively.].

2. Show that C_p&[ = _Igl-[ﬁg (cf § 10.3) (A2.3),

Written out explicitly the relation becomes

as| oT ov| 8P

—=| = == =1 . A2.3

8T |05 |~ aP| oV |, (A2.3);
Recast in terms of Jacobians, we have

(S, P) AT, V) _ 8(V,T) &P, S) A23)

AT, P)3(S, V)~ &P, T)a(V, S) e
and this is clearly an identity since it involves an even number of interchanges.

3. Show that ag‘&g = ! - CB@Y (cf §10.3) (A23)5

This is not a simple identity and requires a little ingenuity. We write

as _ 9V 8T| _a(V.,5 8T, Py (S, V)&T, P)XT, P) (A2.3),

ap 8T |8V, &T,S)&V,P)  O(T,P)AT,S)soV,P) e

where, in the last term, we have both divided and multiplied by &(7', P). We now expand
the first of the last three Jacobians. This gives

(s, vy (S, Pyawv,T) _ 95, TYoV, P)

&T,P)  &T,P)&(P,T) &(P,T)AT,P) (A23);
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and therefore
as _ _[aS, P)aV,T) &S, T)o(V,P)| oI, PYAT, P) (A2.3)s
ap 8T, PYJ(P, T) &P, TVOT,P)|oT,S)dV,P)

Carrying out the indicated multiplication and canceling terms where possible, yields
as S, P)a(V,T)d(T, P) 1 = Cpd(V,T) 1 (A23)

ap  OT,PYXT,S)&V,P)y T &T,S)Vap

Now we both divide and multiply the middle term on the right-hand-side by a(V', S). This
leads to

as _CpAV.T)AV.S) 1 CedT| V| 1 .\ o
ar T 8(V,S) (T, S) Vap T 85|, 0T |sVap

Thus,
agfap = (Cp/Cv)as/ap)+1 (A23)1

which then rearranges to the proposed identity.

4. Derive the difference between the heat capacities (cf. § 10.3)

We express O as a Jacobian and then manipulate it into the required form. We
have

as
v =T%r

_ RS V)  _8S,V)aT,P) T 8S.V)
v e@ ) =T AT P AT v) T T Var B@ B

Expanding the Jacobian on the right as a determinant yields

oV

A4 A4
TaT P

pOP

as

Cy = -
r 0P

_ T [es
VKZT oT

] . (A2.3)13

Using the first 0f Eqs.(10.6)y, i.e., the Maxwell relation
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as
aP

av

— 2 - _ ! A23
. 5T Vap, (A2.3)14

P

and rewriting the other partial derivatives in terms of the members of the primary set gives
at once

CV = C_p d TVO.’%)/I{T . (A23)15

3. Express the Joule-Thompson coefficient, (3T /D P)y, in terms of the

members of the primary set.

This is a case where an extersive variable is held constant. We have

oT

9T| _&T,H)aT,P) HHT)P,T) 1 8H
oP

4 P, HY&T,P) &P, T)o(P,H)  Cp 8P|’ (A23)e

because (0H /3T)p = Cp [cf. Eq.(10.2)4]. But dH = TdS + VdP at constant N. Hence,

8H a8 oV

=i =T—= = ~T— A2.3)y;

op|, = Tap|, TV = "Tor|, TV (A2.3)
and we finally obtain

aT

aP

Vv
=& (Tap—1). (A2.3)18
7 Cp
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A3. THE LEGENDRE TRANSFORMATION

Replacing an extensive variable in the fundamental equation with its intensive conjugate
turns the fundamental equation into an equation of state with an attendant loss of
information. The loss occurs because the intensive conjugate is a (partial) derivative. The
Legendre transformation is a mathematical technique for interchanging dependent and inde-
pendent variables in a functional relationship without incurring any loss of information. The
transformation is therefore an indispensable tool of equilibrium thermodynamics (cf. §§ 8.5
and 8.6).

This Appendix treats the mathematics of the transformation. Thermodynamic
applications. are used as illustrations where appropriate. We shall first introduce the concept
of the Legendre transformation effecting a single interchange only. Such a single inter-
change is called a firsi-order Legendre transformation. Higher-order transformations, in
which two or more conjugate parameters are interchanged, then follow.

A3.0 Contents

A3.1 First-order Legendre Transformations

A3.2 Information Content of the Transformation

A3.3 Duality of Point and Line Coordinates

A3.4 Higher-order Legendre Transformations

A3.5 The Complete Legendre Transform

A3.6 The Inverse Legendre Transform

A3.7 Number of Partial Legendre Transformations

A3.8 First-order Partial Derivatives of a Legendre Transform
A3.9 Second-order Partial Derivatives of a Legendre Transform

A3.1 First-order Legendre Transformations
The infinitesimal variation of a function

YO =y (xi, %0, -, %) (A3.1)

of the independent variables x;, ..., x, is

dy(o) =&dx; + &Ldxy +... + £dx, (A3.1),
where

_ Y

& = :
2 X(#X)

(A3.1)3

Consider now the function
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YO =y0 —gx . (A3.1)
Its variation is
dy) = dy? — dgyx; = dy® — £1dx; — x4y, (A3.1)s

and using Eq.(A3.1),, this becomes
Ay = —x;d; + Hdxo + ...+ Eadxy . (A3.1)s

Now compare Eqs.(A3.1); and (A3.1)s. Clearly, the roles of x; and £ as independent and
dependent variables has been interchanged. To effect this interchange it is merely necessary
to subtract the product of x; with its conjugate partial derivative, £;, from the base
function, y'». The resulting function,

¥ =y xe ) =y L] (A3.1y

is called the first-order Legendre transform of the base function y® introducing the
derivative £;. The second equation introduces the bracket notation as a succinct shortcut.
The choice of the first extensive independent variable, x;, to be exchanged against £;, is
arbitrary (cf. § 18.8). The superscript in Eq.(A3.1); is zero because the base function may
formally be regarded as the Legendre transform of order zero.

A3.2 Information Content of the Transformation

It is perhaps not obvious from the foregoing that the exchange of x; against the
partial derivative, &, has left the information content of y!») the same as that of y'9. To see
this more clearly, we turmn to the geometrical interpretation of the transformation. For
simplicity, we consider a functional relation in a single variable, y = y(x). This relation
represents a locus of points (a curve) in the x,y—plane. The curve is said to be defined by
point coordinates. As illustrated by Fig. A3.2, a curve in two-dimensional space can,
however, be represented equally well by the envelope formed by lines tangent to the curve
at each point.

Let the tangent lines have slopes, £, and intercepts, 1. The equation of the envelope,
ie., the equation of the curve, is ¥ = ¥(£), and the curve is said to be defined by line
coordinates?*. In three-dimensional space a curve would be defined by surface coordinates,
ie, by tangent surfaces. Extension to higher dimensions cannot be visualized but is
straightforward mathematically.

The two functions, y = y(x), and ¥ = (&), clearly describe the same curve and
thus contain the same information. In the notation of § A3.1, y is y, the base function, and
¥ is ¥y, the first-order Legendre transform of y©. Despite the introduction of the

24 The geometry of line, surface, and higher coordinates was developed by J. Phicker (1868-69) and is
sometimes referred to as Pliicker geometry.
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derivative, the transform preserves the information contained in the base function because it
contains not only the slopes (i.e, the derivatives) but the intercepts as well. It therefore
conytains the complete information on the envelope.

y=1+0.25x2

Fig. A3.2 Family of tangents to the curve y = 1+0.25x>

Consider an example from the text. Let the base function be the internal energy, so
that y© = U(S, V, N). An exchange of the entropy, S, against the temperature, T, i.e.,
letting £ = T, yields the first-order Legendre transform y\ = U[T], ie., F = U[T], in the
form F = F(T, V, N) where Fis the free energy (cf. § 8.10).

A3.3 Duality of Point and Line Coordinates
Point and line coordinates are said to be duals of one another. The Legendre trans-

formation exploits the duality between the two. The relation between the point coordinates,
X, y, and the line coordinates, 1, £, is easily derived with the aid of Fig. A3.3 below.

| /

il -

Fig. A3.3 The tangent, L(v;, £;), at the point, P(x;,y;)
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Consider a curve in two-dimensional space as shown above. Note the point,
P(x;,v;), along the curve, and its dual, the line, L(1;, £;), that is tangent to the curve at that
point. Clearly,

tan o; = ;——O 5 (A33)1
and, therefore,
d
¢ =tan o; = dl (A3.3)
X lx=x;, y=y;
and
bi=Yi. (A3.3)s

For all points along the curve, then, the sought-for relation between the point and
line coordinates is

v=y—éx (A3.3)

given the functional relation y = y(x). This equation should be compared with Eq.(A3.1)4.

A3.4 Higher-order Legendre Transformations
The function

YO =y®E, b X %) = YOI LA (A3.4)

where the £1,...&; are given by Eq.(A3.1);, is called the Legendre transform of order k of
the base function y'%. The Legendre transformation that introduces the derivatives £|,...4¢
into the base function y'? is

i=k
YO —yO S (A3.4),
=1

Let us illustrate this again with an example from the text. Exchanging both the
entropy, S, and the volume, V| in the base function y\© = U(S, V, N), furnishes the
second-order Legendre transform, y\2' = U[T, P}, or G = G(T, P, N), where G is the
free enthalpy (cf. § 8.16).

The differential form of Eq.(A3.4); is
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i=k

dy® = dy©@ — 3~ d(&x), (A3.4)
i=1

or, since we have
=n
dy® = Z &dx; , (A3.4);
=1

[cf Eq.(A3.1),], we may write

i=n

i=k
dy® = - T xdt + Y &dx (A3.4)s
=1 i=k+1

as an alternative expression.
A3.5 The Complete Legendre Transform

The complete Legendre transform, the transform of order n, vanishes identically.
This follows directly from the definition of the transform of order k, Eq.(A3.4),, since

i=n
y® =y O Z £x; =0, (A3.5);
=1

This is easily verified by looking at the Euler equation (cf § 3.10)

i=n i=n )
YO - Ex=U-> YX;=0. (A3.5)
=1 =1

In thermodynamic theory this property of the complete Legendre transform gives rise to the
Gibbs-Duhem equation (cf. § 8.22).

A3.6 The Inverse Legendre Transform
The inverse Legendre transform also follows from Eq.(A3.4),. Itis

i=k
yO —y® 4 Z & . (A3.6)
=1

Letting k = 1, this correctly gives U = F +TS.
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A3.7 Number of Partial Legendre Transformations
The number of transforms of order 0 < k < n is given by the combination

Cn, k) = 55w > (A3.7)

where n is the number of variables of the base function, y!*’, and k is the number of
conjugate pairs involved in the transformation, y®. Thus the total number of partial
(k =1, ...,n — 1) Legendre transforms is2’

S Cnk) =20 -2 (A3.7)

As the fotal number of Legendre transforms includes the complete transform, it is
thus 2" — 1, that is, 1 more than the number of partial transforms.

A3.8 First-order Partial Derivatives of a Legendre Transform

There exist two useful relations involving the first-order partial derivatives of
Legendre transforms. They will be stated here without derivationZ®.

_ oY

X; = (A3.8)
O letze,..x..
and
9} 0)
{;L = % (A3.8);
%5 e, xtexy) 2 %o . X(X]) .
Employing the subscript notation for partial derivatives, these relations become
xi= —y (A3.8);
and
] __ O
Wl =3 (A3.8);

By the first of these relations the partial derivative of a Legendre transform with
respect to the transform variable £; is the negative of the conjugate variable of the latter, x;.
To apply them, let y® = U(S, V, N)so that x; = S, and further let ') = F(T, V', N).
We then correctly find

25 see, e.g., Crystal (1961), p. 191.
26 See Modell and Reid (1983), pp. 109-114.
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_OF

S=-—=| .
T v n

(A3.8)5

By the second relations, the partial derivative of a Legendre transform with respect
to any untransformed variable x; is equal in value to the partial derivative of the base
function with respect to the same variable, x;. As an example, using the same functions as
before, we have simply

OF

oF|  aU
av

T’N-(?V

=-P (A3.8)6
S, N

Equations (A3.8), and (A3.8), are almost trivial in application.

A3.9 Second-order Partial Derivatives of a Legendre Transform
Relations involving the second-order partial derivatives of y{») and y@ can also be
established®. These relations are

Y= =17 (A3.9),
1 -
Vi = i biY (#£1) (A3.9)
and
1 Q 0)_ (0 0 ..
Y =i YRV AT - Gi#£1) (A3.9)

When they are applied, the variables of the conjugate pair to be interchanged should
be moved into first position. Also, the pressure, P, should be treated as — P, and the
affinity, 4, as — A, readjusting the notation in the end as needed. Thus, use G(— P, T, N)
and F(V,T, N)to find Gpr in terms of F. Equation (A3.9), then provides

G pyr = FyrlFyy, . (A3.9),
and this gives
Gpr = — Fyr/Fyv (A3.9);

after readjustment.
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A4, THE FUNDAMENTAL EQUATION OF THE IDEAL GAS

This Appendix offers an abbreviated version of the derivation of the fundamental equation
of the general ideal gas based on statistical and quantum mechanics.

A4.0 Contents

A4.1 Separability of the Fundamental Equation

A4.2 Internal Energy Dependence of the Fundamental Equation
A4.3 Volume Dependence of the Fundamental Equation

A4.4 The Fundamental Equation of the Ideal Gas

Ad4.1 Separability of the Fundamental Equation
The (molar) fundamental equation of the ideal gas in the entropy representation may
be written as

s = s(u,v) = Ru) +gv). (A4.1)

The separability (cf §12.1) of s(u,v) into two additive functions, one of which, f{u),
depends only on u while the other, g(v), depends only on v, results from quantum
mechanical considerations. The assumption that the potential energy of interaction of the
molecules of an ideal gas does not depend on the distance of the molecules from each other
leads to separability of the Schrédinger equation and this, in turn, entails the separability of
s(u, v) (Denbigh, 1966).

A4.2 Internal Energy Dependence of the Fundamental Equation
We showed in §§ 12.7 and 12.8 that f{u) can be expressed as

T . [Ter@)
ﬂu)_Lo ‘Tf dT =/;0-T—,dT—RlnT/T° (A42)

where cy(T) and cp(T)are the heat capacities of the gas at constant volume, and at
constant pressure, respectively. Both depend on the nature of the gas and f{u) can,
therefore, not be written explicitly as a function of v in general.

A4.3 Volume Dependence of the Fundamental Equation

The function g(v) can be obtained from classical statistical (non-quantum)
mechanics. Consider the entropy change in an isothermal expansion of one mole of an ideal
gas from v, to v. This change is given by

g(v) =klnw/w, (A4.3)
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where k is Boltzmann's constant and w/w, is the number of ways in which the N,
molecules?’ in a mole of gas can be distributed over the final volume, v. For a single
molecule we would have v/v,. But the molecules move independently from each other by

the basic assumption made for an ideal gas. The thermodynamic probabilities are therefore
multiplicative and we have

w/we = (v/ve) ™ . (A4.3),
Inserting Eq.(A4.3), into Eq.(A4.3); gives
g9(v) =Nkinv/v, =Rinv/v,. (A4.3);

for the molar entropy of the ideal gas resulting from volume change in the expansion.

A4.4 The Fundamental Equation of the Ideal Gas
Hence, the fundamental equation results as

s=s,+Ru)+Rinv/v, (Ad4.4)

"

where f{u) is chosen so that fu,) = 0, and, hence, s, = s!.

27 N,y is Avogadro's number.
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AS. THE EQUATION OF STATE OF THE IDEAL RUBBER

In §17.17 we derived the mechanical equation of state of the ideal rubber from the
statistical theory of rubber elasticity. It can be derived also by the methods of continuum
mechanics. The latter seeks to establish a constitutive equation or material equation of
state, i.e., a relation between the stress tensor and the deformation tensor. The former
represents the system of forces applied to the material and the second contains the
description of the resulting deformation. Both tensors are symmetric three-dimensional
second-order tensors and can, therefore, be expressed as symmetric 3 X 3 matrices. Any
such matrix is characterized fully by three invariants, quantities which are independent of
any coordinate system chosen to describe the system of forces and/or the deformation.

AS5.0 Contents

A5.1 The Invariants of the Deformation Tensor of an Incompressible Rubber
A35.2 Deformation in Uniaxial Tension of an Incompressible Rubber

A35.3 The Elastic Potential or Strain Energy Density of an Incompressible Rubber
A5.4 The Constitutive Equation of an Incompressible Rubber

AS.1 The Invariants of the Deformation Tensor of an Incompressible Rubber

Let ; stand for the extension ratios, L;/L,;, where the L; are the deformed, and the
L,; are the undeformed lengths in the three principal directions. The first two invariants of
the deformation tensor of an incompressible rubber then become

=2+ 22+ 22 =22+ 22+ 27202 (A5.1)
and

L = A2 + 0240202 = 472 + 057 + 002052 (A5.1),
since the third invariant, because it represents changes in volume, is unity. We have
L= AN =1 (A5.1)3

for an incompressible rubber

AS.2 Deformation in Uniaxial Tension of an Incompressible Rubber

Since the rubber is considered to be isotropic, we derive the equation of state by
considering uniaxial (also called simple) tension in which a force is applied in one direction
and the material is free to contract equally in the two perpendicular directions. We then
have A} = ), and A\, = A3 = \"2, and the two invariants become

L=X+22" and L=A242\. (A5.2)
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AS5.3 The Elastic Potential or Strain Energy Density of an Incompressible Rubber
Now, by Eq.(17.18);, at constant temperature and volume the force in uniaxial
tension is

_9F 8F

=2 Ay A5.3
8L |7 v Vod(L/L,) (AS3)

f

where V, = A,L, is the initial (undeformed) volume, and F/V, is the (Helmholtz) free
energy of deformation per unit volume, The latter is commonly called the elastic potential
or the strain energy density, W .

The elastic potential is in general a function of the three invariants of the
deformation tensor. Since I3 = 1 for an incompressible rubber, the elastic potential becomes
W = W(l;, 1) and a Taylor expansion in the two invariants yields

W= Zij G (I — 3) (I, — 3) ij = 0,1.2,... (A5.3),

where the Cy; are material constants. Coo = 0 because the strain energy density vanishes in
the absence of any deformation, i.e. when ; = I, = 3. Retaining only the first term in the
expansion, we obtain

W =Cio(I1 =3) = Cip (\* +2)7' —3) (AS.3)s

for the strain energy density funnction of an incompressible rubber.

AS.4 The Constitutive Equation of an Incompressible Rubber
By Eq.(A5.1)s,

aw

= 24,Cio(\ — A72). (A5.4),

f=Ao

But F/A, = o, where o is the stress, and (A — \2) is a measure of the strain, in uniaxial
tension applied to an isotropic incompressible material. The ratio of stress to strain is a
modulus. By identifying 2C;o with the (shear) modulus, G, of the material, we write the
equation of state as

c=G\-X1? (A5.4)

and this is the same as the Eq.(17.17), derived from the statistical mechanical theory of
rubber elasticity.
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A6. POSITIVE DEFINITENESS OF A QUADRATIC FORM

This Appendix is concerned with the establishment of the conditions that insure the positive
or negative definiteness of a homogeneous quadratic form. This form, and the question of
its definiteness, play a crucial role in §§ 18.3 to 18.5 in the context of the criteria of thermo-
dynamic stability. The Appendix makes use of the relations between the second-order
partial derivatives of a Legendre Transform that were introduced in § A3.9. The discussion
deals with the binary simple system (cf. §§ 18.8 and 18.14)

A6.0 Contents

A6.1 Problem Statement
A6.2 The Quadratic Form in the Energy Representation
A6.3 The Quadratic Form in the Entropy Representation

A6.1 Problem Statement
Given a homogeneous quadratic form

T _ O .
q Aq—ZiJ_ y;; dx; dz; (A6.1)

we wish to find the conditions that will ensure that it is either positive or negative definite.
When i = j, dz;dz; is necessarily positive. Hence, we must eliminate dz;dx; when i # j.
The usual method of diagonalization by eigenvalues does not lead to a useful result because
the eigenvalues are devoid of physical meaning. We use Sylvester's method of determinants.
By Sylvester's criterion® the positive definiteness of a homogeneous quadratic form is
guaranteed if all the principal subdeterminants of the matrix A are positive defmite. The
form is negative definite if the matrix — A is positive definite. Positive definiteness is
therefore involved whether the base function is chosen as ® = U, i.e., in the energy
representation, or as 4®) = S, i.e., in the entropy representation.

A6.2 The Quadratic Form in the Energy Representation
Given a binary simple system the base function in the energy representation is

y? =U(5. V. Na). (A6.2n

Using the 'double subscript' notation for second-order partial derivatives (cf. § 18.8) for
convenience, simplifying the notation by writing A for Na, and letting dots indicate
symmetrical elements, the (non-singular) matrix A becomes

28 See, e.g., Korn and Ko (1968), p. 420.
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Uss Usy Usa
A=| - Upv Upal|. (A6.2);
Uaa

The three principal subdeterminants of A are

AI = Ugs, (A62)3

Ay = Uss Usv (A6.2)4
. UVV >

Uss Usy Uga
- Uvry Ural. (A6.2)s
Uaa

Az

Expansion of the second subdeterminant yields A, as

Ay =Uss(Uyy — Uy /Uss) (A6.2)¢
and, since
Uvv — Uy /Uss = Fyv (A6.2),

by Eq.(A3.9);, it becomes

Ay = UgsFyy . (A6.2)g

Recasting the third subdeterminant in terms of the derivatives of F with the help of
Eqs.(A3.9), to (A3.9); yields

—1/Frr — Frv/Frr — Fra/Frr
A=| - — F2./Frr+Frv  — FryFra/Frr + Fral.  (A6.2)
- . - FQZ"A/FTT + Faa

We now multiply the first column by — Fry- and add the products to column 2. Then, we
multiply the first column by — Fry and add these products to column 3. This leads to
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—1/Frr 0 0
Ay =|—Frv/Frr Fyv Fya (A6.2)10
— Fra/Frr Fya Faa

and, since — 1/Frr = Uss by Eq.(A3.9);, we have

A3 = Uss Fyy (Faa — FEp/Fiv). (A6.2)1
But
Faa — FYZA/F” =Gaa (A6.2))

again by Eq.(A3.9);, and therefore
Az = Uss Fi-vGaa. (A6.2)13

By Sylvester's criterion, then, q* A q will be positive definite if Uss, Firv-, and Gaa are all
three > 0. For this to be true we must have

Ay =Uss >0 (A6.2)14

Ay =UssFyy >0 (A6.2);5
and

A3 = USS FV‘,'GAA > 0. (A6A2)16

The condition that Uss > 0 ensures that Fy-- > 0 also, and it follows that Ga4 > 0.
Letting Ay = 1, the criteria of stability are found from the relation

Aj _ G

A, Y

>0. i=1273 (A62)17

Although we have shown the procedure here only for the binary simple system, we can
generalize the result to

)

>0 1,2,...0-1 (A6.2)0

<.
It
S

(-1
Y

when the base function is chosen as y(®' = U.
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A6.3 The Quadratic Form in the Entropy Representation
Let us now examine under what circumstances q* A q will be negative definite when
the base function is chosen as

yO =5, V, Ny). (A6.3),
We have

Svr Svv Sva
A = - SVV SVA (A63)2
) . San

The quadratic form will be negative definite, if the matrix — A is positive definite. We
therefore recast Eq.(A6.3) as

Svul 1Spvl 1Spal
—A=| - |Svv| [Sval (A6.3);
[Saal

where |Spp| is the absolute value of Sy, etc.

We now follow a development completely analogous to the one we employed in
§ A6.2, bearing in mind that when y® = S, then 3V = ¥, and y¥) = &, where ¥ and &
are the Massieu functions given by Eqs.(9.1), and (9.2);. We find

A"{J = |SUU] >0 (A63)4

A(ZA" = ISUU] I‘I’VVI >0 (A63)5
and

Ag" = lSUUI l\Ilvvl Iq>AA| >0 y (A63)6

where the superscript © denotes the subdeterminants of the — A matrix. Since all the
subdeterminants are positive definite, the matrix is positive definite also, and it follows that
the — A matrix is negative definite. Consequently, since all subdeterminant of the latter
matrix must be negative, we must have

Ay =Sy <0 (A6.3);

Az = ISUUI \IIVV < 0 (A63)g
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and

Az = |Spyl [Ty | Paa < 0. (A6.3)9

Then stability criteria thus result as Sy < 0, Uy < 0, and Paa < 0. Generalizing these
findings as in the preceding section, we obtain

i <o, j=1,2,....0-1  (A6.3)0

when the base function is chosen as (%) = S.
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A7. HEAT CONDUCTION AT THE SYSTEM BOUNDARIES

We consider heat conduction in a one-component, isotropic body under an invariant
temperature distribution at its boundaries, and show that that part of the rate at which
©(t), the rate of entropy production, changes with time because the driving forces change,
is negative if the conditions at the boundaries of the system are constant (cf. § 30.2).

Since we are dealing with a pure heat flow, the entropy production is

B(t) = Jo(b) - Fo(t) = Jo(t) - V(1/T) (A7)

where Jg(t) and V4(1/T) are the time-varying heat flux and the temperature gradient
that drives it. We thus have

S0 [ o Sl (e

and integration by parts yields

0 [  [( ) e

Because the temperature does not change with time at the system boundaries, the surface
integral is zero. The divergence of the heat flux can be shown2? to be given by

ar
V-Jo=— P o (A7)4

where p is the density, and ¢y > 0 is the (constant) molar heat capacity at constant
volume. Because ¢y > 0, inserting Eq.(A7)4 into Eq.(A7)3 then leads to

dOr(t) pcy (T2
—_— = — — | —— <
= (G v <o A,

Thus, the rate of entropy production owing to heat conduction under a time-invariant
temperature distribution at the boundaries decreases with time until a minimum is reached
in a linear steady state.

2% Wisniewski et al. (1976), loc.cit.
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Symbols that occur only in isolated instances and are not referred to elsewhere, have not
been included in this list. When the physical property denoted by the symbol may occur
underr different names, only that preferred in this text is listed. A bold number
Jollowing an entry indicates the section where the symbol is first introduced or defined.

Roman Letters

A (de Donder's) Affinity 20.5
Ao(T) Standard affinity at P, and T 21.2
A, Inititial (undeformed) area 17.14

B U-TS —fL 17.5

¢; N;/V, molar concentration
of the jth species 21.3

¢y Molar isochoric heat capacity 10.3

Cv  Isochoric heat capacity 10.1

Cv 1 Isochoric heat capacity at constant
length 17.6

cp Molar isobaric heat capacity 10.3

Cp Isobaric heat capacity 10.2

Cp, 5 Isobaric heat capacity at constant
force 17.7

Cp, 1 Isobaric heat capacity at constant
length 17.8

d.S (Infinitesimal) change in entropy
exchanged with the exterior 5.6
d;S (Infinitesimal) change in entropy
produced in the interior 5.6
dr© (Infinitesimal) change in rate of
entropy production due to changes
in F 30.1
d;©@ (Infinitesimal) change in rate of
entropy production due to changes
inJ 30.1
U-fL 175
Coeflicient of diffusion of the jth
matter species 27.10

Fo

E Elasthalpy 17.5

—y

Number of degrees of freedom 8.8
f  Force in simple tension 17.2

fs

Ty

QIR

Entropy contribution to the
restoring force in rubber 17.18

(Internal) energy contribution to the
restoring force in rubber 17.18

Free energy 8.10

Generalized scalar driving force in
the entropy production repre-
sentation 23.4

Symbolic notation for a generalized
vector driving force in the entropy
production representation 23.5

Symbolic notation for generalized
tensor driving force in the entropy
roduction representation 23.6

Indicial notation for a generalized
vector driving force in the entropy
production representation 23.5

Indicial notation for a generalized
tensor driving force in the entropy
production representation 23.6

Diffusional driving force in a
discretesystem 28.2

Diffusional driving force for the jth
matter species 27.2

Thermal driving force for the heat
flux 27.8

Thermal driving force in a discrete
system 28.2

Thermal driving force for the energy
flux 27.2

Free enthalpy 8.16
Partial molar free enthalpy of the ith
component, 14.6



250

SSSF mm

L

Jr

Enthalpy 8.13

Partial molar enthalpy of the ith
component 14.10

kthintensive parameter in the
entropy representation 3.4

Grand canonical potential 8.19

Generalized scalar flux 23.4

Symbolic notation for a generalized
vector flux 23.5

Symbolic notation for a generalized
tensor flux 23.6

Indicial notation for a generalized
vector flux 23.5

Indicial notation for a generalized
tensor flux 23.6

Mass action flux 27.1

Matter flux in a discrete system
28.2

Matter flux of the jth species 25.3

Heat flux 27.1

Entropy flux 25.4

Energy flux in a discrete system
28.2

Energy flux 25.2

Kc(T) Reaction equilibrium constant in

terms of the molar concentrations
21.3

Ka(P, T) Reaction equilibrium constant in

terms of the mole fractions 21.3

K,(T) Reaction equilibrium constant in

L

terms of the partial pressures 21.2

Extension in simple tension 17.2

Initial (undeformed) length 17.14

(Scalar) phenomenological
coefficient 23.4

Symbolic notation for the (tensorial)
phenomenological coefficient in
the entropy production repre-
sentation 23.8

Indicial notation for the (tensorial)
phenomenological coefficient in
the entropy producton repre
sentation 23.8

o

Wt B, “

~ Y

IS
*

<l

.

Qe

RERS

M £3

LIST OF SYMBOLS
Mass action 1.4
ith Mole fraction

Mole number 2
kth mole number 2,12

Pressure 3.9
Partial pressure of the jth
component 15.8

Heat of transport 28.9
Heat 2.6
Internally generated heat 2.7

Universal gas constant 12.1

Molar entropy 14.1

Entropy of transport 28.4
Entropy 2

Partial molar entropy of the ith
component 14,10

(Thermodynamic) temperature 3.5

Molar internal energy 14.1

Energy of transport 28.5

Internal energy 2

Partial molar internal energy of the
jth component 20.8

Molar volume 14.1

Volume fraction of the ith
component 16.16

Rate (velocity) of reaction 22.4

Volume 2

Initial (undeformed) volume 17.1

Partial molar volume of the 7th
component 14.4

Work 2
Strain energy density AS5.3

Totality of extensive parameters
2.11
kth extensive parameter 2.11
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X;  ith partial molar quantity 14.4

Y, kth intensive parameter in the
energy representation 3.3

z Molar free elasthalpy 17.10

Z  Free elasthalpy 17.5

Z  Generalized scalar driving force in
the energy retention repre-
sentation 26.2

Z  Symbolic notation for a generalized
vector driving force in the energy
retention representation 24.4

Z  Symbolic notation for a generalized
tensor driving force in the energy
retention representation 26.2

Z;,  Indicial notation for a generalized
vector driving force in the energy
retention representation

Greek Letters

ap Isobaric expansivity 10.2

ap, ¢ Isobaric expansivity at constant
force 17.7

ap, ; Isobaric expansivity at constant
length 17.8

ags Adiabatic expansivity 10.1

ag, 1, Adiabatic expansivity at constant
length 17.6

Bp, s Isobaric length-temperature
coeflicient per unit length at
constant force 17.7

Bs,v Adiabatic-isochoric length-
temperature coefficient per unit
length 17.6

v  Heat capacity ratio 10.3

Y Isochoric pressure-temperature
coefficient 10.4

~v,r Isochoric pressure-temperature
coefficient at constant length 17.8

I'  Massieu function S[P/T, n/T]
9.2
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€.  Efficiency of a heat engine 7.6
e,  Coeflicient of performance of a heat

pump 7.8

¢,  Coeflicient of performance of a
refrigerator 7.9

&,  nth component of the strain tensor
17.1

{7,z Isothermal force-pressure
coefficient at constant length 17.8

©  Massieu function S[p/T7 9.1
©  Rate of entropy production 22.5

k  Thermal conductivity 27.9

ks Adiabatic compressibility 10.1

ks, Adiabatic compressibility at
constant length 17.6

xr Isothermal compressibility 10.2

k7, s Isothermal compressibility at
constant force 17.7

k7,1 Isothermal compressibility at
constant length 17.8

A Stretch ratio 17.17

Latent heat 19.11

Symbolic notation for the (tensorial)
phenomenological coefficient in
the energy retention represen-
tation 24.4

Ay, Indicial notation for the (tensorial)

phenomenological coefficient in

the energy retention represen

tation 24.5

5

¢ Chemical potenttal 8.24

pr  kth chemical potential 3.6

u;  Chemical potential of the 7th pure
substance 14.7

v, Number of moles of effective chains
between crosslinks 17.17
jth stoichiometric coefficients 20.2
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¢ Extent of reaction 20.4
= Massieu function S[P/T] 9.1

=

Osmotic pressure 16.13
ps.1- Adiabatic-isochoric length-force
coeflicient per unit length 17.6

pr, p Isothermal-isobaric force-length
coefficient 17.8

o Stress in simple tension 17.17
oy  nth components of the stress tensor
171

T  Energy retention function 24.2
®

Planck function S{1/T, P/T] 9.2
¢  Number of phases 19.16
¢  Entropy production function 24.2
Xs.v Adiabatic linear compressibility at
constant volume 17.6
XT. s Isothermal linear compressibility at
constant force 17.7

Y¥p, 1 Isobaric force-temperature coef-
ficient at constant length 17.8

¥ Dissipation function 22.7

¥ 'THE' Massieu function 9.1

LIST OF SYMBOLS

Q  Kramer function [1/7, /7] 9.2
;  jth chemical symbols 20.2

Operators

d  Exact differential

& Inexact differential

@  Partial differential

A Difference operator

V  Spatial differential operator

/n Natural logarithm
sgn sign of an expression
[1 Legendre transform

Superscripts

HR  Heat reservoir 6.4

MR  Matter reservoir 6.6

RHS Reversible heat source 6.3
RMS Reversible matter source 6.5
RWS Reversible work source 6.1
VR  Volume reservoir 6.2

WR  Work reservoir 6.2
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AUTHOR AND SUBJECT INDEX

Numbers refer to sections, not pages. When the reference is to an author's name, the name is set
in capital letters. Search hints: look for Carnot engine under Carnot, not under Engine; if you
do not find Athermal entropy under Athermal, look under Entropy. A comma at the end of a
subentry signifies that the subentry precedes the main entry. Thus, an entry like

Entropy
athermal,
is to be interpreted as
Athermal entropy
Subentries may be nested.

A
Additivity
of the entropy 2.15, 21.12
of the internal energy 2.2
of reactions 21.11
Adiabat 7.11
Adiabatic 2.17
barrier, constraint, or wall 1.7
case 4.6,4.9
expansion and compression 7.11
process 7.11
Adiabaticity 4.6, 4.8, 17.6
Affinities, generalized thermodynamic,
23.4,23.5
Affinity (de Donder's) 20.5, 20.6
standard, 21.2
Amagat's Law 15.9
Athermal 14.12, 15.13, 16.2
Avogadro's
Law 12.4
number A4.3

B

Barrier see also under Removal of a
internal, 1.9, 4.3

Binodal 19.5-19.7

Bimper, S. M. 7.17,7.19, 13

Boundary(-ies) 1.7
(see also under System)

Boyle's Law 12.4

Brmowman, P. B. 10.5

Bridgman's table 10.5

>

o

Cauien, H. 10.5
Calorimeter 2.9, 2.10
Calorimetric measurements 2.9, 21.6, 28,
28.10, 29.4
Canonical variable(s) 3.1, 8, 8.5
Cardinal function(s) 3.1, 3.10, 24.2, 26.8,
27.4,28.8
Carvor, 8. 7.11
Camot
cycle 7.11,7.12,7.13
engine 7.11,7.12,7.13
efficiency of a, 7.12,7.13
equations 7.12,7.14
Central problem
of equilibrium thermodynemics 4, 23
of irreversible thermodynamics 23
of non-equilibrium thermodynamics
5.6
Charles's Law 12.4
Chemical potential(s) 1.10, 3.7, 3.8, 4.10
8.8, 8.20, 8.23, 8.24
and affinity 20.5
and ideal behavior 11.3
and matter flow 16.14
and partial molar quantities 14.6
and phase equilibrium 9.12, 9.14
and the stoichiometric equation 21.1
dependence of, on composition 14.7
gradient(s) 25.5, 27.7, 27.8
not independent of each other 14,14
of an elastomer (rubber) 17.10
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Chemical potential(s), continued
of the ideal gas 12.11
of the ideal mixture 14.6-14.8, 14.14
of the ideal rubber 17.16
of the ideal solution 16.4, 16.9—
-16.11, 16.19
of the monatomic ideal gas 13.10
of the multicomponent ideal gas
15.12
standard, 12.11, 13.10, 15,12
surface(s) 19.12, 19.15
Chemical reaction(s) 20, 20.6, 21,22, 23
affinity of, 20.5
as irreversible processes 22
Chemical symbols 21.1
Chemostat 6.6
Clapeyron equation 19.12, 19.13, 19.19
Craustus, R. 2.4,2.7, 2.17
Clausius
equality 5.3-5.5, 19.13
inequality 5.5,5.8,7.3
statement 7.17
theorem 7.17
Clausius-Clapeyron equation 19.13, 21.6
Coeflicient(s)
adiabatic-
isochoric length-force, 17.6
isochoric length-temperature, 17.6
isobaric
force-temperature, 17.8
length-temperature, 17.7
isochoric
-isobaric force-temperature, 17.19
pressure-temperature, 10.4-10.6,
17.8,17.19
isothermal force-pressure, 17.8
Joule-Thompson, 10.5, A2.3
kinetic, 22.8, 23.8, 29.4
of performance 7.8, 7.9
phenomenological, 22.8, 22.10, 23.8,
23.10, 24.4, 24.5, 29.4
stoichiometric, 20.2, 20.4
Coexistence lines 19.12, 19,15
Colligative properties 16.12, 16.13
Compressibility
adiabatic, 10.1
at constant length 17.6

AUTHOR AND SUBJECT INDEX

-isochoric linear, 17.6
isothermal, 10.2, 12.5, 15.4
at constant force 17.7
at constant length 17.7
linear, at constant force, 17.7
Configuration space 3.2, 4.1, 5.1, 5.2,
10.5
Condensation 9.11
Conductances (conductivities) 23.8
Conjugate
fluxes and driving forces 26.5
parameter(s) or (variable(s) 3.6
quantity(-ies) 22.8, 23.5
Conservation constraint(s) 4.6, 4.7, 18.3
Counstitutive equation 17.17
Continuity equation
of the energy 25, 25.2
of the entropy 25, 25.4
of the matter 25, 25.3
Conversion
of heat into work 7, 7.1, 7.5, 7.10,
7.18
of work into heat 7,7.7
Coriolis force 23.9
Criterion(-ia) ({ook also under
Equilibrium, and under Stability)
for ideal behavior 11.3
highest order, 18,12, 19.2,19.17
Sylvester's, A6.2
Critical
isotherm 19.3, 19.4
point, 18, 18.15,19.1, 19.3, 19. 4,
19.10, 19.12, 19.15, 19.17
criteria, 18.15,19.3
pressure 19.3
state 18, 18.14, 18.15, 19.10
temperature 19.3, 19.7, 19.10, 19.15
volume 19.3
Crystal, perfect, 12
Crystallization 19.11
Curm, P. 23.7
Curie symmetry principle 23.7, 26.1
Current density,
energy, 25.2
entropy, 25.4
heat, 27.1
mass action, 27.1
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Current density, continued
matter, 25.3
Cyclic see under process

D

Dalton's Law 15.8, 15.9
De Donper, Th. 20.4, 20.5
Deformation 17.2,17.12, 17.18, A5,
AS.2
energy of, 17.18, A5.3
infinitesimal, 17.17
large, 17.17
reversible, 17.3
tensor A5, AS.1
mvariants of the, AS.1, A5.3
work of, 17.1
Degree(s) of freedom 8, 8.8, 10.5, 19.6
Dengicn, K. G. 20.4, A4,1
Density 1.10, 17.17
crosslink, 17.14,17.17
entropy source, 22.6, 26.1
strain energy, A5.3
Derivative(s)
first order partial, 10, 17.7,
of a Legendre transform A3.8
second order partial, 10, 10.1-10.6
mixed, 10, 10.6, 14.4, 18.5
of a Legendre transform 18.4,
A3.9, A6, A6.2
reduction of partial, 10.5
partial, of an elastomer 17.6-17.9
Diathermal
barrier or wall 1.7
contact 8.12
case 4.6-4.8
Diffusion
coeflicient of, 27.10
Fick's first law of, 24.5, 27,27.10
isothermal, 2.10, 28.4, 28.5, 28.7
Dissipation
energy, 2.7,26.4
viscous, 17.18
Dissipative
effects 7.3
phenomena 2.18, 7.3, 7.5, 23
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work 7.3
Domain of validity 11.4, 13.10
Dufour effect 27, 27.7

E

Effect(s)
first-order, 18.2
friction, 5.2, 7.4
second order, 18.2
surface, 1.9, 8.25,17
thermal, 2.23
Efficiency 7,7.1
maximum (100%), 7, 7.1, 7.11, 7.13
thermodynamic, 7.6, 7.12
Ehrenfest classification 19.19
Elasthalpy 17.5,17.8
free, 17.5,17.7,17.10
Elasticity, statistical theory of rubber,
17.14, 17.18, AS, AS.4
Elastomer(s) 17.4-17.19
swollen, 17.20-17.24
Electrical
field 8.25,17
resistance 2.18, 7.3, 8.25, 24.5
work 1.4,1.5
Endothermic reaction 20.7, 21.6, 21.8
Energetics 1.2
Energy 1.1,1.2,1.4,1.5,1.12,2
(see also under Internal energy)
bound (isothermally unavailable),
8.12
conservation of, 1.5, 2.4, 2.6, 7.5,
8.2,25.2,27.1
dimensions of, 3.6, 7.15
dissipation function 22.7, 22.12, 26.3
external, 1.4
factorability of, 1.5, 3.3, 3.5,3.7, 3.8
free, see under Free energy
function 3.1, 3.10
internal, see under Internal energy
in transit 1.2
kinetic, 1.4
of transport 2.10, 28, 28.5, 28.6,
29.5
potential, 1.4, Ad.1
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Energy, continued
representation 3.1, 3.3, 3.6, 3.9, 3.11
retention
function 22.7, 22.12, 24.1, 24.2,
26.2, 26.3, 26.6, 27.3, 27.4
representation 24.3, 24.4
transfer 1.2, 1.4, 2.5, 2.6
Engine
heat, 7.4,7.5-7.7,7.10, 7.11, 7.17
thermodynamic, 7.4, 7.7, 7.10
Enthalpy 8.9, 8.13, 8.14
bound (isothermally unavailable) 8.17
free, see under Free enthaly
partial molar, 14,10, 20.7
representation 8.13,13.3
Entropy 1.10, 2, 2.14-2.23
additivity of the, 2.15,22.12
as a measure of randomness 7.15
as the extensive parameter of heat,
2.13,7.11
configurational, 17.18
creation of, 2.4,2.17,5.6
decrease in, 5.7,7.4,7.5
dimensions of, 3.6, 7.15
existence of, 2.14
function 3.1, 3.10
limit of, 2.21
monotonic property of the, 2.22,3.5
non-conservation of the, 2.17, 2.20,
25.4
of mixing 14.12
of transport 28, 28.4
partial molar, 16.3
path independence of the, 2.16
production 2.18, 5.6, 20, 22, 23
function 22.6, 22.12, 24.1, 24.2,
25.4, 26.1, 26.6
minimum, 23, 30, 30.3
rate of, 22.5, 22.6, 25, 25.5, 30.1,
30.2, 30.3
representation 24.3, 24.4
representation 3.1, 3.4, 3.6, 3.9, 3.11
statistical mechanical view of, 7.15
Environment, thermodynamic, 1.7, 1.12,
23.10
Equation(s)
of state 3.10, 3.11, 8.5, 17.14, 26.8,
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A3, A5
complete set of the, 3.12,13.8
mechanical, 17.14,17.17, A5
of the ideal gas 12.2, 12.3, 16.15
first, 12.2,12.4,12.7
second, 12.2~12.5,17.23
third, 12.2,12.11,15.3
of the ideal rubber 17.13, 17.14,
17.17
of the ideal solution 16.3
of the monatomic ideal gas 13.6,
13.7
of the multicomponent ideal gas
158.3
THE, 12.2
van der Waals, 16.3,19.2
phenomenological, 22.8, 22.10,
22.11, 23.4,23.8, 23.10, 24.4
stoichiometric, 20.2, 20.3
thermodynamic, of motion 23.8
Equilibrium 1, 1,2, 1.12, 4, 4.10, 18
(see also under Phase, Reaction,
or Solution equilibrium)
chemical, 1.2,1.12,20.1, 21, 21.8,
21.9
equation of, 21.1, 21.5, 21.10
composition 21.2, 21.4, 21.5
condition(s) 4, 4.6-4.9, 5.8, 16.9,
16.10, 17.22, 18.2,19.12, 23.9
(see also under Enthalpy, Free
Energy, Free Enthalpy and
Grand Canonical Potential)
constant 21.2, 21.3, 21.5, 21.6,
21.11, 22.9
criterion(-ia) 4.6, 18.1, 19.9
of diffusional, 4.6, 16.13,17.20
of mechanical, 1.2, 1.12, 2.23,
16.13, 19.8
of thermal, 1.2, 1.12, 4.11, 7.20,
16.13,17.20
of thermodynamic, 1.11-1.13,
2.23,4,4.3,4.4,5.2
displacement (or perturbation) from,
18.2, 18,6, 19.9
dynamic, 22.10, 22.11, 23.4, 29.1
false, 22.4
global, 23.2, 23.10
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Equilibrium, continued
liquid-vapor, 19.8,19.12, 19.15
local, 23.1-23.3, 25, 25.2, 25.5
matter flow, 4.6,21.1
metastable, 1.11, 19.6
near, 23
neutral, 1.11
partial, 16,13, 20,1
stable, 1.11,1.12, 18, 18.1, 18.12
state 1.12, 1.13, 4.1, 4.3-4.5, 4.8
unstable, 1.11,18
Euler equation 3.10, 14.3, 17.5, 20.6,
26.8
Evaporation 9.11
Exact differential A1.2
Existence region 19.15
Exothermic reaction 20.7, 21.6, 21.8
Expansion
isentropic, 18.11
isothermal, 7.1, 7.11, 18.9, 18.11,
A4.3
isotropic 17.21,17.22
Expansivity
adiabatic, 10.1,17.6
isobaric, 10.2,12.5,15.4,17.7,17.8
Extremum principle(s) 4.2, 8.2, 8.9
for the enthalpy 8.15
for the entropy 4.3, 4.5
for the free energy 8.12
for the free enthalpy 8.18
for the grand canonical potential 8.20
for the (internal) energy 4.4, 4.5
for the Massieu functions 9.5

F

Factor
capacity, 1.5, 3.5
extensive, 1.5, 3.5, 3.7
integrating, 5.4
intensity/intensive, 1.5, 3.5, 3.7
Factorability
of the energy 1.5, 2.13, 2.23, 3.3,
3,5,3.7,3.8
of mass action 3.8
Fick's First Law of Diffusion 24.5, 27,
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27.10
Flory-Huggins theory 16.16, 17.21
Flow vector(s) 23.5
energy, 25.2
entropy, 25.4,28.4
heat, 27.1
mass-action, 27.1
matter, 25.3, 28.5
of the extensive parameters, 26.1,
26.3
of energy
Flux(es) (look also under Energy,
Entropy, Heat, Mass action,
Matter flux or Matter flow)
scalar, 22.11,23.4
vector, 23.5,23.8, 24.1,24.4
tensor, 23.6
(generalized thermodynamic), 22.11
23.1, 23.3-23.5, 23.8, 24.1
Force(s)
driving,
diffusional, 27.2,27.3
discontinuous, 28.2,28.3
scalar, 22.11, 23.4,
vector, 24.4,26.1, 26.2
tensor, 23.6
thermal, 27.2,27.3
(generalized thermodynamic),
23.1,23.4-23.6, 24.1
restoring, 17.18,17.19,17.23
Fourier's Law of Heat Conduction 24.5,
27,279
Fowier 7.19
Fraction
mole, 11.3, 14, 14.5
volume, 16.16, 17.22
Freedom, degree(s) of, 8.8
Free elasthalpy 17.5,17.7,17.10
Free energy 8.9-8.12, 10.4, 13.4, 19.9,
19.15, A3.2
of deformation AS5.3
representation 8.10, 12.6, 12.9, 13.4
Free enthalpy 8.16-8.18, 10.5, 13.5
of dilution 14.13, 16.3, 16.8, 16.11,
16.16,17.19, 17.22
partial molar, 14.6, 16.3
representation 8.16, 12.6, 12.10, 13.5
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Friction 2.18,5.2,7.3
Fundamental
equation 3, 3.1-3.5, 3.12, 16.2, 17,
17.15, 18.1, 18.7, 20.6, A3
of an elastomer 17.4
of a swollen elastomer 17.20
of the ideal gas 12.1, 12.6-12.10
of the ideal monatomic gas 13.1-
-13.5
of the ideal multicomponent gas
15.1, 15.5, 15.6, 15.10, 15.11
of the ideal rubber 17.15,
of the ideal solution 16.2, 16.5
explicit form of a, 3, 12.1, 13,
13.1-13.5, 17.15, A4, A4.1-
-Ad.4
molar form of a, 14.2
parametric form(s) of a, 12.6~
-12.8, 15.1-15.6, 15.3, 16.5,
17.15
set of partial derivatives 10.1-10.4,
17.6
surface 3.2, 4.1, 5.2
Fusion 19.11, 19.15

G

Gay-Lussac's Law 12.4
Gmss, JW. 3,3.7
Gibbs
equation 3.9
free energy 8.16, 8.17
phase rule 19.16
potential 8.16, 8.17,17.10
space 3.2, 4.1
theorems 15.7
Gibbs-Duhem equation 8.22, 8.23, 9.3
and ideal behavior 11.3, 12.11,
13.10, 14.7, 15.12, 16.4
and the complete Legendre
transformation A3.5
for elastomers 17.11
of a reactive simple system 20.6, 21.2
of the ideal gas 12.11
of the ideal mixture 14.14
of the iideal solution 16.6
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of the monatomic ideal gas 13.10
of the multicomponent ideal gas
15.12
Grand canonical potential 8.19, 8.20
Gravitational field(s) 1.9, 8.25,17
GucGenHEM 7.19

H

Heat
as energy exchange 1.2, 2.6, 2.20,
3.5,4.9,6.3,7,24.7
as energy in transit 1.2
capacity 17.14, A4.2
at constant pressure 10.2, 12.8,
12.10, 12.11, 13, 15.6, 20.7
at constant volume 10.1, 12.7,
12.9,12.12, 13, 15.5,
17.6, A7
difference 10.3, 12.5, 15.4, A2.3
isobaric, 10.2,12.5,17.7,17.8
isochoric, 10.1,12.5
molar, 10.3, 12.5-12.12, 15.5,
15.6, 15.3, 15.4, A7
ratio 10.3
conduction 24.5,27,27.9, A7
content 8,13
flow (pure) 4.10, 27.5, 27.8, 27.9,
28, 28.10, A7
(see also under Simultaneous
flow of heat and matter)
flux 2.9,27.1
quasistatic, 5.3-5.5
mternally generated, 2.7
latent, 19.11, 19.13
of crystallization 9.11
of fusion 9.11
of reaction 20.7, 20.8, 21.6
of sublimation 9.11
of transport  2.10, 28, 28.9, 28.10,
29,29.1, 29.2, 29.5
vaporization 9.11
pump 7.4,7.7,7.8,7.10,7.11, 7.17
reservoir 6.4
source, reversible, 6.3, 6.4
term, 3.5, 5.3, 22.1
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Heat, continued
‘uncompensated’, 2.7
Henry's
constant 16.10
law 16.10
Hybrid set(s) of partial derivatives 10.4,
17.8

Ideal
behavior 11.2,11.3,17.23
Ideal
gas, 7.1,11,11.3,11.4, 12, 12.1—
-12.12, Ad, Ad1, Ad.3, Ad.4
equation of state of the, 15.3,
154, 16.15
mixture, 14, 14.8, 15.8, 15.13,
20.1
phase transition in an, 19.1
mixture 11, 11.3, 14, 14.1-14.14
monatomic, gas 11, 11.3, 11.4, 12,
12.5, 12.6, 13, 13.1-13.10
multicomponent, gas 11, 11.3, 12.2,
12.5, 14, 14.13, 15, 15.1-15.13,
16.2,16.9
rubber 11,11.3,12.1,17,17.23,
17.14
solution 11, 11.3, 14, 14.13, 16,
16.1-16.16
system 1.6, 11,11.2
Idealized
cycle 7.11
device(s) 7.4
model 1.6, 11.1
path 5.9
system 1.6, 6,7.11,11,11.1,12
Impermeable
barrier, boundary, or wall 1.7
membrane 16.13
Impermeability 4.6, 4.8
Incompressible
liquid 16.2, 16.3, 19.7
rubber 11.3,17.12,17.17, 17.14, AS,
AS5.1-A5.4
Inequality
Clausius, 5.5,5.8,7.3
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de Donder's, 22.1, 22.2,22.4, 22.12
Inexact differential A1.3
Instability, region of absolute, 19.4, 19.6
Integrability, equation of, Al.1
Internal energy 1.4,1.10,2,2.8
additivity of the, 2.2
as a potential 3.7, 8.1-8.4
conservation of the, 2.4
continuity equation of the, 25.2
contribution to the restoring force in
rubbers 17.18,17.19
existence of, 2.1
partial molar, 20.8
path independence of the, 2.3
temperature dependence of the, 7.1,
12.2,12.4,12.6,17.23
Irreversible process(es) 1.2, 2.7, 5.7-5.9
chemical reactions as, 20, 22, 22.5,
23.4
direction of an, 5.2, 5.8
in equilibrium thermodynamics 5.9
Irreversibility
criterion(-ia) of, 22.2, 22.3,22.5
source of, 20.1
Isobaric
expansivity 10.12, 12.5, 15.4, 17.7
17.8
heat capacity 10.2, 12.5,17.7,17.8
length-temperature coefficient 17.7
force-temperature coefficient 17.8
Isochoric
heat capacity 10.1, 12.5
pressure-temperature coefficient
10.4, 10.6
Isentropic
expansion 18.11
locus 5.3
process 5.2, 5.3
Isotherm 7.11, 19.2, 19.5-19.10, 19.17
constant pressure, 19.17
critical, 19.3,19.4
van der Waals 19.2, 19.4, 19.6, 19.10
Isothermal
compressibility 10.2, 12.5, 15.4,
17.7,17.8
compression 19.7
diffusion 2.10, 28.4, 28.5, 28.7
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Isothermal, continued

expansion 7.1, 7,11, 18,9, 18.11,
A4.3

force-pressure coefficient 17.8
-isobaric length-force coefficient 17.7
process 7
transfer 28.10
transport 28.6

J

Jacobian 10.5, 10.7, A2, A2.1-A2.3
Joutg, J.P. 2.8

Joule's Law 12.4

Joule-Thompson coefficient 10.5, A2.3

K

Kelvin-Planck statement 7.17
Kelvin scale 7.14
Kinetic
coefficient(s) 22.8, 23.8,29.4
constant(s) 22.9
energy 1.4
phenomena 19.19
Kinetics, chemical 22.9
Kirchhoff's equation 20.7, 29.5
Kramer function 9.2

L

Law(s) of thermodynamics
First, 2.6, 7.16, 7.18, 7.20
Second, 5.5, 7.17, 7.18, 7.20
Third, 2.21, 7.19, 7.20
Zeroth, 4.11, 7.20
Le Chatelier's Principle 1.15, 18.6, 21.8,
21.9
Legendre transform(ation) 8.6, A3 A3.1—
3.4, A3.7, A3.8, A6.3
complete, A3.5
first order, A3, A3.1, A3.2
higher order, A3.4
mverse, A3.6
partial, 8.21, A3.7
partial derivative of, 18.5, 18.7,
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A3.8, A3.9
second order, 9.2, 18.7, A3.4
zeroth order, 18.7, A3.1
Lever rule 19.8
Lorentz force 23.9

M

Macromolecules 7.19, 16.16, 17.3,
17.21,
Magnetic
field(s) 1.9, 8.25, 17, 19.18, 19.19,
23.9
work 1.4
Manostat 6.2
Mass action 1.4, 2.5, 2.6, 20, 20.5
flux 24.7,27,27.1-27.3, 27.5,
27.6
terms 3.3, 3.4
Massieu function(s) 9, 9.1-9.5, 18.13,
20.6, A6.3
relation of the, to the thermodynamic
potentials 9.4
THE, 9.1
Matter 1, 1.1, 1.7, 1.9, 1.10, 2.5, 2,10
(see also under Simultaneous
flow of heat and matter)
conservation of, 25.3
flow (pure) 27.6, 27.8, 27.10, 29.5
flux 25.3, 27.1, 27.5, 27.6, 28.2
reservoir 6.6
source, reversible, 6, 6.5, 6.6, 6.7
Maximum
entropy 2.17, 4.2, 4.3, 4.5, 4.9, 5.7,
18.1
mass action 7.2
work 7.1,7.2
Maxwell relation(s) 19, 10.6, 10.7, A1.2,
A2.2,A23
for elastomers 17.9, 17.18
Maxwell's
construction 19.5, 19.6
rule 19.5
Measurability
of changes in internal energy 2.8
of entropy changes 5.4
of mass action 2.10, 29, 29.5
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Measurability, continued
of the heat flux 2.9
Mechanical
friction 2.18, 5.2, 7.3
stability 18.9, 18.11, 18.13, 19.1
work 1.4, 7.16, 17.1
Mechanics
continuum, 17.17, 17.23, AS
quantum, 17.22, 12.1, 13.9, A4
statistical, 7.15, 8.19, 9, 12.1,12.7,
13, 17.8, 23.9, A5.4
Metastable region 19.6
Migration, thermal 28, 28.1, 29.4
Mixture see under 1deal mixture
Modulus 17,17, A5.4
Molar
property 1.10
quantities 14, 14.1, 14.2
partial, 14, 14.4, 14.6, 16.3
Molecular
mass 16.12,16.15,17.17, 17.24
weight 16,12, 17.17
Mole fraction 14, 14.5
Movable barrier or wall 1.7

Negative definiteness A6.1, A6.3
Nermnst heat theorem 7.21

Network,. imperfect and perfect, 17.3
Non-conservation of entropy 2.17, 25.4

o

Ohm's law 24.5

Onsager reciprocity relations 23.9

Onsager-Casimir reciprocity relations
23.9

Order parameter 20.4

Osmotic pressure 16.12-16.15, 17.20

P

Parameter(s)
conjugate, 3.6, 3.10
extensive, 1.5,2,2.13
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flux(es) of, 23.5
primitive, 2.11
intensive, 1.5,3.3, 3.4
gradients of, 23.5,24.1
ordering of, 18.11
Parametric form: see under Fundamental
Equation(s), Parametric form(s) of,
Parallel concepts in Equilibrium and
Steady-State Thermodynamics 24.1
Partial molar
quantities 14, 14.4, 14,6, 16.3
volume 14.4,16.14
Permeable
barrier, boundary, or wall 1.7
membrane 16.13
Perpetuum mobile 7.16, 7.17
Phase(s) 18, 18.3
coexisting, 19.12,19.14
condensed, 19.13
equilibriuvm 16.10, 17.21, 19.9,
19.12, 19.14, 19.16, 21.2
gas, 19.8,19.15
ligud, 17.6, 19.8, 19.13-19.15
maximum number of, 19.14, 19.16
mixed, 16,17.20
pure, 16,17.20
rule 19.14, 19.16, 19.18
separation 18.3,19.2,19.5
solid, 17.18,19.13-19.15
stable, 19.1,19.10
transition(s) 3.8, 18, 18.14, 19, 19.1,
19.5, 19.11, 19.15-19.19
unstable, 19.10
vapor, 19.13, 19.14
Phenomena 16.12, 18
dissipative, 2.18, 7.3, 7.5, 23
kinetic, 19.19
natural, 1.15
order-disorder, 20.4
swelling, 17.20
Pivotal functions 24.2, 24.3, 26, 26.8,
26.6, 27,
Planck 7.17,7.19
function 9.2
Pliicker geometry A3.2
Poincaré statement 7.16
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Point
boiling, 16.12
freezing, 16.12
melting, 19.15
plait, 19.3
triple, 7.14, 19.14-19.16
Positive definiteness 18.4, A6, A6.2,
A6.3
Postulate 1.15, 2, 7.20, 23, 23.1, 23.2
I - Existence of internal energy 2.1,
3.10
II - Conservation of energy 2.4, 2.8,
8.2,8.11
III - Existence of entropy 2.14, 3.5
IV - Non-conservation of entropy
2.17,2.18,4.3,5.5, 5.6
V - Limit of entropy 2.21, 2.22, 3.5,
7.19
VI - Local equilibrium 23.2, 23.3,
23.10, 25, 25.2, 25.5, 30.2
VII - Phenomenological relations

23.8, 23.10, 24.4, 27.5, 28.2, 30.2

VIH - Reciprocity relations 23.9,
23.10, 24.5, 27.7, 28.2, 28.3,
29.4, 30.2
Postulates 1.15
of equilibrium thermodynamics
2,23.2
of steady-state thermodynamics 23,
23.1
Postulatory basis 1, 2, 7.20, 23.1
Potential(s)
alternative thermodynamic, 8, 8.5~
-8.9, 8.21, 8.25, 9.4
primary, 8.9
elastic, AS.3
for elastomers 17.5
for heat 8, 8.1, 8.3, 8.13
for mass action 8, 8.1, 8.4, 8.10,
8.13, 8.16
for non-simple systems 8.25
for work 8, 8.1, 8.2, 8.10
grand canonical, 8.19, 8.20
number of thermodynamic, 8.7, 8.8,
8.25,10.6,17.5
thermodynamic, 8, 8.21, 29.5, A2.3
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Pressure
critical, 19.3
effect on reaction equilibrium 21.9
isotherm, 19.17
partial, 15.8,15.12,16.9, 16.10, 21.2
standard, 12.11,21.2
swelling, 17.22
thermomolecular, effect 29, 29.1,
29.3
vapor, 16.9-16.12,17.21, 21.2
-volume
effect 24.1
work 1..5, 3.9, 4.10, 6.1, 6.2
Primary set of partial derivatives
10.2-10.5, 18.1, 19.9, A2.3
for the multicomponent ideal gas
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for elastomers 17.7,17.8, 17.10
for the ideal gas 12.5
Principle(s)
energy minimum, 4.4, 4.9, 18.1
entropy maximum, 4.3, 4.9, 5.7,
18.1
extremum, 4.2, 4.5, 8.6, 8.9
for the (internal) energy 4.4, 4.5,
8.6
for the enthaply 8.15
for the entropy 4.3, 4.5
for the free energy 8.12
for the free enthalpy 8.18
for the grand canonical potential
8.20
for the Massieu functions 9.5
fundamental, 4.2
Le Chatelier's, 1.15, 18.6, 21.8, 21.9
of conservation of energy 1.15, 2.4
2.6, 7.5, 8.2, 25.2, 27.1
of microscopic reversibility 22.10,
23.9
Process(es)
biological, 22.13
coupled, 7.5, 24.5,27.5
cyclic, 1.13, 7.1, 7.4, 7.10, 7.11,
7.13,7.16,7.17,7.19, 7.20
function 1.14, 2.6
natural, 1.13,2.17,5.5, 5.7
non-equilibrium, 5.6
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Process(es), continued

quasistatic, 1.13, 2.5, 5.1-5.3, 5.5
isentropic, 5.2

real physical, 1.13, 2.17, 2.18, 5.1,
5.2,5.5-5.9, 7.4

reversible, 1.13, 2.7, 2.17, 5.2, 5.9,
isentropic, 5.3

spontaneous, 1.13,2.17, 5.7, 18.6,
23,23.3,24

steady-state, 5.6, 23.4, 23.5

thermodynamic, 1.13, 5, 5.2

Property(-ies)

colligative, 16.12, 16,13

derived, 1.10

extensive, 1.10, 2, 14.4

intensive, 1.10

material, 17.17, 24.5, 27.9, 27.10

neutral, 1.10,17.1

primitive, 1.10

specific, 1.10

thermodynamic, 1.10, 12,13

Q

Quadratic form 18.2-18.4, A6, A6.1-
—A6.3

Quantities of transport 24.3, 28, 28.4,
28.5

Quantum mechanics 7.20, 12.1, 13.10,
A4, A4.1

R

Raoult's law 16.11, 16.15, 16.16, 17.22
Reaction(s)
additivity of, 21, 21.11
amount of, 20.4
coordinate 20.4
coupled, 22.13
degree of advancement of the, 20.4
equilibrium 21
condition for, 21.1
criterion of stable, 21.7
effect of pressure on, 21.9
effect of temperature on, 21.8
extent of, 20.4-20.7
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nuclear, 1.8
rate of, 22.4, 22.5,22.8-22,11, 234
'rup-away', 21.7
simultaneous, 21, 21.10, 22.12
unstable 21.7
Real
gas(es) 11,12,19.2
physical
process(es) 1.13, 2.7, 2.17, 2.18,
5.1,5.2,5.5-5.9,7.3-7.5
system(s) 11.1
Reciprocity relation(s) 23.9, 24.5, 27.7,
29.1, 29.3, 29.4, 30.2
Refrigerator 7.4, 7.7, 7.9
Removal (lifting) of a barrier 4, 4.3, 4.6,
4.8-4.11, 5, 20.1, 29.1
Reservoir
heat, 6.4
matter, 6.6
volume, 6.2
work, 6.2
Restraint 1.7
Rigid barrier, constraint, or wall 1.7
Rigidity, constraint of, 4.6, 4.8, 4.10
Rubber(s) 11,17, 17.1-17.24
(see aiso under Elastomer(s))
crosslinked, 17.2, 17.22
elasticity 17.14, 17.18, A5, A5.4
ideal, 11,12.1,17,17.3-17.16,
17.18, AS
incompressible, 17.12,17.17, 17.14,
AS5.1-AS5.3
perfect, 17.3,17.13
restoring force in a, 17.18,17.19
swollen, 17, 17.20-17.24
unswollen, 17

S

Saturation region 19.7,19.8
Scalar theory 22.11, 23.4, 23.6, 26
Semi-permeable
barrier, boundary, or wall 1.7, 6.5,
6.6, 8.20,
membrane 17.22
Shear modulus 17.17
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Smvon 7.19
Simultaneous flow of heat and matter
24.7, 25, 25.1, 27, 27.2-27.7
Sink, see under Source
Solid 14, 14.8,17, 19.14
general, 17.1
isotropic, 17.2
mixture 14, 16
phase 17.18,19.13, 19,14, 19.15
system 11, 14, 14.8, 17
Solute 14.4, 16, 16.2, 16.12, 16.13—
-16.16,17.18
macromolecular, 16.16
Solution
binary, 14.4,16.2, 16.12, 16.13,
16.15, 19.17
dilute, 16, 16.15
equilibrium 16.9, 16.10
gaseous, 16
ideal 11, 11.3, 14, 14.3, 16.1-16.16
liquid, 16
macromolecular, 16.16
solid, 16
Solvent 16, 16.1-16.8, 16.12-16.16,
Soret effect 27, 27.7
Source (reversible) of
heat 6.3-6.5
matter 6.5, 6.6
volume 6.1
work 6.1, 6.2
Spinodal 19.4-19.7, 19.10, 19.17
Stability 18, 18.1-18.16, 19.9
conditions 4.3, 4.4
for the free energy 8.12
for the enthalpy 8.15
for the free enthalpy 8.18
for the grand canonical potential
8.20
criterion(-ia) 4.3, 4.4, 4.6, 19.1,
A6, A6.1-A6.3
and phase equilibrium 19.9
in ideal gases 19.1
of diffusional, 18.10,19.17
of mechanical, 18.9, 18.11, 18.13,
19.1-19.3
of thermal, 18.8, 18.13
intrinsic, 18, 18.2, 18.3, 18.5, 19,
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19.4
Limit of, 18.14, 19.9, 21.7
mutual, 18, 18.3, 18.16
of chemical reactions 21.7, 21.8
thermodynanic, 4.3, 4.4, 18, 18.1, A6
State (see also under Steady state)
function of, 1.10, 1.4, 2.3, 2.6, 2.16,
59,7.3
stationary, 1.12,23.3
thermodynamic, 1.12, 7.5, 7.11
Statistical
mechanics 8.19, 9, 12.1, 12.7, 13,
23.9, A4, A4.3
(mechanical) theory 17.14, 17.18,
AS, A54
Steady state 1.12,22.10, 23, 23.3, 23.10,
30.1-30.3
linear, 23, 23.10, 24, 24.1, 264,
29.1, 29.4, 29.5, 30, 30.2,
30.3
coupled, 23.4, 24, 24.1, 24.3, 25,
26
process(es) 5.6, 23.4, 23.5
theory 22.11, 24.1, 26.2
thermodynamic, equations 29.4
thermodynamics 24, 24.1, 24.2, 24.5
Strain 17.17, AS.4
rate of, 23.6
tensor 17.1,23.6
Stress 17.17
tensor 17.1, 23.6, AS, A5.4
Sublimation 19.11, 19.15
Superconductor(s) 19.19
Supercritical region 19.15
Surroundings 1.7, 1.9, 1.13, 2.7, 3.9, 5.2
Swelling 17, 17.4, 17.20-17.24
System
binary, 10.7, 14, 14,14, 10.7, 18.8,
18.12, 18.14, 19.17, A6, A6.2
boundary(-ies) 1.4, 1.7, 19.15, 23.3,
30.1, 30.3, A7
closed, 1.7,2.5,2.10, 2.17
composite, 1.9,2.2, 2.11
discrete, 28.1,28.7
ideal, 1.6, 11,11.2
isolated, 1.7, 2.5,2.10,
metastable, 19.10
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System, continued
multicomponent, 1.9
non-reactive, 1.8
non-simple, 1.9
physical simple, 1.9, 3.2
reactive, 1.8, 3.8, 20, 20.1
real physical simple, 1.9,1.12, 3,
111
thermodynamic, 1.6-1.9, 2

T

Temperature
as the intensive parameter of heat
2.13,7.11
critical, 19.3,19.7, 19.10, 19.15
dimensions of, 7.15
effect on reaction equilibrium, 21.8
glass transition, 17.3
gradient(s) 25.5, 27.7, 27.8, A7
scale 7.6,7.14
(absolute) thermodynamic, 3.5,
7.14, 12.5,7.17, 19.14
zero, unattainability of, 7.21
Tension, simple (or uniaxial), 17.2
Tensor(s) 23.6-23.8, 26.1
-ial character 23.7
theory 23.6, 26
Thermodynamics 1.2, 1.11, 3.8, 5.6, 24.7
applied, 1.3, 1.6, 7.15
equilibrium, 1, 1.2, 2, 2.5, 4, 5.6, 11
historic laws of, 7.20
mrreversible, 1.2, 2.7, 9, 20, 24.1,
26.8
non-equilibrium, 1.2, 5.6, 23, 24,
24.7

of chemical reactions 20, 21, 22,
22.11
of coupled linear
steady-state(s) 24, 24,1-24.3, 25,
26
systems 24.2
of fluids 17.1,17.5
of mixtures 14
of solids 17.1

of swelling 17
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scope of, 1.2,2.6,3.8
steady-state, 1, 1.2, 22,23, 23.2,
23.4-23.6, 24, 24.1, 26.1
linear, 24
theory of, 23.1,23.6 30
theoretical, 1.3,1.6
Thermomechanical effect 29, 29.2, 29.3
Thermometry 4.11
Thermomolecular pressure effect 29,
29.1,29.3
Thermostat 6.4, 7.1
Towman, R.C. 23.9
Transformation (see also under Legendre
transformation)
of derivatives 10.5
of vector fluxes and forces 26.7, 28.7
Transition
glass, 17.3,19.19
solid-liquid, solid-solid, solid-vapor,
19.11
Transport
energy of, 2.10, 28, 28.5, 28.6, 29.5
entropy of, 28, 28.4, 28.6-28.8
heat of, 2.10, 28, 28.9, 28.10, 29,
29.1, 29.2, 29.5-25.10, 25.12
quantities of, 24.3, 28, 28.4, 28.5
Turbulence 2.18

U

'Uncompensated heat' 2.7
Units of measurements 7.15

Vv

Validity, domain of 11.4, 13.10
vanper Waats, J. D., 19.2
van't HofT's
equation 21, 21.6
relation 16,15
Vaporization 19.12, 19.15
heat of, 9.11
Vapor pressure 16.9-16.12, 17.21
lowering of the 16.12
partial, 21.2
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Variable 1.10
compositional, 11.2, 11.3, 19.16
extensive, 3.1,3.10
intensive, 3.12
natural, 3.1
Vector theory 23.5, 23.6, 26
Viscosity 2.18
Viscous dissipation 17.18
Volume
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rigid, 1.7, 6.3, 6.5
semi-permeable, 6.5, 6.6

Weight, molecular 16.12,17.17
Work 1.2,1.3, 1.4, 2.5-2.8, 2,11, 7,

7.9,7.11,
as energy in transit 1.2
available, 7.5, 8.11, 8.14, 8.17,17.5
chemical, 1.4, 3.3, 3.4, 3.7
content 8.10

critical 19.3

fraction 16.16, 17.24

partial molar, 14.4, 15.9, 16.14
source, reversible, 6.1
reservoir 6.2

Wall 1.5

adiabatic, 1.7, 2.8, 4.10

diathermal, 6.3-6.5, 8.18, 8.20, 18.3,
25.1

impermeable, 1.7, 2.8, 2.9, 4.10, 6.3

movable, 6.1, 8.15, 8.18, 18.3

non-restrictive, 18.18

permeable, 6.5, 18.3, 25.1

dissipative, 7.3
maximum, 7.1-7.3, 7.5
physical, 1.4, 1.7, 2.5, 2.8, 3.3, 3.4,
3.8,26.2
pressure-volume, 1.5, 3.9, 6.1, 6.2
reservoir 6, 6.2
source, reversible, 6.1, 6.2
term 3.3-3.5, 3.7, 6.2, 8.11, 8.25
useful, 7.3
Working fluid 7.11

Z

Zero, unattainability of absolute, 7.19
ZeMaNsgy, A, C. 7.21
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