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Preface

Professor Alexander V. Manzhirov is one of
the leading Russian researchers in solid me-
chanics and applied mathematics, a world-
wide authority who has exerted a major influ-
ence on research in the areas of Mechanics
of Growing Solids, Mechanical Analysis of
Additive Manufacturing, Contact Mechanics
and Tribology, Viscoelasticity, Creep and In-
tegral Equations and their Applications. This
volume of the Advanced Structured Materi-
als Series is dedicated to his sixtieth birthday
and contains a selection of research papers
written by friends and colleagues from vari-
ous countries, including China, Germany, In-
dia, Russia, South Africa, the UK, and the
USA. Some of these papers deal with re-

search fields close to Prof. Manzhirov’s scientific activities, while the other ones
show new trends in solid mechanics which could be combined with his scientific
interests in the future.
Professor Manzhirov was born on 24 May 1957 in Rostov-on-Don, Russia. His
scientific carrier is related to different places:

v

• In 1979 he obtained his diploma (equivalent to M.Sc. degree) in Mechanics
(Diploma with Honors) at the Rostov State University, Department of Mechanics
and Mathematics, where he studied from 1974 - 1979

• In 1982 he was employed at the Institute for Problems in Mechanics of the
Academy of Sciences of the USSR (at present the Ishlinsky Institute for Problems
in Mechanics of the Russian Academy of Sciences)

• In 1983 he defends his doctoral thesis (candidate of physico-mathematical sci-
ences) at the Moscow Institute of Electronic Engineering Industry (he was a PhD
student at the Kuibyshev Moscow Institute of Civil Engineering from 1979 to
1982)
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• In 1993 he defends his second doctoral thesis (doctor of physico-mathematical
sciences, equivalent to the DSc degree or doctor habilitatus) at the Institute for
Problems in Mechanics of the Russian Academy of Sciences) which was ac-
cepted by the Higher Attestation Commission of the Russian Federation

• Since 2014 he is Foreign Member of the National Academy of Sciences of the
Republic of Armenia

In 1998 he obtained the certificate of professor in mathematics by the Higher Certi-
fication Committee of the Russian Federation.

At the same time he is Vice Chairman of the Solid Mechanics Scientific Council of
the Russian Academy of Sciences, a member of the Mathematics and Mechanics Ex-
pert Council of the Higher Attestation Commission of the Russian Federation, and
a member of the Mathematics, Mechanics and Computer Science Expert Council of
the Russian Foundation for Basic Research. In addition, he is a member of:

• Russian National Committee on Theoretical and Applied Mechanics (RNCTAM)
• European Mechanics Society (EUROMECH)
• American Society of Mechanical Engineers (ASME)
• American Mathematical Society (AMS)
• Gesellschaft für Angewandte Mathematik und Mechanik (GAMM)
• International Association of Engineers (IAENG)
• Research Board of Advisors of the American Biographical Institute (ABI)
• Editorial Boards of about a dozen scientific journals, including Mechanics of

Solids (MTT), Proceedings of National Academy of Sciences of Armenia - Me-
chanics, Computational Mechanics of Continua and of the scientific website The
World of Mathematical Equations (EqWorld)

His main awards

• Russian State Scientific Scholarship for Outstanding Scientists 1997, 2003
• First Competition of the Science Support Foundation, 2001
• Certificate of Honor of the Russian Foundation for Basic Research, 2016
• Certificate of Honor of the Higher Certification Committee of the Ministry of

Education and Science of the Russian Federation, 2016

He is an author or co-author of 19 books and textbooks in English, German and
Russian including some best-selling handbooks. In addition, he published more than
200 research papers and obtained two inventor’s certificates. Selected publications
can be find at the end of the preface.
All of these publications, scientific achievements and other contributions have given
us great respect for him, and we regard him as a perfect scientist. At the same time,

At the moment he serves as Deputy Director and Head of Department for Modeling in
Solid Mechanics at the Ishlinsky Institute for Problems in Mechanics of the Russian
Academy of Sciences, as Head of Branch Department of Applied Mathematics at the
Bauman Moscow State Technical University, as Professor of Department of Higher
Mathematics at the National Research Nuclear University (Moscow Engineering
Physics Institute) and as Professor of Department of Higher Mathematics at the
Moscow Technological University.
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he is a man of humor. He is a husband, father of three beautiful girls, loves travelling
and likes to get new and unexpected impressions. We are grateful to Prof. Manzhi-
rov for his scientific contributions to solid mechanics and applied mathematics, and
believe that he will continue to have an impact in research.
We have to thank all contributors for their perfect job. Last but not least, we grate-
fully acknowledge Dr. Christoph Baumann (Springer Publisher) for support of the
book project.

Magdeburg, Moscow, Holm Altenbach

May 2017 Robert Goldstein

Evgenii Murashkin
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Chapter 1

Multi-Mode Symmetric and Asymmetric

Solutions in the Jeffery-Hamel Problem for a
Convergent Channel

Leonid D. Akulenko, Dimitri V. Georgievskii & Sergey A. Kumakshev

Abstract A complete solution of the boundary-value problem for a convergent
channel is constructed and investigated over the entire range of admissible val-
ues of the channel angle for small, moderately large, and large Reynolds numbers.
Both analytical and numerical methods are applied to construct the solution. Spe-
cial attention is given to solutions that can be regularly continued for small Re.
To construct such solutions, a high-accuracy numerical-analytical technique has
been developed. This technique is based on a rapidly convergent iteration method
(accelerated-convergence method) combined with the continuation with respect to a
parameter. The existence of three-mode solutions for sufficiently large channel an-
gles is established. These solutions are symmetric with respect to the bisector of the
channel angle and have source and sink domains. The evolution of the velocity pro-
file as Re increases without limit is studied. The solutions for the critical value of the
channel angle, in which case the regular continuation with respect to a parameter is
impossible, are investigated. Multi-mode symmetric and asymmetric solutions, sin-
gular with respect to Re for asymptotically small Re, are constructed and analyzed.
A number of new hydromechanical phenomena are established and accounted for.

Key words: Multi-Mode · Jeffery-Hamel problem · Convergent channel · Reynolds
number · Steady flow · Viscoplastic material
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2 Leonid D. Akulenko, Dimitri V. Georgievskii & Sergey A. Kumakshev

1.1 Introduction and Statement of the Problem

The boundary-value problem for steady radial flows of a viscous incompressible
fluid in a plane convergent channel (see, e.g., Jeffery, 1915; Hamel, 1917; Rosen-
head, 1940; Kochin et al, 1965; Batchelor, 1970; Landau and Lifschitz, 1987; Loit-
syanskii, 1966) is one of a few of non-one-dimensional problems of hydrodynamics
of Newtonian fluids that have an exact self-similar solution. Therefore, a complete
solution of this problem over the entire range (including the limiting values) of the
dimensionless parameters - the convergent channel angle 2β and the Reynolds num-
ber Re - are of great interest from the academic and applied points of view.
The history of the investigation of this problem can be conventionally divided into
several stages. The first stage is associated with the names of George Barker Jeffery
and Georg Karl Wilhelm Hamel and their articles Jeffery (1915); Hamel (1917).
Jeffery was the first to formulate the boundary-value problem for the steady-state
flows of a viscous incompressible fluid between two intersecting plane walls and
has given an implicit solution of this problem in terms of Jacobi elliptic functions
and elliptic integrals (Jeffery, 1915). The adhesion condition was assumed on the
walls and, in addition, a constant flow rate was prescribed. This system was called
the divergent channel if the flow rate was positive and the convergent channel if the
flow rate was negative.
Independently of Jeffery’s studies and somewhat later, Hamel established the possi-
bility of radial plane flows of a viscous fluid. He also derived the ordinary differen-
tial equation governing such a flow and found the solution of this equation in terms
of Weierstrass elliptic functions. The possibilities and ways for the physical imple-
mentation of such a flow have not been investigated. Neither Hamel’s results involve
the statement of the boundary-value problem. Apparently, the term Jeffery–Hamel

flows applied to radial plane flows of fluid is historically justified. This is just the
term that has been mostly utilized in the scientific literature.
In our opinion, the statement of the classical boundary-value problem for radial
flows of a viscous incompressible fluid in a plane divergent or convergent channel
(between two intersecting plane walls) with fixed flow rate and the implicit analyti-
cal solution of this problem are due to Jeffery (1915). Therefore, it is appropriate to
call the examined boundary-value problem with the additional integral condition by
his name (Jeffery problem).
Subsequently, a great number of studies appeared in which the integral condition
of constancy of the flow rate was replaced by various local conditions, for example,
by that of prescribed velocity on the channel axis. (Such studies are continuing to
appear nowadays.) These reformulations substantially simplify the boundary-value
problem and, which is the most important, lead to solutions with quite different
quantitative features. In what follows, by the Jeffery problem we will understand
the original statement of Jeffery (1915) with the constant flow rate condition and
will not consider other problems.
The second stage can be associated with the theoretical studies by Rosenhead (1940)
and Fraenkel (1962, 1963), which are being broadly cited. In these, as well as in
some other studies in the middle of the 20th century, a number of profiles of the
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flow inside a divergent or convergent channel have been constructed analytically or
numerically. Among these profiles there are multi-mode and asymmetric ones. In
the domain of the parameters “channel half-angle–Reynolds number", regions with
qualitatively different behavior of the flow have been constructed. The qualitative
difference takes into account such properties as the number of modes of the flow,
the presence of singular points, the existence of a critical angle, stability, and some
other aspects. The studies of Rosenhead (1940) and Fraenkel (1962, 1963) have
had an important value. They have shown that the boundary-value problem for the
Jeffery–Hamel flows is highly difficult to solve and have indicated a great number
of new aspects of the solution of mathematical problems subjected to an additional
integral condition. In all these publications, the complexity of the problem and in-
completeness of the investigation were indicated.

The current stage we associate with the development of an appropriate numerical-
analytical method and a high-accuracy computational algorithm for the construction
of solutions of the boundary-value problem for a wide range of the parameters. The
approach to the solution of the basic problem involves direct integration of a se-
quence of initial value (Cauchy) problems with high degree of accuracy. Then the
accelerated convergence Newton-type method is utilized to determine the constants
of integration on the basis of the boundary conditions. These constants have a clear
interpretation in terms of the problem.

To investigate the evolution of the flow behavior, we utilize the continuation with
respect to a parameter. This continuation is performed with respect to the Reynolds
number for fixed channel angle or vice versa. The aforementioned constants com-
pletely determine the solution of the boundary-value problem on the basis of the
solution of the initial value problem.

This approach provides an effective technique for constructing the velocity and pres-
sure profiles, as well as other kinematic and dynamic characteristics of the flow of
a viscous fluid, with a relative error of 10−9 to 10−8 for any channel angle and
Re ∼ 103. The proposed algorithm does not utilize tabulated elliptic functions and
elliptic integrals. The tables of these functions are not complete and precise enough
for the solution of the problem under consideration. It should be noted that the es-
timation of the actual accuracy on the basis of an implicit analytical approach is
complicated and has not been given in the cited publications.

Consider a plane steady flow of a viscous incompressible fluid in an unbounded
domain Ω = {(r,θ ) : r > 0,−β < θ < β} (Fig. 1.1) with a source-sink singularity of
power −Q at the point O. The domain Ω is referred to as a plane divergent channel
for Q < 0 and a plane convergent channel for Q > 0. The fluid is characterized by
the density ρ and the dynamic viscosity µ .

There are no other characteristic parameters in the problem, apart from the four quan-
tities β , Q, ρ , and µ . Since there are no three dimensionally independent quantities
among these parameters (since [Q] = [µ ]/[ρ ]), a complete nondimensionalization of
the governing equations in this problem is impossible. The solution will depend on
two dimensionless parameters, the channel angle 2β (0 < β ≤ π) and Re = ρQ/µ ,
|Re|< ∞.
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Fig. 1.1 Characteristic radial
single-mode velocity pro-
files for viscous fluid flow
in divergent (b = −14) and
convergent (b = 50) chan-
nels for the angle 2β = 90◦,
b = 2β Re.

It is known that for the plane case, one can seek a solution, which describes the
motion of the fluid, in a self-similar form. The velocity field v = (vr,vθ ) is radial,
with

vr =−Q

r
V (θ ), vθ ≡ 0. (1.1)

The velocity field of (1.1) satisfies the incompressibility condition.
Two Navier–Stokes equations (the radial and angular projections of the vector
Navier–Stokes equation) lead to the ordinary differential equation for the dimen-
sionless scalar function V (θ ) and the expression for the pressure p

V ′′+ 4V −ReV 2 =C, p =
ρQ2

2r2Re
(C− 4V). (1.2)

The adhesion condition for the fluid of the boundary of Ω makes clear the physical
meaning of the unknown constant C in (1.2),

V (±β ) = 0, C =V ′′(±β ). (1.3)

In addition, we have the integral relation

θ∫

−θ

V (θ )dθ = 1. (1.4)

This relation implies that the flow rate through any surface surrounding the source
(or sink) is the same. Using the boundary conditions of (1.3) and the integral condi-
tion of (1.4), one can determine the integration constants and the unknown C.
The analytical study of the problem (1.2)–(1.4) has been dealt with in a large num-
ber of publications on hydrodynamics, including monographs and textbooks (see,
e.g., Rosenhead, 1940; Millsaps and Pohlhausen, 1953; Kochin et al, 1965; Batche-
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lor, 1970; Landau and Lifschitz, 1987; Loitsyanskii, 1966). It should be noted that
sometimes the term Jeffery–Hamel flows is applied to problems different from that
of (1.2)–(1.4). For example in Millsaps and Pohlhausen (1953), the integral condi-
tion of (1.4) has been replaced by the “local" condition V (0) =V0 = 1, i.e., the flow
velocity on the axis of the divergent-convergent channel, rather than the flow rate,
is prescribed. This leads to substantial changes in the numerical-analytical methods
for solving the problem and in the solution properties.
Note that the relations of (1.2)–(1.4) involve only dimensionless known and un-
known functions and constant parameters. This is due to the self-similarity (Loit-
syanskii, 1966), rather than nondimensionalization1.
Equation (1.2) admits a reduction in order by multiplying by V ′ and separating total
derivatives. This equation has the first integral

V ′2

2
+ 2V 2 −Re

V 3

3
−CV =

V ′2(∓β )

2
. (1.5)

The classical results are associated with the integration of Eq. (1.5) in terms of
elliptic functions. The resulting elliptic integrals depend on several parameters, as
well as on the roots of a system of three transcendental equations for three constants
of integration. Analysis of these integrals is complicated. It is hardly possible to
construct a closed-form solution of the boundary-value problem with the constant-
flow-rate condition for arbitrary β and Re.
The solution of the Jeffery problem for the divergent channel (Q < 0) has been
considered to be more complex and diverse than the solution for the convergent
channel (Q > 0). For the former problem, multi-mode solutions with symmetric and
asymmetric velocity profiles relative to the axis θ = 0 have been known. Here and
in what follows, by multi-mode solutions (multi-mode flows), the flows in which
the source (V (θ ) > 0) and sink (V (θ ) < 0) domains alternate are understood. The
existence of multi-mode and asymmetric solutions of the nonlinear boundary-value
problem with the constant-flow-rate condition for a convergent channel indicates
the nonuniqueness of solution, since this problem always (for 0 < θ ≤ π/2, see
Sects. 1.2–1.7) has a single-mode symmetric solution. A number of theorems on
the uniqueness of the classical single-mode profile for asymptotically small Re have
been proved by Rivkind and Solonnikov (2000). For sufficiently large Re, the steady-
state solution for a divergent channel becomes unstable (Eagles, 1966), which leads
to the occurrence of developed turbulence.
Various aspects of analytical, numerical or experimental investigation of the flows
of a viscous fluid in plane convergent or divergent channels and their modern modi-
fications have been presented in numerous publications in the last 15–20 years. We
will enumerate some of them.
Instability and various bifurcations of the Jeffery–Hamel flows have been studied by
Sobey and Drazin (1986). It is shown that the unique symmetric flow, existing for
small Re, becomes unstable for large Re. A bifurcation leads to the appearance of

1 As has already been said, a complete nondimensionalization of the problem on the basis of its
characteristic parameters is impossible.
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two stable asymmetric solutions. For large Re, eight asymmetric stable solution have
been found and the existence of seven symmetric unstable solutions has been proved.
For very large Re, time-periodic solutions of this problem have been identified and
the possibility of the Hopf bifurcation has been discussed.

Small 2D perturbations of the classical single-mode symmetric Jeffery–Hamel flows
have been studied by Banks et al (1988); Eagles (1988). It has been noticed that the
development of the perturbations depends on whether the channel angle is less or
greater than a certain critical angle, the value of which depends on the Reynolds
number. Proceeding from the studies by Rosenhead (1940) and Fraenkel (1962),
they performed a formal classification of the flows on the basis of the analysis of
roots of a cubic polynomial. On the parameter plane αRe, where α is the channel
half-angle and Re is the Reynolds number, they construct (for small Re) the curves
separating the regions with different flow types. Then they consider the influence of
slight curvature of the walls on the flow parameters and the Fraenkel approximation
associated with this influence have been discussed (Fraenkel, 1962, 1963).

The motion in a channel with a piecewise-straight boundary has been analyzed by
Tutty (1996). A critical value of the angle between the walls has been found. If this
critical value is exceeded, the Jeffery–Hamel flows does not exist. The solution of
the problem in this case has a shape of a wave with large amplitude, with vortices
appearing now at one, then at the other wall of the channel. If the angle between
the walls is less than the critical value, the existence of such a wave depends on
the geometry of the walls near the sink point. In Kerswell et al (2004), the results
by Tutty (1996) have been developed on the basis of numerical methods and the
stability of steady nonlinear waves has been studied.

A thorough numerical analysis of the Jeffery–Hamel flows have been performed by
Dennis et al (1997) in order to investigate the existence and uniqueness of symmetric
solutions and identify the beginning of an instability.

For the converging flow, neither multi-mode behavior nor an asymmetry of the ve-
locity profile have been established in the classical publications. The issues of the
existence of such profiles (which, in fact, is reduced to the uniqueness analysis of
the converging flow) and the properties of such flows had remained a challenge.

Using a modification of the analytical-numerical accelerated-convergence method
(Akulenko et al, 2002c), we have constructed and completely investigated single-
mode and multi-mode convergent flows for a broad range of parameters β and
Re. This investigation is based on the previous particular results (Akulenko et al,
2002b,a, 2004, 2000, 2003b).

In the boundary-value problem of (1.2)–(1.4), we can proceed from the function V

of the angle θ to the new dimensionless function y of the normalized variable x

y = 2βV, x =
1
2

(
θ

β
+ 1

)
, 0 ≤ x ≤ 1. (1.6)

This change of variables reduces the problem of (1.2)–(1.4) with the integral condi-
tion to the form
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y′′+ a2y− by2 = λ , a = 4β , b = 2β Re,

y(0) = y(1) = 0,

1∫

0

y(x)dx = 1.
(1.7)

The constants λ and γ defined by

λ = 8β 3C = y′′(0) = y′′(1), γ = y′(0)

are unknown and have to be determined for prescribed a and b. The parameter λ can
be eliminated by differentiation, but this leads to a nonlinear third-order equation.

Introduce the function z(x) to replace the integral condition in (1.7) by the differen-
tial equation with boundary conditions

z′ = y− 1, z(0) = z(1) = 0. (1.8)

The boundary-value problem of (1.7) and (1.8) can be represented in the form of
standard fourth-order boundary-value problem (without the integral condition).
From (1.2) we find that the pressure p and the velocity profile y(x) are related by

p(r,θ ) =
2ρQ2

r2

λ − a2y(x)

a2b
. (1.9)

It is apparent from (1.9) that the pressure increases without limit as b → 0. Never-
theless, the solution of the problem of (1.7) and(1.8) can be regular. For the radial
flow to be implemented in practice, the pressure at any distance r must be a function
of x (or the angle θ ). This function is unknown in advance.

1.2 Analytical Expressions, Asymptotic Expansions, and Integral

Estimates of the Solutions

We will present analytical expressions for y(x) for various values of the parameters
a and b (β and Re).

1.2.1 Perturbation Method for Small Re

The relations 0 < Re ≪ 1 correspond to slow flow of a very viscous fluid. This is
the case for numerous technological processes (e.g., drawing of metal sheets or ex-
trusion of plastic materials) and natural phenomena (e.g., flow of rocks or glaciers).
We can seek the solution y(x) for arbitrary angles β in the form of a series in powers
of b for any finite a,
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y(x) =
∞

∑
n=0

bnyn(x), λ =
∞

∑
n=0

bnλn, γ =
∞

∑
n=0

bnγn (1.10)

with first several terms being preserved in this series. For example, for n = 0, we
have (Kochin et al, 1965)

y0(x) =
2β

D

[
cos(2β (2x− 1))− cos2β ],

D = sin 2β − 2β cos2β , λ0 =−32β 3

D
cos2β , γ0 =

8β 2

D
sin2β .

(1.11)

The zero approximation of (1.11) does not make sense for D = 0, i.e., for the values
of β that are roots of the equation tan2β = 2β . The least positive root of this equa-
tion is β = β ∗ ≈ 2.247, which corresponds to a convergent channel with an aperture
angle exceeding that of 180◦. Such convergent channels are realistic from a physical
point of view.

For the subsequent coefficients yn(x), n ≥ 1, we have linear boundary value prob-
lems

y′′n + a2yn = λn +Fn(y0,y1, . . . ,yn−1),

yn(0) = yn(1) = 0,

1∫

0

yn(x)dx = 0
(1.12)

with unknown constants λn = y′′n(0) = y′′n(1) and known function Fn; for example,
F1(y0) = y2

0. For β 6= β ∗, the problems of (1.12) can be readily solved, with the
solution being uniquely defined. For n ≥ 1, the calculations become cumbersome
(Akulenko et al, 2000) and for β ∼ 1, unpractical because of low accuracy. For
β = β ∗, the problem of (1.12) has no solutions and, therefore, another approach is
required (Sect. 1.6).

1.2.2 Perturbation Method for Small Aperture Angles

The relations 0 < β ≪ 1 and 0 < Re ∼ 1 or 0 < a ≪ 1 and 0 < b ≪ 1 correspond to
the case where the convergent channel walls are almost parallel. In the problem of
(1.7), the regular asymptotic expansions in powers of β

y(x) =
∞

∑
n=0

β nyn(x), λ =
∞

∑
n=0

β nλn, γ =
∞

∑
n=0

β nγn (1.13)

lead to the approximation of the solution by polynomials with respect to x, say for
n = 0, 1
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y0(x) = 6x(1− x), y1(x) =
6Re

35
x(14x5 − 42x4+ 35x3 − 9x+ 2)

λ0 =−12, λ1 =−108
35

Re.

(1.14)

The constants γn (1.13) can be obtained by differentiating yn(x) at x = 0. The
parabolic profile y0(x) in (1.14) corresponds to the Poiseuille flow between two
parallel walls. The degree of the polynomials yn(x) increases rather rapidly and is
equal to 4n+ 2.

1.2.3 Asymptotic Behavior of the Solution for Large Re

The case of Re ≫ 1 and β ∼ 1 formally corresponds to the limiting case of an ideal
fluid. For Re = ∞, the solution is discontinuous at the boundary points and has the
form

y∞(x)≡ 1, 0 < x < 1, y∞(0) = y∞(1) = 0.

The occurrence of the small coefficient 1/b of the highest derivative in (1.7) re-
quires singular asymptotic methods to be involved (van Dyke, 1964). In the first
approximation in terms of 1/b, the solution can be represented by Kochin’s formula
(Georgievskii, 1998)

y(x) = 1− 6

1+ coth
[
coth−1 5+

√
b/2(1−|2x− 1|)

],

λ (b) =−b, γ(b) =

√
4b

3
.

(1.15)

This formula provides acceptable accuracy even for b ∼ 103 ÷ 104.

Let 0 < β ≪ 1 but b ∼ 1, which corresponds to the flow with large Reynolds num-
bers between almost parallel walls. In the zero approximation, the left-hand side
of (1.7) does not contain the term a2y. However, the integration of the resulting
boundary-value problem, as is the case in general, leads to elliptic functions. The
only minor simplification is that the solution depends of a single parameter b.

1.2.4 Integral Estimates

The boundary value problem of (1.7) is equivalent to the isoperimetric variational
problem
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1
2

1∫

0

(y′2 − a2y2 +
2
3

by3)dx → extr,

y(0) = y(1) = 0,

1∫

0

y(x)dx = 1.

(1.16)

On the basis of (1.16), one can construct integral estimates for y(x), λ , and γ . Any
continuously differentiable function f (x) satisfies the relation

x2∫

x1

(y′′+ a2y− by2) f ′ dx = λ
(

f (x2)− f (x1)
)
. (1.17)

where 0 ≤ x1 < x2 ≤ 1. Let x1 an x2 be arbitrary different roots of the function y(x),
i.e.,

y(x1) = y(x2) = 0. (1.18)

Let f (x) = y(x). In this case, the integration by parts in (1.17) with reference to
(1.18) leads to the important relations

y′(x2) =±y′(x1). (1.19)

If x1 = 0 and x2 = 1, then the lower sign in (1.19) corresponds to the classical single-
mode solution and the upper sign corresponds to a multi-mode solutions with odd
number of modes. The condition y′(1) = y′(0) implies the multi-mode character of
the flow.

Let f ′ = y and f (x1) = 0. In this case, with reference to the Friedrichs inequality
(Rektorys, 1980)

x2∫

x1

y′2 dx ≥ π2

(x2 − x1)2

x2∫

x1

y2 dx (1.20)

and the relation of (1.17), we obtain the estimate for the parameter λ

λ

x2∫

x1

ydx ≤
(

a2 − π2

(x2 − x1)2

) x2∫

x1

y2 dx− b

x2∫

x1

y3 dx. (1.21)

The estimate of (1.21) turns out to be fairly precise for the case of the single-mode
solution (x1 = 0, x2 = 1), provided that b is relatively small.

Let f = y′. In this case, integrating (1.17) by parts yields

nλ y′(x1) =

x2∫

x1

(y′′2 − a2y2 + 2byy′)dx (1.22)
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where n = 0 (n =−2) for the functions y(x) for which one should choose the upper
(lower) sign in (1.19). The functions y(x) with the boundary conditions (for these
functions, n = 0)

y(m)(x1) = y(m)(x2), m = 0,1,2 (1.23)

satisfy one more Friedrichs inequality

x2∫

x1

y′′2 dx ≥ 4π2

(x2 − x1)2

x2∫

x1

y′2 dx. (1.24)

The relations of (1.22) and (1.24) imply the estimate

x2∫

x1

[
4π2

(x2 − x1)2 − a2 + 2by

]
y′2 dx ≤ 0. (1.25)

For some x1, x2, a, and b, the relation of (1.24) holds with the equality sign. This is
the case, for example, for x1 = 0, x2 = 1, a= 2π , and b= 0. Of course, the conditions
of (1.23) hold in this case.

1.3 Numerical-Analytical Accelerated Convergence Method and

Continuation with Respect to a Parameter

The ranges of the angle β ∼ 0.1− 1 and Reynolds number Re ∼ 0.1− 103 (b ∼
10−2 − 103) are rather important for applications. However, for these ranges, the re-
lations of (1.10)–(1.15) lead to unacceptably large errors. These relations can serve
as rough estimates or initial approximations for high-accuracy numerical methods.
Therefore, it is necessary to develop efficient numerical-analytical approaches to the
solution of the problem of (1.7) and (1.8).

We propose a modified Newton-type accelerated convergence method (Akulenko
et al, 2000, 2003b, 2002c) combined with the continuation with respect to a param-
eter. This method enables one to calculate the desired quantities with high degree of
accuracy in one or two iterations with moderate computational effort. The relative
error of the solution ranges between 10−8 and 10−7. In many cases, such a solution
can be considered to be practically exact. If necessary, the error can be reduced. The
algorithm of this method involves the calculation of the unknown values γ = y′(0)
and λ = y′′(0) which determine the function y(x) as the solution of the initial value
(Cauchy) problem of (1.7) and (1.8) for fixed a and b (and, hence, for fixed β and
Re).

To start the algorithm, one should have known initial guesses γ0 and λ0 for the
desired quantities γ and λ . These initial guesses should be fairly precise and can
be found on the basis of the variational approach with the functionals of the type
of (1.16), provided that the choice of the trial function y0(x) has been successful
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(Akulenko et al, 2000, 2003b, 2002c). Calculations for the single-mode flow show
that the function y(x,a,b) has a fairly simple form. A rather convenient procedure
is that of continuation with respect to the parameters a and b (or β and Re). For
example, for a fixed a = 4β > 0, one can take γ0 and λ0 as the initial approximations
γ0(b1) and λ0(b1) for a sufficiently small b1 > 0. Using the accelerated convergence
recurrent algorithm, one can calculate γ1 = γ(b1) and λ1 = λ (b1) with the desired
degree of accuracy. These values are taken as the initial approximations γ0(b2) and
λ0(b2), and so on. The availability of the sets {γk} and {λk} of fairly precise values
of γk and λk enables one to increase the interval δbk+1 = bk+1 − bk by means of a
polynomial extrapolation of the initial approximations γ0(bk+1) and λ0(bk+1).

The iterative algorithm for refining the desired values γ(b) and λ (b) at the first
and subsequent steps involves the solution of two initial value problems for sixth-
order systems or one initial value problem for a ninth-order system. These problems
involve common equations of (1.7) and (1.8) subjected to the conditions

y(0) = z(0) = 0, y′(0) = γn(b), λ = λn(b), n = 0,1, . . . , b ∈ {bk} (1.26)

and the equations for the sensitivity functions v, w and u, s (defined as the derivatives
of the solution y(x), z(x) with respect to γ and λ , respectively)

v′′+ a2v− 2byv= 0, w′ = v, v(0) = w(0) = 0, v′(0) = 1,

u′′+ a2u− 2byu= 1, s′ = u, u(0) = u′(0) = s(0) = 0.
(1.27)

The initial value problems of (1.7), (1.8), (1.26), and ((1.27) can be solved either
simultaneously or separately. As a result, we obtain the functions yn(x) and zn(x).
To refine the quantities γn(b) and λn(b) it is necessary to know the functions yn, zn,
vn, wn, un, and sn at the end point x = 1 for b ∈ {bk}. The standard procedure of
Newton’s method has the form

γn+1(b) = γn(b)+ δγn(b), λn+1(b) = λn(b)+ δλn(b),

δγn =−[yn(1)sn(1)− zn(1)un(1)]∆−1
n (1),

δλn = [yn(1)wn(1)− zn(1)vn(1)]∆−1
n (1), n = 0,1, . . . ,

∆n(x) = vn(x)sn(x)− un(x)wn(x), ∆n(1) 6= 0.

(1.28)

The recurrent process of (1.26)–(1.28) with respect to n continues until the required
degree of accuracy has been attained, i.e., until the residuals yn(1) and zn(1) become
sufficiently small. The convergence of the algorithm requires a thorough verification
at each step and is associated with the values of the aforementioned residuals and the
determinant ∆n(1) of the sensitivity coefficient matrix of (1.28). A specific feature of
the proposed modification of the accelerated convergence method is the additional
check of the convergence of the process with respect to the abscissas ξn and ηn, i.e.,
with respect to |εn| and |µn|,
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εn = 1− ξn, µn = 1−ηn; ξn = argyn(x), ηn = argzn(x). (1.29)

The values ξn and ηn are the roots (zeros) of the functions yn(x) and zn(x) nearest
to x = 1. The conditions |ε0| ≪ 1, |µ0| ≪ 1, |εn| → 0, and |µn| → 0 indicate the
existence of the desired solution of the boundary-value problem of (1.7) and (1.8)
and the convergence of the algorithm of (1.26)–(1.28). These conditions are easy to
verify. The convergence has an accelerated (quadratic) character, with

yn(1) =−γnεn, |εn+1| ∼ ε2
n ,

zn(1) =−µn, |µn+1| ∼ µ2
n , n = 0,1, . . . .

(1.30)

The convergence is determined by the smallness of the absolute values of the param-
eters ε = ε0 and µ = µ0, that is, by the nearness of the abscissas ξ0 and η0 to x = 1.
This nearness can be provided by a successful choice of the initial approximation
γ0(b) and λ0(b), b ∈ {bk}. To ensure the convergence from this initial approxima-
tion the step δbk of the continuation with respect to b should be sufficiently small.
To increase the accuracy, one can use an extrapolation from previous steps. In ad-
dition, the condition |∆n(1)| ≥ C > 0 is required to hold; see (1.28). A noticeable
violation of the character of the estimates of (1.29) and (1.30) needs an additional
analysis. This violation, as a rule, is associated with the degeneration of the stan-
dard algorithm in the case of ∆n(1)≈ 0 (for example, as b → ∞). The simultaneous
calculation of the residuals yn(1), zn(1) and εn, µn enables one to perform efficient
high-accuracy calculations of the desired parameters γ(b) and λ (b) for any fixed
β from the interval 0 < β ≤ π . The continuation with respect to the parameter β ,
β ∈ {β j}, is realized in a similar way. If necessary, one can construct the functions
γ(β ,Re) and λ (β ,Re) by means of the continuation with respect to β and Re.
It has been established during the calculations, that the solution (y, z) of the problem
of (1.7) and (1.8) is determined with a relative error of 10−7 to 10−8 in several (usu-
ally two or three) iterations without the extrapolation with respect to bk. It should be
noted that ∆n(1)≈ 0.1 at the beginning of the calculations (for b≪ 1). This requires
the initial steps in b to be relatively small, δbk ≈ 0.01. As b increases, the value of
∆n(1) increases, which enables one to increase the step to δbk ≈ 0.1− 1 already at
early iterations (for b ∼ 0.5). The computational practice shows that the smallness
of the parameters ε0 and µ0 is the most essential condition for the rapid convergence
of the iterative algorithms. Usually, it is sufficient to have ε0 ∼ 0.1 and µ0 ∼ 0.1.
We will present a high-accuracy solution of the boundary-value problem constructed
by means of the accelerated (quadratic) convergence method described above.

1.4 Solutions Regularly Depending on the Reynolds Number

The accelerated convergence algorithm outlined in Sect. 1.3 provides a relatively
simple technique for constructing the solutions of the boundary-value problem that
admit regular indefinite continuation with respect to b (0 < b < ∞), i.e., for Re > 0.
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As the initial point, we take b = 0, for which the solution has the form of (1.11) and
depends also on the parameter a, i.e., on the angle β . The function y0(x) is smooth
in x (0 ≤ x ≤ 1) for all β from the interval 0 < β ≤ π , apart from β = β ∗ defined by

β ∗ = argD(β )≈ 2.2467047≈ (128.7)◦. (1.31)

For β = β ∗, the denominator D in (1.11) vanishes. Note that β ∗ is independent of
the argument x.

The singular solution in the case of b → 0 and a → a∗ = 4β ∗ needs a separate nu-
merical analysis (Sect. 1.6), different from the analysis in the regular case occurring
for all b ≥ 0, provided that a 6= a∗. In what follows, we analyze the flows for the full
range of the channel angle 0 < 2β ≤ 2π . This analysis is of significant interest from
the viewpoint of both mathematics and hydrodynamics. In particular, we study the
flows for “exotic" cases of β = π/2 and β = π . The case of β = π/2 corresponds
to the flow in a half-space with the slot sink and β = π corresponds to the flow in
the entire space with two indefinitely close half-planes between which the sink of
the fluid occurs.

Most of the previous studies cover the range of small angles β ∼ 5◦− 10◦, which
is important for technological applications. The study of the flow for larger β is of
interest for natural science. It should be noted that the increase in the angle between
the convergent channel walls leads to an essential restructuring in the velocity profile
y(x) and new qualitative phenomena.

The proposed approach to the study of the flow involves the determination of the
lacking values of the parameters γ(β ) = y′(0) and λ (β ) = y′′(0). These parameters
determine the solution of the nonlinear boundary-value problem of (1.7) and (1.8)
as a solution of an initial value problem. These parameters depend on a and, hence,
on the angle β . For b = 0, we have γ(0) = γ0(β ) and λ (0) = λ0(β ), where γ0(β )
and λ0(β ) are defined in (1.11). To facilitate the comprehension of the further con-
struction, we plotted the functions γ0(β ) and λ0(β ) in Fig. 1.2. At β = β ∗ of (1.11),
these functions undergo a discontinuity. They do not have a limit as β → β ∗ and,
hence, the expressions for these functions make no sense at this point. In the case
of b = 0 and a = a∗, the linear boundary-value problem does not have a solution,
and the corresponding solution for b > 0 cannot be constructed by means of regular
perturbations or continuation with respect to a parameter.

Although the critical value β = β ∗ corresponds to a realistic convergent channel
(with the angle β ∗ greater than straight angle, 3π/2 > 2β ∗ ≈ 4.5 > π), the absence
of a solution and, hence, the impossibility of the steady flow can be accounted for
by the limiting case of Re → 0. For Re > 0, this singularity disappears. The fact
that this singularity does not manifest itself in the case where Re = 0 but β 6= β ∗

should be regarded as a mathematical result. Note that in accordance with (1.2) and
(1.9), the pressure p increases without limit as Re → 0. The singular behavior of
the flow profile y(x) and its derivatives γ(b) and λ (b) at x = 0 for β = β ∗ and
b → 0 is a hydrodynamic effect. This effect should be validated theoretically and
experimentally.
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Fig. 1.2 The missing pa-
rameters γ0(β ) = y′(0) and
λ0(β ) = y′′(0) as functions
of the convergent channel
half-angle β for b = 0. These
parameters determine the solu-
tions obtained by continuation
with respect to Re.

Based on the functions γ0(β ) and λ0(β ) plotted in Fig. 1.2, one can divide the
interval 0 < β ≤ π into five qualitatively different intervals, corresponding to the
changes of these functions in sign,

1) 0 < β ≤ π

4
, 2)

π

4
< β ≤ π

2
, 3)

π

2
< β < β ∗,

4) β ∗ < β ≤ 3π

4
, 5)

3π

4
< β ≤ π .

(1.32)

Figures 1.3 and 1.4 plot the lacking values of γi (solid curves) and λi (dashed curves),
i = 1, . . . ,8, as a function of b for characteristic increasing values of βi from the
intervals of (1.32) and moderately large values of the parameter b, 0 ≤ b ≤ 300. To
fix our ideas, we consider the following values of βi:

β1 =
π

180
= 1◦, β2 =

π

4
= 45◦, β3 =

π

2
= 90◦,

β4 = β− = 2.2 ≈ (126.2)◦, β5 = β+ = 2.3 ≈ (131.6)◦,

β6 =
3π

4
= 135◦, β7 = 2.88 ≈ 165◦, β8 = π = 180◦.

(1.33)

Such a choice corresponds to the partition of (1.32) and is commented in what fol-
lows when analyzing the modes of the solutions. The case of β = 10◦ is investigated
separately in Sect. 1.7.

The construction of the functions γi(b) and λi(b) for βi of (1.33) on the basis of the
algorithm of Sect. 1.3 is one of the basic computational results that facilitate the
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Fig. 1.3 The missing param-
eters γi(b) = y′i(0) (the solid
curves) and λi(b) = y′′i (0)
(the dashed curves) as
functions of the parameter
b = 2β Re for fixed values
of the angle βi: β1 = 1◦,
β2 = 45◦, β3 = 90◦, and
β4 = β− = 2.2rad ≈ 126.2◦.
The variables γi are presented
after multiplying by 10 (10γi).

Fig. 1.4 The missing param-
eters γi(b) = y′i(0) (the solid
curves) and λi(b) = y′′i (0) (the
dashed curves) as functions of
the parameter b = 2β Re for
fixed values of the angle βi:
β5 = β+ = 2.3rad ≈ 131.6◦,
β6 = 135◦, β7 = 165◦, and
β8 = 180◦. The variables γi

are presented after multiply-
ing by 10 (10γi).

determination of all essential characteristics of the flows and enable one to compare
various flow modes. A common property of the families of curves γi(b) and λi(b)
is that all these curves follow Kochin’s asymptotic behavior of (1.15) for b ≫ 1.
Significant deviations from the asymptotic curve occur for b ∼ 1− 100.



1 Multi-Mode Symmetric and Asymmetric Solutions in the Jeffery-Hamel Problem 17

The functions γi(b) monotonically increase and λi(b) monotonically decrease as
b → ∞ for i = 1,2,3,4. The behavior of the functions γi(b) and λi(b) for i = 5,6,7,8
substantially changes, which reflects the changes in the flow modes.
The functions γi(b) and λi(b) have fairly simple shapes. However, the construction
of these functions requires rather sophisticated high-precision calculations, with a
relative error of 10−8 to 10−7. Beginning with b ∼ 100, typical boundary-layer ef-
fects occur. Attempts to construct the desired solutions using the tabulated elliptic
integrals fail to provide the required accuracy even for b ∼ 10.
The further investigation of the motion of a viscous fluid in a convergent channel
is associated with the analysis of the velocity profiles yi(x) for the values βi of
(1.33) and various b ≥ 0 to follow the evolution and bifurcations of the flow modes
depending on Re > 0.

1.5 Construction of the Velocity Profiles and Analysis of the

Fluid Flow Modes

The analysis of the kinematic and dynamic properties of the flows on the basis of
the functions y(x) and V (θ ) related by (1.6) enables one to identify a number of
interesting hydrodynamic effects. Using the functions y(x) and V (θ ), one can deter-
mine the pressure p(r,θ ), according to (1.9), the components of the strain rate and
stress tensors, and other dynamic characteristics of the flow of a viscous fluid in a
convergent channel. The expressions for the strain rate and stress tensor components
are given in Sect. 1.8, see (1.36) and (1.37). To construct the numerical-analytical
solution of the nonlinear boundary-value problem, it is convenient to utilize the nor-
malized variables x and y with the parameters a and b and unknown γ and λ and
make use of the accelerated convergence method.
This solution results in the functions γi(b) and λi(b) constructed with high degree
of accuracy for βi of (1.33). These functions are plotted in Figs. 1.3 and 1.4. The
corresponding families of the velocity profiles yi(x) are presented in Figs. 1.5 and
1.6 for a number of typical values of b. The basic common property of these func-
tions is that they are symmetric with respect to x = 1/2 and, hence, the flow velocity
profiles are symmetric with respect to the channel axis θ = 0.
The family of curves y1(x) for β = β1 (see (1.33)) and b = 0,10,300 (Fig. 5) illus-
trates the evolution of the flow mode corresponding to high-viscosity fluid (Re ≈ 0)
to the mode corresponding to the low-viscosity fluid (Re ∼ 104). This case of small
angle β between the channel walls characterizes the transition from the Poiseuille
flow to the Jeffery–Hamel flows. The increase in this angle (0 < β < π/4) does not
lead to new qualitative features in the flow mode. For the point β2, Fig. 1.5 presents
the family of curves y2(x) for b = 0,10,300. The flow mode in this case is close to
the mode for β = 1◦ considered previously. The curves are presented to illustrate
this fact. The major difference is that the curvature of the curve y2(x) vanishes at the
points x = 0 and x = 1 for b = 0, i.e., λ2 = 0. As b increases (b > 0), this feature
disappears and the curve acquires the typical shape (convex upward).
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Fig. 1.5 The evolution of the
velocity profiles yi(x) with
respect to the parameter b

(0 ≤ b ≤ 300) for the angles
β1, β2, β3, and β4. The values
of b are given under the
curves.

The further increase in the angle β (β2 < β < β3 = π/2) leads to the change of λ
in sign and a sharp increase in the local curvature of y(x) at the points x = 0 and
x = 1. For relatively small β , the inequality λ (b)> 0 holds. However, the parameter
γ0(β ) decreases as β increases, and at the limiting point β3 = π/2, corresponding
to a plane with the sink slot, the quantity γ3 vanishes. In the middle portion of the
interval 0 < x < 1, for example, at x = 1/2, the curve y(x) is convex upward, as

Fig. 1.6 The evolution of the
velocity profiles yi(x) with
respect to the parameter b

(0 ≤ b ≤ 300) for the angles
β5, β6, β7, and β8. The values
of b are given under the
curves.
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was the case previously (the first interval of (1.32). The increase in the parameter
b decreases λ and increases γ (see curves γ3 and λ3 in Fig. 1.3); the curves y(x)
become convex upward for sufficiently large b. The curves y(x) corresponding to
β3 = π/2 are shown in Fig. 1.5 for b = 0,10,50,300.

Unexpected qualitative features in the solution behavior begin to manifest them-
selves as the angle β continues to increase and becomes greater than the straight
angle. For the third interval of (1.32), π/2 < β < β ∗, we have constructed two
families of the curves y(x), corresponding to β3 = π/2 (this family has been de-
scribed previously) and β4. As is apparent from (1.33) and Fig. 1.5, β4 < β ∗. The
increase in β leads to a decrease in γ0 (γ0 = γ(0)< 0) and the further increase in λ0

(λ0 = λ (0) > 0). There appear backward flow regions (sources) at the ends of the
interval 0 < x < 1. These regions correspond to y(x)< 0 and are arranged symmetri-
cally with respect to the middle point x = 1/2. At the middle portion of the interval,
we have a sink (y(x)> 0). The width of these regions and velocity amplitudes mono-
tonically increase without limit as β → β ∗. For a fixed β (we have taken β4 close
to β ∗), as Re or b increase, the profile first takes on the shape corresponding to the
second interval of (1.32) (for example, for b = 20) and then, for sufficiently large b

(for example, b = 300), the shape corresponding to the first interval.

As β increases beyond β ∗ (β ∗ < β < π), the behavior of the solutions changes cardi-
nally (Fig. 1.2). The desired lacking parameters γi(b) and λi(b) for the characteristic
values βi of (1.33) for i = 5,6,7,8 are presented in Fig. 1.4, while the families of the
velocity profiles yi(x) for similar values of b are shown in Fig. 1.6. These curves are
substantially different from the curves considered previously for i = 1,2,3,4, i.e.,
for 0 < β < β ∗. All these solutions are three-mode ones and this property does not
disappear as b or the Reynolds number increase. In addition, there are a sink near
the convergent channel walls and a source (as is the case for a divergent channel)
in a neighborhood of the axis x = 1/2 (θ = 0). For both the source and the sink,
the velocity amplitudes increase without limit as β → β ∗ and b → 0. The total flow
rate of the source and the sink, of course, is equal to unity (with an error of 10−9

to 10−7). Note that the sink velocity amplitude monotonically decreases for b large
enough and tends to unity as b → ∞, in accordance with Kochin’s asymptotic rela-
tion of 1.15. The source velocity amplitude depends on b nonmonotonically and can
substantially increase as Re increases. The degree of nonmonotonicity of the sink is
substantially lower. On the other hand, for large b ≫ 1, in accordance with (1.15),
the velocity amplitude tends to 2 and the width of the source region tends to zero,
as is observed for b = 300.

We will illustrate the aforementioned specific features of the solutions for a con-
vergent channel with large angle (β > β ∗) by examples (Fig. 1.6). For the fourth
interval of (1.32) for β , this figure shows two families of curves, y5(x) and y6(x),
corresponding to β = β5 and β = β6 in (1.33). The value β5 = β+ slightly exceeds
the critical value and leads to substantial amplitudes of the velocity y5(x) of the
source and the sink for b ≪ 1(the curve y5(x) for b = 0 is presented.) The increase
in the parameter b ∼ 1 leads to a fairly rapid decrease in these amplitudes, since
γ5(b) rapidly decreases as b increases (the curve y5(x) for b = 10 is presented). As
b increases further, the behavior of the curves y5(x) changes in accordance with the
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asymptotic relations of (1.15) (the curve for b = 300 is presented). The behavior of
the curves γ5(b) and λ5(b) also corresponds to the asymptotic relations.

Of considerable interest from the viewpoint of hydrodynamics is the family of ve-
locity profiles y6 at the limiting point of the fourth interval of (1.32), β = β6 = 3π/4.
As is apparent from Fig. 1.4, we have λ6 = 0 at this point and, in addition, the curve
γ6(b) is fairly smooth, which indicates that the evolution of the family y6(x) for
b ∼ 10 is relatively slow. Compare, for example, the change in the amplitudes for
b = 0 and b = 10 at β = β+ and β = β6. The sink amplitude monotonically de-
creases as b increases, whereas the dependence of the source velocity amplitude on
this parameter is nonmonotonic.

The fifth interval of values of the angle β in (1.32) corresponds to limiting large
flow regions. The major specific feature of the flows in this case, for example, for
β = β7 and β = β8 (Fig. 1.6) is that the velocity profile for b ∼ 10 evolves relatively
slowly, which is similar to the case of β = β6 considered previously. As b increases
(b= 300), the velocity amplitude of the backward (source) flow noticeably increases,
whereas the sink velocity amplitudes at the edges (walls) of the convergent channel
decrease. In the limit as b → ∞, the asymptotic relation of (1.15) is valid. It is of
interest to note the clearly pronounced maxima of the sink velocity that occur at
x ≈ 1/4 and x ≈ 3/4 (i.e., at θ =±90◦) for the values of b up to 100.

Using the obtained solutions y(x) and V (θ ), one can construct geometrical easy-to-
perceive (non-normalized) pictures for the profiles or the so-called physical pictures.
For small channel angles β ≤ π/4, one can confine oneself to the profiles yi(x)
(i = 1,2) presented in Fig. 1.5. For large angles β > π/2, a substantial deformation
of the curves yi(x), i ≥ 3, occurs due to substantial distortion of the zero profile
y ≡ 0.

We will represent the desired physical profile by the relations

X = (r+ vr δ t)cosθ , Y = (r+ vr δ t)sinθ (1.34)

where X and Y are fixed Cartesian coordinates, δ t is a time interval, the component
vr(r,θ ) is defined by (1.1) (vθ = 0), and the value of r is fixed. Substitute the ex-
pression of (1.1) for vr into (1.34) and then normalize the resulting relations by r to
obtain the parametric equations for the desired curve

X

r
= ξ (θ ) =

(
1− εy(x)

2β

)
cosθ ,

Y

r
= η(θ ) =

(
1− εy(x)

2β

)
sinθ ,

x =
1
2

(
1+

θ

β

)
, ε =

Q

r2 δ t = const > 0.
(1.35)

The parameter ε is allowed to be varied and can be chosen so as to make the picture
easier to perceive.

Figures 1.7 and 1.8 present the profiles of (1.35) for the cases of β3 = π/2 and
β4 = π , respectively, with ε = 1. To be specific, in order not to overload the picture,
we have presented the curves for the limiting values of b (b= 0 and b= 300). (These
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Fig. 1.7 Physical profiles
of the flow velocity in the
Cartesian coordinates ξ η
for an “exotic" case where
the walls of the convergent
channel form a flat angle
(β = β3 = π/2). This case
corresponds to a plane with
the sink slot at the origin.
(The outflowing fluid is on
the right of the η-axis.) The
half-circumference of unit
radius corresponds to zero
reference level. The profiles
are presented for b = 0 and
b = 300.

values label the respective profiles.) These curves demonstrate unusual behavior and
indicate interesting hydrodynamic phenomena.

1.6 Numerical-Analytical Solution of the Problem for the

Critical Value of the Channel Angle

As has been established previously, the limiting solution of the nonlinear boundary-
value problem of (1.11) as b → 0, y0(x), does not exist for the critical angle β ∗ of
(1.31). For b > 0, the desired solution exists but cannot be constructed by means
of the standard procedure of continuation with respect to a parameter presented in
Sect. 1.3. For β = β ∗ and a fixed b = b∗ > 0, one can apply the accelerated conver-
gence method to the generating solutions corresponding to β− < β ∗ and β+ > β ∗

sufficiently close to β ∗; see (1.33). To be specific, we took b∗ = 10. Then the con-
tinuation with respect to the parameter b is applied for 0 < b < b∗ and b∗ < b < ∞.
Using this approach, we constructed the desired solution — the functions γ∗(b),
λ ∗(b), and y(x) — for the critical angle β ∗ of (1.31) and b ranging in the inter-
val 0.1 ≤ b ≤ 300. This solution was constructed with high degree of accuracy, the
relative error ranging between 10−9 and 10−7.



22 Leonid D. Akulenko, Dimitri V. Georgievskii & Sergey A. Kumakshev

Fig. 1.8: Physical profiles of the flow velocity in the Cartesian coordinates ξ η for an
“exotic" case where the convergent channel walls form a round angle (β = β8 = π).
This case corresponds to two infinitely close half-planes, shown by the negative ξ -
half-axis (thick line), with a sink between. The fluid occupies the entire space. The
half-circumference of unit radius corresponds to zero reference level. The profiles
are presented for b = 0 and b = 300. For b = 300, a substantial source is observed
in the region adjacent to the channel axis.

The calculations indicate that to the angle β ∗ there correspond two solutions —
γ∗ = γ∓(b), λ ∗ = λ∓(b) — shown in Fig. 1.9. These solutions are continuations of
the solutions γ4,5(b) and λ4,5(b), constructed previously for β4,5 = β± (Figs. 1.3 and
1.4), with respect to the parameter β . It is interesting that γ∓(b)→∓∞ and λ∓(b)→
±∞ as b → 0 and, hence, the steady flow degenerates for sufficiently small Re. In
this case, the blocking-type phenomenon is observed, with the pressure and the total
force increasing without limit; for more detail, see Sect. 1.8. This phenomenon is
of interest from the viewpoint of hydrodynamics. Note that the function γ−(b) has
a rather shallow minimum at b ∼ 1000 (γ∓ ∼

√
4b/3 → ∞ as b → ∞), whereas the

function λ+(b) has a sharp maximum at b ∼ 3 (λ∓ ∼−b →−∞ as b → ∞).

The families of the velocity profiles y∗ = y∓(x) corresponding to different solutions
γ∓ and λ∓ are shown in Fig. 1.10 for b = 0.1, 0.2, 0.3. The analysis of these solu-
tions for b ∼ 1 and b ≪ 1 leads to the conclusions similar to those for the profiles
y4(x) and y5(x). However, for b ≪ 1 (we took b = 0.1), a large swing in the source
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Fig. 1.9 The missing pa-
rameters γ∗ = γ±(b) and
λ ∗ = λ±(b) corresponding
to the critical value β = β ∗

as functions of the parameter
b = 2β ∗Re.

and sink velocities is observed, this swing increasing without limit as b → 0. The
calculations for b < 0.1 are complicated, since the quantities γ∓ and λ∓ sharply
increase.

Thus, we have established a new property of steady flows in a plane convergent chan-
nel. This property needs further theoretical and experimental investigations. The oc-
currence of two flow modes for β = β ∗ and b > 0 makes it necessary to investigate
the stability of these solutions and their physical feasibility.

The physical profiles ξ∓(θ ) and η∓(θ ), corresponding to two solutions y∓(x), have
been constructed on the basis of the relations of (1.35). The respective curves are
shown in Figs. 1.11 and 1.12 for the limiting values of b, b = 0.1 and b = 300.
These values are indicated in the figures. Since the variation of the functions y∓(x)
in the case of b = 0.1 is an order of magnitude greater than that in the case of b ≪ 1,
we have taken ε = 0.1 to make the curves easier to perceive. For b = 300, we have
taken ε = 1, as was the case previously (Figs. 1.7 and 1.8).

Fig. 1.10 The evolution of
the velocity profiles y±(x) for
the angle β = β ∗ depending
on the parameter b = 2β ∗Re.
The profile y−(x) becomes
single-mode as b increases
(at b ≈ 20), while the profile
y+(x) is three-mode for all
b > 0.
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Fig. 1.11 Physical profiles of
the flow velocity components
ξ−(θ ) and η−(θ ), corre-
sponding to γ−(b), λ−(b),
and y−(x), in the Cartesian
coordinates ξ η for the critical
value of β = β ∗. The portion
of the circumference of unit
radius corresponds to zero
reference level. The profiles
are presented for b = 0.1 and
b = 300. For b = 0.1, notice-
able backward flows (source)
occur. For b = 300, a sink
characteristic of low-viscosity
fluid flow is observed.

Note that three-mode solutions demonstrate rather exotic behavior of the profile and,
undoubtedly, are of considerable interest for mechanics of viscous fluids. The source
effect for the profile of ξ+ and η+ turns out to be significant for all b that have been
considered, including b ∼ 102 — 103.

1.7 New Multi-Mode Asymmetric Solutions that Cannot be

Regularly Continued with Respect to Re

To fix our ideas, we will consider the channel angle β = 10◦, i.e., a ≈ 0.7, which
is frequently the case in applications. Numerous calculations with high degree of
accuracy were performed also for other values of a, with b being varied in broad
range, 0< b≤ 200, which corresponds to 0< Re≤ 600. The high-accuracy solution
(with a relative error of 10−8 to 10−7 or an absolute error of an order of 10−5) of the
problem of (1.7) and (1.8) can be constructed by means of the modified accelerated
convergence Newton-type algorithm combined with the continuation with respect to
a parameter. This algorithm has been successfully applied to the classical problem
of single-mode symmetric flow, for which the exact limiting (as b → 0) solution is
available in closed form for any a.
Substantial difficulties encountered when constructing multi-mode velocity profiles
are accounted for by the degeneration of the problem as b → 0. In this case, the de-
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Fig. 1.12: Physical profiles of the flow velocity components ξ+(θ ) and η+(θ ), cor-
responding to γ+(b), λ+(b), and y+(x), in the Cartesian coordinates ξ η for the crit-
ical value of β = β ∗. The portion of the circumference of unit radius corresponds to
zero reference level. The profiles are presented for b= 0.1 and b = 300. For b = 0.1,
a sink of the fluid is observed near the walls of the convergent channel, whereas
noticeable backward flows (source) occur near the channel axis. These backward
flows are significant also for b = 300.

sired parameters γ(b) and λ (b), necessary for solving the corresponding initial value
problem, increase without limit. For some fixed value of b = b0 (usually b0 ≈ 10)
and the selected mode number (n = 2,3,4, . . .), we search for the unknown parame-
ters γ and λ and calculate these parameters with high degree of accuracy to satisfy
the boundary conditions with a prescribed error. Then we apply the continuation
with respect to the parameter b to construct the universal curves γ(b) and λ (b) for
0< b< b0 and b0 < b<∞. The computational difficulties are aggravated by the fact
that γn and λn are several orders of magnitude greater that γ1 and λ1, respectively,
and become very large for b = 1; for example, γ5 ∼ 104 and λ5 ∼ 105. Possibly, it
is for this reason that trustworthy results related to the identification and analysis of
multi-mode solutions of the Jeffery problem have been absent so far.
In what follows, we give and comment a graphical representation of the results of
the numerical-analytical investigation of multi-mode solutions for n = 2,3,4,5. The
curves corresponding to the multi-mode solutions are compared with the respective
curves corresponding to the classical solution (n = 1) for various values of a. It has
been established that for n ≥ 2, the solutions corresponding to the modes with odd
n are symmetric (with respect to x = 1/2, which corresponds to θ = 0), whereas the
solutions corresponding to even n are asymmetric.
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Analysis indicates certain structural properties of the flows. Specifically, the positive
maxima (n ≥ 3) and the negative minima (n ≥ 4) of the functions yn(x,b) have
the same absolute values. In addition, at all points xi, i = 1, . . . ,n + 1, at which
the function yn(x,b) vanishes (for fixed n and b), the derivatives y′n are equal in
absolute values and, hence, γn(b) =±y′n(xi,b). Thus, the multi-mode solution can be
regarded as a combination (superposition) of a single-mode and two-mode solutions,
which, apparently, is common to radial flows.

Figures 1.13 and 1.14 present the graphs of the functions γn(b) and λn(b) on differ-
ent scales for 1 ≤ b ≤ 10 and 10 ≤ b ≤ 200. These curves characterize the solution
of the boundary-value problem of (1.7) and (1.8) obtained by integrating the initial
value problems for fixed a (i.e., for fixed β ). These curves group in pairs for n = 2,3
and n = 4,5. They demonstrate an interesting behavior near b = 0 and have verti-
cal asymptotes, specifically, γn → +∞ and λn → −∞ as b → 0. Recall that in the
classical single-mode solution, the quantities γ1 and λ1 have finite limits as b → 0.
Note also that γn and λn have large absolute values for b ∼ 1 and that the differences

Fig. 1.13 The missing pa-
rameters γn(b) = y′n(0) and
λn(b) = y′′n(0) as functions of
the parameter b = 2β Re for
n-mode flows (n = 2,3,4,5)
in the convergent channel
with the opening half-angle
β = 10◦. The curves γn(b)
(γn > 0) and λn(b) (λn < 0) are
presented on different scales
for the range 1 ≤ b ≤ 10.
These flow modes cannot be
continued with respect to the
Reynolds number as Re → 0.
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Fig. 1.14 The missing pa-
rameters γn(b) = y′n(0) and
λn(b) = y′′n(0) as functions of
the parameter b = 2β Re for
n-mode flows (n = 2,3,4,5)
in the convergent channel
with the opening half-angle
β = 10◦. The curves γn(b)
(γn > 0) and λn(b) (λn < 0) are
presented in different scales
for the range 10 ≤ b ≤ 200.
The starting points of the
curves in this figure corre-
spond to the end points of the
respective curves in Fig. 1.13.
The scales along the b-axis
are substantially different for
Figs. 1.13 and 1.14.

γn − γn−1 and λn −λn−1 increase without limit as b → 0 or n → ∞. Each curve γn

attains a minimum at some fairly large b (b= b
γ
n ∼ 102−103) and then rather slowly

converges from above to the asymptote γ∞ =
√

4b/3. In a similar way, the curves
λn reach a maximum at some b = bλ

n ∼ 102 and then rather slowly converge from
below to the asymptote λ∞ =−b. This implies that all steady flow modes, including
the basic mode (n = 1), converge (in an appropriate metric) to an ideal fluid flow for
0 < x < 1 as b → ∞ (Re → ∞). This observation is important from the standpoint of
hydromechanics.

In fact, the curves γn(b) and λn(b) are the major result of the investigations, on
the basis of which, by solving the initial value problem for Eq. (1.7) subject to the
initial condition of (1.8), one can obtain various characteristics of steady flows in
a convergent channel, such as the velocity profile of (1.1), the pressure of (1.2),
and the components of the strain rate and stress tensors; see Sect. 1.8. The shape
of the curves γn(b) and λn(b) is rather simple, but the construction of these curves
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Fig. 1.15 The velocity pro-
files yn(x) of multi-mode
flows for relatively small b

(b = 1). Substantial source re-
gions and large ranges of the
functions yn are characteristic
of this case; y4(1/2) = 0.

Fig. 1.16 The velocity pro-
files yn(x) of multi-mode
flows for relatively large b

(b = 200). The source regions
are becoming narrower and
large ranges of the functions
are substantially reduced
(approximately, by a factor
of 100), as compared with
Fig. 1.15; y4(1/2) = 0.

needs rather complicated calculations with high degree of accuracy, the complexity
of these calculations increasing as b → 0 or b → ∞. The solution of the problem un-
der consideration demonstrates clearly expressed boundary-layer and internal-layer
phenomena. The computational algorithms based on the familiar methods of the
functional analysis (e.g., the Bubnov–Galerkin method), finite element method, or
finite-difference methods fail to provide acceptable results.

The character of the multi-mode flows is illustrated in Figs. 1.15 and 1.16. In these
figures, the velocity profiles yn(x) for n = 2,3,4,5 are plotted for two values of b,
for relatively small b = 1 (Fig. 1.15) and for relatively large b = 200 (Fig. 1.16). For
small b (or Re), the amplitude of oscillation of the velocity functions yn(x) between
positive and negative values is large. The positive (yn > 0) and negative (yn < 0) val-
ues of the velocity define the sink and source regions, respectively. As the parameter
b increases, the swing of the functions yn(x) is reduced and the source amplitude de-
creases. For large b (b ∼ 102 — 103), the modes corresponding to the convergent
flow of a low-viscosity fluid are pronounced. The deviation of the velocity profile
from the rectangular profile corresponding to the flow of a zero-viscosity (ideal)
fluid tends to zero (in a certain metric) for 0 < x < 1, as b increases, with maxy → 1,
and miny → −2. Typical boundary-layer phenomena are observed near the points
x = 0 (θ =−β ) and x = 1 (θ = β ).
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1.8 Kinematic and Force Characteristics of Steady Flows

Having determined the function y(x), one can calculate the pressure p of (1.9) and
the velocity component vr(r,θ ) of (1.1), using the relation of (1.6) between y and
V . Then one can determine the kinematic and dynamic characteristics. For example,
the strain rate tensor components have the form

vrr =−vθθ =
Q

r2 V (θ ), vrθ =− Q

2r2 V ′(θ ). (1.36)

By substituting (1.36) into the constitutive relations for viscous fluid one can find
the stress tensor components

σrr;θθ =−p± 2ρQ2

r2Re
V (θ ), σzz =−p, σrθ =− ρQ2

r2Re
V ′(θ ). (1.37)

As a result, one can find the force characteristics of the fluid. In accordance with
(1.37), the components Pr and Pθ of the stress vector P at any point of the circular
arc r = const, |θ |< β have the form

Pr(r,θ ) = σrr(r,θ ) =
ρQ2

r2Re

(
4V(θ )− C

2

)
,

Pθ (r,θ ) = σrθ (r,θ ) =− ρQ2

r2Re
V ′(θ ).

(1.38)

At the boundary points of this arc (θ = ±β ), in accordance with (1.3) and (1.38),
we have

Pr(r,±β ) =−ρQ2C

2r2Re
, Pθ (r,±β ) =− ρQ2

r2Re
V ′(±β ). (1.39)

It is apparent from these expressions that the values of Pr are the same at both ends
of the arc, whereas the values of Pθ are different for n = 1,3,5, . . . .

In accordance with (1.38), the components Fr and Fθ of the resultant force F (more
precisely, the density of this force along the z-axis) at the distance r away from the
vertex are expressed in terms of the constant C and other parameters by

Fr(r) =

β∫

−β

rPr dθ =
ρQ2

rRe
(4−βC), Fθ (r) =

β∫

−β

rPθ dθ = 0. (1.40)

By analogy with (1.38), we calculate the density N of the power of the forces due to
the stresses P

N =

β∫

−β

rσrrvr dθ =
ρQ3

r2Re

(
C

2
− 4

Re

(
V ′(β )−V ′(−β )+ 4− 2βC

))
. (1.41)
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The relations of (1.36)–(1.41) determine the force characteristics and the power re-
quired for sustaining the steady flow mode.

1.9 Conclusions

An interest in the Jeffery problem, its numerous modern modifications, and other
classical problems of continuum mechanics has increased in recent years. This can
be explained, on the one hand, by increased potentials of computers and the devel-
opment of relevant software and, on the other hand, by practical requirements of
having solved a wide class of problems associated, for example, with unsteady mo-
tions, non-isothermal deformation, and extrusion of non-Newtonian and viscoplastic
materials from plane slots and convergent channels. The solution of the Jeffery prob-
lem is a reference (zero) approximation for such motions of a medium. Therefore, it
is extremely important to know the characteristic features of this solution in various
ranges of the parameters.
The numerical and analytical solutions of the boundary-value problem found in the
present paper can serve as reference (zero) approximations for more complicated
problems related to heat and mass transfer (Millsaps and Pohlhausen, 1953), essen-
tially unsteady flows (Shapeev, 2004), and extrusion of an incompressible viscoplas-
tic material with low yield stress from a plane convergent channel (Akulenko et al,
2003a).
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Chapter 2

Riemann’s Method in Plasticity: a Review

Sergei Alexandrov

Abstract This paper deals with models of pressure-independent and pressure de-
pendent plasticity under plane strain conditions and provides a review of quantities
satisfying the equation of telegraphy. This equation can be solved by the method
of Riemann. In particular, the Green’s function for the equation of telegraphy is the
Bessel function of zero order. An advantage of using the method of Riemann for
solving boundary value problems is a high accuracy of solutions. Therefore, solu-
tions found by this method can be used for verifying the accuracy of other methods.
Some results presented in this paper are restricted to rigid plastic solids whereas
others are independent of whether elastic strains are included. The last section of
the paper concerns with the theory of ideal flows.

Key words: Telegraph equation · Riemann method · Plane strain · Pressure-Inde-
pendent plasticity · Pressure-Dependent plasticity · Ideal flows

2.1 Preliminary Remarks

The present paper focuses on three systems of constitutive equations of plastic solids
under plane strain conditions. One of these systems is the classical theory of per-
fectly plastic solids. A great account on this model has been given in Hill (1950).
The results for this model are valid for any yield criterion in the case of rigid plas-
ticity. However, they are independent of whether elastic strains are included for
the Tresca yield criterion. The other systems are based on pressure-dependent yield
criteria. One of these criteria is the Coulomb-Mohr yield criterion. This criterion
together with the stress equilibrium equations under plane strain conditions forms
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a statically determinate system. Therefore, the results presented for this system are
restricted to stress analysis but are independent of any flow rule that may be chosen
to calculate the deformation and also independent of whether elastic strains are in-
cluded. Reviews of models of pressure-dependent plasticity based on the Coulomb-
Mohr yield criterion have been provided in Cox et al (2008) and Goddard (2014).
The other pressure-dependent yield criterion adopted in the present paper has been
proposed in Druyanov (1993). This criterion is appropriate for powder and porous
metals. The corresponding plane strain criterion is derived by means of the associ-
ated flow rule. The results for this model are restricted to rigid plasticity. The clas-
sical theory of rigid perfectly plastic solids based on the Tresca yield criterion per-
mits a class of solutions named ideal flows. In particular, ideal flows are solenoidal
smooth plastic flows in which an eigenvector field associated everywhere with the
greatest principal strain rate is fixed in the material. A review of the ideal flow theory
has been provided in Chung and Alexandrov (2007). Under plane strain conditions
the yield criterion is immaterial. Therefore, the results given in the present paper for
ideal flows are valid for any yield criterion.

All the systems of equations considered in the present article are hyperbolic. In what
follows, characteristic-based coordinate systems will be denoted by (α,β ).

There are three basic boundary value problems. Those are: (i) two intersecting char-
acteristic curves are given, (ii) the stresses are given along a certain curve (this curve
should not coincide with a characteristic curve), and (iii) one characteristic curve to-
gether with a curve along with the orientation of the α−line is known is given. Many
quantities involved in the aforementioned theories satisfy the equation of telegraphy:

∂ 2 f

∂α∂β
+ f = 0. (2.1)

This equation can be solved by the method of Riemann. In particular, the Green’s
function for the equation of telegraphy is (Hill, 1950)

G(a,b,α,β )≡ J0

[
2
√
(a−α)(b−β )

]
(2.2)

where J0(z) is the Bessel function of zero order. A property of the Green’s function
is ∮ [(

G
∂ f

∂α
− f

∂G

∂α

)
dα +

(
f

∂G

∂β
−G

∂ f

∂β

)]
dβ = 0. (2.3)

Here the integral is taken round any closed contour. Choosing an appropriate con-
tour the aforementioned boundary value problems can be solved by means of equa-
tion (2.3).

The intention given in the present paper has been to define each new symbol where
it first appears in the text. There are, however, certain symbols that re-appear consis-
tently throughout the text. These symbols are defined here. In particular, σ1 is the
algebraically greatest principal stress, ψ is the angle between the axis correspond-
ing to the principal stress σ1 and the x of Cartesian coordinates (x,y) measured from
the x-axis anticlockwise, φ is the angle between the α-direction of the characteristic
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based coordinate system (α,β ) and the x-axis measured from the x-axis anticlock-
wise, R is the radius of curvature of the α-characteristic lines, and S is the radius
of curvature of the β -characteristic lines. Note that R and S are algebraic quantities
whose signs depend on the sense of space derivatives.

2.2 Pressure-Independent Plasticity

A great account on the theory of pressure-independent rigid perfectly plastic solids
has been given in Hill (1950). Plane strain deformation of such solids is described
by a hyperbolic system of equations. Any plane strain yield criterion can be written
in the form

(σxx −σyy)
2 + 4σ2

xy = 4k2 (2.4)

where σxx, σyy and σxy are the components of the stress tensor in Cartesian coordi-
nates (x,y) and k is the shear yield stress, a material constant. The results presented
below are also valid for elastic/plastic deformation if the Tresca yield criterion is
adopted. The flow rule associated with the yield criterion (2.4) is

ξxx = λ (σxx −σyy), ξyy =−λ (σxx −σyy), ξxy = 2λ σxy, (2.5)

where ξxx, ξyy and ξxy are the components of the strain rate tensor in the Cartesian
coordinates and λ is a non-negative multiplier. Eliminating λ in (2.5) and expressing
the strain rate components in terms of the velocity components relative the Cartesian
coordinates, ux and uy, yield

∂ux

∂x
+

∂uy

∂y
= 0, 2σxy

[
∂ux

∂x
− ∂uy

∂y

]
= (σxx −σxy)

[
∂ux

∂y
+

∂uy

∂x

]
. (2.6)

The equilibrium equations are

∂σxx/∂x+ ∂σxy/∂y = 0, ∂σxy/∂x+ ∂σyy/∂y = 0. (2.7)

The system of equations consisting of (2.4), (2.6) and (2.7) is hyperbolic. The char-
acteristics of the stresses and the velocities coincide. Therefore, there are only two
distinct characteristic directions at a point. The characteristic curves are determined
by the equations:

dy/dx = tan(ψ −π/4), dy/dx = tan(ψ +π/4). (2.8)

The orientation of the algebraically greatest principal stress and characteristic curves
relative to the Cartesian coordinate system is illustrated in Fig. 2.1.
In what follows it is assumed that the two families of characteristics are curved. In
this case the equilibrium equations (2.7) are equivalent to Hill (1950)

p− p0+ 2k(ψ −ψ0) = 4kβ , p− p0− 2k(ψ −ψ0) =−4kα. (2.9)
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Fig. 2.1 Orientation of the al-
gebraically greatest principal
stress σ1 and characteristic
based coordinates (α ,β ) rela-
tive to Cartesian coordinates
(x,y) for yield criterion (2.4)

Here p = −(σxx + σyy)/2, p0 and ψ0 are constant. Solving (2.9) for p− p0 and
ψ −ψ0 yields

p− p0 = 2k(β −α), ψ −ψ0 = β +α. (2.10)

Let φ be the anticlockwise angular rotation of the α-line from the x-axis (Fig. 2.1).
It is seen from (2.8) that the characteristic curves are orthogonal. Therefore, the
anticlockwise angular rotation of the β -line from the x-axis is φ +π/2. The radii of
curvature R and S of the α- and β -lines are defined by the equations:

R−1 = ∂φ/∂ sα , S−1 =−∂ (φ +π/2)/∂ sβ =−∂φ/∂ sβ (2.11)

where ∂/∂ sα and ∂/∂ sβ are space derivatives taken along the α- and β -lines re-
spectively. It is seen from (2.8) that

ψ = φ +π/4. (2.12)

Therefore, Eqs. (2.11) are equivalent to

R−1 = ∂ψ/∂ sα , S−1 =−∂ψ/∂ sβ . (2.13)

It follows from the geometry of Fig. 2.1 that

∂x/∂ sα = cos(ψ −π/4), ∂x/∂ sβ =−sin(ψ −π/4),
∂y/∂ sα = sin(ψ −π/4), ∂y/∂ sβ = cos(ψ −π/4),

Using (2.10) and (2.13) these equations are transformed to

∂x/∂α = Rcos(ψ −π/4), ∂x/∂β = S sin(ψ −π/4),
∂y/∂α = Rsin(ψ −π/4), ∂y/∂β =−S cos(ψ −π/4).

(2.14)

The compatibility equations are
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∂ 2x

∂α∂β
=

∂ 2x

∂β ∂α
,

∂ 2y

∂α∂β
=

∂ 2y

∂β ∂α
(2.15)

Substituting (2.14) into these equations and taking into account (2.10) result in

∂R

∂β
cos

(
ψ − π

4

)
−Rsin

(
ψ − π

4

)
=

∂S

∂α
sin

(
ψ − π

4

)
+ S cos

(
ψ − π

4

)
,

∂R

∂β
sin

(
ψ − π

4

)
+Rcos

(
ψ − π

4

)
= − ∂S

∂α
cos

(
ψ − π

4

)
+ S sin

(
ψ − π

4

)

Solving these equations for ∂R/∂β and ∂S/∂α gives

∂R/∂β = S, ∂S/∂α =−R. (2.16)

It is evident from these equations that R and S separately satisfy (2.1). Once R and
S have been found, the dependence of x and y on α and β is determined from (2.14)
where ψ should be eliminated by means of (2.10). The dependence of the stresses
on α and β is found from

σxx =−p+ cos2ψ, σyy =−p− cos2ψ, σxy = k sin2ψ, (2.17)

where ψ and p should be eliminated by means of (2.10). Thus the dependence of the
stresses on x and y is given in parametric form with α and β being the parameters.

The Mikhlin coordinates x and y are defined by the equations

x = xcosφ + ysinφ , y =−xsinφ + ycosφ . (2.18)

These quantities are the coordinates of the point P under consideration referred to
axes passing through the origin O and parallel to the characteristic directions at P

(Fig. 2.2). Differentiating the first equation in (2.18) with respect to β and the second
with respect to α leads to

Fig. 2.2 Illustration of
Mikhlin coordinates
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∂x

∂β
=

∂x

∂β
cosφ − xsinφ +

∂y

∂β
sinφ + ycosφ ,

∂y

∂α
= − ∂x

∂α
sin φ − xcosφ +

∂y

∂α
cosφ − ysinφ .

(2.19)

It has been taken into account here that ∂φ/∂α = ∂φ/∂β = 1 due to (2.10)
and (2.12). Using (2.12) equations (2.8) can be rewritten as

∂y

∂α
cosφ − ∂x

∂α
sinφ = 0,

∂y

∂β
sinφ +

∂x

∂β
cosφ = 0. (2.20)

Substituting (2.18) and (2.20) into (2.19) gives

∂x/∂α =−x, ∂x/∂β = y. (2.21)

It is evident from these equations that x and y separately satisfy (2.1). Once x and y

have been found, the dependence of x and y on α and β is determined from (2.18)
where φ should be eliminated by means of (2.12) and then by means of (2.10). Thus
using (2.10), (2.12) and (2.17) the dependence of the stresses on x and y is given in
parametric form with α and β being the parameters.
Let us introduce a principal lines based coordinate system (ξ ,η) where ξ - and η-
lines are trajectories of the principal stresses σξ and ση , respectively. Let h be the
Lame coefficient for the ξ -lines. Then, it is always possible to choose the parameter-
ization of the η-lines such that the Lame coefficient for these lines is 1/h (Sadowsky,
1941). Assume that σξ ≡ σ1. Then, it follows from the geometry of Fig. 2.1 that

∂x

∂ξ
= hcosψ ,

∂x

∂η
=−1

h
sinψ ,

∂y

∂ξ
= hsinψ ,

∂y

∂η
=

1
h

cosψ . (2.22)

The compatibility equations are

∂ 2x

∂ξ ∂η
=

∂ 2x

∂η∂ξ
,

∂ 2y

∂ξ ∂η
=

∂ 2y

∂η∂ξ

Substituting (2.22) into these equations and rotating the (x,y) coordinate system
such that ψ = 0 result in

∂h

∂η
+

1
h

∂ψ

∂ξ
= 0,

1
h3

∂h

∂ξ
+

∂ψ

∂η
= 0. (2.23)

Using a standard procedure it is possible to show that this system of equations is
hyperbolic. Its characteristic lines are given by

dη/dξ =∓h2 (2.24)

and the relations along these lines by

dh∓ hdψ = 0. (2.25)
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The upper sign in (2.24) and (2.25) corresponds to the α- characteristic lines and
the lower sign to the β - characteristic lines (Fig. 2.1). Equation (2.25) can be imme-
diately integrated to give

lnh− (ψ −ψ0) = s(β ), lnh+(ψ −ψ0) = r(α). (2.26)

Here r(α) is an arbitrary function of α , s(β ) is an arbitrary function of β , and ψ0 is
constant. Assume that the two families of characteristic lines are curved. In this case,
different choices of the functions r(α) and s(β ) involved in (2.26) merely change
the scale of the α- and β -characteristic lines, respectively. Therefore, without loss of
generality it is possible to select r(α) = 2α and s(β ) =−2β . Then, (2.26) becomes

lnh− (ψ −ψ0) =−2β , lnh+(ψ −ψ0) = 2α.

Solving these equations for h and ψ −ψ0 yields

h = exp(α −β ), ψ −ψ0 = α +β . (2.27)

Equation (2.24) is equivalent to

∂η/∂α =−h2∂ξ/∂α, ∂η/∂β = h2∂ξ/∂β . (2.28)

Let us introduce the new variables µ and ν defined by

ξ = µ exp(β −α), η = ω exp(α −β ). (2.29)

Substituting (2.29) into (2.28) and eliminating h by means of (2.27) yields

∂ (µ +ω)/∂α = µ −ω , ∂ (ω − µ)/∂β = µ +ω . (2.30)

Differentiating the first of these equations with respect to β and the second with
respect to α and then eliminating the first derivatives with respect to α and β by
means of (2.30) lead to

∂ 2µ

∂α∂β
+

∂ 2ω

∂α∂β
=−µ −ω ,

∂ 2ω

∂α∂β
− ∂ 2µ

∂α∂β
= µ −ω

Solving these equations for ∂ 2µ/∂α∂β and ∂ 2ω/∂α∂β gives

∂ 2ω

∂α∂β
+ω = 0,

∂ 2µ

∂α∂β
+ µ = 0. (2.31)

Thus ω and µ separately satisfy (2.1). It follows from the geometry of Fig. 2.3 and
(2.13) that

R =
√

2h
∂ξ

∂α
, S =−

√
2h

∂ξ

∂β

Substituting (2.27) and (2.29) into these equations and using (2.30) yield
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Fig. 2.3 Orientation of ξ -
coordinate curves relative to
(α ,β ) and (x,y) coordinates

R =
√

2

(
∂ µ

∂α
− µ

)
=−

√
2

(
∂ω

∂α
+ω

)
,

S = −
√

2

(
∂ µ

∂β
+ µ

)
=−

√
2

(
∂ω

∂β
−ω

)
.

(2.32)

Using (2.27), (2.32) and the solution of (2.31) the right hand sides of the equations
in (2.14) can be expressed as functions of α and β . Therefore, the dependence of x

and y on α and β can be found from (2.14) by integration along any path. Then, us-
ing (2.29) and the solution of (2.31) it is possible to determine ξ and η as functions
of x and y in parametric form with α and β being the parameters.

Let u and v be the velocity components referred to the α- and β - characteristic lines.
The Geiringer equations are equivalent to Hill (1950)

∂u/∂α − v = 0, ∂v/∂β + u = 0. (2.33)

It is evident from this equation that u and v separately satisfy (2.1).

2.3 Pressure-Dependent Plasticity

The Mohr-Coulomb yield criterion is widely used in the mechanics of granular and
other materials (Cox et al, 2008; Goddard, 2014). The system of equations compris-
ing this criterion and the stress equilibrium equations under plane strain conditions
forms a statically determinate system. This system is hyperbolic (Spencer, 1964).
The Mohr-Coulomb yield criterion under plane strain conditions reads

q− psinϕ = ccosϕ (2.34)

where c is the cohesion, ϕ is the angle of internal friction and
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2p =−(σxx +σyy), 2q =
√
(σxx −σyy)2 + 4σ2

xy.

Both c and ϕ are constant. The characteristic lines are given by Spencer (1964)

dy/dx = tan(ψ −π/4−ϕ/2), dy/dx = tan(ψ +π/4+ϕ/2). (2.35)

The first equation determines the α-lines and the second the β -lines. The character-
istic relations along the α- and β -lines are

cotϕdq+ 2qdψ = 0, and cotϕdq− 2qdψ = 0, (2.36)

respectively.
In what follows it is assumed that the two families of characteristics are curved. In
this case equation (2.36) is equivalent to

cotϕ ln(q/q0)+2(ψ −ψ0) = 4β cosϕ , cotϕ ln(q/q0)−2(ψ −ψ0) =−4α cosϕ ,

where q0 and ψ0 are constant. It immediately follows from these equations that

ln(q/q0) = 2(β −α)sinϕ , ψ −ψ0 = (β +α)cosϕ . (2.37)

It is seen from (2.35) that the angle between the direction of the algebraically great-
est principal stress and each of the characteristic directions is constant and is equal
to π/4+ϕ/2 (Fig. 2.4). Therefore, Eqs. (2.11) and (2.13) for the radii of curvature
of the characteristic lines are valid. It follows from the geometry of Fig. 2.4 that

∂x

∂ sα
= cos

(
ψ − π

4
− ϕ

2

)
,

∂x

∂ sβ
=−sin

(
ψ − π

4
+

ϕ

2

)
,

∂y

∂ sα
= sin

(
ψ − π

4
− ϕ

2

)
,

∂y

∂ sβ
= cos

(
ψ − π

4
+

ϕ

2

)
.

Using (2.13) and (2.37) these equations are transformed to

Fig. 2.4 Orientation of the al-
gebraically greatest principal
stress σ1 and characteristic
based coordinates (α ,β ) rela-
tive to Cartesian coordinates
(x,y) for yield criterion (2.34)
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∂x

∂α
= Rcosϕ cos

(
ψ − π

4
− ϕ

2

)
,

∂x

∂β
= S cosϕ sin

(
ψ − π

4
+

ϕ

2

)
,

∂y

∂α
= Rcosϕ sin

(
ψ − π

4
− ϕ

2

)
,

∂y

∂β
=−S cosϕ cos

(
ψ − π

4
+

ϕ

2

)
.

(2.38)

Substituting these equations into the compatibility equations (2.15) and using (2.37)
yield

∂R

∂β
cos

(
ψ − π

4
− ϕ

2

)
−Rsin

(
ψ − π

4
− ϕ

2

)
cosϕ =

∂S

∂α
sin

(
ψ − π

4
+

ϕ

2

)
+ S cos

(
ψ − π

4
+

ϕ

2

)
cosϕ ,

∂R

∂β
sin

(
ψ − π

4
− ϕ

2

)
+Rcos

(
ψ − π

4
− ϕ

2

)
cosϕ =

− ∂S

∂α
cos

(
ψ − π

4
+

ϕ

2

)
+ S sin

(
ψ − π

4
+

ϕ

2

)
cosϕ .

Solving these equations for ∂R/∂β and ∂S/∂α results in

∂R/∂β +Rsinϕ = S, ∂S/∂α − S sinϕ =−R. (2.39)

It is evident that these equations reduce to (2.16) at ϕ = 0. The further analysis is
facilitated by the use of the following transformation equations

R = R0 exp [(α −β )sinϕ ] , S = S0 exp [(α −β )sinϕ ] . (2.40)

where R0 and S0 are new functions of α and β . Substituting (2.40) into (2.39) gives

∂R0/∂β = S0, ∂S0/∂α =−R0. (2.41)

It is evident from these equations that R0 and S0 separately satisfy (2.1). This result
has been obtained in Alexandrov (2015). Once R0 and S0 have been found, the
dependence of x and y on α and β is determined from (2.38) where R and S should
be eliminated by means of (2.40) and then ψ by means of (2.37). The dependence
of p, q and ψ on α and β immediately follows from (2.34) and (2.37). Then, the
stresses are found from

σxx =−p+ qcos2ψ , σyy =−p− qcos2ψ , σxy = qsin2ψ.

These relations and the solution for R0 and S0 combine to give the dependence of
the stresses on x and y in parametric form with α and β being the parameters.

The yield criterion

|σi −σ j|
2τs

+
|σ |
ps

= 1, i, j = 1,2,3, i 6= j (2.42)

is used for porous and powder materials Druyanov (1993). In equation (2.42), σ1,
σ2 and σ3 are the principal stresses, and τs and ps are prescribed functions of the
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porosity. In what follows, it is assumed that the porosity is uniformly distributed
and therefore τs and ps are constant. Assuming that the axis corresponding to the
stress σ3 is perpendicular to planes of flow, σ1 > σ2 and σ1 +σ2 +σ3 < 0 the yield
criterion (2.42) under plane strain conditions reduces to Druyanov (1993)

σ1(3ps − 4τs)−σ2(3ps + 2τs) = 6τs ps. (2.43)

Using the transformation equations for stress components it is possible to find that
(Fig. 2.5 a)

σxx =
σ1 +σ2

2
+

σ1 −σ2

2
cos2ψ, σyy =

σ1 +σ2

2
− σ1 −σ2

2
cos2ψ,

σxy =
σ1 −σ2

2
sin2ψ.

(2.44)

Substituting these equations into the equilibrium equations (2.7) yields to

∂ (σ1 +σ2)

∂x
+

∂ (σ1 −σ2)

∂x
cos2ψ − 2(σ1 −σ2)sin 2ψ

∂ψ

∂x
+

∂ (σ1 −σ2)

∂y
sin2ψ + 2(σ1 −σ2)cos2ψ

∂ψ

∂y
= 0,

∂ (σ1 +σ2)

∂y
− ∂ (σ1 −σ2)

∂y
cos2ψ − 2(σ1 −σ2)sin 2ψ

∂ψ

∂y
+

∂ (σ1 −σ2)

∂x
sin2ψ + 2(σ1 −σ2)cos2ψ

∂ψ

∂x
= 0,

(2.45)

One can always rotate the (x,y) coordinate system so that its axes coincide with
the principal stress directions at a given point (Fig. 2.5 b). Then ψ = 0 and equa-
tion (2.45) becomes

a) general case b) case ψ = 0

Fig. 2.5: Orientation of the algebraically greatest principal stress σ1 and charac-
teristic based coordinates (α,β ) relative to Cartesian coordinates (x,y) for yield
criterion (2.43)
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∂σ1

∂x
+(σ1 −σ2)

∂ψ

∂y
= 0,

∂σ2

∂y
+(σ1 −σ2)

∂ψ

∂x
= 0.

Using (2.43) to eliminate σ2 in these equations gives

∂σ1

∂x
+

6τs(σ1 + ps)

3ps + 2τs

∂ψ

∂y
= 0, (3ps − 4τs)

∂σ1

∂y
+ 6τs(σ1 + ps)

∂ψ

∂x
= 0. (2.46)

Appling a standard procedure it is possible to find that the angle γ between the
principal stress axis corresponding to the stress σ1 and each of the characteristic
lines is (Fig. 2.5 b).

γ = arctan

√
3ps − 4τs

3ps + 2τs

. (2.47)

Thus the system (2.46) is hyperbolic if 3ps > 4τs. This condition is usually satisfied
for porous and powder materials Druyanov (1993). Returning to the (x,y) coordinate
system shown in Fig. 2.5 a) the equations for characteristic lines can be written as

dy/dx = tan(ψ ∓ γ). (2.48)

Here and in what follows the upper sign corresponds to the α-lines and the lower
sign to the β -lines (Fig. 2.5). The characteristic relations are found from (2.46)
and (2.47) as √

(3ps − 4τs)(3ps + 2τs)

6τs(σ1 + ps)
dσ1 ∓ dψ = 0. (2.49)

In what follows it is assumed that the two families of characteristics are curved. In
this case integration in (2.49) yields

−
√
(3ps − 4τs)(3ps + 2τs)

6τs

ln

[
σ1 + ps

σ0

]
+(ψ −ψ0) = 2β sin2γ,

−
√
(3ps − 4τs)(3ps + 2τs)

6τs

ln

[
σ1 + ps

σ0

]
− (ψ −ψ0) = −2α sin2γ,

where σ0 and γ are constant. It immediately follows from these equations that

ψ −ψ0 = (α +β )sin2γ,

−
√
(3ps − 4τs)(3ps + 2τs)

6τs

ln

[
σ1 + ps

σ0

]
= (β −α)sin2γ.

(2.50)

It is seen from (2.47) that the angle between the direction of the algebraically great-
est principal stress and each of the characteristic directions is constant. Therefore,
equations (2.11) and (2.13) for the radii of curvature of the characteristic lines are
valid. It follows from the geometry of Fig. 2.5 a) that

∂x

∂ sα
= cos(ψ − γ),

∂x

∂ sβ
= cos(ψ + γ),

∂y

∂ sα
= sin(ψ − γ),

∂y

∂ sβ
= sin(ψ + γ).
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Using (2.13) and (2.50) these equations are transformed to

∂x/∂α = Rsin2γ cos(ψ − γ), ∂x/∂β =−S sin2γ cos(ψ + γ),
∂y/∂α = Rsin2γ sin(ψ − γ), ∂y/∂β =−S sin2γ sin(ψ + γ),

(2.51)

Substituting these equations into (2.15) and using (2.50) yield

∂R

∂β
cos(ψ − γ)−Rsin2γ sin(ψ − γ) = − ∂S

∂α
cos(ψ + γ)+ S sin2γ sin(ψ + γ),

∂R

∂β
sin(ψ − γ)+Rsin2γ cos(ψ − γ) = − ∂S

∂α
sin(ψ + γ)− S sin2γ cos(ψ + γ).

Solving these equations for ∂R/∂β and ∂S/∂α results in

∂R/∂β −Rcos2γ = S, ∂S/∂α + S cos2γ =−R. (2.52)

It is evident that these equations reduce to (2.16) at γ = π/4. The further analysis is
facilitated by the use of the following transformation equations

R = R0 exp [(β −α)cos2γ] , S = S0 exp [(β −α)cos2γ] , (2.53)

where R0 and S0 are new functions of α and β . Substituting (2.53) into (2.52) gives

∂R0/∂β = S0, ∂S0/∂α =−R0. (2.54)

It is evident from these equations that R0 and S0 separately satisfy (2.1). A similar
result has been obtained in Alexandrov and Lyamina (2015). Once R0 and S0 have
been found, the dependence of x and y on α and β is determined from (2.51) where
R and S should be eliminated by means of (2.53) and ψ by means of (2.50). The de-
pendence of σ1 and σ2 on α and β follows from (2.43) and (2.50). Then, the stresses
in the Cartesian coordinates are found from (2.44) and (2.50). These relations and
the solution for R0 and S0 combine to give the dependence of σxx, σyy and σxy on x

and y in parametric form with α and β being the parameters.

2.4 Planar Ideal Flows

Ideal plastic flows are those for which all material elements undergo minimum work
paths (Chung and Richmond, 1994). The theory of bulk ideal flow has been devel-
oped for rigid perfectly plastic solids satisfying Tresca’s yield condition and its as-
sociated flow rule. However, in the case of plane strain deformation any criterion
can be written in the form of Eq. (2.4). The existence of steady three-dimensional
ideal flows has been demonstrated in Hill (1967). This result has been extended to
non-steady flows in Richmond and Alexandrov (2002). A comprehensive overview
on the ideal flow theory and its applications has been provided in Chung and Alexan-
drov (2007).
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In the case of steady flows the ideal flow condition is that the steamlines are every-
where coincident with principal strain rate (and stress) directions. The general theory
for this type of ideal flow has been developed in Aleksandrov (2000). The magnitude
of the velocity vector is proportional to the scale factor h involved in (2.22). There-
fore, the solution for ξ and η given by (2.29) and (2.31) determines the streamlines
and the velocity field.

In the case of non-steady flow the ideal flow condition is that the principal lines coor-
dinate system (ξ ,η) may be taken to be fixed in the material so that it is Lagrangian.
Therefore, the solution for ξ and η given by (2.29) and (2.31) together with the
solution of (2.14) where R and S should be eliminated by means of (2.32) and ψ by
means of (2.27) supplies the mapping between the Largangian coordinates and the
Eulerian coordinates (x,y) in parametric form with α and β being the parameters.
The general theory for this type of ideal flow has been developed in (Richmond and
Alexandrov, 2000).

2.5 Conclusions

It has been demonstrated that a number of quantities in pressure-independent and
pressure-dependent plasticity satisfy the telegraph equation (2.1). These quantities
are shown in (2.16), (2.21), (2.31), (2.33), (2.41), and (2.54). In the case of ideal
flows ξ and η that are found by means of (2.29) and (2.31) have an additional
physical meaning explained in the previous section. The solution of (2.1) can be
found by means of (2.3) with a high accuracy. In particular, solutions found by this
method can be used to verify the accuracy of solutions found by other methods (Hill
et al, 1951).

Acknowledgements The author acknowledges financial support of this research through the grant
RSCF-16-49-02026.
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Abstract It is demonstrated that for corrugated plates, more generally, for cylindrical
plates three-dimensional periodicity cell problem of the homogenization theory can
be reduced to two-dimensional problem on the cross section of the periodicity cell.
The transition to two-dimensional problem significantly simplifies the numerical
analysis of corrugated plates (other non-numericalmethods are not effective if plate is
thick). Significant simplification of the problem is achivied in the case of the equality
of Poisson’s ratios of the plate components, in particular, for a plate made of single
homogeneous material. We present results of numerical analysis for a plate with a
sinusoidal corrugation. Both thin and thick plates are studied. For thin plates our
results demonstrate good agreement with the results presented in the recent paper
(Ye et al, 2014).
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3.1 Introduction

The problem of the computation of effective stiffness of corrugated plate attracts
attention of many researchers. The history of the problem is presented in Ye et al
(2014), where the beginning of the study is referred to 1923, noted an existence of
extensive literature on the subject, and actuality of the problem until now.
The actuality of the problem is explained by the following. On the one hand, corru-
gated plates are widely used in the modern engineering structures. On the other hand,
although geometry of corrugated plate is simple, it is impossible to obtain solution
of the three-dimensional elasticity problem for corrugated plate in the explicit form.
The use of approximate approaches leads to discrepancies in the results obtained
in the frameworks of various theories (the comparison of formulas for approximate
computation of effective stiffness of corrugated plate may be found in Ye et al (2014);
Xia et al (2012). The use in modern engineering structures of plates with corrugated
core (Buannic et al, 2003; Talbi et al, 2009; Bartolozzi et al, 2013) gives additional
stimulus for the development of methods for accurate computation of corrugated
plates.
The most progress in the computational analysis of corrugated plates was made on
the basis of two-dimensional shell theory (Ye et al, 2014; Xia et al, 2012) and the
homogenization theory (Andrianov et al, 1998; Arkhangelskii and Gorbachev, 2007;
Lee and Yu, 2011). The first approach works if the plate thickness is substantially
less both the length and the radius of curvature of corrugation. If this condition is
not met, the homogenization theory based on the three-dimensional elasticity theory
model should be applied (Caillerie, 1984; Kohn and Vogelius, 1984; Kalamkarov
and Kolpakov, 1997).
The starting point of our analysis is the observation that for corrugated plate, which
shape locally is similar to hollow cylinder, the three-dimensional periodicity cell
problems of the homogenization theory can be reduced to two-dimensional problems
on the cross-section of the periodicity cell. This makes it possible to perform numeri-
cal analysis for corrugated plates of arbitrary thickness, including computation of
the effective stiffness and the local strain/stress concentration tensors, using modern
engineering software (ANSYS, etc.) with high accuracy.
The most simplification of the original problem takes place in the case of the equal-
ity of Poisson ratios for the plate components, in particular for plates made of a
homogeneous material.
An addition simplification of the original problem takes place if corrugation is
symmetric. For this case, we obtain the universal relationships between the averaging
stiffness.
Previously, a transition to a problem on the cross-section of plate was done in
Lewinski (1985) for plates with piecewise flat cross-section. The analysis pre-
sented in Lewinski (1985) was based on the assumption that solution to the pe-
riodicity cell problem has the form Θ(y) = T (y1,y2) in the tension mode and
Θ(y) = T (y1,y2)+y3Z(y1,y2) in the bending mode (see Eqs. (16) in Lewinski, 1985)
that is typical for flat-plate theory. Our numerical experiments demonstrate that
this assumption may be accepted for plate with piecewise flat cross-section if the
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In Lee and Yu (2011), it was note that the problem of computation of stiffness of
corrugated plate, which is uniform along one of the in-plane directions, may be as-
sociated with two-dimension problem. This conclusion was done in the frameworks
of the variational asymptotic method (Lee and Yu, 2011), which allows omit one
variable (this is variable x1 in our notations, see Fig. 3.1) from the very beginning
of the analysis of the problem. It is not the case, which one meets by applying the
homogenization theory to the analysis of corrugated plates. In the homogenization
theory, the unit cell problems depend on all three spatial variables (see, e.g., exact
solutions to the unit cell problems for uniform plate in Kolpakov, 2010), while the
derivative of solution to unit cell problem depend on two variables. The account of
dependence of solution to unit cell problem on all variables is important for correct
reduction of dimension in the homogenization theory. More exactly, for some unit
cell problems we may simply omit x1 variable because it makes no contribution to
the unit cell problems. But for several unit cell problems, x1 makes contribution to
the corresponding two-dimensional problems. The last cases correspond to the bend-
ing of the plate in x1 direction and torsion of the plate. All the mentioned problems
are discussed in detail below.

Fig. 3.1: Corrugated plate (top) and plate with corrugated core (bottom)

thickness of the plate remains constant at the distance 10-20 times more than the
characteristic thickness of the plate. The assumption from Lewinski (1985) cannot be
applied to curvilinear plates, in particular, to corrugated plates. Results of numerical
computations presented in this paper illustrate this thesis.
Our method is based on the reduction of dimension of problem as a consequence of
the invariance of the problem in spatial variables. An approach based on the similar
idea was previously used in the homogenization procedure for helical-shaped beams
in Frikha et al (2013). The mentioned paper is the most close to our approach in
the sense of general idea – the use of invariance in the homogenization procedure
for thin-walled structures (plates, beams, etc.) when it exists. For solid composites
the mentioned idea was widely used, for example, for laminated composites. In
the technical sense, the problem considered in Frikha et al (2013), as well as the
problems related to solid composites, strongly differ from the problem under consid-
eration. The difference results from the difference of periodicity cell problems for
solid composites, plates and beams (Caillerie, 1984).
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3.2 Statement of the Problem

Consider a plate of periodic structure, which occupies three-dimensional cylindrical
region P formed by moving straight line L, called generatrix, perpendicularly two-
dimensional domain S of periodic structure – the cross section of the plate, see. Fig.
3.1. Denote the periodicity cell of the plate by εP (drawn in bold lines in Fig. 3.1),
where ε means the characteristic size of the periodicity cell (ε is also the characteris-
tic thickness of the corrugated plate “in whole”, do not confuse ε with the thickness
of the plate εh, see Fig. 3.1).

Without loss of generality, we can assume that the generatrix L is parallel to the axis
Oy1 and the periodicity cell may be represented in the form εP = [0,1]×εP0, where
εP0 is the periodicity cell of the cross-section C. If the characteristic dimension ε
is small in comparison with the in-plane size of plate, the original plate may be
substituted by a flat plate possessing so-called effective stiffness, see for details
(Caillerie, 1984; Kohn and Vogelius, 1984; Kalamkarov and Kolpakov, 1997).

To compute the effective stiffness of corrugated plate, we use the homogenization
method as applied to plates, developed originally in Caillerie (1984); Kohn and
Vogelius (1984). In accordance with the homogenization method as applied to plates,
we introduce the "fast" variables y = x/ε and it is solved the so-called periodicity
cell problems on the periodicity cell P = [0,1]× P0 (see Fig. 3.2), that have the
following form: find function NABν (y) as solution of the boundary-value problem






(ai jkl(y)N
ABν
k,l (y)+ (−1)νai jAB(y)y

ν
3 ), j = 0 in P,

(ai jkl(y)N
ABν
k,l (y)+ (−1)νai jAB(y)y

ν
3 )n j = 0 on Γ ,

NABν (y) periodic in y1,y2 ∈ S.

(3.1)

Here Γ is the lateral (free) surface of the periodicity cell; S is the projection of
periodicity cell onto the plane Oy1y2 (see Fig. 3.2.), ai jkl are elastic constants; n is
outer vector-normal on surface Γ . Hereafter Latin indices take the values 1, 2, 3. In
(3.1) A and B take the values 1 and 2; µ and ν take the values 0 and 1.

Fig. 3.2: Periodicity cell (left) and its cross-section (right) in the "fast" variables
y = x/ε
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Our consideration is concentrated on the plates made of isotropic material(s). Nev-
ertheless it is convenient to write the elastic constants in the general form, as ai jkl ,
keeping in mind that

ai jkl =
Eν0

(1+ν0)(1− 2ν0)
δi jδkl +

E

2(1+ν0)
(δikδ jl + δilδ jk),

where E and ν0 are Young’s modulus and Poisson ratio, respectively (we use nota-
tion ν0 for the Poisson ratio in order to distinguish this from the index ν , which is
traditionally used in the periodicity cell problem Caillerie, 1984; Kohn and Vogelius,
1984; Kalamkarov and Kolpakov, 1997).
Having solved problem (3.1), the effective stiffness D

ν+µ
ABΓ ∆ are computed by the for-

mula (Caillerie, 1984; Kohn and Vogelius, 1984; Kalamkarov and Kolpakov, 1997)
(A,B,Γ ,∆ = 1,2;µ ,ν =0, 1)

D
ν+µ
ABΓ ∆ =

1
|S|

∫

P

(aABkl(y)N
Γ ∆ν
k,l (y)+ (−1)νaABΓ ∆ (y)y

ν
3 )(−1)µy

µ
3 dy (3.2)

where S is projection of the periodicity cell P to the Oy1y2-plane, see Fig. 3.2
(left); |S| means the area of S. Values of the indices ν and µ such that ν + µ = 0
corresponds to in-plane stiffness D0

ABΓ ∆ , ν + µ = 1 corresponds to coupled (non-
symmetrical) stiffness D1

ABΓ ∆ , and ν + µ = 2 corresponds to bending stiffness
D2

ABΓ ∆ . The computation of stiffness in the way described above guarantees the
closeness of displacements and deflections of the original corrugated plate and flat
plate possessing the stiffness D

ν+µ
ABΓ ∆ (3.2), see for details Caillerie (1984); Kohn

and Vogelius (1984); Kalamkarov and Kolpakov (1997).

3.3 Dimension Reduction for the Periodicity Sell Problem

We assume that the elastic constants do not depend on the variable y1, i.e., they
have the form ai jkl(y2,y3). The coefficients of such kind describes the most prac-
tically important cases: plates made of homogeneous materials (ai jkl = const in
this case) and plates made of several homogeneous plates (ai jkl(y2,y3) is piecewise-
constant function in this case). We demonstrate now, that problem (3.1) with the
coefficients ai jkl(y2,y3) in the cylindrical periodicity cell P = [0,1]×P0 can be re-
duced to two-dimensional problems on the cross section P0 of the periodicity cell.

Denote M = ∂NABν

∂y1
the derivative of NABν(y) with respect to y1 (A,B = 1,2;ν =0,

1). Differentiating equations in (3.1) with respect to y1 and taking into account that
the derivatives of y3 and ai jkl(y2,y3) in y1are zero and the normal n j does not depend
on y1, we arrive at the problem






(ai jkl(y2,y3)Mk,l(y)), j = 0 in P0,
(ai jkl(y2,y3)Mk,l(y))n j = 0 on Γ0,
M(y) periodic in y2 ∈ [−L,L].

(3.3)
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L is displayed in Fig. 3.2 (2L is the period of the cross-section of the plate).

It is known (Caillerie, 1984; Kohn and Vogelius, 1984; Kalamkarov and Kolpakov,
1997) that solution to problem (3.3) is an arbitrary constant. This constant does
not affect the value of effective stiffness (3.2) because constant vanish under the
differentiation in formula (3.2). Take the constant equal to zero. Then M(y) = 0. It
means that NABν (y) does not depend on y1, being a function of two variables y2 and
y3: NABν(y) = NABν(y2,y3). Then the periodicity cell problem (3.1) takes the form
(in (3.4) δ ,κ = 2,3; i, k =1,2,3; A,B = 1,2;ν =0, 1)






(aiδkκ(y2,y3)N
ABν
k,κ +(−1)νaiδAB(y2,y3)y

ν
3 ),δ = 0 in P0,

(aiδkκ(y2,y3)N
ABν
k,κ +(−1)νaiδAB(y2,y3)y

ν
3 )nδ = 0 on Γ0,

NABν (y2,y3) is periodic in y2 ∈ [−L,L].

(3.4)

Periodicity cell problem for AB = 11, 22.

Consider problem (3.4) for i = 1. For isotropic material a1δAB = 0 (A,B = 1,2), and
only a1δ1δ 6= 0 among a1δkκ in (3.4) (in (3.4) Latin k = 1,2,3 and Greek δ ,κ = 2,3;
ν =0, 1). Then, for i = 1, we obtain from (3.4) the following problem with respect
to function NABν

1 (A,B = 1,2; A,B = 1,2; ν =0, 1; δ = 2,3):






(a1δ1δ (y2,y3)N
ABν
1,δ ),δ = 0 in P0,

(a1δ1δ (y2,y3)N
ABν
1,δ )nδ = 0 on Γ0,

NABν
1 (y2,y3) is periodic in y2 ∈ [−L,L].

(3.5)

Solution to (3.5) is a constant, which may be taken equal to zero: NABν
1 (y2,y3) = 0.

The remaining equations in (3.4) form the following two-dimensional elasticity the-
ory problem (in (3.6) γ,δ , ι,κ take values 2 and 3; A,B = 1,2; ν =0, 1):





(aγδ ικ(y2,y3)N
ABν
ι,κ +(−1)νaγδAB(y2,y3)y

ν
3 ),δ = 0 in P0,

(aγδ ικ(y2,y3)N
ABν
ι,κ +(−1)νaγδAB(y2,y3)y

ν
3 )nδ = 0 on Γ0,

NABν (y2,y3) is periodic in y2 ∈ [−L,L].

(3.6)

Demonstrate that for AB = 11, 22, expressions aγδAB(y2,y3)y
ν
3 may be represented

in the form aγδαβ (y2,y3)uα ,β (remind that indices α ,β ,γ,δ take values 2 and 3).
For this aim the system of algebraic equations

aγδαβ (y2,y3)eαβ = aγδAB(y2,y3)y
ν
3 (3.7)

must be solved. In (3.7), eαβ means uα ,β (by virtue of the symmetry of the elastic
constants, they are equal to the infinitezimal strains).

Construction of displacements u for AB = 11. For this case, (3.7) takes the form
(ν =0, 1)






a2222(y2,y3)e22 + a2233(y2,y3)e33 = a2211(y2,y3)y
ν
3 ,

a2323(y2,y3)e23 = 0,
a3322(y2,y3)e22 + a3333(y2,y3)e33 = a3311(y2,y3)y

ν
3 .

(3.8)
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Since it is assumed the material is isotropic, we obtain the following solution to (3.8)

e22 = e33 =
a2211(y2,y3)

a2222(y2,y3)+ a2233(y2,y3)
yν

3 , e23 = 0 (3.9)

For isotropic materials

a2211(y2,y3)

a2222(y2,y3)+ a2233(y2,y3)
= ν0(y2,y3),

where ν0(y2,y3) is the Poisson’s ratio.

Next we consider plate made of a material with constant Poisson’s ratio. It may
be a plate made of a single homogeneous material like in Fig. 3.1 (top) or a plate
assembled of several structural elements made of materials with the same Poisson’s
ratios like in Fig. 3.1 (bottom). For this case fraction in (3.9) takes constant value
equal to ν0 and Eq. (3.9) takes the form e22 = e33 = ν0yν

3 , e23 = 0. Strains, which
are linear functions of coordinates, satisfy the compatibility equation (Kolpakov,
2010), thus there exist displacements, which generate the strains above. Compute
these displacements. For ν = 0, Eq. (3.9) take the form

u2,2 = ν0, u3,3 = ν0, u2,3 + u3,2 = 0 (3.10)

Solution to (3.10) is evident

u2 = ν0y2, u3 = ν0y3 (3.11)

The case ν = 1 needs some more computations. For this case (3.9) has the form

u2,2 = ν0yν
3 , u3,3 = ν0yν

3 , u2,3 + u3,2 = 0 (3.12)

From the first and second equations in (3.12), we derive the following representa-
tions for u2 and :

u2 = ν0y2y3 + f (y3), u3 =
ν0

2
y2

3 + g(y2). (3.13)

Substituting (3.13) into the third equation in (3.12), we obtain the following equa-
tion: ν0y2 + f ′(y3)+ g′(y2) = 0. This equation is satisfied by the functions g(y2) =
−ν0y2

2/2 and f (y3) = 0. Finally, we obtain solution to (3.9) for ν = 1:

u2 = ν0y2y3, u3 =
ν0

2
y2

3 −
ν0

2
y2

2 (3.14)

Construction of displacements u for AB = 22. This case corresponds to the standard
homogenization procedure as applied to plates and it was considered in Kolpakov
(2010). In this connection, we present the results in condensed form. The system of
equations (3.7) has in this case the form (ν =0, 1)
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



a2222(y2,y3)e22 + a2233(y2,y3)e33 = a2222(y2,y3)y
ν
3 ,

a2323(y2,y3)e23 = 0,
a3322(y2,y3)e22 + a3333(y2,y3)e33 = a3322(y2,y3)y

ν
3 .

(3.15)

Solution to (3.15) is
e22 = yν

3 , e33 = 0, e23 = 0 (3.16)

For ν = 0, displacements corresponding to (3.16) are

u2 = y2, u3 = 0 (3.17)

For ν = 1, (3.16) takes the form

u2,2 = y3, u3,3 = 0, u2,3 + u3,2 = 0 (3.18)

From the first and the second equations in (3.18), we obtain

u2 = y2y3 + f (y3), u3 = g(y2) (3.19)

Substituting (3.19) into Eq. (3.18)3, we obtain y2 + f ′(y3)+ g′(y2) = 0. One can
take functions g(y2) =−y2

2/2 and f (y3) = 0 as solution to this equation. Finally, we
obtain

u2 = y2y3, u3 =−1
2

y2
2 (3.20)

Next, we will mark the solutions (3.11), (3.14), (3.17), and (3.20) by the correspond-
ing indices AB and ν , and write u(y2,y3) in the form uABν (y2,y3).

For the function MABν (y2,y3) = NABν(y2,y3)+ (−1)νuABν (y2,y3), problem (3.6)
takes the form





(aγδ ικ(y2,y3)M
ABν
ι,κ ),δ = 0 in P0,

aγδ ικ(y2,y3)M
ABν
ι,κ (y2,y3)nδ = 0 on Γ0,

MABν (y2,y3)− (−1)νuABν (y2,y3) periodic in y2 ∈ [−L,L].

(3.21)

Problem (3.21) is more convenient, especially for numerical analysis, than the orig-
inal periodicity cell problem (3.6) because it does not involve the "mass" and "sur-
face" forces, which present in the original periodicity cell problem (3.6) in the form
not usual for engineering software.

Periodicity cell problem for AB = 12

In the case under consideration, for i = 1, we obtain from (3.5) the following prob-
lem with respect to one function N12ν

1 (y2,y3)(δ = 2,3;ν =0, 1):






(a1δ1δ N12ν
1,δ +(−1)νa1δ12yν

3 ),δ = 0 in P0,

(a1δ1δ N12ν
1,δ (y2,y3)+ (−1)νa1δ12yν

3 )nδ = 0 on Γ0,

N12ν
1 (y2,y3) periodic in y2 ∈ [−L,L].

(3.22)

The remaining (i = γ = 2,3) equations for the following two-dimensional elasticity
theory problem (γ,δ , ι,κ = 2,3; ν = 0, 1):
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



(aγδ ικ N12ν
ι,κ +(−1)νaγδ12yν

3 ),δ = 0 in P0,

(aγδ ικ N12ν
ι,κ (y2,y3)+ (−1)νaγδ12yν

3 )nδ = 0 on Γ0,

N12ν(y2,y3) periodic in y2 ∈ [−L,L].

(3.23)

Since for isotropic material aγδ12 = 0 (γ,δ =2,3), problem (3.23) takes the form
(γ,δ , ι,κ = 2,3;ν =0, 1)





(aγδ ικ N12ν
ι,κ ),δ = 0 in P0,

aγδ ικ N12ν
ι,κ (y2,y3)nδ = 0 on Γ0,

N12ν(y2,y3) periodic in y2 ∈ [−L,L].

Solution to this problem is vector-constant (Caillerie, 1984; Kohn and Vogelius,
1984; Kalamkarov and Kolpakov, 1997), which may be taken equal to zero. Thus,
the periodicity cell problem for AB = 12 is reduced to the problem (3.22) for one
differential equation with respect to scalar function N12ν

1 (y2,y3).

Problem (3.22) describes anti-plane deformation (Barber, 2011). Also, it may be
treated as thermo-conductivity problem. We shall check if it is possible to represent
the free term in (3.22) in the form (−1)νa1δ1δ w,δ (δ = 2,3). Write the equation
(ν = 0, 1)

a1δ1δ w,δ = (−1)νa1δ12yν
3 (3.24)

For δ = 2 and δ = 3, we obtain from (3.24) that a1212w,2 = (−1)νa1212yν
3 and

a1313w,3= 0. From these equalities, we obtain the following system of differential
equations

w,2= (−1)νyν
3 , w,3 = 0 (3.25)

For ν = 0, the system (3.25) takes the form w,2 = 1, w,3= 0. This system is in-
tegrable and its solution is w(y2,y3) = y2. Introducing function M120(y2,y3) =
N120

1 (y2,y3)+y2, we can rewrite (3.22) in the form of boundary-value problem with-
out “mass” and “surface” forces:





∆M120 = 0 in P0,
∂M120

∂n
= 0 on Γ0,

M120(±L,y3)− y2 periodic in y2 ∈ [−L,L].

(3.26)

For ν = 1, the system (3.25) takes form w,2 = −y3, w,3= 0. This system is not in-
tegrable. Really, the necessary integrability condition is not satisfied for this system
because w,23= −y3,3= 1 = w,32= 0. For ν = 1, we can rewrite problem (3.22) in
the form 




∆N121
1 = 0 in P0,

∂N121
1

∂n
(y2,y3)− y3n2 = 0 on Γ0,

N121
1 (y2,y3) periodic in y2 ∈ [−L,L]

(3.27)

suitable for computations below.



58 Boris D. Annin, Alexander G. Kolpakov & Sergei I. Rakin

Multi-connected cross-section

In multi-element structure, for example, plate with corrugate core, the cross-section
of structure is multi-connected domain, i.e. contains internal openings (holes), see
Fig. 3.1 (bottom). The normal stress on the boundaries ΓI of the internal openings
is zero. It leads to the arising of additional boundary condition, which sounds as
(γ,δ , ι,κ = 2,3;A,B = 1,2; ν =0, 1)

(aγδ ικ (y2,y3)N
ABν
ι,κ (y2,y3)+ (−1)νaγδAB(y2,y3)y

ν
3 )nδ = 0 on ΓI

By using the functions uABν , we can rewrite this boundary condition as

aγδ ικ(y2,y3)M
ABν
ι,κ (y2,y3)nδ = 0 on ΓI

3.4 Symmetric Corrugation

Many corrugated plate used in industry have symmetric structure - the cross-section
P0 of the periodicity cell is symmetric with respect to Oy3-axis, see Figs. 3.2 and
3.3. As a consequence, solutions to the problems (3.6) and (3.22) have the same
symmetry. Consider problem (3.6), which is two-dimensional elasticity problem.
By virtue of the symmetry, the displacements NABν

2 (A,B = 1,2;ν =0, 1) and the
normal stresses vectors σnon the boundaries of a single periodicity cell should look
as it is shown in Fig. 3.3 on the left. By virtue of the periodicity, the displacement
NABν

2 and the normal stresses vector σn on the boundaries of adjacent periodicity
cell must look as it is shown in Fig. 3.3 on the right.

Continuous conjugation of the displacement and normal stress on the boundaries of
the adjacent cells shown in Fig. 3.3 is possible only if NABν

2 and σ23 are zero on the
boundaries of the adjacent cells, i.e.,

NABν
2 (±L,y3) = 0, σ23(±L,y3) = 0 (3.28)

Conditions (3.28) replace the periodicity conditions in (3.21).

Fig. 3.3: Interface frequency adjacent cells which are symmetrical about the axis
Oy3
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Rewrite Eqs. (3.28) in the terms of functions MABν = NABν +(−1)νuABν (y2,y3)
(A,B = 1,2; ν =0, 1). The stresses σ23, corresponding to displacement uABν(y2,y3),
by construction are equal to a23AB(y2,y3)y

ν
3 , see (3.7). For isotropic materials

a23AB = 0 for indices AB =11, 12, 21, 22,. Then the second equality in (3.28) holds
both for NABν(y2,y3) and NABν(y2,y3). As far as first equality in (3.28), there ex-
ist two different cases: AB = 11 and AB = 22. For the case AB = 11, taking into
account definition of the function u11ν(y2,y3) (3.11) and (3.14), we obtain the fol-
lowing equations on the boundaries y2 =±L(ν =0, 1):

M11ν
2 (±L,y3) =±ν0Lyν

3

For AB = 22, taking into account definition of the function (3.17) and (3.20), we
obtain the following equations on the boundaries y2 =±L:

M22ν
2 (±L,y3) =±Lyν

3

Finally, we arrive at the problem





(aγδ ικ(y2,y3)M
ABν
ι,κ ),δ = 0 in P0,

aγδ ικ(y2,y3)M
ABν
ι,κ (y2,y3)nδ = 0 on Γ0,

σ23 = a23ικ(±L,y3)M
ABν
ι,κ (±L,y3) = 0,

MABν (±L2,y3) =±cLyν
3 ,

(3.29)

where c = ν0 for AB = 11 and c = ν0 for AB = 22 (ν =0, 1).

Problem (3.22) for ν = 0 or equivalent problems (3.26), may be transformed into




∆M120 = 0 in P0,
∂M120

∂n
= 0 on Γ0,

M120(±L,y3) =±L.

Elementary transformations do not allow transform problem (3.22) for ν = 1 (or
equivalent problem (3.27)) into a problem without "mass" and "surface" forces.
Problem (3.27) may be transformed into suitable form by introduction of conjugate
function (see below).

Stiffness D
ν+µ
2222 , D

ν+µ
1111 , D

ν+µ
1122 , D

ν+µ
2211

Computing the stiffness indicated above, we use solutions to periodicity cell with in-
dices AB= 11, 22. Write formula for the computation of the effective stiffness in the
terms of solution to the reduced problems. Taking into account that in the case un-

der consideration Nαβ ν(y) = (0,Nαβ ν
2 (y2,y3),N

αβ ν
3 (y2,y3)), we obtain from (3.2)

(A,B,Γ ,∆ = 1,2; ν,µ =0, 1)

D
ν+µ
ABΓ ∆ =

1
|S|

∫

P

(aABικ (y)N
Γ ∆ν
ι,κ (y)+ (−1)νaABΓ ∆ (y)y

ν
3 )(−1)µy

µ
3 dy (3.30)
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In order to compute stiffness D
ν+µ
1111 , problem (3.29) is solved for AB = 11. After

that the stiffness D
ν+µ
1111 are computed in accordance with (3.30) as

D
ν+µ
1111 =

1
|S0|

∫

P

(a11ικ(y2,y3)N
11ν
ι,κ (y2,y3)+ (−1)νa1111(y2,y3)y

ν
3 )(−1)µy

µ
3 dy2dy3.

Substituting N11ν(y2,y3) = M11ν (y2,y3)− (−1)νu11(y2,y3), we obtain

D
ν+µ
1111 =

1
|S|

∫

P

(a11ικ(y2,y3)M
11ν
ι,κ (y2,y3)− (−1)νa11ικ(y2,y3)u

11ν
ι,κ (y2,y3)+

+(−1)νa1111(y2,y3)y
ν
3 )(−1)µy

µ
3 dy2dy3

(3.31)
Taking into account (3.9), we obtain

−a11ικu11ν
ι,κ + a1111yν

3

=− (a1122(y2,y3)+ a1133(y2,y3))a2211(y2,y3)

a2222(y2,y3)+ a2233(y2,y3)
yν

3 + a1111(y2,y3)y
ν
3 .

For isotropic material, this expression is equal to E(y2,y3)y
ν
3 (E is Young’s modulus)

and (3.31) takes the form

D
ν+µ
1111 =

1
|S|

∫

P

(a11ικ(y2,y3)M
11ν
ι,κ (y2,y3)+ (−1)νE(y2,y3)y

ν
3 )(−1)µy

µ
3 dy2dy3

(3.32)
In order to compute stiffness D

ν+µ
2222 , problem (3.29) is solved for AB = 22. After

that the stiffness are computed in accordance to the formula (3.30) as

D
ν+µ
2222 =

1
|S|

∫

P

a22ικ(y2,y3)M
22ν
ι,κ (y2,y3)(−1)µy

µ
3 dy2dy3. (3.33)

Bearing into mind that aαβ ικ(y2,y3)M
ABν
ι,κ (y2,y3) is stress σαβ (y2,y3), we can

rewrite formula (3.33) as

D
ν+µ
2222 =

1
|S|

∫

P

σ22ν
22 (y2,y3)(−1)µy

µ
3 dy2dy3 (3.34)

Stiffness D
ν+µ
1122 , D

ν+µ
2211

It is known, see, e.g., Caillerie (1984); Kohn and Vogelius (1984); Kalamkarov and
Kolpakov (1997) that D

ν+µ
1122 = D

ν+µ
2211 (ν,µ =0, 1). Then, we may computer one of

these values. Consider

D
ν+µ
2211 =

1
|S|

∫

P

(a22ικ(y2,y3)M
11ν
ι,κ (y2,y3)+ (−1)νa2211(y2,y3)y

ν
3 )(−1)µy

µ
3 dy2dy3.
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Taking into account that N11ν(y2,y3) =M11ν(y2,y3)−(−1)νu11ν(y2,y3), we obtain
with regard to (7, AB = 11)

D
ν+µ
2211 =

1
|S|

∫

P

a22ικ(y2,y3)M
11ν
ι,κ (y2,y3)(−1)µy

µ
3 dy2dy3. (3.35)

In the similar way, we obtain with regard to (7, AB = 22)

D
ν+µ
1122 =

1
|S|

∫

P

(a11ικ(y2,y3)M
22ν
ι,κ (y2,y3)(−1)µ+νy

µ+ν
3 dy2dy3. (3.36)

3.5 Numerical Example 1 - Computation of Effective Stiffness of

thin Corrugated Shells

The aim of or paper is analysis of thick (at least not very thin) plates. The theoretical
analysis presented above (as well in the last section “Universal relations between the
effective stiffness of corrugated plate”) is universal, i.e., valid for plates of arbitrary
thickness. We meet restriction for our method when we solve the unit cell problems
numerically. This restriction is related not with the homogenization method, but with
the fact that general finite element procedures are not adapted to thin domains. For
thin plates, methods similar to one presented in Ye et al (2014) looks like the best.
For not extremely thin plates out method gives stable computational results (except
one case discussed below). It makes possible compare results of our computations
with the results of other investigators.
Available results on the computation of the effective stiffness of corrugated plates
are limited to thin plates. One of the latest papers on the subject is Ye et al (2014),
which presents new formulas for computation of effective stiffness of thin corru-
gated plates as well as other formulas, which the authors (Ye et al, 2014) character-
ized as generally accepted.
We applied our method to compute effective stiffness of thin-walled corrugated plate
considered in Ye et al (2014). The characteristics of corrugation were taken like in
Ye et al (2014): it is sinusoidal corrugation with the length (period) 2L =0.64m
and height 0.11m; thickness h = 0.005m, see Fig. 3.2; plate material characteristics:
Young’s modulus 30GPa, Poisson ratio 0.2. At the indicated size corrugation peri-
odicity cell is a thin shell – the thin-wallness parameter h/2L is 0.005/0.64=0.0078
(remind that a shell is accepted as thin-walled if the thin-walled parameter h/2L is
less than 1/20 Timoshenko, 1961).
Table 3.1 presents the effective stiffness computed in accordance to formula (3.33)
and (3.31), and the effective stiffness computed in Ye et al (2014) by using the formu-
las derived in [1] (concerning D2

1212, see below). All coupling stiffness D1
αβ αβ = 0

(α,β =1, 2) due to the symmetry of the plate under consideration with respect to
the plane y3 = 0. As demonstrated below (see formula (3.45) in the section “Univer-
sal relations between the effective stiffness of corrugated plate”, for plate made of
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Table 3.1: Effective stiffness

Formula D0
2222

N/m
D2

2222
N·m

D0
1111

N/m
D2

1111
N·m

D0
1212

N/m
D2

1212
N·m

D0
1122

N/m
D2

1122
N·m

(3.33), (3.35), (3.43) 46458 251 187155658 1026941 50172461 161 92916 50
[1] 47613 261 187080000 1025540 50113000 162 9523 52

homogeneous material D
ν+µ
1122 = ν0D

ν+µ
2222 . Similar formula was obtained early in Ye

et al (2014). As a result, D0
1122 and D2

1122 coincide with the values listed in Ye et al
(2014) with the accuracy proportional to the difference between D0

2222 and D2
2222 in

Table 3.1 (i.e. with error less than 5%) and D1
1122 = 0.

In order to estimate the accuracy of numerical computations, stiffness D0
2222 and

D2
2222 were computed in two different ways - by using formula (3.33) and formula

(3.34). The computed values are presented in Table 3.2 From the mathematical anal-
ysis of the problem it follows that values computed by using formulas (3.33) and
(3.34) must be equal. Relatively differences between the computed values are 0.33%
and 0.375%, which is usually accepted as very good accuracy in the engineering
computations.
In the numerical computations it was used about 25,000 two-dimensional triangular
finite elements (about 10 elements through the thickness of the plate). Solution of
the problem (3.29) took about 1 minute. Computations of the integrals (3.33) and
(3.35) took negligible time.

3.6 Computation of the Effective Stiffnesses D2
1212, D2

2121 for Thin

Plates

The standard method of computation of the effective stiffness is based on the solu-
tion of boundary-value problem (3.27), and than applying Eq. (3.2), which may be
written in the form

D2
1212 =− 1

|S|

∫

P

a121κ(y)N
121
1,κ (y)y3dy+

1
|S|

∫

P

a1212(y)y
2
3dy (3.37)

We found that standard method is not effective for thin shell. It is the results of ap-
pearance of contrast values in this computation scheme if plate is thin. In the exam-

Table 3.2: Effective stiffness

Formula D0
2222N/m N·m

(3.33) 46458 250.9
(3.34) 46304 250
Relatively difference 0.33% 0.375%
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ple considered above, numerical values of integrals in (3.37) are of order of 106 (for
example, integral |S|∫P y2

3dy2dy3/E =420629), while the effective stiffness D2
1212,

D2
2121 are values of the order of 102 (the torsion stiffness of flat plate of the thickness

h= 0.005 may be used as estimate, it is Eh3/[24(1+ν)]≈ 130). In other words, the
result value in (3.37) has of order of 0.01% (one hundred percent) of the subtracted
values. Although the problem (3.29) is quite simple, ANSYS does not guarantee its
solutions with the accuracy 0.01%. As a result, the computational procedure based
on (3.29), (3.37) is unstable: small relative error in the computation of integrals
(3.37) leads to a large relative error in computation of their difference. When using
the approach based on (3.29), (3.37), the authors observed fluctuations of result in
a range from 50 to 200 due to variations of parameters of ANSYS project, such
as shape of finite element, methods for defining boundary conditions, etc., which
slightly influence the final result in a stable computational procedure.

Note that the problem of contrast values presents in all problems formulated in the
form (3.1), (3.2). The problem of contrast values is removed by the introduction
of auxiliary functions uABν and w, whose addition to the solution, vanish “mass”
and “surface” forces. Such the auxiliary functions exist for all the periodicity cell
problems except only the problem under consideration. Really, it is possible to re-
move forces (−1)νa1δ12yν

3 if and only if the system (3.25) is integrable. But it is not

integrable for ν = 1.

We propose a method of computation of effective stiffness D2
1212, D2

2121, which con-
tains no contrast values for thin shells. We introduce the function ψ by the following
conditions:

ψ,3 = N121
1,2 − y3, ψ,2 =−N121

1,3 . (3.38)

Equations (3.38) are similar to the definition of conjugate function (Kolpakov, 2010).
Equality (N121

1,2 − y3),2 = −N121
1,33, which follows from the equation ∆N121

1 = 0 in
(3.27), guarantees existence of the functions ψ possessing property (3.38) .

Differentiating (3.38), we obtain

ψ,33 = N121
1,23 − 1, ψ,22 =−N121

1,32. (3.39)

By adding the equations in (3.39), we obtain equation

∆ψ =−1 in P0 (3.40)

Rewrite the boundary conditions on the top and the bottom boundaries Γ0 in (3.29)
in the form (N121

1,2 − y3)n2 +N121
1,3 n3 = 0. This equation may be written as

∂ψ

∂ s
= ψ,3n2 −ψ,2n3 = 0 (3.41)

where ∂
∂ s

means the derivative along the boundary (line) Γ0. By virtue of (3.41), the
function ψ is constant on the top and the bottom boundaries of the periodicity cell.
Without loss of generality, we can assume that ψ = 0 on the bottom boundary.

Function ∂N121
1 /∂n is periodic in y2 ∈ [−L,L]. Since
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∂N121
1

∂n
= ψ,3n2 + y3n2 −ψ,2n3 =

∂ψ

∂ s
+ +y3n2,

then ∂ψ/∂ s is periodic y2 ∈ [−L,L]. Then

ψ(y2,y3) =

y2∫

H−h/2

∂ψ

∂ s
ds

take the same values for y2 =±L. The quantity

ψ(L,H + h/2) =

H+h/2∫

H−h/2

∂ψ

∂ s
ds =

H+h/2∫

H−h/2

∂M121
1

∂n
ds

is equal to the non-symmetric (coupling) stiffness D1
1212, which is zero. This follows

from the symmetry of the solution to the periodicity cell problem (3.26) (remind that
D1

1212 may be computed through solution to problem (3.26) as well as solution to
problem (3.27), see Eq. (3.2) and [9] for details). Then ψ = 0 on the top boundary.

As a result, we obtain the boundary conditions for equation (3.40)
{

ψ(y2,y3) = 0 on Γ0,
ψ(y2,y3) is periodic in y2 ∈ [−L,L].

(3.42)

From (3.37) and (3.38), we obtain

D2
1212 =− 1

|S|

∫

P

a1212ψ,3(y2,y3)y3dy2dy3 (3.43)

There are no contrast values in the problem (3.40), (3.42) and formula (3.43). The
stiffness D2

1212 presented in Table 3.1 was computed by using the method presented
in this section.

3.7 Numerical Example 2 - Corrugated Plates of Arbitrary

Thickness

We present results of our computation of effective stiffness D0
2222 for corrugated

plates in wide diapason of thin-walled parameter h/2L. We consider corrugations
which may be accepted as thin-walled and which cannot be accepted as thin-walled
structures.

We analyze corrugated plate described in Example 1 (sinusoidal, length 2L =0.64m,
height 0.11m; Young’s modulus 30GPa, Poisson ratio 0.2). Now, the thickness of
plate changes from 0.005 to 0.08. Remind that the critical value of the thin-walled
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parameter h/2L, which separates thin-walled shells from thick shells is accepted as
1/20 (Huber, 1923).

In Tables 3.3 and 3.4, we present values of effective stiffness D0
2222 computed by

using our method and formula (3.12) from Ye et al (2014). Table 3.3 contains data
for plates which may be accepted as thin-walled (the thickness of plate changes
from 0.005 to 0.03, h/2L<1/20). Table 3.4 contains data for plates, which cannot
be accepted as thin-walled (the thickness of plate takes values 0.06 and to 0.08,
h/2L>0.09). We observe that the effective stiffness computed by using our method
(developed with no restrictions on the plate thickness) and formulas from Ye et al
(2014) (derived under condition that the plate is thin-walled structure) are close. For
thin plates D0

2222 computed by using formula (3.12) from Ye et al (2014) is greater
than the homogenized stiffness D0

2222 (3.33) ν +µ = 0. If apply formula (3.12) from
[1] for thick plates, one finds that D0

2222 approaches the homogenized stiffness D0
2222

(3.33) ν+µ = 0 for h/2L≈ 0.1 and that became less than the homogenized stiffness.
The “good agreement” between stiffness D0

2222 predicted by formula (3.12) from Ye
et al (2014) and the homogenization theory is an example of surprises, which one
can meet when apply approximate formulas.

Note that theoretically stiffness computed by using formula (3.12) from Ye et al
(2014) and computed with the exact homogenization method must coincide asymp-
totically as h → 0. But here we meet the situation when the approximated method
from Ye et al (2014), which is asymptotic in nature, works better than the homog-
enization method coupled with the finite element computations. It is not an insuffi-
cient of the homogenization theory, but insufficient of finite element method, which
usually loss accuracy in very thin domains. An alternative to the application of the
finite element computations is the development of method based on the approxima-
tion of the unit cell problem of the homogenization theory by shell theory problem.
This paper is devoted to thick plates rather than thin ones and we do not discuss
approximation of the unit cell problem by shell theory problem here.

Present simple approximate formulas taken from Ye et al (2014) (the number of the
formulas in Ye et al (2014) are (3.6) and (3.9))

Table 3.3: Stiffness D0
2222 for plates which may be accepted as thin-walled

h 0.005 0.007 0.01 0.015 0.02 0.03
h/2L 0.008 0.011 0.016 0.023 0.031 0.047
D0

2222 (3.33) ν +µ = 0 46458 125963 368443 1228437 2919025 9760250
D0

2222 [1] 45215 124030 361400 1218000 2881300 9668700
Discrepancy % 3% 2% 2% 1% 1% 1%

Table 3.4: Stiffness D0
2222 for plats which cannot be accepted as thin-walled

h 0.06 0.08
h/2L 0.09 0.125
D0

2222 (3.33) ν +µ = 0 75324063 172466250
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D0
1111 = sEh, D0

2222 =
Eh3

6(1−ν2)T 2 , D0
1122 = νD0

1111, D0
1212 =

1
s

Eh

2(1+ν)
,

D2
1111 = EI, D2

2222 =
1
s

Eh3

12(1−ν2)
, D2

1122 = νD2
1111, D2

1212 =
1
s

Eh3

24(1+ν)
(3.44)

(s is the length of the corrugation divided by length of period, see Fig. 3.2, I is the
moment of inertia along the corrugation direction) are presented.

Table 3.5 presents the effective stiffness D2
2222 computed using our method and for-

mula from (3.44) for various values of the thickness h.

In Table 3.6 non-zero stiffness of sinusoidal corrugated plate for thickness h = 0.06
(this is the thick plate) are presented. Coupling stiffness D1

αβ αβ = 0 due to the sym-
metry of the plate.

Note that formulas (3.44) for h = 0.06 and h = 0.08 provide us with the reference
values, only, because these formulas were derived for thin plates. It is the reason
why we select the most simple formulas from Ye et al (2014), although Ye et al
(2014) presents numerous more accurate formulas. For this reason, we save in the
reference values only the first two digits, to underline those approximate nature.

The significant difference between results of our computations and predictions of
the theory of thin-walled shells (Kirchhoff-Love hypothesis (Huber, 1923), Hencky-
type constraints (Lewinski, 1985)) are observed for the local stress/strain state of
thick corrugations is analyzed. In thin-walled corrugations the stress/strain state fol-
lows to Kirchhoff-Love hypothesis, they are linear in the coordinate perpendicular
to middle surface of the corrugation. This type of stress/strain state was observed in
all our computations for thin walled corrugations.

Figure 3.4 displays local stress intensity S corresponding to solution to the cellular
problem (3.29) for thickness h = 0.08. Solution corresponds to the overall defor-
mation mode “tension of corrugated plate in the direction perpendicular to corruga-
tions”, see Fig. 3.1. The corresponding thin-walled parameter is h/2L =0.125>1/20.

Table 3.5: Stiffness D2
2222 for various value of the plate thickness

h D2
2222 (3.44) (3.33) ν +µ = 2

0.005 266 259
0.06 450000 421292
0.08 1000000 1020016

Table 3.6: Stiffness of corrugated plate for h = 0.06

D0
1111 D2

1111 D0
2222 D2

2222 D0
1212 D2

1212 D0
1122 D2

1122
22425966437 13150570 75324063 421292 606535156 279887 15064813 84258

(3.44) 22000000000 12000000 92000000 450000 600000000 280000 18000000 90000
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Values of the stress intensity S in the point marked in Fig. 3.4 are presented in
Table 3.7. The maximum value of the stress intensity was observed in the top of
corrugation on the inner side of the corrugation, marked by T in Fig. 3.4.
On the top of corrugation the ratio of the stress intensities on the inner and outer
sides (marked by T and B, correspondingly) is ST

SB
= 1.48. For many isotropic mate-

rials the strength criterion may be taken in the form S = σ∗ [21], where σ∗ means
the strength limit. The point marked in Fig. 3.4 byT is the weakest point of the cor-
rugation made of such materials. Computations carried out for other deformations
modes (bending, shift) indicate the same point T as the point of maximum value of
the stress intensity.
Figure 3.5 displays local stress intensity S corresponding to solution N221(y) to
the cellular problem (3.29) for thickness h = 0.12. The corresponding thin-walled
parameter is h/2L =0.125>1/20. Solution N221(y2,y3) corresponds to overall de-
formation mode “bending of corrugated plate in the direction perpendicular to cor-
rugations”. Values of the stress intensity S in the point T and B in Fig. 3.5 are
ST =0.802GPa (it is the maximum value over the corrugation) and SB =0.309GPa,
respectively. The ratio ST

SB
= 2.6.

Although N221(y) corresponds to “pure bending” mode in whole, we observe in Fig.
3.4 no points with the stress intensity S = 0 (the minimum stress intensity is more
than 7000000 Pa), which would be observed on the neutral surface. Position of the
“overall” neutral surface is displayed in Fig. 3.5 as black horizontal line.

Fig. 3.4: Stress intensity corresponding to solution to the cellular problem for h =
0.08

Table 3.7: Values of the local stress intensity (Pa)

Reference point B T M

S 1880000 2790000 241229



68 Boris D. Annin, Alexander G. Kolpakov & Sergei I. Rakin

Fig. 3.5: Stress intensity corresponding to solution N221(y2,y3) to the cellular prob-
lem for h = 0.12

For comparison, we present local stress intensity S corresponding to solution N221(y)
(the bending mode) to the cellular problem (3.29) for thickness h = 0.005, see Fig.
3.6. The corresponding thin-walled parameter is h/2L =0.008<<1/20. In Fig. 3.6,
the zoomed fragment of the bottom of the corrugation is displayed. The stress inten-
sity has the similar distribution along the corrugation.
In the tensile mode (in the direction perpendicular to corrugations, along Ox2-axis)
distribution of stresses along the corrugation is non-uniform even for thin-walled
corrugation. In Fig. 3.7, it is displayed the local stress intensity Scorresponding to
solution N220(y) to cellular problem (3.29) for thickness h = 0.005. In Fig. 3.7,
numerical values of the local stress intensity are presented for selected points. The
maximal value if the stress intensity is observed in the top of the corrugation.

Fig. 3.6: Stress intensity corresponding to solution N221(y2,y3) to the cellular prob-
lem for h = 0.005



3 Homogenization of Corrugated Plates Based on the Dimension Reduction 69

Fig. 3.7: Stress intensity corresponding to solution N220(y2,y3) to the cellular prob-
lem for h = 0.005

Present examples of failure corrugated structures, which give arguments in the fa-
vor of our prediction that the top of corrugation is the weakest place of corrugated
plates. Figure 3.8 displays failure roofing slate. The cracks have shapes close to
right-lines and positions in the top of corrugation. An example of similar crack in
metal corrugated tube can be found in the internet1.

Fig. 3.8 Cracks in roofing
slate

1 http://www.flowcontrolnetwork.com/articles/q-a-getting-a-handle-on-metal-hose
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3.8 Universal Relations Between the Effective Stiffness of

Corrugated Plates made of Materials with the same Poisson’s

Ratio

Relations between the homogenized characteristics of composite material, which
do not depend on the solutions to the periodicity cell problems are called universal
connections (Dvorak, 2013) or universal relations (Bravo-Castillero et al, 2012). The
universal relations may depend on the known or easily computed characteristics of
composite, such as elastic constants, volume fractions of components, etc. In this
section, we derive universal relations for the effective stiffness of corrugated plate
made of materials with the same Poisson’s ration (in particular, corrugated plates
made of homogeneous material).

Consider problem (3.29). Taking into account definition of the parameter c in (3.29),
we obtain the following relationship between solutions to the problem (3.29) for the
indices AB = 11 and AB = 22 (ν,µ = 0,1):

M11ν(y2,y3) = ν0M22ν(y2,y3) (3.45)

By using (3.45) and (3.33), we transform formula (3.35) as follows:

D
ν+µ
2211 =

1
|S0|

∫

P

a22ικ(y2,y3)M
11ν
ι,κ (y2,y3)(−1)µy

µ
3 dy2dy3 =

=
1
|S0|

ν0

∫

P

a22ικ(y2,y3)M
22ν
ι,κ (y2,y3)(−1)µy

µ
3 dy2dy3 = ν0D

ν+µ
2222

and obtain universal relationship between effective stiffness D
ν+µ
2211 and D

ν+µ
2222 :

D
ν+µ
2211 = ν0D

ν+µ
2222 (3.46)

Taking into account (3.46) and (3.32), we transform formula (3.36) as follows:

D
ν+µ
1122 =

1
|S0|

∫

P

(a11ικ(y2,y3)M
22ν
ι,κ (y2,y3)(−1)µ+νy

µ+ν
3 dy2dy3 =

=
1
|S0|

1
ν0

∫

P

(a11ικ(y2,y3)M
11ν
ι,κ (y2,y3)(−1)µ+νy

µ+ν
3 dy2dy3 =

=
1
ν0

(D
ν+µ
1111 −

(−1)µ+ν

|S0|

∫

P

E(y2,y3)y
µ+ν
3 dy2dy3).

(3.47)

Equality (3.47) provides us with the following relationship between effective stiff-
ness D

ν+µ
1122 and D

ν+µ
1111 :

D
ν+µ
1122 =

1
ν0

(D
ν+µ
1111 −

(−1)ν+µ

|S0|

∫

P

E(y2,y3)y
ν+µ
3 dy2dy3). (3.48)
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SinceD
ν+µ
1122 = D

ν+µ
2211 [9], equations (3.46) and (48) lead to the following relationship

between effective stiffness D
ν+µ
2222 and D

ν+µ
1111 :

ν0D
ν+µ
2222 =

1
ν0

(D
ν+µ
1111 −

(−1)ν+µ

|S0|

∫

P

E(y2,y3)y
ν+µ
3 dy2dy3). (3.49)

Equations (3.46), (48) and (49) are universal – they hold for any corrugated plate,
regardless of its specific cross-section shape, under unique condition of symmetry
of the cross-section. These equations involve, except the effective stiffness, Poisson
ratio and the moments

1
|S0|

∫

P

E(y2,y3)y
µ+ν
3 dy2dy3

of the Young’s modulus.

3.9 Conclusions

Acknowledgements This work was supported by the Russian Foundation for Basic Research
(Project RFBR-East No. 15-41-0508, Project No 16-01-00679).

For corrugated plate, more generally, for plate which occupies a cylindrical domain,
three-dimensional periodicity cell problem of the homogenization theory can be
reduced to a boundary-value problems with respect to function of two spatial variables
determined on the cross-section of the periodicity cell. Depending on the index of
the periodicity cell problem, we arrive at problem for anti-plane deformation or
two-dimensional elasticity theory problem. Modern engineering software makes it
possible to solve all 2D problems fast and accurate.

The reduced problems take very simple form for plates made of a homogeneous
material or assembled of elements with equal Poisson ratios. If the periodicity cell is
symmetric, additional simplifications of the reduced problems may be done.

It is found that the conventional procedure of the homogenization theory in applica-
tion to the computation of the torsion effective stiffness of thin plates is not stable
because it involves different values. It is proposed a modification of the procedure,
which is stable for thin plates.

Our numerical computations demonstrate closeness of effective stiffness computed
by our method and approximate methods given in [1, 2, 18, 19, 20]. Numerical
computations also demonstrates linear distribution of local stress/strain over the
thickness for thin plates.

The universal relations between the effective stiffness of corrugated plate for plates
made of homogeneous material are found.
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Chapter 4

Consideration of Non-Uniform and

Non-Orthogonal Mechanical Loads for
Structural Analysis of Photovoltaic Composite

Structures

Marcus Aßmus, Stefan Bergmann, Johanna Eisenträger, Konstantin Naumenko &
Holm Altenbach

Abstract At natural weathering, terrestrial photovoltaic modules are exposed to me-
chanical loads, inter alia. These mechanical loads are primarily caused by wind
and snow. They can have an essential influence on the durability of photovoltaic
modules, what should be taken into account during the design process. Up to now,
mechanical loads are considered as uniform and orthogonal in the majority of ex-
perimental and theoretical investigations, resulting in over- or underestimation of
stresses in the components of photovoltaic modules. Regarding the mathematical-
mechanical modelling, it is of particular interest to represent the applied loads in
an adequate manner. Therefore, this work provides an approach to the mathemat-
ical description of location and orientation-dependent loads to take non-uniform
and non-orthogonal mechanical impact into account. In addition, the integration in
an efficient and effective computational solution strategy towards global structural
analysis is presented, which is based on a newly developed direct approach for mul-
tiple layers. Thereby, we reflect on the governing equations and the implementation
of non-uniform and non-orthogonal loading. Characteristic case studies complete
the present treatise.

Key words: Photovoltaic module · Loading · Non-uniform · Non-orthogonal · Sur-
face continuum · Polar medium · Multilayered surface structure · Finite element
analysis

Marcus Aßmus · Stefan Bergmann · Johanna Eisenträger · Konstantin Naumenko · Holm
Altenbach
Institut für Mechanik, Otto-von-Guericke- Universität Magdeburg, Universitätsplatz 2, 39106
Magdeburg, Germany,
e-mail: marcus.assmus@ovgu.de,stefan.bergmann@st.ovgu.de
johanna.eisentraeger@ovgu.de, konstantin.naumenko@ovgu.de,

holm.altenbach@ovgu.de

© Springer International Publishing AG 2017
H. Altenbach et al. (eds.), Mechanics for Materials and Technologies,
Advanced Structured Materials 46, DOI 10.1007/978-3-319-56050-2_4

73

marcus.assmus@ovgu.de, stefan.bergmann@st.ovgu.de


74 Marcus Aßmus et al.

4.1 Introduction

4.1.1 Motivation

During the last decades, renewable energy technologies are on the rise such that
photovoltaic modules gain more and more importance, too. Typically, photovoltaic
modules comprise several layers, as depicted in Fig. 4.1 on the left-hand side. The
skin layers protect sensitive internal components, i.e. the solar cells and electrical
conductors, from external loads resulting from climatic conditions like precipita-
tions or wind flow. Due to this, transparent and stiff materials like glass are usually
used for the skin layers. In addition, there is a core layer, which includes an en-
capsulation, the solar cells, and electrical wiring. The encapsulation is made of soft
polymers and is relatively thin compared to the skin layers.

In order to perform structural mechanics analyses of photovoltaic modules, var-
ious possibilities exist. Basically, it is possible to distinguish three-dimensional
(3D) and two-dimensional (2D) approaches. Most common to three-dimensional ap-
proaches is the use of the finite element method (FEM) based on a classical (three-
dimensional CAUCHY) continuum. The use of brick elements applied to this pur-
pose is computationally expensive. However, the approaches for thin-walled struc-
tures are more efficient since the underlying body is slender (L1 ≈ L2 ≫H, with
overall thickness H). Within the framework of these approaches, an model structure
is assumed, depicted in Fig. 4.1, centred. Considering aforementioned dimensions
and properties, the present structure can be considered as an anti-sandwich (hc<hs,
Gc<Gs, indices s and c for skin and core layers, while 2hs+hc=H holds, and G is
the shear modulus). Potential candidates to treat problems at such structures are the
first order shear deformation theory (e.g. Reissner, 1945; Mindlin, 1951), zig-zag
theories, and layerwise theories (Carrera, 2003a). With regard to their applicability
to the present problem, the different approaches are discussed in Naumenko and
Eremeyev (2014) and Eisenträger et al (2015a). Since closed form solutions of thin-
walled structural theories are available for a small set of problems only, numerical
solution strategies using FEM, like presented in Eisenträger et al (2015b), are used.
Typically, such approaches are based on 2D finite elements (Carrera, 2002), as il-
lustrated in Fig. 4.1 on the right-hand side. However, it emerges that the eXtended
LayerWise Theory (XLWT) presented in Naumenko and Eremeyev (2014) has the
largest field of application and the least computational effort (Aßmus et al, 2016),
thus forming the appropriate framework for global structural analysis at photovoltaic
modules.

Mechanical loading on photovoltaic modules seems to be a major topic, as is appar-
ent studying the relevant literature, e.g. Köntges et al (2014) or Ferrara and Philipp
(2012). Caused by mechanical loading, damage in photovoltaic module components
can occur, which influences the electrical power yield. If one is restricted to quasi-
static loading, the two essential loads wind and snow can be identified. Close to the
ground, wind is acting horizontally, while snow loads act in direction of the gravi-
tational force, i.e. vertically. Since photovoltaic modules are tilted in dependence of
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Fig. 4.1: Physical structure, mechanical model, and computational imitation to solve
global boundary value problems at photovoltaic modules

latitude to generate best electrical yields, both loads will not act orthogonal to the
plane mapped by the photovoltaic module front surface. Considering experimental,
e.g. Moore (1977); Aßmus et al (2011); Kajari-Schröder et al (2011), and theoretical
investigations, e.g. Sander et al (2013); Aßmus et al (2016), on mechanical loading
at photovoltaic modules, it is clear that drastic simplifications are made with re-
gard to the load assumptions. In most cases, the relevant standards IEC 621251 or
IEC 616462 are referenced, which form the normative background for market ap-
proval of photovoltaic modules. Therein, it is demanded to apply a homogeneous
load, orthogonal to the photovoltaic module mid plane with defined intensity and
duration of loading in order to prove the structural integrity. Based on the assump-
tions for orthogonality and homogeneity of applied loads, the tests proposed therein
are considered as unrealistic. General remarks concerning the determination of more
realistic mechanical loads are given in EN 1991-1-33 for snow and EN 1991-1-44

for wind, for example. Although these standards are based on more realistic load as-

1 Standard IEC 61215: Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualifi-
cation and type approval, International Electrotechnical Commission, Genf, 2nd edition (2005)
2 Standard IEC 61646: Thin-film terrestrial photovoltaic (PV) modules – Design qualification and
type approval, International Electrotechnical Commission, Genf, 2nd edition (2008)
3 Standard EN 1991-1-3 (Eurocode 1): Eurocode 1 - Actions on structures - Part 1-3: General
actions - Snow loads, European Committee for Standardisation (CEN), Brussels, 2010
4 Standard EN 1991-1-4 (Eurocode 1): Eurocode 1 - Actions on structures - Part 1-4: General
actions - Wind loads, European Committee for Standardisation (CEN), Brussels, 2010
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sumptions concerning intensity, resulting loads proposed therein are merely rough
estimations of actual loading conditions, especially concerning load distributions.
While field data from outdoor exposure is an almost critical point in the area of
photovoltaic research, different studies are concerned with the experimental identi-
fication of natural loading scenarios caused by precipitation and wind flow, e.g. Aß-
mus and Köhl (2012). However, this aspect does not seem to be finished completely
since the number of different build-up possibilities and locations for photovoltaic
modules is almost unlimited and difficult to generalise.
Since there is a lack of specific information on realistic loads until today, the next
step is the mathematical modelling for an adequate representation of exemplaric
loads on photovoltaic modules. This is not only of interest in present theoretical
investigations because the problem involves experimental studies on mechanical
strength as well. However, the aim of the present work is a mathematical approach
to account for non-uniform and non-orthogonal actions on photovoltaic modules.
This is of particular interest since engineers would like to know already during the
planning phase how their design will withstand loading. Therefore, the application
of approaches for adequate load representation will be shown in the context of the
XLWT (Naumenko and Eremeyev, 2014), which provides an efficient framework
to solve boundary value problems at the global scale of photovoltaic modules (Aß-
mus et al, 2016). Since closed form solutions of this theory can only be found for
a small class of problems, a computational approach with the newly developed fi-
nite element proposed in Eisenträger et al (2015b) is used. All around, the present
work provides an efficient tool, which is required by every engineer, working on the
design of photovoltaic modules.

4.1.2 Objective and Structure

The present contribution deals with an approach to the description of non-uniform
and non-orthogonal mechanical loads at photovoltaic modules. In addition, the ef-
fects of these load assumptions differing from previous, usual investigations are
examined. For this purpose, a structural mechanics theory for thin-walled structures
is used and extended to a three layered composite structure. The solution of the
resulting boundary value problem is performed by means of the FEM. Thereby, a
specially developed SERENDIPITY element is used.
The outline of the paper is as follows. In Sect. 4.2, we present a literature review
for quasi-static mechanical loads resulting from natural weathering conditions. As
mentioned, the mechanical loads resulting from snow and wind are handled. In the
sequel, a mathematical concept for the treatment of natural mechanical loading is
introduced, while we distinguish between wind and snow loading due to different
directions of action.
In Sect. 4.3, we present general statements of the linear XLWT with a layerwise
superposed membrane, bending, and shear state. Since solar cells embedded in the
core layer do not contribute to the overall stiffness according to Naumenko and
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Eremeyev (2014), it is possible to abstract the present structure to a three layered
composite structure with homogenous layers. Based on a single layer which is me-
chanically represented by a midlayer, we enlarge our framework to a three layered
system, where a coordinate-free description is used. In contrast to Naumenko and
Eremeyev (2014), MINDLIN kinematics are considered for every layer in accor-
dance with Eisenträger et al (2015b), even if transverse shear effects in the skin
layers are negligible. The governing equations are disclosed, whereby the loads ap-
plied find particular attention.
Section 4.4 is concerned with an approach to efficient numerical implementation
towards a finite element solution where we follow the track of Eisenträger et al
(2015b). Special emphasis is placed on the derivation of the equations which are
fundamental to the computational solution of the boundary value problem posed. For
reasons of computational tractability, the governing equations are given in vector-
matrix notation as usual in finite element representations. Here, only one element in
transverse direction is used, considering the degrees of freedom (DOF’s) of several
layers at every node.
Finally, in Sect. 4.5 a representative case study is accomplished, where we issue the
resulting DOF’s, kinetics, and kinematics additionally. For the sake of simplicity, the
test structure used in this case study is restricted to symmetry in transverse direction.
The work concludes with a summary of this comprehensive treatment and an outlook
on further investigations.

4.1.3 Preliminaries and Notation

Throughout the whole text, a direct tensor notation is preferred. Only if it is con-
ducive to the clarity of the representation and to avoid additional formal definitions,
we drop this convention and use index notation instead. Zero rank tensors are sym-
bolised by italic letters (e.g. a), first rank tensors by italic lowercase bold letters
(e.g. aaa=aieeei or bbb=b j eee j), second rank tensors by italic uppercase bold letters (e.g.
AAA=Almeeel ⊗eeem or BBB=Bnoeeen ⊗eeeo), and fourth rank tensors by italic uppercase bold
calligraphic letters (e.g. A=Apqrseeep ⊗eeeq ⊗eeer ⊗eees), where EINSTEIN summation
convention is applied. Letters in blackboard bold (e.g. R or Z) are reserved for sets
and spaces. Letters in broken script (Fraktur), e.g. O, I, or S, are used for ma-
terial body manifolds. Considering a CARTESian coordinate system (COOS) and
orthonormal bases, e.g. {eeei}, basic operations for tensors used in this paper are the
scalar product

aaa · bbb=ai b j eeei · eee j =ai bi=α α ∈ R , (4.1)

the dyadic product

aaa⊗bbb=ai b j eeei ⊗eee j =CCC , (4.2)

the composition of a second and a first rank tensor
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AAA · aaa=Alm ai eeel ⊗eeem · eeei=Ali aieeel =ddd , (4.3)

the composition of two second rank tensors

AAA ·BBB=Alm Bno eeel ⊗eeem · eeen ⊗eeeo=Alm Bmo eeel ⊗eeeo=DDD , (4.4)

the double scalar product between a fourth and a second rank tensor

A : BBB=Apqrs Bno eeep ⊗eeeq ⊗eeer ⊗eees : eeen ⊗eeeo

=Apqrs Bsreeep ⊗eeeq=FFF , (4.5)

the cross product between two first rank tensors

aaa×bbb=ai b j eeei ×eee j =ai b j εi jk eeek =ccc , (4.6)

and the cross product between a second and a first rank tensor

AAA×bbb=Alm b j eeel ⊗eeem ×eee j =Alm b j εm jk eeel ⊗eeek =GGG , (4.7)

where εi jk is the permutation symbol with

εi jk =






+1 if (i, j,k) is an even permutation of (1,2,3) ,

−1 if (i, j,k) is an odd permutation of (1,2,3) ,

0 if (i, j,k) is not a permutation of (1,2,3) .

(4.8)

The vectorial invariant of a second rank tensor AAA is defined by the box product ⊠
which represents a cross-scalar product in present treatise.

AAA⊠111 = AAA×· 111

= (Akl eeek ⊗eeel)×· (eeei ⊗eeei)

= Akl δli eeek ×eeei

= Aki eeek ×eeei . (4.9)

For symmetric tensors (coincidence of AAA and AAA⊤, while superscript ⊤ marks the
transposed tensor such that aaa ·AAA⊤· bbb=bbb ·AAA · aaa holds), the box product is the first
rank zero tensor ooo. Furthermore, the box product in the context of the connection
with the vectorial invariant possesses the following properties

AAA⊠111 =AAA×· 111 = 111 ·×AAA =−111 ·×AAA⊤ =−AAA⊤×· 111 =−AAA⊤⊠111 (4.10)

In Eq. (4.9), the KRONECKER delta δi j is used to represent the second rank unit
tensor

111 = δi j eeei ⊗eee j = eeei ⊗eeei with δi j =

{
1 if i = j ,

0 if i 6= j .
(4.11)
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Using the tensor notation, Latin indices (e.g. i, j,k, l) run through the values 1, 2, and
3, while Greek indices (e.g. α,β ,γ,δ ) run through the values 1 and 2. The vector
valued nabla operator is defined as ∇∇∇=eeeα

∂/∂ Xα for the planar considerations and
∇∇∇=eeei

∂/∂ Xi at three dimensions. ∇∇∇ ·� is the divergence, and ∇∇∇� is the gradient of
a tensor. ∇∇∇sym���= 1/2[∇∇∇∇∇∇∇∇∇���+∇∇∇∇∇∇∇∇∇⊤���] is the symmetric part of the associated gradient,
where � holds true for every differentiable tensor field. The transposed gradient
is defined as ∇∇∇∇∇∇∇∇∇⊤��� = [∇∇∇���]⊤ where � holds for all first rank tensors. An extended
overview of tensor algebra and analysis is given in basic textbooks on continuum
mechanics featuring mathematical propaedeutics, e.g. in Altenbach (2015); Lai et al
(2009); Bertram (2012), or even in a more general manner in Lebedev et al (2010).

In vector-matrix notation, vectors are denoted as upright lowercase sans serif bold
letters (e.g. displacement vector u=[u1 u2 u3]

⊤) and matrices as upright uppercase
sans serif bold letters (e.g. stiffness matrix K or matrix of shape functions N).

4.2 Mechanical Loads at Photovoltaic Modules

4.2.1 Loading at Natural Weathering

The lifetime of photovoltaic modules is limited, particularly due to the impact of dif-
ferent mechanical loads in natural weathering. Such loads lead to damages, which
induce power and subsequent yield losses. Some examples for damages are cracks
at solar cells or plastic deformations at cell connectors (Köntges et al, 2014). Wind
and snow loads represent the most important external mechanical actions on photo-
voltaic modules. For the sake of simplicity, the considerations in the present treatise
are restricted to time-independent loadings. Influences caused by rain or hail, or
even wind-induced vibrations are thus excluded.

In order to analyse the effects of non-uniform and non-orthogonal mechanical load-
ing at photovoltaic modules, the considerations are restricted to loads on the outer
surface of the front layer such that loads acting on the back layer are excluded.
Nevertheless, loads acting at the outer surface may include positive and negative
pressure. Every load will be characterised by its direction, amplitude, and spatial
distribution. However, an approximation of these properties close to reality remains
a challenge due to the lack of experimental data with regard to the spatial distri-
bution of loadings at a photovoltaic module. However, since photovoltaic modules
are mostly inclined, tangential and orthogonal non-uniform loads are acting on the
surface. Until today, there is no general agreement on how such loads could be rep-
resented, neither conceptually nor experimentally. Nevertheless, we try to provide a
brief insight into the subject within the following two subsections.
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4.2.1.1 Snow Loads

Snow loads act in vertical direction because of gravity. It is obvious that they will
occur at sub-zero temperatures. The mass density of snow is usually heterogeneous
and highly dependent on climatic conditions as well as the thickness and age of the
snow layer (Stoffel, 2005). The mechanics of snow, which influences subsequent
loadings strongly, is topic of special research efforts (Mellor, 1975). For these rea-
sons, only a few attempts have been made in order to approximate the distribution
of snow loads. In a first try, the influence of the spatial distribution has been investi-
gated experimentally, cf. Reil et al (2012). Another approach is the use of statistical
distribution functions Ellingwood and O’Rourke (1985). Both methods are based
on experimental results and restricted to specific climate zones. In addition, the stan-
dard EN 1991-1-3 is used by industry to determine the maximum snow load. In the
case of fresh snow, the load distribution can be approximated with a sine wave since
the load amplitude is decreasing near the edges because of snow slipping off. In
addition, the surface properties of the photovoltaic module determine the adhesive
strength such that snow rests at the module under inclination angle. Since photo-
voltaic modules are normally framed peripherally, this frame inhibits snow from
slipping off additionally (Reil et al, 2012). However, the standard IEC 61215 indi-
cates a maximum snow load of 5.4 ·10−3 N/mm2.

4.2.1.2 Wind Loads

In contrast to snow loads, wind loads act almost parallel to Earth’s surface such
that their direction is assumed to be horizontal. First studies on wind loading can
be found in Chevalier and Norton (1979) from 1979, where wind tunnel tests were
used to analyse solar thermal collectors. This study gave averaged loading condi-
tions of loaded surfaces. In Kopp et al (2002), wind loads on photovoltaic arrays
were studied experimentally, where the outcome was also restricted to averaged val-
ues. In Ruscheweyh and Windhövel (2013), it is attempted to introduce pressure dis-
tributions due to experience, and approximations for practical reasons are formed.
However, these load distributions are one dimensional only. Further experimental
results examining the spatial dependence on a single module are provided by Aß-
mus and Köhl (2012). Investigations using computational fluid dynamics seem to
be more fruitful gaining results of load distributions as shown in Shademan et al
(2014). There, pressure distributions over the module surface are given for quasi-
steady flows. Further numerical simulation of flow around modules and resulting
pressure fields is done in Jubayer and Hangan (2014, 2016). Experimental stud-
ies from Abiola-Ogedengbe et al (2015) provide additional information affirming
aforementioned statements. The resulting load distribution can be described by a
standing wave in both plane directions, which does not need to be symmetric. As
already shown in Aßmus and Köhl (2012), the loading is strongly dependent on
the angles of inclination and incidence. However, all these investigations indicate
that the wind direction and installation situation are crucial for resulting load dis-
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tributions. Furthermore, similar to snow loads, wind loads are strongly dependent
on the geographical location. The standard EN 1991-1-4 provides reference values
for maximum wind loads. Thereby, extreme wind loads occur particularly near the
coast or at high geographical locations (Jordan et al, 2012). As extreme conditions,
storms lead to increased loading on photovoltaic modules. The standard IEC 61215
is indicating maximum wind load amplitudes of 2.4 ·10−3 N/mm2.

4.2.2 Mathematical Description of Mechanical Loads

4.2.2.1 Load Vector

As described in the previous section, climatic loads induce in-plane and out-of-plane
loads on photovoltaic modules. Figure 4.2 shows a photovoltaic module mounted at
an inclination angle θ . Let us consider a load vector qqq(X1,X2) acting at the outer
surface O of the module in the following form

qqq(X1,X2) = sss (X1,X2)+ ppp(X1,X2) (4.12)

with the in-plane load vector sss (X1,X2) = −sα (X1,X2)eeeα and the out-of-plane load
vector ppp(X1,X2) = p(X1,X2)nnn.

4.2.2.2 Direction of Loads

This section focuses on the proper description of loads taking the inclination angle θ
of a module into account. As a starting point, we introduce a fixed COOS {gggi} as
well as another COOS {eeei} (with eee3 ≡ nnn), which is connected to the photovoltaic
module, cf. also Fig. 4.2. Considering a rotation around eee2 by the angle θ , the fol-
lowing relations hold true

ggg1 = cos(θ )eee1 + sin(θ )eee3 , (4.13)

ggg2 = eee2 , (4.14)

ggg3 =−sin(θ )eee1 + cos(θ )eee3 (4.15)

or vice versa

eee1 = cos(θ )ggg1 − sin(θ )ggg3 , (4.16)

eee2 = ggg2 , (4.17)

eee3 = sin(θ )ggg1 + cos(θ )ggg3 . (4.18)

The proper orthogonal tensor QQQ maps the basis {gggi} onto the rotated basis {eeei} such
that QQQ can be represented as follows
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QQQ = eeei ⊗gggi . (4.19)

If one takes Eqs. (4.13)-(4.18) into account, one obtains the following representation
for the rotation tensor

QQQ = Qi j eeei ⊗eee j = Qi jgggi ⊗ggg j (4.20)

with

Qi j =




cos(θ ) 0 sin(θ )
0 1 0

−sin(θ ) 0 cos(θ )


 . (4.21)

Next, we assume that a load vector aaa = aigggi is given with respect to the basis {gggi}.
The components a′i of the vector aaa = a′ieeei with respect to the rotated basis {eeei} are
computed as follows, cf. Bertram and Glüge (2015)

a′i = Q jia j. (4.22)

In the following, above formulas are applied to loads resulting from natural weath-
ering. We suppose that wind loads qqqW (X1,X2) are horizontal, while snow loads
qqqS (X1,X2) refer to the vertical direction, cf. Fig. 4.2

qqqm (X1,X2) =

{
qW (X1,X2)ggg1, at wind loading ,

qS (X1,X2)ggg3, at snow loading,
∀m = {W,S} (4.23)

where the amplitude functions qm (X1,X2) need to be defined. With Eq. (4.22), one
obtains the following representations for the load vectors

qqqm (X1,X2) =

{
qW (X1,X2)cos(θ )eee1 + qW (X1,X2)sin (θ )nnn at wind loading ,

−qS (X1,X2) sin(θ )eee1 + qS (X1,X2)cos(θ )nnn at snow loading.

(4.24)

4.2.2.3 Amplitude and Spatial Distribution of Loads

In order to analyse the influence of spatially heterogeneous loads, the load distri-
bution w.r.t. {gggi} is described by Eq. (4.23). In general, arbitrary amplitude func-
tions qm (X1,X2) can be taken into account by the finite element, which is presented
in the next sections. As one example, this paper focuses on a double sine function

qm (X1,X2) = q0
m sin

(
π

L1
X1

)
sin

(
π

L2
X2

)
. (4.25)

Herein, q0
m ∀m = {W,S} is the maximum amplitude. This concept can be easily gen-

eralised with a FOURIER series to approximate experimental data which, however,
is not available for the present study.
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Fig. 4.2: Inclination angle θ with bases {ggg1,ggg2,ggg3} and {eee1,eee2,nnn} for parametrisa-
tion of impact of snow and wind loads on a photovoltaic module

qm (X1,X2) =
k

∑
i=1

k

∑
j=1

(
q0

m

)
i j

sin

(
π i

L1
X1

)
sin

(
π j

L2
X2

)
∀m = {W,S} ∧ k ∈ Z

+ .

(4.26)

Due to the lack of experimental findings concerning distribution functions, this in-
vestigations are restricted to FOURIER series with only one element (k= 1 ⇒ bi-
harmonic distribution). The load constructed in Eq. (4.25) in the context of the fixed
COOS {gggi} used in Eq. (4.23) must now be rotated into the photovoltaic module
COOS {eeei}. Considering Eqs. (4.24), the approximations for wind and snow loads
result in the succeeding representations for the loading components

qqqW =−s1eee1 + pnnn with





s1(X1,X2) =−q0
W cos(θ )sin

(
π

L1
X1

)
sin

(
π

L2
X2

)
,

p(X1,X2) = q0
W sin(θ )sin

(
π

L1
X1

)
sin

(
π

L2
X2

)
,

(4.27)

qqqS =−s1eee1 + pnnn with






s1(X1,X2) = q0
S sin(θ )sin

(
π

L1
X1

)
sin

(
π

L2
X2

)
,

p(X1,X2) = q0
S cos(θ )sin

(
π

L1
X1

)
sin

(
π

L2
X2

)
.

(4.28)

Both loads can be combined, what results in an expression for the total load qqqΣ

qqqΣ = qqqW +qqqS . (4.29)
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4.3 Solution Approach with eXtended LayerWise Theory

4.3.1 Prerequisites

In XLWT, all considerations are restricted to the mid surface S of the individual
layers. The coordinates X1, X2 describe points in the mid surface, which is transver-
sally positioned at X3 = 0. Contemplations presented here are related to a planar
mid surface, i.e. the structure is uncurved in the reference placement. It is equipped
with a tripod COOS, while the unit vector perpendicular to the surface is called nor-
mal vector nnn. In-plane unit vectors are designated with {eeeα}. The surface boundary
∂S in these directions is indicated by the boundary normal ννν . Therefore ννν · nnn = 0
holds. The surface continuum is equipped with five DOF’s: two in-plane transla-
tional, one out-of-plane translational, and two out-of-plane rotational. These are in
analogy with the kinematics suggested by Mindlin (1951). In-plane and out-of-plane
loads sα and p can be applied. In-plane loads are applied to the outer surfaces O.
Therefore, they act with a lever of ∓h/2, while h is the thickness of the layer. Due
to line volatility of out-of-plane loads, they can be applied to the surface S directly.
These assumptions are visualised in Fig. 4.3.
For structural analysis of composite structures, an integer multiple of the described
surface continuum is required. For XLWT, three (NK=3) mid surfaces are coupled,
as depicted in Fig. 4.4. We designate these surfaces with the superscript indices

single layer mid surface continuum

u2

u1

ϕ2

ϕ1

w

eee1

eee2

nnn
ννν

ννν

S

∂S

s2 s1

p

h
2 h

2

mid surface S

boundary ∂S

outer surface O

rotational degrees of freedom

translational degrees of freedom

loads

Fig. 4.3: Mechanical model of a surface continuum S with boundary ∂S, COOS
{eee1,eee2,nnn}, DOF’s u1,u2,w,ϕ1,ϕ2, and loads s1,s2, p
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top (t), core (c), and bottom (b). All considerations are restricted to deformable
plane surfaces, which are the mid planes (St , Sc, Sb) of every individual layer. At
the layer interfaces (It , Ib), they are connected via constraints, kinematically and
kinetically. All interacting forces act at these interfaces. External loading is applied
at the outer surface O, while the back surface B remains unloaded. The following
points have been assumed concerning the physical structure.

• Uniform thickness of the corresponding layers.
• Perfect connection of the layers at their interfaces.

This leads to the subsequent properties for the surfaces.

• All material points per surface continuum are coplanar in the reference place-
ment.

• All surfaces are plane-parallel in the reference placement and at constant distance
to each other for any admissible placement.

• Mid surfaces, interfaces, as well as outer front and back surfaces are kinemati-
cally coupled via the straight normal hypothesis of the MINDLIN theory.

Specifications and consequences of these properties will be presented in the sequel,
while we waive the derivation of the surface contiuum from 3D CAUCHY continuum
theory, given for example in Aßmus et al (2016) or Naghdi (1973) in detail, based
on a projection of kinematic, kinetic, and constitutive quantities.

three layered surface continuum

eee1

eee2

nnn

hb

2

hb

2

hc

2

hc

2

ht

2

ht

2

B

Sb

Ib

Sc

It

St

O

mid surfaces St , Sc, Sb

front surface O

interfaces It , Ib

back surface B

Fig. 4.4: Composition of the three layered surface continuum with interfaces, outer
surface, and distances to each other assigned
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4.3.2 Degrees of Freedom

In order to determine the position of a material point on a surface, two components
are completely sufficient so that xxxK

⊖ =XαeeeK
α holds for every surface separately, while

the superscript K = {t,c,b} is the layer index. Since we operate on single surfaces
only, it is possible to divide the DOF’s into in-plane and out-of-plane measures. This
is expressed by the in-plane displacements uK

α and the deflections wK . Additionally,
rotational DOF’s are introduced. While translational DOF’s possess components in
all three spatial directions of the Euclidean space E3, the rotational DOF’s possess
out-of-plane components only, as introduced by Reissner (1947). This introduction
of rotations is therewith contrary to that of Cosserat and Cosserat (1909) or microp-
olar plates (Altenbach and Eremeyev, 2009) for practical reasons, cf. Zhilin (1976).
The rotation about the normal to the surface is not considered as independent vari-
able. However, the DOF’s can thus be indicated as follows

in-plane displacements: uuuK
⊖ = uK

αeeeα

deflections: wKnnn

out-of-plane rotations: ϕϕϕK =−ϕK
2 eee1 +ϕK

1 eee2




∀ xxxK

⊖ ∈SK . (4.30)

Since we consider a three layered structure with K = {t,c,b}, a total of 15 DOF’s
results at this point.

4.3.3 Kinematical Measures

Under the assumption that strains and curvatures remain small, linear kinematical
measures are introduced based on the aforementioned DOF’s

membrane strains: EEEK =∇∇∇symuuuK
⊖ = EK

αβ eeeα ⊗eeeβ , (4.31)

curvatures: XXXK =∇∇∇symϕϕϕK = χK
αβ eeeα ⊗eeeβ , (4.32)

transverse shear strains: γγγK =∇∇∇∇∇∇∇∇∇wK +ϕϕϕK = γK
α eeeα . (4.33)

Herein, EEEK is the membrane strain tensor, XXXK is the curvature tensor, and γγγK is
the transverse shear strain vector. The second rank tensors EEEK and XXXK are both
symmetric.

4.3.4 Balance Equations and Kinetic Measures

The balance equations for the surface continuum, known as EULER’s first and sec-
ond law of motion, are given as follows for every layer separately
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balance of momentum: ∇∇∇ ·FFFK + fff K = ooo

balance of moment of momentum: ∇∇∇ ·MMMK +FFFK
⊠111+mmmK = ooo

}
∀ xxxK

⊖ ∈SK .

(4.34)
Herin, FFFK is the force tensor (also known as force-stress tensor), FFFK ⊠ 111 is the
vectorial invariant of FFFK coupling both balance equations, MMMK is the axial tensor
of moments (also known as moment-stress tensor), fff K is the vector of interacting
and external forces, and mmmK is the vector of interacting as well as external moments.
The tensors FFFK and MMMK have the following properties, which are in analogy to
CAUCHY’s theorem

ννν ·FFFK = fff K
ν , nnn ·FFFK = ooo , (4.35)

ννν ·FFFK =mmmK
ν , nnn ·MMMK = ooo . (4.36)

Here fff K
ν and mmmK

ν are forces and moments at the boundary with normal ννν . Force and
moment tensor are both non-symmetric

FFFK = FK
αβ eeeα ⊗eeeβ +FK

α3eeeα ⊗nnn , (4.37)

MMMK = MK
αβ eeeα ⊗nnn×eeeβ =−MK

αβ eeeα ⊗eeeβ ×nnn . (4.38)

Since the force tensor is non-symmetric in general and distributed torques are not
vanishing, the surface continum is considered as a polar medium, even if the phys-
ical three-dimensional structure of a photovoltaic module is non-polar, cf. Aßmus
et al (2016). The force tensor can be decomposed into a symmetric and a skew part

FFFK =
(
FFFK

)sym
+
(
FFFK

)skw
(4.39a)

=
1
2

[
FFFK +

(
FFFK

)⊤]
+

1
2

[
FFFK −

(
FFFK

)⊤]
(4.39b)

=FFFK ·PPP +FFFK · nnn⊗nnn (4.39c)

=NNNK +qqqK
Q ⊗nnn (4.39d)

= NK
αβ eeeα ⊗eeeβ +QK

α3 eeeα ⊗nnn . (4.39e)

Herein, NNNK is the membrane force tensor, which is symmetric, and qqqK
Q is the vector

of transverse shear forces. Since the second index in QK
α3 is not varying, QK

α is
introduced here, what allows us to describe the shear force terms as a vector qqqK

Q

qqqK
Q =FFFK · nnn = QK

αeeeα . (4.40)

The second rank tensor PPP = 111−nnn⊗nnn used in Eq. (4.39c) is the perpendicular pro-
jector, cf. Gurtin and Murdoch (1975). The vectorial invariant of the force tensor

is determined by FFFK ⊠111=qqqK
Q ×nnn, so that

(
FFFK

)skw
=−1/2

(
FFFK ⊠111

)
×111 holds true.

Figure 4.5 provides free-body diagrams for the individual layers of the three layered
composite structure where stress resultants are depicted at positive edges. Concern-
ing the interacting and external forces, the following relations can be deduced
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fff K =





(qt + p )nnn+ssst −sss if K = t ,
(
qb − qt

)
nnn+sssb −ssst if K = c ,

qb nnn−sssb if K = b .

∀ fff K ∈SK , (4.41)

In analogy to the decomposition of the force tensor FFFK , it is also possible to split
fff K additively into an in-plane fff K

⊖ and out-of-plane part f K
⊕

fff K = fff K · (PPP+nnn⊗nnn) = fff K ·PPP+ fff K · nnn⊗nnn = fff K
⊖+ f K

⊕nnn , (4.42)

The interacting as well as the external moments are determined by the following set
of equations, where we restrict ourselves to moments generated by forces only

mmmK =






ht

2 nnn× (sss +ssst) if K = t ,

hc

2 nnn×
(
ssst +sssb

)
if K = c ,

hb

2 nnn× sssb if K = b .

∀mmmK ∈SK , (4.43)

Variables used in Eqs. (4.41) and (4.43) are the in-plane interacting forces sssK =
sK

αeeeα and the out-of-plane interacting forces qK . Inserting Relations (4.39)–(4.43)
in Eqs. (4.34), we can determine the balances for the individual material surfaces of
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Fig. 4.5: Stress resultants at mid surfaces (XK
3 =0) as well as external and interacting

forces at interfaces (X3 =±hc/2), front (X3 =−hc/2 − ht), and back surface (X3 =
hc/2+ hb)
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the composite structure. The balance of membrane forces takes the following form

∇∇∇ ·NNNK + fff K
⊖ = ooo fff K

⊖ =






ssst −sss if K = t ,

sssb −ssst if K = c ,

−sssb if K = b .

∀ {sssK ,sss} ∈ {IK ,O} , (4.44)

The balance of transverse shear forces is indicated as follows

∇∇∇ · qqqK
Q + f K

⊕ = 0 f K
⊕ =





qt + p if K = t ,

qb − qt if K = c ,

− qb if K = b .

∀ {qK , p} ∈ {IK ,O} , (4.45)

Instead of the axial tensor of moments MMMK , the polar tensor of moments LLLK =
MK

αβ eeeα ⊗eeeβ is introduced by the symmetrisation LLLK =MMMK×nnn. The balance of mo-
ment of momentum now reads as follows

∇∇∇ · LLLK −qqqK
Q +mmmK×nnn = ooo mmmK×nnn =





ht

2 (sss +ssst) if K = t ,
hc

2 (sss
t +sssb) if K = c ,

hb

2 sssb if K = b .

∀ {sssK ,sss} ∈ {IK ,O} ,

(4.46)

4.3.5 Constitutive Equations

Considering a geometrically and physically linear theory, the constitutive equations
for isotropic-homogeneous elastic materials (material symmetry, invariance under
rotations) can be formulated layerwise as linear mappings

membrane force - membrane strain relation: NNNK = C
K : EEEK , (4.47)

bending moment - curvature relation: LLLK =D
K : XXXK , (4.48)

transverse shear force - transverse shear strain relation: qqqK
Q = ZZZK · γγγK . (4.49)

The measures CK , DK , and ZZZK used in Eqs. (4.47), (4.48), and (4.49) are the fourth
rank membrane stiffness tensor, the fourth rank bending stiffness tensor, and the
second rank transverse shear stiffness tensor, respectively. As is apparent, coupling
stiffnesses are not considered. This decoupling of membrane, bending and shear
state, i.e. decoupling of stretching, bending, twisting, and shearing is legit since ev-
ery single surface SK is halfway up between the nearest interfaces IK respectively
front O or back surface B in both transverse directions (geometrical symmetry).
This fact coincides with the assumption of a physical plane layer which is sym-
metric to its mid plane at XK

3 = 0. In the case of isotropic material behaviour, the
constitutive tensors read as follows (Naumenko and Eremeyev, 2014)
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membrane stiffness tensor: C
K =DK

M νKPPP⊗PPP+DK
M

1−νK

2

(
P1 +P2

)
,

(4.50)

bending stiffness tensor: D
K =DK

B νKPPP⊗PPP+DK
B

1−νK

2

(
P1 +P2

)
,

(4.51)

transverse shear stiffness tensor: ZZZK = DK
S PPP . (4.52)

Here, EK , GK , and νK are the YOUNG’s modulus, the shear modulus, and the POIS-
SON’s ratio of the corresponding layer material. The membrane rigidity DK

M, the
bending rigidity DK

B , and the shear rigidity DK
S can be determined as follows

DK
M =

EK hK

1− (νK)2 , (4.53a)

DK
B =

EK (hK)3

12 [1− (νK)2]
, (4.53b)

DK
S = κKGKhK . (4.53c)

These representations are in accordance with classical thin-walled structural theories
known from Kirchhoff (1850); Reissner (1944), and Mindlin (1951). P1 and P2 are
fourth rank tensors

P1 = eeeα ⊗eeeβ ⊗eeeβ ⊗eeeα , P2 = eeeα ⊗eeeβ ⊗eeeα ⊗eeeβ . (4.54)

The stiffness tensors given in the compact representations (4.50), (4.51), and (4.52)
are completely determined by two material parameters (EK , νK , when considering
isotropic materials GK=EK/2(1+νK ) holds true) and one geometry parameter (hK), re-
spectively, up to an undetermined parameter κK , cf. Eq. (4.52). This so-called shear
correction factor is a parameter to set the shear energy contribution at deformation
processes with shear soft layers. A value of κK= 1 ∀K = {t,c,b} is applied here
since this setting showed best agreements with experimental validations, cf. Weps
et al (2013). κc= 1 is manifested by the fact, that shear stresses acting on It and
Ib are contrary but equal in magnitude for transverse symmetric structures while
the core layer is comparatively thin, what results in constant shear stresses along
X3 with the limits ∓hK/2. In contrast, κK ∀K = {t,b} is not decisive due to the high
shear rigidity of these layers.

4.3.6 Boundary Conditions

With regard to the practical implementation of the balance equations, the definition
of boundary conditions is inevitable. Hereby, we introduce homogeneous DIRICH-
LET boundary conditions
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uuu(xxxK
⊖) = ooo ∧∨ w(xxxK

⊖) = 0 ∧∨ ϕϕϕ(xxxK
⊖) = ooo ∀xxxK

⊖ ∈ ∂SK
D , (4.55)

and NEUMANN boundary conditions which are built on CAUCHY’s theorem, cf.
Eqs. (4.35) and (4.36)

ννν ·NNNK = nnnK
⋆ ∧∨ ννν · LLLK =mmmK

⋆ ∧∨ ννν · qqqK
Q = qK

⋆ ∀xxxK
⊖ ∈ ∂SK

N , (4.56)

whereby nnnK
⋆ , mmmK

⋆ , and qK
⋆ are membrane forces, moments, and transverse shear forces

prescribed at the boundaries, while ∂SK
D and ∂SK

N denote DIRICHLET and NEU-
MANN boundaries, respectively. Loads (in-plane sss and out-of-plane p) at the outer
surface of the top layer are implemented directly in the balance equations (4.44),
(4.45), and (4.46).

4.3.7 Kinematical Constraints

The following expression holds true

∂hK

∂X1
=

∂hK

∂X2
= 0 (4.57)

since compression or dilatation in the transverse direction is neglected, what results
in equal deflections for all layers

wt = wc = wb = w ∀ xxxK
⊖ = XK

α eeeα . (4.58)

This stipulates that the reduced number of independent DOF’s for our composite
is 13 at this point. As stated, we assume that all layers are rigidly connected at
their interfaces for any admissible deformation process. The following kinematical
constraints can therefore be deduced since the straight line hypothesis of Mindlin
(1951) is used

uuut
⊖+

ht

2
ϕϕϕt = uuuc

⊖− hc

2
ϕϕϕc , (4.59a)

uuub
⊖− hb

2
ϕϕϕb = uuuc

⊖+
hc

2
ϕϕϕc . (4.59b)

Above constraints are used to substitute quantities of the core layer by the quantitites
of the skin layers (t,b). As conseqence of Eqs. (4.59a) and (4.59b), the repeatedly
reduced number of independent DOF’s is 9.
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4.3.8 Introduction of Mean and Relative Measures

For the sake of brevity, mean (superscript ◦) and relative (superscript ∆ ) displace-
ments and rotations are introduced, cf. Eisenträger et al (2015b); Aßmus et al (2016)

uuu◦ =
1
2

(
uuut
⊖+uuub

⊖
)
, uuu∆ =

1
2

(
uuut
⊖−uuub

⊖
)
, (4.60a)

ϕϕϕ◦ =
1
2

(
ϕϕϕt +ϕϕϕb

)
, ϕϕϕ∆ =

1
2

(
ϕϕϕt −ϕϕϕb

)
. (4.60b)

Considering Eqs. (4.60a) and (4.60b), the set of independent DOF’s is redefined
as

{
u◦1,u

◦
2,u

∆
1 ,u

∆
2 ,w,ϕ

◦
1 ,ϕ

◦
2 ,ϕ

∆
1 ,ϕ∆

2

}
. The corresponding membrane strain tensors,

curvature tensors, and transverse shear strain vectors read as follows

EEE◦ =∇∇∇symuuu◦ =
1
2

(
EEEt +EEEb

)
, (4.61a)

EEE∆ =∇∇∇symuuu∆ =
1
2

(
EEEt −EEEb

)
, (4.61b)

XXX◦ =∇∇∇symϕϕϕ◦ =
1
2

(
XXX t +XXXb

)
, (4.61c)

XXX∆ =∇∇∇symϕϕϕ∆ =
1
2

(
XXX t −XXXb

)
, (4.61d)

γγγ◦ =∇∇∇w+ϕϕϕ◦ =
1
2

(
γγγt +γγγb

)
, (4.61e)

γγγ∆ = ϕϕϕ∆ =
1
2

(
γγγt −γγγb

)
. (4.61f)

In addition, mean and relative stress resultants are defined

NNN◦ =NNNt +NNNc +NNNb , (4.62a)

NNN∆ =NNNt −NNNb , (4.62b)

LLL◦ = LLLt +LLLc +LLLb +
1
2

(
hb + hc

)
NNNb − 1

2

(
ht + hc

)
NNNt , (4.62c)

LLL∆ = LLLt −LLLb , (4.62d)

qqq◦Q = qqqt
Q +qqqc

Q +qqqb
Q , (4.62e)

qqq∆
Q = qqqt

Q −qqqb
Q . (4.62f)

Constitutive equations with respect to the new stress resultants are formulated in
analogy to Eqs. (4.47), (4.48), and (4.49)

NNN◦ = C
◦ : EEE◦+C

∆ : EEE∆ +C
c : EEEc , (4.63a)

NNN∆ = C
∆ : EEE◦+C

◦ : EEE∆ , (4.63b)

LLL◦ =D
◦ : XXX◦+D

∆ : XXX∆ +D
c : XXXc
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− 1
2

[
h∆C

◦+(hc + h◦)C∆
]

: EEE◦

− 1
2

[
(hc + h◦)C◦+ h∆C

∆
]

: EEE∆ , (4.63c)

LLL∆ =D
∆ : XXX◦+D

◦ : XXX∆ , (4.63d)

qqq◦Q = ZZZ◦ · γγγ◦+ZZZ∆ · γγγ∆ +ZZZc · γγγc , (4.63e)

qqq∆
Q = ZZZ∆ · γγγ◦+ZZZ◦ · γγγ∆ . (4.63f)

In above equations, new stiffness tensors have been introduced

C
◦ = C

t +C
b , C

∆ = C
t −C

b , (4.64a)

D
◦ =D

t +D
b , D

∆ =D
t −D

b , (4.64b)

ZZZ◦ = ZZZt +ZZZb , ZZZ∆ = ZZZt −ZZZb . (4.64c)

Furthermore, new thickness measures are defined

h◦ =
1
2

(
ht + hb

)
, h∆ =

1
2

(
ht − hb

)
. (4.65)

4.3.9 Principle of Virtual Work

As basis for the numerical implementation, this section presents the principle of vir-
tual work for the XLWT. The principle of virtual work is applied to the XLWT in the
usual way, cf. also Eisenträger et al (2015b); Oñate (2013); Bathe and Zimmermann
(2002). In a first step, the balance equations are combined with the corresponding
virtual DOF’s, i.e. Eqs. (4.44) are multiplied with the virtual in-plane displacements,
Eqs. (4.45) are multiplied with the virtual deflections, and Eqs. (4.46) are multiplied
with the virtual cross-section rotations. All balance equations are summed up and
integrated over the surface. One introduces the mean and relative measures from
the previous subsection and uses the kinematical constraints in order to replace the
DOF’s of the core layer by the mean and relative DOF’s. After considering the
constitutive equations, one obtains the following expressions for the internal and
external work

δWint =

∫

S

{
δEEE◦ : C◦ : EEE◦+ δEEE∆ : C◦ : EEE∆ + δEEE◦ : C∆ : EEE∆

+ δEEE∆ : C∆ : EEE◦+

(
δEEE◦+

1
2

h∆ δXXX◦+
1
2

h◦δXXX∆

)
: Cc

:

(
EEE◦+

1
2

h∆XXX◦+
1
2

h◦XXX∆

)
+ δγγγ◦ · ZZZ◦ · γγγ◦

+ δγγγ∆ · ZZZ◦ · γγγ∆ + δγγγ◦ · ZZZ∆ · γγγ∆ + δγγγ∆ · ZZZ◦ · γγγ◦
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+

[
δγγγ◦− 1

hc

(
2δuuu∆ +(hc + h◦)δϕϕϕ◦+ h∆ δϕϕϕ∆

)]
· ZZZc

·
[
γγγ◦− 1

hc

(
2uuu∆ +(hc + h◦)ϕϕϕ◦+ h∆ϕϕϕ∆

)]

+ δXXX◦ : D◦ : XXX◦+ δXXX∆ : D◦ : XXX∆ + δXXX◦ : D∆ : XXX∆

+ δXXX∆ : D∆ : XXX◦+
1

(hc)2

(
2δEEE∆ + h◦δXXX◦+ h∆ δXXX∆

)
: Dc

:
(

2EEE∆ + h◦XXX◦+ h∆XXX∆
)}

dS , (4.66)

δWext =

∫

∂Sp

{(
δuuu◦+

1
2

h∆ δϕϕϕ◦
)
· nnn◦ν +

[
δuuu∆ +

1
2
(hc + h◦)δϕϕϕ◦

]
· nnn∆

ν

+
1
2

h◦δϕϕϕ∆ · nnnc
ν + δwq◦ν + δϕϕϕ◦ ·mmm◦

ν + δϕϕϕ∆ ·mmm∆
ν

− 1
hc

[
2δuuu∆ +(hc + h◦)δϕϕϕ◦+ h∆ δϕϕϕ∆

]
·mmmc

ν

}
d∂Sp

+

∫

Sp

[
ht

2

(
δϕϕϕ◦+ δϕϕϕ∆

)
· sss−

(
δuuu◦+ δuuu∆

)
· sss

+ δwp

]
dSp . (4.67)

Hereby, Sp and ∂Sp denote the surface and boundary of the continuum, where
boundary conditions with respect to the stress resultants are prescribed

NNNK
p =NNNK

∣∣
∂Sp

LLLK
p = LLLK

∣∣
∂Sp

qqqK
Qp

= qqqK
Q

∣∣
∂Sp





∀ K = {◦,∆ ,c} . (4.68)

Furthermore, stress resultants on the boundary of the surface continuum have been
introduced

nnnK
ν = ννν ·NNNK

p

mmmK
ν = ννν · LLLK

p

qK
ν = ννν · qqqK

Qp




∀ K = {◦,∆ ,c} . (4.69)

Equations (4.66) and (4.67) are inserted into the principle of virtual work, which
states that the balance equations of a body are fulfilled if the virtual work of the in-
ternal forces equals the virtual work of the external forces (Bathe and Zimmermann,
2002).

δWint = δWext . (4.70)
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4.4 Numerical Implementation

4.4.1 Basic Procedure in Finite Element Method

Typically, quadrilateral finite elements are used to model thin-walled structures with
single layer, while for structures with NK>1 different approaches exist, cf. Carrera
(2002, 2003b). The main idea of the present work is to represent all layers with
one element in transverse direction. While in Eisenträger et al (2015b) a complete
description of this approach with finite elements is given, the principles of numerical
solution strategy are presented here.

The FEM is based on a strict separation of structural and element scales. The whole
two-dimensional domain Ω is divided into subdomains Ω e, i.e. the finite elements.
Thereby, the domain Ω comprises the subdomains Ω e, which must not overlap

Ω =
NE⋃

e=1

Ω e Ω i ∩ Ω j = /0 if i 6= j . (4.71)

NE is the number of elements in the domain Ω . The principle of virtual work has to
be fulfilled on the whole domain Ω , cf. also Eq. (4.70), and on each subdomain Ω e

δW e
int = δW e

ext , (4.72)

while the virtual work of the structure is obtained by adding the virtual work of all
finite elements

δWint =
NE

∑
e=1

δW e
int δWext =

NE

∑
e=1

δW e
ext . (4.73)

4.4.2 Shape Functions

Since the exact values of the DOF’s on the domain Ω and on the subdomains Ω e

are unknown, one uses the shape functions Ni in order to approximate the solution.
For the finite layerwise element, SERENDIPITY type shape functions are applied,
cf. also Fig. 4.6. The shape functions are defined with respect to the natural coordi-
nates −1 ≤ ξ j ≤ 1, ∀ j = {1,2} Szabó and Babuška (1991); Zienkiewicz and Taylor
(2000)

Ni(ξξξ ) =
1
4

[
1+ ξ i

1ξ1
][

1+ ξ i
2ξ2

][
ξ i

1ξ1 + ξ i
2ξ2 − 1

]
i = {1, . . . ,4} ,

Ni(ξξξ ) =
1
2

[
1+ ξ i

1ξ1
][

1− ξ 2
2

]
i = {6,8} ,

Ni(ξξξ ) =
1
2

[
1+ ξ i

2ξ2
][

1− ξ 2
1

]
i = {5,7} .
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The index i represents the node number, while the node numbering is depicted in
the centre of Fig. 4.6.

4.4.3 JACOBI Transformation

The transformation of differential line elements dXi and dξi is based on the deriva-
tives of the physical coordinates with respect to the natural coordinates. This trans-
formation is performed via the JACOBI matrix J(ξξξ ) and its inverse J(ξξξ )

−1. In two
dimensions, it holds true (Oñate, 2009)

∂

∂ξξξ
= J(ξξξ )

∂

∂x
⇔ ∂

∂x
= J(ξξξ )

−1 ∂

∂ξξξ
(4.74)

with

J(ξξξ ) =




∂X1

∂ξ1

∂X2

∂ξ1

∂X1

∂ξ2

∂X2

∂ξ2


 , J(ξξξ )

−1
=

1
|J(ξξξ )|




∂X2

∂ξ2
−∂X2

∂ξ1

−∂X1

∂ξ2

∂X1

∂ξ1


 , (4.75)

ξ1

ξ2

1

5 6

78

2

3

4

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2ξ

ξ1

ξ2ξ2

ξ1

ξ2

ξ1

ξ2

N8 N4 N7

N1 element patch N3

N5 N2 N6

Fig. 4.6: Approximation of deformations with SERENDIPITY type shape functions
of quadratic order of interpolation
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∂

∂ξξξ
=

[
∂

∂ξ1

∂

∂ξ2

]⊤
,

∂

∂x
=

[
∂

∂X1

∂

∂X2

]⊤
. (4.76)

The determinant of the JACOBI matrix det[J(ξξξ )] = |J(ξξξ )| is utilised to transform
an infinitesimal surface element dΩ in physical coordinates into an infinitesimal
surface element in natural coordinates

dΩ = dX1 dX2 = |J(ξξξ )| dξ1 dξ2 . (4.77)

4.4.4 Discretisation

4.4.4.1 Degrees of Freedom

In order to discretise equations, the vector of DOF’s at every node i is specified as
follows (recall DOF definitions of sections 4.3.7 and 4.3.8)

ai =
[
u◦

i

1 u◦
i

2 u∆ i

1 u∆ i

2 wi ϕ◦i

1 ϕ◦i

2 ϕ∆ i

1 ϕ∆ i

2

]⊤
∀ i = {1, . . . ,NN} (4.78)

while NN = 8 is the number of nodes per element. All nodal vectors of DOF’s are
assembled to the element vector of DOF’s referring to the nodal values of DOF’s

ae =
[
a1 a2 . . . aNN

]⊤
. (4.79)

In order to obtain the fields of DOF’s over the element with respect to the natural
coordinates ξξξ , the DOF’s are interpolated into the shape functions, applying the
isoparametric element concept

a(ξξξ ) =
[
u◦1 (ξξξ ) u◦2 (ξξξ ) u∆

1 (ξξξ ) u∆
2 (ξξξ ) w(ξξξ ) ϕ◦

1 (ξξξ ) ϕ◦
2 (ξξξ ) ϕ∆

1 (ξξξ ) ϕ∆
2 (ξξξ )

]⊤

≈ N(ξξξ ) ae

(4.80)
with the matrix of shape functions N(ξξξ )

N(ξξξ ) =
[
N1 (ξξξ ) N2 (ξξξ ) . . . NNN (ξξξ )

]
(4.81)

and the matrix of shape functions at node i

Ni (ξξξ ) = Ni (ξξξ ) I , (4.82)

while I is a quadratic identity matrix, whose number of columns and rows is equal
to the number of DOF’s per node.



98 Marcus Aßmus et al.

4.4.4.2 Kinematical Measures

As a next step, the kinematical equations, cf. also Eqs (4.61), are discretised. For
this purpose, we introduce kinematical vectors with respect to the element

eMB =
[
e◦

M e∆
M e◦

B e∆
B

]⊤
eS =

[
e◦

S e∆
S

]⊤
(4.83)

with the auxiliary vectors for membrane and transverse strains as well as curvatures

e◦
M =

[
E◦

11 E◦
22 2E◦

12

]⊤
=
[
u◦1,1 u◦2,2 u◦1,2 + u◦2,1

]⊤
, (4.84)

e∆
M =

[
E∆

11 E∆
22 2E∆

12

]⊤
=
[
u∆

1,1 u∆
2,2 u∆

1,2 + u∆
2,1

]⊤
, (4.85)

e◦
B =

[
χ◦

11 χ◦
22 2χ◦

12

]⊤
=
[
ϕ◦

1,1 ϕ◦
2,2 ϕ◦

1,2 +ϕ◦
2,1

]⊤
, (4.86)

e∆
B =

[
χ∆

11 χ∆
22 2χ∆

12

]⊤
=
[
ϕ∆

1,1 ϕ∆
2,2 ϕ∆

1,2 +ϕ∆
2,1

]⊤
, (4.87)

e◦
S =

[
γ◦1 γ◦2

]⊤
=
[
w,1 +ϕ◦

1 w,2 +ϕ◦
2

]⊤
, (4.88)

e∆
S =

[
γ∆

1 γ∆
2

]⊤
=
[
ϕ∆

1 ϕ∆
2

]⊤
. (4.89)

Please note that above kinematical vectors represent fields, i.e. these vectors depend
on the natural coordinates ξξξ . For the sake of brevity, this has not been written ex-
plicitly. Now, the kinematical fields are approximated in analogy to Eq. (4.80) by
introducing the strain matrices BMB and BS for the membrane and bending as well
as for the shear part, respectively

eMB (ξξξ )≈ BMB (ξξξ )ae , eS (ξξξ )≈ BS (ξξξ )ae . (4.90)

The kinematical matrices are the products of the differential operators D and the
matrix of shape functions N

BMB (ξξξ ) = DMBN(ξξξ ) , BS (ξξξ ) = DSN(ξξξ ) (4.91)

with the differential operators for membrane, bending, and shear state

DMB =
[
D◦

M D∆
M D◦

B D∆
B

]⊤
, (4.92)

DS =
[
D◦

S D∆
S

]⊤
(4.93)

and the auxiliary differential operators

D◦
M =




∂
∂X1

0 0 0 0 0 0 0 0

0 ∂
∂X2

0 0 0 0 0 0 0
∂

∂X2

∂
∂X1

0 0 0 0 0 0 0


 , (4.94)
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D∆
M =




0 0 ∂
∂X1

0 0 0 0 0 0

0 0 0 ∂
∂X2

0 0 0 0 0

0 0 ∂
∂X2

∂
∂X1

0 0 0 0 0


 , (4.95)

D◦
B =




0 0 0 0 0 ∂
∂X1

0 0 0

0 0 0 0 0 0 ∂
∂X2

0 0

0 0 0 0 0 ∂
∂X2

∂
∂X1

0 0


 , (4.96)

D∆
B =




0 0 0 0 0 0 0 ∂
∂X1

0

0 0 0 0 0 0 0 0 ∂
∂X2

0 0 0 0 0 0 0 ∂
∂X2

∂
∂X1


 , (4.97)

D◦
S =

[
0 0 0 0 ∂

∂X1
1 0 0 0

0 0 0 0 ∂
∂X2

0 1 0 0

]
, (4.98)

D∆
S =

[
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

]
. (4.99)

4.4.5 Constitutive Equations for FEM

In order to implement the finite element, the expressions for the virtual internal
and external work, cf. Eqs. (4.66) and (4.67), need to be transferred to a matrix
notation, what is discussed in the next section. For this reason, this section presents
the corresponding constitutive equations in a matrix notation. First, vectors for the
stress resultants are introduced in analogy to Eqs. (4.84)-(4.89)

sK
M =

[
NK

11 NK
22 NK

12

]⊤ ∀ K = {◦,∆ ,c} , (4.100)

sK
S =

[
QK

1 QK
2

]⊤ ∀ K = {◦,∆ ,c} , (4.101)

sK
B =

[
MK

11 MK
22 MK

12

]⊤ ∀ K = {◦,∆ ,c} . (4.102)

Now, the constitutive equations are reformulated in a matrix notation, while Eqs. (4.63)
serve as basis for the mean and relative variables, and Eqs. (4.47), (4.48), and (4.49)
are evaluated for the core layer

s◦
M =

(
Ĉ◦

M + Ĉc
M

)
e◦

M + Ĉ∆
Me∆

M +
1
2

Ĉc
M

(
h∆ e◦

B + h◦e∆
B

)
, (4.103)

s∆
M = Ĉ◦

Me∆
M + Ĉ∆

Me◦
M , (4.104)

sc
M = Ĉc

M

[
e◦

M +
1
2

(
h∆ e◦

B + h◦e∆
B

)]
, (4.105)

s◦
S = Ĉ◦

Se◦
S + Ĉ∆

S e∆
S + Ĉc

S (e
◦
S +A1a) , (4.106)

s∆
S = Ĉ◦

Se∆
S + Ĉ∆

S e◦
S , (4.107)
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sc
S = Ĉc

S (e
◦
S +A1a) , (4.108)

s◦
B = Ĉ◦

Be◦
B + Ĉ∆

Be∆
B − 1

hc
Ĉc

B

(
2e∆

M + h◦e◦
B + h∆ e∆

B

)

− 1
2

Ĉ◦
M

[
h∆ e◦

M +(hc + h◦)e∆
M

]

− 1
2

Ĉ∆
M

[
h∆ e∆

M +(hc + h◦)e◦
M

]
, (4.109)

s∆
B = Ĉ◦

Be∆
B + Ĉ∆

Be◦
B , (4.110)

sc
B =− 1

hc
Ĉc

B

(
2e∆

M + h◦e◦
B + h∆e∆

B

)
. (4.111)

The constitutive matrices ĈK
M, ĈK

S , ĈK
B ∀ K = {◦,∆ ,c} as well as the auxiliary ma-

trix A1 are defined in the appendix.

4.4.6 Element Stiffness Relation

This section derives the element stiffness relation based on the principle of virtual
work. As a first step, the virtual internal and external work are presented in a matrix
notation. First, Eq. (4.66) is transferred to a matrix notation considering the vectors
of strains and stress resultants as well as the constitutive relations introduced in
Sections 4.4.4.2 and 4.4.5. Then, Eqs. (4.80) and (4.90) are inserted such that one
obtains

δWint =

∫

Ω e

δae⊤
[
B⊤

S

(
C◦

S +C∆
S +C∆

S
⊤
+A⊤

2 Ĉc
SA2

)
BS

+B⊤
S A⊤

2 Ĉc
SA1N+

(
B⊤

S A⊤
2 Ĉc

SA1N
)⊤

+N⊤A⊤
1 Ĉc

SA1N

+B⊤
MB

(
C◦

MB +C∆
MB+C∆

MB
⊤
+A⊤

3 Ĉc
MA3

+A⊤
4 Ĉc

BA4
)
BMB

]
ae dΩ e . (4.112)

The introduced auxiliary matrices Ai ∀ i = {1, . . . ,5} are defined in the appendix. In
order to shorten above expression, the generalised constitutive matrices C◦

MB, C∆
MB,

C◦
S, and C∆

S have been introduced. Their definitions can be found in the appendix,
too. Furthermore, all integrals are performed with respect to the element surface Ω e

or the element boundary ∂Ω e, respectively. Now, Eq. (4.67) is proceeded similarly,
what results in the following expression

δWext =
∫

∂Ω e
p

δae⊤N⊤A5td∂Ω e
p +

∫

Ω e

δae⊤N⊤qdΩ e . (4.113)
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The vectors t and q contain loads that are distributed over a curve or a surface of the
plate, respectively

t =
[
n◦

ν n∆
ν nc

ν q◦ν m◦
ν m∆

ν mc
ν

]⊤
(4.114)

q =
[
−s1 −s2 −s1 −s2 p ht

2 s1
ht

2 s2
ht

2 s1
ht

2 s2

]⊤
. (4.115)

The vectors n◦
ν , n∆

ν , nc
ν , m◦

ν , m∆
ν , and mc

ν refer to the corresponding vectors in
tensor notation defined in Eq. (4.69).

In order to derive the element stiffness relation, Eqs. (4.112) and (4.113) are inserted
into Eq. (4.70), and coefficients are equated with respect to the vector δae⊤. This
yields the element stiffness relation

(Ke
MB +Ke

S)ae = re . (4.116)

Hence, the stiffness matrix for the membrane and bending state Ke
MB and the stiff-

ness matrix for the shear state Ke
S are determined as follows

Ke
MB =

∫

Ω e

B⊤
MB

(
C◦

MB +C∆
MB +C∆

MB
⊤
+A⊤

3 Ĉc
MA3

+A⊤
4 Ĉc

BA4
)
BMB dΩ e , (4.117)

Ke
S =

∫

Ω e

[
B⊤

S

(
C◦

S +C∆
S +C∆

S
⊤
+A⊤

2 Ĉc
SA2

)
BS

+B⊤
S A⊤

2 Ĉc
SA1N+

(
B⊤

S A⊤
2 Ĉc

SA1N
)⊤

+N⊤A⊤
1 Ĉc

SA1N

]
dΩ e . (4.118)

The right-hand-side vector re comprises all the line loads re
1 and the surface loads re

2
on the element

re = re
1 + re

2 (4.119)

with
re

1 =

∫

∂Ω e
p

N⊤A5td∂Ω e
p , re

2 =

∫

Ω e
p

N⊤qdΩ e
p . (4.120)

4.4.7 Surface Load Vector

Since this paper aims to analyse surface loads on photovoltaic modules, we focus
on the surface load vector re

2. For the numerical procedure, the load vector q is
approximated via the isoparametric element concept, in analogy to Eq. (4.80)
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q(ξξξ )≈ N(ξξξ ) qe, (4.121)

with the element load vector qe, which comprises all nodal load vectors qi

qe =
[
q1 q2 . . . qNN

]⊤
, (4.122)

qi =
[
−si

1 −si
2 −si

1 −si
2 pi ht

2 si
1

ht

2 si
2

ht

2 si
1

ht

2 si
2

]⊤
. (4.123)

The variables si
1, si

2, and pi are determined by evaluating the load distribution func-
tions at the corresponding node coordinates

(
X i

1,X
i
2

)

si
1 = s1

(
X i

1,X
i
2

)
, si

2 = s2
(
X i

1,X
i
2

)
, pi = p

(
X i

1,X
i
2

)
. (4.124)

Equation (4.121) is inserted into Eq. (4.120) such that the surface load vector is
approximated as follows

re
2 ≈

∫

Ω e
p

N(ξξξ )
⊤

N(ξξξ ) qe dΩ e
p . (4.125)

4.4.8 Assembling

In order to obtain numerical equations for the whole structure, the virtual energies
of all finite elements belonging to the structure, i.e. e ∈ [1,NE], are summed up,
considering the relations between the DOF’s of every element and structural DOF’s.
This procedure transfers variables on elemental scale to the structure. Based on the
displacement vectors, stiffness matrices, and right-hand-side vectors of the element,
one obtains the corresponding structural vectors and matrices.

The symbolic operator
⋃

is used to ensemble the finite elements (Zienkiewicz and
Taylor, 2000)

KMB =
NE⋃

e=1

Ke
MB , KS =

NE⋃

e=1

Ke
S , (4.126)

a =
NE⋃

e=1

ae , r =
NE⋃

e=1

re . (4.127)

Finally, the structural stiffness relation is formulated.

Ka = r . (4.128)

The structural stiffness matrix is composed by a membrane-bending KMB and a
shear portion KS

K = KMB +KS . (4.129)
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4.4.9 Numerical Integration and Artificial Stiffening Effects

To determine the stiffness matrices and load vectors, it is necessary to calculate inte-
grals over the element surface. The method to solve these integrations numerically
used here is the so called GAUSS-LEGENDRE quadrature (Zienkiewicz and Taylor,
2000), which is established in FEM. In order to solve the exact analytical integration
I of a function f (ξξξ ) over the element surface, Eq. (4.77) is used:

I =

∫

Ω e

f (ξξξ )dΩ e =

1∫

−1

1∫

−1

f (ξξξ ) |J(ξξξ )| dξ1 dξ2 . (4.130)

The integral is approximated by the weighted summation of function values (Schwarz
and Köckler, 2011)

I ≈
NG1

∑
i=1

NG2

∑
j=1

α i
1α j

2 f (ξ i
1,ξ

j
2 ) . (4.131)

The function to be integrated is evaluated at the integration or GAUSS points
(
ξ i

1,ξ
i
2

)

and multiplied with the weighting factors α i
1,α

i
2, while NG is the number of inte-

gration points. The position of the integration points is shown in Fig. 4.7 at the
SERENDIPITY element.

Typical problems with finite elements are related to artificial stiffening effects. The
probably best known phenomenon of this kind is the so-called shear locking. This
stiffening effect becomes particularly relevant when bending states at slender struc-
tures are under investigation (Babuška and Suri, 1992). In that case, the shear rigidity
is parasitic. Due to that, in addition to complete integration, two additional modes of
integration are introduced to prevent shear locking (Stolarski and Belytschko, 1982).
The modes providing a remedy are the reduced and the selective integration. In this
case, a reduced number of GAUSS points is addressed for integration, or a reduced or
the complete number of GAUSS points is selected according to the rigidity portion.
The principle procedures of all three integration modes are explained in Fig. 4.7,
while coordinates of GAUSS points and corresponding weights for complete and
reduced integration are given in Table 4.1.
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Fig. 4.7: Implemented integration modes for SERENDIPITY element with
quadratic shape functions: full, reduced, and selective integration

Table 4.1: Coordinates of GAUSS points and assigned weights of GAUSS-
LEGENDRE quadrature (Schwarz and Köckler, 2011)

m×m ξ i
1 ξ j

2 α i,α j

ξ 1
1 =−

√
3
5 ξ 1

2 =−
√

3
5 α1 = 5

9

3×3 ξ 2
1 = 0 ξ 2

2 = 0 α2 = 8
9

ξ 3
1 =+

√
3
5 ξ 3

2 =+
√

3
5 α3 = 5

9

ξ 1
1 =− 1√

3
ξ 1

2 =− 1√
3

α1 = 1

2×2

ξ 2
1 =+ 1√

3
ξ 2

2 =+ 1√
3

α2 = 1
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4.5 Structural Analysis

4.5.1 Test Structure

As also done in different studies (Eisenträger et al, 2015b; Aßmus et al, 2016),
a commercial, 72 cell photovoltaic module with glass front and back cover and
ethylene-vinyl acetate (EVA) as core layer material is used for the case studies in the
present contribution. Nevertheless, there is a large variation of possible geometries
and materials at the market, as reported in Aßmus et al (2016). However, lengths
and thicknesses used here are exemplaric. Geometrical measures used for this study
are presented in Table 4.2. Hence, a length ratio LR = L2/L1=0.5 results. For the sake
of simplicity, a structure, whose geometrical and material properties are symmetric
in transverse direction, is used. The thickness ratio is TR = hc/(ht +hb) ≈ 15.6 · 10−2,
and the thickness-to-length ratio is TLR = H/Lmin = 9.1 ·10−3. Material parameters at
room temperature (23◦C) of the photovoltaic module under consideration are also
given in Table 4.2, where isotropic elastic material behaviour is assumed. Glasses
for the skin layers are stiff brittle materials, while the EVA for the core layer is a soft
rubber-like material. Due to the extreme differences in material properties, the shear
modulus ratio is GR= Gc/Gs = 9.98 ·10−5 ∀s = {t,b}, and the normalised shear rigid-
ity parameter is β = 9.40 according to Naumenko and Eremeyev (2014). While GR

confirms that classical composite theories cannot be applied here due to the highly
differing material properties, the shear rigidity parameter indicates the application
range of XLWT. Compared to studies presented in Naumenko and Eremeyev (2014);
Eisenträger et al (2015a,b); Aßmus et al (2016), β with respect to room temperature
is in the range, where the first order shear deformation theory is also applicable to
obtain useful results. Since the aim of this study is also the consideration of realistic
temperatures at loading, β will vary such that the necessity of XLWT will be shown
in the sequel.

For the mounting of a photovoltaic module, a peripheral frame surrounding the com-
posite structure as shown in Aßmus et al (2016) is considered here. Since it is al-

Table 4.2: Geometrical and material parameters of the test structure used for conver-
gence analysis (room temperature ϑ = 23◦C)

K LK
1 [mm] LK

2 [mm] hK [mm] EK [N/mm2] νK [−]

t/b

1620 810

3.2 73.0 ·103 0.30

(Cahn et al, 1991) (Cahn et al, 1991)

c 1.0 7.9 0.41

(Eitner, 2011) (Eitner, 2011)
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Table 4.3: Definition of boundaries at the layerwise structure and chosen boundary
conditions for convergence study (H=∑hK)

boundary Γ 1
1 Γ 2

1 Γ 1
2 Γ 2

2 ΓN

eee1 0 L1 0 . . .L1 0 . . .L1 0 . . .L1

eee2 0 . . .L2 0 . . .L2 0 L2 0 . . .L2

nnn −H/2 . . .H/2 −H/2 . . .H/2 −H/2 . . .H/2 −H/2 . . .H/2 −H/2

condition w = 0 w = 0, uK
1 = 0 w = 0 w = 0 qW = 500 N/mm2

ready shown in Schicker et al (2014); Beinert et al (2016) that framing all-round the
photovoltaic composite is favourable due to lower mechanical stresses compared
to mounting at specific points at the sides along Lα , this concept is also applied
here. It is assumed that the bedding material in the groove of the frame can transmit
pressure, but not tension. In the absence of data on the compliance of the bedding
material, an elastic bedding is renounced here. For a clear definition of the mount-

ing, the boundaries Γ
β

α are introduced in Table 4.3. Additionally, the boundary ΓN

is defined as loaded area at the photovoltaic module.

4.5.2 Discretisation and Convergence

For verification of the numerical implementation of XLWT, a convergence study is
conducted here via discretisation variation. Used boundary conditions are given in
Table 4.3. A constant wind load is applied to the outer surface of the photovoltaic
module under inclination angle of 35◦ such that the loading is uniform, but non-
orthogonal. This loading scenario corresponds to an orthogonal portion with p =
409.58 N/mm2 and a transverse portion of s1 = 286.79 N/mm2, where Eq. (4.24) holds
true for the component notation at ΓN.

The spatial discretisation of the structure presented in the previous section is done
via the finite element described in Sect. 4.4.4. A structured mesh is used, where all
interior angles of the finite elements account for 90◦. The discretisation density has
been varied within a convergence study by changes of the element edge lengths. As
can be seen in Table 4.4, the aspect ratio of the finite elements is kept constant at
AR= he

max/he
min = 1 for all discretisation variations, i.e. he

1 = he
2 ∀ Ω e ⊂ Ω holds true.

Therein, he
α is the element edge length. Furthermore, NN =NE×NNE is the number

of nodes and NEQ is the total number of degrees of freedom (NEQ=NN×NDOF) in
corresponding discretised domain, where NNE is the number of nodes per element (8
in present case) and NDOF is the number of degrees of freedoms per node (9), while
NE is the total number of elements. Considering the number of integration points
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Fig. 4.8: Discretisation variation through he adaption: deflection path along plate
bisecting line and convergence of maximum deflection

(NG) given in Table 4.4, we distinguish between full and reduced (red.) integration
scheme according to Fig. 4.7 resulting from Sect. 4.4.9. In summary, three integra-
tion schemes at four discretisation variants are used for the convergence study.

Results of the convergence analysis are shown in Fig. 4.8. On the left-hand side,
the deflection is depicted along a path representing the bisecting line of the plate.
X̆1 = X1/L1 is a normalised measure. On the right-hand side, the maximum deflec-
tion of the plate versus the number of elements is given. It is conspicuous that it
is sufficient to calculate with a maximum of 8,192 elements in the present case,
compared to conventional structural analysis with 3D elements, where 106 to 108

elements are needed to gain convergence (Dietrich, 2014). By varying the number
of elements, it is found that selective integration provides fastest convergence. Max-
imum calculation times were clearly below one minute for the highest disretisation
density, while all simulations were performed on an eight core Intel i7-5960X CPU
and 64 GB RAM by using the solver of ABAQUS 6.14. It should be noted that
deflections decrease with increasing number of elements applying the reduced inte-
gration scheme, which seems unphysical. However, this phenomenon is shown in
Eisenträger et al (2015b) also and will not be discussed here. As is apparent, the de-
formation field along X̆1 is unsymmetric (see magnification in left plot of Fig. 4.8)
due to the non-orthogonal loading. For the maximum element number used here,
reduced integration results in the largest deflections, while full integration leads to
the stiffening of the elements. However, difference in the maximum deflection of
all three integration schemes is around 10−3 mm, while the maximum deflection is
9.08 ·10−1 mm.

In the sequel, all calculations are performed by using 8,192 elements, where the
selective integration is favoured since this scheme seems to be insensitive to artificial
stiffening, also at low discretisation densities.
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Table 4.4: Characteristic parameters of the discretisation variation resulting through
he

α adaptation at the composite structure

mesh 1 2 3 4

NE 128 512 2,048 8,192

NN 433 1,633 6,337 24,961

NEQ 3,897 14,697 57,033 224,649

NG
full 2,304 4,608 18,432 73,728

red. 1,024 2,048 8,192 32,768

AR 1 1 1 1

4.5.3 Case Studies

As already mentioned, snow loads act at sub-zero temperatures. In contrast, wind
loads are independent of temperature. Due to the lack of data for material param-
eters of the core layer at any admissible temperature with respect to the range of
application, cf. Aßmus et al (2016), these case studies are restricted to snow loading
at −40◦C and to wind loading at +80◦C as two extrema. In contrast to the temper-
ature dependent material behaviour of the core layer, we assume that the material
parameters of the skin layers made of glass are insensitive with respect to tempera-
ture changes. Temperature dependent material parameters of the core layer for both
case studies are given in Table 4.5. The high value of β = 106.74 at decreased tem-
peratures indicates that also the KIRCHHOFF theory can be used. Contrary to that,
β = 2.41 at elevated temperatures requires the XLWT (Naumenko and Eremeyev,
2014; Eisenträger et al, 2015a,b). This behaviour is also confirmed by the shear
modulus ratio GR.
Boundary conditions for edge support and loading at the front surface are given
in Table 4.6 for snow and wind load. In both cases, the load distribution at ΓN is

Table 4.5: Temperature dependent material parameters of core layer material (based
on Eitner (2011))

ϑ [◦C] Ec [N/mm2] νc [−] Gc [N/mm2] GR [−] β [−]

−40 1019.04 0.41 361.36 1.29 ·10−2 106.74

+80 0.52 0.41 0.18 6.57 ·10−6 2.41
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assumed to be well described by a double sine function with respect to COOS {gggi}
as given in Eq. (4.25). This double sine function is rotated in the COOS {eeei} by the
angle θ using Eqs. (4.27) or (4.28). For both load cases, the angle is varied, i.e. θ =
{25◦,35◦,45◦,55◦}. Compared to load intensities in natural weathering discussed
in Sect. 4.2.1, the loads used here are kept small since just the procedure is in the
foreground. At both cases, the maximum amplitude of loading is 500 N/mm2.
Since the transverse loads of both loading scenarios act opposite when considering
the loaded surface inclined with 0 < θ < 90◦, different boundary conditions for the
photovoltaic composite are needed at Γ 1

1 and Γ 2
1 . These are presented in Table 4.6.

In the sequel, the evaluations are divided in two case studies. Figures 4.9 and 4.10
show the DOF’s for all layers along two paths with respect to a varying inclination
angle. The paths are A-A (X1=0 . . .L1, X2 = L2/2) and B-B (X1 = L1/2, X2 =0 . . .L2),
while normalised length measures X̆α = Xα/Lα are used. In addition, kinetic and
kinematical quantities for the individual layers are juxtaposed comparatively in
Figs. 4.11, 4.12, 4.13, and 4.14, while only an inclination angle of θ =35◦ is taken
into account for the sake of clarity. This value represents a typical average for mod-
ules mounted in the area of Germany (around 47◦ . . .52◦ of latitude), see Huld et al
(2008), since the optimum setting is always perpendicular to the sun. Due to the
symmetry of the second rank tensors NNNK, LLLK, EEEK and XXXK, the evaluation is restricted
to the elements �K

11, �K
22, and �K

12 ∀� = {N,M,E,χ}. All results are discussed in
Sect. 4.5.4.

4.5.4 Results and Discussion

4.5.4.1 Degrees of Freedom

Figure 4.9 displays the deflection, the in-plane displacements, and the rotations
along the Paths A-A and B-B for wind loading at elevated temperatures. It becomes
obvious that the deflection increases with growing inclination angle. In contrast to
pure orthogonal loading, cf. Aßmus et al (2016); Eisenträger et al (2015b), the de-
flection is non-symmetric due to the introduction of tangential loads. The maximum
deflection is not located at the plate centre anymore, i.e. wmax 6= w(L1/2,L2/2), and
equals wmax ≈1.95mm for θ =55◦. The displacement uK

1 approaches its extremum

Table 4.6: Boundary conditions at the layerwise structure used for case studies at
wind and snow loading

boundary Γ 1
1 Γ 2

1 Γ 1
2 Γ 2

2 ΓN

wind loading w = 0 w = 0, uK
1 = 0 w = 0 w = 0 q0

W = 500 N/mm2

snow loading w = 0, uK
1 = 0 w = 0 w = 0 w = 0 q0

S = 500 N/mm2
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Fig. 4.9: Angle-dependent layerwise kinematics of the photovoltaic composite struc-
ture at wind loading

near the edge X̆1=0, while uK
1 (X̆1=1)=0 holds true due to the boundary conditions

in Table 4.6. The absolute displacement |uK
2 | is equal in top and core layer along the

Path B-B with opposite signs and the displacement in the core layer tends to zero.
Contrarily, the rotations ϕK

1 and ϕK
2 are equal in the skin layers, while the core layer

rotates in opposite direction.

For comparison, Fig. 4.10 displays the deflection, the in-plane displacements, and
the rotations along the Paths A-A and B-B for snow loading at reduced temperatures.
Contrary to wind loading, the deflection increases with decreasing inclination angle,
such that the maximum deflection occurs at θ = 25◦ and equals wmax ≈ 0.45mm.
At X̆1 = 0, the derivative of the deflection with respect to X̆1 tends to zero. This is
due to the constrained displacements uK

1 . Subsequently, the mutual sliding between
the skin layers is decreased significantly because of the high shear rigidity of the
core layer material at reduced temperatures. For this reason, the rotations ϕK

1 are
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Fig. 4.10: Angle-dependent layerwise kinematics of the photovoltaic composite
structure at snow loading

vanishing at this point. Also in the case of snow loading, the maximum deflection
is shifted from the plate centre, so that wmax 6=w(L1/2,L2/2) holds true. The in-plane
displacements uK

1 approach their extrema at X̆1=1. Due to the symmetry of bound-
ary conditions with respect to X̆2, the displacements uK

2 approach the maximum or
minimum, respectively, at the edges of the module and are zero in the centre. The
displacements in the front cover are contrary to those in the back cover, whereas the
displacements in the core layer are approximately zero. A relevant displacement in
the core layer cannot be observed. Due to the increased shear rigidity of the core
layer, all layers rotate in the same direction. The skin layers rotate around the same
angles, while the rotation in the core layer differs slightly. The rotations ϕK

2 are zero
at X̆2=0.5 and reach their maximum or minimum, respectively, at the edges.

For present geometry and material parameters when restricting to 55◦ inclination,
the deflections at wind loading and elevated temperatures are around one order of
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magnitude higher than at snow loading at reduced temperatures. Thereby, it should
be remembered that the load intensities at both loading scenarios are equal. Com-
paring snow and wind loading, the in-plane displacements are in the same order of
magnitude. Basically, it should be noted that the rotations are about one order of
magnitude higher at elevated temperatures than at reduced temperatures. This fact
can become critical when loads and/or inclination angle at elevated temperatures are
rising, what results in high shear loads in the core layer.

4.5.4.2 Kinetic and Kinematic Quantities

Figure 4.11 presents the stress resultants (both upper rows) and the conjugate kine-
matical measures (both lower rows) along the Path A-A for wind loading at ele-
vated temperatures. For the membrane force, NK

11(X̆1 = 0) = 0 holds true because
the edge Γ 1

1 is unconstrained with respect to the in-plane displacements. Further-
more, the membrane force NK

12 equals zero approximately, considering the scale of
the ordinate. One should note that no membrane forces are present in the core layer.
Since the deflections are constrained at the edges, the transverse shear forces show
typical boundary layer effects Brank (2008). Refining the mesh near the edges would
reduce the influence of these effects. The bending moments MK

αα equal zero at the
edges X̆1 = 0 and X̆1 = 1 since the rotations ϕK

α are unconstrained along the edges
Γ 1

1 and Γ 2
1 . Similar to the membrane force NK

12, the twisting moment MK
12 is zero. All

moments Mc
αβ are zero, i.e. the core layer is moments-free. The membrane strains

behave similarly to the membrane forces, and the shear strains are also influenced
by the boundary layer effects. In the shear-rigid skin layers, the shear strains γK

2 are
zero. In addition, χK

11 ≈ 0 is valid for all layers.

Additionally, Fig. 4.12 depicts the stress resultants (both upper rows) and the conju-
gate kinematical measures (both lower rows) along the Path A-A for snow loading at
reduced temperatures. Because of the different boundary conditions with respect to
the in-plane displacements for wind and snow loading, cf. Table 4.6, the membrane
forces at snow loading show a different behaviour compared to wind loading. In
analogy to wind loading, the membrane forces NK

12 are approximately zero. Bound-
ary layer effects are also observable at the transverse shear forces QK

α . The behaviour
of the bending moments at snow loading differs strongly from the bending moments
at wind loading near the edge X̆1=0. As in the case of wind loading, the core layer
is moments-free and the twisting moment approximates zero.

The membrane strains EK
11 reach their extrema at X̆1 = 0 and become zero at the

opposite edge. Overall, the membrane strains present a similar behaviour as the
corresponding membrane forces. Once again, the membrane strain EK

12 is zero, ap-
proximately, and the shear strain γK

2 disappears in the skin layers. Also in the case
of snow loading, the boundary layer effects are reflected by the shear strains, and
the curvature χK

11 is zero in all layers. The curvature χc
22 of the core layer reaches its

minimum at X̆1=0, while it tends to zero at X̆1=1. Comparing the magnitudes of the
quantities for snow and wind loading, it becomes obvious that the membrane forces
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Fig. 4.11: Layerwise stress resultants, strains, and curvatures of the photovoltaic
composite structure at wind loading for path A-A

and strains are higher at snow loading than at wind loading, whereas the behaviour
of the moments and curvatures is inverse.

In analogy to Figs. 4.11 and 4.12, Figs. 4.13 and 4.14 present the corresponding
quantities along the Path B-B. The membrane forces in the skin layers reach their
extremum in the centre of the plate, i.e. X̆2 = 0.5, while the membrane forces in
the core layer are zero. In both case studies, the transverse shear force QK

1 equals
zero in the interior of the plate and reaches its extrema at the edges. Once again, a
boundary layer effect is observable with respect to the transverse shear force QK

2 .
For the bending moments, MK

αα(X̆1=0)=MK
αα(X̆1=1)=0 holds true. In both case

studies, the moments show the same behaviour, while the moments at wind loading
are approximately one order of magnitude higher than the corresponding quantities
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Fig. 4.12: Layerwise stress resultants, strains, and curvatures of the photovoltaic
composite structure at snow loading for path A-A

at snow loading. The twisting moment MK
12 is influenced by a boundary layer effect,

and the core layer is moments-free.
At wind loading, the membrane strain EK

11 is approximately constant in the interior
of the photovoltaic module. In general, the curves of the membrane strains have a
similar shape as the curves of the corresponding membrane forces. The membrane
strains at snow loading are significantly higher than the ones at wind loading. As one
would expect, the shear strains at elevated temperatures, i.e. at wind loading, exceed
the corresponding shear strains at reduced temperatures (snow loading) by several
orders of magnitude. In both case studies, the transverse shear strains γK

α in the skin
layers are negligible compared to the shear strains in the core layer. In contrast to
the other kinematical measures, the curves for the curvatures at wind loading differ
strongly from the corresponding curves at snow loading.
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Fig. 4.13: Layerwise stress resultants, strains, and curvatures of the photovoltaic
composite structure at wind loading for path B-B

4.6 Conclusion

In the foregoing investigations, we have introduced an approach for approximat-
ing natural mechanical loading at photovoltaic modules and evaluating its effect on
structural stresses. By exploiting the XLWT, a framework for the mechanics of pho-
tovoltaic modules is derived, while a computational solution approach provided by
the FEM is used.

For the presence of wind and snow loading, we have obtained adequate approxima-
tions of load distributions by introducing FOURIER series. Additionally, we have
introduced a structural inclination to represent realistic operating and mounting con-
ditions, and to account for directions of loads applied. By this procedure, we have
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Fig. 4.14: Layerwise stress resultants, strains, and curvatures of the photovoltaic
composite structure at snow loading for path B-B

generated a catalogue of different possibilities for load approximations at inclined
surfaces. This allows us to consider a broad class of mechanical problems on struc-
tural analysis of photovoltaic modules. However, this framework can be easily en-
larged by considering an azimuthal angle, or by using general periodic functions to
describe location dependent load distributions at a surface. The description of non-
uniform and heterogeneous loads is not restricted to the use with the XLWT. It is
applicable to any procedure of structural mechanics at photovoltaic modules.
For structural analysis, we have introduced the concept of deformable elastic (di-
rected) surfaces, as these form the basis of the multilayered systems used to de-
scribe the present composite structure. As basis, an extension of the five parameter
thin-walled structural theory based on the direct approach, expanded to a three lay-
ered system is carried out. Thereby, kinematic and kinetic constraints on the inter-
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faces between the layers are introduced, such that it is possible to describe the struc-
ture completely with only 9 DOF’s. The attraction of this procedure is to involve
the membrane, bending, and shear state independently and layerwise. In contrast to
Naumenko and Eremeyev (2014); Eisenträger et al (2015b), and Aßmus et al (2016),
tangential loading is taken into account by using the XLWT. Afterwards a computa-
tional solution strategy is introduced based on FEM. For this reason, the governing
equations of XLWT are embedded in a variational framework, namely the principle
of virtual work. By exploiting these equations, one obtains the element stiffness re-
lation, where C0 continuous elements of SERENDIPITY type are introduced. Since
shear locking is a well known problem within the context of theories considering
transverse shear strains, two alternative arrangements to avoid such artificial stiffen-
ing effects are introduced.
Finally, the effects of the load approximation are investigated on two characteristic
loading scenarios. The case studies presented here use inclination angles typically
for latitudes in middle Europe. Concerning maximum load intensities used in the
present investigations, we restrict ourselves to the validity of the fully linear XLWT.
With regard to our conceptual framework for load approximations, load intensities
with arbitrary values can be applied. The results reveal the significance of direction
dependent loading when analysing photovoltaic composite structures, in addition
to temperature dependent analyses as already emphasised in Aßmus et al (2016).
This is particularly evident comparing the achieved results with the evaluations in
Eisenträger et al (2015b).
There is a fundamental agreement in the scientific community that theories for slen-
der structures exhibit only an approximate character, even if the direct approach is
known as geometrically exact. However, experimental evidence of the performance
of the XLWT will remain an open problem. Since manufacturers of photovoltaic
modules typically do not provide any information on the mechanical properties of
the materials used, experimental comparisons are still a venture. Therefore, proto-
typical structures are needed, where the materials of components have been anal-
ysed in foregoing material tests. With regard to the theoretical background based
on the direct approach, hypotheses have then to be introduced to incorporate three
dimensional information for the underlying physical structure.
One of the shortcomings of the approach using the XLWT is the missing information
regarding the loads at components embedded in the core layer of the photovoltaic
module. If one is interested in concrete data for stresses and strains occurring at
solar cells, encapsulations, or further ingredients during the loading processes, one is
referred to Aßmus et al (2016), where a multi-scale approach is proposed to generate
such local data from the present results.
However, as it is the main goal of every design engineer to develop structures that
do not deform inelastic during operation, the whole procedure presented here consti-
tutes a distinguished methodology to optimise photovoltaic module structures or to
invent new structural design concepts. By using the computational solution strategy
for the governing equations of XLWT, the present approach provides a powerful
tool for structural analysis considering any admissible mounting and loading condi-
tion. This opens up the question for optimum geometrical and material parameters
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of photovoltaic composites. For this purpose, an optimisation problem can be for-
mulated, where kinematic and kinetic quantities are control variables, while afore-
mentioned structural parameters are manipulating variables. Nevertheless, there are
also constraints since the costs of photovoltaic module production represent a deci-
sive factor. Besides, not all dimensions can be realised technologically and not all
materials can be selected due to requirements for further physical properties, e.g.
transparency, conductivity, moisture absorption etc.
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4.A Appendix

4.A.1 Constitutive Matrices

The constitutive matrices, introduced in Eqs. (4.103)-(4.111), are defined as follows

ĈK
L =




aK
L + 2bK

L bK
L 0

aK
L aK

L + 2bK
L 0

0 0 bK
L


 ∀ K = {◦,∆ ,c} ∧ L = {M,B} , (4.132)

ĈK
S = aK

S

[
1 0
0 1

]
∀ K = {◦,∆ ,c} (4.133)

with the abbreviations

aK
L =





Dt
Lνt +Db

Lνb if K = ◦
Dt

Lνt −Db
Lνb if K = ∆

Dc
Lνc if K = c

∀L = {M,B} , (4.134)

bK
L =





1−νt

2 Dt
L +

1−νt

2 Db
L if K = ◦

1−νt

2 Dt
L − 1−νt

2 Db
L if K = ∆

1−νt

2 Dc
L if K = c

∀L = {M,B} , (4.135)

aK
S =






Dt
S +Db

S if K = ◦
Dt

S −Db
S if K = ∆

Dc
S if K = c

(4.136)

With the matrices above, one can define the generalised constitutive matrices
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C◦
MB =




Ĉ◦
M 0 0 0

0 Ĉ◦
M 0 0

0 0 Ĉ◦
B 0

0 0 0 Ĉ◦
B


 , (4.137)

C∆
MB =




0 Ĉ∆
M 0 0

0 0 0 0

0 0 0 Ĉ∆
B

0 0 0 0


 , (4.138)

C◦
S =

[
Ĉ◦

S 0

0 Ĉ◦
S

]
, (4.139)

C∆
S =

[
0 Ĉ∆

S
0 0

]
. (4.140)

The zero matrices in Eqs. (4.137) and (4.138) have three rows and columns, while
the zero matrices in Eqs. (4.139) and (4.140) possess only two rows and columns.

4.A.2 Auxiliary Matrices

Furthermore, the auxiliary matrices Ai ∀ i = {1, . . . ,5} are defined as follows:

A1 =
1
hc

[
0 0 −2 0 0 −(h◦+ hc) 0 −h∆ 0
0 0 0 −2 0 0 −(h◦+ hc) 0 −h∆

]
, (4.141)

A2 =

[
1 0 0 0
0 1 0 0

]
, (4.142)

A3 =
[
I 0 1

2 h∆ I 1
2 h◦I

]
, (4.143)

A4 =
1
hc

[
0 2I h◦I h∆ I

]
, (4.144)

A5 =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 − 2

hc 0
0 0 0 1 0 0 0 0 0 0 0 0 − 2

hc

0 0 0 0 0 0 1 0 0 0 0 0 0
1
2 h∆ 0 1

2 (h
◦+ hc) 0 0 0 0 0 −1 0 0 − h◦+hc

hc 0
0 1

2 h∆ 0 1
2 (h

◦+ hc) 0 0 0 1 0 0 0 0 − h◦+hc

hc

0 0 0 0 1
2 h◦ 0 0 0 0 0 −1 − h∆

hc 0

0 0 0 0 0 1
2 h◦ 0 0 0 1 0 0 − h∆

hc




.

(4.145)

The identity matrices I and the zero matrices 0 used in Eqs. (4.143)-(4.144) have
three rows and columns each.
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Chapter 5

Block Element Method for the Stamps of the no

Classical Form

Vladimir A. Babeshko, Olga V. Evdokimova & Olga M. Babeshko

Abstract We present a block element method for solving 3D integral equations
with difference kernel arising in boundary value problems of continuum mechanics
and in mathematical physics. The approach has been induced by the Wiener–Hopf
method, and its extension to the 3D case is called the integral factorization method
and is mostly used in applications to domains with smooth boundary. In the present
paper, the method is applied to domains with piecewise smooth boundary and corner
points, which necessitates its generalization to the case of functions of two variables.
Mixed boundary value problems have numerous applications in mechanics as well
as in theoretical and technical physics. The method was tested on a vector contact
problem for a wedge-shaped punch occupying the first quadrant. Techniques for
obtaining various characteristics of solutions are described in detail. They are based
on the inversion of a system of 1D linear integral equations typical of dynamic and
static contact problems for strip punches.
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5.1 Introduction

The integral factorization method, which originates from Wiener and Hopf (1932),
permits studying numerous mixed boundary value problems in continuum mechan-
ics as well as in mathematical and theoretical physics numerically and analytically
(Arutyunan and Manzhirov, 1999; Manzhirov, 2001, 1987; Noble, 1958; Vorovich
and Babeshko, 1974; Babeshko et al, 2015). This method, which is closely related to
the factorization of functions and matrix functions of one complex variable, was suc-
cessfully adapted to the case of 2D domains with smooth boundary. Several versions
of the factorization method for integral equations are described in Noble (1958).
However, in the present paper the method is only applied to 1D integral equations
or to equations that can readily be reduced to 1D equations. A generalization of
the method for 3D domains with smooth boundary is presented in Vorovich and
Babeshko (1974); Babeshko et al (2015); Babeshko (1984); Babeshko et al (1989);
Eskin (1980). At the same time, this method has not been applied to problems with
non-smooth boundary. Apparently, the present paper is the first to use this method
for solving static and dynamic boundary value problems for wedge-type domains.
The simplest case is that of a rectangular wedge, that is, of a quadrant in a rectan-
gular coordinate system. An important theoretical application of the factorization
methods is their role in the development of the block element method for solving
boundary value problems for partial differential equations (Babeshko et al, 2006).
This topologically based method permits solving such boundary value problems
block by block, thus covering the entire domain where the boundary value problem
is posed. Some advantages of the block element method, which is used to solve the
integral equations arising in 3D mixed boundary value problems, can be illustrated
by several examples of contact problems. As a rule, the boundary conditions are
changed on the interface in the contact problem under study. For example, in the
contact problems for a rigid punch, this is the transition from the domain of dis-
placements under the punch, where the integral equation is posed, to the domain of
stresses, and the opposite transition occurs in the crack theory. In contrast to other
approaches, including numerical ones, the block element method permits simultane-
ously solving the integral equations and calculating the physical parameters of the
mixed problem even outside the domain where the integral equations are posed. In
contact problems, this is the behavior of displacements outside the punch area. In
what follows, the system of integral equations of the mixed boundary value prob-
lem is considered in the wedge area occupying the first quadrant in the rectangu-
lar coordinate system. Such integral equations arise in problems on the action of a
wedge-shaped punch on a multilayer medium under the condition of rigid adhesion
between the punch and the medium or in the case where there are only tangential
stresses in the contact region; in particular, this is the case for contact problems
with creep Arutyunan and Manzhirov (1999); Manzhirov (2001, 1987). Such inte-
gral equations also arise in problems on the behavior of a crack, wedge-shaped in
the horizontal projection, in a multilayer medium, on a thin-walled covering of such
a shape on a multilayer substratum, on the behavior of a drifting ice floe wedge-
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shaped in the horizontal projection, in mixed boundary value problems describing
the cold plasma behavior in such a domain, and in other boundary value problems.

5.2 Statement of the Problem

In what follows, the block method is used to study systems of integral equations of
the following form, which has not yet been considered:

Kq =

∞∫

0

∞∫

0

k(x− ξ ,y−η)q(ξ ,η)dξ dη = f (x,y), 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞,

k(x,y) =
1

4π2

∫

Γ1

∫

Γ2

K(α,β )e−i(αx+β y)dαdβ ,

Q(α,β ) =

∞∫

0

∞∫

0

q(ξ ,η)ei(αξ+β η)dξ dη

(5.1)

The integral equation can be written as

1
4π2

∫

Γ1

∫

Γ2

K(α,β )Q(α,β )e−i(αx+β y)dαdβ = f (x,y), 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞,

F(α,β ) =

∞∫

0

∞∫

0

f (ξ ,η)ei(αξ+β η)dξ dη

The entries of the matrix function K(α,β ) are assumed to be meromorphic functions
in both complex variables and behave at infinity as

K(α,β ) = O(α−1), β = const;
K(α,β ) = O(β−1), α = const, α,β → ∞.

Further, it is assumed that the zero and polar sets of these entries are analytic curves
in the space of two complex variables, the polar sets being solvable for each of the
parameters and representable in the form αn = αn(β ), βn = βn(α). The same is
true for the determinant of the matrix function. Finitely many poles can be real-
valued in dynamic mixed boundary value problems (Vorovich and Babeshko, 1974).
The contours Γ1 and Γ2 lie on the real axis of the complex α- and β -planes every-
where except for the regions where the real poles of entries of the matrix function
K(α,β ) appear on the real axis. In this case, the contours deviate into the complex
plane in sufficiently narrow domains of the real axes to bypass the poles. The con-
tours are chosen so as to justify the statement of the boundary value problem phys-
ically in the case of time-harmonic mixed boundary value problems, namely, so as
to satisfy the radiation principle at infinity, which means that the phase velocities
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are directed to infinity for normal materials and from infinity for mesomaterials in
electronics (Vorovich and Babeshko, 1974). In the first case, the real poles of entries
of the symbol K(α,β ) in the first quadrant are bypassed by the contours from above
if, in the transition to complex amplitudes, the function exp(−iωt), where ω is the
oscillation frequency and t is time, is accepted. In the second case, the poles in the
first quadrant are bypassed from below. The case of reversed phase velocities, which
is described in Vorovich and Babeshko (1974), takes a special place. The contours
in the second quadrant are in the opposite position. It should be noted that there are
many papers where the specific characteristics of the solution at the corner point are
studied (Babeshko et al, 1989; Glushkov and Glushkova, 1992). The solutions of
systems of integral equations of this and similar types have important applications
in the foundation engineering, seismology, element base devices in electronics, in
studying the mixed boundary value problems of plasma behavior in various states,
and in several other important technical areas.

5.3 Properties of the Integral Equations

To study the system of integral equations by using the block element method, we
introduce the following set of block elements Ωmn,m = 1,2,n = 1,2. The second
and fourth quadrants are denoted by Ω12 and Ω21, respectively, and the third quad-
rant, by Ω22. The same subscripts are used to denote vector functions supported
in these domains. The first quadrant is denoted by Ω . We use the following no-
tation. To avoid multiple use of the symbols of direct and inverse Fourier trans-
form, the Fourier transforms of vector functions denoted by lowercase letters are
denoted by the corresponding uppercase letters; e.g., the Fourier transforms of
k(x,y), f (x,y),φ(x,y) are K(α,β ),F(α,β ),Φ(α,β ), respectively. Further, we need
to factorize vector functions into sums and products. These operations are carried
out for vector functions of two complex variables α and β . To perform the factor-
ization into a sum, we use the notation introduced in Vorovich and Babeshko (1974)
applying the curly brackets. For example, if a vector function G(α,β ) is factorized
as a sum over the parameterα with respect to the contour Γ1, then the vector func-
tions obtained by this operation are denoted by the formulas

G(α,β ) = {G(α,β )}+α + {G(α,β )}−α . (5.2)

The first vector function on the right is regular in the complex plane above the con-
tour Γ1, and the second one is regular in the complex plane below this contour. In
the case where the vector functions are also factorized with respect to the other
parameter β , the factorized vector functions are denoted by

G+
α = {G+

α }+β + {G+
α }−β ,

{G+
α }

+
β ≡ G++

αβ
≡
{
{G(α,β )}+α

}+
β
,

{G+
α }−β ≡ G+−

αβ ≡
{
{G(α,β )}+α

}−
β
.
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For vector functions with subscripts, say, indicating the quadrants where these vec-
tor functions are supported, we use the convention that these subscripts follow the
subscripts referring to factorization; e.g.,

G++
αβ mn

≡ {G+
αmn}

+
β ≡

{
{Gmn(α,β )}+α

}+

β
,

G+−
αβ mn

≡ {G+
αmn}

−
β ≡

{
{Gmn(α,β )}+α

}−
β
.

The operator given below carries out the factorization into a sum (Vorovich and
Babeshko, 1974),

{G(α,β )}+α =
1

2π i

∫

Γ1

G(ξ ,β )

ξ −α
dξ , α > Γ1,

{G(α,β )}−α =− 1
2π i

∫

Γ1

G(ξ ,β )

ξ −α
dξ , α < Γ1

The abstract inequalities following the integral expressions denote the position of
the parameter α above the contour Γ1 in the first case or below the contour Γ1 in the
second case.

The factorization of matrix functions into a product has the form

K(α,β ) = K+α(α,β )K−α (α,β ), K(α,β ) = K+β (α,β )K−β (α,β ). (5.3)

The methods used to factorize matrix functions into products are more complicated.
Some methods for factorizing matrix functions were developed and published in
Vorovich and Babeshko (1974). Triangular and functionally commutative matrix
functions can be factorized by well-known formulas. If the matrix functions are func-
tionally commutative in the first parameter, i.e., K(α,β )K(γ,β ) = K(γ,β )K(α,β ),
then the factorization formulas become

K(α,β )+α(α,β ) = exp
1

2π i

∫

Γ1

lnK(α,β )(ξ ,β )

ξ −α
dξ , α > Γ1,

K(α,β )−α(α,β ) = exp



− 1
2π i

∫

Γ1

lnK(α,β )(ξ ,β )

ξ −α
dξ



 , α < Γ1

The other conditions imposed on the matrix functions for the formulas of factoriza-
tion into a sum or product to apply are described in detail in the literature (e.g., see
Noble (1958); Vorovich and Babeshko (1974)), and we do not discuss them here.
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5.4 The Block Element Method for a System of Integral

Equations

The system of integral equations (5.1) is studied by an approach traditional for
the integral factorization method Vorovich and Babeshko (1974); Babeshko (1984);
Babeshko et al (2006). To this end, we equivalently embed the system of integral
equations in the compact topological space of analytic manifolds and simply com-
plete it with new unknown functions to cover the whole plane homeomorphic to
the sphere and apply the double Fourier transform. For this, we rewrite the integral
system (5.1) as

1
4π2

∫

Γ1

∫

Γ2

K(α,β )Q(α,β )e−i(αx+β y)dαdβ

= f (x,y)+φ12(x,y)+φ21(x,y)+φ22(x,y)

(5.4)

Here the new unknown vector function ϕ12(x,y) is supported in the second quadrant,
ϕ21(x,y), in the fourth, and ϕ22(x,y), in the third.

After an application of the Fourier transform, according the discussion in the first
section, the continued system of integral equations (5.4) becomes

K(α,β )Q(α,β )−Φ12(α,β )−Φ21(α,β )−Φ22(α,β )−F(α,β ) = 0 (5.5)

We obtain a certain relation between the analytic manifolds and, by equating the
sums of similar components of these manifolds to zero, we construct relations that
allow us to obtain the solution Q(α,β ) of the system of integral equations. The
instruments for solving this problem are factorizations, which allow us to distinguish
similar components. After several transformations, where the factorization relations
(5.2) and (5.3) are used, we obtain the main result of our study, which states that the
solution q(x,y) can be represented as

q(x,y) =
1

4π2

∫

Γ1

∫

Γ2

Q(α,β )e−i(αx+β y)dαdβ

where the function Q(α,β )has the form (which follows from (5))

Q(α,β ) = K−1(α,β ) [ F(α,β )+Φ+−
β α12(α,β )+Φ+−

αβ 21(α,β )+Φ−−
αβ 22(α,β ) ]

(5.6)

The functions Φ+−
β α12(α,β ), Φ+−

αβ 21(α,β ), are determined from the system of two
1D equations like those obtained for the strip punch (Vorovich and Babeshko, 1974;
Babeshko, 1984; Babeshko et al, 1989),

Φ+−
β α12 + { K−α

{
K−1
−α Φ+−

αβ 21

}−

α
}+β =−{ K−α

{
K−1
−α F(α,β )

}−
α
}+β (5.7)
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Φ+−
αβ 21 + { K−β

{
K−1
−β Φ+−

β α12

}−

β
}+α =−{ K−β

{
K−1
−β F(α,β )

}−

β
}+α (5.8)

After this, the function Φ−−
αβ 22(α,β ) is taken in one of equivalent forms and ex-

pressed via the already obtained functions as

Φ−−
β α22 =−{ K−α

{
K−1
−α F(α,β )

}−
α
}−β −{ K−α

{
K−1
−α Φ+−

αβ 21

}−

α
}−β

Φ−−
αβ 22 =−{ K−β

{
K−1
−β F(α,β )

}−

β
}−α −{ K−β

{
K−1
−β Φ+−

β α12

}−

β
}−α

These formulas with the factorization integrals taken into account give an illusion
that it is very difficult to calculate the integrals which are required to solve the
system of equations and to determine the unknown functions. But in many mixed
boundary value problems, the functions participating in the representation of the
solutions are meromorphic, which allows us to use residue theory to calculate the
integrals. Moreover, by calculating the integrals, we obtain systems of linear alge-
braic equations which permit numerical calculations if we know the zeros and poles
of meromorphic functions similar to those studied in Vorovich and Babeshko (1974);
Babeshko (1984); Babeshko et al (1989).

5.5 Study of the Properties of the Solution of the System of

Integral Equations and a Boundary Value Problem

We assume that the characteristic properties of the symbol K(α,β )of the system
of integral equations occurring in many boundary value problems for multilayer
isotropic and anisotropic media and for the punch contact with friction or without it
have the form

K−α(α,β ) = O(α−θ1), K−β (α,β ) = O(α−θ2), 0 < θm < 1, |α| → ∞

and that the vector function f (x,y) absolutely integrable in the first quadrant is
twice continuously differentiable. We see that the operator of system (5.7), (5.8)
is bounded in the space of functions continuous with a power-law weight on the
contours Γm,m = 1,2 (Vorovich and Babeshko, 1974).
This allows us to investigate the properties of the solution of the system of integral
equations in the first block (in the first quadrant) and the behavior of the surface in
the other blocks (quadrants). Let us show that the constructed solution has charac-
teristic properties typical of the solutions of contact problems obtained in simpler
domains similar to the quadrant under study. Such regions can be the zone remote
from the boundaries of contact region and the zone on the boundary of the contact
region.

1. Let us rewrite relation (5.6) as
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q(x,y) =
1

4π2

∫

Γ1

∫

Γ2

K−1(α,β ) [ F(α,β )+Φ+−
β α12(α,β )+

+Φ+−
αβ 21(α,β )+Φ−−

αβ 22(α,β ) ]e−i(αx+β y)dαdβ , 0 < x,y < ∞

On the right-hand side, we let x and y tend to infinity in a neighborhood of the
bisector of the first quadrant angle and, by the Riemannian–Lebesgue theorem,
obtain the following estimate for Fourier integrals:

q(x,y)≈


 1

4π2

∫

Γ1

∫

Γ2

K−1(α,β )F(α,β )e−i(αx+β y)dαdβ


 [1+ o(1)]

Thus, far from the boundaries, the solution of the integral equations tends to
a degenerate solution given by the solution of convolution equation under the
assumption that the equation holds in the entire plane (Vorovich and Babeshko,
1974).

2. To study the properties of the solution on the punch boundaries by using the fac-
torization formulas and the formulas representing the operators in system (5.7),
(5.8), we can use the estimates

Φ+−
β α12 +

{
K−α

{
K−1
−α Φ+−

αβ 21

}−

α

}+

β

=−
{

K−α

{
K−1
−α F(α,β )

}−
α

}+

β
,

{
K−1
−α Φ+−

αβ 21

}−

α
= G−

α (α,ξ ),
{

K−α

{
K−1
−α Φ+−

αβ 21

}−

α

}+

β

= 1
2π i

∫

Γ2

K−α(α,ξ )
G−

α (α,ξ )

ξ −β
dξ = O(α−θ1)

K−1(α,β )

{
K−α

{
K−1
−α Φ+−

αβ 21

}−

α

}+

β

= O(α1−θ1),

q(x,y)∼ 1
2π

∫

Γ1

K−1(α,β )

{
K−α

{
K−1
−α Φ+−

αβ 21

}−

α

}+

β

e−iαxdα = O(x−θ1),

x → 0, y > 0

Φ+−
αβ 21 +

{
K−β

{
K−1
−β

Φ+−
β α12

}−

β

}+

α

=−
{

K−β

{
K−1
−β

F(α,β )
}

β

}+

α

,
{

K−1
−β Φ+−

β α12

}−

β
= G−

β (ξ ,β )
{

K−β

{
K−1
−β Φ+−

β α12

}−

β

}+

α

=
1

2π i

∫

Γ1

K−β (ξ ,β )
G−

β (ξ ,β )

ξ −α
dξ = O(β−θ2), α > Γ1,

K−1(α,β )

{
K−β

{
K−1
−β Φ+−

β α12

}−

β

}+

α

= O(β 1−θ2)

q(x,y)∼ 1
2π

∫

Γ2

K−1(α,β )

{
K−β

{
K−1
−β Φ+−

β α12

}−

β

}+

α

e−iβ ydβ = O(y−θ2),

y → 0, x > 0
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It follows from these estimates that, on the boundaries of the wedge-shape punch,
there is an unbounded increase in the contact stresses, which were studied in
detail for various conditions on the interface between the punch and the medium
in Babeshko et al (1989); Glushkov and Glushkova (1992). It was shown in these
papers that the behavior of the contact stresses near the corner point is described
by the formula (x2 + y2)−0,5γ , x,y → 0.

3. To study the properties of the solution of the mixed boundary value problem on
the surface outside the punch, we estimate the behavior of the functions in the
other blocks. To this end, the following constructions are used:

φ12(x,y)∼
1

8π3i

∫

Γ1

∫

Γ2

∞∫

−∞

K−α(α,ξ )
G−

α (α,ξ )

ξ −β
dξ e−i(αx+β y)dαdβ ,

K−α(α,ξ ) = ∑
n

Cn(ξ )

α −αn(ξ )
, ℑαn ≥ 0

φ12(x,y) = O(e−iαn0x), ℜ(−iαn0)≥ 0, ℑ(−iαn0)≤ 0,
−∞ < x < 0, y > 0, x →−∞

φ21(x,y)∼
1

8π3i

∫

Γ1

∫

Γ2

∞∫

−∞

K−β (ξ ,β )
G−

β
(ξ ,β )

ξ −α
dξ e−i(αx+β y)dαdβ ,

K−β (ξ ,β ) = ∑
n

Sn(ξ )

β −βn(ξ )
, ℑβn ≥ 0

φ21(x,y) = O(e−iβn0y), ℜ(−iβn0)≥ 0, ℑ(−iβn0)≤ 0,
−∞ < y < 0, x > 0, y →−∞

The obtained estimates imply the following results. If a static boundary value prob-
lem is considered, then, as the punch is indented, the surface in the second and forth
quadrants exponentially tends to the unperturbed state when moving away from the
boundaries of the first quadrant to infinity in the second and the forth quadrants. In
the case of a dynamical boundary value problem about the punch vibration, in the
second and the fourth quadrants, there arise waves that move away from the punch
boundaries to infinity with respective phase velocities −ωα−1

n and −ωβ−1
n in the

cases ℑαn = ℑβn = 0 and of normal material of the medium, that is, in the cases
of coinciding directions of the group and phase velocities. For the other, complex,
poles of the meromorphic functions, the additions to the waves running away expo-
nentially tends to zero as the coordinates tend to infinity. In the third quadrant, as
x,y → ∞, there are both types of waves described above.
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Abstract The closed mathematical model of the deformation processes of materials
with elastic, viscous and plastic properties under large deformations is developed. The
reversible and irreversible determinations of components are given by the differential
equations of change (transfer). The stress-strain equations are derived within the
frameworks of the hypothesis of the thermodynamic potential independence on
irreversible deformation. The irreversible deformations accumulation is modelled
without separation of creep and plastic parts. During unloading process the reverse
consequence of the dissipative mechanisms is assumed. The irreversible deformations
and rates continuity conditions are provided by the plastic potential specification
(yield criterion). The developed approach is illustrated by examples. In virtue of
proposed approach the boundary value problems for cylinder under pressure gradient
and viscometric deformations are solved.

There are technological processes of intensive materials forming with the specifi-
cations not allowing high process velocity. In such processes (for example cold
forming) the deforming is provided by the slow creep process. The irreversible creep
strain rates are determined by the level and the distribution of stresses. However,

asustinova@dvo.ru,lk@dvo.ru
burenin@dvo.ru,sunbeam_85@mail.ru
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Geometrically and thermodynamically consistent theory of large deformation ac-
counting the simultaneous change of the reversible and the irreversible deforma-
tions has been proposed by Lee (1969). The multiplicative separation of the total
strain tensor on the reversible and the irreversible parts was widely discussed and
generalised (Clifton, 1972; Kondaurov, 1982; Nemat-Nasser, 1982; Naghdi, 1985;
Levitas, 1996).
Perfect geometrical formulations in this approach are based on the hypothesis of an
unique unloading state corresponding to each actual state of the solids with vanish-
ing reversible deformation. The inaccessibility of this state leads to the theoretical
and numerical difficulties in the formulation and solution of boundary value prob-
lems. Therefore attempts were made to develop a mathematical model (Rogovoi,
2005) with kinematics different from the Lee principles.

6.2 Large Deformations Kinematics

The displacement vector in a rectangular Cartesian coordinate system we define as

the stresses essentially depend on the plastic domain presence, which vanishing is
impossible. Consequently the design simulation of similar technological processes
need to be based on a mathematical model of large deformations when both processes
(the slow(creep) and the fast(plastic) flow are presented. The modern mechanics does
not have such theories. In order to develop a phenomenological model we present
here a number of fundamental reasons for this. As the basis of developed approach
we choose a mathematical model of large elastic-plastic deformation (Burenin et al,
1996). The advantage of the approach developed in Burenin et al (1996), is the
satisfaction of the classical elastic-plastic theory principles. Firstly the irreversible
strain tensor under elastic deformation and unloading isn’t changed. Secondly the
stress is fully calculated by the reversible strain tensor. These lead to necessity of the
assumption of thermodynamic potentials (internal energy, free energy) independence
on the irreversible deformations attributing to the dissipation. The assumptions allow
us to state and solve boundary value problems (Burenin et al, 2003; Kovtanyuk,
2005; Burenin et al, 2010) including analytical solutions, which are insoluble within
frameworks of the other models. The theory generalization on non-isothermal cases
see in Burenin et al (2015).

The method of solving elastic-plastic problems proposed by Hill (1958) is widely
used. One is based on the procedure of the constitutive equations differentiation.
Some finite element method computation packages are attributed to this assumption.
These large deformation theories represent the strain rate tensor as the sum of the
reversible (elastic) and the irreversible (plastic) strain rate tensors due to one of the
objective derivative. The thermodynamical and geometrical incorrentness was shown
in Khan and Huang (1995); Simo and Pister (1984). Nevertheless it is commonly
used in numerical calculations (Xiao et al, 2006) even in metal processing computing
packages (Firat et al, 2008). Note also that one can obtain wrong solution by virtue
of discontinues of stress and displacements.
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ai = ai(x1,x2,x3, t),

ui = xi − ai = ui(x1,x2,x3, t).
(6.1)

Herein t is the time, ai are material point coordinates at the referential state, xi are
material point coordinates at the actual state (Euler coordinates), ui are displace-
ments vector components.
For distortion tensor ai, j = ∂ai/∂x j and metric tensor gi j = ak,iak, j one can derive
the differential equations of change (transfer) as follows

dai, j

dt
+ ai,kvk, j = 0,

dgi, j

dt
+ gikvk, j + vk, jgk j = 0,

vi =
dxi

dt
=

dui

dt
=

∂ui

∂ t
+ v jui, j.

(6.2)

The Almansi strain tensor di j =
1
2
(δi j −gi j) according to Eqs. (6.1, 6.2) is calculated

by

ddi j

dt
+ dikvk, j + vk, jgk j = εi j,

εi j =
1
2
(vi, j + v j,i).

(6.3)

The transfer equation for the strain tensor is fundamentally different from ones for
the distortion and metric tensor due to the source tensor, as is the Euler strain rate
tensor. If the distortion tensor and the metric tensor are conserved then the deforma-
tions are produced by the solids motion at a point along its trajectory. Deformation
does not change when the εi j = 0. In this case, the body moves as a rigid one. The
transfer equations of the strain tensor and the metric tensor can be transformed as

Ddi j

Dt
= εi j;

Dgi j

Dt
= 0, (6.4)

wherein D/Dt denotes the Cotter–Rivlin objective derivative becoming Jaumann
one under condition εi j = 0

D̂gi j

D̂t
=

dgi j

dt
+ gikωk j +ωkigk j = 0,

D̂di j

D̂t
=

ddi j

dt
+ dikωk j +ωkidk j = 0,

ωi j = vi, j − εi j.

(6.5)

The rotation tensor ωi j defines the angular velocity of the solids under unchanging
deformations εi j = 0. At the basis of the Lee elastic-plastic kinematics (Lee, 1969)
the unloading configurations with zero reversible deformations along with the refer-
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ential and actual ones were introduced. However this configuration is reachable if
we divide the solids on infinite number of infinitesimal parts with zero loads. Oth-
erwise after the removal of the external loads the reversible deformation will be
always present along with irreversible ones residual stresses playing a positive role
providing the construction tightness. But often we need to reduce residual stresses
by the special technological operations (tempering, annealing). The representation
E. Lee of the metric tensor in our notation reads by equation

gi j = g
p
ikge

k j =
∂am

∂bi

∂am

∂bk

∂bn

∂xk

∂bn

∂x j

. (6.6)

Here (6.6) bi are the point coordinates in unloading state with zero elastic deforma-
tions. Then the total strain can be splitted by

gi j = (δik − 2e
p
ik)(δk j − 2ee

k j). (6.7)

Equations (6.7) follow from the Eq. (6.6) where the tensors ee
i j and e

p
i j are the re-

versible and irreversible parts. Note the Clifton theory (see Clifton, 1972) is based
on permutations of multipliers in Eqs. (6.7).
For distortion and metric tensor gi j we accept the following representation

ai, j = Yi,k(δk j − ek j),

gi j = as,ias, j =(δik − eik)(δkm − 2pkm)(δm j − em j).
(6.8)

Herein δi j are the Kronecker symbols.
Then for tensor pi j in Eq. (6.2) one can obtain

pi j =
1
2
(δi j −Ym,iYm, j)

The tensor pi j introduced in Eqs. (6.8) is the symmetric one pi j = p ji. But the tensor
ei j in general case presented by Eqs. (6.8) may not be a symmetric. First equation in
(6.8) is not orthogonal decomposition of the distortion tensor. Taking into account
Eqs. (6.1) and (6.8) the transfer equations for tensors (6.8) can be derived in form

dei j

dt
= vi, j − bi j − eikvk, j + bikek j,

d pi j

dt
=

1
2
(bi j + b ji)− pikbk j + bkipk j,

bi j =−Y−1
ik

dYk j

dt
.

(6.9)

Let us assume the symmetry of the tensor ei j. It possible only under conditions
manifesting by (6.9)

bkm(δm j − em j)− (δkm − ekm)bm j = (δkm − ekm)vm, j − vm,k(δm j − em j). (6.10)
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Consequently the symmetry condition ei j = e ji for tensor in Eq. (6.9) is assured by
Eq. (6.10). Differently, the tensor bkm is not an arbitrary and satisfies to Eq. (6.10)
and only if ei j = e ji. The Eq. (6.10) in this case is the tensor one for bkm. The solution
of Eq. (6.10) is written by

bi j = ri j +(δik − eik)tk j . (6.11)

Herein (6.11) tk j is an arbitrary symmetric tensor (tk j = t jk). The tensor ri j is skew-
symmetric ri j =−r ji and represented by equation

ri j = wi j +A−1[B2(εikek j − eikεk j)+B(εikekmem j − eikekmεm j)+

+eikεkmemnen j − eikekmεmnen j]

vi, j =
1
2
(vi, j + v j,i)−

1
2
(vi, j − v j,i) = εi j +wi j,

A = 8− 8E1+ 3E2
1 −E2 −

1
3

E3
1 +

1
3

E3, B = 2−E1,

E1 = e j j, E2 = ei je ji, E3 = ei je jkeki.

(6.12)

Taking into account Eqs. (6.11) and (6.12) we can transform the transfer equations
(6.9) for the tensors ei j and pi j as follows

dei j

dt
= εi j − ti j − ri j +wi j − eik(εk j +wk j − tk j)+ (rik + tik)ek j − eimtmkek j,

d pi j

dt
= ti j −

1
2
(eiktk j + tikek j)+ (rik − tik)pk j − pik(rk j + tk j)+ pikekmtm j + timemk pk j.

(6.13)

The components of an arbitrary tensor ti j in Eq. (6.11) are initially vanished. Thus
we can simplify the transfer equations (6.13)

dei j

dt
= εi j +wikek j − eikwk j −

1
2
(eikεk j + εikek j)+

1
2
(zikek j + eikzk j),

d pi j

dt
= wik pk j − pikwk j + zik pk j − pikzk j ,

zi j = ri j −wi j.

(6.14)

If the medium is undeformed, then εi j ≡ 0 and Eq. (6.12) involve zi j = 0. Moreover
the second equation in (6.14) suggests the zero Jaumann derivative on tensor pi j

and it transformation as a rigid motion. But the two terms in second equation (6.14)
distinguishing its from the Jaumann derivative on the tensor pi j do not alter the
change of the objective derivative

Dpi j

Dt
=

d pi j

dt
− rik pk j + pikrk j = 0. (6.15)
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Contrary to the Jaumann derivative in Eq. (6.15) instead of the rotation tensor wi j

the skew-symmetric tensor (ri j = −r ji) is used. The components of the tensor ri j

equal wi j in the its principal linear part. The tensor pi j describes by the Eq. (6.15).
This situation provides an opportunity to identify the tensor pi j with irreversible
strain. Moreover the case ti j ≡ 0 is the elastic deformation process. The irreversible
deformations may occur in the solid and satisfy to Eq. (6.15) i.e. if the medium
is moved as a rigid solid without irreversible deformation tensor changes. The two
last terms in second equation (6.14) connecting with geometrical correctness of the
choice of objective derivative and irreversible strain invariance pi j during elastic de-
forming ti j ≡ 0. Note that elastic deforming is the kinematically determinate state
while ti j ≡ 0. The tensor ti j must be computed by the special conditions under in-
creasing irreversible deformations. The Almansi strain tensor di j according to Eq.
(6.2) is calculated by the following decomposition

di j =
1
2
(δi j − gi j) =

1
2
(ui, j + u j,i− uk,iuk, j) =

= ei j + pi j −
1
2

eikek j − eik pk j − pikek j + eik pkmem j

(6.16)

Finally if the pi j is the irreversible strains then the equation for the reversible strains
reads according to Equ. (6.16) in form

si j = ei j − 0.5eikek j.

6.3 Governing Equations

Initially we consider reversible deforming process when the irreversible deformation
isn’t increased. In this case the energy conservation law is formulated as

ρ
de

dt
+ q j, j = σi jεi j . (6.17)

Herein ρ is the mass density, e is the entire energy density, qi are the components of
the heat flux vector, σi j are the components of the stress tensor.

Considering the slow processes, as the thermodynamic potential we use the free
energy Ψ . For its density one can get equation as follows

Ψ (ei j,T ) = e(ei j,s)− sT,

∂Ψ

∂T
=−s,

∂e

∂ s
= T,

(6.18)
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wherein T is the temperature, s is the entropy density. Equation (6.18) gives the
thermodynamic potential satisfying to the hypothesis of the conservative deform-
ing mechanism. Otherwise we assume the independence of Ψ on the irreversible
deformation.

ρ

(
∂Ψ

∂ei j

dei j

dt
+T

ds

dt

)
+ qi, j −σi jεi j = 0. (6.19)

Eliminating from Eq. (6.19) the strains derivative by the first equation of (6.14) one
can derive

(
ρ

(
∂Ψ

∂ei j

− ∂Ψ

∂eik

ek j +A−1B2
(

eik

∂Ψ

∂ekm

em j −
∂Ψ

∂eik

ekmem j

)
+

A−1B

(
eikekm

∂Ψ

∂emn

en j −
∂Ψ

∂eik

ekmemnen j

)
+

+ A−1
(

eikekm

∂Ψ

∂emn
entet j − eik

∂Ψ

∂ekm

emnentet j

))
σi j

)
εi j+

+ρri j

(
eik

∂Ψ

∂ek j

− ∂Ψ

∂eik

ek j

)
+ρT

ds

dt
+ qi, j = 0.

(6.20)

Hence, by virtue of the processes independence given by ei j,ri j , T and symmetry
condition for stress tensor the constitutive equations read by

σi j = ρ
∂Ψ

∂eik

(δk j − ek j),

ρT
ds

dt
+ qi, j = 0.

(6.21)

The first equation of (6.21) is the analogue of the well-known in the nonlinear theory
of elasticity (Lurie, 1990) as Murnaghan constitutive equations, the second one is
the entropy balance equation during reversible deforming. Inside the domains with
zero irreversible deformation (pi j ≡ 0) the Murnaghan law takes the form

σi j = ρ
∂Ψ

∂dik

(δk j − 2dk j),

di j = ei j −
1
2

eikek j.

(6.22)

Substitution of Eq. (6.18) into (6.19) leads to following formula

Consequently we have two type of the strain-stress relations. First type (6.22) for
the reversible deforming domain. Second type for irreversible deforming domain
(6.21). The only potential function Ψ is needed for irreversible deforming domain
Ψ =Ψ(ei j,T ) and for reversible deforming domain Ψ =Ψ(di j,T ). The both func-
tions must be equal under pi j approaching to zero. This situation is quite similar to
the classic Prandtl-Reuss elastic-plastic theory. At present study the stresses depend
only on the reversible deformations as consequence of the hypothesis of the ther-



140 Alexandra S. Begun et al.

Suppose now that ti j 6= 0 during the deforming. Consequently the irreversible de-
formations are increased. After substituting of the first equation in (6.13) into Eq.
(6.19) we can derive

(
ρ

∂Ψ

∂eik

(δi j − ek j)−σi j

)
εi j +ρT

ds

dt
+ q j,i = τi jti j,

τi j = ρ
∂Ψ

∂eik

(δk j − 2ek j + ekmem j) = ρ
∂Ψ

∂eik

(δk j − sk j).

(6.23)

As expected the Murnaghan formula (6.21) and the entropy balance equation ensure
from (6.23). The canonical form of balance equation can rewritten as

∂ (ρs)

∂ t
=−(T−1q j +ρsv j) j −T−2q jT, j +T−1τi jt ji. (6.24)

In Eq. (6.24) the first term is the entropy flux vector, the second one is the entropy
production due to the heat conduction and the third one is the entropy production due
to irreversible deformations. Hereafter we will consider the isothermal deformation
processes. The generalization to the non-isothermal case isn’t complex. In the case
of isothermal entropy production is carried out only by the irreversible deformation
process that is due to plastic flow, or due to the viscous (creep) deformation. Entropy
production due to plasticity and viscosity occurs in different ways, but it can be
generalized by the equation

D = σi jγi j. (6.25)

Indeed, we have the well known representation of the entropy source (de Groot and
Mazur, 1984) for non-plastic material or unloading and pre-plastic processes

D = σi je
v
i j. (6.26)

In the case of perfect plasticity for entropy production we also have the equation

D = σi je
p
i j. (6.27)

In Eqs. (6.26) and (6.27) the tensors ev
i j and e

p
i j are the creep strain rate and the

plastic strain rate respectively. Consequently γi j = εv
i j inside the non-plastic domain

and γi j = e
p
i j during the plastic flow. The representation of the γi j is more complex for

non-perfectly plastic domains. The viscous properties of the solids can inhibit the
plastic flow being often modeled by adding appropriate terms in the plastic potential
(yield surface). However, the representation (6.25) will be valid in this case; for γi j

is only to be finding a more precise definition. According to (6.24), (6.25) in the
general case of isothermal deformation we obtain

σi jγi j = T−1τi jti j. (6.28)

modynamic potentials (free energy, internal energy) independence on irreversible
deformations.
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Equation (6.28) is transformed by Eqs. (6.21), (6.23)

τi j = T σik(δk j − ek j),

γi j = tik(δk j − ek j).
(6.29)

Last equation in (6.29) relates the unknown symmetric tensors tik and γi j . The trans-
fer equations (6.13) are rearranged by the unknown tensor excluding into Eqs. (6.29)

Dei j

Dt
= εi j − γi j −

1
2

(
(εik − γik + zik)ek j + eik(εk j − γk j − zk j)

)
,

Dpi j

Dt
= γi j − pikγk j − γik pk j,

Dni j

Dt
=

dni j

dt
− riknk j + nikrk j .

(6.30)

According to Eq. (6.30) we have the reversible deformation only if γi j = 0. Other-
wise, under condition γi j = 0 the irreversible strain pi j is changed similar to the rigid
motion. The special objective derivative (6.15) ensures the geometrical correctness
of kinematics.

In previous sections the irreversible deformation is not splitted into the plastic and
creep parts. The difference of the rate tensors is associated with the dissipative mech-
anisms. The creep deformation rates εv

i j are specified by the non-zero stresses inside
solids. The plastic deformation rates ε p

i j arise if the stress state reaches the yield
surface (when the plastic flow conditions are satisfied). Thus the deformation do-
main is separated into parts in dependence on the yield criterion satisfaction. The
irreversible deformation is rapidly increase in the plastic flow domain and slowly
increase in the creep one. The moving elastic-plastic borders separating the domain
are the place of the exchange of irreversible deformation accumulation mechanisms.
Note that the specification of the mechanisms of creep, plastic flow, elastic deforma-
tion potential can be experimentally determined. It is necessary to make sure that
creep and plastic deformations are continuous at the elastic-plastic borders.

Assume that the viscous deformations occur before plastic flow and during unload-
ing. These properties also resist the plastic flow. In the simplest case, under such
conditions it is necessary to assume that the yield surface is defined by the equa-
tion: f (σi j ,ε

p
i j) = 0. Then we can derive the von Mises maximum principle and the

associated plastic flow rule is obtained in the form

γi j = ε p
i j − εv0

i j = λ
∂ f

∂σi j

, λ (ε p
i j, εv0

i j )> 0. (6.31)

Herein ε
v0
i j is the creep strain rate tensor at the time of the given material point

reaches the elastic-plastic border, i.e. at the beginning of plastic flow. This irre-
versible strain rate is the initial value for the subsequent plastic flow. In this case
the maximum shear stress condition takes the form

max |σi −σ j|= 2k+ 2η max |ε p
k − εv0

k |. (6.32)
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In Eq. (6.32) σi,ε
p
k denote the principle values of the stress tensor and the plastic

strain rate one, ε
v0
k the principle value of the tensor ε

v0
i j , k yield stress, η is the

coefficient of viscous resistance to plastic flow.
In the case of the linear piecewise plastic potential as in virtue of the Tresca yield
criterion (6.32) it is convenient for creep potential also assume the piecewise-linear
form

γi j = εv
i j =

∂V (Σ)

∂σi j

, Σ = max |σi −σ j|, V = BΣn. (6.33)

W =W (J1,J2) = ρ−1 =−2µJ1 − µJ2 + bJ2
1 +(b− µ)J1J2 − χJ3

1 + . . .

J1 = s j j, J2 = si js ji, si j = ei j −
1
2

eikek j

σi j =−P1δi j +
∂W

∂eik

(δk j − ek j).

(6.34)

Herein P1 is the additional hydrostatic pressure, µ shear module, b,χ are the high
order elastic modulus.

6.4 The Flow of Elastic-Viscous-Plastic Solids Inside the

Cylindrical Tube

∂P1 (ρ , z, t)

∂ z
=−ψ (t) , ψ (0) = 0. (6.35)

The initial and boundary conditions are given by

ei j

∣∣
t=0 = pi j

∣∣
t=0 = 0,

→
u

∣∣∣
ρ=R

=
→
v

∣∣∣
ρ=R

= 0.
(6.36)

The unknown displacement and velocity vectors have the only non-zero vertical
component. In view of axial symmetry we obtain

Equation (6.33) contains the two-constant (B,n) Norton power creep law. We em-
phasize once again that (6.32) and (6.33) are the simplest case of the dissipation
potentials. Specification of the elasticity law can also be assumed as for an incom-
pressible medium in form (Lurie, 1990)

The problems in the frameworks of the large deformation model described above is
solved in this section. Let continuum takes a form of cylindrical tube with radius
R. Intro the cylindrical coordinates ρ ,ϕ ,z. The deforming process under theduce
pressure gradient is considered
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u = uz (ρ , t) , v = vz (ρ , t) ,

dρρ =−1
2

(
∂u

∂ρ

)2

, dρz = dzρ =
1
2

∂u

∂ρ
,

ερz = εzρ =
1
2

∂v

∂ρ
, wzρ =−wρz =

1
2

∂v

∂ρ
.

(6.37)

Hereafter the Helmholtz free energy is used as the thermodynamic potential. Assum-
ing that the free energy density ψ is independent on irreversible deformations we
get equation

W = ρ0ψ .

Then, the isotropic elastic potential for an incompressible solids in the form of a Tay-
lor series expansion with respect to the referential state can be written in following
form

W =W (I1, I2 ) = (α − µ) I1 +αI2 +β I2
1 − ξ I1I2 − ζ I3

1 + . . .

J1 = s j j , J2 = si js ji, si j = ei j −
1
2

eikek j.
(6.38)

Here µ , α, β , ξ ,χ are the material constants.

After substituting Eq (6.38) into Eq. (6.22) the stress-strain relations can be formu-
lated by

σρρ =−(P1 + 2µ)+ 2b
(
eρρ + ezz+ eϕϕ

)
+ 2µeρρ + µe2

ρz+ . . .

σϕϕ =−(P1 + 2µ)+ 2b
(
eρρ + ezz+ eϕϕ

)
+ 2µeϕϕ − 2µe2

ρz+ . . .

σzz =−(P1 + 2µ)+ 2b
(
eρρ + ezz+ eϕϕ

)
+ 2µezz+ µe2

ρz+ . . .

σρz = 2µeρz+ . . .

(6.39)

The equations of motion in cylindrical coordinate taking into account the axial sym-
metry and zero volume forces and inertion can be derived

∂σρρ

∂ρ
+

∂σρz

∂ z
+

σρρ −σϕϕ

ρ
= 0,

∂σ ρz

∂ρ
+

∂σ zz

∂ z
+

σρz

ρ
= 0.

(6.40)

The transfer equations for the reversible and irreversible strains read
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γρρ =
d pρρ

dt
+ 2

(
pρρ γρρ + pρz

(
rzρ + γρz

))
,

γzz =
d pzz

dt
+ 2

(
pzzγzz + pρz

(
rρz + γρz

))
,

γρz =
d pρz

dt
+ rzρ

(
pρρ − pzz

)
+
(

pρz

(
γzz + γρρ

)
+ γρz

(
pzz + pρρ

))
,

γϕϕ =
d pϕϕ

dt
+ 2pϕϕγϕϕ ,

−γρρ =
deρρ

dt
+ 2rzρeρz

,

−γzz =
dezz

dt
+ 2rρzeρz,

ερz − γρz
=

deρz

dt
+ rρz

(
eρρ − ezz

)
+

+
1
2

(
eρρ

(
γρz − ερz

)
+ ezz

(
ερz − γρz

)
+ eρz

(
γzz − γρρ

))
,

−γϕϕ =
deϕϕ

dt
.

(6.41)

Let us going to the definition of the irreversible deformation source. The creep po-
tential V according to the Norton power creep law reads

V (σi j) = BΣn (σ1, σ2,σ3) ,

Σ = max
∣∣σi −σ j

∣∣, (6.42)

wherein σi is the principle values of the stress tensor, B,n are the creep modulus.

The value Σ is expressed by the stresses as follows

Σ =

√
4σ2

ρz +
(
σρρ −σzz

)2
. (6.43)

The equation for the creep deformation source can be found in form

εc
ρz = (−1)n 2nBnµn−1en−1

ρz ,

εc
ρρ =−εc

zz =
εc

ρz

2

(
eρρ − ezz

eρz

)
.

(6.44)

The modified von Mises plastic potential with hardening and viscosity properties is
derived by

f
(

τi j, pi j,ε
p
i j

)
=
(
τi j − cpi j −ηε ′pi j

)(
τ ji − cp ji−ηε ′pi j

)
− 8

3
k2, (6.45)

wherein τi j = σi j − 1
3 σkkδi j, ε ′pi j = ε p

i j − 1
3 ε p

kkδi j, c is the material parameter describ-
ing the Baushinger effect, η is the plastic flow viscosity, k is the yield stress.

The following equation we obtain due to the associated plastic flow rule
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ε p
i j =

2λ (τi j − cpi j)

1+ 2λ η
. (6.46)

Substituting Eq. (6.46) to the plastic potential f (τi j , pi j,ε
p
i j) we can find unknown

function λ and calculate the plastic strain rate. Further it can be expressed by virtue
of Eq. (6.39) and finally

ε p
ρρ =

1
3η

Q−
√

8
3 k

Q

(
µ
(

4eρρ − 2eϕϕ − 2ezz + 3e2
ρz

)
− 3cpρρ

)
,

ε p
ϕϕ =

1
3η

Q−
√

8
3 k

Q

(
µ
(

4eϕϕ − 2eρρ − 2ezz − 6e2
ρz

)
− 3cpϕϕ

)
,

ε p
zz =

1
3η

Q−
√

8
3 k

Q

(
µ
(

4ezz − 2eρρ − 2eϕϕ + 3e2
ρz

)
− 3cpzz

)
,

ε p
rz =

1
η

Q−
√

8
3 k

Q

(
2µerz − cpρz

)
.

(6.47)

The function Q is computed by

Q =

√
1
3

(
3c2B1 + 2cµB2+ 2µ2B3

)
,

B1 = p2
ρρ + p2

ϕϕ + p2
zz+ 2p2

ρz,

B2 = 3e2
ρz

(
−pρρ + 2pϕϕ − pzz

)
+ 2err

(
−2pρρ + pϕϕ + pzz

)
+

+2eϕϕ

(
pρρ − 2pϕϕ + pzz

)
+ 2ezz

(
pρρ + pϕϕ − 2pzz

)
− 12e2

ρzpρz,

B3 = 12e2
ρz+ 6e2

ρz

(
err − 2eϕϕ + ezz

)
+ 4e2

ρρ+

+4e2
ϕϕ + 4e2

zz− 4errezz − 4erreϕϕ − 4errezz + 9e4
ρz.

(6.48)

The general solution for second equilibrium equation (6.40) taking into account the
(6.35) is obtained in following form

σρz (ρ , t) =−ψ (t)

2
ρ (6.49)

Hereafter the following dimensionless notation is used

ρ̂ =
ρ

R
, ẑ =

z

R
, û =

u

R
, τ =

t

R

√
µ

ρ0
,

σ̂i j =
σi j

µ
, b̂ =

b

µ
, k̂ =

k

µ
, ĉ =

c

µ
,

(6.50)

wherein ρ0 is the referential mass density.

Material and process parameters are given by
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n = 3,
BnRµn−1√ρ0√

µ
= 3.5, η̂ =

2
√

µR
√

ρ0

η
= 1.0,

b̂ = 4, k̂ = 0.00125, ĉ = 0.05,

τ1 = 16, τ2 = 32, τ3 = 48, ψmax = 5 ·10−3.

(6.51)

The pressure gradient is assumed as the following piecewise function

ψ (τ) =





ψmax

2
·
(

1+ sin
(

π
t1

τ − π
2

))
, 0 ≤ τ ≤ τ1,

ψmax, τ1 < τ ≤ τ2
ψmax

2
·
(

1+ sin
(

π
(t3−t2)

(τ − τ2)+
π
2

))
, τ2 < τ ≤ τ3.

(6.52)

The resulting differential equations system (6.41), (6.40) in virtue of dimensionless
description (6.50) is numerically solved under the initial and boundary conditions
(6.36). The central difference scheme is used for spatial derivatives approximation
and the explicit deference scheme is used for time derivatives approximation. The
elastic-plastic border is computed by the following equation

Q−
√

8
3

k = 0. (6.53)

The Fig. 6.1 shows the graphical results for irreversible deformations pρz, pρρ , pzz,
displacement u at the times τ1,τ2,τ3.

6.5 Viscometric Deformation of the Incompressible Cylindrical

Layer

As another problem considering in this section is viscometric deformation of the
cylindrical layer r0 ≤ r ≤ R of the incompressible elastic-plastic-creep material. The
viscometric walls r = r0, r =R are rigid under adhesion conditions. The deformation
is carried out by rotation of the inner rigid cylinder wall. The cylindrical coordinate
system (r,φ ,z) is used. Thus for the non-zero components of displacements and
deformations in this case we can obtain

ur = r(1− cosθ );uφ = r sin θ ;drφ =
1
2

rθ,r;drr =−1
2
(rθ,r)

2,

θ |r=R = 0, σrφ |r=r0 =
c(t)

r2
0

, c(0) = 0,
(6.54)

wherein the c(t) is the given function.

The stresses during reversible deforming can be computed by (6.54) as follows
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(a) Irreversible deformation prz (b) Displacement u

(c) Irreversible deformation prr (d) Irreversible deformation pzz

Fig. 6.1: Numerical results at times τ1,τ2,τ3

σrr =−P1 + 2(b+ µ)err+ 2beφφ − (2b+ 3χ)e2
rr+ µe2

rφ−
−2(b+ µ + 3χ)erreφφ − (µ + 3χ)e2

φφ + . . .

σφφ =−P1 + 2(b+ µ)eφφ + 2berr − (µ + 3χ)e2
rr + µe2

rφ−
−2(b+ µ + 3χ)erreφφ − (2b+ 3χ)e2

φφ + . . .

σzz =−P1 + 2b(err + eφφ )− (µ + 3χ)(e2
rr + e2

φφ )− 2µe2
rφ − 6χerreφφ + . . .

σrφ = 2µerφ − (µ − 2b)erφ (err + eφφ )+ . . .
(6.55)

Herein the dots denote higher order terms than the second component of reversible
deformation (in the numerical calculations we take into account sixth order terms).
The following equation is derived by (6.55)

σrr −σφφ

σrφ
=

err − eφφ

erφ
(6.56)

The non-zero components of the kinematical variables in this case read
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vφ = v = rθ̇ ;εrφ =
1
2

rθ̇,r;ωrφ =−θ̇ − 1
2

rθ̇,r;

rrφ =−θ̇ +
2εrφ (1− eφφ)

err + eφφ − 2
; θ̇ =

∂θ

∂ t
; θ̇,r =

∂ 2θ

∂ t∂ r
.

(6.57)

Consequently one can substitute Eq. (6.57) in Eq. (6.33) in view of the (6.56) and
find

εv
rφ = 2Bnσrφ Φ

n
2−1;εv

rr =−εv
φφ = Bnσrφ

err − eφφ

erφ
Φ

n
2−1;

Φ = σ2
rφ (4+(

err − eφφ

erφ
)2)

(6.58)

The resulting system consists of the Eqs. (6.30) after rearranging (6.57), (6.58) and
adding the latter equation from (6.55)

ṗrr = 2prφ (S−X)+Y(1− 2prr),

ṗφφ =−2prφ (S+X)−Y(1− 2pφφ),

ṗrφ = (pφφ − prr)S+X(1− prr− pφφ),

ėrr = erφ (3S+X
eφφ − err

err + eφφ − 2
)+ϒ(err − 1),

ėφφ = erφ (X − S)−ϒ(eφφ − 1),

ėrφ = (eφφ − 1)S+
1
2

X(err + eφφ − 2),

c(t)r−2 = 2µerφ − (µ − 2b)erφ(err + eφφ).

(6.59)

In Eq. (6.59) the following notation is used

S = θ̇,r
r(1− eφφ)

err + eφφ − 2
, X =

2Bnc(t)

r2 (
c2(t)

r4 (4+
err − eφφ

erφ
)2)

n
2−1,ϒ = X

err − eφφ

2erφ
.

(6.60)
The stress component σrφ according to Eq. (6.59), the equilibrium equation and
boundary condition on the inner cylinder is

σrφ = c(t)r−2. (6.61)

The system of equations (6.59) is the system of seven partial differential equations
with respect to seven unknown functions err,eφφ ,erφ , prr, pφφ , prφ ,θ which is nu-
merically integrated by finite deference scheme. The initial conditions are the free
state conditions. The boundary conditions are given by kinematics of solids (6.54).
The hydrostatic pressure pr,t is found by integrating of the equilibrium equation
and simultaneously the stress tensor components σrr,σφφ ,σzz are determined. But
stress, strain tensor and displacements calculating by the latter approach are valid
until the time t = t1 under increasing pressure. At the time the yield criterion (6.32)
is satisfied on cylindrical surface r = r0 in form
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√
Φ = 2k+ 2η

√
(ε p

rφ )
2 +(ε p

rr)2. (6.62)

Since the time t1 the elastic-plastic border r = r1(t) is propagated from the surface
r = r0. Inside the domain r1(t) 6= r 6= R the irreversible deformations increase ac-
cording to creep law. Inside the domain r0 6= r 6= r1(t) the ones increase due to
plastic flow. The following equations of plastic strain rates are derived in virtue of
associated plastic flow rule

ε p
rφ = 2Hσrφ + εv0

rφ ;ε p
rr =−ε p

φφ = H(σrr −σφφ )+ εv0
rr ,

H =
1
η
(

1
2
− k√

Φ
).

(6.63)

The final system inside plastic domain is obtained by exchanging of the variables
X ,ϒ to X1,ϒ1 in Eqs. (6.59)

X1 =
c(t)

ηr2 − 2kerφ

η
√
(err − e/phiφ)2 + 4(erφ )2

+ ε
v0
rφ ,

ϒ1 = X1
err − eφφ

2erφ
+ εv0

rr .

(6.64)

Thus reversible and irreversible deformations are determined by the corresponding
systems integration inside two domains using the same boundary conditions and
continuity conditions of strain and function θ (r, t) on elastic-plastic border r = r1(t).

Suppose that, starting from the time t = t2 > t1 the load is decreased. Whereupon at
the time the unloading elastic-plastic border is separated from r1(t2) and moves to
one r = r0 . Consequently inside undeforming domain r1(t2)≤ r ≤ R and plastic do-
main r2(t)≤ r ≤ r2(t2) the irreversible deformations is increased by virtue of creep.
The reversible and irreversible deformations are found by integrating of Eqs. (6.59).
Inside plastic domain r0 ≤ r ≤ r2(t) in Eq. (6.59) we need to replace X ,ϒ to X1,ϒ1.
The stresses is calculated as above. The implementation of the boundary conditions
and continuity conditions on the elastic-plastic borders allows us to specify at each
time the elastic-plastic border spatial position.

The calculations are carried out by dimensionless variables

r̃ = r/R,τ =
√

µ/ρ0t/R, σ̃i j = σi j/µ

and material constants

k/µ = 0.003,b/η = 4,χ/µ = 80,r0/R = 0.5,n = 3,BnRµn−1
√

ρ0/µ = 3.5.

The Fig. 6.2 shows the rotation angle evolution θ . The Figs. 6.3 demonstrate the
irreversible deformations evolution in respect to time on surface r = r0.
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Fig. 6.2: Rotation angle

(a) Irreversible deformation prφ (b) Irreversible deformation pφφ

Fig. 6.3: Irreversible deformation on surface r = r0

6.6 Conclusion

The mathematical model of large deformation of materials with viscous, elastic
and plastic properties has been developed. The model is based on differential trans-
fer equations for the reversible and irreversible strains. The proposed model has
several advantages compared to alternative approaches. Firstly, the governing equa-
tions derivation isn’t use the terms of the intermediate and unloading configurations.
Secondly, the objective derivative is derived by the thermodynamic laws, and is inde-
pendent on a researcher choice. In virtue of proposed approach the boundary value
problems for cylinder under pressure gradient and viscometric deformations have
been solved. In solved problems the irreversible deformations have been accumulated
by creep and plastic flow. These solutions can be used for testing of numerical algo-
rithms for the calculation of large deformations of elastic-viscous-plastic material.
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Chapter 7

On Nonlocal Surface Elasticity and Propagation

of Surface Anti-Plane Waves

Victor A. Eremeyev

Abstract We discuss the nonlocal model of surface elasticity that is the model with
surface energy density which depends on first and higher gradients of displacements.
To demonstrate the peculiarities of the model we consider the propagation of anti-
plane surface waves in an elastic halfspace with the surface energy. Using the least
action principle we derive the governing equations for the problem. Analyzing the
anti-plane deformations we obtain the dispersion relation and analyze its depen-
dence on surface elastic moduli and on the order of considered gradients.

Key words: anti-plane waves · Surface elasticity · Strain gradient elasticity · Sur-
face waves · Nth-order strain gradient elasticity

7.1 Introduction

Recent developments in the nanotechnologies involve in common practise enriched
models of continua such as surface elasticity, strain gradient elasticity and other gen-
eralized models of the continuum mechanics, see for example recent comparison
of the popular models in Liebold and Müller (2015). The surface elasticity model
proposed by Gurtin and Murdoch (1975, 1978) found many applications in micro-
and nanomechanics, see Duan et al (2008); Wang et al (2011); Javili et al (2012);
Eremeyev (2016) and reference therein. The Gurtin-Murdoch model requires con-
stitutive equations for surface strain energy density and for kinetic surface energy
density in addition to the constitutive equations in the bulk. This model is general-
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ized in Steigmann and Ogden (1997, 1999) where bending stiffness related to the
surface was taken into account. Further extensions for surface and interface models
can be found in Placidi et al (2014); Lurie et al (2009); dell’Isola et al (2009a); Javili
et al (2013); Eremeyev (2016); Eremeyev et al (2016). Within the various extensions
of surface elasticity more complex constitutive equations are usually introduced.
The strain gradient models were applied for nanostructured materials in Aifantis
(1999, 2016); Forest et al (2011). Let us note that there some similarities between
strain gradient elasticity and surface stresses theory known from the theory of cap-
illarity (Rowlinson and Widom, 2003; de Gennes et al, 2004). After Mindlin (1965)
modelling of surface stresses relates also with gradient theories of elasticity, see for
example de Gennes (1981); dell’Isola et al (2009b); dell’Isola and Seppecher (1997);
Askes and Aifantis (2011). Both theories may change dramatically the behaviour of
solutions of boundary-value problem. In particular, the influence of surface stresses
may be crucial in the vicinity of geometrical singularities, holes, notches, crack tips,
etc. Let us only note here the existence of surface and interfacial anti-plane waves
decaying with the distance from the surface or interface observed in elastic solids
modelled using the surface elasticity (Fan et al, 2006; Xu et al, 2015; Eremeyev
et al, 2016) and modelled with the strain gradient elasticity (Vardoulakis and Geor-
giadis, 1997; Yerofeyev and Sheshenina, 2005; Gourgiotis and Georgiadis, 2015;
Georgiadis et al, 2000). It is worse to note that such surface anti-plane waves do not
exist in the classical linear elasticity (Achenbach, 1973).

The aim of this paper is to discuss the possible extension of a surface elasticity
considering nonlocal interactions (long range forces). Such interactions lead to non-
local form of constitutive equations for the surface stresses. For simplicity we are
restricted ourselves by infinitesimal deformations. Considering this model we ana-
lyze the propagation of surface anti-plane waves localized near plane boundary of
an elastic half space and to derive the form of a dispersion equation for these waves.
We search the anti-plane waves whose amplitude decays exponentially with distance
from the surface. Here we extend the recent results (Eremeyev et al, 2016) consider-
ing most general model of surface strain energy for small deformations. We assumed
that the surface strain energy is a quadratic function of surface strains and surface
gradients of displacements up to Nth order. In other words we consider weak nonlo-
cal model of surface elasticity which includes also the Gurtin–Murdoch model. The
considered deformations with nonlocal surface energy in some sense can be treated
as continuum limit of discreet models such as Nieves et al (2016); Gorbushin and
Mishuris (2016a,b); Carcaterra et al (2015); Rahali et al (2015); Porubov (2014);
Gerasimov et al (2016, 2017).

The paper is organized as follows. In Sect. 7.2 we present the basic equations of the
considered model. Here we introduce the strain energy and kinetic surface densities.
The strain energy density depends on first and higher order of surface gradients of
displacements (up to N-order, N > 1). Using the least action principle we derive
the dynamic boundary conditions. The derived boundary conditions contain the tan-
gent partial derivatives of the displacements up to 2N-order. In Sect. 7.3 we reduce
the general statement to the case of anti-plane deformations. As a result we obtain
the classical wave equation in the half space and non-classic boundary equation at
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the half space plane. Finally we derived the dispersion equation that is the relation
between phase velocity and wave number.

7.2 Governing Equations

Let an elastic solid occupies the region V in R with the smooth boundary A = ∂V .
We are restricted ourselves by linear elastic isotropic solids for the description of the
material behaviour in the bulk. So the infinitesimal deformations of an elastic solid
are described by the displacement field

uuu = uuu(xxx, t), (7.1)

where uuu is twice differentiable vector-function of xxx, xxx is the position vector and t is
time, whereas the strain energy W is given by

W = µeee : eee+
1
2

λ (treee)2, eee =
1
2

(
∇uuu+(∇uuu)T) , (7.2)

where eee is the strain tensor, the double dot stands for scalar (inner) product of two
second-order tensors, λ and µ are Lamé moduli, µ > 0, 3λ + 2µ > 0, and ∇ is the
3D nabla operator. The corresponding stress tensor is determined as follows

σσσ ≡ ∂W

∂eee
= 2µeee+λ III treee.

Here III is the three-dimensional unit tensor.

In addition to (7.2) we introduce the kinetic energy density by the formula

T =
1
2

ρu̇uu · u̇uu, (7.3)

where ρ is the mass density and overdot denotes the derivative with respect to t.

Within the framework of the surface elasticity we introduce the surface kinetic en-
ergy Ts and the surface strain energy density Ws. Taking into account the surface
mass density m we use the following formula for surface kinetic energy density
(Gurtin and Murdoch, 1978)

Ks =
1
2

mu̇uu · u̇uu
∣∣
xxx∈A

. (7.4)

For the surface strain energy density we assume the following dependence

Ws =Ws(ε,∇
2
suuu, . . . ,∇N

s uuu), (7.5)

where ∇s ≡ ∇−nnn∂/∂n is the surface nabla operator (Lebedev et al, 2010),
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ε =
1
2

(
(∇suuu) ·AAA+AAA · (∇suuu)

T)

is the surface strain tensor, A ≡ I−n⊗n is the surface unit second-order tensor, nnn is
the unit vector of outer normal to A, ⊗ denotes the tensorial product of two vectors.
Constitutive equation (7.5) satisfies the principle of the material frame indifference
in the case of small deformations. Indeed, it is obviously that (7.5) is invariant under
transformations of superimposed rigid body motion

uuu → uuu+aaa+bbb×xxx,

where aaa and bbb are constant vectors and × is the cross product. Constitutive equa-
tion (7.5) gives an example of nonlocal surface strain energy density. Indeed, here
Ws depends on derivatives up to Nth order like Nth order strain gradient elasticity
(dell’Isola et al, 2012). For simplicity we assume Ws in the form

Ws = µsε : ε +
1
2

λs(trε)2 +
1
2

N

∑
i=2

µi‖∇i
suuu‖2, (7.6)

where λs and µs are the surface elastic moduli called also surface Lamé moduli used
in the Gurtin–Murdoch approach (Gurtin and Murdoch, 1975, 1978), and µi ≥ 0
are additional surface stiffness moduli. Here ‖ · ‖ denotes the Euclidian norm in the
space of ith-order tensors (Lebedev et al, 2010). Thus, (7.6) contains the Gurtin–
Murdoch model of surface elasticity as a special case.
For derivation of governing equations we use the Hamilton variational principle (the
principle of least action). Functional of action is defined as follows

H =

T∫

0

∫

V

(T −W)dV dt +

T∫

0

∫

A

(Ts −Ws)dAdt. (7.7)

After standard technique of calculus of variations the variational equation δH = 0
results in the following motion equation

∇ ·σ = ρüuu, ∀xxx ∈V, (7.8)

and the dynamic boundary conditions

nnn ·σ = ∇s · τ −müuu, ∀xxx ∈ A, (7.9)

where τ is the surface stress tensor. For nonlocal model (7.6) it takes the form

τ ≡ ∂Ws

∂ε
−

2N

∑
i=2

(−1)i∇s ·
(
. . .∇s ·

(
∂Ws

∂∇i
suuu

)
. . .

)

= µsε +λsAAAtrε −
N

∑
i=2

(−1)iµi ∇s · (. . .∇s·︸ ︷︷ ︸
2i times

(
∇i

suuu
)
. . .

)
, (7.10)
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Nonclassical boundary conditions (7.9) with (7.10) generalizes the classic Young-
Laplace equation used in the theory of capillarity and its analogues known from the
Gurtin–Murdoch and Steigmann-Ogden models.
For example, in the case N = 2 Eq. (7.10) takes the form

τ = µsε +λsAAAtrε − µ2∇s ·
(
∇s ·∇2

suuu
)
.

7.3 Anti-Plane Surface Waves in an Elastic Half-Space

Let us consider stationary waves of an elastic half-space x1 ≤ 0, see Fig. 7.1. Here
x1, x2 and x3 are the Cartesian coordinates and iiik are corresponding unit base vectors.

For anti-plane motion the vector of displacement takes the form (Achenbach, 1973)

uuu = u(x1,x2, t)iii3. (7.11)

Now we have more simple formulae for gradients and strains

∇uuu = u,αiiiα ⊗ iii3 = ∇u⊗ iii3, ∇suuu = u,2iii2 ⊗ iii3, ∇i
suuu =

∂ iu

∂xi
2

iii2 ⊗ . . .⊗ iii2︸ ︷︷ ︸
i times

⊗iii3,

eee =
1
2
(∇u⊗ iii3 + iii3 ⊗∇u), ε =

1
2

u,2(iii2 ⊗ iii3 + iii2 ⊗ iii3).

Hereafter Greek indices take values 1,2 and for brevity we use the notation

Fig. 7.1 Elastic half-space
and used Cartesian coordi-
nates and base vectors

i1 ≡ nnn

i2

i3 x1

x2

x3
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u,α =
∂u

∂xα
.

For the anti-plane deformation (7.11) the motion equations reduce to the wave equa-
tion

ρ ü = µ∆u, (7.12)

where ∆u = u,11+u,22.

Assuming a steady state and looking for solution of (7.12) in the form

u =U(x1)e
i(kx2−ωt), (7.13)

we obtain the ordinary differential equation with respect to U

µ [U ′′− k2U ]+ρω2U = 0, (7.14)

where k is the wavenumber, ω is the circular velocity, i=
√
−1, and the prime stands

for differentiation with respect to x1. Assuming that U(x1) decays exponentially
with distance from the half-space surface, we find the solution of (7.14) in form

U =U0 exp
√

k2 −ω2/c2
Tx1,

where U0 is an amplitude and cT =
√

µ/ρ is the phase velocity of transverse waves
(Achenbach, 1973). Thus, the general stationary solution of (7.12) takes the form

u =U0 exp

[√
k2 −ω2/c2

Tx1 + i(kx2 −ωt)

]
. (7.15)

For anti-plane deformations the boundary condition (7.9) reduces to scalar equation

−mü+ µsu,22 −
N

∑
i=2

(−1)iµi
∂ 2iu

∂x2i
2

= µu,1. (7.16)

Substituting (7.15) into (7.16) we obtain the dispersion equation

mω2 − µsk
2 −

N

∑
i=2

µik
2i = µ

√
k2 − ω2

c2
T

. (7.17)

Introducing the phase velocity c = ω/k we transform (7.17) into

c2 = c2
s +

1
m

N

∑
i=2

µik
2i−2 +

µ

m

1
|k|

√
1− c2

c2
T

, (7.18)

where cs =
√

µs/m is the shear wave velocity in the thin film associated with the
Gurtin–Murdoch model (Eremeyev et al, 2016). Clearly, the solution of (7.18) exists
if c ≤ cT.
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Let us consider few cases. For µi = 0 Eq. (7.18) transforms to

c2 = c2
s +

µ

m

1
|k|

√
1− c2

c2
T

. (7.19)

Detailed analysis of (7.19) for the Gurtin–Murdoch model is performed in Eremeyev
et al (2016). The solution of (7.19) exists if and only if cS < c ≤ cT. It was shown
that c≈ cs and ω ≈ csk for k →∞, that is for short waves, and dispersion curve starts
from the point k = 0, c = cT. So, for long waves that is for k ≈ 0 the propagation
of waves is determined almost by the bulk properties of material. The dependence
c vs. k is given in Fig. 7.2, see the dashed curve. Here the relation cS = cT/4 is
assumed. Comparison of (7.18) with Eq. (20) in Eremeyev et al (2016) shows that
the difference consist of polynomial

1
m

N

∑
i=2

µik
2i−2 = µ2k2 + µ3k4 + . . .+ µNk2N−2

with positive coefficients. Again, when k → 0 c → cT. But now we can conclude
that for k → ∞ now the asymptotic behaviour of c is not constant, it polynomially
depends on the highes term. For N = 2 Eq. (7.18) transforms to

1

2

3

c

k

cTcs
0

Fig. 7.2: Dispersion curves. The dashed curve corresponds to the Gurtin-Murdoch
model, curves 1, 2, 3 are for µ̄2 = 0.01,0.001,0.0001, respectively.
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c2 = c2
s +

µ2

m
k2 +

µ

m

1
|k|

√
1− c2

c2
T

. (7.20)

Now the dispersion curves change dramatically. In Fig. 7.2 three curves correspond-
ing to different values of µ2 is given. Here µ̄2 is the normalized (dimensionless)
elastic modulus. Even for small µ2 that is when µ2 → 0 there is no limit to the previ-
ous model. So one can conclude that even for small nonlocality we have significant
difference in the dispersion curve behaviour. In particular, the the anti-plane waves
exist in different range of phase velocities and wave numbers.
Thus, increasing the level of non-locality that is increasing N we obtain different
behavior of solutions in the case of short waves, in general. In other words, there is
no limit at N → ∞ and analysis of strong nonlocal models may be required.

7.4 Conclusions

We present here the analysis of anti-plane surface waves propagation in the isotropic
linear elastic medium with surface energy which depends on surface gradients of
displacements up to Nth-order. The dispersion relation is derived and analyzed. We
shown that for long waves the phase velocity is almost determined by the bulk prop-
erties of material whereas for short waves the phase velocity is determined by high-
est order member in the surface strain energy density. Thus, considering further
gradient terms in the surface energy density, that is increasing N, we can change the
dynamical properties of material for short waves.

Acknowledgements Author acknowledges the support by the Russian Science Foundation (grant
number 15-19-10008).
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Chapter 8

Deformation of Spherical Inclusion in an Elastic

Body with Account for Influence of Interface
Considered as Infinitesimal Layer with

Abnormal Properties

Robert V. Goldstein, Valentin A. Gorodtsov & Konstantin B. Ustinov

Abstract The model for surface (interface) elasticity accounting for the influence of
bulk and interface eigenstrains as well as the influence of not only in-plane but also
out-of-plane stresses on the surface deformation, was proposed by the authors. Def-
inition of all interface values as integrals of the excesses of the corresponding bulk
values over the normal to the interface, and procedure of energy variation resulted in
constitutive equations for the interface of more general type then the Shuttleworth
equations (Shuttleworth, 1950). Here the model is added with the boundary con-
ditions at the interface. The model is used to describe deformation of a spherical
inclusion in elastic media.

Key words: Deep reservoirs · Rock · Well · Test facility · Deformations · Stresses
· Strength · Elastic moduli

8.1 Introduction

With reducing space dimensions under consideration down to nanometers, due to
the changes in the character of molecular interaction and increasing role of defects
in the vicinity of materials the classical theory of elasticity has been needed some
generalization for adequate description of the observed mechanical behavior. The
generalization leads to appearance of a scale effect absent in the traditional elastic-
ity. To describe such a mechanical behavior two approaches are known: to describe
the abnormal behavior in the frame of continuum mechanics (Shuttleworth, 1950;
Gurtin and Ian Murdoch, 1975; Murdoch, 2005; Podstrigach and Povstenko, 1985;
Ibach, 1997; Hashin, 1991), which results in various variants of surface elasticity;
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and to use discrete molecular modeling (Altenbach et al, 2010; Ivanova et al, 2002;
Goldstein and Chentsov, 2005; Odegard, 2006; Golovnev et al, 2015; Korobeynikov
et al, 2015; Berinskii and Krivtsov, 2010; Zubko, 2016). Both approaches have been
used successfully for solving particular problems, related to mechanics of nanoscale
objects (Eremeyev et al, 2009; Girchenko et al, 2011; Cammarata, 1994; Duan
et al, 2005, 2009; Goldstein et al, 2010; Bochkarev and Grekov, 2015; Grekov and
Kostyrko, 2016). In the works of authors (Ustinov et al, 2013; Goldstein et al, 2014)
the generalization of the traditional model of surface elasticity (Shuttleworth, 1950;
Gurtin and Ian Murdoch, 1975; Murdoch, 2005; Podstrigach and Povstenko, 1985;
Ibach, 1997) has been suggested, for which the governing equations for the inter-
faces include not only the stresses and strains acting in the plane of the interface,
but also the stresses and strains having components coinciding with the normal of
this plane. In the present work this model is generalized for curved surfaces, and is
applied for the problem of spherically symmetrical deformation of the body with a
spherical inclusion.

8.2 Model of the Interface Elasticity

According to Ustinov et al (2013); Goldstein et al (2014) consider a layer of material
of thickness h, between the layers of other materials, so that the total thickness of the
package is H > h (Fig. 8.1a). All materials are supposed linear elastic and possessing
transverse anisotropy with the isotropy plane being parallel to the layer boundaries.
In Cartesian coordinates with x3 directed normally to the layers, the elastic prop-
erties are described by five constants: Ci

11,C
i
12,C

i
13,C

i
33,C

i
44,C

i
66 = (Ci

11 −Ci
22)/2

(i = A,B,C for the lower, upper and intermediate layers, respectively).

Consider another configuration where the intermediate layer is replaced with an
interface of zero thickness, and the upper and lower layers expanded so that the
total package thickness conserve (Fig. 8.1b). The properties of the introduced inter-
face are determined so that the elastic energy of both systems be equal for arbitrary
uniform boundary conditions. This is achieved by as-suming the relation between
volume and surface stresses (σi j ,σ

s
i j) and volume and surface strains (εi j ,ε

s
i j) as

follows (Shuttleworth, 1950; Gurtin and Ian Murdoch, 1975)

σ s
11 = A1111ε11 +A1122ε22 +A1133εs

33,
σ s

22 = A1122ε11 +A1111ε22 +A1133εs
33,

σ s
12 = 2A1212ε12,

σ s
33 = A1133ε11 +A1133ε22 +A3333εs

33,
σ s

13 = 2A1313εs
12,

σ s
23 = 2A1313εs

23

(8.1)

Here the surface strains are understood as the difference between displacements of
the upper and lower boundary of the interface, similarly to Winkler or spring model,
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(а) (b) 

Fig. 8.1: Model of composed layer: (a) initial configuration; (b) equivalent configu-
ration

εs
33 = [u3],2εs

13 = [u1],2εs
23 = [u2] (8.2)

In general case the volume strain and stress may possess discontinuities across the
surface, therefore in (8.1) the volumetric values should be under-stood as the average
of the corresponding values for the upper and lower boundary

ε11 =
1
2
(εA

11 + εB
11), ε22 =

1
2
(εA

22 + εB
22), ε12 =

1
2
(εA

12 + εB
12)

σ33 =
1
2
(σA

33 +σB
33), σ13 =

1
2
(σA

13 +σB
13), σ23 =

1
2
(σA

23 +σB
23)

(8.3)

The above formulae together with Young-Laplace equation

σσσA −σσσB =∇∇∇sσσσ
s (8.4)

may be considered as the boundary conditions for the internal interface. Here ∇∇∇s is
2-D gradient in the coordinate frame related to the surface.

The elastic coefficients are
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A12 = A21 =
h

4CA
33CB

33 − 2CC
33(C

A
33 +CB

33)
[CB

13
2
(2CA

33 −CC
33)+CA

13
2
(2CB

33 −CC
33)

+ 2CC
13

2
(2CA

33 +CB
33)− 4CB

13C
C
13CA

33 − 4CA
13C

C
13CB

33 + 2CA
13CB

13CC
33

− (2CC
12 −CA

12 −CB
12)(C

C
33(C

A
33 +CB

33)− 2CA
33C

B
33)],

A13 = A23 =
(CB

13CA
33 +CA

13CB
33)C

C
33 − 2CC

13CA
33(C

B
33

CC
33(C

A
33 +CB

33)− 2CA
33C

B
33

= A31 = A32,

A33 =
1
h

(
1

CC
33

− 1

2CA
33

− 1

2CB
33

)−1

,

A44 = A55 =
1
h

(
1

CC
44

− 1

2CA
44

− 1

2CB
44

)−1

,

A66 = h

(
CC

66 −
CA

66 +CB
66

2

)

(8.5)
It is worth to emphasize that relations (8.1), (8.1) due to presence of cross-terms
are not reduced to a combination of the traditional surface elasticity (Shuttleworth,
1950; Gurtin and Ian Murdoch, 1975; Murdoch, 2005; Podstrigach and Povstenko,
1985; Ibach, 1997) and spring theory, considered, e.g. in (Hashin, 1991). Table 8.1
illustrates the difference between the various types of interface descriptions.

Table 8.1: Variants interface conditions

Full contact Winkler layer Surface elasticity Generalized surface elasticity
Kinematics

[ui] = 0 [ui] = εs
ni [ui] = 0 [ui] = εs

ni

Statics
[σ s

ni] = 0 [σ s
ni] = 0 [σ s

ni] = ∇sσ
s
αβ Young-Laplace equation

Additional variables
εs

ni - 3 displacement σ s
αβ - 3 components εs

ni,σ
s
αβ - 6 units (3 displacement

discontinuities of surface stress discontinuities and 3 components)
of surface stress)

Additional equation for them
µ s
(i)ε

s
ni = σni σ s

αβ =Λαβγδ εγδ suggested equations (8.5)
Winkler equations Shattleworth equations

8.3 Problem of Spherical Inclusion. Various Solutions

The above theory allows generalization for curvilinear interfaces if the curvature
radius remains much bigger than the thickness of the original inter-mediate layer.
Consider an infinite media with a spherical inclusion of radius R with the above
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described contact conditions. Let us restrict ourselves for simplicity with the case
of isotropic media and inclusion, and transverse isotropic interface with the isotropy
axis at each point normal to the spherical surface. According to the general solution
of the of the elasticity problem in case of spherical symmetry (Landau and Lifshitz,
1979) the displacements, strains and stresses inside and outside of the inclusion
(reduced to convenient for our purposes notation) are

uM =CM
1 r+

CM
1

r2 , εM
rr =CM

1 − 2CM
2

r3 , εM
θθ = εM

ϕϕ =CM
1 +

2CM
2

r3 ,

σM
rr = 3KMCM

1 − 4µMCM
2

r3 , σM
θθ = 3KMCM

1 +
2µMCM

2

r3 ,

M = A,B, CA
2 = 0

(8.6)

Here M = A,B for the internal and external zones, respectively; CB
1 = σ∞/3KB deter-

mines the field at infinity in case of hydrostatic stresses σ∞, K,µ are volumetric and
shear moduli. Constants CA

1 ,C
B
2 are determined with the help of (8.1), (8.3), (8.4),

which for considered case are reduced at r = R to

R

2
(σB

rr −σA
rr)− (A1111+A1122)

εA
θθ + εB

θθ

2
−A1133(u

B − uA) = 0,

σB
rr +σA

rr

2
= A3333(u

B − uA)+A3311(ε
A
θθ + εB

θθ )

(8.7)

Consider the case where the constants of surface elasticity Ai jkl correspond to a layer
of final thickness h and are determined by (8.5). Calculating any component of stress
and displacement is straightforward. Thus the coefficient of strain concentration
(ratio of strains within the inclusion and at infinity) is

εA

εB
=

3(λ B + 2µB)

3KA + 4µB
− 36(λ B + 2µB)(KA −KC)(µB − µC)

(3KA + 4µB)2(λC + 2µC)

h

R
+ 0

(
h

R

)2

(8.8)

Here KM,λ M,µM,M = A,B,C are volumetric moduli and Lamé’s constants of the
materials.

Compare the obtained solution with the solution of the problem of spherical inclu-
sion surrounded by an intermediate layer of final thickness h. To do this let us again
use formulae (8.6), setting M = A,B,C,CA

2 = 0, where index C corresponds to the
intermediate layer. The boundary conditions in case of full contact for at r = R are

σA
rr −σC

rr = 0, uA − uC = 0 for r = R− h/2,
σB

rr −σC
rr = 0, uB − uC = 0 for r = R+ h/2

(8.9)

Solution of system (8.9) with account for the expressions for stresses and displace-
ments (8.6) yields values of constants CA

1 ,C
B
2 ,C

C
1 ,C

C
2 , substitution of which into (8.6)

yields the solution of the imposed problem. Coefficient of strain concentration, cal-
culated in such a way, coincides with (8.8) for the leading term of expansion over
h/R.
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Consider the problem in the frame of the traditional surface elasticity. The boundary
condition at the interface at r = R in our notation are (Cammarata, 1994; Duan et al,
2005, 2009)

R

2
(σB

rr −σA
rr)− (A1111+A1122)ε

A
θθ = 0, (uB − uA) = 0 ⇒ εA

θθ = εB
θθ (8.10)

Substitution (8.10) into (8.6) gives the solution coinciding with the result obtained
in Cammarata (1994). Coefficient of strain concentration calculated this way is

εA

ε∞
=

3(λ B + 2µB)

3KA + 4µB
− 12(λ B + 2µB)(λC − µC)

(3KA + 4µB)2

h

R
+ 0

(
h

R

)2

(8.11)

in more general case does not coincides with (8.8). The results yielded by (8.8) and
(8.11) become close for relatively rigid intermediate layer, i.e. for λC,µC or λ A,µA

or λ B,µB, however no exact coincidence is observed.

8.4 Conclusion

The boundary conditions at the interface separating two bodies with different elas-
tic properties were formulated in the frame of the suggested by authors generalized
model of surface (interface) elasticity. The problems of spherically symmetrical de-
formation of an infinite body with spherical inclusion under action of the externally
applied stress field and eigenstrains both in the inclusion and interface are consid-
ered. The obtained solution coincides with the leading term (over the ratio of the
interface thickness and the inclusion radius) of the solution obtained for the case
of thin interface with the final thickness. No such a coincidence is observed for the
solution obtained in the frame of the traditional surface elasticity.
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Chapter 9

Analysis of Internal Stresses in a Viscoelastic

Layer in Sliding Contact

Irina G. Goryacheva, Feodor I. Stepanov & Elena V. Torskaya

Abstract Sliding contact of a smooth indenter with a linear viscoelastic layer ad-
hered to a rigid half-space is under consideration. The quasistatic problem is inves-
tigated by constructing a solution for the case of a moving load, distributed in a
rectangular element, which allows us to use the boundary element method and iter-
ative procedure. The effect of sliding velocity, the layer thickness and viscoelastic
properties on distribution of contact and internal stresses is analyzed based on the
numerical solution of the problem.

Key words: Contact problem · Sliding · Viscoelasticity · Layer · Internal stresses

9.1 Introduction

Studying the contact problem for viscoelastic coating, which is much more com-
pliant than the substrate material, it is possible to model it by viscoelastic layer
adhered to a rigid half-space. 2-D contact problems for different types of indenters
sliding over the viscoelastic layer are considered in a number of papers, for example
Aleksandrov and Mark (2009); Mark (2008); Morozov and Makhovskaya (2007).
Contact pressure and sliding resistance, associated with energy dissipation due to
the rheological properties of the material, are analyzed based on the solutions of
such problems.
For 3-D contact problem one-dimensional model of viscoelastic layer is widely
used (Lyubicheva, 2008; Soldatenkov, 2015) to obtain analytical solution for a
single slider or a system of sliders and to take into account mutual effect (Alek-
sandrov et al, 2010; Soldatenkov, 2015) and surface adhesion (Lyubicheva, 2008;
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Goryacheva et al, 2014). 3-D quasi-static contact problems are also developed for
a slider and viscoelastic half-space (Goryacheva et al, 2015, 2016; Koumi et al,
2015; Stepanov and Torskaya, 2016; Stepanov, 2015; Kusche, 2016; Stepanov and
Torskaya, 2017). Contact problem solutions are obtained for linear viscoelastic ma-
terial models with one (Goryacheva et al, 2015, 2016; Koumi et al, 2015; Stepanov
and Torskaya, 2016; Stepanov, 2015; Kusche, 2016) or three (Aleksandrov et al,
2010) retardation times for homogeneous materials (Aleksandrov et al, 2010; Gory-
acheva et al, 2015, 2016; Stepanov and Torskaya, 2016; Stepanov, 2015) and materi-
als, containing inclusions Koumi et al (2015). Tangential stresses in contact area are
taken into account in (Goryacheva et al, 2015, 2016; Stepanov and Torskaya, 2016;
Stepanov, 2015; Kusche, 2016). Mutual effect is considered for the system of two
sliders in Stepanov (2015). The contact problem solutions are used to calculate the
contact stresses, contact area and to evaluate hysteretic losses during sliding. Inter-
nal stresses in viscoelastic material are analyzed in Stepanov and Torskaya (2016)
for a homogeneous half-space loaded by normal and tangential contact stresses, and
in Koumi et al (2015) for a half-space with inclusions loaded only by the normal
contact stresses.

The method of contact problem solution for a slider moving with constant veloc-
ity over viscoelastic layer, which is bonded with a rigid half-space, is proposed in
Stepanov and Torskaya (2017). In the current paper the method of calculation of in-
ternal stresses within the layer is developed and used to analyze the influence of the
layer thickness, its rheological properties and sliding velocity on stress distribution
under the slider.

9.2 Problem Formulation

Sliding contact of a rigid smooth indenter and viscoelastic layer of thickness h is
considered under the assumption that the layer is in perfect adhesion with rigid
half-space. The indenter, which is loaded by normal force Q, moves with constant
velocity V in direction Ox (Fig. 9.1). The coordinate system is related to the in-
denter at the point of initial contact of the indenter and the layer. Note that in the
moving system of coordinates all stresses and displacements do not depend on time.
Boundary conditions at the surface z = 0 are the following:

w(x,y,0) = f (x,y)+D, (x,y) ∈ Ω ;
σz(x,y,0) = 0, (x,y) /∈ Ω ;
τxz(x,y,0) = τyx(x,y,0) = 0, −∞ < x <+∞, −∞ < y <+∞

(9.1)

Here Ω is the contact region, w(x,y,0) are surface normal displacements, D is pen-
etration of the indenter, σz, τxz, τyz are normal and tangential stresses. The shape
of the indenter is determined by the smooth function f (x,y). Contact pressure
p(x,y) =−σz(x,y,0) and contact region Ω are unknown.

Equilibrium condition is



9 Analysis of Internal Stresses in a Viscoelastic Layer in Sliding Contact 173

Fig. 9.1 Scheme of contact

Q =

∫∫

Ω

p(x,y)dxdy (9.2)

and the condition of zero pressures at the boundary of the contact zone Ω are also
satisfied. The boundary conditions at the layer-substrate interface (z= h) correspond
to perfect adhesion:

w(x,y,h) = 0, ux(x,y,h) = 0, uy(x,y,h) = 0 (9.3)

Here ux(x,y,z) and uy(x,y,z) are shear displacements of the layer material.
The linear viscoelastic material model is described by an integral operator (Aleksan-
drov et al, 2010), which defines the dependence of the shear deformation γ(t) on the
shear stress τ(t) by the following relationship:

γ(t) =
1
G

τxz(t)+
1
G

t∫

−∞

τ(t)K(t − τ)dτ (9.4)

Here G is instantaneous shear modulus, the creep kernel K(t) is the following:

K(t) = k exp
(
− t

ω

)
(9.5)

here ω is retardation time, k is the reciprocal of relaxation time. The Poisson ratio
ν is assumed to be a constant value.

9.3 Method of Solution

At the first stage let us consider sliding of a constant pressure q distributed inside a
square 2a×2a, over a viscoelastic layer bonded to the rigid half-space. Conditions
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at the upper layer bound are the following:

σz(x,y,0) = −q, |x| ≤ a, |y| ≤ a;
σz(x,y,0) = 0, |x|> a, |y|> a;
τxz(x,y,0) = 0, τyx(x,y,0) = 0, −∞ < x < ∞, −∞ < y < ∞

(9.6)

The solution of the similar boundary problem for a two-layered elastic half-space
was obtained in Nikishin and Shapiro (1970), based on double Fourier transforms.
For the particular case of the elastic layer bonded to the rigid base the expression
for surface normal displacements has the form:

w′(x′,y′,0) =− q

2G

π/2∫

0

∞∫

0

∆(ν,γ,ϕ ,λ )cos(x′γ cosϕ)cos(y′γ sinϕ)dγdϕ (9.7)

Here x′,y′,w′ are dimensionless coordinates and normal displacements related to
half-side of the square a, G is shear modulus of the layer material, ν is Poisson
ratio, γ,ϕ are the coordinates for inverse double Fourier transforms, λ = h/a is di-
mensionless layer thickness. The function ∆(ν,γ,ϕ ,λ ) which is a result of solution
of linear system of functional equations [16], derived from (9.3), (9.6) after using
biharmonic function for representation of stresses and displacements, and also after
double Fourier transform of constant pressure q, has the following form:

∆(ν,γ,ϕ ,λ ) =
4

π2

sin(γ cosϕ)sin(γ sinϕ)

γ2 sin ϕ cosϕ
×

×
(

−24ν2e−4γλ − 8ν2 + 26νe−4γλ + 0.4νγλ (e−4γλ + 1)

−e−2γλ (16ν2 + 4γ2λ 2 + 10)+ e−4γλ(1+ 24ν)+ 4ν− 3
+

+
8νe−2γλ(γλ+1)+14ν−6−0.3γλ e−4γλ−0.2γλ e−2γλ−0.3γλ−6e−4γλ−4e−2γλ

−e−2γλ (16ν2+4γ2λ 2+10)+e−4γλ(1+24ν)+4ν− 3

)

(9.8)

Taking into account that for the case of the viscoelastic layer G in (9.7) is the op-
erator (9.4), we reduce the following relation for normal displacements of the vis-
coelastic layer boundary:

w′(x′,y′,0) =− q

2G

π/2∫

0

∞∫

0

∆(γ,ν,ϕ ,λ )cos(y′γ sin ϕ)×

×


cos(x′γ cosϕ)+

0∫

−∞

K(−τ)cos

((
x′+

V ′τ
ω

)
γ cosϕ

)
dτ


dγdϕ

(9.9)

Here V ′ =Vω/a is dimensionless sliding velocity.

Substitution of the creep kernel (9.5) in (9.9) and integration over time leads to the
following relation:
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w′(x′,y′,0) =− q

2G

π/2∫

0

∞∫

0

∆(γ,ϕ ,ν,λ )cos(y′γ sinϕ)×

×
(

cos(x′γ cosϕ)+ c
V ′γ cosϕ sin(x′γ cosϕ)+ cos(x′γ cosϕ)

1+(V ′γ cosϕ)2

)
dγdϕ

(9.10)

Here c = kω is the ratio of retardation to relaxation times.

The relation (9.10) together with the boundary conditions (9.1) and (9.2) are used
for the solution of the contact problem. The hypothetical contact area is divided into
N square elements with unknown constant pressures pi (i = 1, ...N) within each
of them. Then the system of equations for determination of the contact pressures
follows from (9.1) and (9.2):




4a2 · · · 4a2 0
κ1

1 · · · κ1
N −1

...
. . .

...
...

κN
1 · · · κN

N −1


×




p1
...

pN

D


=




Q

f1
...

fN


 (9.11)

here f1... fN describe the indenter shape in each element. Coefficients κ
j

i are deter-
mined from (9.10):

κ
j

i =− 1
2G

π/2∫

0

∞∫

0

∆(γ,ν,ϕ ,λ )cos(yi jγ sinϕ)×

×
(

cos(xi jγ cosϕ)+ c
V ′γ cosϕ sin(xi jγ cosϕ)+ cos(xi jγ cosϕ)

1+(V ′γ cosϕ)2

)
dγdϕ

(9.12)

Here xi j,yi j are distances between square elements over 0x and 0y respectively.

The solution of (9.11) in an arbitrary (a priori exceeding resulting) contact region
includes, in general, the negative pressure in some cell-squares. On the next iteration
the pressure in these elements is assumed zero, the rank of the system (9.11) is
reduced due to the zero-point data elements, and the system is solved again. As a
result, the iterative process leads to a positive contact pressure p(x,y) within the
definite contact area Ω . The procedure of numerical solution of the equation (9.11)
is described in details in Goryacheva et al (2016).

The resulting pressure distribution is used to calculate the internal stresses in the
viscoelastic layer. Internal stresses within the viscoelastic layer can be calculated
based on the expressions for the elastic layer (Nikishin and Shapiro, 1970):
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σx =

π/2∫

0

∞∫

0

(
∆x(ν,γ,ϕ ,λ )− cos2 ϕ ∆u(ν,γ,ϕ ,λ )

)
×

×cos(x′γ cosϕ)cos(y′γ sinϕ)γdγdϕ ,

σy =

π/2∫

0

∞∫

0

(
∆y(ν,γ,ϕ ,λ )− sin2 ϕ ∆u(ν,γ,ϕ ,λ )

)
×

×cos(x′γ cosϕ)cos(y′γ sinϕ)γdγdϕ ,

σz =

π/2∫

0

∞∫

0

∆z(ν,γ,ϕ ,λ )cos(x′γ cosϕ)cos(y′γ sinϕ)γdγdϕ ,

τxy =

π/2∫

0

∞∫

0

∆xy(ν,γ,ϕ ,λ )sin(x′γ cosϕ)sin(y′γ sin ϕ)γdγ sinϕ cosϕdϕ ,

τxz =

π/2∫

0

∞∫

0

∆xz(ν,γ,ϕ ,λ )sin(x′γ cosϕ)cos(y′γ sinϕ)γdγ cosϕdϕ ,

τyz =

π/2∫

0

∞∫

0

∆yz(ν,γ,ϕ ,λ )cos(x′γ cosϕ)sin(y′γ sinϕ)γdγ sin ϕdϕ

(9.13)

It is worth to note that the stresses (9.13) depend only on the Poisson ratio. Since for
the viscoelastic model of the layer under consideration the Poisson ratio is constant,
the relations (9.13) can be used to calculate the internal stresses in the viscoelastic
layer.

9.4 Analysis of Internal Stresses

The method presented above is used to calculate and analyze stresses, which arise
in sliding contact of a rigid spherical indenter with radius R and a viscoelas-
tic layer. The following dimensionless parameters are used for analysis: coordi-
nates (x,y)/R , velocity V ∗ = Vω/R, layer thickness h/R, load Q′ = Q/R2Gl

(Gl is longitudinal shear modulus), and parameterc = kω . Dimensionless stresses
σ ′

x, σ ′
y, σ ′

z, τ ′xy, τ ′xz, τ ′yz are related to the longitudinal shear modulus.
Figure 9.2 illustrates the distribution of the normal stresses in the layer for various
values of parameters. Cross-sections by z = 0 plane present σ ′

z stress distributions.
All presented distributions are not symmetric, the fact is caused by the viscoelas-
ticity of material, and the most asymmetric distribution occurs for material with
relatively large ratio of instantaneous to longitudinal shear moduli (Fig. 9.2 d). The
main features of the pressure curves (σ ′

z stress at the surface) correspond to the re-
sults, which are obtained for viscoelastic half-space (Goryacheva et al, 2015, 2016;
Koumi et al, 2015). The increase of a sliding velocity leads to the contact pressure
increase (Figures 9.2 a and 9.2 c); the same effect takes place if the layer thickness
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a) b)

c) d)

Fig. 9.2: Stresses σ ′
z in the viscoelastic layer: V ∗ = 0.333 (a,b,d), V ∗ = 1.666 (c);

c=5 (a,b,c), c=20 (d); h/R=0.1 (a,c,d), h/R=0.033 (b); ν = 0.3; Q′ = 0.1 (a,b,c),
Q′ = 0.035 (a,b,c).

decreases (Fig. 9.2 b). For the case of relatively thin layers the stresses weakly de-
pend on coordinate z, it means that a 1-D model of viscoelastic material can be used
for contact problem solution. For thicker layers the stresses decrease sharply from
the surface, and then they tend to a constant value.

Figure 9.3 illustrates tensile-compressive stress distribution at the surface. The anal-
ysis of this stress component is important, because tensile stress concentration may
lead to material damage. The stress maxima are located at the surface for all values
of input parameters used for calculations. Positive values correspond to compres-
sion, and negative values – to tension. In any case we have maximal compression
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Fig. 9.3: Stresses σ ′
x at the surface of viscoelastic layer: V ∗ = 0.333 (curves 1,2,4,5),

V ∗ = 1.666 (curve 3) ; c=5 (curves 1, 3-5), c=20 (curve 2); h/R=0.1 (curves 1-4),
h/R=0.033 (curve 5); ν = 0.3 (curves 1-3, 5), ν = 0.45 (curve 4); Q′ = 0.1 (curves
1, 3-5), Q′ = 0.035 (curve 2)

within the contact zone at the point of maximum pressure. At the front of the contact
zone stresses have ‘jump’ from positive to negative or zero values. Tension may also
occur behind the contact zone with lower values of local maxima. It is interesting to
note, that tensile stresses are mostly sensitive to the changes of Poisson ratio and the
layer thickness; increase of Poisson ratio and decrease of the layer thickness lead
to essential decrease of tensile stresses at the front of contact zone. Simultaneously,
normal and compressive stresses increase.
The analysis of the stress component τ ′xz distribution at the layer-substrate interface
shows that the stresses are equal to zero at the surface and maximal at the inter-
face (Fig. 9.4). The stress concentration may cause the layer delamination. Here we
analyze absolute stress values, because positive or negative values correspond to dif-
ferent direction of their action. The maxima locate under the contact zone boundary
, and the absolute maximum is under the front of the contact. The effect of Poisson
ratio is most essential for shear stresses: curves 1 and 4 are calculated for ν=0.3
and 0.45 respectively, and the shear stress maxima are more than 2 times greater for
large Poisson ratio.
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Fig. 9.4: Stresses τ ′xz at the layer-substrate interface: V ∗ = 0.333 (curves 1,2,4,5),
V ∗ = 1.666 (curve 3) ; c=5 (curves 1, 3-5), c=20 (curve 2); h/R=0.1 (curves 1-4),
h/R=0.033 (curve 5); ν = 0.3 (curves 1-3, 5), ν = 0.45 (curve 4); Q′ = 0.1 (curves
1, 3-5), Q′ = 0.035 (curve 2)

Principal shear stresses for the layers of different thickness are presented in Fig.
9.5. The stress distribution is almost symmetric for the thicker layer, it means that
the layer thickness influences on detection of rheological properties of material in
sliding contact. The 5 times increase of the layer thickness leads to almost 3 times
decrease of maximum of the principal shear stress, which is localized under the
surface.

9.5 Conclusions

The internal stresses within the viscoelastic layer bonded with a rigid half-space,
in contact with the spherical slider were calculated. The dependence of the stress
distribution on layer thickness and its rheological properties, as well as on sliding
velocity was analyzed. It is shown, that

• the increase of viscoelastic layer thickness leads to the decrease of the maximal
values of the internal stresses;
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a) b)

Fig. 9.5: Principal shear stresses in the viscoelastic layer: V ∗ = 0.333; c=5; ν = 0.3;
Q′ = 0.1; h/R=0.033 (a), h/R=0.166

• for relatively thin layers the stress components weakly depend on coordinate z,
it means that a 1-D model of viscoelastic material can be used for the contact
problem solution for thin coatings;

• the increase of sliding velocity and parameter c, which determines the rheological
properties of material, leads to increase of the maximal values of the internal
stresses; for higher values of velocity and parameter c the principal shear stress
maximum is larger and closer to the surface;

• the increase of Poisson ratio leads to the essential decrease of tensile stresses at
the front of the contact region; the effect of Poisson ratio is also essential for the
maximal values of shear stresses at the layer-substrate interface ;

The results can be used to predict the coating fracture in friction interaction.

Acknowledgements The work was supported by Russian Science Foundation (No. 14-29-00198).

References

Aleksandrov VM, Mark AV (2009) Quasistatic periodic contact problem for a viscoelastic layer,
a cylinder, and a space with a cylindrical cavity. Journal of Applied Mechanics and Technical
Physics 50(5):866–871

Aleksandrov VM, Goryacheva IG, Torskaya EV (2010) Sliding contact of a smooth indenter and a
viscoelastic half-space (3d problem). Doklady Physics 55(2):77–80

Goryacheva IG, Gubenko MM, Makhovskaya YY (2014) Sliding of a spherical indenter on a
viscoelastic foundation with the forces of molecular attraction taken into account. Journal of
Applied Mechanics and Technical Physics 55(1):81–88

Goryacheva IG, Stepanov FI, Torskaya EV (2015) Sliding of a smooth indentor over a viscoelastic
half-space when there is friction. Journal of Applied Mathematics and Mechanics 79(6):596–
603

Goryacheva IG, Stepanov FI, Torskaya EV (2016) Effect of friction in sliding contact of a sphere
over a viscoelastic half-space. In: Neittaanmäki P, Repin S, Tuovinen T (eds) Mathematical



9 Analysis of Internal Stresses in a Viscoelastic Layer in Sliding Contact 181

Modeling and Optimization of Complex Structures, Computational Methods in Applied Sci-
ences, pp 93–104

Koumi KE, Chaise T, Nelias D (2015) Rolling contact of a rigid sphere/sliding of a spherical
indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity. Journal of the
Mechanics and Physics of Solids 80:1–25

Kusche S (2016) Frictional force between a rotationally symmetric indenter and a viscoelastic
half-space. ZAMM - Journal of Applied Mathematics and Mechanics DOI 10.1002/zamm.
201500169

Lyubicheva AN (2008) Analysis of the mutual influence of contact spots in sliding of the periodic
system of asperities on a viscoelastic base of the Winkler type. Journal of Friction and Wear
29(2):92–98

Mark AV (2008) The uniform motion of rectangular and parabolic punches in a viscoelastic layer.
Journal of Applied Mathematics and Mechanics 72(4):492–498

Morozov AV, Makhovskaya YY (2007) Experimental and theoretical evaluation of the deformation
component of the coefficient of friction. Journal of Friction and Wear 28(4):331–337

Nikishin VS, Shapiro GS (1970) Space problems of the elasticity theory for multilayered media
(in Russ. VTs AN SSSR, Moscow

Soldatenkov IA (2015) Calculation of friction for indenter with fractal roughness that slides against
a viscoelastic foundation. Journal of Friction and Wear 36(3):193–196

Stepanov FI (2015) Sliding of two smooth indenters on a viscoelastic foundation in the presence
of friction. Journal of Applied Mechanics and Technical Physics 56(6):1071–1077

Stepanov FI, Torskaya EV (2016) Study of stress state of viscoelastic half-space in sliding contact
with smooth indenter. Journal of Friction and Wear 37(2):101–106

Stepanov FI, Torskaya EV (2017) Modeling of indenter sliding over viscoelastic layer bonded to
rigid foundation. Mechanics of Solids 50(6):in print



Chapter 10

On the Problem of Diffusion in Materials Under

Vibrations

Dmitry A. Indeitsev & Yulia A. Mochalova

Abstract We present a closed set of coupled equations of impurity transport dur-
ing deformation of solids following from the general laws of continuum mechanics.
Within a two-component continuum model, we derived the generalized diffusion
equation. As an application, the phenomenon of impurity localization is considered
in a rod under vibrations. The obtained numerical and analytical results are com-
pared with experiments on the investigation of impurity redistribution during the
deformation of samples.

Key words: Diffusion · Vibrations · Two-Component model · Elastic media · Ana-
lytic solution

10.1 Introduction

Vibration mechanics as a special section of dynamic problems of continuum me-
chanics holds a momentous place in the study of the mass transfer phenomenon in
inhomogeneous media (in the most general case, there are diffusion of impurities
in solids, degradation of metals, flow of liquids through the porous media or other
liquid movement of special fluids). A detailed exposition of the main problems of vi-
brational mechanics and techniques is represented by Blekhman (2000). Our interest
is the problem of mutual influence of impurity diffusion and deformation of elastic
medium under vibrations. It is known that non-stationary mechanical loads lead to
a redistribution of impurities in material, which can have a significant effect on the
mechanical properties of a sample (Polyanskiy et al, 2005; Belyaev et al, 2012). In
most studies on diffusion in solids, the phenomenological models are used. It allows
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us to take into account only the effect of stress state of the medium on impurity dif-
fusion (Aifantis, 1980). In this case the question of how kinetic processes in the ma-
terial (diffusion of impurities, the sedimentation of impurity particles on the main
structure) influence on mechanical material properties of materials remains open.
To describe the impurity diffusion in solids, a two-component continuum model is
suggested in Indeitsev et al (2012); Indeitsev and Mochalova (2014). Interaction be-
tween the main stricture and the flow of impurity is determined by internal forces
(which depend on the material deformation (stress state)) and mass transfer between
the impurity and the main structure. Within this model governing equations are ob-
tained by Indeitsev and Mochalova (2014) and static stress state of the material with
an impurity is investigated. The paper by Indeitsev et al (2009) proposes a model of
internal transformation in a sample under dynamical load. Simplified balance equa-
tions without the convective diffusion terms are used. It is shown that the change
in mechanical properties of the material is due to internal transformation when the
impurity particles are attached to the main structure. In the paper by Indeitsev and
Osipova (2009) the stress-strain state of material with the impurity is researched
within statistical physics. It good agreement between the two-component mechani-
cal model and statistical physics approach is shown. The equation of impurity mo-
tion (the generalized diffusion equation) is obtained by Indeitsev et al (2012). The
equation allows us to consider the effect of the main structure deformation on the
impurity diffusion. A metal sample under the cyclic loading is examined and the
localization of impurity in the central part of the sample is shown.

This paper is an extension of the researches started in Indeitsev et al (2009, 2012).
Aim of this paper is the research of mutual influence of impurity diffusion and de-
formation within the two-component continual model. It is assumed that the free
particles of the impurity can be attached to the main structure and it mechanical
properties can be transformed. We restrict the study to particular cases, which quali-
tatively describe two important experimentally observed phenomena in the material
under vibrations: the impurity localization and the drop of generalized stiffness in
the sample. For each problems approximate analytical solutions are obtained, which
have a good agreement with previously numerical studies and experimental data.
These model problems allow us to investigate features of diffusion processes in
solids under non-stationary external action and can be tests for the analysis of com-
plex problems of diffusion processes in multi-component media.

10.2 The Equation of Impurity Motion

Within the two-component approach, we consider two interpenetrating environ-
ments: dynamically deformable main solid structure (lattice of the metal, for ex-
ample) and a movable impurity in the body (Indeitsev and Mochalova, 2014). Joint
movement and coupling of these two environments are described in the absolute
coordinate system by the following system of equations:
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• the equation of motion of the main structure

∇∇∇ ·σσσ = ρ1
∂vvv1

∂ t
− Jvvv1 −RRR, (10.1)

• the equation of motion of the mobile impurity

−∇∇∇p = ρ2
∂vvv2

∂ t
+ Jvvv2 +RRR, (10.2)

• the continuity equation of the main structure

∂ρ1

∂ t
+∇∇∇ · (ρ1vvv1) =−J, (10.3)

• the continuity equation of the mobile impurity

∂ρ2

∂ t
+∇∇∇ · (ρ2vvv2) = J, (10.4)

• the state equation of the main structure

σσσ =σσσ(εεε), (10.5)

• the state equation of mobile impurity

p = p(ρ2). (10.6)

Here ρ1,vvv1 σσσ , ε are the density, velocity vector, the stress tensor and strain of the ba-
sic structure of the material; ρ2, vvv2, p are density, velocity vector and pressure of the
mobile impurity. Reactive forces Jvvv1 and Jvvv2 in Eqs. (10.1), (10.2) are neglected. In-
teraction between the components is determined by Indeitsev and Mochalova (2014)
and J is the source term, RRR is the internal force of the interaction between the main
structure and the mobile impurity

RRR = µ(ε)ρ2 (vvv2 −vvv1) . (10.7)

Here µ(ε) is the drag coefficient.

We introduce the relative velocity of movement of the impurity ϑϑϑ = vvv2 −vvv1. Sub-
stituting vvv2 expressed in terms of the relative velocity into (10.2) and neglecting
ρ2∂ϑϑϑ/∂ t, we get

ϑϑϑ =− 1
µ(ε)ρ2

(
∇∇∇p+ρ2

∂vvv1

∂ t

)
. (10.8)

Substituting ϑϑϑ into expression (10.4), we obtain the diffusion equation which takes
into account the effect of deformation and inertial forces:

∂ρ2

∂ t
−∇∇∇ ·

[
1

µ(ε)

(
∇∇∇p+ρ2

∂vvv1

∂ t

)
−ρ2vvv1

]
= J. (10.9)



186 Dmitry A. Indeitsev & Yulia A. Mochalova

Differentiating Eq. (10.6) with respect to ρ2, and assuming that the speed of sound
in the impurity c2

2 = ∂ p/∂ρ does not change much, Eq. (10.9) can be rewritten as

∂ρ2

∂ t
−∇∇∇ ·

[
D(ε)

(
∇∇∇ρ2 +

ρ2

c2
2

∂vvv1

∂ t

)
−ρ2vvv1

]
= J, (10.10)

where D(ε) = c2
2/µ(ε) is the diffusion coefficient, which is proportional to the char-

acteristic size of penetrability of the main structure and dependents on the spherical
deformation (Indeitsev et al, 2012). Thus, the obtained equation determines the mo-
tion of impurity. The first term

∇∇∇ ·
[

D(ε)

(
∇∇∇ρ2 +

ρ2

c2
2

∂vvv1

∂ t

)]
(10.11)

gives diffusion of the impurity. The second term ∇∇∇ ·
[
vvvs ρ f

]
defines the impurity

transfer due to the motion of main structure. Note that in (10.10) the diffusion coeffi-
cient depends on the deformation of main structure. In addition the member defined
by vibration of the main structure appears in (10.11).
In the absence of deformation equation (10.10) reduces to the classical diffusion
equation with diffusion coefficient D0 = D(0). Therefore, in the first approximation,
D is determined by the experimental values obtained in the static theory (Indeitsev
and Mochalova, 2014). For the small deformations we can assume that the value of
the diffusion coefficient D is linearly dependent on ε and D(ε) = D0 −D1ε , where
D1 > 0.
The system of equations (10.1), (10.3), (10.5) and (10.10) allows us to determine
the dynamics of the impurity redistribution during deformation of the material.

10.3 Statement of the Problem: Governing Equations

As an example, we consider a one-dimensional rod with the impurity of length 2L

under the cyclic load applied to its ends F0 sinωt, ω is the frequency of load. Let ρ+
1

be the density of impurity particles attached to the main structure and ρ1 = ρ0
1 +ρ+

1 ,
where ρ0

1 = const. Then, from Eq. (10.3) we get

∂ρ+
1

∂ t
+

∂

∂x

(
ρ+

1 v1
)
=−J. (10.12)

Note that ρ+
1 ≪ ρ1 and in Eq. (10.1) ρ1 = const can be considered. Besides, in most

cases the influence of internal interaction force R on the motion of main structure
can be neglected in Eq. (10.1).
The stress of main structure depends on the density of attached impurity ρ+

1 and the
equation of main structure state (10.5) is written as

σ = E(ρ+
1 )ε, (10.13)
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where E(ρ+
1 ) is the effective Young’s modulus (Indeitsev and Mochalova, 2014).

The source terms J has the following form J = −αρ2. The positive parameter α
defines the rate of impurity sedimentation on main stricture Indeitsev et al (2009).

Passing to displacement u (v1 = ∂u/∂ t, ε = ∂u/∂x) in the Eqs. (10.1), (10.10) and
(10.12), we get the following problem:

∂σ

∂x
= ρ1

∂ 2u

∂ t2 , σ = E(ρ+
1 )ε, (10.14)

∂ρ+
1

∂ t
+

∂

∂x

(
ρ+

1
∂u

∂ t

)
= α ρ2, (10.15)

∂ρ2

∂ t
− ∂

∂x

[(
D0 −D1

∂u

∂x

)(∂ρ2

∂x
+

ρ2

c2
2

∂ 2u

∂ t2

)
−ρ2

∂u

∂ t

]
=−α ρ2, (10.16)

boundary and initial conditions are

u
∣∣
x=0 = 0, σ

∣∣
x=L

= F0 sinωt, (10.17)

∂ρ2

∂x

∣∣∣
x=0

= 0,
(

D0 −D1
∂u

∂x

)[∂ρ2

∂x
+

ρ2

c2
2

∂ 2u

∂ t2

]
−ρ2

∂u

∂ t

∣∣∣
x=L

= 0, (10.18)

ρ2
∣∣
t=0 = ρ0(x), ρ+

1

∣∣
t=0 = 0.

Introducing the dimensionless parameters as follows:

t1 =
D0

L2 t, x1 =
x

L
, u =

u

L
, ρ2 =

ρ2

ρ1
, Ω =

L2

D0
ω , σ =

L2

ρ1D2
0

σ ,

E0 =
L2

ρ1D2
0

E0, α =
αL2

D0
, β = D1/D0, η =

D2
0

c2L2 ,

we rewrite the set of equations (10.14)–(10.16) in the form

∂σ

∂x1
=

∂ 2u

∂ t2
1

, σ = E(ρ+
1 )ε, (10.19)

∂ρ2

∂ t1
− ∂

∂x1

[(
1−β

∂u

∂x1

)(∂ρ2

∂x1
+η ρ2

∂ 2u

∂ t2
1

)
−ρ1

∂u

∂ t1

]
=−α ρ1,(10.20)

∂ρ+
1

∂ t1
+

∂

∂x1

[
ρ+

1
∂u

∂ t1

]
= α ρ2, (10.21)

the boundary conditions are

u
∣∣
x1=0 = 0, σ

∣∣
x1=1 = F0 sinΩ t1, (10.22)
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∂ρ2

∂x1

∣∣∣
x1=0

= 0,
(

1−β
∂u

∂x1

)(∂ρ2

∂x1
+η ρ2

∂ 2u

∂ t2
1

)
−ρ2

∂u

∂ t1

∣∣∣
x1=1

= 0,

where F0 = L2 F0/ρ1D2
0 and the initial conditions

ρ2|t1=0 = ρ0(x), ρ+
1 |t1=0 = 0. (10.23)

The set of governing equations (10.19)–(10.23) is too complicated for a direct math-
ematical analysis as it describes the relationship of dynamic processes having differ-
ent time scales: the wave processes in the basic structure, impurity diffusion, mass
transfer between the components. Therefore, we consider a number of special cases.
Further the overline is omitted.

10.4 Localization of Diffusion Process

Let J = 0 and there is no mass transfer between the components. In this case, the
impurity particles are not attached to the main structure, ρ+

1 = 0, and the rod rigidity
remains constant E = E0. Thus, the system of equations (10.19)–(10.23) splits into
two problems. The first problem defines oscillations of the rod under vibration load

∂ 2u

∂ t2 = c2
0

∂ 2u

∂x2 , (10.24)

u
∣∣
x=0 = 0,

∂u

∂x

∣∣∣
x=1

= F0 sinΩ t1. (10.25)

Here c2
0 = (cL/D0)

2, c =
√

E0/ρ1 is the speed of sound in the rod. Naturally to
consider the steady-state oscillations. Then, the solution of (10.24), (10.25) has the
form

u(x, t) =
c0F0

Ω cos
(
Ω/c0

) sinΩ t sin
(
Ωx/c0

)
.

Note that Ω/c0 ≪ 1 and we can assume that

u(x, t) = F0 x sinΩ t. (10.26)

The second problem describes the impurity redistribution in the rod under vibration
load

∂ρ2

∂ t
− ∂

∂x

[(
1−β

∂u

∂x

)(∂ρ2

∂x
+η ρ2

∂ 2u

∂ t2

)
−ρ2

∂u

∂ t

]
= 0, (10.27)

∂ρ2

∂x

∣∣∣
x=0

= 0,
(

1−β
∂u

∂x

)(∂ρ2

∂x
+η ρ2

∂ 2u

∂ t2

)
−ρ2

∂u

∂ t

∣∣∣
x=1

= 0, (10.28)

ρ2|t=0 = ρ0(x). (10.29)
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Let us proceed to the study of the generalized diffusion equation. Without the de-
formation of main structure, Eq. (10.27) becomes the classical diffusion equation
and the solution of corresponding Cauchy problem is well known (see Polyanin and
Manzhirov, 2007) and diffusion leads to a uniform distribution of impurity density
along the length of rod

ρ2 =

1∫

0

ρ0 dx as t → ∞.

Assuming that the diffusion coefficient does not depend on the rod strain, Eq. (10.27)
reduces to the advective-diffusion equation (Papanicolaou, 1995). In this case, the
diffusion leads to a redistribution of the impurity followed by fluctuations in the
impurity concentration around the mean value, which are caused by the vibrations.

Returning to the problem (10.27)–(10.29), we assume that the impurity density ρ2

varies insignificantly over the period of the rod oscillations, that is

〈ρ2〉=
Ω

2π

2π
Ω∫

0

ρ2(x, t)dx = ρ2(x, t).

Substituting (10.26) into (10.27)–(10.29) and averaging obtained system over the
interval [t, t + 2π/Ω ] leads to the following Cauchy problem:

∂ρ2

∂ t
=

∂

∂x

[∂ρ2

∂x
+ γ xρ2

]
, (10.30)

∂ρ2

∂x
+ γ xρ f

∣∣∣
x=1

= 0,
∂ρ2

∂x

∣∣∣
x=0

= 0, (10.31)

ρ2
∣∣
t=0 = ρ0, (10.32)

where γ = β η Ω 2/2. The solution of the problem (10.30)–(10.32) is sought by
the Fourier method. Therefore, at first we solve the corresponding Sturm–Liouville
problem, namely define the values of the parameter λ for which there are non-trivial
solutions of the equation

Lϕ =−λ ϕ , Lϕ = (ϕx + γ xϕ)
′
x (10.33)

with the boundary conditions

ϕx

∣∣
x=0 = 0, ϕx + γ ϕ

∣∣
x=1 = 0. (10.34)

Note that after the transformations ϕ = exp(−γζ 2/4)ψ and x =
√

γ ζ , Eq. (10.33
) reduces to the Weber equation ψζζ − [ 1

4 ζ 2 + 1
2 − λ ]ψ = 0. Its solution is conve-

niently written in terms of confluent hypergeometric functions (Abramowitz and
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Stegun, 1972; Polyanin and Manzhirov, 2007). Then the solution of Eq. (10.33) can
be written as

ϕ(x) =

[
a 1F1

(
− λ

2γ
,

1
2
,

γ x2

2

)
+ bx 1F1

( γ −λ

2γ
,

3
2
,

γ x2

2

)
)

]
exp(−γ x2/2), (10.35)

where 1F1 is the confluent hypergeometric function, a, b are unknown constants.
Differentiating (10.35) on x and substituting into the boundary conditions (10.34),
we find that b = 0 and the equation for determining the eigenvalues λ has the form

γ 1F1

(
− λ

2γ
,

1
2
,

γ

2

)
− (γ +λ )1F1

(
− λ

2γ
,

3
2
,

γ

2

)
= 0. (10.36)

Investigating Eq. (10.36) for different values of the parameter γ , we find that the
operator L has a simple discrete spectrum of eigenvalues starting with λ0 = 0:

0 < λ1 < λ2 < .. .

The corresponding eigenfunctions are defined by the following expression

ϕk(x) = 1F1

(
− λk

2γ
,

1
2
,

γ x2

2

)
exp(−γ x2/2)/Nk, k = 0,1, . . . , (10.37)

where Nk =
[ 1∫

0
1F1

(
− λk

2γ ,
1
2 ,

γx2

2

)
exp(−γ x2/2)dx

]1/2
(k = 0,1, . . .).

The eigenvalues λk → (πk)2 for γ → 0 and the corresponding eigenfunctions
ϕk → cosπkx, (k = 0,1, . . .). It gives a good approximation of eigenvalues and eigen-
functions of the operator L in the case γ < 1.

Now we seek the solution of the problem (10.30)–(10.32) as an expansion in eigen-
functions (10.37). Using the procedure of the Fourier method yields

ρ2(x, t)=c0 exp(−γ x2/2)+
∞

∑
k=1

ck 1F1

(
− λk

2γ
,

1
2
,

γ x2

2

)
exp(−λkt − γ

x2

2
),(10.38)

ck =
1

Nk

1∫

0

ρ0(x)ϕk(x)dx, k = 0,1, . . . .

It is noted that for ρ0 = const the impurity density ρ2(x, t) tends to the stationary
solution of the problem (10.30):

ρ2(x, t)→
√

2γ

π

ρ0

erf
√

γ/2
exp(−γx2/2), t → ∞.

Thus, the obtained approximate analytical solution of the problem shows that the
effect of vibrations leads to the accumulation of impurity in the central part of the
rod. Considering as impurity hydrogen atoms dissolved in the material, we can show
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that the solution has a good agreement with experimental data (the redistribution of
hydrogen under long-time cyclic loading Polyanskiy et al, 2005). In addition, the
solution is consistent with the numerical results obtained by Indeitsev et al (2012).

10.5 Structural Transformations of Materials

Consider the second particular case. Let us neglect the convective diffusion part of
the mass balance equations (10.15), (10.16), and assume that the impurity densities
are almost unchanged over the length of the rod ρ2(x, t) = ρ2(t), ρ+

1 (x, t) = ρ+
1 (t).

Then the solution of Eqs. (10.20) and (10.21) has the form

ρ2 = ρ0 exp{−α t}, ρ+
1 = ρ0

(
1− exp{−α t}

)
.

The modulus of elasticity takes the following form E(ρ+
1 )=

[
1+κ

(
1−exp{−α t}

)]−1

Indeitsev and Mochalova (2014) and the equation of main structure motion (10.19)
can be written as

∂ 2u

∂x2 =
[
1+κ

(
1− exp{−α t}

)]∂ 2u

∂ t2 ,

u|x=0 = 0,
∂u

∂x

∣∣∣
x=1

= F0
[
1+κ

(
1− exp{−α t}

)]
sinΩ t,

where κ is dimensionless coefficient, which determines the ratio of the Young’s
modulus of pure material in the absence of impurity to Young’s modulus of the
material with attached particles of impurity.

Let α/Ω ≪ 1 be a small parameter. Using the multiple scale method, we introduce
two scales of time t and τ = α t. For the zero approximation we obtain

∂ 2u0

∂x2 =
[
1+κ

(
1− exp{−τ}

)]∂ 2u0

∂ t2 ,

u0|x=0 = 0,
∂u0

∂x

∣∣∣
x=1

= F0
[
1+κ2

(
1− exp{−τ}

)]
sinΩ t,

and

u0(x, t,τ) =
F0Ω0(τ)

Ω 2 cosΩ0(τ)
sinΩ0(τ)x sin Ω t,

where Ω0(τ) = Ω
√

1+κ
(
1− e−τ

)
.

Thus, assuming that α ≪ 1, we obtain decrease of the structural rigidity and growth
of the amplitude of oscillations. If α ≫ 1 the particles of impurity attach to the
main structure with a speed, which is greater then the speed of sound in material,
and structural changes in the main structure (change of generalized rigidity) occur
almost instantaneously (Indeitsev et al, 2009).
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Note that in this model, we assume that α is the constant, however α , as the diffusion
coefficient, must depend on the main structure deformation, and perhaps, on the
impurity concentration.

10.6 Conclusion

Considered two-component model allows us to describe diffusion in solids (in par-
ticular the changes of material structure) and outlines the interaction of the three
competing processes:

• impurity diffusion, which can depend on the rate of deformation of the main
structure;

• attachment of impurity to the main structure, which generally also depends on
the deformation of the solid;

• non-stationary wave processes in the material.

These processes have different scales of time which is decisive for solving specific
problems.

We have examined two particular cases. First, when the mass transfer between the
impurity and the main structure can be neglected (source terms J = 0). In this case,
the influence of cyclic loading has leaded to the localization of impurity in the cen-
tral part of the sample. In the second case, it is assumed that the rate of impurity
sedimentation on the main structure is much greater than the rate of diffusion and
diffusion-convective terms in the balance equations can be neglected. It has led to
structural changes in the material, namely, to the decrease of generalized stiffness
sample.

In general, diffusion and mass transfer processes are interrelated. However, it is pos-
sible to understand for specific problems how the rates of these processes relate. For
example, if the rate of impurity diffusion is greater then the rate of sedimentation on
the main structure, then at first the impurity is localized in a region of the sample.
Impurity particles will be attached to the main structure in this local region, it can
lead to local changes in the structure of sample. If the rate of impurity sedimenta-
tion significantly exceeds the rate of diffusion, impurity is embedded in the main
structure not having enough time for the localization.

Finally we note that the solution of specific problems can be investigated by using
the method of multiple scales and the averaging method. The solution is suggested to
be sought in the form (10.26) and (10.38), where coefficients are unknown functions
of time.
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Chapter 11

A Study of Objective Time Derivatives in

Material and Spatial Description

Elena Ivanova, Elena Vilchevskaya & Wolfgang H. Müller

Abstract This paper presents an in-depth discussion of the transformation proper-
ties of total and material (substantial) time derivative operators during a change of
the Frame of Reference (FoR). For this purpose it is first necessary to establish
the transformation properties of gradients of scalar fields, which then leads to the
transformation properties of the gradient itself, a.k.a. nabla operator. The analysis is
based on the notion of so-called tensor and vector image transfer from one frame
to another, as originally introduced in the scientific work of Zhilin. Emphasis is put
on several issues, namely, first, the observation point considered in context with all
operators must be the same for all FoRs at all times. Second, the effect of all opera-
tors on an invariant scalar must be investigated. This will then consecutively result
in transformation properties of the operators themselves. Third, the arguments of
the scalar field must be the same for all FoRs in order to guarantee a meaningful
comparison. This in mind it will be shown (a) that the nabla operator in the current
configuration is invariant, (b) that the nabla operator in the reference configuration
is not, and (c) that the aforementioned time derivatives in material and in spatial
description are invariant.
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Key words: Frame indifference · Total time derivative · Substantial time derivative
· Nabla operator · Images · Frame of reference

11.1 Introduction and Outline to the Paper

This paper presents a study of the frame indifference properties of operators for to-
tal and material (a.k.a. substantial) time derivatives within the context of material
as well as spatial description of continuous fields. In papers devoted to different for-
mulations of the concept of material objectivity (see, e.g., Truesdell and Noll, 1965;
Noll, 1958; Bressan, 1972; Bertram and Svendsen, 2001; Svendsen and Bertram,
2001; Edelen and McLennan, 1973; Ryskin, 1985; Matolcsi, 1986; Frewer, 2009,
and references therein) the notion of frame-indifference is, in general, widely dis-
cussed. At the same time the question as to whether time derivatives show proper-
ties of objectivity and frame indifference is often not addressed comprehensively
enough in the literature. It is conceivable that the authors of the corresponding pa-
pers believe that this issue is not directly relevant to their articles, or maybe they
think that the answer to this question is obvious and/or has already been given. One
way or the other, in most cases authors (without any comments) use the same sym-
bol for the total and for the substantial time derivative in different reference systems,
implying objectivity of this operation (see, e.g., Massoudi, 2002; Liu, 2005; Rivlin,
2006).
Without questioning the objectivity of the total or of the material derivative, we
believe that the proof of this fact is not obvious, and that statements found in the
literature are not always satisfactory and often contradictory, to say the least. For ex-
ample, in Muschik and Restuccia (2008) it is shown that the material time derivative
is an observer-invariant operator, while in Bampi and Morro (1980) it is written:

... the material time derivative, when viewed as a rule assigning to every frame the time
derivative relative to that frame, is nonobjective.

The intentions of this paper are manifold. Above all we shall attempt to clarify
sometimes obscure and confusing terms appearing in the literature. This concerns,
first, a precise introduction of the notion of a Frame of Reference (FoR). Second,
based on physics arguments, we will investigate how a change between different
FoRs should conceptually be properly performed. In this context the notion of vector

and tensor images will be presented, which was originally introduced in the Russian
literature by Zhilin, e.g., in Zhilin (2001) and Zhilin (2003), a concept that proves
to be of great value in classical continuum theory.
Moreover, in context with the kinematic relations required during the change of
reference frames we will create awareness for the existence and for the use of the
so-called Poisson relation, a formula handling the time derivative of rotation tensors
or operators. This formula is relatively unknown and hardly applied in the Western
literature on continuum theory. However, it is very effective during algebraic ma-
nipulations of kinematic quantities as will be demonstrated by several examples. In



11 A Study of Objective Time Derivatives in Material and Spatial Description 197

the same context another item of interest, the complexity of which is frequently un-
derestimated, especially in the engineering literature, is the angular velocity vector,
which arises in two variants, called left and right angular velocity vector, and its
relation to the spin (or rotational) operator. In particular, its transformation charac-
teristics during changes of FoRs will be studied.
Because of its appearance in the aforementioned time-derivatives another quantity
subjected to critical scrutiny is the nabla operator, which is known to assess spatial
changes of field quantities. Its transformation properties are also non-trivial, espe-
cially if two ways of field description are carefully distinguished, namely the ma-
terial and the spatial representation, in particular, in context with the notion of a
reference configuration. For a comprehensive study the following issues will be of
particular importance. First, for physical reasons, observers in different FoRs must,
at a given time, study the same point in order to study changes in its vicinity. This
point of observation can be a fixed or a moving space point or it can be a material
particle. Second, it is required to study the action of the nabla operator in combi-
nation with a scalar field being invariant during changes of FoRs and, third, the
scalar field must be described by using the same variables in different FoRs. Once
an invariance of that action is established the invariance of the operator can be estab-
lished. We will show that the nabla operator in the current configuration is invariant,
whereas the nabla operator of the reference placement is not when changing FoRs.
These investigations will eventually lead us to time derivatives of fields and their
objectivity properties. As we shall see the same principles as in the case of the frame-
indifference analysis of the nabla operator apply. In the end it will be established
that both the total as well as the substantial (material) time-derivative are objective
during a change of FoR, in material as well as in the spatial description of fields.
Summarizing we may say that, on the one hand side, this paper emphasizes didactic
aspects in context with continuum mechanics notions. On the other hand, it raises
awareness for the current situation by commenting on possible die-hard conundrums
and offers solutions. Moreover, it is our intention to clarify the situation, in particu-
lar, in context with the spatial vs. material description of fields which, most recently,
has attracted much attention, in particular from the numerical community.

11.2 Frames of Reference – Fundamental Definitions

In view of the ambiguity of possible interpretations we start with a formal introduc-
tion of the physical concept called frame of reference. One of its aspects concerns
the capability of surveying three-dimensional space. Hence:

Definition 11.1. Imagine in an arbitrary point O of three-dimensional Euclidean
space, the origin, three rigidly connected, non-collinear pointers (“arrows”), eee1, eee2,
and eee3 of different unit lengths1. The set {O, eee1, eee2, eee3} is called a frame.

1 Orthonormality of the pointers is not necessary but possible. Note the oblique angles and the
different pointer sizes in Fig. 11.1. The additional requirement of orthonormality sometimes sim-
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By suitable extension of these pointers the frame can be used to quantify the distance
and the direction of every location in space with respect to O. At this point it should
be realized that a frame is not just a mathematical construct like a coordinate system.
It is “real” in the sense that it requires us to fabricate yardsticks and survey three
different orientations in our physical world.

Definition 11.2. A body of reference is defined by a frame to which a set of points
(in space) have been added, where a rigid body motion of all the points together with
the frame is allowed2. The position of the points are labeled relatively to the frame
by establishing the reference coordinate system x1, x2, x3 with origin O in context
with a position vector, xxx:3

xxx = x1eee1 + x2eee2 + x3eee3 =: xkeeek , −∞ < (x1, x2, x3)<+∞, (11.1)

where the summation convention has been employed.

Definitions 11.1 and 11.2 are illustrated in Fig. 11.1 in two dimensions for graphical
simplicity.
The frame and the reference coordinate system determine the reference body. They
are “immutable.” This is supposed to mean that once introduced they cannot be
changed or this would lead to a different frame of reference. However, in order to
describe quantitative characteristics of motion we must be able to measure distance
and time. Hence a “clock” for measuring time t, where −∞ < t < +∞, is needed is
well:

Definition 11.3. The reference body with a “clock” is called the Frame of Reference

(FoR).

Once again, note that a frame of reference is much more than a mathematical con-
struct. Physics is involved due to the requirement of measuring distances in three
independent directions and corresponding lengths as well as time. It is impossible
to say anything about the motion of the reference body itself, because it stands for it-
self alone. It is possible to observe and quantify motions of other bodies with respect

plifies calculations, for example, if scalar products between the pointers are involved. However,
unless stated otherwise, most of the relations presented in this paper do not require orthonormality
to hold.
2 This is to say that the added points are fixed w.r.t. the frame. If the frame moves the points move
with it. They are firmly attached to the frame not to “an absolute space.” The rigid body motion
is just a term to describe that the distance between any two points is the same (as well as their
position w.r.t. the frame).
3 We note in passing that the use of the adjective “reference” can be treacherous: It is customary in
many texts on continuum theory to use the notion “reference placement” or “reference configura-
tion” in order to emphasize an initial state of matter. However, this is not meant here. In our context
“reference” is w.r.t. the frame or “observer,” if one so wishes, and all that needs to be kept in mind
is that the coordinates xk are fixed w.r.t. the frame. In order to say it explicitly: They cannot be
time-dependent by way of construction. Moreover, the use of the word “body” in Definition 11.2 is
not meant in the sense of a body consisting of matter. The points constituting the body are purely
mathematical.
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to the reference body. All physical qualities describing motion, such as velocity for
example, are measured with respect to the frame of reference and do not have any
meaning without it.

Definition 11.4. The capability of determining and of surveying three independent
directions of space as well as measuring time in an FoR is called an observer.

There are different approaches to the change of an FoR. The difference is mainly due
to the difference in the interpretation of tensor quantities. From one point of view,
a second-order tensor is a linear operator mapping of one vector onto another, see,
e.g., Bowen and Wang (1976), Das (2007), Itskov (2013), or Malvern (1969). Tradi-
tionally an index (a.k.a. coordinate or component) notation is used in this approach.
Another point-of-view is based on the so-called symbolic (or direct) tensor calculus
(see Lebedev et al (2010), or Mase (1970) for both methods). In what follows we
will make use of the latter according to which the definition of a second rank tensor
reads:

Definition 11.5. Consider a set of vectors aaa, bbb, ccc, ddd, ..., etc. Create a formal sum of
formal tensor products (a.k.a. dyadic products):

AAA = aaa
⊗

bbb+ccc
⊗

ddd+eee
⊗

fff + ... . (11.2)

An element AAA is called a second-order tensor if the tensor product satisfies the usual
properties of a product, see Lebedev et al (2010):

(λaaa)⊗
bbb = aaa

⊗(λbbb) = λ (aaa⊗
bbb), (11.3)

(aaa+bbb)⊗
ccc = aaa

⊗
ccc+bbb

⊗
ccc .

However, the tensor product is non-symmetric: If aaa is not proportional to bbb then
aaa

⊗
bbb 6= bbb

⊗
aaa.

In agreement with the idea of direct tensor calculus vector and tensor concepts have
no meaning without the notion of a reference frame. Therefore, a discussion of vec-
tor or tensor quantities has to start by indicating in which frame of reference they are

Fig. 11.1 Two FoRs survey-
ing two-dimensional space.
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determined. An algebraic operation between objects determined in different frames
of reference is impossible. Of course, an observer in one FoR can examine another
FoR and describe its motion with respect to its FoR in terms of vector and ten-
sor quantities determined in its FoR. Thus, using direct tensor calculus complicates
mathematical transformations regarding a change of reference frame since an ad-
ditional operation of vector and tensor quantities transferring from one frame of
reference to another is needed, namely the concept of image operation, which we
shall explain shortly.
Moreover, there is also an “operator viewpoint,” which allows us to consider a rota-
tional tensor as an object outside of any FoR, see for example Muschik and Restuc-
cia (2008), Liu (2004), or Liu (2005). In this case, from the mathematical point of
view, a rotation of one FoR with respect to another is the same as a rotation of one
coordinate system with respect to another coordinate system. However, a problem
arises if one wants to introduce an angular velocity of the rotation since being a
vector it has to be determined in a FoR. It is, therefore, no coincidence that some
authors do not introduce an angular velocity at all and deal exclusively with spin ten-
sors instead, see, e.g., Truesdell and Noll (1965) or Müller (1985). In what follows
we shall not make use of that “operator viewpoint” of rotation.
In order to evaluate the advantages and disadvantages of such notions it is necessary
to understand the essential difference between the operation of a change between
frames of reference and a change between coordinate systems. It is fair to say that
quite often people do not distinguish between the concepts of frame of reference
and coordinate system. But as pointed out in Cornille (1993), pg. 149:

... a distinction between mathematical sets of coordinates and physical frames of reference
must be made. The ignorance of such distinction is the source of much confusion ...

or in Nerlich (1994), pg. 64-65:

... the idea of a reference frame is really quite different from that of a coordinate system.
Frames differ just when they define different spaces (sets of rest points) or times (sets of
simultaneous events). So the ideas of a space, a time, of rest and simultaneity, go inextrica-
bly together with that of frame. However, a mere shift of origin, or a purely spatial rotation
of space coordinates results in a new coordinate system. So frames correspond at best to
classes of coordinate systems. ...

In other words, in addition to the reference coordinate system one is free to choose
any mathematical coordinate system in which the equations are specified. However,
the reference coordinate system is a distinctive one since it determines the frame
of reference. As an example consider a first coordinate transformation within an
FoR, x′i = x̄′i(x j), i, j ∈ (1,2,3). On top of that we now impose a second coordinate
transformation x′′i = x̌′′i (x

′
j) = x̌′′i (x̄

′
j(xk)) ≡ x̄′′i (x j), i, j,k ∈ (1,2,3). Note that these

operations are applied in context with the spatial dependence of a physical field
quantity and lead to no change of the meaning or value of that physical quantity.
Indeed, a change of the coordinate system is a purely mathematical operation, where
an observer “sensing” vector quality is not needed. That is why in this case there is
no difference how a vector is considered: as a directed segment or as a set of three
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components. Even more, then we can completely exclude base vectors from our
considerations and deal only with vector components.
However, if we perform a change of the FoR the situation is completely different.
For a change of the FoR the existence of an observer is assumed, who can “sense”
vector qualities and provide some operations with them. Two aspects should be men-
tioned. First, the observer can sense a directed segment (by virtue of a starting point
plus a direction with a certain length in that direction), but not vector components.
Second, if there are two frames of reference then all vectorial and tensorial quanti-
ties are to be determined exclusively in one of them. A priori the observer in the first
frame of reference cannot perform any operations with quantities determined in the
second frame. He has to create images of these quantities in his frame of reference
first.4

The operation of “image creation” or vector “transfer” from one frame of reference
to another is an informal5 operation assuming an observer’s existence. This informal
operation (and only this) accounts for the difference between changes of frames
of reference and changes of coordinate systems. Unfortunately in the majority of
papers this operation is either silently implied or not provided at all. This definitely
adds some confusion to dealing with a change of frame of reference.
Thus within the direct tensor calculus every observer may determine in his FoR a
rotational tensor describing the orientation of another FoR with respect to him and
use it in order to calculate the spin tensor and angular velocity corresponding to this
rotational tensor. An observer in another FoR may create an image of these rota-
tional and spin tensors and this angular velocity vector in his frame. This approach
increases the amount of vectorial and tensorial quantities characterizing rotation, but
at the same time every quantity is determined in its corresponding FoR, has a clear
physical meaning, and all quantities are consistently related. Recall that within the
operator viewpoint the same rotational tensor is used by two different observers (to
be precise, the second observer uses the transposed rotational tensor). In fact, within
this approach the rotational tensor performs implicitly two operations: a formal one,
which is just a rotation, and an informal one where a vector is “transferred” from
one frame of reference to another. In other words, reducing the number of variables
leads to dubious physical meaning of the quantities, and this involves the danger of
mistakes or confusion. What is more preferable: brevity or eliminating ambiguity
in meaning? We believe that we should not strive for mathematical simplicity at

4 One might think that by using the term “image” we follow the mathematical literature where it
is synonymously used with the word “mapping,” e.g., in Truesdell (1991), pg. 319 for connecting
second order tensors without a concrete physical meaning. However, this is not meant here. Our
use of this term is physics-based: The quantities leading to the image of an external object were
originally obtained by measurement in the corresponding FoR. This subtle distinction goes back
to the work of Zhilin, who uses the term “отпечаток” in this context, which may be translated as
print, imprint, impression, mark, or sometimes also the word “образ” meaning image, reflection,
or representation, see Zhilin (2001), pp. 172 or Zhilin (2003), pp. 87.
5 This choice of word was adapted from the Russian (“формально-математический” vs.

“неформальнльно-физический,” see, for example, Zhilin (2003), pg. 190): A formal opera-
tion can be expressed in purely mathematical terms. An informal one is physics-based and requires
further rules and explanations as to how this operation can be performed measurement-wise.



202 Elena Ivanova, Elena Vilchevskaya & Wolfgang H. Müller

the expense of clarity of meaning. Mathematical errors are rarely permitted, and if
permitted, soon corrected. Dubious meanings lead to a debate, ongoing for many
years.

11.3 Changing Frames of Reference

Imagine now two frames of reference that move relatively to each other in an arbi-
trary manner. The first one is determined by the reference frame {E, eee1, eee2, eee3},
the reference coordinate system x1, x2, x3, and the clock t. This frame of refer-
ence is called the x-system. The second one is characterized by the reference frame
{D, ddd1, ddd2, ddd3}, the reference coordinate system y1, y2, y3, and the (same) clock
t (also compare the symbols in Fig. 11.1). This frame of reference is called the y-

system. Note that neither the eeei, i = 1, 2, 3 nor the ddd j, j = 1, 2, 3 are time-dependent.
They cannot be, because they were chosen in a specific FoR and they are only rele-
vant to that FoR, where they stay put.
Quantities determined in the x-system are denoted by a tilde, ˜(·), and quantities de-
termined in the y-system are denoted by a chevron-shaped circumflex, ˆ(·). Quantities
characterizing rotation of the y-system with respect to the x-system are denoted by
the index d, quantities characterizing rotation of the x-system with respect to the
y-system are denoted by the index e. Finally, quantities related to particle charac-
teristics with respect to the x-system and to the y-system are denoted by indices x

and y, respectively. This additional indicator besides the tilde and the hat will prove
valuable when we begin the discussion of frame indifference of such objects. More-
over, note that we assume that both frames have the same clocks. In fact, a priori

the clocks of both FoRs should be different and, consequently one would expect
the times to run differently, tx and ty, just like the reference coordinates, xk and yk,
are different. However, in classical physics there is no need to distinguish between
times in different FoRs. Hence we shall write t = tx = ty.
The vector diagrams shown in Fig. 11.2 lay the foundation for the most general
kinematic relations between two FoRs in classical physics, the so-called Euclidean
transformation (see Müller (1985), pg. 4, Holzapfel (2000), pp. 180, or Hutter and
Jöhnk (2004), pg. 117 for this terminology). The viewpoint of the x-system is ex-
pressed in the left inset and that of the y-system on the right. We must carefully
distinguish:

x̃xx− x̃xxD = ỹyy or ŷyy− ŷyyE = x̂xx. (11.4)

The first equation describes the situation completely w.r.t. to the x-FoR with the base
eeek

6 and the second one completely w.r.t. to the y-FoR with the base dddk. Following
Eq. (11.1) we must write for the quantities in the first relation:

x̃xx(t) = x̃k(t)eeek , x̃xxD(t) = x̃D
k (t)eeek , ỹyy(t) = ỹk(t)eeek, (11.5)

6 For reasons of graphical simplicity the pointers in Fig. 11.2 are shown as orthonormal vectors.
However, the subsequent relations hold without this constraint.
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Fig. 11.2: Position vectors in two FoRs (see text).

and for the quantities in the second relation:

ŷyy(t) = ŷk(t)dddk , ŷyyE(t) = ŷE
k (t)dddk , x̂xx(t) = x̂k(t)dddk. (11.6)

We now proceed to explain how the quantities x̃xx and x̂xx as well as ŷyy and ỹyy are related.
We shall learn that x̂xx is the image of x̃xx in the y-system and that ỹyy is the image of
ŷyy in the x-system, x̃xx and ŷyy originally being introduced in the x and in the y-system,
respectively.

11.3.1 Kinematic Quantities and Their Images

An observer belonging to the x-system watches the reference frame of the y-system,
dddk, and determines its orientation with respect to the reference frame of his own
system at every moment of his time. In other words, he creates images of the dddk’s
in his x-system as vectors d̃ddk(t), k = 1, 2, 3. These vectors have certain orientations
w.r.t. the base eeek of the x-system. This is to say that they form angles, which are
measurable quantities as a function of time, t and rotate w.r.t. each other.

In order to describe this rotation as general and yet as easily as possible we argue
as follows. In an abstract manner of speech a time-dependent rotation tensor dQ̃QQ(t),
pertinent to the x-system “turns” the base vectors eeek onto d̃ddk(t):

d̃ddk(t) =
dQ̃QQ(t) ·eeek, k = 1, 2, 3. (11.7)

Note that in this equation it can be assumed without loss of generality that at the
initial time t0 we have dQ̃QQ(t0) = Ĩ̃ĨI, where ĨII stands for the identity tensor of the x-
system. In order to see this a more refined explanation is required. Assume that
initially at time t0 the oblique “pointers,” eeek and d̃ddk(t0), as pertinent to the x-FoR,
are situated as shown in the left inset of Fig. 11.3. Then, in a first effort a (constant)
tensor ÃAA is applied to the pointers d̃ddk(t0), such that ÃAA ·d̃ddk(t0) leads to the same lengths
and to the same included angles as for the vectors of the initial base, eeek, i.e., |eeek|=
|ÃAA · d̃ddk(t0)|, and
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Fig. 11.3: Initial positioning of base vector images.

eeek ·eeel

|eeek||eeel |
=

(ÃAA · d̃ddk) · (ÃAA · d̃ddl)

|ÃAA · d̃ddk||ÃAA · d̃ddl)|

∣∣∣∣
t=t0

.

However, eeek and ÃAA · d̃ddk(t0) do not point in the same direction yet. In order to achieve
that we apply a second operation (see the right inset in Fig. 11.3) namely a constant
initial rotation (or even a combination of rotation and reflection if the FoRs have
different orientations) tensor, Q̃QQ0, such that eeek = Q̃QQ0 · ÃAA · d̃ddk(t0). With this configura-
tion in mind further rotations dQ̃QQ(t) can now be performed and we must obviously
conclude that dQ̃QQ(t0) = Ĩ̃ĨI. In what follows we shall for simplicity omit the multiplica-
tions by AAA and QQQ0, because these are constant tensors. Moreover, in what follows we
will assume that eeek is an orthonormal base in order to facilitate some intermediate
calculations.

Note that in contrast to the pointers ddd j, j = 1, 2, 3, their images d̃̃d̃dk,
k = 1, 2, 3, are time-dependent. They must be, because from the standpoint of the x-
observer the y-observer is rotating. Also note that Eq. (11.7) is a relation completely
based in the x-system. In fact, it determines the operation of transfer of the base
vectors of the y-system to the x-system. d̃ddk is how the x-observer describes y-base
vectors (that initially coincide with eeek) with respect to the x-system. In other words
(11.7) says how we must transfer the dddk to the x-system, i.e., we introduce the image
operation formally by

dddk ↔ d̃ddk(t) =
dQ̃QQ(t) ·eeek, k = 1, 2, 3. (11.8)

The operator dQ̃QQ(t) has the usual properties of an orthogonal tensor, namely:

dQ̃QQ ·dQ̃QQ⊤
= dQ̃QQ

⊤ ·dQ̃QQ = ĨII , det dQ̃QQ =+1, (11.9)

where the symbol (·)⊤ refers to transposition. Moreover,we choose the plus sign in
the relation for the determinant so that dQ̃QQ is a true rotation. Possible reflections are
handled by the formerly introduced matrix Q̃QQ0.
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We note in passing that like any second order tensor of the x-FoR dQ̃QQ(t) can also be
expressed component-wise as follows:

dQ̃QQ =dQ̃i jeeei ⊗eee j. (11.10)

We shall use this relation soon in order to connect with expressions frequently found
in the literature. Moreover, further below we will encounter a possibility of how to
express a rotation tensor in terms of a momentary unit axis and an angle of rotation
based on the so-called Rodrigues formula.
We now return to the vector relations at the beginning of Sect. 11.3. We wish to
find an expression for the image of ŷyy, called ỹyy, an operation that we denote formally
by ŷyy ↔ ỹyy. The image of any vector originally defined in one FoR is obtained in
another FoR by keeping the components and by replacing the fixed base by the
time-dependent image base vectors. Hence, in view of Eq. (11.7) we write for the
image of ŷyy:

ŷyy(t)↔ ỹyy(t) = ŷk(t)d̃ddk(t). (11.11)

Thus the relation (11.4)1 can be expressed in the x-system by using Eqs. (11.7) and
(11.10) as follows:

x̃xx(t)− x̃xxD(t) = ỹyy(t) = ŷk(t)d̃ddk = ŷk(t)
dQ̃QQ(t) ·eeek (11.12)

= ŷk(t)
dQ̃ml(t)eeem ⊗eeel ·eeek =

dQ̃lk(t)ŷk(t)eeel .

Of course, the last step is only possible if we assume orthonormality of the base eeek.
Then, however, we may conclude in view of Eq. (11.5)3 that:

ỹl(t) =
dQ̃lk(t)ŷk(t). (11.13)

Note that the quality of this equation is different from Eq. (11.7): Components from
the y-system, ŷk, are related to components from the x-system, ỹl , by means of com-
ponents in the x-system, dQ̃lk. Because of Eqs. (11.4) and (11.5)1,2 we may also
write:

x̃k(t) =
dQ̃kl(t)ŷl(t)+ x̃D

k (t). (11.14)

Relations like this can frequently be found in continuum textbooks, see for example
Müller (1985), pg. 4, or Hutter and Jöhnk (2004), pg. 117, where they are referred
to as Euclidean transformations, however, frequently without making the subtle dis-
tinction of images and proper representations w.r.t. to just one FoR. In this form they
hold for an orhonormal base eeek.
A similar strategy holds if we view vectors originally declared in the x-FoR as im-
ages in the y-FoR. Now the observer belonging to the y-system watches the refer-
ence frame of the x-system, eeek, and determines their images, i.e., eeek ↔ êeek(t), in the
y-system as vectors êeek(t) by a rotation tensor e

Q̂QQ as follows:

êeek(t) =
e
Q̂QQ ·dddk, k = 1, 2, 3, (11.15)

with
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eeek ↔ êeek(t) =
e
Q̂QQ(t) ·dddk, k = 1, 2, 3, (11.16)

and
e
Q̂QQ ·eQ̂QQ⊤

=
e
Q̂QQ

⊤ ·e
Q̂QQ = ÎII , det e

Q̂QQ =±1, (11.17)

where the symbol ÎII refers to the unit tensor of the y-FoR.
In coordinate form we may write for the rotation tensor e

Q̂QQ, a quantity of the y-FoR:

e
Q̂QQ =e

Q̂i jdddi ⊗ddd j. (11.18)

In complete analogy to (11.7) the relations (11.15) determine the operation of trans-
fer of the base vectors of the x-system to the y-system. The rotation of the x-system
with respect to the y-system is described by means of the rotation tensor e

Q̂QQ(t) de-
termined in the y-system. As far as the corresponding Euclidean transformation is
concerned we first write for the image of x̃xx in the y-system:

x̃xx ↔ x̂xx = x̃k(t)êeek(t). (11.19)

Thus the relation (11.4)2 can be expressed in the y-system by using Eq. (11.15) and
(11.18) as follows:

ŷyy(t)− ŷyyE(t) = x̂xx(t) =e
Q̂lk(t)x̃k(t)dddl (11.20)

by assuming orthonormality of the base dddk similarly as in Eq. (11.12). And now, in
view of Eq. (11.6)3, we conclude that:

x̂l(t) =
e
Q̂lk(t)x̃k(t), (11.21)

and because of Eqs. (11.6)1,2 we may write:

ŷk(t) =
e
Q̂kl(t)x̃l(t)+ ŷE

k , (11.22)

in perfect analogy to Eq. (11.14).
In order to study the course of motion time derivatives of rotation tensors will play
a roll, which can easily be mastered by the so-called Poisson relations. At this point
we simply present them:

ddQ̃QQ

dt
= ω̃ωωd×dQ̃QQ,

ddQ̃QQ

dt
= dQ̃QQ×Ω̃ΩΩ

d
, (11.23)

and
de

Q̂QQ

dt
= ω̂ωω e×e

Q̂QQ,
de

Q̂QQ

dt
=

e
Q̂QQ×Ω̂ΩΩ

e
. (11.24)

Note that the symbols ω̃ωωd, ω̂ωω e and Ω̃ΩΩ
d
, Ω̂ΩΩ

e
refer to left and right angular velocity

vectors of the corresponding FoRs, respectively, and that the cross product between
a vector aaa = akeeek and a tensor AAA = Ai jeeei ⊗ eee j in the orthonormal base eeek can be
evaluated by:

aaa×AAA = εlkiakAi jeeel ⊗eee j , AAA×aaa = εl jkAi jakeeei ⊗eeel , (11.25)



11 A Study of Objective Time Derivatives in Material and Spatial Description 207

This holds analogously for tensors in the (orthonormal) base dddk, εl jk being the totally
antisymmetric Levi-Civita symbol in that base. More details can be found in the
Appendix to this paper.

11.3.2 Rotation of one Reference Frame with Respect to Another

In order to interpret the various rotation tensors of the x- and of the y-systems in a
rather suggestive geometrical way we start from the Rodrigues formula.7 It reads
when applied to dQ̃QQ:

dQ̃QQ(t) = [1− cosψ̃d(t)]m̃mmd(t)⊗m̃mmd(t)+ cosψ̃d(t) ĨII+ sinψ̃d(t)m̃mmd(t)× ĨII, (11.26)

where ψ̃d(t) is the angle of rotation of the y-system with respect to the x-system, and
m̃mmd(t) is a unit vector, which determines the direction of the axis of rotation in the
x-system. The image of the tensor (11.26) in the y-system is obtained by keeping
the components and exchanging the base vectors:

d
Q̂QQ(t) =

[
1− cosψ̃d(t)

]
m̂mmd(t̂)⊗m̂mmd(t)+ cosψ̃d(t) ÎII+ sinψ̃d(t)m̂mmd(t)× ÎII, (11.27)

where the vector m̂mmd(t) determining the direction of the axis of rotation in the y-
system is the image of the vector m̃mmd(t), i.e., again, the components are kept and the
base vectors are exchanged:

m̃mmd(t)↔ m̂mmd(t) = m̃d

k(t)êeek(t). (11.28)

Analogously, when starting from the rotation tensor e
Q̂QQ(t) in the y-system:

e
Q̂QQ(t) =

[
1− cosψ̂ e(t)

]
m̂mme(t)⊗m̂mme(t)+ cosψ̂ e(t) ÎII+ sinψ̂ e(t)m̂mme(t)× ÎII, (11.29)

its image in the x-system, e
Q̂QQ(t)↔e

Q̃QQ(t), is given by:

e
Q̃QQ(t) =

[
1− cosψ̂ e(t)

]
m̃mme(t)⊗m̃mme(t)+ cosψ̂ e(t) ĨII+ sinψ̂ e(t)m̃mme(t)× ĨII, (11.30)

where the vector m̃mme(t) determining the direction of the axis of rotation in the x-
system is an image of the vector m̂mme(t) :

m̂mme(t)↔ m̃mme(t) = m̂e

k(t)d̃ddk(t). (11.31)

For physical reasons the axes of rotation of the x-system with respect to the y-system
and those of the y-system with respect to the x-system must coincide in direction
and in orientation. Moreover, the angles of rotation must be equal in magnitude but
opposite in sign. Thus the following relations hold:

7 A.k.a. Euler’s theorem in the Russian literature, cf., Zhilin (2001), pg. 124.
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m̃mme(t) = m̃mmd(t) , m̂mmd(t) = m̂mme(t) , ψ̂ e(t) =−ψ̃d(t). (11.32)

Since
(
m̃mmd × ĨII

)⊤
= −m̃mmd × ĨII and

(
m̂mme× ÎII

)⊤
= −m̂mme× ÎII we arrive once more at the rela-

tions (11.130).
The corresponding relation between the angular velocities is not so obvious. First
note that the image of the angular velocity does not correspond to the image of the
rotation tensor. Hence, in particular, naively postulated Poisson relations do not hold
and we must state that:

dd
Q̂QQ

dt
6= ω̂ωωd×d

Q̂QQ ,
dd

Q̂QQ

dt
6= d

Q̂QQ×Ω̂ΩΩ
d
,

de
Q̃QQ

dt
6= ω̃ωω e×e

Q̃QQ ,
de

Q̃QQ

dt
6= e

Q̃QQ×Ω̃ΩΩ
e
. (11.33)

As an example we will now derive an “extended” Poisson relation that replaces
(11.33)1. We start by observing that Eq. (11.23)1 in combination with Eqs. (11.26)
is fulfilled by the following expression for the left angular velocity:

ω̃ωωd=
dψ̃d

dt
m̃mmd+ sinψ̃d dm̃mmd

dt
+(1− cosψ̃d)m̃mmd× dm̃mmd

dt
. (11.34)

However, an analogous equation does not hold for the image vectors, because the
image of the time derivative of m̃mmd(t) does not equal the time derivative of the image
of m̃mmd(t) as can be seen from Eq. (11.28).
Let us determine the angular velocities corresponding to the rotation tensors dQ̃QQ and
e
Q̃QQ. Hence, we start from Eq. (11.34) and obtain by using (11.15), (11.24), (11.28)
and (11.34):

dψ̃d

dt
m̂mmd+ sinψ̃d dm̂mmd

dt
+(1− cosψ̃d)m̂mmd× dm̂mmd

dt
= (11.35)

ω̂ωωd+ sinψ̃dω̂ωω e×m̂mmd+(1− cosψ̃d)m̂mmd× (ω̂ωω e×m̂mmd) .

Now by employing Eq. (11.27) this may be rearranged to:

dψ̃d

dt
m̂mmd+ sinψ̃d dm̂mmd

dt
+(1− cosψ̃d)m̂mmd× dm̂mmd

dt
= ω̂ωωd+ω̂ωωe−d

Q̂QQ ·ω̂ωω e. (11.36)

In view of the resemblance of this result to the left angular velocity pertinent to dQ̃QQ

as shown in Eq. (11.34) we must conclude that the right hand side of Eq. (11.36) is
the sought left angular velocity corresponding to d

Q̂QQ.
Similarly, by substituting the expression for the rotation tensor (11.26) into (11.23)2,
we obtain the expression for the right angular velocity:

Ω̃ΩΩ
d
=

dψ̃d

dt
m̃mmd + sinψ̃d dm̃mmd

dt
− (1− cosψ̃d)m̃mmd × dm̃mmd

dt
. (11.37)

We obtain the expression for the right angular velocity corresponding to d
Q̂QQ by a

derivation similar to the one given above:

dψ̃d

dt
m̂mmd+ sinψ̃d dm̂mmd

dt
− (1− cosψ̃d)m̂mmd× dm̂mmd

dt
= (11.38)
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Ω̂ΩΩ
d
+d

Q̂QQ
⊤ ·ω̂ωωe−ω̂ωωe.

Thus the following “extended” Poisson relations hold in context with the rotation
tensor d

Q̂QQ (cf., Eqs. (11.23) and (11.24)):

dd
Q̂QQ

dt
= (ω̂ωω d+ω̂ωωe−d

Q̂QQ ·ω̂ωω e)×d
Q̂QQ ,

dd
Q̂QQ

dt
= d

Q̂QQ×
(

Ω̂ΩΩ
d
+d

Q̂QQ
⊤ ·ω̂ωωe−ω̂ωωe

)
, (11.39)

and analogously for e
Q̃QQ :

de
Q̃QQ

dt
= (ω̃ωω e+ω̃ωωd−e

Q̃QQ ·ω̃ωωd)×e
Q̃QQ ,

de
Q̃QQ

dt
= e

Q̃QQ×
(

Ω̃ΩΩ
e
+e

Q̃QQ
⊤ ·ω̃ωωd−ω̃ωωd

)
. (11.40)

By observing Eq. (11.130) and noting that:

ddQ̃QQ
⊤

dt
=−Ω̃ΩΩ

d
(t)×dQ̃QQ

⊤
,

de
Q̂QQ

⊤

dt
=−Ω̂ΩΩ

e
(t)×e

Q̂QQ
⊤
, (11.41)

which hold because of Eqs. (11.23)2 and (11.24)2, the following relations between
the angular velocities can be obtained:

ω̃ωω e+ω̃ωωd−e
Q̃QQ ·ω̃ωωd=−Ω̃ΩΩ

d
(t) , ω̂ωωd+ω̂ωωe−d

Q̂QQ ·ω̂ωω e=−Ω̂ΩΩ
e
(t). (11.42)

From Eq. (11.42)1 it follows via Eqs. (11.119)3 and (11.24)3 that the left angular
velocities are related by the following simple equations:

ω̃ωω e(t) =−ω̃ωωd(t) , ω̂ωωd(t) =−ω̂ωωe(t). (11.43)

Note that these relations express exactly what one would intuitively expect. For
example: The image of the left angular velocity, ω̃ωω e, i.e, how the y-observer views
the rotation of the x-observer, is equal to the angular velocity, ω̃ωωd, i.e., how the x-
observer describes the rotation of the y-observer, with the exception of orientation,
i.e., the sign.
The relations for the right angular velocities are slightly more involved:

e
Q̃QQ ·Ω̃ΩΩ e

(t) =−dQ̃QQ(t) ·Ω̃ΩΩ d
(t) , d

Q̂QQ(t) ·Ω̂ΩΩ d
(t) =−e

Q̂QQ(t) ·Ω̂ΩΩ e
(t). (11.44)

Comment I. Note the difference between changes of frame of reference and changes
of coordinate system. Consider two different coordinate systems in one frame of
reference. The first one, a, co-moving with a rigid body and the second one, b,
fixed with respect to the frame of reference. The rotation of the body (or the first
coordinate system) with respect to the second one is determined by the rotation
tensor a

Q̃QQ(t)=QQQ(t). And bQ̃QQ(t) =QQQ⊤(t) is the rotation tensor of the second coordinate
system with respect to the first one. Then, the angular velocities are related by:

ω̃ωωa=: ωωω , Ω̃ΩΩ
a
=: ΩΩΩ , ω̃ωωb=−ΩΩΩ , Ω̃ΩΩ

b
=−ωωω. (11.45)

because of relations such as:
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da
Q̃QQ

dt
= ω̃ωωa×a

Q̃QQ =a
Q̃QQ×Ω̃ΩΩ

a
,

dbQ̃QQ

dt
= ω̃ωωb×bQ̃QQ =bQ̃QQ×Ω̃ΩΩ

b
. (11.46)

Thus, we obtain:

bQ̃QQ(t) =a
Q̃QQ⊤(t), ω̃ωωb 6=−ω̃ωωa, bQ̃QQ(t) ·Ω̃ΩΩ b 6=−a

Q̃QQ ·Ω̃ΩΩ a
. (11.47)

By comparing (11.47) with (11.130), (11.43), (11.44) one can see a significant dif-
ference. Obviously, the reason lies in transferring vectorial and tensorial quantities
from one frame of reference to another. More specifically, the reason is that the ini-
tial rotation tensors and the angular velocities are related by Eqs. (11.23), (11.24),
however, their images are related by Eqs. (11.39), (11.40).

11.3.3 Motion of FoRs with Respect to Each Other

Recall that the position of the origin, DDD, of the y-system with respect to the origin,
EEE , of the x-system is given by x̃xxD(t) pertinent to the x-system. x̂xxD(t) is the image of
this vector in the y-system. In coordinate form we have:

x̃xxD(t)↔ x̂xxD(t) = x̂D
k (t)êeek(t), (11.48)

where the êeek(t) are given by (11.15). Analogously, ŷyyE(t) and ỹyyE(t) are the position
vectors of EEE with respect to DDD in the y-system and its image determined in the x-
system, respectively, such that:

ŷyyE(t)↔ ỹyyE(t) = ỹE

k (t)d̃ddk(t), (11.49)

where the d̃ddk(t) are given by (11.7). For geometrical reasons the following must
hold:

ỹyyE(t) =− x̃xxD(t) , x̂xxD(t) =− ŷyyE(t). (11.50)

The velocity of the point DDD with respect to the x-system and the velocity of the point
EEE with respect to the y-system are:

ṽvvx
D(t) =

dx̃xxD

dt
, v̂vv

y
E(t) =

dŷyyE

dt
. (11.51)

The velocities ṽvvx
D(t) and v̂vv

y

E(t) are determined in different reference frames and can-
not be compared a priori. However, what we can compare are suitable images,
which we have to create in the first place. In coordinate form we can write:

ṽvvx
D(t)↔ v̂vvx

D(t) =
dx̃D

k

dt
êeek(t) , v̂vv

y

E(t)↔ ṽvv
y

E(t) =
dŷE

k

dt
d̃ddk(t). (11.52)

Note that the points DDD and EEE are immovable in their reference frames. Therefore,
v̂vvx

D(t) is not the velocity of DDD with respect to the y-system, and ṽvv
y

E(t) is not the
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velocity of EEE with respect to the x-system, and they are both not equal to zero. By
using Eqs. (11.50) and (11.51) we obtain:

ṽvvx
D(t) =−dỹyyE

dt
, v̂vv

y

E(t) =−dx̂xxD

dt
. (11.53)

We now start by differentiating ỹyyE(t) and x̂xxD(t), respectively, with respect to time.
Then, by taking into account Eqs. (11.49), (11.52)2, (11.7), (11.23)1, (11.49) and
(11.48), (11.52)1, (11.15), (11.24)1, (11.48), respectively, we arrive at:

ṽvv
y

E =− ṽvvx
D+ω̃ωωd× x̃xxD , v̂vvx

D =− v̂vv
y

E +ω̂ωωe× ŷyyE , (11.54)

because of Eq. (11.53).
Comment II Note the difference between changes of frame of reference and changes
of coordinate system in context with translational movement. Consider two moving
coordinate systems in one frame of reference, a and b, respectively. Let the positions
of their origins be determined by rrra(t) and rrrb(t). The velocities of these points are
given by vvva(t) = drrra/dt and vvvb(t) = drrrb/dt, respectively. The velocity of point b

with respect to point a is vvvba(t) = vvvb(t)− vvva(t) and the velocity of point a with
respect to point b is vvvab(t) =−vvvba(t). Evidently a rotation of one coordinate system
with respect to another has no influence on their relative velocities. In contrast to this,
when speaking about changes between FoRs, relations like ṽvv

y

E =− ṽvvx
D and v̂vvx

D =− v̂vv
y

E

are valid only if the frames of reference move translationally with respect to each
other.
Finally in this section we turn to the Euclidean transformations shown in Eqs.
(11.12) and (11.20), respectively. We differentiate both w.r.t. time, t, and obtain
by observing Eqs. (11.52)1, (11.11), (11.7), (11.23)1 and (11.52)2, (11.19), (11.15),
(11.24)1, respectively, the following result:

ṽvvx = ṽvvx
D+ ṽvvy+ω̃ωωd× ỹyy , v̂vvy = v̂vv

y

E + v̂vvx+ω̂ωω e× x̂xx. (11.55)

In this context we have used the following symbols for the so-called relative veloc-
ity:8

ṽvvx(t)↔ v̂vvx(t) =
dx̃k

dt
êeek(t) , v̂vvy(t)↔ ṽvvy(t) =

dŷk

dt
d̃ddk(t). (11.56)

Note that Eqs. (11.55)1 (11.55)2 hold exclusively in the x and in the y-system, re-
spectively. One can find similarly looking equations in textbooks, for example in
Hutter and Jöhnk (2004), pp. 118/119 or in Hibbeler (2010), pp. 377. However, the
subtle distinction of images and various angular velocities is not made there.
Two special case are of interest: First, let us put PPP → DDD. Then
ṽvvx → ṽvvx

D, ṽvvy → 000, ỹyy → 000 and v̂vvy → 000, v̂vvx → v̂vvx
D, x̂xxx → − ŷyyE and Eq. (11.55)1 turns

into the identity ṽvvx
D = ṽvvx

D whereas Eq. (11.55)2 becomes 000 = v̂vv
y
E + v̂vvx

D−ω̂ωωe× ŷyyE , which

8 According to a suggestion on pp. 118/119 in Hutter and Jöhnk (2004) or Hibbeler (2010), pg. 87,
we may call the (vector) sum of translation velocity, i.e., ṽvvx

D or v̂vv
y

E , plus relative velocity, i.e., ṽvvy or
v̂vvx, frozen velocity.
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is nothing else but Eq. (11.54)2. Now we put PPP→EEE . Then ṽvvx →000, ṽvvy → ṽvv
y
E , ỹyy→− x̃xxD

and v̂vvy → v̂vv
y

E , v̂vvx → 000, x̂xx → 000 and Eq. (11.55)1 becomes 000 = ṽvvx
D+ ṽvv

y

E −ω̃ωωd× x̃xxD, which
is nothing else but Eq. (11.54)1, and Eq. (11.55)1 turns into an identity, v̂vv

y

E = v̂vv
y

E .

11.4 Frame Indifference of Operators

The main objective in this section is to apply the concept of images to find out
about the transformation behavior of the total and of the substantial (material) time-
derivatives. These, however, contain gradients and, therefore, we shall start our dis-
cussion with the behavior of the nabla operator during a change of FoR.

11.4.1 Transformation Properties of Spatial Gradients

This section is dedicated to a discussion on the gradient of continuum theory fields.
Formally speaking, this operation will be described by a vectorial quantity, the so-
called nabla operator, ∇∇∇, (see, e.g., Lebedev et al, 2010, , pg. 95) for the choice of
nomenclature). Several issues will be dealt with here, which are unfortunately not
completely separable.
First, we must agree on what exactly the gradient of a continuous field is supposed
to describe and what it means in terms of mathematics and, more importantly to
us, in continuum physics. Once this has been decided we have to study how the
operator ∇∇∇ is expressed w.r.t. different frames, how images of these expressions are
defined, and how these images relate to the original gradient operation in a particular
FoR or, in other words, how the operator nabla transforms during changes between
FoRs. Third, we will have to study the gradient operation from the two viewpoints
of continuum theory, namely material as well as spatial description.
We start by exploring the formal mathematical point-of-view. Consider a continuous,
multivariant function f (x1,x2, . . . ,xn). We wish to know by how much it changes
when moving from x1,x2, . . . ,xn to x1 +∆x1,x2 +∆x2, . . . ,xn +∆xn. Recall that in
order to find out we simply have to compute

∆ f := f (x1 +∆x1,x2 +∆x2, . . . ,xn +∆xn)− f (x1,x2, . . . ,xn) =

f (x1 +∆x1,x2 +∆x2, . . . ,xn +∆xn)− f (x1,x2 +∆x2, . . . ,xn +∆xn)

∆x1
±·· ·+

f (x1,x2, . . . ,xn +∆xn)− f (x1,x2, . . . ,xn)

∆x1
(11.57)

and due to the assumed continuity conclude in the limit the following well-known
relation:
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d f (x1,x2, . . . ,xn) =
∂ f

∂x1
dx1 +

∂ f

∂x2
dx2 + · · ·+ ∂ f

∂xn

dxn. (11.58)

The row vector
(

∂
∂x1

, ∂
∂x2

, . . . ∂
∂xn

,
)

is known as the gradient of a scalar-valued func-

tion f (x1,x2, . . . ,xn). Obviously in mathematics the “coordinates” of the “point,”
x1,x2, . . . ,xn, have only an abstract meaning, and it is possible but unnecessary to
assign base vectors eeek, k = 1, . . . ,n indicating directions and units of length to them.
They are simply the variables the function f depends upon. It goes almost without
saying that this gradient addresses the change of the function in a given point with
the aforementioned coordinates, and, if it is intended to compare different functions
depending on the same coordinates, it makes sense to compare the gradients of these
functions only in the neighborhood of a point with the same coordinates.

However, moving on to continuum physics, we now limit ourselves to the case n= 3,
i.e., we think in terms of physical space. Moreover, because we will initially deal
with the material description and reference configuration, we interpret x1,x2,x3 as
the coordinates of a frame of reference as indicated in Definition 11.1, and identify
the scalar-valued function f (xk) with the reference density distribution ρ̃0(xk) of the
x-FoR (say), which may be heterogeneous:

dρ̃0(xk) =
∂ ρ̃0

∂xi

dxi. (11.59)

Let us now consider a continuum within the material description. Recall that in this
case we imagine the continuum, B, to consist of undestructible entities of matter, the
material points, P ∈ B. These material points must first be identified and then they
will be traced along their passage in space and time. Typically their identification is
based on using their positions in space at some (arbitrary but then fixed) time. This
identification is made within an FoR and therefore we write X̃XX(xi) in the x-system
and ŶYY (yi) in the y-system, the arguments xi, yi being shorthand notations for x1,x2,x3

and y1,y2,y3, respectively:

X̃XX(xi) = xkeeek , ŶYY (yi) = ykdddk, (11.60)

and, analogously to the situation illustrated for x̃xx and ŷyy in Fig. 11.2, X̃XX and ŶYY point
to the same location in space.

In order to investigate the invariance of the gradient operator we have to investigate
its effect on an invariant scalar (e.g., the mass density, ρ0) transforming under a
change of FoR. We call a scalar expressed in material description invariant, or an
Euclidean scalar in material description, if the values of the functions ρ̃0(X̃XX , t) and
ρ̂0(ŶYY , t) are the same at every moment of time under the condition that the position
vectors X̃XX and ŶYY refer to the same point in space.

We may now rewrite Eq. (11.59) in the following equivalent form:

dρ̃0(X̃XX) =
∂ ρ̃0

∂X̃XX
·dX̃XX or dρ̃0(X̃XX

x
) = ∇̃∇∇

x

0(ρ̃0) ·dX̃XX , (11.61)
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where we have defined the gradient or (synonymously) the nabla operator of the
reference configuration in the x-system spanned by an orthonormal base by:

∇̃∇∇
x

0 :=
∂

∂X̃XX
= eeek

∂

∂xk

. (11.62)

Analogous definitions and relations hold in the y-system:

dρ̂0(ŶYY ) =
∂ ρ̂0

∂X̂XX
·dŶYY or dρ̂0(ŶYY ) = ∇̂∇∇

y

0(ρ̂0) ·dŶYY , (11.63)

and

∇̂∇∇
y

0 :=
∂

∂X̂XX
= dddk

∂

∂yk

. (11.64)

Summarizing we conclude that the “coefficients” ∂/∂X̃XX and ∂/∂ŶYY represent the gradi-
ents of the scalar-valued functions ρ̃0 and ρ̂0 , respectively. In a formal manner of
speech one may carry forward the operation of transfer of the vector ∂ ρ̂0/∂ŶYY into the
x-FoR and of the vector ∂ ρ̃0/∂X̃XX into the y-FoR, and then ask the question regarding
the comparison of the image of the vector ∂ ρ̂0/∂ŶYY with the vector ∂ ρ̃0/∂X̃XX and of the
image of the vector ∂ ρ̃0/∂X̃XX with the vector ∂ ρ̂0/∂ŶYY , respectively. However, we shall
see that from a physical point-of-view this comparison is pointless. The following
arguments are presented here with the objective to show why this comparison does
not make sense.
First, we note that the reference position vectors do not depend upon time but that
their images do, because of Eqs. (11.15) and (11.7):

X̂XX(t) = xkêeek(t) = xk
d
Q̂QQ(t) ·dddk, ỸYY (t) = ykd̃ddk(t) = yk

e
Q̃QQ(t) ·eeek. (11.65)

This means that even if the two position vectors X̃XX and ỸYY refer to the same point
in physical space at time t0 they will point to different points at other times. Corre-
spondingly the gradients ∂ ρ̃0/∂X̃XX and ∂ ρ̃0/∂ỸYY reflect variations of mass density in the
neighborhood of different points of space. An analogous remark holds for ŶYY and X̂XX

and the gradients ∂ ρ̂0/∂ŶYY and ∂ ρ̂0/∂X̂XX.
In the same manner, even if in both FoRs both mass densities represent functions of
a time-independent position vector, the mass densities ρ̃0(ỸYY ) and ρ̂0(X̂XX) correspond
to different points of physical space, and to one point of physical space correspond
different values of density in different FoRs. This means that a comparison of the
gradient ∂ ρ̂0/∂ŶYY with the image of the gradient ∂ ρ̃0/∂X̃XX in the y-system just like a
comparison of the gradient ∂ ρ̃0/∂X̃XX with the image of the gradient ∂ ρ̂0/∂ŶYY in the x-
system is bare of any meaning.
For a solution of this conundrum it is necessary to introduce comoving position
vectors in both systems, which determine at every moment of time the same point
of physical space. In material description these are the position vectors x̃xx(X̃XX , t) and
ŷyy(ŶYY , t) in the x and y-FoRs, respectively, which determine the current configuration
of the medium. Then, in the x and y-FoR, the current density of the medium is
given by the functions ρ̃∗

(
x̃xx(X̃XX , t), t

)
and ρ̂∗

(
ŷyy(ŶYY , t), t

)
, respectively. Since in this
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framework the functions are explicitly introduced as time-dependent, the definition
of the gradient from above requires a clarification.

Let us consider an infinitesimally small change of the current mass density of the
medium. In the x-FoR this change can be assessed by the increment of the function
ρ̃∗ (x̃xx, t) and in the y-FoR by the increment of the function ρ̂∗ (ŷyy, t), respectively:

dρ̃∗(x̃xx, t) =
∂ ρ̃∗
∂ x̃xx

·dx̃xxx +
∂ ρ̃∗
∂ t

dt, dρ̂∗(x̂xxy, t) =
∂ ρ̂∗
∂ ŷyy

·dŷyy+
∂ ρ̂∗
∂ t

dt. (11.66)

The coefficients in front of the vectors dx̃xx and dŷyy are gradients of the functions
ρ̃∗(x̃xx, t) and ρ̂∗(ŷyy, t) in the x- and in the y-FoR, respectively. The symbol ∇̃∇∇

x
:= ∂/∂ x̃xx

will be used for the gradient (or nabla) operator in the current configuration, as
visible from the x-FoR, and ∇̃∇∇

y
:= ∂/∂ ŷyy for the gradient (or nabla) operator in the

current configuration, as visible in the y-FoR, respectively. If the vectors x̃xx(X̃XX , t) and
ŷyy(ŶYY , t) are represented in terms of base vector expansions,

x̃xx(X̃XX , t) = x̃k(xi, t)eeek , ŷyy(ŶYY , t) = ŷk(yi, t)dddk, (11.67)

then the explicit form of the gradient operators is given by the formulae

∇̃∇∇
x

:=
∂

∂ x̃xx
= eeek

∂

∂ x̃k

, ∇̃∇∇
y

:=
∂

∂ ŷyy
= dddk

∂

∂ ŷk

. (11.68)

Likewise one may write for the current mass densities:

dρ̃(X̃XX , t) =
∂ ρ̃

∂X̃XX
·dX̃XX +

∂ ρ̃

∂ t
dt , dρ̂(ŶYY , t) =

∂ ρ̂

∂ŶYY
·dŶYY +

∂ ρ̂

∂ t
dt. (11.69)

The coefficients in front of the vectors dX̃XX and dŶYY in Eq. (11.69) denote the gradients
in the reference configuration of the current density functions ρ̃(X̃XX , t) and ρ̂(ŶYY , t),
respectively. They have been introduced in Eqs. (11.62) and (11.64) for the x and
for the y-FoR before in concrete form.

The gradient operators of the current and of the reference configurations are con-
nected among each other by the following relations:

∇̃∇∇x
0 =

(
∂ x̃xx

∂X̃XX

)⊤
·∇̃∇∇x

, ∇̂∇∇
y

0 =

(
∂ ŷyy

∂ŶYY

)⊤
·∇̂∇∇y

. (11.70)

From the relations (11.62) and (11.64) it follows that

∂

∂ x̃xx
=

(
∂ x̃xx

∂X̃XX

)−⊤
·eeek

∂

∂xk

,
∂

∂ ŷyy
=

(
∂ ŷyy

∂ŶYY

)−⊤
·dddk

∂

∂yk

. (11.71)

The relations (11.68) and (11.71) depict two well known representations of the gra-
dient operators in the current configuration. Of course they can be written in other
representation since the gradient operator, like any other vector, does not depend on
the choice of the system coordinates of a given FoR.
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When the material description for continuous media is used two gradient operators
are frequently adapted, the gradient operator in the current and the gradient operator
of the reference configuration. At the same time one can take into consideration a
multitude of different gradient operators, which are related to each other according
to (11.70). The gradient operator in a given FoR are determined by position vectors,
which not necessarily point to the position of a continuum particle. These position
vectors may point to the positions of speculative points, which move w.r.t. the given
FoR according to a given rule. Further down we shall denote them as observational
points.
We now state what is required in order to compare gradients in different FoRs:

• First, the points of observation chosen in different FoRs must reside in one and
the same point of physical space.

• Second, we must not compare the gradient operators but rather the action of
these operators on some invariant scalar quantity during a change of the FoR. If
the gradient of this quantity is an invariant it can be concluded that the gradient
operator is an invariant, too.

• Third, during the transfer operation it is necessary that the arguments of the
functions match and only the base vectors are distinguished. If one succeeded
to transfer and compare such a gradient then all other gradients can be compared
by using a formula of the type shown in Eq. (11.70).

We will now show that the operator ∇̂∇∇
y

is the image of the operator ∇̃∇∇
x
. For this

purpose we introduce an auxiliary z-coordinate system in the x-FoR (also see Fig.
11.4). This z-coordinate system is moving in the x-system. We use the following
notations in context with this coordinate system: O is its origin moving with respect
to the x-system, ĩiik are its unit base vectors rotating w.r.t. the x-system, and zk are
the coordinates w.r.t. the base ĩiik. Because of the movement of the origin and of the
base vector coordinate representations of vectors defined in the z-systems become
time-dependent w.r.t. the x-FoR. We will see this shortly. A rigid body movement of
the coordinate system with respect to the x-FoR is determined by the position vector
of the origin O, i.e., x̃xxO(t), and the rotation tensor,z

Q̃QQx(t):

x̃xxO(t) = x̃O

k (t)eeek , ĩiik(t) =
z
Q̃QQx(t) ·eeek, k = 1, 2, 3, (11.72)

where it is assumed that ĩiik(0) = eeek.
Then the current position of the observation point can be written in the following
form (see Fig. 11.4):

x̃xx(X̃XX , t) = x̃xxO(t)+ x̃xxz
(
zi(X̃XX , t), t

)
. (11.73)

By taking into account that the offset x̃xxO(t) with respect to the origin of the refer-
ence frame does not depend on the observation point and by taking into account the
following expression for the position vector:

x̃xxz(zi, t) = zk(t)ĩiik(t), (11.74)

we obtain:
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Fig. 11.4 A moving coordi-
nate system (see text).

∇̃∇∇
x

:=
∂

∂ x̃xx
=

(
∂ (x̃xx− x̃xxO)

∂ x̃xx

)⊤
· ∂

∂ (x̃xx− x̃xxO)
= (11.75)

ĨII · ∂

∂ (x̃xx− x̃xxO)
=

∂

∂ x̃xxz = ĩiik
∂

∂ zk

.

We now introduce the image of the z-coordinate system in the y FoR. Considering
the relations between the distance vectors (see Fig. 11.4)

ŷyy(ŶYY , t) = ŷyyO(t)+ x̂xxz(zi, t), (11.76)

and the expression
x̂xxz(zi, t) = zk(t)îiik(t) (11.77)

for the image of the distance vector x̃xxz, where îiik are images of ĩiik, we find:

∇̂∇∇
y

:=
∂

∂ ŷyy
=

∂

∂ (ŷyy− ŷyyO)
=

∂

∂ x̂xxz
= îiik

∂

∂ zk

. (11.78)

For a comparison between the operators ∇̃∇∇
x

and ∇̂∇∇
y

and the corresponding images
we consider the result of the action of these operators on the mass densities. We
substitute the variables (see Fig. 11.4 for the meaning of the symbols):

ρ̃∗(x̃, t) = ρ̃ z
∗(x̃

z, t) = ρ z(zi, t) , ρ̂∗(ŷ, t) = ρ̂ z
∗(x̂

z, t) = ρ z(zi, t). (11.79)

Then:

∇̃
x
(ρ̃ z

∗(x̃
z, t)) = ĩk

∂ ρ z(zi, t)

∂ zk

, ∇̂
y
(ρ̂ z

∗(x̂
z, t)) = îk

∂ ρ z(zi, t)

∂ zk

. (11.80)
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Since the vectors îk(t) present themselves in the y-FoR as the images of the vectors
ĩk(t) it follows from Eq. (11.80) that for the nabla operators in the current configu-
ration the following relations hold:

∇̃∇∇
x↔ ∇̂∇∇

x
= îiik

∂

∂ zk

= ∇̂∇∇
y
, ∇̂∇∇

y↔ ∇̃∇∇
y
= ĩiik

∂

∂ zk

= ∇̃∇∇
x
. (11.81)

In order to enable a comparison of the nabla operators in the reference configura-
tions fixed in the FoRs we make use of the relations (11.70) and (11.81):

∇̂∇∇
x

0 =

(
∂X̂XX

∂ x̂xx

)−⊤
·∇̂∇∇x

=
(

∇̂∇∇
x
X̂XX
)−1

·∇̂∇∇y =

(
∇̂∇∇

x
(

x̂xxO(t)+ X̂XX
z
))−1

·∇̂∇∇y
=
(

∇̂∇∇
xe

Q̂QQ(t) ·ŶYY z
)−1

·∇̂∇∇y
= (11.82)

(
∇̂∇∇

x e
Q̂QQ(t) ·

(
ŶYY − ŷyyO(t)

))−1
·∇̂∇∇y

=
(

∇̂∇∇
ye

Q̂QQ(t) ·ŶYY
)−1

·∇̂∇∇y
=

((
∂ŶYY

∂ ŷyy

)⊤
·e
Q̂QQ⊤(t)

)−1

·∇̂∇∇y
=

e
Q̂QQ(t) ·

(
∂ ŷyy

∂ŶYY

)⊤
·∇̂∇∇y

=
e
Q̂QQ(t) ·∇̂∇∇y

0.

A few remarks are in order for the first manipulations in Eq. (11.4.1). We have
X̃XX

z
= Zkĩiik(0),ŶYY

z
= Zk

ˆiiik(0), where the vectors ĩiik(0) and ˆiiik(0) are z-base vectors in the
x-FoR and its image in the y-FoR created at t=0, respectively. They are fixed in their
FoRs. However the image of ĩiik(0) in the y-FoR depends on time îiik(0) =

e
Q̂QQ(t) · ˆiiik(0).

This means X̂XX
z
= Zk

e
Q̂QQ(t) · ˆiiik(0) =

e
Q̂QQ(t) ·ŶYY z

.

Thus for the nabla operator in the reference configuration unmoving in the For the
relations (11.81) do not hold. This is primarily due to that the reference configura-
tions in material description merely serve as a parametrization of the body particles
in a given FoR representing just a mathematical construction, which can have no
bearing to the real configuration of a material medium and turns out differently in
different FoRs.

All arguments provided for the material description can easily be transferred to the
spatial one. The only formal difference in this context is that the current position
vector fixate a geometrical point in space and nor a concrete material particle.

This way, if the observational points in both FoRs are motionless (which is often
assumed in the spatial description), then the nabla operator determined in one FoR
does not coincide with the image of the nabla operator as determined in the other
FoR. The relations (11.81) are performable in spatial description only for the case if
the observational points in both FoRs designate one and the same point of physical
space in every moment of time, i.e., if they are movable.
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11.4.2 Transformation Properties of the Total and Material Time

Derivatives

It is a widespread opinion that the total and the material derivatives are different
names for the same concept. However, as it was shown in Ivanova et al (2016) they
are, in general, different concepts having different meanings and different values.
It was shown that the material derivative characterizes the rate of change a physical
property of the material point that was in the observation point at the certain moment
of time, while the total derivative is the rate of change of the property in the obser-
vation point. Within the material description the observation point coincides with
the material particle and as a result in this particular case the value of the total and
material derivatives coincide. Moreover, it is ill-fated that the adjective material is
used in context with material description and with the material time derivative: The
material time derivative is the expression for rates to be used in spatial description
(see Ivanova et al, 2016, , pp. 19).

We will investigate the situation in material description first. In order to investigate
the invariance of the total time derivative we have to analyze how the total derivative
of an invariant scalar (e.g., the mass density) transforms under a change of FoR.

At this point recall our definition of a Euclidean scalar in material description after
Eq. (11.64). The total derivative in the frame of reference is the partial time deriva-
tive with the reference coordinates held constant (see Ivanova et al, 2016, pg. 17).
Thus, in the x-system:

d
x

ρ̃(X̃XX , t)

dt
=

∂ ρ̃(X̃XX , t)

∂ t

∣∣∣∣
xi

=
∂ ρ̃(X̃XX , t)

∂ t

∣∣∣∣
X̃XX

, (11.83)

and analogously in the y-system:

d
y

ρ̂(ŶYY , t)

dt
=

∂ ρ̂(ŶYY , t)

∂ t

∣∣∣∣
yi

=
∂ ρ̂(ŶYY , t)

∂ t

∣∣∣∣
ŶYY

, (11.84)

where xi and yi, i = 1,2,3 refer to the coordinates of the two FoRs and symbols
at the bottom of vertical bars indicate quantities that are kept constant. In order to
compare the total derivatives determined in different reference frames we have to
create their images. But, as was pointed out in the previous section, the images X̂XX

and ỸYY depend on time. They relate to the position of the same space point only at
one special moment, t0, and they correspond to different points at other moments of
time. Therefore such relations as

∂ ρ̃
(
X̃XX , t

)

∂ t

∣∣
X̃XX
=

∂ ρ̂
(
ỸYY , t

)

∂ t

∣∣
ỸYY
,

∂ ρ̂
(
ŶYY , t

)

∂ t

∣∣
ŶYY
=

∂ ρ̃
(
X̂XX , t

)

∂ t

∣∣
X̂XX

or
∂ ρ̃

(
X̂XX , t

)

∂ t

∣∣
xi
=

∂ ρ̃
(
X̂XX , t

)

∂ t

∣∣
X̂XX

and
∂ ρ̂

(
ỸYY , t

)

∂ t

∣∣
yi
=

∂ ρ̂(ỸYY , t)

∂ t

∣∣
ỸYY
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seem dubious. Thus, a simple representation of the total derivative as the derivative
of function of the referential variables is not convenient for transferring into another
frame of reference. Switching to expressions of the function in terms of spatial vari-
ables, namely ρ̃(X̃XX , t) = ρ̃∗(x̃xx, t) and ρ̂(ŶYY , t) = ρ̂∗(ŷyy, t), is more suitable. Then by
virtue of the chain rule the total derivative of the mass density in the x-system sim-
ply reads:

d
x

ρ̃(X̃XX , t)

dt
=

∂ ρ̃∗(x̃xx, t)
∂ t

∣∣∣∣
x̃xx

+
d

x

x̃xx

dt
· ∂ ρ̃∗(x̃xx, t)

∂ x̃xx
, (11.85)

and in the y-system:

d
y

ρ̂(ŶYY , t)

dt
=

∂ ρ̂∗(ŷyy, t)
∂ t

∣∣∣∣
ŷyy

+
d

y

ŷyy

dt
· ∂ ρ̂∗(ŷyy, t)

∂ ŷyy
. (11.86)

After introducing images of x̃xx and ŷyy, namely x̂xx and ỹyy, respectively, we can write:

x̃xx(xi, t) = x̃xxD(t)+ ỹyy(yi, t) , ŷyy(yi, t) = x̂xxE(t)+ x̂xx(xi, t). (11.87)

In contrast to the reference position the vectors x̃xx and ỹyy in the x-system as well as ŷyy

and x̂xx in the y-system always determine the same point in space. But they start from
different points (namely from the origins of the corresponding FoRs) moving with
respect to each other. Hence we cannot be sure that

∂ ρ̃∗(x̃xx,t)

∂ t

∣∣
x̃xx
=

∂ ρ̂∗(ỹyy,t)

∂ t

∣∣
ỹyy

and
∂ ρ̂∗(ŷyy,t)

∂ t

∣∣
ŷyy
=

∂ ρ̃∗(x̂xx,t)

∂ t

∣∣
x̂xx
.

In addition to that, (11.86) contains stand-alone velocity terms and not relative (dif-
ferences) of velocities, which are known for their objective character. In fact, it
follows from Eq. (11.87) that

dxx̃xx

dt
6= dx ỹyy

dt
and

dy ŷyy

dt
6= dyx̂xx

dt
.

In order to improve the situation we will use the total derivative in a moving coordi-
nate system.

Recall the introduction of the z-coordinate system in the previous subsection before
Eq. (11.72). The velocity of the origin of the z-coordinate system, ṽvvx

O, and its angular
velocity, ω̃ωω zx, are then given by:

ṽvvx
O =

dx̃xxO

dt
,

dz
Q̃QQx

dt
= ω̃ωω zx ×z

Q̃QQx, (11.88)

the former as in Comment I and the latter analogously to Comment II, Eq. (11.46).

The position vector determining the position of a point PPP with respect to the moving
coordinate system is:

x̃xxz(zi, t) = zk(t)ĩiik(t). (11.89)

We observe the following relation, which becomes obvious in view of Fig. 11.4:
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x̃xx(X̃XX , t) = x̃xxO(t)+ x̃xxz(zi, t), (11.90)

which is formally analogous to Eq. (11.87). By combining Eqs. (11.72)2 and (11.89)
we introduce an auxiliary position vector Z̃ZZx(zi), such that:

x̃xxz(zi, t) =
z
Q̃QQx(t) · Z̃ZZx(zi) , Z̃ZZx(zi) = zkeeek. (11.91)

Note that the vector Z̃ZZx(zi) can indirectly depend on time through the movement
of the coordinates zi, i = 1,2,3 in the x-FoR. In order to comprehend this suppose,
in a first step, a point PPP is fixed w.r.t. the z-system. Then x̃xxz(zi, t) = zkĩiik(t). Now
introduce an auxiliary position vector in accordance with Eq. (11.91). In this case
Z̃ZZx(zi) = zkeeek and it does not depend on time. In a second step let PPP move w.r.t. the
z-system, x̃xxz(zi, t) = zk(t)ĩiik(t). An auxiliary position vector is Z̃ZZx(zi) = zk(t)eeek. The
idea is that a direct dependence on time Z̃ZZx(·, t) is eliminated and Z̃ZZx depends on
time only indirectly (through zi). With Eq. (11.91) Eq.(11.90) takes the form:

x̃xx(X̃XX , t) = x̃xxO(t)+z
Q̃QQx(t) · Z̃ZZx(zi). (11.92)

We now study the situation in the y-FoR. Here the position vectors are related by:

ŷyy(ŶYY , t) = ŷyyO(t)+ x̂xxz(zi, t), (11.93)

where x̂xxz is the image of x̃xxz. In analogy to Eq. (11.91) we may write:

x̂xxz(zi, t) =
z
Q̂QQy(t) · ẐZZy(zi) , ẐZZy(zi) = zkdddk, (11.94)

where we have defined another auxiliary vector ẐZZy(zi). Note that it is not the image
of Z̃ZZx(zi), because this would be ẐZZx = zkêeek(t) = zk

e
Q̂QQ(t) ·dddk. Moreover, the rotation

tensor z
Q̂QQy(t) determines the orientation of the images of the base vectors of the z-

system with respect to the y-system:

îiik(t) =
z
Q̂QQy(t) ·dddk, k = 1, 2, 3. (11.95)

It is a composition of two rotation tensors:

z
Q̂QQy(t) =

z
Q̂QQx(t) ·e

Q̂QQ(t), (11.96)

where z
Q̂QQx(t) is the image of the rotation tensor z

Q̃QQx(t). With Eq. (11.94) we can
rewrite Eq. (11.93) as:

ŷyy(ŶYY , t) = ŷyyO(t)+
z
Q̂QQy(t) · ẐZZy(zi). (11.97)

Just like Z̃ZZx the vector ẐZZy is an indirectly time-dependent marker of a specific point,
in fact of the same point.
Now we return to the mass density and change the variables, where x̃xxz points the
same point in space as x̃xx and ŷyy, just like Z̃ZZx and ẐZZy characterize that same point:

ρ̃∗(x̃xx, t) = ρ̃ z
∗(x̃xx

z, t) = ρ̃ z(Z̃ZZx, t) , ρ̂∗(ŷyy, t) = ρ̂ z
∗(x̂xx

z, t) = ρ̂ z(ẐZZy, t). (11.98)



222 Elena Ivanova, Elena Vilchevskaya & Wolfgang H. Müller

In context with Eq. (11.98) and in view of Eqs. (11.90)/(11.91) and (11.93)/(11.94),
respectively, two comments are in order. First, note that the position vectors x̃xxz(zi, t)
and x̂xxz(zi, t) connect the same two points in space. Second, recall once more that
Z̃ZZx and ẐZZy are implicitly time-dependent. Thus, by using Eq. (11.98) we rewrite the
total time derivative in the x-FoR, Eq. (11.83), as follows:

d
x

ρ̃∗(x̃xx, t)
dt

=
d

x

ρ̃ z(Z̃ZZx, t)

dt
=

∂ ρ̃ z(Z̃ZZx, t)

∂ t

∣∣∣∣
Z̃ZZ

x
+

d
x

Z̃ZZx

dt
· ∂ ρ̃ z(Z̃ZZx, t)

∂ Z̃ZZx . (11.99)

After taking the total time derivative of Eq. (11.92) and by using Eqs. (11.88),
(11.91) we obtain:

d
x

x̃xx(X̃XX , t)

dt
= ṽvvx

O(t)+ω̃ωω zx(t)× x̃xxz(zi, t)+
z
Q̃QQx(t) · d

x

Z̃ZZx(zi)

dt
. (11.100)

The first two terms on the right hand side of Eq. (11.100) we denote by ṽvvzx:

ṽvvzx(zi, t) := ṽvvx
O(t)+ω̃ωω zx(t)× x̃xxz(zi, t) . (11.101)

This is what is called by Hutter and Jöhnk (2004), pg. 119 the “frozen velocity” or
Führungsgeschwindigkeit (also see Hauger et al, 1993, , pp. 241) in German. It is
obtained by momentarily freezing the particle (at the point whose position vector is
x̃xxz) with the moving z-system. Since x̃xx determines the current position of a material
particle in the x-system, we can write:

d
x

x̃xx

dt
= ṽvvx ⇒ d

x

Z̃ZZx

dt
=
(
ṽvvx − ṽvvzx

)
·zQ̃QQx, (11.102)

where ṽvvx is the velocity of the particle in the x-system. After substituting Eq.
(11.102) into Eq. (11.99) we get:

d
x

ρ̃

dt
=

∂ ρ̃ z

∂ t

∣∣∣∣
Z̃ZZ

x
+(ṽvvx − ṽvvzx) ·zQ̃QQx ·∂ ρ̃ z

∂ Z̃ZZx , (11.103)

and by using Eq. (11.91) we have:

d
x

ρ̃

dt
=

∂ ρ̃ z

∂ t

∣∣∣∣
zi

+(ṽvvx − ṽvvzx) · ∂ ρ̃ z

∂ x̃xxz . (11.104)

The image of Eq. (11.104) in the y-FoR is:

d̂
x

ρ̂

dt
=

∂ ρ̂ z

∂ t

∣∣∣∣
zi

+(v̂vvx − v̂vvzx) · ∂ ρ̂ z

∂ x̂xxz . (11.105)

This is the total derivative determined in the x-FoR and transferred to the y-FoR. On
the other hand, the total time derivative in the y-FoR (11.84) can be written by using
Eq. (11.98):
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d
y

ρ̂(ŶYY , t)

dt
=

d
y

ρ̂ z(ẐZZy, t)

dt
=

∂ ρ̂ z(ẐZZy, t)

∂ t

∣∣∣∣
ẐZZ

y
+

d
y

ẐZZy

dt
· ∂ ρ̂ z(ẐZZy, t)

∂ ẐZZy . (11.106)

Since:
d

y

ŷyy(ŶYY , t)

dt
= v̂vvy = v̂vvzy(zi, t)+

z
Q̂QQy(t) · d

y

ẐZZy(zi)

dt
, (11.107)

with a definition analogous to Eq. (11.101):

v̂vvzy := v̂vv
y
O(t)+ω̂ωω zy(t)× x̂xxz(zi, t) (11.108)

we have:
d

y

ρ̂

dt
=

∂ ρ̂ z

∂ t

∣∣∣∣
ẐZZ

y
+(v̂vvy − v̂vvzy) ·zQ̂QQy ·∂ ρ̂ z

∂ ẐZZy (11.109)

By using Eq. (11.94) we may write Eq. (11.109) as:

d
y

ρ̂

dt
=

∂ ρ̂ z

∂ t

∣∣∣∣
zi

+(v̂vvy − v̂vvzy) · ∂ ρ̂ z

∂ x̂xxz
. (11.110)

The image of the total derivative determined in the y-FoR is:

d̃
y

ρ̃

dt
=

∂ ρ̃ z

∂ t

∣∣∣∣
zi

+(ṽvvy − ṽvvzy) · ∂ ρ̃ z

∂ x̃xxz
. (11.111)

From the point of view of the y-FoR an absolute velocity is a velocity of the object
measured w.r.t. the y-FOR, a relative velocity is a velocity of the object measured
w.r.t. x-FoR, a frozen velocity is a velocity of the point of the x-FoR where the object
is located. In Eq. (11.110) we have two velocities. First, the velocity of the point. It
is determined by

v̂vvy = v̂vv
y
E +

dx̂xx

dt
= v̂vv

y
E +ω̂ωωe× x̂xx+ v̂vvx = v̂vvz + v̂vvx. (11.112)

Second, there is a velocity of a point of the z-coordinate system where a material
point is located. Thus a relative velocity of this point is the image of the frozen
velocity in (11.101). And the frozen velocity in this case is v̂z (as in the first case),
because the locations of objects (in the x-FoR) are the same.

In here v̂vvz is a frozen velocity defined by:

v̂vvz := v̂vv
y
E +ω̂ωωe× x̂xx . (11.113)

Note that here the frozen velocity it is the velocity of the point in the x-FoR (where
the point PPP is located) w.r.t. the y-FoR. In (11.101) the frozen velocity is the velocity
of the point of z-coordinate system (where the point PPP is located) w.r.t. the x-FoR.

In order to determine the velocity of v̂zy in the y-FoR we have to add to the velocity
v̂vvzx the velocity of that very point of the x-FoR where the point PPP is located. Thus:
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v̂vvzy(zi, t) = v̂vvz(zi, t)+ v̂vvzx(zi, t). (11.114)

From Eqs. (11.112) and (11.114) it follows that:

v̂vvy − v̂vvzy = v̂vvx − v̂vvzx. (11.115)

Taking this into account it shows that the expressions (11.110) and (11.105) coincide.
Thus, the total derivative in the y-FoR coincides with the image of the total derivative
determined in the x-FoR. Analogously, it can be shown that the total derivative in
the x-FoR coincides with the image of the total derivative determined in the y-FoR.

Now let us consider the material time derivative. An expression for the operator of
the material derivative in spatial description with a moving observation point was
suggested in Altenbach et al (2003) and in Zhilin (2012). It contains the total time
derivative and the nabla operator:

δ

δt
=

d
dt

+

(
vvv
(
rrr(t), t

)
− drrr(t)

dt

)
·∇∇∇. (11.116)

Here vvv is the velocity of the particle located in the observation point at the moment
t, and drrr(t)/dt is the velocity of the observation point. This expression contains the
total derivative, the gradient operator (nabla is the differentiation w.r.t. the position
vector of the observation point, ∂/∂xxx), and a speed difference. The images of the
total derivative, of the difference in velocities, and of the nabla operator determined
in one frame of reference coincide with the corresponding quantities determined in
another frame of reference. Therefore, the material derivative as well as the total
derivative are invariant operators.

11.5 Conclusions and Outlook

Two main intentions were pursued in this paper. First, based on a thorough intro-
duction of the notion Frame of Reference (FoR), the usefulness and necessity of
creating images of tensorial quantities was emphasized. Tensorial quantities can be
compared only if they are based in the same FoR. In order to enable a comparison
of physical quantities existing in various FoRs, images must first be created, since a
direct comparison is meaningless.

Second, based on this idea frame indifference properties of the current nabla oper-
ator were shown. This property could then be used to prove frame indifference of
time derivative operators during a change of FoR as well, because the latter contain
nabla operators. In this context three issues arise: The observation point considered
in context with all operators must be the same for all FoRs at all times; the action
of all operators in combination with (and not in absence of) an invariant scalar must
be investigated, and, finally, the arguments of the scalar field must be the same for
all FoRs in order to compare the action of the operators from various FoRs.



11 A Study of Objective Time Derivatives in Material and Spatial Description 225

Following this strategy it was shown that the nabla operator in the current configu-
ration is invariant, that the nabla operator in the reference configuration is not, and
that the aforementioned time derivatives in material and in spatial description are
invariant.
The idea of image creation could potentially be helpful when studying the principle
of objectivity, a.k.a. principle of material frame indifference, which is used for re-
ducing the amount of possible forms of constitutive equations. However, the details
of such an investigation are left to future work.

Acknowledgements Support of this work by a grant from the Russian Foundation for Basic Re-
search (16-01-00815) is gratefully acknowledged.

9.A Appendix

The following passages were primarily written for the benefit of readers who do not
want to get distracted from the main line of thought of this paper – which is the proof
of frame indifference of nabla and time derivative operators. Yet they might want
to obtain some additional information on other kinematic quantities and relations,
such as the spin tensors, the so-called Poisson relations, and angular velocities, all
within the framework of the image concept.

9.A.1 Rotational Tensors and Angular Velocity Vectors

Differentiation of Eq. (11.12) will lead to velocities. In what follows we shall
pay special attention to velocities associated with rotation. For this purpose a few
preparatory considerations are in order. We start by introducing the left and right
spin tensors, identifiable by upper indices l and r, respectively:

σ l :=
ddQ̃QQ

dt
·dQ̃QQ

⊤
, σ r := dQ̃QQ

⊤ · ddQ̃QQ

dt
. (11.117)

Because of the orthogonality relations shown in Eq. (11.9) it follows that:

ddQ̃QQ

dt
·dQ̃QQ

⊤
+dQ̃QQ ·d

dQ̃QQ
⊤

dt
= σ l +(σ l)⊤ = 0̃00, (11.118)

ddQ̃QQ
⊤

dt
·dQ̃QQ+dQ̃QQ

⊤ · ddQ̃QQ

dt
= σ r +(σ r)⊤ = 0̃00.

Thus the tensors σ l and σ r are antisymmetric and corresponding conjugate vectors
ω̃ωωd and Ω̃ΩΩ

d
exist, such that:

σ l = ω̃ωωd× ĨII, σ r = ĨII×Ω̃ΩΩ
d
, ω̃ωωd = dQ̃QQ ·Ω̃ΩΩ d

, (11.119)
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where cross products between a second order tensor AAA = aaa⊗bbb and a vector xxx are
defined by the following formulae:

AAA×xxx = aaa⊗ (bbb×xxx), xxx×AAA = (xxx×aaa)⊗bbb. (11.120)

After dot-multiplication of Eq. (11.119)1 by dQ̃QQ from the right and of (11.119)2 from
the left we get the following equations relating the left angular velocity ω̃ωωd and the
right angular velocity Ω̃ΩΩ

d
through the rotational tensor dQ̃QQ – the so-called Poisson

relations:9
ddQ̃QQ

dt
= ω̃ωωd×dQ̃QQ,

ddQ̃QQ

dt
= dQ̃QQ×Ω̃ΩΩ

d
. (11.121)

If the left and right angular velocities are known, Eqs. (11.23) may serve as differ-
ential equations for dQ̃QQ.
At this point note that many textbooks look at the situation from a different angle,
see for example Truesdell (1972), pg. 48 (footnote), Truesdell and Toupin (1960),
pg. 437 and pp. 439, Eringen (1980), pg. 85, Hutter and Jöhnk (2004), pg. 119.
Hence, before we proceed to discuss the connection note the following mathematical
preliminaries. We introduce the Gibbsian cross, which is nothing else but a dyad
replacement operator, ×, in a second order tensor AAA× = (Ai jeeei ⊗eee j)× as follows:

AAA× = (Ai jeeei ⊗eee j)× := Ai jeeei ×eee j, (11.122)

a notation that is frequently used in Russian textbooks (see, e.g., Zhilin (2003), pg.
48). Because in an orthonormal base we have eeei ×eee j = εki jeeek, εki j being the totally
antisymmetric Levi-Cevita symbol, it can be converted into the following expression
based on the Levi-Cevita tensor, εεε = εki jeeek ⊗eeei ⊗eee j:

AAA× = εεε •AAA, (11.123)

where the outer double dot product is defined by (aaa⊗bbb)• (ccc⊗ddd) = (aaa · ccc)(bbb · ddd)
(see Lebedev et al, 2010, , pg. 40).
Once more we now perform a calculation for simplicity in an orthonormal frame eeek.
Then ĨII = eeek ⊗eeek, and if we now apply the Gibbsian cross operator to Eq. (11.119)1
we obtain:

σ l
× = (ω̃ωωd×eeek ⊗eeek)× = (ω̃ωωd×eeek)×eeek =−2ω̃ωωd. (11.124)

However, by observing Eq. (11.123) this is usually written as:

ω̃ωωd=−1
2

εεε •σ l, (11.125)

and considered as the definition of the angular velocity vector (see for example
Eringen (1980), pg. 85 or Hutter and Jöhnk (2004), pg. 119). Typically no reference
is made to the fact that this relation concerns the left angular velocity vector and that
there is a right equivalent as well:

9 Sometimes also referred to as the “strapdown equations” in the American aero-astro literature,
see Stevens et al (2016), pg. 45.
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σ r
× =−2Ω̃ΩΩ

d
, Ω̃ΩΩ

d
=−1

2
εεε •σ r. (11.126)

These subtle facts are simply ignored, because the structure of the equations stays
the same. We may conclude that what is known as Poisson relations in the Russian
literature is nothing else but Eqs. (11.125) or (11.126)2 in disguise. Nevertheless,
the connection between Eqs. (11.124) and (11.125) will prove valuable if it comes
to the transformation properties of vectors and tensors during a change of FoR.

So far the situation w.r.t. the x-FoR. The viewpoint of the y-FoR is analogous: The
left angular velocity, ω̂ωω e(t), and the right angular velocity, Ω̂ΩΩ

e
(t), are connected by

the rotational tensor e
Q̂QQ(t):

de
Q̂QQ

dt
= ω̂ωω e×e

Q̂QQ,
de

Q̂QQ

dt
=

e
Q̂QQ×Ω̂ΩΩ

e
, ω̂ωω e=

e
Q̂QQ ·Ω̂ΩΩ e

. (11.127)

Consistently we should now ask as to how the rotational tensors dQ̃QQ(t) and e
Q̂QQ(t)

(and the corresponding left and right angular velocities, ω̃ωωd, ω̂ωω e and Ω̃ΩΩ
d
, Ω̂ΩΩ

e
, respec-

tively) are related. However, this question is inadequately posed, because the tensors
dQ̃QQ(t) and e

Q̂QQ(t) are determined in different frames of reference (cf., Eqs. (11.10) and
(11.18)). First an imaging operation has to be performed. In order to transfer a vec-
tor or a tensor from the y-system to the x-system and vice versa one has to replace
dddk ↔ d̃ddk(t) and eeek ↔ êeek(t). Hence, for imaging dQ̃QQ(t)↔ d

Q̂QQ(t) and e
Q̂QQ(t)↔ e

Q̃QQ(t) the
best way to start is with the following relations, which hold for orthonormal frames:

dQ̃QQ = d̃ddk(t)⊗eeek ,
e
Q̂QQ = êeek(t)⊗dddk, (11.128)

If we now first argue intuitively and assume that the image operation ˜(·) on êeek anni-
hilates the previous operation ˆ(·) to obtain eeek again (and similarly for the dddk-vectors)
we find:

e
Q̃QQ = eeek ⊗ d̃ddk(t) ,

d
Q̂QQ = dddk ⊗ êeek(t). (11.129)

Then the rotational tensors should be related by the following two expressions,
which, in hindsight, seem rather obvious:

e
Q̃QQ(t) = dQ̃QQ

⊤
(t) , d

Q̂QQ(t) =
e
Q̂QQ

⊤
(t). (11.130)

In the main text we shall present a less abstract proof that, however, is also based on
informal but seemingly obvious arguments.

These relations come in handy for rewriting Eqs. (11.13) and (11.21) as follows:

ỹl(t) =
e
Q̃kl(t)ŷk(t) , x̂l(t) =

dQ̂kl(t)x̃k(t) (11.131)

both valid in orthonormal bases.

At this point reference can again be made to textbooks, such as Müller (1985), pg.
4, or Hutter and Jöhnk (2004), pg. 117, which show equations like that but without
making all the subtle distinctions.
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Chapter 12

On Electronically Restoring an Imperfect

Vibratory Gyroscope to an Ideal State

Stephan V. Joubert, Michael Y. Shatalov & Hiltje Spoelstra

Dedicated to Charlotta E. Coetzee 1955 - 2012.

Abstract With regard to G.H. Bryan’s publication in 1890, we call the following
Bryan’s law (or Bryan’s effect): "The vibration pattern of a revolving cylinder or
bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell".
Bryan’s factor is the proportionality constant that can be theoretically calculated for
an ideal vibratory gyroscope (VG). If a perfectly symmetric VG is not ideal, that is,
if imperfections and damping are present, then the precession rate (pattern rotation
rate) depends on a number of factors. Indeed it depends on the rotation rate of the
vehicle it is attached to, mass-stiffness and symmetry imperfections as well as any
anisotropic damping (linear or nonlinear) that may be present in the VG. Assuming
perfect axissymmetry for the VG, we show how to negate the effects of manufac-
turing mass-stiffness imperfections as well as the effects of any type of tangentially
anisotropic damping that might occur. We achieve this by showing exactly how to
symmetrically arrange an electronic array about the symmetry axis. This array con-
sists of curved capacitors under a mixture of a constant (fixed) charge and a small
meander charge. We show exactly how the fixed voltage on the capacitor should be
adjusted in order to eliminate the frequency split caused by the mass-stiffness imper-
fection. Furthermore, we show how the meander voltages of the capacitors should
be adjusted in order to maintain principal vibration, eliminate quadrature vibration
and restore spurious pattern drift in the VG so that it obeys Bryan’s law, restoring
the precession rate to the ideal rate so that Bryan’s factor can be used for calibration
purpose. Equations of motion are derived in the form of averaged ODEs that provide
us insight into VG behaviour.
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12.1 Introduction

Engineers exploit Bryan’s law (Bryan, 1890) for calibrating a navigational vibratory
gyroscope (VG). However, when a VG is manufactured, inevitable manufacturing
imperfections will be present if the manufacturing process is not stringent and/or the
materials used are not chemically pure. Because a VG operates using Bryan’s effect
and Bryan’s factor (the proportionality constant mentioned in the law), we will call
the vibration dynamics of a VG an ideal state of vibration if Bryan’s effect is the
same as that of a VG where manufacturing imperfections have been eliminated or
controlled and no anisotropic damping is present or has been controlled.
It is folklore that a frequency split occurs affecting Bryan’s law in a VG if

• it is not perfectly axissymmetric about its axis of rotation (see e.g. Wang et al,
2015, 2016, for a list of citations) and/or

• mass imperfections are present (see e.g. Shatalov et al, 2011; Ma and Su, 2015,
for a list of citations) and/or

• stiffness imperfections are present (see e.g. Joubert et al, 2011, 2015).

With the sophisticated computer-assisted turning machinery available nowadays we
will assume that the VG is manufactured to a fine tolerance so that axissymmetry is

established initially and we consequently eliminate this source of frequency splitting
immediately from our considerations.
Isotropic damping does not affect Bryan’s law in a VG as discussed in Joubert et al
(2013), while the presence of any of the following three “anisotropies” in the VG
does:

• mass imperfections,
• stiffness imperfections,
• any form of anisotropic damping.

The work presented here extends the work presented in Shatalov and Coetzee (2011)
by

1. using a theory that embraces a not necessarily thin shelled VG;
2. introducing anisotropic nonlinear damping into the equations of motion;
3. extending the averaging process to include even order anisotropic damping;
4. including numerical experiments to visualise and explain VG behaviour and

equations of motion;
5. clarifying symbol usage;
6. simplifying all equations;
7. showing exactly how the controlling electrodes should be manipulated; and
8. correcting a “concluding statement”.

A number of contemporary engineers are contemplating the manufacture of VGs
that are not fused quartz hemispherical vibratory gyroscopes (HVGs). They use
geometries that are easier to manufacture (such as bell, cylindrical, cone and
paraboloid shapes) as well as materials such as metals that are readily machined, but
that have a lower Q-factor than fused quartz. Recently, Ma and Su (2015), Liu et al
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(2013), and Liu et al (2016) manufactured what is claimed to be an impact-resistant,
bell-shaped VG using Ni43CrTi. Hence the sensitivity of these VGs is lower than a
fused quartz HVG. Consequently, we aim to make our ideas about increasing sensi-
tivity accessible to these manufacturing engineers who do not necessarily have the
time or inclination to interpret a highly technical, succinct paper such as Shatalov
and Coetzee (2011).
While the exact nature of the frequency split caused by mass-stiffness imperfections
is discussed in Joubert et al (2015) Eq. (10) and for mass-imperfections in Ma and
Su (2015) Eq. (8), engineers have measured frequency split and gyroscopic effects
in a VG using a ring model with mass imperfections simulated by FEM (see e.g. Ma
and Su, 2015; Liu et al, 2016). Unfortunately, even using an ideal model for the VG,
the standard FEM generates a frequency split. Hence this type of numerical analysis
is flawed unless the mesh is extremely fine. Using their superb equipment, Ma and
Su (2015) measured the resulting frequency split (caused by the glued-on mass of
the piezoelectric electrodes used for “driving” and “sensing”) and they suggested a
mass-balancing scheme that they verified experimentally.
Before engineers attempt to build apparatus based on our electrode array, an opti-

mal scheme (such as that discussed in Shatalov et al, 2015) for a mechanical mass-
balancing scheme such as that suggested by Ma and Su (2015) (and some of the
citations therein) must be applied so that any remaining frequency split is small. In-
deed, if the frequency split is large, then the capacitor voltages per small capacitor
gap length that may be necessary to eliminate the split might exceed the dielectric

strength (of air, say, with Emax = 3MV .m−1 (Reitz and Milford, 1969)) and the
dielectric will break down, rendering the capacitor array useless.
Another motivation for using our electrode array is the following: Even if (after op-
timal mass-balancing) the frequency split is small enough to neglect, unfortunately,
with time, mass-stiffness and damping anisotropy distributions could change slightly
in the VG (fatigue effects). This could negate the mass-balancing and significant fre-
quency split and/or vibration pattern drift could reappear. This is undesirable in a
working VG that would then have to be disassembled in order to rebalance it, if at
all possible.
We do not attempt to verify our theory by means of experiment, but tentatively
propose a theory that we trust will enable engineers with well-equipped laboratories
to design the electrode array described here and verify (and modify if necessary) the
theory via repeatable experiments.
With regard to vibratory gyroscopes and electronic operation, it is worth consulting
the pioneering works of Zhuravlev and Klimov (1988) and Zhuravlev and Linch
(1995) as well as the contemporary work of Zhuravlev (2015).
Section 12.2 discusses notation and lists some useful definite integrals. Nonlin-
ear prestress, kinetic and potential energy are contemplated in Sect. 12.3, while
Sect. 12.4 focusses on a generalised Rayleigh dissipation function, leading to non-
linear tangentially anisotropic damping of any order. An electrode array, which is
introduced in Sect. 12.5, controls both frequency split (Sect. 12.6) and nonlinear
anisotropic damping via parametric excitation (Sect. 12.7). Exact equations of mo-
tion (ODEs), that include nonlinear anisotropic damping of any order, are obtained
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in Sect. 12.8 and a numerical experiment is conducted using these ODEs in Sect.
12.9. Averaged versions of the ODEs of motion are obtained in Sect. 12.10, while
some graphical comparisons are made and a quantitative analysis of the averaged
ODE yields some insight into VG behaviour in Sects 12.11 and 12.12. Conclusions
are drawn in Sect. 12.13.

12.2 Notation

Studies have been made of VGs for various slowly rotating structures that include
thin-shelled cylinders, rings and discs as well as composite bodies consisting possi-
bly of layers of discs, rings, spheres, cylinders, cones, paraboloids and bells (see e.g.
Liu et al, 2013, 2016; Joubert et al, 2009; Shatalov et al, 2012; Loveday and Rogers,
1998; Shatalov et al, 2009; Joubert et al, 2014a,b; Ma et al, 2015).
While we consider a polar coordinate system Orϕ , we might have considered other
curvilinear systems Orϕk with k an “axial” variable (axis of symmetry variable), r a
“radial” variable and ϕ a “tangential” variable, see for instance Ma et al (2015) for
a paraboloid system and Liu et al (2016) for a bell-shaped system.
Indeed, in the sequel we will be working with an annular disc vibratory gyroscope
(DVG) with inner radius p and outer radius q using the polar coordinate system (see
Fig. 12.1), because all of the characteristics of a VG may be illustrated in a techni-
cally easy manner when compared to the calculation details of a more complicated
VG structure.
By “smallness” of the inertial (angular) rate of rotation about the axis of symmetry
εΩ , we mean that this rate is substantially smaller than the lowest eigenvalue ω0

of the vibrating system. In practice, if εΩ is less than 10% of the eigenvalue for the
mode of vibration being studied, then results are satisfactory. Consequently O(ε2)
terms such as centripetal forces (proportional to ε2Ω 2) are neglected and hence,
together with the nonlinear form of tangential strain, the standard equations of the
linear theory of elasticity are used to determine the total potential energy Ep of
the particles in the object under consideration. Furthermore, both the total kinetic
energy Ek of the particles in the object under consideration (see e.g. Shatalov et al,

Fig. 12.1 An annular disc
showing polar coordinates
Orϕ ; its thickness h; inner
radius p; outer radius q;
infinitesimal capcitor area
dA; radial and tangential
displacements u and v of point
P; and slow rotation rate εΩ
about the symmetry axis z
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2011; Joubert et al, 2011) as well as the total electrical energy Ee of the controlling
capacitor array are determined and consequently the Lagrangian L = Ek −Ep +Ee

for the system of vibrating particles is formulated (up to O(ε2)).

Consider a particle P in the VG under consideration. Assume that u is “radial”, v is
“tangential” and w is “axial” displacement with

u = U [C(t)cosmϕ + S(t)sinmϕ ] , (12.1)

v = V [C(t)sin mϕ − S(t)cosmϕ ] , (12.2)

w = W [C(t)cosmϕ + S(t)sinmϕ ] , (12.3)

where m is the circumferential wave number U,V and W are eigenfunctions of one
or two variables appropriate to the coordinate system (see e.g. Fig. 4. and Eqs. (5)
of Ma et al (2015) for a non-rotating paraboloid system or Shatalov et al (2009)
Eqs. (9) for a layered spherical system). These eigenfunctions have the dimensions

of length, while the functions C(t) and S(t) are dimensionless functions of time t. If
the structure is a ring or annulus, then we take w = 0 and assume that all unbalanced
forces in the axial z-direction are zero. It is shown in Joubert et al (2014b) that in
a DVG the eigenfunctions U = U(r) and V = V (r) for a stationary DVG remain
invariant under slow rotation and are hence readily calculated numerically (Joubert
et al, 2014a) or (not so readily) analytically in terms of Bessel and Neumann func-
tions. Ultimately, the equations of gyroscopic motion for each system under similar
constraints will be similar, see e.g. Joubert et al (2009) Eqs. (24) and (25)] where
a layered DVG was studied, Joubert et al (2011) Eqs. (19) where Bryan’s effect
for a planet with various layers was studied and Liu et al (2016) Eqs. (20) where a
bell-shaped VG was studied).

For completeness we reproduce the definite integrals I0,I1, I2 and I3 given in Eqs.
(14), (15), (16) and (17) of Joubert et al (2014a), which occur in the calculation of
the kinetic and potential energy (see Eqs. (12.9) and (12.14) below) for a DVG. We
note that in general they might be sums of integrals for various layers of substance
in another symmetrically shaped VG. For the annular disc in Fig. 12.1 they are

I0 =
1
2

ρ0h

q∫

p

(
U2 +V 2)rdr, I1 = ρ0h

q∫

p

UVrdr, I3 = ρ0h

q∫

p

(
U2 −V 2)rdr, (12.4)

I2 =
Eh

4(1− µ2)

q∫

p

1
r






2rU ′ (µ (mV +U)+ rU ′)+
(1− µ)(mU +V − rV ′)2+

2(mV +U)(mV +U + µrU ′)




dr, (12.5)

where E is Young’s modulus of elasticity, µ is Poisson’s ratio (see e.g. Redwood,
1960), ρ0 is average mass density and h is the height of the disc.

In this paper, for a DVG, our assumptions reveal two more integrals during the
calculation of the potential energy that are readily determined, namely
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I4 = Eh

q∫

p

[
(1+m2)(U2 +V 2)+ 4mU V

]
rdr, (12.6)

I5 = Eh

q∫

p

((
1−m2)(U2 −V 2)rdr. (12.7)

It was demonstrated in Shatalov et al (2009) (for the appropriate definite integrals of
the spherical VG studied there), that Bryan’s factor η and the ideal VG natural angu-
lar rate or eigenvalue ω0 = 2π f (where f is the natural frequency or eigenfrequency
of vibration) are given respectively by

η =
I1

I0
& ω2

0 =
I2

I0
. (12.8)

12.3 Kinetic Energy, Prestress and Potential Energy

Assuming that mass imperfections occur tangentially in the annular disc (see e.g.
Eq. (21) of Joubert et al (2014a)), the kinetic energy of all of the vibrating particles
in the disc is given by

Ek ≈
h

2

2π∫

0

q∫

p

ρ(ϕ)
[(

u̇2 + v̇2)+ 2εΩ (uv̇− u̇v)+ 2εΩ v̇r
]

rdrdϕ , (12.9)

where the density may be chosen as the sum of the zeroth and 2mth harmonics:

ρ(ϕ) := ρ0

[
1+ 4 ε

I0

I3
(ρc cos2mϕ +ρsS sin2mϕ)

]
. (12.10)

Here ρ0 is the average density of the disc and ρc and ρs are dimensionless constants
that we may readily associate with the coefficients of the 2mth harmonics. According
to Eq. (29) of Joubert et al (2014a), this yields

Ek ≈ π
[
(Ċ2 + Ṡ2)I0 + ε

[
2Ω(ĊS−CṠ)I1 +

(
ρc(Ċ

2 − Ṡ2)+ 2ρsĊṠ
)

I0
]]
. (12.11)

We assume that during the manufacturing process, some small prestress is intro-
duced in the tangential direction. Using an argument similar to that discussed for
density variations in Joubert et al (2014a), we assume that tangential prestress has a
Fourier series that is essentially the sum of the zeroth and 2mth harmonics, yielding
tangential stress

σϕ :=
E

1− µ2 (εϕ + µεr)+ 8 ε E I3(
σ0

I4
+

σc

I5
cos2mϕ +

σs

I5
sin2mϕ), (12.12)
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where εϕ is tangential strain, εr is radial strain and µ is Poisson’s ratio. Here σ0,σc

and σs are dimensionless constants that we may readily associate with the coeffi-
cients of the zeroth and 2mth harmonics (we have chosen the form of the stress and
density coefficients for the purposes of later simplification). In order to analyse the
effects of this prestress, we need to introduce the nonlinear form of tangential strain:

εϕ :=
1
r

(
∂v

∂ϕ
+ u

)
+

1
2r2

[(
∂v

∂ϕ
+ u

)2

+

(
∂u

∂ϕ
− v

)2
]
. (12.13)

The second-order strain term is necessary to yield nonzero potential energy due to
prestress. After a long, technical calculation (we used MATHEMATICA to do the
book-keeping) we determined that the potential energy Ep of the particles in the
annular disc is given by

Ep =
h

2

2π∫

0

q∫

p

{
σrεr +σϕεϕ +σrϕεrϕ

}
rdrdϕ

= πI2
{(

C2 + S2)(1+ εσ0)+ ε
[(

C2 − S2)σc + 2CSσs

]}
(12.14)

(see Redwood, 1960; Joubert et al, 2014b, Section 4 for the usual definitions of
linear stresses σr,σrϕ and linear strains εr,εrϕ etc.).

12.4 Tangentially Anisotropic Damping

In Joubert et al (2017) it was demonstrated that the generalised Rayleigh dissipation
function R for tangentially anisotropic nonlinear damping yields

∂R

∂Ċ
≈ 2πI0

∞

∑
n=1

{
ε

(√
(Ċ2 + Ṡ2)

)n−1
(

δ0,n+ε̃C n+1
√

δ n−1
0,n δ 2

c,n

)
Ċ+ε̃S n+1

√
δ n−1

0,n δ 2
s,nṠ

ω̃n−1

+ εε̃
(√

(Ċ2 + Ṡ2)
)n−3 (n−1)

(
C n+1

√
δ n−1

0,n δ 2
s,n(Ċ

2−Ṡ2)+2S n+1
√

δ n−1
0,n δ 2

s,nĊṠ
)

Ċ

2ω̃n−1

}
,

(12.15)

∂R

∂ Ṡ
≈ 2πI0

∞

∑
n=1

{
ε

(√
(Ċ2 + Ṡ2)

)n−1
(

δ0,n−ε̃C n+1
√

δ n−1
0,n δ 2

c,n

)
Ṡ+ε̃S n+1

√
δ n−1

0,n δ 2
s,nĊ

ω̃n−1

+ εε̃
(√

(Ċ2 + Ṡ2)
)3−n (n−1)

(
C n+1

√
δ n−1

0,n δ 2
s,n(Ċ

2−Ṡ2)+2S n+1
√

δ n−1
0,n δ 2

s,nĊṠ

)
Ṡ

2ω̃n−1

}

(12.16)
where δ0,n > 0 is the “isotropic damping” coefficient that is proportional to the ze-
roth harmonic of a Fourier series, δc,n > 0 (respectively δs,n > 0) is the “anisotropic
damping coefficient” proportional to the cosine (respectively sine) 2mth harmonic
of the Fourier series, C (respectively S) is the sign of the cosine (respectively sine)
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2mth harmonic of the Fourier series and ω̃ is a fixed angular frequency chosen close
to the vibration frequency of the mode of vibration m under consideration. The small
quantity ε reminds us that damping is light, while the small quantity ε̃ reminds us
that the anisotropic part of the damping is small and we may neglect O(ε̃2).

12.5 Electrical Energy

Consider the square wave with amplitude A = 1, period π , on-off ratio 1 and its
approximate Fourier series

Sq(x) =

{
1 if 0 ≤ x ≤ π

2
0 if π

2 < x ≤ π
≈ 1

2
+

2
π

sin2x. (12.17)

Now consider a driving function for the VG given in terms of a driving angular rate

ω̂ , namely the meander function

M(t) =
1
2
+

2
π

sin2ω̂t. (12.18)

We proceed to control the three anisotropies by using an array of circular-surfaced
electronic plates arranged symmetrically about the vibrating annular disc. For in-
stance, for m ≥ 2, to control the mth mode of vibration we place 8m circular-plate
electrodes around the disc, evenly spaced. Each plate is placed in such a way that its
surface is “parallel” to the cylindrical surface of the disc and the small gap between
the plate and disc is d. These circular plates, together with the cylindrical surface
of the disc, approximate a parallel plate capacitor array. We make the following
assumptions about the array for the mth mode of vibration:

1. The polar axis runs from the centre of the disc through the centre of the first
electrode and the angle subtended at the centre of the disc by the arc length of
each symmetrically arranged circular plate is 2∆ϕ . For the sake of brevity we
call 2∆ϕ the “angular length”. The plates are numbered (from the first plate) 1
to 8m in the direction of increasing ϕ .

2. Small potential differences
√

εV1(t),
√

εV2(t),
√

εV3(t) and
√

εV4(t) are main-
tained between each plate and the disc for capacitors numbered one to four re-
spectively with

Vi(t) =Wi + ε̂∆WiM(t); Wi ≥ 0 & ε̂∆Wi ≥ 0 i = 1,2,3,4, (12.19)

where the small parameter ε̃ > 0 is introduced into the meander term ε̂∆WiM(t)
in order to remind us that Wi is at least two orders larger than ε̂∆Wi, that is

ε̂∆Wi

Wi

< 1%. (12.20)

We may consequently make the assumption that
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W 2
i +Wiε̂∆Wi ≈W 2

i . (12.21)

The meander term will introduce parametric excitation (resonance) into the equa-
tions of motion. We will not neglect terms of O(εε̂) because the meander part of
each Vi(t) plays a significant role in maintaining vibration in the presence of
damping. However, where necessary we will neglect O(ε̂2) to simplify matters.
In order to calculate electrical capacitance, we need to work with the square of
the potential difference. Hence, neglecting O(ε̂2), using Eqs. (12.18) and (12.21)
we have

V 2
i (ϕ , t) =W 2

i + 2Wiε̂∆WiM(t)+ ε̂2∆W 2
i M2(t)

=U2
i +

4
π

∆U2
i sin2ω̂t, (12.22)

where

U2
i =W 2

i ; ∆U2
i =Wiε̂∆W ;

∆U2
i

U2
i

=
ε̂∆Wi

Wi

< 1%. (12.23)

3. The other potential differences around the disc are π
m

periodic in the sense that
capacitor number five has potential difference

√
εV1, capacitor number six has

potential difference
√

εV2, · · · and capacitor number 8m has potential difference√
εV4.

4. The plates are large enough to ensure that the electric field is almost constant and
are far enough away from each other so that mutual inductance is negligible.

Figure 12.2 illustrates the array for the m = 3 mode. Now consider a small surface
area dA = hqdϕ on the cylindrical surface of the disc as depicted in Fig. 12.1. If
there is part of a plate covering dA, then this “infinitesimal parallel plate capacitor”

has infinitesimal capacitance (see Reitz and Milford, 1969, Eq. (6-30))

dC =
ε0

d− uq

dA =
ε0hq

d− uq

dϕ ; ε0 ≈ 8.854× 10−12F .m−1 (12.24)

where ε0 is the electromagnetic permittivity of air (vacuum), d is the gap between
the nonvibrating disc and the plate and uq = u(q,ϕ , t) is the radial displacement of
a vibrating particle at the edge of the DVG where r = q (see Eq. (12.1)). If there is
no part of a plate covering dA, then dC = 0. Because uq << d, the total electrical
potential is (see Reitz and Milford, 1969, Eq. (6-29))

Ee = ε
1
2

∫

C

V 2(ϕ , t)dC = ε
ε0hq

2d

2π∫

0

V 2(ϕ , t)

[
1+

uq

d
+

u2
q

d2

]
dϕ . (12.25)

Because of the periodicity involved with the square of the potentials, for the function
V 2(ϕ , t) we may determine a Fourier series
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Fig. 12.2: The electrode array for the m = 3 vibration mode showing the orientation
of the small potential differences

√
εVi, i = 1,2,3,4

V 2(α, t) =
a0

2
+

∞

∑
n=0

an cosnϕ + bn sinnϕ . (12.26)

This function is depicted for the m = 3 mode of vibration in Fig. 12.3 and we used
MATHEMATICA to effortlessly provide the coefficients of the Fourier series yielding
coefficients as depicted in Fig. 12.4. From Eq. (12.1), the “TrigReduce” command
in MATHEMATICA yields

u2
q

d2 =
u2(q,ϕ , t)

d2 =
U2(q)

d2

[
C2 + S2

2
+

C2 − S2

2
cos2mϕ +CS sin2mϕ

]
. (12.27)

Consequently, because of the orthogonality of the sine and cosine functions, when
we substitute the Fourier series for V 2(ϕ , t) given by Eq. (12.26) into Eq. (12.25),
only the zeroth and the 2mth harmonics are salient. Furthermore, because the mth

harmonics are zero (see Fig. 12.4), we may also neglect
uq

d
.

Hence using the tables of Fourier coefficients given in Fig. 12.4, the electrical po-
tential energy of the array is
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Fig. 12.3: A depiction of the profile of the square of the potential difference func-
tion V 2(ϕ , t) for the capacitor array surrounding the disc vibratory gyroscope where
V 2

i (ϕ , t) =U2
i + 4

π ∆U2
i sin2ω̂t; i = 1,2,3,4 and the m = 3 vibration mode

Ee = ε
ε0hq

2d

2π∫

0

{
2m∆ϕ

(
V 2

1 +V 2
2 +V 2

3 +V 2
4

)

π
+

2
(
V 2

1 −V 2
3

)
sin(2m∆ϕ)

π
cos2mϕ

+
2
(
V 2

2 −V 2
4

)
sin(2m∆ϕ)

π
sin2mϕ

}{
1+

u2
q

d2

}
dϕ .

(12.28)

Fig. 12.4: The Mathematica code for determining the Fourier coefficients of the
function V 2(ϕ , t) depicted in Fig. 12.3 for the m = 3 vibration mode
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Keeping Eq. (12.22) in mind, we use MATHEMATICA to do the “book-keeping”
during the calculation of Eq. (12.28) to yield

Ee = πε
{

k1
(
C2 + S2)+ k2(C

2 − S2)+ 2k3CS+ k0
}
, (12.29)

where

k1 =
mhq∆ϕε0U2(q)

πd3

(
V 2

1 +V 2
2 +V 2

3 +V 2
4

)
,

k2 =
hqε0 sin(2m∆ϕ)U2(q)

2πd3

(
V 2

1 −V 2
3

)
,

k3 =
hqε0 sin(2m∆ϕ)U2(q)

2πd3

(
V 2

2 −V 2
4

)
,

k0 =
2mhq∆ϕε0

πd

(
V 2

1 +V 2
2 +V 2

3 +V 2
4

)
.

(12.30)

12.6 Eliminating Frequency Split

We include the electrical potential energy into the Lagrangian L as follows

L = Ek −Ep +Ee. (12.31)

Hence using Eqs. (12.11), (12.14) and (12.29), we obtain

L = πI0(Ċ
2 + Ṡ2)

+ επ
[
2I1Ω(ĊS−CṠ)+ I0ρc(Ċ

2 − Ṡ2)+ 2I0ρsĊṠ
]

− πI2
{(

C2 + S2
)
(1+ εσ0)+ ε

[(
C2 − S2

)
σc + 2CSσs

]}

+ επ
[
k0 + k1

(
C2 + S2

)
+ k2(C

2 − S2)+ 2k3CS
]
.

(12.32)

With Eqs. (12.15) and (12.16) in mind, the Euler-Lagrange equations of motion

d
dt

∂L

∂Ċ
− ∂L

∂C
=−∂R

∂Ċ
,

d
dt

∂L

∂ Ṡ
− ∂L

∂S
=−∂R

∂ Ṡ
, (12.33)

yield the following matrix equation of motion for the VG:
(

1+ ερc ερs

ερs 1− ερs

)(
C̈

S̈

)
+ 2ηεΩ

(
0 1
−1 0

)(
Ċ

Ṡ

)

+
1
I0




I2 [1+ ε (σ0 +σc)]
−ε (k1 + k2)

ε (I2σs − k3)

ε (I2σs − k3)
I2 [1+ ε (σ0 −σc)]

−ε (k1 − k2)



(

C

S

)

=− εD (12.34)
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where the matrix D representing damping is

D =




∂R

∂Ċ

∂R

∂ Ṡ


 . (12.35)

Multiplying Eq. (12.34) by the inverse of the leading coefficient matrix, neglecting
O(ε2) and identifying the mass-stiffness coefficients

µc = ρc +σc; µs = ρs +σs (12.36)

we obtain

(
C̈

S̈

)
+

1
I0




I2(1+ εσ0)− εk1

−ε (k2 + I2µc)
−ε (k3 + I2µs)

−ε (k3 + I2µs)
I2(1+ εσ0)− εk1

+ε (k2 + I2µc)



(

C

S

)

= 2ηεΩ

(
0 −1
1 0

)(
Ċ

Ṡ

)
− εD. (12.37)

If all of the electrodes (capacitors) are switched off, then the ki = 0 for i = 1,2,3,4
and the matrix equation of motion will be

(
C̈

S̈

)
+ω0

(
1+ εσ0 − εµc −εµs

−εµs 1+ εσ0 + εµc

)(
C

S

)

= 2ηεΩ

(
0 −1
1 0

)(
Ċ

Ṡ

)
− εD. (12.38)

with ω0 the ideal (or natural) angular frequency given by Eq. (12.8).
The eigenvalues of the matrix

ω2
0

(
1+ εσ0 − εµc −εµs

−εµs 1+ εσ0 + εµc

)
(12.39)

show that there exists a frequency split with frequency of beats up to O(ε2)

fbeats =
εω0

√
µ2

c + µ2
s

2π
(12.40)

caused by the mass-stiffness anisotropy. Notice that the constant prestress term σ0

does not play a role in the frequency split.
This frequency split can be controlled by the capacitor array. Indeed, keeping
Eq. (12.22) in mind, from Eq. (12.30) each ki can be written

ki = Ki +∆Ki sin2ω̂t; i = 1,2,3 (12.41)
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where

K1 ∝
(
U2

1 +U2
2 +U2

3 +U2
4

)
,

∆K1 ∝
(
∆U2

1 +∆U2
2 +∆U2

3 +∆U2
4

)
,

K2 ∝
(
U2

1 −U2
3

)
, ∆K2 ∝

(
∆U2

1 −∆U2
3

)
,

K3 ∝
(
U2

2 −U2
4

)
,∆K3 ∝

(
∆U2

2 −∆U2
4

)
. (12.42)

Consequently, with the capacitors switched on, Eq. (12.37) yields

(
C̈

S̈

)
+

1
I0




I2(1+ εσ0)− εK1−
ε (K2 + I2µc)

−ε (K3 + I2µs)

−ε (K3 + I2µs)
I2(1+ εσ0)− εK1+

ε (K2 + I2µc)




(
C

S

)

= εF(C,S,Ċ, Ṡ)

(12.43)

where on the right hand side of Eq. (12.43)

F(C,S,Ċ, Ṡ) =
sin2ω̂t

I0

(
∆K1 +∆K2 ∆K3

∆K3 ∆K1 −∆K2

)(
C

S

)
+

2ηΩ

(
0 −1
1 0

)(
Ċ

Ṡ

)
−D. (12.44)

Notice that in Term (12.43) it is possible to achieve

K2 =−µcI2 & K3 =−µsI2 (12.45)

because we may manipulate capacitors, changing the size and sign of K2 and K3

according to Expressions (12.42).

Manipulating capacitors as indicated, the equations of motion simplify to
(

C̈

S̈

)
+ω2

(
C

S

)
= εF (12.46)

where the new electronically induced angular frequency of vibration is

ω =

√
I2(1+ εσ0)− εK1

I0
=

√
ω2

0 (1+ εσ0)− ε
K1

I0
, (12.47)

keeping Eq. (12.8) in mind. Note that the new angular frequency ω is

1. slightly different from the ideal angular frequency ω0;

2. affected slightly by constant prestress σ0; and

3. affected slightly by all of the nonmeander potential differences because

K1 ∝ U2
1 +U2

2 +U2
3 +U2

4 . (12.48)
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If it exists, it is not possible to eliminate constant prestress σ0 once the VG has
been manufactured; nor is it possible to eliminate K1 once the capacitors have been
adjusted to eliminate the frequency split.

12.7 Parametric Excitation

There are instruments capable of measuring the frequency split (see e.g. Figure 14
of the experimental system in Wang et al (2016)) and we may thus simplify our
equations by assuming the following:

1. the new angular frequency ω has been achieved by suitable adjustment of capac-
itors as suggested by Eqs. (12.42) and (12.45);

2. the excitation electrodes have been adjusted so that ∆U1 = ∆U3 and ∆U2 = ∆U4.
This yields

∆K2 = ∆K3 = 0, (12.49)

according to Expressions (12.42);
3. the meander signal (see Eqs. (12.18) and (12.22)) is adjusted so that the driving

frequency 2ω̂ is set to the new angular frequency 2ω ; and
4. the angular rate ω̃ in the Fourier series for the damping coefficient is set to the

new angular frequency ω (see Eqs. (12.15) and (12.16)).

Hence Eq. (12.44) now simplifies to

F =
sin2ωt

I0

(
∆K1 0

0 ∆K1

)(
C

S

)
+ 2ηΩ

(
0 −1
1 0

)(
Ċ

Ṡ

)
−D. (12.50)

We now rearrange the matrix equation Eq. (12.46) into a system of two ODEs:

C̈+ω2C = ε f1(Ċ, Ṡ,C,S)) (12.51)

S̈+ω2S = ε f2(Ċ, Ṡ,C,S). (12.52)

where, noting Eqs. (12.35) and (12.50), we obtain

f1(Ċ, Ṡ,C,S))=
sin2ωt

I0
∆K1C− 2ηεΩ Ṡ− 1

2πI0ε

∂R

∂Ċ
, (12.53)

and

f2(Ċ, Ṡ,C,S)=
sin2ωt

I0
∆K1S+ 2ηεΩĊ− 1

2πI0ε

∂R

∂ Ṡ
(12.54)

We could conduct a numerical experiment using Eqs. (12.51) and (12.52), compar-
ing the graphs of C and S, but little will be achieved because these are “fast variables”
depending on the fast independent variable ω . In order to conduct a numerical anal-
ysis we need to transform to “slow variables”, because, as observed by Friedland
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and Hutton (1978) just after Eq. (2.10), the rapidly varying quantities C and S are
“difficult to relate to” the inertial angular rate εΩ , while the behaviour of the slowly
varying quantities “may be expected to be more indicative of” the inertial angular
rate.

12.8 Principal and Quadrature Vibration

We introduce a change from “fast” to “slow” variables

(
C(t),S(t),Ċ(t), Ṡ(t)

)
−→ (P(t),Q(t),Θ(t),ψ(t)) (12.55)

using the transformation

C cosmϕ + S sinmϕ = Pcos[m(ϕ −Θ)]cosγ +Qsin[m(ϕ −Θ)]sinγ (12.56)

where P is the amplitude of the principal vibration, Q is the amplitude of the quadra-

ture vibration, mΘ is the precession angle (the rotation angle of the vibrating pat-
tern) and ψ is a phase angle with fast variable

γ = ωt +ψ . (12.57)

With P > Q ≥ 0, as explained in detail in Shatalov et al (2011), Eqs. (36) to (48),
the equations of motion of the VG are

Ṗ =− ε

ω
[ f1 cosmΘ + f2 sinmΘ ]sinγ, (12.58a)

Q̇ =− ε

ω
[ f1 sinmΘ − f2 cosmΘ ]cosγ, (12.58b)

mΘ̇ =
ε

ω (P2 −Q2)
{ f1[PsinmΘ sinγ +QcosmΘ cosγ]

− f2[PcosmΘ sinγ −QsinmΘ cosγ]}, (12.58c)

ψ̇ =− ε

ω (P2 −Q2)
{ f1[PcosmΘ cosγ +QsinmΘ sinγ]

+ f2[PsinmΘ cosγ −QcosmΘ sinγ]}. (12.58d)

12.9 Numerical Experiment

For various orders and/or combinations of orders of anisotropic damping, numerical
experiments can be conducted using Eqs. (12.58). First we need to determine rea-
sonable estimates for quantities in Eqs. (12.53) and (12.54). In order to determine
a good estimate for ∆K1

I0
, we use the “ideal” aluminium disc described in Joubert

et al (2014b) with inner radius 1.45m and outer radius 1.5m, which at the m = 2 vi-
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bration mode, has an angular frequency of approximately 30π rad .s−1 and Bryan’s
factor η = − 8

10 (see Eqs. (12.8)). Because the eigenfunctions are only determined
up to a multiplicative constant, their magnitude is never determined. Hence the size

of I0 (see Eqs. (12.4)) is never determined, although the ratio
√

I2
I0
≈ 30π rad .s−1 is.

However, we can estimate a suitable size for ∆K1
I0

as follows: Consider that, neglect-
ing prestress σ0, Eq. (12.47) yields two facts. Firstly

ε
K1

I0
≈ ω2

0 −ω2, (12.59)

and secondly that if ω = 30π rad .s−1, then it is not much smaller than ω0, say,
ω0 = 31π rad .s−1 . Hence it is reasonable to assume that with ε = 1

100

K1

I0
≈ 6000π2 Hz2 . (12.60)

Consequently, using Eqs. (12.41) and (12.23),

∆K1

I0
≈ 60π2 Hz2 . (12.61)

We use anisotropic quadratic damping (δ0,n 6=2 = δc,n 6=2 = δs,n 6=2 = 0) in Eqs. (12.53)
and (12.54); and we consider the following values that have been chosen in order to
highlight the influence of the driving electrodes and the anisotropic damping:

m = 2,ε =
1

100
, ε̃ =

1
100

,η =− 8
10

,Ω = π rad .s−1,

ω = 30π rad .s−1,C=1,S=1,δ0,2 = M× 600Hz,δc,2 = M× 3000Hz,

δc,2 = M× 7500Hz,
∆K1

I0
= L× 60π2 Hz2,

P(0) =
1
2
,Q(0) =

1
20

,Θ(0) = 0rad,ψ(0) = 0rad,0 ≤ t ≤ 2000s (12.62)

We used M and L to vary the size of the damping and driving electrodes respec-
tively. Using similar values as given in (12.62) for nonlinear damping of any or-
der, we choose M = 1 and L = 1 to switch the meander (driving) electrodes on
and L = 0 to switch them off. However, for anisotropic linear damping (δ0,n 6=1 =

δc,n 6=1 = δs,n 6=1 = 0), we had to make M = 1
100 and L = 191

100 in order to see para-
metric resonance. With L = 190

100 , P eventually vanishes and with L = 192
100 , P ap-

pears to grow without bound. In the presence of anisotropic quadratic damping,
using Eqs. (12.58) with values from (12.62), the NDSolve routine of MATHEMAT-
ICA produced Fig. 12.5, which reveals the following: If the driving electrodes are
switched on (L = 1), then the principal vibration amplitude P is initially damped
down from 0.5 to about 0.0065 during a transient state, but at the steady-state (about
t > Tss = 300s), it oscillates at an average nonzero level of about P = 0.00615,with
0.0060 ≤ P ≤ 0.0063. Clearly we are close to a state of parametric resonance
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Fig. 12.5: The "exact" numerical solution showing the behaviour of the amplitudes
of the principal P and quadrature Q vibrations for the m = 2 mode of vibration and
anisotropic quadratic damping (δ0,n 6=2 = δc,n 6=2 = δs,n 6=2 = 0)

here. Another desirable feature is also exhibited here, namely the amplitude of the
quadrature vibration Q is quite rapidly damped down from 0.05 to become negligi-

ble at the steady-state. However, if the driving electrodes are switched off (L = 0),
then both the principal amplitude P and the quadrature amplitude Q are initially
damped down with what appears to be different damping rates (as it should be with
anisotropic damping). However, as time evolves, neither Q nor P appears to vanish
completely, but seems to maintain a small but nonzero value.

With the electrodes switched on and suitably adjusted, Fig. 12.6 shows that during
the transient state, the precession angle mΘ does not increase “ideally”. However,
during the steady-state (t > Tss = 300s), the precession angle appears to become
linear with the same slope (ηεΩ) as the ideal precession angle ηεΩ t. Thus mΘ [t]
increases at a rate proportional to the inertial angular rate (Bryan (1890)) and so
the VG is behaving like an “ideal” VG that utilises Bryan’s factor for calibration
purposes.

We note that swapping the signs to C=−1,S=−1 in (12.62) does not significantly
change P and Q from what is presented in Fig. 12.5. However, the precession angle
mΘ and the phase angle ψ show significant change, as can be seen in Fig. 12.7
for the phase angle ψ . This is a phenomenon that appears to be more general than
merely swapping the signs C and S. Indeed, with any choice of signs C and S,
numerical experiments indicate that no matter what value we assign to the initial

value ψ(0), the phase angle appears to obey

lim
t→T>Tss

ψ(t) = 2k+1
2 π (12.63)

for some integer k (not necessarily 0 or −1), as can be seen in Fig. 12.7.
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Fig. 12.6: The "exact" numerical solution showing the behaviour of the precession
angle mΘ

Fig. 12.7: Swapping the signs of C and S of the 2mth harmonics of the anisotropic
quadratic damping coefficient significantly change the phase angle ψ (as well as the
precession angle mΘ (not shown)) demonstrating that anisotropic damping plays a
significant role in both quantities
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12.10 Averaging

While it is easy enough to analyse the behaviour of ODE (12.58) qualitatively
(graphically), it is not immediately evident how to predict behaviour by examin-
ing the ODE (12.58). In order to better understand the system of ODE (12.58) we
consider using the averaging operator

〈−〉= 1
2π

∫ 2π

0
(−)dγ, (12.64)

as discussed in Joubert et al (2017), which we attempt to apply to the ODEs. Hope-
fully these averaged ODEs will give us insight into how the VG behaves if it is
subject to nonlinear anisotropic damping and parametric excitation.
Linear (order one) anisotropic damping has been dealt with in Joubert et al (2011)
and Shatalov and Coetzee (2011), while the averaging process with odd-order

anisotropic damping is routine. For anisotropic even-order damping, with say
n = 2k, when one applies the transformation Eq. (12.56) to the Eqs. (12.53) and
(12.54), one encounters the expression

(√
Ċ2 + Ṡ2

)2k−1
=

(
ω

√
P2 sin2 γ +Q2 cos2 γ

)2k−1

. (12.65)

Consequently it is not a routine exercise by pen and paper (or by using MATHE-
MATICA) to calculate the average of the ODE (12.58).
In Joubert et al (2017), using values similar to those given in (12.62), for various
vibration modes m ≤ 10 and (combinations of) orders of anisotropic damping n ≤
10, it was demonstrated numerically that the root of the mean square (RMS) value
of P and Q satisfies

√
P2+Q2

2 ≈
√(

P2 sin2 γ +Q2 cos2 γ
)
. (12.66)

This approximation appears to be valid over the range 0 ≤ t ≤ 2000 for any initial

values 0 < Q(0)< P(0).
In the absence of electronic control using the meander function, it was demonstrated
in Joubert et al (2017) that a good approximation is obtained by neglecting the
second line O(εε̃) terms in Eqs. (12.15) and (12.16) when calculating Ṗ and Q̇ and
mΘ̇ . We therefore

1. use Eq. (12.56) to transform Eqs. (12.53) and (12.54), neglecting some O(εε̃)
terms in Eqs. (12.15) and (12.16) when calculating Ṗ and Q̇ and mΘ̇ ;

2. make the replacement suggested by the RMS (Eq. (12.66)) in the transformed
equations; and

3. use the averaging operator Eq. (12.64) and MATHEMATICA to determine the “av-
eraged” versions of ODE (12.58) as follows:
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Ṗ = −ε
∞

∑
n=1

P
(
P2 +Q2

) n−1
2

δ0,n+ε̃
[
C n+1

√
δ n−1

0,n δ 2
c,n cos2mΘ+S n+1

√
δ n−1

0,n δ 2
s,n sin2mΘ

]

√
2n+1

− ε ∆K1
4I0ω Pcos2ψ ,

(12.67)

Q̇ = −ε
∞

∑
n=1

Q
(
P2 +Q2

) n−1
2

δ0,n−ε̃
[
C n+1

√
δ n−1

0,n δ 2
c,n cos2mΘ+S n+1

√
δ n−1

0,n δ 2
s,n sin2mΘ

]

√
2n+1

+ ε ∆K1
4I0ω Qcos2ψ ,

(12.68)

mΘ̇ = ηεΩ

+ εε̃
∞

∑
n=1

(√
P2+Q2

)n+1

(P2−Q2)

[
C n+1

√
δ n−1

0,n δ 2
c,n sin2mΘ−S n+1

√
δ n−1

0,n δ 2
s,n cos2mΘ

]

√
2n+1

− ε ∆K1
I0ω

PQ

(P2−Q2)
cosψ sinψ ,

(12.69)

ψ̇ = −εε̃
∞

∑
n=1

PQ
(√

P2+Q2
)n−1

(P2−Q2)

(n+3)
[
C n+1

√
δ n−1

0,n δ 2
c,n sin2mΘ−S n+1

√
δ n−1

0,n δ 2
s,n cos2mΘ

]

√
2n+3

+ ε ∆K1
4I0ω

P2+Q2

(P2−Q2)
sin2ψ .

(12.70)

12.11 Graphical Comparisons and Quantitative Analysis of the

Exact and Averaged ODE

We will talk of the “exact solution” when we mean a suitable numerical solution
produced by using Eqs. (12.53) and (12.54)) in ODEs (12.58). Using the values in
(12.62), the solutions to the averaged ODEs (12.67) to (12.70) show the same global
behaviour as the exact solutions, as may be observed in Fig. (12.8). Consequently we
assume that the equations of motion of the VG are well represented by the averaged
ODEs (12.67) to (12.70), and hence we assume that they may be used to conduct
some quantitative analyses of VG behaviour.

Firstly, observe Eq. (12.68): The first term in Eq. (12.68) is an anisotropic damp-
ing term with a sinusoidally varying damping coefficient - we will call such terms
“anisotropic variable damping”. The second (meander) term in Eq. (12.68) repre-
sents either linear (viscous) damping (or growth) with a variable coefficient that be-
comes a constant value as ψ becomes constant - we will call such terms “meander

terms” and refer to them appropriately as “meander damping” or “meander growth”.
Numerical evidence suggests that ψ rapidly approaches 2k+1

2 π for some integer k

and so cos2ψ < 0. Hence we rapidly have a meander damping term present. This
combination of anisotropic damping and meander linear damping rapidly causes Q

to vanish for all practical purposes (see Fig. 3 of Joubert et al (2013) for an example
of a combination of isotropic linear and quadratic damping). Consequently, for all
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Fig. 12.8: The exact and averaged solutions for all variables P, Q, mΘ and ψ show
the same global trends

practical purposes,

Q ≈ 0;0 < t ≤ Tss and lim
t→T>Tss

Q = 0. (12.71)

Secondly, observe Eq. (12.70):

1. Numerical experiments all indicate that the phase angle eventually achieves a
constant value, that is

lim
t→T>Tss

ψ̇ = 0. (12.72)

Consequently, taking limits in Eq. (12.70) we have

0 =
ε∆K1

4I0ω
cos2

(
lim

t→T>Tss
ψ

)
(12.73)

and hence
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lim
t→T>Tss

ψ = n
π

2
(12.74)

for some integer n. Numerical evidence indicates that n= 2k+1 for some integer
k.

2. In Shatalov and Coetzee (2011) in the last paragraph before the “Conclusions”
section, it is stated that “For the realization of the control ψ → 0, it is possible
to use a reference phase generator which generates reference excitation signals
so that ψ ≈ 0.” This appears to be an impossible realisation when electronic
meander is present.

Penultimately, observe Eq. (12.67). Notice that the anisotropic variable damp-
ing coefficient in Eq. (12.67) is different to the first term in Eq. (12.68), as one
would expect for anisotropic damping. Initially the anisotropic variable damping
term, the first term in Eq. (12.67), might combine with the meander term in Eq.
(12.67) (during a possible damping phase), causing rapid damping of P. However,
the above argument shows that cos2ψ becomes negative rapidly and the second term
in Eq. (12.67) therefore represents a meander growth term, becoming linear when
cos2ψ =−1. Consequently, with correctly adjusted excitation electrodes, the linear
meander growth term (the second term in Eq. (12.67)), will balance the anisotropic
damping term (the first term in Eq. (12.67)). Indeed, at the steady-state, P appears
to be held in a constant nonzero small amplitude sinusoidal oscillatory state that
appears to be parametric resonance.

Ultimately, observe Eq. (12.69).

1. Even if the meander voltage is ∆K1 = 0V and the inertial rotation rate εΩ =
0rad .s−1, if anisotropic damping is present, then the pattern will drift. Pattern
drift under such circumstances indicates that anisotropic damping is indeed

present.

2. With regard to the second term in Eq. (12.69), because of the product εε̃, this
could be either a small growth or damping term, depending on the signs of C
and S. During the transient state, the second term in Eq. (12.69) is dominated
by the nonmeander value of P and so has a substantial influence on the growth
or shrinkage of mΘ at this stage. The size of this growth or shrinkage can be
estimated by numerical integration of the averaged solution. In MATHEMATICA

this solution is stored as an interpolating function that is readily integrated. For
instance, using Eq. (12.62),

Cdamp = εε̃ 3
√

δo,2

t>Tss∫

0

(P2+Q2)
3
2

4(P2−Q2)

(
S 3
√

δ 2
s,2 cos2mΘ −C 3

√
δ 2

c,2 sin2mΘ
)

dt ≈−0.2

(12.75)

Cmeander =−ε∆K1

4I0ω

t>Tss∫

0

PQ

(P2 −Q2)
cosψ sinψdt ≈−1.4 (12.76)

Consequently for t > Tss, the precession angle is linear
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mΘ = ηεΩ t +Cdamp +Cmeander = ηεΩ t − 1.6 (12.77)

(see Fig. 12.6). Consequently, at the steady-state, the VG obeys Bryan’s law, be-
having like a perfect VG with its precession angle growing at a rate proportional
to the inertial angular rate

mΘ̇ = ηεΩ . (12.78)

12.12 Isotropic Damping and the Meander Electrodes

Assume that the ever-present damping is a combination of any order of isotropic

damping. With ε̃ = 0, we have suitably adjusted averaged ODEs (12.67) to (12.70)
and numerically investigated this type of damping using (12.62). There is a steady-

state t > Tss at which

1. the principal vibration amplitude P will be sustained at a constant nonzero level;
2. quadrature vibration amplitude Q will vanish;
3. the precession angular rate mΘ̇ is not affected by the isotropic damping (as

demonstrated in Joubert et al (2013)), although the meander electrodes induce
mΘ = ηεΩ t+Cmeander where Cmeander is obtained from an integral similar to that
in Eq. (12.76) (using (12.62), quadratic isotropic damping yields Cmeander ≈ 1.5)
- the VG thus obeys Bryan’s law Eq. (12.78);

4. the rate of change of the phase angle ψ̇ = 0 and, apparently, ψ = 2k+1
2 π for some

integer k.

12.13 Conclusion

We have shown how to negate the effects of manufacturing mass-stiffness imper-
fections as well as the effects of any type of tangentially anisotropic or isotropic
damping that might occur in a perfectly axissymmetric VG. We have achieved this
by showing exactly how to symmetrically arrange an electronic array about the sym-
metry axis. This array consists of curved capacitors under a mixture of a constant
charge and a small meander charge. We have shown exactly how the voltage of the
fixed charges should be adjusted in order to eliminate the frequency split caused
by the mass-stiffness imperfection. Furthermore, we have shown how the meander
voltages of the capacitors may be adjusted in order to maintain principal vibration,
eliminate quadrature vibration and restore spurious pattern drift in the VG so that it
obeys Bryan’s law. Equations of motion were derived in the form of averaged ODEs
that gave us insight into VG behaviour.
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Chapter 13

Shock Wave Rise Time and the Viscosity of

Liquids and Solids

Gennady I. Kanel, Andrey S. Savinykh, Gennady V. Garkushin, Alexander
V.Pavlenko & Sergey V. Razorenov

Abstract With the goal to verify universality of the well-known Swegle-Grady
fourth-power relation between the shock pressure and the rate of compression in
plastic shock waves, we performed direct comparison of the results of measure-
ments of shock waves in titanium and in glycerol. The universality has not been
confirmed, but has been explained in terms of the different natures of the viscosities
of liquids and crystalline solids.

Key words: Shock waves · Viscosity · Titanium · Glycerol · High strain rates

13.1 Introduction

Although shock waves are often considered to be discontinuities of infinitesimally
small thickness, the thickness of shock waves of moderate strength in solids and
liquids may be quite resolvable. The thickness, or the rise time, of shock wave is
controlled by dissipative processes, mainly by the matter viscosity (Zel’dovich and
Raizer, 1967). This means that, from measurements of the rise time, we can obtain
unique information about the viscosity of condensed matter at high pressures and
very high strain rates. Swegle and Grady (1985) observed for solids that the max-
imum strain rate in the plastic wave and the peak shock stress, or the stress jump,
from the state at the Hugoniot elastic limit (HEL) to the peak shock stress, are re-
lated by the fourth-power dependence. It is believed that the fourth-power low is
satisfied for very different solids: for crystalline and amorphous, ductile and brittle,
for metals and nonmetals. Such invariance of the matter viscosity at ultrahigh strain
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rates looks intriguing and has caused a many theoretical speculations, although the
universal nature of the fourth-power behaviour of steady shock waves actually was
not completely proved. In this paper we compare our recent results of measurements
of steady shock waves in a solid metal (titanium) and in liquid glycerol, and we aim
at discussing them from the position of expected universality of the Swegle-Grady
relationship and its nature.

13.2 Experiments and Their Results

In the experiments, we created plane shock waves in plane samples by impacts of
flyer plates. The flyer plates were launched with maximum velocities in the range
of 300 m/s to 900 m/s using a gas gun or explosive facilities. In the experiments,
parameters of shock waves were recorded by means of the monitoring of the ve-
locity histories of the sample free rear surface or the interface between the sample
and a transparent window. The measurements were undertaken with the VISAR ve-
locimeter (Barker and Hollenbach, 1972) at around 1 ns of the temporal resolution.
Figures 13.1 and 13.2 present results of experiments with commercial-grade tita-
nium (Kanel et al, 2016) and chemically-pure glycerol (Savinykh et al, 2017). In
the case of titanium, the wave-form consists of an elastic precursor wave followed
by the plastic shock wave. Parameters behind the elastic precursor front correspond
to the Hugoniot Elastic Limit (HEL) and practically do not vary with an increase in
the impact velocity. The rise time of the plastic shock wave rapidly decreases with
an increase in the impact velocity. In the case of glycerol, we recorded only one
shock wave with no signature of an elastic-plastic response. The rise time of the
shock wave is much less than the rise time for the titanium, and it rapidly decreases

Fig. 13.1 The free surface
velocity histories of titanium
sample plates of 4 mm in
thickness at different peak
stress (Kanel et al, 2016)
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Fig. 13.2 The velocity histo-
ries of inter-faces between a
layer of glycerol and a lithium
fluoride (LiF) or sapphire
window at various peak pres-
sures (noted at the waveforms)
(Savinykh et al, 2017). The
time interval between points
of digital recording is 0.4 ns,
or 0.8 ns, or 1.2 ns.

with increasing peak shock pressure and approaches the limit of temporal resolution
at about 2.5 GPa of the shock pressure.
The relationship between the strain rate in shock wave ε̇x =−ρ0dV/dt−(1/Us)du/dx

and the matter viscosity η can be found in Zel’dovich and Raizer (1967). It is:

−4
3

η
du

dx
= ρ0U2

s

(
1− V

V0

)
− p (13.1)

The right side of the relationship (13.1) is the difference between the compressive
stress σx along the Rayleigh line σx = ρ0U2

s (1−V/V0) (σx is assumed positive under
compression) and the pressure p at the same compression V/V0. Here, Us is shock
wave speed, V is specific volume, ρ is matter density, u is particle velocity. The
difference between the normal stress and the pressure is the deviator component of
the stress which, under uniaxial strain condition, is equal to 4/3 of maximum shear
stress τ : σx − p = (4/3)τ . Thus, for estimation of the viscosity we have

η = τ/ε̇x. (13.2)

Usually, only maximum strain rate and maximum shear stress in the middle of shock
wave are used in the relationship (13.2). It can be shown that the maximum shear
stress within a shock wave is approximately proportional to the squared value of the
peak compressive stress. In this case, the squared dependence of the maximum strain
rate in the shock wave upon the peak shock pressure (or stress) means a constant
coefficient of viscosity, a higher exponent value means the viscosity decrease, and a
smaller exponent means increasing viscosity with increasing peak pressure.
Figures 13.3 and 13.4 show results of treatment of experimental data in terms of
maximum strain rates as functions of the peak shock stress. While the peak shock
stress (or shock pressure) is varied by almost an order of magnitude, the relationship
between the strain rate and the peak stress in both cases may be represented by
power functions:
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Fig. 13.3 Maximum rate of
compression in plastic shock
wave in titanium as a function
of the peak stress

Fig. 13.4 The compression
rate in shock wave in glycerol
as a function of shock pres-
sure

ε̇x = 2.7 ·103(p1/p0)
3.43 fortitanium,and

ε̇x = 4.6 ·107(p1/p0)
2.1 forglycerol.

The 3.4 of the exponent value for titanium, in general, is close to the expected value
of 4 in the Swegle-Grady relationship. However, experiments with glycerol show
a much smaller value of the exponent – 2.1. In this regard, one should note the
different nature of the viscosity of liquids and solids. The viscosity of liquids is
a result of transportation of momentum by chaotically moving molecules with a
relatively small contribution of the additional forces between them. It depends upon
the temperature and the pressure, but should not depend upon the strain.
The viscosity of solids in the plastic deformation regime is controlled by the dy-
namics of dislocations. The plastic strain rate, in terms of the theory of dislocation
dynamics, is described by the Orowan equation (Gilman, 1969) as a function of the
average dislocation velocity v̄ and the mobile dislocation density Nm:
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Fig. 13.5 Viscosity of shock-
compressed glycerol mea-
sured in three different ways:
by means of measurements
of rise times of shock waves
– 1 (Savinykh et al, 2017),
by means of measurements
of electrical conductivity – 2
(Dremin et al, 1980), and by
means of measurements of
acceleration of metal cylin-
ders by shocked liquids – 3
(Al’tshuler et al, 1986)

γ̇ = Nmbv̄ (13.3)

At moderate stresses, the dislocation velocity is controlled by the phonon drag forces
and is practically proportional to the shear stress. The mobile dislocation density
increases with plastic deformation due to processes of multi-plication and heteroge-
neous nucleation, and decreases due to their immobilisation and annihilation.

Figure 13.5 shows the results of measurements of the viscosity of glycerol as a func-
tion of shock pressure. The diagram presents three sets of data. In the first series,
the viscosity was estimated from measurements of electrical conductivity of a dilute
solution of CsI in glycerol (Dremin et al, 1980). These measurements obviously
correspond to low strain rates. In the second type of experiments, an acceleration
of metal cylinders (actually wires) by shocked liquid was monitored (Al’tshuler
et al, 1986). The strain rate was not identified in these experiments, but it certainly
should be rather high. Finally, in the third series the viscosity was evaluated from
the rise time of the shock wave. All of the data are within one order of magnitude
and the data from the rise time measurements at the strain rate of 107 – 108 s−1 are
very close to the low-rate data from electrical measurements. The initial growth of
the viscosity is the pressure effect; whereas, the contribution of the temperature in-
crease becomes larger at higher intensities of shock waves. In general, the viscosity
does not vary much within the shock pressure range of 0.5 GPa to 2.5 GPa, which
explains the square dependence of the strain rate upon the shock pressure.

Figure 13.6 shows results of estimations of plastic strain rate in a shock wave and
immediately behind the elastic precursor front. Both dependencies are strongly non-
linear and certainly show that plastic strain rate in the middle of shock wave (i.e.
after some small deformation) is, by order of magnitude, larger than the initial plas-
tic strain rate at the same stress in the elastic precursor wave. Such a difference
indicates an intense multiplication of dislocations. In the considered stress range,
the multiplication is directly associated with plastic strain, and a larger strain in a
plastic shock wave leads to a larger density of mobile dislocations. Dunn and Grady
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Fig. 13.6 The dependencies
of plastic strain rate upon
the shear stress in the elastic
precursor wave and in plastic
shock wave in titanium (Kanel
et al, 2016)

(1986) demonstrate that, in contrast to the unique determination of stress-dependent
relaxation, a strain dependent viscosity (as a result, for example, of multiplication
of mobile dislocations) may also satisfy the empirical Swegle-Grady relation, but to
the best of our knowledge, this result has not attracted enough attention, to date.

13.3 Conclusions

Comparison of shock wave rise times in solid metal and liquid glycerol do not con-
firm the universality of the well-known Swegle-Grady fourth-power relation. The
difference in the strain rate dependencies upon the shock pressure is caused by the
different nature of the dissipative properties of liquids and crystalline solids. The
squared dependence recorded for glycerol is the evidence of its approximately con-
stant viscosity, as a result of the competition between the effects of pressure and
temperature. The power dependence for titanium, with the exponent close to four, is
an example of evidence of the intense multiplication of dislocation on earlier stages
of the shock compression. At moderate stresses, the multiplication occurs during
plastic deformation, the value of which is proportional to shock pressure. Thus, we
can speak of the universality of the low multiplication rather than of the universality
of the fourth-power relation between the shock pressure and the compression rate in
the shock wave.
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Chapter 14

Lowest Vibration Modes of Strongly

Inhomogeneous Elastic Structures

Julius Kaplunov, Danila A. Prikazchikov & Olga Sergushova

Abstract Lowest vibration modes of strongly inhomogeneous layered elastic struc-
tures are studied. A perturbation procedure is developed for evaluating the almost
rigid body motions of stiffer components. The procedure is adapted for the antiplane
motion of a two-layered cylindrical body of arbitrary cross section. The asymptotic
formulae for lowest natural frequencies are derived. Illustrative examples are pre-
sented, including comparison with the exact solution of the eigenvalue problem for
a two-layered circular cylinder.

Key words: Vibration · Contrast · Perturbation · Rigid body motion

14.1 Introduction

Dynamics of inhomogeneous elastic structures composed of materials with high-
contrast mechanical and geometrical properties is an important engineering problem,
having numerous advanced industrial applications, see e.g. Milton (2002); Martin
et al (2012). This field is intensively studied in structural mechanics, see Horgan and
Chan (1999); Elishakoff (2004); Elishakoff and Yost (2010), including a number of
contributions dealing with sandwich plates, see Berdichevsky (2010); Ryazantseva
and Antonov (2012); Chapman (2013); Altenbach et al (2015). High contrast is
also investigated from the prospective of homogenization of periodic media, see
Cherednichenko et al (2006); Smyshlyaev (2009); Cherdantsev and Cherednichenko
(2012); Kaplunov and Nobili (2016). A similarity of long wave dynamic behaviour
of periodic and thin structures is reported in Craster et al (2014).
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In this paper we generalise the consideration in Kaplunov et al (2016) analysing low-
frequency vibrations of strongly inhomogeneous rods. For the sake of simplicity, the
proposed perturbation approach is specified for antiplane motion of a two-layered
strongly inhomogeneous cylinder of arbitrary cross section. The focus is on the
vibration modes associated with the so-called "‘global"’ low-frequency regime, see
Kaplunov et al (2016), assuming quasi-static behaviour of both stiffer and softer
structure components.

If the imposed boundary conditions exclude overall rigid body motion, then, in line
with the previous considerations, the almost rigid body motion of the stiffer com-
ponent still occurs as a solution of the Neumann boundary value problem for the
Laplace equation. Then, the displacement of the softer component is given at lead-
ing order by a plane harmonic function satisfying Dirichlet boundary condition on
the outer contour and on the interface. At next order, we arrive at the sought for esti-
mate for the lowest natural frequency following from the solvability of the boundary
value problem for the stiffer component. The derived formula contains a line inte-
gral of the normal derivative of the aforementioned plane harmonic function along
the interface.

To illustrate the efficiency of the developed scheme, we present two examples. The
first one considers a two-layered circular cylinder with a softer outer layer fixed
along its contour. This problem allows a comparison with the exact solution of the
antiplane eigenvalue problem confirming the obtained results for the low-frequency
vibration mode. The second example addresses a hollow cylinder of a square cross
section with a circular annular inclusion. Although the latter problem does not allow
a simple analytical solution, explicit asymptotic formulae are presented.

14.2 Antiplane Shear Motion

Consider a two-component cylindrical body of an arbitrary cross section with a
homogeneous or hollow (annular) inclusion. In case of a hollow two-layered cylin-
der the inner and outer domains, D1 and D2, respectively, are located between non-
intersecting closed boundaries Γ0, Γ1 and Γ2 with the origin of the Cartesian system
Oxyz set inside the inner hole, see Fig. 14.1. We consider both traction-free and
fixed boundaries of the inner and outer domains assuming conventional continuity
conditions along the interface.

We study antiplane shear motion with the out-of-plane displacement independent of
z. Then, in absence of body forces, the governing Helmholtz equations are given by

∆ui +
ω2

c2
i

ui = 0, i = 1,2, (14.1)

where ∆ is a 2D Laplace operator in variables x and y, ui are the displacements,
ci =

√
µi/ρi are the associated shear wave speeds, µi are the Lamé shear moduli,
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ρi are the volume mass densities, and ω is the vibration frequency. Here and below
indices 1 and 2 correspond to the inner and outer domains, respectively.

We introduce the scaled frequencies

λi =
ω li

ci

, i = 1,2,

where li are typical length scales, along with the contrast parameters

µ =
µ1

µ2
, l =

l1

l2
, ρ =

ρ1

ρ2
,

and dimensionless variables

Xi =
x

li
, Yi =

y

li
, i = 1,2.

Then, the equations of motion (14.1) take the form

∆ui +λ 2
i ui = 0, i = 1,2, (14.2)

where ∆ is now the Laplace operator in the variables Xi, Yi.

Below we consider the cases of the homogeneous Dirichlet

ui|Γj
= 0, (14.3)

or Neumann
∂ui

∂n

∣∣∣∣
Γj

= 0, (14.4)

boundary conditions on the inner and outer contours, where i = 1,2, and n is the
unit normal to the appropriate curve Γj, j = 0,2.

The continuity conditions along the interface Γ1 are formulated as

Fig. 14.1 A two-layered
cylindrical body

x

y

0

Γ

Γ

Γ1

0

2

D2

D1
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(u1 − u2)|Γ1 = 0,

(
µ

l

∂u1

∂n
− ∂u2

∂n

)∣∣∣∣
Γ1

= 0. (14.5)

Let us implement a perturbation technique, focusing on the low-frequency regime
for which λ 2

1 ∼ λ 2
2 ∼ ε , where ε ≪ 1 is a small parameter associated with contrast

material properties. In what follows we assume, for the sake of definiteness, that
l ∼ 1 and

µ ∼ ρ ∼ ε or µ ∼ ρ ∼ ε−1. (14.6)

Hence, we consider two contrast cases, namely ε =
l

µ
≪ 1

(
ε ∼ µ−1

)
correspond-

ing to a stiffer inner component, or ε =
µ

l
≪ 1 (ε ∼ µ) associated with a stiffer

outer domain.

The displacements and frequencies are now expanded as asymptotic series

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i + . . . ,

λ 2
i = ε(λ 2

i0 + ελ 2
i1 + ε2λ 2

i2 + . . .).
(14.7)

14.2.1 Stiffer Outer Domain

First, we draw attention to a body with a stiffer outer component D2 having fixed

inner and free outer contours, when ε =
µ

l
≪ 1

u1|Γ0 =
∂u2

∂n

∣∣∣∣
Γ2

= 0. (14.8)

On substituting (14.7) into the dimensionless equation of motion (14.2) at i = 2 for
the outer domain, and conditions (14.5) and (14.8), at leading order we obtain the
Laplace equation

∆u
(0)
2 = 0, (14.9)

subject to the Neumann boundary conditions

∂u
(0)
2

∂n

∣∣∣∣∣
Γ1

=
∂u

(0)
2

∂n

∣∣∣∣∣
Γ2

= 0. (14.10)

This implies

u
(0)
2 =C = const, (14.11)

corresponding to the rigid body motion of the stiffer part, similarly to 1D consider-
ation in Kaplunov et al (2016), see also Kudaibergenov et al (2016).

Then, the leading order problem for the inner domain is given by



14 Lowest Vibration Modes of Strongly Inhomogeneous Elastic Structures 269

∆u
(0)
1 = 0, (14.12)

subject to the Dirichlet boundary conditions

u
(0)
1 |Γ0 = 0, u

(0)
1 |Γ1 =C. (14.13)

Thus, we arrive at
u
(0)
1 =CH1(X1,Y1), (14.14)

where H1(X1,Y1) is a harmonic function satisfying the conditions

H1(X1,Y1)|Γ0 = 0, H1(X1,Y1)|Γ1 = 1. (14.15)

Treatment of the stiffer domain D2 at next order provides an estimate for the sought
for frequency. The boundary value problem can be written as

∆u
(1)
2 =−λ 2

20u
(0)
2 , (14.16)

subject to

∂u
(1)
2

∂n

∣∣∣∣∣
Γ1

= C
∂H1

∂n

∣∣∣∣
Γ1

, (14.17)

and
∂u

(1)
2

∂n

∣∣∣∣∣
Γ2

= 0. (14.18)

In view of (14.11), integration of (14.16) over the outer domain D2 gives
∫∫

D2

∆u
(1)
2 dX2dY2 =−λ 2

20C

∫∫

D2

dX2dY2. (14.19)

Then, on employing the first Green’s identity Strauss (2007), we have

∮

Γ2

∂u
(1)
2

∂n
ds−

∮

Γ1

∂u
(1)
2

∂n
ds =−λ 2

20CA2, (14.20)

where A2 is the area of the inner domain D2.
Due to (14.18), the first term in the left hand side of (14.20) vanishes, hence, on
making use of (14.17) the leading order estimate for frequency is given by

λ 2
2 ∼ ε

A2

∮

Γ1

∂H1

∂n
ds. (14.21)

It should be noted that the eigenfrequencies of antiplane motion of a two-layered
cylinder of arbitrary cross section correspond to the cut-off frequencies of thin rods,
see e.g. Le (1999).
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It may be readily verified that the global low frequency regime λ 2
1 ∼ λ 2

2 ∼ ε is not
possible for other types of boundary conditions on Γ0 and Γ2 in case of a stiffer outer
domain.

14.2.2 Stiffer Inner Domain

Let us now discuss the case of a stiffer inner domain D1, with the small parameter

ε =
l

µ
≪ 1. Following the same procedure as in the previous subsection, it may be

shown that the global low frequency regime (λ 2
1 ∼ λ 2

2 ∼ ε) occurs only for fixed
inner and free outer contours, i.e.

∂u1

∂n

∣∣∣∣
Γ0

= u2|Γ2 = 0. (14.22)

Similarly to the previous subsection, the leading order displacements are found as

u
(0)
1 =C, u

(0)
2 =CH2(X2,Y2), (14.23)

where H2(X2,Y2) is a plane harmonic function, satisfying the boundary conditions

H2(X2,Y2)|Γ1 = 1, H2(X2,Y2)|Γ2 = 0. (14.24)

At next order, we have for the stiffer domain

∆u
(1)
1 =−λ 2

10u
(0)
1 , (14.25)

subject to

∂u
(1)
1

∂n

∣∣∣∣∣
Γ1

= C
∂H2

∂n

∣∣∣∣
Γ1

, (14.26)

and
∂u

(1)
1

∂n

∣∣∣∣∣
Γ0

= 0. (14.27)

On integrating (14.25) over the inner domain D1 and employing the first Green’s
identity along with conditions (14.26) and (14.27), we deduce for the lowest natural
frequency

λ 2
1 ∼− ε

A1

∮

Γ1

∂H2

∂n
ds. (14.28)

where A1 is the area of D1.
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14.3 Model Examples

Consider now two examples illustrating the methodology described in the previous
section.

14.3.1 Two-Layered Circular Cylinder

First, let us study antiplane motion of a two-layered solid circular cylindrical elastic
body with stiffer inner and softer outer components. Suppose the boundaries Γ1

and Γ2 are cylinders of radii l1 and l1 + l2, respectively, see Fig. 14.2. This type of
geometry allows an exact solution, presented in the Appendix. As follows from the
previous section, in order to have the global low-frequency regime (λ 2

1 ∼ λ 2
2 ∼ ε),

we consider a fixed outer contour.
In terms of dimensionless polar coordinates Ri = r/li, i = 1,2, the domains D1

and D2 are given by

D1 : 0 ≤ R1 ≤ 1, and D2 : l ≤ R2 ≤ l + 1.

The equations of axisymmetric motion are then written as

d 2ui

dR2
i

+
1
Ri

dui

dRi

+λ 2
i ui = 0. (14.29)

For the studied two-layered cylinder the conditions (14.5) and (14.8) become

u1
∣∣
R1=1 = u2

∣∣
R2=l

,
du1

dR1

∣∣∣∣
R1=1

= ε
du2

dR2

∣∣∣∣
R2=l

, u2
∣∣
R2=l+1 = 0, (14.30)

where, as previously, ε =
l

µ
.

On expanding the displacements and frequencies as (14.7) and applying the proce-
dure described in the previous section, we have for the leading order eigensolution

Fig. 14.2 A two-layered
cylinder

rll
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1 2

D1

D2 Γ1
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u =

{
1, in D1;
H2(R2), in D2,

(14.31)

where it is assumed that C = 1. Here H2 is a harmonic function, satisfying

d 2H2

dR2
2

+
1

R2

dH2

dR2
= 0, (14.32)

along with the conditions (14.24), which take the form

H2|R2=l+1 = 0, H2|R2=l = 1, (14.33)

thus

H(R2) =
lnR2 − ln(l + 1)
ln l − ln(l + 1)

. (14.34)

The illustrations of the displacement profile (14.31) are shown in Fig. 14.3, contain-
ing the overall axisymmetric plot along with its axial cross section. It is worth noting
that the displacement variation of the softer component is no longer polynomial, as
was observed previously in 1D case, see Fig. 9 in Kaplunov et al (2016).
The leading order estimate for frequency follows from (14.28), resulting in

λ 2
1 ∼ 2

µ ln(1+ l−1)
, (14.35)

On employing the relation cλ1 = lλ2, we also deduce

λ 2
2 ∼ 2

ρ l2 ln(1+ l−1)
. (14.36)

Figure 14.4 illustrates numerically the exact solution of the frequency equation
(14.46), see Appendix, showing the eigenfrequencies expressed in terms of the pa-
rameters λ1 and λ2, together with the leading order approximation (14.35). It is
clear from Fig. 14.4 that for the chosen values µ = ρ = 100 satisfying the condition

u

r

x
y

u

a) b)

Fig. 14.3: Displacement profile (14.31) for l1 = l2 = 1. a) Displacement profile, b)
axial cross section
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0
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0 10 20 30 40 50

exact solution - first mode for the inner domain

approximate solution - first mode for the inner domain

exact solution - first mode for the outer domain

exact solution - second mode for the inner domain

λ

l

Fig. 14.4: Frequency vs. relative thickness l: µ = 100, ρ = 100.

µ ∼ ρ ∼ ε−1, see (14.6), λ1 ≪ 1 and λ2 ≪ 1 oer a range of relative thickness l. A
good agreement is observed between the exact solution shown by a solid line and
the asymptotic formula (14.35) depicted by dotted line. It is also visible that the de-
viation between the first and second eigenfrequencies is substantial, replicating the
behaviour in the 1D problem Kaplunov et al (2016).

14.3.2 Square Cylinder with a Circular Annular Inclusion

As the next example, we consider antiplane motion of a cylinder of a square cross
section with a circular inclusion having an inner hole of radius l0, see Fig. 5. The
softer inner annular domain D1 is specified in polar coordinates by l0 ≤ r ≤ l0 + l1,
whereas the stiffer outer domain D2 is located between the circumference Γ1 of
radius l0 + l1 and the square Γ2 with side length of 2(l0 + l1 + l2), see Fig. 14.5.
In contrast to the previous example, this problem does not allow a straightforward
analytical treatment leading to a closed-form solution.
The equations of motion are then taken in the form (14.2) and (14.29) for the outer
and inner domains, respectively. On adapting the general scheme of Sect. 14.2, con-
sider the fixed inner and free outer face contours

u1
∣∣
R1=L1

=
∂u2

∂n

∣∣∣∣
Γ2

= 0, (14.37)

with the continuity conditions
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u1
∣∣
R1=L1+1 = u2

∣∣
R2=L2

, ε
du1

dR1

∣∣∣∣
R1=L1+1

=
du2

dR2

∣∣∣∣
R2=L2

, (14.38)

along the interface Γ1. In the above

L0 =
l0

l1
, L2 =

l0 + l1

l2
, (14.39)

and ε =
µ

l
is the small parameter.

As above, we deduce the leading order displacements in the form

u =

{
H1(R1), in D1;
1, in D2,

(14.40)

where the harmonic function

H1(R1) =
lnR1 − lnL1

ln(1+L−1
1 )

. (14.41)

is the solution of (14.32) subject to

H1|R1=L1 = 0, H1|R1=L1+1 = 1. (14.42)

The eigensolution (14.40) is shown in Fig. 14.6, containing both the displacement
profile and its crossection at y = 0, calculated at l0 = l1 = l2 = 1.

Finally, on employing (14.21), the leading order estimate for the eigenfrequency is
found as

λ 2
2 =

2πεl

ln(L−1
1 + 1)(4(L2 + 1)2 −πL2

2)
. (14.43)

Fig. 14.5 A square cylin-
der with a circular annular
inclusion.
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u

x
x y

ua) b)

Fig. 14.6: Displacement profile (14.40) and its cross section at y = 0 for l0 = l1 =
l2 = 1. a) Displacement profile, b) cross section of the profile at y = 0

14.4 Concluding Remarks

The obtained results develop further the methodology of "‘almost rigid body mo-
tion"’, see Kaplunov et al (2016, 2015), extending it to antiplane low-frequency
motion of two-layered cylindrical bodies of arbitrary cross section. The example of
a hollow cylinder of a square cross section with a circular annular inclusion clearly
demonstrates the power of the perturbation technique well beyond the scope of ex-
act analysis. It is also worth noting that the derived asymptotic formulae are also
valid for the lowest cut-off frequencies of high-contrast layered plates and shells,
see Ryazantseva and Antonov (2012).
The proposed perturbation approach may be readily adapted for more general 2D
and 3D eigenvalue problems for multi-layered strongly inhomogeneous structures.
Higher order asymptotic expansions for natural frequencies may be also derived.
However, this would usually assume numerical solution of the Laplace equation
subject to the Dirichlet on Neumann boundary conditions. Nevertheless, such hybrid
procedure still has obvious advantages against straightforward numerical treatment.

12.A Appendix

Let us present the exact solution for vibrations of a two-layered circular cylinder
considered in Subsect. 14.3.1, see Fig. 14.2.
The solution of (14.29) is given by

u1 = AJ0(λ1R1),
u2 = BJ0(λ2R2)+CY0(λ2R2).

(14.44)

On substituting (14.44) into the conditions (14.30) and employing basic properties
of Bessel functions, we arrive at a set of linear algebraic equations given by
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AJ0(λ1)−BJ0(λ2l)−CY0(λ2l) = 0,

AµJ1(λ1)− c(BJ1(λ2l)+CY1(λ2l)) = 0, (14.45)

BJ0(λ2(1+ l))+CY0(λ2(1+ l)) = 0.

The solvability of the latter implies the frequency equation

µJ1(λ1)F0(λ2l)− cJ0(λ1)F1(λ2l) = 0, (14.46)

where

Fj(x) = J j(x)Y0(λ2(l + 1))−Yj(x)J0(λ2(l + 1)), j = 0,1.

Then, on using (14.45) and setting A = 1, the displacement profile is found as

u1 = J0(λ1R1), u2 = J0(λ1)
F0(λ2R2)

F0(λ2l)
. (14.47)

At the global low-frequency approximation λ1 ≪ 1, and λ2 ≪ 1 the expressions
(14.46) and (14.47) become (l ∼ 1, µ ≫ 1, ρ ≫ 1)

u1 ∼ 1, u2 ∼
lnR2 − ln(l + 1)
ln l − ln(l + 1)

, (14.48)

and

λ 2
1 ∼ 2

µ ln(1+ l−1)
, λ 2

2 ∼ 2
ρ l2 ln(1+ l−1)

, (14.49)

which coincide with the results (14.31), (14.35), and (14.36) of the perturbation
approach.
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Chapter 15

Geometrical Inverse Thermoelastic Problem for

Multiple Inhomogeneities

Alexander V. Kaptsov & Efim I. Shifrin

Abstract Geometrical inverse thermoelastic problem is considered. It is assumed
that a finite number of inhomogeneities (cavities, cracks, inclusions) are located
inside a linearly elastic, mechanically and thermally isotropic 3D body. It is as-
sumed also that mechanical and steady-state thermal loads are applied to the ex-
ternal boundary of the body in a single experiment. As a result of the experiment
the displacements and the applied mechanical loads are measured on the external
boundary. A method for identification of the number and locations of the inhomo-
geneities, which are considered as point defects, is developed. It is important to
stress that the identification method is based only on the knowledge of the displace-
ments and the applied mechanical loads, if any, on the external boundary of the
body. The knowledge of the temperature field on the external boundary of the body
and the conditions of heat exchange between the matrix and inclusions are not as-
sumed. Numerical examples illustrating the efficiency of the developed method are
considered.

Key words: Geometric inverse problem · Thermoelasticity · Multiple defects ·
Reciprocity gap functional

15.1 Introduction

Geometrical inverse elastostatic problems are of great importance for the nonde-
structive testing of the materials and structures. That is why such problems were
considered in a number of publications. Most publications addressed the problem of
identification of one or a maximum of two defects in 2D and 3D elastic solids, see,
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for example, Steinhorst and Sändig (2012); Khodadad and Dashti-Ardakani (2009);
Karageorghis et al (2012); Ammari et al (2002); Engelhardt et al (2006); Shifrin
and Shushpannikov (2011, 2013b). At the same time, the methods of identification
of multiple defects are developed in a much lesser extent. Several approaches for
solving inverse elastostatic problems by means of boundary data in case of multiple
defects has been suggested in the recent publications by Dehghan Manshadi et al
(2014); Andrieux (2015); Shifrin and Shushpannikov (2013a, 2015). Dehghan Man-
shadi et al (2014) extended the linear sampling method, previously used for solving
inverse scattering problems, for the solution of the inverse elastostatic problems. The
paper deals with only 2D inverse problems. Generally, the linear sampling method
enables to reconstruct multiple defects, but it requires the data, which can be ob-
tained from a large number of experiments. Such data are usually not available.
Andrieux (2015) proposed to use some modification of the reciprocity gap method
for identifying multiple cracks and point sources. The approach was illustrated with
an example, in which the problem of identifying multiple point sources for the 2D
Laplace equation was considered. Shifrin and Shushpannikov (2013a, 2015) devel-
oped a method for the identification of small, multiple defects in both 3D isotropic
and anisotropic bodies using boundary data. The method is also based on the use of
the reciprocity gap functional (RGF). The purpose of the paper to extend the method
to solve the 3D inverse problems of thermoelasticity.
To date, methods for solving geometric, inverse, thermoelastic problems are not
developed enough. It should be noted the papers of Ben Ameur et al (2007); Kara-
georghis et al (2014) where the problems of identification of one and two cavities
in 2D thermoelastic bodies were solved by the level set method and the method of
fundamental solutions, respectively.
The paper is organized as follows. The direct problem is formulated in Sect. 15.2.
The reciprocity gap functional is defined in Sect. 15.3. Statement of the inverse prob-
lem and the method of its solving are presented in Sect. 15.4. Numerical examples
illustrating efficiency of the proposed method are considered in Sect. 15.5. Conclu-
sions are presented in Sect. 15.6.

15.2 Mathematical Formulation of the Direct Problem

Let V ⊂ R3 be a bounded simply connected domain with a boundary ∂V . Gk ⊂ V ,
k = 1,2, · · · ,n are simply connected subdomains. We suppose that Ḡi∩Ḡ j = /0, i 6= j,

Ḡ =
n⋃

k=1
Ḡk ⊂ V , where Ḡk is a closure of the subdomain Gk. Let us suppose that

a linearly elastic, mechanically and thermally isotropic body occupies the domain
Ω = V\Ḡ. Introduce some notation for the thermal and mechanical characteristics
of the body, which occupies the domain Ω . The thermal characteristics are as fol-
lows: αM is the coefficient of thermal expansion, κM is the heat conductivity, hM is
the convective heat transfer coefficient. The elastic properties are: µM is the shear
modulus and νM is the Poisson ratio. The defects Gk can be cavities or inclusions
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(rigid or linear elastic). If Gk is a cavity we suppose that its boundary ∂Gk is free of
mechanical loads. If Gk is an inclusion, it is supposed complete mechanical bond-
ing between the matrix and inclusion. Below we consider the case of linear elastic
inclusions because the cavities and rigid inclusions can be considered as particular
cases when the shear modulus tends to zero and infinity, respectively. The thermal
and elastic characteristics of the inclusion Gk we denote by the index Ik: αIk , κIk,
µIk, νIk. The temperature, displacements, strains and stresses in the body Ω we will
mark with the superscript d : T d is the temperature, ud =

(
ud

1,u
d
2 ,u

d
3

)
is the displace-

ments vector, ed
i j is the strain tensor and σd

i j is the stress tensor. The similar values

in the inclusion Gk we will mark with the superscript Ik : T Ik, uIk =
(
uIk

1 ,uIk
2 ,uIk

3

)
,

eIk
i j , σ Ik

i j . Here and below, we suppose that some Cartesian coordinates Ox1x2x3 are
introduced and all values are considered in these coordinates. The steady-state heat
equations have the form:

∆T d (x) = 0, x ∈ Ω (15.1)

∆T Ik (x) = 0, x ∈ Gk (15.2)

Here ∆ is the Laplace operator.

We consider the following thermal boundary conditions: given temperature To over
∂V0 ⊂ ∂V , given heat-flux q in the direction normal to the part of the boundary
∂V1 ⊂ ∂V and prescribed ambient temperature T∞ over the convective part of the
boundary ∂V2 ⊂ ∂V . We assume that ∂Vi∩∂V j = /0 for i 6= j and ∂V̄0∪∂V̄1 ∪∂V̄2 =
∂V . Here ∂V̄i is the closure of ∂Vi. Thus, the boundary conditions on the external
boundary of the body are as follows:

T d (x′) = T0 (x
′) , x′ ∈ ∂V0

κM
∂T d (x′)

∂xi

ni (x
′) = q(x′) , x′ ∈ ∂V1

κM
∂T d (x′)

∂xi

ni (x
′) = hM

(
T∞ −T d (x′)

)
, x′ ∈ ∂V2

(15.3)

where n = (n1,n2,n3) is a unit outward normal to the boundary ∂V and convention
of summation for repeated indices is used. Conditions of heat transfer between the
matrix and inclusions are of the form

T d (x∗) = T Ik (x∗) , κM
∂T d (x∗)

∂xi

Ni (x
∗) = κIk

∂T Ik (x∗)
∂xi

Ni (x
∗) , x∗ ∈ ∂G1

k (15.4)

κM
∂T d (x̃)

∂xi

Ni (x̃) = κIk

∂T Ik (x̃)

∂xi

Ni (x̃) = hMk

(
T Ik (x̃)−T d (x̃)

)
, x̃ ∈ ∂G2

k (15.5)

Here N = (N1,N2,N3) is a unit normal to ∂Gk, external to the inclusion Gk, hMk is a
coefficient of heat transfer between the matrix Ω and inclusion Gk, ∂G1

k ∩∂G2
k = /0,

∂ Ḡ1
k ∪∂ Ḡ2

k = ∂Gk, ∂G1
k is a portion of the inclusions boundary ∂Gk, where an ideal
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thermal contact between the matrix and inclusion is realized, ∂G2
k is a portion of the

boundary, where non-ideal thermal contact is realized. The elastic part of the system
of thermoelastic equations is as follows.

ed
i j (x) =

1
2

(
ud

i, j (x)+ ud
j,i (x)

)
, (i, j = 1,2,3) , x ∈ Ω

σd
i j = λMθ dδi j + 2µMed

i j − (3λM + 2µM)αMT dδi j

θ d =
3

∑
k=1

ed
kk, λM =

2µMνM

1− 2νM

σd
i j, j = 0

(15.6)

Here δi j is the Kronecker delta.
The elastic equations inside the domains Gk have the same form as Eq. (15.6), where
subscript M is substituted with the subscript Ik and the superscript d is substituted
with the superscript Ik. The conditions on the external boundary of the body have
the form:

ud
(
x′
)
= u0 (x′

)
, x′ ∈ ∂VD (15.7)

σd
i j

(
x′
)

n j

(
x′
)
= t0

i

(
x′
)
, x′ ∈ ∂VN (15.8)

where ∂VD ∩∂VN = /0, ∂V̄D ∪∂V̄N = ∂V .
The conditions of complete mechanical bonding between the matrix and inclusion
Gk have the following form:

uIk (x∗) = ud (x∗) , σ Ik
i j (x

∗)N j (x
∗) = σd

i j (x
∗)N j (x

∗) , x∗ ∈ ∂Gk (15.9)

Equations (15.1)–(15.9) form a system of equations of steady-state thermoelasticity,
see Nowacki (1986).

15.3 Reciprocity Principle and Reciprocity Gap Functional

Let T̃ (x) , ũ (x) , ẽi j (x) , σ̃i j (x) be a solution of the equations (15.1) and (15.6) in the
domain Ω . According to reciprocity principle the following equality is valid (see
Nowacki, 1986):

∫

∂Ω

(
σd

i jn jũi − σ̃i jn ju
d
i

)
dS+αM (3λM + 2µM)

∫

Ω

(
T d θ̃ − T̃θ d

)
dx = 0 (15.10)

where θ̃ =
3
∑

k=1
ẽkk and the thermoelastic field, that is marked by superscript d, was

defined above. In a particular case, when T̃ = 0 and θ̃ = 0, Eq. (15.10) is reduced
to the following equality
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∫

∂Ω

(
σd

i jn jũi − σ̃i jn ju
d
i

)
dS = 0 (15.11)

Taking into account, that ∂Ω = ∂V ∪ ∂G1 ∪ ·· · ∪ ∂Gn and the unit normal to ∂Gk,
external to the domain Gk, was denoted by N = (N1,N2,N3), Eq. (15.11) can be
rewritten as follows

∫

∂V

(
σd

i jn jũi − σ̃i jn ju
d
i

)
dS =

n

∑
k=1

∫

∂Gk

(
σd

i jN jũi − σ̃i jN ju
d
i

)
dS (15.12)

Let us consider an elastic field in the domain V , satisfying the following equations:

er
i j (x) =

1
2

(
ur

i, j (x)+ ur
j,i (x)

)
, (i = 1,2,3; j = 1,2,3) , x ∈V

σ r
i j = 2µMer

i j, θ r =
3

∑
k=1

er
kk = 0

σ r
i j, j = 0

(15.13)

Elastic fields, satisfying Eq. (15.13), we will call regular elastic fields and mark with
a superscript r. Now we can define the reciprocity gap functional (RGF), depending
on the given thermoelastic field with the superscript d and regular elastostatic field
with a superscript r

RG(d,r) =

∫

∂V

(
σd

i jn ju
r
i −σ r

i jn ju
d
i

)
dS (15.14)

From the Eqs. (15.12)–(15.14) one has

RG(d,r) =
n

∑
k=1

∫

∂Gk

(
σd

i jN ju
r
i −σ r

i jN ju
d
i

)
dS (15.15)

Since the thermoelastic field with a superscript d and elastostatic field with a super-
script r are determined inside the domains Gk, the surface integrals in Eq. (15.15)
can be transformed into integrals over the domains Gk. It follows from the Eqs.
(15.9), (15.13) and (15.15)

RG(d,r) =
n

∑
k=1

∫

∂Gk

(
σ Ik

i j N ju
r
i −σ r

i jN ju
Ik
i

)
dS

=
n

∑
k=1

∫

Gk

(
σ Ik

i j er
i j −σ r

i je
Ik
i j

)
dx

=
n

∑
k=1

2(µIk − µM)

∫

Gk

eIk
i j er

i jdx

(15.16)
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15.4 Statement of the Inverse Problem and a Method of its

Solving

We assume that typical sizes of the defects have the same order. Denote the typical
size l. Assume also that the distances between the defects exceed some value L. We
assume that the defects are small in the following sense

l ≪ L (15.17)

We suppose that in a single experiment the mechanical loads σd
i jn j = td

i and displace-

ments ud are measured on the whole external boundary. The problem is to detect and
identify the defects Gk using available data.

In this paper we will not solve the problem in its entirety, that is, we do not propose
a method for determining the sizes and shapes of defects. We develop a method for
determining the number of defects, considered as points, and their locations.

It is interesting to note that we solve the problem using only the values σd
i jn j and

ud on the external boundary of the body without any information about thermal
conditions on the external boundary and conditions of heat transfer between the
matrix and inclusions. In particular, we solve the problem in case, when the external
boundary is loaded only by thermal loads. In this case, the defect identification
is performed using the displacements on the external boundary, which is free of
mechanical loads.

To solve the problem we use the RGF defined in Eq. (15.14). Because the values
σd

i jn j and ud
i are known, the values RG(d,r) can be calculated for all regular elastic

fields r. It follows from Eq. (15.16), that if there are no defects in the body, then
RG(d,r) = 0 for all regular elastic fields. Otherwise there are such regular elastic
fields r, that RG(d,r) 6= 0 and the values RG(d,r) give information about the de-
fects. So, the problem will be solved if we express the positions of the defects Gk

by means of the values RG(d,r). Using approach proposed by Shifrin and Shush-
pannikov (2013a, 2015), we determine projections of the defects on an arbitrary
plane. Consider, for example, projections of the defects on the plane x1x2. To de-
termine projections of the defects on the plane x1x2 we will use the regular elastic
fields corresponding to plane strain states. According to Muskhelishvili (1977) the
displacements u = (u1,u2,0), strains ei j and stresses σi j of a plane strain field can
be expressed by means of two holomorphic functions ϕ (z) and ψ (z), z = x1 + ix2

µM (u1 + iu2) = κϕ (z)− zϕ ′ (z)−ψ (z), κ = 3− 4νM (15.18)

σ11 +σ22 = 4Re [Φ (z)]
σ22 −σ11 + 2iσ12 = 2 [z̄Φ ′ (z)+Ψ (z)]
σ13 = σ23 = 0, σ33 = νM (σ11 +σ22)

(15.19)
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e11 + e22 =
2(1− 2νM)

µM

Re [Φ (z)]

e22 − e11 + 2ie12 =
1

µM

[z̄Φ ′ (z)+Ψ (z)]

e13 = e23 = e33 = 0

(15.20)

where Φ (z) = ϕ ′ (z) , Ψ (z) = ψ ′ (z), the overbar denotes the complex conjugation.

Let us consider an elastic field corresponding to a plane strain state determined by
the following holomorphic functions:

Φ (z) = 0, Ψ (z) =−2µMH (z) (15.21)

It follows from the Eqs. (15.20) and (15.21), that the elastic field satisfies the equa-
tion θ = e11 + e22 + e33 = 0 and according to the definition given above (see Eq.
(15.13)), is a regular.

It follows from the Eqs. (15.16), (15.20) and (15.21)

RG(d,r) =
n

∑
k=1

2(µIk − µM)
∫

Gk

[(
eIk

11 − eIk
22

)
ReH − 2eIk

12ImH
]

dx (15.22)

Let us mark with a superscript ρ a regular elastic field corresponding to a plane
strain state determined by the holomorphic functions:

Φ (z) = 0, Ψ (z) =−2µMiH (z) (15.23)

From the Eqs. (15.16), (15.20) and (15.23) one has

RG(d,ρ) =
n

∑
k=1

2(µIk − µM)

∫

Gk

[
−
(

eIk
11 − eIk

22

)
ImH − 2eIk

12ReH
]

dx (15.24)

From the Eqs. (15.22) and (15.24) it follows

RG(d,r)− iRG(d,ρ) =
n

∑
k=1

2(µIk − µM)

∫

Gk

[(
eIk

11 − eIk
22

)
+ 2ieIk

12

]
H dx (15.25)

Let us take H (z) = Hm (z) = wm (z) , m = 0,1,2, · · · . Denote rm and ρm the regular
elastic fields corresponding to the holomorphic function wm (z). Using Eq. (15.25)
we obtain a system of equations.

RG(d,rm)− iRG(d,ρm) =
n

∑
k=1

2(µIk − µM)

∫

Gk

[(
eIk

11 − eIk
22

)
+ 2ieIk

12

]
wm (z) dx

(15.26)
Now we use the assumption that the domains Gk are small and approximate the
integrals in Eq. (15.26) by the principal term of the asymptotic expansion, provided
that l/L → 0.
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RG(d,rm)− iRG(d,ρm) =

=
n

∑
k=1

2(µIk − µM)
[(

eIk
11

(
xk
)
− eIk

22

(
xk
))

+ 2ieIk
12

(
xk
)]

wm (zk) |Gk|
(15.27)

where xk =
(
xk

1,x
k
2,x

k
3

)
∈ Gk, zk = xk

1 + ixk
2, |Gk| is the volume of the domain Gk.

The system of Eq. (15.27) has the following form:

n

∑
k=1

Akwm
k = bm, m = 0,1,2, · · · (15.28)

where
Ak = 2(µIk − µM)

[(
eIk

11

(
xk
)
− eIk

22

(
xk
))

+ 2ieIk
12

(
xk
)]

|Gk|

bm = RG(d,rm)− iRG(d,ρm) ,wk = w(zk)

The equations having the form of Eq. (15.28), are encountered in a number of prob-
lems. Among them can be noted signal analysis (see, for example, Peter and Plonka,
2013), the problem of reconstruction of a plane polygonal domain from moments
(Golub et al, 1999), identification of simple poles of a meromorphic function (see
Badia and Ha-Duong, 2000; Kang and Lee, 2004), geometric inverse elastostatic
problem (Shifrin and Shushpannikov, 2013a, 2015). The methods of solving the
system of equations (15.28) are well developed. Below we use one of the possible
approaches for solving the system (15.28). Let us suppose that the number of defects
is equal N. Construct the Hankel matrices

H0 =




b0 b1 · · · bN−1

b1 b2 · · · bN

...
...

. . .
...

bN−1 bN−2 · · · b2N−2


 , H1 =




b1 b2 · · · bN

b2 b3 · · · bN+1
...

...
. . .

...
bN bN+1 · · · b2N−1


 (15.29)

As it was shown by Golub et al (1999), the values wk, k = 1,2, · · · ,N are the eigen-
values of the generalized eigenvalue problem

H1a = wH0a (15.30)

Here a is the eigenvector.
After determination of the values wk we solve a system of linear algebraic equations
(15.28) with respect to Ak, where m = 0,1,2, · · · ,N − 1 and n is substituted with N.
Inverting the function w(z) we find the locations of defects zk. This procedure we
repeat for a sequence of values N. As a result we obtain a sequence of solutions
corresponding to different values N. Among the obtained values wk there are some
roots corresponding to the defects projections and some spurious roots. To choose
the correct solutions we use the following criteria:

1. The solutions zk located outside the projection of the body are spurious and
should be excluded.
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2. Let Amax = max
k

|Ak|. Solution of the Eq. (15.28) wp and Ap for which the condi-

tion
∣∣Ap

∣∣/Amax << 1 is fulfilled is considered as spurious and is excluded.
3. The correct solutions, starting with a certain number, should be stable with re-

spect to the prescribed number of defects N.

Let us note that after excluding the spurious roots the number of remaining roots
can exceed the number of projections of real defects because several roots can cor-
respond to one defect, see for example Hanke and Rundell (2011). For formalization
of the criteria 2 and 3 and determination of the number of defects projections on an
arbitrary plane we apply the following procedure. Denote the projection of the do-

main V on the plane x1x2 by V12. Divide the area V12 in the J subsets V12 =
J⋃

j=1
Q j,

meas(Qi ∩Q j) = 0, i 6= j, diam(Q j) ≤ ε (J). Here meas(B) is the measure of the
set B, diam(Q j) is a diameter of the set Q j and the function ε (J) satisfies the condi-
tion lim

J→∞
ε (J) = 0. Introduce a set of pairwise disjoint events Hk, k = 1,2, · · · . The

event HN denotes that exactly N inhomogeneities are embedded in the body V . Let
A1N ,w1N ,A2N ,w2N , · · · ,ANN ,wNN be the solution to the Eq. (15.28) corresponding
to the assumption HN . Let z1N ,z2N , · · · ,zNN be the locations of point defects corre-
sponding to the values w1N ,w2N , · · · ,wNN . Assume that zkN ∈V12, k = 1, · · · ,N1 and
z jN /∈V12, j = N1 +1, · · · ,N, N1 ≤ N. We will interpret the values zkN , k = 1, · · · ,N1

as the realization of a complex-valued random variable. The coefficients AkN we
will interpret as the conditional probabilities

PjN = P(z = z j/HN) =

∣∣A jN

∣∣
N1

∑
k=1

|AkN |
, j = 1, · · · ,N1 (15.31)

Using the values PjN it is possible to calculate the following conditional probability

P(z ∈ Q j/HN) = ∑
ziN∈Q j

PiN (15.32)

Assume that the number of inclusions can not exceed the value Nmax. In this case
H1, · · · ,HNmax are the mutually exclusive events whose probabilities sum is equal
unity. Thus, we can assume that

P(HN) =
1

Nmax
(15.33)

From the theorem of total probability it follows

P(z ∈ Q j) =
Nmax

∑
N=1

P(z ∈ Q j/HN)P(HN) =
1

Nmax
P(z ∈ Q j/HN) (15.34)

Using Eqs. (15.32) and (15.34) we can calculate P(z ∈ Q j) for all subsets Q j. Con-
sider P(z ∈ Q j) as a function defined on the subsets Q j of the body projection V12.
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The number of the projections of the inclusions corresponds to the number of clus-
ters, where the function is considerably separated from zero.

Remark 15.1. We presented an algorithm for determining the number of projections
of the inclusions and their locations in 3D bodies. It is possible to apply the same
algorithm for solving 2D geometrical inverse problems. In this case, we will directly
determine the number of inclusions and their locations.

15.5 Numerical Procedure and Numerical Examples

Thus, the proposed method for solving of the thermoelastic inverse problem by
means of the overdetermined boundary data σd

i jn j and ud
i is realized by the following

algorithm.

1. First, we take some holomorphic function w(z) and construct holomorphic func-
tions Hm (z) = wm (z). Then we construct regular elastic fields with superscripts
rm and ρm according to the Eqs. (15.18), (15.19), (15.21), where H (z) =Hm (z) =
wm (z).

2. On the second step, we calculate the values of the reciprocity gap functional
RG(d,rm) and RG(d,ρm) by means of the Eq. (15.14).

3. After that we construct the system of equations (15.28) for some number N using
the values RG(d,rm) and RG(d,ρm). The system of equations is solved by the
considered above method and the values wk and Ak are determined. The projec-
tions zk are determined by means of the values wk. This procedure is repeated for
a sequence of values N.

4. The solutions, that are considered as spurious according to the criterion 1, are
excluded.

5. The function P(z ∈ Q j) is constructed and the number of the projections of de-
fects and their locations are determined.

In order to emphasize, that the defects can be identified by the data of the exper-
iments, in which only the thermal loads are applied to the boundary of the body,
below we consider examples, in which the boundary is free of mechanical loads
(σd

i jn j = 0 ). In all examples the thermal loading has the form:

T d (x′) = T1, x′ ∈ Γ1

T d (x′) = T2, x′ ∈ Γ2

κM

∂T d (x′)
∂xi

ni (x
′) = 0, x′ ∈ Γ3

(15.35)

where Γi ⊂ ∂V, Γi ∩Γj = /0, i 6= j,
3⋃

i=1
Γ̄i = ∂V .
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In the examples, the defects Gk are cavities and their boundaries ∂Gk are considered
insulated

κM
∂T d (x∗)

∂xi

Ni (x
∗) = 0, x∗ ∈ ∂Gk (15.36)

The initial data for the solution of the inverse problems, that are displacements ud
i on

the boundary of the body ∂V , were obtained by solving the direct problems by finite
elements method. To improve the accuracy of the results, we calculate the values
RG(d,rm) and RG(d,ρm) are not by means of the Eq. (15.14), but by the following
method. Let us denote by a superscript d0 the thermoelastic field in the body V

without any defects, in case when the body is subjected to the same conditions on
the external boundary, as in the considered inverse problem. This thermoelastic field
can be obtained by solving the direct problem. Because the thermoelastic field with
the superscript d0 has no singularities inside the domain V , the following equalities
are valid:

RG(d0,rm) =

∫

∂V

(
σd0

i j n ju
rm
i −σ rm

i j n ju
d0
i

)
dS = 0 (15.37)

RG(d0,ρm) =

∫

∂V

(
σd0

i j n ju
ρm

i −σ
ρm

i j n ju
d0
i

)
dS = 0 (15.38)

Using Eqs. (15.14), (15.37), (15.38) and the condition σd
i jn j = σd0

i j n j on the bound-
ary, one has

RG(d,rm) = RG(d,rm)−RG(d0,rm) =−
∫

∂V

σ rm
i j n j∆ud

i dS (15.39)

RG(d,ρm) = RG(d,ρm)−RG(d0,ρm) =−
∫

∂V

σ
ρm

i j n j∆ud
i dS (15.40)

Here ∆ud
i = ud

i −ud0
i . The use of the formulas (15.39) and (15.40) instead of the Eq.

(15.14) significantly improves the accuracy of the results.

To illustrate the efficiency of the proposed method, we have considered several two-
dimensional problems. In all considered examples the elastic body V is a square
{x : |xi| ≤ 10m, i = 1,2} ,w(z) = z/10. The elastic properties of the matrix are as
follows: the Young modulus EM = 2µM (1+νM) = 68.5GPa, νM = 0.36. The ther-
mal characteristics are as follows: αM = 19.5× 10−6 K−1, κM = 207W ·m−1 ·K−1.
These constants correspond to the aluminum.

Example 1. First, we consider the case of one cavity. The cavity has a shape of
a square, which occupies the region G1 = {(x1,x2) ∈ [3,5]× [2,4]}, see Fig. 15.1.
The thermal boundary conditions according to the notation introduced in the Eq.
(15.35) are the following:
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Fig. 15.1 A square with a
single cavity T=T1

T=T2
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Γ1 = [−2.5,2.5]× 10, T1 (x
′) = 20◦C, x′ ∈ Γ1

Γ2 = [−2.5,2.5]× (−10) , T2 (x
′) = 10◦C, x′ ∈ Γ2

Γ3 = ∂V\(Γ1 ∪Γ2)

(15.41)

Parts of the boundary of the body, where the temperature is given by the boundary
conditions are indicated in Fig. 15.1.

The surface defined by the function P(Q j) is shown in Fig. 15.2. Formally, the result
may depend on two parameters the value Nmax and the decomposition of the body
into the set of subsets Q j. In Fig. 15.2, the results are presented for the case when
the area V is divided into J = 1002 subsets Q j. The subsets Q j are the squares

Q j = Qlk =

{
(x1,x2) : −10+ 0.2(l − 1)≤ x1 ≤−10+ 0.2 · l,

−10+ 0.2(k− 1)≤ x2 ≤−10+ 0.2 · k

}

l = 1, · · · ,100; k = 1, · · · ,100
(15.42)

The results are presented for two values of Nmax (Nmax = 20 on the left figure and
Nmax = 40 on the right figure). It follows from Fig. 2 that there is only one in-
homogeneity and its position is approximately determined. The results are almost
independent on the value Nmax. We also fulfilled calculations for the case of the par-
tition of the body into J = 2002 squares Q j, whose sides twice lesser than the sides
of the squares Q j considered above. The results are presented in Fig. 15.3. The Figs
15.2 and 15.3 show that such partition does not have any noticeable influence on the
results.

Because, the results presented in Figs. 15.2 and 15.3 do not depend significantly on
the values J and Nmax, in the examples considered below, the results are presented
for J = 1002 and Nmax = 20.
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Fig. 15.2: Example 1. Results for J = 1002, Nmax = 20 (left figure), Nmax = 40
(right figure)

Fig. 15.3 Example 1. Results
for J = 2002, Nmax = 20

Example 2. In this example we consider a body with two cavities subjected to the
same boundary conditions as in example 1. The cavities occupy the following po-
sitions: the first cavity G1 is the same as in example 1; the cavity G2 occupies the
region G2 = {[−2.5,−3.5]× [5.5, 6.5]}. The body with two cavities is presented in
Fig. 15.4. The results of identification are presented in Fig. 15.5.
It is possible to see from Fig. 15.5, that both cavities are detected by the pro-
posed method. Besides the cavities, we can see one small additional defect. Such
solution is obtained due to the event H1. When we assume, that there is only
one inhomogeneity, we obtain some point z11, which does not belong to areas G1

and G2. Because the conditional probability P(z = z11/H1) = 1, the contribution
of the point in the probability distribution is significant. The contribution of the
point decreases with the growth of the value Nmax. We also exclude this solution
if we assume, according to the results, presented in Fig. 15.5, that H1 is an im-
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Fig. 15.4 A square with two
cavities T=T1

T=T2
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Fig. 15.5 Example 2. Results
for J = 1002, Nmax = 20

possible event (P(H1) = 0) and H2,H3, · · · ,HNmax is a complete group of events
(P(Hk) = 1/(Nmax − 1), k = 2, · · · ,Nmax). The results, obtained under this assump-
tion, are presented in Fig. 15.6. Our assumption is confirmed in Fig. 15.6, where we
can see only two clusters, corresponding to the inhomogeneities.

Example 3. In this example, we consider the case of three cavities. The cavities
G1 and G2 are the same as in example 2. The third cavity G3 has a rectangular
shape, G3 = {[−2,0]× [−3.5,−4.5]}. The body with three cavities is presented in
Fig. 15.7.

The obtained results are presented in Fig. 15.8. In accordance with the Fig. 15.8,
we detect three real cavities and additionally we obtain three spurious solutions.
Similar to example 2, the spurious solutions are appeared due to the assumption
that events H1 and H2 are possible. In the Fig. 15.9 we present the results under
assumptions P(H1) = 0 (the left figure) and P(H1 ∪H2) = 0 (the right figure). In
case P(H1) = 0 we consider the complete group of events H2,H3, · · · ,HNmax and
P(Hk) = 1/(Nmax−1), k = 2, · · · ,Nmax. When we assume, that P(H1 ∪H2) = 0, we
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Fig. 15.6 Example 2. Results,
obtained under assumption
P(H1) = 0

Fig. 15.7 A square with three
cavities T=T1

T=T2
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Fig. 15.8 Example 3. Results
for J = 1002, Nmax = 20



294 Alexander V. Kaptsov & Efim I. Shifrin

Fig. 15.9: Example 3. Results, obtained under assumptions P(H1) = 0 and
P(H1 ∪H2) = 0

consider H3, · · · ,HNmax as a complete group of events and P(Hk) = 1/(Nmax − 2)
for k = 3, · · · ,Nmax. It is possible to see, that the spurious solutions are excluded
successively.

15.6 Conclusions

A method for identification of a finite number of small, well-separated inhomo-
geneities (cracks, cavities, inclusions) in 3D and 2D thermoelasticity is developed.
The method uses the knowledge of the mechanical loads and the displacements on
the boundary of the body, obtained in a single experiment, and enables to identify
the number and positions of the inhomogeneities, that are considered as the point
defects. The knowledge of the thermal load and the conditions of heat exchange
between the matrix and the inclusions are not assumed in the method. Considered
numerical examples show the efficiency of the proposed method.

Acknowledgements The support of RFBR grant 16-01-00149 is gratefully acknowledged.
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Chapter 16

Indentation of the Regular System of Punches

into the Foundation with Routh Coating

Kirill E. Kazakov & Svetlana P. Kurdina

Abstract We study plane contact problem for ageing viscoelastic bases with regular
finite systems of rigid punches. The case in which the punch and the coating sur-
faces are conformal (mutually repeating) is under consideration. Such problems can
arise, for example, when the punch immerses into a solidifying coating before its
complete solidification, e.g. into some sort of glue or new concrete. The shape of
thin coating as well as the shapes of the punches bases can be described by rapidly
changing functions. These problems arises when designing of machines and mecha-
nisms, when dealing with erection of structure complexes on bases and foundations,
when determining the admissible tilt angle of objects erected in close proximity to
each other, or when reinforcing engineering or civil engineering structures, when
designing and assembling structures that are in close vicinity to each other, etc. We
obtain the system of basic integral equations with the system of additional condi-
tions, convert it into one operator equation with two additional vector conditions,
and construct its analytical solution by using a generalized projection method.
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16.1 Statement of the Problem

Viscoelastic layer of an arbitrary thickness H lies on the rigid foundation. There is
perfect contact or smooth contact between layer and foundation. Second thin vis-
coelastic layer (coating) of thickness h(x) lies on lower layer (see Fig. 16.1). There
is also perfect contact or smooth contact between layers. We denote the moments
of their production by τ1 and τ2, respectively. We assume that the coating rigidity
is less than the rigidity of the lower layer or they are of the same order of magni-
tude. We also assume that the coating thickness described by periodic function with
period ∆a, i.e. h(x) = h(x+∆a).

At time τ0, the forces Pi(t) with eccentricities ei(t) starts to indent smooth rigid
punches into the surface of such a foundation (i = 1,n, n is the number of the
punches). We assume that the system of punches is regular, i.e. the distances be-
tween neighbor punches are the same and punch lengths are equal. The lengths of
lines of contact area are (bi − ai) = ā ≫ h(x) for all x, where ai and bi are left and
right coordinates of ith punch. Moreover the period ∆a is equal to (ai+1 − ai) for
all i = 1,n− 1. We consider the special case when the coating shape (the shape of
the surface of the layer packet) coincides with the punch base shape, i.e. the con-
tact interaction is conformal. The simple case of conformal contact is the contact
of a punch with a plane base and a plane part of a solid (including basements with
coating of constant thickness).

Solution for a problem of conformal contact between layered foundation and one
punch described in Kazakov and Manzhirov (2008); Manzhirov and Kazakov (2016).

The vertical displacement of the upper boundary of the foundation under the action
of the normal forces qi(x, t) can be written as (see, for example, Alexandrov and
Mkhitaryan, 1983; Aleksandrov and Manzhirov, 1987; Arutyunyan and Manzhirov,
1999; Alexandrov and Chebakov, 2007)

Fig. 16.1: Contact interaction of the regular system of punches and a two-layer base-
ment



16 Indentation of the Regular System of Punches into the Foundation 299

vi(x, t) = kνh(x)



 qi(x, t)

E(t − τ1)
+

t∫

τ0

K1(t − τ1,τ − τ1)
qi(x,τ)

E(τ − τ1)
dτ





+
2(1−ν2

2)

π

[
n

∑
j=1

bi∫

ai

kpl

(
x− ξ

H

)
q j (ξ , t)

E2(t − τ2)
dξ

+

t∫

τ0

K2(t − τ2,τ − τ2)
n

∑
j=1

bi∫

ai

kpl

(
x− ξ

H

)
q j (ξ ,τ)

E2(τ − τ2)
dξ dτ

]
, i = 1,n,

Kk(t,τ) = Ek(τ)
∂

∂τ

[
1

Ek(τ)
+Ck(t,τ)

]
, k = 1,2, x ∈ [ai,bi], t ≥ τ0,

where E1(t) and E2(t) are elastic moduli of the coating and the lower layer, kν is
a coefficient depending on the contact conditions between coating and lower layer
(kν = (1+ ν1)(1− 2ν1)/(1− ν1) in the case of an perfect contact, kν = 1− ν2

1 in
the case of a smooth coating-layer contact), ν1 is the Poisson ratio of the coating;
Ck(t,τ) is the tensile creep function, kpl[(x−ξ )/H] is known kernel of the plane con-
tact problem, which has the form (Arutyunyan and Manzhirov, 1999; Alexandrov
and Chebakov, 2007)

kpl(s) =

∞∫

0

L(u)

u
cos(su)du,

and, in the case of a smooth contact between the lower layer and the rigid base,

L(u) =
cosh2u− 1
sinh2u+ 2u

,

and in the case of a perfect contact,

L(u) =
2κ sinh2u− 4u

2κ cosh2u+ 4u2+ 1+κ2 , κ = 3− 4ν2.

By equating the vertical displacements of the upper boundary of the coating with the
displacements of the rigid punches and taking into account the fact that the contact
interaction is conformal, we obtain the system of integral equations of our problem
in the form

kνh(x)


 qi(x, t)

E(t − τ1)
+

t∫

τ0

K1(t − τ1,τ − τ1)
qi(x,τ)

E(τ − τ1)
dτ




+
2(1−ν2

2)

π

[
n

∑
j=1

bi∫

ai

kpl

(
x− ξ

H

)
q j (ξ , t)

E2(t − τ2)
dξ

+

t∫

τ0

K2(t − τ2,τ − τ2)
n

∑
j=1

bi∫

ai

kpl

(
x− ξ

H

)
q j (ξ ,τ)

E2(τ − τ2)
dξ dτ

]

= δi(t)+αi(t)

(
x− ai + bi

2

)
, i = 1,n, x ∈ [ai,bi], t ≥ τ0,

(16.1)
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where δi(t) and αi(t) are the punches settlements and its tilt angles (i = 1,n).
The additional condition for this problem are (i = 1,n, t ≥ τ0)

Pi(t) =

bi∫

ai

qi(ξ , t)dξ ,

Mi(t)≡ Pi(t)ei(t) =

bi∫

ai

qi(ξ , t)

(
ξ − ai + bi

2

)
dξ .

(16.2)

There exist 15 versions of mathematical statements for the contact problem for a
system of punches in the plane case. It is easy to show that there is one of 4 types
of conditions on each punch: the force and the moment of the load application are
given, the tilt angle of the punch and the force of the load application are given, the
punch settlement and the moment of the load application are given, the settlement
and tilt angle of the punch are given. So: 1) there is 4 versions of mathematical state-
ments if all conditions are equal (C1

4 = 4); 2) there is 6 versions of mathematical
statements if exists 2 groups of punches with different conditions (C2

4 = 6); 3) there
is 4 versions of mathematical statements if exists 3 groups of punches with differ-
ent conditions (C3

4 = 4); 4) there is 1 version of mathematical statement if exists 4
groups of punches with different conditions (C4

4 = 1).
We will describe most common version of mathematical statement if exists 4 groups
of punches with different conditions. All another version are particular cases of this
version.

16.2 Dimensionless Form and Operator Representation

Let us make the change of variables in (16.1) and (16.2) by the formulas (x ∈ [ai,bi],
ξ ∈ [a j,b j])

x∗ =
2(x−ηi)

ā
, ξ ∗ =

2(ξ −η j)

ā
, t∗ =

t

τ0
, τ∗1 =

τ1

τ0
, τ∗2 =

τ2

τ0
,

λ =
2H

ā
, δ i∗(t∗) =

2δi(t)

ā
, α i∗(t∗) = αi(t), c∗(t∗) =

E2(t − τ2)

E1(t − τ1)
,

m∗(x∗)≡ mi(x∗) =
kν

2(1−ν2
2)

2h(x)

ā
, qi∗(x∗, t∗) =

2(1−ν2
2)qi(x, t)

E2(t − τ2)
,

Pi∗(t∗) =
4Pi(t)(1−ν2

2)

E2(t − τ2)ā
, Mi∗(t∗) =

8ei(t)Pi(t)(1−ν2
2)

E2(t − τ2)ā
,

Fi j∗ f (x∗) =

1∫

−1

ki j(x∗,ξ ∗) f (ξ ∗)dξ ∗, L∗
k f (t∗) =

t∗∫

1

Kk∗(t∗,τ∗) f (τ∗)dτ∗,
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ki j(x∗,ξ ∗) =
1
π

kpl

(
x− ξ

H

)
=

1
π

kpl

(
x∗− ξ ∗+η i∗−η j∗

λ

)
, η i∗ =

2ηi

ā
,

K1∗(t∗,τ∗) =
E1(t − τ1)

E1(τ − τ1)

E2(τ − τ1)

E2(t − τ1)
K1(t − τ1,τ − τ1)τ0,

K2∗(t∗,τ∗) = K(t − τ2,τ − τ2)τ0, i, j = 1,2, . . . ,n.

Then we obtain a system of mixed integral equation and additional conditions in the
dimensionless form

c(t)m(x)(I−L1)q
i(x, t)+ (I−L2)

n

∑
j=1

Fi jq j(x, t) = δ i(t)+α i(t)x,

1∫

−1

qi(ξ , t)dξ = Pi(t),

1∫

−1

qi(ξ , t)ξ dξ = Mi(t), i = 1,n, x ∈ [−1,1], t ≥ 1.

(16.3)

We can represent this system with additional conditions (16.3) as one operator equa-
tion with two additional vector conditions

c(t)m(x)(I−L1)q(x, t)+ (I−L2)Gq(x, t) = δ (t)+α(t)x,

1∫

−1

q(ξ , t)dξ = P(t),

1∫

−1

q(ξ , t)ξ dξ = M(t), x ∈ [−1,1], t ≥ 1,
(16.4)

Here
q(x, t) = qi(x, t)ii, P(t) = Pi(t)ii, M(t) = Mi(t)ii,

δ (t) = δ i(t)ii, α(t) = α i(t)ii, k(x,ξ ) = ki j(x,ξ )iii j,

Gf(x) =

1∫

−1

k(x,ξ ) · f(ξ )dξ .

(16.5)

16.3 Transformation of Main Equation and Special Basis

Let us multiply the operator equation (16.4) by 1/
√

m(x)

c(t)
√

m(x)(I−L1)q(x, t)+
1√
m(x)

(I−L2)Gq(x, t) =
δ (t)+α(t)x√

m(x)

By introducing notations
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Q(x, t) =
√

m(x)q(x, t), K(x,ξ ) =
k(x,ξ )√
m(x)m(ξ )

,

Ff(x) =

1∫

−1

K(x,ξ ) · f(ξ )dξ ,

(16.6)

we obtain (x ∈ [−1,1], t ≥ 1)

c(t)(I−L1)Q(x, t)+ (I−L2)FQ(x, t) =
δ (t)+α(t)x√

m(x)
, (16.7)

1∫

−1

Q(ξ , t)√
m(ξ )

dξ = P(t),

1∫

−1

Q(ξ , t)√
m(ξ )

ξ dξ = M(t). (16.8)

Thus, we will find solution of operator equation (16.7) with additional condi-
tion (16.8) in the class of vector–functions continuous in time t in Hilbert space
L2([−1,1],V). The special functional basis {pi

k(x)}i=1,n,k=0,1,2,... of this space should

contain factor 1/
√

m(x). A system of functions satisfying the above conditions can
be constructed by the formulas (Szegö, 1959):

pi
k(x) =

pi∗
k (x)√
m(x)

, pi∗
k (x) = p∗k(x)i

i, d−1 = 1, Jk =

1∫

−1

ξ k dξ

m(ξ )
,

dk =

∣∣∣∣∣∣∣

J0 · · · Jk

...
. . .

...
Jk · · · J2k

∣∣∣∣∣∣∣
, p∗k(x) =

1√
dk−1dk

∣∣∣∣∣∣∣∣∣

J0 J1 · · · Jk

...
. . .

...
Jk−1 Jk · · · J2k−1

1 x · · · xk

∣∣∣∣∣∣∣∣∣

,

i = 1,n, k = 0,1,2, . . . , x ∈ [−1,1].

(16.9)

We can use this basis in the part of versions of statement of the problem (in particular,
we can use it in the case when we know all forces and moments). But in some cases
we should use another basis. It can be constructed by the formulas:

p̂i
k(x) =

p̂i∗
k (x)√
m(x)

, p̂i∗
k (x) = p̂∗k(x)i

i, p̂∗m(x) = p∗m(x),

p̂∗0(x) =
x√
J2

=
J1√
J0J2

p∗0(x)+

√
J0J2 − J2

1

J0J2
p∗1(x),

p̂∗1(x) =
J2 − J1x√

J2(J0J2 − J2
1)

=

√
J0J2 − J2

1

J0J2
p∗0(x)−

J1√
J0J2

p∗1(x),

i = 1,n, k = 0,1,2, . . . , m = 2,3,4, . . . , x ∈ [−1,1],

(16.10)
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where p∗k(x), J0, J1, J2 determined by (16.9). We should use this basis in the case
when we know all tilt angles and applied forces. And if we want to solve mixed
problem (i.e., for example, on one part of punches we know forces and moments
and on another part of punches we know tilt angles and applied forces) we should
construct the basis by the formulas (x ∈ [−1,1], k = 0,1,2, . . ., i = 1,n, i1 = 1,n1,
i2 = n1 + 1,n)

p̃i
k(x) =

p̃i∗
k (x)√
m(x)

, p̃
i1∗
k (x) = p̂∗k(x)i

i1 , p̃
i2∗
k (x) = p∗k(x)i

i2 , (16.11)

where p∗k(x) and p̂∗k(x) determining by (16.9) and (16.10), respectively.

16.4 Solving the Problem

Consider the case when the system of punches consist of 4 groups. On first group
forces moments and punch settlements are given (i1 = 1,n1), on second group forces
and moments are given (i2 = n1 + 1,n2), on third group punch settlements and tilt
angles are given (i3 = n2 + 1,n3), and on fourth group forces and tilt angles are given
(i4 = n3 + 1,n). It is necessary to find contact pressures qi(x, t), forces Pi1(t), Pi3(t),
moments Mi3(t), Mi4(t), settlements δ i2(t), δ i3(t), and tilt angles α i1(t), α i2(t) (i =
1,n, i1 = 1,n1, i2 = n1 + 1,n2, i3 = n2 + 1,n3, i4 = n3 + 1,n). Hereinafter, it will be
the summation over repeated upper indices i and j from 1 to n, over index i1 from 1
to n1, over index i2 form n1 + 1 to n2, over index i3 from n2 + 1 to n3, over index i4
form n3 + 1 to n if the left side of the formula is independent of the index.

For this problem we will use the basis (16.11) for the Hilbert space L2([−1,1],V).

The Hilbert space L2([−1,1],V) can be represented as the direct sum of two orthog-

onal subspaces L2([−1,1],V) = L
(0)
2 ([−1,1],V )⊕L

(1)
2 ([−1,1],V ). Functions

{p̃
i1
0 (x), p̃

i2
0 (x), p̃

i4
0 (x), p̃

i2
1 (x)}i1=1,n1;i2=n1+1,n2;i4=n3+1,n

are the basis in L
(0)
2 ([−1,1],V ) and functions

{p̃
i3
0 (x), p̃

i1
1 (x), p̃

i3
1 (x), p̃

i4
1 (x), p̃

i
k(x)} i1=1,n1;i3=n2+1,n3;

i3=n3+1,n;i=1,n;k=2,3,4,...

are the basis in L
(1)
2 ([−1,1],V ). For the integrand and the right-hand side of (16.7)

Q(x, t) = Q0(x, t)+Q1(x, t),
δ (t)+α(t)x√

m(x)
= ∆ 0(x, t)+∆1(x, t), (16.12)

where Q0(x, t), ∆ 0(x, t) and Q1(x, t), ∆ 1(x, t) are functions continuous in time t and

ranging in L
(0)
2 ([−1,1],V) and L

(1)
2 ([−1,1],V), respectively:
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Q0(x, t) = z
i1
0 (t)p̃

i1
0 (x)+ z

i2
0 (t)p̃

i2
0 (x)+ z

i4
0 (t)p̃

i4
0 (x)+ z

i2
1 (t)p̃

i2
1 (x),

∆ 0(x, t) =

[√
J2α i1(t)+

J1√
J2

δ i1(t)

]
p̃

i1
0 (x)+

[√
J0δ i2(t)+

J1√
J0

α i2(t)

]
p̃

i2
0 (x)

+

[√
J0δ i4(t)+

J1√
J0

α i4(t)

]
p̃

i4
0 (x)+

[√
J0J2 − J2

1

J0
α i2(t)

]
p̃

i2
1 (x).

(16.13)

The representation for Q(x, t) contains the known first term Q0(x, t), which is deter-
mined by the additional conditions (16.8)

z
i1
0 (t) =

Mi1(t)√
J2

, z
i2
0 (t) =

Pi2(t)√
J0

, z
i4
0 (t) =

Pi4(t)√
J0

,

z
i2
1 (t) =

J0Mi2(t)− J1Pi2(t)√
J0(J0J2 − J2

1)
, i1 = 1,n1, i2 = n1 + 1,n2, i4 = n3 + 1,n,

(16.14)
and the term Q1(x, t) is to be found. Conversely, for the right-hand side, one should
find ∆ 0(x, t), while ∆ 1(x, t) is known. These peculiarities permit one to class the
resulting problem as a projection problem. The method for solution of generalized
projection problems described in Manzhirov (2016).

Following Manzhirov (2016), we can introduce the orthogonal projection operator,

mapping the space L2([−1,1],V) into L
(0)
2 ([−1,1],V):

P0f(x) =

1∫

−1

f(ξ ) · p̃i1
0 (ξ )dξ p̃

i1
0 (x)+

1∫

−1

f(ξ ) · p̃i2
0 (ξ )dξ p̃

i2
0 (x)

+

1∫

−1

f(ξ ) · p̃i4
0 (ξ )dξ p̃

i4
0 (x)+

1∫

−1

f(ξ ) · p̃i2
1 (ξ )dξ p̃

i2
1 (x).

The orthoprojector P1 = I−P0 maps the space L2([−1,1],V) into L
(1)
2 ([−1,1],V).

We apply the orthogonal projection operator P1 to equation (16.7). As a result, we
obtain the equation for determining Q1(x, t) with a known right-hand side

c(t)(I−L1)Q1(x, t)+ (I−L2)P1FQ1(x, t)=−(I−L2)P1FQ0(x, t)+∆ 1(x, t).
(16.15)

It is necessary to construct its solution in the form of a series in the eigenfunctions of
the operator P1F, which, as one can show, is a compact strongly positive self-adjoint

operator from L
(1)
2 ([−1,1],V ) into L

(1)
2 ([−1,1],V). The system of eigenfunctions of

such an operator is a basis in the space L
(1)
2 ([−1,1],V). The spectral problem for the

operator P1F can be written in the form

P1Fϕk(x) = γkϕk(x), (16.16)
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where γk are eigenvalues of the operator P1F and ϕk(x) are its eigenfunctions (k =
2,3,4, . . .) which can be represented as

ϕk(x) = ψ i3
k0p̃

i3
0 (x)+ψ i1

k1p̃
i1
1 (x)+ψ i3

k1p̃
i3
1 (x)+ψ i4

k1p̃
i4
1 (x)+

∞

∑
m=2

ψ i
kmp̃i

m(x). (16.17)

Spectral problem (16.16) lead us to solve the system of linear algebraic equations
about coefficients ψ i

km:

K̃
i3 j3
00 ψ

j3
k0 + K̃

i3 j1
01 ψ

j1
k1 + K̃

i3 j3
01 ψ

j3
k1 + K̃

i3 j4
01 ψ

j4
k1 +

∞

∑
m=2

K̃
i3 j
0m ψ

j

km = γkψ
i3
k0,

K̃
i1 j3
10 ψ j3

k0 + K̃
i1 j1
11 ψ j1

k1 + K̃
i1 j3
11 ψ j3

k1 + K̃
i1 j4
11 ψ j4

k1 +
∞

∑
m=2

K̃
i1 j
0m ψ j

km = γkψ i1
k1,

K̃
i3 j3
10 ψ

j3
k0 + K̃

i3 j1
11 ψ

j1
k1 + K̃

i3 j3
11 ψ

j3
k1 + K̃

i3 j4
11 ψ

j4
k1 +

∞

∑
m=2

K̃
i3 j
0m ψ

j

km = γkψ
i3
k1,

K̃
i4 j3
10 ψ j3

k0 + K̃
i4 j1
11 ψ j1

k1 + K̃
i4 j3
11 ψ j3

k1 + K̃
i4 j4
11 ψ j4

k1 +
∞

∑
m=2

K̃
i4 j
0m ψ j

km = γkψ i4
k1,

i1 = 1,n1, i3 = n2 + 1,n3, i4 = n3 + 1,n, m2 = 2,3,4, . . . ,

(16.18)

where coefficients K̃
i j

ml (m, l = 0,1,2, . . ., i, j = 1,n) can be calculating by the formu-
las

K̃
i j
ml =

1∫

−1

1∫

−1

p̃i
m(x) ·K(x,ξ )p̃ j

l (ξ )dxdξ .

We expand integrand Q1(x, t) and righthand side of the equation (16.15) with respect

to the new basis functions ϕk(x) (k = 2,3,4, . . .) in L
(1)
2 ([−1,1],V), i.e.

Q1(x, t) =
∞

∑
k=2

zk(t)ϕk(x),

− (I−L2)P1FQ0(x, t)+∆1(x, t)

=
∞

∑
k=2

{−(I−L2)[K
i1
0kz

i1
0 (t)+K

i2
0kz

i2
0 (t)+K

i4
0kz

i4
0 (t)+K

i2
1kz

i2
1 (t)]

+ δ̂ i1
1kδ i1(t)+ δ

i3
k δ i3(t)+α

i3
k α i3(t)+α i4

1kα i4(t)}ϕk(x),

(16.19)

where coefficients K
i1
0k, K

i2
0k, K

i4
0k, K

i2
1k, δ̂ i1

1k, δ
i3
k , α

i3
k , α i4

1k are

K
i1
0k = K̃

i1 j3
00 ψ

j3
k0 + K̃

i1 j1
01 ψ

j1
k1 + K̃

i1 j3
01 ψ

j3
k1 + K̃

i1 j4
01 ψ

j4
k1 +

∞

∑
m=2

K̃
i1 j
0m ψ

j

km,

K
i2
0k = K̃

i2 j3
00 ψ j3

k0 + K̃
i2 j1
01 ψ j1

k1 + K̃
i2 j3
01 ψ j3

k1 + K̃
i2 j4
01 ψ j4

k1 +
∞

∑
m=2

K̃
i2 j
0m ψ j

km,
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K
i4
0k = K̃

i4 j3
00 ψ j3

k0 + K̃
i4 j1
01 ψ j1

k1 + K̃
i4 j3
01 ψ j3

k1 + K̃
i4 j4
01 ψ j4

k1 +
∞

∑
m=2

K̃
i4 j
0m ψ j

km,

K
i2
1k = K̃

i2 j3
10 ψ

j3
k0 + K̃

i2 j1
11 ψ

j1
k1 + K̃

i2 j3
11 ψ

j3
k1 + K̃

i2 j4
11 ψ

j4
k1 +

∞

∑
m=2

K̃
i2 j
0m ψ

j

km,

δ̂ i1
1k =

√
J0J2 − J2

1

J2
ψ i1

k1, δ i3
k =

√
J0ψ i3

k0,

α
i3
k =

J1√
J0

ψ
i3
k0 +

√
J0J2 − J2

1

J0
ψ

i3
k1, α i4

1k =

√
J0J2 − J2

1

J0
ψ i4

k1,

i1 = 1,n1, i2 = n1 + 1,n2, i3 = n2 + 1,n3, i4 = n3 + 1,n, k = 2,3,4, . . .
(16.20)

Substitute representations (16.19) into (16.15), use formula (16.16), and see that
the unknown expansion functions zk(t) (k = 2,3,4, . . .) can be determined by the
formula:

zk(t) = (I+Wk)
(
{δ̂ i1

1kδ i1(t)+ δ i3
k δ i3(t)+α i3

k α i3(t)+α i4
1kα i4(t)−

− (I−L2)[K
i1
0kz

i1
0 (t)+K

i2
0kz

i2
0 (t)+K

i4
0kz

i4
0 (t)+K

i2
1kz

i2
1 (t)]}/[c(t)+ γk]

)
,

Wk f (t) =

t∫

1

Rk(t,τ) f (τ)dτ,

(16.21)
where Rk(t,τ) is the resolvent of the kernel [c(t)K1(t,τ) + γkK2(t,τ)]/[c(t) + γk]
(k = 2,3,4, . . .).

Final formulas for contact pressure q(x, t) under the punch take the form (it follows
from the formulas (16.6), (16.7), (16.11), (16.13), (16.17), and (16.19)):

q(x, t) =
1

m(x)

{
z

i1
0 (t)p̃

i1∗
0 (x)+ z

i2
0 (t)p̃

i2∗
0 (x)+ z

i4
0 (t)p̃

i4∗
0 (x)+ z

i2
1 (t)p̃

i2∗
1 (x)

+
∞

∑
k=2

zk(t)

[
ψ

i3
k0p̃

i3∗
0 (x)+ψ i1

k1p̃
i1∗
1 (x)+ψ

i3
k1p̃

i3∗
1 (x)+ψ i4

k1p̃
i4∗
1 (x)+

∞

∑
m=2

ψ i
kmp̃i∗

m(x)

]}
,

(16.22)
where functions z

i1
0 (t), z

i2
0 (t), z

i4
0 (t), z

i2
1 (t), zk(t) determined from (16.14) and (16.21),

functions p̃i∗
k (x) calculated by formulas (16.11), and coefficients ψ i3

k0, ψ i1
k1, ψ i3

k1, ψ i4
k1,

and ψ i
km can be determined from the solution of (16.18).

In the resulting contact stress formulas (16.22), we have managed to find closed-
form expressions for the rapidly changing functions describing the coating form,
i.e., find the fine structure of the solution. This permits obtaining effective solutions
of problems of contact interaction for coated foundations in the case, where coating
thickness and the punch base shape is described by rapidly changing functions.

Then we introduce orthoprojector from L2([−1,1],V ) to L
(0)
2 ([−1,1],V) and obtain

the system of algebraic equations for determining settlements δ (t) and tilt angles
α(t).
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Determining the contact pressure under the punches, we can find unknown forces
Pi1(t), Pi3(t), moments Mi3(t), Mi4(t) (i1 = 1,n1, i3 = n2 + 1,n3, i4 = n3 + 1,n). To
this end we should substitute q(x, t) from (16.22) into conditions (16.22):

Pi1(t) = z
i1
0 (t)

J1√
J2

+
∞

∑
k=1

zk(t)δ̂
i1
1k, Pi3(t) =

∞

∑
k=1

zk(t)δ
i3
k ,

Mi3(t) =
∞

∑
k=1

zk(t)α
i3
k , Mi4(t) =

∞

∑
k=1

zk(t)α
i4
1k,

(16.23)

where coefficients δ̂ i1
1k, δ

i3
k , α

i3
k , α i4

1k calculated by (16.20), functions z
i1
0 (t) and zk(t)

determined from (16.14) and (16.21), and integrals J1 and J2 can be found from
(16.9).

We also can find settlements δ i2(t), δ i3(t) and tilt angles α i1(t), α i2(t) (i1 = 1,n1,
i2 = n1 + 1,n2, i3 = n2 + 1,n3). To this end, we must apply the operator P0 to
Eq. (16.7):

c(t)(I−L1)Q0(x, t)+ (I−L2)P0FQ(x, t)

=

[√
J2α i1(t)+

J1√
J2

δ i1(t)

]
p̃

i1
0 (x)+

[√
J0δ i2(t)+

J1√
J0

α i2(t)

]
p̃

i2
0 (x)

+

[√
J0δ i4(t)+

J1√
J0

α i4(t)

]
p̃

i4
0 (x)+

[√
J0J2 − J2

1

J0
α i2(t)

]
p̃

i2
1 (x).

(16.24)
So, having defined Q(x, t), we can find the change rule of unknown settlements and
tilt angles

α i1(t) =
1√
J2

{
c(t)(I−L1)z

i1
0 (t)+ (I−L2)

[
K̃

i1 j1
00 z

j1
0 (t)+ K̃

i1 j2
00 z

j2
0 (t)

+ K̃
i1 j4
00 z

j4
0 (t)+ K̃

i1 j2
01 z

j2
1 (t)+

∞

∑
k=2

K
i1
0kzk(t)

]}
− J1

J2
δ i1(t),

δ i2(t) =
1√
J0

{
c(t)(I−L1)z

i2
0 (t)+ (I−L2)

[
K̃

i2 j1
00 z

j1
0 (t)+ K̃

i2 j2
00 z

j2
0 (t)

+ K̃
i2 j4
00 z

j4
0 (t)+ K̃

i2 j2
01 z

j2
1 (t)+

∞

∑
k=2

K
i2
0kzk(t)

]}
− J1

J0
α i2(t),
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α i2(t) =

√
J0

J0J2 − J2
1

{
c(t)(I−L1)z

i2
1 (t)+ (I−L2)

[
K̃

i2 j1
10 z

j1
0 (t)+

+ K̃
i2 j2
10 z

j2
0 (t)+ K̃

i2 j4
10 z

j4
0 (t)+ K̃

i2 j2
11 z

j2
1 (t)+

∞

∑
k=2

K
i2
1kzk(t)

]}
,

δ i4(t) =
1√
J0

{
c(t)(I−L1)z

i4
0 (t)+ (I−L2)

[
K̃

i4 j1
00 z

j1
0 (t)+ K̃

i4 j2
00 z

j2
0 (t)

+ K̃
i4 j4
00 z

j4
0 (t)+ K̃

i4 j2
01 z

j2
1 (t)+

∞

∑
k=2

K
i4
0kzk(t)

]}
− J1

J0
α i4(t).

16.5 Main Results and Conclusions

In the present paper, we introduce the notion of conformal contact interaction or a
conformal contact of bodies, which is a generalization of the interaction between
bodies and plane surface. We pose and solve plane problems of conformal contact
between viscoelastic aging basements with coatings and system of rigid punches.
The solution of the problem is obtained analytically, and, in the expressions for
the contact stresses, the shape function of the foundation is distinguished explicitly,
which allows one to perform computations for actual shapes of the coating surface,
which are described by rapidly changing functions. It is allow us to solve complete
problems.
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Chapter 17

Physical Modeling of Rock Deformation and

Fracture in the Vicinity of Well for Deep
Horizons

Dmitry M. Klimov, Vladimir I. Karev & Yury F. Kovalenko

Abstract The results of experiments on identification the strain characteristics of
rocks from the deep horizons (6 km or more) under the real stress conditions arising
in the vicinity of wells and perforations at drilling and operation are presented. The
experiments were conducted on the unique experimental facility - Triaxial Indepen-
dent Loading Test System (TILTS) of IPMech RAS. Specimens for tests were cut
from the core of the exploratory wells of the Astrakhan gas condensate field. Phys-
ical modeling of the pressure reduction process in deep wells with different bottom
geometry is performed. The studies have shown a fundamental possibility of increas-
ing the permeability of rocks from deep horizons by stress condition control in the
vicinity of a well.

Key words: Deep reservoirs · Rock · Well · Test facility · Deformations · Stresses
· Strength · Elastic moduli

17.1 Introduction

A characteristic feature of rocks is a significant dependence of their stress-strain
properties on the stress condition type and stresses value. Therefore, to solve the
geomechanical problems related to the creation of new technologies for the deep-
seated deposits development, the wellbores stability providing at great depths and
many others, it is important to know the strain characteristics of rocks under the
actual stresses in the vicinity of deep wells. Such a possibility is provided by the
Triaxial Independent Loading Test System (TILTS) created in IPMech RAS (Karev
and Kovalenko, 2012).
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17.2 Experimental Facility and Loading Programs for Specimens

TILTS is a unique test facility that allows to study the strain, strength and filtration
characteristics of rocks by testing cubic specimens of size 40 or 50 mm. The TILTS
is equipped with automatic permeability measurement system, which allows study-
ing the characteristics of rocks permeability versus magnitude and type of effective
stresses.
The facility allowed to perform the experiments on determination of strain, strength
and filtration characteristics for the core materials of four lithotypes (argillite, aleu-
rolite, quartz sandstone, and dolomite) taken from depths of more than 6 km of
the exploratory wells Pravoberezhnaya-1 and the Devonskaya-2, drilled at the As-
trakhan gas condensate field of Public Joint Stock Company Gazprom. The 7 cubic
specimens with the edge 40 mm are made from this core materials.

The tests are performed on loading programs, simulating two types of stress-strain
state: the generalized shear and the generalized tension. The generalized shear is
a superposition of uniform hydrostatic compression and stress state, which occurs
when one principal stress grows, other decreases, and third is held constant, while
the average pressure also remains constant (see Fig. 17.1). The Lode parameter
(Love, 1927) corresponding to this stress state equals to 0 as for pure plane shear.
The generalized tension is a superposition of uniform hydrostatic compression and

Fig. 17.1 Borehole modelling
(well)  

Prior to the TILTS testing, the velocities of longitudinal elastic waves propagation
along three axes of all specimens are measured by using of special equipment.
Velocities measured for sandstone and dolomite appear to be approximately the same
in all directions. So, for one of the sandstone specimens (depth 6058 m) velocity
along the vertical axis of the core, i.e. perpendicular to the bedding plane, is 5 km/s
and velocities in the plane are 5.2 and 5.3 km/s. At the same time the velocities
for the argillite and aleurolite specimens in the bedding plane are measured twice
larger than one along the core axis. The velocity for the argillite specimen No. ARG
2-2 (depth 6556 m) in horizontal plane is 4.4 km/s in the bedding plane, and one
along the core axis is 1.85 km/s. So sandstone and dolomite specimens have elastic
properties close to isotropic and by contrast the argillite and aleurolite specimens
have layered structure and have transversely isotropic properties.
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Fig. 17.2 Perforation mod-
elling (sphere)

stress state, which occurs when two principal stresses grow, and third one decreases,
while the average pressure remains constant (Fig. 17.2). The Lode parameter for this
case is equal to +1, as under uniaxial tension.
The values σ1,σ2,σ3 (in Fig. 17.1 and 17.2) correspond to the stresses applied on
the axes of TILTS. The monotonically increasing stress σ2 is the loading parameter.
The specific choice of these two testing programs is due to the fact that they corre-
spond to the real stress conditions in the reservoir for two basic bottom-hole designs
(Klimov et al, 2003): generalized shear (Fig. 17.1) is realized in the vicinity of an
open borehole or the perforation when the pressure in the well decreases (i.e. pres-
sure drawdown increases) and generalized tension (Fig. 17.2) occurs in the vicinity
of the spherical tip of the perforation when the pressure in the well decreases.
Effective stresses (stresses acting on the soil framework) in the vicinity of a well
(Fig. 17.3) as the Lame’s problem solution (Love, 1927; Khristianovich and Zheltov,
1955) are

σr =−(q+ pc)(Rc/r)2 + q, (17.1)

σϕ = (q+ pc)(Rc/r)2 + q, (17.2)

Fig. 17.3 Stresses in the
vicinity of well
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σz = q, (17.3)

When r = Rc, it can be found from (17.1) - (17.3)

σr =−pc,σϕ = 2q+ pc,σz = q (17.4)

The expressions for effective stresses in the vicinity of sphere (Fig. 17.4) are respec-
tively:

σr =−(q+ pc)(Rc/r)2 + q, (17.5)

σθ ,ϕ =
1
2
(q+ pc)(Rc/r)2 + q, (17.6)

On the perforation wall (when r = Rc)

σr =−pc, σθ ,ϕ =
3
2

q+
1
2

pc (17.7)

Here σr,σθ ,ϕ are stress components in radial and two circumferential directions.

During the both loading programs the specimens are first driven to the conditions
of uniform overall compression, in which the rocks are supposed to be found at the
depth of core capture before the well is drilled out (Fig. 17.1, 17.2, section OA, at
the point A σi = q). Then the specimens behavior is studied under the change of
stresses in the vicinity of the borehole when the pressure at the well bottom changes
(Figs. 17.1, 17.2, section AB).

The correspondence of stresses applied to the faces of specimen to stress compo-
nents acting in the vicinity of the borehole during the loading program well are

Fig. 17.4: Stresses in the vicinity of spherical hole

where q =−γh is rock pressure at the chosen depth, γ is average rock unit weight, h
is formation depth, pc is bottom-hole pressure (pc > 0), Rc is bottom-hole radius, r is
distance from the borehole axis, (compressing stress values are considered negative).
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σ1 −σz,σ2 −σϕ ,σr −σr. During the loading program sphere the correspondence is
σ1 −σϕ ,σ2 −σθ ,σ3 −σr.

17.3 Rock Specimens Test Results

The test results for two specimens cut from the same piece of core from the
Devonskaya-2 well are presented in Figs. 17.5- 17.8. The specimen is a fine-grained
sandstone, depth of coring is 6058 m, which corresponds to the magnitude of the
rock pressure of about 140 MPa, if γ = 2.3 · 103 kg/m3. The initial permeability is
equal to zero.

The conditions that occur in the vicinity of uncased well, when the pressure on its
bottom decreases, are simulated during the test of the specimen No. P 2-1 (see Fig.
17.5, 17.6). The conditions that occur in the vicinity of the perforation tip (hemi-
sphere), when the bottom pressure decreases, are simulated during the test of the
specimen No. P 2-2 (see Fig. 17.7, 17.8).

The illustrations show that the specimen No. P 2-1 is deformed almost elastically
up to the maximum possible decrease of pressure on the bottom hole, whereas the
specimen No. P 2-2 moved to the stage of inelastic deformation at the strain value
corresponding to the well pressure of approximately 150 MPa and has been heavily
deformed and soon destroyed.

The rock specimen No. P 2-2 after the test is shown in Fig. 17.9, where it can be
easily seen that the specimen disintegrated by macroscopic fracture settled in the
plane perpendicular to the direction of the lowest compressing stress. At the same

Fig. 17.5: Loading program for the specimen No. P 2-1 (well program)
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Fig. 17.6: Stress-strain curves for the specimen No. P 2-1 (well program)

Fig. 17.7: Loading program for the specimen No. P 2-1 (sphere program)

time the permeability of the specimen which initially is absent in this direction has
abruptly increased on the disintegration stage of loading test (Fig. 17.10).

A similar permeability pattern is observed in the test of argillite specimen No. A
2-2, but the character of fracture is distinct. The specimen is fractured in the planes
perpendicular to the direction of the lowest compressing stress, but with more than
one macro cracks developed in the bedding planes. Permeability of the specimen
along the bedding planes direction is also increased significantly (Fig. 17.11).
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Fig. 17.8: Stress-strain curves for the specimen No. P 2-1 (sphere program)

Fig. 17.9 Specimen No. P 2-2
after the test

Elastic moduli are calculated using the stress-strain curves obtained for the tested
rocks such as Young’s moduli in the bedding planes and Poisson’s ratios in the
perpendicular direction. The data obtained are given in Table. 17.1.

Fig. 17.10

change during the test for the
specimen No. P 2-2

Permeability
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Fig. 17.11 Specimen No. A
2-2 after the test

Table 17.1: Elastic moduli of tested rocks

Specimen Well Depth Lithotype Young’s modulus Poisson’s ratio
No. m 104 MPa
A 1-1 Pravoberezhnaya-1 6247 argillite 3.1 0.13
AL-1 Pravoberezhnaya-1 6570 aleurolite 2.75 0.17
A 2-1 Devonskaya-2 6556 argillite 1.9 0.12
A 2-2 Devonskaya-2 6556 argillite 2.3 0.14
P 2-1 Devonskaya-2 6058 quartz sandstone 2.8 0.12
P 2-2 Devonskaya-2 6058 quartz sandstone 3.7 0.12
D 2-1 Devonskaya-2 5751 dolomite 4.1 0.12

17.4 Conclusion

The complex loading test of the rocks from depths exceeding 6 km are carried out
for the first time. The tests have shown that various rocks of different lithological
composition are characterized by high strength and low permeability.

The basic result of the performed research is the fundamental possibility for the
rocks lying at great depths and affected by extremely high compressive stresses to
significantly increase their permeability which initially is low. The purpose can be
achieved in result of fracturing and disintegration of the rock in the reservoir by
reducing the well pressure to a certain value, and choice the geometry of the bottom
hole.

The obtained results are of great importance for solving problems connected to
creating effective technologies for the development of the deeper deposits, as well
as to reducing risks during drilling and operation of wells.
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Chapter 18

Full Axially Symmetric Contact of a Rigid

Punch with a Rough Elastic Half-Space

Ilya I. Kudish

Abstract An axially symmetric contact problem for a rigid punch indented in an
elastic half-space with rough surface is considered. Friction in the contact is ne-
glected. It is shown that there exists a normal load applied to the punch which would
make the contact singly connected if the roughness distribution is a four times differ-
entiable function. Some generalizations of the problem are considered. A relation-
ship for the estimate of a normal load sufficient for realization of a full contact is
provided.

Key words: Contact of rough elastic solids · Full contact · Roughness · Smoothness
· Load sufficient for full contact

18.1 Introduction

Seals find various applications in engineering practice. The goal of seal application
is to separate one chamber of a machine from another. One of the main problems
with seal application is lubricant/fluid leakage associated with small gaps in seal
contacts. These gaps are mainly caused by surface roughness. Therefore, one of the
major goals is to minimize this leakage or eliminate it completely. However, it is
practically impossible to eliminate surface roughness while it is usually possible
to reduce it. The question remains: Is it possible to get a full contact for the given
roughness distribution? In Ciavarella et al (2000), it is assumed that roughness is dis-
tributed according to the Weierstrass distribution which is not a smooth distribution
everywhere and it is shown that a full contact of such rough surfaces is impossible.
In Kudish et al (2012, 2014), on an example of a plane problem it is shown that if the
surface roughness is not sufficiently smooth it is impossible to get the conditions of
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a full contact for any applied load. On the other hand, optical and electronic force mi-
croscopy surface pictures obtained for a series of increased resolutions show that it
is reasonable to assume that roughness distributions are usually sufficiently smooth
(i.e. possess sufficient number of continuous derivatives) Kudish et al (2012, 2014).
Also, in Kudish et al (2012, 2014) it is shown that it is sufficient for the distribution
of surface roughness to be sufficiently smooth (twice continuously differentiable)
for the contact of rough surfaces to be full for sufficiently high applied load.

In this paper we will examine an axially symmetric analog of plane problems studied
in Kudish et al (2012, 2014). Specifically, it will be shown that for a four times
differentiable surface roughness it is possible to find a normal load which would
provide a full axially symmetric contact. A relationship for the estimate of such a
load is provided. Some generalizations will be discussed.

18.2 Problem Formulation

Let us consider an axially symmetric rigid punch with a flat bottom of radius R in-
dented in an elastic half-space with a rough surface described by the distribution
z = λ ϕ(r), where λ is some non-negative dimensionless constant and r =

√
x2 + y2

is the radial variable in the plane of the contact. The value of λ characterizes the
level of surface roughness. The punch is indented by a normal force P. The half-
space is made of a homogeneous elastic material with the Young’s modulus E and
Poisson’s ratio ν . If the contact occupies a circular region of radius R then the prob-
lem can be reduced to the following equations (Kudish and Covitch, 2010)

λ ϕ(r)+
8

πE ′

R∫

0

ρ

ρ + r
K(

2
√

ρr

ρ + r
)p(ρ)dρ = δ ,

R∫

0

ρ p(ρ)dρ =
P

2π
, (18.1)

where E ′ is the effective modulus of the half-space, E ′ = E
1−ν2 , p(r) is the contact

pressure distribution, δ is the punch vertical displacement, K(·) is the full elliptic
integral of the second kind (Abramowitz and Stegun, 1964). In dimensionless vari-
ables

r′ =
r

R
, ρ ′ =

ρ

R
, p′(r′) =

p(r)

p0
, ϕ ′(r′) =

2πE ′R
3P

ϕ(r), δ ′ =
2πE ′R

3P
δ ,

p0 =
3P

2πR2 ,
(18.2)

problem (18.1) can be rewritten as follows (primes are omitted)

λ ϕ(r)+
8
π

1∫

0

ρ

ρ + r
K(

2
√

ρr

ρ + r
)p(ρ)dρ = δ ,

1∫

0

ρ p(ρ)dρ =
1
3
, (18.3)
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Assuming that we have a full contact of the bottom of the punch with the rough
surface of the half-space the exact solution of problem (18.3) can be represented in
the classic form (Kudish and Covitch, 2010)

p(r) =
1

2π
√

1− r2
{δ1 −λ

1∫

0

ϕ ′(ρ)dρ√
1−ρ2

}+ λ

2π

1∫

r

1√
s2 − r2

{s

s∫

0

ϕ ′(ρ)dρ√
s2 −ρ2

}′ds,

δ1 = δ −λ ϕ(0) =
2π

3
+λ

1∫

0

√
1−ρ2ϕ ′(ρ)dρ .

(18.4)

Obviously, function ϕ(r) can be chosen with the precision of a constant. Therefore,
let us choose this function in such a way that ϕ(1) = 0. If function ϕ(r) is continu-
ously differentiable then due to the axial symmetry ϕ ′(0) = 0. We will also assume
that ϕ(0) = 0.

To be able to determine the structure of the contact pressure p(r) in a contact let us
assume that the roughness distribution function ϕ(r) can be represented by a Fourier-
Bessel series (Tolstov, 1960). Let us assume that 0 < µ1 < µ2 < .. . < µn < .. .
are positive roots of the Bessel function J0(x). Then according to Tolstov (1960)
functions J0(µ1x), J0(µ2x), . . . J0(µnx), . . . are orthogonal on the interval [0,1] and
any continuous function ϕ(r) can be represented by a convergent on [0,1] Fourier-
Bessel series

ϕ(r) =
∞

∑
k=1

ckJ0(µkr), ck =
2

J2
1(µk)

1∫

0

rϕ(r)J0(µkr)dr, (18.5)

where ck are called the coefficients of the Fourier-Bessel series. Moreover, for suffi-
ciently large k we have (Tolstov, 1960)

| ck |≤
c

k1+ε
, | ckJ0(µkr) |≤ A

k1+ε
, (18.6)

and the series from (18.5) converges to ϕ(r) absolutely and uniformly (ε is a posi-
tive constant). Moreover, the Fourier-Bessel series for ϕ(r) from (18.5) converges
uniformly and can be differentiated term by term on the entire interval [0,1] if (Tol-
stov, 1960)

ck = O

(
1

µ2+ε
k

)
, µk → ∞, (18.7)

where ε is a positive constant. Here µk = O(k) for k → ∞ (Tolstov, 1960). The same
condition on coefficients ck guaranties the convergence of the series involved in the
expression for the pressure p(r) (see below). Therefore, assuming that term by term
differentiation and integration of a series are legitimate we obtain
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1∫

0

ϕ ′(ρ)dρ√
1−ρ2

=
∞

∑
k=1

ck

1∫

0

J′0(µkρ)dρ√
1−ρ2

,

s∫

0

ϕ ′(ρ)dρ√
s2 −ρ2

=
∞

∑
k=1

ck

s∫

0

J′0(µkρ)dρ√
s2 −ρ2

. (18.8)

Taking into account the fact that J′0(µkρ) = −µkJ1(µkρ) (Gradshtein and Ryzhik,
1971) we have

s∫

0

J′0(µkρ)dρ√
s2 −ρ2

=−µk

s∫

0

J1(µkρ)dρ√
s2 −ρ2

=−µk

1∫

0

J1(µksz)dz√
1− z2

=−µk

π

2
J2

1/2(
µks

2
)

=−2
s

sin2(
µks

2
), {s

s∫

0

ϕ ′(ρ)dρ√
s2 −ρ2

}′ =−
∞

∑
k=1

ckµk sin(µks).

(18.9)
Using integration by parts we obtain

1∫

0

√
1−ρ2J′0(µkρ)dρ =

sin µk

µk

− 1,

1∫

0

√
1−ρ2ϕ ′(ρ)dρ =

∞

∑
k=1

ck[
sin µk

µk

− 1].

(18.10)

Therefore, the expression for p(r) from (18.4) takes the form

p(r) =
1

2π
√

1− r2
{2π

3
−λ

∞

∑
k=1

ckψk(µk,r)},

ψ(µ ,r) = 1− sin µ

µ
+ µ

√
1− r2

1∫

r

sin(µs)ds√
s2 − r2

,

(18.11)

and we can make a formal conclusion that the contact would be full if the contact
pressure p(r) from (18.11) is positive for every 0 ≤ r ≤ 1. For that to be true it is
sufficient that

λ
∞

∑
k=1

| ck || ψk(µk,r) |<
2π

3
. (18.12)

It is easy to make the following estimate using the expression for the integral from
the expression for ψ(µ ,r) from (18.11) and the fact that

| I(µ ,r) |=|
1∫

r

sin(µs)ds√
s2 − r2

|≤
1∫

r

| sin(µs) | ds√
s2 − r2

≤ µ

1∫

r

sds√
s2 − r2

= µ
√

1− r2.

(18.13)
However, let us find more precise details of the behavior of the integral I(µ ,r) in
(18.11) which would guarantee that inequality (18.12) is satisfied but, at the same
time, would limit to the minimum the requirements on the roughness function ϕ(r).
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It is more convenient to replace sin(µs) by exp(iµs) in I(µ ,r), where i is the imagi-

nary unit. Let us make a substitution y= µ(s−r) in the integral Ĩ(µ ,r) =
1∫
r

exp(iµs)ds√
s2−r2

for δ0 ≤ r ≤ 1− δ0, 0 < δ0 < 1, and µ ≫ 1. That leads to the following uniform
asymptotic expression (Gradshtein and Ryzhik, 1971)

Ĩ(µ ,r) =

1∫

r

exp(iµs)ds√
s2 − r2

=
1√
µ

µ(1−r)∫

0

exp(iµr+ iy)dy√
y(2r+ y

µ )

=
exp(iµr)√

2µr

∞∫

0

eiy

√
y

dy+ o(
1√
µ
) =

exp(iµr)√
2µr

√
π

2
(1+ i)+ o(

1√
µ
), µ ≫ 1.

(18.14)
Therefore, for δ0 ≤ r ≤ 1−δ0, 0< δ0 < 1, and µ ≫ 1 we have a uniform asymptotic
estimate for the integral I(µ ,r) from (18.11)

I(µ ,r) =
1
2

√
π

µr
[cos(µr)+ sin(µr)]+ o(

1√
µ
) . . . , µ ≫ 1, (18.15)

and from (18.11) we get the uniform asymptotic representation of the function

ψ(µ ,r) = 1− sin µ

µ
+

1
2

√
πµ

1− r2

r
[cos(µr)+ sin(µr)]+ o(

√
µ),

δ0 ≤ r ≤ 1− δ0, 0 < δ0 < 1, µ ≫ 1.
(18.16)

In a similar manner it can be shown that if r = 1+O( 1
µ ) for µ ≫ 1 then I(µ ,r) =

O(1) for µ ≫ 1 and if r = O( 1
µ ) then I(µ ,r) = π

2 + O( 1
µ ) for µ ≫ 1. Thus,

ckψk(µk,r) = O(µkck) for r = O( 1
µk
) and µk ≫ 1 while ckψk(µk,r) = O(

√
µkck)

for δ0 ≤ r ≤ 1, 0 < δ0 < 1, and µk ≫ 1. Therefore, if µkck = O( 1
µ1+ε

k

) (where ε

is a positive constant) then the series for p(r) in (18.11) (and in (18.12)) converge
and make all operations made to obtain them permissible. That makes the require-
ment (18.7) on the behavior of coefficients ck sufficient for the whole analysis to be
correct.
In other words, from (18.12) and (18.15) we conclude that for pressure p(r) to
be positive in the whole contact it is sufficient that estimate (18.7) takes place for
coefficients ck. Under these conditions the inequality in (18.12) can be satisfied for
sufficiently small value of λ and/or sufficiently high applied load P.
The requirement (18.7) on coefficients ck is related to the level of smoothness (differ-
entiability) of the roughness distribution function ϕ(r). There is a readily available
more restrictive assumption about the smoothness of the function ϕ(r). Specifically,
if ϕ(r) is four times differentiable and satisfies the following properties (Tolstov,
1960)

1. ϕ(0) = ϕ ′(0) = ϕ ′′(0) = ϕ ′′′(0) = 0,
2. ϕ(4)(r) is bounded (it may not exist at some discrete points),
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3. ϕ(1) = ϕ ′(1) = ϕ ′′(1) = 0,

then
| ck |≤ C

µ
7/2
k

, µk ≫ 1, (18.17)

where C is a certain positive constant. Therefore, the whole analysis of the problem
is valid.
The above analysis shows that it is sufficient for the roughness distribution ϕ(r) to
be four times differentiable function. For twice differentiable function ϕ(r) such
that ϕ(0) = ϕ ′(0) = 0, ϕ(1) = 0 the estimate for coefficients ck has the form (Tol-
stov, 1960) | ck |≤ C1

µ
3/2
k

, µk ≫ 1, where C1 is a certain constant. It is sufficient for

convergence of the series (18.5) for ϕ(r) but not sufficient for term by term differ-
entiation of this series. Therefore, it is sufficient for the roughness function ϕ(r) to
be four times differentiable for the whole analysis to be valid. On the other hand, it
seems that three times differentiability of functions ϕ(r) would be sufficient for the
validity of the analysis.
Using the relations from (18.3) and (18.12) as well as the fact that the integral I(µ ,r)

reaches its maximum at r = 0 and equal
1∫

0

sin(µs)
s

ds we obtain an estimate for a load

P in dimensional variables which would be sufficient for providing a full contact in
the form

P > E ′Rλ
∞

∑
k=1

| ck | max | ψk(µk,r) |,

max | ψk(µk,r) |= 1− sin µk

µk

+ µk |
1∫

0

sin(µks)ds

s
| .

(18.18)

The microphotographs of real surface roughness show (Kudish et al, 2012) that the
requirement that the surface roughness distribution f (r) is three/four times differen-
tiable is not an unreasonable one.

18.3 Some Generalizations

The roughness distribution can be also represented by a Shlemilch series in the form
(Watson, 1952)

ϕ(r) =
c0

2
+

∞

∑
k=1

ckJ0(πkr),

c0 = 2ϕ(0)+ 2π

1∫

0

v

π/2∫

0

ϕ ′(πvsinα)dαdv,

ck = 2π

1∫

0

vcos(kαπ)

π/2∫

0

ϕ ′(πvsinα)dαdv,

(18.19)
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where ck are called the coefficients of the Shlemilch series. In some cases this repre-
sentation of roughness distribution may be more beneficial as it usually imposes less
limitations on the roughness distribution function ϕ(r). In this case the results are
quite similar to the case of the representation of function ϕ(r) by the Fourier-Bessel
series (18.5).

The described above analysis can be extended on punches with curved bottom. Let
us assume that z = f (r) is the shape of a rigid punch bottom of radius R which is
indented by a normal force P in a rough elastic half-space made of a homogeneous
material. The punch has sharp edges so that the nominal contact region is a circle
of radius R. Then for this punch a problem similar to the one considered above will
take the form (Kudish and Covitch, 2010)

λ ϕ(r)+
8

πE ′

R∫

0

ρ

ρ + r
K(

2
√

ρr

ρ + r
)p(ρ)dρ = δ − f (r),

R∫

0

ρ p(ρ)dρ =
P

2π
. (18.20)

Under the assumption that the contact is full in dimensionless variables (18.2) the
expression for the contact pressure p(r) will have the form (Kudish and Covitch,
2010)

p(r) = p0 f (r)−
λ

2π
√

1− r2

1∫

0

ϕ ′(ρ)dρ√
1−ρ2

+
λ

2π

1∫

r

1√
s2 − r2

{s

s∫

0

ϕ ′(ρ)dρ√
s2 −ρ2

}′ds,

δ1 = δ − f (0)−λ ϕ(0) = δ0 f +λ

1∫

0

√
1−ρ2ϕ ′(ρ)dρ ,

p0 f (r) =
1

2π
√

1− r2
{δ1 −

1∫

0

f ′(ρ)dρ√
1−ρ2

}+ 1
2π

1∫

r

1√
s2 − r2

{s

s∫

0

f ′(ρ)dρ√
s2 −ρ2

}′ds,

δ0 f =
2π

3
+

1∫

0

√
1−ρ2 f ′(ρ)dρ .

(18.21)

The analysis of the previous section remains the same if p0 f (r)> 0 for all r ∈ [0,1].
More specifically, the roughness distribution ϕ(r) can be represented by the Fourier-
Bessel expansion (18.5). After applying the outlined above analysis the condition for
a full contact would look as follows

λ
∞

∑
k=1

| ck || ψk(µk,r) |< δ0 f . (18.22)

After that an estimate for a load P which would be sufficient for providing a full
contact can be obtained in the form similar to (18.18).

In a similar fashion can be considered an axially symmetric problem with free
boundary, i.e. when a punch with a characteristic curvature radius R does not have
sharp edges and the contact boundary is not fixed. In this case the problem can be
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formulated as follows (Kudish and Covitch, 2010)

λ ϕ(r)+
8

πE ′

a∫

0

ρ

ρ + r
K(

2
√

ρr

ρ + r
)p(ρ)dρ = δ − f (r), p(a) = 0,

a∫

0

ρ p(ρ)dρ =
P

2π
,

(18.23)
where a is the contact radius. Using the dimensionless variables (18.2) in which R

is replaced by a and the dimensionless a′ = a/aH , aH = ( 3PR
4E ′ )

1/3 the solution can
be presented in the form (primes are omitted) (Kudish and Covitch, 2010)

p(r) = p0H(r)+
λ
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s∫

0

f ′(aρ)dρ√
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3
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1∫

0

s{s

s∫

0

f ′(aρ)dρ√
s2 −ρ2

}′ds.

(18.24)

Due to the same structure of all integrals of function ϕ(r) in (18.24) and assuming
that p0H(r)> 0 for all r ∈ [0,1] the presented analysis can be applied to this problem
as well.
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Chapter 19

Geometric Aspects of the Theory of

Incompatible Deformations in Growing Solids

Sergei A. Lychev

Abstract Differential-geometrical methods for modeling the incompatible finite de-
formations in growing solids are developed. Incompatible deformations result in
residual stresses and distortion of the geometric shape of a body. These factors de-
termine the critical parameters of modern high-precision technologies and are con-
sidered to be essential constituents in corresponding mathematical models. Affine
connection on the material manifold represents the intrinsic properties (proper ge-
ometry) of the body and is determined by the field of local uniform configurations
which performing its ”assembly” of identical and uniform infinitesimal ”bricks”.
Uniformity means that the response functional gives for them the same response on
all admissible smooth deformations. As a result of assembling, one obtains body,
which cannot be embedded in undistorted state into physical manifold. It is an es-
sential feature of residual stressed bodies produced by additive processes. For this
reason, it is convenient to use the embedding into a non–Euclidean space (material
manifold with non–Euclidean material connection). To this end one can formalize
the body and physical space in terms of the theory of smooth manifolds. The de-
formation is formalized as embedding (or, in special case, as immersion) of former
manifold into the latter one.
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19.1 Introduction

The geometrical methods in continuum mechanics (Epstein, 2010; Epstein et al,
2007; Maugin, 1993) are based on the fundamentals of modern differential geom-
etry (Postnikov, 1987; Dubrovin et al, 1986; Kobayashi and Nomizu, 1963). The
fact that the geometric language allows efficient formalization of various physical
phenomena was shown at the end of the 19th century in the pioneering works by
Beltrami, Poincare, and Levi-Civita, followed by Einstein, Weyl, Cartan, and oth-
ers (Lützen, 1995). The fruitfulness of the geometrical approach to the modelling
of bodies with defects (dislocations, disclinations, etc.) was demonstrated in Nye
(1953); De Wit (1977); Kröner (1958); Kadic and Edelen (1983), as well as to the
nonlinear problems for growing solids (Arutyunyan et al, 1987; Yavari, 2010; Ly-
chev and Manzhirov, 2013a; Manzhirov and Lychev, 2012; Lychev and Manzhirov,
2013b; Manzhirov et al, 2013; Lychev, 2011; Sozio and Yavari, 2017).
Note the practical significance of the problem. Currently, we see intense develop-
ment of technological processes based on the manufacturing of parts by sequential
deposition of material on a substrate that may have a very complicated geometric
shape. Local polymerization, electrochemical deposition (Choy, 2003), overlaying
welding, selective laser sintering, stereolithography, and ion implantation (Nastasi
and Mayer, 2006) represent only some of such technologies. They make it possible
to manufacture parts with a complicated geometric shape and, theoretically, from
any material. The implementation of new technologies is accompanied by specific
technological problems (Manzhirov, 2016). Among them is the distortion of the fi-
nal shape due to material shrinkage during solidification. When thin-walled parts
are manufactured, such distortions may exceed the specified precision substantially.
One of the methods for decreasing distortions is to compensate them by initial distor-
tions, considered in the design (Huang et al, 2015; Lu et al, 2015). Thus the problem
for modeling of the evolution of incompatible deformations caused by technological
process is of practical importance.
The typical feature of the bodies, generated during some additive process, is the ab-
sence of the natural (stress free) shape. From physical viewpoint it means that the
body contains elastic energy that cannot be released under any smooth deformation.
This energy can be released only by cutting the body into an innumerable number
of disjoined parts, a process that is, in a sense, reversed to additive manufactur-
ing. A similar situation arises in the theory of distributed defect fields (dislocations,
disclinations, pores) (Zubov, 1997) and in nonlinear thermomechanics (Ozakin and
Yavari, 2010). The effects caused by the absence of natural configurations can be
formalized mathematically by different notions, such as incompatibility of defor-
mations (Kröner, 1958; De Wit, 1977), the density of defects (Katanaev, 2005),
and the sources of internal stresses (Acharya, 2001). These concepts are interrelated
and can be formalized within the representation for deformation as for a geometric
transformation in non-Euclidian space.
The first works where the non-Euclidian geometry was used for developing nonlin-
ear continuum mechanics were published in the early 20th century. They proposed
relativistic models of deformable continuum, which were stated in terms of Rie-
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mannian and non-Riemannian geometry of space and time (Berger, 2003; Eisenhart,
1997, 2005; Petersen, 2006; Cartan, 1962, 1983). Thus, the physical space, contain-
ing a deformable body, was equipped with a non-Euclidian structure. The idea that
the space which contains the reference unstressed shape of the body should have
a non-Euclidean structure, was presented for the first time, apparently, by Eckart
(1948) andKondo (1955a, 1963, 1955b, 1964)), although the first studies of solids
deformation caused by distortion, not satisfying the conditions of compatibility, go
back to Weingarten (1901) and Volterra and Volterra (1960). The idea that the spaces,
containing the reference and the actual shape, are not Euclidean, was revolutionary
at that time and initiated a self-sustained theoretical line in continuum mechanics,
see Bilby et al (1955); Seeger (1961); Nye (1953); Kröner (1996); Noll (1967);
Wang (1967); Maugin (1993); Epstein (2010); Epstein et al (2007); Myasnikov and
Guzev (2000).
Within the framework of the present paper we consider only simple materials (Noll,
1967). Their response is fully defined by linear transformation, determined by lo-
cal deformation. Attention should be paid to a formal correspondence between the
mathematical description of incompatible deformations of simple materials and the
affine connection space geometry. Each elementary volume is transformed to a uni-
form state by means of linear transformation; these transformations taken together
define (by assumption) a continuous field of transformations. The building of the
affine connection space by the Cartan method of the moving frame is also deter-
mined by the field of linear transformations on the coordinate basis vectors. Thus,
the construction of a space, containing arbitrary distorted elementary volumes in a
compatible form, reduces to the procedure of building a Cartan space. The specific
geometric properties of the thus-built space, i.e., the ”inner geometry” of the body,
characterize the sources of proper stresses.

19.2 Naive Geometric Motivation

In Noll (1967); Wang (1967); Ozakin and Yavari (2010); Yavari and Goriely (2013);
Lychev and Manzhirov (2013a,b); Manzhirov and Lychev (2012); Manzhirov et al
(2013) the physical space, containing shapes of the bodies, was assumed to be affine-
Euclidean. In the present work, the physical space is considered in general terms as
a Riemannian space with a curvature different from zero. Firstly, this makes the
theory more complete and consistent, since from the formal point of view the body
and the physical space become equivalent geometric objects. Secondly, in model-
ing two-dimensional bodies, i.e., membranes, images of their configurations can be
determined on some fixed surface. Such situation arises, for example, during the
deposition of a thin film on the surface of a sphere. In this case, it is convenient to
view the deposition surface as a two-dimensional physical space, in general terms,
with non-Euclidean connection.
In order to explain such arguments, we shall discuss a naive example of deforma-
tion of a membrane, assuming that images of the reference and the actual shapes are
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known, and that one of them, or both, cannot be embedded into an Euclidean plane.
We assume that the observers, describing the "physical reality," are fictional "two-
dimensional creatures" populating the membrane, a two-dimensional surface, like
inhabitants of Sphereland (Abbott and Burger, 1976). They cannot directly observe
deformation of the membrane, but feel changes in the physical properties of their
two-dimensional world, caused by deformation. In addition "two-dimensional ob-
servers," deformation of the membrane is followed by powerful "three-dimensional
observers," who can see the shape of the membrane in its possible embedding in
the enveloping three-dimensional space. Lets consider two situations. An image of
a uniform configuration of the membrane can not be embedded into an Euclidean
plane, but it can be embedded in an enveloping Euclidean plane as part of the sphere
(Fig. 19.1). In such embedding, small neighborhoods are in a uniform, or physically
indistinguishable, state. Some of them are shown as circumferences in Fig. 19.1.
"Two-dimensional observers" cannot say anything about the "spherical" shape of
their world and may be convinced that their world is flat. Let the physical space be
flat. Any embedding of the membrane in the physical space leads to membrane de-
formation. In this case, "two-dimensional observers" will find out that their uniform
world is not uniform anymore: circumferences, characterizing the neighborhoods in
Fig. 19.1, are distorted, and such distortion occurs without any reasons visible for
the "two-dimensional observers," because no external force fields have been applied.
The distorted circumferences are shown in Fig. 1 by the solid lines. For comparison,
undistorted circumferences are shown nearby by the dotted lines. According to Mau-
gin (1993), the membrane acquired material inhomogeneity, remaining materially
uniform, i.e., made from one and the same material. It is clear that changes of geo-
metric images can be observed only by the powerful "three-dimensional observers."

Fig. 19.1: Embedding of a two-dimensional body with a non-Euclidean proper ge-
ometry in a flat physical space
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Images in Fig. 19.1 are shown from their perspective. "Two-dimensional observers"
will notice only changes in the physical properties of their world. For example, the
elasticity under small disturbances of various sections of the membrane becomes
different, while if the membrane possesses optical properties, it becomes optically
inhomogeneous: a sort of a rainbow will appear in the world of "two-dimensional
observers."
The circumferences, symbolizing uniform neighborhoods, are transformed into dis-
torted objects from the point of view of "two-dimensional observers" due to reasons
that are not related to visible deformation of their two-dimensional world, whereas a
"three-dimensional observer" visualizes this deformation explicitly. However, "two-
dimensional observers" may assume that, for some reasons, their two-dimensional
world changes its geometric properties: its spherical geometry was transformed to
a flat geometry. Both points of view can be used to describe the embedding of the
body in the physical space; however, appealing to a powerful "multidimensional ob-
server" is often cumbersome and related to difficult-to-interpret geometric images.
In the present paper we develop methods of the "internal observer," who can use two
notions: deformation of the body and change of the geometry of the space, contain-
ing this body. In the discussed example, the space containing a uniform reference
of the body shape had a non-Euclidian structure while the physical space was an
Euclidean plane. It is easy to imagine an inverted situation: a uniform shape is de-
fined by flat geometry and the physical space is a Riemannian space with nontrivial
curvature. Figure 19.2 illustrates this argument: a flat membrane is deposited such
that it can slip onto the nondeformable spherical foundation.
Thus, incompatible deformations of the body are characterized by two geometrical
concepts: the embedding in the physical space and the structure of the space con-
taining its reference uniform configuration. More details on this issue are reflected
in Lychev and Koifman (2016).

19.3 Material Manifold

Intuitive notions of the solid body can be reduced to the following arguments. The
body B is a set of material points. Each material point neighbors on other material
points, continuously filling its neighborhood; this filling being similar to the filling
of the interval in R. These arguments lead to formalization of B as a topological
space (Kuratowski, 1966; Armstrong, 1983). It is assumed that:

1. The cardinality of B is equal to the cardinality of continuum ( R );
2. B is separable (satisfies the Hausdorff separability axiom);
3. B is the topological space with a countable base;
4. The local topological dimension of B is constant: dimB = n (for membranes

n = 2 and for three-dimensional bodies n = 3 ).

Identification of material points requires a method for their analytical description:
here it is expedient to use the idea of charting the topological space, developed
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Fig. 19.2: Embedding of a two-dimensional body with an Euclidean proper geome-
try in a non-Euclidean physical space

in the theory of smooth manifolds (Sternberg, 1964; Hirsch, 1976; Adachi, 2012;
Kobayashi and Nomizu, 1963; Nakahara, 2003; Postnikov, 1987; Borisovich et al,
1995; Dubrovin et al, 1986). Charting induces an analytical structure on B, defining
the notion of smoothness on it. As a result of charting, for each material point it is
possible to select a neighborhood, homeomorphic to the arithmetic space Rn (for
three-dimensional bodies to R3, and for membranes to R2 ).
Representation of a body as a smooth manifold was used for the first time by Noll (1967); Wang
(1967); Gurtin and Murdoch (1975). For instance, Noll introduced an axiomatic definition of a
smooth body as a set, equipped with a family of its mappings in the physical space called config-
urations and satisfying some special system of axioms. Gurtin and Murdoch (1975) gave a self-
contained definition of a two-dimensional material surface based on the Noll axioms.
The Noll system of axioms is based on the notion of the configuration κ as a mapping of the set
B, representing a collection of material points constituting the body, to the absolute (Euclidean)
physical space P, i.e., κ : B → P. Let us assume a class of configurations C . The body B, is
called a continuous body of the class Cp, if the class of configurations C satisfies the following
conditions:

1. Each configuration κ ∈ C is a homeomorphism, and the set κ(B) is an open set in P, which
is called the region, occupied by the body B in the configuration κ.

2. If γ , κ ∈ C , then the composition

λ = γ ◦κ−1 : κ(B)→ γ(B)

represents a mapping of the class Cp , which is called deformation of the body B from the shape
κ(B) to the shape γ(B).
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3. If κ ∈ C and if λ : κ(B) → P is a mapping of the class Cp, then λ ◦κ ∈ C . The mapping
λ ◦κ is called configuration, obtained from the configuration κ by means of deformation λ .

Thus, the smoothness of body is defined by the smoothness of configuration compositions.

According to Noll (1967) the smooth body is the smooth manifold with trivial topo-
logical structure, i.e., a trivial manifold, whose atlas contains only one chart (Post-
nikov, 1987). Complex structures of growing solids lie beyond the theory built on
this axiomatics (the need of using nontrivial manifolds, representing the body, is
also described in Wang (1967)). In addition, postulating the absolute physical space
does not allow taking into account curvilinear substrates as 2D physical spaces.

The Noll axiomatics was used in Lychev and Manzhirov (2013a,b). In the frame-
work of the present paper, we use a more general class of manifolds, represent-
ing both the body and the space. We call the topological space M a (topological)
manifold with the dimension dimM = n, when it satisfies the following condi-
tions (Borisovich et al, 1995; Adachi, 2012):

1. M satisfies the Hausdorff separability axiom;

2. M has a topological countable base;

3. there exists a family {Uα}α∈I of open subsets of M, such that 1) M =
⋃

α∈I

Uα ,

2) each of the sets Uα is homeomorphic to Rn, i.e., for any α ∈ I there exists
homeomorphism φα : Rn →Uα .

Let us explain in more detail the terminology used. The pair (Uα , φα), where Uα and φα are defined
above, is called a chart in M; Uα is the chart’s domain; the collection of charts A = {(Uα , φα)}α∈I ,
where {Uα}α∈I is the open cover of M, is an atlas of the manifold M. Let p ∈M be a certain point
of the manifold. The chart (Uα , φα), for which p ∈Uα , is called a chart containing the point p.

The atlas generates a system of local coordinates on the manifold, namely: any point p belonging
to M is obtained in, at least, one of the sets Uα ; therefore, to it there definitively corresponds the
ordered n–tuple (ξ 1, . . . , ξ n) = φ−1

α (p). This ordered set represents local coordinates of the point
p. If the intersection Uα ∩Uβ , where Uα , Uβ are taken from one atlas, is not empty, then any point

p of this intersection has the local coordinates (ξ 1, . . . , ξ n) = φ−1
α (p) and (η1, . . . , ηn) = φ−1

β (p)

interrelated by the conversion formulas: the mapping

φ−1
β ◦φα |φ−1

α (Uα∩Uβ )
: φ−1

α (Uα ∩Uβ )→ φ−1
β (Uα ∩Uβ ), (19.1)

as a composition of homeomorphisms, is homeomorphism of local coordinates (ξ 1, . . . , ξ n) and

(η1, . . . , ηn).

The abstract manifold M formalizes the continuity property, inherent in the body
and the physical space. However, the structure of the topological manifold is not
sufficient for correct definition of the smoothness of the mappings, specified on its
subsets. Therefore, the manifold is equipped with an additional structure, called dif-
ferential. It allows us to define invariantly (in relation to atlases in this structure) the
notion of a smooth mapping on the manifold. The charts (Uα , φα), (Uβ , φβ ) in M

are Cr–compatible, if either 1) Uα ∩Uβ = ∅, or 2) Uα ∩Uβ 6= ∅ and homeomor-
phism (19.1) is Cr–diffeomorphism on φ−1

α (Uα ∩Uβ ). The atlas in which any two
charts are Cr–compatible is called a Cr–atlas.
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19.4 Growing Solids

In classical continuum mechanics bodies are treated as fixed sets of material points.
Growing bodies are sets of variable composition. The evolution of this set in time
can be represented by mapping

R⊃ I ∋ α 7→Bα , (19.2)

where α is time–like parameter and Bα is a body manifold that represents growing
object at instance α . All values of (19.2) constitute a family of bodies

G= {Bα}α∈I . (19.3)

Since the family (19.3) represents some evolution process we shall refer to α as to
evolution parameter.

Define the total body
∗
B and core B

∗
as

∗
BI =

⋃

α∈I
Bα , B

∗ I =
⋂

α∈I
Bα .

If the following relation holds ∀α,β ∈ I (α < β ) ⇔
(
Bα ⊆Bβ

)
then the grow-

ing process is said to be monotonic increasing (pure growth). Under the condi-
tions ∀α,β ∈ I (α < β ) ⇔

(
Bα ⊇Bβ

)
we have monotonic decreasing process

(pure removing), and we claim that B is the body of permanent composition if
∀α,β ∈ I Bα = Bβ We say that growing process is mixed if no one above re-
lations holds. We also introduce the notion for initial body Bi and final body B f

which correspond to the instance of growing object at the beginning of growing
process and at its end.

For pure growth: Bi =B
∗
, B f =

∗
B and for pure removing: B f =B

∗
, Bi =

∗
B.

In mixed process all defined above quantities are distinguished
According to Lychev and Manzhirov (2013a) we describe the structure of growing
body by following statement. The family G represents continuous growing body if
the set cardinality for I is continuum and the following relations hold:
Discrete growth. The set G is a finite sequence of embedded sets:

G : B1 ⊂B2 ⊂ . . .⊂BN . (19.4)

It is obvious that the cardinality of the set G is determined by the number N, that is,
|G|= N.
Generalized discrete growth. The set G is a transfinite sequence of embedded sets:

G : B1 ⊂B2 ⊂ . . .⊂Bω ⊂Bω+1 ⊂ . . . , |G|= ℵ0.

The family G represents continuous growing body if the set cardinality for I is
continuum and the following relations hold:
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Continuous growth. The set cardinality for I is continuum and the following rela-
tions hold:

I=
⋃

k∈A
Jk, CardI= ℵ1, CardA≤ ℵ0, ∀k,n ∈A (k 6= n)⇒ Jk ∩Jn =∅,

∀k ∈A ∀α ∈ Jk ∃ε α + ε ∈ Jk, ∂Bα =Ψα(Ωk), α ∈ Jk,

where Ψα is some homeomorphism between two dimensional manifolds, Ωk is a
nk–connected tori (recall the classification theorem for two dimensional manifolds).

The manifolds Ωk is said to be pre-image of the growing boundary. Thus all consid-
ered growing processes are discrete from topological point of view.

Now we introduce conditions for a pure laminar growth:

Laminar growth.

∀α ∈ I ∃ε > 0 ∀δ ≤ ε Bα+δ \Bα = Φα (Ωk × (α,α + δ )) ,

where Φα is a homeomorphism of 3D manifolds.

We say that the manifold Φα(Ωk) is the lamina. Under the condition for laminar
growth we have the structure of the smooth bundle manifold over B: the set is a
base and laminas Φα(Ωk) are fibers, while the manifold Ωk represents typical fibre.

Let us consider two growing processes, the first one,G, is discrete and the second,G,
is continuous. The discrete processG is called to be upper bound of G if ∀αk−1,αk ∈
I ∀β ∈ I (αk−1 ≤ β < αk)⇒Bβ ⊆Bαk

Consequently, the discrete processG is
called to be lower bound ofG if ∀αk−1,αk ∈ I ∀β ∈ I (αk−1 ≤ β < αk)⇒Bβ ⊇
Bαk

We say that the growing process regular if I= I, lim△(I)→0 µ
(
Bα \Bα

)
= 0

where △ (I) = supαk−1,αk∈I |αk −αk−1|.

19.5 Mappings Between Manifolds

The density of elastic energy W represents examples of real–valued functions,
specified on the manifold. The Cr–structure allows determining on the manifold
the classes of smoothness of such mappings. We shall give a detailed explana-
tion (Borisovich et al, 1995).

Let a Cr–structure be specified on Mn. The function W : Mn → R is called the
function of the class Cr in the neighborhood of the point p ∈Mn, if there is a chart
(Uα , φα) from the atlas of this Cr–structure, containing the point p, such that the
mapping W ◦φα : Rn →R is Cr–mapping of Rn in R. Owing to Cr–compatibleness
of the charts, this definition does not depend on the atlas from this structure.

Now consider a continuous mapping κ : Mn →Nm of two Cr–manifolds in a point
p ∈Mn. Select the chart (Uα , φα ) of the manifold Mn, containing p, and the chart
(Vβ , ψβ ) of the manifold Nm, containing κ(p). Denote Oαβ = Uα ∩κ−1(Vβ ) and
consider the mapping
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ψ−1
β ◦κ ◦φα |φ−1

α (Oαβ )
: φ−1

α (Oαβ )→ ψ−1
β (κ(Oαβ )),

which is called a coordinate representation of the mapping κ in the neighborhood
of the point p (Borisovich et al, 1995). This is the mapping Rn → Rm, and it does
not depend on the selection of charts in these Cr–structures on Mn and Nm, since
the charts on these manifolds are Cr–compatible.

The coordinate representation makes it possible to determine smoothness of the mapping κ : Mn →
Nm in the neighborhood of some point. Namely, the continuous mapping κ : Mn →Nm is called

a Cr–mapping in the neighborhood of the point p ∈Mn, if some coordinate representation of the

mapping i in the neighborhood of this point is a Cr–mapping. Hereinafter, C r(Mn; Nm) is used to

designate the set of all Cr–mapping from the Cr–manifold Mn to the Cr–manifold Nm. In particular,

C r(Mn; R) is a set of all Cr–mappings from the Cr–manifold Mn to the trivial Cr–manifold R. In

the framework of these terms, diffeomorphism from the Cr–manifold Mn to the Cr–manifold Nm

shall be any mapping κ ∈ C r(Mn; Nn), such that 1) there exist κ−1 and 2) κ−1 ∈ C r(Nn; Mn).

We assume as a hypothesis that the body and the physical space are equipped with
Cr–structures with r > 1. The relationship between the body as a continual set of
material points and the set of positions of these points in the physical space is es-
tablished by means of the mapping κ : B→P, called configuration. In the present
work, this mapping is equipped with additional properties of smoothness and regu-
larity. We explain it in detail.

Let B=Mn and P=Nm. Among mappings of the class C r(Mn; Nm) we identify
the mappings satisfying the requirement of regularity at each point of Mn: we call
the point p ∈Mn regular point of the mapping κ ∈ C r(Mn; Nm) (Borisovich et al,
1995), if the coordinate representation κ in the neighborhood of the point p has a
Jacobi matrix at the point φ−1

α (p) (where (Uα , φα) is a chart, containing p) of the
rank min{m, n}. In the case of n 6 m, the mapping κ ∈ C r(Mn; Nm), regular at
each point p ∈Mn, is called Cr–immersion (Adachi, 2012; Borisovich et al, 1995).

The regularity of κ has clear geometrical interpretation. The image of the configura-
tion, as Cr–immersion of B on P, may have self-intersection points. In some cases
self-intersections are admissible, while in others to them there corresponds phys-
ically impossible self-penetration. To identify the class of configurations, whose
images have no self-intersections, we shall narrow the class of all Cr–immersions
κ : B → P, identifying those which are homeomorphic to their own image, i.e.,
the subspace κ(B) of the topological space of P. Such mappings are called Cr–
embeddings (Adachi, 2012; Borisovich et al, 1995). By regular configuration κ of
the body we understand the Cr–embedding of B in P. Thus, κ is homeomorphism
of the body of B to its image κ(B).

Figuratively speaking, in the modeling for deformations of growing body, the main

actors are manifolds Bα , P, and R. The main actions are embeddings C ∋ κα :
Bα →P, and energy distributions Wα : Bα →R, Wα : C ∋ κα 7→Wα . The latter

mapping can be classified as constitutive relation the most general form. For sim-

ple elastic material this relation can be significantly simplified: Tκα(p) 7→ Wα(p),
where Tκα denotes tangent map, that will be explained below.
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19.6 Deformations

Primary geometrical objects that are investigated by continuum mechanics are
curves. Curves on B represent material fibers and curves on P represent trajectories
of material particles. In order to define this objects in terms of adopted abstract lan-
guage one have to introduce the following notions. A curve a passing through the
point p ∈M can be define by mapping φ over the interval J, i.e.:

a =
{

p ∈M
∣∣∃α ∈ J φ(α) = p

}
, φ : R⊃ J→M, φ(0) = p.

For convenience in what follows we suppose that interval J is symmetric, i.e. J =
(−α,α), where α is a number. All curves passing through the point p are grouped
into equivalence classes by equivalence relation ∼:

(
φ ∼ φ ′)⇔

(
d

dt

(
φ−1

α ◦φ(t)
)∣∣∣

t=0
=

d

dt

(
φ−1

α ◦φ ′(t)
)∣∣∣

t=0

)
.

We will denote classes by bold Latin symbols, u,v, etc. The correspondence be-
tween equivalence classes and their representations is shown by relation (u∼=p φ)⇔
(φ ∈ u) . Let u 7→ hp(u) = (u1, . . . , un) :=

d(φ−1
α ◦φ(t))

dt

∣∣∣∣
t=0

be a bijection. The follow-

ing relation αu+ β v = h−1
p (αhp(u)+βhp(v)) implies that we have a canonical

vector space structure. It can be prove that the dimension of this space is equal to
dimM. We will denote it by TpM. Ordered pairs (p,v), where p ∈ a, and v ∼=p φ in
union determine the section of tangent bundle over a, or in other words, the vector
field on this curve.
Now let us introduce the notion of natural frame. Vector u ∈ TpM corresponds to
directional derivative Lu for f along u at point p ∈M (recall that φ(0) = p)

Lu( f ) :=
d

dt
f ◦φ(t)

∣∣∣
t=0

, (p,φ) ∈ u. (19.5)

It follows from the definition that the correspondence between equivalence classes
and directional derivatives is bijective: (Lu( f ) = Lv( f ))⇔ (u = v) .

Class of special curves, namely coordinate curves

ci = φ i(I) =
{

p ∈M
∣∣ p = φ i(t) t ∈ I⊂ R

}
,

where φ i satisfy the relation π j ◦ φ−1
α ◦ φ i(t) = δ

j
i t introduce a coordinate net

on M. Equivalence classes of such curves determine at point p ∈ M a frame
(p,(ei)

n
i=1), φ i ∈ ei. From definition it follows that Lei

(π j ◦ φ−1
α ) = δ j

i . We will
refer to directional derivatives along ei as to natural basis ∂i := Lei

. Note that
Lu( f ) = α iLei

( f ) ≡ α i∂i f and α i∂i is an abstract vector that represents both dif-
ferential operator (19.5) and corresponded class of curves.
The set of all ordered pairs (p,TpM) as well as mappings p 7→ TpM represents
tangent bundle over M. The vector space of linear functionals (covectors) over TpM
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is denoted by T ∗
p M. The set of all ordered pairs (p,T ∗

p M) as well as mapping p 7→
TpM represents cotangent bundle. The value of the covector u ∈ T ∗

p M on the vector
v ∈ TpM is a real number 〈u,v〉. Standard argumentation (canonical isomorphism
between vector space and second conjugate space) make the following symmetry
relation true

∀u ∈ T ∗
p M ∀v ∈ TpM 〈u,v〉= 〈v,u〉.

Define the Riemannian metrics that is a function g : M → TpM⊗ TpM which
values are definite symmetrical bilinear mappings over TpM. The elements of basis

in Tpx∗M that is conjugated to canonical basis ∂i are denoted by d j, i.e. 〈∂i,d
j〉= δ j

i .
Thus one can find the vector components by relation 〈u,d j〉= 〈ui∂i,d

j〉= ui. Bases-
dependent isomorphisms (musical isomorphisms ♯, ♭) between TpM and T ∗

p M are
induced by g:

∀u ∈ TpM ∃!v ∈ T ∗
p M 〈u,v〉= g(u,v♯);

∀v ∈ TpM ∃!u ∈ T ∗
p M 〈u,v〉= g(v,u♭).

Now have completed all preliminary constructions and can focus our attention on the
embedding of a body into physical space. Recall that motion is a mapping φ whose
values are configurations (embeddings), i.e. φ : C ×T→P. Note that mapping φ
with fixed first argument p, φp(t) = φ(p, t)

∣∣
p

: R → P is a curve that represents

the trajectory of material point p, whereas with fixed second argument t i.e. φt(p) =
φ(p, t)

∣∣
t

: B→P is a configuration that represents the shape of deformable body.
Configuration gradient F is a tangent map of configuration φt , i.e. F = T φt :
TB → TP. The values of deformation gradient are so-called two point tensors
F(p) : TpB→ Tφt (p)P, that in local charts Xα have the following coordinates

F(p) = Fk
α ∂k ⊗dα , Fk

α =
∂

∂Xα
φ k

t .

One can define the transpose of F is defined by means of metrics defined in both
body and space (x = φt(p)):

FT(x) : TxP→ Tφ−1
t x

B, (FV,v)G =
(
V,FTv

)
g
.

Right Cauchy-Green deformation tensor C(p) : TpB→ TpB, C(p)=FT(p)F(p),
in components can be written in the form

C(p) =C(p)α
β ∂α ⊗dβ , C(p)α

β = g(φ(p))kpF(p)p

β
G(p)αβ F(p)k

β ,

that corresponds to field representation

Cα
β = Gαγ

(
gkp ◦φ

)
F

p
γ Fk

β : B→ R.

The dual of F in metric independent notion has the form F∗(p) : T ∗
φ(p)P→ T ∗

p B,

such that ∀α ∈ T ∗Pφ(p) ∀w ∈ TpB 〈F∗(p)α,w〉 = 〈α,F(p)w〉. In dual bases it

can be written as F∗ = Fα
k dk ⊗ ∂α . Note that C♭ is the pull-back of the spatial met-
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rics, i.e. C♭ = φ∗g = F∗gF, Cαβ =
(

gkp ◦φ
)

Fk
α F

p

β . Now everything is ready to

define left Cauchy-Green deformation tensor. We use the following definition

B(p) : Tφ(p)P→ Tφ(p)P, B(p) = F(p)F(p)T.

Corresponding field representation is:

Bk
p =

(
Gαβ ◦φ−1

)
gps

(
F s

α ◦φ−1)(Fk
β ◦φ−1

)
: P→R.

Note that B♯ is the push-forward of material metrics B♯ = φ∗G.
With proper choice of coordinates on the body and the physical space of the density

of the elastic energy is a function of two metrics, material and space.

19.7 Material Connection

Recall some facts from the theory of vector bundles. A vector bundle over a Ck-
manifold M is a family of vector spaces parameterized by M (base manifold), i.e.
M ∋ p 7→ V (p), such that these vector spaces fit together to form another smooth
manifold E (total manifold) that is related to base manifold via continuous surjec-
tion (bundle projection) π : E →M.
A section of vector bundle is a continuous map, σ : M→ E such that ∀p ∈M π ◦
σ(p) = p. A section σ is Ck-section, if σ ∈Ck (M,E ).
Denote the space of Ck-sections of E by Γ (E ). A connection on E is a linear map

∇ : Γ (E )→ Γ (E ⊗TM)

such that the Leibniz rule ∇(σ f ) = (∇σ) f +σ ⊗d f holds for all smooth functions
f on M and all smooth sections σ of E . If x is a tangent vector field on M (i.e. a
section of the tangent bundle TM) one can define a covariant derivative along x

∇x : Γ (E )→ Γ (E ).

One can treat ∇ as mappings ∇ : Γ (E )×Γ (E )→ Γ (E ). In fixed frame field M ∋
p 7→ (ek)

n
k=1 ∇ determine real–valued functions Γ i

jk = 〈ϑ i,∇e j
ek〉.

Let us obtain the transformation law for Γ i
jk with respect to changing of frame

fields. Let mappings Ω i
j define smooth non degenerated field of n × n matrices.

We believe that they define local transformations infinitesimal neighborhoods of
material particles into the stress free state. New frames have the form

M ∋ p 7→ (e′i|p)n
i=1, e′i = Ω j

i e j.

The corresponding coframe fields M ∋ p 7→ (ϑ ′i|p)n
i=1 are related with previous

coframes as ϑ ′i = ℧i
jϑ

j, [℧i
j] = [Ω i

j ]
−1. Finally let ei = A

j
i∂x j , where (xi) are



340 Sergei A. Lychev

local coordinates on M. Then

∇e′j
e′k = ∇(Ω s

j es)(Ω
q
k eq) = Ω s

j ∇es(Ω
q
k eq) = Ω s

j

{
Ω q

k ∇es eq + es(Ω
q
k )eq

}
,

that implies Γ ′i
jk = 〈ϑ ′i, ∇e′j

e′k〉= ℧i
m〈ϑ m, ∇e′j

e′k〉, es(Ω
q

j ) = Al
s∂xl Ω

q
j ,

Γ ′i
jk = ℧

i
mΩ s

j

{
Ω q

k 〈ϑ m, ∇es eq〉+ 〈ϑ m, eq〉Al
s∂xl Ω

q
k

}
,

With account of equations Γ m
sq = 〈ϑ m, ∇es eq〉 〈ϑ m, eq〉 = δ m

q , we arrive to final
expression

Γ ′i
jk = Γ m

sq ℧
i
mΩ s

j Ω q
k +Al

s℧
i
mΩ s

j ∂xl Ω m
k . (19.6)

All frames fields discussed above are of special type, namely coordinate frame fields.
Their values {∂i}n

i=1 are vectors, tangential to coordinate net (recall that vector is
said to be tangential to a curve if it represents the equivalent class that contain the
curve). In general, frame fields gives n linearly independent vectors that are not
tangential to any coordinate net. Such frames are called nonholonomic. One can
construct field of nonholonomic frames by linear transformations of the values for
coordinate frame fields (∂i)

n
i=1 that are represented by matrices Ω

j
i as M ∋ x 7→

(zi)
n
i=1 , zi =Ω

j
i ∂ j, where the elements of matrices Ω

j
i are the values of functions

from FM which satisfy the following condition detΩ
j
i 6= 0. For coordinate frame

[∂i,∂ j] = 0 but for the non-coordinate frame field we have [zα ,zβ ] =−c
γ

αβ
zγ where

c
γ

αβ are components of the object of anhonolomy. Taking into account the property
[ f x,gy] = f g [x,y]+ f (x[g])y− g(y[ f ])x, obtain the following equation

[zα ,zβ ] =
[
Ω i

α ∂i,Ω
j

β ∂ j

]
= Ω i

α

(
∂iΩ

j

β

)
∂ j −Ω j

β

(
∂ jΩ

i
α

)
∂i =−c

γ
αβ Ω m

γ ∂m

that gives formula for c
γ

αβ :

c
γ

αβ =−
(

Ω i
α

(
∂iΩ

m
β

)
−Ω j

β (∂ jΩ
m

α )
)
℧

γ
m.

Taking into account the relation ∂α℧
j
i = −℧k

i

(
∂α Ω m

k

)
℧

j
m we obtain more com-

pact formula for c
γ

αβ , i.e.

c
γ

αβ = Ω i
α Ω

j

β

(
∂i℧

γ
j − ∂ j℧

γ
i

)
.

To given frame fieldM∋ p 7→ (zi)
n
i=1 one can derive coframe field M∋ p 7→

(
ϑ i
)n

i=1
from duality relation 〈ϑ i,z j〉= δ i

j. Obviously, ϑ γ = ℧
γ
mdm.

Suppose that specific connection is chosen. It can be represented in terms of non-
holonomic basis by connection 1-form

Γ zα = zγ ⊗ω
γ
α , Γzβ

zα = ω
γ
β α

zγ , Γzβ
zα =−ωα

β γ ϑ γ .
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This connection establish absolute parallelism if the following property holds

Γ zα = ω
β

α zβ = 0

that means ω
β

α = 0. Relation (19.6) implies that

ω
γ
αβ = Ω i

α Ω j

β

(
℧

γ
m Γ m

i j − ∂i℧
γ

j

)
.

This equation results the connection coefficients in coordinate frame

Γ m
i j = Ω m

γ ∂i℧
γ

j.

Incompatible deformation resulting in a growing body define a special connection

on a manifold representing the body. This connection can serve as a mathematical

description of the incompatibility.

19.8 Example

In order to describe stress-strain of a growing body it is necessary to determine the
stress-strain state for a fiber as its structural element. In the case of discrete growth
this structural element is a three-dimensional body Bn+1 \Bn, corresponding to
the increment of the sequence (19.4). In the case of continuous growth the material
surface plays the role of structural element. Within the present work we assume that
each separate body-fiber has a natural configuration immersed in Euclidean space.

We assume that the material of a body-fibers is hyperelastic and incompressible.
Then the stress-strain state can be determined analytically by universal solutions of
Rivlin–Ericksen type (Lurie, 1990).

Let the image of stress-free (natural) configuration of the body-fiber Bn+1 \Bn is
embedded into physical (Euclidean) space E . This embedding can be defined by the
vector field of placements presented in Cartesian basis (i1, i2, i3) by decomposition
X = Xmim. Here (X1, X2, X3) are Cartesian coordinates. Suppose that the deforma-
tion of the body-fiber is defined by the map X 7→ x. We assume that this map has a
symmetry relative to the axial axis of the cylindrical fibers and does not depend on
coordinate X3.

For a more compact formulation of the kinematic relations we use cylindrical coor-
dinates (R,Θ , Z): X1 = RcosΘ , X2 = RsinΘ , X3 = Z. The cylindrical coordi-
nates define the local basis (eR,eΘ ,eZ) and reciprocal basis (eR,eΘ ,eZ). Elements
of them can be presented by the decompositions

eR = eR = i1 cosΘ + i2 sinΘ ,

eΘ =−i1RsinΘ + i2RcosΘ , eΘ =
eΘ

R2 , eZ = eZ = i3.
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The reference positions of material points in simplest form can be written as X =
ReR+ZeZ . Taking into account the central symmetry, the independence with respect
to vertical coordinate Z, and the condition of incompressibility |dx/dX| = 1 we
arrive at the following family of mapping (universal deformations)

x(X) = eR

√
(eR·X)2 + a+ eZ ⊗ eZ ·X. (19.7)

Here a is a deformation parameter that represents the change of the outer cylindrical
surface radius. The deformation gradient F and left Cauchy–Green tensor B = F·FT

are determined in terms of local basis corresponded to the reference position as
follows

F =
R√

R2 + a
eR ⊗ eR +

√
R2 + a

R3 eΘ ⊗ eΘ + eZ ⊗ eZ.

B =
r2 − a

r2 er ⊗ er +
1

r2 − a
eθ ⊗ eθ + ez⊗ ez, (19.8)

eR = er, eΘ =

√
r2 − a

r
, eθ , eZ = ez,

If the cylindrical body-fiber is produced from an incompressible material of Mooney–
Rivlin type then the strain energy can be presented as a linear function of the first
I1 = I1(B) and second I2 = I2(B) invariants of tensor B, i.e.:

W (I1, I2) =C1(I1 − 3)+C2(I2 − 3),

I1 = TrB = 3+
a2

r2(r2 − a)
, I2 = I1.

Here C1, C2 are material constants. Under the conditions of incompressibility we
have the following decomposition of Cauchy stress tensor T =−pI+J1B+J−1B−1,
where p is hydrostatic pressure, J1 = 2∂W/∂ I1 = 2C1 and J−1 = −2∂W/∂ I2 =
−2C2 are coefficients of reaction, and I is a unit tensor. Note that constants C1,
C2 can be defined by pair of engineering constants µ , β , C1 = µ(1+β )/4 , C2 =
µ(1−β )/4. Here µ corresponds to the shear modulus and β defines the additional
parameter for nonlinear response.
After simple calculations we obtain the following:

T = T rrer ⊗ er +T θθ eθ ⊗ eθ +T zzez ⊗ ez, T rr =−p+ J1
r2 − a

r2 + J−1
r2

r2 − a
,

T θθ =− p

r2 + J1
1

r2 − a
+ J−1

r2 − a

r4 , T zz=−p+ J1+ J−1.

Hydrostatic stress component p can be determined by the equilibrium equation ∇ ·
T = 0. Integrating this equation with respect to r we get

T rr =
µ

2

(
ln

r2 − a

r2 − a

r2

)
+ p0, (19.9)
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T θθ =
T rr

r2 +
µ

r2

(
r2

r2 − a
− r2 − a

r2

)
, T zz = T rr + µ a

r2 − (1+β )a/2
r2(r2 − a)

, (19.10)

where p0 is the constant of integration.

Consider a finite set of bodies. Let the elements of this set be the circular hollow
cylinders of equal height h (in natural configuration). The motion (19.7) transform
them to the hollow cylinders of the same height, but of another radii. Such defor-
mation can be realized, e.g. by expanding the hollow cylinder which base lie on the
smooth rigid slabs. We assume that the images of the actual configuration of the
cylinders are pairwise disjoint and their union is a connected set. The final compos-
ite body can be treated as a result of discrete growth because cylindrical parts cannot
deform independently after joining.

Let N be the number of cylindrical parts. Assume that the following scenario of
growth is realized. On the first step the joining of the 1-st and 2-d body-fibers is
performed. A composite body appears which we call the first assembly. Then the
third body is joint to the composite body, etc. On the internal r = r1

i,n and the outer
boundary r = rn

e,n of this composite bodies the uniformly distributed pressure pi,n

and pe,n are defined

T·er
∣∣
r=r1

i,n
= pi,ner, T·er

∣∣
r=rn

e,n
= pe,ner. (19.11)

Index n indicates the number of assembly. The indexing in the notation of intensity
of hydrostatic loads pi,n, pe,n shows that they may vary during the growing process.
Suppose that the contact between body-fibers is ideal, i.e. inner surface of k-th fiber
and the outer surface of k+ 1-th fiber in the actual configuration are the same and
stresses on them are in equilibrium:

T·er
∣∣
r=rk

e,n
= T·er

∣∣
r=rk+1

i,n
, rk

e,n = rk+1
i,n , k = 1,2, ...n− 1. (19.12)

The deformation parameters ak
n and parameters pk

0,n, k = 1,2, . . . ,n may be found
from the system of 2n nonlinear equations (19.11) and (19.12). Taking into account
(19.7) and (19.10) we get

µ

2

[
ln

(R1
i )

2

(R1
i )

2+a1
n

− a1
n

(R1
i )

2+a1
n

]
+p1

0,n= pi,n,

µ

2

[
ln

(Rn
e)

2

(Rn
e)

2+an
n

− an
n

(Rn
e)

2+an
n

]
+pn

0,n= pe,n,

µ

2

[
ln

(Rk
e)

2

(Rk
e)

2+ak
n

− ak
n

(Rk
e)

2+ak
n

]
+ pk

0,n =

=
µ

2

[
ln

(Rk+1
i )2

(Rk+1
i )2+ak+1

n

− ak+1
n

(Rk+1
i )2 + ak+1

n

]
+pk+1

0,n ,

(Rk
e)

2 + ak
n = (Rk+1

i )2 + ak+1
n , k = 1,2, ...,n− 1. (19.13)
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The system of equation (19.13) may be transform to simpler form if one introduce
the following variables and parameters:

αk = 1+Ak/(R
k
e)

2, βk = γk +Ak/(R
k
e)

2, νk = (R1
e)

2/(Rk
e)

2, xn = a1
n/(R

1
e)

2,

Wn = e
2

pi,n−pe,n
µ A1 = 0, Ak =

k

∑
p=2

(
(Rp−1

e )2 − (Rp
i )

2
)
, k = 2,3, . . . ,n , γk =

(
Rk

i

Rk
e

)2

.

Eliminating pk
0,n and potentiating of the left and right hand sides of above equation,

we obtain

n

∏
k=1

γk

αk +νkxn

βk +νkxn

=Wn exp

[
n

∑
k=1

(1−γk)
νkxn+αk − 1

(βk+νkxn)(αk+νkxn)

]
. (19.14)

Consider the growing process with known shrinkage of fibers in the moment of
accretion (some other similar problems were considered in Manzhirov and Lychev
(2015); Lychev et al (2015)). In this case the reference radii of the body-fibers fibers
are not known a priori, and the equations (19.14) have to be supplemented by addi-
tional equations

To analyze the system of equations firstly allocate in the left and right hand sides of
the equation (19.14) the terms corresponding to the n-th body-fiber, i.e.:

γn
αn +νnxn

βn +νnxn

n−1

∏
k=1

γk

αk +νkxn

βk +νkxn

=

=Wn exp

[
(1− γn)(νnxn +αn − 1)
(βn +νnxn)(αn +νnxn)

+
n−1

∑
k=1

(1− γk) (νkxn +αk − 1)
(βk +νkxn)(αk +νkxn)

]
. (19.15)

The values of γn, αn, βn, νn, can be defined recursively by relations

γn =
S2

n(αn−1 + xn−1νn−1)

ζn−1
, αn = 1+

αn−1 − S2
n(αn−1 + xn−1νn−1)

ζn−1
,

βn = γn +
αn−1 − S2

n(αn−1 + xn−1νn−1)

ζn−1
, νn =

νn−1

ζn−1
,

ζn−1 =
(

Sn

√
αn−1 + xn−1νn−1 +

√
ξnνn−1

)2
.

Consistent solution of systems of equations completes the solution of problem.

As a result of solving the problem:

• The components of metric tensor associated with each layer are computed. With
an increase in the number of layers and reducing their thickness this components
approach to continuous functions that defined on Riemannian metrics onB. Thus
one can use approach discussed in section 6.

Rn
i = rn−1

e,n−1Sn,

where factor Sn determines shrinkage.
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• The transformations of individual thin cylinders into stress free form are com-
puted. This transformations tends to smooth field of linear transformations,
namely Ω , so one can use approach discussed in section 7.
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Abstract Free vibrations of a transversely isotropic rectangular plate are investi-
gated within the frameworks of the Timoshenko–Reissner (TR) model including a
transversal shear. The dependence of the principal natural frequency on the shear
parameter for various variants of boundary conditions is found. The generalized
Kirchhoff–Love (GKL) model of fourth differential order for a multilayered plate
is proposed. The GKL model is simpler than the TR model, and it gives the same
results as the TR model in the most cases. This model is used to describe vibrations
of multilayer graphene sheets (MLGS). Explicit formulas for principal frequencies
for both multilayer ordinary plates and for MLGS are derived.

The classical equation of plate vibrations was derived by Sophie Germain in 1808
with a purpose of explaining Chladni’s figures of acoustics. The equation of bending
and vibrations of a plate can be obtained on the basis of the Kirchhoff–Love (KL)
hypotheses (Kirchhoff, 1876; Love, 1927). More involved and sometimes more exact
equations, which take into account the transversal shear and the rotation inertia, can
be derived from the Timoshenko–Reissner (TR) hypotheses (Timoshenko, 1921;

morozov@nm1016.spb.edu, peter.tovstik@mail.ru
tovstik_t@mail.ru
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The SA equations contain the main part, which agrees with the KL equations, and
two small additional parts of order µ2 by comparison with the main part. The first
of them, which gives the TR model, consists of summands that account for the
transversal shear. The second part describes the effects of the reduce in the plate
thickness and has the same asymptotical order µ2 as the shear part. These summands
are not included in the KL and in the TR models. Therefore, for a description of the
internal stress state of a thin isotropic plate the TR model has proved to be not
more exact (Kienzler and Schneider, 2014; Tovstik, 2007) (in the asymptotic point
of view with respect to the small parameter µ) than the KL model, because it does
not contain all the summands of the order µ2.
The asymptotic estimates change for a plate made of a transverse isotropic mate-
rial with a small transversal shear modulus. We introduce the dimensionless shear
parameter g ∼ µ2E/G, where E and G are the Young and the transversal shear mod-
uli, respectively. The shear summands are of the order of g by comparison with the
main bending summands, the orders of the rest summands of the SA model being
independent of g. As a result, if g ≥ 1, then the KL model is unacceptable, and the
TR and SA models may be used. The difference between the TR and SA models is
of order µ2, but the TR model is more simple. This is why we study the TR model.
Also, problems for multi-layer plates and for functional graded plates are known to
be reducible to the TR model (Tovstik and Tovstik, 2014; Morozov et al, 2016b).
3D boundary layers appear near the plate edges; they can be approximately de-
scribed by the TR model. An analysis of the boundary layers and of their influence
on the stress state and on the plate vibrations was extensively studied (see, e.g. Al-
tenbach and Zhilin, 1988; Zhilin, 1992; Ivanova, 1997)). The effect of the rotation
inertia involved in the TR model is immaterial for low-frequency vibrations, but it
is important for high-frequency vibrations (Ivanova, 1998).
The present paper is concerned with free bending low-frequency vibrations of an
elastic homogeneous rectangular plate. A plate may be isotropic or transversely
isotropic. The KL and the TR models are used and only the principal natural fre-
quency is discussed for all the main boundary conditions. It is well known that if
all the plate edges are simply supported, then the frequency can be written down
explicitly. If two opposite edges are simply supported, then the problem admits a
separation of variables, the problem is reducible to an one-dimensional problem,
and the solution can be simply constructed. This case is studied in the present pa-
per, the dependence of the principal frequency on the parameter g is investigated for
various variants of boundary conditions. The KL and the TR models are compared.
If the condition that two opposite edges are simply supported is not fulfilled, then
the exact analytical solution is absent and only an approximate or numerical solution
may be found.
Problems for multi-layer plates and for functional graded plates are known to be
reducible to the TR model (Tovstik and Tovstik, 2014; Morozov et al, 2016b). Here,

Reissner, 1945; Mindlin, 1951). An equation of second-order accuracy (SA) with
respect to the small thickness parameter μ = h/L was proposed in Kienzler and
Schneider (2014); Tovstik and Tovstik (2014); Morozov et al (2016b). Here, h is the
plate thickness and L is the length of waves in the tangential directions.
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the generalized TR equations for vibrations of a multilayer plate are presented (Mo-
rozov et al, 2016b). A continuum model describing vibrations of a crystal graphite
nano-plate consisting of graphene layers was proposed in Morozov et al (2016a).
The TR model is used, and the explicit formulae for the natural bending frequencies
of the nano-plate are delivered.

20.2 Equations of Motion and Their Transformation

∂M1

∂x
+

∂H

∂y
−Q1 +ρJω2ϕ1 = 0,

∂H

∂x
+

∂M2

∂y
−Q2 +ρJω2ϕ2 = 0, J =

h3

12
,

∂Q1

∂x
+

∂Q2

∂y
+ρhω2w = 0,

(20.1)

where x (0 ≤ x ≤ Lx),y (0 ≤ y ≤ Ly) are the Cartesian coordinates in the midplane,
w(x,y) is the normal deflection, ϕ1(x,y) and ϕ2(x,y) are the average angles of the
normal fibre rotation, ω is the natural frequency, ρ is the mass density, M1, M2 and
H are the bending moments and the torsion moment, respectively, and Q1 and Q2

are the transversal shear stress-resultants.

According to the TR model the following elasticity relations are accepted

M1 = D(κ1 +νκ2), M2 = D(κ2 +νκ1), H = (1−ν)Dτ,

Q1 = Γ γ1, Q2 = Γ γ2, Γ = kG′h, k =
5
6
, D =

Eh3

12(1−ν2)
,

(20.2)

where

κ1 =
∂ϕ1

∂x
, κ2 =

∂ϕ2

∂y
, 2τ =

∂ϕ1

∂y
+

∂ϕ2

∂x
, γ1 = ϕ1 +

∂w

∂x
, γ2 = ϕ2 +

∂w

∂y
.

(20.3)
Here, E is the Young modulus, ν is the Poisson’s ratio, D is the plate bending stiff-
ness, G′ = G13 is the transversal shear modulus (for a transversely isotropic material
the value G′ is arbitrary, and for an isotropic material G′ = G = E/(2(1+ν)) ), γ1

and γ2 are the shear angles, and k is the correcting multiplier taking into account the
distribution of the transversal shear stresses.

In the KL model the shear angles γ1 = γ2 = 0, the equations of motion (20.1) remain
the same, and the stress-resultants Q1 and Q2 are to be found from Eqs. (20.1).

The basic unknowns in the TR model are w, ϕ1, ϕ2. The differential order of system
(20.1) is six, and so three boundary conditions are to be imposed at the plate edges.

Consider a thin homogeneous rectangular plate with sides Lx, Ly and constant
thickness h. Free small bending vibrations of a plate within the framework of the TR
model are described as:
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We study the following eight variants of boundary conditions at the edges x = 0 and
x = Lx:

w = 0 or Q1 = 0
ϕ1 = 0 or M1 = 0
ϕ2 = 0 or H = 0,

(20.4)

where the first column contains the constrains and the second column contains the
corresponding natural boundary conditions. Only one condition is to be taken from
each line of Eqs. (20.4). We study only one variant of boundary conditions at the
edges y = 0 and y = Ly:

w = M2 = ϕ1 = 0 at y = 0 and y = Ly (20.5)

which admits a separation of variables.

The KL system is of fourth order, and so two boundary conditions are to be imposed
at the each edge

w = 0 or Q∗
1 = Q1 +

∂H

∂y
= 0

ϕ1 = 0 or M1 = 0,
at x = 0 and x = Lx (20.6)

The natural frequencies can be found from the variation problem

ω2 = min
w,ϕ1,ϕ2

Π

T
, (20.7)

where the potential and the kinetic energies are

Π =
1
2

Lx∫

0

Ly∫

0

(
D(κ2

1 + 2νκ1κ2 +κ2
2 + 2(1−ν)τ2)+Γ (γ2

1 + γ2
2 )
)

dxdy,

T =
1
2

Lx∫

0

Ly∫

0

(
ρhw2 +ρJ(ϕ2

1 +ϕ2
2 )
)

dxdy.

(20.8)

The minimum in Eq. (20.7) is to be found under constrains w = 0 and/or ϕ1 = 0
and/or ϕ2 = 0 at the plate edges if they are imposed. The functional (20.7) variation
leads to Eqs. (20.1) and to the natural boundary conditions in the right column of
Eqs. (20.4).

For the KL model we put Γ = J = 0 in Eq. (20.8).

To simplify the subsequent calculations we introduce the potential functions Ψ and
Θ (see Morozov et al, 2016b; Ivanova, 1997):

ϕ1 =−∂Ψ

∂x1
+

∂Θ

∂x2
, ϕ2 =−∂Ψ

∂x2
− ∂Θ

∂x1
. (20.9)

As a result, we get the equations for Θ ,
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1−ν

2
D∆Θ −ΓΘ +ρJω2Θ = 0, ∆( ) =

∂ 2( )

∂x2 +
∂ 2( )

∂y2 , (20.10)

and the equations for Ψ and for w,

−D∆ 2Ψ +ρhω2w−ρJω2∆Ψ = 0, (20.11)

D∆ 2w−ρhω2+

(
Dρh

Γ
+ρJ

)
ω2∆w+

Jρ2h

Γ
ω4w = 0. (20.12)

For an isotropic plate, Eq. (20.10) describes the boundary layer. Equation (20.12)
describes the plate bending. Equations (20.10) and (20.12) are connected through
the boundary conditions. The summands involving the multiplier J take into account
the rotation inertia, and their effect on the principal frequency is very small. Further,
we put J = 0.

20.3 Principal Natural Frequency in the Dependence of

Boundary Conditions

If all plate edges are simply supported, namely, if the conditions

w = M1 = ϕ2 = 0 at x = 0, x = Lx, (20.13)

and (20.5) are imposed, then the function

w(x,y) = sin pxsinqy, p =
π

Lx

, q =
π

Ly

,

satisfies all boundary conditions, Eq. (20.12) leading to the principal frequency ω :

ω2 =
D(p2 + q2)2

ρh(1+(D/Γ )(p2 + q2)
. (20.14)

Let the edges y = 0 and y = Ly be simply supported, see Eqs. (20.5). Then we may
separate the variables as follows:

{w,ϕ1,M1,M2,Q1}(x,y) = {w,ϕ1,M1,M2,Q1}(x)sin qy,

{ϕ2,H,Q2}(x,y) = {ϕ2,H,Q2}(x)cosqy.
(20.15)

We introduce the dimensionless variables

x̂ = qx, ŷ = qy, Λ = ω2
0 =

ρhω2

Dq4 , µ = qh =
πh

Ly
, g =

Dq2

Γ
=

µ2E

10(1−ν2)G′ ,

(20.16)
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where Λ is the frequency parameter, ω0 is the dimensionless frequency, µ is the
small thickness parameter, g is the shear parameter. Further the hats will be omitted.
In this notation Eq. (20.14) assumes the form

ω2
0 =

(p̂2 + 1)2

1+ g(p̂2+ 1)
, p̂ =

p

q
. (20.17)

The parameter g plays an important role in the following investigation. For an
isotropic plate, g = µ2/(5(1− ν)) ≪ 1, and the effect of the transversal shear in
Eq. (20.17) is small. In the case with the small transversal shear modulus (G′ ≪ E)
its influence may be essential.
Now we write the general solution to Eqs. (20.1) after the separation of variables
(20.15) in the dimensionless form. We seek the partial solutions in the form Y (x) =
y0eλ x, where Y is any unknown function. For the parameter λ according Eqs. (20.10)
and (20.12) we obtain the equation of the sixth order,

(λ 2 −λ 2
0 ) · ((λ 2 − 1)2 +Λ(g(λ 2 − 1)− 1)) = 0, (20.18)

with λ 2
0 = 1+ 2/(g(1− n)). The roots of this equation are ±λ0, ±λ1, ±λ2, where

λ 2
1,2 = 1−Λg/2±

√
(Λg/2)2 +Λ . The roots ±λ0, ±λ1 are real, and the roots ±λ2

may be real or imaginary. For small g the roots ±λ0 are large that generates the
boundary layer.
For simplicity, we shall consider the case when at the edges x = 0 and x = Lx the
identical boundary conditions are given. For convenience we satisfy the boundary
conditions at x =±x0, x0 = Lx/2. Then the even deflection mode

w(x) =C0 coshλ0x+C1 coshλ1x+C2 coshλ2x (20.19)

corresponds to the principal frequency, where Ck are arbitrary constants.
Changing the constant Ck we take the following unknown functions involved in the
boundary conditions (20.4):

w(x) =C1(g(λ
2
1 − 1)− 1)coshλ1x+C2(g(λ

2
2 − 1)− 1)coshλ2x,

ϕ1(x) =C0 sinhλ0x+C1λ1 sinhλ1x+C2λ2 sinhλ2x,
ϕ2(x) =C0λ0 coshλ0x+C1 coshλ1x+C2 coshλ2x,
Q1(x) =C0g−1 sinhλ0x+C1(λ

3
1 −λ1)sinhλ1x+C2(λ

3
2 −λ2)sinhλ2x,

M1(x) =C0(1−ν)λ0 coshλ0x+C1(λ
2
1 −ν)coshλ1x+C2(λ

2
2 −ν)coshλ2x,

H(x) =C0(g
−1 + 1−ν)sinhλ0x+C1(1−ν)λ1 sinhλ1x+C2(1−ν)λ2 sinhλ2x.

(20.20)
We get the frequency equation after equating to zero the determinant of the third
order constructed by using Eqs. (20.4). For the imaginary root λ2 = iβ we take
coshλ2x = cosβ x, λ2 sinhλ2x =−β sinβ x.

We also study the generalized KL model (GKL) described by Eq. (20.12) with J = 0.
In this model, Eq. (20.10) (and simultaneously a boundary layer) is ignored, and the
boundary conditions are described by Eqs. (20.6), in which the unknown functions
w, f1,M1 are given by Eqs. (20.20) with C0 = 0, and
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Q∗
1(x) =C1(λ

3
1 −λ1(2−ν))sinhλ1x+C2(λ

3
2 −λ2(2−ν))sinhλ2x. (20.21)

If g = 0 the GKL model coincides with the ordinary KL model.

20.4 Numerical Results and Their Discussion

We study all 8 possible variants of boundary conditions (20.4) with x = x0 = 1 and
with the Poisson ratio ν = 0.3. The shear parameter g changes in the wide limits 0<
g<∞. Dependences ω0(g) for various variants of boundary conditions are presented
in Table 20.1 and in Fig. 20.1.
The numbering of variants of the boundary conditions is chosen so that for moder-
ate g the value ω0(g) decreases as the number N increases. In the left part of Fig. 20.1
the functions ω0(g) are shown for 0 < g ≤ 1 and in the right part, for 1 ≤ g ≤ 100.
Some curves in these figures are seen to be very close to each other, the differences
between them may be found from Table 20.1.
In the column g → 0 the limiting values ω0(g) at ω → 0 are given. For an isotropic
plate the case g ≪ 1 is investigated in Ivanova (1997); we briefly recall some of the

Table 20.1: Dependences ω0(g) for various variants of boudary conditions

N boundary cond. g→0 g= .001 g= .01 g= .1 g=1 g=10 g=100
1 w =ϕ1=ϕ2=0 6.197 6.156 5.821 4.095 1.735 0.584 0.186
2 w =ϕ1=H=0 6.197 6.156 5.815 4.047 1.699 0.581 0.186
3 w =M1=ϕ2=0 3.647 3.462 3.407 2.988 1.641 0.581 0.186
4 w =M1=H=0 3.647 3.443 3.352 2.870 1.593 0.578 0.186
5 Q1 =ϕ1=ϕ2=0 6.197 3.805 2.504 1.578 0.837 0.309 0.100
6 Q1 =M1=ϕ2=0 3.647 3.049 2.420 1.568 0.819 0.308 0.100
7 Q1 =ϕ1=H=0 1.000 1.000 0.995 0.953 0.707 0.302 0.099
8 Q1 =M1=H=0 0.967 0.967 0.961 0.921 0.691 0.300 0.099
8∗ Q∗

1 =M1=0 0.967 0.967 0.969 0.932 0.723 0.305 0.100

6
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Fig. 20.1: The functions ω0(g) for the various variants of boundary conditions at
0 < g ≤ 1 (left), and at 1 ≤ g ≤ 100 (right)
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results obtained in Ivanova (1997). The limiting values of ω0(+0) form four groups:
the clamped group (1,2,5), the simply supported group (3,4,6), and the free edge
group consisting of two close parts (7) and (8). In accordance with the variation
principle (20.7) and with the relation (20.16), g = Dq2/Γ , all the functions ω0(g)
decrease as g grows. From Table 20.1 and from the left part of Fig. 20.1 it follows
that for variants 5 and 6 the functions ω0(g) decrease very quickly near the point
g = 0. It is connected with the constraint ϕ2 = 0 which for the very small values
g plays the role of the constraint w = 0. The constraint ϕ2 = 0 is absent in the
framework of the KL model; its significance is rather theoretical than applied.
For moderate values of g (0.01 ≤ g ≤ 1) four other groups with the close values
ω0(g) are formed: (1,2), (3,4), (5,6), and (7,8).
For large values of g (g > 1) only two groups remain: the group (1,2,3,4) with the
constraint w= 0, and the group (5,6,7,8) with the condition Q1 = 0. For these groups
the following asymptotic formulas hold, respectively:

ω0(g)≈
1.862√

g
, ω0(g)≈

1√
g

at g ≫ 1. (20.22)

The first formula (20.22) follows from Eq. (20.17), because Eq. (20.17) corresponds
to variant 3. The second formula in (20.22) can be delivered from the variation
relation (20.7) by taking w(x) = 1.
For a plate with the sides Lx and Ly Eqs. (20.22) assume the form

ω0(g)≈

√
(Ly/Lx)

2 + 1
g

, ω0(g)≈
1√
g

for g ≫ 1. (20.23)

Remark 20.1. From Eqs. (20.22) and (20.23) the important conclusion follows: for
the large enough shear parameter g it is not necessary to distinguish the details of
boundary conditions, and it is enough to look at the presence of a constraint w = 0
among them.

In a framework of the GKL model the frequencies at three variants w = ϕ1 = 0,
w = M1 = 0 and Q1 = ϕ1 = 0 of boundary conditions coincide with variants 2, 4,
and 7 of the TR model, because in these variants the boundary layer does not appear
and C0 = 0 in Eqs. (20.20) (Ivanova, 1997). The variant M1 = Q∗

1 = 0 of the GKL
model gives frequencies, which are slightly larger than those in variant 8 of the TR
model (compare lines 8 and 8∗ in Table 20.1).
Variants 1 and 3 differ from variants 2 and 4, respectively, by the additional con-
straint ϕ2 = 0 that leads to the small frequency increase.
It should be noted that all results in Table 20.1 (excluding lines 8 and 8∗) are inde-
pendent of the Poisson ratio ν .
The conclusion of this analysis is as follows: to find the principal bending frequency
we recommend to use the GKL model (Eq. (20.12) with J = 0 and with two bound-
ary conditions) if the shear parameter g is not very small. Sometimes this approach
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coincides with the TR model, and in the other cases the error is not large (see Table
20.1).

20.5 The Generalized Kirchhoff–Love (GKL) Model for a

Multilayer Plate

Consider a plate of thickness h, consisting of n homogeneous isotropic layers of
thicknesses hk, k = 1,2, . . . ,n (h = ∑hk). Let Ek,νk,ρk be the Young moduli, the
Poisson ratios and the mass densities of layers, respectively.

To reduce the vibration problem to the GKL model

D∆ 2w−ρhω2+
Dρh

Γ
ω2∆w = 0 (20.24)

it is necessary to find the equivalent values for a multilayer plate: the bending stiff-
ness D, the shear stiffness Γ , and the mass per unit area ρh. We get (see Morozov
et al, 2016b,a)

D =

h∫

0

(z− a)2E0dz,
1
Γ

=
1

D2

h∫

0

1
G




z∫

0

(z− a)E0dz




2

dz, ρh =

h∫

0

ρ dz.

(20.25)
where a is the coordinate of the neutral plane (for a symmetric plate a = h/2), E0 =
E/(1− ν2), G = E/(2(1+ ν)), and E, ν, ρ are the piecewise functions of z. If
there are layers with small Young moduli, then the equivalent shear stiffness Γ is
also small.

Consider the same rectangular plate as in Sect. 20.2, and let the boundary condition
(20.5) be fulfilled. Then the principal bending frequency ω may be written as:

ω =

√
Dq4

ρh
ω0(g,r), g =

Dq2

Γ
, q =

π

Ly

, r =
Ly

Lx

. (20.26)

Here, the dimensionless frequency ω0 depends on the boundary conditions at x = 0
and x = Lx, and also on the parameters g and r. If the boundary conditions at x = 0
and x = Lx are identical, and the aspect ratio r = π/2, then the value of ω0 is given
in Sect. 20.4.
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20.6 Continuum Model of a Multilayer Graphene Sheet (MLGS)

Vibrations

Let a rectangular MLGS consists of n+ 1 graphene layers. We model each single-
layer graphene sheet (SLGS) as a thin isotropic plate with the extension stiffness
K0 and the bending stiffness D0 (Morozov et al, 2016a). We model the intermediate
layers of thicknesses h0 between graphene layers as isotropic elastic fictitious layers
with the small stiffness. In these layers, the van-der-Waals (vdW) forces act. Hence,
we get a multilayer plate (see Fig. 20.2). We model it as an one-layered homoge-
neous GKL plate (see Sect. 20.5), and calculate the equivalent bending stiffness D

and the shear stiffness Γ by Eqs. (20.25). In calculating the integrals in Eqs. (20.25)
we neglect the thickness of graphene layers compared with h0 (then h = nh0), ne-
glect the shear compliance of graphene layers compared with the shear compliance
of fictitious layers, and also neglect the extension stiffness of fictitious layers. As a
result, we have

E0(z) = K0

n

∑
k=0

δ (z− kh0), (20.27)

where δ (z) is the Dirac delta-function. The equivalent stiffness D and Γ are found
to be

D = αnh2
0K0 +(n+ 1)D0, αn =

n(n+ 1)(n+ 2)
12

,

1
Γ

=
βnh3

0K2
0

D2G13
=

γn

h0G13
, βn =

αn(n
2 + 2n+ 2)

10
, γn =

6(n2 + 2n+ 2)
5n(n+ 1)(n+ 2)

.

(20.28)
Here, G13 is the transversal shear stiffness of the fictitious layers. In the formula for
the bending stiffness D the first summand is much larger than the second one and
hence may be omitted (the error is estimated in Sect. 20.7). Namely, for an MLGS
we may ignore the bending stiffness of separate layers and put D = αnh2

0K0.

Now we may use Eqs. (20.26) to calculate the principal frequency of free vibrations
of a MLGS.

h

a b

h0

c

Fig. 20.2: An ordinary plate with 5 layers (a), a graphite plate with 3 graphene layers
(b), a graphene plate model (c).
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20.7 Identification of Graphite and Graphene Parameters and

some Numerical Results

A survey of theoretical and experimental investigations dedicated to the definition of
graphite and graphene parameters may be found in Goldshtein et al (2009); Berinskii
et al (2014). In Table 20.2 the elastic moduli Ei j,Gi j (also expressed in terms of Ci j)
of a crystal graphite as a transversely isotropic material are given in Goldshtein et al
(2009) (on the basis of Blakslee et al, 1970; Bosak et al, 2007; Cousins, 2003). In
the last column the values used in this paper for calculations are given.

The distance between graphene layers is h0 = 0.334 (nm). The longitudinal stiffness
of a SLGS is found to be K0 = E0h0 = 362 (N/m). The bending stiffness D0 of a
SLGS lies in the range D0 = (0.13 − 0.58) · 10−18 (J) (Berinskii et al, 2014). We
take D0 = 0.2 · 10−18 (J) and estimate its influence on the MLGS bending stiffness
D. We re-write Eq. (20.28) in the form D = αnh2

0K0(1+ ξn). The relative influence
ξn of D0 decreases with increasing the number of layers, it is found to be ξ1 = 0.02,
ξ2 = 0.007, ξ3 = 0.004.

In Eq. (20.26) ρh = (n+ 1)ρ0, where ρ0 = 7.608 ·10−7 (kg/m2) is the mass density
of a SLGS per unit area.

As an example calculation of the principal frequency with the help of Eq. (20.26)
we consider a rectangular MLGS with Lx = 5.25 nm, Ly = 3.34 nm and with the
same aspect ratio r as in Sect. 20.4. The number n+ 1 of graphene layers will vary.
Suppose that the opposite sides y = 0 and y = Ly are simply supported. Then we
may use Eq. (20.26) with the shear parameter

g = gn =
Dq2

Γ
=

αnγnπ2h0K0

G13L2
y

= 2.38(n2 + 2n+ 2). (20.29)

Equation (20.26) gives the principal frequency of a MLGS

ω = ωn = 1.86 ·1012
√

n(n+ 2)ω0(gn)(1/s), n = 1,2, . . . (20.30)

where the dimensionless frequency ω0(g) is found in Sect. 20.4.

For a MLGS with 2–5 graphene layers Table 20.3 gives the shear parameter g and
the frequencies for three variants of boundary conditions at the edges x = 0 and
x = Lx: clamped, simply supported, and free.

Table 20.2: Elastic moduli of graphite (in GPa)

Blakslee et al (1970) Bosak et al (2007) Cousins (2003) we use
E11 C11 1060 1109 1050 1085
E12 C12 180 139 168.5
E13 C13 15 0 7.9 10
E33 C33 36.5 38.7 36.5 37.6
G13 C44 4.0 4.95 5 4.5
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The shear parameter g being large, and hence, according to Remark 20.1, the fre-
quencies at clamped and at simply supported boundary conditions are almost coin-
cide. All frequencies slowly decrease as the number of layers grows.

20.8 Numerical Results and Their Discussion

At a discrete approach for a SLGS bending the potential DREIDING (Mayo et al,
1990; Wackerfuß, 2009) may be used. This potential consists of four parts, taking
into account deflections of neighboring atoms: the in-plane extension and sheet and
two out-of-plane potentials. For a MLGS the additional potential taking into account
the vdW forces is to be included in calculations (Wackerfuß, 2009).

D0 =
K0h2

s

12
, K0 =

Ehs

1−ν2 , (20.31)

(used, for example, in Natasuki, 2015) the longitudinal stiffness K0 of a SLGS
is comparatively well known (see Table 20.2), but the effective thickness hs of
a SLGS is unknown, and rather the hs is to be estimated from Eq. (20.31): hs =
(12D0/K0)

1/2.
The more complex approach to a SLGS bending consists in the use of the non-local
theory of elasticity (Natasuki, 2015; Lu et al, 2007). In this approach the problem of
the bending stiffness D0 definition remains the same as for the ordinary KL model. It
occurs that the additional summands connected with the non-local model are similar
to the summands connected with a transversal shear (see Eq. (20.24)), but their
influence on the principal frequency is small.
In contrary to SLGSs the continuous bending models of MLGSs are used in a limited
number of works. Here, a difficulty of the SLGS bending stiffness D0 definition
disappears, because the effect of the D0 on the stiffness D of a MLGS is small
(see the estimates of ξn in Sect. 20.7). The problem is to correctly describe the
interaction of the neighboring layers (the vdW forces). In Natasuki (2015) these
forces are reduced to the normal stresses

Table 20.3: Principal frequencies of a MLGS (in TGz)

n+1 g Clamped Supported Free
2 11.88 0.2738 0.2736 0.1423
3 23.77 0.3179 0.3178 0.1679
4 40.41 0.3347 0.3347 0.1779
5 61.80 0.3427 0.3427 0.1829

At a continuum approach, the ordinary KL plate model may be used (Berinskii et al,
2014; Morozov et al, 2014) for a SLGS bending. The main difficulty here is the
bending stiffness D0 is poorly defined (D0 = (0.13 − 0.58) ·10−18 (J) Berinskii et al,
2014). In the relation
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pi,i+1 = c(wi+1 −wi), (20.32)

where wi and wi+1 are the normal deflections of the neighboring layers, and c is the
elastic constant similar to the constant in the Winkler foundation model.
In our paper the interlayer medium is modeled by a fictitious isotropic elastic layer
with small stiffness. It is supposed that the transversal shear stiffness G13 of this
layer is equal to the shear stiffness of a crystal graphite (see Table 20.2).
It is shown (Morozov et al, 2016b) that for an ordinary multilayer plate an influence
in the plate deflection of a shear compliance is much larger than the shrinkage of
normal fibers. Based on this result we suppose that for a MLGS the effect of shear
deformations of fictitious layers which model vdW forces also is much larger than
the changing of a distance between the neighboring layers because the elastic moduli
satisfy inequality E33 ≫ G13 (see Table 20.2). Namely, we think that the proposed
model is better than the model based on Eq. (20.32) which ignore the more essential
effect. The case when layers move in the opposite directions is not studied here.
Unfortunately, we were unable to find experimental results that allow us to assess
the correctness of the proposed model.
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Chapter 21

On Thermodynamics of Wave Processes of Heat

Transport

Evgenii V. Murashkin & Yuri N. Radayev

Abstract The present paper is devoted to formulations of constitutive equations for
the non-linear Green-Naghdi type-III thermoelastic continuum consistent with the
principle of thermodynamic (or thermomechanical) orthogonality. Contrary to the
original Green-Naghdi model the Lagrange description is employed. The principle
of thermodynamic orthogonality originally proposed by Ziegler as a generalization
of the Onsager linear irreversible thermodynamics states that the irreversible con-
stituent of thermodynamic flux is orthogonal to the convex dissipative potential level
surface in the space of thermodynamic forces for any process of heat transport. The
principle of the thermomechanical orthogonality takes its origin from the von Mises
maximum principle of the perfect plasticity, where it provides existence of a yield
surface, its convexity, and the associated flow rule. Non-linear constitutive laws of
heat propagation as of type-III thermoelasticity complying with the principle of ther-
momechanical orthogonality are discussed. Important for applied thermoelasticity
cases covered by type-III theory are studied: GNI/CTE–conventional thermoelastic-
ity based on the Fourier heat conduction law and GNII–dissipationless hyperbolic
thermoelasticity. In the latter case the internal entropy production equals zero for
any heat transport process having the form of the undamped thermoelastic wave
propagating at finite speed.
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Key words: Thermoelasticity · GN–thermoelasticity · Thermodiffusion · von Mises
maximum principle · Thermodynamic orthogonality · Thermodynamic force · ·
Thermodynamic flux · Constitutive law.

21.1 Preliminary Remarks

In recent decades, the successful attempts to go beyond the classical linear thermo-
dynamics of irreversible processes have been made in different areas of mechanics
and physics Hill (1998); Radayev (2005); Kovalev and Radayev (2010); Bazhin
and Murashkin (2012). The main idea of new approaches to the thermodynamics
of irreversible processes (known as extended irreversible thermodynamics) is to ex-
pand the number of variables representing states of a given thermodynamic system.
Additional state variables at the same time address to the generalized thermody-
namic fluxes or generalized thermodynamic forces in the dual formulations. The
thermodynamic force is usually determined as spatial gradient of standard thermo-
dynamic field variable. Thus the list of standard thermodynamic state variables is
complemented by adding their gradients. In this case it is assumed that any given
state thermodynamic field variable values and its gradient values are independent
and varying independently in a certain range. In this new approach the entropy and
state thermodynamic potentials (for example the Helmholtz free energy) are to be
functions depending on additional field variables. The same is true for entropy flux
vector and entire entropy production.
Note that the standard thermodynamic field variables are known as the slow vari-
ables. Their using as state variables together with the conservation laws in mod-
elling of heat transport leads to a number of paradoxes, such as infinite speed of
heat propagation and non-zero internal entropy production in an arbitrary thermo-
dynamic process of heat transport. Additional state variables (fast variables) allow
to formulate the theory in terms of hyperbolic differential equations. Following this
scheme one can get a hyperbolic theory of heat conduction and hyperbolic equations
modelling heat transport, which has solutions in the form of heat waves propagat-
ing at finite velocity (second sound waves) and undamped amplitude. The Green–
Naghdi theory of coupled thermoelasticity (Green and Naghdi, 1992, 1993) fully
corresponds to the principles of the new thermodynamics of irreversible processes.
In this theory the principle thermal slow variable is the temperature displacement
whereas its referential gradient being the quick variable However, in the nonlinear
theory of Green–Naghdi still remains quite a wide range of theoretical permissibility
of constitutive equations which cannot be reduced to a practically acceptable range
without further theory refinements. An important tool suitable for this aim is the
thermodynamic orthogonality principle (Ziegler, 1966; Radayev, 2005) historically
related to the development of the mathematical theory of plasticity.
The present study is devoted to formulations of constitutive equations for the non-
linear Green-Naghdi type-III thermoelastic continuum consistent with the thermo-
dynamic (or thermomechanical) orthogonality principle. After preliminary remarks
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(Sect. 21.1) in Sect. 21.2 thermodynamic orthogonality principle and governing
equations of the perfectly plastic solids are discussed. The governing equations are
derived by the von Mises maximum principle and associated plastic flow rule. The
specifications of the associated plastic flow rule at singular points are discussed by
the Koiter rule.

In Sect. 21.3 the internal entropy production for the heat transport processes in ther-
moelastic continua is found by the consistency principle of thermomechanical for-
mulations.

In Sect. 21.4 type-I and type-II constitutive models as limiting cases of type-III ther-
moelasticity are analyzed. Type-I theory (conventional thermoelasticity) is based on
the classical Fourier law of heat conduction with infinite velocity of propagation of
an exponentially decaying heat signal. Type-II theory (hyperbolic thermoelasticity)
is characterized by the energy conservation and the finite propagation velocity of
thermal waves. The GNIII theory is the most general model unifying the conven-
tional thermodiffusion mechanism of heat transport and wave dissipationless mech-
anism.

21.2 Thermodynamic Orthogonality and Constitutive Equations

of the Perfect Plasticity

The principle similar to that concerning thermodynamic fluxes and forces orthog-
onality originally appeared in the mathematical theory of perfect plasticity Hill
(1998); Radayev (2005). There it is known as the von Mises maximum principle
(R. von Mises). The main consequence of this principle is geometric convexity of
yield surface f (σσσ ) = 0 in Haigh-–Westergaard stress space (σσσ is the Cauchy stress
tensor) and orthogonality of plastic strain increment dεεεP to yield surface at its
smoothness points for an actual plastic flow process. The principle of geometrical
orthogonality in stress space is simultaneously the main constitutive law of the math-
ematical theory of perfect plasticity known also as associated flow rule

dεεεP = (dλ )
∂ f

∂σσσ
( f (σσσ ) = 0, d f (σσσ ) = 0), (21.1)

where dλ > 0 is the undetermined multiplier treated as a Lagrange multiplier ap-
pearing while solving extreme problem corresponding to the maximum principle.
The indeterminateness of multiplier dλ in theory of perfect plasticity is elucidated
by the fact that it is not considered as a given function of the thermodynamic state
variables and therefore a special constitutive equation need not be formulated. The
equations in (21.1) enclosed in parentheses show the criterion of active loading of
perfectly plastic solid the implementation of which indicates the presence of irre-
versible thermodynamic flux dεεεP only when the actual stresses σσσ equal to yield
stresses and moreover when under infinitesimal loading dσσσ stresses σσσ + dσσσ also
satisfying to f (σσσ + dσσσ) = 0.
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The associated flow rule (21.1) states the geometrical orthogonality of thermody-
namic flux to yield surface in the stress space at the point corresponding to the ac-
tual stresses σσσ . In this case, the plastic strain increment dεεεP is the thermodynamic
flux. Shear nature of the plastic flow of metals and rocks is perfectly simulated by
solutions of hyperbolic equations of mathematical theory of plasticity with constitu-
tive equations in the form of the associated flow rule and the Coulomb–Tresca yield
criterion.

The von Mises maximum principle and associated plastic flow rule are widely dis-
cussed in studies deal with the mathematical theory of perfect plasticity (see for
example Hill (1998); Radayev (2005)).

The maximum principle seems to be one of the fundamental principles of solid
mechanics and in wide sense is universal principle of physics. In conjunction with
the Coulomb–Tresca yield criterion it makes possible to formulate a mathematical
theory of plasticity by hyperbolic differential equations.

Consider in more detail the maximum principle formulation and its consequences.
We need geometrical representation in the stress space. Tensor dεεεP in this space is
represented by a free vector

−→
RQ; stress tensor σσσ corresponds to vector

−→
OS.

Actual stresses σσσ and plastic strain increment dεεεP should satisfy the following equa-
tions (∇∇∇ is the Hamiltonian nabla operator, dλ > 0)

divσσσ = 0,
f (σσσ )6 0,

dεεεP = (dλ )
∂ f

∂σσσ
( f (σσσ ) = 0, d f (σσσ ) = 0),

dεεεP = 0 ( f (σσσ ) = 0, d f (σσσ )< 0; or f (σσσ )< 0),
∇∇∇× (dεεεP)×∇∇∇ = 0,

(21.2)

the latter of which is the compatibility equation for the total strain increment.

The irreversible part of the work increment during plastic flow is determined accord-
ing to

dWp = tr(σσσ ·dεεεP) (21.3)

and satisfies (for actual process) the irreversibility inequality.

dWp > 0. (21.4)

This inequality assures the non-negativity of the internal entropy production during
the athermal processes of plastic flow.

Let the actual stress state σσσ lie at the yield surface. The point S representing in the
stress space the actual stresses σσσ lies at the yield surface. Along with the actual
stresses σσσ , consider the stresses of comparison σσσ∗, subjecting them to the single
constraint: representing point S∗ is situated either inside or on the yield surface, i.e.

f (σσσ ∗)6 0. (21.5)

For actual plastic strain increment dεεεP we introduce the function
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dW ∗
p = tr(σσσ∗ ·dεεεP), (21.6)

which is defined on the set of statically admissible stress tensors and examine it
for the maximum. One can obtain dW ∗

p as a scalar product by using the geometric

representation: dW ∗
p =

−−→
OS∗ ·−→RQ.

The maximum of dW ∗
p is always positive as follows from the equation (21.4) and can

not be located at points in the interior of yield surface. In fact, if such point S∗0 were

found, then directing a ray from the point of S∗0 parallel to the vector
−→
RQ and defining

point S∗1 as the intersection of this ray with the yield surface one can verify the

inequality
−−→
OS∗1 ·

−→
RQ >

−−→
OS∗0 ·

−→
RQ, which contradicts to the one

−−→
OS∗0 ·

−→
RQ >

−−→
OS∗1 ·

−→
RQ.

Thus, the search of the maximum should be restricted by the condition that point S∗

lies only on the yield surface. Introducing the undetermined Lagrange multiplier dλ ,
in order to find extreme values of the function dW ∗

p we have the following equation

dεεεP = dλ
∂ f (σσσ ∗)

∂σσσ ∗ , f (σσσ ∗) = 0. (21.7)

We then prove that if a closed yield surface is smooth and geometrically strictly con-
vex, the solution of equations (21.7) is uniquely determined. Denoting this solution
by the σσσ (which is truth because actual stresses σσσ must jointly satisfy the equations
(21.7)) one can state that the function dW ∗

p reaches the strict global maximum at
σσσ∗ = σσσ on the set of statically admissible stresses.
This statement can be proved by the following simple rearranging. The point S∗ due
to (21.7) is such that the normal vector to yield surface at the point S∗ should be
parallel to the given direction

−→
RQ. Obviously the point S∗ exists if the yield surface

is closed and strictly convex. If σσσ∗ = σσσ then the both equations (21.7) are valid.
Now we need to estimate the difference

dW ∗
p − dWp.

In geometrical terms we have

dW ∗
p − dWp =

−→
SS∗·−→RQ < 0 (S 6= S∗),

since the angle ϑ between the vectors
−→
SS∗ and

−→
RQ is always obtuse in view of the

strict convexity of yield surface (see Fig. 21.1). This proves all statements formu-
lated earlier. Note that if the yield surface is convex but not strictly, the solution of
the system (21.7) is not unique.
The associated flow rule uniquely defines the direction of the vector representing
increments of plastic strain in stress space only at regular points of the yield surface.
If the stress strain state is represented by the edge point, or conical singularity on
the yield surface, then additional assumptions for the proper derivation of flow rule
are needed. Generalization of the maximum principle and the associated flow rule
to the case of the yield surface with an singular points have been proposed by Koiter
Koiter (1953). This generalization based on the following principle of superposition:
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Fig. 21.1 Scalar product neg-
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singular point of the yield surface are represented as the intersection of a finite
number p smooth yield surfaces fγ (σσσ) = 0; any of the smooth yield surfaces give
an additive contribution (with a corresponding undetermined multiplier) in the total
plastic strain increment value.

If the point S is a singular point of the yield surface, then the vector
−→
RQ must be

located within the cone formed in stress space by normals to the yield surface at the
point S.

Active loading, accompanied by change of plastic deformation, is determined by the
following conditions

fω (σσσ) = 0, d fω(σσσ ) = 0,
fκ(σσσ ) = 0, d fκ (σσσ)< 0 or fκ (σσσ)< 0,

wherein the indices ω and κ are different and their values together exhaust all values
of the index γ = 1,2, . . . , p, and the index ω runs over a non-empty set of values.

Total increment dεεεP is the sum of increments dεεεP(ω) indexed by ω

dεεεP =∑
ω

dεεεP(ω),

wherein each increment dεεεP(ω) is given according to plastic flow rule with regular
yield function fω

dεεεP(ω) =
∂ fω (σσσ)

∂σσσ
dλω .

The values of dλω have to be positive.

Finally, the generalized associated flow rule takes the following final form
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dεεεP =
p

∑
γ=1

∂ fγ (σσσ )

∂σσσ
dλγ ,

dλγ > 0 ( fγ (σσσ) = 0, d fγ (σσσ) = 0),
dλγ = 0 ( fγ (σσσ) = 0, d fγ (σσσ)< 0; or fγ (σσσ )< 0).

(21.8)

21.3 Internal Entropy Production for a Heat Transport Process

in Thermoelastic Continua

The von Mises maximum principle can be extended to the processes of heat trans-
port in solids while deriving constitutive equation of thermoelasticity. This scheme
can be used to eliminate intrinsic to the classical Fourier theory of heat conduction
(CTE) the infinite velocity of thermal wave propagation.
At present mathematical models of the thermoelastic behavior of solids (for exam-
ple GN-thermoelasticity Green and Naghdi (1992, 1993)) are regularly refined Ko-
valev and Radaev (2012). GN-thermoelasticity theory itself can be subdivided into
the three different types. Type-I theory (GNI/CTE thermoelasticity) is based on the
classical Fourier law of heat conduction with infinite velocity of propagation of an
exponentially decaying heat signal. Type-II theory (GNII, hyperbolic thermoelastic-
ity) is characterized by the energy conservation and the finite propagation velocity
of thermal waves known as second sound waves Chester (1963). The known refine-
ments usually aim at derivations of hyperbolic partial differential equations of cou-
pled thermoelasticity. The GNIII theory is the most general model combining GNI
and GNII theory as limiting cases and unifying the conventional thermodiffusion
mechanism of heat trasport and wave dissipationless mechanism.
Hereafter we focus our attention in GNIII theory. Type–III thermoelasticity synthe-
sizes classical thermoelasticity CTE, developed according to Fourier heat conduc-
tion law, and non-dissipative theory, assuming zero internal entropy production in
a heat transport process in solids and the possibility of undamped thermal wave
propagation. Thus for thermodynamically accurate modelling we are going to si-
multaneously satisfy the following requirements:

1. Finiteness of the velocity of thermal wave propagation, and
2. Existence propagating undamped thermoelastic waves, and
3. Existence of distortionless wave forms similar to the classical d’Alembert type

waves.

We use the classical referential description representing the deformation as mapping

x = x(X, t), (21.9)

wherein x is the actual spatial position, which corresponds to referential state posi-
tion X.
Hereafter, the referential nabla operator ∇∇∇R is associated with Lagrange variable
X. Finite strain tensors are derived from the equation (21.9), using the deformation
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gradient
F =∇∇∇R ⊗ x. (21.10)

The system of governing equations of the nonlinear coupled type-III thermoelastic-
ity (GNIII theory) consists of:

• The mass balance equation
∂ρR

∂ t

∣∣∣∣
X

= 0; (21.11)

• The momentum balance equation

ρRẍ =∇∇∇R ·S, (21.12)

wherein S = JF−T ·T denotes the first Piola–Kirchhoff stress tensor, T is the
Cauchy stress tensor, J = detF is Jacobian of the deformation;

• The internal energy balance equation

ė =−∇∇∇R ·hR + tr(S · ḞT)+ ε, (21.13)

where e is the internal energy density per unit referential volume, hR is the refer-
ential heat flux vector, ε is the referential volume density of heat sources (radiant
heat);

• The entropy balance equation

ṡ =−∇∇∇R · jR +σ + ξ , (21.14)

where s denotes entropy density per unit referential volume, jR is the referential
vector of entropy flux, σ is the external entropy production, ξ is the internal
entropy production.

The internal entropy production should satisfy the inequality of irreversibility

ξ > 0. (21.15)

The entropy balance equation (21.14) is of crucial importance in the irreversible
thermodynamics and thermomechanics.
The temperature displacement ϑ is the principal thermal variable in the Green–
Naghdi thermoelastic model. In the GNIII theory the complete thermodynamic basis
consists of the following thermodynamic state variables:

ϑ , ϑ̇ , ∇∇∇Rϑ , ∇∇∇Rϑ̇ , F. (21.16)

The state variables pointed out are considered to be thermodynamically independent
and in this sense form a thermodynamic basis. The choice of the thermodynamic
basis is extremely important and decisive step in development any mathematical
model related to thermoelastic behaviour.
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In this study we shall consider only such processes when the entropy balance equa-
tion (21.14) is valid with non-negative internal entropy production (21.15) under
differential constraints (21.11)–(21.13). The possible dual formulation is obtained
in the following form: the energy balance equation (21.13) is satisfied under con-
straints (21.11), (21.12), (21.14). Both the initial and dual formulations appear as
a manifestation of the consistency principle of thermomechanical equations: en-
tropy/energy balance equation should not violate the mass, momentum, and en-
ergy/entropy balance equations, i.e. the entropy/energy balance equation must be
identically satisfied for any thermodynamic process according to the remaining bal-
ance equations.

Taken into account the differential constraints (21.11)–(21.13) by using Lagrange
multipliers one can found

θ jR = hR, θσ = ε. (21.17)

Wherein θ denotes the absolute temperature of which the inverse is called coldness
and acts as the Lagrange multiplier.

The reduced energy balance equation is derived on the basis of equations (21.11)–
(21.14) and (21.17)

−(ψ̇ + sθ̇)+ tr(S · ḞT)− jR ·∇∇∇Rθ = θξ , (21.18)

where ψ = e− sθ is the Helmholtz free energy density per unit referential volume.

Differential equations of thermoelasticity are to be supplemented by constitutive
equations. The constitutive equations as of type-III thermoelasticity must read Ko-
valev and Radaev (2012)

ψ = ψ(ϑ , ϑ̇ ,∇∇∇Rϑ ,∇∇∇Rϑ̇ ,F),
hR = hR(ϑ , ϑ̇ ,∇∇∇Rϑ ,∇∇∇Rϑ̇ ,F),
S = S(ϑ , ϑ̇ ,∇∇∇Rϑ ,∇∇∇Rϑ̇ ,F),
s = s(ϑ , ϑ̇ ,∇∇∇Rϑ ,∇∇∇Rϑ̇ ,F),
ξ = ξ (ϑ , ϑ̇ ,∇∇∇Rϑ ,∇∇∇Rϑ̇ ,F),
θ = θ (ϑ̇).

(21.19)

In this general form the constitutive thermoelastic equations are not practicable in
applied problems. Further restrictions on the form of constitutive equations (21.19)
can be obtained as follows. The reduced energy balance equation (21.18) with non-
negative internal entropy production (21.15) must be satisfied for all thermodynam-
ically admissible processes according to the remaining balance equations. Substitut-
ing the constitutive equations (21.19) into the equation (21.18) and noting that the
factors ϑ̈ , ∇∇∇Rϑ̈ , Ḟ must vanish, we conclude that the free energy is independent on
the state variable ∇∇∇Rϑ̇ , i.e.

ψ = ψ(ϑ , ϑ̇ ,∇∇∇Rϑ ,F).

In addition, the following equations are proved to be valid
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s =− 1
∂θ

∂ϑ̇

∂ψ

∂ϑ̇
, (21.20)

S =
∂ψ

∂F
. (21.21)

Therefore the equation for internal entropy production reads

θξ =−
(

jR +
∂ψ

∂ (∇∇∇Rϑ)

)
·∇∇∇Rϑ̇ − ∂ψ

∂ϑ
ϑ̇ . (21.22)

Assuming that the constitutive equations do not explicitly depend on the temperature
displacement ϑ

∂ψ

∂ϑ
= 0

we obtain

θξ =−
(

jR +
∂ψ

∂ (∇∇∇Rϑ)

)
·∇∇∇Rϑ̇ . (21.23)

The above assumption means that ψ is invariant function under translation of tem-
perature displacement.

21.4 Constitutive Equations for Type-III Thermoelasticity by

Virtue of Thermodynamic Orthogonality

Thermodynamic orthogonality principle and its dual formulation have been pro-
posed by Ziegler (1958) as a generalization of the linear Onsager theory (Onsager,
1931a,b); similar topics also discussed in Ziegler (1970, 1981); Germain (1983)).

We introduce the dissipation potential (more precisely, the conjugate dissipation
potential) according to equation

θξ = D = D(ϑ̇ ,∇∇∇Rϑ ,F;∇∇∇Rϑ̇) (21.24)

and consider D as a function depending on the thermodynamic force

−∇∇∇Rϑ̇ . (21.25)

In our discussion jR plays a role of thermodynamic flux. For the irreversible part of
thermodynamic flux one can obtain

jR +
∂ψ

∂ (∇∇∇Rϑ)
, (21.26)

wherein the term
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− ∂ψ

∂ (∇∇∇Rϑ)

is the reversible part of the thermodynamic flux. In virtue of the thermomechanical
orthogonality principle the referential vector (21.26) is orthogonal to the dissipation
potential level surfaces

D(ϑ̇ ,∇∇∇Rϑ ,F;∇∇∇Rϑ̇) = const, (21.27)

as stated by the mentioned principle.

In the case of thermoelastic behaviour we arrive at the heat conduction law in the
form

jR +
∂ψ

∂ (∇∇∇Rϑ)
=−λ ∗ ∂D

∂∇∇∇Rϑ̇
, (21.28)

or rearranging terms

jR =− ∂ψ

∂ (∇∇∇Rϑ)
−λ ∗ ∂D

∂ (∇∇∇Rϑ̇)
. (21.29)

The Lagrange multiplier λ ∗ in the equation (21.28) is expressed in view of the equa-
tion (21.27) as

θξ = D = λ ∗(∇∇∇Rϑ̇) · ∂D

∂ (∇∇∇Rϑ̇)
,

consequently after simple transformations

λ ∗ =
1

(∇∇∇Rϑ̇) · ∂D

∂ (∇∇∇Rϑ̇)

D . (21.30)

Thus, if we substitute the equation (21.30) in the equation (21.29) then the heat
conduction law for the type-III thermoelasticity complying to the thermodynamic
orthogonality principle is formulated as follows:

jR =− ∂ψ

∂ (∇∇∇Rϑ)
− D

(∇∇∇Rϑ̇) · ∂D

∂ (∇∇∇Rϑ̇)

∂D

∂ (∇∇∇Rϑ̇)
. (21.31)

The irreversibility inequality ξ > 0 is provided by convexity of the level surfaces

D(ϑ̇ ,∇∇∇Rϑ ,F;∇∇∇Rϑ̇) = const.

The equation (21.31) shows that the derived type-III thermal conductivity consti-
tutive law comply to the Ziegler orthogonality principle for thermodynamic forces
and fluxes.

Note that the case of the zero internal entropy production is thermodynamically
admissible. This implies D = 0, and the thermal conductivity law (21.31) takes the
form
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jR =− ∂ψ

∂ (∇∇∇Rϑ)
, (21.32)

intrinsic to the hyperbolic GNII theory capable modelling heat conduction as wave
process. The constitutive equation (21.32) for the entropy flux vector is one of the
most remarkable in the continuum thermomechanics, as entropy flux and conse-
quently heat flux are determined according to (21.32) by the free energy solely.
The theory of conventional coupled thermoelasticity GNI/CTE is based on the as-
sumption that the free energy ψ is independent on temperature displacement ϑ and
referential temperature displacement gradient ∇∇∇Rϑ . Therefore, the free energy is
written as

ψ = ψ(ϑ̇ ,F).

As a result, the internal entropy production can be found according to

θξ =−jR ·∇∇∇Rϑ̇ ,

consequently thermodynamic orthogonality equation generalizing Fourier’s law of
heat conduction is obtained as

jR =− D

(∇∇∇Rϑ̇) · ∂D

∂ (∇∇∇Rϑ̇)

∂D

∂ (∇∇∇Rϑ̇)
. (21.33)

Thus, the entropy flux vector in GNIII theory complying to the thermodynamic or-
thogonality principle is determined by the equation (21.31) by employing the two
potentials: the free energy ψ and the dissipation potential D . It is naturally splitted
into two constituents: the reversible part

− ∂ψ

∂ (∇∇∇Rϑ)

and the irreversible one

− D

(∇∇∇Rϑ̇) · ∂D

∂ (∇∇∇Rϑ̇)

∂D

∂ (∇∇∇Rϑ̇)
.

Equation (21.28) can be generalized at singular points of the level surfaces D =
const by virtue of the Koiter rule (21.8) originally formulated for perfectly plastic
solids.

21.5 Conclusions

1. Thermodynamics of wave processes of heat transport based on Green–Naghdi
approach has been developed.
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2. Constitutive equations for the non-linear Green-Naghdi type-III thermoelastic
continuum complying to the thermodynamic (or thermomechanical) orthogonal-
ity principle has been obtained. Contrary to the original GNIII theory the deriva-
tion of constitutive equations has been realized in terms of Lagrangian descrip-
tion.

3. The thermodynamic orthogonality principle and constitutive equations of the per-
fect plasticity have been discussed as a background of the constitutive thermoe-
lastic modelling.

4. The internal entropy production for the heat transport processes in thermoelas-
tic continua has been found by the consistency principle of thermomechanical
formulations.

5. The constitutive equations for type-III thermoelasticity in virtue of thermody-
namic orthogonality have been generalized by the Koiter rule at the singular
points of the dissipative potential.

6. Type-I and type-II constitutive models as limiting cases of type-III thermoe-
lasticity have been analyzed. Type-II theory is characterized by the hyperbolic
governing equations and consequently admit the finite propagation velocity of
thermal waves. The GNIII theory is the most general model unifying the con-
ventional thermodiffusion mechanism of heat trasport and wave dissipationless
mechanism.
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Chapter 22

The Technological Stresses in a Vaulted

Structure Built Up on a Falsework

Dmitry A. Parshin

Abstract It is considered a process of gradual building a cylindrical vaulted structure
on a rigid base. Building is implemented by means of continuous attaching layers
of additional material to the being formed vault external surface. The vault internal
surface is supported by a rigid circular falsework during the whole building process
and after its completing. The material used for building manifests properties of creep
and aging (in particular, concrete can be considered). It is stated a linear quasistatic
initial-boundary problem of accreted solids mechanics that describes the process of
the vault plane deformation under gravity action for the case of small strains. The
analytical solution of this non-classical mathematically two-dimensional problem is
built in trigonometric series and quadratures. It is proved a proposition about the
structure of technological residual stresses taking place in the completed vault if the
falsework is removed from it some time after the end of building. This proposition
allows to determine efficiently the stresses mentioned.

Key words: Vaulted structure · Cylindrical vault · Falsework · Gravity · Creep ·
Aging · Technological stresses · Residual stresses · Analytical solution

22.1 Introduction

Majority of large structures do not appear instantly on the place of their location.
They are built there gradually, element by element that is during an accretion process.
It is easily seen that the stress-strain state of such structures under gravity action can
not be determined only by their final form. Indeed, the weight of every newly added
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material element exerts additional mechanical influence on the present part of the
structure being formed and thus excites its additional strain in compliance with the
current stiffness of the structure. That means that the stress-strain state of an accreted
structure is formed incrementally. As a result the final state of the completely built
structure essentially differs in general case from the state this structure would have if
it were exposed to gravity action only on completing. As in the last case the structure
would deform as a comprehensive whole.
Thus to determine the stress-strain state of a structure being built under gravity ac-
tion this action is necessary to take into account during the whole building process.
The analysis of accreted bodies deformation, that is of bodies gradually formed due
to surface inflow of additional material, lets us make the fundamental conclusion
that mentioned accounting can not be correctly implemented in the frameworks of
classical solid mechanics, even if we consider the traditional equations and bound-
ary conditions in a time-varying region. It is necessary to use special approaches
and methods based on accreted solids mechanics concepts Manzhirov (2013, 2014).
Remark that if the structural material used possesses rheological properties than
both any actual and the final state of the built structure should considerably depend
on the building time mode. During a building process of a structure of such a kind
there are two tendencies that are continuously interacting. The first one is the ten-
dency of permanent loading the structure with weight of additional elements and
the second one is the stress rearrangement in elements so far added due to strain
procrastination under changing structure geometry. The type and the result of this
interaction are determined by various particular factors that can be analysed only by
solving the corresponding accretion problem Manzhirov (1995, 2015, 2016).
One can inquire about a few solved problems in accreted solids mechanics in Aru-
tyunyan et al (1991); Arutyunyan and Manzhirov (1999); Manzhirov and Chernysh
(1992); Manzhirov and Parshin (2006a,b, 2008, 2016a, 2015a,b, 2016b). The present
paper is intended to one problem of gradual raising of a heavy semi-circular vaulted
structure that manifests properties of creep and aging. Some another problems re-
lated to built-up processes of analogous structures were considered in Manzhirov
and Chernysh (1992); Manzhirov and Parshin (2015a,b, 2016b).

22.2 Statement of the Problem

Let the process of building a cylindrical vault on a horizontal smooth rigid base start
at time t = t1. Building is implemented by means of vault erection due to continuous
attachment of uniformly thick elementary layers of additional material to its external
surface. During the process the internal surface of the vault is supported by a rigid
circular falsework. The very first layer of the material is directly attached to the
falsework and adheres to it. The process lasts up to time t = t2 > t1. During the
process and after its completion the vault is attached to the base by a sliding mount
that prevents the feet of the vault to be separated from the base but does not prevent
their sliding along it.
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Fig. 22.1 Scheme of a vaulted
structure built up by using a
rigid falsework

The material used is homogeneous isotropic aging viscoelastic and originally free of
stresses. The process of the building vault deformation is assumed to be quasistatic.
We perform our consideration for the case of a plane strain state with small strains.
It is set a task to study the process of forming the stress-strain state of the vault in
question under gravity action.

Let a be the internal vault radius (i.e. the external falsework radius) and b(t) its
external radius at time t, b(t1) = a (Fig. 22.1). Let b(t) ≡ bfin = b(t2) when t > t2.
We consider the continuous, monotone increasing function b(t) to be known. Sup-
pose this function be piecewise continuously differentiable. We associate with
the vault transverse cross-section plane the circular cylindrical coordinate system
(ρ ,ϕ ,z). Here ρ is the polar radius counted from the arch central axis, ϕ is the polar
angle counted upwards from the base (Fig. 22.1) and z is the longitudinal coordinate.
Let the right orthonormal local frame of this system be {eρ ,eϕ ,k}. If we denote the
external unit normal to the base by j, the cubic density of the gravity forces acting
on the vault will be equal to f=−j f , where f = const is the material specific weight
(Fig. 22.1).

We describe the material in the framework of the linear theory of viscoelasticity of
homogeneously aging isotropic media (Arutyunyan, 1966; Arutyunyan and Manzhi-
rov, 1999), i.e. we start from the state equation

T(r, t) = G(t)
(
I +Nτ0(r)

)[
2E(r, t)+ (κ− 1)1trE(r, t)

]
. (22.1)

Here T and E are stress and small strain tensors, 1 is the unit tensor of rank 2; G is
elastic shear modulus, κ = (1− 2ν)−1, ν = const is Poisson’s ratio. The viscoelas-
ticity operator I +Ns in (22.1) is determined by the relations:

I +Ns = (I −Ls)
−1,

Ls g(t) =

t∫

s

g(τ)K(t,τ)dτ, Ns g(t) =

t∫

s

g(τ)R(t,τ)dτ,

K(t,τ) = G(τ)
∂ ∆(t,τ)

∂ τ
, ∆(t,τ) = G(τ)−1 +ω(t,τ),
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where I is the identity operator; K and R are creep and relaxation kernels, ∆ and
ω are specific strain function and creep measure in the case of pure shear. Time t

is assumed to be counted from the material fabrication instant; τ0(r) is the time at
which stresses appear in the point of the body with the position vector r.
Equation (22.1) was suggested by the academician of the Armenian Academy of
Sciences N. Kh. Arutyunyan especially for describing creeping processes in con-
crete and is widely used for this purpose nowadays. Meanwhile, it also well comes
to agreement with experimental data for creep of some kinds of polymers, rocks,
soil, and ice.
In the problem under consideration stresses appear at points of the body at the time
of their joining to it. It means that τ0(r) ≡ τ∗(ρ) where τ∗(ρ) is the time of attach-
ment of the layer with radius ρ to the vault. It is clear that the equation τ∗(ρ) = t

describes the external surface {ρ = b(t)} of the continuously accreted vault, i.e. its
instantaneous accretion surface.
Let us introduce the linear integral operator Hs = (I −Ls)G(t)−1 with the real
parameter s and its reverse operator H −1

s = G(t)(I +Ns). We denote

g◦(r, t) = Hτ0(r) g(r, t) (22.2)

for an arbitrary tensor function g(r, t) of point r of the accreted body and time t.
The constitutive relation (22.1) can be written with the denotation (22.2) in the form
(Manzhirov, 1995)

T◦(r, t) = 2E(r, t)+ (κ− 1)1trE(r, t). (22.3)

Note that g◦
(
r,τ0(r)

)
= g

(
r,τ0(r)

)
/G

(
τ0(r)

)
, so in our case we have

g◦
(
r,τ∗(ρ)

)
= g

(
r,τ∗(ρ)

)
/G

(
τ∗(ρ)

)
. (22.4)

In addition, note that by definition of the creep measure (Arutyunyan and Manzhirov,
1999), we have the identity ω(τ,τ)≡ 0, τ > 0. So

Hτ 1 = ∆(t,τ). (22.5)

22.3 Boundary Value Problem for the Built-up Structure

During a process of accretion elements of additional material are added to the grow-
ing solid in the course of its deformation motion in space. It is clear that the entire
body formed in such a way cannot in general have an unstressed configuration. It is
this fact that is decisive in deformation process of any accreted solid and essentially
distinguishes the mechanical behavior of such solids from the behavior of solids of
constant composition (i.e. classical bodies in continuum mechanics) and of solids
whose boundary is variable because of removal of material. Owing to this charac-
teristic property, it is impossible to define the strain measure of an accreted solid by
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the method adopted in continuum mechanics; therefore, the Cauchy formulas do not
hold for the total strain tensor components, and hence the Saint-Venant conditions
of their compatibility are not satisfied.
However, note that particles of the material added after their adhesion to the accre-
tion surface continue the motion further in the solid configuration. It means that
a sufficiently smooth field of particles velocities is determined in the space region
occupied by the entire accreted solid at a given time instant. Therefore, we can ex-
pect that the problem on deforming such a solid can be well defined in terms of
displacement rates.
Starting from this viewpoint, we write out the analogy of the constitutive relation
(22.3) for the rates of the mechanical quantities this relation ties together:

S(r, t) = 2D(r, t)+ (κ− 1)1trD(r, t).

Here we introduce the tensor S = ∂T◦/∂ t (see the denotation (22.2)) Manzhirov,
1995) and the strain rate tensor D = (∇∇∇v

T +∇∇∇v)/2 where v(r, t) = eρ vρ + eϕvϕ +
kvz is the velocity field describing the motion of accreted body particles. In the
considered case of plane strain, we have k ·v = 0, ∂ v/∂ z = 0.
The equation for the introduced tensor S in the region occupied at the current time by
the accreted body can be obtained by applying the linear operator Hτ0(r) to the equi-
librium equation ∇∇∇ ·T+ f = 0 and by differentiating the result with respect to time t.
Due to the fact that the lower limit in the integral operator mentioned depends on a
point of the body this integral operator does not commute with the divergence oper-
ator. But one can show (Manzhirov, 1995) that in the accretion processes studied in
the present paper we can write (∇∇∇ ·T)◦ =∇∇∇ ·T◦ for the stress tensor. In this case the
following analog of the equilibrium equation is satisfied in the entire accreted solid
both during and after the process of its accretion: ∇∇∇ ·T◦ + f◦ = 0. Differentiate it
with respect to t: ∇∇∇ ·S+∂ f◦/∂ t = 0. By calculating with (22.5) the vector-function
∂ f◦/∂ t =−jh(ρ , t), where

h(ρ , t) = f
∂ ω

(
t,τ∗(ρ)

)

∂ t
, (22.6)

we obtain the equation
∇∇∇ ·S= jh(ρ , t).

Note that according to properties of creep measure (Arutyunyan and Manzhirov,
1999) we have h(ρ , t)> 0 when t > τ∗(ρ).
Consider now a condition that is to be given on the accretion surface of the body.
As we suppose the material to be attached is originally free of stresses the complete
stress tensor is required to be equal to zero on the accretion surface:

T= 0, ρ = b(t), t ∈ [t1, t2] ⇐⇒ T
(
r,τ∗(ρ)

)
= 0, ρ ∈ [a,bfin]. (22.7)

The initial-boundary condition (22.7) can be transformed to the boundary condition
for components of the tensor S analogous to a classical force condition on a solid
surface (Manzhirov, 1995):
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eρ ·S=−jq(t), ρ = b(t), t ∈ [t1, t2], (22.8)

where
q(t) = f b′(t)/G(t)> 0. (22.9)

After we stop building the vault its external surface remains unloaded. Therefore we
are to use an ordinary condition of stress absence for t > t2. An evident analog of
this condition for the tensor S is the boundary condition

eρ ·S= 0, ρ = bfin.

As we suppose that b(t)≡ bfin when t > t2, the written above condition for the tensor
S on the accretion surface remains formally valid even after erecting completing and
consequently can be used for any t > t1. However, it is necessary to understand that
the nature of this condition during the vault continuous erecting stage and after its
completing is different in essence.

On the internal surface {ρ = a} of the vault we have to require meeting the kine-
matic condition of tough adhesion of the material to the falsework. To set a problem
in velocities it should be the condition

v = 0, ρ = a.

On the feet {ϕ = 0,π} of the vault we use the mixed conditions of sliding mount

eϕ ·T · eρ = 0, eϕ ·v = 0.

Instead of T we can obviously put here the tensor S.

Thus we get the following boundary value problem which describes the deforming
process of the built vault attached to a falsework during and after building:

∇∇∇ ·S= jh(ρ , t), ρ ∈
(
a,b(t)

)
, ϕ ∈ (0,π), t > t1;

S= 2D+(κ− 1)1trD, D=
∇∇∇v

T +∇∇∇v

2
; k ·v = 0,

∂ v

∂ z
= 0;

v|ρ=a = 0; eρ ·S|ρ=b(t) =−jq(t);

(eϕ ·S · eρ)
∣∣
ϕ=0,π = 0, (eϕ ·v)

∣∣
ϕ=0,π = 0.

(22.10)

Here the known scalar functions h(ρ , t) and q(t) are defined by formulae (22.6) and
(22.9) and depend on the elastic and creeping properties and the specific weight of
the material used, as well as on the history of its accretion to the considered built-up
structure. It is seen that the problem (22.10) has the form of a classical boundary
value problem of linear elasticity theory with a parameter t.
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22.4 Analytical Solution of the Problem. Determining the

Stresses in the Vault Supported by the Falsework

Let us try the radial and circular components vρ and vϕ of the velocity vector field
v solving the problem (22.10) in the form of the trigonometric Fourier expansions.
Because of the structure symmetry we have

vρ

∣∣
ϕ
= vρ

∣∣
π−ϕ

, vϕ

∣∣
ϕ
=−vϕ

∣∣
π−ϕ

.

Therefore

vρ = c0(ρ , t)+
∞

∑
n=1

cn(ρ , t)cos2nϕ , vϕ =
∞

∑
n=1

dn(ρ , t)sin2nϕ . (22.11)

Note that these expansions satisfy the homogenous mixed boundary conditions on
the vault feet {ϕ = 0,π} contained in (22.10).

After we use (22.11) in the Lamé equations that correspond to (22.10) we are to
solve systems of linear inhomogeneous ordinary differential equations of the second
order with respect to ρ with variable coefficients for unknown functions c0, cn, dn.
On solving them we get

c0

ρ
=

−β B40 −B10

2
,

{
cn

dn

}
ρ−1 =

(n±β )B2n∓B3n

4n− 2
± (n∓β )B4n∓B1n

4n+ 2
;

S= eρ eρ Sρ + eϕeϕ Sϕ +kkν(Sρ + Sϕ)+ (eρ eϕ + eϕeρ)Sρϕ ,

Sρϕ =
∞

∑
n=1

[
B1n − nB2n+B3n − nB4n

]
sin2nϕ ,

S{ ρ
ϕ

} =±B10 −B40 +
∞

∑
n=1

[
±B1n ∓ (n± 1)B2n∓B3n ± (n∓ 1)B4n

]
cos2nϕ .

Here β = 1− 2ν if the left side of an equation contains c, and β = 2(1− ν) if the
left side of an equation contains d. We have also introduced the functions

B1m(ρ , t) = K+
m Φm+1(ρ , t)+

[
b(t)/ρ

]2m+2
α1m(t),

B2m(ρ , t) = κΦm(ρ , t)+
[
b(t)/ρ

]2m
α2m(t),

B3m(ρ , t) = K−
mΨm−1(ρ , t)+ (ρ/a)2m−2α3m(t),

B4m(ρ , t) = κΨm(ρ , t)+ (ρ/a)2mα4m(t);

{
Φm

Ψm

}
(ρ , t) =

±k

2m∓ 1

ρ∫

{
a

b(t)

}
(ξ/ρ)±2m h(ξ , t)dξ .
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Here K±
m =

[
m(2m± 3)/(2m∓ 1)

]
κ± 1, k = 2/

[
π(κ+ 1)

]
. The functions α jm(t)

are to be found from the system of linear algebraic equations that we obtain on satis-
fying the boundary conditions in (22.10) on the internal and external vault surfaces.
We do not present the expressions for α jm because they are extremely cumbersome.
After the problem (22.10) is solved, the tensor T◦ evolution in every point of the
completed vault can be reconstructed from the found rate of this tensor with the
initial condition given by (22.7) and (22.4):

T◦(r, t) =

t∫

τ∗(ρ)

S(r,τ)dτ, t > τ∗(ρ).

According to the definition of the tensor T◦ (see (22.2)), by virtue of the known
evolution of this tensor it is possible to determine the evolution of the stress tensor
T by solving the integral Volterra equation of the second kind

g(r, t)−
t∫

τ∗(ρ)

g(r,τ)K(t,τ)dτ = T◦(r, t)

with respect to time t. In this equation the vector r is a parameter, and

g(r, t) =
T(r, t)

G(t)

is the required tensor-function.
We can write the solution of the mentioned integral equation in the resolvent analyt-
ical form:

T(r, t) = H
−1

τ∗(ρ)
T◦(r, t) = G(t)

[
T◦(r, t)+

t∫

τ∗(ρ)

T◦(r,τ)R(t,τ)dτ

]
, t > τ∗(ρ).

However, if the expression for the resolvent R of the creep kernel K is too compli-
cated for calculations using this formula, it is more desirable to solve the equation in
question numerically, for example, by a quadrature method (Polyanin and Manzhi-
rov, 2008).

22.5 Residual Stresses in the Finished Structure

Now we know the whole evolution of the built vault stress-strain state under gravity
action from the instant of building beginning to an arbitrary far instant after the end
of building if the falsework is being left attached to the vault on its completing. Let
us study the residual stresses taking place in the completed vault after the falsework
is removed from its internal surface.
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Resting upon the linearity of the problem and applying a known correspondence
principle in the theory of aging solids viscoelasticity (Arutyunyan and Manzhirov,
1999) we can prove the following. Let the stress tensors T∞(r) and Tres(r) define
the long-term states of a heavy aging viscoelastic accreted vault under consideration
after the process of its building (according to a certain time mode) is completed and
the vault is left on the falsework or, respectively, the falsework is removed. In the
first case

t∞
a (ϕ) =−eρ ·T∞

∣∣
ρ=a

is the steady-state falsework reaction, and in the second case we have

eρ ·Tres
∣∣
ρ=a

≡ 0.

Suppose we have a weightless elastic vault that is built without residual stresses, has
the same dimensions as the completed viscoelastic vault in question and the same
elastic characteristics as this vault has after a long aging. The elastic vault mentioned
is set on a horizontal rigid base and fixed on it with sliding mount, as the erected
viscoelastic vault in question, and loaded on the internal surface by the distributed
loading t∞

a . Let the stress state of such elastic vault be defined by the stress tensor
Tel(r) (it can be found from the solution of the corresponding classical problem of
the elasticity theory with zero mass forces). Then

Tres = T∞ −Tel,

i.e. the desired residual stresses can be determined as difference between the stresses
corresponding to the above solved non-classical problem of the vault accretion on a
falsework and stresses corresponding to a certain classical problem of the elasticity
theory with zero mass forces.
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Chapter 23

Reversible Plasticity Shape-Memory Effect in

Epoxy Nanocomposites: Experiments, Modeling
and Predictions

Abishera Ravichandra Rajkumar, Velmurugan Ramachandran, Kondagunta
Veeraraghavan Nagendra Gopal & Narinder Kumar Gupta

Abstract Conventionally, shape memory programming involves deforming the ma-
terial at a temperature higher than the glass transition (Tg) and subsequently cooling
the material below Tg while holding the deformation to fix the temporary shape. Al-
ternatively materials with reversible plasticity shape memory (RPSM) property can
be programmed at temperatures well below the glass transition temperature which
offers several advantages over conventional programing. Here, the RPSM property
of multi-walled-carbon-nanotube (MWCNT) reinforced epoxy nanocomposites is
investigated. A commercially available epoxy resin is tailored to realize RPSM ef-
fect and the properties are enhanced with the addition of nano-fillers in the epoxy
matrix. This report systematically investigates the effect of MWCNT addition on the
mechanical, thermal and RPSM properties of the epoxy matrix. The RPSM perfor-
mance under different programming conditions like strain rate, strain level and stress
relaxation time is studied. Results reveal that all samples show excellent shape mem-
ory properties under various programming conditions. The addition of MWCNT
resulted in a significant improvement in mechanical and shape memory properties.
Further the RPSM mechanism is explained using a thermo-viscoelastic-viscoplastic
model and the model is used to predict the RPSM behavior of the nanocomposite
under different programming conditions. As a result, this study shows that by vary-
ing the parameters like glass transition temperature, filler content and programming
conditions the material can be designed for applications in self-healing systems and
smart structures.
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Key words: Shape memory polymers · Carbon nanotubes · Cold-Drawing · Thermo-
Mechanical properties · Constitutive modeling · Parameter determination

23.1 Introduction

Shape memory polymers (SMP) are a class of smart materials which can be pro-
grammed to store large deformations at certain environmental conditions and re-
cover the deformation when a suitable stimulus is applied (Lendlein and Kelch,
2002). SMPs have been designed to respond to stimuli like temperature change,
light, electricity, solvent, change in pH, etc (Hu et al, 2012). A conventional thermo-
mechanical cycle of a thermally activated SMP involves a programming step and
a recovery step. In the programming step, the SMP is deformed at a temperature
above the glass transition (Tg) and subsequently cooled below Tg while holding the
deformation to fix a temporary shape. The recovery step involves reheating the SMP
above Tg to recover the original shape. Contrary to the conventional method, in or-
der to realize Reversible plasticity shape memory (RPSM) effect, a modified pro-
gramming step is employed wherein the temporary shape can be fixed by plastically
deforming the material at a temperature lower than Tg. This modified approach of-
fers several advantages over the conventional approach like simplified programming
step, improved recovery stress, faster recovery rates and higher recovery ratios. It
has to be noted that RPSM effect is realized only when the material is deformed
within a limit where no permanent defects like cracks occur and above the elastic
limit (yield point) where there is plastic deformation. Another major drawback is
low shape fixity due to the instantaneous recovery of elastic deformation.

Recently, damage-healing of polymer composites has been an active field of re-
search. In this regard, the ability of RPSM materials to recover/heal large plastic
deformations can be used for repeated sealing of structural scale damages (Li et al,
2013; Xiao et al, 2010). The previous studies have shown that commercially avail-
able thermosetting SMPs, like Veriflex, cannot undergo large plastic deformations at
room temperature and have low failure strains (Li and Xu, 2011). Also, the thermo-
plastic SMPs, like polyurethane, are capable of large plastic deformations but have
low mechanical properties for structural applications.

Previous studies have shown that, the failure strain is maximum at the onset of glass
transition region (Yakacki et al, 2008; Gall et al, 2005; Feldkamp and Rousseau,
2010). So, in order to realize RPSM effect at large plastic deformations the glass
transition region must be ideally in the vicinity of room temperature. SMPs have ex-
ceptional properties like low cost, easy processing, high recoverable strain, etc. but,
their low mechanical properties, and inherent insulating properties limit their appli-
cations. Studies have shown that, addition of nano fillers can efficiently improve
the properties of bulk polymer (Koo, 2006; Velmurugan and Mohan, 2004, 2009).
Among them CNTs with their exceptional thermal, mechanical and electrical prop-
erties Thostenson et al (2001) have been found successful in improving the matrix
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properties while maintaining, sometimes improving the shape memory property of
the matrix (Ni et al, 2007; Hashmi et al, 2015; Abishera et al, 2016).

Two main approaches have been followed to model SMPs, namely: Phase transition
and thermo-viscoelastic modeling approaches (Nguyen, 2013). The phase transition
model was initially proposed by Liu et al (2006). In their model the polymer is ide-
alized as a constrained mixture of two phases: an active phase and a frozen phase
whose joint action contributed to the mechanical and SM properties of the material.
The volume fraction of the frozen phase which is considered as an internal variable,
evolves with the temperature. As the temperature increases the volume fraction of
the active phase increases and that of frozen phase decreases. The constitutive theory
also incorporates another internal variable called the frozen strain, to characterize
the fixed strain in the SM effect. To develop an evolution equation for the frozen
strain, it is assumed that during cooling, the elastic strain of the active phase is
transformed to stored strain of the frozen phase. This phase transition theory of Liu
et al (2006) was further extended to accommodate finite strain (Chen and Lagoudas,
2008), visco-plasticity (Qi et al, 2008), time dependency and hard phase reinforce-
ment (Baghani et al, 2012; Xu and Li, 2010). Although these models capture the
SM effect reasonably, parameters like stored strain, frozen phase are considered as
nonphysical representation of the glass transition event (Li and Xu, 2011).
To overcome these issues Nguyen et al (2008) proposed a thermo-viscoelastic model
incorporating structural and stress relaxation mechanisms. Even though thermo-
viscoelastic approach was used in early 1-D models (Tobushi et al, 2001; Morshe-
dian et al, 2005) and Diani et al (2006) 3-D finite deformation model, the constitu-
tive model by Nguyen et al (2008) gives a general approach in defining the mate-
rial behavior far beyond that of SM effect. Their model was based on the dramatic
change in the temperature dependence of the molecular chain mobility induced by
the glass transition which drives the thermally activated SM phenomena. This al-
lowed them to develop a physical description of the glass transition event with ma-
terial parameters which can be determined by standard thermo-mechanical experi-
ments. Although the model neglects heat conduction and pressure on the structural
relaxation process, the model was able to predict the thermo-mechanical and SM
behavior with reasonable accuracy. Li and Xu (2011) noted that as long as a non-
equilibrium configuration can be created and maintained, SMPs can fix a temporary
shape at temperatures even below the glass transition temperature ϑg, which can be
recovered upon heating above ϑg. Also they used the thermo-viscoelastic theory to
model the cold programming since the approach allows SM behavior to be achieved
without any temperature event.

In this study a commercially available structural grade epoxy resin was tailored to
realize RPSM effect. MWCNT was added to the epoxy matrix with an objective
to improve the mechanical and shape memory properties. The prepared nanocom-
posites were characterized for their mechanical, thermal, morphological and RPSM
properties. A comprehensive study was systematically conducted on the effect of
filler content and programming conditions like deformation level, stress relaxation
time and strain rate on the RPSM properties and the results are discussed. This paper
also attempts to study the influence of MWCNT reinforcement on the RPSM proper-
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ties of epoxy/MWCNT nanocomposites by using a thermo-viscoelastic-viscoplatic
model proposed by Nguyen et al (2008). The influence of MWCNT on the ma-
terial properties is studied by analyzing the variation in the parameters obtained
from modeling neat and filled epoxy. Using the material parameters obtained from
thermo-mechanical experiments, numerical predictions were conducted for neat and
filled epoxy under various programming conditions and the results are discussed.

23.2 Experimental Methods

23.2.1 Material Selection and Sample Preparation

The SMP was fabricated from Diglycidyl ether of bisphenol A (DGEBA-Araldite
LY556), Neopentyl glycol diglycidyl ether (NGDE) and Poly(propylene glycol)
bis(2-aminopropyl) ether (Jeffamine230). High purity Multi-Walled-Carbon-Nano-
tubes were used as nano-fillers. To realize RPSM property at large plastic defor-
mations the onset of glass transition region must be ideally in the vicinity of room
temperature. The transition region of the epoxy based SMP can be tuned by intro-
ducing varying amount of flexible aliphatic epoxy chains (NGDE) in an amine (Jef-
famine230) cured aromatic epoxy system (DGEBA) (Xie and Rousseau, 2009). The
following steps are followed to prepare the samples: weighed amounts of DGEBA,
NGDE and MWCNT were mixed using a mechanical stirrer at 1500 rpm for 4 hours.
After mixing, weighed amount of hardener (Jeffamine 230) was added to the mix-
ture and stirred with the same setting for another 15 minutes. The weight ratio of
DGEBA to NGDE to Jeffamine230 was varied until the glass transition region was
ideally in the vicinity immediately above the room temperature. The final weight
ratio of DGEBA to NGDE to Jeffamine230 with the desired requirements was deter-
mined to be 3:2:2. The mixture was poured into a dog-bone shaped (ASTM D630
Type IV) silicone mold and cured at room temperature for 18 hours, de-molded and
post cured at 80°C for 2 hours. Samples were designated as E-0-CNT, E-0.5-CNT,
E-1-CNT, E-1.5-CNT and E-2-CNT for 0, 0.5, 1, 1.5 and 2 phr (parts per hundred
DGEBA-NGDE-Jeffamine230) MWCNT in DGEBA-NGDE-Jeffamine230 system
respectively. Figure 23.1 shows the macro-photographs of as-prepared neat (E-0-
CNT) and filled (E-1CNT) epoxy.

23.2.2 Material Characterization

The tensile properties of the prepared nanocomposites were studied using a UTM
fitted with a thermal chamber of M/s Kalpak Instruments and Controls, India. The
thermal properties were studied using Differential Scanning Calorimeter (DSC) of
M/s Netzsch DSC200 F3 Maia and a Push-Rod Dilatometer of M/s VB Ceramic
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Fig. 23.1: Macro-photographs of neat (E-0-CNT) and filled (E-1CNT) epoxy

Consultants, India. The DSC heating curves of all the samples were obtained for a
temperature range from -30 °C to 100 °C in a nitrogen atmosphere. The heating rate
was fixed at 10 °C/min. Dilatometry tests were used to evaluate the linear thermal ex-
pansion properties. Field Emission Scanning Electron Microscope (FESEM) of M/s
FEI Quanta 3D FEG was used to study the morphology of the acquired MWCNTs.
The fractured surfaces of the tensile specimens were also studied to evaluate the dis-
persion of MWCNT in the polymer matrix and the effect of MWCNT addition on
tensile fracture.

23.2.3 RPSM Characterization

The steps involved in characterizing the RPSM properties of a sample with ϕ phr of
MWCNT and a gage length of Lo are as follows:

i) the sample was deformed at room temperature Td to a specific strain εd at a con-
stant strain rate ε̇ ,

ii) the deformation was held at εd for time ∆ t to allow stress relaxation in the sample,

iii)the sample was instantaneously unloaded and the fixed strain, εf was measured
and finally,

iv) the sample was heated to a temperature, Tr above the glass transition tempera-
ture at a heating rate of 3°C/min under stress free conditions to study the strain
recovery of the sample.

The steps involved in an RPSM cycle is shown in Fig. 23.2. The effect of ϕ , εd,
ε̇ and ∆ t on the RPSM properties were studied. The shape fixity ratio Rf and the
shape recovery Rr were evaluated using the equations Rf = εf/εd and Rr = εr/εf

respectively. εr is the total strain recovered after free recovery at Tr.
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Fig. 23.2: Stress-Strain-Temperature history of a typical RPSM cycle

23.3 Mechanism

The RPSM mechanism can be explained as follows (Abishera et al, 2017). When
the material is deformed beyond the initial yield, the molecular segments are reorga-
nized which subsequently change its configurational entropy (Step i). In the glassy
state (below Tg) the plastic deformation is a rate-dependent process, so the relax-
ation time allows some reorientation of the deformed molecular structure where the
stress reduces asymptotically to a non-zero value (Step ii). When the material is
elastically unloaded, a relaxed stress-free configuration is obtained. The plastic de-
formation is fixed due to the high material viscosity and reduced segmental mobility
in the glassy state (Step iii). When the sample is heated above Tg, the segmental mo-
bility increases and the material recovers back to its original configuration driven by
the entropic elasticity of the rubbery state (Step iv). This mechanism can be effec-
tively captured using a thermo-viscoelastic-viscoplastic model proposed by Nguyen
et al (2008).

23.4 Model Description

23.4.1 Kinematics

Let B0 and B denote, respectively, the undeformed reference configuration and the
deformed and/or heated spatial configuration of the continuum solid under study.
For an arbitrary material point X in the reference configuration, let χ = χ(X, t)
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be the motion, at time t, from reference to current configuration. The velocity (v),
deformation gradient (F) and the volumetric deformation (J) are defined as follows:

v =
∂ χ

∂ t
, F =

∂ χ

∂X
, J = det(F) (23.1)

Fig. 23.3: Schematic representation of the decomposition scheme for the deforma-
tion gradient F and FM

Schematic representation of the decomposition scheme employed for the deforma-
tion gradient is shown in Fig. 23.3. The deformation gradient F can be multiplicative
decomposed into thermal and mechanical components (Lion, 1997) as

F = FMFT (23.2)

where, FM and FT are the mechanical and the thermal deformation gradient respec-
tively. Under the assumption that the thermo-mechanical response is isotropic, the
thermal part of the deformation tensor with volumetric deformation JT = det(FT)
can be expressed as

FT = J
1/3
T I (23.3)

The mechanical component of the deformation gradient can be further decomposed
into elastic and plastic parts Anand and Gurtin (2003) as follows,

FM = FeFp (23.4)

The elastic part of the deformation gradient can be further decomposed by polar
decomposition into a stretch (Ve) and a rotation tensor (Re) as Fe = VeRe.

The total volumetric deformation is given by J = JMJT . With the mechanical com-
ponent (JM) given by, under isochoric plastic flow, JM = Je. The velocity gradient of
the plastic deformation tensor is given by,
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Lp = Dp +Wp (23.5)

where Dp and Wp are the symmetric and asymmetric parts of Lp representing the
plastic stretch and the plastic spin respectively.

23.4.2 Structural Relaxation and Thermal Deformation

An internal variable called the fictive temperature Tf, by Tool (1946) is used to
model the glass transition phenomenon and the Scherer–Hodge nonlinear formu-
lation (Scherer, 1984; Hodge, 1997) of the Adam–Gibbs model (Adam and Gibbs,
1965) is used for the temperature and structure dependence of the structural relax-
ation time τs. Tf is defined as the temperature at which the non-equilibrium structure
at T is in equilibrium. The evolution equation for Tf is given by

dTf

dt
=− 1

τs
(Tf −T) (23.6)

The Scherer–Hodge equation for structural relaxation time was re-written in terms
of WLF constants (C1,C2) and can be expressed as follows,

τs(T,Tf) = τo
s exp

[
−C1.

C2(T −Tf)+T (Tf −Tg)

T (C2 +Tf −Tg)

]
(23.7)

where, τo
s is the reference structural relaxation time measured at Tg. It should be

noted that at equilibrium Tf = T . Finally, the thermal deformation can be evaluated
for a temperature change To to T using the following expression,

JT (T,Tf) = 1+αr(Tf −To)+αg(T −Tf) (23.8)

where, αg and αr are the coefficients of thermal expansion at glassy and rubbery
states respectively.

23.4.3 Constitutive Equations for Stress

A rheological analogy for the thermo-viscoelastic-viscoplastic model can be schemat-
ically shown as in Fig. 23.4. The stress response (T) can be additively decomposed
into two parts namely: Tn representing the time-independent rubbery behaviour
above Tg and Tp = Te representing the time-dependent visco-plastic behavior of
the amorphous glassy polymer below Tg. The constitutive relations for the equilib-
rium stress response can be given by the eight-chain network model of Arruda and
Boyce (1993) as follows,
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Fig. 23.4 One dimensional
rheological analogy of
the thermo-viscoelastic-
viscoplastic model

Tn =
1
Jn

µr
λL

λchain
L

−1
(

λchain

λL

)
B̄′+κ(J− 1)I (23.9)

where µr is the initial hardening modulus, λL is the locking stretch and κ represent-
ing the bulk modulus. With,

λchain =

√
tr(B̄)

3
, B̄′ = B̄− tr(B̄)

3
I, B̄ = F̄nF̄T

n , F̄n = J
−1/3
n Fn,

Jn = det(Fn) and L (β ) = coth(β )− 1
β

(23.10)

where, λchain is the effective stretch on each chain in the eight-chain network
model, F̄n is the deviatoric portion of Fn given through the split formulationSimo
et al (1985) of the volumetric and deviatoric parts, B̄ is the isochoric left Cauchy-
Green tensor and L is the Langevin function. The constitutive relation for the non-
equilibrium stress response is taken as,

Tp = Te =
1
Je

Le(lnVe) (23.11)

where, the fourth order isotropic elastic tensor Le is given by Le = 2GJ+ λ I⊗ I.
G and λ are the Lamé’s constants, J and I are the fourth and second order identity
tensors.
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23.4.4 Flow Rule

Following Nguyen et al (2008), an effective plastic shear stretch rate γ̇p is used to
obtain the constitutive relations for the plastic stretch rate Dp. The theory is based
on the assumption that the shear viscosity and stress relaxation time is related to the
structural relaxation time and in turn can depend on the temperature T and polymer
structure through Tf. The stress activated, temperature dependent viscous flow was
modeled by extending Eyring’s equation to accommodate the dependence on fictive
temperature. Under these conditions the following equations hold

Dp = γ̇pnp (23.12)

γ̇p =
s

ηg

T

Q
exp

[
C1.

C2(T −Tf)+T (Tf −Tg)

T (C2 +Tf −Tg)

]
sinh

(
Q

T

τ̄

s

)
(23.13)

with

np =
T′

p√
T′

p ·T′
p

, τ̄ =
||T′

p||√
2

(23.14)

where, np is the plastic flow direction, ηg is the shear viscosity at Tg, Q is an activa-
tion parameter, τ̄ is the equivalent shear stress and T′

p is the deviatoric portion of the
non-equilibrium stress. s is an internal variable which represents the athermal yield
strength which evolves according to the phenomenological model given by (Boyce
et al, 1989) as follows,

s = h

(
1− s

ss

)
γ̇p, s(t = 0) = so, ss < so (23.15)

where, h is the flow softening modulus and ss is the saturation value of the shear
strength. It should be noted that the viscoplastic flow will not occur when the equiv-
alent shear stress becomes 0. Hence, equation (23.13) can be further modified as,

γ̇p =
s

ηg

T

Q
exp

[
C1.

C2(T −Tf)+T(Tf −Tg)

T (C2 +Tf −Tg)

]{
sinh

(
Q

T

τ̄

s

)
− 1

}
(23.16)

This modification is necessary because, when the plastically deformed configuration
is heated above Tg under stress free conditions strain recovery will not occur if γ̇ = 0.

23.5 Results and Discussions

23.5.1 Mechanical Properties

The effect of MWCNT addition on the tensile properties of epoxy nanocomposites
is shown in Fig. 23.5. The loading condition is a constant strain rate of 0.0013 s−1



23 Reversible Plasticity Shape-Memory Effect in Epoxy Nanocomposites 397

0 0.2 0.4 0.6 0.8 1

ENGINEERING STRAIN (mm/mm)

0

5

10

15

20

25

30

35
E

N
G

IN
E

E
R

IN
G

 S
T

R
E

S
S

 (
M

P
a
)

E-0-CNT

E-0.5-CNT

E-1-CNT

E-1.5-CNT

E-2-CNT

Fig. 23.5: Effect of MWCNT reinforcement on tensile properties

at room temperature (27°C). The stress-strain curve of all the samples show the
following regions:

i) an initial linear elastic portion,
ii) the linear portion reaches a maximum point (yield point) after which strain soft-

ening is observed which indicates necking.
iii)Finally, there is a (nearly) constant stress region resulting from the propagation

of the neck throughout the gage length culminating in failure.

It can be observed that addition of MWCNT results in a increase in tensile modulus
and yield strength indicating an effective reinforcement. The improvement in ten-
sile properties could be attributed to effective inter-facial load transfer between the
filler and the matrix. For instance, the tensile modulus and strength obtained for neat
epoxy was 450.2 MPa and 16.77 MPa respectively and for E-2-CNT it was found
to be 867.8 MPa and 32.06 MPa respectively. After the yield point strain soften-
ing occurs due to a drop in inter-chain contributions to the stress (Chui and Boyce,
1999). It is observed that the strain softening is steeper in the nanocomposites when
compared to pure epoxy (E-0-CNT). This trend increases with increase in MWCNT
content suggesting that due to the collapse in inter-chain interactions there is a reduc-
tion in effective load transfer between the matrix and MWCNTs leading to steeper
strain softening in the stress-strain curve. A significant reduction in the failure strain
is observed even with a small addition of MWCNT indicating a reduction in ductil-
ity with an increase in filler content. This can be attributed to the mismatch between
matrix and filler properties especially in regions with agglomerations, which might
have served as stress concentration regions leading to failure. Further increase in
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MWCNT (i.e. > 2 phr) drastically reduces the failure strain due to the increased
filler agglomerations.

23.5.2 Thermal Properties

Figure 23.6 gives the DSC thermo-graphs of various samples. All samples were
tested at a constant heating rate of 10°C/min in a nitrogen atmosphere from -30°C to
100°C. The glass transition temperatures were evaluated from the DSC curves with
the aid of Netzsch-Proteus software version 6.1.0. The glass transition temperature
of pure epoxy was found to be 42.1°C. It should be noted that the high failure strain
of the studied samples at room temperature was a result of the glass transition re-
gion being closer to room temperature. The effect of MWCNT reinforcement on the
glass transition region can be observed even with the addition of 0.5phr MWCNT.
There was a shift in Tg towards a higher temperature with the addition of MWCNT.
With further addition of MWCNT resulted in gradual increase of the glass transi-
tion temperature with the Tg reaching 44.8°C for an MWCNT content of 2phr. The
effect of MWCNT on the glass transition temperature of the epoxy nanocomposite
is still under extensive research with researchers reporting an increase, decrease or
no change in Tg (Allaoui and El Bounia, 2009). The studies have also shown that
use of unmodified MWCNT directly in to the epoxy matrix resulted in an increase
or no change in Tg . The glass transition region is characterized by an increase in
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Fig. 23.6: DSC heating curves of the studied samples
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Table 23.1: Linear Coefficient of Thermal Expansion (LCTE) and glass transition
temperature (Tg) of different samples

Sample LCTE below Tg (10−5/°C) LCTE above Tg (10−5/°C) Tg(°C) (from DSC curves)
E-0-CNT 6.04 18.92 42.1
E-0.5-CNT 5.84 18.16 43.6
E-1-CNT 5.97 18.67 44.1
E-1.5-CNT 5.72 18.79 44.6
E-2-CNT 5.56 17.67 44.8

mobility of the polymer chains. Introducing MWCNTs into the epoxy matrix might
have reduced the mobility in the polymer chains resulting in an increase of Tg.
Table 23.1 gives the linear coefficient of thermal expansion (LCTE) of the studied
samples above and below Tg obtained from dilatometry and Tg values obtained from
DSC curves. The tests were conducted at two temperature ranges separately namely
27°C to Tg and Tg to 70°C and the slope of strain-temperature diagrams of the respec-
tive tests gave the LCTE below and above Tg. As shown in Table 23.1, all samples
show a several fold increase in the LCTE above Tg as compared to the LCTE below
Tg, a characteristic of amorphous polymers. At low filler content, MWCNT had lit-
tle or no effect on LCTE for the values both above and below the Tg. A considerable
effect is observed in the sample reinforced with 2phr MWCNT (E-2-CNT) where
the LCTE decreases for both above and below Tg. This decrease may be attributed
to low LCTE of the carbon nanotubes as reported in several studies Schelling and
Keblinski (2003); Shirasu et al (2015).

23.5.3 Morphological Properties

FESEM micro-graphs of pristine MWCNTs and fractured surface of unreinforced
epoxy is shown in Fig. 23.7. The MWCNTs were found to be highly pure (> 95% ac-
cording to the supplier) with no visible impurities. The outer diameter was 20-40nm
with an average length of 7.5µm yielding an average aspect ratio of 250. To eval-
uate the dispersion state and degree of agglomerations the fractured surface of the
samples were analyzed. The studied samples were fractured in room temperature at
a strain rate of 0.0013/s. The fractography of neat epoxy shows a relatively smooth
fracture surface indicating a ductile failure mode. Figure 23.8 shows the fracture sur-
face of the nanocomposites at two different magnifications. At low magnifications a
considerable difference in fracture surface can be observed. The depth in the river-
bed pattern increases with the increase in MWCNT content indicating a decrease
in ductility of the nanocomposites. Even at low filler content, agglomerations can
be observed as bright white spots in the low magnification micro-graphs. The size
and concentration of agglomerations increase with the increase in MWCNT content
with a corresponding decrease in failure strain and ductility Montazeri and Mon-
tazeri (2011). Though the agglomerations were unavoidable due to the prolonged
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Fig. 23.7: FESEM micrographs of a) pristine MWCNT and b) fracture-surface of
pure Epoxy, fractured at a strain rate of 0.0013/s in room temperature.

curing time at room temperature, the average size of the agglomerates was found to
be less than 1µm and were uniformly distributed. The inset images show enlarged
micro-graph of an agglomerate in respective nanocomposites.

The high magnification micro-graphs in Fig. 23.8 show individually pulled out
MWCNTs protruding from the fracture surface. Wong et al. Wong et al (2003)
studied the physical interactions of nanotube and polymer interface for epoxy and
polystyrene matrices. They showed that these polymers adhered well to CNT sur-
face at a nanometer scale due to electrostatic and Van-der-Waals forces resulting in a
higher inter-facial shear strength which was about an order of magnitude higher than
the composite. As seen in Fig. 23.8 all nanotubes including agglomerated MWCNTs
were completely covered by epoxy indicating a good adhesion between MWCNT
and the matrix resulting in better mechanical properties. The average effective fiber
diameter of epoxy coated MWCNT was found to be 85nm.

23.5.4 RPSM Properties

The reversible plasticity shape memory effect of the nanocomposites was charac-
terized within a strain limit of 30%. Though neat epoxy and nanocomposites with
low filler content can exhibit RPSM characteristics at much higher strain levels,
30% strain was chosen in order to uniformly compare all samples and to avoid
inflicting any permanent damages to nanocomposites with higher MWCNT con-
tent. Figure 9 shows the effect of MWCNT reinforcement on the RPSM properties
of epoxy nanocomposites under a constant strain-rate (0.0013/s), stress relaxation
time (1800s) and deformation strain (30%). It can be observed that under given con-
ditions all samples show excellent shape memory properties. Though the samples
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Fig. 23.8: FESEM micro-graphs of fracture-surface of E-0.5-CNT(a,b), E-1-
CNT(c,d), E-1.5-CNT(e,f) and E-2-CNT(g,h) under different magnifications. All
samples were fractured at a strain rate of 0.0013/s in room temperature. Inset: En-
larged image of an agglomerate in respective nanocomposites.
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have deformed to very high strains the strain recovery of all samples were 100%
when heated above Tg. In the thermo-mechanical tests conducted by Li and XuLi
and Xu (2011) they reported that, at large deformations some permanent irreversible
damage occurred with a programming temperature of Tg − 42°. In our experiments
the deformation temperature is Tg−15° where little or no irreversible damage might
have occurred during the cold drawing step. There was an improvement in the strain
fixity with an increase in MWCNT content. The plastic deformation is fixed through
the reorganization of segments which is held by the decreased segmental mobility in
glassy state Zhang et al (2016). The improvement in fixity can be attributed to a fur-
ther decrease in segmental mobility in the glassy state with the addition of MWCNT
in the polymer matrix. The stress levels of the nanocomposites were higher through-
out the thermo-mechanical cycle indicating an efficient reinforcement of MWCNT
in the epoxy matrix. It has been reportedGall et al (2005); Ping et al (2005) that the
strain recovery started at temperatures below Tg when the programming tempera-
ture is below Tg. A similar trend was observed in our experiments with neat epoxy.
This might be attributable to the increase in segmental mobility with an increase
in temperature which would have enabled the material to recover. In E-0-CNT, the
recovery occurred over a range of temperature starting well before the glass tran-
sition and achieving a complete recovery well above Tg. This was not observed in
nanocomposites where the recovery began only after the temperature reached Tg and
the stored strain was recovered completely just above Tg as indicated by the strain
recovery curves in Fig. 23.9. This indicates that the MWCNTs were able to success-
fully hold the fixed strain by restraining the segmental mobility until the temperature
reaches Tg. Once the nanocomposite reaches rubbery state the material starts to re-
cover under entropic elasticity of the matrix, assisted by the elastic energy stored in
the MWCNT resulting in a faster recovery.

Figure 23.10 shows a representative three-dimensional curve depicting the steps in-
volved in a RPSM cycle and the macro-photographs of samples after various steps.
Each cycle in the three dimensional plots distinctly show the following steps; i) load-
ing step: loading at a constant strain rate up to a predetermined strain (σ0,ε0, t0), ii)
relaxation step: the strain is kept constant until the stress reaches an asymptotic value
(σ1,ε1 = ε0, t1), iii) unloading step: the load is removed instantly (σ2 = 0,ε2, t2 = t1)
and iv) strain recovery step: the sample is heated to a temperature higher than Tg

at a constant heating rate where the sample recovers completely (σ3 = 0,ε3 = 0, t3).
The model parameters used in this study are given in Table 23.2. The method to
obtain the parameters is given in the appendix. The constitutive model was coded
and numerically solved using MATLAB®. The MATLAB program was used to
numerically simulate RPSM cycles under various programing conditions and the
simulation results were compared with the experimental studies.

Figure 23.11 presents the comparisons between experiments and simulations for
samples loaded at different strain rates. The simulation results were qualitatively
in good agreement with the experiments. The significance of strain rate can be ob-
served in the relaxation curves. The time taken to reach ε0 increases and the time
taken to relax from σ0 to σ1 decreases i.e the time taken for the stress to reach an
asymptotic value decreases. In E-0-CNT, there is no significant difference in the
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Table 23.2: Material parameters used in the preliminary constitutive model

Model Parameter E-0-CNT E-1-CNT (Effective Properties)
Glass transition temperature, ϑg 42.1°C 44.1°C
Programming temperature, ϑo 27°C 27°C
Volumetric CTE of below ϑg, αg 1.8∗10−4/°C 1.8∗10−4/°C
Volumetric CTE of above ϑg, αr 5.6∗10−4/°C 5.6∗10−4/°C
Glassy state Shear Modulus, G 160.8 MPa 191.5 MPa
Glassy state Lame Constant, λ 643.2 MPa 766 MPa
Rubbery state Shear Modulus, µr 2.184 MPa 4.260 MPa
Bulk Modulus, κ 750.4 MPa 893.7 MPa
Locking stretch. λL 0.67 0.71
Shear viscosity at ϑg, ηg 10123 MPa-s 24000 MPa-s
Initial Shear strength, so 16.77 MPa 25.77 MPa
Saturation value of Shear strength, ss 13.35 MPa 18 MPa
Flow activation Parameter, Q 1899 K 2216.2 K
Flow softening modulus, h 250 MPa 300 MPa
First WLF constant, C1 33.9 35
Second WLF constant, C2 76.1°C 150 °C
Structural relaxation time at ϑg, τo

s 96.3 s 90 s

asymptotic value of the stress under different strain rates. Whereas, in E-1-CNT
when the strain rate decreases the asymptotic value of the stress increases signifi-
cantly i.e. when loaded at low strain rates MWCNT reinforced epoxy nanocompos-
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Fig. 23.9: Unconstrained strain recovery curves of the studied nanocomposites. In-
set: Effect of MWCNT loading on strain fixity
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Fig. 23.10: a) Representative 3D plot showing the steps involved in a RPSM cy-
cle. b) As prepared sample (E-1-CNT)–Permanent Shape c) After cold drawing and
stress relaxation–Temporary Shape d) After stress-free recovery–Recovered Shape

ite samples exhibited lesser stress relaxation than the samples which were loaded at
high strain rates. A possible explanation can be given as follows, at low strain rates
an effective load transfer between the MWCNT and matrix might have occurred
with minimal inter-facial failure enabling the MWCNTs to store the stress as elastic
energy, leading to a lower stress relaxation.
The comparison between experimental and theoretical results for samples deformed
to different deformation levels is shown in Fig. 23.12. The samples were tested for
RPSM properties at three different strain levels namely; 10, 20 and 30%. Below
10%, for example at 5% strain level the deformation is predominantly in the elastic
region, hence little or no strain fixity is observed regardless of the relaxation time for
both neat and reinforced epoxy. It can be observed that the σ0 value decreases as the
deformation length increases, due to strain softening of the tensile specimen during
cold drawing. This decrease in σ0 ultimately leads to a decrease in the asymptotic
value (σ1). Once the deformation crosses onto inelastic region all samples show
a decent amount of shape fixity. The pre-strain value has a considerable effect on
the shape fixity at zero relaxation time, with an increase in pre-strain leading to an
increase in shape fixity. No significant effect is observed in shape fixity when the
samples are allowed to relax until the stress reaches an asymptotic value. So it can
be concluded that good shape fixity can be obtained for samples that have been de-
formed above the yield strain, if the samples are allowed to relax until the stress
reaches an asymptotic value. To understand the effect of stress relaxation on RPSM
properties the samples were tested at different relaxation times and the results are
presented in Fig. 23.13 along with simulation results. The model was able to capture
the thermo-mechanical behavior quite efficiently. The samples were tested for four
relaxation times namely; 0, 5, 10 and 30 minutes. It can be observed that with an
increase in stress relaxation time a significant improvement in shape fixity can be
obtained. For example the shape fixity in neat epoxy after relaxation times of 0, 5,
10 and 30 minutes is 85.2%, 88.1%, 94% and 96% respectively. It can be observed
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Fig. 23.11: Comparison between experimental and predicted three dimensional
curves of RPSM thermo-mechanical cycles under different strain rates

that there is very little improvement in fixity for 20 and 30 minutes relaxation time
since the stress has relaxed to an asymptotic value in 20 minutes. It should be noted
the shape fixity reaches a saturation value above which no amount of relaxation time
will improve the shape fixity any further. Also, unlike conventional programming,
100% shape fixity cannot be obtained by cold drawing because a certain amount of
strain is always instantaneously recovered during elastic unloading. For all relax-
ation times the shape fixity in nanocomposites were higher than neat epoxy. Also,
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Fig. 23.12: Comparison between experimental and predicted three dimensional
curves of RPSM thermo-mechanical cycles at different deformation levels

since stress relaxation is a characteristic of the matrix, it has qualitatively similar
effect on the nanocomposites.

From the above results and discussions it can be observed that by varying various pa-
rameters like MWCNT content, transition region and programming conditions the
material can be effectively designed as per requirements. For instance, in a self heal-
ing system, given the loading conditions like strain rate, the MWCNT content and
the transition region can be optimized to ensure that the maximum strain is below the
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Fig. 23.13: Comparison between experimental and predicted three dimensional
curves of RPSM thermo-mechanical cycles after different relaxation times

failure strain and that the plastic deformation is completely recovered. Likewise in
an actuator or a morphing system, given the recovery conditions like morphing con-
figuration (recovery strain) and work to be done during actuation (recovery stress),
the parameters can be effectively tuned to obtain desired results.
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23.6 Conclusion

In conclusion, an epoxy based SMP was tailored in order to achieve reversible plas-
ticity shape memory properties. The properties of SMP was further improved by
addition of multi-walled carbon nanotubes. The nanocomposites have been charac-
terized for mechanical, thermal and morphological properties and the results were
discussed. All samples showed excellent RPSM properties. The effect of MWCNT
content and programming conditions like strain rate, deformation level and stress
relaxation on the RPSM effect were studied systematically. The results proved that
the addition of MWCNTs in the epoxy matrix significantly increases the mechanical
and RPSM properties. The results also show that the material was able to display
RPSM effect under various programming conditions with 100% strain recovery in
each case. A thermo-viscoelastic-viscoplastic model was used to simulate the re-
versible plasticity shape memory effect of epoxy and MWCNT reinforce epoxy
nanocomposites. The model parameters were determined from standard thermo-
mechanical tests enabling a close correlation between theory and experiments. The
effective material parameters thus obtained were able to simulate the RPSM be-
haviour of both neat and filled epoxy satisfactorily. The model offered a simple and
effective method in understanding the underlaying thermo-mechanical mechanisms
and an efficient tool for designing smart structures. This work also shows that by op-
timizing parameters like MWCNT content and glass transition region, the material
can be effectively designed for applications in smart structures with shape memory
and/or self-healing properties.

18.A Appendix

18.A.1 Parameter Determination and Effect of MWCNT on the

Material Parameters

The material parameters were systematically obtained from basic thermo-mechanical
experiments. In order to maintain computational simplicity a homogenization con-
cept is employed. The nanocomposites are treated as a single phase continuum while
obtaining the effective properties from experimental methods. The effective param-
eters thus obtained from the experimental methods for neat and reinforced epoxy
were compared with existing theoretical models and experimental studies to under-
stand the effect of MWCNT on the effective material properties.
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18.A.2 Determination of µr,κ ,G and λ

The glassy and rubbery moduli were obtained from the initial modulus measured
by uniaxial tension tests at a constant strain rate of 0.0013/s in room temperature
and at 80°C respectively. The effective Young’s modulus (Eg

eff) obtained at room
temperature along with a typical Poisson’s ratio of 0.4 for glassy amorphous poly-
mers yielded κ ,G and λ . The effective Young’s modulus (Er

eff) obtained at 80°C
along with a typical Poisson’s ratio of 0.5 for rubbery polymers yielded µr. In the
past, several micro-mechanics based methods have been employed to compute the
effective properties of particulate composites (Thostenson and Chou, 2003; Halpin,
1969; Fisher et al, 2003; Yeh et al, 2006; Srinivasulu et al, 2015; Velmurugan et al,
2014). In this study, Halpin (1969) equation was employed to understand the effect
of MWCNT reinforcement on the effective Young’s modulus of the nanocomposites.
The Halpin–Tsai equation is as follows,

Eeff =
(1+ cηvf)

(1−ηvf)
Em, η =

(αEf/Em)− 1
(αEf/Em)+ c

(23.17)

where, Em and Ef are the Young’s modulus of the matrix and MWCNT respectively.
vf is the volume fraction of MWCNTs and c = p(2L/d) is the constant shape factor
related to the reinforcement length L and diameter d of MWCNT. The parameter
p is a semi-empirical parameter relating to the curved nature of the nanotubes and
the degree of agglomerations (Park and Bandaru, 2010). At higher vf the increase
in modulus becomes non-linear where p should be taken as a non-linear function
of vf. α is Cox’s orientation parameter (Yeh et al, 2006) which accounts for the
randomness of discontinuous fibers. For samples with thickness much higher than
the length of MWCNT, as is the case in this study the value α = 1/6 is used which
represents a random orientation in three dimensions. The density of MWCNTs was
calculated from the density of graphite (2.25g/cm3 (Montazeri et al, 2010)) and
considering the ratio of outer to inner radius is 3 (as per the supplier). The density of
MWCNTs was obtained as 2g/cm3. The Young’s modulus for MWCNTs was taken
as 950 GPa (Yu et al, 2000). The value for p was obtained by fitting the experimental
modulus values to the Halpin–Tsai equation seperately at room temperature and
at 80°C. It was found to be 0.21 and 0.35 respectively. Although a temperature
dependent function can be used to model the variation of moduli below and above
ϑg (Srivastava et al, 2010), for computational simplicity the moduli in this study are
considered to be temperature independent. Fig. 23.14 shows the ability of Halpin–
Tsai equation to predict the modulus with different filler content.
By similar reasoning, the Halphin–Tsai equations can also be used to determine the
tensile strengths of the nanocomposites using following equations,

Seff =
(1+ cηvf)

(1−ηvf)
Sm, η =

(αSf/Sm)− 1
(αSf/Sm)+ c

(23.18)

Sm and Sf are the tensile strength of the matrix and MWCNT respectively.
The tensile strength of MWCNTs was taken as 63 GPa (Yu et al, 2000).The value
where
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for p was obtained by fitting the experimental strength values to the Halpin–Tsai
equation and was found to be 0.21. Figure 23.15 shows the ability of Halpin–Tsai
equation to predict the strength at different filler content.

18.A.3 Determination of C1, C2, τo
s , αg and αr

The WLF parameters C1, C2 and the reference structural relaxation time τo
s appear-

ing in the evolution equation for ϑf can be determined from the glass transition
region of the DSC curves.The DSC heating curves of all the samples were obtained
for a temperature range from -30°C to 100°C in a nitrogen atmosphere. The heating
rate was fixed at 10°C/min. Assuming that the enthalpy of equilibrium material at
0K is zero and the heat capacity of the rubbery and glassy state are independent of
temperature, the enthalpy, H of an amorphous material can be given by Simon and
McKenna (2000),

H = ∆Cp(ϑf −ϑ)+Cprϑ = ∆Cpϑf +Cpgϑ (23.19)

where Cpg and Cpr are the heat capacities of glassy and rubbery state respectively
and ∆Cp =Cpr −Cpg. The Cp at the onset and end of the transition region are taken
as Cpg and Cpr respectively. The equation for heat flow (P) can be obtained by taking
the first derivative of the enthalpy equation as follows,
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P =
dH

dt
= ∆Cp

dϑf

dt
+Cpg

dϑ

dt
(23.20)

Curve fitting the above equation to the DSC curves gives the values of C1, C2 and
τo

s as shown in Fig. 23.16. The values obtained by this method are given in Table.
23.2. The values of C1 and C2 obtained from this method vary largely from that of
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pseudo universal WLF constants (C1 ≈ 17, C2 ≈ 50°C). Montazeri et al (2012) ob-
tained similar variations in the WLF parameters and concluded that the variation is
considerably larger in network structures and composites than for linear polymers.
Using this method, there was no considerable change in C1 value with the addition of
MWCNTs but an significant increase in C2 was obtained. Only a slight variation in
the characteristic structural relaxation time was obtained with the addition of MWC-
NTs. The volumetric coefficient of thermal expansion (CTE) was approximated as
three times the linear CTE obtained from dilatometry tests. There was no signifi-
cant change in CTE at low volume fractions of MWCNTs. Also, from the recovery
curves it can be observed that the strain response is entropy dominated and the influ-
ence of thermal expansion is less. Considering these factors same volumetric CTEs
were taken for filled and unfilled epoxy both above and below ϑg.

18.A.4 Determination of ηg, ss, Q and h

Following Nguyen et al (2008) the initial guess of Q was obtained as follows; the
flow stress, s and the effective stretch rate, γ̇ were evaluated from uniaxial tension
tests as s = σ/

√
3 and γ̇ = ε̇

√
3 where σ and ε̇ are the tensile yield stress and strain

rate. The initial guess of the activation parameter was obtained from the following
equation.

Q ≈ s0ϑ
ln γ̇1 − ln γ̇1

s1 − s2
(23.21)

γ̇1 and γ̇2 are obtained from two different strain rates and s1 and s2 were ob-
tained from respective tensile yield stresses. Three values of Q were obtained from
the three strain rates tested and the average was taken as the initial guess for the
activation parameter. It can be seen from Table 23.2 that the value of Q is higher for
MWCNT filled epoxy than neat epoxy, thereby resulting in a higher flow stress in
the glassy state of the nanocomposites. Other parameters namely ηg, ss, λL and h

were fitted to the uniaxial tensile and relaxation testes for different strain rates and
temperatures. The final values are given in Table 23.2. It can be seen that ss/so for
the nanocomposite is lesser than that of neat epoxy indicating a steeper strain soft-
ening in the nanocomposites. This behavior is further established with the increase
in flow softening modulus, h. An increase in ηg obtained from the curve fitting pro-
cedure indicates an increase in shear viscosity in the nanocomposites, indicating a
decrease in ductility with the addition of MWCNTs.
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Chapter 24

The Dynamics of an Accreting Vibrating Rod

Michael Y. Shatalov, Stephan V. Joubert, Igor A. Fedotov, Masodi Lesiba Glen
Lekalakala & Judith Nomantande Maureen Bidie

Abstract A linear model of longitudinal vibration is formulated for a viscoelastic
rod subjected to external harmonic excitation within the framework of the classical
theory of vibrating rods. It is assumed that the rod has a time-dependent variable
length and cross-section. A mixed problem of dynamics is formulated, which con-
tains non-conventional fixed-free boundary conditions with the coordinate on the
right-hand side of the rod being dependent on time. A special transformation of vari-
ables eliminates the dependence of the right-hand side coordinate of the boundary
conditions on time. The transformation substantially simplifies the boundary condi-
tions, converting them to the classical fixed-free boundary conditions. The simpli-
fication of the boundary conditions is, in turn, exacerbated by the equation of rod
motion because it becomes a linear partial differential equation with variable coef-
ficients containing some additional terms. The proposed solution of this equation
is built in terms of a trigonometric series with time-dependent coefficients, where
the spatial components satisfy the boundary conditions. In this case the original par-
tial differential equation is converted into an infinite system of coupled ordinary
differential equations with corresponding initial conditions. Truncation of the sys-
tem produces an initial problem which is solved numerically. The corresponding
truncated trigonometric series rapidly converges to the solution. The solutions are
built for different combinations of the parameters of the varying rod. It is shown
that for lightly damped rods, the amplitudes of different modes are mainly defined
by free solutions of the initial problem. The notion of generated equations of the
system is introduced. Free solutions can be obtained from the generating equations
of the coupled system of ordinary differential equations. Moreover, exact solutions
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of the generating equations are built in terms of the elementary Kummer and conflu-
ent Heun functions. These exact solutions give one proper insight into the dynamic
processes governing vibrations of the varying lightly damped rods. In the case of
heavily damped coefficients, free vibration of the rod is rapidly suppressed and the
amplitude behaviour of the modes on a finite time interval is defined by the excita-
tion force. For example, in the case of a linearly growing rod of constant volume,
the amplitude of the equivalent excitation force also grows proportionally to time.
Owing to this effect, the amplitudes of the particular modes, in turn, are linearly
increased with time.

Key words: Longitudinal vibration of a rod · Rod with variable length · Rod with
variable cross-section · Resonance · Heun function · Kummer function

24.1 Introduction

The development of mathematical theories describing the processes of modern addi-
tive manufacturing technologies is a subsection of the topical problems of theoreti-
cal and applied mechanics (Manzhirov et al, 2011; Gupta et al, 2013). The dynamics
of accreting bodies is an important part of these theories. This was mainly devel-
oped in the pioneering work of Prof. A.V. Manzhirov and his collaborators (Manzhi-
rov and Lychev, 2015, 2014; Manzhirov and Parshin, 2015b,a; Manzhirov, 2014;
Manzhirov and Lychev, 2013; Levitin et al, 2012, 2014; Lychev and Fedotov, 2015;
Kuznetsov et al, 2012; Manzhirov et al, 2012; Lychev et al, 2011; Manzhirov and
Lychev, 2009; Shatalov et al, 2012). The fundamentally new mathematical models
describing the strain-stress evolutions in the process of additive manufacturing were
developed in Manzhirov and Lychev (2015) and Manzhirov and Lychev (2014). The
influence of the force of gravity in the problem of an arch structure erected by the ad-
ditive technologies was analysed in Manzhirov and Parshin (2015b) and Manzhirov
and Parshin (2015a). New mathematical models of continuously growing bodies
in the case of small and finite deformations were presented in Manzhirov (2014)
and Manzhirov and Lychev (2013). Non-stationary dynamical problems of growing
bodies are now of special interest. A transient dynamical problem for an accreted
thermoelastic parallelepiped was considered in Levitin et al (2012) and Levitin et al
(2014). Transient oscillations of a spherical growing shell were analysed in Lychev
and Fedotov (2015). Non-stationary heat conduction problems in a growing ball
were treated in Kuznetsov et al (2012) and Manzhirov et al (2012). The unsteady
lateral vibration of a circular plate with growing thickness was investigated in Ly-
chev et al (2011). A unified variational approach for the mathematical modelling of
growth processes in nature and engineering was outlined in Manzhirov and Lychev
(2009).
The present paper is devoted to the longitudinal vibration of a slender rod with vary-
ing geometrical parameters such as length and cross-section. Previously analogous
problems were considered in the works of some of the co-authors of the present
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paper (Shatalov et al, 2012; Lekalakala et al, 2015b,a, 2016, 2015c). A Kelvin vis-
coelastic rod of initially unit length, which is actuated by a harmonic force, is con-
sidered in the framework of the classical theory of rods. It is assumed that the left
end of the rod is fixed and the free right end moves with small linear velocity so
that the length of the rod increases linearly. Moreover, it is assumed that the cross-
section area of the rod simultaneously increases or decreases in accordance with the
power law. The corresponding mixed (boundary-initial) problem is formulated math-
ematically so that the coordinate of the right-hand side boundary condition depends
on time. A transformation of coordinates is proposed, which converts the given un-
conventional boundary-value problem into the standard one. This transformation
simplifies the boundary conditions but simultaneously substantially complicates the
governing partial differential equation coefficients which become time dependent.
Assuming the damping effects are small, we neglect the effects of second-order
smallness as well as the second-order effects of small longitudinal growth rate. The
simplified equation obtained is approximately solved by its transformation into a
truncated system of ordinary differential equations with corresponding initial con-
ditions. The assumed truncated series form of the solution is formulated so that the
boundary conditions are automatically satisfied. A notion of generating equation is
introduced and exact solutions of these equations are obtained in some special cases.
For example, it is shown that the solution of the undamped rod simultaneously vary-
ing in longitudinal ( l (t) = l0 (1+ εt)) and the lateral (A(t) = A0 (1+ εηt)) direc-
tions, is expressed in terms of elementary functions. If viscoelastic damping effects
are not neglected, the exact solution is expressed in terms of the confluent Heun
functions (if η 6= 1) or Kummer functions (if η = 1). The physical interpretations of
the results obtained are discussed. Numerical simulations of the vibrating rod with
variable geometric dimensions are considered in the most important cases: from free
vibrations of the viscoelastic rod to forced vibrations of an equivoluminally growing
rod with light and heavy damping.

24.2 Equations of Motion and Their Transformations

In this section we describe the mathematical model of a longitudinally vibrating
cylindrical medium’s geometrical parameters, which are changed in both the longi-
tudinal and/or lateral directions. This model can be used to describe either an elastic
solid rod or an ideal compressible fluid (acoustic medium) enveloped in a rigid cylin-
drical shell with variable geometry and a soft membrane on the right-hand side. In
all of these cases we will refer to the deformed and vibrating medium as a “rod”. The
equation of motion of a longitudinally vibrating rod actuated by force f0 sin(ω t) in
the Ox-direction is

∂

∂ t

(
A(t)

∂u

∂ t

)
− 2dA(t)

∂ 3u

∂ t ∂x2 − c2A(t)
∂ 2u

∂x2 = f0 sin(ω t) (24.1)
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Where u = u(t,x) is the longitudinal (particle) displacement of the rod and A(t) =
A0 (1+ εηt)α is its time-dependent cross-sectional area . It is assumed that the
change of the length of the rod is proportional to time: l (t) = l0 (1+ εt). Let us as-
sume that l0 = 1, η = const, αis positive, negative or zero constant and ε is positive
or negative “small” constant (0 < |ε| << 1). The physical meaning of ε is the rate
of growth (if ε > 0) or shrinkage (if ε < 0) of the rod’s length. The dissipative factor
d which is also assumed to be small is proportional to the viscoelastic damping in

the Kelvin-Voight model. The term 2dA(t) ∂ 3u
∂ t ∂x2 describes wave dissipation in the

viscous heat transfer medium. In this case 2d = ρ
A0

[
4η
3 + ζ +κ

(
1
cv
− 1

cp

)]
, where

η , ζ are correspondingly volumetric and shear viscosities, κ is thermal conductiv-
ity, and cv, cp are heat capacities of the medium at constant volume and pressure,

respectively. The phase velocity of the longitudinal wave propagation is c =
√

E
ρ ,

where E is the modulus of elasticity and ρ is the mass density of the rod. The ampli-
tude of periodic excitation of the rod, f0, is proportional to the excitation force, and
ω is the (angular) frequency of periodic excitation. It is also possible to consider a
compressible fluid stem oscillating in a longitudinal direction in the framework of

equation (24.1) with c =
√

K
ρ , where K is the bulk modulus of the fluid and ρ is its

mass density.

Boundary conditions for the rod are as follows:

x = 0 : u(t,x = 0) = 0
x = 1+ εt : ∂u

∂x
(t,x = 1+ εt) = 0

(24.2)

The initial conditions are

t = 0 : u(t = 0,x) = 0, ∂u
∂ t
(t = 0,x) = 0 (24.3)

Let us make a change of variables (t,x) → (τ,y) in the mixed problem (24.1) –
(24.3) as follows:

t = τ, x = y(1+ ετ) (24.4)

After making the change of variables (24.4) in equation (24.1) and after its division
byA(τ), the equation of motion is:

∂ 2v

∂τ2 − 2d

(1+ ετ)2

∂ 3v

∂τ ∂y2 − 2εy

1+ ετ

∂ 2v

∂τ ∂y
+

2εdy

(1+ ετ)3

∂ 3v

∂y3 +
2εηα

1+ εητ

∂v

∂τ

+2ε2

[
1

(1+ εητ)2 − ηα

(1+ ετ)(1+ εητ)

]
y

∂v

∂y

−
[

c2 − ε2y2

(1+ ετ)2 − 4εd

(1+ ετ)3

]
∂ 2v

∂y2 +
2ε2η2α (α − 1)

(1+ εητ)2 v =
f0

A0

sin(ωτ)

(1+ εητ)α

(24.5)

where v = v(τ,y) = u(t = τ,x = y(1+ ετ)). The new boundary conditions are
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y = 0 : v(τ,y = 0) = 0
y = 1 : ∂v

∂y
(τ,y = 1) = 0

(24.6)

and new initial conditions are

τ = 0 : v(τ = 0,y) = 0, ∂v
∂τ (τ = 0,y) = 0 (24.7)

Equation (24.5) contains several terms of higher than O(ε) and O(d) order of small-
ness. Neglecting terms O

(
ε2
)

and O(εd) in equation (24.5), the simplified equation
is written as follows:

∂ 2v

∂τ2 − 2εy

1+ ετ

∂ 2v

∂τ ∂y
− 2d

(1+ ετ)2

∂ 3v

∂τ ∂y2 +
2εηα

1+ εητ

∂v

∂τ
− c2

(1+ ετ)2

∂ 2v

∂y2

≈ f0

A0

sin(ωτ)

(1+ εητ)α

(24.8)

The boundary and initial conditions for (24.8) are the same for equations (24.6) and
(24.7). Let us now consider methods of solution for the formulated mixed problem
given by equations (24.6) to (24.8).

24.3 Theoretical Treatment: Solution of Mixed Problem (24.6) to

(24.8)

(24.8) is as follows:

v = v(τ,y) =
∞

∑
m=1

Cm (τ) sin

[
(2m− 1)π

2
y

]
, (24.9)

This series obviously satisfies boundary conditions (24.6). Substituting (24.9) in

(24.8), multiplying the result by 2sin
[
(2n−1)π

2 y
]
, (n = 1,2, . . .) and integrating with

respect to y from 0 to 1, the following infinite system of ordinary differential equa-
tions is obtained:

d2Cm

d τ2 +

[
dπ2 (2m− 1)2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dCm

dτ
+

c2π2 (2m− 1)2

4(1+ ετ)2 Cm

+
ε

1+ ετ

∞

∑
n = 1

(n 6= m)

(−1)m+n+1 · (2n− 1)2

(n−m)(m+ n− 1)
dCn

dτ
≈ 4 f0

(2m− 1)πA0 (1+ εητ)α sin(ωτ)

(24.10)

where m = 1,2, . . .. Note that at n = n0 = const : lim
m→∞

[
(2n−1)2

(m−n)(m+n−1)

]
= 0, and at

m = m0 = const : lim
n→∞

[
(2n−1)2

(n−m)(m+n−1)

]
= 4. At low frequency excitation of the rod
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(the classical theory of longitudinal vibration of rods describes exclusively the low
frequency vibrations of rods), the system of equations (24.10) converges rapidly to
a solution, and it is thus possible to consider a truncated system of ordinary differ-
ential equations (m = 1,2, . . . ,N). The explicit form of system (24.10) at N = 4 is
as follows:

d2C1

d τ2 +

[
d

π2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dC1

dτ
+

c2π2

4(1+ ετ)2 C1

+
ε

1+ ετ

(
9
2

dC2

dτ
− 25

6
dC3

dτ
+

49
12

dC4

dτ

)
≈ 4 f0

πA0 (1+ εητ)α sin(ωτ)

d2C2

d τ2 +

[
d

9π2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dC2

dτ
+

9c2π2

4(1+ ετ)2 C2

+
ε

1+ ετ

(
−1

2
dC1

dτ
+

25
4

dC3

dτ
− 49

10
dC4

dτ

)
≈ 4 f0

3πA0 (1+ εητ)α sin(ωτ)

d2C3

d τ2 +

[
d

25π2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dC3

dτ
+

25c2π2

4(1+ ετ)2 C3

+
ε

1+ ετ

(
1
6

dC1

dτ
− 9

4
dC2

dτ
+

49
6

dC4

dτ

)
≈ 4 f0

5πA0 (1+ εητ)α sin(ωτ)

d2C4

d τ2 +

[
d

49π2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dC4

dτ
+

49c2π2

4(1+ ετ)2 C4

+
ε

1+ ετ

(
− 1

12
dC1

dτ
+

9
10

dC2

dτ
− 25

6
dC3

dτ

)
≈ 4 f0

7πA0 (1+ εητ)α sin(ωτ)

(24.11)

The corresponding homogeneous generating components of all equations from
(24.10) to (24.11) are:

d2Cm

d τ2 +

[
dπ2 (2m− 1)2

2(1+ ετ)2 +
2εηα

1+ εητ
− ε

1+ ετ

]
dCm

dτ
+

c2π2 (2m− 1)2

4(1+ ετ)2 Cm = 0

(24.12)
To understand the nature of vibrations in the rod it is worthwhile to consider a par-
ticular case when damping is negligibly small so that it is possible to assume d ≈ 0.
Let factor η = 1 so that equation (24.12) is as follows:

d2Cm

d τ2 − χε

1+ ετ

dCm

dτ
+

c2π2 (2m− 1)2

4(1+ ετ)2 Cm = 0 (24.13)

where χ = 1− 2α . In this case the exact solution of (24.13) represents almost peri-
odic oscillations with period changing according to a logarithmic law and the ampli-

tude changing at a rate proportional to (1+ εt)
χ+1

2 :

Cm (τ) = {S1 cos [wm ln(1+ εt)]+ S2 sin [wm ln(1+ εt)]}(1+ εt)
χ+1

2 (24.14)
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where wm =

√
c2π2(2m−1)2

4ε2 −
(

χ+1
2

)2
. In particular, if χ = −1 (this corresponds to

the case of simultaneous growth of the length of the rod and its cross-sectional area
with the same rate ε), then the amplitude of vibration remains constant. If χ = 0 (in
this case the cross-section of the rod grows proportionally to the square root of its
longitudinal growth, α = 0.5), then the amplitude of vibration grows proportionally
to

√
1+ εt. At χ = 1 (the longitudinal growth of the rod is not accompanied by

change of its cross-section, α = 0), the amplitude of its vibration grows linearly with
the longitudinal growth of the rod (1+ εt). The energy considerations help us to
understand the nature of the above-mentioned behaviour of the rod. For example, if

in the last case we calculate how the total energy E = A0
2

∫ 1
0

[(
∂u
∂ t

)2
+ c2

(
∂u
∂x

)2
]

dy

of the first mode u = S1 cos [wm ln(1+ εt)]sin
(πy

2

)
changes with time (in a non-

autonomous system the law of energy conservation does not hold in general), we
obtain

E (t) = A0
16 π2c2S2

1

[
1+ ε

c
sin

(
πc
ε ln(1+ ετ)

)
+O

(
ε2
)]

≈
A0
16 π2c2S2

1

[
1+ ε

c
sin (πcτ)

]
.

(24.15)

Hence the mean value of the total energy is not changed and the energy circulates
between the rod and energy source. This supports the constant rate of linear growth
of the rod. Analogous considerations are valid in all other particular cases.

If the damping effects are not neglected (d 6= 0) (see equation (12)), then the quali-
tative behaviour of vibrations is changed. The general solution of equation (24.12)
is as follow:

Cm (τ) =


S1 ·HC

(
ā,2b̄, c̄, d̄, ē, 1−η−1

1+ετ

)
(1+ ετ)−b̄+

S2 ·HC
(

ā,−2b̄, c̄, d̄, ē, 1−η−1

1+ετ

)
(1+ ετ)b̄


 · e

dm π2

2ε(1+ετ) (1+ ετ)1−α

(24.16)
where HC (. . .) are confluent Heun functions of six arguments (see Appendix A).

The corresponding parameters in (24.16) are ā = dπ2η
2ε(η−1) , b̄ = i

√(
wm
ε

)2 − (α − 1)2,

c̄ = 2α − 1, d̄ = 3dπ2η
4ε(η−1) and ē = 2

(
α2 − 3

2 α + 1
4

)
− dηπ2

2ε(η−1)

(
α − 3

2

)
,
(
i2 =−1

)
. It

follows from the general solution (24.16) that at initial time interval [0,τ], the be-
haviour of the solution is defined by the product of the confluent Heun functions

with the exponent e
dm π2

2ε(1+ετ) (see the next paragraph devoted to numerical simulations
of the processes), and at τ → ∞ this product tends to 1 and both fundamental solu-
tions change at a rate proportional to (1+ ετ)1−α . Qualitatively, this behaviour of
the rod can be explained from equation (24.12), where the factors responsible for

amplitude change of vibrations
(

2εηα
1+εητ − ε

1+ετ

)
dCm
dτ are inversely proportional to

time and other terms. Indeed, the viscous damping term, dπ2(2m−1)2

2(1+ετ)2
dCm
dτ is inversely

proportional to the square of time and hence decreases faster than the previous terms.
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It is obvious that solution (24.16) is applicable to η 6= 1. If η = 1, the solution of
equation (24.12) can be expressed in terms of the hypergeometric functions. But it
is simpler to express this solution in terms of the Kummer functions as follows:

Cm (τ) =

[
S1 ·M

(
−ã, b̃,

d

ε (1+ ετ)

)
+ S2 ·U

(
−ã, b̃,

d

ε (1+ ετ)

)]
· (1+ ετ)ã

(24.17)

where M
(
−ã, b̃, d

ε(1+ετ)

)
, U

(
−ã, b̃, d

ε(1+ετ)

)
are fundamental solutions of Kum-

mer’s equation ã = (1−α)− i

√(
wm
ε

)2 − (1−α)2, b̃ = 1+ 2i

√(
wm
ε

)2 − (1−α)2.

The general solution of the non-homogeneous equation corresponding to (24.12)
with the right-hand side equal to fm (t) is calculated as follows:

Cm (t) =Cm,0 (t)+

∫ t

0
Gm (t,τ) fm (τ)dτ (24.18)

where Cm,0 (t) = S1ϕm,1 (t)+ S2ϕm,2 (t) is the general solution (24.16) of the homo-
geneous equation (24.12) and

ϕm,1,2 (t) =

HC

(
ā,±b̄, c̄, d̄, ē, 1−η−1

1+εt

)
(1+ εt)∓i

√
( wm

ε )
2−(α−1)2

e
dm π2

2ε(1+εt) (1+ εt)1−α

(24.19)

are fundamental solutions of (24.12), if η 6= 1. If η = 1,

ϕm,1 (t) = M
(
−ã, b̃, d

ε(1+ετ)

)
, ϕm,2 (t) =U

(
−ã, b̃, d

ε(1+ετ)

)
and

Gm (t,τ) =
ϕm,1 (τ)ϕm,2 (t)−ϕm,1 (t)ϕm,2 (τ)

Wm (τ)
(24.20)

is Green’s function of equation (24.12) with

Wm (τ) =Wm,0
(1+ εητ)2α

1+ ετ
e

dπ2(2m−1)2

2(1+ετ)
τ

(24.21)

the Wronskyan of functions ϕm,1 (t),ϕm,2 (t) and Wm,0 = const.

24.4 Numerical Simulations and Discussions

In this section we perform several numerical simulations of initial problems for sys-
tem (24.10) (the first four equations of this system are represented by (24.11)). In
all subsequent simulations we used a truncated system of ten equations but graph-
ically illustrated the behaviour of only the first four modes on the time interval,
τ ∈ [0, 250]. Numerical integration was performed using the Fehlberg fourth-fifth-
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order Runge-Kutta method with degree four interpolant. For the following examples
we selected some characteristic values of parameters c, d, ε, A0, α, η , f0 and ω .

In the first example, free vibrations of the linearly growing lightly damped rod
are considered with parameters c = 1, d = 0.05, ε = 0.05, A = 1, α = 0, f0 = 0
(values of η and ω are not important in these simulations). Initial conditions are

C1 (τ = 0) = 1, C2 (τ = 0) = . . . = C10 (τ = 0) = 0, dC1
dτ

∣∣∣
τ=0

= . . . = dC10
dτ

∣∣∣
τ=0

= 0.

The solution to this problem is shown in Fig. 24.1.

Fig. 24.1 illustrates the qualitative behaviour of a vibrating rod. An exponential
drop of amplitudes of the modes is observed at the initial time interval due to the
forces of viscoelastic damping. This short time tendency is changed by the following
linear growth of amplitudes of the modes (the so-called “quasi resonance effect of
a growing rod”). The results of simulation are in full agreement with the qualitative
behaviour of all individual modes, which have been described in the theoretical part
of the paper (see solutions (24.16) – (24.17) and subsequent considerations). These
graphs also illustrate generation of higher modes at the excitation of the first mode
and the fast convergence of the solution, because the amplitudes of higher modes
C [m] =Cm (τ) rapidly decrease as the number m grows.

As a second example, we consider forced oscillations of a linearly growing rod.
The amplitude of the excitation force is f0 = 1 and excitation frequency is ω0 =

4
3 .

Other parameters are the same as in the first example. Initial parameters are zero:

C1 (τ = 0) = . . . = C10 (τ = 0) = 0, dC1
dτ

∣∣∣
τ=0

= . . . = dC10
dτ

∣∣∣
τ=0

= 0. The results of

simulation are shown in Fig. 24.2.

Fig. 24.1: Four modes of free vibration of a viscoelastic growing rod with light
damping ( c = 1, d = 0.05, ε = 0.05, A0 = 1, α = 0, f0 = 0)



426 Michael Y. Shatalov et al.

Fig. 24.2: Four modes of forced vibration of viscoelastic growing rod with light
damping (c = 1, d = 0.05, ε = 0.05, A0 = 1, α = 0, f0 = 1, ω = 4

3 )

In this example it was assumed that excitation frequency ω = 4
3 is less than the

lowest eigenvalue (ω1 = πc
2·l(τ=0) =

π
2 > 4

3 = ω) of the rod at its initial state. The

eigenvalues of a rod which does not grow longitudinally are equal to ωn =
πc(2n−1)

2·l ,
where n= 1,2, · · ·. In the present example it is assumed that the rod grows linearly ac-
cording to the law: l = l (τ) = 1+ετ . Hence, at c = 1 and at a particular time instant

τ = τ̃ , the eigenvalues of the “frozen” rod are distributed according to ω̃n =
π(2n−1)
2·(1+ετ̃) .

There exists an m where the eigenvalue is equal to the excitation frequency
(
ω = 4

3

)

at τ = τm = 1
ε

[
π(2m−1)

2·ω − 1
]
= 1

ε

[
3π(2m−1)

8 − 1
]
. Hence, the time interval between

two neighbouring resonance peaks of m-th and (m+1)-th modes of the rod is equal
to ∆τ = τm+1 − τm = 3π

4ε ≃ 47.1 time units. This resonance behaviour of a growing
rod excited by an harmonic force is illustrated in Fig. 2. In this figure one can see
that the first four modes pass through a point in time (called a point of resonance)
where resonance occurs. Another interesting aspect of the considered light damping
vibration is that the first mode has its amplitude linearly increasing after passing
through the resonance point while the higher modes appear not to have increasing
amplitude after this point. This is explained by the fact that the effective viscose
damping factor of m-th mode is proportional to (2m− 1)2, and hence, its natural
vibrations are damped substantially higher than those of the lower modes (see equa-
tions (24.10) – (24.12)). It is possible to show that at longer time intervals, the effect
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Fig. 24.3: First mode of forced vibration of viscoelastic growing rod with heavy
damping (c = 1, d = 0.25, ε = 0.05, A0 = 1, α = 0, f0 = 1, ω = 4

3 ,τ ∈ [0,50000])

of modulation of the external vibration with increasing amplitude is observed due
to coupling of the higher modes with the first mode in the equations of motion.
Let us consider a third example where the damping factor is higher. In this case
we consider the same parameters as in the second example but the damping factor
is equal tod = 0.25. In this case simulations demonstrate the sum of excited and
linearly growing natural vibrations at the first harmonic of a bar with increasing
length. This process is depicted in (Fig. 24.3) for the time interval, τ ∈ [0,50000].
In the fourth example we consider forced oscillations of a lightly damped rod with
a simultaneously increasing length and proportionally decreasing area of cross-
section so that the volume of the rod remains constant (“equivoluminal growth”
of the rod). In this case the parameters of the rod are assumed to be equal to
c = 1, d = 0.05, ε = 0.05, A0 = 1, α =−1, η = 1, f0 = 1, ω = 4

3 . The solution to
the problem at time interval τ ∈ [0,750] is shown in Fig. 24.4.
It follows from this simulation that the first mode starts to increase amplitude of its
free oscillations according to a quadratic law as it is prescribed by solution (24.17).
One can observe that this mode is represented as a superposition of quadratically
growing natural oscillations and growing forced oscillations at excitation frequency
ω . Equations (24.10) and (24.11) suggest that the amplitude of the excited vibra-
tions grows linearly due to the linear growth of excitation force at α = −1. Higher
harmonics also demonstrate vibrations with increasing amplitude, but the rate of
amplitude growth is less than that of the first harmonic due to the increase (propor-
tionally to (2m− 1)2) of the equivalent damping factor.
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Fig. 24.4: Four modes of forced vibration of “equivoluminally growing” rod with
light damping (c = 1, d = 0.05, ε = 0.05, A0 = 1, α = −1, η = 1, f0 = 1, ω =
4
3 ,τ ∈ [0,750])

Fig. 24.5: First mode of forced vibration of viscoelastic “equivoluminally growing”
rod with heavy damping (c = 1, d = 0.25, ε = 0.05, A0 = 1, α =−1, η = 1, f0 =
1, ω = 4

3 ,τ ∈ [0,750])

In the final, fifth example, the “equivoluminal growth” of a substantially damped rod
subject to forced oscillations is considered. In this case it is assumed that d = 0.25.
Other parameters are the same as in the previous example. The solution in this case
is depicted in Fig. 24.5 for the first mode.
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The qualitative difference between the behaviour of the first mode in the cases
of light and heavy damping is the rate of development of natural oscillations. In
Fig. 24.4 (“light damping” case) an increase in amplitude is observed mainly due to
the quadratic increase of free oscillation amplitude. In Fig. 24.5 (“heavy damping”
case) amplitude growth is linear, which is mainly explained by the increase of the
amplitude of the excitation force.

24.5 Conclusion

A linear model of longitudinal vibration is formulated for a viscoelastic rod with
variable length and variable cross-section in the classical framework. It is assumed
that the rod is subjected to external harmonic excitation. A mixed problem of dynam-
ics is formulated which contains fixed-free non-conventional boundary conditions
where the coordinate of the right end of the rod is time dependent. A transformation
of variables is proposed, which eliminates the dependence of the right-hand side
coordinate of the boundary conditions on time. This transformation substantially
simplifies the boundary conditions converting them to the classical ones. The trade-
off of the boundary condition simplification leads to a substantial complication of
the equation of rod motion, which becomes a linear partial differential equation with
variable coefficients. A solution of this equation is sought in terms of trigonometric
series with time dependent coefficients, where the spatial components satisfy the
boundary conditions. By means of this representation of the solution, the original
partial differential equation is converted into an infinite system of ordinary differ-
ential equations with corresponding initial conditions which are solved numerically.
Truncation of the system generates a truncated trigonometric series which rapidly
converges to the solution. Solutions are built for various combinations of the pa-
rameters of the varying rod. It is shown that for lightly damped rods, amplitudes of
different modes are mainly defined by free solutions of the initial problem. These
free solutions can be obtained from the generating equations of the coupled system
of ordinary differential equations. Exact solutions of the generating equations are
built in terms of elementary, Kummer and confluent Heun functions. These exact
solutions give proper insight into the dynamical processes governing vibrations of
varying lightly damped rods. In the case of heavy damping coefficients, free vibra-
tion of the rod is suppressed rapidly, and the amplitude behaviour of the various
modes on a finite time interval is defined by the excitation force. For instance, in the
case of a linearly growing rod of constant volume, the amplitude of the equivalent
excitation force also grows proportionally to time. Owing to this effect, in turn, the
amplitudes of certain modes increase linearly with time.
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Chapter 25

A New, Direct Approach Toward Modeling

Rate-Dependent Fatigue Failure of Metals

Si-Yu Wang, Lin Zhan, Zheng-Nan Yin & Heng Xiao

Abstract The main objective of this study is to propose a new finite J2−flow elasto-
plastic model toward directly modeling metal fatigue behavior over the whole defor-
mation range up to failure. A departure from usual elastoplastic models is that the
concept of yielding is rendered irrelevant with a gradual, smooth transition from the
elastic to the plastic state in a more realistic sense and, moreover, asymptotic loss
of the strength is incorporated. It is demonstrated that the failure behavior may be
derived as a direct consequence of the proposed model, without involving any ad-
ditional failure criteria and any additional variables. Moreover, a direct and explicit
approach is suggested to identify each rate-dependent parameter based on suitable
test data. Results are presented for rate-dependent failure effects for both monotone
and cyclic uniaxial tensile loadings from low to high strain rates. Model predictions
compare well with test data.

Key words: Metal fatigue · Finite strain · Elastoplasticity · New model · Direct
simulation

25.1 Introduction

It is of great interest to develop an effective methodology to assess reliability and
safety of materials and structures associated with fatigue, fracture and failure. Nu-
merous results in these respects have been obtained from various standpoints in
the past decades. Usually, the fracture-mechanics-based approach and the damage-
mechanics-based approach are used, in conjunction with additional failure criteria.
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Below, certain representative samples of most recent results are mentioned in three
respects, separately.
Firstly, certain recent results in the study of fracture behavior may be found in, e.g.,
Bronkhorst et al (2006) for a study of the localization behavior of tantalum and
stainless steel; in Shyam et al (2007) for a model of small fatigue crack growth in
metallic materials; in Kim et al (2011); Stoughton and Yoon (2011) for a study of
the shear fracture and for a failure criterion for sheet metals; in Jansen et al (2013)
for an anisotropic stress-based criterion to predict the fracture mechanism etc.; Khan
and Liu (2012a,b) for latest advances concerning strain rate and temperature effects,
and many others.
Secondly, for certain recent results in continuum damage mechanics and its ap-
plications, reference may be made to, e.g., Brünig (2003a,b) for a ductile dam-
age model with irreversible thermodynamics and for numerical treatment; Bonora
et al (2005) for ductile damage evolution under multi-axial stress states; Brünig and
Ricci (2005) for a nonlocal model for anisotropically damaged metals; Brünig et al
(2008); Brünig and Gerke (2011) for a ductile damage criterion under multi-axial
stress states and for damage evolution simulation under dynamic loading; Chung
et al (2011); Malcher et al (2012) for a modified damage model and for a study of
ductile fracture under various cases of triaxial stress; Brünig et al (2013) for micro-
mechanical studies in triaxial stress cases; Shojaei et al (2013) for a study of brittle
to ductile damage based on viscoplastic models; and many others.
Thirdly, results in the study of fatigue failure seem immense. For certain represen-
tative samples, refer to Susmel (2008, 2014); Rozumek and Macha (2009); Argon
(2011); Macha and Nieslony (2012) for energy-based and critical-plane-based ap-
proaches and others and to Zhang (2016) for thermomechanical fatigue of single
crystal superalloys, as well as the references therein.
In the existing studies, results are usually obtained based either on augmented con-
stitutive structures with additional damage-like variables or on ad hoc criteria for
fracture and failure etc.. In a most recent study (Xiao, 2014) a new, direct approach
has been proposed to model fatigue, fracture and failure behaviors of metals and
alloys etc. The central idea is to establish new elastoplastic models into which the
fatigue failure behavior is incorporated as inherent constitutive features. To this goal,
it has been indicated (Xiao et al, 2014; Xiao, 2014) that the usual concept of yield-
ing should be abandoned toward a gradual, smooth transition from the elastic to
the plastic state in a more realistic sense. In addition, the fatigue failure behavior
may be automatically derived as a direct consequence of certain simple asymptotic
properties of the strength quantities incorporated.
In this study, we are going to extend the above new elastoplasticity model to a
broader case with rate-dependent effects and, then, simulate rate-dependent failure
effects of a metal sample under monotone and cyclic uniaxial tensile loadings from
low to high strain rates. Results will be presented for a simple case of the proposed
model. It will be shown that good agreement with test data may be achieved even
with this simple case.
The main context of this contribution will be arranged as follows. Section 25.2 will
establish the new rate-dependent elastoplastic model and introduce a simple case
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of this model; Sect. 25.3 will study the failure behavior of a uniaxial sample under
both monotone and cyclic tensile loadings; Sect. 25.4 will present numerical results,
and, finally, Sect. 25.5 will give some remarks on the main results.

25.2 New Rate-Dependent Elastoplasticity Model

Consider a finite deforming elastoplastic body. Let DDD, FFF and LLL be the stretching
tensor, the vorticity tensor and the velocity gradient, respectively. Moreover, τττ and
σσσ are the Kirchhoff stress and the Cauchy stress (true stress), namely,

DDD =
1
2
(LLL+LLLT), WWW =

1
2
(LLL−LLLT), LLL =FFF ·FFF−1, (25.1)

τττ = Jσσσ ,J = detFFF. (25.2)

In the above, FFF and J are the deformation gradient and the deformation Jacobian.

The self-consistent Eulerian rate formulation of finite elastoplasticity is used ((cf.,e.g.
Xiao et al, 2006). The starting point is the additive decomposition of the stretching
DDD, as shown below:

DDD =DDDe +DDDp. (25.3)

In the above, the DDDe and DDDp are the elastic and the plastic part of DDD, respectively. An
objective Eulerian rate equation of Hookean type is used to relate the elastic part DDDe

and an objective stress rate τ̊ττ:

DDDe =
1

2G
τ̊ττ − ν

E
(trτ̊ττ)III (25.4)

Here, G, ν and E are the shear modulus, Poisson ratio and Young’s modulus as in
classical Hooke’s law, with E = 2G(1+ν).

Prior to the yielding (hence DDDe = DDD), the elastic rate Eq. (25.4) should be exactly
integrable to really deliver a hyper-elastic stress-strain relation based on an elastic
strain-energy function. As demonstrated in Xiao et al (1999, 2000a,b, 2007); Bruhns
et al (1999, 2003), the just-mentioned requirement is fulfilled if and only if the stress
rate τ̇ττ in Eq. (25.4) is the logarithmic rate of the stress τ̊ττ as defined below (Xiao et al,
1996, 1997, cf., e.g.,):

τ̊ττ = τ̇ττ +τττ ·ΩΩΩ −ΩΩΩ ·τττ, (25.5)

with the logarithmic spin:Logarithmic strain, logarithmic spin and logarithmic rate

ΩΩΩ =WWW +
m

∑
r 6=s=1

(
1+(

br

bs

)

1− (
br

bs

)

+
2

ln(
br

bs

)

)BBBr ·DDD ·BBBs, (25.6)
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where the bi and the BBBi are the m distinct eigenvalues and the corresponding eigen-
projections of the Cauchy-Green tensor BBB = FFF ·FFFT , respectively. Details may be
found in Xiao et al (1997).

Moreover, the rate equation prescribing the plastic stretching DDDp is given by a nor-
mality flow rule of the following form Bruhns et al (1999, 2003, 2005); Xiao et al
(2000b, 2007):

DDDp = ρζ
∂ f

∂τττ
. (25.7)

In the above, the function f and the loading factor ζ will be given slightly later.
According to the classical theory of elastoplasticity, the plastic indicator ρ in Eq.
(25.7) is associated with the concept of yielding and represents the very feature
of plastic behavior in an idealized sense. In fact, it is assumed that no plastic de-
formation would be induced, namely, ρ = 0 prior to yielding, whereas plastic de-
formation would be induced, namely, ρ = 1 at yielding. Specifically, the loading-
unloading conditions associated with the yield condition should be introduced to
specify whether the plastic indicator ρ takes value 0 or takes value 1.

The above representation of plastic behavior in the idealized or simplified sense
results in certain issues (Xiao et al, 2014; Xiao, 2014). Here, a relevant point is
that any fatigue failure effects under cyclic loadings would be excluded. However,
it is noted that, for realistic elastoplastic behavior, the plastic deformation would
be induced at any stress level with a non-vanishing plastic indicator 0 ≤ ρ ≤ 1.
Therefore, a more realistic characterization may be presented by specifying 0 ≤ ρ ≤
1 in the following manner: The value of ρ is growing up to 1 whenever the stress
point τττ is going close to the yield surface f = 0, whereas the value of ρ becomes
vanishingly small whenever the stress point is going far away from the yield surface
f = 0.

With the above idea in mind, a new flow rule may be proposed as follows (Xiao et al,
2014; Xiao, 2014):

Dp =
g

r
exp

[
−m

(
1− g

r

)] ζ + |ζ |
2

∂ f

∂τττ
. (25.8)

In the above, m ≥ 0 is a non-negative dimensionless parameter and f is the von
Mises function of the form :





f = g− r,

g =
1
2

J2 =
1
2

trτ̃ττ
2
,

r =
1
3

q2,

(25.9)

where the τ̃ττ = τττ − 1
3
(trτττ)III is the deviatoric part of τττ and the q, called the stress limit,

relies on both the plastic work κ and the stretching magnitude d, namely,

q = q(κ ,d) , (25.10)
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where
κ̇ = τττ : DDDp , (25.11)

d =

√
2
3

trDDD2 . (25.12)

Moreover, the ζ in Eq. (25.8) is given by

ζ =
f̆

h̆
(25.13)

with

f̆ = 2Gτ̃ττ : DDD− 2
3

q
∂q

∂d
ḋ, (25.14)

h̆ =
2
3

J2(3G+ qq′) . (25.15)

Here and henceforward, the notation q′ is used to denote the derivative of q with
respect to κ , viz.

q′ =
dq

dκ
. (25.16)

Equations (25.3), (25.5) and (25.8)-(25.13) together produce

τ̊ττ

2G
=

ν

1− 2ν
(trDDDIII+DDD− 1.125q−2

3G+ qq′
exp

[
−m

(
1− 3J2

2q2

)]
( f̆ + | f̆ )τ̃ττ, (25.17)

where the plastic work κ is given by

κ̇ =
1.125J2q−2

3G+ qq′
exp

[
−m

(
1− 3J2

2q2

)]
( f̆ + | f̆ ). (25.18)

Equations (25.17)-(25.18) with Eqs. (25.10)-(25.12) and (25.14) provide a new rate-
dependent elastoplasticity model, into which the yielding behavior and the loading-
unloading behavior are not imposed as extrinsic coercive conditions but incorpo-
rated into intrinsic physical features. Now, plastic flow can be induced at any non-
zero stress level. The plastic strain will become appreciable when the stress meets
the yield condition f = 0, whereas it may be negligibly small in the case when
f < 0. Detailed explanations of the consequences implied by such a new model
may be found in Xiao et al (2014); Xiao (2014). Here, the proposed model is a
rate-dependent extension of the rate-independent models in the previous study just
mentioned. It is worth pointing out that the rate-independent case is smoothly incor-
porated as the particular case of the new model when d tends to vanish.

Here, of particular interest is a study of the fatigue failure behavior for metals. Ac-
cording to the result presented in a broad sense in a previous study (Xiao, 2014)
that, as an inherent constitutive feature of the new model, the fatigue failure may be
represented by the following asymptotic property:
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lim
κ←+∞

q(κ ,d) = 0 . (25.19)

As such, the fatigue failure will be automatically predicted from the new model with
a stress limit of the above asymptotic property. Note that this property just represents
the following basic fact: the strength, characterized here by the stress limit q, should
be gradually reduced and eventually become vanishing with full development of
plastic flow.

In the subsequent development, a simple form of the stress limit q= q(κ ,d) with the
asymptotic property Eq. (25.19) will be taken into consideration and given below:

q =
1
2

q0[1+ tanhβ (κc −κ)]. (25.20)

In the above, q0, β and κc are three positive material parameters and, in general,
rate-dependent, namely,

q0 = q0(d), β = β (d), κc = κc(d) . (25.21)

The stress limit q given in Eqs. (25.20)-(25.21) is a rate-dependent extension of
the counterpart given in a previous study for the rate-independent case (Wang and
Xiao, 2015). It exhibits asymptotic loss of the stress-bearing capacity, since it tends
to vanish as the plastic work κ goes to infinity, namely, the condition given by Eq.
(25.19) is met.

The main features of the stress limit given and the parameters therein are explained
as follows: For a fairly large β , the stress limit q given by Eq. (25.16) actually yields
a constant value, i.e., q0, before the plastic work κ reaches a critical value slightly
smaller than κc, whereas it goes rapidly to vanish after κ exceeds a critical value
slightly greater than κc.

In the next section, results for both high and low cycle fatigue behaviors of metals
at different strain rates will be derived based on the proposed model.

25.3 Failure Under Monotone and Cyclic Loadings

25.3.1 Governing Equations in the Uniaxial Case

Consider a cylindrical bar undergoing uniaxial deformations. Let τ be the axial
Kirchhoff stress and let a and l be the stretch ratios in the axial direction and the
lateral direction, respectively. Then, from Eqs. (14) and (17)-(18) the rate equations
governing the axial Hencky strain h = lna and the plastic work κ may be derived as
follows:

ḣ =
q0

E

(
1+

Eφ

3G(1−φ)+ qq′

)
˙̄τ, (25.22)
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κ̇ =
q2

0φτ̄

3G(1−φ)+ qq′
˙̄τ, (25.23)

where

φ =
τ̄2q2

0

q2 [τ̄ ḣ]exp

[
−m

(
1− τ̄2q2

0

q2

)]
, (25.24)

q′ =−1
2

β q0
1

cosh2 β (κ −κc)
. (25.25)

Moreover, by means of the fact that the volumetric strain is elastic, the lateral stretch
ratio l is determined by

ln l =−h

2
+

1− 2ν

2
q0

E
τ̄ . (25.26)

Here and henceforth we denote
τ̄ =

τ

q0
,

[x] =
1
2
(1+ sgn (x)) =

{
1 for x > 0,

0 for x ≤ 0.

In deriving Eqs. (25.22)-(25.24), the axial strain rate ḣ is taken to be constant and,
therefore, ḋ = ḣ = 0.
For any given loading process, namely, τ = τ(t), the response of the axial Hencky
strain h = h(t) may be derived from Eqs. (22)-(26) and, vice versa. In what follows,
the monotone strain case up to failure and cyclic loading case up to failure will be
taken into account, separately.

25.3.2 Parameter Identification with Monotone Strain Data

For the purpose of identifying the rate-dependent parameter incorporated, stress-
strain data under monotone tensile strain up to failure are needed at different strain
rates. At each given strain rate, the axial Hencky strain h constantly grows from zero
to infinity till eventual failure. In this process, the axial stress increases from zero
to a maximum value and, after that, decreases from this maximum to zero. With
the values of the parameters m, q0, β and κc for any given strain rate ḣ, the stress
response as a function of the axial strain h may be determined from Eqs. (25.22)-
(25.23) with [τ ḣ] = 1, namely, from the following equations

dτ

dh
=

E

q0

3G(1−φ)+ qq′

3G+(2ν − 1)Gφ + qq′
, (25.27)

dκ

dh
=

q2
0φτ

3G(1−φ)+ qq′
dτ

dh
, (25.28)

with [τ ḣ] = 1 in Eq. (25.24) and the initial value
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τ|h=0 = 0, κ |h=0 = 0, h ∈ [0,+∞).

Then, the values of the foregoing parameters may be identified in such a sense that
the stress response fits the stress-strain data given at the strain rate at issue as closely
as possible. Given data sets at several strain rates, several sets of parameter values
may accordingly be available. Each rate-dependent parameter is then obtained by
standard interpolating procedures, as will be shown in the next section.

25.3.3 Predictions for Fatigue Failure Under Cyclic Loadings

With the model parameters identified, fatigue failure under cyclic loadings may
be predicted from Eqs. (25.22)-(25.23). Here, the following type of stress cycle is
treated, namely, the stress τ grows from zero to a certain value and then goes back
to zero.
Since the plastic working κ̇ is positive for τ ḣ > 0 and the stress limit q = q(κ ,d)
is of the asymptotic property Eq. (25.19), a critical state for failure will be attained
with accumulation of the plastic work as the cycle number is increasing. This state
is prescribed by the vanishing of the denominator in Eq. (25.23), namely, by the
following condition:

3G(1−φ)+ qq′ = 0 , (25.29)

with [τ ḣ] = 1 in Eq. (25.24). Immediately following this critical state, the strain will
grow indefinitely large as the stress goes down to vanish. This implies that indef-
initely growing strain will be induced by vanishingly small stress and, therefore,
eventual failure will emerge following the critical state in the foregoing.
On account of the above facts, two deformation stages need be treated separately.
Prior to the critical state, at each cycle the strain h as a function of the stress τ is
determined from Eqs. (25.22)-(25.23) with [τ ḣ] = 1 as the stress grows from zero
to a given value. Note that the value at the start of the s−th cycle is just the value at
the end of the (s− 1)−th cycle.
As the critical state is attained, i.e., the condition Eq. (27) is met, the stress cycle
can no longer be performed as before but, instead, the stress will go down to vanish.
In this case, the stress τ should be determined as a function of the strain h from Eqs.
(25.22)-(25.23) with [τ ḣ] =−1, namely, from the following equations:

dτ

dh
=

E

q0

3G(1+φ)+ qq′

3G+(1− 2ν)Gφ + qq′
, (25.30)

dκ

dh
=

−q2
0φτ

3G(1+φ)+ qq′
dτ

dh
, (25.31)

with [τ ḣ] = 1 in Eq. (25.24).
The above two stages demarcated by a critical state will be shown in the numerical
results in the next section.
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25.4 Numerical Results

Recently, Giroux et al. (2010) have obtained tensile stress-strain data of P92 steel un-
der monotone strain up to failure at the four strain rates 2.5×10−6/s, 2.5×10−5/s,
2.5×10−4/s and 2.5×10−3/s. Data in this paper were given for the axial engineer-
ing strain and engineering stress, denoted ε and P. These data are converted to those
for the axial Hencky strain h and Kirchhoff stress τ via the following relations:

{
h = ln(1+ ε),

τe−(1−2ν)τ/E = (1+ ε)P.
(25.32)

Since the Poison ratio ν is about
1
3

and the magnitude of order of τ/E is about 0.01

for the greatest possible values of the stress τ , the exponential term in the second
relation above may be set to be 1 with sufficient accuracy. As a result, the foregoing
two relations may be reduced to

{
h = ln(1+ ε),
τ = (1+ ε)P.

(25.33)

The material parameters, including E, m, q0, β and κc etc., may be determined by
simulating a uniaxial stress-strain curve with monotonically increasing strain up to
failure and then numerical results for fatigue failure may be obtained by integrating
the system of the two equations (25.22) and (25.22), as explained in Subsect. 25.3.2
and Subsect. 25.3.3. These will be done separately.

25.4.1 Failure Under Monotone Strain

The material parameters are found by fitting the four experimental curves in the
foregoing reference. Results are presented in Table 25.1 for the parameter values
and in Fig. 25.1 through Fig. 25.4 for comparisons with the test data for the four
strain rates, separately. Table 25.1 shows that the maximum value of the stress limit
and the critical plastic work, i.e., q0 and κc, display rate effects. As indicated in Sub-
sect. 25.3.2, these rate-dependent parameters may be given directly by interpolating
functions, as shown below:

Table 25.1: Parameter values at four strain rates

Rates (s−1) m ν E (GPa) β (MPa−1) κc(MPa) q0(MPa)
2.5×10−6 0.1 0.3 120 0.05 58 340
2.5×10−5 0.1 0.3 120 0.05 87 395
2.5×10−4 0.1 0.3 120 0.05 92 440
2.5×10−3 0.1 0.3 120 0.05 82 480
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Fig. 25.1 Uniaxial stress-
strain curve at strain rate 2.5×
10−3s−1, with parameters β
= 0.05 / MPa, ν = 0.3, E =
120000 MPa, m = 0.1, κc = 82
MPa, q0 = 480 MPa.

Fig. 25.2 Uniaxial stress-
strain curve at strain rate 2.5×
10−4s−1, with parameters β
= 0.05/MPa, ν = 0.3, E =
120000 MPa, m = 0.1, κc = 92
MPa, q0 = 440 MPa

κc = 54.426+ 144.382d̄− 56.853d̄2+ 2.045d̄3,

q0 = 333.266+ 271.881d̄− 100.679d̄2+ 3.601d̄3,

where d̄ = 1000d. With these polynomial interpolating functions, the two parame-
ters exactly provide those values given in Table 25.1 for the four strain rates.

25.4.2 Predictions for Fatigue Failure Under Cyclic Loadings

With the parameters identified, the model predictions for the fatigue failure behavior
of the metal at issue may be derived under various types of cyclic loadings. Here,
the stress cycle indicated in Subsect. 25.3.3 is taken into consideration. The fatigue
life, i.e., the cycle number N to failure, may be determined by Eq. (25.29) for the
four strain rates. Also, the stress-strain curves over the whole strain range up to
failure may be obtained following the procedures in Subsect. 25.3.3. Results for
the four strain rates are shown in Fig. 25.5 through Fig. 25.8 for the stress-strain
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Fig. 25.3 Uniaxial stress-
strain curve at strain rate 2.5×
10−5s−1, with parameters β
= 0.05/MPa, ν = 0.3, E =
120000 MPa, m = 0.1, κc = 87
MPa, q0 = 395 MPa

Fig. 25.4 Uniaxial stress-
strain curve at strain rate 2.5×
10−6s−1, with parameters β
= 0.05/MPa, ν = 0.3, E =
120000 MPa, m = 0.1, κc = 58
MPa, q0 = 340 MPa

curves for the stress amplitude of 150MPa and in Fig. 25.9 for the curves of the
fatigue life versus the stress amplitude. The falling parts in Figs. 25.5-25.5 clearly
show the emergence of both the critical state and the eventual failure, namely, the

Fig. 25.5 Fatigue failure
under the cyclic loadings at
strain rate 2.5× 10−3s−1,
N = 18095
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Fig. 25.6 Fatigue failure
under the cyclic loadings at
strain rate 2.5× 10−4s−1,
N = 17098

Fig. 25.7 Fatigue failure
under the cyclic loadings at
strain rate 2.5× 10−5s−1,
N = 12573

Fig. 25.8 Fatigue failure
under the cyclic loadings at
strain rate 2.5× 10−6s−1,
N = 5353
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Fig. 25.9 Fatigue character-
istic curves of the metal at
different strain rates (σ and
N f are the stress amplitude
and the cycle number to fail-
ure)

strain grows rapidly to infinity, and, in the meantime, the stress goes sharply down
to vanish. This is predicted automatically from the model, without involving any
ad hoc failure criteria. The model predictions for the fatigue life under the stress
cycle considered agree with the salient feature of the fatigue failure for metals. As
shown in Fig. 25.9, the fatigue life, i.e., the cycle number to failure, increases with
increasing strain rate.

25.5 Concluding Remarks

The fatigue failure behavior of metals under different strain rates is simulated based
on the new elastoplastic model proposed, in a direct sense without involving any
additional variables and any ad hoc failure criteria. It is noted that the parameters
characterizing the plastic behavior, in particular, the parameters m,q0 and κc, play
significant roles in simulating the fatigue failure behavior. The numerical simula-
tion results are in agreement with fatigue failure behavior of realistic materials. The
proposed model is for general multi-axial deformations. Here, simulation results
are given for the uniaxial case. Moreover, comparison of the model prediction with
test data has been done merely for the monotone strain case up to failure, whereas
that is not the case for the fatigue life due to lack of data for the test sample con-
sidered. Further study will be needed to compare model predictions with test data
for the fatigue life under various types of cyclic loadings and, furthermore, to treat
deformation modes with rotational effects, such as simple shear etc. Results will be
reported elsewhere.
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